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Chapter 1

Introduction

1.1 Early antibiotic research and resistances

The targeted design of chemical compounds to cure infectious diseases is a century-old

endeavor. After many unsuccessful trials, Paul Ehrlich and Sahachiro Hata described in

the year 1910 the compound Ehrlich 606, which was eventually marketed as Salvarsan,

the most frequently prescribed drug against syphilis until the emergence of Penicillin [4].

A period in time followed, which is now known as the Golden Age of antibiotics from

the 1940s to the 1960s, where half of the antibiotics commonly used today were discov-

ered [5, 6]. During this period, various classes of antimicrobial agents were introduced

(β-lactams, tetracyclines, chloramphenicol, aminoglycosides, macrolides, glycopeptides,

streptogramines and quinolones) [5]. Together, all these classes cover a broad range of

modes of action in the target cell.

A common misbelief of this time was that bacterial infections would soon be eradicated.

However, since the Golden Age, the excessive therapeutical use of antibiotics and also

the non-therapeutical use in animals have led to antibiotic resistant strains [6], which are

severe health threats and cause a very high mortality rate [7]. Today, increased phar-

maceutical marketing, excessive use of antibiotics in agriculture, food preservation or

irrational self-medication, contribute to an exacerbation of the problem [5]. The origin

of drug-resistances are manifold. Mycobacterium tuberculosis is intrinsically resistant to

numerous drugs, due to its unique cell wall composition [8–10]. Because of very low fluid-

ity and high fatty acid content, hydrophilic and lipophilic molecules likewise have severe

problems passing the cell wall barrier [8]. In contrast to intrinsic resistances, pathogens

can also acquire resistances. For example, M. tuberculosis strains with mutated catalase-

peroxidase (KatG) can show therapy-resistance due to missing catalytic activity in trans-

forming the prodrug isoniazid to its active form [11, 12]. Gram-positive bacteria, such

as Staphylococcus aureus, generally show rather unrestricted uptake of antimicrobials

due to a more permeable cell wall compared to Gram-negative bacteria or mycobacte-

ria [13]. However, mutant strains of this pathogen can show diverse mechanisms for

drug-resistance, including production of a thickened cell wall (vancomycin-intermediate

resistant S. aureus; VISA) or extension of the proteome (methicillin-resistant S. au-

reus) [13, 14].

1
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Figure 1.1 First-line drugs against tuberculosis: isoniazid, rifampicin/rifampin,
ethambutol and pyrazinamide.

1.2 Mycobacterium tuberculosis

Mycobacterium tuberculosis is the primary causative agent of tuberculosis (TB). Al-

though the death rate has dropped by 45% over the past two decades, TB is still a

globally present disease. If untreated, the mortality rate can rise up to 66%. In 2013,

9 million new infections were documented and 1.5 million ended lethally. HIV/AIDS

patients have a 26 to 31-fold higher probability of developing an active TB [15]. The

classical antitubercular therapy–based primarily on cocktails of isoniazid, rifampicin,

pyrazinamide, and ethambutol for a period of six months (Figure 1.1)–has cured over

56 million people since 1995, but the emergence of multi- and extensively drug-resistant

strains of Mycobacterium tuberculosis (MDR-TB and XDR-TB) demands new, high-

affinity inhibitor classes, which are unaffected by mycobacterial resistances [15–17].

It is estimated that 480,000 patients developed a multi-drug resistant TB in 2013, under-

lining the importance of antibiotic agents against MDR-TB and XDR-TB [15]. Resistant

TB infections cannot be treated with the effective first-line anti-tuberculosis medication.

Rather, the use of second-line antitubercular agents (e.g., fluoroquinolones, amikacin,

kanamycin, capreomycin) is necessary, which comes with high cost, limited access and

possibly severe adverse effects [15, 16, 18].
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1.3 Methicillin-resistant Staphylococcus aureus

Staphylococcus aureus infections have severely affected the global health. The great peril

of this pathogen are the emerged antibiotic-resistant strains, namely methicillin-resistant

S. aureus (MRSA or golden staph) and vancomycin-resistant S. aureus (VRSA). These

strains constitute a severe threat in hospital environments, especially for immunocom-

promised patients [5, 14, 19, 20]. In US hospitals the percentage of S. aureus infections

caused by MRSA increased from 2.4% to 29% between 1975 and 1991 [14].

Infections with S. aureus can generally be treated with β-lactam antibiotics (e.g. methi-

cillin), which is not possible for MRSA infections because of the penicillin-lactam-binding

protein PBP2a. Furthermore, over 50% MRSA are also insensitive to macrolides, lin-

cosamides, fluoroquinolones, and aminoglycosides. In many cases, the remaining remedy

effective against an MRSA infection is the last-resort-antibiotic vancomycin [14]. This

therapy, however, is futile for VRSA, rendering the need for new chemotherapeutics

against S. aureus very urgent.

In the 2000s, a new lineage of MRSA has emerged, not limiting MRSA related infections

to hospital environments and immunocompromised subjects [21]. Community-acquired

(CA)-MRSA is globally spread and primarily induces skin infections [21]. Although the

typical CA-MRSA is sensitive to most non-β-lactam antibiotics, isolates carrying plas-

mids with antibiotic-resistance genes have been found in the USA and Europe [22, 23],

further highlighting the imperative of new efficacious antibiotic agents against MRSA.

1.4 Scope of this work—rational residence time modula-

tion and permeability prediction to support antibac-

terial drug design

An early-stage parameter for in vivo efficacy profiling of a compound is vital for the

effective development of novel therapeutics against these multidrug-resistant pathogens.

The drug-target residence time is a valid indicator of in vivo activity for many targets

(cf. Chapter 2.2 for detailed information) [24, 25]. Rational residence time modula-

tion, however, is still very challenging, mostly due to the lack of structural information

about the transition states of ligand dissociation [24, 26]. Molecular dynamics (MD)

simulations provide valuable techniques to tackle this issue. With the recent increase in

computational power, classical MD simulations are able to provide insight into transition

states, as well as metastable intermediate states [26]. Thus, molecular determinants of
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long residence time can be detected and quantified in terms of receptor flexibility and

conformational changes.

Part I of this thesis is focused on revealing the molecular determinants of drug-target

residence time in bacterial enoyl-ACP reductases. In case of the mycobacterial enoyl-

ACP reductase InhA, an important target for antitubercular drug design, it is still

unclear which molecular processes actually govern ligand binding and, thus, the residence

time. Since knowing these features is required for the rational optimization of ligand

residence time, an extensive MD study was conducted, leading to novel strategies for

rational InhA-inhibitor design [1, 26].

With current hardware, MD simulations can nowadays easily reach the microsecond

timescale. It was shown in several studies that complete ligand binding events can thus

be simulated using classical MD simulations [26–29]. However, drug-target residence

times are not confined to microseconds, but can reach seconds, minutes or days [24–

26, 30]. Accordingly, enhanced sampling techniques for MD simulations need to be

employed to observe ligand association or dissociation (and corresponding transition

states) and, thus, gain insight into drug-target kinetics. Although enhanced sampling

techniques are numerous, a common difficulty is the feasible definition of one or several

reaction coordinates (cf. Chapter 2.3 for further information). Steered molecular dynam-

ics (SMD) simulations [31, 32] are fast and solely need the pulling direction of induced

ligand withdrawal as a predefined parameter, while allowing access to free energy profiles

along this reaction coordinate [33–36]. In recent studies, several enhanced sampling MD

techniques (including SMD) have been employed to computationally assess information

about ligand kinetics, although mostly on a qualitative level [37–44]. Here, the SMD

methodology was combined with regression techniques to create a linear model for the

quantitative prediction of residence time for the enoyl-ACP reductase FabI of S. aureus.

Regarding M. tuberculosis, slow-onset ligand binding to InhA is assumed to follow a

multistep mechanism [17, 24, 45]. For rational residence time optimization it is important

to correctly recognize and interpret the intermediate conformations of the protein-ligand

complex (EI and EI* state, cf. Section 2.2 for further information). However, binding

pocket and substrate binding loop conformations of InhA are highly divergent in several

recently published crystal structures [40, 46]. Concluding Part I, the idea of the EI and

EI* states of ligand association in the case of InhA is revisited by analysis of recent

crystal structures and extensive (Steered) MD simulations.

A further complication for inhibitor design against M. tuberculosis is the largely imper-

meable cell wall (cf. Chapter 8.1 for further information) [8, 16]. Hence, rational efficacy

improvement of drug candidates with respect to the drug-receptor residence time may

still be ineffective, if the molecules lose their ability to pass the mycobacterial cell wall
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due to alterations in the physico-chemical properties. Also, the identification of novel

inhibitor classes in screening campaigns may be limited in success by lack of compound

permeability [16]. Accordingly, a better understanding of the physico-chemical compo-

sition of compounds active–and thus very likely permeable–against M. tuberculosis is

desirable to help define the mycobacterial druggability space.

Part II of this thesis is, thus, focused on a data mining endeavor on physico-chemical de-

scriptor data of active substances, leading to a permeability prediction model, wrapped

in the online tool MycPermCheck [3]. To explore the permeability space of M. tubercu-

losis, MycPermCheck was eventually used in a virtual screening endeavor. The quality

of initial screening hits as potential InhA inhibitors was investigated via docking, MD

and SMD simulations with consideration of results of Part I.
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Revealing the Molecular

Determinants of Drug-Target

Residence Times of Bacterial

Enoyl-ACP Reductases using

Molecular Dynamics Simulations
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Chapter 2

Background

2.1 FAS II and enoyl-ACP reductases

2.1.1 Fatty acid synthesis type II

In contrast to mammals, in which fatty acid synthesis is based on a multienzyme complex

(FAS I), some bacteria, plants and parasites utilize an alternate route for the production

of fatty acids: the fatty acid synthesis type II (FAS II) cycle [47]. The elongation cycle

of the FAS II consists of four catalytic reactions, while each cycle attaches two carbon

atoms to the growing fatty acid chain. The intermediates are transported by the acyl

carrier protein (ACP) [47]. First, the growing acyl-ACP is subjected to a condensation

with malonyl-ACP to β-ketoacyl-ACP, catalyzed by the β-ketoacyl-ACP synthase I or

II (FabB or FabF). Subsequently, the β-ketoacyl-ACP reductase (FabG) catalyzes the

reduction of the β-keto moiety, yielding β-hydroxyacyl-ACP, followed by a dehydration

by the enzyme β-hydroxyacyl-ACP dehydratase (FabZ or FabA). In the final step of

fatty acid elongation, the enoyl-ACP reductase (FabI) catalyzes the hydrogenation of

the substrate to acyl-ACP (Figure 2.1) [47].

Figure 2.1 Elongation cycle of the fatty acid synthesis type II pathway.
Each cycle, consisting of four catalytic steps, elongates the fatty acid substrate by two
carbon atoms.

9
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Figure 2.2 Monomeric subunit of (a) M. tuberculosis InhA (PDB code
2X23 chain A) and (b) S. aureus FabI monomer (PDB code 4BNN, chain
A). The protein backbone is illustrated in gray. The ligand (PT70 and PT119,
respectively; slate blue) and cofactor (NAD+ and NADP+, respectively; magenta) are
illustrated as sticks. The flexible substrate binding loop is colored yellow.

2.1.2 The enoyl-ACP reductases of M. tuberculosis and S. aureus

Since FAS II-pathogens differ fundamentally in this anabolic pathway from humans,

single proteins of the FAS II are excellent drug targets, such as the enoyl-ACP reductase

FabI. In M. tuberculosis the enzyme FabI is termed InhA (Figure 2.2a). It is inhibited

by the first-line antituberculosis prodrug isoniazid (isonicotinic acyl-NADH-adduct after

activation by the enzyme catalase-peroxidase KatG) and also weakly inhibited by the

broad spectrum biocide triclosan (TCL) [48–52]. InhA is a member of the short-chain

dehydrogenase/reductase (SDR) superfamily and is bioactive in the homotetrameric

form [47]. The monomeric subunits contain an extended Rossmann-fold to bind the

nucleotide cofactor [47]. Loop residues of helices α6 and α7 comprise a flexible region,

the substrate binding loop (SBL), which closes upon substrate binding [47]. Both ends of

the substrate binding pocket of the FabIs are solvent-exposed. These regions were termed

major and minor portal, respectively, according to the degree of their exposure [53, 54].

The cofactor is bound at the bottom of the cavity. The nicotinamide moiety is oriented

towards the inside of the binding pocket, whereas the adenine is oriented towards the

major portal (Figure 2.3).

SaFabI is a homolog to InhA and also a member of the SDR superfamily (Figure 2.2b).

A BLAST search [55] of the wild-type sequence (GI: 109157150 [56]) against the UniProt

database [57] revealed a sequence identity to saFabI of 32% with a query coverage of
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Figure 2.3 FabI binding pockets of (a) InhA crystal structure 2X23 and (b)
saFabI crystal structure 4BNN. The protein backbones are illustrated in gray, the
substrate binding loops in yellow. The inhibitors PT70 and PT119 are represented in
slate blue and the cofactors NAD+ and NADP+, respectively, in magenta. Important
pocket residues are illustrated in green.

97% and a sequence similarity of 52%. The catalytic reaction of saFabI is NADPH-

dependent. The enzyme has a high cofactor specificity towards NADPH instead of

NADH, which is a unique behavior among the bacterial FabIs [58]. The catalytic triad

of saFabI consists of the residues Tyr147, Tyr157 and Lys164 (Phe149, Tyr158 and

Lys165 in InhA) [48, 59]. Substrate binding to saFabI is assumed to take place via the

major portal of the binding pocket [59].

2.1.3 Inhibition of Mycobacterium tuberculosis InhA by diphenylethers

InhA inhibitors act against mycobacteria by disabling the hydrogenation of the unsat-

urated precursors of the long and hydrophobic mycolic acids, which are necessary for

proper construction of the largely impermeable M. tuberculosis cell wall [60]. Diphenyl-

ethers are one class of inhibitors currently under investigation. Unlike isoniazid, they

bind directly to InhA without the necessity for prior activation by the enzyme catalase-

peroxidase (KatG) [17]. Important protein-ligand interactions include a hydrogen bond

between the ligand and Tyr158 and between the ligand and NAD+, as well as several

hydrophobic contacts to surrounding binding pocket residues, namely Phe149 and the

residues Ala198, Met199, Ile202 and Val203, which are located in helix α6 of the SBL

(Figure 2.3a) [45].
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Figure 2.4 Scaffold of diphenylether inhibitors and overview of the exper-
imentally characterized diphenylethers analyzed in Chapter 3. The phenyl
rings are referred to as A- and B-ring, respectively. The corresponding ether torsions
are symbolized by curly arrows and labeled α and β. Experimental data were taken
from [45] and references provided therein. PT70 is a slow-onset inhibitor, with mea-
sured dissociation rate constant koff and residence time tr. In contrast, 6PP and TCL
show rapid-reversible binding kinetics; koff and tr values were estimated assuming a
value of 109 M−1s−1 for kon, as done by Luckner et al. (2010) [45].

Among the antitubercular diphenylethers, PT70 displays slow-binding inhibition of

InhA with a residence time (tR; cf. Chapter 2.2 for detailed information) of 24 min-

utes at a Ki of 0.022 nM [45]. The broad spectrum biocide TCL, however, shows a

rapid reversible inhibition of InhA, although it is a slow-binder in homologous enoyl-

ACP reductases (Figure 2.4) [30, 58, 61–64]. In InhA, slow-binding inhibition is likely

associated with the ordering of the SBL, which is the most flexible region of InhA [45, 65].

In fact, the crystal structure of the InhA-NAD+-PT70 complex (PDB code 2X23) shows

an uninterrupted and highly ordered SBL, whereas in the crystal structure of the InhA-

NAD+-TCL complex (PDB code 2B35) the SBL is unresolved due to disorder [24, 64].

Thus, the highly ordered loop conformation very likely represents the final stage of the

two-step binding mechanism (EI*) of the slow-binding inhibitor PT70.

Although these observations are experimentally well characterized, it remains unclear

how the structural features of a ligand govern the binding mechanism and, hence, the

actual residence time. Knowing these features is essential for rationally modulating the

residence time as a key parameter in drug design, even more so as small differences in the

ligand structure can dramatically affect the dissociation rate constant. Besides PT70

and TCL, the diphenylether 6PP can serve as an illustrative example: it differs from

PT70 by only a methyl group, but nevertheless shows rapid reversible instead of slow

tight binding behavior (cf. Figure 2.4) [17, 64, 66].

Although InhA has been subject of several molecular dynamics studies, drug-target

binding kinetics were generally not in the focus of these studies [65, 67–70]. The earliest
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MD study of ligand-free InhA systems by Schroeder and colleagues (2005) [65] char-

acterized structural changes over a sampling time in the single-digit nanosecond scale.

The work of Pasqualoto et al. (2006) investigated thermodynamic properties of InhA

systems bound to several isoniazid derivatives [67]. Subba Rao et al. (2008) [68] ex-

amined the stability and interaction patterns of a tripeptide inhibitor using short MD

simulations. In 2010, Punkvang and colleagues [69] employed MD simulations to eluci-

date the dynamic behavior of arylamide inhibitors in InhA. In a recent study, Kamsri

et al. (2014) [70] developed a series of diphenylethers and investigated their flexibility

and binding free energy using MM/PBSA and normal mode methods [71, 72]. Recently,

enhanced sampling methods were used to assess binding kinetics information of InhA

computationally [40].

2.1.4 Inhibition of Staphylococcus aureus FabI by diphenylethers

As InhA, the enzyme saFabI is part of the fatty acid synthesis (FAS) II cycle, which

constitutes a well investigated drug target for S. aureus [17, 58, 73]. Currently, there

are three saFabI inhibitors in clinical trials: (1) AFN-1252 (Affinium Pharmaceuticals),

which stems from the large-scale high-throughput screening (HTS) campaign of Glaxo-

SmithKline (GSK) between 1995 and 2001 [74, 75]; (2) CG400549 (CrystalGenomics),

a diphenylether derivative with a 2-pyridone A-ring instead of a phenol to improve

pharmacokinetics [76]; and (3) MUT056399 (Mutabilis), a 4-fluoro-substituted TCL

derivative [77, 78]. Whereas TCL is only a weak inhibitor of InhA, which does not

promote ordering of the SBL, it binds to saFabI with a Ki of 0.05 nM and a residence

time of 139.5 minutes [30]. In the S. aureus binding pocket, Tyr157 forms an impor-

tant hydrogen bond interaction to the phenolate of the ligand (Figure 2.3b). The ligand

also forms several hydrophobic contacts with surrounding residues located in the protein

core or the substrate binding loop (SBL), namely with Ala95, Phe96, Leu102, Tyr147,

Met160, Ser197, Ala198, Val201, Phe204, Ile207. Furthermore, the backbone of Ala97 is

addressed by TCL via halogen bonds and the ligand forms a hydrogen bond and a π-π-

stacking with the cofactor NADP+ [58]. In the apo-form, the flexible SBL is disordered.

Upon slow-onset inhibition, however, the SBL is ordered to helices η6 and α7 [48, 58].

In recent literature, a series of diphenylethers was published with high-resolution crystal

structures and experimental residence times from 2 to 700 minutes [30, 58]. The binding

modes of these diphenylether inhibitors are very similar to that of TCL, which leads

to two very conserved hydrogen bonds (to Tyr157 and to NADP+) (Figure 2.3) [58].

Diphenylether inhibitors form the ternary complex with saFabI bound to the oxidized

cofactor NADP+ [30].
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2.2 Binding affinity and drug-target residence time

To obtain highly active inhibitors, projects in early drug discovery generally focus on

optimizing the affinity of candidate compounds for a given target, which is the difference

in free energy ∆G between the unbound and the final bound state. However, even

for high-affinity inhibitors with Ki or Kd values in the low nanomolar range there is

a potential activity gap between the in vitro assay experiments and a realistic in vivo

system, where the exposure of target enzymes to drug-like molecules and the subsequent

binding event can no longer be correctly described by equilibrium constants like Kd.

Rather, the dissociation rate constant (koff ) of a protein-ligand complex, the reciprocal

value of which describes the residence time (tR) of a compound at a drug target, should

be considered during rational drug-design endeavors [25]. To reduce dosage and increase

efficacy, it is, thus, desirable to optimize potential drugs in terms of a long residence

time (i.e., low koff ). Inhibitors exhibiting such low dissociation (and/or association)

rate constants are termed “slow-onset inhibitors”, “slow-binding inhibitors” or briefly

“slow-binders”. Although several different kinetic mechanisms are described for slow-

binders, most of these inhibitors bind via an induced-fit mechanism [24]. The first initial

complex (EI) is formed rapidly, whereupon a slower conformational change of the enzyme

allows the ligand to form the final complex (EI*) (Figure 2.5). For such slow-binding

ligands, koff is a combination of multiple individual rate constants. In detail, koff can

be described by k-1 · k-2 divided by (k-1 + k2 + k-2); if k-1 is large compared to k2 and

k-2, koff is essentially given by k-2 [24].

The kinetics of slow-binders open a new possibility of efficacy improvement: instead of

stabilizing the final state of ligand association EI* (i.e., lowering its free energy level), the

transition state between EI and EI* can be destabilized. With a destabilized transition

state, the rate constant of the reverse reaction is decreased, thus increasing the residence

time of the ligand in the EI* state. However, rational residence time modulation still

remains a challenge, since structural information about the transition state is generally

not available [24, 26].

2.3 Computational methods for structural, energetic and

kinetic characterization of protein-ligand complexes

Today, the field of computer-aided drug design encompasses a plethora of methods to

accurately estimate the binding affinity of a compound of interest. Sophisticated scoring

functions can evaluate crystal structure and docking poses to quantify the magnitude

of enzyme-inhibitor interactions [79–81]. After identifying a valid binding conformation
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Figure 2.5 Mechanisms of drug-target complex formation. (a) Equilibrium
of inhibitor binding via a one-step mechanism. (b) Equilibrium of inhibitor binding via
an induced-fit two-step mechanism represented as equation and schematic free-energy
profile for this reaction. E denotes the enzyme, I the inhibitor, EI the initial enzyme-
inhibitor complex, and EI* the final enzyme-inhibitor complex. A high energy barrier
(∆G◦‡) corresponds to a low reaction rate constant k.

with docking studies, a scoring function can estimate the binding affinity very quickly,

which makes this method also applicable to large-scale screening endeavors. However,

docking and scoring are generally unable to quantify rate constants or residence times

of ligands, since they work on static enzyme-inhibitor complex snapshots.

MD simulations extend this static scenario by creating an ensemble of snapshots over

time, i.e., a trajectory. Thus, important conformational changes over time can be de-

tected and quantified. Eventually, extensive analysis of such trajectories can be used to

qualitatively describe determinants of long residence time for a system. This approach

is followed in Chapter 3 for the antimycobacterial drug target InhA. Chapter 4 provides

follow-up work on this topic.

MD-based free energy methods, like Linear Interaction Energy (LIE) allow comparison

of the free energy of bound and unbound states [80, 82]. The LIE method is based on

creating a thermodynamic average of the ligand in its bound and its unbound state.
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Thus, it considers only the end-points of protein-ligand-complex formation. The differ-

ence of non-bonded energies of the ligand between both states is then evaluated and

incorporated into a multiple linear model [82]. The fundamentally different Free Energy

Perturbation (FEP) method, on the other hand, divides the transition of the states into

several smaller steps (perturbations), which are simulated independently [82]. In gen-

eral, ligand binding is investigated with said method by use of a thermodynamic cycle to

calculate the relative binding free energy between a ligand L and a structurally related

ligand L’ [83].

Although these methods have proven very valuable to assess binding affinities of lig-

ands to proteins [82], residence times cannot be obtained, since the transition states of

inhibitor association or dissociation are not considered.

Steered Molecular Dynamics (SMDs) [31, 32] provide indirect access to residence times

by induced extraction of the ligand from the enzyme binding pocket. Thus, a continuous

trajectory is generated, simulating a complete unbinding event along a putative reaction

coordinate, while the associated conformational changes of protein and ligand can be

directly monitored by the dissociating ligand. More importantly, the necessary force

for ligand withdrawal is measured during the simulation. After numerical integration

over the spatial reaction coordinate of multiple replica simulations, the resulting work

profiles of the non-equilibrium SMD simulations can be converted to the Potential of

Mean Force (PMF) profiles and hence to a free energy difference, an equilibrium property,

using Jarzynski’s equality (cf. Chapter 2.3.1 for details) [33–36].

According to Eyring’s transition-state theory [84, 85], the necessary Gibbs energy ∆G‡◦

for a transition between two states of a system correlates to the rate constant k of the

reaction:

k =
kb · T
h
· e−

∆G‡◦
RT (2.1)

where kb is the Boltzmann constant, T the temperature, h the Planck constant, ∆G‡◦

the Gibbs free energy and R the gas constant.

An alternative approach to computationally assess residence times and rate constants

are Markov State Models (MSM). These models have been proven in several studies to

serve as sophisticated kinetic models for the analysis of large-scale MD trajectory data

of multiple replica simulations [86–89]. The ultimate goal of an MSM approach is the

generation of a parsimonious model of transition states in MD trajectories to predict

experimental data (e.g., residence times) quantitatively. In the last few years, MSMs

have successfully been utilized in the field of rational optimization of ligand residence

time [29, 90]. A disadvantage of this method is the large amount of trajectory data

necessary for MSM generation.
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In contrast to MSMs, numerous free energy methods using enhanced sampling tech-

niques are available to address the issue of limited sampling in MD simulations. In

recent literature, investigation of ligand unbinding and/or computational estimation

of koff values and residence times were published using non-equilibrium SMD simula-

tions [31, 32] or equilibrium methods, such as Metadynamics [91], Partial Nudged Elastic

Band (PNEB) [92], Umbrella Sampling [93, 94] and scaled MD simulations [95] (cf. next

section for methodological details) [37–44]. Generally, these methods are able to recon-

struct free energy surfaces along one or multiple predefined reaction coordinates. Here,

SMD simulations are employed to create an accurate and quantitative residence time

prediction model for the antistaphylococcal drug target FabI (cf. Chapter 5 for further

information). Chapter 6 revisits the concept of the EI and EI* state of InhA inhibition

using both classical and steered MD simulations.

2.3.1 Principles of molecular dynamics simulations

Biomolecules are not rigid systems, as static textbook images and 3D structures might

suggest. Representations often merely illustrate snapshots among a vast ensemble of

possible states in the energetic landscape of conformations [96, 97]. In drug design,

consideration of the dynamic nature of proteins is particularly important in studying

ligands that bind to their target via an induced-fit mechanism [24]. By leaving a simple

two-state model for enzyme-inhibitor association (cf. Figure 2.5a) and extending it to

a more complex multi-state model (cf. Figure 2.5b), a more accurate description of the

drug-target interaction can be achieved, taking not only the thermodynamic states, but

also the transitions into account [96]. The energy barrier between two conformational

states of a protein, and thus the likelihood of a transition, strongly depends on the kind

of conformational change. Whereas atomic bond vibration happens in femtoseconds, the

time scale increases gradually from side chain rotation over loop motion to movement

of a whole protein domain (Figure 2.6).

2.3.1.1 Molecular mechanical force fields

In order to capture the motion of a molecular system over time, it is necessary to

quantify atomic interactions. A system containing a biological macromolecule (e.g., a

protein) surrounded by explicit water molecules and ions, can easily consist of 100,000

atoms and more. Obviously, evaluation of forces between these atoms using a quantum

mechanical approach is computationally far too expensive. Molecular mechanical force

fields constitute a simplified way to describe atomic interactions [98]. The system is

reduced to “balls and springs”. Each atom is represented as a sphere with a fixed
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Figure 2.6 Free energy diagram of conformational transitions. A higher
energy barrier between equilibrium states reduces the rate constant of the corresponding
conformational change. Energy barriers are generally higher for large conformational
changes, such as protein domain motion, compared to side chain rotation or loop motion.

radius and charge. Bonded forces that act on these atoms are treated as springs in a

classical Newtonian way. The force field potential is therefore a sum of several terms,

which generally include the bond lengths, bond angles and torsion angles, as well as

non-bonded (electrostatic and van-der-Waals) interactions. The bond length and angle

energies are described by a harmonic potential, the torsion potentials follow a periodic

cosine function. The electrostatic interactions are evaluated according to the Coulomb-

potential and the van-der-Waals interactions are represented by a Lennard-Jones-(6-

12)-potential (Figure 2.7) [99, 100]. Hence the interaction potential of each atom is a

function of the atomic coordinates. If E(r) is the scalar potential energy function, the

forces that act on the atoms are given by the negative gradient ~F = −∇E(r) [101, 102].

The total potential energy of the system Etotal is the sum of all intra- and intermolecu-

lar potentials in the system (Figure 2.7). In the microcanonical (NV E) ensemble, the

particle number N , the volume V and the potential energy E are constant. The system

has no heat exchange, thus the simulation corresponds to an adiabatic process. Since

without temperature or pressure control Etotal is approximately constant, the ensem-

ble is not suited for energetic equilibration of the system. By introducing temperature

control to the system via a coupled heat bath, energetic equilibration is possible in

the canonical (NV T ) ensemble. Temperature control can be achieved, for instance, by

use of weak coupling to a thermal bath [103] or Langevin dynamics [104, 105]. After

energetic equilibration of Etotal and heating of the system to the desired temperature
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Figure 2.7 Terms of a force field according to [100]. The total potential is
comprised of functions for bond lengths, bond angles, torsion angles and functions
evaluating the non-bonded interactions (Lennard-Jones-potential and Coulomb poten-
tial). E is the energy, Kr, Kθ and Vn are force constants, r is the distance between
two atoms, θ is the bond angle, r0 and θ0 are reference values at equilibrium, n is the
dihedral multiplicity, ω is the dihedral angle, γ is the dihedral phase, A and B are
parameters incorporating the Lennard-Jones potential well and the distance at which
the potential is zero, q is the atomic charge and ε is the dielectric constant.

T , the isothermal-isobaric (NPT ) ensemble can be achieved by additionally introduc-

ing pressure control to the system, for instance via the Nosé-Hoover Langevin piston

barostat [106, 107].

All particles of the system are contained in a three-dimensional body, e.g., a virtual

rectangular box. Periodicity of a system in all dimensions is used to avoid artifacts of

the system surfaces [101]. Hence, particles which leave the periodic box on one side are

replaced by images on the opposite side [101]. Naturally, the periodicity increases the

number of atom pair interactions drastically. Whereas van der Waals interactions are

rapidly decaying and can thus be truncated, the evaluation of long-range electrostatic

interactions can be computationally expensive, since they decay very slowly (with r−1;

cf. Figure 2.7) and their range often spreads over half the box length [98, 101]. To

accurately account for these long-range interactions, state-of-the-art MD simulations

employ the particle-mesh Ewald (PME) methodology to describe long-range electrostatic

interactions for a system with periodic boundary conditions (PBC) [101, 108].

2.3.1.2 Parameterization of protein-ligand systems

Since molecular mechanical force fields are not ab initio, but empirical models, accurate

determination of the protein, solvent as well as ligand parameters is crucial for the quality
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of the simulation outcome. The AMBER force field [99] is well validated and widely used

for simulation of biomolecular systems in aqueous solution [109]. Atomic charges are

derived from electrostatic potentials obtained from quantum mechanical calculations at

the Hartree-Fock (HF) 6-31G* level using the restrained electrostatic potential (RESP)

methodology [99, 110, 111]. The AMBER force field ff99SB is not polarizable and, thus,

uses fixed point charges. As a result, the force field model has limited responsiveness

to a changing molecular environment [109]. However, it is known that charge fitting

to potentials of the HF/6-31G* basis set is apt to overestimation of bond-dipoles with

respect to gas phase values. This effect results in bond-dipoles rather comparable to

values in empirical water models, like the TIP3P model [109, 112]. TIP3P is a three-site

water model and, thus, a simple model compared to four- or five-site water models (e.g.,

TIP4P or ST2 [113]). A principal disadvantage of water models of higher complexity is,

however, the drastically increased computational demands [98].

To assess force field parameters for ligands, Wang et al. (2004) developed the General

AMBER Force Field (GAFF) [114], which is able to provide AMBER force field param-

eters for a wide range of organic molecules composed of H, C, N, O, S, P, and halogens.

For atomic charge derivation, GAFF uses the RESP method [110, 111] from electrostatic

potentials obtained with the quantum mechanical software suite Gaussian [115] at the

HF/6-31G* level.

2.3.1.3 Equations of motion and their integration

Based on Newton’s second law of motion, Fi = mi · ai, the acceleration ai of a particle

i with the mass mi is proportional to the force Fi acting on it [102]. By numerical

integration of the acceleration ai with respect to time t, a new atomic position ri(t1)

can be calculated for the next time step t1 = t0 +∆t, depending on the interaction forces

at time step t0 (Figure 2.8):

Fi = mi
d2ri
dt2

. (2.2)

At the beginning of an MD simulation, a random initial velocity is assigned to each

atom based on a Maxwell-Boltzmann-distribution, which provides the probability of an

atom i with the mass mi having a velocity vi at the temperature T [98]. By choosing a

reasonably small time step between iterations and then alternating force evaluation and

integration of accelerations, the investigated system can evolve in time and space subject

to the interactions defined by the molecular mechanical force field [100, 102]. The time

step is an important parameter, which deserves careful consideration. Whereas a too

small time step will result in limited conformational space, a too big time step may cause
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Figure 2.8 Schematic illustration of an MD simulation. For each time step
∆t, the atomic position r(ti) and velocity v(ti) is evaluated for every atom i. The
underlying forces Fi are derived from the energy function of the molecular mechanical
force field. Figure adapted from [102].

instabilities during numerical integration [98]. Depending on the desired resolution of

the different types of motion, different time steps are recommended (Table 2.1).

In order to use a time step of ≥2 fs, it is necessary to apply a constraint algorithm on

bonds to avoid impairing the accuracy of the simulation. As a result, the spatial motion

of these atoms is no longer independent, but coupled [98]. A common implementation of

a constraint algorithm in MD is the SHAKE methodology [116]. SHAKE uses holonomic

constraints, i.e., the constraints can be expressed as

f(q1, q2, q3, . . . , t) = 0 (2.3)

with q1, q2, etc., as the coordinates of the particles [98]. Since hydrogen vibrations con-

stitute the oscillation of the highest frequency in the system, it is particularly important

to apply constraints to all bonds involving hydrogen.

Table 2.1 Different types of motion with suggested time steps according to [98].

System Types of motion present Suggested time step
Atoms Translation 10 fs
Rigid molecules Translation, rotation 5 fs
Flexible molecules, rigid bonds Translation, rotation, torsion 2 fs
Flexible molecules, flexible bonds Translation, rotation, torsion, vibration 1 or 0.5 fs
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2.3.1.4 Enhanced sampling techniques

Although MD simulations are very fast compared to quantum mechanical computations

and can to date easily reach the nano- to microsecond time scale, important molecular

events, such as protein folding or the dissociation of ligands, may still not be observed due

to high energy barriers between the equilibrium states [101]. Accordingly, a plethora of

techniques has emerged to enhance the sampling of the phase space in an MD simulation

and to allow the evaluation of the free energy change along a reaction coordinate, the

Potential of Mean Force (PMF). A traditional method for this purpose is Umbrella

Sampling (US) [93, 94]. In US, at least one additional reaction coordinate ξ is introduced

to the MD simulation, where ξ can have various forms (e.g., distance, torsion, RMSD) as

long as it provides distinction between two thermodynamic states [94]. The probability

distribution of the system along ξ is, thus, given by:

Q(ξ) =

∫
δ[ξ(r)− ξ] exp[(−βE)dNr]∫

exp[(−βE)dNr]
(2.4)

with β = 1/(kbT ), kb being the Boltzmann constant, T the absolute temperature, N the

number of degrees of freedom, r the positional configuration of the system and E the

total potential energy, assuming E is independent of the momentum [94]. Hence, the

free energy along the reaction coordinate ξ, the PMF, can be assessed by [94]

G(ξ) = −kbT ln Q(ξ). (2.5)

In an ergodic system, the ensemble average of the phase space is equal to its time

average P (ξ), assuming infinite sampling, and is thus accessible via MD simulation [94].

In reality, however, regions in configuration space in the vicinity of an energy minimum

are generally sampled well, whereas the probability declines for sampling regions with

higher energy [94]. To overcome this issue, US is commonly run in parallel in several

small windows with varying values of ξ. In each window i, a biasing potential ωi is

added as an additional energy term:

Ebiased(r) = Eunbiased(r) + ωi(ξ). (2.6)

Generally, a harmonic bias of the form ωi(ξ) = 1
2k(ξ − ξrefi )2 with a force constant k is

used to ensure that the system stays close to the reference ξrefi of the respective window

i [94]. Using US analysis methods, such as the Weighted Histogram Analysis Method

(WHAM) [117, 118] or umbrella integration [119], the multiple MD simulations (one for

each window) can be combined and the PMF eventually derived from P (ξ) [94]. A major

advantage of US is its wide applicability, due to the variability of the reaction coordi-

nate [94]. However, the application on protein-ligand systems with a dissociating ligand
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is rather inconvenient, since the “ligand needs to be equilibrated at each window before

moving it to the next window”1 [120]. Furthermore, the selection of appropriate reaction

coordinates can be challenging for US, as well as related enhanced sampling techniques,

such as Metadynamics [91], in which a sum of Gaussians comprises a history-dependent

potential added to the MD simulation to eventually escape energy minima [121].

Another approach for enhanced sampling is accelerated MD (aMD) [122, 123]. In con-

trast to US and related methods, it is not necessary to predefine a reaction coordi-

nate [123]. In aMD, sampling of the phase space is extended by boosting the potential

energy function V (r) if V (r) is below a certain threshold. Energy minima are, thus,

elevated and transitions occur more frequently [122]. In this context, free energy pro-

files can be reproduced from the enhanced sampling by post-processing via Boltzmann

re-weighting of structural parameters, such as the distribution of atomic coordinates on

the PC1-PC2-plane of a Principal Component Analysis (PCA) or torsion angles [123].

Problematic in the aMD approach are, however, the large fluctuations in the boost po-

tential ∆V (r) [95]. Scaled MD simulations [95] try to address this issue by flattening

and smoothing the potential energy surface via scaling V (r) by a factor λ between 0

and 1, giving the population distribution function p∗(r) = e−βλV (r) [95]. The canoni-

cal population distribution can accordingly be derived with the re-weighting equation

p(r) = p∗(r)1/λ.

Although enhanced sampling methods without prior definition of a reaction coordinate

are comfortable and reduce the risk of possible pitfalls, a ligand unbinding event can

not be forced. US and Metadynamics are sound methods for this task, require, however,

carefully defined reaction coordinates. Hence, the non-equilibrium MD method Steered

Molecular Dynamics (SMD) [31, 32] has gained increasing popularity for the simula-

tion of ligand dissociation [120]. In contrast to US and Metadynamics, the reaction

coordinate (i.e., the pulling direction of the ligand) is relatively simple to determine.

Moreover, only the initial system needs to be equilibrated [120]. The SMD approach

will be explained in detail in the following section.

