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Some Notation

This is an overview of the most common notation used throughout this thesis. The
following symbols have their typical meaning:

N,Q,R Set of all natural numbers excluding zero, of all rational numbers, and of all
real numbers, respectively.

|x| Absolute value of x ∈ R.
|A| Number of distinct elements of a set A.
1A Indicator function of a set A, i. e. 1A(x) := 1 if x ∈ A and 1A(x) := 0 else.
0A Zero function of a set A, i. e. 0A(x) := 0 for all x ∈ A.

A ⊂ B A is a subset of or equal to the set B.
BA Set of all functions from A to B.

f(A′) {b ∈ B | ∃a∈A′ f(a) = b} for f ∈ BA and A′ ⊂ A.
C[0, 1] Set of all continuous and real-valued functions on the interval [0, 1].

Since this thesis deals with multivariate as well as with functional random elements, it
is quite convenient to define a common framework: Let I be an index set with |I| ≥ 1
elements andXt a non-empty set for each t ∈ I. In most cases we will choose I = {1, . . . , d}
or I = [0, 1]. Denote by

×
t∈I

Xt :=

⎧⎨⎩Xt0 if I = {t0}{
f ∈ (

⋃
t∈I Xt)I

⏐⏐⏐ ∀t∈I f(t) ∈ Xt

}
if |I| > 1

the Cartesian product of Xt, t ∈ I. Obviously XI =×t∈I X if |I| > 1 and Xt = X for
all t ∈ I. As usual, we also write ×d

i=1Xi instead of ×i∈{1,...,d}Xi for d ∈ N, and put
Xd :=×d

i=1X. If J is another non-empty index set satisfying I ∩ J = ∅ and Xt, t ∈ J ,
are further non-empty sets, then define

×
t∈I

Xt ××
t∈J

Xt := ×
t∈I∪J

Xt.

Occasionally, the index set of a factor in a Cartesian product is omitted. In these cases,
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Some Notation

the missing indices should be clear from the context, e. g.

A × ×
t∈I\{t0}

Xt :=×
t∈I

Xt and A × B :=
{

f ∈ (A ∪ B){1,2}
⏐⏐⏐ f(1) ∈ A, f(2) ∈ B

}

where t0 ∈ I, Xt0 = A and A, B ̸= ∅.
An element f ∈×t∈I Xt is also denoted by (f(t))t∈I or (f(t))t∈T × (f(t))t∈T c for T ⊂ I

and T c = I \ T . For this purpose we identify (f(t))t∈I × (f(t))t∈∅ with (f(t))t∈I and
×t∈I Xt ××t∈∅Xt with×t∈I Xt. In particular, the column-vector x = (x1, . . . , xd)ᵀ ∈ Xd

denotes the function (xi)d
i=1 := (xi)i∈{1,...,d} and we define h(x1, . . . , xd) := h(x) for each

function h on Xd.
If the sets Xt, t ∈ I, are in fact topological spaces, then B(Xt) denotes the Borel-

σ-algebra corresponding to Xt, and B
(×t∈I Xt

)
is the Borel-σ-algebra of×t∈I Xt with

respect to the product topology. We have in particular B(C[0, 1]) = C[0, 1] ∩B
(
R[0,1]) ={

B ∩ C[0, 1]
⏐⏐ B ∈ B

(
R[0,1])}. Unless stated otherwise, a space X shall be equipped with

its Borel-σ-algebra.
Now consider X ⊂ R and write Bd instead of B

(
Rd
)
, the corresponding Lebesgue-

measure being λd. In order to keep notation short, define 0 := (0)d
i=1, 1 := (1)d

i=1,
∞ := (∞)d

i=1, and ej := (1)i∈{j} × (0)i∈{1,...,d}\{j}, which is the j-th unit vector in Rd.
Moreover, all operations and relations such as +, −, ·, /, <, ≤ are meant pointwise, i. e.
f + g :=

(
f(t) + g(t)

)
t∈I for f, g ∈ XI as well as

f+ := max{0I , f} :=
(
max{0, f(t)}

)
t∈I and f− := (− f)+.

The same interpretation holds for the application of univariate functions to f ∈ XI ,
e. g. exp(f) :=

(
exp

(
f(t)

))
t∈I . However, the pointwise reciprocal of f will be denoted

by 1I
f and not by f−1. The use of the symbol f−1 depends on the context and means,

respectively, the preimage of a set under f , the inverse function of f , or the quantile
function of f . There should be no risk of confusion.

For f, g ∈ XI ⊂ RI the intervals [f, g], (f, g], [f, g), and (f, g) are defined by

[f, g] :=
{
h ∈ XI

⏐⏐ f ≤ h ≤ g
}
, [f, g) :=

{
h ∈ XI

⏐⏐ f ≤ h < g
}
,

(f, g] :=
{
h ∈ XI

⏐⏐ f < h ≤ g
}
, (f, g) :=

{
h ∈ XI

⏐⏐ f < h < g
}
.

Consider a function ξ : XI → Y that maps f ∈ XI to an element ξ(f) of a metric
space Y. Then we write limf→f0 ξ(f) = y for some y ∈ Y if limn→∞ ξ(fn) = y holds for
any sequence (fn)n∈N in XI with limit f . Analogously, we write limf→f0 + ξ(f) = y if
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limn→∞ ξ(fn) = y for any sequence (fn)n∈N in
{
h ∈ XI

⏐⏐ f ≠ h ≥ f
}

with limit f , and
limf→f0 − ξ(f) = y if limn→∞ ξ(fn) = y for any sequence (fn)n∈N in

{
h ∈ XI

⏐⏐ f ̸= h ≤ f
}

with limit f .
Norms will play an important role throughout the present text. The usual p-norm is

denoted by ∥·∥p, i. e.

∥x∥p =
(

d∑
i=1

|xi|p
)1/p

and ∥f∥p =
(∫ 1

0
|f(t)|p dt

)1/p

for 1 ≤ p < ∞

as well as ∥x∥∞ = max1≤i≤d |xi| and ∥f∥∞ = supt∈[0,1] |f(t)| where x ∈ Rd, f ∈ R[0,1].
Note that ∥·∥p is for 1 ≤ p < ∞ actually not a norm on R[0,1] but a pseudo-norm since
∥f∥p = 0 for all f ∈ R[0,1] that attain the value zero λ1-almost-everywhere.

When we consider the asymptotic behavior of two functions f, g : X→ R defined on a
normed vector space (X, ∥·∥), we write

f(x) = O(g(x)) as x → x0 :⇐⇒ ∃C>0,δ>0 ∀x∈X,∥x−x0∥≤δ |f(x)| ≤ C |g(x)|

f(x) = o(g(x)) as x → x0 :⇐⇒ ∀ε>0 ∃δ>0 ∀x∈X,∥x−x0∥≤δ |f(x)| ≤ ε |g(x)|

f(x) ∼ g(x) as x → x0 :⇐⇒ f(x)
g(x) → 1 as x → x0

where x0 is a limit point of X. If X ⊂ R and x0 = ±∞, then the condition ∥x − x0∥ ≤ δ

is replaced with x ≥ δ or x ≤ −δ, respectively.
If (X,A, µ) is a measure space and T : (X,A) → (Y,B) a measurable mapping into

a measurable space (Y,B), (µ ∗ T ) denotes the push forward measure of µ by T , i. e.
(µ ∗ T )(B) = µ({x ∈ X | T (x) ∈ B}) for B ∈ B. Throughout this thesis, P is a probability
measure on some suitable measurable space (Ω,A) and E(X) is, if existent, the expected
value of a random element X : (Ω,A) → (X,B(X)) with respect to P. The distribution of
X, i. e. the push forward measure (P ∗ X), is also denoted by LX whenever the underlying
probability measure P is of minor interest. In particular, LX1 and LX2 may be based on
two different probability spaces (Ω1,A1, P1) and (Ω2,A2, P2). We write X1

D= X2 if LX1

equals LX2 . By X ∼ L we denote that X has distribution L and we also write X ∼ F if
L has distribution function F . For a sequence (Xn)n∈N of random elements, Xn

D→ L
or Xn

D→ F mean convergence in distribution towards L as n → ∞; if Y ∼ L then
this is also denoted by Xn

D→ Y as n → ∞. As usual, we write U[0, 1] for the uniform
distribution on [0, 1], B(n, p) for the binomial distribution with parameters n ∈ N and
p ∈ (0, 1), N

(
µ, σ2) for the normal distribution with mean µ ∈ R and variance σ2 > 0,

N
(
µ, Σ

)
for the multivariate normal distribution with mean vector µ and covariance

matrix Σ, and χ2
n for the chi-square distribution with n degrees of freedom.
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Introduction

Despite being a rather young mathematical discipline, extreme value theory has been
subject to major change. However, it never lost its aim to describe rare but extreme
events with prominent examples being flooding from the sea, heavy earthquakes, and
financial collapses. Starting with the asymptotic distribution of the suitably standardized
sample maximum, cf. the Fisher–Tippett–Gnedenko Theorem, the results have steadily
been generalized from univariate observations to multivariate ones and even process
data. More recently, the focus shifted more and more to all observations in the sample
that exceed a certain high threshold, instead of considering the maximum only. Applied
to the aforementioned examples, one would consider only waves exceeding the height
of a certain dike, earthquakes having at least a certain intensity, and, after applying a
simple transformation, share prices falling below some low threshold. It turned out that
the previous results on maxima could be carried over to this new framework, leading
to so-called generalized Pareto distributions, which are the only reasonable probability
distributions suited for modeling observations above a high threshold.

Probably due to this “exclusiveness”, it seems to be widely accepted to just apply
generalized Pareto models to observed data, at least for multivariate and process data,
without an a priori check whether these kind of models are actually suitable for the
data under consideration. Since there indeed are probability distributions for which a
generalized Pareto model might fail, there is still a certain gap in the process of statistical
inference. This thesis therefore aims at providing a statistical test for the hypothesis
that the data are in a certain neighborhood of a generalized Pareto distribution. In
this context, also some punctual contributions to extreme value theory in general will
be considered, focusing on finite dimensional and on functional observations. By using
a notation based on certain norms, called D-norms, the inherent similarities of finite
dimensional extreme value theory and extreme value theory for continuous processes
will be particularly stressed. Moreover, D-norms provide an elegant way to express the
most central terms of extreme value theory in general, such as “max-stable distribution”,
“domain of attraction”, and “generalized Pareto distribution”.
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Introduction

In Chapter 1 we will briefly review — both in the finite dimensional context and in the
one of continuous functions on [0, 1] — how generalized Pareto distributions are based
on classical extreme value theory, i. e. asymptotic results for maxima. This gives us the
opportunity to introduce the notation of D-norms and to link it with other representations
found in the standard literature. Moreover, the term “copula” will be carried over to
stochastic processes with continuous sample paths.

Based on the characteristic excursion stability of a generalized Pareto distribution,
Chapter 2 defines certain neighborhoods, called δ-neighborhoods, of a generalized Pareto
distribution. Due to a decomposition of a distribution into its univariate margins and
a copula, we will then derive a test for the hypothesis that the copula underlying the
observed data is in such a δ-neighborhood. This will be done by considering finite
dimensional observations, and then generalizing the results to process data. Finally, it
will be shown that both frameworks can be linked consistently if a continuous process
can only be observed at a finite grid of observation points, and if the fineness of this grid
increases. Each of these steps — finite dimensional test, functional test, and the linkage
of both — will be done for copula data first, before more general data are considered.

Since the derivation of the asymptotic distribution of the test statistic will require
certain technical restrictions, Chapter 3 analyzes these assumptions in more detail. It
provides in particular some examples of copulas that are in a δ-neighborhood, i. e. the
null hypothesis is true, and of copulas that do not satisfy the null hypothesis. We will
consider moreover a simple approach how a finite dimensional copula can be extended to
a functional one, and we will give some practical advice how to choose the free parameters
incorporated in the test statistics.

Finally, Chapter 4 compares the in total three different test statistics with another test
found in the literature that has a similar null hypothesis, which will be done by means of
a simulation study. This thesis ends with a short summary of the results and an outlook
to further open questions.
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1 Basics

This chapter is dedicated to provide elementary terms and concepts needed for the main
part of this thesis. We will shortly recall some main results concerning max-stable
distributions and generalized Pareto distributions; we refer to Beirlant et al. (2004),
de Haan and Ferreira (2006), and Falk et al. (2011) for more details and further reading.
Subsequent chapters will mainly rely on the fact that observations above a high threshold
can be reasonably modeled only by means of generalized Pareto distributions, where
Section 1.1 considers the finite dimensional framework and Section 1.2 deals with the
space of continuous functions on [0, 1].

The similarities of both settings, the finite dimensional one and the functional one,
are particularly stressed by using a kind of non-standard notation, which nevertheless is
thoroughly founded on standard literature and eases the insight into the theoretical results
of later chapters. In particular, all of the terms “max-stable distribution”, “generalized
Pareto distribution”, and “domain of attraction” can be broken down to conditions on a
certain class of norms. This fact will be exploited in Chapter 2, where these conditions will
be sharpened in order to derive statistical tests for certain neighborhoods of a generalized
Pareto distribution.

1.1 Finite Dimensional Extreme Value Theory

We start with the uni- and multivariate case. Let X, X1, X2, . . . be i. i. d. random
variables with distribution function F , i. e. F (x) = P(X ≤ x), x ∈ R. The maximum in
the sample X1, . . . , Xn obviously has the distribution function

(1.1.1) P
(

max
1≤i≤n

Xi ≤ x

)
=
(
P(X ≤ x)

)n = F n(x), x ∈ R.

It is well-known that those distributions that are, in a certain sense, stable with respect to
exponentiation are crucial for the definition of generalized Pareto distributions. Note that
F n converges pointwise to 1[ω(F ),∞) as n → ∞, where ω(F ) := sup{x ∈ R | F (x) < 1} is
the upper endpoint of F . This fact, however, does not provide sufficient information about
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1 Basics

the shape of F in a neighborhood of ω(F ). An approach resulting in a non-degenerate
limit, i. e. the limit is not of the form 1[y,∞) for some y ∈ R ∪ {∞}, is more desirable.

Definition 1.1.2 Let F and G be (univariate) distribution functions where G is non-
degenerate. Then F is in the domain of attraction of G if for each n ∈ N there are
norming constants an > 0 and bn ∈ R satisfying

(1.1.3) F n(an x + bn) → G(x) as n → ∞

for all continuity points x of G. In this case G is referred to as a (univariate) extreme value
distribution or a (univariate) max-stable distribution (MSD) and we write F ∈ D(G).

Equation (1.1.1) shows that (1.1.3) is a condition on the asymptotic distribution of
the suitably standardized maximum (max1≤i≤n Xi − bn)/ an among X1, . . . , Xn. The
distribution functions G that may appear as a limit in (1.1.3) are well-known; they were
identified by Fisher and Tippett (1928) and Gnedenko (1943). Furthermore Khintchine’s
convergence theorem, cf. Leadbetter et al. (1983, Theorem 1.2.3), shows that the limit is,
in a certain sense, uniquely determined, which is part (ii) of the following result:

Theorem 1.1.4 The class of all univariate MSDs is given by {Gγ;µ,σ | γ, µ ∈ R, σ > 0}
where Gγ;µ,σ is a distribution function defined by

(1.1.5) Gγ;µ,σ(x) := exp
(

−
(

1 + γ
x − µ

σ

)−1/ γ
)

, 1 + γ
x − µ

σ
> 0,

and G0;µ,σ(x) is interpreted as exp
(
− exp

(
−x−µ

σ

))
, x ∈ R. Moreover we have for any

distribution function F :

(i) F ∈ D(Gγ;µ,σ) if and only if F ∈ D(Gγ) where Gγ := Gγ;0,1.

(ii) F ∈ D(Gγ1) and F ∈ D(Gγ2) imply γ1 = γ2.

The representation (1.1.5) is commonly known as the von Mises parametrization, due
to von Mises (1936); cf. Jenkinson (1955). Note that all univariate MSDs are continuous
and, if F ∈ D(G), (1.1.3) holds for all x ∈ R.

According to Theorem 1.1.4 (i) we may, without loss of generality, restrict ourselves
to MSDs of the form Gγ , γ ∈ R. The remaining parameter γ holds all the essential
information about the upper tail of F ∈ D(Gγ):

Definition 1.1.6 The parameter γ in Theorem 1.1.4 is referred to as the extreme value
index of the MSD Gγ .

2



1.1 Finite Dimensional Extreme Value Theory

Note that all MSDs share the property

Gγ(x) = Gn
γ (an(γ) x + bn(γ)), x ∈ R,

where an(0) = 1, bn(0) = log(n) and an(γ) = nγ , bn(γ) = γ−1(nγ − 1) for γ ̸= 0.
This means that, if Y1, . . . , Yn are i. i. d. with distribution function Gγ , the suitably
standardized maximum among Y1, . . . , Yn has the same distribution as the original data,
cf. (1.1.1). Thus Gγ is, roughly speaking, stable with respect to taking the maximum.
On the other hand, if F is a non-degenerate distribution function such that for all n ∈ N
there are an > 0 and bn ∈ R satisfying F (x) = F n(an x + bn) for all x ∈ R, then F is an
MSD in the sense of Definition 1.1.2; cf. Leadbetter et al. (1983, Theorem 1.3.1). This
reasoning justifies the term “max-stable” distributions in the mentioned definition.

Now consider d ∈ N and a d-variate distribution function F : Rd → [0, ∞), i. e. there
is a random vector X = (X1, . . . , Xd)ᵀ in Rd satisfying

F (x) = P(X1 ≤ x1, . . . , Xd ≤ xd)

for all x = (x1, . . . , xd)ᵀ ∈ Rd. Again we aim at deriving a characterization of the shape
of F close to its upper endpoint ω(F ) := (ω(F1), . . . , ω(Fd))ᵀ, where Fi is the i-th margin
of F , i. e. Fi(x) := P(Xi ≤ x), x ∈ R. If X(1), X(2), . . . are independent copies of X

then the distribution function of the standardized maximum is

(1.1.7) P
(

max1≤j≤d

{
X(j)}− bn

an
≤ x

)
= F n(an x + bn), x ∈ Rd,

where (an)n∈N and (bn)n∈N are sequences in (0, ∞)d and Rd, respectively, and the
maximum is taken componentwise:

max
1≤j≤d

{
X(j)} =

(
max

1≤j≤d

{
X

(j)
i

})d

i=1
.

As before we focus on non-degenerate limits of (1.1.7) as n → ∞:

Definition 1.1.8 Let F and G be d-variate distribution functions where G is non-
degenerate, i. e. all margins of G are non-degenerate. F is in the domain of attraction of
G if for each n ∈ N there are norming vectors an > 0, bn ∈ Rd such that

(1.1.9) F n(an x + bn) → G(x) as n → ∞

for all continuity points of G. In this case G is referred to as a (d-variate) max-stable
distribution (MSD) and we write F ∈ D(G).

3



1 Basics

It is easy to verify that any MSD G is continuous: If (1.1.9) holds with an =(
a

(1)
n , . . . , a

(d)
n
)ᵀ and bn =

(
b

(1)
n , . . . , b

(d)
n
)ᵀ then the multivariate mapping theorem, see

e. g. Billingsley (2012, Theorem 29.2), implies

(1.1.10) F n
i

(
a(i)

n x + b(i)
n

)
→ Gi(x) as n → ∞

for each i ∈ {1, . . . , d} and each continuity point of Gi, i. e. each margin of F is in the
domain of attraction of the corresponding margin of G. Now Theorem 1.1.4 shows that
each margin of G is continuous and, thus, G is continuous as well; cf. Galambos (1978,
Theorem 5.2.1).

The term “max-stable distribution” has exactly the same interpretation as in the
univariate case:

Theorem 1.1.11 A non-degenerate distribution function G is an MSD if and only if it
is max-stable, i. e. for each n ∈ N there exist norming vectors an > 0, bn ∈ Rd such that

Gn(an x + bn) = G(x), x ∈ Rd.

This result can, e. g., be found in Resnick (1987, Proposition 5.9). Note that the cited
result shows in particular that a non-degenerate distribution function G is max-stable if
and only if there are functions a, b : (0, ∞) → Rd satisfying a > 0 and

Gs(a(s) x + b(s)) = G(x), x ∈ Rd, s > 0.

Sklar’s Theorem and Max-Stable Distributions

Next, we characterize (1.1.9) by terms of a well-known decomposition theorem of mul-
tivariate distribution functions, which are split into their margins and a copula, see
Theorem 1.1.13 below. This decomposition will turn out to be a crucial tool for later
chapters as it allows the assumption without loss of generality that each margin of an
MSD corresponds to the standard negative exponential distribution.

Definition 1.1.12 A copula C is a d-variate distribution function where each margin of
C is the uniform distribution on (0, 1), i. e. Ci(x) = x, x ∈ (0, 1), for each i ∈ {1, . . . , d}.

Now we state the aforementioned decomposition theorem, which is taken from Schweizer
and Sklar (2005, Theorem 6.2.4 and Theorem 6.2.5) and Nelsen (2006, Theorem 2.10.9). It
was introduced by Sklar (1959) but a crucial tool for its proof, Theorem 6.2.6 in Schweizer
and Sklar (2005), was established in Moore and Spruill (1975) and Deheuvels (1978); cf.
Sklar (1996). Another notable supplement is Rüschendorf (2009).
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1.1 Finite Dimensional Extreme Value Theory

Theorem 1.1.13 (Sklar’s Theorem) Let F be a d-variate distribution function with
margins F1, . . . , Fd. Then there exists a copula C satisfying

(1.1.14) F (x) = C(F1(x1), . . . , Fd(xd)) for all x = (x1, . . . , xd)ᵀ ∈ Rd.

Furthermore, the restriction of C to the domain ×d
i=1 Fi(R) is uniquely determined and

has the representation

(1.1.15) C(u) = F
(
F −1

1 (u1), . . . , F −1
d (ud)

)
for all u = (u1, . . . , ud)ᵀ ∈

d×
i=1

Fi(R)

where F −1
i (u) = inf{x ∈ R | Fi(x) ≥ u}, 0 < u < 1, is the quantile function of Fi.

If conversely F1, . . . , Fd are univariate distribution functions and C is a copula then F

defined by (1.1.14) is a d-variate distribution function with margins F1, . . . , Fd.

Although a copula of a distribution function F is not uniquely determined in general,
(1.1.15) implies that it is unique on the relevant domain. Therefore, we will call any
copula satisfying (1.1.15) the copula of F , denoted by CF , where the subscript may be
omitted if there is no risk of confusion. Note that the copula CG of an MSD G is always
uniquely determined but it is not max-stable in the sense of Theorem 1.1.11. However,
Theorem 1.1.11 implies the property

(1.1.16) Cn
G

(
u1/n) = CG

(
u
)

for all u ∈ [0, 1] and n ∈ N,

which is dual to the max-stability of G, see e. g. Galambos (1978, Theorems 5.2.1 and
5.2.4).

Definition 1.1.17 The copula of an MSD is called an extreme value copula (EVC).

For a further discussion as well as examples of EVCs we refer to Gudendorf and Segers
(2010) and Ribatet and Sedki (2013). As we have already seen in (1.1.10),

F n
i

(
a(i)

n x + b(i)
n

)
→n→∞ Gi(x), x ∈ R, 1 ≤ i ≤ d,

is a necessary condition for F ∈ D(G). We obtain furthermore

Cn
F

(
F1
(
a(1)

n x1 + b(1)
n

)
, . . . , Fd

(
a(d)

n xd + b(d)
n

))
→n→∞ CG

(
G1(x1), . . . , Gd(xd)

)
by applying Theorem 1.1.13 to (1.1.9), which suggests in conjunction with (1.1.16) to
analyze the copula and the margins of F separately. Indeed this procedure is well-
established:
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Theorem 1.1.18 (Galambos, 1978, Theorem 5.2.3; Deheuvels, 1978, 1984) A d-var-
iate distribution function F is in the domain of attraction of an MSD G if and only
if the i-th margin of F is in the domain of attraction of the i-th margin of G for each
i ∈ {1, . . . , d} together with

(1.1.19) Cn
F

(
u1/n) → CG

(
u
)

as n → ∞, u ∈ (0, 1)d,

where CF and CG denote the copulas of F and G, respectively.

Based on this crucial observation, we are able to justify restricting ourselves to a certain
kind of standard MSDs. Although the next result is not new, its proof is stated since —
using only well-known arguments from the theory of copulas — it might be of interest of
its own.

Lemma 1.1.20 (Aulbach et al., 2012a; cf. de Haan and Ferreira, 2006, Theorem 6.1.1)

With the notations of Theorem 1.1.18, (1.1.19) and

(1.1.21) Cn
F

(
1 + 1

n
x

)
→n→∞ CG

(
exp(x)

)
, x ≤ 0,

are equivalent. Furthermore, (1.1.21) holds if and only if

(1.1.22) 1 − CF (1 + tx)
t

→t→0+ − log
(
CG

(
exp(x)

))
, x ≤ 0,

is true.

Proof. Taylor’s formula and Nelsen (2006, Theorem 2.10.7) imply⏐⏐⏐CF

(
exp

(
n−1x

))
− CF

(
1 + n−1x

)⏐⏐⏐
=
⏐⏐⏐⏐CF

(
1 + x1

n
+ o

(
x1
n

)
, . . . , 1 + xd

n
+ o

(
xd

n

))
− CF

(
1 + x1

n
, . . . , 1 + xd

n

)⏐⏐⏐⏐
≤

d∑
i=1

o
(

xi

n

)
= o

(∥x∥
n

)
as n → ∞

pointwise for each x = (x1, . . . , xd)ᵀ ≤ 0 and for any norm ∥·∥ on Rd. Thus

Cn
F

(
1 + 1

n
x

)
=
(

CF

(
exp

(
n−1x

))
+ o

(∥x∥
n

))n

= Cn
F

(
exp

(
n−1x

))(
1 + 1

n

n o
(
n−1∥x∥

)
CF

(
exp

(
n−1x

)))n

as n → ∞
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1.1 Finite Dimensional Extreme Value Theory

which implies the first assertion. We proceed as in the proof of de Haan and Ferreira
(2006, Theorem 1.1.2): A Taylor expansion of the function (0, 1] ∋ y ↦→ − log(y) at y = 1
yields that (1.1.21) is equivalent to

n

(
1 − CF

(
1 + 1

n
x

))
→n→∞ − log

(
CG

(
exp(x)

))
, x ≤ 0.

Since
⌊1

t

⌋
≤ 1

t ≤
(
1 +

⌊1
t

⌋−1) ⌊1
t

⌋
for t > 0, where ⌊·⌋ denotes the integer part, we obtain

1 − CF

(
1 +

⌊1
t

⌋−1
x
)

t
→t→0+ − log

(
CG

(
exp(x)

))
, x ≤ 0,

and (1.1.22) follows from

0 ≤ 1⌊1
t

⌋ − t =
1
t −

⌊1
t

⌋⌊1
t

⌋ 1
t

≤ 1⌊1
t

⌋ 1
t

= o(t) as t → 0+

and Nelsen (2006, Theorem 2.10.7).

The previous considerations suggest to focus on the following standard case, which
will be crucial throughout the rest of this thesis:

Definition 1.1.23 An MSD G is called a standard MSD if all margins of G coincide with
exp(x) for x ≤ 0, the standard negative exponential distribution.

It is obvious that G is a standard MSD if and only if it can be written as G(x) =
CG(exp(x)), x ∈ Rd, where CG is a copula satisfying (1.1.16).

Remark 1.1.24 A common approach in the literature is to consider simple MSDs instead
of standard ones, i. e. the margins are assumed to be standard Fréchet instead of standard
negative exponential, Gi(x) = exp

(
−x−1) for x > 0, cf. de Haan and Ferreira (2006,

Theorem 6.1.1). This is due to the fact that the Fréchet distribution is, according to The-
orem 1.1.4, the prototype of a probability distribution with a heavy upper tail. However,
Theorem 1.1.13 and Theorem 1.1.18 show that both cases can easily be transformed into
one another: Let G be an MSD with copula C. If G is standard max-stable then

G

(
− 1

x

)
= C

(
exp

(
− 1

x

))
= Cn

(
exp

(
− 1

n

1
x

))
= Gn

(
− 1

n

1
x

)
, x > 0,

is simple max-stable. Conversely, if G is simple max-stable, then

G

(
− 1

x

)
= C(exp(x)) = Cn

(
exp

( 1
n

x

))
= Gn

(
−n

1
x

)
, x < 0,

is standard max-stable. In both cases G
(
−1/·

)
has the same copula as G.
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D-Norms and Generators

From the previous reasoning it is clear that any MSD G may be written as

G(x) = C(G1(x1), . . . , Gd(xd)), x = (x1, . . . , xd)ᵀ ∈ Rd,

with univariate MSDs G1, . . . , Gd and an EVC C, which is involved in the limit in
(1.1.22). Theorem 1.1.26 below will show that this limit actually defines a norm ∥·∥ =
− log C(exp(− |·|)) on Rd. This kind of norms, which will be crucial for the definition of
generalized Pareto distributions, is generated by a certain class of random vectors:

Definition 1.1.25 Let Z be a random vector in [0, ∞) that satisfies E(Z) = 1. Then
∥·∥D defined by

∥x∥D := E(∥xZ∥∞) for all x ∈ Rd

is called a D-norm with generator Z. Furthermore, two generators are equivalent if they
give rise to the same D-norm. The value ∥1∥D = E(∥Z∥∞) is also referred to as the
generator constant of Z.

It is quite easy to verify that any D-norm ∥·∥D is actually a norm having the prop-
erty ∥·∥∞ ≤ ∥·∥D ≤ ∥·∥1, cf. Hofmann (2009, Lemma 5.1.3). The bounds are D-
norms themselves with generators Z(∞) = 1 and Z(1) satisfying P

(
Z(1) = d ei

)
= 1

d ,
i = 1, . . . , d. Moreover, for any p ∈ (1, ∞) the p-norm ∥·∥p is generated by Z(p) =

1
Γ(1−p−1)(X1, . . . , Xd)ᵀ where Γ denotes the gamma function and X1, . . . , Xd are indepen-
dent and Fréchet-distributed with parameter p, i. e. P(X1 ≤ x) = exp(−x−p) for x > 0.
Note that there is a one-to-one relation between D-norms and standard MSDs:

Theorem 1.1.26 (Balkema–de Haan–Resnick–Vatan)

(i) For any standard MSD G there is a D-norm ∥·∥D such that

(1.1.27) G(x) = exp(− ∥x∥D) for all x ∈ (−∞, 0].

Conversely, each D-norm ∥·∥D defines a standard MSD G by (1.1.27).

(ii) Let ∥·∥ be any norm on Rd. For each D-norm ∥·∥D on Rd there exist r > 0 and a
generator Z of ∥·∥D such that ∥Z∥ = r with probability one. Moreover, r and the
distribution of Z are uniquely determined.

The previous result was derived from Vatan (1985, Theorem 3.9), which itself is stated
for simple MSDs with additional scaling parameters. Note that a generator Z of a

8



1.1 Finite Dimensional Extreme Value Theory

D-norm ∥·∥D is not uniquely determined in general since XZ is a generator of ∥·∥D as
well whenever X ≥ 0 is a univariate random variable with E(X) = 1 such that X and Z

are independent. Moreover, two equivalent generators do not necessarily have the same
copula:

Example 1.1.28 Consider d ≥ 2 independent and identically gamma distributed random
variables V1, . . . , Vd, i. e. there is some α > 0 such that each Vi has the Lebesgue-density
γα(v) = vα−1

Γ(α) exp(−v) 1[0,∞)(v). Then both,

Z(1) =
(

d Vi∑d
j=1 Vj

)d

i=1
and Z(2) =

(
Vi

α

)d

i=1
,

are generators, and the independence of 1
dZ(1) and

∑d
j=1 Vj shows

E
(xZ(1)

∞

)
=

E
(∑d

j=1 Vj
)

d α
E
(xZ(1)

∞

)
= E

(xZ(2)
∞

)
for all x ∈ Rd.

We refer to Aulbach et al. (2015b, Section 4) for details.

