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Abstract

Background: The human colon harbours a plethora of bacteria known to broadly impact on mucosal metabolism and
function and thought to be involved in inflammatory bowel disease pathogenesis and colon cancer development. In this
report, we investigated the effect of colonic bacteria on epithelial cell differentiation factors in vitro and in vivo. As key
transcription factors we focused on Hes1, known to direct towards an absorptive cell fate, Hath1 and KLF4, which govern
goblet cell.

Methods: Expression of the transcription factors Hes1, Hath1 and KLF4, the mucins Muc1 and Muc2 and the defensin HBD2
were measured by real-time PCR in LS174T cells following incubation with several heat-inactivated E. coli strains, including
the probiotic E. coli Nissle 1917+/2 flagellin, Lactobacilli and Bifidobacteria. For protein detection Western blot experiments
and chamber-slide immunostaining were performed. Finally, mRNA and protein expression of these factors was evaluated in
the colon of germfree vs. specific pathogen free vs. conventionalized mice and colonic goblet cells were counted.

Results: Expression of Hes1 and Hath1, and to a minor degree also of KLF4, was reduced by E. coli K-12 and E. coli Nissle
1917. In contrast, Muc1 and HBD2 expression were significantly enhanced, independent of the Notch signalling pathway.
Probiotic E. coli Nissle 1917 regulated Hes1, Hath1, Muc1 and HBD2 through flagellin. In vivo experiments confirmed the
observed in vitro effects of bacteria by a diminished colonic expression of Hath1 and KLF4 in specific pathogen free and
conventionalized mice as compared to germ free mice whereas the number of goblet cells was unchanged in these mice.

Conclusions: Intestinal bacteria influence the intestinal epithelial differentiation factors Hes1, Hath1 and KLF4, as well as
Muc1 and HBD2, in vitro and in vivo. The induction of Muc1 and HBD2 seems to be triggered directly by bacteria and not by
Notch.
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Introduction

The colon provides the most favorable conditions for intestinal

microbiota and harbors, with approximately 1012 microorganisms

per gram of intestinal content, the most densely populated and

complex community of the human gastrointestinal tract [1,2].

During evolution a complex and intensive mutualistic relationship

between bacteria and host has developed. The intestinal micro-

flora influences the host in different ways by modulating the

immune system, protecting against pathogen invasion and

attachment, and contributing to digestion and nutritional uptake

[3].

In a healthy gut the synergistic co-existence of intestinal

microflora and the host is secured by an intact mucosal barrier.

The barrier is provided by the intestinal epithelium, consisting of

absorptive, goblet, Paneth and neuroendocrine cells, separating

the intestinal wall from the luminal microbes. Goblet cells secrete

mucins, e.g. Muc1 and Muc2 as structural proteins of the

protective mucus layer covering the whole gastrointestinal tract

[4]. Moreover, epithelial cells produce broad-spectrum antimicro-

bial peptides, including defensins [5–8]. Once secreted, the small

cationic defensins are fixed in the negatively charged mucus [9].

This mucus barrier is the first front of gut defence shielding the

intestinal wall from luminal microbiota.

The intestinal epithelium differentiates from multipotent stem

cells located at the bottom of the crypt and undergoes a rapid and

continuous regeneration [10]. This process is regulated by a

complex network of different differentiation signals. For example,

the early determination of secretory versus absorptive cells is

regulated by antagonistic interplay of the Notch target gene Hes1

and the basic helix–loop–helix transcription factor Hath1. In

progenitor cells expressing Hes1, Hath1 gene expression is

blocked, directing the cells to the absorptive fate. In contrast, in
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progenitors with inactive Notch/Hes1 signaling, the Hath1 gene

can be transcriptionally activated and these cells transit to the

secretory lineage [11,12]. The predetermined cells of the secretory

line require additional signals for differentiation to specific cell

types such as, for goblet cells, the zinc-finger transcription factor

KLF4 [13].

Dysregulation of this regulatory network may lead to defective

epithelial differentiation and finally to altered function of the

mucosal barrier as shown in both forms of inflammatory bowel

diseases (IBD), Crohn’s disease (CD) and ulcerative colitis (UC)

[14,15]. There is mounting evidence that the commensal intestinal

microbiota plays a key role in the pathogenesis of IBD [16].

Among other evidence, this is underlined by the observation that

patients with IBD have more mucosa-adherent bacteria, some of

which are even found intracellularly [17,18]. Moreover, recent

studies linked intestinal epithelial differentiation to IBD develop-

ment. For instance, ileal CD is associated with defective Wnt

mediated Paneth cell differentiation and consequently with a

diminished production of the defensins HD5 and HD6 resulting in

decreased mucosal antibacterial activity [19,20]. In active UC,

defective Hath1 expression [21,22] is associated with a decreased

number of mature goblet cells in the upper part of the colonic

crypt [21]. As a consequence, mucin synthesis in active UC is

defective leading to a diminished mucus layer [23,24]. In both

cases, these epithelial differentiation defects may lead to invasion

of the luminal bacteria into the mucosa where they could trigger

inflammation. Additionally, there is evidence that bacteria could

contribute to colon cancer development. For instance, animal

models showed carcinogenic properties in some bacterial species

Table 1. Characteristics of the bacterial strains.

