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Summary

Blurn severity was measured within the Mediterranean sclerophyll forests 
lof south-west Western Australia (WA) using remote sensing data from the 
lModerate Resolution Imaging Spectroradiometer (MODIS). The region 

of south-west WA is considered a high fire prone landscape and is managed by 
the state government’s Department of Conservation and Land Management 
(CALM). Prescribed fuel reduction burning is used as a management tool in 
this region. The measurement of burn severity with remote sensing data focused 
on monitoring the success and impact of prescribed burning and wildfire in 
this environment. The high temporal resolution of MODIS with twice daily 
overpasses in this area was considered highly favourable, as opportunities for 
prescribed burning are temporally limited by climatic conditions.

The Normalised Burn Ratio (NBR) was investigated to measure burn 
severity in the forested area of south-west WA. This index has its heritage based 
on data of the Landsat TM/ETM+ sensors and was transferred from Landsat 
to MODIS data (KEY AND BENSON, 1999 [1],[2]). The measurement principally 
addresses the biomass consumption due to fire, whereas the change detected 
between the pre-fire image and the post-fire image is quantified by the ΔNBR. 

The NBR and the Normalised Difference Vegetation Index (NDVI) were 
applied to MODIS and Landsat TM/ETM+ data. The spectral properties and 
the index values of the remote sensing data were analysed within different burnt 
areas. The influence of atmospheric and BRDF effects on MODIS data were 
investigated by comparing analyses of uncorrected top of atmosphere (TOA) 
reflectance and atmospheric and BRDF corrected (BOANADIR) reflectance. 
The definition of burn severity classes was established in a field trip to the 
study area. However, heterogeneous fire behaviour and patchy distribution of 
different vegetation structure made field classification difficult. Ground truth 
data were collected in two different types of vegetation structure present in the 
burnt area. The burn severity measurement of high resolution Landsat data was 
assessed based on ground truth data. However, field data was not sufficient for 
rigorous validation of remote sensing data. The ΔNBR index images of both 
sensors were calibrated based on training areas in the high resolution Landsat 
image. The burn severity classifications of both sensors were comparable, which 
demonstrates the feasibility of a burn severity measurement using moderate 
spatial resolution 250m MODIS data. 

The index reduced atmospheric and BRDF effects of the remote sensing 
data, and thus MODIS TOA data were considered suitable for the burn 
severity measurement. The ΔNBR could not be uniformly applied, as different 
structures of vegetation influenced the value range of the index. Furthermore, 
the index was sensitive to variability in moisture content. However, the study 
concluded that the ΔNBR on MODIS data is a useful measure of burn severity 
in the forested area of south-west WA.
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Chapter 1: Introduction

Tlhe aim of this research is to measure burn 
lseverity using satellite imagery from the 
lModerate Resolution Imaging Spectroradiometer 

(MODIS) sensor in the forests of south-west 
Western Australia (WA). The south-west of 
WA has been exposed to and shaped by fire for 
thousands of years and is considered to be one of 
the most fire prone regions of the world (ABBOTT 
AND BURROWS, 2003). The Mediterranean climate 
is characterised by long hot and dry periods, 
resulting in a fire prone environment. Due to a 
high rate of endemism this region is in the top 25 
global biodiversity hotspots (MYERS ET AL., 2000). 
The sclerophyll vegetation is widespread and rich 
in essential oil, making it highly flammable. It is 
also exposed to natural ignition through lightning 
strikes (ABBOT AND BURROWS, 2003). It is a unique 
environment, which requires a high level of 
management to maintain and keep the natural 
ecosystem intact.

In recent times sustainable fire management 
has been high on the WA government’s agenda. In 
the forested region of the South West prescribed 
burning is used as a management tool by land 
managers from the WA Department of Conservation 
and Land Management (CALM). Their goal is to 
reduce flammable fuel and avoid naturally ignited, 
disastrous wildfires. The aims of prescribed 
burning are to provide protection for human life 
and property, to conserve the rich biodiversity 
of the region and to meet future challenges such 
as climate change (BURROWS AND ABBOTT, 2003; 
HODGSON, 2004).

Sustainable fire management requires 
continuous monitoring of prescribed burning, 
wildfires and the environmental effects of fires. 
Satellite remote sensing has become an important 
and effective tool in monitoring fire and the 
environment (PEREIRA AND SETZER, 1993; TURNER 
ET AL., 1994; WHITE ET AL., 1996; PATTERSON AND 
YOOL, 1998; CHUVIECO, 1999; KEY AND BENSON, 
1999; GARCÍA-HARO ET AL., 2001; ROY ET AL., 2002; 
JUSTICE ET AL., 2002 [2]; MILLER AND YOOL, 2002; 

DÍAZ-DELGADO ET AL., 2003). Satellite imagery 
with sufficient spatial and temporal resolution 
can provide a detailed insight into fire detection 
and the environmental change post-fire. The 
digital format of the data allows the application of 
automated classification algorithms to determine 
burn severity and area statistics. Currently, daily 
fire hotspots are detected by satellite remote 
sensing and are available for Australia (http://
firewatch.dli.wa.gov.au) and the globe (http://rapi
dfire.sci.gsfc.nasa.gov) (JUSTICE ET AL., 2002 [2]).

This research focuses on a quantitative 
measurement of vegetation change due to fire 
using MODIS satellite imagery. Satellite images 
contain both spectral and spatial information. 
Fire consumes vegetation and alters landscape 
patterns. These changes have a particular spectral 
signature, which can be detected by remote 
sensing. The magnitude of change is expressed as 
low, moderate or high burn severity. The different 
structures of vegetation within the study area are 
considered in burn severity measurement. Data 
from MODIS sensor, installed on the Terra and 
Aqua satellites, give twice daily coverage of south-
west WA in near-real time with a spatial resolution 
of 250m to 1km.

The study area is located in the state forest 
of south-west WA, which is managed by CALM. 
Fire affected areas (FAAs) from the years 2002 
and 2004 were chosen as study sites for several 
reasons:

• The forested area of south-west WA 
requires regular prescribed burning and 
therefore a need for monitoring the success 
of these burns.

• The comparison of prescribed burns and 
wildfires are possible as both phenomena 
are present in the FAAs.

• The cooperation with CALM allowed 
access to ground truth data for validation.

• The MODIS validation project in the 
Department of Land Information (DLI) 
made high resolution Landsat data 
available for validation.
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• and the feasibility of using moderate 
spatial resolution data to measure burn 
severity.

This is a preliminary investigation into the process 
of delivering operational daily information 
about burn severity in forests of south-west 
WA. The MODIS data cover the study area 
twice daily, if clouds permit. Fire managers have 
limited opportunities for prescribed burning 
due to climatic conditions. The results of this 
investigation may assist fire managers to monitor 
prescribed burning.

The image differencing index ΔNBR used on 
Landsat data was transferred to MODIS data. It 
is considered an appropriate index for operational 
daily change detection within the forested area of 
south-west WA. The major topics addressed in this 
work are:

• the spectral characteristics of MODIS 
within a burnt area before and after fire, 

• the effects of atmosphere and varying 
view and illumination angles,

• the effect of burn severity on different 
vegetation structures within the 
Mediterranean forests of south-west WA

Figure 1-1: Fire in Australian vegetation. Fire is a natural phenomenon in the environment of south-west 
Western Australia. The forests are managed by prescribed fuel reduction burning to avoid disastrous wild-
fires. (courtesy of Peter Saint from Fire and Emergency Services (FESA))
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Chapter 2: Literature Review

Slatellite remote sensing is able to measure 
lelectromagnetic energy reflected and 
lemitted from the surface of the earth. 

Within the defined spatial and spectral resolution 
of the sensor, energy is detected in the visible 
(VIS), near infrared (NIR), middle infrared (MIR) 
and thermal infrared (TIR) wavelengths (LILLESAND 
AND KIEFER, 2000; SABINS, 1997). For any given 
surface, the amount of emitted and reflected 
radiation varies by wavelength. These variations 
are due to interactive mechanisms of radiation 
such as scattering, transmission, absorption, 
reflection and emission at wavelengths on the 
electromagnetic spectrum. They can be used to 
establish the spectral signature for each surface 
(LILLESAND AND KIEFER, 2000; www1).

Remote sensing is a useful tool for fire 
detection and monitoring. Various aspects of fire 
can be sensed, including the energy released by 
active fires, smoke, char and altered vegetation 
(ROBINSON, 1991). Satellite images provide a 
resource to monitor vast and remote areas at 
relatively low cost and high temporal frequency. 
At the same time satellite imagery is able to 
address various questions about the earth ś surface 
due to its spatial information in different spectral 
bands. For monitoring biomass burning, remote 
sensing methods can be used to measure surface 
reflectance and thermal properties before, during 
and post-fire (SABINS, 1997). 

Prior fire occurrence, remote sensing can be 
used for predicting fire danger. The susceptibility 
to forest fire can be forecast with remote sensing 
methods through estimation of moisture and fuel. 
The sensitivity of reflectance to variation in leaf 
water and dry matter content is greatest in the 
shorter MIR and NIR, respectively. Indices and 
models are applied to remote sensing imagery 
to detect changes in leaf water content and fuel 
moisture (ZARCO-TEJADA ET AL., 2003; DANSON AND 
BOWYER, 2004; KOETZ ET AL., 2004; BOWYER AND 
DANSON, 2004). CHUVIECO ET AL., 2004 estimated 
fuel moisture based on a linear regression model 

with the Normalised Difference Vegetation Index 
(NDVI) and surface temperature as independent 
variables. Fuel complexes can be mapped as a 
prediction of fire danger using vegetation indices of 
Landsat TM imagery in combination with a Digital 
Elevation Model (DEM) (KOUTSIAS AND KARTERIS, 
2003). Decreasing leaf water content and high fuel 
load increases the likelihood of fire ignition. Fire 
danger prediction can be useful for land managers 
who use prescribed burning as a tool to reduce fuel 
load and forecast wildfire danger. 

During a fire remote sensing can detect the 
location of active fire and monitor its movement 
across the landscape. Active fire detection relies 
on measuring the thermal emission from the 
combustion process itself. Various algorithms are 
investigated and work on the detection of high 
release of emitted radiation in the TIR and MIR 
wavelengths between 3µm and 11µm (DOZIER, 
1981; MATSON ET AL., 1984; FLASSE AND CECCATO, 
1996; GIGLIO ET AL., 1999; STROPPIANA ET AL., 
2000; JUSTICE ET AL., 2003 [2]). Daily detection 
of fire from satellite is available for Australia and 
the globe. The Department of Land Information (DLI) 
Satellite Remote Sensing Services (SRSS) provides 
fire detection for the Australian continent using 
data from MODIS and the National Oceanic and 
Atmospheric Administration (NOAA) Advanced Very 
High Resolution Radiometer (AVHRR). It is updated 
several times a day and is available for public 
access on the Internet (http://firewatch.dli.wa.go
v.au). The MODIS Rapid Response System presents a 
fire detection algorithm applied on MODIS data 
providing global daily distribution of active fire 
(JUSTICE ET AL., 2002 [2]). This product is available 
within 2 to 4 hours of acquisition at 1km resolution 
on the Internet (http://rapidfire.sci.gsfc.nasa.gov). 
The hot spot detection has high dependence on 
the satellite overpass being at the time when fire 
occurs. 
Post-fire, remote sensing is used for monitoring 
biomass burning. Burnt areas are characterised 
by removal and alteration of vegetation as well 
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as deposit of ash and charcoal. A burnt surface 
has a fairly distinct spectral signature from bare 
soil and senescent vegetation when compared 
to the spectral signature of photosynthetically 
active vegetation. The mapping of burnt areas 
using satellite remote sensing is based on spectral 
changes in surface reflectance due to fire. Fire 
affected areas are mapped in various environments 
classified as either burnt or unburnt (RICHARDS, 
1984; PEREIRA AND SETZER, 1993; EVA AND LAMBIN, 
1998[1],[2]; CHUVIECO, 1999; PEREIRA, 2003). 
Surface characteristics are generally persistent 
for a longer period and are therefore less sensitive 
to temporal limitations compared to hot spot 
detection. However, when burnt areas become 
older, the ash is partially cleared by the wind and 
regrowth commences, which reduces the intensity 
of the burnt area signal (EVA AND LAMBIN, 1998 
[2]; ROY ET AL., 2002). Mapping fire affected areas 
is very useful for estimating area burnt, amount 
of biomass burnt and monitoring the post-fire 
recovery. 

There are a number of satellite remote sensing 
systems that are suited to fire monitoring. MODIS 
are modern sensors on the Terra and Aqua satellite 
platforms that are well designed for fire detection 
and monitoring biomass burning. These sensors 
have 36 spectral bands that address both detection 
of thermal emission of active fire and surface 
reflectance for post-fire burnt area mapping. 
Reflective bands within the VIS, NIR and shorter 
MIR wavelengths have a moderate resolution of 
250m or 500m, useful for mapping fire affected 
areas, and thermal bands with resolution of 1km. 
MODIS has overpasses each day and is therefore 
well designed for purpose of monitoring the 
earth ś surface continuously (ROY ET AL., 2002; 
JUSTICE ET AL., 2002 [1],[2]). NOAA AVHRR has 
been considerably investigated after the first daily 
global fire product in the year 1992 (FLASSE AND 
CECCATO, 1996; GIGLIO ET AL., 1999; STROPPIANA 
ET AL., 2000; NIELSEN ET AL., 2002). The AVHRR 
sensor is useful for hot spot detection due to 
global daily coverage and its spectral bands within 
MIR and TIR wavelengths (bands 3 to 5). The 
sensor has a spatial resolution of 1.1km and can 
detect active fires, while fire scars must be greater 
than 400ha to be visible (CRAIG ET AL., 2000). 
The Landsat Multi Spectral Scanner (MSS), Thematic 
Mapper (TM) and Enhanced Thematic Mapper plus 
(ETM+) sensors have spatial resolution of 80m, 
30m and 15m in the reflective bands between 
VIS and MIR wavelengths. The 30m resolution 
bands of Landsat TM and ETM+ are most 
investigated for post-fire study and offer a high 
level of accuracy, however the temporal resolution 
is limited to 16 days (RICHARDS, 1984; PEREIRA 
AND SETZER, 1993; TURNER ET AL., 1994; WHITE ET 

AL., 1996; PATTERSON AND YOOL, 1998; CHUVIECO, 
1999; GARCÍA-HARO ET AL., 2001; MILLER AND 
YOOL, 2002; ROGAN AND YOOL, 2001; DÍAZ-
DELGADO ET AL., 2003). The literature presents 
other suitable sensors for remote sensing of fire. 
The Visible and Infrared Scanner (VIRS) on board 
the Tropical Rainfall Measurement Mission (TRMM) 
with 5 spectral bands between 0.6µm and 12µm 
and spatial resolution of 2km was used for remote 
sensing of fire activity in regions within +/- 40° 
of the equator (GIGLIO ET AL., 2000). The Along 
Track Scanning Radiometer (ATSR) on board the 
European Remote-Sensing Satellites (ERS) has 3 visible, 
2 infrared and 2 thermal bands in 1km resolution 
and has been used to map burnt surfaces (EVA 
AND LAMBIN, 1998 [1],[2]). The regeneration of 
vegetation after fire has been assessed using 
the Airborne Visible/Infrared Imaging Spectrometer 
(AVIRIS), which has 224 spectral bands between 
0.38µm and 2.5µm and ground resolution of 20m 
(RIAÑO ET AL., 2002).

Landscape fires are of global significance 
especially through their effects on climate 
and biodiversity (BRADSTOCK ET AL., 2002). 
Fire releases large amounts of trace gases and 
aerosols, which modify the chemistry of the 
atmosphere affecting the regional and global 
climates (CARY, 2002). Biodiversity can be 
conserved by applying an adapted fire regime 
required by certain ecosystems. It varies in terms 
of frequency, season and intensity (BOND AND 
VAN WILGEN, 1996). Fire intensity is influenced by 
type of ecosystem, climate and topography. The 
productivity of the vegetation determines the rate 
of fuel accumulation. This explains the maximum 
possible fire frequency, whereas increasing fuel 
load is at the same time strengthening impact 
on fire intensity (HUSTON, 2003). Some species 
have an obligate dependence on fire for their 
reproduction and can decline in the absence of 
fire. Other species carry woody fruits that need 
heat impulse or smoke to break dormancy. At 
certain level of fire intensity the positive effects 
on plant species can become negative and plants 
are destroyed by fire. At the same time, unburnt 
patches are important as areas of retreat for flora 
and fauna (BURROWS AND WARDELL-JOHNSON, 
2003; DIXEN AND BARRETT, 2003). Burn severity 
and patchiness of fire is important in assessing the 
impact of fire on vegetation and on the ecological 
balance of the ecosystem. 

Satellite remote sensing is able to measure 
different levels of burn severity (KEY AND 
BENSON, 1999[1],[2]). This is very important 
when quantifying the ecological and atmospheric 
impacts of fire (PEREIRA, 2003). The change in 
reflectance associated with the conversion of 
vegetation to burnt vegetation is greatest in NIR 
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and shorter MIR wavelengths. The magnitude 
of change can be related to burn severity. The 
Normalised Burn Ratio (NBR) is an index, which 
provides enhanced information about burn 
severity. It was successfully validated in needle 
leaf forest with the Composite Burn Index (CBI), a 
post-burn quantitative assessment of burn severity 
sampled in the field (KEY AND BENSON, 1999[1],[2]). 
Preparatory research and further investigation for 
measuring burn severity with change detection of 
spectral signature using Landsat TM/ETM+ data 
have been published by RICHARDS, 1984; PEREIRA 
AND SETZER, 1993; TURNER ET AL., 1994; WHITE ET 
AL., 1996; PATTERSON AND YOOL, 1998; CHUVIECO, 
1999; ROGAN AND YOOL, 2001; MILLER AND YOOL, 
2002; DÍAZ-DELGADO ET AL., 2003. The NDVI, 
based on red and NIR bands, was often added as 
it addresses the vitality of vegetation. The image 
differencing index ΔNBR applied on Landsat TM 
and ETM+ data is presently assisting the Burned 
Area Emergency Response (BAER) program in the 
U.S.A. in their post-burn severity assessment 
(www2, www3).

Further methods for burn severity classification 
are all related to detection of spectral change of 
the surface due to fire on multitemporal imagery. 
The Principal Component Analysis (PCA) is used for 
mapping burn severity based on spectral variances 
in each band and creates new variables as weighted 
sums of the different channel readings (RICHARDS, 
1984; PATTERSON AND YOOL, 1998; GARCÍA-HARO 
ET AL., 2001). The Kauth-Thomas or Tasseled-Cap 
transformation, theoretically similar to the PCA, 
reduces the channels to three composite variables 
describing brightness, greenness and wetness. 
Brightness identifies variation in reflectance, 
greenness is related to the amount of green 
vegetation present in the scene and wetness 

correlates with soil and canopy moisture (KUSHLA 
AND RIPPLE, 1998; PATTERSON AND YOOL, 1998; 
ROGAN AND YOOL, 2001). The Feature Analyst of 
ArcView, ArcGIS or ERDAS Imagine is another 
example used for classifying burn severity. The 
method is based on a machine learning classifier 
that uses an inductive learning algorithm and 
training data to automate the classification of 
certain geographic features (LEVIEN ET AL., 1999; 
REDMOND, R.L. AND WINNE, J.C., 2001).

Investigations into mapping burnt areas with 
the sensor MODIS are not well represented in the 
literature. SÁ ET AL., (2003) address the accuracy 
of MODIS detection of burnt area as a major 
problem due to the moderate spatial resolution. 
Individual channels of MODIS imagery were 
investigated with the aim to map burnt areas 
with sub-pixel accuracy in woodlands of northern 
Mozambique. Comparison with ETM+ imagery 
showed no accurate prediction of sub-pixel burnt 
area fraction in any of the first seven reflective 
bands. In a savanna ecosystem, band 7 (2.130µm) 
followed by band 5 (1.240µm) and 2 (0.858µm) 
exhibited the strongest spectral contrast between 
the unburnt and burnt area. ROY ET AL., (2002) 
present a burnt area mapping method using 
multitemporal moderate spatial resolution 
(500m) data from MODIS. A bi-directional 
reflectance model together with multi-temporal 
land surface reflectance observations provided 
an expectation and uncertainty of subsequent 
observations through time. The highest burnt-
unburnt discrimination using MODIS in primarily 
open wood and grassland of southern Africa 
was provided in band 5 (1.240µm), followed by 
bands 2 (0.858µm) and 6 (1.640µm) and poor 
discrimination in bands 1 (0.645µm), 3 (0.469µm), 
4 (0.555µm) and 7 (2.130µm).
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Chapter 3: Study Area

Tlhe study area is situated within the South 
lWest Botanical Province of WA. It is a  
lbiological boundary essentially determined 

by the isohyet of 300mm rainfall per year and 
corresponds with the administrative South West 
Land Division (BEARD, 1990). It is an isolated 
region bordered on its western side by the Indian 
Ocean, on its southern side by the Southern 
Ocean, and on its north-eastern border by the 
transition into arid land. It spans latitudes from 
27°S to 35°S and longitudes from 114°E to 124°E. 
This province is divided into seven biogeographic 
regions, whereas Jarrah Forest and Warren are 
representative for the forested region of south-
west WA (Figure 3-1). The south-west of WA 
is considered one of the world’s most fire prone 
regions. The Mediterranean climate together with 
the essential oil rich sclerophyll vegetation expose 
the region to fire through ignition by lightning 
strikes (ABBOTT AND BURROWS, 2003). 

3.1 Physical Setting

The study area is located in the biogeographic 
regions of Jarrah Forest and Warren. The land 
appears as a flat stable low plateau. Due to tectonic 
inertness it experienced its main levelling during 
the Permian ice age (270 Million B.P.) (BEARD, 
1990). It is underlain by the deeply weathered 
Precambrian granite bedrock of the Yilgarn 
Block (BEARD, 1990; HOPPER, 2003). The western 
border of the study area is topographically set 
with the escarpment of the Darling Range, which 
resulted from the north to south running fault 
dividing the Perth Basin from the Yilgarn Block 
(Figure 3-2). East and south of the escarpment 
the forested region extends into an undulating 
plateau with elevations varying between 200m and 
600m above sea level, dependent on the resistance 
of the bedrock against weathering and erosion 
(BEARD, 1990; MCCAW AND HANSTRUM, 2003). 

Figure 3-1: The South-
West Botanical Province 
and Biogeographic Re-
gions, Western Australia. 
The South-West Botanical 
Province is separated 
into 7 biogeographic 
regions, whereas Jar-
rah Forest and Warren 
region represent the 
forested area in this 
region. The red box bor-
ders the location of the 
study sites investigated 
in this work. Study sites 
are situated within Jar-
rah Forest and Warren 
region 
(Image: Landsat ETM+ 
mosaic in R-G-B as 7-
4-2, Nov 01 - Mar 02, 
Australian Greenhouse 
Office; SW Botanical 
Province: Thackway and 
Cresswell, 1995)
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Some protruding ranges like the Porungurup and 
Stirling Ranges have peaks rising over 1000m 
in elevation. There are also scattered granite 
bedrock rising to the surface as rocky outcrops 
(HOPPER, 2003). Steep terrain is linked with deeply 
incised river valleys, where the local difference in 
elevation between river valley and plateau rarely 
exceeds 200m (MCCAW AND HANSTRUM, 2003). 
The drainage system, unorganised after the ice 
age, was shaped mainly during the geological 
periods subsequent to the Permian through to the 
Cretaceous 65 Million B.P. (BEARD, 1990). The 
main streams with a continuous flow that eroded 
valleys are the Frankland, Kent and Denmark 
rivers. These rivers all flow southward and 
terminate at the Southern Ocean.

The climate in south-west WA is typically 
Mediterranean, characterised by mild winters, 
a pronounced winter rainfall maximum, and a 
prolonged seasonal drought during the summer 
and early autumn period. It is a result of the sub-
tropical belt of high pressure migrating north and 
south across the region with the change of the 
season (MCCAW AND HANSTRUM, 2003). In the 
winter months from July to September cold fronts 
embedded within moist westerly winds on the 
southern side of the subtropical ridge account for 
the rainfall over the region. In the summer months, 
dry continental easterly winds on the northern side 
of the subtropical ridge lead to high temperatures 
and very low rainfall. The study area lies within 
the moderate Mediterranean zone with rainfall of 
800mm to 1500mm and 3 to 6 dry months per year 
(BEARD, 1990). The amount of rainfall is highest in 
Warren region and the escarpment of the Darling 
Range. It decreases in conjunction with increasing 

◄ Figure 3-2: 
Geological map 
of south west WA 
(Beard, 1990)

▲ Figure 3-3: Rainfall for 
south west WA. The isohyets 
represent distribution of rain-
fall  per year within the South-
West Botanical Province of WA 
(Abbott and Burrows, 2003)

Figure 3-4: Dis-
tribution of soil 
and vegetation 
across a valley 
in south-west 
WA. The distri-
bution of soils 
correlate with 
vegetation struc-
ture and height 
(Beard,1990)
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dry months towards the interior land (Figure 
3-3). As the supply of moisture is of overriding 
importance for vegetation, the critical factor will 
be the season and length of the dry period (BEARD, 
1990). Temperature regime has less impact on the 
vegetation as the region lies in low latitudes with 
high oceanic influence and is therefore moderate 
and excluded from extended frost periods over 
winter .

