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A site specific perturbation of a photo-excited molecular aggregate can lead to a

localization of excitonic energy. We investigate this localization dynamics for

laser-prepared excited states. Changing the parameters of the electric field signifi-

cantly influences the exciton localization which offers the possibility for a selective

control of this process. This is demonstrated for aggregates possessing a single

vibrational degree of freedom per monomer unit. It is shown that the effects identi-

fied for the molecular dimer can be generalized to larger aggregates with a high

density of vibronic states. VC 2015 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported
License. [http://dx.doi.org/10.1063/1.4936127]

I. INTRODUCTION

The transport of excitation energy (excitons) in aggregates of organic molecules is one of

the most fundamental and most challenging problems of modern organic photovoltaics.1–3 The

reason is that, after being prepared by photo-absorption, the exciton has to travel over some

spatial range to reach a boundary where it can be transformed into a charge separated state.

Only then, free charges are generated which give rise to a photovoltaic current.

In an initial step, discarding any kind of disorder or other perturbations, photon absorption

creates a de-localized electronically excited state in an aggregate ðM1 �M2 � � � � �MN�1 �MNÞ
which can be viewed as a superposition of states corresponding to the excitation of a single

monomer M�n in the composed system. The coupling between the respective configurations

ðM1 �M2 � � � � �M�n � � � � �MNÞ leads to an energy transfer dynamics as, e.g., studied in Refs.

4 and 5. For an excellent review on vibronic dynamics in molecular aggregates, see Ref. 6.

Regarding only next-neighbor couplings and taking symmetry into account, one does not expect,

in the average, a substantial localization of the exciton on a smaller aggregate unit like, e.g., a

monomer or a dimer. Suppose now that the interaction with an environment (solvent) results in a

perturbation of the system. One might imagine that a finite time-dependent perturbation acts

locally on a smaller part of the molecule which induces a disorder.7–9 Then, symmetry is broken

and the energy transfer is influenced. As predicted theoretically,10 such processes might be char-

acterized by two-dimensional optical spectroscopy.11–15 In a former work, we showed that such

interactions can lead to exciton localization, at least for the time the perturbation is effective.16 If

the localization remains stable for some time sl, it is possible that an electronic relaxation process

takes place subject to the condition that the relaxation time sr is shorter than sl. This, for exam-

ple, was observed in femtosecond experiments on perylene bisimide aggregates where the photo-

excited state decays on a time-scale of about 200 fs.17 Because such processes trap the exciton, it

is highly desirable to avoid a localization maintained on a longer time-scale. In this paper, we

present a model study where a time-dependent term is included in the excited state Hamiltonian

to simulate an external perturbation in a simple way. It is then investigated how the nature of the

initially prepared excited state determines the exciton localization. This is very much in the sense

of “state-selective chemistry” which is one way to influence chemical reactions by preparation of

a specific initial state.18,19 In doing so, we hope to gain some insight into the possibility for a
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quantum control of the localization and, in particular, to exclude it so that a more effective exci-

ton diffusion may take place. The molecular dimer has been studied extensively as a model sys-

tem for molecular aggregates.6,20–25 Therefore, we start our work with an investigation of the

dimer. Afterwards, the question will be addressed if the identified effects are transferable to larger

systems. In Sec. II, we present the theory and the model. The results are contained in Sec. III

which ends with a summary of the article.

II. THEORY AND MODEL

We regard an aggregate consisting of N monomers Mn. For each monomer, two electronic

states jgM; ni (ground state) and jeM; ni (excited state) and a single vibrational degree-of-freedom

ðxn) are taken into account. The Hamiltonian of monomer (n) is

Ĥ
MðxnÞ ¼ jgM; niHM

g ðxnÞhgM; nj þ jeM; niHM
e ðxnÞheM; nj: (1)

The vibrational Hamiltonians are

HM
g xnð Þ ¼ �

1

2

@2

@x2
n

þ 1

2
x2

0x2
n; (2)

HM
e xnð Þ ¼ �

1

2

@2

@x2
n

þ 1

2
x2

0 xn � xeð Þ2 þ D: (3)

Thus, the vibrations are described by shifted harmonic oscillators (shift xe in the equilibrium

distance) with equal frequency (x0) in the ground and excited states, and an energy offset D.

