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Zusammenfassung

Manipulation und Transport von elektronischen Spins sind die wesentlichen Elemente, die fiir
das Funktionieren einer zukiinftigen Spin-basierten Elektronik implementiert werden miissen.
Diese Arbeit befasst sich schwerpunktmifig mit Halbleitersystemen, in denen diese Prinzipien
mit hoher Zuverldssigkeit moglich sind. Dazu wurden sowohl numerische als auch analytische
Berechnungsmethoden genutzt, letztere oft in der Form einfacher Modelle zur Interpretation der
numerischen Ergebnisse.

Das Halbleitersystem von HgTe/CdTe Quantentrégen, auch bekannt als zweidimensionaler
topologischer Isolator, ist sowohl von fundamentalem wissenschaftlichen Interesse, da die topo-
logisch nichttriviale Energiestruktur zu einem Schutz von Transporteigenschaften fiihrt, als auch
von angewandterem Interesse, da aus diesemn Materialsystem Proben gefertigt werden kénnen, die
ballistischen Transport hoher Qualitit zeigen, und da zudem die Rashba Spin-Bahn-Kopplung
sowie die elektronische Dichte durch elektrische Steuerelektroden einstellbar sind. Wir erwei-
tern das Bernevig-Hughes-Zhang Modell fiir zweidimensionale topologische Isolatoren, indem
wir ein Vierbandmodell herleiten, das Rashba Spin-Bahn-Kopplungsterme enthilt, die durch ein
dufieres elektrisches Feld hervorgerufen werden, wenn dieses die Inversionssymmetrie des Quan-
tentroges bricht. Der Transport von Spins in diesem System zeigt ein interessantes Wechselspiel
zwischen Effekten der Rashba Spin-Bahn-Kopplung und Effekten der intrinsischen Dirac-artigen
Spin-Bahn-Kopplung. Dabei dominiert die Rashba Spin-Bahn-Kopplung das Verhalten des Spin-
Hall-Signals. Basierend auf der einstellbaren Rashba Spin-Bahn-Kopplung, schlagen wir einen
spinselektiven Polarisator zur rein elektrischen Erzeugung und Detektion von Spinstromen vor.
Das Funktionsprinzip ist vergleichbar mit demjenigen eines doppelbrechenden Kristalls. In der
vorgeschlagenen Anordnung untersuchen wir die Spinpolarisation in verschieden Spinvektorkom-
ponenten und zeigen die Realisierbarkeit von hoher Spinpolarisation in der Ebene. Da der Spin
keine Erhaltungsgrofie des Halbleitermodells ist, analysieren wir in einem ersten Schritt den
Transport von der Erhaltungsgrofe Helizitdt, und setzen die erzeugte Polarisation dann in Bezug
zur Spinpolarisation.

Des Weiteren analysieren wir thermoelektrischen Transport in einem System, das auch den
Spin-Hall-Effekt zeigt. Aufgrund von Spin-Bahn-Kopplung kommt es beim Anlegen eines Tem-
peraturgradienten zu einem transversalen Spinstrom, genannt Spin-Nernst-Effekt. Dieser ist
iber eine Mott-artige Beziehung mit dem Spin-Hall-Effekt verkniipft. Im metallischen En-
ergiebereich kdnnen wir die Signale qualitativ anhand von einfachen analytischen Modellen ver-
stehen. Im Energiebereich der elektronischen Bandliicke finden wir ein Spin-Nernst-Signal, das
vom raumlichen Uberlapp der Randzustinde herriihrt, die an gegeniiberliegenden Kanten des
Halbleitersystems lokalisiert sind.

Im methodischen ersten Teil dieser Arbeit diskutieren wir zwei komplementire Methoden
zur Konstruktion von effektiven Halbleitermodellen, ndmlich die Methode der Envelopefunktio-
nen und die Methode der Invarianten. Aufserdem présentieren wir Elemente der elektronischen
Transporttheorie, unter besonderer Beachtung von Spintransport. Wir diskutieren die Zusam-
menhinge zwischen dem adiabatischen Theorem in der Quantenmechanik einerseits, und semi-
klassischer Transporttheorie sowie der topologischen Klassifizierung von Phasen andererseits.
Als weitere Anwendung des adiabatischen Theorems zeigen wir, wie universelle Kontrolle eines
einzelnen Spins in einem Quantenpunkt aus Schwerlochzustéinden experimentell realisiert werden
kann, ohne dabei die Zeitumkehrsymmetrie zu brechen. Zu diesem Zweck fiihren wir ein elek-
trisches Quadrupolfeld ein, dessen Konfiguration als adiabatischer Kontrollparameter dient. Wir
schlagen die experimentelle Realisierung des Quantenpunktes in einem QaAs/GaAlAs Quanten-
trogsystem vor.
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Summary

In the field of spintronics, spin manipulation and spin transport are the main principles that
need to be implemented. The main focus of this thesis is to analyse semiconductor systems
where high fidelity in these principles can be achieved. To this end, we use numerical methods
for precise results, supplemented by simpler analytical models for interpretation.

The material system of 2D topological insulators, HgTe/CdTe quantum wells, is interesting
not only because it provides a topologically distinct phase of matter, physically manifested
in its protected transport properties, but also since within this system, ballistic transport of
high quality can be realized, with Rashba spin-orbit coupling and electron densities that are
tunable by electrical gating. Extending the Bernvevig-Hughes-Zhang model for 2D topological
insulators, we derive an effective four-band model including Rashba spin-orbit terms due to an
applied potential that breaks the spatial inversion symmetry of the quantum well. Spin transport
in this system shows interesting physics because the effects of Rashba spin-orbit terms and the
intrinsic Dirac-like spin-orbit terms compete. We show that the resulting spin Hall signal can be
dominated by the effect of Rashba spin-orbit coupling. Based on spin splitting due to the latter,
we propose a beam splitter setup for all-electrical generation and detection of spin currents.
Its working principle is similar to optical birefringence. In this setup, we analyse spin current
and spin polarization signals of different spin vector components and show that large in-plane
spin polarization of the current can be obtained. Since spin is not a conserved quantity of the
model, we first analyse the transport of helicity, a conserved quantity even in presence of Rashba
spin-orbit terms. The polarization defined in terms of helicity is related to in-plane polarization
of the physical spin.

Further, we analyse thermoelectric transport in a setup showing the spin Hall effect. Due
to spin-orbit coupling, an applied temperature gradient generates a transverse spin current, i.e.
a spin Nernst effect, which is related to the spin Hall effect by a Mott-like relation. In the
metallic energy regimes, the signals are qualitatively explained by simple analytic models. In
the insulating regime, we observe a spin Nernst signal that originates from the finite-size induced
overlap of edge states.

In the part on methods, we discuss two complementary methods for construction of effective
semiconductor models, the envelope function theory and the method of invariants. Further, we
present elements of transport theory, with some emphasis on spin-dependent signals. We show
the connections of the adiabatic theorem of quantum mechanics to the semiclassical theory of
electronic transport and to the characterization of topological phases. Further, as application of
the adiabatic theorem to a control problem, we show that universal control of a single spin in a
heavy-hole quantum dot is experimentally realizable without breaking time reversal invariance,
but using a quadrupole field which is adiabatically changed as control knob. For experimental
realization, we propose a GaAs/GaAlAs quantum well system.
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Chapter 1

Introduction

Mesoscopic physics can be defined as the study of physical systems of sub-micron or nanoscale,
which are small enough to reveal quantum mechanical interference effects, yet large enough
to allow the use of statistical concepts like chemical potential and temperature. Therefore,
mesoscopic systems are the ideal candidates for studying the transition of classical to quantum
mechanical behaviour. Since microstructured semiconductors provide an ideal way to implement
mesoscopic devices, mesoscopic physics can be regarded as subfield of semiconductor and solid
state physics. In quantitative terms, the phase coherence length [4 of a mesoscopic device should
be comparable to the extension of the device [Dat07; Bee-+91|. Usually, scattering events that
cause decoherence will also change the momentum, so the mean free path [y will be smaller than
lg. Transport in very clean samples, where barely any scattering at disorder happens inside
the sample, is called ballistic, and these devices will also show quantum interference effects. In
this context, the most prominent experimental achievement has been to build a microsctructure
showing the Aharonov-Bohm effect, i.e. interference due to enclosed magnetic flux in a ring
[Web+85|. Certainly, one experimental direction of scientific effort is to find larger and larger
systems which still show quantum mechanical behaviour.

Interestingly, the simplest phenomenological physical laws known from school books, like
Ohm’s law for electrical conductance and Faraday’s law for heat conductance, no longer hold on
the mesoscopic scale. For this reason, it has been a tough problem to find microscopic derivations
of these laws, based only on quantum electrodynamics and statistical physics, and a key point in
these derivations is to assume sample dimensions large enough to allow for quantum mechanical
phase decoherence due to interactions, at a scale small compared to the sample’s extension
[Dub+11; Dat07]. Note that we can already say by the second law of thermodynamics, that
Ohm’s law cannot hold in a mesoscopic system without decoherence. Thermodynamics relates
dissipation, which is conversion of work to heat, to a loss of information about the microscopic
state. No decoherence means no loss of information about the system, so dissipation cannot take
place, and by contrast a finite DC conductivity as in Ohm’s law implies dissipation[ﬂ. Some care
must be taken with this simple argument, since we have not taken into account that transport
usually requires an open systems (i.e. with contacts to the environment). Dissipation at the
contacts will still be present for the phase-coherent mesoscopic system. Another difficulty in
such theoretical efforts is that chemical potential and temperature are strictly defined only in
equilibrium. However, transport of heat or charge is a non-equilibrium problem. Since local

1 An exception can occur when driving electrical field and induced current are orthogonal, like in the quantum
Hall state.
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chemical potential and local temperature are very intuitive and useful concepts which appear
in the mentioned phenomenological laws for transport, there have been attempts to find strict
definitions for these. The problem of heat transport at the microscopic scale turns out to be
even more difficult than the problem of charge transport. There are mainly two reasons for
this. Firstly, there are more physical effects that contribute to heat transport - phonons and
electrons, neglecting radiation. Secondly, while the charge is a conserved quantity, heat is not -
from thermodynamics we know that the conserved quantity, energy, splits up in the parts heat
and work. This has to be taken into account for a microscopically valid definition of heat flow.

So far, we have only mentioned charge and heat currents, but this thesis is more concerned
with yet another kind of current, connected with the transport of electron or quasi-particle
spins. Interest in spin transport has been raised by the idea that for information processing,
neither heat nor charge transport is needed - instead, one needs just some property that can be
manipulated and transported. Since the electron intrinsically has a spin degree of freedom, this
insight has spawned the field of spintronics, which deals with spin-based information processing.
Therefore, generation and detection of spin currents is one of the major goals of spintronics
[Wol-+01].

Considering the advanced level of current information processing technology, one should
have strong arguments if one proposes to shift away from established charge-based information
processing to something different. There are some fundamental advantages of spin-based infor-
mation processing. The technological advancement in information processing of the last decades
has been primarily due to scaling down of structures, in order to fit more logical gates on a semi-
conductor system. This naturally comes with increased heat dissipation, and nowadays, this has
become the main impediment for further advances in computation power. If microstructures are
further scaled down, quantum mechanical effects will naturally appear. Instead of viewing this
only as difficulty, we want to point out that quantum mechanics can also be used as working
principle for new logical devices.

Spin-based information processing can have significant benefits in terms of energy per switch-
ing process [Aws+07|. Firstly, the fundamental thermodynamic limit of kT log 2 ~ 25 meV per
charge based information processing of one bit does not apply to spin-based technology, yet
this limit is far from being reached in current technology. More importantly, switching speed
of charge based bit registers is limited by capacitance. Moore’s empirical law of exponential
technological advancement in the number of logical gates per device still seems to hold today.
However, typical processor clock speeds no longer increase from generation to generation these
days, and have stayed in the GHz regime over the last decade. By contrast, the switching speed
limitation in spintronic devices is given by the spin precession frequency, which can be of the
order of THz. Combining spin-based information processing with conventional electronics will
extend technological possibilities, in particular for optical and magnetic working principles. The
hope is to use the magnetic moment of the spin for integration of information processing and
persistent information storage. In current technology, the latter is still predominately done us-
ing magnetic principles. Further, spin qubits are promising candidates for implementation of
quantum computation [Los+98|, due to achievable long coherence times. Spin qubits embedded
in semiconductors can provide scalability and the possibility of integration with conventional
electronics on a level that is unmet by other qubit implementations.

Another field which has attracted a lot of interest in mesoscopic physics, is the discovery of
topologically non-trivial phases of matter. Classifying phases of matter has always been one of
the main interests of physicists. Until the discovery of the quantum Hall effect in 1980 [KI1i+80],



it had been thought that all possible thermodynamic phases could be classified on the basis of
broken symmetries. Instead, the quantum Hall state is classified by an invariant that depends on
the topology of electronic wave functions. A strong magnetic field is required for realization of the
quantum Hall effect, so time reversal symmetry is broken in this state. Recently, a topologically
non-trivial phase has been discovered where time reversal symmetry is not broken, known as the
quantum spin Hall state [Kan+05a; Ber+06a; |[Kon+07]. Instead of strong magnetic fields, strong
spin-orbit coupling is a necessity for the observation of the quantum spin Hall effect. Both the
quantum Hall and the quantum spin Hall effect show localized edge states which contribute to
dissipationless charge transport, and which appear as fingerprint of the non-trivial bulk state
topology.

For technological applications, robustness against perturbations like disorder caused by lat-
tice imperfections is very important, and operation at room temperature will usually be the
goal. This makes topological protection of transport a very interesting feature. In this con-
text we would also like to mention the recent discovery of graphene |[Nov+05b|. Graphene, a
two-dimensional layer of carbon consisting of a single atomic layer, shows features of relativis-
tic physics as well as interesting transport properties like high electron mobility, and even the
quantum Hall effect at room temperature [Nov+07]. Since the topological protection of charge
transport in quantum spin Hall systems does not require magnetic fields, it could be even more
interesting for applications, than the quantum Hall state. However, the quality of the edge states’
protection is not comparable to the quality of the chiral quantum Hall edge states, since miss-
ing spatial separation of counter-propagating states means that there is no protection against
higher-order processes like inelastic backscattering or two-particle backscattering.

So far, we have discussed fundamental scientific and technological motivations for research in
mesoscopic physics. A third motivation for this kind of research can be interest in the methods
for solving difficult physical problems. Methods are the main matters of part T of this thesis.
Building effective models can be much more than the “cooking down” of microscopically strictly
valid models, since often, physical behaviour at larger scale, by which we mean a larger number
of particles, can be very different and much richer than what is seen as behaviour of individual,
however interacting particles. Like Anderson put it, “more is different” |[And72|. New phases
of matter are the perfect example for this, since strict classification by broken symmetry or by
topology can only work in the limit of infinitely large systems. I believe that research in the
field of mesoscopic physics especially benefits from the application and extension of different
effective models, in order to view physical behaviour from different angles. Effective models
may be suited more for analytical or numerical analysis, but there is no strict line.

We will explain different approaches to find effective models, by controlled approximation
or by working with a set of symmetries. This includes the envelope function method, which is
a generalization of k - p theory for crystals, and which is outlined in Chapter [2], the method of
invariants, which is presented in Chapter [3] and the adiabatic theorem of quantum mechanics
and some applications thereof, which are treated in Chapter [l The basis of electronic theory
transport is explained in Chapter [ and it will be used for the numerical implementation of
transport calculations. Some details connected with the application of transport theory to
spin-dependent problems are given in Appendices [C], [D] [E] and [E] Chapter [6] gives a short
introduction to topologically non-trivial semiconductor systems. The geometrical features of
adiabatic transport are closely connected to a system’s topology.

In part II of this thesis, we continue with applications of the set of methods of the theory
part to experimentally realizable systems. In Chapter [7] we derive an extension of the Bernevig-
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Hughes-Zhang (BHZ) model [Ber+06a] for the 2D topological insulator system of HgTe quantum
wells. We include an inversion breaking potential which gives rise to Rashba-type spin splitting
of the quantum well band structure, and we analyse numerically the interplay of different spin-
orbit terms in spin transport. The Rashba spin splitting in the system of HgTe quantum wells
can be large, and it is particularly interesting because it is electrically tunable. Further, gating
of the system allows for different transport regimes to be analysed.

Chapter [§deals with the control of a single spin of a heavy hole trapped in a quantum dot, by
application of adiabatic transport. Therefore and in contrast to the other chapters, this chapter
is relevant to proposals for building a quantum computer. We propose how to experimentally
realize an all-electrical universal single-spin gate, which could be used in a quantum computer.

Interestingly, the same class of materials that reveal topological features often are good
materials for thermoelectrics applications. In Chapter [9] we are interested in the relation of spin
currents and heat currents in HgTe quantum wells. Different regimes of the material of 2D
topological insulator are considered, and finite size effects are shown to appear in the relation
of spin current and heat current.

Generation of spin currents is still one main technological difficulty that needs to be overcome
for the future of spintronics. Using ferromagnetic constituents for this purpose seems to be
connected with a lot of technological difficulties. Since it is desirable to find realizations of
spin current injection based on all-electrical principles, we propose an all-electrical beam splitter
setup for generation and detection of a spin current in Chapter This is similar to an idea by
Khodas [Kho+04], but we analyse a device of realistic geometry and analyse spin current and
spin polarization signals of different spin directions. This chapter builds on the extended BHZ
model of Chapter |7} which introduces competing spin-orbit terms.

In Chapter [11| we close with conclusions and an outlook on interesting open questions.
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Chapter 2

Envelope function theory

The k - p method for obtaining multiband Hamiltonians for crystals is old and well established
[Bas88; [Win05]. The envelope function method is a natural generalization to problems where
strict lattice-periodicity of a potential is no longer present, like in semiconductor heterostruc-
tures. Since the envelope function method is an approximation, there have been different ap-
proaches to the development of the theory, which may be incompatible in detail [Bas88; Bur88b;
Bur99|. The most useful approach seems to be that of Burt [Bur88b|. The importance of the
method is due to its high flexibility while at the same time, this method is simple enough to
allow for intuitive physical interpretation.

2.1 k-p theory

Within k - p theory, the band structure of a crystal can be calculated to arbitrary precision,
in principle. For practical purposes, one is merely interested in a Hamiltonian of small matrix
dimension giving a good local approximation of the band structure. The properties of electronic
transport are determined by states near the Fermi wave vector kr. Usually, kr is in the vicinity
of a point of high symmetry, since in the intrinsic bulk semiconductor, the conduction band is
empty. So instead of calculating the band structure in the full Brillouin zone, an approximation
scheme to determine the band structure near a point kg of high symmetry is sufficient. We will
consider only the T" point, i.e. kg = 0, but the k- p method also works for kg # 0, rendering the
equations a bit more complicated.
For a bulk crystal, the Schréodinger equation including spin-orbit (SO) coupling reads

2
(s + V) + s o % TV B ) () = Bl 21
where V(r) is the crystalline potential with Bravais lattice periodicity, myg is the bare electron
mass and c is the speed of light. o is the vector of Pauli spin matrices. According to the Bloch
theorem, a solution 9 (r) = e*u, ) (r) can be written in terms of a lattice-periodic function
up k(r) and a plane wave prefactor where the crystal momentum k is in the first Brillouin zone.
By using the Bloch wave function and evaluating the operator p = —iAV in , we obtain an
equation for the part u, k(r). For fixed ko, the set of (r|n,ko) = u, k,(r) provides a complete
basis of lattice-periodic functions. Here n is a combined band and spin index. Thus we may
expand |n,k) = > cp(k)|n,0). At this point we make the non-essential assumption that the
{In,0)}, are a basis without SO - which can conveniently be included later as a perturbation.
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We obtain the matrix eigenvalue equation for the expansion coefficients where k enters only
parametrically,

5 (S En0) + )+ Lok B B ) enl) = Eil)  (22)

where the band offsets E,,(0) enter, and

P, = (m,0|p + 4m0020 x VVin,0) (2.3)
h
A = W(m,@\p -o x VV|n,0) (2.4)

are momentum and spin-orbit matrix elements evaluated in the basis for kg = 0. Since kg is
a point of high symmetry, the transformation of the |n, ko) under the symmetry group of the
crystal can be used to reduce the number of elements that have to be known.

The SO coupling in the momentum matrix elements P,,, can often be neglected. The
SO-induced band splitting at the I' point is still contained in A,,,. This way of treating SO
interaction is useful since it reduces the number of parameters. In zinc blende structures, the
matrix of the A,,, can be diagonalized by introducing basis functions of the Ty double group
representations ', I'7 and T'g, leaving only the SO-induced gap at the Gamma point, A, as
parameter. These basis functions are the lowest angular momentum eigenstates with j = % and
i=3

T2he equation set is infinite-dimensional and exact and contains only k-linear couplings
between bands, if Ay, is diagonal. For practical purposes, second order quasi-degenerate pertur-
bation theory (Appendix is used to construct a finite-dimensional, quadratic in k¥ Hamiltonian.
For example, in case one is interested in a model for only the I's band, which then should be
well separated from the other bands, this leads to the effective mass approximation (n standing
for FG)

Y1
En(k) = En(0) + 5 D ka—5ks (2.5)
a?/B
meB ~ my T m2 “ Eu(0) — En(0) '

where the effective mass tensor of containg corrections from other bands.

Thus it is possible to reduce the number of parameters to a finite number of effective masses
and band offsets which may be determined experimentally, e.g. the band edge offsets by optical
transitions and the effective masses from cyclotron resonance. Often, rather than calculating
the parameters from band basis functions, the k - p method will be used to find a Hamiltonian
including only a few parameters that can be fitted to experimental data.

2.2 Envelope function theory

The envelope function approximation (EFA) is a method for obtaining an effective Schrodinger
equation for low-energy excitations in semiconductor systems where the lattice periodicity is



8 2 Envelope function theory

broken by a perturbation. Therefore, it is a generalization of k - p theory, which assumes a
strictly periodic potential. Originally, the envelope function theory [Lut-+55| was developed for
systems where a potential varying slowly on the scale of a lattice constant adds up to the periodic
crystal potential. Thus, the method may be applied to shallow impurity levels or magnetic fields
|[Lut+55], where the vector potential appearing by the Peierls substitution is space dependent,
even if the magnetic field is constant.

In heterostructures, even when the chemical composition of the constituting semiconductors
is similar, resulting in similar lattice constants and similar lattice-periodic basis functions, clearly,
the perturbing potential is not slowly varying on the scale of the lattice constant. Instead, there
will be a step-like behaviour at the interface of the constituents. However, still, the envelope
function approximation has been widely and successfully applied to heterostructure problems
(e.g. |And+87;Nov+05a)). Burt [Bur99] provides some arguments why this often works. Simply
speaking, if the envelope function is slowly oscillating, it cannot “see” how abrupt the interface
really is.

The basic recipe for obtaining an effective Schrodinger equation for the envelope function, is
to take the k-p equations or , and replace the band parameters, i.e. the effective masses
and band edge potentials, by space dependent functions. For a heterostructure, one assumes that
they are step functions. The momentum matrix elements P,,,, on the other hand, are usually
kept constant, since one assumes the lattice-periodic basis functions u, k,(r) to be the same or
at least very similar in all parts of the heterostructure. For the II-VI heterostructures where
constituents both crystallize in zinc blende structure and have similar chemical composition,
this assumption is well satisfied.

Further, a slowly perturbing potential may be added. Then, the crystal momentum k is
replaced by the operator k = —iV. Since k no longer commutes with the space-dependent
parameters, a symmetrization procedure must be applied, in order to obtain a Hermitian Hamil-
tonian in the resulting effective Schrodinger equation. There is an infinite number of possible
symmetrizations. Different symmetrizations show different physical effects at heterostructure
interfaces, so the choice is not arbitrary. However, since the k - p equations give no hint on in-
terface effects, an ad-hoc symmetrization procedure is often used. Usually one enforces that for
the Hamiltonian matrix H, Hjj = H;; should hold, while Hermiticity just demands HZTJ = Hj;.

In Section we will discuss a simple special case of interest, where the condition HZT] = H;j
is required for mathematical consistency. The easiest and most common symmetrization is the
substitution

ka D0 ks — % (kaD?ﬁk‘g + nggfka) (2.7)
where D?ﬁ is a generalization of an (inverse) effective mass term for the case of a multi-band
model. We will refer to this formalism as ad-hoc symmetrized effective mass approximation
(EMA). The question of symmetrization is equivalent to the question of choosing boundary
conditions that connect the envelope function at both sides of the heterostructure [Win+93;
For93|.

Although the method seems very intuitive, a formal justification has long been missing.
Thus, the quality of the approximation could only be estimated by comparison with exact calcu-
lations. Only in 1988, Burt [Bur88b| has given a formal derivation in form of his exact envelope
equations. By applying several approximations, equations similar to the intuitive ad-hoc EMA
may be obtained. Burt’s theory brings about several advantages. First of all, the quality of
the approximations may be understood, by analysing the neglected terms. Further, the ad-hoc
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symmetrisation procedure is no longer needed. Instead, Burt’s theory results in an Hermitian
effective Hamiltonian with well-known order of the non-commuting operators. Thus, the Hamil-
tonian differs from the ad-hoc symmetrized one by a part containing antisymmetric operator
combinations, and these terms may be physically relevant at the heterostructure interfaces.

In addition to continuity of the envelope function, one obtains other boundary conditions
from integration of Burt’s EMA equations or from current conservation. If effective masses in
the heterostructure are different, the derivative of the envelope function becomes discontinuous.
At first sight this seems to be in conflict to Burt’s theory, which requires the envelope functions
to be smooth. The conflict is resolved by recognizing that the EMA equations require a further
approximation step, which removes fast oscillations in the smooth envelope function. The low-
frequency part still has a smooth kink, which is the origin of the sharp kink (i.e. discontinuity
of the derivative) that appears if one starts from the final EMA equations [Bur88aj.

We will here sketch the derivation of Burt [Bur88bj|, to show the key approximations needed
in order to arrive at the envelope function and EMA equations. We assume that the potential
depends only on z-direction, corresponding to the growth direction of heterostructure, but this
is no real restriction since the resulting equations are easily generalized to three dimensions. We
also do not include SO interaction in the derivation. In the literature a generalization including
SO terms can be found [Li+94]. The derivation contains additional complications, but after
further approximations, the same EMA equations are obtained, and only parameters
become SO-dependent.

Let ¢(z) be the exact solution of the Schrodinger equation

ﬁ2 d2¢

where V(z) is the microscopic potential which is however not really lattice periodic. Now one
takes some - yet unspecified - complete basis {U,, },, of lattice periodic functions (lattice constant
a). The envelope function components F),(z) are defined by the expansion

under the condition that the Fourier components of all the [}, are limited to the first Brillouin
zone. This expansion is exact and gives a unique set of F},, since 1 is unique. By this expansion,
the vector F(z) = {F,(2)}, encodes the fast oscillations of 1(z) in its components for fixed
coordinate z, while the slow oscillations are encoded in the change of F(z) with z. The imposed
restriction to the Fourier expansion coefficients of Fj,(z), is the small but important difference to
Bastard’s [Bas88| envelope function approach. Bastard’s envelope functions are simply assumed
to be slowly oscillating, while Burt’s envelope function components may oscillate rather fast,
having only the upper frequency limit 7.

The goal is to find expansions in the form of for all terms of the Schrédinger equation,
i.e. with Fourier components in the first BZ. Then, due to the uniqueness of the expansion, an
equation for only the F;, may be written. This is easy for the kinetic term in , since taking
derivatives of F,, does not give higher-oscillating components. Plugging in the expansion (2.9)),
we define momentum and kinetic terms similar to those occurring in k - p theory,

dz au,
wn = | ZUr (—inZm ), 2.10
pn = [ & ( ; dz) (2.10)

2 52
Trn _/dzU;; (—hd U”). (2.11)




10 2 Envelope function theory

On the other hand, the term V' (2)1(z) requires more work since no restrictions apply to the oscil-
lations of the factors. The Fourier transform of the potential term is Vg (k) = [ €V (2)e h+G)z,
with the sample length L, |k| < Z in the first BZ and G = j2T some reciprocal lattice ele-
ment. Fourier components of the U, are defined by U,e = [ %Un(z)e_igz . In the product
V(2)Fn(2)Upn(z), wave vectors k and G of V(z) and k' of F,,(z) and G’ of U,(z) add up. The
difficulty is that k& + &’ no longer has to be in the first Brillouin zone. Therefore Burt defines
k1 and Gy by k + k' = ky + G, with ky in the first BZ. Then, Burt’s exact equation for the
envelope components reads [Bur88a]
n? d’F, ik

m / / /
- _ dFm N [ d2'Hum(z,2') F(2) = EF, 92.12
2mo dz2 mo — Prnm I~ m / z 3 (Z z ) (Z) (Z) ( )

with Hym (2, 2") = Tomd(z — 2') + Vo (2, 2’) and

1 * ik1z—k'2'
Vam (2, Z/) - L Z Z Un,GJrGl Va-cr (k) Upcre ek (2.13)
ki G.G

In order to arrive at the commonly used effective mass equations, several approximations
are made. First of all, we need to get rid of the integral in (2.12). This is done by splitting
Vam (2, 2') into local and non-local parts,

Vo (2,2') = Ve (2)A(z — 27) + Vé;if)(z, 2') (2.14)

where we have defined Vi (2) = [d2'Vom(z,7'), and A(z — 2/) = + 3, eF'(2=2) is the delta
function for functions with plane wave expansion limited to the first Brillouin zone. This separa-
tion in local and non-local parts is not unique but very practical. For z — 2/, A(z — 2’) drops to
zero on the scale of the lattice constant. Vj,,,,(z) has a plane wave expansion limited to the first
BZ, so dropping the non-local part eliminates the integral in (2.12). For V(z) lattice-periodic,
the non-local part vanishes. Further, in the situation where the perturbation V(z) is slowly
varying with highest non-zero Fourier component at k], .., and the highest non-zero Fourier
component of the envelope component F,(z) is at kmqz, we can see that the non-local part in
vanishes identically if Kpae 4 Eppar < 2

Burt analyses the local part Vy,n,(2) for a heterostructure with a single interface at z = 0.

At large distances left or right from the interface, V,,,,(z) takes the constant values Vn(fﬁ). Then,
assuming Vi, (z) =~ Vit (2)0(—=) + Vé:{l)(z)ﬁ(z) is called abrupt step approximation (with
f(z > 0) =1 and (2 < 0) = 0). This approximation neglects Gibbs oscillations that exist in
Vim(2). However, these are localized closely to the interface, and therefore, for slowly varying
envelope function components, they cannot contribute much in (2.12]).

Up to now, the basis of lattice-periodic functions U, has been left unspecified, which is
clearly an advantage in the heterostructure problem since in general, there will be no basis
that diagonalizes V,S,J{l) and Vn(;l) at the same time. But the assumption that the same basis
of band-edge Bloch functions may be used for writing the k - p Hamiltonian of all parts of the
heterostructure, is omnipresent in envelope function theory. For practical purposes, where the
heterostructure constituents possess the same crystal symmetry, the assumption that there is a
common basis which approximately diagonalizes Véﬁz) and Vé;b), is well satisfied. In this basis,
we have V,,(2) = En(2)0nm. In the bulk of the structure (i.e. far from the heterostructure
interface), this already reduces to the usual k - p equations with appropriate band

edge potentials.
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It is common to apply the EFA to heterostructures, where any general perturbation f/(z)
that breaks lattice periodicity, can in no way be considered as slowly varying or small. Note
that V(2) includes a common periodic potential Vpe,(2) of the cores, and here we are talking
about V(2) = V(2) — Vper(2). Burt’s derivation shows that even if V(z) is not slowly varying,
it suffices that the envelope function components are slowly varying.

In order to obtain effective mass equations, one has to apply quasi-degenerate perturbation
theory (Appendix just as in the case of k- p theory. We denote the set of bands that we wish
to include exactly, with indices s, s’. The other bands, which should be well separated from
the former in energy, are labelled with indices [, I’. Treating coupling to the remote bands as
perturbation, second order perturbation theory yields the effective mass equations. In the form
generalized to 3D coordinates, they read [Bur88b; Pte00)

T,Y,2 T,Y,2

. . I .
oD% ks + — S p% ko + 655 Eq(r) | Fy(r) = EF, 2.15
2| 2 RaDiIk + D D ke A E) | Fo) = ER®) (219

s’ a,f

where the space-dependent (inverse) effective mass tensor is given by

K2 2 p2p’,
D = 5 | Fswdan + > E—liEl'(r) . (2.16)
0 0 1#{s,s'} !

The energy dependency of this tensor can be lifted by assuming E ~ Es(r). Compared to

the ad-hoc symmetrization (2.7), the ordering of the non-commuting operators k, D?f/ , kg is

clearly given in ([2.15). Not = that [p ., /;:a] = 0 because a globally unique basis has been used
for evaluation of the momentum matrix elements p . Since we may write

kaD2ky = ¢ (RaD2ks + ks D20k ) + 5 (haD2ks — hsD20ke ). (2.17)
we see that there are antisymmetric terms which would be removed by the ad-hoc symmetriza-
tion, although they can be important for interface effects in heterostructures. It is also possible
to generalize the result by including a magnetic field via the substitution k — —iV+ A
with the vector potential A corresponding to a magnetic field B =V x A, and —e < 0 is the
electron charge. In this case, the antisymmetric terms are proportional to the magnetic field.

In the derivation shown above, we have not included spin-orbit terms. There are two ways
to extend the derivation for that. Firstly, one may take a band basis that does not depend on
spin, and include spin-orbit coupling as perturbation |[Lut+ 55|, Pfe00]. Just like in k - p theory,
matrix elements A,y of the perturbation will give a correction to the band edges depending
on spin and band indices, and it may also depend on the coordinate r, if SO coupling changes
in the heterostructure. The correction can be diagonalized by a basis transformation, and the
new basis will correspond to the double group representations of the underlying Bravais lattice.
Usually, these representations are used to label the bands.

Secondly, one may start from a spin-dependent band basis adjusted to the double group
representations [Li+94| and develop Burt’s theory with SO terms included from the beginning.
This leads to some extra complications, but in the end the same result can be obtained,
where the spin-orbit coupling renormalizes the effective band parameters.

! More precisely, this holds only if SO coupling is neglected in the momentum matrix elements or taken as
the same in all parts of the heterostructure, compare Eq. (2.3).
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2.3 Symmetrization of k-linear terms in effective models

Up to now, we have not discussed the question of symmetrizations for terms linear in momen-
tum. This was not necessary, since we argued that the lattice-periodic basis needed for the
development of the envelope funtion theory, will be very similar in all parts of the heterostruc-
ture, so the momentum matrix elements should not be space dependent. In particular, in Burt’s
envelope function approach, the momentum matrix elements are constants. In a situation with
SO coupling the Kane k - p Hamiltonian [Kan57| can contain further terms linear in k, related
to broken spatial inversion symmetry. Most importantly, effective perturbative models for 2D
systems with broken inversion symmetry [Win05| contain k-linear terms for Rashba SO cou-
pling, and their value may strongly depend on the coordinate. In some situations where the
momentum matrix element is not truly constant, it has been proposed to build effective models
that enforce it to stay constant, but instead, adjust the effective masses of the relevant k - p
model, in order to find a good approximation to a given band structure (compare discussion in
[For97]).

In Chapter [10[ we will need an effective Hamiltonian for a two-dimensional system with space
dependent Rashba SO coupling, which is linear in k. It turns out that in this case, the usual
spin-independent symmetrization procedure

a(z)kgoy — %Uy(a(x)l%x + kyo(z)) (2.18)

has to be used. One could imagine using a symmetrization procedure that makes use of the spin
space to obtain other Hermitian Rashba Hamiltonians, e.g.

—ia(w)ks ) : (2.19)

Interestingly, such a choice of the Hamiltonian is mathematically inconsistent with the assump-
tion of a continuous envelope function, when the kinetic energy term is added. We will show
this below. Let’s consider the prototype 2-band Hamiltonian

B, + kyAdey  i(keQ + Phy)
H = n N A Iy . 2.20

a(z)kyoy — ( ikga(x)

For arbitrary space-dependent parameter functions, this Hamiltonian is Hermitian. Our goal is to
analyse whether step-like variations of the parameters lead to consistent boundary conditions. If
this is not the case, the Hamiltonian must be considered invalid. We assume the wave function
¥ = (11,1%2) to be continuous. In fact, ¢ should be understood as 2-component envelope
function. The parameters P, ), E., and E, are assumed to be step functions with steps at
x = 0. Integration of Hy = E1) over the interval [—¢, €] gives

O(e) + [~ Ay + Qpa]” =0 (2.21)
O(e) + [Py — Ay =0, (2.22)
where we used the continuity of ¢ to find [_dz P4 = O(e) and [©_dz Qu} = O(e).
Let’s compare with the continuity of V’l/}, where

OH ([ {A.k.} i(Q+P)

V= ( i(P+Q) {Aw k) ) (22%)
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The current j(z) should be continuous, and it is given by

J(@) = WV = Yi{Ac ko }or + U5 {Au, ko Ytz + (Vi — ¥301)i(Q + P). (2.24)
On the other hand, from the boundary conditions (2.21)),(2.22) we obtain that the following

function is continuous:
— AT — 1A + QU e — iP5 (2.25)

If Ac and A, are constant, {A./,, ko) = 2AC/UI;'$. If additionally P = @, continuity of is
equivalent to the continuity of j(z). In that case, the boundary conditions (2.21)), also
give the continuity of V.

Subtracting from 2 times ([2.25)), gives the continuous expression

i(P = Q)(Y1v2 + v3th). (2.26)

Since ]2 + 1311 is assumed to be continuous and is in general non-zero, P — () should also be
continuous. If we write P = af(z) + p, Q = f0(x) + g with the Heaviside function 6(x), we see
that we must have o = . For the constants p, g one can set p = g without loss of generality, and
we conclude that P = @Q is the only reasonable choice in the Hamiltonian , if quadratic
terms are present (A./, = const # 0).

Note that our result, that the usual symmetrization should be used, is a special case
and should not be taken as general result for other Hamiltonians. In particular, the assumption
Acpy # 0 is important. If A. = 0, taking the limit € — 0 in ([2.21)), shows that Qo will be
continuous. But since @) is a step function, 9 must be a step function, in contrast to our
assumption (unless ¥2(0) = 0). A problem similar to the case A, = 0 has been discussed by
Foreman |For97] in the context of an 8-band k - p model where the momentum matrix element
is space-dependent. In Foreman’s case, putting A. = 0 is used as a trick to remove spurious
large-k solutions, and it is compensated for by adjusting the values of the k-linear terms, in
order to keep a good approximation to the desired band structure. The mentioned contradiction
in the limit A, — 0 leads Foreman to the conclusion that one should choose @ = 0, i.e. that a
non-trivial symmetrization must be used in the case A. = 0. In another analysis by Foreman
|[For93| where Burt’s theory is applied to a valence band model including SO coupling, the correct
Hamiltonian is also not of the symmetrized form. Again, the analysed Hamiltonian in |[For93|
is not comparable to our simple prototype Hamiltonian .

Other symmetrizations

For a product of non-commuting operators like a(x)k,, there are infinitely many possible ways
of symmetrization, and if a(z) is given by a step function, the physical difference of these corre-
sponds to different choices of boundary conditions [Win+93|. In a phenomenological approach
where the operator ordering of an effective model is not known from first principle calculations,
a simple picture that explains the physical difference of the symmetrizations will be useful. The
most commonly used symmetrization are

H(“):%{a(x),l%}, HO = Ja(@)i/a(). (2.27)

The question about the physical difference of H(® and H®) is easiest answered by looking at
corresponding discretized, real-space matrix representations on a lattice with discrete coordinates
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x;. We use the substitutions «(z) — d;a(x;) and k — tij = t(zr; — x;) with a function

t(a) = 5 = —t(—a) and t(Az) = 0 otherwise, and find the discrete representations
o) ofzi) + axj) b
Hz’(j) = fjtzj, HZ(]) = Oé($i)04(l‘j)tij. (2.28)

For a step function a(z;) = af(z;) modelling an interface at z = 0, the geometrical average

()

in H® corresponds to a sharper interface, and Hij

HZ@ = (Hi(ﬁ)u_1 + HZ-(;)))/2, showing that H(® is the average of two models of the type H®),

shifted by one lattice site.

= a(min(z;, z;))t;;. In this case we have

2.4 Wave matching and lattice models for envelope functions

The method of solving the Schrodinger equation for different regions, where the value of a po-
tential is different but constant in each region, and then obtaining a global solution by finding
appropriate coefficients to match the solutions at interfaces, is known from basic quantum me-
chanics courses and allows to treat simple transport problems analytically, like the calculation
of transmission and reflection probabilities in simple heterostructures. For a second order dif-
ferential equation, in addition to continuity of the wave function, a second condition is obtained
by integration over the interface. This condition is related to current conservation and in the
simplest case, it corresponds to the continuity of the derivative of the wave function. In the
general case however, the latter may not be assumed.

In the last section we have already seen that even for small, k-linear models for envelope
functions, difficulties with symmetrization if the precise operator ordering is not known from
Burt’s envelope function theory, and even mathematical inconsistencies can appear in wave
matching calculations. Even worse, often effective models derived by perturbation theory contain
higher orders of k. For such higher order differential equations, it is very difficult to obtain
physically meaningful boundary conditions at the heterostructure interface [Li+07]. The envelope
function method naturally results in models of high matrix dimension, and due to increased
mathematical complexity, equal problems may appear for large systems of linear or quadratic
differential equations [Kis+98§|. An unfortunate situation would be if boundary conditions heavily
depended on the approximation used during a derivation, but have large influence on interesting
solutions, if those are localized at the interface.

To illustrate some of these problem within a simple model, let us consider an envelope
function approximation model for heavy holes in a 2D system with cubic Rashba SO coupling
and an interface at z = 0,

(7;;25 " % < {a(x), —ik3} forla), ) >> Y =Epvy (2.29)

where the Rashba coupling a(x) is assumed to be a step function, a(z) = a_ for x < 0 and

a(z) = ay for x > 0. In the bulk regimes, we find the eigenenergies Fy = h;—'“2 + ak? and

3
corresponding eigenmodes ¢4 = \%(ii%, 1)T. The dispersion is plotted in Fig. [2.1a. We see

that in the interesting regime of energies, the Fermi energy Er has six intersections with positive
and negative values of k, independent of the direction of k. For simplicity, let us assume that
the incoming wave is perpendicular to the interface, otherwise we will have to care about simul-
taneous conservation of energy and k, in order to find solutions. The intersections {k;}i=1, ¢
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Figure 2.1: Bulk energy dispersion of the cubic Rashba model . To illustrate the problem
of spurious solutions and how they are eliminated in a lattice model, we choose a Rashba SO
coupling o = 0.345 5;0 In a), the dispersion of the unmodified EFA model is shown, which
should be valid in the regime |k|ag < 1. Here ag is the lattice constant of the original physical
system. There are six intersections with the Fermi energy, four of them are physical and two are
spurious. In b), the dispersion is shown for a lattice model of the discretized EFA model, with
a new lattice constant a = 2ag. The dotted line shows the same Fermi level as in a). There are
no spurious solutions. In c¢) the dispersion of the lattice model with a = 0.35a¢ is shown. For
a < 0.35ag, the problem of Fermion doubling appears and there are four spurious solutions.

will be needed to construct the global envelope wave function 1 from the corresponding modes,
including transmitted and reflected parts, by the ansatz

6
= Pine®nT 13 " e 0(zvy) e, (2.30)
=1

where 1;, is an incoming mode with wave vector k;y,, the 9; are the transmitted and reflected
modes which should be evaluated with parameters of the right and left bulk regions, respectively,
¢; are the corresponding transmission and reflection amplitudes, and the Heaviside 8 function is
used to select modes of the correct direction of propagation, by the sign of their velocity v; and
the side of the interface.

However, we know that the two largest positive and negative wave vectors must be regarded
as spurious (unphysical) solutionﬂ, since they appear only because the model is obtained
from the fit of a cubic dispersion to the correct dispersion, and this fit is correct only for small
k. By this, we reduce the number of reflection and transmission coefficients that need to be
calculated, to four.

This nicely matches the set of four equations that we obtain from the conditions of continuity
of the spinor ¥ and h%—]]gzd) at the interface,

Ulomo- = Ylazo+ (2.31)
1 9H 1 0H
- - = 2.32
h 8kxw'x:0_ h 8kxw‘x:0+ (2.52)

So the problem seems to be solvable without large complications. However, the condition ([2.32))
that we have put by the intuition of current conservation, is not mathematically correct! We

2 Problems with spurious solutions are omnipresent in applications of envelope function theory, see e.g.
[Sch+85]
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only know that this would be the mathematically correct condition in the linear Rashba model.
In Appendix a derivation of a generalized continuity equation is shown, which proves that
the current density operator for a Hamiltonian H including linear and quadratic terms in k
can be written as J(r) = 5 {%{f,é )}, corresponding to matching condition . By
contrast, for a cublc model like , this is not the precise mathematical condition, which
would be obtained from integration over the Schrodinger equation at the boundary [Li+07]. A
consistent, mathematical precise treatment of the third order differential equation (2.29)) needs
more boundary conditions and would require all six solutions k;, including the spurious ones. In
spite of being not mathematically correct, we can expect that our simple calculation based on the
matching conditions and will give a better approximation to the correct physical
behaviour than the mathematical consistent solution, which includes spurious solutions.

Instead of proving this statement, we want to show a different method to avoid problems
with spurious solutions, which is similar to an idea by Winkler [Win+93|. Since the regime
of validity of the EFA is limited to small k, our idea is to discretize the effective multiband
Hamiltonian on a lattice, keeping a good approximation only for small k. The lattice constant
a may be very different (normally larger) than ag of the original Bravais lattice of the physical
system. The Brillouin zone of the artificial lattice model should be small enough to cut off any
spurious solutions. By using the translation operator in the way e“%“@/}( ) = ¢¥(x+a), we obtain
operator expressions corresponding to the discretizations of k; and k2 on a lattice,

B (@) = 30,6(0) = (Do + ) = Yo — @) = - sin(haa)() (2:33)
() = ~020(x) - (20(z) — ¥la +0) 0o~ a) = (2~ eos(a))le) (234

and analogue for other components of k. If a magnetic field B = V x A has been included in
the effective model by the Peierls substitution I;:Z — §; = I;:Z + £ A;, the discretization procedure
has to be changed a bit, in order to obtain a gauge covariant lattice model. Using the Landau
gauge A = %B x r for a homogeneous field B, we have [l%l, A;] = 0, and a substitution similar

to (2.33) can be used to find

B(a) > sin(da)b(e) = o

: (eieaAz/ﬁw(x + a) o €_i€aAz/ﬁw($ - a)) 7 (235)
2ia

and analogue for other components ¢;. Compared to , including the vector potential results
in extra phase factors. This result may be generalized to find a general substitution rule that
is equivalent to the Peierls substitution, to include the vector in the lattice model in a gauge
covariant way [Dat07; Rot09]. If the lattice model without the vector potential is given by the
Hamiltonian matrix H;; = (r;|H|r;), where we have denoted lattice coordinates as r;, we have
to add phase factors to this matrix, by the substitution

Hij — Hye'n Ji} drAG), (2.36)

In Figure 2.1p, the dispersion relation of a lattice model corresponding to the cubic Rashba
problem is plotted. We can see that for a reasonable choice of the lattice constant a,
the spurious solutions disappear, while the interesting regime of the dispersion relation is well
approximated by the lattice model. The Green’s function formalism of Chapter [5| can be used
to implement the wave matching calculation, and there are no ambiguities concerning boundary



2.4 Wave matching and lattice models for envelope functions 17

conditions or current conservation. The method is explained in more detail in Appendix [F] and
will be applied in Chapter [I0]

Here, we want to emphasize that the lattice-based solution comes at a price, and can require
a careful adjustment of the lattice constant a. Since the discretization re-introduces periodicity
of the dispersion relation E(k), there may be problems if k-linear terms are dominant in the
Hamiltonian, like in effective models for graphene. Let us assume the most simple dispersion of
an effective model, E(k) = ak, so there is a single intersection with the Fermi level, giving a
single kr. The lattice regularization is Ej. (k) = & sin(ak) = & sin(m — ak), which crosses the
Fermi level two times. This phenomenon is called Fermion doubling. Generally in d dimensions,
the lattice equivalent of the linear Dirac dispersion will show 2%-fold the number of original
Fermions [Sta82|. Since k is assumed to be small, the extra solutions are highly oscillating. The
Fermion doubling problem does not apply for quadratic-in-k Hamiltonians, since the number of
crossings with Er is the same in the original and the lattice model. Generally speaking, the
lattice regularization doubles the set of solutions at the Fermi energy only for odd powers of
operators k;. If the Hamiltonian contains both even and odd powers of R, the appearance of
highly oscillating spurious solutions will depend on band parameters and Fermi energy. Figure
shows the lattice dispersion of the cubic Rashba model that we have discussed before,
with a lattice constant a that is small enough to generate the spurious solutions due to Fermion
doubling. Luckily, highly oscillating extra solutions are easily detected during the wave matching
procedure. The problem is very relevant to electronic transport in graphene [Two-+08|, and if
disorder is included in the lattice model, scattering between low k and high k may prohibit the
sorting out of unphysical results. Then, it will be preferable to simulate the atomic lattice of
graphene instead of the effective Dirac model.

To finalize the discussion of Fermion doubling, let us emphasize that it can also be a physical
feature and not merely a numerical nuisance. Let us consider a physical 1D lattice, i.e. a
chain. Periodicity of the energy dispersion ensures that for a propagating mode of one direction,
another mode propagating in the opposite direction exists. For this reason (in equilibrium, but
regardless of time reversal symmetry) it is not possible to build a wire that conducts in only
one direction. However, almost current-rectifying effects are possible in topologically non-trivial
systems, where current-carrying states are localized at the sample edges, thus making it possible
to select the direction of propagation by selecting the sample side.

To conclude, the wave matching calculation for higher-order models like e.g. the cubic model
can be performed on a lattice in order to remove spurious solutions, however the lattice
constant must be chosen carefully to avoid Fermion doubling. For moderate spin-orbit coupling,
a = agp or a = 2ag does the job, compare Fig. 2.Ip.
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Chapter 3

Theory of invariants

The method of invariants provides a systematic formalism to derive all possible Hamiltonians of
a system that are allowed by symmetry - e.g. the symmetry of a semiconducting crystal. First,
one needs to specify the basis in which the Hamiltonian should be written. Usually, this will be
a set of bands close to the energy of interest, i.e. the Fermi energy. Then, all possible terms up
to some order in k, possibly also including external fields, can be written down and be classified
by their transformation under the point group of the crystal. The method is very useful in
combination with the k-p or envelope function method. While the latter also give expressions for
energy offsets or other band parameters, the method of invariants can only provide information
about the degeneracy of bands and the analytic form of the Hamiltonian. In practice, also the
expressions obtained with the k - p method need to be adjusted to experimental data, since
ab-initio calculations are very difficult. Therefore, both methods are of comparable use. The
method of invariants is well established and is broadly discussed e.g. in the comprehensive
works [Pik+74] and [Dre+08|. Also, a short introduction can be found in [Win05|. First, we will
give a short overview of the method. We will use the Hamiltonian of a spin—% in a quadrupole
field as example of how to apply the method. The obtained Hamiltonian will be the basis of
the discussion in Chapter Later, we will also make use of the method of invariants in the
derivation of an effective Hamiltonian for a HgTe/CdTe QW.

The group of all the operations g that leave the system invariant, forms the symmetry group
G of the system. Each symmetry element commutes with the Hamiltonian, [H, §] = 0. In the
following, we use the symbol g for the abstract mathematical group element corresponding to
the operation §. In the case of the crystal, group operations consist of lattice translations and
rotation or reflection operations, where the latter are called point group operations, and they
form a subgroup of the orthogonal group O(3). We will write D(g) for the unitary representation
of group element g on the matrix space of the Hamiltonian H, so D™'(g) = Di(g) = D(¢~ ). If
the Hamiltonian matrix depends on a vector, which could be e.g. the direction of an external
magnetic or electric field, or simply the momentum k, the point group operation also acts on
this vector. However, the inverse operation is needed for the vector, regarding the operation as
transformation of the coordinate system. We use the generic symbol I to represent all contained
vectors, and write g~ 1K for the set of rotated vectors. So the condition of invariance [§, H] = 0
can be written as [Win05|

D(g)H (g9~ K)D ™ (9) = H(K). (3.1)

Since in the Bloch basis, the translation by a lattice vector R is just a complex number e’*® and
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cancels in , we need to consider only representations of the point group in the following.

A representation D(g) is called reducible if there is a non-trivial block-diagonalization of D(g)
that works for all (point) group elements g at the same time. Otherwise, it is called irreducible.
Since each irreducible block of § commutes with H, the dimension of the block corresponds to
the degeneracy of an energy eigenstate or band.

The orthogonal group O(3) = SO(3) x C; can be written as direct product of proper rotations
and the group C; that consists of the identity and the parity (space inversion) operator, since the
latter commutes with all other elements. Here we are mainly interested in the continuous part
SO(3) of the group, since it corresponds to the SU(2) representations. The inversion element is
not contained in SU(2) and should not be confused with the 27 rotation, if this evaluates to —1.
Irreducible representations of SO(3) are also irreducible representations of O(B)D Irreducible
O(3) representations are denoted by DUWE with an additional superscript for the transformation
under parity. The parity operator is also important for symmetry considerations and gives
additional restrictions to the allowed terms, but transformation under parity can be analysed
separately. Usually, the terms bonding and antibonding refer to the different parities, and they
are often denoted with a superscript like in D*(g).

The group relevant for rotation of a spinor is actually SU(2) and not SO(3). SU(2) covers
SO(3) twice. Geometrically, this can be seen from the fact that a 27 rotation takes a vector to
minus itself in half-integer representations of SU(2), and a 47 rotation is needed to obtain the
identity, while an operation that changes the sign of a vector is not contained in SO(3).

The needed irreducible representations are the well-known representations DU)(g) = eJ v
corresponding to integer or half-integer angular momentum j, where the vector of angles w =
(w1, ws, ws) parametrizes the element g, and the components of the vector JU) = (Jéj), Jy(j), Jz(j))
are (27 + 1)-dimensional matrices that satisfy the well-known commutation relations of angular
momentum j,

TD T = ijepmp . (3.2)

Explicitly, they are given by the definitions JJ(FJ)|j,m> =G -m)G+m+1)j,m+1), J9 =
JI P = 3D 4 g9, g9 = LY — g9y and I = diag(—j, —j + 1, ..., ).

Ouly for the half-integer representations of SU(2), a 2m rotation gives the group element —1,
while for integer representations, a 27 rotation gives the identity. Thus, integer representations of
SU (2) are not faithful and are really representations of SO(3) (the term faithful refers to a one-to-
one correspondence of group elements and their representations, whereas integer representations
have a two-to-one correspondence). The half-integer representations are also called double group
representations. The 27 rotation is a group element that commutes with all other elements.
Therefore, compared to the number of group elements in SO(3) (or a discrete subgroup thereof),
we can say that there are twice as many elements in the SU(2) representation.

Finally, we also need to mention that the point group of the crystal is just a discrete subset
of the full orthogonal group O(3) of arbitrary rotations and reflections. The group T, of a
tetrahedron is most relevant to us, since it is the point group of the zinc blende structure. When
embedded in a cube, the tetrahedron connects every second corner of the cube. Thus, T; does

not contain the spatial inversion. T, has a total of 12 elements, which are grouped into five
classes |Pik-+74],

(e), (403,40%), (3¢2), (3s4,3s3), (60). (3.3)

! This statement holds for the continuous groups, but not necessarily for discrete subgroups of O(3) vs. SO(3).
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Here e is the identity, c3 are threefold and ¢y twofold rotations, s4 are rotations about m/4
combined with inversion, and o are reflections. In finite groups, the number of irreducible
representations is equal the number of classes. For Ty, they are denoted as I'q,...,I'5 E]E] On
the other hand, the group of rotations of a cube is called O. It also has 12 elements, and is
mathematically isomorphic to Ty. Therefore, the irreducible representations are the same as for
T4, but their physical meaning is different, since there are no reflections in O. In the group
tables (e.g. [Pik+74|, Table 11.1), the difference is seen in the basis functions for 7y and O,
respectively. The vector (z,y, z) transforms like I'5 in Ty, but like 'y in O. This can lead to some
confusion when applying the method of invariants to a Ty system, especially since it is common
to find approximate results for a zinc blende crystal from the diamond crystal, which has the
point group Op. Op = O x Cj is the group of a cube including reflections and spatial inversion,
and it has 24 elements and 10 irreducible representations Ff._ﬁ, which carry a parity superscript.
Physically, the even/odd parity corresponds to bands of bonding/antibonding character in the
crystal with diamond structure. The Oy, approximation to T, will exclude the bulk inversion
asymmetry (BIA) terms.

Since Ty contains reflection operations, and reflections can always be rewritten as rotation
times inversion, one is tempted to (imprecisely) classify the Ty representations according to
their parity. Looking at Table [3.1] it seems that I'1, "4 are parity-even and I'o,I's are parity-
odd. Then, T'y should transform as scalar, I'y as pseudoscalar (e.g. k - B), I'y as pseudovector
(e.g. J and B) and I'; as vector (e.g. k and the electric field E). However, this does not hold
strictly, since there are both parity-even tensors transforming like I's, e.g. (kyk., kzks, koky),
and parity-odd tensors of higher order transforming like I'y. By contrast, the representations of
Oy, = Ty x C; may be truly classified into even/odd transformation under parity.

In discrete point groups, there will still be representations where a 27 rotation is non-trivial,
and those are still called double group representations. The other representations, where a
27 rotation is identity, are called single group or SO(3) representations. In spin-orbit coupled
systems, we need the double group representations of Ty, which are formed by taking the product
with the spinor representation D(/2+ =T, as

I'elg=T¢ I2®@I'e=TI7 TIs®l¢=TI%, (3.4)
Fy@lg=T¢®Is, I's@g=0I701Ts, I¢®@Is=I1DI,. (3.5)
I's and I'y correspond to j = % and identify conduction and the spin-orbit split-off bands,
respectively. I's corresponds to the j = % valence band. However, we have to be careful when

using the quantum number j to identify discrete representations. This makes sense only for
certain small numbers j where there is a clear correspondence, and in general, the I' notation
should be used. Let us elaborate on this correspondence.

Since Ty C O(3), we can easily find representations of Ty by evaluating special rotations and
reflections of O(3). However, the representations that we find by starting from the (irreducible)
DUE of O(3), or its cover SU(2) x Cy, may become reducible, when viewed as representations
of the discrete group Ty. The decomposition of the O(3) representations is known as compati-
bility relations, and is shown in Table 3.1} Since irreducible representations are associated with
degenerate energy levels, this means that we can expect the lowering of the symmetry (here due
to the crystal lattice, reducing the amount of rotations), to appear as splitting of energy levels.