The soils in the forested region of south-west 
WA are deficient in nutrients. The last major soil 
disturbance occurred through glaciation 250 
Million B.P. (HOPPER, 2003). Australian rocks 
have a general deficiency in the essential plant 
nutrient phosphorus and have undergone deep 
weathering and leaching. These two factors 
are largely responsible for the lack of nutrients 
(BEARD, 1990). The inertness of the landscape has 
left most of this exhausted material in place. The 
sandy texture provides low capacity in holding soil 
water, which plants are able to absorb, whereas 
the deeply weathered pallid zone underneath has 
a great moisture storage. Plant growth is limited 
by the process of surface lateritisation, which 
occurred after the Oligocene period (38 to 26 
Million B.P.) and covers vast areas of south-west 
WA. The lateritic duricrust of hardened ironstone, 
which caps the higher ground, is a result of high 
iron content in the soil and the dry and seasonal 
climate (BEARD, 1990). Soil distribution is varying 

following a catena across a valley and has a narrow 
correlation to the distribution of vegetation (Figure 
3-4). The valley floors are composed of alluvium 
and exposed pallid clays, which are favourable 
for tree growth when not averted by backwater. 
The upland is generally covered with laterite and 
sand, which promotes lower and more sparse plant 
growth. The nutrient poor soil is a limitation in an 
agricultural sense, however, the native flora is well 
adapted (BEARD, 1990).

Vegetation in the study area is generally 
characterised as evergreen sclerophyll forests with 
predominantly Eucalyptus species. The optima of 
temperature and moisture for growth are divided 
into separate seasons caused by the Mediterranean 
climate. The native flora in the forested region was 
shaped over millions of years by nutrient deficient 
soils, dry and hot summer periods and the natural 
existence of fire. The hard brittle leaf character 
can mainly be explained by nutrient deficiency 
and a physical adaptation to the dry and hot 
climate. A further strategy to handle infertile soils 
is symbiosis with mycorrhiza for better nutrient 
intake by the roots. The limitations to plant 
growth rate in this environment are dominated by 

Figure 3-5: Vegetation structure in the karri forest, 
jarrah-marri forest and open woodland/shrubland. 
This structure of vegetation occurs within the study 
sites (Diagrams: Beard, 1990)

Karri Forest Jarrah-Marri Forest Woodland / Shrubland
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deficient water supply rather than nutrients, light 
or temperature (BEARD, 1990). The structure of 
vegetation is a key aspect for determining burn 
severity as the distance between strata, and the 
amount of strata, influence fire behaviour (BOND 
AND VAN WILGEN, 1996). There are three general 
types of vegetation structures occurring within 
the study area: karri forest, jarrah-marri forest and 
open shrubland/woodland. 

The karri (Eucalyptus diversicolor) forest is the 
tallest forest with a canopy reaching heights 
between 60m to 80m, mainly occurring in Warren 
region. There is a sparse upper understorey with 
widely varying heights around 20m and a more 
dense lower understorey with an average height of 
3m (BEARD, 1990) (Figure 3-5). The karri forest 
is determined by the existence of favourable soil 
with a reddish-brown loam or sandy loam surface 
horizon, which gradually changes to red clay 
at about 50cm depth. Karri forest can handle 
no more than 3 to 4 months without rainfall 
(BEARD, 1990). These forests are characterised as 
productive ecosystems with low tree diversity and 
low spatial heterogeneity (HUSTON, 2003). The 
stems of Eucalyptus diversicolor have a very thin 
bark and are therefore sensitive to fire (BURROWS 
AND WARDELL-JOHNSON, 2003). 

The jarrah (Eucalyptus marginata) and marri 
(Eucalyptus calophylla) mixed forests dominate in 
the forested ecosystems of south-west WA. The 
canopy reaches heights of about 20m to 30m 
with a subordinate tree layer below 10m and an 
understorey shrub layer 1m to 2m tall (BEARD, 
1990) (Figure 3-5). Both species have a great 
capacity to regenerate and survive fire from a 
seedling stage (BURROWS AND WARDELL-JOHNSON, 
2003). Jarrah forest covers virtually the whole 
catena from laterite to pallid clay zone. The roots 
are able to pass the surface duricrust and access 
water from deeply weathered profiles. Marri is 
determined by more superficial soil above the 
duricrust. This mixed forest occurs in rainfall 
zones with up to 5 or 6 dry months (BEARD, 

1990). Jarrah-marri forests are less productive 
compared to karri forests and have their primary 
plant diversity in the understorey (HUSTON, 
2003). Mature jarrah and marri trees have a thick 
protective bark. They are vulnerable to intense fire 
only, when the crown becomes scorched (BURROWS 
AND WARDELL-JOHNSON, 2003).

Open shrubland/woodland is summarised 
as non-forested ecosystem without layered 
storeys and includes swamps, heaths, shrubs and 
coastal dunes (UNDERWOOD ET AL, 1991; BEARD, 
1990). In general they are topographically flat. 
Vegetation height is about 2m and density varies 
depending on soil and moisture. Occasionally 
single trees occur within shrubland turning it into 
open woodland (Figure 3-5). These ecosystems 
correlate with poorly drained soils and sandplains 
where the existence of forest with closed canopy is 
not possible. There are several swamps existing in 
the study area. They occur close to the coast where 
drainage has been obstructed by the coastal dune 
system (BEARD, 1990). 

3.2 Fire environment in south- 
 west Western Australia

The environment of south-west WA is considered as 
one of the world’s most fire prone regions (ABBOTT 
AND BURROWS, 2003). Furthermore, this region is 
among the world’s 25 global biodiversity hotspots 
(MYERS ET AL., 2000). This is due to its endemism 
rate, where a high proportion of plant species exist 
only within the south-west of WA. The high value 
of biodiversity refers mainly to richness in plant 
species (BEARD, 2000). The key biogeographic 
reason for becoming a global biodiversity hotspot 
is through the oceanic, climatic and edaphic 
isolation of the south-west of WA. The species 
richness can be explained by evolutionary events 
extending back into the Tertiary (65 Million B.P.) 

Figure 3-6: Historical 
burn patterns in south-
west WA (Bowman, 
2003)
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(HOPPER, 2003). The government of WA manages 
fire in this region to conserve biodiversity and to 
maintain multiple forest resources in a sustainable 
ecologic and economic manner.

Fire history
Fire, as a natural disturbance, shaped the 
south-west WA environment evidently from 
the late Tertiary 10 to 2 Million B.P. (HASSELL 
AND DODSON, 2003). A fire history has been 
reconstructed by sedimentary charcoal and 
pollen analysis. The earliest dated arrival of 
the Aborigines was around 40,000 years B.P. 
(HASSELL AND DODSON, 2003). Aboriginal people, 
called Noongars in the South-West, used fire for 
a variety of reasons, such as cooking, warmth, 
illumination, ceremony, ritualistic ordeals, clearing 
camps, facilitating travel, signalling, regenerating 
senescent vegetation, etc. (BOWMAN, 2003). The 
Noongar’s main use of fire was for hunting and 
agriculture, therefore termed fire stick farming. 
Their fire management was changing the scale 
and frequency of landscape fires due to their 
frequent burning of small areas (BOWMAN, 2003). 
Fires following European settlement in 1826 
had a similar frequency, but burnt larger areas 
and obliterated the mosaic habitat created by 
Aboriginal burning (BOWMAN, 2003) (Figure 3-6).
 
Fire behaviour
Fire behaviour is highly influenced by the type of 
ecosystem, climate and topography (BOND AND VAN 
WILGEN, 1996). The productivity of the ecosystem 
determines the rate of fuel accumulation which is 
in turn a function of the soils and climate. The fuel 
accumulation rate explains the maximum possible 
fire frequency as well as the increase in potential 
fire intensity with time between burns (HUSTON, 
2003). Furthermore, the ratio between fuel and 
air influences fire behaviour which is related to 
the structure of the ecosystem (BOND AND VAN 
WILGEN, 1996). 

In the study area fire behaves differently 
in open woodland compared to forest, where 
different levels of storeys can influence flame 
height or cause wind breaking. Less distance 
between storeys, as exists in jarrah forests can 
more easily cause intense fires compared to huge 
distances between storeys, as found in tall karri 
forests (FOX, 2004; COX, 2004; SIMMONDS, 2004). 
The structure of vegetation is an important criteria  
when measuring burn severity, as scorch of canopy 
is a major benchmark. 

The climate in south-west WA is a major factor 
for fire proneness of the region due to dry periods 
and wind regimes. Since 1970 the South-West has 
experienced a sustained decrease in annual rainfall 
with extended drought periods over summer. This 

prolongs the forest fire season into May or early 
June. On a regular basis strong hot dry northerly 
winds arise ahead of abrupt cooler south-west 
winds. This is associated with a pre-frontal trough, 
which occurs mainly during the summer months 
over the South-West causing extreme fire weather 
days. Strong afternoon sea breezes, due to deep 
troughs inland, can often affect fire behaviour 
with rapid changes of wind direction and strength. 
Tropical cyclones, which originate over the Indian 
Ocean, are an important fire weather factor, as 
they cause lightning strikes, which are a main 
ignition source (MCCAW AND HANSTRUM, 2003). 

Topography is another important factor in 
fire behaviour as slope has a direct effect on 
the fire spread rate. Fire burns upslope faster 
than downslope (BOND AND VAN WILGEN, 1996). 
Furthermore, slope and aspect determine soil 
characteristics, moisture regimes, wind regimes 
and vegetation structure together with the floristic 
composition (BOND AND VAN WILGEN, 1996; 
MCCAW AND HANSTRUM, 2003).
 
Fire ecology
Within ecosystems in south-west WA, fire is a 
natural disturbance which results in different 
responses. On the one hand fire can damage 
or kill mature plants while on the other hand it 
stimulates regeneration and rejuvenescence. A 
post-fire environment is characterised by more 
light, increasing temperatures, water availability 
and levels of nutrients, which is favourable for 
plant growth. More light and high temperature on 
the ground result from the loss of vegetation and 
increasing insolation. Higher water availability is a 
result of the reduction of transpiring leaf surface 
area and therefore addresses deeper reservoirs 
of water. Strong insolation can at the same time 
lead to locally severe conditions of drought on 
surface due to high evaporation rates (BOND 
AND VAN WILGEN, 1996; BURROWS AND WARDELL-
JOHNSON, 2003). Plants with deeper root systems 
or those that penetrate the dry surface have large 

Figure 3-7: Banksia 
woody fruits. Some 
species are dependent 
on fire to open and 
spread seeds.
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reservoirs of water available. The effects of fire on 
the nutrient status of soils depend on the amount 
and distribution of organic matter on the surface 
and in the top few centimetres of soil. Despite 
the loss of nitrogen due to volatilisation, fire 
generally mobilises nitrogen (N), phosphorus (P), 
calcium (Ca) and other nutrients. The carbon to 
nitrogen (C:N) relationship (for example the ratio 
of non-green to green biomass) increases after 
fire, releasing high amounts of nitrogen as ash 
deposition. Nutrients are at the same time released 
by heating the soil organic matter and increasing 
rates of biological mineralisation due to changes in 
soil pH. The result is a nutrient pulse for the first 
few months post-fire (ADAMS, 2003; BOND AND 
VAN WILGEN, 1996; HUSTON, 2003). In the south-
west WA environment it is water and nutrients that 
set growth limits. This results in a lower plant leaf 
area and allows relatively large amounts of light to 
penetrate to the forest floor. The positive effects 
of increased light have little effect compared to the 
sudden availability of plant nutrients and increased 
water resources (HUSTON, 2003).

Vegetation in south-west WA is considered 
highly fire prone and carries many pyrophytes 
that have different strategies to tolerate fire. Some 
species have an obligate dependence on fire for 

their reproduction and can decline in the absence 
of fire. The post-fire environment, with open 
ground space, increased availability of resources 
and temporary reduction of seed predators is 
highly favourable for seedling establishment 
(BOND AND VAN WILGEN, 1996; BURROWS AND 
WARDELL-JOHNSON, 2003). Plant species use a 
variety of physical and chemical cues from fire. 
In particular they use the by-products heat and 
smoke to synchronise germination to the post-
burn environment. Thus many plant species are 
stimulated to reproduce by enhancing flowering 
post-fire. Some species flower regularly between 
fires but accumulate high amounts of seeds in 
seedbanks post-fire (BOND AND VAN WILGEN, 1996; 
LUEPNITZ, 1998). Some species carry woody fruits 
that need a heat impulse or smoke to open the 
fruits and to break seed dormancy (BOND AND VAN 
WILGEN, 1996; DIXEN AND BARRETT, 2003) (Figure 
3-7). Resprouters have developed a strategy of 
diverting much of their energy to underground 
organs such as lignotubers rather than directing it 
towards above ground biomass and reproduction. 
Above ground epicormic buds as well as stem 
and branch shoots are usually protected beneath 
thick bark from the lethal temperature regimes 
experienced during a bushfire. This allows 
resprouting soon after fire (Figure 3-8). Most 
forest eucalypts such as karri, jarrah and marri take 
advantage of post-fire conditions such as a suitable 
seed bed and reduced competition for regeneration 
and seed establishment (BURROWS AND WARDELL-
JOHNSON, 2003). 

For conservation of biodiversity it has to be 
stated that diversity of different types of organisms 
reaches its maximum in different environments 
and depend on different fire regimes. Fire regime 
parameters such as frequency, season and intensity 
of burning, help maintain the high level of 
biodiversity through the effect of disturbance. The 
largest species are prevented from dominating, 
thus allowing smaller or less competitive species 
to survive. One of the greatest threats to the 
diversity of highly disturbed landscapes such 
as south-west WA is the loss of small areas of 
resource concentration for retreat and regeneration 
(HUSTON, 2003).

Fire management
Fire management and prescribed burning 
became legal issues in WA following devastating 
wildfires in the early 1960s (ABBOTT AND 
BURROWS, 2003). In the following decades the 
state government̀ s Department of Conservation 
and Land Management (CALM) was vested with 
the responsibility of managing fire on public land 
(ABBOTT AND BURROWS, 2003). CALM uses fire as 
a planned application, where prescribed burning 

Figure 3-8: Epicormic bud of the Zamia. The above 
ground epicormic bud is protected by a thick bark 
from lethal heat of fire. Resprouting was observed 6 
weeks post-fire.
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is the management tool to achieve specific land 
management objectives (HODGSON, 2004). The 
aims are to protect human life, infrastructure and 
private property and to conserve and protect the 
biodiversity (HOPPER, 2003; HODGSON, 2004). Any 
applied fire regime, like frequency, season, intensity, 
patchiness and size depends on the objective of 
land managers. In order to reduce the risk of 
uncontrolled wildfires after natural or deliberate 
ignition the fuel load needs to be diminished. 
A mild fuel reduction burn of the understorey 
manages this. To support the germination and 
advanced regeneration of several species a high 
intensity fire regime is required. The objective of 
conserving biodiversity is determined by mosaic 
burns as a pattern of different fire regimes within 
a burn envelope (HODGSON, 2004; Fox, 2004; Cox, 
2004; GREEN, 2004). However, there is no fire 
regime that has been shown to conserve the entire 
biodiversity of a region. Each ecosystem needs a 
certain fire cycle to produce the best outcome with 
respect to conserving biodiversity and managing 
the forest sustainably. Figure 3-9 represents an 
appropriate fire regime to manage jarrah forests, 
which also meets conservation and protection 
objectives. After 6 to 8 years, a low intensity fire is 
recommended in spring to reduce fuel. The jarrah 
forest is burnt again after 6 to 8 years in order to 
reduce fuel and support habitat regeneration. At 
this time the prescribed burning is done in autumn, 
because the intensity of the burn is moderate due 
to drier conditions. The flora and fauna need the 
following 12 to 16 years to regenerate.

Prescribed burning can turn into a hazard 
when environmental aspects are not considered 
or changed therefore CALM needs to take several 

precautions. Before igniting a prescribed burn a 
prediction of fire behaviour is made, guided by 
the “Forest Fire Behaviour Tables for Western 
Australia” (SNEEUWJAGT AND PEET, 1998). This 
detailed prediction uses sampled factors like surface 
moisture content, amount and age of fuel, soil 
dryness, type and structure of ecosystem, climate 
and weather conditions for predicting fire spread 
rate and intensity. To protect adjacent properties 
from fire, the boundary is burnt with the wind 
towards the burn envelope to set a strategically 
placed buffer before burning the whole patch. 
Another important goal is to keep the fuel loads 
of neighbouring burn envelopes at different ages 
to set natural firebreaks (GREEN, 2004). Due to 
the high risk of fires getting out of control it is 
illegal to set fires during the period between 15th of 
December to 15th of March (ABBOTT, 2003).

Prescribed burning is an ongoing political issue 
in WA. Smoke pollution and loss of biodiversity are 
two issues which concern the general public. Fire 
as a natural disturbance and the understanding 
of fuel reduction burning to prevent disastrous 
wildfires are not generally accepted by the society 
(BOWMAN, 2003).  

3.3 Study Sites

There are three study sites which were subject 
to both prescribed burns and wildfire between 
September and December 2002. Another area, 
affected by prescribed burning in April 2004 
was taken into account. It occurred during the 
progress of this work and provided an opportunity 

Figure 3-9: A proposed 
fire regime to manage 
the jarrah forest. This 
fire regime contains a 
variety of seasons of 
fire and of intervals 
between fire, which 
meets protection and 
biodiversity objectives. 
(courtesy of Neil Bur-
rows, CALM, in Land-
scope Magazine, 2004)
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Figure 3-10: Landsat ETM+ image over the study area. Overview of fire affected areas selected as study sites 
in south-west WA (Image: Landsat ETM+ mosaic in R-G-B as 7-4-2, Nov 02 - Mar 03, Australian Centre of 
Remote Sensing (ACRES))

to observe burn severity on the ground and collect 
field data (Figure 3-10).

Fire affected area 1 (FAA1) is situated between 
34.73°S to 34.93°S and 117.41°E to 117.60°E. It 
comprises an area of 153.13 km2 and is located 
with the centre about 26km southwest of Mt. 
Barker. The northern part of the FAA was subject 
to a prescribed burn while the southern part was 
exposed to a wildfire. The last day of burning was 
on 14 November 2002 (SHU, 2004), and the burnt 
area of the wildfire was visible on 17 November 
in MODIS imagery. Vegetation in the FAA1 is 
dominated by medium jarrah-marri forest, which 
is disconnected by riparian sedge and grassland 
along the river valleys. There is a small area of 
low woodland in the south-east corner of the fire 
affected area and patches of low to medium forest 
in the south (Figure 3-11).

Fire affected area 2 (FAA2) is located between 
34.61°S to 34.69°S and 117.01°E to 117.16°E. It 
comprises an area of 75.86 km2 and is located with 
the centre about 52km west of Mt. Barker. The 
FAA2 was subject to prescribed burning. The end 
of the fire was on 21 October 2002 (SHU, 2004). 
The vegetation within this study site is dominated 
by low forest and woodland turning into low 

woodland in the centre. In the north-west and 
north-east corners there are patches of medium 
forest. Rocky outcrops are visible in the south and 
north part of the site (Figure 3-11).

Fire affected area 3 (FAA3) is located between 
34.73°S to 34.85°S and 116.58°E to 117.10°E. It 
comprises an area of 224.56 km2 and is situated 
with the centre about 20km north of Walpole. This 
FAA is a long, narrow area with different patches 
of prescribed burns and wildfire. It was affected by 
fire several times over the spring season. The last 
day of prescribed burning was on 30 November 
2002 (SHU, 2004). This FAA3 is composed of a 
mosaic of low and moderate woodland as well as 
low, medium and tall forest and rocky outcrops as 
illustrated in Figure 3-11

Fire affected area 4 (FAA4) is located between 
34.86°S to 34.91°S and 116.80°E to 116.94°E. It 
comprises an area of 41.01 km2 and is located with 
the centre about 16km northeast of Walpole. This 
FAA occurred during the time of this research and 
was subject to prescribed burning. The end of the 
fire was on 28 April 2004 (SIMMONDS, 2004). The 
vegetation of FAA4 consists of uniform medium 
forest in the western part and a mosaic of medium 
forest and low woodland in the eastern part 
(Figure 3-11).
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Figure 3-11: Distribution of vegetation structure in the study area. (Department of Agriculture of Western 
Australia (DAWA))
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Chapter 4: Fundamentals of Remote Sensing

Slatellite remote sensing provides a useful 
lmethod for fire detection and monitoring 
lvast and remote areas affected by fire at 

relatively low cost level and at high frequency. 
Information is received in different spectral 
bands and referenced to the earth’s surface. This 
can be used to address various questions about 
the environment. Fire consumes vegetation and 
alters the landscape pattern. This is visible in 
satellite images as the spectral properties of fire 
affected areas change compared to those measured 
before fire. Burn severity can be measured by the 
magnitude of change detected by a sensor. 

Remote sensing data are presented as 
reflectance, which is defined in the first section. 
The spectral properties of vegetation and soil 
explain the theoretical fundamentals needed to 
detect the change of landscape patterns due to fire. 
The sensors MODIS and Landsat TM/ETM+ are 
introduced as their data are analysed in this work. 
The Normalised Difference Vegetation Index 
(NDVI) and the Normalised Burn Ratio (NBR) 
were investigated to measure burn severity with 
satellite remote sensing data. 

4.1 Reflectance

Reflectance is the process whereby radiation hits 
an object at an angle of incidence and rebounds 
off an object at an angle of reflection. For an 
ideal specular surface (for example a mirror), the 
angle of incidence and the angle of reflection are 
approximately equal (Figure 4-1). Lambert defined 
a perfectly diffuse Lambertian surface, for which 
the radiant flux leaving the surface is constant for 
any angle of reflectance to the surface ( JENSEN, 
2000). However, in practice the surface is generally 
diffuse and spectral reflectance varies depending 
on surface properties. The incident and reflected 
radiation measured by satellite remote sensing are 
in the same plane. 

The reflectance R of a Lambertian surface for a 
spectral wavelength λ is defined in Equation 4-1 
(SCHOTT, 1997): 

In Equation 4-1, L represents the spectral radiance 
measured at the sensor in each spectral wavelength 
λ with units [W/(m2*sr*μm)]. For a Lambertian 
surface, the detected radiance reflected from 
the surface is given by integrating the reflected 
radiance over the hemisphere, represented by the 
factor π. Ε0λ is the top of atmosphere irradiance at 
a certain wavelength, which is normalised by the 
cosine of the sun zenith angle, sz.

The top of atmosphere irradiance Ε0λ can 
be derived as defined in Equation 4-2 (SCHOTT, 
1997): 

Esunλ stands for the mean solar extraterrestrial 
irradiance, which is spectrally variable. It is 
dependent upon the square of the earth-sun 
distance, d, measured in astronomical units 
[1AE=1.49598*1011m].

Figure 4-1: 
Angle of inci-
dent radiation 
and angle of 
reflectance. 
The angles are 
approximately 
equal when sur-
face is specular 
(Jensen, 2000)
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4.2 Spectral Properties of   
 Vegetation and Soil

Basic principles for measuring changes due to fire 
can be explained by the typical spectral reflectance 
curves of vegetation and soil.

Figure 4-2 presents a spectrum measured 
from vegetation, which is composed of deciduous 
forest. The spectrum of the green vegetation 
has a typical trend within the wavelength region 
of 0.4µm to 2.5µm. It shows low reflectance at 
visible wavelengths (VIS: 0.4µm to 0.7µm), high 
reflectance in the near infrared wavelengths (NIR: 
0.7µm and 1.2µm) and decreasing reflectance in 
the middle infrared wavelengths (MIR: 1.3µm to 
2.5µm). The spectral bands of MODIS and ETM+ 
demonstrate the ability to measure the spectral 
signatures. 

In the VIS, leaf pigments determine the 
reflectance properties absorbing the incident 
solar radiation. Chloroplasts carry the most 
frequent pigments Chlorophyll a and b absorbing 
especially the incident blue (0.45-0.52µm) and red 

(0.63-0.69µm) light energy. Green light around 
0.55µm is only partly absorbed by the pigments 
and thus makes leaves appear green to the human 
eye. Dependent on leaf structure and amount 
of pigment, chloroplasts absorb 60% to 80% 
of incident radiation in the VIS and dominate 
the spectral properties within this wavelength 
(LILLESAND AND KIEFER, 2000; JENSEN, 2000; 
MAIER, 2000; LARCHER, 2001). Two other groups of 
pigments, the carotenes and xanthophylls, absorb 
radiation primarily in the yellow to orange-red 
spectrum (MAIER, 2000). The radiation absorbed 
between 0.38µm and 0.71µm is used as energy 
source for photosynthesis and is therefore termed 
“Photosynthetically Active Radiation” (PAR). A 
reduction of the chlorophylls due to senescence 

Figure 4-2: Spectral properties of deciduous vegeta-
tion. MODIS and Landsat ETM+ bands demonstrate 
the capacity to detect the signal in the wavelengths 
between 0.4 and 2.5 µm.  (Spectrum: ASTER spectral 
library, http://speclib.jpl.nasa.gov/Search.htm)

Figure 4-3: Influence of leaf water content on spec-
tral properties of vegetation. (Jensen, 2000)
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or stress results in dominance of other pigments. 
Thus leaf colour is changing and photosynthetic 
activity is reduced (LARCHER, 2001; JENSEN, 2000).

In the NIR, reflectance of green vegetation 
has a dramatically increase. The low absorption of 
vegetation in this wavelength (below 5%) yields to 
high reflectance between 40% to 60% and high 
transmittance between 40% to 60%. Transmitted 
light can be reflected and transmitted again by 
leaves below. If the canopy is only composed of 
a single sparse leaf layer, reflectance in the NIR is 
lower due to absorption of transmitted energy by 
the ground. Reflectance within this spectrum gives 
evidence about the amount of biomass (JENSEN, 
2000). Plant reflectance in this wavelength can be 
also used to detect plant stress and discriminate 
species as reflectance largely changes with the 
internal leaf structure (LILLESAND AND KIEFER, 
2000).

Incident energy in the MIR is either absorbed 
or reflected by vegetation, whereas transmittance 
is little or non existant. Water content determines 
the spectral characteristics of living leaves. Leaf 
water absorbs incident electromagnetic energy 
with increasing strength at longer wavelengths. 