2.3.1.5 Steered Molecular Dynamics

In contrast to unbiased classical MD simulations, SMD introduces a guiding potential

to the simulation. In constant velocity SMD (cvSMD), a dummy atom moves along a

spatial reaction coordinate with constant momentum, while it is attached to the center of

mass of an atom selection (“SMD atoms”) via a stiff, virtual spring. As the dummy atom

1Baştuğ et al., 2008, J. Chem. Phys. 128(15), 155104.
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Figure 2.9 Schematic illustration of constant-velocity Steered Molecular
Dynamics. The dummy atom (red) is attached to the ligand (blue) via a stiff, virtual
spring as it moves along a predefined reaction coordinate, extending the spring and
eventually dragging the ligand with it out of the binding pocket. Figure adapted and
extended from [101].

or “moving constraint” moves along the pulling direction the spring is being extended

and eventually the SMD atoms follow the dummy atom (Figure 2.9).

Necessary conformational changes are, thus, automatically initiated in the process. Si-

multaneously, the force on the spring is measured in defined intervals, yielding an indi-

vidual force profile over distance traveled by the moving constraint for each simulation:

~F = −∇U (2.7)

U =
1

2
k[λ− (~r − ~r0) · ~n]2 (2.8)

λ = v · t (2.9)

where ~F is the measured force, U the potential energy, λ the distance of the moving

constraint along the reaction pathway, k the spring constant, ~r the current position and

~r0 the initial position of the SMD atoms’ center of mass, ~n the direction of pulling, v

the pulling velocity and t the time.

A challenge for all MD simulations with additional guiding potential is the predefinition

of a suitable reaction coordinate. In case of SMD, this reaction coordinate is the direc-

tion of pulling, i.e., the vector along which the moving constraint travels with constant



Chapter 2. Background 25

velocity. The approach followed in this study is based on Random Accelerated Molecu-

lar Dynamics (RAMD) [124, 125]. Here, a constant acceleration is applied on a chosen

group of atoms. The method is similar to SMD, however with an important difference:

the reaction coordinate (direction of travel) is not defined in advance, but randomly

assigned to the chosen group of atoms. If the selected RAMD-atoms do not move a

specified minimum distance in time, the direction is mutated; otherwise the reaction

coordinate remains unchanged. Applied on a ligand in a binding pocket, RAMD pro-

vides a way to find a suitable egress pathway. Hence, the important choice of a proper

pulling direction in SMD is well supported by the directionally non-parametric RAMD

approach.

2.3.2 Evaluation of MD data

The possibilities for analyzing MD simulations are numerous. In contrast to free energy

calculations based on MD simulations, classical MD simulations often have the resulting

trajectory of the system in the spotlight of investigation. To quantify the relative atomic

displacement over time with reference to another atom, the atomic distance can be

utilized. On the other hand, to assess the absolute atomic displacement of an atom

selection with reference to the same atoms in the starting structure, the root-mean-

square deviation (RMSD) is very useful:

RMSD =

√√√√ 1

N

N∑
i=1

d2
i (2.10)

where di is the distance between each of the N atom pairs of equivalent atoms.

2D-RMSD and clustering. Atomic displacement of a selection can not only be

evaluated with respect to the starting structure, but also with respect to all other frames

along the trajectory, resulting in a matrix of RMSD values. This matrix can then be

illustrated as heatmap with the RMSD values as color code. The major advantage of

this analysis is the symmetrical nature of the 2D-RMSD matrix, which can directly be

used as a distance metric for a hierarchical clustering to capture recurring molecular

conformations.

In general, two important choices have to be made regarding algorithms in a clustering:

the distance metric and the linkage method [126]. The distance is the 2D-RMSD, a

ready-to-use symmetrical matrix of the RMS deviation of each conformational snapshot

against every other. The selection of a proper linkage method needs careful consid-

eration, since different linkage methods may lead to drastically different results. The

single-linkage clustering, in which the distance between two clusters is the minimum
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distance between the respective elements, ensures that all elements of two neighboring

clusters have a minimum cutoff distance. A major drawback, on the other hand, is the

”chain building” phenomenon, which may lead to many singleton clusters, hampering the

interpretability [126]. Thus, clusters produced by a single-linkage algorithm tend to have

a large diameter. Conversely, the complete-linkage method, which considers the maxi-

mum distance between the respective elements of clusters for fusion, is apt to producing

few clusters with similar diameter. A shortcoming of the method is that two elements

of different clusters may actually be closer than two elements of the same cluster. The

principal advantage, however, is that the method ensures a maximum cutoff diameter

for a cluster. Although numerous advanced linkage methods were designed to compen-

sate for the mentioned shortcomings (e.g., UPGMA/Average, Ward, McQuitty), the

complete-linkage method is a very good choice for the interpretation of structural data,

since all conformational snapshots within a cluster have a maximum RMSD according

to a chosen cutoff value, which is an important and intuitive information [127, 128].

2.3.3 Evaluation of SMD data

2.3.3.1 Reconstruction of work profiles

In SMD simulations, the force on the virtual spring between moving constraint and

SMD atoms is measured over time. To yield the performed work, this force profile can

be numerically integrated over the traveled distance of the moving constraint, using

cumulative sums [35]:

W0→λ =
t∑
0

~F (λt) · v · dt′

69.479 mol
(2.11)

where W is the performed work, t is the time, ~F is the measured force, λ is the distance

along the pulling direction, v is the constant pulling velocity, dt′ is the time step size

and (69.479 mol)−1 is the NAMD conversion factor from pN · Å to kcal/mol.

2.3.3.2 Reconstruction of PMF profiles using Jarzynski’s equality

Since SMD simulations are non-equilibrium simulations, the PMF Φ(λt) cannot be

extracted directly from the simulation data. Provided that all requirements for the

stiff-spring approximation are fulfilled, the PMF relates to the Helmholtz free energy:

Φ(λ) ≈ Fλ [36]. Jarzynski discovered an equality to convert the work performed in an

ensemble of SMD experiments to the free energy change, thus offering access to this
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quantity [33–36]:

e−β·∆Fe = 〈e−β·W 〉 (2.12)

with β = 1/(kbT ) (2.13)

where ∆Fe is the free energy change through exponential averaging, W is the performed

work in an SMD experiment, kb is the Boltzmann constant, T is the temperature and

brackets 〈 · 〉 illustrate the ensemble average. The accuracy of the exponential average

is generally limited by high pulling velocities and a small number of replica simulations.

However, cumulant expansions of the Jarzynski equality can be used as approximations

for finite sampling [35]. Thus, the cumulants up to the second order are typically used

for free energy calculation:

∆F1 = 〈W 〉 (2.14)

∆F2 = 〈W 〉 − (β/2)(〈W 2〉 − 〈W 〉2) (2.15)

It was proven that the Jarzynski equality also holds true for the change in Gibbs free

energy ∆G in an isobaric-isothermal ensemble, besides the Helmholtz free energy change

∆F in a canonical system [36, 129]. Hence, the following modification of Jarzynski’s

equality are valid in the NPT ensemble:

e−β·∆Ge = 〈e−β·W 〉 (2.16)

with β = 1/(kbT ) (2.17)

as well as the corresponding cumulant expansions.

2.4 Analysis tools

All calculations and statistical analyses in Part I of this thesis were conducted using the

statistical framework R and the associated plug-ins lattice, cluster, pheatmap, games,

gap, aicc, AICcmodavg, vioplot and bio3D [130–139]. Trajectory analyses were carried

out with VMD 1.9.1 and the incorporated extensions RMSD Trajectory Tool and Time-

line [140, 141]. Visualizations were created with PyMOL [142]. 2D-RMSD plots were

drawn with a tailored python script by Raphael Dives (University of Würzburg).





Chapter 3

Slow-onset inhibition of Mycobacterium

tuberculosis InhA: Revealing molecular

determinants of residence time by MD

simulations

The contents of this chapter have been published in the open-access journal PLoS ONE

in 2015 [1]. The publication has been modified in layout to fit the style of this thesis.

Moreover, the supporting information of the publication and previously not shown data

have been incorporated into the chapter. The theoretical background of this work is

explained in Chapters 1 and 2.

3.1 Introduction

As loop ordering and related conformational changes upon ligand binding are the most

likely key factors in the context of slow-onset inhibition, we have conducted an extensive

computational survey to elucidate the effects of different ligand structures on InhA con-

formational dynamics by means of molecular dynamics (MD) simulations. To this aim,

five systems were prepared for simulation: (1) the unmodified InhA crystal structure

with bound PT70 and NAD+ (PDB code 2X23) [45], (2) the same crystal structure

without inhibitor (i.e., after removing it; hereinafter called perturbed), and (3) the same

crystal structure without ligand and cofactor (hereinafter called No NAD+). Further-

more, based again on PDB structure 2X23, complexes of InhA with NAD+ and the

rapid reversible inhibitors (4) triclosan (TCL) and (5) 6PP were setup (cf. Figure 2.4).

By starting all simulations from the highly ordered 2X23 crystal structure, it is pos-

sible to analyze perturbation effects and to reverse-engineer the potential EI*-complex

formation. Placing TCL or 6PP in the closed-SBL conformation of 2X23 enables the

simulation of the virtual EI*-state of an InhA-NAD+-TCL or -6PP complex and ex-

amination of the dynamic properties that might eventually lead to loop disordering.

With simulations based on these systems we aim at revealing features of the confor-

mational dynamics of the binding pocket and the SBL of InhA while linking them to

29
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structural differences in the respective ligands. Understanding the benefits and disad-

vantages of ligand properties in this context has implications for inhibitor design and

optimization toward a longer residence time.

Accordingly, this study is based on three major hypotheses: (1) The ternary complex

of PT70 with InhA and NAD+ represents the EI* state of the system. According to

the current literature, there is no doubt on the validity of this assumption [40, 45, 46].

(2) As recently suggested by Li et al. [40], the EI state most likely corresponds to the

open conformation of helix α6 (SBL) with respect to the binding pocket. This open

conformation is observed, for example, in a substrate-analogue complex of InhA (PDB

code 1BVR [53]). In contrast, the EI* state seen in the PT70-complex is characterized

by a closed conformation of helix α6. (3) In the presence of inhibitors with rapid re-

versible binding kinetics, the EI* state is destabilized relative to the EI state. Therefore,

after association of such an inhibitor, the EI* state is not reached, at least not to an

observable extent. Conversely, placing a rapid reversible inhibitor in an EI* structure

should cause its destabilization and eventually lead to the EI state. While experimentally

hardly accessible, such a process can be investigated computationally. As illustrated in

the schematic free energy profile of Figure 3.1, destabilization of the EI* state in the

presence of a rapid reversible inhibitor (or in the absence of an inhibitor) may lower

the barrier to such an extent that a transition from EI* to EI could become observable

within the time scale of standard unbiased MD simulations. This is the rationale for

setting up the simulations with the inhibitors 6PP and TCL placed in the binding

pocket of the PT70-InhA crystal structure 2X23. The question then is whether and to

which extent the EI* state is left under such conditions, whether an EI state is indeed

reached and how all of this depends on the nature of the ligand.

In light of these hypotheses and questions, the outline for the analysis of the trajectories

and the presentation of the results is as follows: We first focus on the binding pocket dy-

namics and examine the conformations observed in the 6PP- and TCL-bound systems

in comparison to the PT70-complex. To this aim, we perform a hierarchical cluster

analysis on the basis of 2D-RMSD data of the three trajectories to reveal the confor-

mational families visited by the simulations. This is followed by a closer analysis of the

dynamics of the SBL, as well as of the ligand binding modes and the hydrogen-bond

interactions. We attempt to link the observations in the different complexes to differ-

ences in the ligands, examining in particular the effect of the ortho-methyl substitution

of PT70. We finally discuss the conformational families in the context of available

experimental information, especially with respect to the presumed EI and EI* states.

We conclude with a discussion of the implications for drug design and rational residence

time modulation.
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Figure 3.1 Schematic free-energy profiles for a slow-binding inhibitor (left)
and a destabilized EI* state as a consequence of the presence of a rapid-
reversible inhibitor or ligand removal (right). Each macrostate (EI, EI*) is
obviously associated with many microstates.

Because InhA crystallizes as a homotetramer and is known to be active as a homote-

tramer in solution [53], all simulations were run for the tetramer to best represent the

bioactive form of InhA. This has the additional advantage of simultaneously sampling

four analogous subunits at the same time. As the active sites of the four monomers are

about 40 Å apart from each other, facing opposite sides in the quaternary structure and

working independently [143], the 150 ns trajectories of the four binding pockets may be

seen as a combined 600 ns sampling for the monomer. In a dynamic cross-correlation

analysis of the four binding pockets over the entire trajectory we could not observe any

correlated motions among the four pockets, supporting the assumption that their mo-

tions can be treated as independent (Figure 3.2) [138, 139]. Therefore, in some of the

analyses presented below the combined ensembles of the four monomers were used. In

other cases, however, it was more appropriate to follow the monomers individually along

their 150 ns trajectory.

3.2 Binding pocket dynamics and conformational families

We first focus on the binding pocket and compare the conformations observed in the

different simulations to identify distinct conformational states, viz. recurring confor-

mational families. The InhA binding pocket as defined by Luckner et al. (2010) [45]

comprises the amino acids Phe149, Ala198, Met199, Ile202, and Val203 of the hy-

drophobic pocket, as well as the more hydrophilic residue Tyr158, which is an important

hydrogen-bonding interaction partner for inhibitors. To detect conformational families
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Figure 3.2 Dynamic cross-correlation analysis of InhA binding pocket in
separate homotetrameric systems. Each small box represents a monomer. The color-
scale indicates the correlation coefficient. No correlated motion between the four bind-
ing pockets of each system can observed.
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Figure 3.3 12x12 2D RMSD plot of the binding site (defined by the heavy
atoms of Phe149, Tyr158, Ala198, Met199, Ile202, and Val203) of all PT70,
TCL and 6PP monomers. RMSD values between two frames are illustrated accord-
ing to the color scale on the right. The axes correspond to the simulation time (0 to
150 ns for each monomer). A single small box (square delimited by thin black lines)
represents the comparison of the trajectory snapshots either within a given monomer
(boxes along the diagonal) or between two different monomers (off-diagonal boxes).
The bold black lines enclose the monomers of a particular homotetramer (i.e., PT70,
TCL or 6PP).

of the ligand-bound state of the binding pocket, a 12x12 2D-RMSD plot of all against all

monomers of the PT70-, TCL-, and 6PP-complexes was calculated (Figure 3.3). This

allows to compare all conformations occurring in the different simulations and to identify

similarities or differences across the systems, which is done most straightforwardly by a

hierarchical cluster analysis on the basis of this 2D-RMSD matrix to group the recurring

conformations to conformational families.

The hierarchical cluster analysis was carried out with R [130] using the complete linkage

method. This method was preferred over others not only because it tends to produce



Chapter 3. Molecular determinants of slow-onset inhibition of InhA 34

Figure 3.4 Hierarchical clustering analysis of binding-pocket conformers of
the PT70, TCL and 6PP simulations based on the mutual RMSD compari-
son of the individual snapshots as shown in the 2D RMSD plot (Figure 3.3).
The calculated RMSD is used as distance measure with complete linkage. The clusters
detected at an RMSD cutoff of 3.5 Å are shown in different colors and are numbered as
explained in the text. (a) Cluster dendrogram. (b) Time line of cluster membership.
For each monomer of the simulated systems all snapshots included in the analysis from
0 to 150 ns (at intervals of 1 ns) are consecutively written in a line as blocks of 30 ns.
The numbers represent the cluster to which a particular snapshot belongs to. Family
membership is highlighted by colors according to the legend at the bottom.

clusters with similar diameter, but primarily because it provides readily interpretable

results in terms of a maximum RMSD value between members of a cluster. Here, eight

clusters of recurring conformations of the InhA binding pocket were identified at an

RMSD cutoff of 3.5 Å (cf. Figure 3.4 for further details).

On the basis of the cluster dendrogram and the corresponding structural similarities, the

clusters were further summarized to five “monophyletic” conformational families. Sub-

suming the clusters to monophyletic families was achieved by visual inspection instead of

raising the RMSD cutoff, since mere RMSD values might overestimate the importance of

minor backbone movements while concealing important side chain flips. These families

are hereinafter referred to as Families 1 to 5 (cf. Figure 3.5):

(a) Family 1 (based on cluster 1) corresponds to the crystal structure conformation of
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Table 3.1 Occurrence frequencies (in %) of the conformational families of
the InhA binding pocket in the three analyzed simulations of the PT70-,
6PP- and TCL-complexes, based on the hierarchical clustering analysis.

Family 1 Family 2 Family 3 Family 4 Family 5

PT701 4.97 3.37 0.00 0.00 0.00
PT702 8.33 0.00 0.00 0.00 0.00
PT703 6.79 1.55 0.00 0.00 0.00
PT704 7.89 0.44 0.00 0.00 0.00

6PP1 3.53 1.10 3.70 0.00 0.00
6PP2 5.30 0.00 3.04 0.00 0.00
6PP3 0.66 4.75 1.93 0.00 0.99
6PP4 5.85 2.48 0.00 0.00 0.00

TCL1 2.48 5.85 0.00 0.00 0.00
TCL2 8.33 0.00 0.00 0.00 0.00
TCL3 1.27 0.00 0.00 7.06 0.00
TCL4 2.81 0.44 5.08 0.00 0.00

Sum 58.21 19.98 13.75 7.06 0.99

the PT70-complex;

(b) Family 2 (based on clusters 2 and 3) shows a conformation with a slight twist of

helix α6 (residues 202-209 in the ascending branch of the SBL), resulting in a shift of

Ile202 toward the ligand and a minor displacement of Val203 toward the hydrophobic

pocket;

(c) Family 3 (based on clusters 4 to 6) is characterized by a more open conformation

of helix α6 and new positions of Ile202 and Val203: Ile202 now adopts the position of

Val203 in the PT70-crystal structure, and Val203 is shifted to the back, farther away

from the binding pocket;

(d) Family 4 (based on cluster 7) represents the conformations with a flip of Tyr158

toward the hydrophobic pocket and an associated conformational change of Phe149 to-

ward the former position of Tyr158;

(e) Family 5 (based on cluster 8) is characterized by another open conformation of helix

α6 resulting in a shift of Ile202 and Val203 toward the outside.

The quantitative analysis of the conformational families shows that Family 1 is by far the

most frequent conformation, accounting for 58.21% of the frames across all monomers of

the three simulations (cf. Table 3.1 and Figure 3.6). Family 2 occurs with a frequency of

19.98%, whereas Family 3 accounts for 13.75%. Families 4 and 5 constitute the minority

of conformations with 7.06% and 0.99%, respectively.

Breaking this down to the individual simulations shows a clear difference between PT70

and the other two complexes: Whereas Family 2 and 3 conformations show an occurrence

of only 16.1% and 0.0%, respectively, in the simulation of the PT70-complex, values

of 25.0% (Family 2) and 26.0% (Family 3) are obtained for the 6PP simulation and
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Figure 3.5 Illustration of conformational families of InhA. After summarizing
the eight clusters of the hierarchical cluster analysis to five conformational families, a
Partitioning Around Medoids (PAM) clustering was performed with R for each confor-
mational family. The resulting medoids are illustrated as cluster representatives. The
top left figure shows an entire monomer (A) of InhA from the crystal structure of the
complex with PT70 (PDB 2X23). The substrate binding loop (SBL) is highlighted
in yellow. The arrow represents the direction of the view for the subsequent images.
(a) Family 1: crystal structure conformation; PT70 monomer 4 after 34 ns of MD sim-
ulation. SBL and pocket residues are labeled. The ligand carbon atoms are depicted
in slate blue, the cofactor carbon atoms in magenta. (b) Family 2: Helical twist of
ascending SBL branch with Ile202 shifted toward the ligand; PT70 monomer 3 after
141 ns of MD simulation. (c) Family 3: Enhanced movement of Ile202 far into the
hydrophobic cavity; 6PP monomer 1 after 102 ns of MD simulation. (d) Family 4:
Flip of Tyr158 toward the hydrophobic pocket; TCL monomer 3 after 119 ns of MD
simulation. (e) Family 5: Ile202 movement toward the outside of the protein into the
solvent; 6PP monomer 3 after 27 ns of MD simulation.



Chapter 3. Molecular determinants of slow-onset inhibition of InhA 37

Figure 3.6 Cumulative frequencies of conformational families of the InhA
binding pocket in 150 ns of the PT70, 6PP, and TCL MD simulations.
Horizontal lines separate the single monomers of each of the three considered homote-
trameric complexes.

values of 18.9% (Family 2) and 15.2% (Family 3) for the TCL simulation. Besides that,

the TCL simulation shows 21.2% Family 4 conformations and the 6PP simulation

3.0% Family 5 conformations. Thus, Family 1 conformations are found to 83.9% in the

PT70 simulation, but only to 46.0% in the 6PP and to 44.7% in the TCL simulation

(cf. Figure 3.6).

Apparently, while the state corresponding to conformational Family 1 is stably main-

tained by the PT70-complex, the 6PP- and TCL-complexes have a clear tendency to

depart from this state (cf. Figure 3.4b). Interestingly, this is not simply due to a reduced

occupation of the hydrophobic pocket, because both PT70 and 6PP occupy this site

with a hexyl chain, while TCL projects only a chlorine substituent into the pocket.

However, the space left unoccupied by TCL is the reason why the Tyr158 side chain

can switch its orientation and lead to a Family 4 conformation, which occurs only in the

TCL-simulation and is not possible with the other complexes.
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Figure 3.7 Collective RMSD values of (a) backbone (C, N, and Cα atoms)
and (b) SBL backbone of InhA monomers. Each monomer of the simulated ho-
motetrameric systems (150 ns) was fitted individually onto chain A of the 2X23 crystal
structure as reference for the RMSD measurements and the data of the four monomers
were combined to one box plot per system. Boxes indicate the interquartile range (first
to third quartile), black lines in the boxes show the median of each distribution. The
whiskers extend to values 1.5 times the interquartile range from the box. Significant
differences in the medians are indicated by non-overlapping notches. Average values
are marked by white triangles.

3.3 SBL dynamics and secondary structure analysis

As the ordering of the SBL is supposed to play an important role in slow-binding in-

hibition of InhA [24, 45, 64], the dynamic behavior of this structural segment deserves

special attention. To look first at the overall backbone dynamics of the entire systems,

the RMS deviation of the backbone atoms of each monomer was calculated with respect

to chain A of the 2X23 crystal structure (Figure 3.7a). All ligand-bound systems show

high stability of the overall structure throughout the entire simulation. With averages of

1.19 Å and 1.27 Å, the PT70 and 6PP complexes display slightly lower RMS deviations

than the complex with TCL (1.38 Å). Not unexpectedly, the perturbed systems without

ligand show a clear shift toward higher values and larger fluctuations. Nevertheless, the

medians and averages remain well below 2 Å in all cases, indicating reasonable stability

of the entire trajectories.

With these values as reference, the large degree of flexibility of the SBL becomes im-

mediately evident. The RMSD of the backbone atoms between residues 202 and 218

(corresponding to the entire SBL) shows similar overall trends as seen in the analysis

of the complete backbone, but (much) larger absolute values and fluctuations (Figure

3.7b). In fact, the major mobility of the backbone is observed in the SBL. The highest
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RMSD values (as for example in the perturbed system) correspond to completely opened

loop conformations. Thus, the time scale of the simulation is sufficient to encounter

major loop disordering and opening. Furthermore, partial or complete loop closing and

rearrangement can be seen after some opening events (e.g., 6PP monomer 4; cf. Figure

3.8, which shows the RMSD of the SBL as a function of time for each monomer of the

simulated systems), emphasizing that the produced trajectories do not simply evolve

toward a growing disorder.

Since the ordering of the two helical SBL branches is important for inhibitor binding

and happens primarily at the secondary-structure level, a secondary-structure analysis

was performed using the VMD plug-in Timeline to assign one of six secondary-structure

motifs to each atom of the SBL backbone atoms (residues 202 to 218) for each frame of

the trajectory: (1) isolated bridge, (2) Coil, (3) 310-helix, (4) α-helix, (5) π-helix, and

(6) turn [141]. The 2X23 crystal structure SBL consists completely (100%) of α-helix

and 310-helix atoms. For the simulations, the average percentage of these two motifs

was calculated over the entire sampling time (Figure 3.9). With an average of 69.76%

the PT70-bound monomers show the highest percentage of α-helix and 310-helix motifs

during the simulation, followed by 6PP (62.67%). With 49.73% the TCL monomers

are comparable to the perturbed monomers (46.52%). No NAD+ shows by far the lowest

percentage of these helical motifs (31.55%). This reinforces the notion that the proper

occupation of the hydrophobic pocket is an important contributor to the conservation of

the helical SBL structure of the final conformational state EI*. The lower helical-motif

frequency of 6PP and TCL compared to PT70 is in line with their differences in binding

affinity and residence time, stressing the importance of long-term SBL conservation.

3.4 Hydrogen bond interactions and binding mode analy-

sis

We now focus on the ligand and analyze first the hydrogen bond between Tyr158 and

the A-ring phenolic oxygen, which is a highly conserved interaction between diphenyl

ethers and InhA. For analysis, the distance between the Tyr158 oxygen (OH) and the

phenolic oxygen of the ligands was followed over the entire trajectory (cf. Figure 3.10).

PT70-bound monomers show by far the lowest distance with medians ranging between

2.82 Å and 2.85 Å, followed by 6PP (2.84 Å to 3.21 Å) and TCL (3.00 Å to 7.34 Å).

The bimodal distributions observed for the TCL monomers 1 and 4 are caused by the

transition to an alternative binding mode of TCL further described below. The shorter

distances for 6PP and especially PT70 evince that the differences in the chemical struc-

tures of the ligands directly influence the formation and maintenance of the important
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Figure 3.8 Backbone RMSD plots of InhA SBL (residues 202 to 218) of
single monomers. A moving average with a window size of 20 frames was used. The
RMSD was measured with reference to chain A of the 2X23 crystal structure.



Chapter 3. Molecular determinants of slow-onset inhibition of InhA 41

Figure 3.9 Occurrence frequency (in % of the trajectory snapshots) of α-
helix and 310-helix motifs in the substrate binding loop. Each monomer of
the simulated homotetrameric systems (150 ns) was analyzed, and data of the four
monomers were combined to one box plot per system.

hydrogen bond between Tyr158 and the ligands. The measured distances correlate with

the relative affinity of the ligands (Figure 2.4), showing a stably maintained hydrogen

bond for PT70, a partially maintained hydrogen bond for 6PP, and a hardly stable

interaction for TCL.

The second most important aspect of the diphenyl ether binding mode is the occupation

of the hydrophobic pocket. While PT70 and 6PP both fill the pocket almost completely

(a calculation of the free pocket volume with POVME [144] shows virtually no free vol-

ume for both complexes, Figure 3.11), the bound TCL leaves free space to be occupied.

In fact, this space is flooded by water molecules after a few hundred picoseconds (cf.

for example TCL monomer 2, Figure 3.12). Although this may appear counterintuitive

based on the lipophilic character of this area, it is well known that given sufficient space

and accessibility, water molecules also occupy lipophilic binding sites [145].

The most drastic effect of the missing hydrophobic moiety of TCL can be observed in

TCL monomers 1 and 4, where the ligand changes its binding mode entirely after around

100 ns and 70 ns, respectively (Figure 3.13). The new binding mode displays a breakage

of the hydrogen bond from Tyr158 to the phenolic oxygen of the diphenyl ether with

subsequent shift into the hydrophobic pocket. After the scaffold transition, the A-ring,

formerly stacked above the nicotinamide ring system, now occupies the hydrophobic
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Figure 3.10 Violin plots of distances between the phenolic oxygen of Tyr158
and the respective ligands. White dots depict the medians. Thick vertical lines
indicate the interquartile ranges (IQR), thin lines extend to 1.5 · IQR from the third
and first quartile, respectively. The shape of the violins illustrates the kernel density
estimation of the respective distribution.

Figure 3.11 Pocket volume analysis of hydrophobic pocket in MD systems.
Pocket volume calculations were carried out with the tool POVME [144].



Chapter 3. Molecular determinants of slow-onset inhibition of InhA 43

Figure 3.12 Snapshots of TCL monomer 2 after heating (0 ns, left) and
after 700 ps of MD simulation (right). The ligand TCL is depicted in slate blue,
the cofactor in magenta and the pocket residues including Leu218 in gray. The SBL
is shown in yellow. Ligand, cofactor, and pocket residues are also shown as surface
(wheat), oxygens of water molecules are shown in red. Flooding of the hydrophobic
pocket is noticeable after 700 ps (right).

pocket and forms a polar interaction with the nicotinamide oxygen. The B-ring is now

placed at the former location of the A-ring. In both cases a stable interaction with

the nicotinamide oxygen is observed once the binding mode has changed. This is also

represented by heavy-atom distances below 3 Å (Figure 3.14). This new interaction could

also be observed in MD simulations of the Plasmodium falciparum enoyl-ACP reductase

(Pf ENR) in complex with NAD+ and the ligands FT0 and FT1, respectively [146].

The novel binding mode of TCL co-occurs with the conformational Families 2 and 3,

suggesting that a shifted Ile202 is detrimental to ligand stabilization in the pocket. There

is indeed a steric hindrance between Ile202 and the B-ring chlorine of the ligand after

Ile202 has moved. As a result, the ligand is pushed from “above” and eventually forced to

rotate its B-ring, whereupon it yields and moves toward the hydrophobic pocket. Please

note that this new binding mode is not postulated as an actual alternative binding mode

of TCL. Rather, it is a consequence of the instability of the artificial starting structure

and only shows that an alternative interaction with the cofactor might be possible in the

binding pocket. Because this interaction requires a Family 2 or Family 3 conformation,

it does, however, not provide a strategy to increase the residence time of slow-binding

inhibitors.

3.5 Influence of ortho-substituted B-ring

While 6PP is a rapid reversible inhibitor, PT70 binds with a residence time of 24

minutes (Figure 2.4), although the ortho-methyl group at the B-ring of PT70 is the

only structural difference [45, 64]. Interestingly, for the 6PP complex the simulations
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Figure 3.13 TCL of monomer 1 at 0 ns, 100 ns, and 150 ns of MD simu-
lation, respectively. The initial change of binding mode can be observed at 100 ns,
resulting in the final binding mode shortly after, which stays stable until the end of the
simulation (150 ns). Very similar observations were made for TCL monomer 4, but
starting already at 70 ns (cf. also Figure 3.14).

Figure 3.14 Distances between the NAD+ nicotinamide oxygen and the
phenolic oxygen of the ligand or the Ile194 backbone nitrogen. Distances
are shown as a function of time in a moving-average plot with a window of 20 frames.
Monomers 1 and 4 are illustrated for the TCL complex. Continuous lines indicate
distances to the ligand, whereas dotted lines are used for distances to Ile194. For each
illustrated ligand a stable interaction with a distance below 3 Å can be observed after
the binding-mode change, while the interaction of NAD+ with Ile194 (present in the
starting structure) is only slightly affected.
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Figure 3.15 2D density plot for the ether dihedral angles α and β of the un-
bound ligands PT70 (left) and 6PP (right) based on a 150 ns MD simulation
in aqueous solution. The dihedral angles α (COH -C-O-C) and β (C-O-C-CMe/H)
are illustrated in Figure 2.4.

indicate a reduced stability of the Family 1 state in comparison to the PT70 complex,

and the conformational Families 2 and 3 are significantly more frequent in the 6PP sim-

ulation. With the ortho-methyl moiety as the only substitution, this difference appears

as the logical origin for these observations. To investigate the effect of ortho-methyl

substitution on the ligand conformations (which are mainly determined by the torsions

around the two ether bonds), two additional 150 ns MD simulations were conducted

for each ligand solvated in a water box. By measuring the dihedral angles of the ether

moiety along the trajectory, a 2D density map of the (C-O-C-CMe/H)-dihedral β versus

the (COH -C-O-C)-dihedral α was generated for each ligand (Figure 3.15). The strong

peaks in the distribution of the PT70 angle pairs suggest that fewer conformations are

populated compared to 6PP. Hence, as expected, the ortho-substituted PT70 is more

constrained in its intramolecular mobility, hindering the Ile202 movement toward the

hydrophobic pocket to a greater extent than the unsubstituted 6PP. This very likely

accounts for the enhanced occurrence of Families 2 and 3 in the case of 6PP and for the

(on average) larger RMS deviations and fluctuations of the ligand in the binding pocket

(Table 3.2). Interestingly, also the hexyl chain of 6PP shows higher mobility than the

PT70 hexyl chain in the binding pocket (Table 3.2, Figure 3.16). In summary, the

conformational stabilization of PT70 by the ortho-methyl group appears to translate

directly to increased SBL stabilization and retention of a Family 1 conformation.
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Table 3.2 Trajectory averages and standard deviations of heavy-atom
RMSDs of the PT70 and 6PP ligands and their hexyl chains, respectively.
RMSDs were measured individually for each ligand in the four monomers
with respect to the corresponding starting structure (after the heating cy-
cles).

all heavy atoms hexyl chain
Avg. RMSD [Å] SD [Å] Avg. RMSD [Å] SD [Å]

PT701 1.15 0.19 1.50 0.50
PT702 1.15 0.21 1.15 0.22
PT703 1.14 0.18 1.20 0.27
PT704 1.09 0.22 1.17 0.26

6PP1 1.24 0.23 1.77 0.48
6PP2 1.18 0.29 1.31 0.32
6PP3 1.32 0.28 1.91 0.49
6PP4 1.72 0.31 1.41 0.39

Figure 3.16 Heavy-atom RMSD distributions of hexyl chains of PT70 and
6PP. As references the respective coordinates of the starting structure (after the heat-
ing cycles) were used (cf. Figure 3.7 for further explanations).

3.6 Comparison with experimental structures

To further judge the relevance of the simulation results and to discuss the conformational

families in the context of the EI and EI* states of the two-step binding process of slow-

binding InhA inhibitors (Figure 2.5), a comparison with the experimentally available

structural information is important. Most relevant in this context are the very recently

released crystal structures of the ternary diarylether complexes with InhA and NAD+
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from the studies of Li et al. [40] and Pan et al. [46]. These complexes with the slow-

binding inhibitors PT10 (PDB 4OXY), PT91 (PDB 4OYR), PT92 (PDB 4OHU)

and PT119 (PDB 4OIM) and the rapid-reversible inhibitor PT155 (PDB 4OXN and

4OXK) show differences in the conformations of Ile202/Val203 and the orientation of

helix α6 of the SBL. The complexes with PT10, PT91 and PT92 predominantly

show the same binding-site conformation and helix orientation as the PT70-complex

structure, strongly supporting the assumption that this corresponds to the EI* state (the

ligands PT10, PT91 and PT92 differ from PT70 only by a 2’-nitro, 2’-chloro and 2’-

bromo substituent, respectively, instead of the 2’-methyl group) [40]. In contrast, the

complex with PT119 (carrying a 2’-cyano group) displays an alternative arrangement

of Ile202 (which adopts the typical position of Val203) and Val203 (which is displaced

to the back), but a relatively closed orientation of the helix [46]. Finally, the structures

with the rapid-reversible 4-pyridone inhibitor PT155 (carrying a 4-pyridone as A-ring

and an additional 4’-amino substituent on the B-ring in comparison to PT70) not only

show an unresolved SBL in the monomers of the asymmetric unit, but–for the first

time–for one of the monomers also a fully resolved SBL with a widely open orientation

of helix α6, which has been interpreted as a representation of the EI state by Li et

al. [40].

A comparison of this PT155-structure with the conformational families suggests that

Family 3 indeed captures the characteristics of the EI state: Ile202 is positioned above

the ligand, Val203 is moved to the back, and helix α6 adopts a very open conformation.

Figure 3.17b highlights this open state for a Family 3 representative: it shows a distance

between helix α6 and strand-4 (used by Li et al. [40] to measure the degree of opening)

of 11 Å, whereas only 5 Å are measured for Family 1 (Figure 3.17).

The complex with the slow-binding inhibitor PT119 constitutes a special case, as it does

not show the typical EI* conformation. Whereas in the EI* state Val203 in helix α6 is

positioned closer to the ligand than Ile215 (located in helix α7), in the PT119 structure

Val203 is located far behind and Ile215 is close to the ligand [46]. Together with the

altered position of Ile202, this conformation rather reminds of an EI-like state, albeit

with a not fully open helix α6. Although the authors speculate about the relevance

of this structure, they also note that ”owing to the crystallization conditions and the

potential impact from crystal packing, the observed structure for the PT119 complex

could represent a snapshot along the binding coordinate from EI to EI*” [46]. Indeed,

very different crystallization conditions were used for this structure in comparison to

the others, limiting the comparability. In particular, the very high acetate concentra-

tion leads to the observation of two acetate ions at potentially critical positions of the

structure, namely between helix α6 and strand-4, as well as between helix α6 and helix

α7 (cf. Chapter 6). Accordingly, we assume that the EI*-state could not be reached
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Figure 3.17 Open and closed conformations of InhA observed in the MD
simulations. Figure (a) shows the closed state represented by the medoid of confor-
mational Family 1, figure (b) illustrates the open state represented by the medoid of
cluster 4 (belonging to conformational Family 3). The same view of the binding pocket
as in Figure 3 of Li et al. [40] is used for better comparison. In this view, the portal-
forming elements are located left (helix α6) and right (strand-4) of the binding site. The
distances highlighted as yellow dashed lines were measured between Ala198/Ile202 on
helix α6 and Phe97 on strand-4. For comparison, in the crystal structure of the PT70
complex (PDB 2X23) representing the closed state, a distance of 4 Å is found be-
tween Ile202 and Phe97, whereas the open state is characterized by a distance of about
10 Å between Ala198 and Phe97 in chain B of the PT155-complex crystal structure
(PDB 4OXN) [40].
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Figure 3.18 Distance between the Cβ-atoms of Ile202 and Ile215 over time.
6PP monomers 1 and 3 are shown in shades of blue, TCL monomer 4 is depicted in
purple. The green baseline illustrates the PT119 crystal structure (PDB 4OIM).

under these conditions and that the conformation was frozen in an intermediate, but

rather EI-like state. In our simulations, the particular conformational feature of PT119

occurs only occasionally and only in the context of Family 3 conformations, supporting

the EI-likeness (cf. Figure 3.18, which illustrates the distance between Ile202 and Ile215

as a measure for the adoption of a PT119-like conformation).

In summary, the comparison with these newly released structures supports the notion

that Family 1 corresponds to the EI*-state, whereas Family 3 may be considered as EI

state. This has important implications for the interpretation of the simulations and the

effects exerted by the different ligands.

3.7 Determinants of residence time and implications for

drug design

To optimize potential inhibitors regarding their residence time, it is desirable to un-

derstand the reasons which drive the conservation of an EI* state over time [24, 25].

Associating Family 1 conformations with the EI* macrostate and Family 3 conforma-

tions with the EI macrostate provides the possibility to interpret the simulation results

in this context. Li et al. have carried out partial nudged elastic band MD simulations
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to investigate the free energy profile for the transition between EI and EI*, illustrating

that the energy required for the arrangement of Ile202 and Val203 around the B-ring

contributes directly to the height of the energy barrier for the transition from the EI to

the EI* state [40]. In contrast, our classical MD simulations were all setup from the EI*

state without a biasing potential, but introducing rapid-reversible inhibitors as pertur-

bation to investigate their effects on the stability of the EI* state. As analyzed above,

the simulations indeed show a clear tendency for major conformational changes (involv-

ing in particular Ile202 and Val203) toward an EI state in the case of the rapid-reversible

inhibitors 6PP and TCL and a much higher stability in the case of the slow-binding

inhibitor PT70. Thus, the dynamic features revealed from the trajectories for the differ-

ent systems may be linked to the substitution patterns of the examined diphenyl ethers

to provide insights for rational ligand optimization toward longer residence times for

InhA.

