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1 Introduction

Financial networks can be observed in almost all types of markets all over the world. An often
cited example is the Japanese economy (see McDonald, 1989; Suzuki, 2002), where the largest
stock-listed firms own a relatively large amount of shares of each other. This intertwining of the
firm’s equity is known as the Mochiai effect and arose after the Second World War, see McDonald
(1989) for more details. But not only in Northeast Asia such ownership structures can be
observed. Other countries in which similar cross-holdings are present are for example Germany
(Dorofeenko et al., 2008), Italy (Brioschi et al., 1989) and Norway (Bøhren and Michalsen, 1994).

In a financial network, one party’s obligations are the other party’s claims, hence a strongly
connected network structure bears risks. In prone systems, a firm that gets into financial trou-
ble is a channel of contagion since a potential default of one firm may affect the other firms
creditworthiness as well due to interrelations in the firms’ balance sheets. Eisenberg and Noe
(2001) call this phenomenon cyclical interdependence and describe it as follows:

“A default by Firm A on its obligations to Firm B may lead B to default on its
obligations to C. A default by C may, in turn have a feedback effect on A.”

Even though the publication dates of the articles from the paragraph above are already some
years ago, the events in financial markets in recent years showed that financial cross-linkages have
become more important than ever. In the world financial crisis that started in 2007, mortgage
banks like Fannie Mae and Freddie Mac or the insurance agency AIG got into financial trouble
and had to be rescued by the US government to avoid a collapse of the financial system. These
bailouts brought to mind that, due to the financial interconnectedness of the companies all over
the world, a crisis in one region of the world may trigger financial crisis in other regions. One of
many conclusions of the almost breakdown was that modeling the firms’ credit risk by ignoring
the architecture of the network may lead to dangerous effects. It is therefore necessary to analyze
the financial network as a whole. This will help to avoid systemic crashes as the one in 2008
and to keep the associated social costs of a crisis, that can account for up to 300% of the gross
domestic product of a country (Boyd et al., 2005), up to a minimum.

Directly associated with the quantification of systemic risks in financial systems is the issue of
pricing debt and equity in financial networks since the price of the assets is the crucial information
when determining the resilience of a network. This leads to the analysis of credit risk, a field of
research that started with the pioneering work of Merton (1974). In the famous Merton model,
equity and debt value of a firm are interpreted as derivatives of the firm’s assets. If the asset
value falls below the nominal value of the outstanding debt of a firm, a default event occurs.
This approach has lead to many modifications and extensions of the original Merton model. All
these models are summarized under the conception structured models since they focus on the
financial structure of the firms to evaluate their borrowing capacity. For an overview of such
models, see for example Bingham and Kiesel (2004) and the references therein. In the works of
Crouhy et al. (2000) and Arora et al. (2005) structural models are compared to reduced-form
models who focus on modeling the firms’ default rates.

Though multi-firm models allow correlations of the firms assets utilizing multivariate distribu-
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tions (cf. Kealhofer and Bohn, 2001) or some works, like Zhou (2001), take potential correlations
of asset values in their model into account, a weakness of many structural models is that cross-
holdings of the firms in debt and equity are ignored or at least not taken into account on a
structural level. Eisenberg and Noe (2001) were the first to structurally model financial systems
in which firms can hold each other’s financial obligations as assets under the assumption of
limited liability. The main difference between Eisenberg and Noe and the standard multi-firm
Merton model is that prices at maturity are not trivially determined since the value of one firm’s
equity or debt may depend on the value of the debt of any other firm in the system which is
vividly described by Shin (2008):

“The [. . . ] value of my claim against A depends on A’s creditworthiness, and so
depends on the value of A’s claims against B, C, etc. However, B or C may have
a claim against me, and so we are back full circle. The task of valuing claims in a
financial system thus entails solving for a consistent set of prices [. . . ].”

This cyclical characteristic described by Shin leads to the challenge of finding a pricing equi-
librium for equity and debt of the system members. Spoken mathematically, this is equivalent
to determine a fixed point of a certain mapping. In their article, Eisenberg and Noe (2001)
gave conditions under which only one equilibrium solution exists at maturity. Other works like
Suzuki (2002), Shin (2008) and Elsinger (2009) generalized the Eisenberg and Noe setup by
also including cross-holdings in the equities, and by allowing a seniority structure of the liabili-
ties. All these works have in common that they are also faced with the issue of finding a price
equilibrium.

While there exists a small but growing amount of research on the existence and the uniqueness
of price equilibria in systems with financial interconnectedness, the literature is still somewhat
inconsistent. This can, among others, be noticed by the fact that different authors define the
underlying financial system on differing ways. In some cases, this bears no conflict since models
with less general assumptions can easily be embedded into more general models. For instance,
the model of Eisenberg and Noe (2001) is a special case of Shin (2008), since in the former
model, only one priority level of debt is considered whereas in the latter model, more than one
debt priority is taken into account. In other cases, however, the authors derive contradictory
conditions that have to be valid for the existence of a uniquely determinable price equilibrium.
As an example may serve the articles of Suzuki (2002) or Gouriéroux et al. (2012) in which the
assumptions made on the ownership structure are not compatible with the assumptions of other
models such as the one of Eisenberg and Noe (2001). A possible explanation of this plethora
of assumptions could be that the authors are sometimes unaware of previous articles or at least
do not reference on former publications. Suzuki for example generalizes the model of Eisenberg
and Noe (2001), seemingly unbeknown to him. In turn, Suzuki’s work stays unmentioned in the
article of Gouriéroux et al. (2012) even though they use the same model and come to identical
conditions for the uniqueness of a pricing equilibrium.

Another aspect of the lack of uniformity in this research area concerns the procedures that
are applied to find the pricing equilibria. In the existing publications, the provided algorithms
mainly reflect the individual authors’ particular approach to the problem. Beside their results
concerning conditions to ensure that the pricing equilibrium is unique, Eisenberg and Noe (2001)
also provide a finite numerical algorithm to determine this solution. Other papers (Suzuki, 2002;
Elsinger, 2009; Gouriéroux et al., 2012; Fischer, 2014) treating more general models that allow
for equity cross-holdings, also present iterative procedures to find the equilibrium. The higher
generality, however, comes with the drawback that it cannot be ensured anymore that the
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equilibrium price vector is reached in a finite number of iteration steps. Comparative studies of
the different methods seem to be absent from the existing literature. Furthermore, at present,
no numerical algorithm for the setup with cross-holdings of equity and one seniority class of
debt (Suzuki, 2002; Elsinger, 2009; Gouriéroux et al., 2012; Fischer, 2014) is known that reaches
the exact solution in a finite number of calculation steps.

This work therefore has several objects. In a preliminary step, we attempt to give a definition
of the financial system in its most general form in Chapter 2. This model, a system with cross-
holdings in both equity and debt with potentially more than one seniority level is referred to as
the standard model in the remainder of this work. We show that under a regularity condition
– the ownership matrices have to possess the Elsinger Property – the system has a uniquely
defined solution in the form of a payment equilibrium.

Chapter 3 is a survey of the existing articles on this field, not only concerning the historical
development of the models but also regarding definitions of financial systems deviating from
the standard model in Chapter 2. Possible variations are differing definitions of the exogenous
assets, the properties of the ownership matrices that describe the structure of cross-holdings or
the definition of the liabilities. We highlight how the differing models can be included into the
standard model and, if this is not possible, show the consequences on existence and uniqueness
results that follow from the distinct definitions. There are, however, some versions of financial
systems that can be embedded into the standard model but then violate the regularity conditions
that are required for the uniqueness of a payment equilibrium. This concerns financial systems
in which all obligations of the firms are completely owned by other members in the system
which contradicts the Elsinger Property. In order to demonstrate that such models still have
a unique solution, we need to claim a further condition on the standard model concerning the
size of the exogenous assets. Beside a short sketch how to prove this, we also present all further
important ideas of proofs for the existence and the uniqueness of a payment equilibrium. In
a last subsection of this chapter we briefly discuss some extensions of the standard model, in
particular systems in which default costs are included.

The main focus of this work is on the investigation of valuation algorithms to find the unique
pricing equilibrium. Based on the standard model in which only one seniority level is allowed,
we give in Chapter 4 an overview of already existing iteration procedures, the Picard and the
Elsinger Algorithm, examine their properties and introduce two possible starting vectors for the
iteration, a minimum and a maximum possible solution. Moreover, the ideas of Elsinger (2009)
and of Eisenberg and Noe (2001) are combined together into a new type of algorithm, called
Hybrid Algorithm for which we show that it minimizes the number of iteration steps to find a
solution. Even if the iteration number is minimized, the drawback of the mentioned methods
is that they in general do not reach the solution exactly and, hence, theoretically may need
infinitely many iteration steps. This is why we present a new class of finite algorithms that
are to able find the equilibrium in a finite number of iteration steps. The innovation of these
algorithms, the Trial-and-Error and the Sandwich Algorithm, is that the default set, the number
of firms in default for a current iterate, is taken into consideration as an additional information
for the search of the solution.

The means of both non-finite and finite algorithms are in Chapter 5 applied to financial
systems in which more than one debt priority level is present. It will turn out that the methods
also work well for such systems, i.e. the non-finite algorithms will converge to the equilibrium,
though potentially infinitely many iteration steps have to be conducted. Trial-and-Error and
Sandwich Algorithm can also be generalized for this framework with a slight adaption of the
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default set to a default tuple since in these models in case of a firm’s default event, one has
to find out in which seniority class the default is exactly located. Nevertheless, we show that
the main result of Chapter 4, i.e. that the equilibrium is reached in a finite number of steps,
can be retained. At the end of this chapter, we additionally mention another algorithm, called
the Default Structure Algorithm that is based on the ideas of Elsinger (2009). The approach
here is a bit different to the finite algorithms but comes with the advantage that the algorithm
has a clear-defined upper bound of maximum iteration steps. The disadvantage is that the
finite character of the algorithm gets lost since non-finite methods have to be considered in the
substeps of the procedure. We generalize Elsinger’s method in more detail than in the original
work and additionally present a modification to improve the convergence speed of the procedure.

Except of the Default Structure Algorithm, all mentioned procedures above have in common
that they can start from two different directions when searching the payment equilibrium. One
possible starting point is the maximum possible solution, another initial iterate consists out of
the minimum possible payments. The issue of choosing the optimal one out of the two starting
points is addressed in Chapter 6. Based on the error estimates of the Picard Iteration established
by Banach (1922), we derive a decision rule that attempts to find the optimal starting point
for the Picard Algorithm. Further, we demonstrate that the transition of the decision rule to
the Elsinger and the Hybrid Algorithm is not innocuous since for these procedures the required
condition necessary for the utilization of the error estimates cannot be guaranteed in general.
However, the principle introduced for the Picard Algorithm can be applied even though in order
to determine an optimal initial iterate.

Chapter 7 contains a simulation study for a various selection of financial systems with one
priority class of debt. The objectives of the study are threefold. In a first part, we assess the
goodness of the decision rule from Chapter 6 and find that the number of needed iteration steps
is actually minimized when applying the decision rule on all three non-finite algorithms (Picard,
Elsinger, Hybrid). However, when taking the runtime of the procedures as an orientation,
checking the rule and deciding which initial iterate to take is unfortunately less efficient than
using either the upper or the lower starting point each time. Searching for an optimal lag value,
a parameter that is needed for the Trial-and-Error Algorithms, is the second part of the study.
The results reveal that the smallest possible lag value leads on the one hand to a minimization
of the computational effort. On the other hand, the number of additional performed iteration
steps, a consequence of small lag values, can be kept acceptable small. The last and most
important part entails the investigation of all possible calculation procedures concerning their
efficiency. It turns out that the Picard Iteration requires much less computational effort and
therefore is the most efficient iteration procedure. Moreover, we find that for financial system
of a small size, the Sandwich Algorithm is the most efficient algorithm class and that the higher
the number of firms in the system becomes, the more efficient becomes the class of non-finite
algorithms.

A summary of the results and an outlook of potential future research topics is given in Chap-
ter 8. Finally, a technical appendix follows with auxiliary results and tables that summarize
additional results of the simulation study in Chapter 7
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2 Notation and Model Assumptions

2.1 Notation

Vectors are represented by bold small letters (e.g. x), matrices by bold capitals (e.g. M) and
a set is written in form of a calligraphic letter (e.g. I). Moreover, a vector x ∈ Rn is always
assumed to be a column vector. The components of x = (x1, . . . , xn)t are written in regular
font. Sometimes a vector x depends on k ≥ 1 other vectors y1, . . . ,yk which is expressed as
x(y1, . . . ,yk). The i-th element of x(y1, . . . ,yk) is addressed via xi(y1, . . . ,yk). By 0n we
denote a (column) vector of length n that contains only zeros and 1n stands for a vector of the
same length with value 1 in every entry. If two vectors u ∈ Rn and v ∈ Rn are composed to a
(column) vector of dimension 2n, we define for a better readability that

(u,v) := (ut,vt)t ∈ R2n, (2.1)

which is also possible for k vectors u1, . . . ,uk via

(u1, . . . ,uk) := ((u1)t, . . . , (uk)
t)t. (2.2)

In some cases, (u,v) ∈ Rn×2 represents a matrix of two vectors that are connected together
columnwise. However, no confusion about the dimension of (u,v) should arise from the context.
In this thesis, we will often make use of vectors Rk ∈ Rn(m+1) for instance as an iterate of a
certain iteration process. Note that this is the only time, a vector is denoted in capitals. For
any k ≥ 0, we interpret Rk as consisting m+ 1 vectors rk,m, . . . , rk,1, rk,0, each of dimension n,
which is why we will express Rk by

Rk := (rk,m, rk,m−1, . . . , rk,1, rk,0), (2.3)

hence the first letter in the superscript on the right hand side of (2.3) always stands for the
iterate number k ≥ 0 and the second letter labels the position of rk,l in Rk, where l = 0, 1, . . . ,m.

In general, the entries of a matrix M ∈ Rn×n are denoted by Mij , i, j = 1, . . . , n. When
multiplying a matrix M ∈ Rn×n with a vector x ∈ Rn of appropriate dimension and adding
another vector y ∈ Rn, we obtain for the i-th entry of the resulting vector

(y + Mx)i := yi +

n∑
j=1

Mijxj . (2.4)

The symbol In is used for the (n×n)-identity matrix and 0n×n stands for an (n×n)-matrix with
only zero entries. For two matrices M ∈ Rn×n and N ∈ Rn×n we write M ≥ N if Mij ≥ Nij for
all i, j ∈ {1, . . . , n} and M > N if Mij > Nij for at least one pair (i, j). For two vectors u,v ∈ Rn
the definition of u ≥ v and u > v is analogous to the conventions for matrices. A matrix
M ∈ Rn×n with Mij ≥ 0 for all i, j ∈ {1, . . . , n} is said to be left substochastic if

∑n
i=1Mij ≤ 1

for all j ∈ {1, . . . , n}. The matrix is called strictly left substochastic if
∑n

i=1Mij < 1 for all
j ∈ {1, . . . , n} and fully left stochastic if

∑n
i=1Mij = 1 for all j ∈ {1, . . . , n}.
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For a vector u = (u1, . . . , un)t ∈ Rn, the expression diag(u ≤ 0n) stands for an (n×n)-diagonal
matrix where the i-th entry on the diagonal is 1 if ui ≤ 0 and 0 otherwise, i.e.

diag(u ≤ 0n) :=

{
1, for i = j and ui ≤ 0,

0, else.
(2.5)

The commonly used norm in this thesis is the `1-norm on Rn defined as

‖x‖ := ‖x‖1 =

n∑
i=1

|xi| for x ∈ Rn. (2.6)

The corresponding norm for a left substochastic matrix M ∈ Rn×n is given by

‖M‖ := ‖M‖1 = max
‖x‖=1

‖Mx‖1 = max
j

n∑
i=1

|Mij | = max
j

n∑
i=1

Mij ≤ 1, (2.7)

meaning that ‖M‖ is the maximum of the column sums. One can easily show that ‖Mx‖ ≤
‖M‖‖x‖ as well as ‖M + N‖ ≤ ‖M‖+ ‖N‖ for N ∈ Rn×n.

Finally, if in a sum the counter at start is higher than in the end, the sum is set to zero,
i.e.

∑n
i=n+1 xi := 0 for x ∈ Rn. All operations, such as the minimum, min{·}, the maximum,

max{·}, or the positive part (·)+ are applied element-wise to vectors and matrices. All numbers
in the numerical examples during the thesis are rounded to four decimal places, unless otherwise
stated.

2.2 Model Assumptions

We consider a system of n financial entities, and denote N := {1, . . . , n}. In the following these
entities are simply called firms. Each firm owns exogenous assets, that are defined in the next
step.

Definition 2.1. Let ai ≥ 0 denote the market value at maturity of the exogenous assets held by
firm i. As the name implies, these assets are priced outside the considered system in the sense
that the capital structure of the n firms has no influence on the pricing mechanism of such an
asset. By a = (a1, . . . , an)t ∈ (R+

0 )n we denote the (column) vector of the exogenous assets.

Moreover, we assume that the firms have m ≥ 1 outstanding liabilities with nominal values at
maturity of d1, . . . ,dm ∈ Rn meaning that dkj is the value of firm j’s k-th liability. Suppose that
the liabilities are arranged according to their priority in case of a liquidation event. That means
that dm is the liability with the highest priority, paid first and d1 has the lowest priority and is
paid at last. The number k (1 ≤ k ≤ m) is often referred to as the seniority/priority level/class.
To take the interconnectedness of the firms into account, we allow that each firm can own a
fraction of the liabilities of the other firms. Beside the liabilities, we also allow for cross-holdings
in the equity of the firms. To formalize these possible cross-holdings, we use ownership matrices.

Definition 2.2. The left substochastic matrix Mk ∈ Rn×n, k = 1, . . . ,m, in which the entry
0 ≤Mk

ij ≤ 1 denotes the fraction that firm i owns from the k-th priority level liability of firm j
is called debt ownership matrix for the k-th priority or seniority level. Since no firm is allowed to
hold obligations to itself, we assume Mk

ii = 0 for all i ∈ N and all priority levels k ∈ {1, . . . ,m}.
Moreover, let M0 ∈ Rn×n be the ownership matrix of the equity which means that firm i owns
a fraction of 0 ≤M0

ij ≤ 1 of firm j’s equity.
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Note that there is no common convention in literature how to define the diagonal entries of
the ownership matrices. In some works (Elsinger, 2009), the diagonal entries of Mk are for
k = 1, . . . ,m assumed to be zero and the diagonal entries of M0 are allowed to be larger than
zero. That means it is allowed that firm i holds its own shares but not its own debt. On the
other hand there exists articles (Awiszus and Weber, 2015) in which Mk

ii = 0 for all k = 0, . . . ,m
has to hold. We refer to the model assumptions in Elsinger (2009) which is why we allow M0

ii > 0
for all i ∈ N . However, from a mathematical point of view, the restriction that the diagonal
entries have to be zero in all ownership matrices is not necessary since all following results in
this thesis also hold if the firms own some part of their shares or liabilities.

All available information that was defined above is in the sequel of this work sometimes
referred to as the financial system.

Definition 2.3. A financial system is given by the tuple F = (a,M,d) where M =
(Mm, . . . ,M1,M0) ∈ Rn×(n(m+1)) contains the ownership matrices for the m seniority levels
and the equity ownership matrix and d = (dm, . . . ,d1) ∈ Rn×m represents the nominal values
of the outstanding debt for each seniority level.

Associated with the m liability vectors we consider m recovery claim vectors rk ∈ (R+
0 )n, k =

1, . . . ,m. The recovery claim vectors represent the actual payments of the firms at maturity, i.e.
in general we have rk ≤ dk since default risk is present. For a given ownership fraction Mk

ij , the

value of the debt claim that firm i has to firm j in the k-th seniority level is given by Mk
ijr

k
j .

The total value of firm i’s debt claims against the other members of the system is
∑n

j=1M
k
ijr

k
j

for the corresponding seniority class k. Denote by r0 ∈ Rn the equity values of the n firms. The
notation is in accordance with the fact that equity can be interpreted as the liability with the
lowest priority level – the residual liability. The total value of claims of firm i against all other
firms in the system is therefore given by the i-th entry of

m∑
k=0

Mkrk. (2.8)

The sum in (2.8) represents the incoming payments on the asset side of the firms’ balance sheet
stemming from cross-holdings. Since these assets are not exogenously priced such as a, but
within the system, we will sometimes use the expression endogenous assets.

At this stage, note that in our framework we assume that the entries of dm, . . . ,d1 are constant.
Since it is assumed that the exogenous assets’ prices are given by the constant vector a, the
main result of Theorem 2.7 about the uniqueness and the existence of a payment vector also
holds if the dk (1 ≤ k ≤ m) depend on a, i.e. if dk = dk(a). However, for the remainder, we
will write dk for convenience. This definition of the liability vectors allows the interpretation
that the liabilities are simple loans or zero coupon bonds since they are not derivatives that can
depend on the other assets within the system. The case of constant liabilities is used in most
existing publications in this field, whereas the more general case in which the dk can depend on
the endogenous assets and on their own recovery values rk, is also treated in the literature (see
Fischer, 2014). An example for such a system is given in Section 3.2.2.

The basic assumption for the model is that the outstanding liabilities of a higher priority level
have to be paid completely before any lower ranked liability can be paid back. Equity is treated
as the most junior class of liability. This convention is known as the Absolute Priority Rule.
Hence, the equity value r0

i of firm i can only be strictly positive if firm i can fully satisfy all
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of its obligees. The Absolute Priority Rule immediately leads to the following liquidation value
equations for the recovery claims and the equities (cf. Fischer, 2014):

rm = min

{
dm, a +

m∑
k=0

Mk · rk
}

(2.9)

rj = min

dj ,

a +

m∑
k=0

Mk · rk −
m∑

k=j+1

dk

+ (0 < j < m) (2.10)

r0 =

(
a +

m∑
k=0

Mk · rk −
m∑
k=1

dk

)+

. (2.11)

A solution for the liquidation equations in (2.9) – (2.11) is therefore the fixed point of the
mapping Φ : (R+

0 )n(m+1) → (R+
0 )n(m+1), where

Φ


rm

rm−1

...
r1

r0

 =


min{dm, a +

∑m
k=0 Mk · rk}

min{dm−1, (a +
∑m

k=0 Mk · rk − dm)+}
...

min{d1, (a +
∑m

k=0 Mk · rk −
∑m

k=2 dk)+}
(a +

∑m
k=0 Mk · rk −

∑m
k=1 dk)+

 . (2.12)

Note that we consider Φ only on (R+
0 )n(m+1). This restriction is justifiable since it is guaranteed

that every vector R = (rm, . . . , r0) for which the liquidation equations in (2.9) – (2.11) hold is
non-negative, see Fischer (2014) for a proof which can easily be adjusted for the case with own-
ership matrices, for which the Elsinger Property (see Definition 2.5) holds. We will sometimes
refer to a fixed point of Φ as a solution of the financial system F . A crucial property of the
mapping Φ we will make use of is the monotonicity with regard to the recovery claims.

Lemma 2.4. For k = 0, . . . ,m, let the ownership structure of the system be described by left
substochastic ownership matrices Mk ∈ Rn×n. If for R1 =

(
r1,m, . . . , r1,0

)
∈ (R+

0 )n(m+1) and

R2 =
(
r2,m, . . . , r2,0

)
∈ (R+

0 )n(m+1) we have that R1 ≤ R2, then Φ(R1) ≤ Φ(R2).

Proof. Since the Mk are all ownership matrices, we get that

m∑
k=0

Mkrk,1 ≤
m∑
k=0

Mkrk,2. (2.13)

The claim follows immediately from Equation (2.12).

We are interested in finding the fixed points of Φ, that means the solutions of the financial
system F . Without further constraints it is possible that there exist several solutions of F . To
ensure that the solution is unique, we have to require a certain condition for the form of the
ownership matrices.

Definition 2.5. An ownership matrix M ∈ Rn×n possesses the Elsinger Property if there exists
no subset J ⊂ N such that ∑

i∈J
Mij = 1 for all j ∈ J . (2.14)
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The name of this property is chosen because Elsinger (2009) is, by the best knowledge of
the author, the first one to use this assumption in the context of ownership matrices and the
valuation under systemic risk. For our model, we demand that the considered ownership matrices
have this property.

Assumption 2.6. The Elsinger Property holds for all ownership matrices Mk with 0 ≤ k ≤ m.

Note that the fact that Mk having the Elsinger Property is equivalent with the existence of
(In−Mk)−1, as shown by Elsinger (2009). Moreover, Assumption 2.6 ensures that there is only
one fixed point of Φ, as the following theorem shows. A proof of the Theorem 2.7 is given in
the Appendix in Section A, and basically relies on the proof in Hain and Fischer (2015). In a
similar form, the proof can also be found in Fischer (2015).

Theorem 2.7. Under Assumption 2.6, the fixed point of the mapping Φ is unique and non-
negative for an arbitrary financial system F = (a,M,d).

In the sequel, we assume that Assumption 2.6 holds so that F has only one solution denoted
by R∗ ∈ (R+

0 )n(m+1), defined as

R∗ :=


r∗,m

r∗,m−1

...
r∗,0

 = Φ


r∗,m

r∗,m−1

...
r∗,0

 = Φ(R∗). (2.15)

Remark 2.8. Note that the assumption that a ≥ 0 is not necessary for the validity of Theorem
2.7. In the more general case of a ∈ Rn the first n components of the liquidation equations in
(2.9) have to be modified to

rm = min

{
dm,

(
a +

m∑
k=0

Mkrk

)+}
(2.16)

and therefore the mapping Φ in (2.12) as well. However, this does not affect the uniqueness of
the solution R∗, as shown in Elsinger (2009). See also Section 3.2.1 for more details on the case
of negative exogenous asset values.

At the end of this section, we present two assertions that will become useful in the remainder
of this work.

Lemma 2.9. Let R∗ = (r∗,m, . . . , r∗,0) the a fixed point of the mapping Φ. Then it holds for
the equity components that

r∗,0 =

(
a +

m∑
k=0

Mkr∗,k −
m∑
k=1

dk

)+

= a +

m∑
k=0

Mkr∗,k −
m∑
k=1

r∗,k. (2.17)

Proof. We check Equation (2.17) component-wise for a firm i ∈ N . The firm i is either in default

or solvent under R∗. If it is in default in seniority level k (k = 1, . . . ,m), i.e. r∗,k+1
i = dk+1

i and

r∗,ki < dki , it follows for the recovery value in seniority level k that

r∗,ki = min

dki ,
(

a +

m∑
l=0

Mlr∗,l −
m∑

l=k+1

dl

)+

i

 =

(
a +

m∑
l=0

Mlr∗,l −
m∑

l=k+1

dl

)
i

. (2.18)
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Since r∗,li = dli for m ≥ l > k and r∗,li = 0 for 0 ≤ l < k, this yields to(
a +

m∑
l=0

Mlr∗,l −
m∑
l=1

r∗,l

)
i

=

(
a +

m∑
l=0

Mlr∗,l −
m∑

l=k+1

dl − r∗,k

)+

i

= 0

=

(
a +

m∑
l=0

Mlr∗,l −
m∑
l=1

dl

)+

i

.

(2.19)

Aggregating this for all n firms leads to (2.17). For a solvent firm, it holds that r∗,ki = dki for all
1 ≤ k ≤ m and there is nothing to show.

Lemma 2.10. Let r0(rm, . . . , r1) ∈ (R+
0 )n be the equity vector for the corresponding debt

payments rm, . . . , r1 such that

r0(rm, . . . , r1) =

(
a +

m∑
k=1

Mkrk + M0r0(rm, . . . , r1)−
m∑
k=1

dk

)+

. (2.20)

Then r0(rm, . . . , r1) is in increasing in (rm, . . . , r1).

Proof. See Fischer (2015, Lemma 10.3) for a proof.

In the remainder of this work, we will use a financial system F for which the components
fulfill the following conditions:

1. Potentially several seniority classes are allowed: m ≥ 1.
2. Exogenous asset values can only take non-negative values: a ∈ (R+

0 )n.
3. All m+ 1 ownership matrices possess the Elsinger Property.
4. The liability vectors dm, . . . ,d1 are assumed to be constant.

This model is in this work also referred to as the standard model of a financial system. In this
thesis, the standard model is considered unless otherwise stated. In Chapter 3, we will discuss
in more detail possible modifications of the model components and consequences for existence
and uniqueness results arising thereby.
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3 Literature Review

In recent years, a substantial growth in research interest in the topic of systemic financial risk
could be observed which can be deduced primarily from a continuously increasing number of
publications in this research area. Since it is still a relatively young discipline, the works and
articles to this subject seem to be a bit inconsistent yet. One indication for this conclusion is the
fact that the nomenclature to describe the single components of the model differs from article
to article. Take on the one hand the expressions used to describe the members of such a system.
For instance, the range of names lasts from “nodes” (Eisenberg and Noe, 2001), “agents” or
“investors” (Shin, 2008), “banks” or “institutions” (Gouriéroux et al., 2012) to “organizations”
(Elliott et al., 2014) to mention a just few. In a similar manner, this also holds for the other
model components like the exogenous assets, see also Section 3.2.1. On the other hand, even
the postulated assumptions on the investigated models are not uniformly made in the sense that
various regularity conditions are used for the single components like the assets or the ownership
matrices. A consequence of this plethora of assumptions are differing results on existence and, in
particular, on uniqueness of potential equilibrium solutions of the considered financial systems.

Beside such inconsistencies concerning the naming, it is also observable that some works focus
on the same topics without referring to one another. An example is the work of Suzuki (2002)
that can be interpreted as some kind of generalization of the model of Eisenberg and Noe (2001).
However, no mention of Eisenberg and Noe’s ideas can be found in the article. On the other side,
it seems that other authors like Shin (2008) and Elsinger (2009), who both develop essential
contributions regarding existence and uniqueness results for more general financial systems, were
unaware of the insights of Suzuki. Some publications also obtain very similar or even identical
results without citing each other. The article of Gouriéroux et al. (2012) uses identical model
assumptions as Suzuki (2002) in his article (cf. Table 3.1 for details) yielding the same results
about existence and uniqueness. In Demange (2011), a sensitivity analysis of the financial system
is conducted similar to the one in Liu and Staum (2010) without mentioning these results. A
last example is the work of Ren et al. (2014) which basically contains the same existence and
uniqueness results of Demange (2011) but lacks a cross-reference.

With that background in mind, this chapter is an attempt to survey and unify the existing
literature on systemic risk. We start with a short chronological documentation of the model
development in this area by listing important articles and their results in Section 3.1. A similarity
in all works is that the components of the financial system are the same, namely the exogenous
assets, the liabilities and the ownership matrices. The specific definition of the components,
however, differs from study to study. In Section 3.2 we therefore will for each component
compare differing definitions and try to show how they can be unified in a general framework.
The main question for financial models of this type is whether there exists a single solution
of the financial system in the form of a payment equilibrium and, if so, which conditions have
to be fulfilled for this purpose. Based on different existing model assumptions, the authors
came to individual conclusions on model assumptions for uniqueness. It will turn out that these
conditions can be summarized into several regularity conditions presented in Section 3.3. All
existing works can be incorporated into these conditions for which existence and uniqueness
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results can be stated. Section 3.4 shortly mentions some possible extensions of the standard
model.

Note that we do not claim to give a complete overview of all existing articles in this field since
this would go far beyond the scope of this work. The primary goal is rather to highlight that the
existing model assumptions can be sorted into several regularity conditions and that for each
condition a separate uniqueness proof can be given. Our hope is that these efforts will bring
some order into the widespread literature and avoid unnecessary effort in further research.

3.1 Evolution of Literature

The work of Eisenberg and Noe (2001) is widely accepted to be the starting point in systemic
financial risk and probably one of the most cited papers in this research area. The main result
of it is that under some specific conditions – the financial system has to be “regular” – there
exists exactly one solution for systems with one seniority and no cross-holdings in equity (m = 1,
M0 = 0n×n). Moreover, the authors present an elegant algorithm (“fictitious default algorithm”)
that is able to find the solution in no more than n iteration steps. The model defined by Eisenberg
and Noe is used in many theoretical and empirical studies to assess the relationship of cross-
holdings and contagion in financial networks. For an overview of existing literature on contagion
we refer to Staum (2012) or the work of Upper (2011) for a survey of empirical studies on this
topic. The mathematical background of such models to assess systemic risks is described in
Elsinger et al. (2013).

Only one year after the appearance of the manuscript of Eisenberg and Noe (2001), Suzuki
(2002) includes possible cross-holdings in the firms’ shares into the model (M0 6= 0n×n). Suzuki’s
paper is a stand-alone work for two reasons. On the one hand, according to the reference list
of the article, the author was not aware of the fact that he is generalizing Eisenberg and Noe’s
model. His main intention was to generalize the famous Merton-Model by including endogenous
assets due to cross-ownership into the firms’ balance sheet. On the other hand, the contributions
of Suzuki to systemic risk analysis in financial networks have gone unnoticed by the scientific
community since no article appearing after 2002 cites Suzuki’s work. This is remarkable insofar
that some works, like the one of Gouriéroux et al. (2012) rely on the same model assumptions and
obtain the same existence and uniqueness results as Suzuki (2002). The first publication that
honors Suzuki’s insights more than ten years after publication is Fischer (2014). An important
development of the model defined by Eisenberg and Noe offers the work of Shin (2008). The
author generalizes the liability structure of the financial system in the sense that the debt
obligations can be of multiple seniority (m > 1, M0 = 0n×n). Albeit ignoring cross-holdings in
the equities, Shin shows that, under certain assumptions, there exists a unique equilibrium of
debt payments.

For two reasons, the next milestone in developing the financial system to a more general
structure is the article of Elsinger (2009). First, Elsinger extends Shin’s model and includes
possible cross-holdings of the firm’s shares, i.e. m > 1 and M0 6= 0n×n. Second, the model
allows for a more general liability structure which means that firms can have obligations to
bondholders outside the system. This was not possible in the models of Eisenberg and Noe
(2001) and Shin (2008). Together with a new regularity condition on the ownership matrices,
the Elsinger Property (cf. Definition 2.5), (sufficient) conditions are derived under which a
unique pricing equilibrium exists. Beyond the existence and uniqueness results, the author
presents a new algorithm that determines the firm’s equity values for a given vector of debt
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payments, see also Section 4.1.2 for more details.

Table 3.1: Overview of mentioned articles in this chapter with a focus on systemic risk analysis
considering cross-holdings in the firms’ balance sheet and their model assumptions.

Study Seniority
levels

Equity cross-
holdings

Ownership
structure

Regularity
conditions

Eisenberg and Noe (2001) m = 1 M0 = 0n×n (OS2) (RC2)
Suzuki (2002) m = 1 M0 6= 0n×n (OS1) (RC1)
Cifuentes et al. (2005) m = 1 M0 = 0n×n (OS2) (RC5)
Müller (2006) m = 1 M0 = 0n×n (OS2) n.s
Shin (2008) m > 1 M0 = 0n×n (OS2) (RC3)
Shin (2009) m = 1 M0 = 0n×n (OS2) (RC3)
Elsinger (2009) m > 1 M0 6= 0n×n (OS3) (RC4)
Liu and Staum (2010) m = 1 M0 = 0n×n (OS2) (RC2)
Demange (2011) m = 1 M0 = 0n×n (OS2) (RC4)
Gouriéroux et al. (2012) m = 1 M0 6= 0n×n (OS1) (RC1)
Gouriéroux et al. (2013) m = 2 M0 6= 0n×n (OS1) (RC1)
Rogers and Veraart (2013) m = 1 M0 = 0n×n (OS2) n.s.
Fischer (2014) m > 1 M0 6= 0n×n (OS1) (RC1)
Elliott et al. (2014) m = 0 M0 6= 0n×n (OS1) (RC1)
Ren et al. (2014) m = 1 M0 = 0n×n (OS2) (RC2)
Acemoglu et al. (2015) m = 2 M0 = 0n×n (OS2) (RC2)
Fischer (2015) m > 1 M0 6= 0n×n (OS1) (RC1)
Glasserman and Young (2015) m = 1 M0 = 0n×n (OS3) (RC4)
Awiszus and Weber (2015) m = 1 M0 6= 0n×n (OS3) n.s.

Notes: In Elliott et al. (2014), m = 0 means that no cross-holdings in debt are taken
into account. The Definitions of (OS1) – (OS3) concerning the column sums of the
ownership matrices can be found in Section 3.2.3. In Section 3.3.2 the regularity condi-
tions (RC1) – (RC4) are explained in more detail. Note that in the articles of Eisenberg
and Noe (2001) and Liu and Staum (2010) the actual regularity condition is a more
general one than (RC2) and that (RC2) is only a particular case of it. For convenience,
we omit the more general assumption since this does not essentially change the insights,
see also the comments after Definition 3.13. The expression “not stated” (n.s.) in the
last column of the table includes studies in which either no regularity conditions are
stated or where no such conditions are needed since the focus is not on showing the
uniqueness of a payment equilibrium. Note that the financial systems in the studies
sometimes have additional model assumptions to the ones given in the table. This
entails for example the structure of the exogenous assets, where in some articles a ≥ 0n
was demanded and in some works the more general case of a ∈ Rn is allowed.

In later works, some slight modifications of the existing models are presented. As an example,
we mention the work of Demange (2011) who utilizes the model of Eisenberg and Noe (m = 1,
M0 = 0n×n) and allows the exogenous asset vector to take also negative values, i.e. a ∈ Rn. The
article derives conditions that have to be fulfilled for the asset vector a and the debt ownership
matrix M1 for the existence of a unique solution. Moreover, the author shows how the results of
Eisenberg and Noe (2001) can be included in her framework. However, as we will show later in
Section 3.2.1, the assumption of negative exogenous asset values is equivalent with the presence
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of an additional seniority level and, as a consequence, that a ≥ 0n can be assumed without loss
of generality. Another example of a slight modification is the article Gouriéroux et al. (2013)
that derive an existence and a uniqueness result for a system with two seniority levels (m = 2,
M0 6= 0n×n). Their proof relies on different methods than the existing works – they show that
the financial system can be converted into a piecewise linear system and show the invertibility
of this system. Even though the means to show the uniqueness are innovative, the model used
from Gouriéroux et al. can easily be embedded into the work of Elsinger (2009).

In the article of Fischer (2014), a further essential progression of the model is shown concerning
the particular form of the debt obligations. In all works before, the liabilities were interpreted as
simple zero-coupon bonds with a constant value at maturity. Fischer allows the liabilities to be
derivatives that can depend on the exogenous assets as well as on the recovery values, see Section
3.2.2 for more details and examples. Under a regularity assumption on the liabilities, similar
to Lipschitz-continuity, there still exists a unique solution of the financial system. A slight
drawback of the generalization is that for a unique solution, the condition on the ownership
matrices is more strict than the one given in Elsinger (2009). A selection of articles that entail
the introduction of default costs are the works of Rogers and Veraart (2013), Elliott et al. (2014)
and Glasserman and Young (2015) that are explained in Section 3.4. Table 3.1 gives a short
overview of the mentioned articles in this Chapter.

3.2 Differences in Model Assumptions

In its most general form the financial system consists of potentially more than one seniority level,
i.e. m ≥ 1, where cross-holdings of the firms’ shares are allowed (M0 6= 0n×n). Contrary to the
standard model defined in Section 2.2, we also assume in a first approach that the exogenous
assets must not necessarily be positive, that is a ∈ Rn. All models that are investigated in
the articles of Table 3.1 can be expressed using this framework. In this section, we want to
take a closer look at the components of the system, namely the exogenous assets, the ownership
matrices and the liabilities and, if present, a potential seniority structure by giving a survey of
their differing definitions in the existing articles.

3.2.1 Exogenous Assets

The name “exogenous assets” is not used in all articles, the expressions “fundamental assets”
(Shin, 2008), “net worth” or “operating cashflow” (Gouriéroux et al., 2012), “business assets”
(Suzuki, 2002), “initial wealth” (Liu and Staum, 2010), “exogenous income” (Elsinger, 2009),
“primitive assets” (Elliott et al., 2014) and “net assets” (Rogers and Veraart, 2013) may serve
as an incomplete selection of different names for a. Though the assets are called different, their
common property is that the pricing mechanism does not depended on the structure or the
solvency of the firms in the financial system. An exception from this exogenous approach is for
example the work of Cifuentes et al. (2005), where the assets are endogenously modeled as a
potential channel of contagion.

In most articles, the assets simply form a vector of size n. However, in some works (see Suzuki,
2002, Fischer, 2014 or Elliott et al., 2014) the asset structure is modeled more general assuming
that the firms have access to p different assets that are given in a vector a ∈ Rp. In this case, a
matrix Ma ∈ (R+

0 )n×p has to be introduced, where Ma
ij denotes the proportion, firm i holds of

the j-th asset. The advantage of this more flexible asset structure is a more general modeling
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of the liabilities, since they can also – under some model assumptions – depend on the values
of the exogenous assets, see Fischer (2014) for details and also Example 3.6. The more general
representation of the assets, however, does not change the main results about the existence and
the uniqueness of solutions of such financial systems. The vector a in the liquidation equations
simply has to be replaced with the product Maa, which is why we omit the asset matrix Ma in
our model, assume that p = n and set Ma = In for convenience.

Another property of the assets is that in most articles they are assumed to be non-negative,
i.e. a ≥ 0n, whereas in some works (Elsinger, 2009 or Demange, 2011), the asset structure is
more generally modeled by a ∈ Rn, which entails the particular case that ai < 0 for some i ∈ N .
We want to show in the following that we can assume a ≥ 0n without loss of generality. For
a better comprehensibility, we consider the financial system F = (a,M1,M0,d1), i.e. we only
take one seniority level into account. The forthcoming argumentation can easily be extended to
systems with m > 1. More precisely, assume in the following that a ∈ Rn, where ai < 0 for at
least one i ∈ N . Given the input parameters, a solution of this system is the fixed point of the
mapping Φ : R2n → R2n, where

Φ

(
r1

r0

)
=

(
min{d1, (a + M1r1 + M0r0)+}

(a + M1r1 + M0r0 − d1)+

)
. (3.1)

Clearly, we have to adapt the original mapping in Equation (2.12) and take the positive part in
the debt components to avoid negative recovery claim values. However, (3.1) still has a unique
fixed-point R∗ if Assumption 2.6 holds (cf. Remark 2.8). Negative values in the vector of the
exogenous assets can be interpreted as liabilities of the corresponding firms to debtholders out-
side the system (cf. Demange, 2011). Note that since the debt ownership matrices must not
be fully left stochastic, there are in every seniority level some investors outside the financial
system that hold some fractions of the firms’ debt. However, in this subsection the expression
“outside obligations” only refers to the obligations that are contained in the asset vector a in
the form of negative values. Moreover, these liabilities have a higher priority than the high-
est priority level in the system. To include these obligations of the firms into a system with
nonnegative exogenous assets, we have to add one additional seniority level in which the outer-
system obligations of the firms are listed. Hence, the original system F is modified to a system
F̃ = (ã, M̃2, M̃1, M̃0, d̃2, d̃1), with

ã = a+, d̃2 = Λ|a|, d̃1 = d1, M̃2 = 0n×n, M̃1 = M1 and M̃0 = M0, (3.2)

where Λ = diag(a < 0n) is the diagonal matrix with the value 1 on the diagonal if the exogenous
assets of the corresponding firm are negative. Note that Λ|a| = a+−a, where |a| stands for the
vector of the element-wise absolute values of the entries in a. The solution of F̃ is given as the
fixed point of the mapping Φ̃ : (R+

0 )3n → (R+
0 )3n with

Φ̃

r̃2

r̃1

r̃0

 =

 min{d̃2, ã + M̃2r̃2 + M̃1r̃1 + M̃0r̃0}
min{d̃1, (ã + M̃2r̃2 + M̃1r̃1 + M̃0r̃0 − d̃2)+}

(ã + M̃2r̃2 + M̃1r̃1 + M̃0r̃0 − d̃2 − d̃1)+

 . (3.3)

The relationship between the two mappings Φ and Φ̃ is explained in the following. Beforehand,
we take a closer look at the mapping Φ̃.

Lemma 3.1. With the definitions above, let

R̃∗ = (r̃∗,2, r̃∗,1, r̃∗,0) ∈ (R+
0 )3n (3.4)
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be the fixed point of the mapping Φ̃. Then, R̃ is unique and it holds that

R̃∗ =

r̃∗,2

r̃∗,1

r̃∗,0

 =

min{Λ|a|,a+ + M1r̃∗,1 + M0r̃∗,0}
min{d1, (a + M1r̃∗,1 + M0r̃∗,0)+}

(a + M1r̃∗,1 + M0r̃∗,0 − d1)+

 . (3.5)

Proof. The uniqueness of R̃∗ follows by that fact that all ownership matrices of F̃ obviously have
the Elsinger Property. The rest of the claim follows by (3.2) and elementary calculations.

A direct consequence of the structure of R̃∗ in (3.5) is that it is well-defined if only the entries
in the recovery values of r̃∗,1 and r̃∗,0 are known. These components can be represented as(

r̃∗,1

r̃∗,0

)
=

(
min{d1, (a + M1r̃∗,1 + M0r̃∗,0)+}

(a + M1r̃∗,1 + M0r̃∗,0 − d1)+

)
= Φ

(
r̃∗,1

r̃∗,0

)
. (3.6)

Hence (r̃∗,1, r̃∗,0) is the fixed point of Φ for m = 1. On the other hand, given (r∗,1, r∗,0) as the
fixed point of Φ, this vector can be extended via

R :=

min{Λ|a|,a+ + M1r∗,1 + M0r∗,0}
min{d1, (a + M1r∗,1 + M0r∗,0)+}

(a + M1r∗,1 + M0r∗,0 − d1)+

 (3.7)

to the (unique) fixed point of Φ̃ since Φ̃(R) = R.

We have shown that with the definitions above, the solution R∗ of the system F is also a
solution of the system F̃ with the definition in (3.7). Further, if the solution R̃∗ of F̃ is known,
the solution of F is also known.

Corollary 3.2. In a financial system F(a,M1,M0,d1) it can without loss of generality be
assumed that a ≥ 0n.

Due to Corollary 3.2 we assume for the remainder of the entire thesis that the exogenous
assets are non-negative, unless otherwise stated.

Example 3.3. Consider Example 2 from Elsinger (2009) with the system F = (a,M1,M0,d1)
and

a =

 1
0.75
−9/8

 , d1 =

1
2
1

 , M1 =

0 0.5 0.25
0 0 0.75
0 0.5 0

 (3.8)

and M0 = 0n×n. Using Φ as defined above yields a fixed point of

R∗ =

(
r∗,1

r∗,0

)
= (1, 0.75, 0, 0.375, 0, 0)t, (3.9)

i.e. the first firm is solvent and the second and the third firm are in default. Extending the
system to F̃ = (ã, M̃2, M̃1, M̃0, d̃2, d̃1), where

ã = (1, 0.75, 0)t, d̃2 = (0, 0, 9/8)t (3.10)

and the remaining vectors and matrices are defined as in (3.2), yields

R̃∗ =

r̃∗,2

r̃∗,1

r̃∗,0

 =

 (0, 0, 0.375)t

(1, 0.75, 0 )t

(0.375, 0, 0 )t

 . (3.11)

We see that Corollary 3.2 holds, since taking r̃∗,1 and r̃∗,0 together leads to R∗ as in (3.9).
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For the considerations above, it was crucial that a new seniority level was installed in which the
external obligations were summarized with a higher priority than the already existing seniority
classes. In Eisenberg and Noe (2001), the authors mention that assuming a ≥ 0n without loss
of generality can be achieved by adding an additional member, they call it “sink node”, to the
system. Contrary to the approach above, the external obligations are included in the liabilities

of the current highest seniority. This would result in a new financial system F = (ā,M
1
,M

0
, d̄)

of size n+ 1 with m = 1 and

ā =

(
a+

0

)
, d̄ = (d̄1, . . . , d̄n, d̄n+1)t =

(
d1 + Λ|a|

0

)
, M

0
=

(
M0 0n
0tn 0

)
. (3.12)

The debt ownership matrix M
1 ∈ R(n+1)×(n+1) is defined for i = 1, . . . , n by

M ji =

(Mjidi)/d̄i, for j = 1, . . . , n,

(Λii|ai|)/d̄i, for j = n+ 1,
(3.13)

and M j,n+1 = 0 for all j = 1, . . . , n+ 1, where the matrix Λ is defined as above and Λii are the
diagonal entries that are 1 if ai < 0 for the i-th firm. In F , potential obligations to external
debtholders are added up to a new liability vector d1. As a consequence, the fractions in M1

in the corresponding columns have to be recalculated. The next example shows that using this
approach will not lead to the same results as with the procedure above. This circumstance is
also mentioned in a comment in Elsinger (2009).

Example 3.4. We use the same financial system as in Example 3.3. The components of the
modified system F are given by

ā =


1

0.75
0
0

 , d̄1 =


1
2

2.125
0

 , M
1

=


0 0.5 0.1176 0
0 0 0.3529 0
0 0.5 0 0
0 0 0.5294 0

 , (3.14)

which leads to a solution

R = (1, 0.9107, 0.4554, 0, 0.5089, 0, 0, 0.2411)t. (3.15)

We see that the first three components of the debt recovery values and the first three components
of the equities are not identical to (3.9). The addition of a higher seniority class is therefore
necessary.

3.2.2 Liability Structure

In most works, the expressions “liabilities”, “debt” and “obligations” are used equivalently for
the vectors dk. No matter how they are called, in almost all articles, the liabilities are assumed
to be constant, which is for example the case if the liabilities are simple zero-coupon bonds.
For practical purposes, this assumption seems to be fairly restrictive, as the debt structure is
probably more complicated in many cases.

An exception to this common framework is the article of Fischer (2014) that generalizes the
liability structure. In his work, the liabilities can depend on the exogenous assets a as well as
on the recovery values rm, . . . , r0. As a consequence, it may happen that the liabilities can even
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depend on their own payoff, as we will see in the Examples 3.6 and 3.7. By the best knowledge
of the author, this is the only model that allows for derivatives as liabilities. To take this new
aspect into account, the liabilities for the k-th seniority level (k = 1, . . . ,m) are defined as
functions with Rn(m+2) → (R+

0 )n, with
rm

...
r0

a

 7→ dkrm,...,r0,a =

d
k
1(rm, . . . , r0,a)

...
dkn(rm, . . . , r0,a)

 . (3.16)

The liquidation equations in (2.9) – (2.11) stay the same, the liability vectors for each seniority
only have to be replaced by their counterparts defined in (3.16). In a similar manner, the
mapping Φ has to be adapted.

Due to this new aspect of potential self-dependency, the question is whether there still exist
fixed points of Φ as solutions of the financial system and, if so, whether there are conditions
under which a solution is unique. Answers to these questions gives the following theorem.

Theorem 3.5 (Fischer (2014)). Let F be a financial system for which the liabilities are defined
as in (3.16). If Imax < 1, where

Imax = max{‖Mm‖, ‖Mm−1‖, . . . , ‖M0‖}, (3.17)

the following holds:

1. F has at least one solution, if the functions dk are continuous for k = 1, . . . ,m. Further,
all solutions are nonnegative.

2. The solution of F is unique if for k = 1, . . . ,m and i ∈ N it holds that

dki (r
m, . . . , r0,a) = ψki

 m∑
l=0

n∑
j=1

M l
ijr

l
j

 , (3.18)

where the functions ψki : R → R+
0 are monotonically increasing such that for any y1,

y2 ∈ Rn with y1 ≥ y2,

y1 − y2 ≥
m∑
k=1

(
ψki (y1

i )− ψki (y2
i )
)
i=1,...,n

. (3.19)

For a proof of this theorem, we refer to the original paper. The condition in (3.18) can be
interpreted as a strong form of Lipschitz continuity for the liabilities. Note that the assumption
Imax < 1 for the ownership matrices is stronger than the one in Assumption 2.6, where the
ownership matrices had to fulfill the Elsinger Property. We will come back to the different
model assumptions concerning the properties of the ownership matrices in Section 3.3.

It is also possible to skip the assumption Imax < 1 and only assume that the Elsinger Property
holds for M0 but not for the debt ownership matrices. The uniqueness of the solution, however,
gets lost in this situation but one can show that under the continuity assumption in (3.18) and
the additional assumption that the liability vectors dk are bounded for all k = 1, . . . , n, there
exists at least a Pareto-dominant solution1 of the system. A more extensive overview of existence

1A solution R = (rm, . . . , r0) is said to be Pareto-dominant if there exists no other vector R̃ = (r̃m, . . . , r̃0) such

that R̃ ≥ R and r̃ki > rki for at least one i ∈ N and one k = 1, . . . ,m.
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and uniqueness results for various financial systems with different assumptions is given in the
work of Fischer (2015).

For a better understanding, we give in the following two examples of financial systems in which
the liabilities are non-constant. While in the first example, the condition in (3.18) holds and
the solution is therefore unique, we will see in the second example that the uniqueness cannot
be guaranteed anymore if (3.18) is violated.

Example 3.6 (Fischer (2015)). The financial system in this example consists out of n = 3 firms
and m = 2 seniority levels. As described in Section 3.2.1, we assume that the firms have access
to l = 2 exogenous assets a = (a1, a2)t ≥ (0, 0)t and that there is an asset matrix Ma ∈ (R+

0 )3×2

that contains the fractions each firm owns from the corresponding asset. The liability vectors

d2
r2,r1,r0,a =

b1b2
0

 and d1
r2,r1,r0,a =

 300(a2 − k1)+

(0.1r0
3 + 0.05r1

1 − k2)+

b3a1

 (3.20)

are for b1, b2, b3, k1, k2 > 0 derivatives of a and the vectors of recovery values. The ownership
matrices are given by

M2 =

 0 0.1 0
0 0 0

0.05 0.2 0

 , M1 =

 0 min{0.9, a2} 0
0.1 0 0
0 0 0

 (3.21)

and

M0 =

0 0 0.3
0 0 0.2
0 0.5 0

 , Ma =

1000a2 2000
0 5000

1000 0

 . (3.22)

Note that the ownership matrices here depend on the values of the asset vector a which bears no
problem for the uniqueness of the solution as long as Imax < 1 is ensured. For given parameters
b1, b2, b3, k1, k2, a1 and a2, all entries of the liability vectors are fixed except of the second entry
of d1

r2,r1,r0,a. To check the validity of (3.18), it suffices therefore to do this only for firm 2. Note

that for x ∈ R, the functions ψ1
2 and ψ2

2 are given by

ψ1
2(x) = (0.5x− k2)+ and ψ2

2(x) = b2 (3.23)

and it follows directly that the condition in (3.18) is satisfied, see Fischer (2015) for more details.

