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Abstract
Topological insulators are electronic phases that insulate in the bulk and accom-
modate a peculiar, metallic edge liquid with a spin-dependent dispersion. They are
regarded to be of considerable future use in spintronics and for quantum compu-
tation. Besides determining the intrinsic properties of this rather novel electronic
phase, considering its combination with well-known physical systems can generate
genuinely new physics. In this thesis, we report on such combinations including topo-
logical insulators. Specifically, we analyze an attached Rashba impurity, a Kondo
dot in the two channel setup, magnetic impurities on the surface of a strong three-
dimensional topological insulator, the proximity coupling of the latter system to
a superconductor, and hybrid systems consisting of a topological insulator and a
semimetal. Let us summarize our primary results. Firstly, we determine an ana-
lytical formula for the Kondo cloud and describe its possible detection in current
correlations far away from the Kondo region. We thereby rely on and extend the
method of refermionizable points. Furthermore, we find a class of gapless topological
superconductors and semimetals, which accommodate edge states that behave sim-
ilarly to the ones of globally gapped topological phases. Unexpectedly, we also find
edge states that change their chirality when affected by sufficiently strong disorder.
We regard the presented research helpful in future classifications and applications
of systems containing topological insulators, of which we propose some examples.





Preface
This thesis has been written as part of the examination to achieve the academic
degree Doctor of Natural Sciences. It contains the findings accumulated during
my research since the beginning of 2012 regarding the combination of topological
insulators with more familiar materials and effects. This I refer to as “Dressing
topological insulators” in the title. The aim was to employ the novelty of topological
insulators to track interesting and themselves even newer effects in such combined
systems. Of course, this strategy is not exclusive to this thesis as there are plenty
of other scientists pursuing the same direction in research. Altogether, I feel that
the aim has been reached and that this area of research on topological insulators
has progressed due to the work presented here. I hope that the results can be
used to conduct some of the indicated future projects. In regard of this, the text
is, in principle, written in a way that the acquired results can be understood and,
especially under consideration of the cited references, be reconstructed by a Ph.D.
student or a talented master’s degree candidate. I have to admit, however, that
considerable dedication is required.
Something personal should be the end of this preface. During the last years, my

co-authors have been from Germany, China, Israel, and Romania. Furthermore, I
was working together with researchers from France, Spain, Italy, Finland, Belgium,
Poland, and Russia1. All of them, including myself, have regarded this circumstance
as completely natural. How wonderful.
I would like to thank my father, my mother, and my brother for their influence on

my life, which apparently has led to something good. Subsequently, I am thankful
for the warm support of my family and friends. Also, I want to thank my fiancé for
her patience.

Funding and scientific acknowledgment
Regarding Chapter 5, I thank P. Simon and G. Zaránd, Jan von Delft, Jan Budich,
Fabrizio Dolcini, and Michele Filippone for interesting discussions as well as the
DFG (especially SPP 1666 and the DFG-JST research unit “Topotronics”), the
Humboldt Foundation, and Helmholtz Foundation (VITI), as well as the ESF for
financial support.

1The list of nations would continue for a long time if I included all persons I have had scientific
conversations with during the last years.



vi

Chapter 6 and Chapter 7 were financially supported by the DFG (German-
Japanese research unit “Topotronics”; priority program SPP 1666 “Topological in-
sulators”), the Helmholtz Foundation (VITI), and the ENB Graduate School on
“Topological Insulators” from the side of Björn Trauzettel and myself. In this con-
text, I want to thank Paolo Michetti and Chen-Hsuan Hsu for interesting discussions
as well as Tim Wehling for correspondence. From the side of our coauthors Yuval
Baum, Ion Cosma Fulga, and Ady Stern, the support by the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2007-
2013) / ERC Project MUNATOP, the US-Israel Binational Science Foundation, and
the Minerva Foundation is gratefully acknowledged.
I want to express my gratitude to Björn Trauzettel, who has guided me excellently

during my encounters with problems in solid state physics and taught me about
focusing on the important tasks first. Furthermore, I want to thank Yuval Oreg
and Ady Stern for their hospitality, which has made it possible for me to stay
at the Weizmann Institute. Thereby I had the opportunity to benefit from truly
international collaborations.
This thesis would not be the same without the numerous discussions with or

influence of Jan Carl Budich, Yuval Baum, Chao-Xing Liu, Ion Cosma Fulga, Rolf
Reinthaler, Dietrich Gernot Rothe, François Crépin, Florian Geißler, Pablo Burset,
Moritz Fuchs, Niccolò Traverso Ziani, and Charles Gould, who I herewith want
to acknowledge. Finally, I want to thank the creators of Wolfram Mathematica
[Wolfram Research, Inc., 2015] and the LATEX community for their software, which
helped me to calculate and document my results the way I did.

Thore Posske, Würzburg, July 21, 2015



Contents
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

I. Introduction 1

1. Introduction & motivation 2

2. Background 4
2.1. Topological Insulators . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1. A basic topological insulator . . . . . . . . . . . . . . . . . . . 5
2.1.2. Generalizations of and concepts beyond the presented basic

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3. The quantum spin Hall effect . . . . . . . . . . . . . . . . . . 15
2.1.4. Fu’s model for the surface states of a three-dimensional strong

topological insulator . . . . . . . . . . . . . . . . . . . . . . . 16
2.2. Magnetic and electric perturbations . . . . . . . . . . . . . . . . . . . 18

2.2.1. Zeeman terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2. Rashba terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3. Kondo physics and the Kondo cloud . . . . . . . . . . . . . . . 19
2.2.4. The RKKY approximation . . . . . . . . . . . . . . . . . . . . 22

2.3. Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3. Methods 30
3.1. Method of refermionizable points . . . . . . . . . . . . . . . . . . . . 30

3.1.1. Bosonic-fermionic equivalence in one spatial dimension . . . . 31
3.1.2. Generalized Emery-Kivelson transformations . . . . . . . . . . 38
3.1.3. Refermionizable points of the two channel Kondo model with

interacting helical leads . . . . . . . . . . . . . . . . . . . . . . 39
3.2. Finitization of divergences generated by a local scatterer . . . . . . . 45

3.2.1. Proof by induction . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2. Continuum limit . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3. Multidimensional optimization and integration - The Metropolis al-
gorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4. Checking translationally invariant Hamiltonians for decomposability . 54



viii Contents

3.5. Applied transport simulations for superconductors . . . . . . . . . . . 56

II. Results 59

4. The local Rashba scatterer 60
4.1. System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1. Bosonization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2. Refermionizable points . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3. Exact solution at the primary refermionizable point . . . . . . . . . . 66

4.3.1. Orthogonality relations . . . . . . . . . . . . . . . . . . . . . . 68
4.3.2. Inversion of D . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4. Exact transition to infinite momentum cutoff . . . . . . . . . . . . . . 71
4.5. Backscattering current IB . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.1. Derivation of the refermionized form of IB . . . . . . . . . . . 72
4.6. Rashba energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.7. Same expectation values ⇔ same Hamiltonians . . . . . . . . . . . . 75
4.8. Conclusions about the local Rashba scatterer . . . . . . . . . . . . . . 76

5. The local Kondo impurity 78
5.1. Exact results for the Kondo cloud of two helical liquids . . . . . . . . 79

5.1.1. Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.1.2. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.1.4. Renormalization group analysis of the crossing terms . . . . . 86

5.2. The Kondo cloud in current cross correlations in helical liquids . . . . 89
5.2.1. Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.3. Dependence of the central results on interaction strengths . . 96

5.3. Conclusion about the local Kondo impurity . . . . . . . . . . . . . . . 99

6. Magnetically doped strong 3DTI in proximity to a superconductor 100
6.1. Magnetically doped strong 3DTI in the hexagonal warping regime . . 101

6.1.1. Model and RKKY interaction . . . . . . . . . . . . . . . . . . 103
6.1.2. Calculating the spin susceptibility with proper cutoffs . . . . . 104
6.1.3. Engineering the position of the peaks in the RKKY interaction 105
6.1.4. Spiral ground state and its temperature stability . . . . . . . . 107
6.1.5. The electronic spectrum in the broken symmetry phase . . . . 110
6.1.6. Proximity to a conventional s-wave superconductor . . . . . . 111

6.2. General scheme for gapless topological superconductors . . . . . . . . 113
6.2.1. Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



Contents ix

6.2.3. Intuitive model in the small Q limit . . . . . . . . . . . . . . . 120
6.2.4. Conclusions about magnetically doped 3DTI in proximity to

a superconductor . . . . . . . . . . . . . . . . . . . . . . . . . 121

7. Hybrid systems of topological and semimetallic phases 124
7.1. The four models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.1.1. Model I : Gapped Chern insulator coupled to a 2D Dirac metal 127
7.1.2. Model II : Gapped Chern insulator coupled to a Chern insula-

tor at its critical point . . . . . . . . . . . . . . . . . . . . . . 130
7.1.3. Model III : Gapped Chern insulator coupled to a quantum spin

Hall state at its critical point . . . . . . . . . . . . . . . . . . 131
7.1.4. Model IV : Gapped quantum spin Hall phase coupled to a

quantum spin Hall phase at its critical point . . . . . . . . . . 134
7.1.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8. Conclusion & outlook 142

Bibliography 148

III. Appendix 165

A. Deutsche Zusammenfassung und Motivation 166
A.1. Kurze Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . 166
A.2. Deutsche Einführung und Motivation . . . . . . . . . . . . . . . . . . 166

B. Officially required appendices 169
B.1. List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169





Part I.

Introduction



1. Introduction & motivation
Modern electronic phases considerably extend the phenomenology of an ordinary
Fermi liquid and are hot topics in contemporary solid state physics. Examples are
superconductors, Mott insulators, Wigner crystals, nematic phases, and the family
of Quantum Hall effects. The latter contains first examples of topologically classified
electronic phases. This topological scheme extends the Landau theory and classifies
phases that are indistinguishable by spontaneously broken symmetries [Hasan &
Kane, 2010]. Thereby it extends the understanding of electronic phases consider-
ably. In the recent past, numerous topological insulators have been predicted and
discovered [Bernevig et al., 2006; Brüne et al., 2011; Hasan & Kane, 2010; Hasan
et al., 2014; Kane & Mele, 2005a; König et al., 2007]. These phases stand out by
being insulating in their interior but conducting on their edges. The so-called edge
channels conduct in a specific way that depends on the spin of the transmitted quasi
particles. This unique property opens possibilities for the application of topological
insulators in spintronics, having the long term goal of replacing classical electronics
in computational machines, and presumably also in quantum computational ap-
proaches [Stern & Lindner, 2013].
After the discovery of topological insulators, research was conducted to determine

their intrinsic properties and improve the quality of the respective material systems
[Brüne et al., 2011; Hasan et al., 2014]. This process still continues. As a next
step, however, it is interesting to explore the manifold possibilities of combining
topological insulators with better-known physical systems. Not at last because truly
interesting effects and systems have emerged from such a procedure in the past, for
instance, the Josephson junction, the diode and the transistor, and the quantum
Hall effects1.
This thesis contributes to the research about combining topological insulators

with other systems. We will not give a complete survey of the vast combinatorial
possibilities, a few of which are discussed in Fu & Kane [2008]; Law et al. [2010];
Lindner et al. [2012]; Liu et al. [2009]; Ström et al. [2010]. Instead, we focus
on a few interesting examples only. To this end, we introduce the bare compo-
nents in Chapter 2 by explaining what a topological insulator is (Section 2.1) and
shortly explain the notions of particular electromagnetic perturbations (Section 2.2),
namely the Zeeman effect and the Rashba effect, the Kondo effect (Section 2.2.3),

1The quantum Hall effects in their ordinary form combine two-dimensional electron gases and a
strong magnetic field.
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Ruderman-Kittel-Kasuya-Yosida interactions (Section 2.2.4), and superconductivity
(Section 2.3). We then proceed in Chapter 3 by introducing our theoretical equip-
ment: the theory of refermionizable points (Section 3.1), including bosonization and
refermionization, a special method to treat divergences stemming from local per-
turbations (Section 3.2), the Metropolis algorithm (Section 3.3), and information
on our transport simulations (Section 3.5). In Part II, we present the analysis of
our dressed topological insulators. First, we regard a local Rashba scatterer cou-
pled to a helical liquid with repulsive electron-electron interactions (Chapter 4),
the refermionizable point of which surprisingly resembles the non-interacting limit.
Next is the two channel Kondo problem for helical liquids (Chapter 5), where we
resolve the Kondo cloud for certain parameter configurations exactly and propose a
way of measuring it experimentally by cross current correlations. Then, we come to
the RKKY interactions between magnetic impurities on a strong three-dimensional
topological insulator with warping (Chapter 6). Adding superconductivity to the
model generates a peculiar, two-dimensional gapless topological superconductor for
which we find a general generating mechanism (Chapter 6.2). In Chapter 7, we try to
synthesize a similar phase without superconductivity by coupling a two-dimensional
topological insulator to a two-dimensional semimetal and find a rich phenomenology
in the presence of disorder. We complete our discussions in Chapter 8 and look at
possible future problems for research that base on the presented work. These range
from Kondo Majorana braiding to dispersing Jackiw-Rebbi states.

Remarks on the notation and on self-quotations
During the thesis, tuples, vectors and spinors are represented by bold characters,
e.g., r = (x1, x2, x3)T . Their absolute value is represented by the same character
but with a normal thickness r =

√∑
i x

2
i . Matrices or operators are specified in the

text and not marked by a special style of the character they are represented by.
This thesis especially relies on the research published in Posske et al. [2013],

Posske & Trauzettel [2014], Baum et al. [2015a], and Baum et al. [2015b] (all copy-
righted by the American Physical Society), which is presented in the Chapters 5,
6, and 7, respectively. These chapters largely reproduce the text of the mentioned
publications and their supplemental materials. However, the publications have been
restructured, revised and adapted for the presentation in this thesis. Especially, the
representation of [Baum et al., 2015b] in Chapter 6 has been considerably restruc-
tured. Additionally, parts of the publications and their supplemental materials have
been employed to introduce the respective topic in Chapter 2 and to explain the em-
ployed methods in Chapter 3 without considerable reformulation. This especially
regards Section 3.5 and Section 3.2 as well as the first paragraphs of Section 2.1 and
Section 2.2.3.



2. Background

2.1. Topological Insulators
The classification and realization of topological states of matter are among the
main themes in modern condensed matter physics [Kitaev, 2009; Qi & Zhang, 2011;
Schnyder et al., 2008]. Of particular interest are topological insulators and topolog-
ical superconductors, which have drawn a great deal of attention over the past few
years [Bernevig et al., 2006; Chen et al., 2009; Fu & Kane, 2008; Fu et al., 2007;
Haldane, 1988; Hasan & Kane, 2010; Hsieh et al., 2009a,b; Kane & Mele, 2005b;
König et al., 2007; Moore & Balents, 2007]. Topological insulators are bulk insula-
tors accommodating metallic edge states that are protected, e.g., by time reversal
symmetry or chirality, against the opening of a gap, backscattering, and localization
[Bernevig et al., 2006; Chen et al., 2009; Fu & Kane, 2008; Fu et al., 2007; Hasan &
Kane, 2010; Hsieh et al., 2009a,b; Kane & Mele, 2005b; Kitaev, 2009; König et al.,
2007; Moore & Balents, 2007; Qi & Zhang, 2011; Schnyder et al., 2008]. Research
regarding topological insulators has been exceedingly active in the past decade re-
garding both theoretical and experimental physics. Recently, the pursuit of new
topological phases of matter has led to the discovery of novel quantum states and
exotic excitations in systems that rely on topological insulators [Fu & Kane, 2008;
Hasan & Kane, 2010; Stern, 2010]. But what is topology and what does topological
mean?
Topology is said to be described by Edward Witten with the words: “Topology

is the property of something that doesn’t change when you bend it or stretch it as
long as you don’t break anything.” [Lowen, 2015]. The mathematical theory that
abstracts this fundamental understanding of topology has developed to one of the
major branches of mathematics. In short, topology is the theory of continuity. As
such, it is not surprising that topology can be applied to address numerous phys-
ical problems. Some prominent examples are the Aharonov-Bohm effect, twisted
space times in general relativity and actions in quantum field theory [Nash, 1999],
adiabatic evolution [Kato, 1950], anyons [Dowker, 1972; Laidlaw & DeWitt, 1971;
Leinaas & Myrheim, 1977], and many more [Nash, 1999]. Nevertheless, the obser-
vation [König et al., 2007] and description [Bernevig et al., 2006; Kane & Mele,
2005a; Wu et al., 2006] of topological insulators have contributed significantly to
spread the notions of topology in solid state physics1. There are two main ap-

1An influential earlier application of topology in solid state physics was the theoretical explanation
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Figure 2.1.: A one-dimensional chain of atoms with a two-atomic unit cell (red
and blue). If interactions between sites of the same color are for-
bidden, the system is described by the family of Hamiltonians in
Eq. (2.1) and constitutes a very basic model to exemplify topolog-
ical order. One possibility to neglect intra species coupling is the
limitation to the nearest neighbor interaction, depicted as black ar-
rows.

proaches to topological insulators. One is the more experimentally orientated idea
of defining a topological insulator by a gapless bulk and the occurrence and charac-
ter of its metallic edge channels, which are non-coincidental and to a certain degree
protected2. The other, more theoretically orientated idea, embarks on a topological
strategy to separate topologically trivial and non-trivial phases. The edge states
then occur as a consequence of the bulk boundary correspondence [Hasan & Kane,
2010]. In the course of this work, we employ both approaches. If possible, we rely
on the latter approach, and also introduce the topic of topological insulators in this
manner. However, in Chapter 6 and Chapter 7, we introduce gapless topological
phases. These special phases lack a well-defined global topological invariant3. We
therefore then rely on the experimentally motivated definition of a topological phase.
In the following, we want to line out how topology can be applied to classify

band insulators, and discuss prominent physical properties of topological insulators,
especially their localized edge states. To this end, we first exemplify the most basic
concepts by a toy model in Section 2.1.1. We then turn on to describe some of the
physically more relevant but methodologically more involved models for topological
insulators and their edge states that are encountered in actual research. The first
such model describes the quantum spin Hall insulator and the second one describes
the surface states of a three-dimensional topological insulator.

2.1.1. A basic topological insulator
In this section, we want to discuss a basic example of a topological insulator to
establish the philosophy of applying topological methods to characterize band insu-
lators. Albeit the example is a toy model, it shows the main aspects of a typical

of the quantum Hall effect [Kohmoto, 1985; Thouless et al., 1982].
2In case of the quantum spin Hall effect in HgCdTe quantum wells, we have heard Laurens
Molenkamp holding this view in several talks during the last years.

3The notion of a topological invariant is explained in the remainder of this section.
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topological insulator including: topological invariants, the formation of edge states
at the boundary of two topologically different systems by the bulk boundary cor-
respondence, the dependence of the edge state localization on the bulk energy gap,
and the finite size splitting of the mid-gap modes.
Let us consider periodic chains of atoms with a two-atomic unit cell as shown

in Fig. 2.1. Within these systems, we label each atom of the unit cell by a dif-
ferent pseudo spin index and forbid interactions between sites of the same pseudo
spin. If we describe the chains in the tight binding approximation, each of them is
represented by a Hamiltonian of the form

H = t
∫
k∈BZ

dk c†(k)H(k)c(k), (2.1)

H(k) = (vx(k), vy(k)) (σx, σy)T , (2.2)

with the unit of energy t, the annihilation operators c(k) = (c1(k), c2(k))T in mo-
mentum space, the real functions vx(k), vy(k) : BZ→ R, and the Pauli matrices σλ.
Here, the Brillouin zone (BZ), is a circle of circumference 2π

a
, where a is the lattice

constant4. The eigenvalues of Eq. (2.1) are

ε(k) = ±t
√
v2
x(k) + v2

y(k). (2.3)

Eventually, we want to detect traces of quantum phase transitions between insulators
within the given family of Hamiltonians. To this end, we employ the following
definition of an insulating topological phase:

Definition 1 (Topological insulator). Consider a family of Hamiltonians H. If it
is impossible to continuously tune the parameters from one representative insulating
Hamiltonian to another one without crossing a metallic phase and without leaving
H, the representatives reside in different topological phases5.

For a concrete analysis, consider the two Hamiltonians

HT (k) = (sin(ka),− cos(ka)) (σx, σy)T , (2.4)
HN(k) = (0, 1) (σx, σy)T . (2.5)

Evidently, both Hamiltonians share the same spectrum, cf. Eq. (2.3), and therefore,
superficially, look alike. A substantial difference between them is revealed by the

4The same considerations would apply to infinite systems, where k ∈ R, if the class of Hamiltoni-
ans allows a proper compactification of R. We limit ourselves on periodic systems to keep the
discussion as simple and concrete as possible.

5 At this point, the physical picture behind the definition is only that insulating regions of the
parameter space that are thoroughly separated from each other by a metallic region should be
different to some degree. That the above definition results in fact in a measurable difference
between the two phases is a consequence of the bulk boundary correspondence as introduced
below.
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application of topological methods, for which we have to describe some general
observations. First, our family of Hamiltonians introduced in Eq. (2.1) contains
two real degrees of freedom at each point in momentum space, namely vx and vy.
In order to classify the insulating phases, we first exclude all semimetallic phases,
which, analyzing Eq. (2.3), only excludes the case in which there is a k ∈ BZ
with vx(k) = vy(k) = 0. A particular insulating Hamiltonian can therefore be
interpreted as a mapping from the circle S1, reflecting the circular Brillouin zone,
to the punctured plane R2\(0, 0), reflecting the vx-vy plane without its origin. This
mapping is continuous if we reasonably assume that the tight binding model only
takes a finite number of neighbors for each unit cell into account. At this point we
arrive at the interface between solid state physics and topology. Let us briefly give
some remarks to the mathematically interested reader before we come back to a
more physical point of view. In the context of topology, two representatives of our
family of Hamiltonians belong to different phases if their associated mappings are
not homotopic [Jänich, 2006]. The required classification of continuous mappings
from the circle S1 to the punctured plane R2\(0, 0) is a problem considered by
mathematicians a long time before the dawn of topological insulators in solid state
physics6. The object of interest here is the so-called fundamental group π1 of the
punctured plane, which is isomorphic to Z. The problem of characterizing the
insulating phases of our toy model is therefore already solved from the mathematical
point of view.
However, for not introducing unnecessary abstractness, we want to stay on the

physical side to understand the topological classification. The situation is made
more transparent by Fig. 2.2. Here, the mappings that are represented by the
Hamiltonians HN and HT , respectively, are embedded in 3 dimensions. The cyclic
Brillouin zone is represented by a tube, whose end points have to be thought of as
being identified with each other. Each point of the tube has an attached fiber, which
is R2. We align the origin, (0, 0), of each fiber reside on the tube. The attached fiber
is now used to plot v(k) at each point k ∈ BZ. Thereby, the whole Hamiltonian is
represented by a string consisting of the graph of v(k) = (vx(k), vy(k))T . While the
string of HN (left panel of Fig. 2.2) corresponds to a straight line, the one of HT

(right panel) circles around the tube at v(k) = 0 in the form of a spiral. Trans-
forming the latter Hamiltonian continuously into the other amounts to physically
dragging and bending the string from the position it occupies in the depiction of
HT to its position in the depiction of HN 7. As the respective strings of HN and
HT wind around the tube a different number of times, it becomes intuitively clear
that it is impossible to continuously deform one of the strings into the other without

6For an introduction to topology, we can recommend Jänich [2006].
7During this procedure, the identification of the starting and end point of the tube has to be kept
in mind. Also, the string must not be bent backwards because then the analogy to a mapping
S1 → R\(0, 0) would be broken.
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(a) HN (b) HT

Figure 2.2.: Depiction of the two models in Eq. (2.4) as mappings from S1 to
R\(0, 0) embedded in three dimensions. The Hamiltonians are rep-
resented by a string that winds a different number of times around
the tube at v(k) = 0. Therefore it is impossible to transform HT

and HN continuously into each other without closing the spectral
gap.

letting it cross the tube8. The spectral gap closes at this point of the transformation
and therefore, regarding our above definition, both Hamiltonians belong to differ-
ent topological phases. In fact, for our simple example, the classification by this
so-called winding number is complete in a sense that all systems of the same wind-
ing number are deformable into each other according to the rules, while systems of
different winding numbers are not.

2.1.1.1. The bulk boundary correspondence and edge states

Until now, the scheme of topological classification does not result in a distinguish-
able experimental signature between the different phases it helps to separate9. This
signature is established by the so-called bulk boundary correspondence: if two sys-
tems of a different topological phase are coupled, mid-gap modes develop at the
boundary [Hasan & Kane, 2010]. An intuitive explanation of the bulk boundary
correspondence is given in Hasan & Kane [2010]. Consider two systems in a differ-
ent topological phase that are coupled by a long junction. And consider that the
junction deforms the Hamiltonians of the systems continuously into each other. We
then know by the above definition of topological phases that the spectral gap closes
somewhere within the junction. If we now shrink the junction further and further,
the closure of the gap persists until we have shrunken the junction down to a point.
The mid-gap states that remain are localized at the junction. The analogy even

8This intuition is strengthened by the following experiment. Take two strings. Make a circle
out of one (this represents the tube). Wind the remaining string once around the circle (this
represents v(k) in HT ) and afterwards connect the ends. The construction is impossible to
tare apart (which represents the topologically trivial configuration of HN ) without breaking
anything.

9We assume here that the experimental ability of transforming between the Hamiltonians is not
given or at least hard to achieve.



2.1. Topological Insulators 9

holds when a topologically non-trivial system is coupled to the trivial vacuum. The
resulting mid-gap states are called edge states.
We can control the validity of the bulk boundary correspondence in our basic

model. By transforming the Hamiltonians of Eq. (2.4) into real space, we obtain

HT = t
N∑
j=1
c†j

(
0 i
0 0

)
cj+1 +H.c., (2.6)

HN = t
N∑
j=1
c†jσ

ycj (2.7)

where cj = (cj,1, cj,2)T with cN+1 = c1 are the real space annihilation operators, and
N is the number of lattice sites. At this point, a similarity of our model with the
one of Kitaev [2001] becomes apparent, which is depicted in Fig. 2.1 by labeling the
nearest neighbor interactions with ṽN and ṽT respectively. WhileHN couples the two
atoms within one unit cell, which leaves all sites of a finite chain with partners, HT

only couples adjacent atoms of different unit cells. Necessarily, the latter procedure
leaves an unpaired atom at each end of the chain. The terminal atoms therefore
completely decouple from the Hamiltonian and constitute the mid-gap edge states.
In general, the edge states have a number of interesting physical properties, some

of which are named in the introduction of Section 2.1. Here, we want to close
this section by elaborating on one seemingly generic feature, namely, that the edge
states are exponentially localized at the edge of the system, whereby the localization
length is inversely proportional to the bulk energy gap. To this end, we introduce
the interpolating Hamiltonian

HI(λ) = λHN + (1− λ)HT . (2.8)

The bulk gap of HI(λ) closes for λ = 1/2, which is at the phase boundary of a
topologically trivial phase for λ > 1/2 and a non-trivial phase for λ < 1/2. By
realizing HI on a finite lattice, we can numerically calculate the density of states
and the wave functions of the edge states. The densities of states for a topologically
non-trivial system HI(0.4) and a trivial system HI(0.6) are depicted in Fig. 2.3.
As expected, the non-trivial system exhibits mid-gap states that are absent in the
trivial system. We can now interpolate linearly between the topologically nontrivial
and the topologically trivial system and analyze the localization of the edge states.
As shown in Fig. 2.4a, in a semi-logarithmic plot, the edge states are exponentially
localized to the boundary of the chain. Furthermore, we calculate their localization
length by l = ∑N/2

j=1 |Ψj|2j/
∑N/2
j=1 |Ψj|2, where Ψj is the single particle wave function

of an edge state in spatial representation. Note that we exclude the right edge
of the system. The result is shown in Fig. 2.4b, where it can be seen that the
localization length depends inversely proportionally on the bulk gap. As we will
find out, this property is not obligatory in topological insulators. However, it is



10 2. Background

(a) (b)

(c) (d)

Figure 2.3.: The density of states (DOS) for a finite system and the spectrum for
an infinite system of the topologically nontrivial system HI(0.4), top
panels, and the topologically trivial system HI(0.6), bottom panels.
The nontrivial system possesses mid-gap zero modes that are local-
ized close to the edges of the system, which are absent in the trivial
phase although the depicted spectra coincide. For the numerical
simulation regarding the density of states, we took a system consist-
ing of 800 sites and collected the eigenenergies in 101 equally large
energy intervals.
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(a) The probability density of the edge
states of the topologically nontrivial
system.

(b) The localization length, as defined
in the text, is approximately pro-
portional to the inverse spectral gap
1/EG.

Figure 2.4.: The localization of the edge states for Eq. (2.8). The states are
localized close to the boundaries of the 800 sites long system. The
edge states get delocalized if the bulk gap closes. For λ = 0.5,
the gap of the bulk is closed and the edge states are completely
delocalized10.

phenomenologically ubiquitous [Haldane, 1988; Kane & Mele, 2005a; Kitaev, 2001;
Qi et al., 2006], such that our findings described in Chapter 6 and Chapter 7,
where we separate the localization length from the bulk gap energy, come to us as
a surprise.

2.1.2. Generalizations of and concepts beyond the presented
basic model

The toy model of Section 2.1.1 already introduces a number of basic concepts in the
classification of topological matter. If the complexity and the dimensionality of the
system rises, the methodology gets more complex as well. We cannot review the vast
topic of topological insulators or, even more general, of topological state of matter
here. However, we want to indicate the generalizations and introduce the concepts
that are specifically needed for the understanding of Part II. For a more complete
overview, we refer to Altland & Zirnbauer [1997]; Budich & Trauzettel [2013]; Chiu
et al. [2015]; Hasan & Kane [2010]; Ryu et al. [2010]; Schnyder et al. [2008].
Besides the introduced winding number of Section 2.1.1, there is a multitude of

10 Please note that we add up the contributions of both edge states in Fig. 2.4 to account for
numerical instabilities that occur at vanishingly small finite size splitting of the zero modes.
Physically, this splitting can be explained by the interaction of the edge states through the
finitely sized bulk, which lets them hybridize to a binding and an anti-binding state of negative
and positive energy respectively.
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different available topological invariants, the importance and applicability of which
depend on the system and the question to be addressed. Examples are the homotopy
and homology groups and also the Chern classes. An important topological invari-
ant for applications is the Chern number. It is defined for discrete translationally
invariant, nondegenerate11 band insulators of infinite extent as the integral of the
Berry flux over the Brillouin zone. The following definition of the Chern number is
along the lines of Hasan & Kane [2010]. We first assign a Chern number nm to each
band m, where the bands are sorted by their energy eigenvalues:

nm = 1
2π

∫
d2k Fm(k), (2.9)

with the Berry flux F = ∇k ×Am, where Am is the Berry curvature. If we denote
the mth eigenvector – i.e., the eigenvector belonging to the mth eigenvalue – with
|um(k)〉, where we choose the eigenvectors to be continuous in k for the whole
Brillouin zone, then the Berry phase is defined by Am = i〈um(k)|∇k|um(k)〉12. The
Chern number of the system is then defined to be

n =
∑
m

nm, (2.10)

where the sum runs over all occupied bands. It can be shown that, in analogy to the
topological invariant of our basic model in Section 2.1.1, there are no insulators of a
different Chern number that are connected by a continuous transformation without
closing the bulk gap. The Chern number does not come without physical signifi-
cance. Calculating the transverse electrical conductance σxy for a two-dimensional
system up to first order in the applied voltage yields [Hasan & Kane, 2010]

σxy = n
e2

h
. (2.11)

In fact, the emerging current in a finite system is completely transported by edge
channels13. Considering that each channel has a perfect conductance of e2

h
, the

Chern number therefore exactly reflects the number of edge states. A for solid
state physics pioneering encounter of a Chern number is described in Thouless et al.
11The definition of a Chern number is also possible for degenerate bands as long as there is a con-

tinuous function depending on the momentum that never touches a band. At the points where
bands are degenerate, the later defined eigenvectors have to be chosen to depend continuously
on the momentum. This is always possible. However, we do not want to go into detail on this
procedure.

12By the occurrence of the Berry phase [Berry, 1984], which could be called Kato phase regarding
Kato [1950], the topological insulators classified by a Chern number become intrinsically con-
nected to the field of adiabatic dynamics, which puts them into the vicinity of adiabatic and
topological quantum computing as well [Stern & Lindner, 2013].

13For an interesting approach of explaining why the formulas for the infinitely extended system
describe the finite system so well, we would like to mention Rothe [2015].
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[1982], which helped in understanding the perfectly quantized Hall conductance of
the integer quantum Hall effect. Regarding the present work, we employ the concept
of Chern numbers to understand the gapless topological superconductors that we
introduce in Chapter 6. Also, we apply this method to analyze the hybrid systems
in Chapter 7.
If we invert the arrow of time14, the edge channels invert their dispersion as well

and the Chern number reverses its sign [Hasan & Kane, 2010]. Hence, time reversal
symmetric systems possess the Chern number n = 0. However, there is another
invariant that can be non-zero for time reversal symmetric systems: the so-called Z2
invariant, cf., e.g. Hasan & Kane [2010] for a proper definition. This invariant is
important for the time reversal protected quantum spin Hall insulator as described in
the following Section 2.1.3 and the formation of counter-propagating spin polarized
edge channels – the so-called helical liquid.
We infer that the occurrence of additional symmetries alter the usefulness of the

topological invariant. This is only natural, as the definition of a topological phase
in Definition 1 depends on the considered family of Hamiltonians15.
A primary classification of Hamiltonians without unitary symmetries is achievable

by considering the time reversal T and the particle-hole conjugation P together with
the resulting unitary chirality C = T P . The primary references about this topic are
Altland & Zirnbauer [1997]; Schnyder et al. [2008], but the following discussion is
based on Budich & Trauzettel [2013]. The time reversal is an antiunitary operator
that commutes with the Hamiltonian, while the particle-hole conjugation is an antiu-
nitary operator that anticommutes with the Hamiltonian. They obtain their names
from the fact that the original, physical time reversal and particle-hole conjuga-
tion (in superconductors, cf. Section 2.3) are represented by antiunitary operators
of the just described kind. Furthermore, if such an operator exists, it is unique
[Schnyder et al., 2008]. As the time reversal and the particle-hole conjugation op-
erator each either squares to 1, −1, or is absent, the classification distinguishes 10
symmetry classes. The ten classes are shown in Tab. 2.1, and each is named by a
Cartan label [Cartan, 1926, 1927]16. We rely on them in Chapter 6 and Chapter 7.

14Time inversion results, among other effects, in the inversion of momentum and a spin-flip.
15Imposing constraints on the family of Hamiltonians often amounts to reducing its dimensionality.

The fact that a reduced dimensionality can lead to additional topological richness can be
understood by an analogy. Imagine a duck that is surrounded by a fence. The duck can fly
above the fence and thereby connect the exterior and the interior. However, if we impose a
constraint to the duck by trimming its wings, and thereby reduce the dimensionality of the
problem, the duck is trapped inside of the fence. This holds at least “as long as you don’t break
anything”, referring to the quotation of Witten on p. 4. Of course, it does not count that we
have already broken the wings of the imaginary duck.
The fence in this analogy represents the region of gap closure, while the available space

describes the family of Hamiltonians.
16Cartan split the article. The second part explicitly mentions the Cartan labels starting from

p.126. Interesting additional information about Cartan and his work can be deduced from
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A AIII AI BDI D DIII AII CII C CI
T 2 0 0 1 1 0 -1 -1 -1 0 1
P2 0 0 0 1 1 1 0 -1 -1 -1
C2 0 1 0 1 0 1 0 1 0 1

Table 2.1.: The squares of the antiunitary time reversal T and particle-hole conju-
gation P as well as the chirality C = T P (1, −1, and 0 for an absent
symmetry) declare the 10 Cartan-Altland-Zirnbauer classes. Data taken
from Ryu et al. [2010].

Simplistically, the classes containing a particle-hole symmetry can be thought of as
superconductors, cf. Section 2.3, while the other systems represent normal insu-
lating phases. The possibly apparent time reversal symmetry in these systems can
usually be broken by the application of a magnetic field.

The complete topological classification of band insulators and superconductors
without unitary symmetries17 has been carried out in Ryu et al. [2010]; Schnyder
et al. [2008]. Classifications respecting additional unitary symmetries are treated
in [Chiu et al., 2015]. For a band insulator of spatial dimension d this is achieved
by labeling different topological phases by different elements of the dth homotopy
group of a specially constructed topological space TH that depend on the constrained
family of Hamiltonians H under consideration. This classifies the so-called strong
topological insulators. The so-called weak topological insulators are labeled by the
homotopy classes of the continuous maps of the d-dimensional torus to TH. Budich
& Trauzettel [2013] summarize the procedure in greater detail. Regarding this work,
we are only interested in strong topological insulators.

In fact, also gapless matter can be classified topologically by employing a differ-
ent classification scheme, for instance, by local topological invariants that are inte-
grals over the Berry phase along loops in momentum space. Among these systems
are Weyl semimetals and nodal superconductors [Matsuura et al., 2013; Queiroz &
Schnyder, 2014], which possess topologically stable Fermi points and nodal lines,
respectively. These systems have to be regarded in connection with Chapter 6 and
Chapter 7.

It remains to be emphasized that the presented discussion is limited to the single
particle picture of noninteracting electrons. Current research attempts to extend the
application of topological methods to interacting electrons [Amaricci et al., 2015;
Dzero et al., 2010].
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Figure 2.5.: Schematics of the quantum Spin Hall effect. The characteristic fea-
tures of this topological two-dimensional electronic phase is an in-
sulating bulk (orange) and metallic, time reversal protected edge
states. The edge excitations with spin up (blue) circulate clockwise
while the spin down (red) excitations circulate conversely.

2.1.3. The quantum spin Hall effect
The quantum spin Hall effect is a two-dimensional electronic quantum phase that
can be understood as the spinful brother of the integer quantum Hall effect. Its
insulating bulk is encircled by metallic edge states, the helical liquid. The time
reversal symmetry protects the helical liquid from elastic backscattering, which leads
to a robustly quantized conductance of G = e2/h. The unique feature of the helical
liquid is the locking between the direction of motion and the spin of its excitations.
Excitations with spin down traverse the edges clockwise, while excitations with
spin up propagate conversely. Fig. 2.5 depicts the quantum spin Hall insulator
schematically. The effect was predicted to be potentially present in materials with
a honeycomb lattice structure [Kane & Mele, 2005a]. However, the required spin-
orbit coupling is too weak in existing materials, e.g., graphene [Geim & Novoselov,
2007], that the effect of temperature or impurities can be overcome. Instead it
has been observed in HgCdTe quantum wells [König et al., 2007] and theoretically
described [Bernevig et al., 2006; Kane & Mele, 2005a; Wu et al., 2006] as a time
reversal symmetric topological insulator in the way introduced in Section 2.1.2.
Throughout this work, we model the helical edge liquid by a so-called Tomonaga-
Luttinger Hamiltonian of the form

H =
∑

σ∈±≡{↓,↑}

∫
dx
[
−ivFσ (ΨσΨ′σ) + g4

2 ρ
2
σ + g2

2 ρσρ−σ
]

(x), (2.12)

with the fermionic operators Ψ, their spatial density ρ, the Fermi velocity vF and the
interaction parameters g2 and g4 [von Delft & Schoeller, 1998]. Note that the neglect

Chern & Chevalley [1952].
17 That means the momentum space Hamiltonians fall apart into the classes of Tab. 2.1 and are

not preliminary reducible by additional unitary symmetries.
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of a backscattering interaction here is exact as this type of interaction would break
the required time reversal symmetry. The Hamiltonian is conveniently diagonalized
in its bosonized form, as introduced in Section 3.1 and performed in Section 3.1.3.
The same Hamiltonian is employed by a number of authors to describe the edge
states of a quantum spin Hall insulator, cf. Budich et al. [2012]; Law et al. [2010];
Maciejko et al. [2009]; Tanaka et al. [2011] just to name a few of them. However, the
helical liquid, as a surface effect, is intrinsically connected to the two-dimensional
bulk it is generated from, which result in subtleties regarding the interpretation
of the results and the applicability of the model, especially for strong interactions
[Hohenadler & Assaad, 2012].