Although Theorem 1.1.26 (ii) yields that the distribution of Z is unique if ∥Z∥ is
almost surely constant, it is in general a non-trivial task to compute a generator with
this property. But once r and the distribution (P ∗ Z) in Theorem 1.1.26 (ii) have been
identified, a simple integral transformation yields a (P ∗ Z)-density of an equivalent
generator Z∗ which is almost surely constant with respect to another norm ∥·∥∗, cf.
Beirlant et al. (2004, Section 8.2.3).

Example 1.1.29

(i) Every D-norm on Rd has a generator Z such that ∥Z∥1 = d with probability one.

(ii) For each finite dimensional D-norm ∥·∥D there is a generator Z and some r > 0 such
that ∥Z∥∞ = r with probability one. We have in particular ∥1∥D = E(∥Z∥∞) = r.

(iii) Apart from the cases p = 1 and p = ∞ there is — to the best of the author’s
knowledge — no generator Z of ∥·∥p known such that ∥Z∥ is almost surely constant,
no matter how ∥·∥ is chosen.

Remark 1.1.30 Consider a standard MSD G, a norm ∥·∥ on Rd, and the positive part of
the corresponding unit sphere S+ = {x ∈ [0, ∞) | ∥x∥ = 1}. If r and Z are given as in
Theorem 1.1.26 (ii), then the finite measure σ = r (P ∗ Z)(r ·) on (S+,B(S+)) is known

9
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as the spectral measure of G, where rB :=
{
x ∈ Rd

⏐⏐ 1
r x ∈ B

}
for B ∈ B(S+). The

characterization of an MSD in terms of its spectral measure goes back to Balkema and
Resnick (1977), de Haan and Resnick (1977), and Vatan (1985). We refer to Vatan (1985)
for an extensive historical overview.

The “D” in “D-norm” is an abbreviation for “dependence”. Note that a transformation
of the margins of a standard MSD as in Remark 1.1.24 does not alter the corresponding
EVC, cf. Theorem 1.1.13. Each EVC C has therefore the representation

(1.1.31) C(u) = exp(− ∥log(u)∥D) for all u ∈ (0, 1]

where ∥·∥D denotes a suitable D-norm. As motivated by the following result, the generator
constant measures the degree of dependence of the margins of an MSD.

Lemma 1.1.32 (Takahashi, 1988; cf. Falk et al., 2011, Theorem 4.4.1) Let C be a
d-variate EVC with corresponding D-norm ∥·∥D. Then:

(i) C(u) =
∏d

i=1 ui for all u = (u1, . . . , ud)ᵀ ∈ [0, 1] if and only if ∥1∥D = d.

(ii) C(u) = min{u1, . . . , ud} for all u = (u1, . . . , ud)ᵀ ∈ [0, 1] if and only if ∥1∥D = 1.

Recall that ∥·∥∞ ≤ ∥·∥D ≤ ∥·∥1, i. e. 1 ≤ ∥1∥D ≤ d where the both extreme cases are
characterized by Lemma 1.1.32.

Remark 1.1.33 The D-norm of a standard MSD is also known as the stable tail dependence
function — introduced by Huang (1992) as the limit in (1.1.22) — whereas the generator
constant is also called extremal coefficient, cf. Smith (1990).

Generalized Pareto Distributions

While MSDs are the natural choice to model the suitably standardized maximum in an
i. i. d. sample, breaking all the data down to just one observation, another approach
focuses on all “large” data in the sample. Therefore, we say that a vector x ∈ Rd exceeds
a threshold x0 ∈ Rd if x � x0, i. e. at least one component of x is larger than the
corresponding component of x0. The following distributions will be crucial.

Definition 1.1.34 A d-variate distribution function W is referred to as a generalized
Pareto distribution (GPD) if there exist x0 < ω(W ) and an MSD G such that W (x) =
1 + log(G(x)) for all x ≥ x0. If G is a standard MSD then W is called a standard GPD.

10



1.1 Finite Dimensional Extreme Value Theory

This definition is according to Falk et al. (2011, Section 5.1) and extends the one by
Kaufmann and Reiss (1995) to arbitrary dimensions. Other definitions are given in Tajvidi
(1996, Paper B), Beirlant et al. (2004, Section 8.3.1) and Rootzén and Tajvidi (2006). Note
that, after a transformation of the margins, all of the in total three definitions coincide
close to the upper endpoint of the distribution; we refer to Michel (2006, Remark 2.2.3)
and Beirlant et al. (2004, Section 8.3.1) for details.

In the uni- and bivariate cases 1 + log(G(x)), log(G(x)) ≥ −1, already defines a
distribution function, cf. Kaufmann and Reiss (1995) and Falk et al. (2011, Lemma 5.1.1).
Although this is not true for d ≥ 3 — cf. Michel (2008, Theorem 6) and Hofmann (2009,
Theorem 2.2.2) — Hofmann (2009, Theorem 6.2.1) and Falk et al. (2011, Lemma 5.1.5)
show that for any MSD, there exists a corresponding GPD, and in particular:

Theorem 1.1.35 (Hofmann, 2009; Falk et al., 2011) Let G be a standard MSD with
D-norm ∥·∥D. Then there is a corresponding standard GPD W satisfying

(1.1.36) W (x) = 1 − ∥x∥D for x ∈
[
−1

d
, 0
]d

.

Furthermore, if X has distribution function G, we obtain

(1.1.37) lim
r→0+

P
(
X ≤ rx

⏐⏐ X � rt
)

= 1 − ∥x∥D

∥t∥D

for x ∈ [t, 0],

where t < 0 is chosen arbitrarily.

Equation (1.1.37) suggests to model exceedances over a high threshold by means of
a GPD, which is in complete accordance with the univariate results of Balkema and
de Haan (1974) and Pickands (1975) — cf. Reiss and Thomas (2007, Section 1.4) —
and the multivariate ones by Tajvidi (1996, Paper B, Section 4), Beirlant et al. (2004,
Section 8.3.1) and Rootzén and Tajvidi (2006). For an approach that takes this into
account we refer to Aulbach et al. (2012a) and Aulbach et al. (2012b).

In particular, if X has the distribution function W in (1.1.36), then

(1.1.38) P
(
X ≤ rx

⏐⏐ X � rt
)

= 1 − ∥x∥D

∥t∥D

for all x ∈ [t, 0]

whenever r > 0 and t < 0 satisfy rt ∈
[
−1

d , 0
]d. In this case, we end up with the excursion

stability of a standard GPD

P
(

X

∥t∥D

≤ x

⏐⏐⏐⏐⏐ X � t

)
= 1 − ∥x∥D for t ∈

[
−1

d
, 0
]d

and x ∈ [t, 0],
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cf. de Haan and Ferreira (2006), i. e. the conditional distribution of X
∥t∥D

given X � t

coincides with the distribution of X in the upper tail. For further concepts of excursion
stability, we refer to Falk et al. (2011, Sections 5.3 and 5.4) and Falk and Guillou (2008).

Taking Lemma 1.1.20 into account, we obtain a characterization of the domain of
attraction condition of Theorem 1.1.18 in terms of D-norms. All relevant components —
MSD, GPD, and the corresponding domain of attraction — can thus be broken down to
certain D-norm conditions, making these norms quite an appealing tool.

Theorem 1.1.39 (Aulbach et al., 2012a, Corollary 2.2) Let F be a d-variate distri-
bution function with copula CF and margins F1, . . . , Fd. If G is an MSD with cop-
ula CG = exp(− ∥log(·)∥D) and margins G1, . . . , Gd such that Fi ∈ D(Gi) for each
i ∈ {1, . . . , d}, then the following assertions hold:

(i) F ∈ D(G) implies CF (u) = 1 − ∥u − 1∥D + r(u), u ∈ [0, 1], where the remainder
satisfies

(1.1.40) r(1) = 0 and lim
t→0+

sup
u∈[0,1]d\{1}

∥u−1∥<t

|r(u)|
∥u − 1∥

= 0

for an arbitrary norm ∥·∥.

(ii) If there is some norm ∥·∥∗ such that CF (u) = 1 − ∥u − 1∥∗ + r(u), u ∈ [0, 1],
where the remainder satisfies (1.1.40) for some norm ∥·∥, then F ∈ D(G) and
∥·∥D = ∥·∥∗.

We close this section stating a simple method of computing a random vector that follows
a standard GPD. It was proved in Buishand et al. (2008, Section 2.2) for the bivariate
case and extended to an arbitrary dimension by Aulbach et al. (2012a, Proposition 2.4).

Theorem 1.1.41 (Buishand et al., 2008; Aulbach et al., 2012a)

(i) Let W be a d-variate standard GPD with corresponding D-norm ∥·∥D. Then there
are a generator Z = (Z1, . . . , Zd)ᵀ of ∥·∥D satisfying P(Z ≤ d1) = 1 and a vector
x0 ∈

[
−1

d , 0
)d such that

W (x) = P
(

−U
1
Z

≤ x

)
for all x ∈ [x0, 0]

where the random variable U ∼ U[0, 1] is independent of Z.

(ii) Let U ∼ U[0, 1] be independent of a generator Z. If there is a vector c ≥ 1 such
that P(Z ≤ c) = 1, then the random random vector −U 1

Z follows a standard GPD
and the corresponding D-norm is given by Z.
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If one drops the condition that the generator is bounded, then the distribution function
of −U 1

Z is not a GPD itself but somewhat close to a standard GPD, cf. Theorem 1.2.26
below. Note that, in order to avoid dividing by zero, −U 1

Z may be substituted by
max

{
m1, −U 1

Z

}
for an arbitrary negative constant m < 0.

Although Theorem 1.1.41 can be used to carry over the term “GPD” into the space of
continuous functions, cf. Buishand et al. (2008, Section 2.3), the following section deals
with a slightly different approach.

1.2 Extreme Value Theory in C[0, 1]

Now we extend the results of the previous section to an uncountably infinite number of
dimensions, namely the space C[0, 1] of continuous real-valued functions defined on the
unit interval [0, 1] ⊂ R. Note that the distribution of a stochastic process X = (Xt)t∈[0,1]
with continuous sample paths is determined by its finite dimensional projections. The
identity

P(Xt1 ≤ x1, . . . , Xtd
≤ xd) = lim

n→∞
P
(

X ≤
d∑

i=1
xi 1{ti} +n 1[0,1]\{t1,...,td}

)
,

which holds for all d ∈ N and (t1, x1), . . . , (td, xd) ∈ [0, 1]×R, suggests therefore to define
the distribution function of X as follows.

Definition 1.2.1 Let X = (Xt)t∈[0,1] be a stochastic process in C[0, 1] and put

E[0, 1] :=
{
f ∈ R[0,1] ⏐⏐ f is bounded and has a finite set of discontinuities

}
.

Then we call the function F : E[0, 1] → [0, 1] defined by F (f) := P(X ≤ f) the distribution
function of X. Furthermore the distribution function Ft of Xt is referred to as the t-th
margin of F for t ∈ [0, 1]. We say that F is non-degenerate if all of its margins are
non-degenerate.

The definition of max-stability carries over, cf. Giné et al. (1990):

Definition 1.2.2 Let η = (ηt)t∈[0,1] be a stochastic process in C[0, 1] such that its distri-
bution function G is non-degenerate. η is called a max-stable process (MSP) and G a max-
stable distribution (MSD) if for each n ∈ N there exist functions an ∈ C[0, 1] ∩ (0, ∞)[0,1]

and bn ∈ C[0, 1] such that
max1≤i≤n

{
η(i)}− bn

an

D= η

where η(1), η(2), . . . are independent copies of η. If in particular P(ηt ≤ x) = exp(x) for

13



1 Basics

all x ≤ 0 and t ∈ [0, 1], then η and G are referred to as a standard MSP and a standard
MSD, respectively.

Remark 1.2.3 From Giné et al. (1990, Corollary 3.4) — cf. Hofmann (2012, Lemma 2.2)
and de Haan and Ferreira (2006, Theorem 9.4.1) — we know

P
(

inf
t∈[0,1]

ξt > 0
)

= 1 = P
(

sup
t∈[0,1]

ηt < 0
)

whenever ξ is a simple MSP, i. e. P(ξt ≤ x) = exp
(
− 1

x

)
for all x > 0 and t ∈ [0, 1], and η

is a standard MSP. In this case −1[0,1]
ξ and −1[0,1]

η are standard max-stable and simple
max-stable, respectively, cf. Remark 1.1.24.

As before, standard MSDs will be characterized by means of D-norms, which are
defined analogously to Definition 1.1.25.

Definition 1.2.4 Let Z be a stochastic process in C[0, 1]∩[0, ∞)[0,1] that satisfies E(Z) =
1[0,1] and E(∥Z∥∞) < ∞. Then ∥·∥D defined by

∥f∥D := E(∥f Z∥∞) for all f ∈ E[0, 1]

is called a D-norm with generator Z. Furthermore, two generators are equivalent if they
give rise to the same D-norm. The value

1[0,1]


D = E(∥Z∥∞) is also referred to as the
generator constant of Z.

Note the additional requirement E(∥Z∥∞) < ∞ of a generator Z, which is trivial if Z

is finite dimensional; cf. de Haan and Ferreira (2006, Corollary 9.4.5). As in the finite
dimensional setting, it is easily verified that any D-norm ∥·∥D is a norm satisfying

(1.2.5) ∥·∥∞ ≤ ∥·∥D ≤
1[0,1]


D ∥·∥∞ ,

cf. Hofmann (2012, Lemma 2.6). Giné et al. (1990, Proposition 3.2) implies furthermore
a functional version of Theorem 1.1.26:

Theorem 1.2.6 (Giné et al., 1990)

(i) For any standard MSD G there is a D-norm ∥·∥D such that

(1.2.7) G(f) = exp(− ∥f∥D) for all f ∈ E[0, 1] ∩ (−∞, 0][0,1].

Conversely, each D-norm ∥·∥D defines a standard MSD G by (1.2.7).

14
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(ii) For each D-norm ∥·∥D there exist r > 0 and a generator Z of ∥·∥D such that
∥Z∥∞ = r with probability one.

Contrary to Theorem 1.1.26, this result makes no assertion whether r and the distribu-
tion of Z in (ii) are uniquely determined. Furthermore, (ii) just considers the sup-norm
∥·∥∞ instead of an arbitrary norm ∥·∥, which seems to be less general. It is, however,
natural to restrict oneself to the sup-norm since the open balls with respect to ∥·∥∞
generate the underlying Borel-σ-algebra B(C[0, 1]); while all norms are equivalent in the
finite dimensional framework, this is not true in C[0, 1]. Equation (1.2.5) shows moreover
that all D-norms are equivalent to the sup-norm.

Copula Processes and the Domain of Attraction

In Section 1.1 copulas have been quite a useful tool to characterize the domain of attraction
of an MSD, and thus motivated to consider standard MSDs only. Now we deal with a
functional extension.

Definition 1.2.8 A stochastic process U = (Ut)t∈[0,1] in R[0,1] is called a copula process
if Ut ∼ U[0, 1] holds for all t ∈ [0, 1]. We say that U is a copula process of a stochastic
process X = (Xt)t∈[0,1] if

(
F −1

t (Ut)
)

t∈[0,1] has the same distribution as X, where F −1
t

denotes the quantile function of Xt.

Although it may appear natural to require that a copula process of a sample continuous
process is in C[0, 1] as well, we will see in Section 3.3 that there are rather simple
processes that do not have a continuous copula process. However, any process in C[0, 1]
with continuous marginal distributions does have a copula process in C[0, 1], which is
easy to prove.

Lemma 1.2.9 Let X = (Xt)t∈[0,1] be a stochastic process in C[0, 1] where Ft is the
distribution function of Xt, t ∈ [0, 1]. If all Ft, t ∈ [0, 1], are continuous, then U =
(Ft(Xt))t∈[0,1] is a copula process of X, and U is in C[0, 1].

In particular, if X and U are given as in Lemma 1.2.9, then X can be reconstructed
from U and Ft, t ∈ [0, 1]: Since all margins Ft, t ∈ [0, 1], are continuous, we have(
F −1

q (Uq)
)

q∈Q∩[0,1] = (Xq)q∈Q∩[0,1] with probability one. But then X is already completely
determined because all of its sample paths are continuous.

Definition 1.2.10 Denote by X = (Xt)t∈[0,1] a stochastic process in C[0, 1] and by F

the distribution function of X. If all margins Ft, t ∈ [0, 1], of F are continuous, then we
call (Ft(Xt))t∈[0,1] the copula process of X, and its distribution function the copula of F .

15



1 Basics

As shown by Giné et al. (1990, Corollary 3.6) and Hofmann (2012, Proposition 2.10),
any MSD can be transformed into a standard MSD and vice versa. This is done by
transforming the margins, whereas the dependence structure between the margins remains
the same; cf. the discussion following Remark 1.1.30. The copula of an MSD depends
therefore on the corresponding D-norm but not on the margins of that MSD. According
to (1.1.31), we define a functional extreme value copula as follows, cf. Ribatet and Sedki
(2013, Section 3).

Definition 1.2.11 A copula C is called an extreme value copula (EVC) if it has the
representation

C(f) = exp(− ∥log(f)∥D) for all f ∈ E[0, 1] ∩ (0, 1][0,1]

with respect to some D-norm ∥·∥D.

While the case of complete dependence is characterized by the condition
1[0,1]


D = 1,

which is analogous to Section 1.1, there is no standard MSP in C[0, 1] which corresponds to
the case of independence. In fact it is checked easily that

{1[0,1]


D

⏐⏐ ∥·∥D is a D-norm
}

=
[1, ∞).

Lemma 1.2.12 (Hofmann, 2012, Lemma 2.12; cf. Lemma 1.1.32) Any D-norm ∥·∥D

satisfies ∥·∥D = ∥·∥∞ if and only if
1[0,1]


D = 1. Moreover, for any generator Z of

∥·∥∞ there is some univariate random variable Z ≥ 0 satisfying E(Z) = 1 such that
Z = Z 1[0,1] with probability one. Similarly, if η is a standard MSP with D-norm ∥·∥∞,
then η = η 1[0,1] with probability one where η is a standard negative exponential random
variable.

As in the multivariate context, copulas can be used to characterize the domain of
attraction of a functional MSD. While convergence of distribution functions, for all
continuity points of the limit distribution, is equivalent to weak convergence in the finite
dimensional case, the extension to function space is twofold: The domain of attraction of
an MSD may be defined by weak convergence of suitably standardized maxima, or by
convergence of their corresponding distribution functions.

Definition 1.2.13 (Aulbach et al., 2013) Let F be the distribution function of some
stochastic process X in C[0, 1]. If G is an MSD with corresponding MSP η and if for
each n ∈ N there are an ∈ C[0, 1] ∩ (0, ∞)[0,1] and bn ∈ C[0, 1] such that

(1.2.14) F n(an f + bn) →n→∞ G(f) for all f ∈ E[0, 1]
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then F is in the domain of attraction of G and we write F ∈ D(G) or X ∈ D(η). If
X(1), X(2), . . . are independent copies of X and

(1.2.15) max1≤i≤n
{
X(i)}− bn

an

D→ η as n → ∞

then we write F ∈ Dw(G) or X ∈ Dw(η), according to de Haan and Lin (2001).

Note that F ∈ Dw(G) — i. e. the standardized maximum of the X(i) converges weakly
to η — is a sufficient condition for (1.2.14). We refer to Hofmann (2012) for a comparison
of F ∈ D(G), F ∈ Dw(G), and other types of convergence.

The domain of attraction condition (1.2.14) can be decomposed into a condition on
the margins and a copula condition, yielding a functional analogue of Theorem 1.1.18
and Lemma 1.1.20; see Theorem 1.2.18 below. A similar decomposition of (1.2.15) can
be found in de Haan and Ferreira (2006, Theorem 9.2.1), cf. de Haan and Lin (2001,
Theorem 2.8), and is stated here for easier reference. In the following, however, we will
focus on the more general type of convergence, i. e. (1.2.14).

Theorem 1.2.16 (de Haan and Ferreira, 2006; cf. de Haan and Lin, 2001) Let X =
(Xt)t∈[0,1] be a stochastic process in C[0, 1], and denote its distribution function by F .
Suppose that all margins Ft, t ∈ [0, 1], of F are continuous. Moreover, let U be the copula
process of X. If η is an MSP with corresponding MSD G and margins Gt, t ∈ [0, 1],
then the following assertions hold:

(i) If X ∈ Dw(η) then U ∈ Dw(η̄), where η̄ =
(
log(Gt(ηt))

)
t∈[0,1] is a standard MSP,

and there are functions an ∈ C[0, 1] ∩ (0, ∞)[0,1] and bn ∈ C[0, 1] such that

(1.2.17) sup
t∈[0,1]

⏐⏐F n
t (an(t) x + bn(t)) − Gt(x)

⏐⏐ →n→∞ 0 for all x ∈ R.

(ii) If U ∈ Dw(η̄) for some standard MSP η̄ and if (1.2.17) holds for some an ∈ C[0, 1]∩
(0, ∞)[0,1] and bn ∈ C[0, 1], then we have X ∈ Dw(η) and η

D=
(
G−1

t (exp(η̄t))
)

t∈[0,1].

For the more general case, the prerequisites are somewhat stricter:

Theorem 1.2.18 (Aulbach et al., 2015a, Theorem 2.1) Let X be a stochastic process
in C[0, 1] with distribution function F , continuous margins Ft, t ∈ [0, 1], and copula
C. Moreover, let η be an MSP with corresponding MSD G and margins Gt, t ∈ [0, 1].
Suppose that there are functions an ∈ C[0, 1] ∩ (0, ∞)[0,1] and bn ∈ C[0, 1] satisfying

(1.2.19) sup
t∈[0,1]

⏐⏐F n
t (an(t) f(t) + bn(t)) − Gt(f(t))

⏐⏐ →n→∞ 0 for all f ∈ E[0, 1] .
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Then we have:

(i) If F ∈ D(G), then

(1.2.20) Cn
(
1[0,1] + 1

n
f

)
→ exp(− ∥f∥D) as n → ∞

holds for all f ∈ E[0, 1] ∩ (−∞, 0][0,1] where ∥·∥D is the D-norm of the standard
MSP

(
log(Gt(ηt))

)
t∈[0,1].

(ii) If (1.2.20) holds for some D-norm ∥·∥D and all f ∈ E[0, 1] ∩ (−∞, 0][0,1], then
F ∈ D(G). In this case we have η

D=
(
G−1

t (exp(η̄t))
)

t∈[0,1] for any standard MSP
(η̄t)t∈[0,1] with D-norm ∥·∥D.

Similar to Section 1.1, both preceding results decompose the corresponding domain
of attraction condition into a condition on the margins and a condition on the copula.
In the following we will focus on the copula process condition (1.2.20), which means to
consider standard MSDs and their D-norms.

Generalized Pareto Distributions

As in the finite dimensional framework one obtains a suitable model for large observations,
i. e. data exceeding a high threshold, by considering generalized Pareto processes, which
are defined analogously to Definition 1.1.34:

Definition 1.2.21 A distribution function W on E[0, 1] is called a standard generalized
Pareto distribution (GPD) if there are a D-norm ∥·∥D and a constant x0 < 0 such that
W (f) = 1 − ∥f∥D holds for all f ∈ E[0, 1] ∩ [x0, 0][0,1]. In this case, a stochastic process
in C[0, 1] with distribution function W is referred to as a standard generalized Pareto
process (GPP).

The both results from Theorem 1.1.35 and Theorem 1.1.41 carry over to stochastic
processes. The proof of the functional version of Theorem 1.1.35 is easy, and therefore
omitted.

Theorem 1.2.22 Let η be a standard MSP with D-norm ∥·∥D. The following assertions
hold:

(i) If Z is a generator of ∥·∥D that satisfies P
(
Z ≤ c 1[0,1]

)
= 1 for some c ≥ 1, there

is a standard GPD W such that

W (f) = 1 − ∥f∥D for f ∈ E[0, 1] ∩
[
−1

c
, 0
][0,1]

.
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(ii) For each g ∈ E[0, 1] ∩ (−∞, 0][0,1] \ {0}[0,1] we have

lim
r→0+

P
(
η ≤ r f

⏐⏐ η � r g
)

= 1 − ∥f∥D

∥g∥D

for f ∈ E[0, 1] ∩
[
g, 0[0,1]

]

(iii) If V is a standard GPP with D-norm ∥·∥D, there is for each g ∈ E[0, 1]∩(−∞, 0][0,1]\
{0}[0,1] some r0 > 0 such that

P
(
V ≤ r f

⏐⏐ V � r g
)

= 1 − ∥f∥D

∥g∥D

for f ∈ E[0, 1] ∩
[
g, 0[0,1]

]
and r ∈ (0, r0].

Note that part (iii) is the excursion stability of a functional GPD, cf. (1.1.38). The
generation of a stochastic process that follows a given GPD, cf. Theorem 1.1.41, has
already been considered in Aulbach et al. (2012b, Section 4):

Theorem 1.2.23 (Aulbach et al., 2012b)

(i) For any D-norm ∥·∥D there exist x0 ∈ [−1, 0) and a generator Z of ∥·∥D satisfying
P
(
Z ≤ 1

|x0| 1[0,1]
)

= 1 such that

(1.2.24) P
(

−U
1[0,1]

Z
≤ f

)
= 1 − ∥f∥D for all f ∈ E[0, 1] ∩ [x0, 0][0,1]

where the random variable U ∼ U[0, 1] is independent of Z.

(ii) Let U ∼ U[0, 1] be independent of a generator Z with corresponding D-norm ∥·∥D.
If there is a function g ∈ E[0, 1] ∩ [1, ∞)[0,1] such that P(Z ≤ g) = 1, then (1.2.24)
holds for some x0 < 0.

Note that −U
1[0,1]

Z takes values in [−∞, 0][0,1] \ {−∞}[0,1], which is not a subset of
C[0, 1]. In order to obtain a standard GPP, one may cut off the lower part of this process:
If h ∈ C[0, 1] ∩ (−∞, 0)[0,1] then

(1.2.25) V := max
{

h, −U
1[0,1]

Z

}
is a standard GPP which corresponds to the D-norm generated by Z.

Since Theorem 1.2.23 focuses on almost surely bounded generators, Example 1.1.28
raises the question whether there is a similar result for unbounded generators. The
following simple extension of Theorem 1.2.23 shows that the above boundary condition
is crucial, and slightly sharpens the area in which the representation P

(
−U

1[0,1]
Z ≤ ·

)
=

1 − ∥·∥D holds; cf. the proof of Hofmann (2009, Theorem 6.2.1).
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Theorem 1.2.26 Consider an arbitrary generator Z = (Zt)t∈[0,1] together with its D-
norm ∥·∥D. If U ∼ U[0, 1] is independent of Z, then we have

P
(

−U
1[0,1]

Z
≤ f

)
= 1 − ∥f∥D + r(f) for f ∈ E[0, 1] ∩ (−∞, 0][0,1]

where the remainder r(f) is non-negative and satisfies

(1.2.27) sup
g∈E[0,1]∩[f,0[0,1]]

r(g) → 0 as ∥f∥∞ → 0.

Furthermore P(Z ≤ h) = 1 holds for some h ∈ E[0, 1] ∩ [1, ∞)[0,1] if and only if r(f) = 0
for all f ∈ E[0, 1] ∩

[
−1[0,1]

h , 0[0,1]
]
.

Proof. Since U and Z are independent, we get

r(f) := P
(

−U
1[0,1]

Z
≤ f

)
− 1 + ∥f∥D

= P(U ≥ ∥f Z∥∞) − E(1 − ∥f Z∥∞)

=
∫
C[0,1]

1 − P(U ≤ ∥f z∥∞) (P ∗ Z)(dz) − E(1 − ∥f Z∥∞)

= E
(
(1 − ∥f Z∥∞) 1[0,1](∥f Z∥∞)

)
− E(1 − ∥f Z∥∞)

= E
[
(∥f Z∥∞ − 1) 1(1,∞)(∥f Z∥∞)

]
≥ 0 for f ∈ E[0, 1] ∩ (−∞, 0][0,1].

Because of
⏐⏐(∥f Z∥∞ − 1) 1(1,∞)(∥f Z∥∞)

⏐⏐ ≤ 1+∥f Z∥∞ ≤ 1+∥Z∥∞ for all f ∈ E[0, 1]∩[
− 1[0,1], 0[0,1]

]
, the dominated convergence theorem implies (1.2.27). Furthermore we

have
r

(
−
1[0,1]

h

)
= 0 for some h ∈ E[0, 1] ∩ [1, ∞)[0,1]

if and only if

1 = P
(−1[0,1]

h
Z


∞

≤ 1
)

= P(Z ≤ h),

which completes the proof.

Although our definition of a (standard) GPP differs from the one introduced by Buishand
et al. (2008, Section 2.3), cf. Aulbach et al. (2013, Examples 1 and 5), Theorem 1.2.23
shows that one might switch between both definitions without loss of generality. The
difference is that in the sense of Definition 1.2.21, a standard GPP is any stochastic
process in C[0, 1] whose distribution function has the representation 1 − ∥·∥D in its upper
tail, whereas the definition in Buishand et al. (2008, Section 2.3) considers processes of
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the form (1.2.25) only, cf. Aulbach et al. (2012b). We also refer to Ferreira and de Haan
(2014), Aulbach et al. (2015a), and Dombry and Ribatet (2015) for further recent results
on GPPs.

In the finite dimensional case the domain of attraction has been characterized by
univariate domain of attraction conditions together with a GPD-approximation of a
copula, cf. Theorem 1.1.39. While Theorem 1.2.18 addresses an analogous decomposition
into a copula condition and some kind of uniform domain of attraction of the margins, a
corresponding GPD-approximation is easily obtained from (1.2.20), cf. Aulbach et al.
(2013, Proposition 8).

Theorem 1.2.28 (Aulbach et al., 2013) For a functional copula C and a standard MSD
G with D-norm ∥·∥D, the assertions C ∈ D(G) and

C
(
1[0,1] +t f

)
= 1 − t ∥f∥D + o(t) for f ∈ E[0, 1] ∩ (−∞, 0][0,1] as t → 0+

are equivalent.

The preceding result is the functional version of Lemma 1.1.20. Another necessary yet
not sufficient condition for U ∈ D(η), which is of the form of Theorem 1.1.39 (i), will be
considered in Lemma 2.1.1. This condition will then be sharpened such that U ∈ D(η)
follows and will serve as the basis for the statistical tests in the following chapter.
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2 Testing for Generalized Pareto Models

So far we have considered two different frameworks that share very similar properties:
the finite dimensional and the functional one. As we have seen in Chapter 1, GPDs
are in both setups natural tools for modeling exceedances above a high threshold. In
particular, the finite dimensional marginal distribution functions of an MSD and a GPD
are, respectively, MSDs and GPDs themselves.

Now consider we aim at modeling those exceedances adequately for a given data
set. Chapter 1 shows that if the threshold is sufficiently large, the distribution of the
exceedances should be close to a GPD. As the number of dimensions of our observed
data increases, or if the data are functional, adapting a model based on a GPD gets
more and more complicated since the dependencies among the single components need
to be modeled, too; see e. g. Aulbach et al. (2012a) and Aulbach et al. (2012b). A first
step in the model selection procedure could be to examine how close the data are to a
GPD. To this end, Section 2.1 derives certain neighborhoods of a GPD, which have a
polynomial rate of convergence towards a GPD. The subsequent sections will present
a goodness-of-fit test with the null hypothesis that the observed data originate from a
distribution which belongs to such a neighborhood.

The test itself will be developed in several steps: Section 2.2 first introduces the testing
procedure in finite dimensions when copula data are observed, and then extends the
results to general data. Similarly, the approach is carried over to stochastic processes in
C[0, 1] by Section 2.3. Section 2.4 shows that the test consistently links both frameworks,
the finite dimensional and the functional one: We will assume that the data are actually
generated by some continuous process which cannot be observed as a whole but at a
finite set of observation points only. If the number of observation points tends to infinity
in a certain manner, we end up with the test statistic of Section 2.3.