Strain Stereotype Characteristics/Isolatetypes/Deletions* Source

E. coli Nissle 1917 (DSM 6601) O6:K5:H1 Apathogen, pharmaceutical strain ACS

EcNDfliA Sigma factor of flagella genes* WÜR

EcNDfliC flagellin*

EcNDflgE hook*

EcNDfim Type 1 pili*

EcNDfoc F1C pili*

EcNDcsgBA Curli-negative*

E. coli K-12 DSM 498 Reference strain DSMZ

L. fermentum PZ 1162 Intestinal isolate ACS

L. acidophilus PZ 1138 Industrial probiotic strain ACS (GR)

B. longum (DSM 20219T) PZ 1323 Intestinal isolate ACS

B. breve Ha6/14c Intestinal isolate ACS

B. adolescentis TSD PZ 4009 Intestinal isolate ACS

B. vulgatus DSM 1447 Intestinal isolate DSMZ

E. coli DSM 17252 SYM

S2 G1: E. coli Osp.:H- Probiotic strain

Genotype 1/2

S2 G2: E. coli O 13.:H- Probiotic strain

Genotype 3/10

S2 G3: E. coli Osp.:H- Probiotic strain

Genotype 4/10

EcN…E. coli Nissle 1917.
ACS: Ardeypharm collection of strains, Pharma-Zentrale GmbH, Herdecke, Germany.
WÜR: Collection of strains, University of Würzburg.
DSMZ: German Collection of Microorganisms and Cell cultures, Braunschweig, Germany.
GR: Strain collection of G. Reuter (strain deposited by Mitusoka at the Japanese Collection of Microorganisms).
SYM: SymbioPharm GmbH, Germany.
doi:10.1371/journal.pone.0055620.t001

Table 2. Oligonucleotide primer pairs used for PCR
measurements.

Product Forward primer (5922.39) Reverse primer (5922.39)

ß-actin GCCAACCGCGAGAAGATGA CATCACGATGCCAGTGGTA

Hath1 CGAGAGAGCATCCCGTCTAC TCCGGGGAATGTAGCAAATA

KLF4 CCCACACAGGTGAGAAACCT ATGTGTAAGGCGAGGTGGTC

Hes1 CTCTCTTCCCTCCGGACTCT AGGCGCAATCCAATATGAAC

Muc1 AGACGTCAGCGTGAGTGATG CAGCTGCCCGTAGTTCTTTC

Muc2 ACCCGCACTATGTCACCTTC GGGATCGCAGTGGTAGTTGT

HBD2 ATCAGCCATGAGGGTCTTGT GAGACCACAGGTGCCAATTT

mß-actin GCTGAGAGGGAAATCGTGCGTG CCAGGGAGGAAGAGGATGCGG

Math1 AGAGACCTTCCCGTCTACCC CTGCAAAGTGGGAGTCAGC

mHes1 AGAGGCGAAGGGCAAGAATA CGGAGGTGCTTCACAGTCAT

mKLF4 AGAGGAGCCCAAGCCAAAGAGG CCACAGCCGTCCCAGTCACAGT

mMuc1 GAAGACCCCAGCTCCAACTA GGAGCCTGACCTGAACTTGA

mMuc2 GTGTGGGACCTGACAATGTG ACAACGAGGTAGGTGCCATC

m … mouse.
doi:10.1371/journal.pone.0055620.t002
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[25,26]. Moreover, patients with colorectal cancer exhibit bacteria

adhering to tumor tissue [27] and have indirect evidence of

bacterial invasion [28,29].

The aim of the present study was to elucidate whether and how

bacteria regulate intestinal epithelial cell differentiation. The

effects of microbiota on the expression of epithelial differentiation

factors Hath1, KLF4 and Hes1, as well as the mucins Muc1, Muc2

and the defensin HBD2 were analysed in vitro and in vivo. This

way, we aimed to get more insight into the complex interplay

between bacteria and differentiation with regard to the potential

impact of the microbiota on intestinal inflammation and cancer

development.

Materials and Methods

Cell Culture Experiments
The colon adenocarcinoma cell line LS174T (American Type

Culture Collection, Manassas, USA) was cultivated in Dulbecco’s

modified Eagle medium (DMEM, Gibco Life Technologies,

Eggenstein, Germany) in a humidified atmosphere at 37uC and

5% CO2. 10% fetal calf serum (FCS, PAA Laboratories, Pasching,

Austria), 1% non-essential amino acids (Gibco Life Technologies),

1% penicillin/streptomycin (Gibco Life Technologies) and 1%

sodium pyruvate (Gibco Life Technologies) was added. For

experiments, cells were seeded in 12-well culture plates (Becton

Dickinson, Franklin Lakes, New Jersey, USA) at a density of

0.656106 per well and grown to about 70% confluence. Then cells

were washed with phosphate-buffered saline (PBS, Gibco Life

Figure 1. Hes1, Hath1 and KLF4 mRNA expression in LS174T cells after treatment with different heat-inactivated bacteria for 3
hours. Hes1 expression was impaired by Symbioflor G3, E. coli K-12 and E. coli Nissle 1917 (A). Hath1 transcripts were downregulated by E. coli K-12
and E. coli Nissle 1917 (B). KLF4 mRNA was augmented by L. fermentum (C). Data represent the means 6 SEM normalised to basal expression of
untreated controls set at 1 (n = 4). *: p,0.05, **: p,0.01, ***: p,0.001. For 12 hours treatment results see Fig. S1.
doi:10.1371/journal.pone.0055620.g001
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Technologies) and incubated in FCS- and antibiotic-free DMEM

for 12 hours.