2 Sometimes a different notation is found for the irreducible representations of Ty, with T'1o = I's, T'15 = T4
and F25 = F5.

3 One should not confuse the I symbols used for the irreducible representations, and the basis of I' matrices
appearing in the Clifford algebra of Section where the method of invariants is applied to a QW system.



21

D)+ I, D0)— Ty
D)+ I p1)- I
DA+ 3T D)~ I3y
DO+ | TyeTyels; | PO~ | Tielyel;s
D(l 2)+ Ts D(l 2)— 7
DB/2)+ T's DB/2)- T's
p(6/2)+ 7@y pB/2)— s @y

Table 3.1:  Compatibility relations for Ty with the full rotation group O(3) = SO(3) x C;
(integer j) and its cover SU(2) x C; (for half-integer 7). Taken from |[Dre+4-08].

The half-integer representations are only of interest in presence of spin orbit coupling, and
decompose into the double group representations I'g/7/3. A spin described by a vector in the
Hilbert space of half-integer j, will feel the reduction of symmetry due to the lattice only via a
spin-orbit coupling term, if present. Rotations in the physical space R? of the lattice must be
elements of SO(3), with integer representions [, so the upper half of Table should be sufficient
to understand the physics, even in the spin-orbit coupled case. We see that in T}, only repre-
sentations with [ = 2 or greater become reducible - but we will only consider material properties
where s- or p-orbitals are relevant. Thus, we will need only I'y (for s-orbitals) and I's of T, or
I'15 of Oy, (for p—orbitals)ﬁ. Table shows that for these, the irreducible representations of the
discrete rotations are identical to the irreducible representations of the full rotation group. This
matches the observation that an effective theory can have higher symmetry than the underlying
system. An effective theory for a zinc blende system, which is derived only with tensors of [ =0
and | = 1 (and does not include outer products of those), will have full rotational symmetry.
Note that the compatibility table for Oy changes in a non-trivial way, as compared to Table
[Dre+-08|. These tables may be derived using the character tables of a group.

According to the left side of , the representation of SU(2) appears twice. Therefore,
the left hand side transforms according to the tensor product of representations D(g) ® D*(g).
We can see this explicitly by regarding the matrix H as vector H with components H;;, and
rewriting the transformed Hamiltonian in the form

(DHDY)y = DyHyxDjj, = > (D@D )i jiHjr = (D@ D* - H)y. (3.6)
gk Jik

This is useful for shifting a unitary transformation of D ® D* to H. We are particularly in-
terested in the unitary transformation that block-diagonalizes the tensor product, resulting in
the decomposition into irreducible representations. Usually, the decomposition into irreducible
blocks is written like DM @ D1/2* = D) ¢ DO) ete. From the addition of angular momenta
j1 and jo, it is well known that all representations j1 + jo, j1 + jo — 1, ..., |j1 — j2| appear in the
product representation. Since it appears here, we want to say a word about the complex con-
jugate representation [Pik+74]. If the characters of an irreducible representation D are all real,
D and D* are equivalent, i.e. may be transformed into each other by a unitary transformation.
The character of a group element g in a particular representation is defined as

x(D(g)) = Tr(D(g)) (3.7)

4 The p-orbitals transform like the vector (z,y,z). While this corresponds to I's in Ty, it is 'y in Op, and
one often finds the notation I'1s =T, .
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and therefore, it is the same for all equivalent representations. In particular, all characters of the
SU(2) representations may be obtained easily from the generator J. éj ), since two rotation vectors
of the same length but pointing in different directions are related by a unitary transformation.

One finds for a group element g associated with a rotation by angle «,

J . .1
‘ e : sin((j + 5)o)
D) — Trelads” — om 2 :
X(DY(g)) =Tre m;je n(E (38)
so indeed the characters are all real. Explicitly, we find the DY) and DUW* are related by
i1 ) p=in ) _ pli)e. (3.9)

This means that we do not need to worry much, whether we are searching for the decomposition
into irreducible representations of the product DU @ DU2) DU* g DU2) or DU g DU2)*,
the result is the same up to a global (i.e. independent of g) unitary transformation. Of course,
once we have adopted a basis convention and we are looking for an explicit set of matrices for a
representation, the complex conjugation is important.

Let’s reconsider Eq. . We assume that D has dimension n X n, and further assume that
the unitary g-independent n? x n?-matrix V transforms V(D ® D*)V into irreducible blocks,
each block equal to some D@ . Here and in the following, we use the dot - to denote the matrix-
vector product in the n*-dimensional space, i.e. [VT - H] b = Dol D=1 V(Jb,cd‘HCd' We use the

block structure of V(D @ D*)V to define new basis vectors é,, and find coefficients j289 by
requiring

VieH=>" i eqmHD. (3.10)

q m=-—gq

In the original basis, the basis vectors look like n x n-matrices Eﬁ‘i) =V - égm. We will see
that these matrices transform under rotations like the components of a spherical g-tensor. The

expansion of H in the spherical tensor basis looks like H = qu Eﬁg)H,(g). We have

DIEWD = (D@D -V égn =V -DD .o, =V - ZDfZi?équ — ZDSSZ;:/ES/) (3.11)

m

Note the different order of D, DT on the left hand side, compared to . The difference appears
because the transformation has been applied to basis vectors instead of vectors of coefficients.
Eq. matches the definition of a spherical rank-q tensor [Sak04]. ¢ will be always integer,
even if half-integer representations appear in D. Thus it is possible to form scalar products with
vectors of the physical space R? to obtain invariant expressions, even when the spinor transforms
like half-integer j.

As simplest example, consider the Zeeman term for a spin—% in a magnetic field. The scalar
product of Cartesian vectors can be written as scalar product of spherical tensors, o - B =
o'UTUB = O'T_IB_l + USBO + aIBl, where we have introduced the unitary matrix U that
transforms a Cartesian 3-vector into a spherical rank-1 tensor,

. .
B v V) [ B B,
By | = 0 0 1 B, | =U| By |, (3.12)
By —% -7 0 B, B,
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and likewise for o. The spherical tensor components correspond to the commonly used linear
combinations o4+ = (0,%i0y)/2, but the prefactors are different because we want U to be unitary.

To avoid confusion, we use the notation oy_y 1y instead of o(_ . 1. So when expanding the
(1)
{-1,0,1}

the oy_10,1) play the role of the spherical rank-1 basis matrices Eg?l,o,l}' While the basis
matrices are fully determined by the diagonalization matrix V', which is essentially given by
the Clebsch-Gordan coefficients [Sak04], the expansion coefficients are arbitrary parameters,
here given by the components of the magnetic field. Both transform according to the same
irreducible representation D), which is a general principle. We can only form invariant scalar
products if the tensors transform equally. Another observation that is true in general, is that the
spherical components are complex-valued and usually not Hermitian, while the Cartesian tensor
components are real coefficients or Hermitian basis matrices. Therefore, one usually prefers to
work with the Cartesian expressions. Also for rank [ = 2 and higher, one can find the Cartesian
components in a similar manner, by forming linear combinations of spherical components —m

Zeeman term in the spherical basis, By_i 1y play the role of the coefficients H and

and m. The spherical tensor components behave analogue to the spherical harmonics YTSLZ), and
the linear independent functions Y,g) and Y_(l)n are always related by complex conjugation.

To relate Cartesian 3-vector rotation operators to their spherical representation, we have the
very useful relation

URU' = DW*(R), (3.13)

where R represents a real orthogonal 3 x 3 rotation matrix and the abstract group element at
the same time. (3.13) can be shown by using R = e“® with the antisymmetric generators

(Rj)ki = €5k, and analysing their relation to the generators Ji};/z. Using the relation (3.12)
between Cartesian and spherical tensors, (3.11)) and (3.13)), one finds

DY2(R) o DY/ (R) = UTDW*(RT)Ue = R @, (3.14)
and more generally, for any j,
DU)(R)JW pWT(R) = RTJV), (3.15)

The same transformation rule applies to B, if we assume that D(R) also acts on B. On
the other hand, if B is seen as parameter, we may write H(B) = o - B and then we find
D(R)H(R"B)D'(R) = H(B), as is required by the invariance condition (3.1)).

A general invariant Hamiltonian can be written by forming all possible scalar products of
tensors that transform equally under rotations, including all possible tensors up to some order
in k and other parameters. This result is also true when the irreducible representations do
not match exactly the SU(2) representations because those are reducible. Therefore, we switch
to a different notation, emphasizing the use of representations of discrete point groups. The
dimension of a representation I'y; is denoted as L, instead of 25 4+ 1. Introducing additional
indices A, p to distinguish terms that transform according to the same representation I'y, but
have different physical content, we may write any possible invariant as [Win05|

L,
Loy = XV (3.16)
=1
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where usually, the ICZ(H’“) are regarded as spherical tensor components of parameter vectors,

and the X I(H’A) are regarded as the set of basis matrices implementing the [-components of a
spherical tensor. However, one does not have to distinguish strictly between parameters and
basis matrices, e.g. sometimes one could regard the lCl(F”’“) as matrices as well. One only has to
ensure that both parts transform under rotation, and it is less important whether the rotation is
implemented in the Hilbert space or parameter space. Further, if the band basis of a Hamiltonian
contains more than one representation, the method can also be generalized to diagonal and off-
diagonal blocks of H. In this case, one labels the blocks according to the representation I'y, ® FE
by which they transform. The index s runs over the representations contained in the tensor
product. The general invariant block of the Hamiltonian can be constructed by assigning an
arbitrary real prefactor aif ., to all possible invariants, giving [Win05|

Ly

Q KA Ky b)*

Hop(K) = > a2y S XMV, (3.17)
Ky A, b =1

Up to now, we have limited our discussion to transformations contained in SU(2). But the
terms that may appear in are further restricted by transformation properties of tensor
components under parity and time reversal, if these are symmetries of the system. If parity
or time reversal symmetry are broken only because of externally applied electric or magnetic
fields, we can include the transformation of the fields in the symmetry operations and still obtain
useful restrictions of the allowed terms. Even if the point group of the crystal lacks inversion
symmetry, like e.g. T}, it is useful to classify terms by their parity. To this end, it is common to
use basis states of a corresponding inversion symmetric crystal, and to consider terms breaking
the inversion symmetry as perturbation. In particular, adding the inversion element to Ty gives
the group Oj which is the point group of the diamond structure. Since we work with a basis
of parity eigenstates, the irreducible representation corresponding to each basis set should be
assigned a parity index, like e.g. T} or Fg. The parity of the contained representations I', is
simply determined by the product of the parities. The parity is not determined by the original
SU(2) representation - the same representation may exist for both parity values 1. In a parity-
even system, we may only combine representations (k,A) and (s, ) of equal parity in (3.17).
In zinc blende systems, there are additional parity-odd terms called bulk inversion asymmetry
(BIA) terms.

Also, the time reversal operator T gives further restrictions to the terms allowed in (3.16)
and . However, this applies only to the diagonal blocks H,,. One can classify all the
basis matrices X,(T'f’)‘) into even or odd transformation under time reversal, i.e. TXr(r'f’A)T_l =
+(-1)"X (_Km/\) (applying time reversal to spherical tensors switches components —m <> m, but
this is unimportant when forming a scalar product). Likewise, the spherical tensors KCsm* are
classified according to their even/odd behaviour under time reversal. Then, only even products
are allowed. The off-diagonal blocks H,g, o # 3, are not restricted by time reversal, which
becomes clear from the following argument. The time reversal operator 7 maps basis states
|7,m) onto £|j, —m) of the same representation. However, the sign of T is arbitrary and only
fixed by convention. It does not matter whether we consider 7 or —7 as time reversal operator,
all that is important is the sign of 72, which should be —1 for j half-integer and +1 for j integer.
Since different representations are not linked by 7, we may use different sign conventions for
e.g. the I'g conductance and I'g valence bands, increasing the arbitrariness of the combined time
reversal operator. This means that we cannot assign an even/odd behaviour under time reversal
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to a I'e @ I'g block, and 7T gives no restriction to the allowed elements of the off-diagonal blocks.

3.1 Effective quadrupole Hamiltonian by symmetry

We will explicitly elaborate the example of rank-2 basis matrices transforming as a quadrupole,
since this will be relevant for the Hamiltonian of a spin—% in an electrical quadrupole field, a
subject of Chapter[8] Let’s start with an arbitrary 3 x 3 matrix A, which may be complex valued
and does not even have to be Hermitian. The matrix is assumed to transform like a (reducible)
Cartesian rank-2 tensor under rotations, i.e. A — RAR”T where R is the rotation matrix. If
an electrical quadrupole potential is implemented as r’ Ar, this is the needed transformation
property. The orthogonal decomposition in parts transforming under rotations according to
different representations is [Sak04]

TrA 1 1 TrA
A=A g A0 g A® = %1 o5A-ANe <2(A + AT - 21> (3.18)
where the first part, the trace times identity, transforms like [ = 0, the second part, which is
antisymmetric and can be seen as 3-component vector, transforms like [ = 1, and the third part
is symmetric and traceless and transforms like | = 2, having 5 independent components. The

direct sum sign @ indicates orthogonality under the scalar product of matrices
Tr(A® AW)) = 15;;. (3.19)

as can be shown by using the cyclic invariance under the trace.

The number of parameters in the decomposition add up as 3 x 3 =1+ 3+ 5, just
like the correct decompositon into spherical tensor components. But this is not yet a proof
of irreducibility. To make clear that the A® are indeed irreducible parts, we will now show
explicitly, how to construct an irreducible [ = 2 basis by symmetry, and then see that the basis
is indeed traceless and symmetric.

To do so, there are two ways. Firstly, we can use the defining invariance condition for
a spherical tensor, with DY) on the left and D) on the right hand side, where DY) (R) = eiwd),
For arbitrary infinitesimal rotations, this gives

J
M0 = Y (I mQm, i€ {1,2,3}, j e {-2,..,2} (3.20)

m=—j

which is a system of 3-5-9 = 135 equations for the 5 -9 components of the spherical tensor
components Q,,, which should transform according to [ = 2. One extra equation is needed for a
normalization condition of the Q,,, and this will also exclude the trivial solution @Q,, = 0. The
system can be readily solved with MATHEMATICA, giving a solution set

0 0 0 0 0 0 75 0 0
Qo= 0 00| Qg =|-/ic 0 0], Q= 0 —/2 0 ;
3 3 1
i 0 i 0 i 00 /2
@Q=fo o —/3 | @=|o0oo0 0o [ (3.21)
0 0 0 0O 0 O
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Note that these are not yet the symmetric basis matrices that we are looking for. We still need
to apply some basis transformations. But before we do so, let’s show a different method to
construct the same set of basis matrices, which is based on the Wigner-Eckart theorem [Sak04].
The theorem relates matrix elements («, jm\T,gq)\o/ ,7'm’) to one another. Here, T,gq) is the
component k of a spherical rank-¢q tensor. « and o’ are some general quantum numbers, and
j,m and j’,m’ are angular momentum quantum numbers,

(a, jm|T01, j'my = (j'q, m'k|j'q, jm) (o, | TD ||, §"). (3.22)

1
V27 1

The theorem states that the matrix element falls into a factor depending on the magnetic
quantum numbers m, m/, k, which essentially carry information about vector directions, but this
factor does not depend on the operator T? or « and ¢/, and a second factor not depending
on m,m’, k. The first factor is given by the Clebsch-Gordan coefficients (j'q, m’k|j'q, jm). We
may imagine adding the angular momenta of the tensor and the rhs state, and projecting the
result onto the angular momentum of the lhs state. The second factor contains a matrix element
(o, j|ITD||e, j'), which needs to be determined only once, to obtain the full matrix for different
m,m’, k.

Applying this to our case, the 3x3 quadrupole basis matrices should not depend on some
a, o, and all we need to do, is to evaluate the Clebsch-Gordan coefficients for j = 5/ = 1 and
q = 2. The basis matrices Qy, for k € {—2,...,2} are written in the basis of m,m’ € {-1,0,1}.

Having shown two ways to obtain the spherical tensor basis {Q }m, we use them to construct
a Hermitian basis that transforms as Cartesian rank-2 tensor. Note, the construction here (I = 2)
is more complicated than in the [ = 1 case, of constructing the Pauli matrix basis. There, taking
Hermitian linear combinations of o4; and o_; is all that is required to obtain a matrix basis
which transforms like a Cartesian vector. But here, we first want to transform the matrix basis of
individual components to the Cartesian basis, because the decomposition is only correct
for the Cartesian basis. The matrices {Q,}m are all real, but this is merely due to a nice
phase convention of the Clebsch-Gordan coefficients. More importantly, they have the property
Qh = QT = (=1)™Q_,n, similar to the relation Y’ = (—1)™Y! _ for spherical harmonics.
They are not symmetric, and we would like to avoid explicit symmetrisation. Let us consider
the basis of

Qm = UTQmUv (323)

which are written in the Cartesian vector basis (x,y,z). They are are no longer real, but are
symmetric (can be checked by evaluation), and this proves that the decomposition (3.18]) splits
up into irreducible Cartesian components. Therefore,

Qh = Q5 = (-1)"Qm. (3.24)

We use this to find the Cartesian quadrupole (i.e. ¢ = 2) basis matrices, written in the
Cartesian basis. They are real, symmetric, traceless and form an orthogonal set with the scalar
product . However, they still contain information about the direction of the coordinate
system used for the spherical decomposition.
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Being all real, these quadrupole basis matrices are even under time reversal, and they are also
even under parity.

We are interested in the simplest possible Hamiltonian that allows to control (by external
parameters) the spin of an electron or some fermionic quasiparticle, without breaking time re-
versal invariance (TRI) [Avr+88; Bud+12a]. Considering that we will have Kramers’ degeneracy
and we need an energy splitting to have some sort of control, the smallest system that could
implement the control, is a j = % quadruplet of states, that will be subject to some controlled
perturbation. We will now argue that the only possible perturbation Hamiltonian is given by
[Avr—+89|

HQ) = ), J¢(3/2)Qij=];3/2) (3.26)

4,J=%,Y,2

where @ is a quadrupole matrix, i.e. a traceless symmetric real matrix given by Q) = Z?:o q; Qi
with real coefficients g;.

The standard way to apply the theory of invariants will be to consider the product D/2)
DB/ = DO DL DR HDG) | then construct basis matrices for the contained representations
by the Wigner-Eckart theorem, and analyse their transformation under time reversal and parity
(the parity is positive for all of them because we are considering a diagonal block H,,). Then,
scalar products with matching tensors should be formed. But here, only time reversal even
tensors should be considered, since the resulting Hamiltonian should not contain an external
magnetic field that breaks TRL. We note that D) gives only an uninteresting overall energy
shift. The basis matrices for DM and D®) are found to be odd under time reversal, and thus
excluded. Finally, one can write the scalar products in terms of Cartesian components, which
are Hermitian. The 5 basis matrices corresponding to D®) turn out to be identical to the
4 x 4-matrices 3, ., . JZ-(B/Q)QmJ]@/z), me {-2,...,2}.

However, we find that it is more elegant to start with as an ansatz and then, use the
transformation property to shift the rotation to the matrix @, finding D(R)H(Q)D'(R) =
JTRQRTJ = H(RQRT). Then, all possible Cartesian 3 x 3 matrices ) can be analysed, as
has been done above. Using an antisymmetric matrix () and the commutation relation of the
J;, one can form the Zeeman term B - J, but this is not of interest here. The term E - J is
not allowed because it transforms odd under time reversal. However, the square |E - J|? is an
allowed term. It can be rewritten in terms of the superposition of a quadrupole Hamiltonian
with Q = EET — %21 and a constant overall energy shift of %%2 = %Ez. So in this sense,
the term transforms as quadrupole, even if it has only the three parameters of the vector E.
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Figure 3.1: A charge configuration in the z — y plane which generates a quadrupole field at the
center, assuming a near field approximation where » < L. Here r is the radius of the interesting
area occupied e.g. by a quantum dot, shown in red. The angle o and the field strength are
quadrupole parameters which are however invariant under rotations. The other three quadrupole
parameters may be seen as Euler angles describing the orientation of the plane occupied by the
charges, relative to the embedding coordinate system.

This term corresponds to the quadratic Stark effect. Although the linear Stark effect is not
allowed in a I's band if the system has SO(3) or Oy = Ty x C; symmetry, it is allowed in Ty
symmetry [Bir+63|. Before we discuss the Stark effects in Ty symmetry, let’s look a bit closer
at the quadrupole tensors Q and how they parametrize the field.

A quadrupole configuration of charges at distance L from the origin gives rise to an elec-
trostatic potential of the form r’Qr at the origin in near field approximation, for which we
must assume r < L, compare Fig. 3.1 In order to understand the effect of rotations on the
quadrupole, we may think of the five-dimensional space of quadrupoles Q) = Z?:o z;Q; being

parametrized by the quadrupole strength /", :Jc%, the distortion angle o shown in Fig. ,
and three Euler angles parametrizing the orientation of the plane of the four charges (or more
generally, the symmetry plane of the charge configuration). Only the Euler angles change under
rotations.

3.2 Relation to Stark effect Hamiltonians

Let us consider a system with Ty symmetry and derive the form of the linear and quadratic Stark
Hamiltonian from the ansatz . For this, we consider the specific charge configurations of
the ); basis matrices to find appropriate I's x I'§ basis matrices which transform like the irre-
ducible representations of Ty. The vector space spanned by Q)¢ and (03 conforms to quadrupole
configurations, where the midpoints of the faces of a cube are charged, e.g. charges g at (41,0, 0)
and charges —q at (0, 41,0). Evaluating JTQJ, we obtain the basis (%(QJZ2 —J2— Jf,), J2— Jf,),
which transforms like I's of Ty [Win05]. On the other hand, the basis (Q2, @1, Q4) corresponds
to charge configurations which are rotated by 7/4 in the zy,yz, zz planes, e.g. charges ¢ at
(£1,£1,0) and —q at (£1,F1,0). The vector space of possible Hamiltonians J”QJ is spanned
by the basis ({Jy, J>},{Jz, Jz}, {Jz, Jy}), which transforms like I's of T};. Distorted quadrupole
configurations, where o # 7 in Figure , can be obtained by superpositions of the I's and I'5
quadrupole bases.

In order to find the form of the linear Stark effect Hamiltonian, we need tensors linear in E =
(Es, Ey, E.). In Ty, the only one is E itself, and it transforms like I's. The only set of basis matri-
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ces which is also even under time reversal and transforms like I's, is ({Jy, J. }, {Jz, Jo }, { Tz, Iy })
[Win05]. Thus, the linear Stark Hamiltonian for the ground state of an acceptor centre in a Ty
crystal is given by a single term |Bir+63|,

Hp = X(Eo{Jy, J.} + Ey{Jz, Jo} + E-{Ju, Jy}). (3.27)

It is parity-odd, and therefore forbidden in the symmetry group Oy = Ty x C;, which additionally
contains the spatial inversion element. Note also, that full rotational symmetry SO(3) would
already forbid this term, regardless of inversion symmetry. For the Stark effect, one should
regard E as an externally applied field, and x is a measure of polarization. The field gives rise
to an energy splitting of 2§\E\ But if E in refers to the internal crystal field, then Hg
becomes a bulk inversion asymmetry (BIA) Hamiltonian.

Likewise, the quadratic Stark effect is found by taking the quadratic in E tensors E? (of T'y),
(%(QEE — E2 - E2),E} — E}) (of I's) and (EyE., E.E,, E,E,) (of T's), and combining them
with the corresponding basis matrices. In Ty or Op, the quadratic Stark Hamiltonian for the
ground state of the acceptor centre looks like |Bir+63|

Hpe =eE*1 + B(ELJ; + E)J) + E2J? — ZIEQ)
+8(EyE Ty, J.} + ELE{J,, J.} + E.E.{J., J,}) (3.28)

where the first term is a trivial shift, and the second (third) term can be expressed in terms of
a I's (I's) quadrupole Hamiltonian. In full rotational symmetry, 5 = § is enforced. Neglecting
the uninteresting energy shift, we obtain the form Hp. = 3JT(EET — %21)J , recovering our
earlier result. Usually, one would expect to see more energy levels in Oy, than in a system with
full rotational, thus higher, symmetry. But here, this cannot happen, since Kramers’ degeneracy
must still hold, allowing for only two energy levels.
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Chapter 4

Adiabatic theorem and geometric
phases in quantum mechanics

Here we present the adiabatic theorem in its most general and useful form. It gives rise to the
Berry phase [Ber84], which in the general non-Abelian case is also called Wilczek-Zee phase
[Wil+84]. As application, we then discuss the semiclassical transport theory in terms of wave
packets. This theory is compared to the Foldy-Wouthysen transformation, the latter being
conceptually different. Other applications of the adiabatic theorem of relevance for us (and
which are subjects of later chapters), are the generation of a SU(2) holonomy in spin space
for a time dependent but always time reversal invariant Hamiltonian, and a formulation of the
topological Chern integer as integral of a Berry curvature.
Consider the time dependent Schrédinger equation of a time dependent Hamiltonian H (R(t)) =

H(t) (with h = 1),

i%lw(t» = H(R(1))[(1)), (4.1)

where R is a parameter vector which is controlled externally in a time dependent way. R may
parametrize, depending on the problem of interest, external electric or magnetic fields, or some
coordinates changing slowly compared to the fast electron dynamics, like e.g. the position of the
atomic nuclei in a molecule, i.e. coordinates that are treated classically in the Born-Oppenheimer
approximation.

The spectrum of H depends parametrically on R, but for the moment we are more interested
in the time dependency, assuming a fixed path R(¢). We assume the spectrum to be gapped at
all times ¢, meaning that the instantaneous eigenvalue of interest, F(t) = E(R(t)), is separated
from all other eigenvalues by at least A. The instantaneous basis of eigenvectors belonging to
the possibly degenerate eigenvalue E(t) is {|un(t)) = |un(R(t)))}n. Actually, the assumption of
a gapped spectrum is non-essential, as pointed out both by Born [Bor+28| and Kato [Kat50], the
theorem still holds if symmetry protected level crossings exist. The situation becomes different
if there is some residual interaction that opens gaps at the level crossings, i.e. generates anti-

crossingsE].

! From the exactly solvable Landau-Zener problem H(t) = vto, + ao,, one can actually see that in such a
situation, for a minimal speed v > az/h7 the residual interaction ao, relevant for the anti-crossing can be ignored,
so that the adiabatic theorem applies again.
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The exact time dependent problem (4.1)) is in general difficult to solve. Formally, we may
write the solution as

() = Us(8)|(0)) = Texp (—z' / dt’H(R(t'))) 14(0)) (42)

where T is the time ordering operator, and we have defined the exact unitary time evolution
operator Ug(t).

The adiabatic theorem states that, if the Hamiltonian is very slowly changed with time, then
the solution is well approximated by the instantaneous eigenvector, up to a phase. However, the
latter is not just the trivial dynamical phase exp(—i [ dt’E(t)), but also the Berry phase or its
generalization. The theorem can already be understood at a very intuitive level, making use of
the time-energy uncertainty principle AEAt > h/2, which is usually proven by time-dependent
perturbation theory. AFE is the energy difference for allowed excitations and At is the time for
the Hamiltonian to change. This corresponds to total time T for changing the parameter vector
R. So for T' > h/A, excitations to other levels should be suppressed. Like Born and Kato, we
also introduce the scale s = ¢t/T. The advantage is that we can discuss the limit 7" — oo for
fixed s, i.e. for a fixed spectrum. The adiabatic theorem was originally proven by Born and
Fock [Bor+28| for the non-degenerate case, and they have already obtained the Berry phase.
However, Born and Fock have argued that by a gauge change, i.e. a time-dependent change of
the basis |u(t)) — e"®|u(t)) by a phase factor, the Berry phase may be removed. This is true
in most cases, however the important exception as noticed by Berry [Ber84| is when a loop in
the parameter R(t) is performed, so that the starting and ending basis states are identical. In
this situation, the Berry phase is gauge invariant and has physical meaning.

We follow the very transparent and general work of Kato [Kat50] and show the most essential
steps. The main assumption is that % = T% remains finite while T — oo. Instead of
working with basis states, Kato introduces time dependent projectors P(t) =" |un(t))(un ()]
projecting on the (degenerate) subspace. This has the important advantage that the formulation
is gauge independent from the beginning. In the following, we use the notation % ='. First
Kato shows that the differential equation

X' =iAX (4.3)

with A = —i[P’, P], can be used to find the adiabatic evolution of a vector X (), that initially
is in the eigenspace. So if P(0)X(0) = X (0), then P(s)X(s) = X(s). Since P (and thus also
P’) are Hermitian, A is Hermitian. The solution is

X(s) = Ua(s)X(0) = Texp <z /O s A(§)> X(0), (4.4)

where 7T is the time-ordering operator. This defines the unitary adiabatic time evolution operator
Ua(s), with U4(0) = 1. Ua(s) also obeys the differential equation (4.3).

Now we show that Ux(s) really is the adiabatic evolution. From differentiating P? = P, we
get the important relation

PP'P =0. (4.5)
Using this relation one obtains iPA = —PP’, iAP = P'P and
P' = PP+ PP =i[A, P (4.6)
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Defining W (s) = P(s)Ux(s), we have
W' = (PUAY = (P +iPAYU4 = iA(PUA) = iAW. (4.7)

So W (s) also obeys the differential equation (4.3), and therefore W(s) = Ua(s)W(0) = Ua(s)P(0),
S0

P(s) = Ua(s)P(0)Ua(s)". (4.8)

This means that indeed, (4.3]) gives the adiabatic time evolution.
The next step in Kato’s work is to show that for T — oo but fixed s = %, the difference
between the adiabatic time evolution and the exact time evolution vanishes like %,

(Us(t) —emilo dt'E(t/)UA(;)) P(0) = O(T™h). (4.9)

The operator A acts on the complete space of eigenstates and projects the eigenspace of
E(t) onto its complement (given by the projector 1 — P) and vice versa, but matrix elements
connecting eigenstates of F(t) vanish since PAP = 0. Instead of calculating the full Uy we
would prefer to know the time evolution only in the eigenspace of E(t). We use the ansatz
X(t) =, ci(t)|ui(t)), with coefficients ¢;(t) = ¢;(sT') which we group into a vector c(t). From
we obtain the differential equation for the coefficient vector

d
e+ iAP(t)c(t) = 0 (4.10)
with the Hermitian matrix Ag(t) = —i(ui(t)]%|uj(t)>. AB(t) is also called Berry connection,

and it can be seen as local (basis-dependent) counterpart to the global (gauge-independent) con-
nection A. The solution vector is ¢(t) = T exp [—i fg dt’AB(t’)} c(0). Using 4 = a0

a dt OR.?
we can rewrite the connection AP(t) in terms of the vector-valued Berry connection AP with
components A2, defined by

, 0
Al = il 5 pfu). (4.11)
For a closed path « in parameter space, R(T") = R(0), the operator
Teiifw A AR () _ Tefifw dR-A" (4.12)

is called the holonomy or generalized Berry phase, and the possible holonomy operations form
a group (by concatenation of paths, or matrix multiplication). Since in general, the AP (t) at
different times do not commute, the time ordering operator T is needed, so should only
be regarded as formal solution, while an explicit evaluation will be more difficult than a simple
integration. However, specializing to the Abelian case dim P = 1, time ordering is not needed,
AB(t) becomes simply a real number, and e~ [ A AP () ig called Berry phase. Note that for
E(t) # 0, we still need to add the dynamical phase if we want to approximate the solution of
the Schrodinger equation, compare Eq. . The Berry phase is a gauge invariant quantity
with possible physical consequences. Let us comment shortly on the physical observability of the
holonomy. It is possible to construct interference experiments which detect the (simple) Berry
phase [Ber84|. For the generalized Berry phase being gauge dependent, it is less clear if it is
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experimentally detectable [Bud12]. While local basis changes along the path v will cancel out,
the holonomy still depends on the choice of basis at the starting and ending point. However,
if this choice of basis is fixed by the orientation of the coordinate system in the experiment,
the matrix-valued holonomy can be detectable. This is the reason why we can make use of the
holonomy as matrix operation, for the spin control by electrical quadrupole fields, a subject of
the later Chapter [§

In order to apply Stokes’ theorem of vector calculus, we restrict ourselves to the case of
a 3-dimensional (or 2-dimensional) parameter manifold. Considering that the physics remains
invariant under re-parametrization of the path in parameter space, it is clear that this is no
real restriction. Mathematically, a generalization of Stokes’ theorem exists in terms of the
outer derivative, which requires the notations of differential forms and the antisymmetric wedge
product [Nak03|. Going back to the case dim P = 1, we obtain

fthB(t) = de.AB :/ ds - F5, (4.13)
v v 5()

where we have introduced the Berry curvature corresponding to (4.11)),

FP =V x AP = —ic ps5es5 ((0au|0pu) — (Dpu|Oau)) = 2eassesim ((Dau|0su)) (4.14)
with the short notation |O,u) = %. €ags is the totally antisymmetric tensor and the e are unit

vectors, and S(7) is some surface surrounded by the path 7. In contrast to the Berry connection,
the Berry curvature is invariant under gauge changes |u) — ¢®®)|y) with some arbitrary real
»(R), as can be checked easily. Clearly, this is an advantage for practical evaluation of the Berry
phase, since a global smooth phase definition for the eigenstates is no longer required.

The mathematical construct for the description of the coefficient vector c(R) is a fibre bundle
[Nak03|. The fibre bundle consists of the parameter manifold as base manifold, with a vector
space corresponding to the space of eigenstates of the (possible degenerate) eigenvalue E(R)
attached to each point R. This vector space is called the fibre. Fibres which are attached at
different points R, R/ are related by transition functions. These describe the way that fibres at
neighbouring points are connected, and the term Berry connection used above indicates that it
has to do with the transition functions. For points in parameter space which are infinitesimally
close to each other, the transition function becomes a linear map, and is close to identity. There-
fore, a transition function connecting points R, R’ may be generated by a matrix exponential
of the integral over linear transition functions, along a path connecting R, R’. Note that the
transition function depends on the path, otherwise the holonomy would be trivial. This
reveals the geometric interpretation of the Berry connection for the adiabatic transport, and the
associated holonomy.

Another simple example of a fibre bundle is a sphere, with the two-dimensional space of
tangent vectors attached to each point of the surface. Then, parallel transport of a vector along
the surface defines the connection. Since the parallel transport keeps the length of a vector
constant, the transition functions are elements of SO(2). Clearly, the defect angle found after
parallel transport around a closed loop (and thus the holonomy, which is an element of SO(2))
is proportional to the area enclosed by the loop divided by the radius of the sphere. Since the
inverse radius of the sphere is a measure of its curvature, this analogy also motivates the term
Berry curvature, as defined by Stokes’ theorem in (4.13]).

An especially interesting case is when the parameter manifold is compact and has no bound-
ary, like e.g. a sphere or a torus, and S(y) in (4.13) is the complete parameter manifold. Naively,
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one would expect the integral to be zero. However, this is not true since the Stokes’ the-
orem may be applied only locally, an example will be discussed in Chapter in the context
of the quantum Hall effect. Instead, the value of the integral becomes quantized and depends
only on the topology of the fibre bundle, i.e. on the way it is internally twisted. The integral of
the Berry curvature over the complete parameter manifold is known as Chern integral and the
topological integer is known as first Chern number. Again, parallel transport and geometric cur-
vature provide an illustrative example - the Gauss-Bonnet theorem states that the integral over
the Riemann curvature is given by the Euler characteristic of the surface, which is a topological
invariant and may be calculated from a triangulation of the surface (i.e. a mesh of triangles
representing the surface), as number of vertices plus number of faces minus number of edges
of the mesh. The Gauss-Bonnet states that for a surface S without boundary, | g K = 2mx,
where K is the Gaussian curvature (if a sphere of radius R can be locally fitted to the surface,
K =1/R?), and Y is the Euler characteristic.

The Chern integer will be discussed in more detail in Section[6] since it explains the quantiza-
tion of the quantum Hall conductance. The quantum spin Hall effect, which is also a topological
effect, requires a more complex theory than the first Chern integer for its explanation. The diffi-
culty is to include the essential restriction that time reversal symmetry requires, into the theory
of fibre bundles. However, by means of perturbation theory, the problem may be simplified,
allowing also an explanation of the quantum spin Hall effect in terms of first Chern integers.

Note that for the degenerate case, dim P > 1, we cannot use Stokes’ theorem to link the
generalized Berry phase to an integral over a curvature. However, there still exists a generaliza-
tion of the Berry curvature, which can be deduced from the parallel transport along the edges of
a parallelogram in parameter space, applied to the formalism of fibre bundles. The generalized
Berry curvature is given by

Fh = (0,47 —0,A0) +i[A] AP (4.15)

where the first term is the immediate generalization of (4.14)), while the commutator of connec-
tions is new but vanishes in the Abelian case dim P = 1. Under gauge changes (i.e. changes
of the local basis of the fibre, given by an R-dependent unitary matrix V'), it transforms like
J—"f’; — VF EVVT [Nak03|. We will encounter the generalized Berry curvature below, when apply-
ing the adiabatic theorem to derive the semiclassical equations of motion for a wave packet.

4.1 Semiclassical theory of wave packets

We now apply the adiabatic equation of motion in order to obtain the semiclassical
equations of motion for a wave packet centred at coordinates x., k., as given in [Sun-+99|
in the non-degenerate case and in [Cul405| for the case of a degenerate or quasi-degenerate
electronic band. In the semiclassical approximation it is assumed that the wave packet stays
within the same band, i.e. inter-band transitions are neglected - matching the regime of validity
of the adiabatic theorem. This is a good approximation if the band of interest is energetically
well separated from other bands, and if the kinetic energy is low enough that space-dependent
perturbations do not give rise to band transitions. Further, by describing the wave packet
motion only by classical center coordinates x., k., one neglects the time-dependent spreading
of the wave packet. If one is interested in an effective quantum mechanical theory that also
models the spreading of the wave packet, one may apply a re-quantization procedure for the
center coordinates. But this is difficult in the general case, as will be discussed below. The
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semiclassical method can be seen as an alternative approach to the envelope function method,
since it also allows inclusion of slowly varying perturbations of the periodic crystal potential, in
order to obtain effective equations of motion. It takes more a geometrical and less a quantum
mechanical point of view. For the generalized theory for the (quasi-)degenerate band, the time
evolution of the spinor in the degenerate band still obeys an effective Schrédinger equation. Thus,
we observe that the approach introduces a separation of time scales for the (fast) spinor motion
and the (slow) center coordinates motion. Here, the terms slow and fast should be understood
in the sense that the slow motion does not cause band transitions out of the (quasi)degenerate
subset for the fast degree of freedom. It is not really necessary for the spinor motion to e.g.
carry out a fast precession. The terms slow/fast are intuitive, though, considering that in the
Born-Oppenheimer approximation, which treats the motion of nuclei as adiabatic, the motion
of the electrons is fast compared to the nuclei.

We assume that the full Hamiltonian contains a locally lattice-periodic crystal potential,
but due to some perturbations, a modulation of the strict periodicity may appear on a length
scale much larger than the lattice constant. Depending on the problem of interest, the per-
turbation may be due to external electric fields, magnetic fields included by the vector poten-
tial, or a local deformation of the lattice etc. Formally, we may write the Hamiltonian in the
form H[%,k, B(%,t)], where 8(%,t) is a function that modulates the potential according to the
perturbations. For fixed coordinate x, and time ¢, the Hamiltonian H, = ﬁ[fc, R,B(xc,t)} is
diagonalized by a local basis of Bloch states. We take only the lattice periodic part of the Bloch
states, which gives us the local basis {|u,(k,X.,t))},, with eigenenergies E, (k,x.,t). We are
interested in some (nearly) degenerate subset of these bands, which is well separated from the
other bands, i.e. the local perturbations are small compared to the gap. Since the wave packet
is assumed to stay within the nearly degenerate band subset, we may construct it as

(r|T) = /dka(k,t)eikf 3 ma ke, ) un(k, X, 1)) (4.16)

n

The function a(k, t) defines the overall shape of the wave function, is normalized as [ dk|a(k, t)|* =

1, and is localized at k., with a spread that is large enough to still allow for localizing the wave
packet position at x., i.e. the spread in real space is large compared to the underlying lattice
constant. The vector components 7, (k,t) parametrize the spinor motion in the nearly degen-
erate subspace, with normalization condition nfn = 1. The effective Hamiltonian, linearised at
the position x. of the wave packet, is

- . 1 8H, .
HC_HC+§{8XC’X_XC}’ (4.17)

where the second term is the gradient correction, and this Hamiltonian includes time dependency
due to the motion of x.(¢). The center coordinate is given by

. ar _ 0
Xe = (P[x[¥) = Tkz + Z<¢|c87kcw>c (4.18)
where the complex phase I' has been introduced by a = e~|a, and [¢)) = >, nn|un), and the
subscript ¢ stands for evaluation at center coordinates.
The calculations of Niu and Sundaram [Sun+99| and Culcer [Cul4-05] are based on a varia-
tional approach to obtain the semiclassical Lagrangian. The exact Schréodinger equation may be
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obtained by variation of the Lagrangian L = (1)|id; — H|1) after the set of ¢*(x) for all x, re-
garding the wave function at different coordinates as independent functions of time. If one adds
some energy shift E(t) to the Hamiltonian, there is an ambiguity since the resulting Schrédinger
equation will be different depending on whether the normalization condition (1 (t)[(t)) =1 is
used before or after the variational calculation. However this changes only the unimportant dy-
namical phase, and not the Berry phase. The idea is to reduce the set of variation parameters. If
one already knows a subspace where a good approximation to the solution is expected, one may
choose a smaller set of parameters parametrizing wave functions of this subset, and thus find an
effective Lagrangian of these parameters. In the case of the wave packet, these parameters are
the center coordinates (x., k.), supplemented by the spinor coefficient vectors 7, nt in the case
of (quasi-)degenerate bands. All of these are regarded as independent functions of the time ¢,
only subject to the constraint nfn = 1 for the spinor. The variational approach does not make
use of the adiabatic theorem. We keep it in mind because we will need wave packet expectation
values for the gradient correction.

However, we will take a different path since we want to make contact to the adiabatic
theorem. The procedure shown here is not as rigorous as the variational approach, but I find it
more transparent since it is symmetrical in the space and momentum center coordinates, and
since it also mostly avoids lengthy calculations with wave packets expectation values. After all,
quadratic in k terms, corresponding to the spread of the wave packet, are neglected in the works
by Niu et. al. anyway. Evaluating the expectation value (¥|H,|®¥) and neglecting terms that
are due to the spread, as done by Niu et. al, amounts to substituting k — k. in the basis states
and the energy function. We obtain the time-dependent local Hamiltonian H for the subspace
of the n,, by taking E, (k., X.,t) as diagonal matrix and adding the gradient correction and also
a small perturbation that lifts the strict degeneracy (and does not render the equations more
complicated),

/H?Lm = <un’0(ﬁ6(kc) - Enc)‘um>c' (4.19)

We use the short notations E,. = E,(ke, X¢,t) and |up)e = |un(ke, X, t)). To evaluate the
gradient correction in (4.17)), we neglect the small lifting of the degeneracy by (4.19)), considering
its influence as higher order perturbation. Further, we assume that approximately, H.|¥) =

Enc|¥) and therefore, (@\%’ZE\\D R~ %anf' These relations would be exact if |¥) had only
contributions of eigenstates with exact energy F., i.e. we have neglected the spread of the wave
packet. The gradient correction is

A~

1| oH, o, OE
AE? = (V|- £,%— X p |U) = Re(W[x—2|U) — xo—— 4.2
( |2{3XC,X x}| ) & Re(B[x 5 |¥) — x5 (420)
= Im(V V| 9 i |U) — x OFne ~ Tn(ViU|(Ene — Hpe)| Vi, U) (4.21)
= k ch’ c c aXC ~ k nc nc Xe ) :
where we have made use of %fc = [%,ﬁc] and x. = (VU[x|¥) = Im(VV|P) in the last two

steps. For further evaluation of , we note that any term with derivatives Vy_  or Vi
acting on the factors a(k,t)e’®n,(k,t) in |¥) cancels (as seen in (£.I§), the phase of a(k,?)
also controls the center coordinate x.). For a superposition of eigenstates of same energy Fi.,
[¥) = >, n|tn)e, we obtain the gradient correction AEY = > n* H7pnm with

HI = Tm(Vieun|e(Ene — He(Ke)| Vi, thm e (4.22)
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So the time dependent local Hamiltonian for the quasi-degenerate subspace is
Hom = OnmEne + HE +HI, . (4.23)

The adiabatic Schrédinger equation for the components 7, of the wave function |u) = > 7y |un)e,
including the above corrections, reads

.d . d
iy = ; <Hnm - z<uncdtum>c> Nim- (4.24)

Here, M, and the basis states {|u,)} may depend on time both explicitly and through the
center coordinates.

Our next goal is to derive the equations of motion for the (classical) coordinateﬂ x. and k..
In the non-degenerate case and without any Berry phase corrections, the Lagrangian £(x., X.) =
x.k. — E(xc, k.) is obtained from the Legendre transform of the classical Hamiltonian, given by
the energy F(Xc,k¢). Although the Legendre transform no longer depends on k., we may regard
the same Lagrangian as function also of k. and ke, E(xc,kc,xc,kc) thereby only adding the
trivial equation of motion %ng =0= aakﬁc = (. This enables us to add the Berry connection
as velocity-dependent correction to the energy, which would not be possible in the Hamiltonian
formalism. This procedure can be justified by the fact that a—ﬁf = %g—ﬁﬁ will reproduce the
adiabatic equation of motion (£24). We now expand the total derivative % |u,,)e = (%.Vx, +
k Vi, + 0)|tum)e, so

£(ch kc> X(27 cy 1,7 Zﬁn <Z + Xckc — Hpm + Z'<Un‘c(7.ccvxc + l.<cvkc + at)|um>c> Nm-

(4.25)

The equations of motion for x.,k. are obtained from this Lagrangian, in the usual way by

the Euler-Lagrange equations %% = % and %g—)ﬁ = g—é. Introducing the 6 x 6 matrix

1 . .
J = ( 1 >, and the vector s = (x., k¢), we may write them in a compact form,

1 O

Jagss +1' 5= = = nt (Flsss + Fi +i[AD 1)) n (4.26)
with the generalized, matrix-valued Berry connections
(AB)nm = _i<un‘ci’um>c (AtB)nm = _i<un‘cg’um>0~ (4.27)
“ OR, ’ ot

Here the indices «, 8 take values of the six coordinates, and summation over 5 and the vector
components of 7 is implied in 4.26. Note that AP is defined slightly different from AP (t),
the difference being the derivatives @ and d Further, we have used the generalized Berry
curvatures, which include non-Abelian (commutator) terms, compare Eq. (4.15),

(FB)nm = (0.A5 — 05AE) +i[A, AB] (4.28)
= —i ({(Oatin|cOgum)c — (Ogun|cOatim)e) +i[AL, AF], (4.29)
(FBYm = —i ({(0atin|cOrtim)e — (Ostin|cOatim)e) + i[AD, AP] (4.30)

2 Note that different from Culcer and Niu, we treat x and k in a symmetric way, by fixing them both to
center coordinates X. and k.. In their case, basis states of fixed x. are used, but the wave packet - and also the
expansion coefficients 7, - still depend on a set of momenta k centred around k..
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The left hand side of contains the usual Hamiltonian equations of motion, while the right
hand side appears due to the adiabatic motion of the spinor and reveals the structure of a non-
Abelian gauge theory. The Hamiltonian equations are invariant under the symplectic symmetry
of canonical transformations, i.e. coordinate transformations s = (x.,k.) = S = (X, K.) that

have an invertible transformation matrix W;; = 88(()277’?{3)2 which obeys the condition
wtgw = J, (4.31)

with the symplectic unitary 6 x 6 matrix J introduced above. The symplectic transformations
form a group. Indeed, both sides of Eq. (4.26) are invariant under this symmetry, showing that
it gives a Hamiltonian system of equations. To show the invariance, we introduce the quantities

E=n'Hn, Fag=n'Fun, As=n' (Fa+ilAS,H])n. (4.32)
With these, the semiclassical equations (4.26]) can be rewritten in the convenient form
(J + F) 5=V.E+ A (4.33)

Now the symplectic invariance becomes apparent by the transformation properties Vg — Vg =
WiV, A > WTA, § 5 S =W lsand F - WIEW. Note that the symmetry does not
trivially follow from the fact that the semiclassical equations are obtained from a Lagrangian,
since x. and k. are not conjugate variables but independent variables in £(x., k¢, X, k., n,nt).

As an example, let us apply the semiclassical wave packet theory to a non-degenerate Bloch
band. As slowly varying perturbations, we add a homogeneous magnetic field by the vector
potential A(x.) = 3B X x. and a homogeneous electric field E = —V¢(x,) by the electrostatic

potential —e¢(x.). Then, the local Hamiltonian becomes

? 2
i, = WALy~ eoix), (434
2m0

where V(%) is the lattice-periodic crystal potential. Since eA(x,) is not treated as an operator
but as classical shift of the crystal momentum k, the form of the Bloch states remains unmodified
by the magnetic field. The Bloch state at the center coordinates is |u). = |u(k.+eA(x.))). The
equations of motions simplify if we introduce the variable p. = k. +eA(x.), and treat (X, pc) as
pair of independent variables. Then, the Berry curvatures depend on components of p¢,
but no longer on x.. The semiclassical energy E. = E(p.) — ¢(x.) + Ep(pe) includes a gradient
correction Fjys(p.) corresponding to the orbital magnetization energy of the Bloch state. Since
the system is assumed to be non-degenerate, we put 7 = 1’ = 1. The semiclassical equations of
motions read [Sun+99)|

oF,
e = ¢ _pexFB p.=—-¢E—ex.xB (4.35)
Pc
where the Berry curvature
i
FB = §Ejkjlel (<apcju‘apcku> - <8pcku|6pcju>) (436)

takes the place of a reciprocal magnetic field. While a usual magnetic field may depend on r,
FZ depends on the kinematic momentum pe, i.e. on reciprocal space.
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If one is interested in an effective quantum mechanical description that also models the
wave packet spreading, or quantization of energy levels in a finite system, one must find some
re-quantization procedure for the center coordinates in . But one has to be careful, in
this case, since in the presence of the Berry curvatures, (x., k.) can no longer be identified as
canonical pair. Sundaram shows when the only perturbation term is the vector potential of a
magnetic field, k+eA becomes the gauge invariant crystal momentum and (x., k.) can be taken
as canonical pair, as usual. In the more general case, Sundaram proposes to use a semiclassical
rule for quantization of energy levels, meaning that for closed orbits of the semiclassical theory,
a constraint in terms of the Berry phase integrated along the path is used, so that bound states
corresponding to classically closed orbits, will exist only for discrete energies. Let us preliminarily
conclude that the envelope function method is probably more appropriate to find an effective
quantum theory.

The search for a re-quantization procedure of the semiclassical equations is further compli-
cated by the fact that an operator X, that should represent the center of the wave packet, should
actually have a spin structure. In our definition (4.18)) of x. as an expectation value, a possible
spin structure is averaged out. By comparison, the Foldy-Wouthysen transformation [Fol+50|
gives a quantum mechanical effective low-energy limit which also allows insight into the spin
structure. In the next section, we will compare with this approach.

4.2 Wave packets as method for the non-relativistic limit

It is worth while comparing the wave packet approach to the transformation discussed by Foldy in
his seminal paper [Fol+50] for the case of the Dirac equation, in order to obtain an effective theory
for the non-relativistic limit. Since there is an one-to-one correspondence between the spin-orbit
terms of the Dirac equation and a spin-orbit term that we will encounter in an effective quantum
well model in Chapter [7], this discussion is relevant to us. The similarity was also recognized
in |[Bér+06|, where a quantum mechanics of non-commuting space operators is discussed and
applied to the spin Hall effect.

Let U be the unitary operator that diagonalizes the unperturbed Hamiltonian, i.e. U = U(k)
in the context of the wave packet approach or U = U(p) in the context of the Dirac equation.

The Dirac equation for a free relativistic spin-1 particle of mass mg reads (we set i = 1)

2
0

5 = Hpip = (Bmoc® + ca - p) ¥ (4.37)

with 4 X 4 matrices o = < 0 o
o 0
spinors, where in general, at least 3 components are non-zero. Interestingly, the Dirac velocity
operator 86% = ca has eigenvalues +c, each two-fold degenerate. Thus, an instantaneous mea-
surement of the velocity of a free particle will always give the speed of light! If we decompose a
state |[¢) = > . cs|ay, s) in eigenstates of ca; belonging to the eigenvalues +c, the probabilities
to obtain the speed +c are given by |c+|?. The expectation value is ¢(|co|?> — |c_|?), which in
general will be way below the speed of light.
For a useful effective theory, the velocity operator should be a constant of motion for the free

particle, and the value should be given by the expectation value (1| %{TD |1b). The diagonalization

of Hp gives UHpU' = BE, with E, = \/mic* + p?c2. So if |up) is an eigenstate of Hp of
positive (negative) energy, only the two upper (lower) components of Ulup) will be non-zero.

) and g = < 1 1 > The solutions v are 4-component



40 4 Adiabatic theorem and geometric phases in quantum mechanics

Foldy [Fol+50] finds that the operator

40U icBa ic’B(a-p)p + (o x p)p
X =UlxU = Ut— = —
X=X e T X g, 25,(E, + moc)p

(4.38)

1s the correct mean position operator if we are looking for a meaningful velocity operator X =

1[X,Hp] = UT aE” oAU in terms of the canonical position operator x = iVp. X is diagonal in
the same basis as Hp. Although p; is the generator of translations in x; and not in X;, the
commutation relations are identical, [p;,z;] = [pi, X;] = 14;;. We can easily check that the

expectation value of X for an eigenstate of positive energy E,, (up|X|up) = a , is the same as
that of X,
ok, pc?

: 1
(up|X|up) = ;<up|UT[x,ﬂEp]U]up) =p = B, (4.39)

For the free particle, instantaneous measurements of X always give the same velocity, % ~ L in
the non-relativistic limit. Now that we have found that the mean position operator X is useful
for the non-relativistic limit, it is interesting to consider its eigenstates. As shown by Foldy
[Fol+50], the eigenstates of X can be constructed as wave packets consisting of x-eigenstates,
and their spread about the center of position is of the order of the Compton wavelength A\, =
mloc. The energy sign operator UTSU commutes with X, allowing one to clearly distinguish
between wave packets of particles and antiparticles, and they have a non-trivial spin structure.
We can identify the particle and antiparticle solutions with energy bands in the language of
semiconductors. Since the wave packets consist of only one degenerate band, they are comparable
to the semiclassical wave packets of Section Switching between the operators x < X
amounts to a unitary basis change. While a basis change applied to x and Hp at the same
time has no physical significance, switching between x and X while keeping the basis of Hp
does have physical significance and allows us to focus on the definite measurement of different
physical quantities. x is the convenient operator when working within real space - e.g. adding
up an electrostatic potential term requires a definite space coordinate. In contrast, switching to
operators X and X gives a velocity operator that is a good quantum number for a free particle,
while X no longer corresponds to a definite place.

In order to derive the effective non-relativistic theory including SO terms, which will be the
Pauli equation, we follow Foldy [Fol+50|] and add up an electrostatic potential term V(x) = eE-x.
The potential is assumed to be weak compared with the relativistic energy gap 2moc?, i.e. it
should be slowly varying on the length scale given by the wave packet’s spread. Here we are only
interested in terms of an effective model up to first order in the homogeneous electrical field E.

Let us switch to the basis which diagonalizes the free Hp. The perturbed Dirac Hamiltonian
is given by

H' =U(Hp +V(x))U'" = BE, + ¢E - UxU' (4.40)

In this basis, the mean position operator looks simple, X' = iV, = x, and x' = = UxUT =
X'+ A + G with a block-diagonal part A (not to be confused with the vector potential, which
we do not include here) and a block-off-diagonal part G given by

(o xp)
" 2E,(E, + moc?)’ (441)
G- icBa ic?B(c - p)p (4.42)

2E, 2E,(E,+moc®)p
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Further, the projection onto the positive energy band, P = 37, 5 |up,i)(up,| where the [up ;)
are column vectors of UT, has the simple p-independent representation P = diag(1,1,0,0) in
the primed basis.

The only block-off-diagonal term in H' is eE - G. In principle, a second unitary basis rota-
tion to H” = UzH’Ug can be used to eliminate off-diagonal block. The block-diagonalization
procedure corresponds to the quasi-degenerate perturbation method explained in Appendix [B]
which is developed in orders of the inverse mass 1/mgy. However, from the formulas for per-
turbation theory (Eq. it becomes apparent that corrections in the diagonal blocks of H”
due to off-diagonal blocks in H' are of higher order in the field E. Therefore, being interested
only in spin-orbit terms linear in E, we may simply ignore off-diagonal blocks, putting them to
zero by a projection operation. This observation allows to effectively identify the perturbative
block-diagonalization with the operation of projection to the particle band. Being interested in
the equations only for the particle band, we may write PUQX/UJP ~ Px'P. This is the key point
which allows us to make the connection to the theory of wave packets, where the projection to
one band is assumed from the beginning. The resulting decoupled positive-energy block gives
the Pauli equation

_ B (o x p)
By = Hptp = (Ep +V(x) - Tt moc2)v1/(x)> " (4.43)
2
~ (mgc2 + 2p—m0 +V(x)— 477%02(0' X Pp)- E) . (4.44)

Differently from the Dirac equation, the physical meaning of x = iV, here is the mean position.
We have expanded up to second order in the small parameter %, wherein p is the derivative
operator which also acts on V(x).

In order to compare with the center of coordinate in the wave packet approach, we

now define a center coordinate operator as the 2 x 2 matrix

X.=PxXP=X+AT, (4.45)
where we have introduced the Berry connection A* = PAP of the particle band,
) 0
(A;_)nm = (Aj)nm = Z<Up7n’%|upvm> n,m € {1,2}. (4.46)
j

Due to the Berry connection that appears as correction, X. acquires a spin structure, and it is
non-commutative, i.e. [Z,Z¢;] # 0 for i # j. The non-commutativity appears only because
of the projection after the unitary basis transformation U. A quantum mechanics with such
non-commuting space operators has been used in the context of the spin Hall effect [Bér+06],
and also for wave packets applied to the anomalous Hall effect [Sin08]. X, should not be seen as
a physical quantity, since it is not gauge invariant due to the Berry connection term, but rather
as a tool for calculations that should be consistent up to first order in E |Sin08].

Now we are able to calculate the anomalous velocity, which is a spin-dependent (i.e. 2 x 2 -
matrix valued) correction to the ordinary velocity, by using the Pauli Hamiltonian Hp as defined

in (T33)

1., oF 1 v
vi" = lEey, Hpl — W; =2 (8ijl+ — O AT + Z'{Aj’AlJrO cBi =) Flel  (147)
! J

3 Note that Foldy discusses the unitary transformation a bit differently, combining both U and Us into one
block-diagonalization procedure, which however involves more steps.
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and we have employed the generalized Berry curvature, which is defined on the space of the
positive energy band,

1
= 0y, AT = 00 AT + AT, A, (4.48)

It is defined just as of the wave packet approach, with the Berry connection A™ given by
([£.46)), and it includes a non-Abelian (commutator) term because the particle band is degenerate.