Example 3.7 (Fischer (2014)). Let n = 2, m = 1 and M0 = 0n×n. The further parameters of
F are given by

a =

(
1
1

)
, M1 =

(
0 0.8

0.8 0

)
and d1

r1 =

(
2 · |r1

2 − 2|
2 · |r1

1 − 2|

)
. (3.24)

Since the liabilities do not depend on the exogenous assets and on the equity values, we omit
the terms a and r0. The functions ψ1

1 and ψ1
2 to check the conditions in (3.18) are for x ∈ R

given by
ψ1

1(x) = 2 · |0.8−1x− 2| = ψ1
2(x) := ψ(x). (3.25)

For an example that (3.18) is violated, take the vectors y = (4, 4)t and x = (1, 1)t. It follows
that

y − x =

(
3
3

)
<

(
4.5
4.5

)
=

(
2 · |3| − 2 · | − 0.75|
2 · |3| − 2 · | − 0.75|

)
=

(
ψ(4)− ψ(1)
ψ(4)− ψ(1)

)
, (3.26)
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but y ≥ x. The solution of F consequently must not be unique anymore. As noted in Fischer
(2014), two possible solutions are given by

R∗ = (4/3, 4/3, 11/15, 11/15) and R∗ = (4, 4, 0.2, 0.2). (3.27)

3.2.3 Ownership matrices

The probably most crucial parameter for the properties of a financial system concerning the
existence and the uniqueness of a solution is the form of the ownership matrices Mk, k =
0, . . . ,m. As we will see in Section 3.3.1, the mildest condition, we can claim on the equity
matrix M0 to ensure the existence of a solution, is the Elsinger Property from Definition 2.5.
The priority in this subsection is hence on the debt ownership matrices, in particular we focus
on the question whether the obligations of the firms are completely held by other members of
the system or not which is expressed by the column sums of the corresponding debt ownership
matrix. When surveying the existing articles on this content, we find three different types of
debt ownership matrices Mk:

n∑
i=1

Mk
ij < 1 for all j ∈ N and all k = 1, . . . ,m, (OS1)

n∑
i=1

Mk
ij = 1 for all j ∈ N and all k = 1, . . . ,m, (OS2)

n∑
i=1

Mk
ij ≤ 1 for all j ∈ N and all k = 1, . . . ,m. (OS3)

The assumption in (OS1) means that for every firm and every seniority there must be at least
one debtholder outside the financial system. A drawback of (OS1) is surely that it is a very
strict assumption for practical purposes since it is already injured if for only one seniority class
and one firm, all debt is held within the system. However, as noted in Gouriéroux et al. (2012),
this restriction seems not to be too hard to be fulfilled since in most connected financial systems,
it is likely that (OS1) can be ensured. The advantage of the assumption on the other hand, is
that it strongly simplifies the argumentation of the proof that R∗ is unique, as we will see in
Section 3.3.2.

The counterpart of (OS1) is given in (OS2) where it is demanded that all debt payments have
to stay within the system. This assumption is used in most of the studies in Table 3.1. The
reason is that the ownership structure is often not directly defined via ownership matrices but by
liability matrices. In the liability matrix Lk ∈ Rn×n for seniority level k, the entry Lkij stands for

the nominal value of the obligations firm i has to firm j. It follows directly that dki =
∑n

j=1 L
k
ij .

Based on Lk, we can define the corresponding ownership matrix Mk by

Mk
ji =


Lk
ij

dki
, if dki > 0,

0, else.
(3.28)

Using the definition in (3.28), we immediately see that
∑n

j=1M
k
ji = 1 for all i ∈ N with dki > 0

and that all debt ownership matrices are fully left stochastic if dki > 0 for all i ∈ N and all
k = 1, . . . ,m. As for (OS1), the assumption in (OS2) also seems to be a bit restrictive if real-life
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examples of financial networks are considered. The fact that the column sums of Mk have to
be equal to one, might lead to an expansive enlargement of the financial system that has to be
taken into account to ensure the validity of (OS2).

While in (OS2), it was not possible that there exist one or more outside debtholders that
hold a fraction of each firms’ debt, this assumption in generalized in (OS3). When assuming
such a structure of the ownership matrices that are based on liability matrices Lk, we suppose
that outside obligations can for each firm and each seniority k = 1, . . . ,m be summarized in the
vector d̃k ∈ (R+

0 )n. The nominal obligation of seniority class k is then defined by

dk = Lk1n + d̃k. (3.29)

Replacing dki in the denominator of (3.28) by the one given in (3.29) leads to the corresponding
ownership matrix Mk. Note that in this scenario,

∑n
i=1M

k
ij < 1 is still allowed to hold for some

seniority classes if some amount of the firm’s debt is held outside the system. The approach in
(OS3) is chosen by Elsinger (2009) and both (OS1) and (OS2) can obviously be embedded into
this assumption. Clearly, (OS3) is the most flexible assumption on the ownership matrices to
model the actual circumstances in a financial network.

Note that the knowledge about the ownership structure of the matrices expressed in (OS1) –
(OS3) alone does not give any information whether the recovery vectors are unique or not. In
order to make precise statements about the uniqueness of a solution, further regularity conditions
are necessary that describe the connections of the single entries in a matrix Mk in more detail.
In Section 3.3.2 these conditions are made concrete. However, the classification in (OS1) – (OS3)
will help us with a more convenient structuring of the different regularity conditions.

3.2.4 Seniority Structure

The majority of the models in Table 3.1 treat only one seniority class. In systems with a more
elaborate debt structure, which is for example needed if a ∈ Rn is considered (cf. Section 3.2.1),
the seniority levels can be arranged in two ways.

Suppose that there are m > 1 seniority classes. If from dki = 0, 1 < k ≤ m, it follows that
dk−1
i = . . . = d1

i = 0, we say that the financial system has an ordered seniority structure. This
is the case in the work of Elsinger (2009). A financial system without this property is said to
have an unordered seniority structure, that means that there can be seniority classes in which
a firm has no obligations, but still it has some at a lower level. Fischer (2014) uses this more
general definition of a seniority structure in his work. Aim of this subsection is to show that
the solution of an unordered system can be rearranged into the solution of the corresponding
ordered system and vice versa.

To this end, note that we can convert a given unordered financial system F = (a,M,d) into
its corresponding ordered financial system F̃ . This is done by swapping for each firm i the
highest seniority level with a zero nominal debt entry, dki = 0, with the debt entry of the highest

seniority below k that is non-zero, i.e. dji > 0, j < k, and repeating this procedure until an
ordered structure is reached. In the same way the entries of dm, . . . ,d1 have been changed, we
also have to do so with the corresponding debt ownership matrices. That means if we swap the
i-th entry of dk with the i-th entry of dj (j < k), we also have to swap the i-th column of Mk

with the corresponding column of Mj . We assume further in this context that if a firm i has no
obligations in seniority level k, it also follows that the i-th column of Mk has only zero entries.
The transition from an unordered system to an ordered system can be expressed via the two
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mappings

ΩM(Mm, . . . ,M1,M0) 7→ (M̃m, . . . , M̃1,M0)

Ωd(dm, . . . ,d1) 7→ (d̃m, . . . , d̃1).
(3.30)

If an unordered system F = (a,M,d) is given, the corresponding ordered system is given by

F̃ = (a, M̃, d̃), where M̃ = ΩM(Mm, . . . ,M0) and d̃ = Ωd(dm, . . . ,d1). Denote the mapping Φ

as in (2.12) with the matrices in M̃ and the liabilities in d̃ by Φ̃. To show that the entries of
the solution R∗ of an unordered system F are, except of the order, similar to the entries of the
solution of the corresponding ordered system and vice versa, we define for an arbitrary vector
(rm, . . . , r0) = R ∈ (R+

0 )n(m+1) of recovery values the mapping

Ωr(rm, . . . , r1, r0) 7→ (r̃m, . . . , r̃1, r0), (3.31)

that reorders the recovery values in the same manner as Ωd reorders the liabilities, where the
equity value r0 remains unchanged. We therefore have to show that Φ̃(Ωr(R∗)) = Ωr(R∗). The
next lemma, which obviously holds, will help us with this purpose.

Lemma 3.8. Let F = (a,M,d) be an unordered financial system and R = (rm, . . . , r0) be an
arbitrary vector of recovery values. With the definitions above, it holds that

m∑
k=1

Mkrk =
m∑
k=1

M̃kr̃k and
m∑
k=1

dk =
m∑
k=1

d̃k. (3.32)

For the given fixed point R∗ of Φ, denote R̃ = (r̃m, . . . , r̃0) =: Ωr(R∗). Using Lemma 3.8, the
last n components of Φ̃(R̃) are given by(

a +
m∑
k=0

M̃kr̃k −
m∑
k=1

d̃k

)+

=

(
a +

m∑
k=0

Mkr∗,k −
m∑
k=1

dk

)+

= r∗,0 = r̃0. (3.33)

If the equities are equal for both systems, the recovery values of all solvent firms will be equal to
the corresponding nominal amounts, which – except for the order – are the same in both systems.
It remains to show the equality for defaulting firms for which we assume that firm i ∈ N defaults
in seniority level 1 ≤ k ≤ m under R∗. Since nominal debt amounts of firm i got shifted into
higher seniorities (if at all), there exists a seniority level k̃ ≤ k and

∑m
l=k̃+1

d̃li =
∑m

l=k+1 d
l
i such

that

r̃k̃i =

a +
m∑
l=0

M̃lr̃l −
m∑

l=k̃+1

d̃l


i

=

(
a +

m∑
l=0

Mlr∗,l −
m∑

l=k+1

dl

)
i

= r∗,ki < dki = dk̃i . (3.34)

Consequently, Φ̃(Ωr(R∗)) = Ωr(R∗) and we have shown that solving an unordered system is
equivalent to solving the corresponding ordered system.

Example 3.9. Suppose that n = 5, m = 3, a = 1n and

d3 = (0, 2, 0, 4, 0)t, d2 = (0, 3, 1, 0, 2)t, d1 = (3, 1, 4, 2, 0)t (3.35)
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from which follows that the system is unordered, and assume

M3 =


0 0.2 0 0.2 0
0 0 0 0.2 0
0 0.2 0 0.2 0
0 0.2 0 0 0
0 0.2 0 0.2 0

 , M2 =


0 0.2 0.2 0 0.2
0 0 0.2 0 0.2
0 0.2 0 0 0.2
0 0.2 0.2 0 0.2
0 0.2 0.2 0 0

 ,

M1 =


0 0.2 0.2 0.2 0

0.2 0 0.2 0.2 0
0.2 0.2 0 0.2 0
0.2 0.2 0.2 0 0
0.2 0.2 0.2 0.2 0

 and M0 =


0 0.025 0.025 0.025 0.025

0.025 0 0.025 0.025 0.025
0.025 0.025 0 0.025 0.025
0.025 0.025 0.025 0 0.025
0.025 0.025 0.025 0.025 0

 .

(3.36)

The solution of this system is given by

R∗ =


r∗,3

r∗,2

r∗,1

r∗,0

 =


(0, 2, 0, 3.4234, 0 )t

(0, 1.4234, 1, 0, 2 )t

(3, 0, 2.4234, 0, 0 )t

(0.4957, 0, 0, 0, 1.6664)t

 . (3.37)

The vectors of the nominal liabilities of the corresponding ordered system are given by

d̃3 = (3, 2, 1, 4, 2)t, d̃2 = (0, 3, 4, 2, 0)t, d̃1 = (0, 1, 0, 0, 0)t (3.38)

and using the ownership matrices M̃k by changing the corresponding columns and deleting the
column entries in the original matrix, we get

R̃∗ =


(3, 2, 1, 3.4234, 2 )t

(0, 1.4234, 2.4234, 0, 0 )t

(0, 0, 0, 0, 0 )t

(0.4957, 0, 0, 0, 1.6664)t

 (3.39)

as the fixed point of the ordered system and we immediately see that on the one hand the
equities are identical and on the other hand that the recovery values are also the same as in R∗

taking the mapping Ωr into account.

Remark 3.10. The mappings ΩM and Ωd transferred the unordered financial system into an
ordered system by filling up seniority classes with no debt with the obligations of lower classes.
In fact, ΩM and Ωd can represent any other swapping of debt entries and corresponding entries
in the ownership matrices, as long as the priority structure of the liabilities is retained for
every firm. This means that if dki > 0, k = 1, . . . ,m, is the nominal non-zero debt entry with
highest seniority in the system F for firm i, it also has to be the nominal non-zero debt entry
of highest seniority in the system F̃ , though the actual seniority levels in both systems must
not be identical. For the next highest seniority with a non-zero debt entry, this is analogous,
and so on for any other seniority. According to Lemma 3.8 and since nowhere in the preceding
argumentation, the detailed function rule of the mappings in (3.30) is used, the solution of the
reordered system will stay the same in the sense that Φ̃(Ωr(R∗)) = Ωr(R∗) for any ΩM and
Ωd with the described property. In particular, the transformation of the system F can be of a
reverse order than in an ordered system as described above, i.e. we can apply ΩM and Ωd such
that from dki > 0, 1 < k ≤ m, it follows that dhi > 0 for 1 ≤ h < k. This will become important
in Section 5.2.
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3.3 Survey of Existence and Uniqueness Results

No matter how the financial system in the different articles is defined exactly, all models have in
common that pricing the cashflows at maturity can be interpreted as some kind of fixed point
problem and, therefore, are faced with the challenge to find an equilibrium of equity and debt
payments as the fixed point of Φ. The main objective in such pricing models is of course the
question whether there exists a price at all and, if so, whether it can be ensured that there is
exactly one price for the assets or whether there are multiple pricing equilibria. Depending on
their model assumptions, the existing works in this field derive different conditions for a unique
vector of recovery values and also use differing ideas to show the uniqueness.

In this section we attempt to give a survey of the different means to prove the existence
and the uniqueness of a pricing equilibrium. While proving the existence of solutions is very
similar in most articles, there are different streams in research to prove that there exists only one
solution, mostly due to the different model assumptions. Our aim is to summarize the existing
works in the field into several categories of regularity conditions and draft a proof of uniqueness
for every category.

3.3.1 A Proof on Existence

The idea of the proof that at least one payment equilibrium exists, is in almost all articles the
same. It relies on the fact that, according to the Tarski Fixed Point Theorem (cf. Theorem
A.4 in the Appendix), there exists a least and a greatest fixed point for a monotone increasing
mapping on a complete lattice. The monotonicity of Φ is shown in Lemma 2.4 and for m ≥ 1,
the (m+ 1)-dimensional lattice is given by

[0n,d
m]× [0n,d

m−1]× . . .× [0n,d
0], (3.40)

where d0 = r0(dm, . . . ,d1) is the fixed point of the mapping Φ0 : (R+
0 )n → (R+

0 )n defined by

Φ0(r; dm, . . . ,d1) =

(
a +

m∑
k=1

Mkdk + M0r−
m∑
k=1

dk

)+

, (3.41)

i.e. Φ0(d0; dm, . . . ,d1) = d0. Alternatively, d0 can also be defined as

d0 = (In −M0)−1

(
a +

m∑
k=1

(Mk − In)dk

)+

(3.42)

without changing the forthcoming results, see Section 4.1.1 for a justification of this definition.
It holds that

0n(m+1) ≤ Φ(0n(m+1)) and

dm

...
d0

 ≥ Φ

dm

...
d0

 , (3.43)

where for d0 = Φ0(d0; dm, . . . ,d1) this is obviously and for d0 as in (3.42), this is shown in
Proposition 4.2. Therefore, the assumptions of Theorem A.4 are fulfilled. This principle can be
applied to all financial systems of the articles in Table 3.1.

To define d0 as in (3.42), it is necessary, that the matrix (In−M0) is invertible. When using
d0 as the fixed point of Φ0(·; dm, . . . ,d1), the invertibility of the matrix is not necessary, but
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sufficient for the existence of a fixed point Φ0. In financial systems with M0 = 0n×n, at least
one fixed point consequently exists without further model constraints, but in a more general
model that includes cross-holdings of shares, we have to make the following assumption.

Assumption 3.11. The equity ownership matrix M0 fulfills the Elsinger Property given in
Definition 2.5. As a consequence, (In−M0) is invertible and, hence, d0 exists no matter which
of the two possible definitions is regarded.

In the remainder of this section, we suppose that Assumption 3.11 is given unless otherwise
stated. Recall that this is equivalent with the fact that there is no subset I ⊂ N such that∑

i∈IM
0
ij = 1 for all j ∈ I. The consequences of a violation of Assumption 3.11 are demonstrated

in the next example.

Example 3.12. Consider a system with n = 3, m = 1, M1 = 0n×n,

a = (1.5, 0.75, 2)t, d1 = (1, 0.5, 2)t and M0 =

0 1 0.1
1 0 0.1
0 0 0

 . (3.44)

Because of a ≥ d1, it holds that r∗,1 = d1 and that the equity vector is given by r∗,0 =
a + M0r∗,0 − d1. But since (In −M0)−1 does not exist, we cannot determine r∗,0. This also
becomes clear when trying to find the solution of F via the Picard Iteration (cf. Section 4.1.1).
For the starting point, we take Rsmall because Rgreat can not be determined, see Section 4.1.1
for more details. Clearly, rk,1 = d1 for all iterates k ≥ 0 but the equity components of the
iterates do not converge but become larger in every iteration step. For instance it holds that
r0,0 = (a− d)+ = (0.5, 0.25, 0)t, r10,0 = (4.25, 4, 0)t and r20,0 = (8, 7.75, 0)t.

3.3.2 Regularity Conditions for Uniqueness

The Tarski Fixed Point Theorem says that under Assumption 3.11 there is a greatest solution
R and a least solution R of the liquidation equations in (2.9) – (2.11). Under some additional
conditions on the particular structure of the ownership matrices, it also holds that R = R = R∗

and therefore that there is only one fixed point of Φ. In the existing articles in this field (cf.
Table 3.1), several of these conditions have been established to guarantee a unique solution. The
listing below is an attempt to sort the conditions into four different categories. Assumption 3.11
about the equity matrix in mind, we focus only on the structure of debt ownership matrices in
the following (except of (RC1)).

Definition 3.13. We distinguish between the following regularity conditions (RC).

(RC1) It holds that ‖Mk‖ < 1 for all k = 0, . . . ,m.

(RC2) All debt ownership matrices Mk (k = 1, . . . ,m) are irreducible.

(RC3) In every seniority there is a firm with no debt outstanding that owns some part of the
debt of every indebted firm. Formally, for every k = 1, . . . ,m, there exists an i(k) ∈ N
such that

Mk
i(k),i > 0 for all i ∈ N\{i(k)} with dki > 0 (3.45)

and where dmi(k) = . . . = d1
i(k) = 0.

(RC4) Every debt ownership matrix Mk (k = 1, . . . ,m) possesses the Elsinger Property (cf.
Definition 2.5).
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Note that condition (RC1), which implies (OS1), is the only regularity condition that entails
the case k = 0. This is because ‖M0‖ < 1 is a stronger condition than the one in Assumption
3.11 and this condition is needed for a certain version of a proof of uniqueness given in Section
3.3.3. In literature, (RC1) appears in the works of Suzuki (2002)2, Gouriéroux et al. (2012,
2013) and in Fischer (2014). Though the assumption in (RC2) of irreducibility represents a less
mild condition, it appears in the works of Demange (2011), Ren et al. (2014) and Acemoglu
et al. (2015). The article in which (RC3) is probably mentioned the first time, is the one
of Shin (2008), who denotes this unindebted investor as the so-called “unleveraged investor”.
Unleveraged investors can, according to Shin (2009), for example be pension funds, insurance
companies, foreign central banks or simply households. Note that in financial systems in which
(RC3) holds, the unindebted members of the system could also be excluded from the system
without changing the solution. Doing so, (RC3) and (RC1) would be equivalent. However, we
list (RC3) separately since this assumption is used from Shin (2008) in systems in which (OS2)
is demanded. Condition (RC4) is introduced by Elsinger (2009), which is why we refer to the
expression Elsinger Property. Later works, like Demange (2011) also use the Elsinger Property
for the ownership matrices.

We also found another condition in Eisenberg and Noe (2001) also used in Liu and Staum
(2010), where the authors use the expressions “surplus set” and “risk orbit” to define a regularity
condition. In order to define this condition exactly, several additional steps are necessary which
is why we omit this assumption here and refer to the original work instead. However, a particular
case of Eisenberg and Noe’s condition is that the debt ownership matrix is irreducible (note that
the authors consider a model in which m = 1) and, hence, (RC2) must be given.

3.3.3 Sketches of Proofs for Uniqueness

The methods to prove that the fixed point is unique differ in the existing works due to the
different assumptions made on the ownership matrices. In combination with the different ways
to define the particular form of the matrices concerning their column sums in Section 3.2.3, we
can distinguish between three substantial types of proofs to show uniqueness. Note that there
also appear other proofs for uniqueness in the mentioned works in Table 3.1. Since we have
the objective to unify the regularity conditions, we only want to outline the proofs for the most
general situations.

The case if (RC1) holds

Under ‖Mk‖ < 1 for all 0 ≤ k ≤ m, the mapping Φ becomes a strict contraction, and for any
R1,R2 ∈ (R+

0 )n(m+1) it holds (Fischer, 2014) that

‖Φ(R2)− Φ(R1)‖ ≤ Imax‖R2 −R1‖, (3.46)

where 0 ≤ Imax < 1 is defined in (3.17). As a consequence, we can apply the Banach Contraction
Mapping Theorem (cf. Theorem A.5 in the Appendix) that says that Φ has a unique fixed point.

2In his article, Suzuki actually demands that for every ownership matrix (M1 and M0), it suffices that there
exists only one firm i ∈ N for which holds that

∑n
j=1 M

k
ji < 1 for k = 0, 1. This is a less strong condition

on the ownership matrices than (RC1). However, in his proof for uniqueness a strict contraction mapping
argument is used which only holds under (RC1). This is why we assume that Suzuki erroneously defined his
regularity condition and actually meant (RC1).
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The case if (RC4) holds

This condition implies that (OS2) cannot hold. A proof that the solution must be unique for
this regularity condition is given in Elsinger (2009, Theorem 8). Since we already presented a
different proof (Theorem 2.7), we only give a short sketch of Elsinger’s proof.

The assertion is shown via contraposition. Let R be the greatest and R be the least solution
Φ that exist as shown in Section 3.3.1. Subtracting the equity value of R from R, Elsinger
derives a condition that has to hold if multiple solutions are present in the system. Following his
argumentation, if the Elsinger Property in (RC4) holds for all ownership matrices, it is ensured
that this condition cannot be fulfilled under any circumstances from which follows that the
solution then must be unique.

The case if (OS2) holds

First, check that if (OS2) holds, (RC4) is violated. Further, if all column sums of the debt
ownership matrices are equal to one, we cannot conclude from (RC2) that (RC4) holds as well.
The same statement is true for (RC3).

The proof for uniqueness in this case slightly differs in the different papers but the idea of
the proof is very similar. Before giving a sketch of this proof, we have to make a restriction and
demand that M0 = 0n×n since otherwise, the following arguments do not hold anymore. In a
first step, it is shown that the equity values are equal for any debt payment vectors that solve
the liquidation equations in (2.9) – (2.11), see Demange (2011, Proposition 1) or Eisenberg and
Noe (2001, Theorem 1) for a proof. In the second step the uniqueness is shown by contradiction.
This is done by assuming that a greatest solution R and a least solution R of Φ exist that differ
in at least one component. Summing up the equity values of all firms in the system for R and
R and using the fact that

∑n
i=1M

k
ij = 1 for all j ∈ N and all k = 1, . . . ,m leads to the result

that the equity values must be equal. In case of (RC3), this is a contradiction if the additional
assumption

∑n
i=1 ai > 0 holds, see Shin (2008) for details. If (RC2) holds, we have to assume

further that
∑n

i=1 ai > 0 and that every firm in the system has to be indebted, see Demange
(2011, Proposition 2), who shows this for systems with m = 1.

The drawback of the approach above is that all proofs do not allow for M0 6= 0n×n. In Elsinger
(2009, Theorem 4), an additional assumption for the exogenous asset values is derived under
which a unique solution exists even if the Elsinger Property is violated for one of the ownership
matrices Mk, k ≥ 0. This assertion also holds for system in which the equity ownership matrix
M0 is unequal to zero. For a detailed proof, we refer to the original work. We only want to
point out that in Elsinger’s result it should be excluded that the Elsinger Property is violated
for M0. The reason is given the next example.

Example 3.14. Take the financial system F from Example 3.12 again, where the Elsinger
Property for M0 is violated since for I = {1, 2} it holds that

∑
i∈IM

0
ij = 1 for all j ∈ I.

According to Elsinger (2009, Theorem 4), the solution of F is in such cases still unique if

∑
i∈I

ai >
∑
i∈I

1−
∑
j∈I

M1
ji

 d1
i . (3.47)

Applying this to the system from Example 3.12, Equation (3.47) boils down to

a1 + a2 = 2.25 > 1.5 = d1
1 + d1

2 = (1−M1
11 −M1

21)d1
1 + (1−M1

12 −M1
22)d1

2. (3.48)
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It follows that (3.47) is fulfilled, however, the system has no solution at all.

Summarizing the results of this Section, we have found that regularity condition (RC4) for
which a unique solutions exists is the most general one. If (OS2) holds together with (RC2) or
(RC3), the additional assumption ‖a‖ > 0 ensures that the solution is actually unique – at least
if no equity cross-holdings are present. All existing models in literature from Table 3.1 can be
embedded in these two scenarios. We close this section with two remarks.

Remark 3.15. Another possible approach of finding conditions to ensure a unique solution
if the Elsinger Property is injured consists of using the idea of Ren et al. (2014, Corollary 1).
Assume that one ownership matrix Mk, k ≥ 0, does not have the Elsinger Property which means
that (In −Mk) is not invertible. The result in Ren et al. (2014) says that if the recovery value
of a firm i ∈ N can uniquely and exogenously be determined and if the submatrix of dimension
(n − 1) × (n − 1) in which i has been deleted has the Elsinger Property, the solution of F is
unique. Depending on the value of k, this leads to two conclusions:

(i) If k ≥ 1, the firm has to be solvent in seniority level k which is for example ensured if
ai >

∑m
l=k d

l
i.

(ii) If k = 0, the firm has to be in default which can for instance be ensured if r0(dm, . . . ,d1)
exists and if

(
a +

∑m
k=1 dk + M0r0(dm, . . . ,d1)

)
i
<
∑m

k=1 d
k
i .

Remark 3.16. In a final remark to terminate this subsection, we want to emphasize that all
preceding derived regularity conditions for a unique fixed point of Φ are in general only sufficient
but not necessary conditions. Hence, we can easily construct a financial system F in which all
regularity assumptions are violated and in which the solution of F is unique, even so. For an
example for such a system, let n = 5, m = 1, M0 = 0n×n,

a =


4
0
0
2
1

 , d1 =


1
2
1
3
2

 and M1 =


0 0 0 0 0

0.5 0 1 0 0
0 1 0 0.25 0
0 0 0 0 0.5
0 0 0 0.5 0

 . (3.49)

Check that for this system, all regularity conditions in Definition 3.13 are violated, in particular
(RC4). If we take the subset I = {2, 3}, similar to the approach in Example 3.14, we find that∑

i∈I ai = a2 + a3 = 0 and, hence, the assumption in (3.47) is violated as well. Nevertheless,
the fixed point of F is unique and given by

R∗ = (1, 1.5, 1, 3, 2, 3, 0, 1.25, 0, 0.5)t. (3.50)

The firms 1, 3 and 5 are solvent, firm 2 is in default and firm 4 is borderline, i.e. r∗,14 = d4

and r∗,04 = 0. Since firm 1 has no endogenous assets in its balance sheet, i.e. M1
1j = 0 for all

j = 1, . . . , 5, its recovery value r∗,11 is uniquely defined by r∗,11 = min{d1
1, a1} = min{1, 4} = 1.

Since all intersystem debt payments from this firm flow to firm 2 (M1
21 = 0.5), we can interpret

this “fixed” income of firm 2 as some kind of exogenous income which in turn allows a unique
pricing of the remaining recovery values.

3.4 Extensions of the Model

For the standard model in its most general form, there exists many existence and uniqueness
results we tried to survey and to unify in Section 3.3. Beyond that, there are also some extensions
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of the standard model in order to reflect some practical aspects and issues of financial networks.
We briefly want to mention some of these models in this section.

A possible extension embodies the inclusion of default costs. These costs can be modeled
by a fixed value of costs a defaulting firm is faced with or by costs that depend on the value
of exogenous and endogenous assets. For convenience, we assume a simple model with only
one seniority but include cross-holdings in the equities as well. The existing different model
extensions can be expressed via the adapted mapping Φb given by

Φb

(
r1

r0

)
=

(
min{d1,

(
a + M1r1 + M0r0 − b(r1)

)+}(
a + M1r1 + M0r0 − b(r1)− d1

)+
)
, (3.51)

where b(r1) = (b1(r1
1), . . . , bn(r1

n))t is the vector in which the default costs are modeled. If in a
liquidation event a fixed value of default costs has to be considered, b(r1) is defined as

b(r1) = diag(r1 < d1) · c (3.52)

with c = (c1, . . . , cn)t ≥ 0n representing the individual default costs. This model is described
in the works of Elsinger (2009) and Elliott et al. (2014), who call the default costs bankruptcy
costs and failure costs, respectively. The latter article ignores the effects of debt cross-holdings.

Beside fixed default costs, there is also the possibility to model relative default costs as done by
Rogers and Veraart (2013). The idea behind this approach is that if a firm defaults, exogenous
and endogenous assets have to be liquidated to service at least partially the debtholders claims.
In such a situation it is reasonable to assume that, due to fire sales, the defaulting firm will
realize only a fraction of the exogenous assets’ price. The same also holds for the endogenous
assets, which results in

b(r1) = diag(r1 < d1) ·
(
(1− α)a + (1− β)M1r1 + (1− γ)M0r0

)
, (3.53)

where α, β, γ ∈ (0, 1] denote the realized fractions of the original asset price. The closer α, β and
γ are to zero, the higher are the losses of the firm’s liquidation. A very similar approach is also
chosen in Glasserman and Young (2015). Note that, unlike to the framework of the mentioned
articles, we also include cross-holdings in the firms shares in the model.

Other extensions we want to mention are the works of Müller (2006) and Acemoglu et al.
(2015). In Müller (2006), credit lines are included into the model. It is based on the idea that if
a firm gets into trouble paying off its liquidations, it can raise new credits from non-defaulting
banks in the system up to a predefined value, the credit line. Acemoglu et al. (2015) considers
a financial system where the exogenous assets are composed out of an amount of cash and the
return of a project the firm is involved in. In case of financial troubles, the firm can prematurely
liquidate the project to gain further liquidity and service the liabilities. For more mathematical
details, we refer to the original works. A last work we want to mention is the one of Awiszus
and Weber (2015) that extends the model of Rogers and Veraart (2013) including cross-holdings
in the equities as well as the effects of fire sales of the exogenous assets as a potential channel
of contagion introduced first by Cifuentes et al. (2005). For more details on this topic, see also
the references in Awiszus and Weber (2015).

No matter whether b(r1) is defined as in (3.52) or as in (3.53), all extensions have in common
that discontinuities are added to the model. As a result, the uniqueness of a fixed point of
Φb gets lost under the usual regularity conditions that are presented in Section 3.3.2, see also
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Example 3.17. However, as long as Assumption 3.11 holds, the mapping Φb is bounded from
above by Rgreat and bounded from below by

Rsmall =

(
min{d1, (a− b(0n))+}

(a− b(0n)− d1)+

)
. (3.54)

This follows immediately by the fact that Φb(Rgreat) ≤ Rgreat and Φb(Rsmall) ≥ Rsmall. To-
gether with the monotonicity of Φb, we can iteratively apply the mapping to the starting vector
Rgreat and obtain the greatest fixed point R∗ = limk→∞Φk

b(Rgreat) as the limit. R∗ can be
interpreted as the “best-case equilibrium” (Elliott et al., 2014) or the Pareto-dominant solution
(cf. Section 3.2.2).

According to Rogers and Veraart (2013), Φb is only continuous from above but not from
below. As a consequence, starting an iteration with Rsmall would lead to a limit that must not
necessarily be a fixed point. For an example of this situation, see the original article of Rogers
and Veraart (2013, Example 3.3). The problem that possibly multiple fixed points of Φb can
exist (no matter how they can be found), is solved by the fact that there exists a greatest fixed
point which can be considered as a Pareto-dominant solution. This is very similar to the case of
non-constant liabilities that was presented in detailed in Section 3.2.2. The following example
demonstrates that the uniqueness gets lost in case of default costs.

Example 3.17. Consider a system of n = 3 firms with m = 1 and

a =

1
1
2

 , d1 =

1.745
0.75

1

 , M1 =

 0 0.5 0.25
0.1 0 0.5
0.1 0.25 0

 , M0 =

 0 0.05 0.05
0.05 0 0.05
0.05 0.05 0

 . (3.55)

The vector of default costs is given by c = (0.5, 0.5, 0.5)t. Using the Picard Algorithm (see
Section 4.1.1 for details) and starting with Rgreat leads to a fixed point

(1.745, 0.75, 1, 0.0003, 0.9951, 1.4118)t (3.56)

of Φb, hence all three firms are solvent. On the other side, when starting with Rsmall defined as
in (3.54), the Picard Algorithm stops at

(1.24, 0.75, 1, 0, 0.9419, 1.3586)t, (3.57)

which is also a fixed point of Φb but now with the difference that the first firm is in default.
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4 Valuation Algorithms for Systems with one
Seniority Level

We showed in Theorem 2.7 of Chapter 2 that for the standard model, i.e. a financial system F
in which the Elsinger Property holds for all ownership matrices, a unique fixed point R∗ of the
mapping Φ exists. In this chapter, our aim is to present possible calculation procedures to obtain
this solution. We restrict our considerations to financial systems where the debt payments are
all of the same seniority. Because of m = 1, we have only one vector that contains the nominal
values of the liabilities and omit for convenience the superscript and simply write d := d1. The
liquidation value equations in (2.9) – (2.11) therefore reduce to

r1 = min{d,a + M1r1 + M0r0} (4.1)

r0 = (a + M1r1 + M0r0 − d)+, (4.2)

and the mapping Φ in (2.12) becomes Φ : (R+
0 )2n → (R+

0 )2n, where R = (r1, r0) ∈ (R+
0 )2n and

Φ(R) = Φ

(
r1

r0

)
=

(
min{d,a + M1r1 + M0r0}
(a + M1r1 + M0r0 − d)+

)
. (4.3)

We will sometimes refer to the debt components of R and mean in such cases the first n
components of R that represent the debt payments of the system. The components n+ 1 to 2n
of R are called equity components for the same reasons. This notation is retained during the
entire chapter. The reason why we ignore systems with m > 1 for now is that the new ideas are
at first presented in this more convenient framework for a better comprehensibility. The derived
concepts from this chapter will help us in Chapter 5, where the algorithms are generalized for
financial systems that allow for a more detailed seniority structure of debt.

In general, we can categorize the developed algorithms into two different classes. The first
class, presented in Section 4.1, has the common property that they converge to the solution R∗.
However, the procedures must not necessarily reach the fixed point and therefore technically do
not deliver an exact solution in a finite number of iteration steps. Of course, due to decimal
place restrictions, the convergence is sufficiently exact in the framework of a certain tolerance
level but not in a mathematical sense. The second class of algorithms overcomes this problem
by, on the one hand, delivering the exact value of R∗ and, on the other hand, by managing
this task in a finite number of iteration steps. These algorithms are based on the information
whether a firm is in default or not under a current iterate and are outlined in Section 4.2. Most
parts of this chapter are based on Hain and Fischer (2015).

4.1 Non-finite Algorithms

Different authors like Eisenberg and Noe (2001), Suzuki (2002) or Elsinger (2009) derived differ-
ent methods to calculate the solution R∗. We can distinguish between two valuation algorithms
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that can be used in a financial system with cross-holdings in equity and debt. One algorithm
iteratively applies the mapping Φ in (2.12) on a chosen starting vector (Section 4.1.1). A modifi-
cation of this Picard Iteration is used in the work of Elsinger (2009), where for the determination
of the equity component, a more sophisticated subalgorithm is used (Section 4.1.2). Beyond that,
in Section 4.1.3, we combine the existing computation techniques together into a new valuation
algorithm which we call Hybrid Algorithm.

4.1.1 The Picard Algorithm

The most intuitive way to calculate R∗ for the system F consists of the iterative application of
Φ. It will be shown in this section that with an arbitrary starting vector R0 ∈ (R+

0 )2n,

R∗ = lim
l→∞

Φl(R0) = lim
l→∞

Φ ◦ . . . ◦ Φ︸ ︷︷ ︸
l

(R0), (4.4)

which is commonly known as the Picard Iteration. Since R∗ ≥ 0n, the range for the starting
vector R0 can be reduced to only non-negative vectors. Beyond that, the search for an optimal
starting point can be limited to a specific finite interval as we will show in the next steps. To
this end, we introduce the two vectors

Rgreat :=

(
r1

great

r0
great

)
:=

(
d

(In −M0)−1(a + M1d− d)+

)
(4.5)

and

Rsmall :=

(
r1

small

r0
small

)
:=

(
min{d,a}
(a− d)+

)
(4.6)

The vector Rgreat assumes that the debt payments are fully recovered so that in the debt
component r1 = d. Note that even if r∗,1 = d, it must not necessarily hold that Rgreat = R∗

(see also Example 6.3). Also note that because of Assumption 2.6, (In −M0)−1 exists and is
non-negative, cf. Lemma A.3 in the Appendix. The second vector Rsmall emerges when the
liquidation equations (4.1) and (4.2) are applied and the ownership structure of liabilities and
equities is completely ignored. In this case the term M1r1+M0r0 that represents the endogenous
assets is set to zero. Hence, the firms only have the exogenous assets a as an income. The starting
vector Rsmall results from applying the mapping Φ in Equation (2.12) on the vector 02n, i.e.

Φ(02n) = Φ

(
0n
0n

)
=

(
min{d,a}
(a− d)+

)
= Rsmall. (4.7)

Before showing the importance of Rgreat and Rsmall as upper and lower bounds of the solution
R∗, we need to introduce the terms default set and default matrix. For r1 ≥ 0n and r0 ≥ 0n the
set

D(r1, r0) :=
{
i ∈ N :

(
a + M1r1 + M0r0

)
i
< di

}
(4.8)

is called default set under r1 and r0 because – given r1 and r0 – the firms in D(r1, r0) are not
able to fully satisfy their obligations and hence are in default. We say that firm i is in default
under r1 and r0 if i ∈ D(r1, r0). For R = (r1, r0) we will sometimes abbreviate the default set
by D(R). The default matrix corresponding to r1 and r0, Λ(r1, r0) ∈ Rn×n, is defined as

Λ(r1, r0) := diag(a + M1r1 + M0r0 − d < 0n) (4.9)
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and is the diagonal matrix with entry 1 for firms in default under r1 and r0 at the corresponding
position and with the value 0 for firms not in default. As for default sets, we sometimes write
Λ(R) instead of Λ(r1, r0), if R = (r1, r0). With the new notation, we can show the crucial
limiting property of Rgreat and Rsmall. In Section 5.1.1, the assertion is showed for systems with
a seniority structure (m > 1), a different version of the proof can be found in Fischer (2015).

Proposition 4.1. Let R∗ = (r∗,1, r∗,0) be the fixed point of the mapping (4.3). Then R∗ ∈
[Rsmall,Rgreat].

Proof. Because of (4.7), R∗ ≥ Rsmall, so we only show the validity of the upper bound Rgreat.
Since R∗ is the fixed point of Φ, we can write

Φ

(
r∗,1

r∗,0

)
=

(
min{d,a + M1r∗,1 + M0r∗,0}
(a + M1r∗,1 + M0r∗,0 − d)+

)
=

(
r∗,1

r∗,0

)
= R∗. (4.10)

Obviously, r∗,1 ≤ d = r1
great, hence we reduce our considerations to the equity components of

R∗ which, together with Λ(r∗,1, r∗,0) = Λ∗, can be represented as

r∗,0 = (a + M1r∗,1 + M0r∗,0 − d)+ = (In −Λ∗)(a + M1r∗,1 + M0r∗,0 − d). (4.11)

Because of (In −Λ∗)r∗,0 = r∗,0 we can reformulate (4.11) into

r∗,0 = (In −Λ∗)M0r∗,0 + (In −Λ∗)(a + M1r∗,1 − d)

= (In −Λ∗)M0(In −Λ∗)r∗,0 + (In −Λ∗)(a + M1r∗,1 − d).
(4.12)

Rearranging yields to

r∗,0 = (In − (In −Λ∗)M0(In −Λ∗))−1(In −Λ∗)(a + M1r∗,1 − d). (4.13)

Together with Lemma A.6 in the Appendix, this leads to

r∗,0 = (In − (In −Λ∗)M0(In −Λ∗))−1(In −Λ∗)(a + M1r∗,1 − d)

≤ (In − (In −Λ∗)M0(In −Λ∗))−1(In −Λ∗)(a + M1d− d)

≤ (In − (In −Λ∗)M0(In −Λ∗))−1(In −Λ∗)(a + M1d− d)+

≤ (In −Λ∗)(In −M0)−1(In −Λ∗)(a + M1d− d)+

≤ (In −M0)−1(a + M1d− d)+

= r0
great,

(4.14)

from which the assertion follows.

A direct consequence of Proposition 4.1 is that any iteration procedure that aims to calculate
R∗ should make sure that (i) no starting point of the iteration is chosen outside the interval
[Rsmall,Rgreat] and that (ii) every interim result of the procedure is also located in that interval.
For these reasons, we present an algorithm that can start either with Rgreat or Rsmall.

Algorithm 1 (Picard Algorithm).

1. For k = 0, choose R0 ∈ {Rsmall,Rgreat} and ε > 0.

2. For k ≥ 1, determine Rk = Φ(Rk−1).

3. If ‖Rk−1 −Rk‖ < ε, stop the algorithm. Else, set k = k + 1 and proceed with Step 2.
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We will equivalently use the two expressions Picard Iteration and Picard Algorithm for Algo-
rithm 1 in the following. For instance in Suzuki (2002) and Fischer (2014), the Picard Iteration
is the algorithm of choice to determine a solution of (4.1) and (4.2). However, no suitable area
for the starting vector is proposed in these articles. The question, in which situations Rgreat is
the more optimal starting vector than Rsmall to avoid unnecessary calculation steps is treated
in Chapter 6. In the next proposition, it is shown that in case of R0 = Rgreat, the resulting
series of iterates will be decreasing, and increasing, if R0 = Rsmall. For these reasons, we will
sometimes refer to the Decreasing or the Increasing Picard Algorithm.

Proposition 4.2. In case of R0 = Rsmall, Algorithm 1 generates a sequence of increasing
vectors Rk, and for R0 = Rgreat a sequence of decreasing vectors. For all starting points, the
algorithm converges to the solution R∗.

Proof. Let R0 = Rsmall, then

Φ(Rsmall) =

(
min{d,a + M1r1

small + M0r0
small}

(a + M1r1
small + M0r0

small − d)+

)
≥
(

min{d,a}
(a− d)+

)
= Rsmall. (4.15)

From the monotonicity of Φ (Lemma 2.4), it follows that for all iterates we have Rk+1 ≥
Rk, k ≥ 1. For R0 = Rgreat, first check that because of r0

great = (In −M0)−1(a + M1d − d)+

and r1
great = d,

(a + M1r1
great + M0r0

great − d)+

=
(
a + M1d− d + M0r0

great − r0
great + r0

great

)+
=
(
a + M1d− d− (In −M0)r0

great + r0
great

)+
=

a + M1d− d− (a + M1d− d)+︸ ︷︷ ︸
≤0n

+ r0
great


+

≤ (r0
great)

+ = r0
great

(4.16)

and thus

Φ(Rgreat) =

(
min{d,a + M1r1

great + M0r1
great}

(a + M1r1
great + M0r0

great − d)+

)
≤
(

r1
great

r0
great

)
= Rgreat. (4.17)

Again it holds, due to the monotonicity of Φ, that Rk+1 ≤ Rk, k ≥ 1. Hence, for any R ∈
[Rsmall,Rgreat] it follows because of R ≤ Rgreat that Φ(R) ≤ Φ(Rgreat) ≤ Rgreat and with the
same argumentation it follows that Φ(R) ≥ Φ(Rsmall) ≥ Rsmall. This means that any series
from the Picard Iteration with a starting point in the interval [Rsmall,Rgreat] is bounded from
above and from below. Since Φ is continuous, it follows that the series must converge to some
R̃ such that Φ(R̃) = R̃. According to Theorem 2.7, there is only one fixed point, so it must
hold that R̃ = R∗.

The result of Proposition 4.2 is not restricted to only non-negative exogenous asset values as
the next remark underlines. This will become important in Section 5.2 when algorithms to find
R∗ in case of m > 1 are investigated.
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Remark 4.3. Proposition 4.2 still holds in case of a ∈ Rn (see also Remark 2.8). To avoid
negative liabilities, we have to modify the first n components of the mapping Φ according to
Equation (2.16), where the positive part of a+M1r1 +M0r0 is taken. For a ∈ Rn, the minimum
starting vector then needs to be modified in the first n components to r0

small = min{d,a+}. Check
that Proposition 4.1 still holds under this assumption and as well as Proposition 4.2.

The Picard Iteration – as well as any other iterative algorithm in Section 4.1 – might not
reach the solution R∗ in finitely many iteration steps. A financial system in which this problem
occurs, can easily be constructed. Everything that is needed, is one firm that is in default and
another firm that is solvent in the fixed point. A crucial assumption is that the two firms are
directly connected with each other in the sense that the solvent firm owns some part of the debt
of the defaulting firm and that the firm in default owns some shares of the solvent firm. The
next proposition demonstrates this phenomena.

Proposition 4.4. Consider a financial system with n ≥ 2 firms for which either the Increasing
or the Decreasing Picard Algorithm is applied to find R∗. Assume that in the fixed point R∗,
there exists a firm i1 which is in default with di1 > r∗,1i1 > 0 and that there is another firm i2

which is solvent in the solution, i.e. r∗,0i2 > 0 for which in case of the decreasing version further

holds that (r0
great)i2 > r∗,0i2 . If M1

i2,i1
6= 0 and M0

i1,i2
6= 0, the Picard Algorithm will never reach

R∗.

Proof. We show the claim first with the Decreasing Picard Algorithm, i.e. R0 = Rgreat. Then,

r0,1
i1

= di1 > r∗,1i1 since firm i1 is in default. The next debt iterate of i1 is given by

r1,1
i1

= min
{
di1 ,

(
a + M1r0,1 + M0r0,0

)
i1

}
. (4.18)

If r1,1
i1

= di1 , then r1,1
i1

> r∗,1i1 with the same argumentation as above. Else,

r1,1
i1

=
(
a + M1r0,1 + M0r0,0

)
i1
>
(
a + M1r∗,1 + M0r∗,0

)
i1

= r∗,1i1 , (4.19)

since r0,0
i2

> r∗,0i2 and M0
i1,i2
6= 0. For the next equity iterate of i2, it holds that

r1,0
i2

=
(
a + M1r0,1 + M0r0,0 − d

)
i2
>
(
a + M1r∗,1 + M0r∗,0 − d

)
i2

= r∗,0i2 (4.20)

because of r0,1
i1

> r∗,1i1 and M1
i2,i1
6= 0. Check that we can omit the (·)+ sign in (4.20) because

if i2 is solvent, it holds that rk,0i2 > 0 for every iterate k ≥ 0. With the same argumentation it

follows immediately that r2,1
i1

> r∗,1i1 and r2,0
i2

> r∗,0i2 . By induction, we see that rk,1i1 > r∗,1i1 and

rk,0i2 > r∗,0i2 for all k ≥ 0 and therefore Rk > R∗ for all k ≥ 0.

Let us now change the direction of the algorithm and set R0 = Rsmall. Note that i1 is in
default from which follows that

r0,1
i1

= min{di1 , ai1} = ai1 < r∗,1i1 =
(
a + M1r∗,1 + M0r∗,0

)
i1

(4.21)

since r∗,0i2 > 0 and M0
i1,i2

6= 0. For the equity value of firm i2 it holds by definition that

r0,0
i2

= (ai2 − di2)+. If ai2 ≤ di2 , then r0,0
i2

= 0 < r∗,0i2 . Otherwise,

r0,0
i2

= (a− d)i2 <
(
a + M1r∗,1 + M0r∗,0 − d

)
i2

= r∗,0i2 (4.22)
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because of r∗,1i1 > 0 and M1
i2,i1
6= 0. The debt component of the next iterate for i1 is then given

by
r1,1
i1

=
(
a + M1r0,1 + M0r0,0

)
i1
<
(
a + M1r∗,1 + M0r∗,0

)
i1

= r∗,1i1 (4.23)

because of r0,0
i2

< r∗,0i2 and M1
i1,i2

6= 0 as well as we immediately find that r1,0
i2

< r∗,0i2 using

the same argumentation as in (4.22). Hence rk,1i1 < r∗,1i1 and rk,0i2 < r∗,0i2 for all k ≥ 0 and thus

Rk < R∗ for all k ≥ 0.

Example 4.5. Consider a financial system with n = 5 firms, where

a = (0.39, 0.38, 0.60, 1.29, 0.46)t, d = (1.62, 1.82, 2.07, 1.14, 0.77)t (4.24)

and

M1 =


0 0.375 0.25 0.25 0

0.25 0 0.25 0.25 0.25
0 0.375 0 0 0.25

0.25 0 0 0 0.25
0.25 0 0.25 0.25 0

 , M0 =


0 0.05 0.067 0.05 0.05

0.05 0 0.067 0.05 0.05
0.05 0.05 0 0.05 0.05
0.05 0.05 0.067 0 0.05
0.05 0.05 0.067 0.05 0

 . (4.25)

The solution of the system is given by the vector

R∗ = (1.62, 1.7342, 1.5316, 1.14, 0.77, 0.1686, 0, 0, 0.7965, 0.8112)t (4.26)

and we see that the second and the third firm are in default, the others are solvent. Since
for example the first firm owns some debt of the second firm (M1

12 = 0.375) and this firm,
on the other hand, holds some shares of the first firm (M0

21 = 0.05), the Picard Iteration will
theoretically never reach the fixed point R∗. Of course, since ε > 0 is chosen in Algorithm 1,
the procedure will stop after some iterations, as Example 4.21 demonstrates.

Remark 4.6. Proposition 4.4 does not claim to be a complete description of situations in which
the Picard Iteration does not reach R∗. There are many other possible situations in which the
same phenomenon can occur. For instance in case of the Decreasing Picard Algorithm, we can
demand that i1 /∈ D(R0) instead of r0,0

i2
> r∗,0i2 . As a consequence, Equation (4.18) becomes

r1,1
i1

= di1 > r∗,1i1 .

From a computational or practical point of view, the fact that the solution can, under some
circumstances, not be exactly reached, will result in many needed iteration steps to approach
R∗ sufficiently close. This can make the Picard Algorithm somewhat inefficient, as well as the
other algorithms that are presented in remainder of this section. The Trial-and-Error Algorithms
presented in Section 4.2, however, do not have this drawback since for these procedures it is
ensured that they will reach the solution in a finite number of steps.

4.1.2 The Elsinger Algorithm

In Elsinger (2009), an algorithm to find R∗ is presented which differs from the Picard Iteration.
This procedure consists of splitting the two components of an iterate Rk, the equity and the
debt components, and apply different computation methods to both components in each iteration
step. For the equity components, a subalgorithm is applied where the equity payments of the
system are determined assuming a fixed amount of debt payments. Denote this vector of debt
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payments in the following by r̄, hence 0n ≤ r̄ ≤ d. Aim of the subalgorithm is to find a fixed
point of the mapping Φ0 : (R+

0 )n → (R+
0 )n with

Φ0(r0; r̄) = (a + M1r̄ + M0r0 − d)+. (4.27)

This mapping represents the equity components of Φ for given debt payments of r̄. The fixed
point of Φ0(·; r̄) is denoted by r0(r̄), i.e.

Φ0(r0(r̄); r̄) = (a + M1r̄ + M0r0(r̄)− d)+ = r0(r̄). (4.28)

As shown in Elsinger (2009, Lemma 4), this fixed point exists and is unique since M0 has the
Elsinger Property.

The following algorithm delivers for given r̄ a series of vectors wk ∈ Rn that converge to a
vector that is the fixed point of (4.27). To explain this in more detail, first define for a given
vector w ∈ Rn the set

P(w) = {i ∈ N : wi ≥ 0} (4.29)

and the matrix
G(w) = diag(w ≥ 0n) (4.30)

as the corresponding diagonal matrix. Note that these definitions of P(w) and G(w) slightly
differ from the original ones in Elsinger (2009), where a strictly larger sign was used in the
Equations (4.29) and (4.30). By our definition of default in (4.8), a firm with zero equity value
can still be not in default in the sense that all obligations can fully served, but no capital is
left for the shareholders. This situation is referred to as borderline firms (cf. Section 4.2.2).
However, this modification does not change the forthcoming theoretical results.

Algorithm 2.

1. For k = 0, set w0 = a + M1r̄− d and determine P(w0) and G(w0).

2. For k ≥ 1, solve Ψwk−1(w) = w where

Ψwk−1(w) = w0 + M0G(wk−1)w (4.31)

and denote the solution by wk, i.e. Ψwk−1(wk) = wk. Determine P(wk) and G(wk).

3. If P(wk) = P(wk−1), stop the algorithm. Else, set k = k + 1 and proceed with Step 2.

Before the properties of Algorithm 2 are shown, we give some explanations for a better under-
standing of its functioning. The starting point is w0, which is the difference between a + M1r̄
and d. The sum represents the firms’ incomes on their balance sheet that consists of exogenous
and endogenous assets a and M1r̄, respectively. Note that in this step the potential income
from equity cross-ownership is ignored since M0 does not appear. The idea is now as follows:
The firms not in P(w0) are not able to fully satisfy their liabilities (assuming debt payments
of r̄) and will be in default. On the other hand, the firms that are in P(w0) will be able to
satisfy their obligees and can be regarded as solvent (again assuming debt payments of r̄), even
though no intersystem payments due to equity cross-ownership are taken into account. As a
consequence, the equity payments of the non-defaulting firms are added into the system via
the product M0G(w0)w. We can interpret the vector w0, as well as the other iterates wk, as
pseudo equity vectors that give us information about solvent and defaulting firms under the
current debt and equity payments. The fact that the entries of wk can be negative prevents
that they can be naturally interpreted as equity vectors which is why we use the term “pseudo”.
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The difference compared to the Picard Algorithm is that a linear equation system is solved
to achieve a new equity payment vector instead of applying Φ to an iterate Rk. This is because
for the fixed point of Ψwk−1 it holds together with (4.31) that

wk = (In −M0G(wk−1))−1w0 (4.32)

Note that the inverse matrix exists since both M0 and, hence, M0G(wk−1) have the Elsinger
Property.