2.1.4. Fu’s model for the surface states of a three-dimensional
strong topological insulator

Three-dimensional strong topological insulators, in contrast to their two-dimensional
counterparts, are reported to be experimentally observed in a number of experimen-
tal systems. Examples are BixSb1−x, Bi2Se3, Bi2Te3, Sb2Te3, Bi2Te2Se, GeBi2Te4
and strained HgTe [Brüne et al., 2011; Hasan & Kane, 2010; Hasan et al., 2014;
Miyamoto et al., 2012; Neupane et al., 2012; Sato et al., 2010]. The surface states
of all besides the latter material are remarkably well observable with angle resolved
photo emission spectroscopy. But as a drawback, the currently achievable purity of
the samples is not high enough to extract genuine surface transport. An exception
is strained HgTe, where it was possible to observe the quantum Hall effect in the
surface liquids [Brüne et al., 2011].
The superficial electronic spectra of three-dimensional topological insulators pos-

sess a Dirac node at the Γ point that obeys a specific form of spin momentum locking
[Fu, 2009] and the Fermi surface becomes anisotropic for chemical potentials away
from the Dirac node [Hasan et al., 2014; Miyamoto et al., 2012; Neupane et al.,
2012; Sato et al., 2010]. Here, the rotational symmetry of the Dirac node is broken
down to a C6 symmetry18. This so-called warping renders the Fermi surface nearly
hexagonal19 for a broad range of chemical potentials.
The surface liquid of strong three-dimensional topological insulators are for a wide

class of systems well described by the low energy Hamiltonian of Fu [2009]

H0 =
∫
d2k c†k (v0 (kxσy − kyσx) + γw(k)σz) ck. (2.13)

Here, σx,y,z are the Pauli matrices in spin space, w(k) = (k3
+ + k3

−)/2 with k± =
kx ± iky, v0 is the electron velocity near the Dirac point, which originates from
18The discrete rotational symmetries are denoted by Ci where i is the number of times the object

is mapped to itself within a full rotation of 2π.
19Although the Hamiltonian is only C3 symmetric, the Fermi surface follows a C6 symmetry.
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(a) (b) (c)

Figure 2.6.: The spectrum and eigenvectors of H0 in Eq. (2.13). Departing from
the Γ point, the initially circular Fermi surface becomes hexagonal with
the nesting vectors ±(Qi)3

i=1. (a) Fermi surfaces for various chemical
potentials. The hexagonal regime is marked off by red, dashed lines.
Figure reprinted with permission from Baum et al. [2015b]. Copyright
(2015) by the American Physical Society. (b) Three-dimensional de-
piction. Exemplary eigenvalues are equipped with their eigenvector
represented on the Bloch sphere. (c) The nontrivial spin texture of the
model. Each shown line on the Bloch sphere is the image of the Fermi
surface for a given chemical potential under the function that maps a
momentum to the corresponding eigenvector of H0.

Rashba spin orbit coupling20, and γ is the warping parameter, which describes the
cubic Dresselhaus spin-orbit coupling of the bulk. Furthermore, ck = (ck,↑, ck,↓)T
with ck,σ being a fermionic annihilation operator for excitations with momentum k
and spin σ. We will rely on this model in Chapter 6, where we use it to describe
the surface excitations of our strong topological insulator.

In the following, we set the unit of energy to E0 = |v3
0γ
−1|1/2, the unit of mo-

mentum to k0 = |v0γ
−1|1/2 and h̄ = 1. Also, for simplicity, the energy of the Dirac

point is taken to be the energy of reference compared to which all energies are mea-
sured relatively. The warping is depicted in Fig. 2.6. Starting from a circular Fermi
surface at the Γ point, the Fermi surface gets hexagonal and afterwards develops a
‘snowflake’ shape with increasing chemical potential. Of special importance is the
hexagonal regime, which corresponds to chemical potentials in the energy range of
0.55E0 to 0.9E0 [Baum & Stern, 2012b].

20We will explain Rashba terms in Section 2.2.2.
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2.2. Magnetic and electric perturbations

2.2.1. Zeeman terms

The Zeeman effect [Zeeman, 1897] originally denotes the linear splitting of atomic
spectral lines due to the application of a small, static magnetic field. It is explained
by the direct coupling of the electron’s magnetic moment to the magnetic field. Here,
the total magnetic moment of the electron is generated by its angular momentum
J, which results from both the orbital and the spin contribution21. The effect is
readily implemented by the Hamiltonian

HZ =
∑
j,j′

∫
dx Ψ†j(x)mzJzj,j′Ψj′(x), (2.14)

where Ψj is the annihilation operator of the electrons under consideration with
the magnetic quantum number j ∈ {−J,−J + 1, . . . , J}/h̄, the Zeeman field m,
which includes the g factor and is proportional to the effective magnetic field in the
solid, and J, which describes the angular momentum matrices of the respective total
angular momentum. Here, we have chosen m to point into the z direction without
loss of generality.
Terms of the form of HZ (Eq. (2.14)) that appear in an effective low energy

Hamiltonian are still called Zeeman terms, irrespective of their origin. Interestingly,
the original Zeeman term itself can also be seen as an effective term derived from
the Dirac Hamiltonian as it appears in the nonrelativistic Pauli Hamiltonian, com-
pare, for instance, Bárðason [2008]; Winkler [2003a]. The effective Zeeman terms
may in fact be much larger than the original one [Reinthaler et al., 2015; Winkler,
2003a] and can be of surprising origin. For instance, in the effective model for the
conduction and valence band in semiconductors with zincblende lattice structure,
the Zeeman term originates solely from the included spin-orbit coupling22 [Winkler,
2003a].
We will introduce Zeeman terms into our models in Chapter 6 and Chapter 7 to

conveniently open spectral gaps.

2.2.2. Rashba terms

The Pauli Hamiltonian, derived as an effective theory from the Dirac Hamiltonian,
does not only contain the Zeeman term (cf. Section 2.2.1), it also contains the spin

21The spin orbit coupling is assumed to be of Russel-Saunders type.
22In the sense that the Zeeman term vanishes as soon as we neglect the spin-orbit coupling.
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orbit interaction [Winkler, 2003a]23

HSO = σ (k ×E) . (2.15)

Here, σ is the vector containing the Pauli spin matrices, p is the momentum opera-
tor, and E is proportional to the external magnetic field. As in Section 2.2.1 about
the Zeeman term, the prefactors are included in the effective field E as not the
term itself but rather its general structure is important here. Regarding equivalent
formulations, we want to emphasize that A · (B ×C) = (A×B) ·C, which renders
Eq. (2.15) ambiguous and may lead to initial confusion when comparing it within
the literature.
Due to Rashba’s contributions of considering Eq. (2.15) in effective solid state the-

ories [Bychkov & Rashba, 1984], terms of the form of Eq. (2.15) are called Rashba
terms or Rashba spin orbit coupling. In lower-dimensional systems, E is typically
regarded to be aligned perpendicularly to the plane or line of motion of the electronic
excitations. Here, the quantity E is not necessarily representing an external electric
field. For instance, in two-dimensional systems, Rashba terms can be generated by
bulk inversion asymmetry24, which constitutes an intrinsic Rashba interaction [Win-
kler, 2003b]. Additionally, Rashba terms are generated by breaking the structural
inversion symmetry, which describes the spatial inversion symmetry of the system
along the direction of E. A structural inversion asymmetry may in fact but does not
need to be caused by a physical electric field [Rothe et al., 2010; Winkler, 2003b].
It is common to slightly abuse the term Rashba effect for spin splitting induced by
structural inversion asymmetry in general according to Winkler [2003c] instead of
limiting the name to terms of the structure given in Eq. (2.15).
In Chapter 4, we will consider a local Rashba scatterer attached to a helical liquid,

which can, in regard to this section, be induced by a locally applied electric field
that is aligned perpendicularly to the one-dimensional system.

2.2.3. Kondo physics and the Kondo cloud
Kondo physics [Hewson, 1997; Kondo, 1964] is a term describing the emerging
physics of systems that consist of a localized spin degree of freedom coupled to
one or multiple spin baths25. Therefore, the Kondo setup is one of the most ba-
sic assemblages of quantum mechanical systems with spin. Yet its description has
attracted the attention of theoretical as well as experimental physicists already for
23Additionally, the Pauli Hamiltonian contains the so-called Darwin term and terms of higher order

in the momentum, the electromagnetic potential, or both together [Winkler, 2003a], which are
of no importance here.

24Bulk inversion symmetry is the symmetry of the unit cell under point reflection.
25The name affix Kondo is also used with reference to multiple localized magnetic moments (as

opposed to a single one) as reflected by the terms Kondo lattice [Tsunetsugu et al., 1997] and
Kondo insulator [Coleman, 2007].
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many decades [de Haas et al., 1934; Hewson, 1997; Kondo, 1964]. In recent years,
peculiarities relating to a plethora of realizations of the spin bath have been in-
vestigated [Furusaki & Nagaosa, 1994; Leggett et al., 1987; Maciejko et al., 2009;
Martinek et al., 2003; Müller-Hartmann & Zittartz, 1971]. The spin bath is usually,
but not necessarily, considered to be fermionic.
A comprehensive introduction to the main aspects of the topic is given by Hewson

[1997], and Kouwenhoven & Glazman [2001] supplies an overview on its history
until recently. We want to summarize and extend the therein mentioned historical
milestones that are of particular importance for this thesis. The first observation of
Kondo physics happened accidentally and was reported in 1934 by de Haas et al.
[1934]. In low temperature experiments, the conductance of several metals was
measured. In contrast to the general expectancy, built up by the at that time recent
experiments that led to the discovery of superconductors [van Delft & Kes, 2010], the
conductance did not increase in temperature for all samples but instead decreased
for the magnetically contaminated ones. In 1964, Jun Kondo published a theoretical
derivation of this effect derived from first principles [Kondo, 1964]. His success has
until now coined the name of the whole field. Numerous theorists improved the
theory of Kondo physics in subsequent years. In the frame of this work, the quest
for exact solutions of Kondo models are of particular interest. The first steps into
this direction were gone by Toulouse as described in Toulouse [1969]. The spirit
of his idea was to transform the Kondo model unitarily so that the Hamiltonian
becomes quadratic for a particular configuration of the parameters, the so-called
Toulouse point. Toulouse only applied his method to the original one channel Kondo
model, where a magnetic moment belonging to a spin of h̄/2 is coupled to one
lead. The work of Emery & Kivelson [1992], followed by the work of Schiller &
Hershfield [1998] and von Delft et al. [1998]; Zaránd & von Delft [2000] extended
the underlying idea to the two channel Kondo model. For this work, a Kondo model
is referred to as having two channels if the attached two leads couple independently
to the magnetic moment26. This is not easily achievable experimentally [Nozieres &
Blandin, 1980], but can be observed with some effort [Potok et al., 2007]. There are
proposals [Béri & Cooper, 2012; Fabrizio & Gogolin, 1995; Law et al., 2010; Oreg
& Goldhaber-Gordon, 2004] employing electron-electron interactions in the leads
and, more exotic, Majorana fermions to increase the experimental accessibility of
the two channel regime. Coming back to Emery & Kivelson [1992], the one exactly
solvable Toulouse point was extended in this context to become an Emery-Kivelson
line, reflecting that one real degree of freedom could be chosen arbitrarily without
departing the set of exactly solvable parameter configurations. For the one channel
Kondo model, the exact solubility went even further. Here, a modified Bethe ansatz
[Bethe, 1931; Karbach & Muller, 1998] was found by Andrei [1980] and Wiegmann

26An independent coupling especially excludes electron transfer processes from one lead to the
other.
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[1981] that delivers exact results for the whole parameter space.
The interest in the Kondo effect increased again especially in the last decades,

where it became possible to engineer quantum dots that act as Kondo impurities
[Kouwenhoven & Glazman, 2001]. Consequently, many of the theoretical predic-
tions could be verified in experiments. For instance, the zero-bias anomaly in the
conductance and the Kondo resonance in the density of states [Hewson, 1997]. But
there still remain puzzling details. One of the archetypal phenomena in Kondo
physics that is still a subject of active research is the characteristic screening of
the local spin, which occurs at temperatures smaller than the Kondo temperature:
while theorists predict the excitations of the fermionic bath to orientate their spin to
screen the magnetic moment on a macroscopic scale, experimental confirmation of
this unique correlation is still lacking [Affleck, 2010; Affleck & Simon, 2001; Borda,
2007; Müller-Hartmann, 1969; Park et al., 2013; Simonin, 2007]. This considerably
long-ranged screening “cloud” of excitations has been termed the Kondo cloud27.
A concrete observable that quantifies the presence of the Kondo cloud at a given

position in the fermionic bath is the equal time correlator between the spatially
dependent spin density in the bath S(x) and the spin of the magnetic moment τ
[Müller-Hartmann, 1969; Nagaoka, 1965]. As the Kondo cloud is expected to reflect
the rotationally invariance of a spin singlet, we regard only the z components of the
respective quantities, i.e.,

χz(x) = 〈δSz(x)δτ z〉, (2.16)

where δC = C − 〈C〉 and 〈. . . 〉 denotes the expectation value of a given operator
in a given system. In fact, we are going to use the correlator of Eq. (2.16) as a
synonym for the Kondo cloud throughout this thesis.
Problems related to the direct detection of the Kondo cloud are the high frequency

at which the local spin is flipping and the fundamental inability to directly measure
correlations between the local spin and the lead-spin without decisively perturbing
the tunneling region.
For instance, there appear diverse technical and conceptual problems if it is at-

tempted to directly measure the Kondo cloud with two spin-sensitive scanning tun-
neling microscopy (STM) tips [Borda, 2007]. Conceivably, the most conceptually
problematic aspect in this case is that the coupling of a spin sensitive STM tip to
the magnetic moment is likely to influence the Kondo effect and hence the Kondo
cloud itself.
27That screening arises is not surprising. In many cases, if a bath of fermions is coupled to an

impurity, the bath tries to screen the effect of the impurity on itself. Almost as if the bath
identifies an intruder and wants to keep it out. For instance, bringing additional charge Q close
to a fermionic bath, the excitations screen the excess charge by accumulating a total amount
of charge −Q around the impurity [Mahan, 2000]. Similarly, the spin of the Kondo impurity
is screened by a collective behavior of the excitations in the leads.
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Figure 2.7.: Sketch of the idea behind the RKKY interaction: An effective spin-
spin interaction is mediated by itinerant particles.

In this regard, a more promising experiment to measure the Kondo cloud should
employ an indirect measurement that does not affect the close vicinity of the mag-
netic moment [Affleck, 2010]. Along these lines, recent suggestions propose to first
find an observable that alters its behavior decisively upon reaching the Kondo length
[Affleck & Simon, 2001; Park et al., 2013; Pereira et al., 2008]. Notably, Patton
et al. [2009] mention a visible signature of the Kondo cloud in conductance fluctu-
ations close to the magnetic moment.
New light on the Kondo cloud can be shed by means of the recently discovered

quantum spin Hall insulator [Bernevig et al., 2006; Kane & Mele, 2005a; König
et al., 2007]. Systems, where a magnetic moment is coupled to helical liquid leads,
have already been analyzed [Law et al., 2010; Maciejko, 2012; Maciejko et al., 2009].
However, the focus never lay on the Kondo cloud. We have closed this gap in
Posske et al. [2013]; Posske & Trauzettel [2014], which we also present in Chapter 5.
Not only do we give a method to analytically calculate the Kondo cloud in a two
channel Kondo setup – a method which is readily applicable to the single channel
case as well – we also discover a one to one correspondence of the Kondo cloud to
current correlations far away from the Kondo region and thereby propose a minimally
invasive way of detecting the Kondo cloud in helical liquids.

2.2.4. The RKKY approximation
The direct possibilities of two spins to influence each other are via the exchange
interaction, if they stem from two indistinguishable particles, or via the interaction
of their magnetic moments. However, they are able to interact indirectly as well,
if both spins are coupled to a common reservoir of particles, using the itinerant
excitations of the reservoir as mediators of the interaction. In general, this kind
of interaction is time delayed – as the particles require time to travel from one
spin to the other – and depends on the spin texture of the mediating particles.
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However, if the motion of the particles is considerably faster than the resulting
motion of the spins, an effective model is physically reasonable that only consists
of the spins themselves and a direct spin-spin interaction. This idea was applied
first by Ruderman & Kittel [1954] to describe a long ranged interaction between
nuclear spins embedded in an electron gas. Due to the additional contributions of
Kasuya [1956], and Yosida [1957], the effective interaction became known as the
RKKY interaction. Despite its origin, the idea is not limited to nuclear spins but
can be applied to, e.g., magnetic dopants, adatoms, quantum dots or nano magnets
in solid state systems as well. Motivated by its simple picture, the RKKY interaction
only depends on the properties of the itinerant particles and therefore, instinctively,
mostly on properties of the reservoir close to the Fermi energy. This property will be
important for the underlying idea of Chapter 6, which uses nesting to significantly
increase the strength of the RKKY interactions. Furthermore, the Kondo effect,
which screens the magnetic moment of the attached spin by building the Kondo
cloud out of the itinerant fermions, is competing with the RKKY interaction. The
validity of the RKKY approximation is therefore intuitively limited to inter-spin
distances that do not exceed the Kondo length scale.

Imagine spinful electrons that are coupled to a set of magnetic impurities. The
Hamiltonian is

H = H0 +Hs
0 +

∑
i

∑
λ∈{x,y,z}

Jλc†(ri)σλc(ri)Sλi . (2.17)

Here, H0 describes the spinful fermions, which are represented by the fermionic
annihilation spinors in real space c(r) = (c↑(r), c↓(r))T , the spins are represented
by the spin operators Sλi with λ ∈ {x, y, z}, i ∈ I with the index set I that labels
the spatial positions of the magnetic impurities. Additionally, Jλ are real coupling
constants and σλ are the Pauli matrices.

The question about the effective spin-spin Hamiltonian that describes Eq. (2.17)
best can be approached in various ways. Here, we want to derive an effective Hamil-
tonian that does not take multiple interactions of the itinerant fermions with the
spins into account. This effect was originally considered by Ruderman and Kittel.
Higher orders can be included by the Lloyd formula [Lloyd, 1967]. If we want to find
a Hamiltonian that corresponds to Eq. (2.17), consisting only of the spin degrees of
freedom, it has to have the same expectation values up to second order in the spin-
fermion interaction regarding all operators A that only consist of spin operators.
If we write down the expectation value of A up to second order using the Keldysh
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formalism [Rammer, 2007], we obtain

〈A〉 = 〈T A〉0 − i
∫
c
dτ
∑
i∈I

∑
λ∈{x,y,z}

Jλ 〈T c†(ri, τ)σλc(ri, τ)〉0︸ ︷︷ ︸
:=mλi =0 (magnetization of H0)

〈
T Sλi (τ)A(t)

〉
0

−
∫
c
dτdτ ′

∑
i,j

∑
λ,λ′

JλJλ
′ 〈T (c†(ri, τ)σλc(ri, τ)

) (
c†(rj , τ ′)σλ

′
c(rj , τ ′)

)〉
0

×
〈
T Sλi (τ)Sλ′j (τ ′)A(t)

〉
0

+O(J3)

=〈A〉0 + i
∫
c
dτd∆τ

∑
i,j

∑
λ,λ′

JλJλ
′
χλ,λ

′

i,j (∆τ)
〈
T Sλi (τ)Sλ′j (τ −∆τ)A

〉
0

+O(J3),

(2.18)

where 〈. . . 〉 denotes the expectation value with respect to H, 〈. . . 〉0 the expectation
value with respect to H0, and

∫
c dτ . . . is the integral over the Keldysh contour.

Here, mλ
i = 〈T c†(ri, 0)σλc(ri, 0)〉0 is the magnetization of the fermions, which we

assume to vanish28, and

χλ,λ
′

i,j (τ − τ ′) = i〈T
(
c†(ri, 0)σλc(ri, 0)

) (
c†(rj , τ ′ − τ)σλ′c(rj , τ ′ − τ)

)
〉0 (2.19)

is the time and space dependent spin-spin correlation. We now apply the approx-
imation of an instantaneously transmitted interaction between the spins, which
we implement by neglecting ∆τ in the argument of the spin expectation value〈
T Sλi (τ)Sλ′j (τ −∆τ)A

〉
0

29. The physical motivation behind this is that for suffi-
ciently fast dynamics of the fermions, their spin-spin correlation χλ,λ

′

i,j decays to zero
before the spins have substantially changed their orientation. Note that this approx-
imation is not valid for systems with temporally stable spin-spin correlations of the
itinerant particles, like ferro- or antiferromagnetic models. We have already excluded
those systems by assuming a vanishing magnetization of the reservoir. Thereby, we
obtain

〈A〉 =〈A〉0 − i
∫
c
dτ 〈T (HRKKY (τ)A)〉0 +O(J3). (2.20)

with the RKKY Hamiltonian

HRKKY = −
∑
i,j

∑
λ,λ′

JλJλ
′
χλ,λ

′

i,j S
λ
i (τ)Sλ′j (2.21)

28Note that effects of a steady magnetization of the electrons would result in a first order (in
J) effect on the spins. The expected effects would therefore dominate the RKKY interaction,
which is a second order effect.

29 This effectively amounts to setting χλ,λ
′

i,j (∆τ) = δc(∆τ)
∫
c
dτ̃χλ,λ

′

i,j (τ̃) with the contour delta
function δb.
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and the spin susceptibility

χλ,λ
′

i,j =
∫
c
dτ̃ χλ,λ

′

i,j (τ̃). (2.22)

As we see, under the assumptions of (i) a dynamics of the itinerant particles that is
considerably faster than the dynamics of the spins and (ii) the valid exclusion of a
static magnetization within the fermionic system, all observables of the spin system
that are calculated in perturbation theory up to second order in the spin-fermion
coupling J are the same as calculated by the first order approximation using the
RKKY Hamiltonian of Eq. (2.21) instead. We have thereby arrived at an effective
model that (up to first order in J) solely describes the spin degrees of freedom.
The application of the perturbative expansion indicates that we assume the Hamil-

tonian of the bath to be quadratic. If we furthermore assume that only one spinful
particle species couples to the spins and that their Hamiltonian is translationally
invariant, i.e., that it is describable by a Hamiltonian in momentum space that we
call H0(k), the spin susceptibility χ can be expressed in a more suitable form for
calculations. We restrict ourselves to the two-dimensional case and two dimensional
Hamiltonians H0 although the given formulas can readily be generalized to higher
dimensions:

χλ,λ
′

r,r′ =
∫ ∞
−∞

d2q
e−iq·(r−r′)

(2π)2 χλ,λ
′

q , (2.23)

χλ,λ
′

q = lim
η→0

30
∫ ∞
−∞

d2k
∑
τ,ρ=±

fβ,µ(ετk)− fβ,µ(ερk+q)
ετk − ε

ρ
k+q − iη Y λ,λ′

τ,ρ (k,k + q)θτ,ρk,q,Λ−,Λ+
, (2.24)

where εαk with α ∈ {+,−} describes the two eigenvalues of H0(k), fβ,µ is the Fermi
Dirac distribution function at the inverse temperature β and the chemical potential
µ, and

Y λ,λ′

τ,ρ (k,k + q) = sλτ,ρ(k, q)
(
sλ
′

τ,ρ(k,k + q)
)∗
, (2.25)

with

sλ(k,k′) = U †(k)σλU(k′). (2.26)

Here U(k) denotes a matrix that diagonalized H0(k). The last symbol of Eq. (2.23)
explicitly takes the possibly existing energy cutoffs Λ+ and Λ− of the model H0 into
30Here, η is a quantity that regularizes the integrand and stems from switching the orders of a

contour time and a momentum integration in our derivation. This quantity has been omitted
by Ruderman & Kittel [1954] and instead, the principal value of the integral was taken to
render it well defined (the principal value is hidden behind the β → ∞ limit in Ruderman &
Kittel [1954]). We can, however, not find any difference between the results of the integral of
our method and the method of Ruderman & Kittel [1954] in any dimension, such that taking
the principal value integral seems to be an equivalent regularization in this case.
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account and thereby ensures that its validity regime is not left. We define

θτ,ρk,q,Λ−,Λ+
=

1 if ετ (k), ερ(k + q) ∈ (Λ−,Λ+)
0 else.

(2.27)

In this equation, Λ− denotes the lower energy cutoff and Λ+ the upper cutoff. Given
the analytical structure of the RKKY interaction in Eq. (2.23) we can now infer
its sensitivity to nesting in a more rigorous way. For this reason, we regard the
appearing fraction fβ,µ(ετk)−fβ,µ(ερk+q)

ετk−ε
ρ
k+q−iη , which becomes large for ετk ≈ ερk+q as a cause of

divergence of the denominator, and the numerator ensures that this divergence only
appears at the Fermi level. Now, if the Fermi surface of the system exhibits nesting,
there is (by definition of the term nesting) a fixed vector Q of which we know that
for all k lying on the Fermi surface, the considered fraction becomes arbitrarily
large. These contributions add up to strongly enhance the integral, thereby the spin
susceptibility, and consequently also the RKKY interaction.
The specific RKKY interaction for a spinful, spin-degenerate, quadratically dis-

persing fermions has been calculated by Ruderman & Kittel [1954] (for three-
dimensional systems). Recent developments in spintronics and in particular in the
field of topological insulators increase the need for a formula that takes into account
non-trivial spin textures in the reservoir. This will in particular be employed in
Chapter 6. Therefore, we consider a Hamiltonian of the form

H0(k) =
∑

λ∈{x,y,z}
vλ(k)σλ, (2.28)

where σλ are the Pauli matrices and vλ(k) are real functions. After some basic but
tedious algebra, we arrive at an analytically simplified formula for Y , which is

Y λ,λ′

τ,ρ (k,k′) =1
2
(
δλ,λ′

[
1− γTτ (k)γρ(k′)

]
+γTτ (k)Bλ,λ′γρ(k′) + iελ,λ′,ν [γτ (k)− γρ(k′)]ν

)
, (2.29)

where

γρ(k) =(vx, vy, vz)T/ερ(k), (2.30)
Bλ,λ′

a,b =δλ,aδλ′,b + δλ,bδλ′,a. (2.31)

Here, εi,j,k is the Levi-Civita symbol, and matrix multiplication as well as the Ein-
stein sum convention are implicit. An interesting remark is that γ is a unit vector.
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2.3. Superconductivity
We want to deliver a brief introduction and access to the literature on the formal-
ism that allows us to describe superconductors by an effective quadratic fermionic
Hamiltonian. This enables us to classify topological superconductors on the same
footings as introduced for band insulators in Section 2.1. The mechanism also serves
as an example of how the topological classification can be, in a first, simplistic way,
extended to interacting phases. Whenever the theory under consideration is well
approximated by a quadratic band model, the classification of Section 2.1 can be
applied. Examples for such phases, besides the mean field superconductors, are, for
instance, Kondo insulators [Dzero et al., 2010], Floquet insulators [Cayssol et al.,
2013; Dehghani et al., 2014], and dissipative insulators [Bardyn et al., 2013; Budich
et al., 2015].
Superconductors are systems that, among other effects, conduct electricity al-

most perfectly. They are a standard part of nowadays curricula and an exhaustive
representation of them and their history is accessible via various literature, for in-
stance by De Gennes [1999]; Schrieffer [1983]; Tinkham [2004]; van Delft & Kes
[2010]. Superconductivity is known for many systems to originate from an effective
attractive interaction between the fermionic quasi particles of a solid. This effec-
tive interaction can stem from the interaction of the quasi particles with phonons
[Bardeen et al., 1957], magnons [Chen & Goddard, 1988] or from other mechanisms.
For instance, an effective superconducting behavior can be induced in normally con-
ducting materials by the close proximity to a superconductor. This effect is called
proximity-induced superconductivity and is known for almost a century [Holm &
Meissner, 1932] and treatable within the framework introduced here, cf., e.g., Fu &
Kane [2008]. However, the microscopic mechanisms causing superconductivity, es-
pecially high-temperature superconductivity, are not fully understood and a subject
of current research.
To give a concrete example, the two particle spin-singlet pairing Hamiltonian

[Tinkham, 2004] describing conventional superconductivity is

HBCS =
∫

BZ
dk ε(k)c†kck +

∫
BZ
dk dp Vk,pc

†
↑,kc

†
↓,−kc↓,−pc↑,p, (2.32)

where ck = (c↑,k, c↓,k)T is the spinor of the fermionic annihilation operators, wherein
k is the momentum in the Brillouin zone BZ, ε describes the dispersion, and V
describes the strength of the particle-particle interaction that pairs excitations of
opposite spin and opposite momentum, i.e., spin-singlet or, as commonly called, s-
wave pairing. Approximating HBCS by a mean field theory [Tinkham, 2004] results
in an effective quadratic Hamiltonian of the form

HMF
BCS =

∫
dk ε(k)c†kck +

(
∆kc

†
↑,kc

†
↓,−k +H.c.

)
+ E (2.33)
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with the mean field parameter, also called gap function, ∆k =
∫

BZ dp Vk,p 〈c↓,−pc↑,p〉0
and the energy offset E = −

∫
BZ dk dp Vk,p〈c↓,−kc↑,k〉∗0〈c↓,−pc↑,p〉0, which have to be

adjusted self consistently. Here, 〈. . . 〉0 denotes the expectation value with respect
to the quadratic part of the Hamiltonian. The diagonalization of the Hamiltonian in
Eq. (2.33) can be achieved by a Bogoliubov transformation. We give an example for
such a transformation in Section 3.1.3 and, albeit somewhat hiddenly, in Section 4.3.
This Bogoliubov transformation can be taken out prosaically, for instance by a mere
ansatz, see, e.g., von Delft & Schoeller [1998], or, still prosaically, on a more rigorous
mathematical footing as shown in Araki [1968]. However, rewriting the Hamiltonian
using the Nambu notation [Schrieffer, 1983] generates additional physical insight
and an algorithmic simplification. To this purpose, we define the Nambu spinor
Ψ†k =

(
c†↑,k, c

†
↓,k, c↓,−k,−c↑,−k

)
31 and express Eq. (2.33) as

HMF
BCS =

∫
BZ/2

dk Ψ†kHBdGΨk + EG, (2.34)

HBdG =


ε(k)12×2

(
∆k 0
0 ∆−k

)
(

∆∗k 0
0 ∆∗−k

)
−ε(−k)12×2

 . (2.35)

Here32, 12×2 is the unit matrix in two dimensions, EG is an appropriately chosen
real constant, and the additional brackets are introduced to improve the overview.
The advantage of the Nambu notation here is twofold. First, the Bogoliubov-

de Gennes Hamiltonian HBdG is able to deliver some intuitive understanding of
the features of the Hamiltonian in terms of particles (represented by the upper
left block) and holes (lower right block). Secondly, the potentially cumbersome
Bogoliubov transformation ofHMF

BCS is achieved by a unitary diagonalization ofHBdG.
In this way, considerations regarding spectral and eigenvalue properties of normal
31The Nambu spinor can be chosen with the considerable freedom of a unitary transformation,

which is the reason why different choices for the Nambu spinor are circulating. Also, we do
not need to employ the full Nambu spinor here, which would have eight components, because
the present Hamiltonian does not assume the most general form. For instance, it would be
impossible to denote the term c↑,kc↑,k with the reduced, four-component Nambu spinor. The
full Nambu spinor introduces an ambiguity into the Bogoliubov-de Gennes Hamiltonian, which
is resolved by demanding an intrinsic particle-hole symmetry. This symmetry is needed to
represent the Bogoliubov transformation as a unitary transformation, see Section 4.3 for an
example. Note that some of the Cartan-Altland-Zirnbauer symmetry classes, as discussed in
Section 2.1, cannot be realized by superconductors because of this intrinsic particle-hole sym-
metry of HBdG. For the reduced Nambu spinor, the Bogoliubov-de Gennes Hamiltonian usually
still exhibits a particle-hole symmetry. However, this symmetry is not a rigorous mathematical
consequence but rather a physical one.

32Note that Eq. (2.34) would not be equivalent to Eq. (2.33) if the integral was replaced by a sum,
the index set of which contains a k being in the center or at the boundary of the Brillouin zone.
This would be the case for periodic systems of finite size.
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band insulators can directly be translated to the Bogoliubov-de Gennes Hamiltonian
of superconductors. Most important in the context of this thesis is the thereby
extended application of the topological classification along the lines of Section 2.1.
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3.1. Method of refermionizable points
There is a multitude of Hamiltonians that are known to be simplifiable to quadratic
models for a special choice of the involved parameters employing a specific scheme,
which we call “Method of refermionizable points”. Examples are given by models
for the Kondo effect [Emery & Kivelson, 1992; Hewson, 1997; Posske et al., 2013;
von Delft et al., 1998], a backscatterer in a Tomonaga-Luttinger liquid [von Delft &
Schoeller, 1998], the dissipative two-state system and the spin-boson model [Leggett
et al., 1987]. Regarding the Kondo problem, the idea was – up to our knowledge –
first indicated by Gérard Toulouse [Toulouse, 1969], who showed that there should
be a mapping between the s-d model [Hewson, 1997] and a resonant level model for
a special point in parameter space, the Toulouse point. The concrete mapping was
established later by applying bosonization and refermionization. Emery & Kivelson
[1992] subsequently found a unitary transformation that allowed them to expand
the applicability of Toulouse’s idea to the two channel Kondo model. Slightly gen-
eralizing, the method follows a clear schematic:

1. consider Hamiltonians that include bosonic vertex operators, i.e., operators of
the form eiλφ, where φ is a bosonic field depending on a spatial variable.1

2. Find a unitary transformation that alters the form of the vertex operators to
eiφ. We call this transformation generalized Emery-Kivelson transformation.

3. Refermionize.

The bottleneck of this scheme lies in the necessary unitary transformation that
allows the subsequent application of refermionization in a sensible way. The aim
of this section is to explain this scheme with its strengths and drawbacks in detail.
We therefore first introduce bosonization and refermionization. Subsequently, we
concentrate on the determination of a suitable Emery-Kivelson transformation. The
theory introduced in this section is the base of the results of Chapter 4 and Chapter 5.
To exemplify its application, we detailedly calculate the refermionizable points of the
two channel Kondo model in Section 3.1.3, which leads to the results of Chapter 5.

1Such Hamiltonians may well represent the bosonized form of a fermionic system.
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3.1.1. Bosonic-fermionic equivalence in one spatial dimension
For one-dimensional systems, there is the remarkable possibility to switch back and
forth between a fermionic description and a bosonic description of the model at
hand under the assumption that the physical system consists of a finite number of
excitations. The advantage of this freedom to choose the character of the description
is that some Hamiltonians have a simple form, e.g., being quadratic, in one repre-
sentation although they look exceedingly involved in the other one. This in turn
can strongly facilitate predictions regarding the model under consideration. The
process of switching the representations is called bosonization or refermionization2,
respectively. A more natural denotation for the latter seems to be “fermionization”,
in order to emphasize the emancipated status of the two procedures. However, the
nomenclature has to be viewed in the historical context. Systems of interacting
fermions could first be solved exactly by mapping them to noninteracting bosons.
From that point of view, bosonization is much more valuable than its formally co-
equal brother “fermionization”, such that the latter is equipped with a prefix. The
historical development also explains the misleading name “abelian bosonization”,
the essence of which is rather the establishment of the bosonic-fermionic equiva-
lence and not only mere bosonization [von Delft & Schoeller, 1998].
In Section 3.1.1.1, we will first discuss on the subtlety of restricting our con-

siderations to systems composed of a finite number of excitations, which has led
to confusion in this context at a very fundamental level of the theory [Luttinger,
1963; Mattis & Lieb, 1965]. Afterwards, in Section 3.1.1.3, we introduce the equiv-
alence between the fermionic and bosonic language, following the scheme of abelian
bosonization given in von Delft & Schoeller [1998].

3.1.1.1. Foundations and historical excerpts of bosonization

It is appreciable for physicists to be able to describe fermions obeying a linear
dispersion relation. Especially prominent in solid state physics is the linear approxi-
mation of the dispersion relation around the Fermi energy of one-dimensional solids.
Naively, the Hamiltonian acting on the Fock space F that is taken to describe such
fermions is

H0 =
∑
k∈K

kc†kck, (3.1)

where the fermionic annihilaton operators ck obey the anticommutation relations

{c†k, ck′} = δk,k′ , (3.2)
{ck, ck′} = 0 (3.3)

2Another name for refermionization is debosonization, as used by Matveev [1995].
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for all k ∈ K = {∆Kz | z ∈ Z}, where ∆K = 2π
L

with L being the length of
the system in real space, which we assume to obey periodic boundary conditions.
However, there is an issue regarding the physical correctness of this approach: Since
K is not bounded from below in this model, the Hamiltonian of Eq. (3.1) possesses
no ground state that accommodates a finite number of particles. In principle, this
shortcoming excludes the Hamiltonian for physically sensible applications, as, put
simply, there are only finitely many particles in the universe. It is unavoidable to
mention the concept of the Dirac sea in this context, i.e., taking into consideration
states with infinitely many fermions filling the states below the Fermi energy. This
concept is especially appealing to solid state physicists, as we can think of the
Dirac sea representing the inert, energetically low lying, filled states of the valence
bands. The drawbacks of Dirac’s idea, however, are not to be ignored [Weinberg,
1996]: there is the infinite density of electrons, which, besides conceptual problems,
introduces various divergences of observables and in particular begins to matter
when a coupling to, e.g., the electro-magnetic theory is considered. Finally, the
Dirac model becomes absurd when considering bosons obeying a linear dispersion
relation because of the missing Pauli exclusion principle. Weinberg [1996] discusses
more shortcomings of the Dirac sea and puts it into the historical context.
Instead, we want to introduce the more general approach of normal ordering.

