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Abstract

Generating coordinated motion for a mobile robot operating in natural, continuously
changing environments among moving obstacles such as humans is a complex task
which requires the solution of various sub problems. In this thesis, we will cover the
topics of perception and navigation in dynamic environments, as well as reasoning
about the motion of the obstacles and of the robot itself.

Perception is mainly considered for a laser range finder, and an according method for
obstacle detection and tracking is proposed. Network optimization algorithms are used
for data association in the tracking step, resulting in considerable robustness with re-
spect to clutter by small objects.

Navigation in general is accomplished using an adaptation of the velocity obstacle
approach to the given vehicle kinematics, and cooperative motion coordination be-
tween the robot and a human guide is achieved using an appropriate selection rule
for collision-free velocities.

Next, the robot is enabled to compare its path to the path of a human guide using one of
a collection of presented distance measures, which permits the detection of exceptional
conditions. Furthermore, a taxonomy for the assessment of situations concerning the
robot is presented, and following a summary of existing approaches to more intelligent
and comprehensive perception, we propose a method for obstruction detection.

Finally, a new approach to reflective navigation behaviors is described where the robot
reasons about intelligent moving obstacles in its environment, which allows to adjust
the character of the robot motion from regardful and defensive to more self-confident
and aggressive behaviors.
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Chapter 1

Introduction

The interaction and cooperation between a human and intelligent robot systems is a
research topic which has attracted much attention recently. Under captions such as
‘human-friendly robotics’ or ‘human-robot co-existence’ this field covers a large variety
of aspects. These aspects reach from a human-robot communication based on ‘human-
friendly’ communication channels such as natural language, gestures, mimics, over an
understanding of the context of a task or an understanding of situations where hu-
man and robot have to interact to achieve a common task, to physical interaction (robot
touches human, human touches robot) and coordination of motion and actions of the
human and the robot.

When talking about interaction, the notions of coordination and cooperation can be distin-
guished, as Webster’s Dictionary (Gove, 1993) defines coordination as a

combination in suitable relation for most effective or harmonious results,

and cooperation is characterized by a

common effort or labor; association of persons for their common benefit.

Accordingly, we will talk of coordination in situations where agents (humans or the
robot) pursue their goals while avoiding mutual obstruction, and as a special case of
coordination, we will talk of cooperation when the involved agents pursue a common
goal.

This thesis addresses various problems which arise when the motion of a mobile robot
has to be coordinated with the motion of humans in its environment, including the
perception, navigation and collision avoidance in such an environment, as well as rea-
soning about the motion of the obstacles and the robot itself.
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Figure 1.1: Structure of the thesis

Figure 1.2: Wheelchair ‘MAid’ (mobility aid)
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1.1 Overview

The overall structure of this thesis is illustrated by Figure 1.1 together with implications
between the respective chapters. In Chapter 2, the problem of perception in a dynamic
environment is addressed, which serves as a basis for further reasoning and navigation.
Chapter 3 is dedicated to the task of navigation in general and collision-free motion
among moving obstacles specifically. Cooperative motion coordination between a hu-
man guide and the robot is achieved using the methods presented in Chapter 4. The
following Chapter 5 deals with distance measures for paths which can be used to assess
the quality of a coordinating behavior. Chapter 6 presents related work on advanced
perceptual techniques for situation assessment and an approach to detect deliberate ob-
structions of a mobile robot. Finally, Chapter 7 proposes an approach to reflective navi-
gation, which means that the robot reasons about the perception and velocity selection
of its obstacles and integrates these findings into its own decision making.

The robotic wheelchair ‘MAid’ (mobility aid (Prassler et al., 1998b), see Figure 1.2) has
been used as a target for the implementation of algorithms and experimental evaluation
as presented in this thesis. The described system is equipped with a SICK laser range
finder and an ultrasonic sensing system. Computations are performed on an on-board
PC (Intel Pentium II, 333 MHz, 64 MB RAM) running Linux. The laser range finder is
used to observe the environment, whereas the ultrasonic sensors help to avoid collisions
with obstacles that are invisible to the range finder.

1.2 Notations

The following conventions and notations conferring to robotics have been adopted
from Latombe (1991) and Bruyninckx and De Schutter (2001). The definitions address-
ing graph theory are mainly taken from Krumke et al. (2000) and sometimes inspired
by Bang-Jensen and Gutin (2001). Furthermore, the web-site provided by Weisstein
(2004) has been useful in many places.

1.2.1 Robotics

Rigid objects like a robot or an obstacle are denoted by uppercase letters likeA or B. For
a sequence of similar objects, we will write A1, A2, . . . or B1, B2, . . . .

The workspace of a robot is denoted by W . The configuration space is denoted by C, or
by CA if we want to clarify to which object the configuration space belongs. Vectors are
written in bold face, like p,v ∈ R2.

A coordinate system is a reference frame which is used to describe the position and ori-
entation of an object. In this thesis, coordinate systems will be rigidly attached to an
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object or to a space, and each object has at most one coordinate system attached to it.
For an object A, its coordinate system will be denoted by 〈A〉, e.g. the coordinate sys-
tem 〈Bi〉 is attached to object Bi (an obstacle, or a robot), and the coordinate system 〈W〉
is attached to the workspace W . The axes of a plane coordinate system 〈A〉 are denoted
by x̂A and ŷA.

A path of an object is a planar curve which maps time to the position of the object. A
trajectory of an object is a curve which maps time to the configuration of the object, con-
taining position and orientation.

1.2.2 Graphs

Definition 1.1 (Directed Graph)
A directed graph G = (V,A, α,ω) consists of a finite, non-empty set V of vertices, a
finite set A of arcs, and two functions α,ω : A→ V .

For an arc a ∈ A, the vertex α(a) is called the source vertex of a, and the vertex ω(a)

is called the target vertex of a. An arc a ∈ A is called incident to its source and target
vertices α(a) and ω(a). For a vertex v ∈ V , the arc set A+(v) = {a ∈ A | α(a) = v} is
called the leaving arcs of v, the set of vertices succ(v) = {ω(a) | a ∈ A+(v)} is called the
successors of vertex v, and the number d+(v) := |A+(v)| is called the out-degree of v.
Analogously, the arc set A−(v) = {a ∈ A | ω(a) = v} is called the entering arcs of v, the
set of vertices pred(v) = {α(a) | a ∈ A−(v)} is called the predecessors of vertex v, and the
number d−(v) := |A−(v)| is called the in-degree of v. The number d(v) := d+(v) + d−(v)

is called the degree of a vertex v ∈ V and is the number of arcs a ∈ Awhich are incident
to v.

An arc a ∈ A with α(a) = ω(a) is called loop. Two arcs a1, a2 ∈ A are called parallel,
if a1 6= a2 and α(a1) = α(a2) andω(a1) = ω(a2). Two arcs a1, a2 ∈ A are called inverse,
if α(a1) = ω(a2) andω(a1) = α(a2).

A directed graph G = (V,A, α,ω) is called simple, if it has neither loops nor inverse
arcs. In that case, it may be denoted as G = (V,A) with A ⊆ V × V , and the functions α
andω are defined implicitly such that a = (α(a),ω(a)) holds.

A directed graph G = (V,A, α,ω) is called symmetric, if for any arc a ∈ A there is
an inverse arc ā ∈ A. In a simple, symmetric directed graph, the inverse is uniquely
defined.

Definition 1.2 (Subgraph of a Directed Graph)
For a directed graph G = (V,A, α,ω), the directed graph G[V ′] = (V ′, A ′, α ′,ω ′) with

• V ′ ⊆ V ,
• A ′ = {a ∈ A | α(a) ∈ V ′ andω(a) ∈ V ′},
• α ′ = α|A ′ , and
• ω ′ = ω|A ′
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is called the subgraph of G induced by V ′.

Definition 1.3 (Bipartite Graph)
A directed graph G = (V,A, α,ω) is called bipartite, if there is a partition of the ver-
tices V = S ∪ T , S ∩ T = ∅, such that for any arc a ∈ A, either α(a) ∈ S and ω(a) ∈ T ,
or α(a) ∈ T andω(a) ∈ S.

Definition 1.4 (Matching in a Directed Graph)
A matching M in a directed graph G = (V,A, α,ω) is a set of arcs M ⊆ A, such that
each vertex v ∈ V is incident to at most one arc a ∈M of the matching. A matching M
is called perfect, if α(M) ∪ω(M) = V , that is, for each vertex v ∈ V there is an incident
arc a ∈M in the matching.

Definition 1.5 (Paths in Directed Graphs)
Let G = (V,A, α,ω) be a directed graph. Let p = (v1, a1, v2, a2, . . . , an, vn+1) be a finite
sequence of vertices vi ∈ V and arcs ai ∈ A with α(ai) = vi and ω(ai) = vi+1 for 1 ≤
i ≤ n. Then, this sequence p is called a path in G, the set A(p) = {ai | 1 ≤ i ≤ n}

is called the arcs of p, and the set V(p) = {vi | 1 ≤ i ≤ n + 1} is called the vertices
of p. The length of path p is the number of arcs in this sequence. Furthermore, we will
write α(p) = v1 for the initial vertex of p andω(p) = vn+1 for the terminal vertex of p.

For a path p and v ∈ V(p) we say p is a path through v, or the path p traverses v. For a
path p and a ∈ A(p) we say p is a path through a, or the path p traverses a.

A path p in G is called closed or circuit in G, if α(p) = ω(p). A path p = in G is called
open if p is not closed.

A path p = (v1, a1, v2, a2, . . . , an, vn+1) in G is called simple, if ai 6= aj for i 6= j, i.e. no
arc is traversed more than once.

A path p = (v1, a1, v2, a2, . . . , an, vn+1) in G is called elementary, if vi 6= vj for 1 ≤ i, j ≤
n, i 6= j, and vn+1 6= vi for 1 < i ≤ n, i.e. no vertex is traversed more than once, unless
the path is closed where the initial vertex of p appears again as terminal vertex of p.

Definition 1.6 (Chains and Cycles in Directed Graphs)
Let G = (V,A, α,ω) be a directed graph. A chain in G is a finite sequence

s = (v1, δ1a1, v2, δ2a2, . . . , vn, δnan, vn+1)

with δi ∈ {−,+}, ai ∈ A for 1 ≤ i ≤ n, and vi ∈ V for 1 ≤ i ≤ n+1, such that α(δiai) = vi

andω(δiai) = vi+1 for 1 ≤ i ≤ n, where

α(δa) =

{
α(a) if δ=‘+’,
ω(a) else,

(1.1)

ω(δa) =

{
ω(a) if δ=‘+’,
α(a) else.

(1.2)
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The vertex α(s) = v1 is called initial vertex of s, and the vertex ω(s) = vn+1 is called
terminal vertex of s.

The chain s is called simple, if ai 6= aj for i 6= j, 1 ≤ i, j ≤ n. The chain s is called
reduced, if ai 6= ai+1 for 1 ≤ i < n, and a1 6= an if v1 = vn+1 (i.e. the chain is “locally
simple” and there is no “U-turn”).

The chain s is called elementary, if vi 6= vj for 1 ≤ i < j ≤ n, and vn+1 6= vi for 1 < i ≤ n.

If vn+1 = v1, the chain is called closed chain or cycle in G. A chain in G is called open,
if it is not closed.

For a chain s = (v1, δ1a1, v2, . . . , δnan, vn+1) we will write δa ∈ s if there is an i ∈
{1, 2, . . . , n} with δi = δ and ai = a.

For a chain s = (v1, δ1a1, v2, . . . , δnan, vn+1), we will denote its inverse chain by

s̄ = (vn+1, δ̄nan, vn, . . . , v2, δ̄1a1, v1), (1.3)

where

δ̄ =

{
− if δ=‘+’,
+ else.

(1.4)

For two chains s = (v1, δ1a1, . . . , δnan, vn+1) and s ′ = (v ′1, δ
′
1a

′
1, . . . , δ

′
ma

′
m, v

′
m+1) withω(s) =

α(s ′), we will call

s · s ′ := (v1, δ1a1, . . . , δnan, v
′
1, δ

′
1a

′
1, . . . , δ

′
ma

′
m, v

′
m+1) (1.5)

the concatenation of s and s ′.

For chains of non-zero length we may omit denoting the vertices. Alternatively, when
the underlying graph does not contain parallel arcs, we may omit denoting the arcs.

Furthermore, we will also write a in short for +a and ā in short for −a.

Definition 1.7 (Connectedness of Directed Graphs)
A directed graph G = (V,A, α,ω) is called weakly connected, if for any two ver-
tices v1, v2 ∈ V there is a chain s in G with initial vertex v1 and terminal vertex v2.

A directed graph G = (V,A, α,ω) is called strongly connected, if for any two ver-
tices v1, v2 ∈ V there is a path p in G with initial vertex v1 and terminal vertex v2.

Definition 1.8 (Flow in a Directed Graph)
Let G = (V,A, α,ω) be a directed graph. Let e : V → R be a vertex label, the excess of a
vertex. Let u : A→ R+

0 and c : A→ R+
0 be arc labels, the capacity and the cost of an arc.

Now we can ask for an arc label f : A → R+
0 , called a flow in G, which complies with

the mass balance condition∑
a∈A−(v)

f(a) −
∑

a∈A+(v)

f(a) + e(v) = 0 (1.6)
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for each vertex v ∈ V and the capacity bound

f(a) ≤ u(a) (1.7)

for each arc a ∈ A. Such a label f is called a feasible flow in G.

Often only a special case is considered, where there is exactly one source vertex s ∈ V
with e(s) > 0, and exactly one sink vertex t ∈ V with e(t) < 0. In this case, a well
known problem is the question for a maximum flow, that is, how large may the amount
of excess e(s) = −e(t) be such that there is still a feasible flow in G.

If there is a feasible flow in a given labeled graph, one can search for a feasible flow f∗

with minimal cost ∑
a∈A

f∗(a) · c(a) = min
f is a feasible flow

(∑
a∈A

f(a) · c(a)

)
(1.8)

among all feasible flows f.