Thus reflectance of vegetation at MIR decreases 
with increasing leaf moisture content (LILLESAND 
AND KIEFER, 2000; JENSEN, 2000; MAIER, 2000) 
(Figure 4-3). The dips in reflectance are caused 
by water absorption bands in the corresponding 
wavelengths. Dependent on moisture, vegetation 
reflects between the major water absorption bands 
at about 1.6µm and 2.2µm (EIDEN ET AL., 1991; 
JENSEN, 2000; MAIER, 2000; ZARCO-TEJADA ET AL., 
2003). 

Spectral properties of a vegetation stand are 
dominated by the leaf area index that indicates 
the relation of leaf area to ground area. Within a 
stand the spectrum is modified by the interaction 
of different species, vertical structure of the stand, 
the relation of illumination and shadowing effects 
and the portion of soil reflectance (EIDEN ET AL., 
1991; EIDEN, 2000). 

The spectral properties of a dark to dark brown, 
sandy soil in the wavelength region between 
0.4µm to 2.5µm is presented in Figure 4-4. This 
example demonstrates that soil has a continuous 
increase of reflectance from low values in the VIS 
to higher values in the MIR. The soil spectrum 
is highly influenced by factors that affect soil 
reflectance. Some of these factors are for example 
moisture content, organic content, soil texture, 
surface roughness and iron oxide (EIDEN ET AL., 
1991; LILLESAND AND KIEFER, 2000). These factors 
are complex, variable and interrelated. Increasing 
moisture content of the soil results in decreasing 

Figure 4-4: Spectral properties of brown soil. MODIS 
and Landsat ETM+ bands demonstrate the capac-
ity to detect the signal in the wavelengths between 
0.4 and 2.5 µm.  (Spectrum: ASTER spectral library, 
http://speclib.jpl.nasa.gov/Search.htm)
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reflectance. Similar to the spectrum of vegetation, 
this effect is greatest in the water absorption bands 
(EIDEN ET AL., 1991; CECCATO, 2001). Moisture 
content is highly influenced by soil texture as this 
determines moisture holding capacity. Coarse 
sandy soils that are usually well drained have high 
reflectance due to low moisture content. It is the 
reverse with fine-textured soils, which are poorly 
drained and in which more energy is absorbed by 
moisture. If water would not be present, the coarse 
textured soil would reflect less than the fine-
textured soil (EIDEN ET AL., 1991; LILLESAND AND 
KIEFER, 2000). High content of organic matter in 
soil reduces reflectance. The same applies to high 
surface roughness, which reflects less than a finely 
grained texture (EIDEN ET AL., 1991; LILLESAND 
AND KIEFER, 2000). When iron content is high, 
reflectance is significantly decreased in the VIS 
green (0.50µm-0.54µm) and increased in the VIS 
red (0.6µm-0.7µm) (EIDEN ET AL., 1991). The 
complex interactions between all these factors 
cause variable patterns of soil reflectance. 

4.3 Factors influencing    
 reflectance

Surface reflectance varies for different earth 
features and at different wavelengths. It is disturbed 
by two major factors before being detected by the 
satellite. These factors are the atmosphere and the 
variations in illumination and viewing directions.

The atmospheric effects on radiation detected 
by a satellite vary depending on the path length, 
the atmospheric conditions present and the 
wavelengths involved. The longer the path length, 
radiation has to pass through the atmosphere, the 
stronger it can be influenced by the atmosphere. 
Aerosols and gases in the atmosphere cause 
scattering and absorption of radiation, which 
varies with wavelength (LILLESAND AND KIEFER, 
2000).

Atmospheric scattering causes the diffusion 
of radiation by particles in the atmosphere. 
Dependent on the size of the particle diameter, 
the Rayleigh scatter and the Mie scatter are 
discriminated. Rayleigh scattering results, when 
radiation interacts with atmospheric molecules 
that are smaller than the wavelength of the 
interacting radiation. The molecules oxygen (O2) 
and nitrogen (N2) are examples that cause this 
scatter. The effect of Rayleigh scattering increases 
towards shorter wavelengths and dominates in 
the blue light. Mie scattering occurs when the 
diameter of atmospheric particles is essentially 
equal to the wavelength of energy that is sensed. 
Water vapour and dust predominantly cause this 
type of scattering. It affects longer wavelengths 
and has less influence compared to Rayleigh 
scattering, whereas it is significant in slightly 
overcast atmospheric conditions. The diameter of 
particles can also be larger than the wavelength 
that is being scattered, which is caused for 
example by water droplets. The resulting scatter is 
nonselective in respect to wavelength and scatters 
all VIS, NIR and MIR wavelengths about equally. 
It is predominantly observable with fog and clouds 
(VERMOTE ET AL., 1997; LILLESAND AND KIEFER, 
2000; EIDEN, 2000).

Furthermore, the atmosphere creates an 
effective loss of energy due to absorption, which 
is mainly caused by water vapour, carbon dioxide 
(CO2) and ozone (O3). These gases absorb energy 
in specific wavelength bands (Figure 4-5). Water 
vapour for example absorbs high amounts of 
radiation within the NIR resulting in a decrease 
of reflectance by 3% to 5% (EIDEN ET AL., 1991). 
There are at least five major absorption bands 
in the NIR and MIR, where atmospheric water 
vapour highly absorbs energy. They are centred 
at 0.97µm, 1.19µm, 1.45µm, 1.94µm and 2.7µm. 

Figure 4-5: Atmospheric windows and absorption 
bands of atmospheric trace gases. (Jensen, 2000)

Figure 4-6: Geometry of view and illumination 
angles. Variation between these angles influences 
reflectance detected by the sensor (Jensen, 2000) 

Wavelength [µm]



4. Fundamentals of  Remote Sensing 19

The wavelength ranges, in which gases do not 
absorb energy and the atmosphere is particularly 
transmissive are referred to as atmospheric 
windows (Figure 4-5). Acquisition of remote 
sensing data is limited to these atmospheric 
windows (EIDEN ET AL., 1991; LILLESAND AND 
KIEFER, 2000; EIDEN, 2000).

The atmosphere is influencing reflectance 
differently within the VIS, NIR and MIR 
wavelengths. Hence, the atmosphere can cause 
lower or higher reflectance values derived 
from satellite sensors compared to surface 
measurements.

The reflectance detected by a sensor is also 
influenced by its viewing and illumination 
geometry. Illumination geometry is described by 
the angle of incidence of solar radiation expressed 
in sun zenith and sun azimuth angle. The position 
of the sensor and its scan angle express the 
viewing geometry noted as view zenith and view 
azimuth angle. Surface reflectance varies subject 
to variances of these view and illumination angles 
(Figure 4-6). 

The Bi-directional Reflectance Distribution 
Function (BRDF) is a function of these four 
angles and describes the ratio of reflected radiance 
to incident radiance with units of inverse solid 
angle [sr-1]. The Bi-directional Reflectance Factor 
(BRF) is a more practical quantity for relating to 
measurements as it expresses the BRDF calibrated 
by a coefficient to determine spectral reflectance. 
The BRF is unitless (JENSEN, 2000; ROY ET AL., 

2002; www4; www5). Figure 4-7 illustrates BRDF 
effects observed under different viewing angles 
of a sensor. This is an example, where source 
of illumination and the target on surface are 
consistently in the same plane. It demonstrates 
viewing angles of +75º and +45º in backward 
scattering view, 0º in nadir view, and -45º and 
-75º in forward scattering view. When angle of 
illumination and sensor viewing angle are nearly 
identical and in the same plane, the back scattered 
radiation is viewed by the sensor. This increases 
the brightness of the image and can cause a “hot 
spot”. When illumination and viewing angles 
are in opposite directions, the forward scattered 
radiation is observed, which results in reduced 
brightness detected by the sensor (JENSEN, 2000; 
www6; www7). Hence, vegetation reflectance 
shows a broad peak in backward scattering 
direction due to shadow hiding and has a decrease 
in the forward scattering direction, where higher 
proportion of shadowed crowns is being viewed 
(ROY ET AL., 2002).

All land surfaces exhibit some degree of 
anisotropy in reflectance. They present non-
Lambertian reflectance properties, where 
incoming radiation is scattered unequally in terms 
of outgoing direction. Surface properties affect 
the angular distribution of outgoing radiation. 
Interactions between surface and radiation also 
vary in different wavelengths (JENSEN, 2000; 
www4; www5). There are different BRDF models 
existing that can be used to describe various types 
of surfaces (www4).

Figure 4-7: BRDF effects observed on grassland. The viewing angles vary between +75º, +45º, 0º, -45º and 
-75º (black lined arrow) and the sun angle persists in this example (black dashed arrow) (Spectral laboratory 
University Zuerich: http://www.geo.unizh.ch/rsl/research/SpectroLab/goniometry/brdf_intro.shtml, modified 
by the author) 
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4.4 The sensor MODIS 

The Earth Observing System (EOS) was 
designed by the National Aeronautics and Space 
Administration (NASA) to provide observation of 
terrestrial, atmospheric and oceanic phenomenons 
and processes (JUSTICE ET AL., 2002 [1]). The first 
Moderate Resolution Imaging Spectroradiometer 
(MODIS) was integrated on the Terra (EOS AM-
1) spacecraft together with four other sensors and 
was successfully launched on 18th December 1999. 
A second mission of MODIS was started on 4th 
May 2002, where the Aqua (EOS PM-1) spacecraft 

has been launched with MODIS as one of six 
sensors on board. MODIS data from EOS Terra 
and EOS Aqua have operational reception. Both 
platforms have a design life of 6 years (JUSTICE ET 
AL., 2002 [1]; www8, www9).

The circular orbit of EOS Terra and Aqua 
is sun-synchronous, near polar at an altitude of 
705km with inclination of 98.2°. Mean period to 
complete an orbit is 98.8 minutes, the repeat cycle 
is 16 days. Equator crossing time of Terra is 10:
30 a.m. on a descending node. Equator crossing 
time of Aqua is 1:30 p.m. on an ascending node 
(GUENTHER ET AL., 2002; WOLFE, 2002; www8, 
www9).

Table 4-1: Spectral bands and application of the MODIS sensor. (MODIS speci-
fied technical description, http://modis.gsfc.nasa.gov/about/specs.html)
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MODIS data has daily global coverage in areas 
greater than 30° north or south and coverage 
every second day in lower degrees north or 
south. The instrument provides high radiometric 
resolution of 12 bits in 36 spectral bands that range 
in wavelengths from 0.405µm to 14.385µm. Two 
bands (1 and 2) have a nominal resolution of 250m 
at nadir, five bands have 500m (3 to 7) and the 
remaining 29 bands have 1km. The spectral bands 
are designed for special applications as listed in 
Table 4-1 (GUENTHER ET AL., 2002; JUSTICE ET AL., 
2002 [1]; WOLFE ET AL. 2002, www10).

A rotating two-sided scan mirror on board 
of MODIS produces the across-track scanning 
motion with a maximum scan angle of 55° off-
nadir. The sensor detects within a swath width of 
2330km. The along-track scanning is provided by 
using the forward motion of the satellite. At nadir, 
the leading edge of one scan abuts the trailing edge 

of the next scan, while adjacent scans away from 
nadir begin to overlap. An overlap occurring at scan 
angles of 24° from nadir is 10% and increasing to a 
50% overlap at the scan edge 55° off-nadir (Figure 
4-8). At the same time spatial resolution increases 
from 1km x 1km at nadir to 4.83km x 2.01km at 
55° off-nadir (WOLFE ET AL. 2002, NISHIHAMA ET 
AL., 1997; www11) (Figure 4-9). This phenomenon 
is called the “Bowtie” effect and is explained 
both by the sensor ś geometry and by the earth ś 
curvature. It may cause consecutive detection of 
the same point on earth ś surface up to 3 times at 
the scan edge (WOLFE ET AL. 2002). An example of 
Bowtie artefacts is illustrated in Figure 4-10. The 
effects can be removed for visualisation purposes 
by reprojecting the image onto a map. They do not 
affect science algorithms that run on a pixel-by-
pixel basis (www11). Another consequence of high 
view angle is a decrease in geolocation accuracy 
(WOLFE ET AL., 2002).

▲ Figure 4-8: MODIS along track scanning. The adjacent scans show an increasing overlap towards the scan 
edge in 55° off-nadir. (Wolfe et al, 2002)

◄ Figure 4-9: Spatial resolu-
tion of MODIS pixel at nadir 
and off-nadir. A 1km x 1km 
pixel increases to 4.83km 
x 2.01km at 55° off-nadir 
(Nishihama et al., 1997)

▼ Figure 4-10: Example 
of Bowtie artefacts (http:
//www.eoc.csiro.au/modis/
nov02_ws/lecture3.pdf)
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Prior to the launch of Aqua, there were several 
anomalous detectors in MODIS band 6. The 
performance of MODIS band 6 on Aqua degraded 
seriously after launch, whereas at present the 
majority of band 6 detectors are nonfunctional 
due to focal plane delamination (GUENTHER ET 
AL., 2002; WWW12). 

4.5 The sensors Landsat TM/  
 ETM+

Landsat is the longest-lasting operational satellite 
mission with high resolution of 30m. The scientific 
community and literature show that this satellite 

has many applications. Thematic Mapper (TM) 
and Enhanced Thematic Mapper plus (ETM+) are 
the most recent sensors on Landsat 5 and Landsat 
7, respectively. ETM+ is the latest sensor on a 
Landsat spacecraft and characteristics of TM on 
Landsat 5 are very similar to the ETM+ (JENSEN, 
2000; www13; www14) (Table 4-2). Hence, only 
the latter will be described in details.
Landsat 7 was designed by NASA and was 
successfully launched on 15th April 1999. The 
orbit of Landsat 7 is, like MODIS, circular, sun-
synchronous, and near polar at a nominal altitude 
of 705km with inclination of 98.2°. Mean period 
of the spacecraft to complete an orbit is nearly 99 
minutes with a revisit interval of 16 days. Equator 

Table 4-2: Technical 
specification of the 
Landsat TM and ETM+ 
sensors (Jensen, 2000)

► Figure 4-12: Impacts of the mal-
functioning SLC on Landsat ETM+. The 
effects are most pronounced along 
the edge of the scene and gradually 
diminish toward the centre of the 
scene (http://www.ga.gov.au/image_
cache/GA3426.jpg)

▲ Figure 4-11: Scan Line Correction 
Assembly (SLC) of the Landsat ETM+ 
sensor. The SLC is on left and off 
right (http://landsat.gsfc.nasa.gov/
announcements/program_
update.html)
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crossing time of Landsat ETM+ is at 10:00 a.m. +/
-15 minutes on descending orbital node. (JENSEN, 
2000; www14; www15).

The ETM+ sensor is a single nadir-pointing 
instrument on-board Landsat 7 and obtains data 
along the ground track at a fixed swath width of 
185km. At the Equator, the adjacent swaths have 
an overlap of 7.3% at the edges. Moving from the 
Equator toward either pole, the sidelap increases 
due to the fixed swath width (JENSEN, 2000; 
www15).

A scene, standardised in the World Reference 
System as path and row numbers, covers a land 
area approximately 185km across-track by 180km 
along-track. The instrument provides a radiometric 
resolution of 8 bits in 8 spectral bands ranging in 
wavelengths from 0.45µm to 12.5µm. Bands 1 to 5 
and 7 are imaged at a resolution of 30m, Band 6 at 
60m, and the panchromatic Band 8 at 15m (Table 
4-2) (JENSEN, 2000; www15, www16).

Since late May 2003, the Landsat ETM+ 
sensor has a malfunctioning Scan Line Correction 
Assembly (SLC). This causes an oblique detection 
due to the forward motion of the satellite, which 
has originally been corrected into parallel scanning 
by the SLC (Figure 4-11). It results in a loss of 
image data of approximately 25% over any given 
scene. The impacts are most pronounced along the 
edge of the scene and gradually diminish towards 
the centre of the scene. There are only about 22km 
in the middle of the scene that contain very little 
duplication or data loss (Figure 4-12) (www17, 
www18).

4.6 Vegetation Indices 

Vegetation indices are designed to enhance 
information about plant biophysical parameters. 
They normalise external effects caused by the 
atmosphere and varying viewing and illumination 
angles. At the same time internal effects such as 
canopy background variations, such as topography 
and soil variations are normalised (JENSEN, 2000).

Within this research, the Normalised 
Difference Vegetation Index (NDVI) and the 
Normalised Burn Ratio (NBR) are investigated 
in respect to alteration of vegetation due to fire. 
Fire alters or consumes green vegetation at various 
rates of fire intensity. The magnitude of change 
due to fire is used as an indication of burn severity. 
The most accurate result of change detection can 
be gained by using the greatest positive or negative 
spectral response (KEY AND BENSON, 1999 [1], [2]; 
VAN WAGTENDONK ET AL., 2004).

4.6.1 The Normalised Difference   
 Vegetation Index (NDVI)

The NDVI is the most common ratio used for 
vegetation studies. It responds to change in the 
amount of green biomass and chlorophyll content 
(EIDEN ET AL., 1991; EIDEN, 2000; JENSEN, 2000). 
Reflectances in the red and NIR wavelengths are 
used to calculate the NDVI. The red band records 
the absorption of chlorophyll, whereas lower 
values indicate higher chlorophyll content. The 
NIR band detects high values of reflectance, when 
vegetation is dense and grows vigorously. Hence, 
many leaves reflect NIR wavelengths due to their 
internal structure (SABINS, 1996). 

The NDVI for MODIS is calculated by 
subtracting reflectance of red band 1 (R1) from the 
NIR band 2 (R2) and is normalised by dividing 
by its sum (Equation 4-3). The NDVI of MODIS 
provides information in spatial resolution of 250m 
in both bands. 

The NDVI for Landsat TM/ETM+ is calculated 
similar to MODIS using reflectance of band 3 in 
the red (R3) and band 4 in the NIR wavelength 
(R4) (Equation 4-4). Landsat TM/ETM+ provide 
the index information in spatial resolution of 
30m.

Results are unitless and can theoretically vary in 
the range between –1.0 and 1.0. With increasing 
vegetation density and thus photosynthetic 
activity, NDVI values are increasing. Thus, 
high values are expected to characterise healthy 
unburnt vegetation. Low values correspond to 
lower vegetation density and thus highly reduced 
photosynthetic activity. The NDVI is investigated 
in respect to alteration of vegetation due to fire.

4.6.2 The Normalised Burn Ratio   
 (NBR)

The NBR is an algorithm that integrates the two 
spectral bands that have the greatest response 
to landscape change due to fire (KEY AND 
BENSON, 1999 [1],[2]). These bands are centred 
in the NIR wavelength between 0.7μm to 0.9μm 
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and in the MIR wavelength between 2.0μm to 
2.4μm. The NIR reflectance provides the highest 
discrimination for loss of biomass. There are 
high values reflected from dense vegetation and 
low values from sparse vegetation. The MIR 
wavelengths detect low reflectance when the 
surface is vegetated. Reflectance is increased, when 
soil is exposed or leaf water content is low (KEY 
AND BENSON, 1999 [1],[2]; JENSEN, 2000). 

The index is calculated by subtracting 
reflectances of band 7 from band 2 of MODIS 
data. It is scaled by the sum of the two bands to 
normalise within-scene topographic effects and 
between-scene solar illumination effects (KEY 
AND BENSON, 1999 [1], [2]) (Equation 4-5). The 
NBR derived from MODIS is composed of spatial 
information in resolution of 250m from band 2 
and 500m from band 7.

The NBR has originally been applied to Landsat 
TM/ETM+ data, where reflectance of band 7 
(R7) in the MIR is subtracted from reflectance of 
band 4 (R4) in the NIR (Equation 4-6) (KEY AND 
BENSON, 1999 [1], [2]). Ground resolution is 30m. 

Results are unitless and vary in the range between 
–1.0 and 1.0. Due to the spectral properties of 
vegetation and soil, positive values reflect high 

amounts of biomass, whereas negative values 
correspond to predominantly exposed soil and 
increasing leaf dryness.

In order to quantify the vegetation change 
due to fire, the image differencing index ΔNBR 
is calculated. Thus the NBR derived post-fire is 
subtracted from the NBR calculated from pre-fire 
data (KEY AND BENSON, 1999 [1], [2]) (Equation 
4-7). 

    

Results are unitless and vary between –2.0 and 2.0. 
The ΔNBR expresses the magnitude of change 
that fire has caused, whereas high values refer to 
a higher degree of change within the landscape 
(KEY AND BENSON, 1999 [1], [2]).

When the NBR was applied to MODIS, 
another possibility considered was to calculate 
the index from band 5 instead of band 2. Band 5 
is centred at 1.24µm at the edge of the NIR and 
has a spatial resolution of 500m. This means, that 
spatial information is reduced compared to 250m 
resolution of band 2. Band 5 is at the same time 
located on the edge of liquid water absorption and 
is therefore highly influenced by variabilities in 
water content (ZARCO-TEJADA ET AL., 2003). The 
NBR using MODIS bands 5 and 7 was not further 
investigated in this study, as highest discrimination 
between biomass and soil exposure is apparent in 
bands 2 and 7.
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Chapter 5: Data and Data Preprocessing

Tlhis chapter describes all data used in this 
lstudy. Satellite remote sensing data from 
lMODIS were assessed for the measurement 

of burn severity in the study area. Data from 
the MODIS and Landsat TM/ETM+ sensors 
were compared to validate the moderate spatial 
resolution of MODIS. A high correspondence 
between MODIS and Landsat has been well 
presented in past scientific research (LIANG ET AL., 
2002; ROJAS ET AL., 2002; PRICE, 2003; SÀ ET AL., 
2003). Another compatible sensor for MODIS 
validation could be the Advanced Spaceborne Thermal 
Emission and Reflection (ASTER) radiometer, which 
sits on the Terra platform. However, image 

5.1 MODIS Data

MODIS has twice daily coverage in south-west 
WA from a morning Terra overpass and an 
afternoon Aqua overpass. Within 24 hours, four 
images from MODIS are available due to night 
time acquisitions of Terra and Aqua overpasses. 
Data are received as direct broadcast in near-real 
time at the Western Australian Satellite Technolog y 
and Applications Consortium (WASTAC) station 
located at Murdoch University, Perth. The raw 
data is processed with International MODIS / AIRS 
Processing Package (IMAPP) to get radiometric and 
geometric calibrated Level 1B data. Level 1B data 

Figure 5-1: MODIS image 
over study area. It presents 
a subset of the study area, 
as all MODIS data was pro-
vided in this study (MODIS 
on Terra, 26th Nov 02, R-G-
B as 7-2-4). (Department of 
Land Information - Satellite 
Remote Sensing Services)

acquisition is limited 
as predominantly areas 
specified by principle 
investigators of the 
ASTER science team are 
taken (ROJAS ET AL., 2002). 
Ground truth data were 
collected within a field 
campaign in the study 
area to further validate the 
remote sensing data. Data 
preprocessing was carried 
out using ER Mapper 6.4 
and ArcView 3.2.
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were provided by the Department of Land Information 
(DLI) Satellite Remote Sensing Services (SRSS) in the 
Hierarchical Data Format (.hdf) Version 4. In this 
data format additional metadata can be saved.

MODIS data were calibrated into reflectance in 
order to enable spectral analyses and comparison 
between sensors. The data calibration into 
reflectance R of the spectral bandwidth λ is 
specific for the sensor as defined in Equation 5-1 
(NASA, 2000). 

In equation 5-1, DN refers to the digital number 
of pixels within each spectral band λ. R_scales 
and R_offset represent the calibration parameters, 
which are written as attributes to the reflective 
bands λ. The sun zenith angle sz is provided in 
the HDF metadata. All reflectance values were 
multiplied by 104 and stored as signed 16bit Integer 
with null value –32,767.

MODIS scenes from 1st September to 31st 
December 2002 and from 1st April to 31st May 
2004 were reprocessed from the DLI archive 
as described above. Data from Aqua and Terra 
were provided as subsets covering the study 
area from 116°30’E to 118°30’E and 33°36’S to 
35°36’S (Figure 5-1). The data were projected as 
latitudes/longitudes with World Geodetic System 
1984 (WGS84) datum. Each band of the scenes 
was available in the standard generic binary format 
with an ER Mapper header file (.ers).

In this study, all MODIS 2002 data were 
provided as top of atmosphere reflectance (TOA), 
atmospheric corrected bottom of atmosphere 
reflectance (BOA) and BRDF corrected nadir 
reflectance (NADIR). Atmospheric correction of 
MODIS data was done by using the Simplified 

Method for Atmospheric Corrections (SMAC) 
(RAHMAN, H. AND DEDIEU, G., 1994). BRDF 
effects were corrected by using the Ross-Thick/
Li-Sparse kernel driven model (STRAHLER ET AL., 
1999; MAIER, 2004). This processing, which is on 
a pixel-by-pixel basis is only possible, if at least 7 
cloud free observations are available within the 
last 30 days. More detailed description of this data 
processing is beyond the scope of this work.

MODIS scenes acquired in 2002 were provided 
as TOA reflectance from bands 1 to 7. The 
sun zenith, sun azimuth, view zenith and view 
azimuth angles were included in the data of each 
acquisition (see Table A1-1, Appendix). For the 
same dates, atmospheric and BRDF corrected 
data (BOANADIR) were available with bands 1 
to 5, 7 and the view zenith angle (see Table A1-
2, Appendix). Data of September could not be 
corrected for many pixels in the FAAs due to few 
cloud free information. In order to investigate 
corrected data pre-fire, September data was 
additionally provided as BOA reflectance. The 
BOA scenes contained a subset of bands 1 to 5, 7 
and sun zenith, sun azimuth, view zenith and view 
azimuth angles (see Table A1-3, Appendix). 