Denoting the vibrational coordinates collectively as ~x ¼ ðx1; x2; :::; xNÞ, the aggregate

Hamiltonian is constructed from the monomer Hamiltonians as

Ĥ
ðjÞ ¼ Ĥg þ Ĥe ¼ jgAiHgð~xÞhgAj þ

XN

n¼1

je; niHe;nð~xÞhe; nj þ
XN�1

n¼1

je; ni J he; nþ 1j
 !

þ
XN�1

n¼1

je; nþ 1i J he; nj
 !

þ ðje;Ni J he; 1j þ je; 1i J he;NjÞ djc; (4)

where (j) is (c) for a cyclic and (l) for a linear aggregate geometry, respectively. The aggregate

ground state is assumed as separable so that

Hgð~xÞ ¼
XN

n¼1

HM
g ðxnÞ; jgAi ¼

YN
n¼1

jgM; ni: (5)

The electronically excited states differ in the localization of the electronic excitation residing

on the different monomers

He;nð~xÞ ¼ HM
e ðxnÞ þ

XN

ðm 6¼nÞ¼1

HM
g ðxmÞ; je; ni ¼ jeM; ni

YN
ðm6¼nÞ¼1

jgM;mi: (6)

To describe the perturbation of the aggregate in a simple way, time-dependent terms as

ŴpðtÞ ¼
X

np

je; npiWðtÞ he; npj; (7)

with WðtÞ ¼ kgðtÞ, are added to the excited state Hamiltonian. Here, k is a parameter represent-

ing an energy shift, and the shape function g(t) is
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ðt � tiÞ : gðtÞ ¼ e�bðt�tiÞ2 ; ðti � t � tf Þ : gðtÞ ¼ 1; ðt � tf Þ : gðtÞ ¼ e�bðt�tf Þ2 : (8)

Thus, the term ŴpðtÞ introduces a temporal energy shift of the excited state Hamiltonians in selected

monomers which are numbered by np. Such shifts can be caused by a single collision of a particle

with the aggregate, and we aim at the characterization of these basic events. The introduction of the

time-dependent term ŴpðtÞ describes the respective interaction in a semi-classical way.26 Despite

the fact that this approximation is not energy-conserving, the system remains fully coherent.

The electronic excitation from the aggregate ground state becomes effective through the

interaction with a laser pulse as

Eðx; tÞ ¼ f ðt� t0Þ cos½xðt� t0Þ�; (9)

with a Gaussian shape function f ðt� t0Þ centered at time t¼ t0 and the frequency x. The elec-

tric dipole interaction is

ŴlðtÞ ¼ �Eðx; tÞ
X

n

jeM; ni leg hgM; nj þ h:c:; (10)

where leg is the monomer transition dipole moment. We treat the special case that all transition

dipole moments are parallel and constant so that the dipole coupling to all excited states je; ni
is identical.

We solve the time-dependent Schr€odinger equation

i
@

@t
jw tð Þi ¼ Ĥ

jð Þ þ Ŵl tð Þ þ Ŵp tð Þ
h i

jw tð Þi; (11)

in N vibrational degrees-of-freedom for the ðN þ 1Þ coupled components of the total wave function

h~xjwðtÞi ¼ wð~x; tÞ ¼ ðwgð~x; tÞ; we;1ð~x; tÞ;…;we;Nð~x; tÞÞ: (12)

For the time-propagation, the multiconfigurational time dependent Hartree method27,28 is

employed. Five single particle functions for each vibrational degree of freedom in each elec-

tronic state, represented in a basis of 13 harmonic oscillator functions, are used. The excited

state wave functions are propagated within the constant mean field integration scheme keeping

the integrator settings at the program’s defaults. The time-step is chosen as 0.5 fs.

The parameters which determine the vibrational Hamiltonians are x0¼ 0.175 eV,

xe¼ 2.75 eV–1, D¼ 2.35 eV, and the electronic coupling element is J¼ 0.0175 eV. Similar val-

ues have been used in our studies on the optical properties of perylene bisimide aggregates

where, within the model described above, absorption5,29 and circular dichroism spectra30 were

calculated in excellent agreement with experiment.

Localization of an exciton on monomer (n) in the aggregate is measured by the population

in state je; ni defined as

PnðtÞ ¼
ð

d~x jwe;nð~x; tÞj
2: (13)

III. RESULTS

We start with the simplest aggregate, the molecular dimer (N¼ 2). In our former study,16 it

was shown that, if the vibronic ground state w00ðx1; x2Þ (with energy E00) is placed in the excited

states (d-pulse excitation or impulsive limit31), i.e., we;mðx1; x2; 0Þ ¼ legw00ðx1; x2Þ, the perturbation

always leads to a localization in the state je;mi with higher energy. This is illustrated in Fig. 1.