There are several algorithms which solve these problems efficiently. Implementations
are available for example via the LEDA library (Mehlhorn and Näher, 1999). For more
details on graph theory and network optimization see the monographs by Bang-Jensen
and Gutin (2001), Ahuja et al. (1993), Noltemeier (1976), or Lawler (1976).

Definition 1.9 (Undirected Graph)
An undirected graph G = (V, E, γ) consists of a non-empty finite set of vertices V , a
finite set of edges E, and a function γ : E→ {{v1, v2} ⊆ V

}
which maps an edge e ∈ E to

its incident vertices γ(e) = {u, v} ⊆ V .

An edge e ∈ E is called loop, if |γ(e)| = 1. Two edges e1, e2 ∈ E are called parallel,
if e1 6= e2 and γ(e1) = γ(e2).

An undirected graph G = (V, E, γ) is called simple, if G has no loops and no parallel
edges. In that case, Gmay be denoted as G = (V, E) with E ⊆

{
{v1, v2} ⊆ V | v1 6= v2

}
.

Definition 1.10 (Paths in Undirected Graphs)
Let G = (V, E, γ) be a directed graph. Let p = (v1, e1, v2, e2, . . . , en, vn+1) be a finite
sequence of vertices vi ∈ V and edges ei ∈ E with γ(ei) = {vi, vi+1} for 1 ≤ i ≤ n. Then,
this sequence p is called a path in G, the set E(p) = {ei | 1 ≤ i ≤ n} is called the edges
of p, and the set V(p) = {vi | 1 ≤ i ≤ n + 1} is called the vertices of p. The length of
path p is the number of edges in this sequence. Furthermore, we will write α(p) = v1

for the initial vertex of p andω(p) = vn+1 for the terminal vertex of p.

For a path p and v ∈ V(p) we say p is a path through v, or the path p traverses v. For a
path p and e ∈ E(p) we say p is a path through e, or the path p traverses e.

A path p in G is called closed or cycle in G, if α(p) = ω(p). A path p = in G is called
open if p is not closed.
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A path p = (v1, e1, v2, e2, . . . , en, vn+1) in G is called simple, if ei 6= ej for i 6= j, i.e. no arc
is traversed more than once.

A path p = (v1, e1, v2, e2, . . . , en, vn+1) in G is called elementary, if vi 6= vj for 1 ≤ i <

j ≤ n, and vn+1 6= vi for 1 < i ≤ n, i.e. no vertex is traversed more than once, unless the
path is closed and the initial vertex of p appears again as terminal vertex of p.



Chapter 2

Perception in Dynamic Environments

2.1 Introduction

Today many existing robot systems are not designed to cope well with rapidly changing,
dynamic environments. If there is an unforeseen situation, like a human entering the
working cell of an assembly robot or people crossing a mobile robot’s desired path,
at best the robot stops and possibly tries to evade this obstacle in order not to hurt
anybody. On the other hand, such a mobile robot might be easily obstructed by a person
playing jokes on it. So this lack of awareness is a serious obstacle to a widespread use
of such systems, and a basic requirement to this awareness is continuous observation of
objects surrounding the robot, which we will address in this chapter of the thesis.

2.1.1 Related Work

Tracking human motion with computer vision is an active field of research (Moeslund,
1999), most approaches using video image sequences. Range images are for example
used in intelligent vehicles or driver assistance systems (Meier and Ade, 1998; Sobottka
and Bunke, 1998). An object tracking system for a mobile robot using a laser range
finder had been designed by Prassler et al. (1998a) previously, and was replaced by the
system which is presented in this chapter.

There is a correspondence problem in stereo vision where features from two camera
images are to be matched, which is similar to the data association problem encoun-
tered when tracking multiple moving objects. As an alternative to the widely used dy-
namic programming approach, Roy and Cox (1998) use maximum-flow computations
in graphs to solve this problem, yielding considerably better results, but unfortunately
at increased computational costs.

Associating multiple moving point objects at successive moments in time by comput-
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ing minimum cost matchings in bipartite graphs is mentioned by Ahuja et al. (1993)
as an application example. The network optimization approach which is presented in
this chapter is inspired by this application example, and by the relationship between
matchings and flows in bipartite graphs (Ahuja et al., 1993; Lawler, 1976).

2.1.2 Overview

Perception in dynamic environments can be accomplished by various sensors, however,
not all of them are equally suited for this task, and we are focusing mainly on laser range
finders in this chapter. Our goal is to track the objects around the robot, which is per-
formed by repeated execution of the following steps. At the beginning of each cycle a
scan image of the environment is taken. This scan is segmented (Sect. 2.3.1) and fur-
ther split into point sets representing approximately convex objects (Sect. 2.3.2). Then,
the object matching problem is considered as a minimum cost transportation problem,
where the shape length of objects is transported from scan to scan at costs depending
on the relative position and shape of the objects (Sect. 2.4.1). Results of experiments
are shown (Sect. 2.5) and discussed (Sect. 2.6) before concluding this part of the thesis
(Sect. 2.7).

2.2 Sensors

Various types of sensors are being used on mobile robots in order to perceive the en-
vironment. Typically, ultrasonic proximity sensors, one or more cameras for computer
vision, and laser scanners can be be found, each of which has certain advantages and
disadvantages.

Recently, some researches started to explore the use of even more exotic sensors like
scanning body heat detectors (Cattin, 2002) and stereo microphones (Walthelm and
Litza, 2003) for human-robot interaction. But these are considered to be less relevant
for the topic of this thesis.

2.2.1 Computer Vision

Using video cameras for mobile robot perception is an appealing idea which is moti-
vated as analogon to human vision. Consequently, research in computer vision has a
long tradition. However, due to their susceptibility to changes of lighting conditions
and the required bandwidth, computer vision approaches are not yet suitable for many
fields. Especially robustness is a problem when it comes to service robots operating
under changing conditions, for example outdoors and exposed to the sun.
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θi

Obstacle

si

x̂S

〈S〉ŷS Scanner

pi

Figure 2.1: Laser Scan, Distance si and Direction θi

2.2.2 Ultrasonic Sensors

A simple way of sensing distances to obstacles in the environment is based on the emis-
sion of ultrasonic pulses and the measurement of the time until an echo returns. Since
the width of the sonic beam can range from ±30◦ up to ±60◦ and more, this technique
is suitable to detect obstacles in arbitrary directions. However, this also means a lack of
angular resolution, which turns sonar sensors unsuitable for tracking multiple objects.

2.2.3 Laser Scanners

Laser scanners are devices which measure distances to opaque obstacles at constant
angular intervals with high spatial and temporal resolution, and are thereby well suited
for mobile robot applications.

A laser scan image is given by a sequence S = (s1, . . . , sL) of samples si ∈ R+
0 repre-

senting the distances from the range finder to the closest opaque obstacles in the plane
of sensing. Let θi be the direction in which distance sample si is measured, and with-
out loss of generality θi ≤ θj for i ≤ j (see Figure 2.1). Clearly, we may associate each
distance sample si to the point pi = (si cos θi, si sin θi) ∈ R2 in the frame of the laser
scanner device.
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2.3 Finding Objects

Objects are extracted from laser scan images by two heuristic steps. At first the scan
is segmented into densely sampled parts. In the second step these parts are split into
subsequences describing “almost convex” objects.

2.3.1 Scan Segmentation

Consider two adjacent distance samples si and si+1. Intuitively, if they are taken from
the same obstacle, their values will be similar. On the other hand, if one of these sam-
ples is taken from a different obstacle, which is located in front of or behind the other
sample’s obstacle, we will encounter a significant difference |si − si+1| in these two dis-
tances. Thus it is plausible to use such distance gaps as split positions for the sequence
of samples in order to find distinct objects. A threshold value δmax is chosen in advance
for the maximal allowed distance gap. The result of the scan segmentation is a finite
sequence ((s1, . . . , si1−1), (si1, . . . , si2−1), . . . , (sip, . . . , sL)) of subsequences of Swhere in-
dices i1, i2, . . . , ip denote split positions such that |sik−1

− sik | > δmax for k = 1, 2, . . . , p.

Finding the Threshold

In order to find an adequate threshold value δmax as required by the approach described
above, we examine the distribution of distances between successive scan points for a
collection of different scans. Figure 2.2 visualizes these distributions in histogram form.
Note that distances larger than 0.8 m are not shown.

Two phenomena are prominent. Firstly, the distributions exhibit a bulge at short dis-
tances, as we expect it from neighboring scan points taken form the same object. Sec-
ondly, there are sporadic occurrences of larger distances as expected from neighboring
scan points taken from different objects. The task is now to identify the distance where
the bulge ends. Considering the histograms, a threshold value of δmax = 0.18m appears
reasonable.

Adaptive Scan Segmentation

Since adequateness of parameter values often depend on the environment, adaptive
approaches are of interest when targeting varying environments. For an adaptive scan
segmentation, automated detection of the extents of the bulge is needed.

We conducted some experiments with an approach where the lower distance bound of
the first histogram bin with zero count was taken as the threshold. Clearly this is not a
parameter free approach, since the result still depends on the size of the histogram bins.
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Figure 2.2: Distance Histograms for Successive Scan Points
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But one might find that finding a reasonable bin size is rather easy, since the approach
is able to adapt itself to the specific environment.

For single scans, results have been reasonable, but for a sequence of scans, different
thresholds in successive scans lead to an unstable object extraction which degraded the
overall performance of the tracking system.

2.3.2 Object Extraction

The subsequences of sample points yielded by the preceding step are divided further, as
we would otherwise encounter problems with objects situated too close to other objects,
for example humans leaning against or walking close to a wall or other humans.

In order to extract distinct objects from a scan point segment, a model of the objects is
required, i.e. a specification of possible shapes. For example if we knew that all objects
were rectangular boxes (or some other specific geometric shape), that information could
be used to properly split up scan segments. However, every further assumption about
the environment is also a requirement to the environment: if the objects are not from
expected shape classes, the extraction step may fail. Therefore, we only assume that
the objects of interest in the robot’s environment are either almost convex or can be
decomposed into almost convex sub-objects in a reasonable way.

Thus our approach is to compute the visible part of the convex hull for each of the given
subsequences (see Figure 2.3). For each sample point on the interior side of the convex
hull its distance to the line defined by the next preceding and succeeding sample points
on the hull is computed. If there is a point whose distance exceeds a threshold value
(i.e. the shape is not even “almost convex”), the sequence is divided at a point with
a maximum distance, and this split procedure is applied again in a recursive manner.
Note that the visible part of the convex hull can be computed efficiently in linear time,
since we have an angular ordering of the points around the range finder. The algorithm
is an adaptation of Graham’s scan (Preparata and Shamos, 1988).

The result of the object extraction step is a set U = {u1, . . . , un} of objects and associated
indices begin(ui) and end(ui) such that object ui refers to the sub-sequence of scan points
{pbegin(ui), . . . , pend(ui)}.

2.4 Object Correspondence

As we intend to track objects in a dynamic environment, we have to compare infor-
mation about objects from successive scans. This is done by a combination of graph
algorithms.
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Figure 2.3: Using the convex hull to find split points
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Figure 2.4: Directed graph for object matching. Labels are pairs of arc capacity and cost,
where |ui| denotes the shape length of object ui, and cij denotes the distance of objects ui

and vj with respect to position and shape.

2.4.1 Finding Object Matchings

From the previous and the current scan two sets of objects U = {u1, . . . , un} and V =

{v1, . . . , vm} are given. The goal is to find for each object ui ∈ U from the previous scan
a corresponding object vj ∈ V from the current scan. This can be seen as a matching in
the bipartite graph (U ∪ V,U× V).

To find a matching representing plausible assignments between objects at successive
points of time in the real world, we start by computing a maximum flow with minimal
cost in a graph G = ({s, t} ∪ U ∪ V,A) as illustrated by Figure 2.4 and Algorithm 1. We
have

A = { (s, u) | u ∈ U } ∪
{ (v, t) | v ∈ V } ∪
{ (u, v) | P(u, v) }

(2.1)
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for some predicate P : U×V → {true, false} of reasonably low computational complexity.
We could use the constant predicate true here (i.e. accept all arcs), but for practical rea-
sons P is chosen such that P(u, v) is true if the distance between the centers of gravity
of u and v does not exceed a threshold value. This is equivalent to the assumption of
a speed limit for objects in our environment. The finite scanning frequency does not
allow tracking of arbitrary fast objects, anyway. Thus the size of the graph is reduced
without imposing a further restriction, resulting in faster computations of minimum
cost maximum flows.

Finally an object matching is deduced by retaining only arcs conveying large amounts
of this minimum cost maximum flow, i.e. we compute a maximum weight matching.
Details on capacity, cost, and weight labels as well as on computational complexities
are given below.

Algorithm 1 OBJECT MATCHING

1: input: objects U = {u1, . . . , un} from the previous scan
2: input: objects V = {v1, . . . , vm} from the current scan
3: let Asu = {(s, u) | u ∈ U}

4: let Auv = {(u, v) ∈ U× V | P(u, v)} for some predicate P
5: let Avt = {(v, t) | v ∈ V}

6: let A = Asu ∪Auv ∪Avt

7: define graph G = ({s, t} ∪U ∪ V,A)

8: compute a maximum flow f̂ in G from source vertex s to sink vertex tw.r.t. capacity
labels as defined by Alg. 2.

9: compute vertex excess labels

excess(w) =


∑

u∈U f̂(s, u) if w = s,∑
v∈V −f̂(v, t) if w = t,

0 else

10: compute a minimum cost flow f∗ in G w.r.t. capacity and cost labels as defined by
Alg. 2 and 3, and excess labels as defined above.

11: let w = f∗|Auv a weight label
12: compute a maximum weight matching M∗ in G[Auv] = (U ∪ V,Auv) w.r.t. weight

label w
13: return matchingM∗ ⊆ U× V
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Capacity Labels

For each object ui ∈ U we compute the length

|ui| =

end(ui)−1∑
i=begin(ui)

d2(pi, pi+1) (2.2)

of the polygonal chain induced by its scan points. This length is taken as capacity la-
bel u(a) for the arc a = (s, ui), see Algorithm 2). Capacities of arcs (vj, t), vj ∈ V , are
assigned analogously. Arcs (ui, vj) ∈ U× V are assigned infinite capacity.