To obtain an explicit result showing that the anomalous velocity is indeed spin dependent
and transverse with respect to the accelerating field, we use and we expand up to second
order in the inverse energy gap. The parts 0y, A;reEl and —0p, A;reEl in give identical
contributions, while the commutator part is of higher order in 1/mgy. We obtain

e
an -~ .
Vit~ Tn%cz (o x E);. (4.49)
If we leave out the non-commuting correction in Z.;, and calculate an anomalous velocity
from the expression véa” = %[:cj,H p|, we obtain only half the value of vi". We should keep

in mind that z; in the Pauli equation physically corresponds to the mean coordinate operator,
while Z.; is just a projected version of the position operator of the Dirac equationE] It is not
surprising that the resulting spin-dependent anomalous velocity is different, if evaluated for an
effective operator that includes a momentum-dependent rotation in spin space. In Section
we use the anomalous velocity v;-a" for a qualitative, but not for a quantitative explanation of
spin physics. Note also that the Pauli equation and X, are quantum mechanical objects, so
there is no need to restrict ourselves to a regime where quantum mechanical waves behave like
particles, in order to derive v®". In particular, the restriction Ap < A\, (Fermi wavelength small
compared with Compton wavelength) which is needed to construct wave packets, is not essential
to obtain v®". The wave packet formalism is here used for interpretation, but not for derivation.

It is interesting to compare with the velocity, calculated within the full Dirac equation. Con-
sider a solution |up) of the free Dirac Hamiltonian Hp. While the spin vector o is not conserved,
its projection, given by the helicity operator o - p, still commutes with Hp. We find the velocity
v = p—fg and p = —VV, independent of spin or helicity, although the latter is a good quantum
number of the free particle. This seems to be in contradiction to the spin-dependent transverse
anomalous velocity that we have obtained from the Pauli equation. We can understand the

2
difference by recognizing that the result v = %—C assumes a state of positive energy. However,
P

the potential V' (x) induces particle-antiparticle oscillations, since [UTSU, V(x)] # 0. These os-
cillations cancel the anomalous (spin-dependent) velocity, on average. If the potential is weak
and thereby induces only slow particle-antiparticle oscillations, it will be reasonable to neglect
the oscillations on the time scale of interest - this corresponds to the projection to the positive-
energy band, in the wave packet approach, and this also allows to observe the spin-dependent
anomalous velocity. We conclude that the anomalous velocity can be expressed by the difference
of commutators with and without intermediate projection,

1 1 1 z p
vi" = ~[Pw}P, PH'P] — —Pla}, H'|P = ~ (PH'Px{P — Px}PH'P) (4.50)
) ? ?

= °N" E; (P« Pa,P — P, PaP) (4.51)
1=

4 The nomenclature chosen here is not intuitive because the words “center” and “mean” have similar meaning,
which could lead to incorrect conclusions.
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with P = 1 — P, the projection to the negative energy band. The previous expression v?" =
> FiieE; can be shown by using U(9,,U") = —(0,,U)UT.

We may interpret the factor two by which vi" is greater than U}‘m, as fingerprint of the
relativistic Thomas factor. The latter is known as the factor by which the SO term in the Pauli
equation is smaller than the term obtained by a classical argument, that relates the SO coupling
to the effective local magnetic field in the frame of a particle moving through an electric field.
To lowest order, a particle of velocity v moving in a constant field E sees a magnetic field

1

— 2V X E in its rest frame. If one combines this with the Zeeman interaction zfnoa' -B and

approximates v ~ m%), one obtains a SO interaction term —5-570(E x p), which is twice the
0

value of the correct SO term in the Pauli equation . The reason for this mismatch is that
the new reference system, e.g. of an electron circulating a nucleus, is not an inertial system
since it is rotating and thus accelerated. The transverse acceleration can be seen as series of
infinitesimally small non-collinear boosts. However non-collinear boosts do not commute. If the
order of applying the boosts is changed, the resulting velocity differs by an angle, but not in
magnitude. It is possible to construct a space of rapidity 7; = tanh™! %, which is conformal,
meaning although it is a mathematical space with a non-trivial metric, the transformation to
rapidity still conserves angles. In two dimensions, rapidity space consists of a unit circle - see
[Rho+04] for a nice introduction. The boosts correspond to trajectories in rapidity space lying
on the geodesics (these are the “most straight” lines in a curved manifold, and may be obtained
by parallel transport). The geodesics are either straight lines intersecting the origin, or circles
intersecting the circle with unit radius at perpendicular angles, with their origin lying outside
the circle of the rapidity space. In a situation where a particle of velocity v is subject to an
acceleration a, this additional rotation angle of the local reference frame is called Thomas-Wigner
precession angle x, and can be found from

dx _y—1
dt 02

(axv), (4.52)

where v = 1/4/1 — v2/c2. The direction of rotation is opposite to the orbital rotation (rapidity
space has a hyperbolic geometry). That is, a clockwise rotation of a particle about a center
of attraction will result in the reference frame of the particle being rotated anti-clockwise due

to parallel transport in rapidity space. We may approximate a = —mLOVV, vy~ 1+ % and
vV & m%), in order to construct a perturbing Hamiltonian Hry that generates the Thomas-

. . . . . i il dx .
Wigner precession in the spin space, by demanding e *HTw? = ¢34 . The result is —% the
interaction of the classical argument,

e
Hry = ——(E . 4.53
T™W 4m302( Xp) o ( )

where we have exploited the fact that the plane of VV and p is normal to the z direction.

Let us make some connection to the Berry connection that can appear as correction in the
position operator, depending on the basis. The Pauli equation written in the mean position
operator X’ = x includes energy corrections due to the spin structure of a wave packet in the
vicinity of the center of position, so the Thomas-Wigner rotation of the reference frame should
enter. On the other hand, since the operator X, is just a projected version of the position operator
in the Dirac equation, it should not capture the spin structure of the wave packet, resulting in
a spin-dependent velocity corresponding to the classical argument without the Thomas-Wigner
precession, which is larger.



44 4 Adiabatic theorem and geometric phases in quantum mechanics

The difficulty of this discussion is, that all contributions to the SO coupling are of relativistic
origin, in the end - the Zeeman coupling used for the classical argument is also of relativistic
origin. Therefore, just looking at orders in the relativistic gap 2mgc?, it is impossible to regroup
terms into purely kinematic relativistic terms (i.e. the Thomas precession) and other relativistic
effects.
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Chapter 5

Theory of electronic transport

5.1 The Landauer-Biittiker and non-equilibrium Green’s func-
tion formalisms

In this section, we want to give a discussion of the theory of electronic transport, as far as it
is needed for further calculations. Rather than to include all details of the general derivation
of the formalism, our aim is here to discuss the physics behind the needed equations. There
is already excellent literature available about the Landauer-Biittiker (LB) and Keldysh [Kel65|
formalisms both on introductory [Dat07; |Dat05] and advanced [RamO07] levels.

In the real (non-idealized) world, transport phenomena are always linked to dissipation.
However, the basic equations describing the dynamics of an isolated physical system - be it the
Newton equation for a semiclassical description or the Schrédinger equation for the quantum
dynamics - are time reversal invariant and therefore, do not allow for dissipation. Thus, while
they are suitable to describe the dynamical behaviour of a system, they cannot describe the
relaxation to the thermodynamic ground state. Dissipation appears only when the system is
coupled to an environment. On a microscopic level, dissipation can be viewed as the loss of
information (in terms of knowledge of the system’s particle trajectories) that appears due to
the coupling with states of the environment, the latter not being under full control of the
observer. The simplest and commonly used approach is to assume that the environment has
sufficiently good communication of states so that it can be modelled as a heat bath, which stays
in thermodynamic equilibrium at all times.

We divide the open system into a finite mesoscopic part (called sample) attached to semi-
infinite leads. The leads function as electrical contacts and as thermodynamic reservoirs at the
same time. In the case of the LB formalism, dissipative interactions are not present in the
sample, and it is this separation into a part purely described by the dynamical equation and
a part where only dissipation takes place, which makes the formalism so simple. On the other
hand, if interactions are present in the sample (beyond elastic e-e scattering, e.g. phonons),
dissipation and dynamics are intertwined, and the Keldysh formalism provides a way to treat
such problems.

In this thesis, results are entirely obtained within the regime of linear response, and for
single-particle models, where the Landauer-Biittiker formalism applies. In the case of a sample
without interactions, the LB formalism can be shown to be equivalent to the non-equilibrium
Green’s function (NEGF) or Keldysh formalism.

As first recognized by Landauer, the conductance and transmission properties of scattering
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processes of a two-terminal device are equivalent, as long as only elastic scattering takes place.
By phenomenological and symmetry arguments, the scattering description was later extended
by Biittiker [Biit+85] to the treatment of devices with multiple leads.

The very basic setup to be considered is as follows. There is a central scattering region
(sample), with some attached wires (leads) which extend to infinity. We divide the Hamiltonian
into a sample part, and parts for the leads, here exemplified by two leads p and ¢, but the
generalization to more leads is straightforward. The Hamiltonian of the isolated parts is Hg
for the sample and Hp, H for the leads. We define Hy = Hg + H + H The coupling terms
between sample and lead p and ¢ are given by 7, and 7, respectlvely. We assume that there

is no direct coupling between leads, i.e. %pf'cj = 0. The sum of all coupling terms is treated as
perturbation in the Keldysh formalism and is given by H = Tp + %}: + 74+ %J.

To develop the formalism, it is assumed that up to some time ¢y in the far past, the system
is decoupled and in thermodynamic equilibrium. The coupling term is made time dependent by
substituting H' — 0(t—to)H'. However, in the resulting equations, this time dependency will not
be of significance, since we are only interested in the steady state regime. Then, initial oscillations
of the currents will have decayed and they will be constant. The individual terms may be written
in a basis of lattice sites, of a lattice extending over all parts, by Hg = Zie&jes C;-erHS,Z‘j,
H Z@epjep ZCij ij, and 7, = Zies,jep C;[chP,ija and analogue definitions for lead ¢. Here,

c¢; and c;r. are the fermionic annihilation and creation operators of electrons on lattice sites j.
The sums over j € S, j € p refer to the subset of lattice sites belonging to the sample or lead-p
region. In matrix representation, we may write

Hs 1, 74
H=Hy+H =| 7 H, : (5.1)
Tg H,

In order to avoid clobbering of the notation, we will leave away the hat over the Hamiltonian
parts in the following, thus referring to a submatrix and a full matrix with only one non-zero
submatrix by the same symbol, as long at the meaning of the symbol is clear from the context.
The leads are treated as thermodynamic reservoirs with (in general differing) chemical po-
tentials p; and temperatures 7;, where the index [ denotes the lead. Note that regarding the
leads as thermodynamic reservoirs is a simplified view. Since the leads are assumed to be very
narrow (typically, their width is tens till hundreds of nm), they also have a low density of states
and thus, removing charge carriers from them as in the case of a current, must disturb their
equilibrium significantly. Therefore, Datta [Dat07] introduces the concept of electrical contacts
that are in turn attached to the leads. The contacts are wide and have such a large density of
states that even when current is flowing, they may be assumed to be in thermodynamic equi-
librium, with potentials y; and inverse temperatures §; = T T The trick is that the interface
between contacts and leads is reflectionless in the sense that waves leaving the lead and entering
the contact will not be reflected (while this is not the case for the other direction). A nice
analysis of this situation, i.e. a wire having an abrupt change of its width, is given in [Sza-+89],
and this analysis indeed confirms that one may assume contacts to be reflectionless even when
the width changes abruptly (if the width changes slowly, the situation is even better).
Therefore, in the following we can make the assumption that ingoing states of a lead, i.e.
states propagating from contact to sample, are populated according to the Fermi distribution
determined by the potential u;, while the outgoing states, i.e. states coming from the sample,



5.2 Green’s functions 47

are not necessarily populated according to a simple distribution function, but enter the contact
without reflection.

In real samples, most of the time it is not necessary to distinguish between leads and contacts.
There will be electrical contacts which are long compared to the dimension of the sample, and
they widen slowly up to a macroscopic scale.

5.2 Green’s functions

The main idea of the NEGF /Keldysh formalism is to calculate non-equilibrium properties, like
e.g. currents, by a time dependent perturbation theory that starts from some initial equilibrium
distribution. To be specific, in our setup we imagine that at some time ¢y in the past, the sample
is decoupled from the leads (reservoirs). The coupling H' is turned on at ¢y, and in our problem,
this will be the only time dependency of the full Hamiltonian. After the coupling is turned
on, a current begins to flow from the higher voltage reservoir to the lower voltage reservoir. If
the reservoirs are infinitely large, a steady state will be reached after some time. Otherwise,
the system will have a return time, so a time scale with properties similar to the steady state
will be difficult to define. Therefore, if the calculus requires a finite system, a limit of infinite
system size is usually carried out, and this step must be performed before taking the limit of
late observation times. We will only be interested in the steady state property, since the time
dependency by turning on H’ is artificial. If the reservoirs are given by reflectionless contacts
as in the LB formalism, the problem of time dependent turning on of H' is avoided completely,
since the distribution function of ingoing states (i.e. states propagating from lead to sample) is
not affected by the states entering the leads and thus always stays in equilibrium.

In principle, the correlation functions that are used in the NEGF formalism, depend on
two times t and t'. However, if the Hamiltonian is time independent, they only depend on the
difference of the two times. Further, even if the Hamiltonian is time dependent because of the
turning on of some interaction or coupling at tg, if only times are considered where the steady
state has been reached, the correlation functions also depend only on the time difference. In
this case, it is convenient to use the energy representation obtained by Fourier transformation
with respect to t — t/, since integrals over times then become ordinary products.

The term Green’s function originates from the theory of linear differential equations, where
a Green’s function is defined as solution of the differential equation for a delta-function inhomo-
geneity. Here and in the literature about the NEGF formalism [Ram07; Eco06|, the term Green’s
function is used in a wider sense, for all kinds of correlation functions. Only the retarded and
advanced Green’s functions in the time domain really satisfy the mentioned definition, the other
correlation functions are called Green’s functions by analogy. In the time domain, the most
important Green’s functions that we need are

GE(1,1') = 100t — 1) ({erlt), (1)) (52)
Gt t) = 200 = ) ({ei(t), cl()}) (5.3)
G5(tt) = Z{cl(#)ei(t) (5.4)

G(t,1) = e} (). (5.5)
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Here, ¢;(t) and c}(t) are fermionic annihilation and creation operators of some single-particle
basis states, and {,} stands for the anticommutator. The usual fermionic anticommutation
relations are assumed,

{eie} =0, {cl,cf} =0, {c.cl} =0y (5.6)

In our case, it is particularly useful to employ basis functions localized on single sites of a
lattice, since for numerical purposes the Hamiltonian of the setup will be formulated on a
lattice. But the equations can be equally well written in the field operators v(x), ¥'(x) or in
annihilation /creation operators of momentum eigenstates, c, CL. If a basis including a spin or

band index is needed, the annihilation/creation operators should be ¢; 4, CZT , with some extra
band index o. For better readability we will absorb these degrees of freedom in the index .
The brackets (...) in denote the thermodynamic expectation value, for a (equilibrium)
density matrix at time to, p(to) = ye~ 2 BlH (o) =m) with Z = Trp(ty). At time to, Heisenberg
and Schrodinger pictures coincide and each decoupled part [ of the system is in equilibrium. The

time dependency of annihilation and creation operators is defined in the Heisenberg picture,

D (1) = Ut o) UT (8, 1) (5.7)
Ut to) = Te 7 Jio #HE) (5.8)

where 7' is the time ordering operator, which shifts the latest times to the left.

G and G are called retarded and advanced Green’s functions, since they can be interpreted
as the impulse response to a delta-like perturbation of the Schrodinger equation. The advanced
Green’s function describes the (unphysical) solution, where the wave moves toward the point of
perturbation, i.e. the response is in advance of the perturbation. In the non-interacting case,
i.e. when then Hamiltonian is quadratic in the field operators, both GF/4 satisfy the differential
equation

(ihdy — H) GRA@t ) = 6(t — )1, (5.9)

Then, knowing the time evolution U(t,t') is equivalent to knowing G® and G4, and we may
write GE(t,¢') = =0(t —¢")U(t, ') and GA(t,') = £0(t' —t)U(t,'). Here and in the following,
without indices 4, j of Gﬁ (t,t"), an equation is to be understood as operator or matrix equation.
In case interactions are present, like e.g. a Coulomb term [ [ drdr’ T (r)y T (x)V (r—1")i(x)(r)
involving four field operators, the Green’s functions obey a hierarchy of differential equations,
where single-particle Green’s functions like the ones defined above are linked to two-particle
Green’s functions involving two pairs of creation and annihilation operators, and n-particle
Green’s functions are linked to (n+1)-particle Green’s functions [Eco06].

G=<(t,t') and G~ (t,t’) are called lesser and greater Green’s functions, where the nomenclature
originates from the Keldysh formalism. In the Keldysh formalism, a closed contour reaching first
from —oo to oo and then back from oo to —oo is introduced for the times ¢,#'. A generalized
time-ordered Green’s function depending on two times on this contour is introduced, which
unifies all needed Green’s functions in one object. Specializing to the case where ¢ lies on the

forward axis and ¢’ on the backward axis, one obtains G<(¢,t'). On the Keldysh contour, it

is then understood that t < ¢/ independent of the values ¢, € R, thus the name “lesser”. On
the other hand, if ¢ lies on the forward axis and t on the backward axis, time ordering of the
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fermionic field operators on the Keldysh contour gives a minus sign, with explains the definition
(5.5) of G=(¢,t'). In the non-interacting case, G< and G~ obey the differential equation

(ihd, — H) G</>(t, ') = 0. (5.10)

Physically, —ithj(t, t') can be understood as the statistical expectation value of the probability
amplitude, for finding an electron in state ¢ at time ¢ and in state j at time t. The same
interpretation, but for holes instead of electrons, applies for ithj (t,t'). In this chapter, by
holes we mean missing electrons and do not refer to the type of the energy band. G< and
G~ can be understood as generalizations of a density matrix for electrons/holes. For equal
times t = t/, —ihG<(t,t) is a density matrix, and the diagonal entries —ithj (t,t) simply give
the electron density in state cz\()), |0) being the vacuum (or empty band) state. Noting that
GR(t, 1) = 0(t — t') (G (t,t') — G<(t,1')), we again recognize the interpretation of G given
earlier. If ¢ > ', the probability amplitude for the propagation of an excitation, regardless of
particle or hole, from site 7 at time ¢’ to site ¢ at time ¢ is given by Gf;»(t, t').

We will use G< as a basis to express all possible (single-particle) observables that we need
to calculate. On the other hand, G will be needed for the Fisher-Lee relation which relates
conductance to the propagation of waves in the sample.

Since we are interested in the steady-state regime, where all the correlation functions only
depend on the time difference ¢t — ¢, is is useful to work with energy representations of Green’s
functions like

GR(E) = % / dt B MGR _ yr). (5.11)

—0o0

Then, integrals over intermediate times become simple products. In the following, we will avoid
overloaded notation by not always putting the argument (E). However, if we refer to the time
domain, we will always put time arguments.

The spectral density is defined as

A(E) = iG” (E) —iG<(E) = iGE(E) — iGA(E). (5.12)

It describes the available states of the system, independent of their occupation, since it is the
sum of occupied and unoccupied states. In the case of no interactions, G/ A(E) and thus also
A(F) depend on the Hamiltonian, but not on the occupation of the states. This can be seen in
the spectral representation

GE(E)= lim (E+in—H)', GME)= lim (E—in— H) ' =GP (5.13)

n—0t n—0+t

These relations can be proven with the representation of the Heaviside function

~1 : 1
0(t) = — lim [ dE e *FU/h

= —_. 5.14
21t p—o+ E+ ( )

In equilibrium (assuming a single chemical potential and temperature, for simplicity), the
electron and hole occupation is given by the Fermi function fo(E) = (1 + e#(F=m#)-1,

G<(E) = ify(E)A(E) (5.15)

> (E) = —i(1 - fy(B)A(E). (5.16)

This intuitive result even holds when interactions are present [Wim08} Dat07].
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5.3 Interpretation of G< and the Fermi sea

In a single particle picture, the correspondence v;(t) — ¢;(t), ¥ (t') — c}(t’ ) between single
particle wave amplitudes at lattice sites ¢ and annihilation/creation operators at these sites,
can be used to find the statistical expectation value of correlation functions. In the notation of
second quantization,

G5 (¢) = —ihG (1, 1) = () (t)es(t). (5.17)
For equal times ¢ = t, this rule means that we are replacing the pure state density matrix
p(t) = [¥(t)){((t)| by a mixed state density matrix which describes the statistical ensemble. If

the statistical ensemble consists of a pure state with a single electron, [ (t)) = >, 1/1i(t)cz|0>, we
use p(tp) to evaluate the right side of (5.17) as

(cl(t)ei(t)) = Te[p(to)el ()ei(t)] = (W) |iUE  t)eslp(t)) = i) (1) (5.18)

showing that we can put an equal sign instead of — in . Here we assumed that at time %,
the Heisenberg and Schrodinger pictures coincide, and used (0|U(#,t)|0) = 1. |0) denotes the
vacuum or empty band state. Further, if p(t9) is a mixed single-particle state, we can replace
the left side of by a statistical average over pure states, corresponding to a decomposition
p(to) =D, Pnpn(to) in terms of pure state density matrices p,(to) and probabilities p,. In this
sense, the substitution rule is still exact.

However, in this section we want to focus on the many-particle aspect of G< and not on the
statistical average - the latter being easy to understand. In a realistic semiconductor or metal
system, all states up to the Fermi energy Er are already occupied, resulting in the Fermi sea
|F'S) as ground state, and the interesting physics will consist of excitations to this state rather
than to the vacuum or empty band state. Therefore, in the following we want to analyse the
propagation of a general single particle excitation in the Fermi sea at time ¢,

) = [¥(to)) = Fs) (5.19)

\/—Z@Z)lc

by analysing expectation values of c}(t’ )ei(t). Since the lattice sites are already partly occupied

by the Fermi sea and the Pauli principle must hold, the operator czr will not always create an

electron on site [. Instead, sometimes it will destroy the state, and we expect to see some
oscillations of the density in the vicinity of site . The oscillations will strongly depend on Ep.
We use the normalization convention ), |2 = 1. Due to the Pauli principle, we also need the
extra normalization constant N, (as opposed to the vacuum case). It will depend both on the
coefficients ¢; and the Fermi sea occupation. Note that compared to the single particle problem,
the anticommutation relations add new physical meaning to the lattice. In the many-body
problem, each site can be occupied by exactly one electron (if there is no spin). The maximal
possible electron density depends on the number of lattice sites per area. The lattice that we
employ for discretization of a one particle Hamiltonian should not be interpreted in this way - it
is just a lattice for one electron, and is used to track the electron position, but not the number
of electrons.

It is convenient to work with the annihilation and creation operators of the orthonormal set
of modes {x®}, in which the (non-interacting) Hamiltonian is diagonal,

H= Z ekazak with ap = ngk)ci, Zx(k)* (5.20)
i

k
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The completeness relation ", ng)*xg.k) = 0;; can be used to find the representation ¢; =

>k Xz(k)*ak. The new operators also obey the fermionic anticommutation relations
{ak, ak/} = 0, {a};, az,} = 0, {ak, az,} = 5kk’; (5.21)

and their time dependency is given by ay(t) = e *t/"q; and a};(t) = eiekt/ha,t.

We will evaluate the expectation value <1/1|a,1 (t)ag (t")]1) within the representation in modes,

) = \/% >k 1/1kaL|FS>, corresponding to (5.19). We use the indices i,7,/,l’ to denote lattice
Y

sites and k, k’,q,¢’ to denote eigenmodes. The calculation is best done within the occupation

number representation, where n; € {0,1} denotes the occupation of a state k in |F'S). We

obtain

(FSlagafawal,|[FS) = 0psdqq (1 — ng) — (FS|agawalal,|FS)
= 5qk5q’k"(1 — qu)(l — nq/) + 5qq’5kk’(1 — nq)nk, (5.22)

and for the normalization constant,

Ny = Z(l — ng)[t4/%, (5.23)

q

so Ny, is a number in the interval [0, 1] which gives the fraction of the excitation above the Fermi
sea. The statistical ensemble being given by the pure state [¢), we find

—ihGS (1) = (lal (D)ap ()]) = ]\Zw;(tm, () (1 = ng) (1 — ng) + Spgmgetes =/,
(5.24)

where we have defined 14 (t) = e ="/ In the first summand of (5.24)), the factors (1—ny)(1—
ny) select only those modes of the excitation, which correspond to energies above the Fermi sea.
This gives the quickly oscillating response part, which behaves similar to the vacuum case .
The second summand, dgpnge'c =t/ ig exactly the correlation function —ihG,f,k( ', t) of the
unperturbed Fermi sea. This part gives the slowly oscillating part of the response, corresponding
to the low energy modes, which propagate inside the Fermi sea.

We could now go back to the lattice site representation by ¢, = >, %’Xf-k), and enter the
lattice representations of aj and a};. But it is more instructive to consider a special case.
In order to get some insight into the behaviour of the electron density after applying the creation
operator at some site ¢ at time ty = 0, we look at the resulting real space density matrix for a
state |1) = \/}WCI\FS% by specializing to ¥ = ng)
relevant if an electron is injected from a scanning tunnelling microscope (STM) tip into a lattice
site (or atomic orbital). The injection into a Fermi sea of Nyee = D ¢ " electrons should result
in a state with N, + 1 electrons, even if the extra electron cannot be found at site ¢. The real

space representation of Eq. (5.24) becomes

N, Do = ) (1= e et S g (5.25)
kk' k

. This situation could be experimentally

—ihG5(t,t)

k e s
()_ lezkxjona

with Ny =3° (1 —nq)\xl(-Q)P. The simplest example is that of plane waves x;" = A
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Figure 5.1: For a single band model on a 1D lattice with 30 sites, we assume the Fermi sea to
consist of 11 electrons. At time tg = 0, we apply the electron creation operator of the center site.
The resulting wave function has 12 electrons and must be renormalized, so the Pauli principle
is effectively pushing existing electrons out of the way. The full line shows the electron density
n(x;, to) immediately after the excitation. The dashed line shows the density at a later time,
n(x;,t/h = 10). The horizontal offset is due to the occupation by the Fermi sea, Nyce/Ns.

1D lattice with €, = 1—cos(k), and zero temperature, ny = 0(Er—e¢g). N, is the number of sites,
and Noc. the number of states occupied by the Fermi sea. Then Ny, = N% Yaul—ny) = NS?TJZOCC
is simply the fraction of unoccupied states in |F'S). The resulting time dependent local density

for the plane wave example is

2
0(er, — Ep)etrimmtita/l) —A]fv (5.26)
k S

1
— i< _

n(xj,t) = —ihG3;(t,t) = NN, = Now)
where z; = ja is the coordinate of lattice site j. n(z;,t) is plotted in Fig. immediately after
the injection of the electron at the center coordinate (solid red line) and at a later time (dashed
blue line). The Pauli principle does not always allow an electron to be put on the center site,
since double occupation is forbidden for fermions. We had to renormalize the wave function |¢)
so that it describes a meaningful (Ny..+1)-electron state. This means that electrons at the site
of injection are effectively pushed away, and the peak of n(x;,tg) shows a broadening by the
scale of the Fermi wave length. We have intentionally shown a discrete plot, since makes
only sense when evaluated at the discrete site coordinates x; = ja. If the grid is refined, the
peak becomes narrower because more electrons will be allowed on the lattice.

A similar interpretation would be possible for the hole correlation function G-, in terms of
holes (missing electrons). Let us emphasize that this section is only about the physical inter-
pretation of G< (or G7). Since the Green’s functions themselves, and not many-particle states,
will be the central objects for calculations, the results shown here do not impair the correctness
of subsequent calculations in the context of a many particle system without interactions, if the
Fermi sea is replaced by the vacuum state. In contrast to G< and G~, in the non-interacting
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system, G® and G4 do not depend on the occupation of states and can directly be obtained
from the Hamiltonian, as seen in (5.13]), so their interpretation does not differ in a single- or
many-particle picture.

5.4 The kinetic equations

Now, let us proceed to calculate first G/4(E) and then G</>(E) of the non-equilibrium sys-
tem. The inverse of a quadratic block matrix can be written in terms of its Schur complement
S. = (A — BD7'C)™!, keeping the block structure,

A B\ ' S, ~S.BD! (5.27)
c p) ~\ -bplcs. pl+Dp'CcsS.BD! ) '

It is straightforward to check this very useful formula by matrix multiplication. We apply (5.27))
to find the block structure of the retarded Green’s function of the sample connected to a single

lead p,
GE G~ E — Hg —T -
(et o )=(" pitn, )
B ( (E—Hg — TpgR T) GRTpgp )
B T]IGR gp + gRTTGI“ETpg;;2 '
Here and in the following, upper case symbols are used for the properties of the coupled system,

like G for Green’s functions. Lower case symbols like g are used for a decoupled system, which
is assumed to be in equilibrium. We define the retarded and advanced self-energies of lead p as

(5.28)

Zﬁ = TpngT Ef = Tpg;?T;)r = (Zg)T. (5.29)

We see that in the inhomogeneous Schrédinger equation , we can substitute H — Hg + Ef,
in order to obtain the effective equation restricted to the sample region, but including the effect
of lead p. We can apply again to find the generalization to more leads. In the general
case, we find

GE=(E—-Hs—=%)™" with £f = Z i (5.30)

and G4 = (GE)T, ©4 = (2F)T. Note that the self-energy is energy dependent, so we cannot use
it to reformulate the eigenproblem, i.e. the homogeneous Schrédinger equation.
The central results in the NEGF formalism are the kinetic equations

G< =afy<gt o> =afv>gh (5.31)

which relate G< to the inscattering self-energy Y.< and in a similar fashion, G~ to the outscat-
tering self-energy Y7, the latter being equivalent to the inscattering of holes. Here we give a
simple derivation of along the lines of [Dat07]. Consider the inhomogeneous Schrodinger
equation and an arbitrary excitation S;(t’) at the site j of the sample. The response is given
by ;(t) fdt GJ(t,1')S;(t'). We are interested in the correlation function ;(t)y5 (') of the
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response. As discussed in the previous section, the correspondence 1;(t) — ¢;(t), ¥} (') — c; ("
can be used to find the correlation function

G5(t.t) = 1)) = 5 [t [ 'Y GG SIS ). (6552

In formal analogy to G<, we define the inscattering self-energy as correlation of the excitations
in the sample region,

SE(t— 1) = %@T (#)S:(1). (5.33)

Here we also assume that the correlation depends only on ¢ — ¢/, which makes sense if we
consider that the excitations originate from scattering of the lead’s electrons into the sample,
and the combined system of leads and sample is assumed to be a steady state. Defining the
energy representation of the inscattering function as usual, S<(E) = 3 [ dt e B/ < (t — /),
becomes the matrix equation G<(F) = GR(E)X<(E)GA(E). In a similar fashion, the
inscattering functions of holes (or outscattering function of electrons) is defined as Efj(t —t) =

— (St )S; f (¢)). Remembering that G~ denotes the correlation function for holes, one can prove
the other kinetic equation, G~ = GEX>GA.

Up to now, we have considered excitations in the sample region. However, we are rather
interested in the sample’s response to excitations in the leads, since those are the sources of the
current, and their energy distribution is known. For this, we need the part Ggp of the Green’s
function, see (5.28)). Denoting by S, ;(f) an excitation in lead p, at site i, we can define an
inscattering function of the isolated lead, ap Gt =t) = <ST (t")Spi(t)). Since Ggp = G?Tpgﬁ,
the relation between the inscattering functions of sa,mple and lead p is

¥ = Tpgf(f;gg‘ ]I (5.34)
Next, we employ the kinetic equation (5.31]) for the lead-p subspace,
Gs = GSTp(gfazfg;‘) G4 = GSTp ~ TGA (5.35)

Since the isolated lead (remember the small g stands for the uncoupled system) is in equilibrium,
given by Fermi distribution function f, and the spectral density a, = i(gﬁ — g;‘), we can use
(5.15) to find the lead-p contribution to E<,

2; - Tpgp = ZfPT’papTT =:1fplp (5.36)
Further, we have defined the broadeningl| matrices
I, =i(SF— 5. (5.37)

I'; is related to the velocity operator of lead p, along the direction to which it extends, as we will
see later, by the orthogonality relation of modes (5.82)). By analogy, the outscattering function
of the lead is given by the equilibrium distribution function for holes,

S =100 7) = —i(1— f,)T). (5.38)

! Datta [Dat05] uses the terminology broadening matriz for T',, because the coupling to the leads is responsible
for smoothing out discrete levels in the density of states of a finite sample, which results in a continuous density
of states for the coupled system.
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Note that in our derivation, we have not used the fact that by changing gff — gp< in the
formula for 25, we obtain E;. This feature is nice but currently seems mysterious if we
remember, that the physical meaning of E{f is completely different from that of E;. However,
if one derives the expression for the self-energy in Keldysh space, this feature is natural since
both 25“ and 5 can be obtained from the same Keldysh self-energy. In general, the Langreth
rules (as first used in [Lan+72]) can be used to find real-time representations of products in
Keldysh space. From these rules, it can be understood that it is indeed possible to interchange
the superscripts < and R, if they appear only once on each side of the equation.

5.5 Calculating the currents

Now that the stage has been set by introducing the most important definitions and equations,
we want to apply this to calculate the currents leaving or entering the sample from the leads.
There are two ways to do this, and we will discuss them both in order to have a versatile toolbox
for calculations and interpretations. Firstly, we can find a current operator representation in the
lattice model which expresses the current density in terms of G<, and then integrate the current
leaving the sample in direction of some chosen lead. This means we will have to integrate over
the surface separating sample and lead regions, and enter G< as given by the kinetic equation.
This way has the advantage that the connection to the local current density is clear. The
other possibility is to consider eigenmodes of the leads, and derive a scattering matrix, called
S-matrix, in the basis of these modes. The current will be proportional to a sum of scattering
probabilities. The latter approach corresponds to using a mode basis for evaluating the integral
over the surface between sample and lead. The advantage is that the scattering matrix is a
very useful and simple tool to analyse the transport properties and can also be used to combine
several mesoscopic devices in a phase coherent way.

In order to understand where the current flows, we have to further split up the sample in
different regions. We will denote the sample region by S, and the lead regions by p and ¢
(again we just discuss the case of two leads, the generalization being immediate). The lattice
representation of the Hamiltonian will always (in our cases) take the form of a tight binding
model, i.e. it contains only coupling terms to neighbour and sometimes next-neighbour sites.
Therefore, we can define a region p’ C S located next to lead p, containing all sites with non-zero
couplings to lead p, and likewise ¢’ C S. We assume that they do not intersect and that there is
no direct coupling between p’ and ¢/. This assumption is no restriction, since it can always be
met by increasing the sample region at cost of the leads, which will not change the lead currents.
By s (lower case), we denote the remaining region in S, i.e s = S\ (p' U ¢'). All these regions
correspond to index sets for lattice sites. So e.g. in 7,45 # 0, the index ¢ € p’ and j € p. This
means, while have already demanded earlier that %q%g = 0, now we also demand that ﬁ;r 7, = 0.

We can partition Hg in blocks analogue to (5.1)),

Hs Hsp’ qu/
Hs= | H, Hy . (5.39)
H, Hy
q

For the total charge in region s, we introduce the operator Q(t) = —e >, cL(t)ck(t). The
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continuity equation Q = — f dV' V- J(t) tells us that we can define currents by considering
. —1€ A A
Q) = S, QN = =303 (Hanlel (ew(t)) — Hialel (1))
kes i€S
= —eTrs[G<(t, 1), H], (5.40)

where Tr; denotes the trace over sites belonging to region s. We use the same partitioning of
GS as for Hg. Writing out matrix products in space S in the blocks and making use of the
cyclic invariance of the trace over space s, we arrive at

Tr, [G< (¢, 1), ZTrs [ t)Hys — HSP/G;,S(t,t)] . (5.41)

Now we see how fs dV 'V - J(t) divides up into contributions from each lead p, and we also see
that it only depends on the surface terms, analogue to Gauss theorem [ dVV.-J= [, dS-J.
Since we assume a steady state, we can write G<(t,t) = 5 h JdEG<(E). In the steady state,
the total current going out of the sample region is zero, but the currents through individual
leads can be non-zero. We identify the current flowing into lead p as I, = [ dE I,(E) with

1,(E) = TTx, | G5, (E)Hy — Hyy Gy (E)] (5.42)
Next, we introduce a projector P, projecting onto the sites of the region p’. This will allow
us to rewrite the lead-p current in terms of matrices defined on the sample space S. Using the
cyclic invariance under Trg and Tr,, we can add up a zero term and extend the trace and all
appearing matrices to the larger region S,

e e
Ip(E) = ETrp/ [HPISG?p' — G;’SHSPI:| + ETrp/ [Hp’p’G;’p’ — G;/p/Hp’p’}

:%Trst/ [HsG§ — GSHs) . (5.43)

Using the definitions (5.30) of G&, G# and the kinetic equation (5.31)), we find

HsG§ — G§5Hs = Hs GEX<G4 — GEx<G4Hs (5.44)
HsGE = EGE - »RGE -1 (5.45)
G4 Hs = EG4 — G434 — 1, (5.46)
SO
HsG§ — G§Hs = GE¥= - <G5 - 2G5 + G5 7. (5.47)

In the above expressions, the self-energies LR/A and inscattering functions X< are still the sum
over all leads. Using the cyclic invariance of the trace and Py7, = 7,, Py7, = 0, we find

P, s/A/< = ER/A/< nR/AI<p, = zzfj/A/< (5.48)
and finally

e (&
I(E)=-Tr [S5(G§ - G§) — (SF - 2)G5] = —Tr [S5 As — T, G5 . (5.49)
h ih
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As we see, the expressions for the current at different leads depend on the same G§ and
spectral density Ag of the sample region. Z; is respousible for the inscattering of electrons from
lead p into the sample region and depends on the chemical potential y, by the Fermi distribution.
The inscattering further depends on the available states of the sample, as described by Ag. On
the other hand, the outscattering term G§T', depends on the occupation of states in the sample,
given by G5, and the available states in the lead p, which are described by the spectral density
ap = i(glt — g3') of the lead p in T, = TppTy.

Now we can specialize to inscattering and outscattering given by the leads. For this we
combine the expression for spectral density (5.12) with the kinetic equations and the
equilibrium inscattering function E; = ifpl'p of (5.36)), to find the spectral density

Ag =i(G3 — G5) =Y _GET,G5. (5.50)
q

Similarly, we use the kinetic equation and the equilibrium outscattering function (5.38]), and
find the Landauer-Biittiker formula for the current at lead p

h=h2 4B T (B)GAE) - 1)) (5:51)

The current is given by lead-dependent Fermi distributions f, = (e(E*“P)/ keTp 4 1)~1 and
transmission probabilities T), for scattering from lead ¢ to lead p, counting contributions from
any modes of the leads (since the T}, are sums of probabilities for independent modes, they may
be greater than unity). They are defined as the traces

Tpq = TY[FPGRF(JGA] (p#q). (5.52)

Only for p # q, these traces should be understood as transmission probabilities. If needed,
reflection probabilities Tp,, = N — ¢p Lpg May be obtained from current conservation, which
results in a sum rule for the T}, see Eq. .

If all leads are at the same temperature T', but a small electrical bias is applied so that the
potentials p, differ, we can expand f, and f, around a common potential, which will be the
Fermi energy Fr. Using the notation fo(E) = 1/(e®/#37 + 1) and assuming |u, — pty| < kT
for the expansion of Fermi functions, we find

Iy = Z;/dE qu<E)_afO(8EE_EF)(Mp — Hq)- (5.53)

In the zero temperature limit, the Fermi functions become step functions f, = 0(Er — pp)

and ([5.53) reduces to

I, = % Zqu(EF)(Mp — pig) = % Z Top(Er)ip — Tpg(EF) piq (5.54)

where we have made use of the sum rule ((5.73)) in the last step. This formula allows for a simple
interpretation of the current. The contribution Ty,(EFp)u, is due to the current flowing from
lead p to other leads, while the contributions Tpq(EF)pe are currents coming in from all other

leads. Since p,/e are electrical voltages, we recognize that the quantum of conductance is %,
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not including a factor two for spin degeneracy. Quantization of the conductance in steps of %
has been experimentally observed [Wee+88|.

Interestingly, the formula is even valid for finite bias, i.e. when the condition |u, —
tql < kT is not met at low temperatures, as long as the transmission functions T,, are
constant in the energy range [up, fiq]. By rewriting in the form of a convolution, where
the convolution kernel is related to finite temperature and causes smoothing of the function
Tpq(E) on the scale of kgT, it becomes clear that the allowed bias is |, — | < max(kpT,J),
if the energy ¢ is the scale on which T},4(F) fluctuates appreciably [Dat07]. In clean (ballistic)
samples, § can be large, while in disordered samples, universal conductance fluctuations will give
a highly oscillating signal Tp,,(E) at low temperatures. However, in a situation of finite bias, the
transmission function T}, can also change due to the electrical field. To capture this effect in the
formalism, a self-consistent solution of the Poisson equation for the charge distribution would
be required. The idea of rewriting the integral in the form of a convolution is also used in
Chapter [0.2.3] where we derive a Mott-like relation. It relates charge conductance to transverse
spin currents that are induced by a temperature gradient, and it is valid at finite temperature.

Since the transmission function T), essentially describes the mesoscopic conductance matrix
which relates the vector of lead currents to the vector of lead voltages, it is interesting to
compare with the Kubo formula for the conductivity tensor (compare Appendix. The matrices
I'p,T'q in formula can be seen as current operators for the leads, showing the similarity
to the Kubo conductivity , which also involves the correlator of two current operators.
The Kubo formula is an application of the dissipation-fluctuation theorem, because it relates
equilibrium fluctuations to a dissipative conductivity. Since the transmission formula is
the result for a phase coherent mesoscopic sample and dissipation enters only by the coupling
to the leads, averaging over an ensemble of uncorrelated disorder configurations is needed to
effectively introduce decoherence and meaningfully compare with the Kubo formula [Dat07]. In
a phenomenological way, it is also possible to introduce decoherence by adding artifical floating
leads to the sample, which have no net effect on the current, but destroy the phase relation
entering and leaving electrons.

All of the discussion until here has been for charge or particle currents. However in this
thesis, we will be especially interested in spin currents, i.e. in the transport of the angular

momentum 2 of the electron spin. In a system where S, = %02 is conserved, the current of the

2
z component of spin can be defined as %(IT — I}), where I/, are particle currents of electrons

in eigenstates of .S,. It is common to define the local spin density n(“)(r) and the local spin

current J. (1)

" (r) of the vector component £ of spin, in a state 1) of the system, as

n) () = ot (R)o(r) = (580 — o) = WIA® ()]), (55)

) = 507 ) (o g 0te) = (I {00 = ), fo G 1) = @1 @) 6.50)

If we define 09 = 1, choosing © = 0 gives the usual charge density and charge current up to a
prefactor 2—; On the right side of and , we have defined corresponding operators
for the local spin density and local spin currents.

For numerical treatment, lattice representations of these operators are needed. They can
be found by evaluation of matrix elements within a basis of states |r;, s) which are localized on
lattice sites r;, and include as a factor a spin-z basis state |s) € {|1),|])}. Further, a finite
difference method needs to be applied to the Hamiltonian H to find matrix elements Hy s r s,



5.5 Calculating the currents 59

see Equations (2.33), (2.34) and (2.35). We find lattice representations corresponding to the
operators in (5.55) and (5.56)

R h
(r;, s|n(“)(r)\r]~, sy = i(sr,riéri,rj(o'u)ss’; (5.57)
. 1
(r;, S\J(“)(r)\rj, sy = 4—2,(5&“ + Ore; ) (i — Tj){0ps H b risr;ss (5.58)
{U/u H}ris,rjs’ = Z ((Uu)ss” ris’ r;s’ + Hris,rjs”(o'u)s”s) . (559)

If the Hamiltonian involves only linear and quadratic terms in R, its lattice representation
contains only hopping elements connecting nearest neighbour sites, which greatly reduces the
number of matrix elements needed in . Lattice models including only nearest or next-
nearest neighbour couplings are also called tight binding models, and their matrix representations
are sparse matrices. For numerical treatment, only the non-zero entries of sparse matrices need
to be stored in memory. We use the efficient linear solver MUMPS [Ame+01| (freely available
under http://mumps.enseeiht.fr), which works with sparse matrices and can benefit from
parallelization.
The observables can be expressed in terms of the lesser Green’s function , in the way

30w = (30 = 3 (raslIO W) [ B G (E) (00

. . /
ri,r;,s,s

in units of spin current per lattice site, and analogue for the densities (charge or spin per
lattice site). This allows for numerical evaluation, based on the kinetic equations and
assumed inscattering from the leads, i.e. for some choice of lead potentials and temperatures.
In Chapter the non-equilibrium part of the spin current induced by an electrical bias is
visualized in this way, and in Chapter [10.4] we define an helicity operator which is associated
with spin and plot the corresponding bias-induced density.

Being interested in systems that generate spin accumulation or spin currents, we will need
spin-orbit coupling terms in the Hamiltonian. (Other possibilities would be to start with a
system where spins 1, | are populated differently already at equilibrium, like in a ferromagnet,
or to induce a non-equilibrium spin population optically, but we will not be interested in such
approaches.) In the presence of SO coupling, the spin current will not be conserved. As shown
in Appendix [E] it obeys the generalized continuity equation

gtn(u) +v-JW = o (5.61)

which involves a source term given by the torque 7, = %Re (¢ (r) &[0y, Hlib(r)). Clearly, this
is a problem if a well-defined spin current should be measured. Moreover, in a time reversal
but not spatial inversion symmetric system, the spin current can be non-zero even at
thermodynamic equilibrium [Ras03]. On the other hand, there is no problem with the definition
of spin densities, and non-zero spin accumulation at equilibrium is not possible in a time reversal
symmetric system. There have been attempts to solve the problem of non-conservation of
spin currents in different ways. One proposal has been to incorporate the source term in the
definition of spin current, which effectively corresponds to considering the continuity equation

of the operator S,r, instead of S, [Shi+06]. This has the advantage that Onsager reciprocal


http://mumps.enseeiht.fr

60 5 Theory of electronic transport

relations, i.e. symmetric linear relations between a vector of thermodynamic forces like electrical
fields, temperature gradients and pressure, and a vector of the corresponding charge, heat and
particle currents, can be extended to include spin currents. For some discussion including other
definitions of spin currents, see [Nik+-09|. The easiest solution to the problem of non-conservation
is to exclude SO coupling from those parts of the sample where the spin current should be
measured, e.g. in some of the leads [Nik+05a; Han+04]. Then, the lead Hamiltonian is diagonal
in spin space and separate leads may be defined for spin-1 and spin-|, to obtain a straightforward
spin-dependent generalization of the NEGF formalism. This approach is used in Chapters
and [91 For this approach, one must decide on the spin vector component that one wants to
analyse.

If one wishes to analyse different spin vector components within a single calculus, or if the
transport of a non-conserved quantity should be analysed in terms of contributions carried by
individual leads, one can combine transmission amplitudes as given by the scattering matrix
(S-matrix) with operator expectation values. Even if the spin current oscillates in a lead, its
average may constitute a non-zero and meaningful physical quantity, if the torque term in ({5.61))
does not cancel the signal. In the following Section we will focus on the scattering formalism
in terms of modes of a lead. Since the S-matrix provides phase relations between different modes
of a lead, spin currents of different directions may be found from it. This is discussed in more
detail in Appendix [D] and will be applied in Chapter [I0] We just give the main result here,
which is rather intuitive. The expectation value of a local operator O(r), averaged over lead p,
in response to a bias dp, applied at a different lead ¢, and evaluated at 7" = 0, is given by

~

1 5(0(r)) 17&=" 1
lim — [ dr’ 22 == tmats 1 —On.m 62
Ve V /V r Sptq h Z il On, (5:62)

where V is the area of averaging, m,n,l are modes of lead ¢ and the summation is restricted
to pairs with mode velocities v, = v,. t,,; are entries of the S-matrix and O, ,, are matrix
elements of O(r) with respect to the lead’s eigenmodes. The result is the same as when (O(r))
is evaluated with the kinetic equation and averaged over the (semi-infinite) lead.

5.6 Transverse modes of the leads and the scattering matrix

The eigenmodes of the lead [ are needed to write down transmission amplitudes in the form of
a Fisher-Lee relation, and are also needed to construct the lead’s Green’s function glR and self-
energy EZR. We choose a lead-dependent local coordinate system, where x; — oo corresponds to
the direction of the infinite extension of the lead, and we define basis vectors |j) to be localized
on sites with coordinate x; = ja, a being the lattice constant. The isolated lead [ is assumed
to be invariant under translations by the lattice constant a in x;-direction, and we can write its
Hamiltonian as

Hy =Y Holj) (| + Hild) (G + 1+ Hoalj + 1) (4] (5.63)
§=0

where Hy, Hy and H_; = HI are N x N matrices, with N = Ny, for a lead with N sites per
slice in transverse direction (y;-coordinate) and a Hamiltonian including N, bands. Hj is the
coupling term between neighbouring slices, and Hy the Hamiltonian of an isolated slice. Usually,
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these matrices are obtained from the discretization of an effective multiband Hamiltonian which
does not distinguish between sample and leads, compare Chapter [2.4]

To develop the scattering formalism, it is easier to start from the corresponding infinite lead,
which extends from z; = —o0 to oo,

[e.o]

Hioo = > Hold) (il + Hili)(j + 1| + H-1lj + 1) (j] (5.64)

j=—o00

We make the plane wave ansatz (x;|¢y, ;) = cetk ®n.k, where the transverse mode vectors are

normalized to unity, |¢,x/?> = 1, and the normalization constant is chosen as ¢ = |vn|7% for
propagating modes with velocity v,. With this convention, current conservation will imply that
the transmission coefficients are entries of a unitary matrix. For evanescent states, i.e. when
Im(k) # 0, the normalization constant ¢ is unimportant. We obtain the effective infinite-lead
Hamiltonian

Hioo (k)b 1, = (ei’le + Ho+ e*“mH_l) b = En (k)b i (5.65)

The solutions are the transverse eigenmodes ¢, i, and for fixed k, they provide an orthonormal
basis. However, instead of the infinite set of solutions, we only need the finite set at a fixed
energy E, to analyse the transport at this energy. Writing A = e?*¢, becomes a quadratic
eigenvalue problem for A,

((E—Ho))A—HiN—H_1)¢=0 (5.66)

of size N x N. For the numerical treatment, we map it to a linear eigenvalue problem of size
2N x 2N, for the vector (¢, A\@),

(oo i ) (2)(5) o

=W

In our applications of the formalism, H; will always be invertible, but note that this is not
always the case, and the formalism may be modified for such situations [Wim08; Run+08]. We
can use standard numerical routines to calculate the set of solutions {\, = e*»%},, and {¢, }n
at fixed energy E. Note that the ¢, are in general no longer orthogonal, since they correspond
to different k,,. Only in the simplest case, when there is no magnetic field and no SO coupling,
the ¢, are independent of k and thus orthogonal.

There is a total of 4N solutions A, and they fall into four groups. First, there are prop-
agating solutions, for which |\,| = 1. We call a solution right-propagating, if the velocity

vy, = 8%31(;“) - > 0, and left-propagating, if v, < 0. There is an equal number of right- and

=kn

left-propagating solutions, since E, (k) is a periodic function, and each subband E, (k) must
cross the energy E equally often with a positive slope (v, > 0) and negative slope. Further,
there are evanescent solutions with |A,| # 1, or equivalently Imk,, # 0. They can be either
right-decaying (Im k,, < 0), or left-decaying (Im k,, > 0). We can rewrite the determinant of the
quadratic eigenvalue problem in terms of its Hermitian conjugate,

det ((E — H()))\ — Hl)\Q — H_l) = det <(E — PI())i — I'I_lL — H1> . (5.68)

0
2\* )\*2

= V2N
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It follows that for any eigenvalue A\, 1/\* is also an eigenvalue. Therefore, for each right-decaying
mode there is also a corresponding left-decaying mode. Like Wimmer [Wim08|, we will call a
mode right-going if it is right-propagating or right-decaying. For a lead that is attached at the
right side of the sample, we will call right-going modes outgoing, since they propagate away
from the sample, and ingoing, if the lead is attached at the left side of the sample. Likewise,
we introduce the group of left-going modes, which are left-propagating or left-decaying. There
are N left-going and N right-going, or equivalently N ingoing and N outgoing modes. If the
nature of the mode is important, we denote them with with and index > for ingoing and < for
outgoing, like ¢, -, kn >, An,>, vp > and analogue with <.
We still need a numerical prescription how to calculate the mode velocities,

OB, (k) + OHno (k)

_ _ P
= Thok |, " hok,

nh

bn = O — (AH1 — A\, H_1) . (5.69)

In order to develop a scattering formalism and define transmission amplitudes, we need
scattering states of the combined system of sample and leads. In the asymptotic region (x; — oo),
all evanescent contributions to the scattering waves have decayed. Without loss of generality,
we can assume that a large part of the lead’s area is included in sample, and therefore, we may
restrict ourselves to the propagating modes, when expanding the scattering states in the modes
of a lead. We make the ansatz for a scattering state corresponding to a wave which enters only
through lead [ and leaves by leads I’

_1 l _1 l
0 () = |Un,>| 262k”’>xl¢£z,)> + > 0 tim,in [ Vm < | 2€ka’<ml¢£n),< z €l (5.70)
- 1 . ! .
n,> Zm tl’m,ln|Um,<‘7§6ka’<xl/¢1(7€,)< = 14 75 l

and we do not care about the value of w,(ll7)>(x) in the sample region. Here, we have added a
superscript (1) to identify the lead of the modes. x; and xy are to be understood as z, in the
lead’s local coordinate systems. #;,, ;,, are the reflection amplitudes for parts leaving by the same
lead and ¢y, are transmission amplitudes from lead I, mode n to lead I/, mode m. These
amplitudes together make up the scattering matrix (S-matrix).

We can show the unitarity of the S-matrix in the following way. We define a vector a =
(@1n)in, such that |az,|? is the current carried by the incoming mode n of lead [, and further
define a vector b = Sa for the outgoing currents of all leads. Then current conservation implies

Iy =ala= I, =bb=alstSa = stsg=1. (5.71)
Here it is important to use the normalization constant ¢ = ]vn|_% of propagating states. We
further define transmission probabilities by T gm = \tpmqm]Q, and the total transmission from

lead ¢ to lead p by the sum over all contributing modes Ty = >, ,, |tpm.gn|?- From the unitarity
of S, we deduce the sum rules

> Tonam =Y Tpnam = 1, (5.72)
p,n q,m

Zqu = Zqu = Np(E), (5.73)

where N,(E) is the number of propagating modes in lead p for energy E.
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In the numerical code, we do not calculate the scattering states (although we do calculate
the modes needed for the asymptotic states), but rather calculate the retarded Green’s function
of the sample, which provides the same information. The relation between the transmission
amplitudes and the Green’s function is given by the Fisher-Lee Relation. In a simple form it
was originally shown by Fisher and Lee [Fis+81|, and in a general form which is valid also for
non-orthogonal modes, it has been derived by Baranger and Stone [Bar+89] and by Wimmer,
where the latter is particularly useful for us, since it is formulated for a lattice model. The
general Fisher-Lee relation for the full S-matrix S = (tpm,gn)pm.gn including transmission and
reflection coefficients is [Wim08|

1

t -
P o< vn > |

The matrix product notation I‘pGRFq implies that of G, only the submatrix corresponding
to the sites adjacent to the leads p and ¢ is needed, i.e. the surface Green’s function of the
sample. Compared the formula for transmission probabilities 7,4, the full S-matrix (5.74)
provides more information, since the distribution of the current among the modes and phase
relations between modes can be analysed. Phase relations between modes can be important if
S-matrices of two devices are combined to describe one large phase-coherent device (like it is
done in Chapter . In this case, one has to keep track of the phase convention used for
definition of the asymptotic states. Of course, phases can only be defined for propagation over
finite distances. The two devices that are combined in Chapter have a finite distance, so
S-matrix phases are important in that case. On the other hand, if the S-matrix is used for
evaluation of currents at an infinite distance from the sample, the complex phases of the 2, .4
are undefined.

The physics behind the Fisher-Lee relation is clear. One can take the an asymptotic state in
lead ¢, propagate it by the Green’s function G of the sample, and calculate the overlap with an
asymptotic state in lead p, in order to obtain transmission amplitudes. The I',/, matrices play
the role of lead-velocity operators, which provide an orthogonality relation for the transverse
modes. A detailed derivation can be found in [Wim08|, and here we give a simplified and less
formal derivation. As in |Bar-+89|, we define a Hermitian operator counting the particle current
passing from slice j to slice j + 1 of a lead,

¢7(£?L (ZT‘PGRFQ - 5qup) ¢$3)>' (5.74)

1a

K(j) = (Hil5) {7 + 1| = H-1lj + 1) {5]) (5.75)

We can convince ourselves of this interpretation by a simple calculation. We introduce the
operator projecting on the slice j of the lead, P; = |j)(j|. With the representation z; = Zj japP;,
it is easy to check that the velocity operator is

i Hiod] = 3K, (5.76)

Then we find K(j) by projecting the current operator onto the two relevant slices,

K(j) = (P; + Pjsa) (Z K(z‘)) (P + Pj11). (5.77)
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Using the notation (j|¢,,) = e*mi%p,. we find velocity matrix elements for any two modes,
regardless if propagating or evanescent,

(Dal K () ) = o, 2 2 (Hieet — Hoem ) gy bnmbnlie — 6, (5.78)

Unm

where the last equality follows from current conservation, which demands that must not
depend on j. Explicitly, this is seen as follows. Let us assume non-degenerate subbands F, (k),
and consider a superposition of modes of the same energy, ) = a|¢p,) + b|¢,/). Then, due to
current conservation, the current expression

(|K ()Y = |al?vn + [b]*vn + 2Re(a*bvy,ye” Fnku)iay (5.79)

must not depend on j, and since we have assumed k,, # k, when n # n’, off-diagonals in ([5.78)
will vanish. If some subbands E,, (k) are degenerate, it is possible to find a basis of modes {¢n, }m
which diagonalizes .