First of all, the ortho-methyl group of the B-ring has shown itself to be advantageous

as an anchor. A substituent in this position occupies further space between helix α6

and cofactor. Moreover, it restrains the phenyl-oxygen-phenyl torsions (as shown in the

simulations of the solvated ligands, cf. Figure 3.15), which stabilizes the ligand scaffold

and thereby also the para-hexyl chain of the A-ring. This appears to improve the stable

occupation of the hydrophobic pocket. Proper filling of the hydrophobic pocket is, in

fact, a second major determinant, as evidenced by the TCL-simulation. In order to

lock the binding pocket and the SBL in the EI* state (Family 1), it is desirable to

prevent Ile202 and Val203 from moving toward helix α7 (residues 210 to 218). Thus, as

a third factor and as a suggestion for ligand design, it could be beneficial to introduce

a barricade group in 5’-position of the B-ring which might embed itself between Ile202

and Val203 and, thus, further stabilize them, possibly blocking Ile202 from traveling

toward the hydrophobic pocket (cf. Figure 2.4). Thereby, the energy barrier between

the EI* and the EI state might be significantly increased and the EI* complex could

be maintained for a longer time. Notably, a substituent in this particular position is

confined in its size by the adjacent Met103. Four meta-substituted ligands (fluoro,

chloro, methyl and methoxy) were docked exemplarily into the InhA chain A binding

pocket using Glide (version 5.8, Schrödinger, LLC, New York, NY, 2012) [147, 148] in

extra precision mode (Figure 3.19). All ligands show essentially the same binding mode

as PT70 in the crystal structure, underlining the availability of sufficient space for a

small 5’-substituent of diphenyl ethers. Thus, new 2’-substituted diphenyl ethers with

an additional small substituent in 5’-position are suggested as inhibitors with potentially

further increased residence times.
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Figure 3.19 Top-ranked docking poses of four 5’-substituted PT70-like
diphenyl ethers. Met103 is illustrated in green, the docked ligands are shown in
salmon. PT70 (shown in slate blue as reference) was substituted in 5’-position with
a (a) fluoro-, (b) chloro-, (c) methyl-, and (d) methoxy-substituent. Docking was
carried out with Glide in XP-mode using default settings and a maximum output of 10
poses per ligand.

3.8 Conclusion

By using molecular dynamics simulations with accumulated sampling in the low mi-

crosecond time scale, it was possible to unveil previously undetected conformational

features of the Mycobacterium tuberculosis enoyl-ACP reductase InhA. Starting from

an EI* state, the presence of rapid-reversible inhibitors caused an increased tendency

for transitions to an EI-like state. The associated conformational changes and dynamic

fluctuations of the protein binding pocket and the SBL were illustrated by the MD

simulations. Analyses of conformations, pocket volume and secondary structure show

different strategies for achieving structural conservation of the EI*-state over time and,

thus, increased residence times of inhibitors: firstly, the occupation of the hydrophobic

pocket and stabilization of Ile202 and Val203 to prevent these pocket residues from turn-

ing over the hydrophobic pocket; secondly, the introduction of a barricade substituent in
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5’-position of the B-ring to increase the energy required to arrange helix α6 around the

B-ring, thus fashioning the final EI* state of PT70-like binding modes; and thirdly, the

introduction of an anchor in ortho-position of the B-ring (methyl in PT70) to reduce

the degrees of freedom with respect to the central diphenyl ether torsions. This limits

the mobility of the bound ligand and, concomitantly, of the hydrophobic pocket, lead-

ing to lower fluctuations and an increased stability. These structural features not only

keep the InhA binding pocket in the EI* state, but also directly influence the quality

of the important hydrogen bond between Tyr158 and the ligand. Taken together, these

findings provide valuable insights for future studies of inhibitor design directed against

InhA.

3.9 Methods

3.9.1 Protein and ligand preparation

The highly ordered tetrameric InhA crystal structure with bound PT70 and NAD+

(PDB code 2X23) [45] was used as starting point for the setup of all five simulation

systems. Due to the high flexibility of the substrate binding loop the TCL-complexed

crystal structure of InhA (PDB code 2B35) is incomplete in this crucial area. Therefore,

a structural alignment of 2X23 and 2B35 was performed in PyMOL [142]. TCL was

extracted from the 2B35 structure and placed into the ligand-free 2X23 protein, gener-

ating an uninterrupted InhA-NAD+-TCL complex. The ligand 6PP was sketched and

docked with Glide (version 5.8, Schrödinger, LLC, New York, NY, 2012) [147, 148] into

the 2X23 crystal structure using standard precision. For each monomer the pose with

the least RMSD from the crystallized PT70 was chosen (0.58 Å, 0.47 Å, 1.03 Å, and

0.53 Å, respectively; calculated with fconv [149]). No crystal structure is available for

the 6PP complex, but comparison with the complex structures of the closely related

ligands 5PP and 8PP [64] show low RMS deviations (of 0.6 Å to 1.0 Å) between the

6PP binding modes generated by docking and these ligands. Hydrogen atoms were

added to PT70, TCL, and NAD+ with SYBYL-X. The Amber10 [150] module tleap

was used for assigning the parameters of the ff99SB force field [99]. RESP charges [110]

were calculated for all three ligands and the cofactor based on HF/6-31G* electrostatic

potentials obtained with Gaussian 03 [151]. With the Amber10 module parmchk [152]

unavailable force field parameters were calculated according to the General Amber Force

Field (GAFF) [114]. Atom and bond types of the ligand were assigned by antecham-

ber [152].
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3.9.2 Molecular Dynamics simulations

A short energy minimization of 200 cycles was performed using a generalized Born im-

plicit solvent model [153, 154] as implemented in the Amber11 module sander [155].

Subsequently, the molecules were solvated with tleap using a TIP3P water box [112],

retaining all crystallographic water molecules and adding sodium ions to ensure electro-

neutrality. The resulting systems had dimensions of approximately 110 Å · 112 Å ·
89 Å and contained about 101,000 atoms each. For heating-up, water molecules were

allowed to move freely in the constant-volume box, while the proteins and ligands were

kept rigid for 25 ps. During this step the systems were heated from 100 to 300 K for

20 ps and then cooled to 100 K over 5 ps by means of the Berendsen weak coupling

algorithm [103] with a time constant of 0.5 ps. Then the complete systems were treated

without constraints and gradually heated to 300 K over a time period of 25 ps. For each

system a simulation of 150 ns at 300 K was then carried out, whereby covalent bonds to

hydrogen atoms were constrained by the SHAKE algorithm and a time step of 2 fs was

used. These simulations were run with NAMD 2.9 [101, 156] using the assigned force

field parameters. Energetical equilibration of the simulation box was observed within

1.5 to 3 ns in all cases. The systems were treated with periodic boundary conditions. A

van-der-Waals interaction cutoff of 12 Å was used, as well as the particle mesh Ewald

methodology (PME) for electrostatic interactions [108]. Constant pressure was assured

by the Nosé-Hoover Langevin piston pressure control [106, 107], while constant tem-

perature was achieved by the use of Langevin dynamics. Additionally, two simulations

of the uncomplexed ligands PT70 and 6PP, respectively, were conducted for 150 ns.

Trajectory snapshots were saved every picosecond. For visual and statistical analyses,

trajectory snapshots at intervals of 100 ps were considered, resulting in 1500 frames per

system. The diphenyl torsion analyses (ligand-only simulations) were carried out with

snapshots at 10 ps steps (i.e., 15000 data points). All analyses were performed with VMD

and associated plug-ins [140]. All trajectories of the individual monomers were fitted

to the chain A backbone atoms (C, N, and Cα) of the 2X23 crystal structure with the

RMSD Trajectory Tool of VMD for visual inspection and all quantitative analyses. Sta-

tistical analysis and plotting was done with the statistical framework R [130, 131, 157].

The pocket volume analysis was performed with POVME [144]. Structural visualizations

were created with PyMOL [142].





Chapter 4

MD simulations of 2’,5’-disubstituted

diphenylethers in InhA

The following chapter is a follow-up study building on a major result of Chapter 3.

Extensive structural analyses of the MD simulations carried out for InhA have led to

the suggestion of a small 5’-substitution on PT70 to optimize Family 1 stability of

the binding pocket and, thus, the drug-target residence time (cf. Chapter 3.7). In the

following chapter the stability of new systems with hypothetical PT70-modifications

with 5’-substitution is assessed by means of MD simulations.

4.1 System preparation

Two InhA-complexes with different 5’-substituted PT70-derivatives were set up: (1) 5’-

methyl-PT70 (2-(2’,5’-dimethylphenoxy)-5-hexylphenol) and (2) 5’-chloro-PT70 (2-(2’-

methyl-5’-chlorophenoxy)-5-hexylphenol). The selection of these substituents enables a

comparison of the effects of different, but similarly sized moieties. Both systems were pre-

pared in the tetrameric form of InhA. First, the ligands were sketched with Schrödinger

Maestro (version 9.7, Schrödinger, LLC, New York, NY, 2014) and docked using Glide in

extra precision (XP) mode with default settings (Glide, version 6.2, Schrödinger, LLC,

New York, NY, 2014). In the tetrameric systems, a separate docking was carried out for

each chain. A maximum number of ten docking poses was generated per docking run.

The docking poses with the lowest RMSD with respect to PT70 of the respective chain

were chosen for MD simulation (Table 4.1, calculated with fconv [149]).

The docking poses were energetically minimized for 100 steps in the ff99SB Amber force

field and the GAFF [99, 114] using a General Born implicit solvent (GBIS) model [153,

Table 4.1 Minimum RMSD of docking poses of 5’-substituted PT70 ligands
to PT70 in Å.

5’-methyl 5’-chloro

Chain A 0.54 0.67
Chain B 0.75 0.67
Chain E 0.82 0.72
Chain G 0.62 0.58

55
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154]. Parameterizations, equilibrations and 50 ns MD simulations were carried out as

follows (cf. Chapter 5 for details): both ligands were parameterized in GAFF with RESP

atom charges obtained from HF/6-31G* potentials and the protein was parameterized

in the ff99SB force field. After 200 steps of energy minimization in the GBIS model,

the complexes were solvated with TIP3P water molecules and neutralized with sodium

ions, followed by 10,000 steps of energy minimization and a 1 ns equilibration. First, the

system was gradually heated from 100 K to 300 K over 500 ps in the NV T ensemble with

harmonic constraints on the protein and ligand atoms, which were gradually released.

Afterwards, the system was allowed to evolve freely for another 500 ps. MD production

runs were performed in the NPT ensemble using NAMD 2.9 [101]. The only difference to

the simulation setup followed in Chapter 3 is, thus, the longer and gentler equilibration

phase to comply with more recent protocol standards and decrease the likelihood for

artifacts in the initial phase of the simulation. Trajectory snapshots were saved every

picosecond. For structural and statistical analyses, snapshots at intervals of 100 ps were

considered, resulting in 500 frames per system. For the 2D-RMSD analysis of Met103

(Figure 4.4) trajectory snapshots were extracted every 200 ps. Chains A, B, E and G

of the simulated systems of InhA bound to 5’-methyl-PT70 and 5’-chloro-PT70 are

hereinafter referred to as monomers M1 to M4 and C1 to C4, respectively.

4.2 Results

4.2.1 The Ile202-Val203-Met103 subpocket

As illustrated in Figures 4.1a and b, the EI* conformation of slow-onset inhibition of

InhA exhibits a small subpocket between Ile202 and Val203, limited in size by Met103.

The docking of two PT70-derivatives shows that small substituents in 5’-position of

the B-ring can occupy this space (Figure 4.1c and d). The 5’-substituent, thus, fills the

subpocket between Ile202, Val203 and Met103. As a result, the energy barrier from the

EI* state towards dissociation of the ligand, which includes a twist of helix α6 with Ile202

and Val203 shifting over the B-ring towards the hydrophobic pocket (cf. Chapters 3 and

6), is assumed to be elevated.

To quantify the occupation of this subpocket, distances were measured between the

5’-substituents of the ligands and the Cβ atoms of Ile202 and Val203, respectively (Ta-

ble 4.2, Figures 4.2 and 4.3). The M -monomers mostly exhibit one distinct peak with

medoid distances of 5.53 Å and 5.41 Å, respectively. Compared to the initial distances

of the docking poses (Table 4.3), the distance to Ile202 generally increases during the

MD simulation, whereas the distance to Val203 decreases or stays similar (monomer
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Figure 4.1 Binding pocket of InhA with PT70 and 5’-substituted deriva-
tives. (a) Chain A of crystal structure 2X23 displayed without ligand. (b) Chain A of
crystal structure 2X23 with bound ligand. (c) Top docking pose of 5’-methyl-PT70 in
chain A of 2X23. (d) Top docking pose of 5’-chloro-PT70 in chain A of 2X23. Pocket
residues are depicted in gray. Met103, limiting the size of potential 5’-substituents, is
illustrated in green. Ligands are shown in shades of blue and the cofactor is shown
in magenta. Transparent atom surfaces highlight the available space between Ile202,
Val203 and Met103 in (a) and (b), which is occupied by the 5’-methyl and 5’-chloro-
substituent in (c) and (d), respectively.

M3). Thus, the distances are equalizing over 50 ns sampling time, suggesting that the

substituent is embedding evenly in between Ile202 and Val203. The medoid distances

measured in the C-monomers behave similarly, although the fluctuations of the distance

to Ile202 are higher (cf. Figure 4.3). Monomer 2 of the 5’-chloro-PT70-bound system

shows two distinct peaks, which stem from a conformational change of the binding pocket

(discussed below).

Whereas Ile202 and Val203 exhibit stable and equal distances to the 5’-substituent (ex-

cept in monomer C2), Met103 shows more conformational flexibility. Thus, a 2D-RMSD

analysis for the heavy atoms of Met103 was performed (Figure 4.4). After different sim-

ulation time, the residue adopts a new conformation in each monomer (indicated by
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Figure 4.2 Density plots of distances in Å between the 5’-substituents of 5’-
methyl-PT70 and the Cβ atoms of Ile202 and Val203, respectively, for four
monomers based on 500 snapshots each. Starting structure values are highlighted
as green dots.

Table 4.2 Medoid distances of 5’-substituent to Cβ atoms of Val202 and
Ile203. Medoids are determined using a PAM clustering (cf. Chapter 3.2). Two-
dimensional medoids were chosen over one-dimensional medians to only consider actu-
ally occurring combinations of the two distances.

Distance of 5’-methyl Distance of 5’-chloro
to Ile202 [Å] to Val203 [Å] to Ile202 [Å] to Val203 [Å]

Monomer 1 5.51 5.29 4.89 5.25
Monomer 2 5.62 5.20 5.58 6.83
Monomer 3 5.34 5.78 5.13 5.42
Monomer 4 5.82 5.31 5.83 5.03

Combined 5.53 5.41 5.40 5.40
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Figure 4.3 Density plots of distances in Å between the 5’-substituents of
5’-chloro-PT70 and the Cβ atoms of Ile202 and Val203, respectively, for four
monomers based on 500 snapshots each. Starting structure values are highlighted
as green dots.

Table 4.3 Distances of 5’-substituent to Cβ atoms of Val202 and Ile203 in
docking poses.

Distance of 5’-methyl Distance of 5’-chloro
to Ile202 [Å] to Val203 [Å] to Ile202 [Å] to Val203 [Å]

Monomer 1 4.8 5.9 4.5 6.0
Monomer 2 4.7 5.8 4.7 5.8
Monomer 3 4.9 5.7 4.6 5.8
Monomer 4 4.6 5.9 4.3 5.9
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bordeaux rectangles in Figure 4.4). A hierarchical clustering with complete linkage

was performed on the 2D-RMSD data, revealing three major conformational clusters of

Met103 at a cutoff of 4 Å (Figure 4.5). The first cluster with a frequency of 35.16%

represents the crystal structure conformation (Figure 4.5, pale green structure), whereas

the smallest cluster (5.18% frequency, white structure in Figure 4.5) shows a side chain

flip of Met103 with slightly altered position. The largest cluster (59.66% frequency, beige

structure in Figure 4.5) shows a motion of Met103 towards the InhA major portal. After

the conformational change, Met103 is no longer facing the edge of the ligand B-ring, but

rather occupies the space between Ile202 and the ligand, thus increasing the distance

of Ile202/Val203 and the 5’-substituent (Figure 4.6). The conformation of Met103 is

seemingly influenced by the presence of a 5’-substituent. In the simulations of the InhA-

PT70 complexes (cf. Chapter 3), Met103 also shows a considerable flexibility (average

RMSD of 1.76 Å ± 0.38 Å), which is, however, compensated by the available space due to

the lack of a 5’-substituent of the ligand. In the case of the 5’-substituted diphenylethers,

the flexible Met103 side chain is seemingly not well stabilized by the close contact to

the 5’-substituent, but rather forced to adopt the aforementioned conformations due to

potential clashes with the ligand.

4.2.2 Backbone and SBL stability

With respect to chain A of the 2X23 crystal structure, the spatial atomic displacements

over time were quantified by RMSD measurements to assess the overall stability of the

systems. In general, the C-monomers show very stable protein backbones with median

RMSD values varying from 1.00 Å to 1.09 Å. The methyl-substituted system is some-

what less stable with median backbone RMSDs between 1.14 Å and 1.39 Å (Figure 4.7).

Furthermore, the methyl-substituted monomers 2 to 4 display much higher fluctuations,

represented by the high inter-quartile ranges (IQRs) of the respective RMSD distribu-

tions (cf. box width in Figure 4.7).

The same trend is visible in the RMSD distributions of the substrate binding loop (Fig-

ure 4.8). Obviously, the majority of the protein mobility is defined by the SBL motion,

as already described in Chapter 3. Whereas the methyl-substitution is apparently not

suited for SBL stabilization (median RMSD values from 2.12 Å to 3.71 Å), the 5’-chloro-

substituted systems exhibit a stable SBL with medians below 1.86 Å. These results are

comparable to the values of the PT70 simulation (cf. Chapter 3). Up to 50 ns simulation

time, the SBL of the PT70-bound monomers exhibit median RMSD values of 2.50 Å,

1.67 Å, 1.78 Å and 1.65 Å, respectively.
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Figure 4.4 Heavy atom 2D-RMSD plot of Met103 of ternary InhA-NAD+-
5’-methyl-PT70 and InhA-NAD+-5’-chloro-PT70 in their tetrameric forms
in Å over 50 ns. Single monomers are framed by thin black lines. Thus, each
small box represents the trajectory of a single chain over 50 ns sampling time. Large
black rectangles delimit the tetrameric systems. Small bordeaux rectangles indicate a
common conformation of Met103 at the end of each simulation.

4.2.3 Binding pocket stability and conformational family assignment

With one exception, the binding pocket conformation behaves very stably through-

out the 50 ns simulation with median heavy atom RMSD values between 1.01 Å and

1.40 Å (Figure 4.9). Excluding monomer C2, conformational Family 1 (2X23 crystal

structure conformation) is, hence, never left. Monomer C2 changes its binding pocket

conformation after about 26 ns. By visual inspection of the trajectory and RMSD cal-

culations with respect to the Family medoid structures (cf. Chapter 3), the alternative
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Figure 4.5 Medoid conformations of hierarchical clustering of Met103 2D-
RMSD data. The medoid snapshot of cluster 1 is illustrated in pale green, representing
the crystal structure conformation. Conformational cluster 2 is depicted in beige. The
minor conformational cluster 3 is shown in white.

Figure 4.6 Medoid conformations of Met103 clusters 1 and 2. The medoid
snapshot of cluster 1 is illustrated in pale green (a). Conformational cluster 2 is depicted
in beige (b). Van-der-Waals radii are depicted as spheres.

binding pocket conformation in this monomer could be identified as a Family 3 confor-

mation (Figure 4.10a and Table 4.4).

The atomic distances between Met103 and Ile202 were investigated over time (Fig-

ure 4.11). Interestingly, monomer C2 shows the lowest median distances between these

residues. Moreover, the system exhibits very close contacts of Met103 and Ile202 imme-

diately before the conformational transition to Family 3 occurs (emphasized by black

circles in Figure 4.11). After the transition, Met103 occupies space close to the previous

area of Ile202 (Figure 4.10b). This suggests that close contact between Met103 and
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Figure 4.7 Backbone RMSD of single InhA monomers bound to 5’-
substituted PT70-derivatives in Å. The RMSD values are illustrated over time
(top) and as collective distributions, depicted as boxplots (bottom).

Table 4.4 RMSD of InhA-NAD+-5’-chloro-PT70 binding pocket of
monomer 2 at 0 ns and 50 ns compared to selected conformational fam-
ily medoids (cf. Chapter 3).

pocket RMSD at 0 ns pocket RMSD at 50 ns

Family 1 medoid 0.88 2.82

cluster 4 medoid (Family 3) 3.28 2.09
cluster 5 medoid (Family 3) 3.29 1.80
cluster 6 medoid (Family 3) 2.52 1.48

Family 3 medoid 2.93 1.50

Ile202, initiated by contacts of Met103 with the 5’-substitution of the ligand, may lead

to the conformational transition of the binding pocket.

Interestingly, the SBL of monomer C2 does not exhibit higher fluctuations after the

appearance of Family 3 conformations of the binding pocket (cf. Figure 4.8). This

possibly stems from the hydrophobic interaction between Met103 and Ile202 after the

conformational transition, stabilizing helix α6 of the SBL (cf. beige structure in Fig-

ure 4.10b). This is underlined by the observation that the adopted conformation of

Ile202 and Met103 is very stable throughout the remaining sampling time of the MD
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Figure 4.8 SBL backbone RMSD of single InhA monomers bound to 5’-
substituted PT70-derivatives in Å. The RMSD values are illustrated over time
(top) and as collective distributions, depicted as boxplots (bottom).

simulation (Figure 4.12), suggesting that the new conformation might include a new

mechanism of SBL stabilization via an interaction of helix α6 with Met103. Thus, a

conformational family assignment solely based on the previously considered six pocket

residues might not be sufficient in the case of the 2’,5’-disubstituted diphenylethers and

neighboring residues should be included as well. Accordingly, the observed conformation

is hereinafter termed Family 3*.

4.2.4 Ligand stability

In both systems, the ligand itself shows a very high stability, underlining the validity of

the used docking poses (Figure 4.13). With median heavy atom RMSD values in the

range of 0.98 Å and 1.15 Å the ligands do not exhibit major conformational changes

throughout the observed sampling time.
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Figure 4.9 Heavy atom RMSD of single InhA binding pockets bound to
5’-substituted PT70-derivatives in Å. The RMSD values are illustrated over time
(top) and as collective distributions, depicted as boxplots (bottom).

Figure 4.10 Snapshots of InhA-NAD+-5’-chloro-PT70 monomer 2 at the
beginning of the simulation (0 ns, green) and after 50 ns of simulation (beige). (a)
The arrow indicates a Family 3 transition with a shift of Ile202 and Val203 towards the
inside of the binding pocket. (b) Met103 is illustrated. After the transition, Met103 is
located close to the previous area of Ile202.
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Figure 4.11 Distances between Met103-Cε and Ile202-Cβ in InhA systems
bound to 5’-substituted PT70-derivatives in Å. The distances are illustrated
over time (top) and as collective distributions, depicted as boxplots (bottom). The
circled area emphasizes close contacts of Met103 and Ile202 in monomer C2, leading to
a conformational transition.

Figure 4.12 2D-RMSD plot of heavy atoms of residues Ile202 and Met103
of monomer chloro 2 in Å. The conformational change of these residues after ap-
proximately 26 ns is stable throughout the remaining simulation time.
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Figure 4.13 Heavy atom ligand RMSD of 5’-substituted PT70-derivatives
in Å. The RMSD values are illustrated over time (top) and as collective distributions,
depicted as boxplots (bottom).

4.2.5 Analysis of Met161

In the course of the analysis, the side chain of residue Met161 was observed to interact

weakly with the inhibitor PT70 in the crystal structure 2X23, an interaction which

has not yet been discussed in the literature for diphenylethers in InhA. Methionine-aryl

interactions are important and frequently occurring motifs in crystal structures [158–

160]. According to Bissantz et al. [158], the C–S–C thioether preferentially binds to the

aromatic system in the aryl ring plane, however, there are also complexes described, in

which the C–S–C fragment binds to adenine (e.g., as part of cofactors) in a coplanar

fashion at a distance of about 4 Å. In a recent survey by Beno and colleagues [160], the

authors state that preference regarding the interaction of the sulfur with the π-face or

π-edge cannot be clearly derived by means of a crystallographic database analysis. High-

level quantum mechanical (QM) calculations, on the other hand, suggest preferential

binding of dimethyl sulfide (DMS, mimicking the methionine side chain) to the π-face,

rather than the edge [160].

To quantify the stability of the interaction between the sulfur and the 2’,5’-disubstituted
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Figure 4.14 InhA-NAD+-5’-chloro-PT70 monomer 1 after 50 ns of simula-
tion. Selected contacts between Met161 side chain atoms and B-ring carbon atoms are
depicted as yellow dotted lines, with distances labeled in Å underneath.

diphenylether B-ring (Figure 4.14) over the MD simulation time, the distance between its

4’-carbon atom and the Met161 sulfur atom was measured (Figure 4.15). Furthermore,

the absolute deviation and flexibility of Met161 over the entire trajectory was assessed

by means of heavy atom RMSD of the residue (Figure 4.16). Median distances in the

range of 4.29 Å and 4.74 Å and very low median RMSD values between 0.66 Å and

0.92 Å suggest that an aryl-methionine interaction is maintained stably in all systems.

4.3 Discussion

In Chapter 3, the importance of locking the system in the assumed EI* state of ligand

association (2X23 crystal structure conformation) was emphasized. The most frequent

binding pocket conformations of InhA bound to diphenylether inhibitors–besides the

EI* state–were the conformational Families 2 and 3. These are primarily defined by a

shift of Ile202 and Val203 towards the inside of the binding pocket, leading to Ile202

occupying the previous position of Val203. This conformation with an open helix α6 is

considered the EI state of drug-target complex formation (cf. Chapters 3 and 6). Besides

occupation of the hydrophobic pocket of InhA and an anchor-substituent in 2’-position

of the diphenylether B-ring, an additional substitution of the 5’-position was suggested

as a possible ligand modification to increase the energy barrier between EI and EI* and,

thus, the drug-target residence time (cf. Chapter 3).
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Figure 4.15 Distances between Met161-sulfur and ligand-4’-carbon atom in
InhA systems bound to 5’-substituted PT70-derivatives in Å. The distances
are illustrated over time (top) and as collective distributions, depicted as boxplots
(bottom).

Diphenylethers with a single meta-substitution at the B-ring have been evaluated in

the literature [17, 161]. In some cases, the meta-substitution (PT11, nitro; PT20, ox-

amic acid; and PT29, isoxazole-5-carboxamide) resulted in improved affinity, compared

to the respective ortho- or para-substituted counterparts (PT10/PT12, PT19/PT21

and PT28). In other cases, meta-substitutions (PT14, amino; PT17, acetamide and

PT29) resulted in a significant decrease in affinity, compared to their respective coun-

terparts (PT13/PT15, PT16/PT18 and PT30). However, these inhibitors are all

mono-substituted at the B-ring. The effect of a 2’,5’-disubstituted B-ring has not yet

been investigated experimentally.

Docking of the 5’-substituted PT70 derivatives yielded valid poses with very low RMS

deviations from the PT70 crystal poses. Although the size of a substituent in 5’-position

of the B-ring is confined by the proximity of the Met103 side chain, docking confirmed

that sufficient space is available for small substituents (cf. Chapter 3). These substituents

are assumed to embed between Ile202 and Val203 to lock this part of the SBL in the

crystal structure conformation, i.e. in the EI* state. Whereas the methyl-group forms

van-der-Waals contacts with these residues, the chlorine-substituent additionally has a
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Figure 4.16 Heavy atom RMSD of Met161 in InhA systems bound to 5’-
substituted PT70-derivatives in Å. The RMSD values are illustrated over time
(top) and as collective distributions, depicted as boxplots (bottom).

−I-effect on the aromatic B-ring (exceeding its +M -effect), which might further stabilize

the not yet described weak electrostatic interaction between the aromatic ring and the

sulfur of Met161, detected in the course of the analysis (cf. Figure 4.14).

In general, the 50 ns MD simulations of 5’-methyl-PT70 and 5’-chloro-PT70 showed

reasonable stability of the InhA binding pocket, substrate binding loop and ligands.

In particular, the chlorine-substitution resulted in highly stable SBLs (cf. Figure 4.8),

although it should be noted that the sampling time of 50 ns reached in this study is only

a third of the previously simulated InhA systems (150 ns per monomer of Chapter 3).

Interestingly, the conformational transition of the binding pocket to Family 3* could not

be prevented in one of the four 5’-chloro-PT70-bound monomers, although the SBL is

stable over the entire simulation time. The most likely reason for this transition is a close

contact of Met103 to the 5’-substituent of the ligand and Ile202, eventually resulting in

displacement of Ile202 towards the inside of the binding pocket and Met103 occupying

space close to the former position of the Ile202 side chain. This behavior might suggest

that the evaluated 5’-substituted ligands are not sufficiently well able to lock Met103 in

the crystal structure conformation, as also shown in Figure 4.4. On the other hand, the
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new conformation with hydrophobic interactions between Met103 and Ile202 also led to

a very stable SBL, which might suggest a new and stable alternative pocket and SBL

conformation based on contributions of Met103.

The methyl-substitution resulted in interesting dynamic behavior. Whereas the binding

pocket does not leave the Family 1 conformation, i.e., is stable over 50 ns of simulation,

the SBLs of the M -monomers show much higher variances and higher absolute RMSD

medians (cf. Figure 4.8). Based on the simulations of experimentally characterized

diphenylethers (cf. Chapter 3), a Family 1 conformation of the InhA binding pocket

(defined by six pocket residues) is a prerequisite for SBL stabilization. Regarding the

hypothetical 2’,5’-disubstituted diphenylethers, previously undetected additional effects

on SBL stability can be observed. By extending the considered pocket residues by

Met103, conformational Family 3* was described, which shows a very stable SBL, as

suggested by the SBL and pocket dynamics of monomer C2. Furthermore, it is notable

that 5’-methyl-PT70 leads to large fluctuations of the SBL, despite a stable Family 1

conformation of the pocket. This suggests that a Family 1 conformation alone is not

a sufficient structural characteristic for ordering of the SBL in the case of the 2’,5’-

disubstituted diphenylethers, as shown by the dynamic behavior of the SBL and pocket

of the M -monomers. An RMSD analysis of separate parts of the ligands shows that

the M -monomers exhibit significantly more flexible hexyl chains than the C-monomers

(p � 0.001, Mann-Whitney-U test), whereas the remaining diphenylether systems do

not behave differently (Figure 4.17; p = 0.3207, Mann-Whitney-U test). As described

in Chapter 3, a significant difference in the mobility of the hexyl residue could also be

observed between the slow-onset inhibitor PT70 and the rapid reversible ligand 6PP

(cf. Figure 3.16). This observation suggests that the methyl substitution might, thus,

translate into an increased flexibility of the hexyl residue and hamper the SBL stability.

In the case of monomers M3 and M4, the SBLs show increasing deviations from the

starting conformation, as represented by the RMSD evolution over time (cf. Figure 4.8).

Interestingly, both loops show a steep rise in RMSD after approximately 20 ns of sim-

ulation, which is preceded by a close contact between Gln214 of the SBL and Pro156

of the protein core (Figure 4.18). The motion of the Gln214 side chain towards Pro156

seemingly disrupts the order of helix α7 of the SBL, which is not restored in the observed

simulation time (Figure 4.19).

The analysis of Met161 suggests a stable aryl-methionine interaction between the ligand

B-ring and Met161, with a median distance range of 4.29 Å to 4.74 Å (cf. Figures 4.15,

4.16 and 4.14). So far, this interaction has not yet been discussed in the literature for

diphenylethers in InhA.
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Figure 4.17 Collective heavy-atom RMSD of separate ligand parts of M and
C monomers over 50 ns in Å. RMSD values of each ligand were measured separately
with respect to each starting structure. A significant difference between the RMSD of
the hexyl chains can be observed between the M and the C monomers (p � 0.001,
Mann-Whitney-U test).

Figure 4.18 SBL backbone RMSD (black) and distance (red) between the
Gln214-CD atom and the Pro156-O atom of monomers M3 and M4 in Å. A
moving average with a window size of 10 frames was used.
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Figure 4.19 Trajectory snapshots of monomer M4. Residues Pro156 and
Gln214 are represented in orange. Pocket residues are depicted in green, the ligand
and the cofactor are illustrated in slate blue and magenta, respectively. A dashed yel-
low line indicates a close contact of 2.8 Å between Pro156 and Gln214 at 25 ns of
simulation time, followed by a disordering of helix α7.
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4.4 Conclusion

Docking and MD simulations suggest that a small substituent in 5’-position of the

diphenylether B-ring generally leads to stable conformational dynamics of the protein-

ligand complexes. Of the two exemplary systems, the chloro-substituted PT70 showed

a higher stabilization of the backbone, the SBL and the Met161 side chain. Also the

binding pocket was well stabilized in this system, with the exception of monomer 2,

where a Family 3* conformation was adopted after half of the sampling time. This

conformational family includes an alternative conformation of Met103 interacting with

Ile202 and stabilizing the SBL.

Although the occurrence of conformational Family 3* had no negative impact on the

stability of the SBL over the entire duration of the simulation after the conformational

change (∼24 ns), it also highlights a possible problem of 2’,5’-disubstituted diphenylethers.

While docking of the ligands resulted in valid poses and most regions of the protein be-

have stably in MD simulations, Met103 is highly flexible in each monomer and not well

stabilized by the 5’-substituent of the ligand. Thus, a possible approach to further im-

prove the dynamic effects of these ligands on InhA might also have to include better

stabilization of Met103 in the crystal structure conformation.

Whereas the M -monomers show a stable binding pocket, the SBL shows large fluctua-

tions. Although a Family 1 conformation is necessary for SBL stabilization (cf. Chap-

ter 3), analysis of the M -monomers suggests that a Family 1 pocket conformation alone

is apparently not a sufficient structural feature for proper stabilization of the SBL in

case of the hypothetical 2’,5’-disubstituted diphenylethers. The origin of the difference

in SBL stabilization between the M and C-monomers might stem from a different sta-

bilization of the flexible hexyl residue of the ligands in the hydrophobic pocket and an

electrostatic interaction between the Pro156 backbone and Gln214.



Chapter 5

An accurate and quantitative prediction model

for drug-target residence time of Staphylococcus

aureus FabI inhibitors based on Steered

Molecular Dynamics

To rationally modify the drug-target residence time of a protein-ligand complex, con-

sideration of the energy barriers and transition states of ligand dissociation is imper-

ative [26]. However, common computational methods for the structural and energetic

characterization of protein-ligand complexes, such as scoring functions, LIE or FEP, are

not able to assess residence times, since they only consider end-points of ligand binding.

Hence, the non-equilibrium MD variant Steered Molecular Dynamics (SMD) has gained

increasing attention for the investigation of ligand kinetics (cf. Chapter 2.3) [38, 39, 162].

Free energy profiles can be calculated from SMD simulations with the ligand pulling

direction as the reaction coordinate. As opposed to Umbrella Sampling (US) or Meta-

dynamics, SMD simulations are relatively straightforward to set up.

In the following chapter, SMD simulations are used to reconstruct multiple ligand dissoci-

ation events for protein-ligand complexes, starting from crystal structure conformations,

i.e., presumed EI* states, to obtain the corresponding free energy profiles along the di-

rection of extraction (Figure 5.1). This study is carried out for an experimentally well

characterized series of diphenylether inhibitors (cf. Figure 2.4) bound to the enoyl-ACP

reductase FabI of Staphylococcus aureus (cf. Figure 2.2).

5.1 Protein and ligand preparation

The available crystal structures of saFabI bound to diphenylethers with experimentally

measured residence times [30, 58] are summarized in Table 5.1. Chain A was extracted

from each of the 11 crystal structures, including all crystallized water molecules, as well

as the ligand and the cofactor. Hydrogen atoms were added to ligands and cofactors

with the Protonate3D tool implemented in MOE [163]. The Amber12 [164] module

75
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Figure 5.1 Two-step mechanism of drug-target complex formation. Equi-
librium of inhibitor binding via an induced-fit two-step mechanism represented as
schematic free-energy profile for this reaction. E denotes the enzyme, I the inhibitor,
EI the initial enzyme-inhibitor complex, and EI* the final enzyme-inhibitor complex.
A high energy barrier (∆G◦‡) corresponds to a low reaction rate constant k. The
red dashed line schematically represents the induced extraction of the ligand along a
putative reaction coordinate using SMD simulations.

tleap was used for assigning the parameters of the ff99SB force field. His253 was pro-

tonated in δ-position and His247 was doubly protonated to maintain a hydrogen bond

network to surrounding residues. RESP charges [110] were calculated for all ligands and

cofactors based on HF/6-31G* electrostatic potentials obtained with Gaussian 09 [115].

With parmchk [152] unavailable force field parameters were calculated according to the

General Amber Force Field (GAFF) [114]. Atom and bond types of the ligands were

assigned by antechamber [152]. All diphenylethers were parameterized in their depro-

tonated form at the A-ring, resulting in a negative charge [30]. A short energy mini-

mization of 200 cycles was performed on the entire complex using a generalized Born

implicit solvent model [153, 154] with the Amber module sander [164]. Afterwards, the

system was solvated with tleap in a TIP3P water box [112] with a margin of 10 Å and

Na+ counterions.

For all subsequent equilibration and production runs, the MD package NAMD 2.9 [101,

156] was employed with the previously assigned Amber force field parameters [99]. Af-

ter 10,000 steps of energy minimization, each system was heated from 100 K to 300 K

in 500 ps in a constant-volume box, while harmonic constraints were applied to all

non-solvent atoms with a force constant of 0.5 kcal/(mol Å2). Simultaneously, the con-

straints were gradually released during the heating period. Afterwards, the systems were

allowed to evolve freely for another 500 ps, resulting in 1 ns of equilibration. The systems

were treated with periodic boundary conditions. A van der Waals interaction cutoff of

12 Å was used, as well as the particle mesh Ewald methodology (PME) for electrostatic
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Table 5.1 Used crystal structures and corresponding diphenylether ligands.
The diphenylether scaffold is shown in Figure 2.4. Kinetic data are taken from [30].
For linear regression model generation (cf. Chapter 5.6) the average of the available tR
values of a given complex was used. Complexes are sorted by increasing residence time
tR.