Intuitively, we try to assign as much object shape length as possible from one scan to
the next by computing a maximum flow. This is reasonable if we assume small changes
of this length for each object between two successive scans.

Algorithm 2 ARC CAPACITIES: E→ R
1: input: arc (p, q) ∈ A = Asu ∪Auv ∪Avt (arc set A as in Alg. 1)
2: if (p, q) = (s, ui) for some ui ∈ U then
3: return (length of the polygonal chain representing object ui)
4: else if (p, q) = (vj, t) for some vj ∈ V then
5: return (length of the polygonal chain representing object vj)
6: else
7: return +∞
8: end if

Cost Labels

Arcs (s, ui) incident to the source vertex and arcs (vj, t) incident to the target vertex are
assigned zero costs. Now consider arcs (ui, vj) incident only to vertices representing
objects. These arcs will be assigned costs that reflect the similarities in shape and po-
sition of these objects in the real world, rendering less plausible object matchings more
expensive than plausible ones. Our approach to compute these cost labels is to roughly
estimate the physical work needed to transform one object into the other. Note that for
a resting point of mass, the work that is necessary to move it by a certain distance in a
constant period of time is proportional to the square of this distance.

Each object ui ∈ U is approximated by a constant number of uniformly distributed
sample points Ui = {ui

1, . . . , u
i
N} ⊆ R2 which are selected from its shape (i.e. the polyg-

onal chain induced by its scan points). Analogously, each object vj ∈ V is approxi-
mated by a point set Vj = {v

j
1, . . . , v

j
N} ⊆ R2. Using these points we construct for each

arc (ui, vj) ∈ A ∩ (U× V) of graph G the bipartite graph Hij = (Ui ∪ Vj, Ui × Vj) and an
arc label dij : Ui × Vj → R for Hij with dij(u

i
k, v

j
l) = (d2(u

i
k, v

j
l))

2, where d2 denotes the
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Euclidean distance in the plane. Since we do not want to make an assumption about
the maintenance of the order of points on an object shape between successive scans,
we follow a least effort approach and compute a minimum cost perfect matching M∗

ij

in Hij. The total costs cij =
∑

a∈M∗
ij
dij(a) of this matching are taken as a rough estimate

for the necessary work and are assigned as the value of the cost label to the according
arc (ui, vj) of our prior graph G. This approach is also described in Alg. 3.

Algorithm 3 ARC COSTS: E→ R
1: input: arc (p, q) ∈ A = Asu ∪Auv ∪Avt (arc set A as in Alg. 1)
2: let N ∈ N a constant number
3: if p = s or q = t then
4: return 0
5: else
6: (p, q) = (ui, vj) for some i, j
7: let Cui

⊂ R2 the polygonal chain representing object ui.
8: letUi = {ui

1, . . . , u
i
N} ⊂ Cui

a set ofN points uniformly distributed along chainCui

9: let Cvj
⊂ R2 the polygonal chain representing object vj.

10: let Vj = {v
j
1, . . . , v

j
N} ⊂ Cvj

a set of N points uniformly distributed along chain Cvj

11: letM∗ a minimum cost perfect matching in the bipartite graphHij = (Ui∪Vj, Ui×
Vj) w.r.t. squared Euclidean distance d2

2 in the plane as arc costs.
12: return

∑
(ui

k,vj
l)∈M∗ d

2
2(u

i
k, v

j
l)

13: end if

Object Matching.

The computed flow gives an idea of the motion in the environment of the robot but
does not yet induce a unique matching. There may be objects that split and rejoin in
successive scan images (e.g., consider a human and his arm) and thus induce a flow
from one vertex to two successors and reversely. As the length of the shape of an object
varies there may be a small flow reflecting these changes as well. Thus it is a good idea
to focus attention on arcs with a large amount of flow. Consequently the final step in our
approach is to compute a matching of maximum weight in the bipartite subgraph of G
induced by the two object sets U and V , using the flow labels computed in the previous
step as weight labels (see Algorithm 1 again). Finally, by this matching, we have unique
assignments between objects from two successive scans.

Computational Complexity.

We now examine the time complexity of the presented object matching approach. The
size of the input is described by the number L of samples per laser scan and the sizes of
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the sets U 6= ∅ and V 6= ∅ of objects to be matched. Clearly, the graph G as defined in
line 7 of Alg. 1 contains |U| + |V | + 2 vertices and at most |U| + |V | + |U| · |V | arcs.

Property 2.1
Computing cost labels for all arcs a ∈ A requires at mostO(L+(|U| · |V |)) computational
steps.

Proof:

Algorithm 3 uses a set of N uniformly distributed points per object, where N is a con-
stant number. These point sets can be computed by two subsequent sweeps over a scan
point sequence S, where object shape lengths are determined during the first sweep and
point sets are chosen during the the second sweep. This is accomplished within O(L)

computational steps.

Next, we have to compute a minimum cost perfect matching in a bipartite graph with
a constant number of vertices and arcs for each arc of G. Clearly this requires a con-
stant amount of time for each arc of G, so this step is accomplished within O(|U| · |V |)

computational steps.

Finally, arcs with source s or target t are assigned zero costs, which is easily accom-
plished within O(|U| + |V |) computational steps. Summing up establishes the claimed
time complexity. �

Property 2.2
Computing capacity labels capacity(e) for all arcs a ∈ A requires at mostO(L+(|U| · |V |))

computational steps.

Proof:

As shown in the proof of property 2.1 computation of object shape lengths can be ac-
complished within O(L) computational steps. The remaining effort per arc is constant.
As there are O(|U| · |V |) arcs in G, the claimed time complexity is proven. �

Property 2.3
Algorithm 1 can be implemented such that it terminates after at most O(L + (|U| +

|V |)3 log ((|U| + |V |) · C)) computational steps, where C = maxa∈A costs(a) denotes the
maximum arc cost in G.

Proof:

The construction of graph G in line 7 of Alg. 1 together with cost and capacity labels
requires at mostO(L+(|U| · |V |)) computational steps as shown above. The computation
of a maximum flow f̂ in line 8 requires at most O((|U| + |V |)3) computational steps if
we use the FIFO preflow push algorithm (Ahuja et al., 1993). The calculation of the
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vertex excess labels in line 9 consumes another O(|U| + |V |) steps. The computation of
a minimum cost flow f∗ in line 10 requires at most O((|U| + |V |)3 log ((|U| + |V |) · C))

steps, if we use the cost scaling algorithm (Ahuja et al., 1993). The maximum weight
matching M∗ in line 10 can be computed within at most O((|U| + |V |) · (|U| · |V | + (|U| +

|V |) log (|U| + |V |))) ⊆ O((|U| + |V |)3) steps (Mehlhorn and Näher, 1999). Summing up
establishes the claimed time complexity. �

In other words, for a set of n = |U| + |V | objects and a constant laser scan size L we
may need up to O(n3 log (nC)) computational steps in order to find an object matching
following the approach presented above.

There are several improvements for bipartite network flows (Ahuja et al., 1994). How-
ever they require the network to be unbalanced in order to substantially speed up the
algorithms, i.e. either |U| � |V | or |U| � |V |, which is not the case in our context.

The complexity of finding an optimal (minimum or maximum weight) matching might
be reduced if the cost label is also a metric on the vertex set of the underlying graph.
For example if the vertices of the graph are points in the plane and the cost label is
the L1 (Manhattan), L2 (Euclidean) or L∞ metric there are lower time complexity bounds
for the problem of finding a minimum weight perfect matching (Vaidya, 1989) than in
the general case. However it is not obvious if (and if so, how) this can be applied to the
given object correspondence problem.

2.5 Experiments

The described tracking system has been implemented on the robot presented in Sec-
tion 1.1, and has been tested in various environments, indoors (lab environment, exhi-
bitions, concourse of a railway station) as well as outdoors (pedestrian area). It proved
to perform considerably more robust than its predecessor proposed by Prassler et al.
(1998a) which was based on a greedy nearest neighbor search among the objects’ cen-
ters of gravity. The number of objects extracted from a scan typically ranges from ten
to twenty, consuming about 50 milliseconds CPU time per cycle on the hardware men-
tioned above.

Figure 2.5 shows every fourth scan from a longer sequence. The three respective inter-
mediate scans are plotted using lighter shades of grey. The images show one person
walking upward, one person walking downward, and two persons walking right. The
sequence has been recorded at an exhibition, so the straight segments are billboards.
For the same sequence of scan data, Figure 2.6 illustrates extracted objects together with
a history of previous object positions which has been obtained by repeated application
of the presented approach.

Figure 2.7 shows the path of a guide walking outside on the parking place in front of
our lab. The guide has been tracked and accompanied by the robot for 1073 cycles (more
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Figure 2.5: Sequence of scans
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Figure 2.6: Sequence of tracked objects
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than five minutes), until he finally became occluded to the range finder. The small loop
is caused by the guide walking around the robot.
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Figure 2.7: Image of the path of a tracked person who is walking outdoors, followed by
the robot carrying the tracking system

2.6 Discussion

Unfortunately, the tracking system still loses tracked objects occasionally. One obvious
cause is occlusion. It is evident that invisible objects cannot be tracked by any system.
But consider an object occluded by another object passing between the range finder and
the first object. Such an event canceled the tracking shown in Fig. 2.7, where the guide
was hidden for exactly one scan. Hence a future system should be enabled to cope at
least with short occlusions.

But tracked objects get lost occasionally even if they are still visible. This might hap-
pen for example if new objects appear and old objects disappear simultaneously, as the
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visual field of the range finder is limited. To illustrate this, imagine a linear arrange-
ment of three objects. Now delete the leftmost object and insert an object next to the
rightmost. A flow computed as described above induces a false assignment, that is a
shift to the right. This problem is partially dealt with by restriction to a local search for
correspondents as presented in Sect. 2.4.1. It might be further improved if we do not
assign any old object to new objects that become visible by a change of perspective due
to the robot’s motion.

In some cases object extraction fails to properly split composed objects. If these objects
are recognized separately in the previous scan, either of them is lost. But this situation
may be recognized by looking at the minimum cost flow in the graph, if there is a sig-
nificant flow into one vertex from two predecessors. This might give a hint to split the
newly extracted object.

As object extraction probably cannot be perfect, one might follow the idea to compute
the flow based on the scan points before extracting objects by searching for neighboring
groups of parallel arcs carrying flow. However this might be computationally infeasi-
ble, since the sizes of the graphs involved in the computations of the flows are heavily
increased.

Information about the motion of an object drawn from previous scan images could be
used to compute an approximation of its current position and thus direct the search for
corresponding points. A first implementation of this regarding the motion of centers
of gravity showed poor performance in some environments, for example considering
walls moving as their visible part grows. Another bad effect of position prediction is its
tendency to create errors by a chain effect, as even a single incorrect object assignment
results in incorrect prediction of future positions and therefore may result in further
incorrect assignments.

2.7 Conclusion

In this part we presented an object tracking system based on laser range finder images
and graph algorithms. The basic idea of our tracking approach is to represent the mo-
tion of object shapes in successive scan images as flows in bipartite graphs. By optimiza-
tion (maximum flow, minimum cost, maximum weighted matching) we get plausible
assignments of objects from successive scans even in the case of clutter by smaller ob-
jects. The approach has been implemented on a mobile robot and proved to be useful
for various task ranging from obstacle avoidance to situation assessment.



Chapter 3

Navigation in Dynamic Environments

3.1 Introduction

After Chapter 2 presented an approach to perception in dynamic environments, we
will now consider the complementary problem of generating motion for a mobile robot
among moving obstacles. In the course of this chapter we will cover the basic principles
of mobile robot motion, properties of existing mobile robot drives, and an approach to
implement a collision avoiding behavior.

3.1.1 Related Work

Motion planning is a fundamental problem in robotics, and numerous approaches have
been proposed. Many of them are dealing with static environments, where obstacles of
fixed shape are located at fixed positions. Other approaches accept moving obstacles in
the presence of the robot, which renders them more relevant to the topic of this chapter.
For example, the comprehensive work of Fujimura (1991) considers motion planning
for a mobile robot among obstacles with known motion. Similarly, Fraichard (1998)
and Hsu et al. (2000) address motion planning for vehicles with kinematic and dynamic
constraints on known trajectories. The latter approach is claimed to be efficient enough
for occasional replanning, and therefore might be used even when the obstacle motion
is not known in advance. Other approaches, for example by Chakravarthy and Ghose
(1998) or Fiorini and Shiller (1998), allow to avoid the computational cost of complete
motion planning, and permit fast reactive collision avoidance behaviors in dynamic
environments.
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3.1.2 Overview

In the following, we will specify some basic concepts and properties of mobile robots,
before two popular implementations of a mobile robot drive are considered, i.e. the dif-
ferential drive and the synchro drive. We will get an impression of their kinematic and
dynamic constraints, and how these influence the complexity of motion planning. In
order to avoid that complexity when navigating a differentially driven mobile robot,
an approach is proposed considering a virtual robot center for which these constraints
are substantially simplified. With this heuristic method, we are able to apply the ve-
locity obstacle approach by Fiorini and Shiller (1998) for collision avoidance, which is
described subsequently.

3.2 Mobile Robot Motion

3.2.1 Configuration, Motion, and Collisions

In contrast to for example aircraft motion, mobile robot motion takes place in the plane.
Accordingly, we will model the rigid shape of involved objects as sets of points.

Definition 3.1 (Rigid Body, Object, Obstacle)
A rigid body is a compact set B ⊂ R2.

The rigid body
D(r) =

{
p ∈ R2 | |p − 0| ≤ r

}
(3.1)

is called circular with radius r, or disc with radius r.

A rigid body may be called object or obstacle, too.