MODIS data used in this work were inspected 
for cloud cover on the selected FAAs. The 
maritime influence of the Southern Ocean favours 
cloud cover within the study area, especially close 
to winter between June and September. This 
reduced the amount of MODIS images useful for 
this research. The MODIS TOA and BOA data of 
the year 2002 were cloudmasked to avoid outliers 
within the analysis. The cloud masking was based 
on visual identification of clouds in the satellite 
images. All MODIS scenes used in this study 
were displayed as real colour composite (R-G-B 
= 1-4-3). Within the boundaries of FAA1 to 3 
clouds were visually detected. They were masked, 
when reflectance in band 1 was higher than the 

Figure 5-2: View zenith angle of 
MODIS data used in this study.
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corresponding threshold set by the author. The 
threshold, dependent on the scene, varied between 
7.5% (750) and 17% (1700) reflectance (see Tables 
A1-1 and A1-3, Appendix). Band 1 was used for 
cloud masking, as it is still highly reflective due 
to clouds. It provides higher spatial resolution 
compared to blue band 3, where clouds are 
generally more highlighted. The scenes with no 
clouds in FAA1 to 3 were excluded from masking. 
Each cloud mask was added as a separate layer to 
the corresponding scene of MODIS data. Thus 
pixels in all bands were masked when the pixels 
were included in the cloud mask. The cloud cover 
of FAA1 to 3 and masking threshold of each image 
used in the study are presented in the Appendix 
(Tables A1-1 and A1-3). 

The MODIS images have been georeferenced 
during the processing through IMAPP to Level 
1B data. The geolocation accuracy correlates with 
the scan angle of the instrument, as errors are 
lowest at nadir view and geolocation becomes less 
accurate towards off-nadir view angle (WOLFE ET 
AL., 2002). There was a third update of the interior 
orientation parameters of MODIS instruments in 
March 2001. Since then the geolocation accuracy 
of MODIS Level 1B data was estimated to 
approach 50m (WOLFE ET AL., 2002). 

The high swath dimension of MODIS 
(2330km) results in view angles between –65° and 
+65°. The reflectance of MODIS TOA and BOA 
data is not corrected in respect to BRDF effects. 
The variations of the average view angle between 
images used in this study are illustrated in Figure 
5-2. 

5.2 Landsat TM / ETM+ data

Landsat TM and ETM+ data used in this research 
were bought from the Australian Centre of Remote 
Sensing (ACRES) as Level 1B data. The scenes 
with path 111 and row 84 cover the study area. 
Landsat scenes from five different dates in the 
years 2002 to 2004 were collected and processed 
to have data of reference before the fire and data 
post-fire for each FAA considered within the study 
area. All images were subset to bands 1 to 5 and 
7 (see Table A1-4, Appendix). Landsat imagery 
was provided in Universal Transversal Mercator 
(UTM) projection zone MGA50 and Geocentric 
Datum of Australia 1994 (GDA94). The data were 
imported into ER Mapper 6.4, where all further 
data processing was completed. The images were 
reprojected to latitude/longitude projection with 
WGS84 datum. 

Image values of Landsat data were calibrated into 
reflectance values in order to  analyse and compare 
their spectral properties with MODIS spectra. 
The conversion of Landsat Level 1B data into 
top of atmosphere reflectance values required the 
definition of radiances as specific for the Landsat 
TM/ETM+ sensors. The radiance L with unit [W/
(m²*sr*µm)] is defined for Landsat TM/ETM+ 
with bandwidth λ as presented in Equation 5-2 
(www1). 

In Equation 5-2, DN refers to the digital number 
of pixels within each band λ. The gain and offset 
for each spectral band per scene were available in 
the metadata. 

Landsat data has been calibrated into reflectance 
based on Equation 5-3 (www19). This equation is 
derived for Landsat data based on reflectance as 
defined in Equations 4-1 and 4-2 (Chapter 4.1). 

The sun earth distance d [1AE] on day of 
acquisition and the mean extraterrestrial solar 
irradiance Εsun for each spectral band λ are 
provided in the Landsat Handbook (www19). The 
sun zenith angle is derived from the sun elevation 
angle, which is delivered with the image metadata. 
The Landsat TM/ETM+ reflectance was stored as 
4byte real to avoid loss of information.

Landsat data were provided from the dates 
12th February 2002, 26th November 2002 and 
12th December 2002 as complete scenes with 
path 111 and row 84. Data from 23rd December 
2003 were available as subset with extension 
from 116°44’32.78’’E to 116°59’12.72’’E and 
34°35’4.56’’S to 34°57’56.01’’S. Data from 31st May 
2004 were bought as subset with extension from 
116°46’4.45’’E to 116°57’54.72’’E and 34°36’47.55’’S 
to 34°55’12.1’’S. 

As the study area was free of clouds in all five 
Landsat scenes, cloud masking was not required. 
Landsat TM/ETM+ images were provided from 
ACRES as georeferenced product and resampled 
with Cubic Convolution method. Images of 12th 
February 2002, 12th December 2002 and 23rd 
December 2003 were again rectified with an 
accuracy assessment based on 100 to 150 GCPs 
(WU, 2004). The geometric accuracy of the images 
from 26th November and 31st of May was assessed 
based on 5 GCPs. The Root Mean Square errors 
(RMS) along track and across track are listed for 
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each data in the Appendix (Table A1-4). The pixel 
size of Landsat data as measured in ArcView were 
25m rather than 30m ground resolution of the 
sensor configuration.

5.3 Comparison of MODIS and  
 TM/ETM+ data

The moderate resolution MODIS imagery and 
high resolution Landsat TM/ETM+ imagery 
are compared in this research for the purpose of 
validation. It is required, that data are comparable 
between the sensors. The spectral bands 1 to 
7 of MODIS and 1 to 5 and 7 of Landsat are 
investigated in this work.

The Terra platform and Landsat 7 were 
launched into identical 705 kilometer, sun-
synchronous orbits. Equator crossing time of 
Landsat 7 is ideally 15 minutes ahead of Terra, as 
equator crossing time of Landsat 7 is 10.00 am +/- 
15 minutes and of Terra is at 10.30 am. Therefore 
data acquired by MODIS on Terra and Landsat 7 
are under nearly identical atmospheric and plant 
physiological conditions (see Chapter 4.4 and 4.5; 
www15). 

The spectral bands 3, 4, 1, 2, 6 and 7 of MODIS 
match with the spectral range of Landsat TM/
ETM+ bands 1, 2, 3, 4, 5 and 7, respectively. The 
MODIS and TM/ETM+ bands do not exactly 
match, as TM/ETM+ bands are generally slightly 
broader. This is due to energy considerations 
(LIANG ET AL., 2002; PRICE, 2003). In this research 
the red, NIR and MIR bands 1, 2 and 7 of MODIS 
and 3, 4 and 7 of Landsat are used to construct 
the NBR and NDVI. The spectral responses of 
the corresponding bands of MODIS, Landsat TM 
and ETM+ are compared in Figures 5-3 to 5-5. It 
is significant that MODIS and Landsat bands do 
not exactly match. MODIS bands are all integrated 
in the same wavelength regions compared to the 
corresponding Landsat spectral bands, whereas in 
the MIR band 7, deviations between the MODIS 
band centre and Landsat band centres are most 
accentuated.

The moderate resolution of MODIS with 250m 
to 500m reduces the detail of features visible in 
the MODIS image compared to 30m resolution 
of Landsat. Due to their spatial resolution, the 
likelihood that MODIS surface reflectance relates 
to mixed surface is higher compared to Landsat 
data (PRICE, 2003). Data from MODIS are 
influenced by BRDF effects due to varying view 
angles, whereas Landsat scanning is only pointing 
at nadir. 

Figure 5-3: Spectral response of MODIS and Landsat 
TM/ETM+ bands in the red wavelength

Figure 5-4: Spectral response of MODIS and Landsat 
TM/ETM+ bands in the near infrared (NIR) wave-
length

Figure 5-5: Spectral response of MODIS and Landsat 
TM/ETM+ bands in the middle infrared (MIR) wave-
length between 1.9 and 2.5µm 
(Spectral response of MODIS on Terra in Figures 5-3 
to 5-5: http://www.mcst.ssai.biz/mcstweb; 
Spectral response of Landsat in Figures 5-3 to 
5-5: http://ltpwww.gsfc.nasa.gov/IAS/handbook/
handbook_htmls/chapter8/chapter8.html#section8.
1.2.1) 



5.4 Other data

In this study, various other datasets have been 
used during the processing and analysis phase. A 
digital topographic mosaic of Australia with scale 
1:250,000 was used creating a subset of the study 
area. The data were provided by the Government 
Division of National Mapping (NATMAP) in a 
compressed format (.ecw). The data was projected 
in latitudes/longitudes with GDA94. A subset of 
the study area in south-west WA was extracted to 
a generic binary format and projected in latitudes/
longitudes with WGS84. A map of the broad native 
vegetation types of south-west WA was completed 
in June 2004 by the Department of Agriculture of 
WA and used as a GIS layer. The mapping was 
based on a vegetation map scaled 1:250,000. It 
was provided as ESRI Shapefile Format (.shp) 
projected in latitudes/longitudes with GDA94. 
Further the Interim Biogeographic Regions of Australia 
(IBRA) were provided as ESRI Shapefile format 
in latitudes / longitudes with GDA94 (THACKWAY 
AND CRESSWELL, 1995). The South-West Botanical 
Province was extracted from the data set using 
ArcView.

Field data were acquired from 16th to 18th of 
June 2004 during a field trip in cooperation with 
CALM. Information gathered during the field 
visit provided broad insights into fire behaviour 
within various structured ecosystems and fire 
management. Detailed fieldwork focused on the 
classification of burn severity in the field, which 
was supported by fire coordinators from CALM. 
Altogether, 62 GCPs were sampled within different 
structures of vegetation. The position was defined 
with a handheld GPS (GARMIN 12XL) with 
positional accuracy of 15m. 35 GCPs were taken 
along the boundary of FAA4 for ground truth 
validation. The area was subject to prescribed 
burning approximately 6 weeks before the visit 
and carries the ecosystems of jarrah-marri forest 
and flat shrubby woodlands. The remaining 27 
GCPs were sampled in recently burnt areas outside 
the coverage of Landsat data. The points were 
sampled for the purpose of comparing different 
ecosystems. At most GCP, several digital photos 
were taken on ground in a 180° view angle.
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Chapter 6: Methods and Analyses

Iln this research, MODIS data were investigated 
lto measure burn severity in the south-western 
lforests of WA. MODIS has moderate spatial 

resolution and needs to be validated with high 
spatial resolution satellite data to resolve scaling 
up issues (LIANG ET AL., 2002; SÁ ET AL., 2003). 
Landsat imagery is well suited, because the 
spectral bands between VIS and MIR wavelengths 
of Landsat are centred in similar wavelengths 
compared to MODIS. Landsat data has been 
shown in the literature to be suited to measuring 
burn severity (see Chapter 2). Ground truth data 
were collected in the field to validate the Landsat 
burn severity data. 

Initially, the extents of FAAs were mapped. 
The indices NDVI, NBR and ΔNBR were derived 
for data of both sensors. The spectral properties 
and index values of MODIS and Landsat ETM+ 
data were analysed within fire affected areas. The 
effects of atmosphere and off-nadir scan angles 
were considered. Different levels of burn severity 
were classified using information collected in the 
field and compared to the remote sensed data.  

6.1 Mapping Fire Affected Areas  
 (FAAs)

Fire affected areas can be detected from remote 
sensing data due to the spectral signals changing 
from the surrounding vegetation cover (see 
Chapters 4.1 and 4.2). The extent of a FAA is a 
fundamental aspect for burn severity measurement. 
The spatial resolution of the sensor determines the 
accuracy of mapping the boundary of FAAs. It is 
important to map burnt areas as soon as possible 
post-fire, because the “burn signal” becomes 
progressively weaker as the burnt area ages due 
to dissipation of charcoal and ash and regrowth 
of vegetation post-fire (EVA AND LAMBIN, 1998 [2]; 
ROY ET AL, 2002). 

Landsat TM/ETM+ satellite imagery with 
30m accuracy was used to map the boundaries of 
FAAs . There were two Landsat post-fire images 
available for mapping FAA1 to 3 in the year 2002 
(see Chapter 5.2). The first post-fire image was 
acquired in November, the second in December. 

Figure 6-1: 
Landsat ETM+ 
image of study 
area show-
ing mapped 
fire affected 
areas of the 
year 2002. This 
scene acquired 
on 12th Dec 
02, displayed 
as R-G-B- as 
7-4-2, provided 
the basis for 
mapping the 
fire affected 
areas 1 to 3, 
which occured 
in Oct and Nov 
2002 (Image: 
Australian 
Centre of 
Remote Sensing 
(ACRES))
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Images were viewed in true colour composite 
(bands 3-2-1 as R-G-B) to check for the presence 
of cloud, smoke and cloud shadow. Both images 
were cloud free over the FAAs, however there was 
some smoke visible within FAA3 in the December 
Landsat scene. Various band combinations of 
Landsat post-fire images were examined. The 
display of bands 7-4-2 as R-G-B was considered 
most suitable for mapping FAAs due to the high 
visible discrimination between burnt and unburnt 
areas. Burnt areas are accentuated in this band 
combination due to high reflectance in the MIR 
band 7 and low reflectance in the NIR band 4. 
The Landsat ETM+ image of 12th December 2002 
was used to map FAA1 to 3 in order to take the 
latest extent of burnt areas into account, as fire 
was still active (Figure 6-1). The boundary of each 
burnt area within the study area was digitised on-
screen. The extent of FAA4 was digitised based on 
Landsat TM image of 31st May 2004 (7-4-2 as R-
G-B). These boundaries describe the whole burn 
envelope including unburnt patches as they are 
considered in the burn severity measurement. 

The boundaries of all FAAs were saved in 
the ER Mapper Vector Format (.erv) projected 
in latitudes and longitudes with WGS84 datum. 
The vector polygons were converted into an ESRI 
Shapefile Format (.shp) to enable the handling of 
boundaries either in ER Mapper or in ArcView, as 
both software packages were used in this work.

6.2 Derivation of NDVI, NBR and  
 ∆NBR

The first step was to create the NDVI, NBR 
and ΔNBR indices for the MODIS and Landsat 
ETM+ data used in this study.

The NDVI and NBR derivation of MODIS 
reflectances were processed by calling the 
executable ndvi2.exe based on Equations 4-3 
and 4-5 in Chapter 4 (MAIER, 2004). Index values 
were multiplied by 103 to store data as signed 16bit 
Integer with results varying between –1000 and 
1000. Hence, multiple NDVI and NBR data with 
pre-fire and post-fire dates were available. The 
index imagery was cloud masked with the same 
mask as the spectral bands of the corresponding 
datum (see Chapter 5.1). In order to derive the 
image differencing index ΔNBR, mean values of 
the NBR pre-fire and NBR post-fire dates were 
calculated. Mean values were expected to result in 
higher accuracy for the ΔNBR. The calculation of 
mean NBR data was derived by processing all input 

files through the program mean2.exe (MAIER, 
2004). This program ignores the pixel with cloud 
masked null values in its mean calculation. The 
dates included in the input file were adjusted to 
dates of burn start and burn completeness. The 
dates were identified in the images displayed as 
real colour composite (R-G-B = bands 1-4-3). 

Analyses of MODIS data focused on FAA1 
because it exhibited the most favourable study 
site due to its clear separation of prescribed 
low intensity burn and high intensity wildfire. 
Burning was apparent between 5th November and 
17th November 2002 on FAA1. Thus, scenes of 
September and October 2002 were included in the 
mean NBR to construct the pre-fire image. The 
scenes recorded after 17th November 2002 were 
used to calculate the mean NBR post-fire (Table 6-
1). The ΔNBRMODIS was derived from the resulting 
mean NBR images based on equation 4.6.2.3. 
Results vary between –2000 and 2000.

The NDVI, NBR and ΔNBR for Landsat TM/
ETM+ imagery were derived in ER Mapper. The 
NDVI and NBR were calculated from reflectance 
values of bands 3, 4 and 7 of corresponding dates 
based on Equations 4-4 and 4-6. For each of the 
five Landsat scenes used in this study, a NDVI and 
NBR image were available. The resulting values 
were multiplied by 103 to store data as signed 16bit. 
Resulting values vary in the range between –1000 
and 1000. The ΔNBR of Landsat data acquired in 
the year 2002 was calculated using February as 
pre-fire image and both November and December 
data as post-fire image. The ΔNBR of Landsat data 
was derived for FAA4, as ground truth data was 
available for validation. The December 2003 image 
has been used as pre-fire image and data from May 
2004 as post-fire image. Processing of the ΔNBR 
images was accomplished in ER Mapper based on 
Equation 4-7 with results varying between –2000 
and 2000.

Table 6-1: List of data used to derive the ∆NBRs, 
which were used to classify MODIS and Landsat 
imagery for further analyses. The dates to derive 
the ∆NBR

MODIS
 are based on MODIS data, the dates to 

derive ∆NBR
Nov

 and ∆NBR
Dec

 refer to Landsat ETM+ 
data
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6.3 Analysis of MODIS Imagery

The spectral properties and index values of the 
ΝDVI and NBR of MODIS data between 1st 
September and 31st December 2002 were analysed. 
To consider the influence of atmosphere and BRDF 
effects within a FAA, analyses were accomplished 
using both, uncorrected top of atmosphere 
reflectance (TOA) data corrected for atmospheric 
and BRDF effects (BOANADIR). The analyses 
focused on FAA1, because it exhibited the most 
favourable study site due to its clear separation of 
prescribed low intensity burn and high intensity 
wildfire.

Analyses of remote sensing data were based on 
regions of uniformly classified ΔNBR images. Low 
values of the ΔNBR indicate less or no change due 
to fire while high values exhibit change due to 
fire (KEY AND BENSON, 1999 [1],[2]). The ΔNBR 
values between 0 and 800 exhibited greatest 
contrast within the FAA and were classified into 6 
different classes of burn severity using thresholds 
in steps of 200 (Table 6-2). Setting of thresholds is 
not adjusted to field data, ecosystem and sensor at 
this stage.

All analyses of MODIS data were based on 
the classification of the ΔNBRMODIS image, as 
previously explained. The spectrum of each 
MODIS scene was investigated for all classes 
of burn severity within FAA1. This analysis 
was to represent the spectral characteristics of 
MODIS data within surfaces of differently altered 
vegetation. The spectral range between VIS and 
MIR as shown in the literature is most informative 
to detect burnt areas. Bands 1 to 7 of all MODIS 
TOA data were considered in the analyses. Due 
to high cloud coverage, calculation of BRDF 
correction was very limited for BOANADIR data 
in September 2002 (see Table A1-2, Appendix). 
The gap of missing data in September was filled 
with cloud masked BOA data. Bands 1 to 5 and 
7 of each BOA (September) and BOANADIR 
(October to December) scene were considered. 
Band 6 of BOA and BOANADIR data were not 
provided due to nonfunctional band 6 detectors 
of MODIS on Aqua. All MODIS bands used in 
these analyses were cloud masked (see chapter 
5.1). Thus pixels with no information of the 
ground were excluded and outliers avoided. The 
derivation of the mean spectral signatures for 
all data within separated classes of burn severity 
was accomplished in ER Mapper. The resulting 
reflectance values were further sorted in Microsoft 
Excel. 

The trends of NDVI and NBR values of all 
available MODIS data were investigated within 
different classes of burn severity based on the 

ΔNBRMODIS image. The index values were derived 
from reflectance values of MODIS as described in 
the latter section (chapter 6.2). The mean index 
values of all dates were calculated for each class of 
FAA1 to investigate their trend through time and 
their detection of the change due to fire.

To investigate a more detailed analysis of 
MODIS data within burnt areas, single MODIS 
pixels with spatial resolution of 250m x 250m were 
examined. The goal was to examine the variance 
of spectral signals and index values of the same 
pixel between different scenes. Five pixels were 
arbitrarily selected within homogeneous classes 
of burn severity based on the classification of the 
ΔNBRMODIS image. The marginal areas within the 
classes were avoided, as edge pixels are expected 
to be more heterogeneous. The boundaries of the 
selected MODIS pixels were digitised on-screen  
for the analyses. The spectral signatures of all 
cloud masked MODIS data were derived for a 
selected pixel for each class. The index values 
of the NDVI and NBR were calculated from 
reflectance of bands 1, 2 and 7 of each data within 
the selected pixels based on Equations 4-3 and 
4-5, respectively. The resulting index values were 
multiplied by 10³ to compare results with analyses 
of complete classes of burn severity.

6.4 Analysis of Landsat TM/  
 ETM+ Imagery

The analysis of Landsat TM/ETM+ imagery 
focused on the investigation of the spectral 
signature and index values of the NBR and NDVI. 
Three scenes from the Landsat ETM+ sensor 
were analysed from year 2002 (FAA1 to 3). Two 
more scenes from the Landsat TM sensor with one 
pre-fire image (Dec 2003) and one post-fire image 
(May 2004) were collected to be analysed with 
field data of FAA4. 

Table 6-2: The classification of the ∆NBR, which 
provided the fundament for further data analyses. It 
was uniformly applied to MODIS and Landsat ETM+ 
data to create regions of burn severity. 
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A pre-fire image was collected in February 2002. 
There was not a satisfactory cloud free image 
available closer to the fire event. The reflectance 
change of evergreen vegetation in south-west WA 
within the temporal gap of 9 months between 
February and fire occurrence in November 2002 
was estimated within unburnt test areas. The test 
areas were digitised on screen from the Landsat 
ETM+ scene of 12th December 2002, displayed 
with bands 7-4-2 as R-G-B. Four regions 
comprising about 95,000 pixels were arbitrarily 
selected in the forested neighbourhood of the 
fire affected areas, where no change due to fire 
was visible. The spectral properties of the three 
Landsat scenes of 2002 were analysed within the 
test region. To measure changes post-fire, two 
ETM+ images in November and December 2002 
were available. 

The classifications of the ΔNBRNov and 
ΔNBRDec images provided the basis for the 
analyses of all Landsat data. The ΔNBRNov and 
ΔNBRDec images were uniformly classified based 
on the same thresholds used for classifying 
the ΔNBRMODIS image (Table 6-2). The mean 
reflectance of bands 1 to 5 and 7 of each Landsat 
ETM+ scene were derived for each class of burn 
severity from both classifications within FAA1 
to 3. The trends of mean NDVI and mean NBR 
values of the three Landsat scenes acquired in 
2002 were investigated within different classes of 
burn severity. 

6.5 Field Measurement of Burn  
 Severity

A field trip to the study area was carried out from 
16th to 18th June 2004. CALM fire coordinators 
from the Walpole region accompanied the 
reasearcher and assisted in defining a field 
classification of burn severity. Ground truth data 
were collected to validate the remote sensing 
measurement of burn severity in FAA4. There 
were 35 GCPs collected approximately 6 weeks 
post-fire within open shrubland, open woodland 
and jarrah-marri forest.

The measurement of burn severity in the field 
can be assessed using several approaches. It is based 
on a subjective description which is dependent 
on the user’s focus and objective. Measuring 
burn severity can follow an ecological approach 
focusing on plant species that are endangered or 
more prevalent due to fire. The time vegetation 
takes to regenerate to the initial point before fire 
is an essential criterion to measure burn severity. 
There are certain species used as indicators to 
observe the regeneration or resprouting process 

within a burnt area (FOX, 2004; COX, 2004). A 
highly severe fire in the study area eliminates 
species such as Macrozamia riedlei, whereas a mild 
fire stimulates the resprouting of the fire protected 
bud after several weeks post-fire (BURROWS AND 
WARDELL-JOHNSON, 2003; FOX, 2004; COX, 2004). 
Two other species useful as indicators within the 
study area are for example Xanthorrhoea preissii (= 
Grasstree) and Acacia pentadenia (FOX, 2004; COX, 
2004). The Grasstree is stimulated to flower by 
fire, which is visible by sprouting of flower spikes 
post-fire (BURROWS AND WARDELL-JOHNSON, 2003). 
Levels of burn severity can be observed by the 
regeneration of the green leaves and watching the 
skirt of dry leaves on the base of the Grasstree 
(FOX, 2004; COX, 2004). Acacia pentadenia is a fire 
sensitive species that has no capacity to resprout 
from epicormic shoots or lignotubers following 
crown scorch. This specie however has highly 
durable seeds stored in the soil layer which sprout 
post-fire (BURROWS AND WARDELL-JOHNSON, 2003). 
The number and density of seedlings post-fire is 
directly related to the fire severity (FOX, 2004; 

Figure 6-2: Biomass reduction and scorch of the tree 
stems in jarrah-marri forest. The measurement fo 
burn severity in the field consisted principally in the 
estimation of biomass reduction and scorch height, 
which could be related to the sixth of the flame 
height.
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COX, 2004). Measuring burn severity based on the 
ecological approach is not suited to remote sensing 
as only the reduction in biomass can be measured 
from satellite.

Fire coordinators who use prescribed burning 
as a tool to manage the fire prone environment 
of south-west WA have certain management 
objectives that they expect each burn to meet. 
The predominant objective is to reduce fuel and 
manage timber resources. In order to reduce fuel 
and thin out the understorey of a forest, fire is 
prescribed to be very mild. To rejuvenate a stock of 
forest, fire is prescribed to be moderately intense 
in order to support germination. A high intensity 
fire is purposely lit to initiate regeneration after 
logging (GREEN, 2004; SIMMONDS, 2004). 

In this work, burn severity is measured using 
remote sensing data. Satellite sensors can measure 
the alteration or consumption of green biomass, 
the exposure of soil and the leaf dryness in respect 
to fire. Levels of burn severity were related to 
reduction of biomass. Hence, burn severity as 
measured in this work does not express the 
severity of impact on the ecosystem. 