To investigate the possible role of several bacteria in the

regulation of epithelial differentiation, LS174T cells were treated

with heat-inactivated E. coli strains Symbioflor G1, G2 and G3,

Escherichia coli K-12, E. coli Nissle 1917, Lactobacillus fermentum and

acidophilus, Bifidobacterium longum, breve and adolescentis as well as

Bacteroides vulgatus for 3 and 12 hours. LS174T cells were also

incubated for 3 hours with E. coli Nissle 1917 wild type and E. coli

Nissle 1917 mutant strains EcNDfliA, EcNDfliC, EcNDflgE,

EcNDfim, EcNDfoc and EcNDcsgBA, which were kindly provided

by T. Oelschlaeger (Institute for Molecular Biology of Infection,

University of Würzburg, Germany). The characteristics of the used

bacterial strains are summarized in table 1. All E. coli strains and B.

vulgatus were grown under aerobic, Lactobacilli and Bifidobacteria

under anaerobic conditions as described previously [30]. For

experiments, bacteria were heat-inactivated in a water bath at

65uC for 1 hour, washed with PBS and adjusted to a density of

36108 cells/ml with FCS- and antibiotic-free DMEM.

The possible involvement of Notch signalling was investigated

by the treatment of LS174T cells with the c-secretase (Notch)

inhibitor dibenzazepine (DBZ, Axon Medchem, Groningen,

Netherlands) in a concentration of 1 mM (in 0.1% DMSO in

DMEM) for 3, 6, 12 and 24 hours in absence or presence of E. coli

Nissle 1917.

After incubation, LS174T cells were rinsed in PBS and mRNA

(for PCR measurements) or total protein (for Western blot

experiments) was isolated as described below. All cell culture

experiments were performed for at least 3 independent times in

triplicates.

Mouse Tissue
Colonic samples (mRNA and tissue from whole mouse colonic

mucosa) of mice housed in germfree conditions at the University of

Ulm, mice housed in specific pathogen free (SPF) conditions at the

University of Cologne and germfree mice that were transferred to

the SPF facility in Cologne for cohousing with SPF mice for 4

weeks (conventionalized) (all C57Bl/6), were kindly provided by

M. Pasparakis (Institute for Genetics, Centre for Molecular

Medicine University of Cologne).

All animal procedures were conducted in accordance with

European, national and institutional guidelines and protocols and

were approved at 06.08.2008 from the ethics committee of

Tübingen (Regierungspräsidium AZ 35/9185.81-3), Research-Nr.

929.

RNA Isolation and Reverse Transcription
Treated LS174T cells were washed with PBS and harvested by

scraping. Total RNA from the cell lysates was isolated and DNAse

digestion was performed as recommended by the supplier to avoid

genomic DNA contamination (RNeasy Mini Kit, Qiagen, Hilden,

Germany). Subsequently 1 mg of total RNA was reverse

transcribed into cDNA with oligo (dT) primers and 15 U/mg

AMV Reverse Transcriptase (Promega, Madison, USA) according

to standard procedures. RNA preparations were used for PCR

analysis.

Quantitative Real-time Reverse Transcriptase PCR
For mRNA quantification, real-time PCR was performed in a

SYBR Green fluorescence temperature cycler (LightCyclerH,

Roche Diagnostics, Mannheim, Germany). Single-stranded cDNA

(or gene-specific plasmids as controls) corresponding to 10 ng of

RNA served as a template for PCR with specific oligonucleotide

primer pairs (table 2) as described previously [31]. All primers

were checked for specific binding to the sequence of interest using

BLAST. Plasmids for each product were synthesized with the

TOPO TA Cloning Kit (Invitrogen, Carlsbad, CA, USA)

according to the supplier’s protocol. PCR-amplified DNA

fragments were confirmed by sequencing. The correctly sequenced

plasmids were serially diluted for internal standard curves. The

mRNA data were normalized to the mRNA of ß-actin.

Protein Preparation
LS174T cells were washed with PBS, harvested by scraping and

centrifuged for two times at 1300 rpm for 5 minutes. Whole cell

lysates were extracted with lysis buffer containing 20 mM Tris-

Figure 2. Hes1, Hath1 and KLF4 protein expression (Western blot) in LS174T cells after treatment with heat-inactivated E. coli Nissle
1917. Hes1 Western blot analysis showed a double band after incubation (A). The protein content of the lower band (equivalent to the control band)
was significantly decreased in comparison to controls after 12 hours of treatment (A). Hath1 protein was significantly decreased after 6 hours
treatment with E. coli Nissle 1917 (B). KLF4 was clearly downregulated after 24 hours of treatment (C). Data represent the means 6 SEM normalised to
basal expression of untreated controls set at 1 (n = 3). *: p,0.05.
doi:10.1371/journal.pone.0055620.g002
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HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% Trition X-100,

25 mM Sodiumpyrophosphat, 1 mM Glycerolphosphat,

1 mM Na3VO4, 6M Urea and 1% Protease Inhibitor Cocktail

(Sigma-Aldrich Chemie GmbH, Steinheim, Germany). Mouse

colonic tissue was extracted with lysis buffer (see above) and

homogenized by FastPrep instrument. Mouse and cell culture

lysates were centrifuged at 13000 rpm at 4uC for 20 minutes and

the supernatant was collected. Total protein amount was

measured with the Bicinchoninic Acid Protein Assay (Smith) as

described previously [32]. Isolated proteins were used for Western

blot experiments.