The highlight of this chapter will be that the asymptotic distribution of our test statistic
is the same for all frameworks under consideration — no matter whether we observe
finite or infinite dimensional data and whether these emerge from a copula or not. In
order to increase its readability, this chapter focuses on the derivation of the test itself; a
discussion of the strength of the technical prerequisites is deferred to Chapter 3, apart
from minor exceptions.
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2.1 Null Hypothesis

Contrary to the multivariate framework in Section 1.1, where each random vector can
be decomposed into its univariate marginal distributions and a copula random vector,
there are stochastic processes in C[0, 1] which do not have a copula process in C[0, 1]; cf.
Section 3.3. However, recall that a stochastic process in C[0, 1] with continuous marginal
distributions does have a corresponding copula process, cf. Lemma 1.2.9, and that the
class of all those processes is sufficient for many applications. For example, think of a
dike that prevents flooding from the sea. Assume that the sea level is observed at each
point of the length of this dike along the coast. As the waves approach the coast, the
sea level increases and decreases continuously. Attempting to model the distribution
of the sea level at a single observation point discontinuously would mean that certain
levels would appear with a strictly positive probability, whereas slightly lower and slightly
larger wave heights would have probability zero, which seems unnatural.

In what follows we will focus on stochastic processes that do have a continuous copula
process. Under this assumption, which will be reviewed in Section 3.3 below, we have by
Theorem 1.2.18 that we can examine the marginal distributions of a stochastic process
and the corresponding continuous copula process separately, cf. Theorem 1.1.18 and
Theorem 1.2.16. Precisely, if we look for a suited probabilistic model for the upper tail of
the distribution of a stochastic process X = (Xt)t∈[0,1], the corresponding copula process
U = (Ut)t∈[0,1] in C[0, 1] should, in presence of (1.2.19), be modeled such that U is in
the domain of attraction of a standard MSP. In particular, Theorem 1.2.28 yields the
following necessary condition for U ∈ D(η), which is quite similar to Theorem 1.1.39 (i).

Lemma 2.1.1 Consider a functional copula C and a standard MSD G with corresponding
D-norm ∥·∥D. Then C ∈ D(G) implies C(f) = 1 −

f − 1[0,1]


D + r(f) for each
f ∈ E[0, 1] ∩ [0, 1][0,1] where the remainder satisfies

(2.1.2) r
(
1[0,1]

)
= 0 and lim

t→0+
sup

f∈E[0,1]∩[0,1][0,1]

∥f − 1[0,1]∥∞<t

|r(f)| = 0.

Proof. Consider a copula process U = (Ut)t∈[0,1] in C[0, 1] with distribution function
C. If g ∈ E[0, 1] ∩ (−∞, 0][0,1] satisfies ∥g∥∞ = 1, then there is for each n ∈ N some
tn ∈ [0, 1] such that g(tn) ∈

[
−1, −1 + 1

n

]
. This gives g ≤ −

(
1 − 1

n

)
1{tn}, and thus

P
(
U � 1[0,1] +t g

)
≥ P

(
U � 1[0,1] −t

(
1 − 1

n

)
1{tn}

)
= P

(
Utn > 1 − t

(
1 − 1

n

))
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for arbitrary t ∈ (0, 1) and n ∈ N. We obtain on the one hand P
(
U � 1[0,1] +t g

)
≥ t and

P
(
U � 1[0,1] +t g

)
− t ∥g∥D

t
≥ 1 − ∥g∥D ≥ 1 −

1[0,1]


D

for all t ∈ (0, 1), cf. (1.2.5). On the other hand, Theorem 1.2.28 gives

P
(
U � 1[0,1] +t g

)
− t ∥g∥D

t
≤

P
(
U � (1 − t) 1[0,1]

)
− t

1[0,1]


D

t
+
1[0,1]


D − ∥g∥D

≤ o(1) +
1[0,1]


D − 1 as t → 0+

since ∥g∥D ≥ ∥g∥∞ = 1. We conclude for f ∈ E[0, 1] ∩
(
[0, 1][0,1] \ {1}[0,1])

|r(f)| =
⏐⏐⏐P(U � 1[0,1] +

(
f − 1[0,1]

))
−
f − 1[0,1]


D

⏐⏐⏐
≤ sup

g∈E[0,1]∩(−∞,0][0,1]

∥g∥∞=1

⏐⏐⏐P(U � 1[0,1] +
f − 1[0,1]


∞ g

)
−
f − 1[0,1]


∞ ∥g∥D

⏐⏐⏐
<
f − 1[0,1]


∞
1[0,1]


D

whenever
f − 1[0,1]


∞ is sufficiently small, which implies (2.1.2).

So far, we have seen that C ∈ D(G) implies a certain approximation of the upper tail
of C in terms of a GPD. Recall that by Theorem 1.1.39 a sharper version of (2.1.2) is, in
the multivariate framework, necessary and sufficient for a copula to be in the domain of
attraction of a standard MSD. In order to emphasize the similarities of both frameworks
under consideration, the finite dimensional one and the functional one, it is convenient
to introduce some further notation.

Definition 2.1.3 For I = [0, 1]d or I = E[0, 1] ∩ [0, 1][0,1] we define

B+(x, r) := {y ∈ I | 0 < ∥y − x∥∞ < r} for x ∈ I and r > 0,

i. e. we take, with respect to the sup-norm, the open ball in I with center x and radius r

excluding x.

Motivated by Theorem 1.1.39 and Lemma 2.1.1, we now assume that the copula C

underlying the observed data has the expansion

C(f) = 1 −
f − 1[0,1]

+ r(f) for all f ∈ E[0, 1] ∩ [0, 1][0,1]

with some norm ∥·∥, and that the remainder satisfies
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2 Testing for Generalized Pareto Models

(2.1.4) r
(
1[0,1]

)
= 0 and lim

t→0+
sup

f∈B+(1[0,1],t)

|r(f)|f − 1[0,1]


∞
= 0,

which corresponds to the condition in Theorem 1.1.39. If ∥·∥ and ∥·∥∞ are equivalent, we
obtain

Cn
(
1[0,1] + 1

n
f

)
=
[
1 − 1

n
∥f∥ + r

(
1[0,1] + 1

n
f

)]n

=

⎡⎣1 − ∥f∥
n

⎛⎝1 −
r
(
1[0,1] + 1

n f
)

1
n ∥f∥∞

∥f∥∞
∥f∥

⎞⎠⎤⎦n

→ exp(− ∥f∥) as n → ∞

for f ∈ E[0, 1] ∩
(
(−∞, 0][0,1] \ {0}[0,1]) since

⏐⏐⏐⏐⏐⏐
r
(
1[0,1] + 1

n f
)

1
n ∥f∥∞

⏐⏐⏐⏐⏐⏐ ≤ sup
g∈B+(1[0,1],

1
n−1 ∥f∥∞)

|r(g)|g − 1[0,1]


∞
→ 0 as n → ∞.

This proves that ∥·∥ is a D-norm and that U is in the domain of attraction of the standard
MSD with D-norm ∥·∥, cf. Aulbach et al. (2013, Remark 2) and Theorem 1.1.39. Due to
(1.2.5), the assumption of ∥·∥ and ∥·∥∞ being equivalent cannot be dropped.

In what follows we will focus on the rate of convergence of the remainder specified
in (2.1.4). Definition 2.1.5 therefore distinguishes the both cases where the remainder
vanishes and where the rate of convergence is of polynomial order.

Definition 2.1.5 A (finite dimensional) copula C is called a (finite dimensional) general-
ized Pareto copula (GPC) if there is a (finite dimensional) D-norm ∥·∥D and u0 ∈ [0, 1)
satisfying

C(u) = 1 − ∥u − 1∥D for all u ∈ [u0, 1].

Then for δ > 0 we call the set Dδ(C) of all distribution functions F satisfying

∃c,ε>0 ∀u∈B+(1,ε)

⏐⏐⏐⏐⏐1 − F (u) − ∥u − 1∥D

∥u − 1∥∞

⏐⏐⏐⏐⏐ ≤ c ∥u − 1∥δ
∞

the (finite dimensional) δ-neighborhood of the GPC C.
Similarly, a (functional) copula C is called a (functional) GPC if there exist a D-norm

∥·∥D and f0 ∈ E[0, 1] ∩ [0, 1)[0,1] such that

C(f) = 1 −
f − 1[0,1]


D for all f ∈ E[0, 1] ∩

[
f0, 1[0,1]

]
.
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2.1 Null Hypothesis

Then for δ > 0 the set Dδ(C) of all distribution functions F having the property

∃c,ε>0 ∀f∈B+(1[0,1],ε)

⏐⏐⏐⏐⏐1 − F (f) −
f − 1[0,1]


Df − 1[0,1]


∞

⏐⏐⏐⏐⏐ ≤ c
f − 1[0,1]

δ
∞

is called the (functional) δ-neighborhood of C.

Obviously, a distribution function C is a GPC if and only if C(· − 1) or C
(
· − 1[0,1]

)
,

respectively, is a standard GPD and the univariate margins of C correspond to the
uniform distribution on [0, 1]. It is easy to verify that any finite dimensional projection of
a GPC is a GPC as well. Moreover, if there exists δ > 0 such that F ∈ Dδ(C) for some
GPC C, then any finite dimensional projection of F is also in the δ-neighborhood of
the corresponding projection of C. Any stochastic process X in C[0, 1] with distribution
function F ∈ Dδ(C) satisfies in particular

P
(
X < 1[0,1]

)
= 1 + lim

m→∞

[
F

((
1 − 1

m

)
1[0,1]

)
− C

((
1 − 1

m

)
1[0,1]

)]
= 1.

We shortly summarize some further properties of δ-neighborhoods:

Lemma 2.1.6 Let C, C∗ be GPCs with corresponding D-norms ∥·∥D , ∥·∥D,∗. Further let
F be a distribution function.

(i) We have Dδ1(C) ⊂ Dδ2(C) for 0 < δ2 < δ1.

(ii) Any standard GPD W with D-norm ∥·∥D satisfies W (· + 1) ∈ Dδ(C) for all δ > 0
in the finite dimensional case and W

(
· + 1[0,1]

)
∈ Dδ(C) for all δ > 0 in the

functional case.

(iii) If there is some δ > 0 with F ∈ Dδ(C), then F ∈ D(G) where G is the standard
MSD with D-norm ∥·∥D.

(iv) If F ∈ Dδ(C) and F ∈ Dδ∗(C∗) for some 0 < δ ≤ δ∗, then F ∈ Dδ∗(C) and
∥·∥D = ∥·∥D,∗.

(v) If C ∈ Dδ0(C∗) for some δ0 > 0, then C∗ ∈ Dδ(C) for all δ > 0 and ∥·∥D = ∥·∥D,∗.

Proof. Parts (i) and (ii) are obvious. We focus on the functional cases of the remaining
assertions; the finite dimensional ones are proven similarly.

The assumption F ∈ Dδ(C) implies that there exist K, ε > 0 such that the function
r : E[0, 1] ∩ (−∞, 0][0,1] → R given by r(f) = F

(
1[0,1] + 1

n f
)

− 1 + 1
n ∥f∥D satisfies

∥f∥∞
∥f∥D

|r(f)|
1
n ∥f∥∞

≤ K

( 1
n

∥f∥D

)δ

whenever 0 <
1
n

∥f∥∞ < ε.
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2 Testing for Generalized Pareto Models

Now the arguments prior to Definition 2.1.5 yield

F n
(
1[0,1] + 1

n
f

)
=
[
1 − 1

n
∥f∥D

[
1 + O

(( 1
n

∥f∥D

)δ
)]]n

→ exp(− ∥f∥D)

as n → ∞ pointwise for all f ∈ E[0, 1] ∩ (−∞, 0][0,1], as asserted in (iii).
For part (iv) it suffices to show ∥·∥D = ∥·∥D,∗ since then Dδ∗(C) = Dδ∗(C∗) follows by

Definition 2.1.5. Note that F ∈ Dδ(C) and F ∈ Dδ∗(C∗) imply the existence of ε, c, c∗ > 0
such that⏐⏐⏐⏐⏐∥f∥D,∗ − ∥f∥D

∥f∥∞

⏐⏐⏐⏐⏐ ≤
⏐⏐⏐⏐⏐1 − F

(
1[0,1] + f

)
− ∥f∥D

∥f∥∞

⏐⏐⏐⏐⏐+
⏐⏐⏐⏐⏐1 − F

(
1[0,1] + f

)
− ∥f∥D,∗

∥f∥∞

⏐⏐⏐⏐⏐
≤ (c + c∗) ∥f∥δ

∞ for all f ∈ B+
(
0[0,1], ε

)
.

For f ∈ E[0, 1] \
{
0[0,1]

}
we obtain

⏐⏐⏐⏐⏐∥f∥D,∗ − ∥f∥D

∥f∥∞

⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐⏐⏐
 η

∥f∥∞
f


D,∗
−
 η

∥f∥∞
f


D η
∥f∥∞

f


∞

⏐⏐⏐⏐⏐⏐⏐ ≤ (c + c∗)ηδ for all η ∈ (0, ε),

which proves ∥·∥D = ∥·∥D,∗. Part (v) is, due to (ii), a special case of (iv).

The preceding result shows that δ-neighborhoods are consistently supplemented by
shifted standard GPDs. Therefore the convention u∞ = 0 for u ∈ [0, 1) leads to the
following identification:

Definition 2.1.7 Let C be a GPC with (finite dimensional or functional) D-norm ∥·∥D

and denote by D∞(C) the set of all distribution functions F such that F (· − 1) or
F
(
· − 1[0,1]

)
, respectively, is a standard GPD with D-norm ∥·∥D. Then we call D∞(C)

the ∞-neighborhood of C.

As outlined above, δ-neighborhoods provide a consistent approach of modeling data
by specifying how close the underlying distribution function is to a GPC. These kind of
models will serve as the null hypothesis for the tests in the subsequent sections.

Hypothesis 2.1.8 There exist δ ∈ (0, ∞] and a GPC such that the copula underlying
the observed data is in the δ-neighborhood of this GPC.

Remark 2.1.9 A similar condition has also been considered in Einmahl et al. (2006),
where a test for the bivariate extreme value condition is performed. Precisely, Hy-
pothesis 2.1.8 corresponds to Einmahl et al. (2006, Equation 2.5) and assures that the
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2.1 Null Hypothesis

underlying bivariate D-norm l(x1, x2) :=
(x1, x2)ᵀ


D is estimated consistently. Since

the cited authors use probabilities of the form P
(
1 − F1(X1) ≤ tx1, 1 − F2(X2) ≤ tx2

)
instead of copula probabilities, their function R has, in our notation, the representation
R(x) = ∥x∥1 − ∥x∥D for x ∈ [0, ∞)2. However, Einmahl et al. (2006) rely on a certain
representation of the bivariate spectral measure, cf. Remark 1.1.30, which does not seem
to extend to higher dimensions in an obvious manner. We also refer to Aulbach and Falk
(2012), who tested for standard GPPs instead of δ-neighborhoods.

While (2.1.4) assumes a locally uniform approximation of a distribution function by
means of a GPC, δ-neighborhoods require a certain quality of that approximation. As
seen before, any distribution function which is in a δ-neighborhood of a GPC C with
D-norm ∥·∥D is also in the domain of attraction of the standard MSD G with D-norm
∥·∥D, i. e.

⋃
δ∈(0,∞]Dδ(C) ⊂ D(G). Moreover, Falk and Reiss (2002, Theorem 1.1), Falk

et al. (2011, Theorem 5.5.5), and Aulbach et al. (2015a, Proposition 3.7) have shown that
a δ-neighborhood, roughly, collects all those distributions with a certain polynomial rate
of convergence towards that MSD. For convenience we state the functional version of
this result; its proof is analogous to Falk and Reiss (2002, Theorem 1.1).

Lemma 2.1.10 (Aulbach et al., 2015a) Let F be the distribution function of a stochastic
process in C[0, 1] ∩ (−∞, 1][0,1], and let C be a GPC with corresponding D-norm ∥·∥D.

(i) If δ ∈ (0, 1] and F is in the δ-neighborhood of C, then we have

(2.1.11) sup
f∈E[0,1]∩(−∞,0][0,1]

⏐⏐⏐⏐F n
(
1[0,1] + 1

n
f

)
− exp(− ∥f∥D)

⏐⏐⏐⏐ = O
( 1

nδ

)

as n → ∞.

(ii) Suppose that there is ε > 0 such that the derivative hf (c) := ∂
∂c F

(
1[0,1] +c |f |

)
exists for all c ∈ (−ε, 0) and f ∈ B− :=

{
g ∈ E[0, 1] ∩ (−∞, 0][0,1] ⏐⏐ ∥g∥∞ = 1

}
.

Moreover let Hf (c) := F
(
1[0,1] +c |f |

)
, c < 0, satisfy the von Mises condition

rf (c) := −c hf (c)
1 − Hf (c) − 1 →c→0− 0 for all f ∈ B−

and additionally

sup
f∈B−

⏐⏐⏐⏐∫ 0

c

rf (t)
t

dt

⏐⏐⏐⏐ →c→0− 0.

If (2.1.11) holds for some δ ∈ (0, 1], then F is in the δ-neighborhood of C.
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2 Testing for Generalized Pareto Models

Note that the family
{
Hf

⏐⏐ f ∈ B−
}

of univariate distribution functions on (−∞, 0]
completely determines the distribution function H(f) := F

(
1[0,1] + f

)
, f ∈ E[0, 1] ∩

(−∞, 0][0,1]. It is called the spectral decomposition of H, cf. Falk et al. (2011, Section 5.4).

2.2 Testing for Finite Dimensional δ-Neighborhoods

Now consider that we observe multivariate data and our aim is to check whether the
observed dependencies can be modeled by a copula that satisfies the null hypothesis
derived in Section 2.1, which is restated here for convenience. For examples of copulas
that satisfy this hypothesis and for examples of those that do not, we refer to Chapter 3.

Hypothesis 2.1.8 There exist δ ∈ (0, ∞] and a GPC such that the copula underlying
the observed data is in the δ-neighborhood of this GPC.

Assume that our data consist of independent realizations of a random vector X =
(X1, . . . , Xd)ᵀ with arbitrary distribution function F . Due to Theorem 1.1.13, there is a
copula C such that F (x) = C

(
F1(x1), . . . , Fd(xd)

)
for x = (x1, . . . , xd)ᵀ ∈ Rd, where Fi

denotes the i-th margin of F . If U = (U1, . . . , Ud)ᵀ has distribution function C, then we
obtain obviously

P
((

F −1
i (Ui)

)d

i=1
≤ x

)
= P

(
d⋂

i=1

{
Ui ≤ Fi(xi)

})
= F (x) for all x ∈ Rd,

i. e. we may assume X =
(
F −1

i (Ui)
)d

i=1 without loss of generality.
At first we will consider the case that F is a copula itself, i. e. our data actually consist

of independent realizations of the random vector U . After having derived a test statistic
for Hypothesis 2.1.8 in this framework, we will generalize our results to distribution
functions with continuous margins, utilizing the empirical counterpart of a copula.

Copula Data

Assume we observe independent copies U (1), . . . , U (n) of a random vector U = (U1, . . . , Ud)ᵀ

which is distributed according to a copula C. If Hypothesis 2.1.8 is true, there exist a
D-norm ∥·∥D and δ ∈ (0, ∞], K > 0, ε ∈ (0, 1] such that

⏐⏐P(U � u) − ∥u − 1∥D

⏐⏐ ≤ K ∥u − 1∥1+δ
∞ for all u ∈ B+(1, ε);

recall the convention u∞ = 0 for u ∈ [0, 1) and Definition 2.1.7. We obtain thus
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2.2 Testing for Finite Dimensional δ-Neighborhoods

(2.2.1) sup
u∈[(1−c)1,1]

⏐⏐P(U � u) − ∥u − 1∥D

⏐⏐ ≤ Kc1+δ for all c ∈ (0, ε),

i. e. the probability that U exceeds a threshold u can be approximated by ∥u − 1∥D,
uniformly for all u ≥ (1 − c)1.

A natural estimator of P(U � (1 − c)1) is the relative frequency of those random
vectors among U (1), . . . , U (n) which are not less than or equal to the threshold vector
(1 − c)1. Therefore consider

(2.2.2) SU(c) := 1
d

d∑
i=1
1(1−c,1](Ui), c ∈ (0, 1),

which is the mean number of those components of U that exceed the value 1−c. Actually,
SU(c) is a discrete version of the sojourn time that the random vector U spends above
the threshold 1 − c; see Falk and Hofmann (2011) for details as well as Section 2.3.

Definition 2.2.3 Let C be a d-variate copula and U = (U1, . . . , Ud)ᵀ a random vector in
Rd with distribution function C. For c ∈ (0, 1) we call SU(c) in (2.2.2) the sojourn time
of U above (1 − c)1, and

N
(n)
U (c) :=

n∑
i=1
1(0,1](SU (i)(c)), c ∈ (0, 1),

the number of exceedances above (1 − c)1 among independent copies U (1), . . . , U (n) of
U ; i. e. we count how many of the duplicates of U have at least one component that is
greater than 1 − c.

Since N
(n)
U (c) is B(n, p(c))-distributed with p(c) = P(U � (1 − c)1), an obvious esti-

mator of P(U � (1 − c)1) is

1
n

N
(n)
U (c) → P(U � (1 − c)1) with probability one as n → ∞.

In presence of Hypothesis 2.1.8, (2.2.1) shows that 1
n N

(n)
U (c) actually estimates c ∥1∥D

whenever c < ε. In order to test Hypothesis 2.1.8, we require c = cn ∈ (0, 1) to depend
on the sample size n and to satisfy cn → 0 as n → ∞.

Lemma 2.2.4 For δ ∈ (0, ∞] let C be a (finite dimensional) copula that is in the δ-
neighborhood of a GPC with D-norm ∥·∥D. If U has the distribution function C, we
obtain

(2.2.5) (ncn)
1
2

(
N

(n)
U (cn)
ncn

− ∥1∥D

)
D→ N(0, ∥1∥D) as n → ∞

for any sequence (cn)n∈N in (0, 1) with cn → 0, ncn → ∞, and nc1+2δ
n → 0 as n → ∞.
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2 Testing for Generalized Pareto Models

Proof. Lemma 1.1.20 and ncn → ∞ give

n
[
1 − C((1 − cn)1)

]
= ncn

1 − C((1 − cn)1)
cn

→ ∞ as n → ∞.

Thus Lindeberg’s central limit theorem — see e. g. Billingsley (2012, Theorem 27.2) —
implies

n∑
i=1

1(0,1]
(
SU (i)(cn)

)
− 1 + C((1 − cn)1)√

n C((1 − cn)1)
[
1 − C((1 − cn)1)

] D→ N(0, 1) as n → ∞

where U (1), . . . , U (n) are independent copies of U . Moreover there is some K > 0
satisfying

(ncn)
1
2

⏐⏐⏐⏐1 − C((1 − cn)1)
cn

− ∥1∥D

⏐⏐⏐⏐ ≤ K
(
nc1+2δ

n

) 1
2

whenever n is sufficiently large, cf. (2.2.1). Since nc1+2δ
n → 0 as n → ∞, the assertion

follows from C((1 − cn)1) → 1, 1
cn

[
1 − C((1 − cn)1)

]
→ ∥1∥D, and Slutsky’s theorem;

see e. g. Gut (2013, Theorem 11.4).

Remark 2.2.6 If δ = ∞, i. e. C is a GPC itself, the condition 0 = nc∞
n → 0 is trivial and

we have in particular 1
cn

[
1 − C((1 − cn)1)

]
= ∥1∥D whenever n is sufficiently large.

Note that the test statistic in (2.2.5) still depends on the usually unknown generator
constant ∥1∥D. That is we need to estimate ∥1∥D from the data in such a way that we
can still exploit the asymptotic normal distribution in Lemma 2.2.4. Recall the uniform
approximation (2.2.1), which holds if Hypothesis 2.1.8 is true. Thus we can consider
the k ∈ N different thresholds

(
1 − c

j

)
1, j = 1, . . . , k, simultaneously. This leads to a

generalization of Lemma 2.2.4, namely Corollary 2.2.9, which will be the crucial tool for
the proofs of the main results of this section, Theorem 2.2.10 and Theorem 2.2.12.

In order to reuse Corollary 2.2.9 in subsequent sections, we introduce an additional
sequence (mn)n∈N with mn ≤ n and mn → ∞ as n → ∞. The case mn < n will be of
particular interest when we consider more general data. The proof of Corollary 2.2.9 relies
on the following rather general tool, which will turn out to be useful in the functional
framework as well.

Lemma 2.2.7 Consider k ∈ N as well as two sequences (mn)n∈N and (pn)n∈N in N
and (0, 1), respectively, which satisfy pn → 0 and mnpn → ∞ as n → ∞. For each n ∈ N
let X

(n)
1 , . . . , X

(n)
mn be independent random elements with events A

(n)
1 ⊃ · · · ⊃ A

(n)
k such

that for all i ∈ {1, . . . , mn} and j ∈ {1, . . . , k}

P
(
X

(n)
i ∈ A

(n)
j

)
= pn

j

(
1 + rj(n)

)
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2.2 Testing for Finite Dimensional δ-Neighborhoods

with remainders that satisfy rj(n) = o
(
(mnpn)− 1

2
)

as n → ∞. Then we have

⎛⎜⎝mn∑
i=1

j 1
A

(n)
j

(
X

(n)
i

)
− pn

(mnpn)
1
2

⎞⎟⎠
k

j=1

D→ N
(
0, MM

ᵀ) as n → ∞

where

(2.2.8) M =
(
1[ℓ,∞)(j)

)
1≤j,ℓ≤k

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
1 1 0 . . . 0
...

... . . . . . . ...
1 1 . . . 1 0
1 1 . . . 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Proof. Let t = (t1, . . . , tk)ᵀ ∈ Rk \{0} and define the symmetric and positive semidefinite
k × k matrix Σn =

(
σ

(n)
jℓ

)
1≤j,ℓ≤k by

σ
(n)
jℓ := Cov

(
j 1

A
(n)
j

(
X

(n)
i

)
, ℓ 1

A
(n)
ℓ

(
X

(n)
i

))
= jℓ

(
pn
(
1 + rmax{j,ℓ}(n)

)
max{j, ℓ}

− p2
n

(
1 + rj(n)

)(
1 + rℓ(n)

)
jℓ

)

= min{j, ℓ} pn

(
1 + rmax{j,ℓ}(n) − pn

(
1 + rj(n)

)(
1 + rℓ(n)

)
min{j, ℓ}

)
.

Since MMᵀ = (min{j, ℓ})1≤j,ℓ≤k is positive definite and 1
pn

σ
(n)
jℓ → min{j, ℓ} as n → ∞,

tᵀΣnt is strictly positive for large n. We obtain furthermore

t
ᵀΣnt = Var

(
k∑

j=1
tjj 1

A
(n)
j

(
X

(n)
i

))
for i = 1, . . . , mn

and

sup
1≤i≤mn

⏐⏐⏐⏐⏐⏐⏐
k∑

j=1

tj

(
j 1

A
(n)
j

(
X

(n)
i

)
− pn

(
1 + rj(n)

))
(mntᵀΣnt)

1
2

⏐⏐⏐⏐⏐⏐⏐ ≤
k∑

j=1

|tj |
j (mnpn)

1
2

(
pn

tᵀΣnt

) 1
2

→ 0

with probability one as n → ∞. Lindeberg’s central limit theorem and Slutsky’s theorem
show therefore

t
ᵀ

⎛⎜⎝mn∑
i=1

j 1
A

(n)
j

(
X

(n)
i

)
− pn

(mnpn)
1
2

⎞⎟⎠
k

j=1

=
(

tᵀΣnt

pn

) 1
2 mn∑

i=1

k∑
j=1

tj

(
j 1

A
(n)
j

(
X

(n)
i

)
− pn

(
1 + rj(n)

))
(mntᵀΣnt)

1
2

+
k∑

j=1
tj(mnpn)

1
2 rj(n)
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D→ N
(
0, t

ᵀ
MM

ᵀ
t
)

as n → ∞.

Now the assertion follows from the Cramér-Wold Theorem, see e. g. Billingsley (2012,
Theorem 29.4).

The desired generalization of Lemma 2.2.4 is now a simple application of Lemma 2.2.7:

Corollary 2.2.9 Let δ ∈ (0, ∞] and k ∈ N. Furthermore let C be a (finite dimensional)
copula which is in the δ-neighborhood of some GPC with D-norm ∥·∥D. Consider a
random vector U with distribution function C. If (mn)n∈N and (cn)n∈N are sequences in
N and (0, 1), respectively, such that cn → 0, mncn → ∞, and mnc1+2δ

n → 0 as n → ∞,
then we have

1
k

k∑
j=1

j

mncn
N

(mn)
U

(
cn

j

)
→ ∥1∥D in probability as n → ∞

and (
(mncn)

1
2

(
j

mncn
N

(mn)
U

(
cn

j

)
− ∥1∥D

))k

j=1

D→ N
(
0, ∥1∥D MM

ᵀ) as n → ∞

where M is given in (2.2.8).

Proof. We have on the one hand

(mncn)
1
2

(
j

mncn
N

(mn)
U

(
cn

j

)
− ∥1∥D

)
=

mn∑
i=1

j 1(0,1]
(
SU (i)

( cn
j

))
− cn ∥1∥D

(mncn)
1
2

for all j ∈ {1, . . . , k}, where U (1), . . . , U (mn) denote independent copies of U . Since on
the other hand 1(0,1](SU(c)) = 1[0,1]\[0,(1−c)1](U), c ∈ (0, 1), and

P
(

U �
(

1 − cn

j

)
1
)

= cn

j
∥1∥D

[
1 + O

((
cn

j

)δ
)]

as n → ∞

for all j ∈ {1, . . . , k}, Lemma 2.2.7 implies the second assertion. This yields in particular

(mncn)
1
2

(
j

mncn
N

(mn)
U

(
cn

j

)
− ∥1∥D

)
D→ N(0, j ∥1∥D) as n → ∞

for each j ∈ {1, . . . , k}, and thus j
mncn

N
(mn)
U

( cn
j

)
→ ∥1∥D in probability, which completes

the proof.

34



2.2 Testing for Finite Dimensional δ-Neighborhoods

The matrix M in (2.2.8) refers to a well-known stochastic process: Let B = (Bt)t∈[0,∞)
be a standard Brownian motion, i. e. P(B0 = 0) = 1, all sample paths of B are continu-
ous, and the increments Bti − Bti−1 , i = 1, . . . , n, are independent and N(0, ti − ti−1)-
distributed whenever n ∈ N and 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn; see e. g. Schilling and Partzsch
(2014). Then the random vector (Bj − Bj−1)k

j=1 is k-dimensional standard normally
distributed and we have (Bj)k

j=1 = M(Bj − Bj−1)k
j=1. Corollary 2.2.9 therefore has

the following interpretation: Assume that we observe independent data from a copula
satisfying Hypothesis 2.1.8, and consider the vector of exceedance frequencies above
certain high threshold vectors. If this random vector is normalized properly, the result
has asymptotically the same distribution as (Bj)k

j=1, a standard Brownian motion which
is evaluated for integer arguments. Motivated by the usual chi-square goodness-of-fit
test, we obtain a first test for Hypothesis 2.1.8 by diagonalizing the covariance matrix of
(Bj)k

j=1.

Theorem 2.2.10 Let δ ∈ (0, ∞] and k ∈ N, k ≥ 2. Furthermore let C be a (finite
dimensional) copula which is in the δ-neighborhood of some GPC with D-norm ∥·∥D.
If the random vector U has distribution function C and (cn)n∈N is a sequence in (0, 1)
satisfying cn → 0, ncn → ∞, and nc1+2δ

n → 0 as n → ∞, we obtain

Tn :=
∑k

j=1

(
j N

(n)
U

( cn
j

)
− 1

k

∑k
ℓ=1 ℓ N

(n)
U

( cn
ℓ

))2

1
k

∑k
ℓ=1 ℓ N

(n)
U

(
cn
ℓ

) D→
k−1∑
j=1

λjξ2
j as n → ∞

where
λj = 1

4 sin2
(

j
k

π
2

) , j = 1, . . . , k − 1,

and ξ1, . . . , ξk−1 are independent and standard normally distributed random variables.