Here, we want to present an in our eyes particularly pleasant interpretation of this
concept, which emphasizes the necessity of restricting the considerations to a finite
number of particles in Fock space. The concept is based on previous definitions of
normal order as described by, for instance, Luttinger [1963], Mattis & Lieb [1965],
and von Delft & Schoeller [1998]. With regard to this, consider as a starting point
the model Hamiltonian for fermions with linear dispersion relation using particles
and holes,

H′0 =
∑
k∈K+

kp†kpk + kh†khk, (3.4)

with the particles pk and holes hk, which both obey fermionic anticommutation
relations. As the positrons and electrons in the Dirac equation, the particles and
holes here are interpreted as two emancipated species. The original fermions of the
model ck can be expressed in particle and hole operators as

ck =

pk for k ≥ 0
h†−kfor k < 0,

(3.5)

which results in a Hamiltonian similar to Eq. (3.1), namely

H′0 =
∑
k∈K+

kc†kck −
∑
k∈K−

kckc
†
k. (3.6)

The formal difference to Eq. (3.1) only lies in an, albeit diverging, constant. How-
ever, the conceptual difference is huge. In contrast to Eq. (3.1), Eq. (3.4) has a
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well defined ground state in terms of a finite number of particles and holes, namely
zero particles and zero holes. Applying the decomposition into particles and holes,
reasonable effective Hamiltonians of linearly dispersing fermions and bosons can be
derived, which have non-diverging vacuum expectation values. In principle, these
Hamiltonians have to be derived anew. However, there is a short track and a short-
hand notation called normal ordering. The fermionic normal order of a string of
creation and annihilation operators h, h†, p, and p† is defined here by anticommut-
ing all creation operators to the left and all annihilation operators to the right, where
for each anticommutation that occurs in this process, the anticommutator is taken
to be 1 instead of its actual value. The bosonic normal order is very similar, but
regards commutations instead of anticommutations. We denote a normal ordered
string S of operators by ∗∗S∗∗. By the definition of normal order, we are allowed to
anticommute, or, respectively, commute, within S at will. For instance, we have

∗
∗p1p2p3

∗
∗ = −∗∗p2p1p3

∗
∗ = ∗

∗p3p2p1
∗
∗. (3.7)

It is important to keep in mind that for us, normal ordering is nothing but a
short hand notation. One has to be extremely careful in employing this short hand
notation and take care of what it means in the specific context. An example of
subtle mistakes that can arise relates to simplifications and replacements within a
string of operators and the assumption that normal ordering behaves as a linear
operator. On the one hand, consider

∗
∗p
†
1p
†
2p2p1

∗
∗ = ∗

∗ − p
†
1p2p

†
2p1 + p†1p1

∗
∗ = p†1p

†
2p2p1 + p†1p1. (3.8)

On the other hand, consider

∗
∗p
†
1p
†
2p2p1

∗
∗ = p†1p

†
2p2p1. (3.9)

The mistake here is that the middle of Eq. (3.8) is not defined a priori. However,
for convenience of notation, we, as many more authors [Altland & Simons, 2006a;
Rammer, 2007; von Delft & Schoeller, 1998], will assume the normal order of a sum
to be the sum of the respective normal orders. Thereby, we have to be very careful
that mistakes of the type described in Eq. (3.8) do not occur. By Eq. (3.5), we
are allowed to apply normal order directly onto strings of c and c†. Note that for
momenta k smaller than the Fermi momentum kF , this has the effect that creation
operators c†k appear to the right and annihilation operators c to the left. Exactly
opposite as for operators with momenta larger than kF . As an example for employing
normal order, we want to state that the naively constructed Hamiltonian of Eq. (3.1)
is connected to the particle-hole representation, cf. Eq. (3.4), by

∗
∗H0

∗
∗ =

∑
k∈K

k∗∗c
†
kck
∗
∗ =

∑
k∈K+

kc†kck −
∑
k∈K−

kckc
†
k = H′0. (3.10)
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3.1.1.2. Commutator relations of the Fourier transformed density operator

One of the essential observations that led to the theory of bosonization is the non-
vanishing commutator of the density operator in momentum space

ρk =
∑
p

c†p+kcp. (3.11)

It is an ironic circumstance that Luttinger himself, whose name will be bound to
the physics of 1D fermionic systems for eternity – considering the name Tomonaga-
Luttinger liquid – calculated the commutator incorrectly when he re-invented bosoniza-
tion [Luttinger, 1963]. His mistake was corrected later by Mattis & Lieb [1965].
However, Tomonaga derived the correlator completely correctly many years earlier
than Luttinger [Tomonaga, 1950] and humbly attributed the origin of the idea to
Bloch [Bloch, 1933, 1934].
Nevertheless, there still appear to remain misconceptions about the origin of non-

vanishing density commutators as Mattis & Lieb [1965] and later publications, also
von Delft & Schoeller [1998] partially have not passed down as rigorous an argu-
mentation as introduced by Tomonaga [1950], whose concept we are going to follow.
The reason why there is subtlety in computing the commutators of interest is that
the result is different for different subspaces of the Fock space F . On the subspace
consisting of the states with an infinite number of holes (ordered in the form of
a Dirac sea) and a finite number of particles the commutator vanishes, while for
the subspace of a finite number of particles and holes, which is the physically rel-
evant subspace, the commutator reaches its familiar form. We want to derive the
commutator in detail.

[ρk, ρk′ ] =
∑

p,p′∈K

[
c†k+pcp, c

†
k′+p′cp′

]
=

∑
p,p′∈K

c†k+pcp′δp,k′+p′ − c
†
k′+p′cpδk+p,p′

=
∑
p∈K

c†k+pcp−k′ − c
†
k′+k+pcp. (3.12)

For any state |a〉 with a finite number of particles and for finite k and k′ there is an
su > 0 ∈ K with

cmu |a〉 = 0 ∀mu > su − |k|−|k′|. (3.13)

As an example: for |k|= |k′|= 0, the quantity su describes the particle in |a〉 that
has the largest momentum. If |a〉 has a finite number of holes as well, there is an
st ≥ 0 ∈ K with

c†−mt|a〉 = 0 ∀mt > st − |k|−|k′|, (3.14)

in contrast if |a〉 has an infinite number of holes in the form of a Dirac sea, there is
an st ∈ K with

c−mt|a〉 = 0 ∀mt > st − |k|−|k′|. (3.15)
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This gives

[ρk, ρk′ ] |a〉 =
 su∑
p=−st

c†p+kcp−k′ −
su+k′∑

p=−st+k′
c†k+pcp−k′

 |a〉
= sgn(k′)

 ∑
p∈A(−st,k′)

−
∑

p∈B(su,k′)

 c†p+kcp−k′|a〉, (3.16)

with

A(−st, k
′) ={min(−st,−st + k′), . . . ,max(−st,−st + k′)−∆K}

B(su, k
′) ={min(su, su + k′) + ∆K , . . . ,max(su, su + k′)} (3.17)

and (∑k∈A +∑
k∈B) f(k) being a symbolic notation for ∑k∈A f(k)+∑k∈B f(k). The

sum over B vanishes due to the choice of su – which annihilates the state |a〉 for the
appearing operators – and the sum over A gives

sgn(k′)
∑

p∈B(st,k′)

(
δk,−k′ − cp−k′c†k+p

)
|a〉 = |a〉

δk,−k′
k′

∆K
(i),

0 (ii),
(3.18)

where the cases denote: (i) |a〉 possesses a finite number of holes, (ii) |a〉 possesses
an infinite number of holes in the form of a Dirac sea. We observe that the result does
not depend on any additional structure of |a〉. We therefore conclude the following
operator identity on the subspaces of states with infinitely and finitely many holes
respectively

[ρk, ρk′ ] =

−δk,−k′
k

∆K
(i),

0 (ii).
(3.19)

This equation resembles the famous starting point of abelian bosonization. When-
ever the commutator identity of Eq. (3.19) and therefore also the bosonization iden-
tity is used as an operator identity, it has to be kept in mind that these are only
valid on the subspace of a finite number of particles and holes. However, as the
states containing a finite number of particles and holes are in most cases the only
physical ones and other states have no impact on the system as they lie energetically
too far away from the Fermi level, bosonization can often be employed without the
knowledge of this subtlety.

3.1.1.3. Abelian bosonization

There are many comprehensive and exhaustive texts on abelian bosonization, e.g.,
Giamarchi [2003]; Haldane [1981]; Schönhammer [1997]; von Delft & Schoeller
[1998], just to mention a few of them. We concentrate here on the representation
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of the most important part, the equivalence between the fermionic and the bosonic
description in one dimension. Our explanations stay close to the approach of von
Delft & Schoeller [1998], besides some signs that we alter for convenience, and we
refer to this reference for all proofs omitted in this section. Hence, our presentation
is in no way meant to be original. Additionally to the abelian approach, there is a
field theoretical approach to bosonization, for instance sketched in Altland & Simons
[2006a], which we are not going to follow here.
Consider the subspace F of the Fock space that only contains a finite number of

particles and holes – as introduced in Section 3.1.1.1 – describing one-dimensional
fermions confined to the segment {−L/2, L/2}. Then the set of fermionic creation
and annihilation operators in momentum space c†k and ck, obeying {ck, cp} = δk,p,
together with the vacuum state |0〉 ∈ F span F . This vacuum state is defined as
the state in F that has the properties3

ck|0〉 = 0 for k ≥ 0,
c†k|0〉 = 0 for k < 0. (3.20)

The backbone of abelian bosonization is the fact that there is a set of (mostly)
bosonic operators that also spans F . In this respect, it only remains a matter of
taste if the bosonic or the fermionic algebra is used to describe problems of one-
dimensional particles. In the following passage, we introduce the bosonic operators
spanning F and afterwards, we establish the isomorphism between them and the
fermionic operators.
In Section 3.1.1.2, we introduced the commutation relations of the density opera-

tor in momentum space as the heart of bosonization. In fact, regarding Eq. (3.19),
we can define bosons4 in momentum space by

b†k = −i
√

∆K

k
ρk = −i

√
∆K

k

∑
p

c†p+kcp (3.21)

for all k > 0 k ∈ {n∆K | n ∈ N} =: K that fulfill[
bk, b

†
k′

]
= δk,k′ , (3.22)

[bk, bk′ ] = 0. (3.23)

It is important to note here, that the bosons are only defined for positive momenta.
Otherwise, there would be a dependence between bosons by b†k = b−k. In the
following, we will, however, use Eq. (3.21) extended to positive and negative k,
having this obstacle in the back of our minds. Departing from Eq. (3.21), real space

3In fact, the vacuum state is only unique up to a phase.
4The definition of Eq. (3.21) differs from the one in von Delft & Schoeller [1998] by a sign to let
Eq. (3.24) look more natural.
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bosons are therefore defined not by an ordinary Fourier transform of Eq. (3.21) but
by

Φ(x) =
∑

k∈K\{0}

eikx−a|k|/2√
|k|/∆k

b†k. (3.24)

Here, a ∈ R+ is regularizing the sum. In the limit a→ 0 the bosonic commutation
relation

[Φ(x), ∂x′Φ(x′)] = 2πiδ(x− x′)− 2πi
L

(3.25)

is obtained. It is also notable that the real space bosonic fields are self-adjoint.
The physical picture behind these bosons is that they describe the bosonic density
fluctuations of the fermionic liquid. As this intuition suggests, it can be shown,
cf., e.g., von Delft & Schoeller [1998], that the bosons b†k span the equal particle
subspaces of F , i.e., the subspaces with a constant number N = p − h, where p is
the number of particles and h the number of holes. The only ingredient remaining for
fully spanning F is a ladder operator that connects the equal particle subspaces. To
obtain such an operator, consider the usual occupation number basis of F , given by
products of fermionic creation operators in momentum space acting on the vacuum

|w〉 =
∏
i≥0

(
c†i
)wi ∏

i>0
(c−i)(1−w−i) |0〉, (3.26)

where w is a binary vector with wi = 〈w|c†ici|w〉 for i ∈ ∆kZ. We now define w�
as (w�)i := wi−1. With this notation5, a convenient choice of the aforementioned
ladder operator is

F †|w〉 := |w�〉, (3.27)

where we define this linear operator F † by determining its action on the basis under
consideration6. The operator of Eq. (3.27) is called Klein factor. As can be seen by

〈v|FF †|w〉 =
∑
i

vi−1wi−1 =
∑
i

viwi = 〈v|w〉, (3.28)

the Klein factor is unitary. With the definition of the Klein factor, we have estab-
lished a complete set of operators, namely

{
F †, F

}
∪
{
b†k | k ∈ ∆kZ\{0}

}
that span

F and are mostly of bosonic nature. Already with the definition of the bosonic
fields in Eq. (3.21) and Eq. (3.24), many one-dimensional fermionic Hamiltonians,
for instance, the one of locally interacting fermions, can be written solely in bosonic

5The notation is adapted from informatics, where � denotes the bit shift operator to the left.
6This determines all matrix elements 〈v|F |w〉 = 〈v|w�〉 =

∑
i viwi−1.
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degrees of freedom. However, the true power of bosonization is revealed by the
so-called bosonization identity7

Ψ†(x) = F †√
2πa

ei∆kNxeiΦ(x). (3.29)

where N := ρ0 is the number operator. Together with the momentum representation
of {Ψ(x) | x ∈ {−L/2, L/2}} by {ck | k ∈ ∆kZ}, the definition of the bosonic fields
in Eq. (3.21), the definition of the Klein factors in Eq. (3.27), this bosonization
identity completes the isomorphism between the fermionic operators {ck | k ∈ ∆kZ}
and the (mostly) bosonic operators

{
F †, F,N

}
∪
{
b†k | k ∈ ∆kZ\{0}

}
.

3.1.2. Generalized Emery-Kivelson transformations
Many Hamiltonians that we are going to discuss, include vertex operators of the
form

ei(λ+φ+(0)+λ−φ−(0)), (3.30)

where φ+ and φ− are bosonic fields. If λ+ = 1 and λ− = 0, the vertex operator would
readily be refermionizable by Eq. (3.29). Otherwise, a sensible refermionization
seems to be out of reach. The generalized Emery-Kivelson transformation rotates
a bosonic field into the exponential of the vertex operator and thereby renders it
refermionizable. The origin and name of the transformation lies in its application
to the Kondo problem as conducted by Emery & Kivelson [1992], which we slightly
extend here to be applicable to more general situations. Consider a theory with two
bosonic degrees of freedom φ+ and φ− and the term

ei(λ+φ+(0)+λ−φ−(0))A, (3.31)

with a linear operator A, two real numbers λ+ and λ−, and the bosonic fields φ+
and φ−. Now, we consider a unitary operator

U = eiB, (3.32)

with a hermitian operator B that fulfills the following requirements

[B, φ+(0)] = 0
[B, φ−(0)] = 0

[B,A] = (a+φ+(0) + a−φ−(0))A, (3.33)

with real a+ and a−. With this transformation, we have

UAU † = ei[B,·]A = ei(a+φ+(0)+a−φ−(0))A, (3.34)
7We refer to von Delft & Schoeller [1998] for a proof of the bosonization identity.
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using the Hadamard lemma8

eiBAe−iB = A+ i(BA− AB) + · · · = ei[B,·]A. (3.35)

The vertex operator commutes with U since B commutes with U . We therefore
obtain

Uei(λ+φ+(0)+λ−φ−(0))AU † = ei((λ++a+)φ++(λ−+a−)φ−)(0)A. (3.36)

We can now attempt to find two new bosonic fields(
ν1
ν2

)
= M

(
φ+
φ−

)
(3.37)

with the orthogonal matrix

M = 1√
(λ+ + a+)2 + (λ− + a−)2

(
λ+ + a+ λ− + a−
λ− + a− − (λ+ + a+)

)
. (3.38)

This matrix can only be orthogonal in case there are real numbers, a+ and a−, such
that

(λ+ + a+)2 + (λ− + a−)2 = 1. (3.39)

If this condition can be met, the considered term is transformed to

Uei(λ+φ++λ−φ−)AU † = eiν1A, (3.40)

and hence sensibly refermionizable. A drawback of the generalized Emery-Kivelson
transformation is the possibly increasing complexity of the remaining parts of the
Hamiltonian and of A in its fermionic representation. We employ the generalized
Emery-Kivelson transformation as the basis of the results of Chapter 4 and Chap-
ter 5. An illustrative application of a generalized Emery-Kivelson transformation is
given in Section 3.1.3, where the details of the diagonalization of the two channel
Kondo Hamiltonian of Chapter 5 are derived.

3.1.3. Refermionizable points of the two channel Kondo model
with interacting helical leads

The aim of this section is to deliver an instructive example of the theory introduced
in Section 3.1.2 by finding the refermionizable points of the two channel Kondo

8Here, [B, ·] is a symbolic notation, which is read as: insert the string to the right in place
of the dot, e.g., [B, ·]C = [B,C]. Additionally, ei[B,·] is the short notation for the series∑∞
n=0

1
n! (i [B, ·])n.
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Hamiltonian with interacting, helical leads9. Due to the history of the Kondo model’s
refermionizable points, we will call these points Toulouse points [Emery & Kivelson,
1992; Posske et al., 2013; Toulouse, 1969; Zaránd & von Delft, 2000]. They are
points in the parameter space for which there is a mapping of the respective two-
particle Hamiltonian to a quadratic one, following the scheme of Section 3.1:

1. bosonize,

2. apply a generalized Emery-Kivelson transformation,

3. refermionize.

This technique has also been employed to analyze the Kondo problem for a single
helical liquid by Maciejko [2012]. The modeling Hamiltonian is

H =
∑

a∈{t,b}
Ha +H±K,a +Hz

K,a, (3.41)

Ha =
∑

σ∈±≡{↓,↑}

∫
dx
[
−iva,Fσ

(
Ψ̃a,σΨ̃′a,σ

)
+ ga,4

2 ρ̃2
a,σ + ga,2

2 ρ̃a,σρ̃a,−σ

]
(x), (3.42)

H±K,a = J⊥a Ψ̃†a,↑(0)Ψ̃a,↓τ
− +H.c., (3.43)

Hz
K,a = 1

2J
z
a (ρ̃a,↑ − ρ̃a,↓) τ z. (3.44)

The helical Tomonaga-Luttinger Hamiltonians Ha, with a ∈ {t, b}, are bosonized
with the bosonization identity, see Eq. (3.29) and Section 3.1.1.3, where we only
consider the limit of large systems, i.e. ∆k → 0:

Ψ̃†a,σ(σx) = F †√
2πa

eiϕ̃a,σ(x). (3.45)

The helical Hamiltonians are subsequently diagonalized by a Bogoliubov transfor-
mation in momentum space, cf. von Delft & Schoeller [1998] for details, which leads
to the new bosonic fields10

ϕa,σ(x) = 1√
8
[(
g−1/2
a + g1/2

a

)
(ϕ̃a,↑(x)− σϕ̃a,↓(x))

+
(
g−1/2
a − g1/2

a

)
(σϕ̃a,↑(−x)− ϕ̃a,↓(−x))

]
. (3.46)

9This Hamiltonian is detailedly described in Chapter 5 and the physics is explained in Sec-
tion 2.2.3.

10The notation employed here differs to the one of von Delft & Schoeller [1998] slightly: (i) op-
posite sign in the definition of the Fourier transform, (ii) opposite sign in the definition of the
bosonization procedure for left moving fields. This leads to apparently different formulations,
which turn out to be equivalent taking a closer look.
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Here, the so-called Luttinger parameter

ga =
√
va,F + 2πga,4 − 2πga,2
va,F + 2πga,4 + 2πga,2

, (3.47)

appears, which describes the strength of interactions in the system. For x = 0,
Eq. (3.46) reduces to

ϕa,σ(0) = 1√
2
g−σ/2 (ϕ̃a,↑(0)− σϕ̃a,↓(0)) . (3.48)

Note, however, that for the derivative at x = 0, the full formula of Eq. (3.46) has to
be employed, which effectively changes g → 1

g
. This reveals

ϕ′a,σ(0) = 1√
2
gσ/2

(
ϕ′a↑(0)− σϕ′a↓(0)

)
. (3.49)

Employing Eq. (3.48) and Eq. (3.49) leads to the bosonized form of the two channel
Kondo Hamiltonian

Ha =
∫
dx

va
2
∑
σ

(
ϕ′a,σ

)2
(x), (3.50)

H⊥K,a =τ
−

4πJ
⊥
a F

†
a↑Fa↓ exp

(
i
√

2gaϕa,+(0)
)

+H.c., (3.51)

Hz
K,a =Jza

4π

√
2
ga
ϕ′a+(0)τ z, (3.52)

where

va =
√

(va,F + 2πga,4 − 2πga,2)(va,F + 2πga,4 + 2πga,2). (3.53)

The generalized Emery-Kivelson rotation, as introduced in Section 3.1.2 is given by
the unitary transformation

U = exp(i
∑
a,σ

λa,σϕa,σ(0)τ z). (3.54)

Applying this transformation to Eq. (3.50) and Eq. (3.52) results in

UHaU
† = Ha −

∑
σ

vaλa,σ∂xϕa,σ(x) |x=0 τ
z, (3.55)

UHz
K,aU

† = Hz
K,a + const., (3.56)

exploiting [
(ϕ′j(x))2, ϕj′(x)

]
= −2iδj,j′ϕ′j(x)

(
δ(x)− 1

L

)
.11 (3.57)
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These Hamiltonians, UHU † and UHzU
†, contain τ z, which can be expressed as

a single particle term in a fermionic representation of the spin degree of freedom.
Therefore, UHU † and UHzU

† effectively contain multiple particle terms which we
want to exclude. In order to cancel these two particle terms, we demand the condi-
tion

∑
a,σ

vaλa,σ∂xϕa,σ(x) |x=0 τ
z =

∑
a,σ

δσ,+
Ja
4π

√
2
ga
∂xϕa,σ(x) |x=0 τ

z, (3.58)

which is equivalent to

λa,− = 0 and Jza =
√

8gaλa,+πva (3.59)

by comparing coefficients. The generalized Emery-Kivelson rotation of HK,± reveals

UHK,±U
† =τ

−

4π
(
J⊥t F

†
t,↑Ft,↓e

(i(
√

2gt−λt,+)ϕt,+(0)−λb,+ϕb,+(0))

+J⊥b F
†
b,↑Fb,↓e

(i(
√

2gb−λb,+)ϕb,+(0)−λt,+ϕt,+(0))
)

+H.c.. (3.60)

To be able to simplify the Hamiltonian by refermionization, the vertex operators
of Eq. (3.60) are now, according to Section 3.1.2, taken to be of the form e±iνj(0)

with νj(x) = ∑
jMj′,jϕj(x) being four new bosonic fields andM being an orthogonal

matrix. The remaining task is to find such transformationsM that, as an additional
constraint, do not complicate the remainder of the Hamiltonian. If M mixes fields
from the left and the right side, then UH0U

† has off-diagonal elements for the case
of unequal quasi particle velocities on both sides, i.e., vt 6= vb. As M necessarily
mixes fields from both sides (except for the trivial M = 1), we impose vt = vb := v
as a first constraint to the Toulouse points. Furthermore, we note that only two
vertex operators appear in Eq. (3.60). Although M is generally a four times four
matrix, we can therefore assume without loss of generality that M only mixes two
bosonic fields, which we choose to be ν1 and ν2. The remaining bosonic fields are
assumed to remain unchanged. Finally, we are left with a last unmentioned degree
of freedom. Either, we choose the boson ν2 to decouple from the Hamiltonian or
not. This leads to two generic cases

3.1.3.1. Case A: only ν1 appears in the exponents

We assume that the first vertex operator of Eq. (3.60) equals e−iν1(0) and the second
one equals e±iν1(0). This yields

√
2ga − λa,+ = ±λa,+ (3.61)

11The term 1
L appearing on the right hand side of Eq. (3.57) is not negligible in this case as the

commutator is inserted within an integral over the full space, cf. Eq. (3.50).
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for a ∈ {t, b}, which leads to the solutions

ga = 0 or λa =
√
ga/2. (3.62)

The solution with one ga = 0 is of less interest, as it describes the rather unphysical,
infinitely strong interacting limit of the Tomonaga-Luttinger liquid. We therefore
restrict ourselves to the case of λa =

√
ga/2, where the condition of orthogonality of

M gives

gt + gb = 2. (3.63)

Therefore, there is a sensible representation of ga in terms of

gt = 2 sin2(α) and gb = 2 cos2(α), (3.64)

with α ∈
[
0, π2

)
. By Eq. (3.37), we obtain(

ν1(x)
ν2(x)

)
= 1√

2

( √
gt −

√
gb√

gb
√
gt

)(
ϕt,+(x)
ϕb,+(x)

)
. (3.65)

Inserting λa into Eq. (3.59) results in

Jza = 2πvga. (3.66)

Employing this representation, the Toulouse points of case A are summarized by

A = {vt, gt, J
z
t , vb, gb, J

z
b}

= {v, 2 sin2(α), 4πva sin2(α), 2 cos2(α), 4πv cos2(α) | v ∈ R, α ∈ [0, π2 )}. (3.67)

3.1.3.2. Case B: ν1 appears in the top-lead exponent, ν2 in the bottom-lead
exponent

Let us repeat the exponents of interest in Eq. (3.60) and call them ExpI and ExpII
respectively:

ExpI :=i
[
(
√

2gt − λt,+)ϕt,+(0)− λb,+ϕb,+(0)
]
, (3.68)

ExpII :=i
[
(
√

2gb − λb,+)ϕb,+(0)− λt,+ϕt,+(0)
]
. (3.69)

We now demand ExpI to equal iν1(0) and ExpII to equal iν2(0). In this case, the
orthogonality of the transformation matrix M introduces the following constraints
to ga and λa:

1−
(√

2gt − λt,+
)2

= λ2
b,+, (3.70)

1− λ2
t,+ =

(√
2gb − λb,+

)2
, (3.71)

−
(√

2gt − λt,+
)
λt,+ =

(√
2gb − λb,+

)
λb,+, (3.72)
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where the first two constraints stem from the normality of the row vectors ofM and
the third constraint from their orthogonality. Adding (Eq. (3.70)) + (Eq. (3.71)) +
2× (Eq. (3.72)) reveals the characteristic

gt + gb = 1. (3.73)

Note that this is different to case A, where the relation of Eq. (3.63) holds. In case
B a sensible representation of gt and gb is given by

gt = sin2(β) and gb = cos2(β) (3.74)

with β ∈ [0, π2 ). The variables λt,+, and λb,+ that fulfill Eqs. (3.70)-(3.72) are found
by eliminating λb,+ using

(
Eq. (3.70))× Eq. (3.71)− (Eq. (3.71))2

)
. This reveals

λt,+. The quantity λb,+ can subsequently be found by symmetry arguments. There
is a pair of solutions that is distinguished by the additional parameter s ∈ {−1, 1}.
The solutions read

λt,+ = 1√
2

(√gt + s
√
gb), (3.75)

λb,+ = 1√
2

(√gb + s
√
gt) = sλt,+. (3.76)

This results in(
ν1(x)
ν2(x)

)
= 1√

2

( √
gt − s

√
gb −s√gt −

√
gb

−√gt − s
√
gb

√
gb − s

√
gt

)(
ϕt,+(x)
ϕb,+(x)

)
(3.77)

and

Jzt = 2πv (gt + s
√
gbgt) = πv(1− cos(2β) + s sin(2β)) (3.78)

Jzb = 2πv (gb + s
√
gtgb) = πv(1 + cos(2β) + s sin(2β)). (3.79)

The obtained solutions can readily be verified to fulfill Eqs. (3.70)-(3.72)12. To be
concrete, the Toulouse points of case B are represented by

B ={vt, gt, J
z
t , vb, gb, J

z
b}

={v, sin2(β), πv(1− cos(2β) + s sin(2β), cos2(β),

πv(1 + cos(2β) + s sin(2β)) | v ∈ R, β ∈ [0, π2 ), s ∈ {−1, 1}}. (3.80)

12In fact, the validity of the solution must be verified regarding the use of non-equivalence trans-
formations in the course of the derivation.
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3.1.3.3. Summary

In summary, we find that the set of Toulouse points for the two channel Kondo
model with helical leads separates into two subsets that we call A and B. The
Toulouse points of subset A fulfill the relation gt + gb = 2, which means that for
repulsive interactions on one lead, the other lead exhibits attractive interactions13.
A special Toulouse point in this class is the non-interacting limit with gt = gb = 1.
The subset B contains Toulouse points that obey gt + gb = 1, which includes the
prominent case gt = gb = 1/2. The physics of the system at these points will turn
out to be decisively different from the one experienced by systems with parameters
in A, which, as we explain in Chapter 5 results from that fact that there appear
no anomalous terms, i.e., products of two creation operators, in the refermionized
Hamiltonian of case B.

3.2. Finitization of divergences generated by a local
scatterer

This section is a revised version of the appendix of Posske & Trauzettel [2014],
copyrighted by the American Physical Society. Also regard the remarks on page 3.

In this section, we explain the method that we use in Section 5.2 to backpropagate
the density operator for the two channel Kondo model of helical liquids at g = 1

2
in time. The time evolution can, as a consequence of our method, be carried out
exactly, even if we depart from the Toulouse points in a specific way. We consider the
method to be generalizable to diverse systems consisting of one-dimensional channels
that are coupled to a zero dimensional scatterer. These systems intrinsically suffer
from the fact that the time evolution of the moving particles is not well-defined at
the point of the zero-dimensional scatterer. The solution that we propose to the
problem is to regularize the size of the scatterer to be finite in extent. To facilitate
further research regarding the aforementioned generalization, we especially explain
the technical details of the procedure in this section.
Let us consider the Hamiltonian that is more detailedly explained in Section 5.2,

13The Toulouse points A would be physically relevant in a scenario where one of the leads is
proximity-coupled to a superconductor. Additionally, the Toulouse points A are of interest
because they contain the non-interacting limit.



46 3. Methods

Eq. (5.27):

H0 =
∑

a∈{t,b}

∫
dx Ψ†(x)a(−i∂x)Ψ(x)a,

H⊥K = j⊥t Ψ†t(0)τ− + j⊥b Ψ†b(0)τ− +H.c.,

Hz
K = jzt Ψ†t(0)Ψt(0)τ z + jzbΨ†b(0)Ψb(0)τ z. (3.81)

where Ψ describes a fermionic species, τ a spin 1
2 degree of freedom, the appearing

j are real coupling constants, and the indices t and b describe the bottom and the
top lead. Note that this Hamiltonian is the refermionized two channel Kondo model
for interacting helical leads close to the set of Toulouse points B, cf. Section 3.1.3.
However, directly at the Toulouse points, Hz

K vanishes. Hence, we are treating a
Hamiltonian that is not analytically solvable by standard means. In the following, we
focus on evolving the density operator ρa(x) := Ψ†a(x)Ψa(x) with x > 0 backwards
in time to shortly before it has interacted with the impurity. For this reason, we
introduce the time dependence of all operators in the Heisenberg picture to be
denoted as the second argument of the operator.

Ψ(x, t) = eiHtΨ(x, t = 0)e−iHt, (3.82)

where we abandon the index of the lead now and in the following as the calculation is
valid for either lead. To compute the time evolution, we look at the time derivative of
Ψ at t = 0. For spatial arguments that are not equal to zero, the time evolution just
becomes the linear propagation in space because the interaction with the magnetic
moment is localized at x = 0. A technical problem in this procedure appears directly
at x = 0, where we would have to evaluate the commutator [Ψ(0, 0), H] which is
not well defined. The reason for this “divergence” of the derivative of the fermionic
field is, physically speaking, the vanishing size of the impurity. To avoid this type of
divergence, we introduce the smeared delta function δyd(x) that is centered at y ∈ R.
The exact shape of this function is unimportant. Of importance are the following
properties that are going to be used at a later stage:

lim
d→0

∫
I⊂R

dx δydP (x) =


P (y) if y ∈ I̊ ⊂ R,
1
2P (y) if y ∈ ∂I ⊂ R,
0 else,

(3.83)

for P being a sum of products of the fields τ+, τ−, Ψ, and Ψ† in the Heisenberg
picture, where x can appear in the time argument as well; I̊ denotes the interior
of I and ∂I denotes the boundary of I. Furthermore, the following identity has to
hold for multidimensional integrals

(3.84)
lim
d→0

∫
dx1 . . . dxn δ

y1
d (x1) . . . δynd (xn)P (~x)

= lim
d1→0

. . . lim
dn→0

∫
dx1 . . . dxn δ

y1
d1(x1) . . . δyndn(xn)P (~x).
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A concrete example of the smeared delta function is the Lorentzian

δyd(x) = d

π(d2 + (x− y)2) . (3.85)

In this context, the length scale d can be interpreted as the size of the impurity.
The interaction Hamiltonians with a broadened impurity become

HK,⊥ =
∑

a∈{t,b}
j⊥a

∫
dx δ0

d(x)Ψ†a(x)τ− +H.c.,

HK,z =
∑

a∈{t,b}
jza

∫
dx δ0

d(x)Ψ†a(x)Ψa(x)τ z. (3.86)

The time derivative of Ψ(x) is then given by

∂tΨ(x, t)|t=0 = i [Ψ(x, 0),H] = ∂xΨ(x) + ij⊥δxd(0)Ψ(x)τ+ + ijzδxd(0)Ψ(x)τ z. (3.87)

We now solve the time evolution for the operator Ψ exactly by cutting the time
into infinitesimally small slices, solving the evolution of a time slice exactly, and
iterate. This technique shows similarities to an approach taken in the derivation of
the path integral for quantum mechanics as presented in Altland & Simons [2006a].
Let us consider the field Ψ(ε, t = 0) for ε ∈ R+, which we want to backpropagate
2ε in time, where the units of time and space coincide because we have chosen the
velocity of the particles to be unitless. We define ε � d 14, which means that we
start sufficiently far away from the impurity to collect all its effects on the time
evolution. Then, we obtain

Ψ(ε,−2ε) = e−iH2εΨ(ε, 0)eiH2ε = lim
N→∞

(1− iHη)N Ψ(ε, 0) (1 + iHη)N , (3.88)

with η = 2ε
N
, where the convergence of the right hand side towards the left hand side

is proven by comparing all orders in ε. Denoting

Ψk(ε, 0) := (1−Hη)k Ψ(ε, 0) (1 + iHη)k , (3.89)

we look at the first time slice

Ψ1(ε, 0) = Ψ(ε, 0)− iη [H,Ψ(ε, 0)] +O(η2)
= Ψ(ε, 0)− η∂xΨa(ε)− ij⊥a δεd(0)τ−(0)− ijzaδεd(0)τ z(0)Ψ(0, 0) +O(η2)
= Ψ(ε− η, 0)− ij⊥a δεd(0)τ−(0)− ijzaδεd(0)Ψa(0)τ z(0) +O(η2), (3.90)

14It is unusual for a parameter to be called ε that is taken larger than another variable. However,
the naming stems from the fact that we are going to take ε to be small compared to the Kondo
length scale at the end of the calculation.



48 3. Methods

where we use [Ψ, τ z] = 0. Since we take η → 0 at the end of our calculations, we
henceforth neglect terms of an order larger than or equal to η2. This is justified by
the identity

lim
N→∞

(
1 + x

N
+O(η2)

)N
= ex = lim

N→∞

(
1 + x

N

)N
. (3.91)

The general formula for an arbitrary number of time steps is given by

(3.92)

Ψk = Ψ(ε− ηk) +
∞∑
n=1

(−ijzη)n
∑n

i=1 li≤k−n∑
(li)ni=1>0

δεd(ηl1)
 n∏
j=2

δ0
d(ηlj)


×

 n∏
j=1

τ z

η
n− k − j +

n−j∑
i=1

li


×
(
j⊥

jz
τ−(ηκ) + τ z(ηκ)Ψ(ηκ, 0)

) ∣∣∣∣∣
κ=n−k+

∑n

i=1 li

.

Here, (li)ni=1 > 0 denotes all n-tuples of integers, each of which is larger than 0,
and the product assumes an ordering of its factors from the left to the right with
increasing index, i.e., ∏n

j=1 aj = a1× . . .× an. Eq. (3.92) can be proven by complete
induction over k.

3.2.1. Proof by induction
In the following, we use the shorthand notation

γ ≡ −ijza, (3.93)

αk ≡
j⊥a
jza
c(ηk) + τ z(ηk)Ψ(ηk, 0), (3.94)

βk ≡ τ z(ηk). (3.95)

Then, Eq. (3.90) reads

Ψ1 = Ψ(ε− η) + γηδεa(0)α0. (3.96)

For αk, the evolution of one time step is readily obtained by Eq. (3.90):

(1− iHη)αk (1 + iHη) = αk−1 + γηδ0
a(−ηk)βη(k−1)α0. (3.97)
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Because the next step is very technical, it may be of interest to the reader to gain
intuition about the iteration of time slices by regarding the following equations.

Ψ2 = Ψ(ε− 2η) + γη
1∑

l1=0
δεa(ηl1)α−1+l1 + (γη)2δεa(0)δ0

a(0)β−1α0,

Ψ3 = Ψ(ε− 3η) + γη
2∑

l1=0
δεa(ηl1)α−2+l1 + (γη)2

1∑
l1=0

1−l1∑
l2=0

δεa(ηl1)β−2+l1α−1+l1+l2

+ (γη)3δεa(0)δ0
a(0)δ0

a(0)α0β−1β−2,

Ψ4 = Ψ(ε− 4η) + γη
3∑

l1=0
δεa(ηl1)α−3+l1 + (γη)2

2∑
l1=0

2−l1∑
l2=0

δεa(ηl1)β−3+l1α−2+l1+l2

+ (γη)3
1∑

l1=0

1−l1∑
l2=0

1−(l1+l2)∑
l3=0

δεa(ηl1)δ0
a(ηl2)δ0

a(ηl3)β−2+l1+l2β−3+l1α−1+l1+l2+l3

+ (γη)4δεa(0)δ0
a(0)δ0

a(0)δ0
a(0)β−aβ−2β−3α0.

Let us proceed with the proof. The start of the induction is already obtained for
k = 1 in Eq. (3.96). The step is given as follows:

Ψk+1 = (1− iHη) Ψk (1 + iHη)

= Ψ(ε− η(k + 1)) + γηδεa(kη)α0︸ ︷︷ ︸
in next step’s sum

+
∞∑
n=1

(γη)n
∑n

i=1 li≤k−n∑
(li)ni=1>0

δεa(ηl1)
 n∏
j=2

δ0
a(ηlj)

×
 n∏
j=1

β−1−n−k−j+
∑n−j

i=1 li



×

αn−(k+1)+
∑n

i=1 li
+ γηδ0

a(η(k − n−
n∑
i=1

li))βn−(k+1)+
∑n−j

i=1
α0︸ ︷︷ ︸

shift index to next step

 ,

(3.98)
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such that

Ψk+1 =Ψ(ε− η(k + 1)) +
∞∑
n=1

(γη)n

∑n

i=1 li≤k−n∑
(li)ni=1>0

δεa(ηl1)
 n∏
j=2

δ0
a(ηlj)


×

 n∏
j=1

β−1−n−k−j+
∑n−j

i=1 li

αn−(k+1)+
∑n

i=1 li

+

∑n−1
i=1 li≤(k+1)−n∑

(li)n−1
i=1 >0

δεa(ηl1)
n−1∏
j=2

δ0
a(ηlj)


×δ0

a((k + 1)− n−
n−1∑
i=1

li)
 n∏
j=1

β−2−n−k−j+1+
∑n−j

i=1 li

 β−1+n−(k+1)+
∑n−1

i=1 li
α0

 .
(3.99)

We now focus on the second summand in the large braces and introduce a dummy
variable ln = (k + 1) − n −∑n−1

i=1 . The sum ∑∑n−1
i=1 ≤(k+1)−n

(li)n−1
i=1 >0 . . . then has the same

effect as ∑∑n

i=1=(k+1)−n
(li)ni=1>0 . . . , since ln represents the missing amount from ∑n−1

i=1 li to
(k + 1)− n. The second summand in the large braces therefore transforms to∑n

i =1 li =(k+1)−n∑
(li)ni =1 >0

δεa(ηl1)
n−1∏
j=2

δ0
a(ηlj)

 δ0(ηln)

×

n−1∏
j=2

β
n−(k+1)−j=

∑n−j
i=1 li

 β
n−(k+1)−1+

∑n−1
i =1 li

αn−(k+1)+
∑n

i =1 li

=

∑n

i=1 li=(k+1)−n∑
(li)ni=1>0

δεa(ηl1)
 n∏
j=2

δ0
a(ηlj)

αn−(k+1)+
∑n

i=1 li

 n∏
j=1

β−1−n−k−j+
∑n−j

i=1 li

 .
(3.100)

Hence, the two summands in the large braces of Eq. (3.99) simplify to∑n

i=1 li≤(k+1)−n∑
(li)ni=1>0

δεa(ηl1)
 n∏
j=2

δ0
a(ηlj)

×
 n∏
j=1

β
n−(k+1)−j+

∑n−j
i=1 li

αn−(k+1)+
∑n

i=1 li
,

(3.101)

which concludes the proof.

3.2.2. Continuum limit
To obtain the continuum limit in time and hence the time evolution, we let N go to
infinity, which is equivalent to η → 0. In doing so, we replace ηN → 2ε and set all
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products of the form η × c to zero if c is a fixed and hence finite number. Further-
more, sums of the form ∑N

l=1 ηf(ηl) become integrals for non diverging functions
and operators f . This procedure yields

Ψ(ε,−2ε) = Ψ(−ε, 0)

+
∞∑
n=1

(−ijza)n
∫ 2ε

0
dl1

∫ 2ε−l1

0
dl2 . . .