Western Blot
40 mg (LS174T cell lysates) or 20 mg (mouse colonic tissue) of

total protein was separated on a 10% Tris-glycin SDS polyacryl-

amide gel, transferred to 0.45 mm pore size nitrocellulose

membranes (Schleicher & Schuell, Keene, NH, USA) and blocked

with 5% skimmed milk powder in TBST (10 mM Tris pH 8.0,

150 mM NaCl, 0.05% Tween 20) for 1 hour. Then, the

membranes were washed with TBST and incubated overnight at

4uC with the primary antibodies. Anti-Hath1/Math1 (AB5692,

Millipore, Temecula, CA, USA) and anti-Hes1 (sc-25392, Santa

Cruz Biotechnology, Heidelberg, Germany) antibodies were

diluted 1:200 in 5% skimmed milk powder in TBST, whereas

the dilution of the anti-KLF4 (ab26648, Abcam, Cambridge,

USA) antibody was 1:100. After repeatedly washing, the

membranes were treated for 1 hour with the secondary HRP-

conjugated goat anti-rabbit immunoglobulin G antibody (Immuno

Research Laboratories, West Grove, PA, USA; dilution 1:5000).

Then, protein was detected with the Amersham TM ECL Plus

Western Blotting Detection System (GE Healthcare, Chalfont St

Giles, UK) and signals were visualized with a chemiluminescence

camera charge-coupled device LAS-1000 (Fuji, Tokio, Japan).

Densitometric analysis was performed with AIDA 2.1 software

Figure 3. HBD2, Muc1 and Muc2 mRNA expression in LS174T cells after treatment with different heat-inactivated bacteria for 3
hours. HBD2 expression was induced by Symbioflor G2, E. coli K-12, E. coli Nissle 1917, B. breve and adolescentis (A). Muc1 transcripts were
upregulated by Symbioflor G2, E. coli K-12, E. coli Nissle 1917, L. fermentum and acidophilus as well as B. breve (B). Muc2 mRNA was unchanged (C).
Data represent the means 6 SEM normalised to basal expression of untreated controls set at 1 (n = 4). *: p,0.05, **: p,0.01, ***: p,0.001. For 12
hours treatment results see Fig. S2.
doi:10.1371/journal.pone.0055620.g003
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(Raytest, Straubenhardt, Germany). ß-actin antibody (Sigma-

Aldrich) was used as an internal control.

Immunostaining and Goblet Cell Count
For Muc1 and Muc2 staining, LS174T cells were seeded in 2-

well Chamber Slides (Nalge Nunc International Corp., Naperville,

IL, USA) at a density of 0.656106 per well. Cells were incubated

with E. coli Nissle 1917 for 6 hours, washed with PBS and fixed

with 100% ethanol for 10 minutes at 220uC. Then, ethanol was

removed and the slides were rinsed for two times with TBST.

Immunostaining and visualisation was performed as previously

described [33]. Anti-Muc1 antibody (VU4H5, Santa Cruz

Biotechnology, Heidelberg, Germany) was diluted 1:20 and

Anti-Muc2 (NCL-Muc2, Leica Biosystems Newcastle Ltd, Balliol

Business Park West, United Kingdom) antibody 1:200 in DAKO

REAL Antibody dilution buffer (Dako, Glostrup, Denmark). Cells

were also counterstained with hematoxylin.

The number of goblet cells was determined in sections from

mouse colonic tissue (germfree: n = 6, SPF housed: n = 4,

conventionalized: n = 4) following a standard Alcian Blue staining

by blindly counting the Alcian Blue positive vacuoles in a total of

10 crypts per mice.

Statistics
Quantitative real-time PCR and Western blot results were

analysed using the Mann-Whitney test. Values of p,0.05 were

considered to be statistically significant. All statistical analyses were

performed and all graphs were generated with the GraphPad

Prism version 5.0 software. Data are presented as means with

standard error of the mean (SEM).

Results

Hes1, Hath1 and KLF4 are Regulated by Bacteria in vitro
First, we analysed mRNA expression of the epithelial cell

differentiation markers Hes1, Hath1 and KLF4 in LS174T cells

following treatment with different heat-inactivated bacteria. Hes1

transcripts (Fig. 1A and Fig. S1A) were diminished following

incubation with E. coli K-12 (3 hours: 0.42-fold, p,0.001; 12

hours: 0.64-fold, p,0.001) and E. coli Nissle 1917 (3 hours: 0.38-

fold, p = 0.001; 12 hours: 0.67-fold, p,0.001). Moreover, 3 hours

treatment with Symbioflor G3 (0.92-fold, p = 0.023), as well as 12

hours treatment with Symbioflor G2 (0.75-fold, p = 0.043) and L.

acidophilus (0.79-fold, p = 0.030) also led to a downregulation of

Hes1 mRNA. Hes1 Western blot analysis (Fig. 2A) showed an

appearance of a higher molecular weight band after treatment

with E. coli Nissle 1917. However, densitometric analysis of the

lower molecular weight band that is also present in control cells

revealed a significant reduction in Hes1 protein levels after 12

hours of E. coli Nissle 1917 stimulation (0.71-fold, p = 0.047).

Hath1 mRNA levels (Fig. 1B and Fig. S1B) were also

significantly downregulated by treatment with E. coli K-12 (3

hours: 0.69-fold, p = 0.002; 12 hours: 0.85-fold, p = 0.008) and E.

coli Nissle 1917 (3 hours: 0.74-fold, p = 0.025; 12 hours: 0.80-fold,

p = 0.001). This E. coli Nissle 1917 effect on Hath1 mRNA

expression was confirmed by Western blot analysis showing Hath1

protein levels to be significantly decreased after 6 hours of bacterial

exposure (0.71-fold, p = 0.038, Fig. 2B).