The configuration of a rigid body describes its current position and orientation. That
is, for a specific configuration, each degree of freedom of the object has to be fixed to
a corresponding value. Rigid bodies in the plane have two translational and one ro-
tational degrees of freedom, whereby the rotation axis is perpendicular to the plane of
translations. Hence, their configuration space is SE(2), the Special Euclidean group in
two dimensions. An element of SE(2) corresponds to a frame inW , or to a displacement
of a rigid body in W , and the neutral element of SE(2) corresponds to the frame 〈W〉.

Definition 3.2 (Configuration)
The configuration of a rigid body B in the Euclidean plane is an ordered triple

cB = (xB, yB, θB) ∈ R2 × R (3.2)

where (xB, yB) is the position of B, and θB is the orientation of B (both relative to 〈W〉,
see Figure 3.1).
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〈B〉

ŷB
x̂B

B

〈W〉

ŷW

x̂W

δB

(xB, yB)

θB

vB

Figure 3.1: Configuration (xB, yB, θB), velocity vB, and direction of motion δB of a rigid
body B

We will also write cB = (xB, yB)T for the position component of configuration cB. Con-
versely, we will accept a point p = (xp, yp)

T ∈ R2 as a configuration (xp, yp, 0) with
orientation zero.

For moving rigid bodies, their configuration changes over time. This is modeled by a
function which maps time to configurations, called the trajectory of a body.

Definition 3.3 (Trajectory)
The trajectory of a rigid body B is a continuous function

τB : R→ R2 × R (3.3)

which maps time t to configurations τB(t) = (xB(t), yB(t), θB(t)).

The above definition of a trajectory allows sharp turns on the spot, without decelerating.
For practical cases, we will introduce a direction of motion which is not allowed to
change instantaneously. Furthermore, we will not require the direction of motion to be
identical or in a fixed relation to the orientation of the vehicle. Therefore, these two
angular variables are treated separately.

Definition 3.4 (Direction of Motion, Velocity)
Let τB be the trajectory of a rigid body Bwith differentiable components xB, yB, and θB.
If there is a differentiable continuous function δB : R→ R with

vB(t) :=

(
ẋB(t)

ẏB(t)

)
= |vB(t)|

(
cos δB(t)

sin δB(t)

)
, (3.4)
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we call δB the direction of motion of B, and the ordered triple (|vB|, θ̇B, δ̇B) is called the
velocity of B. We will also use the letter ω to denote the angular rate δ̇ of the direction
of motion.

Definition 3.5 (Initial and Final Configuration)
Let τ be a trajectory. The configuration c1 = τ(t1) is called initial configuration (of τ),
if τ(t) = c1 for t ≤ t1. The configuration c2 = τ(t2) is called final configuration (of τ),
if τ(t) = c2 for t ≥ t2.

Definition 3.6 (Placed Body)
An ordered pair (B, cB) consisting of a rigid body B and a configuration cB is called a
placed body.

Definition 3.7 (Moving Body)
An ordered pair (B, τB) consisting of a rigid body B and a trajectory τB is called a mov-
ing body.

Definition 3.8 (Linear Motion)
A trajectory τB : t 7→ (xB(t), yB(t), θB(t)) is called a linear motion, if its first two com-
ponents xB and yB are linear, and the third component θB is a constant.

When we are only interested in the position of objects, we will talk of the path of an
object and ignore the orientational components of the configuration.

Definition 3.9 (Path)
Let τB : t 7→ (xB(t), yB(t), θB(t)) the trajectory of a rigid body B. Then, the plane
curve πB : t 7→ (xB(t), yB(t)) is called the path of rigid body B.

In general, rigid bodies occupy some amount of workspace, which depends on the
shape of the body and its (current) configuration.

Definition 3.10 (Occupied Space of a Rigid Body)
Let (B, c) be a placed body with c = (x, y, θ). Then, the set

S(B, c) =

{(
cos θ − sin θ
sin θ cos θ

)
· p +

(
x

y

)
| p ∈ B

}
⊆ R2 (3.5)

is called the occupied space of B in configuration c.

Let (B, τB) be a moving body. Then, the set S(B, τB(t)) is called the occupied space
of (B, τB) at time t.

Definition 3.11 (Collision)
Let (A, cA) and (B, cB) be placed bodies. We say (A, cA) collides with (B, cB), if

S(A, cA) ∩ S(B, cB) 6= ∅. (3.6)
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Two moving bodies (A, τA) and (B, τB) are called colliding at time t, if (A, τA(t)) col-
lides with (B, τB(t)).

Two moving bodies (A, τA) and (B, τB) are called colliding, if there is a t ∈ R such that
they are colliding at time t, and they are called collision-free, if they are not colliding at
any time.

Definition 3.12 (Reflected Placed Body)
Let (B, cB) be a placed rigid body with cB = (xB, yB, θB). Then, the placed rigid body (B, c̄B)

with

c̄B = (−xB,−yB, θB + π) (3.7)

is called the reflection of (B, cB).

Definition 3.13 (Minkowski Sum)
Let A,B ⊆ R2 be point sets. Then we call the set

A+ B = {a+ b | a ∈ A,b ∈ B} (3.8)

the Minkowski sum of A and B.

For p ∈ R2, we write

A+ p = A+ {p}, and p+ B = {p} + B (3.9)

for the Minkowski sum of a set and a single point.

If two point sets A,B ⊆ R2 are represented by their characteristic functions χA and χB,
then the convolution χA ∗ χB maps points from the Minkowski sum A + B to non-zero
values, and points from the complement of the Minkowski sum to zero. Due to this
property, the Minkowski sum is sometimes called the convolution of point sets.

Collisions of placed rigid bodies can be detected by considering the Minkowski sum of
one body with a reflected version of the other body.

Property 3.14 (Characterization of Collisions)
Let (A, cA) and (B, cB) be two placed bodies with cA = (xA, yA, θA) and cB = (xB, yB, θB).
Then, the following propositions are equivalent:

(i) (A, cA) and (B, cB) are colliding
(ii) 0 ∈ S(A, c̄A) + S(B, cB)

(iii) (xA, yA) ∈ S(A, (0, 0, θA + π)) + S(B, cB).

Proof:

The two placed rigid bodies (A, cA) and (B, cB) with cA = (xA, yA, θA) and cB = (xB, yB, θB)

are colliding if and only if there are a ∈ A and b ∈ B with(
cos θA − sin θA

sin θA cos θA

)
· a +

(
xA

yA

)
=

(
cos θB − sin θB

sin θB cos θB

)
· b +

(
xB

yB

)
, (3.10)
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which holds if and only if there are a ∈ A and b ∈ B with

0 =

(
cos(θA + π) − sin(θA + π)

sin(θA + π) cos(θA + π)

)
·a+

(
−xA

−yA

)
+

(
cos θB − sin θB

sin θB cos θB

)
·b+

(
xB

yB

)
(3.11)

which is equivalent to
0 ∈ S(A, c̄A) + S(B, cB). (3.12)

Furthermore, Equation 3.11 is equivalent to(
xA

yA

)
=

(
cos(θA + π) − sin(θA + π)

sin(θA + π) cos(θA + π)

)
·a+

(
0

0

)
+

(
cos θB − sin θB

sin θB cos θB

)
·b+

(
xB

yB

)
(3.13)

which is equivalent to

(xA, yA) ∈ S(A, (0, 0, θA + π)) + S(B, cB). (3.14)

�

Given a set of obstacles, one can ask for a collision-free trajectory of another body from
an initial configuration to a final configuration. The image of such a trajectory must lie
within a set of collision-free configurations.

Definition 3.15 (Free Space)
Let B = {(Bi, ci) | i = 1, 2, . . . , n} be a finite set of placed obstacles, and A a rigid body.
Then, the set

F(A,B) =
{
cA ∈ R2 × R | S(A, cA) ∩ S(B) = ∅

}
(3.15)

with
S(B) = ∪n

i=1S(Bi, ci) (3.16)

is called the free space of Awith respect to the obstacle set B.

If the robot A is not allowed to rotate, Property 3.14 can be used to compute the free
space F(A,B) of Awith respect to placed obstacles B as

F(A,B) =
(
R2 − ∪(B,c)∈B (S(A, (0, 0, θA + π)) + S(B, c))

)
× {θA}. (3.17)

If the obstacles are allowed to move, too, the more complex problem of dynamic motion
planning emerges.

Problem 3.1 (Dynamic Motion Planning)
Let B = {(Bi, τi) | i = 1, 2, . . . , n} be a finite set of moving obstacles. Let A ⊆ R2 be a
rigid body, and c1 and c2 configurations.

The dynamic motion planning decision problem is to decide whether there is a tra-
jectory τA with initial configuration c1 and final configuration c2 such that (A, τA) is
collision-free with respect to the moving obstacles B.
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Figure 3.2: Drive kinematics

Canny (1987) proved the following theorem on the complexity of dynamic motion plan-
ning.

Theorem 3.16 (Complexity of Dynamic Motion Planning)
Let B = {(Bi, τi) | i = 1, 2, . . . , n} be a finite set of moving obstacles, where each obsta-
cle Bi is a convex polygon, and each trajectory τi is a linear motion. Let A be a point
shaped rigid body, and c1 and c2 configurations.

Then, deciding if there is a trajectory τA = (xA, yA, θA) with initial configuration c1, final
configuration c2, and bounded velocity ẋ2

A + ẏ2
A ≤ v2

max such that (A, τA) is collision-free
with respect to the moving bodies B, is NP-hard.

3.2.2 Kinematic Model

In order to implement a drive system for a vehicle, one has to solve the problems of
propulsion and steering. Due to their relative simplicity, the differential drive and the
synchro drive (see Figure 3.2) are popular approaches, and we will focus on their prop-
erties in the following. There are other types of drives, e.g. car-like robots with sepa-
rate driven wheels and steering wheels, or even holonomic drives with omnidirectional
wheels. However, these will not be considered in this thesis.

Definition 3.17 (Differential Drive)
A differential drive for a mobile robot B consists of two independently driven wheels
which are oriented in parallel to the positive x-axis and located at positions (0,w) (the
left wheel) and (0,−w) (the right wheel) relative to coordinate frame 〈B〉, see Fig-
ure 3.2(a).

Property 3.18 (Direction of Motion and Velocity of Differential Drive)
The direction of motion δB of a vehicle B with differential drive is equal to its orienta-
tion θB. Steering occurs by rotating the entire vehicle. Given the velocities vL and vR of
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the left and the right wheel, the velocity (vB, θ̇B, δ̇B) = (vB, θ̇B, θ̇B) of B is given by

vB =
vR + vL

2
, and (3.18)

θ̇B =
vR − vL

2w
. (3.19)

In case of a differential drive, we will write (v, θ̇) in short for its velocity, omitting a
second appearance of θ̇.

Property 3.19 (Wheel Velocities from Vehicle Velocity)
Given the velocity (v,ω) of a differential drive, the corresponding wheel velocities can
be obtained as

vR = v+ω ·w, and (3.20)
vL = v−ω ·w. (3.21)

Definition 3.20 (Synchro Drive)
Another common drive for a vehicle B is the synchro drive, which consists of n ≥ 3

wheels whose orientations and velocities are constantly equal, see Figure 3.2(b). To
change the direction of motion, all wheels are turned synchronously with respect to an
axis orthogonal to the plane of motion.

The orientation of the vehicle B is constant, without loss of generality θB = 0, and the
direction of steering δB is the orientation of the wheels. Therefore, the velocity of a
synchro drive is (vB, 0, δ̇B), where vB is the wheel velocity.

When talking of synchro drives, we will write (v,ω) for the velocity, omitting the con-
stant body orientation.

As shown above, we may neglect the given kinematic structure to some degree, speak-
ing of velocity as a pair (v,ω), or of (v,ω)-drives. However, when considering bounds
on the controlled velocities, differences will appear.

Assuming that forward and backward velocities of the right and left wheel of a differ-
ential drive are equally bounded by a maximum velocity vmax, the set of feasible wheel
velocities (vR, vL) can be transformed into the set of feasible vehicle velocities (v,ω), as
illustrated by the rhombic shape in Figure 3.3(a).

In contrast to that, the translational and rotational components of the velocity (v,ω) of
a synchro drive propelled vehicle are controlled independently, yielding a rectangular
feasibility area as shown in Figure 3.3(b).

For the remainder of this section, we will focus on properties of the differential drive.
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Figure 3.3: Feasible vehicle velocities

Reachable Velocities for a Differential Drive

As we have already seen above, there may be forbidden motions for a given type of mo-
bile robot drive kinematics. For example, a vehicle with differential drive cannot move
sideways, since there is a kinematic constraint imposed by the interaction of the wheels
with the floor. Furthermore, in the real world, forces are bounded and bodies have
non-zero mass. Therefore, accelerations and consequently velocities which are reach-
able starting from a given motion state during a bounded period of time are bounded,
too. Both these kinematic and dynamic constraints restrict the sets of velocities and
configurations which are reachable within a bounded amount of time.

Figures 3.4 through 3.6 visualize sets of reachable velocities for a differential drive
starting from different initial velocities. A common maximum velocity v̂W and a com-
mon maximum acceleration âW are assumed for each for the two independently driven
wheels. Starting at t = 0 with an initial velocity (v0,ω0), constant feasible wheel accel-
erations aR and aL with −âW ≤ aR, aL ≤ âW are applied, without exceeding maximal
wheel velocities. The left and center columns in Figures 3.4 through 3.6 visualize the
attained wheel velocities and vehicle velocities, respectively.