An adjusted measurement of burn severity in 
the field consisted in measuring scorch height 
and estimating amount of biomass affected. The 
scorch height of stems is a useful indicator to 
measure burn severity as it reflects the flame height 
(Figure 6-2). In general, scorch height is a sixth of 
the flame height causing the scorching (SIMMONDS, 
2004). The scorch height itself cannot be measured 
by the satellite, however a relationship between 

scorch height and consumption of biomass was 
observed in the field. To examine alteration 
of green biomass, the relation between leaves 
remaining green, leaves scorched and defoliated 
parts of the trees were estimated. Within the 
forested ecosystem of south-west WA it was 
considered reasonable to discriminate four classes 
of burn severity.

There were 35 GCPs sampled along the 
boundary of FAA4 thereof a limited number within 
the burnt area (Figure 6-3). The positions  were 
recorded with a handheld GPS and level of burn 
severity was estimated for each GCP.  The area 
was subject to prescribed burning approximately 6 
weeks before the visit. Photographs were taken at 
most GCPs. The ecosystems within FAA4 varied 
between open shrubland, open woodland and 
jarrah-marri forest. The ground truth data was 
used to validate the remote sensing data.

6.6 Assessment of Burn Severity  
 with Remote Sensing Data

Remote sensing data and the remotely sensed burn 
severity measurement are based on detection of 
spectral characteristics expressed in percentage 
of reflectance or index values. The ground truth 
data is sampled to calibrate remote sensing data in 
order to assess burn severity. The scale mismatch 
between a Ground Control Point (GCP) and a 
MODIS pixel with ground resolution of 250m x 

Figure 6-3: Ground Control Points (GCPs) sampled in the field in FAA4. The GCPs are illustrated by the white 
circles, they were sampled during an excursion to the study area in June 2004. (Image: Landsat TM, 31st May 
2004, R-G-B as 7-4-2, Australian Centre of Remote Sensing (ACRES))
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250m is large and homogeneity in surface cover 
is not likely in the south-west WA environment. 
An intermediate scale can be provided by high-
resolution remote sensing imagery. Landsat 
TM/ETM+ data is considered useful for the 
intermediate step in the upscaling method (LIANG 
ET AL., 2002; SÁ ET AL., 2003). Data sampled in the 
field did not provide a comprehensive data set for 
validation, as numbers of GCPs were insufficient as 
well as being located on the boundary rather than 
scattered through FAA4. The available material 
was used to compare ground truth and high 
resolution Landsat data. In a second step, Landsat 
data was compared to MODIS data focusing on 
the moderate spatial resolution of MODIS.

6.6.1 Assessment of Burn    
 Severity Using Ground Truth  
 Data

High resolution Landsat TM data were compared 
with field sampled ground truth data in order 
to assess burn severity with remote sensing 
techniques. The burn severity estimated for GCPs 
was compared to the spectral properties and index 
values of Landsat pre-fire image and post-fire 
image. 

Landsat TM scenes from 23rd December 2003 
and 31st May 2004 were exported from ER Mapper 
as ESRI BIL format (.bil). The data were imported 
into ArcView and each band separately converted 
into a Grid using the Spatial Analyst extension 
of ArcView. This enabled the read out of values 
of all bands within the pixel. The GCPs sampled 
in the field were downloaded from the GPS and 
imported as ESRI Shapefile (.shp) into ArcView. 

There were 14 GCPs taken into account for 
ground truth validation. GCPs sampled on the 
path along the boundary of FAA4 were not 
considered due to mixed surface reflectance. Based 
on the ΔNBR image of 23rd December 2003 and 
31st May 2004, each pixel containing a GCP was 
digitised as a polygon theme of ArcView. This 
image was taken to average the offset between the 
two scenes. The spectral signatures of TM scenes 
were tabulated for each region. The results were 
further sorted in Microsoft Excel, where index 
values of bands 4 and 3 for the NDVI and 4 and 7 
for the NBR were calculated for the selected GCPs 
(Equations 4-4 and 4-6). The change detected by 
both indices was calculated for each GCP. The 
differenced indices ΔNBR and ΔNDVI were 
derived from Equation 4-7. 

The spectra and index values identified in 
remote sensing imagery were compared with the 
burn severity estimated at the selected GCPs. 

Hence, biomass affected by fire was estimated and 
the structure of the ecosystem considered for each 
plot, as described in the latter section. 

6.6.2 Comparison of MODIS and   
 Landsat ETM+ Data

A major goal of this work is to define the feasibility 
of using moderate spatial resolution MODIS data 
to measure burn severity. The method consisted 
in a direct comparison of Landsat and MODIS 
index imagery. In a preparatory step, classes of 
burn severity were adjusted to the field data and 
separated into four classes ranging from unburnt 
to high burn severity. Landsat ΔNBRNov image was 
calibrated with thresholds calculated from training 
areas. Each class of the calibrated ΔNBRNov image 
was converted into vector data. The class regions 
provided fundamental information for calibrating 
MODIS thresholds. The resulting classes were 
directly compared, whereas only FAA1 was 
considered. This study site performed the most 
favourable study site for this comparison due to 
the well known and clear separation between a 
mild prescribed burn in the northern part and the 
severe wildfire in the southern part.

The training areas to calibrate the ΔNBRNov 
image were manually digitised based on ETM+ 
reflectance of band 4 (11th February and 26th 
November). Band 4 reflectance gave the highest 
change in respect to vegetation alteration. Band 
4 of the pre-fire image was displayed in RED 
and band 4 of the post-fire image in GREEN 
as R-G-B composite. Areas appearing green 
indicated high reflectance in both images and were 
identified as unburnt vegetation. Areas appearing 
red indicated high reflectance in the pre-fire image 
and low reflectance in the post-fire image and were 
identified as highly severe burnt areas. The result 
was in agreement with fire coordinators from 
CALM (GREEN, 2004; SIMMONDS, 2004), that the 
selected training areas were unburnt and severely 
burnt, as indicated in the image. 

Defined areas to train detection of unburnt 
vegetation were selected inside the FAA1 and in 
the adjacent areas. Training areas for severe burnt 
vegetation were selected within the southern part 
of FAA1, which was subject to the wildfire. The 
definition of training areas for the intermediate 
classes of low and moderate burn severity from 
the displayed images would have been very 
subjective. The thresholds to discriminate classes 
of burn severity were calculated from mean value 
and standard deviation of training areas from 
the Landsat ΔNBRNov image. The threshold to 
discriminate the classes unburnt and low burn 
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severity was calculated by the mean value of the 
unburnt training area plus the standard deviation.  
The threshold to discriminate moderate and high 
burn severity was calculated by subtracting the 
standard deviation from the mean value of the high 
burnt training area. The calculation considering 
the standard deviation was justified by expecting 
higher accuracy for the corresponding classes. The 
threshold to separate the intermediate classes of 
low and moderate burn severity were calculated 
from the latter thresholds as mean. The ΔNBRNov 
image was classified with calibrated values for 
burn severity classes in ER Mapper. 

The defined classes 1 to 4 of the calibrated 
ΔNBRNov image were displayed separately. 
Each class was displayed in one colour, whereas 
highest contrast between class and background 
for example black and white was important for 
a successful raster to vector conversion. Each 
class was exported as GeoTIFF image (.tif ) and 
displayed in ArcView. The Spatial Analyst of 
ArcView provides a raster to vector conversion 
tool, in which vector boundaries for each class of 
the Landsat ΔNBRNov image were compiled.

Subsequently, a definition of reasonable 
thresholds for classifying ΔNBRMOD26-11 images 
was required. The ΔNBRMOD26-11 image of 
MODIS was derived from pre-fire mean NBR 
(September and October data) and post-fire NBR 
of 26th November to match the post-fire data to 
Landsat ETM+ data based on Equation 4-7. The 
ΔNBRMOD26-11 image was exported in ESRI BIL 

format (.bil) and displayed as Grid in ArcView. 
MODIS resolution of 250m x 250m was resampled 
with Cubic Convolution to Landsat cell size of 25m 
x 25m, as measured in the Landsat image when 
displayed in ArcView. This was accomplished 
using the Grid Pig Tool extension of ArcView. 
The resulting image provided spectral information 
of MODIS data in spatial resolution approximately 
equal to Landsat data. Classes of burn severity for 
the MODIS ΔNBRMOD26-11 image were defined by 
rounding the resulting mean values received for 
unburnt and highly severe burnt of this image. 
These mean values were considered as closest 
match between thresholds of both the Landsat 
ETM+ and MODIS classification. Moderate 
spatial resolution and a general low accuracy due 
to the use of mean values were justifying rounding 
values. The ΔNBRMOD26-11 was calibrated into four 
classes of burn severity based on the resulting 
thresholds. The classification was completed in 
ER Mapper and classes separately displayed. The 
ΔNBRMOD26-11 classes were exported as GeoTIFF 
image (.tif ) and converted into vector data for each 
class. 

The vector data of burn severity classes 
measured with MODIS and Landsat ETM+ 
enabled a direct comparison between MODIS 
and Landsat ETM+ coverage of burn severity 
classes. This comparison is to assess the feasibility 
of using moderate spatial resolution MODIS data 
compared to high resolution Landsat ETM+ data 
within the example of FAA1.
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Chapter 7: Results

Tlhe results gathered from analysis of 
lremote sensing and field data are described 
land represented in various charts. The 

measurement of burn severity during a field trip 
established classes of burn severity within the 
study area. Burn severity was assessed with remote 
sensing data based on several Ground Control 
Points (GCPs) sampled in the field. The results 
of high resolution Landsat TM data and moderate 
resolution MODIS data were compared to see if 
spatial resolution of MODIS data is suitable for 
measuring burn severity in the forests of south-
west WA.

Figure 7-1: Spectral properties detected from bands 
1 to 7 of MODIS top of atmosphere (TOA) reflect-
ance in class 3. MODIS data was recorded between 
September and December 2002. The class 3 from the 
∆NBR

MODIS
 image represents a mild burnt area. For all 

MODIS spectra presented in Figures 7-1 to 7-4 and 7-
9 to 7-12, the blue dotted lines refer to data recorded 
pre-fire, the orange dashed lines refer to data during 
fire and the red lines refer to post-fire data. For all 
charts in this chapter, the detected value is illustrat-
ed by the filled dots, whereas lines are connceting 
the recorded data in order to facilitate inspection of 
results.
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7.1 Results of Remote Sensing  
 Data Analyses

Spectral properties of remote sensing data and 
characteristics of the indices NBR and NDVI 
were analysed within regions of differently burnt 
surfaces. MODIS data were analysed within 
classes of burn severity derived by classifying the 
ΔNBRMODIS image as described in chapter 6.3. 
Landsat ETM+ data were analysed within classes 
derived from ΔNBRNov and ΔNBRDec images as 
described in chapter 6.4. The results will focus on 
classes 3 and 6 of FAA1, which represent a lower 
and higher severe burnt surface, respectively. The 
trends of remote sensing data within classes 1 to 
6 are listed in the Appendix. MODIS TOA and 
BOANADIR data were analysed within equal 
regions, thus results of MODIS data are directly 
comparable. 

Results of Class Region
The mean reflectance spectra of MODIS TOA 
data of class 3 are illustrated in Figure 7-1 for each 
date. The entire spectrum shows a characteristic 
trend: Reflectance in the blue light (0.469µm; band 
3) varies in the range between 0.1 to 0.2 and is 
decreasing towards the red light (0.645µm; band 

1) between 0.05 to 0.12. An outlier with invalid 
reflectance of 0 in the green light (0.555µm; 
band 4) is recorded on Julian day 350. The 
NIR reflectance increases and varies between 
0.13 to 0.27 (0.859µm; band 2) and 0.16 to 0.29 
(1.24µm; band 5). Towards the MIR, reflectance 
decreases showing variances between 0.12 to 0.22 
(1.64µm; band 6) and 0.04 to 0.15 (2.13µm; band 
7). Comparing the TOA spectra recorded pre-
fire and post-fire, reflectance of all data varies in 
a similar manner in blue and green light. There 
is low discrimination between spectra in the red 
light due to a minor increase of reflectance post-
fire. In the NIR bands 2 and 5, the pre-fire dates 
show higher reflectance compared to a decreasing 
reflectance of dates post-fire. This phenomenon 
is changing towards the MIR bands. The pre-fire 
dates have generally lower reflectance in bands 
6 and 7, whereas post-fire dates show noticeably 
higher reflectance within these wavelengths. 
The spectra of class 3 illustrate the trend that 
reflectance between pre-fire and post-fire dates 
have greatest change in bands 2 and 7.

Figure 7-2: Spectral properties detected from bands 
1 to 7 of MODIS top of atmosphere (TOA) reflectance 
in class 6. The class 6 from the ∆NBR

MODIS
 image rep-

resents a severe burnt area.
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The spectra of TOA data within a more intense 
burnt surface of class 6 places emphasis on the 
latter result (Figure 7-2). Compared to the spectra 
of class 3, the class 6 spectra show a similar trend 
in the blue and green light. Reflectance of the red 
band 1 shows similar variance between 0.04 to 0.12, 
whereas dates recorded pre-fire have significantly 
lower reflectance than dates post-fire. The 
increasing reflectance of post-fire dates within this 
wavelength show high variance ranging between 
0.06 to 0.12. Reflectance of NIR bands 2 and 5 
highlight the magnitude of change. The pre-fire 
data of class 6 show similar reflectance compared 
to pre-fire data of class 3, whereas reflectance 
of post-fire scenes shows a markedly reduced 
reflectance in the NIR. The reflectance of post-
fire data in NIR wavelengths of 0.859µm (band 2) 
and 1.24µm (band 5) varies between 0.06 to 0.13 
and 0.1 to 0.18, respectively. The MIR reflectance 
illustrates the change of reflectance between pre-
fire and post-fire dates towards longer wavelengths. 
Reflectance at 1.64µm (band 6) varies between 0.08 
to 0.19, whereas pre-fire reflectance is generally 
lower than post-fire reflectance. At 2.13µm (band 
7), the low reflectance of pre-fire dates is similar 
to pre-fire reflectance of class 3, whereas post-fire 
reflectance of class 6 shows a prolonged increase 
at this wavelength with variances ranging between 
0.11 to 0.19. The greatest change of reflectance pre 

and post-fire was detected at 0.859µm and 2.13µm. 
Comparing class 3 and class 6 spectra of TOA 
data, the change of reflectance between differently 
burnt areas is most accentuated in MODIS bands 
2 and 7.

The spectra of the same classes were derived 
from MODIS BOA and BOANADIR data. The 
mean reflectance spectra of class 3 are illustrated 
in Figure 7-3 for each date. In comparison to 
MODIS TOA class 3 spectrum, reflectance 
within the VIS bands is markedly reduced in 
BOANADIR data. The reflectance ranges 
between 0.01 to 0.08 in the blue light (band 3) 
and has a decreasing variance between 0.03 to 0.06 
in the red light (band 1). There are two outliers 
with reflectance of 0 in the green light (band 4) 
recorded on Julian days 350 and 354. There is 
low discrimination between pre-fire dates and 
post-fire dates in the VIS wavelengths. Within the 
NIR and MIR wavelengths the spectral signature 
of class 3 BOANADIR shows a similar trend to 

Figure 7-3: Spectral properties detected from bands 
1 to 5 and 7 of MODIS bottom of atmosphere and 
BRDF corrected (BOANADIR) reflectance in class 3. 
MODIS BOANADIR data are the same dates recorded 
between September and December 2002. The class 
3 of BOANADIR represents the same region as TOA 
data were analysed in Figure 7-1.
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the class 3 TOA spectra. The dates recorded pre-
fire have higher reflectance in the NIR and lower 
reflectance in the MIR compared to dates post-fire. 
The BOANADIR data show a marked decrease of 
variances between spectra of different dates. There 
are two outliers of pre-fire data recorded on Julian 
days 256 and 265, which show markedly higher 
reflectance in all bands compared to all pre-fire 
data. Reflectance of dates pre-fire range between 
0.17 to 0.2 in NIR wavelength at 0.859µm (band 
2) and between 0.21 to 0.25 at 1.24µm (band 5), 
the outliers were  not considered. Dates post-
fire have lower reflectance between 0.13 to 0.16 
(band 2) and 0.16 to 0.21 (band 5). Towards the 
MIR, spectra of BOANADIR data show a similar 
change of reflectance between pre and post-fire 
data. Reflectance pre-fire is decreasing between 
0.05 to 0.08 at 2.13µm (band 7), whereas post-fire 
reflectance is higher between 0.07 to 0.11 (band 7). 
The spectra show highest change between pre-fire 
and post-fire reflectance in bands 2, 5 and 7. 

The mean reflectance spectra of BOANADIR 
data in class 6 are represented in Figure 7-4. 
Reflectance in the VIS wavelength shows reduced 
values compared to TOA class 6 reflectance. 
The spectral properties in the VIS are similar to 
class 3 of BOANADIR, whereas discrimination 
between lower pre-fire reflectance and increased 

post-fire reflectance is recognisable at 0.645µm 
(band 1). There is an outlier due to negative 
reflectance in the VIS wavelength on Julian 
day 353. The spectra within the NIR and MIR 
wavelengths put emphasis on the change between 
dates pre and post-fire. The pre-fire reflectance is 
similar to reflectance in class 3 of BOANADIR 
pre-fire dates. The post-fire reflectance shows 
a noticeable decrease of reflectance in the NIR 
ranging between 0.05 to 0.1 at 0.859µm (band 2) 
and between 0.09 and 0.14 at 1.24µm (band 5). 
Reflectance of post-fire dates increases towards 
the MIR varying between 0.1 and 0.17 at 2.13µm 
(band 7). The higher degree of burn severity is 
again markedly reflected in the spectra. Similar to 
results of TOA data, the greatest change between 
burnt and unburnt surface is recognisable in bands 
2 and 7 of MODIS data, whereas variance within 
the BOANADIR spectrum is highly reduced.

The dates during the fire (orange dashed lines) 
represent a transition between spectra of pre-fire 
and post-fire dates. The spectral properties are 

Figure 7-4: Spectral properties detected from bands 
1 to 5 and 7 of MODIS bottom of atmosphere and 
BRDF corrected (BOANADIR) reflectance in class 6. 
The class 6 of BOANADIR represents the same region 
as TOA data were analysed in Figure 7-2.
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predominantly coming along with the spectra 
of pre-fire dates. All spectra of classes 1 to 6 of 
FAA1 derived from TOA and BOANADIR data 
are represented in the Appendix (Figures A1-1 to 
A1-6 and A2-1 to A2-6).

The indices NBR and NDVI within classes 3 
and 6 of both MODIS TOA and BOANADIR 
data are illustrated in Figures 7-5 to 7-8. The 
results of indices in classes 1 to 6 from TOA and 
BOANADIR data are represented in the Appendix 
(Figures A3-1 to A3-6 and A4-1 to A4-6)

Figure 7-5 represents the lapse of mean NBR 
values and mean NDVI values of TOA data within 
class 3 versus time (Julian days 253-365). Fire 
occurred within FAA1 between Julian days 305 
and 321. The mean NBR of class 3 from dates pre-
fire have values around 500, there are two outliers 
visible on Julian days 254 and 263. The spectra of 
the outlier data have merely low contrast between 
reflectance in NIR and MIR bands 2 and 7, whereas 
values itself show no obvious outliers within the 
spectra.  The mean NBR values decrease in the 
stage during fire and vary between 100 and 300 
within post-fire data. There is a minor increase 
of NBR values towards Julian day 365. The mean 
NDVI values of class 3 pre-fire develop slightly 
higher values and show a minor variance with 
values between 500 and 600 compared to the mean 
NBR values. There is an outlier at Julian day 263 

for the NDVI due to low contrast of reflectance 
in the corresponding wavelengths, but no obvious 
outliers within the pre-fire spectra. Post-fire, the 
NDVI has a minor reduction of values compared 
to the NBR, which vary between 300 and 400. 
During fire, both indices show a highly variable 
decrease of values. The NDVI has a smooth curve 
through time compared to the NBR, whereas 
signal contrast between pre-fire dates and post-fire 
dates is more enhanced by the NBR.

The trend of indices within class 6 of MODIS 
TOA data is shown in Figure 7-6. Values of both 
indices recorded before the fire are around 600. 
There is a marked decrease in both index values 
post-fire. The NBR values calculated from post-
fire data vary between –400 and –100. Values 
show a minor increase during the development 
of post-fire environment towards Julian day 365. 
Hence, the maximum decrease of the NBR is 
visible soon after fire. The NDVI values show a 

Figure 7-5: The trend of the NBR and NDVI through 
time in class 3, derived from MODIS top of at-
mosphere (TOA) reflectance. For all MODIS index 
analyses presented in Figures 7-5 to 7-8 and 7-13 to 
7-14, the blue lines refer to the NBR and the orange 
dashed lines refer to the NDVI. Measured values are 
represented by the filled square, whereas connecting 
lines are to facilitate inspection.
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smooth trend around 100 in post-fire data. The 
change between dates recorded before the fire and 
post-fire are well detected by both indices, however 
the NBR provides higher signal in comparison to 
the NDVI.

The influences of atmosphere and various scan 
and illumination angles of MODIS data were 
investigated in respect to the NBR and NDVI. 
Figure 7-7 shows both indices calculated from 
BOANADIR data in class 3. The mean NBR 
values of class 3 derived from BOANADIR pre-
fire data have values between 400 and 600 and 
show similar outliers compared to TOA data. 
Index values of post-fire dates decrease and 
vary between 100 and 300. They show a similar 
compared to TOA data, whereas the noise was not 
significantly reduced. The NDVI values calculated 
from dates before fire vary between 600 and 800 
and are therefore higher compared to the NDVI 
of TOA data. There is still an obvious outlier at 
Julian day 263 due to low values. The NDVI of 
post-fire dates varies between 400 and 600 and is 
comparable to TOA data. The outlier recorded at 
Julian day 329 showing NDVI value greater 1000,  
spectral analyses did not show a conspicuous 
outlier at this date, but cloud coverage was high, 
which could explain the outlier. The NDVI of 
class 3 calculated from BOANADIR data shows a 
minor signature change between pre-fire and post-

fire data and higher variance within the values 
compared to the NBR.

Index values of class 6 calculated from 
BOANADIR data are illustrated in Figure 7-
8. The NBR shows values around 600 pre-fire. 
The marked decrease post-fire is similar to TOA 
data, however values are slightly lower ranging 
between –500 and –300 in the BOANADIR data. 
Increasing values of the NBR towards Julian day 
365 are similar to results of TOA data in class 
6. The mean NDVI values of BOANADIR data 
in class 6 are generally higher compared to the 
NDVI TOA data. Index values of pre-fire data 
vary between 700 and 800 and show the outlier 
recorded at Julian day 263. This was similarly 
observed by comparing the latter class 3 data. The 
post-fire NDVI has values around 200, whereas 
an obvious outlier is recorded on Julian day 329 
similar to NDVI of class 3 BOANADIR. The 
BOANADIR data result in an increase of NDVI 
values, whereas the change detected by indices 
is barely influenced by atmospheric and BRDF 
effects.

Figure 7-6: The trend of the NBR and NDVI through 
time in class 6, derived from MODIS top of atmos-
phere (TOA) reflectance.
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▲ Figure 7-7: The trend of the NBR and NDVI through 
time in class 3, derived from MODIS bottom of atmos-
phere and BRDF corrected (BOANADIR) reflectance.

▼ Figure 7-8: The trend of the NBR and NDVI through 
time in class 6, derived from MODIS bottom of atmos-
phere and BRDF corrected (BOANADIR) reflectance.
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Results of Pixels in Class Region
Results are gathered from single MODIS pixels 
to investigate variability within pixels in respect 
to spectral and index properties. Figures 7-9 to 
7-12 illustrate the resulting spectra of TOA and 
BOANADIR scenes. The results of one class 3 and 
one class 6 pixel are presented, the same pixels were 
used for analysing both, TOA and BOANADIR 
data. The spectral properties of pixels in classes 1 
to 6 are represented in the Appendix (Figures A5-
1 to A5-6 and A6-1 to A6-6). 

The spectrum of MODIS TOA data class 3 pixel 
is shown in Figure 7-9. The spectral properties of 
TOA data class 3 pixel are comparable to the 
spectral characteristics within the entire class 3. 
Reflectance of dates post-fire have a similar trend 
compared to the post-fire spectrum of class 3. It 
is significant, that reflectance of dates recorded 
pre-fire have higher variances in the pixel than in 
the entire class. The deviation is most significant 
between 0.15 to 0.24 at 0.859µm (band 2) and 
between 0.2 to 0.32 at 1.24µm (band 5). Despite 
this, bands 2, 5 and 7 reflect the most significant 
change between unburnt and burnt surfaces. 

Figure 7-10 shows the spectrum of TOA data 
within a class 6 pixel. The spectral development 
of data pre-fire and post-fire in the class 6 pixel 
is comparable to the spectrum of the entire 
class. There are two outliers visible due to high 
reflectance in band 6 within the class 6 pixel 
recorded on Julian days 343 and 351.

The spectral properties within the same pixel 
of class 3 and 6 are investigated further using 
MODIS BOANADIR data. Figure 7-11 illustrates 
the resulting spectra within the class 3 pixel. 
The trends of the spectra are comparable to the 
spectra of entire class 3 BOANADIR. But there 
is a significantly higher variance in the spectral 
properties of dates recorded pre-fire. There are 
outliers that are accentuated due to conspicuously 
high reflectance in the NIR between 0.2 to 0.3 
at 0.859µm (band 2) and 0.22 to 0.33 at 1.24µm 
(band 5). The outliers refer to data acquired on 
Julian days 254, 256, 265 and 271, which refers 
to BOA that was not corrected for BRDF effects 
and used as pre-fire data in September. Another 
outlier is recorded on Julian day 330 post-fire with 
negative reflectance in the VIS bands 3 and 1 and 
the MIR band 7. Not considering the outliers, 
the noise within the BOANADIR spectrum is 
reduced compared to the TOA class 3 spectrum. 
This is further emphasised in the spectral 
properties of data recorded post-fire, as more data 
were available.