The time-dependent perturbation ŴpðtÞ, here acting on monomer np¼ 1, is also shown in the fig-

ure, where the strength has a value of k¼ 0.16 eV. This number is about a factor of ten larger than

the coupling constant J. As was shown before,16 the localization effects described below are of the
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same magnitude if the ratio J=k is varied over a reasonable range, so that here we do not present

calculations for other values of the parameters. The value of k¼ 0.16 eV is chosen to include the

possibility of population transfer between shifted vibrational levels, see below. Panel (a) contains

the case of a coupled two-level system, i.e., where the excited state Hamiltonians He;n are replaced

by numbers E. It is seen that the perturbation results in a complete localization in the perturbed

state je; 1i. Taking vibrations into account leads to the curves displayed in panel (b) of Fig. 1. A

similar behavior as seen in the two-level system is encountered, but additional oscillations of the

populations occur during the time the perturbation is effective. They can be explained by a near-

resonant transfer between vibrational levels of the unperturbed (je; 2i) and perturbed states (je; 1i),
and they disappear for smaller values of k leading to an identical dynamics as seen in the purely

electronic case. On the other hand, if the energy shift k is set equal to the vibrational quantum x0,

a complete exchange of population between the two states takes place, for an extended discussion

see Ref. 16. Depending on how the perturbation is switched off, oscillations with smaller or larger

amplitudes remain at longer times.

Abandoning the impulsive limit, we next take laser-pulse excitation into account. In Fig. 2,

lower panel, the absorption spectrum for the dimer is displayed within a selected energy inter-

val. It is calculated as32,33

r00ðxÞ ¼
ð

dt eixt hw
e
ð0ÞjÛeðtÞjwe

ð0Þi; (14)

where ÛeðtÞ is the propagator containing the excited state part Ĥe of the total Hamiltonian Ĥ
ðlÞ

(Eq. (4)), and the initial condition is we;mðx1; x2; 0Þ ¼ legw00ðx1; x2Þ. For the weak coupling and

the chosen parallel dipole geometry, the spectrum has a simple shape22,34 showing bands sepa-

rated by the vibrational quantum x0. From the peak positions, we determine the excited state

eigenenergies Ea and calculate wave functions ðwðaÞe;1ðx1; x2Þ;wðaÞe;2ðx1; x2ÞÞ employing pulses with

photon energies which match the energy differences to the vibronic ground state. The field

strengths are chosen such that first-order time-dependent perturbation theory applies. We do not

provide the numbers for the field strengths, being different for the different aggregate sizes.

These parameters are not relevant because after the laser-excitation, the respective eigenfunc-

tions are normalized, and no further interaction with the ground electronic state occurs.

FIG. 1. Dimer populations PnðtÞ calculated for transitions out of the vibronic ground state in the impulsive limit. The upper

panel shows the curves obtained for a system of two coupled excited state levels. The corresponding curves where the

Hamiltonian includes vibrational modes are displayed in the lower panel. Also shown is the time-dependent perturbation

W(t) which produces an energy shift of the Hamiltonian of monomer np¼ 1.
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We use Gaussian pulses with a spectral width of 5 meV, so that only a single eigenstate is

excited in each case. The real part of the normalized eigenfunctions corresponding to the six

peaks seen in the dimer spectrum (Fig. 2) is displayed in Fig. 3. Because the initial state is the

vibronic ground state which is symmetric with respect to the exchange of the two monomers

and the monomer transition dipole moments are at an angle of c¼ 0, absorption takes place

into the ðþÞ-band of the spectrum35 which corresponds to symmetric final states. This means

that wðaÞe;1ðx1; x2Þ ¼ wðaÞe;2ðx2; x1Þ, as can be verified by inspection of Fig. 3.