The vector w1 can be interpreted as an “updated” version of w0 since the equity payments
of the non-defaulting firms that are in P(w0) are included in w1. Based on the updated vector
w1, it might appear that some firms that are not in P(w0) have now non-negative entries in
w1. This can be concluded from w1 ≥ w0 that we will show later. But these firms are now also
able to contribute equity payments to the system. Consequently, the system has to be updated
again by determining w2. The procedure continues until the set of defaulting firms stays the
same from one iteration step to the next one.

Proposition 4.7. Given a fixed vector of debt payments r̄ ≥ 0n:

(i) Algorithm 2 generates an increasing sequence of vectors wk.

(ii) Let 1 ≤ l ≤ n such that

l := min{j ∈ {0, 1, . . . , n− 1} : P(wj) = P(wj+1)}. (4.33)

Then r0(r̄) = (wl+1)+ is the fixed point of the mapping Φ0(·; r̄).

(iii) Let d0 = |P(w0)| be the number of firms with a non-negative entry in w0. If d0 ∈
{1, . . . , n}, the fixed point r0(r̄) is reached after no more than n − d0 iteration steps. If
d0 = 0, no iteration is necessary, since r0(r̄) = 0n.

Proof. (i) This part of the Proposition is shown by Elsinger (2009). We give a different
version of the proof. Because of (4.32), the fact that G(w0)w0 ≥ 0n and using the series
representation of (In −M0G(w0))−1 as shown in Lemma A.3 of the Appendix we get

w1 = (In −M0G(w0))−1w0

= (In + M0G(w0) + (M0G(w0))2 + . . .)w0

= w0 + M0 G(w0)w0︸ ︷︷ ︸
≥0n

+M0G(w0)M0 G(w0)w0︸ ︷︷ ︸
≥0n

+ . . .

≥ w0,

(4.34)

which is the induction start. For the induction step we assume wk ≥ wk−1 and G(wk) ≥
G(wk−1) following from it. We need to show that wk+1 ≥ wk, or, equivalently, wk+1 =
wk + e where e ≥ 0n. Since G(wk)wk ≥ G(wk−1)wk and wk = w0 + M0G(wk−1)wk, it
follows that

u := w0 + M0G(wk)wk −wk = M0(G(wk)−G(wk−1))wk ≥ 0n. (4.35)

With this definition we have that

wk + e = w0 + M0G(wk)(wk + e) = w0 + M0G(wk)wk + M0G(wk)e (4.36)
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and we can rearrange to

e−M0G(wk)e = w0 + M0G(wk)wk −wk = u ≥ 0n. (4.37)

Solving this for e leads to

e = (In −M0G(wk))−1u ≥ 0n (4.38)

from which follows that wk+1 ≥ wk.

(ii) First, we will show that once a “stable system” has been reached, i.e. for k ≥ 0 we have
P(wk) = P(wk+1), the sequence wk will be constant. Let l be defined as above in (4.33).
Note that such an l exists since wk ≤ wk+1 and therefore P(wk+1) ⊇ P(wk) for all k ≥ 0
as shown above. Due to G(wl) = G(wl+1), it follows because of

Ψwl(w) = w0 + M0G(wl)w = w0 + M0G(wl+1)w = Ψwl+1(w) (4.39)

that the two mappings Ψwl and Ψwl+1 are the same and consequently wl+1 = wl+2.
A direct consequence is that P(wl+2) = P(wl+1) = P(wl) which implies G(wl+2) =
G(wl+1) = G(wl). By induction, all following vectors will be equal to wl+1.

What remains to be shown out is that the positive part of this iteration vector is the
fixed point of the mapping Φ0(·; r̄). Since wl+1 is the fixed point of Ψwl , it holds that
wl+1 = w0 + M0G(wl)wl+1. This yields to

Φ0((wl+1)+; r̄) = (a + M1r̄ + M0(wl+1)+ − d)+

= (a + M1r̄ + M0G(wl+1)wl+1 − d)+

= (a + M1r̄ + M0G(wl)wl+1 − d)+

= (w0 + M0G(wl)wl+1)+

= (wl+1)+.

(4.40)

(iii) If d0 = 0, then w0
i < 0 for all i ∈ N . This means that G(w0) = 0n×n and that the

first iterate w1 is given by w1 = (In −M0G(w0))−1w0 = w0 from which follows that
P(w1) = P(w0) = ∅. By definition, the algorithm stops and we obtain r0(r̄) = (w1)+ = 0n
as the fixed point of Φ0(·; r̄), as one can easily check. Suppose now that d0 ≥ 1. As shown
in part (i), the series wk increases which means that the firms in P(w0) will maintain
their positive entries in every further iteration step. The same statement holds for every
firm i with wki < 0 and wk+1

i ≥ 0 for any k ≥ 0. Because of (ii) this means that the
number of iteration steps would certainly be maximal, if in every iteration step the set
P(wk) increased by one and if |P(wl+1)| = n. In that case we would therefore have
|P(wl+1)| − |P(w0)| = n− d0 maximal possible iteration steps.

Example 4.8. Consider the financial system defined in Example 4.5. To find a solution of this
system, we assume in the first step that all firms are able to fully recover their liabilities, i.e.
r̄ = d. Under this assumption, we can use Algorithm 2 to find the fixed point of Φ0(·,d). Doing
so, we find that

w0 = (0.2550,−0.04,−0.595, 0.7475, 0.8975)t and P(w0) = {1, 4, 5}.
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The firms in P(w0) are able to fully satisfy their liabilities, hence we can add their equity
payments for the other firms in the system into account which leads to

w1 = (0.3434, 0.0656,−0.4894, 0.8124, 0.9553)t and P(w1) = {1, 2, 4, 5}.

The additional payments cause that firm number 2 is now also able to fully recover its liabilities,
only firm 3 is not able to do so. This also does not change in the next iteration step where we
get

w2 = (0.3471, 0.0661,−0.4856, 0.8161, 0.9590)t and P(w2) = {1, 2, 4, 5}.

So, the third firm stays in default and because of P(w1) = P(w2) the algorithms stops and
(w2)+ = r0(d) is the searched fixed point of Φ0(·; d) as one easily can check.

Using Algorithm 2 to get an equity vector for a given debt payment vector, we can now
present the algorithm to calculate the solution R∗. In the sequel, we will make use of the
mapping Φ1 : (R+

0 )n → (R+
0 )n defined by

Φ1(r; r̄0) = min{d,a + M1r + M0r̄0} (4.41)

that represents the debt components of Φ for a given equity payment vector r̄0 ≥ 0n.

Algorithm 3 (Elsinger Algorithm). Set ε > 0.

1. For k = 0, choose r0,1 ∈ {r1
small, r

1
great} and determine r0(r0,1) using Algorithm 2.

2. For k ≥ 1, set rk,1 = Φ1(rk−1,1; r0(rk−1,1)) and calculate r0(rk,1) by Algorithm 2.

3. If

∥∥∥∥( rk−1,1

r0(rk−1,1)

)
−
(

rk,1

r0(rk,1)

)∥∥∥∥ < ε, stop the algorithm. Else, set k = k + 1 and proceed

with Step 2.

The algorithm starts either assuming that all firms can fully deliver their debt obligations
(r0,1 = r1

great = d) or that all firms have only their exogenous assets for paying off their obliga-
tions (r0,1 = r1

small = min{d,a}). With this payment vector, the corresponding equity payments
are obtained by using Algorithm 2. In the next step the debt vector has to be adapted to the
new equity payments which is done applying Φ1 to the previous debt vector. The updated debt
payment vector is then used for determining a new equity payment vector. This procedure con-
tinues until the iterates are sufficiently close to each other. Additional to the original algorithm
first presented in Elsinger (2009), Algorithm 3 contains the second possible starting point r1

small.
In Figure 4.1, the schematic workflow of the Elsinger Algorithm is summarized more compactly,
we demonstrate the functioning of the Elsinger Algorithm also in Example 4.21. We will show
in the next proposition that if r0,1 = r1

small is chosen, the vector of debt and equity payments
establish an increasing sequence and hence converges to the solution R∗ from below, while for
r0,1 = r1

great, the series converges from above. Depending on the choice of the initial debt iterate
r0,1 in the first step of the procedure, we call the algorithms either Decreasing Elsinger Algorithm
if r0,1 = r1

great or Increasing Elsinger Algorithm in case of r0,1 = r1
small.

Proposition 4.9. The Elsinger Algorithm delivers a series of decreasing vectors if r0,1 = r1
great

and a series of increasing vectors if r0,1 = r1
small. Both series converge to the fixed point of the

mapping Φ in (2.12).
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r1,0 = r0(r1,1)

= Φ0(r1,0; r1,1)

�
�
�
�
�
�
�
��

Step 2

r2,1 = Φ1(r1,1; r1,0)
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�
�Alg. 2

?

r2,0 = r0(r2,1)

= Φ0(r2,0; r2,1)

· · ·

· · ·

· · ·

Figure 4.1: Schematic functioning of the Elsinger Algorithm. The oval-shaped symbol means
that Algorithm 2 is applied to update the equity vector. The arrow without any
further specification means that the function Φ1 is applied to update the debt vector.
In case of r0,1 = r1

small the sequence (rk, r0(rk)) is increasing, and it is decreasing if
r0,1 = r1

great = d.

Proof. The decreasing part is shown in Elsinger (2009), we only have to show that the debt
iterate in the algorithm therein is identical to rk,1 in Algorithm 3. With our notation, the
iterate of the debt component in Elsinger (2009) is defined as

rk,1 = min{d, (w∗(rk−1,1) + d)+}, (4.42)

where w∗(rk−1,1) is the solution of

w = a + M1rk−1,1 + M0w+ − d. (4.43)

However, it follows from (4.40) that for r̄ = rk−1,1,

(wl+1)+ = Φ0
(

(wl+1)+; rk−1,1
)

=
(
a + M1rk−1,1 + M0(wl+1)+ − d

)+
=
(
w∗(rk−1,1)

)+
,

(4.44)
where wl+1 is the result of Algorithm 2 with the debt payment vector rk−1,1, i.e. (w∗(rk−1,1))+ =
r0(rk−1,1). Because of (4.43), we have that

w∗(rk−1,1) = a + M1rk−1,1 − d + M0(w∗(rk−1,1))+, (4.45)

from which follows with (4.41) and a ≥ 0n that

rk,1 = min{d, (w∗(rk−1,1) + d)+}
= min{d,a + M1rk−1,1 + M0(w∗(rk−1,1))+}
= Φ1(rk−1,1; (w∗(rk−1,1))+)

= Φ1(rk−1,1; r0(rk−1,1)).

(4.46)

What remains to be shown is that for the starting point r0,1 = r1
small the produced series increases

and converges to R∗ which is done by induction. For the induction start, check that

r0,1 = min{d,a} ≤ min{d,a + M1r0,1 + M0r0(r0,1)} = Φ1(r0,1; r0(r0,1)) = r1,1.
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According to Lemma 2.10, r0(r) is increasing in r. Hence, r0(r0,1) ≤ r0(r1,1) which completes the
induction start. Assume for the induction step that rk−1,1 ≤ rk,1 and consequently r0(rk−1,1) ≤
r0(rk,1). The next debt iterate emerges as:

rk+1,1 = min{d,a + M1rk,1 + M0(r0(rk,1))+}
≥ min{d,a + M1rk−1,1 + M0(r0(rk−1,1))+}
= rk,1,

(4.47)

from which also follows that r0(rk+1,1) ≥ r0(rk,1) and, hence, the increasing property of the
series. For the convergence, check that r0(rk,1) ≥ 0n and it holds that

r0(rk,1) = (a + M1rk,1 + M0r0(rk,1)− d)+ ≤M0r0(rk,1) + (a + M1rk,1 − d)+. (4.48)

Because of rk,1 ≤ r∗,1, it follows after some rearrangements that

r0(rk,1) ≤ (In −M0)−1(a + M1rk,1 − d)+ ≤ (In −M0)−1(a + M1r∗,1 − d)+, (4.49)

hence the series r0(rk,1) is bounded from above as well and therefore converges to some r∗,0 from
below. The fact that Φ0 is continuous in (r1, r0) implies together with Φ0(r0(rk,1); rk,1) = r0(rk,1)
that Φ0(r∗,0; r∗,1) = r∗,0. Thus, (r∗,1, r∗,0) solves (4.2). Similarly, we can argue that because of
the continuity of Φ1, Φ1(r∗,1; r∗,0) = r∗,1 from which follows that (r∗,1, r∗,0) also solves (4.1) and
therefore must be the fixed point R∗.

Similar to the Picard Algorithm (cf. Remark 4.3), we can also successfully use the Elsinger
Algorithm if negative exogenous asset values are present. A property, we will make use of when
applying algorithms to financial systems with m > 1 (cf. Section 5.2).

Remark 4.10. The assertions of Proposition 4.9 are also true if a ∈ Rn. To see this, first
note that for any given debt iterate rk,1, Algorithm 2 still delivers the corresponding equity
payments r0(rk,1) as the fixed point of Φ0(·; rk,1). This follows from the fact that a ≥ 0 is not
needed in the proof of Proposition 4.7. Moreover, the Elsinger Algorithm obviously delivers a
decreasing or an increasing series, depending on the corresponding starting vector. Of course,
the mapping Φ1 has to be adapted to Φ1(r1; r0) = min{d, (a + M1r1 + M0r0)+}, to ensure the
proper definition of the debt iterates. For the increasing case in Algorithm 3, we further have
to set r1

small = min{d,a+} for the starting vector to make sure that the recovery values are
positive. However, this does not change the fact that the series staring with (rsmall, r

0(rsmall))
converges from below to R∗.

As described above, the Elsinger Algorithm determines the equity components of the iterates
Rk in a different way than the Picard Iteration. An important consequence of this new approach
is that the iterates of the Elsinger Algorithm will for the decreasing version be in every step
smaller than the iterates of the Picard Algorithm, as we will show in the next proposition. The
same statement holds for the increasing version of the procedure, where the iterates from the
Elsinger Algorithm will be greater than the iterates from the Picard Algorithm. Despite the
fact that both procedures are difficult to compare concerning their total calculation effort due
to different ways to obtain the next equity iterate, only taking the number of needed iterations
as a quality criterion into account, we can conclude that the Elsinger Algorithm will not need
more iteration steps to reach R∗ sufficiently close than the Picard Iteration, no matter whether
the algorithms start from the upper or the lower boundary.
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Proposition 4.11. Let Rk
P = (rk,1P , rk,0P ) be the k-th iterate of the Picard Algorithm and Rk

E =

(rk,1E , rk,0E ) the corresponding iterate of the Elsinger Algorithm.

(i) For any iterate k ≥ 0 it holds that Rk
P ≥ Rk

E if R0
P = Rgreat and R0

E = (r1
great, r

0(r1
great)).

In case of R0
P = Rsmall and R0

E = (r1
small, r

0(r1
small)), we have that Rk

P ≤ Rk
E for every

iterate.

(ii) Let Rk, k ≥ 1, be an iterate either of the Picard Algorithm with R0 = Rgreat or of the
Elsinger Algorithm with R0 = (r1

great, r
0(r1

great)). Then Rk+1
P (Rk) ≥ Rk+1

E (Rk). If the

starting vector is either R0 = Rsmall or R0 = (r1
small, r

0(r1
small)), it holds that Rk+1

P (Rk) ≤
Rk+1

E (Rk).

Proof. (i) The assertion is shown by induction. For k = 0, suppose that the upper boundary
is the starting vector for both algorithms. In Equation (4.49) it was shown that

r0,0
E = r0(d) ≤ (In −M0)−1(a + M1d− d)+ = r1

great = r0,0
P . (4.50)

Since r0,1
E = r0,1

P = d, the induction start is complete. Assume now, that for k ≥ 1 it holds

that Rk
P ≥ Rk

E. From Proposition 4.9, we know that Rk+1
E ≤ Rk

E. This leads to

rk+1,1
P = min{d,a + M1rk,1P + M0rk,0P } ≥ min{d,a + M1rk,1E + M0rk,0E } = rk+1,1

E (4.51)

and

rk+1,0
P = (a + M1rk,1P + M0rk,0P − d)+

≥ (a + M1rk,1E + M0rk,0E − d)+

≥ (a + M1rk+1,1
E + M0rk+1,0

E − d)+

= rk+1,0
E .

(4.52)

If the starting vector is the lower boundary and the series Rk
P and Rk

E are increasing, the
argumentation is similar.

(ii) We prove the claim for the decreasing version of the algorithms, the proof for the reverse
direction is similar. First, let Rk = Rk

P. The next iterate of the debt components is equal

for both algorithms, i.e. rk+1,1
P = Φ1(rk,1; rk,0) = rk+1,1

E . For the equity components, it

holds that rk+1,0
P = Φ0(rk,0; rk,1). The mapping Φ0(·; rk,1) has a unique fixed point, that

we denote by r0(rk,1) and that can be obtained via a Picard Iteration:

lim
l→∞

(
Φ0
)l

(rk,0; rk,1) = r0(rk,1). (4.53)

The iterates obviously form a decreasing sequence so that

rk+1,0
P ≥ r0(rk,1) ≥ r0(rk+1,1) = rk+1,0

E , (4.54)

where the second inequality follows from the fact that r0(r) is increasing in r (cf. Lemma
2.10). If the k-th iterate is given by Rk = Rk

E, the arguments are analogous to the ones
above.
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Even though the iterates of the Elsinger Algorithm are always closer to R∗ than their coun-
terparts of the Picard Algorithm, there as still some situations, in which the Elsinger Algorithm
does not reach R∗.

Proposition 4.12. Consider a financial system with n ≥ 2 firms for which either the Increasing
or the Decreasing Elsinger Algorithm is applied to find R∗. Assume that in the fixed point R∗,
there exists a firm i1 which is in default with di1 > r∗,1i1 > 0 and that there is another firm

i2 which is solvent in the solution, i.e. r∗,0i2 > 0. If M1
i2,i1
6= 0 and M0

i1,i2
6= 0, the Elsinger

Algorithm will never reach R∗.

Proof. First note that, unlike to Proposition 4.4, we do not have to demand a particular property
for r0,0

i2
. In the decreasing version of the algorithm, R0 = (d, r0(d)) and therefore r0,1

i1
> r∗,1i1 .

For the equity component of firm i2, it holds that

r0,0
i2

=
(
a + M1r0,1 + M0r0,0 − d

)
i2
>
(
a + M1r∗,1 + M0r∗,0 − d

)
i2

= r∗,0i2 , (4.55)

since r0,1
i1

> r∗,1i1 and M1
i2,i1
6= 0. The further argumentation that rk,1i1 > r∗,1i1 and rk,0i2 > r∗,0i2 for

k ≥ 1 is identical to the one in the proof of Proposition 4.4, as well as for the increasing version
of the algorithm.

An example for a system that fulfills the assumptions of Proposition 4.12 is again the system
of Example 4.5. Though the stopping criteria will be reached after some iteration steps in the
Elsinger Algorithm (cf. Example 4.21), the outcoming vector is not exactly equal to R∗.

4.1.3 A Hybrid Algorithm

To motivate the approach of the next algorithm, we have to compare the functioning of the
Elsinger Algorithm and the Picard Algorithm. The major difference between both iterations
emerges in the calculation of the equity components. Suppose that we are in iteration step
k ≥ 0 and want to calculate the next iteration of the equity components. We ignore for an
instant that both algorithms deliver different iterates and assume that the k-th iterate is given
by Rk = (rk,1, rk,0). In the Elsinger Algorithm, rk+1,1 is calculated first and then rk+1,0 as
the fixed point of Φ0(·; rk+1,1) so that it holds that rk+1,0 = Φ0(rk+1,0; rk+1,1). The iterate of
the Picard Algorithm, on the other side, can be written as rk+1,0 = Φ0(rk,0; rk,1) from which it
becomes clear that the Picard Iteration neither uses the “updated” debt vector rk+1,1, nor does
it solve a separate fixed point mapping to obtain rk+1,0.

The determination of the debt components rk+1,1, however, is comparable in both algorithms.
Again starting with Rk we have that rk+1,1 = Φ1(rk,1; rk,0) for both procedures. An obvious
extension of the Elsinger Algorithm would be to utilize the principle used for the equity compo-
nents for the debt components as well. In the article of Eisenberg and Noe (2001), this concept
is used for systems with no cross-ownership of equity, i.e. where M0 = 0n×n. In this subsection
we will generalize the results of this work and it will turn out that combining both ideas, the one
of Elsinger (2009) and the one of Eisenberg and Noe (2001), will help to minimize the number
needed iteration steps of the global algorithm to find R∗.

To explain this idea in more detail, say that for a debt payment vector r̄ ∈ [r1
small, r

1
great] we

have a corresponding equity vector r̄0 := r0(r̄), that is, a fixed point of the mapping Φ0(·; r̄) in
(4.27). In the Elsinger Algorithm, the next debt iterate emerges as Φ1(r̄; r̄0). Instead of using
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this iterate, our aim is now to find the fixed point of Φ1(·; r̄0) as the new debt iterate. This can
be done using the following Algorithm.

Algorithm 4. Suppose r̄0 ≥ 0n.

1. For k = 0, set r0,1 = r̄ and determine D(r0,1, r̄0) and Λ(r0,1, r̄0).

2. For k ≥ 1, solve Θrk−1,1,r̄0(r) = r where

Θrk−1,1,r̄0(r) = Λ(rk−1,1, r̄0)
(
a + M1

(
Λ(rk−1,1, r̄0)r +

(
In −Λ(rk−1,1, r̄0)

)
d
)

+ M0r̄0
)

+
(
In −Λ(rk−1,1, r̄0)

)
d

(4.56)

3. Denote the solution by rk,1, i.e. Θrk−1,1,r̄0(rk,1) = rk,1 and determine D(rk,1, r̄0) and

Λ(rk,1, r̄0).

4. If D(rk−1,1, r̄0) = D(rk,1, r̄0), stop the algorithm. Else, set k = k+1 and proceed with Step
2.

The algorithm is identical to the one given in Eisenberg and Noe (2001) with the modification
that some additional fixed payments due to equity cross-ownership are included. It solves (4.1)
for a fixed amount of equity payments r̄0 ≥ 0n, i.e. is the fixed point of the mapping Φ1(·, r̄0), as
we will show in the next proposition. To see the difference between the calculation of the debt
component in the Elsinger Algorithm, assume that an arbitrary debt payment vector r ∈ [0n,d]
is given and that the corresponding equity payment vector r0(r) is given too. The fixed point
of the mapping Φ1(·; r0(r)) can on the one hand be obtained using Algorithm 4 above, but on
the other hand, we could also use a Picard Iteration (see Algorithm 5), since it holds that

0n ≤ Φ1(r; r0(r)) = min{d,a + M1r + M0r0(r)} ≤ d. (4.57)

Starting with the vector r = r0,1, the fixed point is given by

lim
l→∞

(Φ1)l(r; r0(r)). (4.58)

In the Elsinger Algorithm, however, the next iterate for the debt component is defined as
Φ1(r; r0(r)) which is therefore the first iterate of the Picard Iteration in (4.58). Hence, one
can say that using in the Elsinger Algorithm, a simple mapping is applied to obtain the next
debt iterate, whereas a fixed point problem is solved in Algorithm 4 to get the next debt iterate.

Proposition 4.13. Let r̄1 ∈ [r1
small, r

1
great] be a debt payment vector and r̄0 ≥ 0n a vector of

equity payments such that
Φ1(r̄1; r̄0) ≤ r̄1. (4.59)

(i) Algorithm 4 generates a well-defined decreasing sequence of vectors rk,1.

(ii) Let 1 ≤ l ≤ n such that

l := min{j ∈ {0, 1, . . . , n− 1} : D(rj,1, r̄0) = D(rj+1,1, r̄0)}. (4.60)

Then rl+1,1 is the fixed point of the mapping Φ1(·; r̄0) defined in (4.41).

(iii) Let d0 = |D(r̄1, r̄0)| be the number of firms in default under r̄1 and r̄0. If d0 ∈ {1, . . . , n},
the fixed point rl+1,1 is reached after no more than n − d0 iteration steps. If d0 = 0, no
iteration is necessary, since rl+1,1 = d

45



Proof. Since the equity vector r̄0 is considered as fixed we can modify the financial system F by
setting ã = a + M0r̄0 and M̃0 = 0n×n. The new system F̃ = (ã,M1, M̃0,d) is then a system
without cross-ownership of equity. Such systems are considered in Eisenberg and Noe (2001),
see also Table 3.1.

(i) The proof that the sequence rk,1 decreases is now equivalent to the proof given in Eisenberg
and Noe (2001). A needed assumption in the proof therein is that r̄1 is a so-called super-
solution which is given because of Φ1(r̄1; r̄0) ≤ r̄1 ≤ d. What we have to show to complete
this part is that the fixed point of the mapping in (4.56) exists and is unique, since their
definition of a financial system, differs slightly from ours. Denote by Λ := Λ(rk,1, r̄0) the
diagonal matrix in the (k + 1)-th iteration step. The next iterate rk+1,1, is according to
(4.56), given by

rk+1,1 = Λ
(
ã + M1(Λrk+1,1 + (In −Λ)d)

)
+ (In −Λ)d

= ΛM1Λrk+1,1 + Λ
(
ã + M1(In −Λ)d

)
+ (In −Λ)d

(4.61)

and rearranging yields to

rk+1,1 =
(
In −ΛM1Λ

)−1 (
Λ
(
ã + M1(In −Λ)d

)
+ (In −Λ)d

)
. (4.62)

Note that M1 has the Elsinger Property and, hence, so does ΛM1Λ which means that the
inverse of In −ΛM1Λ exists. This proves the uniqueness of rk+1,1.

(ii) The argumentation that the sequence converges and becomes constant in the end is anal-
ogous to part (ii) of the proof of Proposition 4.7. Since rk,1 is decreasing, we have
that D(rk,1, r̄0) ⊆ D(rk+1,1, r̄0) that means the number of firms in default increases. If
D(rl,1, r̄0) = D(rl+1,1, r̄0), then we also have that Λ(rl,1, r̄0) = Λ(rl+1,1, r̄0), from which
follows that the mappings Θrl,1,r̄0 and Θrl+1,1,r̄0 have the same fixed point. It must hold
then that all consequent iterates are equal.

To show that rl+1,1 is the fixed point of Φ1(·, r̄0), first check that by definition,

rl+1,1 = Λ(rl+1,1, r̄0)rl+1,1 + (In −Λ(rl+1,1, r̄0))d. (4.63)

It then holds that

Φ1(rl+1,1; r̄0) = min{d, ã + M1rl+1,1}
= (In −Λ(rl+1,1, r̄0))d + Λ(rl+1,1, r̄0)(ã + M1rl+1,1)

= (In −Λ(rl,1, r̄0))d

+ Λ(rl,1, r̄0)
(
ã + M1

(
Λ(rl+1,1, r̄0)rl+1,1 + (In −Λ(rl+1,1, r̄0))d

))
= (In −Λ(rl,1, r̄0))d

+ Λ(rl,1, r̄0)
(
ã + M1

(
Λ(rl,1, r̄0)rl+1,1 + (In −Λ(rl,1, r̄0))d

))
= rl+1,1,

(4.64)

where the last equality follows from (4.56).

(iii) This part is similar to part (iii) of the proof of Proposition 4.7 with the reverse argumen-
tation. The d0 firms in default under the starting vector will stay in default since the
series decreases. To achieve a maximum theoretical length of the algorithm, exactly one
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additional default step has to occur in every new iteration step. This results in no more
than n− d0 possible iteration steps. If d0 = 0, it follows because of Λ(r̄1, r̄0) = 0n×n that
Θr0,1,r̄0(r) ≡ d and therefore that d is the fixed point of Φ1(·; r̄0).

Example 4.14. We reconsider the system in Example 4.8 where we found that r0(d) =
(0.3471, 0.0661, 0, 0.8161, 0.9590)t and D(d, r0(d)) = {3}. Since the third firm is in default
even assuming maximums payments of equity and debt, the corresponding debt payment has
to recalculated using Algorithm 4. First, note that for r̄0 = r0(d) and r̄1 = d it holds that
Φ1(r̄1; r̄0) ≤ d = r̄1 and that the Assumption in (4.59) is fulfilled. We get for the first iterate in
Algorithm 4 that

r1,1 = (1.62, 1.82, 1.5844, 1.14, 0.77)t and D(r1,1, r̄0) = {2, 3}.

The default of firm 3 has affected firm 2 that is now also not able to fully satisfy its obligees
because of the reduced debt payments. Consequently, the algorithm continues and delivers

r2,1 = (1.62, 1.7590, 1.5615, 1.14, 0.77)t and D(r2,1, r̄0) = {2, 3}.

as the next iterate and default set. Since now, no new firm gets into trouble, the algorithm stops
and we have found r2,1 as the fixed point of Φ1(·, r̄0).

The validity of the inequality in (4.59) is crucial for the monotonicity of the iterates rk,1

produced by Algorithm 4. However, there are situations in which a debt payment vector r̄ ∈
[r1

small, r
1
great] is given together with an arbitrary vector r̄0 ≥ 0n and where (4.59) does not hold.

Think of an algorithm to find R∗ that starts with Rsmall. In this case the first debt iterate
is r1

small = min{d,a} and the corresponding equity iterate is r0(r1
small). Applying Φ1 to these

vectors yields to

Φ1(r1
small; r

0(r1
small)) = min{d,a + M1r1

small + M0r0(r1
small)} ≥ min{d,a} = r1

small (4.65)

and to a violation of (4.59). Finding the next debt iterate as the fixed point of Φ1(·; r0(r1
small))

and applying Algorithm 4 to do so, can under certain circumstances lead to a non-monotone
series, as the following example demonstrates.

Example 4.15. Consider the financial system defined in Example 4.8 again. If the starting
vector for the debt iterates is given by r1

small, we need to find r0(r1
small) that can be determined

via Algorithm 2. It holds that

(r1
small, r

0(r1
small)) = (0.39, 0.38, 0.60, 1.14, 0.46, 0, 0, 0, 0.3746, 0.2412)t (4.66)

as one can check easily as well as Φ1(r1
small; r

0(r1
small)) ≥ r1

small, hence (4.59) does not hold. Using
Algorithm 4 even so to obtain the next debt iterate as the fixed point of Φ1(·; r0(r1

small)) would
lead to the following series of iterates (the notation of the rk,1 is the notation from Algorithm
4):

r0,1 = min{d,a} =


0.39
0.38
0.60
1.14
0.46

 , r1,1 =


1.697
1.6754
1.4516
1.14
0.77

 , r2,1 =


1.62

1.6542
1.4436
1.14
0.77

 , (4.67)

where the last iterate r2,1 is the fixed point of Φ1(·, r0(r1
small)). However, the series is not

monotone since r0,1 ≤ r1,1 ≥ r2,1.
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This described property makes it difficult to prove the convergence of such a series in general.
Nevertheless, given a debt vector r̄1 and r̄0 ≥ 0n, we can still calculate the fixed point by
avoiding Algorithm 4 and use a Picard-type algorithm instead.

Algorithm 5 (Picard Iteration for the Debt Component). Suppose that r̄1, r̄0 ≥ 0n and ε > 0.

1. For k = 0, set r0,1 = r̄1.

2. For k ≥ 1, determine rk,1 = Φ1(rk−1,1; r̄0).

3. If ‖rk−1,1 − rk,1‖ < ε, stop the algorithm. Else, set k = k + 1 and proceed with Step 2.

Proposition 4.16. Algorithm 5 delivers a series of decreasing vectors rk,1 if Φ1(r̄1; r̄0) ≤ r̄1

and a series of increasing vectors if Φ1(r̄1; r̄0) ≥ r̄1. Both series converge to the unique fixed
point of Φ1(·; r̄0).

Proof. First, note that for fixed equity payments r̄0 ≥ 0n the mapping Φ1 has a unique fixed
point. To show this, define ã = a + M0r̄0 and M̃0 = 0n×n which together with d and M1

represents a new financial system F̃ = (ã,M1, M̃0,d) that is a system with no equity cross-
holdings. Since both ownership matrices have the Elsinger Property, we can apply Theorem 2.7
from which follows that F̃ has a unique solution R̃ = (r̃∗,1, r̃∗,0). From the first liquidation value
equation in 4.1, we immediately see that then r̃∗,1 = Φ1(r̃∗,1, r̄0) is the searched fixed point of
Φ1.

To show the convergence of the algorithm, note that if Φ1(r̄1; r̄0) ≥ r̄1 = r0,1 for the first
iterate, it holds that r1,1 = Φ1(r̄1; r̄0) ≥ r0,1. Via induction, it follows that rk+1,1 ≥ rk,1 for all
k ≥ 1. Because the monotone series rk,1 is bounded from above by d and from below by 0n, it
must converge to the fixed point. The argumentation is similar if Φ1(r̄1; r̄0) ≤ r̄1.

The Algorithms 4 and 5 both enable us to calculate a new debt iterate given a fixed equity vec-
tor. Together with Algorithm 2 for the equity component, we can now combine both procedures
in a common algorithm that searches for the fixed point R∗.

Algorithm 6 (Hybrid Algorithm). Set ε > 0.

1. For k = 0, choose r0,1 ∈ {r1
great, r

1
small} and determine r0(r0,1) using Algorithm 2.

2. For k ≥ 1:

2.1 Determine rk,1 using Algorithm 4 if r0,1 = r1
great or using Algorithm 5 if r0,1 = r1

small

in both cases with r̄0 = r0(rk−1,1).

2.2 Determine rk,0 = r0(rk,1) using Algorithm 2.

3. If

∥∥∥∥(rk−1,1

rk−1,0

)
−
(

rk,1

rk,0

)∥∥∥∥ < ε, stop the algorithm. Else, set k = k+ 1 and proceed with Step

2.

For given rk,1, k ≥ 0, the Hybrid Algorithm determines rk,0 = r0(rk,1) as the correct equity
value that solves (4.2) and for given r0(rk,1), k ≥ 0, it determines the correct debt value rk+1,1

that solves (4.1). As such, conditional on the values determined in the previous step, the
algorithm calculates an exact solution of either (4.2) or (4.1) in the next iteration step. In
Figure 4.2, a schematic illustration of the Hybrid Algorithm is given, which relates the one in
Figure 4.1 of the Elsinger Algorithm.
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Step 2

r2,1 = Φ1(r2,1; r1,0)

�
�

�
�Alg. 2

?

r2,0 = r0(r2,1)

= Φ0(r2,0; r2,1)

· · ·
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· · ·

Figure 4.2: Schematic functioning of the Hybrid Algorithm. An oval-shaped symbol means that
the corresponding listed algorithm is applied. In case of r0,1 = r1

great, Algorithm 4 is
used to determine the new debt payment vector which results in a decreasing series
of iterates. For r0,1 = r1

small = min{d,a}, Algorithm 5 has to be taken instead. The
iterates then form an increasing series. In both cases, the series converges to R∗.

Proposition 4.17. The Hybrid Algorithm delivers a series of decreasing vectors if r0,1 = r1
great

that converges to the fixed point R∗. In case of r0,1 = r1
small the series is increasing with the

same limit.

Proof. First, suppose that r0,1 = r1
great. We will first show by induction that the series decreases.

For the induction start note that

r1,1 = Φ1(r1,1; r0(r0,1)) = min{d,a + M1r1,1 + M0r0(r0,1)} ≤ d = r0,1. (4.68)

According to Lemma 2.10, the equity vector r0(r) is increasing in r which yields to r0(r1,1) ≤
r0(r0,1). For the induction step, assume that for k > 1 it holds that rk−1,1 ≥ rk,1 and conse-
quently r0(rk−1,1) ≥ r0(rk,1). Since rk,1 = Φ1(rk,1; r0(rk−1,1)) and because of

Φ1(rk,1; r0(rk,1)) = min{d,a + M1rk,1 + M0r0(rk,1)}
≤ min{d,a + M1rk,1 + M0r0(rk−1,1)}
= Φ1(rk,1; r0(rk−1,1))

= rk,1

(4.69)

the assumption (4.59) is fulfilled. The next iterate rk+1,1 emerges from a decreasing sequence
produced by applying Algorithm 4 beginning with r̄1 = rk,1. Hence rk+1,1 ≤ rk,1 and thus
r0(rk+1,1) ≤ r0(rk,1). Next step is to show that the series converges to R∗. We have that the
two sequences (rk+1,1, r0(rk,1)) and (rk,1, r0(rk,1)) are both decreasing in (R+

0 )2n and therefore
converge to the same limit (r∗,1, r∗,0) ∈ (R+

0 )2n. Because of the continuity of Φ1 and Φ0 it must
hold that Φ1(r∗,1; r∗,0) = r∗,1 and Φ0(r∗,0; r∗,1) = r∗,0. Thus, (r∗,1, r∗,0) solves (4.2) and (4.1).
The proof for r0,1 = r1

small is similar.
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In a similar manner than for Picard and the Elsinger Algorithm, we make use of the expressions
Decreasing or Increasing Hybrid Algorithm if r0,1 = r1

great or if r0,1 = r1
small, respectively.

Remark 4.18. In case of a ∈ Rn, the application of Algorithm 4 to obtain the next debt iterate
becomes problematic which is also mentioned in Elsinger (2009, Example 2). Assume that for
given r̄1 ≤ d and r̄0 ≥ 0n, the fixed point of Φ1(·; r̄0) has to be calculated. If a ∈ Rn, the
iterates of the algorithm can be negative, since it is not ensured that the fixed point of the
mapping in (4.56) is positive. Suppose that r̃k,1 is the k-th iterate of Algorithm 4, i.e. it holds
that Θrk−1,r̄0(r̃k,1) = r̃k,1. An intuitive modification of the algorithm would be to define the

positive part of r̃k,1 as the next iterate, viz. rk,1 = (r̃k,1)+. Doing so, the series of iterates would
obviously be well-defined and decreasing as well as it would converge to some “final” iterate
rl,1. However, this iterate must not necessarily be the fixed point of Φ1(·; r̄0), i.e. in general it
does not hold Φ1(rl,1; r̄0) = rl,1 anymore. For a counterexample, take a look at the system with
n = 5,

M0 =

{
0.0125 for i 6= j

0 for i = j
(4.70)

and

a =


0.31
−0.33
2.98
−4.55
−2.10

 , d =


1.38
1.02
0.48
0.29

0

 , M1 =


0 1/8 1/6 1/4 1/4

1/8 0 0 1/4 0
1/8 1/8 0 0 0
1/8 1/8 1/6 0 1/4
1/8 1/8 1/6 0 0

 . (4.71)

For r̄1 = d it holds that r̄0 = r0(r̄1) = (0, 0, 2.8, 0, 0)t. We want to find the fixed point of
Φ1(·; r̄0) as the next debt iterate. This fixed point is given by r = (0.425, 0, 0.48, 0, 0)t, i.e. the
third firm is considered to be solvent, the first firm is in default with a positive recovery value
and the remaining firms are in default with no recovery payments at all for the firms within
the system. Using the modified version of the algorithm above would lead to the “final” iterate
rl = (0, 0, 0.48, 0, 0)t, which is not the fixed point of Φ1(·; r̄0).

A consequence from the insights of Remark 4.18 is that for financial systems with a ∈ Rn, we
have to use the Picard-type Algorithm 5 for the calculation of the next debt iterate in Algorithm
6. The reason is that Proposition 4.16 holds also for negative values of the exogenous assets.
Note that we have to use the modified version Φ1(r; r0) = min{d, (a + M1r + M0r0)+} of the
mapping. This will become important in Chapter 5 when more than one seniority level is treated.

In Proposition 4.11, we have shown that when using the Elsinger Algorithm, the iterates will
always be nearer to the solution R∗ than the corresponding iterates of the Picard Algorithm.
This leads to the conclusion that the iteration number is minimized for the Elsinger Algorithm.
The next Proposition shows the same when comparing the Elsinger and the Hybrid Algorithm
and it will become clear that the Hybrid Algorithm will need in no situation more iteration steps
to reach R∗ than the Elsinger Algorithm.

Proposition 4.19. As in Proposition 4.11, we denote the iterates of the two algorithms with
subscripts, where E stands for the Elsinger and H for the Hybrid Algorithm.

(i) For any iterate k ≥ 1 it holds that Rk
E ≥ Rk

H if R0 = (r1
great, r

0(r1
great)) and Rk

E ≤ Rk
H

when (r1
small, r

0(r1
small)) is the starting vector of both algorithms.

(ii) Let Rk = (rk,1, rk,0), k ≥ 0, be an iterate either of the Elsinger Algorithm or of the Hybrid
Algorithm that started with R0 = (r1

great, r
0(r1

great)). Then Rk+1
E (rk,1) ≥ Rk+1

H (rk,1) for
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the next iterates which were calculated with either the Elsinger or the Hybrid Algorithm
starting from Rk. If R0 = (r1

small, r
0(r1

small)), it holds that Rk+1
E (rk,1) ≤ Rk+1

H (rk,1).

Proof. (i) Let R0 = (r1
great, r

0(r1
great)). From Proposition 4.17 we know that r1,1

H ≤ r0,1
H = d

which yields to

r1,1
E = min{d,a + M1d + M0r0(d)} ≥ min{d,a + M1r1,1

H + M0r0(d)} = r1,1
H . (4.72)

Further, since r0(r) is increasing in r (cf. Lemma 2.10), r1,0
E = r0(r1,1

E ) ≥ r0(r1,1
H ) = r1,0

H ,
which completes the induction start. For the induction step, assume that it holds for k > 1
that Rk−1

E ≥ Rk−1
H . Because of Proposition 4.17, rk−1,1

H ≥ rk,1H and thus

rk,1E = min{d,a + M1rk−1,1
E + M0r0(rk−1,1

E )}

≥ min{d,a + M1rk−1,1
H + M0r0(rk−1,1

H )}

≥ min{d,a + M1rk,1H + M0r0(rk−1,1
H )}

= rk,1H ,

(4.73)

where we again used the fact that r0(r) is increasing in r from which follows that

r0(rk−1,1
E ) ≥ r0(rk−1,1

H ) and also r0(rk,1E ) ≥ r0(rk,1H ). The proof when R0 =
(r1

small, r
0(r1

small)) is completely analogous.

(ii) Let R0 = (r1
great, r

0(r1
great)) and Rk = Rk

E. Note that because of rk,1E ≤ rk−1,1
E it holds that

rk+1,1
E = Φ1(rk,1E ; r0(rk,1E ))

= min{d,a + M1rk,1E + M0r0(rk,1E )}

≤ min{d,a + M1rk−1,1
E + M0r0(rk−1,1

E )}

= rk,1E .

(4.74)

Therefore, the assumption in (4.59) is fulfilled which ensures that rk+1,1
H ≤ rk,1E . For the

next iterate it follows that

rk+1,1
E = min{d,a + M1rk,1E + M0r0(rk,1E )}

≥ min{d,a + M1rk+1,1
H + M0r0(rk,1E )}

= rk+1,1
H ,

(4.75)

which in turn implies rk+1,0
E ≥ rk+1,0

H . On the other hand, starting with Rk = Rk
H yields

because of rk+1,1
H ≤ rk,1H to

rk+1,1
E = min{d,a + M1rk,1H + M0r0(rk,1H )}

≥ min{d,a + M1rk+1,1
H + M0r0(rk,1H )}

= rk+1,1
H .

(4.76)

If follows from these results that rk+1,0
E ≥ rk+1,0

H . A similar argumentation together with
Proposition 4.16 delivers the proof in case of R0 = (r1

small, r
0(r1

small)).
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Of course, within an iteration step of the Hybrid Algorithm, potentially many linear equation
systems have to be solved since for the Decreasing Hybrid Algorithm, Algorithm 4 is applied to
obtain the debt iterates which can result in higher computational costs. But if we ignore for a
moment this circumstance, it follows from Proposition 4.19 that the convergence speed of the
Hybrid Algorithm is higher than the one of the Elsinger Algorithm.

Another similarity is that also for the Hybrid Algorithm, it cannot be ensured that the fixed
point is reached exactly. A possible structure of a financial system with this property is given
in the next Proposition. The proof is very similar to the proof of Proposition 4.12.

Proposition 4.20. Under the assumptions of Proposition 4.12, the Hybrid Algorithm will not
exactly reach the fixed point R∗, no matter which starting point is used for the iteration.

We close this section with an example comparison of the three introduced algorithms.

Example 4.21. To demonstrate the different functionings of the algorithms described above,
we calculate the solution R∗ of the financial system of Example 4.5 using the Picard, the Elsinger
and the Hybrid Algorithm. In all three cases, we use both the increasing and the decreasing
version of the procedure. With a tolerance level of ε = 10−6, we determined the first iterates
that are shown in Table 4.1. The Increasing Picard Algorithm needs more iterations than its
decreasing counterpart (21 vs. 18 steps) which is also the case for the Increasing Elsinger
Algorithm that needs 17 steps for the increasing version compared to 14 iteration steps in the
decreasing case. Using the Hybrid Algorithm, in both directions 7 iteration steps are required
to reach the stopping criteria.

The fact that the number of iterations is smallest for the Hybrid Algorithm, does not neces-
sarily mean that the Hybrid Algorithm is also the most efficient one. When for example using
the Decreasing Hybrid Algorithm, in every iteration, a new debt iterate and, based on it, a new
equity iterate have to be determined using the Algorithms 4 and 2. Running these algorithms
means solving several linear equation systems which is an expensive task from a computational
point of view. In the mentioned case of the Decreasing Hybrid Algorithm for instance, 17 such
linear equation systems have to be solved (in Section 4.2, such a step will be defined as a cal-
culation step). This phenomena also occurs when using the Elsinger Algorithm to find R∗. For
the purpose of quantifying these different computation methods in order to make them compa-
rable, we will investigate the computational efficiency of the algorithms in the framework of a
simulation study in Chapter 7.

Also note that values of the iterates in Table 4.1 are in line with the insights of the Propositions
4.19 and 4.11: The iterates of the Picard Algorithm are always larger (smaller) than the iterates
of the Elsinger Algorithm in the decreasing (increasing) version. This relation also holds for the
Elsinger and the Hybrid Algorithm.
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Table 4.1: Iterates of the Algorithms 1, 3 and 6 for the financial system defined in Example
4.5. The header “Increasing” means that the lower bound was used as the starting
point, i.e. R0 = Rsmall for the Picard and R0 = (r1

small, r
0(r1

small)) for the Elsinger
and the Hybrid Algorithm. Analogously, “Decreasing” stands for the decreasing
versions of the algorithms, where the initial iterate is given by R0 = Rgreat or R0 =
(r1

great, r
0(r1

great)).

Type
Increasing Decreasing

R0 R1 R2 . . . R∗ . . . R2 R1 R0

Picard

rk,1

0.39 0.9750 1.3090 1.62 1.62 1.62 1.62
0.38 1.0350 1.3471 1.7342 1.7669 1.82 1.82
0.6 0.8650 1.2103 . . . 1.5316 . . . 1.5861 1.5881 2.07
1.14 1.14 1.14 1.14 1.14 1.14 1.14
0.46 0.77 0.77 0.77 0.77 0.77 0.77

rk,0

0 0 0 0.1686 0.2277 0.3577 0.3577
0 0 0 0 0 0.0749 0.1149
0 0 0 . . . 0 . . . 0 0 0.1131
0.15 0.3625 0.5978 0.7965 0.8173 0.8268 0.8268
0 0.2300 0.4531 0.8112 0.8400 0.9625 0.9625

Elsinger

rk,1

0.39 1.1065 1.5755 . . . 1.62 . . . 1.62 1.62 1.62
0.38 1.1670 1.5940 . . . 1.7342 . . . 1.7507 1.82 1.82
0.6 0.9760 1.4393 . . . 1.5316 . . . 1.5671 1.5844 2.07
1.14 1.14 1.14 . . . 1.14 . . . 1.14 1.14 1.14
0.46 0.77 0.77 . . . 0.77 . . . 0.77 0.77 0.77

rk,0

0 0 0.0902 . . . 0.1686 . . . 0.1842 0.2149 0.3471
0 0 0 . . . 0 . . . 0 0 0.0661
0 0 0 . . . 0 . . . 0 0 0
0.3746 0.6455 0.7795 . . . 0.7965 . . . 0.7978 0.7996 0.8161
0.2412 0.5279 0.7722 . . . 0.8112 . . . 0.8209 0.8268 0.9590

Hybrid

rk,1

0.39 1.62 1.62 . . . 1.62 . . . 1.62 1.62 1.62
0.38 1.6542 1.7286 . . . 1.7342 . . . 1.7361 1.7590 1.82
0.6 1.4436 1.5254 . . . 1.5316 . . . 1.5337 1.5615 2.07
1.14 1.14 1.14 . . . 1.14 . . . 1.14 1.14 1.14
0.46 0.77 0.77 . . . 0.77 . . . 0.77 0.77 0.77

rk,0

0 0.1152 0.1648 . . . 0.1686 . . . 0.1699 0.1859 0.3471
0 0 0 . . . 0 . . . 0 0 0.0661
0 0 0 . . . 0 . . . 0 0 0
0.3746 0.7926 0.7962 . . . 0.7965 . . . 0.7966 0.7978 0.8161
0.2412 0.7863 0.8094 . . . 0.8112 . . . 0.8117 0.8196 0.9590
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4.2 Finite Algorithms

The Algorithms in the previous section all had the drawback that it could not be ensured that the
solution R∗ was reached exactly. As we have seen in the Propositions 4.4, 4.12 and 4.20, there are
potentially infinitely many iteration steps needed to reach the fixed point using the corresponding
algorithm. In this section we will present two ways in which such non-finite solution algorithms
can be turned into procedures that reach the solution in finitely many steps. The common
principle of these methods is to include the information which firms are in default under a
current iterate Rk. It turns out that this modification helps to overcome the disadvantage of
potentially infinitely many iteration steps. To guarantee that the forthcoming procedures are
well-defined, we have to drop the Elsinger Property and demand a stricter property for the
ownership matrices (see also the Sections 3.2.3 and 3.3.2 for more details).

Assumption 4.22. For debt and equity ownership matrix it holds that ‖M1‖ < 1 and ‖M0‖ < 1.

For the remainder of this section we suppose that Assumption 4.22 holds. Note that Assump-
tion 4.22 implies Assumption 2.6, but not the other way round. The financial system therefore
still has a unique solution.

Definition 4.23. Let R ∈ (R+
0 )2n be an arbitrary vector with corresponding default set D(R)

and default matrix Λ = Λ(R). The pseudo solution R̂ ∈ R2n of (4.1) and (4.2) that belongs to
D(R) is defined by

R̂ =

(
(In −Λ)d + Λx

(In −Λ)x

)
, (4.77)

where x ∈ Rn is the solution of the linear equation system Ax = b with

A = In −
(
M1Λ + M0(In −Λ)

)
∈ Rn×n (4.78)

and
b = a + M1(In −Λ)d− (In −Λ)d ∈ Rn. (4.79)

To motivate the definition of a pseudo solution, assume that it was known for each firm
whether it was in default under the solution of (4.1) and (4.2) or not. Denote by D∗ ⊆ N the
set of firms that are in default under R∗, i.e.

D∗ = D(r∗,1, r∗,0) =
{
i ∈ N :

(
a + M1r∗,1 + M0r∗,0

)
i
< di

}
(4.80)

and let Λ∗ = Λ(r∗,1, r∗,0) be the corresponding default matrix. We assume that the set was
known even though this information is not available a priori. However, if we had this information,
no iteration procedure would be needed to find the fixed point R∗. We only had to compute the
pseudo solution that belongs to D∗, as shown in Proposition 4.24.

The reason why we have to restrict the following considerations to ownership matrices with a
matrix norm smaller one is because we have to guarantee that x from Definition 4.23 is uniquely
defined. This can only be ensured if ‖M1‖ < 1 and ‖M0‖ < 1 since then ‖M1Λ+M0(In−Λ)‖ <
1 for any Λ as well, which in turn implies that A in (4.78) is invertible. If the ownership matrices
M1 and M0 have the Elsinger Property, the invertibility of A is not always given. For a simple
counterexample, let n = 3, D(R) = {2, 3} for an arbitrary R ∈ (R+

0 )2n and

M1 =

 0 1 0
0.5 0 0
0 0 0

 and M0 =

0 0.5 0
1 0 0
0 0 0

 . (4.81)
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Both matrices do have the Elsinger Property, but the matrix M1Λ+M0(In−Λ), with Λ = Λ(R)
is given by

M1Λ + M0(In −Λ) =

0 1 0
1 0 0
0 0 0

 (4.82)

that does not have the Elsinger Property. Consequently, A = In−
(
M1Λ + M0(In −Λ)

)
is not

invertible.

Proposition 4.24. The pseudo solution that belongs to D∗ is the solution R∗ of the financial
system F(a,M1,M0,d), i.e.

R∗ =

(
(In −Λ∗)d + Λ∗x

(In −Λ∗)x

)
, (4.83)

where Λ∗ is the default matrix belonging to D∗ and x is the solution of the equation Ax = b
defined in (4.78) and (4.79).