Proof. Let Ik be the k × k unit matrix and let Ek = (1)1≤i,j≤k be the k × k-matrix where
all entries equal 1. Then P := Ik − 1

k Ek is a projection matrix, i. e. P = P ᵀ = P 2,
satisfying P (x)k

i=1 = 0 for all x ∈ R. Thus Corollary 2.2.9 and Slutsky’s theorem show
that Tn is asymptotically equivalent to

1
ncn ∥1∥D

k∑
j=1

(
j N

(n)
U

(
cn

j

)
− 1

k

k∑
ℓ=1

ℓ N
(n)
U

(
cn

ℓ

))2

= 1
ncn ∥1∥D

⎛⎜⎜⎜⎝
1 · N

(n)
U

(
cn
1
)

− ncn ∥1∥D
...

k · N
(n)
U

( cn
k

)
− ncn ∥1∥D

⎞⎟⎟⎟⎠
ᵀ(

Ik − 1
k

Ek

)⎛⎜⎜⎜⎝
1 · N

(n)
U

( cn
1
)

− ncn ∥1∥D
...

k · N
(n)
U

( cn
k

)
− ncn ∥1∥D

⎞⎟⎟⎟⎠
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= Y
ᵀ

n P Yn

where Yn = (Yn,1, . . . , Yn,k)ᵀ with

Yn,j = 1
(ncn ∥1∥D)

1
2

(
j N

(n)
U

(
cn

j

)
− ncn ∥1∥D

)
, j = 1, . . . , k.

Corollary 2.2.9 and the multivariate mapping theorem show

Tn
D→ ξ

ᵀ
M

ᵀ
P Mξ as n → ∞

with a k-dimensional standard normal random vector ξ = (ξ1, . . . , ξk)ᵀ. It is well-known,
see e. g. Anderson and Stephens (1997, Section 4) or Fortiana and Cuadras (1997), that
the eigenvalues of

M
ᵀ
P M =

(
min{i − 1, j − 1} − (i − 1)(j − 1)

k

)
1≤i,j≤k

are
λj = 1

4 sin2
(

j
k

π
2

) for j = 1, . . . , k − 1, and λk = 0

with corresponding orthonormal eigenvectors

rj =
√

2
k

(
sin
((i − 1)jπ

k

))k

i=1
for j = 1, . . . , k − 1, and rk = e1.

This implies Tn
D→ ξᵀ diag(λ1, . . . , λk−1, 0) ξ as n → ∞, which completes the proof.

In the simple cases k = 2 and k = 3 we have, respectively, λ1 = 1
2 and λ1 = 1, λ2 = 1

3 .
For higher values of k, the distribution function of

∑k−1
j=1 λjξ2

j = λk−1
∑k−1

j=1
λj

λk−1
ξ2

j may
be computed from Robbins and Pitman (1949, Theorem 1). For simulation techniques
we refer to Duchesne and Lafaye de Micheaux (2010). As discussed in Remark 2.2.6, the
condition nc1+δ

n → 0 is obsolete for δ = ∞.

Remark 2.2.11 Additionally to the discussion following Corollary 2.2.9, the proof of
Theorem 2.2.10 shows

k−1∑
j=1

λjξ2
j

D=
k∑

j=1

(
Bj − 1

k

k∑
ℓ=1

Bℓ

)2

for k ≥ 2

where (Bt)t∈[0,∞) is a standard Brownian motion. Computing expected values, we obtain
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2.2 Testing for Finite Dimensional δ-Neighborhoods

the nice by-product

k−1∑
j=1

1
4 sin2

(
j
k

π
2

) = (k − 1)(k + 1)
6 for k ≥ 2

and, using characteristic functions, it is straightforward to prove that

1
(k − 1)(k + 1)

k−1∑
j=1

λjξ2
j

D→ 1
π2

∞∑
j=1

1
j2 ξ2

j as k → ∞.

Taking expectations on both sides motivates the well-known equality
∑∞

i=1
1
i2 = π2

6 .

The previous arguments suggest to replace k in Theorem 2.2.10 with a sequence (kn)n∈N.
If kn → ∞ as n → ∞ at a proper rate of convergence, it should be possible to reproduce
the limit distribution in Remark 2.2.11. Although this might be of theoretical interest,
we avoid doing so for several reasons: On the one hand, a data set will typically contain
not too many exceedances above a high threshold. If cn is sufficiently small to detect
a δ-neighborhood, i. e. the threshold is sufficiently large, there will be even less data
that exceed

(
1 − cn

k

)
1. This means that we would need a very large sample size in

order to increase k and to assure that there are still sufficiently many exceedances in
the outer most extremal region. On the other hand, it will be necessary to introduce
another parameter as soon as we consider more general data, cf. Lemma 2.2.7. While
Theorem 2.2.10 allows to choose, e. g., k = 2 or k = 3 independently of the sample size n,
obtaining reasonable values for the parameters would probably become even harder if k

depended on n as well, cf. Section 3.4.
However, considering a modification of the inverse matrix of M in (2.2.8) leads

to alternative test statistics for Hypothesis 2.1.8. Their asymptotic distributions are
compared to the one in Theorem 2.2.10 easier to handle, where one of them will not even
depend on k. We refer to Chapter 4 for a comparison of the in total three tests.

Theorem 2.2.12 Let δ ∈ (0, ∞] and k ∈ N, k ≥ 2. Furthermore let the d-dimensional
random vector U have the distribution function C such that C is a copula which is in the
δ-neighborhood of a GPC with D-norm ∥·∥D. We obtain

Tn :=
∑k−1

j=1

(
(j + 1) N

(n)
U

( cn
j+1

)
− j N

(n)
U

( cn
j

))2

1
k

∑k
j=1 j N

(n)
U

( cn
j

) D→ χ2
k−1 as n → ∞

37



2 Testing for Generalized Pareto Models

and

τn :=
k N

(n)
U

( cn
k

)
− N

(n)
U (cn)(

k−1
k

∑k
j=1 j N

(n)
U

( cn
j

)) 1
2

D→ N(0, 1) as n → ∞

for any sequence (cn)n∈N in (0, 1) with cn → 0, ncn → ∞, and nc1+2δ
n → 0 as n → ∞.

Proof. Corollary 2.2.9 shows that Yn = (Yn,1, . . . , Yn,k)ᵀ D→ N(0, MMᵀ) as n → ∞ where

Yn,j = 1
(ncn ∥1∥D)

1
2

(
j N

(n)
U

(
cn

j

)
− ncn ∥1∥D

)
for j = 1, . . . , k

and M is defined in (2.2.8). Put

K :=
((
1{ℓ}(j) − 1{ℓ+1}(j)

)
1[2,∞)(j)

)
1≤j,ℓ≤k

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . . . . 0
−1 1 0 . . . . . . 0

0 −1 1 . . . ...
... . . . . . . . . . . . . ...
... . . . −1 1 0
0 . . . . . . 0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which is derived from the inverse matrix M−1 = (ajk)1≤j,ℓ≤k of M by replacing the
entry a11 with 0. Due to Corollary 2.2.9 and Slutsky’s theorem, Tn is asymptotically
equivalent to

∑k−1
j=1

(
(j + 1) N

(n)
U

( cn
j+1

)
− j N

(n)
U

( cn
j

))2

ncn ∥1∥D

=
k−1∑
j=1

(Yn,j+1 − Yn,j)2 = (KYn)ᵀKYn.

The multivariate mapping theorem implies Tn
D→ ξᵀMᵀKᵀKMξ as n → ∞ where ξ

is k-dimensional standard normally distributed. This implies the first assertion since
KM = diag(0, 1, . . . , 1) is a k × k diagonal matrix with k − 1 times the entry 1.

Moreover, τn is asymptotically equivalent to

k N
(n)
U

( cn
k

)
− N

(n)
U (cn)(

ncn ∥1∥D (k − 1)
) 1

2
= 1

(k − 1)
1
2

1ᵀ
kKYn

where 1k := (1)k
j=1. This yields the asymptotic normal distribution of τn with mean 0

and variance 1
k−1

(
1ᵀ

kK
)
MMᵀ(1ᵀ

kK
)ᵀ = 1, as asserted.

Remark 2.2.13 The tests provided by Theorem 2.2.10 and Theorem 2.2.12 are based on
k+1 estimators of the generator constant ∥1∥D in arbitrary dimension, cf. Corollary 2.2.9.
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2.2 Testing for Finite Dimensional δ-Neighborhoods

In contrast, the test of Einmahl et al. (2006), cf. Remark 2.1.9, considers two different
estimators of the D-norm on the whole set (0, 1]2; recall that this approach is restricted
to the bivariate case. However, the cited authors need to consider further technical
details. For instance, they assume that some measure Λ on [0, ∞]2 \

{
(∞, ∞)ᵀ

}
— which

satisfies
xD = Λ([0, ∞] \ (x, ∞]) for non-negative x ∈ R2 — has a continuous density

on [0, ∞) \ {0}. Related tests, which test for multivariate EVCs, can be found in Ghoudi
et al. (1998), Kojadinovic et al. (2011), and Berghaus et al. (2013), to name just a few.

Theorem 2.2.12 gives rise to a nice interpretation: The numerator of the test statistic
Tn is essentially the residual sum of squares if the number of exceedances of the threshold(
1− cn

j+1
)
1 is predicted by j

j+1 times the number of exceedances of the threshold
(
1− cn

j

)
1,

j = 1, . . . , k − 1. Given that we observe i. i. d. random observations originating from a
copula, Hypothesis 2.1.8 is rejected if this residual sum of squares is too large. Contrarily,
if Hypothesis 2.1.8 is actually true, we would expect N

(n)
U

( cn
j+1

)
≈ j

j+1 N
(n)
U

( cn
j

)
for all

j ∈ {1, . . . , k − 1}. This property corresponds to the excursion stability of a GPD, which
we considered in Section 1.1: If U follows a d-dimensional GPC with corresponding
D-norm ∥·∥D, we have

P(U � 1 + rx | U � (1 − r)1) = ∥x∥D

∥1∥D

for x ∈ [−1, 0]

whenever r ∈
(
0, 1

d

]
. Thus we obtain

P
(
U �

(
1 − c

j+1
)
1
)

P
(
U �

(
1 − c

j

)
1
) = P

(
U � 1 + c

j

(
− j

j + 11
) ⏐⏐⏐⏐ U �

(
1 − c

j

)
1
)

= j

j + 1

for j = 1, . . . , k if c ∈
(
0, 1

d

]
. Recall that the number of exceedances of the threshold

(1 − r)1 among n independent copies of U is binomial distributed, which gives

E
(

N
(n)
U

(
c

j + 1

))
= j

j + 1 E
(

N
(n)
U

(
c

j

))
.

Generally, we have the following result for δ-neighborhoods:

Lemma 2.2.14 Let δ ∈ (0, ∞] and k ∈ N, k ≥ 2. If C is a (finite dimensional) copula
which is in the δ-neighborhood of a GPC with D-norm ∥·∥D, we obtain

max
1≤j≤k−1

⏐⏐⏐⏐⏐⏐
1 − C

((
1 − c

j+1
)
1
)

1 − C
((

1 − c
j

)
1
) − j

j + 1

⏐⏐⏐⏐⏐⏐ = O
(
cδ) as c → 0+.
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Proof. We only have to consider the case δ < ∞. If U has the distribution function C,
there are K > 0 and ε ∈

(
0, K− 1

δ
)

such that

⏐⏐P(U � (1 − c)1) − c ∥1∥D

⏐⏐ ≤ Kc1+δ for c ∈ (0, ε),

cf. (2.2.1). This gives

j

j + 1
∥1∥D − K

(
c

j+1
)δ

∥1∥D + K
(

c
j

)δ ≤
P
(
U �

(
1 − c

j+1
)
1
)

P
(
U �

(
1 − c

j

)
1
) ≤ j

j + 1
∥1∥D + K

(
c

j+1
)δ

∥1∥D − K
(

c
j

)δ ,

and thus

max
1≤j≤k−1

⏐⏐⏐⏐⏐⏐
P
(
U �

(
1 − c

j+1
)
1
)

P
(
U �

(
1 − c

j

)
1
) − j

j + 1

⏐⏐⏐⏐⏐⏐ ≤ max
1≤j≤k−1

⎛⎝ j

j + 1
K
(

c
j+1

)δ + K
(

c
j

)δ
∥1∥D − K

(
c
j

)δ
⎞⎠

≤ 1
2 max

1≤j≤k−1

⎛⎝ 2K
(

c
j

)δ
1 − K

(
c
j

)δ
⎞⎠

≤ cδ

1
K − εδ

for c ∈ (0, ε),

which implies the assertion.

Continuously Distributed Data

Observing copula data in practice is rather a special case. The more common one is that
we have data with unknown marginal distribution functions, i. e. the copula data are
subject to a certain nuisance. However, Sklar’s theorem, cf. Theorem 1.1.13, motivates to
use the empirical marginal distribution functions to obtain an estimator of the underlying
copula. Doing so, we will be able to adapt the test statistics of Theorem 2.2.10 and
Theorem 2.2.12 to that kind of nuisance.

Consider a random vector X = (X1, . . . , Xd)ᵀ whose distribution function F is
continuous and has the margins F1, . . . , Fd. Assume that the corresponding copula
C(u) = F

(
F −1

1 (u1), . . . , F −1
d (ud)

)
, u ∈ (0, 1)d, satisfies Hypothesis 2.1.8, i. e. there exist

a D-norm ∥·∥D and K, δ, ε > 0 such that

⏐⏐1 − C(u) − ∥u − 1∥D

⏐⏐ ≤ K ∥u − 1∥1+δ
∞ for all u ∈ B+(1, ε)

and in particular

sup
u∈[(1−c)1,1]

⏐⏐1 − C(u) − ∥u − 1∥D

⏐⏐ ≤ Kc1+δ for all c ∈ (0, ε),
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2.2 Testing for Finite Dimensional δ-Neighborhoods

cf. (2.2.1). At first we generalize Definition 2.2.3:

Definition 2.2.15 Let X = (X1, . . . , Xd)ᵀ be a random vector in Rd with a continuous
distribution function F having the margins F1, . . . , Fd. We call

SX(c) := 1
d

d∑
i=1
1(1−c,1](Fi(Xi)), c ∈ (0, 1),

the sojourn time of X above the threshold vector
(
F −1

i (1 − c)
)d

i=1 and

N
(n)
X (c) :=

n∑
i=1
1(0,1](SX(i)(c)), c ∈ (0, 1),

the number of exceedances among X(1), . . . X(n) above
(
F −1

i (1 − c)
)d

i=1, based on the
independent copies X(1), . . . , X(n) of X.

Note that this definition complies with Definition 2.2.3 when the distribution function F

of X coincides with its copula C. In any case U := (Fi(Xi))d
i=1 has distribution function

C since F is continuous, and we have SX(c) = SU(c) as well as N
(n)
X (c) = N

(n)
U (c). The

identity

SX(c) = 1
d

d∑
i=1
1(F −1

i (1−c),∞)(Xi) with probability one

shows that SX(c) is the mean number of those components of X that exceed the threshold
vector

(
F −1

i (1 − c)
)d

i=1, which justifies calling N
(n)
X (c) the number of exceedances of(

F −1
i (1 − c)

)d
i=1.

Based on an i. i. d. sample X(1), . . . , X(n) with continuous distribution function F ,
testing whether the underlying copula C satisfies Hypothesis 2.1.8 is particularly easy if
the margins F1, . . . , Fd of F are known; just apply Theorem 2.2.10 and Theorem 2.2.12
to (Fi(Xi))d

i=1. However, F1, . . . , Fd are typically unknown, i. e. we need an estimator of
C or, more precisely, of the number of exceedances N

(n)
X (c). This estimator is obtained

by replacing the marginal distribution functions of X with their empirical counterparts.
In order to preserve the asymptotic normality of Corollary 2.2.9 we have to assure that
the estimators of SX(i)(c), i = 1, . . . , n, are sufficiently close to their theoretical values.
Precisely, it will turn out necessary to require that the sample size n for the estimation
of SX(c) is larger than the sample size m used to compute the corresponding number of
exceedances; see (2.2.17) below and the remarks following Lemma 2.2.19.

Definition 2.2.16 Let X = (X1, . . . , Xd)ᵀ be a random vector in Rd with a continuous
distribution function F having the margins F1, . . . , Fd. If X(1), . . . , X(n) are independent
copies of X with X(i) =

(
X

(i)
1 , . . . , X

(i)
d

)ᵀ,
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F̂n,r(x) := 1
n

n∑
i=1
1(−∞,x]

(
X(i)

r

)
, x ∈ R,

is the r-th empirical margin of X for r ∈ {1, . . . , d}. Furthermore,

Ŝ
(n,i)
X (c) := 1

d

d∑
r=1
1(F̂ −1

n,r(1−c),∞)
(
X(i)

r

)
, c ∈ (0, 1),

denotes the empirical sojourn time of X(i) above the threshold vector
(
F̂ −1

n,r (1 − c)
)d

r=1,
where the quantile functions F̂ −1

n,r , r = 1, . . . , d, are also computed from the sample
X(1), . . . , X(n). Finally, we denote by

(2.2.17) N̂
(m,n)
X (c) :=

m∑
i=1
1(0,1]

(
Ŝ

(n,i)
X (c)

)
, c ∈ (0, 1), m ≤ n,

the empirical number of exceedances among X(1), . . . X(m) above
(
F̂ −1

n,r (1 − c)
)d

i=1.

For convenience, we let the empirical number of exceedances depend on the first m

copies of X. We obviously could also consider an arbitrary subset M of {1, . . . , n}
satisfying |M | = m, and define the empirical number of exceedances among X(i), i ∈ M ,
accordingly.

Analogously to Theorem 2.2.10 and Theorem 2.2.12, the empirical number of ex-
ceedances will be the main component of the test statistics below. Note that

F̂ −1
n,r (1 − c) = inf

{
x ∈ R

⏐⏐⏐⏐⏐
n∑

i=1
1(−∞,x]

(
X(i)

r

)
≥ n(1 − c)

}
= X⌈n(1−c)⌉:n,r, r = 1, . . . , d,

where ⌈x⌉ := min{ℓ ∈ N | ℓ ≥ x}, and X1:n,r ≤ X2:n,r ≤ · · · ≤ Xn:n,r are the order
statistics of X(1), . . . , X(n) in the r-th component, cf. Definition 2.2.18. In particular we
have Ui:n,r = Fr(Xi:n,r) and Xi:n,r = F −1

r (Ui:n,r) with probability one for i = 1, . . . , n,
i. e. the distribution of N̂

(m,n)
X (c) depends on the copula of X but not on its marginal

distribution functions F1, . . . , Fd.

Definition 2.2.18 For n ∈ N let X1:n ≤ X2:n ≤ · · · ≤ Xn:n denote the ordered values
of some univariate random variables X1, . . . , Xn. Then Xℓ:n is called the ℓ-th order
statistic of X1, . . . , Xn for ℓ ∈ {1, . . . , n}. If X(i) =

(
X

(i)
1 , . . . , X

(i)
d

)ᵀ, i = 1, . . . , n, are d-
dimensional random vectors, then Xℓ:n,r denotes the ℓ-th order statistic of X

(1)
r , . . . , X

(n)
r ,

where ℓ ∈ {1, . . . , n} and r ∈ {1, . . . , d}.

The following auxiliary result enables us to adapt Theorem 2.2.10 and Theorem 2.2.12
to our current setup, assuring that we may consider the empirical number of exceedances
in place of its theoretical counterpart.
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2.2 Testing for Finite Dimensional δ-Neighborhoods

Lemma 2.2.19 Suppose that X(1), . . . , X(n) with X(i) =
(
X

(i)
1 , . . . , X

(i)
d

)ᵀ are indepen-
dent copies of some Rd-valued random vector X having continuous marginal distribution
functions F1, . . . , Fd. If (mn)n∈N and (cn)n∈N are sequences in N and (0, 1), respectively,
then we obtain

(mncn)− 1
2
(
N

(mn)
X (cn) − N̂

(mn,n)
X (cn)

)
→ 0 in probability as n → ∞

whenever mn
n log(mn) → 0, cn → 0, and mncn → ∞ as n → ∞.

Proof. Define U (i) =
(
U

(i)
1 , . . . , U

(i)
d

)ᵀ by U
(i)
r := Fr

(
X

(i)
r
)

for i = 1, . . . , n and r =
1, . . . , d. Then we have with

Rn :=
mn∑
i=1
1×d

r=1[0,U⌈n(1−cn)⌉:n,r]
(
U (i))(1 − 1[0,(1−cn)1]

(
U (i)))

and
Tn :=

mn∑
i=1
1[0,(1−cn)1]

(
U (i))(1 − 1×d

r=1[0,U⌈n(1−cn)⌉:n,r]
(
U (i)))

that

N
(mn)
X (cn) − N̂

(mn,n)
X (cn) =

mn∑
i=1

(
1×d

r=1[0,U⌈n(1−cn)⌉:n,r]
(
U (i))− 1[0,(1−cn)1]

(
U (i)))

= Rn − Tn with probability one

since F1, . . . , Fd are continuous.
Put µn := ⌈n(1−cn)⌉

n+1 and observe µn − (1 − cn) ∈
[
−1−cn

n+1 , cn
n+1

)
. Then Markov’s

inequality shows

P
(

Rn

(mncn)
1
2

≥ η

)
≤ 1

η

(
mn

cn

) 1
2

P
(

U (1) ≤
(
U⌈n(1−cn)⌉:n,r

)d

r=1
, U (1) � (1 − cn)1

)

≤ d

η

(
mn

cn

) 1
2

P
(
1 − cn < U

(1)
1 ≤ U⌈n(1−cn)⌉:n,1

)
≤ d

η

(
mn

cn

) 1
2
[(

cn

n + 1 + ε

)
+ P

(
U⌈n(1−cn)⌉:n,1 − µn ≥ ε

)]
for all ε, η > 0. We obtain furthermore

P
(
U⌈n(1−cn)⌉:n,1 − µn ≥ ε

)
≤ exp

⎛⎝−
nε2

σ2
n

3
(
1 + ε

σ2
n

)
⎞⎠
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2 Testing for Generalized Pareto Models

from Reiss (1989, Lemma 3.1.1), where σ2
n = µn(1 − µn). Note that cn → 0 and ncn → ∞

as n → ∞ together with

σ2
n ∈

(
n2(1 − cn)
(n + 1)2 cn,

(
1 − ncn

n + 1

) 1 + ncn

(n + 1)cn
cn

)

show σ2
n ∼ cn as n → ∞. Now put εn := δn

( cn
mn

) 1
2 with δn := 2

(mn
n log(mn)

) 1
2 and obtain

εn

σ2
n

∼ δn

(mncn)
1
2

→ 0 as well as nε2
n

σ2
n

∼ 4 log(mn) → ∞ as n → ∞.

We conclude

P
(

Rn

(mncn)
1
2

≥ η

)
≤ d

η

(
mn

cn

) 1
2

⎡⎣( cn

n + 1 + εn

)
+ exp

⎛⎝−
nε2

n
σ2

n

3
(
1 + εn

σ2
n

)
⎞⎠⎤⎦

= d

η

[(
mn

n + 1
cn

n + 1

) 1
2

+ δn +
(

mn

cn

) 1
2

exp
[
−
(4

3 + o(1)
)

log(mn)
]]

≤ d

η

[(
mn

n + 1
cn

n + 1

) 1
2

+ δn + 1
(mncn)

1
2

]

whenever n is sufficiently large, and thus (mncn)− 1
2 Rn → 0 in probability as n → ∞.

Similarly, Markov’s inequality and 1 − cn − µn ≤ 1−cn
n+1 show

P
(

Tn

(mncn)
1
2

≥ η

)
≤ d

η

(
mn

cn

) 1
2

P
(
U⌈n(1−cn)⌉:n,1 < U

(1)
1 ≤ 1 − cn

)

≤ d

η

(
mn

cn

) 1
2
[
P
(
U⌈n(1−cn)⌉:n,1 − µn ≤ −ε

)
+
(1 − cn

n + 1 + ε

)]
for all ε, η > 0, and Reiss (1989, Lemma 3.1.1) gives

P
(
U⌈n(1−cn)⌉:n,1 − µn ≤ −ε

)
≤ exp

⎛⎝−
nε2

σ2
n

3
(
1 + ε

σ2
n

)
⎞⎠.

As before, we also obtain (mncn)− 1
2 Tn → 0 in probability as n → ∞, and the proof is

complete.
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At a first sight it appears somewhat unnatural to require m < n when the number of
exceedances N

(n)
X (c) above the threshold

(
F −1

i (1 − c)
)d

i=1 is estimated by

N̂
(m,n)
X (c) =

m∑
i=1
1(0,1]

(
Ŝ

(n,i)
X (c)

)
.

However, the crucial tool in the proof of Lemma 2.2.19 was to find a sequence (εn)n∈N in
(0, ∞) such that

(2.2.20) mn

cn
ε2

n → 0 and mn

cn
exp

(
−2

3
n

cn
ε2

n

)
→ 0 as n → ∞.

Note that (2.2.20) implies the existence of a sequence (αn)n∈N in (0, ∞) with limit 0
satisfying

3
2

mn

n
log
(

mn

cnαn

)
≤ mn

cn
ε2

n → 0.

Since cnαn → 0, this gives mn
n log(mn) → 0, which turns out to be a condition in

Lemma 2.2.19 that cannot be dropped.
Analogously to Theorem 2.2.10 and Theorem 2.2.12, the test statistics for Hypoth-

esis 2.1.8 will be computed by considering various threshold levels and their corre-
sponding number of exceedances simultaneously. So fix k ∈ N with k ≥ 2 and as-
sume that the data consist of independent realizations of an Rd-valued random vector
X = (X1, . . . , Xd)ᵀ with continuous distribution function F . Lemma 2.2.19 justifies
to estimate

(
N

(m)
X

(
c
1
)
, . . . , N

(m)
X

(
c
k

))ᵀ by
(
N̂

(m,n)
X

(
c
1
)
, . . . , N̂

(m,n)
X

(
c
k

))ᵀ, where c ∈ (0, 1) is
close to zero.

Theorem 2.2.21 Let δ ∈ (0, ∞] and k ∈ N, k ≥ 2. Furthermore, let X be a random
vector with continuous distribution function F such that the corresponding copula is
in the δ-neighborhood of a GPC. Consider sequences (mn)n∈N and (cn)n∈N in N and
(0, 1), respectively, satisfying mn

n log(mn) → 0, cn → 0, mncn → ∞, and mnc1+2δ
n → 0 as

n → ∞. Then we have

T̂n :=
∑k

j=1

(
j N̂

(mn,n)
X

( cn
j

)
− 1

k

∑k
ℓ=1 ℓ N̂

(mn,n)
X

( cn
ℓ

))2

1
k

∑k
ℓ=1 ℓ N̂

(mn,n)
X

( cn
ℓ

) D→
k−1∑
j=1

λjξ2
j as n → ∞

as well as

T̂n :=
∑k−1

j=1

(
(j + 1) N̂

(mn,n)
X

( cn
j+1

)
− j N̂

(mn,n)
X

( cn
j

))2

1
k

∑k
j=1 j N̂

(mn,n)
X

( cn
j

) D→ χ2
k−1 as n → ∞
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and

τ̂n :=
k N̂

(mn,n)
X

( cn
k

)
− N̂

(mn,n)
X (cn)(

k−1
k

∑k
j=1 j N̂

(mn,n)
X

( cn
j

)) 1
2

D→ N(0, 1) as n → ∞,

where
λj = 1

4 sin2
(

j
k

π
2

) , j = 1, . . . , k − 1,

and ξ1, . . . , ξk−1 are independent and standard normally distributed random variables.

Proof. Denote the margins of F by F1, . . . , Fd. Furthermore let X(i) =
(
X

(i)
1 , . . . , X

(i)
d

)ᵀ,
i = 1, . . . , n, be independent copies of X and define U (i) =

(
U

(i)
1 , . . . , U

(i)
d

)ᵀ by U
(i)
r :=

Fr
(
X

(i)
r
)

for i = 1, . . . , n and r = 1, . . . , d. Then we have N
(mn)
X (cn) = N

(mn)
U (cn) with

probability one and the proofs of Theorem 2.2.10 and Theorem 2.2.12 carry over by
considering Corollary 2.2.9 and Lemma 2.2.19.

2.3 Testing for Functional δ-Neighborhoods

The previous section has shown how finite dimensional data can be tested whether the
underlying copula is in a δ-neighborhood of a GPC. The crucial tool was Corollary 2.2.9,
yielding that, roughly speaking, the observed number of exceedances over a high threshold
is asymptotically normally distributed. Now we focus on the functional part of Hypothe-
sis 2.1.8, which is restated below for convenience, and aim at generalizing the above tests
to data in C[0, 1].

Hypothesis 2.1.8 There exist δ ∈ (0, ∞] and a GPC such that the copula underlying
the observed data is in the δ-neighborhood of this GPC.

As before, the tests below will be based on the number of functional data exceeding
some high functional threshold. The sojourn time of a stochastic process is defined
analogously to Section 2.2, cf. Falk and Hofmann (2011). Due to the motivation at the
beginning of Section 2.1, we restrict ourselves to processes having continuous marginal
distributions.

Definition 2.3.1 Let X = (Xt)t∈[0,1] be a stochastic process in C[0, 1] with distribution
function F such that all margins Ft, t ∈ [0, 1], are continuous. For c ∈ (0, 1) we call

SX(c) :=
∫ 1

0
1(1−c,1](Ft(Xt)) dt
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2.3 Testing for Functional δ-Neighborhoods

the sojourn time of X above the threshold function
(
F −1

t (1 − c)
)

t∈[0,1] and

N
(n)
X (c) :=

n∑
i=1
1(0,1](SX(i)(c))

the number of exceedances among independent copies X(1), . . . , X(n) of X above the
threshold

(
F −1

t (1 − c)
)

t∈[0,1].

We have obviously SX(c) = SU(c) for all c ∈ (0, 1) where U = (Ut)t∈[0,1] denotes the
copula process of X, cf. Definition 1.2.10. Imitating the procedure of Section 2.2, we
first focus on the simple case where we observe copula processes directly. It will turn out
that the results for multivariate copula data are carried over easily. In a second step we
consider an extension of Lemma 2.2.19 in order to generalize the test for copula processes
to more general data.

Copula Processes

Assume that our data U (1), . . . , U (n) consist of independent copies of a copula process
U = (Ut)t∈[0,1] in C[0, 1] with distribution function C. For c ∈ (0, 1) the sojourn time of
U above the threshold function (1 − c) 1[0,1] simplifies to

SU(c) =
∫ 1

0
1(1−c,1](Ut) dt.

If Hypothesis 2.1.8 is true, there exist a D-norm ∥·∥D and δ ∈ (0, ∞], ε ∈ (0, 1), K > 0
such that

(2.3.2)
⏐⏐⏐P(U � f) −

f − 1[0,1]


D

⏐⏐⏐ ≤ K
f − 1[0,1]

1+δ
∞ for all f ∈ B+

(
1[0,1], ε

)
,

and in particular⏐⏐⏐⏐⏐1 − C
(
(1 − c) 1[0,1]

)
c

−
1[0,1]


D

⏐⏐⏐⏐⏐ ≤ Kcδ for all c ∈ (0, ε).

Again, 1
nc N

(n)
U (c) is a natural estimator of the typically unknown generator constant1[0,1]


D, with the tradeoff situation that c must be small enough to detect the δ-

neighborhood, but large enough to obtain a stable estimate. It is therefore natural to let
c = cn depend on the sample size and to require cn → 0 as n → ∞. Later on we will also
have to replace n with a sequence (mn)n∈N tending to infinity, cf. Section 2.2.
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2 Testing for Generalized Pareto Models

The various tools of Section 2.2 make it easy to obtain a functional version of Theo-
rem 2.2.10 and Theorem 2.2.12.

Theorem 2.3.3 Let δ ∈ (0, ∞] and k ∈ N, k ≥ 2. Furthermore let C be a (functional)
copula which is in the δ-neighborhood of some GPC with D-norm ∥·∥D. Consider a
stochastic process U in C[0, 1] with distribution function C, and a sequence (cn)n∈N in
(0, 1) satisfying cn → 0, ncn → ∞, and nc1+2δ

n → 0 as n → ∞. Then we obtain

Tn =
∑k

j=1

(
j N

(n)
U

( cn
j

)
− 1

k

∑k
ℓ=1 ℓ N

(n)
U

( cn
ℓ

))2

1
k

∑k
ℓ=1 ℓ N

(n)
U

( cn
ℓ

) D→
k−1∑
j=1

λjξ2
j as n → ∞

as well as

Tn =
∑k−1

j=1

(
(j + 1) N

(n)
U

( cn
j+1

)
− j N

(n)
U

( cn
j

))2

1
k

∑k
j=1 j N

(n)
U

( cn
j

) D→ χ2
k−1 as n → ∞

and

τn =
k N

(n)
U

( cn
k

)
− N

(n)
U (cn)(

k−1
k

∑k
j=1 j N

(n)
U

( cn
j

)) 1
2

D→ N(0, 1) as n → ∞

where
λj = 1

4 sin2
(

j
k

π
2

) , j = 1, . . . , k − 1,

and ξ1, . . . , ξk−1 are independent and standard normally distributed random variables.