Next, we specialize to propagating modes of the same direction, ¢, « and ¢, . We use the
fact that the modes ¢, <« are eigenstates of the transfer matrix gBH_, with eigenvalue e?fm<®,
where g% is the retarded Green’s function of the semi-infinite lead, see Eq. of the next
section, and we further use the definition of the lead’s I' matrix in terms of the self-energies,
I =i(Hig®"H_y — Hig"H_,), to find

(G0, K ()| 6m,) = b (Hag"H 1 — Hig 1) gy il i (5.80)
= %¢n,<r¢m,<ei<km»<*’fn,<>fa. (5.81)
Therefore, modes are orthogonal with respect to the lead-current operator I',

a
= 0h <D< = bmvn,<. (5.82)

An identical relation holds for left-propagating modes ¢, > and ¢, ~. If we set v, = 0 for
evanescent modes, the relation holds for those as well, i.e. the operator I' projects only onto
propagating modes. In contrast to the orthogonality relation with K(j), we need modes
of the same propagation direction in , because a representation of g% was used which
depends on the direction of propagation. In the case of degenerate subbands where k, = k, is
possible for n # n/, a mode basis that diagonalizes I" should be chosen.

We will need the generalized orthogonality relation , in order to prove the Fisher-Lee
relation , by projecting onto modes in the asymptotic scattering states. We consider the

eigenstate ¢£3)> which originates from lead ¢, mode n, and we only care about propagating
modes. We choose coordinates x, = 0 and x, = 0 of the first slices of leads p and ¢q. The
complex phase of the transmission and reflection coefficients ,,, 4, will depend on the positions

z, and x4, but this will not have any influence on physical results. At xp = 0, the eigenstate

can be written in modes of lead p, like wéqé (p) = D tomugn|vm|™ 2q§m ‘<, so the transmission

amplitudes can be obtained from the orthogonality relation in lead p. For symmetry reasons,
the same transmission amplitude is obtained if one considers a state 1/17(5?< which leaves only by
mode m of lead p, and comes in by any mode of any lead. In this case, the orthogonality relation

in lead ¢ is needed. Together, we have

_1 _1
tpman = |vm.<| 26PIT,0 (2,) = YL (2T [0, 5|2, (5.83)
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Our discussion was for the transmission amplitudes. For the reflection amplitudes ¢y, pn, an
additional term (bﬁﬁ?ifpgb,(f )> must be included, since the orthogonality relation does not make
any statement about the overlap of modes with opposite directions of propagation. We still need
expressions for the scattering states. They are given by the propagator equations

WL () = iGR (0, g) T gL () (5.84)
1
¢7(TI:,)< (xq) = gGA(xqw’Up)FpM(ﬁ,L(xp) (5.85)

where G and G4 are the Green’s functions of the combined device (sample and leads).
To prove the advanced propagator equation (5.85)), it is sufficient to show that G*(z4, x)
fulfils the Schrédinger equation in x, (which is clear by (5.9)), and that the correct initial

condition is fulfilled. Assuming z;, to be in the asymptotic region of lead p, where w,(flj?< (xp) =

(mp)<+eikm*<mp is given by a single propagating (outgoing) mode ¢,, <, the initial condition
’ AV "U*m.,<| ’

should be

1
¢m,< = gGA(xpamp)FpQﬁmK' (5.86)

Proving this requires a bit more work. We use the Green’s function of slice Hy at coordinate
xp. Since xp is in the asymptotic region of lead p, it is sufficient to take the Green’s function
of an infinite lead, consisting of left and right semi-infinite leads attached at the slice described
by Ho. This is given by G*(xp, 2p) = (E — Ho — X7 — X3)~ !, where 37!, are the left/right
semi-infinite lead’s advanced self-energies. Instead of (5.86)), we show the equivalent equation

i¢) (B — Ho — 24 — SN bm< = ¢ Tpdm < (5.87)

which holds for any two propagating modes ¢, « and ¢, <, but not for decaying modes. To
evaluate the left side of , we use the quadratic eigenvalue problem in the form
(E — Ho)om< = (Hidm< + H,l)\,;}<)¢m,<. Further, we use the transfer properties
and (5.96), and the definition of self-energies YB = HigrH_; and Eé = H_lngl, to get
(E — Ho)pm,<« = (S8 + T4)¢m <, which proves (5.87), having in mind the definition I') =
i(SE - 2.

5.7 Lead’s Green’s function

We have already made use of the semi-infinite lead’s Green’s function gﬁ, which was needed to

express the lead’s self-energy Eg = Tpng;, but we have not yet explained how to calculate it.
In this section we will discuss an efficient and general method [Wim08§| to obtain gﬁ and Eﬁ,
which also proves to be numerically stable. g;f is difficult to obtain directly. It is much easier to
first consider a lead of infinite extension, and then construct gﬁ from the modes ¢,, of the infinite
system. This can be done by using a Dyson equation that relates the Green’s functions of the
semi-infinite system to that of the infinite system, or it can be done in a constructive approach,
directly in terms of the modes of the infinite lead, supplemented with boundary conditions
corresponding to the semi-infinite system |[San-+99; Run+08|. We take the latter approach. For
Eﬁ we only need the surface part of gff, i.e. the submatrix with couples to the sample via 7).
In our convention the semi-infinite lead extends from coordinates z = 0 to infinity. Here we use
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the symbol gr = (gﬁ)(),o for the surface part of a lead attached at the right edge of the sample,
dropping the lead index p.

When we introduced retarded and advanced Green’s functions, we included an infinitesimal
energy shift n = 0%, as in g = (E +in — H;)™', and we did not include this shift in the
eigenproblem (5.66). Considering the inverse function of E,(k), k,(E), we recognize that the
infinitesimal energy shift translates to a momentum shift in the way

oa(E) 1
o5 = Fnting - (5.88)

kl, = kn(E +in) = ky(E) +in

Since for x # 2/, (g2 ).+ obeys the Schrédinger equation, the shift in k, will tell which direction
of propagation is still normalizable and may be used for the construction of gf in the region
r > 2’ or x < 2/. A continuity condition can be used to find the diagonals of gZ. Note,
that sign(n) is only important for selection of the direction of propagation, and if we do this by
different means, we do not need to include the parameter 7 in the numerical calculation of modes.
Since eigenvalues are analytic functions of the matrix coeﬂcicientsﬂ7 the limit lim,,_,o+ is irrelevant
for the set of eigenvalues {A,}, found as solutions of (5.66). The construction of the surface
part of the Green’s function of a semi-infinite lead for the right side of the sample can be written
in terms of a transfer matrix that involves the solutions ¢,. All of the N right-propagating
or right-decaying (i.e. outgoing) modes ¢, - are needed, as can be seen by a formulation in
transfer matrices [Run+08|. The transfer matrix for propagation to the right is given by the
N x N matrix

grH 1 =UAUZ! (5.89)

where the matrix Uc = (¢1 <, ..., ¥, <) consists of right-going modes and A is the corresponding
diagonal matrix of eigenvalues. For alead p attached to the right of the sample, we have Hy = 7,
so its self-energy is

YR =HUAUZ" (5.90)

Similar relations can be obtained for the left semi-infinite lead’s Green’s function, which involve
left-decaying and left-propagating modes. The transfer matrix is H_1g7, = U>A>U>_1, and the
coupling to the sample is 7, = H_1 = HI, SO

YR =U.ASUZ'H. (5.91)

In order to understand better the construction of the transfer matrix, suppose that we know
that the transfer matrix has an eigenvector u,

grH_1u = Au. (5.92)

Then, A and w are also eigenvalue and eigenvector of the quadratic eigenvalue problem for
the given energy E. To show this, we first note that due to translational invariance, the right
semi-infinite surface Green’s function is invariant if an extra slice is attached at the beginning
(compare Eq. (5.30), replacing Hg — Hy for the extra lead slice),

gr = (E — Hy — HygrH_1)™". (5.93)

2 More precisely, this statement holds only as long as no points of degeneracy are reached.
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Using (5.92) and (5.93)), we find
H_ju=gp'\u= (E — Hy — Hi\)\u (5.94)

which proves that we must have u = ¢, and A\ = "% for some index n. In a similar manner,
we find transfer matrix expressions for a left semi-infinite lead, involving left-propagating and
left-decaying modes,

Hoygf = UsASUSY, g Hy = UsAS'US Y (5.95)

While the selection of decaying modes is fixed by geometry and is the same for retarded and
advanced Green’s functions, the latter involve propagating modes of the opposite direction.
Therefore, we find that only for propagating modes ¢y, <,

91 Him,< = A\ c <. (5.96)

Differently from the discussion given above, in our numerical implementation the left, top,
and bottom lead’s Green’s functions are obtained by applying a rotation to the right lead’s
Green’s function. This is an advantage in performance, because often the setup is symmetric
and the same lead’s Green’s function can be used in different places. An even more important
advantage appears in the treatment of (perpendicular) magnetic fields, which are included in
the Hamiltonian by a vector potential. A unique choice of the vector potential is required for
all parts of the sample, including leads. The discretization prescription is used to map
a continuum model onto a lattice model. However, the lead Hamiltonian (5.63) was required
to be translationally invariant along the direction of the lead’s extension, and this requirement
cannot be met for leads with orthogonal orientation. E.g. the gauge A = (—By,0,0) allows
for translationally invariant Hamiltonians of left and right leads, but for the top and bottom
leads, the gauge needs to be changed to A = (0, Bz,0). Our method is to supplement the
rotation operation by a gauge transformation. Since the gauge transformation A — A 4+ V f(r)
for the vector potential is equivalent to a basis transformation of the lattice site basis, it may
be implemented by the operation

(9p)ij — (gp)ige' DT, (5.97)

If the Hamiltonian includes spin, the lead rotation procedure also includes a rotation on the spin
space, (gp)i; — e **'=(gp)i;€*’ for a lead that is rotated by angle o, where J, is the generator
for rotations on the spin space. The correctness of the numerical transport implementation is
verified by checking symmetries of the effective Hamiltonian H + Zp ¥, that includes the leads,
and by shifting the interface between sample and leads, which should not change any numerical
output.

Formally, (5.89)) provides a solution for calculating gr and the lead’s self-energy. However
in practice, we may experience some numerical problems. The easiest way to proceed, is to
first numerically solve the eigensystem (5.67]). The numerical output will be a set of normalized
vectors (¢n, Andp). Since we take only the upper half components, we need to renormalize ¢,,.
Next, we calculate the velocities v, according to , and use the A\, and the v,, to sort out
the N right-going solutions, which make up the columns of U.. The next step would be the
numerical matrix inversion for UZ ! but this can fail dramatically in certain cases. As mentioned
earlier, the ¢, < constitute an orthonormal set only if the ¢,, , do not depend on k. This is the
case, if the lead Hamiltonian can be written in the way Hj.(k) = E(k) + H,, where H, does
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not depend on k. The simplest example of this kind is Hj (k) = %(kz + /%Z) + V(y) with some
transverse confinement potential V' (y). In contrast, in a strong perpendicular magnetic field, the
propagating modes will be localized around a transverse coordinate y, = y,(k). One observes
[Rot09; ‘Wim08| that with increasing magnetic field, the transverse modes ¢, « become more
and more linear dependent. The linear dependency can be quantified by the condition number
cond(U-).

The condition number of a matrix A is defined as cond(A) = ||A||[|A7Y]|, where ||A]| =
maxx7go|‘|4T'x‘ is the common matrix norm. cond(A) gives a measure of the expected factor by
which the error of solution vector x will increase, with respect to the error of the right side in
A-x =b. The numerical error in the entries of UZ' can be estimated as ~ 10~ "°cond(U.) due
to the limited machine precision of the common double data type. cond(A) can be calculated
from the singular value decomposition (SVD), A = UXVT, where U and V are unitary matrices
and ¥ = diag(o1,...,0n) is a matrix with the so-called singular values o; > 0 on the diagonal.
The SVD exists for any matrix (even if non-quadratic), and can be seen as generalization of a
diagonalization. We have cond(U) = cond(V') = 1 since U,V are unitary, and it is easy to see
that cond(A) = % If the columns of U. become more and more linear dependent, the
condition number diverges.

Therefore, we have implemented an alternative way to calculate gg, as proposed in [Wim08§|.
The basic idea relies on the observation that the expression UcA UZ ! only depends on the
invariant subspace spanned by the N vectors (¢, <, Ap,<®pn <) of 2N components. Therefore, it
is not necessary to calculate the precise eigenvectors of the 2N x 2N matrix W in . It is
sufficient to know the subspace that they span. Of course, if we are interested in the full S-matrix
given by , we need all individual eigenvectors. But even then, it turns out that calculating
the Green’s functions with the method of the invariant subspace drastically reduces numerical
errors. Also, for the S-matrix only propagating modes are needed, while also evanescent modes
are needed for construction of gg.

The most general basis transformation mixing only the ‘<’ subspace can be written in terms
of an invertible N x N matrix X,

r_ _ U< _( Uu
U =U1X where U= ( U_A_ ) = ( Usy ) (5.98)

The invariance of formula (5.89)) can be seen by
(grH_1) = UL (UG = Un XX UL = UnU = UAUZ! = grH 4. (5.99)

The goal is to find a good basis transformation X that eliminates the conditioning problem of
U.. Unitary or orthogonal matrices are optimal in the conditioning sense. A representation of
W in terms of a unitary matrix @ and an upper triangular matrix 7' can be found by the Schur
decomposition, which is given by

W =QTQ". (5.100)

The Schur decomposition works for any quadratic matrix, and is readily available in the LAPACK
linear algebra package [And+99|. Further, one has the freedom of choosing any order of the
diagonals of T, i.e. the eigenvalues \,, as long as these are non-degenerate. (The case of
troublesome degeneracy only appears if one accidentally hits exactly a band crossing, which is
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very unlikely in a numerical parameter sweep.) We write T' in the form of N x N blocks, and
find X; which diagonalizes the block 771,

(T T\ ([ Xy D1 X{'Tus X!
(BB (5 (25 (OT ) e

Combining the expressions for W and T, we find
WQ( )gl > _ Q( X10D1 ) . (5.102)

We assume that the Schur decomposition is chosen so that the set of A, < is found on the
diagonals of 777 and D;. Then shows that the corresponding eigenvectors of W are
given by the columns of Q1X7, where Q = (Q1,Q2) = < g; g;z ) As shown above in
, the basis transformation X; does not modify the result, grH_1 = leQil. Here Q
is unitary, so cond(Q) = 1. Although this does not imply that cond(Q11) is also unity, in the
examples that we treated numerically we find that cond(Q11) is of the order of unity, thus solving
the numerical problem associated with the matrix inversion.

Note that throughout this section, we have assumed that U. is invertible. We are not aware
of a general proof of this statement. However, in the examples that we have treated numerically,
this seems to be the case, even though U, may become quite ill-conditioned in the case of a
perpendicular magnetic field.
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Chapter 6

Short introduction to topological
insulators

The classification of different phases of matter, and finding principles that allow to distinguish
between them sharply, has always been a fundamental question of interest for physicists.

In the context of the theory of phase transitions after Landau |[Lan37|, the classification is
done by finding the difference in the fundamental symmetries of the system, an example being
the discrete translational symmetry in a crystal, which is not present in the liquid or gaseous
phases. A parameter that becomes non-zero when a certain symmetry is broken, is called order
parameter. Consider for example a ferromagnet. When we lower the temperature below the
Curie temperature, the rotational symmetry is spontaneously broken by the direction of the
non-zero magnetization. Thus, the magnetization is an order parameter. The order parameter
can be used to parametrize the thermodynamic free energy. If the latter has more than one local
minimum, changing the order parameter can switch the global minimum of the free energy and
thereby control the phase change.

But symmetry does not provide the only principle by which one can distinguish different
phases of matter. There are also phases for which the distinguishing property lies in the topology
of an associated mathematical function, e.g. in the case of a crystal the topology of the Bloch
Hamiltonian H (k), which is a function on the (magnetic) Brillouin zone. Historically, the
first example of a topological classification of states is the quantum Hall effect (QHE), which
was discovered experimentally in 1980 |[K1i+80| in a two-dimensional electron gas (2DEG) with
high electron mobility. A mathematical model explaining the precise quantization of the Hall
conductanceﬂ by means of topology has been given in 1982 [Tho-+82]. In a later work, Kohmoto
|[Koh85| gave a more accessible description of the relation of the QHE and topology.

A generic feature, that is required for classification of topologically non-trivial phases, is a
gap in the bulk energy SpectrumE] The reason is that topological invariants can be written in
terms of integrals over (generalized) Berry curvatures. However, a non-trivial Berry phase can
only appear if there is a projection on a subset of the Hilbert space (see Chapter |4] about the
adiabatic theorem). Physically, in a gapped insulating system, the projection is given by the
fact that the valence band is completely occupied, and usually transport is possible only by

! Usually, one should distinguish between the microscopic property conductivity and the macroscopic property
conductance, but in a 2D system the units are the same.

2 There also are gapless systems that are called topological, like e.g. Weyl semi-metals, but we will not be
concerned with those.
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excitation of electrons to the conduction bandE] In the case of the QHE, the energy spectrum
in the magnetic field is given by the discrete set of Landau levels, so this system also has a
gapped spectrum. Thus, one will be interested only in insulators, when looking for time reversal
invariant systems with non-trivial topology. Another generic feature of topological phases are
edge states, which have energies usually lying in the bulk gap of the insulator. They always
appear, when a topologically non-trivial system faces a trivial system (or vacuum) - this is
called the bulk-boundary correspondence principle. The edge states are also responsible for the
interesting features seen in the electronic transport. Having said so much about topologically
interesting systems, we should also define what a topologically trivial system is, in order that we
can distinguish the phases. A system is topologically trivial, if it is adiabatically connected to
the atomic limit, without closing the bulk gap at any point during the parameter change. One
may imagine the bonds between the atoms to elongate until the interaction is negligible, while
tracking the evolution of the energy spectrum.

6.1 Quantization of the Hall conductivity

Let us outline the main ideas as discussed by Kohmoto [Koh85| for the QHE, since this will also
help to understand the quantum spin Hall effect (QSHE) |[Kan-+05a} |[Ber+06a], which is a more
recently discovered time reversal invariant topological phase that we will discuss later. For the
quantum Hall effect, we consider the (single particle approximation) Hamiltonian of an infinite
2DEG on a lattice in presence of a perpendicular magnetic field B,

(p+eA)?
2m

H = + Ulr), (6.1)
where p = —ih(0;,0y,0) and U(r) = U(r + R) is the lattice-periodic potential, R being some
lattice vector. Although the system is translationally invariant, the vector potential A breaks
the translational symmetry of the Hamiltonian. In spite of this, one can still make use of
the translational symmetry and the Bloch theorem of quantum mechanics, by introducing the
magnetic translation operators |Zak64]

Tg = iR (PeA) (6.2)

with the symmetric gauge A = %B xr. Then, [p;+eA;,pj —eA;] = 0. The magnetic translation

operators act just as the usual translation operators on spatial functions, TRU(r) = U(r+R)TR,
and one finds

[H,Tg] = 0 (6.3)

even for non-zero magnetic field. Further, if we restricts ourselves to magnetic fields that give a
rational number p/q of flux quanta per unit cell area ab, we can enlarge the unit cell by the factor
q to define a magnetic unit cell enclosing an integer flux number. The magnetic translation
operators T ga and Tb, which correspond to the magnetic unit cell’s extension, commute and
can be used to find simultaneous eigenfunctions of H, Tqa and Tj,. These are the generalized
Bloch states 12(r) = e (r|uf), where « is a band index. They are parametrized by momenta

k = (kz,ky) € [=25, 7] x [-%, %] in the magnetic Brillouin zone (MBZ), which is a torus

3 The principle of transport that generates the transverse current in the QHE is different, because it does
not rely on charge excitations. Instead, the transport can be understood in terms of an adiabatic shift of the
transverse coordinate of bulk states, which can be shown to be localized in transverse direction, if an appropriate
gauge for vector potential is assumed [Lau81} Hal82|.
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T? = S' x S! because of the periodic boundary conditions in k. The complex phase of the
wave functions |uj), seen as function over the MBZ, defines a fibre bundle, where the fibre is
the U(1) group of the complex phase, which is attached to each point of the MBZ. The key
insight is, that the quantized value of the Hall conductance depends only on the topology of
the fibre bundle, i.e. the way that it is internally twisted. We will see that if there is a zero
(rolug,) = ug (ro) = 0, the fibre bundle can have a non-trivial topologyﬁ The existence of such
a zero is guaranteed by the non-zero flux per magnetic unit cell, as can be shown by integrating
the complex phase change of uy,(r) over the closed loop given by the boundary of the magnetic
unit cell.

The Hall conductivity o,y at zero temperature, in linear response to an applied electric field,
is given by Kubo’s formula [Kub57]. We also give a derivation by linear response in Appendix[A]
since the equivalence of the formula originally given by Kubo and the form in which it is cited
by Kohmoto,

O@y ==

€2h (Uy)nm(vx)mn - (Uw)nm(vy)mn

e Z (B, — Epy)? ’ (6.4)
En<Ep<Enm " m
is not trivial. Here, indices n, m identify the eigenstates of energy FE,, F,, and should be un-
derstood as collective indices including the band o and momentum k. The sum is over all pairs
of occupied states n and unoccupied states m, so it captures the physics of virtual excitations.
Matrix elements of the velocity operator v = %—I;, which is proportional to the paramagnetic
current, are denoted by (v, /y)nm. In the momentum basis, the derivative Vi in v can be shifted
to the states |uf), and the contribution to the Hall conductivity of a completely filled band «
can be written as an integral over the Berry curvature,

e’ 1

a & 2 2 A%k :
o= has ) dk (vkx ( ))3 (6.5)

with the Berry connection associated to the U(1) bundle over the MBZ given by

. qa b 1 1
A = [ e [y (@) Vi) = gV, (6.6)

and Vi x A® (k) being the Berry curvature. The integral is also known as the first Chern
number (times %) of the fibre bundle, and it is known to be a topological invariant, meaning that
it captures features which are invariant under smooth deformations of the fibre bundle |[Nak03].
It depends only on the kind the fibre is internally twisted and whether it has “holes”. At this
point, the attentive reader might ask why the Chern number should be a function of only the
U(1) bundle - seemingly it depends on the whole function ui(z,y) and not just its phase. The
following steps will show that only the phase matters. It is easy to see that the Berry curvature
is invariant under a gauge transformation |ug)’ = €/ |u) with some arbitrary but smooth
function f(k). In this sense, it is analogue to the electromagnetic field tensor, which is invariant
under gauge transformations in real (as opposed to reciprocal or momentum) space.

By Stokes’ theorem, must evaluate to zero if Aa(k) smooth function with a global
single-valued definition, since the MBZ is a torus and does not have a boundary. The Berry

4 Although such a zero is required for a non-trivial topology and thus for a non-zero value of o, from
Kohmoto’s argument we do not find a simple relation between the number of roots k; with w, (ro) = 0 in the
MBZ, and the integer value azye'—;.
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connection transforms under the gauge change like A’*(k) = A%(k) + Vi f(k). So the complex
phase of the states is essential for the value of the Berry connection. A convention to define the
phase of |uf) for all k € MBZ is needed. To this end, one can choose an arbitrary xo in the
magnetic unit cell and adopt a phase convention which defines that (xg|uf) should be real for
all k. But there is a difficulty - as already mentioned above, for non-zero magnetic field, there
will always be some ko where (xolug ) = 0, so there, the phase of |u ) must be defined in a
different way. This is possible by choosing a different reference point x; instead of xg, for the
phase convention in the vicinity of kg. Like this, one can evaluate the Chern integral using
two (or more) overlapping patches, on which the Berry connection is defined within different
gauges. The situation is analogue to the hypothetical magnetic monopole discussed by Dirac
[Dir31]. The value of the integral does not depend on the way the MBZ is divided into patches,
nor does it depend on the gauges used locally for the patches. However, it does depend on the
transition function defined in the overlapping area of the patches. We will call the different
patches that make use of xg and x1, Py and P;. In the overlap Py N P;, Kohmoto defines the
transition function x(k) by

[y = X)), (6.7)

The transition function gives a local gauge change, as opposed to a global gauge change, which
would be irrelevant for the integral. By Stokes’ theorem, the Chern integral reduces to a line
integral over the transition function,

1

n=— dk - Vix(k). (6.8)

2m Jap,
The result must be an integer n, because the function x(k) can only change by 27n when we
go around the loop of the line integral once, otherwise the complex phase of |uf) couldn’t be
defined uniquely within each patch. The integer n is also often referred to as TKNN integer
after [Tho+82|. Eq. also proves that the Chern number depends only on the phase of the
generalized Bloch functions, and allows us to identify the phase degree of freedom as U(1) fibre
bundle on a torus (the MBZ) as base manifold. In conclusion, it has been shown that the Hall
conductivity oy, is given by a topological invariant, and is quantized to integer times %

The derivation by Kohmoto, which we have outlined above in order to explain the exact
quantization of the Hall conductivity, required a perfect crystal, and thus cannot explain the
insensitivity to disorder. Disorder is important because in realistic physical systems, there are
always imperfections in the lattice, like vacancies, dislocations, impurities, and other interactions
and scattering mechanisms like phonons, none of which were included in the model discussed
by Kohmoto. It is quite interesting that the experimentally observed quantum Hall resistance
is insensitive to all these perturbations. The stability of the Hall signal must be related to the
fact that it is a topological feature - as long as perturbations are not strong enough to close the
gap of the bulk spectrum, the topological invariant will not change. Niu et al. [Niu+85| have
shown how to reformulate the Chern number in terms of an integral over parameters controlling
twisted boundary conditions. The main idea of the approach is that the topological invariant is
a property of the bulk, so the effect of changing the boundary conditions of bulk states must be
exponentially suppressed. Therefore, one can average over angles parametrizing the boundary
condition. The averaging integral takes the place of the integral over the Brillouin zone in the
Kubo formula. Disorder may be introduced, since one no longer needs to work with generalized
Bloch states.
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In all the arguments given above, a clear deficiency is that we did not yet consider the effect
of edges, which are always present in a realistic sample, which must be finite. In a magnetic
field perpendicular to the plane of the 2DEG, the Lorentz force will push the electrons, which
contribute to transport, toward the edge. A quantum mechanical calculation |Hal82| shows
that in a sufficiently strong magnetic field, edge states appear which are exponentially localized.
Fach edge state carries the current corresponding to a conductance quantum % They are
chiral, meaning that left- and right-propagating edge states are localized at opposite edges.
This prevents backscattering even if disorder, e.g. impurities in the lattice are present, since
it would require scattering between opposite sample edges, which are assumed to be far apart.
In the vicinity of an impurity, an edge state will simply adapt its shape to go around the
impurity. In this picture, the perfect quantization of the Hall conductance can be explained
simply by counting the number of edge states. Regarding the fundamental difference between
calculation of o, for the bulk of an infinite system by the Kubo formula, and the argument
based on counting the edge states, it seems astonishing that one obtains exactly the same Hall
conductivity or conductance by both approaches. It is known that at the interface between two
phases, which differ by the value of their topological invariant, the difference leads to the presence
of this number of edge states. This is called the bulk-boundary correspondence principle [Vol09;
Gurll].

So far, we have explained that the quantization of the Hall conductance may be understood
either as property of the bulk or by counting the edge states. In order to understand that these
explanations provide different viewpoints of the same physical behaviour, rather than separate
effects that should be added up to give a combined Hall conductance, it is interesting to compare
with an argument given by Laughlin [Lau81|. He does not calculate the Hall current by the Kubo
formula, but rather generates a current by a periodic and adiabatic pumping procedure, which
causes a transverse shift of the occupied states. A net effect in the occupation of electronic
levels is only found at the edges of the sample, giving rise to the Hall effect. Although Laughlin
discusses the non-equilibrium occupation that is obtained at the sample edges, he does not yet
mention the exponentially localized edge states. In a slightly modified geometry with respect
to Laughlin, Halperin [Hal82| discusses the importance of the edge states and also gives clearer
arguments for the stability of the quantization in disordered samples.

In order to get a simple picture of the equivalence of the bulk Hall current and edge state
Hall current, we consider what happens when we change the boundary conditions that apply for
the current. Let us consider a 2DEG of rectangular shape as shown in Fig. [6.1], with length L
(x-direction) and width W (y-direction). A magnetic field B = B, e, is applied perpendicularly
to the plane of the 2DEG. Reservoirs (leads), labelled with capital letters, are attached to the
left (A), top right (B) and bottom right (C). An electric field is applied in x-direction, E = E e, .
In Fig. we identify the top and bottom edges of the sample by requiring periodic boundary
conditions. This serves to model an infinite extension of the sample in transverse (y) direction.
The artificial top and bottom edges of the sample are shown as dotted lines. The classical
trajectory of an electron in this configuration is given by spiral with a constant transverse drift
velocity,

1 s T E
rtz—(R wet——=)—R ——)v —Ze,t+ro, 6.9
() We z(c 2) Z( 2) 0+Bzy+0 ( )
where R, is the matrix for rotations about e, and w, = % is the cyclotron frequency. So within
an infinite system or equivalently, a finite system with periodic boundary conditions, there is no
transport in direction of the applied field at all. This still holds in a quantum mechanical system.
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Figure 6.1: Tllustration of the equivalence of bulk conductivity 0., and edge state conductance -
compare discussion in the text. A 2DEG of length L and width W is subject to a perpendicular
magnetic field and a homogeneous electric field E = —Fe,, which is non-zero in the region
between the vertical dotted red lines. We define the Hall current as total transverse current .J,
current passing the dashed line shown at the top (for clarity, the line is slightly shifted away
from the edge of the sample). (a) For times t < ¢;, we identify top and bottom edges in the
region 0 < x < L via periodic boundary conditions, which effectively model an infinite transverse
extension of the sample. In the stationary state, there is no longitudinal current. Note that
this setup cannot be simulated within the Landauer-Biittiker formalism, because the latter does
not include the electric field E, but only potentials y; of the leads [ = A, B,C. (b) At time ¢,
the periodic boundary conditions are changed to hard-wall boundary conditions. Chiral edge
states appear. The edge state at the top is shown in blue. The current distribution changes,
since the transverse current is collected in the edge state. (b’) For the purpose of better physical
understanding, a sketch of the classical situation is shown, where the electron trajectories are
spirals as given by , and reflections occur at the sample boundaries. Longitudinal transport
exists only due to the boundaries. (c) At times ¢ > t1, the current distribution has become
stationary. This setup can be modelled within the Landauer-Buttiker formalism, with the shown
potentials 4 and pp at the leads. The current J, is carried only by the edge states, and its
value is the same as in (a).
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At some time t1, we replace the periodic boundary conditions by hard wall boundary conditions,
which are illustrated as solid lines at the sample edges in Fig. [6.1b. We define the Hall current
as integrated current passing the dotted horizontal line (labelled with J,) at the top edge of the
sample. In the figures, this line is slighty shifted to the top for clarity. For times ¢t < t; the
Hall current is given by J, = fOL dz jy = 0ys LE; = 0ye AU, where AU, = (up — pa)/e is the
longitudinal voltage drop. If o, is calculated from the Kubo formula (compare Appendix [A)),

we obtain the quantized Hall conductance A‘]U From the time ¢; on, when hard wall boundary
conditions are introduced, the system shows the chiral edge states of the quantum Hall state.
Beginning at t;, the current J, must completely collect into the edge states. We assume that
the upper edge state carries current to the right. Lead B in Fig. can be used to measure
the Hall current J,, which has been collected by the edge state. Some time later at ¢ > 1,
a stationary state will be reached. Due to the boundary, electrons can no longer move up in
the region 0 < z < L. The vector field for the current distribution j(r) (sketched by blue
arrows in Fig. ) looks completely different than for times ¢t < t1, pointing upward instead
of toward the right. The bulk no longer contributes to the transverse current J,, since the
latter completely originates from the edge state. The quantized value of .J, has not changed
while we have changed the system, showing the subtle equivalence between Hall conductance
originating from the edge-states and Hall conductivity of an infinite 2DEG, as obtained by the
Kubo formula. In short, we have exploited that the infinite system does not show longitudinal
transport at all, and when hard wall boundaries are introduced, the current which is carried by
the edge states must originate from redirecting the original transverse current at the boundaries.
Since there is no backscattering, changing the system is not able to change the current J,.

6.2 Two-dimensional topological insulators

The second example of a distinct new topological state of matter that has been discovered, is
the two-dimensional (2D) topological insulator (TI), which does not require a magnetic field
[Kan+05a; Kan-+05bj Ber+06a; [Kon+07; [Kon+08; Rot+09]. Experimentally, the fingerprint of
such a system is the quantum spin Hall effect (QSHE). Instead of a magnetic field, strong spin-
orbit (SO) coupling is needed. In the case of S.-conserving SO terms, this can formally be
compared to a magnetic field acting on carriers of different spins separately, but with different
signs [Ber+-06b|. The appearance of the QSHE is due to a pair of helical edge states at each edge
of the sample. Each edge state carries a conductance quantum. By helical, it is meant that the
directions of momentum and spin are locked. This is different from the chiral edge states of the
QHE. There, all the edge states which are localized at the same side of the sample, propagate
in the same direction (the spin is not required in a model showing the QHE). Although time
reversal symmetry is conserved, the 2D TI has topological features distinct from a trivial band
insulator (which does not show the QSHE signal). Time reversal symmetry is very important
for the theoretical classification of the state. By adding a perturbation that breaks time reversal
symmetry, it is possible to open a gap inside the edge state spectrum, rendering the system
equivalent to a trivial band insulator, and eventually destroying the QSHE signal. However, the
gapless edge states are protected against small time-reversal symmetric perturbations. In this
sense, it is said that time reversal symmetry is protecting the topological state, also showing
that it is fundamentally different from the topological state of the QHE.

The protection is connected with Kramers’ theorem, since the edge states are related by
time reversal symmetry. More precisely, only an odd number of Kramers pairs is protected



6.2 Two-dimensional topological insulators 77

against single-particle excitations [Kén+08|. To explicitly show the protection, let us denote
the right-propagating edge state as [1;). The left-propagating edge state at the same edge is
related by time reversal, [1)_) = T|¢). Using the property 72 = —1 of a spin—% system, and
the anti-unitarity of 7,

(Tr[Te2) = (Pa2lthr), (6.10)

we can show that a Hermitian perturbation V that conserves time reversal symmetry, VI =V =
TVT 1, does not allow for backscattering of the edge states,

Wl Vo) = (e lVTIbs) = W | TVIs) = (Vi | Too) B (T2 TV
= (U [VIToy) = — (o [V]_) = 0. (6.11)

In an infinitely long wire, any finite backscattering would eventually suppress transport com-
pletely, opening a gap at the Fermi level. So time reversal conserving perturbations cannot open
a gap in the edge state dispersion.

This principle also allows for a simple definition of the Zs topological invariant of a TI.
Speaking of a Z, integer, it is meant that only even or odd matters. Let us split up the
Hamiltonian of a system under consideration, into a part that conserves S,, and a perturbation
that couples opposite spins. One obtains topological invariants (Chern numbers) ny and n;
for the decoupled systems of spin 1,J|, given by this number of edge states at a single edge,
just as in the QHE case. Because of time reversal symmetry, the TKNN integer ns + n) must
vanish [Kan-+05b|, corresponding to the intuitive picture of opposite magnetic fields for spin 1
and |. However, the Z, invariant, which is simply defined as %(”T —ny) = ny, can be non-
zero. Suppression of backscattering guarantees that the invariant remains unchanged, if the
perturbation is included and is not too strong.

The QSHE has first been predicted theoretically in 2005, in a system of graphene with SO
interactions that open gaps at the Dirac points [Kan+05a|, and an explanation in terms of a
Z5 topological invariant has been given [Kan+05b]. The topological Zs invariant introduced in
|[Kan-+05b] is more general than the definition in terms of Chern numbers, and does not re-
quire the perturbation connecting opposite spins to be small. However, its definition is more
complicated and it is often not easy to evaluate. The general invariant may be calculated by
counting the number of pairs of zeros in the BZ of the Pfafﬁanﬂ P(k) = Pf[(u;(k)| T |u;(k))].
Here, the antisymmetric matrix of overlaps of time-reversed Bloch states 7|u;(k)) with other
Bloch states is needed. Due to the smallness of the SO-induced gap in graphene (=~ peV),
graphene is not suitable for experimental detection of the phase. In 2006, the QSHE has been
theoretically predicted to appear in a system of HgTe/CdTe quantum wells [Ber+06a]. Shortly
thereafter, experimental detection of the QSHE [Kon+07] has proven the system to be a topo-
logical insulator. Near the interesting regime of the topological phase transition, the physics
of this two-dimensional system is described by an effective 4 x 4 Hamiltonian for the lowest
electron-like and heavy-hole levels of the quantum well (QW). The effective block diagonal four
band Hamiltonian introduced by Bernevig, Hughes and Zhang (BHZ) |Ber-+06al

hk) 0 M(k)  Aky > (6.12)

109 = ("0 00 ) mio =+ (A0

® The Pfaffian of an antisymmetric matrix A is defined in a way that Pf(A) = 4+/det(A), the extra information
with respect to the determinant being the well-defined sign. If A is a 2 x 2 matrix, Pf(A) = A».
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consists of a modified 2D Dirac Hamiltonian h(k) for one spinﬂ let’s call it spin 1, and a
block h*(—k) related to it by time reversal, for spin |. Here, M(k) = M — B(k} + k7). The
parameter B should not be confused with a magnetic field, which we do not include here. In
the topologically non-trivial parameter regime where M/B > 0, this system shows helical pairs
of edge states, which lead to the QSHE. It is interesting to note that quadratic terms (x B) are
needed to define the topological regime. For B = 0, switching the sign of M simply amounts
to a unitary operation. We will later discuss the material system of HgTe/CdTe quantum wells
and derivation of the effective model in more detail.

In the block diagonal form of H(k), the first Chern number is a topological invariant that
can be separately evaluated for the blocks h(k) and h*(—k). It can be obtained by integrating
the Berry curvature over the Brillouin zone of a lattice model corresponding to . The
lattice regularization k; — é sin(k;a) is needed here, because the topological invariant is defined
only for a compact base manifold, which is not contractible to a point. The lattice regularization
cannot change the invariant, since the topological phase transition happens only in the vicinity
of the I" point, as can be seen by analyzing the limit M — 0 [Bud+12b|. As already mentioned
earlier, the Zy topological invariant of the topological insulator is then calculated as difference
of Chern integers of the blocks.

At this point, we want to show in the simplest possible way, how to obtain the Chern
number from a block of for just one spin. Defining the vector d = (Aky, —Aky, M), the
eigenenergies of are conveniently expressed as

Ey(k) = e(k) £ d(k) = e(k) £ /A%K2 + M(k)2. (6.13)

The corresponding normalized eigenvectors are given by

__ 1 (Mt " 1 (M-d
ut(k)) = W<Ak_/k>’ lu_(k)) RN ( Ak_/k>. (6.14)

Let us consider the eigenvectors of positive energy |uy(k)). We could also use the negative
energy band, which corresponds to the occupied band in the semiconductor picture, but only
the sign of the Berry curvature would change, and a sign change by definition does not change
the Zy invariant. The Berry connection on the parameter space (u = kg, ky, M) is defined as

Al = —i{uy (k)]0 |uy (k). Explicit calculation results in
+ A+ A?
AT AT Y= —————(ky, —ky)- 6.15

We have already encountered this expression in a bit different form, when we discussed the
semiclassical wave packet approach for the Dirac equation, in Section Taking the Berry
connection and replacing p — k, p, — 0, ¢ — A, moc®> - M and E, — d reproduces
our result (6.15). In the 2D problem, A™ becomes spin-diagonal and we need not worry about
non-Abelian corrections. Next, we consider the Berry curvature, which is needed for the Chern
integral. Direct evaluation gives

1~ - ~
ny = &%Az_y — 8]%142; = §d . (&Wd X 8kyd) (616)
A%(M + BK?)
= op (6.17)

5 To be precise, h(k) describes a coherent mixture of spins, with dominant contribution of spin up. This is
a detail which will be discussed more thoroughly in Sections and [10.6] and should not stop us from using
labels 7, ] here.
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The expression allows for a geometrical interpretation of the integral over the Berry
curvature as the spatial angle that is subtended by the unit vector d= % on the sphere [Ber+06a],
during integration over the base manifold of (ks, ky). If the base manifold is compact, the integral
over the Berry curvature is a topological invariant, and the angle can change only by values of
4. Explicitly, the invariance may be shown by considering the deformation by an arbitrary
but smooth rotation matrix R(k), which is applied to d(k). Using det R(k) = 1, it is easy to
check that d'(k) = R(k)d(k) gives the same Berry curvature (6.16). In our special case, the
integration over a compact manifold may be replaced be an integration over the infinite 2D
plane, without changing the value of the invariant. For k = 0, the vector d points upward or
downward depending on the sign of M, and for k — oo, d also points upward or downward
depending on the sign of B. Therefore, a lattice regularization is not required here. We obtain
the Chern number for spin up,

1 0o _M.EkQ
nf—/deme—/ dk k A_4 7
o o 2R - BR)

oo

Bir2 M
-k + 5 1 B M
= A A =3 <sign 1 + sign A> . (6.18)
M B
2\/k2 + (G - k2=0
Since the Chern number of the opposite spin evaluates to n, = —n4, the difference (ny —

ny)/2 = ny is a topological invariant that is not cancelled by time reversal invariance. The
Chern number can take values 1,0, —1. However, exchanging spin up and spin down in
the BHZ model simply corresponds to a unitary basis transformation. For this reason, the Zs
invariant is only defined in terms of odd and even. If we identify values 1 and —1 of ny and use
sign % = sign % sign %, we obtain

1 . B
ns mod 2 = B (1 + sign M> (6.19)
independent of the sign of the parameter A.

In Chapter we extend the derivation of Bernevig et al. [Ber+06a] to asymmetric QWs.
Then, the structural inversion asymmetry leads to extra terms on the off-diagonals of . The
simple procedure outlined above, obtaining the Zs invariant from two Chern integers, no longer
works in this case. As mentioned above, the invariant is still well-defined in terms of the bulk
Bloch states and the way they connect by the time reversal operator [Kan-+05b|. Rather than
analysing the bulk states, it is numerically much more straightforward to analyse the dispersion
of a confined system. If the gapless helical edge states (or more precisely, an odd number of
pairs of edge states at each edge) still exist in the bulk gap, the invariant is non-zero. In the
block-diagonal model, each block is responsible for a single edge state per edge, and they are
counter-propagating, since they are related by time reversal symmetry. A structure which lacks
inversion symmetry, which could be due to structural (STA) or bulk inversion asymmetry (BIA),
allows for spin-orbit terms that conserve time reversal symmetry [Win05|. We have already seen
that these terms do not allow for backscattering in the edge states of a single edge.

We can use a simple toy model to understand why edge states appear if one matches a trivial
insulator with a topological (i.e. inverted-band) insulator. The vacuum can be considered as
trivial insulator with the relativistic band gap 2mgc?. Let us consider the simplest possible 2 x 2

M- Ak, > The spectrum is

Dirac Hamiltonian for just one spatial coordinate, Hp; = < Ak Y
. -
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Ey = +/A%k2 + M?. Let us assume that the parameter M changes its sign at the interface
x = 0, and let us look for possible solutions with an energy in the bulk gap [—|M]|,|M]|]. The
eigenspinors are ¢+ = (M + |E|, Ak;). The two-component linear Dirac equation has only the
boundary condition of continuity. Requiring spinors of the same energy F at left and right side
of the interface to match, still allows for a sign change in k;. One finds that both the sign of M
and the sign of k, has to change to form a continuous total wave function, and since this also
corresponds to an eigenvector of —Hp; with energy —F, a solution is possible only for £ = 0.
So k, = ii% is imaginary, and the evanescent solutions of the left and right side combine
to form a cusp at = 0. The fact that the edge states lie in the bulk gap forces them to be
localized at the edge x = 0. By perturbation theory, we can also form an effective 1-band model
quadratic in k. Then, the sign change of the gap parameter M corresponds to a sign change in

the effective mass m = M. Since the model is quadratic, a second boundary condition involving

M@) |,—o- M)

the effective mass appears, This condition is responsible for the

cusp feature in the effective model. o

Introducing a second dimension in the toy model requires a bit more work. This would be
needed to find the edge state dispersion which is linear in k,. In particular, one also needs to
include quadratic terms (B # 0) in the BHZ Hamiltonian to have a well-defined topological
regime. In |[Kon-+08| an explicit derivation for the linear edge state dispersion is shown for a
lattice model of finite extension in x direction, modelling the physically more relevant situation
of a border instead of an interface where the sign of M changes.

Let us have a closer look at the material system of 2D topological insulator of HgTe/CdTe
quantum wells (QW). This system is interesting both from a fundamental point of view, since
it is the first system where the QSHE has been detected experimentally, and also from a point
of view focussing on applications, since the large and tunable Rashba SO coupling makes it
a promising candidate for future spintronic devices, i.e. devices where information processing
is done by employing the electron spin. The system can be tuned from the normal to 2D
topological insulator phase by changing the thickness dgw of the HgTe layer [Ber+06a; Kén+-07).
Conductance measurements in multi-terminal structures [Kon+07; Rot+09] clearly show the
existence of one-dimensional helical edge channels in this material for dgw larger than the
critical value d. = 6.3nm |[K6n+07; Rot+09].

The well material is HgTe, and the barrier material is an alloy of CdTe with minor admixture
of HgTe, usually (Hg,3Cdg.7)Te. In the quantum well structures used for the QSHE measure-
ments [Kon+07], extra intrinsic (i.e. undoped) layers of (Hg 3Cdo.7)Te were grown between the
HgTe well layer and the doped (Hg, 3Cdg.7)Te barrier layers [Kon+08]. This technique is called
modulation doping, and the purpose is to reduce scattering of charges in the well at dopant
atoms. This allows for very high mobilities (> 103927).

Both HgTe and CdTe are II-VI semiconductors and crystallize in the zinc blende structure
(each Te atom is surrounded by four Hg/Cd atoms forming the corners of a tetrahedron, the
Te sitting in the center, and vice versa for Hg/Cd surrounded by Te). The lattice constants
of the constituents are very similar (6.46 A for HgTe and 6.48 A for CdTe [Chu+07]). The
interested reader can find a compendium about properties of II-VI semiconductors in [Chu-+07].
This section is partly based on the comprehensive book [Fra+13| on topological insulators.

In HgTe and CdTe, the bonds are formed by the 6s? electrons of Hg and Cd, and the 5p*
electrons of Te. In the zinc blende crystal, the s-orbitals form the bonding FT and the anti-
bonding I'l” bands, while the p-orbitals form the bonding I‘E and the anti-bonding I'}; bands
[Win05]. The I'f band is less interesting since it is filled by the 5s? electrons of Te, and the I'[; is
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Figure 6.2: A visualization of the influence of the various relativistic corrections on the atomic
energy levels of HgTe and CdTe, which form the I'g, I'7, and I's bands of the crystal. The
interplay of the mass-velocity term Hp and the spin-orbit splitting Hgo is responsible for the
inverted band structure of HgTe. Figure reprinted with permission from [Fra+13| with adapts
[Chu+-07]. © (2013) by Elsevier Books

a distant valence band. The interesting bands are the T'; (valence) and I'fy (conduction) bands,
which are filled by the mentioned six outer electrons of HgTe or CdTe. Here we have used the
group theoretical notations for the Ty group, not yet caring about SO coupling, compare Fig.
. In presence of SO coupling, the double group representations I'f (s), I'f (p) and T'g (p) are
required, compare also the group theoretical discussion in Chapter 3] Energetically, the crystal
bands must be found close to the atomic levels. Since we are dealing with heavy atoms, the
various relativistic corrections, including SO coupling, are important. After taking these into
account, the six outer electrons of an atom pair (Hg/Cd, Te) will have to redistribute among the
new levels. The relativistic corrections have been analysed and estimated in [Her-+63|, and their
effect on the energy levels is visualized in Fig. [6.2] The relativistic mass-velocity correction
Hp corresponds to order p* when expanding the relativistic energy /p2c? + m2ct in p. The
Darwin term Hp and SO coupling term Hgo both appear due to the electric field of the core,
as effective terms in the non-relativistic limit |[Fol+50]. The correction due to the Darwin term
is comparable for HgTe and CdTe. In contrast, the corrections due to the mass-velocity term
are very different because the masses of Hg and Cd cores are very different, pulling the level of
s-orbitals in the heavier Hg much further down. Finally, the SO coupling is responsible for the
splitting of the double group representations I's and I'; that originate from the T} single group
representation I'15 describing the transformation of p-orbitals. Since the p-orbitals originate
from Te in both compounds, the splitting is identical. I's corresponds to the quadruplet of
j = 3 states, consisting of the heavy holes (HH) with m; = +3 and the light holes (LH) with
m; = :l:%, and I'7 corresponds to the SO split-off band with j = % In the end, the interplay of
mass-velocity corrections and the SO correction is causing the unusual, inverted band structure
of HgTe, where I'g lies energetically below I's. Filling up the states with the six electrons per
pair of atoms, one finds that only the heavy hole band in HgTe can be populated. At the I'
point (k = 0), rotational symmetry enforces fourfold degeneracy, and the HH and LH bands
must touch. (Note that this no longer holds in a quasi-2D system like a QW, where rotational
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Figure 6.3: (A) Band structure for bulk HgTe and CdTe; (B) Schematic picture of the
HgTe/HgCdTe quantum well, shown for a width dgw smaller than the critical width d. (normal

regime) and for dgw > d. (inverted regime). Figure reprinted with permission from [Kén+-08|.
© (2008) by the Physical Society of Japan

symmetry is restricted to in-plane rotations.) Due to the band inversion, the LH and HH bands
are the conduction and valence bands in HgTe, so this material is a half-metal, meaning that
an insulating gap is prevented by symmetry and conduction and valence bands touch. Figure
[6.3] shows the band structures of bulk HgTe and bulk CdTe in the vicinity of the I" point. The
band structure of the bulk materials may be obtained in the Oy, approximation to Ty, neglecting
the bulk inversion asymmetry (BIA) of zinc blende which lifts the twofold spin degeneracy
(Kramers’ degeneracy) of the bands. Actually, we will be interested in the spin splitting of the
QW subbands. But in the QW, the splitting occurs not only due to BIA, but also because of
structural inversion asymmetry (SIA), if the QW is grown asymmetrically, or if there is a top
or bottom gate which induces an asymmetric charge distribution in the growth direction (which
is [001] = z direction). So the SIA can be tuned electrically. Compared to the splitting due
to typical (non-zero) SIA values, splitting caused by the BIA is negligible [Nov+05a], which
justifies the use of the Oy approximation. Further, the band gap of the 2D TI quantum well
system can be chosen large enough that the energy scale of BIA is small in comparison. Then,
BIA is not important for the topological classification, which is the reason why it is neglected
in [Ber+06a).

In [Nov+05al, calculations for the subband dispersion of HgTe/(Hg 3Cdo.7) Te quantum wells
are shown. The starting point is the envelope function theory written down for the basis of the
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bulk 8 x 8 Kane Hamiltonian for zinc blende systems [Kan57]. In [Pfe00], the envelope function
theory after Burt [Bur88b| (compare Chapter [2) has been applied for a [001] quantum well.
From the derivation by Kane [Kan57], it is clear that anisotropy in the spectrum cannot be due
to the 8 bands that are included exactly, but appears only due to the coupling to remote bands,
which are treated perturbatively (those terms are of 2nd order in k). In the Hamiltonian for the
envelope functions of the QW, the rotational symmetry is reduced to discrete rotations about
2. But still, the dispersion remains anisotropic in the plane of k| = (kg, ky). Matrix elements
responsible for the anisotropy can be easily identified since they appear as linear combinations
of k? and k%r In the axial approximation, the in-plane anisotropy is neglected. This is done in
[Nov—+05a|, and we will also do so in our derivation of effective QW subband Hamiltonians in

Chapter [7.1.1]

A sketch of the relevant subband levels is given in the lower part of Fig. At k=0, HH
states of the well and barrier do not mix, while LH states and conduction band states mix. The
subband edges (k| = 0) can therefore be classified in |Hn, +) for the nth heavy hole subband, and
admixtures of predominantly electron states |En,4) which we will call electron-like, as well as
light-hole-like states |[LHn,+). They are two-fold (Kramers) degenerate. The most interesting
QW bands are Ey and Hi. The LH bands are energetically remote (Erpg, < —100 meV).

The different band ordering of HgTe and CdTe competes in the QW subbands. Depending
on the QW width dgw , the subband dispersion will have an inverted or normal band structure.
This is already clear from a simple consideration of limiting cases. For a wide QW, the H;
subband will lie above E7, corresponding to the inverted band structure of HgTe. For a narrow
QW, E; will be above Hj, taking over the normal band structure of CdTe. Thus, there must be
a critical width d. where E1 and Hj cross, if the QW width is varied. The crossing is protected
by symmetry, since the states |E'1, £) are parity-odd and |H1,+) are parity-even. The effective
4 x 4 BHZ Hamiltonian captures the physics of the Fy and H; levels in the interesting
regime around d.. There, tuning the width dgw corresponds to tuning the gap parameter
M. The block-diagonal form of assumes a symmetric QW. The BHZ model adequately
describes the insulating regime in HgTe/CdTe QWs close to the I' point and the topological
quantum phase transition near the critical thickness dgw = d.. It has been extended to include
the bulk inversion symmetry breaking effects in Ref. [K6n+-08|. However, this model does not yet
include the structural inversion asymmetry (SIA) terms that can be very large in this narrow
gap material. Indeed, it was shown experimentally that an external top gate applied to the
HgTe/CdTe QWs can change the energy of the Rashba spin-orbit splitting in the range from 0
to 30meV |[Nov+05a] and the samples can be tuned from insulating to metallic regime |[Brii4-10].
Furthermore, the Aharonov-Casher oscillations [Kon+06| as well as the ballistic spin-Hall effect
in HgTe/CdTe QWs [Bru+10|, which occur in the metallic regime, can be well described by
an effective two band (electron or heavy hole) model taking into account the Rashba spin-
orbit interactions. The Aharonov-Casher oscillations can be seen either as generalization of
the Aharonov-Bohm oscillations to systems including magnetic field and SO coupling, or as
application of the Berry phase to ring structures of such systems. Then, the interference pattern
of waves traversing different paths of a ring structure depends on the enclosed flux, SO coupling
and spin orientations of the waves.

On the theoretical side, three-dimensional insulators have been predicted and classified by a
topological invariant [Fu+07b;|Dai+08|. The class of strong topological insulators in 3D possesses
surface states which are described by a gapless 2D Dirac cone, and their spectrum is protected
in the sense that time-reversal conserving perturbations like disorder cannot open a gap. This
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is analogous to the protected gapless 1D edge states of a 2D TI. The simplest way to find
topologically nontrivial insulators, is to look at systems where the conduction and valence bands
have opposite parity and a change in band ordering (called band inversion) occurs as a function
of a tuning parameter like the strength of spin-orbit coupling [Ber+06a; Fu-+07a]. This criterion
leads to the unified Dirac form of the effective Hamiltonian for topological insulators with a
spatial inversion center [Ber+06a; |Zha+09]. This method may be applied to 2D as well as 3D
systems. A key point is that an insulator is guaranteed to be trivial if there is no SO interaction.
In [Zha+09], ab-initio band structure calculations have been carried out for BisSes, and by
artificially modifying the SO parameter, it is shown how the band inversion occurs, causing
BisSes to become a 3D TI with a bulk gap greater than the energy kg1 at room temperature.
Angle-resolved photoemission experiments on BisSes thin films |[Zha+10] have been carried out
to analyse the crossover of 3D to 2D TlIs.

Let us also note in passing that the effective Hamiltonian of a 3D T1I thin film, in which the
overlap of surface states of opposing faces must be considered, looks like with parameters
replaced |Liu+10a} Lin+09; Lu+10; Sha+10|. Experimentally, SIA is important if the thin film
of BiaSes is grown on a substrate, but the SIA terms of the surface states [Sha+10]| will have a
different analytical form than for HgTe/CdTe QWs.

Meanwhile, a full classification scheme of all topological states of band Hamiltonians is
available [Sch+09|, where the class depends on the spatial dimension of the system and the
Cartan-Altland-Zirnbauer class |Alt+97|. The transformation of a system under the anti-unitary
operations of time reversal and particle-hole conjugation, and their combined operation (called
chiral symmetry operation), is used to define the ten Cartan-Altland-Zirnbauer classes, which
appear in the topological classification. Recently, interest has been focussed on the question
whether the topological classification is still possible when one allows for more general (many-
particle) interactions. This issue is by no means settled. By intuition, it is already clear that
adiabatically turning on moderate interactions, which are not strong enough to close the bulk
gap, should not change the topological invariant of a non-interacting system. Based on this
idea, one can formalize the generalization of topological classification to interacting systems by
expressing a topological invariant in terms of the single particle Green’s function of the many-
particle system [Wan+13].
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Chapter 7

Fingerprint of different spin-orbit terms
for spin transport in Hg'Te quantum
wells

In this chaptelﬂ, we show the derivation of an effective four-band model describing the physics of
the typical two-dimensional topological insulator (HgTe/CdTe quantum well) in the presence of
perturbing potentials. A short introduction to topological insulators has been given in Chapter
[6l We include an out-of plane potential that breaks the inversion symmetry in z-direction,
causing structural inversion asymmetry (STA), as well as in-plane potentials. We employ the
methods of k - p and envelope function theory as described in Chapter [2] and extend the BHZ
model [Ber+-06a). We show that the result is consistent with the Hamiltonian obtained
by the method of invariants (see Chapter . The inversion breaking potential generates new
elements to the four-band Hamiltonian that are off-diagonal in spin space. The generalized
four-band Hamiltonian should also be applicable to other 2D topological insulators, such
as type II InAs/GaSb quantum wells |[Liu4-08|.

Next, we will use the Foldy-Wouthuysen (FW) transformation to find an effective model
describing the electron or heavy hole bands. We show that such an effective model contains two
different types of SO interactions; one of them is the well-known Rashba spin-orbit interaction
induced by the inversion breaking potential in z-direction, whereas the other originates from the
in-plane potential, and is referred to as the in-plane Pauli term. Although both these terms,
for the conduction band, are linear in the wave vector, they contribute differently to the spin
transport. The first (Rashba) term does not conserve the z-component of spin, S,, causing spin
precession, while the in-plane Pauli term conserves S,.

Spin transport in the conduction band is further analysed numerically within the Landauer-
Biittiker formalism (compare Chapter o)), in order to study the interplay of the Rashba and
in-plane Pauli terms. We predict that the spin Hall conductance will show a precession pattern
as a function of the inversion breaking potential in the z-direction even in the presence of a strong
in-plane potential. Further, the strong in-plane potential enhances the spin Hall conductance
generated by the Rashba term, because it partially fixates the direction of the precessing spin.
Therefore, the behaviour of the spin transport in asymmetrically doped quantum wells should
be dominated by the Rashba term and it is justified to describe the spin Hall conductance in

! This chapter is based on the publication [Rot-+10].
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the metallic regime through simple effective models for electrons and heavy holes, as long as
the band gap is non-zero. The spin Hall signal can be qualitatively understood by a spin force
operator or a spin-dependent Berry phase appearing in a semiclassical wave packet description
(compare Chapter [4)).