∫ 2ε−(
∑n

i=1 li)

0
dlnδ

ε
d(l1)

 n∏
j=2

δ0
d(lj)


×

 n∏
j=1

τ z(−2ε+
n−j∑
i=1

li)


×
(
j⊥

jz
τ−(−2ε+

n∑
i=1

li) + τ z(−2ε+
n∑
i=1

li)Ψ(−2ε+
n∑
i=1

li, 0)
)
.

(3.102)

For a particular shape of the impurity (encoded in δd), the integrals in general do
not simplify further. But by taking the limit d → 0, belonging to the case that
the size of the impurity is considerably smaller than the resolution of the possible
measurements, we can exploit the properties of the representation of the smeared
delta function postulated in Eq. (3.83) and Eq. (3.84) to obtain

Ψ(ε,−2ε) = Ψ(−ε, 0)
1− ( jz4 )2

1 + ( jz4 )2 − τ
−(−ε) ij⊥

1 + i jz4
− τ z(−ε)Ψ(−ε, 0) ijz

1 + ( jz4 )2 .

(3.103)

In this derivation, the property (τ z)2 = 1
4 , and the identity ∑∞n=0(i jz4 )n = 1

1−i jz4
for

|jz|< 4 have been exploited. Starting from Eq. (3.103), the evolution in time for the
density operator becomes
ρ(ε,−2ε) = Ψ†Ψ(ε,−2ε)

= ρ(−ε, 0)

+

(
j⊥
)2

1 + ( jz4 )2 (τ z(−ε) + 1/2) +
(

ij⊥
1 + i jz4

(1− i jz4 )2 τ
+(−ε)Ψ(−ε, 0) +H.c.

)
.

(3.104)

Notably, the term containing the two-particle operator Ψ†(−ε, 0)τ z(−ε)Ψ(−ε, 0) van-
ishes because its prefactor is zero.

3.3. Multidimensional optimization and integration -
The Metropolis algorithm

Being able to optimize objects regarding certain properties is highly desirable. In
practical problems, the optimality of systems can often be represented as a real
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valued function that acts on a set of real parameters. The optimal system is found
by determining the global maximum 15 of this function. In general, the parameter
space is too large to sample it sufficiently to yield a satisfactory accuracy. This re-
sulted in the creation of numerous numerical algorithms and strategies dedicated to
optimization problems with widely spread applications from physics over engineer-
ing to market analysis [Lemaréchal, 2001; Nocedal & Wright, 2006]. Of particular
interest here are so-called Monte Carlo algorithms as we employ the Metropolis al-
gorithm, a Markov Chain Monte Carlo algorithm [Kruschke, 2011; Müller-Gronbach
et al., 2012], in Chapter 6 to determine the ground state and the thermal behavior
of magnetic impurities on the surface of a three-dimensional topological insulator.
Monte Carlo algorithms employ randomness to, for instance, determine the ground
state or calculate multi-dimensional integrals like expectation values in solid state
systems [Müller-Gronbach et al., 2012]. Consider the classical expectation value of
a property A in a canonical ensemble

〈A〉 = 1
Z

∑
ω∈Ω

e−βEωAω, (3.105)

where β is the inverse temperature, Z is the partition function, E is the energy
and Ω is the phase space of the system under consideration, which we take to be
discrete for reasons of simplicity. Numerically sampling over the full phase space
uniformly randomly and summing up the obtained contributions will in general
yield poor results for the convergence to the actual result of the expectation value.
The reason behind this is that, for sufficiently large β, the largest contribution
to the sum is given by the energetically low lying states. However, these states
are rare in the phase space, such that it is unlikely they will be chosen by the
method in an adequate number [Metropolis et al., 1953]. Metropolis et al. [1953]
therefore introduced an ingenious idea: instead of sampling states from the phase
space uniformly randomly and weighting its contribution with the Boltzmann factor,
they generate states according to the Boltzmann distribution and average uniformly
over them. We want to explain this so-called Metropolis algorithm in greater detail
and explain why it works. In doing so, we stay close to the original explanation of
Metropolis et al. [1953]. The algorithm is short:

1. generate an initial state of the system,

2. iterate the following sufficiently often:
i) propose a random change of the state,
ii) accept the change with the probability min

(
1, e−β∆E

)
.

Here, ∆E = E2−E1, wherein E1 is the energy of the current state and E2 is the
energy of the proposed state.

15Of course, determining the global minimum instead is a pure matter of taste.
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3. Average the desired quantity uniformly over the tuple of states obtained by the
iterations of 2.

The proposed random change in 2i) has to be ergodic, and unbiased, i.e., the random
changes are in principle able to sample the whole phase space and the probability
Pω,ξ of changing the state ω to the state ξ is equal to the probability Pξ,ω of the
inverse process. Let us explain why the Metropolis algorithm succeeds in generating
a Boltzmann distribution of the states characterized by

pω/pξ = e−β(Eω−Eξ). (3.106)

To this end, we describe the system by a rate equation for the probabilities pω that
the system resides in state ω. The rate equation is

pω(t+ 1)− pω(t) =
∑
ξ<

Pξ<,ωe
−β(Eω−Eξ<)pξ<(t)

︸ ︷︷ ︸
arriving from smaller energy

−
∑
ξ<

Pω,ξ<pω(t)
︸ ︷︷ ︸

departing to smaller energy

+
∑
ξ>

Pξ>,ωpξ>(t)
︸ ︷︷ ︸

arriving from larger energy

−
∑
ξ>

Pω,ξ>e
−β(Eξ<−Eω)pω(t)

︸ ︷︷ ︸
departing to larger energy

, (3.107)

where ξ> runs over the states of larger energy than ω while ξ< runs over the states
of less or equal energy. Now, let us consider any two states of the system, ω and
ξ, with a finite transition probability Pξ,ω = Pω,ξ. We consider ξ to have a smaller
energy than ω without loss of generality. The probability current from ω to ξ is

jω,ξ(t) = Pω,ξpω(t)− Pξ,ωe−β(Eω−Eξ)pξ(t). (3.108)

Hence,

sgn {jω,ξ(t)} = sgn
{
pω(t)− e−β(Eω−Eξ)pξ(t)

}
. (3.109)

Therefore, the probability flows from ω to ξ if the ratio pω(t)
pξ(t)

exceeds the Boltzmann
ratio e−β(Eω−Eξ) but instead flows from ξ to ω if pω(t)

pξ(t)
is smaller than the Boltzmann

ratio. In the course of iteration, pω(t)
pξ(t)

will therefore be equilibrated to e−β(Eω−Eξ),
where all probability currents vanish and the system reaches detailed balance. This
process of equilibration is also called thermalization. In practice, the size of the
random step in 2i) has to be chosen according to the energetic landscape. If the
step is too small, the state will not change enough to sample a sufficient region of
the phase space. If it is too large, the acceptance rate will be very low, resulting in
a mostly unchanged state as well. The Metropolis algorithm can also be used – as
it will be done in Chapter 6 – to find the ground state of systems by taking the
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limit β → ∞. However, care has to be taken to avoid local minima, to which the
algorithm would immediately stick if β is chosen too large from the start. Instead,
a successive increase of β has turned out to be useful. Following this so-called
annealing protocol16, the algorithm can avoid local minima. Still, one has to keep in
mind that achieving fast thermalization and efficient annealing protocols is more an
art than an exact science17 [Kruschke, 2011] and strongly depends on the problem
to be solved.

3.4. Checking translationally invariant Hamiltonians
for decomposability

In Chapter 7, we will design gapless topological insulators by coupling a gapped
topological phase to a gapless semimetallic phase. Thereby, an interesting phase,
the gapless topological system, is created. It is important to find out, whether the
resulting system is intrinsically original or if it can be decomposed into two or more
non-interacting systems by globally changing the frame of reference, where globally
means momentum independently. We call such systems that fall apart into two non-
interacting systems decomposable. Imagine a translation invariant Hamiltonian of
the form

H =
⊕
k∈BZ

h(k), (3.110)

where h(k) is the Hamiltonian in momentum space and k lies within the Brillouin
zone (BZ). Here, we take h(k) to be an n-dimensional, complex hermitian matrix
that continuously depends on k. The Hamiltonian is said to be decomposable if there
is a unitary transformation U with the property that Uh(k)U † is, up to re-indexing,
the direct sum of two lower-dimensional matrices for all k ∈ BZ and the structure
of the blocks and the re-indexing does not change depending on k18. We say about
such a unitary transformation U that it decomposes H. In the following, we want
to present a numerical19 check for decomposability, which can be applied to the
16 Although the terminology of the Metropolis algorithm strongly employs terms from thermody-

namics (thermalization, annealing), the process of iterating the Metropolis algorithm starting
from a random initial position is not to be confused with the proper, physical thermalization
and the annealing protocol must not be confused with the proper dynamics of the system.

17Giorgio Sangiovanni, 2014, private communication.
18Some brief remark on the choice of the wording: our definition of decomposability is similar

to the definition of decomposability of linear representations of groups, which must not be
confused with the definition of reducibility [Dresselhaus et al., 2008]. Note, however, that
{h(k) | k ∈ BZ} is not a group. Using the word reducible would in this context therefore be
confusing. The wording could also be confused with the reducibility by a unitary transformation
in the context of Cartan-Altland-Zirnbauer classes as mentioned in Chapter 7.

19The method can also be employed analytically for sufficiently simple systems.
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systems in Chapter 7. The test is also applicable to general translationally invariant
Hamiltonians. While the upcoming proof is of technical nature, the underlying idea
is short: (i) diagonalize h(p) at one point p in momentum space where h(p) is
non-degenerate. By this, the system at one point in momentum space, namely p,
is maximally decomposed. (ii) The full system, for all momenta, is then either also
decomposed by the transformation utilized in (i) or not. In the first case, we have
found a decomposing transformation. In the second case, it turns out that the full
system is not decomposable at all. In this respect, we formulate

Theorem 1 (Check for decomposability). For a given Hamiltonian H according to
Eq. (3.110), choose a p ∈ BZ and let Up be a unitary operator that diagonalizes h(p).
The Hamiltonian is decomposable if and only if the operator Up decomposes H.

Proof. We fix a p ∈ BZ and a Up such that h(p) is nondegenerate and diagonalized
by Up. Let us assume that H is decomposable20. Then, by the definition of decom-
posability above, there exists a unitary operator U ′ such that U ′h(k)U ′† is the direct
sum of two lower-dimensional matrices for all k ∈ BZ. This is in particular true for
k = p. Let m ≥ 2 denote the number of different blocks into which the Hamiltonian
is decomposed by U ′. By lemma 1 – that we give below – there are unitary operators
ui with i ∈ {1 . . .m} =: I that can be interpreted to act exclusively on the i-th block
such that

Up = P
(⊕
i∈I

ui

)
U ′, (3.111)

with an appropriate permutation of the row vectors P . By direct application of
Eq. (3.111), it follows that

Uph(k)U †p = P
(⊕
i∈I

ui

)
U ′h(k)U ′†

(⊕
i∈I

ui

)†
P† (3.112)

for all k ∈ BZ. If we regard the right hand side, then U ′h(k)U ′† is block diagonal with
m blocks by definition and the subsequent transformation by ⊕i∈I ui conserves this
property as the ui only act on the i-th block. Therefore Uph(k)U †p is block diagonal
up to k-independent re-indexing and expressible as the direct sum of two lower-
dimensional matrices (up to re-indexing). Hence, H is decomposable by definition.

Lemma 1. Let h be a nondegenerate, n-dimensional hermitian matrix and U a
unitary operator that diagonalizes h. Furthermore, let U ′ be a unitary operator
that block diagonalizes h into m blocks. Then there are unitary operators ui with
20To be complete: if Up decomposes H, then the Hamiltonian is decomposable. This is a trivial

statement. The proof is only concerned about the inverse direction.
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i ∈ {1 . . . n} that only act on the i-th block and a permutation of the row vectors P
such that

U = P(
⊕
i∈I

ui)U ′. (3.113)

Proof. Each block of U ′hU ′† is hermitian, hence, there is a unitary operator, which
we call vi, that diagonalizes the i-th block. The operator V = (⊕i∈I vi)U ′ then
diagonalizes h by virtue of its definition. Therefore, both U and V diagonalize h. But
the diagonalizing operator of a nondegenerate matrix is unique up to permutations
of its column vectors and a unitary factor per column vector. This is the case
because the column vectors are set as normed eigenvectors of the one-dimensional
eigenspaces. Hence, there is a permutation P and phases eiφj with φj ∈ [0, 2π) and
j ∈ {1, . . . n} such that U = PD

((
eiφj

)n
j=1

)
V , where D (. . . ) denotes the diagonal

matrix with the diagonal entries specified in the brackets. Let si and fi ∈ {1, . . . , n}
denote the starting and the end index of the i-th block in U ′hU ′† respectively. We
then define ui = D

((
eiφj

)fi
j=si

)
vi and Eq. (3.113) follows.

3.5. Applied transport simulations for
superconductors

This section is a revised version of a part of the supplemental material of Baum et al.
[2015a], copyrighted by the American Physical Society. Also regard the remarks on
page 3.

It is important for Chapter 6 to be able to have a signature in transport that
distinguishes between gapped and gapless superconductors, where the gap refers
to the spectral gap of the Bogoliubov-De Gennes Hamiltonian of the bulk. While
both gapped and gapless superconductors are perfect conductors of charge, their
thermal conductance is markedly different. The transport calculations that yield
the results of Chapter 6 are performed by connecting the system to disorder free
leads at temperatures T0 and T0 + δT , and computing the scattering matrix,

Sab =
(
rab tab
t′ab r′ab

)
, (3.114)

between any two leads, a and b. This enables us to determine the thermal con-
ductance in the low-temperature, linear response regime, Gab = G0Tr (tabt

†
ab) where

G0 = π2k2
BT0/(6h) is the quantum of thermal conductance for superconductors,

which is half the value of the ordinary quantum of thermal conductance [Dahlhaus
et al., 2010; Kane & Fisher, 1996; Rego & Kirczenow, 1999; Schwab et al., 2000].
All transport simulations are performed using the Kwant code [Groth et al., 2014].
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Figure 3.1.: Sketch of the three-terminal geometry used in transport simulations.
The edge states (arrows) give the only chiral contribution to trans-
port. Figure reprinted with permission from Baum et al. [2015a]
(supplemental material). Copyright (2015) by the American Physi-
cal Society.

Conventional topological superconductors have a gapped bulk, such that the ther-
mal conductance is only generated by edge state transport. In contrast, gapless
topological superconductors have both bulk and edge excitations at the Fermi level,
hence, both contribute to the conductance. In order to separate the bulk and edge
contributions, we perform transport simulations in a three-terminal setup, as shown
in Fig. 3.1. By subtracting the conductance between any two leads from the one of
the reverse direction (GLR − GRL, for instance), we obtain the chiral contribution
to transport, which, in the model of Chapter 6, exists only due to the edge states.
Transport through the bulk and edge may also be determined by comparing the

conductance of a system when changing from hard-wall to periodic boundary con-
ditions, as it is done in Chapter 7. In the model of Chapter 6, however, different
lattice terminations independently change the chirality of the edge states, and result
in the formation of a spurious conducting channel when periodic boundary condi-
tions are applied. Hence, for a typical termination, the difference in conductance
between systems with hard-wall and periodic boundary conditions contains contri-
butions from both the edge and the bulk. Therefore, this setup can not be used
for all possible terminations. The three-terminal setup of Fig. 3.1 overcomes this
problem, while being less prone to finite-size effects, since the boundary conditions
are kept fixed. Additionally, unlike the periodic boundary conditions technique, it
has the advantage of modeling an experimentally accessible scenario.
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Results



4. The local Rashba scatterer
One of the dominant contributions to the popularity of the quantum spin Hall state
is the insensibility of its edge states to time reversal preserving elastic backscatter-
ing. The canonical question arises which perturbations at all are capable of altering
their perfect conductance. This answer is of experimental importance as well by
indicating which perturbations should be avoided to reduce the observed decrease
in conductance for larger samples [König, 2008]. The theoretical research into this
direction covered numerous scenarios which, for instance, describe the influence of
magnetic impurities [Maciejko et al., 2009; Tanaka et al., 2011]1; flux trapping
loops [Delplace et al., 2012]; the combined effects of disorder, a magnetic field,
spin-orbit interactions, and charge puddles [Essert et al., 2015; Essert & Richter,
2015; Väyrynen et al., 2013]; Rashba scatterers [Budich et al., 2012; Geissler et al.,
2014; Ström et al., 2010]; or even the interplay of some of these ingredients [Kimme
et al., 2015]. Here, Rashba scatterers play a particularly interesting role because re-
alizations of topological insulators intrinsically rely on the effect of strong spin-orbit
coupling. While the Rashba interaction alone is elastic and therefore cannot induce
backscattering, its interplay with intrinsic interactions is able to generate multi-
particle backscattering processes. Along this line, Geissler et al. [2014] and Crépin
et al. [2012] have a look at the interplay between electron-electron interactions and
a single, localized scatterer or randomly distributed scatterers respectively. Their
analysis shows that the interaction strength described by a Luttinger parameter of
g = 1

2 represents a very peculiar case. On the one hand, the Rashba disorder and
the two particle backscattering become relevant, in the renormalization group con-
text, for g < 1

2 while being irrelevant for g > 1
2 . On the other hand, the system

possesses a line of fixed points at g = 1
2 . Additionally, for the case of a single rashba

scatterer, g = 1
2 marks the point of crossover between two different scaling behaviors

of the conductance correction in dependence on temperature [Crépin et al., 2012]2.
In fact, there is no sign that two-particle backscattering is at all generated for the
peculiar interaction strength g = 1

2 up to fourth order in perturbation theory3 and
first order in a renormalization group analysis [Crépin et al., 2012]. The description
of the physics around g = 1

2 therefore is of particular interest and can lead to a
1Chapter 5 goes into detail about the effects induced by a magnetic Kondo impurity.
2For a random Rashba potential, in contrast, the crossover of the scaling behavior shifts to g = 1

4
[Geissler et al., 2014]

3Based on notes of Florian Geissler, April 2015. There is going to be a manuscript on the
perturbational treatment of the local Rashba scatterer on arxiv.org soon.
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better understanding what fundamentally distinguishes the regimes of g > 1
2 and

g < 1
2 .

In this chapter, the Hamiltonian of a helical liquid coupled to a localized Rashba
scatterer is bosonized and a certain set of its refermionizable points is determined.
To achieve this, we employ the generalized Emery Kivelson transformation of Sec-
tion 3.1.2, which renders it possible to refermionize the Hamiltonian for all inter-
action strengths g < 1/2. The absence of such a simplifying refermionization for
g > 1

2 underlines the fundamental difference to the regime g < 1
2 . The refermionized

Hamiltonian resembles the one of free fermions that interact in a peculiar manner
at the origin. It also contains unusual summands that consist of a product of an
odd number of fermionic operators.
For the special case of g = 1/2, the full Hamiltonian is directly simplifiable by

refermionization and maps to a quadratic model. The quadratic model is subse-
quently exactly diagonalized by the scheme of von Delft & Schoeller [1998] that was
applied to an ordinary backscatterer. There are important differences between the
Rashba scatterer at the refermionizable point and the ordinary backscatterer:
1. ultra-violet integral divergences appear that are treated by a momentum cutoff

Λ,

2. if the limit Λ→∞ is taken carelessly, the eigenparticles of the Rashba Hamilto-
nian are the same as if there was no Rashba scatterer.

Because of 2., numerous observables, especially transport properties, do not depend
on the strength of the Rashba scatterer αR. In particular, they remain unaltered
compared to the bare Luttinger liquid without Rashba impurity. This mechanism
is the mathematical explanation for the absence of the generation of two-particle
backscattering at g = 1

2 . To illustrate this, we analytically show the extinction
of the backscattering current for an arbitrarily large applied voltages at arbitrary
temperatures.
Nonetheless, there are properties of the system that are affected by the Rashba

scatterer. For instance, we show that the expectation value of the Rashba energy
is one of them and additionally construct an observable with this feature, namely
eH(αR=0)

Z(αR=0) −
e
H(αR=αf )

Z(αR=αf ) , where Z is the partition function, H the Hamiltonian of the
system, and αf is an arbitrary non-zero complex constant. Although this hermitian
operator does not immediately deliver an experimentally available observable, its
existence demonstrates that the Rashba impurity at g = 1/2 has an effect on the
system at all.

4.1. System
Fig. 4.1 illustrates the schematic setup of a local Rashba scatterer, c.f. Section 2.2.2,
coupled to a helical liquid at the edge of a quantum spin Hall insulator, c.f. Sec-
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Figure 4.1.: A local Rashba scatterer coupled to a helical liquid at the edge of a
quantum spin Hall insulator. The Rashba scatterer is illustrated by
the gray line, which represents the spatial profile of the structural
inversion symmetry α(x). This could be generated by an electric
field. The helical liquid is described by the left mover ΨL with spin
up and the right mover ΨR with spin down.

tion 2.1.3. The Hamiltonian that is the base to describe this system is

H = H0 +Hint +HR. (4.1)

Here, H0 and Hint denote an interacting, helical Tomonaga-Luttinger liquid with the
Luttinger parameters g and v, where we set v = 1 for convenience. Their explicit
form is given in Section 3.1.3, Eq. (3.42). Furthermore, the Rashba Hamiltonian is

HR =
∫ L/2

−L/2
dx α(x)

(
Ψ†R
′ΨL −Ψ†RΨ′L

)
(x) +H.c. (4.2)

with the real space fermionic operators ΨL (for the left moving fields), and ΨR (for
the right moving fields), which we conveniently demand to obey periodic boundary
conditions. The Hamiltonian is essentially the same as in Crépin et al. [2012].
If we introduce the Fourier transform

ΨL/R(x) =
∑

k∈ 2π
L
Z

e∓ikx
√
L
cL/R,k, (4.3)
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the Hamiltonian above is represented by
H0 =

∑
s∈{L,R}

∑
k∈ 2π

L
Z

kc†s,kcs,k,

HR =− i
∑
k1,k2

α(x)
L

(
e−ix(k1+k2)k1c

†
R,k1cL,k2 − e−ix(k1+k2)k2c

†
R,k1cL,k2

)
+H.c.

=
∑
k1,k2

α̃(k1, k2)c†R,k1cL,k2 +H.c.,

α̃(k1, k2) =
∫ L/2

−L/2
dx α(x) i(k2 − k1)e−ix(k1+k2)

L
,

Hint =g
∑

k1,k2,k3

c†R,k1c
†
L,k2cR,k3+k1cL,k3+k2 . (4.4)

Note that the momentum index k that labels the operators cL,k and c†L,k is not the
physical momentum but the negative momentum in this convention.

4.1.1. Bosonization
Instead of introducing different conventions for left and right moving fields, it is
more convenient, from our point of view, to first convert all fields to right moving
fields. We denote these right moving fields with an additional tilde,

Ψ̃↑(x) = ΨL(−x), (4.5)
Ψ̃↓(x) = ΨR(x). (4.6)

This rewriting facilitates the application of bosonization along the lines of Sec-
tion 3.1.1. Applying the bosonization identity subsequently, which reads

Ψ̃σ = F√
2πa

e−iϕ̃σ(x) for σ ∈ {↑, ↓}, (4.7)

the full Hamiltonian of the local Rashba scatterer, i.e., α(x) = δ(x)α, is expressed
as

H0 =
∑
σ

∫
dx
v

2 (ϕ′σ(x))2 (4.8)

HR =α
(
Ψ†LΨ′R −Ψ†L

′ΨR

)
(0) +H.c.

=α
(
Ψ̃†↑′Ψ̃↓ + Ψ̃↑†Ψ̃′↓

)
(0) +H.c.

=α
F †↓F↑

2πa

[
eiϕ̃↓(0)iϕ̃′R(0)e−iϕ̃↑(0) + ei(ϕ̃↓(0)−ϕ̃↑(0)) (−iϕ̃′↑(0)

)]
+H.c.

=− α i
2πaF

†
↓F↑e

i(ϕ̃↓(0)−ϕ̃↑(0)) (−ϕ̃′↓(0) + ϕ̃′↑(0)
)

+H.c.

=α −1√
2gπaF

†
↓F↑e

−i
√

2gϕ̃+(0)ϕ̃′+(0) +H.c.. (4.9)
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Here, we employ the bosonic field φ+ as introduced in Eq. (3.46) - Eq. (3.49) (in
Section 3.1.3) and have to keep in mind that [ϕ̃↓(x), ϕ̃↑(x′)] = 0.

4.2. Refermionizable points
The given form of the transformed Rashba Hamiltonian implies a particularly simple
form of the full Hamiltonian in the limit g → 1/2, namely

HR = −1
√
gπa

(
αΨ+

′ + α∗Ψ†+
′) (4.10)

employing the refermionization, cf. Section 3.1.1,

Ψ+(x) = 1√
2πa

F †↓F↑e
−iϕ+(x). (4.11)

Note that F †↑F↓ fulfills the algebra of a Klein factor. It may be interesting to mention
that it is physically intuitive that the Rashba Hamiltonian of Eq. (4.10) increases its
relevance for decreasing g. This reflects the fact that the particle-particle interaction,
encoded in g, facilitates the backscattering that is caused by the locally induced
spin-orbit coupling.
We want to remark that the Hamiltonian is additionally refermionizable for a

wider range of g. To this end, we employ the generalized Emery Kivelson transfor-
mation of Section 3.1.2

U = eiB, (4.12)

to refermionize the term in Eq. (4.8) that contains a vertex operator of the form

eiλφ+(0)A. (4.13)

Comparing the general scheme with the problem at hand, we have

A = F †↓F↑φ
′
+(0), λ+ = −

√
2g, λ− = 0. (4.14)

A possible choice for B that fulfills the requirements of Eq. (3.33) is

B = a−Nφ−(0),

N = 1
aR + aL

(aRNR − aLNL) , (4.15)

with arbitrary real constants aL and aR. The checks employ the identities4[
F †a ,Na′

]
=− δa,a′F †, (4.16)

[Fa,Na′ ] =δa,a′F. (4.17)
4 Note that the ansatz of Eq. (4.12) is also useful to refermionize the Hamiltonian of von Delft &

Schoeller [1998] describing a normal backscattering impurity coupled to a spinless Tomonaga-
Luttinger liquid. A suitable choice would be U = eiN+φ+(0).
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Since we have λ+ = −
√

2g, together with the constraint λ2
+ + a2

− = 1, as derived
in Eq. (3.39), this transformation is limited to simplify Hamiltonians with an in-
teraction strength g ≤ 1

2 . If we refermionize the transformed bosons νi according
to

Ψi =
F †↑F↓√

2πa
e−iνi , (4.18)

the Rashba Hamiltonian reduces to a model of locally interacting fermions

HR ∝ Ψ†1
′ (
λ+ + a−Ψ†2(0)Ψ2(0)

)
. (4.19)

A drawback of the generalized Emery Kivelson transformation is the increasing
complexity of the bare Hamiltonian H0 = ∑

σ
1
2
∫
dx (φ′σ(x))2. Here, we have

[B,H0] =a−N
∫
dx 2φ′−(x)

[
φ−(0), φ′−(x)

]
︸ ︷︷ ︸

2πiδ(x)− 1
L

=4πia−N

φ′−(0)−
∫
dx

φ′−(x)
L︸ ︷︷ ︸

=0


=4πia−Nφ′−(0) =: C (4.20)

[B,C] =− 8π2a2
−N 2δ(0) +O (1/L) . (4.21)

This results in

UH0U
† =H0 − 4πa−Nφ′−(0) + 4π2a2

−N 2 1
a

=H0 − 4πa−N
(
a−Ψ†1(0)Ψ1(0)− λ+Ψ†2(0)Ψ2(0)

)
+ 4π2a2

−
a
N 2, (4.22)

where we have to take care not to conduct the limit a → 0 incautiously in order
to avoid the undefined object δ(0). The advantage of the fermionic description
in Eq. (4.22) over the bosonic one is, in principle, the improved accessibility of
perturbation theory. An example of how involved the perturbative treatment of the
bosonic form can be will become available soon5.

5Based on notes of Florian Geissler, April 2015. Cf. the respective footnote on p. 60.
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4.3. Exact solution at the primary refermionizable
point

After refermionization at g = 1
2 , cf. Eq. (4.10), and Fourier transforming, we reach

at

H =
∑

k∈ 2π
L
Z

εkc
†
kck + ikt

(
c†k − ck

)
, (4.23)

with the real constant t = |α|√
gπa

, where we have included the phase of α into the
definition of ck. An explicit scheme how to diagonalize this kind of Hamiltonian is
given in von Delft & Schoeller [1998], which we will follow closely here. First, we
transform by

U = eiπ2N
2
, (4.24)

where N = ∑
k c
†
kck. Employing the Hadamard lemma of Eq. (3.35) and

[
N 2, c†k

]
=N 2c†k − c

†
kN 2 =

0 acting on |1〉
1|1〉 acting on |0〉

= c†k,

[
N 2, ck

]
=N 2ck − ckN 2 =

−1|0〉 acting on |1〉
0 acting on |0〉

= −ck (4.25)

this yields

UckU
† =eiπ2 [N 2,·]ck = ck − iπ2 ck +

(
−iπ2

)2

2 ck + . . . ,

=e−iπ2 ck = cke
−iπ(N− 1

2) = ickαD
Uc†kU

† =
(
UckU

†
)†

= ic†kαD. (4.26)

Here,

αD = e−iπN (4.27)

is a Majorana fermion which anticommutes with all ck and c†k. The fermion can
also be called Matveev trick fermion due to its introduction in Matveev [1995]; al-
though Matveev gives Guinea [1985] as his source of inspiration. However, it should
be kept in mind that this Majorana fermion does not constitute an additional de-
gree of freedom as it is an operator that is formed out of the ck themselves, which
already are a complete6 set of operators. This is an important issue for perturba-
tive approaches because αD generally should have non-vanishing contractions with

6A complete set of operators means that the Hilbert space is spanned by sums of products of
these operators acting on a specified vacuum state.
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the lead fermions in order to render perturbation theory sensibly applicable. The
transformed Hamiltonian then reads

UHU † =
∑
k

(εk + µ) c†kck + kt
(
ck − c†k

)
αD. (4.28)

Note that the zero momentum mode c0 decouples from the Hamiltonian, due to the
prefactor kt, and is henceforth excluded. Now, the Bogoliubov-ansatz is utilized:

H =
∑
ε∈E+

εd†εdε + Eg, (4.29)

with E+ being an appropriate index set for the eigenenergies, which are all taken to
be real numbers larger or equal to zero7. The fermion dε is

dε =
∑
k

D1
ε,kck +

∑
k

D2
ε,kc
†
k +Dε,DαD =

∑
i∈I

Dici, (4.30)

where

I =
((2π

L
Z\{0}

)
× {1, 2}

)⋃
{D} (4.31)

and

ci =


ck if i = (k, 1),
c†k if i = (k, 2),
αD if i = D.

(4.32)

We then obtain

[dε,H] =εdε = ε
∑
i

Dici

=
[∑

i

Dici,
∑
k

(k + µ) c†kck − kt
(
c†k − ck

)
αD

]

= (k + µ)
(
D1
ε,kck −D2

ε,kc
†
k

)
+
∑
k

[
tkαD

(
−D1

ε,k +D2
ε,k

)]
+Dε,Dkt

(
c†k − ck

)
,

(4.33)
and comparing coefficients results in

D1
ε,k = kt

k + µ− ε
Dε,D, (4.34)

D2
ε,k = kt

k + µ+ ε
Dε,D, (4.35)

εDε,D =
∑
k

kt
(
D2
ε,k −D1

ε,k

)
. (4.36)

7The sign of the eigenenergies is not predetermined because of possible particle ↔ hole transfor-
mations.
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From these equations, we can determine the possible ε and the coefficients Di.
Firstly, there is a solution for ε = 0: choose D1 and D2 according to Eq. (4.34)
and Eq. (4.34), respectively, then Eq. (4.36) is automatically fulfilled. From the
later mentioned orthogonality condition for D, Eq. (4.40), we obtain

D0,D = eiφ0

1 + 2
∑
k

(
kt

k + µ

)2
−1/2

, (4.37)

where φ0 is an arbitrary phase8. Secondly, we can determine the possible ε 6= 0 by
replacing D1 and D2 in Eq. (4.36). This results in the transcendent formula

∑
k

2 (tk)2

ε2 − (k + µ)2 = 1. (4.38)

The sum on the left hand side of Eq. (4.38) diverges for large k for any real ε. To
solve the underlying issue, we introduce a momentum cutoff Λ and let all sums over
k from now on run implicitly within the range of [−Λ,Λ]. In a physical system,
the cutoff would signify the onset of bulk bands of the topological insulator or the
validity regime of the linear approximation of one dimensional channels.

4.3.1. Orthogonality relations
The fermionic conditions {

dε, d
†
ε′

}
=δε,ε′ ,

{dε, dε′} =0 (4.39)

result in unitarity conditions for the coefficients D that read∑
i∈I

Dε,iD
∗
ε′,i =δε,ε′ , (4.40)∑

i∈I
Dε,iDε′ ,̄i =0, (4.41)

where the bar over the index, e.g., ī, signifies (k, 1) 7→ (k, 2), (k, 2) 7→ (k, 1), and
D 7→ D. For Eq. (4.40) with ε = ε′ and under consideration of Eq. (4.34) and
Eq. (4.35) follows

Dε,D = eiφε

1 +
∑
k

(
kt

k + µ− ε

)2

+
(

kt

k + µ+ ε

)2
−1/2

, (4.42)

8Later, it will be shown that the phase necessarily vanishes.
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where φε is a phase to be determined later. The expression can be simplified, using
Eq. (4.38), to

Dε,D = eiφε

∑
k

(
2ktε

(k + µ)2 − ε2

)2
−1/2

(4.43)

because(
1

k + µ− ε

)2

+
(

1
k + µ+ ε

)2

− −2
−ε2 + (k + µ)2 =

(
1

k + µ− ε
− 1
k + µ− ε

)2

.

(4.44)

In summary, we have, until now, derived a necessary condition for all eigenenergies
ε, stated in Eq. (4.38), and formulas for the corresponding coefficients by Eq. (4.34),
Eq. (4.35), Eq. (4.37), and Eq. (4.42). Thereby, the Hamiltonian is already diag-
onalized exactly. For the practical, analytical calculation of observables that are
given in terms of the fermionic fields c, however, we have to invert the transforma-
tion matrix D and evaluate the appearing sums that run over the momentum space.
This is achieved in the following sections.

4.3.2. Inversion of D
We have already found that the set of fermions d is expressible as a linear combina-
tion of the fermions c of Eq. (4.32), i.e.,

dε =
∑
i

Dε,ici. (4.45)

The inverse relation is given by

ci =
∑
ε∈E

(
D∗ε,idε +Dε,̄id

†
ε

) (
1− 1

2δε,0
)
. (4.46)

If we introduce for each ε ∈ E its negative partner to form the set E± = E ∪ (−E)
and define

D−ε,i = D∗ε,̄i, (4.47)

we can write Eq. (4.46) more compactly as

ci =
∑
ε∈E±

D∗ε,idε. (4.48)

The proof that Eq. (4.48) holds is, from our point of view, more involving than
described by, for instance, von Delft & Schoeller [1998] and Zaránd & von Delft
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[2000] within their approach to diagonalize the two channel Kondo model for Fermi
liquid leads exactly. The proof relies on the fact that D is a unitary matrix, which
transforms between the index sets I and E±. If we accept this statement, Eq. (4.48)
becomes derivable by acting with D† on Eq. (4.45). There are, however, some
subtleties in this procedure, which we would like to comment on. The main issue
regards a proper bijection between the index sets I and E±. Especially for finite
momentum cutoffs, where the sets are countable, it becomes apparent that the index
sets E and I do not have the same cardinality. And hence, without completion to
E±, no linear transformation between the corresponding vector spaces can be an
isomorphism (and hence D could not be an invertible matrix). However, if a proper
bijection between E and I is found, we can assert that D is in the group of matrices
connecting I and E±. We can subsequently apply the very general statement that for
any group G, we have aa−1 = a−1a for all elements a ∈ G. Therefore, we can indeed
infer Eq. (4.48) from Eq. (4.45) in the way the mentioned references indicate. In
order to construct the necessary bijection between E± and I, we continuously tune
t from zero to its desired value, where for t = 0 the identity E± = I is fixed9.
By virtue of Eq. (4.47), we obtain the constraint Im{D0,D} = 0, which leads to

φ0 = 0. (4.49)

Regarding the c fermions, we specifically have

ck =c(k,1) =
∑
ε∈E±

D∗ε,(k,1)dε, (4.50)

c†k =c(k,2) =
∑
ε∈E±

D∗ε,(k,2)dε =
∑
ε∈E±

Dε,(k,1)d
†
ε, (4.51)

αD =cD =
∑
ε∈E±

D∗ε,(k,D)dε.w (4.52)

4.3.2.1. Confirmation of the unitarity of D

The unitarity of D, which is demanded by Eq. (4.39) can be checked to verify
the findings for the coefficients as given in Eq. (4.34), Eq. (4.35), Eq. (4.37), and
Eq. (4.42). This is done by showing that

∑
i

DεiD
∗
ε′,i = δε,ε′ (4.53)

9Note that we already excluded the fermion of zero momentum c0.
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for all ε, ε′ ∈ E±. For ε = ε′, Eq. (4.53) is valid as a direct consequence of inserting
Eq. (4.42). For ε 6= ε′ we can employ partial fraction decomposition to yield

∑
i

Dε,iD
∗
ε′,i =

[∑
k

(kt)2
(

1
(k + µ− ε)(k + µ− ε′)

)
+ 1

]
Dε,DD

∗
ε′,D

=
∑
k

(kt)2

ε− ε′


1

k + µ− ε
− 1
k + µ+ ε︸ ︷︷ ︸

= 2ε
(k+µ)2−ε2

⇒
∑

k
(kt)2···=−ε

−
[

1
k + µ− ε′

− 1
k + µ+ ε′

]
+ 1

=−ε+ ε′

ε− ε′
+ 1 = 0, (4.54)

which needed to be shown.

4.4. Exact transition to infinite momentum cutoff
The eigenparticles of the Rashba Hamiltonian have been derived in Section 4.3.
There is a peculiarity to these particles, namely that they do not differ from the
original particles c in the limit Λ→∞. This apparent paradox is resolved by taking
the order of the limits properly. It is a good example that the limit Λ→∞ should
only be executed after having evaluated the observables for an arbitrary cutoff. If
the limit is done the other way around, the Rashba impurity is found to leave the
system completely unaltered. There is a nice proof that this is impossible and that
the Rashba scatterer has to have some influence on the system. We give this proof
in Section 4.7. It shows that two Hamiltonians that have the same observables for
a finite, non-zero temperature only differ by a constant. Therefore, as the Rashba
Hamiltonian is not just a constant, there have to be observables that depend on the
strength of the Rashba scatterer.
In the following we calculate the transformation matrix D in the limit Λ → ∞.