Since in general the rotational velocity componentω is non-zero, the actual direction of
motion θ is changing continuously. Integrating this angular rate, the resulting change
of direction of motion is visualized in the right column of Figures 3.4 through 3.6. Here
a constant wheel acceleration is assumed over the full interval in order to attain the
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(b) Initial velocity is (v0 = 0.3,ω0 = 0.0)
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(c) Initial velocity is (v0 = 0.5,ω0 = 0.0)

Figure 3.4: Reachable velocities for a differential drive (1)
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(b) Initial velocity is (v0 = 0.3,ω0 = 0.2)
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(c) Initial velocity is (v0 = 0.5,ω0 = 0.2)

Figure 3.5: Reachable velocities for a differential drive (2)
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(b) Initial velocity is (v0 = 0.3,ω0 = 0.4)
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(c) Initial velocity is (v0 = 0.5,ω0 = 0.4)

Figure 3.6: Reachable velocities for a differential drive (3)
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Figure 3.7: Different acceleration profiles for reaching the same motion state

new motion state, see Figure 3.7(a). However, if the maximal possible acceleration âW

is not required, different acceleration profiles may be applied, resulting in the same
final wheel velocities. See for example Figure 3.7(b), where constant accelerations aR ∈
[−âW, âW] and aL = −âW are applied for a minimal interval [t0, t0 + ∆tacc], resulting in
the same wheel velocities at time t1 as in Figure 3.7(a). As indicated by these figures,
the change of orientation is proportional to the area between the two velocity profiles,
since with Equation 3.19

∆θ = θ(t1) − θ(t0) (3.22)

=

∫ t1

t0

ω(t)dt (3.23)

=
1

2w

∫ t1

t0

vR(t) − vL(t)dt (3.24)

holds. Therefore, using different types of acceleration profiles will result in different
directions of motion. For acceleration profiles as indicated by Figure 3.7(b), the resulting
change of direction is reflected by Figure 3.8 for the same initial motion states as in
Figures 3.4 through 3.6.

So far, we considered the effect of the wheel velocities and accelerations on the vehicle
velocity and orientation only. In the next section, we will examine the effect of constant
wheel accelerations on the path of the vehicle.
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Figure 3.8: Reachable velocities for a differential drive (4)
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Path Types for a Differential Drive

When accelerations |aR| = |aL| with the same absolute value (e.g. the maximum value âW)
are applied to the wheels of a differential drive, prominent types of paths emerge. They
differ in the way the curvature changes depending on the traveled arc length.

Definition 3.21 (Curvature of a Plane Curve)
At a given point c(t) of a plane curve c, the radius of curvature ρ(t) is the radius of the
osculating circle at c(t), and the curvature κ(t) = 1/ρ(t) is the inverse of the radius of
curvature.

Property 3.22 (Curvature of the Path of a (v,ω)-Drive)
Let B be a vehicle with (v,ω)-drive. Then the curvature of the path of B is

κ =
ω

v
(3.25)

where the velocity v is not zero.

Let (vR, vL) be the wheel velocities of a differentially driven body B. Then, the curvature
of the path of B is

κ =
1

w
· vR − vL

vR + vL

(3.26)

where vR + vL 6= 0.

We start examining the simplest case where the accelerations of the right and left wheels
are zero, aR = aL = 0. That is, the wheel velocities are constant. The vehicle is turning
on the spot for vR + vL = 0, or the curvature

κ =
1

w

vR − vL

vR + vL

(3.27)

is constant for vR +vL 6= 0. In any case, the robot moves on a circular path, possibly with
zero radius.

Now consider a vehicle with differential drive where accelerations aW are applied to
the wheels in opposite directions, i.e. aR = −aL = aW . Without loss of generality,
let vR(0) = vL(0). The vehicle moves with constant velocity

v =
(vR(0) + aWt) + (vL(0) − aWt)

2
=
vR(0) + vL(0)

2
, (3.28)

and the curvature of its path is

κ =
1

w

(vR(0) + aWt) − (vL(0) − aWt)

(vR(0) + aWt) + (vL(0) − aWt)
=
aW

vw
t =

aW

v2w
s (3.29)

where s is the arc length of the path. Since the curvature is proportional to the arc
length, the path is a clothoid, also known as Cornu spiral. The clothoid is a well-known
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(a) Clothoid (b) Involute of a circle

Figure 3.9: Paths of differential drive with extremal wheel accelerations

curve which is used for example in street construction, since driving a car on a clothoid
imposes a constant turning velocity of the steering wheel. The bad news is the compu-
tational complexity of that curve, since its parametric representation is given by Fresnel
integrals as

x(t) = S(t) =

∫ t

0

sin(
1

2
πz2)dz (3.30)

and

y(t) = C(t) =

∫ t

0

cos(
1

2
πz2)dz. (3.31)

These integrals cannot be expressed by means of elementary functions.

Now assume a vehicle B with differential drive is traveling with constant wheel accel-
erations aR = aL = aW . Its angular velocityωB is constant, since

ω̇B =
v̇R − v̇L

2w
=
aR − aL

2w
= 0. (3.32)

Without loss of generality, let vR(0) + vL(0) = 0. Then, the velocity of B is

v(t) =
(vR(0) + aWt) + (vL(0) + aWt)

2
=
vR(0) + vL(0)

2
+
aWt+ aWt

2
= aWt, (3.33)

the traveled arc length s of B since time t = 0 is

s(t) =
1

2
aWt

2, (3.34)

and the radius of curvature of the path of B is

ρ = 1/κ = w
(vR(0) + aWt) + (vL(0) + aWt)

(vR(0) + aWt) − (vL(0) + aWt)
=

2w

vR(0) − vL(0)
aWt =

aW

ωB

t. (3.35)
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The curvature of this path as a function of the arc length s is

κ =
1√

2aW

ω2
B
s
, (3.36)

that is, the body will move on a path which is known as the involute of a circle, see
Figure 3.9(b). Intuitively, this is the path of the end point of a string which is being un-
wound from a fixed reel. For a circle of radius r, the involute is given by the parametric
equations

x(t) = r(cos t+ t sin t), (3.37)
y(t) = r(sin t− t cos t). (3.38)

We subsume these observations in the following property.

Property 3.23 (Differential Drive Paths with extremal Wheel Acceleration)
Let B be a vehicle with a differential drive, and let aR and aL be the accelerations of the
left and right wheel, respectively. Then,

(i) Bmoves on a circle, if aR = aL = 0,
(ii) Bmoves on a clothoid, if aR = −aL 6= 0, and
(iii) Bmoves on the involute of a circle, if aR = aL 6= 0.

The circle in (i) degenerates to a straight line if vR = vL. The clothoid in (ii) degenerates
to a single point if vR + vL = 0. The involute of a circle in (iii) degenerates to a half line
if vR − vL = 0.

3.2.3 Virtual Robot Center

As we have seen in the preceeding section, the complexity of navigating a vehicle with
a differential drive or a synchro drive cannot be neglected, since neither the reachable
velocities are isotropic (i.e., invariant with respect to direction), nor the traveled paths
are simple to describe. Consequently, the dynamic and kinematic constraints can turn
motion generation for a mobile robot into a non-trivial problem, which becomes even
worse in the presence of obstacles. In fact, only recently a polynomial time approxima-
tion algorithm for the kino-dynamic motion planning problem in static environments
became known (Reif and Wang, 2000).

Since we address partially known, dynamic environments, unforeseen situations may
emerge where the robot must react quickly. Using sophisticated algorithms for kino-
dynamic motion planning are hardly an option, due to their high computational com-
plexity. Therefore, heuristic approaches which hide the complexity of kino-dynamic
constraints from the actual motion planning approach are of interest.
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ŷP
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〈B〉
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Figure 3.10: The virtual robot center P is a point located at distance d in front of the real
robot center (i.e. the origin of the frame 〈B〉, located in the middle of the wheels)

We will now present a heuristic approach which we call the virtual robot center approach.
This approach uses a subset of reachable vehicle velocities and feasible vehicle accelera-
tions with the benefit that motion planning for a certain point P in front of the real robot
center becomes easier.

So, consider such a point P situated at distance d > 0 in front of the point (xB, yB) in the
middle of the two wheels, see Figure 3.10. If the current velocity of the robot is (vB,ωB)

with ωB 6= 0, the motion of point (xB, yB) is a rotation around a point C located at
distance rB on the line through the wheels with angular velocityωB. From

vB = ωBrB, (3.39)
vP = ωPrP = ωBrP, and (3.40)

r2P = r2B + d2 (3.41)

follows

v2
P = ω2

Br
2
P

= ω2
B(r2B + d2)

= v2
B + (ωBd)

2,

(3.42)

that is, the velocity vP has a componentωBd parallel to ŷP which stems from the rotation
of B, and a component vB parallel to x̂P which stems from the translation of B.

Reversing this observation, point P can be moved in any desired direction: if αP is an
arbitrary direction and vP an arbitrary velocity, point P will move accordingly when the
vehicle velocity

(vB,ωB) = (vP cosαP,
vP

d
sinαP) (3.43)
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Figure 3.11: Robot motion corresponding to virtual center motion on a straight line

is assumed. Note that αP is defined relative to 〈P〉, i.e. it rotates with the robot. In
order to attain a stable direction with respect to the world coordinate system 〈W〉, the
additional constraint

α̇P = −ωB (3.44)

must be fulfilled.

Following this approach, the real robot center will move on a curve known as tractrix,
see Figure 3.11 and 3.12. Informally, a tractrix is the path of an object which, initially
being situated at a lateral offset to a straight line l, is dragged along by a string of fixed
length d with one end connected to the object, and the other end moving along line l
with velocity v. In our context, the midpoint of the driven wheels is the dragged point,
and the virtual robot center is moving on the straight line.

If we intend to use this approach to navigate a mobile robot with differential drive, the
following questions arise:

(i) Given the maximum wheel velocity v̂W , what is the maximum feasible velocity v̂P

of the virtual center?

(ii) How are feasible velocities of the virtual center restricted by the maximum wheel
acceleration?

(iii) Given the maximum wheel velocities and accelerations, what is the maximum
linear acceleration v̇P that can be achieved for point P by this approach?

When moving the virtual center with constant velocity vP on a straight line, the pair of
velocities (vB,ωBd) of the robot moves on a circle

v2
B + (ωBd)

2 = v2
P (3.45)

with radius vP, see Figure 3.13. Therefore, in order to determine v̂P, we have to look for
a largest in-circle of the set of feasible velocities (vB,ωBd). The radius v̂P of that circle is
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Figure 3.13: Maximum feasible virtual center velocities

easily shown to be

v̂P =
v̂B√

(w
d
)2 + 1

(3.46)

in the case of a differential drive with maximum wheel velocity v̂W , and

v̂P,max = max{v̂W, ω̂Wd} (3.47)

in the case of a synchro drive with maximum wheel velocity v̂W and maximum angular
velocity ω̂W .

In the case of the differential drive, the maximum feasible virtual center velocity v̂P de-
creases as the relative wheel distance w

d
increases. This is plausible, since when moving

the virtual center sideways (parallel to the axle of the wheels), the robot rotates around
its real center point, and the wheel velocity is vP · w

d
, which can be forced to an arbitrary

high value by increasing the wheel distance. In contrast, when moving the virtual cen-
ter more or less in the natural direction of vehicle motion, the wheel velocity approaches
the virtual center velocity.

Now we will examine how fast the velocity vP = (vB,ωBd) moves on its according
circle, as the virtual center moves on a straight line with constant velocity vP. Consider
Figure 3.14(a). We know that vP will rotate with angular velocity α̇P = −ωB around 0,
which corresponds to a translational velocity

ap = α̇PvP = −ωBvP =
v2

p

d
sinαP (3.48)
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Figure 3.14: Vehicle accelerations for virtual center motion

in direction βP = αP − π
2
, since ωB =

vp

d
sinαP. Therefore, the velocity aP of vP in

direction βP is

aP(βP) =
v2

p

d
sinαP =

v2
p

d
sin(βP +

π

2
) =

v2
p

d
cosβP, (3.49)

that is, the accelerations aP are located on a circle, too, which is centered at (
v2

p

2d
, 0) and

has radius v2
p

2d
, see Figure 3.14(b).

The accelerations on this circle must be among the feasible accelerations of the vehi-
cle. We will examine the case of a differential drive, see Figure 3.15 Given a maximum
feasible acceleration âW for the right and left wheel, it is

v̇B, max =
aR + aL

2
= âW for aR = aL = âW , and (3.50)

ω̇B, max =
aR − aL

2w
=
âW

w
for aR = −aL = âW . (3.51)

The minimum distance aS from the circle to the boundary of feasible accelerations is the
maximum feasible isotropic acceleration which may be used to steer the vehicle (that
is, changing the velocity vP and line on which P moves). Considering similarity among
triangles in Figure 3.15, we get

(
v̂2

P

2d
+ aS

)
:

(
âW −

v̂2
P

2d

)
=

(
âWd

w

)
:

√â2
W +

(
âWd

w

)2
 (3.52)

which delivers

âW =

(√(w
d

)2

+ 1

)
aS +

(
1+

√(w
d

)2

+ 1

)
v̂2

P

2d
. (3.53)



3.2. Mobile Robot Motion 47

0

ω̇Bd

v̇B

v2
P,max
2d

v2
P,max
2d

aS
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Figure 3.16: Virtual center example

The robot is steerable if aS > 0, which is the case for

âW >

(
1+

√(w
d

)2

+ 1

)
v̂2

P

2d
. (3.54)

Example

Let B be a robot with a differential drive, w = 0.2m, and d = 0.01m, see Figure 3.16.
Assume we want to navigate B with virtual center velocities up to vP = 0.2 m

s
and

steering accelerations up to aS = 0.1 m
s2 . According to Equation 3.46, the robot must be

able to realize wheel velocities vW up to

vW = 0.2
m

s
·
√
5 ≈ 0.45 m

s
, (3.55)
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and, according to Equation 3.53 wheel accelerations aW up to

aW =
√
5 · 0.1 m

s2
+
(
1+

√
5
) (0.2 m

s
)2

2 · 0.1m
≈ 0.87 m

s2
(3.56)

3.3 Collision Avoidance

When navigating a mobile robot among moving obstacles, an important requirement is
a collision-free motion. Many solutions have been suggested for static environments,
the steer angle fields approach (Bauer et al., 1994) and the dynamic window approach
(Fox et al., 1997) being two well-established representatives. These approaches are able
to cope with dynamic environments to some degree by continuously observing the sit-
uation and reacting accordingly. However, one can expect that approaches which have
been devised for dynamic environments will display better performance than the for-
mer as soon as the situation around the robot becomes dominated by changes.