7.1 Effective Hamiltonian for HgTe QWs in the presence of the
inversion breaking potential in z-direction and the in-plane
potential

7.1.1 Derivation of the extended HgTe Hamiltonian within k - p theory

In this section we will consider the influence of the structural inversion asymmetry (SIA) on
HgTe/CdTe quantum wells (QWs) and derive a corresponding effective 4 x 4 model with an out-
of plane (in z-direction) inversion breaking potential. Qur starting point is the envelope function
method based on the eight-band Kane Hamiltonian Hyx |[Nov+05a|. The band parameters are z-
dependent, and there are interface terms appearing because of non-commuting operators, which
vanish for z-independent parameters (compare Section about the symmetrization of non-
commuting terms). The basis of the Kane Hamiltonian is given by

1) =T, 1/2) = [S) 1),
2) = [Ts, =1/2) = |S) [1) ,

1 )

3) = I0§.3/2) = === (1X) + YD) 1)

1 .
4) = IT§.1/2) = 2= (212) 1) = (%) + iV ).
5) = [T, ~1/2) = jg (1) — YY) 1) +212) 1),
6) = [If,—3/2) = jﬁ (1X) =iV 1),
7) = [T+,1/2) = —jg (12) [1) + (1X) +iY) 1))
18) = [TF, ~1/2) = = (12) 1) — (1X) — i) [1)). (7.1)

S

3

where the states | X),|Y'),|Z) transform like p-orbitals with positive parity and |S) transforms
like an s-orbitals and has negative parity. We use the standard notation with [I'y,£1/2) de-
scribing the s-like conduction band, [y, 41/2) the p-like light hole band and [Ty, £3/2) the
p-like heavy hole band in zinc blende crystal structures [Win05|. The spin-orbit split-off bands
|T'7, £1/2) are far away in energy from the other bands and are not important for the description
of the quantum well, therefore we limit ourself to the upper 6 x 6 block of Hk. Let us empha-
size that our 6 x 6 Kane Hamiltonian preserves the bulk inversion asymmetry, since we omit
negligible effects of bulk inversion asymmetry in the zinc blende structure of bulk HgTe and
CdTe |[K6n+08|]. In the following we always use |a) (a = 1,2,...,6) to denote the basis set of
wave functions shortly. We consider a quantum well configuration with HgTe layers sandwiched
by two CdTe barrier layers along z direction as in Fig. hence the parameters of the Kane
model Hg have spatial dependence [Ber+06a|. The matching of wave functions in z-direction
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for HgTe/CdTe QWs has to be done very carefully because the bulk barrier material CdTe has
a normal band structure with [y, +1/2) above [I'f) bands while bulk HgTe has inverted band
ordering with |T'g) above |y, £1/2) bands [Ber-+06a; Kén+07].

The envelope function approximation [Bur88b| is applied to solve the eigenproblem of the
quantum well. Since the Kane model preserves inversion symmetry, in order to discuss the SIA,
we need to take into account an additional potential V(r) = Vy(z,y) + ze€,, where e > 0 is
the elementary charge and ze€, is the inversion breaking potential in z-direction, while Vj(z, y)

is the in-plane potential and possible forms will be chosen in the numerical transport analysis
(Section[7.3). Then the full Hamiltonian is

_ﬁfuu = HK(k”,Z) + V(I‘) (72)

Next we split the Hamiltonian 1) into two parts Hyn = Ho + H', where Hy is the Kane
Hamiltonian when k| = 0 and is treated as the zero-order Hamiltonian. Explicitly, Hy is given
by

7O 0 0 2Pk, 0 0
0 7O 0 0 2Pk. 0
(0)
Ho = Hic(ky = 0) = o 0 W0 0 0 (7.3)
I 2 0)

VEPE 0 o w 0 0
0 3Pk 0 o w® 0

0 0 0 0 o w

where k. is an operator and the heavy hole bands (T's,£3/2) are completely decoupled from
the electron and light hole bands. Here P = 2rr2Lo (S|pz|X) is the Kane matrix element between
the I's and I's bands, while the other parameters are given byE]

TO = Ec(z)+;2kz(2F(z)+1)kz (7.4)
mo
2

WO = o) - 5k n(2) F 20 (7.5

with F(z) = 7i0 ZF5 % including remote bands |u;) with I's symmetry perturbatively.
E,;, designate the positions of the conduction/valence band edges and the 7; are renormalized
Luttinger parameters [Lut56|. The axial approximation is adopted [Eke-+85; Pfe00] in order to

keep the in-plane rotation symmetry.

2 Unfortunately, there is a sign mistake in Wj(:o) in our publication [Rot+10|. However, my MATHEMATICA
file for calculations based on the 8 x 8 Kane Hamiltonian in [Pfe00| does not contain this mistake, and therefore
subsequent results shown here and in [Rot+10| are not affected by the mistake.
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H’ is treated as a perturbation, and is written as

A =
A
H' = Hg(k) — Hy+V = oﬂ e _; W£1_> . (7.6)
Beoo RE b owl gl
o M= o R s ow

with ke = kg + ik, C = 2

2 2
T = h(%zl)k” + V(r) and Wj(tl) = 2m (71 + v9) kﬁ + V(r). Here, ¥ = (y3+72)/2. k is the
renormalized Luttinger parameter related to the part of Hamiltonian which is antisymmetric in
the components of k. In the original Luttinger model, it was introduced because in the presence
of a magnetic field the components of k do not commute. In our case, it appears because the
material parameters are functions of the z coordinate.

Now we will generalize the BHZ approach [Ber+-06a| to project the Hamiltonian into
the low energy sub-space, which can be done in two steps. First, we numerically diagonalize the
Hamiltonian Hy, so that Hyl|i) = E;|i), to obtain the eigenenergies F; and eigenstates |i) of the
quantum well. Here the eigenstate |i) can be expanded in the basis |a) as |i) = ), fi.o(2)]),
where the function f;(z) gives the envelope function along z-direction for the quantum well. We
use Greek indices to indicate basis functions of the Kane Hamiltonian and Roman indices to
denote the subbands. The envelope function components f; o(z) are calculated with the help of
the numerical diagonalization of Hy.

In order to perform the degenerate perturbation calculation (see Appendix , we need to
cast the eigenstates of Hy into two classes. The first one, denoted as class A, includes the
basis wave functions of our final four band effective model. As shown by BHZ [Ber+06a|, for
HgTe/CdTe quantum wells, it is necessary to take into account the two electron-like subbands
|E1, £) and two heavy hole subbands |H1,+), which are expanded explicitly as

Ok_[n,sz, R = Y2, S0 = ~ PPk ({ns, k) + [k, k2)),

2myg

|E1,+) = fe+1(2)11) + fe+a(2)[4) (7.7a)
|H1,+) = fut3(2)[3) (7.7b)
Bl —) = fe—2(2)[2) + fe—5(2)[5) (7.7¢)
|H1,—) = fu-6(2)[6) (7.7d)

As pointed out above, for Hy the heavy hole bands are decoupled from the electron and light hole
bands, therefore the eigenstate |[H1,+(—)) consists only of the basis |3) (|6)) while |E1, +(—)) is
a combination of the basis |1) (|2)) and |[4) (|5)). The second class, denoted as class B, includes
the states which need to be taken into account in the following perturbation procedure. Here we
consider the first light hole-like subbands |LH, £+) and the second and third heavy hole subbands
|HH2,+) and |HH3,+), which are written explicitly as

ILH,+) = fun+1(2)[1) + funsa(2)]4) (7.8a)
[HHn,+) = frrn+,3(2)[3) (7.8b)
ILH,—) = fun-2(2)[2) + fun-5(2)[5) (7.8¢)
|[HHn, —) = frrn—6(2)6). (7.8d)
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All the other subbands of the quantum well are neglected here since they are well separated in
energy. Due to the structure of Hy, the envelope function components f; o(2) can be chosen to
be either real or purely imaginary.

Before we go to the next step of the perturbation calculation, it is useful to have a look at
the symmetry properties of the relevant states. For the Hamiltonian Hg, we have three types
of symmetries: the time reversal symmetry 7, the inversion symmetry P and the in-plane full
rotation symmetry R,(6). For the time reversal operation 7, it is not hard to show that |E1, £)
(|[H1,4)) are Kramers partners, i.e. (the overall sign being convention) T|E1,+) = |E1,—),
T|El,—) = —|E1,+), T|H1,+) = |H1,—) and T|H1,—) = —|H1,+). When matrix elements
for one spin are found, those for the opposite spins can be easily obtained through the operation
T, under the precaution that we also flip the sign of k. The inversion operation P defines
the parity of each subband, which can greatly simplify the matrix elements in the perturbation
procedure below. The parity of the subbands |i) in the quantum well is determined by both the
envelope function f; o(z) and the basis wave function |a). The parities of the envelope functions
can be obtained through numerical calculation |[Ber+06a; Pfe00], and are listed in Table [7.1]
The parities of the basis functions are indicated by the parity superscript of the irreducible

even: | fe41 feE—2 fiHt4a fiH-5  fH43 fu—6  fuuz+3 fuH3-6
odd: | fe+a fe—5 fumsa fuu—2  fube+3  faH2-6

Table 7.1: Parities of the envelope function components.

representation. Thus the parities of the subbands are P|E1+) = —|E1+), P|H1+) = |H1+),
P|LH+) = |LH+), PI[HH2+) = —|HH2+) and P|HH34) = |[HH3+). Due to the in-plane
rotation symmetry (axial approximation), the total angular momentum J along z-direction is
a good quantum number, which can be used to identify the eigenstates. Since the electron-like
subbands have J = %, the rotation operator is R.(0)|E1+) = eii%|E1:|:> while for the heavy

hole subbands with J = 3, it should be R.(0)|H14) = e |H1+).

Next, we calculate the effective Hamiltonian of the four states in the class A based on
quasi-degenerate perturbation theory (see Appendix [B| or [Win05]). All states in classes A
and B are eigenstates of Hamiltonian Hy. However when H’ is introduced, they are no longer
eigenstates due to mixing between the states of class A and class B. Therefore, treating H' as
a small perturbation, we need to perform an unitary transformation to eliminate the coupling
between the states in class A and class B up to the required order, resulting in the transformed
Hamiltonian H. We apply the third order perturbation formula to find matrix elements
of H in terms of matrix elements of H' obtained by integrations over the QW growth direction,
like

6
H' o= (5| fo) = / a2 S Fra(2)(H s fis(2). (7.9)

a,B=1

This is different from the usual procedure of perturbation theory, where one would first eval-
uate the perturbation series and then carry out the integration over z, to obtain an effective
Hamiltonian. Since we use a finite (i.e. not a complete) set of envelope functions, performing
the integration first, like here, amounts to an additional approximation. As mentioned above,
Greek indices denote entries of the Kane matrix (7.6). Here we should keep in mind that the
order of the matrix elements of H' in is important, as they may not commute with each
other.
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The perturbation calculation is straightforward but lengthy. The parities of the envelope
functions discussed above can be used to reduce the number of the matrix elements of H'. For
example, the first-order term

(E1— |H'|E1+) = —]j}%<fE,2|fE+,4> + Ii;%<fE,5‘fE+,1> + (fe—5CT| feta)  (7.10)

vanishes completely because all integrands are odd functions of z (see Table .

By applying time reversal to and (7.8), we find the relations fg_ o = fias fo—5 =
_fE+747 fu-6 = f1>-k[+737 Jin-2 = _fI:kH+71a Juu-5 = fEH+,4 and fun2-6 = _f;IH2+,3- These
relations will be used to write resulting matrix elements using only the + subset of envelope
functions. This leads to some simplifications, and also has the advantage that the complex phase
of resulting matrix elements can be analysed easily, since time reversal symmetry will no longer
enforce any restricting condition on them.

In the four-band basis (|E1+), |H1+), |E1—),|H1-)), the final effective Hamiltonian is writ-
ten as

H = Hy + Hg + Vi(z,y) (7.11)
M(k) Ak, 0 0
_— Ak_  —M(k) 0 0
0 0  —Aky —M(k)
0 0  —iRok— —iSok?
_ 0 0 iSok?  iTok?
He =1 iRok, —iSok2 0 0 (7.13)
iSokd  —iTok? 0 0

with A = A + Ask?, M(k) = M — Bk?, e(k) = C — Dk?, and I is diagonal unit matrix. Here,
we have set k? = k2 + k;

We note that Hy is equivalent to the BHZ Hamiltonian in [Ber+06a] if we further omit the
k-dependence of A, by setting As = 0. We also assume that the reference energy is fixed in the
middle of the gap, i.e. C = 0. Besides the BHZ Hamiltonian, we find a new term Hpg, which
is off-diagonal in spin space due to the inversion breaking potential ze€,. As mentioned above
we have included the subbands |H H3, £) in the calculation of the effective parameters A,B,D.
However, these subbands do not contribute to Hy. This is a consequence of the fact that the
envelope functions belonging to |HH3,+) have parities opposite to the envelope functions of
|HH2,+), see Table

There are three new terms in Hg. The first term (Rg term) originates from the second order
perturbation theory and is exactly the electron Rashba term with

1e&,

Ry=——"-"——
" " 3(ELy — Egy)

((feralzlfinen) + (feralz|funsa)

3h2
- ) 14
- (7.14)

: (\/6P<fLH+,4|f§+,1> + V6P frus il figa) + —— (frmsallk, k‘z]|fﬁ+,4>>

Here (f;a|O|fj ) = [ dzf},(2)Of;3(2) for an arbitrary operator O. The electron Rashba term
is linear in k because of the % electron spin. Conservation of total (orbital plus spin) angular
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momentum allows the spin flip operator o+ to be combined only with ke, it is [J,,04k_] =
hlzky — yky + 30, 01k_] = 0.

The second term (7j term) originates from the third order perturbation and denotes the
heavy-hole k® Rashba term with the parameter

—iV/3eEh?

To = 877”(2) - (s1+ s2+ s3) (7.15)
with
517 ° (fEtalVIfi Y 2| fi s a)
! _(EE1 — Eum)(Em — Fuam) E+,417JuH2+,3/ \JHH2+ 3121 JH+,3
: (ﬂPmo(fH+,3 fria) — V3R (fuy 3l ({33, k2 + [, kz])!fE+,4>> ] : (7.16a)
So :(EEl — ELH)2(EH1 = Fn) ((feralzl frae) + (feralzl foara) (fraeal¥] iy s)
: (ﬂPmo(fH+,3 fera) — V3R (firy 3l ({73, K=} + [, kz])’fE+’4>> ] , (7.16b)
5= : {f Y fris 3) (frt 312 fama 3)
- (Em — Eunz) (B — Evn) LH+4 |71 H+,3/ \JH+,3|2[JHH2+,3

: <\/§Pm0<fHH2+,3‘fLH+,1> — V3R (funat 3| ({73, k2 } + [5, kz])\fLH+,4>> ] . (7.16¢)

Since for heavy holes the spin is %, the change of angular momentum upon a spin-flip is 3, which
corresponds to k..

The third term (Sp term), which is proportional to k2, also comes from the second order
perturbation with the parameter

B V3h2eE,

Sy =
0 4m0

1 1 -
(Em sy v— EHH2> (freslzl frmay 3) (funz+ 37| fE 4 4)

1 1
+ + | £* *
(EEl — Fiy | By — ELH> <fH+73|7‘fLH+,4>(<fLH+,1

2 fera) + (fiasalzlfira) |-
(7.17)

This is a new off-diagonal term between the electron-like 1 (—1) and heavy-hole —3 (3) states
and the change of the angular momentum is 2, corresponding to k%. All parameters can be
determined by using the numerically calculated f; o(z), and are listed in the Table for a QW
with a thickness dow = 70A.

As we see, all parameter values are real. Interestingly, this is not mere luck, but an effect of
a mirror symmetry of the system, which we have not yet mentioned. The QW system within
the axial approximation, but including SIA terms, has the point group Cs,. The v subscript
indicates that there is a group element C, acting as mirror operation at a plane including the

z-axis |[Rot+14]. Let us set Vp(x,y) = 0 for the moment, since this perturbation could break
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A [nm eV] 0.365
B [nm? eV] —0.706
D [nm? eV] —0.532
M [eV] —10.09- 1073
Ro/(e€,) [nm?] —15.6
To/(e€.) [nm?] —8.91
So/(e€,) [nm?] —2.10

Table 7.2: Parameters of the effective 4 x 4 Hamiltonian, calculated for the quantum well width
70 A, at charge density n = 2- 100 cm—2

the mirror symmetry. With the representation C,(kz,ky)C; ' = (—ku, ky), ColEx) = |EF),
Co|H+) = |HF), we find that [H,C,] = 0. This forces the parameters A, Ry, So and T
to be real. As mentioned above, this is not yet enforced by time reversal symmetry alone.
Since the SIA matrix elements , and have been written using only the +
subspace of Kramers partners, time reversal symmetry imposes no further restriction to the
complex phases of these matrix elements. By inspection, we see that there are only two degrees
of freedom, given by the complex phases of |fu4 3) and |fg4 4), for the three independent STA
matrix elements. However, these two phases are also fixed, once a convention is adopted for
the operator C,. In this sense, the C, symmetry fixes one parameter phase and the two others
are fixed by convention. By a convention, we mean that unitary transformations which would
change the complex phases of the parameters Ry, Sg, Tp or A, but would also cause T or C,
to transform non-trivially, should be discarded. Stated differently, changing the complex phases
of the parameters in an arbitrary way does not always correspond to a unitary transformation,
and may instead change the spectrum.

We note that all three terms in the inversion breaking Hamiltonian Hp are proportional to
&, but are independent of Vy(z,y). The corrections originating from Vy(x,y) to the 2 x 2 off-
diagonal blocks in are of higher order in the perturbation than the ones coming from &,.
Moreover, they must contain both & = VVy(x,y)/e and £, due to the fact that the in-plane field
&|| does not break the z — —z inversion symmetry. Furthermore, Vo(x,y) introduces corrections
of third or higher order to the element (Hp)y2 which have the form [ky, [ky, Vo(x, y)]]k— and
VE| - ky. These corrections are much smaller than the element Ak; which appears already in
the first order of perturbation theory in Hy. Corrections to the diagonal elements of Hp induced
by the in-plane potential are also very small. The latter corrections, after folding to the electron
or heavy hole subbands (see Section , produce similar contributions to the ones originating
from Hy, but are an order of magnitude smaller due to a large energy separation between main
bands and bands which are treated perturbatively. Therefore, the only significant contribution
to H connected with the in-plane potential comes from the bare diagonal potential Vy(x,y) as
shown in (|7.11)).

7.1.2 Symmetry arguments for the validity of the extended HgTe Hamilto-
nian.

The goal of this subsection is to derive the effective 4x4 Hamiltonian (7.11)) using the theory
of invariants (see Section [3). We remind ourselves that the theory of invariants states that
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the Hamiltonian must be invariant under all symmetry operations of the considered system.
As mentioned in the last section, the system has time reversal symmetry 7, space inversion
symmetry P and in-plane rotation symmetry R.(f), and also a reflection symmetry C, at an
axis including 2. The transformation of the set of basis wave functions under these symmetries
for the effective model has been discussed in the last section. The symmetry operations in the
matrix form for the basis (|E1+),|H1+),|E1—),|H1-)) are given by

o Time reversal symmetry: T = OK, where © = —ioy ® 1 and K is the complex conjugate
operator.

o Inversion symmetry: P = —1 ® 73, the system being even under inversion except for the
SIA terms

e Rotation symmetry: R.(0) = 50 with Y,=03® (HTT?’ + @) =03® (2—T3)
e Reflection symmetry: Cyp = 0, @ 1 and Cy(ky, ky))Ct = (—ka, ky)

where the o; denote Pauli matrices acting on the spin basis and the 7; represent Pauli matrices
acting on the electron or heavy-hole subbands.

Rather than applying the method of invariants in the standard way as outlined in Chapter [3]
we will proceed a bit differently by finding basis matrices from an expansion in a Clifford algebra,
and not by the Wigner-Eckart theorem. This leads to more elegant and simpler calculations,
while the relation to the method of invariants remains clear. The simplifications are possible
because we are dealing with rotation symmetry restricted to the z axis.

A Clifford algebra [Sny97] is the algebra generated by a set of linear independent and anti-
commuting matrices. In our case, we need a basis for the 16-dimensional real vector space of
Hermitian 4x4 matrices. The full Clifford algebra obtained by the 5 generators I'y,...,I's will
be the 2° = 32-dimensional vector space of general complex matrices, but we need only the
Hermitian subspace. The generators anti-commute, {I';,I';} = 20;;1. Therefore, products of

generators can always be brought into normal ordering. Counting all possible < 2 ) products

5

1 > = 25 To be specific,

of k different generators, we see that algebra has dimension 22:0 <

we define the generators
F1:O'1®7'1, F2:02®7'1, F3:03®7'1, F4:1®7'2, F5:1®7'3, (718)

and ten commutators of I' matrices I';; = & [I;, T,

Fij = E€ijk0k & 1, (719&)
lFiy=0i®713, l'ip=—0;QT, (7.19b)
Fys=1®7 (7.19¢)

where i, 7 = 1,2,3. We have to classify these 16 (including the identity) Hermitian basis matrices
according to their transformation under time reversal, parity and rotations about the z axis.
Generally, any 4 x 4 Hamiltonian can be expanded using I" matrices as

I‘i’eﬁf = E(k)I + Z dz(k)l“l + Z dU(k)F” (720)
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where [ is the 4 x 4 identity matrix. e(k), d;(k) and d;;(k) can be expanded as polynomials of the
momentum k = (k;, k). The Hamiltonian should be invariant under the symmetry operations
P, T and R, which indicates that d;; (k) should behave the same as I';(;). Therefore, we need
to work out the transformation of the d;(;)(k) and the I matrices.

For the fifteen I" matrices, it is easy to calculate the symmetry transformation under the time
reversal operation 7 and inversion operation P, which are listed in Table For the in-plane
rotation operation R,(f), we can calculate the transformation rule I'(0) = e F0Te= 150 with
the help of the differential equation

ar'g) i
a2

5.,T(0)]. (7.21)
For example, we find that [¥,,T";] = 4il'y and [, 's] = —4il';, with the solution given by
I} (0) = T'1 cos(20) — I'a sin(20) ['5(6) = 'y sin(26) + 'y cos(26). (7.22)

Thus, (I'1,T2) transforms like a vector under rotations. The obtained results are summarized
in Table . We see that I's, I'19 and I'sy behave as a scalar under the rotation R,; (I'y,I's),
(T'45,T'35) and (T4 + a3, T's1 + T'24) rotate as a vector with angular momentum 1; (I'y,T'2) and
(T'15,T'95) correspond to angular momentum 2; and (T'a3 —T'14, 31 —'24) corresponds to angular
momentum 3. In Table[7.3] we also list the corresponding tensors formed by k up to the order
k3. The constructions of these basis polynomials is also done a bit differently than in Chapter
Bl We could use the general method, and find the basis by looking at the decomposition of a
Cartesian tensor k;k; into irreducible parts, but since we here consider only rotations about the
z axis, it is much simpler to expand products &’ k™ and sort by real and imaginary parts.

R, T P

I 0o + -+

(1, T) 2 - -

(Ta, T3) T - -
(I'y5,T25) 2+ -
(I'45,T'35) I+ -

T 0+

T'io 0 - +

F34 0 - +

(T'1g + T3, T'31 4+ T'oy) r - +
(Ta3 —T'14,T'g1 — I'oa) 3 - 4+
(k‘x, ky) 1 - -

ki +k; 0 + +

(2 — k2, 2k k) > 1
(W2 — 3k, k2, 3k2k, — k2) 3 - -
(k3 4 koky kZky + k) 1 - -

Table 7.3: Summary of the symmetry properties of I' matrices and the
tensors formed by k.
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From Table H, if we want to preserve 7, P and rotation symmetry, then up to k3 the
general form of the Hamiltonian is given by

Ho = e + M(k)Ts + A(K)(Ts, Ts) < cosf  sinf ) ( P ) (7.23)

—sinf cos6 ky

where A(k) = A+ Ask?, M(k) = M — Bk? and the phase 0 represents the relative phase between
|E1+) and |H1+), which can be chosen arbitrarily. Taking = —%, in (7.23), we recover the
BHZ Hamiltonian [Ber+06a].

We now consider additional terms which preserve rotation symmetry and time reversal sym-
metry, but break the inversion symmetry. By inspecting Table , the following three terms
are possible,

i :@(Flﬁmg,rgl +F24>( cos¢  sing ) < Koy )

2 —sing cos¢ ky
To cosy  siny k3 — 3k k2
5 (23 = T4, Tt = Tza) ( —sint cosy ) ( 3k2k, — k§
cosp sing k2 — k:Z
+ So(I'15,'25) ( _sing cos ) ( ook, ) (7.24)

where R(k) = Ro + Rok?. Similar to 6, two of the phase factors ¢, ¢ and 1 are also arbitrary.
However, the third phase is not arbitrary since not all the summands in commute, and
its choice can affect the energy spectrumE] The effect of the 2x2 rotation matrices appearing
in (7.24) can be analysed easily noting that it corresponds to substituting k+ = ketitx —
keTH Pk —0=3Y=2¢) The phase angles can be changed by unitary transformations, but not all of
them independently. The physical origin of this subtle point lies in the reflection symmetry C‘U,
which we have not yet included in our symmetry-based analysis. As already mentioned in the
previous section, the representation of the operation C, is also arbitrary to some degree, since it
also transforms under unitary basis transformations. The chosen form of the matrix C, = 0, ®1
fixes two phase angles. Demanding that [ﬁ , C’v] = 0, fixes the third phase angle. If we choose
0 =—-5,¢=—5,7% =75 and ¢ = 7, then the Hamiltonian (7.11) is recovered. This shows
that the derivation in Section has yielded the Hamiltonian with the correct structure, in
accordance with all the symmetries of the system.

7.2 Foldy-Wouthuysen transformation of the effective HgTe Hamil-
tonian

The goal of this section is to obtain an effective 2 x 2 Hamiltonian (where 2 stands for the spin
degree of freedom) for electron |F1+) and heavy hole |H1+) subbands including non-zero in-
plane and out-of plane electric fields. So far, the quantum Spin Hall effect (QSHE) was described
by the Hamiltonian used in |Ber+06a], where only the diagonal blocks of our Hamiltonian
were taken to be non-zero, i.e. for £, = 0. Such a block-diagonal Hamiltonian of
a HgTe QW is isomorphic to the Dirac Hamiltonian describing the relativistic motion of an
electron in two dimensions (p, = 0), which couples particle and antiparticle components with

3 Unfortunately, we have overlooked this point in our publication |[Rot+10] since we did not consider the effect
of reflection symmetry, but the results obtained by the k - p calculation correctly include that symmetry.
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the same spin direction. Here, we start from the full Hamiltonian and consider the low
energy physics with the energy scale smaller than the gap 2M. In this case, we can apply the
perturbation formula to obtain an effective model for electron and hole subbands. This
procedure is equivalent to the Foldy-Wouthuysen (FW) transformation [Fol+50|, which reduces
the relativistic Dirac equation in a potential to the Pauli equation [Win05| (see also Chapter
. We keep terms up to linear order in the in-plane & and out-of plane £, electric fields, as
well as the terms up to the third order in k. Then the effective Hamiltonians for electron (ﬁe)
and hole (Hj,) subbands are given by

. A2 A2
H., =M + Vo(ZL‘,y) + <D — B+ ) k> + 76V(9”

2M 8M?2
—R(k)(o x K. + G(k) () % K)-0 (7.25)
: A2\ o 1 3 tog3
My == M +Vo(w,y) + (B~ D — S ) K + 5 (Q(k)a+k_ + (k) a,kz+>
A? 1 [ AS
+ mevgn + Q(k:)(eEH X k)zO'z + 5 <2]\4g[k_, [k_, ‘/E)]]O'+k_ + h.C.) (7.26)
with
A2
G(k) =173 (7.27)
iASy  A? 5  1ASy
R(k) =Ry + ( M — WRO) k* 4+ SN2 eVEH (7.28)
. ASy iA%R,

The spin-dependent term G(e&| x k).o, and the spin-independent term g‘%evgu originate
directly from the FW transformation from the Dirac type Hamiltonian in the external potential
Hy+ Vo(z,y) (see Eq. (7.11)) to a Pauli type equation. Therefore, by analogy to the relativistic
electron in vacuum, we call G(ef)| x k).o, the in-plane Pauli term, while the term Bﬁ%evsn
we call the Darwin term. Note that the Pauli term can be also visualized as resulting from
a Rashba field due to the edges of a typical mesa structure used in experiments or as coming
from the atomic spin-orbit splitting, but it is only active at the edges where £ is finite. The
Darwin term does not include a contribution from the field in z-direction due to the assumption
that £, is constant. The in-plane Pauli and Darwin terms appear both in the electron and hole
effective Hamiltonians. The additional terms which are proportional to R(k) and Q(k) originate
from Hg and are direct consequence of the broken space inversion symmetry in the z-direction.
These terms are usually called Rashba terms and they give linear and cubic in k contributions for
electron and heavy hole subsystems, correspondingly. In a typical experimental setup, Rashba
terms are generated by an asymmetric doping profile surrounding the quantum well and can be
adjusted by a top-gate which induces a tunable electric field in z-direction. Figures[7.Th,b show
the magnitude % of the in-plane spin-orbit interaction (SOT) and electron Rashba coefficient
Ry/(e€.) as a function of the thickness dgw of the HgTe/CdTe QW. Note that the coupling
strength % for the Pauli term decreases with dgw while the strength of Rashba coupling
Ry/(e€.) increases with dgw. The origin of the different behaviours of these two SOIs can be
understood from the plot of energy versus dow (see Fig. ) The in-plane term % comes
from the coupling between the electron and the heavy hole |H1+) subbands, and the energy
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Figure 7.1: The material parameters characterising the spin-orbit coupling induced by (a) the
in-plane field (%), (b) the out-of plane field (Rp/(e£;)) as a function of the quantum well
thickness dgw, (c) energies of the most relevant subbands as a function of the QW width for

the I" point. Taken from [Rot-+10|. © (2010) Creative Commons CC BY-NC-SA

difference between these bands increases with dgw. The Rashba term Ry/(ef) originates from
the coupling between the electron and the light hole sub-bands. Their energy difference decreases
with dgw , therefore Ry/(e£.) increases with dgw . Comparing the magnitudes of Ry/(e€.) and
%, one can see that close to the critical thickness dgw = d. determining the transition from
normal to topologically non-trivial insulator, the magnitude of the in-plane term is an order
of magnitude larger than SOI term in z-direction, while for d=80 A the magnitudes of both
interactions are comparable.

Note also that the lowest order term related to bulk inversion asymmetry (BIA) of the QW

has the form (in the basis of H)

~ A
Hpra = A (7.30)

—-A

with A ~ 1.6 meV [Kon+08|. After folding to the electron or hole band, this term does not give
any spin-dependent term in the effective model. Higher order terms due to BIA exist [Dreb5|,
but they will be cubic in & for the effective electron model.

7.3 Spin transport within an effective electron model

As described in detail in the previous section, the effective conduction band description of a HgTe
quantum well includes two different SOI terms: the Rashba spin-orbit (SO) coupling and
the in-plane Pauli term. To understand the interplay of both SOIs, we will analyse here, the spin
Hall conductance signal numerically using the tight binding version (i.e. a lattice model including
only nearest neighbour hopping terms) of the Hamiltonian ([7.25) within the Landauer-Biittiker
formalism [Dat07]. Some background of this formalism has been given in Chapter [
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Figure 7.2: The two different samples we use for the numerics: (a) a quadratic Hall bar of width
w and (b) a cross structure. In both cases the sample (blue) contains spin-orbit interaction,
while the four semi-infinite leads (black) are SOI free. The numbering of the leads and the
used boundary conditions on the currents are indicated in the figure, i.e. we drive a current
I from lead 1 to 2 and do not allow for charge currents at the vertical leads 3 and 4. The
discretization is shown for a part of each sample. Along the blue lines the confining potential
Vo(z,y) is applied, as indicated in the inset of (b), to give rise to the in-plane Pauli interaction.
In case of the quadratic sample this potential corresponds to a tunnelling barrier between leads
max

and sample. (c¢) shows the confining potential normalized by its maximal value (Vy"**) for the
cross structure. Taken from [Rot+10]. © (2010) Creative Commons CC BY-NC-SA

7.3.1 Description of the model

The field £, responsible for the Rashba term can be applied constant in space and varied in
strength easily by an external top gate. By contrast &, generating the in plane Pauli term,
usually originates from impurities or from the confinement due to sample boundaries. In our
calculations we work in the quasi-ballistic regime, which is very well justified for HgTe/CdTe
QWs with the typical mobilities 1 - 5 - 105 cm?/Vs. Consequently the contribution of the
impurities to the in-plane field is negligible and the confining potential is dominant, i.e. [, ]
decreases with the distance from the sample edges. The confining potential requires that an
electric field at the boundary always points outside the sample, i.e. its magnitude changes sign
at opposite edges.

We use two different setups. In both setups a finite size sample with spin-orbit interactions
(see Figs. ,b) is attached to four semi-infinite leads of the same width w. For the first setup,
a square sample, the in-plane field is introduced by tunnelling barriers between the leads and
the conductor along the blue lines in the [7.2h. This simple setup has the advantage that the
numerical results are easy to interpret, but is not a realistic description of actual experiments.
The second setup is a symmetric cross structure, which resembles the experimental Hall bars
and is shown in Fig. [7.2pb. In this case again the blue lines indicate the sample border, where a
confining potential is present (for a form of this potential see also Fig. [7.2k).

We construct the confining potential in two dimensions Vp(z,y) from the one dimensional
profile

Vip(t) = e 4 e~ w0/l (7.31)

where the coordinates in both the quadratic and the cross-shaped samples are chosen such
that 0 respectively w mark the x- or y-coordinates at the edges of the central square. [ is the
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characteristic decay length of the potential. For the square-shaped sample, we define

Vo(2,y) = ¢sq (Vip(2) + Vip(y)) - (7.32)

The maximal field is then £ = —9,Vo(z,y)|z=0. We adjust the constant Csq to choose some
particular value €Y. For the cross-shaped sample, we use the definition

Vo(z,y) = cor Vip(min(max(z,0),w)) - Vip(min(max(y,0), w)). (7.33)

Here the constant c. is adjusted to choose the desired maximal field £0 = —0:Vo(2,y)|e=y=0
and we assume that &0 = Eg. Further, in the leads the potential is always set zero. For
clarification, the confining potential corresponding to is shown in Figure . We find
that the numerical results do not change qualitatively if the boundary field is defined differently,
as long as the characteristic decay length [ is unchanged. In both setups we assume that the leads
do not include SO interactions, and therefore an analytical form of the eigenmodes [Sol+89] and
a clear definition of the spin current is available [Han-04].

In the calculations, we set the boundary conditions on the currents Iy = —I, = T and Is = I, =0,
where I, = Ig + II% is the total current at lead p. The spin-dependent current, I7, is calculated

» Lpo
by use of the Landauer-Biittiker formula Eq. (5.54) [Biit+85; Han+04; Dat07]

e ! oo’
EESIDIN AR T (734
q#p o'=1,]

which links the spin-resolved current to the chemical potential p, = eV}, via the transmission
matrix elements TI‘,’qUI. T;;'q”, describes the probability that an electron, entering the sample at
lead p with spin o, will leave the sample through lead ¢ having spin z-projection o’.

For a sample with non-zero SO coupling, applying an electric field between leads 1 and 2 will
generate a transverse spin current [, = —h/(2e)([£ - Ié) at leads 3 and 4, which is the so called
spin Hall effect [Han+04; |[Nik+05b; [Han-+05|. We define the spin Hall conductance as follows:

I I -1 e / /
s —_p _Nip7hp € (TTU_TW) =3,4 7.35
P Vi — Vs 2e Vo — V3 A7 =, pl pl y P ’ ( )

where Vo — V] is the voltage difference between leads 2 and 1. Due to the symmetries of the
Hamiltonian, only a few transmission matrix elements are independent, so that the last equality
in follows. The time reversal symmetry of implies T;’q"/ = Tq;,"/_", the fourfold
rotational symmetry C4 of the setup about the z-axis implies e.g. T2‘73"/ = Tff’, and the mirror
symmetry with respect to the yz-plane implies T: gz"' = Tg_la_”,.

The transmission matrix elements are computed numerically in a tight binding approach by
using the Green’s function method (Chapter [p|and [Dat07; [Sol+89; [Han+04}; Han+05]), and the
Fisher-Lee relation |Fis+81| connecting the Green’s function with the transmission amplitudes.
We discretize the sample as indicated in Fig. By making use of the fermionic field operators
ciw (Ca,0), which create (annihilate) a spin o electron at lattice site «, the Rashba and in-plane
Pauli interactions take the following form in second quantization:

Ry

HRashba =5 Z [icL’TcaJrawi + iCL7¢Ca+ay,¢ — CLTcaJraIi + clicoﬁaﬂ + h.c.} (7.36)

«
. AZe tay /2 /2
Hpauli :lm OZ; [53 o/ Cl&ay,gca,a - 5;+a‘/ CTa+az’UCa7U - h-C-} Ko (7.37)
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where Roy/(e€.), A and M are the material parameters defined in Section [7.1.1] Here a denotes
the lattice constant, and a;, stand for the lattice unit vectors connecting nearest neighbours.
To obtain the parameter Ry we must assume a specific value of the perpendicular field &,. £
and & designate, for a given site «, the in-plane electric field components. r, = +1 for spin
up and down, respectively, and the symbol h.c. denotes the Hermitian conjugate. The Rashba
spin-orbit interaction does not conserve the z-component of the spin and thus leads to spin
precession |[Nik+05a]. By contrast, the in-plane Pauli term conserves the z-component of
the spin, causing a shift in energy for two spin directions. This energy shift however must not
be mistaken as Zeeman effect, because does not break time reversal symmetry.
For numerical calculations we consider the Hamiltonian

H =Ty, + Hso + Hpis + Vo(z,y) + Hpar- (7.38)

Here T}, = (=D — B+ A?/(2M)) -k* = h*k?/(2m*) describes the kinetic part of the conduction
band Hamiltonian ([7.25)). In second quantization, Tk is described by spin-conserving near-
est neighbour hopping [Sol+89; Dat07; Han+04]. Hp;s = diag(e;) specifies the disorder of the
sample, where the diagonal on-site energies ¢; are uniformly distributed between [—W /2, W/2]
[She-+05|. The disorder strength W = he/(m*p) is calculated from the mobility p. The confining
potential is taken into account via Vp(z,y). The spin-orbit coupling Hso is described by the
Rashba term , the in-plane Pauli term or a linear superposition of both terms. Hence
‘H mirrors the conduction band Hamiltonian , where we omit the k-dependence of the R
parameter and negligible terms which include the combined effect of the in-plane and out of
plane electric fields. The spin-independent Darwin term Hpa, oc V - £ breaks the particle-hole
symmetry of the tight binding Hamiltonian, just like any space dependent in-plane potential
would do. Here particle-hole symmetry means the relation G5(Ef) = —G5(—Ey) if the energy
zero point is chosen in the middle of the tight binding band. It originates from the cosine dis-
persion relation of a free electron on a lattice. Hgo does not break this symmetry. The Darwin
term does not qualitatively change the spin conductance signal and will be considered after the
spin-orbit terms are analysed.

We use realistic parameters for the calculations, which are shown in Table Here we
assume a thickness of the quantum well in z-direction of 7 nm, corresponding to the inverted
regime. Although this has no impact in our one band approach, it guarantees a large coupling
strength Ro/(e€,). Note that our parameters correspond to a regime where the gap of the band
structure is found at £k = 0, i.e. it is a direct gap. Therefore, the spin-orbit related parameter
A gives a strong correction to the effective mass of the models H, and Hj, which changes the
sign. The carrier density is set to n = 2 - 10'° cm™2 while the effective mass m* = 0.00712 my,
where mg is the bare electron mass. We want to point out that we have changed the originally
negative sign of the effective mass to achieve a positive curvature of the band dispersion, which
is justified in an one band model. In our calculations, we focus on the regime where the Fermi
energy is deep enough in the electron band (that is described by er) so that the spin edge states
have already merged into the bulk [K6n+08; Zho+08| and the spin Hall conductance which is
the property of the states close to the Fermi level will be dominated by the bulk response.

Assuming a quadratic dispersion around k = 0, we determine the Fermi energy to be E; =
6.73 meV, by the relation to the density n = Wm—f;Ef of the 2DEG. Finally the assumed mobility
p=25-10* cm?/(Vs) leads to W = 0.65 meV. For such a small disorder strength averaging over

4 If we want to compare spin Hall signals of this chapter with results of Chapter@ we should express the Fermi
energy in terms of the hopping energy of the numerical model, to = M= 0.214 eV , with the lattice constant a.

2m*a
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10 different disorder configurations is sufficient. We note that the mean spin Hall conductance
deviates from that of a clean sample only by about < 1%. The parameters are chosen carefully
to the restricted range of possible energies where this model is valid, i.e. E, < Ey < Egap,
where Fg,, = 2| M| is the energy gap and E; is the energy splitting of the band due to Rashba
interaction.

We will first focus on the square sample because the scattering barrier in this setup allows
to study the competition between the in-plane and out-of plane electric fields. The influence
of in-plane electric fields is much weaker in the cross structures. Further, the first minimum
in the spin Hall conductance generated by the Rashba contribution is shifted away from the
spin-precession length to smaller fields due to quantum interference effects in the vertical stubs
(see e.g. [Sol+89]) and therefore results are less transparent to interpret.

7.3.2 Numerical results for the quadratic sample

We choose a quadratic sample of width w = 1000 nm, which is discretized by 200 x 200 lattice
points, so that the Fermi wavelength is about 36 times the lattice constant. The characteristic
length scale of the electric field is assumed to be [ = 10 nm. The computed spin Hall conductance
is presented in Figure First we focus on pure SOI and consequently omit the Darwin term
and the potential in Figures and b. Figure shows Gg(é’ﬁ)) for different top gate fields
and Figure presents G3(&.) for different in-plane fields.

Rashba coupling: The spin Hall conductance signal induced by the Rashba coupling alone,
& = 0, is shown in Figure by blue circles. For a small interaction strength Ry, the spin
Hall conductance rises quadratically, saturates and finally starts to precess. The behaviour of
the spin Hall conductance originating from the Rashba model can be understood by the spin
force operator

~ —-m* .. 2m* R2
FH = A2 HI'H,HL,H] = H3 0

where 'y, py and 6% are the position, momentum and spin-operators in the Heisenberg repre-

(Pr X 2)® 6% (7.39)

sentation (see Nikoli¢ et al. [Nik{05a]) and z is a unit vector. Fg does not depend on &, ,. In
this simple picture the force acting on electrons due to SO coupling is quadratic in Ry, explaining
the behaviour of G as a function of the out-of plane electric field for low £,. The force described
in deflects the spin-1 and the spin-| electrons in opposite transverse directions leading to
the spin Hall effect. However, the Hamiltonian does not conserve the z-component of the spin,
leading to a rotation of the spin direction and as a consequence to oscillations in G§ as a function
of Ry. The first maximum of the spin Hall conductance is reached, when the spin has travelled
a distance equivalent to the spin precession length [Nik+-05b| Lso = FTk/(k2R()), over which
the expectation value (o,) rotates by 7. The electric field £7¢ = 1.08 mV /nm corresponding to
the expected maximum is indicated as a red line in Figure and is in good agreement with
the maximum of the absolute value of Gf5.

In-plane Pauli interaction: The spin Hall conductance shows a linear behaviour as a
function of the in-plane electric field (see blue circles in Figure , where only the &, , com-
ponents are non-zero). This linear dependence on field strength can be explained within the

Here we have E; = 0.03tg, both for the square and cross samples. Since in this chapter, we analyse only the
effective model H, of the electron band, and take band parameters of the inverted regime, we can compare the
spin Hall conductance for £, = 0 in Figs. [7.3] with the red solid line in Fig. [0.9h, E slightly below the bulk gap.
This shows that the in-plane potential of this chapter should be quite strong, in order to model the effect of the
confinement on the spin Hall conductance of the four-band model.



7.3 Spin transport within an effective electron model 103
0.1
&, [mV/nm] &2, [mV/nm]
= o0 —e—0
€ o1
o -0 annE| 5051 —m--0.024
oy Y S % & oar i in
a % o2 _4...-—"*’:“‘!!'!* o —e—1.01 —+—0.048
0.3 --&--1.52 —a-0.072
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
&}y [mV/nm]
0.2]
o1 &, [mV/nm] &) [mV/nm]
—_
S 00 0 -0
= o) e .
9 —od .,.,.—::’::—-:—:’-‘ =--(0.51 A =--0.024
w6 - -
¢ o =02y - .,.&ll" pr et ——1.01 —o—0.048
s ae152 a- 0.072
0.00 0.01 0.02 0.03 0.04 0.05 006 0.07 00T T 0F 06 05 10

82y [mV/nm]

&, [mV/nm]

Figure 7.3: The spin Hall conductance due to the presence of a superposition of Rashba and in-
plane Pauli terms in a quadratic sample with tunnelling barriers at the boundaries. Due to the
presence of the second interaction the starting value of spin Hall conductance can be non-zero.
(a) When &, is non-zero, the magnitude of G as function of Eg,y is reduced. (b) The spin Hall
conductance as a function of £,. For higher values 5273/ the precession amplitude of G35 at Lgso
(indicated by a red line) is increased and the minimum is slightly shifted to higher interaction
energies. (c) and (d) show the same dependencies of G as above, but here the Darwin term and
the confining potential were additionally taken into account. Taken from |[Rot-+10]. © (2010)
Creative Commons CC BY-NC-SA

semiclassical approach, where we have adopted the wave packet dynamics by Sundaram and Niu
[Sun—+99|] (compare Chapter to obtain equations of motion for the in-plane Pauli term:

. 1 0e
fo= 1o ke X (7.40)
hke = —e, (7.41)

with the magnetic field set to zero. Here the index ¢ denotes the center coordinate of the wave
packet in position and k space. The Berry curvature is defined as

out (k) |Out (k)
+ e o o
(Qa)a = 5a571m< ks ‘ ok, > ,

(7.42)

where the symbol & corresponds to two eigenvalues Fy = —Dk?4+/A2k2 + MZ2(k) of the upper
spin block of the Hamiltonian Hy in with uF (k) being corresponding eigenstates for spin
o. Since does not include the Rashba SO interaction, the Berry curvature is diagonal in
the spin index o =7, |, and non-Abelian corrections are not present. simply describes the
change of the lattice momentum due to the electric field. describes the time evolution of
the position operator due to the band dispersion and the anomalous velocity term k. x Q, with
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the spin-dependent non-zero z-components (Qf) .= —(Qf) = i%, compare Eq. (4.49)) for

the anomalous velocity in the Dirac model. Compared to the prefactor G = % of the SO term

in the Pauli equation , the prefactor % of the anomalous velocity is two times larger. In
Section we showed that the difference is connected with a non-commuting position operator,
and we interpreted the correction as fingerprint of the relativistic Thomas-Wigner precession.
The spin-dependent anomalous velocity term shifts the position of the wave packet with different
spins in two opposite transverse directions leading to the spin Hall effect. Inserting into
yields the dependence of the anomalous velocity term linear in £|. Note, that the energy
range (up to ~ 0.35E) plotted in Figures and b is the same for both interaction terms. Since
the coupling parameters can be quite different (in our calculations 21 - Ry/(e&,) ~ A%/(4M?)),
the magnitudes of in-plane and out-of plane electric fields are adjusted so the interaction energies

are the same, allowing us to analyse the interplay of both interactions.

Interplay of both interactions: A linear superposition of , and T} leads
to the spin signal which is shown in Figures and b, when all three field components are
non-zero. The finite value of the spin Hall conductance in Figure for 527?; = 0 is due to
the Rashba coupling. It can be observed, that the linear behaviour of the in-plane Pauli term
with the electric field is not changed, when Rashba spin-orbit coupling is present. However, the
slope of the spin Hall conductance curves decreases with £, # 0, which means that the in-plane
Pauli contribution to the spin signal is suppressed by the Rashba interaction. The z-component
of the spin is not conserved for finite £,, as can be seen from Equation . The resulting
spin precession implies that generation of a spin current by the anomalous velocity becomes less
effective. The smallest slope and therefore smallest in-plane Pauli contribution in Fig. [7.3p is
found for an electric field &, corresponding to matching sample length and precession length.

Figure shows G3 as a function of &, for different in-plane electric fields. One can see
the typical precession pattern of G3(&,) also for & # 0. Moreover the precession amplitude of
the spin Hall conductance of the Rashba type is enhanced in the presence of the in-plane Pauli
term. The origin of this increase can be traced back to the k-dependent energy splitting of the
spin subbands due to the in-plane Pauli interaction. In order to lower its energy the electron
now prefers to stay in either spin up or down states. The precession of the spin is thus slightly
suppressed, as can be seen in a small shift of the minima to higher electric fields. As discussed
above, the spin force operator can act more efficiently on electrons with a preferred spin
z-projection, which leads to the relatively higher magnitude of the spin Hall conductance caused
by Rashba coupling.

Figs. and also show G3(&)|) and G3(&,) respectively but now with included potential
Vo(z,y) and Darwin A?/(8M?)V - £ terms. In the tight binding approach, both terms renor-
malize the diagonal on-site energy. They cannot generally be considered to be small, as they
scale, like the in-plane Pauli term, with the magnitude and the shape of the confining electric
field. The relative magnitudes of the in-plane Pauli, Darwin and potential terms depend on
the choice of the functional dependence Vy(z,y). The most important scale is the characteristic
length scale [, over which the corresponding field drops to £°/e. We have performed numerical
calculations with different values 5§7y and [ and found, that the main features of the results
discussed in this paper stay the same. We found that, the Darwin term is the main contribution
which renormalizes the spin Hall conductances in Figs. and o in respect to G3(&)) and
G3(&;) in Figs. and [7.3p.

The divergence of & appears as an additional term in the semiclassical equation and
therefore the spin-independent Darwin term can contribute to the anomalous velocity and renor-
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Figure 7.4: The spin Hall conductance for a cross structure, with the Darwin and the potential
terms included. In (a) and (b) we have used the same range of influence of the electric field as
for the quadratic sample, i.e. [ = 10 nm. Although the in-plane field was enhanced to very high
values, the influence of in-plane electric field on G5(&;) is very weak. In (c) and (d) we have
increased [ to 40 nm to get a higher in-plane Pauli signal. In this case G behaves similarly as
for the quadratic sample. Taken from [Rot+10]. © (2010) Creative Commons CC BY-NC-SA

malise the spin Hall conductance term. This can be seen in Fig. as a non linear behaviour
of G5(€). However, in the range of in-plane electric fields shown in Figs. and , the
qualitative behaviour of the spin Hall conductance is the same as in the absence of the Darwin
term (see Fig. ,b). Increasing the in-plane electric field to the same magnitude as the elec-
tric field perpendicular to the 2DEG bears two difficulties. First of all the interaction energy of
the in-plane Pauli term will exceed the Fermi energy which marks the limit of validity of our
effective electron model. Secondly, increasing &£ comes along with a raising tunnelling barrier
in the quadratic sample. We can omit these difficulties by choosing the sample in a shape of a
cross (see next subsection).

7.3.3 Numerical results for the cross sample

The cross sample is constructed of 5 square parts: 4 stubs and the central square (see Fig.
7.2b). Each part has the width w = 500 nm and is discretized by 100 x 100 lattice sites. The
corresponding spin Hall conductance originating from in-plane Pauli and Rashba terms in the
presence of the Darwin term and the confining potential is shown in Figs. - d.

Figures [7.4p,b show G5(€)) and G§(E.) for different values of fields in z and in-plane directions
correspondingly and for the characteristic range of the electric field [ = 10 nm. These figures
should be compared with Figs. and correspondingly. The overall behaviour of spin
Hall conductance in Figs. and b is similar to the quadratic sample. However, although we
used values of in-plane electric field around twenty times larger than in Figures the influence
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of & on G3(&,) is much weaker than for the square structure (compare [7.4b with ) The
probability of scattering from vertical and horizontal walls in the cross structure is much smaller
than in the case of the square structure where the electron directly hits the wall. Therefore
we find that the influence of in-plane electric field will be much weaker in the experimentally
relevant cross samples.

In order to obtain a contribution to G5 due to the confining potential comparable to that
for the quadratic sample, we have increased ! from 10 nm to 40 nm, in Figs. [7.4c,d. This
leads to a larger range of lattice sites, which can contribute efficiently to the spin dependent
hopping. In the case of the larger [ the results resemble those discussed in the last section for
square samples. In Figure the amplitude of the Rashba contribution to the spin Hall effect
counted to the first minimum is enhanced by the confinement potential. By contrast the signal
due to the in-plane Pauli term decreases until £, corresponds to the first minimum as can be
seen in Fig. . Similar to our observation in Fig. , the slope 8G§/8é’gy decreases with
increasing top gate field, as long as the spin precession angle due to &, is smaller than 7.

At the end of this section let us emphasize, that for the experimentally relevant case both
interactions are present, but only £, can be easily varied, e.g. by a top gate. Therefore, in the
experimentally relevant case, the presence of both the in-plane Pauli and the Darwin interactions
could lead to an increase of the amplitude of spin signal.

7.4 Conclusions

We have derived an extension to the BHZ Hamiltonian for the typical 2D topological insulator
(HgTe QWs) in the presence of the inversion breaking potential in z-direction, and an in-plane
potential. For the derivation, we used two independent methods: k - p perturbation theory and
symmetry arguments based on Clifford algebra. We found that to the third order in the per-
turbation theory, only the inversion breaking potential in z-direction generates new off-diagonal
in spin space terms. These terms lead to the Rashba spin-orbit interaction when the Foldy-
Wouthuysen transformation to the effective electron model is performed. On the other hand the
diagonal-in-spin space part of the Hamiltonian in the presence of the in-plane potential gener-
ates an additional term to the one band model which is also linear in momentum and spin, but
conserves the z-component of the spin. By analogy with the equation for a relativistic electron
in vacuum we call this term in-plane Pauli term. The presence of both terms in the conduction
band Hamiltonian leads to an interesting behaviour of the spin Hall conductance. In particular,
the in-plane Pauli contribution to the spin Hall conductance is suppressed in the presence of the
spin precession inducing terms. By contrast, the spin Hall conductance from the Rashba term
preserves the oscillation pattern in the presence of the in-plane Pauli term and its magnitude
can be enhanced due to partial pinning of the z-component of the spin. This latter situation is
experimentally relevant since the inversion breaking potential in z-direction can be easily tuned
by a top gate in experiments. Therefore we expect that in experiments on asymmetrically doped
HgTe/CdTe QWs [Bri+10] in the metallic regime (the Fermi level in the conduction or valence
band), the behaviour of spin transport and especially the spin Hall conductance will be domi-
nated by the Rashba spin-orbit interaction. Note, that in our derivation we omit the BIA terms
since they are already studied in Ref. [K6n+-07], and since at lowest order, they do not add new
spin physics to the effective electron or hole band models.

Let us also emphasize that our effective four band Hamiltonian in the presence of inversion
breaking potential is not limited only to the HgTe/CdTe QWs and can be easily generalized to
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other topological insulators like type IT InAs/GaSb/AlSb quantum wells [Liu+08| with correctly
adjusted strengths of the Rashba spin-orbit interactions.
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Chapter 8

All-electric qubit control in heavy hole
quantum dots via non-Abelian
geometric phases

In this chapter, we show an application of the adiabatic theorem and the associated non-Abelian
holonomy to the universal control of a heavy hole (HH) spin qubit. The adiabatic theorem of
quantum mechanics and the associated geometric or Berry phase, and also its generalization
to degenerate subspaces, which can lead to a non-Abelian holonomy, have been discussed in
Chapter [dl Further, in Chapter [6] we have seen that a special case of the holonomy, given by an
integral over the Berry curvature, is related to the first Chern number, which is a topological
invariant. In this sense, non-trivial holonomy is linked to non-trivial topology. In this chapter
we will be interested in the holonomy, but will not further elaborate on topological aspects.
While all the chapters of this thesis are concerned with manipulation of spins or spin currents
in general, and thus contribute to the area of spintronics, this chapter is different in the sense
that control of a single spin is a specific requirement for spin based quantum computation. The
idea of building a quantum computer [Fey82| has attracted a lot of interest due to the vast
increase in computation power which could become possible for certain algorithms, the most
interesting of them being applications in cryptography, and the simulation of quantum physics
itself [Nie+10]. One promising technological path for implementing a quantum computer is based
on spin qubits in quantum dots. Therefore, the device shown here may serve as computation gate
in the proposed scheme of universal quantum computation by Loss and DiVincenzo [Los+98|.
This chapter is based on our publication [Bud+12a], where we have demonstrated universal
control of a spin qubit in heavy hole quantum dots in the absence of magnetic fields. A time
dependent electric quadrupole field is used to perform any desired single qubit operation by
virtue of the holonomy. Not relying on magnetic fields is a clear advantage with respect to
technological integration of quantum gates. Another important advantage is that the presence
of time reversal symmetry (TRS) is known to forbid several dephasing mechanisms, for example,
in HH spin qubits due to the interplay of electron phonon coupling and Rashba spin orbit
coupling |Bul+05]. Therefore, coherent spin control by all-electric means is one of the major
goals of spintronics. In the original work [Los+98|, the proposed scheme for universal quantum
computing based on spin qubits in quantum dots (QDs) relied, on the one hand, on all-electric
two qubit operations but, on the other hand, on single qubit operations based on magnetic fields
or ferromagnetic auxiliary devices that both break TRS. A few years later, electric-dipole-induced
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Figure 8.1: Schematic of single particle (red ball) with a HH (pseudo)spin (yellow arrow) in a
J = % valence band QD. The three-dimensional QD is surrounded by 18 gates that allow to
generate an electrostatic potential with quadrupole symmetry in any direction in space. The
red and green colors on the gates should visualize applied electrostatic potentials with opposite
sign that give rise to the quadrupole field shown in light blue. Taken from |[Bud+12a]. © (2012)

by the American Physical Society

spin resonance (EDSR) has been proposed [Gol+06| and experimentally realized [Now+07] as a
way to process spins electrically in presence of a static magnetic field which is still breaking TRS.
Rather recently, it has been theoretically shown that in spin qubits based on carbon nanotube
QDs it is indeed possible to accomplish all-electric single qubit operations using EDSR |[Bul+08;
Kli+11]. This is true because the specific spin orbit interaction in carbon nanotubes provides a
way to split spin up and spin down states in the absence of magnetic fields. However, spin qubits
based on carbon nanotubes face other problems and it is fair to say that all host materials for
spin qubits have advantages and disadvantages.