First, we find the solutions for ε. For large cutoffs Λ, the transcendental equation
for ε, Eq. (4.38),

1 =
∑
k

2 (kt)2

ε2 − (k + µ)2 , (4.55)

has a large negative ultraviolet contribution. To compensate for that and fulfill the
equation, ε2 has to be just above (kε + µ)2. Here, we label kε ∈ 2π

L
Z with the index

ε. As we only regard positive ε participating in the creation of the d fermions, cf.
Eq. (4.30), we have the solution

ε = |kε + µ|+δ > 0, (4.56)
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where δ is a small parameter that vanishes for Λ → ∞. We now calculate the
transformation matrix D. By virtue of Eq. (4.56), we have

Dε,D =eiφε

∑
k

(
2εkt

(k + µ)2 − ε

)2
−1/2

≈ −eiφε δ

kεt
→ 0, (4.57)

where ≈ means asymptotically for Λ→∞. Additionally, it is

Dε,(k,1) =eiφε kt

k + µ− (kε + µ+ δ)
δ

kεt
→ −eiφεδk,kε (4.58)

Dε,(k,2) →− eiφεδk,−kεδµ,0. (4.59)

This means that for µ 6= 0 and φε = π, we have

dε = ckε . (4.60)

We observe that the case µ = 0 is special in this regard, as it reveals dε ∝ ckε + c†kε .
However, the case is also special in the sense that the fermions 1√

2

(
ck − c†k

)
decouple

from the Hamiltonian and have exactly the same energy as 1√
2

(
ck + c†k

)
. Therefore,

even in this case, we can rotate the d fermions to obtain eigenparticles that do not
differ from the c fermions.
We want to mention that the obtained transformation represented by D explicitly

also holds for a finite cutoff and has been numerically checked for small systems to
deliver correct results.

4.5. Backscattering current IB
4.5.1. Derivation of the refermionized form of IB
The operator describing the backscattering current Ibs is determined by

iIbs =
[
HR,

1
2 (NL −NR)

]
=−1

2

∫
dx′dx

[
α(x′)

(
Ψ†R
′ΨL −Ψ†RΨ′L

)
(x′) +H.c.,

(
Ψ†RΨR −Ψ†LΨL

)
(x)
]

=−1
2

∫
dx′dx α(x′)

(
−
{

Ψ†R
′(x′),ΨR(x)

}
Ψ†R(x)ΨL(x′)

−Ψ†R
′(x′)

{
ΨL(x′),Ψ†L(x)

}
ΨL(x) + Ψ†R(x)

{
Ψ†R(x′),ΨR(x)

}
Ψ′L(x′)

+Ψ†(x′)R
{

Ψ′L(x′)Ψ†L(x)
}

ΨL(x)
)
−H.c.. (4.61)

Here, the −H.c. originates from [A,B]† = −
[
A†, B†

]
and

[AB,CD] = A {B,C}D − AC {B,D}+ {A,C}DB − C {A,D}B (4.62)
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was used. Furthermore, employing{
Ψ†(x′)′,Ψ(x)

}
=
{

Ψ†(x′),Ψ(x)′
}

= δ′(x′ − x) (4.63)

and
∫
dx δ′(x)f(x) = −f ′(0), we obtain

iIbs =−1
2

∫
dx′dx α(x′)

(
−δ′(x′ − x)Ψ†R(x)ΨL(x′)−Ψ†R(x′)δ(x′ − x)ΨL(x)

+Ψ†R(x)δ(x′ − x)Ψ′L(x′) + Ψ†R(x′)δ′(x′ − x)ΨL(x)
)
−H.c.

=−1
2

∫
dx α(x)

(
+Ψ†RΨ′L −Ψ†′RΨL + Ψ†RΨ′L −Ψ†′RΨL

)
(x)−H.c.

=
∫
dx α(x)

(
Ψ†R
′ΨL −Ψ†RΨ′L

)
(x)−H.c.. (4.64)

It is convenient to define

A =
∫
dx α(x)

(
Ψ†R
′ΨL −Ψ†RΨ′L

)
(x), (4.65)

and we observe by comparison to Eq. (4.2) that

HR = A+ A†, (4.66)
iIbs = A− A†. (4.67)

Hence, the backscattering current is intimately connected to the Rashba Hamilto-
nian. We can now facilitate the further transformation of the backscattering current
by referring to the reformulation of the Rashba Hamiltonian. The transformations
of HR that lead to its description in the fields dε are described in Section 4.3. If we
focus on α(x) = αRδ(x), we get

A =αR
(
Ψ†R
′ΨL −Ψ†RΨ′L

)
(0) = αR

√
g

2πaΨ′+(0) = tΨ′+(0) (4.68)

by Eq. (4.8) with t = |αR| 1√
gπa

. Due to Eq. (4.26), we furthermore have

UΨ′(0)U † = iΨ′(0)αD,
UΨ†′(0)U † = iΨ†′(0)αD, (4.69)

where the unitary transformation U is given by Eq. (4.24). Therefore, the Fourier
space formulation of Ibs is

Ibs =i
(
A† − A

)
= −it

∑
k

i
(
ikck − (−ik) c†k

)
αD = it

∑
k

k
(
ck + c†k

)
αD. (4.70)
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Employing the results of Section 4.3, Eq. (4.50), the expectation value of the back-
scattering current becomes

〈Ibs〉 =
∑
k,ε,ε′

k
[
Dε,(k,1) +D∗ε,(k,2)

]
D∗ε,D〈dεdε′〉

=
∑
k,ε

k


D∗
ε,(k,2)D

∗
−ε,D︷ ︸︸ ︷

D∗−ε,(k,1)D
∗
ε,D 〈d−εdε〉︸ ︷︷ ︸

nε

+D∗ε,(k,2)D
∗
ε,D 〈dεdε〉︸ ︷︷ ︸

n−ε


=
∑
k,ε

k
[
D∗ε,(k,2)D

∗
ε,D (nε + n−ε)

]
=
∑
k,ε

D∗ε,(k,2)D
∗
ε,D = 0. (4.71)

with the Fermi distribution function nε = 1
1+eβε that implicitly depends on temper-

ature. Note that

〈d−εdε〉 =

nε for ε ≥ 0
1− n−ε = nε for ε ≤ 0

= nε. (4.72)

The last equality of Eq. (4.71) holds because of the unitarity of D10. In this regard,
the backscattering current vanishes for an arbitrary applied voltage and an arbitrary
temperature. It also does not depend on whether the limit Λ → ∞ is considered
or not. This is in particular remarking, as the system at g = 1

2 , which we describe
here at its primary refermionizable point, combines the local Rashba scatterer with
a considerably strong particle-particle interaction. This interplay should in principle
generate two-particle backscattering and hence a measurable backscattering current.
The disappearance of the backscattering current is a surprising property caused by
the special nature of the refermionizable point.

4.6. Rashba energy
An observable that should, by physical intuition, depend on the strength of the
Rashba coupling, is the Rashba Hamiltonian HR itself. The exact calculation for
g = 1

2 reveals

HR =t
∑
k,ε

kD∗ε,(k,2)D
∗
ε,D (n−ε − nε) , (4.73)

which was derived in complete analogy to Eq. (4.71). This quantity does not vanish
and is proportional to the Rashba coupling. If the limit Λ → ∞ is taken, the
quantity becomes independent of temperature.
It is interesting, in this context, to mention that the expectation value of the

squared Rashba energy is also independent of the temperature. This explicitly stays
true for finite cutoffs. Additionally, we find that the squared Rashba energy is
independent of the Rashba coupling and exhibits an ultra-violet divergence.
10Note the sum over ε
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4.7. Same expectation values ⇔ same Hamiltonians
In this section, we rigorously show that two operators that have the same expectation
values, effectively are the same, i.e., they only differ by a constant. This especially
helps us in demonstrating that the local Rashba scatterer, as it is represented in
the model by a nontrivial operator, has some influence on the physics even if the
quasi-particles coincide with the free system if limit of an infinite momentum cutoff
is taken.
Let H and H ′ be hermitian operators acting on the same Hilbert space V and let

all hermitian operators A on V have the property

〈A〉H = 〈A〉H′ ⇔
Tr
{
e−βHA

}
Tr {e−βH} =

Tr
{
e−βH

′
A
}

Tr {e−βH′} (4.74)

for one positive, real number β. Furthermore call ρ(′) = e−βH(′)

Tr{e−βH(′)} . This leads to

Tr{(ρ− ρ′)A} = 0. (4.75)

Choose A = ρ − ρ′ and an arbitrary orthonormal basis of V , which is denoted by
{|n〉|n ∈ I}, where I is an appropriate index set. Then it is

Tr{AA} =
∑
n,m∈I

〈n|A|m〉〈m|A|n〉 =
∑
n,m∈I

|〈n|A|m〉|2= 0 (4.76)

because A is hermitian and the last equality holds because of Eq. (4.75). Since
|〈n|A|m〉|2≥ 0, we have |〈n|A|m〉|= 0 for all n,m ∈ I and equivalently

A = ρ− ρ′ = 0 (4.77)
1
Z
e−βH = 1

Z ′
e−βH

′ (4.78)

H −H ′ = 1
β

[
ln
(
Z ′

Z

)
+ U

]
, (4.79)

where U is an arbitrary operator fulfilling eU = 1. Note that we took the logarithm
in the step from Eq. (4.78) to Eq. (4.79). This is possible because it is independently
taken on both sides and the Baker Campbell Hausdorff formula is omitted. We now
differentiate both sides of Eq. (4.79) with respect to β and obtain

0 = − 1
β

(
1
β

[ln (Z ′)− ln (Z) + U ]
)

︸ ︷︷ ︸
=H−H′ by Eq. (4.79)

+ 1
β

[−〈H ′〉+ 〈H〉)] (4.80)

H −H ′ = 〈H〉 − 〈H ′〉 (4.81)
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because

∂β ln(Z) = ∂β ln
(
Tr
{
e−βH

})
= − 1

Z
Tr
{
e−βHH

}
= −〈H〉. (4.82)

The operators H and H ′ therefore only differ by a constant. The inverse is also true:
if the operators only differ by a constant, then Eq. (4.74) is fulfilled as can be seen
by direct calculation. Finally, we want to note that if two Hamiltonians H and H ′
are given which do not only differ by a constant, the operator ρ − ρ′ represents an
observable that lets their different behavior become apparent.
Applied to the problem of the local Rashba scatterer, we can therefore conclude

that

A = eH(αR=0)

Z(αR = 0) −
eH(αR=αf )

Z(αR = αf )
, (4.83)

with a nonvanishing complex number αf is a hermitian operator, and therefore
an observable, that has an expectation value that depends on the strength of the
local Rashba scatterer. It has to be mentioned that the quantity A is of rather
abstract nature and can, presumably, not be observed in experiments. We still
consider this proof of principle useful for theoretical purposes and for finding more
meaningful physical properties that distinguish two seemingly equal Hamiltonians.
In fact, by examining the exponents appearing in A, we can already speculate that
the expectation value of the Rashba Hamiltonian itself - the Rashba energy - should
depend on the strength of the Rashba coupling. That this in fact is the case is
shown in Section 4.6.

4.8. Conclusions about the local Rashba scatterer
In this chapter, we gain considerable insight into the refermionizable points of the
local Rashba scatterer. At the Luttinger parameter of g = 1

2 , the system is diagonal-
izable without an additional Emery-Kivelson transformation. At this special point,
the system behaves at first sight as if the Rashba scatterer is completely trans-
parent. We demonstrate this by diagonalizing the Hamiltonian exactly and show
that a large fraction of observables behaves as if the Rashba scatterer was absent.
A particular important example of this phenomenon is given by the backscatter-
ing current IB, which vanishes for arbitrary temperature, arbitrary strength of the
Rashba scatterer, and an arbitrary momentum cutoff. However, by constructing
the observable eH(αR=0)

Z(αR=0) −
e
H(αR=αf )

Z(αR=αf ) , we prove that there exists a clear signature of
the Rashba scatterer also at g = 1

2 . Another example for such an observable is the
Rashba energy itself. Finally, we want to remark that the presented diagonalization
at the primary refermionizable point enables the computation of almost arbitrary
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observables. Hence, the Hamiltonian of a local Rashba scatterer attached to a he-
lical liquid lead at the specific interaction strength of g = 1

2 can be considered as
solved.

The mechanism that allows the Rashba impurity to backscatter the quasi-particles
of the attached helical liquid is the joint action of the particle-particle interaction
and the local spin-orbit coupling. In the next chapter, we abandon the necessity of
particle-particle interactions and instead allow backscattering by storing the excess
spin that is generated by a single backscattering process. This storage is conveniently
achieved by a local magnetic quantum dot, the local Kondo impurity.



5. The local Kondo impurity
A magnetic quantum dot, i.e., a Kondo dot (Section 2.2.3, that is coupled to helical
liquids is one of the simplest nontrivial perturbations which allow elastic backscat-
tering. In such systems, the backscattering is assisted by a spin flip of the Kondo
dot. Along these lines, former publications [Maciejko et al., 2009; Tanaka et al.,
2011] have mainly focused on the effect of a magnetic impurity on the conductance
of the helical liquid and not on the screening of the localized spin, cf. Section 2.2.3.
However, attaching helical liquids to a Kondo dot also offers unique opportunities
to investigate spin-dependent scattering off the Kondo dot: by carrying away spin
resolved information about the Kondo dot in distinct directions, correlations become
measurable away from the Kondo region, avoiding the usual experimental necessity
of locally perturbing the direct vicinity of the Kondo dot. This property is unique
to helical liquids because of the unique correlation of motion and spin of their el-
ementary excitations. The following two sections elaborate on the possibility to
employ this particular feature to resolve the Kondo cloud in a setup where a Kondo
dot with spin 1

2 is coupled to two helical liquids at the edges of a quantum spin
Hall insulator. Section 5.1 considers the Toulouse points, cf. Section 3.1, at which
the Hamiltonian is mapped to a quadratic one. The Toulouse points separate into
two qualitatively different sets as derived in Section 3.1.3. The first set is related
to the known Toulouse points of the non-interacting case. The second set appears
exclusively in the case of interactions. We employ the Toulouse points to determine
the local screening and the Kondo screening cloud analytically and calculate the
signature of applied voltages. Section 5.2 concludes the topic by proving a generic
connection between the Kondo cloud and the space- and time-resolved current cross
correlations in the setup at hand for a regime of parameters that even exceeds the
Toulouse points. For the case of two helical liquid leads with Luttinger parameters
gt = gb = 1/2, the relation is a direct proportionality up to first order in the z spin
coupling if the measurement is taking place sufficiently far away from the magnetic
moment. This requirement is a merit rather than a restriction, because a distant
manipulation of the system is incapable of directly affecting the magnetic moment.
Furthermore, we discuss disturbances away from the preferred point gt = gb = 1

2
and show how to restore the proportionality.
As a consequence of the presented results, probing the current cross correlations

describes a tool to directly detect the Kondo cloud and even resolve it spatially. The
associated measurements are conceptually more promising than a direct measure-
ment of the correlation between the magnetic moment and the spin density in the
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leads because the magnetic moment is in no manner directly perturbed.

5.1. Exact results for the Kondo cloud of two helical
liquids

This section is a revised version of Posske et al. [2013] and its supplemental material,
copyrighted by the American Physical Society. Also regard the remarks on page 3.

In this section, we analyze the screening of a magnetic quantum dot (QD) with
spin h̄

2 coupled to two helical liquids in a two channel Kondo model [Nozieres &
Blandin, 1980; Potok et al., 2007]. Interestingly, we find two qualitatively distinct
sets A and B of Toulouse points by the explained extension of the method of Emery
and Kivelson, cf. Section 3.1, in particular Section 3.1.2, and Section 3.1.3. Set
A contains the Toulouse point of the two channel Kondo model for noninteracting
leads [Emery & Kivelson, 1992], while set B resembles a one channel Toulouse point
at both Luttinger parameters g = 1

2 [Tanaka et al., 2011]. We subsequently solve
the model exactly for all Toulouse points. This enables us to provide exact results
for the temperature and voltage dependent Kondo screening cloud. Determining
the local screening and the spatially extended Kondo screening cloud, we are able
to demonstrate a different phenomenology for the novel interacting set of Toulouse
points. For case A, the magnetic field of the QD is always “perfectly screened“
[Zaránd & von Delft, 2000] locally. However, the interacting case B provides, for
example, no screening and overscreening. The Kondo cloud obeys an asymptotic
decay for large x that is quadratic at zero temperature1. At finite temperature
T = 1/(kBβ), the decay becomes exponential after a length scale ξT ≈ h̄vβ, which
was also predicted by [Borda, 2007] for the one channel Kondo model. In contrast to
the noninteracting one channel case, we find a ln2(x) instead of an x−1 divergence for
small x. Furthermore, we observe that an applied spin flavor voltage µx = µ̃t + µ̃b,
whereby “flavor“ denotes top(t) or bottom(b) (see Fig. 5.1), and a spin voltage
µs = µ̃t − µ̃b have distinct effects on the Kondo cloud. While the former acts as an
artificial magnetic field which decreases the extent of the Kondo cloud significantly,
the latter induces spatial oscillations of the Kondo cloud. Such a spin voltage can be
conveniently applied by a charge bias in a four-terminal helical liquid setup, which
hence generates the possibility of manipulating the Kondo cloud easily. A schematic
setup is drawn in Fig. 5.1 where the magnetic QD is realized by a properly gated
anti-dot.

1Here, x denotes the distance to the QD as depicted in Fig. 5.1.
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0

0

Figure 5.1.: Two helical liquids of a quantum spin Hall insulator are coupled via
an anti-dot. Properly gated, the dot resembles a magnetic impurity
with S = 1

2 . Each side is brought out of equilibrium by an applied
voltage. Figure reprinted with permission from Posske et al. [2013].
Copyright (2013) by the American Physical Society.

5.1.1. Model
The setup is modeled by a two channel Kondo Hamiltonian, as discussed in Law
et al. [2010]; Posske et al. [2013]; Schiller & Hershfield [1998], with

H̃a =
∑

σ∈{↑,↓}

∫
dx
(
vF,aΨ̃†a,σ(x)(σi∂x)Ψ̃a,σ(x) + g4,a

2 ρ̃2
a,σ(x) + g2,aρ̃a,↓(x)ρ̃a,↑(x)

)
,

H̃K
a =

∑
λ∈{x,y,z}

JλS̃λa (0)τλ. (5.1)

for each lead a ∈ {t, b}. Here, H̃a describes the helical liquid of lead a with the
fermionic fields Ψ̃a,σ of spin σ. Note that the direction of space in the top lead is in-
verse to the one of the bottom lead as depicted in Fig. 5.1. The real constants are the
Fermi velocity vF,a and g2/4,a, the interaction strengths in the leads. It is convenient
to introduce the Luttinger parameters ga =

√
vJ,a/vN,a and va = √vJ,avN,a instead,

where vN/J,a = vF,a + g4,a±g2,a
2πh̄ [Schönhammer, 1997]. The interaction of lead a with

the magnetic moment τ is given byHK
a . Further, S̃λa = h̄

2
∑
σ,σ′ Ψ̃†a,σσλσ,σ′Ψ̃a,σ′ denotes

the spatially resolved spin density in lead a with σλ being the λ-th Pauli matrix.
By considering isotropic interactions in the x and y directions, i.e., Jxa = Jya =: J⊥a ,
which is equivalent to conserve the total z spin, the Kondo coupling of lead a is
written as the sum of

H⊥K,a =J⊥a Ψ̃†a,↑(0)Ψ̃a,↓(0)τ− +H.c.,

Hz
K,a =1

2J
z
a (ρ̃a,↑(0)− ρ̃a,↓(0)) τ z, (5.2)

with τ± = 1
2 (τx ± iτ y) and S± = 1

2 (Sx ± iSy). Following Section 3.1.1 and von Delft
& Schoeller [1998], the helical liquids are bosonized and diagonalized by introducing
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the fields ϕa,±(x), cf. Eq. (3.46). This leads to

Ha =
∫
dx

va
2
∑
σ

(∂xϕa,σ(x))2 ,

H⊥K,a = 1
4πac

J⊥a F
†
a↑Fa↓e

(i
√

2gaϕa,+(0))τ− +H.c.,

Hz
K,a = Jza

4π

√
2
ga
∂xϕa,+(0)τ z. (5.3)

We furthermore include the chemical potentials µ̃a similarly to Schiller & Hershfield
[1998]; Tanaka et al. [2011] by the nonequilibrium operator2

Y =
∑

a∈{t,b}
µ̃a
(
Ña,↑ − Ña,↓

)
, (5.4)

where Ña,σ is the total number operator of the fermion Ψ̃a,σ. In principle, indepen-
dent chemical potentials at each terminal depicted in Fig. 5.1 could be considered.
However, as the Kondo interaction is a spin interaction, two of the four potential
configurations, namely the ones that are only able to alter charge properties, decou-
ple from the quantum dot. Therefore, we do not consider them explicitly.

5.1.2. Method
We obtain all Toulouse points by restricting Jza to the value such that Hz

K,a cancels
the Emery-Kivelson rotation, U = exp(i∑a λa,+ϕa,+(0)τ z), of Ha and applying an
orthogonal transformation to the bosonic fields. We find two different classes of
Toulouse points, A and B, which we derive detailedly in Section 3.1.3. To connect
to the historical notation [Emery & Kivelson, 1992], we rename the fields that are
introduced in Section 3.1.3 to ν1 =: ϕ4 and ν2 =: ϕ2. Within the set of Toulouse
points A, the vertex operator of H⊥K,t and the one of H⊥K,t in Eq. (5.3) take the form
e±iφ4(0). Therefore, we obtain λa,+ =

√
ga/2. For case B, the form of the vertex

operator in H⊥K,b instead assumes e±iφ2(0), where φ2 and φ4 are linearly independent
bosonic fields. We then find

λt,+ = 1√
2

(√gt + s
√
gb), (5.5)

λb,+ =sλt,+ = 1√
2

(√gb + s
√
gt). (5.6)

Here, s ∈ {−1, 1} is introduced to describe the two branches the Toulouse points of
case B are falling apart into. A representation of the resulting coupling constants
for all Toulouse points is given in Tab. 5.1. Case A is characterized by gt + gb = 2

2 This operator is explicitly employed in Eq. (5.7).
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A B

vt, vb v
gt 2 sin2(q) sin2(q)
gb 2 cos2(q) cos2(q)

gt + gb 2 1
Jzt 2πvgt πv(1− cos(2q) + s sin 2q)
Jzb 2πvgb πv(1 + cos(2q) + s sin 2q)

Table 5.1.: Toulouse points of the two channel Kondo model for helical liquids.
There are two disconnected sets A and B of Toulouse points whereby B
possesses two branches, distinguished by s = {−1, 1}. The parametriza-
tion uses v ∈ (0,∞) and q ∈ (0, π/2).

and contains the noninteracting case. In contrast, the novel case B obeys gt +gb = 1
and intrinsically relies on interactions. In particular, it contains gt = gb = 1

2 , for
which refermionization is known to be a promising method in similar models [Tanaka
et al., 2011; von Delft & Schoeller, 1998], and possesses two solvable values of Jzt/b
for each solvable configuration of gt/b.
The grand canonical operators of the resulting resonant level models after re-

fermionization to the fermionic fields Ψj(x) = 1√
2πacGje

−iφj(x) are [Emery & Kivel-
son, 1992]

HA = −µxN2 − µsN4 +H0 + 1
2
√

2πac

(
J⊥t Ψ†4(0)c+ J⊥b Ψ4(0)c+H.c.

)
, (5.7)

with the local pseudofermion c = G†2τ
−, for case A, where we exploited the extended

treatment of Klein factors and number operators in Zaránd & von Delft [2000], and

HB =− (µx − µs)N2 − (µx + µs)N4 +H0

+ 1
2
√

2πac

(
J⊥t Ψ†4(0)c+ J⊥b Ψ†2(0)c+H.c.

)
(5.8)

for case B with c = τ−, N2/4 = 1
2(Ñt/b,↑ − Ñt/b,↓) and G2/4 = F †t/b,↓Ft/b,↑ similarly

to von Delft & Schoeller [1998]. In both cases, the noninteracting Hamiltonian is
given by

H0 = v
∑
j

∫
dx Ψj(x)(i∂x)Ψj(x). (5.9)

Note that, opposed to the Hamiltonian of case A, there are no terms within the
Hamiltonian for case B that combine two fermionic annihilation operators. The
Hamiltonians of Eqs. (5.7) and (5.8) are solvable via a variety of techniques, see,
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e.g., Schiller & Hershfield [1998] and Zaránd & von Delft [2000]. The following
results are based on infinite order perturbation theory in the Keldysh formalism as
explained in Posske [2012].

5.1.3. Results
We first focus on the z-screening of the spin τ of the QD. The contributions to
this quantity are the local screening at x = 0, determined by the locally bound
spin in the leads, and the spatially extended Kondo cloud. The local screening
Sz0 = ∑

a

∫ ε
−ε dx 〈S̃za(x)〉, with S̃za(x) = 1

2(ρ̃a,↑ − ρ̃a,↓) and ε = 0+, is given by

Sz0 = −〈τ z〉
∑
a

Jza
4πvga

. (5.10)

Following Tab. 5.1, this reveals Sz0 = −〈τ z〉 for case A and the magnetic field of the
QD is locally screened. For case B however, this results in Sz0 = −〈τ z〉

(
1 + s

2√gtgb

)
,

whereat s = ± corresponds to the two possible branches of Toulouse points in
case B. Hence, for an arbitrary large interaction in one of the helical liquids, the
locally accumulated spin gets arbitrarily large as well. This interaction induced
phenomenon clearly distinguishes Fermi liquid leads from helical liquid leads.
The Kondo screening cloud χza(x) is represented by, cf. Section 2.2.3,

χza(x, gt, gb) = 〈δS̃za(x)δτ z〉, (5.11)

with δC = C − 〈C〉. We find that for case A, the Kondo cloud does not depend
on the interaction parameters gt/b. For convenience, we therefore denote the Kondo
cloud of case A by χza(x, 1) later. Furthermore, the sum of the Kondo clouds on
both sides vanishes, i.e., ∑

a

χza(x, gt, gb) = 0. (5.12)

Interestingly, Eq. (5.12) also implies that the Kondo correlations of different sides
have different signs. Thereby, the side of positive correlations is determined by the
weaker in-plane coupling |J⊥a |. If the in-plane coupling of both sides is equal, how-
ever, the development of a Kondo cloud is forbidden by this symmetry. Physically,
this phenomenon can be interpreted as a competition between the two leads for the
possibility to screen the impurity. This would be desirable for both leads – if we
remind ourselves of the one channel Kondo model – but only the stronger coupled
lead wins and participates in the desired singlet. The weaker coupled lead is forced
into a triplet configuration.
For case B, the Kondo cloud at a specific choice of gL, gR, and s is derivable from

a generic Kondo cloud, which is the one for the Toulouse point with gt = gb = 1
2
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and s = −1. We denote it by χza(x, 1
2). For arbitrary interaction parameters, the

other Kondo clouds are then given by3

χza(x, gt, gb) = 1
2
∑
a′

(
aa′ − s

√
g−a
ga

)
χza′(x, 1

2), (5.13)

with a, a′ ∈ {t ≡ +, b ≡ −}. A direct consequence of Eq. (5.13) is a simple
dependence of the total Kondo cloud on the interaction parameters

∑
a

χza(x, gt, gb) = −s
2√gtgb

∑
a

χza(x, 1
2). (5.14)

In equilibrium, i.e., for vanishing voltages, the analytical expressions for the Kondo
clouds read

χzt (x, 1) = sgn (J⊥b − J⊥t )
kB
√
TK1 T

K
2

4π2v
e−

2π|x|
h̄vβ Φ̃

(
|x|, β, TK1

)
Φ̃
(
|x|, β, TK2

)
, (5.15)

χzt (x, 1
2) = kBT

K
t

2π2v
e−

2π|x|
h̄vβ Φ̃2

(
|x|, β, TK1 + TK2

)
, (5.16)

where Φ̃(|x|, β, TK) = Φ(e−
2π|x|
h̄vβ , 1, 1

2 + 1
2πβkBT

K) with the Hurwitz-Lerch tran-
scendent Φ(z, s, α) = ∑∞

n=0
zn

(n+α)s , and the Kondo temperatures TK1/2 = (J⊥t ∓J⊥b )2h̄

16πackBv

[Schiller & Hershfield, 1998] and TKt = (J⊥t )2h̄
16πackBv . The equilibrium Kondo cloud is

shown in Fig. 5.2. Concerning case A, given in Fig. 5.2a, we choose TKA =
√
TK1 T

K
2

to be the temperature of reference. Both Kondo length scales ξK1/2 = h̄v/(kBTK1/2)
appear in the shape of the Kondo cloud by inducing a crossover to different asymp-
totic behaviors. The leading divergence for small x is ln2(x) and the asymptotic
behavior for large x is a quadratic decay. For finite temperature, the Kondo cloud
decays exponentially in x after a length scale ξT ≈ h̄vβ. Here, the behavior for small
x at gL = gR = 1 has to be contrasted with the case of a single lead as described
by Borda [2007]. In that reference, the author argues for a x−1 divergence at small
x, while the large x behavior and the temperature dependence coincides with our
findings for two leads.
For case B (Fig. 5.2b), the temperature of reference is conveniently chosen to be

TKB = TK1 + TK2 . Rescaled by TKt , the generic Kondo cloud of side t is a universal
curve for all coupling parameters. In contrast to case A, the only relevant length
scale is determined by ξKB = h̄v/(kBTKB ).
Applied voltages µx = µ̃t +µ̃b and µs = µ̃t−µ̃b, cf. Fig. 5.1, alter the Kondo cloud

distinctly. The spin flavor voltage µx acts as a magnetic field, see also Tanaka et al.
[2011], and strongly shrinks the Kondo cloud in both classes of Toulouse points.

3 Please note that the version of this formula published in Posske et al. [2013] contains a sign
error, which can be seen from the limit gt = gb and s = −1.
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(a) (b)

Figure 5.2.: The decay of the generic Kondo clouds in equilibrium for different
inverse temperatures β∗ = kBT

K
A/Bβ on a double-logarithmic scale.

The relevant limits of the clouds are depicted as dashed curves, γ
is the Euler-Mascheroni constant. (a) Noninteracting Kondo cloud.
The temperature of reference is TKA . Both Kondo temperatures TK1/2
determine crossover length scales of the cloud at ξK1/2 = h̄v/(kBTK1/2).
(b) Interacting Kondo cloud rescaled by TKt . The temperature of
reference is TKB . The curve is universal for all J⊥a and only the length
scale determined by TKB is relevant. Figure reprinted with permis-
sion from Posske et al. [2013]. Copyright (2013) by the American
Physical Society.

(a) (b)

Figure 5.3.: The generic Kondo clouds rescaled by x2 at zero temperature in
nonequilibrium. (a) Noninteracting Kondo cloud. An applied spin
voltage µs = kBT

K
A/Bµ

∗
s induces exponentially decaying oscillations

of the frequency µs/(h̄v) in the Kondo cloud and locally changes
its sign. (b) Interacting Kondo cloud. Additional permanent os-
cillations of the frequency 2µs/(h̄v) appear. Figure reprinted with
permission from Posske et al. [2013]. Copyright (2013) by the Amer-
ican Physical Society.
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This reflects the sensitivity of Kondo physics to unhindered spin flips of the QD. An
increasing µs instead induces oscillations in the Kondo cloud depicted in Fig. 5.3.
For case A, an oscillation of the frequency µs/(h̄v) changes the sign of the Kondo
cloud locally. This oscillation decays exponentially and the Kondo cloud becomes
monotonic again for large x. For case B, the universality of the Kondo cloud at a
specific TKB is destroyed in nonequilibrium. In addition to the oscillations of case A,
case B shows oscillations of the frequency 2µs/(h̄v), which decay quadratically in x.
Nevertheless, the Kondo cloud never changes signs for all x. The oscillations can be
interpreted as the impact of Friedel oscillations on the Kondo cloud. While Friedel
oscillations in helical liquids are suppressed in the presence of ordinary scatterers, the
spin-flip scattering off the magnetic QD to the oppositely moving channel generates
an interference of the wave functions in both channels.

5.1.4. Renormalization group analysis of the crossing terms
To complete the analysis of the model in Section 5.1.1, we calculate in this section
the scaling dimensions of the so-called crossing terms which have been excluded up
to now. To this end, we repeat the calculations of Law et al. [2010] in the weak
limit of the xy-coupling as well as for finite z-coupling and extend them to arbitrary
interaction strengths on both sides of the quantum spin Hall system. We find that
the crossing terms become irrelevant for the majority of Toulouse points, which
underlines the experimental relevance of our model.
Additionally to the considered two channel Kondo Hamiltonian of Eq. (5.2), the

crossing terms

Hcross =
∑

λ∈{x,y,z}
JzΨ̃†t,σ(0)σλσ,σ′Ψ̃b,σ′(0) +H.c. (5.17)

appear in models which assume a one channel contribution. This is, for instance, the
case for the effective model of an Anderson impurity in the Kondo limit [Hewson,
1997; Law et al., 2010; Schrieffer & Wolff, 1966]. Because Anderson models are
in many cases the physically correct models to describe Kondo behavior [Nozieres
& Blandin, 1980], it is an experimentally important question if the crossing terms
can be neglected or not. Normally, they can not, which is one of the reasons why
two channel Kondo physics is not easily observed. The situation changes when in-
teractions become important. This can be understood on the basis of the following
intuitive picture. Imagine a system of two leads attached to an Anderson impurity
that is occupied by one particle almost all of the time. If the particle from the impu-
rity tunnels into lead 1, the Coulomb interaction facilitates a subsequent tunneling
from lead 1 back to the impurity. Additionally, when a particle from lead 1 tunnels
to the impurity, the lower electron density facilitates the subsequent tunneling of a
particle back to lead 1. Thereby, the exchange of particles between lead 1 and lead 2
becomes suppressed, which is equivalent to the crossing terms losing their relevance.
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This concept is proven for many setups. The most important reference for our
purposes is Law et al. [2010], which discusses the scaling dimensions of the crossing
terms for our setup but does not consider different interaction strengths for the
two helical liquids. To discuss our case, which crucially relies on the interaction
strengths being different, we henceforth extend the calculations of Law et al. [2010]
to allow for different interaction strengths. On this basis, we determine the ranges
of interaction strengths for which the crossing terms are irrelevant.
Assuming Jxcross = Jycross ≡ J⊥cross, i.e., conservation of the z component of the total

spin, as it has been assumed for the other tunneling events, the Hamiltonian of the
system reads

H =
∑
a∈t,b

(
H0,a +H⊥K,a +Hz

K,a

)
+H⊥cross +Hz

cross, (5.18)

H0,a =
∑
σ

∫
dx
v

2(∂xϕa,σ(x))2, (5.19)

H⊥K,a = J⊥a
4πac

F †a,↑Fa,↓e
(i
√

2gaϕa,+(0))τ− +H.c., (5.20)

Hz
K,a =Jza

4π

√
2
ga
ϕa,+(0)τ z, (5.21)

H⊥cross = J⊥2
4πac

(
F †t,↑Fb,↓e

i√
2

(
√
gbϕb,+(0)+√gtϕt,+(0)+ 1√

gt
ϕt,−(0)− 1√

gb
ϕb,−(0)

)

+F †b,↑Ft,↓e
i√
2

(
√
gbϕb,+(0)+√gtϕt,+(0)− 1√

gt
ϕt,−(0)+ 1√

gb
ϕb,−(0)

))
τ− +H.c., (5.22)

Hz
cross = Jz2

4πac

(
F †b,↑Ft,↑e

i√
2

(
−√gtϕt,+(0)− 1√

gt
ϕt,−(0)+√gbϕb,+(0)+ 1√

gb
ϕb,−(0)

)

+F †b,↓Ft,↓e
i√
2

(
√
gtϕt,+(0)− 1√

gt
ϕt,−(0)−√gbϕb,+(0)+ 1√

gb
ϕb,−(0)

))
+H.c. . (5.23)

To determine whether the crossing terms in H⊥cross and Hz
cross are important, we

calculate their scaling dimension for a given parameter configuration. We could use
the bare Hamiltonians H0,a of each side a as fixed point Hamiltonians and calculate
the scaling dimensions for all coupling parameters (other than gt/b) being small.
With a bare Hamiltonian of ∑aH0,a we could, namely, exploit a useful shortcut to
calculate the scaling dimension of vertex operators: With a bare Hamiltonian H0 =
v
2
∑
a

∫
dx(∂xϕa(x))2, the scaling dimension s of a vertex operator V = e

∑
a
αaϕa(0) is

s = 1
2
∑
a α

2
a in the weak coupling limit. With this, we could read off the scaling

dimensions for the weak coupling fixed point directly.
However, taking ∑aHa,0 as fixed point Hamiltonian has the drawback of yielding

poor results for the scaling dimensions at some of the J ’s being finite. A more
accurate approach is to allow for as many finite coupling constants as possible. As
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Op.\FPs FP general FP weak

J⊥a ga − Jza
2πva + 1

16π2
∑
a′

(Jz
a′ )

2

ga′π
2v2
a′

1
2(gt + gb)

Jz2
1
4(gt + 1

gt
+ gb + 1

gb
) > 1 1

4(gt + 1
gt

+ gb + 1
gb

) > 1
J⊥2

1
4
∑
a′(ga′ + 1

ga′
− Jz

a′
πva′

+ (Jz
a′ )

2

4ga′π2v2
a′

) 1
4(gt + 1

gt
+ gb + 1

gb
) > 1

Op.\FPs FP A FP B
J⊥a

1
4(gt + gb) = 1

2
1
2(gt + gt) = 1

2
Jz2

1
4(gt + 1

gt
+ gb + 1

gb
) > 1 1

4(gt + 1
gt

+ gb + 1
gb

) > 1
J⊥2

1
4( 1

gt
+ 1

gb
) > 1

2
1
4(gt + 1

gt
+ gb + 1

gb
) > 1

Table 5.2.: Table of scaling dimensions for the setup in Fig. 5.1 following Law et al.
[2010] and extending their method to different interaction strengths
within the leads. FPs stands for “fixed points”. “FP general“ is the
fixed point for arbitrary interaction strength on both sides, finite Jz’s
and small J⊥’s. “FP weak“ is the fixed point of all J ’s being small.
”FP A” and ”FP B” are the special Toulouse points for which the scal-
ing dimensions are calculated by plugging the particular parameters of
Tab. 5.1 into the formulas for the general case.

indicated by Emery & Kivelson [1992], the model at hand allows an exact solution
for all Jza being finite and all other J ’s vanishing. To this end, the unitary Emery-
Kivelson rotation

H → UHU † = H′, (5.24)

U = ei
∑

a
λaϕa,+(0)τz , λa = Jza√

8gaπva
(5.25)

is performed. This absorbs Hz
a into H0,a and transforms

(τ−)′ = Uτ−U † = τ−e−i
∑

a
λaϕa,+(0). (5.26)

All other parts of the Hamiltonian remain unchanged as they commute with U or
only give a constant as an additional contribution. Effectively, the transformation
changes the exponents of the vertex operators in H⊥a and H⊥cross and thereby its
first order scaling dimensions. This allows a direct determination of the scaling
dimensions with the fixed point Hamiltonian ∑aHa,0 +Hz

K,a. An overview is given
in Tab. 5.2 where the scaling dimensions of the crossing terms in the general case
and at the special Toulouse points are listed. The values for the Toulouse points are
obtained by accounting for the special values of Jza as described in Tab. 5.1. As can
be seen, the crossing terms normalize to zero for the weakly coupled impurity and
for the Toulouse points of case B. For the Toulouse points of case A, the situation
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is more complex. While the z-crossing term is irrelevant for the whole parameter
range, the ⊥-crossing term becomes relevant if 1 −

√
1/2 ≤ gt ≤ 1 +

√
1/2. For

this regime, we derive from Tab. 5.2 that the scaling dimension of the ⊥-crossing
term is greater than the scaling dimension of the term that couples to J⊥a (which
was also emphasized in Law et al. [2010]). This indicates that, following the RG
flow, the coupling of the ⊥-crossing term grows slower than J⊥a . Therefore, starting
at approximately equal strength of both coupling constants, we expect the J⊥a term
to dominate the crossing term for sufficiently low temperature and applied voltage.
Regarding this fact, we still expect our model to be physically meaningful within
the range of interactions for which the ⊥-crossing terms become relevant.
The situation is summarized in Fig. 5.4 where the dashed line represents the

Toulouse points, the yellow regions the case where the crossing terms are relevant
but less relevant than the considered terms, and the red regions the case where the
crossing terms become the most relevant terms. In conclusion, the coupling of the
crossing terms are normalized to zero in the following cases:

• the weak coupling limit;

• all Toulouse points of case B;

• the Toulouse points of case A for gt or gb smaller than 1−
√

1/2;

and we consider the most relevant terms in our model within the critical parameter
region 1−

√
1/2 ≤ gt ≤ 1 +

√
1/2 for the Toulouse points of case A.