Figure 4. Muc1 and Muc2 protein expression (immunostaining) in LS174T cells after treatment with heat-inactivated E. coli Nissle
1917. Staining of Muc1 (A) but not Muc2 (B) was more pronounced following incubation with E. coli Nissle 1917 for 6 hours (representative example
of 3 stainings).
doi:10.1371/journal.pone.0055620.g004
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KLF4 mRNA transcripts (Fig. 1C and Fig. S1C) were

significantly induced after a 3 hour treatment with L. fermentum

(1.2-fold, p = 0.011, Fig. 1C) and significantly reduced after 12

hours of treatment with E. coli K-12 (0.81-fold, p = 0.005), E. coli

Nissle 1917 (0.83-fold, p = 0.008), L. acidophilus (0.77-fold,

p = 0.008) and B. vulgatus (0.77-fold, p = 0.003). KLF4 protein

levels were also slightly downregulated after 24 hours incubation

with E. coli Nissle 1917 (0.69-fold, p = 0.06, Fig. 2C).

HBD2 and Muc1 but not Muc2 are Regulated by Bacteria
in vitro

Since downregulation of both Hes1 and Hath1 expression levels

could lead to differentiation to either the absorptive or the

secretory cell lineage, we further investigated the effect of bacteria

on epithelial differentiation by analysing the expression of HBD2,

Muc1 and Muc2 in LS174T cells after treatment with different

bacteria strains.

Figure 5. Hes1, Hath1, HBD2 and Muc1 mRNA expression in LS174T cells incubated with heat inactivated E. coli Nissle 1917 wild
type and mutant strains (see Tab. 1) for 3 hours. Treatment with EcN wt, EcNDcsgBA (curli-negative), EcNDfim (Type 1 pili) and EcNDfoc (F1C
pili) led to a significant downregulation of Hes1 (A) and Hath1 (B) transcripts, whereas HBD2 (C) and Muc1 (D) mRNA was upregulated. In contrast,
EcNDfliA (sigma factor of flagellin), EcNDfliC (flagellin), EcNDflgE (hook) lost the regulation ability. Data represent the means 6 SEM normalised to
basal expression of untreated controls set at 1 (n = 3). *: p,0.05.
doi:10.1371/journal.pone.0055620.g005
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HBD2 mRNA (Fig. 3A and Fig. S2A) was induced by

Symbioflor G2 (3 hours: 150-fold, p = 0.002; 12 hours: 185-fold,

p,0.001), E. coli K-12 (3 hours: 1630-fold, p,0.001; 12 hours:

1310-fold, p,0.001), E. coli Nissle 1917 (3 hours: 1833-fold,

p,0.001; 12 hours: 1578-fold, p,0.001) and B. breve (3 hours: 42-

fold, p = 0.018; 12 hours: 61-fold, p = 0.005) for both time-points,

whereas B. adolescentis (18-fold, p = 0.032) led to a significant

increase of HBD2 transcripts only after 3 hours of treatment.

Muc1 mRNA transcripts (Fig. 3B and Fig. S2B) were

significantly augmented following a 3 hour stimulation with

Symbioflor G2 (10-fold, p = 0.026), E. coli K-12 (12-fold,

p = 0.002), E. coli Nissle 1917 (14-fold, p = 0.002), L. fermentum

(4.9-fold, p = 0.002) and acidophilus (5.6-fold, p = 0.010), as well as

B. breve (2.7-fold, p = 0.049). After 12 hours of treatment the Muc1

induction was still significant for Symbioflor G2 (2.9-fold,

p = 0.027), E. coli K-12 (2.7-fold, p = 0.018) and E. coli Nissle

1917 (3.3-fold, p = 0.008). This increase of Muc1 mRNA

expression after exposure to E. coli Nissle 1917 was confirmed

on the protein level by immunocytochemistry (Fig. 4A).

Muc2 mRNA (Fig. 3C and Fig. S2C) expression was unchanged

after exposure to intestinal bacteria. Accordingly, incubation with

E. coli Nissle 1917 had no effect on Muc2 protein content (Fig. 4B).

To clarify whether the effects on HBD2 and Muc1 expression

are caused by bacterial treatment or indirectly by changes in Hes1

and Hath1 expression, we blocked the Notch pathway in LS174T

cells using the gamma-secretase inhibitor DBZ up to 24 hours with

and without E. coli Nissle. The DBZ treatment led to a strong

downregulation of Hes1 (3 h: 0.34-fold, p = 0.01; 6 h: 0.11-fold,

p = 0.0003; 12 h: 0.09-fold, p,0.0001 and 24 h: 0.11-fold,

p = 0.001) followed by a delayed Hath1 upregulation (3 h: 0.93-

fold, n.s.; 6 h: 1.19-fold, p = 0.0206; 12 h: 2.01-fold, p = 0,0297

and 24 h: 2.44-fold, p = 0.0032), without affecting HBD2, Muc1

or Muc2 expression. Thus, no significant differences in mRNA

expression of these products in untreated and DBZ treated cells as

well as no differences between E. coli Nissle only and E. coli

Nissle+DBZ treated cells were observed (Fig. S3 and S4). Since

HBD2 and Muc1 are induced by E. coli Nissle 1917 independently

of Notch pathway inhibition, we suggest that this induction is

triggered by bacteria or their components and not through

changes in Hes1 or Hath1 expression.