PDB code ligand R1 R2 R3 Ki [nM] tR [min]

4BNK PT55 F H H 1.42 2.4 - 6.2
4BNJ PT53 CH3 H H 0.38 13.2 - 17.3
4ALJ PT52 Cl H H 0.12 25.8 - 28.2 - 35.3
4BNI PT13 (CH2)5CH3 H NH2 0.12 68.5
4BNL PT68 CH2CH=CH2 H H 0.11 68.7
4ALK PT01 CH2CH3 H H 0.09 63.8 - 83.3
4BNF PT02 (CH2)2CH3 H H 0.07 60.9 - 105.3
4ALI TCL Cl Cl Cl 0.05 139.5
4BNG PT03 (CH2)4CH3 H H 0.04 187.5 - 300.0
4BNH PT04 (CH2)5CH3 H H 0.01 461.5
4BNN PT119 (CH2)5CH3 H CN 0.01 750

interactions [108]. Constant temperature was achieved by the use of Langevin dynamics

with a damping coefficient of 5 ps−1. A 2 fs time step was used for all simulations.

SHAKE constraints were applied on covalent bonds to hydrogen atoms. For all subse-

quent simulations the MD conditions were changed from a constant-volume (NV T ) to a

constant-pressure ensemble (NPT ). Constant pressure was assured by the Nosé-Hoover

Langevin piston pressure control with a barostat oscillation time of 100 fs and a barostat

damping time of 50 fs [106, 107]. Trajectory snapshots were written at an interval of

1 ps.

5.2 Determining the ligand egress route

The complex 4BNF with the medium sized ligand PT02 was chosen for a Random Accel-

erated Molecular Dynamics (RAMD) experiment to determine potential exit pathways

using the RAMD tcl script of NAMD [124, 125]. In this setup, a constant acceleration

of 0.2 kcal/(mol Å amu) was applied to the ligand PT02, starting after 5 ns of unbiased

MD simulation. The direction of the acceleration was mutated every 100 steps, unless

the ligand showed an RMSD larger than 1 Å from the previous position. The simulation

was terminated if the ligand had traveled more than 30 Å from its starting coordinates.

Trajectory snapshots were written every 0.2 ps.

Two ligand egress routes could be detected. The exit event in RAMD simulation 1 oc-

curred via the major portal of the FabI binding pocket, whereas exit pathway 2 emerged
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in a second RAMD simulation through the minor portal (cf. Figure 2.3). The exit path-

way via the major portal was further used, since the natural substrates of saFabI are

assumed to bind via this route [59]. Accordingly, the vector of the detected exit pathway

was applied on all complexes for SMD simulations. Due to the accuracy of the resulting

regression model (cf. Chapter 5.6) the chosen exit pathway is assumed to be valid. An

extensive RAMD approach with multiple replica simulations [162], however, might allow

to further optimize the reaction coordinate for SMD simulations.

5.3 Steered Molecular Dynamics simulations

The last snapshot of the used RAMD simulation (i.e., protein with fully dissociated

ligand) was aligned to each of the respective end-points of the 1 ns equilibrations to derive

the pulling direction of the ligands for constant-velocity SMD simulations (cvSMD).

Force profiles for the induced withdrawal of each ligand were obtained while applying

the same pulling direction to all prepared complexes. All ligands were connected to

the SMD spring with a large force constant of 10,000 pN/Å to fulfill a requirement of

the stiff-spring approximation [35]. The pulling speed was set to a constant 10 Å/ns.

Thus, by using 2 ns simulations, a pulling distance of 20 Å could be achieved. To avoid

translation of the protein itself, mild harmonic constraints with a force constant of

1 kcal/(mol Å2) were assigned to all Cα-atoms. Each of the 11 complexes was subjected

to SMD simulations in 30 independent replicas, resulting in 660 ns of SMD simulation

data. For structural analyses, snapshots at intervals of 10 ps were considered, resulting

in 200 frames per replica simulation. The force on the SMD spring was measured every

10 time steps (20 fs). See Chapter 5.9 for a discussion of the selected SMD parameters.

5.4 Structural dynamics of the FabI binding pocket

According to Schiebel et al. [58], the following residues interact with the diphenylether

TCL and can thus be considered the core binding pocket: Ala95, Phe96, Leu102,

Tyr147, Met160, Ser197, Ala198, Val201, Phe204, Ile207 (hydrophobic contacts), as

well as Ala97, Tyr157 and the cofactor NADP+ (hydrogen bonds) (Figure 2.3). Par-

ticularly important is here a conserved hydrogen bond between the hydroxyl moiety of

Tyr157 and the phenolic oxygen of the diphenylether scaffold, which is assumed to bind

in its deprotonated form to mimic the enolate intermediate of substrate turnover [30].

Hence, all ligands were parameterized accordingly with a negative charge.

During the second phase of equilibration (500 ps of unconstrained simulation after 500 ps

of constrained simulation), the FabI backbone as well as the pocket residues are very
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Figure 5.2 RMSD of complexes during minimization and 1 ns of equilibra-
tion. (a) Protein backbone atoms. (b) Binding pocket heavy atoms.

stable with average RMSD values ranging from 0.42 Å to 0.54 Å and 0.54 Å to 0.74 Å,

respectively (Figure 5.2).

During the SMD experiments, the protein backbone and pocket heavy atoms gen-

erally behave very stably with RMSD values in the range of 0.40 Å ± 0.03 Å and

0.42 Å ± 0.04 Å, as well as 0.65 Å ± 0.15 Å and 0.93 Å ± 0.22 Å, respectively (average

over time and 30 replicas, each). Some of the pocket residues show high deviations from

the crystal structure conformation: (i) regarding side chain movement, residue Phe96

displays an elevated average RMSD (Figure 5.3a). Throughout all replicas of all com-

plexes, Phe96 seems to have a gate keeper function. Upon dissociation, the passing

ligand displaces the residue, thus opening the major portal. Also Phe204 and Ile207 in

helix α7 of the SBL exhibit large movements, which can be explained by the increase

in available space after the ligand has left the binding pocket. Particularly ligands with

large substituents in R1-position occupying the hydrophobic pocket of FabI are affected.

Furthermore, Ser197 shows an elevated average RMSD, which, however, is also due to

backbone movements. As opposed to the remaining complexes, residue Leu102 only

shows high deviations in the complex 4ALI. This behavior most probably stems from

the different crystal structure conformation in this region, compared to the otherwise

conformationally very similar remaining complexes (Figure 5.4). (ii) Regarding pure

backbone movements of the pocket residues, it is notable that the residues of the sub-

strate binding loop (Ser197, Ala198, Val201, Phe204, Ile207) generally show the highest

average deviations from the crystal structure conformations (Figure 5.3b), particularly

the pocket residues of helix η6 of the SBL (Ser197 and Ala198). Hence, the structural
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Figure 5.3 Heatmap of (a) average heavy atom RMSD and (b) of average
backbone RMSD of binding pocket residues over 30 SMD replicas of all
complexes. The color-scale indicates the RMSD value.

analysis of the SMD simulations reveals that the major gate keepers of ligand unbind-

ing through the chosen exit pathway are Phe96, accompanied by the residues of the

ascending branch of the SBL, i.e., helix η6 (cf. Figure 2.3).

It should be noted that the structural dynamics of the SMD simulations are influenced

by the harmonic constraints applied on the Cα atoms of the protein backbone, avoiding

translation of the protein-ligand complex, but also keeping the protein backbone con-

formation close to the starting structure. Nonetheless, the described residues open the

major portal by displacing the Phe96 side chain and helix η6 of the SBL during ligand

dissociation. Conversely, the SBL and a second SBL (residues 94–108, i.e., including

Phe96) are assumed to show concerted closure upon inhibitor binding [58]. Also, in

the homologous enzyme M. tuberculosis InhA, increased distance between helix α6 and

Phe97 (Phe96 in saFabI) is assumed to be a conformational characteristic of the EI

state of slow-onset inhibition [40], which could also be observed in unguided classical

MD simulations (cf. Chapter 3, Figure 3.17). These observations provide evidence for

the validity of the chosen dissociation pathway.

Since it contains the ligand of the examined series with the longest tR (PT119), the

complex 4BNN was examined exemplarily in detail. Figure 5.5 represents the RMSD

evolution of the aforementioned key residues during the egress of PT119 (Phe96, Ser197

and Ala198). Phe96 exhibits high deviation from the starting structure during the SMDs.

In several trajectories the RMSD rises above 2.0 Å at around 0.5 ns of simulation. The

backbone atoms of Ser197 and Ala198 behave in a similar way and reach their RMSD
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Figure 5.4 Binding pocket of aligned monomers in crystal structure confor-
mation. Pocket residues are represented in green, the substrate binding loop is shown
in yellow. The complex 4ALI, deviating in the region around pocket residue L102, is
illustrated in light brown.

peak at around 0.4 ns. These peaks and the associated conformational changes of the

residues are accompanied by a specific behavior of the ligand during extraction: after

the strongest interactions (i.e., the hydrogen bonds of the phenolate to Tyr157 and the

ribose-hydroxyl of NADP+; cf. Figure 2.3) are broken at around 0.4 ns of simulation, the

ligand travels further outside the binding pocket, displacing Phe96, Ser197 and Ala198

along the way. As soon as the scaffold leaves the core binding pocket at around 0.5 ns,

the residues can relax to their original conformation (cf. Figure 5.5).

5.5 Free energy profiles

Using SMD simulations (protocol summarized in Appendix A, for details see Chap-

ters 2.3.1.5 and 5.1) it was possible to determine free energy profiles for each complex.

Since there are contradictory results in the literature on which free energy estimator

is the most robust for limited sampling [36, 165], the exponential average as well as

cumulant expansions up to the second order of the Jarzynski equality were evaluated

(Figure 5.6). These quantities are hereinafter referred to as ∆Ge, ∆G1 and ∆G2, re-

spectively. For free energy reconstruction the ensemble average of the performed work

was calculated using the inner 50% of all available data points of 〈W0→λ〉 (i.e., the

performed work depending on the position of the moving constraint λt). Hence, the
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Figure 5.5 (a) RMSD of Phe96 heavy atoms in 30 SMD simulations of
4BNN. (b) RMSD of Ser197 and Ala198 backbone atoms in 30 SMD simu-
lations of 4BNN. A moving average with a window of 20 ps was used.

ensemble average 〈 · 〉 was trimmed by 25% on both sides and outlying values of 〈W0→λ〉
are dismissed, unless stated otherwise. The dismissal of outlying work profiles is neces-

sary due to a large variance in the work profile ensembles, which would otherwise limit

the applicability of Jarzynski’s equality (discussed in detail in Chapter 5.7) [35].

All complexes show similar trends, although the curves exhibit different slopes. Gener-

ally, the steepest ascent occurs at the beginning until around 0.5 ns, i.e., after 5 Å trav-

eled distance of the moving SMD constraint. At this point the virtual spring linking

the ligand to the moving constraint is stretched at the maximum and the core scaffold

of the ligand is forced to leave its crystal pose binding mode. From this point on the
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Figure 5.6 Calculated free energy profiles of all complexes. (a) Exponential
average ∆Ge of Jarzynski equality, (b) first cumulant expansion ∆G1 and (c) second
cumulant expansion ∆G2, respectively, over distance traveled by the moving SMD
constraint (dummy atom). Triangles illustrate the maximum free energy change for
each complex.

moving constraint drags the ligand further outside the binding pocket through the FabI

major portal, resulting in different values of free energy change along the reaction co-

ordinate for each ligand, which depends on the respective protein-ligand interactions

and the conformational changes that are induced. Of most interest is the maximum

free energy change upon induced extraction of each ligand from its pocket, since koff

mostly depends on the height of the highest free energy barrier [26]. Maximum val-

ues and standard deviations at the respective times of measurement are summarized in

Table 5.2.

For all complexes and using each Jarzynski estimator, the maximum free energy changes
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Table 5.2 Maximum free energy change of complexes and standard devi-
ations in kcal/mol. ∆Ge is the maximum free energy change reconstructed using
the exponential Jarzynski estimator, ∆G1 and ∆G2 are calculated using the first and
second order cumulant expansion, respectively. SD are the corresponding standard de-
viations. Values are reconstructed from 25% trimmed averages of work profiles. Rows
are sorted by experimental tR (cf. Table 5.1).

PDB code ligand ∆Ge ∆G1 ∆G2 SDe SD1 SD2

4BNK PT55 54.20 61.00 47.20 4.16 4.64 3.45
4BNJ PT53 64.31 68.80 58.76 3.57 3.68 3.42
4ALJ PT52 61.77 64.11 59.76 2.28 2.28 2.27
4BNI PT13 66.82 71.43 59.21 3.89 4.24 3.73
4BNL PT68 77.50 84.21 70.01 4.44 4.47 3.77
4ALK PT01 65.74 70.61 61.10 3.44 3.63 3.34
4BNF PT02 68.46 71.48 66.71 2.41 2.47 2.38
4ALI TCL 78.15 80.59 73.56 2.89 3.02 2.89
4BNG PT03 80.99 84.42 75.85 3.30 3.46 3.14
4BNH PT04 81.74 84.26 79.03 2.50 2.51 2.50
4BNN PT119 89.13 97.02 76.73 5.51 5.51 4.37

used for model building were all extracted from the last quarter of the simulations

along the reaction coordinate (i.e., >15 Å traveled distance of the moving constraint,

cf. triangles in Figure 5.6). Interestingly, earlier local free energy maxima (i.e., maxima

obtained from a reduced pulling distance with λ < 15 Å) do not correlate well with the

experimental tR (cf. Chapter 5.6), although the core scaffold of the ligand has already

left the binding pocket after around 0.5 ns (5 Å traveled distance). The different slopes

of the free energy curves of the ligands in the last quarter of the simulation time naturally

originate from different residual interactions with the protein. Seemingly, the simulation

period with 15 Å ≤ λ ≤ 20 Å is as important for accurate model building as the

initial induced removal from the core binding pocket. This might be evidence that some

ligands have long residence times not only due to a large energy barrier for initial ligand

unbinding, but also due to stronger interactions with the protein outside the core binding

pocket, diminishing the probability of complete ligand dissociation and, thus, increasing

the probability of ligand rebinding [166].

In most cases, the maximum free energy change of ligand extraction is the very last value

of the free energy profile (λ = 20 Å). The PMF profiles are, hence, continuously rising

and may not reach the maximum for λ < 20 Å. Given the chosen reaction coordinate, this

is, however, not unexpected, since a further extraction of the ligand from the protein is

generally associated with additional work (cf. continuously rising average work estimator,

Figure 5.6b). The average work curves reach plateaus towards the end of the simulation,

indicating that no further contributions from protein-ligand interactions can be expected

(cf. Figure 5.6b). Since the second order cumulant expansion subtracts the variance term
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from the contribution of work (cf. Chapter 2.3.3.2), the free energy curves of ∆G2 can

rapidly decline when the fluctuations of the work profiles become too high, which may

lead to rather artificial values of ∆G2 after the maximum value. Furthermore, the

exponential average ∆Ge is largely dominated by trajectories with small work values

due to its exponential nature [35]. Thus, a slight drop in the work profiles of low-work

trajectories may lead to a decrease of ∆Ge. For these reasons, maxima of ∆G2 and ∆Ge

can occur for values of λ < 20 Å.

It should be noted here that the SMD reaction coordinate (i.e., the pulling direction)

does not necessarily represent the natural dissociation pathway of EI* to E+I on the free

energy hypersurface (including the associated conformational changes of the enzyme),

in which the end-point E+I is energetically lower than the transition state EI‡. The

one-dimensional and potentially unnatural SMD exit pathway might, thus, lead to arti-

ficially elevated absolute values of ∆G compared to the natural energy barriers of ligand

dissociation. However, since the same reaction coordinate is applied on all complexes,

relative evaluation of ∆G is possible. The harmonic constraints on the Cα-atoms of the

protein backbone are expected to further contribute to the high absolute values of ∆G.

5.6 Linear models of residence time

In the next step, linear regression models of the maximum free energy change of a

ligand and its experimental residence time were generated. For this purpose the average

of all available tR values per complex (summarized in Table 5.1) was used to avoid

dismissal of experimental data for model generation. First, the free energy change was

calculated according to the exponential average of the Jarzynski equality ∆Ge and used

to generate a linear model to the residence time. In agreement with the equations of

Eyring’s transition state theory, the free energy change was related to ln(tR) [84, 85].

Regression analysis indicates a linearity of these two measures with an R2 of 0.8283

(Figure 5.7a), yielding a very good correlation between the drug-target residence time

and the simulated free energy change:

ln(tR[min] ·min−1) = 0.1228[mol kcal−1] ·∆Ge[kcal mol−1]− 4.5170 (5.1)

The model shows a Pearson correlation coefficient of r = 0.9101 and significant values

for slope (p = 0.000101) and intercept (p = 0.008956). The maximum Cook’s distance

of the model is 0.5163, which can be measured for the first observation (4BNK) [167].

Hence, no observation has a Cook’s distance above 1, i.e., the model is unlikely to contain

outliers [168].
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Figure 5.7 Linear models of the maximum free energy change of a ligand
upon induced extraction and ln(tR). (A) ln(tR) against ∆Ge. The standard
deviation of energy calculations is depicted as horizontal error bars. The linear model
is illustrated as a green line, accompanied by the 95% confidence interval of the model
as dashed red lines. (B) ln(tR) against ∆G1. (C) ln(tR) against ∆G2.

Moreover, the maximum free energy change based on the first and second cumulant

expansion of the Jarzynski equality, respectively, was used to generate a linear model

(Figure 5.7b and c). The ∆G1 model yields an R2 of 0.8104, which is below the model

using ∆Ge (Figure 5.7b). The combination of high residual and leverage increases the

Cook’s distance of the first observation (4BNK) to 0.5650, indicating that this model is

more influenced by a single observation than the ∆Ge model.
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The use of the second order cumulant ∆G2 outperforms both preceding models (Fig-

ure 5.7c):

ln(tR[min] ·min−1) = 0.1254[mol kcal−1] ·∆G2[kcal mol−1]− 4.2329 (5.2)

with a Pearson correlation coefficient of r = 0.9271 and significant values for slope (p =

4.02 · 10−5) and intercept (p = 0.00562). The calculated R2 of this model (0.8595) is the

highest observed. In addition, the Cook’s distance of 4BNK drops below the threshold

of 0.5 with a value of 0.4669, underlining that this model is not overly influenced by one

single observation.

Regarding single observations within the models, a few features are worth noting: the

complex 4ALI with its small ligand triclosan (TCL) bearing a chlorine in R1-position

exhibits similar maximum free energy changes ∆Ge, ∆G1 and ∆G2 as the complex 4BNI

bound to the much larger ligand PT13, which possesses a R1-hexyl-residue occupying

the hydrophobic pocket of FabI. 4ALI also shows a similar maximum free energy change

as 4BNF bound to PT02 with a propyl-residue in R1-position in all Jarzynski estimators;

the most significant difference between these ligands can be observed within the ∆Ge

and the ∆G1 model. Both examples are evidence that the presented methodology does

not simply correlate to ligand size. Although, in general, longer ligands need longer

pulling distances, and thus more work, to leave the pocket entirely, the SMD approach

in the applied force field evidently captures more sophisticated contributions to ligand

binding than mere ligand size. Furthermore, the ligands of complexes 4BNK and 4ALJ,

which differ solely in a fluorine/chlorine substitution at R1-position are recognized in the

correct order in all three calculated Jarzynski estimators, highlighting that even small

differences in the ligands can be evaluated properly with the used method.

The exponential Jarzynski expression can in general be difficult to estimate due to insuffi-

cient sampling and too high pulling velocities [35]. Indeed, the presented models suggest

that the second order cumulant expansion yields a more accurate linear model to ln(tR)

compared to the exponential average and first cumulant expansion. However, based on

Clarke’s test for non-nested model selection, none of the three models is significantly

closer to the true model and, thus, preferred over the other models (p > 0.05) [134, 169].

Furthermore, the slopes of the three models are not significantly different, based on

Chow’s test for heterogeneity in two regressions (p > 0.05 for ∆G1 or ∆G2 vs. ∆Ge;

p > 0.01 for ∆G1 vs. ∆G2) [135, 170].

The choice of the maximum ∆G of each profile for model generation over the free energy

change at the simulation end-point (∆Gλ=20Å) has no significant influence on the model

quality in the case of ∆Ge and ∆G1 (R2 of 0.8251 and 0.8101, respectively). Due to

large fluctuations in the work profiles towards the end of the simulations, the regression
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model based on the second order cumulant expansion ∆G2;λ=20Å, on the other hand,

shows a decline in R2 (0.7907) compared to the model based on the maximum ∆G2,

validating the choice of the maximum ∆G values for model generation.

5.7 Fluctuations of work values

By using all available data of 〈W0→λ〉 for PMF reconstruction, i.e., an untrimmed en-

semble average (Table 5.3), the model quality drops significantly (R2 of ∆Ge model:

0.7589; R2 of ∆G1 model: 0.8097; Figure 5.8). Particularly the model using ∆G2,

which showed the highest predictive power with a 25% trimmed ensemble average, suf-

fers a drastic decline of R2 (0.3940). The reason for this loss of predictive power is

the much higher variance of the measured work profiles of the complexes, which is di-

rectly incorporated into PMF reconstruction by the second order cumulant expansion

of Jarzynski’s equality and, thus, the corresponding maximum free energy change. The

fluctuation of work values is an indicator for the applicability of Jarzynski’s equality

and should be comparable to the temperature kbT [35]. Here, the standard deviations

using untrimmed ensemble averages lie between 2.79 and 9.53 kcal/mol (cf. Table 5.3),

which corresponds to 4.68 to 15.99 kbT . By trimming the distributions of work values,

the standard deviations can be reduced to values between 3.20 and 7.08 kbT , which is

very comparable to the values obtained by Park et al. (2003), who addressed the issue of

work value fluctuations for different pulling speeds [35]. Since the standard deviation of

the untrimmed work values is high compared to the temperature, the Jarzynski equality

might not be fully applicable for this system without robust measures of average and

variation (i.e., trimmed average and standard deviation) using the current simulation

setup. Particularly the second order cumulant expansion is affected by the high fluc-

tuations and, thus, rendered inapplicable. It can be expected that a higher number

of replica simulations would decrease the fluctuations of the work profiles within one

complex, reducing the sampling error [36]. However, enhanced sampling is primarily

hindered by limited computational power.

It is known from Jarzynski’s equality and Jensen’s inequality1 that ∆G ≤ 〈W 〉 (with

〈W 〉 = ∆G1) [36], i.e., ∆G1 must be the upper limit of the true maximum free energy

change. Moreover, the mean work estimator ∆G1 should usually not be used due to

unrobust results [165]. Nevertheless, ∆G1 yields the most accurate correlation to ln(tR)

with untrimmed work profiles in terms of R2, although the ∆G1 model is again not

significantly preferred over the ∆Ge model (p > 0.05, Clarke’s test) [134, 169]. Hence,

the untrimmed ∆Ge and ∆G1 models show a basically unchanged performance compared

1〈ex〉 ≥ e〈x〉
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Table 5.3 Maximum free energy change of complexes and standard devia-
tions in kcal/mol without trimming.

PDB code ligand ∆Ge ∆G1 ∆G2 SDe SD1 SD2

4BNK PT55 48.85 58.62 28.07 6.44 6.87 5.69
4BNJ PT53 58.49 68.07 40.01 5.80 5.82 5.76
4ALJ PT52 52.74 64.60 25.82 7.71 7.76 3.85
4BNI PT13 60.43 70.16 33.43 7.05 7.13 3.55
4BNL PT68 69.59 84.09 27.36 9.49 9.53 4.40
4ALK PT01 57.75 69.91 39.93 6.47 6.94 4.73
4BNF PT02 63.84 72.56 47.52 6.15 6.20 5.01
4ALI TCL 59.40 79.39 31.93 8.16 8.20 2.79
4BNG PT03 69.64 85.26 36.19 7.98 8.15 3.39
4BNH PT04 71.25 84.49 50.82 6.44 6.45 6.24
4BNN PT119 80.67 97.16 50.84 9.02 9.29 3.98

to the corresponding models from trimmed values, underlining the robustness of these

two free energy estimators, as opposed to ∆G2. Due to the very large fluctuations in

the untrimmed work profiles, many maxima of ∆G2 are reached early (λ values between

4 Å and 6 Å), leading to highly artificial values for 15 Å ≤ λ ≤ 20 Å.

5.8 Correlation to experimental Ki

Chang et al. (2013) reported a strong double logarithmic correlation for S. aureus FabI

diphenylether inhibitors between koff and the inhibition constant Ki (r = 0.95) [30].

Furthermore, in recent studies, the SMD method has been employed to describe a very

good linear correlation of the binding affinity of influenza virus neuraminidase inhibitors

to the maximum rupture force of ligand pulling experiments [171, 172], although in these

studies the plain pulling force, i.e., the unintegrated measure of the pulling experiment,

was evaluated, and not the PMF, i.e., the free energy as a function of the pathway. Thus,

it had to be clarified whether the used SMD methodology simply reconstructs Ki values

or binding affinities, since obviously much faster computational methods are available for

this task. The exponential average and both cumulant expansions of Jarzynski’s equality

were, thus, correlated to the ln(Ki) values of the examined ligands (Figure 5.9).

In each case, the Ki correlation model is outperformed by the respective tR model.

The exponential average reaches an R2 of 0.7410, whereas the first and second order

cumulants exhibit R2 values of 0.7054 and 0.8096, respectively. Statistical quantities

of linear model quality were calculated for the best pair of models (∆G2) and summa-

rized in Table 5.4. In this context, the significance of slope and intercept in terms of

the p-value, the Pearson and adjusted R2, the residual standard error (RMSE), F -test
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Figure 5.8 Linear models of the maximum free energy change without
trimmed ensemble average 〈W0→λ〉 and ln(tR). Cf. Figure 5.7 for full explanation
of the plots.

statistics and the first and second order Akaike information criterion (AIC and AICc)

were evaluated [173, 174]. In each of the considered items, the tR model is superior to

the Ki model. The only exception is the intercept p-value, which is slightly higher in

the tR model.

For further investigation, two SMD experiments were set up for the homologous enoyl-

ACP reductase Mycobacterium tuberculosis InhA. Two crystal structures (2X23 and

4OHU) with bound diphenylether inhibitors of comparable size and binding mode (PT70

and PT92) were selected and prepared in the same manner [40, 45]. In contrast to

saFabI, the residence time of InhA inhibitors is generally not correlated to their affinity,
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Figure 5.9 Linear models of maximum free energy changes of a ligand upon
forceful extraction and its experimental ln(Ki) value. Cf. Figure 5.7 for full
explanation of the plots.

Table 5.4 Statistics summary of linear models of ∆G2 to ln(tR) and ln(Ki),
respectively. Except for the intercept p-value, the ln(tR) model outperforms the
corresponding ln(Ki) model.

ln(tR) model ln(Ki) model

Intercept p-value 0.005620 0.002256
Slope p-value 4.02·10-5 1.60·10-4

Pearson R2 0.8595 0.8096
Adjusted R2 0.8439 0.7885

RMSE [ln units] 0.5854 0.6586
F value 55.06 38.28

F -test p-value 4.02·10-5 1.61·10-4

AIC 23.23 25.82
AICc 26.66 29.25
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Figure 5.10 Maximum free energy changes of InhA SMD simulations with
PT70 and PT92, respectively. 95% confidence intervals are indicated by error bars.
The most significant difference can be observed for ∆G2.

which is also represented by the chosen ligands. Whereas PT70 (2-(o-Tolyloxy)-5-

hexylphenol) is a high-affinity compound (Ki = 0.044 nM) with a residence time of

24 minutes, PT92 (2-(2-Bromophenoxy)-5-hexylphenol) shows a comparable residence

time of 30 minutes at a 4.5-fold increased Ki of 0.20 nM [46]. The outlined protocol was

applied to both InhA complexes and the maximum free energy changes were determined

according to all Jarzynski estimators (Figure 5.10).

A suitable egress pathway was determined by RAMD simulation of the complex 2X23.

Again the exit route via the major portal was chosen, according to the substrate delivery

route of InhA [53]. Although PT70 exhibits a higher affinity than PT92, the calculated

maximum free energy change is equivalent (∆G1 and ∆Ge), which is well in line with

the experimental tR values of these complexes. This underlines the hypothesis that the

presented SMD approach is rather suited to reconstruct and predict residence times than

to calculate binding affinities.
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5.9 Parameter selection and optimization

Although SMD simulations are relatively straightforward in defining a suitable reaction

coordinate, several other parameters need to be specified as well, namely the number of

replica simulations, pulling speed, pulling distance, pulling direction, simulation time,

harmonic constraints on the protein, force constant of SMD spring and choice of start-

ing structures. However, modified parameters must be validated by computationally

very expensive simulations, limiting the possibilities for a systematic study of parameter

combinations. Therefore, only selected parameters were optimized in preliminary sim-

ulations. The overall quality criterion for parameter selection during study design was

the coefficient of determination R2 of the maximum free energy change to ln(tR) of the

resulting linear models (data not shown) (cf. Chapter 5.6).

The number of replica simulations was increased from initially 10 to 30 with the tradeoff

of increasing the pulling speed from 1 Å/ns to 10 Å/ns, which is a commonly used

velocity for irreversible pulling [35, 36]. The higher velocity reduces the simulation time

from 20 ns to 2 ns. Although Park and Schulten (2004) stated that fewer trajectories

with slower speed yield more accurate results, they based this conclusion on increasing

the velocity from 10 to 100 Å/ns, which is 10-fold above the velocity used here and

1000-fold above reversible pulling [36].

The SMD starting structures were initially selected from a snapshot after 5 ns of classical

MD simulation for each complex. To reduce the large diversities of the binding pocket

and ligand conformations, new simulations were set up with starting structures taken

directly after the 1 ns equilibration protocol.

An extensive RAMD approach using multiple simulations and the use of an “average

exit pathway” might further improve the validity of the applied pulling direction. The

accuracy of the free energy declines with the pulling distance, because the sampling error

increases [35, 36]. Hence, a shorter exit pathway might reduce fluctuations of the work

profiles and, thus, increase the accuracy of the free energy profiles. In SMD simulations,

harmonic constraints must be applied on the protein to avoid translation of the entire

complex during ligand extraction. In this study, mild harmonic constraints were assigned

to all Cα atoms of the protein backbone, limiting the mobility of otherwise very flexible

regions of the enzyme, particularly the SBL and the binding pocket. Hence, future steps

of parameter optimization might include the more careful selection of harmonically con-

straint protein atoms, i.e., keeping the aforementioned key regions of the protein flexible.

The choice of a proper SMD force constant is a minor issue, provided the stiff-spring

approximation is fulfilled [35]. Park et al. (2003) have shown that PMF profiles obtained

from SMD simulations with a force constant of 500 pN/Å and 35000 pN/Å, respectively,
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at a speed of 10 Å/ns essentially show the same results. However, the PMF obtained

at a high force constant of 35000 pN/Å shows larger fluctuations [35]. Thus, the large

used force constant of 10000 pN/Å might also contribute to the high fluctuations of the

work values of the saFabI systems, which make the use of a trimmed ensemble average

necessary. A carefully lowered SMD force constant might reduce fluctuations and, thus,

further improve the resulting correlation between the experimental residence time and

the simulated maximum free energy change. Finally, the application of a finite-sampling

correction [35] or extension of Jarzynski’s equality by weighted histograms (“Hummer

and Szabo-method”) [175, 176] might help to further improve the data evaluation.

5.10 Conclusion

Using SMD simulations, it was possible to extract the maximum free energies of ligand

dissociation from free energy profiles as a function of a unified reaction coordinate for

a series of diphenylethers from Staphylococcus aureus FabI. Accurate linear regression

models could be generated of the calculated maximum free energy change to the exper-

imentally determined residence time of the respective ligands in the target, which can

be used to predict residence times of novel inhibitors from crystal structures or docking

poses, representing a to the author’s knowledge unprecedented approach. RMSD analy-

ses of all SMD replica simulations revealed Phe96, Ser197 and Ala198 as gate keepers of

ligand dissociation, which are forced to adopt new conformations upon unbinding. Con-

versely, the displacement of these residues is in agreement with the proposed binding

mechanism of induced-fit ligand binding to saFabI, in which the SBL and a second SBL

(containing Phe96) are assumed to exhibit concerted closure [58], validating the major

portal as a suitable exit pathway.

Although the presented FabI residence time models are very accurate, an extensive

parameter study regarding the effects of, e.g., the force constants of harmonic constraints,

equilibration time, number of replica simulations, different exit pathways, dissociation

through the minor portal of FabI, etc., might further improve the outcome. However,

each attempted parameter optimization goes along with very high computational costs.

The outlined protocol is thought to serve as a how-to for general application on any

desired target and inhibitor series. Hence, the presented SMD simulations on Mycobac-

terium tuberculosis InhA bound to PT70 and PT92 could be extended by additional

InhA-ligand-complexes, when new kinetic data is being published. In doing so, the

work-flow could be used on this target to derive an InhA residence time model.



Chapter 6

The EI and EI* states of InhA inhibition

revisited

According to current literature, ligand binding of slow-onset diphenylether inhibitors

to InhA follows a multistep mechanism (cf. Figure 2.5) [17, 24, 45]. In the process of

inhibitor association, the otherwise very flexible SBL is ordered and, hence, generally

resolved in crystal structures containing a slow-onset inhibitor (e.g. PT70 in structure

2X23 [45]). In contrast, this part of the enzyme is missing in crystal structures with rapid

reversible diarylether inhibitors, most likely due to high mobility (cf. Chapter 3) [1]. In

this context, it is assumed that the 2X23 (PT70) crystal structure represents the EI*

state [40, 45, 46].

In recent studies several crystal structures of ternary InhA complexes bound to new

slow-onset inhibitors and one rapid reversible inhibitor of the diarylether class have

been published (Figure 6.1 and Table 6.1) [40, 46]. Interestingly, the binding pocket

and SBL exhibit highly divergent conformations among different systems and also in

different chains of the same system.

The following chapter revisits the concept of the EI and EI* states of ligand association

in the case of InhA by analysis of different recent crystal structures and extensive MD

and SMD simulations.

Figure 6.1 Structures of new published InhA diarylether inhibitors. PT155
is a rapid reversible ligand, whereas the remaining structures show slow-onset kinetics
in InhA.

95
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Table 6.1 Summary of crystal structures used in this analysis. Kinetic
data is taken from the respective publication. Symmetry mates were created with
PyMOL [142]. Sym. = Symmetry; Res. = Resolved; rev. = reversible.

PDB Chain Ligand Space group Resolution Sym. contact Res. SBL tR Ref.

2X23 A PT70 P1211 1.81 Å yes yes 24 min [45]
2X23 B PT70 P1211 1.81 Å no yes 24 min [45]
2X23 E PT70 P1211 1.81 Å yes yes 24 min [45]
2X23 G PT70 P1211 1.81 Å no yes 24 min [45]

4OIM — PT119 I4122 1.85 Å yes yes 80 min [46]

4OXK A PT155 P212121 1.84 Å yes yes rapid rev. [40]
4OXK B PT155 P212121 1.84 Å yes no rapid rev. [40]
4OXK C PT155 P212121 1.84 Å yes yes rapid rev. [40]
4OXK D PT155 P212121 1.84 Å yes yes rapid rev. [40]

4OXN A PT155 I212121 2.29 Å yes no rapid rev. [40]
4OXN B PT155 I212121 2.29 Å yes yes rapid rev. [40]

4OHU A PT92 P212121 1.60 Å yes yes 30 min [40]
4OHU B PT92 P212121 1.60 Å yes yes 30 min [40]
4OHU C PT92 P212121 1.60 Å no nearly 30 min [40]
4OHU D PT92 P212121 1.60 Å no no 30 min [40]

4OXY A PT10 P212121 2.35 Å yes yes 27 min [40]
4OXY B PT10 P212121 2.35 Å yes yes 27 min [40]
4OXY C PT10 P212121 2.35 Å no no 27 min [40]
4OXY D PT10 P212121 2.35 Å no no 27 min [40]

4OYR A PT91 P212121 2.30 Å yes yes 21 min [40]
4OYR B PT91 P212121 2.30 Å yes yes 21 min [40]
4OYR C PT91 P212121 2.30 Å no yes 21 min [40]
4OYR D PT91 P212121 2.30 Å no no 21 min [40]

2AQ8 — — P6222 1.92 Å yes yes — [56]

6.1 Comparison of experimental InhA crystal structures

All chains of the crystal structures 2X23, 4OIM, 4OXK, 4OXN, 4OHU, 4OXY, 4OYR,

2AQ8 [40, 45, 46, 56] as well as the conformational Family medoids described in Chap-

ter 3 were aligned to chain A of the 2X23 structure with respect to their Cα atoms using

PyMOL for binding pocket and SBL RMSD calculations [142].

As shown in Figure 6.2a, a clustering of heavy atom RMSD values of the binding pocket

clearly distinguishes two clusters of binding pocket conformations. The first cluster with

very small internal differences solely consists of chains binding to slow-onset inhibitors

and the Family 1 medoid. The medoid snapshots of Families 2, 4 and 5 medoids are

the closest outgroups to this cluster. Given the low inner-cluster RMSD and a visual

inspection of the binding pockets, the crystal structures in this cluster exclusively exhibit

a PT70-like binding of the inhibitor and, thus, an EI* conformation.

The second cluster consists of the Family 3 medoids, accompanied by all six chains

of InhA bound to the rapid reversible PT155 and the binary InhA-NAD+ structure

2AQ8. Furthermore, two chains of InhA with the slow-onset inhibitors PT10 and
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PT92, respectively, are present in this cluster, as well as the system 4OIM, bound to

the inhibitor PT119, which has a drug-target residence time of 80 minutes [46]. The

occurrence of slow-binders in this cluster leads to the hypothesis that these chains might

not represent a binding pocket conformation in the EI* state, despite the presence of a

slow-onset inhibitor.

An analogous clustering of the flexible SBL does not result in equally sharply separated

clusters. However, the same chains containing slow-binders, which clustered before by

means of pocket RMSD, can now be found in two very similar clusters as well (Fig-

ure 6.2b, indicated by green rectangles). Again, 4OIM (PT119) and one chain bound

to PT10 and PT92, respectively, are clustered with chains containing the rapid re-

versible PT155 or no ligand at all (2AQ8) (Figure 6.2b, indicated by cyan rectangle).

The conformational space within the cluster containing the rapid reversible PT155,

4OXY-A (PT10), 4OHU-B (PT92) and 4OIM (PT119) is much more diverse, com-

pared to the cluster of slow-onset inhibitors. In particular, the pocket residues located

in the SBL adopt various conformations throughout the different chains (Figure 6.3).

Whereas the EI* state represented by 2X23-A (PT70) shows van der Waals contacts be-

tween Ile202/Val203 and the diphenylether B-ring [45], helix α6 is twisted and relocated

in these chains, leading to different conformations in this region. In three of four PT155-

bound monomers of crystal structure 4OXK, Met199 occupies the space of Val203 in

the 2X23 structure and forms contacts with the ligand B-ring (Figure 6.3a). Chain B

of complex 4OXK is captured in a different conformation, in which Ile202 occupies the

space of Val203 in the 2X23 structure and interacts with the B-ring (Figure 6.3b). This

rather EI-like conformation is also very similar to those of 4OXY-A (PT10), 4OHU-B

(PT92) and 4OIM (PT119), i.e. the InhA monomers bound to slow-onset inhibitors,

which might not exhibit the EI* state. The subunit 4OXN-B (PT155) and the ligand-

free structure 2AQ8 show a conformation similar to the aforementioned chains, however

with helix α6 further opened, i.e. Ile202 is shifted farther away from the ligand (Fig-

ure 6.3c). Indeed, Li et al. (2014) [40] interpreted this conformation as the actual EI

state of InhA inhibition by slow-onset diphenylethers and used it in Partial Nudged

Elastic Band (PNEB) MD simulations and Umbrella Sampling (US).