5.2. Direct proportionality between the Kondo cloud
and current cross correlations in helical liquids

The section is a revised version of Posske & Trauzettel [2014], copyrighted by the
American Physical Society. Also regard the remarks on page 3.

Due to the special spin-orbit locking of helical liquids, the information about inter-
action processes with a magnetic moment is carried away from the scattering region
in a spin resolved fashion. It sounds reasonable to conjecture that a finite frequency
current noise measurement between different reservoirs (in the four-terminal setup of
Section 5.1) allows an indirect detection of the Kondo cloud. If the noise frequency
matches the frequency corresponding to the Kondo temperature, the current fluctu-
ations should be most sensitive to the Kondo correlations that give rise to the Kondo
cloud. This conjecture establishes the foundation of this section, where we show in-
deed a one-to-one correspondence between the time- and space-resolved current cross
correlations (Fig. 5.5) and the Kondo cloud. This one-to-one correspondence even
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(a) Toulouse points A (b) Toulouse points B

Figure 5.4.: The relevance of the crossing terms, Eq. (5.23). The dashed lines
represent the parameter constraints of the Toulouse points. Within
the white region, the crossing terms are irrelevant. Within the yellow
region they are relevant but less relevant than the considered terms
and in the red region they are the most relevant terms. The color of
the regions is calculated by taking the formulas of Tab. 5.1 for the
remaining parameters.

exceeds the sets of Toulouse points in certain degrees of freedom4. findings are in
particular remarkable as they establish an exact mapping between both observables
although their analytic structures themselves are unknown. With this we mean that
we can exactly relate the expectation values on the base of operator identities.
From the experimental side, the theoretical findings substantially improve upon

existing suggestions of probing the Kondo cloud, especially in connection to the
explained difficulties, cf. Section 2.2.3, of measuring the Kondo cloud at its cradle.
In contrast to the Kondo cloud itself, the current cross correlations are present
far away from the magnetic moment. Regarding the here established scheme, the
measuring distance should be larger than the Kondo length and is, in theory, not
limited from above. In practice, the purity of the sample, temperature, etc. give an
upper bound. Therefore, we propose a direct way to detect the Kondo cloud in the
least invasive manner since the current cross correlations are measurable far away
from the magnetic moment.
The concrete suggestion is illustrated in Fig. 5.5. The setup is similar to Fig. 5.1

but is equipped with a device to detect current correlations instead of leads of
a different chemical potential. By propagating the density operator backwards in
time, as detailedly described in Section 3.2, we relate the current cross correlations to
the Kondo cloud in an exact manner for a broad range of the Kondo parameters. In
first order of the z-couplings, this relation is a direct proportionality. As a concrete

4The couplings Jzt and Jzb do not have to assume their Toulouse values.
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example, we give the explicit analytical form of both quantities for vanishing z-
couplings and emphasize the necessity to measure the current cross correlations in
the time domain.
For reasons of clarity, we first constrain ourselves to the particular choice of in-

teraction parameters gt = gb = 1
2 . The main reason is the direct and unperturbed

appearance of the Kondo cloud in the current cross correlations for this case. Even-
tually, we depart from this particular value on the line gt + gb = 1, and discuss that
the signature of the Kondo cloud remains in principle visible in the current cross
correlations by simple post-processing of the data.
The section is organized as follows. In Section 5.2.1, we introduce our model and

transform the Hamiltonian to an interacting resonant level model. Afterwards, in
Section 5.2.2, we derive the proportionality relation between the Kondo cloud and
the current cross correlations and present the Fourier transforms of both quantities.
Finally, we discuss how the proportionality is affected by a change of the Luttinger
parameters in Section 5.2.3.

5.2.1. Model
We consider a magnetic moment of spin h̄/2 that is coupled to two helical liquids
as shown in Fig. 5.5. In contrast to the setup of Section 5.1, the applied chemi-
cal potentials are abandoned in favor of contacts at the top and the bottom lead
that allow us to measure the space- and time-resolved current cross correlations
〈δIt(x, 0)δIb(y, t)〉 between the positions x and y with the time delay t.
For reasons which will become clear in Section 5.2.2, x and y should be of the

order of or larger than the Kondo length scale ξK and t of the order of or larger
than the Kondo time scale τK . Both scales are canonically derived from the Kondo
temperature TK by ξK = vτK = vh̄

kBTK
; v is the Luttinger parameter of the leads

that describes the velocity of their excitations. Additionally, to resolve the structure
of the Kondo cloud spatially, it is essential that either the time delay t is tunable or
one of the contacts is movable.
The setup is modeled by the same two channel Kondo Hamiltonian as discussed

in Section 5.1.1. As we focus on the special case of gt = gb = 1
2 and vt = vb := v, the

Hamiltonian is simplified directly by the application of bosonization and refermion-
ization without an intermediate Emery Kivelson transformation, as introduced in
Section 3.1.1. The refermionized Hamiltonian then becomes an interacting resonant
level model

H0 =
∑

j∈{t,̂t,b,b̂}

∫
dx h̄v Ψ†(x)j(−i∂x)Ψ(x)j,

H⊥K = j⊥t Ψ†t(0)τ− + j⊥b Ψ†b(0)τ− +H.c.,

Hz
K = jzt Ψ†t(0)Ψt(0)τ z + jzbΨ†b(0)Ψb(0)τ z. (5.27)
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0

0

Figure 5.5.: Two helical liquids are coupled to a magnetic moment τ of spin
h̄/2. The blue (red) lines indicate edge channels with spin down
(up) moving clockwise (counterclockwise) at the outer edge of the
system. Contacts at x and y allow to measure the space- and time-
resolved current cross correlations. Figure reprinted with permission
from Posske & Trauzettel [2014]. Copyright (2014) by the American
Physical Society.

Notable simplifications compared to the physical Hamiltonian in its original form are
that two of the former four fermionic fields decouple and the only two-particle term
appears in Hz

K . In Eq. (5.27), the fermionic fields Ψ are non-linear combinations of
the physical ones Ψ̃, but the relation that is important here is the linear dependence
of the transformed densities

ρa(x) =1
4 (3, 1,−1,−3)× (ρ̃a,↑(x), ρ̃a,↓(x), ρ̃a,↑(−x), ρ̃a,↓(−x))T (5.28)

on the physical ones. The coupling constants are j⊥t/b = J⊥t/bh̄v

2
√

2πac , where ac is the
cutoff length scale of the bosonization procedure, and jzt/b = h̄Jzt/b. For jzt = jzb = 0,
the Hamiltonian reaches a Toulouse point [Emery & Kivelson, 1992; Posske et al.,
2013; Schiller & Hershfield, 1998; Toulouse, 1969] where many observables can be
calculated analytically. It is interesting in this context that the interacting resonant
level model has recently attracted new attention because of the development of exact
methods at finite temperature and out of equilibrium [Andergassen et al., 2011;
Boulat & Saleur, 2008; Doyon, 2007; Mehta & Andrei, 2006] to solve it. Applied
to our setup, these methods could extend the range of exactly solvable parameter
configurations considerably.

5.2.2. Results
The Kondo cloud on side a is, cf. Section 2.2.3, defined as the spatially resolved
correlation of the z spin density in lead a and the z component of the magnetic
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moment. Specifically, it takes the form
χza(x) = 〈δS̃za(x)δτ z〉. (5.29)

In the following, an additional argument of the operators denotes the time in the
Heisenberg picture. If no additional argument is given, we imply that it is equal to
zero. The space- and time-resolved current cross correlations are, in this notation,
given by

χcc(x, y, t) = 〈δIt(x)δIb(y, t)〉 = (2ev)2〈δS̃zt (x)δS̃zb(y, t)〉. (5.30)
It is here where the very special attribute of the helical liquid, namely that the
spin density is proportional to the current, initially connects the two quantities of
Eqs. (5.29) and (5.30).
Next, we express the current cross correlations in the fields of the simplified Hamil-

tonian in Eq. (5.27), and exploit its symmetry under simultaneous time reversal and
space inversion5. For the Kondo cloud, we obtain

χza(x) = 〈δρa(−|x|)δτ z〉, (5.31)
and the current cross correlations become

χcc(x, y, t) = (ev)2 ∑
σ=±
〈δρt(σ|x|, 0)δρb(−σ|y|, t)〉. (5.32)

It is crucial for the derivation of Eq. (5.32) that
(5.33)〈ρt(|x|)ρb(|y|, t)〉 = 〈ρt(−|x|)ρb(−|y|,−t)〉∗ = 0

for all times t. The physical reason for the last equality is that excitations in
different leads are independent of each other before they can interact at the site of
the magnetic moment.
To derive and physically motivate the close relation between the quantities of

Eqs. (5.31) and (5.32), we take the density operators with positive spatial argument
in the summands of the latter equation and propagate them backwards in time
before they have interacted with the magnetic moment. This propagation can be
done exactly due to the property (τ z)2 = h̄2

4 although the Hamiltonian possesses
two-particle terms. In order not to hide the important results behind the more
technical but albeit highly insightful details, the have already been explained in
Section 3.2. The result reveals

ρa (x,−x/v − ε) =ρa(−vε, 0) +

(
j⊥a /v

)2

h̄
(
1 + ( jza4v )2

)(τ z(−ε) + h̄/2)

+
(

ij
⊥
a

h̄v

1 + i j
z
a

4v
(1− i jza4v )2

τ+(−ε)Ψa(−vε, 0) +H.c.

)
, (5.34)

5The exploited symmetry of the transformed Hamiltonian in Eq. (5.27) originates from the sym-
metries of the physical Hamiltonian in Eq. (5.1), namely, time reversal symmetry and the
symmetry under simultaneous z spin flip and space inversion.
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for any positive time ε. It is seen here that the density at positive spatial val-
ues carries information about the magnetic moment in the term proportional to
τ z. This is the basic reason why it is possible to measure the Kondo cloud by
looking at current cross correlations. Inserting Eq. (5.34) into Eq. (5.32), we en-
counter three types of expectation values: (i) density correlations of the form
〈δρt(−vε, 0)δρb(−|y|, t − |x|−ε)〉, which vanish as explained in the derivation of
Eq. (5.32), (ii) terms like 〈δτ z(−ε)δρb(−|y′|, t − |x|−ε)〉 that resemble the Kondo
cloud, and (iii) correlators similar to 〈δ(τ+(−ε)Ψt(−vε, 0))δρ−a(−|y|, t − |x|−ε)〉,
which vanish in first order in jzt/b. Retaining only the first and zeroth orders in jzt/b,
we therefore obtain

χcc(x, y, t) =e
2

h̄

(
(j⊥t )2〈δρb(−|y|, t− |x|/v)δτ z〉∗

+(j⊥b )2〈δρt(−|x|,−t− |y|/v)δτ z〉
)
. (5.35)

This expression consists of two summands each of which already resembles the Kondo
cloud defined in Eq. (5.29). The aim is now to choose a time frame for which
one of the summands becomes proportional to the Kondo cloud and the other one
is suppressed. To reveal the Kondo cloud from the first summand, we constrain
vt− |x|−|y|< 0 and shift the time argument of the density operator into its spatial
argument. The same can be done for the second summand in the case vt+|x|+|y|> 0.
For suppressing the summand that fails to be proportional to the Kondo cloud within
one of the respective time frames, we argue that there is an intrinsic time scale τ c
after which 〈δρa(−η, 0)δτ z(t)〉 decays rapidly if |t|> τ c. Here, η is a finite but small
positive position in space. This assumption is physically motivated by the fact
that a scattering problem lacks periodicity and usually exhibits no infinite length
correlations. We consider the required time τ c to be of the order of the Kondo
time scale τK because it is the largest time scale that is immediately connected
to the Hamiltonian. Nevertheless, the concrete choice of this time scale τ c is, in
principle, of no significance for the following results. This argument leads us to
two time frames fulfilling the demanded conditions: (i) (|x|+|y|)/v > t > τK ,
where the current cross correlations are greatly dominated by the first correlator in
Eq. (5.35) since |−t− (|x|+|y|)/v| is more than 2τK larger than t+ (|x|+|y|)/v. (ii)
−τK > t > −(|x|+|y|)/v, where the current cross correlations are dominated by the
second correlator in Eq. (5.35). We are now able to state the central result of this
section:

χcc(x, y, t) ≈ 2e2vkB

h̄3

TKt χzb (|x|+|y|−vt) (i),
TKb χ

z
t (|x|+|y|+vt) (ii),

(5.36)

where TKt/b = h̄(j⊥t/b)2

2kbv
= h̄(J⊥t/b)2

16πackBv is the Kondo temperature of one lead calculated
as if the other one does not exist [Schiller & Hershfield, 1998]. The deviation of
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Eq. (5.36) from an identity is suppressed arbitrarily by measuring further away
from the magnetic moment, i.e., increasing |x|+|y|, and therefore, it vanishes for
any practical purpose. Rephrased, Eq. (5.36) states that, for certain time frames,
the Kondo clouds of both leads are mirrored in the current cross correlations by a
direct proportionality, and the proportionality factors are determined by the Kondo
temperature of the respective opposite lead.
To give a descriptive example of a manifestation of this relation, we derive the

analytical formulas in the limit jzt/b → 0 for both the Kondo cloud and the current
cross correlations, following the lines of Posske et al. [2013], and compare them.
Additionally, this calculation, which is done independently of the more general con-
siderations leading to Eq. (5.36), serves as a check of the validity of Eq. (5.36) for a
specific choice of parameters. For convenience, we introduce

ζ(x) = 1
π
e−

π
h̄vβ

xΦ
(
e−

2π
h̄vβ

x, 1, 1
2 + βkBT

K

2π

)
, (5.37)

which depends implicitly on the inverse temperature β = 1/(kBT ) and the Kondo
temperature [Schiller & Hershfield, 1998]

TK = TKt + TKb . (5.38)
Furthermore, Φ(z, s, a) is the Hurwitz-Lerch transcendent [Weisstein, 2013]. For
the Kondo cloud, we obtain

χza(x) = − h̄kBT
K
a

2v ζ2(|x|), (5.39)

and the space- and time-resolved current cross correlations are

χcc(x, y, t) =− e2kBT
K
t kBT

K
b

h̄2

{
ζ2 (|x|+|y|−vt)∗ + ζ2 (|x|+|y|+vt)

}
. (5.40)

Hence, as predicted, the analytically derived formulas satisfy the proportionality
relation of Eq. (5.36), and the proportionality factor is given by the corresponding
Kondo temperature.
In experiments, it is common to measure frequency-resolved current cross correla-

tions. We want to point out that the similarity in the time domain does not simply
transfer to the frequency domain. The reason is that the full range of t is taken into
account in a Fourier transform and the proportionality in the time domain is limited
to certain time frames. To show this explicitly, we present analytical expressions
for the Fourier transforms f̂(k) = P

∫
dx eikxf(x) of the Kondo cloud and the current

cross correlations of Eqs. (5.39) and (5.40) at zero temperature. Here, we take the
principal-value Fourier transform since the Kondo cloud diverges at the site of the
magnetic moment. The result is

χ̂za(k) = −2h̄2

π2
TKa
TK

Re

Li2
(
1 + ih̄vk

kBTK

)
+ π2

12

2 + ih̄vk
kBTK

 , (5.41)



96 5. The local Kondo impurity

where Li2 is the dilogarithm and

χ̂cc(ω, |x|+|y|) = Θ(−ω)8e2kB
πh̄

TKt T
K
b

TK
× Re

 ie−iω
v

(|x|+|y|) ln
(
1 + ih̄ω

kBTK

)
2 + ih̄ω

kBTK

 (5.42)

with Θ being the Heaviside function. Instead of depicting the Fourier transform of
the Kondo cloud at zero temperature of a single side, we concentrate on the more
universal total Kondo cloud χz = χzt + χzb. The functional form of its Fourier trans-
form at zero temperature is shown in Fig. 5.6a. An interesting feature is revealed
by χ̂z(0) = − h̄2

4 , i.e., the spatial integral over the total Kondo cloud in the ground
state equals the expected value for exact screening.
The Fourier transform of the current cross correlations at zero temperature in

turn is illustrated in Fig. 5.6b. It is convenient to introduce the envelope function

χ̂ccmax = Θ(−ω)8e2kB
πh̄

TKt T
K
b

TK

∣∣∣∣∣∣
ln
(
1 + ih̄ω

kBTK

)
2 + ih̄ω

kBTK

∣∣∣∣∣∣ . (5.43)

For generic values of |x|+|y|, χcc(ω, |x|+|y|) oscillates between ±χ̂ccmax. Hence, for
clarity, we choose two representative values for |x|+|y| in Fig. 5.6b. First, we set
|x|+|y| equal to twice the Kondo length ξK , which is a typical value for the setup at
hand in the sense that a broad range of the Kondo cloud can be spatially resolved
in the time domain. Secondly, we look at |x|+|y|= 0. Evidently, there is no ob-
vious similarity between the Kondo cloud and the current cross correlations in the
frequency domain.

5.2.3. Dependence of the central results on interaction
strengths

The experimental realization of the proposed setup seems to be highly challenging.
Nevertheless, we have chosen to treat the system at hand because it shows the
clearest possible appearance of the Kondo cloud in the current cross correlations.
This feature can be affected by altering the interaction strengths gt/b, the effects of
which we are going to discuss now. Allowing for an unrestricted choice of gt/b would
exceed the scope of this work, since, following the scheme of generalized Emery
Kivelson transformation, Section 3.1.2, there exists no simplifying refermionization
in this case. Covered by the method at hand, however, are the two lines gt + gb = 1
and gt+gb = 2. In both cases, correlators of the form 〈Ψ†τ−Ψ†Ψ〉 appear additionally
in the current cross correlations, where the fermionic fields Ψ can be of different
leads, space, and time. Although these additional correlators are interesting objects
themselves, they hinder the direct measurement of the Kondo cloud in principle.
As the second line gt + gb = 2 is based on a different effective Hamiltonian [Posske
et al., 2013], we limit ourselves here to describing the first line gt +gb = 1 in greater
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(a) (b)

Figure 5.6.: Fourier transforms of the total Kondo cloud, (a), and the current
cross correlations, (b), at zero temperature. The current cross cor-
relations are depicted for the two representative values of |x|+|y|
equals zero and |x|+|y| equals twice the Kondo length λK . Further-
more, we involve the envelope function χ̂ccmax. Despite the analogy of
the Kondo cloud and the current cross correlations in the time do-
main (for certain time frames), they show no apparent similarity in
the frequency domain. Figure reprinted with permission from Posske
& Trauzettel [2014]. Copyright (2014) by the American Physical So-
ciety.

detail. If we leave gt = gb = 1
2 with the constraint gt + gb = 1, the Hamiltonian of

Eq. (5.27) slightly changes, so that all appearing fields Ψt are replaced by Ψ4 and
all fields Ψb are replaced by Ψ2 with the relations6

(
ρ4
ρ2

)
= 1√

2

( √
gt − s

√
gb −s√gt −

√
gb

−√gt − s
√
gb −s

√
gt +√gb

)(
ρt
ρb

)
, (5.44)

where s ∈ {−1,+1}, cf. Section 3.1.3.2 and in particular Eq. (3.77) for the deriva-
tion. The resulting transformed Hamiltonian is

H⊥K = ĵ⊥t Ψ†4(0)τ− + ĵ⊥b Ψ†2(0)τ− +H.c.,

Hz
K = ĵzt Ψ†4(0)Ψ4(0)τ z + ĵzbΨ†2(0)Ψ2(0)τ z (5.45)

with ĵ⊥a = j⊥a and

ĵza = jz√
2ga
−
√

2πv(√ga + s
√
g¬a). (5.46)

6Please note that Posske & Trauzettel [2014] erroneously have the indices of the left hand side of
Eq. (5.44) the other way around, which can be seen by considering the limit gt = gb = 1

2 and
s− 1, where it is ρ4 = ρt and ρ2 = ρb.
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Here, ¬a denotes the opposite side of a, i.e., ¬t = b and ¬b = t. Note that the
calculations done in first order around jza = 0 in Section 5.2.2 now hold in first order
around ĵza = 0, which corresponds to jza = 2πv(ga + s

√
gag¬a). We want to put

special emphasis on the fact that, for s = +1, the couplings jzt/b do not need to
be small compared to j⊥t/b, which could be seen as unphysical considering that the
respective bare couplings should be of the same order. In fact, to assume a small
ratio jzt/b/j

⊥
t/b is not unphysical as the renormalization group (RG) analysis given

in Section 5.1.4 shows. Since the terms coupled to j⊥t/b are relevant while the terms
coupled to jzt/b are part of the free Hamiltonian in the RG calculations, j⊥t/b initially
grows following the RG flow. Hence, starting with small bare couplings of the same
order, the RG flow generates a situation with a small ratio jzt/b/j

⊥
t/b.

For the current cross correlations, we obtain the additional contribution

χccAS =
∑

σ,σ′∈{±}
s
e2

h̄

gb − gt

4√gtgb
× 〈δρ4(σx)δρ4(σ′y, t)− δρ2(σx)δρ2(σ′y, t)〉 . (5.47)

Terms of the form 〈Ψ†τ−Ψ†Ψ〉 appear here by applying Eq. (5.34) to the density
operators with positive spatial argument. The quantity χccAS is anti-symmetric in
both pairs of couplings (gt, gb) and (ĵt, ĵb). The latter is seen by considering the
invariance exhibited by the Hamiltonian in Eq. (5.45) under simultaneous exchange
of the fields Ψ4 ↔ Ψ2 and exchange of the couplings ĵt ↔ ĵb. In this regard, χccAS
vanishes for an equal coupling to the magnetic moment ĵt = ĵb, but, in general, we
encounter a perturbation of the proportionality between the Kondo cloud and the
current cross correlations. However, χccAS can be eliminated under the assumption
that results of the crossed current correlations for several values of the couplings
ĵ are available. A concrete example for an elimination is to add up the current
cross correlations of two systems, where the second system differs from the first one
only by exchanged tunnel couplings ĵt ↔ ĵb. By the above-mentioned invariance
of the Hamiltonian, this exchange is equivalent to the exchange of ρ4 ↔ ρ2. The
proportionality relation of Eq. (5.35) is then only slightly altered. Instead of the
Kondo cloud of one lead, a linear combination of the Kondo clouds of both leads
occurs. For instance, for (|x|+|y|)/v > t > τK and first order in ĵz, we obtain

χcc(x, y, t) + χcc
ĵt↔ĵb(x, y, t) = ctχ

z
t + cbχ

z
b (5.48)

with

ct = −2e2vkB

h̄3

(
s
√
gtgbT

K + gtT
K
M

)
(5.49)

cb = −2e2vkB

h̄3

(
s
√
gtgbT

K − gbT
K
M

)
, (5.50)

where we introduced the auxiliary temperature TKM = TKt − TKb .
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5.3. Conclusion about the local Kondo impurity
This chapter shows that the two channel Kondo model with helical liquid leads
can be solved exactly for two sets of Toulouse points that are characterized by
relations between the interaction strengths of both leads, namely gt + gb = 2 and
gt + gb = 1, respectively. The mysterious Kondo cloud can therefore be resolved
analytically and its similarities to the ordinary Fermi liquid Kondo problem but
also its different behavior in nonequilibrium can be determined and discussed. The
advantage of helical liquids over Fermi liquids, however, only reveals its true strength
if when we desire to measure the Kondo cloud. Ultimately due to unique charge-spin
correspondence, we find a direct proportionality of the current cross correlations –
within a certain time frame – to the Kondo cloud. The setup therefore has the
potential to measure the Kondo cloud least invasively.

If a single magnetic impurity is able to generate the described rich phenomenology,
what are multiple magnetic impurities going to achieve? In Chapter 8, we shortly
play with the ideas of a one-dimensional chain of impurities and describe that we
expect a fully electrically tunable transition from a ferromagnetic to an antiferromag-
netic ground state. The next chapter, Chapter 6, goes a step further and promotes
the dimensionalities of the considered constituents to a two-dimensional lattice of
magnetic impurities on a three-dimensional topological insulator. To render the
situation even more interesting, we explicitly consider a spin-anisotropic dispersion
relation that exhibits nesting, cf. Section 2.1.4. Here, we expect interesting spin
textures to form in the ground state.



6. Magnetically doped strong
three-dimensional topological
insulator (3DTI) in proximity to a
superconductor

This chapter is a revised version of Baum et al. [2015b], copyrighted by the American
Physical Society. We have reassembled the material considerably in order to improve
the presentation. Also regard the remarks on page 3.

The localization length of the edge states of a topological insulator (TI) is usually
inverse to the size of the bulk energy gap. We have already exemplified this behavior
for the simple model of Section 2.1.1 but there are numerous additional examples
for experimentally more relevant models like the Haldane model [Haldane, 1988],
the Kane-Mele model [Kane & Mele, 2005a], the Qi-Wu-Zhang model [Qi et al.,
2006], and the Kitaev chain [Kitaev, 2001]1. Closing the bulk gap therefore leads to
the complete delocalization and hence distinction of the edge states2. Following the
above mentioned evidence, we assumed that the closure of the bulk energy gap of an
ordinary topological insulator is equivalent to the hybridization of the edge states
with the bulk states. Much to our surprise, we discovered a system, where the edge
states persist to be well localized even in the absence of a bulk energy gap. This
system is the surface of a magnetically doped three-dimensional strong topological
insulator, which is brought into proximity to an s-wave superconductor. In fact, the
original intention of this setup was to solve for the ground state magnetic order of
the impurities if the chemical potential lies within the hexagonal warping regime
of the topological insulator. This part of our research is presented in Section 6.1,
where the system is introduced in detail and our results regarding this topic are
presented: a considerably stable spiral spin wave is formed at the surface. Bringing

1Although the latter is a topological superconductor, its mean field spectrum can be treated in
the same fashion as a topological insulator as described in Section 2.3.

2 There are known exceptions, where systems exhibit topological behavior also in the absence of a
bulk gap [Deng et al., 2014; Keselman & Berg, 2015]. Among these exceptions are, e.g., Weyl
semimetals and nodal superconductors [Matsuura et al., 2013; Queiroz & Schnyder, 2014].
However, the application of topology in these cases is profoundly different to the approach that
characterizes band insulators.



6.1. Magnetically doped strong 3DTI in the hexagonal warping regime 101

the system into the proximity of an s-wave superconductor generates spectra that
simultaneously possess a gapless bulk and well-localized edge states. In fact, there is
a general mechanism behind the formation of this type of gapless topological phases,
which is applicable to all two-dimensional spin-momentum locked phases that exhibit
proximity-induced s-wave pairing and a non-ferromagnetic periodic magnetization.
This mechanism is extracted and elaborated on in Section 6.2. Let us outline the
important physical scheme, which is detailedly explained in Section 6.2: the periodic
magnetization opens a magnetic gap at particular regions of the Fermi surface but,
crucially, leaves parts of the Fermi surface ungapped. The introduction of proximity-
induced superconductivity now opens a superconducting gap at these magnetically
untouched regions and competes with the aforementioned magnetic gap in the other
regions. If the superconducting pairing is weaker than the magnetism, the interesting
situation occurs that the former Fermi surface consists of gapped parts that either
have a superconducting or a magnetic domination. The gap vanishes at the points
that separate these regions. In fact, the closure of the gap is deeply protected by
this mechanism.

6.1. Magnetically doped strong three-dimensional
topological insulators in the hexagonal warping
regime

In this section, we generate complex magnetic order on the surface of three-dimen-
sional strong topological insulators without the need for fine tuning. To obtain
this effect, we consider the hexagonally warped region of chemical potentials as
explained in Section 2.1.4. One possibility to induce spontaneous magnetization on
the surface is the Coulomb interaction between electrons as investigated in Baum &
Stern [2012a,b]. In particular, if the chemical potential lies within a specific range
where the electronic Fermi surface is nested, a skyrmion lattice may form on the
surface of these materials. Nonetheless, the analysis points out that the electron-
electron interaction strength in experimentally realized topological insulators is too
weak to generate the necessary instability. Another source of magnetism is delivered
by magnetic dopants. Research into this direction has been put forward in Caprara
et al. [2012]; Liu et al. [2009]; Rosenberg & Franz [2012]; Schmidt et al. [2011],
who focus on chemical potentials close to the Dirac point. Among other results,
the references describe an opening of a surface gap due to surface ferromagnetism,
which possesses a larger transition temperature than the bulk magnetism. Exact
expressions for the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction Kasuya
[1956]; Nakamura et al. [1985]; Roth et al. [1966]; Ruderman & Kittel [1954]; Yosida
[1957] on the surface of topological insulators have been given by Zhu et al. [2011],
which concluded for the possibility of the formation of a complex magnetic order
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on the surface. A spiral magnetic order in a one-dimensional chain of magnetic
adatoms has been predicted by Klinovaja et al. [2013]; Ye et al. [2010]. Jiang &
Wu [2011] have claimed to have predicted a helical magnetic order in the hexagonal
warping regime by employing a mean field theory for systems that also exhibit
electron-electron interactions.
In this section, we theoretically explore a system that is composed of classical

magnetic moments aligned on a lattice on the surface of a three-dimensional strong
topological insulator, the chemical potential of which is tuned to the hexagonal
warping regime, cf. Section 2.1.4. The magnetic moments could be arranged on a
lattice by physically dragging them into the positions employing techniques of atomic
force microscopy. The occurring nesting is expected to enhance physical properties in
momentum representation that originate from excitations close to the Fermi energy
at the corresponding nesting vectors. Indeed, we find that the interaction among
the magnetic impurities, which is mediated by the electronic states – i.e., the RKKY
interaction – to be dominated by peaks in Fourier space at the nesting momenta.
We then numerically determine the ground state magnetic order for a generic system
and find that three spiral spin waves constitute the degenerate ground state of the
system. By changing the lattice structure of the magnetic impurities or tuning the
chemical potential, the peaks of the RKKY interaction can be shifted and even
merged. Thereby, the spiral structures are significantly manipulable. Furthermore,
we determine the stability of the spiral phase against temperature and find, that for
experimentally realistic lattices and interactions of the magnetic moments with the
surface states, the spiral phase stays stable up to temperatures of tens of Kelvin.
Finally, we consider the proximity coupling of the system at hand to an s-wave

superconductor. The formation of the spiral wave already leads to a partial gap
opening at the Fermi surface of the electronic spectrum. Coupling the considered
system to an s-wave superconductor generates a gapless topological phase with pe-
culiar properties. We abstract the underlying mechanism in Section 6.2 and thereby
introduce more general gapless topological superconductors of the described kind.
As a substantial advantage, the physical realization of a magnetically doped three-
dimensional topological insulator in proximity to a superconductor fulfills the ex-
tracted necessary requirements without the need for fine tuning physical properties.
We want to remark that Zyuzin & Loss [2014] consider a similar setup to the one
we present here. In contrast to this section, they focus on chemical potentials close
to the Dirac point, and predict the appearance of frustrated anti-ferromagnetism.
The structure of this section is as follows. In Section 6.1.1, we present the model

and the RKKY interactions in dependence on the lattice structure of the magnetic
impurities and the chemical potential which takes the form of several δ-peaks in
momentum space. After a side remark on the calculation of the RKKY interactions
with proper energy cutoffs in Section 6.1.2, we explain in Section 6.1.3 how to
engineer the position of these peaks by changing the lattice structure of the magnetic
impurities or the chemical potential. We then proceed to calculate the spiral ground
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state configuration and its stability of the classical spins employing the Metropolis
algorithm for a generic class of RKKY interactions in Section 6.1.4. We furthermore
estimate the transition temperature from a spirally ordered state to an unordered
state to tens of Kelvin. In Section 6.1.5, we enter the spiral surface magnetization
into the Hamiltonian and determine the altered electronic spectrum. We conclude
the chapter by coupling the system to an s-wave superconductor in Section 6.1.6.

6.1.1. Model and RKKY interaction
In the following, we place magnetic impurities, which are arranged on a lattice, onto
the surface of a three dimensional topological insulator. Each lattice position is
numbered by two integer indices, (j1, j2) = j ∈ Z2. The spin of the impurity at rj
is described by the operator Sλj . The magnetic moments couple via their spin to the
spin density of the itinerant excitations sλj = c†jσ

λcj by a local exchange interaction,

Hint =
∑
j∈Z2

∑
λ∈{x,y,z}

Jλj S
λ
j s

λ
j , (6.1)

where Jλj are the exchange coupling constants. For simplicity, we assume that all
moments couple equally to the spin density and that J is spatially homogeneous.
Hence, we replace Jλj ≡ J0.
If the dynamics of the electronic excitations is considerably faster than the one of

the impurities, the effective impurity interaction can be deduced via linear response
theory as conducted in Section 2.2.4. Assuming this condition is met, the system is
well approximated by an RKKY Hamiltonian of the form

HRKKY = −
∑
i,j

∑
λ,λ′∈{x,y,z}

J2
0χ

λ,λ′

ri,rj
Sλi S

λ′

j . =
∫

BZ
d2q SλqJ

λ,λ′

q Sλ
′

−q, (6.2)

where h̄ = 1 and Sq is the Fourier transform of the magnetic impurity spin, which
we treat as classical further below. Additionally it is,

Jλ,λ
′

q = −J2
0

2πVuc

∑
G

χλ,λ
′

−(q+G), (6.3)

where G runs over the set of reciprocal lattice vectors of the impurity lattice, and
Vuc is the area of a unit cell. The quantity χ is the spin susceptibility of the bare
surface without magnetic impurities [Baum & Stern, 2012b; Jiang & Wu, 2011] as
introduced in Section 2.2.4 For the considered model of Fu, which we introduce
in Section 2.1.4, the quantity has been numerically calculated previously [Baum &
Stern, 2012b; Jiang & Wu, 2011]. It exhibits pronounced peaks at the six nesting
vectors that are depicted in Fig. 2.6. As we refer to the spin susceptibility in the
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following, we repeat its definition from page 25 in the following three formulas for
completeness

χλ,λ
′

r,r′ =
∫ ∞
−∞

d2q
e−iq·(r−r′)

(2π)2 χλ,λ
′

q , (6.4)

χλ,λ
′

q = lim
η→0

∫ ∞
−∞

d2k
∑
τ,ρ=±

fβ,µ(ετk)− fβ,µ(ερk+q)
ετk − ε

ρ
k+q − iη Y λ,λ′

τ,ρ (k,k + q)θτ,ρk,q,Λ−,Λ+
, (6.5)

θτ,ρk,q,Λ−,Λ+
=

1 if ετ (k), ερ(k + q) ∈ (Λ−,Λ+),
0 else.

(6.6)

In the last equation, Λ− denotes the lower momentum cutoff, given by the end of
the bulk valence band, and Λ+ the upper cutoff, given by the start of the bulk
conduction band. For a further explanation of Eq. (6.4) we refer to Section 2.2.4.

6.1.2. Calculating the spin susceptibility with proper cutoffs
As seen from Eq. (6.5), the integral to be evaluated for obtaining the spin suscep-
tibility contains a sum over four terms, which we label, according to the indices τ
and ρ, as (++), (+−), (−+), and (−−). The physical pictures behind the different
contributions are the following: The (++) contribution contains properties origi-
nating close to the Fermi energy, the (+−) and (−+) contributions describe high
energy processes between the upper and lower branches of the Dirac cone, and the
(−−) contribution describes processes of states that lie deep in the Fermi sea. As
such, the latter does not play an important role at low temperatures. Additionally,
since bulk states are neither close to the Fermi energy nor are they localized at the
surface, we do not expect the a priori neglected and until now unmentioned bulk
terms to contribute significantly to the RKKY interaction.
If the RKKY interaction is dominated by the properties of the system close to

the Fermi energy, the (+−) and (−+) terms may be neglected, as done by Jiang
& Wu [2011] , and Baum & Stern [2012b]. This leads to the spin susceptibility
as illustrated in Fig. 6.1, where only the (++) term is considered. The dominant
contributions occur close to the six nesting vectors (Fig. 2.6). The data is obtained
by numerically integrating Eq. (6.5) over a hexagonal lattice of 1600 × 1600 sites
with a resolution of 100 × 100/k2

0. The integrand of Eq. (6.4) is made well-defined
at the boundaries of the integration region by regularizing the denominator with
η = 2−13E0.
However, the mathematical structure of the physically dismissed (+−) and (−+)

contributions does not allow to neglected them a priori. In fact, without the intro-
duction of the cutoffs Λ+ and Λ−, the spin susceptibility would be dominated by
these contributions. Therefore, we give numerical estimates for the range of cutoffs
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Figure 6.1.: The largest eigenvalue of the spin susceptibility χ in momentum
space at zero temperature and for µ = 0.7E0. Figure reprinted
with permission from Baum et al. [2015b]. Copyright (2015) by the
American Physical Society.

in which their omission is valid. Fig. 6.2 shows the effect of an increasing cutoff,
from 0 to 2E0, for Λ = Λ+ = −Λ−. The (+−) and (−+) terms contribute to the
susceptibility at small momenta, such that keeping only the contributions close to
the nesting vectors is not justified for sufficiently large Λ.
Recent experimental data [Hasan et al., 2014; Miyamoto et al., 2012; Neupane

et al., 2012; Sato et al., 2010] shows that for most materials the upper cutoff is larger
than the absolute value of the lower one3 and that both lie within the range where the
(+−) and (−+) contributions may be validly neglected. In Bi2Te2Se for instance,
the lower cutoff is close to zero [Miyamoto et al., 2012; Neupane et al., 2012]. In
GeBi2Te4 however, both cutoffs are larger than for most materials [Neupane et al.,
2012] such that an inclusion of the (+−) and (−+) terms may be necessary.

6.1.3. Engineering the position of the peaks in the RKKY
interaction

From Eq. (6.3) we infer that the RKKY interaction strongly depends on the lattice
structure and the lattice constant of the magnetic impurities as well as on the chem-
ical potential. The position of the peaks that dominate the RKKY interaction in
momentum space can therefore be engineered taking into consideration different lat-

3The cutoffs Λ− and Λ+ are defined as the difference in energy from the Dirac point to the onset
of the valence and bulk band respectively.
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(a) Λ+ = −Λ− = 0 (b) Λ+ = −Λ− = 1E0

(c) Λ+ = −Λ− = 2E0

Figure 6.2.: The largest eigenvalue of the spin susceptibility χ for different cutoffs
Λ at zero temperature and µ = 0.7E0. For large cutoffs, the con-
centration of χ around the nesting momenta gets reduced and the
contributions at low momenta have to be taken into account. Fig-
ure reprinted with permission from Baum et al. [2015b]. Copyright
(2015) by the American Physical Society.
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tice structures, lattice constants, and chemical potentials. To exemplify the different
appearing peak structures, we choose a square lattice, a hexagonal lattice with the
lattice vectors (1, 0)a and (1/2,

√
3/2)a, and a by π/3 rotated hexagonal lattice. The

results are assembled in Fig. 6.3, where the RKKY interaction in Fourier space is
qualitatively represented by its largest eigenvalue. It can be seen that for a < πQ−1,
where Q is the modulus of the nesting vectors, the choice of the lattice structure
has no significant effect on the RKKY interaction. It can be seen that if the lattice
constant a is smaller πQ−1, neither the specific size of the lattice constant nor the
type of Bravais lattice alter our results. We therefore believe that our findings can
be extended to randomly ordered magnetic dopants on the surface above a critical
density of adatoms which still lies within the experimentally realizable range. How-
ever, below the critical density, i.e., for a > πQ−1, different peaks can be brought to
overlap since the nesting vectors exceed the first Brillouin zone. By this mechanism,
the position of the peaks can be engineered according to the needs.
A similar effect as to change the lattice constant is achieved by tuning the chemi-

cal potential within the hexagonal range. The latter procedure has the advantage of
leaving the sample unaltered in its physical structure and enabling an improved ex-
perimental accessibility. Exploiting the full hexagonal range of µ ∈ {0.55E0, 0.9E0},
the absolute value of the nesting vectors can be changed by a factor of 1.5.