In Fig. 4, we show the population dynamics for times after the pulse excitation, where pan-

els (a)–(f) correspond to the initially populated excited state eigenfunctions depicted in Fig. 3,

panels (a)–(f). In each case, the perturbation applied to the monomer (np¼ 1) Hamiltonian

(with k¼ 0.16 eV) causes a transient localization. Several trends can be observed. First, the

curves in panels (a), (c), (f) and (b), (e) are the same, respectively. The curve in panel (d) differ

from all others because localization is found in the unperturbed state. To get an insight into the

dynamics of the perturbed system, we regard the short-time dynamics, expanding the time-

evolution operator to second order in the time-step dt

jw
e

dtð Þi � 1� idt Ĥe þ Ŵp dtð Þ
� �

� dt2

2
Ĥe þ Ŵ dtð Þ
� �2
� �� �

jw að Þ
e

0ð Þi: (15)

Ignoring the shape function g(t) by setting the perturbation to the constant value WðdtÞ ¼ k, the

two components of the excited state wave function evolve as

we;1 dtð Þ
we;2 dtð Þ

 !
�

w að Þ
e;1 0ð Þ

w að Þ
e;2 0ð Þ

0
@

1
A� idt Ea

w að Þ
e;1 0ð Þ

w að Þ
e;2 0ð Þ

0
@

1
Aþ kw að Þ

e;1 0ð Þ
0

 !2
4

3
5

� dt2

2
E2

a

w að Þ
e;1 0ð Þ

w að Þ
e;2 0ð Þ

0
@

1
Aþ kHe;1w

að Þ
e;1 0ð Þ

kJw að Þ
e;1 0ð Þ

0
@

1
Aþ Ea

kw að Þ
e;1 0ð Þ
0

 !
þ k2w að Þ

e;1 0ð Þ
0

 !2
4

3
5:
(16)

FIG. 2. Absorption spectra for linear aggregates with N¼ 2 (dimer), N¼ 5 (pentamer), and N¼ 9 (nonamer). The peaks

with the highest intensities are truncated in each case.
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FIG. 3. Real part of the excited state eigenfunctions corresponding to energies Ea of 2.3589 eV (panel (a)), 2.5267 eV

(panel (b)), 2.5339 eV (panel (c)), 2.6939 eV (panel (d)), 2.7018 eV (panel (e)), and 2.7090 eV (panel (f)), respectively.

Shown are the two components wðaÞe;1ðx1; x2Þ (left sides) and wðaÞe;2ðx1; x2Þ (right sides).

FIG. 4. Dimer populations PnðtÞ calculated for the initially populated eigenfunctions displayed in Fig. 3. The values of the

overlap integrals Ia
nm (Eq. (18)) are included in each case.
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The population P2ðdtÞ is now determined in the order dt2 and as

P2ðdtÞ � P2ð0Þ � Ia
21 k J dt2; (17)

with the definition of the (real valued) overlap integral

Ia
21 ¼ hw

ðaÞ
e;2ð0Þjw

ðaÞ
e;1ð0Þi: (18)

Thus, for short times and positive values of k and J (as in our example), the population in the

unperturbed state decreases or increases depending on the sign of the overlap Ia
21. Concerning

the numerical results shown in Fig. 4, these overlaps are positive with the exception of the case

depicted in panel (d), see the numbers in the different panels. It then follows that the population

in the unperturbed component (case (d)) increases upon the perturbation, whereas in all other

situations, a decrease is to be expected. The numerical results confirm this prediction which is

obviously also valid, at least in the average, for later times. Furthermore, in cases (b) and (e),

the smaller value of Ia leads to a less pronounced localization if compared to the situations in

panels (a), (c), and (f). We have analyzed the integrands in the overlap integrals Eq. (18) and

found that they are purely positive in the latter cases and show zero, one and two nodes along

the diagonal x1¼ x2, respectively, which then leads to a relatively large (and identical) value of

the integral. On the other hand, for cases (b) and (e), the integrands contain positive and nega-

tive parts with the latter covering a less extended area. This, upon integration, leads to smaller

but still positive values of Ia
21. Finally, for the exception (panel (d)), the negative areas domi-

nate so that the overlap integral has a negative value.

As documented above, the localization depends on the initial excited state eigenfunction of

the system. In particular, excitation at a photon energy of 2.6939 eV (Figs. 3 and 4, panel (d))

leads to the opposite behavior as found for the neighbor states with eigenenergies of 2.7018 eV

(Figs. 3 and 4, panel (e)) and 2.7090 eV (Figs. 3 and 4, panel (f)), respectively. This suggests

that the preparation of a wave-packet consisting of a superposition of these three states could

lead to a reduced degree of localization. Indeed, using a pulse at an energy of 2.6939 eV and a

spectral width of 0.0268 eV yields a situation where, as long as the perturbation interacts, the

population remains nearly constant, as is documented in Fig. 5. Thus, a variation of the photon

energy and the pulse-width allows for a quantum control of the population dynamics when the

external perturbation is active so that localization can be enforced on one or the other dimer

configuration or even be suppressed. We note that if the laser-field is not switched off and exci-

tation proceeds, the dynamics remains almost unchanged. In that case additional oscillations are

seen which are associated with the energy shifting of the dimer spectrum so that the field is no

longer resonant with a transition in the unperturbed system (not shown).