In this work, we show how universal single qubit operations can be performed by all-electric
means in the framework of holonomic quantum computing [Zan-+99| in HH QD systems. The
adiabatic evolution in presence of a time dependent electric quadrupole field is employed to
control the HH qubit (see Fig. [8.1]for a schematic). For our purposes, HH spin qubits (composed
of J = % states) are the simplest two level system that can be manipulated in the desired way.
However, HH spin qubits are, of course, a very active research area by itself beyond holonomic
quantum computing. Two reasons why HH QDs are promising and interesting candidates for
spin qubits are, for instance, the advanced level of optical control [Ger+08; Ebl+09; Bru+09;
deGre-+11] and the predicted long coherence times [Fis+10].

The topological properties of TRS preserving half integer spin systems have been analysed
in a series of seminal papers by Avron and co-workers |Avr+88; |Avr+89|. The case J = % is
of particular interest both from a theoretical and from a more applied point of view. From
the theoretical side, all TRS preserving gapped Hamiltonians are unitarily related due to an
SO(5) symmetry [Avr+88; |Avr+89| giving rise to an SO(5) Clifford algebra |Avr+89; Dem-+99)|
which allows for a simple analytical calculation of the adiabatic time evolution and with that
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the geometric phase. From the experimental side, the J = % system is naturally realized in the
p-like valence band of many semiconductors where spin orbit coupling isolates the J = % states
from the so called split-off band. Interestingly, the fingerprints of SU(2) non-Abelian geometric
phases |[Kat50; Wil4-84] could be also identified in several transport properties of this class of
semiconducting materials [Aro+98; Mur+04].

The pioneering idea of using non-Abelian holonomy to perform quantum computing tasks in
the J = % system is due to Bernevig and Zhang [Ber+05| who proposed the electric Stark effect
to process valence band impurities in III-V semiconductors. The idea works for the light hole
(LH) subspace of the J = % Hilbert space. However, the resulting holonomy is Abelian on the
HH subspace |Zee88| so that the electric Stark effect cannot be used to process HH qubits. In
contrast, the electric quadrupole fields employed in our proposal allow for full adiabatic control
over the entire J = % Hilbert space. As we will see, the effective quadrupole Hamiltonian is
mathematically a generalization of the Stark Hamiltonian, so our method of calculation could
also be used to find the holonomy that is generated by control over the electric field vector in a
system showing the (quadratic) Stark effect.

Recently, holonomic quantum computing due to tunable spin orbit coupling with electron
spins in spatially transported quantum dots has been suggested [San+08; (Gol+10| but this is
very demanding from an experimental point of view. Our idea is conceptually much simpler.
We derive below the time dependent electric quadrupole field that realizes any desired single
qubit operation

Ulh, ) = exp <itpﬁ;> (8.1)

on the HH spin qubit. Here, 7 is a unit vector representing the rotation axis, ¢ is the angle of the
rotation, and o denotes the vector of Pauli matrices acting on the qubit space. Furthermore, we
give an estimate of the adiabatic time scale which determines the maximum operating frequency
of single qubit gates showing that the physics we describe is experimentally feasible. Finally, we
discuss the influence of several imperfections, which might be present in an experimental setup,
on the working precision of our proposal.

The non-Abelian geometric phase, occurring in a degenerate subspace after a cyclic evolution,
is readily expressed once the time-dependent projection P(t) onto this degenerate subspace is
known. The generator of the adiabatic evolution (compare Chapter [4)) then reads |[Kat50|

A <jt> =- [C”;it),P(t)] . (8.2)

On the basis of this generator, the non-Abelian geometric phase [Wil+84] associated with a loop
~ in parameter space is given by the holonomy

U, =Teh?, (8.3)

where T denotes time-ordering. For the Hilbert space of a J = % particle in presence of TRS
this holonomy is readily calculated analytically as we explicitly demonstrate below.

In Chapter [3| about the theory of invariants, we have already seen that the Hamiltonian of
a spin—% particle coupled to an electric quadrupole field can be written as [Avr+88|

H(Q) = J;Q7Jj, (8.4)
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where J; are components of the angular momentum operator and @Q is the quadrupole tensor
of the applied field. We put 2 = 1 in the following. Q is a real, symmetric, traceless matrix.
The space of such matrices is five dimensional. An orthonormal basis of this space is given by
the matrices {Qu}u, w=0,...,4, which satisfy the orthogonality relation %Tr {Qu,Quv} =6
We have given an explicit basis in Eq. . A general quadrupole tensor is then of the form
Q = 2#(Q),, and the associated Hamiltonian reads

H(Q) = H(a"Qy) = 2" J;:Q J; = 2T, (8.5)
where the basis Hamiltonians I, = JiQY J; obey the SO(5) Clifford algebr [Avr+89; [Dem-+99)|
{F,uy sz} = 25,uzx- (8.6)

Although this relation looks similar to the orthogonality relation of the @, there is no trivial
connection between the two. From the Clifford algebra property , it is clear that the
eigenenergies of H(Q) are +|x|, each twofold (Kramers) degenerate.

Let us shortly discuss how the effective quadrupole Hamiltonian includes the effective
Hamiltonian for the Stark effect in an acceptor centre or quantum dot in a Ty or Oy crystal.
That is, we are interested in the splitting of the lowest bound electronic states at the impurity
or quantum dot, due to an applied electrical field. In Chapter [3| we have shown how to construct
the relevant Hamiltonian Hpge of the quadratic Stark effect, see Eq. . We see that Hge =
JTQ(E)J with

QE) =2 <Qo (2E? — E2 — E) + Qs(E} — Eﬁ)) +6(QuE,E. + QE.E, + QuE,E,),

(8.7)

S
V3

where the parameters § and § are measures of polarisability. This shows that even in the
anisotropic case, when 8 # 4, for every path E(t) parametrizing the adiabatic change of the
electric field vector with time, we can find a corresponding path Q(E(t)) in the quadrupole
parameter space, which leads to identical holonomy acting on the spin. Therefore, the calculation
of the holonomy for quadrupole fields, as shown in this section, can be seen as generalization of
the calculation of holonomy for the quadratic Stark effect. The reverse is not true, since there are
holonomy operations that can be obtained by changing the quadrupole field, but not by changing
the electric field. We ﬁndﬂ that universal holonomy operations, i.e. operations generating the full
group SU(2), are possible with the quadratic Stark effect on the LH sector, but not on the HH
sector, since there, the holonomy is Abelian. Also, the linear Stark Hamiltonian Hg, , is
not suitable for universal control of a spin, since the associated holonomy generated by adiabatic
change of E is an Abelian subgroup of SU(2). Note also, that the mapping of the quadrupole
Hamiltonian to a Stark Hamiltonian, as employed here, is only used to find an identification at
the level of an effective Hamiltonian. Clearly, the physical situation is very different, since a
quadrupole potential does not correspond to a homogeneous electrical field, although one could
use the setup of quadrupole gates of Fig. to generate electrical dipole fields.

As far as the geometric phase associated with a cycle in this parameter space is concerned, we
can confine our interest to quadrupole fields of constant strength, say |x| = 1. (This is justified

! Note that the basis of I' matrices is not identical to the one used in Chapter |3} although there is a simple
isomorphism.
% private communication Jan Budich
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because the quadrupole energy is the only energy scale of the problem.) Note that the experi-
mentally relevant scale of |x| defines the splitting between the two Kramers pairs and therefore
the adiabatic operating frequencies of the proposed setup. Due to the mentioned SO(5) symme-
try in the system |Avr+-88§]|, all possible quadrupole Hamiltonians H(Q) are unitarily related by
a Spin(5) representation of this SO(5) symmetry. The ten generators of this symmetry group of
our family of Hamiltonians are given by |Avr+89|

1
Wik = {3 ri =rars} ico. 59

a<f

where a, 8 € 0,...,4. In order to show that indeed, the V; generate a representation of SO(5),
we spell out the orbit ¢ — H(t) of the group action in two different ways,

_tav

H(t) = et F 2#(0)T et :Qﬁwxmg“n“ (8.9)

where @ is a real ten-component unit vector specifying the direction of the SO(5) rotation. This
shows the correspondence between the Spin(5) action on the space of Hamiltonians and the
SO(5) action on the space R\ {0} of parameter vectors x = z*e,,. The generators of SO(5) are
the real antisymmetric 5 X 5 matrices, and the vector W coustitutes a basis of those. To prove
and explicitly calculate the basis W corresponding to V, let us assume that aV = I',I'g
for some fixed a # 3. Then, aW = W with a matrix W having entries Wag = —Wga = —1 and
zeros everywhere else, fulfils Eq. . To see this, we use the Baker-Hausdorff formula

o0

av _4av 1 t
el ety = Z H[x"rm —iFaI‘g](’“), (8.10)
k=0
where the k-times commutator is defined like [4, B]*) = [...[4, B], ..., B]. Note that the Spin(5)

representation covers SO(5) twice. However, in (8.9)), the Spin(5) group element et appears
twice, thus lifting the sign ambiguity. From the Clifford algebra properties, it follows that

=\ M 1
W@)WZjﬂerM] (8.11)
and analogue for higher powers occurring in the exponential series, which shows the equality

in . The Wy, ..., Ws which correspond to the Spin(5) generators Vj,..., Vs, that will be
needed for explicit calculation of parameter loops, read

0 1000 0000 0
~1 0000 0000 -1
Wo=|0 0000|,Wi=|0000 0],
0 0000 0000 0
0 0000 0100 0
00 000 00 000
00 010 00 100
Wy=]0 0 00 0|, Ws=|0 -1 0 0 0 (8.12)
0 -1 00 0 0 0 000
0 0 000 00 000
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We are interested in a cyclic time evolution t — H(t) starting from H(t = 0) = I’y and
given by a 27 SO(5) rotation on the space of quadrupole fields. As shown above, it is uniquely
associated with a 27 Spin(5) rotation in Hilbert space, with the vector of generators given by
V. We call

1
P = 5 (1T o) (8.13)

the projector on the Kramers pair with eigenvalue +|x|. In fact, due to our choice of the initial
Hamiltonian, POjE concurs with the projection on the HH/LH subspaces. Starting with a HH
state [¢(0)) satisfying Py [(0)) = [4(0)), the adiabatic time evolution U(t) can be conveniently
expressed as [Sim83; Wil-+84} | Avr+89|

U(t) = lim Uy,(t) with

n—oo

U,(t) = P (t)PT (m_l)t> - Pt <2t> Pt <t> Py, (8.14)

n n n

where the time dependent projector on the Kramers pair with positive eigenvalue is given by
aVv

Pt(t) = et%POJ’e_tT. Along any such loop v in parameter space the adiabatic evolution is
readily computed analytically to yield [Avr+89|

U(t) = et%e_tPJ%P(;r. (815)

We can check this relation by showing that it fulfils the desired boundary condition P+ (¢)U(t) =
U(t)Py" and the correct differential equation SU ()P = —AUP;, where A is the generator of
adiabatic evolution as defined in (8.2)). Explicitly, we find that

d

a aV a aV
ZUMFS = 2 (1= By) Lo R YR pl = (1 - (1)) %U(t)PO* = —AU(t)P;".
(8.16)
The first factor in (8.15) gives e2™%" — _1 once the loop is completed. The second factor at

t = 27 defines an SU(2) transformation on the HH subspace which is the desired holonomy
U, (see Eq. ) up to a sign. Note that the holonomy associated with a loop v is a purely
geometrical object. It does not depend on parameterization, i.e. on the time-dependent velocity
with which the electric field is ramped, as long as the adiabatic approximation is justified.

We now explicitly construct the direction a needed to obtain any holonomy as parametrized in
Eq. . The angle and axis of the rotation can be tuned using the relations

PyTol, Py =0, u+#0, (8.17)
as well as

PyTal\ P =io,, PiTiIsP) = ioy,
Py Py = io,, (8.18)

where o; are the Pauli matrices on the HH subspace with eigenvalue +|x|. To see this, let
us restrict ourselves to the four generators I'1I',,, p # 1 and label them Vo = T'gI'y, Vi =
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Iy, Vo =T11T3, V3 = I'1T'9. With this restriction a only has the nonvanishing components

ag, a1, ag, as satisfying Z?:o a? = 1. Using Egs. 1 D we get by comparison to Eq. 1D

p=2r(1- [> a2 :2w<1—@/1—a8>€[0,2ﬂ,
i#£0

(8.19)

Next, we translate the loop associated with the direction @ into a time dependent quadrupole
field, using the relation and SO(5) generators Wy, ..., W3 of (8.12). Now, we can define the
time dependent quadrupole field associated with the loop in direction a:

Qt) = 2" (1)Q, = (emwx(O))“ Qu. telo,2n] (8.20)

which needs to be experimentally applied to perform the desired single qubit operation.
Let us give a concrete example. If we were to rotate the HH spin from pointing in z-direction

. . . . . 1 -1 L
to the z-direction this would correspond to the operation U(—¢é,,%) = % <1 1 > which is

associated with the quadrupole field
VT3 ®
Qt) = <et( T Wo 4W2>e0> Qu, te€][0,27], (8.21)

ie. a = (ag,a1,a2,a3) = (%,0, —%,0) and x(t = 0) = eg = (1,0,0,0,0) in the language of our
general analysis. Indeed plugging this choice of & into Eq. yields i = —é,, ¢ = 5. A
stroboscopic illustration of a possible electrostatic gating scheme realizing this time-dependent
quadrupole field is shown in Fig. [8.2] For this particular example, we only need 10 of the 18
gates illustrated in Fig. [8.1] To perform an arbitrary SU(2) transformation 14 of these 18 gates
are needed. We could drop, for instance, the four gates that are coloured in red and green in
Fig. and still be able to perform any desired single qubit rotation on the HH subspace.

8.1 Estimation of experimental parameters in GaAs quantum
dots

Up to now, the energy scale AE = |Q| = |x| (see Eq. (8.5])) has been treated as a free parameter.
To show that this scale is amendable to state of the art experiments on GaAs quantum dots, we
give a numerical estimate for AE. To do so, we calculate the HH-LH splitting AE associated
with an electrostatic potential e®4(r) = Ar? Qr with quadrupole symmetry on the basis of a
Luttinger four-band model for the valence bands of a GaAs/AlGaAs quantum well [And+87;
Chu91|. Here, r denotes the real space position vector and the QDs are modelled by a parabolic
lateral confinement potential defining the dots on a typical length scale of 50nm. The strength
of the potential is determined by the constant A. For a realistic quadrupole potential e®, ~
50 meV at a distance r ~ 50 nm away from the center of the dot, we obtain a splitting of
AFE = 0.57 meV, which corresponds to a temperature of 6.6 K and an adiabatic frequency of
w = 0.87 THz respectively. Therefore, it is easily possible to stay below this frequency such
that the adiabatic evolution is justified and at the same time complete the loop much faster
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Figure 8.2: (a) A 10-gate setup realizing the operation U(—é,,5) on the HH spin (yellow
arrow). The colors of the schematic gates visualize their time-dependent charge during the loop
operation, at times from left to right and top to bottom, ¢t = 0, 3, , 32”, and 27w, All charges
are normalized to the charge ¢, of the topmost gate at ¢ = 0. (b) Time-dependence of non-zero
components of x during the operation U(—é,, 5). Taken from . © (2012) by the

American Physical Society
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than typical dephasing times in HH spin qubits. (7% of the order of us has been measured in
Ref. |deGre+11].)

In real experiments, there will not only be the (wanted) HH-LH splitting AE induced by
the quadrupole field but also an (unwanted) HH-LH splitting AFy induced by confinement.
For our purposes, the former should be much larger than the latter. We estimate in Section
that often times it is the other way round, i.e. AEy is much larger than AE which is a
true problem for our proposal. However, by applying mechanical strain, the splitting of the
individual quadruplet subbands of the quantum dot can be engineered significantly [And+87;
Chu95|. For the parameters used in our model, the confinement induced splitting AEy can then
be realistically tuned below our estimated value of AE = 0.57 meV. Hence, strain engineering
of the QD is needed to guarantee a reliable performance of our setup. Additionally, we note
that our proposal is robust against unwanted residual dipole fields, deviations from a quadrupole
potential with only [ = 2 contributions, and deviations from a quadratic confinement potential.
The influence of these perturbations on AE are carefully analysed in Section and shown
to be harmless.

8.1.1 Quadrupole induced HH/LH splitting in strained GaAs quantum dots

In this section, we give a quantitative estimate of the heavy hole (HH)/light hole (LH) splitting
induced by an electric quadrupole field on strained GaAs quantum dots. We model a quantum
dot using the effective 2D Hamiltonian of a [001] quantum well (QW) [And+87| and add some
parabolic confinement ®;(x,y). This reduces the symmetry to Dyg and therefore, even without
a quadrupole potential, we expect a HH/LH splitting AEy. We account for this by extending
the Hamiltonian H(Q) = JTQJ to

H = H(Q) + %Tz (8.22)

with 7, = diag(1, —1,—1,1), and the Hamiltonian is written in the basis

23) 320 [2-2)[2-2)} 2

Without loss of generality, we use a quadrupole potential e®, = #rTQr associated with the
quadrupole tensor of four Coulomb charges +¢ at equal radius R in the (z,y) plane (correspond-
ing to A = %),

0 0
16
Q:r% ~1 0 |. (8.24)
e 0 0 0

Whereas the spectrum of H is E = +|x|, where x is a 5-component vector defined by the
expansion Q = z#Q,,, the spectrum of H' simplifies for our choice of the quadrupole potential

to
1
E = i§\/AE02+4|x\2. (8.25)

We will use this relation to fit |x| as a function of the strength of the quadrupole potential. Note
that here, Q x @1, and we could also model the zero-field splitting AFEy by the quadrupole
Hamiltonian 220

2 JTQoJ. This shows that one could try to use a voltage offset applied to the
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quadrupole gates, in order to get rid of the undesired splitting AFEy. However, it turns out that
the required voltage offset would be so large that it would destroy the in-plane confinement of
the QD. Therefore, we choose a different approach below, by applying mechanical strain to tune
AFEy to zero.

To obtain an effective Hamiltonian for the QW, we first solve the envelope function f(z) where
z is the direction of growth. In general, the 4-component envelope function f(z) depends on
k| = (kg,ky). We simplify the problem by performing a k - p calculation with expansion of
k| around the I' point. The Luttinger Hamiltonian Hp(k; = 0) is diagonal and for the ith
component f; of f we find

1
(km(z)k + V(z)) £i(2) = Eifi(2). (8.26)

Here, m;(z) is the material dependent bulk effective mass, which is mp; for the barrier and
myy; for the material of the well and band dependent (index ¢). Furthermore, V(2) = Vp in the
barrier and zero otherwise. We use the symmetric ansatz

A;esitW/2) z < —W/2,
fi(z) = Bjcos(kiz) —W/2<z<W/2, (8.27)
A &GS,

where W = 60nm is the QW width, k; = /2mw; E; and & = \/ZmByi(VB — E;). Continuity of
fi(2) and f/(z)/mi(z) give the secular equatio

1 A2 - V)
— - :<mB> tan (kiw mW23> (8.28)

mw,;

with ]%i\ / QTI’LWJ‘V = ki.

The Luttinger Hamiltonian for I's bands including corrections due to strain reads

P+Q -S R 0
st P-Q 0 R
H =— o 0 P-OQ s (8.29)
0 Rt st P+Q

written in the basis (8.23). The strain tensor €;; gives the displacement of an atom at unit vector

A~

i along unit vector j. We consider only uniaxial strain with €,; = €,y # €., and €,y = €5, =
€y> = 0. Then, only P and @ include corrections due to strain:

P =ton (k2 + k) + tok-mk: + P,
Q = toya (ks + k) — 2tok:yaks + Qe
R =toV3(—ya(k2 — k}) + 2ivskaky),
S = toV3(ky — iky){vs, k2 }

3 Unfortunately, in our paper [Bud+12a| there is a mistake at this point, which we have noticed only after

8.30
8.31
8.32

(
(
(
(8.33

)
)
)
)

mp.\3/? . mp.i\ /2 . .
publication. There, we incorrectly wrote (m‘i L) instead of (ﬁ) in the secular equation. However,
redoing the calculations shows that both the quadrupole induced HH/LH splitting |x| and the required applied
strain ¢ change by less than 1%, so all the conclusions of the paper remain valid. The smallness of the change
is because the effective mass factor only affects the matching condition of the wave function at the barrier/well
interface, and thereby mainly changes the wave function in the region where it decays exponentially. The figures

shown here are those of our publication.
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with tg = ﬁ and

P. = —ay(€zz + €yy + €22), (8.34)

b
Qe = —i(ﬁxx + €yy — 262,2)' (835)

The GaAs/AlAs lattice constants are almost the same (5.65 A vs. 5.66 A). This is desirable
because one needs rather wide quantum wells and intends to avoid uncontrolled relaxation of
strain. Here, we assume additional strain due to external pressure 7,, which can be expressed in
terms of the stiffness tensor C' relating strain and stress. The condition of no transversal stress
Tex = Tyy = 0 gives

€y — Eyy — —Chz T2z
C? + C11C19 — 2C%,
6. = Ci1 + Cr2 .
C%l + C11C2 — 20122 =

(8.36)

(8.37)

where Cj; = 11.88 10° bar and Cj2 = 5.38 10° bar [Chu95|. We take the same values for barrier
and QW for the deformation potentials, a, = 1.16 eV and b = —1.7 eV. |Chu95| The parameter
¢ := Q. will be used as strain control. A pressure of lkbar gives ( = 2.61 meV. P, is an
unimportant overall energy shift.

The effective QW Hamiltonian is obtained by integration over envelope functions f,(z) of
the lowest LH and HH QW subbands,

HYY = [ dz fl()HLf3(2). (8.38)

Contributions of higher subbands give quantitative, but not qualitative changes of our estimates,
since strain gives a diagonal correction to H9W and can be used to tune AFEy. Together with
the in-plane potentials ®;, H?W gives our QD model which is numerically diagonalized.

For a quantitative estimate of |x|, we use the same parameters as Ref. [And+87]: For GaAs,
Y1 = 6.85, vo = 2.1, v3 = 2.9. For AlAs, v1 = 3.45, 79 = 0.68, v3 = 1.29. The barrier material is
Aly_,Gay,As with v = 0.21 and the Luttinger parameters are obtained by linear interpolation.
The bulk gap difference is AE, = (1.04v + 0.47?) eV = 0.239 eV. We assume that the valence
band shift from well to barrier is —0.4 AE,.

For the in-plane confinement, we use e®; = —0.15 eV(r/Rumax)? where 2 = 22 + 32
e®1(Rmax) should not exceed AE,. ®; is discretized on a lattice corresponding to L=100 nm
side length, so Ryax = 50 nm. By choosing Ryax and W comparable, we intend to have about
the same level spacing due to in-plane and QW confinement. Then, the confinement comes
closer to the ideal, fully rotationally symmetric confinement.

With this geometry, a value of e®;(Rpax) = —1 €V gives a field strength of 40 meV/nm at
Rpyax- Fig. shows the zero-field splitting AEj as function of strain, demonstrating that the
confinement induced splitting can be tuned down to zero by means of uniaxial strain. Fig.
shows fits to the dispersion in order to obtain the quadrupole induced splitting 2|x|.
A realistic quadrupole with a maximum potential e®y| of 50 meV gives a quadrupole
induced splitting of 2|x| ~ 0.57 meV.

r=50 nm
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Figure 8.3: HH/LH splitting AEy (in the absence of a quadrupole field) as a function of the
strain-induced subband shift ¢ for a QW thickness W = 60 nm. Evidently, the (unwanted)
HH/LH splitting AEy can be tuned down to zero by a uniform strain in z direction. The
dashed line marks the value of the typical (wanted) HH/LH splitting AE = 0.57 meV due to
a quadrupole field as discussed in the text. Taken from [Bud-+12a]. © (2012) by the American
Physical Society
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Figure 8.4: HH/LH splitting AE as function of the quadrupole potential @,, = max(e®,)
at r = 50 nm. The dots are numerical results and the continuous lines fits to the expected
dispersion with the quadrupole parameter |x| = 0.00575 @, (red) and |x| = 0.00565 Qy,
(blue). The full red line corresponds to a strain energy ¢ = 2 meV and the full blue line to
¢ = 1.9 meV. Taken from [Bud+12a]. © (2012) by the American Physical Society
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8.1.2 Stability of the quantum dot setup against perturbating potentials

The aim of this section is to analyse the stability of the effective quadrupole Hamiltonian H’
against deviations from a perfect quadrupole potential with [ = 2. These deviations include
external dipole fields and deviations from the quadratic confinement and will be described as
V(r, ¢) in the following. The stability of H' implies the stability of the quadrupole Hamiltonian
H(Q) since a change in the unwanted AEj can be suppressed by adjusting the strain.

We consider the axial multipole expansion of the in-plane potential V (r, ¢) given by a dis-
tribution of Coulomb charges p(R,¢'). The QD extension is small against the distance to the
gates, i.e. 7 < R. We expand in the Legendre Polynomials P,

00 o 00
Vo =g 3o [ dofeosto — o) [ dRpuo( ) (8.39)

We continue by expanding the P, as

r'Pi(cos(¢—¢) =r" > arjcos(j(d— ). (8.40)

j=11-2,..

For the quadrupole symmetry V(r,¢ + §) = —V/(r,¢) and upon inserting (8.40) into (8.39),
the nonzero coefficients a; ; have j = 2,6,10,... and j <. Similarly, for the dipole symmetry

V(r,¢ +7) = =V(r,¢), the non-zero coefficients oy ; fulfil j = 1,3,5,... and j < [. Table
shows how some characteristic terms in the expansion (8.39) enter our model.

=0 Overall shift in energy that does not change AFE.
l=1]|rcos¢ Shift of the center of the bound state assum-
ing that quadrupole and confining potentials
(®1 + P4) are quadratic in r. AE unchanged.
1=217r% r’cos2¢ Included in the model as ®; + 4.

=3 |rP;= 7“3(% cos ¢ + % cos3¢) | Lowest order that appears in dipole expansion
and can induce quadratic Stark effect.

=4 |r*cosdo Deviation from quadrupole symmetry by four
equally charged gates.
r4 cos 2¢ Allowed by quadrupole symmetry leading to the

same effective Hamiltonian H(Q) with J = 3

but with the induced value AFE only a few per-

cent in comparison with [ = 2 term. Does not
influence holonomy operations.

r Correction to the confinement potential, which

removes stability against the [ = 1 perturbation.

1=6 | r%cos6¢ Lowest order perturbation that appears in
quadrupole expansion.

Table 8.1: Characterization of terms in the axial multipole expansion (8.40) by their ability to
perturb the holonomy.

Let us now summarize the results included in Table The | = 0 term induces an uninter-
esting energy shift. The [ = 1 term could give rise to a linear or quadratic Stark effect. However,
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in very good approximation, we may assume that GaAs and AlAs have inversion symmetry and
can be described by a Luttinger Hamiltonian. Since the Luttinger Hamiltonian H7, is even un-
der inversion, the lowest bound states have even parity. This excludes the linear Stark effect by
symmetry. Further, as long as we model both the confinement and the quadrupole potential as
quadratic in 7, a linear potential will simply shift the center of the wave function. Thus, the
quadratic Stark effect also cannot change AFE.

For a numerical estimate of higher-[ terms, we model the gates by four Coulomb charges at
r = 50 nm. We find that the [ = 3 and [ = 4 terms barely change AF even if the corresponding
charge imbalance at the gates is highly overestimated as compared to a realistic experimental
setup, meaning we have chosen them of the order of the quadrupole charges itself. If quadrupole
symmetry of the potential holds, the lowest perturbation term is [ = 6. This term will change
depending on the shape of the gates, but, since it contains a small parameter (r%/R%), it is
negligible.

Finally, we note that the system is no longer robust against the quadratic Stark effect if the
confinement potential behaves other than r2. We analyze this case in Fig. by changing the

in-plane confinement to e®} = —0.15 eVRg—Q(l + %Rgi) A residual constant dipole field is
modelled by an additional potential e®y = —0.025 eV 5'— cos(¢ — §) so that it is not aligned

with the other potentials, and corresponds to a dipole charging being % of the quadrupole
charging, assuming the latter to yield a maximum potential e®4|,—50nm of 50 meV. This certainly
overestimates the error expected in an experiment. Nevertheless, as can be seen in Fig. AFE
is barely affected by this perturbation. In Fig. the dipole potential is kept constant for the
red dots, while the quadrupole potential scales with Q,,. The blue dots show AFE without the
dipole potential, for comparison. Although not apparent from the figure, we have checked that
the difference given by red vs. blue dots scales with the square of the dipole potential.

Summarizing, we find that the effective Hamiltonian H(Q) remains valid in good approxi-
mation. In all cases, the quadrupole splitting dominates the other (disturbing) contributions for
realistic parameters.

8.2 Summary and outlook

In summary, we have demonstrated that an electric quadrupole field can be used to fully control
a HH qubit without breaking TRS. The adiabatic time scale of our proposal is determined by the
field induced splitting AE between the two Kramers pairs, which we have estimated for GaAs
QDs to be on the order of 0.57 meV. The maximum operating frequency of the device should be
significantly below this energy scale to justify the adiabatic approximation which is understood
throughout our analysis. Confinement induced splitting between the two Kramers pairs in the
J = % quadruplet of levels at the relevant energy in the HH QD impinges on the efficiency of
the geometric control over the qubit. The scale of this splitting for a given quadruplet can be
tuned /reduced by applying strain. We note that exact control over the qubit is still possible as
long as the quadrupole energy gap is larger than the confinement induced splitting. Our proposal
is not limited to HH quantum dots in GaAs quantum wells, but can in principle also be employed
to process trapped spin—% ions or HH-like valence band impurities by means of a quadrupole
field. The presence of TRS in combination with suppressed hyperfine coupling in HH systems
renders our proposal less prone to decoherence than non-adiabatic processing schemes relying
on the presence of a Zeeman splitting due to an external magnetic field. Two-qubit gates can be
performed by virtue of electrostatic gates as proposed in Ref. [Los+98|. All-electric spin pumping
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Figure 8.5: Including a 7 correction to the confinement (®] in the text) allows for the quadratic
Stark effect by a homogeneous electric field. The plot shows the HH/LH splitting AE' as function
of the quadrupole potential @, = max (e®4) at 7 = 50 nm with ¢ = 1.9 meV and W = 60 nm.
Blue dots are without the dipole potential ®5 while red dots include the ®5, which corresponds
to a charging ratio of 1/3 of a dipole vs. quadruple configuration at @,, = 50 meV. This
ratio certainly overestimates the error that we expect in the experimental situation. Taken from
[Bud+12a]. © (2012) by the American Physical Society

and spin filtering techniques respectively |Bro+10b| can be used to perform initialization and
readout tasks on the quantum dots. Hence, our proposal in principle allows for TRS preserving
universal quantum computing.
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Chapter 9

Spin-dependent thermoelectric
transport in HgTe/CdTe quantum wells

In this chapter, we analyse thermally induced spin and charge transport in HgTe/CdTe quantum
wells on the basis of the numerical non-equilibrium Green’s function technique in the linear
response regime. In the topologically non-trivial regime, we find a clear signature of the gap
of the edge states due to their finite overlap from opposite sample boundaries — both in the
charge Seebeck and spin Nernst signal. We are able to fully understand the physical origin
of the thermoelectric transport signatures of edge and bulk states based on simple analytical
models. We find that the spin Nernst signal is related to the spin Hall conductance by a Mott-like
relation which is exact to all orders in the temperature difference between the warm and the cold
reservoir. The theoretical foundations needed for this analysis have been discussed in Chapter
on electronic transport and Chapters [6] and [7] on the two-dimensional topological insulator
system of HgTe/CdTe quantum wells. This chapter follows closely our publication [Rot+12].

9.1 Introduction and overview

Thermoelectric transport coefficients define the efficiency of a system to generate an electrical
power from a temperature gradient [Mac62|. The most established thermoelectric phenomenon
is the Seebeck effect [See26|, in which a current (closed boundary conditions), or a bias (open
boundary conditions) is induced from a temperature difference held between two reservoirs of
a junction. The transverse Seebeck coefficient, or Nernst coefficient, refers to the alternative
situation where the thermally induced current (bias) flows in the direction transverse to both
the temperature gradient and the applied magnetic field [Ner87].

Thermoelectric effects have major consequences in terms of technological impact and sci-
entific understanding. On the one hand, these effects offer interesting applications based on
heat-voltage conversion: thermometry, refrigeration, power generation [Gia+06; |[Bel08|. On the
other hand, thermoelectric coefficients combine information from energy and charge flows at
quasi-equilibrium. Furthermore, they are more sensitive to the details of the density of states
than electrical conductance |[Abr88; Zim60; Bee+92|. Both aspects make them a powerful tool
to probe the system dynamics [Seg05].

During the last two decades, there have been considerable technological advances in low-
temperature nanoscale physics. This allows precise measurements of thermoelectric transport
signals, obtained in various systems like bismuth [Beh+07], superconductors [Bel+04; (Cha+10],
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carbon-based structures [Balll|, or molecular junctions [Dub+11].

The recent alliance of spintronics and thermoelectric transport brings up a spin analogue of
Seebeck and Nernst effects (see Ref. |Baull| for a short review). Especially in systems with
strong spin-orbit interactions, a temperature gradient can generate a transverse spin current (or
bias) even in the absence of an applied magnetic field. This can lead to the anomalous Nernst
effect (in the case of ferromagnetic systems)|[Miy—+07; Sla+11; [Han+-08a| or the spin Nernst effect
(in the time-reversal symmetric situation)|Chu+10; Liu+10c; Dyr+12].

Systems with strong spin-orbit interactions have been extensively studied in condensed mat-
ter physics especially since the prediction of the spin Hall effect |[Dya+71; Hir99; Mur+03;
Sin+04| which allows for an all-electrical manipulation of spin. The spin Hall effect generates
a transverse spin accumulation as a response to a longitudinal applied electric field. Spin-orbit
interactions have several origins which distinguish the different types of phenomena, for instance,
an extrinsic spin Hall effect can emerge from the spin-orbit dependent scattering on impurities
or defects [Dya+71; Hir99; Han-+06}; [Han+09a; Kat+04; |Gar+10]. On the other hand, bulk or
structure inversion asymmetries [Byc+84; Drebd; 'Win05| give rise to an intrinsic spin Hall ef-
fect [Mur+03; [Sin+-04; Brii+10], which may be described in terms of an anomalous velocity or
a spin-dependent classical force |[Ber84; Xia+10; Sun+99|, compare also Chapter .

Recent experiments have demonstrated the existence of an intrinsic spin Hall effect in
HgTe/CdTe quantum wells (QWs) |Brii+12] by the use of the quantum spin Hall effect as the de-
tector. This novel electronic phase is characterized by an insulating bulk and protected metallic
edge states. The emergence of the quantum spin Hall effect is due to strong spin-orbit coupling
and other relativistic corrections, which reverse bands of opposite parities. The electrons obey a
massive Dirac equation and the sign of the mass term enables us to distinguish the topological
phases. The edge states consist of Kramers pairs moving in opposite direction at each boundary
|[Kan+05a; Fu+07a; Ber+06a] and time-reversal symmetry protects them from non-magnetic
and elastic backscattering [Wu-+06]. Thereby, these edge channels carry “dissipation-less” spin
currents whose existence in HgTe QWs has been confirmed experimentally by measurements in
multi-terminal devices [K6n+-08].

A major goal in research on thermoelectrics is increasing the efficiency of power conversion,
for harvesting electrical power from heat. Therefore, much attention is often given to the figure of
merit ZT = 0S?T/k. ZT is a measure of the electrical power that can be harvested, compared
to the used heat power. Here o, S, k and T are electrical conductivity, the thermopower
(Seebeck coefficient), total heat conductivity including electron and phonon contributions, and
the temperature, respectively. ZT can be calculated from the Onsager reciprocal relations, which
relate electrical and heat currents to voltage and temperature gradients. In order to maximize
ZT, one must minimize thermal conductivity - in particular, the phonon contribution increases
thermal conductivity but not electrical conductivity or thermopower, and is detrimental. At the
same time, one should maximize thermopower S and electrical conductivity - which is a difficult

task since electrical and thermal conductivity are related, e.g. in metals by the Wiedemann-Franz
2

.2
law & = 773523 T. High thermopower requires steep dependence of the electronic density of states
on the energyE] While this is difficult to achieve in metals, semiconductors are good candidates
since engineering (by doping or gating) allows for choosing the Fermi energy just above the

bottom of the conduction band. Good candidates for thermoelectric materials that fulfil these

! Phrased differently, a thermoelectric signal is related to the particle-hole asymmetry of the energy dispersion,
with respect to the chemical potential. For this reason, superconductors show vanishing thermoelectric signals
and are useful reference materials in thermocouples with other materials of interest.
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combined requirements are semiconductors congisting of heavy atoms - typically they have a
narrow (or even inverted) gap, which helps increasing electrical conductivity. Interestingly,
this is just the class of materials that also turn out to be (3D) topological insulators, e.g.
BiyTes [Fu+07b; Zha+09]. Therefore, topological insulators have also attracted the interest of
the scientific community working on thermoelectricity. Several proposals have been conceived
how to modify the bulk of a topological insulator in a way to decrease phonon contributions,
and at the same time benefit from the high conductivity of surface or edge states. The latter
could be line dislocations [Tre+10|, surfaces states of a 3D TI [Tre+11], or edge states of a
narrow ribbon of 2D TI [Tak+10]. The aim is the enhancement of the contribution of edge
states to the thermoelectric transport compared to the bulk modes. However, the subject of this
thesis is not thermoelectric power conversion but spintronics, and we will not further discuss
efficiency of power conversion and thermal conductivity. In this chapter we are rather interested
in thermoelectricity as a tool acting on the spin of a 2D topological insulator.

In this work, we investigate the spin-dependent thermoelectric transport in topological in-
sulators based on HgTe/CdTe QWs, in the absence of magnetic fields. The behaviour of the
Seebeck coefficient and the spin Nernst signal is analysed in a four-terminal cross-bar setup, as
shown in Fig. [0.1] A thermal gradient between lateral leads induces a longitudinal electrical bias
and a transverse spin current. FEach of them can be used as a probe of the topological regime
as well as finite size effects of the quantum spin Hall insulator. We show that the oscillatory
character of the Seebeck and spin Nernst coefficients in the bulk gap highlights the presence
of the mini-gap — due to the finite overlap of the edge states from opposite sample boundaries.
Furthermore, we describe a qualitative relation between the type of particles in a given band and
the magnitude of the spin Nernst signal. This allows us to provide a natural explanation of the
observed phenomena based on anomalous velocities and spin-dependent scattering off sample
boundaries.

In Section (9.2 we introduce the model Hamiltonian of the HgTe/CdTe QW and describe the
formalism necessary to calculate the Seebeck and spin Nernst coefficients, and also discuss a
generalization of the Mott relation. The thermoelectric transport by the edge states — with a
particular emphasis on finite size effects — is analysed in Section through the behaviour of
Seebeck and spin Nernst signals. In Section [9.4] we focus on the spin-dependent thermoelectric
effect induced by the bulk states.

9.2 Model

In this section, we present the model Hamiltonian of the HgTe/CdTe QW and give the general
expressions of the Seebeck and spin Nernst coefficients.

9.2.1 Hamiltonian

We consider a four-terminal cross-bar setup based on a HgTe/CdTe QW whose low-energy dy-
namics is described by the Bernevig-Hughes-Zhang (BHZ) four-band model [Ber+06a; [K6n+-08|.
The Hamiltonian is written in the basis of the lowest QW subbands |E+), |H+), |E—), and
|H—). Here, &+ stands for two Kramers partners but in the following, we will refer to them
as spin components, denoted by T.J, for brevity. The spin z-direction corresponds to the QW
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Figure 9.1: Four-terminal cross-bar setup based on HgTe/CdTe QWs used for thermoelectric
transport. A longitudinal temperature gradient AT is applied between reservoirs a and b and
generates a transverse spin current IS detected, for instance, in reservoir c.

growth direction, which is [001]. The Hamiltonian can be written as

H = Vi (r)7. — DK? + ( h(ok) h*(o_k) > , (9.1)

M(k) Ak
h(k):< AR _M?k)> (9.2)

with k% = k2 + /{2, ky = kg £ iky, and M(k) = M — Bk?. The sign of the gap parameter M
determines whether we are in the regime of a trivial insulator (M > 0) or a topological insulator
(M < 0). Experimentally, M is tuned by changing the QW width.

The term V,,(r)7, describes an in-plane confinement potential, where 7, is a Pauli matrix
acting on the E'/H space. By this kind of confinement we may ensure that outside of the sample,
i.e. in vacuum, the parameter regime is topologically trivial, so that edge states, if present, will
be confined. Calling the inside of the sample G, the limit V,,(r) — oo Vr € G can be used
to make all components of ¢ vanish at the sample boundary, the envelope function ¢ being the
solution of the Dirac equation based on the Hamiltonian (9.1)).

This model can be extended by a term breaking the structural inversion asymmetry (STA)
with a z-dependent potential, as has been shown in Chapter [7.1.I] The resulting Rashba-like
interaction connects the Kramers blocks of the Hamiltonian affecting the particles with
opposite spin

o o 2
iRok_ 1Sok~ > (9.3)

hR(k)Z( iSok?  iTpk?

with the Rashba coupling parameters Ry, So, and Ty [Rot+10]. We have analysed that such
a term will only quantitatively affect all our results presented below. Therefore, we will not
further consider effects due to SIA in this chapter.

Figure [0.1] shows the four-terminal cross-bar setup we analyse. The central sample is con-
nected to four semi-infinite leads: the reservoirs a and b are maintained respectively at warmer
and colder temperature than the rest of the system — creating a longitudinal temperature gra-
dient — while the transverse terminals ¢ and d are used to probe spin currents.

To model the setup and treat the thermoelectric transport properties, we employ the tight
binding approach. Therefore, we discretize the continuum model on a lattice of spacing
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E [to]

Figure 9.2: Subband dispersion relation for the leads (400 nm wide), in (a) the normal regime
(M = 0.1tp) and (b) the inverted regime (M = —0.1tp). The inset shows the mini-gap in the
dispersion caused by the overlap of edge states. The colouring highlights the transition from
electron-like character (|E+) in red) to heavy-hole character (|H=) in blue) with full color for
a 20% excess of either contribution. The lattice constant is ¢ = 6.6 nm so tg = 44 meV. The
mini-gap width is 6.5 x 1073 ¢o(= 0.28 meV). Taken from [Rot+12|. © (2012) by the American
Physical Society

a by the substitutions k? — %(2 — 2cosk;a) and k; — %sin(kia), where i = z,y,2z. The

confinement potential is implemented by the lattice truncation in accordance with the geometry
of the sample. Rewriting the trigonometric functions in terms of translation operators, this leads
to a tight binding Hamiltonian which only contains nearest-neighbour hopping terms between
the lattice sites. The energies of the model are expressed as functions of the conduction band
hopping parameter g = —%;B where the parameter values of the HgTe/CdTe QW are taken as
in typical experiments, i.e. A = 0.375 eVnm, B = —1.120 eVnm?, and D = —0.730 eVnm?. In
the low-energy regime, the lattice constant is set sufficiently small compared to the Fermi wave
length. Hence, for a = 6.6 nm, the energy unit is £y = 44 meV. The parameter M is chosen as
|M| = 0.1ty = 4.4 meV. In Fig. [0.2(a) and (b), we show the subband dispersion relation for a
HgTe/CdTe QW of width 400 nm, both in the normal insulator and the topological insulator
regimes. In the latter case, finite size effects emerge on the edge states since they substantially
overlap [Zho+08]. One of the consequences of this is the opening of a mini-gap, as shown in the

inset of Fig. [9.2b).

9.2.2 Landauer Biittiker formalism and thermoelectric coefficients

The particle current I, in the lead p with spin o is obtained by the Landauer-Biittiker formula
[Dat07], which is the generalization of (5.51)) to spin-selective leads,

Ipo = iz#:/dE Tpo,q(E)(fp - fq) (9.4)

with f, = (e(P=re)/F8Ts 1 1)1 the electronic Fermi distribution function, kg the Boltzmann
constant, T}, the temperature, and p, the chemical potential. The transmission probability
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Tpoq(E) = > Thoqo (E) from lead p with spin o to lead g can be evaluated using the non-
equilibrium Green’s function formalism (NEGF) [Mei+92; San-+99; Wim0§|

Tpo.q0 (E) = Tr[FpUGRan’GA]’ (p,o) # (q, U/)u (9.5)

where I'y (E) = i(X)s —ij) refers to projectors on velocity operators of the propagating modes,
and X, (E) stands for the spin-dependent self-energy. Equation (9.5)) can also be obtained from
the Fisher-Lee relation . The self-energy is defined by 3, (E) = Tpo (E+i0T—H 1Cads)_17'gg,
where the matrix 7,, connects the lead p, spin o to the adjacent sites of the sample. GR(E) =
(GAE) = (B - Hgample — Zp,o Y,0) ! is the retarded Green’s function. Further, Hieaqs and
Hgample represent, respectively, the lattice Hamiltonians of the decoupled leads and the sample.
Once the transmission probabilities are evaluated, the charge current I = e(Ip + Ipy) and the
spin current I, = (h/2)(Ip+ — 1) can be obtained.

We consider a longitudinal temperature gradient between the leads a and b by setting T, =
T+ AT, T, =T —AT, and Tc = Tq = T. In the linear response regime, the Seebeck coefficient
reports the longitudinal voltage bias Ay = 5k generated by the temperature gradient AT
under the condition of vanishing charge currents (open boundary conditions). Upon Taylor
expansion of the Fermi functions in AT and Apu, the Seebeck coefficient can be written as

_ “Au L JdE fo(1 = fo)Tse(E)(E — )
" eAT =0 €T JdE fo(1 = fo)Tsn(E)

(9.6)

with fo = (eF=W/kBT L 1)~1 the Fermi distribution function at equilibrium. In the above
equation, we defined the Seebeck transmission function Tsg(E) = Ty p + (Tac + Ta4)/2, where
the summation over spins is implied.

Due to the presence of intrinsic spin-orbit interaction in the sample, the longitudinal thermal
gradient AT also yields a transverse spin current IZ(= —IJ) in the case of closed boundary
conditions. The spin Nernst coefficient is then defined as the ratio

_ 2 1
s = N Sk T2
2AT e 8rkgT

/ dE fo(1 — fo)Ten (E)(E — p). (9.7)

=p

Here, we introduced the spin Nernst transmission function Tgn(E) = AT — AT ., with the
short-hand notation ATQb(E) =Terpt + Terpy — Ty ot — Loy by

Interestingly, the Mott relation provides information about the (spin-)thermotransport co-
efficients on the basis of the energy dependence of the (spin-)conductance [Cut-+69]. In the low
temperature limit, one can derive

_ mkET dInGue(E)

Se & , 9.8
3e dE Fep (98)

where G (E,T = 0) = %%E(E) is the longitudinal conductance for zero temperature. Equa-
tion (9.8) is valid if kgT is large compared to the scale on which Tgg(FE) varies. A numerical
analysis in |[Lun-+05| claims that can be valid even if Tgg(F) varies more rapidly, as long
as kT < .

An analogous relation exists between the spin Nernst signal and the spin Hall conductance.
From the Sommerfeld expansion of the transmission function in Eq. , one obtains the
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following Mott-like formula
N 2m2k%T dGsp(E)
B 3e dE E=p(T=0)

(9.9)

with Gsp(E, T = 0) = & Tsn(F), the spin Hall conductance at zero temperature. In the next
subsection, we demonstrate that this relation can be extended to finite temperature by defining
a smoothed function Tgn(E) (see Eq. (9.14)) that depends on the temperatures in the leads.

9.2.3 Mott-like relation

In this section, we show how the Mott-like relation of Eq. can be generalized to finite
temperatures. For this we consider the Fourier transform of transmission functions AT 4(7) =
% J dEe_"ETATC,q. The spin Nernst effect is defined as

o
Na = 9AT = 8rAT /dEzq:ATc,q(E)(fc — fa), (9.10)

where the potential u is assumed to be the same for all leads, while the temperatures may differ.
The integral has the form of a convolution, since f. and f, are functions of £ — p. Therefore,
the integrand of the Fourier representation is a product of functions of 7,

1 [~ 4 AT .,(T) =
N. = — dr—e T <9
® 477/ 7'7_6 . AT  sinhz

rz=nTkpT.

(9.11)

z=ntkpTy '

Further, we define a symmetric “smoothing” function that depends on temperatures of the leads
c and q as

rz=ntkpTc

3 1 T

Fi(r) = — . 9.12
(T) 7T2]€2BTCAT 72 sinhx z=ntkpT4 ( )
If we put Tc — T, = AT, we find with AT — 0
thx — 1
Fi(r)n3 500 2 , (9.13)
zsinhz [ _ o1

which has a width of A7 = ﬁ and F4(0) — 1. Now, we define a temperature-smoothed spin
Nernst transmission function as

Ton (T ZFQ T)AT,4(7), (9.14)

which implies that Tgn(E = [dre” BT Ton(7) is real, and compared to the original function
Tsn(E), it is smoothed on the scale of kgT.. Finally, we obtain the relation

k% Te dTsn(E)

12 dE ’
E=p

Ns(p) =

(9.15)

which is exact to all orders in T and AT. The meaning of the latter equation is the following
one: First taking the derivative dgTsn and then smoothing by temperature is the same as first
smoothing with a modified smoothing kernel and then taking the derivative. Since Ton(E)
shows a highly oscillating behaviour, the above equation simplifies the interpretation of the spin
Nernst signal in terms of transmission functions because of the smoothing of Tgn (E). Equation

(9.15) is one of the key results of this chapter.
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Figure 9.3: Four-terminal cross-bar setup based on a HgTe/CdTe QW in the inverted regime.
When an electrical bias is imposed between the longitudinal leads a and b, one edge channel
carries electrons with spin up from lead a to lead c (red solid line) and one edge channel carries
electrons with spin down from lead b to lead ¢ (green solid line). This gives rise to a spin current
in lead c and, at zero temperature, to a quantized spin Hall conductance. Taken from [Rot+12].
(© (2012) by the American Physical Society
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9.3 Thermoelectric transport carried by the edge states

In this section, we present the numerical results of the spin Nernst and Seebeck coefficients for
an energy regime within the bulk gap. When the HgTe/CdTe QW is in a topologically trivial
phase, there is no sub-gap transport through the system. The transmission functions 7Tgg and
Tsn are then zero, and from Eqgs. and , it follows that there are no thermoelectric
signals. On the contrary, the HgTe/CdTe QW in a non trivial phase hosts edge states in the
bulk insulating gap. These modes carry electrons with opposite spins in opposite directions.

With respect to the geometry of the setup, spin and electrical currents are induced and flow
respectively in transverse and longitudinal leads, as depicted in Fig. [0.3] However, the finite
width of the system implies an overlap of the edge states meaning that backscattering processes
can occur.

We first investigate the behaviour of the spin Nernst signal N; and the associated trans-
mission function Tgy. The results are presented in Figs. [9.4(a) and (b). While the chemical
potential is in the bulk gap, the spin transport is mediated by the edge channels so that the
transmission function is simply given by

Tsn = (Terp — Tepp) — (Tera — Tepa) = —2. (9.16)

Evidently, as the chemical potential reaches the boundary of the mini-gap, the number of prop-
agating states drops to zero and transport breaks down. This results in a peak of the trans-
mission function Tgy. Consequently, the spin Nernst coefficient is zero in the bulk gap except
when the chemical potential reaches the boundary of the mini-gap. Because of the Mott-like
relation ((9.15]), a symmetric function 7gn(E) must result in an antisymmetric function N,(E).
Therefore, Ny exhibits an approximately antisymmetric peak centred at the maximum of the
transmission peak. The confinement of the QW implies an energy shift in the band dispersion.
Therefore, the boundaries of the bulk gap are not exactly at energy |M| = 0.1tp, as we can see
in Figs. and [9.4] In Fig. [0.4] the gap and minigap positions of a finite system are indicated
by vertical lines. Dotted vertical lines are used for the inverted regime and dashed lines for the
normal regime. Interestingly, one observes that the merging of the edge state to the conduction
band causes Tgn to vanish already before the first bulk mode appears. Where u lies between
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Figure 9.4: (a) Spin Nernst transmission function as a function of the chemical potential when
the sample is in the normal (dashed blue line) or in the inverted (solid red line) regime. The
dotted vertical lines indicate the bulk gap and minigap positions in a finite system for the
inverted regime, while the dashed vertical lines indicate the gap in the normal regime. (b) Spin
Nernst signal Ns/kp in a system in the inverted regime at T = 2 K (black solid line), T =6 K
(green dashed line), and T = 8 K (orange dotted line). Taken from |[Rot+12|. © (2012) by the
American Physical Society

the right dashed and dotted vertical lines, a finite Tgy reappears due to the formation of the
first bulk state, in the same subband as the edge state. Outside the gap indicated by the vertical
lines, bulk states start to participate to the spin transport resulting in additional oscillations in
Tsn as a function of u. They transform into peaks of the spin Nernst coefficient whose existence
is understood with the same arguments as for the mini-gap peak. Especially at positive chemical
potential, the magnitude of the peak is comparable to that of the mini-gap and allows to mark
the position where the edge states merge.

In Fig. [9.4)(b), we show the behaviour of the spin Nernst coefficient for different temperatures.
As kpT increases, the position of the peaks is slightly shifted to lower energy. The magnitude
tends to decrease and the peak width is broadened. Up to T = 6 K, the spin Nernst signal goes
to zero between the peak that specify the position of the mini-gap and the edge state merging
peak. Beyond this temperature, N is smoothed out, so that it can not probe the edge state
signal.

We now turn to the analysis of the transmission function Tsp and the Seebeck coefficient
S. as a function of energy. The results are presented in Fig. Inside the bulk gap, the
transmission function Tgg is constant but goes to zero when the chemical potential is in the
mini-gap. This feature leads to an approximately antisymmetric peak in the behaviour of S,
which provides information on the presence and the position of the mini-gap in the spectrum.
The boundary of the bulk gap manifests itself as the step of the transmission function and
transforms as a narrow peak in Se.

The transmission function 7gg exhibits a smoothed staircase behaviour whose steps coincide
with the opening (at positive energy) or the closing (at negative energy) of conducting channels.
This behaviour transforms into a series of peaks in S.. However, as the chemical potential
increases, the magnitude of the peaks reduces. The reason is that the considered setup possesses
four terminals that all exhibit an increasing number of propagating modes with increasing pu.
Thus, inter-mode scattering is more and more likely to happen. Then, the staircase behaviour
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Figure 9.5: Seebeck coefficient Se[kp/e| (red solid line) and scaled transmission function 7gg /50
(black dashed line) as a function of the chemical potential at T = 2 K. The mini-gap appears
as an antisymmetric peak. Taken from [Rot+12|. © (2012) by the American Physical Society

of Tsg diminishes and transforms into oscillations.

We close this section with a remark on the average sign of the Seebeck coefficient Se. It is
positive in the conduction band and negative in the valence band which reflects the sign of the
corresponding charge excitations in a given band.

9.4 Spin Nernst effect induced by bulk states

A spatial dependence of model parameters, like, for instance, an in-plane electrostatic potential
Vo or the mass confinement potential 7,V,,, can generate a transverse spin current resulting
in a spin Hall signal for the metallic bulk states (see Chapter . This phenomenon has been
previously analysed in Refs. [Yok+09; Guit11; [Yam+11] in the context of charge and spin
transport properties at interfaces between metals and quantum spin Hall systems. As already
mentioned above, the spin Hall conductance gives rise to the spin Nernst signal from the bulk
states through the Mott-like relation . Therefore, in the next two subsections we will focus
on analytical models to describe the scaling of the spin current and spin Hall conductance with
the band structure parameters and compare our intuitive analytical models with the numerics.

First however, to visualize the formation of the spin Hall effect at the sample boundary, it
is instructive to plot the local spin current density in the numerical four-band model. In order
to do so, we first define a local spin current operator by

5o () = %{[f, H],5(f —1')}os, (9.17)

where o, is a Pauli matrix that acts on the spin space of the four-band model. On the basis
of the NEGF, it is then straightforward to evaluate the expectation value of the spin current
operator at T = 0, which can be expressed as

() =Y Tr [jz(r)GRFpGA L. (9.18)
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Figure 9.6: Local spin current J* for normal metallic regime, and electrical bias, p, — p =
—(up — p) with g = 0.4¢g and T = 0. Taken from [Rot+12]. © (2012) by the American Physical
Society

In Fig. [0.6] the local spin current is shown for the normal metallic bulk regime and an electrical
bias applied from left to right. One clearly recognizes a spin current flowing along the edges.

Note that our model shows local spin currents already at equilibrium. However at equilib-
rium, the spin current integrated over the cross section of a lead cancels and thus does not enter
the spin Hall signal. For clarity, the local spin current that we show in Fig. is only the
non-equilibrium part.

The rest of this section is organized as follows: [9.4.1] and [9.4.2] deliver two complementary
approaches to explain the interface spin current that is transverse to the potential gradient. In
part [9.4.3] the connection between these interface spin currents and the spin-Nernst coefficient
gives us a qualitative understanding of the behaviour of spin-thermo effects for the bulk states.

9.4.1 Effective two-band models

Here, we show that an anomalous spin-dependent velocity naturally appears within effective
two-band spin-diagonal electron or hole band models obtained by perturbatively folding down
the four-band model (see Eq. (9.1))). We apply third order quasi-degenerate perturbation theory
similar to our previous work of Chapter The diagonal part of the Hamiltonian is hy =
A%_ Aé* ) and b = W/ (—k),
where f/e/h =Vein F BE? — Dk? and Veyn = Vo £ Vin; the subscripts e and h refer to electron
and heavy hole bands, respectively. Note that, as compared to Eq. , we allow for a finite
in-plane potential Vj(z,y) = Vp(r) in this analysis. Vj(r) models an electrostatic potential that
acts equally on electron and hole bands, while V,(r) models a mass-like confinement acting
with opposite signs on electron and hole bands. The B and D parameters will not enter to the
spin current in third order perturbation theory. Treating ky as operators acting on a perturbing
potential, we obtain the spin-dependent effective two-band Hamiltonians as follows (showing

diag(M, —M). For the perturbation part, we consider h'T = <
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terms up to third order in perturbation theory)

A 1 A~ on ey o~
hge=Ve— (D+ B + (2A2k+th_ A%, v;}) , (9.19)
Ben = Vit (D = BYE + —— (242 Ty — {A%2,7
efin = Vi + ( K>+ o35 (24%k-Veky —{A°K°, Vi} ), (9.20)
and hiff o/h = (h;_f . /h)*. The lowest order spin-dependent term of the effective electron/heavy
hole model is thus given by
14 ' A?
hPautie/m = 5 (heff,e/h - heff,e/h> 0z =~ (V(EVD = Vi) x k), 0. (9.21)

In the Heisenberg picture, we obtain a spin-dependent anomalous velocity

-0
an,e 1 A2 Y
V’ 5 /h — %[I‘, hPauli,e/h} = mgz 81 (:t‘/b — Vm) (922)
0

Since v/Ame/h | V (Vo F Vin), we expect to see a spin current along the edge of the sample,
similarly to the spin current carried by the edge states, but now the effect is induced by the bulk
modes.