6.1.4. Spiral ground state and its temperature stability
For lattice constants smaller than π|2kF |−1, the RKKY interaction is not signifi-
cantly altered by the choice of the lattice. In this generic regime, we perform an
analysis employing a Metropolis algorithm [Metropolis et al., 1953] neglecting the
contributions to J away from its peaks. For simplicity, we treat the spins classi-
cally and take them to be vectors on the unit sphere (h̄ = 1). The results can be
rescaled to the desired size of the spins. To facilitate the numerical calculations, we
specifically approximate J by its contributions close to the peaks,

Ĵλ,λ
′

p =
∑

q∈±{Qi}3i=1

rect
(
px − qx√

A

)
rect

(
py − qy√

A

)
Jλ,λ

′

q , (6.7)

where A accounts for the approximated area of the peak in momentum space and
rect is the rectangular function. From Fig. 6.1, we estimate A ≈ 0.1k2

0. We expect
a broad class of systems with a J-matrix consisting of a finite number of peaks
to develop spin waves as their global energetic minima. The concrete system we
analyze is a 16× 16 lattice of spins positioned on a hexagonal lattice with a lattice
constant a = π

4Q
−1, which obeys periodic boundary conditions. We start at a

random spin distribution where every configuration of the spins in the configuration
space is picked equally likely and subsequently employ the Metropolis algorithm, cf.
Section 3.3 and [Metropolis et al., 1953], to thermalize the system. For β →∞, we
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(a) a = π
2Q
−1 (b) a = πQ−1 (c) a = 2πQ−1

(d) a = π
2Q
−1 (e) a = πQ−1 (f) a = 2πQ−1

(g) a = π
2Q
−1 (h) a = 2π√

3Q
−1 (i) a = 3π√

3Q
−1

Figure 6.3.: The largest eigenvalue of the RKKY interaction in momentum space
for different lattice structures and lattice constants a. The borders
of the Brillouin zones are marked by dotted lines. top panels:
quadratic lattice, middle panels: hexagonal lattice as defined in
the text, bottom panels: by π/3 rotated hexagonal lattice. Fig-
ure reprinted with permission from Baum et al. [2015b]. Copyright
(2015) by the American Physical Society.
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(a) Setup illustration and the spiral spin
order in the ground state for an
aligned hexagonal lattice of the mag-
netic impurities.

(b) Stability of the spiral order against
normalized inverse temperature, both
defined in the text. The bars sig-
nify the standard deviation induced
by temperature fluctuations.

Figure 6.4.: Spatial structure and temperature stability of the spiral magnetic
ground state order. Figure adapted with permission from Baum
et al. [2015b]. Copyright (2015) by the American Physical Society.

reach local energetic minima. We find that all initial configurations relax to one of
three spiral waves4.
One manifestation of the spiral waves is illustrated in Fig. 6.4a, where we only

show an excerpt of the system that encompasses exactly one magnetic unit cell into
the relevant direction. The depicted spiral wave possesses the momentum Q1. The
remaining two ground state configurations are found to possess momenta Q2 and Q3,
cf. Fig. 2.6, and are related to the depicted one by a rotation around the z axis about
an angle of π/3 and 2π/3 respectively. Note that each spiral wave is degenerated in
phase, which is equivalent to shifting the origin of the spiral. It is important to
mention that the classical superposition of the spiral spin waves does not represent a
minimal energetic configuration. The reason is given by the constraint that all spins
lie on spheres. A superposition of spherical vectors, however, does not generally lie
on a sphere.
To determine the stability of the numerically found local minima against temper-

ature, we start in one of the ground states and gradually decrease β. At a critical
inverse temperature βc, the thermal fluctuations destroy the spiral order. In order
to depict this destruction in a simple way, we introduce the spiral order parameter
ρ = 4πM−4∑3

i=1 S
2
Qi
, where M2 is the number of simulated spins and Qi are the

nesting vectors. This parameter measures how much weight the three spiral ground
states contribute to the total spin configuration. With regard to the constraint that

4We also find an amount of non-spirality in the waves which lies at around 2%. In the further
discussions, we neglect this amount.
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all spins lie on the unit sphere, ρ equals 1 only if the system resides in one of the
spiral ground states, while it vanishes in the thermodynamic limit for an inverse tem-
perature β → 0 . For a finite number of simulated spins, the infinite temperature
value of the order parameter is ρ = 12π2/M4.
The dependence of ρ on the normalized inverse temperature β̃ = βJ2

0 h̄
4k2

0/(VucE0)
is shown in Fig. 6.4b for M = 16. For β̃ → ∞, the system resides in one of the
ground states and hence ρ = 1. Increasing temperature, the system gets perturbed
and ρ decreases. For β̃c ≈ 15, ρ falls below, 1/2, which we define as the limit of
domination of the physical properties of the system by the ground state.
We therefore identify βc = β̃cVucE0/(J2

0 h̄
4k2

0) as the experimentally relevant in-
verse temperature of a phase transition from a spirally ordered to an unordered state.
Up to our knowledge, there is at the moment neither experimental nor first principles
data for the magnetic couplings J0 on the surfaces of strong topological insulators.
We therefore estimate values of the exchange coupling J0 in an order of magnitude
approximation by considering an exchange energy of the order of 0.1− 1eV per unit
cell of the topological insulator. This yields J0 ≈ 10 − 102meVnm2/h̄2. We fur-
thermore consider a lattice constant of a = 1nm, which has been achieved and even
been underbid in recent experiments [Nadj-Perge et al., 2014; Polini et al., 2013].
Finally, we allow for k2

0/E0 ranging from 1.5eV−1nm−2 for Bi2Te2Se to 3.8eV−1nm−2

for Bi2Te3, which we take from the table in Jiang & Wu [2011]. With these values,
the critical temperature Tc lies between 0.12K and 30K.

6.1.5. The electronic spectrum in the broken symmetry phase
We now turn our attention towards the surface electrons. In order to find the elec-
tronic spectrum in the broken symmetry phase, i.e., when the magnetic impurities
are arranged in their spiral ground state order, we adopt a mean field approach
where we treat the spin wave as the background magnetization for the electrons.
This yields the following single particle Hamiltonian for the quasi particles:

H =H0 +Hm,

Hm =mS(r) · σ, (6.8)

where H0 is given in Eq. (2.13), and S(r) is the spiral spin wave

S(r) = U cos (Q · r) + V sin (Q · r), (6.9)

which is characterized by one of the nesting vectors Q and the two perpendicular
unit vectors U and V . For simplicity, we choose Q to be the nesting vector in the x
direction, i.e., Q = 2kF (1, 0, 0)T . Exploiting the periodicity in the x direction, this
Hamiltonian can be solved by using Bloch’s theorem, to yield the band structure.
For the numerical implementation, we truncated the Hamiltonian such that the
number of bands is 28. Taking further bands into account does not change the
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Figure 6.5.: The electronic spectrum and the Fermi surface in the broken sym-
metry phase. Energy and momentum are measured in units of E0
and k0 respectively. A magnetic gap is opened in parts of the Fermi
surface. Figure printed with permission from Yuval Baum.

band structure close to the Fermi energy significantly in our simulations. The band
structure near the chemical potential and the Fermi surface is shown in Fig. 6.5,
where kx is restricted to the first Brillouin zone. Clearly, a magnetic gap is opened
in parts of the Fermi surface.
It is now natural to ask how the altered electronic spectrum in turn influences

the RKKY interaction. In fact, the two quantities should be determined self-
consistently. However, the backaction of the magnetization on the electronic spec-
trum already is a second order effect in the coupling between the itinerant excitations
and the magnetic dopants J . If we choose J to be sufficiently small compared to
the energy scales governing the electronic degrees of freedom, we expect to obtain
a good approximation without taking higher orders of J into account. We still con-
sider the self-consistent treatment an interesting branch to follow in future research,
cf. Chapter 8.

6.1.6. Proximity to a conventional s-wave superconductor
In this section, we shortly describe how the proximity to a conventional s-wave super-
conductor alters the broken symmetry phase. The electronic Hamiltonian assumes
the form

H = H0 ⊗ τz +Hm ⊗ τ0 + ∆τx, (6.10)

where the symbol τ denotes the Pauli matrices in particle-hole space, cf. Section 2.3.
In the limit of an infinite (or periodic) system, we can use Bloch’s theorem to yield
the band structure. The band structure near the chemical potential for both ∆ < m
and m < ∆ appear in Fig. 6.6a and Fig. 6.6b.
While for m < ∆ the spectrum is fully gapped, there are four Dirac-nodes in

the spectrum at the edges of the first Brillouin zone for ∆ < m. Out of the four
depicted Dirac nodes, only two are distinct, i.e., not connected by a reciprocal lattice
vector. The described spectra serve a first example to demonstrate a more general
mechanism that causes the creation of a gapless topological superconductor. In
the following Section 6.2, we will isolate this mechanism and explain its physical
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(a)

(b)

Figure 6.6.: The electronic spectrum of Eq. (6.10). The momentum kx is re-
stricted to the first Brillouin zone. (a) The spectrum for ∆ < m.
The spectrum is not gapped. Two Dirac nodes appear at the edges
of the Brillouin zone. (b) The spectrum for m < ∆. The spectrum
is fully gapped. Figure printed with permission from Yuval Baum.
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consequences. We will find that the spiral magnetic order in combination with the
spin-momentum locking of the itinerant excitations plays the most important role
and that we can assume the superconductivity to be comparably weak.

6.2. General scheme for gapless topological
superconductors

In this section, we present a scheme of generating an intrinsically gapless super-
conducting phase of symmetry class D [Kitaev, 2009; Schnyder et al., 2008], which
simultaneously hosts gapless Dirac modes in the bulk and well localized, propagat-
ing, one-dimensional modes, also known as chiral Majorana edge states [Fu & Kane,
2008].
This phase is distinct from previous proposals. In addition, it is distinct from the

hybrid systems that will be introduced in Chapter 7. First, it emerges from intrinsic
degrees of freedom as opposed to relying on an engineered coupling between topo-
logical phases and gapless ones. Second, it may spontaneously form on the surface of
three dimensional topological insulators, which provides a new experimental route
for realizing and probing gapless topological phases. Finally, the chirality of its edge
modes depends on disorder in an unusual manner. We suggest a concrete example
of this phase: a two-dimensional electron gas (2DEG) with Rashba spin-orbit cou-
pling in the presence of a modulated magnetization and proximity-induced s-wave
superconductivity. We analyze the spectral properties and the thermal conductance
of the system in the absence and presence of disorder and small Zeeman fields.
More details on the method of our simulations are given in Section 3.5. It is im-
portant to emphasize that we are interested in thermal and not in charge transport
properties. This is ultimately attributed to the fact that both gapped and gapless
superconductors are perfect conductors of charge, while their thermal conductance
is markedly different. In particular, we refer to the quantum of thermal conductance
G0 = π2k2

BT0/(6h), where T0 is the temperature of the system.
The systems that are introduced in this chapter, share a couple of similarities

with the hybrid systems of Chapter 7. One example is that, in the clean case,
Dirac excitations in the bulk coexist with two types of edge states, depending on
the edge orientation, i.e., along which angle the straight edge is aligned in the two-
dimensional system. For most orientations, we identify “strong” edge states that do
not hybridize with the bulk states due to energy and momentum conservation. Their
wave functions remain exponentially localized near the edge despite the absence of
a bulk gap. For some orientations, this is not the case, and the edge states wave
functions leak into the bulk, making the edge modes “weak”. Surprisingly, we find
that the structure of the edge states crucially depends on the terminal orientation of
the magnetization at the edge of the system. Specifically, for certain terminations,
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(a) (b)

Figure 6.7.: (a) Phase diagram as a function of Zeeman field Bz and disorder
strength δ. Phase transitions are shown in red. M denotes a metallic
phase which typically forms in a disordered two- dimensional super-
conductor [Chalker et al., 2001]. (b) Disorder averaged bulk thermal
conductance of the model in Eq. (6.13). The calculation is done in a
two-terminal setup with periodic boundary conditions. The lattice size
is 80× 80, and the parameters are m = 0.2 and ∆ = 0.14. Each point
is obtained by averaging over 50 independent realizations of disorder.
Figure reprinted with permission from Baum et al. [2015b]. Copyright
(2015) by the American Physical Society.

the intrinsic origin of the edge states leads to a disorder induced inversion of the
edge state chirality.
The inclusion of a uniform Zeeman field that is aligned perpendicularly to the

2DEG, Bz, leads to a gap opening in the bulk spectrum, and the gapped system
possesses a non-trivial Chern number, cf. Section 2.1, which has the same sign as Bz.
Thus, the gapless phase at Bz = 0 is a transition between two topologically distinct
insulating phases. In the presence of disorder, the non-trivial Chern number of the
system implies delocalized5 edge states and localized bulk states. At the transition
between different Chern numbers, the bulk gap must close, such that the phase
diagram in the space of disorder and gap-opening perturbation contains a critical
line, where the bulk states remain delocalized. The topological phase transition
occurs at Bz = 0 also in the presence of weak on-site potential disorder, leading
to the phase diagram sketched in Fig. 6.7a. Starting from the gapless point in the
clean limit and increasing disorder strength, the system remains critical; the bulk
states remain delocalized while the edge states disappear.

5Here, we refer to “localized” and “delocalized” in the sense and context of Anderson localization
and not in the sense of being exponentially localized to the edge of a system. It is unfortunate,
but due to the habitual use of language unavoidable, that the same word is utilized with two
different meanings.



6.2. General scheme for gapless topological superconductors 115

6.2.1. Model
It was originally shown by Fu & Kane [2008] that when a region of a 3DTI surface
is proximity-coupled to a ferromagnet and another neighboring region is proximity-
coupled to an s-wave superconductor, then one-dimensional gapless states must exist
at the interface between these two regions. Both the ferromagnet and the supercon-
ductor induce a gap in the spectrum of the TI surface. The region in space where the
gap changes its nature – from a magnetically induced gap to a superconductivity-
induced gap – is the region that hosts the gapless mode. Here, we consider a
momentum-space-analogous scenario in which the nature of the gap changes in the
two-dimensional Brillouin zone. We show that this construction dictates the ex-
istence of gapless excitations in the two-dimensional bulk, which are localized in
momentum space and extended in real space.
The scheme we consider is based on a family of two-dimensional Hamiltonians of

the type,

H = H0 +Hm +HSC, (6.11)

where:

1. H0 represents a Hamiltonian of spinful electrons, where spin-orbit coupling
breaks the degeneracy of the two spin directions for a given momentum. For
concreteness, we take a 2DEG with Rashba spin-orbit coupling

H0 = [t (2− cos akx − cos aky)− µ]σ0 + λ (σx sin akx − σy sin aky) , (6.12)

where t is the hopping amplitude, µ is the chemical potential, λ is the spin-
orbit strength, a is the lattice constant, and the σi’s are the Pauli matrices in
spin space. This Hamiltonian has two circular Fermi surfaces, an inner and
an outer one6.

2. Hm is a Zeeman coupling to a spatially periodic magnetization, characterized
by a wave-vector Q, that opens a gap in parts of the Fermi surface. For
concreteness, we take Hm = mσz cosQx, with Q = 2kF , where kF is the Fermi
momentum of the outer Fermi surface.

3. HSC = ∆ψk,↑ψ−k,↓+ H.c. is a superconducting s-wave pairing, with ψk,σ being
the annihilation operator of a quasi-particle with spin σ and momentum k,
and ∆ is the induced pairing potential, cf. Section 2.3.

6For the special chemical potential µ = 0, the inner Fermi surface is only a point and is gapped
by superconductivity. Therefore, we do not expect it to contribute to any of the here observed
effects.
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Figure 6.8.: The Fermi surface that arises from H: (a) the blue curves denote
regions of the outer Fermi surface that will be gapped by the mag-
netization and the red curves denote regions that will be gapped by
superconductivity. (b) Hm defines a new Brillouin zone and leads
to an open Fermi surface. The addition of superconductivity gaps
out the remaining Fermi surface except for four discrete points, as
shown in Fig. 6.9a. Figure reprinted with permission from Baum
et al. [2015b]. Copyright (2015) by the American Physical Society.

In the absence of superconductivity, the periodic magnetization, Hm, defines a Bril-
louin zone of size |Q| along the direction ofQ , and opens a gap at some of its edges7.
For |Q|∼ 2kF , where kF is the Fermi momentum, an open Fermi-surface develops.
The effect of superconducting pairing, HSC, depends on its strength. Strong pairing
(|∆|> |m|) renders the entire Fermi surface superconducting, and destroys the effect
of the magnetization. Weak superconductivity (|∆|< |m|), on the other hand, leads
to the aforementioned situation where one part of the Fermi surface is gapped by the
magnetization and the other part is gapped by superconductivity. Therefore, the
nature of the gap changes along a path in momentum space that follows the original
Fermi surface, and the gap is closed at the point of change. The development of the
different gaps is illustrated in Fig. 6.8 to Fig. 6.9a.
By introducing the Nambu basis, (ψ†↑, ψ

†
↓, ψ↓,−ψ↑), as in Section 2.3, the full

Bogoliubov-de Gennes Hamiltonian becomes

H =H0τz +Hmτ0 + ∆σ0τx, (6.13)

where the τi’s are Pauli matrices in particle-hole space. The model obeys a particle-
7For the practical calculation, we assume that the magnetic periodicity is commensurate with the
lattice periodicity.
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(a)

(b) (c)

Figure 6.9.: Band structure of the Hamiltonian, Eq. (6.11), with (a) periodic
boundary conditions. The red and blue regions are gapped by the
superconductor and the magnetization, respectively, cf. Fig. 6.8.
(b) An edge along the y direction. Gapless edge states (red, green)
coexist with the bulk nodes (blue). (c) Typical edge state wave func-
tions. Figure reprinted with permission from Baum et al. [2015b].
Copyright (2015) by the American Physical Society.

hole symmetry P = σyτyK, P2 = 1, with K signifying complex conjugation, but,
due to the magnetic field, no time reversal symmetry and consequently no chiral
symmetry. Therefore, the model belongs to symmetry class D, cf. Section 2.1 and
[Schnyder et al., 2008], which has a topological classification according to Z in two
spatial dimensions.

6.2.2. Results
In the following, we discretize the Hamiltonian of Eq. (6.13) on a square lattice of
Lx×Ly sites, setting t = a = 1, µ = 0 and λ =

√
2−1, which gives Q = π

2 . The band
structure near the Fermi level for |∆|< |m| is shown in Fig. 6.9a. There are two
distinct Dirac nodes in the spectrum at the edges of the first Brillouin zone. Adding
a small uniform Zeeman field, Bz, leads to a mass gap at the two Dirac cones. The
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gapped system is a class D superconductor with a Chern number C = sgn (Bz). In
contrast, for |∆|> |m|, the spectrum is fully gapped (not shown), with C = 0 for
any |Bz|< |∆|. For Bz = 0 and in the presence of boundaries, we find weak edge
states when the boundary is along the x-direction and strong edge states for all
other orientations of the edge. The spectrum of the system with boundaries along
the y-direction and for ∆ < m appears in Fig. 6.9b. Beside the two bulk nodes at
finite ky, there are well localized (strong) chiral edge modes.
We find that the edge mode properties are not determined uniquely by the edge’s

orientation. The modulated nature of the magnetization additionally leads to a
dependence on the termination of the lattice. For the parameters we chose, the
magnetization wave vector is Q = (π/(2a), 0), i.e., the magnetization is periodic
along the x direction with a periodicity of four sites. Hence, there are four different
ways to terminate the lattice in the x direction. We label them according to the
magnetization of the last two sites: (0,+), (+, 0), (0,−) and (−, 0). For a different
choice of magnetic periodicity, the size of the unit cell changes but the physics
remains similar. The dependence of the edge states on the termination is shown in
Fig. 6.10a, where the spectrum of a system with an edge along the y direction is
plotted for the four different terminations. Blue points denote bulk states and the
other colors denote the right edge state. The left edge state is fixed in the (0,+)
termination and is not shown. Both the dispersion and the chirality of the edge state
change as the termination changes. Nonetheless, as long as particle-hole symmetry
is preserved, the chirality remains non-zero, since the latter is determined solely
by the imbalance between right and left movers that cross the line of zero energy.
Notice, that for two terminations the edge states cross the Fermi level three times,
once at ky = 0 and twice, with an opposite velocity, close to the bulk nodes. Hence,
the chirality is determined by the edge states in the vicinity of the bulk nodes.
We confirm the dependence of the edge modes’ chirality and their contribution to

the thermal conductance on the edge orientation and the termination of the lattice
by performing transport simulations. Using a three-terminal geometry, we separate
bulk and edge contributions to transport. For details about the calculations, we refer
to Section 3.5. The simulations are done in the clean limit as well as in the presence
of disorder, which we model as a random spatial variation of the chemical potential,
which is chosen to lie within [−δ, δ] uniformly distributed and independently for each
lattice site, with δ being the disorder strength. The qualitative results do not depend
on the type of disorder, as long as the disorder correlation length is much shorter
than the system size and as long as particle-hole symmetry is preserved. In the
presence of weak disorder, the contribution of the chiral edge states to the thermal
conductance is slightly reduced due to hybridization of the edge modes with the
bulk. For moderate disorder, the edge states at finite momenta hybridize strongly
with the bulk nodes, as opposed to the edge states at small momenta. Therefore,
beyond a certain disorder strength, the edge states around zero momentum dominate
the transport, leading to a unique inversion of the edge state chirality, which is
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(a) (b)

Figure 6.10.: (a) The spectrum of a system with an edge along the y direction for
all possible terminations. The colors in the legend denote the right
edge state. (b) Strong edge contribution, Gch = GRL−GLR, to the
thermal conductance as a function of disorder strength δ. We use
m = 0.1 and ∆ = 0.05. For δ = 0, the chirality of the edge states
changes in dependence on the termination and on disorder. Figure
reprinted with permission from Baum et al. [2015b]. Copyright
(2015) by the American Physical Society.

induced by disorder (see Fig. 6.10b). As the disorder strength is further increased,
all contributions of the edge states to the thermal conductance vanish as the system
enters a thermal metal phase.
In the thermodynamic limit and for clean systems, the contribution of the strong

edge states to the thermal conductance becomes quantized as Fig. 6.11a shows. In
contrast, the contribution of the weak edge states vanishes as a function of the
system size, see Fig. 6.11b. There exists an intuitive explanation why the weak
edge states hybridize so effectively, especially compared to the models introduced in
Chapter 7: In this model, the coupling between the edge and bulk states depends
on the normal and superconducting parameters of the model and therefore cannot
be independently tuned. The energy scales that correspond to these parameters
are large compared to the topological gap scale, |∆|−|m|, and therefore the weak
edge states hybridize effectively. In the presence of a uniform Zeeman field Bz, the
dependence on the termination disappears and the chirality is solely determined by
the sign of Bz. We plot the bulk thermal conductance of the system as a function
of Bz and the disorder strength δ in Fig. 6.7b. The calculated phase diagram agrees
nicely with the theoretical expectation of Fig. 6.7a. In the following, we provide an
illustrative model aiming to intuitively explain the dependence on the termination
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(a) (b)

Figure 6.11.: Edge contribution, Gch, to the thermal conductance in the absence
of disorder (δ = 0) as a function of the system size, for the different
terminations. Here, m = 0.1 and ∆ = 0.05. (a) Strong edge states.
While their chirality depends on the termination, their contribu-
tion to the thermal conductance approaches unity. (b) Weak edge
states. Independently of the termination, their contribution ap-
proaches zero. Figure reprinted with permission from Baum et al.
[2015b]. Copyright (2015) by the American Physical Society.

of the lattice.

6.2.3. Intuitive model in the small Q limit
Some of the main properties of the system can be explained by an intuitive model,
which is based on the limit of a slowly varying magnetization, i.e., the small Q
limit. This intuitive explanation gives physical insight into the formation of strong
and weak edge states. Furthermore, it indicates the observed change in chirality
depending on the lattice termination. However, it should be pointed out that we
provide this cartoon model solely to aid the development of intuition. Although it
shows features similar to the ones of the model given in Section 6.2.1, the concrete
physics can eventually not be extrapolated from the small Q limit since the here
established real space picture (cf. Fig. 6.12) breaks down as Q becomes comparable
to kF.
The dependence of the strong edge states on the magnetic termination may be

understood intuitively from the small Q limit. It was shown by Sau et al. [2010]
that the combination of a Rashba spin-orbit coupling, an s-wave superconducting
pairing, ∆, and a uniform Zeeman field, Bz, leads to a two-dimensional class D
topological superconductor with a well defined Chern number. The value of the
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Chern number is sgn(Bz) for |∆|< |Bz| and zero for |∆|> |Bz|. In the limit of small
Q, the Hamiltonian of Eq. (6.11) can be locally thought of as a system subjected to a
uniform Zeeman field. Thus, we can think about the system in real space as stripes
of superconductors, with alternating Chern numbers, connected in series alongside
their long edges. Edge states flow where the Chern numbers change. Ignoring
the gapped bulk states of each stripe, we may view the system as a collection of
one-dimensional chiral Majorana channels, which we illustrate in Fig. 6.12. We
assume only a nearest neighbor coupling between these chiral channels, such that
channels with the same chirality are coupled by ts (symmetric coupling) and that
channels with an opposite chirality are coupled by ta (anti-symmetric coupling),
and obtain the two-dimensional band structure of the system, if we assume that it
is infinitely large. If the symmetric coupling is the dominant coupling, i.e., |ts|>
|ta|, each two neighboring Majorana channels with similar chirality form a single
fermionic chiral channel. Coupling fermionic channels with an alternating chirality
through a coupling ta leads to a gapless phase with two Dirac cones in the two-
dimensional Brillouin zone. In this regard, the gapless bulk states in our original
model can be understood as the band structure emerging from |ts|> |ta|. The strong
edge states are then a remnant of the channels near the edge, and their nature
depends periodically on the termination. Consistent to our findings in Section 6.2.2,
the chirality of the edge states in this picture also depends periodically on the
termination and changes sign with a period of two stripes.
Adding a uniform Zeeman field on top of this picture leads to an asymmetry

between regions with different Chern numbers. Depending on the sign of the Zeeman
field, the size of the regions with a given Chern number increases while the size of
the regions with the opposite Chern number decreases. In the picture of the one-
dimensional chiral channels, this can be thought of as dimerization of channels.
Hence, a single Chern number prevails in the system.

6.2.4. Conclusions about magnetically doped 3DTI in proximity
to a superconductor

We show that magnetic impurities, which are placed on a lattice on the surface of a
strong three-dimensional topological insulator with warping form a magnetic spiral
in the ground state of the system, which is considerably stable against the influence of
temperature. The wave vector of the hereby possible spirals is engineerable according
to the needs by altering the chemical potential or the lattice structure of the magnetic
impurities. However, our findings indicate, that above a certain density of magnetic
dopants, the developed spiral order is of a generic kind, i.e., it is independent of
the lattice structure and the lattice constant of the magnetic impurities. Therefore,
we assume that our findings also hold for randomly distributed magnetic surface
dopants. This in turn opens realistic opportunities that the described effects can be
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Figure 6.12.: Illustration of the connection of our findings to Sau et al. [2010]
in the limit of small Q. Upper part: the system, in real space,
is described as stripes of superconductors, with alternating Chern
numbers, connected in parallel. The chiral Majorana edges states
of each stripe are depicted by arrows. Lower part: the gapped bulk
states of each stripe are ignored, and the system may be thought
of as a collection of one-dimensional chiral channels connected in
series and coupled by nearest neighbor coupling. Figure reprinted
with permission from Baum et al. [2015b]. Copyright (2015) by
the American Physical Society.
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experimentally observed systems in the near future.
Subsequently, the spiral magnetization is employed to generate a peculiar gap-

less topological superconductor by bringing the surface into proximity to an s-wave
superconductor. We extract the mechanism, which lies behind the build-up of this
gapless topological superconductor, and generalize it to systems that exhibit spin-
momentum locking and a spatially periodic magnetization. Thereby, we are able
to describe general features of the phase in the presence of disorder. One of these
features is the dependence of the edge states’ chirality on the termination of the
lattice.

The gapless topological superconductors unify two seemingly incompatible fea-
tures of a topological system: (i) well localized edge states and (ii) a gapless bulk
spectrum. However, the described systems are complex and rely on an involved
interplay of nontrivial magnetism and superconductivity. Therefore, we posed our-
selves the question: is it possible to generate such ambivalent systems on a simpler
and more general footing, also in the absence of superconductivity? In fact, as we
describe in the following Chapter 7, the basic idea of coupling a gapped topological
phase to a gapless semimetal suffices to construct these interesting electronic phases.
It has to be mentioned, though, that the idea of hybrid systems is not able to give

the complete foundation of the phase presented in the present Chapter 6.2. The
gapless phases built by the interplay of magnetism and superconductivity emerge
from intrinsic degrees of freedom as opposed to relying on an engineered coupling
between two hybridized systems. Therefore, an exact mapping of the former sys-
tems to hybrid models seems to be impossible. A particular feature that remains
unexplained by the approach of hybrid systems is the chirality change of the edge
modes in dependence on disorder.



7. Hybrid systems of topological and
semimetallic phases

This chapter is a revised version of Baum et al. [2015a] and its supplemental ma-
terial, copyrighted by the American Physical Society. Also regard the remarks on
page 3.

In this chapter, we present several examples of two-dimensional models that si-
multaneously host well-localized, gapless one-dimensional modes on the edge and
a gapless two-dimensional bulk spectrum. Such systems may be constructed, for
example, by coupling a gapped two-dimensional state of matter that carries edge
states to a gapless two dimensional system in which the spectrum is composed of a
number of Dirac cones. The existence of this phase is counter-intuitive and in fact
defies one of the main principles of topological insulators, namely the instability of
the edge states for systems with a gapless bulk spectrum. A concrete example of
the generic scenario is given in Section 2.1.1, where the described simple toy model
exhibits exponentially well localized edge states in the regime of a negative gap, the
localization length of which is inversely proportional to the size of the gap. If the
gap is closed, the localization length of the edge states consequently diverges and,
for any finite sample size, hybridizes with the edge state from the opposite edge.
During this process, the characteristics of a topological insulator are gradually lost.
The phases that are discussed here do not suffer from this drawback. In contrast, the
topological energy scale, as reflected in the localization length of the appearing edge
states, is independent of the bulk gap. Furthermore, the edge states possess unique
properties that distinguish them from non-topological edge states. Most notably,
they are either chiral or helical and intimately related to properties of the bulk.
We find that, in the absence of disorder, the edge states can be protected even

when the two systems are coupled, as a cause of momentum and energy conservation.
Here, all models that we consider share similar spectral and transport characteris-
tics, showing distinct bulk and edge contributions that do not mix. We explicitly
distinguish between weak and strong edge states by the level of their mixing with the
bulk. The presence of disorder unravels the difference between the presented mod-
els. In some of the models, where the bulk is localized, disorder stabilizes the edge
modes and decouples them from the bulk, while in others, where the bulk remains
metallic, it completely mixes the two. We analyze the conditions under which these
two cases occur. Similarly, the different nature of the different models is revealed
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when we introduce weak perturbations that open energy gaps in the spectrum. We
provide concrete Hamiltonians for models based on coupling a gapless phase to a
topological phase, for example, in a bilayer system, and analyze their spectral and
transport properties. Beyond that, we propose a concrete physical realization based
on a bilayer Hg(Cd)Te quantum well. Note that the systems we consider share the
lack of a bulk energy gap with Weyl semimetals and nodal superconductors [Mat-
suura et al., 2013; Queiroz & Schnyder, 2014], but are distinguished from them by
being two-dimensional and by having no topological protection to the gapless nature
of the bulk. Additionally, the edge states that appear in those phases, are mostly
flat (Majorana) bands, especially for the nodal superconductors, and Fermi arcs.
The edge states we find here, obey a linear dispersion at a touching point at a mo-
mentum different than the momenta of bulk gap closure and inherit the properties
of the edge states from the topological insulator that participates in the respective
hybrid system.
The edge properties in gapped topological states of matter can be studied through

the local density of states (LDOS) [Chen et al., 2009; Hasan & Kane, 2010; Hsieh
et al., 2009a; Qi & Zhang, 2011]. At energies smaller than the bulk energy gap,
the LDOS is non-zero at the edge, and decreases exponentially as a function of the
distance from the edge. Due to the absence of a bulk gap, this is not the case for the
systems we consider, and we therefore have to employ different methods for studying
the edge. For the clean case, we study a cylindrical geometry, in which the lattice
momentum parallel to the edge, k||, is a good quantum number. We find two types
of edge states, which we call strong and weak. Strong edge states carry a momentum
k|| and an energy ε(k||) for which there are no bulk states. Their wave functions are
exponentially localized near the edge with the localization length being inversely
proportional to the bulk gap at k||. Weak edge states occur when for all values of
k|| and energies ε(k||) for which there are states at the edge, there are also states in
the bulk. The edge states then easily hybridize with the bulk states, and their wave
functions are not exponentially localized. We find that the “strength” of the edge
mode depends on the orientation of the edge. For the models we consider, there are
only a few orientations in which the edges are weak.
The edge states are also reflected in transport [Bernevig et al., 2006; Hasan &

Kane, 2010; Hsieh et al., 2009a,b; König et al., 2007; Qi & Zhang, 2011]. We
distinguish between edge versus bulk transport by studying transport in devices of
two terminals with both periodic and hard wall boundary conditions. This method
is useful also in the presence of disorder, where states are not characterized by their
momentum. Generally, in gapped phases with a non-trivial topological index, edge
state transport is robust as long as the relevant energy scales for transport are
smaller than the bulk gap. Remarkably, for the systems we consider, the bulk gap
vanishes, and yet the edge state transport may still be robust. In particular, we find
that disorder may even stabilize the edge state transport.
The effect of disorder on the systems we consider may be inferred from the effect
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of a translationally invariant perturbation that opens a gap in the bulk spectrum.
Such a perturbation makes the system acquire a well-defined topological index.
When the topological index is a Chern number whose value does not depend on
the perturbation that opens the gap, the gapless phase is a transition between two
insulating phases with the same Chern number. Then, in the presence of disorder,
the bulk states may become localized and the edge states stabilize. In contrast,
when the value of the Chern number depends on the sign of the perturbation, then
the gapless phase separates two topologically distinct insulating phases and the
phase diagram in the space of disorder and gap-opening perturbation must contain
a critical line, where the bulk states remain delocalized and the edge states disappear.
Away from the critical line, the system is a well-defined Chern insulator. For cases
where the topological index is not a Chern number, the localization properties of
the bulk and edge states depend on the symmetries of the specific model.

7.1. The four models
We now introduce four models that share the same behavior in the absence of dis-
order, namely the coexistence of edge states and a gapless bulk, but strongly differ
away from that point. The models we consider are based on a designed coupling be-
tween a gapped two-dimensional topological phaseH1 and a gapless two-dimensional
phase H2. The simplest example would be a bilayer system in which the two layers
are described by the Hamiltonians H1 and H2 which are tunnel-coupled by Hc. The
combined Hamiltonian can then be written as

H =
(
H1 Hc

H†c H2

)
. (7.1)

Here, the topological phase H1 is an insulator or a superconductor with a non-trivial
topological index. For simplicity, we assume that the gap of H1 constitutes the
largest appearing energy scale. The Hamiltonian H2 is gapless, for example, having
a Dirac spectrum. The coupling Hc is chosen such that the full Hamiltonian remains
gapless. The different blocks should be combined such that the full Hamiltonian is
irreducible, and hence belongs to a symmetry class according to Schnyder et al.
[2008] and Section 2.1.2. In general, the symmetry class of the full Hamiltonian is
given by the minimal symmetry of H1 and H2, although, by fine tuning parameters,
the resulting Hamiltonian may accidentally obey additional symmetries.
In the first three models, H1 describes a quantum Hall state with a non-zero

Chern number, while H2 describes three gapless phases that follow three different
symmetries. As a consequence of the different symmetries, the effect of disorder on
the three systems is markedly different. Models I and II show the behavior of a
system where the value of the Chern number is independent or dependent on the
gap-opening perturbation, respectively. Model III shows that the symmetries of
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the full Hamiltonian determine its behavior, even when the building blocks H1 and
H2 have different localization properties. The fourth model belongs to a different
topological class, being characterized by a Z2 invariant, but has the advantage of
being experimentally accessible in a Hg(Cd)Te double quantum well [Bernevig et al.,
2006; König et al., 2007; Michetti et al., 2012].

7.1.1. Model I: Gapped Chern insulator coupled to a 2D Dirac
metal

For the topological part, H1, we take the Qi-Wu-Zhang Hamiltonian [Qi et al., 2006]
of the quantum anomalous Hall effect,

H1 =
∑

k
[ε(k)− (t0(cos kx + cos ky)− µ)σz + v1(σx sin kx + σy sin ky)] , (7.2)

where ε(k) = t1(1− cos kx− cos ky)σ0 is the kinetic energy and the σ’s are the Pauli
matrices in spin space. Here and in the following, we set the lattice constant to a = 1,
as well as t0 = 1, expressing all other Hamiltonian parameters relative to these scales.
The model belongs to symmetry class A and has a non-zero Chern number for 0 <
µ < 2. For the gapless part, we use H2 = ∑

k v2(σx cos kx+σz sin ky), which contains
four Dirac cones in its spectrum, at (kx, ky) = (±π/2, 0) and (±π/2, π). Notice that
this model obeys effective time-reversal, particle-hole and chiral symmetries which all
square to unity: T = σxK, P = σzK, and C = σy, respectively, where K denotes the
right acting operator of complex conjugation. Therefore, the Hamiltonian belongs
to class BDI, cf. Tab. 2.1, which is topologically trivial in two spatial dimensions.
Finally, we take Hc = t

∑
k(σ0 + σx) for the coupling term. In fact, for any Hc with

a zero determinant, the full Hamiltonian remains gapless. Solving for its spectrum
in a cylindrical geometry, we find weak edges when the boundary is along the y
direction or spans an angle of ± arctan (0.5) with the x axis. Then, bulk and edge
states occur at the same momentum and energy. The strong edge states appear for
all other boundary orientations.
The band structure of the system with open boundary conditions in the y direction

is shown in Fig. 7.1a. The blue points denote bulk states while the red/green points
denote right/left propagating edge states, whose wave functions decay exponentially
into the bulk (Fig. 7.1b). The zero modes in the bulk coexist with well localized
chiral edge states. In contrast, the spectrum and typical edge states of a system with
open boundary conditions in the x direction are shown in Fig. 7.1c and Fig. 7.1d.
Here, the red points denote edge states that hybridize with the bulk. We find
numerically that the local density of states near the edge is larger than in the bulk
(not shown), but the latter does not decay to zero at large distances from the edge.
Adding a mass term mσy to H2 opens a bulk gap. This term breaks both the
P and C symmetries of H2, but leaves T intact. Hence, the gapped version of H2
belongs to class AI in the tenfold classification [Kitaev, 2009; Schnyder et al., 2008],
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(a) (b)

(c) (d)

Figure 7.1.: Band structure and edge state wave functions of model I for different
edge orientations. Edges along the y direction in (a) and (b): Well-
localized states on the two edges (red, green) coexist with zero modes
in the bulk (blue). Edges along the x direction in (c) and (d): Due to
energy and momentum overlap, hybridized edge states (red) coexist
with the bulk states. Figure reprinted with permission from Baum
et al. [2015a]. Copyright (2015) by the American Physical Society.
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(a) (b)

Figure 7.2.: (a) Disorder averaged bulk conductance of model I as a function of
the disorder strength δ and the gap-opening parameter m. Chern
numbers of the two phases are shown. (b) Average conductance
G/G0, for m = 0, as a function of δ, for periodic (red) and hard wall
(blue) boundary conditions. The difference between the two curves
is due to edge state conductance. The lattice size is L×W = 80×80,
and the Hamiltonian parameters are µ = v1 = 1, t1 = 0, v2 = 0.2,
and t = 0.1. Each point is obtained by averaging over 100 indepen-
dent realizations of disorder. Figure reprinted with permission from
Baum et al. [2015a]. Copyright (2015) by the American Physical
Society.

which is also topologically trivial in two spatial dimensions. The full Hamiltonian,
for v1 6= v2, is then a class A Chern insulator with a non-zero Chern number that
is independent of the sign of m, so it belongs to the first class of models mentioned
in the introduction. Therefore, the system has to have chiral gapless edge states
as well as a gapped bulk, independent of the orientation of the edge. The weak
edge states must therefore be stabilized by the appearance of a small mass term. In
fact, the same holds for disorder – the full Hamiltonian belongs to class A [Kitaev,
2009; Schnyder et al., 2008], in which the bulk states become localized. Due to the
non-zero Chern number, the edge states cannot disappear, and must therefore be
stabilized by disorder.