In this section an approach to navigation among moving objects will be presented which
has been proposed by Fiorini and Shiller (1998) and is based on velocity obstacles. This
approach expects circular obstacles and a circular robot. Furthermore, it cannot be ap-
plied to (v,ω)-drives directly, but requires an adaptation like the virtual robot center
heuristic which has been presented above.

3.3.1 Velocity Obstacles

Throughout this section we will consider a finite set

B =
{(
D(ri), τi

)
| τi : t 7→ (

xi(t), yi(t), 0
)
, and i = 1, 2, . . . , n

}
(3.57)

of moving discs with linear motion(
xi(t)

yi(t)

)
= ci + vit. (3.58)

A moving body (Bi, τi) from B collides with a different moving body (Bj, τj) from B at
a certain time t > 0 in the future if and only if

S
(
Bi, τi(t)

)
∩ S
(
Bj, τj(t)

)
6= ∅, (3.59)

which is the case if and only if there are pi ∈ Bi and pj ∈ Bj with

pi + ci + vit = pj + cj + vjt. (3.60)
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Since Bi is a disc, it is p ′i = −pi ∈ Bi for any pi ∈ Bi, and we have equivalently

(vi − vj) · t− (cj − ci) = (p ′i + pj) (3.61)

for some p ′i ∈ Bi and pj ∈ Bj, which means

(vi − vj) · t− (cj − ci) ∈ Bi + Bj

= D(ri) +D(rj)

= D(ri + rj),

(3.62)

or equivalently
(vi − vj) · t ∈ D(ri + rj) + (cj − ci), (3.63)

which means that the set of relative velocities leading to a collision at time t > 0 lie in
a circle with radius 1

t
(ri + rj) and center 1

t
(cj − ci). We capture this observation in the

following definition and property.

Definition 3.24 (Collision Circle)
We write

CCij(t) = {vij ∈ R2 | vij · t ∈ D(ri + rj) + (cj − ci)} (3.64)

for the set of relative velocities which lead to a collision between (D(ri), τi) and (D(rj), τj)

at time t ≥ 0.

Property 3.25 (Collision Circle)
For two moving objects (Bi, τi) and (Bj, τj) from a set of moving objects B as defined
above, the collision circle is

CCij(t) =


R2, if t = 0, and (Bi, τi(0)) and (Bj, τj(0)) are colliding,
∅, if t = 0, and (Bi, τi(0)) and (Bj, τj(0)) are not colliding,
D
( ri+rj

t

)
+ 1

t
(cj − ci), else.

(3.65)

Given two moving objects (Bi, τi) and (Bj, τj) from a set of moving objects B as defined
above, any two collision circles CCij(t1) and CCij(t2) for t1, t2 > 0 can be transformed
into each other by a central dilation with respect to the origin, see Figure 3.17. There-
fore, they share the same tangent lines from the origin, and any point between or on
the tangent lines except the origin is contained in CCij(t) for some t > 0. Consequently,
the union of the collision circles CCij(t) for t ∈ R+ is a cone of colliding relative veloc-
ities, and the objects (Bi, τi) and (Bj, τj) are colliding if their relative velocity vi − vj is
contained in the union of their collision circles for t ∈ R+

0 .

Definition 3.26 (Collision Cone)
Let (D(ri), ci) and (D(rj), cj) be placed discs. Then the set

CC
(
(D(ri), ci), (D(rj), cj)

)
= ∪t∈R+

0
CCij(t) (3.66)



50 Chapter 3. Navigation in Dynamic Environments

(D(ri), ci)

(D(rj), cj)

ci

cj

0

D(ri + rj) + (ci + cj)

cj − ci

CCij(t1)

CCij(t2), t2 > t1

(a) Workspace situation (b) Velocity space situation

Figure 3.17: Collision circles

of relative velocities is called the collision cone of (D(rj), cj) for (D(ri), ci). When the
placed discs are uniquely identified by their indices i and j, we will also write CCij for
the collision cone of (D(rj), cj) for (D(ri), ci).

With this notion of a collision cone, the following property collects our observations on
colliding relative velocities.

Property 3.27 (Colliding Relative Velocities)
Let (D(ri), τi) and (D(rj), τj) be moving discs from a set of moving discs B as defined
above. Then, these discs are colliding if and only if

vi − vj ∈ CCij. (3.67)

In order to be able to decide if a linear motion of (D(ri), τi) with velocity vi leads to a
collision with (D(rj), τj) moving linearly with velocity vj, we give the following defini-
tion of a velocity obstacle, and a proof that the velocity obstacle is the set of colliding
velocities.

Definition 3.28 (Velocity Obstacle)
Let (D(ri), ci) be a placed disc, and (D(rj), τj) a moving disc from a set of moving discs B
as defined above. Then the set

VO
(
(D(ri), ci), (D(rj), τj)

)
= CCij + vj (3.68)



3.3. Collision Avoidance 51

vi

vjcj

vij

ci

(Bj, cj)

(Bi, ci)

(a) Workspace situation

vi

VOij

vj

vij

{vijt | t ∈ R+
0 }

0

ri rj

cj − ci

(Bi ∗ Bj, cj − ci)

CCij

(b) Velocity space situation

Figure 3.18: Construction of collision cone CCij and velocity obstacle VOij
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is called the velocity obstacle of (D(rj), τj) for (D(ri), ci). When the discs are uniquely
identified by their indices i and j, we will also write VOij for the velocity obstacle
of (D(rj), τj) for (D(ri), ci).

Since the collision cone CCij is the area between two rays with common apex, and its
Minkowski sum with the set {vj} is merely a translation by vj, the velocity obstacle VOij

is the area between two rays with common apex, too, and reasonably simple to compute,
see Figure 3.18.

Property 3.29 (Colliding Absolute Velocities)
Let (D(ri), τi) and (D(rj), τj) be moving discs from a set of moving discs B as defined
above.

Then, these moving discs are colliding if and only if

vi ∈ VOij. (3.69)

Proof:

The moving discs (D(ri), τi) and (D(rj), τj) are colliding if and only if

vi − vj ∈ CCij (3.70)

for CCij = CC
(
(D(ri), τi(0)), (D(rj), τj(0))

)
, which is equivalent to

∃vij ∈ CCij : vi = vij + vj. (3.71)

This can be written as
vi ∈ CCij + vj, (3.72)

or even shorter as
vi ∈ VOij (3.73)

for VOij = VO((D(ri), τi(0)), (D(rj), τj)). �

In general, there is more than a single moving obstacle in the presence of a robot. There-
fore, consider a moving disc (D(r0), τ0) being confronted with all the moving discs from
a finite set of linearly moving discs B as defined above. The union of the velocity ob-
stacles of the (D(ri), τi) for (D(r0), τ0) can be considered as one large velocity obstacle,
containing any colliding velocity.

Definition 3.30 (Velocity Obstacle of a Set of Moving Discs)
Let B be a set of linearly moving discs as defined above. Let (D(r0), c0) be a placed disc.
The set

VO
(
(D(r0), c0), B

)
= ∪n

i=1VO
(
(D(r0), c0), (D(ri), τi)

)
(3.74)

is called the (composite) velocity obstacle of B for the placed body (D(r0), c0).
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Figure 3.19: Velocity obstacle navigation

3.3.2 Navigation with Velocity Obstacles

Since the velocity obstacle VO ⊆ R2 of a set of moving discs contains all the colliding
velocities for a placed body (D(r0), c0), its complement R2−VO represents the velocities
of collision-free linear motions.

Figure 3.19 shows the velocity obstacles VOij and VOik of two moving obstacles Bj

and Bk for a moving object Bi. In this example, object Bi would collide with Bj and
with Bk. If we denote the set of reachable velocities for Bi by RV, objects Bi should
change its velocity to one of the regions labeled as reachable avoidance velocities RAVi,1,
RAVi,2, and RAVi,3 in order to avoid these collisions. Notice that there is some freedom
in choosing avoidance velocities, which allow to implement different behaviors based
on specific selection rules.

Algorithm 4 VELOCITY OBSTACLE NAVIGATION

1: input: the shape D(rA) ⊂ R2 and configuration cA of the robot
2: input: the set of reachable velocities RVA ⊂ R2 for the robot
3: input: a finite set of moving obstacles B
4: input: a subroutine to select a useful velocity with select(A) ∈ A for A ⊆ R2

5: compute the velocity obstacle VOA,Bi
of each moving body Bi ∈ B for (A, cA)

6: compute RAV = RV − ∪Bi∈BVOA,Bi

7: return select(RAV)

Algorithm 4 summarizes the approach. Since each of the elementary velocity obstacles
in the finite union is bounded by two rays with common apex, the set R2 − VO has
a polygonal boundary, which is not connected in general. That is, the composite ve-
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locity obstacle and its complement can be efficiently represented on a computer using
standard data structures from computational geometry.

3.3.3 Discussion

The presented approach has been implemented on the robot presented in Section 1.1. In
doing so, some practical problems have been identified, which are summarized in the
following.

Static Obstacles and Time Horizon

In the unmodified approach as presented above the robot is not allowed to drive di-
rectly towards an obstacle even if it is still far away. This is a severe drawback since in
any indoor environment the robot is surrounded by walls preventing it from any mo-
tion. Therefore a time horizon h ∈ R+

0 is introduced by Fiorini and Shiller (1998), and
only collisions occurring not later than h from the current time are considered. This is
achieved geometrically by cutting off an apex part of each velocity obstacle depending
on the distance to respective workspace obstacle.

Definition 3.31 (Collision Cone with Time Horizon)
Let (D(ri), τi) and (D(rj), τj) be moving objects from a set B of moving objects as defined
above, and h ∈ R+

0 a non-negative real number. Then the set

CCh
ij = ∪t∈[0,h]CCij(t) (3.75)

of relative velocities is called the collision cone with time horizon h of the placed
disc (D(rj), cj) for the placed disc (D(ri), ci).

In analogy to Definition 3.28, we will talk of a velocity obstacles with time horizon h as
the set

VOh
ij = CCh

ij + vj. (3.76)

Using these velocity obstacles with time horizon h, the robot is allowed to approach an
obstacle down to arbitrarily small distances d > 0, decelerating and never touching it.
For example, see Figure 3.20(b). Velocities from the region labeled as “approaching” will
move the object Bi directly towards object Bj and will lead to a collision if they are kept.
However, as the distance between these two objects decreases, the region of allowed
approaching velocities will shrink, since smaller relative velocities become sufficient for
a collision within time horizon h. Therefore, object Bi is forced to reduce its velocity, or
to change its direction of motion.
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Figure 3.20: Regions of absolute velocities of Bi and their meaning with respect to ob-
stacle Bj

Interpretation of Absolute Velocities

Given a moving obstacle (Bj, τj), there is a meaningful partition of the set of absolute
velocities of a moving object (Bi, τi). Figure 3.20 shows such a partition for the case
where the velocity obstacle VOij of (Bj, τj) for (Bi, τi) does not contains multiples of
the velocity vBj 6= 0. The straight line passing through the origin and vBj (that is, the
apex of VOij), separates the sets of diverging and non-diverging velocities. The non-
diverging velocities are separated further by VOij, resulting in velocities such that Bi

stays behind of Bj, Bi collides with or approaches Bj, or Bi passes in front of Bj.

Non-circular Shapes of Objects

When navigating with a real robot in real environments, the assumption of circular
objects has to be dropped. A simple and general approach would be to approximate
non-circular shapes by a set of circles. However, the collision circles are currently im-
plemented as convolution of the reflected robot shape with the obstacle shape given as
a polygonal chain. Clearly, these are no circles any more. Note that the robot shape
may change over time due to rotations. This effect is neglected at the moment, which
unfortunately gives rise to problems in narrow environments. For example the robot
may refuse to drive through a narrow door if it is not properly aligned and the wall to
the left and to the right of the doorway coalesce after obstacle growing. This could be
overcome for example by locally using a configuration space planner, considering the
environment as static for a short interval of time.
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Integration of Other Sensors

The approach as presented so far uses laser range finder images for obstacle detection
and tracking as shown in Chapter 2. Clearly, a laser range finder can only detect objects
that intersect its range of view, which is more or less a horizontal plane (neglecting the
divergence of the laser beam). Objects below or above that plane cannot be perceived,
and collisions with them are not avoided so far.

To overcome this problem, additional sensors have to be deployed. For example it
is possible increase the safety of operation by integrating a ultrasonic sensor system.
Whenever an ultrasonic sensor reports an obstacle which is not visible in the laser scan,
we can declare velocities which might lead to a collision with that obstacle as unreach-
able, thereby effectively avoiding that obstacle.

Experiments

The presented navigation scheme has been tested in an autonomous mode where the
task was to traverse the concourse of a railway station in the presence of pedestrians.
More important in the context of this thesis is its role as a basis for the cooperative
motion coordination approach which is presented with more experimental details in
the succeeding chapter.

3.4 Conclusion

At the beginning of this chapter, the basic concepts for mobile robot motion have been
presented. After a technical introduction, two widely used approaches of implement-
ing mobile robot kinematics have been considered together, with their kinematic and
dynamic properties and restrictions. As an original contribution, the virtual robot cen-
ter approach has been proposed and analyzed as a method to circumvent kinematic and
dynamic constraints of a differential drive. Furthermore, the concept of velocity obsta-
cles has been introduced on a formal basis. In combination with the virtual robot center
approach, velocity obstacles have been shown to be suitable for creating a navigation
system which allows collision-free motion among moving obstacles. Implemented on
a robotic wheelchair, this system has been experimentally evaluated in public environ-
ments such as the concourse of the central station of Ulm.
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Cooperative Motion Coordination

4.1 Introduction

In this part of this thesis we study the problem of coordinating the motion of a mobile
robot and a human through a populated, continuously changing natural environment.
This problem has an application in the transportation of disabled or elderly people or
the transportation of patients in a hospital. There, transportation services are usually
carried out by nursing personnel who push the patient or disabled person sitting or ly-
ing in some type of carriage, for example a wheelchair or a hospital bed. Since pushing
and maneuvering a heavy carriage exposes the back of the pushing person to signifi-
cant strain, these people often suffer severe long-term back problems. Using a robotic
wheelchair or hospital bed, which is able to accompany the nurse side by side like a heel-
ing dog, through arbitrarily populated, continuously changing natural environments
would certainly allow the reduction of this problem or even avoid it.