Proof. According to the liquidation value equations in (4.1) and (4.2), the vectors r∗,1 and r∗,0

are given as

r∗,1i =

{
di, if i /∈ D∗,(
a + M1r∗,1 + M0r∗,0

)
i
, if i ∈ D∗

(4.84)

and

r∗,0i =

{(
a + M1r∗,1 + M0r∗,0 − d

)
i
, if i /∈ D∗,

0, if i ∈ D∗.
(4.85)

In matrix notation this means in particular that (In − Λ∗)r∗,1 = (In − Λ∗)d and Λ∗r∗,0 = 0n
and thus

R∗ =

(
(In −Λ∗)d + Λ∗r∗,1

(In −Λ∗)r∗,0

)
. (4.86)

For the firms in default we only have to calculate the debt payments and for the firms not in
default we have to determine the equity values. The solution R∗ does hence contain only n
unknown values and we only have to consider the two subsystems

Λ∗r∗,1 = Λ∗a + Λ∗M1r∗,1 + Λ∗M0r∗,0 (4.87)

and
(In −Λ∗)r∗,0 = (In −Λ∗)(a + M1r∗,1 + M0r∗,0 − d). (4.88)

We can add the two equations and write the system more compact as:

Λ∗r∗,1 + (In −Λ∗)r∗,0 = a + M1r∗,1 + M0r∗,0 − (In −Λ∗)d. (4.89)

Because of (In −Λ∗)r∗,0 = r∗,0 we get

Λ∗r∗,1 + (In −Λ∗)r∗,0 = a + M1r∗,1 + M0(In −Λ∗)r∗,0 − (In −Λ∗)d, (4.90)

which leads after some rearrangements to

Λ∗r∗,1 +(In−Λ∗)r∗,0−M1Λ∗r∗,1−M0(In−Λ∗)r∗,0 = a+M1(In−Λ∗)r∗,1−(In−Λ∗)d (4.91)

that is equivalent to(
In −

(
M1Λ∗ + M0(In −Λ∗)

))
(Λ∗r∗,1+(In−Λ∗)r∗,0) = a+M1(In−Λ∗)d−(In−Λ∗)d, (4.92)

since Λ∗(In−Λ∗) = 0n×n. Setting x = Λ∗r∗,1 +(In−Λ∗)r∗,0 and with the notation of Definition
4.23, the equation system becomes Ax = b.
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Example 4.25. We keep the system as defined in Example 4.5. Under the solution vector R∗,
firm 2 and 3 are in default, i.e. D∗ = {2, 3}. If we assume that this information was available,
the equation system Ax = b is given by

1 −0.375 −0.25 −0.05 −0.05
−0.05 1 −0.25 −0.05 −0.05
−0.05 −0.375 1 −0.05 −0.05
−0.05 0 0 1 −0.05
−0.05 0 −0.25 −0.05 1



x1

x2

x3

x4

x5

 =


−0.9450

1.2625
0.7925
0.7475
0.3800

 .

The solution of this system is given by

x = (x1, x2, x3, x4, x5)t = (0.1686, 1.7342, 1.5316, 0.7965, 0.8112)t.

If we set x1 = r∗,01 , x2 = r∗,12 , x3 = r∗,13 , x4 = r∗,04 and x5 = r∗,05 , we get together with r∗,11 =

d1, r
∗,1
4 = d4, r

∗,1
5 = d5 and r∗,02 = r∗,03 = 0 the solution R∗ of the system.

The main challenge in this solution approach is of course that the final default set D∗ is
unknown. Algorithms that follow this idea to find R∗, consequently have to find D∗ in a fast
way. A naive strategy could be to check all possible default scenarios of the financial system,
calculate the pseudo solution for the corresponding default set and check whether it actually is
the fixed point of Φ. However, there are 2n possible scenarios that would have to be checked,
which could be cumbersome for large n. If m > 1, the number of possible scenarios is (m+ 1)n

Therefore, more efficient algorithms are needed that require less computation to find D∗. Some
possible algorithms are presented in the next subsections .

4.2.1 Decreasing Trial-and-Error Algorithms

The three Algorithms 1, 3 and 6 from Section 4.1 can start with a vector R0 that is the upper
boundary of the solution vector R∗. The procedures in this subsection have in common that
they also start with this upper boundary and calculate a corresponding default set. For every
following iterate, the corresponding default set is determined as well. To avoid that for every
default set it is checked whether it actually is D∗, the algorithm will identify potential default
sets to reduce the computational effort. If it turns out that the potential default set is D∗,
the algorithm stops. Otherwise, the procedure continues until a new potential default set is
found that has to be checked again, and so on. Due to these characteristics, we name this type
of algorithm Trial-and-Error Algorithm. The general procedure of algorithms of this type is
similar.

Algorithm 7 (Decreasing Trial-and-Error Algorithm). Set l ≥ 2 and p = 0.

1. Choose either the Picard (Algorithm 1) or the Elsinger (Algorithm 3) or the Hybrid Algo-
rithm (Algorithm 6) which is used in the following to generate the next iterate.

2. If in Step 1 the Picard Algorithm is chosen, set d = −1, R0 = Rgreat and determine

D(R0). Else, set d = 0, R0 =
(

d
r0(d)

)
and determine D(R0).

3. If D(R0) = N , set R∗ =
(

(In−M1)−1a
0n

)
and stop the algorithm.

4. If the Elsinger or the Hybrid Algorithm is chosen in Step 1 and if D(R0) = ∅, set R∗ = R0

and stop the algorithm.
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5. Else, calculate for k > p the iterates Rk starting with Rp using the algorithm chosen in
Step 1 and the corresponding default sets D(Rk) until k = q with

q = min{m > p : D(Rm−l+1) = . . . = D(Rm) and |D(Rm)| > d} (4.93)

is reached. Determine the pseudo solution belonging to D(Rq) and denote it by R̂q.

6. If Φ(R̂q) = R̂q, stop the algorithm. Else, set d = |D(Rq)| and p = q and proceed with Step
5.

The Algorithms 1, 3 and 6 in their decreasing versions produce decreasing sequences of iterates
and thus increasing sequences of default sets, i.e. D(Rk) ⊆ D(Rk+1) for k ≥ 0. Algorithm 7
means that one iterates and checks whether the default set has not changed compared to the
previous default set. If the default set stays the same for the next l consecutive iterations, this is
an indication that the actual default set D∗ might have been reached. To check this, the pseudo
solution is calculated and it is checked whether it solves (4.1) and (4.2). Provided that this is
not the case, one iterates again until a larger default sets stays identical for l − 1 consecutive
times, and the described procedure can be repeated. In the event of a solution is reached, the
procedure stops. Due to its described property, we call l the lag value.

In the special case of l = 2 this means that the pseudo solution is calculated if the default set
stays the same from one iteration step to another. Obviously, choosing a higher lag value inspires
more confidence in the potential default set since the longer the default set stays unchanged, the
higher is the chance that it is the actual default set. Depending on the choice of the algorithm
to calculate the next iterates in Step 1 of the Decreasing Trial-and-Error Algorithm, we obtain
three different versions of Algorithm 7:

(i) The Decreasing Trial-and-Error Picard Algorithm with R0 = Rgreat and where the iterates
are given by Rk = Φ(Rk−1).

(ii) The Decreasing Trial-and-Error Elsinger Algorithm with R0 = (r1
great, r

0(r1
great)), where

r0(r1
great) is obtained via Algorithm 2 and the next iterates are obtained using Algorithm

3.

(iii) The Decreasing Trial-and-Error Hybrid Algorithm with the same starting vector as in (ii)
and where the next iterates are obtained using Algorithm 6.

The particular cases when D(R0) ∈ {∅,N} in the steps 3 and 4, deserve a separate mention
since in such situations, no iteration is necessary and the solution R∗ can be given explicitly under
some circumstances. The justification of this phenomena is given in the following proposition.

Proposition 4.26. For the Decreasing Trial-and-Error Hybrid Algorithm the following holds:

(i) If D(R0) = N , then R∗ =
(

(In−M1)−1a
0n

)
, no matter which version of the algorithm is

taken.

(ii) If D(R0) = ∅ and either the Decreasing Trial-and-Error Elsinger Algorithm or the De-
creasing Trial-and-Error Hybrid Algorithm is used, R0 = R∗.

Proof. (i) First, assume that the Picard Algorithm is chosen in Step 1 of Algorithm 7. Because
of D(R0) = N , it must hold that a + M1d + M0r0

great < d and also a + M1d < d. A
consequence is that r0

great = (In −M0)−1(a + M1d − d)+ = 0n. From Proposition 4.1 it
follows that r∗,0 = 0n. For r∗,0 = 0n, Equation (4.1) is now solved by r∗,1 = (In−M1)−1a,
where Lemma A.3 proves that (In−M1)−1 exists. If the Elsinger or the Hybrid Algorithm
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is chosen in Step 1, we have that a+M1d+M0r0(d) < d. It follows that r0(d) = 0n since
r∗,1 ≤ d and the fact that r0(r) is increasing in r implies that 0n = r0(d) ≥ r0(r∗,1) =
r∗,0 = 0n The solution of Equation (4.1) is therefore the same as in the Picard case.

(ii) Now, R0 = (d, r0(d)) and since D(R0) = ∅, it holds that a + M1d + M0r0(d) ≥ d. This
leads to

Φ

(
d

r0(d)

)
=

(
min{d,a + M1d + M0r0(d)}
(a + M1d + M0r0(d)− d)+

)
=

(
d

r0(d)

)
, (4.94)

which proves the claim.

Remark 4.27. (i) Even if in case of D(R0) = N for the Hybrid Algorithm, the procedure is
not stopped immediately, the algorithm would deliver the solution R∗ straight in the next
iteration step. To see this, note that the next debt iterate is the fixed point of the mapping
r = min{d,a + M1r + M0r0(d)}. Because of r0(d) = 0n and D(R0) = N , the mapping
reduces to r = a+M1r which obviously has the fixed point r∗,1 = (In−M1)−1a. Moreover,
note that because of r0(d) = 0n, the Picard and the Elsinger version of Algorithm 7 would
deliver the same iterates Rk (if the procedure would not be stopped immediately).

(ii) For the Decreasing Trial-and-Error Picard Algorithm, we cannot conclude that R0 =
Rgreat = R∗ if D(R0) = ∅. A counterexample is given for the financial system with n = 3
that is defined in Example 6.3 in Section 6.1. For the starting vector it holds that

Rgreat = (r1
great, r

0
great) = (1.745, 0.75, 1, 0.121, 1.0015, 1.4181)t (4.95)

and therefore D(Rgreat) = ∅. However,

R∗ = (d1, r∗,0) = (1.745, 0.75, 1, 0.0003, 0.9951, 1.4118)t, (4.96)

hence Rgreat 6= R∗.

Proposition 4.28. Algorithm 7 reaches the solution R∗ of (4.1) and (4.2) in a finite number
of iteration steps.

Proof. By definition of D(Rk) in (4.8) and since Rk converges to R∗ from above for any of
the three algorithms 1, 3 and 6, there exists a k0 ≥ 0 such that D(Rk) = D(R∗) = D∗ for all
k ≥ k0.

A special property of the Decreasing Trial-and-Error Hybrid Algorithm is that it is possible
to give a maximum number of steps that are needed to reach the first potential default set.
To this end, we distinguish between the expressions iteration step and calculation step. An
iteration step comprises the determination of a new iterate Rk+1 based on an iterate Rk, k ≥ 0.
A calculation step is defined as the calculation of either the fixed point of the mapping Θ in
(4.56) of the debt components or of the fixed point of Ψ for the equity components in (4.31).
Consequently, each calculation step consists of solving a linear equation system and each iteration
step contains potentially several calculation steps to find the equity components rk+1,1 and the
debt components r0(rk+1,1). Recall that, as shown in the Propositions 4.7 (iii) and 4.13 (iii),
there are not more than n − 1 calculation steps needed to find the debt or equity iterate no
matter at which point of the iteration you are.

58



Proposition 4.29. The Decreasing Trial-and-Error Hybrid Algorithm reaches the first potential
default set after no more than (n − 1)(l − 1) iteration steps that consist of no more than (n −
1)(2l − 1) calculation steps.

Before we can proof Proposition 4.29, we need to mention the following Lemma.

Lemma 4.30. Let in the Decreasing Trial-and-Error Hybrid Algorithm the k-th iterate (k ≥ 1)
be given by Rk and denote by dk the number of firms in default under Rk, i.e. dk = |D(Rk)|.
If it holds that |D(Rk+1)| = |D(Rk)| + x with 0 ≤ x < n − dk, then 2 + x calculation steps are
needed to determine Rk+1.

Proof. First, assume x = 0. To determine the next iterate Rk+1, the debt component rk+1,1 has
to be calculated first via Algorithm 4. The algorithm starts with the default set D(rk,1, r0(rk,1)).
Since no new default occurs from the k-th to the (k + 1)-th iteration step, this means that also
in Algorithm 4 no new default can occur. Consequently, the algorithm has to stop after the first
iteration which means that there is only one calculation step. For the calculation of the equity
component with Algorithm 2, the argumentation is analogous which leads to two calculation
steps in total. Assume now that x = 1, i.e. that one new firm defaults from iteration step k to
k + 1. This new default can either occur in Algorithm 4 or in Algorithm 2. If it occurs when
calculating the next debt iterate, there must be two iteration steps since if there were only one,
no new default would occur. For the equity component, only one iteration step is needed which
summarizes up to 3 = 2 + x calculation steps. If the default occurs in the equity calculation
step, the number of calculation steps is the same. Suppose now that x > 1. In this case, the
defaults can potentially split up arbitrarily and occur in the debt or in the equity calculation
step. However, the argument stays the same.

Proof of Proposition 4.29.
According to Proposition 4.26, only D(R0) /∈ {∅,N} has to be considered, since otherwise no
iteration would be necessary to find R∗. Depending on the choice of the lag value, the number
of firms in default can stay constant from one iterate to another. The number of iteration and
calculation steps certainly becomes maximal if |D(R0)| = 1 and the number of defaults each time
increases by one after l− 1 consecutive iterates to ensure that the lag value is fully “exploited”.
Note that if the set of defaults does not change for l consecutive iterates, the algorithm would
have reached the first potential default set by definition. To determine a new iterate without a
change of the default set, needs two calculation steps, as shown in Lemma 4.30. If the number
of defaults increases by one, there are three calculation steps necessary (cf. Lemma 4.30). For
a better understanding, we can split the complete iteration procedure into parts and count the
iteration and calculation steps of each part:

• Iterates Rk with |D(Rk)| = 1:
These iterates are the first l−1 iterates R0,R1, . . . ,Rl−2. To find R0, only one calculation
step is needed since the debt component is already given by d. For the determination of
the remaining l − 2 iterates, two calculation steps are necessary, respectively.

• Iterates Rk with |D(Rk)| = h, where 2 ≤ h ≤ n− 1:
For every value of h, there are l− 1 iterates, whereas for the first iterate three and for the
remaining l − 2 iterates, two calculation steps are necessary, respectively.

If the default set consists of h = n − 1 firms for l − 1 consecutive iterates, the default set of
the next iterate can either consist also of n− 1 firms or it can contain all n firms. In the latter
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case, no further iteration is needed since it must hold that D∗ = N . In the former case, the
algorithm stops for “Trial-and-Error” by definition. In both cases, 2 calculation steps are needed.
Excluding the iterate R0 as the zeroth iterate from our counting, there are clearly (n− 1)(l− 1)
iteration steps for the algorithm. Summing up all calculation steps leads to:

1 + 2(l − 2) + (n− 2)
(
3 + 2(l − 2)

)
+ 2 = (n− 1)

(
3 + 2(l − 2)

)
= (n− 1)(2l − 1). (4.97)

4.2.2 Increasing Trial-and-Error Algorithms

In contrast to the decreasing algorithms presented in the subsection above, it is of course also
possible to use an algorithm with the reverse direction, i.e. in which the series of produced
iterates is increasing and in which the default sets are decreasing. The general form is very
similar to Algorithm 7.

Algorithm 8 (Increasing Trial-and-Error Algorithm). Set l ≥ 2, d = n+ 1 and p = 0.

1. Select between the Picard, the Elsinger and the Hybrid Algorithm as the algorithm of
choice. For the Picard Algorithm, set R0 = Rsmall and for the other ones, set R0 =
(r1

small, r
0(r1

small)). Moreover, determine D(R0).

2. If D(R0) = ∅, set R∗ =
(

d
r0(d)

)
and stop the algorithm.

3. Else, calculate for k > p the iterates Rk starting with Rp using the algorithm chosen in
Step 1 and the corresponding default sets D(Rk) until k = q with

q = min{m > p : D(Rm−l+1) = . . . = D(Rm) and |D(Rm)| < d} (4.98)

is reached. Determine the pseudo solution belonging to D(Rq) and denote it by R̂q.

4. If Φ(R̂q) = R̂q, stop the algorithm. Else, set d = |D(Rq)| and p = q and proceed with Step
3.

The functioning of Algorithm 8 is similar to the Decreasing Trial-and-Error Algorithms with
the difference that the resulting sequence of default sets is obviously decreasing. As in Section
4.2.1, the way of choosing the calculation method to determine the next iterate, allows three
different modifications:

(i) The Increasing Trial-and-Error Picard Algorithm with R0 = Rsmall and Rk = Φ(Rk−1).

(ii) The Increasing Trial-and-Error Elsinger Algorithm with R0 = (r1
small, r

0(r1
small)), where

r0(r1
small) is obtained via Algorithm 2 and the next iterates are obtained using Algorithm

3.

(iii) The Increasing Trial-and-Error Hybrid Algorithm with the same starting vector as in (ii)
and where the next iterates are obtained using Algorithm 6. Note that for the next debt
iterate, Algorithm 5 is used instead of Algorithm 4 in the decreasing version.

The justification of the stopping criteria in Step 2 of Algorithm 8 is as follows. Suppose that the
Picard version of the algorithm is chosen and that D(R0) = ∅, which means that a+M1r1

small +
M0r0

small > d. Since r1
small ≤ d and r0

small ≤ r0(d), it also holds that a + M1d + M0r0(d) > d
and r0(d) > 0n following from this. With Equation (4.94), we see that R∗ = (d, r0(d)). Also
note that, in contrast to Algorithm 7, there is no stopping criteria in case of D(R0) = N . The
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reason is that in this case, no general statement about the structure of the solution R∗ can be
made, no matter which version of the algorithm is used. In particular, from D(Rsmall) = N it
does not follow in general that D(R∗) = N , as the next example demonstrates.

Example 4.31. We take the financial system of Example 4.5 but replace the vector of the
nominal values of the liabilities with d = (1.6, 1.5, 1.5, 1.8, 1.2)t which alters the fixed point R∗

to
R∗ = (1.6, 1.5, 1.5, 1.8, 1.2, 0.2423, 0.4589, 0.0369, 0.2542, 0.5328)t (4.99)

and we see that all five firms are solvent in the solution, i.e. D(R∗) = ∅. However, it holds that

a + M1r1
small + M0r0

small = (1.005, 1.065, 0.8575, 1.5025, 1.03)t < d (4.100)

and thus D(Rsmall) = N .

The reason why we distinguish between decreasing and increasing Trial-and-Error Algorithms
is that Algorithm 7 will always find the correct default set D∗ and this in a finite number of
iteration steps. For the Increasing Trial-and-Error Algorithms such a statement is not possible
in general since there are some situations in which the default sets do not converge to D∗, no
matter which lag value is chosen. Situations in which this “anomaly” occurs are always financial
systems that contain a so-called borderline firm. The expression borderline is taken from Liu
and Staum (2010) and denotes a firm i ∈ N in a financial system with fixed point R∗ for which
it holds that r∗,1i = di and r∗,0i = 0. In other words, borderline firms are just able to fully cover
their liabilities, but have no remaining capital left in their balance sheet that can be furnished
to their shareholders. By definition of a default set in (4.8), a borderline firm i is not in default
since

0 = r∗,0i =
(
a + M1r∗,1 + M0r∗,0 − d

)
i

(4.101)

and therefore i /∈ D(R∗) However, when using an Increasing Trial-and-Error Algorithm it can
happen for such a borderline firm i that i ∈ D(Rk) for every iterate Rk, k ≥ 0. This means that
the actual default set D∗ will never be identified by the algorithm, as shown in Example 4.34.

To show that in such situations, the fixed point R∗ can still be determined via the calculation
of the pseudo solution, assume that the set B ⊂ N contains an arbitrary selection of borderline
firms. The common set of defaulting firms and the selected borderline firms is denoted by
D̃, i.e. D̃ = D∗ ∪ B. The corresponding “default” matrices are given by Λ̃ = Λ(D̃) and
Λ∗ = Λ(D∗), respectively. Following this notation, Ã and A∗ define the matrices from (4.78)
with the corresponding default matrix, and b̃ and b∗ are defined analogously. Moreover, we
define Λ̃B = Λ̃−Λ∗ as the diagonal matrix that indicates only the selected borderline firms.

Lemma 4.32. The vector x∗ = Λ∗r∗,1 + (In −Λ∗)r∗,0 solves the equation system A∗x = b∗ if
and only if x̃ = x∗ + Λ̃Bd is the solution of Ãx = b̃.

Proof. Without loss of generality, we assume that the first n1 firms of the system are solvent,
that the next n2 − n1 firms are the selected borderline cases and that the remaining firms are
in default under R∗. This means that

N = {1, . . . , n1} ∪ B ∪ D∗ = {1, . . . , n1} ∪ {n1 + 1, . . . , n2} ∪ {n2 + 1, . . . , n}. (4.102)

It follows from Proposition 4.24 that

x∗ = (x1, . . . , xn1 , xn1+1, . . . , xn2 , xn2+1, . . . , xn)t

= (r∗,01 , . . . , r∗,0n1
, 0, . . . , 0, r∗,1n2+1, . . . , r

∗,1
n )t.

(4.103)
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Further, note that

M0(In −Λ∗)x∗ = M0(In − Λ̃)x∗ = M0(In − Λ̃)(x∗ + Λ̃Bd) (4.104)

and
M1(In −Λ∗)d−M1Λ̃Bd = M1(In − Λ̃)d (4.105)

and that
M1Λ∗x∗ + M1Λ̃Bd = M1Λ̃(x∗ + Λ̃Bd) (4.106)

because of the structure of x∗. By (4.78) and (4.79), x∗ solves A∗x = b∗ if and only if

x∗ = b∗ + (M1Λ∗ + M0(In −Λ∗))x∗

= a + M1(In −Λ∗)d− (In −Λ∗)d + (M1Λ∗ + M0(In −Λ∗))x∗

= a + M1(In −Λ∗)d−M1Λ̃Bd− (In −Λ∗)d + (M1Λ∗ + M0(In −Λ∗))x∗ + M1Λ̃Bd

= a + M1(In − Λ̃)d− (In −Λ∗)d + (M1Λ̃ + M0(In − Λ̃))(x∗ + Λ̃Bd).

(4.107)

Since (In−Λ∗)d = (In− Λ̃)d + Λ̃Bd, we can add Λ̃Bd on both sides of the equation and obtain

x∗ + Λ̃Bd = a + M1(In − Λ̃)d− (In − Λ̃)d + (M1Λ̃ + M0(In − Λ̃))(x∗ + Λ̃Bd), (4.108)

Therefore x̃ = (r∗,01 , . . . , r∗,0n1 , dn1+1, . . . , dn2 , r
∗,1
n2+1, . . . , r

∗,1
n )t is the solution of Ãx = b̃ if and

only if x∗ solves A∗x = b∗.

The pseudo solution belonging to D∗ is the solution R∗ of the system. A direct consequence
of Lemma 4.32 is that the pseudo solution that belongs to D̃ is also equal to R∗. Similar to the
proof of Proposition 4.28, we can argue that the set D̃ will be reached by the Increasing Trial-
and-Error Algorithms in a finite number of steps. Note that this statement holds in particular
for the Increasing Hybrid Trial-and-Error Algorithm, where Algorithm 5 is used to calculate the
next debt iterate. Even though a Picard-typed procedure is used in this auxiliary algorithm, we
can conclude together with Proposition 4.19 and ε > 0 that the number of iterations will still
be finite. We summarize the findings in the next proposition.

Proposition 4.33. Algorithm 8 reaches the solution R∗ of (4.1) and (4.2) in a finite number
of iteration steps.

For a better understanding of Proposition 4.33, the next example contains such a situation of
a borderline firm.

Example 4.34. We define a financial system that consist of n = 3 firms with

a =

 5
2

4.4

 , d =

10
7
1

 , M1 =

 0 0.25 0.1
0.5 0 0.25
0.25 0.5 0

 , M0 =

 0 0.1 0.1
0.1 0 0.1
0.1 0.1 0

 . (4.109)

The solution of the system is given by

R∗ = (116/15, 7, 1, 0, 0, 53/6)t = (7.7333, 7, 1, 0, 0, 8.8333)t, (4.110)

so it follows that the first firm is in default, the second is borderline and the third firm is
solvent, and that D(R∗) = {1}. Running the Increasing Trial-and-Error Algorithm will lead
to D(R0) = {1, 2}, no matter which version is used, as one can easily check. This default set
will remain the same for all other iterates, i.e. D(Rk) = {1, 2} for k ≥ 1. However, the pseudo
solution that belongs to the default set {1, 2} delivers the fixed point R∗.
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The next lemma attempts to describe in more general form how the structure of a financial
system can look like such that situations as described in Example 4.34 can occur. However,
there are many other possible structures of financial systems in which the same phenomena is
also present.

Lemma 4.35. Consider a financial system with n ≥ 3 firms for which the Increasing Trial-and-
Error Algorithm is applied to find R∗. Assume that in the fixed point R∗, firm i1 is borderline,
firm i2 is in default and firm i3 is solvent. Further, suppose that i1 ∈ D(R0).

(i) If r0,1
i2

< r∗,1i2 , M1
i1,i2
6= 0 and M1

i2,i1
6= 0 and if either the Increasing Trial-and-Error Picard

Algorithm or the Increasing Trial-and-Error Elsinger Algorithm is used, then i1 ∈ D(Rk)
for all k ≥ 0.

(ii) If r0(r0,1)i3 = r0,0
i3

> 0, M0
i1,i3
6= 0 and M1

i3,i1
6= 0 then i1 ∈ D(Rk) for all k ≥ 0 for the

Increasing Trial-and-Error Hybrid Algorithm.

Proof. (i) We will show the claim assuming that the Increasing Trial-and-Error Picard Al-
gorithm is used. For the first iterate of the debt components, it holds for the firm i1
that

r1,1
i1

= min
{
di1 ,

(
a + M1r0,1 + M0r0,0

)
i1

}
=
(
a + M1r0,1 + M0r0,0

)
i1
< di1 = r∗,1i1 ,

(4.111)

because of i1 ∈ D(R0). Since M1
i2,i1
6= 0, r0,1

i1
≤ r1,1

i1
and r∗,1i2 < di2 it follows for the first

debt iterate of firm i2 that

r1,1
i2

= min
{
di2 ,

(
a + M1r0,1 + M0r0,0

)
i2

}
=
(
a + M1r0,1 + M0r0,0

)
i2
< r∗,1i2 .

(4.112)

Therefore, because of M1
i1,i2
6= 0,

r2,1
i1

= min
{
di1 , (a + M1r1,1 + M0r1,0)i1

}
=
(
a + M1r1,1 + M0r1,0

)
i1

(4.113)

from which follows that i1 ∈ D(R1) as well as r2,1
i1

< di1 = r∗,1i1 . This in turn implies that

r2,1
i2

< r∗,1i2 . The inductive continuation of these arguments proves the claim. Note that
for the Increasing Trial-and-Error Elsinger Algorithm the argumentation does not change
since the debt component is calculated in the same way as in the Picard version of the
algorithm.

(ii) It holds that r0,1
i1

= min{di1 , ai1}. Since i1 ∈ D(R0) by assumption, it follows that r0,1
i1

=
ai1 < di1 . Together with M1

i3,i1
6= 0, we have that

0 < r0,0 = r0(r0,1)i3 =
(
a + M1r0,1 + M0r0,0 − d

)
i3
< r∗,0i3 (4.114)

which in turn implies because of M0
i1,i3
6= 0 that

r1,1
i1

=
(
a + M1r1,1 + M0r0,0

)
i1
< di1 = r∗,1i1 . (4.115)

This implies
r1,0
i3

=
(
a + M1r1,1 + M0r1,0 − d

)
i3
< r∗,0i3 , (4.116)
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due to M1
i3,i1
6= 0 and because of M0

i1,i3
6= 0, it follows that(

a + M1r1,1 + M0r1,0
)
i1
< di1 = r∗,1i1 (4.117)

and, hence, i1 ∈ D(R1). Using the same argumentation leads to r2,1
i1

< di1 = r∗,1i1 and to

r2,0
i3

< r∗,0i3 from which in turn follows that i1 ∈ D(R2). An inductive use of this principle
shows the assertion.

4.2.3 Sandwich Algorithms

A disadvantage of the Trial-and-Error Algorithms was that when a potential default set is
reached, the only way to find out whether this default set is actually D∗, is to calculate the
corresponding pseudo solution and check whether it is a fixed point of (4.3). The choice of a
high lag value can of course increase the chance that D∗ is reached at the first trial, but there
is no certainty.

Another way to find D∗ is to start an iteration simultaneously with the largest and smallest
possible solution and use one of the Algorithms 1, 3 or 6 to obtain the next iterate. For k ≥ 0

denote by R
k

the k-th iterate of the series that emerges when starting the algorithm with
the maximum and by Rk its counterpart when starting with the minimum possible solution.

Depending which algorithm is chosen, the starting vector can either be R
0

= Rgreat (Picard

Iteration) or R
0

= (r1
great, r

0(r1
great)) (Elsinger and Hybrid Algorithm). Analogously, we have

R0 = Rsmall or R0 = (r1
small, r

0(r1
small)). By the Propositions 4.2, 4.9, 4.17 and by Equation

(4.8), the iterative use of one of the mentioned algorithms entails that the default sets approach
one another, i.e. for k ≥ 0,

D(Rk) ⊇ D(Rk+1) ⊇ D∗ ⊇ D(R
k+1

) ⊇ D(R
k
). (4.118)

Let
l = min{k ≥ 0 : D(Rk) = D(R

k
)} (4.119)

be the first iteration step in which the default set for both starting vectors is the same. Then we

must have that D(R
l
) = D∗ and, by Proposition 4.24, determining the pseudo solution belonging

to D∗ leads to R∗. Because of its characteristics we call this algorithm the Sandwich Algorithm.

Algorithm 9 (Sandwich Algorithm).

1. Determine R
0

and R0 as well as their corresponding default sets D(R
0
) and D(R0).

2. For k ≥ 1, calculate the iterates R
k

and Rk using one of the Algorithms 1, 3 or 6 and the

corresponding default sets D(R
k
) and D(Rk).

3. If D(R
k
) = D(Rk), stop the algorithm, set D∗ = D(R

k
) and calculate the pseudo solution

that belongs to D∗ following Definition 4.23. Else, set k = k + 1 and go back to Step 2.

As for the Trial-and-Error Algorithms in the sections above, the Sandwich Algorithm results
in different versions:

(i) The Sandwich Picard Algorithm with R
0

= Rgreat and R0 = Rsmall and the use of Algo-
rithm 1 in Step 2.
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(ii) The Sandwich Elsinger Algorithm with R
0

= (r1
great, r

0(r1
great)) and R0 =

(r1
small, r

0(r1
small)) and the use of Algorithm 3 in Step 2.

(iii) The Sandwich Hybrid Algorithm with the same starting points as the Sandwich Elsinger
Algorithm and the iterative use of Algorithm 6 in Step 2.

Recall the insights from Section 4.2.2, where it was shown that, under some circumstances,
it may happen that the series of default sets D(Rk) will never converge to the actual default
set D∗. Situations in which this problem occurs always contain at least one firm that is on
borderline in the solution R∗. As a result of this behavior, the Sandwich Algorithm may not

converge in the sense that the default sets D(R
k
) and D(Rk) will never become identical. The

system from Example 4.34 is an example in which the Sandwich Algorithm fails. In all three

versions of the algorithm, D(R
0
) = {1} when starting from the upper boundary and this default

set stays constant for every further iterate D(R
k
), k ≥ 1. As shown in Example 4.34, it holds

that D(R0) = {1, 2} for all k ≥ 0. The two default sets will hence never become identical and
so the Sandwich Algorithm would never come to an end.

However, if we consider a stochastic setting and assume a distribution for the vector a of the
exogenous assets’ prices which has a density with respect to the Lebesgue measure on (R+

0 )n,
then situations in which the convergence cannot be assured occur only with probability zero as
the next Proposition shows. Note that this assumption is fulfilled in the usual n-firm Merton
models where the individual ai are log-normally distributed.

Proposition 4.36. The Sandwich Algorithm generates a sequence of decreasing default sets

D(Rk) and a sequence of increasing default sets D(R
k
) that reach the default set D∗ of the

solution R∗ almost surely after finitely many steps. Thus, it reaches the solution R∗ of (4.3)
almost surely after finitely many steps.

Proof. The increasing and decreasing property of the default sets follows directly from the
Propositions 4.2, 4.9 and 4.17. The two series of default sets of the algorithm both converge in
finitely many iteration steps to D∗ if there is no firm in the financial system that is borderline.
Lemma A.7 in the Appendix shows that the probability for borderline firms in R∗ is zero from
which follows the almost sure convergence.

By its nature, the Sandwich Algorithm converges to D∗ from both directions which doubles the
computation and makes the algorithm somewhat inefficient from a computational point of view.
On the other hand, the algorithm computes an exact solution in finitely many iteration steps
without wasting time on “Trial-and-Error”. In contrast to the Trial-and-Error Algorithms, the
drawback of the Sandwich Algorithm is that the convergence of the procedure cannot be ensured
when borderline firms are present in the system. To overcome this problem, we recommend for
practical purposes to apply the idea of a lag value in the Sandwich Algorithm as well.

Algorithm 10 (Modified Sandwich Algorithm). Set l ≥ 2.

1. Determine R
0

and R0 as well as their corresponding default sets D(R
0
) and D(R0).

2. For k ≥ 1, calculate the iterates R
k

and Rk using one of the Algorithms 1, 3 or 6 and

their corresponding default sets D(R
k
) and D(Rk).

3. If D(R
k
) = D(Rk), stop the algorithm, set D∗ = D(R

k
) and calculate the pseudo solution

that belongs to D∗ following Definition 4.23. Else, if k ≥ l and

|D(Rk)| − |D(R
k
)| = . . . = |D(Rk−l+1)| − |D(R

k−l+1
)|, (4.120)
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calculate the pseudo solution belonging to D(R
k
) and stop the algorithm if it solves the

Equations (4.1) and (4.2). Else, set k = k + 1 and go back to Step 2.

The modification consists of interrupting the algorithm if the default sets D(R
k
) and D(Rk)

for both iteration directions are not identical but stay constant for l consecutive times. If l is
chosen large enough (e.g. l ≥ 5) and (4.120) holds, this is a strong indication that at least one
firm in the system is borderline and that the convergence of both series is not given. In this
situation, a check whether the default set has already been reached is suitable.

Table 4.2: Default sets D(Rk) of the corresponding iterates of the Picard, Elsinger and Hybrid
Algorithm for both directions of the financial system given in Example 4.5. The de-
fault sets serve as the decision criteria whether to stop the Trial-and-Error Algorithms
and the Sandwich algorithms.

Type Iteration
Step k

D(Rk)
(Increasing)

D(Rk)
(Decreasing)

Picard

0 {1, 2, 3} ⊃ {3}
1 {1, 2, 3} ⊃ {2, 3}
2 {1, 2, 3} ⊃ {2, 3}
3 {2, 3} = {2, 3}

Elsinger
0 {1, 2, 3} ⊃ {3}
1 {1, 2, 3} ⊃ {2, 3}
2 {2, 3} = {2, 3}

Hybrid
0 {1, 2, 3} ⊃ {3}
1 {2, 3} = {2, 3}

Example 4.37. The fact that the number of needed iterations to find R∗ tends to be much
shorter for the Trial-and-Error and the Sandwich Algorithms can once again be demonstrated
using the system from Example 4.5. Suppose that we choose the Trial-and-Error Picard Algo-
rithm that starts with R0 = Rgreat and a lag value of l = 2. The series of default sets that
belongs to the corresponding iterates is given by (cf. Table 4.2)

D(R0) = {3} ⊃ D(R1) = {2, 3} = D(R2) = {2, 3}, (4.121)

from which follows that the algorithms stops the first time after two iteration steps. Since
D(R2) = D∗, the pseudo solution belonging to D(R2) is identical to R∗ and the algorithm
stops. Note that in case of R0 = Rsmall, the first potential default set is {1, 2, 3}, as can be seen
in the left-hand part of Table 4.2. The pseudo solution belonging to this default set will not
solve the mapping Φ and therefore the algorithm continues and stops the next time after the
fourth iteration step (not shown in Table 4.2). Running the Decreasing Trial-and-Error Elsinger
Algorithm, also leads to two iteration steps as well as when the Decreasing Trial-and-Error
Hybrid Algorithm is used.

Table 4.2 also demonstrates the functioning of the Sandwich Picard Algorithm. The two
default sets for every iteration direction become identical in the third iteration step, so the
Algorithm stops. The Elsinger and the Hybrid version of the Sandwich Algorithm stops after
two steps and one step, respectively.
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Recall that concluding from the results of Table 4.2 that the Hybrid Algorithm is more efficient
than the Elsinger Algorithm which in turn is more efficient than the Picard Algorithm (no matter
whether the Trial-and-Error or the Sandwich algorithm is considered), is not entirely correct
since once again, the hidden calculation steps in the Elsinger and Hybrid version of the algorithms
are not considered here. Section 7.5 will deliver more precise answers to these questions in the
therein performed simulation study.

Remark 4.38. We close this section with a short comment about financial systems with a
general exogenous asset structure, i.e. systems in which a ∈ Rn. Using non-finite algorithms
to detect R∗, we showed in the Remarks 4.3, 4.10 and 4.18 that the algorithms still work if
the modified mapping Φ1(r1; r0) = min{d, (a + M1r1 + M0r0)+} is applied. For the finite
algorithms in this section, such a generalization is, however, not possible. Take the financial
system of Example 4.5 again and modify the vector of exogenous assets to

a = (0.39, 0.38,−0.6, 1.29,−0.46)t, (4.122)

i.e. we multiply the asset value of the third and the fifth firm by −1 and remain the other entries
unchanged. The fixed point R∗ of this new systems is now

R∗ = (1.0655, 0.9820, 0, 1.14, 0.1136, 0, 0, 0, 0.4448, 0)t (4.123)

and the default set changes to = D(R∗) = {1, 2, 3, 5}. Calculating a pseudo solution that belongs
to D(R∗) leads to

R̂ = (0.9575, 0.8671,−0.2497, 1.14, 0.0217, 0, 0, 0, 0.3948, 0)t (4.124)

and hence R̂ 6= R∗. The crucial difference for a ∈ Rn is that it might happen that the value
ai is for some firms that negative, that these firms will not be able to service any of their debt
payments and have r∗,1i = 0. In our example, this is the case for the third firm. The non-finite
algorithms can deal with this circumstance by considering the modified version of Φ1. When
calculating the pseudo solution, this is not possible. This insight will become important in
Section 5.2 when systems with a seniority structure are considered.
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5 Valuation Algorithms for Systems with a
Seniority tructure

While in Chapter 4, the valuation algorithms dealt with only one seniority level, we want to
cover in the current chapter calculation procedures that are able to find the solution of financial
systems with a seniority structure. As a consequence, a financial system F is now represented by
F = (a,M,d), where M = (Mm, . . . ,M0) ∈ (R+

0 )n×n(m+1) and d = (dm, . . . ,d1) ∈ (R+
0 )n×m.

By analogy to the structure of Chapter 4, we can in a system with m > 1 also distinguish between
non-finite and finite algorithms. The non-finite algorithms (Section 5.1) are straightforward
extensions of the algorithms defined in Section 4.1 for systems with a general seniority structure.
All non-finite algorithms have the drawback that they might not reach the solution exactly and
therefore need potentially many iteration steps to get sufficiently close to R∗. In Section 5.2, we
will generalize the ideas of Section 4.2, where a default set was used to develop a finite iteration
procedure that reaches R∗ exactly. Moreover, another method is presented in Section 5.3 that
pursues a different approach to find R∗. This procedure which we will call Default Structure
Algorithm is mentioned first in Elsinger (2009). We pick up his ideas and demonstrate the
method in more detail.

5.1 Non-finite Algorithms

The Picard, the Elsinger and the Hybrid Algorithm from Section 4.1 are generalized in this
section to financial systems with m > 1.

5.1.1 The Picard Algorithm

In Section 4.1.1, the Picard Algorithm is presented in detail for m = 1. The principle of this
procedure was the iterative application of the mapping Φ in (4.3). Now, we consider the extended
version of the mapping defined in (2.12). However, the idea of iteratively applying Φ remains
unchanged. As we adapted the mapping for a seniority structure, we also have to do so for the
two possible starting vectors Rgreat and Rsmall, following Fischer (2015). The natural extension
of Rgreat is then given as

Rgreat :=

rmgreat
...

r0
great

 , (5.1)

where the first nm components contain the face values of the m liabilities, i.e. rkgreat = dk, k =
1, . . . ,m, and where

r0
great := (In −M0)−1

(
a +

m∑
k=1

Mkdk −
m∑
k=1

dk

)+

(5.2)
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represents the equity components. The second starting vector, Rsmall, becomes to

Rsmall :=

rmsmall
...

r0
small

 , (5.3)

where

rmsmall = min {dm, a} ,

rjsmall = min

dj ,

a−
m∑

k=j+1

dk

+ (0 < j < m),

r0
small =

(
a−

m∑
k=1

dk

)+

.

(5.4)

Similar to the case of m = 1, it also obviously holds in this situation that Φ(0n(m+1)) = Rsmall.
Moreover, we also need to adapt the definitions for the default set and the default matrix in
(4.8) and (4.9), respectively. For a given vector R = (rm, . . . , r0) ∈ (R+

0 )n(m+1) of recovery
values, the default set under R is defined as

D(R) = D(rm, . . . , r0) =

{
i ∈ N :

(
a +

m∑
k=0

Mkrk −
m∑
k=1

dk

)
i

< 0

}
. (5.5)

A firm i ∈ D(R) is said to be in default without further specification, since it is only known that
for given payments R, there is at least one seniority level – the lowest level – the firm cannot
fully service. However, only knowing that i ∈ D(R) does not deliver any detailed information in
which seniority the transition from full payment to partial or no payment occurs. This is why
we introduce another mode of speaking, where a closer look at the default structure of the firms
under a given payment vector is taken to find the solution R∗. We say that a firm is in default
in the l-th seniority level (1 ≤ l ≤ m) under R, if(

a +

m∑
k=0

Mkrk −
m∑

k=l+2

dk

)
i

≥ dl+1
i and

(
a +

m∑
k=0

Mkrk −
m∑

k=l+1

dk

)
i

< dli. (5.6)

Such a firm is therefore able to fully satisfy the obligees in seniority classes higher than l, and for
all debt payments in a level at or below l, no capital is left for the debtholders (and shareholders).
The default matrix corresponding to R, Λ(R) ∈ Rn×n, is defined as

Λ(R) = Λ(rm, . . . , r0) = diag

(
a +

m∑
k=0

Mkrk −
m∑
k=1

dk < 0n

)
(5.7)

and is the diagonal matrix with entry 1 for firms in default under R and with the value 0 for
firms not in default.

In Proposition 4.1 it is shown that form = 1, the solution R∗ lies in the interval [Rgreat,Rsmall].
This assertion obviously holds for m > 1 as well, for the proof that Rgreat ≥ R∗, we have to
replace M1d by

∑m
k=1 Mkdk and d by

∑m
k=1 dk. The remaining argumentation stays unchanged,

in particular, it clearly holds that Φ(Rsmall) ≥ Rsmall. Moreover, the claim of Proposition 4.2
also holds for m > 1, which becomes immediately clear when checking that the Equations (4.15)
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and (4.17) also hold for more than one seniority. As a consequence, the Picard Algorithm can
be used without further adaption to situations with m > 1, which is why we do not repeat the
pseudo-code and refer to Algorithm 1 in Section 4.1.1 instead. This also implies that the Picard
Algorithm generates a decreasing sequence when R0 = Rgreat and an increasing sequence if
R0 = Rsmall. Let us conclude this subsection with an example for the Picard Algorithm with a
financial system that we will also make use of in the subsequent parts of this chapter.

Example 5.1. We consider a system with n = 5 firms and m = 3 seniority classes. The vector
of the exogenous assets and the liability vectors are given by

a =


9
4
3
2
1

 , d3 =


3
2
4
5
1

 , d2 =


2
3
1
4
5

 , d1 =


3
1
4
2
5

 , (5.8)

the ownership matrices are defined as

M3 =


0 1/6 1/6 0 0
0 0 0 1/2 0

1/4 1/6 0 0 1/2
0 0 1/6 0 0

1/4 1/6 1/6 0 0

 , M2 =


0 1/6 1/8 0 0
0 0 1/8 0 1/4
0 0 0 1/2 1/4
0 1/6 1/8 0 0

1/2 1/6 1/8 0 0

 (5.9)

and

M1 =


0 0 0 0 0
0 0 1/2 0 0

1/6 0 0 1/2 1/2
1/6 0 0 0 0
1/6 0 0 0 0

 , M0 =


0 1/40 0 0 1/20

1/40 0 0 0 0
1/40 1/40 0 1/20 0

0 0 1/20 0 0
0 0 0 0 0

 . (5.10)

The fixed point R∗ of Φ is given by

R∗ =


r∗,3

r∗,2

r∗,1

r∗,0

 =


(3, 2, 4, 3.7917, 1 )t

(2, 3, 1, 0, 3.875)t

(3, 1, 1.1596, 0, 0 )t

(2.6669, 1.636, 0, 0, 0 )t

 . (5.11)

We see that the first two firms are both solvent since their equity values are positive. Firm
3 can fully satisfy its obligees in the two highest seniorities and defaults in seniority level 1,
whereas firm 5 already defaults in the second seniority level. The fourth firm is not even able
to fully deliver the highest seniority level nor any other seniorities and therefore is in default in
level 3. The first iterates Rk when starting the Picard Algorithm either with R0 = Rgreat or
R0 = Rsmall are listed in Table 5.1. For a tolerance level of ε = 10−6 both directions stop the
procedure when iterate R10 is reached.

Remark 5.2. Proposition 4.4 demonstrates that the Picard Algorithm for m = 1 will under
some circumstances never reach R∗. The crucial assumption needed for the proof was that
there is a “circular cashflow” from a defaulting and a solvent firm, where the defaulting firm
must own some shares of the solvent firm and the solvent firm must own some fraction of the
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debt from the defaulting firm. Another assumption was that the initial equity iterate R0 for
the solvent firm is larger than the equity value in R∗. This principle can obviously be applied
to systems with m > 1 as well. Since there are now several seniorities, we have to adapt the
first part of the assumption. The solvent firm must therefore own a fraction of the defaulting
firms’ debt in exactly that seniority, which the defaulting firm is not fully able to service. If
these assumptions are fulfilled, the ideas of the proof of Proposition 4.4 can easily be applied.
Note that in Example 5.1 we have that firm 2 is solvent and that firm 3 defaults in the lowest
seniority. Since M0

32 = 1/40 and M1
23 = 1/2 and r∗,02 = 1.6360 < 3.9431 = (r0

great)2, the
mentioned assumptions are fulfilled. The Picard Algorithm will therefore never reach R∗.

Table 5.1: Iterates of the Picard Algorithm for the financial system in Example 5.1.

R0 = Rsmall R0 = Rgreat

R0 R1 R2 . . . R∗ . . . R2 R1 R0

rk,3

3 3 3 3 3 3 3
2 2 2 2 2 2 2
3 4 4 . . . 4 . . . 4 4 4
2 3.3333 3.7917 3.7917 3.9420 3.9420 5
1 1 1 1 1 1 1

rk,2

2 2 2 2 2 2 2
2 3 3 3 3 3 3
0 1 1 . . . 1 . . . 1 1 1
0 0 0 0 0 0 4
0 3.4167 3.8750 3.8750 3.8750 3.8750 5

rk,1

3 3 3 3 3 3 3
0 0.0250 1 1 1 1 1
0 0.1083 0.9917 . . . 1.1596 . . . 1.2188 4 4
0 0 0 0 0 0 2
0 0 0 0 0 0 5

rk,0

1 2.1667 2.6250 2.6659 2.7236 2.7236 2.7236
0 0 0.7542 1.6360 3.1329 3.9431 3.9431
0 0 0 . . . 0 . . . 0 3.0075 3.0075
0 0 0 0 0 0 0.1504
0 0 0 0 0 0 0

5.1.2 The Elsinger Algorithm

The difference in the functioning of the Picard and the Elsinger Algorithm in Section 4.1 is that
for the Elsinger Algorithm, the equity iterate is calculated as the fixed point of the mapping
Φ0(·; r̄) in (4.27) for a given debt payment vector r̄ ≤ d instead of applying Φ0 on the former
equity and debt iterates as this is the case for the Picard Algorithm. This principle can directly
be transformed to systems with m > 1 as we will show in the following. First, we need to adapt
the mapping for the equity components for more than one seniority. Let rm ≤ dm, . . . , r1 ≤ d1
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be some arbitrary recovery vectors. Then the mapping Φ0 : (R+
0 )n → (R+

0 )n is defined as

Φ0(r; rm, . . . , r1) =

(
a +

m∑
k=1

Mkrk + M0r−
m∑
k=1

dk

)+

. (5.12)

We have shown in Section 4.1.2 that Φ0(·; r) has for given debt payments r ≤ d a unique fixed
point. This obviously holds for the mapping in (5.12) as well, since the rm, . . . , r1 are considered
as fixed values. Denote this fixed point by r0(rm, . . . , r1), that means

Φ0(r0(rm, . . . , r1); rm, . . . , r1) =

(
a +

m∑
k=1

Mkrk + M0r0(rm, . . . , r1)−
m∑
k=1

dk

)+

. (5.13)

This fixed point represents for given debt payments rm, . . . , r1 the corresponding equity pay-
ments of the system.

To obtain r0(rm, . . . , r1), we use a modified version of Algorithm 2, where

w0 = a +

m∑
k=1

Mkrk −
m∑
k=1

dk (5.14)

is set as the starting iterate for given debt payments rm, . . . , r1. The remaining steps in Al-
gorithm 2 stay unchanged. Clearly, Proposition 4.7 is also valid in this situation, i.e. the
algorithm converges in a finite number of iteration steps to r0(rm, . . . , r1). In order to formulate
the Elsinger Algorithm for more than one seniority, we need to introduce for each seniority class
j (1 ≤ j ≤ m) the mapping Φj : (R+

0 )n → (R+
0 )n with

Φj(r; rm, . . . , rj+1, rj−1, . . . , r0) = min

dj ,

a +
m∑
l=0
l 6=j

Mlrl + Mjr−
m∑

l=j+1

dl


+ , (5.15)

where the rm, . . . , rj+1, rj−1, . . . , r0 are considered as fixed debt payments for the other seniorities
and the equity.

Algorithm 11 (Elsinger Algorithm (m > 1)). Set ε > 0.

1. For k = 0, choose(
r0,m, . . . , r0,1

)
∈
{

(rmgreat, . . . , r
1
great), (r

m
small, . . . , r

1
small)

}
(5.16)

and determine r0,0 = r0(r0,m, . . . , r0,1) using Algorithm 2 with the modification in (5.14).
Denote the iterate R0 by R0 = (r0,m, . . . , r0,0).

2. For k ≥ 1, set for 1 ≤ j ≤ m,

rk,j = Φj(rk−1,j ; rk−1,m, . . . , rk−1,j+1, rk−1,j−1, . . . , rk−1,0), (5.17)

calculate rk,0 = r0(rk,m, . . . , rk,1) and set Rk = (rk,m, . . . , rk,0).

3. If ‖Rk−1 −Rk‖ < ε, stop the algorithm. Else, set k = k + 1 and proceed with Step 2.
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Similar to the version without a seniority structure, Algorithm 11 can start either with an
iterate that assumes maximum debt payments or with an iterate in which the debt payments
are set to a minimum level. Depending on this choice in (5.16), the corresponding equity vector
is determined which completes the specification of the zeroth iterate. To obtain the next iterate,
the mapping Φ is applied to the debt vectors, as indicated in (5.17). Using the new debt
payments, the corresponding equity vector is determined with Algorithm 2. The differences
between Algorithm 1 and 11 are therefore the differing ways to calculate the equity components.
Figure 5.1 attempts to demonstrate the functioning of the Elsinger Algorithm in an idealized
scheme.

In Proposition 4.9, we showed that for m = 1 the Elsinger Algorithm generates a series
of decreasing or increasing iterates that converges to the fixed point R∗. A crucial part of
the proof was that the equity component r0(r) is increasing in r, which also holds for the
case of m > 1, i.e. r0(rm, . . . , r1) is increasing in rm, . . . , r1 (see Lemma 2.10). That means,
starting with (r0,m, . . . , r0,1) = (rmgreat, . . . , r

1
great) will deliver a decreasing series and starting with

(r0,m, . . . , r0,1) = (rmsmall, . . . , r
1
small) will result in an increasing series of iterates. Both series are

bounded from above and from below and therefore have to converge to R∗. Additionally, it is
also possible to generalize the assertion of Proposition 4.11 to the current situation by obviously
extending the argumentation used therein to systems with m > 1. Hence, we can conclude that
the Elsinger Algorithm for m > 1 will always be closer to the fixed point R∗ than the Picard
Algorithm.

Step 0

r0,m ∈ {rmgreat, r
m
small}

...
r0,1 ∈ {r1

great, r
1
small}



�
�

�
�Alg. 2

?

r0,0 = r0(r0,m, . . . , r0,1)

= Φ0(r0,0; r0,m, . . . , r0,1)

�
�
�
�
�
�
�
�
�
�
���

Step 1

r1,m = Φm(r0,m; r0,m−1, . . . , r0,0)
...

r1,1 = Φ1(r0,1; r0,m, . . . , r0,0)



�
�

�
�Alg. 2

?

r1,0 = r0(r1,m, . . . , r1,1)

= Φ0(r1,0; r1,m, . . . , r1,1)

�
�
�
�
�
�
�
�
�
�
���

· · ·

· · ·

· · ·

Figure 5.1: Schematic description of Algorithm 11 beginning with the initial iteration step in
the left part of the figure. Note that, according to (5.16), the choice of r0,k ∈
{rkgreat, r

k
small} has to be made consistent for every seniority. The arrows indicate the

different calculation steps of the procedure. If an arrow is interrupted by an oval-
shaped symbol, the listed auxiliary algorithm in the oval is performed to obtain the
next iterate. An arrow without any further specification means that the mappings
Φj are applied that are defined in (5.15).
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Table 5.2: Iterates of the Elsinger Algorithm for the financial system in Example 5.1.

r0,k = rksmall (k = 1, 2, 3) r0,k = rkgreat (k = 1, 2, 3)

R0 R1 R2 . . . R∗ . . . R2 R1 R0

rk,3

3 3 3 3 3 3 3
2 2 2 2 2 2 2
3 4 4 . . . 4 . . . 4 4 4
2 3.3333 3.7917 3.7917 3.7917 3.9417 5
1 1 1 1 1 1 1

rk,2

2 2 2 2 2 2 2
2 3 3 3 3 3 3
0 1 1 . . . 1 . . . 1 1 1
0 0 0 0 0 0 4
0 3.4167 3.8750 3.8750 3.8750 3.8750 5

rk,1

3 3 3 3 3 3 3
0 0.0542 1 1 1 1 1
0 0.1375 1.0231 . . . 1.1596 . . . 1.1980 4 4
0 0 0 0 0 0 2
0 0 0 0 0 0 5

rk,0

2.1667 2.6445 2.6642 2.6659 2.6664 2.7033 2.7236
0 0.7807 1.5678 1.6360 1.6552 3.1322 3.9431
0 0 0 . . . 0 . . . 0 0 3
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Example 5.3. Take the financial system from Example 5.1. Setting (r0,3, r0,2, r0,1) =
(r3

great, r
2
great, r

2
great), it holds for the equity component, that

r0(r0,3, r0,2, r0,1) = (2.7236, 3.9431, 3, 0, 0)t. (5.18)

Hence, firm 4 is already considered to be in default, which was not the case for the Picard
Algorithm (see Table 5.1). The first and some consequent iterates when starting with the other
starting vector are shown in Table 5.2. Note that the pure number of iteration steps is 6 for
both staring vectors which is smaller than for the Picard Algorithm. The tolerance level was
with ε = 10−6 the same than in Example 5.1.