Furthermore, Pan et al. (2014) [46] state that the crystal structure 4OIM might not

represent the final EI* state, but a snapshot along the reaction coordinate of ligand

binding, due to the crystallization conditions and crystal packing. In fact, the crys-

tallization conditions of the ternary InhA-NAD+-PT119 complex (PDB 4OIM [46])

differ significantly from the remaining complexes (cf. Chapter 3). A very high acetate

concentration of 2.4 M at pH 5.0 was used for PT119 crystallization. As a result, two

acetate ions occupy positions in the major portal of the binding pocket (Figure 6.4). One
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Figure 6.2 RMSD heatmaps of InhA crystal structures. (a) Heavy atom
RMSD of InhA binding pocket residues (cf. Chapter 3). (b) Backbone RMSD of InhA
SBL. Green and cyan rectangles indicate separate clusters. Chains marked with an
asterisk are incomplete in the region of interest. RMSD values are calculated for the
maximum number of common atoms.
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Figure 6.3 Different pocket conformations of InhA crystal structures that
do not cluster to the 2X23 monomers according to the 2D-RMSD analysis
(cf. Figure 6.2). Chain A of the 2X23 crystal structure is represented in white as the
EI* state of InhA inhibition.

acetate is embedded between Ala201 and Phe97/Met98 and forms a polar interaction to

the Met98 backbone nitrogen with a distance of 2.9 Å, whereas the other acetate inter-

acts with the cofactor. Moreover, a third acetate ion is located near the turn between

helices α6 and α7, interacting with the backbone-NH of Gly208. As already mentioned

in Chapter 3, the EI* state can probably not be reached under the used crystallization

conditions, leading to a rather EI-like crystal structure conformation.

As described in the literature, loop ordering is a result of slow-onset inhibition of

InhA [17]. However, whereas four chains of the examined crystal structures with slow-

onset binders do not promote loop ordering, the binary complex (2AQ8) and four of six

PT155-bound structures show a fully ordered loop (cf. Table 6.1). With only three non-

consecutive missing residues, the SBL of Chain C of the crystal structure 4OHU (PT92)

may be considered nearly resolved. Given the high flexibility of the SBL, loop ordering

with a rapid reversible diphenylether or no inhibitor at all is a peculiar phenomenon. In-

deed, a symmetry mate analysis with PyMOL revealed that every chain with a resolved
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Figure 6.4 Binding pocket of ternary InhA-NAD+-PT119 crystal structure
(4OIM). Acetate buffer molecules are illustrated as sticks.

SBL is in close contact to a symmetry mate in this key region (cf. Table 6.1). The only

exceptions to this rule are one PT91 and two PT70-bound monomers, which show an

ordered SBL without close contacts to a symmetry mate, underlining that PT70 does

indeed promote loop ordering [17, 45]. Conversely, most chains without fully resolved

loop do not exhibit close contacts to symmetry mates (cf. Table 6.1), with two excep-

tions: in 4OXN-A, the chain as well as the symmetry mate show incomplete SBLs. In

the case of 4OXK-B, the SBL is not fully resolved, the SBL of the adjacent symmetry

mate, however, is complete. Taken together, this supports the assumption that crys-

tal packing in this region may indeed have a stabilizing effect on the SBL. Figure 6.5

exemplarily illustrates the crystal packing on the SBL for monomer A of the complex

4OXK (PT155). The effect of crystal packing is further analyzed below by means of

MD simulations.

6.2 MD simulations

6.2.1 System preparation

Three of the examined crystal structures were prepared for 150 ns of MD simulations

in the homotetrameric assembly: 4OXK (PT155), 4OIM (PT119) and 4OHU (PT92)

to cover a system with a rapid reversible inhibitor, the ligand with the longest residence

time of the series and a ligand with a residence time comparable to PT70. The crystal

structures 4OXK and 4OHU were preferred over 4OXN and 4OXY/4OYR, respectively,
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Figure 6.5 Chain A of complex 4OXK with an adjacent symmetry mate
chain B’ (light cyan) near the SBL. The chain B’ displays missing residues in the
SBL (circled in red).

due to higher resolution (1.84 Å and 1.60 Å, respectively). Since the 4OIM crystal struc-

ture has a monomeric asymmetric unit, PyMOL was used to generate the tetrameric

form of the system. Missing residues in 4OXK and 4OHU were freely modeled with

Modeller 9.14 [177], while keeping the protein rigid. Thus, only freely modeled residues

were subjected to subsequent refinement by Modeller 9.14 using default settings. By

analyzing the monomers separately, a total sampling time of 1.8 µs is reached. All sys-

tems were set up according to the simulation protocol introduced in Chapter 5. In brief,

ligands were parameterized according to the GAFF with RESP atom charges obtained

from potentials at the HF/6-31G* level and the protein was parameterized according

to the Amber ff99SB force field. After 200 steps of energy minimization, the complexes

were solvated with TIP3P water molecules and neutralized with sodium ions, followed by

10,000 steps of energy minimization and two phases of 500 ps equilibration. During the

first phase, the system was heated from 100 K to 300 K in the canonical ensemble with

harmonic constraints on the protein and ligand atoms, which were gradually released.

During the second phase, the system was allowed to evolve freely. MD production runs

were performed in the NPT ensemble using NAMD 2.9 [101]. It is still unclear, which

diphenylether protomer binds to the InhA binding pocket. Since the phenol moiety is

protonated under physiological pH conditions, ligands were parameterized accordingly,

also to ensure comparability to the previous InhA MD setups containing PT70, 6PP

and TCL (Chapter 3) and to other publications investigating InhA-diphenylether com-

plexes [40, 70]. As described in Chapter 4, this MD setup differs solely in the longer and

gentler equilibration phase from the protocol followed in Chapter 3 to comply with more
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Table 6.2 Protein backbone, binding pocket heavy atom and SBL backbone
RMSD values of InhA systems in Å. Monomers were fitted to the backbone of chain
A of crystal structure 2X23.

Protein backbone Pocket heavy atoms SBL backbone
Avg. RMSD SD Avg. RMSD SD Avg. RMSD SD

PT155A 1.80 0.14 3.43 0.24 5.85 0.68
PT155B 1.42 0.13 3.00 0.42 4.21 0.54
PT155C 1.73 0.23 5.52 0.80 4.74 0.48
PT155D 1.77 0.18 3.90 0.61 5.61 0.74

PT92A 1.34 0.17 1.36 0.14 3.39 1.03
PT92B 1.80 0.26 3.02 0.28 5.97 1.07
PT92C 1.32 0.18 1.43 0.21 2.64 0.64
PT92D 1.75 0.11 1.53 0.20 5.48 0.47

PT119A 1.60 0.12 2.88 0.16 4.87 0.58
PT119B 1.65 0.12 3.10 0.15 5.34 0.49
PT119C 1.63 0.16 2.96 0.27 4.93 0.65
PT119D 1.62 0.11 3.17 0.22 5.01 0.32

recent protocol standards and decrease the likelihood for artifacts in the initial phase of

the simulation. Trajectory snapshots were saved every picosecond. For analyses, snap-

shots at intervals of 100 ps were considered, resulting in 1500 frames per system. For

2D-RMSD analyses trajectory snapshots were extracted every nanosecond.

6.2.2 Backbone stability

The trajectories were fitted to the backbone (N, Cα, C) of chain A of the InhA-NAD+-

PT70 complex 2X23, representing the assumed EI* state (cf. Chapter 3). The simulated

systems were analyzed regarding their protein backbone RMS deviation from the refer-

ence structure (Table 6.2). With average RMSD values below 2 Å, each monomer shows

high stability over 150 ns of sampling time. The two most stable monomers are chains A

and C of the slow-onset PT92-bound system, albeit the pure average backbone RMSD

can obviously not be used for delimitation of slow-onset binders from rapid reversible

inhibitors (cf. Table 6.2). The PT119 monomers show very similar RMS deviation and

fluctuation, most likely due to the symmetrical constitution of the tetrameric system.

6.2.3 Binding pocket conformations

The simulated systems were analyzed regarding the average RMSD of the binding pocket

heavy atoms. The binding pocket was defined according to Chapter 3 as Phe149, Tyr158,

Ala198, Met199, Ile202 and Val203. With respect to chain A of the crystal structure

2X23, three of four PT92-monomers show very stable binding pockets with average
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RMSD values between 1.36 Å and 1.53 Å and low standard deviations (Table 6.2).

Chain B of the PT92-system exhibits a higher average binding pocket RMSD due to

the different pocket conformation in the crystal structure. As shown in the clustering

of the binding pockets, this chain is rather comparable to the PT155- and PT119-

conformations (Figures 6.2a and 6.3). Thus, a direct RMSD comparison between single

monomers is hampered by the diverse crystal structure conformations of the evaluated

chains. However, the fluctuations in the system with the rapid reversible ligand PT155

(with exception of chain A) are much higher compared to the values of PT92 chain B or

the PT119 monomers, indicating a much lower binding pocket stability for the PT155

complex.

A 2D-RMSD analysis was performed using VMD [140] to assess the stability of the

single monomeric subunits with respect to the binding pocket residues in more detail.

The binding pocket residues show a very high stability in the case of the slow-binder

PT92 (Figure 6.6) over 150 ns of MD simulation. Although PT92 chain B exhibits a

different pocket conformation in the crystal structure, the binding pocket behaves stably

over the sampled trajectory time. The four PT119-bound monomers show very stable

dynamics as well and low deviation among each other, which is not surprising, given the

identical starting structures. The close conformational similarity between the PT119

monomers and PT92 chain B is indicated by a dark green rectangle in Figure 6.6. Chain

A and particularly chain B of the PT155 monomers also show reasonable stabilization

of the binding pocket in their respective starting structure. The other two monomers

display very large fluctuations.

6.2.4 Hydrogen bond analysis

The heavy atom distances between the Tyr158-OH and the ligands were measured for

each monomer over 150 ns (Figure 6.7). Whereas each monomer with a slow-onset

inhibitor exhibits a stable hydrogen bond to Tyr158, the distributions of three PT155

monomers (chains B, C and D) show clear tendencies towards higher distances. Chain C,

in particular, exhibits a highly unstable hydrogen bond between the ligand and Tyr158,

as emphasized by the bimodal distribution and the large IQR in Figure 6.7. These

results are in agreement with the average RMSD and fluctuations of the binding pocket

residues, which are the highest observed in the evaluated systems (cf. Table 6.2).

6.2.5 SBL stability

As expected, the SBL is prone to much higher RMS deviations than the binding pocket

residues (Table 6.2 and Figure 6.8). As a result, only PT92 monomer C shows a
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Figure 6.6 Heavy atom 2D-RMSD plot of the binding pocket residues
of complexes 4OXK (PT155), 4OHU (PT92) and 4OIM (PT119) in their
tetrameric forms over 150 ns. Single monomers are framed by thin black lines.
Thus, each small box represents the trajectory of a single chain over 150 ns sampling
time. Large black rectangles delimit the tetrameric systems. The smaller dark green
rectangle illustrates conformational similarity between PT92 chain B and the PT119
monomers. RMSD values above 6 Å are colored white.
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Figure 6.7 Violin plots of distances between the phenolic oxygen of Tyr158
and the respective ligands. White dots depict the medians. Thick vertical lines
indicate the interquartile ranges (IQR), thin lines extend to 1.5 · IQR from the third
and first quartile, respectively. The shape of the violins illustrates the kernel density
estimation of the respective distribution.

reasonably stable SBL with respect to the starting structure, whereas the remaining

chains rather display multiple different loop conformations. Interestingly, the SBL of

PT92 chain C is the only nearly complete one without close contacts to symmetry

mates in the crystal structure 4OHU (cf. Table 6.1). On the other hand, chain D (which

contains an SBL with 13 freely modeled residues) behaves unstably with respect to

the modeled starting structure, despite the low standard deviation (cf. Table 6.2 and

Figure 6.8).

6.2.6 Analysis of crystal packing effect

Although loop ordering is assumed to be a result of slow-onset inhibition of InhA, several

chains of recent crystal structures of InhA bound to the rapid reversible inhibitor PT155

show a fully resolved SBL as well [17, 40, 45]. A crystal packing analysis of the structures

revealed close contacts of the monomers to symmetry mates of the asymmetric unit in the

SBL region. To further assess the influence of crystal packing on the crystal structures

with rapid reversible inhibitors, a 150 ns MD simulation was set up for chain A of

the crystal structure 4OXK and chain B of the adjacent symmetry mate (Figure 6.5).
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Figure 6.8 Backbone 2D-RMSD plot of the SBL of complexes 4OXK
(PT155), 4OHU (PT92) and 4OIM (PT119) in their tetrameric forms over
150 ns. Large black rectangles delimit the tetrameric systems. RMSD values above
9 Å are colored white.

Two missing residues of symmetry chain B (Gly205 and Ala206) were modeled into the

structure using Modeller 9.14 with rigid protein and default settings for refinement.

The trajectories of chains A and B were analyzed with respect to their counterparts from

the tetrameric setup. The monomers with close contact in the SBL region to a symmetry

mate (symm-system) exhibit distinctly lower average RMSD values than chains A and

B of the previously simulated tetrameric (tet) system (Table 6.3), i.e. the divergence

from the respective starting structures is much lower for chains with close SBL contacts.

Moreover, the lower RMSD standard deviation in the symm monomers underlines the

higher stability over the sampling time. This is further emphasized by the much lower
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Table 6.3 SBL backbone RMSD/RMSF and pocket RMSD values of InhA
systems in Å. Monomers were fitted to the backbone of chain A of crystal structure
2X23. Reference for RMSD calculation is the minimized crystal structure conformation
of each respective monomer. Reference for RMSF calculation is the trajectory average
structure of each respective SBL determined using the RMSD Trajectory Tool plugin
of VMD.

SBL backbone SBL backbone pocket heavy atoms
Avg. RMSD SD Avg. RMSF SD Avg. RMSD SD

PT155A tet. 4.36 1.04 2.49 0.74 1.68 0.33
PT155B tet. 4.73 0.54 1.92 1.07 1.71 0.30

PT155A symm. 2.64 0.52 1.60 0.45 1.51 0.26
PT155B symm. 2.15 0.32 1.09 0.31 1.51 0.16

average RMS fluctuation (RMSF), i.e. the average root-mean-squared deviation with

respect to the trajectory average structure of the SBL (Table 6.3). Figure 6.9 depicts

the distributions of the SBL backbone RMSD and RMSF as box plots. Non-overlapping

notches in the boxes illustrate a significant difference between the distributions. Thus,

the close contacts in the SBL region, as observed in the crystal structure 4OXK and

simulated in the symm-system, have a highly significant effect on the stability. This is

further affirmed by pairwise Mann-Whitney-U tests of the RMSD and RMSF distribu-

tions of tet chain A vs. symm chain A and tet chain B vs. symm chain B, respectively

(p � 0.001). Regarding the binding pocket heavy atoms, the symm-monomers show

lower average RMSD values and standard deviations than the tet-monomers, albeit to

a lesser extent (Table 6.3). These results provide strong evidence that the SBL of InhA

bound to the rapid reversible diarylether PT155 is ordered in the crystal structure as a

result of crystal packing. This is in agreement with the assumption that rapid reversible

inhibitors generally do not promote loop ordering in InhA [17]. Conversely, the SBL of

PT92 chain C, which is nearly fully resolved and has no contacts to symmetry mates in

the crystal structure, behaves stably with respect to the starting structure over 150 ns

of MD simulation, as do the fully resolved SBLs of the PT70-bound monomers without

contacts to symmetry mates in the crystal structure, as shown in Chapter 3. These re-

sults indicate that loop ordering without close crystal contacts in the SBL region might

indeed only be achieved by slow-onset inhibitors.

6.2.7 Conclusion

In conclusion, the slow-onset inhibitors show stable behavior in their respective binding

pocket conformations in contrast to inhibitor PT155, where severe pocket instabilities

occur in two of four chains. With respect to the SBL starting structures, only one chain

(4OHU-C, PT92) displayed a reasonably stable conformation over 150 ns of simulation

time. Interestingly, this chain is the only monomer with a nearly complete SBL without
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Figure 6.9 Box plots of SBL backbone (a) RMSD and (b) RMSF values of
PT155 chains A and B of the tetramer- and symmetry mate simulation, re-
spectively, in Å. Monomers were fitted to the backbone of chain A of crystal structure
2X23. Reference for RMSD calculation is the minimized crystal structure conformation
of each respective monomer. Reference for RMSF calculation is the trajectory average
structure of each respective SBL determined using the RMSD Trajectory Tool plugin of
VMD. Non-overlapping notches indicate significant differences between the simulations
of the tetrameric setup and the symmetry mate setup.

close contacts to symmetry mates in the crystal structure, i.e. resolved without crystal

packing effects. Whereas the PT155 monomers showed largely flexible SBLs, a sim-

ulation of chain A with a symmetry mate adjacent to this region showed a stabilizing

effect of symmetry mate contacts on the SBL. These results underline the hypothesis

that loop ordering in crystal structures of InhA bound to a rapid reversible diarylether

might be strongly supported by crystal packing in the region of the SBL. Conversely,

only chains with resolved SBLs and without close contacts in crystal structures exhibit

a stable SBL in MD simulations of the tetrameric assembly, as indicated by simulations

of PT92 chain C as well as PT70, in which case chains B and D with no close crystal

contacts in the SBL region show the most stable loops (cf. Figure 3.8). Hence, crystal

structures containing a resolved SBL without the effect of crystal packing might indeed

represent the stable EI* state of slow-onset inhibition of InhA.

6.3 Steered MD simulations

Induced ligand extraction has been proven in Chapter 5 as a useful approach to quantify

the inhibitory efficacy of a compound in a protein in terms of residence time. Whereas

several crystal structures bound to ligands with experimentally determined residence

times are available for saFabI, a similarly extensive dataset is not yet available for
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the mycobacterial homolog InhA, limiting the possibilities to derive a statistical model.

Nonetheless, the maximum free energy changes of induced ligand extraction can be

analyzed comparatively for selected InhA crystal structures with kinetics data to quali-

tatively delimit rapid reversible binders from slow-onset inhibitors.

6.3.1 System preparation

The SMD protocol introduced in Chapter 5 was applied on the ternary InhA complexes

examined in Chapter 6.2.1 and two additional InhA complexes bound to the small ligand

triclosan (TCL). Whereas TCL is a slow-binding saFabI inhibitor with a residence time

of 139.5 minutes [30], it binds rapid-reversibly without a measurable residence time to

InhA [17, 64]. Indeed, the very flexible SBL is not resolved in the ternary InhA-NAD+-

TCL complex (PDB 2B35), most likely due to very high mobility [24, 64]. For this

reason, two different InhA-TCL systems were prepared: in one system, the missing loop

was freely modeled into 2B35 using Modeller 9.14 [177] with rigid protein, resulting in a

very open conformation (Figure 6.10). Subsequently, the modeled residues were refined

by Modeller 9.14 using default settings. The other system corresponds to the crystal

structure 2X23 with TCL placed into the binding pocket after structural alignment of

2X23 with the crystal structure 2B35 (cf. Chapter 3), thus creating a hypothetical EI*

state for TCL.

In the case of saFabI, diphenylethers are assumed to bind in their deprotonated form [30].

Since the SMD work-flow presented in Chapter 5 was evaluated on deprotonated ligands,

all diphenylethers were re-parameterized with a negative charge to use consistent pro-

tonation states for SMD simulations. For the induced extraction of ligand PT155 two

separate crystal structures were used. Li et al. (2014) [40] defined chain B of the crystal

structure 4OXN as the EI state of InhA inhibition. Hence, this chain was prepared for

SMD simulations besides chain A of the previously described complex 4OXK. To further

evaluate the contribution of the protein conformation to the maximum ∆G, additional

systems of PT119 placed into the crystal structure 2X23 and TCL placed into the crys-

tal structure 4OXN-B were prepared via structural alignment of the crystal structures.

The previously defined pulling direction of PT70 (2X23) was used for all complexes as

reaction coordinate for induced ligand extraction (cf. Chapter 5).

6.3.2 SMD results

The maximum free energy changes were reconstructed using an untrimmed average of

work values, as well as a 25% trimmed average according to the protocol outlined in

Chapter 5 to reduce high fluctuations in the work profiles (Table 6.4 and Figure 6.11) [35].
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Figure 6.10 Crystal structure of 2B35 with modeled residues of the SBL
(yellow). The ligand TCL and cofactor NAD+are represented as sticks.

It is known that the Jarzynski equality is not applicable, if the fluctuations of the work

values are much higher than the temperature kbT (cf. Chapter 5.7) [35]. Although the

exponential Jarzynski expression can generally be difficult to estimate, Gore et al. (2003)

found that the exponential average is a valid estimator even for limited sampling, in con-

trast to the first cumulant expansion ∆G1 [35, 165]. Also the second order cumulant

expansion ∆G2 can show a higher bias, if the variance is not estimated accurately due

to small trajectory numbers [165]. Hence, the exponential estimator ∆Ge reconstructed

from trimmed averages will be considered primarily in this analysis due to large fluctu-

ations in the work values, as indicated by high standard deviations in the untrimmed

average work estimator ∆G1 (Table 6.4).

Although the ligand PT119 is characterized by a very high residence time of 80 minutes

in InhA [46], its simulated maximum free energy change derived from SMD simulations

of the crystal structure 4OIM is similar to or lower than the values obtained for PT70

and PT92, respectively (cf. confidence intervals in Figure 6.11a). Conversely, plac-

ing PT119 into the 2X23 crystal structure leads to the highest observed maximum

∆Ge (Table 6.4). As discussed in detail above and in Chapter 3, the InhA-PT119

crystal structure 4OIM differs in its binding pocket conformation significantly from the

PT70/PT92-bound crystal structures, and does, hence, not show a typical EI* con-

formation, but rather characteristics of the assumed EI state. The comparably low
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Table 6.4 Maximum free energy change of induced ligand extraction of
InhA inhibitors with standard deviation in kcal/mol.

trimmed untrimmed
∆Ge ∆G1 ∆G2 ∆Ge ∆G1 ∆G2

PT70 (2X23-A) 89.02 ± 11.31 106.29 ± 11.32 68.11 ± 2.38 77.53 ± 20.31 107.15 ± 20.32 39.95 ± 6.09
PT92 (4OHU-A) 97.94 ± 4.50 104.98 ± 4.51 88.61 ± 4.15 87.63 ± 12.04 105.39 ± 12.06 52.96 ± 4.40
PT119 (4OIM) 86.27 ± 5.33 92.80 ± 5.33 69.44 ± 5.24 72.72 ± 11.92 92.40 ± 11.96 32.48 ± 4.55
PT119 (2X23-A) 102.19 ± 5.08 108.80 ± 5.10 88.50 ± 4.74 89.29 ± 12.27 109.95 ± 12.28 40.55 ± 6.77
TCL (2X23-A) 77.53 ± 5.06 83.35 ± 5.25 63.21 ± 4.83 66.07 ± 10.97 84.70 ± 11.02 49.49 ± 3.86
TCL (2B35-A) 46.13 ± 3.07 49.30 ± 3.07 41.65 ± 2.94 36.95 ± 6.35 49.20 ± 6.34 24.38 ± 3.00
TCL (4OXN-B) 59.92 ± 2.25 62.98 ± 2.53 58.76 ± 2.04 50.98 ± 6.67 62.67 ± 6.74 31.19 ± 3.31
PT155 (4OXK-A) 78.12 ± 3.29 82.28 ± 3.29 73.22 ± 3.29 56.25 ± 9.01 81.63 ± 9.02 33.85 ± 3.51
PT155 (4OXN-B) 69.09 ± 2.81 72.73 ± 2.94 65.65 ± 2.79 65.95 ± 6.30 73.37 ± 6.29 40.24 ± 6.29

Figure 6.11 Maximum free energy changes of induced ligand extraction
of InhA complexes. Error bars indicate the 95% confidence interval. The maxi-
mum free energy change according to ∆Ge reconstructed from trimmed averages (black
rectangle) is assumed to yield the most accurate results and allows delimitation of slow-
onset inhibitors from rapid reversible ligands, indicated by non-overlapping confidence
intervals.

maximum free energy change in 4OIM and the high ∆Ge of PT119 in 2X23 provide

strong additional evidence for this hypothesis.

The contribution of the protein conformation to the height of the maximum energy bar-

rier is also apparent from the various systems with rapid reversible inhibitors. In general,

systems containing TCL and PT155 show lower maximum free energy changes ∆Ge

compared to the slow-onset inhibitors, which is consistent with the kinetic properties

of the rapid reversible ligands in InhA. Compared to the 2X23-TCL system with a hy-

pothetical EI* state, TCL in the more helix-open conformation 4OXN-B and in 2B35

with the freely modeled SBL shows a significant drop of ∆Ge. This emphasizes that

dissociation from an EI state happens more easily with respect to dissociation from an

(artificial) EI* state. Moreover, the sensitivity of the presented SMD protocol regarding
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the starting conformation of the protein-ligand complex is underlined by the divergent

maxima for these ligands in different crystal structure conformations. With respect to

the ligand PT155, a drop in maximum free energy change is observed for the monomer

4OXN-B with a more open conformation of helix α6, compared to 4OXK-A.

Based on the exponential estimator ∆Ge reconstructed from trimmed averages, a sig-

nificant delimitation of slow-onset inhibitors from rapid reversible ligands is possible,

as indicated by non-overlapping confidence intervals in Figure 6.11. Since the SMD

results are very sensitive to the respective protein starting conformations, separation of

ligands with different kinetic profiles is best achieved from valid protein conformations

representing the assumed state of the protein bound to the respective ligands.

It is notable that the maximum free energy changes of the rapid reversible ligand PT155

derived from the second order cumulant expansion ∆G2 of Jarzynski’s equality are rel-

atively high, compared to the results of the slow-onset inhibitors PT70, PT92 and

PT119. This trend, however, is confined to ∆G2 and not observable in the results of

∆Ge and ∆G1, which are qualitatively well in line with the kinetic profiles of the exam-

ined ligands. Whereas the second order cumulant (with 25% trimmed average) yields

the most accurate model for drug-target residence time prediction for the staphylococ-

cal enoyl-ACP reductase saFabI (cf. Chapter 5), the respective maximum free energy

changes in M. tuberculosis InhA do not reflect the experimental data, as free energy

reconstruction of ∆G2 is heavily influenced by very high fluctuations in the measured

work profiles.

In summary, the systems show maximum free energy changes ∆Ge qualitatively in line

with ligand kinetics, provided the simulations are started from valid protein conforma-

tions. Thus, comparison of ∆Ge values allows delimitation of slow-onset binders from

rapid reversible inhibitors. The outcome of the SMD simulations is sensitive to the pro-

tein starting conformation, as underlined by the maximum ∆Ge of the ligands TCL,

PT155 and PT119 in various crystal structures. The second order cumulant expan-

sion ∆G2 is largely affected by high fluctuations in the replica simulations, rendering

its applicability for this target very limited with the current simulation protocol. These

results emphasize the necessity for an additional extensive parameter study regarding

SMD simulations for residence time prediction as outlined in Chapter 5, e.g. with respect

to the number of replica simulations or pulling speed. However, validation of parameter

modifications needs computationally very expensive simulations, hampering systematic

parameter studies.
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6.4 Conclusion

Analysis of various crystal structures combined with MD and SMD simulations were

employed to revisit the enzyme-inhibitor complex states EI and EI* of diphenylether

ligand binding to InhA. First, the crystal structures were clustered by their RMSD with

respect to binding pocket residues and SBL backbone. The slow-onset inhibitors and the

rapid reversible inhibitors consistently populated separate clusters with few exceptions,

namely 4OIM (PT119), 4OXY-A (PT10) and 4OHU-B (PT92). Subsequently, a sym-

metry mate analysis was conducted to unveil possible effects of crystal packing on the

3D-structures. Only two 2X23-, one 4OHU- and one 4OYR-chain showed resolved loops

without nearby crystal contacts, indicating that these inhibitors indeed promote order-

ing of the flexible SBL. In large-scale MD simulations the stability of selected systems

could be assessed with respect to binding pocket and SBL. Pocket dynamics resulted in

very high stability in slow-onset inhibitor-bound systems, whereas the binding pocket

of the InhA-NAD+-PT155 complex displayed large fluctuations. Thus, a stable bind-

ing pocket can help delimit slow-onset inhibitors from rapid reversible ones. The SBL,

on the other hand, was only found to be stabilized over 150 ns in one PT92-bound

monomer.

Interestingly, the stable SBL of PT92 monomer C is the only one of the simulated

systems without close symmetry contacts in the crystal structure, alongside chains B

and D of the PT70 simulations described in Chapter 3. Conversely, an MD simulation

of PT155 chain A with a symmetry mate in close proximity of the SBL showed signif-

icantly more stable loops, further emphasizing the effect of crystal packing on the SBL

in InhA crystal structures. The resolved SBLs in InhA crystal structures with rapid re-

versible inhibitors might, thus, be ascribed to close contacts to symmetry mates in this

region. These results provide evidence that chains containing resolved SBLs without

close contacts to symmetry mates might represent a genuine EI* conformation. More-

over, the facts that no PT119 SBL is entirely stable in its starting conformation (as

opposed to PT92 chain C) and that the crystal structure 4OIM (PT119) exhibits close

contacts of symmetry mates in the SBL region underline the hypothesis that a 4OIM-

like binding pocket/SBL conformation does not represent the final EI* state, as also

mentioned by the authors of the corresponding publication [46], whereas a PT70-like

binding conformation might in fact be considered the final EI* state.

This notion is further affirmed by SMD simulations. The maximum free energy changes

∆Ge of induced inhibitor extraction of these systems are qualitatively well in agreement

with the experimental residence times of the ligands in InhA: PT70 and PT92 yield

comparable maximum free energy changes, which are both higher than the simulated

maxima of the structures bound to the rapid reversible inhibitors TCL and PT155.
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PT119 in the crystal structure 4OIM, however, also achieves a maximum free energy

change below the other slow-onset inhibitors, although its residence time is 3-fold higher.

After placing PT119 in the crystal structure 2X23, i.e., the assumed EI* state of InhA

inhibition by diphenylethers, ∆Ge increases drastically, providing strong evidence that

the recorded crystal structure 4OIM does not represent the EI* state, but rather an

EI-like state. Moreover, this emphasizes the sensitivity of the presented method on the

protein starting conformation.

As further shown in SMD simulations, not only the wide opening of helix α6 leads to

much lower maximum free energies (TCL in 4OXN-B vs. TCL in 2X23 or PT155 in

4OXN-B vs. PT155 in 4OXK-A), but also the helical twist with Ile202 and Val203 mov-

ing over the ligand toward the inside of the binding pocket (PT119 in 4OIM vs. 2X23).

This provides further evidence for the assumption that wrapping of Ile202 and Val203

around the B-ring of the diphenylether inhibitor is a crucial step in slow-onset inhibition

of InhA, underlining the validity of a suggested 5’-substitution to increase the energy

barrier for this conformational transition, as proposed in Chapter 3 and evaluated in

Chapter 4. In general, SMD simulations were proven as a useful method to delimit

slow-onset inhibitors from rapid reversible ligands in InhA based on the maximum ∆Ge

of induced ligand egress, although an extensive parameter study is assumed to further

improve the accuracy of the simulation results.

Altogether, the assumptions regarding the EI and EI* state presented in this work

(cf. Chapter 3) and the work of Li et al. (2014) [40] agree with crystal structure anal-

yses, MD and SMD simulations: a PT70-like binding conformation of pocket and SBL

corresponds to the EI* state, whereas a helical shift of Ile202 and Val203 towards the

binding pocket with a more open conformation of helix α6 might be considered the EI

state of InhA drug-target association. However, large intra-crystal variations of SBL and

binding pocket conformations of crystal structures with slow-onset and rapid reversible

inhibitors likewise (cf. Figures 6.2 and 6.3), as well as the contributions of crystal packing

to loop ordering indicate that a purely binary classification into the EI and EI* state,

respectively, might lead to an oversimplification of the conformational space of InhA

inhibition.



Chapter 7

Summary – Part I

The drug-target residence time tR has gained increasing attention in drug development

due to its good correlation to in vivo efficacy [24, 25]. However, the lack of structural

information about the transition states of inhibitor binding hampers rational optimiza-

tion of tR [24, 26]. With rising computational power and enhanced sampling methods,

MD simulations provide access to transition and metastable intermediate states [26].

Thus, MD simulations were employed to elucidate the molecular features that govern

long drug-target residence time in bacterial enoyl-ACP reductases, a promising drug

target for antibacterial drug design [17].

The mycobacterial enoyl-ACP reductase InhA is known to bind to inhibitors of the

diphenylether class with different kinetic profiles. Thus, various systems of InhA were set

up, bound to either long-binding or rapid reversible inhibitors. An extensive structural

analysis of MD trajectories with a total sampling time of 3.0 µs revealed five recurring

conformational families. Two of these conformational families correspond to what are

assumed to be the EI and EI* states of ligand association of InhA. The dynamic features

of the protein-ligand complexes could be linked to the unique substitution patterns of the

bound ligands, revealing important insights into the determinants of long drug-target

residence time in InhA: (1) occupation of the hydrophobic pocket, (2) introduction of an

anchor-moiety in 2’-position and (3) introduction of a small 5’-substituent to embed in

between Ile202 and Val203 and prevent these residues from shifting into the hydrophobic

pocket.

The latter suggestion was evaluated in additional MD simulations. Two homotetrameric

InhA systems were set up with 5’-methyl-PT70 and 5’-chloro-PT70, respectively. Tra-

jectories of 50 ns each resulted in a combined sampling time of 400 ns with respect to

the independent monomers. Stabilization of the flexible substrate binding loop (SBL)

was achieved in particular in the 5’-chloro-PT70-bound monomers, whereas the bind-

ing pocket was observed to be very stable in every examined monomer of both systems,

except in monomer C2, which drifted into a Family 3* conformation. In general, the

5’-substituted ligands show close contacts to Met103, but are not able to prevent insta-

bilities in this residue which translate to the binding pocket, leading to the alternate

pocket conformation in the case of monomer C2. Thus, the ligands might need further
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improvement regarding the substitution pattern in order to stabilize Met103 and, hence,

the entire binding pocket.

Since drug-target residence times of slow-onset inhibitors are much longer than the

time scale achieved with classical MD simulations, enhanced sampling techniques are

required to simulate complete ligand-unbinding events. Steered MD (SMD) simulations

are a straightforward method for induced extraction of ligands from the binding pocket

along a given reaction pathway. Thus, SMD simulations were employed to simulate

ligand-unbinding of eleven different Staphylococcus aureus enoyl-ACP reductase FabI

complexes and reconstruct the maximum free energy change of ligand dissociation. The

resulting free energy changes could be associated with ln(tR) to obtain a very accurate

and quantitative regression model. New crystal structures or docking poses of hypo-

thetical ligands in FabI can now be subjected to the outlined protocol to predict their

drug-target residence time according to the linear regression model.

Proper characterization of the EI and EI* states of slow-onset inhibition is imperative

for rational optimization of tR. Recently published crystal structures of InhA, however,

exhibit largely diverse conformations regarding binding pocket and SBL [40, 46]. In

the last chapter of Part I, the concept of the EI and EI* states of InhA inhibition was

revisited by means of crystal structure analysis, MD and SMD simulations. Overall, the

assumptions regarding the EI and EI* states in the previous chapters could be affirmed:

the 2X23 crystal structure conformation corresponds to the EI* state, whereas a twist

of Ile202 and Val203 toward the inside of the binding pocket with a more open helix α6

represents the EI state. However, SMD simulations showed that not only wide opening

of helix α6, but also the shift of Ile202 and Val203 itself has a large influence on the

maximum ∆Ge. In general, SMD simulations were proven as a useful approach to delimit

slow-onset InhA inhibitors from rapid reversible ligands. The effect of crystal packing on

the SBL was investigated by means of a symmetry mate MD simulation, showing that

the SBL is indeed stabilized by close contacts to adjacent symmetry mates. Conversely,

structures containing a resolved SBL without the proximity of a symmetry mate in the

SBL region showed stable dynamics and might represent, thus, a genuine EI* state.

In conclusion, MD techniques were applied to investigate the determinants of long-

binding kinetics in bacterial enoyl-ACP reductases and, moreover, derive a quantitative

prediction model for drug-target residence time. These findings can contribute to future

rational drug design endeavors against InhA and saFabI towards inhibitors with longer

residence times.
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Chapter 8

Background

8.1 The Mycobacterium tuberculosis cell wall hampers an-

titubercular drug design

An important natural defense mechanism of M. tuberculosis is its thick and waxy cell

wall which provides a first powerful barrier against antibiotic drugs (Figure 8.1). It

consists of a peptidoglycan-arabinogalactan-mycolic acid core as well as the outmost

layer, the so-called capsule [60, 178]. It has been shown that not only hydrophilic agents,

but also lipophilic agents may have severe problems passing the permeability barrier of

the cell wall, owing to the unusually low fluidity of the lipid bilayer [179]. Thus, M.

tuberculosis is intrinsically resistant to many drugs, due to the unique composition of

its cell wall [8–10].

Without the ability to penetrate the M. tuberculosis cell wall, even very potent inhibitors

of validated mycobacterial drug targets like InhA [181] will not have any efficacy. In

2004, Hong and Hopfinger constructed a complex computational model of the M. tu-

berculosis cell wall and conducted MD simulations to determine diffusion coefficients

for 13 different first- and second-line antituberculars [182, 183]. While such ab initio

approaches yield important results with respect to molecule transport through the cell

wall, the computational cost narrows the applicability on large datasets. Thus, a fast,

knowledge-based method for permeability prediction is desirable as an additional filter

criterion for virtual screening campaigns against M. tuberculosis.

The development of knowledge-based methods requires a large datasets. Unfortunately,

data about mycobacterial permeability properties of chemical compounds are hardly

available. However, as in most of the cases a compound must permeate the mycobac-

terial cell wall to show antimycobacterial activity, it is reasonable to infer an ability to

pass this barrier for compounds active against mycobacteria. In 2010, Ekins and col-

leagues developed a collaborative database (CDD TB) of >200,000 compounds which

had been tested for antibiotic activity against M. tuberculosis [184]. Over 3,800 struc-

tures showed growth inhibition of ≥90% at a concentration of 10 µM . Most likely, these

compounds have sufficient permeability to be active against M. tuberculosis and may,
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Figure 8.1 Schematic drawing of the M. tuberculosis cell wall. LAM: Lipoara-
binomannan; PIMs: phosphatidylinositol mannosides. Figure adapted and redrawn
from [180].

thus, be used as a knowledge base for analyzing permeability-determining features. Ac-

cordingly, an extensive data mining approach based on the physico-chemical properties

of this dataset can be performed with the subsequent development of a regression model.

This approach was followed herein, leading to the knowledge-based classification system

MycPermCheck [3], as described in Chapter 9. An application of this tool to explore

the permeability space of M. tuberculosis is the subject of Chapter 10.