E. coli Nissle 1917 Flagellin is Required for Regulating
Hes1, Hath1, HBD2 and Muc1 Expression

Since previous data mechanically linked the inducing effect of E.

coli Nissle 1917 on HBD2 to its flagellin [34], we analyzed whether

flagellin is essential to regulate expression of Hes1, Hath1 and

Muc1. LS174T cells were incubated for 3 hours with E. coli Nissle

1917 wild type strain as well as various E. coli Nissle 1917 deletion

mutants as listed in table 1.

Consistent with our previous observations, KLF4 (Fig. S5A) and

Muc2 (Fig. S5B) mRNA levels were unchanged following a 3 hour

treatment with E. coli Nissle 1917 wild type and mutant strains. In

contrast, Hes1 (0.61-fold, p = 0.046, Fig. 5A) and Hath1 (0.67-fold,

p = 0.035, Fig. 5B) mRNA levels were significantly downregulated

after 3 hours of treatment with wild type E. coli Nissle 1917 as

compared to untreated controls, whereas HBD2 (1246-fold,

p = 0.005, Fig. 5C) and Muc1 (3.1-fold, p = 0.014, Fig. 5D) mRNA

transcripts were upregulated. This change in Hes1 and Hath1

expression pattern was similar after incubation with the E. coli

Nissle 1917 mutant strains EcNDcsgBA (Hes1:0.45-fold, p = 0.015,

Hath1:0.70-fold, p = 0.044, HBD2:1775-fold, p = 0.002,

Muc1:2.5-fold, p = 0.034), EcNDfim (Hes1:0.51-fold, p = 0.038,

Hath1:0.60-fold, p = 0.016, HBD2:1684-fold, p = 0.001,

Muc1:2.3-fold, p = 0.078) and EcNDfoc (Hes1:0.56-fold,

p = 0.067, Hath1:0.72-fold, p = 0.018, HBD2:1441-fold,

p = 0.002 Muc1:2.6-fold, p = 0.016). In contrast, incubation with

the flagellin mutants EcNDfliA, EcNDfliC and EcNDflgE left Hes1,

Hath1, HBD2 and Muc1 mRNA transcripts unchanged as

compared to the untreated controls (Fig. 5A–D). These results

clearly demonstrate that the flagellin of E. coli Nissle 1917 is

essential for regulating Hes1, Hath1, HBD2 and Muc1 mRNA

expression.

Microbiota also Regulate Hes1, Math1 and KLF4 in vivo
As our in vitro observations suggested an effect of bacteria on

intestinal epithelial cell differentiation, we next evaluated the

in vivo relevance of our findings by using germfree animals to assess

the role of the intestinal microflora in the regulation of epithelial

cell differentiation in mice. Therefore, mRNA expression of

mHes1, Math1 (the mouse homolog of Hath1), mKLF4, mMuc1

and mMuc2 was analyzed in the colon of germfree mice as

Figure 6. Mouse (m) Hes1, Math1 and mKLF4 mRNA expression
in colon of germ free (n = 7), SPF (specific pathogen free, n = 4)
and conventionalized mice (n = 4). The presence of intestinal
microbiota is associated with downregulation of mHes1 (A), Math1 (B)
and mKLF4 (C) mRNA in SPF mice and even more in conventionalized
mice. Data represent the means 6 SEM normalised to basal expression
of untreated controls set at 1. *: p,0.05, **: p,0.01.
doi:10.1371/journal.pone.0055620.g006
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compared to mice reared with specific pathogen free (SPF)

intestinal microflora (m…mouse). In the colon of SPF mice,

mRNA expression of mHes1 (0.77-fold, p = 0.04), Math1 (0.58-

fold, p = 0.006) and mKLF4 (0.73-fold, p = 0.011) was lower in

comparison to germfree mice (Fig. 6A–C). These results are

consistent with our in vitro observations suggesting an inhibitory

effect of bacteria on expression of these differentiation genes. In

order to further evaluate this, we also analyzed colons from

germfree mice that regained their microbiota by cohousing with

SPF mice for 4 weeks. These conventionalised mice showed even

more decreased mRNA levels for mHes1 (0.51-fold p = 0.006),

Math1 (0.48-fold, p = 0.006) and mKLF4 (0.57-fold p = 0.011) as

compared to the germfree mice (Fig. 6A–C), again confirming the

inhibitory effect of the microbiota on expression of these

differentiation factors. Surprisingly however, this microbiota effect

was not reflected in the expression levels of mMuc1 (Fig. S6A) and

mMuc2 (Fig. S6B) since they were not significantly altered in

germfree versus colonized mice.

In accordance with the mRNA data we also found a diminished

colonic Math1 and mKLF4 protein expression by Western blot

analysis in SPF housed and conventionalized mice as compared to

the germfree animals (Fig. 7). In contrast, mHes1 protein seems to

be unchanged in these three groups (Fig. 7). However, the

diminished expression of the goblet cell differentiation markers

Math1 and mKLF4 does not lead to a reduced number of goblet

cells as shown in Fig. 8.

Discussion

The current study focused on the regulatory effects of intestinal

bacteria on the expression of the intestinal epithelial differentiation

factors Hes1, Hath1 and KLF4. Moreover the bacterial effects on

mucins Muc1 and Muc2, as well as the defensin HBD2 were

investigated as well.

We found a bacterial regulation of the transcription factors

Hes1, Hath1 and KLF4 in the colon adenocarcinoma cell line

LS174T, especially by E. coli K-12 and E. coli Nissle 1917. These

changes in mRNA expression were confirmed for Hes1 and Hath1

(and also in trend for KLF4) on the protein level by Western blot

experiments following stimulation with E. coli Nissle 1917.