The spectra of BOANADIR data within the 
class 6 pixel have a comparable trend to the spectra 
of entire class 6 (Figure 7-12). It is noticeable, that 
the noise within the spectra of the selected pixel 

is higher than within the entire class. An outlier is 
recorded on Julian day 265 with significantly high 
reflectance at 0.859µm (0.29) and at 1.24µm (0.3). 
Furthermore, reflectance detected on Julian day 
354 is significantly high at 0.469µm (0.13) and at 
0.555µm (0.14).

The indices NBR and NDVI were calculated for 
each of the 5 selected pixels per class. The results 
represent the deviation of indices within pixels of 
similar burnt surfaces. The index values calculated 
from TOA data are illustrated in Figures 7-13 to 
7-14. The results received from indices of classes 3 
and 6 based on BOANADIR data are presented in 
the Appendix together with results of all further 
classes of TOA and BOANADIR indices (Figures 
A7-1 to A7-6 and A8-1 to A8-6. Due to huge gaps 
of missing data and significant outliers within 
the existent data, the content of information was 
highly reduced in BOANADIR data. 

The NBR and NDVI values calculated from 
TOA data within the selected pixels of class 3 are 
represented in Figure 7-13. The trends of both 
indices are comparable to the mean NBR and 
NDVI calculated for the entire class 3. Values 
before fire vary between 400 and 600 without 
considering an outlier close to 0 recorded on Julian 
day 254. NBR values derived from post-fire dates 
have variances between 0 and 400, whereas results 
of same dates within different pixels deviate in a 
value range between 200 to 300. The trend of the 
NDVI is similar to the NBR with less decreasing 
values and less variance in the dates recorded post-
fire. 

The same indices of selected class 6 pixels 
are illustrated in Figure 7-14. The trends of both 
indices are comparable to the NBR and NDVI 
calculated for the entire class 6. The NBR values 
of different pixels in class 6 vary between 500 and 
700 in the pre-fire data and between -600 and -200 
in the post-fire data. Deviations between different 
pixels within the same date are in a value range 
of 200 to 300. The NBR values increase towards 
Julian day 365 varying between –300 and 0. The 
NDVIs of TOA data in class 6 pixels show minor 
variances compared to the NBR. The values vary 
between 500 and 700 in dates recorded before fire 
and between 0 and 200 in dates post-fire. Variances 
between different pixels of the same date are in a 
value range of 100. Index values have a noticeable 
variance between similarly burnt surfaces within 
the same date, whereas deviation from the mean 
trend is less from NDVI than from NBR.
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▲ Figure 7-9: Spectral properties detected from 
bands 1 to 7 of MODIS (TOA) within one pixel (3.5) 
selected in class 3.

▼ Figure 7-10: Spectral properties detected from 
bands 1 to 7 of MODIS (TOA) within one pixel (6.5) 
selected in class 6.
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▲ Figure 7-11: Spectral properties detected from 
bands 1 to 5 and 7 of MODIS (BOANADIR) within one 
pixel (3.5) selected in class 3.

▼ Figure 7-12: Spectral properties detected from 
bands 1 to 5 and 7 of MODIS (BOANADIR) within one 
pixel (6.5) selected in class 6.
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▲ Figure 7-13: NBR and NDVI values derived from 
MODIS (TOA) data within 5 pixels (3.1 to 3.5) selected 
in class 3.

▼ Figure 7-14: NBR and NDVI values derived from 
MODIS (TOA) data within 5 pixels (6.1 to 6.5) selected 
in class 6.
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Results from Landsat ETM+ Data
Data from the Landsat ETM+ sensor were 
analysed within burnt surfaces of FAA1 to 3 
based on three scenes from year 2002. Firstly, the 
reflectance change due to variations of phenology 
between pre-fire and post-fire data were analysed, 
as pre-fire image was recorded 9 months before 
fire. 

The spectral properties of Landsat ETM+ data 
of the year 2002 within selected training areas 
with ~95,000 pixels are presented in Figure 7-15. 
The spectra represent the reflectance change of 
phenological variation between different scenes of 
February, November and December. The variance 
within bands 3, 4 and 7 are focused as those where 
used to derive the indices. At 0.66μm (band 3) 
reflectance detected in February image is centred 
between lower reflectance (0.02) in December and 
higher reflectance (0.045) in November. At 0.84μm 
(band 4) reflectance shows a marked decrease in 
post-fire data, despite the area not being affected 
by fire. Band 4 reflectance of February within 
training area is 0.235. It decreases in November 
to 0.205 and in December to 0.189. In band 7 at 
2.22μm November reflectance is higher with 0.046 
compared to reflectance in February (0.024) and 
December (0.019). The results of classes 3 and 6 
of FAA1 are presented in Figures 7-16 and 7-17. 
The trends of data within all classes 1 to 6 and 
the results from FAA 2 and 3 are listed in the 
Appendix (Figures A9-1 to A9-6, A10-1 to A10-6 
and A11-1 to A11-6).

The spectra of ETM+ data in class 3 are illustrated 
in Figure 7-16. Results of either class 3, derived by 
classifying ΔNBRNov image and ΔNBRDec image 
are presented. In the VIS wavelengths, reflectance 
is low with 0.1 in the blue band 1 (0.485μm), 
between 0.03 and 0.07 in the green band 2 
(0.57μm) and between 0.4 and 0.06 in the red band 
3 (0.66μm). There is an increase of reflectance in 
NIR band 4 (0.84μm) with high deviation between 
0.11 to 0.24. The mean pre-fire reflectance is 0.22 
and markedly higher compared to the mean post-
fire reflectance, which varies between 0.13 to 0.17. 
Towards the MIR, reflectance varies between 
0.1 to 0.17 at 1.65μm (band 5), whereas pre-fire 
reflectance and post-fire reflectance are similar. At 
2.22μm (band 7), reflectance varies between 0.02 
to 0.13 with predominantly higher reflectance of 
post-fire data compared to low reflectance of pre-
fire data (0.02 to 0.03). The change between pre-
fire and post-fire reflectance is most accentuated at 
0.84μm (band 4) and at 2.22μm (band 7), whereas 
standard deviation is highest at these wavelengths 
at the same time. Pre-fire reflectance is similar 
based on both classifications. Reflectance of post-
fire data has a trend at 2.22μm (band 7), where 

Figure 7-15: Spectral properties of 3 Landsat ETM+ 
scenes from bands 1 to 5 and 7. The data are in-
vestigated within the same test regions of unburnt 
vegetation in the study area. The chart demonstrates 
variation of reflectance within the temporal gap of 
ten months between February and Decemeber.
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▲ Figure 7-16: Spectral properties detected from 
bands 1 to 5 and 7 of Landsat ETM+ within class 
3 of FAA1. The results are derived within class 3 
from both the ∆NBR

Nov
 image and the ∆NBR

Dec
 image. 

The blue line refers to February data, which was 9 
months before fire, the red lines refer to post-fire 
data recorded in November and December.

▼ Figure 7-17: Spectral properties detected from 
bands 1 to 5 and 7 of Landsat ETM+ within class 6 
of FAA1. The results are derived within class 6 from 
both the ∆NBR

Nov
 image and the ∆NBR

Dec
 image.
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▲ Figure 7-18: NBR and NDVI values derived from 
Landsat ETM+ data within class 3 of FAA1. The 
results are derived within class 3 from both the 
∆NBR

Nov
 image and the ∆NBR

Dec
 image.

▼ Figure 7-19: NBR and NDVI values derived from 
Landsat ETM+ data within class 6 of FAA1. The 
results are derived within class 3 from both the 
∆NBR

Nov
 image and the ∆NBR

Dec
 image.
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higher values were derived from November data 
compared to December data. 

The spectra derived from ETM+ images of 
either class 6 accentuate the detection of change 
between unburnt and burnt surface (Figure 7-17). 
Results received from all data within the VIS 
wavelengths are comparable to reflectance values 
within classes 3. Reflectance of pre-fire data in 
the NIR band 4 is 0.21 with standard deviation of 
0.03, which is similar to the result of class 3. The 
data post-fire show a marked decline of reflectance 
varying between 0.05 to 0.08. At 1.65μm (band 
5) reflectance is marginally lower in pre-fire data 
compared to post-fire data varying between 0.1 to 
0.17. The pre-fire reflectance at 2.22μm (band 7) 
is low with values between 0.02 to 0.03, whereas 
post-fire reflectance shows a marked increase at 
this wavelength. It is significant that November 
data has a more accentuated increase compared 
to December data in band 7, which can be related 
to the aging of the fire affected area. The greatest 
difference of reflectance is in bands 4 and 7 of 
Landsat ETM+, whereas the change signal is more 
accentuated in class 6 compared to class 3.

Values of the NBR and NDVI were calculated 
from three Landsat ETM+ scenes of year 2002 in 
classes 1 to 6 based on uniform classifications of 
the ΔNBRNov and ΔNBRDec images. The results 
of classes 3 and 6 within FAA1 are presented in 
Figure 7-18 and Figure 7-19. Further results of 
indices from FAA 1 to 3 of all classes are presented 
in the Appendix (Figures A12-1 to A12-6, A13-1 
to A13-6 and A14-1 to A14-6).
Figure 7-18 represents the index values derived 
within class 3 versus time in Julian days. The NBR 

has values around 700 with standard deviation 
around 100 within both class 3 regions before 
fire (Julian day 42). These index values show a 
decrease in post-fire data, whereas the decline of 
values is more significant more recent post-fire at 
Julian day 330 compared to Julian day 346. The 
NBR mean values vary between 200 (Feb_Dec) 
and 400 (Feb_Nov) at Julian day 330 and increase 
between 400 (Feb_Dec) and 600 (Feb_Nov) at 
Julian day 346. The NDVI has similar values in 
the pre-fire image, whereas the decline of these 
index values post-fire is less when compared to 
the NBR. NDVI mean values vary between 400 
(Feb_Dec) and 550 (Feb_Nov) at Julian day 330 
and increase between 600 (Feb_Dec) and 700 
(Feb_Nov) at Julian day 346. The signal of the 
burnt surface is more enhanced soon after fire and 
weakens with age.

The index values derived within class 6 are 
illustrated in Figure 7-19. The change detected by 
the indices between unburnt and burnt surfaces is 
marked. The index values at Julian day 42 before 
fire vary between 700 and 820. The decline of 
values post-fire is significant, whereas the NBR 
shows a greater change than the NDVI. Values of 
the NBR vary between –400 and –200 at Julian 
day 330 and increase between –200 and 0 at Julian 
day 346. The NDVI has values between 50 and 
150 at Julian day 330 and increase between 250 and 
350 at Julian day 346. The contrast between index 
values derived from classes of the ΔNBRNov and 
ΔNBRDec images are reduced in class 6 compared 
to class 3. The weakening signal with increasing 
age of the burnt area is accentuated by the images 
through time.
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7.2 Field Classification of Burn  
 Severity

The aim of the field trip was to establish a 
relationship between loss of biomass viewed in the 
satellite images and the loss of biomass viewed on 
the ground. The different levels of burn severity 
relating to loss of biomass have no linear context 
to ecological effects within different ecosystems. 
Due to the structure of the vegetation, 4 classes 
of burn severity were discriminated. The resulting 
classes were unburnt, low burn severity, moderate 
burn severity and high burn severity. The strata 
affected by fire were a major benchmark, as this 
reflects the flame height and correlates with fire 
intensity. 

Figure 7-20 represents a plot in open shrubland 
that was visited in the field trip. The image clearly 
illustrates that distinct borders between total 
burnt and unburnt plots were visible in the field, 
where the fire suddenly went out. This resulted in 
different levels of burn severity within a footstep. 
A high level of heterogeneity in fire behaviour 
was frequently observed in the field, as further 
represented in Figure 7-21. The image illustrates, 
that this plot in jarrah-marri forest showed 
lower and higher trees in direct neighbourhood 
affected by fire, whereas severity of fire impact 
varied strongly between the adjacent trees. The 
heterogeneous behaviour of fire made classification 
of burn severity in this nature very difficult. 

Furthermore, various structures of vegetation 
complicated a uniform classification of burn 
severity in respect to biomass reduction. At 
present there are three prevailing structures of 

vegetation in the study sites, which are described 
by karri forest, jarrah-marri forest and open 
shrubland or open woodland (see chapter 3.2). 
It was recognisable in the field that the structure 
of vegetation had a significant influence on fire 
behaviour and resulting burn severity. A burnt 
area of open shrubland was either burnt or 
unburnt, as there was no second stratum existing 
above ground. Burnt shrubland despite being 
totally burnt showed regeneration of vegetation 6 
weeks post-fire, as resprouters are visible in Figure 

▲ Figure 7-21: Heterogeneous 
burn pattern observed in a burnt 
area of jarrah-marri forest. 
Burnt and unburnt trees were in 
direct neighbourhood within a 
burnt area. 

◄ Figure 7-20: Distinct border 
between burnt and unburnt veg-
etation observed in a burnt area 
of open shrubland.
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7-22. However, burn severity was classified as high 
due to complete consumption of the vegetation by 
fire. 

Within open woodland, it was possible to 
discriminate levels of burn severity. Figure 7-23 
illustrates an area in woodland that was considered 
to be affected by a milder fire because the canopy 
of trees was unburnt. Due to the consistent burn 
of the ground layer, burn severity was considered 
moderate, when the canopy of trees in open 
woodland was unburnt or partly burnt and  green 
biomasses was remaining. A complete burnt tree 
canopy in open woodland was considered as high 
burn severity. 

The structure of karri forests influence fire 
behaviour in the way that different strata within 
the forest are clearly separated. The distance 
between the upper understorey and the canopy 
is often a limit to the flame height, as fuel is not 
sufficient to spread fire. The term fuel addresses 
live fuel on trees in this context. The karri forests 
are rarely affected by high burn severity, because 
the canopy is rarely affected by fire. Burn severity 
in karri forests was low, when only the understorey 
at around 3m height was affected by fire (Figure 7-
24). It was moderate, when the upper understorey 
was also burnt, whereas the canopy of this stratum 

has to be burnt completely. Karri forest, which was 
affected moderate or high severely by fire, was not 
present in the field trip.

The jarrah-marri forests is the vegetation 
structure that dominates in the study area. It 
demonstrated a distinct structure composed of 
3 strata, whereas the green biomass is similarly 
distributed between different storeys. It therefore 
represents the clearest classification of burn 
severity in respect to biomass reduction due to 
fire. The resulting classification describes 4 classes 
of burn severity. Class 1 characterises unburnt 
vegetation. It was included in the burn severity 
measurement as areas of retreat for flora and fauna 
are a major goal of prescribed burning to meet 
the objective of conservation. Class 2 describes 
low burn severity, where only the understorey is 
affected by fire. Class 3 refers to moderate burn 
severity, where understorey and upper understorey 
are affected by fire. Class 4 specifies high burn 
severity, where the canopy is affected by fire.

Figure 7-25 represents a jarrah-marri forest, 
which characterises low burn severity in class 
2. The litter on the forest floor is consumed 
by fire, whereas heavy fuels like branches were 
predominantly scorched. The herbs and low 
shrubs of the understorey were either consumed 

▲ Figure 7-22: Burnt area in open shrubland. Fire 
behaved very uniform in shrubland due to a single 
stratum covering the ground. The vegetation in open 
shrubland is generally either consumed by fire or 
remains unburnt. Discrimination of levels of burn 
severity was therefore limited in this type of vegeta-
tion structure. Regeneration due to resprouters was 
observed 6 weeks post-fire. 

▼ Figure 7-23: Moderately burnt area in open 
woodland. The canopy of the trees remained green, 
whereas lower parts of the trees were scorched. The 
shrub layer was completely burnt. Different levels of 
burn severity could be discriminated in open wood-
land benchmarked by the the tree layer of woodland.
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or scorched, whereas scorched leaves fall off 
subsequently. Vegetation of the upper understorey 
and canopy remained green. Flame height causing 
low burn severity in jarrah-marri forest was around 
50cm, which was measured by scorch height up to 
3m. Resprouters were visible on the forest floor 6 
weeks post-fire. 

A jarrah-marri forest was characterised as 
moderately burnt in class 3, when the understory 
and the upper understorey were affected by fire (see 
image in Figure 7-35). Litter, herbs and low shrubs 
of the forest floor and understorey were consumed, 
whereas heavy fuels have been deeply charred. Soil 
was exposed except for scorched leaves falling off 
the affected trees. The lower trees of the upper 
understorey were predominantly scorched, but 
not defoliated. The canopy of the forest remained 
green or was fractionally scorched. Moderate burn 
severity in jarrah-marri forests was caused by flame 
height around 1.5m to 2m with scorch height up to 
12m. Regeneration was not visible on the forest 
floor 6 weeks post-fire.

The jarrah-marri forest was classified as high burn 
severity in class 4, when all strata of the forest 
were affected by fire (see image in Figure 7-36). 
Bare soil is exposed on the forest floor except for 
some scorched leaves falling off the canopy. The 
understorey is completely consumed by fire. The 
trees that form the intermediate stratum of the 
forest are predominantly defoliated. The stems are 
frequently charred and blackened. The canopy is 
scorched or partly defoliated. No green leaves are 
remaining. Fire with flame height over 2m to 3m 
caused severe burn conditions. Scorch height on 
the stems varied between 12m up to the canopy 
at about 30m. Process of regeneration was not 
observable 6 weeks post-fire.

This classification defined in the field is at the 
same time describing the change in the amount 
of biomass, which is measurable with satellite 
remote sensing. The results that are gathered from 
remote sensing data have to be verified in respect 
to the field measurements. The resulting data from 
satellite have to be calibrated equivalently to the 
ground truth data.

▲ Figure 7-24: Karri forest affected by low burn 
severity. The understorey of the forest, which is ap-
proximately 3m high, has been completely burnt. The 
upper understorey and the canopy were not affected 
by fire. The discrimination of different levels of burn 
severity was benchmarked by the 3 different strata 
within the forest. A huge gap between the upper 
understorey and the canopy caused inhomogeneous 
distribution of biomass within the forest that highly 
limits crown fires.

▼ Figure 7-25: Jarrah-marri forest affected by low 
burn severity. Only the understorey of the forest 
was affected by fire. The discrimination of different 
levels of burn severity was benchmarked by the 3 
different strata within the forest. The jarrah-marri 
forest presents a homogeneous distribution of bio-
mass within the forest, which may more easily cause 
crown fires compared to karri forest.
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7.3 Assessment of Burn Severity  
 with Remote Sensing Data

In order to assess burn severity using satellite 
remote sensing the data needs to be calibrated with 
ground truth data. A first approach to validate 
remote sensing data consisted in the comparison 
of ground truth data and high resolution Landsat 
TM data. As the final result of this study, the 
remotely sensed measurement of burn severity 
was calibrated based on the ΔNBR index imagery 
of Landsat and MODIS data. The calibration was 
related to the field classification of burn severity. 

Burn Severity Assessment of Landsat 
Data based on Ground Truth Data
There were 14 GCPs, which were compared to 
results received from Landsat TM data in the 
corresponding area. Five GCPs are presented 
in a detailed comparison between field data and 
remote sensing data within this section, whereas 
results of the others are listed in the Appendix 
(Figures A15-1 to A15-9). The five GCPs 
represent different structures of vegetation and 
different classes of burn severity. The spectra of 
each sample derived pre-fire and post-fire illustrate 
the result of Landsat TM data for each plot. The 
pre-fire Landsat TM image was from December 
2003 and the post-fire Landsat TM image was 
from May 2004, which was recorded 4 weeks post-
fire. Bands 3, 4 and 7 are focused as indices are 
calculated from those bands. The results of index 

values are listed in tables within the adequate GCP 
plot. The corresponding photos were taken in the 
field and added to the results in order to avoid a 
single subjective interpretation by the author.

The selected GCP 1 was sampled in jarrah-
marri forest with moderate burn severity of class 
3 (Figure 7-26). The understorey was completely 
consumed. The soil was exposed, but partly covered 
by scorched leaves fallen off the upper trees. The 
intermediate stratum was completely scorched, 
whereas the major part of the canopy remained 
green. Resprouters were visible on the ground 4 
weeks post-fire. The post-fire spectrum illustrates 
the greatest change in bands 4 and 7 compared to 
the pre-fire spectrum. The pre-fire spectrum had 
reflectance of 0.05 at 0.66μm (band 3), rose to 0.2 
at 0.84μm (band 4) and declined to 0.05 at 2.22μm 
(band 7). The post-fire spectrum had higher 
reflectance in band 3 with 0.07, increased to 0.1 in 
band 4 and decreased to 0.08 in band 7. The pre-
fire NBR was minorly lower compared to the pre-
fire NDVI with values of 601 and 628, respectively. 
The post-fire NBR was noticeable lower compared 
to the post-fire NDVI with values of 108 and 232, 

Figure 7-26: GCP 1 sampled in jarrah-marri forest, 
where burn severity was measured as moderate in 
class 3. The spectral properties and index values 
within the Landsat pixel of the GCP are illustrated 
in the Table and Chart of GCP 1, whereas the filled 
square refers to the measured reflectance and con-
necting lines are to facilitate inspection. The pre-fire 
Landsat TM data was aquired in December 2003 and 
the Landsat post-fire data was aquired in May 2004, 
approximately 1 month post-fire.
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▲ Figure 7-27: GCP 2 sampled in jarrah-marri forest, where burn severity was measured as low in class 2. 
The spectral properties and index values within the Landsat pixel of the GCP are compared with the field 
measurement of burn severity.

▼ Figure 7-28: GCP 3 sampled in jarrah-marri forest, which was not affected by fire. An unburnt pixel in pre-
fire and post-fire data demonstrates reflectance change between Landsat data recorded in December 2003 
and May 2004.
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respectively. The change signal between pre and 
post-fire indices resulted higher from the ΔNBR 
with 493 compared to the ΔNDVI with 396.

GCP A2 was selected in jarrah-marri forest as 
well, whereas this plot was estimated to be low 
burnt and classified into class 2 (Figure 7-27). The 
understorey was partly burnt, but green leaves 
remained in the shrub layer. Fire has affected 
this area as a mosaic between burnt spots with 
consumption of the understorey and unburnt 
herbs and shrubs covering the ground. The signal 
detected by Landsat in December has reflectance 
of 0.6 in band 3, 0.2 in band 4 and decreases to 0.7 
in band 7. Reflectance measured in May post-fire 
was 0.05 in band 3, 0.11 in band 4 and showed a 
significant decline to 0.03 in band 7. The pre-fire 
NBR was minorly lower compared to the pre-fire 
NDVI with values of 524 and 567, respectively. The 
post-fire NBR was significant higher compared to 
the post-fire NDVI with values of 614 and 392, 
respectively. The change signal between pre and 
post-fire indices resulted in this case very low from 
the ΔNBR with -90 compared to the ΔNDVI with 
175. The change due to fire was more accentuated 
by the NDVI in this example.

The GCP 3 of unburnt jarrah-marri forest 
was investigated to compare the change between 
imagery recorded in December and imagery 
recorded in May (Figure 7-28). The photo 
illustrates a jarrah-marri forest not affected by fire. 
as found out in conversation with fire managers, 
the area did not burn within the last 5 years. The 
spectrum of GCP 3 detected in December shows 
reflectance of 0.05 in band 3, 0.21 in band 4 and 
0.05 in band 7. The spectrum derived from the 
May image has reflectance values of 0.06 in band 
3, 0.18 in band 4 and 0.03 in band 7. In the infrared 
wavelengths reflectance in May is lower between 
0.02 and 0.04 compared to December, whereas it 
is insignificantly higher in band 3. The NBR in 
December was minorly lower compared to the  
NDVI with values of 615 and 626, respectively. 
The NBR in May was higher compared to the 
NDVI with values of 684 and 537, respectively. 
The change signal between December and May 
indices resulted lower from the ΔNBR with -69 
compared to the ΔNDVI with 89. The ΔNBR 
value of the unburnt GCP is in a similar range to 
the signal in low burnt jarrah-marri forest of GCP 
2. 

The results received from comparing GCP 4 with 
the corresponding Landsat pixel is illustrated in 
Figure 7-29. The GCP 4 was sampled in open 
shrubland and described a moderately burnt 
area in class 3. There were some green leaves 
that remained on higher levels of the single 
stratum, whereas the lower parts were completely 
scorched. The spectrum of Landsat data before 
fire has reflectance of 0.15 at 0.84μm (band 4) 
and a decrease of reflectance to 0.07 at 2.22μm 
(band 7). Reflectance declines to 0.06 in band 
4 and is 0.08 in band 7. Reflectance in band 3 
shows little change with values around 0.05 in 
both images. The pre-fire NBR was significantly 
lower compared to the pre-fire NDVI with values 
of 365 and 490, respectively. The post-fire NBR 
was lower compared to the post-fire NDVI with 
values of -140 and 79, respectively. The change 
signal between pre and post-fire indices resulted 
higher from the ΔNBR with 505 compared to the 
ΔNDVI with 411.