8.2 Molecular descriptors

8.2.1 Molecular descriptors in drug design

”The molecular descriptor is the final result of a logic and mathematical procedure

which transforms chemical information encoded within a symbolic representation of a

molecule into a useful number or the result of some standardized experiment.” With

these words, Todeschini and Consonni introduce a definition of the molecular descriptor

[185]. In other words, a descriptor is any kind of reproducible information extracted
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from a chemical structure. Generally, the information can be of experimental origin

(e.g. logP, pKa, dipole moment) or of theoretical origin (e.g. calculated logP, number

of heavy atoms, polar surface area). The information encoded in theoretical descriptors

is manifold. Depending on the underlying algorithm, calculated parameters can base on

structural data of different dimensions. One-dimensional parameters include the num-

ber of hydrogen bond donors/acceptors or calculated logP; two-dimensional parameters

comprise, for example, graph-theoretical diameters or topological surface areas; typi-

cal three-dimensional descriptors are the volume or solvent-accessible surface area of

a geometrical representation of the chemical structure. Whereas some descriptors are

straightforward to calculate and interpret (e.g., number of carbon atoms), others are

based on more sophisticated underlying models (e.g., topological polar surface area).

In general, physico-chemical descriptors can be used to extract numerical data from

chemical structures and find similarities and differences in large datasets of chemical

compounds.

The importance of physico-chemical properties and how they govern the pharmacokinetic

and pharmacodynamic behavior of drugs is well described in the literature [186–191].

For instance, it is known that the polar surface area (PSA) and the number of rotatable

bonds influence the bioavailability of a compound [188]. Furthermore, oral absorption is

hindered by high molecular weight (MW) and a logP larger than 5 [186]. Nonetheless,

molecular obesity is often a result of drug discovery projects, in which potency is driven

by increasing the MW and lipophilicity of compounds, but ultimately leads to high

attrition rates in clinical trials [189, 192]. Although the relations of the physico-chemical

composition of compounds to solubility and membrane permeability are generally well

understood [186–188], it still remains unclear which molecular properties specifically

contribute to mycobacterial cell wall permeability.

8.2.2 Descriptor calculation software

There are numerous software packages that calculate countless molecular descriptors

based on structural chemical data. A list of selected descriptor calculation packages

can be accessed at the free online resource of molecular descriptors by Roberto Todes-

chini.1 The proprietary software QikProp of the Maestro Suite (Version 3.4, Schrödinger,

LLC, New York, NY, 2011) is designed to process large databases of chemical structures

and create a collection of molecular parameters. These encompass physico-chemical

properties (such as number of hydrogen bond acceptors and various surface areas), as

well as ADMET parameters (such as Lipinski Rule of Five violations [186] or predicted

1http://www.moleculardescriptors.eu/softwares/softwares.htm, accessed July, 2015.
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IC50 value for blockage of hERG K+ channels). The software, thus, supports ratio-

nal drug design by identifying molecules with unwanted properties, which can then

be dismissed in early stages of drug development to avoid high costs associated with

wet lab experiments. All 51 descriptors calculated by QikProp are summarized in the

QikProp Manual [193]. In 2007, an independent group of researchers assessed the ac-

curacy of QikProp predictions with respect to selected physico-chemical and ADMET

descriptors [194]. Their findings showed very good correlations of experimental data to

calculated logP (octanol/water partition coefficient), logS (solubility), dipole moment

and ionization potential (IP). Also with respect to the ADME parameters Caco-2 and

MDCK cell permeability modeling the gut-blood and blood-brain-barrier, respectively,

good results could be achieved [194–197]. The modules predicting hERG K+ channel

blockage and CNS activity, however, did not yield convincing results [194].

Whereas QikProp is part of the proprietary software suite Maestro (Schrödinger, LLC,

New York, NY, 2011), the PaDEL-Descriptor package [198] is entirely open-source. The

current version of PaDEL (2.21) is able to calculate 1875 different descriptors and 12

types of fingerprints. Descriptors include straightforward atom, bond or ring counts as

well as validated prediction methods, e.g., XlogP [199] or the topological PSA [200].

The software is available free of charge from the website of the author [198].2

8.3 Statistical methods

8.3.1 Principal component analysis

First described by Karl Pearson [201], Principal Component Analysis (PCA) forms the

basis of many analyses of multivariate data [202]. Its primary goal is the simplifica-

tion of complicated data and the revelation of underlying patterns, which are often

concealed [203]. Hence, the data is modified to provide more intuitive access for inter-

pretation.

The method uses an orthogonal transformation of multidimensional data to find the

principal components (PC) with the highest variance possible (Figure 8.2). Thus, the

first principal component, which is a linear combination of the dataset variables, ex-

hibits the highest variance and hence the highest information content. The remaining

principal components are defined according to the same criterion, except that they are

restrained to being orthogonal to all previously defined principal components. The

resulting principal components are the eigenvectors of the covariance matrix of the ex-

amined dataset [204].

2http://www.yapcwsoft.com/dd/padeldescriptor/
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Figure 8.2 Multivariate Gaussian distribution. The vectors schematically illus-
trate the eigenvectors of the covariance matrix.

The principal component space is always less or equal in dimensions to the original

data. However, since a principal component is always defined by maximum variance,

the information content may drop quickly for PCs of a higher number, depending on

the data. Although the question of how many principal components to include in an

analysis is an ongoing debate with no definite answer [205], the most important PC is

always the first.

8.3.2 Logistic regression

A logistic regression is used to predict the probability of a positive binary outcome based

on one or multiple predictor variables. The logistic function σ(z) is as follows:

σ(z) =
ez

ez + 1
=

1

1 + e−z
(8.1)

Here, z is a linear combination of the explanatory variables (x1, x2, ...):

z = β0 + β1x1 + β2x2 + ... (8.2)

Thus, instead of hard cutoffs in binary classification (negative/positive), a gradual func-

tion is considered. The larger the shift in the distribution of the two datasets in their
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Figure 8.3 Logistic regression analysis on simulated data. Each group
(N = 1000) was sampled randomly from a normal distribution centered at 2 and 0,
respectively. Histograms represent the distributions of the groups, the red curve illus-
trates the logistic regression function 1/(1 + exp[−(−2.066 + 2.060 · x)]).

explanatory variables, the steeper is the logistic regression function. Figure 8.3 provides

a logistic regression analysis on simulated data. The groups (N = 1000) were drawn

randomly from a Gaussian distribution centered at 2 (positive group) and 0 (negative

group), respectively (as shown in Figure 8.2). The red curve represents the logistic

regression curve 1/(1 + exp[−(−2.066 + 2.060 · x)]) modeling the shift in distribution

between the positive and the negative group with highly significant slope and intercept

(p� 0.001).

Logistic regression can be combined with a previous PCA. In this case, the regression

function is trained on coordinates from the PC space (cf. Chapter 9).

8.3.3 Receiver operating characteristic

A receiver operating characteristic (ROC) is a statistical method to assess the quality

of a model with binomial classification [206]. Observations are sorted according to the

predictive variable and examined top to bottom, while a varying threshold distinguishes

the two classes. The observations are then compared to their actual affiliation. While

walking through the sorted observations, the curve grows along the y-axis for each

observation of the positive group and along the x-axis for each representative of the

negative group that is passed (Figure 8.4).
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Figure 8.4 ROC curve of exemplary logistic regression of simulated data.
Groups were drawn randomly from normal distributions centered at 2 and 0, respec-
tively (cf. Figure 8.3). The dashed line illustrates a random model.

A perfect separation of the two groups would manifest in a ROC curve touching the top

left corner of the plot, i.e. all positives are on one side and all negatives are on the other

side of a certain threshold.

A helpful measure for the interpretation of a ROC curve is the early enrichment of true

positives (graph rises to the top left corner), i.e. a very high true positive rate at a low

false positive rate. In the ROC analysis of the simulated data, an enrichment of 73.3%

of all positives can be observed at a false positive rate of 10.0% (cf. Figure 8.4). Another

approach is the calculation of the area under the curve (AUC) [207], which–as a scalar

value between 0 and 1–is easy to compare between multiple models. The simulated

model (cf. Figures 8.3 and 8.4) achieves a very high AUC of 0.922. An AUC of 0.5

would correspond to a random model along the diagonal of the ROC plot, i.e. an equal

increase of true and false positives.

8.4 Analysis tools

All calculations and statistical analyses in Part II of this thesis were conducted using

the statistical framework R and the associated plug-ins vegan, popbio, pheatmap and

ChemMineR [130, 133, 208–210]. Trajectory analyses were carried out with VMD 1.9.1
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and the incorporated extension RMSD Trajectory Tool [140]. Visualizations were cre-

ated with PyMOL [142]. 2D-RMSD plots were drawn with a tailored python script by

Raphael Dives (University of Würzburg).



Chapter 9

MycPermCheck: the Mycobacterium

tuberculosis permeability prediction tool for

small molecules

The contents of this chapter have been published in the Oxford University Press journal

Bioinformatics in 2013 [3]. The publication has been modified in layout to fit the style of

this thesis. Moreover, the supporting information of the publication and previously not

shown data have been incorporated into the chapter. Since October 2014, version 1.1

of MycPermCheck with modified PCA scaling of input variables is online. Accordingly,

evaluation of the model was repeated using MycPermCheck 1.1. Therefore, numerical

results regarding the evaluation dataset may vary with respect to the Bioinformatics

publication. Additionally, a section describing the stand-alone command-line version of

MycPermCheck was included. The theoretical background of this work is explained in

Chapter 8.

9.1 Datasets

The MLSMR dataset [211] of the CDD TB database [184, 212] was filtered for compounds

that showed a mycobacterial growth inhibition of ≥90% at 10 µM and a molecular

weight <500 Dalton. This step reduced the total number of considered molecules to 3815

chemical structures. All compounds were converted to 3D structures with the program

Corina (available from Molecular Networks GmbH, Erlangen, Germany) [213]. These

structures were processed with the tool LigPrep (Version 2.3, Schrödinger, LLC, New

York, NY, 2009) for protonation (at pH 7.0 ± 2.0), stereoisomerization, tautomerization

and subsequent energy minimization. Physico-chemical descriptors were then calculated

for each molecule with Schrödinger QikProp (Version 3.4, Schrödinger, LLC, New York,

NY, 2011). Compounds with incomplete descriptor data were removed, leaving 3727

structures. This dataset is hereinafter referred to as Actives.

The foundation of this work is the assumption that a compound must sufficiently well

permeate the mycobacterial cell envelope (consisting of cell wall, periplasm and inner

membrane) to unleash its effect within the target cell. Therefore, the dataset Actives can

127
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be classified as ‘permeable’ (i.e. the corresponding compounds have sufficient permeabil-

ity to be active). Far more difficult is the generation of a sufficiently large ‘impermeable’

(negative) dataset, as only few studies regarding the permeability of mycobacteria are

available (e.g. Refs [183, 214–216]). Simply taking the inactive compounds from M.

tuberculosis activity tests is obviously not possible, as a lack of permeability may not be

the only reason for inactivity. This issue can be addressed by collecting compounds that

are active against M. tuberculosis targets in target-based (e.g. enzymatic) assays, but

inactive in a whole-cell M. tuberculosis assay. This approach was indeed followed herein

to generate a validation dataset (cf. Section 9.4). The number of compounds obtainable

by this way is, however, by far not sufficient for data mining and training-set generation.

Accordingly, randomly drawn datasets of drug-like small molecules were used as ‘nega-

tive’ data. These should allow to determine whether the ‘permeable’ substances show

any significant differences with respect to random drug-like compounds. For this pur-

pose, the drug-like subset of the ZINC database ([217], version ZINC12) was processed

in the same manner as the Actives. Thereby, an extensive table of physico-chemical

properties of a randomly distributed dataset of drug-like molecules was obtained. This

dataset is hereinafter referred to as ZINC. An overview of the used datasets is given in

Table 9.1.

To obtain information about the diversity of the Actives dataset an all vs. all similar-

ity matrix was generated based on the atom pair similarity of these compounds using

ChemMineR [210, 218] (Figure 9.1).

The distribution of all measured atom pair similarities within the Actives dataset lies at

∼0.2, suggesting that the majority of these compounds have a very low similarity among

each other. Furthermore, the heatmap only very rarely shows similarity values of ≥0.5

(yellow to red). Altogether, this underlines the diversity of the used positive dataset.

9.2 Descriptor selection and visualization

Pairwise Mann-Whitney-U-tests of Actives against ZINC (several sets of 100 randomly

chosen structures each) were performed for each of the 51 QikProp descriptors. The tests

showed consistent results regarding their P-values. Figure 9.2 depicts the distribution

of the calculated P-values using the R package BioNet [219, 220] for one representative

test set including a fitted beta and uniform distribution. Under the null hypothesis,

the P-values are uniformly distributed representing only noise. The remaining part of

the P-values describes the signal distribution. The fitted beta-uniform-mixture model

[221] shows a strong signal of significant differences in the physico-chemical properties

of Actives and ZINC. Based on a descriptive representation of the 51 distributions (data
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Table 9.1 Summary of used datasets. Reproduced and updated from: Merget et al.,
MycPermCheck: the Mycobacterium tuberculosis permeability prediction tool for small
molecules, Bioinformatics, 2013, 29:1, pp. 61–68, with permission by Oxford University
Press.

Name Size Description

Training sets
Actives 3 727

CDD TB compounds with mycobac-
terial growth inhibition of >90% at a
concentration of 10 µM

ZINC 18 988 507
Prepared structures of ZINC drug-like
database

Permeables 771

Compounds gathered from ChEMBL
with antimycobacterial activity (ab-
sent in the dataset Actives)

Test sets Impermeables 21

Compounds with in-vitro activity
against M. tuberculosis targets, but
without activity in mycobacterial
whole-cell assays

InhA inhibitors 19

Antimycobacterial InhA inhibitors
from selected publications (cf. text
for references) absent in the dataset
Actives

not shown) and a common understanding of physico-chemical descriptors for drug de-

velopment, five QikProp descriptors (P < 0.001) were further considered:

• FOSA: The hydrophobic part of the solvent accessible surface area (saturated

carbon and attached hydrogen atoms);

• QPlogPo.w: The logarithm of the calculated octanol/water partition coefficient

(hereinafter called logP);

• PISA: The π-interacting part of the solvent accessible surface area;

• accptHB: The number of H-bond acceptors;

• glob: The generic spherical surface to molecule surface ratio.

Other common molecular descriptors (e.g. molecular weight or the number of H-bond

donors) were not considered for model derivation, mostly due to insufficient differences
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Figure 9.1 Heatmap of atom pair similarity matrix of dataset Actives and distri-
bution of similarity values. Reproduced from: Merget et al., MycPermCheck: the
Mycobacterium tuberculosis permeability prediction tool for small molecules, Bioinfor-
matics, 2013, 29:1, Supplement S1, with permission by Oxford University Press.

between the datasets with respect to these descriptors. To increase statistical signifi-

cance, in all of the following randomly chosen datasets, the size was increased to 1000

per group. Figure 9.3 illustrates the distribution of the five selected descriptors for a

representative randomly chosen test set of Actives as well as a randomly chosen ZINC -

test set of equal size. The non-overlapping box notches show significant differences in

the medians of the distributions of these five descriptors for the two datasets.

A first impression whether a potential new inhibitor might show descriptor values typical

for permeable compounds can be gained from a comparison with the distribution of the

descriptors in the Actives dataset. For this purpose, four borders have been defined to

better delimit the physico-chemical space of the permeable substances: upper, up, low

and lower (Table 9.2). The borders up and low are defined by the 75 and 25% quantile of

the training dataset, respectively. Upper and lower represent 75 and 25% quantile ± half

the interquartile range, respectively.
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Figure 9.2 Histogram of the P-values of 51 pairwise Mann-Whitney-U-tests of each
descriptor of Actives against ZINC. The black curve indicates the fitted beta distribu-
tion (signal + noise), and the gray line indicates the fitted uniformly distributed baseline
of noise. A clear deviation of the empirical P-values from the fitted noise distribution
is observed, suggesting a strong information content in the differences of Actives and
ZINC. Reproduced from: Merget et al., MycPermCheck: the Mycobacterium tubercu-
losis permeability prediction tool for small molecules, Bioinformatics, 2013, 29:1, pp.
61–68, with permission by Oxford University Press.

Table 9.2 Borders of the five chosen descriptors based on the distributions of the
descriptors in the complete Actives dataset, as further described in the text. FOSA
and PISA are measured in Å2. Reproduced from: Merget et al., MycPermCheck: the
Mycobacterium tuberculosis permeability prediction tool for small molecules, Bioinfor-
matics, 2013, 29:1, pp. 61–68, with permission by Oxford University Press.

FOSA logP PISA accptHB glob

upper 362.95 5.329 430.66 7.125 0.861
up 272.23 4.479 355.49 6.000 0.839
low 90.80 2.779 205.16 3.750 0.794

lower 0.09 1.929 129.99 2.625 0.772
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Figure 9.3 Boxplots of the five chosen chemical descriptors. Boxes indicate the
interquartile range (25–75% quantile). Black lines indicate the median of each distribu-
tion. The whiskers extend to values 1.5 times the interquartile range from the box. A
highly significant difference in the medians of Actives versus ZINC is observed for each
descriptor, indicated by non-overlapping notches (P < 0.001, Mann-Whitney-U-tests).
Reproduced from: Merget et al., MycPermCheck: the Mycobacterium tuberculosis per-
meability prediction tool for small molecules, Bioinformatics, 2013, 29:1, pp. 61–68,
with permission by Oxford University Press.

9.3 PCA and logistic regression method

Although the value mapping of each descriptor for a compound of interest is useful

for later interpretation of results, a reliable prediction of the permeability cannot be

achieved this way. Thus, the permeability prediction approach is based on multivariate

statistics. First, 25 principal component analyses (PCAs) were performed based on the

five chosen descriptors using random test sets of 1000 permeable substances of the Actives

dataset and 1000 substances of the ZINC dataset. Then, the resulting coordinates were

projected to the first principal component. All PCAs showed coherent results: each

time a one-dimensional representation of principal component 1 (PC1) showed the best

splitting of the two groups Actives and ZINC. Thus, by reducing the multi-dimensional

information space to only the first principal component (42.4% information content,

histograms in Figure 9.4), it is possible to achieve a maximum separation of these two

groups. All PCA analyses were performed with the vegan R package [208].
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Figure 9.4 Logistic regression model of PCA coordinate 1 (42.4% information con-
tent) of 1000 compounds each of the Actives and the ZINC training sets. The his-
togram at the top of the plot shows the distribution of the Actives dataset, whereas the
histogram at the bottom represents the samples from the ZINC dataset. A clear separa-
tion of the two distributions can be observed. The black curve indicates the calculated
logistic regression model based on PC1 of the priorly performed PCA. It is quanti-
fied according to the ‘Probability’ axis, indicating the final result of MycPermCheck.
Reproduced from: Merget et al., MycPermCheck: the Mycobacterium tuberculosis per-
meability prediction tool for small molecules, Bioinformatics, 2013, 29:1, pp. 61–68,
with permission by Oxford University Press.

The PC1 coordinates of one representative PCA were then used to generate a logistic

regression model (Figure 9.4; figure created with the R package popbio [209]) using R

[220]. The obtained logistic regression function follows:

P (z) =
1

1 + e−z
(9.1)

with z = f(x) = β · x (9.2)

with a highly significant regression coefficient β = 45.187 (P < 2 · 10−16). The variable

x represents the input PC1 coordinate of a given compound. This logistic regression

model is the core of the MycPermCheck [3] tool for estimating the likelihood of perme-

ability. During the permeability prediction procedure, any potential inhibitor of interest

is processed in MycPermCheck by these steps: (i) first, the principal component coor-

dinates are calculated according to the existing PCA of the training data, (ii) then, the

coordinate of PC1 is used as input (x) for the logistic regression model. As a result, the

user receives a calculated probability [0 < P (z) < 1] of a compound to be classified as

permeable.
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9.4 Evaluation

For evaluation of the logistic regression model, the ChEMBL database [222] was browsed

for antimycobacterially active compounds with a minimal inhibitory concentration (MIC)

≤ 10 µM , yielding a total of 771 permeable structures (Permeables) absent in the train-

ing dataset Actives. The compounds were prepared the same way as the compounds of

the training set (3D conversion, protonation, stereoisomerization, tautomerization and

energy minimization). After descriptor calculation with QikProp, MycPermCheck was

used with the option Calculate Mean of all Isomeric Forms (as described in the next

section). The calculated permeability probabilities show a median of 0.664 (±0.139

median absolute deviation). Hence, MycPermCheck yields valid predictions for these

antimycobacterial and, thus, permeable substances.

To further evaluate MycPermCheck with biological real-life data, the intersection of two

different datasets was generated: first, the CDD TB [184] was filtered for substances

which show <10% antimycobacterial activity at 10 µM , yielding >190 000 compounds.

Simultaneously, the ChEMBL database [222] was browsed for assays against M. tubercu-

losis targets and filtered for structures marked as active within the database according

to their half-maximal inhibitory concentration (IC50 value) or enzymatic inhibition con-

stant (Ki value) of ≤10 µM . On the basis of their International Chemical Identifiers

(InChI strings), the intersection of the two datasets was established, yielding 22 com-

pounds. As an additional filter criterion, an all versus all similarity matrix was generated

based on the atom pair similarity of these compounds using ChemMineR [210, 218]. A

compound showing >80% similarity to another compound was removed. One structure

(CHEMBL592712) was affected, yielding a final number of 21 compounds with low IC50

or Ki values (i.e. activity against an M. tuberculosis target in an in vitro enzyme assay),

but without antimycobacterial activity. Based on the assumption that the most likely

reason for the inactivity of these compounds against M. tuberculosis is their inability to

penetrate the mycobacterial cell wall, this dataset should be a collection of imperme-

able compounds. The 21 compounds (Impermeables) (see structures IM1-IM21 Table

9.3) were prepared the same way as the Permeables and the compounds of the train-

ing set. The calculated QikProp descriptors were then processed by MycPermCheck,

again with the option Calculate Mean of all Isomeric Forms. The obtained permeability

probabilities show a median of 0.444 (±0.172 median absolute deviation).

Fifty combined datasets of the 21 Impermeables and 21 randomly chosen Permeables

were then created to perform a multiple Receiver Operating Characteristic (ROC) anal-

ysis with the R package ROCR [227] (Figure 9.5a). The single ROC curves were averaged

by true-positive rate (black curve) as well as by threshold (colored curve). The color

scale illustrated in Figure 9.5 represents the actual permeability probability that is used
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Table 9.3 MycPermCheck output for evaluation dataset of 19 InhA inhibitors and
21 impermeable compounds (sorted by probability), including an illustration of the
compound. Compounds taken from [a]-[223], [b]-[224, 225], [c]-[64], [d]-[226], [e]-[45].
Modified from: Merget et al., MycPermCheck: the Mycobacterium tuberculosis per-
meability prediction tool for small molecules, Bioinformatics, 2013, 29:1, Supplement
S2, with permission by Oxford University Press. Probability values are calculated with
MycPermCheck 1.1.

ID Name Structure Prob. FOSA logP PISA glob

P1 0.923 90.91 6.676 407.06 1.250 0.812

P2 0.916 60.03 6.280 403.63 1.250 0.826

P3 0.900 39.57 5.839 386.66 1.250 0.843

P4 0.855 102.78 5.415 460.50 5.000 0.807

P5 0.835 110.25 5.088 450.07 5.000 0.811

P6 8PP [c] 0.804 325.95 5.951 297.64 1.250 0.794

P7 VH07 [d] 0.801 0.00 3.180 451.79 4.750 0.812

P8 6PP [c] 0.782 260.55 5.175 297.64 1.250 0.817

P9 0.774 0.00 4.738 225.62 1.250 0.898

P10 0.761 243.11 6.046 200.54 1.250 0.833

accpt
HB

compound 
26 [a]

compound 
25 [a]

compound 
24 [a]

compound 
p4 [b]

compound 
p6 [b]

Triclosan 
[c]

compound 
7 [a]
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P11 0.756 195.67 5.383 206.91 1.250 0.827

P12 4PP [c] 0.755 195.62 4.402 297.64 1.250 0.843

P13 0.744 190.29 5.296 200.89 1.250 0.836

IM1 0.740 202.63 4.755 349.54 5.000 0.785

P14 PT70 [e] 0.736 320.71 5.424 254.59 1.250 0.824

P15 2PP [c] 0.719 130.20 3.522 297.90 1.250 0.872

P16 VH04 [d] 0.631 110.86 3.313 255.57 3.750 0.838

IM2 0.598 280.71 4.636 222.90 4.000 0.825

IM3 0.551 317.17 4.607 231.05 5.500 0.798

IM4 0.543 0.00 1.401 319.56 6.000 0.837

P17 0.535 220.69 3.188 259.43 5.000 0.820

compound 
10 [a]

compound 
11 [a]

CHEMBL
589101

CHEMBL
239673

CHEMBL
259507

CHEMBL
25600

compound 
a6 [b]
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P18 0.531 376.17 4.184 313.73 6.000 0.812

IM5 0.516 25.86 2.221 140.55 3.000 0.858

IM6 0.501 373.89 4.579 223.28 5.500 0.808

IM7 0.487 0.30 1.152 271.78 6.500 0.812

IM8 0.479 80.49 1.669 287.40 6.000 0.847

IM9 0.462 0.00 0.667 289.68 6.500 0.822

IM10 0.445 93.80 1.690 167.58 3.000 0.882

IM11 0.444 118.96 1.625 165.38 3.000 0.858

P19 0.388 321.51 4.208 89.26 5.500 0.810

IM12 0.273 371.34 2.420 163.93 6.000 0.843

compound 
p67 [b]

CHEMBL
569750

CHEMBL
412059

CHEMBL
1337519

CHEMBL
865

CHEMBL
1446150

CHEMBL
495123

CHEMBL
568651

compound 
d12 [b]

CHEMBL
217499
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IM13 0.263 533.94 3.469 0.00 2.000 0.830

IM14 0.229 0.00 -0.799 149.87 5.500 0.914

IM15 0.226 139.42 0.462 131.75 6.750 0.852

IM16 0.210 0.00 -0.579 132.67 6.500 0.904

IM17 0.199 83.52 -0.795 127.20 5.500 0.886

IM18 0.193 48.96 -1.123 133.03 5.500 0.900

IM19 0.124 349.17 0.670 76.84 8.250 0.817

IM20 0.091 81.53 -1.285 10.99 8.000 0.887

IM21 0.078 373.44 0.755 0.00 8.250 0.882

CHEMBL
242255

CHEMBL
1875592

CHEMBL
1410342

CHEMBL
1894686

CHEMBL
7087

CHEMBL
419

CHEMBL
196677

CHEMBL
1884503

CHEMBL
220492
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as a sliding threshold for establishing the true- versus false-positive rate and, hence,

the ROC curve. The average ROC curve shows a fast increase of the true-positive rate

without producing an equivalent amount of false positives, indicating that reliable and

practically useful results can be obtained with MycPermCheck for randomly selected

permeable molecules. At a false-positive rate of β = 10% (a specificity of 1− β = 90%),

a true-positive rate (sensitivity) of 63.9 ± 10.4% (SD) is achieved (i.e. about two-thirds

of all true positives already appear at this cut-off). A less strict false-positive rate of 25%

yields a higher sensitivity of 70.2 ± 10.0% (SD). At a permeability probability cut-off of

0.596, a specificity of 90% is obtained, whereas a cut-off of 0.524 matches a specificity of

75%. These two cut-offs (rounded to 0.60 and 0.52, respectively) form the basis of the

traffic-lights color code of the web program output, as described below. Altogether, the

single ROC-analyses of randomly drawn datasets display a high average area under the

curve (AUC) of 0.786 ± 0.072.

For evaluation of the logistic regression model for three well-studied classes of inhibitors

of the mycobacterial enzyme enoyl acyl carrier protein reductase (InhA), the chemical

structures of 20 mycobacterial inhibitors (not present in the dataset Actives) were ex-

tracted from the literature [45, 224–226, 228, 229]. Again, the structures were filtered

for atom pair similarity <80%. After removing one compound (5PP), 19 mycobacterial

inhibitors remained in this test set (see structures P1-P19 in Table 9.3). These inhibitors

cover a broad chemical range from triclosan and its derivatives (diphenyl ethers) to aryl-

amides and pyrrolidine carboxamides. Again, the compounds were prepared as before

(3D conversion, protonation, stereoisomerization, tautomerization, energy minimization

and QikProp descriptor calculation). The calculated permeability probabilities show a

median value of 0.761 (±0.043 median absolute deviation). Therefore, MycPermCheck

yields valid predictions for these permeable substances.

A second ROC analysis was performed for a combined dataset of these 19 active sub-

stances and the previously detected 21 impermeable compounds (Figure 9.5b). Regard-

ing the highly active InhA inhibitors, MycPermCheck shows an even faster increase

of true-positive results than for the randomized evaluation test sets with an AUC of

0.945. At a false-positive rate of β = 10%, a true-positive rate (sensitivity) of 84.2%

is achieved, whereas a false-positive rate of 25% corresponds to a sensitivity of 94.7%.

The actual permeability cut-offs at these false-positive rates are very similar to those

of the multiple ROC analysis of the randomized evaluation test sets (0.598 and 0.517,

respectively). These results illustrate that MycPermCheck is applicable on inhibitors of

the M. tuberculosis target InhA.
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Figure 9.5 (a) Multiple ROC analysis of calculated permeability probabilities for 50
datasets of 21 randomly selected Permeables and 21 Impermeables. The true-positive
rate is plotted against the false-positive rate for a rising threshold of the calculated
permeability probability (indicated by the color scale). The gray dashed curves illus-
trate the single ROC analyses. The thick black curve shows the ROC curve averaged
by true-positive rate, whereas the thick colored curve represents the calculated average
by threshold. Error bars indicate the standard deviation of the true-positives–averaged
curve. The dashed angle bisector illustrates a uniform rise of the true-positive and
false-positive rate, equivalent to a random model. (b) ROC analysis of calculated
permeability probabilities for the evaluation dataset of 19 InhA inhibitors and 21 Im-
permeables. The true-positive rate is plotted against the false-positive rate for a rising
threshold of the calculated permeability probability (indicated by the color scale). The
dashed angle bisector illustrates the random model. Both ROC curves show a clear
enrichment of permeable compounds at the top of the permeability-ranked list. Repro-
duced with updated values (MycPermCheck 1.1) from: Merget et al., MycPermCheck:
the Mycobacterium tuberculosis permeability prediction tool for small molecules, Bioin-
formatics, 2013, 29:1, pp. 61–68, with permission by Oxford University Press.
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9.5 Implementation

MycPermCheck is a freely accessible online tool. It is programmed entirely in perl, mak-

ing use of the perl CGI-package for displaying browser contents. Usage of the program

begins by accessing the start-up screen (Figure 9.6a). Here, the input data [a QikProp

comma-separated values (CSV) file] must be chosen using the browse function of the

website. The selection ”Calculate Mean of Isomeric Forms” defines whether all ‘iso-

meric’ forms of a compound (i.e. tautomers, protomers, stereoisomers, conformers, etc.;

indicated and recognized by the same molecule name in the QikProp CSV file) should be

considered and averaged. Alternative options are: (i) only the first representative is used

for the calculation or (ii) all molecules are processed separately. Clicking the Submit

button submits the job to the instant calculation of the permeability probabilities.

Within few seconds, a list of the submitted compounds appears as a result, sorted

either by the calculated permeability probability (default), by the compound name or

in an unchanged order (optional selection on submission). The list shows the calculated

permeability probability in the first column after the compound name, followed by the

single descriptor values (Figure 9.6b; detailed list of evaluation data including structures

see Table 9.3). For the single descriptor values, blue-scale colors are assigned based on

the borders defined in Table 1: (i) if the value lies between the borders up and low, this

state is colored light blue; (ii) a value between the borders up and upper or low and

lower, respectively, is colored blue; (iii) a value below lower or above upper is illustrated

by a dark blue coloring. This graphical illustration represents the chemical similarity

of a given compound to the training dataset Actives in terms of the five most relevant

descriptors (see colored descriptor values in Figure 9.6b). In contrast, the quality of each

result is rated according to a simple and intuitive traffic-lights system: for highlighting

the permeability probability, two borders have been defined based on the ROC analyses

of the evaluation dataset (Figure 9.5). The first cut-off of 0.60 corresponds to a false-

positive rate of ∼10%. Results with probabilities above this value (>0.60) are marked

green. The second cut-off of 0.52 corresponds to a false-positive rate of ∼25%. Results

above this threshold are marked orange. Probabilities below 0.52 are colored red. A

download function can be used to save all results in a CSV file for further processing by

the user.

Besides the use of Maestro QikProp descriptors for estimating the permeability proba-

bility, MycPermCheck is also able to process CSV output files of the open-source java

descriptor calculation package PaDEL-Descriptor [198]. A complete evaluation of the

PCA and regression model for PaDEL descriptor input is presented below.
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Figure 9.6 (a) Details of the start-up page of the MycPermCheck website. The
mask at the bottom of the page is used to upload the input QikProp or PaDEL CSV
file. The user can choose between three different calculation and sort modes. With a
click on ‘Submit’, the user can upload the input file to the web server and start the
calculation process. (b) Details of the results page of the MycPermCheck website. The
lower half of the screen depicts the top of the calculated results table. The compounds
with the highest permeability probabilities (green) are shown (sorted by probability).
In the table, besides the permeability probability, the raw descriptor data of each
compound are shown. The blue-scale color code illustrates the deviation of these data
from the distribution of the Actives training set according to the borders defined in
Table 9.2. The provided comma-separated text-file version of the results is accessible
through the ‘Download’ button above the results table. Reproduced with updated
values (MycPermCheck 1.1) from: Merget et al., MycPermCheck: the Mycobacterium
tuberculosis permeability prediction tool for small molecules, Bioinformatics, 2013, 29:1,
pp. 61–68, with permission by Oxford University Press.
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The program is accessible under the following website:

http://www.mycpermcheck.aksotriffer.pharmazie.uni-wuerzburg.de

9.5.1 Stand-alone version

Besides the graphical online service, a stand-alone command-line interface (CLI) version

of MycPermCheck was created. The tool is programmed entirely in perl and is ready-

to-use without requiring additional perl packages. It encompasses the same functions

regarding calculation and sorting as the web tool. Whereas input files for remote My-

cPermCheck calculations are limited to 5 MB due to server capacity issues, the local

stand-alone installation of MycPermCheck is able to process millions of molecules at

once. The open source code of the CLI version is attached in Appendix B.

9.6 PaDEL-Descriptor

9.6.1 Descriptor selection

As an alternative to the QikProp model, which is based on the commercial Schrödinger

software, an additional regression model was derived. This model is based solely on

descriptors of the open-source descriptor calculation package PaDEL-Descriptor [198].

Since PaDEL 2.7 provides descriptors in an overwhelming quantity (863 descriptors),

a first approach of selecting a feasible combination of descriptors was the search for

QikProp-equivalents within the PaDEL inventory. In this attempt, the following de-

scriptors were chosen (p < 0.001, Mann-Whitney-U tests of Actives against ZINC ):

• HybRatio: The ratio of sp3 to sp2 hybridized carbon atoms;

• XlogP: The logarithm of the calculated octanol/water partition coefficient;

• LOBMAX: The maximum length-over-breadth coefficient of the molecule.

The number of H-bond acceptors (nHBAcc) as well as the hydrophobic solvent acces-

sible surface area (THSA) calculated by the PaDEL algorithms did not show signif-

icant differences in the two datasets. Hence, these two descriptors were ignored for

deriving a PaDEL-Descriptor based model. To further improve the regression model

pairwise Mann-Whitney-U-tests of Actives against ZINC (several sets of 100 randomly

chosen structures each) were performed for each descriptor (Figure 9.7). Due to the

removal of incomplete descriptor data, the Actives dataset comprises 3475 compounds



Chapter 9. MycPermCheck 144

Figure 9.7 Histogram of the p-values of 786 pairwise Mann-Whitney-U-tests of each
descriptor of Actives against ZINC for one test set of 100 compounds per group. The
black curve indicates the fitted beta distribution, the grey line indicates the fitted
baseline of noise. A clear deviation of the empirical p-values from the fitted noise dis-
tribution is observed, suggesting a strong signal in the differences of Actives and ZINC.
Reproduced from: Merget et al., MycPermCheck: the Mycobacterium tuberculosis per-
meability prediction tool for small molecules, Bioinformatics, 2013, 29:1, Supplement
S3, with permission by Oxford University Press.

for the PaDEL-based model derivation, and tests were performed for 786 of 863 de-

scriptors. Again, the fitted beta-uniform-mixture model shows a strong signal of sig-

nificant differences in the physico-chemical properties of Actives and ZINC. Several

new PaDEL-specific descriptors were tested for significant shifts in the distributions

(p < 0.001, Mann-Whitney-U tests), leading to two additional descriptors used in the

PaDEL-Descriptor based regression model:

• C2SP2: Number of doubly bound carbon atoms bound to two other carbon atoms;

• TPSA: Sum of hydrophilic solvent accessible surface areas.

9.6.2 PCA and logistic regression method

Again, Principal Component Analyses were performed on the five chosen PaDEL de-

scriptors using random test sets of 1000 permeable substances of the Actives dataset

and 1000 substances of the ZINC dataset. The first principal component showed the
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Figure 9.8 Logistic regression model of PCA coordinate 1 (36.8% information con-
tent) of 1000 compounds each of the Actives and the ZINC training sets. The histogram
at the top of the plot shows the distribution of the Actives dataset, while the histogram
at the bottom represents the samples from the ZINC dataset. A clear separation of
the two distributions can be observed. The black curve indicates the calculated logistic
regression model based on principal component 1 of the priorly performed PCA. It is
quantified according to the “Probability” axis, indicating the final result of MycPerm-
Check. Reproduced from: Merget et al., MycPermCheck: the Mycobacterium tuber-
culosis permeability prediction tool for small molecules, Bioinformatics, 2013, 29:1,
Supplement S3, with permission by Oxford University Press.

best separation of the two datasets. The PC1 coordinates of one representative PCA

were then used to generate a logistic regression model (Figure 9.8; figure created with

the R package popbio [209]). The logistic regression function follows:

P (z) =
1

1 + e−z
(9.3)

with z = f(x) = β · x (9.4)

with a highly significant regression coefficient β = −52.943 (p < 2 · 10−16) and x being

the input PC1 coordinate of a compound.

9.6.3 Evaluation

For evaluation purposes, the same three datasets were used as for the QikProp-model

(cf. Chapter 9.4). These include (i) 656 compounds with complete descriptor data of

the Permeables dataset (permeable substances absent in the training dataset extracted
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from the ChEMBL database [222]), (ii) 21 presumably impermeable compounds, and

(iii) 19 highly active antimycobacterial InhA inhibitors [45, 224–226, 228, 229].

For the PaDEL-Descriptor based model, the active compounds gathered from ChEMBL

achieved a median permeability probability of 0.715 (±0.116 median absolute deviation).

The 21 impermeable compounds showed a median permeability probability of 0.453

(±0.200 median absolute deviation). The 19 antimycobacterial InhA inhibitors obtained

high values with a median probability of 0.792 (±0.069 median absolute deviation).

ROC-analyses were performed for 50 combined datasets of the 21 Impermeables and

21 again randomly chosen Permeables with the R package ROCR [227] (Figure 9.9).