As already mentioned after the introduction of the Elsinger Algorithm just before Proposition
4.11, judging the computational efficiency of the Picard and the Elsinger Algorithm based on
the number of needed iterations only, is not entirely accurate. The reason is already mentioned
in Section 4.1.2: The calculation of the equity iterate in the Elsinger Algorithm can be more
expensive since, under circumstances, many linear equations systems have to be solved which is
not the case for the Picard Algorithm. For instance in Example 5.3, 7 linear equation systems
have to be solved in total for each direction of the algorithm. This is why we have to be
very careful when only considering the iteration steps as the crucial parameter to compare both
algorithms. In fact, the runtime for both procedures to find R∗ seems to be the more comparative
measure for a comparison.
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In Remark 5.2, we mentioned that the Picard Algorithm does not always reach R∗. This
statement also holds for the Elsinger Algorithm; in particular we can generalize the insights of
Proposition 4.12 in a straightforward way.
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r0,m ∈ {rmgreat, r
m
small}

...
r0,1 ∈ {r1

great, r
1
small}



�
�

�
�Alg. 2

?

r0,0 = r0(r0,m, . . . , r0,1)

= Φ0(r0,0; r0,m, . . . , r0,1)

�
�
�
�

�
�

�
�Alg. 5

�
�
�
���

Step 1
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...
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Figure 5.2: Schematic description of Algorithm 12 beginning with the initial iteration step in
the left part of the figure. According to (5.19), the choice of r0,k ∈ {rkgreat, r

k
small}

has to be made consistent for every seniority. The arrows indicate the different
calculation steps of the procedure. To obtain the next iteration in the algorithm,
the corresponding auxiliary algorithm listed in the oval-shaped symbol needs to be
performed. Note that for the debt components, Algorithm 5 has to be conducted for
every debt seniority separately.

5.1.3 A Hybrid Algorithm

As we extended the Picard and the Elsinger Algorithms on systems with a seniority structure,
we can also do so for the Hybrid Algorithm defined in Section 4.1.3. The principle is the same
as for systems with m = 1. In the Elsinger Algorithm, the next debt iterate in seniority level
j (1 ≤ j ≤ m) was the application of the mapping Φj defined as in (5.15). For the Hybrid
Algorithm, we calculate the fixed point of Φj for each seniority level j. To obtain this fixed
point, Algorithm 5 should be chosen which uses a Picard-type iteration to reach the fixed point.
This is necessary since the positive part (·)+ in the right part of Equation (5.15) prevents the
usage of Algorithm 4, see also the comments in Remark 4.10. The procedure is summarized in
the next algorithm, the schematic functioning of the algorithm is visualized in Figure 5.2.

Algorithm 12 (Hybrid Algorithm (m > 1)). Set ε > 0.

1. For k = 0, choose(
r0,m, . . . , r0,1

)
∈
{

(rmgreat, . . . , r
1
great), (r

m
small, . . . , r

1
small)

}
(5.19)

and determine r0,0 = r0(r0,m, . . . , r0,1) using Algorithm 2 with the modification in (5.14).
Denote the iterate R0 by R0 = (r0,m, . . . , r0,0).
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2. For k ≥ 1, determine for every 1 ≤ j ≤ m the fixed point rk,j of the mapping in (5.15)
using Algorithm 5, where for Φj the fixed vectors rk−1,m, . . . , rk−1,j+1, rk−1,j−1, . . . , rk−1,0

are used from the preceding iterate. Calculate rk,0 = r0(rk,m, . . . , rk,1) using Algorithm 2
and set Rk = (rk,m, . . . , rk,0).

3. If ‖Rk−1 −Rk‖ < ε, stop the algorithm. Else, set k = k + 1 and proceed with Step 2.

It is obvious that the assertions of Proposition 4.17 can be transferred to Algorithm 12 as well.
This means that the procedure generates a series of increasing or decreasing iterates, depending
on the choice of the starting vector in (5.19). Both series will converge to the fixed point R∗.
The same transformation is also possible for Proposition 4.19, i.e. the iterates of Algorithm
12 will in every iteration step be closer to R∗ than the iterates of the Elsinger Algorithm in
Algorithm 11, where we once again ignore the effects of different calculation methods (applying
a map vs. solving a linear equation system). Finally, the Proposition 4.20 can obviously also
be generalized to the current situation. Hence, the procedure must also not necessarily exactly
reach the fixed point.

Before concluding the subsection with an example, we want to present a slight adaption of the
Hybrid Algorithm. The idea of this modification is to include the newest available information
about the debt payments. Suppose we are in the k-th iteration step (k ≥ 0) in Algorithm 12.
The debt iterate of seniority level 1, rk,1, is calculated as the fixed point of the mapping Φ1,
where rk−1,m, . . . , rk−1,2, rk−1,0 are considered as fixed. The vector rk,1 is closer to actual debt
payments r∗,1 than the preceding iterate rk−1,1. To get the next iterate for seniority class 2,
we have to solve the mapping Φ2, where in Algorithm 12 the vector rk−1,1 was taken for the
fixed debt payments of the lowest seniority level. But instead of rk−1,1, we can also take the
new iterate rk,1 for the calculation and consider this vector a the “updated” debt payments for
seniority class 1. This results in a new iterate rk,2 that can now also be used, together with rk,1

for the calculation of the next highest seniority level 3, and so on. What we obtain is a series
of iterates in which every debt iterate contains the updated informations of all debt payments
of lower seniorities. For this reason, we call this modified version of the Hybrid Algorithm, the
Updated Hybrid Algorithm.

Algorithm 13 (Updated Hybrid Algorithm). Set ε > 0.

1. For k = 0, choose(
r0,m, . . . , r0,1

)
∈
{

(rmgreat, . . . , r
1
great), (r

m
small, . . . , r

1
small)

}
(5.20)

and determine r0,0 = r0(r0,m, . . . , r0,1) using Algorithm 2 with the modification in (5.14).
Denote the iterate R0 by R0 = (r0,m, . . . , r0,0).

2. For k ≥ 1, determine the next debt iterates rk,m, . . . , rk,1 using the following scheme:

• rk,1 is the fixed point of Φ1(r; rk−1,m, . . . , rk−1,2, rk−1,0).

• rk,2 is the fixed point of Φ2(r; rk−1,m, . . . , rk−1,3, rk,1, rk−1,0).

• rk,3 is the fixed point of Φ3(r; rk−1,m, . . . , rk−1,4, rk,2, rk,1, rk−1,0).

• . . .

• rk,m−1 is the fixed point of Φm−1(r; rk−1,m, rk,m−2, . . . , rk,1, rk−1,0).

• rk,m is the fixed point of Φm(r; rk,m−1, . . . , rk,1, rk−1,0).

Calculate rk,0 = r0(rk,m, . . . , rk,1) and set Rk = (rk,m, . . . , rk,0).
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3. If ‖Rk−1 −Rk‖ < ε, stop the algorithm. Else, set k = k + 1 and proceed with Step 2.
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Figure 5.3: Schematic description of Algorithm 13 beginning with the initial iteration step in
the left part of the figure. According to (5.20), the choice of r0,k ∈ {rkgreat, r

k
small}

has to be made consistent for every seniority. The arrows indicate the different
calculation steps of the procedure. To obtain the next iteration in the algorithm,
the corresponding auxiliary algorithm listed in the oval-shaped symbol needs to be
performed.

It is clear that the Updated Hybrid Algorithm will generate a sequence of decreasing or
increasing series of iterates depending on the starting vector. Moreover, this sequence converges
to R∗, using a similar argumentation as for the Hybrid Algorithm. The improvement of the
Updated Hybrid Algorithm lies in the fact that its iterates are for the decreasing version smaller
than or equal to the corresponding iterates of the Hybrid Algorithm. If the increasing version is
considered, the iterates of the updated version are greater than or equal to those of the ordinary
Hybrid Algorithm. To realize this, suppose we use the decreasing version of both algorithms
and compare its iterates. Denote the iterate of the Hybrid Algorithm with the subscript H and
the iterates of the updated version with UH. By construction, it holds that R0

H = R0
UH and also
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r1,1
H = r1,1

UH for the first debt iterate of the lowest seniority. For the Updated Hybrid Algorithm,
it follows for the debt iterate of the next seniority class that

r1,2
UH = Φ2(r1,2

UH; r0,m, . . . , r0,3, r1,1
UH, r

0,0). (5.21)

The corresponding iterate of the Hybrid Algorithm is given by

r1,2
H = Φ2(r1,2

H ; r0,m, . . . , r0,3, r0,1, r0,0), (5.22)

from which it follows, because of r1,1
UH ≤ r0,1 = d1, that r1,2

UH ≤ r1,2
H . This argumentation can

inductively be applied to all debt payments of higher seniority levels and for the next iteration
steps as well. The case of the increasing version, is similar. Therefore, taking only the number
of iteration steps into account, the Updated Hybrid Algorithm converges to R∗ even faster than
the Hybrid Algorithm. However, as Example 5.5 shows, there exists circumstances under which
this effect can be almost negligible.

Remark 5.4. (i) The Updated Hybrid Algorithm started with calculating the next debt
iterate of the lowest seniority level. Note that it is also possible to start with the highest
seniority and determine the next debt iterate as the fixed point of Φm. The new iterate
can then be used when the debt iterate of seniority level m − 1 is calculated and so on.
This would result in a reverse direction of the updating process. Since the iterates would
still be decreasing or increasing depending on which version is used, this modification of
the algorithm would still converge to R∗ as well. In fact, any order to work through the
seniorities can be chosen.

(ii) The idea processed in the Updated Hybrid Algorithm to calculate the debt iterates similar
to Step 2 in Algorithm 13 can also be used for the Picard and the Elsinger Algorithm.
Suppose we are in the (k − 1)-th iteration step. The next debt iterate rk,j for seniority
level j is for these algorithms not the fixed point of Φj but the result of a single application
of the mapping.

Example 5.5. Applying Algorithm 12 with both starting vectors to the financial system defined
in Example 5.1, delivers the iterates shown in the upper part of Table 5.3. With the usual
tolerance level ε = 10−6, both the decreasing and the increasing version need 6 iteration steps.
Similar to the Elsinger Algorithm in Example 5.3, 7 linear equation systems had to be solved in
total for both versions until the stopping criteria is reached. Comparing the iterates with the
ones of the Elsinger Algorithm in Table 5.2, we observe that they are always larger or equal for
the increasing and smaller or equal for the decreasing version.

The iterates in the lower part of Table 5.3 are the ones that are generated with the Updated
Hybrid Algorithm – once again for both directions. We can see that the effect of using the
“updated” values for the calculation of the next debt iterates has only a slight effect on the
actual iterates Rk. This becomes also visible when counting the number of iterates and linear
equation systems that have to be solved to reach the final iterate. Both for the Increasing and
the Decreasing Updated Hybrid Algorithm these number are identical to their counterparts of
the ordinary Hybrid Algorithm.
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Table 5.3: Iterates of the Hybrid and the Updated Hybrid Algorithm for the financial system in
Example 5.1.

Type
r0,k = rksmall (k = 1, 2, 3) r0,k = rkgreat (k = 1, 2, 3)

R0 R1 R2 . . . R∗ . . . R2 R1 R0

Hybrid

rk,3

3 3 3 3 3 3 3
2 2 2 2 2 2 2
3 4 4 . . . 4 . . . 4 4 4
2 3.5000 3.7917 3.7917 3.7917 3.9417 5
1 1 1 1 1 1 1

rk,2

2 2 2 2 2 2 2
2 3 3 3 3 3 3
0 1 1 . . . 1 . . . 1 1 1
0 0 0 0 0 0 4
0 3.7083 3.8750 3.8750 3.8750 3.8750 5

rk,1

3 3 3 3 3 3 3
0 0.1229 1 1 1 1 1
0 0.1375 1.1001 . . . 1.1596 . . . 1.1916 3.5000 4
0 0 0 0 0 0 2
0 0 0 0 0 0 5

rk,0

2.1667 2.6484 2.6652 2.6659 2.6663 2.6971 2.7236
0 0.9370 1.6062 1.6360 1.6520 2.8820 3.9431
0 0 0 . . . 0 . . . 0 0 3
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Updated
Hybrid

rk,3

3 3 3 3 3 3 3
2 2 2 2 2 2 2
3 4 4 . . . 4 . . . 4 4 4
2 3.7917 3.7917 3.7917 3.7917 3.9417 5
1 1 1 1 1 1 1

rk,2

2 2 2 2 2 2 2
2 3 3 3 3 3 3
0 1 1 . . . 1 . . . 1 1 1
0 0 0 0 0 0 4
0 3.7083 3.8750 3.8750 3.8750 3.8750 5

rk,1

3 3 3 3 3 3 3
0 0.1229 1 1 1 1 1
0 0.1375 1.1038 . . . 1.1596 . . . 1.1916 3.5000 4
0 0 0 0 0 0 2
0 0 0 0 0 0 5

rk,0

2.1667 2.6521 2.6652 2.6659 2.6663 2.6971 2.7236
0 1.0830 1.6081 1.6360 1.6520 2.8820 3.9431
0 0 0 . . . 0 . . . 0 0 3
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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5.2 Finite Algorithms

A common property of the algorithms in Section 5.2 is that they ignore any information about
the default structure inherent in the iterate, that means the information whether a firm is able
to fully service the debt payments of a certain seniority level or not given a payment vector Rk.
In Chapter 4 we developed finite valuation algorithms based on the information that is included
in the default set D(Rk) of an iterate Rk. While for systems with m = 1, there were only the
two possibilities that a firm is either in default or solvent, we have to become more detail in case
of two or more seniority classes.

More precisely, we have to identify for every defaulting firm i ∈ N exactly the seniority
level at which the firm gets into trouble, i.e. the highest seniority class ci ∈ {1, . . . ,m} for
which holds that r∗,cii < dcii , or ci = 0 if there is no such class. The debt payments of the
seniority classes k with m ≥ k > ci are fully honored and the payments of all classes k, where
1 ≤ k < ci, are not serviced at all. The particular case of ci = 0 means that the firm is able
to pay all of its obligations and therefore is solvent. We can summarize the values ci in a tuple
c = (c1, . . . , cn) ∈ {0, . . . ,m}n which is also referred to as the default tuple c. Aim of the
algorithms in this section, is to find the tuple c∗ = (c∗1, . . . , c

∗
n) of seniority levels, that contains

for each firm the lowest seniority for which the obligees are – at least partially – satisfied under
R∗. Before we start with some definitions, we have to make two assumptions on the financial
system.

Assumption 5.6. For k = 0, . . . ,m, ‖Mk‖ < 1, i.e. all ownership matrices in the system are
strictly left substochastic matrices.

Assumption 5.6 is necessary to ensure the invertibility of certain ownership matrices, see also
the comments before Proposition 5.10.

Assumption 5.7. For every seniority level 1 ≤ k ≤ m and every i ∈ N it follows from dki > 0
that dhi > 0 for 1 ≤ h < k.

Assumption 5.7 says that if a firm has positive nominal liabilities in seniority level k, it will
also have positive nominal liabilities in every lower seniority. The reason for this approach is that
it simplifies the argumentation in Section 5.2.1 when borderline firms are taken into account.
However, this conditions is not too strict since we have shown in Section 3.2.4 (see also Remark
3.10) that a seniority structure as given in Assumption 5.7 can be assumed without loss of
generality.

Definition 5.8. For a given financial system F = (a,M,d) with m > 1, let c = (c1, . . . , cn) ∈
{0, . . . ,m}n be an arbitrary tuple of seniority levels. The vector ac = (ac1, . . . , a

c
n) is defined

componentwise via

aci = ai +

n∑
j=1

m∑
k=cj+1

Mk
ijd

k
j −

m∑
k=ci+1

dki . (5.23)

Moreover, let

dc = (dc1, . . . , d
c
n)t (5.24)

be the vector in which for every firm i the nominal value of the liabilities of the ci-th seniority
level is listed. Note that for a better readability, the superscript in dci is the tuple c but the
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required seniority to define dci is only contained in the i-th entry ci. In case of ci = 0, set dci := 0.
The corresponding ownership matrix Mc is defined as

Mc =

M
c1
11 M c2

12 . . . M cn
1n

...
...

. . .
...

M c1
n1 M c2

n2 . . . M cn
nn

 , (5.25)

i.e. the i-th column of Mc is equal to the i-th column of the ownership matrix of seniority class
ci.

The value aci can be interpreted as the sum of the exogenous and all endogenous assets of
firm i reduced by the debt payments of firm i assuming secure payments based on c but no
payments at or below the seniorities c, including no equity payments. Note that ac is in general
not positive. The expressions from Definition 5.8 are needed to defined a pseudo solution similar
to Definition 4.23 for the case of m = 1. Before doing this, define for a given default tuple c and
k = 0, . . . ,m the diagonal matrices

Λk,c = diag(c = (k, . . . , k)) (5.26)

that identifies for each firm i whether ci equals k.

Definition 5.9. Let c = (c1, . . . , cn) ∈ {0, . . . ,m}n be an arbitrary default tuple. The pseudo

solution R̂c ∈ Rn(m+1)
0 of (2.9) – (2.11) that belongs to c is defined by R̂c = (r̂m,c, . . . , r̂0,c),

with r̂k,c = (r̂k,ci )i=1,...,n for 1 ≤ k ≤ m, where

r̂k,c = Λk,cx +

(k−1∑
l=0

Λl,c

)
dk (5.27)

for 1 ≤ k ≤ m and r̂0,c = Λ0,cx and x ∈ Rn is given by

x = (In −Mc)−1ac. (5.28)

The reason to define the pseudo solution as in Definition 5.9 is given in the next Proposition.
Before, note that for the invertibility of the matrix (In−Mc) we have to claim that Assumption
5.6 holds, since if only the Elsinger Property is valid for the ownership matrices, the inverse
matrix might not exist in general, see also Section 4.2.

Proposition 5.10. Let c∗ = (c∗1, . . . , c
∗
n) be the tuple that denotes the seniority classes in which

every firm first defaults under R∗ or the value 0 for solvent firms under R∗ and let R̂c∗ be the
corresponding pseudo solution. Then it holds that R̂c∗ = R∗.

Proof. For a default tuple c∗ = (c∗1, . . . , c
∗
n) of a solution it holds that

r
∗,c∗i
i = ai +

n∑
j=1

m∑
k=c∗j+1

Mk
ijd

k
j +

n∑
j=1

Mc∗
ij r
∗,c∗j
j −

m∑
k=c∗i +1

dki ≥ 0, (5.29)

see Fischer (2015) for more details. Set x∗ :=
(
r
∗,c∗i
i

)
i=1,...,n

and ac∗ :=
(
ac

∗
i

)
i=1,...,n

, then (5.29)

becomes in matrix notation to
x∗ = ac∗ + Mc∗x∗. (5.30)

Hence, x∗ = (In −Mc∗)−1ac∗ . Using Equation (5.27), it follows directly that R̂c∗ = R∗.
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Note that in Proposition 4.24 it was shown that for m = 1 there exists a maximum number of
2n possible solutions for the system. If m > 1, Proposition 5.10 says that the maximum number
of possible solutions is (m+ 1)n.

Example 5.11. We take up the financial system that is defined in Example 5.1 and from which
we know that c∗ = (0, 0, 1, 3, 2). This leads to

ac∗ =


2.6250
−1.8750

0.0833
3.7917
3.8750

 and Mc∗ =


0 1/40 0 0 0

1/40 0 0.5 0.5 0.25
1/40 1/40 0 0 0.25

0 0 0 0 0
0 0 0 0 0

 . (5.31)

The linear equation system (In −Mc∗)x = ac∗ is then given by
1 −0.025 0 0 0

−0.025 1 −0.5 −0.5 −0.25
−0.025 −0.025 1 0 −0.25

0 0 0 1 0
0 0 0 0 1



x1

x2

x3

x4

x5

 =


2.6250
−1.8750

0.0833
3.7917
3.8750

 .

The solution of this system is

x = (x1, x2, x3, x4, x5)t = (2.6659, 1.6360, 1.1596, 3.7917, 3.8750)t.

Following (5.27), we set x1 = r∗,01 , x2 = r∗,01 , x3 = r∗,13 , x4 = r∗,34 and x5 = r∗,25 . Completing R̂c∗

via Equation (5.27) leads to the solution R∗ of the system.

5.2.1 Trial-and-Error Algorithms

A Trial-and-Error approach to find the default tuple c∗ for such systems, consists of determining
for every iterate Rk the corresponding default tuple ck = (ck1, . . . , c

k
n), where each entry of ck is

defined by

cki =


m, if rk,mi < dmi
0, if rk,0i > 0 or dmi = . . . = d1

i = 0

max{1 ≤ h < m : rk,hi < dhi and rk,h+1
i = dh+1

i }, else.

(5.32)
The value cki is in case of a firm in default the highest seniority level in which the firm gets into
financial difficulties. If the firm is solvent under Rk, cki is set to 0. Depending on the choice
of the lag value l ≥ 2, one would calculate iterates Rk and corresponding tuples ck until the
stopping criteria ck = ck+1 = . . . = ck+l−1 is reached. To test whether ck = c∗, we would
calculate the pseudo solution R̂ck that belongs to ck as a (possible) solution of the system F .

In case of Φ(R̂ck) = R̂ck , the algorithm stops.

Algorithm 14 (Decreasing Trial-and-Error Algorithm (m > 1)). Set l ≥ 2, p = 0 and c =
(−1, . . . ,−1).

1. Choose either the Picard (Algorithm 1), the Elsinger (Algorithm 11) or the Hybrid Algo-
rithm (Algorithm 12) which is used in the following to generate the next iterate.

83



2. If in Step 1 the Picard Algorithm is chosen, set R0 = Rgreat, if the Elsinger or the Hybrid
Algorithm is chosen, set R0 = (dm, . . . ,d1, r0(dm, . . . ,d1)). In all cases, calculate c0

according to (5.32).

3. If the Elsinger or the Hybrid Algorithm is chosen in Step 1 and D(R0) = ∅, set R∗ = R0

and stop the algorithm.

4. Else, calculate for k > p the iterates Rk starting with Rp using the algorithm chosen in
Step 1 and calculate the corresponding tuples ck defined in (5.32) until k = q with

q = min{m > p : cm−l+1 = . . . = cm and cm 6= c} (5.33)

is reached. Determine the pseudo solution R̂cq that belongs to cq.

5. If Φ(R̂cq) = R̂cq , stop the algorithm. Else, set c = cq and p = q and proceed with Step 4.

The Decreasing Trial-and-Error Algorithm obviously generates a series of increasing tuples ck.
In Algorithm 7, the series of default sets D(Rk) was increasing as well. Note that the particular
case D(R0) = ∅ in Step 3 of the Algorithm is equivalent to

a +

m∑
k=1

(Mk − In)dk + M0r0(dm, . . . ,d1) ≥ 0n (5.34)

from which directly follows that R∗ = (dm, . . . ,d1, r0(dm, . . . ,d1)) using a similar argumenta-
tion than in the proof of Proposition 4.26 (i). Check that the fact that D(R0) = ∅ is not a
sufficient condition for R∗ = (dm, . . . ,d1, r0(dm, . . . ,d1)) if R0 = Rgreat. Note that D(R0) = N
is no suitable stopping criteria. This is because in this situation we only know that r∗,0 = 0n
but we get no detailed information in which seniority level the firm exactly defaults.

Similar to the Increasing Trial-and-Error Algorithm for m = 1 (Algorithm 7), it is of course
possible to obtain an increasing series of iterates and a decreasing series of tuples ck when the
initial iterate is the minimum possible starting vector.

Algorithm 15 (Increasing Trial-and-Error Algorithm (m > 1)). Set l ≥ 2, p = 0 and c =
(−1, . . . ,−1).

1. Choose either the Picard (Algorithm 1), the Elsinger (Algorithm 11) or the Hybrid Algo-
rithm (Algorithm 12) which is used in the following to generate the next iterate.

2. If in Step 1 the Picard Algorithm is chosen, set R0 = Rsmall, if the Elsinger or the
Hybrid Algorithm is chosen, set R0 = (rmsmall, . . . , r

1
small, r

0(rmsmall, . . . , r
1
small)). In all cases,

calculate c0 according to (5.32).

3. If D(R0) = ∅, set R∗ = (dm, . . . ,d1, r0(dm, . . . ,d1)) and stop the algorithm.

4. Else, calculate for k > p the iterates Rk starting with Rp using the algorithm chosen in
Step 1 and calculate the corresponding tuples ck defined in (5.32) until k = q with

q = min{m > p : cm−l+1 = . . . = cm and cm 6= c} (5.35)

is reached. Determine the pseudo solution R̂cq that belongs to cq.

5. If Φ(R̂cq) = R̂cq , stop the algorithm. Else, set c = cq and p = q and proceed with Step 4.

In analogy to the comments in Section 4.2.2, we also have to address the issue of borderline
firms. Recall that for m = 1, borderline firms are defined as firms for which holds in the fixed
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point R∗ that r∗,1i = di and r∗,0i = 0. Such firms are able to fully cover their liabilities but have
no remaining capital for shareholders. By definition (cf. Equation (5.5)), these firms were not
considered as being in default in R∗. The problem for borderline firms was that the Increasing
Trial-and-Error Algorithm does not manage to reach the actual default set D∗ in general. We
showed in Lemma 4.32 that the algorithm still works in such situations and actually finds the
solution of the system. For the purpose of showing this for Algorithm 15 too, we introduce the
notation that a firm i ∈ N is borderline in seniority level k (k = 1, . . . ,m), if dki > 0,

r∗,ki = dki and r∗,hi = 0 for all 0 ≤ h < k. (5.36)

Note that for m > 1 a firm can be borderline and still be in default, if k ≥ 2 in (5.36). Following
the definition of c∗ at the beginning of Section 5.2 and because of Assumption 5.7, it must hold
for a borderline firm in seniority level k that c∗i = k − 1, since the debt payments in seniority
class k are fully covered and level k − 1 is the first level where the firm gets into trouble. If
c∗i = 0, the firm is solvent by definition but r∗,0i = 0.

Since Algorithm 14 generates an increasing series of default tuples ck, the tuple c∗ will be
reached at some stage of the procedure using a similar argument as in the proof of Proposition
4.28, for the case of m = 1. For Algorithm 15, however, we obtain a decreasing series of default
tuples that might not reach c∗ if borderline firms are present. To show that this is no problem
and that the algorithm still works, assume that there is a set S ⊂ N of borderline firms, where
it does not matter in which seniority level exactly the firms are borderline. The Increasing
Trial-and-Error Algorithm will finally reach to a default tuple c̄ = (c̄1, . . . , c̄n) for which holds
that

c̄i = c∗i + 1 for all i ∈ B and c̄i = c∗i for all i /∈ B for some B ⊂ S. (5.37)

We need to show that the pseudo solution R̂c̄ that belongs to c̄ is equal to R∗. To this end, set
x∗ := (In −Mc∗)−1ac∗ and x̃ := x∗ + ΛBd

c̄, where ΛB denotes the diagonal matrix with value
1 for all borderline firms in B. Check that

ac∗ = ac̄ + Mc̄ΛBd
c̄ −ΛBd

c̄ = ac̄ + (Mc̄ − In)ΛBd
c̄ (5.38)

and that Mc∗x∗ = Mc̄x∗, since x∗i = 0 for all i ∈ B. This yields

Mc∗x∗ + Mc̄ΛBd
c̄ = Mc̄(x∗ + ΛBd

c̄), (5.39)

which implies the following equivalences

x∗ = (In −Mc∗)−1ac∗ ⇐⇒ (In −Mc∗)x∗ = ac∗

⇐⇒ x∗ −Mc∗x∗ = ac̄ + (Mc̄ − In)ΛBd
c̄

⇐⇒ x∗ + ΛBd
c̄ − (Mc∗x∗ + Mc̄ΛBd

c̄) = ac̄

⇐⇒ x∗ + ΛBd
c̄ − (Mc̄(x∗ + ΛBd

c̄)) = ac̄

⇐⇒ (In −Mc̄)(x∗ + ΛBd
c̄) = ac̄

⇐⇒ (In −Mc̄)x̃ = ac̄.

(5.40)

As a consequence, the pseudo solutions that belong to c∗ and c̄ can for 1 ≤ k ≤ m be represented
by

r̂k,c
∗

= Λk,c∗x∗ +

(k−1∑
l=0

Λl,c∗
)

dk (5.41)
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and

r̂k,c̄ = Λk,c̄(x∗ + ΛBd
c̄) +

(k−1∑
l=0

Λl,c̄

)
dk. (5.42)

In (5.41), the i-th component is for 1 ≤ k ≤ m given by

r̂k,c
∗

i =


dki , if k > c∗i ,

x∗i , if k = c∗i ,

0, if k < c∗i ,

(5.43)

and in (5.42), the i-th component has for 1 ≤ k ≤ m the following form

r̂k,c̄i =


dki , if k > c̄i,

x∗i , if k = c̄i and i /∈ B,

x∗i + dki , if k = c̄i and i ∈ B,

0, if k < c̄i.

(5.44)

For firms i with i /∈ B, it holds that c∗i = c̄i and therefore r̂k,c̄i = r̂k,c
∗

i for all 1 ≤ k ≤ m using
(5.43) and (5.44). Let now i ∈ B, hence c̄i = c∗i + 1 (cf. Assumption 5.7) and x∗i = 0. To show
that also in this case, the pseudo solutions of c̄ and c∗ are identical, we distinct between four
cases and apply the Equations (5.43) and (5.44) each time.

(i) Let k < c∗i from which follows that k < c̄i which leads to r̂k,c
∗

i = r̂k,c̄i = 0.

(ii) Let k = c∗i from which follows that c̄i = k + 1 > k. Then r̂k,c
∗

i = x∗i = 0 = r̂k,c̄i .

(iii) Let k − 1 = c∗i from which follows that c̄i = k. This yields r̂k,c
∗

i = dki = x∗i + dki = r̂k,c̄i .

(iv) Finally, let k − 1 > c∗i and thus c̄i < k. Then r̂k,c
∗

i = dki = r̂k,c̄i .

Hence, r̂k,c̄i = r̂k,c
∗

i for all i ∈ N and all 1 ≤ k ≤ m.

This solves the problem of the Increasing Trial-and-Error Algorithm in the presence of bor-
derline firms. The default tuple c̄ will also lead to the fixed point R∗. The insights from above
are summarized in the following Proposition.

Proposition 5.12. The Decreasing Trial-and-Error Algorithm (Algorithm 14) generates a series
of decreasing iterates Rk and a series of increasing default tuples ck, whereas the iterates of
the Increasing Trial-and-Error Algorithm (Algorithm 15) form an increasing sequence and the
corresponding default tuples a decreasing sequence. Both default tuples of the algorithms converge
in a finite number of iteration steps to a final tuple whose corresponding pseudo solution is the
solution R∗ of the financial system.

Following the notation in Section 4.2, we denote the Trial-and-Error Algorithms depending
on the choice of the algorithm to obtain the iterates, i.e. the procedures are called Decreasing
Trial-and-Error Picard/Elsinger/Hybrid Algorithm and analogously for the increasing version.

5.2.2 Sandwich Algorithm

To complete the generalization of the finite algorithms from Section 4.2, we have to extend the
Sandwich Algorithm to m > 1 as well. Starting with both, the minimum and the maximum
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possible debt payment vector, determining the corresponding default tuple ck each time and
stopping the procedure when the tuples for both directions are identical, leads to the Sandwich

Algorithm for m > 1. The notation R
k

and Rk is based on the one from Algorithm 9.

Algorithm 16 (Sandwich Algorithm (m > 1)).

1. Determine R
0

and R0 as well as their corresponding default tuples c0 and c0 following
(5.32).

2. For k ≥ 1, calculate the iterates R
k

and Rk using one of the Algorithms 1, 11 or 12 and
the corresponding default tuples ck and ck.

3. If ck = ck, stop the algorithm and calculate the pseudo solution R̂ck that belongs to ck.
Else, set k = k + 1 and go back to Step 2.

The procedure is self-explaining and it is also clear that the tuples ck and ck approach one
another and will approach to c∗ from two sides. If in Step 2 the Picard/Elsinger/Hybrid Al-
gorithm is chosen for the iteration, we call the algorithm the Sandwich Picard/Elsinger/Hybrid
Algorithm. Note that if there are borderline firms present in the financial system, the con-
vergence of the default tuples can not be ensured. Assuming that the vector a follows some
probability distribution which has a density with respect to the Lebesgue measure on (R+

0 )n,
we can at least show an almost sure convergence. The proof of the following proposition is the
direct extension of the proof of Proposition 4.36 for systems with m = 1.

Proposition 5.13. The Sandwich Algorithm generates a sequence of increasing default tuples
ck and a sequence of decreasing default tuples ck that reach c∗ almost surely after finitely many
steps. Thus, it reaches the solution R∗ almost surely after finitely many iteration steps.

To avoid situations in which the default tuples in Algorithm 16 do not converge, a modified
version of the Sandwich Algorithm should be chosen for practical purposes. Algorithm 10
describes the principle for m = 1, an extension to systems with m > 1 is straightforward.

Example 5.14. Once again, we make use of the financial system in Example 5.1 to demonstrate
the functioning of the Trial-and-Error and the Sandwich Algorithms. The Decreasing Trial-and-
Error-Picard Algorithm leads to the following default tuples:

c0 = (0, 0, 0, 0, 0), c1 = (0, 0, 0, 3, 2), c2 = (0, 0, 1, 3, 2), c3 = (0, 0, 1, 3, 2). (5.45)

Hence, after two iteration steps, the target c∗ = (0, 0, 1, 3, 2) is reached. No matter which lag
value l is chosen, the first time the iteration stops and cq with q defined as in (5.35) is calculated,
it holds that R̂cq = R∗. Using the increasing version of the algorithm, we obtain the default
tuples

c0 = (0, 2, 3, 3, 2), c1 = (0, 1, 1, 3, 2), c2 = (0, 0, 1, 3, 2), c3 = (0, 0, 1, 3, 2), (5.46)

hence the same statements from above also holds for the increasing version. Clearly, the Sand-
wich Picard Algorithm would stop after iteration step 2. For the Elsinger versions of the al-
gorithms above, the default tuples are for both directions of the algorithm identical as for the
Picard Algorithm. Using the Increasing Trial-and-Error Hybrid Algorithm leads to the same
default tuples as in (5.46). For the decreasing version of the Hybrid Algorithm, we get

c0 = (0, 0, 0, 0, 0), c1 = (0, 0, 1, 3, 2), c2 = (0, 0, 1, 3, 2). (5.47)

The Decreasing Trial-and-Error Algorithm reaches c∗ therefore already after only one iteration
step.
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A disadvantage of any Trial-and-Error Algorithm is the fact that the algorithm can also stop
erroneously and deliver a set of tuples ck that is unequal to c∗. In such cases, the pseudo solution
R̂ck is determined unnecessarily. The drawback of a Sandwich approach is that the computa-
tional effort is doubled since both directions are considered which results in an unnecessary use
of computer capacity. It could be more efficient if a procedure would deliver the final tuple c∗

without a Trial-and-Error aspect, i.e. that there is a clear stopping criteria that indicates that
c∗ is actually reached. Moreover this should be achieved without double computational work,
i.e. c∗ should be reached from only one direction and not from two as done in the Sandwich
Algorithm. The algorithm in the next section is designed to overcome this problem by approach-
ing c∗ from only one direction and, additionally, will come up with a clearly defined stopping
criterion when c∗ is actually found.

5.3 Default Structure Algorithm

This section presents a procedure that does not focus on generating new iterates Rk, but focuses
on calculating new tuples ck of seniority levels in every iteration step. Beginning with an initial
tuple c0 = (c0

1, . . . , c
0
n) of seniority levels, c0 is “updated” in a stepwise approach until a final

tuple is reached. The k-th iteration step of the algorithm therefore entails the calculation steps
to get from ck to ck+1. This is achieved by solving a financial subsystem with one seniority,
which is a modification of the initial financial system F with m > 1. We will see in the following
that the procedure results in an increasing series of tuples. Unlike the algorithms in Section
5.2.1, this new algorithm will make sure that the default tuple will definitely change from one
iteration step to another. If it does not, the final default tuple is reached. A consequence of
this property is that the procedure will reach a solution of the system F in a finite number of
iteration steps as will be shown below in Propositions 5.15.

The idea of this approach is initially mentioned in the article of Elsinger (2009), where the
principle of the algorithm is demonstrated and a short sketch of the proof that it actually works
is given. We work out the ideas of Elsinger and give a detailed overview of the procedure’s
functioning and also present a detailed proof that the algorithm will find R∗ in a finite number
of iteration steps. Moreover, we extend the procedure and add an improved version of the
Algorithm at the end of the section. Note that the Assumptions 5.6 and 5.7 from Section 5.2
are required to hold in this section as well.

Before explaining the algorithm in more detail, we have to introduce some new notation. For
given c ∈ {1, . . . ,m}n, the vectors ac and dc form together with Mc from Definition 5.8 and
the equity ownership matrix M0 a new financial system denoted as Fc = (ac,Mc,M0,dc) with
m = 1. The solution of Fc is the fixed point of the mapping

Φ

(
r
s

)
=

(
min{dc, (ac + Mcr + M0s)+}

(ac + Mcr + M0s− dc)+

)
, (5.48)

where we modified the debt component as in (2.16) to ensure non-negative recovery values.
Though ac is not assumed to be positive for every firm anymore, the fixed point of the mapping
in (5.48) is still unique (cf. Remark 2.8). Denote this fixed-point by(

rc

sc

)
=

(
(rc1, . . . , r

c
n)t

(sc1, . . . , s
c
n)t

)
= Φ

(
rc

sc

)
. (5.49)

The vector rc contains the residual values of the seniority levels given in c assuming that for
each firm, seniorities higher than ci are fully delivered and seniorities lower than ci are not
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delivered at all. sc contains the corresponding equity values of the firms. A slight difference in
the structure of the default tuple is now that the value zero is excluded, i.e. c ∈ {1, . . . ,m}n. If
for a firm i ∈ N it holds that ci = 1, the firm can then be in default in the first seniority class
or be solvent. The reason for this modification is that we do not need to distinguish between
the fact that a firm defaults in the lowest seniority or is solvent since this information will be
included in the fixed point (rc, sc) of Fc. This means that a firm with ci = 1 is solvent if rci = dci
and hence sci ≥ 0 or is in default in seniority level 1, if rci < dci and sci = 0 following from it.

The fixed point of Fc is still of dimension 2n. However, we are interested in finding the fixed
point R∗ of the system F that is of dimension n(m + 1). To extract it from the fixed point
(rc, sc) of Fc to the system F , we set

Rc = (rm,c, rm−1,c, . . . , r0,c) ∈ (R+
0 )n(m+1), (5.50)

and define Rc for every firm i ∈ N componentwise via

rk,ci =


dki , for k > ci,

rci , for k = ci,

0, for 0 < k < ci,

sci , for k = 0.

(5.51)

Additionally, define the matrix Λk by

Λk = Λk(rc
k
, sc

k
) = diag

(
ack + Mckrc

k
+ M0sc

k
< 0n

)
, (5.52)

where ck is an arbitrary tuple with ck ∈ {1, . . . ,m}n and (rc
k
, sc

k
) is the fixed point of the

mapping in (5.48). The matrix Λk identifies the firms i that are in default in a higher seniority

level than ci given payments as in (5.51) under (rc
k
, sc

k
). For a firm i that is in default in

seniority level ci, it will hold because of (5.48) that Λk
ii = 0. Moreover, for firms with rc

k

i = dc
k

i ,
i.e. firms that are able to fully satisfy their obligees in seniority level ci, it also holds that
Λk
ii = 0. With the definitions from above in mind, we are now able to formulate the algorithm

that is able to find R∗.

Algorithm 17 (Default Structure Algorithm). Denote the initial set of seniority classes by
c0 = (c0

1, . . . , c
0
n), where

c0
i =

{
1, if dki = 0 for all k = 1, . . . ,m

min
{
k ∈ {1, . . . ,m} : dki > 0

}
, else.

(5.53)

1. For k ≥ 0, specify the financial system Fck = (ack ,Mck ,M0,dck) and determine its
(unique) solution using one of the algorithms defined in Section 4.2.

2. Denote the solution of the system by (rc
k
, sc

k
) and calculate the matrix Λk following (5.52).

3. If Λk = 0n×n, determine Rck according to (5.51) and stop the algorithm. Else, update the
set of seniority classes by calculating

ck+1 = ck + 1tnΛ
k, (5.54)

set k = k + 1 and proceed with Step 1.
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In Step 1 of Algorithm 17, the solution of a financial system Fck has to be determined. Under
Assumption 5.6, this is a system with m = 1 that has a unique fixed point (rc

k
, sc

k
). The

fact that the asset vector ack can contain negative entries has no influence on the uniqueness
of the solution of Fck , see also Remark 2.8. When actually determining the solution (rc

k
, sc

k
),

the Trial-and-Error and the Sandwich Algorithms from Section 4.2 should not be used since
negative entries in ack prevents the usage of the mentioned procedures, see also the comments
in Remark 4.38. Instead, we recommend either the Picard, the Elsinger or the Hybrid Algorithm
presented in Section 4.2 since they can handle with negative assets values as noted in the Remarks
4.3, 4.10 and 4.18. Both versions, i.e. the decreasing and the increasing version of the algorithms
can be applied to find (rc

k
, sc

k
).

Algorithm 17 starts with the tuple c0 that contains the lowest seniority level in which each
firm has non-negative liabilities. Assuming that every firm is able to fully deliver its obligees
for higher seniorities than the one in c0, the solution of Fc0 is determined. Consider the firms
i ∈ N with Λ0

ii = 1. Clearly, these firms are in default under the solution R∗. Moreover, these
firms are not able to cover any debt payments of their lowest seniority class. As a consequence,
first, the intersystem debt payments stemming from this seniority to the other firms, that are
contained in ac0 , have to be erased in the next asset vector ac1 . Second, the next lowest seniority
debt payments that are still subtracted in ac0 , have to be ignored in ac1 and turn into the next
liability values in dc1 . This results in a new financial system Fc1 whose solution is calculated
now. It might happen now that (i) firms with Λ0

ii = 1 are also not able to pay off any of their
debt in the next lowest seniority class or that (ii) firms with Λ0

ii = 0 receive lower intersystem
payments due to the defaults in the former iteration step and now also are not able to repay
any debt payments of their seniority class in c1. If one of these two cases (or both) are present,
it will hold that Λ1

ii = 1 for some i ∈ N . The procedure of adapting the asset values to ac2 and
the liabilities to dc2 then continues.

These steps are repeated until Λk = 0n×n for some k ≥ 0. That means that for every firm,
exactly the seniority level in which the corresponding firm will default is identified and contained
in ck. If cki = 1, this means that the firm will either be solvent, if rc

k

i = d1
i , or that the firm

is in default in the first seniority level, if rc
k

i < d1
i . For all firms i with cki > 1, it will hold by

construction of the algorithm that sc
k

i = 0, as we will show in the next Proposition. Due to the
fact that Algorithm 17 does not calculate new iterates Rk, but rather takes into account which
firm defaults in which seniority class, we call this algorithm Default Structure Algorithm.

Proposition 5.15. (i) Algorithm 17 generates a series of increasing tuples ck. Further, the
algorithm is well-defined in the sense that once a firm is identified to be in default at a
certain seniority level, it will remain being in default at that level in all further iteration
steps.

(ii) Let l ∈ N0 such that

l = min{k ∈ N0 : Λk = 0n×n}. (5.55)

Then it holds for Rcl defined as in (5.51) that Φ(Rcl) = Rcl, i.e. Rcl = R∗.

(iii) The tuple cl is reached after no more than n(m− 1) iteration steps.

Proof. (i) The fact that the tuple ck increases follows immediately from (5.54). Assume that

we are in the k-th iteration step (k ≥ 0) and that we have determined the solution (rc
k
, sc

k
)

of Fck . To show that the algorithm is well-defined, we have to prove that for firms with
Λk
ii = 1, it follows that rc

k+1

i < dc
k+1

i , i.e. firms that are identified to be in default in a
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seniority level higher that cki , have to stay in default under the next financial subsystem

Fck+1
. To this end, we define a potential starting vector for an iteration procedure to

find (rc
k+1

, sc
k+1

), show that it is an upper bound of (rc
k+1

, sc
k+1

) and demonstrate the
property of well-definition of the algorithm with the help of this starting vector. Denote
by

Φck+1

(
r
s

)
:=

(
min{dck+1

, (ack+1
+ Mck+1

r + M0s)+}
(ack+1

+ Mck+1
r + M0s− dck+1

)+

)
(5.56)

the mapping whose fixed point is the solution of Fck+1
and the two mappings

Φ1,ck+1
(r; s) = min{dck+1

, (ack+1
+ Mck+1

r + M0s)+} (5.57)

and

Φ0,ck+1
(s; r) = (ack+1

+ Mck+1
r + M0s− dck+1

)+ (5.58)

that represent the debt and the equity components of Φck+1
, where for Φ1,ck+1

, the vector
s ≥ 0n is considered as fixed and for Φ0,ck+1

, r ≥ 0n is assumed to be fixed. The starting
vector to find (rc

k+1
, sc

k+1
) is given by (r̃, r0(r̃)), where

r̃ = (In −Λk)rc
k

+ Λkdck+1
(5.59)

and r0(r̃) is the fixed point of Φ0,ck+1
(·; r̃) that can for example be obtained using Algorithm

2, i.e.

Φ0,ck+1
(r0(r̃); r̃) = (ack+1

+ Mck+1
r̃ + M0r0(r̃)− dck+1

)+ = r0(r̃). (5.60)

Note that this fixed point is unique also for negative entries in the asset vector ack+1
(cf.

Remark 4.10). Check that (In −Λk)dck+1
= (In −Λk)dck and

ack+1
= ack − (Mck+1 − In)Λkdck+1

(5.61)

and, because of Mck+1
(In − Λk) = Mck(In − Λk) and (In − Λk)r̃ = (In − Λk)rc

k
= rc

k
,

that

Mck+1
(In −Λk)r̃ = Mck(In −Λk)rc

k
= Mckrc

k
. (5.62)

Consequently, r0(r̃) can be expressed as

r0(r̃) =
(
ack+1

+ Mck+1
r̃ + M0r0(r̃)− dck+1

)+

=
(
ack − (Mck+1 − In)Λkdck+1

+ Mck+1
r̃ + M0r0(r̃)− dck+1

)+

=
(
ack + Mck+1

(In −Λk)rc
k

+ M0r0(r̃)− (In −Λk)dck+1
)+

=
(
ack + Mckrc

k
+ M0r0(r̃)− (In −Λk)dck

)+
.

(5.63)

Check that sc
k

can be interpreted as the fixed-point of the mapping Φ0,ck(·; rck), meaning

sc
k

=
(
ack + Mckrc

k
+ M0sc

k − dck
)+

=
(
ack + Mckrc

k
+ M0sc

k − (In −Λk)dck
)+

,
(5.64)
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where the last equality follows from the fact that for firms with Λk
ii = 1 it holds by definition

that the sum ack + Mckrc
k

+ M0sc
k

is negative in the corresponding components which
means that we can also omit the nominal values of the liabilities dck . Hence, the Equations
in (5.63) and (5.64) are identical from which follows that sc

k
= r0(r̃). Moreover,

Φ1,ck+1
(r̃; r0(r̃)) = min

{
dck+1

,
(
ack+1

+ Mck+1
r̃ + M0r0(r̃)

)+
}

= min

{
dck+1

,
(
ack − (Mck+1 − In)Λkdck+1

+ Mck+1
r̃ + M0sc

k
)+
}

= min

{
dck+1

,
(
ack + Mckrc

k
+ M0sc

k
+ Λkdck+1

)+
}
.

(5.65)

From (5.65), it becomes clear that for firms with Λk
ii = 0, and, thus, dc

k+1

i = dc
k

i it holds

that Φ1,ck+1
(r̃; r0(r̃))i = rc

k

i = r̃i. For firms with Λk
ii = 1, we see that Φ1,ck+1

(r̃; r0(r̃))i <

d
ck+1
i
i = r̃i since the sum ack + Mckrc

k
+ M0sc

k
is negative for these firms. We therefore

have shown that

Φck+1

(
r̃

r0(r̃)

)
=

(
Φ1,ck+1

(r̃; r0(r̃))

Φ0,ck+1
(r0(r̃); r̃)

)
≤
(

r̃
r0(r̃)

)
. (5.66)

Equation (5.66) reveals that the Picard Algorithm with starting vector (r̃, r0(r̃)) will lead,

due to the monotonicity of Φck+1
, to a decreasing series of iterates that converges to the

fixed point (rc
k+1

, sc
k+1

) using a similar argument than in the proof of Proposition 4.2.
Note that for the Elsinger Algorithm, the first iterate is in this case identical to the first
iterate of the Picard Algorithm. Together with Lemma 2.10 we can argue the same way
than in the proof of Proposition 4.9 that the resulting series converges to (rc

k+1
, sc

k+1
).

If the Hybrid Algorithm is used, the first debt iterate is given by the fixed point of the
mapping Φ1,ck+1

(·; r0(r̃)) which, because of (5.66), must be smaller or equal than r̃. The
first equity iterate is then using Lemma 2.10 smaller or equal to r0(r̃) and the convergence

to (rc
k+1

, sc
k+1

) follows in an analogous way. At this stage note once again that the

fact that negative entries in the asset vector ack+1
can be present does not influence the

results. This is because Picard, Elsinger and Hybrid Algorithm can deal with negative
asset vectors and still find the unique fixed point. Hence, for any of the three Algorithms
(Picard, Elsinger and Hybrid), the vector (r̃, r0(r̃)) can be used as an initial iterate for

the decreasing version of the algorithms to find (rc
k+1

, sc
k+1

). Consequently, it must hold

that r̃ ≥ rc
k+1

, where a strict inequality holds for firms with Λk
ii = 1 as shown in (5.65).

Thus, rc
k+1

i < dc
k+1

i and therefore sc
k+1

i = 0. Firms that are identified to be in default in
an arbitrary iteration step will stay in default in all further iteration steps.

(ii) If Λl = 0n×n, it follows by definition that

acl + Mclrc
l
+ M0sc

l ≥ 0n. (5.67)

A direct consequence from this is that cl+1 = cl and Λl+1 = 0n×n as well, hence the
iteration stops at this point. We show that Φ(Rcl) = Rcl by checking the equality firmwise.

Doing so, we take a closer look at the i-th component of rc
l

for which, together with (5.61)
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and (5.51), it holds that

rc
l

i = min

dcli , acli +
n∑
j=1

M
clj
ij r

cl

j +
n∑
j=1

M0
ijs

cl

j


= min

dcli , ai +
n∑
j=1

m∑
k=clj+1

Mk
ijd

k
j −

m∑
k=cli+1

dki +
n∑
j=1

M
clj
ij r

cl

j +
n∑
j=1

M0
ijs

cl

j


= min

{
dc

l

i , ai +
n∑
j=1

m∑
k=0

Mk
ijr

k,cl

j −
m∑

k=cli+1

dki︸ ︷︷ ︸
≥0 because of (5.67)

}
.

(5.68)

It follows that

ai +

n∑
j=1

m∑
k=0

Mk
ijr

k,cl

j −
m∑

k=cli+2

dki ≥ d
cli+1
i . (5.69)

According to (5.51), we set r
cli+1,cl

i = d
cli+1
i and we immediately see that this fulfills the

fixed point equation in (2.12). For higher seniority levels than cli + 1, the argumentation

is the same. Let cli > 1. By definition, it follows that sc
l

i = 0 which means that

ai +
n∑
j=1

m∑
k=0

Mk
ijr

k,cl

j −
m∑
k=cli

dki ≤ 0. (5.70)

Since (5.51) means that for lower seniority levels than cli, we set r
cli−1,cl

i = . . . = r1,cl

i =

r0,cl

i = 0, this is also in line with the fixed point property. If cli = 1, we can distinguish

the two cases s1
i = 0 and s1

i > 0. In the former case, setting by definition r0,cl

i = 0,

r1,cl

i = r
cli
i and rk,c

l

i = dki for all seniority levels k > 1, the fixed point property of Rcl

becomes obvious, as well as for the latter case where rk,c
l

i = dki for all k ≥ 1 and r0,cl

i = s1
i .

Summing up the results for all firms leads to Φ(Rcl) = Rcl for such a tuple cl.

(iii) The smallest possible tuple cmin = (1, . . . , 1) leads to acmin
= a +

∑m
k=2 Mkdk −

∑
k=2 dk

and the largest possible tuple is cmax = (m, . . . ,m) for which holds that acmax
= a. The

number of iteration steps would become maximal if one started with cmin, and the value
one was added in a non-maximal component to the tuple in every iteration step of the
algorithm. This would yield exactly n(m− 1) iteration steps.

Depending on the choice of the algorithm in Step 1 of Algorithm 17, we obtain three versions,
the Default Structure Picard/Elsinger/Hybrid Algorithm. The Default Structure Algorithm itself

converges in a finite number of iteration steps to the final tuple cl with Rcl = R∗. However,
recall that the Picard, Elsinger or Hybrid Algorithm that are used in Step 1 might under some
circumstances not reach the fixed point (rc

k
, sc

k
), see the Propositions 4.4, 4.12 and 4.20 and

the subsequent Examples for more details.