Accompanying an object or a person side by side involves the control of the position
relative to the accompanied person. Besides this, there are further constraints which
affect the heeling of a person. Ideally, the robot and the person should move at the
same velocity. So, accompanying a person side by side is not only a position control
problem but at the same time a velocity control problem. As a final constraint, the
target position, inferred from the predicted position of the accompanying person may
be perturbed through obstacles in the environment.

4.1.1 Related Work

Previously some work has been conducted considering following behaviors for mobile
robots, for example by Schlegel et al. (1998) or Sidenbladh et al. (1999), but they tend
to focus on computer vision topics (e.g. tracking a moving person), and widely ignore
dynamic aspects needed for real motion coordination. Recently, some researchers use
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laser range finders to track people in populated environments for interactive robot ap-
plications, for example for a museum tour guide as proposed by Schulz et al. (2001).

The related problem of intercepting a moving target is relevant for military applications
and has been largely studied in that context (Zarchan, 1998). The main difference is
that there the goal is to collide with the moving target (in general with non-zero relative
velocity), where we strive to reach and keep a position besides the guide with vanishing
relative velocity.

There are some theoretical results on the complexity of pursuit evasion games, that is,
Reif and Tate (1993) prove hardness for exponential time for 3-dimensional polyhedral
pursuit games with bounded velocities.

Finally, there is another problem called motion coordination where one has to plan the
simultaneous motion of multiple robots. Clearly, that problem is related to the topic of
this thesis only marginally.

4.1.2 Overview

Accompanying a human through busy environments requires the robot to pursue two
different, sometimes conflicting goals: staying close to the human and moving parallel
on the one hand, and avoiding collisions with environmental obstacles or the human
guide himself one the other hand. Achieving this second goal ensures survival of the
robot, while accomplishing the first goal means succeeding in the mission.

Therefore an approach to motion coordination incorporates at least two layers: a top-
level strategic layer to direct the robot towards states desired for motion coordination,
and a tactical layer below to avoid collisions with obstacles. The approach described in
this thesis employs two layers as above and a basic third low-level layer (the operational
layer) that controls the robot velocity.

The remainder of this chapter is organized as follows. In Section 4.2, the problem is
introduced in a more formal manner, before Section 4.3 portrays a practical approach to
the stated problem. The method is described as an extension to the employed obstacle
avoidance scheme presented in the previous chapter. Section 4.4 outlines conducted
experiments, and the results are discussed in Section 4.5.

4.2 Problem Description

Let the environment of robot A contain a set of moving objects B = {(Bi, τi) | i =

1, 2, . . . , n}. For simplicity we presume that the robot and the objects are of circular
shape with radii rA for the robot and r1, r2, . . . , rn for the objects in B.

In the following, τi denotes the trajectory of object Bi, and τ̂i(t, ∆t) denotes a predicted
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Figure 4.1: Motion coordination problem

configuration of object Bi, estimated at time t to be occurring at time t + ∆t. Analo-
gously, τ∗A(t, ∆t) denotes a configuration for the robot A that is considered at time t to
be optimal at time t+ ∆t.

Let one of the objects, say object B0, be a guiding motion partner of the robot. That is,
we want the robot A to stay in a fixed configuration relative to object B0, for example
half a meter to the right of B0, see Figure 4.1.

At time t, the robot A knows its own configuration τA(t), and detects the position
(xB0

(t), yB0
(t)) of its guide. From previous guide positions (xB0

(t − ∆t), yB0
(t − ∆t)),

the robot may infer the current guide orientation θB0
(t) (thereby the current configu-

ration τB0
(t) of the guide) and velocity (vB0

(t),ωB0
(t)), which allows to predict future

configurations τ̂B0
(t, ∆t) of the guide, and to compute future desired states τ∗A(t, ∆t) for

the robot.

4.2.1 Dynamic Game Formulation

In our specific case, the robot A has a differential drive, that is, two independently
driven wheels at distance 2wwith fixed maximum wheel velocity vW, max and maximum
wheel acceleration aW, max. Let aR and aL be the accelerations of the right and left wheel,
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respectively. Then, the kinematic equations

ẋA = vA cos θA (4.1)
ẏA = vA sin θA (4.2)

θ̇A = ωA (4.3)

v̇A =
aR + aL

2
(4.4)

ω̇A =
aR − aL

2w
(4.5)

describe feasible robot motion (up to the velocity bounds) with state variables

(xA, yA, θA, vA,ωA) ∈ R5 (4.6)

and control variables

(aR, aL) ∈ [−aW, max, aW, max]
2. (4.7)

If the guide kinematics and dynamics are modeled similarly to the robot, the motion
coordination problem can be formulated as a differential (or dynamic) game (Isaacs,
1965) between the guide and the follower. Then, the state variables of the game are
given by (xA, yA, θA, vA,ωA) as above for the robot (the pursuer), and the correspond-
ing state vector (xB, yB, θB, vB,ωB) for the guide (the evader). The control variables are
the same as in the respective kinematic equations, namely aR and aL for the pursuing
robot. In the worst case for the robot, the guide will try to evade the follower. The
time t∗ − t0 elapsed from the start of the game until the robot reaches a desired configu-
ration τA(t∗) = τ∗A(t∗, 0) is the payoff that the evading guide strives to maximize and the
robot tries to minimize. If we consider a reduced state space where the configuration of
the guide is described relative to the robot coordinate frame, a strategy for the robot is
a function

φ : (R2 × R)× (R× R)× (R× R)→ R× R (4.8)

which maps the current position and orientation of the guide B0 relative to 〈A〉, the ve-
locities (vB,ωB) of the guide, and (vA,ωA) of the robot to values for the control variables
(i.e. the wheel accelerations) of the robot.

This approach follows a clear theoretical concept, however, it displays several draw-
backs. First, the kinematics and dynamics of a human guide (or more specifically, of
human gait) have to be modeled. Furthermore, presuming the guide to be an antagonis-
tic evader appears rather unrealistic in the context of cooperative motion coordination.
Finally, the differential game approach becomes difficult or even inadequate as soon
as obstacles in the environment have to be considered (Isaacs, 1965, page 152), which
serves as a motivation for an alternative approach.
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Figure 4.2: Computing the target velocity vtarget(t)

4.3 Practical Motion Coordination

This section portrays our approach to the given problem, which is described as an exten-
sion to the collision avoidance scheme presented in the previous chapter. As suggested
before, we exploit the freedom remaining in the choice of an avoidance velocity to im-
plement the motion coordination behavior.

4.3.1 Target Velocity

In general, the robot is neither located at a position (x∗, y∗) nor moving with a velocity v∗

suitable for motion coordination. So the goal is to control the motion of the robot such
that it approaches both the desired accompanying position and the velocity vB0 of the
guide B0. To achieve this, a target velocity

vtarget(t) = vB0(t) + vadjust(t) (4.9)

is computed, see Figure 4.2. The addend vadjust(t) to the current velocity vB0(t) of the
guide is used to control the relative position of the robot, and it fulfills

vadjust(t) = λ ·
(
τ∗A(t, 0) − τA(t)

)
(4.10)

with λ ∈ R+. The actual value of λ depends on the distance between the actual posi-
tion τA(t) and the desired configuration τ∗A(t, 0), as well as the dynamic capabilities of
the robot. One may think of a virtual link or spring here.



62 Chapter 4. Cooperative Motion Coordination

0

VOBj

VOBi

VOBk

colliding with B0

RV

overtaking of B0

vB0

vA
vtarget
= vnav

VOh
B0

Figure 4.3: Selecting an avoidance velocity vnav for cooperative motion coordination.
The robot selects an avoidance velocity vnav minimizing the difference to the target
velocity vtarget. Since vtarget is neither colliding nor overtaking here, it is taken directly
as vnav.

4.3.2 Integration with Obstacle Avoidance

Now the notion of the target velocity is filled with meaning, as the obstacle avoidance
module selects an avoidance velocity vnav(t) minimizing the difference to the target ve-
locity vtarget(t).

For the set of moving obstacles B, the composite velocity obstacle

VOA,B = ∪n
i=1VOA, (Bi,τi) (4.11)

is computed and the set of reachable velocities

RV ⊂ R2 (4.12)

is determined. From the set of reachable avoidance velocities

RAV = RV − VOA,B (4.13)

a velocity vnav with minimum difference to vtarget is selected, that is,

vnav ∈ RAV, and (4.14)
|vnav − vtarget| = min

v∈RAV
|v − vtarget|. (4.15)
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This selection is illustrated by Figure 4.3, continuing the example from Figure 4.2.

Velocities resulting in unwanted overtaking of the guide can be identified and forbidden
easily by modifying the velocity obstacle VOB0

of the guide.

motion coordination

obstacle avoidance

velocity control

desired motion

collision-free
motion

object tracking

obstacle proximity

guide

obstacles

laser range finder

ultrasonic sensing

strategic layer

tactical layer

operational layer

Figure 4.4: Interaction between modules and layers for cooperative motion coordination

4.4 Experiments

The presented approach to cooperative motion coordination has been implemented on
the robot presented in Section 1.1. Figure 4.4 visualizes the coarse interaction between
the involved hardware and software modules. The system has been extensively and
successfully tested in the concourse of the central station and in the pedestrian area of
Ulm during regular business hours.

The mission was for the robot to accompany a person side by side in a lateral distance
of 60 cm through the concourse. The concourse has a size of about 20 × 40m2, with
several rows of seats, an information booth and several ticket machines. During the
experiments typically between 50 and 100 people were constantly staying and moving
in the concourse.

In the pedestrian area, the robot accompanied a person from the central station to the
Münster, which is a distance of about 500 meters (see Figure 4.5) where the sensors
where exposed to the sun.

The total mission time adds up to 8–10 hours distributed over several days. The distance
traveled during that time adds up to around three kilometers. Due to visibility problems
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such as occlusion, the robot several times lost the person which was to accompany and
then stopped. There was no collision between the robot and a pedestrian.

Figure 4.5: Map of Ulm downtown, with path from central station to Münster

4.5 Conclusion

Motion coordination has been presented as a problem related to motion planning in
dynamic environments and to kino-dynamic motion planning, both of which are com-
putationally hard or even intractable in their exact form. Therefore we may not expect
an exact solution but have to rely on approximations and heuristics.

Our test application is a robotic wheelchair accompanying a person through the con-
course of a railway station or a pedestrian area moving side by side with the person.
During several experiments the robot successfully managed to accompany a person
through a populated concourse over a total distance of around three kilometers with a
total mission time of about 8–10 hours.

Currently, the motion of the guide is predicted only by linear extrapolation. It should be
not too complicated to consider angular velocity (i.e. circular motion), too. Furthermore,
opponent modeling appears to be a promising idea from game theoretic domains, since
better models of humans moving in the environment (their goals, attitudes towards
other humans or the robot, etc.) allow a more precise prediction of their future motion.
Cooperative games might be addressed to model the problem of motion coordination
more accurately, too.
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Similarity of Paths

5.1 Introduction

When considering cooperative motion coordination behaviors as presented in Chap-
ter 4, one can ask for the similarity between the motion of the guide and the motion
of the robot. This question may arise for example when several approaches to cooper-
ative motion coordination are compared to each other in order to determine a “best”
approach which shall be used in an application (e.g. in a museum tour guide, robotic
wheelchair etc.), where the similarity outcomes are evaluated by a human engineer.

Another situation where a similarity measure (or, an abstract distance measure) for
paths is useful is in the context of user interfaces for mobile robots. For example,
Schlegel and Kämpke (2001) presented a system where the user may input an inprecise
path for a mobile robot, which is transformed into another path which is similar to the
original path but optimized with respect to some objective function. Specifically, the
proposed system transforms a given path into a shortest path from the same homotopy
class as the original path.

There is some related work on distances between point sets or curves. For example the
Hausdorff distance for point sets is well known, and the Fréchet metric is an intuitive
distance measure for curves. Furthermore, there are efficient algorithms which compute
the values of these distance measures for planar polygonal chains.

However, obstacles in the ambient space of the curves appear to be widely ignored.
Since we are mainly interested in the cooperative motion of robots and humans in natu-
ral environments, which, in general, may contain an arbitrary number of obstacles, we
take the opportunity and define a topological metric on the the set of path homotopy
classes.

To accomplish this task, the basic concepts concerning curves and homotopy classes are
presented first. Subsequently, the Hausdorff metric and the Fréchet metric are presented
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as examples of existing and established distance measures, and efficient algorithms for
their computation in the case of planar polygonal chains are described as proposed by
Alt et al. (1995) and Alt and Guibas (1996). Finally, the major part of this chapter is
dedicated to the definition of a topological metric, and a description of its computation
for plane curves.

5.2 Curves

The most basic concept in this chapter is the curve. Intuitively, a curve is something
that can be drawn with a pen without jumping from one position to a different position.
This idea is specified more abstractly in the following definition.

Definition 5.1 (Curve, Path)
A curve in a space S is a continuous mapping c : [a, b]→ S.

A curve c is called simple, if its restriction to [a, b) is injective. A curve c is called closed,
if c(a) = c(b).

A curve in R2 is called a plane curve. A simple closed plane curve is called a Jordan
curve.

The point c(a) is called source(c), and the point c(b) is called target(c). A curve c is
called (s, t)-curve, if source(c) = s and target(c) = t.

c2c1 c3 c4

Figure 5.1: Examples of curves

Figure 5.1 shows images of example curves in R2. Curve c1 is simple and not closed,
curve c2 is simple and closed, curve c3 is neither simple nor closed, and curve c4 is not
simple but closed.
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Later on we will need the famous Jordan Curve Theorem, which is given below without
a proof.