Although this gives us an idea of the mechanism that generates the spin current, v/*" cannot
be used for any quantitative comparison with numerical results that we obtain for the four-band
model, since neither Vg nor V,, are included in the numerical code. We introduced them to
model the electrostatic confinement, which is simply ensured by the lattice truncation in the
numerical model. As long as Er # 0, we can expect that the real physical situation corresponds
to a mixture of potentials V) and V,,,. V| alone is not suitable for confinement of carriers, but
it models an electrostatic field that builds up at the sample edge. On the other hand, at the
sample edge the electronic gap 2M must increase until the vacuum gap 2mgc? is reached. This
will cause efficient confinement of carriers (and even edge states) and can be modelled by V,,.
Although the potentials Vy and V,,, must be large for ensuring confinement, they are treated as
perturbation (small compared to 2M) in (9.22)).

With regard to quantitative results, there is another issue with . We already analysed
the anomalous velocity generated by an electrostatic potential Vj in Section There, we
concluded that for consistent results, the non-commuting space operator found by projection of
the Dirac space operator on the electron band should be used, . = r + A", which includes
the Berry connection for the electron band given by At = Wﬁmmk x o. Here we
replaced the parameters of the Dirac model by those of the four-band model, with dispersion
E(k). We interpreted the non-commuting Berry connection term as fingerprint of the relativistic
transformation of a spinning particle. Without the non-commuting part, the operator r that
appears in the Pauli equation should be understood as mean coordinate, and the resulting
anomalous velocity will be a different physical quantity. Literature seems to agree that the
Berry correction in 1. should be included for rigorous calculations e.g. of the spin Hall and
anomalous Hall effects [Chu+10; Xia+10; Han+09b|. Repeating the analysis of Section to
find the part of the anomalous velocity due to 7,V,, = 7,r - VV,,,, we find that the projection
on the positive-energy band is given by PU(k)r.,xU'(k)P = %r — AT, compared to ., =

PU(k)rUT (k)P = r + A", where U(k) is the unitary rotation that diagonalizes the four-band
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model. The expression for the anomalous velocity involves a term similar to the generalized

Berry curvature (4.48)),

1. 1 v ,
lFe PURVU P = 3055 (047 + o] + {47 AT e (029
l
= 1 % _ + _ 1 + A+
a Zl: h ((E(k:) 1) O, A7 — AT, A ]) V.- (9.24)

The commutator term does not have the form of the anomalous velocity, but evaluates to

4 . . .
%[A;r, A;L] = W‘ngmkm(k - o). Approximating 1 — % ~ Ej\kj“, we find
-0,
an,e A2 Y Ekin
vine = 2o 8036 (2% - vm> . (9.25)

Compared to , the contribution due to VVj is enhanced by a factor of two, while the
contribution due to V'V, is suppressed by the factor Ej\k/fi“.

Note that the assumptions for a valid perturbation theory are quite restrictive. The condition
Ak < 2|M| restricts the energy range to about |E| < 0.2¢9. Further, this approach works in
the inverted regime only when one considers the bulk states and assumes a direct gap. The
main drawback of this perturbative approach is, however, that it assumes the variation of the
potentials Vy, V;,, small compared to the gap 2|M|, which is not the case for the numerical
confinement potential. Therefore, although we expect to find qualitative results by this approach,
it is important to compare it with the non-perturbative model including hard wall boundary
conditions which will be done in the next subsection.

9.4.2 Hard wall boundary spin current

In this subsection, we present a complementary explanation of the spin current carried by the
bulk states, valid also beyond the parameter regime Ak < 2|M|, demonstrating that the reflec-
tion of an incident wave at a hard wall boundary leads to a spin current along the boundary.
Due to a phase offset, this spin current persists even for a superposition of waves incident at
different angles. We will show below that in the regime Ak < 2|M]| the spin current scales like
A% /M. Interestingly, we observe that the explanation of the spin current given here seems to be
close to what is seen in the numerical four-band tight binding model, because the numerically
calculated spin Hall effect indeed scales like A2/M in the parameter regime Ak < 2M (with
M > 0).

In the model we consider now, the hard wall boundary condition for the envelope function
is given by ¥ (y = 0) = 0. While the direction of the outgoing beam is restricted by the energy
and momentum conservation laws and is not spin-dependent, there is a spin-dependent phase
shift between incident and reflected wave. Remarkably, even for an incident wave normal to the
interface, a spin current moving along the interface is generated. In case this interface is bent,
like it happens at the sample boundary connecting two perpendicular leads, it will transform
into a spin Hall signal (like in Fig. (9.6))).

We start with the following ansatz for the spin T wave function

T (y) = oty = e*buy, + re Fu_y + ceMuyy, (9.26)
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Figure 9.7: The spin-dependent currents parallel to the interface at y = 0 are plotted, with
jlzm (y) in blue (solid) and j]iz (y) in red (dashed). For perpendicular angle of incidence (k; = 0),
the phase difference A¢ is always m. The energy is E = 0.3ty in all cases. The thick/thin
lines show the normal/inverted regime with M = 0.1ty and M = —0.1¢y, respectively. The
other parameters are the same as for the lattice model. Taken from [Rot+12]. © (2012) by the

American Physical Society

where the plane wave dependency on z has been separated off. uiy, and u;) denote the spinors
for fixed energy E and momentum k,. The condition ¥T(0) = 0 gives two equations for the
coefficients r and c¢. The corresponding coefficients for spin down can be found by replacing
ke — —kg. The operators of transverse velocity, Vj (k) = %g—,’;‘l and Vi (ky) = —Vi (—k,) are
independent of k, and complex-valued matrices. In the following, we will plot both spin up (in

blue) and spin down currents (in red), evaluated by

it W) = @8 = VI, G, () = —iL, W), (9.27)
It is easy to see that the spin current
7)) =} () — 3t () =31 W) + 51, () (9.28)

is symmetric in the angle of incidence # = tan™! i—z

Figure shows the spin up and down currents for typical parameters and the energy in the
conduction band. The superposition of incoming and reflected propagating waves leads to an
oscillating pattern. We are interested in the phase shift between spin up and down. The direct
terms in jlzz (y) (i.e. two incoming or two outgoing propagating modes) are constant in y and
current conservation dictates that the incoming and reflected currents are the same. Rotational
invariance of the BHZ Hamiltonian and current conservation dictate that |r?| = 1 independent
of the spin. Because of time reversal symmetry, the current of the direct terms is independent
of the spin and thus, the direct terms do not contribute to j*(y).

The interference term between the incoming and outgoing modes in jgﬁ(y) is given by

2Re <uky|VzT|u_ky>re_2ikyy] = ‘(uky|VJ|u_ky)r 2 cos(2kyy — ¢l — 1), (9.29)
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Figure 9.8: The spin up phase shift of the reflected current is qﬁ + d)g. a) The phase (of
the velocity matrix element) qu as a function of the angle of incidence. It has the symmetry
(;51(—9) =7 — <Z>I(9). Different colors (blue,red,orange, ...) correspond to different choices of
A = 0.05,0.1,...,0.4eV nm, where the limit A — 0 gives a step function. Parameter values
are E = 0.3ty, M = 0.1ty and B, D have values as in Section [9.2.1] The picture does not
change qualitatively, if we change the parameters of the underlying model. b) The phase (of
the reflection coefficient) qbg for the same parameters. For low values of A, it is proportional to
A2 whereas for large values of A it saturates. Taken from |Rot+12|. (© (2012) by the American
Physical Society

where ¢| = arg((uky\VJ\u,ky>) and ¢ = arg(r). In Ref. [Yok+09], ¢} — q% is called the angle
of giant spin rotation. At k; = 0, we have

B iA%k,
b0 a2k 4 (M - Bk2)?

(up, |V Ju_g, )

(9.30)

where k,, is fixed by the energy. A first-order expansion in k, valid in the regime Ak < 2|M|
yields

A%k

A (9.31)

Js(y)
In contrast to [Gui+11], the spin current in our analytical analysis is connected only with the
propagating solutions as explained above. As one can see from Fig. [0.7) where the evanescent
modes are included, the periodicity of jll (y) and jlﬁz (y) is only slightly affected which means
that the evanescent contribution at least for the normal regime is minor and Eq. still
holds.

Let us now analyse the phase relations between spin up and spin down currents more closely.
The two phases gb{ and qg (defined above) behave differently as a function of the angle of
incidence, as shown in Fig. We find the symmetries ¢{(9) =7 — gbi(—&) and qbg(ﬁ) =
—¢g(—0)_ For A — 0, ¢'() = qﬁ(ﬁ) + qﬁg(ﬁ) becomes a step function, with ¢'(0) = 7/2. We
are interested in A¢ = ¢ — ¢+, For this, we again use a symmetry. If we flip the spin, r+(k,)
11 (—k,) implies that ¢(—6) = ¢}(6) and V(k,) = —V1(—k,) implies that ¢T(—0) = 7+ ¢1(0).
Thus,

A = ¢ + oy — ¢1 — ¢3 = 2(d] + ) (9.32)
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Figure 9.9: (a) Spin Nernst transmission function 7gn(u) for the normal regime (M = 0.1t,
blue dashed) and inverted regime (M = —0.1¢y, red solid). In the bulk gap, the edge states give
rise to a quantized spin Hall conductance of e/27, except for the mini-gap. The black arrows
are scaled according to the expected factor of —* ~ 4.7 between conduction and valence band
spin Hall effect (see text). (b) Spin Nernst effect at T = 5 K, for normal (blue dashed) and
inverted regime (red solid). The latter is flipped horizontally, so we can compare signals of the
same band character. Taken from |[Rot+12|. © (2012) by the American Physical Society

with A¢(f) = 2m — A¢(—0). For not too small parameters A and small #, the constant phase
shift A¢p(0) = m is dominant. This phase shift ensures that the sign of the spin current is
well-defined over a large range of §. Therefore, even the superposition of many incident modes
at different angles (not included in this simple analysis) would lead to a well-defined sign of the
spin current near the interface, while far from the interface, the spin current will be suppressed
by the oscillations.

9.4.3 Spin-Nernst signal for the bulk metallic regime

In the preceding sections, we showed that the spin current can be understood by an anomalous
velocity or a spin-dependent phase shift. The expressions we have obtained do not depend on
the effective band mass (considering the lowest order in Ak/M). We will now show that such a
scaling of the spin current leads to a spin Nernst signal proportional to the effective band mass.

Let us assume that the applied difference in the chemical potential Ay generates the spin
(Gsp) and the charge (G, ) responses in the system. Then GSH = I—GmC For a given number
of modes G, is approximately constant. Therefore, using Eq. ( , one can see that Ggg ~
| /h\A2 /M, where m,, is the mass of the electron/ heavy hole band, respectively.ﬂ To the
lowest order in Ak/M, the effective two-band and four-band masses coincide and the four-band
effective masses m, ), are given by h%/2me = —D — B and h?/2my, = —D + B. Correspondingly,
through the relation between the spin Hall conductance and the spin Nernst transmission signal
Tsn ~ Gsg ~ |mgsp|. The last dependence can be easily seen in the limit for D = 0, when
the band structure of the BHZ model is particle-hole symmetric. Then, m. = —mj, which
is consistent with Tsn ~ |m./| and the symmetry relation Tsy(p) = Tsn(—p) in that case.

2 For fixed electrical bias Ay, the current direction is fixed. Therefore, we have I oc 1/|m/|, even if flipping the
sign of the effective mass m corresponds to changing electrons to holes.
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Figure (a) shows numerical results for Tgn as a function of the chemical potential. In the
four-band model, the ratio of valence and conduction band effective masses is %E’L ~ 4.7. The
black arrows are drawn for comparison of Tgx in conduction and valence band and are scaled
by the factor —my,/m.. Their position is chosen for energies corresponding to 4 propagating
modes in the leads (counting spin), not counting edge states. For the normal regime (see dashed
lines in Fig. (a)) the scaling of the numerical Tgy is very close to what we predicted from
the analytical approaches. In Fig. (b), we show the corresponding spin Nernst signal. In the
normal regime, we qualitatively find N o< |m;| (i = e, h) as expected from the Mott-like relation
in combination with Fig. [0.9)(a).

In the inverted regime (solid red line) we must consider that near the bulk gap, the band
character (E/H) has changed (compare the red/blue colouring in Fig. [9.2); therefore, the band
for p > 0 gets a heavy hole character. Further, as long as the edge states do not yet merge
to the bulk, they are responsible for an offset of Tgy = —2. The black arrows again indicate
the factor _meh that we expect for the comparison of conduction and valence band signals at
the same number of contributing modes, however now we are measuring the signal from the
level of the edge states. Analysing numerically the scattering matrix we find that in the valence
band the contribution to Tgy of bulk and edge states are additive, while this is not the case for
the conduction band. Taking into account this fact, it is surprising that the simple analytical
analysis applicable to the normal regime still describes qualitatively the numerics. We believe
that this might be the case, because the first bulk state resembles the edge state character,
and our argument about the symmetry of Tsn () = Tsn(—p) for the particle-hole symmetric
Hamiltonian still holds.

9.5 Conclusions

We have analysed the thermoelectric transport in four-terminal setups of HgTe/CdTe quantum
wells with a particular emphasis on spin-dependent effects due to spin-orbit coupling. Thereby,
we have used a combination of analytical and numerical methods to analyse spin-dependent
transport phenomena. The Seebeck and the spin Nernst signal show a peculiar dependence on
the parameters of the Bernevig-Hughes-Zhang model which can be qualitatively understood as
originating from a spin Hall effect that arises at in-plane potential or confinement boundaries
of the system. We have demonstrated that the spin Nernst effect is a strong experimental tool
to get a better understanding of the mini-gaps that arise due to the spatial overlap of edge
states on opposite sample boundaries. Most interestingly, we have derived a Mott-like relation
between the spin Nernst coefficient and a smoothed spin Nernst transmission function that is
valid to all orders in the temperature difference between the warm and the cold reservoir. Our
findings might help to optimize future experiments on thermoelectric transport properties of
two-dimensional topological insulators.
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Chapter 10

Tunable polarization in beam-splitter
based on 2D topological insulators

The bulk model describing 2D topological insulators (TT) derived in Chapter [7| contains two
types of spin-orbit terms, the so-called Dirac terms which induce out-of plane spin polarization
and the Rashba terms which can induce in-plane spin polarization. We show that for some
parameters of the Fermi energy, a beam splitter device built on 2D TIs can achieve higher
in-plane spin polarization than one built on materials described by the Rashba model itself.
Further, due to high tunability of the electron density and the asymmetry of the quantum well,
spin polarization in different directions can be obtained. While in the normal (topologically
trivial) regime the in-plane spin polarization dominates, in the inverted regime the out-of plane
polarization is more significant not only in the band gap but also for small Fermi energies above
the gap. Further, we suggest a double beam splitter scheme, to measure in-plane spin current all
electrically. Instead of directly analysing physical spin signals, we introduce polarization signals
which are closer related to conserved quantities of a free system, in particular the helicity. We
also discuss their relation to physical spin observables. This chapter is based on our publication
[Rot+14].

10.1 Introduction and overview

One of the major goals in the field of spintronics is the generation and detection of spin currents
[Wol-+01]. Most of the proposals rely on external magnetic fields or ferromagnetic constituents.
However, spin injection from a ferromagnet into a semiconductor turns out to be problematic.
Attempts to remove the Schottky barrier by doping may lead to spin dephasing at the inter-
face, and also conductivity mismatch turns out to be a fundamental problem [Sch+00| for spin
current injection. There have been successful experimental attempts using vacuum tunnelling
[Alv+92] and ferromagnetic semiconductors |[Ohn+99|. Considering the impediments integrat-
ing ferromagnet-semiconductor interfaces or applied magnetic fields into the technology, it is
desirable to find spin current injection based on all-electrical principles.

One possibility to generate a spin current by all electrical means is by using the spin-Hall
effect (SHE), i.e. the generation of a spin current perpendicular to the applied field in the medium
with a spin-orbit coupling. One of the sources of a transverse spin current in this context could
be a spin-dependent scattering off impurities [Dya+ 71} Hir99|. Later, it has been realized that
the spin Hall effect is also present in semiconductors with large spin-orbit (SO) induced band
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splitting [Mur+03; |Sin+04]. Spin accumulation induced by the spin-Hall mechanism has been
experimentally confirmed first by optical means [Kat-+04; |[Wun+-05|, and later, the SHE has been
also all-electrically detected by combining it with the inverse SHE in metals and semiconductors
[Val+06; |[Brii4-10|. On the theoretical side, the interplay of different mechanisms leading to the
SHE - scattering off impurities causing the skew scattering and side jump effects (so called
extrinsic mechanisms), and SO splitting from the band structure (intrinsic effects) - has been a
tough problem. The long standing debate has been only recently resolved showing that in the
DC limit for the linear Rashba model the SHE due to the skew scattering and side-jump effects
vanishes in the presence of the linear band-structure SO coupling while it is non-zero for the
2DEG with the dominant cubic Dresselhaus term [Tse+-06; [Han+08b; Han-+09bj Bi+13].

All-electric generation of spin currents has also been proposed by pumping techniques, ei-
ther by control over the Rashba coupling constant |[Gov+03|, or directly by gates controlling
tunnelling constants [Bro+10a]. Spin pumping, however relying on Zeeman splitting, has also
been experimentally proven [Wat-+03].

Here, we follow a different idea, which has originally been proposed by Khodas [Kho-04].
Similar to birefringence in optics, different spin components are refracted differently at an inter-
face where the Rashba SO coupling is non-zero on only one side - thus allowing for a construction
of a spin filter. Based on this principle, there have also been proposals using graphene as mate-
rial, which is interesting for the study of electron optics because of its linear dispersion. Bercioux
et al. [Ber+10| have analysed spin-dependent transmission through an infinite N-SO-N (normal-
Rashba SO - normal) junction based on graphene, and have also predicted spin pumping based
on this geometry [Ber+12|. Further, SO terms in graphene have also been exploited to obtain
spin-dependent Veselago lensing, allowing to focus the spin [Asm+13|.

Differently from these works, we choose the HgTe/CdTe quantum well (QW) as a material
of interest, because of its huge intrinsic Rashba SO coupling which can be electrically tuned.
This material has also attracted a lot of interest because of its topologically non-trivial band
structure. In this chapter, we compare polarization signals generated in the topologically trivial
and topologically non-trivial regimes. We use numerical simulations to analyse generation of
spin polarization and spin currents, and detection of the latter. However, instead of directly
calculating spin polarizations and currents we rather choose to calculate transport of a conserved
quantum number which is the helicity, and will later discuss the relation to the physical spin.
We consider three different setups: the first one is an infinite interface of normal / Rashba
SO systems, where the normal part is described by a Dirac-like Hamiltonian. The other two
setups are very different from those of Khodas and Bercioux, since we consider realistic devices
attached to leads. We consider a finite four-terminal beam splitter device, where generated spin
polarization could be experimentally detected by Faraday or Kerr rotation, and also a double
beam splitter device which is the most relevant experimentally, since it allows for all-electrical
detection of the induced in-plane spin polarization (see Section .

Due to the Dirac-like form of the Hamiltonian for HgTe QWs [Ber+06a], even for zero Rashba
terms, there is an intrinsic SO coupling already in the model leading to an out-of plane spin
polarization (compare Chapter . Therefore, the physics is more complicated in our system,
and shows a competition of different SO terms. Interestingly, for well chosen parameters, this
can even increase the achieved in-plane spin polarization. While in the normal (topologically
trivial) regime the in-plane spin polarization dominates, in the inverted regime the out-of plane
polarization is more significant not only in the band gap but also for small Fermi energies above
the gap.
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The outline of this chapter is as follows. In the Section [10.2] we present the model Hamil-
tonian for HgTe QW and show how we define and characterize the helicity polarization that
is induced by Rashba SO. In Section [I0.3] we discuss the simple N-SO interface, where N is
defined by the Dirac-like model |[Ber+06a] and SO denotes the Dirac-like model with linear and
cubic Rashba SO interactions. Since this problem corresponds to a matrix-valued third order
differential equation for the envelope function, there are issues with the proper definition of
currents |Li4-07], proper boundary conditions [Win+93|, and spurious solutions [Sch+-85]. We
find that mapping the problem to a lattice, gives an elegant solution to all these problems. This
approach is similar to an idea by Winkler [Win+93|. We give some technical details about our
wave matching approach in Appendix [F]

In Section we consider an N-SO-N junction embedded in a realistic four-terminal de-
vice. Here we discuss only a linear Rashba term in the SO region, as is justified on the basis
of a single junction analysis. We discuss aspects about a geometry suitable for splitting of he-
licity components, discuss numerical methods, and also elaborate on some technical questions
concerning the measurement of spin currents or helicity currents. Finally, to obtain a better
understanding of the interplay between an in-plane polarization coming from Rashba physics
and an out-of plane polarization originating from the Dirac-like physics, we employ an effective
perturbative model that has also been used in Chapters [7] and 9

To link the numerical analysis with possibilities of experimental detection, we first discuss
a combined device with polarizer and analyzer, in Section [10.5] and obtain a relation between
helicity and the physical electron spin, in Section [10.6]

In Appendix [C] we give a detailed derivation and discussion of the helicity operator for the
4-band model. Details on the S-matrix and how it is related to the helicity current are given
in Appendix [D] Measurement and correct definition of spin currents in structures, where spin is
not conserved, has raised a lot of discussion in the literature. Therefore, we derive a generalized
continuity equation including a torque term [Shi+06], adapted to our Hamiltonian, in Appendix
[E] This serves to underline the physical meaning of the helicity current.

10.2 Model and characterization of polarization

We consider the 4-band model for the lowest subbands of a CdTe/HgTe/CdTe quantum well
(QW), written in the basis |E+), |[H+), |E—), |H—) of electron-like and heavy-hole QW sub-
bands, which are angular momentum eigenstates with S, = %, %, —%, —%. The Hamiltonian
[Rot+10] is an extension of the Bernevig-Hughes-Zhang model [Ber+06a; [Kon+08|, and details
on the derivation can be found in Chapter [7.1.1]

M(k) Ak,  —iRk_ —iSk*
Ak_ —M(k) iSK2 Tk

iRky —iSk%  M(k) —Ak_
iSk%  —iTk3 —Aky —M(k)

(10.1)

with M(k) = M — Bk?, e(k) = C — Dk?, k* = k2 + k] and ki = k, & iky. The parameter M
describes the band gap and is tunable by the QW width d with M > 0 for the trivial insulator
and M < 0 for the topological insulator. We take the parameters A = 0.365 ¢V nm, B =
—0.50 eV nm?, D = —0.50 eV nm? and M = 24 meV, corresponding to a realistic experimental
situation [Mith+14b| with d = 5 nm, in the trivial insulating regime. For the inverted regime,
we take band parameters A = 0.375 eV nm, B = —1.120 éV nm?, D = —0.730 ¢V nm? and
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M = —10 meV, corresponding to a QW width d = 7 nm. We will work with the parameters for
the normal regime most of the time, comparing with the inverted regime in the Section [10.4]
We can decompose
H(K) = Hy(K) + Ho(K), (10.2)

where Hy contains the two diagonal 2 x 2 blocks and Hgo consists of the two off-diagonal 2 x 2
blocks, which depend on the Rashba SO parameters R, S and T. The latter are tunable by
the asymmetry of the QW, e.g. by top or bottom gates. The parameters S and T will give
only small corrections to conduction band properties compared to R. For a given perpendicular
electric field, we take the ratios S/R and T/ R from our earlier work [Rot+10|. The Fermi energy
FE'r is also experimentally tunable by top or bottom gates. We will only consider Er lying in the
electron-like band. In the following H (k) means the 4 x 4 Hamiltonian matrix, and H = H (k)
means its real space or lattice representation.
We introduce a generalization of the helicity operator to the 4-band model,

0 0 ikl k0
ilk_ 3
h(k) = ikf/k 8 8 (ko/k) . (10.3)
0 —i(ke/k® 0 0

h = h(R) has the same symmetries as the conventional helicity operator op/p of the Pauli
equation, i.e. it is parity-odd, time-reversal even, and [ﬁ ,ﬁ] = (0. The eigenvalues £+1 of
h(k) are two-fold degenerate. We will use local expectation values of h(k) to define a “helicity
polarization” which is analogue to an in-plane spin polarization. At a given direction k/k and
given Er, there are two propagating eigenstates. Let x be the normalized 4-component spinor
part. The propagating state can be chosen such that y diagonalizes h(k), i.e. xTh(k)y will
be +1. However, k/k will not be always well-defined, but rather approximately known, by the
direction of a lead that guides an electron beam. Therefore, we just fix the direction k/k and
define h, = h(k = k;) = 7,04, where o Pauli matrices act on (4, —)-space, 7 Pauli matrices
act on (E, H)-space, and o0g, 79 denote unit matrices. We then use the local expectation value
of h, for characterization of the helicity. For a detailed discussion of the helicity operator, see
Appendix [C]

The local spin-z polarization, on the other hand, will be measured by the operator 790, on
the band space (note, it is not S;). If Rashba SO terms are zero (R = S = T = 0), then
[H, 90| = 0.

10.3 Infinite N-SO interface

In this section, we search for a maximal value of the helicity polarization at an infinite N-SO
(normal - Rashba spin orbit) interface, by means of total reflection. We show that transmission
from a mode of one helicity into a mode of the opposite helicity (a cross-helicity term) is very
small.

We consider the simple N-SO setup of Fig. [I0.Ip. To the left of the interface at = 0, we
have vanishing Rashba SO coupling terms (Hamiltonian given only by Hy of Eq. , and to
the right we assume constant non-zero values for the Rashba parameters R, S, T (full H(k) in
Eq. . An electron beam enters from the left, with angle of incidence ¢;,. To the right of
the interface, the components of different helicity (£1) continue at different angles .
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Figure 10.1: (a) Refraction of an electron beam at an infinite N-SO interface, where the Rashba
spin-orbit Hamiltonian is given by Hgo(k). For the same incoming angle ¢;,,, the outgoing an-
gle o1 depends on the helicity +£1. The black semicircle on the left indicates the Fermi energy
condition Fy(k) = Er in momentum space, for zero Rashba SO coupling, while the red/blue
semicircles on the right indicate the conditions Ey (k) = Ep. The dotted horizontal lines corre-
spond to the conserved momentum k,. (b) The transmission probabilities 75, ,» between different
helicities 0,0’ as a function of the angle of incidence onto the infinite interface. Here the Fermi
energy is Fr = 13.8 meV, the Rashba SO parameters are R = 40 meV nm, S = 5.4 meV nm?
and T = 23 meV nm? and a lattice constant of a = 4.94 nm is used. Figure (b) is taken from
|[Rot+14]. © (2014) by the American Physical Society
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The N-SO interfaces will be the building block of the more realistic setup of the next section,
compare Fig. Compared to the analysis of Khodas |[Kho+04] who also considered an N-SO
interface, our model Hamiltonian is more complicated because it contains more bands and in
particular, non-linear Rashba SO terms. Our approach can also be used for SO-SO interfaces
with different Rashba SO parameters to the left and right, but for clarity, we restrict ourselves
to the N-SO case.

The model Hamiltonian is
H = Hy + 0(x)Hso0(z) (10.4)

1 >0
0 <0
non-commuting parts 6(z) and momentum-dependent Hgo will have influence on the sharpness
of the interface on the scale of a lattice constant. However, this is a detail that has no strong in-
fluence on the resulting transmission coefficients. The chosen symmetrization gives the sharpest

with the Heaviside function 0(z) = { . The exact form of the symmetrization of the

possible interface, sharper than e.g. % {H(x), I:ISO}.

The outgoing beam directions and the critical angle of total reflection of the + helicity
component are all fixed by the conserved quantities Er and k,. It is easy to show that at
the interface, cross-helicity transmission and reflection probabilities are zero for waves entering
perpendicular to the interface (¢, = 0). (For this, we show that in the subspace of eigenstates
with k, = 0, the space dependent Hamiltonian H and h can be diagonalized simultaneously).
For a given Fermi energy, the critical angle ¢, can be already found from the dispersions,
without performing any wave matching. Let’s call E (k) the dispersion of the SO region with
positive helicity, and Eo(k) the dispersion of the N region. Finding k, from E, (k,) = Er and

solving for ko, in Ey(, /kax + k:g) = FEp, we have tanp, = k’zyz We note in passing, that
a top gate which gives a potential step at x = 0, could be used to modify the critical angle,
but we will not make use of this option here. In particular we want to see if cross-helicity
transmission probabilities T4+ are also small for incoming angles ¢;, # 0. The difficulty is,
that upon replacing k, — —i0,, we obtain a differential equation of third order, and exact
matching conditions at the boundary & = 0 are difficult to find. Instead, we use a lattice
approximation of H, with next nearest neighbour couplings, so we can match the dispersion of
the analytical model to Fourier components sin(ak,), sin(2ak,), cos(ak,) and cos(2ak,), which
enter the dispersion of the lattice model. Moreover, this method also automatically excludes
large-k spurious solutions [Sch+85;|Win+93| that appear for the third order differential equation,
compare also the discussion in Chapter 2.4 This approximation breaks rotational symmetry,
but we still find quite good helicity values (the expectation value is different from 41 by less
than 107%). Further, this method is also quite flexible, e.g. one may smoothen the interface
in the model. Transmission and reflection coefficients are then calculated with the equilibrium
Green’s function method. For a detailed discussion of the wave matching method, we refer to
Appendix [F]

Figure shows the transmission probability as a function of ¢;,. We see that total
reflection can occur for the + component. (We assume R, S,T > 0, so the + component is the
one with the higher energy for the same k. If we switch the sign of the perpendicular electrical
field, R,S,T change signs and total reflection will occur for the — component.) For ¢;, # 0,
helicity is not conserved, but the non-conservation, given by the cross-helicity transmissions
T4+, is quite small. For comparison, we have carried out the same calculation, keeping only
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linear Rashba terms, and we find that the critical angle is only slightly changed, while the cross
- helicity transmission is an order of magnitude smaller, and thus also negligible. We conclude
that we do not need to include other than linear Rashba terms in the following section, where
we present calculations for a realistic geometry.

Khodas [Kho+04] also discusses the case of a smooth interface, with the Rashba SO coupling
being turned on smoothly over a distance dgr. If dg is large compared to the Fermi wavelength
of the incident electron beam, the spinor adiabatically adjusts and the signals T, and T__
in Fig. become step functions, while T+ will be suppressed completely. However, since
our (and Khodas’) proposal relies on helicity (or spin) filtering by means of total reflection and
conservation of k, is not affected by the smoothness of the interface, the scale dg is not important
for the operation of the helicity (or spin) polariser.

10.4 Polarization in finite systems

N L

/i3>0 ()T u4—0

Figure 10.2:  The beam splitter consists of a N-SO-N junction, tilted at angle ¢, which is
embedded in a four-lead device. If ¢ > ., we expect total reflection of one helicity component
at the first N-SO interface, causing the beam leaving through the lead 4 to be polarized. The
dotted red line shows the case when ¢ < ¢.. Taken from [Rot-+14]. © (2014) by the American
Physical Society

In this section, we only consider the linear Rashba coupling R, because it is the most relevant,
and put S =T = 0. In contrast to the N-SO interface discussed before and also analysed by
Khodas, we are looking for a good implementation of a spin or helicity filter in a finite geometry
with attached leads. We give some thoughts on the geometry in the Subsection [10.4.1] and
recognize that a good spin filter device will have the form of the four-lead setup shown in
Fig. Next, in the Subsection [10.4.2] we give details about the numerical methods used to
obtain polarization and current signals, and show results. We give a numerical comparison of the
average helicity density and average helicity current in the leads and show (in Appendix that
they are linked by a continuity equation. Finally in the Subsection [10.4.3] we provide a better
understanding of the numerical results, employing an effective 2-band model. In particular, this
helps to understand the competition of the different SO terms present in the 4-band model,
which cause in-plane and out-of plane spin polarization. We shortly comment on the validity of
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Figure 10.3: Local polarization plots, obtained by discretizing the 4-band model Hamiltonian
on a lattice (700 nm x 400 nm, lattice constant a = 4.94 nm), and a geometry corresponding
to Fig. [[0.2] Band parameters are for the normal regime. We show the non-equilibrium
response to a bias applied at the left lead. The Fermi energy is Er = 0.337t9p = 13.8 meV,
corresponding to a peak in the polarization of the outgoing helicity current (right lead). The
linear SO parameter R is non-zero only in the opaque gray area, which has a horizontal extension
of 54a and which is tilted at an angle of ¢ = 65°, which is approximately equal to the critical
angle . at the chosen Ep. The value of R is given by tgo/to = 0.1. (a) shows the local
normalized helicity polarization assuming the direction k = ks, np,(r)/n(r). (b) shows the
normalized o,-polarization n,.(r)/n(r), which originates mainly from the Dirac-like physics.
Taken from [Rot+14]. © (2014) by the American Physical Society

the model in Subsection [0.4.4

10.4.1 Setup geometry

In a realistic electronic micro-device, the N-SO interfaces will have finite extension and the
in/outgoing electron beam will be guided by the attached leads. Figure shows a tilted
N-SO-N junction embedded in a four-lead device. The electrical boundary conditions, i.e. the
applied potentials u; at the leads, are such that an electron beam enters from the left, at an
angle of incidence ¢ to the N-SO surface. ¢ should be above the critical angle of total reflection
e of the 4+ component. Then only the — component traverses the SO barrier and leaves it in
the same direction as it has entered. If ¢ < ., we can still expect some helicity polarization in
the right lead, because of the parallel offset of the passing + beam.

The left and right leads are narrow (49 nm width) and widen slowly (adiabatically). This
ensures that by the horn collimation effect (see e.g. for a quantum mechanical dis-
cussion of collimation), the beam injected from the lead is well-directed. The Fermi energy is
chosen low enough to have only two propagating modes in the left and right leads (not counting
edge states if we are working in the inverted regime). In an experimental setup, this collimation
can be achieved by quantum point contacts. The upper/lower leads have to be wide to reduce
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Figure 10.4:  Similarly to Figs. the local normalized helicity polarization (a) and o,-
polarization (b) are shown, but for the inverted (M < 0) regime. The bulk gap lies in the
range of [—10,10] meV. We choose Ep = —17.6 meV inside the (electron-like) valence band,
corresponding to 4 propagating modes in the left/right leads. The linear Rashba coupling in
the barrier is again fixed by choosing tso/to = 0.1. Taken from [Rot+14]. © (2014) by the
American Physical Society

undesirable reflections.

Our setup is invariant under rotation by = about Z (Cy symmetry). Thus, a beam passing
the device from the left will be polarized with the same efficiency as when it enters from the
right. A simple argument shows that this symmetry is required to achieve efficient filtering
of the helicity. A device that has efficient spin/helicity filtering but not conversion, will have
T3545 ~ 0, where the ¢ denotes —o, and T4 4o denotes the transmission probability from lead
q considering only modes with helicity ¢/, to lead p, with only modes with helicity o. Here,
we use the word “helicity” in a loose way, assigning helicity + to a transverse mode y if the
expectation value xTh,y is positive. It will be less than 1 because the transverse modes are not
I;:y—eigenstates with k, = 0, but still, the sign is sufficient to find a simple description of the
time reversal symmetry of the S-matrix. If we sort in- and outgoing modes according to their
helicities, time reversal symmetry makes the matrix of transmission probabilities symmetric,
TT =T. Then, AT4’3 = T4_|_73+ —|—T4+’3_ — T4_’3+ — T4_73_ ~ T4+’3+ — T4_73_ ~ AT3’4. A gOOd
efficiency in polarizing a beam entering at lead 3 means |AT} 3| should be large, and we see that
this requires that a beam entering at lead 4 and exiting at lead 3 has to be also well polarized.
With Cy symmetry, we indeed have T4+73_ C:é T3+74_ e T4_73+ and thus AT473 = AT374 holds
exactly.

Khodas also proposes spin filtering at a single interface, based on the outgoing an-
gle. Compared to the N-SO-N interface employed here, spin filtering then works in a wider range
of incoming angles, since the angle of incidence may be less than the critical angle. However, if
leads are attached to collect the + and — components at different angles, this will break the Cy
symmetry. Further, the outgoing beam would need re-collimation. In contrast, in our setup the
outgoing beam has the same direction as the incoming beam, and attaching leads keeps the Co
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Figure 10.5: (a) The normalized helicity current jp,/j at the right lead as function of the Fermi
energy is shown, for the normal regime. Its third peak lies at Er = 0.337ty (“sweet spot”). For
comparison, jp./Jj is also plotted for a 2-band model obtained by setting A = 0, where it reduces
to the normalized spin-y current. The outgoing current at the right lead, which is proportional
to T3, is shown with flipped sign for clarity. (b) Comparison of normalized helicity current and
normalized average helicity polarization [ dynp,/ [ dyn in the right lead. Taken from |[Rot+14].
(© (2014) by the American Physical Society

symmetry.

Note also, that with time reversal invariance and current conservation, a two-lead spin filter
is impossible with only two propagating modes (including spin degeneracy), so the extra leads
are required. This is because, analogous to Kramers degeneracy, the eigenvalues of the matrix
tt', which gives the transmission probabilities, are two-fold degenerate [Bar08|. Here, t = Sap
is a 2 x 2 submatrix of the 4 x 4 S-matrix, for 2 modes in each of the leads a,b. Thus ttf = 1
is proportional to the unit matrix (v € R). Introducing the projector P, on some unspecified
spin direction, we find Ty, = Tr[tt P,t] = yTr[P,] = . The result is independent of the spin
direction, thus making filtering of the spin impossible.

10.4.2 Formalism and polarization/current signals

We are interested in the helicity current at the right lead, due to the applied bias ps at the left
lead. To locally investigate some operator O(r) describing the polarization or current at position
r = (z,y), we can plot

9(0)(r) 1

T {Ag(EF)OA(r)} (10.5)
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Figure 10.6: Normalized helicity current as function of Fermi energy and beam splitter tilting
angle ¢, for the normal regime. Non-zero helicity current is already visible when ¢ = 0. However,
good polarization is only seen for ¢ ~ . or greater. The thick line shows p.(Er). Taken from
|[Rot+14]. © (2014) by the American Physical Society

with the left lead contribution to the spectral density
A3(Erp) = G364, (10.6)

Here G = (Ep — H— Zp ¥,) 71 is the retarded Green’s function, G4 = (GP)! the advanced
Green’s function, and I's = (X3 — E;) is obtained from the left lead self-energy. The retarded
self-energy of lead p is given by ¥, = 7,(Ep + 0" — ﬁp)*l%,i, Tp is the matrix connecting the
surfaces of lead p and sample, and lﬁIp is the Hamiltonian of the isolated semi-infinite lead.

For the operator O(r) we insert Prhy or Poo, for analysis of the local helicity or spin-z
polarization, respectively, where P, = |r)(r| is the projector on coordinate r. Figure m shows
2D density plots of these signals (normalized by the local density).

For this purpose, the 4-band model Hamiltonian is discretized on a 700 nm x 400 nm
lattice with lattice constant ¢ = 4.94 nm, and a geometry corresponding to Figure [10.2] The
linear SO parameter R is non-zero only in the opaque gray area, which has a horizontal extension
of 54a and which is tilted at an angle of ¢ = 65°. The value of R is given by tso/tg = 0.1, where

tso = % is the energy scale of Rashba SO in the lattice model and ty = _EQ_D is the hopping

energy for quadratic terms.

For the normal regime, we choose a Fermi energy Er = 0.337tg = 13.8 meV, corresponding
to a peak in the polarization of the outgoing helicity current (right lead). The critical angle
of total reflection is energy dependent, see also Figure [10.6] where the thick black line shows
ve(Er). For our choice of Er, we have ¢ & ..

Figs. [10.3h and [10.4h show the normalized local helicity polarization, for the topologically
trivial and topologically non-trivial regimes, respectively. We assume the direction k = k., i.e.
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we show the expectation value np,(r) = m%}g”dug, normalized by the local (non-equilibrium)
density n(r) = (%P"iggmdug We see that the beam is partly polarized after passing the SO

barrier. Figs. [10.3b and [10.4b show the normalized o,-polarization, for the topologlcally triv-
ial and topologically non-trivial regimes, respectively. We show n,,(r) = 5;;70 dus, again
normalized by the local density.

The local spin-z and spin-y polarizations could be measured experimentally by Faraday
or Kerr rotation. However, to compare with an experiment, the physical spin polarization is
relevant rather than the local expectation values of the operators o, and h,. The relation to
the physical spin is discussed in Section and here we just give some numerical results,
referring to the physical in-plane and out-of plane spin polarization as s,-polarization and s.-
polarization. We consider the right lead (coordinate z = 150a), and find maximal values of the
spin polarization along the spatial y-coordinate, for different spin polarization directions. In our
scale, 0 stands for equal contributions of spin up and down, while 1 means full polarization.
For the normal regime (Figs. [10.3p,b), we find 28% o.-polarization, corresponding to 27%
s,-polarization at the upper edge of the lead, and 94% h,-polarization corresponding to 76%
sy-polarization for the center of the lead. For the inverted regime (Figs. ,b), we find up
to 38% o,-polarization, corresponding to 36% s,-polarization, and up to 83% hg-polarization,
corresponding to 64% s,-polarization. Note that this is for the electron-like regime of the
inverted regime, i.e. energies below the gap. For energies above the gap, physical in-plane spin
polarization is strongly suppressed, since heavy-hole components of the wave function do not
contribute to it (see also Eq. and the text below it).

We could also insert for O(r) the helicity current or spin-z current operators, Jy,(r) =
Py, {he, [#, H]}} and Joo(r) = L{P;, {1002, [#, H]}}. To underline the physical meaning of
such currents in transport, we have derived a general continuity equation in Appendix It
includes a torque term [Shi+06| acting as source. However, when the average over the semi-
infinite lead is taken, the torque vanishes, while the helicity current remains. If we are interested
in the signal only in the right lead, instead of calculating the full Green’s function, it is more
efficient to obtain the currents from the scattering matrix and expectation values of the relevant
operator evaluated within the mode basis of the lead. This way, we obtain the spin or helicity
current, averaged over the semi-infinite lead. The method also works if Rashba SO terms are
non-zero in the leads. See Appendix [D]for details on the operator expectation values in terms of
the S-matrix. The scattering matrix entries t,, gm, i.e. the transmission amplitudes from lead
g, mode m to lead p, mode n, are calculated using a generalized Fisher-Lee relation [Wim08§|,
see Eq. of Appendix The particle current at the right lead is proportional to the
transmission probability straight through device, Tys = 3, [tansm|?. Actually, in this work
we choose the Fermi energy low enough to have only two propagating modes (counting spin
degeneracy), and since we do not include SO terms in the leads the helicity current in the latter
is conserved and identical to its average. Note that we cannot apply the method that is usually
used to calculate spin currents by introducing separate leads for both spin (or here, helicity)
directions, because [H, h,] # 0.

Since the non-equilibrium helicity polarization and helicity current should be both generated
by filtering out a mode of particular helicity, we expect signals to be qualitatively the same. We
can confirm this by the plot shown in Figure [10.5p, which shows a comparison of normalized
helicity current and helicity polarization. The normalized helicity current at the right lead is

given by jpz/j, with the definitions jp, = fdy Mdug and j = fdy #‘;’y))dug o

Tysdus, where x4 is far in lead 4 and j( ) is defined like th( ) with h, replaced by the unit
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matrix. The normalized average helicity polarization is given by [ dynpe(24,y)/ [ dyn(za,y).
The signals do not oscillate as function of z4, since we have only two propagating modes in
the right lead, with the same k,. We have checked that the values obtained from the full
Green’s function, Eq. and values obtained from the S-matrix (Appendix @ which needs
only the surface Green’s function, are almost identical. This is because evanescent modes are
unimportant in the leads. Figure shows the normalized helicity current j,/j at the right
lead as function of the Fermi energy (blue dashed line, for the 4-band model). The third peak
lies at Ep = 0.337tg. We will use this point in the following sections, referring to it as sweet
spot. Also, Figures [I0.3p,b are calculated for this energy. In Fig. [10.5h, we also plot the
helicity-independent transmission probability Tys, with a flipped sign for clarity. We see that
its absolute value decreases whenever the current becomes polarized (due to the fact that the
electron beam is split, less electrons are transmitted to the lead 4).

In Fig. [10.6] we show the normalized helicity current as function of both Fermi energy and
beam splitter tilting angle ¢. Non-zero helicity current is already visible when ¢ = 0. This
is allowed by symmetry, since we have more than two leads, but it is not an effect of helicity-
dependent refraction. The critical angle ¢.(Er) is shown as thick black line. Good polarization
is only obtained for ¢ ~ ¢, or larger, where we can explain the signal by the parallel displacement
or total reflection of the + beam component.

10.4.3 Effective 2-band model

In Fig. the spatial map of helicity polarization np,(r)/n(r) is presented (normal regime).
One can see that helicity polarization oscillates as a function of the spatial coordinate. In Fig.
the o.-polarization is shown. One can see that there is a large polarization close to the
sample boundaries, which is well visible near the left and right leads. Here it is important
to mention that there is non-zero out-of plane polarization, even without the SO barrier, as a
consequence of the Dirac physics. However, as will be discussed below, the SO barrier allows
to tune the degree of this polarization. To get a better insight into these results, we will use
an effective 2-band model for just the |E+) bands in the low energy limit Ak < M, that we
already used in Chapters[fland 0] Since this model is strictly valid in the normal regime, we will
start with the discussion of this regime before we analyse the inverted (topologically non-trivial)
regime.

Since electron components of the wave function are dominant, the helicity (h,) polarization
is approximately given by the o,-polarization which can be analysed in the effective 2-band
model. To allow analytical treatment, the confinement of the electrons is modelled by a con-
finement potential 7,V (r), which replaces the lattice truncation for the desired geometry. This
corresponds to a space-dependent band gap, so that both conduction and valence band states
are confined. The effective Hamiltonian obtained in 3rd order perturbation theory is

. k2 R A2 ~
He =5 — +R(0 xk): + 5 (VV x k).0. +V (1) (10.7)
Rashba

Hp

with the renormalized effective mass m* = (—2B — 2D — ﬁ—;)_l.

We expect to see a competition between the Rashba and Dirac physics in the beam splitter
device. However, only the magnitude of the Rashba coupling is tunable by top and/or bottom
gates. The Dirac physics, given by Hp, is due to the intrinsic SO coupling of the HgTe /CdTe
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material, and let us emphasize that this SO term is absent in the 2DEG model analysed by
Khodas. In Figure , the non-zero value of n,,(r) indicates that the Dirac physics generates
out-of plane spin polarization at the edges of the sample. Within the effective model, this can
be explained by an anomalous velocity (compare discussion in Sections and

1 A
Van = g[f',HD] x o, (e, x VV) (10.8)

which shifts spins 1, | into opposite directions and in the direction transverse to the potential,
which can be the confinement potential but also an applied potential for the electrical bias.
Therefore, this effect can be interpreted as the spin-Hall effect leading to the o,-polarization
shown in Figure [10.3b, which is particularly large at the edges of the left and right leads. In
the normal regime (M > 0), o,-polarization can be tuned by the change of the Fermi energy of
the device or a Rashba coupling in the beam splitter part, however it is usually weaker than the
in-plane spin polarization.

Further, in the signal nj,(r) in Figure [10.3h, we see that the helicity polarization generated
by the SO barrier - which corresponds to an in-plane (o) spin polarization of the effective 2-band
model - is suppressed by precession of the spin around the effective k-dependent magnetic field
Ber x VV x k. This precession is also visible as sign changes of nj,, giving a blue/red pattern
along the top right sample edge. The phase of this precession depends on Er and therefore,
good helicity polarization is obtained only for certain Fermi energies. This can be seen in Figures
[[0.5h and 10.6

Formally, we can get rid of the valence band by setting A = 0, thus obtaining a 2-band model
(2DEG) for only the conduction band, with jp,/j identical to the normalized spin-y current.
This 2-band model should not be confused with the effective 2-band model discussed above. In
Figure [10.5h, the helicity current for the model with A = 0 (dotted black) shows oscillations
due to wave interference, while different subband quantization leads to the opening of the lowest
propagating mode for lower Er than for the 4-band model. The helicity current for the 2-band
model can be now compared with the helicity current of the full 4-band model. In the 4-band
model, precession of the already polarized beam about Beg leads to an additional structure of
oscillation in comparison with 2-band model, so that the peaks in the helicity current become
more isolated in the 4-band model and the signal becomes enhanced in comparison with the
2-band model.

For completeness, we have also analysed the helicity polarization in the parameter regime
with band inversion (M < 0), where the band structure becomes topologically non-trivial. In
the inverted regime, the effective model does not account for the topologically protected
edge states and therefore is not valid in general. However qualitatively, we still expect to see a
competition between Rashba and Dirac physics. In particular, the edge states are polarized in the
spin z-component when Rashba SO coupling is zero, and we expect them to partially suppress the
hz-polarization. In Figures we show the normalized local helicity polarization np,(r)/n(r)
and the normalized o,-polarization ns,(r)/n(r), this time for the inverted regime. The Rashba
coupling constant is chosen by the condition tgp/ty = 0.1, corresponding to R = 75 meV nm,
and is non-zero only in the tilted barrier (shown in gray). We choose the Fermi energy Ep =
—17.6 meV in the (electron-like) valence band with bulk gap in the range of [-10, 10] meV. With
these parameters, there are actually four propagating modes in the left/right leads. However,
two first modes are spin edge states which, although the energy is outside of the bulk gap,
do not merge with the bulk, and still retain their character of being strongly localized at the
sample edges. They are almost fully polarized in o, (a deviation from full polarization is due
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to overlap of edge states at the opposite sides of the lead). In the n,, plot, they can be seen to
bend, following the sample edges. Therefore, within our choice of the bias voltages, the charge
signal Ty3 at the right lead is zero when only edge states are propagating. However, the next
two propagating modes in the left lead pass the SO barrier from left to right, giving a non-zero
Ty3 at Ep. Their interplay between the bulk and the edge states also contributes to Ty3, as
can been seen by analysing the S-matrix. The local o,-polarization in the right lead can be
significant and is often higher than the in-plane (h,) polarization. The lead-averaged helicity
current, for the inverted regime is in general smaller than for the normal regime. We do not
show the polarization signals in the conduction band for the inverted regime. For small Fermi
energies above the gap, heavy hole components are dominant, and consequently our analysis in
the Section [10.6] shows that in-plane spin polarization will be small since it depends on |E+)
components only. Although a relation between both polarizations is a complicated function of
many parameters, we find that by changing E'r or normal versus inverted regimes, one can tune
the ratio between in-plane and out-of plane polarizations.

10.4.4 Validity of the effective model

We make some rough estimates to show that for our parameters, we are in the right regime to
consider the Dirac term of the effective model as small perturbation. We want to show that the
expectation value of fID = 4MQ (VV x k), 0, is small compared to Er = 13.8 meV, which is the
sweet spot. We may say that approximately, |(VV x k)| < [(VV)|kp. The confinement potential
should be of the order of Er. If V is a step function with constant value zero inside, and the
value Er outside of the sample region, we can approximately say that [(VV)| < Ep/W, where
W is a length scale corresponding to the sample width, which enters due to the normalization
of the wave function. For W we enter the lead width 49 nm as lower bound, and we find that
AkF ~ 0.5 and |(Hp)| < 0.1 Ep for the sweet spot, confirming the validity of our effective model.

10.5 Detection scheme

(-)

ps >0 _ V > us =20
W / \ (+)

Figure 10.7: A double beam splitter setup with polariser (left) and analyser (right) can be used
to detect the helicity current all-electrically. Taken from [Rot+14]. © (2014) by the American
Physical Society

Experimentally, spin current (or even helicity current) detection is not established so far.
Therefore, in this section, we show that by combining two beam splitter devices with indepen-
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Figure 10.8: The horizontal axis parametrizes the polariser (first device, tgo,1) while the vertical
axis parametrizes the analyser (second device, tg02). (a) shows the transmission through the
combined devices (from left to right), which is measurable all-electrically by transport. Here we
tuned K to the maximal helicity current which corresponds to the maxima at t501 = tso2 =
0.1tp and the minima at tso1 = tso2 = —0.1ty. (b) shows the normalized helicity current in
the right lead. Taken from [Rot+14]. © (2014) by the American Physical Society

dently tunable Rashba SO parameters in the barriers, an all-electrical detection of the helicity
current is possible. As shown in Figure the first device acts as polariser. The polarized
beam then enters the second device. The tilting angle in both devices is assumed to be the
same (¢ = 65°). If the Rashba SO parameters are tuned to the same sign, the polarized beam
will pass. With opposite signs, it can be blocked at the second device by total reflection. Thus,
the transmission through the combined device, which is electrically measurable, can be used to
prove that the current in the connecting part is polarized.

Instead of discretizing both devices on a common lattice, we can model a double beam-splitter

Q)

device by combining the S-matrices of single beam splitters, S®) = < :((Z)) :,((Z)) > (1=1,2). In
our case (two propagating modes in the connecting leads), 1) and ) are 2 x 2 matrices. The
transmission amplitude through the combined device is

t =@ (1 — /W21, (10.9)

Note that we have to be careful with the phase definitions of the S-matrices of device 1 and 2.
Normally, the complex phases of the S-matrix entries are undefined and thus unrelated, since the
mode basis consists of asymptotic states (i.e. they are evaluated far from the scattering region).
However here, we need to use the same phase convention for an outgoing mode in device 1 as for
the corresponding ingoing mode in device 2 and vice versa. Otherwise the result of will be
undefined. If the contribution of bound states in the intermediate lead becomes negligible, this
method of combining S-matrices will be exact. This means the connecting lead should extend
over several Fermi wave lengths. A geometric interpretation of ¢ in terms of scattering paths
can be obtained by expanding in the geometric series. The combined S-matrix can be used to
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find helicity currents (see Appendix [D)).

Fig. shows the transmission through a combination of polariser and detector as in
the scheme of Fig. The SO parameters of the barriers (50,1 versus tgo2) can be tuned
by two independent top gates. tso; = %’ is the energy scale of Rashba SO in the discretized
Hamiltonian. The horizontal axis parametrizes the polariser (first device, tgo,1) and the vertical
axis parametrizes the analyser (second device, t50.2).

The ratio of currents for parallel versus anti-parallel splitters, at tsp1 = 0.1t = £tg0,2 is
0.066/0.0037 = 18. Of course, if we wanted to find such a high ratio for other values of tgo;,
we would need to detune also Er. So experimentally, it would be desirable to have both a top
and a bottom gate so that the Rashba parameter, controlled by the QW asymmetry, and Er
could be tuned independently. Fig. shows the corresponding helicity current, normalized
by the particle current. At tso; = 0.1¢p, we find the value 0.997 (versus 0.0037 for anti-parallel
splitters). Plot is perfectly, and nearly symmetric under exchange tso1 < ts0,2-

On the other hand, the detection of o.-polarization could be done by optical means like
Faraday or Kerr rotation.

10.6 Relation between spin and helicity

So far, we have analysed polarization and transport in terms of the helicity operator, which we
defined for this purpose. In this section, we want to address the obvious question, how much
this observable has to do with physical (i.e. electron particle) spin polarization or currents.

For this purpose, we construct a local density matrix for the physical spin, starting from the
envelope function ¢ (r):

pi;(r) = Tr [B()5T () 1) il (10.10)

Here, |i)s = {| 1)s,| {)s} are basis functions of the physical electron spin. For the envelope
function, we have changed the notation from ¥ (r) to 1/;(r), emphasizing that, while ¥(r) is a 4-
component vector depending on the in-plane coordinates r = (x,y), ¥(r) should be understood
as tensor product of in-plane and z-dependent factors and orbital and spin basis functions.
The trace in includes an integration over z. The in-plane envelope function will be
expanded in components, (r) = S35 ;(r)]i)gp. Each of the r-independent basis functions
li)ap = {|E+), |H+),|E—),|H—)} can again be expanded as |i)4 = Z?:1 fi,j(2)|J) Kk in terms
of new envelope function components f; j(z) that depend on the QW growth coordinate z, and
Kane basis functions [j)x = {|Tes,3),[Ts,—3),| s, 3),|Ts, 3), s, —3),|Ts, —3)}. In order to
finally have a basis suitable for evaluation of (10.10)), the Kane basis functions are in turn
expanded in the orbital and spin part |j)x = 32i_g x.v.z 2_s—t.| CslDol8)s-

We introduce the convention that Pauli matrices s; act on the physical spin space. Note that
o Pauli matrices act on +/— (Kramers’) space and 7 Pauli matrices on the E/H (QW subband)
space. For convenience, we also define the matrices s+ = M% and sy, = &232.

As our result, we find that we can construct the space-dependent 2 x 2 density matrix p®(r)

for the physical spin, starting from the 4-band wave function ¢ (r) and an r-independent matrix,

632+S¢ 0 Bs_ 0
p=vler | T o | (10.11)

0 0 0 S¢
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Using the band parameters of Chapter|7.1.1] we find § = 0.853. Next, we make use of (10.11)) to
find the observables in the basis of the 4-band model, that represent physical spin components,

Tr[szp/yps(r)] = BwT(r)Ux/yTT¢(r) (1012)

with 7 = % So if we compare local expectation values of s/, and h,/,, the difference is,

that for the former, the heavy-hole components of the 4-band wave function do not contribute.
This also means that generating in-plane spin polarization is not possible when transport is
dominated by heavy holes.

We have calculated 2D density plots for 0,74 in the same way as for h,. Since for Er in the
conduction band (normal regime), the heavy-hole wave components are small, these plots (not
shown) look mostly like the h,-plots, with about 10% less efficiency in creating polarization (not
taking into account the factor 3). Also, spin currents can be defined in terms of o, 7, but we
prefer the observable h, as measure of polarization since it is related to a conserved quantity.

For the spin-z component,

Trfs.p*(r)] = ¢ ()0 (287 — 72)¢(x). (10.13)

For 8 = 1, above observable reduces to o,79. We prefer the latter one as the measure of
polarization since [Hy,o,70] = 0.