To confirm this expectation, we numerically analyze the two-terminal transport in
the system. All transport simulations are performed using the Kwant code [Groth
et al., 2014]. We discretize the Hamiltonian on a square lattice of L × W sites,
and attach ideal leads in the x-direction. This enables us to compute the scattering
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matrix
S =

(
r t
t′ r′

)
, (7.3)

which we use to determine the conductance G/G0 = Tr t†t, G0 = e2/h, in the low
bias voltage, low temperature limit. In the y-direction, we use either hard-wall
boundary conditions, or apply periodic boundary conditions to the states, ψ(x, 0) =
ψ(x,W ), to access only the bulk contribution to transport. Here and in all other
models, disorder is introduced as a random variation of the Fermi energy, drawn
independently for each lattice site from the uniform distribution [−δ, δ]. As seen
in Fig. 7.2b, when the disorder strength δ increases, the conducting bulk states
originating from H2 localize, leaving behind only the quantized conductance of the
edge. The phase diagram is obtained by performing transport simulations with
periodic boundary conditions and in the presence of a mass term (Fig. 7.2a). Starting
from the gapless point, m = δ = 0, both the addition of a mass term or disorder
drive the system into a Chern insulating phase with C = 1.

7.1.2. Model II: Gapped Chern insulator coupled to a Chern
insulator at its critical point

In this model, we keep H1 as before, but replace H2 by a Hamiltonian of a quantum
Hall state at the transition between two Chern numbers. I.e.,

HII =
(

H1 t(σ0 + σx)
t(σ0 + σx) H2

)
, (7.4)

where

H1,2 =ε(k)± (µ1,2 − cos kx − cos ky)σz + v1(σx sin kx + σy sin ky), (7.5)

and ε(k) = t1(1−cos kx−cos ky)σ0. We choose µ1 = 1 such that H1 is in a non-trivial
phase with a Chern number C = 1. For µ2 = 2, H2 is at a transition between two
Chern insulating phases with C = −1 for µ2 < 2, and C = 0 for µ2 > 2. As such,
the combined system is trivial for µ2 < 2 and has C = −1 for µ2 > 2.
This Hamiltonian is nothing but the Hamiltonian appearing in Eq. (7.2) with

σz → −σz and with µ = 2. Here, the gapped H2 belongs to class A with either
Chern number of zero or of −1. Therefore, the full Hamiltonian is a class A Chern
insulator with a Chern number changing from C = 0 to C = 1.
Similar to the other models, the Hamiltonian (7.4) was discretized on a square

lattice of L ×W sites (lattice constant a = 1), and disorder was introduced as a
random change of the on site Fermi energy, chosen independently for each lattice site
from the uniform distribution [−δ, δ]. We have used L×W = 80× 80, t1 = t = 0.2,
and v1 = 1.
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C = 1
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〉

(a) Bulk conductance as a function of the
disorder strength δ and µ2. Each
point was obtained by averaging over
100 disorder realizations.
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(b) Average bulk conductance for µ2 = 2
and δ = 3.1, as a function of the
system size L for different coupling
strengths t.

Figure 7.3.: Average bulk conductance of model II, Eq. (7.4). Figure reprinted
with permission from Baum et al. [2015a] (supplemental material).
Copyright (2015) by the American Physical Society.

The phase diagram as a function of the disorder strength δ and µ2 is shown in
Fig. 7.3a. The bulk insulating phases are separated by a critical line across which
the edge states localize when the topological invariant changes from C = 1 to C = 0.
In addition, there is a conducting region close to δ = 3 that spreads throughout the
plotted µ2 range and is similar to the one in Fig. 7.2. This feature is a finite-size
effect which appears due to the different gaps of H1 and H2. As we will also observe
in model III, which is introduced below, the gap of H1 is kept constant while the
one of H2 is closed and reopened when it undergoes a topological phase transition.
Therefore, increasing the strength of disorder causes H1 and H2 to Anderson localize
at different values of δ, leading to a finite-size effect which is more pronounced for
a larger difference between their gaps. The scaling analysis of Fig. 7.3b confirms
the nature of this conducting region, showing that the bulk conductance decreases
with increasing system size. In the limit of an infinite system size, starting from
the critical point of the clean system, µ2 = δ = 0, both the bulk and the edge
conductance vanish for µ2 = 0 and any δ > 0.

7.1.3. Model III: Gapped Chern insulator coupled to a quantum
spin Hall state at its critical point

In the previous models, both the gapped and the gapless Hamiltonian were subjected
to localization by disorder. Now, we choose an H2 that does not get localized by
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weak disorder. Interestingly, we find that its coupling to the gapped Chern insulator
makes it amenable to localization. We set H2 to be the Bernevig-Hughes-Zhang
(BHZ) model for the quantum spin Hall effect [Bernevig et al., 2006],

H2 =
(
h(k) Γ(k)
Γ†(k) h∗(-k)

)
, (7.6)

with

h(k) = (M0 + 2M2(1− cos kx − cos ky))σz + Aσx sin kx
+ (C0 + 2C2(1− cos kx − cos ky)σ0 − Aσy sin ky,

Γ(k) =∆ (σ0 sin kx + iσz sin ky)− i∆0σy,

(7.7)

where the σi’s act in the subspace of the E and H orbitals of the BHZ model. We
chooseM0 such that H2 is in a metallic region between two non-trivial quantum spin
Hall phases (symmetry class AII). For the full model, we take H1 as in Eq. (7.2),
and a simple coupling Hamiltonian,

Hc = t

(
1 i 1 i
1 i 1 i

)
. (7.8)

Similar to Figs. 7.1a-d, in the absence of disorder, bulk and edge states coexist at the
Fermi level and overlap in momentum, causing them to hybridize, cf. Fig. 7.5. Even
though they no longer decay exponentially into the bulk, their wave functions are
still visibly peaked at the edges of the system. For the figure, we take M0 = −0.49
and t = 0.1, keeping all other parameters unchanged.
While H2 is time-reversal symmetric, allowing the existence of metallic phases

in the presence of disorder, the coupled model belongs to class A, where weak
disorder leads to localization. Seemingly, the phase diagram in the space of M0 and
disorder strength δ, depicted in Fig. 7.4a, shows a metallic phase at finite disorder
strength (close to δ = 1), reminiscent of that present in the BHZ model. However,
a conductance scaling analysis (Fig. 7.4b) shows that it is only metallic in the
decoupled case. When the coupling is turned on, the conductance decreases with
system size, showing that the presence of the conducting region is caused by the
finite-size of the system. In accordance with Fig. 7.2a, as the disorder strength is
increased, the bulk states localize leaving behind only the quantized contribution of
the edge states to the thermal conductance. This exemplifies the fact that both the
topological and the localization properties depend on the symmetry class of the full
Hamiltonian. In the thermodynamic limit, the phase diagram of this model should
be identical to that of model I.



7.1. The four models 133

(a) (b)

Figure 7.4.: (a) Disorder averaged bulk conductance of model III as a function
of M0 and disorder strength δ. (b) Average bulk conductance for
M0 = −1 and δ = 0.95, as a function of the system size L for different
coupling strengths. The conducting region around δ = 1 becomes
localized as the system size is increased. The lattice size in (a) is
L×W = 80× 80, and Hamiltonian parameters are µ = v1 = 1, t1 =
0.4, t = 0.2, A = M2 = 1/4, ∆1 = 0.1, ∆0 = 0.05, C0 = −0.02 and
C2 = 0. Each point is obtained by averaging over 50 independent
realizations of disorder. In (b), the aspect ratio is fixed to L/W =
1 and 2000 disorder realizations are considered. Figure reprinted
with permission from Baum et al. [2015a]. Copyright (2015) by the
American Physical Society.
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(a) Band structure of model III with
open boundary conditions in the x-
direction. The color scale shows the
weight of the state on the first and
last 10% of lattice sites.

(b) Intensity as a function of position for
the edge states at ky = 0 in the left
panel.

Figure 7.5.: Figure reprinted with permission from Baum et al. [2015a] (sup-
plemental material). Copyright (2015) by the American Physical
Society.

7.1.4. Model IV : Gapped quantum spin Hall phase coupled to a
quantum spin Hall phase at its critical point

We now consider both H1 and H2 to be BHZ models, as described in Eq. (7.6) and
Eq. (7.7), with different mass terms, M0,1 and M0,2, respectively. We set H1 to
be in a topological phase and H2 in a metallic region. This model can be directly
implemented experimentally, for example by two coupled Hg(Cd)Te quantum wells
as proposed by Michetti et al. [2012]. Most directly, this model may be realized
in such systems when one of the quantum wells is grown with a critical thickness
[Buttner et al., 2011] while the other well is chosen to be in a topologically non-
trivial phase. Remarkably, the system may be driven to the gapless point by the
application of voltage on front and back gates even when the thickness of the two
wells does not conform to this requirement.
We choose the coupling term Hc = t (σ0 + σz) τ0 of Michetti et al. [2012] to

describe the experimentally accessible parameter regime. The Pauli matrices σ
describe the space of the E and H orbitals, and the Pauli matrices τ act on the spin
degree of freedom. As in the other models, Fermi level bulk and edge states can
coexist in two coupled BHZ Hamiltonians. For some energies, edge and bulk states
overlap, and therefore hybridize. Nevertheless, the spatial profile of the hybridized
wave functions shows clear peaks at the edges of the system. We illustrate this
observation in Fig. 7.6, using M0,1 = −1, M0,2 = −1.45, and keeping all other
parameters as before. Additionally, like in model III, the bulk becomes insulating
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(a) Band structure of model IV with
open boundary conditions in the x-
direction, showing hybridized bulk
and edge states. The color scale shows
the relative intensity of each state on
the first and last 10% of lattice sites.

(b) Intensity as a function of position for
the edge states located at ky = π in
the left panel.

Figure 7.6.: Figure reprinted with permission from Baum et al. [2015a] (sup-
plemental material). Copyright (2015) by the American Physical
Society.

when M0,2 is changed. However, this time, the phase is characterized by a different
invariant, belonging to Z2 instead of the Z valued Chern number.

At zero disorder, the experimental signature of this phase is the coexistence of
helical edge modes together with a conducting bulk. This coexistence can be verified
experimentally by performing conductance measurements in three-terminal devices
with polarized leads as discussed below in Section 7.1.4.1.

The disordered case also shows a behavior different to the one of the previous
models. Since the full Hamiltonian belongs to class AII, weak anti-localization
leads to the formation of a metallic phase at finite disorder strength, see Fig. 7.7a.
This is confirmed by the scaling analysis of Fig. 7.7b, showing that the conductance
increases with system size

The reader may wonder why we employ a different set of topological masses M0,1
and M0,2 for Fig. 7.6 and Fig. 7.7. This illustrates, and anticipates, that the specific
choice of the topological masses is not very important as long as one mass is close
to a point of gap closure. The experimentally more relevant scenarios, however, are
almost vanishing topological masses. We will elaborate on these in the following
Section 7.1.4.1.
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(a) (b)

Figure 7.7.: (a) Disorder averaged bulk conductance of two coupled BHZ mod-
els as a function of disorder strength δ and M0,2. (b) Average bulk
conductance for δ = 1 and M0,2 = −1.47, as a function of the sys-
tem size L for different couplings t. All parameters of the two BHZ
models are the same as in model III, except for M0,1 = −0.8. The
coupling strength is t = 0.15. In (a), we averaged over 50 realiza-
tions, while 2000 are used in (b). The phase diagram is computed
for a lattice of L ×W = 80 × 80 sites, while the conductance scal-
ing is done at a constant aspect ratio L/W = 1. Figure reprinted
with permission from Baum et al. [2015a]. Copyright (2015) by the
American Physical Society.
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Figure 7.8.: Schematic setup of a double quantum well structure in Hg(Cd)Te,
realizing a gapless topological phase. Figure reprinted with permis-
sion from Baum et al. [2015a] (supplemental material). Copyright
(2015) by the American Physical Society.

thickness A/eV M2/eV C0/eV C2/eV −M0/eV
7.0 nm 0.365/ac −0.706/a2

c 0 −0.532/a2
c 0.01009

6.3 nm −0.373/ac −0.857/a2
c 0 −0.682/a2

c 0

Table 7.1.: Parameters used for the non-trivial quantum well (top row) from Rothe
et al. [2010], and the gapless one (bottom row) from Buttner et al.
[2011]. We choose an effective lattice constant ac = 0.64nm, and absorb
the chemical potentials, parametrized by C0, into the gate voltages,
setting them to zero (see text).

7.1.4.1. Experimental realization of model IV

Model IV is realizable in a double HgTe quantum well structure in a CdTe matrix,
a setup proposed in Michetti et al. [2012]. One of the quantum wells should be
grown with the critical thickness of 6.3nm, which has been experimentally realized
in Buttner et al. [2011], while the other one is chosen to be topologically non-trivial,
with a width of, e.g., 7nm, which is exemplified in Fig. 7.8. Both quantum wells
themselves are described by the BHZ model, where the parameters are adjusted to
the thickness of the respective quantum well. For our calculations, we use the ex-
perimentally relevant estimates of the parameters of Rothe et al. [2010] and Buttner
et al. [2011], summarized in Tab. 7.1.
For clarity, we neglect off-diagonal terms in the BHZ models, such as bulk and

structural inversion asymmetry [Bernevig et al., 2006; Liu et al., 2008; Rothe et al.,
2010] since they vanish at the Γ point where the bulk gap closes. The two quantum
wells are coupled by the term introduced in Michetti et al. [2012], which fulfills the
following properties:
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1. the overlap between the E1 states of the quantum wells is much stronger than
the overlap between the H1 states1, and

2. at the Γ point, the overlap between the E1 and H1 states of different quantum
wells vanishes due to rotational symmetry along the axis of crystal growth 2.

These properties guarantee a simple structure of the inter layer coupling Hamiltonian
at the Γ point,

Hc(0) = t (σ0 + σz) τ0ρx, (7.9)

where σ, τ and ρ are Pauli matrices describing the band-index, time-reversal and
layer degree of freedom, respectively.
The value of M0,2 at which the topological phase transition occurs changes as a

function of the coupling strength t, such that the well of critical thickness becomes
a gapped, topologically trivial system when t > 0. However, for any coupling
Hamiltonian that preserves time-reversal symmetry there exists a value of M0,2 at
which the combined system is a gapless topological insulator.
Rather than tuning the width of the quantum wells to reach this point, the bulk

gap may be closed by shifting the chemical potentials of the quantum wells relative
to each other. This can be achieved by applying different gate voltages on top
and bottom gates, Vt and Vb, as shown in Fig. 7.8. The combined system then
becomes gapless when the top of the valence band in one well and the bottom of
the conduction band in the second well touch each other.
Due to the coupling between the layers, a gap is reopened when the two bands

overlap, with both gapped phases being topologically non-trivial Z2 insulators. For
the coupling in Eq. (7.9), there is a critical voltage difference, ∆V ≡ Vc, at which
the bulk gap closes. Generally, the critical voltage, Vc, depends on the bulk gaps and
chemical potentials of the uncoupled wells, and also on the coupling between the
layers. However, for the experimentally accessible case, where |M0,1−M0,2|� t, the
critical voltage is Vc = (M0,1−M0,2)−(C0,1−C0,2), independent of t. Experimentally,
the bulk gap closing should have the signature of an increased conductance through
the sample, which helps to determine the necessary voltages Vt and Vb. We show the
band structure of such a system for three different gate voltages in Fig. 7.9. Here,
M0,1 and M0,2 are chosen such that the top layer is in a topological insulating phase
while the bottom layer is in a trivial insulating phase.
Our main prediction is that helical edge channels coexist with a conducting bulk.

Measurements of the two-terminal conductance contain contributions both from the
1The underlying reason is the interfacial character of the E1 quantum well bands opposed to the
intra well character of the H1 bands.

2 The introduction of a boundary and the lattice structure of the material system in fact break
this symmetry. However, the former symmetry violation is a finite size effect and the latter
becomes irrelevant close to the Γ point.
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(a) (b) (c)

Figure 7.9.: Band structure of model IV with open boundary conditions in the
x direction. M0,1 = −M0,2 = 0.01eV and the coupling between the
layers is t = 0.1. Other parameters are as in Tab. 7.1. The band
structure is calculated for three different configurations of the gate
voltage such that (a) ∆V = Vc − 0.02V (b) ∆V = Vc (c) ∆V =
Vc + 0.02V. The red and green points denote left/right moving edge
states, while the blue points denote bulk states. Figure reprinted
with permission from Baum et al. [2015a] (supplemental material).
Copyright (2015) by the American Physical Society.

bulk states and from the helical edge modes. In order to separate these bulk and
edge contributions, the conductance could be measured in a three-terminal setup
as depicted in Fig. 7.10a. By subtracting the conductance between any two leads
from the one of the reverse direction (for instance GLR −GRL), we obtain the chiral
contribution to transport Gchiral. Here, the edge channels are helical, and therefore,
Gchiral is zero. However, this is not the case if the leads are spin-polarized. We define
the lead polarization as Pleads = (n↑− n↓)/(n↑+ n↓), where n↑ and n↓ is the density
of spin up and spin down particles in the leads, respectively. The value of Gchiral
(in units of e2/h) should change continuously from −1 to 1 as Pleads is smoothly
changed from −1 to 1. Such a spin dependent chiral contribution along with a large
two terminal conductance is a clear evidence for the existence of helical channels
that coexist with a conducting bulk. To confirm this expectation, we employed a
numerical simulation of the proposed three-terminal setup in the presence of finite
disorder and with perfectly polarized leads. The two-terminal conductance from
right to left, GRL, the one from left to right, GLR, and their difference are depicted
in Fig. 7.10b as a function of the applied gate voltage. In these simulations, the
disorder strength is twice the topological gap of the uncoupled wells.
Away from the critical voltage, the bulk is gapped and the only contribution to

the two-terminal conductance stems from a single edge channel. As the voltage
reaches the critical value, the bulk becomes conducting, hence both GLR and GRL
get an equal contribution from the bulk. Nonetheless, their difference, i.e., the edge
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contribution, remains close to its quantized value, one unit of conductance.

7.1.5. Summary
We provide a general scheme for realizing unusual two-dimensional topological phas-
es that simultaneously host gapless modes in the bulk and on the edges. We find that
the modes on the edge exhibit a peculiar structure that depends on the boundary
orientation. Additionally, we find that the behavior of these phases in the presence
of disorder can be extracted from the clean limit by analyzing their topological
properties in the presence of an infinitesimal bulk gap. Finally, we propose a concrete
physical realization of one such model, based on double Hg(Cd)Te quantum wells.
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(a) (b)

Figure 7.10.: (a) Sketch of the three-terminal setup. The chiral contribution
to transport is obtained by subtracting the conductance between
any two leads from the one of the reverse direction, for instance,
GLR − GRL. The helical edge modes can be probed by polarizing
the leads. (b) Numerical simulation of the three-terminal setup
with perfectly polarized leads. We depict the two-terminal con-
ductances, GRL and GLR, as well as their difference, as a function
of the applied gate voltage. As the gate voltage reaches the criti-
cal value, the bulk becomes conducting but the edge contribution
remains almost quantized, despite the large strength of disorder
(see text). The parameters are M0,1 = −M0,2 = 0.01, the coupling
between the layers is t = 0.1, the lattice constant is 4, and all
remaining parameters are as described in Tab. 7.1. The disorder
strength is taken to be twice the topological gap, i.e., δ = 0.02.
The conductance is computed for a lattice of L × W = 80 × 80
sites and each point was obtained by averaging over 100 realiza-
tions of disorder. Figure reprinted with permission from Baum
et al. [2015a] (supplemental material). Copyright (2015) by the
American Physical Society.



8. Conclusion & outlook
This thesis is a brick in the wall of a building. The building is the vast field of topo-
logical insulators and the wall represents the combinations of topological insulators
with well-known electronic phases and effects1. As such a brick, we have contributed
to the analysis of the interaction of a topological insulator with a Rashba impurity, a
Kondo dot, magnetic adatoms, proximity-induced superconductivity, and semimet-
als.
Most of the unique behaviors that we encounter are caused by the peculiarities of

the edge liquids. The first example that we describe is the unexpected insensitivity
of transport properties to the strength of the Rashba coupling at the refermioniz-
able point in the Rashba setup. This is particularly interesting in view of the usual
time-reversal-protected insensitivity to backscattering of the helical liquid. Further-
more, we discover an exact correspondence in the two channel Kondo model between
time-resolved current correlations and the long sought-after Kondo cloud. This cor-
respondence is essentially based on the spin-momentum locking of the helical liquid.
Additionally, we discover the analytic structure of the Kondo cloud for the Toulouse
points in form of the Hurwitz-Lerch transcendent, which could – speculatively –
prove to be more generally valid. Continuing to investigate the effect of magnetic
impurities on topological insulators, we find the stable spiral magnetic ground state
order of adatoms at the surface of a three-dimensional strong topological insulator.
The spiral order is generated by the hexagonal warping of the Fermi surface for a
certain regime of chemical potentials but it does, above a critical threshold for the
density of the magnetic adatoms, not seem to depend on the spatial order of the
adatoms. We employ this spiral magnetic field to generate a peculiar class of two-
dimensional gapless topological insulators, which host one dimensional Majorana
edge channels that change their chirality if they are affected by disorder. Finally, we
abstract the conditions that lead to gapless topological phases and combine gapped
topological systems with gapless semimetals.
The research conducted and presented in this thesis has uncovered numerous

interesting paths for further research. We want to present some of the ideas here,
concluding the thesis. They should be taken as hints where exciting physics may be
discoverable. In this regard, many of the ideas are guided by intuition and, in fact,
it could be that some of them have been found independently or even have been
addressed in publications that we are not aware of.

1The whole construct is far from completion.



8. Conclusion & outlook 143

Figure 8.1.: A possible setup that could apply Kondo physics to realize the ex-
change of Majorana fermions and therefore quantum computation.
Two Kondo dots in the two channel regime are coupled to two he-
lical liquids. Each of the dots amounts to two differently coupled
Majorana modes. The interaction between the Majorana modes can
be engineered by time-dependent biases applied at the terminals.

Majorana braiding in the helical Kondo effect

The refermionized Hamiltonian of the two channel Kondo model, as analyzed in
Section 5.1, utilizes the local fermion c, which basically represents the spin degree of
freedom on the Kondo dot. If we decompose c into two Majorana modes, remarkably,
these modes couple distinctly to the leads. In fact, at the Toulouse point, one of
the Majorana modes completely decouples from the system. Therefore, under these
circumstances, a single Kondo dot effectively amounts to one Majorana fermion.
It is therefore possible to conceive of a double dot setup that could be employed
to engineer an interaction between two Majorana modes mediated by the Kondo
cloud, which effectively allows to exchange the Majorana excitations. A possible
schematic setup is depicted in Fig. 8.1. The necessary time dependent variation
of the coupling strength between the Majorana modes could, as indicated by the
voltage dependence of the Kondo cloud in Section 5.1, be realized by time-dependent
voltages in a multi-terminal setup. The idea could be a step towards the realization
of topological quantum computation [Fulga et al., 2013; Halperin et al., 2012; Stern
& Lindner, 2013]. However, there is a disadvantage that we do not want to conceal.
The quantum bit of interest would be formed by two Majorana modes, each of
which stemming from a different quantum dot. In the prevalent theoretical example
of Majorana modes, Kitaev [2001], and the possible experimental realizations, Das
et al. [2012]; Mourik et al. [2012], the quantum bit is separated from the states of
the environment by an energy gap. In our scenario, instead, the density of states
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Figure 8.2.: A chain of Kondo dots that interact with each other via two helical
liquid leads. By bringing the leads out of equilibrium, the sign of
the interaction between neighboring dots can be tuned to be positive
or negative, resulting in a global antiferromagnetic or ferromagnetic
state, respectively.

of the leads is constant in energy. The isolated read-out of the quantum bit can
therefore probably not be achieved without additional effort. A possible resource in
this regard could be the temporal application of a Zeeman field, which gaps out the
helical leads. It has to be kept in mind, although, that a Zeeman field also competes
with the Kondo effect itself.

Helical Kondo chain

A quintessence of the nonequilibrium studies on the Kondo cloud in Section 5.1 is
that the sign of the Kondo cloud switches in dependence on the applied voltage. We
therefore expect the effective interaction between two spins that is mediated by the
Kondo cloud – similar to the effective RKKY interaction of Section 6.1.1 – to change
signs in dependence on the voltage as well [Maciejko, 2012; Sodano et al., 2010].
A setup where the effect could be exploited is depicted in Fig. 8.2 representing a
chain of Kondo dots that interact with each other using the itinerant particles of
two attached helical liquids. We expect to obtain two main scenarios. Either the
interaction between adjacent dots is positive, then the ground state is antiferromag-
netic, or the interaction is negative, which results in a ferromagnetic ground state.
Most notably, the sign of the interaction is tunable by the voltage such that we get
a completely electrically induced transition between both types of ground states.
Such a system could serve as a useful device for spintronics and information storage,
again, also in combination with quantum computational aspects.
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Figure 8.3.: A helical liquid in form of a ring is coupled to a Kondo dot. The
circle is realized as the edges of an anti-dot. A flux Φ is threaded
through the ring.

Helical Kondo ring
The intrinsic spin-momentum locking of the helical liquid in combination with a
Kondo dot results in another unique behavior – apart from the ones described in
Chapter 5 – if we consider the helical liquid being bent to the form of a circle.
In particular, this may be achieved by an anti-dot in the proximity of a magnetic
impurity as depicted in Fig. 8.3, which additionally has the advantage of a magnetic
flux being threadable through the ring. If we consider the strong coupling, single
particle limit, we observe a peculiar bound state. To demonstrate this, we consider
that the particle and the dot initially have oppositely aligned spins and apply the
classical picture that the particle behaves as a localized entity. Each time the particle
arrives at the Kondo dot it scatters, inducing a simultaneous spin flip of the dot and
itself. Therefore, the particle inverses its direction and travels around the whole
circumference before it is flipped again at the Kondo dot. The loop continues ad
infinitum. We therefore expect a bound state with interesting and unique properties
that, by the introduction of the flux Φ can obtain an anyonic character [Altland &
Simons, 2006b].

Reaction of the electronic surface states of the
three-dimensional topological insulator to the magnetization of
the adatoms
In Chapter 6, we have calculated that the RKKY interactions result in a spiral
magnetic order of the magnetic dopants. This spiral order, in turn, can effect the
electrons such that their spectrum is altered, which, again, can alter the magneti-
zation of the magnetic dopants, etc.. The effect of this back-action is of a higher
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(a) Without Zeeman field. (b) With correctly chosen Zeeman field.

Figure 8.4.: The two-dimensional Rashba model, Eq. (6.12), with periodic mag-
netization m and a Zeeman field mz exhibits edge channels (red
and blue) for certain model parameters, which we expect to be one-
dimensional, dispersing Jackiw-Rebbi states.

order in the coupling between the adatoms and the surface electrons. Therefore, we
have considered it to be vanishingly small throughout Chapter 6. However, there are
examples of one-dimensional systems, cf. Braunecker et al. [2009a,b], where the in-
clusion of the back-action significantly enhances the stability of the magnetic order.
It would be interesting to account for this effect, for instance, by a self-consistent
mean field analysis as in the above references and determine whether the stability
of our two-dimensional spiral is enhanced as well. This is especially interesting if we
keep in mind that the stability of the spiral wave already reaches up into the Kelvin
regime without the consideration of this effect.

Jackiw-Rebbi state for the non-superconducting, magnetically
doped surface of a three-dimensional topological insulator
The Rashba toy model that is employed in Section 6.2 to exemplify the general
mechanism behind the formation of our gapless topological insulators also exhibits
edge states in the absence of superconductivity. The only ingredients present in this
case is the Rashba toy model of Eq. (6.12) for a two-dimensional electron gas with
Rashba spin orbit coupling and a periodic magnetization that opens a partial gap at
the outer Fermi surface. If we additionally apply a Zeeman field, the inner Fermi sur-
face is gapped out. A typical spectrum for this scenario is depicted in Fig. 8.4. The
system in this case very much resembles the two-dimensional counterpart of the one
dimensional system described in Rainis et al. [2014], which is a one-dimensional wire
exhibiting Rashba spin orbit coupling in the presence of a periodic magnetization
and a Zeeman field. The zero-dimensional edge states that develop in this model are
fractionally charged, so-called Jackiw-Rebbi states [Jackiw & Rebbi, 1976]. There-
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fore, we expect that the edge states in our two-dimensional Rashba model are one-
dimensional, dispersing Jackiw-Rebbi states. In fact, already Jackiw considered a
two-dimensional extension [Jackiw, 1984]. In contrast to their zero dimensional
counterparts, excitations in a one-dimensional channel can move. This seems to
be particular interesting regarding the possibly non-abelian statistics of the exci-
tations [Klinovaja & Loss, 2013]. It is also interesting how the character of the
one-dimensional Jackiw-Rebbi channels is changed by the increase of superconduc-
tivity in the model. As we know from our studies in Section 6.2, the edge channels
are Majorana edge channels in the absence of a Zeeman field. Therefore, a crossover
from Jackiw-Rebbi properties to Majorana properties should be observable, which
we expect at an equal strength of the Zeeman field and the superconducting gap
function.

Determination of a global topological invariant for the presented
gapless topological phases
The edge states of the gapless topological hybrid systems that are constructed in
Chapter 7 have almost identical physical characteristics to the ones of the gapped
topological phase the system was created from. As the edge states of gapped topo-
logical systems are well classified by global topological invariants, cf. Section 2.1,
the described situation seems to indicate that gapless topological systems possess an
equivalent to the topological invariant of the gapped case. Being able to construct
such a global invariant also for gapless systems would enrich the set of methods that
are used to classify such systems.
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Part III.

Appendix



A. Deutsche Zusammenfassung und
Motivation

A.1. Kurze Zusammenfassung
Topologische Isolatoren sind elektronische Phasen, welche im Inneren isolieren, je-
doch auf ihren Oberflächen über besondere, metallische Randkanäle mit einer spin-
abhängigen Dispersion verfügen. Diesen Phasen wird eine große Bedeutung hinsicht-
lich zukünftiger Realisationen von Spintronik und topologischem Quantenrechnen
zugeordnet. Neben der Bestimmung intrinsischer Eigenschaften dieser neuartigen
Systeme kann die Betrachtung von Kombinationen mit wohlbekannten physikali-
schen Systemen originelle, neue Physik generieren. Diese Dissertation befasst sich
mit eben solchen Kombinationen. Insbesondere werden die folgenden Systeme ana-
lysiert: Ein lokaler Rashba-Rückstreuer, ein Kondo-Quantenpunkt im Zweikanalre-
gime, im Gitter geordnete, magnetische Adatome auf einem starken, dreidimensio-
nalen topologischen Isolator, die näheinduzierte Supraleitung in letzteren Systemen
und Hybridverbindungen bestehend aus einem topologischen Isolator und einem
Halbmetall. Die primären Resultate sind die analytische Beschreibung der Kondo-
wolke und die Beschreibung ihrer möglichen Detektion in Stromkorrelationen weit
entfernt von der Kondo-Region. Dabei wird die Methode der refermionisierbaren Pa-
rameterkonfigurationen verwendet und erweitert. Des Weiteren wird die Entdeckung
einer Klasse von bandlückenfreien topologischen Phasen beschrieben, deren Rand-
kanäle sich fast wie die von konventionellen topologischen Isolatoren verhalten. Die
dargestellte Forschung wird voraussichtlich in der zukünftigen Klassifizierung und
Anwendung von Systemen, die als Komponente mindestens einen topologischen Iso-
lator enthalten, hilfreich sein. Dafür werden einige Beispiele gegeben.

A.2. Deutsche Einführung und Motivation
Das elektronische Verhalten kondensierter Materie wird, wie aus dem Schulunterricht
bekannt, in zwei Hauptklassen eingeteilt, die nach der elektrischen Leitfähigkeit un-
terschieden werden: Leiter und Nichtleiter1. Typische Leiter sind Metalle. Die Leitfä-
higkeit von Metallen ist allein durch ihre Leitungsbandelektronen bestimmt, welche

1Häufig wird aus praktischen Gründen zusätzlich die Klasse der Halbleiter eingeführt.
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sich nahezu frei bewegen können. Diese Elektronen formen damit ein elementares
Beispiel für eine elektronische Phase, die Fermiflüssigkeit. Fermiflüssigkeiten sind die
häufigsten in natürlichen Materialien vorkommenden elektronischen Phasen. Jedoch
haben uns die letzten hundert Jahre die Entdeckung einer Vielzahl elektronischer
Phänomene beschert, die von selteneren elektronischen Phasen herrühren. Beispie-
le sind Supraleiter, Mott-Isolatoren, Wigner-Kristalle, nematische Phasen und die
Familie der Quanten-Hall-Effekte. Letztere beinhalten die ersten Beispiele für to-
pologisch klassifizierte elektronische Phasen. Dieses Klassifikationsschema erweitert
das bisherige Verständnis davon, was eine Phase ausmacht erheblich [Hasan & Kane,
2010]. In naher Vergangenheit wurde eine ganze Klasse von topologischen Isolato-
ren entdeckt [Bernevig et al., 2006; Brüne et al., 2011; Hasan & Kane, 2010; Hasan
et al., 2014; Kane & Mele, 2005a; König et al., 2007]. Diese zeichnen sich dadurch
aus, dass sie in ihrem Inneren elektrisch isolieren, jedoch an Ihrer Oberfläche (im
Fall von dreidimensionalen Strukturen) elektrisch leiten. Die leitenden Oberflächen
werden, in Anlehnung an die Fermiflüssigkeit, auch Randflüssigkeiten genannt. Sie
leiten den elektrischen Strom auf sehr spezifische Weise, die vom Spin der gelei-
teten Teilchen abhängt. Diese einmalige Eigenschaft macht topologische Isolatoren
interessant für Anwendungen in der Spintronik, die es sich zum Ziel gesetzt hat,
die klassische Elektronik im Bereich der Computer, also der maschinellen Berech-
nung, abzulösen. Spintronik kann aufgrund elementarer physikalischer Eigenschaften
schneller und hitzeverlustärmer arbeiten als Elektronik. Außerdem öffnen topologi-
sche Isolatoren im Bereich des topologischen Quantenrechnens neue Pforten [Stern
& Lindner, 2013].
Nach der Entdeckung der topologischen Isolatoren wurden zunächst ihre intrinsi-

schen Eigenschaften bestimmt und die Qualität der Systeme verbessert [Brüne et al.,
2011; Hasan et al., 2014]. Dieser Vorgang hält weiter an. Interessant ist es aller-
dings, im nächsten Schritt die vielfältigen Kombinationsmöglichkeiten topologischer
Isolatoren mit altbekannten physikalischen Systemen zu explorieren. Nicht zuletzt
wurden in der Vergangenheit durch einen solchen Kombinationsansatz interessante
Effekte entdeckt. Zu diesen zählen der Josephson-Kontakt, die Diode, der Transistor
und das zweidimensionale Elektronengas im magnetischen Feld (d. h. die Quanten
Hall Effekte). Diese Dissertation trägt einen Teil zu der Erforschung solcher Effekte
bei, die durch Kombination eines topologischen Isolators mit Bekanntem entstehen.
Beispiele bisheriger Ergebnisse in diese Richtung können in Fu & Kane [2008]; Law
et al. [2010]; Lindner et al. [2012]; Liu et al. [2009]; Ström et al. [2010] gefunden
werden. Natürlich ist der Konfigurationsraum aller möglichen Kombinationen viel zu
umfangreich, um hier dargestellt werden zu können. Diese Dissertation konzentriert
sich deshalb auf einige wenige elementare Systeme mit denen topologische Isolatoren
kombiniert werden. Die grundlegende Physik wird in Kapitel 2 eingeführt. Es wird
erklärt, was ein topologischer Isolator ist (Abschnitt 2.1) und auf elektromagnetische
Störungen, dargestellt durch den Zeeman Effekt und den Rashba Effekt, den Kondo
Effekt (Abschnitt 2.2.3), die Ruderman-Kittel-Kasuya-Yosida-Wechselwirkung (Ab-
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schnitt 2.2.4) sowie Supraleitung (Abschnitt 2.3), eingegangen wird. Nachfolgend,
in Kapitel 3, werden die verwendeten theoretischen Methoden vorgestellt. Darunter
befinden sich: Die Theorie der refermionisierbaren Parameterkonfigurationen (Secti-
on 3.1), welche Bosonisierung und Refermionisierung beinhaltet, eine spezielle Me-
thode, um Divergenzen zu behandeln, die von einer lokalen Störstelle herrühren
(Section 3.2), der Metropolis Algorithmus (Section 3.3) und Informationen über die
durchgeführten Transportsimulationen (Section 3.5).
In Abschnitt II wird die Analyse der kombinierten topologischen Isolatoren präsen-

tiert. Zunächst handelt dieser Abschnitt von einem lokalen Rashba-Rückstreuer an
den Rändern eines Quanten-Spin-Hall-Isolators mit repulsiver Elektronenabstoßung,
der sogenannten helikalen Flüssigkeit, und analysiert dessen refermionisierbare Para-
meterkonfiguration, welche eine interessante Ähnlichkeit zum wechselwirkungsfreien
System aufweist (Kapitel 4). Als nächstes wird ein lokaler Kondo-Quantenpunkt be-
trachtet, der an zwei helikale Flüssigkeiten gekoppelt ist (Kapitel 5). Insbesondere
wird dabei die Kondowolke für bestimmte Parameterkonfigurationen exakt aufgelöst
und ein Weg vorgeschlagen, wie sie experimentell in bestimmten Stromkorrelationen
nachgewiesen werden kann. Danach werden magnetische Momente betrachtet, die in
Gitterform auf einem dreidimensionalen topologischen Isolator angebracht werden,
der über eine hexagonal verformte Fermi-Fläche verfügt (Kapitel 6). Das Hinzufügen
von Supraleitung generiert einen speziellen, zweidimensionalen bandlückenfreien Su-
praleiter, dessen Entstehung auf einen generalisierbaren Mechanismus zurückführt
werden kann (Kapitel 6.2). In Kapitel 7 wird der Versuch unternommen ähnliche
Supraleiter durch die künstliche Kopplung zweidimensionaler Systeme zu erstellen,
wobei eine reiche Phänomenologie in der Gegenwart von Fehlstellen aufgefunden
wird.
Die Darstellung wird in Kapitel 8 dadurch abgerundet, dass mögliche zukünftige

Projekte beschrieben werden, deren Fragestellungen sich aus den hier präsentierten
Resultaten ergeben. Diese reichen von Kondo-Majorana-Vertauschung bis zu eindi-
mensionalen, dispergierenden Jackiw-Rebbi-Flüssigkeiten.
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