After having presented the Default Structure Algorithm as an alternative procedure to find
R∗, we should try to point out the similarities and also the differences between this approach and

93



the Trial-and-Error Algorithms of Section 5.2.1. Both types of algorithms do have a Trial-and-
Error aspect since they both check a fixed point criteria of their iterates. For the Trial-and-Error
Algorithm, the fixed point criteria is directly verified in Step 5 of both versions of the algorithm
when the equation Φ(R̂cq) = R̂cq is checked for validity, where R̂cq is the pseudo solution of
the potential default tuple cq. The Trial-and-Error interpretation for the Default Structure
Algorithm is as follows. In every iteration step of the procedure, it is checked whether the sum

ac + Mcrc + M0sc (5.71)

is non-negative, where c is the default tuple of the corresponding step. If there are still some
firms with a negative entry in (5.71), the final tuple to determine R∗ is not found yet and at
least one further iteration step has to be performed. The first time (5.71) is non-negative in all
components, the procedure stops.

Next to this similarity, there is also the obvious difference that the Default Structure Algorithm
has a clear stopping criteria, namely if Λk = 0n×n for the first time in the procedure. The Trial-
and-Error Algorithms do not have this property. However, the advantage of having this definite
stopping point, comes with the drawback that for every default tuple ck, an additional financial
system Fck has to be solved. This might be accompanied with an increased computational effort
of this procedure compared to the Trial-and-Error Algorithms.

Example 5.16. Let us find the solution of the financial system of Example 5.1 using the Default
Structure Picard Algorithm. For the subalgorithm to find the fixed point of Fck , we applied
the Decreasing Picard Algorithm (Algorithm 1) each time. The starting tuple c0 is given by
c0 = (1, 1, 1, 1, 1). Therefore, dc0 = d1, Mc0 = M1 and

ac0 = a + M3d3 + M2d2 − d3 − d2 = (5.6250, 2.8750, 2.8333,−5.7083,−1.6250)t. (5.72)

The solution of the corresponding system Fc0 is given by(
rc

0

sc
0

)
=

(
(3, 1, 3.4935, 0, 0)t

(2.7172, 3.6897, 0, 0, 0)t

)
. (5.73)

Because of

ac0 + Mc0rc
0

+ M0sc
0

= (5.7172, 4.6897, 3.4935,−5.2083,−1.1250)t, (5.74)

we find that firm 4 and 5 are not able to pay off any of the debt of the lowest seniority, so they
will default for sure in a seniority class higher than one. The tuple becomes c1 = (1, 1, 1, 2, 2)
and the procedure repeats. This time,

ac1 + Mc1rc
1

+ M0sc
1

= (5.6812, 3.2484, 1.1753,−1.2083, 3.8750)t (5.75)

and it becomes clear that firm 4 will also not be able deliver any debt payments in seniority
level two. With c2 = (1, 1, 1, 3, 2) in the next iterate, we obtain

ac2 + Mc2rc
2

+ M0sc
2

= (5.6659, 2.6360, 1.1596, 3.7917, 3.8750)t, (5.76)

which lets the algorithm stop after two iteration steps. One can easily check that Rc2 = R∗.
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The example demonstrates that the total number of iteration steps is much smaller than for
the Picard and the Elsinger Algorithms in the Examples 5.1 and 5.3. However, this number
should not be overestimated for a premature statement that the Default Structure Algorithm is
the computational more efficient procedure. This is because of the additional calculation effort
that is necessary in every iteration step to solve the system Fck . Moreover, the only procedures
that can be used for determining the solution of Fck are the non-finite algorithms of Section
4.1. This means that the Default Structure Algorithm obviously has only a non-finite character
as well.

Example 5.16 also reveals some weakness of the Default Structure Algorithm. The initial
default tuple c0 can under circumstances be chosen too small which would result in unnecessary
iteration steps. To see this, assume maximal debt payments given in the vector Rgreat =
(r3

great, . . . , r
0
great) defined as in (5.1). Then we can calculate

a +

3∑
k=0

Mkrkgreat − d3 − d2 = (5.625, 3.0112, 3.5301,−5.6331,−1.6250)t. (5.77)

The sign of the entries in this sum reveals an information whether the firm is able to recover
any payments the lowest seniority level. If the entry of the corresponding firm is negative, all
capital will be expended for the two highest seniority classes which means that the firm has
no capital left that can be furnished to the creditors in class 1 even if maximum payments as
given in Rgreat are assumed. Consequently, the firm is not able to do so for all other vectors
R ∈ [Rsmall,Rgreat] too. Therefore, using c0

i = 1 in Algorithm 17 seems not suitable for the last
two firms, since it must hold in the final tuple cl that cli > 1 for these firms. It hence would
be appropriate to raise the entry of the firms 4 and 5 by 1. The principle can be continued by
calculating the sum again and ignore the liabilities in d2 this time:

a +
3∑

k=0

Mkrkgreat − d3 = (7.625, 6.0112, 4.5301,−1.6331, 3.3750)t. (5.78)

We see now that firm 5 has a positive value, so c0
5 = 2 is a logical choice. Firm 4, on the other

hand, still has a negative entry which means that it will also not be able to cover any payments
of seniority level 2. Thus, we can raise the value in c0 for this firm to c0

4 = 3. Putting the
new values together leads to the modified default tuple c0 = (1, 1, 1, 3, 2). But this means that
there would be no further iteration step other than the initial step which essentially reduces the
calculation effort in this example.

To put this in a general framework, we define the entries c0
i of the initial default tuple c0 by

c0
i =

{
k ∈ {2, . . . ,m} :

(
a +

m∑
l=0

Mlrlgreat −
m∑
l=k

dl

)
i

< 0

and

(
a +

m∑
l=0

Mlrlgreat −
m∑

l=k+1

dl

)
i

≥ 0

 .

(5.79)

If (a +
∑m

l=0 Mlrlgreat −
∑m

l=1 dl)i > 0, set c0
i = 1. Firms without any capital for a particular

seniority class assuming the maximum payment vector given by Rgreat, will also not be able to
pay off any capital in this class for any other vector Rk of recovery values. That means we have
to identify the seniority level k in which a firm i ∈ N runs out of capital for the first time. Any
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seniorities smaller than k can definitely not be serviced since the firm has no capital left even for
level k and even when maximal payments are assumed. The class k is therefore a logical starting
point for the search of the final tuple cl. Since c0

i in (5.79) is obviously always larger or equal
to c0

i in (5.53), we can save unnecessary iteration steps. For these reasons we call Algorithm 17
that starts with c0 defined as in (5.79) the Smart Default Structure Algorithm.
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6 Optimizing Non-finite Algorithms

In Chapter 4 we have demonstrated that the iteration procedures of the algorithms to find R∗

can start from two directions resulting either in a decreasing or an increasing series of iterates
Rk. The number of needed iterations to reach the fixed point R∗ differs in general for both
algorithm directions. If financial systems are highly indebted and therefore contain many firms
in default, starting with the minimum possible solution seems to be preferable than starting with
the maximum possible payment vector. On the other side, in sound systems, i.e. in systems
with only a few number of defaults or even no defaulting firms at all, the number of iteration
steps is minimized if the maximum possible solution is taken as the initial iterate. An analytical
approach to solve this decision problem is presented in this chapter.

For the Picard Algorithm the two starting vectors are Rgreat and Rsmall. We will show in
Section 6.1 that by calculating the a priori and the initial error (see Lemma 6.1), a fairly
reliable rule can be derived to decide which of the two starting points is the optimal one in the
sense that the number of needed iterations are minimized. This decision rule can be applied
a priori that means only the information given in the financial system F is needed to judge
whether Rgreat and Rsmall should be used as the zeroth iterate. Using the Elsinger or the
Hybrid Algorithm, we have to decide between the starting vectors (dm, . . . ,d1, r0(dm, . . . ,d1))
and (rmsmall, . . . , r

1
small, r

0(rmsmall, . . . , r
1
small)). It will turn out in Section 6.2 that the assumptions

that are necessary to develop a decision rule for the Picard Algorithm are not fulfilled in general
for all versions of the Elsinger and the Hybrid Algorithm. However, we still can apply the ideas
of Section 6.1 which also results in a rule to decide between one of the two starting vectors.

Before we present the findings of this chapter, we have to skip the Elsinger Property of the
ownership matrices of the standard model (cf. Section 2.2) and demand that Assumption 5.6
holds in the remainder of this chapter, i.e. ‖Mk‖ < 1 for all k = 0, . . . ,m. Assumption 5.6 in
particular ensures that the solution R∗ of the system F is still unique.

6.1 The Picard Algorithm

An essential property of the mapping Φ in (2.12) is that it is a strict contraction on (R+
0 )n(m+1),

i.e. for two arbitrary vectors R1,R2 ∈ (R+
0 )n(m+1) it holds that

‖Φ(R1)− Φ(R2)‖ ≤ Imax‖R1 −R2‖, (6.1)

with Imax ∈ [0, 1) defined as in (3.17). For a proof of Equation (6.1), see Lemma 4.1 in Fischer
(2014). Note that Assumption 5.6 is crucial for Φ to be a strict contraction. As first shown
in the work of Banach (1922), strict contractions do have a unique fixed point. In his work,
Banach also showed that the fixed point can be reached via the iterative usage of the mapping
Φ on a given starting vector R0 which we picked up in the Picard Algorithm in Section 4.1.1.
The article also contains informations about the rate of convergence of the iteration based on
an initial iteration shown in the next lemma and which will serve as the main result for our
following considerations.
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Lemma 6.1. Let Φ : Rn(m+1) → Rn(m+1) be the fixed point iteration described in (2.12), R0 ∈
[Rsmall,Rgreat] the initial iterate to find R∗ and Rk, k ≥ 1 be the corresponding iterates based
on R0, i.e. Rk = Φk(R0). Then the following holds:

‖R∗ −Rk‖ ≤ (Imax)k

1− Imax
‖Φ(R0)−R0‖ =

(Imax)k

1− Imax
‖R1 −R0‖, (6.2)

and
‖R∗ −Rk‖ ≤ (Imax)k‖R∗ −R0‖. (6.3)

The inequality in (6.2) is often called a priori error of Φ (Allen and Isaacson, 1998). Moreover,
we label ‖R∗ −Rk‖ as the k-th iteration error and ‖R∗ −R0‖ as the initial error.

Proof. (i) Because of Equation (6.1) we get for the k-th iteration of an arbitrary starting
vector R0:

‖Rk+1 −Rk‖ = ‖Φ(Rk)− Φ(Rk−1)‖
≤ Imax‖Rk −Rk−1‖
= Imax‖Φ(Rk−1)− Φ(Rk−2)‖
≤ (Imax)2‖Rk−1 −Rk−2‖
≤ · · · ≤ (Imax)k‖R1 −R0‖.

(6.4)

Let now l and k be two iteration steps with l > k. Using the triangle inequality and the
results above, it holds that

‖Rl −Rk‖ ≤ ‖Rl −Rl−1‖+ ‖Rl−1 −Rl−2‖+ . . .+ ‖Rk+1 −Rk‖
≤ (Imax)l−1‖R1 −R0‖+ (Imax)l−2‖R1 −R0‖

+ . . .+ (Imax)k‖R1 −R0‖

=
(

(Imax)l−1 + (Imax)l−2 + . . .+ (Imax)k
)
‖R1 −R0‖

≤
(

(Imax)k + (Imax)k+1 + . . .
)
‖R1 −R0‖

=
(Imax)k

1− Imax
‖R1 −R0‖,

(6.5)

where the last equality follows the formula of a geometric series that starts at point k. As
the last line does not depend on l, we can let l go to infinity which leads to ‖R∗−Rk‖ on
the left hand side and proves part (i).

(ii) For this part, we use the fact that in the fixed point, Φ(R∗) = R∗. Together with Equation
(6.1) we get:

‖R∗ −Rk‖ = ‖Φ(R∗)− Φ(Rk−1)‖
≤ Imax‖R∗ −Rk−1‖
= Imax‖Φ(R∗)− Φ(Rk−2)‖
≤ (Imax)2‖R∗ −Rk−2‖
≤ · · · ≤ (Imax)k‖R∗ −R0‖.

(6.6)
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For the purpose of minimizing the computational effort, our aim is to find a starting vector
R0 that fast converges to the searched fixed point R∗. In other words, we have to find R0

such that the corresponding k-th iterate is near R∗, i.e. ‖R∗ − Φk(R0)‖ = ‖R∗ −Rk‖ has to
become small. The question that arises now is whether R0 can be chosen in an optimal way
such that the k-th iteration error is minimal. Of course, the fixed point R∗ solves this problem
since ‖Φ(R∗)−R∗‖ = ‖R∗−R∗‖ = 0. But without any knowledge of R∗ and without any other
knowledge than the input parameters given by the financial system F = (a,M,d), can R0 be
chosen optimally such that the computational effort is kept to a minimum?

The findings of Lemma 6.1 suggest that there are two ways to do so. We can choose R0 such
that the a priori error is minimized from which it can be concluded that the bound (6.2) of the
k-th iteration error is minimal. Another approach is to take a starting vector that minimizes
‖R∗ −R0‖. Obviously, we have in this case the problem that there is no a priori information
available about the fixed point R∗ which makes the estimation a difficult task. In the subsequent
parts of this section, we will see that it depends on the structure of the financial system to decide,
which of the two estimates in (6.2) and (6.3) delivers more precise error estimate.

In any case, the search for an optimal starting point can be limited from the space (R+
0 )n(m+1)

to the interval [Rsmall,Rgreat], where Rgreat and Rsmall are defined in the Equations (5.1) and
(5.3) in Section 5.1.1. Clearly, Rgreat and Rsmall demand no other informations than the a
priori information contained in the financial system F and therefore can be determined without
additional calculus.

6.1.1 Properties of Rgreat and Rsmall

The justification for the choice of Rgreat and Rsmall was given in Proposition 4.1, where it was
shown that for the fixed point R∗ is must hold that R∗ ∈ [Rsmall,Rgreat]. The proof was given
for systems with only one seniority , but can easily be extended to systems with m > 1, see the
comments in Section 5.1.1. In this subsection we list some useful properties of the two starting
vectors that are needed for minimizing the iteration error.

Proposition 6.2. The starting vector Rgreat is an upper bound of the actual solution R∗, i.e.
we have that R∗ ≤ Rgreat. Equality holds if and only if(

a +

m∑
k=1

Mkdk −
m∑
k=1

dk

)
i

≥ 0 for all i ∈ N . (6.7)

Proof. The part that R∗ ≤ Rgreat is shown in Proposition 4.1. For the second claim, assume
first that (6.7) holds from which directly follows that

a +

m∑
k=1

Mkdk −
m∑

k=j+1

dk ≥ dj for all j ≥ 1. (6.8)

This implies r∗,j = dj for all j = 1, . . . ,m. The equity components of R∗ can then be written as

r∗,0 =

(
a +

m∑
k=1

Mkdk + M0r∗,0 −
m∑
k=1

dk

)+

= a +

m∑
k=1

Mkdk + M0r∗,0 −
m∑
k=1

dk,

(6.9)
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where in the last line we used (6.8) and the fact that r∗,0 ≥ 0n. But this means that r∗,0 =
(In −M0)−1(a +

∑m
k=1 Mkdk −

∑m
k=1 dk) and, hence, R∗ = Rgreat.

Assume now that R∗ = Rgreat which means that

a +
m∑
k=0

Mkr∗,k −
m∑

k=j+1

dk ≥ dj for all j ≥ 1 (6.10)

and that r∗,j = dj for all j = 1, . . . ,m. Thus, all firms are by definition solvent which means
that

r∗,0 =

(
a +

m∑
k=0

Mkr∗,k −
m∑
k=1

dk

)+

= a +
m∑
k=1

Mkdk + M0r∗,0 −
m∑
k=1

dk. (6.11)

Rearranging yields to

r∗,0 = (In −M0)−1

(
a +

m∑
k=1

Mkdk −
m∑
k=1

dk

)
. (6.12)

Because of r∗,0 = r0
great and since (In−M0)−1 has full rank (cf. Lemma A.3), it must hold that

a +
m∑
k=1

Mkdk −
m∑
k=1

dk =

(
a +

m∑
k=1

Mkdk −
m∑
k=1

dk

)+

(6.13)

and therefore (6.7).

The next examples demonstrates that even in a solvent system, i.e. in a system in which all
n firm are able to satisfy their m obligations completely, Rgreat is not necessary the solution of
the system.

Example 6.3. Consider a system of n = 3 firms with m = 1 and

a =

1
1
2

 , d1 =

1.745
0.75

1

 , M1 =

 0 0.5 0.25
0.1 0 0.5
0.1 0.25 0

 , M0 =

 0 0.05 0.05
0.05 0 0.05
0.05 0.05 0

 . (6.14)

Check that the fixed point of this system is

R∗ =
(
r∗,1, r∗,0

)
= (1.745, 0.75, 1, 0.0003, 0.9951, 1.4118)t, (6.15)

i.e. r∗,1 = d1 and that
r0

great = (0.1210, 1.0015, 1.4181)t > r∗,0. (6.16)

Therefore, the system is solvent, but still r∗,0 < r0
great. We see that because of a + M1d1−d1 =

(−0.12, 0.9245, 1.362)t, (6.7) is violated which is why equality of r∗,0 and r0
great does not hold.

Remark 6.4. The result in Example 6.3 might lead to the conclusion that instead of r0
great, the

optimal starting vector should rather be defined as

r̃0
great =

(
(In −M0)−1

(
a +

m∑
k=1

Mkdk −
m∑
k=1

dk

))+

. (6.17)
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In Example 6.3, the equity vector of the solution is exactly given by r̃0
great = r∗,0. However, this

is not plausible because r̃0
great must not be an upper bound of r∗,0 in general. To see this, we

retain the system of (6.14) but modify the liability vector and the debt ownership matrix to

d1 =

2.245
1.25
1.5

 and M1 =

 0 0.05 0.025
0.01 0 0.05
0.01 0.025 0

 , (6.18)

i.e. we add the value 0.5 on each entry in the original liability vector and multiply each entry
of M1 in (6.14) by 0.1. The fixed point now becomes to R∗ = (1.1201, 1.1132, 1.5, 0, 0, 0.5390)t.
Moreover, we have

r0
great =

0.0293
0.0293
0.5566

 and r̃0
great =

 0
0

0.4880

 (6.19)

and therefore r̃0
great < r∗,0 for the third firm.

A result of Proposition 4.2 was that Φ(Rgreat) ≤ Rgreat and Φ(Rsmall) ≥ Rsmall. This was
shown for systems with m = 1 but the generalization for systems with m > 1 is straightforward.
From the monotonicity of Φ (cf. Lemma 2.4), it follows that when starting the Picard Algorithm
with R0 = Rgreat, we get a decreasing sequence of

Rgreat ≥ Φ(Rgreat) ≥ . . . ≥ Φk(Rgreat) ≥ . . . ≥ R∗ (6.20)

and if R0 = Rsmall, the algorithm generates an increasing sequence of

Rsmall ≤ Φ(Rsmall) ≤ . . . ≤ Φk(Rsmall) ≤ . . . ≤ R∗. (6.21)

In the literature, this iteration procedure is also called Kleene chain, (cf. Fischer, 2015). The
following example attempts to make the described iteration procedures more clear.

Example 6.5. Consider a system with n = 100 firms and no seniority structure, i.e. m = 1,
to keep the example as simple as possible. The entries of a and d1 = d are equal for all firms
with a = (5, . . . , 5)t ∈ R100 and d = (50, . . . , 50)t ∈ R100. For the equity ownership matrix
M0 we set a constant ownership fraction of M0

ij = M0
ji = 0.1/99 ≈ 0.0010 for i 6= j which

leads to ‖M0‖ = 0.1. The ownership matrix M1 is also symmetric such that M1
ij = M1

ji for all

1 ≤ i, j ≤ n and i 6= j. In this example we consider three different scenarios for M1:

(i) Let M1
ij = 0.95/99 = 0.0096 which leads to ‖M1‖ = 0.95 = Imax. In this scenario the

degree of cross-ownership is very high, i.e. almost all debt payments will stay within the
system. In Chapter 7, the extend of cross-holdings measured by the norm of M1 will
be called the integration level. As a consequence, the firms are solvent even though the
nominal debt values are much higher than the exogenous assets. We have that r∗,1i = 50 =

di and r∗,0i = 2.7778 for all firms.

(ii) Let M1
ij = 0.7/99 = 0.0071 which leads to ‖M1‖ = 0.7 = Imax. This is a scenario where

a medium degree of cross-ownership is present. However, due to the high burden of debt,
the firms will be in default so that in R∗, we have that r∗,1i = 16.6667 < di which leads to
a recovery rate of 16.6667/50 = 33.33%.

(iii) Let M1
ij = 0.15/99 = 0.0015 which leads to ‖M1‖ = 0.15 = Imax and a system with a low

degree of cross-ownership. Only 15% of each firm’s debt is held within in the system. The
remaining payments belong to debtholders outside the system. In this case, the system
defaults as well with r∗,1i = 5.8824 < di and a recovery rate of 5.8824/50 = 11.76%.
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Figure 6.1: Iteration numbers plotted against the sum in (6.22) for the different scenarios de-
scribed in Example 6.5. In the left part of the figure where the sum is positive,
the starting vector was R0 = Rsmall and in the right part the starting vector was
R0 = Rgreat. Consequently the sum is negative for this starting vector (cf. Equation
(6.20)). The somewhat sloppy notation ”∞” on the x-axis denotes the number of
iterations needed to reach the fixed point R∗ sufficiently close for the tolerance level
of ε = 10−6 that differed for each of the considered financial systems.

To demonstrate the functioning of the Kleene chain, we consider for an arbitrary i ∈ N in
every iteration step k the sum(

R∗ − Φk(R0)
)
i
+
(
R∗ − Φk(R0)

)
i+n

= (r∗,1i − r
k,1
i ) + (r∗,0i − r

k,0
i ). (6.22)

Hence, we take only one of the n firms into account which in this case is reasonable, since because
of the structure of a, d and the ownership matrices, all firms will have the same entries for R∗

and Rk. Note that we do not calculate the norm of the difference and allow the sum in (6.22)
to positive and negative for a better illustration of the two ways to approach to the fixed point
R∗ depending on the starting vector. Beginning with both starting vectors Rgreat and Rsmall,
the sum in Equation (6.22) is calculated for k = 0, 1, 2, 5, 10 where Φ0(R0) = R0. The results
are shown in Figure 6.1.

Clearly, the degree of ownership influences the speed of convergence. We see that in case
of Imax = 0.95 the system is solvent with R∗ = Rgreat. Hence, the sum in (6.22) is zero for
R0 = Rgreat. On the other hand, the difference for R0 = Rsmall is relatively high for the first
iterations but decreases with increasing k. Based on a tolerance level of ε = 10−6, there are 23
iterations needed to reach R∗ sufficiently close. While for Imax = 0.95 it is clear that Rgreat is
the better choice for the starting vector, we see for Imax = 0.7 that the difference of the sum
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in (6.22) for both starting vectors becomes smaller for k = 0. In this case, the choice between
Rgreat and Rsmall becomes more difficult. We will see later that the choice of Rsmall is preferable
in this scenario which is also underlined by the fact that 57 iterations are needed when starting
with Rsmall whereas 60 iterations are needed in case of starting with Rgreat. In case of a low
degree of cross-ownership (Imax = 0.15), the firms have only a low recovery rate so that the
choice of Rsmall seems to be preferable. This is also visible in Figure 6.1, where the sum in
(6.22) on an absolute level is much closer to zero for small values of k when starting with Rsmall

than the corresponding sum for the starting vector Rgreat. Note that 11 iteration steps are
needed when starting with Rsmall and 13 when starting with Rgreat.

The findings of this example already provide a first insight to the theoretical results in the
following. For solvent systems or systems in which the degree of indebtedness is high, the
preferable starting vector is R0 = Rgreat. The higher the liabilities compared to the exogenous
assets get or the lower the degree of cross-ownership becomes, the higher the chances that
defaults appear with the consequence that the choice of R0 = Rsmall is better.

After having presented some properties of Rgreat and Rsmall, we can come back to our initial
problem of estimating the iteration error given in the Equations (6.2) and (6.3).

Lemma 6.6. Let R =
(
rm, . . . , r0

)
∈ Rn(m+1) with R ∈ [Rsmall,Rgreat] be an arbitrary vector

such that either Φ(R) ≤ R or Φ(R) ≥ R. Then:

‖Φ(R)−R‖ =

∥∥∥∥∥a +
m∑
k=0

(Mk − In)rk

∥∥∥∥∥ . (6.23)

Proof. First, write the left hand side of (6.23) in a more extended form for a better understanding
of the forthcoming arguments:

‖Φ(R)−R‖ =

∥∥∥∥∥∥∥∥∥∥∥


min{dm, a +

∑m
k=0 Mk · rk} − rm

min{dm−1, (a +
∑m

k=0 Mk · rk − dm)+} − rm−1

...
min{d1, (a +

∑m
k=0 Mk · rk −

∑m
k=2 dk)+} − r1

(a +
∑m

k=0 Mk · rk −
∑m

k=1 dk)+ − r0



∥∥∥∥∥∥∥∥∥∥∥
. (6.24)

To prove Equation (6.23), we have to check its validity component-wise for each firm. Following
(6.24), the norm for the i-th firm is given by

m∑
l=1

∣∣∣∣∣∣min

dli,
(

a +
m∑
k=0

Mkrk −
m∑

k=l+1

dk

)+

i

− rli
∣∣∣∣∣∣

+

∣∣∣∣∣
(

a +
m∑
k=0

Mkrk −
m∑
k=1

dk

)+

i

− r0
i

∣∣∣∣∣ .
(6.25)

Suppose for the first part of the proof that

Φ(R) ≤ R. (6.26)

To show the claim, we have to consider three cases, where we set d0
i := 0 in the following.
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(i) Let (
a +

m∑
k=0

Mkrk

)
i

≤ dmi . (6.27)

The sum in (6.25) reduces to∣∣∣∣∣
(

a +
m∑
k=0

Mkrk

)
i

− rmi︸ ︷︷ ︸
≤0 because of (6.26)

∣∣∣∣∣+
m−1∑
k=0

| −rki︸︷︷︸
≤0

| =

∣∣∣∣∣a +
m∑
k=0

Mkrk −
m∑
k=0

rk

∣∣∣∣∣
i

(6.28)

since in case of equal signs, we can write the sum of the absolute values as the absolute
value of the sum.

(ii) Let for m > j ≥ 0,a +

m∑
k=0

Mkrk −
m∑

k=j+1

dk


i

≤ dji and

a +

m∑
k=0

Mkrk −
m∑

k=j+2

dk


i

> dj+1
i . (6.29)

Then (
a +

m∑
k=0

Mkrk −
m∑

k=l+1

dk

)
i

≥ dli for all l ≥ j + 1 (6.30)

and (
a +

m∑
k=0

Mkrk −
m∑

k=l+1

dk

)
i

≤ 0 for all l ≤ j − 1. (6.31)

It follows because of (6.26) that

m∑
k=j+1

| dki − rki︸ ︷︷ ︸
=0

|+

∣∣∣∣∣
(

a +

m∑
k=0

Mkrk −
m∑

k=j+1

dk

)
i

− rji︸ ︷︷ ︸
≤0

∣∣∣∣∣+

j−1∑
k=0

| −rki︸︷︷︸
≤0

|

=

∣∣∣∣∣a +
m∑
k=0

Mkrk −
m∑
k=0

rk

∣∣∣∣∣
i

(6.32)

with the same argumentation as above.

(iii) Let now (
a +

m∑
k=0

Mkrk −
m∑
k=1

dk

)
i

> 0. (6.33)

Together with (6.26), the formula in (6.25) can be written as

m∑
k=1

| dki − rki︸ ︷︷ ︸
=0

|+

∣∣∣∣∣
(

a +
m∑
k=0

Mkrk −
m∑
k=1

dk

)
i

− r0
i︸ ︷︷ ︸

≤0

∣∣∣∣∣ =

∣∣∣∣∣a +
m∑
k=0

Mkrk −
m∑
k=0

rk

∣∣∣∣∣
i

. (6.34)
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Applying this to all n firms leads to (6.23).

For the second part, if Φ(R) ≥ R, the argumentation is very similar. Note that in this
case, the sign in the norms change to larger or equal. We only demonstrate this for (6.28) that
becomes to ∣∣∣∣∣

(
a +

m∑
k=0

Mkrk

)
i

− rmi︸ ︷︷ ︸
≥0

∣∣∣∣∣+
m−1∑
k=0

| −rki︸︷︷︸
=0

| =

∣∣∣∣∣a +
m∑
k=0

Mkrk −
m∑
k=0

rk

∣∣∣∣∣
i

, (6.35)

where rki = 0 for k = 0, . . . ,m− 1 follows from Φ(R) ≥ R. The remaining cases are analogous.

Lemma 6.6 says that we can explicitly calculate the norm ‖Rk+1 −Rk‖, since when starting
with either R0 = Rgreat or with R0 = Rsmall, the assumptions Φ(R) ≤ R or Φ(R) ≥ R are
fulfilled, respectively. This immediately leads to an a priori error for Rgreat and for Rsmall.

Corollary 6.7. It holds that:

(i) ‖Rsmall‖ = ‖a‖,
(ii) ‖Φ(Rsmall)−Rsmall‖ = ‖

∑m
k=0 Mkrksmall‖,

(iii) ‖Φ(Rgreat)−Rgreat‖ = ‖a +
∑m

k=0(Mk − In)rkgreat‖.

Proof. The equation in (iii) is a simple application of Lemma 6.6. For (i) we further used the
fact that Rsmall = Φ(0n(m+1)). For the equation in (ii), observe that

m∑
k=0

rksmall = min{dm,a}+
m−1∑
k=1

min

{
dk,

(
a−

m∑
j=k+1

dj
)+}

+

(
a−

m∑
k=1

dk
)+

= a (6.36)

which is easy to check component-wise (cf. Fischer, 2014, Lemma A5). Together with (6.23), we
get

‖Φ(Rsmall)−Rsmall‖ =

∥∥∥∥∥a +
m∑
k=0

Mkrksmall −
m∑
k=0

rksmall

∥∥∥∥∥
=

∥∥∥∥∥
m∑
k=0

Mkrksmall

∥∥∥∥∥ .
(6.37)

Remark 6.8. Note that a direct consequence of Lemma 6.6 is that in the fixed point R∗ it
holds that

‖Φ(R∗)−R∗‖ =

∥∥∥∥a +
m∑
k=0

Mkr∗,k −
m∑
k=0

r∗,k
∥∥∥∥ = 0 (6.38)

from which follows that

a +
m∑
k=0

Mkr∗,k =
m∑
k=0

r∗,k. (6.39)

These are the balance sheet equations which summarize assets (left) and liabilities (right).

105



Another consequence of Lemma 6.6 is that the a priori error of Rgreat is independent from
the ownership structure of the equity described in M0. To see this, we use the equation in part
(iii) of Corollary 6.7 and the definition of r0

great in (5.2) to get

‖Φ(Rgreat)−Rgreat‖ =

∥∥∥∥∥a +

m∑
k=0

(Mk − In)rkgreat

∥∥∥∥∥
=

∥∥∥∥∥a +
m∑
k=1

(Mk − In)rkgreat − (In −M0)r0
great

∥∥∥∥∥
=

∥∥∥∥∥a +

m∑
k=1

(Mk − In)rkgreat −

(
a +

m∑
k=1

(Mk − In)rkgreat

)+∥∥∥∥∥,
(6.40)

where the last norm does not contain M0 anymore.

Another property of Rgreat and Rsmall appears in the special case that no cross-ownership is
present in the system, i.e. if

Mm = Mm−1 = . . . = M1 = M0 = 0n×n. (6.41)

Corollary 6.9. Under (6.41) it holds that:

(i) R∗ = Rsmall = Φ(Rgreat) and

(ii) ‖Rgreat −Rsmall‖ = ‖a−
∑m

k=0 rkgreat‖.

Proof. (i) In Corollary 6.7 (ii) it was shown that for the a priori error of Rsmall we have

‖Φ(Rsmall)−Rsmall‖ =

∥∥∥∥∥
m∑
k=0

Mkrksmall

∥∥∥∥∥ (6.41)
= ‖0n‖ = 0. (6.42)

Therefore, Rsmall fulfills the fixed point property and must consequently be equal to the
fixed point R∗, proving the first equality. For the second equality, check that under (6.41)
the last n components of Rgreat become

r0
great =

(
a−

m∑
k=1

dk

)+

(6.43)

and further

Φ(Rgreat) = Φ


rmgreat

...
r1

great

r0
great

 = Φ


min{dm,a}

...
min{d1, (a−

∑m
k=2 dk)+}

(a−
∑m

k=1 dk)+

 = Rsmall. (6.44)

(ii) From part (i) and Corollary 6.7 (iii), it follows that under (6.41)

‖Rgreat −Rsmall‖ = ‖Rgreat − Φ(Rgreat)‖

=

∥∥∥∥∥a +
m∑
k=0

(Mk − In)rkgreat

∥∥∥∥∥
=

∥∥∥∥∥a−
m∑
k=0

rkgreat

∥∥∥∥∥ .
(6.45)
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In other words, Corollary 6.9 says that if no cross-ownership is present in the financial system,
we can obtain the fixed point by simply calculating Rsmall or – more elaborate – by applying Φ
on Rgreat. Check that, in line with the statement of Proposition 6.2, we have that under (6.41)
Rgreat = Rsmall = R∗ if and only if ai ≥

∑m
k=1 d

k
i for all i ∈ N . The findings of the previous

Corollary can help to better understand why for systems with low degrees of cross-ownership,
Rsmall is mostly the starting vector that needs less iteration steps to reach R∗.

As we have determined the a priori error in Equation (6.2) with Lemma 6.6 and Corollary
6.7, we want to do this for the error in Equation (6.3) in the same way. To this end, we need
the following lemma.

Lemma 6.10. Let R = (rm, . . . , r0) ∈ Rn(m+1) with Rsmall ≤ R ≤ Rgreat. Then:

‖Φ(R)−Rgreat‖ =

∥∥∥∥∥a +
m∑
k=0

Mkrk −
m∑
k=0

rkgreat

∥∥∥∥∥ (6.46)

‖Φ(R)−Rsmall‖ =

∥∥∥∥∥
m∑
k=0

Mkrk

∥∥∥∥∥. (6.47)

Proof. To prove the validity of Equation (6.46), check that

‖Φ(R)−Rgreat‖ =

∥∥∥∥∥∥∥∥∥∥∥


min{dm, a +

∑m
k=0 Mk · rk} − rmgreat

min{dm−1, (a +
∑m

k=0 Mk · rk − dm)+} − rm−1
great

...
min{d1, (a +

∑m
k=0 Mk · rk −

∑m
k=2 dk)+} − r1

great

(a +
∑m

k=0 Mk · rk −
∑m

k=1 dk)+ − r0
great



∥∥∥∥∥∥∥∥∥∥∥
. (6.48)

The argumentation follows the one in the proof of Lemma 6.6, i.e. we check the validity com-
ponentwise for each firm i. As above, we distinguish between three different scenarios. During
the proof, we again use that d0

i := 0.

(i) Let
(
a +

∑m
k=0 Mkrk

)
i
≤ dmi which leads to∣∣∣∣∣

(
a +

m∑
k=0

Mkrk

)
i

− dmi

∣∣∣∣∣+
m−1∑
k=0

| − (rkgreat)i| =

∣∣∣∣∣
(

a +
m∑
k=0

Mkrk −
m∑
k=0

rkgreat

)∣∣∣∣∣
i

. (6.49)

(ii) Let for m > j ≥ 0,a +
m∑
k=0

Mkrk −
m∑

k=j+1

dk


i

≤ dji and

a +

m∑
k=0

Mkrk −
m∑

k=j+2

dk


i

> dj+1
i . (6.50)

Then:∣∣∣∣∣∣
a +

m∑
k=0

Mkrk −
m∑

k=j+1

dk


i

− dji

∣∣∣∣∣∣+

j−1∑
k=0

| − (rkgreat)i| =

∣∣∣∣∣
(

a +

m∑
k=0

Mkrk −
m∑
k=0

rkgreat

)∣∣∣∣∣
i

.

(6.51)
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(iii) The case of (a +
∑m

k=0 Mkrk −
∑m

k=1 dk)i > 0 is straightforward.

For Equation (6.47), expanding the norm leads to

‖Φ(R)−Rsmall‖

=

∥∥∥∥∥∥∥∥∥∥∥∥



min{dm, a +
∑m

k=0 Mk · rk} −min{dm,a}
min{dm−1, (a +

∑m
k=0 Mk · rk − dm)+} −min{dm−1, (a− dm)+}

...

min{d1, (a +
∑m

k=0 Mk · rk −
∑m

k=2 dk)+} −min
{

d1,
(
a−

∑m
k=2 dk

)+}
(a +

∑m
k=0 Mk · rk −

∑m
k=1 dk)+ −

(
a−

∑m
k=1 dk

)+



∥∥∥∥∥∥∥∥∥∥∥∥
.

(6.52)

In this situation we have to take four different cases into account.

(i) Let (a +
∑m

k=0 Mkrk)i ≤ dmi from which follows that ai ≤ di. (6.52) becomes for the i-th
firm: ∣∣∣∣∣(a +

∑
k=0

1mMkrk)i − ai

∣∣∣∣∣ =

∣∣∣∣∣
m∑
k=0

Mkrk

∣∣∣∣∣
i

. (6.53)

(ii) Let for m > j ≥ 0,a +
m∑
k=0

Mkrk −
m∑

k=j+1

dk


i

≤ dji and

a +
m∑
k=0

Mkrk −
m∑

k=j+2

dk


i

> dj+1
i . (6.54)

as well as for p ≥ j,a−
m∑

k=p+1

dk


i

≤ dpi and

a−
m∑

k=p+2

dk


i

> dp+1
i . (6.55)

It follows that
(
a +

∑m
k=0 Mkrk −

∑m
k=j+1 dk

)
i
> 0 and

(
a−

∑m
k=p+1 dk

)
i
> 0 and there-

fore∣∣∣∣∣∣dpi −
a−

m∑
k=p+1

dk


i

∣∣∣∣∣∣+

p−1∑
k=j+1

|dki |+

∣∣∣∣∣∣
a +

m∑
k=0

Mkrk −
m∑

k=j+1

dk


i

∣∣∣∣∣∣ =

∣∣∣∣∣
m∑
k=0

Mkrk

∣∣∣∣∣
i

.

(6.56)
Note that in case of p = m, (6.55) means that ai ≤ di and, hence, that the right part in
(6.55) can be ignored.

(iii) Let
(
a +

∑m
k=0 Mkrk −

∑m
k=1 dk

)
i
> 0 and for m ≥ j ≥ 0,a−

m∑
k=j+1

dk


i

≤ dji and

a−
m∑

k=j+2

dk


i

> dj+1
i , (6.57)

from which follows that∣∣∣∣∣∣dji −
a−

m∑
k=j+1

dk


i

∣∣∣∣∣∣+

j−1∑
k=1

|dki |+

∣∣∣∣∣
(

a +
m∑
k=0

Mkrk −
m∑
k=1

dk

)
i

∣∣∣∣∣ =

∣∣∣∣∣
m∑
k=0

Mkrk

∣∣∣∣∣
i

. (6.58)

The comments at the end of part (ii) also hold here if m = j.
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(iv) If
(
a−

∑m
k=1 dk

)+
i
> 0, we get∣∣∣∣∣

(
a +

m∑
k=0

Mkrk −
m∑
k=1

dk

)
i

−

(
a−

m∑
k=1

dk

)
i

∣∣∣∣∣ =

∣∣∣∣∣
m∑
k=0

Mkrk

∣∣∣∣∣
i

, (6.59)

which completes the proof.

Because of Φ(R∗) = R∗, the results of Lemma 6.10 can directly be applied to the fixed point
R∗.

Corollary 6.11.

(i) ‖R∗ −Rgreat‖ =
∥∥a +

∑m
k=0 Mkr∗,k −

∑m
k=0 rkgreat

∥∥.

(ii) ‖R∗ −Rsmall‖ ≤
∥∥∑m

k=0 Mkrkgreat

∥∥.

Proof. Since R∗ = Φ(R∗) is the fixed point of Φ, it follows that R∗ ∈ [Rsmall,Rgreat]. Thus,
we can use the equations given in Lemma 6.10. Part (i) then becomes obvious, part (ii) follows
because of Proposition 6.2 and

‖R∗ −Rsmall‖ =

∥∥∥∥∥
m∑
k=0

Mkr∗,k

∥∥∥∥∥ ≤
∥∥∥∥∥
m∑
k=0

Mkrkgreat

∥∥∥∥∥ . (6.60)

6.1.2 Minimizing the Iteration Error

With the properties of Rgreat and Rsmall in mind, we can now summarize our findings and
take a closer analytical look at the iteration error given in Lemma 6.1. The main goal of our
consideration is to minimize the distance of the k-th iteration Rk to the fixed point R∗. For
this purpose, we can use the two inequalities

‖R∗ −Rk‖ ≤


(Imax)k

1−Imax ‖R1 −R0‖

(Imax)k‖R∗ −R0‖.
(6.61)

For R0 = Rgreat, together with the Corollaries 6.11 (i) and 6.7 (iii), this leads to

‖R∗ − Φk(Rgreat)‖ ≤



(Imax)k

1− Imax

∥∥∥∥a +
m∑
l=0

(Ml − In)rlgreat

∥∥∥∥ (6.62)

(Imax)k
∥∥∥∥a +

m∑
l=0

Mlr∗,l −
m∑
l=0

rlgreat

∥∥∥∥. (6.63)

Equation (6.63) still contains the unknown fixed point and a plausible upper bound for this
norm could not be found. Consequently, we can only use the error in (6.62) for further analysis.
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For R0 = Rsmall, we use the Corollaries 6.11 (ii) and 6.7 (ii) and get

‖R∗ − Φk(Rsmall)‖ ≤



(Imax)k

1− Imax

∥∥∥∥ m∑
l=0

Mlrlsmall

∥∥∥∥ (6.64)

(Imax)k
∥∥∥∥ m∑
l=0

Mlrlgreat

∥∥∥∥. (6.65)

In this case, we can use both inequalities in (6.64) and (6.65), since only the information that
is a priori available in the financial system F is needed. To decide in which situation which
estimator is more precise, we can compare (6.64) and (6.65) with one another:

(Imax)k

1− Imax

∥∥∥∥ m∑
l=0

Mlrlsmall

∥∥∥∥ = (Imax)k
∥∥∥∥ m∑
l=0

Mlrlgreat

∥∥∥∥
⇐⇒ 1

1− Imax

∥∥∥∥ m∑
l=0

rlsmall

∥∥∥∥ =

∥∥∥∥ m∑
l=0

rlgreat

∥∥∥∥
⇐⇒ 1

1− Imax
‖a‖ = ‖Rgreat‖,

where ‖
∑m

l=0 rlsmall‖ = ‖a‖ because of Corollary 6.7 (i). Solving this for Imax leads to

Imax = 1− ‖a‖
‖Rgreat‖

∈ [0, 1], (6.66)

because of ‖a‖ ≤ ‖Rgreat‖. Thus, the comparison in (6.66) is no contradiction to Assumption
5.6. Note that for ‖Rgreat‖ = 0, the ratio in (6.66) is not defined. But ‖Rgreat‖ can only be zero
if dk = 0n for all k = 1, . . . ,m, hence we can assume that the ratio exists. The conclusion from
the result in (6.66) is that, before comparing ‖R∗ −Rk‖ for the two starting vectors, we have
to determine 1− (‖a‖/‖Rgreat‖). If Imax is smaller than this difference, the expression in (6.64)
is the more exact upper bound for ‖R∗ − Φk(Rsmall)‖. If Imax > 1 − (‖a‖/‖Rgreat‖), we take
(6.65) as the upper bound.

Example 6.12. We want to demonstrate the principle of the case differentiation outlined in
(6.66) for the financial systems defined in (6.14). Set k = 1, i.e. we investigate the error after the
first iteration R1 = Φ(Rsmall). For the first system, the iteration error is ‖R∗ −R1‖ = 0.2647
and we have that Imax = 0.75 > 0.3373 = 1− (‖a‖/‖Rgreat‖) from which follows that

Imax

1− Imax

∥∥∥∥ m∑
l=0

Mlrlsmall

∥∥∥∥ = 4.9125 > 1.4367 = Imax

∥∥∥∥ m∑
l=0

Mlrlgreat

∥∥∥∥, (6.67)

so the estimate in (6.65) is the more exact one. If we modify the system in (6.14) as follows:

d =

 4
3.5
2

 , M1 =

 0 0.05 0.025
0.01 0 0.05
0.01 0.025 0

 , (6.68)

and leave a and M0 unchanged, we obtain

R∗ = (1.1076, 1.1130, 2, 0, 0, 0.0389)t. (6.69)
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This leads to ‖R∗ −R1‖ = 0.0444 and the two upper bounds are given by

Imax

1− Imax

∥∥∥∥ m∑
l=0

Mlrlsmall

∥∥∥∥ = 0.0444 < 0.0844 = Imax

∥∥∥∥ m∑
l=0

Mlrlgreat

∥∥∥∥. (6.70)

Because of Imax = 0.1 < 0.5263 = 1− (‖a‖/‖Rgreat‖), the estimate in (6.64) is the more precise
one in this case. We observe here that for highly indebted systems the more precise bound tends
to be another one than for solvent systems.

Comparing the two bounds of (6.64) and (6.65), it is obvious that∥∥∥∥ m∑
l=0

Mlrlsmall

∥∥∥∥ ≤ ∥∥∥∥ m∑
l=0

Mlrlgreat

∥∥∥∥, (6.71)

since Rsmall ≤ Rgreat. The answer which estimate is smaller must hence only lie in the parameter
Imax that can be considered as a scaling factor in this situation. A relatively high value of Imax

has the effect that the ratio 1
1−Imax becomes much larger than 1. In such cases, the estimate in

(6.64) becomes very large as well which makes it a useless bound as seen in Equation (6.67).
Moreover, if we take a closer look at ‖a‖/‖Rgreat‖, we can interpret this ratio as a way to
measure the degree of indebtedness of the system. If it is large, the system must more likely be
able to satisfy its obligees than in case of a small ratio. This means that 1 − ‖a‖/‖Rgreat‖ is
larger for highly indebted systems and thus is also more likely to be larger than Imax in which
case (6.64) is chosen as the better bound. For highly solvent systems, the argumentation leads
on an analogously way to the fact that 1 − ‖a‖/‖Rgreat‖ tends to be smaller than Imax which
results in the choice of (6.65).

The insights from above are outlined in the next Proposition.

Proposition 6.13 (Decision Rule). For the minimization of the upper bound of the k-th iteration
error ‖R∗ − Φk(R0)‖, one has to calculate

∆start :=



∥∥∥a +
m∑
l=0

(Ml − In)rlgreat

∥∥∥− ∥∥∥ m∑
l=0

Mlrlsmall

∥∥∥ if Imax ≤ 1− ‖a‖
‖Rgreat‖(6.72)

1

1− Imax

∥∥∥a +
m∑
l=0

(Ml − In)rlgreat

∥∥∥− ∥∥∥ m∑
l=0

Mlrlgreat

∥∥∥ if Imax > 1− ‖a‖
‖Rgreat‖(6.73)

before starting the iteration. If ∆start > 0 the choice of Rsmall as the starting vector is the better
one and if ∆start < 0 the staring vector Rgreat should be preferred. In case of ∆start = 0 there
is no preference in one of the two starting vectors and we demand to start with Rgreat in such
situations. Hence, we define the starting vector

Ropt :=

{
Rgreat if ∆start ≤ 0,

Rsmall if ∆start > 0
(6.74)

and call this vector the optimal starting vector for the Picard Algorithm.

The rule behind the choice between Rgreat and Rsmall in (6.74) based on the definition of
∆start for the optimal starting vector is denoted as decision rule in the following.
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Example 6.14. The financial system defined in (6.14) is solvent, i.e. all firms are able to fully
service their debt payments. In such a situation, Rgreat should obviously be chosen as Ropt by
the decision rule. Because of

Imax = 0.75 > 0.3373 = 1− (‖a‖/‖Rgreat‖), (6.75)

we calculate

∆start =
1

1− Imax

∥∥∥a +

1∑
k=0

(Mk − In)rkgreat

∥∥∥− ∥∥∥ 1∑
k=0

Mkrkgreat

∥∥∥ = −1.4356 < 0 (6.76)

and therefore choose Rgreat as the optimal starting vector. With a tolerance level of ε = 10−6

there are 7 iterations needed for R0 = Rgreat and 8 when Rsmall is the starting point.

For the modified system in (6.69), we find that ∆start = 3.2 > 0 and start the iteration with
Ropt = Rsmall. It turns out that this was “correct” since with 7 iteration steps, there is one step
less necessary to find R∗ than when starting with Rgreat.

The decision rule also applies for the financial system in Example 6.5. For the system in
part (i), Rgreat is chosen as optimal and for the parts (ii) and (iii), the starting vector must be
Ropt = Rsmall according to the decision rule. As demonstrated therein, these choices result in
all cases in a minimization of the number of iteration steps.

For the later simulations, we modify the Picard Iteration in Algorithm 1 and include the
decision rule such that Ropt is always chosen as the starting point.

Algorithm 18 (Optimized Picard Algorithm). Set ε ≥ 0.

1. For k = 0, determine Ropt = R0 ∈ {Rsmall,Rgreat} according to (6.74).

2. For k ≥ 1, determine Rk = Φ(Rk−1).

3. If ‖Rk−1 −Rk‖ < ε, stop the algorithm. Else, set k = k + 1 and proceed with Step 2.

In Section 7.3 we investigate whether the Optimized Picard Algorithm can really systemati-
cally minimize the computational effort compared to the two cases in which Rsmall or Rgreat are
always “blindly” used as the initial iterate for the algorithm.

6.2 Elsinger and Hybrid Algorithm

Utilizing the Elsinger or the Hybrid Algorithms presented in the Sections 4.1.2 and 4.1.3 for
the case of m = 1 and in the Sections 5.1.2 and 5.1.3 for m > 1, we are in the same conflict of
choosing an appropriate starting vector for the iteration procedure. For both algorithms, the
starting vectors are identical and given by

rmgreat
...

r1
great

r0(dm, . . . ,d1)

 and


rmsmall

...
r1

small

r0(rmsmall, . . . , r
1
small)

 , (6.77)

where the first vector represents the upper and the second vector the lower starting point. To
solve this trade-off situation, we want to apply the same ideas we used for the Picard Algorithm,
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i.e. estimate the a priori error ‖R1 −R0‖ and the initial error ‖R∗ −R0‖ and decide based on
these estimates which starting vector to choose.

However, we will see in the remainder of this section, that applying the conclusions that we
derived for the Picard Algorithm are not one-to-one applicable on the Elsinger and the Hybrid
Algorithm. In particular, the distance between two consecutive iterates must not necessarily
decrease, which means that Lemma 6.1 cannot serve as the basis for our considerations in this
section. Nevertheless, we can still use the principles of optimizing the needed iterations by
adapting the methods developed in Section 6.1.2 for the Elsinger and the Hybrid Algorithm.
For the sake of simplicity, we present the detected results only for financial systems with one
seniority level (m = 1). In this context, we omit the superscript for the nominal value of
the liabilities and write d = d1 instead during this section. Following this notation, the debt
components of Rsmall become to rsmall = r1

small as well as rgreat = r1
great for Rgreat. Moreover,

the k-th debt iterate is defined as rk and we write r0(rk) for the corresponding equity iterate.

When calculating the norm of an iterate Rk, the contribution of firm i to the norm is in this
section defined as

‖Rk‖i :=

m∑
l=0

|rk,li |. (6.78)

Moreover, the contribution of firm i to the norm of the difference between two iterates R1 and
R2 is given by

‖R1 −R2‖i :=
m∑
l=0

|r1,l
i − r

2,l
i |. (6.79)

6.2.1 Behavior of the Distance between consecutive Iterates

Denote by

Rk =

(
rk

r0(rk)

)
=

(
min{d,a + M1rk−1 + M0r0(rk−1)}

(a + M1rk + M0r0(rk)− d)+

)
(6.80)

the k-th iterate of the Elsinger Algorithm (Algorithm 3) and by

Rk =

(
rk

r0(rk)

)
=

(
min{d,a + M1rk + M0r0(rk−1)}

(a + M1rk + M0r0(rk)− d)+

)
(6.81)

the k-th iterate of the Hybrid Algorithm (Algorithm 6). The vector rk−1 is in both cases the
debt iterate of the corresponding preceding iteration step and r0(rk−1) is the associated equity
vector.

Recall that for the derivation of the upper bounds for the iteration and the a priori error of
the Picard Algorithm, a crucial assumption in Lemma 6.1 was that

‖Rk+1 −Rk‖ ≤ Imax‖Rk −Rk−1‖ (6.82)

for all k ≥ 0. At least for the Increasing Elsinger Algorithm, no such statement is possible as
can be seen in the next Example.
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Example 6.15. We consider the financial system with n = 5 firms and m = 1 seniority level.
Further,

a =


3.15
2.95
2.88
2.85
3.06

 , d =


11.99
6.60
4.17
6.15
12.94

 , M1 =


0 1/6 1/8 0 0

1/8 0 1/8 1/4 1/6
1/8 0 0 0 1/6
1/8 1/6 1/8 0 1/6
1/8 1/6 1/8 1/4 0

 (6.83)

and M0 = 1
2M1. The fixed point is

R∗ = (4.8167, 6.6, 4.1, 6.15, 6.8807, 0, 0.2007, 0.4589, 0.1155, 0)t (6.84)

and the first five iterates are given as

R0 =



3.15
2.95
2.88
2.85
3.06

0
0
0
0
0


,R1 =



4.0017
4.9263
3.7837
4.6054
5.0179

0
0

0.0465
0
0


,R2 =



4.4469
5.9138
4.17

5.4834
6.0085

0
0

0.2673
0
0


,R3 =



4.6736
6.4161
4.17

5.9309
6.5103

0
0.0469
0.3792

0
0


,R4 =



4.7682
6.6
4.17

6.1375
6.7451

0
0.1630
0.4302
0.0819

0


. (6.85)

Because of Imax = 0.5, it holds that

‖R2 −R1‖ = 3.9084 > 3.7458 = Imax‖R1 −R0‖
‖R4 −R3‖ = 0.9689 > 0.9186 = Imax‖R3 −R2‖.

(6.86)

Albeit simulation results suggest that (6.82) is fulfilled for Decreasing Elsinger and both
versions for the Hybrid Algorithm, no strict formal proof could be found to substantiate this
conjecture, neither for the increasing nor for the decreasing version of the procedure. Also no
counterexamples could be found to falsify the validity of (6.82) for these procedures.