10.7 Summary and outlook

In this chapter, we analysed a beam splitter device based on 2D topological insulators. We
found that the Dirac-like model describing these materials can lead to higher in-plane or helicity
polarization than the standard model utilizing only Rashba spin-orbit interaction. Further, in
these systems in-plane and out-of plane spin polarization can be achieved. While the trivial
insulator regime ensures strong in-plane polarization, in the topologically non-trivial regime the
interplay between edge states and bulk states induces strong out-of plane polarization near the
band gap. Several important relations between spin polarization and conserved quantities like
helicity polarization are established as well as a simple all-electrical measurement scheme for in-
plane spin current using two beam splitters is proposed. Although we focused on the parameters
typical for HgTe quantum wells, the analysis presented here is also applicable to other systems
described by the Hamiltonian of topological insulators, among them InAs/GaSb QWs [Liu+08§]
and BisSes thin films [Liu+10b|. We believe that tuning of the spin polarization from the out-of
plane into the in-plane could be performed in one device based on InAs/GaSb QWs with top
and bottom gates which change the positions of the electron and heavy-hole bands.
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Chapter 11

Conclusion

The field of spintronics, which is concerned with information processing by use of the electron
spin in addition to its charge, is mostly motivated by the prospect to allow for higher technolog-
ical integration and higher switching speeds, than will be possible by charge-based information
processing. In order to realize this vision, still a lot of scientific progress needs to be seen.
Spin manipulation and spin transport are the main principles that need to be implemented.
The main focus of this thesis was to analyse semiconductor systems where high fidelity in these
principles can be achieved. To this end, we mainly used numerical methods for precise results,
supplemented by simpler analytical models for interpretation. In this chapter we give a conclud-
ing presentation of the findings of this thesis, and briefly discuss some recent related scientific
progress.

In Part I of this thesis, we introduced methods for construction of effective semiconductor
heterostructure models, and for calculation of dynamical properties like transport. In Chap-
ter 2 we outlined the derivation of the envelope function method after Burt, which is used
to find effective multiband Hamiltonians for heterostructures. While earlier derivations of the
envelope function method relied on the assumption of slowly varying perturbations of the k - p
crystal Hamiltonian, so that their validity remains unclear in the interesting case of semicon-
ductor heterostructures, the theory after Burt is based on the exact Schrédinger equation of the
heterostructure and a series of successive controlled approximations, and therefore gives a better
understanding of the validity of the envelope function approximation (EFA). Any quantitative
result in this thesis is based on the method. In a wave matching technique applied to a problem
including cubic Rashba spin-orbit terms, we show how technical difficulties with spurious solu-
tions, boundary conditions and correct symmetrization of terms, can be eliminated. Since these
issues often appear in the application of the EFA| the detailed description of our wave matching
technique (Appendix [F]) might be useful for researchers working on similar problems.

The k- p and envelope function methods are very powerful when combined with the method
of invariants under the symmetry of the underlying crystal. Chapter [3| contains an introduction
to the method of invariants. We applied it to the geometric analysis of quadrupole Hamiltonians,
which were needed in Chapter [§ where we demonstrated universal control of a single spin by
the geometric concept of holonomy. The latter is also known as generalized Berry phase and
is generated by adiabatic motion in parameter space. The underlying adiabatic theorem was
presented in Chapter We also applied the adiabatic theorem to derive the semiclassical
theory of electronic transport, which is used for interpretation of numerical transport results.
This method is closely related to the effective theory by Foldy for the non-relativistic limit of
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the Dirac equation. Further, the topological invariants of the quantum Hall and quantum spin
Hall states can be formulated in terms of the geometric notion of Berry curvatures.

Numerical transport calculations were the most important tool in this thesis. We presented
the basis of transport theory in Chapter 5| with particular emphasis on calculation of transport
observables in the Landauer-Biittiker formalism. While the formalism naturally works with spin-
dependent or spin-orbit coupled Hamiltonians, there can be issues with the measurement of spin
currents, if these are not conserved. We solved the problem by considering the lead-averaged
spin current signal, an approach which turns out to be equivalent to a definition of spin current
proposed by Shi [Shi+06] (compare Appendix [E).

Chapter [6] contains a short introduction to topological states of matter and in particular, the
2D topological insulator (T1I) system of HgTe/CdTe quantum wells (QW), which has attracted
a lot of interest due to the experimental observation of the quantum spin Hall effect (QSHE).
This material system is also interesting because it allows to realize ballistic transport of high
quality, and because its Rashba spin-orbit (SO) coupling and electron density are tunable by
electrical gating.

In part IT of this thesis, my results were presented [Rot+10; [Bud-+12a; Rot-+12; [Rot-+14].
In Chapter [7| we derived an effective four-band model including Rashba SO terms due to an
applied potential that breaks the spatial inversion symmetry of the QW. It is an extension of
the Bernvevig-Hughes-Zhang (BHZ) model for 2D TIs [Ber+06a]. We also demonstrated the
congistency with the method of invariants. Further, we analysed spin transport in a reduced
effective model for only the electron band, which already shows interesting physics because
Rashba SO and the intrinsic (Dirac-like) SO of the BHZ model compete. The regime of validity
of the reduced model is limited and its use is motivated by the simpler interpretation of numerical
results. The spin precession due to Rashba SO is still visible in presence of Dirac-like SO terms
and its amplitude can be increased. On the other hand, Rashba SO-induced spin precession
reduces the spin polarization generated by the Dirac-like SO terms.

In Chapter [8|we showed that universal control of a single spin in a heavy-hole (HH) quantum
dot is experimentally realizable without breaking time reversal invariance (TRI), but using a
quadrupole field which is adiabatically changed as control knob. The mathematical control
principle is a holonomy in the Kramers degenerate eigenspace attached at each point of the
quadrupole parameter manifold. The holonomy can be visualized as generalization of a defect
angle after parallel transport of a vector (belonging to the eigenspace), along a closed loop
in the parameter manifold. The rotation operation of the spin takes the place of the defect
angle. For experimental realization, we propose a GaAs/GaAlAs QW system hosting a lateral
quantum dot. In this system, undesirable splitting of the HH/LH quadruplet in the ground state
already appears without a quadrupole potential, because of spatial confinement. We propose
to apply mechanical strain in order to compensate for this. Residual electrostatic perturbations
will always be present in the experimental setup. We analysed their influence on the holonomy
operation and showed their effect to be harmless. Together with all-electric spin pumping and
spin filtering techniques [Bro+10b|, and two-qubit computation gates by virtue of electrostatic
gates [Los+98|, our proposal provides a completion of the framework for TRI preserving quantum
computation.

In Chapter E] we analysed thermoelectric transport in four-terminal setups of HgTe/CdTe
quantum wells. Due to spin-orbit coupling, an applied temperature gradient generates a trans-
verse spin current. By analogy to the thermoelectric Nernst effect in presence of a perpendicular
magnetic field, we call the signal spin Nernst effect. This effect is also closely related to the spin
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Hall effect which was already analysed in Chapter [7.3] however in an effective two-band model
instead of the four-band model. The spin Nernst effect and the spin Hall effect are found to be
related by a Mott-like relation. We were able to qualitatively understand the spin Hall and spin
Nernst signals in the metallic regimes by simple analytical models. For the parameter regime
corresponding to an inverted band structure and for energies in the bulk gap of the QW, a peak
in the spin Nernst signal is visible. It originates from the overlap of edge states at opposite
sample edges, which is a finite size effect. Therefore, the spin Nernst coefficient could be used
as experimental tool to analyse the finite-size induced mini-gap in the edge state spectrum.

We also analysed spin transport in the four-band model for HgTe/CdTe QWs in Chapter ,
but there, we included a Rashba SO coupling term corresponding to the result of Chapter []] We
proposed a beam splitter setup for all-electrical generation and detection of spin currents. Its
working principle is similar to optical birefringence, and the setup is comparable to a proposal
by Khodas [Kho+04], however we use a realistic finite sample geometry, and our material system
shows more complicated physics because of the competition of different spin-orbit terms in the
four-band model. We showed how demanding high efficiency in spin filtering predetermines
the devices shape and symmetry. We analysed spin current and spin polarization signals of
different spin vector components and showed that large in-plane spin polarization of the current
can be obtained. The interplay of spin-orbit terms can even increase the amount of in-plane
spin polarization for special parameters. The topologically trivial regime should be chosen to
find high in-plane spin polarization, since edge states will be detrimental to this. On the other
hand, the topologically non-trivial regime generally shows higher out-of plane spin polarization.
With respect to tuning the direction of spin polarization, an important point is that heavy-hole
components of the envelope function contribute only to out-of plane spin polarization, while
electron-like components (they include an admixture of light holes) can contribute also to in-
plane spin polarization. Locally, there can be significant out-of plane polarization of the spin.

Since spin is not a conserved quantity in the four-band model, we first analysed the transport
of helicity, which is conserved quantum number in the four-band model even in presence of
Rashba SO. Interestingly, the helicity operator (Appendix is not dependent on the band
parameters, which is a fingerprint of the high symmetry of the effective model. We established
the connection of helicity polarization to in-plane polarization of the physical spin. A similar
approach is used for the out-of plane polarization of spin, which is also analysed indirectly.
The definition of spin currents in systems with SO coupling has raised some discussion in the
literature [Shi+06]. In our beam splitter setup, Rashba SO coupling is not present in the parts
where spin currents are to be measured. This is an advantage for measurement of out-of plane
spin currents. However, the device naturally generates in-plane spin polarization, and for this,
the intrinsic SO coupling of the BHZ model introduces difficulties in the definition of spin
currents. It is not possible to measure the in-plane polarized current in the most common and
simple way, by introducing separate leads for spin basis states. We circumvented this problem
by demonstrating a method that obtains the lead-averaged in-plane polarized spin current by
combining scattering matrix entries with expectation values of helicity (Appendix @

The analyses and methods shown in this thesis can be applied to many related scientific
questions. Although we focused on the parameters typical for HgTe quantum wells, our analysis
of spin transport is also applicable to other systems described by the Hamiltonian of topological
insulators, among them InAs/GaSb QWs |[Liu+08| and BisSes thin films |[Liu+10b].

The numerical methods used in this thesis can also be applied to the analysis of transport
in presence of a magnetic field. Sensitivity of the topological protection of the QSH state
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to a magnetic field that breaks time reversal symmetry is an interesting and relevant topic.
Experimental measurements [K6n+07] have shown that the transport of the QSHE edge states
breaks down already at moderate fields, showing larger sensitivity to out-of plane than to in-
plane magnetic fields. Topological protection of charge transport will break down if in addition
to the presence of a magnetic field, coupling of opposite spins is possible (e.g. due to structural
or bulk inversion asymmetry-induced SO), and if backscattering is caused by disorder. In this
context, bulk inversion asymmetry (BIA)-induced SO is especially interesting since it is present
even in symmetrically grown QWs, and since its effect on the edge state dispersion is more
important than Rashba SO for small momenta. The values for BIA can be calculated in a similar
manner as Rashba (SIA) SO, employing k- p theory supplemented by the methods of invariants.
The leading term is small compared to the bulk gap [Kon+08|. A numerical analysis of the
combined influence of magnetic field, BIA and disorder on the QSHE [Mac+10| reproduces the
experimentally observed cusp-like suppression of the edge states conductance. A simple picture
for understanding this breakdown in terms of scattering matrices for pairs of edge states has
been given in |[Del+12|. The idea is to describe scattering between nearby pairs of edge states by
a time reversal symmetric S-matrix, and combine this with S-matrices for edge states enclosing
some magnetic flux (magnetic flux impurities), where Aharonov-Bohm phases enter. While low
magnetic fields are sufficient to destroy the QSHE, in high magnetic fields, a transition to the
quantum Hall effect must happen. This transition has been analysed in [Tka+10] and relies on
backscattering that locally breaks time reversal invariance, like the before mentioned magnetic
flux impurities.

In the context of magnetic field combined with spin-orbit coupling, another interesting ef-
fect is the crossover from weak localization, i.e. enhanced backscattering due to constructive
interference of paths related by time reversal symmetry in a system without SO coupling, to
weak antilocalization. The latter is the fingerprint of the different behaviour of a SO-coupled
system under time reversal and can be explained in terms of a Berry phase. Experimentally,
weak antilocalization has recently been observed in thin wires fabricated of HgTe/CdTe QWs,
in the normal and inverted regimes [Miith+14a).

To close, let us briefly take an outlook on related scientific progress in the field. The QSHE
opens new possibilities for spintronics devices based on edge states. One proposal is a spin tran-
sistor |[Kru+11] which benefits from the intrinsic BIA-induced SO interaction in HgTe/CdTe
quantum wells and allows for gate-controlled spin or charge switching between edge channels.
Further, the edge states of the QSHE were combined with the SHE, to demonstrate spin polar-
ization of the edge states [Bri+12|. With regard to the generation of spin currents for spintronic
applications, an open question is how one could possibly benefit from the dissipationless spin
current, which naturally appears in the helical Dirac cone of the metallic surface states of a 3D
TI.

Even if manipulation of the spin is not the goal, the topologically protected charge transport
in a TRI system opens many new possibilities, among them proposed efficient thermoelectric
systems, which could pave the way for future heat to power conversion [Tre+10].

In this thesis, the concept of holonomic quantum computation |[Zan-+99] was only applied to
the manipulation of a single spin. However, the general concept allows for operations on larger
Hilbert spaces, and has attracted a lot of interest because of the prospect to implement fault tol-
erant quantum computation, which is topologically protected in the sense that generated unitary
operations on the Hilbert space will depend only on the topology of a braiding group [Nay-08|.
For such topological quantum computation, quasiparticles showing non-Abelian statistics are
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required. An interesting candidate are Majorana fermions, which could be realized experimen-
tally in hybrid systems consisting of topological insulator wires interfaced with a superconductor
|[Fu+08]. Despite a lot of experimental work, convincing experimental proof of a Majorana state
is still outstanding.

Concerning the area of topological insulators, certainly one direction of further research is
the theoretical prediction and experimental study of new material systems. Several systems have
been experimentally confirmed to be 3D topological insulators [And13|, and an InAs/GaSb/AlSb
heterostructure system has been both predicted to be a 2D topological insulator [Liu408] and
experimentally confirmed, by proving the existence of helical edge states is this system [Kne-11].
Further research on material systems is needed to improve possibilities for technological integra-
tion of Tls, in particular hybrid structures of TIs with superconductors and ferromagnets will be
of interest. For practical applications, systems with a large bulk gap will be required, in order
to finally allow device operation at room temperature.

On the theoretical side, an interesting subject is extending the scope of topological classifi-
cation. Time reversal invariance, which is the protecting symmetry of the topological insulator
phase, has been supplemented by the discrete anti-unitary symmetry of charge conjugation, in
order to find a complete periodic table of topological insulators and topological superconductors
in different spatial dimensions [Sch-+08|. The topological classification of phases has been further
extended to include the point group of the underlying crystal structure as protecting symmetry.
In a situation without spin-orbit coupling but with time reversal invariance, the new class of
topological crystal insulators has been predicted [Full].

With regard to the topological classification of correlated, i.e. strongly interacting phases,
it will be interesting to explore interaction driven quantum phase transitions, with respect to
the topology of the occurring phases. An intriguing subject is how phase classification by con-
ventional order parameters, which capture the physics of broken symmetries, can be intertwined
with topological classification of phases. An example is the prediction of a topological Mott
insulator |[Rag+08|, a phase that is insulating due to strong Coulomb interaction, but hosts
topologically protected edge states inside the insulating bulk gap. In this sense, the system
shows an interaction driven, topological phase transition. A continuous change of a conven-
tional order parameter indicates the phase transition, which is at the same time accompanied
by a discontinuous jump of the topological invariant. Recently, another example of intertwined
physics of thermodynamic and topological phase transitions has been elucidated by the analysis
of a Hubbard-like interacting model based on the BHZ model |[Ama-+14]. In this system, it has
been shown that for sufficiently strong Coulomb interaction, the topological phase transition be-
tween band insulator and topological insulator happens without closing the bulk gap, and that it
becomes a thermodynamic phase transition, which is associated with experimentally accessible
fingerprints.
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Appendix A

Kubo formula for conductivity from
linear response

In this appendix, outline the derivation of the Kubo formula [Kub57| for the conductivity from
linear response theory. The linear response formalism allows to evaluate non-equilibrium, i.e.
irreversible processes like currents and dissipation, if they are small, so that they can be treated
as perturbation to the equilibrium. The time dependent expectation value of an observable
is thus given by the equilibrium expectation value of a correlation function that describes the
observables fluctuation in time. There are many different derivations and equivalent expressions
for the Kubo formula. Here, our goal is to obtain the Kubo formula in the form that is is used
as starting point in Kohmotos [Koh85| discussion of the quantum Hall effect.

We assume that the dynamics of a system is given by a time-independent Hamiltonian
Hy plus a small perturbation H'(t) = BF(t), where B is an operator, and F(t) is real with
F(—o00) = 0. We are interested in the time dependent expectation value of an operator 0,

(0)(t) = Tx(p(1)O), (A1)

where the density matrix obeys the von Neumann equation 4 p(t) = i[p(t), Ho + H'(t)], and we
use the ansatz p(t) = po + f (t). Here pg = %e‘ﬁHO is the time-independent equilibrium density
matrix, with Z = Tr(po). In the interaction picture, the dynamics of f7(t) = e ot f(¢)e~iot jg
found to be
d - )
S 11() = =ilH(t), po] + O(H"). (A.2)

The time-dependent expectation value up to first order in H'(t) is found by integration,

t

O)6) = (Oho—i [ at'Tx (010 H(¢). 0] (43)

—00

— (0o / " (01 (), (¢ — )0 (A1)

where (...)p denotes the statistical expectation value evaluated with po.

Since we are interested in the conductivity tensor, we will apply this to find current expec-
tation values as function of a driving electric field, which is taken as perturbation. For this, one
can either implement the driving field by the dipole energy term H'(t) = e, r;E(t), where the
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r; are the positions of the electrons and E(t) is the electric field. This is how Kubo proceeds in
his original work [Kub57|. But we choose a different approach, which must lead to equivalent
results because it is related to the dipole energy by a gauge transformation, and implement
the driving field in the vector potential. In order to distinguish vector potential of the driving
electric field and a possible constant magnetic field, we write A(t) = Ap + Ag(t), with Ag(t)
chosen such that E(t) = —%A(t) = E(w)e “@+Mt The infinitesimal 1 > 0 is used to model a

slow turning on of the perturbation. For O, we insert the current component 7

Jy= e _ g 4 @ (A.5)

ok,

where H is the full Hamiltonian, including the perturbation. Therefore, the current contains a

J(P)

term independent of the perturbing A g, which is called paramagnetic current J;”, as well as a
term linear in A g, which is called diamagnetic current J,Sd).

In the expansion , the term (J,)o gives a contribution of the diamagnetic current,
while the paramagnetic current of a parity-symmetric system must vanish in equilibrium. The

diamagnetic contribution is parallel to the direction of the applied field, (J,)o = K, Ag ,(t) with
K, = —e(%)o. Being interested in the response linear in A, we only need the paramagnetic

current part for the commutator term. Note that the perturbation H'(t) = H[, — H|s,_g
contains a part proportional to A%, which was important to obtain the diamagnetic current.
However, in the commutator expression in (A.4), we drop the part that depends on A% and
insert H'(t) ~ —J®) . Ap(t). Then, the conductivity tensor o, (w) is found from the defining
relation

1 :
(Uu)) = g [ A1) 0) = 0 (@)l (A6)
Since the time dependent factor Ag(t) in H'(t) is not an operator, it may be pulled out of the
commutator expectation value in (A.4). Then, one can use [Hy, po] = 0 to show that the latter
no longer depends on t. We find

o

o (w) = Jimny R <Ku5w, +i /0 dt e"@Tmt(] 7@ (0), Jy?)(—t)} >> : (A7)

In the following, we consider the static Hall conductivity o,,(0) for a 2DEG on a lattice, with
a non-zero perpendicular magnetic field. As discussed in [Koh85|, we need to restrict ourselves to
magnetic fields corresponding to a rational number of flux quanta per lattice site, in order to find
a basis of generalized Bloch states. The momenta k used in the following should be understood
as elements of the magnetic Brillouin zone, and the indices n, m will be used to label the band of
the generalized Bloch states. The eigenstate representation of the equilibrium density matrix in
the grand canonical ensemble is diagonal k and given by po(k) = >, f(Em(k))Pnp(k), with the
projectors { P, (k)}, on the generalized Bloch states, and the Fermi distribution function f(E,,)
at eigenenergy E, (k). In this basis, the Hamiltonian is given by Ho(k) =Y, E,(k)P,(k). Note
that we need only the current-current correlation of the paramagnetic current parts, which can
be already found from Hy(k) without the perturbation. After evaluating the time integral in

(A.7)), one arrives at
Xnm
w+in+ En(k) — E,(k)’

7

(A.8)

=1
Oay() nlg%) w—+1in

D (f(Em(k) = f(En(k)))

,1, T
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where we have defined current-current correlation matrix elements
Xum = Te(JP) () Py (k) JP) (k) P (K) ), (A.9)

for which X,,, = X,,. Let us drop the parameter k for convenience and introduce A,,, =
En(k) — En(k). We can rewrite by explicitly adding up summands with m < n inter-
changed, and restricting the sum to the ordering E,, (k) < E, (k). The restricted sum is denoted
as 3/, Further, at zero temperature, the f(E,,) will take only values 0 or 1, which gives the
restriction that the Fermi energy must lie in a gap, Fp,(k) < Er < E,(k). We split Oy into
two parts

Oay(w) = Ug} (w) + U:%I) (w), (A.10)
o) = lim S _ U X = Xiim)

00 = iy 3 (1)~ FB 2 T (A1)
oI (L) = lim 4 , _ (Xnm + X7m) Amn

o) = 2 U S A ey A

We are especially interested in the DC limit w — 0. Luckily, w and in only appear as sum, so we
do not need to specify the order of taking their limits. Without the small 1, we wouldn’t be able
()

to work within the equilibrium distribution given by pg. oy (w) is the important part, which
gives the non-zero (quantum) Hall conductance, and it is the starting point in [Koh85|. We can

use symmetry under rotation about Z by 7 to show that the part ag(é,l) (w) vanishes. To see this,
we note that the rotational symmetry gives o, _;(w) = 04y(w) = —0yz(w). The only factor in

0zy(w) that depends on current directions is X,,,. By interchanging current coordinates, one

finds X, ( :,(cp ) & Jlgp )) = Xyn. Making use of this property and demanding invariance of the

analytic expression for o,y = 0, _,, we find a condition that the matrix elements X, must

fulfil,

! * *
Xnm + X’:m = —Xmn — an = _(Xnm + Xnm) = 07 (A13)

and thereby, we have agg,l) (w) = 0 by symmetry. At zero temperature and in the DC limit, the

Hall conductance simplifies to

(p) (p) ) (p)
Umy:1 Z (g Jrm (Ja)mn = (J& " Jnm (g Jmn

En(k)<Ep<Em(k)
k,n,m

(A.14)

Analogue to (A.11) and (A.12)), one may define the longitudinal conductivity parts o) and
ag(gg). The part UIQ will vanish since X,,,,, becomes real. In the case of no magnetic field and

in the zero temperature limit, og} will also vanish, leaving only the diamagnetic part, which
diverges for the DC limit w — 0. In order to obtain a meaningful (non-diverging) result for
the DC limit, one needs to include a scattering mechanism like disorder or phonons [Czy07].
However, this problem does not affect the Hall conductivity or longitudinal conductivity for
w # 0. In the calculation shown here, we need to assume a perfect lattice so we can work with

the basis of generalized Bloch states.



166

Appendix B

Quasi-degenerate perturbation theory

Quasi-degenerate perturbation theory, also called Léwdin partitioning [Low51]|, is a formulation
of time-independent perturbation theory that is particularly useful for the application in k - p
theory, where an infinite-dimensional eigensystem must be reduced to an effective theory written
in the basis of the finite set of the most important bands. The transformation is also discussed
by Foldy |Fol+50] in his seminal work on a non-relativistic effective theory for a spin—% particle
in a perturbing electromagnetic field.

The method can be seen as a generalization of the standard time-independent perturbation
theory [Sak04]. Instead of corrections to the eigenenergies, one obtains corrections to a subma-
trix of the Hamiltonian, which account for the coupling to other blocks of the Hamiltonian. In
the special case where the submatrix is just a number, the two formulations become identical.
In the standard perturbation theory, special care must be taken if the energy level of interest
is degenerate or nearly degenerate. One needs to use a basis, which will first diagonalize the
perturbation in the degenerate set, before developing the perturbation series. The theory dis-
cussed here avoids this in a natural way, since it operates with the full submatrix of the (quasi-)
degenerate set.

The derivation given here follows closely the one given in Appendix B of Winkler [Win05|.
Let the set A denote the (quasi-)degenerate set of states or bands, and the set B all other states
or bands. This defines a partitioning of the Hamiltonian H into blocks. The goal is to find an
(approximate) unitary transformation

H=e"He" (B.1)
so that H is block-diagonal. S must be anti-hermitian, ST = —S. Further, we choose S as
block-off-diagonal by ansatz.

We split the Hamiltonian into parts
H=H"+H =H+ H' + H? (B.2)

where the part HY is already diagonal, with energies { £, },, on the diagonal, and the perturbation
H' is assumed to be small compared to the energy gap between states of set A (for which we
will use indices m, m/, m”) and states of set B (which will be denotes with indices I, ', I").
The perturbation is further split into a block-diagonal part H', i.e. H}nl = Hllm =0, and a
block-off-diagonal part H?, i.e. anm/ = Hl2l' =0.
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The transformed Hamiltonian can be written as

i— ;'[H ), (B.3)
7=0
where
[A,B]¥) =[...[[A,B], B], .., B]. (B.4)
N ——

j times
can be proven order by order. For the contribution of order j in the perturbation, we can
first ignore non-commutation of S and H and start from the term %(—5’ + S) H. We expand
the power and restore the correct ordering of terms according to (B.1) by shifting all powers of
—S to the left of H, and all powers of +5 to the right of H. The result is equal to %[H, S]9). A
very useful observation is that for a product involving n block-off-diagonal matrices, the result
is block-off-diagonal for n odd and block-diagonal for n even. With this knowledge, we can split

H into a block-diagonal part Hy;, and a block-off-diagonal part H,,

N L T 2 G1(2j+1)
0= 2 gyl HLSIR 4 3 L S, (B5)
7=0 7=0
- > 1 . 1 .
H,=> ——[H"+ H', §]&+D ——_[H?, 8%, B.6

Now, S is found by the condition that the off-diagonals should vanish, H,, = 0. To this end, we
write S = S+ 5@ 4 . and successively find the corrections SU) of order j in the perturbation,

[H°,5W] = —H? (B.7)
(H°,8®) = —[H', 5] (B.8)
(O, §®)] = —[H!, §@)] — %[[HQ, S, 50 (B.9)
[H, 50) = [, §O] — L [[H7, 5], 5] — L[, 5], SO] (B.10)
[H°,50)] = —% (45 [HY, D] +15[[H?, W], O] + 15 [[H?, 5P, 5] (B.11)

115 [[H2, 53, sW] - [[[[#2, sM], sV, 5(1)]75(1)])

Since SU) is block-off-diagonal, we can solve for all non-zero matrix elements, Sffd) = #_EZ[H 0,86, ..

The energy denominator never vanishes, since by assumption there is an energy gap between
the sets A and B.

Entering the expression for S in and sorting by orders in the perturbation, one finds
H, which is block-diagonal. Including the perturbation up to third order, we have

1 1 1
Hyymy = H?nm’ + H;ﬂm/ + 9 ZH;”ZHl/m/ (E — E + Ep — El>
I " "

LS (e Mo )
2 4~ \(Ew —E)(E,w —E) (En—E)(E.w—E)
Im

1 1 1
+= Y H ., HjHj,. < - ) B.12
2 %/: pr (Em - El)(Em - El’) (Em’ - El)(Em/ - El/) ( )
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In principle, this scheme can also be used to carry out the block-diagonalization numerically
up to any order, i.e. find the block-diagonalization up to numerical machine precision. But
this would only be useful if for some reason, one wants to restrict the unitary transformation
to those generated by block-off-diagonal matrices. Otherwise, one should simply perform a
complete numerical diagonalization. However, we will only make use of the transformation in
the analytical form (B.12)).

It is also important to note that remains valid if the entries of the matrix H' are
operators. In this case, it is important to keep the order in which matrix elements appear in
(B.12).



169

Appendix C

Helicity operator in 4-band modelﬂ

C.1 Requirements for h(k)

In order to define a helicity operator h in the 4-band model 1)), we state some requirements
that match the usual definition of the helicity operator, "]'C , for a spin-1/2 particle. These

requirements will make our definition unique up to an overall sign. h should be
e Hermitian,

e time reversal symmetric: [T, k] = 0.

For the time reversal operator 7 = ZK with Z unitary and K being the complex conju-

gation, we use the convention Z = —io, 7y, where o Pauli matrices act on +, — space and
7 Pauli matrices act on E, H space, and 7y is a unit matrix. Further, Tk7 ! = —k and
TkT ! =k, because k = —iV is an operator and k a real vector.

e parity odd: PhP! = —h, with PkPT = —k,
P|E4) = —|E+) and P|H+) = |H+),

e h should have only eigenvalues £1,
e and finally, we demand [H, h] = 0.

Note that [H h] = 0 implies that h will also have the rotational and translational symmetry of
H, where the latter implies that we can write h = [ &3k |k)h(k)(k|. In the following it will be
shown that h(k) takes the form of Eq. (10.3). The rotational symmetry is about the direction
Z, which is the growth direction of the QW, and is glven by Doh(¢)D_o = h(¢ + ), where
¢ = arg(ky) and D, = exp(—iS,«a) and S, = d1ag(2, 5 %, 5).

We may say that parity-oddness of h is its defining feature, because it corresponds to the
parity-oddness of the spin-orbit terms. We call branches of a dispersion related by time reversal,
if their crossing at k = 0 is enforced by Kramers’ degeneracy. The basic idea for the definition
of h(k) is to assign different signs +1 to states at the same k, if they are lying on dispersion
branches related by time reversal symmetry. Kramers partners will be assigned the same helicity.
If Ay (k) are the eigenvalues of h(k), this is exactly what the combination of parity-oddness and

time reversal symmetry ensures, because A (k) £ -2+ (=k) L —A_(k). Since SO coupling

! This appendix has also been published in [Rot-+14.
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removes the degeneracy of bands related by TRS, the observable h is suitable to detect SO-
related effects.

C.2 Symmetry based derivation of h(k)

We perform a construction of the helicity operator by symmetry, similar to the construction of
H(k) in Chapter [7.1.2]

The point group Ty of the zinc blende structure of HgTe is reduced to the C,, symmetry
group by the quantum well confinement (n depending on the direction of growth). In the axial
approximation that we used for derivation of H(k), we had the point group Cy,, and time
reversal symmetry.

The point group includes reflections at a plane including 2, e.g. the element C, with
C’U(kx,ky)égl = (—kg, ky) and C,|E+) = |EF), Cy|H+) = |HF). If we demand invariance of
H (k) under this symmetry, this enforces the parameters A, R, S and T to be real. Note that
this result relies on the conventions we use for 7 and C’v.

We look at the decomposition of a 4x4 matrix in terms of the Clifford algebra. In Chapter
7.1.2) we have constructed the most general diagonal-in-k, rotational invariant about Z, time-
reversal symmetric and parity-odd Hamiltonian in the basis of S,-eigenstates. The Hamiltonian
was the part Hgo of , which depends on the Rashba parameters R,S,T. We introduce
new parameters r, s,t that take the places of kR, kS, k3T, and obtain the most general ansatz

0 0 —irk_/k —isk® /k?
B 0 0 isk? /k? itk3 k3
k) = irtky/k —is*k3/k? 0 0 (C.1)
is* k2 Jk? —it k3 [k 0 0

Because of the reflection symmetry C, of our system, R, S and T are real. However, it is not
yet clear that r, s and ¢ will be real. Evaluating [h(k), H(k)] = 0, we obtain

RIm[r] 4+ kSIm[s] =0 (C.2)
SIm[s] + kT Im[t] = 0 (C.3)
—Rs — kSt + kSr* + k*Ts* =0 (C.4)
2Ms+ Ak(r—t) =0 (C.5)

If we say that these equations must be true independent of the parameters R, S and T and for
all k, we obtain s = 0 and r = ¢ and real. If we set r =¢ =1 in order to fix the eigenvalues to
+1, we are done. With this convention, the conduction band states with the higher energy at
the same k, are assigned positive helicity (assuming R,S,T > 0).

With a bit more calculation, we even do not need to assume the solution to be independent
of R, S and T, and we still obtain the same, unique result. Let us assume R, T # 0, then

2
Imfr — ] = (;T - "ﬁ) Tm[s] = —A—'A:Im[ ]
Except for very special parameters of H (k), we may conclude Im[ ] =0, and thus Im[r] = 0 and
Im[t] = 0. Now that we know that s is real, we may use and ( -,
kS Ak

by U yviGaks



C.3 Projector based derivation of h(k) 171

so we must have t = r except for very special parameters, and s = 0. Fixing eigenvalues to +1,
we obtain the result ((10.3).

C.3 Projector based derivation of h(k)

From the derivation by symmetry, it was not yet very clear, that the different signs of helicity
correspond to branches of the band structure that are related by time reversal symmetry. To
clarify this, we give here a derivation based on projectors on eigenstates of H (k).

For an eigenstate |¢k) = |k)|x+(k)) with spinor |x4(k)), we use the time reversal operator
to define a related spinor |x_(k)) at the same k:

Tl-x) = k) Z|x+(=Kk))" =: [K)[x~(k)). (C.6)

Since we need the state at —k to find the related spinor, it is important that we have a set
of eigenvectors that are continuous functions of k. It is not possible to find eigenvectors as
continuous functions in the complete plane of (k;,k,), but for any given direction of k, e.g.
k, = 0, it is possible to find eigenvectors that are continuous on this line.

We make use of the spectral representation,

Y X)) (Xas(K)| Eas (k). (C.7)

a=FE H s=+,—

Due to the degeneracy at k = 0, we have to be careful how to define eigenfunctions |y (k))
as functions of k, such that they are continuous functions. We set E, +(—k) = Eq+(k).
Then, E, +(k) are differentiable functions even at the band crossing at £ = 0. We may define
IXa,—(k)) = T|Xa,+(—Fk)). States are continuous functions on cuts ¢ = arg(k4) = const. + nw
where n takes values 0 and 1.
Then we can rewrite h(k) using projectors on states, simply by replacing the eigenenergies
with £1.
hk) = > sasgn(ke) (Pas(k) = Pa,— (k) (C.8)
a=FEH

with P, 1 (k) = |Xa,+(k))(Xa,+ (k)| and signs s, = £ which are to be determined. By construc-
tion, [H ( ), h(k)] = 0. Under time reversal H(k) — ZH*(~k)Z!, we have P, 1 (k) — P, +(k)
so that [h, T] = 0.

If we assume that at k the bands are non-degenerate, this construction of A(k) is unique up
to the signs s,, and we have to show that sg = sy = 1 coincides with our earlier definition.
The question of signs is equivalent to the question how we would like to label (e.g. numerically
obtained) eigenstates with indices + and —. In particular, the relative sign sg/sy is relevant.
The reasonable choice is, that when considering the limit R, S, T — 0, the 4 eigenvectors should
be continuously connected to eigenvectors of the upper left 2 x 2 block of H (k). Instead of
considering a continuous deformation of the parameter space of the Hamiltonian, we will use
here a particle-hole symmetry to obtain an equivalent result. As we will show in the next section,
even though H (k) is not particle-hole symmetric, there is an operation P, (see Eq. )
with

Panxp,x)(xEx Pl = Ixme) (|- (C.9)
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P.j, should not be confused with the parity operator P. From (C.8) it is clear that with sg = s,
we find [h(k), P.p] = 0, while this does not hold for sgp = —sp. Since in the last section, the
construction by symmetry gave a unique (parity-odd) result, for which it can be checked that
[h(k), P.p,] = 0, we must have sg = sy in order to fulfil parity-oddness of h(k). A more direct
proof of the parity-oddness of would be desirable, but is not easy since a single projector
P, + (k) does not have definite parity.

C.4 Particle-hole symmetry of states

The spectrum of H (k) is not particle-hole symmetric, both because the spin-orbit terms for the
E and H bands differently depend on k, and because of (k). However, there is a particle-hole
symmetry of the eigenstates of H (k). For the discussion here, we set e(k) = 0 without loss of
generality. We postulate the operator

ke [k
Pale) = | ke Jk (C.10)
ke /k

where ¢ = arg(ky) = arg(k, + iky) and k£ = |k|. We will show that P,.j, has the meaning of a
particle-hole symmetry, in the sense of . Obviously, P, does not depend on k, and it has
the properties P;Lh =—P, = Pe_hl. Being interested in H (k) as a function of the parameters R
and T, we denote this with an index. We find the relation

~PupHpr P, = H_rj2_pye. (C.11)

Thereby, we recognize that for R = T = 0, the operator P, gives the particle-hole symmetry
{P.,,, H} = 0. Further, [P, h] = 0, as is easily checked using the representation in the
main text. Therefore, if |y) is an helicity eigenstate, P.p|x) is also an eigenstate of the same
helicity. Now we want to prove that if |x) is an energy eigenstate, P.p|x) is also an energy
eigenstate, which is not yet clear from for the case R,T # 0. Thus we can find the
complete set of eigenvectors just starting with two states |x+) having helicity £1.

In the following, we use the notation |x, k) = |Xn,e) for energy eigenvectors, when depen-
dency on k is unimportant. TRS relates states of k to states of —k. Since we are looking for a
relation between states of the same k, we use a combination of time reversal and a rotation by
7. The rotational symmetry is D_yH (¢)Dg = H(0).

Since energies at k # 0 are non-degenerate, we know that time reversal will map spinors onto
themselve ZIx5 _x) = ZD3Ixp ) = €n|Xn k). The state-dependent phase e is unimpor-
tant because it can be removed by re-definition. Let us define U := (ZD})" = io,7,. Then we can
replace the operation of complex conjugation by the unitary operation U, |x}) = U|xn). Since
[Per,(0),U] = [io,Ty, i0,T;] = 0, we exploit the rotational symmetry D_gP,;(¢)Dg = Pep(0) to
evaluate the commutator at ¢ = 0.

2 Here we consider just the spinor part of the state. The full state |¢x) = |k)|xn k) is of course mapped to
it’s Kramers’ partner, which is attached at | — k) and thus is orthogonal to |k). Note also that using the rotation
to go from k — —k corresponds to the continuous change of the eigenvector on the circle k£ = const., so we end
up with a state of same energy. If we did a continuous change of the eigenvector by keeping ¢ = const. as in the
previous section, we would end up with a state of different energy.
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Our goal is to prove

(Xn,6| Pen(0)|Xn,6) = 0. (C.12)

Figenstates of different energy, but same k, must be orthogonal, and the SO terms remove
degeneracy. Since the eigenspaces of h(k) are just 2-dimensional, finding a state of same helicity
that is orthogonal, suffices to show that it is an eigenstate of energy. Thus (C.12) is equivalent

to (C.9). Since PeTh = —P.p, and |Xn,¢) = Dg|Xn,0), we have

- <Xn,¢ Peh(¢>’Xn,¢> = _<Xn,0’Peh(0)|Xn,0>
= <Xn,0‘Peh(0)|Xn,0>* = <X7L,0|U]L e*h(O)U‘Xn,0>
= <Xn,O|UTPeh(0)U|Xn,O> = <Xn,O|Peh(0)|Xn,0> =0. (013)

C.5 Using h(k) in the transport code

For a state |k)(a|x(k))+b|x_(k))) (which is not eigenstate of H), we intend to define our spin
transport by measuring |a|? — [b|2. In transport calculations, one typically considers eigenstates
of energy at the Fermi level. Then, the k-vectors in general will be different:

) = alki)[x+ (k1)) + blk)[x~(k2)) (C.14)

Here we include just two modes, because for typical parameters and a given direction of k, H (k)
will have just two propagating modes at the Fermi level, and we expect evanescent modes to have
negligible effect on transport. Because the Hamiltonian is rotationally invariant, the direction
of propagation coincides with the direction of k, and we assume k;/k; = ko/ky. The helicity
operator just depends on the direction k/k. On the one hand, we have

(Ihl) = (| (alki)h(k) | x+ (k1)) + blka)h(ko)[x—(k2))) = laf* — [b]*. (C.15)

Instead of calculating this global expectation value, we may as well calculate the local expectation
value (x|h(k;)|x) (i=1 or 2) using just the 4-component spinor |x) := a|x+ (k1)) + b|x—(ks2)), to
obtain the same result,

(xIh(ki)|x) = lal* = [b]* + b*a(x— (k2)|x+ (k1)) — a*b{x+ (k1) |x—(k2)) = |a|* — [b]>.  (C.16)

Here we used the projector representation of h(k) and made use of the fact that the expectation
value must be real. If we want to numerically evaluate the local expectation value of h(k), we
only need to choose a fixed direction of k, and we can analyse the contribution of the modes for
a wave going in this direction.
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Appendix D

Obtaining bias-dependent observables
from the S-matrix’

In Chapter we have seen that the helicity, i.e. eigenvalue of h(k) for a given direction of
k, corresponds to the components of the electron beam that will be split at a barrier where
the Rashba SO is different from the background. Since the right lead of the considered finite-
geometry device is constructed in a way to guide the beam in the direction k = k;, we consider
the operator h, = h(k = k) = oy7, for which the expectation value is called local helicity
density, and the associated current is called helicity current. Although [H(k),h(k)] = 0, we
have [ﬁ , hz] # 0 even with zero Rashba SO terms. Thus, the common practice to calculate spin
currents, by introducing separate leads for the spin directions, does not work here.

Instead, we show a method for the helicity current calculation, which combines transmission
coefficients of the S-matrix with operator expectation values, evaluated for propagating states
in the leads. The advantage is that this method is even applicable with Rashba SO coupling in
the leads. In that case, the local spin/helicity current oscillates as function of the position in
the lead, but we will be interested in its average value onlyﬂ

A lead is connected to a contact at one end and to the scattering region at the other end.
Thanks to the reflectionless property of the contacts [Sza+89; Dat07], for a lead [, the ingoing
modes will be populated with a Fermi distribution fo(E — p;), while the outgoing modes will
be populated by electrons that originate from ingoing modes of other leads and which pass the
scattering region.

Now we construct a density matrix p for the ingoing states o, 5. We take o as combined index
a = (lo, ko, ne) of lead, momentum (z component, i.e. along the direction of the lead) and mode
index. We use the short notations da,5 = 01,,1,0(ka — kg)0nom, and [da =37, [dka), . €
is the subband dispersion of lead [, and v, = J¢,/0k, is the velocity of mode ng,.

p= / & foley — u,)0(w,) 1) (4] (D.1)

In order to obtain a density matrix p’ for the outgoing states, we propagate the states with the

! This appendix has also been published in [Rot-+14|.
2 In a lead oriented along x-direction and with non-zero Rashbas SO, the average spin-x and spin-z currents
will cancel, but the spin-y current may be non-zero.



175

S-matrix like |y) — S|v),

@ﬁz/Mh@fmnmmwwﬂm. (D.2)

We have to specify how to evaluate S-matrix elements

(a]S|y) = (ka, na|5\k7, n7> \V ‘Uoﬂ)v’ 9(”7)9(_Ua)5(6a - 67)tlanayl'ynw

/w Ok~ Kol )0y — s )t (D3)

where the current-normalized transmission amplitudes appear, i.e. the matrix of the ¢, 1 n. is
unitary, and describes elastic scattering. The velocity factors ensure current conservation. The
Heaviside ¢ factors select only ingoing modes in lead [, and outgoing modes in lead [,, and the
set of k(') are the outgoing solutions of €, (k) = p’ for the set of subbands n,.

We are now prepared to evaluate a local observable O(x), with coordinate x lying in some
lead p, relative to the lead’s coordinate system. We assume that all terms in O(z) contain a
factor P, (projector on x). We need the matrix elements in the basis of propagating (outgoing)
states. They can be written in the form

Opa = (BlO()]a) = 6, 01,p(X810(, ks, ka)lxa)e "o )" (D.4)

with some matrix-valued function O(x, kg, k) and the normalized transverse modes {|x)}. For
the (helicity or spin) current operators, O(x, kg, ko) does not depend on z, and for the local
(helicity or spin) density operators, it also does not depend on k, and kg (see Section [10.4.2 Mfor
the definition of the used operators O(z)). Then, the expectation value of O(z) depends on in-
and outgoing modes,

~

(O(x)) = Tx[(p + p)O(x)]. (D.5)

We leave equilibrium by introducing lead-dependent bias voltages p; = Er+ ;. If we calculate
the response at lead p due to some bias at lead ¢ # p, p will not contribute.

paﬁ *
: « Loyt a :
5Mq /doz/d,é’ Og, /da/dﬂ/dvﬂw vg||vy[taqth 40 (€a — €y)

9 foley — p1y)
- 0(ey — €8)0(—va)0(—vp)0(vy) (JM O8.a (D.6)
P
Let us assume zero temperature, so G(U«,)%M_’”) = ﬁé(kV — ki)d1,,4, where k7 is the mo-

mentum of the ingoing mode n in lead g for energy .

In general, Og , will not be diagonal and therefore, it will also show oscillations in z. But if
O(z, ks, ko) is z-independent and we are interested in a mean value, we can still simplify
using

L
; L
o506 (€a — e,@)/ dz e~ hahs)e m%,ﬂ (D.7)
0 a

for large L. Put into words, if the lead and momentum indices are the same, the band indices
must also be the same if energies are the same. Note that, if we have degeneracy of energy and
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momentum, this relation will not hold. For the lead-averaged response of the expectation value
(e.g. for the conductance), we find

L A _
1 @S = o favie o Potes - o) 22 =0, 08, 03)
0 q

Opp
=0 / daz ltar [25(ca — €)Onabinp (D.9)
1
=> > ta ,v|2 (D.10)
Na Ny

where the solutions ko (EF) of lead ¢ should be entered whenever integration over « is no longer
present. The derivation shown here is mostly standard, apart from the averaging step . It
is this step which keeps our result quite general and simple at the same time. In the literature,
most of the time O(x) is taken as the current operator. Then, averaging is not necessary since
Og,qo is already diagonal.

For the case of degeneracy in energy and momentum, the transverse mode basis used to
evaluate O o will matter, although numerical diagonalisation will choose an arbitrary basis. In
particular, this applies to the situation without Rashba SO in the leads, where subbands are
degenerate. There are two ways to fix this problem: Firstly, we can generalize to the
case where some subbands are degenerate, by keeping track of the coherence of the degenerate
subset,

1 L A CL‘ T=0
/ 4:20@) Ztmlnl m (D.11)
L 0 | n|

m,n,l

where we replaced the collective Greek indices by the Latin mode indices, being the only ones of
interest here. The sum is over all modes m,n in lead p and [ in lead ¢, both at the Fermi energy.
Since we are interested only in average over the lead, the summation over m,n is restricted to
pairs with k,, = k,, implying v, = v,,. If there are only two propagating modes, and if we do
not include Rashba SO terms in the lead, i.e. when all modes are degenerate, formula
will be also correct without the averaging over the z-coordinate (because the result is constant).

Alternatively, we may get rid of the degeneracy by adding a tiny perturbation which will fix
the mode basis in the leads. The form of the perturbation will depend on the operator O(x)
E.g, if we introduce a magnetic field B, as perturbation, this will cause spin precession about z
and therefore suppress the oy-polarization even in the limit B, — 0, thus changing the physics.
In order to check that the small perturbation does not change the physics, we have to prove
that the general result reduces to in the limit of the vanishing perturbation. It
turns out, in the 2-band model (2DEG with Rashba SO), when interested in oy-polarization or
currents, we may use either a small magnetic field B, or a small Rashba SO coupling. In the
4-band model, things are more complicated. But we find that again, a small Rashba SO term
does the job and does not change the physics.
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Appendix E

Continuity equation and vanishing
average torquem

We would like understand how the helicity current that we analysed in Chapter [L0] is connected
to the helicity polarization. Therefore, in this appendix we derive a generalized continuity
equation. For a spin—% system with Rashba SO, the continuity equation including a source term
reads [Shi+06)|

95 4 .30 =7 (E.1)
ot
with the local spin density S; = %W(r)alw(r), local spin current JO = Re (W(r)%{[f', H], Jl}w(r))
and the local spin source (torque) 7; = Re (¢7(r)2: [0y, H]1(r)), and we have put h = 1.

We generalize this result to the 4-band model , which is an effective model for the 4-
component envelope function ¢(r). Since the quadratic and cubic terms of Hgp are unimportant
(see main text), we consider only the linear Rashba terms. Our goal is to find an equation similar
to , but the Pauli matrix o; should be replaced by a general 4 x 4 matrix = with constant
entries (no operators). To obtain helicity density, current, and torque terms, we may later choose
= = hy = oy7,. To find density, current and torque terms related to the spin-z polarization, we
may choose Z = 0,79. We start with a standard derivation of current matrix elements, which is
also appropriate for finding our =-currents.

We consider the general n-band model

H = Hy + V(#) + U(# k) (E.2)

where Hy = Ez;ml Divmll;:ml%l|i><i| is a diagona matrix quadratic in k and D; ny is a band-
dependent (inverse) effective mass tensor, V(r) is a general Hermitian n x n matrix representing
a local potential, and U is linear in k and Hermitian, of the form

Ue,k) = @)k (F) (E3)

with a vector a(r) of n x n matrices, here with 2 components. We note in passing that for
another common symmetrization of non-commuting operators, Ux(t,k) = > {a;(t), k;}, the
resulting continuity equation is of the same form.

! This appendix has also been published in [Rot-+14.
2 It should be possible to generalize the calculation to general non-diagonal matrices, if required.
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For arbitrary wave functions ¥, ¥,, we consider the overlap
Wan (1) = Y} (0) (1) = () (e |t0r)- (E.4)

We apply the Schrodinger equation to get

Outnn(r) = (o [} (], ] o). (5)

Here, terms with V(r) cancel because they are local. As usual, we exploit that Hy consists of
second order derivatives. Pulling out a derivative V, after some steps we arrive at

Butnm(r) = ~5 7 - (ol {IrV0el, T8, Hol D) + (ol [0, U lm), (B6)

where the anticommutator {X,Y} = XY + Y X appears. For the U term, we use
1 1 1
(Wl 3 [[1) (01, U [0m) = = D 0y (abnl)d () = =5V (@l { 00 (e S0, U lom). (BT)
J

Since [r, Hy| = [, Hy+ V ()], we obtain the continuity equation 0;wyy, = —V + jum with current
matrix elements

(1) = (Wl L) (] V ). (B3

1

where V; = g—g = [, H]. The diagonals are real and give the well-known current expression

. 1.
ion() = Re (V01 Hlun(o)). (£9)
Based on this calculation, it is not difficult to find our generalized continuity equation for

the current of = (e.g. helicity),
0S=

otV JE =72 (E.10)

with the local Z-density Sz = ¥ (r)Z4(r), local Z-current J& = Re (¥ (r)$A{[t, H],E}(r))
and the local Z-source (torque) Tz = Re (¢ (r)1[Z, H|i(1)).

We define the projector on coordinate r, P, = |r)(r|. With the Schrédinger equation and its
Hermitian conjugate, we obtain, similar to ,

O lE)Z{eltbm) = & (bl [PEZ, H] o). (B.11)

The diagonal element (m = n) gives agf. Since [Py, E] = 0, we have

LIRS, H) = APy, HL ) + 5P 5 H]). (E.12)

The diagonal matrix element of the last term gives the Z-torque Tz = o (Un|{ P, [E, H]}|¢n).
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For the first summand in (E.12), we note that the steps following (E.5) stay valid if we
substitute |¢,,) — E|ty,) or (¥y| — (¥y|E, and therefore,

(nl 1P H), Z ) =~V - 3E) (5.13)
with
TE) = L 0al (1P V). E ) = il ({2, V. B i) (E.14)

The matrix element with n = m again gives the Z-current J&_ which is real. To summarize,
the derivation holds as long as on operator Z fulfils the conditions [Z,#] = 0 and [2,k] = 0,
since otherwise, the derivative would also act on =.

Finally, we note that the average Z-torque, when we evaluate it with an energy eigen-
state and integrate over both coordinates of a lead, vanishes. For this, we simply need to
use [dx [dyP; = 1. Then, [dz [dyTz = (¢|3[E, H]|¢)) = 0 since H[¢)) = E|). Applying
this to = = h,, we see that the average helicity current is a conserved quantity. This result
may seem trivial - after all, we expect that any non-conserved local polarization that oscillates
because of quantum mechanical interference, will cancel on average. Then, the average value
(zero) is of course conserved but not very interesting. However, this kind of cancellation is not
expected for currents, since oscillations cannot undo the injection of e.g. charge or spin into
a lead. The average helicity current, which has been calculated numerically in Chapter is
clearly non-zero, electrically detectable and it is also related to a spin-current.
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Appendix F

Wave matching for lattice model|

We consider the infinite N-SO or SO-SO interface of Chapter [10.3] By employing an approx-
imation of the analytical model by a lattice, we prevent issues with symmetrization |[Win-+93|
and avoid problems with unphysical spurious solutions [Sch+85]. We use the Green’s function
formalism as developed e.g. in [Wim08| for a tight-binding model with only nearest neighbour
hoppings. A shortened derivation of the formalism has also been given in Chapter [5} Since the
formalism is the same as is used also in the finite geometry with attached leads, we may call
the left and right sides of the interface two “leads”. Due to k,-conservation at the interface, we
only need to solve a 1D chain problem with k, as parameter, while k, will be discretized on
a lattice with lattice constant a. Due to translational invariance by shift of a, solutions ¢ (x)
will be plane waves with k; in the first Brillouin zone [—m/a, 7 /a]. However, the 4-band model
Hamiltonian contains up to 3rd powers of /%z, which when discretized, lead to next-nearest
neighbour hopping elements. Since the formalism is formulated in nearest-neighbour coupling
matrices only, we need to use an enlarged unit cell containing 2 lattice sites (we identify them
as sublattice A,B). So for the moment, we only make use of translational invariance by 2a. The
ansatz 1 (x) = e’*+¥x(k,) with a spinor x(k,) of 8 components, leads to the effective Schrédinger
equation

H(ky)x(kz) = (Ho + Hie** + H_je~?"%)x(k;) = Ex(kz) (F.1)

with H_1 = Hir Hy, Hy and H_; are 8 x 8 matrices describing the Hamiltonian of an isolated
enlarged unit cell and the couplings to the right/left cells.

The band structure of H(k,) is formally obtained from the band structure of the primitive
(i.e. single site) unit cell lattice problem by reducing the Brillouin zone to [-7/(2a),7/(2a)] in
the manner of shifting k,-values by m/a if necessary. So we have twice the number of bands
in order to compensate for just half of the original Brillouin zone. We call the bands that
are obtained by shifting (they originally have |Re(k;)| > 7/(2a)) anti-bonding, and the other
bonding. We denote the components [x]s o of x with an index s = 0,1 = A, B for the sublattice
and o = 1,...,4 for the band basis in which H is written. For the bonding states we have
[X]A.a(kz) = €*29x] 5 o (k) and for the anti-bonding states, [X]a.a(kz) = —e*9[x]p o (ks). We
can use these relations to find the value of k, in the primitive unit cell model.

Since we have to resort to hoppings by 2a anyway, and we finally use the lattice model as
an approximation of the analytical k-diagonal model, we also use hoppings up to 2a to find the
discretization of k, and k2. The discretization of k2 is found by fitting the parameters c; for

! This appendix has also been published in [Rot-+14.
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hopping by ja in the most general symmetric dispersion E(k;) = ¢o + ¢1 cos(ky) + co cos(2k,).
We find ¢y = 5/2, ¢; = —8/3 and ¢y = 1/6. Likewise, the representation of k. is found by fitting
E(k;) = dy sin(ky) + da sin(2k; ), and we find dy = 4/3 and dy = —1/6. This does not make the
calculations more difficult, but gives a much better approximation to the continuum model.
We numerically solve for a fixed energy Ep and find the modes x,, = x(ky). The modes
are classified in propagating with |A\| = 1 and evanescent modes with |A\| # 1, and A = e?¥=,
Further they are classified in right-going which is right-decaying (JA\| < 1) or right-moving
(|]A = 1 and velocity v > 0), and left-going. The velocity of a normalized propagating mode
X(kz) is obtained by v = XT(kx)%?)x(kx). This relation still holds even if the expression

wT(r)%’;m)w(r) cannot be longer interpreted as local current density. This is the case for

Hamiltonians containing powers of k, higher than two |Li+-07]. We calculate the helicity of
a mode by putting the value of k, into the analytical expression of h(k), Eq. [10.3) and by
evaluating the expectation value just for sublattice A ([x]4 is a 4-component vector):

Dl Dla

[f XA

Here it is essential to put in the k;-value obtained for the primitive lattice, by identifying the
bonding/anti-bonding character of x. Because the rotational symmetry is broken, we do not
expect to have perfect values 1 for the helicity, but it turns out that the approximation to the
analytical model works quite well - the helicity expectation value deviates from +1 by less than
1076

Next, we use the eigenmodes to calculate the self-energies Y, 31, of the right and left lead.
Of course, we have to calculate the modes separately for left and right lead if the parameters of
the Hamiltonian depend on the region. But here we just use modes of the right lead to present
formulas for both leads. With notation of [Wim0§|, “>" stands for outgoing and “<” for ingoing
states, so at the right lead, “>” stands for left-going and “<” is right-going. The 16 modes are
sorted into two matrices, Us = (x1,>, ..., x8,>) and U< = (x1,<, ..., X8,<). The corresponding
eigenvalues ), define matrices As = diag(A1 >, ..., A\g>) and A. = diag(A; <, ..., Ag <). Then we

have (compare Eq. (5.90) or [Wim08])
Yp=HUAUZY, Yp=H U AJ'UZ

(R)ya0) = (F.2)

We can also obtain ¥ from X i by a rotation about w. For that, we have to combine rotations
acting on band and sublattice space and k, — —k,. The corresponding I' matrices are I'r =
i(Xr — EE) and 'y, = i(Xp — ZTL) It is very important to use right-decaying states for the
right self energy and left-decaying states for the left self energy (evanescent states constitute the
Hermitian part of ¥, g). The I matrices, on the other hand, project only on the propagating
states, and e.g. I'r may be rewritten with right-propagating states or left-propagating states.

Finally we need the retarded Green’s function G = (Ep — Hy— X — X1)~! of a single unit
cell with the leads attached, modelled by the self-energies. Here we have the possibility to put
in different Rashba SO values for Hy in order to control the smoothness of the interface, e.g.
we may use an average of the left and right lead’s SO parameters for a smoothed interface. It
turns out that cross-helicity transmissions (see Chapter decrease upon making the interface
smoother.

The full scattering matrix can be obtained with the generalized Fisher-Lee relations
[Wim08§| for transmission and reflection coefficients. For the left-to-right transmission ampli-
tudes, right-going modes in the left lead are matched with right-going modes of the right lead.
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For the left-to-left reflection amplitudes, we match right-going modes with left-going modes in
the left lead,

i

tLimn =
o V VRm,<VL;n,> |

1

TLimmn = XTL;m7< (ZFL GR 'y — FL) XLin,>-
V |UL;m,<UL;n,>’

XJ]r%;mK I'r GR 'y XLin,> (FB)

(F.4)
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