The clear enrichment of true positive results indicates that MycPermCheck is able to

provide valid results on the basis of PaDEL descriptors. At a specificity of 90%, a true

positive rate of 58.4% ± 8.6% (SD) can be achieved. For a decreased specificity of 75%,

the true positive rate rises to over 67.0% ± 8.5% (SD). At a permeability probability

cutoff of 0.691, a specificity of 90% is achieved, while a cutoff of 0.620 corresponds to a

specificity of 75%. These cutoffs (rounded to 0.69 and 0.62, respectively) form the basis

of the traffic-lights color code for the PaDEL-Descriptor based model. Altogether, the

ROC-analysis shows a high average AUC of 0.819 ± 0.049.

In a second ROC-analysis, the combined dataset of 19 InhA inhibitors and 21 imperme-

ables shows an even faster increase of the true positive rate with an AUC of 0.945. A

specificity of 90% corresponds to a true positive rate (sensitivity) of 84.2%, whereas a

75% threshold comprises 94.7% of all true positives (Figure 9.9).

9.6.4 Implementation

The PaDEL-Descriptor based regression model is implemented into both the MycPerm-

Check online tool and the CLI version. The format of the input file is detected auto-

matically and the corresponding model is loaded for all following calculations.

9.7 Discussion

MycPermCheck is an intuitively accessible online tool for knowledge-based estimation

of the permeability of potential antimycobacterial compounds with respect to the M.

tuberculosis cell wall. The program is based on a chemoinformatic data-mining approach

without any assumptions regarding the uptake mechanism. It is, hence, generally ap-

plicable to drug-like compounds with a molecular weight <500 Dalton. With statistical

significance, a training set of permeable compounds (Actives) could be delimited from
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Figure 9.9 (a) Multiple ROC-analysis of calculated permeability probabilities for 50
datasets of 21 randomly selected Permeables and 21 Impermeables. The true positive
rate is plotted against the false positive rate for a rising threshold of the calculated
permeability probability (indicated by the color-scale). The gray, dashed curves illus-
trate the single ROC analyses. The thick, black curve shows the ROC-curve averaged
by true positive rates, while the thick, colored curve represents the calculated average
by threshold. Error bars indicate the standard deviation of the true positives-averaged
curve. The dashed angle bisector illustrates a uniform rise of the true positive and false
positive rate, equivalent to a random model. (b) ROC-analysis of calculated permeabil-
ity probabilities for the evaluation dataset of 19 InhA inhibitors and 21 Impermeables.
The true positive rate is plotted against the false positive rate for a rising threshold
of the calculated permeability probability (indicated by the color-scale). The dashed
angle bisector illustrates the random model. Both ROC-curves show a clear enrich-
ment of permeable compounds at the top of the permeability-ranked list. Reproduced
with updated values (MycPermCheck 1.1) from: Merget et al., MycPermCheck: the
Mycobacterium tuberculosis permeability prediction tool for small molecules, Bioinfor-
matics, 2013, 29:1, Supplement S3, with permission by Oxford University Press.
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randomly distributed drug-like molecules based on five physico-chemical descriptors in

a principal component analysis. Based on the resulting first principal component, a

logistic-regression model for estimating the permeability probability could be derived.

Thereby, instead of hard cut-offs for molecular descriptor interpretation (as, for example,

in Lipinski’s Rule of 5 [186]), a ‘more realistic and gradated description of the continuum

of compound quality’ is obtained, an advantage recently pointed out by Bickerton and

colleagues in the context of their quantitative estimate of drug likeness [191].

MycPermCheck was multiply tested on 50 evaluation datasets of 21 permeable com-

pounds and a set of 21 impermeable compounds. With a standard deviation of true

positives of ∼10% for a specificity of both 90 and 75%, the average of the multiple

ROC curves shows a robust prediction for randomly selected permeable compounds (cf.

Figure 9.5a). Moreover, MycPermCheck was tested on 19 highly active InhA inhibitors

and 21 impermeable compounds, leading to a very good enrichment of the permeable

compounds in the range of the highest probability values and of the impermeable com-

pounds in the range of the lowest probability values (cf. Figure 9.5b and Table 9.3).

In fact, among the top 13 compounds (0.923 ≥ P ≥ 0.744), no false positive is found.

Moreover, the 10 lowest ranked compounds (0.273 ≥ P ≥ 0.078) are all true negatives,

i.e. impermeables. Comparing the molecular structures and descriptor values of these

two groups of top-ranked and lowest-ranked compounds indicates that with only few ex-

ceptions permeable compounds are characterized by a high PISA to FOSA ratio (i.e. the

π-interacting surface area is generally much larger than the hydrophobic surface area),

a logP of >4 and an accptHB value <2. In contrast, the 10 lowest-ranked imperme-

able compounds show frequently larger FOSA than PISA values, have low logP values

(often <1) and generally an accptHB value of >5. The compounds with the highest

permeability probability show indeed at least two aromatic ring systems to which small

to moderately sized hydrophobic substituents and few H-bond acceptors are attached.

The impermeable compounds, instead, have often only one (if any) aromatic ring system

and–despite a significant hydrophobic surface area–a higher polarity and more H-bond

acceptors (cf. compounds IM14-IM21 in Table 9.3).

These observations may provide some guidelines for ensuring mycobacterial permeability

of designed compounds. Nevertheless, it is also clear that looking at single parameters

only is not sufficient. In fact, simply aiming for descriptor values that are within the ‘up’

and ‘low’ borders defined in Table 9.2 does not ensure a high permeability probability.

For example, compound IM6 shows three descriptor values within the light-blue range,

one within the blue (logP) and only one within the dark-blue range (FOSA), yet the

probability is only 0.501, and the compound is indeed impermeable. Conversely, com-

pounds with high probabilities may also show descriptor values in the blue or dark-blue

range, as, for example, the top three compounds P1, P2 and P3 (cf. Table 9.3). Thus,
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a ”one-dimensional” view focused at single descriptor values and their univariate statis-

tics is indeed of little value. Instead, the correct combination and relative weighting of

molecular properties is essential, as incorporated in the logistic regression model based

on the first principal component: PISA should be larger than FOSA, logP not too small

(rather >3) and accptHB not too large (rather <5); the descriptor glob plays a minor

role in modulating the probability.

To ensure compatibility with open-source software, MycPermCheck was also trained on

a combination of five PaDEL descriptors [198]. Comparison of the two models on basis of

the AUC leads to the conclusion that the QikProp model performs slightly worse than its

PaDEL-counterpart (AUC: 0.786 vs. 0.819). However, early enrichment of true positives

is also an important parameter of model quality. Here, the model based on QikProp

descriptors shows a higher enrichment of true positives at a specificity of 90%, compared

to the PaDEL-model (63.9% vs. 58.4%). Since the difference of 5.5% is, however, well

within the standard deviations of ∼10%, the models exhibit a comparable performance.

Although the validation results of MycPermCheck illustrate a high predictivity, it is

also clear that an absolute accuracy should not be expected. Considering the false pos-

itive IM1, which obtains a probability value >0.7, the lack of permeability cannot be

explained in terms of the descriptor values, as they fit the general trends observed for

the truly permeable compounds. It should be kept in mind, however, that compounds

of the Impermeables validation set are actually only assumed to be impermeable be-

cause of a lack of antimycobacterial activity despite an inhibitory effect in an in vitro

target-based assay. Obviously, this lack of activity may also have other reasons than

mere impermeability. Examples include the activity of efflux pumps and the in vivo

degradation/inactivation of a compound. Accordingly, it cannot be ruled out that IM1

is indeed permeable, but inactive for other reasons. Considering false negatives, a few

cases are observed as well. Of the 19 permeable compounds in the validation set, P18 and

P19 obtain probability values <0.6. Although these compounds have larger FOSA than

PISA values and 5–6 hydrogen bond acceptors, they show antimycobacterial activity.

These examples illustrate the limits of the approach, which (i) does not make any dis-

tinction with respect to the uptake mechanism and (ii) is not based on a dataset of

experimentally proven impermeable compounds. Clearly, a sufficiently large dataset of

compounds with known uptake mechanism or confirmed impermeability would be highly

advantageous, both for the derivation of improved models as well as for a more reliable

validation of the current model. Given the lack of such a dataset, MycPermCheck is an

attempt to make best use of the available knowledge base.

Despite these shortcomings, MycPermCheck is expected to be of significant practical

value for any (virtual) screening endeavor dedicated to antimycobacterial drug design.
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The validation results indicate that a clear enrichment of potentially permeable com-

pounds and a highly reliable filtering of impermeable compounds (with P < 0.1) can be

achieved with this, to our knowledge, unique approach. Accordingly, MycPermCheck

may serve as an additional selection criterion on virtual screening and as a utility for

increasing the likelihood of obtaining permeable antimycobacterial compounds.
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Permeability prediction, docking and MD

simulations lead to suggestion of potential InhA

inhibitors

Findings from both parts of this thesis were considered in conducting a screening for

novel potential InhA inhibitors, as described in the following chapter. MycPermCheck

1.1 (cf. Chapter 9) was used for a large-scale permeability prediction against the my-

cobacterial cell wall of the entire ZINC12 drug-like database. After subsequent filtering

steps with respect to ADMET properties predicted with QikProp, docking was carried

out to reveal potential InhA inhibitors. Several derivatives of an initial hit compound

were analyzed using MD and SMD simulations to assess aspects of protein and ligand

stability (cf. Chapters 3 and 6), as well as maximum free energy changes of induced

ligand extraction (cf. Chapters 5 and 6). This chapter, thus, shows key aspects of how

the methodology presented in both parts of this thesis can support a potential screening

campaign for antituberculars.

10.1 Exploration of the M. tuberculosis permeability space

10.1.1 Permeability prediction for the ZINC database

The drug-like subset of the ZINC12 [217] database was prepared for descriptor calcula-

tion in the process of generation of the MycPermCheck model (cf. Chapter 9.1): after

downloading ZINC12 in the SMILES format from http://zinc.docking.org, all 13,205,607

SMILES strings were converted to the SDF format using OpenBabel [230]. Subse-

quently, the software Corina (available from Molecular Networks GmbH, Erlangen, Ger-

many) [213] was used to convert the 2D molecules into three-dimensional structures.

These structures were then protonated at pH 7.0 ± 2.0, stereoisomerized, tautomerized,

and energetically minimized with the Schrödinger Maestro tool LigPrep (version 2.3,

Schrödinger, LLC, New York, NY, 2009). Lastly, the resulting 19,296,744 3D structures

were used for physico-chemical descriptor calculation with Schrödinger QikProp (Version

3.4, Schrödinger, LLC, New York, NY, 2011).

151
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After dismissal of all permanently ionized compounds, 18,988,507 structures with com-

plete QikProp descriptor data remained (negative dataset used in MycPermCheck model

generation, cf. Chapter 9.1). The stand-alone version of MycPermCheck 1.1 (Ap-

pendix B) was used for permeability prediction for the structures with the option “Calcu-

late Mean of All Isomeric Forms”, resulting in permeability prediction data for 13,061,805

unique compounds. The ZINC IDs of all structures with a permeability probability of

≥0.900 were saved and again the corresponding SMILES and QikProp data extracted,

yielding descriptor data for 21,576 substances.

10.1.2 Distributions of descriptor and ADMET data

The distributions of selected QikProp descriptor data were analyzed for structures clas-

sified as permeable. First, the descriptors used by MycPermCheck were considered

(Figure 10.1). As expected, the permeable substances tend to have a high logP with a

mean of 5.67 and a noticeable π-interacting surface area (PISA, avg. 525.28 Å2). Ac-

cordingly, the hydrophobically interacting surface area (FOSA) is considerably lower

(avg. 62.30 Å2). The number of H-bond acceptors and the globularity (accptHB and

glob) show averages of 3.73 and 0.79, respectively. Figure 10.2 shows the distributions

of additional descriptors. It is notable that all descriptors show distributions within the

range of 95% of known drugs (cf. Table 10.1; QikProp manual, Schrödinger Software Re-

lease 2014-1). However, this is not surprising, as the compounds stem from the drug-like

subset of ZINC12.

Furthermore, several ADMET parameters were predicted with QikProp to gain insight

into the pharmacokinetic and pharmacodynamic (PK/PD) properties of the permeable

compounds (Table 10.2 and Figure 10.3). According to QikProp predictions, the com-

pounds have very good ADMET properties regarding the permeability of cells and oral

absorption. The only setback is a high predicted average hERG K+ channel blockage.

10.1.3 Correlations in descriptor data

A cross-correlation matrix was generated to examine the inter-descriptor correlations

(Figure 10.4). Two distinct groups of descriptors could be identified by heatmapping/-

clustering (using complete-linkage) with high internal cross-correlations. Interestingly,

these descriptors not only show high correlations within their own cluster, but generally

also high negative correlations to descriptors of the respective other cluster.

Cluster 1 contains mostly ADMET parameters describing the oral absorption, logS,

logKp, hERG channel blockage, MDCK cell permeability, Caco-2-cell permeability, CNS
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Figure 10.1 Distributions of QikProp descriptors used by MycPermCheck
for the 21,576 compounds with predicted permeability probability ≥ 0.900.
The blue lines indicate averages.
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Figure 10.2 Distributions of additional descriptors for the 21,576 com-
pounds with predicted permeability probability ≥ 0.900. The blue lines indicate
averages. Cf. Table 10.1 for additional property descriptions.
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Table 10.1 Additional descriptors. Range is taken from QikProp Manual
(Schrödinger Software Release 2014-1).

Property or Descriptor Description Range of 95% of known drugs

SASA Total solvent accessible surface
area in Å2 using a probe with a
1.4 Å radius

300.0 Å2 – 1000.0 Å2

FISA Hydrophilic component of the
SASA (SASA on N, O, H on
heteroatoms, carbonyl C)

7.0 Å2 – 330.0 Å2

WPSA Weakly polar component of the
SASA (halogens, P, and S)

0.0 Å2 – 175.0 Å2

PSA Van der Waals surface area of po-
lar nitrogen and oxygen atoms
and carbonyl carbon atoms

7.0 Å2 – 200.0 Å2

mol MW Molecular weight of the molecule 130.0 Da – 725.0 Da
donorHB Estimated number of hydrogen

bonds that would be donated by
the solute to water molecules in
an aqueous solution. Values are
averages taken over a number of
configurations, so they can be
non-integer

0.0 – 6.0

#rotor Number of non-trivial (not
CX3), non-hindered (not alkene,
amide, small ring) rotatable
bonds

0 – 15

volume Total solvent-accessible volume
in Å3 using a probe with a 1.4
Å radius

500.0 Å3 – 2000.0 Å3

Table 10.2 ADMET descriptors. Range is taken from QikProp Manual (Schrödinger
Software Release 2014-1.

Property or Descriptor Description Range of 95% of known drugs
QPlogHERG predicted logIC50 value for

hERG K+ channel blockage
concern below −5

QPPCaco predicted apparent Caco-2-cell
permeability to model gut-blood
barrier

< 25 poor, > 500 great

QPlogBB predicted brain/blood partition
coefficient

−3.0− 1.2

QPPMDCK predicted apparent MDCK cell
permeability to model blood-
brain barrier

< 25 poor, > 500 great

QPlogKp predicted skin permeability,
logKp

−8.0−−1.0

PercentHumanOralAbsorption predicted human oral absorption
on 0 to 100% scale

> 80% is high, < 25% is poor
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Figure 10.3 Distributions of ADMET descriptors of 21,576 compounds
with predicted permeability probability ≥ 0.900. The blue lines indicate the
respective averages.
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Figure 10.4 Heatmap of cross-correlation matrix of QikProp descriptor
data of 21,576 compounds with predicted permeability probability ≥ 0.900.
Dark green rectangles show descriptor clusters with high internal cross-correlations.

activity and brain/blood partition coefficient (cf. Table 10.2). Cluster 2 contains descrip-

tors about the physico-chemical composition of the compound, e.g. molecular weight,

π-interacting surface area, solvent-accessible surface area, volume, polar surface area and

number of hydrogen bond acceptors. The highest negative correlations are illustrated

as scatterplots in Figure 10.5 and Figure 10.6. The predicted hERG channel blockage

correlates to PISA with a Spearman’s ρ of -0.56. Although a high π-interacting surface

area is desirable for a high M. tuberculosis cell wall permeability probability (cf. Chap-

ter 9), it is here also associated with unfavorable toxicity properties (Figure 10.5), which,

however, should not be overinterpreted due to poor predictive power of the QPlogHERG

descriptor of QikProp [194].

High correlations between clusters 1 and 2 can also be observed for the hydrophilic
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Figure 10.5 Predicted hERG channel blockage (logIC50) over π-interacting
surface area [Å2]. The correlation coefficient ρ is calculated using the Spearman
method.

surface area (FISA) and the polar surface area (PSA) to the logarithm of the predicted

brain/blood partition coefficient and the CNS activity class. With rising surface areas

of the related parameters FISA and PSA, the compound is less active in the central

nervous system and more abundant in the blood phase (Figure 10.6). Furthermore, the

two surface areas are obviously strongly associated in a non-linear way with predicted

Caco-2-cell permeability, which models the gut-blood-barrier. With rising hydrophilicity

of the compounds the gut-blood-barrier permeability drops rapidly (Figure 10.6), which

might hinder absorption of the compound. In the examined dataset, however, over 95%

of all compounds still have a predicted Caco-2-cell permeability of ≥500 nm/s.

10.1.4 Filtering of ZINC for desirable physico-chemical and ADMET

properties and subsequent docking

The molecular weight of the permeable substances has an average of 390 Da. By setting

a cutoff at 300 Da, it was possible to reduce the number of compounds to 811. This fil-

tering procedure was continued by considering only molecules with the highest predicted

QikProp oral absorption class (3), leaving 629 substances. Next, no reactive groups were

allowed in the dataset (#rtvFG = 0), which led to 591 remaining compounds. By con-

sidering only molecules with no Lipinski violations, 312 could be dismissed, which led

to 279 compounds.
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Figure 10.6 Predicted Caco-2-cell permeability [nm/s], CNS activity class
and log brain/blood partition coefficient plotted over FISA [Å2] and PSA
[Å2], respectively, for 21,576 compounds with predicted permeability prob-
ability ≥ 0.900. ADMET prediction calculated using QikProp. The correlation coef-
ficient ρ is calculated using the Spearman method.

The collection of 279 compounds is the result of a strict filtering procedure for very

good predicted permeability and bioavailability properties. However, based on these

results, no conclusion about antimycobacterial activity can be drawn. To avoid expensive

experimental testing of all substances and an extensive study for target prediction, the

target InhA was chosen exemplarily for further investigation. Moreover, by analyzing

all 279 substances for potential InhA inhibitors, methods and findings from Part I of

this thesis can be considered.

Hence, the screening was continued by docking the 279 compounds with preferable

ADMET and permeability properties to InhA using Glide (version 6.2, Schrödinger,

LLC, New York, NY, 2014) in extra precision (XP) mode. Ligprep was used to create

protomers at pH 7.0 ± 2.0, stereoisomers and tautomers of the 279 compounds, resulting

in 390 structures used for docking. Glide was able to generate docking poses for 343

structures (Figure 10.7). The distribution of the docking scores shows a median of -6.299

± 2.132 MAD. The top 5% of the docking poses was considered for further steps (18

compounds, Figure 10.8).
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Figure 10.7 Density of GlideXP docking scores as box plot and histogram.
The red line illustrates the 5% percentile. The distribution below the 5% percentile is
colored in red.

Figure 10.8 Top 5% structures of InhA docking.
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A hydrogen bond between the ligand and Tyr158 is a crucial interaction of InhA inhi-

bition [17]. Hence, ligands with a hydrogen bond distance of >3.0 Å in the top docking

pose or without hydrogen bond acceptor for Tyr158 were dismissed, leaving 9 candidates.

Furthermore, it is known from Chapter 3 that occupation of sufficient space between

the cofactor and Ile202/Val203 improves conformational Family 1 stability (cf. PT70

vs. 6PP). The structure ZINC03526947 occupies this space with an indolyl moiety em-

bedded in this subpocket, whereas the remaining compounds only have an unsubstituted

phenyl group. Thus, compound ZINC03526947 was chosen for further derivatization and

evaluation by docking, MD and SMD simulations.

Considerations regarding the binding pocket of InhA and its interactions with potential

ligands (cf. Chapter 3) are consistent with the chemical properties of ZINC03526947:

1. the amide oxygen has a high electron density, which is beneficial for forming polar

interactions with Tyr158 and NAD+,

2. a lipophilic, conjugated π-system with terminal phenyl ring might fill the hydrophobic

pocket,

3. the terminal indolyl-moiety might embed itself between Ile202 and Val203, which

could contribute to stabilizing conformational Family 1 of the binding pocket (cf. Chap-

ter 3),

4. the indolyl-moiety might interact weakly with Met161 via an aryl-methionine inter-

action (cf. Chapter 4) [158].

Moreover, the compound shows further promising properties, independent of InhA in-

hibition:

1. the compound has very good predicted ADMET properties,

2. according to calculations with the pKa prediction software MoKa 2.6.0 [231], the pKa

of the amide-adjacent nitrogen is 6.18. Hence, at a pH of 7.0, 13.3% of the compound is

present in its protonated form, which might improve solubility. Moreover, the formation

of a pharmaceutical salt with an acid might further improve solubility and dissolution

rate of the compound [232].

10.2 Docking and MD simulations suggest potential InhA

inhibitors

10.2.1 Docking of ZINC03526947 derivatives

The top docking pose of ZINC03526947 is illustrated in Figure 10.9. Based on visual

inspection of the top binding pose, the ligand was modified to better fit the geometry

and interaction sites of the InhA binding pocket. The resulting ligands were again
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Table 10.3 Docking results of original and modified ligands. The Glide XP
scores of the respective top poses are shown. MycPermCheck values are from version
1.1. MycPermCheck values of mod7 and mod8 are not available due to a permanent
charge in the molecule.

Ligand GlideScore XP MycPermCheck Reason for ligand modifica-
tions

PT70 -10.183 0.736

ZINC03526947 -9.676 0.902

mod2 -9.748 0.879 methyl group is assumed to em-
bed between Ile202 and Val203

mod3 -9.489 0.833 cf. mod2; N-methyl is assumed
to occupy space between ligand
and NAD+

mod4 -9.999 0.869 cf. mod3, but avoiding po-
tential clash of methyl with
Met103

mod5 -10.031 0.866 methylene linker improves geo-
metrical accessibility of amide
oxygen to Tyr158 and NAD+

and disrupts the vinylogous
semicarbazone moiety

mod6 -9.882 0.853 cf. mod5; occupation of space
between ligand and NAD+

mod7 -6.044 N/A cf. mod5; guanidyl-moiety in-
troduces permanent positive
charge and is supposed to form
electrostatic interactions with
phosphates of NAD+

mod8 -6.235 N/A cf. mod5/mod7; further occu-
pation of space in hydrophobic
pocket

mod9 -10.408 0.864 cf. mod5; further occupation
of space in hydrophobic pocket

mod10 -9.475 0.816 cf. mod6; saturation of double
bond to reduce reactivity of un-
saturated system

mod11 -10.150 0.835 cf. mod5; saturation of double
bond to reduce reactivity of un-
saturated system

docked with Glide (Figure 10.9) in extra precision (XP) mode. Table 10.3 shows the

GlideScore XP and MycPermCheck evaluation of the top poses, as well as a detailed

description of the performed ligand modifications. Additionally, PT70 was re-docked

into the crystal structure 2X23 as a reference, reaching a GlideScore of -10.183 at an

RMSD of 0.68 Å from the crystal structure pose. Of the docked ligands, particularly

mod9 and mod11 show similar or better docking scores compared to the reference

ligand PT70 (Table 10.3).
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Figure 10.9 Top docking poses of ZINC03526947 and derivatives in InhA.
The protein backbone and six pocket residues are illustrated in green, the cofactor
NAD+ is depicted in salmon, the ligands in varying colors. Ligand structures are
illustrated above.
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Figure 10.10 Critical PAINS substructure in mod6 and mod10; a 2,3-
dialkyl indole.

QikProp was used to assess the physico-chemical and ADMET properties of ZINC03526947

and the designed derivatives except mod7 and mod8. With one minor exception

(QPlogKp), all of the previously discussed descriptors are within the range of 95% of

known drugs (cf. Tables 10.1 and 10.2; QikProp manual, Schrödinger Software Release

2014-1).

In 2010, Baell and Holloway described several chemical substructures which appear as

false positives in many different assays. Compounds containing such substructures are

termed Pan Assay Interference Compounds or PAINS [233]. Accordingly, a PAINS filter

was applied to exclude substructures that result in frequent hitters in bioassays using

the PAINS Remover online tool (http://cbligand.org/PAINS/) [233].

The derivatives mod5 to mod11 were examined for interfering substructures. One

feature of ligand mod6 (and recurring in mod10) was identified as a frequent hitter: a

2,3-dialkyl indole (Figure 10.10).

The overall enrichment of assay hits of this group is, however, comparably low [233].

Hence, the results of this filtering step should not be overrated. On the other hand, it is

worth mentioning that ”the broader class of indole-3-acetamides allowing any substituent

off the 2 position (including H) yields 138 compounds with a relatively high enrichment”

[233]. This group comprises the ZINC03526947 derivatives mod5, mod6 and mod9

to mod11. While an exclusion from further investigations is not necessarily required,

special care must be taken upon an eventual experimental testing of the corresponding

compounds.

10.2.2 MD simulations

Since the introduction of a methylene linker between the indolyl and hydrazide was an

important modification to reduce the distance between the amide oxygen and Tyr158

as well as NAD+, ligands mod5 to mod11 were chosen for 30 ns MD simulations
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using Amber force field parameters in NAMD 2.9 [101] (see Chapter 5 for simulation

protocol details), resulting in 210 ns total sampling time. To assess the stability of

the various systems, the following analyses were carried out: distance measurements

between amide oxygen of the ligand and phenolic oxygen of Tyr158 as well as ribose-

oxygen of NAD+, protein backbone RMSD, RMSD of InhA binding pocket residues

Tyr158, Phe148, Ala198, Met199, Ile202 and Val203 (cf. Chapter 3), RMSD of InhA

SBL (residues 202 to 218, cf. Chapter 3), RMSD of ligands (Figure 10.11). Additionally,

the binding pocket dynamics were compared in terms of their 2D-RMSD (Figure 10.12).

10.2.2.1 RMSD and distances

Tyr158 plays an important role in binding of known inhibitor classes of InhA [17]. Hence,

the distances between the amide oxygen of the ligand and the Tyr158-OH atom, as well

as the O2D-oxygen of NAD+, were evaluated (Figure 10.11a). Most of the modified

ligands show distances well below 3 Å over 30 ns of MD simulation, indicating a stable

hydrogen bond. Higher initial distances are resolved in some cases due to attraction of

the participating atoms (mod5-NAD+, mod6-Tyr, mod7-Tyr, mod8-Tyr, mod11-

Tyr). The ligands mod7, mod8, mod9 and mod10 lose at least one of the interaction

partners during the observed simulation time. Derivatives mod5, mod6 and mod11

exhibit the strongest hydrogen bond patterns based on the measured distances (Table

10.4).

With RMSD values steadily below 2 Å, the protein backbone is fairly stable in all seven

simulations (Figure 10.11b). Again, derivatives mod5 and mod6 show the highest

stability, as does the backbone of the system containing mod10 (Table 10.4).

The two most important structural elements that govern slow-onset ligand binding in

InhA are the SBL and the binding pocket itself [17, 45, 64], which should show high

stability upon ligand association (Figures 10.11c and d). Both regions show the highest

stability regarding their RMSD in the simulations of ZINC03526947 derivatives mod6,

mod10 and mod11 with an RMSD steadily below 2 Å. Considering the binding pocket,

also mod5 exhibits very stable behavior. This trend is also observed in the ligand

RMSD over 30 ns of simulation. Again, the most stable systems are mod6, mod10

and mod11 with respect to the starting structure, i.e., the docking pose. However,

derivatives mod10 and mod11 show higher fluctuations than the remaining complexes

after the initial 10 ns. With standard deviations of less than 0.30 Å, mod5, mod6

and mod7 are the most stable ligands from 10 to 30 ns simulation time, underlining

the stability of their conformation adopted during the first 10 ns of simulation time
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Figure 10.11 RMSD and distance evaluation of 30 ns MD simulations of
selected ZINC03526947 derivatives. (a) Distances between ligand-O and Tyr-OH
or NAD-OH, respectively.(b) Backbone RMSD. (c) Pocket RMSD. (d) SBL RMSD.
(e) Ligand heavy atom RMSD.
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Table 10.4 Average distance and RMSD values over 30 ns of MD simulation in Å.

mod5 mod6 mod7 mod8 mod9 mod10 mod11
Distance
Tyr158

Avg. 3.00 2.93 2.81 3.87 2.84 3.46 2.97
SD 0.49 0.41 0.20 0.81 0.23 0.86 0.28

Distance
NAD+

Avg. 2.98 2.80 3.92 3.65 4.23 3.18 2.89
SD 0.47 0.29 0.40 0.35 0.72 0.45 0.29

Backbone
RMSD

Avg. 1.18 1.16 1.64 1.38 1.48 1.24 1.56
SD 0.12 0.13 0.16 0.15 0.24 0.14 0.15

SBL RMSD
Avg. 2.10 1.81 3.45 2.51 2.69 1.44 2.06
SD 0.43 0.36 0.50 0.55 0.84 0.26 0.35

Pocket RMSD
Avg. 1.81 1.46 2.91 2.87 2.29 1.76 1.86
SD 0.23 0.18 0.27 0.77 0.69 0.29 0.32

Ligand RMSD
Avg. 3.24 2.18 3.64 3.49 2.77 2.48 2.38
SD 0.53 0.43 0.34 0.38 0.88 0.51 0.56

Ligand RMSD
10 to 30 ns

Avg. 3.45 2.26 3.70 3.62 3.20 2.62 2.59
SD 0.27 0.29 0.26 0.31 0.32 0.45 0.36

Distance
Met161

Avg. 5.43 4.97 5.61 5.15 5.14 4.87 5.88
SD 0.60 0.55 0.78 0.54 0.73 0.49 1.02

(cf. Table 10.4 and Figure 10.11). A stable aryl-methionine interaction between the

ligand and Met161 could not be observed in the simulated systems.

10.2.2.2 2D-RMSD analysis

A 2D-RMSD analysis of the six binding pocket residues was used to identify recurring

pocket conformations across all seven systems (Figure 10.12). The highest similarities

are observed between the pockets bound to ZINC03526947 derivatives mod5, mod6 and

mod10, as well as the first half of the mod8-, mod9- and mod11-simulation, respec-

tively. Of all observed conformations, this one is closest to the 2X23 crystal structure

conformation used in the dockings. The conformation visually resembles the confor-

mational Family 1, as described in Chapter 3 (blue rectangles in Figure 10.12). The

mod7-system only very briefly populates this Family, before collapsing into a confor-

mation resembling Family 3, with Ile202 flipping over the ligand and Ile202 and Val203

moving deep into the hydrophobic pocket (magenta rectangles in Figure 10.12). This

conformation recurs in the second half of the mod9-simulation. The second half of the

mod11-simulation exhibits similarities to all observed binding pocket conformations,

except the second half of mod8. The similarity in RMSD of the mod11-system to

both Family 1 and Family 3 conformations strongly suggests a conformation with struc-

tural characteristics of both families (purple rectangles in Figure 10.12). In fact, visual

inspection reveals a plausible resemblance of the mod11-pocket to the conformational

Family 2, i.e, only a slight twist of helix α6 with a shift of Ile202 towards the ligand

and a minor displacement of Val203 towards the hydrophobic pocket (cf. Chapter 3).

The second half of the simulation of InhA bound to mod8 is characterized by a shift of
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Figure 10.12 7x7 2D-RMSD plot of binding pocket residues over 30 ns
of MD simulation of ZINC03526947 derivatives mod5 to mod11. Colored
rectangles mark conformational families.

helix α6–in particular Ile202 and Val203–towards the bulk solvent (brown rectangle in

Figure 10.12). This feature can visually be best described as a Family 5 conformation

(cf. Chapter 3).

10.2.2.3 Clustering analysis

The 2D-RMSD matrix was used as distance metric for a hierarchical clustering analysis

using the complete-linkage method in R [130]. At a cutoff of 3.5 Å, the data can be

partitioned into three distinct clusters (Figure 10.13).

Comparison of the medoids of the conformational families of InhA (revealed in Chap-

ter 3) to the medoids of the clusters of these MD simulations revealed that, on basis of
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Figure 10.13 Hierarchical clustering of 2D-RMSD data of 30 ns MD simu-
lations bound to ZINC03526947 derivatives mod5 to mod11.

the same cutoff (3.5 Å), no new conformational families could be discovered. In fact,

each of the three clusters can distinctly be assigned to one of the Families described

in Chapter 3. Thus, (1) the cluster 1 represents a Family 1 conformation, (2) cluster

2 shows a strong resemblance to the Family 3 medoid and especially to the cluster 4

medoid of Family 3, and (3) cluster 3 can be ascribed to Family 5 (Table 10.5 and Figure

10.14).

10.2.2.4 Summary of MD results of derivatives mod5 to mod11

Considering the RMSD analyses, derivatives mod5 and mod6, as well as their saturated

counterparts mod11 and mod10, respectively, showed the highest stability. When

taking the interaction distance analysis of Tyr158 and NAD+ to the ligands and the

fluctuations in the ligand RMSD into account, mod10 does not fulfill the requirements

for stable ligand binding to InhA.

Interestingly, none of the designed ligands is entirely stable in its docking pose. In

the cases of mod5 and mod6, the ligands drift at the beginning of the simulation
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Figure 10.14 Medoid snapshots of clusters 1 to 3 of 30 ns ZINC03526947
derivative simulations, compared to their respective counterparts (cf. Chap-
ter 3). (a) Snapshot of mod5 at 2.3 ns of simulation (pink) compared to the Family
1 medoid, (b) snapshot of mod7 at 8.2 ns of simulation compared to cluster 4 medoid
(part of Family 3), (c) snapshot of mod8 at 11.5 ns of simulation compared to the
Family 5 medoid.
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Table 10.5 RMSD of cluster medoids to conformational Family and cluster medoids
defined in Chapter 3 in Å. Minimum RMSD values for each column are highlighted.

ligand modifications
cluster 1 cluster 2 cluster 3

cluster 1 / Family 1 1.82 3.43 3.56

cluster 2 / Family 2 2.71 2.81 3.61
cluster 3 / Family 2 2.60 2.58 3.83

Family 2 medoid 2.81 2.90 3.89

cluster 4 / Family 3 3.80 1.75 4.01
cluster 5 / Family 3 3.78 3.06 3.85
cluster 6 / Family 3 3.68 2.84 4.35

Family 3 medoid 3.73 2.71 3.91

cluster 7 / Family 4 2.98 4.82 3.54

cluster 8 / Family 5 3.24 3.96 2.86

Figure 10.15 Snapshots of MD starting and end structures at 30 ns. (a)
Ligand mod5; (b) ligand mod6; (c) ligand mod11. The starting structure is illus-
trated in gray, the end snapshot in slate blue. Arrows indicate atomic displacement
over 30 ns.

towards the NAD+ ribose-hydroxyl and, thus, move the indolyl-moiety further towards

the major portal (Figure 10.15). The new orientation is, however, stable until the end

of the simulation. Thus, the conformation shows a slightly altered arrangement of helix

α6 compared to the 2X23 crystal structure (cf. Figure 10.14a). The ligand mod11 has

an augmented flexibility due to saturation of the double bond. This results in a unique

behavior among the investigated ligands: the termini of the potential inhibitor collapse

towards the center of the binding pocket, enabling a Family 2-like conformation. This

suggests that mod11 does not occupy the hydrophobic pocket optimally.

Although the observed clusters based on 2D-RMSD data are very close to the previously

described conformational families of M. tuberculosis InhA (cf. Chapter 3 and Table 10.5),

some conformational differences are detected as well: in particular, the two pocket

residues Phe149 and Tyr158, which are not part of the SBL, show severe differences to

the Family medoids (cf. Figure 10.14). This behavior likely stems from still inefficient
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Figure 10.16 Top docking pose of ligand mod12.

occupation of the hydrophobic pocket, which allows Phe149 to move without hindrance.

This effect is accompanied by a shift of Tyr158, which follows the drifting of the ligand

towards the major portal (cf. Figures 10.14 and 10.15a and b).

10.2.3 An additional ZINC03526947 derivative: mod12

Based on these findings, an additional ligand was evaluated: mod12 is a structural

derivative of mod11 with an additional para-chlorine-substituent at the phenyl-ring.

Docking resulted in a binding pose with a GlideXP score of -10.422, which is the best

observed GlideScore among all ZINC03526947 derivatives and the reference inhibitor

PT70 (Figure 10.16). The ligand shows a MycPermCheck permeability probability of

0.844.

An additional 30 ns MD simulation was carried out for the InhA-NAD+-mod12 system.

The system shows a very high overall stability based on all previously presented criteria

(Table 10.6). All metrics exhibit comparable results to the most stable simulations of

derivatives mod5 to mod11. Moreover, the pocket and ligand RMSDs are in fact the

lowest observed. The system furthermore seems to be able to stabilize an indolyl-Met161

interaction throughout the whole simulation (cf. Table 10.6).

10.2.4 Steered MD simulations

Steered MD simulations were conducted for the most promising ZINC03526947 deriva-

tives based on the previous MD results according to the protocol introduced in Chapter 5.

The exit pathway of PT70 (cf. Chapter 5) was transferred to the investigated ligands for
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Table 10.6 Average distance and RMSD values of system mod12 over 30 ns of MD
simulation in Å.

mod12

Distance
Tyr158

Avg. 2.88
SD 0.25

Distance
NAD+

Avg. 2.89
SD 0.34

Backbone
RMSD

Avg. 1.39
SD 0.29

SBL RMSD
Avg. 1.97
SD 0.51

Pocket RMSD
Avg. 1.38
SD 0.30

Ligand RMSD
Avg. 1.68
SD 0.45

Ligand RMSD
10 to 30 ns

Avg. 2.16
SD 0.32

Distance
Met161

Avg. 4.16
SD 0.58

induced extraction via the major portal of InhA. A total of 360 ns of additional SMD

sampling time was produced. The maximum free energy change upon induced ligand

withdrawal from the binding pocket was examined with reference to the SMD results

of the established inhibitor class of the diphenylethers (cf. Chapter 6). Table 10.7 and

Figure 10.17 depict the maximum exponential average ∆Ge and the first and second

order cumulant expansions of Jarzynski’s equality ∆G1 and ∆G2, respectively [33–36].

The primarily considered measure in this analysis is the exponential estimator, due to

its validity for small trajectory numbers and robustness with respect to high variance

(cf. Chapter 6.3.2) [165].