6.2.2 Estimates for the Iteration Errors

The fact that the property of a decreasing distances of iterates as in (6.82) cannot be ensured
or is even violated in some situations, actually prevents the usage of the upper bounds for the
Elsinger and the Hybrid Algorithm given in Lemma 6.1, since in the proof, that assumption was
crucial. Nevertheless, we still attempt to investigate whether there are upper bounds for the
k-th iteration and the a priori error for the mentioned procedures in this subsection to gain a
better insight into the problem of choosing an optimal starting vector. As in the section above,
we only search upper bounds for ‖R1 −R0‖ and ‖R∗ −R0‖ when m = 1 to keep the results as
simple as possible.

For both procedures, the Elsinger and the Hybrid Algorithm, we did not found any formulas
to express the norm ‖R1 −R0‖ in a more simple form. However, for the Decreasing Elsinger
Algorithm, there exists an upper bound for ‖R1 −R0‖.
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Proposition 6.16. For the Decreasing Elsinger Algorithm it holds that

‖R1 −R0‖ ≤ ‖a + M1d + M0r0(d)− d‖. (6.87)

Proof. We check the norm component-wise for an arbitrary firm i ∈ N . The norm for the
decreasing version of the algorithm constitutes as

‖R1 −R0‖ =

∥∥∥∥ min{d,a + M1d + M0r0(d)} − d
(a + M1r1 + M0r0(r1)− d)+ − (a + M1d + M0r0(d)− d)+

∥∥∥∥ . (6.88)

For the calculation of this norm we distinguish between three cases. Keep in mind for the
following, that r1 ≤ d and r0(r1) ≤ r0(d).

• Let i ∈ D(d, r0(d)). It holds that

‖R1 −R0‖i = |a + M1d + M0r0(d)− d|i. (6.89)

• Let i /∈ D(d, r0(d)) and i ∈ D(r1, r0(r1)). Hence,

‖R1 −R0‖i = |d− d|i + |a + M1d + M0r0(d)− d|i. (6.90)

• At last, let i /∈ D(r1, r0(r1)) which means that(
M1r1 + M0r0(r1)

)
i
≥ (d− a)i (6.91)

and thus

‖R1 −R0‖i = |M1r1 + M0r0(r1)−M1d−M0r0(d)|i
≤ |d− a−M1d−M0r0(d)|i
= |a + M1d + M0r0(d)− d|i.

(6.92)

Assembling the three cases results in Equation (6.87).

The generalization of Proposition 6.16 for m > 1 is straightforward; similar to the proof in
case of m = 1, more case differentiations have to be considered. It seems natural to apply the
upper bound of the Increasing Picard Algorithm from Corollary 6.7 in an analogous way to the
Increasing Elsinger Algorithm. This would result in

‖R1 −R0‖ ≤ ‖M1rsmall + M0r0(rsmall)‖. (6.93)

However, this bound does not hold in general, as can easily be checked for the financial system
of Example 6.15. Doing so, we get

‖R1 −R0‖ = 7.4915 > 7.445 = ‖M1rsmall + M0r0(rsmall)‖ (6.94)

and we see that this relationship is violated. An alternative plausible upper boundary for the a
priori error of the algorithm could not be found.

Moreover, there exists a connection between the a priori error of the Decreasing Elsinger and
the Decreasing Hybrid Algorithm. Let the subscript E denote the iterate of the Decreasing
Elsinger Algorithm and the subscript H the iterate of the corresponding Hybrid Algorithm. Due
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to Proposition 4.19, we know that r1
H ≤ r1

E and therefore r0(r1
H) ≤ r0(r1

E). Since both algorithms
have the same starting vector R0, it must hold that

‖R1
H −R0‖ ≥ ‖R1

E −R0‖. (6.95)

In other words, the distance between the first iterate and the starting vector is for the Decreasing
Hybrid Algorithm always larger than its counterpart from the Elsinger Algorithm. Clearly, the
connection between both algorithms and the a priori error is same if we consider the increasing
versions of the procedures.

Upper bounds for the a priori errors of Increasing and Decreasing Hybrid Algorithm could
not be found. An obvious guess for an upper bound of the Decreasing Hybrid Algorithm would
be to apply the insights of Corollary 6.7, where we found that

‖Φ(Rgreat)−Rgreat‖ = ‖a + M1rgreat + M0r0
great − d‖. (6.96)

However, this bound does not hold in general, as Example 6.17 demonstrates. In the same
way, the intuitive upper bound for the increasing procedure would be ‖M1rsmall +M0r0(rsmall)‖
which, like in the case for the Elsinger Algorithm, also does not hold in general as the next
example shows.

Example 6.17. Consider again the financial system from Example 6.15. Following Equation
(6.93), we obtain for the Increasing Hybrid Algorithm that

‖R1 −R0‖ = 14.3356 > 7.445 = ‖M1rsmall + M0r0(rsmall)‖ (6.97)

and it becomes clear that an upper bound for this algorithm cannot be the counterpart that
was found for the Picard Algorithm.

For the Decreasing Hybrid Algorithm, we can also show that the upper bound of the a priori
error is not always the one given in (6.96). To this end, replace in the debt vector d from the
considered system the second component with the value 8 (before, it was 6.6) such that

d = (11.99, 8, 4.17, 6.15, 12.94)t. (6.98)

The solution R∗ slightly changes now (among others, the second firm defaults now which was
not the case before), which is of less interest. Important for us is that since

‖R1 −R0‖ = 17.8362 > 17.1210 = ‖a + M1d + M0r0(d)− d‖ (6.99)

the potential upper bound of the a priori error does not hold.

After having investigated the a priori error for both algorithms, we want to do so for the
initial error ‖R∗ − R0‖ as well. In case of the increasing versions of both algorithms, we can
find an upper bound for the error, similar to the results of the Picard Algorithm in Corollary
6.11.

Proposition 6.18. Let Rk denote the k-th iterate of either the Increasing Elsinger or the
Increasing Hybrid Algorithm. Then it holds that

‖Rk −R0‖ ≤ ‖M1d + M0r0(d)‖ (6.100)

and, thus, ‖R∗ −R0‖ ≤ ‖M1d + M0r0(d)‖.
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Proof. We show the assertion first for the Elsinger Algorithm which means that the correspond-
ing iteration error is given by

‖Rk −R0‖ =

∥∥∥∥( rk − rsmall

r0(rk)− r0(rsmall)

)∥∥∥∥
=

∥∥∥∥( min{d,a + M1rk−1 + M0r0(rk−1)} −min{d,a}
(a + M1rk + M0r0(rk)− d)+ − (a + M1rsmall + M0r0(rsmall)− d)+

)∥∥∥∥ (6.101)

Similar to the proofs above, we have to do a case differentiation for the i-th component of the
norm of ‖Rk −R0‖.
• Let i ∈ D(rk, r0(rk)) from which follows in particular that ai < di. Hence,

‖Rk −R0‖ = |a + M1rk−1 + M0r0(rk−1)− a|i
= |M1rk−1 + M0r0(rk−1)|i
≤ |M1d + M0r0(d)|i.

(6.102)

• Let next i /∈ D(rk, r0(rk)) and i ∈ D(rk−1, r0(rk−1)). Consequently it holds that

(a− d)i < −(M1rk−1 + M0r0(rk−1))i (6.103)

and thus

‖Rk −R0‖ = |M1rk−1 + M0r0(rk−1)|i + |a + M1rk + M0r0(rk)− d|i
≤ |M1rk−1 + M0r0(rk−1) + M1rk + M0r0(rk)−M1rk−1 −M0r0(rk−1)|i
= |M1rk + M0r0(rk)|i
≤ |M1d + M0r0(d)|i

(6.104)

• Let now i /∈ D(rk−1, r0(rk−1)) and i ∈ D(rsmall, r
0(rsmall)):

‖Rk −R0‖ = |d− a|i + |a + M1rk + M0r0(rk)− d|i
= |M1rk + M0r0(rk)|i
≤ |M1d + M0r0(d)|i.

(6.105)

• Let i /∈ D(rsmall, r
0(rsmall)) and i ∈ D(0n,0n) from which follows that(

M1rsmall + M0r0(rsmall)
)
i
> (d− a)i. (6.106)

Consequently,

‖Rk −R0‖ = |d− a|i + |M1rk + M0r0(rk)−M1rsmall −M0r0(rsmall)|i
≤ |M1rsmall + M0r0(rsmall) + M1rk + M0r0(rk)−M1rsmall −M0r0(rsmall)|i
= |M1rk + M0r0(rk)|i
≤ |M1d + M0r0(d)|i.

(6.107)
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• Finally, suppose that i /∈ D(0n,0n), i.e. ai ≥ di, where we have that

‖Rk −R0‖ = |d− d|i + |M1rk + M0r0(rk)−M1rsmall −M0r0(rsmall)|i
≤ |M1rk + M0r0(rk)|i
≤ |M1d + M0r0(d)|i

(6.108)

which completes the proof for the Elsinger Algorithm.

For the Hybrid Algorithm, the argumentation is analogous, i.e. we consider again five different
cases.

Similar to the propositions above in this section, a generalization of Proposition 6.18 for sys-
tems with m > 1 is also possible. For the decreasing versions of Elsinger and Hybrid Algorithm,
and similar as in the case of the Picard Algorithm, we found no upper bounds for ‖R∗ −R0‖.

Recapitulating the results of this section, we first found that in most cases it is either difficult
or impossible to give an upper bound for the iteration error. Secondly, some bounds that were
derived for the Picard Algorithm, cannot be established in the same manner for the Elsinger
and the Hybrid procedure. This essentially complicates a substantiated derivation of the k-th
iteration error and therefore the search for an optimal starting point for both algorithms – not
to mention the fact that the basis of all considerations for the Picard iterates was the validity
of (6.82) which does not hold in general for the Elsinger and the Hybrid Algorithm. For these
reasons we decided to apply the results of Proposition 6.13 to calculate the optimal starting
point in a slightly adapted version for the Elsinger and the Hybrid Algorithm as well.

Definition 6.19. For the Elsinger and the Hybrid Algorithm, we define the starting vector

Ropt :=

{
(rmgreat, . . . , r

1
great, r

0(rmgreat, . . . , r
1
great)) if ∆start ≤ 0,

(rmsmall, . . . , r
1
small, r

0(rmsmall, . . . , r
1
small)) if ∆start > 0,

(6.109)

where ∆start is given by

∆start :=



∥∥∥a +

m∑
k=1

(Mk − In)rkgreat + (M0 − In)r0(rmgreat, . . . , r
1
great)

∥∥∥
−
∥∥∥ m∑
k=1

Mkrksmall + M0r0(rmsmall, . . . , r
1
small)

∥∥∥ if Imax ≤ x (6.110)

1

1− Imax

∥∥∥a +

m∑
k=1

(Mk − In)rkgreat + (M0 − In)r0(rmgreat, . . . , r
1
great)

∥∥∥
−
∥∥∥ m∑
k=1

Mkrkgreat + M0r0(rmgreat, . . . , r
1
great)

∥∥∥ if Imax > x(6.111)

and

x = 1− ‖a‖∑m
k=1 ‖rkgreat‖+ ‖r0(rmgreat, . . . , r

1
great)‖

(6.112)

We are aware of the fact that this relies on no strict mathematical derivation, however the
simulation results in Section 7.3 suggest that the decision rule in (6.109) leads to appropriate
results concerning the “correct” choice of one of the two possible starting vectors.
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Example 6.20. We want to check the goodness of the decision rule in (6.109) in a first example
with the financial system given in (6.14). We find that

Imax = 0.75 > 0.3223 = 1− ‖a‖
‖d1‖+ ‖r0(d1)‖

(6.113)

and chose Equation (6.111) for the decision rule which leads to

1

1− Imax
‖a + M1d− d + M0r0(d)− r0(d)‖ − ‖M1d + M0r0(d)‖ = −1.9022 < 0. (6.114)

We therefore chose (d1, r0(d1)) as the starting vector and observe that only 1 iteration step
is necessary instead of 3 steps when the procedure is started with (r1

small, r
0(r1

small)). For the
Hybrid Algorithm, the numbers are identical.

If we consider the modified system from (6.68), we use Equation (6.110) for the decision rule,
since

Imax = 0.1 < 0.5181 = 1− ‖a‖
‖d‖+ ‖r0(d)‖

. (6.115)

We get the value ∆start = 3.06, so (r1
small, r

0(r1
small)) should be the starting vector according

to the decision rule. This choice minimizes with 6 steps the number of iterations because one
step more is needed for the decreasing version. The Hybrid Algorithm needs 4 steps for both
directions to reach R∗.

For the sake of completeness, we give in the following the optimized versions of the considered
algorithms similar to the Optimized Picard Algorithm in the section above.

Algorithm 19 (Optimized Elsinger Algorithm). Set ε > 0.

1. For k = 0, choose(
r0,m, . . . , r0,1

)
∈
{

(rmgreat, . . . , r
1
great), (r

m
small, . . . , r

1
small)

}
(6.116)

according to (6.109) and determine r0,0 = r0(r0,m, . . . , r0,1) using Algorithm 2 or its mod-
ification for m > 1 given in (5.14). Denote the iterate R0 by R0 = (r0,m, . . . , r0,0).

2. For k ≥ 1, set for 1 ≤ j ≤ m,

rk,j = min

dj ,

a +

m∑
l=0

Mlrk−1,l −
m∑

l=j+1

dl

+ , (6.117)

calculate rk,0 = r0(rk,m, . . . , rk,1) and set Rk = (rk,m, . . . , rk,0).

3. If ‖Rk−1 −Rk‖ < ε, stop the algorithm. Else, set k = k + 1 and proceed with Step 2.

Algorithm 20 (Optimized Hybrid Algorithm (m > 1)). Set ε > 0.

1. For k = 0, choose(
r0,m, . . . , r0,1

)
∈
{

(rmgreat, . . . , r
1
great), (r

m
small, . . . , r

1
small)

}
(6.118)

according to (6.109) and determine r0,0 = r0(r0,m, . . . , r0,1) using Algorithm 2 or its mod-
ification for m > 1 given in (5.14). Denote the iterate R0 by R0 = (r0,m, . . . , r0,0).
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2. For k ≥ 1, determine for every 1 ≤ j ≤ m the fixed point rk,j of the mapping in
(5.15), where for the mapping Φj the fixed vectors rk−1,m, . . . , rk−1,j+1, rk−1,j−1, . . . , rk−1,0

are taken from the preceding iterate. Calculate rk,0 = r0(rk,m, . . . , rk,1) and set Rk =
(rk,m, . . . , rk,0).

3. If ‖Rk−1 −Rk‖ < ε, stop the algorithm. Else, set k = k + 1 and proceed with Step 2.

120



7 Simulation Studies

The current chapter is about verifying the theoretical results of the preceding chapters by means
of several simulation studies. In Chapter 6 we attempted to find a criteria to minimize the
number of iteration steps for the non-finite algorithms by introducing a decision rule that chooses
an optimal starting vector for the iteration procedure. This results in the Optimized Picard,
Elsinger and Hybrid Algorithm. The question whether the optimized algorithms actually lead to
a minimization of the number of needed iteration steps, compared to when always the maximum
or the minimum possible starting vector is chosen, is addressed in Section 7.3. The advantage of
the Trial-and-Error Algorithms (cf. Section 4.2 and 5.2) compared to the non-finite procedures
is the fact that R∗ is reached in a finite number of steps. A drawback of these algorithms is
that the choice of the lag value l is a typical tradeoff conflict between the speed of convergence
and the minimization of calculation effort. Section 7.4 of this chapter tries to find a solution of
this conflict by giving an optimal lag value that minimizes the calculation time on the one hand
and still guarantees that the lag value is not chosen too small to avoid situations in which the
algorithm stops when having found a potential default set that is actually not equal to D∗. In
the last Section, we compare all developed algorithms in this work to investigate the algorithm
efficiency trying to identify a potential most efficient valuation algorithm or at least trying to
find most efficient algorithms for particular types of financial systems. A crucial influence in
all simulations is the form of the underlying financial system, in particular the structure of
the ownership matrices and the liability vectors. In Section 7.1, these terms are discussed in
more detail, where we introduce some general expressions that are based on the ones given
in Acemoglu et al. (2015) and Elliott et al. (2014). Section 7.2 contains an overview of the
employed simulation parameters and a definition of the output parameters of the study. Note
that all numbers in this chapter are rounded to only three decimal places due to space limitations.

7.1 Simulation Framework

During the entire simulation study, we only consider financial systems without a seniority struc-
ture. Because of m = 1, we denote the liability vector simply by d ∈ (R+

0 )n. Sometimes we will
talk about the ownership matrices of the k-th seniority level for k = 0, 1, which for k = 0 means
that the equity ownership matrix is addressed. Beside its size n, the form of a financial system
F = (a,M,d) is characterized by the structure of the exogenous asset vector a, the liability
vector d and by of the ownership matrices that are contained in M = (M1,M0) ∈ (R+

0 )n×2n.

7.1.1 Asset and Debt Structure

The exogenous asset values are considered as fixed throughout all simulations and each firm has
the same amount of exogenous assets with value 1, i.e. a = (a1, . . . , an)t = 1n. We assume that
the nominal liabilities in the vector d consist of a part d > 0 which is identical for all firms, to
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which some random variation is added, viz.

d =
(
(d, . . . , d)t + (ε1, . . . , εn)t

)+
. (7.1)

The εi are iid random variables with εi ∼ N(0, σ2), σ > 0, for all i ∈ N . To ensure a non-negative
liability vector, the positive part is taken in (7.1).

7.1.2 Ownership Structure

In order to define the structure of M1 and M0, we have to introduce some general terminology
connected with ownership matrices. The following definitions are mainly based on the two works
of Acemoglu et al. (2015) and Elliott et al. (2014). The authors of the former article introduce
matrices without random influence, whereas the latter paper includes the aspect of randomness
for the generation of a network structure.

Definition 7.1. For a financial system F = (a,M,d) and k = 0, 1, the integration level of the
k-th seniority is defined as

ρk = max
j

n∑
i=1

Mk
ij = ‖Mk‖. (7.2)

For k = 0, we use the expression equity integration level and debt integration level for k = 1.

The integration level measures the degree or the extent of intersystem cross-holdings within
each seniority level. It clearly holds that ρk ∈ [0, 1] and, if Assumption 5.6 holds (cf. Chapter 6),
even ρk ∈ [0, 1). Note that the integration level can, under circumstances be a very “inhomoge-
neous” measure for the extend of cross-holdings. This is because of the fact that the integration
level can be very close to its maximum value 1 even for very sparse ownership matrices where
the ownership fractions are very small as long as at least one firm raised a substantial part of its
debt or equity from other members of the system. However, in all of our simulation studies, we
will ensure that by definition of the ownership matrices in the following, the column sums of the
entries in a matrix Mk will be equal (if all entries are non-zero) and therefore also equal to ρk.
Consequently, we try to keep the form of the ownership matrices as homogeneous as possible.

The second parameter to characterize the ownership structure is the actual number of present
cross-holdings in a seniority level and is called diversification level.

Definition 7.2. As in Definition 7.1, we consider the financial system F . The diversification
level of the k-th seniority of F is defined as

φk = max
j

∣∣∣{i ∈ N : Mk
ij > 0

}∣∣∣ . (7.3)

For k = 0 and k = 1, φ0 and φ1 are referred to as equity diversification level and debt diversifi-
cation level, respectively.

For the debt ownership matrix, clearly φ1 ≤ n − 1 and φ0 ≤ n for equity ownership matrix
since M0

ii > 0 is not explicitly excluded in our model (cf. Definition 2.2). Practically, we will not
allow the diagonal entries of M0 to be different from zero in the simulations, so the diversification
level will also not be larger than n − 1. Similar to the definition of the integration level, the
diversification level does not provide an explicit insight of the detailed connection structure of a
matrix. In its most extreme from, the entries of Mk can all be zero in n− 1 columns and all be
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non-zero (except for the diagonal entry) in one single column resulting in a diversification level
of n−1. For the purpose of getting homogeneous matrices, we keep the number of cross-holdings
for non-random matrices identical for each firm. If random-ownership matrices are considered,
this cannot be guaranteed, as we will see in the following.

After having established a framework for ownership matrices, we can now become more de-
tailed and describe how such a matrix can actually be defined. Doing so, we distinguish between
two different approaches that are presented in the next subsections. An elementary way to
define the entries of an ownership matrix is to exclude all random influence and to determine
the entries only based on the integration level which results in a non-random ownership matrix.
In a second method, the entries of the matrix are specified randomly.

Non-random Ownership Structure

Ownership matrices of this type are matrices in which the entries are fixed and completely
specified by their given input parameters. The subsequent considerations are based on the
following definition of two particular non-random ownership matrices.

Definition 7.3. An ownership matrix M is called

(i) a ring ownership matrix if for i = 1, . . . , n− 1, the entries Mi+1,i and M1n are equal and
greater than zero, and all other entries of M are zero.

(ii) a complete ownership matrix if all entries, except of the diagonal entries, are larger than
zero and of the same size.

In other words, the debt ownership matrix M1 is a ring matrix, if firm i+1 is the only creditor
of firm i within the system and firm 1 is the only creditor of firm n. Suppose that the equity
matrix M0 is a ring matrix, this implies that the i-th firm has only one single shareholder within
the system, namely the (i+1)-th firm. Analogous to debt matrices, the only shareholder of firm
n is firm 1.

The diversification level of ring ownership matrices is always 1 whereas the diversification
level of complete ownership matrices is n − 1. For both types of matrices, the integration
level ρk is equal to an arbitrary column sum of Mk. Ring and complete ownership matrices
can be considered as extreme forms of interconnectedness of financial systems. To construct
intermediate type of networks, we will make use of the next definition.

Definition 7.4. Let M be a ring ownership matrix and M̃ be a complete ownership matrix. A
λ-convex combination of M and M̃ is defined as the matrix M with entries

Mij = λM ij + (1− λ)M̃ij , (7.4)

where λ ∈ [0, 1].

The more λ decreases, the more assimilate the ownership fractions in the corresponding own-
ership matrix. For values of λ near the maximum 1, member i + 1 of the system will be the
main owner of i’s equity or debt.

Example 7.5. For the size of the system we set n = 4, the level of integration is ρ = 0.6 for
both the ring and the complete ownership matrix and λ = 0.5. The ring ownership matrix M,

123



the complete ownership matrix M̃ and the λ-convex combination matrix M of them are

M =


0 0 0 .6
.6 0 0 0
0 .6 0 0
0 0 .6 0

 , M̃ =


0 .2 .2 .2
.2 0 .2 .2
.2 .2 0 .2
.2 .2 .2 0

 and M =


0 .1 .1 .4
.4 0 .1 .1
.1 .4 0 .1
.1 .1 .4 0

 . (7.5)

In our simulation studies, non-random ownership matrices will always be λ-convex combina-
tions of ring and complete matrices as in (7.4). Therefore, the integration level of the ring and of
the complete matrix as well as the value of λ are sufficient for the generation of the corresponding
ownership matrix. We summarize the findings of this subsection in the next Corollary.

Corollary 7.6. Let λ ∈ [0, 1], r ∈ [0, 1) and let M be a ring ownership matrix with non-zero

elements r and let M̃ be a complete ownership matrix with integration level r, i.e. with non-
diagonal elements r

n−1 . The tuple (λ, r) then completely specifies the form of the non-random

ownership matrix M = λM + (1− λ)M̃. It holds for M and its corresponding integration level
ρ that ρ = r and that

φ =

{
1, λ = 1

n− 1, 0 ≤ λ < 1,
(7.6)

where φ is the diversification level of M.

Clearly, in a λ-convex combination, the underlying ring and complete ownership matrices can
have differing integration levels. For our simulations we assume that their integration levels are
equal, for convenience. The value r is sometimes referred to as the integration parameter of M
or, more sloppy, as the integration of M. The convention r < 1 ensures that Assumption 5.6
is valid which guarantees a unique solution of the system. In the remainder, we will use the
expressions non-random and fixed ownership matrix equivalently and mean that all entries of
the matrix are fully determined given the tuple (λ, r).

Random Ownership Structure

While in Section 7.1.2, the entries of the ownership matrices can be arbitrary but non-random,
we will now also allow that the entries can be determined randomly. A random ownership matrix
is based on a random network matrix. Let k ∈ {0, 1} and pk ∈ [0, 1]. The entries of the random
network matrix Gk for the corresponding seniority level are defined as

Gkij =

{
1, with probability pk,

0, with probability 1− pk,
(7.7)

for i 6= j and Gkii = 0 for all i ∈ N . Hence, the entries of Gk are Bernoulli-distributed random
variables with E[Gkij ] = pk for i 6= j. As the name says, the matrix Gk defines connections

between two firms in the system. If Gkij = 1, then firm i owns a fraction of firm j’s debt if k = 1,
or some of the shares of firm j, if k = 0. The actual amount of debt or shares is defined at a
later stage. The probability pk for such a connection is sometimes called Erdös-Rényi probability
(cf. Nier et al., 2007). Note that Gk is not necessarily symmetric so that it is possible that firm
i owns a proportion of j’s debt payments but firm j receives no debt payments from i. The
random network matrix is the basis for the definition of a random ownership matrix.
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Definition 7.7. Let Gk be a random network matrix as in (7.7) and rk ∈ [0, 1) for k = 0, 1.
The corresponding random ownership matrix Mk for seniority level k is then given by

Mk
ij =

rk
Gk

ij

Gk
j

if Gkj > 0,

0, if Gkj = 0,
(7.8)

where Gkj =
∑n

i=1G
k
ij is the sum of non-zero entries in the j-th column of Gk.

Note that the definition in (7.8) ensures that the column sum of Mk will always be smaller
or equal to rk:

n∑
i=1

Mk
ij ≤ rk

n∑
i=1

Gkij

Gkj
=

rk

Gkj

n∑
i=1

Gkij = rk < 1. (7.9)

The equality in the equation above holds for Gj 6= 0. For this reason, rk is the upper bound
for the integration level of Mk which is why we will use the term integration parameter for rk

similar to the case of non-random ownership matrices.

Corollary 7.8. Let r ∈ [0, 1) and p ∈ [0, 1] be the Erdös-Rényi probability for a random network
matrix G. Beside the size n, the tuple (r, p) is the only information necessary to generate a
random ownership matrix as defined in (7.8). It holds for M that

ρ =

{
0, if G1 = . . . = Gn = 0,

r, else.
(7.10)

Of course, the diversification level φ of a random ownership matrix as the maximum number
of cross-holdings in every column is random itself. The expected number of cross-holdings in
the j-th column of M is the expected number of non-zero entries in the corresponding column
of G for which we know that:

E

 n∑
j=1

Gij

 =

n∑
j=1

E [Gij ] = (n− 1)p. (7.11)

This means that the higher the Erdös-Rényi probability p is chosen, the higher the diversification
level of M tends to be. Clearly, if p = 1, we obtain a complete ownership matrix with φ = n−1.
On the other hand, if p = 0, no cross-holdings will be present and therefore φ = 0. That is why
we call the parameter p the diversification parameter or, simply, the diversification of M in the
following.

In contrast to the expected value of an entry of Gk, the expectation of the entries of Mk are
a little bit more complicated to calculate.

Proposition 7.9. Let Bn,p(l) be the probability for l ∈ {0, 1, . . . , n} successes of a binomial
distributed variable with parameters n and p ∈ [0, 1], i.e.

Bn,p(l) =

(
n

l

)
pl(1− p)n−l. (7.12)

For given integration and diversification parameters rk and pk, the expectation of the entry Mk
ij

based on the random network matrix Gk is given by

E
[
Mk
ij

]
=

rk

n− 1

(
1−Bn−1,pk(0)

)
=

rk

n− 1

(
1−

(
1− pk

)n−1
)

(7.13)
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for i 6= j and by E[Mk
ii] = 0 for all i ∈ {1, . . . , n}. The variance of Mk

ij is

Var
[
Mk
ij

]
=

(rk)2

n− 1

n−1∑
l=1

1

l
Bn−1,pk(l)−E

[
Mk
ij

]2
(7.14)

for i 6= j and Var[Mk
ii] = 0 for all i ∈ {1, . . . , n}.

Proof. For the sake of simplicity, we omit the seniority level and write M, r and p instead.
Because of (7.8), the set of possible values for the non-diagonal elements Mij is

A :=

{
0, r,

r

2
,
r

3
, . . . ,

r

n− 1

}
. (7.15)

Let x ∈ A\{0}. Then x = r
l with l ∈ {1, . . . , n− 1} and

x · P[Mij = x] =
r

l
· P[Gj = l, Gij = 1]

=
r

l
· P

 n−1∑
s=1,s 6=j

Gsj = l − 1

P [Gij = 1]

=
r

l
·Bn−2,p(l − 1) · p

=
r

n− 1
·Bn−1,p(l).

(7.16)

Using this result, the expectation of Mij is for i 6= j given by

E [Mij ] =
∑
x∈A

xP[Mij = x] =
r

n− 1

n−1∑
l=1

Bn−1,p(l)

=
r

n− 1
(1−Bn−1,p(0)) =

r

n− 1

(
1− (1− p)n−1

)
.

(7.17)

For the variance, first note that for x ∈ A, P[M2
ij = x2] = P[Mij = x] and using a similar

argumentation as in (7.16), it holds that

x2 · P
[
M2
ij = x2

]
=
r2

l2
· P[Mij = x] =

r2

(n− 1)l
·Bn−1,p(l), (7.18)

for x ∈ A\{0}. Let µ := E[Mij ] = r
n−1(1− (1− p)n−1). Then,

Var[Mij ] = E
[
M2
ij

]
− µ2

=
∑
x∈A

x2 · P
[
M2
ij = x2

]
− µ2

=
r2

n− 1

n−1∑
l=1

1

l
·Bn−1,p(l)− µ2.

(7.19)

The factor 1 − Bn−1,pk(0) in (7.13) can be interpreted as a correction factor. If pk is near 1,

we have that Bn−1,pk(0) ≈ 0 and hence E[Mk
ij ] ≈ rk

n−1 . But if pk is small, the probability of
the event Gj = 0 for some j ∈ {1, . . . , n} is relatively high. In such cases, the entries of the

corresponding column in Mk will be zero which is why the ratio rk

n−1 has to be corrected by
1−Bn−1,pk(0) < 1.
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Figure 7.1: Plot of the variance of Mij given by formula (7.14) for different integration param-
eters r and diversification parameters p for a system entailing n = 100 firms. The
labels for Var[Mij ] on the vertical axis are multiplied with 103 for better readability,
i.e. the label 2 on the axis actually stands for 2 · 10−3. Note that the diversification
parameter p is shown in %, i.e. the value 95 means p = 0.95.

Example 7.10. To get a better insight, we want to visualize the behavior of the variance of
Mij as well as the distribution for some given values of r and p. In Figure 7.1 the variance
is shown according to Equation (7.14) for some combinations of integration and diversification
parameters and a system size of n = 100. We observe that the variance is relatively small in
case of a high diversification and a low integration parameter. For an increasing integration
parameter, the variance does only very slightly increase if the diversification parameter stays
high. If the integration parameter becomes high and the diversification parameter becomes low
at the same time, a disproportional high increase of the variance is the consequence. To get a
numeric impression, for r = 0.05 and p = 0.99, we have that Var[Mij ] = 2.60 · 10−9. If r = 0.99
and p = 0.05, the variance is given by Var[Mij ] = 2.44 · 10−3, which is an approximate increase
by a factor of 106.
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(a) r = 0.9 and p = 0.95
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(b) r = 0.9 and p = 0.5
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(c) r = 0.9 and p = 0.05

Figure 7.2: Histograms of the entries Mij of 1000 randomly generated ownership matrices of
size n = 100, i.e. 9 900 000 values in total. The integration parameter was r = 0.9
every time, the diversification parameter was given by p = 0.95 in part (a), p = 0.5
in part (b) and p = 0.05 in part (c). Note that in case of p = 0.05, the limit
of the x-axis is truncated to a maximum value of 0.2 for a better visibility. The
fraction of observations Mij with higher values than 0.2 is given by 1.36%. The bar
height denotes the frequency, i.e. the number of observations that are contained
in every interval. The vertical dotted line denotes the expectation E[Mij ] for the
corresponding parameter combination. Note that in all three considered cases, the
expectation of Mij is approximately equal, viz. E[Mij ] = 0.0090 if p = 0.05 and
E[Mij ] = 0.0091 for p = 0.5 and p = 0.95.
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In Figure 7.2, we generated for r = 0.9 and three different diversification parameters 1 000
ownership matrices and created a histogram for every scenario. Since n = 100 is chosen, every
matrix contains 1002−100 = 9 900 entries – the entries on the diagonal are excluded – and every
histogram contains 9 900 · 1 000 = 9 900 000 values. Even for a constant integration parameter,
the variance of Mij is for p = 0.05 about 450 times higher than for p = 0.95. It becomes clear
that the probability of the event Mij = 0 becomes very high for small diversification levels.
When p = 0.05, the value was zero for about 95% of the observations. A consequence is that for
relatively small diversification parameters, the ownership matrices become very sparse.

7.2 Simulation Parameters

7.2.1 Input Parameters

With the background of Section 7.1 and the therein defined parameters of a financial system in
mind, we now want to list the range of the specific parameters that are considered in the study.
In Table 7.1, the values are listed for a compact overview.

For the system size n we choose five different values, viz. n ∈ {5, 10, 25, 50, 100}. A system
with only 5 or 10 firms can be considered as relatively small whereas networks with n = 25 or
n = 50 are regarded as medium-sized. Small systems are investigated for example in Gouriéroux
et al. (2012) (n = 5), Rogers and Veraart (2013) (n = 6), Elsinger et al. (2006a) and Cifuentes
et al. (2005) (n = 10 both). An example of a medium-sized system is Nier et al. (2007) with
20 firms. Further, we add networks with 100 firms into our study to also include an example of
a larger system. Existing studies for such sizes are for instance Elliott et al. (2014) and Müller
(2006) that entail networks with 100, and 200 firms, respectively. Note that there are also studies
that investigate systems of much higher size like Gai and Kapadia (2010) with n = 1000. Works
with large systems are often empirical studies of real-life networks like the ones of Elsinger et al.
(2006b) and Cont et al. (2010) where n = 881 and n = 2400, respectively.

As mentioned above, the exogenous asset values are assumed to have the fixed value 1, fol-
lowing the approach in Karl and Fischer (2014). The range for the nominal debt values is given
by d ∈ {0.5, 1, 1.5, 2}. Nier et al. (2007) consider a ratio d to a of about 1.15 in their article
(“benchmark experiment”) and Cifuentes et al. (2005) a ratio of about 1.3 which justifies the
interval of our values of d. On the liability vector, we add independently normally distributed
“shocks” εi on each value separately, as described in (7.1). The mean of εi is zero and for the
standard deviation σ, we use the set σ ∈ {0.5, 1}. Note that for σ there exist, by our best
knowledge, no benchmark values since in most studies, the values in d are assumed to be fixed
and the random variation is included in the vector a.

When the debt ownership matrix is generated, integration parameters within the range of r1 ∈
{0, 0.05, 0.5, 0.95} are used. Possible integration parameters for equity ownership matrices are
taken from r0 ∈ {0, 0.025, 0.25, 0.475}, where each value is half the associated debt integration.
The justification for this approach is that equity cross-ownership is probably commonly less
pronounced than debt cross-ownership. Further, we want to avoid possible cross-ownership
entries lager that 0.5 since this would mean that a firm is owned by majority by another firm
in the system. Our choice of the interval of possible integration levels is based on the work of
Elliott et al. (2014) who use integration parameters from 0.1 to 0.9. Note that in Gouriéroux
et al. (2012) there is an example of a financial system with m = 1 consisting out of the n = 5
largest French banks. In this system, the integration levels of equity and debt are given by
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ρ0 = 0.036 and ρ1 = 0.0502. Even though this is only a small system, it indicates that the
integration levels are probably much smaller in practice.

For non-random ownership matrices, the remaining parameter to define is λ. Beside ring
(λ = 1) and complete (λ = 0) ownership matrices, we use the intermediate value of λ = 0.5
in our study. In random ownership matrices, we further need to specify the diversification
parameter p. We choose with p ∈ {0.05, 0.5, 0.95} three different parameter values. Note that
for p = 0 we obtain ownership matrices with only zero entries and that for p = 1 we will
get a complete ownership matrix. To retain the random character of the ownership matrices,
we therefore choose values strictly larger than zero and strictly smaller than one, unlike other
studies such as Nier et al. (2007) who allow p to become 0 and 1.

For every possible combination of the input parameters shown in Table 7.1, we generated
N = 1000 realizations of the same financial system and one such realization is denoted as a
simulated system in the following. The number of N = 1000 is the same than in Elliott et al.
(2014). Additional simulations show that the results are fairly stable for N = 1000, which is why
we view the number of 1000 repetitions as reliable. Note that in other papers, smaller numbers
of repetitions are also considered such as N = 100 as in Nier et al. (2007).

Table 7.1: Overview of the investigated parameters of the simulation study and the ranges of
the utilized values.

General Setting

Number of simulations N = 1000
System size n ∈ {5, 10, 25, 50, 100}
Exogenous assets a = 1n = (1, . . . , 1)t

Tolerance level ε = 10−3

Liability structure

Debt values d ∈ {0.5, 1, 1.5, 2}
Standard deviation of εi σ ∈ {0.5, 1}

Ownership structure

Debt integration r1 ∈ {0, 0.05, 0.5, 0.95}
Equity integration r0 ∈ {0, 0.025, 0.25, 0.475}
Diversification p0, p1 ∈ {0.05, 0.5, 0.95}
Mixing parameter λ0, λ1 ∈ {0, 0.5, 1}

Notes: The diversification parameters p0 and p1 are used only for
financial systems with a random ownership structure, t he mixing
parameters λ0 and λ1 only for systems with a fixed ownership
structure. The setting ε = 10−3 was used in every algorithm
or subalgorithm in which the specification of a tolerance level is
needed.

As shown in Table 7.1, the following parameters are needed for the simulation of a financial
system: n, d, σ, r1, r0 and either λ0, λ1 in case of non-random ownership matrices or p0, p1

for random matrices. Every possible combination of parameters is considered in the simulation
study. Since there are five possible values for n, four for d, two for σ, four for each value of r1
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and r0 and three values for each diversification level, this leads to

2 ·
(

5 · 4 · 2 · 4 · 4 · 3 · 3
)

= 11520 (7.20)

different scenarios to define the shape of F in total. The factor 2 stems from the fact that
we consider random and non-random ownership matrices. Note that we exclude the parameter
combinations in which both r0 = r1 = 0 since then, no cross-holdings are present. In total,
this concerns 720 = 2 · (5 · 4 · 2 · 3 · 3) scenarios which is why only 10800 scenarios of different
parameter combinations are considered.

To get a better impression about the question in how many of the scenarios the firms are more
likely to be in default or more likely to be solvent, we calculated for fixed ownership matrices
and a value of σ = 0 the corresponding fixed points for every possible parameter combination.
Since in this situation all firms have identical recovery values, we checked whether one of the n
firms is in default or solvent. The result is that for n = 5, 10, 50 the firms are in default in 25%
of all scenarios and for n = 25, 100, about 29% of the firms are not solvent. This means that
we can assume that for the majority of the considered scenarios, most firms are solvent which
seems realistic for practical purposes.

7.2.2 Output Parameters

The main goal of the simulation study in Section 7.5 is to compare the different algorithms with
one another to find out whether there is a most efficient algorithm. We therefore want to find
the algorithm that minimizes the calculation effort to find the solution R∗. The calculation costs
of a single iteration step, i.e. the total costs that are needed to get from iterate Rk to Rk+1, are
quantified with the Landau symbol (Big O notation), where O(n) means that the time T (n) to
compute a problem of size n grows at the rate n. For the Picard Iteration, the most expensive
calculations are multiplications of a matrix with a vector. According to Dahlquist and Björck
(2008), this results in costs of O(n2). The two other iteration techniques given by the Elsinger
and the Hybrid Algorithm are more expensive, since linear equation systems have to be solved
with costs up to O(n3) (cf. Dahlquist and Björck, 2008).

Beside the costs of an iteration step, the convergence speed is the second crucial parameter to
assess the algorithm efficiency. Even though Elsinger and Hybrid Algorithm are computationally
more intensive to conduct, we have seen in the Propositions 4.11 and 4.19 that they will not
require more iteration steps to reach R∗ sufficiently close than the Picard Algorithm. Therefore,
a tradeoff-situation is given between computational costs and convergence speed of the Picard,
the Elsinger and the Hybrid Algorithm. The convergence speed is usually described by the
convergence order.

Definition 7.11 (Dahlquist and Björck (2008)). A series of iterates Rk with limk→∞Rk = R∗

is said to have convergence order equal to q ≥ 1 if for some constant 0 < c <∞,

lim
k→∞

‖Rk+1 −R∗‖
‖Rk −R∗‖q

= c. (7.21)

For q = 1 and c < 1, we have a linear convergence order.

In order to show that the three non-finite algorithms have at least a linear convergence, we
need to prove the following Lemma first.
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Lemma 7.12. For the Picard Algorithm (Algorithm 1), for the Elsinger Algorithm (Algorithms
3 and 11) and for the Hybrid Algorithm (Algorithms 6 and 12) it holds for the iterates Rk that

‖Rk+1 −R∗‖ ≤ Imax‖Rk −R∗‖, (7.22)

where Imax = max{‖Mm‖, . . . , ‖M0‖} and R∗ is the solution of the corresponding financial
system.

Proof. Let us first consider the case of only one seniority class (m = 1) and the Picard Algorithm,
i.e. we have the norm

‖Rk+1 −R∗‖ =

∥∥∥∥( min{d1,a + M1rk,1 + M0rk,0} −min{d1,a + M1r∗,1 + M0r∗,0}
(a + M1rk,1 + M0rk,0 − d1)+ − (a + M1r∗,1 + M0r∗,0 − d1)+

)∥∥∥∥ .
(7.23)

We check validity of (7.23) for each firm i ∈ N separately and start with the decreasing version
of the algorithm. To this end, we need to consider the following cases.

(i) Let i ∈ D∗ and i ∈ D(Rk):

‖Rk+1 −R∗‖i = |a + M1rk,1 + M0rk,0 − a−M1r∗,1 −M0r∗,0|i

=

∣∣∣∣∣(M1(rk,1 − r∗,1) + M0(rk,0 − r∗,0)
)
i︸ ︷︷ ︸

≥0

∣∣∣∣∣. (7.24)

(ii) Let i ∈ D∗ and i /∈ D(Rk):

‖Rk+1 −R∗‖i = |d1 − a−M1r∗,1 −M0r∗,0|i + |a + M1rk,1 + M0rk,0 − d1|i

=

∣∣∣∣∣(M1(rk,1 − r∗,1) + M0(rk,0 − r∗,0)
)
i︸ ︷︷ ︸

≥0

∣∣∣∣∣. (7.25)

(iii) Let i /∈ D∗:

‖Rk+1 −R∗‖i = |d1 − d1|i + |M1rk,1 + M0rk,0 −M1r∗,1 −M0r∗,0|i

=

∣∣∣∣∣(M1(rk,1 − r∗,1) + M0(rk,0 − r∗,0)
)
i︸ ︷︷ ︸

≥0

∣∣∣∣∣. (7.26)

It has therefore been established that

‖Rk+1 −R∗‖ = ‖M1(rk,1 − r∗,1) + M0(rk,0 − r∗,0)‖
≤ ‖M1‖ · ‖rk,1 − r∗,1‖+ ‖M0‖ · ‖rk,0 − r∗,0‖
≤ Imax‖Rk −R∗‖.

(7.27)

For the increasing version, we also have to take three cases into account.

(i) Let i ∈ D(Rk) and i ∈ D∗. This is analogous to case (i) of the decreasing version but with
the difference that the i-th component of the sum in the norm is smaller or equal to zero.
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(ii) Let i ∈ D(Rk) and i /∈ D∗:

‖Rk+1 −R∗‖i = |a + M1rk,1 + M0rk,0 − d1|i + | − (a + M1r∗,1 + M0r∗,0 − d1)|i

=

∣∣∣∣∣(M1(rk,1 − r∗,1) + M0(rk,0 − r∗,0)
)
i︸ ︷︷ ︸

≤0

∣∣∣∣∣. (7.28)

(iii) Let i /∈ D(Rk). This is equivalent to case (iii) of the decreasing version with the same
change of the sign as in (i).

For the other algorithms (Elsinger, Hybrid) the argumentation is very similar. If systems with
m > 1 are considered, the argumentation also stays the same with the difference that more case
differentiations have to be taken into account.

Corollary 7.13. Under Assumption 5.6, Picard, Elsinger and Hybrid Algorithm have at least
a linear convergence order.

Proof. Together with Lemma 7.12 it holds for the three algorithms that

lim
k→∞

‖Rk+1 −R∗‖
‖Rk −R∗‖

≤ Imax < 1 (7.29)

from which the linear convergence follows immediately.

However, we could not show a higher convergence order which prevents the application of an
efficiency index to compare the different iteration techniques, see Dahlquist and Björck (2008) for
more details. For Trial-and-Error Algorithms the comparison of the procedures on an analytical
way becomes even more complicated because of the additional aspect that a pseudo solution
with costs O(n3) is calculated after some undefined number of iteration steps.

Because of these reasons, the comparison of the different methods on an analytical basis seems
impossible. This is why we measured the time that was needed to execute an algorithm and
considered this value as the primary output of our simulation. Though this measure strongly
depends on the processor speed and memory capacity of the computer, it allows an objective
comparison of the different algorithms. The simulations were conducted on a computer with
2.4 GHz and 32 GB RAM, the software used was R (R Core Team, 2014). The runtime in
the subsequent sections is defined as the total time measured in seconds that was needed to
determine the N = 1000 solutions of each simulated system for a given combination of input
parameters. Beside the runtime, we also documented the iteration and calculation steps needed
to reach the solution of the current financial system. Recall that in Section 4.2 we introduced
the expressions iteration step and calculation step, where a calculation step was – basically –
the solution of a linear equation system and an iteration step included all type of computations
to get from iterate Rk to the next iterate Rk+1, k ≥ 0.

In Section 7.3, another simulation target is to investigate whether the decision rules in (6.74)
and (6.109) lead to acceptable results. Apart from the actual runtime, we therefore also assessed
the goodness of the decision rule by comparing the number of iterations that are needed to
approach the fixed point R∗ sufficiently close. For the Picard Algorithm, these numbers are
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defined as

kgreat := min{k ∈ N : ‖Φk(Rgreat)− Φk−1(Rgreat)‖ < ε},
ksmall := min{k ∈ N : ‖Φk(Rsmall)− Φk−1(Rsmall)‖ < ε},
kopt := min{k ∈ N : ‖Φk(Ropt)− Φk−1(Ropt)‖ < ε},

(7.30)

with Ropt defined as in (6.74). The choice of Ropt was “right” if kopt = min{kgreat, ksmall} which
leads to the error rate of the Picard Algorithm defined as

εP :=

∣∣{l ∈ {1, . . . , N} : klopt 6= min{klgreat, k
l
small}

}∣∣
N

∈ [0, 1], (7.31)

where the index l = 1, . . . , N denotes the corresponding simulated system. In a similar way, the
error rates εE and εH are determined for the Elsinger and the Hybrid algorithm, where Rgreat is
replaced by (r1

great, r
0(r1

great)), Rsmall by (r1
small, r

0(r1
small)) and Ropt is calculated using Equation

(6.109).

In Section 7.4, we address the issue of finding an optimal lag value. Suppose that for a given
combination of input parameters, we have generated N simulated systems. We ignore for a
moment the direction of the Trial-and-Error Algorithm and assume that we have determined
for the Trial-and-Error Picard (TP), the Trial-and-Error Elsinger (TE) and the Trial-and-Error
Hybrid Algorithm (TH) for a lag value 2 ≤ l ≤ 5 the first potential default set D̄jTP(l), D̄jTE(l)

and D̄jTH(l) where j = 1, . . . , N . In case of the Trial-and-Error Picard Algorithm we define

εjTP(l) =

{
1, if D̄jTP(l) 6= D∗,
0, else,

(7.32)

and analogously εjTE(l) and εjTH(l) for the TE and TH Algorithm, respectively. The error rate
for the TP Algorithm for the lag value l is then given by

εTP(l) =
1

N

N∑
j=1

εjTP(l) ∈ [0, 1]. (7.33)

In the same way the error rates εTE(l) and εTH(l) are defined.

Before we report the simulation results, we introduce abbreviations for the algorithms. The
short name of an algorithm consists out of three different components. In the first component,
the direction is determined, where we distinguish between the two directions “Decreasing” (D)
and “Increasing” (I). The second component describes the algorithm class for which “Trial-and-
Error” (T), “Sandwich” (S) or no letter at all is possible for the non-finite algorithms of Section
4.1. Finally, we have to specify the iteration technique, where “Picard” (P), “Elsinger” (E)
and “Hybrid” (H) are possible. Putting these letters together leads to a particular algorithm
of Chapter 4. For instance, DP stands for the Decreasing Picard Algorithm or ITH for the
Increasing Trial-and-Error Hybrid Algorithm. If we use the letter O instead of one of the two
directions D or I, this means that the optimized version of the Algorithm is used. OP therefore
stands for the Optimized Picard Algorithm (Algorithm 18) and OTE means that the Optimized
Trial-and-Error version of the Elsinger Algorithm is applied, where the starting vector was
calculated via the decision rule in (6.109). Note that for the Sandwich Algorithms the first
letter that denotes the direction is suppressed since no particular direction has to be determined
for this type of procedure. The abbreviation SP therefore stands for the Sandwich Picard
Algorithm.
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7.3 Optimizing Non-finite Algorithms

Before presenting the results of the simulation study in detail, we point out that when the error
rate as in (7.31) is the output parameter of interest, situations in which a ≥ d must not be
taken into account.

Lemma 7.14. For financial systems F with a ≥ d, it holds that R∗ = Rgreat. Further, both
decision rules in (6.74) and (6.109) have as a consequence that the initial starting vector is equal
to R∗.

Proof. Check that if a ≥ d, it holds that

r0
great = (In −M0)−1(a + M1d− d) = r0(d1) (7.34)

and, obviously, Rgreat = R∗. Moreover, Rsmall = (d, (a− d)) and

M0r0
great − r0

great = −(In −M0)r0
great = −

(
a + M1d− d

)
. (7.35)

It follows that ∆start defined as in (6.74) becomes

∆start =

{
‖a + M1d− d + M0r0

great − r0
great‖ − ‖M1d + M0(a− d)‖

Imax

1−Imax ‖a + M1d− d + M0r0
great − r0

great‖ − ‖M1d + M0r0
great‖

=

{
−‖M1d + M0(a− d)‖
−‖M1d + M0r0

great‖

≤ 0.

(7.36)

Therefore, R0 = Rgreat for the Picard Algorithm. In case of the Elsinger or the Hybrid Algo-
rithm, R0 is chosen according to (6.109), where we obtain with a similar argumentation that
R0 = (d, r0(d)) = R∗.

Firms with ai ≥ di are referred to as super-hedged in Fischer (2015). A consequence from
Lemma 7.14 is that if the financial system consists only out of super-hedged firms, no empirical
analysis about the decision rule is necessary. However, since the entries of d in the study are
not chosen fixed but with a random variation, we also include scenarios in which d ≤ 1 into our
simulation.

7.3.1 Results

In case of financial systems with a non-random ownership structure the mean error rate over
all considered 5400 scenarios is 0.094 for the Picard Algorithm, 0.050 for the Elsinger and 0.017
for the Hybrid Algorithm. Table 7.2 lists on the left hand side these overall error rates and the
error rates grouped by every input parameter for systems with non-random ownership matrices.
Beside these data, we also found that there are 390 parameter combinations for the Picard
Algorithm with an error rate higher than 0.5 and corresponding numbers of 167 and 20 for the
Elsinger and the Hybrid Algorithm (numbers not shown in Table 7.2). A first insight is that
the size of a financial system has almost no influence on the error rate since the rates are for
every algorithm almost constant for the different values of n. Only a slight tendency that the
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Table 7.2: Mean error rates defined in (7.31) grouped by the simulation parameters for systems
with fixed and random ownership structure. In the last three rows of the table with
the label “total”, the mean error rates over all parameters are shown.

Fixed ownership matrices Random ownership matrices
n n

5 10 25 50 100 5 10 25 50 100
P 0.080 0.098 0.095 0.097 0.098 0.093 0.104 0.116 0.114 0.094
E 0.040 0.045 0.052 0.056 0.055 0.057 0.060 0.075 0.074 0.061
H 0.017 0.015 0.013 0.016 0.023 0.022 0.023 0.021 0.019 0.022

r0 r0

0 0.025 0.25 0.475 0 0.025 0.25 0.475
P 0.104 0.092 0.105 0.076 0.117 0.100 0.114 0.088
E 0.104 0.074 0.031 0.003 0.119 0.080 0.049 0.028
H 0.002 0.032 0.024 0.005 0.003 0.031 0.028 0.020

r1 r1

0 0.05 0.5 0.95 0 0.05 0.5 0.95
P 0.051 0.014 0.024 0.275 0.045 0.016 0.041 0.299
E 0.000 0.012 0.026 0.148 0.003 0.015 0.042 0.186
H 0.000 0.005 0.020 0.039 0.003 0.005 0.025 0.049

λ0 p0

0 0.5 1 0.05 0.5 0.95
P 0.087 0.089 0.104 0.111 0.102 0.099
E 0.050 0.049 0.049 0.075 0.062 0.060
H 0.016 0.015 0.019 0.024 0.021 0.020

λ1 p1

0 0.5 1 0.05 0.5 0.95
P 0.079 0.092 0.110 0.133 0.100 0.080
E 0.044 0.050 0.055 0.082 0.065 0.050
H 0.012 0.015 0.024 0.034 0.018 0.013

d d
0.5 1 1.5 2 0.5 1 1.5 2

P 0.096 0.101 0.090 0.087 0.104 0.110 0.101 0.101
E 0.041 0.045 0.054 0.058 0.053 0.057 0.071 0.081
H 0.010 0.011 0.019 0.027 0.017 0.015 0.024 0.030

σ σ
0.5 1 0.5 1

P 0.017 0.170 0.050 0.158
E 0.006 0.093 0.032 0.099
H 0.004 0.030 0.014 0.029

total total
P 0.094 0.104
E 0.050 0.065
H 0.017 0.022
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error rates increase for increasing n can be observed. The same statement holds for the equity
integration r0 as well, with the difference that the error rates here tend to decrease for higher
integration values. One of the strongest influence parameters is the debt integration which can
be concluded from a disproportional high increase of the error rate when r1 reaches its highest
value of 0.95 compared to lower values. Note that this change is much smaller for the Hybrid
Algorithm. The parameters λ0 and λ1 seem to be minor influence parameters that hardly affect
the error rate. We indeed detect increasing error rates for increasing values of both λ0 and λ1,
but the growth is relatively small. Though the error rates for the differing values of the debt
level d reveal no noticeable results, we see that the standard deviation of the random values
that are added on d has a strong effect on the rates. Mean error rates for σ = 1 tremendously
increase compared to σ = 0.5. In Table B.1 in the Appendix, the error rates are listed in more
detail grouped by the system size, the debt values and the values for σ. In particular, we list
the mean rates for all parameters combinations in which r1 = 0.95 is given to stress the fact
that for the combination of a high debt integration and a value of σ = 1, there seems to be some
kind of interaction effect on the error rate.