Proof. Due to Lemma 2.2.7, the proofs of Theorem 2.2.10 and Theorem 2.2.12 carry over
to stochastic processes in C[0, 1].

More General Processes

Now we aim at generalizing Theorem 2.3.3 to the case where a copula process cannot be
observed directly but is subject to a certain kind of nuisance. Precisely, let X = (Xt)t∈[0,1]
be a stochastic process in C[0, 1] such that all its margins Ft, t ∈ [0, 1], are continuous
but unknown. As in Section 2.2, we replace the margins with their empirical counterparts.
However, in order to apply the arguments of Section 2.2, we will assume additionally that
all margins of X are identical, cf. Lemma 2.3.8 below. This assumption will be dropped
again in Section 2.4, where the results of this current section and those of Section 2.2 are
linked with one another.
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Definition 2.3.4 Let X = (Xt)t∈[0,1] be a stochastic process in C[0, 1] with contin-
uous margins Ft, t ∈ [0, 1]. If X(1), . . . , X(n) are independent copies of X with
X(i) =

(
X

(i)
t

)
t∈[0,1], we call

Xℓ:n = (Xℓ:n,t)t∈[0,1] for ℓ ∈ {1, . . . , n}

the corresponding ℓ-th order statistic, where Xℓ:n,t is the ordinary ℓ-th order statistic of
X

(1)
t , . . . , X

(n)
t for all t ∈ [0, 1].

Assume moreover Ft = F0 for all t ∈ [0, 1], and denote by F̂n,0 the empirical distribution
function of X

(1)
0 , . . . , X

(n)
0 . Then we call for c ∈ (0, 1)

(2.3.5) Ŝ
(n,i)
X (c) :=

∫ 1

0
1(F̂ −1

n,0(1−c),∞)
(
X

(i)
t

)
dt

the empirical sojourn time of X(i) above the threshold vector
(
F̂ −1

n,0(1 − c)
)

t∈[0,1], and

(2.3.6) N̂
(m,n)
X (c) :=

m∑
i=1
1(0,1]

(
Ŝ

(n,i)
X (c)

)
, m ∈ {1, . . . , n},

the empirical number of exceedances among X(1), . . . X(m) above
(
F̂ −1

n,0(1 − c)
)

t∈[0,1].

In Section 2.2 we carried the test for copula data over to general data by exploiting
the fact that the empirical number of exceedances does almost surely not depend on the
margins of the data. Now we establish a functional version of this fact: The continuity of
all margins Ft, t ∈ [0, 1], of X implies

γt(u) := sup{x ∈ R | Ft(x) ≤ u} ≥ F −1
t (u) for all t ∈ [0, 1], u ∈ (0, 1)

as well as

Ft(Xt) > 1 − c ⇐⇒ Xt > γt(1 − c) for all t ∈ [0, 1], c ∈ (0, 1).

In accordance with Section 2.2 we obtain
(2.3.7)

SX(c) =
∫ 1

0
1(γt(1−c),∞)(Xt) dt =

∫ 1

0
1(F −1

t (1−c),∞)(Xt) dt with probability one

if P
(⋃

t∈[0,1]
{
F −1

t (1 − c) < Xt ≤ γt(1 − c)
})

= 0 or if F −1
t is continuous at 1 − c for λ1-

almost all t ∈ [0, 1]. In particular, the following auxiliary result shows that (2.3.7) is true
if all margins of X coincide.
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Lemma 2.3.8 Let X = (Xt)t∈[0,1] be a stochastic process in C[0, 1] such that all Xt,
t ∈ [0, 1], are identically distributed with continuous distribution function F0. Then we
have

P
(
X ≤ F −1

0 (u) 1[0,1]
)

+ P
(
X ≥ γ0(u) 1[0,1]

)
= 1 for all u ∈ M0,

where M0 denotes the (at most countable) set of all discontinuities of F −1
0 .

Proof. Let u ∈ M0 and t1, t2 ∈ [0, 1] such that t1 ̸= t2. Since X has continuous sample
paths, we obtain

P
(
Xt1 ≤ F −1

0 (u), Xt2 ≥ γ0(u)
)

≤ P

⎛⎝ ⋃
q∈Q∩[0,1]

{
Xq ∈

(
F −1

0 (u), γ0(u)
)}⎞⎠

≤
∑

q∈Q∩[0,1]
P
(
F −1

0 (u) < Xq ≤ γ0(u)
)

= 0.
This yields

1 = P

⎛⎝ ⋂
q∈Q∩[0,1]

[{
Xq ≤ F −1

0 (u)
}

∪
{

Xq ≥ γ0(u)
}]⎞⎠

= P

⎛⎝⎡⎣ ⋂
q∈Q∩[0,1]

{
Xq ≤ F −1

0 (u)
}⎤⎦ ∪

⎡⎣ ⋂
q∈Q∩[0,1]

{
Xq ≥ γ0(u)

}⎤⎦⎞⎠
= P

⎛⎝ ⋂
q∈Q∩[0,1]

{
Xq ≤ F −1

0 (u)
}⎞⎠+ P

⎛⎝ ⋂
q∈Q∩[0,1]

{
Xq ≥ γ0(u)

}⎞⎠
= P

(
X ≤ F −1

0 (u) 1[0,1]
)

+ P
(
X ≥ γ0(u) 1[0,1]

)
and the proof is complete.

In other words, we have
[
inft∈[0,1] Xt, supt∈[0,1] Xt

]
∩M0 = ∅ almost surely if all margins

of X are identical, i. e. F0 is with probability one strictly increasing on the random
domain

[
inft∈[0,1] Xt, supt∈[0,1] Xt

]
. Since we obtain

F̂ −1
n,0(1 − c) = X⌈n(1−c)⌉:n,0 for all c ∈ (0, 1)

as in Section 2.2, this proves

U⌈n(1−c)⌉:n =
(
F0
(
X⌈n(1−c)⌉:n,t

))
t∈[0,1]

and X⌈n(1−c)⌉:n =
(
F −1

0

(
U⌈n(1−c)⌉:n,t

))
t∈[0,1]

with probability one, as well as
(2.3.9)

Ŝ
(n,i)
X (c) =

∫ 1

0
1(X⌈n(1−c)⌉:n,0,∞)

(
X

(i)
t

)
dt =

∫ 1

0
1(U⌈n(1−c)⌉:n,0,∞)

(
U

(i)
t

)
dt = Ŝ

(n,i)
U (c)
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almost surely, where U (1), . . . , U (n) denote the copula processes of the independent copies
X(1), . . . , X(n) of X. This yields in particular N̂

(m,n)
X (c) = N̂

(m,n)
U (c) almost surely, i. e.

the empirical number of exceedances only depends on the copula of X — as in the
multivariate framework of Section 2.2.

We are now ready to provide a functional version of Lemma 2.2.19. In contrast to
Section 2.2, this version has to incorporate Hypothesis 2.1.8 since we consider an infinite
number of dimensions. As before, we need to require m < n in (2.3.6) in order to justify
the replacement of the numbers of exceedances in Theorem 2.3.3 with their empirical
counterparts.

Lemma 2.3.10 Let X(1), . . . , X(n) be independent copies of some stochastic process
X = (Xt)t∈[0,1] in C[0, 1] such that Xt, t ∈ [0, 1], are identically distributed with con-
tinuous distribution function F0. Suppose furthermore that the copula of X is in the
δ-neighborhood of a GPC with D-norm ∥·∥D for some δ ∈ (0, ∞]. If (mn)n∈N and
(cn)n∈N are sequences in N and (0, 1), respectively, then we obtain

(mncn)− 1
2
(
N

(mn)
X (cn) − N̂

(mn,n)
X (cn)

)
→ 0 in probability as n → ∞

whenever mn
n log(mn) → 0, cn → 0, mncn → ∞, and mnc1+2δ

n → 0 as n → ∞.

Proof. Define U (i) =
(
U

(i)
t

)
t∈[0,1] by U

(i)
t := F0

(
X

(i)
t

)
for i = 1, . . . , n and t ∈ [0, 1], and

denote the distribution function of U (1) by C. Then we have with

Rn :=
mn∑
i=1
1[0,U⌈n(1−cn)⌉:n,0][0,1]

(
U (i))(1 − 1[0,1−cn][0,1]

(
U (i)))

and
Tn :=

mn∑
i=1
1[0,1−cn][0,1]

(
U (i))(1 − 1[0,U⌈n(1−cn)⌉:n,0][0,1]

(
U (i)))

that

N
(mn)
X (cn) − N̂

(mn,n)
X (cn) =

mn∑
i=1

(
1[0,U⌈n(1−cn)⌉:n,0][0,1]

(
U (i))− 1[0,1−cn][0,1]

(
U (i)))

= Rn − Tn with probability one.

Put µn := ⌈n(1−cn)⌉
n+1 and observe µn − (1 − cn) ∈

[
−1−cn

n+1 , cn
n+1

)
. Markov’s inequality

shows

P
(

Rn

(mncn)
1
2

≥ η

)
≤ 1

η

(
mn

cn

) 1
2

P
(
U (1) ≤ U⌈n(1−cn)⌉:n,0 1[0,1], U (1) � (1 − cn) 1[0,1]

)
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for all η > 0, and we obtain for ε > 0

P
(
U (1) ≤ U⌈n(1−cn)⌉:n,0 1[0,1]

)
≤ C

(
(µn + ε) 1[0,1]

)
+ P

(
U⌈n(1−cn)⌉:n,0 > µn + ε

)
as well as

P
(
U (1) ≤ min

{
U⌈n(1−cn)⌉:n,0, 1 − cn

}
1[0,1]

)
≥ P

(
U (1) ≤ min{µn − ε, 1 − cn} 1[0,1]

)
− P

(
U (1) ≤ min{µn − ε, 1 − cn} 1[0,1], U⌈n(1−cn)⌉:n,0 < µn − ε

)
+ P

(
U (1) ≤ min

{
U⌈n(1−cn)⌉:n,0, 1 − cn

}
1[0,1], U⌈n(1−cn)⌉:n,0 < µn − ε

)
≥ C

(
min{µn − ε, 1 − cn} 1[0,1]

)
− P

(
U⌈n(1−cn)⌉:n,0 < µn − ε

)
.

This yields

P
(
U (1) ≤ U⌈n(1−cn)⌉:n,0 1[0,1], U (1) � (1 − cn) 1[0,1]

)
= P

(
U (1) ≤ U⌈n(1−cn)⌉:n,0 1[0,1]

)
− P

(
U (1) ≤ min

{
U⌈n(1−cn)⌉:n,0, 1 − cn

}
1[0,1]

)
≤ C

(
(µn + ε) 1[0,1]

)
− C

(
min{µn − ε, 1 − cn} 1[0,1]

)
+ P

(⏐⏐⏐U⌈n(1−cn)⌉:n,0 − µn

⏐⏐⏐ > ε
)
.

If ε ≤ ncn
n+1 and n is sufficiently large, then µn + ε − 1 < 0 < 1 − µn + ε and (2.3.2) imply

C
(
(µn + ε) 1[0,1]

)
− C

(
min{µn − ε, 1 − cn} 1[0,1]

)
= |min{µn − ε − 1, −cn}|

1[0,1]


D + O
(
|min{µn − ε − 1, −cn}|1+δ

)
− |µn + ε − 1|

1[0,1]


D + O
(
|µn + ε − 1|1+δ

)
=
(
max{1 − µn + ε, cn} + µn + ε − 1

) 1[0,1]


D + O
(
max{1 − µn + ε, cn}1+δ

)
≤ max

{
2ε,

cn

n + 1 + ε

}1[0,1]


D + O
(
max{1 − µn + ε, cn}1+δ

)
,

and we obtain altogether

P
(

Rn

(mncn)
1
2

≥ η

)
≤ 1

η

[(
mn

cn

) 1
2

max
{

2ε,
cn

n + 1 + ε

}1[0,1]


D

+
(

mn

cn

) 1
2

P
(⏐⏐⏐U⌈n(1−cn)⌉:n,0 − µn

⏐⏐⏐ > ε
)

+ O
(

max
{(

mn

cn
(1 − µn + ε)2+2δ

) 1
2
,
(
mnc1+2δ

n

) 1
2

})]
for all η > 0.
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As in the proof of Lemma 2.2.19, Reiss (1989, Lemma 3.1.1) gives

(
mn

cn

) 1
2

P
(⏐⏐⏐U⌈n(1−cn)⌉:n,0 − µn

⏐⏐⏐ > εn

)
→ 0 as n → ∞

with εn := 2
( cn

n log(mn)
) 1

2 . In particular, we have for large n

(
mn

cn

) 1
2

max
{

2εn,
cn

n + 1 + εn

}
= 2

(
mn

cn
ε2

n

) 1
2

→ 0

as well as

mn

cn
(1 − µn + εn)2+2δ ≤ mn

cn

((
1 + 1 − cn

(n + 1) cn

)
cn + εn

)2+2δ

= mnc1+2δ
n

(
1 + 1 − cn

(n + 1) cn
+ εn

cn

)2+2δ

→ 0,

and thus (mncn)− 1
2 Rn → 0 in probability as n → ∞. Similar arguments also show

(mncn)− 1
2 Tn → 0 in probability as n → ∞, which completes the proof.

Again, we now consider various thresholds simultaneously in order to obtain an esti-
mator of

1[0,1]


D, cf. Corollary 2.2.9. The following result is implied by Lemma 2.2.7,
Lemma 2.3.10, (2.3.9), and the arguments in the proofs of Theorem 2.2.10 and Theo-
rem 2.2.12.

Theorem 2.3.11 Let δ ∈ (0, ∞] and k ∈ N, k ≥ 2. Furthermore let X = (Xt)t∈[0,1] be
a stochastic process in C[0, 1] such that P(Xt ≤ ·) = F0, t ∈ [0, 1], for some continuous
distribution function F0. Suppose that the copula of X is in the δ-neighborhood of a GPC
with D-norm ∥·∥D. If (mn)n∈N and (cn)n∈N are sequences in N and (0, 1), respectively,
satisfying mn

n log(mn) → 0, cn → 0, mncn → ∞, and mnc1+2δ
n → 0 as n → ∞, then we

have

T̂n =
∑k

j=1

(
j N̂

(mn,n)
X

( cn
j

)
− 1

k

∑k
ℓ=1 ℓ N̂

(mn,n)
X

( cn
ℓ

))2

1
k

∑k
ℓ=1 ℓ N̂

(mn,n)
X

(
cn
ℓ

) D→
k−1∑
j=1

λjξ2
j as n → ∞

as well as

T̂n =
∑k−1

j=1

(
(j + 1) N̂

(mn,n)
X

(
cn

j+1
)

− j N̂
(mn,n)
X

(
cn
j

))2

1
k

∑k
j=1 j N̂

(mn,n)
X

( cn
j

) D→ χ2
k−1 as n → ∞
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and

τ̂n =
k N̂

(mn,n)
X

( cn
k

)
− N̂

(mn,n)
X (cn)(

k−1
k

∑k
j=1 j N̂

(mn,n)
X

( cn
j

)) 1
2

D→ N(0, 1) as n → ∞,

where
λj = 1

4 sin2
(

j
k

π
2

) , j = 1, . . . , k − 1,

and ξ1, . . . , ξk−1 are independent and standard normally distributed random variables.

2.4 Testing for Functional δ-Neighborhoods via a Grid of

Points

Observing a complete process on [0, 1] as in the preceding section might be too strong of
an assumption. For instance, measuring the height of a tide at every point of the length
of a dike is presently hardly achievable. Although the data are driven by a continuous
process, it is more realistic that this process is measured only at a finite set of points.
This gives rise to the question whether the finite dimensional tests of Section 2.2 lead
asymptotically to the same test decisions as the functional versions of Section 2.3, if the
number of observation points tends to infinity in a certain manner. This current section
will show that this is actually true. In particular, we will be able to drop the assumption
of Section 2.3 that all margins of the underlying processes are identical. We restate the
null hypothesis again for better reference:

Hypothesis 2.1.8 There exist δ ∈ (0, ∞] and a GPC such that the copula underlying
the observed data is in the δ-neighborhood of this GPC.

Consider a functional D-norm ∥·∥D, a grid of points 0 = t
(d)
1 < t

(d)
2 < · · · < t

(d)
d = 1 for

d ∈ N, d ≥ 2, and a stochastic process X = (Xt)t∈[0,1] in C[0, 1] with continuous margins
Ft, t ∈ [0, 1]. Assume that our data consist of independent copies X(1), . . . , X(n) of X,
and that Hypothesis 2.1.8 is satisfied, i. e. the copula C of X is in the δ-neighborhood of
a GPC for some δ ∈ (0, ∞] and some D-norm ∥·∥D. Observe that

(2.4.1) Cd(u) := C

(
d∑

r=1
ui 1{t

(d)
r } + 1[0,1]\{t

(d)
1 ,...,t

(d)
d }

)
for u = (u1, . . . , ud)ᵀ ∈ [0, 1]d

is the copula of the random vector
(
X

t
(d)
r

)d
r=1, and Cd is obviously in the δ-neighborhood
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a finite dimensional GPC with D-norm given by

∥x∥D,d :=


d∑
r=1

xi 1{t
(d)
r }


D

for x = (x1, . . . , xd)ᵀ ∈ Rd.

Consequently,
(
Z

t
(d)
r

)d
r=1 is a generator of ∥·∥D,d if Z = (Zt)t∈[0,1] is a generator of ∥·∥D.

In order to obtain convergence of the finite dimensional projection ∥·∥D,d to the
underlying functional D-norm ∥·∥D, it is natural to let d = dn depend on the sample size,
and to require

(2.4.2) dn → ∞ and max
1≤r≤dn−1

⏐⏐⏐t(dn)
r+1 − t(dn)

r

⏐⏐⏐ → 0 as n → ∞,

i. e. the grid gets finer and finer as the number of observation points increases. Then

max
1≤r≤dn−1

⏐⏐⏐⏐Zt
(dn)
r+1

− Z
t
(dn)
r

⏐⏐⏐⏐ → 0 and max
1≤r≤dn

Z
t
(dn)
r

→ sup
t∈[0,1]

Zt as n → ∞

with probability one since Z is sample continuous. The sequence of generator constants
converges therefore as well:

(2.4.3) ∥1dn∥D,dn
= E

(
max

1≤r≤dn

Z
t
(dn)
r

)
→ E

(
sup

t∈[0,1]
Zt

)
=
1[0,1]


D as n → ∞

where the index of the vector 1 emphasizes its dimension. Recall that all of the test
statistics of the previous sections highly depended on a certain estimator of the generator
constant. Thus, (2.4.2) and (2.4.3) are necessary conditions for the desired asymptotic
equivalence of the multivariate tests with the functional ones.

Copula Data

Suppose that the data actually consist of continuous copula processes U (1), . . . , U (n)

with distribution function C. We know from (2.3.2) that there are ε ∈ (0, 1) and K > 0
satisfying⏐⏐⏐1 − C(f) −

f − 1[0,1]


D

⏐⏐⏐ ≤ K
f − 1[0,1]

1+δ
∞ for all f ∈ B+

(
1[0,1], ε

)
if Hypothesis 2.1.8 is true, and in particular⏐⏐⏐1 − Cdn(u) − ∥u − 1dn∥D,dn

⏐⏐⏐ ≤ K
u − 1dn

1+δ
∞ for all u ∈ B+

(
1dn , ε

)
and n ∈ N.

55



2 Testing for Generalized Pareto Models

This yields

(2.4.4) 1 − Cdn((1 − c)1dn) = c ∥1dn∥D,dn

(
1 + O

(
cδ)) for all c ∈ (0, ε).

Lemma 2.2.7 and (2.4.3) imply therefore the following version of Corollary 2.2.9.

Lemma 2.4.5 Let δ ∈ (0, ∞] and k ∈ N, k ≥ 2. Consider sequences (mn)n∈N and
(cn)n∈N in N and (0, 1), respectively, satisfying cn → 0, mncn → ∞, and mnc1+2δ

n → 0
as n → ∞. Moreover, let (dn)n∈N be a sequence in N, and 0 = t

(dn)
1 < · · · < t

(dn)
dn

= 1
such that (2.4.2) is true. Suppose we have independent copies U (1), . . . , U (mn) of a
copula process U = (Ut)t∈[0,1] in C[0, 1] with distribution function C, and denote by
U(n), U (1)(n), . . . , U (mn)(n) the corresponding projections onto this grid, i. e. U(n) =(
U

t
(dn)
r

)dn

r=1. If C is in the δ-neighborhood of a GPC with D-norm ∥·∥D, then

(2.4.6) 1
k

k∑
j=1

j

mncn
N

(mn)
U(n)

(
cn

j

)
→
1[0,1]


D in probability as n → ∞

and(
(mncn)

1
2

(
j

mncn
N

(mn)
U(n)

(
cn

j

)
−
1[0,1]


D

))k

j=1

D→ N
(
0,
1[0,1]


D MM

ᵀ
)

as n → ∞

where M =
(
1[ℓ,∞)(j)

)
1≤j,ℓ≤k

, cf. (2.2.8).

As before, the preceding result incorporated a sequence (mn)n∈N having the general
case in mind, where it will be necessary to require mn < n. For copula data, however, it
is sufficient to choose mn = n.

Lemma 2.4.5 shows in particular that the finite dimensional and the functional versions
of our tests are consistently linked with one another: The left side of (2.4.6) is based on
the number of exceedances of finite dimensional projections of the underlying copula
processes, whereas the limit denotes the functional generator constant, cf. Section 2.2
and Section 2.3. Of course, we required that the dimension of these projections tends
to infinity, but we did not make any assumption about the speed of convergence: The
increasing fineness of the projection grid together with the continuity of the underlying
processes turned out to be sufficient for the desired asymptotic normality our test statistics
are based upon. The theorems 2.2.10, 2.2.12, and 2.3.3 carry over:

Theorem 2.4.7 Let δ ∈ (0, ∞] and k ∈ N, k ≥ 2. Furthermore let C be a (functional)
copula which is in the δ-neighborhood of some GPC with D-norm ∥·∥D. Consider a
stochastic process U in C[0, 1] with distribution function C, and its projection U(n) onto
a grid 0 = t

(dn)
1 < · · · < t

(dn)
dn

= 1 satisfying (2.4.2). If (cn)n∈N is a sequence in (0, 1) such
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that cn → 0, ncn → ∞, and nc1+2δ
n → 0 as n → ∞, then we obtain

T ∗
n :=

∑k
j=1

(
j N

(n)
U(n)

( cn
j

)
− 1

k

∑k
ℓ=1 ℓ N

(n)
U(n)

( cn
ℓ

))2

1
k

∑k
ℓ=1 ℓ N

(n)
U(n)

( cn
ℓ

) D→
k−1∑
j=1

λjξ2
j as n → ∞

as well as

T ∗
n :=

∑k−1
j=1

(
(j + 1) N

(n)
U(n)

(
cn

j+1
)

− j N
(n)
U(n)

( cn
j

))2

1
k

∑k
j=1 j N

(n)
U(n)

( cn
j

) D→ χ2
k−1 as n → ∞

and

τ∗
n :=

k N
(n)
U(n)

( cn
k

)
− N

(n)
U(n)(cn)(

k−1
k

∑k
j=1 j N

(n)
U(n)

( cn
j

)) 1
2

D→ N(0, 1) as n → ∞

where
λj = 1

4 sin2
(

j
k

π
2

) , j = 1, . . . , k − 1,

and ξ1, . . . , ξk−1 are independent and standard normally distributed random variables.

Continuously Distributed Data

Now we aim at an extension of Theorem 2.4.7 to processes in C[0, 1] having continuous
margins. This will in particular overcome the disadvantage of Section 2.3, where processes
with identical margins were considered exclusively. As several times before, we need to
prove that the number of exceedances above a certain high threshold can be approximated
by its empirical counterpart reasonably well. Here we consider the finite dimensional
empirical number of exceedances, in the sense of Definition 2.2.16, of the projections to a
given grid and combine the arguments needed to derive Lemma 2.2.19 and Lemma 2.3.10.

Lemma 2.4.8 Let X = (Xt)t∈[0,1] be a stochastic process in C[0, 1] with continuous
margins Ft, t ∈ [0, 1], such that its copula is in the δ-neighborhood of a GPC for
some δ ∈ (0, ∞]. Consider a grid 0 = t

(dn)
1 < · · · < t

(dn)
dn

= 1 satisfying (2.4.2), and
the projection X(n) of X onto this grid. If (mn)n∈N and (cn)n∈N are sequences in N
and (0, 1), respectively, and if X(1), . . . , X(n) are independent copies of X, then

(mncn)− 1
2
(
N

(mn)
X(n)(cn) − N̂

(mn,n)
X(n) (cn)

)
→ 0 in probability as n → ∞

whenever mn
n log(mn) → 0, cn → 0, mncn → ∞, d2

n
mncn

→ 0, and mnc1+2δ
n → 0 as n → ∞.
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Proof. Define U (i) = (Ut)t∈[0,1] by U
(i)
t := Ft

(
X

(i)
t

)
for t ∈ [0, 1] and i = 1, . . . , n. Further-

more, denote by U(n) the projection of U onto the grid 0 = t
(dn)
1 < · · · < t

(dn)
dn

= 1. The
vectors of ⌈n(1 − cn)⌉-th order statistics of X(1)(n), . . . , X(n)(n) and U (1)(n), . . . , U (n)(n),
namely

Y⌈n(1−cn)⌉:n =
(
Y⌈n(1−cn)⌉:n,r

)dn

r=1
:=
(
X⌈n(1−cn)⌉:n,t

(dn)
r

)dn

r=1

and
V⌈n(1−cn)⌉:n =

(
V⌈n(1−cn)⌉:n,r

)dn

r=1
:=
(
U⌈n(1−cn)⌉:n,t

(dn)
r

)dn

r=1
,

satisfy

V⌈n(1−cn)⌉:n =
(
F

t
(dn)
r

(
Y⌈n(1−cn)⌉:n,r

))dn

r=1
and Y⌈n(1−cn)⌉:n =

(
F −1

t
(dn)
r

(
V⌈n(1−cn)⌉:n,r

))dn

r=1

with probability one since the distribution function of X(n) is continuous. Put

Rn :=
mn∑
i=1
1[0dn ,V⌈n(1−cn)⌉:n]

(
U (i)(n)

)[
1 − 1[0dn ,(1−cn)1dn ]

(
U (i)(n)

)]

and
Tn :=

mn∑
i=1
1[0dn ,(1−cn)1dn ]

(
U (i)(n)

)[
1 − 1[0dn ,V⌈n(1−cn)⌉:n]

(
U (i)(n)

)]
,

where the subscripts of the vectors 0 and 1 emphasize their dimensions. Then we obtain

N
(mn)
X(n)(cn) − N̂

(mn,n)
X(n) (cn) =

mn∑
i=1

[
1[0dn ,V⌈n(1−cn)⌉:n]

(
U (i)(n)

)
− 1[0dn ,(1−cn)1dn ]

(
U (i)(n)

)]
= Rn − Tn with probability one.

Put µn := ⌈n(1−cn)⌉
n+1 and observe µn − (1 − cn) ∈

[
−1−cn

n+1 , cn
n+1

)
. Markov’s inequality

shows

P
(

Rn

(mncn)
1
2

≥ η

)
≤ 1

η

(
mn

cn

) 1
2

P
(
U (1)(n) ≤ V⌈n(1−cn)⌉:n, U (1)(n) � (1 − cn)1dn

)

for all η > 0. We have furthermore

P
(
U (1)(n) ≤ V⌈n(1−cn)⌉:n

)
≤ Cdn

(
(µn + ε)1dn

)
+ P

(
max

1≤r≤dn

V⌈n(1−cn)⌉:n,r > µn + ε

)
as well as
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P
(
U (1)(n) ≤ min

{
V⌈n(1−cn)⌉:n, (1 − cn)1dn

})
≥ P

(
U (1)(n) ≤ min{µn − ε, 1 − cn}1dn

)
− P

(
U (1)(n) ≤ min{µn − ε, 1 − cn}1dn , min

1≤r≤dn

V⌈n(1−cn)⌉:n,r < µn − ε
)

≥ Cdn

(
min{µn − ε, 1 − cn}1dn

)
− P

(
min

1≤r≤dn

V⌈n(1−cn)⌉:n,r < µn − ε

)
.

for ε > 0, where C denotes the distribution function of U (1) and Cdn is its projection to
the grid, cf. (2.4.1). This and (2.3.2) yield

P
(
U (1)(n) ≤ V⌈n(1−cn)⌉:n, U (1)(n) � (1 − cn)1dn

)
= P

(
U (1)(n) ≤ V⌈n(1−cn)⌉:n

)
− P

(
U (1) ≤ min

{
V⌈n(1−cn)⌉:n, (1 − cn)1dn

})
≤ Cdn

(
(µn + ε)1dn

)
− Cdn

(
min{µn − ε, 1 − cn}1dn

)
+

dn∑
r=1

[
P
(
V⌈n(1−cn)⌉:n,r > µn + ε

)
+ P

(
V⌈n(1−cn)⌉:n,r < µn − ε

)]
≤ max

{
2ε,

cn

n + 1 + ε

}
∥1dn∥D,dn

+ O
(
max{1 − µn + ε, cn}1+δ

)
+ dn P

(⏐⏐⏐U⌈n(1−cn)⌉:n,0 − µn

⏐⏐⏐ > ε
)

if ε ≤ ncn
n+1 and n is sufficiently large, cf. Lemma 2.3.10. For these ε, n and for all η > 0

we obtain altogether

P
(

Rn

(mncn)
1
2

≥ η

)
≤ 1

η

[(
mn

cn

) 1
2

max
{

2ε,
cn

n + 1 + ε

}
∥1dn∥D,dn

+
(

mn

cn

) 1
2
dn P

(⏐⏐⏐U⌈n(1−cn)⌉:n,0 − µn

⏐⏐⏐ > ε
)

+ O
(

max
{(

mn

cn
(1 − µn + ε)2+2δ

) 1
2
,
(
mnc1+2δ

n

) 1
2

})]
.

Now put εn := 2
( cn

n log(mn)
) 1

2 and obtain

(
mn

cn

) 1
2
dn P

(⏐⏐⏐U⌈n(1−cn)⌉:n,0 − µn

⏐⏐⏐ > εn

)
≤ 2dn

(mncn)
1
2

→ 0 as n → ∞

from Reiss (1989, Lemma 3.1.1), as in Lemma 2.2.19. By considering (2.4.3) we conclude
analogously to Lemma 2.3.10 that (mncn)− 1

2 Rn → 0 in probability as n → ∞. Since
similar arguments also show (mncn)− 1

2 Tn → 0 in probability as n → ∞, the proof is
complete.
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2 Testing for Generalized Pareto Models

Lemma 2.4.8 above shows that the empirical number of exceedances approximates the
true number of exceedances, even if we observe a process only at a discrete number of
points and the copula data are subject to a certain nuisance. Note that the requirements
essentially coincide with those of Section 2.2 and Section 2.3. The main difference here is
that the number of observation points must not tend too quickly to infinity. Precisely,
the rate of convergence of dn to infinity is less than the one of (mncn)

1
2 . In presence of

(2.4.4), this means that the ratio of d2
n and the expected number of exceedances above

the threshold (1 − cn)1dn , among the first mn projections of the underlying copula data,
tends to zero as n → ∞.

Due to Lemma 2.4.8 it is easy to transfer the results of Section 2.2 and Section 2.3 to
the observed projections. This is done by considering various thresholds simultaneously
and by applying the arguments used in the derivation of the theorems 2.2.12, 2.2.21, and
2.3.11.