The maximum free energy changes ∆Ge (trimmed average, Figure 10.17a) of the SMD

simulations show a distinct separation between the ZINC03526947 derivatives mod10,

mod11 and mod12, which reach comparable or–in the case of mod10–a much higher

maximum than the reference compound PT70. Derivatives mod5, mod6 and mod9

do not exhibit maximum free energy changes comparable to the reference PT70. Sur-

prisingly, the lowest energy barrier can be observed for mod6, although the previous

30 ns MD simulations showed reasonable SBL and binding pocket stabilization. The

exponential average reconstructed from untrimmed work values shows the same trends,

although the higher scoring ligands mod11 and mod12 are less distinctive from the

lower scoring ligands mod5, mod6 and mod9 (Figure 10.17b). Ligand mod10 also

exhibits the highest maximum ∆Ge using untrimmed work values.
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Table 10.7 Maximum free energy change of induced ligand extraction of
ZINC03526947 derivatives with standard deviation in kcal/mol.

trimmed untrimmed
∆Ge ∆G1 ∆G2 ∆Ge ∆G1 ∆G2

PT70 89.02 ± 11.31 106.29 ± 11.32 68.11 ± 2.38 77.53 ± 20.31 107.15 ± 20.32 39.95 ± 6.09
mod5 78.33 ± 3.00 80.92 ± 3.00 73.38 ± 3.00 69.47 ± 7.28 81.46 ± 7.31 36.85 ± 7.27
mod6 69.49 ± 3.93 75.59 ± 3.96 62.54 ± 3.93 62.32 ± 8.37 75.47 ± 8.37 31.20 ± 3.69
mod9 73.68 ± 2.28 76.56 ± 2.30 72.19 ± 2.22 63.97 ± 8.09 76.71 ± 8.09 28.36 ± 7.09
mod10 112.29 ± 4.62 117.10 ± 4.62 99.20 ± 4.62 89.92 ± 11.58 116.74 ± 11.58 32.99 ± 4.52
mod11 84.97 ± 2.93 89.53 ± 2.95 82.30 ± 2.92 69.85 ± 10.84 89.61 ± 10.94 24.59 ± 5.89
mod12 92.62 ± 6.10 102.37 ± 6.10 71.26 ± 6.09 71.49 ± 13.99 101.64 ± 13.98 21.55 ± 3.55

Figure 10.17 Maximum free energy change of induced ligand extraction of
ZINC03526947 derivatives from the InhA binding pocket. (a) 25% trimmed
average of work at PMF reconstruction, (b) untrimmed average of work at PMF re-
construction. Error bars indicate the 95% confidence interval.

Based on the SMD results, the following conclusions and further strategies for ligand

optimization can be derived: (i) mod10 exhibits the highest maximum energy barrier

of ligand dissociation along the chosen dissociation pathway, compared to PT70; (ii)

saturation of the double bond (mod6 to mod10 and mod5 to mod11) boosts the

maximum ∆Ge; (iii) a para-chlorine (mod11 to mod12) boosts the maximum ∆Ge;

(iv) thus, the next step in optimization might include combining the structural charac-

teristics of derivatives mod10 and mod12.



Chapter 10. Permeability prediction, docking and MD simulations lead to suggestion of
potential InhA inhibitors 175

10.3 Evaluation of similar compounds

10.3.1 Activity data

To gain information about potential biological activity of the investigated derivatives,

a structure search was performed with SciFinder for derivatives mod5 to mod12. Al-

though mod5 is indeed commercially available, none of the derivatives has yet been the

subject of testing in the literature.1 Thus, the first ZINC03526947 derivative containing

the indole-3-acethydrazide scaffold (mod5) was chosen for a similarity search against

the ChEMBL database [222]. With 88.22% similarity, the compound CHEMBL3210727

(ZINC00221556; PubChem CID 9556992) was the closest match (Figure 10.18). An

exhaustive PubChem search [234, 235] revealed assays, in which ZINC00221556 was

classified as active (pubchem.ncbi.nlm.nih.gov, accessed March 17, 2015). It shows in-

hibitory qualities against Human tyrosyl-DNA phosphodiesterase 1 (TDP1), which is

proposed as a new anticancer target (PubChem BioAssay: AID 686979). Moreover, ac-

tivity against Regulators of G protein signaling (RGS) protein 16 (AssayID 1441) could

be observed. Against MEK kinase 3 wild-type, the compound showed activating prop-

erties (AssayID 1529). A cytotoxicity study using THP1 cells (AssayID 2253) revealed

toxicity with cell viability of 69.71% at a concentration of 50 µM .

Furthermore, four screenings were found in which the compound was tested for activity

against Mycobacterium tuberculosis (PubChem AssayIDs: 1626, 449762, 434955 and

488890). However, it was classified as inactive in each assay. None of the mentioned

bioassays were explicitly designed for the target InhA.

ZINC00221556 was docked to InhA using Glide with extra precision. Figure 10.18 il-

lustrates the top docking pose with a Glide XP score of -9.216. Except for mod7 and

mod8, this is the least favorable docking score of the evaluated structures. Still, the

docking pose shows a very similar binding mode to ZINC03526947 and its derivatives.

Visual comparison, however, reveals that the hydrophobic pocket is less occupied by

this ligand, which might have an unfavorable effect on binding pocket, SBL and lig-

and stabilization (cf. Chapter 3) and, thus, provides suggestions for the inactivity in

antitubercular assays.

10.3.2 MD and SMD simulations

The assumption that possible instabilities, resulting from unideal interactions between

ZINC00221556 and InhA, might contribute to the inactivity of the compound against

1SciFinder search performed on September 24, 2015 at http://scifinder.cas.org.
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Figure 10.18 Top docking pose of CHEMBL3210727/ZINC00221556 in
InhA.

mycobacteria was further investigated in a 30 ns MD simulation. The trajectory was

analyzed regarding the previously evaluated distance and RMSD measures (Table 10.8).

Whereas the average distance between the ligand and Tyr158 suggests a stable hydrogen

bond at 2.81 Å, the average distance between the ligand and NAD+ is by far the highest

observed, emphasizing that no stable interaction is maintained between the amide oxy-

gen of the ligand and the ribose hydroxyl group of the cofactor. Interestingly, RMSD

calculations of the protein (backbone, SBL backbone and pocket heavy atoms) show

stable average values and low fluctuations, similar to those of the rather stable deriva-

tives mod5, mod6, mod10 and mod12. The ligand RMSD, on the other hand, is

rather high with an average RMSD of 2.71 Å, compared to mod12, which constitutes

the most stable ligand of the evaluated systems. Although the protein behaves stably

over 30 ns of simulation time, the ligand is, thus, not entirely stabilized in the predicted

top docking pose. Also the heavy atom RMSD of Met161 is higher than the RMSD

measured in system mod12 and rather comparable to the remaining systems.

The maximum free energy change of induced ligand egress was examined using SMD

simulations (Table 10.9). With respect to the exponential estimator, the measured max-

imum free energy change ∆Ge reconstructed using trimmed work profiles is the lowest

of the evaluated ligands, except for the derivative mod6, which shows a slightly lower
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Table 10.8 Average distance and RMSD values of system ZINC00221556 over 30 ns
of MD simulation in Å.

ZINC00221556

Distance
Tyr158

Avg. 2.81
SD 0.18

Distance
NAD+

Avg. 6.53
SD 0.90

Backbone
RMSD

Avg. 1.32
SD 0.16

SBL RMSD
Avg. 1.78
SD 0.46

Pocket RMSD
Avg. 1.89
SD 0.36

Ligand RMSD
Avg. 2.71
SD 0.43

Ligand RMSD
10 to 30 ns

Avg. 2.87
SD 0.36

Distance
Met161

Avg. 4.98
SD 0.69

Table 10.9 Maximum free energy change of induced ligand extraction of
ZINC00221556 with standard deviation in kcal/mol.

Trimmed avg. Untrimmed avg.

∆Ge 72.18 ± 2.55 61.12 ± 7.97
∆G1 74.51 ± 2.57 74.82 ± 8.00
∆G2 69.02 ± 2.55 25.03 ± 7.57

value of ∆Ge. Thus, the simulated maximum free energy change is very low compared to

the reference ligand PT70 and the promising screening candidates mod10 and mod12.

Regarding PMF reconstruction using untrimmed work values, ZINC00221556 exhibits

the lowest maximum free energy change of all evaluated ligands (cf. Tables 10.7 and

10.9).

10.4 Conclusion

Findings from both parts of this thesis were applied in a screening campaign against

the mycobacterial target enoyl-ACP reductase InhA. Based on the docking, MD and

SMD results, the presented carbohydrazides might constitute a potential class of InhA

inhibitors. In particular, ZINC03526947 derivatives mod10 and mod12 are able to

stabilize the InhA binding pocket and SBL reliably. Furthermore, these ligands perform

very well in SMD simulations with respect to higher maximum free energy barriers ∆Ge
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than PT70. SMD simulations reveal further that a para-chloro-mod10 might represent

a reasonable next step in optimization of the carbohydrazide inhibitors.

Although to date no screening results against M. tuberculosis of the similar indole-

3-acethydrazide compound ZINC00221556 resulted in proven activity, the examined

ligands with enhanced occupation of the hydrophobic pocket of InhA (compared to

ZINC00221556) show significantly higher maximum free energy changes in SMD simula-

tions and a more stable hydrogen bonding to the cofactor in MD simulations. Thus, this

type of compounds might provide new directions for the development of InhA inhibitors.

Altogether, this Chapter serves as an illustrative example for the combination of knowledge-

based permeability classification, docking, MD and SMD simulations to support a virtual

screening against M. tuberculosis InhA. This approach is generally transferable to other

intracellular mycobacterial drug targets.



Chapter 11

Summary – Part II

The largely impermeable cell wall of M. tuberculosis is an obstacle in antitubercular

drug design. A better understanding of the physico-chemical parameters that con-

tribute to good cell wall permeability would, thus, help define the druggability space

of M. tuberculosis. Hence, an extensive data mining venture was carried out to find

the physico-chemical delimitations of compounds with antimycobacterial activity–which

are likely permeable against the M. tuberculosis cell wall–from a normally distributed

chemical space of drug-like molecules. Based on the molecular descriptor data of both

groups, a Principal Component Analysis (PCA) with subsequent logistic regression was

conducted. The resulting statistical model was implemented in the free online ser-

vice MycPermCheck, which can predict the permeability probability of small organic

molecules by their physico-chemical composition. Evaluation of the model shows a high

predictive power.

In the last chapter, a screening campaign against M. tuberculosis was conducted, com-

bining methodologies and findings introduced in both Part I and Part II of this thesis.

First, the local stand-alone version of MycPermCheck was used for processing the entire

drug-like subset of the ZINC12 database, resulting in a smaller dataset of compounds

with high estimated permeability. After multiple further filtering steps based on physico-

chemical and ADMET properties and docking, one structure emerged with suitable size,

geometry and interaction patterns to bind to the mycobacterial enoyl-ACP reductase

InhA. Accordingly, the structure and several derivatives were examined using docking,

MD and SMD simulations. Two of the generated derivatives showed promising results in

terms of good docking scores, stable interactions in MD simulations and high maximum

free energy barriers of induced ligand extraction in SMD simulations. These structures

with an indole-3-acethydrazide-scaffold might, hence, constitute a potential class of InhA

inhibitors with promising properties, warranting further investigation.
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Molecular Determinants of Drug-Target Residence Times

of Bacterial Enoyl-ACP Reductases

Whereas optimization processes of early drug discovery campaigns are often affinity-

driven, the drug-target residence time tR should also be considered due to an often strong

correlation with in vivo efficacy of compounds. However, rational optimization of tR is

not straightforward and generally hampered by the lack of structural information about

the transition states of ligand association and dissociation. The enoyl-ACP reductase

FabI of the fatty acid synthesis (FAS) type II is an important drug-target in antibiotic

research. InhA is the FabI enzyme of Mycobacterium tuberculosis, which is known to be

inhibited by various compound classes. Slow-onset inhibition of InhA is assumed to be

associated with the ordering of the most flexible protein region, the substrate binding

loop (SBL). Diphenylethers are one class of InhA inhibitors that can promote such SBL

ordering, resulting in long drug-target residence times. Although these inhibitors are

energetically and kinetically well characterized, it is still unclear how the structural

features of a ligand affect tR.

Using classical molecular dynamics (MD) simulations, recurring conformational families

of InhA protein-ligand complexes were detected and structural determinants of drug-

target residence time of diphenylethers with different kinetic profiles were described.

This information was used to deduce guidelines for efficacy improvement of InhA in-

hibitors, including 5’-substitution on the diphenylether B-ring. The validity of this

suggestion was then analyzed by means of MD simulations.

Moreover, Steered MD (SMD) simulations were employed to analyze ligand dissociation

of diphenylethers from the FabI enzyme of Staphylococcus aureus. This approach resulted

in a very accurate and quantitative linear regression model of the experimental ln(tR) of

these inhibitors as a function of the calculated maximum free energy change of induced

ligand extraction. This model can be used to predict the residence times of new potential

inhibitors from crystal structures or valid docking poses.

Since correct structural characterization of the intermediate enzyme-inhibitor state (EI)

and the final state (EI*) of two-step slow-onset inhibition is crucial for rational residence

time optimization, the current view of the EI and EI* states of InhA was revisited by

means of crystal structure analysis, MD and SMD simulations. Overall, the analyses

affirmed that the EI* state is a conformation resembling the 2X23 crystal structure
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(with slow-onset inhibitor PT70), whereas a twist of residues Ile202 and Val203 with

a further opened helix α6 corresponds to the EI state. Furthermore, MD simulations

emphasized the influence of close contacts to symmetry mates in the SBL region on SBL

stability, underlined by the observation that an MD simulation of PT155 chain A with

chain B’ of a symmetry mate in close proximity of the SBL region showed significantly

more stable loops, than a simulation of the tetrameric assembly. Closing Part I, SMD

simulations were employed which allow the delimitation of slow-onset InhA inhibitors

from rapid reversible ligands.

Prediction of Mycobacterium tuberculosis Cell Wall Per-

meability

The cell wall of M. tuberculosis hampers antimycobacterial drug design due to its unique

composition, providing intrinsic antibiotic resistance against lipophilic and hydrophilic

compounds. To assess the druggability space of this pathogen, a large-scale data min-

ing endeavor was conducted, based on multivariate statistical analysis of differences in

the physico-chemical composition of a normally distributed drug-like chemical space

and a database of antimycobacterial–and thus very likely permeable–compounds. The

approach resulted in the logistic regression model MycPermCheck, which is able to

predict the permeability probability of small organic molecules based on their physico-

chemical properties. Evaluation of MycPermCheck suggests a high predictive power.

The model was implemented as a freely accessible online service and as a local stand-

alone command-line version.

Methodologies and findings from both parts of this thesis were combined to conduct

a virtual screening for antimycobacterial substances. MycPermCheck was employed

to screen the chemical permeability space of M. tuberculosis from the entire ZINC12

drug-like database. After subsequent filtering steps regarding ADMET properties, InhA

was chosen as an exemplary target. Docking to InhA led to a principal hit compound,

which was further optimized. The quality of the interaction of selected derivatives with

InhA was subsequently evaluated using MD and SMD simulations in terms of protein

and ligand stability, as well as maximum free energy change of induced ligand egress.

The results of the presented computational experiments suggest that compounds with

an indole-3-acethydrazide scaffold might constitute a novel class of InhA inhibitors,

worthwhile of further investigation.



Zusammenfassung

Molekulare Determinanten von Wirkstoff-Angriffsziel Ver-

weilzeiten bakterieller Enoyl-ACP Reduktasen

In frühen Phasen der Wirkstoffentwicklung sind Optimierungsprozesse häufig affini-

tätsgeleitet. Darüber hinaus sollte zusätzlich die Wirkstoff-Angriffsziel Verweilzeit tR

berücksichtigt werden, da diese oft eine starke Korrelation zur in vivo Wirksamkeit der

Substanzen aufweist. Rationale Optimierung von tR ist jedoch auf Grund eines Man-

gels an struktureller Information über den Übergangszustand der Ligandbindung und

Dissoziierung nicht einfach umsetzbar. Die Enoyl-ACP Reduktase FabI der Fettsäurebio-

synthese (FAS) Typ II ist ein wichtiger Angriffspunkt in der Antibiotikaforschung. InhA

ist das FabI Enzym des Organismus Mycobacterium tuberculosis und kann durch Sub-

stanzen diverser Klassen gehemmt werden. Es wird vermutet, dass Hemmung von InhA

durch langsam-bindende (“slow-onset”) Inhibitoren mit der Ordnung der flexibelsten

Region des Enzyms assoziiert ist, dem Substratbindungsloop (SBL). Diphenylether sind

eine InhA Inhibitorenklasse, die eine solche SBL Ordnung fördern und dadurch lange

Verweilzeiten im Angriffsziel aufweisen. Obwohl diese Inhibitoren energetisch und kine-

tisch gut charakterisiert sind, ist noch immer unklar, wie die strukturellen Eigenschaften

eines Liganden tR beeinflussen.

Durch die Verwendung klassischer Molekulardynamik (MD) Simulationen wurden wie-

derkehrende Konformationsfamilien von InhA Protein-Ligand Komplexen entdeckt und

strukturelle Determinanten der Wirkstoff-Angriffsziel Verweilzeit von Diphenylethern

mit verschiedenen kinetischen Profilen beschrieben. Anhand dieser Ergebnisse wurden

Richtlinien zur Wirksamkeitsoptimierung von InhA Inhibitoren abgeleitet, einschließlich

einer 5’-Substitution am Diphenylether B-Ring. Die Validität dieses Vorschlags wurde

mittels MD Simulationen nachfolgend analysiert.

Darüber hinaus wurden “Steered MD” (SMD) Simulationen als MD Technik für um-

fangreicheres Sampling verwendet um die Liganddissoziation von Diphenylethern aus

dem FabI Enzym von Staphylococcus aureus zu untersuchen. Dieser Ansatz resultierte

in einem sehr akkuraten, quantitativen linearen Regressionsmodell der experimentel-

len Verweilzeit ln(tR) dieser Inhibitoren als Funktion der berechneten maximalen frei-

en Energieänderung induzierter Ligandextraktion. Dieses Modell kann genutzt werden

um die Verweilzeiten neuer potentieller Inhibitoren aus Kristallstrukturen oder validen

Dockingposen vorherzusagen.
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Die korrekte strukturelle Charakterisierung des intermediären und des finalen Zustandes

(EI und EI*-Zustand) eines Enzym-Inhibitor Komplexes bei einem zweistufigen Inhibiti-

onsmechanismus durch langsam-bindende Hemmstoffe ist essentiell für rationale Verweil-

zeitoptimierung. Daher wurde die gegenwärtige Ansicht des EI und EI*-Zustandes von

InhA mittels Kristallstrukturanalyse, MD und SMD Simulationen erneut aufgegriffen.

Insgesamt bestätigten die Analysen, dass der EI*-Zustand einer Konformation ähnlich

der 2X23 Kristallstruktur (mit langsam-bindenden Inhibitor PT70) gleicht, während

eine Drehung der Reste Ile202 und Val203 mit einer weiter geöffneten Helix α6 dem

EI-Zustand entspricht. Des Weiteren zeigten MD Simulationen den Einfluss naher Kris-

tallkontakte zu Symmetrie-Nachbarn in der SBL Region auf die SBL Stabilität. Dies wird

durch die Beobachtung hervorgehoben, dass die Ketten A und B’ eines InhA-PT155-

Komplexes und des angrenzenden Symmetrie-Nachbars, welche in engem Kontakt in

der SBL Region stehen, signifikant stabilere SBLs aufweisen, als die Ketten A und B in

einer Simulation des Tetramers. Zum Abschluss von Teil I wurden SMD Simulationen

angewandt, auf deren Basis es möglich war, langsam-bindende InhA Inhibitoren von

schnell-reversiblen (“rapid reversible”) Liganden zu unterscheiden.

Vorhersage von Mycobacterium tuberculosis Zellwand Per-

meabilität

Die Zellwand von M. tuberculosis erschwert die antimycobakterielle Wirkstofffindung auf

Grund ihrer einzigartigen Zusammensetzung und bietet eine intrinsische Antibiotikare-

sistenz gegenüber lipophilen und hydrophilen Substanzen. Um den chemischen Raum

wirkstoffähnlicher Moleküle gegen diesen Erreger (“Druggability Space”) einzugrenzen,

wurde eine groß angelegte Dataminingstudie durchgeführt, welche auf multivariater sta-

tistischer Analyse der Unterschiede der physikochemischen Zusammensetzung eines nor-

malverteilten wirkstoffähnlichen chemischen Raumes und einer Datenbank von antimy-

cobakteriellen – und somit höchstwahrscheinlich permeablen – Substanzen beruht. Dieser

Ansatz resultierte in dem logistischen Regressionsmodell MycPermCheck, welches in der

Lage ist die Permeabilitätswahrscheinlichkeit kleiner organischer Moleküle anhand ihrer

physikochemischen Eigenschaften vorherzusagen. Die Evaluation von MycPermCheck

deutet auf eine große Vorhersagekraft hin. Das Modell wurde als frei zugänglicher online

Service und als lokale Kommandozeilenversion implementiert.

Methodiken und Ergebnisse aus beiden Teilen dieser Dissertation wurden kombiniert

um ein virtuelles Screening nach antimycobakteriellen Substanzen durchzuführen. Myc-

PermCheck wurde verwendet um den chemischen Permeabilitätsraum von M. tuberculo-

sis anhand der gesamten ZINC12 Datenbank wirkstoffähnlicher Moleküle abzuschätzen.
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Nach weiteren Filterschritten mit Bezug auf ADMET Eigenschaften, wurde InhA als

exemplarisches Angriffsziel ausgewählt. Docking nach InhA führte schließlich zu einer

Treffersubstanz, welche in darauffolgenden Schritten weiter optimiert wurde. Die In-

teraktionsqualität ausgewählter Derivate mit InhA wurde daraufhin mittels MD und

SMD Simulationen in Bezug auf Protein und Ligand Stabilität, sowie auch der maxi-

malen freien Energieänderung induzierter Ligandextraktion, untersucht. Die Ergebnisse

der vorgestellten computerbasierten Experimente legen nahe, dass Substanzen mit ei-

nem Indol-3-Acethydrazid Gerüst eine neuartige Klasse von InhA Inhibitoren darstellen

könnten. Weiterführende Untersuchungen könnten sich somit als lohnenswert erweisen.
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[120] T. Baştuğ, P. Chen, S.M. Patra, and S. Kuyucak. Potential of mean force calcu-

lations of ligand binding to ion channels from Jarzynski’s equality and umbrella

sampling. The Journal of Chemical Physics, 128(15):155104, 2008.

[121] A. Laio and F.L. Gervasio. Metadynamics: a method to simulate rare events and

reconstruct the free energy in biophysics, chemistry and material science. Reports

on Progress in Physics, 71(12):126601, 2008.



Bibliography 198

[122] D. Hamelberg, J. Mongan, and J.A. McCammon. Accelerated molecular dynamics:

a promising and efficient simulation method for biomolecules. The Journal of

Chemical Physics, 120(24):11919–11929, 2004.

[123] L.C.T. Pierce, R. Salomon-Ferrer, C. Augusto F. de Oliveira, J.A. McCammon,

and R.C. Walker. Routine access to millisecond time scale events with accelerated

molecular dynamics. Journal of Chemical Theory and Computation, 8(9):2997–

3002, 2012.
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Appendix A

SMD simulation protocol summary

The used SMD simulation protocol is straightforward and in principle applicable on any

other target and series of ligands. The following summary describes the key steps of the

methodology and intends to serve as a how-to for step-by-step reproduction. For details

see Chapters 2.3.1.5 and 5.1.

1. Preparation of complexes

(a) Retrieve protein structure from PDB;

(b) parameterize ligand and cofactor according to the General Amber Force Field

(GAFF) with RESP atom charges;

(c) assign Amber force field parameters to protein;

(d) build complex of protein with ligand, cofactor and crystallized water molecules;

(e) perform a short energy minimization;

(f) solvate complex and add counter ions to ensure neutrality;

(g) perform a long energy minimization;

(h) apply harmonic constraints to all solute atoms (non-water, non-ion);

(i) heat the system from 100 to 300 K while gradually releasing harmonic con-

straints over 500 ps in constant-volume box;

(j) further equilibrate the system for another 500 ps in the NV T ensemble.

2. Random Accelerated MD simulation

(a) Choose a complex to determine a common exit pathway of ligand series;

(b) run RAMD simulations in NAMD with constant pressure;

3. Steered MD simulations

(a) Align the last RAMD snapshot to the last snapshot of each equilibration;
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(b) create a normalized spatial vector for each system from the ligand center of

mass of the last snapshot of the equilibrated system to the ligand center of

mass of the last snapshot of the RAMD simulation to get the pulling direction;

(c) apply harmonic constraints on the Cα atoms of the protein to avoid spatial

translation;

(d) apply a large force constant on the SMD spring;

(e) run several replica simulations of the same complex with constant pressure.

4. Calculation of free energy profiles

(a) Extract the pulling forces from the NAMD output files;

(b) integrate the measured forces over the traveled distance of the moving SMD

constraint as cumulative sums (CAVE: the NAMD SMD output has the unit

pN and uses the conversion factor 1 kcal/mol = 69.479 pN Å);

(c) apply Jarzynski equality to convert all replica SMD simulations of a complex

to the free energy profile;

(d) extract the maximum value of your free energy profile for each complex.

5. Correlate maximum free energy change to the natural logarithm of the experimen-

tal residence time.
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Stand-alone version of MycPermCheck

The perl source code of the stand-alone version of MycPermCheck 1.1 is illustrated

below.

#!/usr/bin/env perl

use strict;

#use warnings;

=head1 NAME

MycPermCheck

=head1 VERSION

1.1

=cut

=head1 DESCRIPTION

MycPermCheck predicts the permeability probability of small molecules

against the Mycobacterium tuberculosis cell wall.

=head1 SYNOPSIS

./mycpermcheck1.1 -i <input file> [-s <sort mode> -c <Calculation Mode>]

sort modes can be n (by name), o (off, order is unchanged) or p

(by probability, default)

calculation mode can be a (all, default), f (first molecule of identically

named), m (average of identically named molecule)

=cut

### Check parameters

my %PAR = @ARGV;

if( !exists $PAR{-i} ) {

print "MycPermCheck 1.1\nUsage: ./mycpermcheck1.1 -i <input file>

[-s <sort mode> -c <Calculate Mean of Isomeric Forms>]\n\nsort modes can

be n (by name), o (off, order is unchanged) or p (by probability,
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default)\n\nCalculate Mean of Isomeric Forms can be y or n (default)\n\n

For more information use \"perldoc mycpermcheck1.1\"\n\n" and exit;

}

my $isoform = ’a’;

$isoform = $PAR{-c} if(exists $PAR{-c} );

if( $isoform ne ’a’ and $isoform ne ’f’ and $isoform ne ’m’ ){

print "MycPermCheck 1.1\nUsage: ./mycpermcheck1.1 -i <input file>

[-s <sort mode> -c <Calculate Mean of Isomeric Forms>]\n\nsort modes can

be n (by name), o (off, order is unchanged) or p (by probability,

default)\n\nCalculate Mean of Isomeric Forms can be y or n (default)\n\n

For more information use \"perldoc mycpermcheck1.1\"\n\n" and exit;

}

my $fname2 = $PAR{-i};

if( $fname2 eq ’’) {

print "Please specify file!\n\n" and exit;

}

my $sort = ’’;

$sort = $PAR{-s} if( exists $PAR{-s} );

if( $sort ne ’p’ and $sort ne ’n’ and $sort ne ’o’) {

$sort = ’p’;

}

### Define descriptor coefficients and centers

my %COEF_qp = (’PISA’ => [7.831499e-05, 250.7896295],

’FOSA’ => [-5.137187e-05, 236.1673680],

’QPlogPo/w’ => [6.060713e-03, 3.2621865],

’accptHB’ => [-3.181890e-03, 5.6655750],

’glob’ => [-7.429219e-02, 0.8191964]);

my %COEF_pad = (’C2SP2’ => [-2.951990e-03, 8.1930000],

’XLogP’ => [-5.353284e-03, 1.8380930],

’TPSA’ => [5.160086e-05, 92.8078396],

’HybRatio’ => [5.197880e-02, 0.2705913],

’LOBMAX’ => [-4.130163e-03, 2.1456477]);

=head1 INTERNAL FUNCTIONS

=cut

=over
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=item logreg_qp()

Method logreg_qp() applies the MycPermCheck logistic regression function

for a given PC1 coordinate input for the QikProp based model.

=cut

sub logreg_qp {

my $pc1 = $_[0];

my $prob = 1/(1+exp(-45.187*$pc1));

return $prob;

}

=item logreg_pad()

Method logreg_pad() applies the MycPermCheck logistic regression function

for a given PC1 coordinate input for the PaDEL based model.

=cut

sub logreg_pad {

my $pc1 = $_[0];

my $prob = 1/(1+exp(52.943*$pc1));

return $prob;

}

=item loadandformat()

Method loadandformat() reads and checks the input file for file format

and correctness.

=cut

sub loadandformat {

my $fname2 = $_[0];

open( CHECK, "$fname2") or die "File not found!\n\n";

my $headline = <CHECK>;

my @HEADER = split(’,’, $headline);

my $fileformat = "qikprop";

if ( $headline =~ /Name/ ) {

$fileformat = "padel";

}

elsif( $headline !~ /molecule,/ ) {

print "$fname2 has wrong file format! Please use QikProp or PaDEL CSV

files only.\n" and exit;
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}

close CHECK or die "Can’t close file! Something went wrong.\n\n";

### Check and save indices of wanted descriptors

my @DESC = ();

@DESC = qw(FOSA QPlogPo/w PISA accptHB glob) if( $fileformat eq ’qikprop’);

@DESC = qw(LOBMAX TPSA C2SP2 HybRatio XLogP) if( $fileformat eq ’padel’);

my @DESC_ind = ();

foreach my $desc ( @DESC ) {

push(@DESC_ind, grep { $HEADER[$_] =~ /$desc/ } 0..$#HEADER);

}

return ($fileformat,\@DESC_ind,\@HEADER,\@DESC);

}

=item noiso()

Perform MycPermCheck without averaging of isomeric forms.

=cut

sub noiso {

my $fname2 = $_[0];

my $fileformat = $_[1];

my @DESC_ind = @{$_[2]};

my @HEADER = @{$_[3]};

my @OUTPUT = ();

my %NAMES = ();

my %DATA_centered = ();

open( INPUT, "$fname2") or die "File not found!\n\n";

while( <INPUT> ) {

next if ($_ =~ /molecule/);

next if ($_ =~ /Name/);

my @LINE = split(’,’, $_);

if ( $isoform eq ’f’ ) {

next if ( exists $NAMES{$LINE[0]} );

}

next if ( $LINE[1] eq ’’ );
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my %DATA = ($HEADER[0] => $LINE[0],

$HEADER[$DESC_ind[0]] => $LINE[$DESC_ind[0]],

$HEADER[$DESC_ind[1]] => $LINE[$DESC_ind[1]],

$HEADER[$DESC_ind[2]] => $LINE[$DESC_ind[2]],

$HEADER[$DESC_ind[3]] => $LINE[$DESC_ind[3]],

$HEADER[$DESC_ind[4]] => $LINE[$DESC_ind[4]]);

%DATA_centered = ($HEADER[0] => $LINE[0]);

foreach( keys %DATA ) {

next if ($_ eq ’molecule’);

next if ($_ eq ’Name’);

$DATA_centered{$_} = $DATA{$_}-$COEF_qp{$_}[1] if( $fileformat eq ’qikprop’);

$DATA_centered{$_} = $DATA{$_}-$COEF_pad{$_}[1] if( $fileformat eq ’padel’);

}

######################################################################

### MycPermCheck:

### Calculate PC1 coordinate and Calculate logistic regression

my $probability = ’’;

if( $fileformat eq ’qikprop’ ) {

my $PC1 = 0.1536226 * 0.6510271 * 9.99875 * ($COEF_qp{PISA}

[0]*$DATA_centered{PISA} + $COEF_qp{FOSA}[0]*$DATA_centered{FOSA} +

$COEF_qp{’QPlogPo/w’}[0]*$DATA_centered{’QPlogPo/w’} + $COEF_qp{accptHB}

[0]*$DATA_centered{accptHB} + $COEF_qp{glob}[0]*$DATA_centered{glob});

$probability = &logreg_qp($PC1);

}

elsif( $fileformat eq ’padel’ ) {

my $PC1 = 0.1649452 * 0.6063332 * 9.99875 * ($COEF_pad{C2SP2}

[0]*$DATA_centered{C2SP2} + $COEF_pad{XLogP}[0]*$DATA_centered{XLogP} +

$COEF_pad{TPSA}[0]*$DATA_centered{TPSA} + $COEF_pad{HybRatio}

[0]*$DATA_centered{HybRatio} + $COEF_pad{LOBMAX}[0]*$DATA_centered{LOBMAX});

$probability = &logreg_pad($PC1);

}

######################################################################

### Save result

push(@OUTPUT, [$LINE[0],$probability,"$LINE[$DESC_ind[0]],$LINE[$DESC_ind[1]],

$LINE[$DESC_ind[2]],$LINE[$DESC_ind[3]],$LINE[$DESC_ind[4]]"]);
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### Memorize molecule names

$NAMES{$LINE[0]} = 1;

}

close INPUT or die "Can’t close file! Something went wrong.\n\n";

return @OUTPUT;

}

=item iso()

Perform MycPermCheck with averaging of isomeric forms.

=cut

sub iso {

my $fname2 = $_[0];

my $fileformat = $_[1];

my @DESC_ind = @{$_[2]};

my @HEADER = @{$_[3]};

my @OUTPUT = ();

my @NAMES = ();

my %DATA = ();

my %DATA_avg = ();

my %DATA_centered = ();

open( INPUT, "$fname2") or die "File not found!\n\n";

while( <INPUT> ) {

next if ($_ =~ /molecule/);

next if ($_ =~ /Name/);

my @LINE = split(’,’, $_);

next if ( $LINE[1] eq ’’ );

my $name = $LINE[0];

push(@NAMES, $name);

push(@{$DATA{$name}}, {$HEADER[$DESC_ind[0]] => $LINE[$DESC_ind[0]],

$HEADER[$DESC_ind[1]] => $LINE[$DESC_ind[1]],

$HEADER[$DESC_ind[2]] => $LINE[$DESC_ind[2]],

$HEADER[$DESC_ind[3]] => $LINE[$DESC_ind[3]],

$HEADER[$DESC_ind[4]] => $LINE[$DESC_ind[4]]});

}

close INPUT or die "Can’t close file! Something went wrong.\n\n";
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### Averaging

foreach my $ligand ( keys %DATA ) {

my $d1 = 0;

my $d2 = 0;

my $d3 = 0;

my $d4 = 0;

my $d5 = 0;

my $nr = (@{$DATA{$ligand}});

foreach my $iso ( @{$DATA{$ligand}} ) {

$d1 += $iso->{$HEADER[$DESC_ind[0]]};

$d2 += $iso->{$HEADER[$DESC_ind[1]]};

$d3 += $iso->{$HEADER[$DESC_ind[2]]};

$d4 += $iso->{$HEADER[$DESC_ind[3]]};

$d5 += $iso->{$HEADER[$DESC_ind[4]]};

}

$DATA_avg{$ligand} = {$HEADER[$DESC_ind[0]] => $d1/$nr,

$HEADER[$DESC_ind[1]] => $d2/$nr,

$HEADER[$DESC_ind[2]] => $d3/$nr,

$HEADER[$DESC_ind[3]] => $d4/$nr,

$HEADER[$DESC_ind[4]] => $d5/$nr};

}

my %BEENTHERE = ();

foreach my $name ( @NAMES ) {

next if ( exists $BEENTHERE{$name} );

foreach ( keys %{$DATA_avg{$name}} ) {

$DATA_centered{$name}{$_} = $DATA_avg{$name}{$_}-$COEF_qp{$_}[1] if(

$fileformat eq ’qikprop’);

$DATA_centered{$name}{$_} = $DATA_avg{$name}{$_}-$COEF_pad{$_}[1] if(

$fileformat eq ’padel’);

}

my $probability = ’’;

if( $fileformat eq ’qikprop’ ) {

my $PC1 = 0.1536226 * 0.6510271 * 9.99875 * ($COEF_qp{PISA}

[0]*$DATA_centered{$name}{PISA} + $COEF_qp{FOSA}[0]*$DATA_centered{$name}

{FOSA} + $COEF_qp{’QPlogPo/w’}[0]*$DATA_centered{$name}{’QPlogPo/w’} +

$COEF_qp{accptHB}[0]*$DATA_centered{$name}{accptHB} + $COEF_qp{glob}

[0]*$DATA_centered{$name}{glob});
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$probability = &logreg_qp($PC1);

}

elsif( $fileformat eq ’padel’ ) {

my $PC1 = 0.1649452 * 0.6063332 * 9.99875 * ($COEF_pad{C2SP2}

[0]*$DATA_centered{$name}{C2SP2} + $COEF_pad{XLogP}[0]*$DATA_centered{$name}

{XLogP} + $COEF_pad{TPSA}[0]*$DATA_centered{$name}{TPSA} +

$COEF_pad{HybRatio}[0]*$DATA_centered{$name}{HybRatio} + $COEF_pad{LOBMAX}

[0]*$DATA_centered{$name}{LOBMAX});

$probability = &logreg_pad($PC1);

}

######################################################################

### Save result

push(@OUTPUT, [$name,$probability,"$DATA_avg{$name}{$HEADER[$DESC_ind[0]]},

$DATA_avg{$name}{$HEADER[$DESC_ind[1]]},$DATA_avg{$name}{$HEADER[$DESC_ind[2]]},

$DATA_avg{$name}{$HEADER[$DESC_ind[3]]},$DATA_avg{$name}

{$HEADER[$DESC_ind[4]]}"]);

$BEENTHERE{$name} = 1;

}

return @OUTPUT;

}

=item sorting()

Provides the selectable sorting methods

=cut

sub sorting {

if( $sort eq ’p’ ) {

$b->[1] <=> $a->[1] or lc($a->[0]) cmp lc($b->[0])

}

elsif( $sort eq ’n’ ) {

lc($a->[0]) cmp lc($b->[0]) or $a->[1] <=> $b->[1]

}

}

##############################################################################

### Start main program
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my ($fileformat,$DESC_ind,$HEADER,$DESC) = &loadandformat($fname2);

if( $isoform eq ’a’ or $isoform eq ’f’) {

my @OUTPUT = &noiso($fname2, $fileformat, $DESC_ind, $HEADER);

print "Name,Probability," . join(’,’,@{$DESC}) . "\n";

foreach( sort sorting @OUTPUT ) {

print "$_->[0]," . sprintf("%.3f", $_->[1]) . ",$_->[2]" . "\n";

}

}

elsif( $isoform eq ’m’ ) {

my @OUTPUT = &iso($fname2, $fileformat, $DESC_ind, $HEADER)

if( $isoform eq ’m’);

print "Name,Probability," . join(’,’,@{$DESC}) . "\n";

foreach( sort sorting @OUTPUT ) {

print "$_->[0]," . sprintf("%.3f", $_->[1]) . ",$_->[2]" . "\n";

}

}

#############################################################################

=back

=head1 TODO

- "Sort mode off" does not work with "Calculate Mean of Isomeric Forms":

FIXED in 1.1

=head1 CITE

Merget et al. (2013) MycPermCheck: The Mycobacterium tuberculosis

permeability prediction tool for small molecules, Bioinformatics,

29(1): 62-68.

=cut

=head1 AUTHOR

Benjamin Merget, 2014

=cut
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