If the ownership matrices are randomly generated we get very similar impressions. At a global
level, the Hybrid Algorithm has with 0.022 the lowest mean error rate over all scenarios, followed
by the Elsinger (0.065) and the Picard Algorithm (0.104), as can be seen on the right side of
Table 7.2. The number of all possible 5400 scenarios with mean error rates over 0.5 was a bit
higher compared to systems with a fixed ownership structure. For the Picard Algorithm, the
number was 414, for the Elsinger Algorithm 216 and 26 for the Hybrid Algorithm. Investigating
the relevant columns of Table 7.2, we detect that the assertions made on the influence of the
simulation parameters for fixed ownership matrices also hold for the most parts if random
matrices are considered. The values for n, p0, p1, r0 and d have no severe influence on the
error rates, the debt integration level and the values of σ, however, do have a more significant
influence. As was the case for non-random ownership matrices, the rates heavily increase for
r1 = 0.95 and σ = 1. We expected some interesting results for high integration values and
low values of the corresponding diversification due to an disproportionally increased variance of
the entries in the ownership matrices in these situations (see Example 7.10) but there were no
noticeable results, as Table B.2 in the Appendix demonstrates.

Concerning the second output parameter, the runtime of the procedures, we find somewhat
contradictory results. In case of non-random matrices, the optimized versions of the algorithms
are mostly slower than their increasing and decreasing counterparts. For instance, there are
only 9 parameter combinations where the calculation time of the optimized version of the Picard
Algorithm was less than for the increasing and the decreasing version simultaneously. For the
Elsinger Algorithm, there was one such combination and even no combination for the Hybrid
Algorithm. The same statements hold for the simulations with random ownership matrices.
Here, there are 6 combinations in which the Optimized Picard Algorithm is faster than the
other two versions, two for the Elsinger and no ones for the Hybrid Algorithm. See also Table
7.3 where the mean runtimes are grouped by the system size that obviously has a strong influence
on the runtime. For the other simulation parameters we found no remarkable effects on the mean
runtime which is why we omitted further tables.

7.3.2 Discussion

The error rates as the prior output of this part of the simulation study show, that the optimized
versions for the algorithms clearly work with respect to the minimization of iteration steps. For
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Table 7.3: Mean Runtime grouped by the system size n for systems with fixed and random
ownership structure.

n (Fixed ownership matrices) n (Random ownership matrices)
5 10 25 50 100 5 10 25 50 100

DP 1.541 1.864 2.377 3.413 8.550 1.404 1.721 2.363 3.507 8.641
IP 1.986 2.242 2.692 3.618 8.085 1.594 1.912 2.588 3.691 8.214
OP 2.474 2.859 3.482 4.837 11.637 2.294 2.681 3.479 4.977 11.669
DE 1.597 1.913 2.701 4.617 14.237 1.568 1.908 2.830 4.820 14.514
IE 1.833 2.185 3.027 5.098 15.519 1.634 2.037 3.048 5.240 15.722
OE 3.166 3.576 4.754 7.824 23.838 3.071 3.562 4.899 8.024 23.278
DH 1.837 2.151 3.056 5.801 19.452 1.816 2.105 3.070 5.477 17.207
IH 2.133 2.508 3.304 5.091 13.718 1.872 2.262 3.253 5.007 13.081
OH 4.171 4.690 6.142 10.561 32.667 4.006 4.506 6.152 9.993 29.743

all three algorithms we find only small error rates in most considered scenarios. In particular
the error rates for the Elsinger and the Hybrid Algorithms are even smaller than for the Picard
Algorithm. This is a strong indication that the approach of choosing an optimal starting point
in Section 6.2 is justified regarding the minimization of iteration steps, even though we identified
some mathematical problems in association with the decision rule for the two algorithms. In
line with these findings is the fact that the number of needed iterations to reach R∗ is also
minimized as shown in Table B.9 in the Appendix.

A common property for both types of scenarios, with random and non-random ownership
matrices, is that a higher standard deviation of σ leads to higher error rates. We also identify
that an increase of the debt integration up to r1 = 0.95 strongly increases the error rates at least
for the Picard and the Elsinger Algorithm. For most parameter combinations with error rates
lager than 0.5, i.e. in which a wrong selection appears in the majority of times, the minimum
starting vector is chosen by the decision rule instead of the maximum starting vector for which
the iteration number would have been minimized. However, we also notice that the consequences
of such a wrong decision are not too severe. For systems with non-random ownership matrices,
the maximum number of additional iteration steps that have to be performed unnecessarily is
4. In case of random ownership matrices, the highest discrepancy is with 3 unnecessary steps
even smaller.

Taking the runtime of the procedures as an orientation, we have to state that the usage of
the optimized versions should not be recommended since the runtime is for almost all scenarios
higher compared to the decreasing and the increasing versions. We show in our simulation that
almost no additional iteration steps have to be performed when using the optimized versions.
Therefore, the only reason for the higher runtime must be that checking the decision rule is
computational more costly and does not compensate the savings of the runtime.

In order to decrease the computational effort of the decision rule, a possible improvement could
be to omit the case differentiation when determining ∆start in (6.72) – (6.73) and in (6.110) –
(6.111). This is because additional results suggest that in most cases, the differentiation is
unnecessary since both equations would lead to a value of ∆start with the same sign and hence
to the same decision for the starting point. Another modification concerns the estimate of the
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iteration error for R0 = Rgreat in (6.63) which was for the k-iteration given by

(Imax)k
∥∥∥∥a +

m∑
l=0

Mlr∗,l −
m∑
l=0

rlgreat

∥∥∥∥. (7.37)

Since (7.37) contains the fixed point R∗, the norm cannot be calculated a priori which is why we
only used (6.62) as an upper bound of the k-th iteration error in case of R0 = Rgreat. However,
an upper bound for (7.37) is given by

(Imax)k

∥∥∥∥∥max

{∣∣∣∣a +

m∑
l=0

Mlrlsmall −
m∑
l=0

rlgreat

∣∣∣∣, ∣∣∣∣a +

m∑
l=0

Mlrlgreat −
m∑
l=0

rlgreat

∣∣∣∣}
∥∥∥∥∥ , (7.38)

i.e. we set one time R∗ = Rsmall and one time R∗ = Rgreat in (7.37) and take in every component
the maximum of the absolute values of the two results. Additional simulations suggest that in
some situations, the estimate in (7.38) is indeed smaller than the one in (6.62) that we used in
the simulation study. This might further increase the accuracy of the decision rule.

Because of the fact that the runtime is almost always higher for the optimized versions, we
do not use the Optimized Picard, Elsinger and Hybrid Algorithm for our investigation of the
algorithm efficiency in Section 7.5 and use only the increasing and the decreasing versions of the
Picard, Elsinger and Hybrid Algorithm.

7.4 Optimizing Trial-and-Error Algorithms

Recall that when utilizing the Trial-and-Error Algorithms of Section 4.2.1 to calculate R∗, we
talk of the Optimized Trial-and-Error Algorithm if Ropt is used as the initial iterate R0. In case
of the Optimized Trial-and-Error Picard Algorithm, Ropt is given in (6.74) and for the Elsinger
and Hybrid version of the Optimized Trial-and-Error Algorithm, the initial iterate is determined
via (6.109). The error rate considered in this section is defined in (7.33), and the optimization
relates to a minimization of this error rate with respect to the lag value.

7.4.1 Results

The overall mean error rates for both non-random and random ownership matrices are given in
Table 7.4. As expected, the fraction of events where the first potential default set is not the
actual default set, decreases for higher lag values. Comparing the error rates for the different
versions of the algorithms in Table 7.4 with each other, we obtain the common picture that the
decreasing version has the smallest rates compared to its increasing and optimized counterparts.
Another result is that for both types of ownership matrices we notice that there is no simulation
parameter with a strong effect on the error rate. For all possible levels of every simulation
parameters the rates stay approximately constant which is why we omit tables that list the
error rates grouped by the single parameters.

Taking the runtime as the output into account, we first see that the overall means are smallest
for the smallest lag values (cf. Table 7.5). Second, we observe that algorithms that start with
Ropt have a lower performance concerning the runtime. In almost all scenarios of combinations,
the optimized version of the algorithms needs more time than the increasing or the decreasing
version. For non-random ownership matrices and a lag value of l = 2 there are 8 out of 5400
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Table 7.4: Mean error rates defined in (7.33) over all simulation parameters grouped by the lag
value for systems with fixed and random ownership structure.

Fixed ownership matrices Random ownership matrices
l = 2 l = 3 l = 4 l = 5 l = 2 l = 3 l = 4 l = 5

DTP 0.058 0.018 0.006 0.002 0.058 0.017 0.006 0.002
ITP 0.092 0.029 0.010 0.004 0.080 0.024 0.008 0.003
OTP 0.063 0.020 0.007 0.003 0.060 0.018 0.006 0.002
DTE 0.019 0.003 0 0 0.019 0.003 0 0
ITE 0.031 0.006 0.002 0 0.028 0.005 0.001 0
OTE 0.020 0.003 0.001 0 0.020 0.003 0.001 0
DTH 0.002 0 0 0 0.002 0 0 0
ITH 0.002 0 0 0 0.002 0 0 0
OTH 0.002 0 0 0 0.002 0 0 0

scenarios in which the optimized version of the Trial-and-Error Picard Algorithm was fastest, 7
for the Elsinger and no combination of the Trial-and-Error Hybrid Algorithm. If the matrices
were randomly generated, the associated numbers are 14 (Picard), 6 (Elsinger) and 0 (Hybrid).
Moreover, we observe that there is – beside the size n of the system – no other influence parameter
that strongly affects the runtime. The mean runtimes grouped by n for every value of l are listed
in Table B.3 in the Appendix.

Table 7.5: Mean runtime over all simulation parameters grouped by the lag value for systems
with fixed and random ownership structure.

Fixed ownership matrices Random ownership matrices
l = 2 l = 3 l = 4 l = 5 l = 2 l = 3 l = 4 l = 5

DTP 4.620 4.996 5.460 5.913 4.323 4.680 5.101 5.543
ITP 4.681 5.011 5.453 5.913 4.358 4.684 5.099 5.531
OTP 6.290 6.681 7.148 7.649 5.919 6.294 6.725 7.183
DTE 6.859 7.846 8.831 9.819 6.563 7.493 8.458 9.412
ITE 7.289 8.266 9.257 10.286 6.962 7.888 8.873 9.838
OTE 9.781 10.752 11.738 12.745 9.320 10.271 11.251 12.221
DTH 4.908 6.517 8.158 9.762 4.590 6.117 7.644 9.178
ITH 4.805 5.953 7.056 8.122 4.581 5.692 6.781 7.814
OTH 10.133 11.504 12.833 14.120 9.842 11.128 12.415 13.676

7.4.2 Discussion

A consequence of the relatively small error rates is that all Trial-and-Error Algorithms converge
very fast in the sense that the first potential default set is in the majority of the considered
scenarios also the actual default set D∗. Even for the smallest lag value of l = 2 the overall mean
error rates are, according to Table 7.4, for no procedure lager than 10%. Another conclusion
concerns the optimized versions of the algorithms: using Ropt does not affect the error rate in
the sense of a minimization. Compared to the decreasing versions of the algorithm, the rates
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are even slightly larger. Similar to the insights of Section 7.3, we also can observe here that
the saved iteration steps due to the choice of an optimal starting point does not compensate
the calculation effort that is needed when determining Ropt. Together with the fact that all
three optimized versions of the algorithms require more computation time than their increasing
and decreasing counterparts, the usage of the Optimized Trial-and-Error Picard, Elsinger and
Hybrid Algorithm is not recommended.

For these reasons, we exclude the optimized versions in the part of the study where the
algorithm efficiency is investigated (Section 7.5) and use for this purpose only the Increasing
and Decreasing Trial-and-Error Algorithms. Additionally, we choose a setting of l = 2 for the
lag value for every algorithm since on the one hand the error rates are acceptable and on the
other hand, even more important, the overall mean runtime as the primary output is minimized
for the smallest possible lag value.

7.5 Analysis of Algorithm Efficiency

In line with the insights of the Sections 7.3 and 7.4, we exclude the optimized versions of each
procedure since no essential improvement of the runtime is achieved when R0 = Ropt. For all
Trial-and-Error Algorithms, a lag value of l = 2 is used.

7.5.1 Results

In Table 7.6 we see an overview of the runtimes grouped by the system size which is the strongest
influence parameter on the runtime. As expected, the mean runtime needed to find R∗ increases
with increasing system sizes. The minimum runtime for all algorithms with non-random own-
ership matrices is 0.35 seconds, in a scenario with n = 5 where the Decreasing Trial-and-Error
Hybrid Algorithm was applied and the maximum runtime is 52.834 seconds for n = 100 and
the Decreasing Hybrid Algorithm. In systems with random ownership matrices, the minimum
is 0.349 seconds (n = 5 and Decreasing Trial-and-Error Hybrid Algorithm) and the maximum
runtime is given by 61.8 seconds for n = 100 and the Increasing Elsinger Algorithm. Beyond
the runtimes for single parameter combinations, we observe in Table 7.6 that the mean runtime
over all considered scenarios becomes minimal for the Sandwich Picard Algorithms for systems
with n = 5, 10, 25 compared to all other algorithms. For large systems, i.e. for n = 50, 100
the fastest method is the Picard Algorithm, where for n = 50, the decreasing and for n = 100,
the increasing version of the procedure yields the best performance. These statements hold for
systems with non-random as well as for systems with random ownership matrices.

In Section B.3 in the Appendix, the results when investigating the influence of the other
simulation parameters on the runtime are shown. The integration parameter seems to have
an influence on the algorithm efficiency. We observe increasing runtimes for increasing equity
integration levels and an increase in the runtime for debt integration levels up to a level of
r1 = 0.5 as shown in the Tables B.5 and B.6. The same findings can be reported for the debt
values, i.e. error rates tend to be higher for higher values of d (cf. Table B.4). In Table B.4
it also becomes visible that the runtime increases if σ = 1 compared to situations in which
σ = 0.5 The differences of the runtimes for different diversification parameters are negligible
small (see Tables B.7 and B.8) which is why we conclude that the diversification does not affect
the algorithm efficiency.
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Table 7.6: Mean runtime for each considered algorithm grouped by the system size n for systems
with fixed and random ownership structure.

n (Fixed ownership matrices) n (Random ownership matrices)
5 10 25 50 100 5 10 25 50 100

DP 1.541 1.864 2.377 3.413 8.550 1.404 1.721 2.363 3.507 8.641
IP 1.986 2.242 2.692 3.618 8.085 1.594 1.912 2.588 3.691 8.214
DE 1.597 1.913 2.701 4.617 14.237 1.568 1.908 2.830 4.820 14.514
IE 1.833 2.185 3.027 5.098 15.519 1.634 2.037 3.048 5.240 15.772
DH 1.837 2.151 3.056 5.801 19.452 1.816 2.105 3.070 5.477 17.207
IH 2.133 2.508 3.304 5.091 13.718 1.872 2.262 3.253 5.007 13.081

DTP 1.775 1.940 2.478 4.112 12.794 1.715 1.914 2.469 3.985 11.532
ITP 1.884 2.099 2.672 4.290 12.460 1.811 2.020 2.621 4.125 11.213
DTE 2.450 2.789 3.582 6.239 19.236 2.361 2.688 3.529 5.934 18.306
ITE 2.757 3.036 3.844 6.626 20.180 2.619 2.879 3.734 6.257 19.318
DTH 1.267 1.603 2.329 4.453 14.886 1.335 1.646 2.387 4.304 13.278
ITH 1.872 2.218 2.906 4.618 12.409 1.739 2.063 2.877 4.536 11.691

SP 1.205 1.389 1.939 3.474 10.373 1.144 1.317 1.912 3.381 10.034
SE 1.290 1.513 2.185 4.113 13.183 1.218 1.425 2.143 4.036 13.365
SH 1.489 1.792 2.607 4.773 14.933 1.370 1.680 2.580 4.713 14.692

7.5.2 Discussion

The simulation results suggest that the Picard Iteration is for the three classes of algorithms
(non-finite, Trial-and-Error, Sandwich) in almost all situations the most efficient method to
obtain the next iterate. For the class of Trial-and-Error Algorithms, the Hybrid versions of the
algorithms are sometimes faster than their counterparts from the Picard version, as can be seen
in Table 7.6. But for the other two classes, i.e. the non-finite and the Sandwich Algorithms
the mean runtime over all parameters always becomes minimal for one version of the Picard
Algorithm. The Elsinger and the Hybrid Algorithms resulted in a series that will not need more
iterates than the Picard method. This faster convergence, however, was accompanied with the
fact that the single iteration steps have higher computational costs. With the results of the
simulation in mind we can now say that in the majority of considered situations, the higher
convergence speed does not compensate the additional computational costs. Another main
results is that the size of the financial system determines which algorithm class should be chosen
to find the solution. For small sample sizes, the Sandwich Algorithms have the smallest runtimes
and the larger n becomes, the better becomes the performance of the non-finite algorithms – at
least the Picard Algorithm.

Let us also mention the separate comparison of increasing and decreasing version of each
algorithm. We observe that the runtime for the Decreasing Elsinger and the Decreasing Trial-
and-Error Elsinger is always less than the time of their increasing counterparts. With the small
exception for n = 100, the same statement holds for the Picard and the Trial-and-Error Picard
Algorithm as well. This result can probably be explained by the fact that the situations in which
many or all firms of the system are in default are relatively rare, see also the comments at the end
of Section 7.2.1. In such cases, the starting vector Rgreat or (d, r0(d)) that assumes maximal
debt payments tends to be closer to the solution than the starting vector of the increasing
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version and needs less iteration steps and therefore less runtime to reach the stopping criteria.
For the Hybrid and the Trial-and-Error Hybrid Algorithm, however, we see that for n = 100 the
performance for the increasing version becomes essentially better than the one for the decreasing
version. An explanation for this behavior might be that for the increasing version, a Picard-
type algorithm (Algorithm 5) is used to obtain the next debt components instead of Algorithm
4 that solves linear equation systems which is utilized in the decreasing version. One of the
main results of the simulation is that for large systems, the simple application of the mapping
is preferable to procedures in which potentially many linear equation systems have to be solved
which is reflected in this situation too.

Table 7.7: Mean runtime over all parameters for Decreasing Picard, Elsinger and Hybrid Algo-
rithm for different tolerance levels ε.

ε (Fixed ownership matrices) ε (Random ownership matrices)
10−3 10−4 10−5 10−6 10−3 10−4 10−5 10−6

n = 5
DP 1.541 1.811 2.081 2.356 1.404 1.601 1.795 1.985
DE 1.597 1.758 1.952 2.140 1.568 1.707 1.843 1.973
DH 1.837 1.920 2.060 2.162 1.816 1.928 2.019 2.105

n = 10
DP 1.864 2.165 2.500 2.826 1.721 1.971 2.239 2.505
DE 1.913 2.151 2.392 2.638 1.908 2.078 2.284 2.487
DH 2.151 2.269 2.434 2.589 2.105 2.226 2.358 2.484

n = 25
DP 2.337 2.764 3.183 3.582 2.363 2.717 3.102 3.485
DE 2.701 3.007 3.320 3.661 2.830 3.085 3.438 3.788
DH 3.056 3.233 3.452 3.688 3.070 3.291 3.534 3.767

n = 50
DP 3.413 3.934 4.492 5.007 3.507 4.017 4.572 5.141
DE 4.617 5.035 5.586 6.136 4.820 5.226 5.825 6.416
DH 5.801 6.040 6.394 6.904 5.477 5.930 6.323 6.829

n = 100
DP 8.550 9.557 10.675 11.810 8.641 9.629 10.794 11.976
DE 14.237 14.805 16.397 17.990 14.514 15.885 17.609 19.308
DH 19.452 19.346 20.544 22.268 17.207 19.066 20.196 22.050

all n
DP 3.549 4.046 4.586 5.116 3.527 3.987 4.500 5.018
DE 5.013 5.351 5.929 6.513 5.128 5.596 6.200 6.794
DH 6.460 6.562 6.977 7.522 5.935 6.488 6.886 7.447

We close this section by discussing the influence of the tolerance level ε of the algorithms.
Note that for the Sandwich and the Trial-and-Error Algorithms (except for the Increasing Trial-
and-Error Hybrid Algorithm) the tolerance level plays no role. For the non-finite algorithms,
however, the value of ε is obviously a crucial parameter that strongly affects the runtime. In
order to assess this influence more detailed, we performed an additional simulation study that
contains the same parameters than all other simulations above and measured the runtime for
three additional values of ε. For clarity, we only take the decreasing versions of Picard, Elsinger
and Hybrid Algorithm into account in this simulation. The mean runtimes over all considered
parameters grouped by the tolerance level and system size are shown in Table 7.7.

The mean runtimes increase for the algorithms for increasing tolerances levels. For ε = 10−5

and ε = 10−6 this increase is that high that the Decreasing Picard Algorithm does not have the
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best performance for large financial systems (n = 50, 100) anymore as this is the case if ε = 10−3,
see Table 7.6. We can therefore state that a high tolerance level leads to differing results as
the ones in the paragraphs above since then, the Sandwich Algorithms should be preferred even
for large financial systems which was not the case for a value of ε = 10−3. Moreover, we only
considered financial systems with a = 1n where this described tendency might only be small. For
systems with much larger values of a and d, we observed that the number of needed iterations for
the Picard Algorithm strongly increases. This is why we expect that for more realistic examples
or examples with real data, where a and d can take values up to one billion or higher, the
outperformance of the Sandwich Picard Algorithm will become even more obvious.
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8 Summary and Outlook

This thesis represents a contribution to bring some order into the research area of systemic risk
and financial interconnectedness for two reasons. Firstly, we aimed at establishing a definition
of a financial system that is as general as possible and give associated model assumptions for a
unique payment equilibrium. We showed that the standard model defined in Section 2.2 is the
most general and flexible system and presented with the Elsinger Property the crucial condition
that has to be valid to ensure a unique fixed point. Moreover, if this property is violated, we
revealed the additional assumptions that have to hold to ensure the uniqueness of the solution. It
is our hope that the standard model can be established in literature to avoid confusion about the
compatibility of differing models and also to avoid that authors come to results about existence
and uniqueness of certain models being unaware of the fact that some other authors already
have came to similar results before. Secondly, this work is an attempt to survey the existing
valuation procedures to obtain the solution of a financial system. We described the properties
and the connections between the existing valuation algorithms on this field and generalized the
calculation techniques by mentioning both an upside and a downside version of the procedures.
While the existing algorithms generate iterates who are, under some circumstances, denied to
reach the payment equilibrium exactly, we developed a new class of algorithms that overcomes
this drawback. In a simulation study we discussed in which situation which algorithm should
be preferred to minimize the computational effort. The results suggest that the Picard Iteration
seems to be the most efficient method to obtain the next iterate and also that the Sandwich
Picard Algorithm tends to be the fastest calculation method for medium and small system
sizes. If in particular a high tolerance level for the class of non-finite algorithms is chosen, the
statement about the Sandwich Picard Algorithm even holds for large systems as well.

There are several issues that remain open for future directions of research. We mentioned
in Remark 3.16 that the stated regularity conditions, no matter which one, are only sufficient
conditions for the uniqueness of a financial system. The question whether there are necessary
conditions for the uniqueness of a pricing equilibria still remains open. Such informations could
be of interest for a regulatory authority (e.g. a central bank) since if a potential necessary
condition on a network is traceable not fulfilled, this means that the prices in a system are not
unique, i.e. the different firms eventually calculate with different prices in their balance sheets
leading to a potential instability of a financial network. An open problem is also the extension of
the standard model to a multi-period model in which prices are not only calculated at maturity
but at more than one clearing date. This issue is already mentioned in Eisenberg and Noe (2001)
but, as far as we know, has not been treated in a particular article yet. Concerning the different
iteration techniques (Picard, Elsinger, Hybrid), we think that it would be desirable to detect
higher convergence orders than only the linear convergence showed in Section 7.2.2. It would
also be interesting to investigate whether the conclusions of the simulation study stay the same
for other types of financial networks. This can be for instance networks with a core-periphery
structure in which the system consists of a small amount of larger firms and a relatively large
amount of small firms, see Elliott et al. (2014) or Awiszus and Weber (2015) for details. Another
network type is a so-called star formation described in Nier et al. (2007) that simulates a banking
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system with a central bank. Two last questions are clearly whether the simulation results of
this work also hold for financial systems with higher values of a and d and whether the findings
can be confirmed for systems with more than one seniority class.
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A Auxiliary Results

Lemma A.1. Let || · || be a not necessarily strictly convex norm on Rn, and let Φ be a map on
a nonempty convex and compact set C ⊂ Rn which is non-expansive with respect to the norm-
induced metric. The set of fixed points of Φ in C is then nonempty, closed, and either a singleton,
or uncountable.

Proof. Much-refined versions of this result are known (e.g. Bruck, 1973). For convenience, a
short proof is given. Non-expansiveness implies that Φ is (1-Lipschitz) continuous. The set of
fixed points is hence closed, and the Brouwer-Schauder Fixed Point Theorem (e.g. Rudin, 1990)
provides the existence of at least one fixed point. Assume now that x,y ∈ C are two distinct
fixed points of Φ. For v ∈ C and ε > 0, Bε(v) = {w ∈ C : ||w− v|| ≤ ε} is a non-empty, convex
and compact subset of C. For λ ∈ (0, 1), the intersection

Cλ = Bλ||y−x||(x) ∩ B(1−λ)||y−x||(y) (A.1)

is non-empty (as it contains (1 − λ)x + λy)), convex and compact, and it contains neither x,
nor y. By the triangle inequality, Cλ1 ∩ Cλ2 = ∅ for λ1 6= λ2. Non-expansiveness implies that
Φ(Cλ) ⊂ Cλ. By Brouwer-Schauder, there exists a fixed point of Φ in Cλ. Hence there exist
uncountably many fixed points of Φ in C.

Lemma A.2. Let M ∈ Rn×n be an ownership matrix that possesses the Elsinger Property.
Then ρ(M) < 1, where

ρ(M) = max{|λi| : λi eigenvalue of M} (A.2)

is the spectral radius of M.

Proof. A well known result (cf. Rudin, 1990) is that ρ(M) ≤ ‖M‖ ≤ 1. In case of ‖M‖ < 1
there is nothing to show, so we assume that ‖M‖ = 1 which is no contradiction to the Elsinger
Property of M. We will show the claim by contradiction. To this end, assume that ρ(M) = 1.
For the corresponding eigenvalue v is must hold that v 6= 0 and Mv = ρ(M)v = v. We can
formulate this equation alternatively as

(In −M)v = 0n. (A.3)

Since M has the Elsinger Property, it follows by Elsinger (2009, Lemma 1), that (In −M) is
invertible. But that means that there exists no vector v 6= 0 such that (A.3) is true. Hence,
v = 0 which is a contradiction and from which follows that ρ(M) < 1.

Lemma A.3. Let M ∈ Rn×n be an ownership matrix that possesses the Elsinger property. Then
(In −M)−1 exists and can be obtained via the Neuman expansion:

(In −M)−1 =

∞∑
n=0

Mn, (A.4)

where M0 = In. Consequently, the diagonal entries of (In −M)−1 are greater than or equal to
1 and the other entries are all non-negative.
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Proof. See Rudin (1990) for a proof.

Proof of Theorem 2.7: A proof of Theorem 2.7 is necessary because related proofs in Suzuki
(2002), Gouriéroux et al. (2012) and Fischer (2014) rely on the assumption that ‖Mk‖ < 1 for
all k = 0, . . . ,m, which is a stronger condition than the Elsinger Property, while Elsinger (2009)
considers an equation system which slightly differs from (2.9) – (2.11). In the equation system
of Elsinger, the recovery values are rk are subtracted instead of the nominal liabilities dk as in
(2.9) – (2.11). First, note that (2.9) – (2.11) can only have non-negative solutions. This is shown
in Fischer (2014, Lemma 3.5) under stricter matrix conditions, but because of Lemma A.3, it
is straightforward to see that the proof works in the same manner under the Elsinger Property.
The interval [Rsmall,Rgreat] is convex and compact, where Rsmall is defined in (4.6) (for m = 1)
or (5.3) (for m > 1) and Rgreat is defined in (4.5) (for m = 1) or (5.1) (for m > 1), and Φ(R) is
continuous in R. From Proposition 4.2, it follows that Φ([Rsmall,Rgreat]) ⊂ [Rsmall,Rgreat] for
m = 1 which can obviously be extended to systems with m > 1. Together with the Brouwer-
Schauder Fixed Point Theorem, it follows that at least one solution exists. Furthermore, Φ as in
(2.12) is a non-expansive mapping. This follows from Fischer (2014, Lemma 4.1), where a strict
contraction property is shown under stricter matrix conditions, but again it is straightforward
to see how the corresponding proof implies non-expansiveness under the Elsinger Property for
all ownership matrices. Since it follows from Proposition 5.10 that for m ≥ 1 there can be a
maximum of (m+1)n possible solutions of (2.9) – (2.11), the uniqueness follows from Proposition
4.2 and Lemma A.1.

Theorem A.4 (Tarski Fixed Point Theorem). Let X be a complete lattice and f : X → X
an increasing function. Then there exists a greatest and a least fixed point of f , i.e. there are
x∗ ∈ X and x∗ ∈ X with f(x∗) = x∗ and f(x∗) = x∗ such that for any other fixed point x ∈ X
it holds that x∗ ≤ x ≤ x∗.

Proof. For a proof, we refer to the original work of Tarski (1955).

Theorem A.5 (Banach Contraction Mapping Theorem). Let (X , d) be a complete metric space
with norm d and f : X → X a strict contraction on X , i.e. there exists a number 0 ≤ λ < 1
such that

d (f(x), f(y)) ≤ λd(x,y) for x,y ∈ X . (A.5)

Then f has a unique fixed point x∗ ∈ X .

Proof. A proof is given for example in Banach (1922).

Lemma A.6. Let M ∈ Rn×n be an ownership matrix as in Lemma A.3 and the matrix Λ ∈ Rn×n
be defined as

(Λ)ij =

{
1, if i = j and i ∈ N0,

0, else,
(A.6)

where N0 ⊂ N . Then it holds that

(In −ΛMΛ)−1Λ ≤ Λ(In −M)−1Λ. (A.7)

Proof. Note that

(In −Λ)k = (In −Λ) for k ∈ N (A.8)
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and that M0 = In. Using Lemma A.3 we have that

(In −ΛMΛ)−1Λ =

( ∞∑
n=0

(ΛMΛ)n

)
Λ

= (In + ΛMΛ + ΛMΛMΛ + ΛMΛMΛMΛ + . . .)Λ

= Λ + Λ(M + MΛM︸ ︷︷ ︸
≤M2

+ MΛMΛM︸ ︷︷ ︸
≤M3

+ . . .)Λ

≤ Λ + Λ

( ∞∑
n=1

Mn

)
Λ

= Λ

( ∞∑
n=0

Mn

)
Λ

= Λ(In −M)−1Λ.

(A.9)

Lemma A.7. The set of all a’s for which the pseudo solution contains at least one firm on
borderline, i.e. one i ∈ N such that r1

i = di and r0
i = 0 has Lebesgue measure zero.

Proof. First note that it suffices to show the claim for the set A(I) of all a’s for which r1
i = di

and r0
i = 0 for each i ∈ I ⊂ N , since the number of subsets of {1, ..., n} is finite and a finite

union of sets of Lebesgue measure zero has Lebesgue measure zero. We first show that A(I) is
a Borel set and hence Lebesgue measurable. For this, note that it is shown in Fischer (2014,
2015) that the mapping Ψ : a 7→ R∗(a) that maps any price vector of the exogenous assets onto
the corresponding solution of (4.1) and (4.2) is Borel measurable. Let now H(I) denote the
2(n− |I|)-dimensional hyperplane in R2n for which

H(I) = {(r1, r0) : r1
i = d and r0

i = 0 for all i ∈ I}. (A.10)

Clearly, H(I) is a Borel set. One obtains

A(I) = Ψ−1(H(I) ∩ (R+
0 )2n), (A.11)

which must be Borel-measurable, too. Observe now that if a2 � a1 (a2 strictly larger than
a1 in all components), then Φa2(R) � Φa1(R) for any non-negative R. Hence, by the Picard
Iteration, R∗(a2) ≥ R∗(a1). From (4.1) and (4.2) it follows now that if a1,a2 ∈ A(I) and
a2 � a1, then r∗,0i (a2) > r∗,0i (a1), which is a contradiction. Thus, a2 � a1 can hold for no pair
a1,a2 ∈ A(I). This means that A(I) bears some resemblance to a Pareto set (a Pareto frontier)
– indeed, it would be a Pareto set if the statement was true for a2 > a1. It follows that the set
A(I) intersects any straight line parallel to the vector (1, . . . , 1) either once, or not at all. As
such, and since the Lebesgue measure is rotation invariant, the problem reduces now to the one
which is shown in the next lemma.

Lemma A.8. Let B be a Borel set in Rn such that one has |Bω| ≤ 1 for any ω ∈ Rn−1, where
Bω = {x ∈ R : (x, ω) ∈ B}. Then B has Lebesgue measure zero.

Proof. Let λm denote the Lebesgue measure on Rm. For any Borel set B, it follows from the
definition of product measures (e.g. Billingsley (1995)) and the fact that λn = λ1 ⊗ λn−1 that

λn(B) =

∫
λ1(Bω)dλn−1(ω). (A.12)
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Since λ1(Bω) = 0, the result follows.
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B Additional Tables

All numbers in Chapter B are rounded to three decimal places.

B.1 Error Rates for Non-finite Algorithms

Table B.1: Error rates defined in (7.31) grouped by system size n and values of d and σ for
systems with a fixed ownership structure.

d = 0.5 d = 1 d = 1.5 d = 2
σ = 0.5 σ = 1 σ = 0.5 σ = 1 σ = 0.5 σ = 1 σ = 0.5 σ = 1

n = 5
P 0.042 0.122 0.035 0.131 0.017 0.134 0.015 0.147
E 0.010 0.041 0.010 0.057 0.009 0.081 0.010 0.104
H 0.010 0.022 0.007 0.020 0.002 0.025 0.017 0.037

n = 10
P 0.064 0.167 0.044 0.167 0.011 0.161 0.005 0.163
E 0.013 0.051 0.007 0.072 0.005 0.097 0.004 0.111
H 0.009 0.022 0.004 0.017 0.001 0.022 0.006 0.039

n = 25
P 0.030 0.164 0.026 0.179 0.005 0.179 0.001 0.176
E 0.020 0.070 0.006 0.095 0.002 0.108 0.001 0.115
H 0.007 0.012 0.001 0.014 0.000 0.027 0.002 0.042

n = 50
P 0.003 0.188 0.024 0.189 0.003 0.190 0.000 0.183
E 0.020 0.090 0.004 0.100 0.000 0.116 0.000 0.116
H 0.004 0.007 0.000 0.017 0.000 0.042 0.001 0.053

n = 100
P 0.002 0.180 0.017 0.197 0.002 0.201 0.000 0.184
E 0.007 0.089 0.001 0.102 0.000 0.122 0.000 0.117
H 0.002 0.008 0.000 0.032 0.000 0.067 0.003 0.069

all n
P 0.028 0.164 0.029 0.172 0.007 0.173 0.004 0.170
E 0.014 0.068 0.005 0.085 0.003 0.105 0.003 0.112
H 0.006 0.014 0.002 0.020 0.001 0.037 0.006 0.048

r1 = 0.95
P 0.018 0.396 0.024 0.539 0.022 0.605 0.016 0.583
E 0.005 0.142 0.008 0.274 0.012 0.363 0.010 0.367
H 0.002 0.022 0.001 0.059 0.002 0.106 0.002 0.116

Notes: For systems with random ownership matrices, the results are very similar.
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Table B.2: Error rates defined in (7.31) for systems with a random ownership structure grouped
by integration and diversification levels of equity and debt.

p0/p1 r0 r1

0 0.025 0.25 0.475 0 0.05 0.5 0.95

Picard
0.05 0.117 0.098 0.121 0.109 0.045 0.023 0.071 0.369
0.5 0.117 0.103 0.112 0.081 0.046 0.014 0.031 0.295
0.95 0.117 0.101 0.107 0.075 0.045 0.012 0.020 0.233

Elsinger
0.05 0.119 0.084 0.061 0.045 0.003 0.014 0.073 0.217
0.5 0.119 0.078 0.043 0.020 0.003 0.015 0.035 0.191
0.95 0.119 0.077 0.041 0.017 0.003 0.015 0.018 0.151

Hybrid
0.05 0.003 0.031 0.032 0.026 0.003 0.007 0.036 0.081
0.5 0.003 0.031 0.027 0.017 0.003 0.004 0.021 0.040
0.95 0.003 0.030 0.027 0.015 0.003 0.004 0.017 0.026

Notes: The labels of the row refer either to the equity or the debt diversification
parameter depending on which part of the table is used. In the left hand part, i.e.
the columns that refer to the equity integration parameter r0, the corresponding
diversification parameter is p0. For the right hand part of the table, the debt
diversification parameter p1 is regarded.

B.2 Runtime for Trial-and-Error Algorithms

Table B.3: Mean runtime for Trial-and-Error Algorithms over all considered simulation param-
eters grouped by lag value l and system size n for systems with fixed and random
ownership structure.

Fixed ownership matrices Random ownership matrices
l = 2 l = 3 l = 4 l = 5 l = 2 l = 3 l = 4 l = 5

n = 5

DTP 1.775 1.977 2.185 2.426 1.715 1.915 2.123 2.332
ITP 1.884 2.037 2.235 2.437 1.811 1.983 2.189 2.377
OTP 2.923 3.145 3.409 3.648 2.836 3.049 3.294 3.533
DTE 2.450 2.764 3.088 3.429 2.361 2.681 2.983 3.304
ITE 2.757 3.077 3.453 3.818 2.619 2.961 3.314 3.675
OTE 4.010 4.347 4.721 5.091 3.900 4.234 4.586 4.946
DTH 1.267 1.634 2.022 2.426 1.335 1.759 2.191 2.623
ITH 1.872 2.302 2.717 3.129 1.739 2.174 2.594 3.001
OTH 3.849 4.253 4.659 5.051 3.822 4.263 4.682 5.092
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Table B.3 (continued):

fixed ownership matrices random ownership matrices
l = 2 l = 3 l = 4 l = 5 l = 2 l = 3 l = 4 l = 5

n = 10

DTP 1.940 2.172 2.394 2.647 1.914 2.125 2.348 2.589
ITP 2.099 2.282 2.502 2.733 2.020 2.207 2.429 2.666
OTP 3.095 3.320 3.583 3.856 3.022 3.248 3.487 3.742
DTE 2.789 3.192 3.579 3.972 2.688 3.045 3.419 3.794
ITE 3.036 3.428 3.825 4.253 2.879 3.249 3.648 4.041
OTE 4.404 4.773 5.181 5.629 4.192 4.588 4.991 5.400
DTH 1.603 2.122 2.649 3.173 1.646 2.189 2.734 3.275
ITH 2.218 2.757 3.250 3.726 2.063 2.583 3.075 3.540
OTH 4.330 4.882 5.355 5.843 4.264 4.779 5.275 5.767

n = 25

DTP 2.478 2.724 3.018 3.315 2.469 2.704 2.983 3.281
ITP 2.672 2.885 3.155 3.441 2.621 2.834 3.111 3.401
OTP 3.708 3.955 4.260 4.566 3.681 3.923 4.207 4.503
DTE 3.582 4.081 4.598 5.147 3.529 4.028 4.536 5.051
ITE 3.844 4.333 4.878 5.416 3.734 4.239 4.762 5.267
OTE 5.370 5.876 6.446 6.965 5.270 5.777 6.299 6.830
DTH 2.329 3.099 3.887 4.671 2.387 3.189 3.986 4.781
ITH 2.906 3.589 4.233 4.866 2.877 3.559 4.204 4.808
OTH 5.544 6.226 6.931 7.602 5.606 6.325 7.020 7.706

n = 50

DTP 4.112 4.450 4.917 5.301 3.985 4.304 4.697 5.139
ITP 4.290 4.595 5.010 5.434 4.125 4.418 4.805 5.248
OTP 5.633 6.018 6.399 6.867 5.483 5.806 6.212 6.662
DTE 6.239 7.159 8.044 8.999 5.934 6.767 7.648 8.562
ITE 6.626 7.548 8.418 9.393 6.257 7.100 8.007 8.896
OTE 8.885 9.782 10.692 11.628 8.414 9.260 10.198 11.079
DTH 4.453 5.989 7.506 8.972 4.304 5.750 7.172 8.654
ITH 4.618 5.749 6.756 7.773 4.536 5.623 6.631 7.645
OTH 9.328 10.621 11.813 13.060 9.137 10.350 11.592 12.756

n = 100

DTP 12.794 13.655 14.786 15.879 11.532 12.353 13.353 14.374
ITP 12.460 13.255 14.362 15.522 11.213 11.978 12.963 13.966
OTP 16.094 16.967 18.090 19.307 14.571 15.444 16.424 17.475
DTE 19.236 22.033 24.845 27.548 18.306 20.941 23.704 26.351
ITE 20.180 22.946 25.711 28.552 19.318 21.893 24.634 27.310
OTE 26.233 28.982 31.649 34.412 24.823 27.495 30.181 32.849
DTH 14.886 19.741 24.727 29.569 13.278 17.696 22.137 26.559
ITH 12.409 15.369 18.323 21.119 11.691 14.519 17.402 20.078
OTH 27.615 31.535 35.409 39.042 26.382 29.923 33.505 37.062
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B.3 Additional Tables for the Runtime

Table B.4: Mean runtimes for each considered algorithms of Section 7.5 over all simulation pa-
rameters grouped by debt values d and values of σ for systems with fixed and random
ownership structure.

d = 0.5 d = 1 d = 1.5 d = 2
σ = 0.5 σ = 1 σ = 0.5 σ = 1 σ = 0.5 σ = 1 σ = 0.5 σ = 1

FOS

DP 3.032 3.738 3.233 3.896 3.236 3.928 3.360 3.969
IP 3.789 3.825 3.575 3.835 3.464 3.830 3.594 3.883
DE 3.618 5.012 4.302 5.551 4.612 5.973 4.943 6.091
IE 4.202 5.312 4.918 5.951 5.327 6.322 5.687 6.542
DH 4.961 6.717 5.804 7.225 6.024 7.456 6.038 7.452
IH 4.497 5.498 4.977 5.842 5.051 6.010 4.961 5.970
DTP 4.283 4.619 4.483 4.821 4.517 4.886 4.435 4.913
ITP 4.157 4.627 4.479 4.789 4.636 4.892 4.878 4.990
DTE 6.965 6.993 6.844 7.123 6.585 7.106 6.283 6.975
ITE 7.060 7.216 7.216 7.425 7.190 7.493 7.260 7.451
DTH 3.716 4.944 4.420 5.437 4.785 5.703 4.553 5.704
ITH 3.783 4.671 4.501 5.048 4.907 5.210 5.027 5.292
SP 2.958 3.471 3.416 3.763 3.635 3.987 3.962 4.216
SE 3.191 3.916 3.903 4.509 4.580 5.044 5.052 5.462
SH 3.301 4.529 4.542 5.375 5.470 5.916 5.609 6.210

ROS

DP 2.969 3.652 3.243 3.781 3.276 3.882 3.447 3.968
IP 3.623 3.695 3.445 3.699 3.351 3.711 3.485 3.790
DE 3.694 5.263 4.361 5.753 4.693 6.045 5.039 6.175
IE 4.176 5.483 4.919 6.079 5.264 6.326 5.552 6.490
DH 4.585 6.188 5.364 6.547 5.637 6.760 5.727 6.672
IH 4.282 5.281 4.780 5.569 4.841 5.662 4.785 5.561
DTP 4.002 4.304 4.199 4.478 4.259 4.579 4.169 4.593
ITP 3.889 4.272 4.193 4.419 4.345 4.533 4.575 4.637
DTE 6.499 6.791 6.549 6.910 6.321 6.830 5.943 6.664
ITE 6.621 7.028 6.897 7.238 6.848 7.189 6.799 7.073
DTH 3.451 4.649 4.177 5.043 4.496 5.258 4.325 5.320
ITH 3.589 4.575 4.382 4.818 4.617 4.953 4.674 5.044
SP 2.823 3.385 3.305 3.625 3.550 3.851 3.858 4.064
SE 3.198 4.035 3.948 4.560 4.503 5.005 4.902 5.349
SH 3.308 4.587 4.536 5.245 5.274 5.692 5.442 5.972

Notes: The upper part of the table lists the mean runtimes for systems with a fixed
ownership structure (FOS), the lower part shows the runtimes for systems with a random
ownership structure (ROS).
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Table B.5: Mean runtime for each considered algorithm of Section 7.5 over all simulation pa-
rameters grouped by equity integration r0 for systems with fixed ownership structure
(FOS) and random ownership structure (ROS).

r0 (FOS) r0 (ROS)
0 0.025 0.25 0.475 0 0.025 0.25 0.475

DP 2.598 2.845 3.659 4.857 2.702 2.863 3.627 4.710
IP 2.724 2.668 3.829 5.426 2.794 2.653 3.686 4.065
DE 3.538 4.524 5.736 5.884 3.556 4.683 5.843 6.036
IE 3.776 4.765 6.328 6.822 3.722 4.868 6.321 6.781
DH 4.089 5.827 7.506 7.823 3.611 5.300 6.903 7.345
IH 2.951 4.301 6.412 7.139 2.785 4.131 6.097 6.810

DTP 4.028 4.531 4.694 5.077 3.754 4.239 4.232 4.734
ITP 4.131 4.369 4.757 5.330 3.879 4.089 4.429 4.914
DTE 5.211 6.553 7.452 7.808 4.869 6.325 7.167 7.476
ITE 5.468 6.861 7.917 8.453 5.090 6.626 7.600 8.062
DTH 4.556 4.862 5.179 4.946 4.086 4.484 4.899 4.766
ITH 3.851 4.436 5.204 5.491 3.585 4.231 4.991 5.269

SP 3.067 3.174 3.753 4.559 3.015 3.114 3.618 4.348
SE 3.286 4.032 4.950 5.268 3.190 4.094 4.972 5.182
SH 4.288 4.559 5.546 5.876 4.106 4.487 5.459 5.750

Table B.6: Mean runtime for each considered algorithm of Section 7.5 over all simulation pa-
rameters grouped by debt integration r1 for systems with fixed ownership structure
(FOS) and random ownership structure (ROS).

r1 (FOS) r1 (ROS)
0 0.05 0.5 0.95 0 0.05 0.5 0.95

DP 2.851 3.165 4.405 3.600 2.808 3.094 4.315 3.713
IP 2.441 2.742 4.680 4.714 2.419 2.692 4.455 4.538
DE 2.983 4.638 7.155 4.769 2.947 4.478 7.180 5.362
IE 3.006 4.241 7.885 6.367 2.924 4.070 7.690 6.807
DH 4.401 6.378 8.299 6.245 3.944 5.683 7.497 6.118
IH 3.441 4.194 7.082 6.209 3.167 3.881 6.624 6.227

DTP 4.357 4.410 5.164 4.482 4.056 4.106 4.791 4.272
ITP 4.187 4.146 5.307 4.960 3.900 3.871 4.867 4.679
DTE 6.186 6.257 7.788 7.038 5.866 5.896 7.453 6.865
ITE 6.413 6.162 8.309 8.051 6.093 5.832 7.848 7.856
DTH 3.884 5.031 6.195 4.265 3.538 4.565 5.692 4.302
ITH 3.684 3.943 5.955 5.357 3.431 3.668 5.615 5.323

SP 2.805 2.983 4.637 4.061 2.733 2.901 4.371 4.019
SE 2.626 3.153 6.206 5.386 2.603 3.085 5.986 5.617
SH 2.632 4.021 7.146 6.055 2.600 3.867 6.822 6.137
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Table B.7: Mean runtime for each considered algorithm of Section 7.5 over all simulation pa-
rameters grouped by equity diversification λ0 or p0 for systems with fixed ownership
structure (FOS) and random ownership structure (ROS).

λ0 (FOS) p0 (ROS)
0 0.5 1 0.05 0.5 0.95

DP 3.582 3.565 3.500 3.325 3.611 3.646
IP 3.734 3.715 3.724 3.380 3.696 3.724
DE 5.424 5.443 4.172 4.791 5.290 5.303
IE 5.977 5.989 4.632 5.106 5.734 5.769
DH 6.858 6.820 5.701 5.598 6.096 6.111
IH 5.738 5.722 4.592 4.663 5.297 5.325

DTP 4.690 4.681 4.488 4.193 4.384 4.392
ITP 4.714 4.726 4.603 4.259 4.407 4.408
DTE 7.173 7.215 6.190 6.215 6.734 6.741
ITE 7.626 7.677 6.563 6.564 7.152 7.168
DTH 5.109 5.105 4.509 4.479 4.645 4.646
ITH 5.023 5.029 4.363 4.390 4.674 4.679

SP 3.719 3.710 3.599 3.431 3.626 3.616
SE 4.751 4.815 3.806 4.143 4.586 4.584
SH 5.367 5.407 4.583 4.754 5.120 5.147

Table B.8: Mean runtime for each considered algorithm of Section 7.5 over all simulation pa-
rameters grouped by debt diversification λ1 or p1 for systems with fixed ownership
structure (FOS) and random ownership structure (ROS).

λ1 (FOS) p1 (ROS)
0 0.5 1 0.05 0.5 0.95

DP 3.555 3.568 3.524 3.520 3.544 3.517
IP 3.786 3.750 3.637 3.407 3.682 3.711
DE 5.212 5.127 4.699 5.078 5.163 5.142
IE 5.769 5.659 5.169 5.285 5.665 5.658
DH 6.646 6.672 6.061 5.875 5.878 6.053
IH 5.419 5.393 5.240 5.059 5.127 5.099

DTP 4.624 4.627 4.608 4.350 4.309 4.309
ITP 4.707 4.689 4.646 4.332 4.375 4.366
DTE 6.876 6.866 6.837 6.558 6.575 6.558
ITE 7.348 7.312 7.206 6.837 7.032 7.016
DTH 5.022 5.070 4.631 4.580 4.557 4.633
ITH 4.913 4.889 4.612 4.457 4.638 4.650

SP 3.722 3.682 3.625 3.508 3.586 3.579
SE 4.622 4.521 4.229 4.225 4.538 4.549
SH 5.337 5.287 4.733 4.713 5.108 5.200
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B.4 Iteration Numbers of the Algorithms

Table B.9: Median values of the number of iteration steps needed to reach the solution over
all simulation parameters grouped by the system size n for systems with fixed and
random ownership structure. The number in parentheses are the median values of
the associated calculation steps.

n (Fixed ownership matrices) n (Random ownership matrices)
5 10 25 50 100 5 10 25 50 100

DP 4 5 6 6 7 4 4 5 6 7
IP 5 5 6 7 7 3 4 6 7 7
OP 4 4 5 6 7 3 4 5 6 7
DE 2 (4) 3 (4) 3 (6) 4 (6) 4 (6) 2 (3) 3 (4) 4 (6) 4 (6) 4 (7)
IE 3 (4) 3 (5) 4 (6) 4 (6) 4 (7) 2 (3) 3 (4) 3 (6) 4 (6) 4 (8)
OE 2 (4) 3 (4) 3 (5) 3 (6) 4 (6) 2 (3) 3 (4) 3 (5) 4 (6) 4 (6)
DH 2 (5) 2 (5) 2 (7) 2 (8) 2 (8) 2 (5) 2 (5) 2 (7) 2 (8) 3 (8)
IH 2 (3) 2 (3) 2 (4) 2 (4) 2 (6) 2 (3) 2 (3) 2 (4) 2 (4) 3 (6)
OH 2 (3) 2 (4) 2 (5) 2 (6) 2 (6) 2 (3) 2 (3) 2 (5) 2 (6) 2 (6)

DTP 1 (1) 1 (1) 1 (1) 1 (1) 2 (1) 1 (1) 1 (1) 1 (1) 1 (1) 2 (1)
ITP 1 (1) 1 (1) 1 (1) 2 (1) 2 (1) 1 (1) 1 (1) 1 (1) 2 (1) 2 (1)
OTP 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)
DTE 1 (3) 1 (3) 1 (4) 1 (5) 1 (5) 1 (3) 1 (3) 1 (4) 1 (5) 1 (5)
ITE 1 (3) 1 (3) 1 (4) 1 (5) 1 (5) 1 (3) 1 (3) 1 (4) 1 (5) 1 (5)
OTE 1 (3) 1 (3) 1 (4) 1 (5) 1 (5) 1 (3) 1 (3) 1 (4) 1 (5) 1 (5)
DTH 1 (4) 1 (4) 1 (6) 1 (6) 1 (7) 3 (3) 3 (3) 3 (3) 3 (3) 3 (3)
ITH 1 (3) 1 (3) 1 (4) 1 (4) 1 (5) 2 (2) 3 (3) 3 (3) 3 (3) 4 (4)
OTH 1 (4) 1 (4) 1 (4) 1 (5) 1 (5) 3 (3) 3 (3) 3 (3) 3 (3) 3 (3)

SP 0 0 1 1 1 0 0 1 1 1
SE 0 (2) 0 (2) 0 (4) 0 (4) 1 (4) 0 (2) 0 (2) 0 (4) 0 (4) 1 (5)
SH 0 (2) 0 (2) 0 (4) 0 (4) 1 (5) 0 (2) 0 (2) 0 (4) 0 (4) 1 (5)

Notes: For the Trial-and-Error Algorithms, a lag value of l = 2 was used for
each algorithm.
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