Theorem 2.4.9 Let δ ∈ (0, ∞] and k ∈ N, k ≥ 2. Furthermore, let X = (Xt)t∈[0,1] be a
stochastic process in C[0, 1] with continuous margins such that the copula of X is in the
δ-neighborhood of a GPC. Consider a grid 0 = t

(dn)
1 < · · · < t

(dn)
dn

= 1 satisfying (2.4.2),
and the projection X(n) of X onto this grid. If (mn)n∈N and (cn)n∈N are sequences in
N and (0, 1), respectively, satisfying mn

n log(mn) → 0, cn → 0, mncn → ∞, d2
n

mncn
→ 0,

and mnc1+2δ
n → 0 as n → ∞, then we have

T̂ ∗
n =

∑k
j=1

(
j N̂

(mn,n)
X(n)

(
cn
j

)
− 1

k

∑k
ℓ=1 ℓ N̂

(mn,n)
X(n)

( cn
ℓ

))2

1
k

∑k
ℓ=1 ℓ N̂

(mn,n)
X(n)

( cn
ℓ

) D→
k−1∑
j=1

λjξ2
j as n → ∞

as well as

T̂ ∗
n =

∑k−1
j=1

(
(j + 1) N̂

(mn,n)
X(n)

( cn
j+1

)
− j N̂

(mn,n)
X(n)

( cn
j

))2

1
k

∑k
j=1 j N̂

(mn,n)
X(n)

( cn
j

) D→ χ2
k−1 as n → ∞

and

τ̂∗
n =

k N̂
(mn,n)
X(n)

( cn
k

)
− N̂

(mn,n)
X(n) (cn)(

k−1
k

∑k
j=1 j N̂

(mn,n)
X(n)

(
cn
j

)) 1
2

D→ N(0, 1) as n → ∞,

where
λj = 1

4 sin2
(

j
k

π
2

) , j = 1, . . . , k − 1,

and ξ1, . . . , ξk−1 are independent and standard normally distributed random variables.
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3 Supplements and Related Topics

In Chapter 2, we considered essentially three different test statistics for the null hypothesis
that the observed data underlies a copula of a δ-neighborhood of a GPD. We saw that
all these tests are based on a rather general tool, namely Lemma 2.2.7. Thus, the
asymptotic behavior of each of the test statistics under consideration is invariant under
Hypothesis 2.1.8 — no matter whether the data are finite dimensional, functional and
observed everywhere, or functional and observed only at a finite grid.

This current chapter is dedicated to supplement and extend the previous results. In
particular, we will consider their technical prerequisites. Recall that the restriction
to a certain subsample when copula data cannot be observed directly was due to the
application of Reiss’ inequality, as discussed following Lemma 2.2.19. In Section 3.1,
we start with some prominent examples of copulas that are in a δ-neighborhood of a
GPC. In contrast to that, Section 3.2 considers copulas that are not in the domain of
attraction of an MSD, and thus do not satisfy Hypothesis 2.1.8. Both these sections are
then supplemented by Section 3.3 which, on the one hand, discusses the assumption that
the data emerge from a distribution with a continuous copula process and, on the other
hand, deals with an approach of extending a finite dimensional copula to a functional one.
Since the test statistics of Chapter 2 highly depend on the choice of additional parameters,
such as suitable thresholds and, where applicable, the size of a subsample, Section 3.4
gives some practical advice. The subsequent chapter will, in addition, compare the three
different test statistics and a test for similar hypothesis found in the literature by means
of a simulation study.

3.1 Some Examples

The tests of Chapter 2 check whether the copula of the data generating distribution is in
a δ-neighborhood of a GPC. We know so far that for each δ ∈ (0, ∞] and each GPC the
δ-neighborhood of this GPC is non-empty and collects, roughly speaking, all distribution
functions with a certain polynomial rate of convergence towards the corresponding
standard MSD, cf. Lemma 2.1.6 and Lemma 2.1.10. Recall that a distribution function
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3 Supplements and Related Topics

belongs to the ∞-neighborhood of a GPC if it coincides in its upper tail with this GPC,
cf. Definition 2.1.7.

The aim of this section is to provide some prominent and non-trivial examples of
copulas belonging to a certain δ-neighborhood. We begin with a rather general result on
finite dimensional and functional copulas. Afterwards, we will focus on popular finite
dimensional copula models, namely the Archimedean copulas and the normal copulas.
The latter results will also be revisited in Section 3.3.

EVCs

Since a GPD is derived from the corresponding MSD, cf. Definition 1.1.34 and Defi-
nition 1.2.21, it appears natural that their copulas are linked as well. Recall that any
(finite dimensional of functional) EVC C with D-norm ∥·∥D has the representation
C = exp(− ∥log(·)∥D), cf. (1.1.31) and Definition 1.2.11. A Taylor expansion yields the
following rather general result.

Lemma 3.1.1 For any D-norm, the corresponding EVC is in the 1-neighborhood of any
GPC with the same D-norm.

Proof. We only proof the functional part of the assertion; the finite dimensional one
follows from the same arguments. Since any D-norm ∥·∥D is monotonically increasing,
i. e. ∥f∥D ≤ ∥g∥D for f, g ∈ E[0, 1] ∩ [0, ∞)[0,1] with f ≤ g, a Taylor expansion yields the
existence of some constants c > 0 and ε ∈ (0, 1) satisfying

0 ≤
log(f)


D −

f − 1[0,1]


D ≤
log(f) −

(
f − 1[0,1]

)
D ≤ c

((f(t) − 1)2
)

t∈[0,1]


D

whenever f ∈ B+
(
1[0,1], ε

)
. If C denotes the EVC with D-norm ∥·∥D, another Taylor

expansion implies thus⏐⏐⏐⏐⏐1 − C(f) −
f − 1[0,1]


Df − 1[0,1]


∞

⏐⏐⏐⏐⏐
≤
⏐⏐⏐⏐⏐−

∞∑
k=2

(
− ∥log(f)∥D

)k
k!
f − 1[0,1]


∞

⏐⏐⏐⏐⏐+ c


(

|f(t) − 1|f − 1[0,1]


∞
|f(t) − 1|

)
t∈[0,1]


D

≤ ∥log(f)∥2
Df − 1[0,1]


∞

∞∑
k=2

∥log(f)∥k−2
D

k! + c
f − 1[0,1]


D for f ∈ B+

(
1[0,1], ε

)
.

Because of
(f(t) − 1)2 ≤ (f(t) − 1)2f − 1[0,1]


∞

≤ |f(t) − 1|
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3.1 Some Examples

for all f ∈ B+
(
1[0,1], ε

)
and t ∈ [0, 1], we conclude

∥log(f)∥2
Df − 1[0,1]


∞
≤ 1f − 1[0,1]


∞

(
c
((f(t) − 1)2

)
t∈[0,1]


D

+
f − 1[0,1]


D

)2

=
(

cf − 1[0,1]


∞

((f(t) − 1)2
)

t∈[0,1]


D

+
f − 1[0,1]


Df − 1[0,1]


∞

)

·
(

cf − 1[0,1]


D

((f(t) − 1)2
)

t∈[0,1]


D

+ 1
)f − 1[0,1]


D

≤
(

c
f − 1[0,1]


D +

f − 1[0,1]


Df − 1[0,1]


∞

)
(c + 1)

f − 1[0,1]


D .

This gives ⏐⏐⏐⏐⏐1 − C(f) −
f − 1[0,1]


Df − 1[0,1]


∞

⏐⏐⏐⏐⏐ = O
(f − 1[0,1]


∞

)
as
f − 1[0,1]


∞ → 0, since ∥·∥D and ∥·∥∞ are equivalent.

Recall that any member of a δ-neighborhood of a GPC is in the domain of attraction
of the corresponding MSD. Lemma 3.1.1 now reverses this well-known implication on the
copula-level.

Archimedean Copulas

Due to their simple method of construction, the following class of finite dimensional
copulas is quite popular in applications:

Definition 3.1.2 Let ϕ : [0, 1] → [0, ∞] be a continuous and strictly decreasing function
satisfying ϕ(1) = 0. Put ϕ[−1](y) := inf{x ∈ [0, 1] | ϕ(x) ≤ y} for y ∈ [0, ∞]. For an
integer d ≥ 2 let ϕ[−1] be d − 2 times differentiable on (0, ∞) with the both properties
that

(−1)i (ϕ[−1])(i)(y) ≥ 0 for all y ∈ (0, ∞) and i ∈ {0, . . . , d − 2}

and that (−1)d−2 (ϕ[−1])(d−2) is monotonically decreasing and convex. Then we call ϕ

an Archimedean generator and

(3.1.3) Cϕ(u) := ϕ[−1]
(

d∑
i=1

ϕ(ui)
)

for u = (u1, . . . , ud)ᵀ ∈ [0, 1]d

an Archimedean copula.
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3 Supplements and Related Topics

We have the following characterization, which is taken from McNeil and Nešlehová
(2009, Section 2) and translated to our notation.

Lemma 3.1.4 (McNeil and Nešlehová, 2009) Any Archimedean copula is a copula.
Moreover, if a copula has representation (3.1.3) with a continuous and strictly decreasing
function ϕ : [0, 1] → [0, ∞] satisfying ϕ(1) = 0, then ϕ is an Archimedean generator.

It is a rather mild assumption that the first derivative ϕ′ of an Archimedean generator
ϕ exists close to 1: If ϕ[−1] is differentiable in some neighborhood of 0, which is necessarily
the case for d ≥ 3, then

(
ϕ[−1])′ attains only non-positive values and is monotonically

increasing and continuous. This yields in particular
(
ϕ[−1])′(0) = limh→0+

(
ϕ[−1])′(h) ∈

[−∞, 0). Since ϕ[−1](ϕ(x)
)

= x for x ∈ [0, 1] as well as ϕ
(
ϕ[−1](y)

)
= y for y ∈ [0, ϕ(0)],

it follows that ϕ is differentiable in a neighborhood of 1 with ϕ′(1) = 1
(ϕ[−1])′(0) ∈ (−∞, 0].

If in particular ϕ′(1) < 0 then the corresponding Archimedean copula is in the domain of
attraction of the standard MSD with D-norm ∥·∥1, as can be verified easily by considering
Theorem 1.1.39 and the Taylor expansions of ϕ[−1] and ϕ at 0 and 1, respectively. Assuming
a certain shape of ϕ′ in a neighborhood of 1 yields moreover that this Archimedean
copula is actually in a δ-neighborhood of a GPC with D-norm ∥·∥1:

Lemma 3.1.5 (Archimedean copulas) Suppose that ϕ is an Archimedean generator that
is differentiable on (ε, 1] for some ε ∈ (0, 1) such that

(3.1.6) ϕ′(1) < 0 and ϕ′(1 − h) = ϕ′(1) + O
(
hδ) for some δ > 0 as h → 0+.

Then the corresponding Archimedean copula is in the δ-neighborhood of any GPC with
D-norm ∥·∥1.

Proof. The existence of ϕ′ in a neighborhood of 1 and (3.1.6) show that ϕ[−1] is differen-
tiable in some neighborhood of 0 as well as

lim
h→0+

(
ϕ[−1])′(h) =

(
ϕ[−1])′(0) = 1

ϕ′(1) ∈ (−∞, 0).

Since ϕ[−1] is convex, we have for h > 0 close to 0 and y ∈ (0, h)

ϕ[−1](y) ≤ y

h
ϕ[−1](h) +

(
1 − y

h

)
ϕ[−1](0) =

(
1 − h − y

h

)
ϕ[−1](h) + h − y

h
ϕ[−1](0)

and thus

(
ϕ[−1])′(0) ≤ ϕ[−1](y) − ϕ[−1](0)

y
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≤ ϕ[−1](h) − ϕ[−1](0)
h

≤ ϕ[−1](h) − ϕ[−1](y)
h − y

≤
(
ϕ[−1])′(h).

This gives 0 ≤ 1 − ϕ[−1](h) = ϕ[−1](0) − ϕ[−1](h) ≤ −h
ϕ′(1) as well as

(
ϕ[−1])′(h) −

(
ϕ[−1])′(0) = ϕ′(1) − ϕ′(ϕ[−1](h)

)
ϕ′(1) ϕ′(ϕ[−1](h)

)
=

O
(⏐⏐1 − ϕ[−1](h)

⏐⏐δ)
ϕ′(1)

(
ϕ′(1) + O

(⏐⏐1 − ϕ[−1](h)
⏐⏐δ)) = O

(
hδ) as h → 0+.

Altogether we conclude

1
|ϕ′(1)|

d∑
i=1

ϕ(ui) ≥ 1 − ϕ[−1]
(

d∑
i=1

ϕ(ui)
)

(3.1.7)

≥
⏐⏐⏐⏐⏐(ϕ[−1])′( d∑

i=1
ϕ(ui)

)⏐⏐⏐⏐⏐
d∑

i=1
ϕ(ui)

=

⎡⎣ 1
|ϕ′(1)| + O

⎛⎝⏐⏐⏐⏐⏐
d∑

i=1
ϕ(ui)

⏐⏐⏐⏐⏐
δ
⎞⎠⎤⎦ d∑

i=1
ϕ(ui)

= 1
|ϕ′(1)|

d∑
i=1

ϕ(ui) + O

⎛⎝⏐⏐⏐⏐⏐
d∑

i=1
ϕ(ui)

⏐⏐⏐⏐⏐
1+δ
⎞⎠

as u = (u1, . . . , ud)ᵀ → 1−. Since ϕ[−1] is convex and ϕ is decreasing, we obtain

ϕ((1 − λ)x1 + λx2) ≤ ϕ
(
ϕ[−1]((1 − λ) ϕ(x1) + λ ϕ(x2)

))
= (1 − λ) ϕ(x1) + λ ϕ(x2)

for x1, x2 ∈ (0, 1] and λ ∈ [0, 1], and thus

|x − 1|
⏐⏐ϕ′(1)

⏐⏐ ≤ ϕ(x) ≤ −|x − 1| ϕ′(x) = |x − 1|
⏐⏐ϕ′(1)

⏐⏐+ O(|x − 1|1+δ) as x → 1−.

This gives

0 ≤ 1
|ϕ′(1)|

d∑
i=1

ϕ(ui) − ∥u − 1∥1 = O
(

d∑
i=1

|ui − 1|1+δ

)
= O

(
∥u − 1∥1+δ

∞

)

as ∥u − 1∥∞ → 0, which implies the assertion, cf. (3.1.7).
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For general results on limit distributions of Archimedean copulas we refer to Charpentier
and Segers (2009) and Larsson and Nešlehová (2011). Lemma 3.1.5 can easily be applied
to the Clayton family of Archimedean copulas:

Example 3.1.8 (Clayton copula) The function ϕp : [0, 1] → [0, ∞] defined by

ϕp(x) :=

⎧⎨⎩
1
p

(
1

xp − 1
)

if p ∈ [−1, ∞) \ {0}

− log(x) if p = 0

generates a d-dimensional Archimedean copula Cp, called Clayton copula with parameter
p, whenever p > −1

d−2 , which becomes p > −∞ for d = 2. Lemma 3.1.5 shows that Cp is
in the 1-neighborhood of a GPC with D-norm ∥·∥1. If in particular d = 2 then C−1 is a
GPC itself.

Next we consider a subclass of Archimedean copulas which, in general, do not satisfy
(3.1.6) but are nevertheless in a δ-neighborhood of a GPC.

Example 3.1.9 (Gumbel-Hougaard copula) The function ϕp : [0, 1] → [0, ∞], ϕp(x) :=
(− log(x))p is for p ∈ [1, ∞) an Archimedean generator in arbitrary dimension. This is
due to the fact that ϕp is invertible and the n-th derivative of ϕ−1

p , n ∈ N, has the
expansion (

ϕ−1
p

)(n)(y) =
(

−1
p

)n

y
1
p

−n
qn−1

(
y

1
p

)
exp

(
−y

1
p

)
where qn−1(y) =

∑n−1
i=0 a

(n−1)
i yi is a polynomial with coefficients a

(n−1)
0 , . . . , a

(n−1)
n−1 ≥ 0.

In particular we have for n ∈ N the recursion a
(n−1)
n−1 = 1, a

(n)
0 = (np − 1)a(n−1)

0 and
a

(n)
i = a

(n−1)
i−1 +

(
np − (i + 1)

)
a

(n−1)
i for i = 1, . . . , n − 1. Although ϕp does not satisfy

(3.1.6) for p > 1,
Cp(u) = exp

(
− ∥log(u)∥p

)
= Cn

p

(
u

1
n

)
defines an Archimedean copula for p ∈ [1, ∞) which is, due to Lemma 3.1.1, in the
1-neighborhood of a GPC with D-norm ∥·∥p.

Normal Copula

We close this section with a result on the copula of a normally distributed random vector.

Definition 3.1.10 Let X = (X1, . . . , Xd)ᵀ be d-dimensional normally distributed with
mean vector 0 and covariance matrix Σ = (ϱij)1≤i,j≤d where ϱii = 1 for i = 1, . . . , d. Then
the distribution function of (Φ(Xi))d

i=1, Φ denoting the standard normal distribution
function, is called the normal copula with correlation matrix Σ.
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Whenever all entries of a correlation matrix, apart from the main diagonal, are non-
positive and greater than −1, the corresponding normal copula is in the 1-neighborhood
of a GPC with D-norm ∥·∥1. This assertion can be sharpened if the non-main-diagonal
entries are strictly negative:

Lemma 3.1.11 (Normal copula) If C is a normal copula with correlation matrix Σ =
(ϱij)1≤i,j≤d such that −1 < ϱij ≤ 0 for i ̸= j, then the following assertions hold:

(i) C is in the 1-neighborhood of a GPC with D-norm ∥·∥1.

(ii) If max{ϱij | 1 ≤ i < j ≤ d} < 0 then C is in the (1 + h)-neighborhood of a GPC
with D-norm ∥·∥1 for all h ∈

(
0, min1≤i<j≤d

2|ϱij |
1+ϱij

)
.

Proof. If X = (X1, . . . , Xd)ᵀ is normally distributed with mean vector 0 and covariance
matrix Σ, the inclusion-exclusion formula gives

⏐⏐1 − C(u) − ∥u − 1∥1
⏐⏐ =

d∑
i=1

P
(
Xi > Φ−1(ui)

)
− P

(
d⋃

i=1

{
Xi > Φ−1(ui)

})

=
∑

T ⊂{1,...,d}
|T |≥2

(−1)|T | P
(⋂

i∈T

{
Xi > Φ−1(ui)

})

for u = (u1, . . . , ud)ᵀ ∈ (0, 1).
Moreover, if (Ω,A) is a measurable space and d ≥ 2 an integer, we have

(3.1.12)
∑

T ⊂{1,...,d}
|T |≥3

(−1)|T | Q
(⋂

i∈T

Ai

)
≤ 0, A1, . . . , Ad ∈ A,

for any probability measure Q on (Ω,A). This is obvious for d ∈ {2, 3}. If (3.1.12) holds
for some d ≥ 2 and all probability measures on (Ω,A), we obtain

∑
T ⊂{1,...,d+1}

|T |≥3

(−1)|T | Q
(⋂

i∈T

Ai

)

=
∑

T ⊂{1,...,d}
|T |≥3

(−1)|T | Q
(⋂

i∈T

Ai

)
+

∑
T ⊂{1,...,d}

|T |≥2

(−1)|T |−1 Q

⎛⎝ ⋂
i∈T ∪{d+1}

Ai

⎞⎠

=
∑

T ⊂{1,...,d}
|T |≥3

(−1)|T | Q
(

Ac
d+1 ∩

⋂
i∈T

Ai

)
+

∑
T ⊂{1,...,d}

|T |=2

(−1)|T |−1 Q

⎛⎝ ⋂
i∈T ∪{d+1}

Ai

⎞⎠
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≤ P
(
Ac

d+1
) ∑

T ⊂{1,...,d}
|T |≥3

(−1)|T | Q
(⋂

i∈T

Ai

⏐⏐⏐⏐⏐ Ac
d+1

)
≤ 0

where Ad+1 ∈ A, Ac
d+1 = Ω \ Ad+1, and Q

(
Ac

d+1
)

> 0.
This gives altogether

(3.1.13)
⏐⏐1 − C(u) − ∥u − 1∥1

⏐⏐ ≤
d−1∑
i=1

d∑
j=i+1

P
(
Xi > Φ−1(ui), Xj > Φ−1(uj)

)
.

Note that the random vector (Xi, Xj)ᵀ is for 1 ≤ i < j ≤ d normally distributed with
mean vector (0, 0)ᵀ and covariance matrix Σij :=

( 1 ϱij

ϱij 1

)
. Since ϱij ∈ (−1, 0], we obtain

for max{|ui − 1| , |uj − 1|} < 1
2 and xi := Φ−1(ui), xj := Φ−1(uj) that

Σ−1
ij

(
xi

xj

)
= 1

1 − ϱ2
ij

(
1 −ϱij

−ϱij 1

)(
xi

xj

)
= 1

1 − ϱ2
ij

(
xi − ϱijxj

xj − ϱijxi

)
>

(
0
0

)
.

Put
c := max

1≤k<ℓ≤d

(
(2π)

|ϱkℓ|
1+ϱkℓ

√
1 + ϱkℓ

(1 − ϱkℓ)3

)
.

Then Savage (1962) — cf. Tong (1990), Hashorva and Hüsler (2003), and Hashorva
(2005) — shows

P
(
Xi > Φ−1(ui), Xj > Φ−1(uj)

)
<

1
2π
√

1 − ϱ2
ij

exp

⎛⎝−
x2

i − 2 ϱij xixj + x2
j

2
(
1 − ϱ2

ij

)
⎞⎠ 1 − ϱ2

ij

(xi − ϱijxj)(xj − ϱijxi)

≤ 1
2π

√
1 − ϱ2

ij exp

⎛⎝−2 (1 − ϱij) (min{xi, xj})2

2
(
1 − ϱ2

ij

)
⎞⎠ 1

(1 − ϱij)2(min{xi, xj})2

= 1
2π

√
1 + ϱij

(1 − ϱij)3
1

(min{xi, xj})2

[
exp

(
−(min{xi, xj})2

2

)]2−
2ϱij

1+ϱij

≤ c

(
Φ′(min{xi, xj})

min{xi, xj}

)2 (
Φ′(min{xi, xj})

) 2|ϱij |
1+ϱij .

Consequently, 1 − Φ(x) ∼ Φ′(x)
x as x → ∞ and 0 < Φ′(x) ≤ 1 for large x give

P
(
Xi > Φ−1(ui), Xj > Φ−1(uj)

)
(max{|ui − 1| , |uj − 1|})2 ≤ 3c

2

(
1 − Φ(min{xi, xj})

max{|ui − 1| , |uj − 1|}

)2

= 3c

2
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whenever max{|ui − 1| , |uj − 1|} is sufficiently close to 0. Equation (3.1.13) implies
part (i). If max{ϱkℓ | 1 ≤ k < ℓ ≤ d} < 0, we obtain for h ∈

(
0, min1≤k<ℓ≤d

2|ϱkℓ|
1+ϱkℓ

)

(Φ′(x))
2|ϱij |

(1+ϱij )h

1 − Φ(x) ∼ x
(
Φ′(x)

) 2|ϱij |
(1+ϱij )h

−1 = (2π)
1
2 +

ϱij
(1+ϱij )h x

exp
((

|ϱij |
(1+ϱij)h − 1

2

)
x2
) → 0 as x → ∞,

which completes the proof.

3.2 Some Copulas not in the Domain of Attraction of an MSD

Until now we have mainly dealt with GPD approximations of (finite dimensional and
functional) copulas. Chapter 2 provided in particular some tests for a δ-neighborhood
of a GPC. While the previous section provided examples of copulas satisfying this
hypothesis, the question arises whether there actually are copulas that do not belong to
a δ-neighborhood of a GPC. Due to Lemma 2.1.6 (iii), it suffices to find a copula that is
not in the domain of attraction of a standard MSD. Note that constructing such a copula
is by no means obvious; see Kortschak and Albrecher (2009) for a finite dimensional
example. However, it turns out that modifying the approach of constructing a GPD via
−U 1

Z , cf. Theorem 1.1.41, provides parametric families of random vectors, whose copulas
do not satisfy the extreme value condition (1.1.21) unless the parameter is zero. Note
that these copulas get arbitrarily close to a standard GPD, which itself is in the domain
of attraction of an MSD, as the parameter tends to zero. We will see in Section 3.3 how
to extend these finite dimensional copulas to whole copula processes in C[0, 1]. Since the
obtained parametric models are easy to simulate, they will serve as a benchmark for the
simulation study in Chapter 4.

Lemma 3.2.1 Let the random variable V have distribution function

(3.2.2) Hλ(u) := u
(
1 + λ sin(log(u))

)
, u ∈ [0, 1],

with parameter λ ∈
[
−

√
2

2 ,
√

2
2
]
. Furthermore, let the random variable U ∼ U[0, 1] be

independent of V . Then the copula Cλ of the bivariate random vector

(3.2.3) X := −V

2

( 1
U

,
1

1 − U

)ᵀ

is for λ ̸= 0 not in the domain of attraction of a multivariate MSD, whereas C0 is a GPC
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whose D-norm is given by

∥x∥D = ∥x∥1 − |x1| |x2|
∥x∥1

for x = (x1, x2)ᵀ ∈ R2 \ {0}.

Note that Hλ(0) = 0, Hλ(1) = 1 and H ′
λ(u) ≥ 0 for u ∈ (0, 1). Furthermore, we

obtain from X ∈ (−∞, 0]2 with probability one and elementary computations that the
distribution function Fλ of −V

U is

(3.2.4) Fλ(x) =

⎧⎪⎨⎪⎩
1

|x|

(
1
2 + λ

5

)
for x ≤ −1,

1 − |x|
(

1
2 + λ

5
(
2 sin(log |x|) − cos(log |x|)

))
for x ∈ (−1, 0).

Thus Fλ is continuous and strictly increasing on (−∞, 0].

Proof of Lemma 3.2.1. If Cλ is in the domain of attraction of some MSD, Lemma 1.1.20
shows that the limit

lim
s→0+

1 − Cλ(1 − s, 1 − s)
s

exists. We prove that this is not the case for λ ∈
[
−

√
2

2 ,
√

2
2
]

\ {0}. Since Cλ coincides
with the copula of 2X, we obtain for t ∈ (−1, 0)

1 − Cλ(Fλ(t), Fλ(t))
1 − Fλ(t) =

1 − P
(
−V

U ≤ t, − V
1−U ≤ t

)
1 − P

(
−V

U ≤ t
)

= 1 − P(V ≥ |t| max{U, 1 − U})
1 − P(V ≥ |t| U)

=
∫ 1

0 P(V ≤ |t| max{u, 1 − u}) du∫ 1
0 P(V ≤ |t| u) du

= 2

⎛⎝1 −
∫ 1

2
0 Hλ(|t| u) du∫ 1
0 Hλ(|t| u) du

⎞⎠ .

Since, on the one hand,

(3.2.5)
∫ c

0
Hλ(|t| u) du = 1

|t|

∫ |t|c

0
Hλ(u) du = 1

|t|

(
(|t| c)2

2 + λ

∫ |t|c

0
u sin(log(u)) du

)

for c ∈ [0, 1] and, on the other hand, applying the rule of integration by parts twice gives

(3.2.6)
∫ |t|c

0
u sin(log(u)) du = (|t| c)2

5
(
2 sin(log(|t| c)) − cos(log(|t| c))

)
,
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we conclude

1 − Cλ(Fλ(t), Fλ(t))
1 − Fλ(t) = 2

⎛⎝1 − 1
4

1
2 + λ

5

(
2 sin

(
log
( |t|

2
))

− cos
(
log
( |t|

2
)))

1
2 + λ

5

(
2 sin

(
log |t|

)
− cos

(
log |t|

))
⎞⎠ .

Considering the sequences t
(1)
n = − exp

(
(1 − 2n)π

)
, t

(2)
n = − exp

(
(1/2 − 2n)π

)
and s

(i)
n =

1 − Fλ

(
t
(i)
n
)
, i ∈ {1, 2}, n ∈ N, yields

1 − Cλ

(
1 − s

(1)
n , 1 − s

(1)
n
)

s
(1)
n

= 2 −
1
2 + λ

5

(
2 sin

(
π − log(2)

)
− cos

(
π − log(2)

))
1 + 2

5λ

as well as

1 − Cλ

(
1 − s

(2)
n , 1 − s

(2)
n
)

s
(2)
n

= 2 −
1
2 + λ

5

(
2 sin

(
π
2 − log(2)

)
− cos

(
π
2 − log(2)

))
1 + 4

5λ

and both values are distinct for λ ∈
[
−

√
2

2 ,
√

2
2
]

\ {0}.
If λ = 0, Theorem 1.1.39 and Theorem 1.1.41 show that C0 is a GPC with D-norm

∥x∥D = lim
t→0+

1 − C0(1 + tx)
t

= 2 E
(
max{|x1| U, |x2| (1 − U)}

)
= ∥x∥1 − |x1| |x2|

∥x∥1

for x = (x1, x2)ᵀ ∈ (−∞, 0]2 \ {0}.

Similar results can be obtained when the denominator in (3.2.3) is exchanged:

Lemma 3.2.7 If V is as in Lemma 3.2.1 and the random variables U1, U2 ∼ U[0, 1] are
chosen such that U1, U2, V are independent, then the copula Cλ of the random vector

−V

2

( 1
U1

,
1

U2

)ᵀ

is not in the domain of attraction of an MSD unless λ = 0. If λ = 0, the corresponding
D-norm is given by

∥x∥D = ∥x∥∞ + (∥x∥1 − ∥x∥∞)2

3 ∥x∥∞
for x ̸= 0.

Proof. We obtain

1 − Cλ(Fλ(t), Fλ(t))
1 − Fλ(t) = 1 − P(V ≥ |t| max{U1, U2})

1 − P(V ≥ |t| U1) =
∫ 1

0
∫ 1

0 Hλ(|t| max{u1, u2}) du2 du1∫ 1
0 Hλ(|t| u) du
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for t ∈ (−1, 0), where

∫ 1

0

∫ 1

0
Hλ(|t| max{u1, u2}) du2 du1

=
∫ 1

0

∫ u1

0
Hλ(|t| u1) du2 +

∫ 1

u1
Hλ(|t| u2) du2 du1

=
∫ 1

0
u1 Hλ(|t| u1) du1 +

∫ 1

0
Hλ(|t| u2) du2 −

∫ 1

0

∫ u1

0
Hλ(|t| u2) du2 du1.

(3.2.8)

The rule of integration by parts implies

(3.2.9)
∫ 1

0
u1 Hλ(|t| u1) du1 =

∫ 1

0
Hλ(|t| u1) du1 −

∫ 1

0

∫ u1

0
Hλ(|t| u2) du2 du1

and (3.2.5), (3.2.6) show

∫ 1

0

∫ u1

0
Hλ(|t| u2) du2 du1

= 1
|t|

∫ 1

0

(|t| u1)2

2 + λ
(|t| u1)2

5
(
2 sin(log(|t| u1)) − cos(log(|t| u1))

)
du1

= 1
|t|2

∫ |t|

0

u2

2 + λ
u2

5
(
2 sin(log(u)) − cos(log(u))

)
du

= 1
2 |t|2

∫ |t|

0
u2(1 + λ sin(log(u))

)
du − λ

10 |t|2
∫ |t|

0
u2(sin(log(u)) + 2 cos(log(u))

)
du

= 1
2

∫ 1

0
u Hλ(|t| u) du − λ |t|

20
(
sin(log |t|) + cos(log |t|)

)
since∫ |t|

0
u2(sin(log(u)) + 2 cos(log(u))

)
du

= |t|3

3
(
sin(log |t|) + 2 cos(log |t|)

)
− 1

3

∫ |t|

0
u2(cos(log(u)) − 2 sin(log(u))

)
du

= |t|3

3
(
sin(log |t|) + 2 cos(log |t|)

)
− |t|3

9
(
cos(log |t|) − 2 sin(log |t|)

)
− 1

9

∫ |t|

0
u2(sin(log(u)) + 2 cos(log(u))

)
du.

Now we conclude from (3.2.5), (3.2.6), (3.2.8) and (3.2.9) that

∫ 1

0
u Hλ(|t| u) du = 2

3

(∫ 1

0
Hλ(|t| u) du + λ |t|

20
(
sin(log |t|) + cos(log |t|)

))
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and
1 − Cλ(Fλ(t), Fλ(t))

1 − Fλ(t) = 4
3

(
1 + λ

sin(log |t|) + cos(log |t|)
10 + 4λ

(
2 sin(log |t|) − cos(log |t|)

)).