Next, larger aggregates are treated to investigate if the dimer results can be transferred to

more extended systems. As an example, a nonamer in a cyclic and also a linear arrangement is

treated. The model Hamiltonian has nine vibrational degrees of freedom and nine coupled excited

states, which leads to a high density of states. This can be anticipated from the low energy part

of the absorption spectrum shown in Fig. 2, upper panel. Figure 6 shows the population dynamics

for the unperturbed case in panels (a) (linear) and (d) (cyclic), respectively. The initial wave

function obtained by a d-pulse excitation has equal components (we;m ¼ legw00) so that we start

from a completely de-localized state. It is seen that, for the linear aggregate, the population tends

to temporarily accumulate in the middle of the aggregate (monomer np¼ 5). For the cyclic

arrangement, due to the initial complete delocalization and the cyclic boundary condition, no pop-

ulation dynamics takes place.

Results for the case of the weaker perturbation (k¼ 0.0175 eV, this is in the range of the ther-

mal energy of a particle colliding with the aggregate at room temperature) which acts on monomer

np¼ 3 are shown in panels (b) and (e) of Fig. 6 for the linear and cyclic geometry, respectively.

As in the dimer case, localization is found in the disturbed state for both aggregate geometries.

This changes if a resonant perturbation (k ¼ x0) is applied (panels (c) and (f)). Because of
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resonant coupling between different vibrational levels, the population which initially accumulates

in the perturbed state moves through the aggregate so that a de-localized situation is encountered.

Thus, the effects which have been identified for the dimer are also present in the nonamer. The

same applies to smaller aggregates (N¼ 3–8) which was checked upon numerically (not shown).

We now address the question what happens if the perturbation acts on several monomer

sites. Therefore, the interaction ŴpðtÞ is applied to the monomers np¼ 3 and np¼ 4 in the non-

amer. In Fig. 7, we compare populations for the linear and cyclic arrangement and for a weak

(k ¼ 0:0175 eV) and the resonant ðk ¼ x0Þ interaction. A similar behavior as discussed above

(single monomer excitation) is found. For the weak interaction (panels (a) and (c)), mainly the

perturbed states are populated and out-of-phase oscillations between these states are seen in the

linear case, whereas for the cyclic arrangements in phase oscillations of P3ðtÞ and P4ðtÞ are

found. As before, if the coupling strength k is increased towards resonance and the perturbation

remains constant, the population moves through the entire aggregate (panels (b) and (d)). We

FIG. 5. Population dynamics starting from an initial state wave packet which is a superposition of excited state eigenfunc-

tions with eigenenergies corresponding to the peaks present in the dimer absorption spectrum around an energy of 2.7 eV

(Fig. 2).

FIG. 6. Population dynamics in the nonamer. Initially, all states je; ni are populated equally. Panels (a) and (d) illustrate the

non-perturbed case for the linear and cyclic geometry, respectively. Including a weak and resonant coupling on monomer

np¼ 3 leads to the dynamics displayed in panels (b) and (c) (linear) and (e) and (f) (cyclic).
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thus conclude that even for a perturbation interacting over a larger spatial region, the trends

inferred from the dimer are valid.

Next, we treat the situation, where different eigenstates are prepared by a laser excitation

before the perturbation sets in. Because of the high density of states in the nonamer, we regard

the case of a linear pentamer (N¼ 5). We concentrate on the first absorption band seen in Fig. 2

at energies around 2.35 eV which corresponds to the case where no vibrational excitation is pres-

ent so that the vibrational wave functions in all components are node-less. To get an insight into

the transfer dynamics, it is then sufficient to perform an analytical calculation for the pure elec-

tronic system. Note, however, that the numerical results presented in Fig. 8 derive from the full

vibronic pentamer system. Replacing the complete vibronic problem for the excited state by a

FIG. 7. Population dynamics in the nonamer. Initially, all states je; ni are populated equally but here the perturbation acts

on monomers np¼ 3 and 4. The upper/lower panels correspond to the linear/cyclic configuration with weak (panel (a) and

panel(c)) and resonant (panel (b) and panel (d)) perturbation.