The GCP 5 was sampled in wet open shrubland, 
where burn severity was characterised as high in 
class 4 (Figure 7-30). The green vegetation has 
been completely consumed by fire and bare soil 
was exposed, whereas resprouters were visible 6 
weeks post-fire. It is evident in the image, that the 
soil is partly covered by backwater. The spectrum 
of the TM image recorded pre-fire within GCP 
5 has a very similar trend compared to the pre-
fire spectrum of GCP 4. The spectrum of GCP 
5 derived post-fire had low reflectance in band 4 
with 0.06 and presented similar low reflectance 
around 0.06 in band 7. There was no considerable 
change in reflectance of band 3 between pre and 
post-fire. The pre-fire NBR was significantly lower 
compared to the pre-fire NDVI with values of 396 
and 483, respectively. The post-fire NBR was lower 
compared to the post-fire NDVI with values of 10 
and 75, respectively. The change signal between 
pre and post-fire indices resulted lower from the 
ΔNBR with 386 compared to the ΔNDVI with 
408. This was a further example, where the change 
due to fire was more accentuated by the NDVI. 
Furthermore, the value of the ΔNBR at GCP 5 
is lower than the ΔNBR at GCP 4, despite burn 
severity was measured more severe at GCP 5 than 
at GCP 4.
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Classes of Burn Severity
The classes of burn severity as measured with 
remote sensing data and the classes of burn 
severity as measured in the field are presented in 
Figures 7-33 to 7-36 to summarise the final result 
of this study.  The remotely sensed images from 
Landsat and MODIS were calibrated based on 
training areas selected in Landsat data of February 
and November 2002. Altogether 18,159 pixels were 
selected for training unburnt vegetation and 5,655 
pixels were selected within a highly severe burnt 
surface. The calibrated thresholds, which were 
used to classify the Landsat ΔNBRNov image are 
listed in Table 7-1. The Landsat ΔNBRNov image 
was derived from pre-fire NBR of February and 
post-fire NBR from November. These thresholds 
to classify burn severity were specifically adjusted 
for the ΔNBRNov image, as training areas were 

selected within these images. The resulting image 
classification of burn severity is presented in 
Figure 7-31.

The thresholds to classify the MODIS 
ΔNBRMOD26-11 image were based on the calibrated 
classification of the Landsat ΔNBRNov image 
to achieve comparability between the two data 
sets. Pre-fire data of this index image resulted 
from mean value of the NBRs derived between 
September and October and post-fire data from 
26th of November. The mean values and standard 

Table 7-1: Thresholds for 
image calibration of the 
∆NBR Landsat ETM+ image 
(pre-fire Feb 02, post-fire 
Nov 02) based on training 
areas of unburnt and 
severe burnt vegetation in 
and around FAA1.

Figure 7-31: Calibrated Classification of the ∆NBR 
Landsat ETM+ for FAA1. The thresholds, which were 
used to classify the index are listed in Table 7-1.The 
∆NBR image was derived from data of Feb 02 as 
pre-fire and Nov 02 as post-fire. The classification 
of four classes of burn severity ist based on the field 
classification of burn severity.

∆NBR Landsat ETM+
FAA1

Classes of Burn Severity:

Class 1: Unburnt
Class 2: Low Burn Severity
Class 3: Moderate Burn Severity
Class 4: High Burn Severity

kilometres

0        2         4        6        8         10
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deviations received for each class as well as the 
thresholds to separate classes are listed in Table 
7-2. The standard deviation was significantly high 
between 135 and 220. The MODIS ΔNBRMOD26-11 
image was calibrated based on these thresholds 
into 4 classes of burn severity, whereas thresholds 
are specifically for this image (Figure  7-32). 

Figures 7-33 to 7-36 represent the resulting 
MODIS and Landsat ETM+ classes 1 to 4 of 
FAA 1 as separate patterns together with the 
result of field measurement. The results of the 
field measurement were described in the latter 
section 7.2. The remotely sensed classification was 
directly compared between the sensors focusing 
the moderate spatial resolution of MODIS. 

In Figure 7-33, the unburnt areas of MODIS and 
Landsat ETM+ class 1 are illustrated. MODIS 
detected the unburnt areas at the edge of the FAA 
more easily than within the FAA. There is an 
underestimation of burn severity visible at marginal 
areas, where MODIS detected larger unburnt areas 
compared to Landsat. The unburnt areas within 
the FAA closely match to the detection of the 
Landsat image, when the patch is large enough. 
The unburnt areas smaller than a MODIS pixel 
were not detected by MODIS as unburnt. 

Class 2 of MODIS and Landsat classifications 
are presented in Figure 7-34. The classes show a 
similar pattern of low burn severity in the northern 
part of FAA 1, which was subject to prescribed 
burning. There are some low burnt areas detected 
by Landsat, which MODIS included into the 
unburnt class 1. This is especially observable in the 

Table 7-1: Thresholds for image calibration of the 
∆NBR Landsat ETM+ image (pre-fire Feb 02, post-
fire Nov 02) based on training areas of unburnt and 
severe burnt vegetation in and around FAA1.

∆NBR MODIS
FAA1

Classes of Burn Severity:

Class 1: Unburnt
Class 2: Low Burn Severity
Class 3: Moderate Burn Severity
Class 4: High Burn Severity

kilometres

0        2         4        6        8         10

Figure 7-32: Calibrated Classification of the ∆NBR 
MODIS for FAA1. The thresholds, which were used to 
classify the index are listed in Table 7-2. The ∆NBR 
image was derived from MODIS (TOA) mean NBR 
Sep/Oct 02 as pre-fire and 26th November 2002 as 
post-fire. The classification of four classes of burn 
severity ist based on the field classification of burn 
severity.
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northern corner of the FAA. The unburnt areas 
classified by Landsat, which were not detected 
as unburnt by MODIS in the latter Figure, were 
detected as low burnt class 2 by MODIS.

Figure 7-35 shows class 3 of MODIS and 
Landsat ETM+. Landsat ETM+ shows a very 
patchy distribution of class 3 pixels, whereas 
MODIS was only detecting the larger areas as 
class 3. The conformity between class 3 of the two 
images is very low in areas, where Landsat detected 
very high patchiness. The very patchy areas of 
Landsat class 3 were predominantly detected as 
low burnt class 2 by MODIS. The size of not 
detected class 3 areas by Landsat ETM+ was in 
some areas smaller and in some areas greater than 
a MODIS pixel. 

Class 4 of MODIS and class 4 of Landsat show 
high agreement between the detected pattern 
(Figure 7-36). Both sensors similarly detected a 

large surface of high burn severity in the south 
of FAA1, where the wildfire occurred. There are 
little areas detected by Landsat as severly burnt 
in the northern part of the FAA, which were not 
detected by the classification of MODIS. These 
areas were predominantly smaller than a MODIS 
pixel. Areas of Landsat ETM+ class 4, which were 
not detected by MODIS class 4, fell into MODIS 
class 3. 

In summary, there was a very similar pattern 
between the burn severity classification of 
MODIS and Landsat observed. The moderate 
spatial resolution of the MODIS sensor provided 
limitation for higher conformity, when burn 
severity was in the intermediate class 3 and for 
some unburnt areas. However, in this example 
results between the sensors highly agreed in classes 
of low burn severity and high burn severity. 
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Chapter 8: Discussion

Tlhis study investigates MODIS data to 
lmeasure burn severity in the forests of 
lsouth-west WA using the ΔNBR. The 

results of this work are discussed in this chapter 
considering the data basis and the methodology. 
The measure of remote sensing and field data, the 
validation and the resulting maps of burn severity 
are discussed in separate sections.

8.1 Remotely Sensed    
 Measurement of Burn   
 Severity

The measurement of burn severity with MODIS 
data is defined in this study as a quantitative 
measure of biomass consumption due to fire. 
The spectral properties of MODIS data give the 
highest discrimination between burnt and unburnt 
surfaces in the NIR band 2 and the MIR band 7 
(Figures 7-1 to 7-4). The literature similarly shows 
Landsat ETM+ bands 4 and 7 as being the best 
discriminators between burnt and unburnt (WHITE 
ET AL., 1996; KEY AND BENSON; 1999 [1],[2]; VAN 
WAGTENDONK ET AL., 2004). The major decrease in 
reflectance in band 2 is correlated to reduction of 
biomass as a result of fire. Fire consumes vegetation 
and therefore less energy is reflected by leaves in 
this wavelength. The reflectance in the NIR shows 
a strong decrease in signal within the severe burnt 
area, when little biomass is left post-fire. It should 
be noted, that the quantitative measure of biomass 
based on reflectance is not validated in this study. 
The major increase of reflectance in band 7 is 
correlated to increasing soil exposure post-fire, 
which has higher reflectance than vegetation 
containing moisture in this wavelength region 
(Figures 4-2 to 4-4). As a result of biomass loss, 
soil is proportionally more exposed. This explains 
the lower increase of reflectance in milder burnt 

areas in comparison to severe burnt areas. It 
must be stated, that these infrared wavelengths 
are highly influenced by water absorption, which 
increases the post-fire signal, when leafs are dried 
out post-fire. The influence of water absorption 
is noticeable in the post-fire signal in this band, 
where for example post-fire rainfall increases 
surface moisture content. 

The high variability of TOA data between 
single dates of acquisition is caused by atmospheric 
influences and BRDF effects. This is evident as 
the difference between scenes is highly reduced 
in corrected BOANADIR data (Figures 7-1 to 7-
4). The varying view angles of MODIS influence 
the spectral bands similarly in all wavelengths 
as it is mainly a geometric variation and thus 
less dependent on wavelength. BRDF effects 
are considered to be the major cause for broad 
deviations in all wavelengths between scenes. In 
contrast, atmospheric effects are varying with 
wavelength. The high reflectance in the blue band 
3 of MODIS TOA data could be explained by high 
influence of atmospheric scattering, as reflectance 
in band 3 of corrected data is highly reduced. The 
decreasing reflectance in the VIS wavelength 
towards the red band 1 of TOA data illustrates 
that atmospheric influence is decreasing towards 
longer wavelengths. This is further confirmed by 
the reduced deviation between TOA reflectance 
and corrected BOANADIR reflectance in longer 
wavelengths. The high variance of reflectance 
due to varied view angles and atmospheric 
effects between single acquisitions results in low 
discrimination between unburnt and burnt surface 
reflectance (Figure 7-1). The discrimination 
between unburnt and burnt is enhanced, when the 
surface was affected by a more severe burn (Figure 
7-2). However, top of atmosphere reflectance 
itself is not considered useful for a quantitative 
measurement of burn severity, because deviation 
between scenes of TOA data is still higher 
compared to the discrimination between burnt 
and unburnt. 
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The corrected data present better discrimination 
between burnt and unburnt, as the noise between 
scenes is highly reduced by the data correction. 
This is therefore considered more favourable 
for a quantitative measurement of burn severity 
based on reflectance values. In general, the data 
correction does not represent a perfect result, as 
deviation of reflectance between scenes is still 
around 5%. A reason for insufficient atmospheric 
correction is given by the constant parameters 
used for data correction in the current operational 
system, whereas atmospheric parameters are highly 
variable between the single acquisition days. 

The two outliers of BOANADIR data in classes 
3 and 6 with high reflectance in all bands refer to 
BOA data that were not corrected for BRDF 
effects (Figures 7-3 and 7-4). Both scenes were 
acquired with view zenith angles greater 50° off-
nadir.  A possible reason for the noticeably higher 
reflectance in the NIR bands 4 and 5 is that the 
detected reflectance from vegetation is supposed 
to be less reduced by soil reflectance when view 
angle of the sensor is off-nadir compared to the 
vertical nadir view. Furthermore, there are more 
mixed pixel resulting from the greater pixel 
size towards off-nadir view angle. The negative 
reflectance in the VIS wavelength recorded on 
Julian day 353 from BOANADIR data must be 
a result from insufficient atmospheric correction, 
because no outlier is visible in the uncorrected 
TOA data within the same area. If cloud, cloud 
shadow or smoke would have caused the outlier, it 
should have been represented in TOA reflectance 
as well. 

The indices NDVI and NBR highly enhance 
the signal change between unburnt and burnt 
compared to spectral band reflectance (Figures 
7-5 to 7-8). The NDVI shows less contrast 
between the burnt and unburnt surface, the 
increase of reflectance is less in the red than in 
the MIR wavelength post-fire. This could be 
explained by the dominance of reflectance from 
post-fire soil exposure, which is generally lower 
in the red band and increasing towards longer 
wavelengths (Figure 4-4). The NDVI decreases 
post-fire because biomass is consumed and burnt 
vegetation has reduced chlorophyll absorption. 
The NBR signal is more enhanced, because this 
index includes the bands that most correspond 
to surface reflectance change due to fire in this 
ecosystem. The reflectance change indicates 
biomass reduction and proportionally increasing 
soil exposure, which is detected by this index. The 
ΔNBR is considered a useful measurement for 
quantifying biomass consumption due to fire. The 
change between pre-fire and post-fire signal shows 
greatest change, whereas the magnitude of change 
is less in milder burnt area and higher in severe 

burnt area. However, index values are sensor 
specific as variation in the spectral response and 
spatial resolution between MODIS and Landsat 
sensors influence the detected signal. A valid 
relationship between the consumed biomass and 
index values needs further validation based on 
comprehensive ground truth data to set thresholds 
in the appropriate range considering the ecosystem 
and sensor. 

The derivation of normalised indices highly 
reduces atmospheric and BRDF effects (JENSEN, 
2000). This is shown in this study as trends 
through time and deviation between scenes of 
both the NDVI and NBR are very similar in TOA 
and BOANADIR data (Figures 7-5 to 7-8). Only 
the value range of the NDVI is generally slightly 
higher in corrected BOANADIR data compared 
to TOA data. This indicates that atmospheric 
effects are less reduced by the index derivation 
than BRDF effects. The NDVI includes the 
VIS band 1, which is more influenced by the 
atmosphere than infrared bands. The NBR is 
therefore in a similar value range in TOA and 
BOANADIR, because the NIR and MIR bands 
are less influenced by the atmosphere. The BRDF 
effects are highly reduced through normalisation, 
because all spectral bands are similarly affected 
as already demonstrated by the deviations 
within the spectral properties. The high value 
of the NDVI detected on Julian day 329 could 
result from insufficient atmospheric correction, 
as it is only occurs in corrected BOANADIR 
data. However, the spectral analyses showed no 
significant outlier in the mean reflectance of this 
date in BOANADIR data. This image was cloud 
masked and insufficient masking could possibly 
cause the outlier. A noticeably high NBR value 
detected on Julian day 354 is explained by the 
view zenith angle of the scene, which was greater 
than 60° off-nadir. Similar to observation of high 
reflectance in the NIR of BOA data, the increasing 
index value could result from higher amount of 
unburnt vegetation detected in the larger pixel 
area off-nadir. The NBR value on this day of 
acquisition was observed as high in both TOA and 
BOANADIR data compared to index value before 
or after that date. This is a counterargument for 
the error source due to the off-nadir view angle or 
indicates that BRDF correction was not successful 
in this case.

There are no observable changes between 
analyses within averaged classes or a single pixel of 
burnt area. In general more outliers are visible in 
the pixel analyses compared to the class analyses. 
This is explained as single pixels are not averaged 
and errors therefore highlighted. However, pixel 
based analyses and class analyses provide similar 
opportunities for a quantitative measurement of 
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burn severity. There are several reasons for outliers, 
which result either from data error or factors that 
influence reflectance. Outliers observed in band 6 
of TOA data are explained by data error due to 
nonfunctional band 6 detectors as known from 
MODIS on Aqua (Figure 7-10). Further outliers 
are detected by corrected BOANADIR data 
only, which could be explained by insufficient 
atmospheric correction of atmospheric or BRDF 
effects. The outliers are predominantly within 
the VIS wavelength, where the atmosphere has 
most influence on the signal (Figures 7-11 and 
7-12). An insufficient atmospheric correction of 
BOANADIR data was independently observed by 
MAIER, 2004.

The NBR measured with Landsat ETM+ 
data shows a significant increase between the 
more recent post-fire image in November and 
the subsequent image in December (Figures 7-
18 and 7-19). The reduced burn signal is due to 
lower reflectance in the later post-fire image as 
demonstrated by spectral properties of band 7 
(Figure 7-17). According to the literature, possible 
reasons are dissipation of ash and charcoal or 
vegetation regrowth post-fire, both od which 
weaken the signal when burnt areas age (ROY ET 
AL. 2002). Furthermore, variable moisture content 
due to rainfall between acquisition dates could 
reduce the burn signal post-fire, due to water 
absorption in the MIR wavelength. Atmospheric 
influences are considered too weak in the infrared 
wavelengths to explain the lower burn signal. The 
frequent observations with MODIS data present 
a similar trend of increasing values in the post-
fire NBR, as the burnt area ages. The continual 
trend of the weakening burn signal indicates ash 
dissipation rather than certain rainfall events.

The change detected between vegetation 
reflectance from February to December further 
demonstrates temporal sensitivity for change 
detection. The ecosystem of south-west WA 
consists of evergreen Mediterranean forests, lower 
NIR reflectance in spring season (Nov/Dec) 
compared to higher NIR reflectance in summer 
(Feb) indicates more dense vegetation in summer 
seasons (Figure 7-15). Therefore phenological 
change could cause a more intense change signal 
for Landsat ETM+ data as NIR reflectance in 
summer season pre-fire is higher than in the actual 
spring season, when the fire occurred. 

The twice daily overpasses of MODIS 
compared to Landsat overpasses every 16 days 
are considered as the major benefit of MODIS 
to measure burn severity in the study area. The 
phenological change, single rainfall events or 
rather the weakening burn signal post-fire are 
modifying the change detection in respect to burn 
severity. This modification could be highly reduced 

or rather monitored by high temporal resolution 
of the sensor. Furthermore, high temporal 
resolution would support the monitoring of the 
regeneration process post-fire. Cloud coverage is 
a notable disturbing factor in the study area due 
to its atmospheric conditions close to the sea. This 
greatly reduces the amount of useful Landsat data 
in this study, whereas MODIS still provides 40 
scenes within 4 months, whereas Landsat data 
offers 3 scenes within 10 months. The cloud mask 
applied to the MODIS data augments available 
scenes for data analyses. Despite a subjective 
application of the mask for each single scene, 
masking appears successful, as outliers within the 
analyses are highly reduced in TOA data.  

8.2 Field Measurement of Burn  
 Severity

The field trip helped to establish a quantitative 
measure of biomass consumption to derive 
a relationship between the remotely sensed 
measurement and the ground. It is evident, that 
fire is a very heterogeneous phenomenon in the 
natural environment. Fire is a regular phenomenon 
in the study area, which resulted in clear separation 
between totally burnt and unburnt vegetation 
within the visited fire scar. Possible reasons for 
the fire suddenly cutting off could have been a 
sudden change of wind direction, less fuel load 
underneath the unburnt vegetation or an increase 
in fuel moisture content. The patchiness in burn 
was especially high at the marginal areas close to 
the road, which is where fire is generally ignited 
and either spreads or goes out. A variable wind 
regime favours high patchiness especially in open 
shrubland due to the large surface exposed to the 
wind. The variable distribution and moisture of 
fuel predominantly explains the patchy distribution 
of different levels of burn severity within the 
forests. High patchiness is considered to limit the 
accuracy of the remote sensing measurement, as 
surface reflectance results from differently burnt 
surfaces at either spatial resolution. However, high 
patchiness is a major goal of the forest manager 
to meet a successful outcome of the burn, because 
areas of retreat for flora and fauna are conserved. 

Heterogeneous fire behaviour provides further 
difficulties in respect to different vegetation 
structures in the study area. The burn severity 
classification of this study addresses 4 classes 
between unburnt and severely burnt, whereas the 
consumption of biomass is benchmarked with 
the single strata of the forests and correlated to 
the flame height. For a uniform classification, the 
amount of biomass needs to be homogeneously 
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distributed between the strata. This is observed in 
the structure of jarrah-marri forest and therefore 
provides the principle measure for the field 
classification. The height distribution of biomass 
within the jarrah-marri and karri forest is varied 
due to the high canopy of karri forests. However, 
the amount of biomass per stratum of the forest 
is still similar. Therefore, the classification is 
considered as useful for both, the jarrah-marri and 
the karri forest. Within the shrubland it is difficult 
to measure burn severity due to the single stratum, 
which burns in a uniform manner. This shrubland 
burning results in horizontal rather than vertical 
biomass reduction, When biomass is reduced in a 
horizontal manner the complete vegetation layer is 
consumed, whereas vertical burning varies within 
multiple layers of vegetation.

The measurement of scorch height was a 
useful measure for the flame height, as scorch 
height reflects about a sixth of the flame height 
(Simmonds, 2004). However, the scorch height 
is variable between the different vegetation 
structures. Flame height thus is not a uniform 
indicator for the burn severity measurement in 
the study area in respect to different vegetation 
structures. 

The closeness of the canopy is critical for 
the detection of vertical biomass reduction by 
satellite remote sensing. The detection of biomass 
consumption in the understorey is limited, 
when the green canopy covers the sensor’s view. 
However, the native forest in the study area 
exhibits a natural growth, where the closeness of 
canopy is relatively low. 

Burn severity when measured by reduction 
of biomass is not directly related with ecological 
impact of the fire event. The ecological impact 
is highly variable between the vegetation types. 
The stems of Eucalyptus diversicolor (karri) for 
example have thin bark, which is less protective 
to fire than the thick bark of jarrah trees. Karri 
forests are therefore more fire sensitive than 
jarrah forests. A mild understorey burn measured 
as low burn severity in karri forest could have 
severe ecologically implications. However, the 
more detailed ecological impact of burn severity is 
beyond the scope of this work.

The discussion of field measurement illustrates 
that a uniform classification of burn severity in the 
study area is highly limited. The limitations are 
caused by the different structures of ecosystems, as 
well as the high patchiness due to heterogeneous 
fire behaviour. The classification into 4 classes 
of burn severity based on the structure of 
jarrah-marri forest is still considered the most 
reasonable for this study. The jarrah-marri forest 
is most dominant in the study area and presents 
a relatively homogeneous distribution of biomass 

between the different strata. Furthermore, the 
canopy closeness is relatively low, which enhances 
the satellite detection of the biomass reduction in 
lower strata of the forest. 

8.3 Ground Truth Validation of  
 Remote Sensing Data

The ground truth data is not sufficient to 
completely validate either Landsat or MODIS 
data. Furthermore, the high patchiness of the 
burnt areas highly limits a rigorous validation, as 
homogeneous surface reflectance within a 30m by 
30m area of the Landsat pixel was rarely present 
in the field. However, this is interpreted rather as 
a general problem of remote sensing validation 
than specific in the study area. The large area 
of burn made it difficult to sample sufficient 
ground control points for a significant result in 
this heterogeneous landscape. Nevertheless, the 
measurement of high resolution Landsat data is 
assessed based on 14 GCPs. The results of this 
assessment are considered useful, because the 
data were collected within a more homogeneous 
surface. Furthermore, the main goal is a broad 
scale severity map useful for the fire management, 
which focuses on the patchiness within a burnt 
area rather than the patchiness within the area of 
a Landsat pixel. 

The NBR and NDVI values of pre-fire images 
show generally higher values in jarrah-marri forest 
compared to shrubland. Higher values of both 
indices are measured when amount of biomass 
is dense, shrubland consists of less vegetation per 
area compared to the forest with three strata. The 
differences in amount of biomass before fire could 
influence the change signal, because the detected 
loss of biomass is measured as change between 
pre and post-fire biomass. The ΔNBR is therefore 
variable when the pre-fire biomass density varies. 
The varying value range of similar classes of burn 
severity between different ecosystems represents a 
limit of a uniform application of the ΔNBR. This 
indicates that the structure of the ecosystem needs 
to be considered separately when measuring burn 
severity in the study area.

The GCPs 2 and 5 represent examples where 
the measurement of the ΔNBR is not successful, 
as index values are obviously low in respect to 
the measured burn severity in the field (Figures 
7-27 and 7-30). The low ΔNBR values preliminary 
result from low reflectance in band 7, as post-fire 
spectra from both GCPs represent the expected 
decreasing reflectance in the NIR band 4. The 
possible reason why post-fire reflectance did not 
increase in the MIR band 7 is related to water 
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absorption. The high moisture content at GCP 
5 was visibly obvious due to backwater covering 
the soil (see image Figure 7-30). However a 
further reason could be that the sensor detected 
biomass reduction, but closeness of canopy could 
have impeded detection of soil reflectance. This 
would be more likely in forests where multiple 
canopy layers are present. This reason is rather 
unlikely in the example of GCP 2, because post-
fire reflectance in band 7 decreased further when 
compared to pre-fire reflectance. There is a high 
indication that water caused energy absorption in 
this band. The example of GCP 5 further approves 
the suggestion that the burn severity measurement 
with the ΔNBR is highly sensitive to variability in 
moisture content. However, the ΔNDVI responds 
more positive in this case. The literature approves 
that water absorption is high in the MIR band 
7 as similarly observed within the data analyses 
(LILLESAND AND KIEFER, 2000; JENSEN, 2000; 
CECCATO ET AL., 2001). 

The significance of index values is further 
limited as Landsat data present a temporal gap of 
5 months between pre-fire and post-fire data. The 
reflectance in the infrared wavelengths is reduced 
in post-fire data, which could be explained by a 
phenological change between summer season in 
December and late autumn season in May (Figure 
7-28). However, reduced reflectance in the MIR 
is more likely due to increasing moisture in the 
autumn months. Furthermore, atmospheric effects 
within pre-fire and post-fire data are not corrected. 
This is considered negligible as the atmosphere 
preliminary affects the VIS wavelength and 
influences are further reduced by the index.

The relation between the field and the burn 
severity measurements are presented in some 
examples (Figures 7-1 and 7-4). However, the 
assessment exhibits major limitations, as the burn 
severity measurement based on the ΔNBR cannot 
be uniformly applied within different ecosystems 
and that water highly influenced the change 
detection. 

4.4 Burn Severity Maps

The classes 1 to 4 of burn severity maps (Figures 
7-33 to 7-36) represent the final results for this 
study. The results of the remotely sensed burn 
severity classification are associated with the burn 
severity measured in the field. The feasibility of 
measuring burn severity with MODIS in respect 
to the moderate spatial resolution is the initial 
focus.   