Considering the both sequences
(
t
(1)
n
)

n∈N and
(
t
(2)
n
)

n∈N in the proof of Lemma 3.2.1
yields

1 − Cλ

(
Fλ

(
t
(1)
n
)
, Fλ

(
t
(1)
n
))

1 − Fλ

(
t
(1)
n
) = 4

3

(
1 − λ

10 + 4λ

)
and

1 − Cλ

(
Fλ

(
t
(2)
n
)
, Fλ

(
t
(2)
n
))

1 − Fλ

(
t
(2)
n
) = 4

3

(
1 + λ

10 + 8λ

)
,

i. e. 1−Cλ(1−s,1−s)
s has for λ ∈

[
−

√
2

2 ,
√

2
2
]

\ {0} at least two different accumulation points
as s → 0+.

Furthermore, we have for λ = 0 and x = (x1, x2)ᵀ < 0

∥x∥D = 2 E
(
max{|x1| U1, |x2| U2}

)
= 2

∫ 1

0

∫ 1

0
max{|x1| u1, |x2| u2} du2 du1

= 2
∫ 1

0

∫ 1−(1− |x1|
|x2| u1)+

0
|x1| u1 du2 +

∫ 1

1−(1− |x1|
|x2| u1)+

|x2| u2 du2 du1

since 1 −
(
1 − |x1|

|x2|u1
)

+ = min
{
1, |x1|

|x2|u1
}
. This gives

∥x∥D = 2
∫ 1

0

(
1 −

(
1 − |x1|

|x2|
u1

)
+

)
|x1| u1 + |x2|

2

⎡⎣1 −
(

1 −
(

1 − |x1|
|x2|

u1

)
+

)2
⎤⎦du1

= |x2| + 2
∫ 1

0

(
1 −

(
1 − |x1|

|x2|
u1

)
+

)[
|x1| u1 − |x2|

2

(
1 −

(
1 − |x1|

|x2|
u1

)
+

)]
du1,

and thus

∥x∥D − |x2|
2 =

∫ 1−(1− |x2|
|x1| )+

0

|x1|2

2 |x2|
u2 du +

∫ 1

1−(1− |x2|
|x1| )+

|x1| u − |x2|
2 du

= |x1|2

6 |x2|

(
1 −

(
1 − |x2|

|x1|

)
+

)3

+ |x1|
2

⎡⎣1 −
(

1 −
(

1 − |x2|
|x1|

)
+

)2
⎤⎦− |x2|

2

(
1 − |x2|

|x1|

)
+

.
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Since

1 −
(

1 − |x2|
|x1|

)
+

= 1 − 1
|x1|

(|x1| − |x2|)+ = 1 − 1
|x1|

(∥x∥∞ − |x2|) = ∥x∥1 − ∥x∥∞
|x1|

and ∥x∥1 − ∥x∥∞ = min{|x1| , |x2|}, we get

∥x∥D = (∥x∥1 − ∥x∥∞)3

3 |x1| |x2|
+ |x1| − (∥x∥1 − ∥x∥∞)2

|x1|
+ |x2| ∥x∥1 − ∥x∥∞

|x1|

= (∥x∥1 − ∥x∥∞)2

3 ∥x∥∞
+ |x1| + (∥x∥∞ − |x1|)∥x∥1 − ∥x∥∞

|x1|

= (∥x∥1 − ∥x∥∞)2

3 ∥x∥∞
+ |x1| + |x1| |x2|

|x1|
− (∥x∥1 − ∥x∥∞)

= ∥x∥∞ + (∥x∥1 − ∥x∥∞)2

3 ∥x∥∞
,

which completes the proof.

Lemma 3.2.1 and Lemma 3.2.7 give rise to two one-parametric models of bivariate
random vectors that are not in the domain of attraction of any MSD unless the parameter
is zero. This was achieved by replacing the nominator of a GPD random vector −U 1

Z

— cf. Theorem 1.1.41 and Theorem 1.2.26 — with a random variable V that has an
oscillating density close to its lower endpoint, as illustrated in Figure 3.2.10. Thus, the
density of − U

Zi
, i ∈ {1, 2}, is oscillating close to its upper endpoint, cf. (3.2.4). One

might expect that the copula of −V 1
Z is not in a domain of attraction for any generator

Z. However, if U and V are as in Lemma 3.2.1, the random vector −V
2
( 1

U , 1
U

)ᵀ has the
copula

Cλ(u) = P
(

−V

U
≤ F −1

λ (u1), −V

U
≤ F −1

λ (u2)
)

= Fλ

(
min

{
F −1

λ (u1), F −1
λ (u2)

})
= min{u1, u2} for u = (u1, u2)ᵀ ∈ (0, 1)2

since Fλ is strictly increasing. Thus, the copula does not depend on λ and Theorem 1.2.28
shows that Cλ is in the domain of attraction of the standard MSD with D-norm ∥·∥∞.
In fact, Cλ is an EVC since

min{u1, u2} =
(
min

{
u

1/n
1 , u

1/n
2

})n
for all n ∈ N,

cf. Definition 1.1.17 and Lemma 1.1.32.
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Figure 3.2.10 Plots of the density of Hλ in Lemma 3.2.1 for λ =
√

2
2 .

3.3 Continuous Copula Processes

Copulas are quite powerful tools to characterize the domain of attraction of an MSD, which
motivated to focus on standard MSDs. Recall that Sklar’s Theorem (Theorem 1.1.13)
assures that any finite dimensional distribution function has a copula. An extension
to C[0, 1] that is in full accordance with the finite dimensional setting would require a
stochastic process X in C[0, 1] to have a continuous copula process, cf. Definition 1.2.8.
Indeed we noted in Lemma 1.2.9 that a continuous copula process exists if all margins of
X are continuous. Chapter 2 therefore considered these kind of processes only.

In the first part of this section, we will see that there are stochastic processes in C[0, 1]
that do not have a continuous copula process. However, we show that those processes can
be approximated reasonably by another process that does have a copula process in C[0, 1].
This yields that the requirement of Chapter 2, that there is a copula process having
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continuous sample paths, is not too strong. The second part deals with an interpolation
method that transforms a copula random vector into a whole copula process in C[0, 1].
This implies in particular that the parametric families in Section 3.2 can be generalized
to the space C[0, 1], i. e. there are stochastic processes in C[0, 1] which are not in the
domain of attraction of an MSP.

A Continuous Process that has No Continuous Copula Process

Inspired by Hofmann (2012, Section 2.4), consider p ∈ (0, 1) and let X = (Xt)t∈[0,1] have
the distribution defined by P

(
X = id[0,1]

)
= p and P

(
X = 1[0,1] − id[0,1]

)
= 1 − p, where

id[0,1] denotes the identity function of the interval [0, 1], cf. Figure 3.3.1. Then Xt has the
distribution function Ft(x) = p 1[t,∞)(x) + (1 − p) 1[1−t,∞)(x), x ∈ R, and the quantile
function

F −1
t (u) =

⎧⎨⎩t 1(0,p](u) + (1 − t) 1(p,1)(u), t ∈
[
0, 1

2
]
,

(1 − t) 1(0,1−p](u) + t 1(1−p,1)(u), t ∈
(1

2 , 1
]
,

u ∈ (0, 1).

Let U = (Ut)t∈[0,1] be an arbitrary copula process in C[0, 1]. Then we have, on the one
hand,

P
((

F −1
t (Ut)

)
t∈[0,1] = id[0,1]

)
≤ P

(
U 1[0, 1

2 ) ≤ p 1[0, 1
2 ), U 1( 1

2 ,1] > (1 − p) 1( 1
2 ,1]
)

= 0

for p < 1
2 and, on the other hand,

P
((

F −1
t (Ut)

)
t∈[0,1] = id[0,1]

)
≤ P

(
1 − p ≤ U 1

2
≤ p

)
= 2p − 1

for p ≥ 1
2 . Thus P

((
F −1

t (Ut)
)

t∈[0,1] = id[0,1]
)

̸= P
(
X = id[0,1]

)
, i. e. the stochastic process

X does not have a continuous copula process.
However, according to Rüschendorf (2009), X does have a copula process in E[0, 1];

just define U = (Ut)t∈[0,1] by

(3.3.2) Ut = p
(
1(t,∞)(Xt) + V 1{t}(Xt)

)
+ (1 − p)

(
1(1−t,∞)(Xt) + V 1{1−t}(Xt)

)
where V ∼ U[0, 1] is independent of X. In this case one has Ut ∼ U[0, 1], t ∈ [0, 1], and

1 = P
(
X = id[0,1]

)
+ P

(
X = 1[0,1] − id[0,1]

)
= P

(
(pV )t∈[0, 1

2 ) ≤ p 1[0, 1
2 ), (pV + (1 − p))t∈( 1

2 ,1] > (1 − p) 1( 1
2 ,1], X = id[0,1]

)
+ P

(
(p + (1 − p)V )t∈[0, 1

2 ) > p 1[0, 1
2 ), ((1 − p)V )t∈( 1

2 ,1] ≤ (1 − p) 1( 1
2 ,1],

X = 1[0,1] − id[0,1]
)

76



3.3 Continuous Copula Processes

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3.3.1 The both sample paths of the process X.

= P
(
(Ut)t∈[0, 1

2 ) ≤ p 1[0, 1
2 ), (Ut)t∈( 1

2 ,1] > (1 − p) 1( 1
2 ,1], X = id[0,1]

)
+ P

(
(Ut)t∈[0, 1

2 ) > p 1[0, 1
2 ), (Ut)t∈( 1

2 ,1] ≤ (1 − p) 1( 1
2 ,1], X = 1[0,1] − id[0,1]

)
= P

((
F −1

t (Ut)
)

t∈[0,1] = id[0,1], X = id[0,1]
)

+ P
((

F −1
t (Ut)

)
t∈[0,1] = 1[0,1] − id[0,1], X = 1[0,1] − id[0,1]

)
= P

((
F −1

t (Ut)
)

t∈[0,1] = X
)
.

Note that this proof of P
((

F −1
t (Ut)

)
t∈[0,1] = X

)
= 1 would still hold if we would replace

V in (3.3.2) with Vt ∼ U[0, 1]. Nevertheless, even the space E[0, 1] is not large enough, in
the sense that there are stochastic processes in C[0, 1] that do not have a copula process
in E[0, 1]:

Example 3.3.3 Define a stochastic process Y = (Yt)t∈[0,1] by Y1 = 1
2 and

Yt = 1
2 + (−1)n−1

(
B − 1

2

)(
2n − 1 − (2n + 1)t

)
for t ∈ [tn, tn+1)

where tn = 1 − 1
n , n ∈ N, and B is B(1, p)-distributed with parameter p ∈ (0, 1). Thus

Y is in C[0, 1] and we have

Ytn = 1
2 + (−1)n−1

n

(
B − 1

2

)
as well as Y 2n−1

2n+1
= 1

2
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with probability one. The sample paths are illustrated in Figure 3.3.4. As this process is
essentially a sequence of scaled versions of the process X from above, the same reasoning
as before shows that any copula process of Y is not continuous at the points 2n−1

2n+1 , n ∈ N,
and Y has therefore no copula process in E[0, 1].
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Figure 3.3.4 The both sample paths of the process X in Example 3.3.3.

Although the above considerations suggest that one of the main assumptions of Chap-
ter 2, namely that the data emerged from a distribution with a continuous copula process,
is rather restrictive, the following simple result hints how to overcome this disadvantage.

Lemma 3.3.5 Let V be a non-negative random variable with a continuous distribution
function. If X = (Xt)t∈[0,1] is a stochastic process in C[0, 1] ∩ (−∞, 0)[0,1] that is inde-
pendent of V , then V X has a continuous copula process.

Proof. We have obviously that V X is in C[0, 1]. Moreover, t ∈ [0, 1] and y < 0 imply

P(V Xt ≤ y) =
∫

(−∞,0)
P
(

V ≤ y

x

)
(P ∗ Xt)(dx)

→
∫

(−∞,0)
P
(

V ≤ y0
x

)
(P ∗ Xt)(dx) = P(V Xt ≤ y0) as y → y0−,

i. e. the assertion follows from the dominated convergence theorem and Lemma 1.2.9.

Consider a stochastic process X in C[0, 1] ∩ (−∞, 0)[0,1] that has no continuous copula
process. Lemma 3.3.5 shows in particular that X can be approximated by another process
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3.3 Continuous Copula Processes

that does have a copula process in C[0, 1]: For n ∈ N let Vn be a random variable with
Lebesgue-density gn = n 1(1− 1

2n
,1+ 1

2n ). We obtain

2n + 1
2n

X < VnX <
2n − 1

2n
X

with probability one.

Copula Processes from Copula Random Vectors

We have seen that there are finite dimensional copulas which are not in a domain of
attraction of an MSD. The question is whether the same is true for continuous copula
processes. In fact, the both parametric families given in Lemma 3.2.1 and Lemma 3.2.7 can
be extended to stochastic processes in C[0, 1] by a linear interpolation of the corresponding
generator, which is another immediate consequence of Lemma 3.3.5.

Corollary 3.3.6 Let Z̃ =
(
Z̃1, . . . , Z̃d

)ᵀ be a d-variate generator with d ≥ 2, and consider
a grid {t1, . . . , td} such that t1 = 0, td = 1, and ti < ti+1 for i = 1, . . . , d − 1. Define a
continuous generator process Z = (Zt)t∈[0,1] by

(3.3.7) Zt :=

⎧⎨⎩Z̃i if t = ti, i = 1, . . . , d,

ti+1−t
ti+1−ti

Zti + t−ti
ti+1−ti

Zti+1 if t ∈ (ti, ti+1), i = 1, . . . , d − 1.

Furthermore, let h ∈ C[0, 1] ∩ (0, ∞)[0,1] and choose a non-negative and continuously
distributed random variable V that is independent of Z̃. Then the stochastic process

(3.3.8) W =

⎧⎨⎩−V
1[0,1]

Z if P
(
Z̃ > 0

)
= 1

−V min
{

h,
1[0,1]

Z

}
if P

(
Z̃ > 0

)
< 1

is in C[0, 1] and has a continuous copula process.

The interpolation method (3.3.7) was introduced by Hofmann (2012) and shows that
any finite dimensional MSD (or GPD) can be extended to a functional MSD (or GPD),
where the original distribution is preserved as a finite dimensional margin of the functional
version. Due to Lemma 3.3.5 we now also know that the copula of the original distribution
is by (3.3.7) extended to a copula process in C[0, 1].

The approach discussed in Corollary 3.3.6 extends the finite dimensional copula of
W̃ := −V

(
1/Z̃

)
to a functional one, where the lower end of W̃ is cut off as in (3.3.8)

if P
(
Z̃ > 0

)
< 1. Since neither the finite dimensional nor the functional copula has
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to be known explicitly, this interpolation method might be considered as an indirect
one. However, if a random vector Ũ follows a finite dimensional EVC, then Ũ can be
interpolated directly by means of generalized max-linear models, which were defined by
Falk et al. (2014) as an extension of the max-linear models introduced by Wang and
Stoev (2011). We also refer to Dombry et al. (2015) for a recent account of simulation
techniques for MSPs.

Lemma 3.3.9 Consider an integer d ≥ 2, a random vector Ũ =
(
Ũ1, . . . , Ũd

)ᵀ which
follows a d-variate EVC C, and a grid {t1, . . . , td} such that t1 = 0, td = 1, and ti < ti+1

for i = 1, . . . , d − 1. Then

Ut :=

⎧⎪⎪⎨⎪⎪⎩
Ũi if t = ti, i = 1, . . . , d,

max
{

Ũ
∥(1,

t−ti
ti+1−t )

ᵀ∥
D,i

i , Ũ
∥( ti+1−t

t−ti
,1)ᵀ∥

D,i

i+1

}
if t ∈ (ti, ti+1), i = 1, . . . , d − 1,

defines a copula process U = (Ut)t∈[0,1] in C[0, 1] which follows a functional EVC, where

(y, z)ᵀ


D,i := − log
[
C

((
exp(− |y|) 1{i}(ℓ) + exp(− |z|) 1{i+1}(ℓ)

+ 1{1,...,d}\{i,i+1}(ℓ)
)d

ℓ=1

)]
for all y, z ∈ R and i ∈ {1, . . . , d − 1}.

Proof. According to (1.1.31) the D-norm ∥·∥D of C is given by

∥x∥D = − log
(
C
(
exp(−|x|)

))
for x ∈ Rd,

which yields in particular

(y, z)ᵀ


D,i =
(y 1{i}(ℓ) + z 1{i+1}(ℓ)

)d

ℓ=1


D

for all y, z ∈ R and i ∈ {1, . . . , d − 1}.

Since log
(
Ũ
)

follows the standard MSD with D-norm ∥·∥D, Falk et al. (2014, Corollary 3.2)
proves that

ηt :=

⎧⎪⎨⎪⎩
log
(
Ũi
)

if t = ti, i = 1, . . . , d,(ti+1 − t, t − ti)
ᵀ

D,i max
{

log(Ũi)
ti+1−t ,

log(Ũi+1)
t−ti

}
if t ∈ (ti, ti+1), i = 1, . . . , d − 1,

defines a standard MSP η = (ηt)t∈[0,1] in C[0, 1]. Now the assertion follows from the
identity U = exp(η).
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The D-norms ∥·∥D and ∥·∥D,∗ of Ũ and U , respectively, satisfy by construction the
equation

∥x∥D =


d∑
i=1

xi 1{ti}


D,∗

for x = (x1, . . . , xd)ᵀ ∈ Rd

and Falk et al. (2014, Corollary 3.2) shows that ∥·∥D,∗ is generated by Z = (Zt)t∈[0,1]
with

Zt :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Z̃i if t = ti, i = 1, . . . , d,

max
{(1, t−ti

ti+1−t

)ᵀ−1

D,i
Z̃i,

( ti+1−t
t−ti

, 1
)ᵀ−1

D,i
Z̃i+1

}
if t ∈ (ti, ti+1), i = 1, . . . , d − 1,

where Z̃ =
(
Z̃1, . . . , Z̃d

)ᵀ is a generator of ∥·∥D. Falk et al. (2014, Corollary 4.2) implies
moreover that

Vt :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ṽi if t = ti, i = 1, . . . , d,

max
{(1, t−ti

ti+1−t

)ᵀ
D,i

Ṽi,
( ti+1−t

t−ti
, 1
)ᵀ

D,i
Ṽi+1

}
if t ∈ (ti, ti+1), i = 1, . . . , d − 1,

defines a stochastic process V = (Vt)t∈[0,1] in C[0, 1] which follows a standard GPD with
D-norm ∥·∥D,∗ if the distribution of the random vector

(
Ṽ1, . . . , Ṽd

)ᵀ is a standard GPD
with D-norm ∥·∥D.

For the sake of completeness, we also note that any copula random vector may be
interpolated directly: Consider a random vector (U1, . . . , Ud)ᵀ that is distributed according
to some d-variate copula, d ≥ 2. The procedure consists of two steps:

(i) Interpolate the values U1, . . . , Ud using a modified version of (3.3.7), see below.
The result is a stochastic process Ũ =

(
Ũt
)

t∈[0,1] in C[0, 1].

(ii) For each t ∈ [0, 1], apply the distribution function of Ũt to Ũt and obtain a continuous
copula process U =

(
U t
)

t∈[0,1], satisfying U i−1
d−1

= Ui for each i ∈ {1, . . . , d}.

To assure that the result of the second step is a continuous copula process, we modify the
interpolation method in (3.3.7) such that the distribution function of Ũt is continuous for
all t ∈ [0, 1]. Therefore, take d − 1 random variables W1, . . . , Wd−1 ∼ U[0, 1] such that
Wi is independent of Ui and Ui+1, i ∈ {1, . . . , d − 1}, and define

Ũt :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ui if t = i−1

d−1 , i = 1, . . . , d,

Wi if t = i−1
d−1 + 1

2(d−1) , i = 1, . . . , d − 1,

linearly interpolated elsewhere.

81



3 Supplements and Related Topics

This means we apply the interpolation method in (3.3.7) to the (2d − 1)-dimensional ran-
dom vector (U1, W1, U2, W2, U3, . . . , Wd−1, Ud)ᵀ and the grid

{
ℓ−1

2(d−1)
⏐⏐ ℓ ∈ {1, . . . , 2d − 1}

}
.

If there is i0 ∈ {1, . . . , d − 1} such that the random variable (1 − s) Ui0 + s Ui0+1 has a
continuous distribution function for all s ∈ (0, 1), then Wi0 can be dropped and Ui0 , Ui0+1

can be interpolated directly. This is, e. g., the case for U1 and U2 in Figure 3.3.10 which
are independent of one another. However, W2 in the same figure cannot be dropped since
otherwise Ũ would have no continuous copula process, cf. Example 3.3.3.
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Figure 3.3.10 Two interpolations of the random vector (U1, U2, 1 − U2)ᵀ with independent
random variables U1, U2 ∼ U[0, 1].

Figure 3.3.10 was obtained by considering the following result, which can be seen by
elementary calculations:

Lemma 3.3.11 If U1, U2 ∼ U[0, 1] are independent, one gets

P
(
(1 − s) U1 + s U2 ≤ x

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x2

2s(1−s) , x ∈
(
0, min{s, 1 − s}

)
2x−min{s,1−s}
2 max{s,1−s} , x ∈

[
min{s, 1 − s}, max{s, 1 − s}

)
1 − (1−x)2

2s(1−s) , x ∈
[
max{s, 1 − s}, 1

)
for all s ∈ (0, 1).
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3.4 Selection of the Parameters

The preceding sections provided (finite dimensional) copulas that do or do not satisfy
Hypothesis 2.1.8, and considered how some of these examples can be extended to continu-
ous copula processes. Before we apply the tests of Chapter 2 to random samples of these
copulas, which will be the content of Chapter 4, our aim is now to review the technical
requirements; cf. Theorem 2.2.10, Theorem 2.2.12 and Theorem 2.2.21 for finite dimen-
sional data, Theorem 2.3.3 and Theorem 2.3.11 for functional data, and Theorem 2.4.7
and Theorem 2.4.9 for functional data that are observed at a finite set of points.

Recall that the test statistics under consideration depend on several sequences, which
are required to have certain asymptotic properties as the sample size grows to infinity.
For a finite sample size, however, Chapter 4 will show that the test results are highly
sensitive to a proper choice of the corresponding elements of these sequences. These
elements will be referred to as the parameters of the test statistics. In order to obtain a
first impression of how to obtain reasonable values for the parameters, we start with an
exploratory approach for copula data, which will motivate the theoretical considerations
that follow afterwards.

An Exploratory Approach for Copula Data

For convenience, we assume for a moment that our data consist of independent copies
U (1), . . . , U (n) of a random element U that emerged from a (finite dimensional or func-
tional) copula. If we want to test whether this copula is in the δ-neighborhood of a GPC,
the test statistics depend on the parameters k and cn, where k ≥ 2 is an integer and
cn ∈ (0, 1) has the asymptotic properties cn → 0, ncn → ∞, and nc1+2δ

n → 0 as n → ∞.
We assume δ > 0 to be given; e. g., if we observe finite dimensional data and want to
check whether the Gumbel-Hougaard family in Example 3.1.9 is a candidate for modeling
the copula of the data, we would choose δ = 1. Moreover, since parts (i) and (ii) of
Lemma 2.1.6 show that δ-neighborhoods are nested, we assume δ < ∞.

A graphically based approach for finding reasonable values for the parameters is as
follows: In a preliminary step, we consider an estimator of the generator constant which
depends on cn but not on k. Based on its asymptotic properties, we obtain a range
of suitable values for cn, which is used in step two for choosing cn and, afterwards, k.
The last step is to check the goodness of these values by considering an estimator of the
generator constant that depends on cn and k. Precisely, we proceed as follows:

(i) Plot the function γ∗(c) := 1
nc N

(n)
U (c) for c ∈ (0, 1] and recall that N

(n)
U (c) is

the number of observations which do not belong to the interval
[
0, (1 − c)1

]
or[

0[0,1], (1 − c) 1[0,1]
]
, respectively. If Hypothesis 2.1.8 is true and cn is chosen prop-

83



3 Supplements and Related Topics

erly, then γ∗
( cn

1
)
, . . . , γ∗

( cn
k

)
estimate the generator constant of the underlying

GPC consistently as n → ∞; this is due to Lemma 2.2.7, cf. Corollary 2.2.9 and
Lemma 2.4.5. We expect therefore that there is an interval I ⊂ (0, 1] with the both
properties that the range of the restriction γ∗|I is a subset of [1, d] or [1, ∞) —
depending on whether the data are points in Rd or functions in C[0, 1] —, and that
γ∗ is constant on I, apart from random fluctuations. Moreover, we can compute
asymptotic confidence intervals for the generator constant based on the asymptotic
normality

(3.4.1)
(

ncn

γ∗(cn)

) 1
2
(γ∗(cn) − ∥1∥D) D→ N(0, 1) as n → ∞,

cf. Corollary 2.2.9 and Lemma 2.4.5, where 1 has to be interpreted as 1[0,1] for
functional data.

(ii) Given that Hypothesis 2.1.8 is true, cn has, on the one hand, to be chosen small
enough such that the threshold level 1 − cn is sufficiently close to one in order to
detect the δ-neighborhood, cf. Definition 2.1.5. On the other hand, cn must be large
enough in order to guarantee that there are sufficiently many observations in the
extremal region [0, 1]\

[
0, (1 − cn)1

]
or
[
0[0,1], 1[0,1]

]
\
[
0[0,1], (1 − cn) 1[0,1]

]
such that

the asymptotic normality in Corollary 2.2.9 and Lemma 2.4.5 is justified. Altogether,
the selection of cn is a typical tradeoff situation, similar to the problem of choosing
a threshold for the adaption of a GPD to univariate data, see e. g. Embrechts
et al. (1997, Section 6.5). If we consider the interval I derived in (i), a reasonable
strategy is to choose cn from I such that cn is close to sup I. Similarly, the integer
k ≥ 2 should be chosen such that cn

k ∈ I and such that there are sufficiently many
exceedances above the threshold level 1 − cn

k , where it is reasonable to put k = 2.

(iii) If Hypothesis 2.1.8 is true and the parameters cn and k are derived as in (ii), then
the differences

(j + 1) N
(n)
U

( cn
j+1

)
j N

(n)
U

( cn
j

) − 1, j = 1, . . . , k − 1,

should be close to zero, cf. Lemma 2.2.14. Furthermore, the same reasoning as in
(i) shows that the function γ(c) := 1

k

∑k
j=1

j
nc N

(n)
U

(
c
j

)
= 1

k

∑k
j=1 γ∗

(
c
j

)
, c ∈ (0, 1],

should be almost constant on some interval J ⊂ (0, 1], where we expect cn ∈ J .
However, cn > sup J would indicate that step (ii) overestimated this parameter,
which suggests to repeat steps (ii) and (iii) with cn := sup J . Moreover, the
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k-dimensional asymptotic normality as in Corollary 2.2.9 and Lemma 2.4.5 shows

( 6kncn

(k + 1)(2k + 1) γ(cn)

) 1
2 (

γ(cn) − ∥1∥D

)
(3.4.2)

=

⎛⎝ ncn

k(k+1)(2k+1)
6 · 1

k

∑k
j=1

j
ncn

N
(n)
U

( cn
j

)
⎞⎠ 1

2 k∑
j=1

(
j

ncn
N

(n)
U

(
cn

j

)
− ∥1∥D

)
D→ N(0, 1) as n → ∞,

which can be used to obtain another asymptotic confidence interval for the generator
constant. Again, 1 has to be interpreted as 1[0,1] for functional observations.

Note that the asymptotic confidence intervals in (i) and (iii) have to be interpreted
with care, since they are only reliable if Hypothesis 2.1.8 is true, the sample size n is
large, and cn is chosen properly. If all these conditions are true, then we obtain the k + 1
consistent estimates γ∗

( cn
1
)
, . . . , γ∗

( cn
k

)
, and γ(cn) for the underlying generator constant.

An Analytical Approach for Copula Data

Now we turn over to a technical analysis of the exploratory procedure from above. If the
distribution function C of our copula data U (1), . . . , U (n) is in the domain of attraction of
a standard MSD with corresponding D-norm ∥·∥D, the expected number of exceedances
above the threshold (1 − c)1 has the expansion

(3.4.3) E
(
N

(n)
U (cn)

)
= ncn · 1 − C((1 − cn)1)

cn
∼ ncn ∥1∥D as n → ∞

since N
(n)
U (cn) is B(n, pn)-distributed with pn = 1 − C((1 − cn)1), cf. Definition 2.2.3 and

Definition 2.3.1. For convenience, we temporarily restrict ourselves to multivariate copula
data.

Due to (3.4.3), the conditions cn → 0, ncn → ∞, and nc1+2δ
n → 0 as n → ∞ specify at

which rate the expected number of exceedances approaches infinity when the sample size
increases. As outlined previously, we aim at testing the data for a certain δ-neighborhood
of a GPC with D-norm ∥·∥D, i. e. we assume that δ > 0 is given. In particular, if C is
also in the δ0-neighborhood of a GPC for some δ0 > δ, then we obtain

1 − C
(
(1 − cn)1

)
= cn ∥1∥D + c1+δ

n · cδ0−δ
n

1 − C((1 − cn)1) − cn ∥1∥D

c1+δ0
n

= cn ∥1∥D + o
(
c1+δ

n

)
as n → ∞,
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cf. Lemma 2.1.6 (iv). Thus, the same arguments that proved Theorem 2.2.10 and Theo-
rem 2.2.12 also show:

Corollary 3.4.4 Let δ > 0 and k ∈ N, k ≥ 2. If a (finite dimensional) copula C is in the
δ0-neighborhood of a GPC for some δ0 > δ, and (cn)n∈N is a sequence in (0, 1) satisfying
cn → 0, ncn → ∞, and nc1+2δ

n → s ≥ 0, then the conclusions of Theorem 2.2.10 and
Theorem 2.2.12 remain valid.

Now we return to the task of specifying cn reasonably for a finite sample size n. On
the one hand, (3.4.3) and Corollary 2.2.9 show that the condition ncn → ∞ is crucial in
order to assure that we observe sufficiently many data in the extremal regions, which
leads to the desired normal approximation. On the other hand, Corollary 3.4.4 suggests
that the condition nc1+2δ

n → 0 is rather a mild one. Therefore, it is reasonable to choose
cn rather large, i. e. close to n− 1

1+2δ ; this corresponds to step (ii) in the exploratory
approach, where we motivated to choose cn close to the upper endpoint of the interval I.

The same reasoning as above leads to analogous versions of Corollary 3.4.4 for functional
copula data and for functional copula data that are observed at finitely many points only.
Thus, the simulations in Chapter 4 will choose the parameter cn as follows:

Example 3.4.5 Consider the sequence given by cn := (n log(n))− 1
1+2δ for n ≥ 2. Then

we obviously have cn → 0, ncn =
(

n2δ

log(n)
) 1

1+2δ → ∞, and nc1+2δ
n = 1

log(n) → 0 as n → ∞.

For the remaining parameter k, the same arguments as in the exploratory approach
apply. Since there will typically be very few observations in the extremal regions, we
usually choose k = 2.

An Approach for More General Data

Now we consider that the observed data X(1), . . . , X(n) are independent copies of a
random element X with continuous but unknown margins. If X is a stochastic process
in C[0, 1], we assume moreover that all margins coincide, cf. Section 2.3. In this more
general framework, the whole sample is used for the estimation of the margins, whereas
the computation of the test statistics is based on a subsample of size mn. This led to the
conditions mn

n log(mn) → 0, cn → 0, mncn → ∞, and mnc1+2δ
n → 0 as n → ∞.

Since we now have to specify the three parameters k, cn, and mn, applying an adaption
of the exploratory approach from above would be a very time consuming task: The
function γ∗ in step (i) would have to be replaced with

(3.4.6) γ̂
(m)
∗ (c) := 1

mc
N̂

(m,n)
X (c) for c ∈ (0, 1] and m ∈ {1, . . . , n};
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i. e., instead of plotting a single function, we would need to consider a whole family of
functions, indexed by m. Provided that Hypothesis 2.1.8 is true, we would at first have to
figure out an m such that γ̂

(m)
∗ is — apart from random fluctuations — constant on some

interval Im ⊂ (0, 1], and then choose cn as in step (ii). Despite of the high computational
effort, analyzing a large number of function plots in order to find a suitable tuple (mn, cn)
would be a time consuming and subjective judgement.