FIG. 8. Population dynamics in the pentamer. Initially, different eigenstates (characterized by their electronic coefficient

vectors ck , (Eq. (20)) are prepared through selective laser excitation. The perturbation acts on monomer np¼ 3.
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coupled degenerate 5-level system, the eigenenergies and -vectors can be calculated analyti-

cally.36 For the (n)-component of eigenvector (k), one finds

ck
n ¼

1ffiffiffi
3
p sin

nkp
6

	 

: (19)

In the regarded dipole-geometry, transitions are only allowed to final states with ðþÞ-parity. As

an example, we consider the eigenvectors (a ¼
ffiffiffi
3
p

=2)

c1 ¼ 1ffiffiffi
3
p 0:5; a; 1; a; 0:5ð Þ; c5 ¼ 1ffiffiffi

3
p 0:5;�a; 1;�a; 0:5ð Þ: (20)

Since the vibrational wave functions are node-less, it follows that the signs appearing in the dif-

ferent components of the electronic eigenvectors determine the overlap integrals Ia
nm which are

important for the population transfer dynamics, see Eq. (18). Adding the perturbation

(k¼ 0.0175 eV) to the excited state of the middle monomer (np¼ 3), leads to the dynamics

shown in Fig. 8. The upper panel corresponds to the initial eigenstate with electronic coefficient

c1 (at an energy of 2.365 eV in the pentamer spectrum), whereas the lower panel shows the

case for c5 (2.350 eV). Following the same reasoning as applied to the dimer, we have to regard

the overlap integral between the component of the perturbed state j3; ei and the next-neighbor

components. From the coefficients given in Eq. (20), one then predicts an equal decrease of the

population P2ðtÞ and P4ðtÞ in the case k¼ 1 (positive overlap integral) and an increase in case

k¼ 5 (negative overlap integral). This indeed is the case as can be taken from Fig. 8.

Until now, the perturbation ŴpðtÞ consists of a smoothly varying function of time. In order

to account for different scattering events occurring in a molecular sample, we return to the

dimer system and modify the perturbation to include fluctuations. The latter derive from a func-

tion fn ¼ f ðxnÞ in frequency space, which decays proportional to x�1:25
n . Different realizations

are obtained in modifying each value fn with a random phase taken from the half-open interval

[0,2p) and Fourier transforming the obtained function to time-domain. Thus, the constructed

fluctuations are scaled so that their maximum is k=4. Four realizations of such fluctuations are

displayed in the lower panel of Fig. 9 (k¼ 0.0175 eV). It is expected that an average over many

realizations of the fluctuating term results in a certain degree of de-coherence. That this is

indeed the case illustrated in regarding the averaged electronic density matrix element

C12 tð Þ ¼ 1

Nf

XNf

l¼1

hwe;1;l tð Þjwe;2;l tð Þi; (21)

where Nf is the number of realizations, each leading to vibrational wave functions

we;j;lðx1; x2; tÞ. In Fig. 9, middle panel, we show the absolute value jC12ðtÞj obtained for

Nf¼ 100. It is seen that the perturbations lead to an average decrease of the oscillation ampli-

tude which goes in hand with a loss of coherence. However, comparing the populations Pa
nðtÞ

obtained by an average over all realizations (upper panel of the figure) with the noise-free case

(PnðtÞ), it is found that the localization dynamics is nearly unchanged at times when the pertur-

bation is non-zero. As an important result, we note that including bath-fluctuations does not

change the results obtained for the cases where no noise is present—at least in the parameter

range regarded here.

To conclude, we present a study on the population dynamics in molecular aggregates under

perturbation. The latter is chosen in a simple form and consists of a shift of the excited state

Hamiltonian for one or more monomers within the aggregate. Starting from a delocalized

excited state, the perturbation results in a localization of population and thus excitonic energy

on certain monomer sites. Regarding first the molecular dimer, it is shown that this effect is

state selective: the laser-preparation of different excited state eigenfunctions is followed by a

different localization dynamics. In particular, by selectively choosing a particular initial state, it
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is possible to steer the localization site selectively. The preparation of an excited state wave

packet makes it furthermore possible to annihilate the perturbation-induced localization.

Remarkably, effects which are identified for the dimer are as well present in more extended

aggregates having much higher densities of states. This applies to the localization dynamics in

general and also to its state-selectivity.

We have modified the time-dependent perturbation ŴpðtÞ to include fluctuations by modu-

lating it with different levels of random noise. It is found that the population dynamics is

modulated by the noise but the general trends are the same as if fluctuations are excluded.

Insofar, we are confident that the established results are also valid for a more general time-

dependence of the perturbation.
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