The underestimated burn severity at the marginal 
area of the MODIS class 1 is thought to result 
from the averaged surface reflectance within the 
moderate spatial resolution of the MODIS sensor. 
As prescribed burning is preliminary ignited from 
the roads at the border of the burn envelope, the 
underestimated burn severity of MODIS might 
reflect, that ignition was not successful in this 
area. This is further suggested, as the unburnt 
area is not detected in the southern part of the 
burnt area, which was subject to wildfire. It was 
similarly observed in the field trip that ignition 
points showed locally severe burnt areas, but fire 
was not carried by the ecosystem and therefore 
extinguished. In this case, the amount of unburnt 
vegetation would be proportionally high within the 
larger area covered by the MODIS pixel compared 
to the smaller areas of the Landsat pixel. However, 
there is no ground truth data available from this 
burnt area, as it occurred prior to this study, and 
no field data were sampled. The MODIS class 
1 covers the larger unburnt areas detected by 
Landsat, whereas the smaller areas are classified as 
low burnt due to the averaged reflectance within 
the larger MODIS pixel.

The similar pattern of class 2 from MODIS and 
Landsat could be explained by very high patchiness 
or rather a uniform understorey burn within the 
forests. Very high patchiness between burnt and 
unburnt over the area covered by the MODIS pixel 
could cause averaged surface reflectance similar 
for the spatial resolution of both sensors. It is 
expected to be similar, when a uniform understorey 
burn over this area present a similar signal of 
surface reflectance. The similar pattern between 
Landsat and MODIS would therefore indicate a 
successful outcome of the mild prescribed burn. 
The applicability of MODIS resolution is further 
observed in the class 2 pattern of MODIS and 
Landsat along the marginal area in the south of 
FAA1. Landsat presents this area, which covers 
hardly the single pixel size of MODIS. However, 
it is similarly classified by MODIS as class 2. 
This could indicate a high conformity of surface 
reflectance over the area covered by the MODIS 
pixel. MODIS is considered as highly useful as 
this example presents high conformity between 
Landsat and MODIS for this scale of burn severity 
measurement.

The class 3 detection of MODIS is rather 
limited when compared to the Landsat coverage, 
where the major part of the missed class 3 detection 
of MODIS is detected as class 2. The moderate 
spatial resolution of MODIS generally limits the 
separate display of areas smaller than 250m by 
250m. This could explain that the smaller areas 
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of class 3 detected by Landsat are not covered by 
MODIS, whereas large areas for example in the 
south-west corner of the northern part of the FAA 
are similarly detected from Landsat and MODIS. 
However, the burn severity signal of Landsat class 
3 not detected by MODIS falls preliminary in 
class 2 of MODIS. The possible reason for the 
lower burn severity signal of MODIS is referred to 
mixed surface reflectance that is averaged for the 
size of a MODIS pixel. It is suggested that unburnt 
or lower burnt area within the pixel reduce the 
signal, whereas Landsat detects moderate burn 
severity due to the more uniform surface that is 
covered by the pixel.

The class 4 results from Landsat and MODIS are 
similar. It was confirmed by CALM fire managers 
from Walpole that this area was subject to a severe 
wildfire in 2002 (GREEN, 2004; SIMMONDS, 2004). 
The results therefore demonstrate a successful burn 
severity measurement with MODIS data. The high 
conformity between Landsat and MODIS could be 
explained by a rather homogeneous surface cover 
over a large area. The moderate spatial resolution 
of MODIS exhibits hardly any limitations in this 
case. 

The results present a rather successful detection 
of burn severity, however this classification 
could not be validated. The relationship between 
the field measurement and the remotely sensed 
measurement is therefore estimated rather than 
a significant result. The calibration of the ΔNBR 
images of Landsat and MODIS are specifically for 
the corresponding data, as they are calibrated based 
on image information of high resolution Landsat 
rather than ground truth data. It is considered 
critical to directly compare the index imagery of 
Landsat and MODIS as the pre-fire data is only 
available from different dates. However, as index 
values are calibrated separately for both data, they 
are specific for each sensor. 

The measurement of burn severity with 
MODIS data is considered as useful for the fire 
management in south-west WA, due to broad scale 
burn severity mapping being sufficient to estimate 
the outcome of the prescribed burn. MODIS could 
provide monitoring within the same day, if clouds 
permit. The burn severity measurement could be 
used to assess wether a burn line has successfully 
been achieved to protect neighbouring property 
soon after the fire event. This enables managers 
to revisit and reignite the prescribed burn whilst 
weather conditions are suitable.



72

Chapter 9: Conclusion and Future Research

Tlhis study provides a burn severity 
lassessment based on the Normalised Burn 
lRatio (NBR) using MODIS data within 

the forested area of south-west WA. The twice 
daily overpasses of the MODIS sensor in this 
area exhibited a great resource for monitoring this 
fire prone environment. The daily burn severity 
assessment with MODIS has proven useful to 
monitor the impact and success of prescribed 
burning. 

The ΔNBR is a validated measurement of burn 
severity for several ecosystems based on Landsat 
data. It was transferred to MODIS data to measure 
burn severity in the forests of south-west of WA. 
The NBR responds to the proportion of biomass 
and soil exposure on the surface. Burn severity 
was correlated to the reduction of biomass, which 
is a result of fire. The ΔNBR quantified this 
change between the pre-fire image and the post-
fire image.

The spectral properties of MODIS exhibited 
highest discrimination between burnt and 
unburnt in the NIR band 2 and in the MIR band 
7. However, uncorrected top of atmosphere (TOA) 
data exhibited high deviation between scenes due 
to atmospheric and BRDF effects. Therefore, 
discrimination between burnt and unburnt 
was highly reduced in TOA reflectance. The 
atmospheric and BRDF corrected (BOANADIR) 
reflectance reduced noise between scenes and 
provided higher discrimination between burnt 
and unburnt. 

The NBR and the NDVI were applied on 
MODIS data and both indices presented high 
discrimination between burnt and unburnt. 
However, the signal gathered from the NBR 
showed higher response within the burnt areas 
compared to the NDVI. Influences of atmospheric 
and BRDF effects were highly reduced when 
indices were applied and TOA and BOANADIR 
data were comparable. MODIS TOA data, thus 

was considered sufficient for measuring burn 
severity using the ΔNBR. The post-fire signal of 
the NBR became slightly weaker with age of the 
burnt area. 

Heterogeneous fire behaviour in the study 
area caused very high patchiness in fire scars. 
Furthermore, the patchy distribution of different 
structures of vegetation made field classification of 
burn severity difficult. However, high patchiness 
was a major goal of prescribed burning to conserve 
areas of retreat for flora and fauna. 

The classification of burn severity in the field 
resulted in four classes, which were benchmarked 
by the separated strata within the forest. In 
relation to flame height and fire intensity, the 
biomass of a forest is reduced in vertical dircetion 
between several strata. The biomass reduction 
of different strata in the forest was correlated 
with levels of burn severity. The classification is 
initially useful for the forested area, where biomass 
is more homogeneously distributed between 
different strata. In open shrubland and woodland, 
vegetation consisted of one single stratum that 
was either burnt or unburnt. In this vegetation, 
biomass reduction and burn severity is related 
to patchiness of the burn, which reflects the 
proportion between burnt and unburnt surfaces in 
a horizontal manner.

Comparing the remotely sensed burn 
severity assessment with ground truth data, the 
ΔNBR did respond to the biomass reduction 
measured in the field. However, it resulted that 
a uniform application of the ΔNBR was limited 
in the study area, because different structures 
of vegetation influenced the value range of the 
ΔNBR. Furthermore, the ΔNBR was sensitive 
to variability in moisture content. Where water 
influenced the change signal of the ΔNBR, the 
ΔNDVI responded more positively to the biomass 
reduction due to a higher burn signal. However, 
ground truth data were not sufficient for a rigorous 
validation of remote sensing data.
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The 250m spatial resolution of MODIS data 
was considered sufficient for a burn severity 
assessment, when sub-pixel accuracy is not 
required. The burn signal of a patchy or mild burnt 
area was similarly detected by the high resolution 
Landsat data and the moderate resolution MODIS 
data. Both sensors gave comparable results in the 
region high burn severity. However, detection of 
the intermediate class of moderate burn severity 
by the MODIS sensor was limited, where Landsat 
classification detected a patchy mosaic. The benefit 
of daily temporal resolution of MODIS for the 
monitoring of burn severity in the forested area of 
south-west WA outweighs the spatial limitations as 
suitable burning conditions for the fire managers 
are limited and areas vast and remote.

This study demonstrates a successful 
application and feasibility for a burn severity 
assessment in the forested area of south-west WA. 
However, validation was not completed and the 
burn severity measurement of the ΔNBR could 
not be uniformly applied in the environment of 
south-west WA. It therefore encourages further 
research. The relationship between the NBR and 
the different structures of vegetation is a major 
task for further research. This is an important 
consideration to apply the measurement for the 
south-west WA environment. The value range of 
the ΔNBR might be correlated with parameters 
adjusted to the structure of vegetation. This would 

require the information of present vegetation 
within the pixel, which could be provided by 
GIS analyses. Furthermore, a combination of 
information gathered from both indices, the NBR 
and the NDVI might reduce the sensitivity of the 
burn severity measurement in respect to moisture. 

A more comprehensive field data set is 
required to establish a valid assessment of burn 
severity in the forests of south-west WA. The field 
measurement needs to be sampled in all types 
of vegetation and for all classes of burn severity 
in a sufficient amount to obtain a statistically 
significant result. Furthermore, high resolution 
remote sensing data needs to cover ground truth 
data sampled for all structures of vegetation.

The transfer of the burn severity assessment to 
other ecosystems is a major task for monitoring fire 
prone regions in the future. The tropical savannas 
of Australia for example are more fire prone and 
prescribed burning is applied over large areas.

The measurement of burn severity provides a 
quantitative information of biomass consumption 
due to fire. This establishes further detailed 
information of fire impact beside the fire hot spot 
detection and the mapping of burnt area.

This preliminary study has shown positive 
results for daily burn severity assessment. With 
further research this method could be implemented 
into the daily operational fire system and would 
support fire management in south-west WA.
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Appendix:

This appendix contains the figures and tables of 
secondary significance for the understanding of 
this study. In the text, these figures and tables are 
referenced with an “A” and a consecutive number 
for Figures and Tables, respectively.
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Figure A1-1: Spectral properties 
detected from bands 1 to 7 of 
MODIS top of atmosphere (TOA) 
reflectance in class 1. 

Figure A1-2: Spectral properties 
detected from bands 1 to 7 of 
MODIS top of atmosphere (TOA) 
reflectance in class 2. 

Figure A1-3: Spectral properties 
detected from bands 1 to 7 of 
MODIS top of atmosphere (TOA) 
reflectance in class 3. 



Appendix 83

Figure A1-4: Spectral properties 
detected from bands 1 to 7 of 
MODIS top of atmosphere (TOA) 
reflectance in class 4. 

Figure A1-5: Spectral properties 
detected from bands 1 to 7 of 
MODIS top of atmosphere (TOA) 
reflectance in class 5. 

Figure A1-6: Spectral properties 
detected from bands 1 to 7 of 
MODIS top of atmosphere (TOA) 
reflectance in class 6. 
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Figure A2-1: Spectral properties 
detected from bands 1 to 5 and 7 
of MODIS bottom of atmosphere 
and BRDF corrected (BOANADIR) 
reflectance in class 1. 

Figure A2-2: Spectral properties 
detected from bands 1 to 5 and 7 
of MODIS bottom of atmosphere 
and BRDF corrected (BOANADIR) 
reflectance in class 2. 

Figure A2-3: Spectral properties 
detected from bands 1 to 5 and 7 
of MODIS bottom of atmosphere 
and BRDF corrected (BOANADIR) 
reflectance in class 3. 
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Figure A2-4: Spectral properties 
detected from bands 1 to 5 and 7 
of MODIS bottom of atmosphere 
and BRDF corrected (BOANADIR) 
reflectance in class 4. 

Figure A2-5: Spectral properties 
detected from bands 1 to 5 and 7 
of MODIS bottom of atmosphere 
and BRDF corrected (BOANADIR) 
reflectance in class 5. 

Figure A2-6: Spectral properties 
detected from bands 1 to 5 and 7 
of MODIS bottom of atmosphere 
and BRDF corrected (BOANADIR) 
reflectance in class 6. 
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Figure A3-1: The trend of the NBR 
and NDVI through time in class 1, 
derived from MODIS top of atmos-
phere (TOA) reflectance.

Figure A3-2: The trend of the NBR 
and NDVI through time in class 2, 
derived from MODIS top of atmos-
phere (TOA) reflectance.

Figure A3-3: The trend of the NBR 
and NDVI through time in class 3, 
derived from MODIS top of atmos-
phere (TOA) reflectance.
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Figure A3-4: The trend of the NBR 
and NDVI through time in class 4, 
derived from MODIS top of atmos-
phere (TOA) reflectance.

Figure A3-5: The trend of the NBR 
and NDVI through time in class 5, 
derived from MODIS top of atmos-
phere (TOA) reflectance.

Figure A3-6: The trend of the NBR 
and NDVI through time in class 6, 
derived from MODIS top of atmos-
phere (TOA) reflectance.
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Figure A4-1: The trend of the NBR 
and NDVI through time in class 
1, derived from MODIS bottom of 
atmosphere and BRDF corrected 
(BOANADIR) reflectance.

Figure A4-2: The trend of the NBR 
and NDVI through time in class 
2, derived from MODIS bottom of 
atmosphere and BRDF corrected 
(BOANADIR) reflectance.

Figure A4-3: The trend of the NBR 
and NDVI through time in class 
3, derived from MODIS bottom of 
atmosphere and BRDF corrected 
(BOANADIR) reflectance.
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Figure A4-4: The trend of the NBR 
and NDVI through time in class 
4, derived from MODIS bottom of 
atmosphere and BRDF corrected 
(BOANADIR) reflectance.

Figure A4-5: The trend of the NBR 
and NDVI through time in class 
5, derived from MODIS bottom of 
atmosphere and BRDF corrected 
(BOANADIR) reflectance.

Figure A4-6: The trend of the NBR 
and NDVI through time in class 
6, derived from MODIS bottom of 
atmosphere and BRDF corrected 
(BOANADIR) reflectance.
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Figure A5-1: Spectral properties 
detected from bands 1 to 7 of 
MODIS top of atmosphere (TOA) 
reflectance within one pixel (1.5) 
selected in class 1. 

Figure A5-2: Spectral properties 
detected from bands 1 to 7 of 
MODIS top of atmosphere (TOA) 
reflectance within one pixel (2.5) 
selected in class 2. 

Figure A5-3: Spectral properties 
detected from bands 1 to 7 of 
MODIS top of atmosphere (TOA) 
reflectance within one pixel (3.5) 
selected in class 3. 
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Figure A5-4: Spectral properties 
detected from bands 1 to 7 of 
MODIS top of atmosphere (TOA) 
reflectance within one pixel (4.5) 
selected in class 4. 

Figure A5-5: Spectral properties 
detected from bands 1 to 7 of 
MODIS top of atmosphere (TOA) 
reflectance within one pixel (5.5) 
selected in class 5. 

Figure A5-6: Spectral properties 
detected from bands 1 to 7 of 
MODIS top of atmosphere (TOA) 
reflectance within one pixel (6.5) 
selected in class 6. 
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Figure A6-1: Spectral properties 
detected from bands 1 to 5 and 7 
of MODIS bottom of atmosphere 
and BRDF corrected (BOANADIR) 
reflectance within one pixel (1.5) 
selected in class 1. 

Figure A6-2: Spectral properties 
detected from bands 1 to 5 and 7 
of MODIS bottom of atmosphere 
and BRDF corrected (BOANADIR) 
reflectance within one pixel (2.5) 
selected in class 2. 

Figure A6-3: Spectral properties 
detected from bands 1 to 5 and 7 
of MODIS bottom of atmosphere 
and BRDF corrected (BOANADIR) 
reflectance within one pixel (3.5) 
selected in class 3. 
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Figure A6-4: Spectral properties 
detected from bands 1 to 5 and 7 
of MODIS bottom of atmosphere 
and BRDF corrected (BOANADIR) 
reflectance within one pixel (4.5) 
selected in class 4. 

Figure A6-5: Spectral properties 
detected from bands 1 to 5 and 7 
of MODIS bottom of atmosphere 
and BRDF corrected (BOANADIR) 
reflectance within one pixel (5.5) 
selected in class 5. 

Figure A6-6: Spectral properties 
detected from bands 1 to 5 and 7 
of MODIS bottom of atmosphere 
and BRDF corrected (BOANADIR) 
reflectance within one pixel (6.5) 
selected in class 6. 
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Figure A7-1: The trend of the NBR 
and NDVI through time within 5 
pixels (1.1 to 1.5) selected in class 
1, derived from MODIS top of at-
mosphere (TOA) reflectance.

Figure A7-2: The trend of the NBR 
and NDVI through time within 5 
pixels (2.1 to 2.5) selected in class 
2, derived from MODIS top of at-
mosphere (TOA) reflectance.

Figure A7-3: The trend of the NBR 
and NDVI through time within 5 
pixels (3.1 to 3.5) selected in class 
3, derived from MODIS top of at-
mosphere (TOA) reflectance.
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Figure A7-4: The trend of the NBR 
and NDVI through time within 5 
pixels (4.1 to 4.5) selected in class 
4, derived from MODIS top of at-
mosphere (TOA) reflectance.

Figure A7-5: The trend of the NBR 
and NDVI through time within 5 
pixels (5.1 to 5.5) selected in class 
5, derived from MODIS top of at-
mosphere (TOA) reflectance.

Figure A7-6: The trend of the NBR 
and NDVI through time within 5 
pixels (6.1 to 6.5) selected in class 
6, derived from MODIS top of at-
mosphere (TOA) reflectance.
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Figure A8-1: The trend of the NBR 
and NDVI through time within 5 
pixels (1.1 to 1.5) selected in class 
1, derived from MODIS bottom of 
atmosphere and BRDF corrected 
(BOANADIR) reflectance.

Figure A8-2: The trend of the NBR 
and NDVI through time within 5 
pixels (2.1 to 2.5) selected in class 
2, derived from MODIS bottom of 
atmosphere and BRDF corrected 
(BOANADIR) reflectance.

Figure A8-3: The trend of the NBR 
and NDVI through time within 5 
pixels (3.1 to 3.5) selected in class 
3, derived from MODIS bottom of 
atmosphere and BRDF corrected 
(BOANADIR) reflectance.
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Figure A8-4: The trend of the NBR 
and NDVI through time within 5 
pixels (4.1 to 4.5) selected in class 
4, derived from MODIS bottom of 
atmosphere and BRDF corrected 
(BOANADIR) reflectance.

Figure A8-5: The trend of the NBR 
and NDVI through time within 5 
pixels (5.1 to 5.5) selected in class 
5, derived from MODIS bottom of 
atmosphere and BRDF corrected 
(BOANADIR) reflectance.

Figure A8-6: The trend of the NBR 
and NDVI through time within 5 
pixels (6.1 to 6.5) selected in class 
6, derived from MODIS bottom of 
atmosphere and BRDF corrected 
(BOANADIR) reflectance.
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Figure A9-1: Spectral properties 
detected from bands 1 to 5 and 
7 of Landsat ETM+ in class 1 of 
FAA1.

Figure A9-2: Spectral properties 
detected from bands 1 to 5 and 
7 of Landsat ETM+ in class 2 of 
FAA1.

Figure A9-3: Spectral properties 
detected from bands 1 to 5 and 
7 of Landsat ETM+ in class 3 of 
FAA1.
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Figure A9-4: Spectral properties 
detected from bands 1 to 5 and 
7 of Landsat ETM+ in class 4 of 
FAA1.

Figure A9-5: Spectral properties 
detected from bands 1 to 5 and 
7 of Landsat ETM+ in class 5 of 
FAA1.

Figure A9-6: Spectral properties 
detected from bands 1 to 5 and 
7 of Landsat ETM+ in class 6 of 
FAA1.
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Figure A10-1: Spectral properties 
detected from bands 1 to 5 and 
7 of Landsat ETM+ in class 1 of 
FAA2.

Figure A10-2: Spectral properties 
detected from bands 1 to 5 and 
7 of Landsat ETM+ in class 2 of 
FAA2.

Figure A10-3: Spectral properties 
detected from bands 1 to 5 and 
7 of Landsat ETM+ in class 3 of 
FAA2.
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Figure A10-4: Spectral properties 
detected from bands 1 to 5 and 
7 of Landsat ETM+ in class 4 of 
FAA2.

Figure A10-5: Spectral properties 
detected from bands 1 to 5 and 
7 of Landsat ETM+ in class 5 of 
FAA2.

Figure A10-6: Spectral properties 
detected from bands 1 to 5 and 
7 of Landsat ETM+ in class 6 of 
FAA2.
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Figure A11-1: Spectral properties 
detected from bands 1 to 5 and 
7 of Landsat ETM+ in class 1 of 
FAA3.

Figure A11-2: Spectral properties 
detected from bands 1 to 5 and 
7 of Landsat ETM+ in class 2 of 
FAA3.

Figure A11-3: Spectral properties 
detected from bands 1 to 5 and 
7 of Landsat ETM+ in class 3 of 
FAA3.
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Figure A11-4: Spectral properties 
detected from bands 1 to 5 and 
7 of Landsat ETM+ in class 4 of 
FAA3.

Figure A11-5: Spectral properties 
detected from bands 1 to 5 and 
7 of Landsat ETM+ in class 5 of 
FAA3.

Figure A11-6: Spectral properties 
detected from bands 1 to 5 and 
7 of Landsat ETM+ in class 6 of 
FAA3.
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Figure A12-1: NBR and NDVI val-
ues derived from Landsat ETM+ 
data within class 1 of FAA1. The 
results are derived within class 
1 from both the ∆NBR

Nov
 image 

and the ∆NBR
Dec

 image.

Figure A12-2: NBR and NDVI val-
ues derived from Landsat ETM+ 
data within class 2 of FAA1. The 
results are derived within class 
2 from both the ∆NBR

Nov
 image 

and the ∆NBR
Dec

 image.

Figure A12-3: NBR and NDVI val-
ues derived from Landsat ETM+ 
data within class 3 of FAA1. The 
results are derived within class 
3 from both the ∆NBR

Nov
 image 

and the ∆NBR
Dec

 image.



Appendix 105

Figure A12-4: NBR and NDVI val-
ues derived from Landsat ETM+ 
data within class 4 of FAA1. The 
results are derived within class 
4 from both the ∆NBR

Nov
 image 

and the ∆NBR
Dec

 image.

Figure A12-5: NBR and NDVI val-
ues derived from Landsat ETM+ 
data within class 5 of FAA1. The 
results are derived within class 
5 from both the ∆NBR

Nov
 image 

and the ∆NBR
Dec

 image.

Figure A12-6: NBR and NDVI val-
ues derived from Landsat ETM+ 
data within class 6 of FAA1. The 
results are derived within class 
6 from both the ∆NBR

Nov
 image 

and the ∆NBR
Dec

 image.
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Figure A13-1: NBR and NDVI val-
ues derived from Landsat ETM+ 
data within class 1 of FAA2. The 
results are derived within class 
1 from both the ∆NBR

Nov
 image 

and the ∆NBR
Dec

 image.

Figure A13-2: NBR and NDVI val-
ues derived from Landsat ETM+ 
data within class 2 of FAA2. The 
results are derived within class 
2 from both the ∆NBR

Nov
 image 

and the ∆NBR
Dec

 image.

Figure A13-3: NBR and NDVI val-
ues derived from Landsat ETM+ 
data within class 3 of FAA2. The 
results are derived within class 
3 from both the ∆NBR

Nov
 image 

and the ∆NBR
Dec

 image.
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Figure A13-4: NBR and NDVI val-
ues derived from Landsat ETM+ 
data within class 4 of FAA2. The 
results are derived within class 
4 from both the ∆NBR

Nov
 image 

and the ∆NBR
Dec

 image.

Figure A13-5: NBR and NDVI val-
ues derived from Landsat ETM+ 
data within class 5 of FAA2. The 
results are derived within class 
5 from both the ∆NBR

Nov
 image 

and the ∆NBR
Dec

 image.

Figure A13-6: NBR and NDVI val-
ues derived from Landsat ETM+ 
data within class 6 of FAA2. The 
results are derived within class 
6 from both the ∆NBR

Nov
 image 

and the ∆NBR
Dec

 image.
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Figure A14-1: NBR and NDVI val-
ues derived from Landsat ETM+ 
data within class 1 of FAA3. The 
results are derived within class 
1 from both the ∆NBR

Nov
 image 

and the ∆NBR
Dec

 image.

Figure A14-2: NBR and NDVI val-
ues derived from Landsat ETM+ 
data within class 2 of FAA3. The 
results are derived within class 
2 from both the ∆NBR

Nov
 image 

and the ∆NBR
Dec

 image.

Figure A14-3: NBR and NDVI val-
ues derived from Landsat ETM+ 
data within class 3 of FAA3. The 
results are derived within class 
3 from both the ∆NBR

Nov
 image 

and the ∆NBR
Dec

 image.
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Figure A14-4: NBR and NDVI val-
ues derived from Landsat ETM+ 
data within class 4 of FAA3. The 
results are derived within class 
4 from both the ∆NBR

Nov
 image 

and the ∆NBR
Dec

 image.

Figure A14-5: NBR and NDVI val-
ues derived from Landsat ETM+ 
data within class 5 of FAA3. The 
results are derived within class 
5 from both the ∆NBR

Nov
 image 

and the ∆NBR
Dec

 image.

Figure A14-6: NBR and NDVI val-
ues derived from Landsat ETM+ 
data within class 6 of FAA3. The 
results are derived within class 
6 from both the ∆NBR

Nov
 image 

and the ∆NBR
Dec

 image.
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▲ Figure A15-1: GCP 6 sampled in jarrah-marri forest, where burn severity was measured as low in class 
2. The spectral properties and index values within the Landsat pixel of the GCP are compared with the field 
measurement of burn severity.

▼ Figure A15-2: GCP 7 sampled in jarrah-marri forest, where burn severity was measured as moderate in 
class 3. The spectral properties and index values within the Landsat pixel of the GCP are compared with the 
field measurement of burn severity.
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