Instead, we will extend the analytical approach from above and use the graphical tools
as a visual goodness of fit check. The following result will be quite useful in order to link
the selection of the both parameters mn and cn.

Lemma 3.4.7

(i) Let (βn)n∈N be a sequence in (0, 1) with βn → 0 and nβn → ∞ as n → ∞. Then
the sequence (mn)n∈N with mn := min

{⌈
nβn

log(nβn)

⌉
, n
}

satisfies mn
n log(mn) ∼ βn

as n → ∞.

(ii) Let (mn)n∈N be a sequence in N such that mn → ∞ and mn
n log(mn) → 0 as

n → ∞. If a sequence (βn)n∈N satisfies βn ∼ mn
n log(mn) as n → ∞, we obtain

mn ∼ nβn

log(nβn) as n → ∞.

Proof. In order to prove the first assertion, note that mn =
⌈

nβn

log(nβn)

⌉
whenever n is

sufficiently large. Thus, nβn → ∞ yields

βn

log(nβn) ≤ mn

n
<

βn

log(nβn) + 1
n

= βn

log(nβn)(1 + o(1)) as n → ∞

and

mn

n
log(mn) = βn

log(nβn)(1 + o(1))
[
log
(

nβn

log(nβn)

)
+ log

( log(nβn)
nβn

· mn

)]
∼ βn as n → ∞,

i. e. mn
n log(mn) approaches zero at the same rate as βn does. Conversely, mn → ∞ and

βn ∼ mn
n log(mn) → 0 as n → ∞ imply

mn ∼ nβn

log(nβn) · log(nβn)
log(mn) = nβn

log(nβn) · log(mn log(mn)) + o(1)
log(mn) ∼ nβn

log(nβn)

as n → ∞, cf. de Bruijn (1981, Section 2.4) and Corless et al. (1996, Section 4).

According to Lemma 3.4.7, the rate at which mn tends to infinity is driven by the
rate at which mn

n log(mn) approaches zero, and vice versa. In particular, if (βn)n∈N and
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(mn)n∈N are given as in Lemma 3.4.7 (i), then

cn := (nβn)− 1
1+2δ ∼ (mn log(mn))− 1

1+2δ → 0 as n → ∞,

which corresponds to Example 3.4.5. For a given sample size n, the task of finding a
suitable tuple (mn, cn) of parameters can, thus, be reduced to specifying a single value
βn. Motivated by (3.4.3), we aim at choosing the new parameter βn such that mncn is
large. Since

nβn → ∞ and mncn ∼ (nβn)
2δ

1+2δ

log(nβn) as n → ∞,

it is reasonable to require βn > 1
n exp

(
1 + 1

2δ

)
; note that the function (1, ∞) ∋ x ↦→ xα

log(x)
is strictly increasing for x ≥ exp

( 1
α

)
if α > 0. In order to observe a sufficiently large

number of data in the extremal regions, even for relatively small sample sizes, we choose
a sequence (βn)n∈N with a very low rate of convergence towards zero, cf. Example 3.4.9.
Due to the representation mn = f(cn), where the function f is defined by

(3.4.8) f(c) := min
{⌈ −1

(1 + 2δ) c1+2δ log(c)

⌉
, n

}
for c ∈ (0, 1],

the graphical tools of the exploratory approach will carry over to our current setting.

Example 3.4.9 For βn :=
[
log(log(n))

]−1 exp
(
1 + 1

2δ

)
, n ≥ 3, we obtain

cn =
( log(log(n))

n

) 1
1+2δ

exp
(

− 1
2δ

)
and mn = f(cn).

Since nc1+2δ
n = β−1

n , we have the asymptotic properties mn
n log(mn) ∼

(
nc1+2δ

n

)−1 → 0,
mncn ∼

[
− (1 + 2δ) c2δ

n log(cn)
]−1 → ∞, and mnc1+2δ

n ∼
[
− (1 + 2δ) log(cn)

]−1 → 0 as
n → ∞.

The goodness of the linkage of mn and cn via f may be checked visually by plotting the
function γ̃∗(c) := 1

c f(c) N̂
(f(c),n)
X (c), c ∈ (0, 1]. If Hypothesis 2.1.8 is true, then γ̃∗ should

be — apart from random fluctuations — constant on some interval Ĩ ⊂ (0, 1].
We obtain an approach for deriving reasonable parameters which is similar to the case

where copula data are observed:

(i) For a finite sample size n, compute cn from some sequence (βn)n∈N as above. Put
mn := f(cn) and plot the function γ̂

(mn)
∗ , cf. (3.4.6) and (3.4.8). Provided that

Hypothesis 2.1.8 is valid, we should observe an almost linear graph on some interval
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I ⊂ (0, 1]. Moreover, we expect cn ∈ I ∩ Ĩ and we may compute asymptotic
confidence intervals for the underlying generator constant from

(3.4.10)
(

mncn

γ̂
(mn)
∗ (cn)

) 1
2(

γ̂
(mn)
∗ (cn) − ∥1∥D

)
D→ N(0, 1) as n → ∞,

where 1 has to be interpreted as 1[0,1] for functional data, cf. (3.4.6), Lemma 2.2.19,
Lemma 2.3.10, and Lemma 2.4.8. The remaining parameter k can then be chosen
such that both of the following conditions are met: On the one hand, we require
cn
k ∈ I. On the other hand, there must be sufficiently many observations exceeding

the threshold corresponding to the level 1 − cn
k . Typically, we put k := 2. In

the special case that we observe d-dimensional data which emerged from a whole
process, cf. Lemma 2.4.8, we also require d2

mncn
to be sufficiently small. Recall that

this condition is obsolete if the underlying sample continuous processes emerge
from a copula, cf. Lemma 2.4.5.

(ii) As before, the differences

(j + 1) N̂
(mn,n)
X

( cn
j+1

)
j N̂

(mn,n)
X

( cn
j

) − 1, j = 1, . . . , k − 1.

should be close to zero if Hypothesis 2.1.8 is true and the parameters cn, mn, and
k are chosen well. Moreover, the function γ̂(mn)(c) := 1

k

∑k
j=1

j
mnc N̂

(mn,n)
X

(
c
j

)
=

1
k

∑k
j=1 γ̂

(mn)
∗

(
c
j

)
, c ∈ (0, 1], should be approximately constant on some interval

Jmn ⊂ (0, 1]. If cn ∈ Jmn , the parameters appear to be chosen well. If however
cn > sup Jmn , then return to step (i) with cn := sup Jmn . Due to Lemma 2.2.19,
Lemma 2.3.10, and Lemma 2.4.8, we obtain an asymptotic confidence interval for
the generator constant from

(3.4.11)
( 6kmncn

(k + 1)(2k + 1) γ̂(mn)(cn)

) 1
2(

γ̂(mn)(cn) − ∥1∥D

)
D→ N(0, 1)

as n → ∞, where 1 has to be interpreted as 1[0,1] for functional observations.

With the above reasoning in mind, we move on to Chapter 4. By using the results of
Section 3.1 and Section 3.2, we will generate random samples from copulas, for which we
know whether Hypothesis 2.1.8 is true. Then we will apply our strategies from above in
order to compare the tests derived in Chapter 2 with one another.
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This final chapter of the thesis combines the results of Chapter 2 and Chapter 3 and
applies them to simulated data, i. e. we know whether the underlying copula is in a δ-
neighborhood of a GPC, cf. Hypothesis 2.1.8. Thus, we are able to check the performance
of the tests derived in Chapter 2 together with the strategies for their application, cf.
Section 3.4. The simulation of the data will be based on Section 3.2, where the methods
described in Section 3.3 allow to generate even functional observations. However, the
interpolation techniques of Corollary 3.3.6 and Lemma 3.3.9 have the property that the
interpolated process attains its maximum at one of its interpolation points, cf. Falk
et al. (2014, Lemmas 3.3 and 4.4). Due to the definition of the sojourn time, the test
results for the finite dimensional observations and those for the interpolating processes
are identical, apart from errors resulting from numerical integration. Since functional
simulations are by far more time intensive, we restrict ourselves to multivariate data
in what follows. Recall that Section 2.4 has shown that functional test results can be
reasonably approximated by the test results based on finite dimensional projections,
provided that the number of observation points tends to infinity at a proper rate and
the observation grid gets arbitrarily fine as the sample size grows to infinity. As before,
Section 4.1 concentrates on copula data, whereas Section 4.2 will assume that the margins
of the data are unknown.

All simulations were performed using the software R 3.2.1, cf. R Core Team (2015),
with its automatically loaded base packages base, datasets, graphics, grDevices,
methods, stats, and utils. Moreover, the packages copula by Hofert et al. (2015),
CompQuadForm by Duchesne and Lafaye de Micheaux (2010) and Lafaye de Micheaux
(2013), and tcltk by R Core Team (2015) were loaded via R’s requireNamespace function.
They were used to generate random deviates from standard copulas, to compute p-values
from a weighted χ2-distribution as in Theorem 2.2.10, and to display the status of
the current simulation, respectively. Table 4.0.1 summarizes the loaded packages —
including those that were invoked indirectly due to package dependencies, excluding the
automatically loaded base packages named above — together with their version numbers.
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Due to hardware restrictions and since some simulations were very time consuming,
the following results were performed with a sample size of n = 200, where each simulation
was done 50 times.1 This allows, on the one hand, to compare the results of different

ADGofTest 0.3 lattice 0.20-33 stats4 3.2.1
CompQuadForm 1.4.1 Matrix 1.2-2 tcltk 3.2.1
copula 0.999-13 mvtnorm 1.0-2 tools 3.2.1
grid 3.2.1 pspline 1.0-17
gsl 1.9-10 stabledist 0.7-0

Table 4.0.1 List of loaded R packages.

simulations with one another and, on the other hand, to compute the relative frequency
of repetitions that reject the null hypothesis. Moreover, a sample size of n = 200 appears
to be more realistic in applications than, e. g., n = 10 000. Nevertheless, whenever time
consumption was sufficiently low, the data of all 50 repetitions were combined to a data
set of size 10 000 in order to perform the tests for this combined data. The simulations
presented below all have this property, such that we obtain an impression of how the
sample size influences the test results.

4.1 Copula Data

We start with the case where our data consist of independent copies U (1), . . . , U (n) of a
random element U which follows a (finite dimensional or functional) copula C. Table 4.1.1
summarizes the three different cases that were considered in Chapter 2 and refers to the
corresponding results. As outlined previously, we focus on the finite dimensional case; see

Data Test Statistics Theoretical Results
Vectors in Rd Tn,Tn, τn Theorem 2.2.10, Theorem 2.2.12
Functions in C[0, 1] Tn,Tn, τn Theorem 2.3.3
Functions observed at a grid T ∗

n ,T ∗
n , τ∗

n Theorem 2.4.7

Table 4.1.1 Overview of the different test statistics for copula data.

(2.4.2), Lemma 2.4.5, and Theorem 2.4.7 for details on how the third case in Table 4.1.1
links the first two ones with one another.

Following the arguments in Section 3.4, we choose cn := (n log(n))− 1
1+2δ where n ≥ 2

denotes the sample size and δ > 0 specifies the kind of neighborhood in the null hypothesis,
1Actually, it has been very time demanding task to determine a proper sample size and a number of

repetitions that the present hardware was able to deal with in a reasonable amount of time.
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cf. Example 3.4.5. Note that, according to the parts (i) and (ii) of Lemma 2.1.6, the
proposed test statistics Tn, Tn, and τn actually test the null hypothesis

H0,δ : There is some δ0 ∈ [δ, ∞] such that the copula underlying the observed data

is in the δ0-neighborhood of a GPC,

cf. Corollary 3.4.4. Due to Lemma 3.1.1, the case δ = 1 is of particular interest since the
hypothesis H0,1 includes the class of all EVCs and, of course, the class of all GPCs. Note
that an EVC is, due to (1.1.22), tail equivalent with its corresponding GPC. Thus, it
appears to be natural to require δ = 1 for the simulations and to compare the results
based on Tn, Tn, and τn with those of the test proposed by Kojadinovic et al. (2011),
which exploits (1.1.16) in order to test for an EVC. Compared with other tests for an
EVC, see e. g. Ghoudi et al. (1998) and Ghorbal et al. (2009), the one by Kojadinovic
et al. (2011) is not restricted to bivariate data.

GPCs and Related Copulas

We begin with the family of copulas introduced in Lemma 3.2.1, which is indexed with
a parameter λ ∈

[
−

√
2

2 ,
√

2
2
]
. Recall that for λ = 0, the corresponding copula is a GPC

with D-norm given by

∥x∥D = ∥x∥1 − |x1| |x2|
∥x∥1

for x = (x1, x2)ᵀ ∈ R2 \ {0},

whereas λ ̸= 0 implies that the copula is not in the domain of attraction of an EVC. Thus,
H0,1 is satisfied if and only if λ = 0, in which case the generator constant is ∥1∥D = 3

2 .
In order to compare the results for different values of λ, 10 000 realizations of the
generator 2 (U, 1 − U)ᵀ were generated. Moreover, for each λ ∈

{
−

√
2

2 , −0.2, 0, 0.2,
√

2
2
}
,

10 000 realizations of a random variable with distribution function Hλ were simulated, cf.
(3.2.2), where the rejection method was used in the case λ ̸= 0, see e. g. Falk et al. (2011,
Algorithm 5.7.1). Then, for every λ, the copula data were obtained according to (3.2.3)
and (3.2.4), where the same generator realizations were used for all λ.

For a sample size of n = 10 000 and for δ = 1, we choose the parameter cn = 0.02214
according to Example 3.4.5. Note that all numbers are rounded to the five decimal
places. Table 4.1.2 shows the number of exceedances Nj above the thresholds

(
1 − cn

j

)
1,

j = 1, 2, 3, together with their weighted ratios wj := (j+1)Nj+1
jNj

, j = 1, 2, cf. Lemma 2.2.14
and Section 3.4. As expected, w1 and w2 are close to one under H0,1. However, this is
also true for λ ̸= 0, which is a first indicator that cn might not be chosen properly.
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λ N1 N2 N3 w1 w2

0.00000 366 174 119 0.95082 1.02586
0.70711 306 153 108 1.00000 1.05882
0.20000 322 174 120 1.08075 1.03448

−0.20000 343 169 107 0.98542 0.94970
−0.70711 376 185 126 0.98404 1.02162

Table 4.1.2 Number of exceedances and their weighted ratios.

Now we also consider the estimators of the generator constant under H0,1, i. e. λ = 0,
that are given in (3.4.1) and (3.4.2), cf. Corollary 2.2.9. For convenience, Figure 4.1.3
focuses on k = 3 and the estimator in (3.4.2), including the approximate 95 % confidence
intervals. The remaining plots are very similar. Recall that the given confidence intervals
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Figure 4.1.3 Estimated generator constant (blue, left scale) for λ = 0 and k = 3 as
a function of c ∈ (0, 1) together with the pointwise approximate 95 %
confidence intervals (blue, dashed), cf. (3.4.2). The yellow line (right scale)
displays the number of exceedances above the highest threshold, i. e.

(
1− c

3
)
1.

The vertical dashed line emphasizes the value cn = 0.02214, whereas the
upper horizontal line marks the corresponding estimate.

have to be interpreted with care. Nevertheless, the relatively large range of the confidence
interval at c = 0.02214 indicates that cn was chosen too small. Since we know that the
true generator constant is 3

2 , we should select at least a value of 0.5 for cn.
Finally, Table 4.1.4 summarizes the approximate p-values for the test statistics Tn, Tn,

and τn. The p-value of the test statistic proposed by Kojadinovic et al. (2011), denoted
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by ϑn, was provided by the R function evTestC, which is part of the copula package.
Note that for k = 2, the test statistics Tn, Tn, and τn yield almost identical p-values

k λ Tn Tn τn ϑn

2 0.00000 0.34078 0.34076 0.34076 0.00050
0.70711 1.00000 1.00000 1.00000 0.00050
0.20000 0.15583 0.15545 0.15545 0.00050

−0.20000 0.78642 0.78642 0.78642 0.00050
−0.70711 0.75604 0.75605 0.75605 0.00050

3 0.00000 0.68289 0.56710 0.73626 0.00050
0.70711 0.56374 0.59498 0.47117 0.00050
0.20000 0.18783 0.30295 0.14702 0.00050

−0.20000 0.51940 0.62496 0.39466 0.00050
−0.70711 0.92345 0.87507 0.94176 0.00050

Table 4.1.4 Approximate p-values for 10 000 copula data from Lemma 3.2.1 and various
values of k and λ, where δ = 1 and cn = 0.02214.

since we have in this case 2Tn = Tn = τ2
n. While the test by Kojadinovic et al. (2011)

rejects H0,1 in any case, our test statistics never reject the null hypothesis. Since we
already supposed that cn was not chosen properly, a poor performance of the latter tests
was to be expected. Altogether, the alternative is not detected by Tn, Tn, and τn at a
significance level of 5 %.

However, if we consider the p-value as a function of c ∈ (0, 1), we observe that the
shape of its graph depends on the cases λ = 0, λ > 0, and λ < 0. Note that Figure 4.1.5
omits the plots for λ = 0.2 and λ = −0.2 since the corresponding shapes are similar to
those for λ = 0.70711 and λ = −0.70711, respectively. For λ = 0, the p-values of Tn, Tn,
and τn are typically above the 5 % line for c ∈ (0, 0.5]. Even if the curve falls below this
line on this range, it normally returns to greater values almost instantly. Opposed to
that, a p-value curve has for λ > 0 typically some high peaks for small values of c and
then falls below the 5 % line. After another set of peaks for intermediate values of c,
the graph normally attains values smaller than 0.05. However, λ < 0 appears to yield a
curve that is above the 5 % line on some interval with left endpoint zero and then falls
and stays below this line. Although Figure 4.1.5 suggests that the right endpoint of this
interval is relatively close to zero as well, the plots for λ = −0.2 indicate that the interval
may also include intermediate values of c, but with a downward trend. Opposed to that,
the curves for λ = 0 tend to attain large values for c close to 0.5 and then fall below the
5 % line abruptly.

95



4 Simulations

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

c

p
−

v
a

lu
e

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

c

p
−

v
a

lu
e

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

c

p
−

v
a

lu
e

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

c

p
−

v
a

lu
e

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

c

p
−

v
a

lu
e

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

c

p
−

v
a

lu
e

Figure 4.1.5 p-values of Tn (dark blue), Tn (yellow), τn (red), and ϑn (light blue) as
a function of c ∈ (0, 1). The vertical dashed line emphasizes the value
c = 0.02214, whereas the horizontal dashed lines mark the corresponding p-
values. Top left: λ = 0, k = 2. Middle left: λ = 0.70711, k = 2. Bottom left:
λ = −0.70711, k = 2. Top right: λ = 0, k = 3. Middle right: λ = 0.70711,
k = 3. Bottom right: λ = −0.70711, k = 3.
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In order to complement the above results, we divide for each λ ∈
{
−

√
2

2 , −0.2, 0, 0.2,
√

2
2
}

the corresponding sample of 10 000 copula observations into 50 subsamples. This implies a
sample size of n = 200 and yields cn = 0.09809. This sample size appears to be too small
to obtain stable results since the corresponding p-value curves of the cases λ = 0, λ > 0,
and λ < 0 were hardly distinguishable. Among the 50 subsamples, the mean number of
exceedances above the thresholds

(
1 − cn

2
)
1 and

(
1 − cn

3
)
1 were 15.08000 and 10.14000,

respectively, for λ = 0. This indicates that there may be too few observations exceeding
the thresholds in order to justify the required approximate normal distribution. However,
the quantile plots of the p-values were for λ = 0 quite close to the main diagonal, both
for k = 2 and k = 3, which indicates a sufficiently well normal approximation. Although
the same was true for λ < 0 and λ = 0.2, the case λ = 0.70711 showed a deviation from
the main diagonal, cf. Figure 4.1.6.

●

●

● ●

●
●

●

●

●

●
●

●
●

●

●

●
●

● ●

●

● ● ● ●

●

●

●

● ●

●

●

●

● ● ●

●
● ●

● ●

●

●

●
●

●

● ● ● ● ●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

expected p−value order statistics

p
−

v
a
lu

e
 o

rd
e
r 

s
ta

ti
s
ti
c
s

● ● ● ● ● ● ●

● ● ● ● ●
●

●
● ●

●

● ●

● ●

●

●

● ●

● ●

● ●
●

●

● ●
●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

expected p−value order statistics

p
−

v
a
lu

e
 o

rd
e
r 

s
ta

ti
s
ti
c
s

Figure 4.1.6 Quantile plots of the p-values of Tn for λ = 0 (left) and λ = 0.70711 (right),
where k = 2. The x-axis gives the expected order statistics under H0,1,
whereas the y-axis gives the observed order statistics.

If we consider the rate of rejection — i. e. the number of subsamples where H0,1

is rejected divided by the total number of subsamples — and plot it as a function of
c ∈ (0, 1), cf. Figure 4.1.7, we observe that the tests based on Tn, Tn, and τn seem to
satisfy the type I error of 5 %. Moreover, there is a peak for c slightly larger than 0.1
if λ = 0.70711, and none of the test statistics Tn, Tn, and τn appears to be superior to
the others. The test statistic ϑn by Kojadinovic et al. (2011), which does not depend on
c, rejects H0,1 in all subsamples, no matter whether the hypothesis is true or not. This
indicates that the test is quite sensitive to condition (1.1.16) and that it ignores the tail
equivalence of an EVC and its GPC.
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Figure 4.1.7 Rates of rejection for Tn (dark blue), Tn (yellow), τn (red), and ϑn (light
blue) among the test results of the 50 subsamples. Top left: λ = 0, k = 2.
Top right: λ = 0, k = 3. Bottom left: λ = 0.70711, k = 2. Bottom right:
λ = 0.70711, k = 3.

Figure 4.1.7 motivates to choose, e. g., cn = 0.11. In order to verify the performance of
this value, a new data set was generated for each λ ∈

{
−

√
2

2 , −0.2, 0, 0.2,
√

2
2
}

as described
above. But this time, cn was put to 0.11, regardless of whether the sample size was 10 000
or 200. For n = 10 000, Table 4.1.8 suggests that cn = 0.11 performs much better than
the original value of cn. For both, k = 2 and k = 3, the null hypothesis is rejected for
λ = 0.70711. Moreover, the case k = 3 seems to perform better than the case k = 2;
note in particular the p-values for λ = −0.70711. Moreover, the test statistic τn seems to
perform slightly better for k = 3 than Tn and Tn. However, all three tests have difficulties
to detect the alternative when λ is relatively close to zero. Splitting the whole data set
into 50 subsamples led to similar results as above, i. e. there was no observable gain of
performance.
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4.1 Copula Data

k λ Tn Tn τn ϑn

2 0.00000 0.15428 0.15422 0.15422 0.00050
0.70711 0.00008 0.00000 0.00000 0.00050
0.20000 0.54651 0.54649 0.54649 0.00050

−0.20000 0.94131 0.94131 0.94131 0.00050
−0.70711 0.34410 0.34506 0.34506 0.00050

3 0.00000 0.28727 0.09467 0.87410 0.00050
0.70711 0.00000 0.00000 0.00000 0.00050
0.20000 0.76429 0.62867 0.91527 0.00050

−0.20000 0.87486 0.87281 0.75431 0.00050
−0.70711 0.13958 0.25927 0.10585 0.00050

Table 4.1.8 Approximate p-values for 10 000 copula data from Lemma 3.2.1 and various
values of k and λ, where δ = 1 and cn = 0.11.

Higher Dimensional Copulas

While the above reasoning mainly dealt with deriving an adequate value for cn, we now
briefly consider the impact of the dimension of the data on the simulation results. As
above, a similar analysis for the copula family in Lemma 3.2.7 suggests to choose cn = 0.11.
Note that this family can easily be extended to higher dimensions: If U1, . . . , Ud are
independent and on [0, 1] uniformly distributed random variables, then

−V

2

( 1
U1

, . . . ,
1

Ud

)ᵀ

follows a standard GPD if V ∼ U[0, 1]. However, if V ∼ Hλ for λ ≠ 0, then the above
random vector is not in the domain of attraction of an MSD. As it turned out that
cn = 0.11 is also valid for d = 5, we briefly compare the results for d = 2 and d = 5 with
one another. However, due to technical restrictions in the simulation program, the data
sets for d = 2 and d = 5 are independent.

Table 4.1.9 shows that for the present copula family, the performance of detecting the
alternative is much better than for the copulas underlying Table 4.1.8. For k = 2, almost
all alternatives under consideration are detected, apart from the case λ = −0.20000.
Another difference compared to Table 4.1.8 is that the overall performance seems to
decrease slightly if k is increased from 2 to 3, cf. Table 4.1.10. Moreover, a comparison of
Table 4.1.9 with Table 4.1.10 suggests that a higher dimension requires a larger sample
size in order to detect the alternative: For d = 5, we observe that H0,1 is rejected only in
the case λ = 0.70711. However, these differences could also be due to random fluctuations
since the samples underlying Table 4.1.9 and Table 4.1.10 are independent.
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k λ T
(2)
n T

(2)
n τ

(2)
n ϑ

(2)
n

2 0.00000 0.15404 0.15372 0.15372 0.00050
0.70711 0.00002 0.00000 0.00000 0.00050
0.20000 0.00161 0.00159 0.00159 0.00050

−0.20000 0.43441 0.43441 0.43441 0.00050
−0.70711 0.03528 0.03540 0.03540 0.00050

3 0.00000 0.27252 0.08550 0.85387 0.00050
0.70711 0.00000 0.00000 0.00000 0.00050
0.20000 0.01496 0.00631 0.03477 0.00050

−0.20000 0.44287 0.27067 0.65694 0.00050
−0.70711 0.06357 0.09665 0.06159 0.00050

Table 4.1.9 Approximate p-values for 10 000 copula data from Lemma 3.2.7 and various
values of k and λ, where δ = 1, cn = 0.11, and d = 2.

k λ T
(5)
n T

(5)
n τ

(5)
n ϑ

(5)
n

2 0.00000 0.63010 0.63010 0.63010 0.00050
0.70711 0.00007 0.00000 0.00000 0.00050
0.20000 0.24500 0.24501 0.24501 0.00050

−0.20000 0.13132 0.13130 0.13130 0.00050
−0.70711 0.07823 0.07808 0.07808 0.00050

3 0.00000 0.89392 0.88689 0.78292 0.00050
0.70711 0.00000 0.00000 0.00000 0.00050
0.20000 0.55954 0.37505 0.78853 0.00050

−0.20000 0.17679 0.27559 0.14325 0.00050
−0.70711 0.16378 0.20738 0.15429 0.00050

Table 4.1.10 Approximate p-values for 10 000 copula data from Lemma 3.2.7 and various
values of k and λ, where δ = 1, cn = 0.11, and d = 5.

4.2 More General Data

In Section 4.1 we have seen that determining a proper value for cn can be quite difficult.
In the more general case, where the margins of the data are unknown, we also need
to choose another parameter mn. Therefore, this thesis ends with an approach on how
to exploit the results of Section 3.4 in that framework. Analogously to Section 4.1, we
consider for each λ ∈

{
−

√
2

2 , −0.2, 0, 0.2,
√

2
2
}
, the data sets of size 10 000 which were

computed at the beginning of that section. However, we assume we would not know that
the data follow a copula.

Again, we choose δ = 1. Now initial values for cn and mn are computed from
Example 3.4.9, which yields cn = 0.03673 and mn = 2037. In particular, mn is assumed
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4.2 More General Data

to be a function of cn. Analogously to Figure 4.1.3, we can thus plot the estimators in
(3.4.10) and (3.4.11), cf. Figure 4.2.1. Note that plotting the p-value curves directly by
exploiting Example 3.4.9 leads typically to non-distinguishable curves, no matter whether
H0,1 is true or not.

For convenience, we use the plots for the data corresponding to λ = 0. However, similar
results would be obtained if we observed, e. g., the data set with λ = 0.70711. According
to (2.2.17), the empirical threshold is computed by transforming the vector

(
1 − cn

j

)
1

componentwise with the empirical quantile functions of the margins. This is why we call
1 − cn

j a threshold level.
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Figure 4.2.1 Estimated generator constant (blue, left scale) for λ = 0 and k = 2 as
a function of c ∈ (0, 1) together with the pointwise approximate 95 %
confidence intervals (blue, dashed), cf. (3.4.10) and (3.4.11). The yellow
line (right scale) displays the number of exceedances above the highest
threshold level, i. e. 1 − c

2 . Top left: (3.4.10) with j = 1. Top right: (3.4.10)
with j = 2. Bottom: (3.4.11).
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Due to the functional dependence mn = mn(c), mn is close to zero for intermediate
values of c and increases when c approaches zero. This is why the yellow curves in
Figure 4.2.1 are not linear. Indeed, the peak close to zero could be misleading: It is not
desirable to choose cn such that the number of exceedances above the highest threshold
level is maximized! On the one hand, the peaks in the yellow curves represent the case
mn = n; recall that we require mn

n log(mn) → 0 as n → ∞. On the other hand, we
already noticed in Section 4.1 that cn = 0.03673 should be too small.

However, we have 69 exceedances above the highest threshold level among the first
mn observations, which, roughly speaking, seems to be enough to justify the desired
normal approximation. Now we choose cn such that the estimated generator constant
in Figure 4.2.1 is almost constant for c ≤ cn and such that the approximate confidence
intervals have a rather small range, e. g. cn = 0.11, as before.

This heuristically motivated approach suggests therefore to put mn = 2037 and
cn = 0.11. In order to verify these values, we generate — as in Section 4.1 — a new
sample for each λ ∈

{
−

√
2

2 , −0.2, 0, 0.2,
√

2
2
}
, where we choose mn = 2037 independently

of cn. Indeed, the resulting p-value curves had the characteristic shapes as discussed
in Figure 4.1.5 and yielded similar results as in Section 4.1, i. e. H0,1 was rejected for
λ = 0.70711, but not for λ ∈

{
−

√
2

2 , −0.2, 0, 0.2
}
. Note that a further analysis for

subsamples of the data set was skipped, due to very few observations above a high
threshold even in the case where the margins are known. Since a sample size of n = 200
would imply mn = 86, the number of exceedances would become even smaller.
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Summary and Outlook

This thesis began with a review of generalized Pareto distributions, which are known
to be crucial for modeling extremal events, in finite and infinite dimensions. Since both
these frameworks share some crucial properties and due to Sklar’s theorem, we were
able to define certain δ-neighborhoods of a generalized Pareto copula simultaneously for
both cases. Then we considered several tests for these neighborhoods and obtained that
the finite dimensional versions of these tests reasonably approximate their functional
counterparts under certain regularity conditions.

Although we had to assume in the functional case that a continuous copula process
exists, Chapter 3 has shown that this assumption is, roughly speaking, not too restrictive.
Furthermore, we considered examples of both, copulas that are in a δ-neighborhood of a
GPC and those that are not. These examples covered again the finite dimensional as
well as the functional framework.

After a discussion of how the parameters of the proposed tests could be chosen, we
applied these strategies to simulated data. Sadly, technical restrictions did not allow to
increase the sample sizes any further such that the results of this simulation study are on
the one hand promising, but on the other hand rather weak. However, the simulations
did provide some hints for the application to real data, which worked in some cases even
for small sample sizes. Although the tail equivalence of an extreme value copula and the
corresponding generalized Pareto copula motivated to compare our tests with the one by
Kojadinovic et al. (2011), it seems like the latter is too restrictive to small deviations
from an extreme value copula.

Natural extensions for future research are, of course, to simulate larger sample sizes
with more powerful hardware. It could be also useful to implement time demanding tasks
not in R but in another programming language like C++, which was however beyond the
scope of this thesis. Moreover, it is desirable to deduce more theoretical results about the
asymptotic behavior of the proposed tests. In particular, it should be possible to replace
the condition mn

n log(mn) → 0 as n → ∞ with mn
n → 0.

Particularly the simulation results with large sample sizes indicate a high potential of
the proposed tests. A very interesting topic for future research!
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