Notably, in case of Hes1, a higher molecular weight band

appeared following treatment with E. coli Nissle 1917. This double

band did not occur in the mouse colon where only a single band

was observed, therefore we conclude that the double band is an

in vitro phenomenon of cell culture and has likely no physiological

relevance in vivo. However, to our knowledge, this is the first study

that shows bacteria to regulate these three epithelial differentiation

factors in colonic epithelial cells in vitro. Prior observations

demonstrated Hes1 to be induced by Porphyromonas gingivalis

lipopolysaccharides in the mouse osteoblastic cell line MC3T3E-

Figure 7. Mouse (m) Hes1, Math1 and mKLF4 protein expression in colon of germ free, SPF (specific pathogen free) and
conventionalized mice. The presence of intestinal microbiota is associated with a downregulation of Math1 and mKLF4 but not mHes1 protein in
SPF and conventionalized mice.
doi:10.1371/journal.pone.0055620.g007

Figure 8. Goblet cell number in colon of germ free, SPF
(specific pathogen free) and conventionalized mice. The number
of goblet cells is unchanged between the three subgroups.
doi:10.1371/journal.pone.0055620.g008
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1 and in primary mouse bone marrow stromal cells [35].

Moreover Mycobacterium bovis led to increased Hes1 transcripts in

peritoneal mice macrophages [36] whereas Salmonella typhimurium

causes a decrease of Hes1 expression in PS cells [37]. In case of

Hath1, there are no data available concerning the interaction with

bacteria at all, whereas KLF4 was shown to be induced in

macrophages again by P. gingivalis lipopolysaccharides [38]. In the

present study Muc1 expression of LS174T cells was also

significantly induced by several bacteria, such as E. coli Nissle

1917 and E. coli K-12, whereas Muc2 expression was unchanged

following incubation with all bacteria strains tested. Accordingly,

immunostaining on LS174T cells showed a clear induction of

Muc1 protein following stimulation with E. coli Nissle 1917 as

compared to untreated cells, whereas Muc2 protein was unaffect-

ed. Several, in part conflicting studies, focused on the impact of

bacteria on the expression profiles of the mucins Muc1 and Muc2

in intestinal epithelial cells. For instance, HT29 cells treated with

E. coli Nissle 1917 did not alter the mRNA and protein expression

of these two mucins. In contrast, the probiotic cocktail VSL#3

induced Muc2 secretion in HT29 cells [39] but not in LS174T

cells [40]. Moreover, L. acidophilus enhanced Muc2 transcripts in

HT29 cells [41], whereas another group could not confirm these

data [42]. A recent study showed a strong up-regulation of Muc2

in LS174T cells after treatment with flagellin from Salmonella

typhimurium [43]. Differences between these prior observations and

our data could be explained by the use of different cell lines (e.g.

HT-29 vs. LS174T cells) and possibly also by different bacterial

preparations (e.g. living vs. heat-inactivated bacteria).

In addition, we found HBD2 transcripts to be upregulated by E.

coli Nissle 1917, E. coli K-12, and other bacteria. This is in

principle consistent with prior data where HBD2 mRNA was

demonstrated to be induced in Caco-2 cells following a treatment

with E. coli Nissle 1917, uropathogenic E. coli, as well as L.

fermentum, L. acidophilus and VSL#3, but not with E. coli K-12 [30].

Moreover, in LS174T cells the expression of HBD2 was shown to

be elevated once treated with E. coli D21, Micrococcus luteus and

Salmonella typhimurium [44]. Notably, the effect of L. fermentum on

HBD2 expression was clearly higher in Caco-2 than in LS174T

cells. This also implies that HBD2 regulation varies in different cell

lines.

Overall, cell culture experiments showed a stronger downreg-

ulation of the columnar cell differentiation marker Hes1, as

compared to the secretory cell differentiation marker Hath1.

Therefore, it could be speculated that specific bacteria such as E.

coli Nissle 1917 and E. coli K-12 may influence the differentiation

of specific cell lineages with a shift towards the goblet cell lineage.

Nevertheless, the interplay of underlying mechanisms and the

exact consequences of the effects on the differentiation markers

need further study.

Previously, the induction of HBD2 by E. coli Nissle 1917 was

demonstrated to be dependent on flagellin [34]. Since Hes1,

Hath1 and Muc1 were also regulated by E. coli Nissle 1917, we

analyzed the role of flagellin with respect to these three factors. In

contrast to E. coli Nissle 1917 wild type, Hes1 and Hath1 mRNA

was not downregulated by the flagellin mutant strains EcNDfliA,

EcNDfliC and EcNDflgE. Accordingly, Muc1 expression was

enhanced in E. coli Nissle 1917 wild type, but not in EcNDfliA,

EcNDfliC and EcNDflgE. This implies that Hes1, Hath1 and Muc1

are regulated by E. coli Nissle 1917 flagellin, similar to HBD2.

To elucidate the effect of the intestinal microflora in vivo, we

analysed the expression of mHes1, Math1 and mKLF4 in the

colon of germ free mice compared to SPF and conventionalized

mice. Similar to the cell culture data, we observed a significantly

lower Math1 and mKLF4 mRNA and protein expression in

colonized mice compared to germ free mice, whereas mHes1

expression was reduced on mRNA but not on protein level. This

difference in mHes1 expression could be a result of posttranscrip-

tional regulation mechanisms which need further investigations.

Several arguments underline that intestinal bacteria play a

crucial role in IBD pathogenesis: Inflammation in IBD is located

in areas with a high density of bacteria (mostly colon and/or

terminal ileum) [45]; germ free mice do not develop colitis [46];

exposure of fecal stream to the terminal ileum worsen inflamma-

tion [47]; antimicrobial peptides are insufficiently expressed in

CD, and mutations of human receptors recognizing luminal

bacteria, such as NOD2 [48,49] and TLR dysfunction [50,51] are

linked to a higher risk of IBD development. Moreover, the

intestinal microflora is altered in IBD as compared to healthy

controls. Numerous studies described changes in the composition

of the microflora between CD, UC and healthy patients [52–54],

and mucosa-associated and even intracellular bacteria were found

in both types of IBD [17,18]. Recent studies showed UC to be

associated with goblet cell [21] and ileal CD with Paneth cell

differentiation defects [20]. In addition, mice with an epithelial-

specific defect leading to reduced Hes1 expression were recently

shown to spontaneously develop colitis [55]. Considering these

observations, our data suggest that in addition to the genetic

predisposition, the luminal microbiota may directly affect

epithelial differentiation and its defensive role.

There are also reasons to suggest bacteria to be involved in

colon cancer pathogenesis: intestinal cancer is mostly found in the

colon, the segment with the highest number of bacteria [56], some

bacteria can induce malignancies, e.g. H. pylori and gastric

neoplasia [57,58], and, moreover, patients with colon cancer have

adherent bacteria [27] as well as more circulating antibodies

against specific bacteria (e.g. S. gallolyticus) compared to healthy

controls [59]. On the other hand, several studies reported that

probiotics, such as L. acidophilus NCFM, suppress carcinogenesis

[60,61]. In most colorectal cancers Notch signaling was found to

be activated [62,63], whereas Hath1 and KLF4 were decreased

[64–67]. It may be speculated that the downregulation of the

important epithelial cell differentiation factors Hath1 and KLF4

could play a role in this regard.

Taken together, the current study shows that intestinal bacteria

regulate the epithelial differentiation factors Hes1, Hath1 and

KLF4 in vitro and in vivo. This could be involved in IBD and colon

cancer pathogenesis although further details remain to be

elucidated.

Supporting Information

Figure S1 Hes1, Hath1 and KLF4 mRNA expression in
LS174T cells after treatment with different heat-inacti-
vated bacteria for 12 hours. Hes1 expression was diminished

by Symbioflor G2, E. coli K-12, E. coli Nissle 1917 and L. acidophilus

(A). Hath1 transcripts were downregulated by E. coli K-12 and E.

coli Nissle 1917 (B). KLF4 mRNA was impaired by E. coli K-12, E.

coli Nissle 1917, L. acidophilus and B. vulgatus (C). Data represent the

means 6 SEM normalised to basal expression of untreated

controls set at 1 (n = 4). *: p,0.05, **: p,0.01, ***: p,0.001.

(TIF)

Figure S2 HBD2, Muc1 and Muc2 mRNA expression in
LS174T cells after treatment with different heat-inacti-
vated bacteria for 12 hours. HBD2 expression was induced

by Symbioflor G2, E. coli K-12, E. coli Nissle 1917 and B. breve (A).

Muc1 transcripts were upregulated by Symbioflor G2, E. coli K-12

and E. coli Nissle 1917 (B). Muc2 mRNA was unchanged (C). Data

represent the means 6 SEM normalised to basal expression of
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untreated controls set at 1 (n = 4). *: p,0.05, **: p,0.01, ***:

p,0.001.

(TIF)

Figure S3 Hes1, Hath1 and KLF4 mRNA expression in
LS174T cells following treatment with E. coli Nissle
1917, DBZ and E. coli Nissle 1917+ DBZ for 3, 6, 12 and
24 hours. DBZ led to a strong downregulation of Hes1 after 3 to

24 hours treatment (A), a significant upregulation of Hath1 after 6

to 24 hours treatment (B) and an increase of KLF4 mRNA

expression following 24 hours treatment (C). Data represent the

means 6 SEM normalised to basal expression of untreated

controls set at 1 (n = 4). *: p,0.05, **: p,0.01, ***: p,0.001.

(TIF)

Figure S4 HBD2, Muc1 and Muc2 mRNA expression in
LS174T cells following treatment with E. coli Nissle
1917, DBZ and E. coli Nissle 1917+ DBZ for 3, 6, 12 and
24 hours. E. coli Nissle 1917 upregulated HBD2 and Muc1

transcripts independent of DBZ treatment (A+B). Muc2 mRNA

expression was unchanged by DBZ and/or E. coli Nissle 1917 (C).

Data represent the means 6 SEM normalised to basal expression

of untreated controls set at 1 (n = 4). *: p,0.05, **: p,0.01, ***:

p,0.001.

(TIF)

Figure S5 KLF4 and Muc2 mRNA expression in LS174T
cells incubated with heat inactivated E. coli Nissle 1917
wild type and mutant strains (see Tab. 1) for 3 hours.

KLF4 (A) and Muc2 (B) mRNA expression was unchanged in E.

coli Nissle wild type (EcN wt) and mutant strains (EcNDfliA,

EcNDfliC, EcNDflgE, EcNDcsgBA, EcNDfim, EcNDfoc). Data

represent the means 6 SEM normalised to basal expression of

untreated controls set at 1 (n = 4).

(TIF)

Figure S6 Mouse (m) Muc1 and Muc2 mRNA expression
in colon of germ free (n = 7), SPF (specific pathogen free,
n = 4) and conventionalized mice (n = 4). No significant

changes on mMuc1 (A) and mMuc2 (B) expression were found

between the subgroups.

(TIF)
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