Theorem 5.2 (Jordan Curve Theorem)
If c is a Jordan curve, then the complement of the image of c has two distinct connected
components, a bounded interior and an unbounded exterior, with c being the boundary
of each.

If one curve stops where another curve starts, these two curves together can be con-
sidered as one curve, i.e. as the concatenation of the two former curves. Furthermore,
when a plane curve is drawn with a pen, we can reverse the motion of the pen an get a
reversed version of the curve.

Definition 5.3 (Concatenation, Reverse Curve)
Let c1 : [a1, b1] → S and c2 : [a2, b2] → S be curves with c1(b1) = c2(a2). Then, the
concatenation of c1 and c2 is the curve

c1 · c2 : [a1, b1 + b2 − a2]→ S (5.1)

with

(c1 · c2)(t) =

{
c1(t) if t ≤ b1,
c2(t− b1 + a2) else,

(5.2)

and the reverse curve of c1 is the curve c1 : [a1, b1]→ Swith

c1(t) = c1(a1 + b1 − t) (5.3)

Intuitively, particularly simple curve can be drawn using a ruler, with constant speed of
the pen. These will be called linear curves, and concatenations of linear curves will be
called polygonal chains.

Definition 5.4 (Linear Curve)
A curve c : [a, b]→ Rd is called linear, if

c(t) = c(a) +
t− a

b− a
(c(b) − c(a)).

Definition 5.5 (Polygonal Chain)
A curve c : [a, b]→ Rd is called polygonal chain, if it is the concatenation

c = c1 · c2 . . . cn (5.4)

of a finite sequence of linear curves ci : [ai, bi] → Rd. A point p = ci(bi) ∈ Rd for 1 <
i < n is called an inner vertex of c, if ci · ci+1 is not a linear curve. A point p ∈ Rd is
called a vertex of c, if p = c(a), or p = c(b), or p is an inner vertex of c.
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Definition 5.6 (Length of a Polygonal Chain)
Let c : [a, b]→ Rd be a polygonal chain with c = c1 · c2 . . . cn and ci : [ai, bi]→ Rd.

Letm be the number of vertices of c. Then the link length l#(c) of the polygonal chain c
is the numberm− 1. The Euclidean length l2(c) of the polygonal chain is

l2(c) =

n∑
i=1

d2(ci(ai), ci(bi)) (5.5)

where d2 denotes the Euclidean distance.

5.2.1 Homotopy

In a space with obstacles, there are various ways of moving from a start position to a
goal position with respect to the position of the obstacles. A simple example is a room
with two doors to a corridor: taking either of them yields paths from different “classes”.

Definition 5.7 (Space with Obstacles)
A space with obstacles (of dimension d) is a connected set E ⊆ Rd, where the obstacle
setH = Rd\E is the union of a finite number of disjunct, closed, and connected sets hi ⊂
Rd (i.e. the obstacles, or holes).

E

h1

h2

E

h1

(a) (b) (c)

Figure 5.2: Examples of spaces with obstacles

As an example, Figure 5.2(a) depicts a bounded 2-dimensional space with one (un-
bounded) obstacle, but the structure depicted by Figure 5.2(b) does not represent a valid
space with obstacles since E is not connected. Finally, Figure 5.2(c) shows an unbounded
space with obstacles where the obstacle set consists of three disjunct holes.

Definition 5.8 (Homotopy of Closed Curves)
Let E be a space with obstacles. Let c1 : [a1, b1] → E and c2 : [a2, b2] → E be closed
curves. Curve c1 is said to be homotopic to curve c2, if there is a continuous mapping Γ :

[0, 1]× [0, 1]→ E such that
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c1

c2

c3

h1

h2

Figure 5.3: Examples of homotopic curves. Curve c1 is homotopic to curve c2, but not
homotopic to curve c3.

(i) Γ(0, t) = c1(a1 + t(b1 − a1)) for t ∈ [0, 1],

(ii) Γ(1, t) = c2(a2 + t(b2 − a2)) for t ∈ [0, 1],

(iii) Γ(s, 0) = Γ(s, 1) for s ∈ [0, 1], and

(iv) Γ(s, t) ∈ E for s, t ∈ [0, 1].

In the definition above, the mapping Γ continuously transforms curve c1 into curve c2

with increasing values of its first argument (cf. (i) and (ii)), whereby each intermediate
curve is still closed (cf. (iii)) and does not intersect any obstacle (cf. (iv)).

Figure 5.3 shows a space with two obstacles h1 and h2, as well as images of three
curves c1, c2, and c3. Curve c1 is homotopic to c2, but neither c1 nor c2 are homotopic
to c3.

Property 5.9 (Homotopy is an Equivalence Relation)
Homotopy is an equivalence relation on the set of closed curves in a space E. The re-
spective equivalence classes are called homotopy classes.

Proof:

For any closed curve c : [a, b] → E, the mapping Γ(s, t) = c(a + t(b − a)) proves
reflexivity.

Let c1 : [a1, b1] → E and c2 : [a2, b2] → E be closed curves, and c1 homotopic to c2

via Γ : [0, 1]× [0, 1]→ E. Then, c2 is homotopic to c1 via Γ ′ with Γ ′(s, t) = Γ(1− s, t), i.e.
homotopy is symmetric.
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Figure 5.4: Homotopy of composed curves

Let c1 : [a1, b1] → E, c2 : [a2, b2] → E, and c3 : [a3, b3] → E be closed curves, c1

homotopic to c2 via Γ1, and c2 homotopic to c3 via Γ2. Then, c1 is homotopic to c3 via Γ3
with

Γ3(s, t) =

{
Γ1(2s, t) if s ≤ 0.5,
Γ2(2s− 1, t) if s > 0.5.

(5.6)

�

Property 5.10 (Homotopy of Composed Curves)
Let E be a space with obstacles, let ci and c ′i for i ∈ {1, 2, . . . , n} be curves in Ewith

(i) source(ci) = source(c ′i) and target(ci) = target(c ′i) for i ∈ {1, 2, . . . , n},
(ii) target(ci) = source(ci+1) (mod n), and
(iii) ci and c ′i are path homotopic for i ∈ {1, 2, . . . , n},

see Figure 5.4. Then, the closed curves
∏n

i=1 ci and
∏n

i=1 c
′
i are homotopic.

Proof:

Let Γi be a continuous mapping which transforms the closed curve c ′i · ci to the single
point source(ci) without crossing an obstacle. Then, there is a continuous mapping Γ ′i
which transforms the curve ci to the curve c ′i · ci · ci without crossing an obstacle. A
combination of such mappings Γ ′i for i = 1, 2, . . . , n transforms the closed curve

∏n
i=1 ci

into the closed curve
∏n

i=1(c
′
i · ci · ci) without crossing an obstacle. A simultaneous

application of continuous transformations of curves ci · ci to points target(ci) for i =

1, 2, . . . , n completes the proof. �
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Definition 5.11 (Path Homotopy of (s, t)-Curves)
Let E be a space with obstacles. Two curves c1 : [a1, b1] → E and c2 : [a2, b2] → E with
c1(a1) = c2(a2) and c1(b1) = c2(b2) are called (path) homotopic, if the closed curve c1·c2

is homotopic to the degenerate closed curve consisting of the single point c1(a1).

Property 5.12 (Path Homotopy is an Equivalence Relation)
Path homotopy is an equivalence relation on the set of (s, t)-curves, and the equivalence
classes are called path homotopy classes.

Proof:

For any (s, t)-curve c : [a, b]→ E, reflexivity of path homotopy is shown by the mapping

Γ(s, t) =


c(a+ 2t(b− a) if 2t ≤ 1− s,
c(a+ (2− 2t)(b− a) if 2− 2t ≤ 1− s, and
c(1− s) else,

(5.7)

which transforms the curve c · c to the degenerate curve without crossing an obstacle.

Let c1 and c2 be (s, t)-curves. Curve c1 is path homotopic to c2, iff c1 · c2 is homotopic
to the degenerate curve via a mapping Γ , which is equivalent to c1 · c2 = c2 · c1 being
homotopic to the degenerate curve via a mapping Γ ′(s, t) = Γ(s, 1− t), which is the case
if and only if curve c2 is homotopic to c1. Therefore, path homotopy is symmetric.

Let c1, c2, and c3 be (s, t)-curves, curve c1 path homotopic to c2, and curve c2 path homo-
topic to c3. Then, the closed curve c1 ·c2 is homotopic to the degenerate curve consisting
of point s via mapping Γ1, and the closed curve c2 · c3 is homotopic to the degenerate
curve consisting of point s via mapping Γ2. Mappings Γ1 and Γ2 can be combined to a
mapping Γ3 which transforms the closed curve c1 · c2 · c2 · c3 to the degenerate curve
consisting of point swithout crossing an obstacle. The closed curve c2 · c2 is homotopic
to the degenerate curve consisting of point t via mapping Γ4, since path homotopy is
reflexive. Therefore, the closed curve c1 · c3 can be continuously transformed to the
degenerate curve consisting of point s without crossing an obstacle by subsequent ap-
plication of a mapping Γ ′4 which transforms curve c1 · c3 to curve c1 · c2 · c2 · c3, and Γ3
transforming curve c1 · c2 · c2 · c3 to the degenerate curve consisting of point s. �

Property 5.13 (Path Homotopy of Composed Curves)
Let E be a space with obstacles, let c1, c2 and c ′1, c

′
2 be curves in Ewith

(i) source(ci) = source(c ′i), and target(ci) = target(c ′i) for i ∈ {1, 2},

(ii) target(c1) = source(c2), and

(iii) ci and c ′i are path homotopic for i ∈ {1, 2},

see Figure 5.4. Then, the curves c1 · c2 and c ′1 · c ′2 are path homotopic.
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Proof:

We have to show that there is a continuous mapping Γ which transforms c1 ·c2 ·c ′2 ·c ′1 into
the degenerate closed curve (consisting of a single point) without crossing an obstacle.
Since c1 and c ′1 are path homotopic, there is a continuous mapping Γ1 which transforms
the closed curve c ′1 ·c1 into the single point target(c1) without crossing an obstacle. Anal-
ogously, there is a continuous mapping Γ2 which transforms the closed curve c2 · c ′2 into
the single point source(c2). A combination of mappings Γ1 and Γ2 continuously trans-
forms the closed curve c ′1 · c1 · c2 · c ′2 to the single point target(c1) = source(c2). Clearly,
the closed curves c1 ·c2 ·c ′2 ·c ′1 and c ′1 ·c1 ·c2 ·c ′2 are homotopic, and the latter is homotopic
to a single point. Therefore, the closed curve c1 ·c2 ·c ′2 ·c ′1 is homotopic to a single point,
too, and the (open) curves c1 · c2 and c ′1 · c ′2 are path homotopic. �

Corollary 5.14
Let (c1, c2, . . . , cn) and (c ′1, c

′
2, . . . , c

′
n) be sequences of curves with

(i) source(ci) = source(c ′i), and target(ci) = target(c ′i) for 1 ≤ i ≤ n,

(ii) target(ci) = source(ci+1) for 1 ≤ i < n, and

(iii) ci and c ′i are path homotopic.

Then, the curves c1 · c2 . . . cn and c ′1 · c ′2 . . . c ′n are path homotopic.

Lemma 5.15
Let c : [a, b] → E be a closed curve and p ∈ E. Then there is a closed curve c ′

with source(c ′) = target(c ′) = pwhich is homotopic to c.

Proof:

The space E is connected, therefore there is a curve d : [0, 1] → E with source(d) = p

and target(d) = c(a). Then, the curve c ′ := d · c · d has the claimed properties. �

Definition 5.16 (Concatenation of Homotopy Classes)
Let [c1] and [c2] be homotopy classes of closed curves c1 : [a, b] → E and c2 : [a, b] → E

with c1(a) = c2(a). Then, [c1 · c2] is called the concatenation of [c1] and [c2].

We have to argue that the concatenation of homotopy classes above is well-defined.
Let c ′1 ∈ [c1] with c ′1 6= c1, and c ′2 ∈ [c2] with c ′2 6= c2. Then there are a continuous
mapping Γ1 which transforms c ′1 to c1 without crossing an obstacles, and a continuous
mapping Γ2 which transforms c ′2 to c2 without crossing an obstacle, such that Γ1(s, 0) =

Γ2(s, 0) = source(c1) for s ∈ [0, 1]. Mappings Γ1 and Γ2 are now easily combined into a
mapping Γ3 which transforms the curve c ′1 · c ′2 into the curve c1 · c2 without crossing an
obstacle. That is, curves c ′1 · c ′2 and c1 · c2 are homotopic, and [c1 · c2] = [c ′1 · c ′2].
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Property 5.17 (Fundamental Group)
The set of homotopy classes of closed curves together with the operation of concatena-
tion form a group called the Fundamental Group or Poincaré Group.

The neutral element of this group is the equivalence class of all closed curves which are
homotopic to the degenerate closed curve consisting of a single point p ∈ E.

The inverse element [c] of an element [c] of the group is the element [c].

Verification of the group axioms is left to the reader.

Definition 5.18 (Primitive Element of Fundamental Group)
We call an element ei = [ci] of the Poincaré group primitive, if there is a Jordan curve c ∈
[ci] which contains exactly one obstacle, i.e. the obstacle hi, in its interior.

5.3 Distance Measures

When objects have to be compared, a simple binary decision if the objects are equal or
not may not be sufficient in many cases, for example when there is noise in the data and
a perfect match cannot be expected. In such cases, distance measures which quantify
the degree of similarity between two given objects can be useful.

Definition 5.19 (Pseudometric)
LetM be a set. The function d : M×M→ R+

0 is called pseudometric forM, if

(i) d(x, x) = 0,

(ii) d(x, y) = d(y, x) (symmetry), and

(iii) d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality)

hold for any x, y, z ∈M.

Definition 5.20 (Metric)
Let M be a set. The function d : M × M → R+

0 is called a metric for M, if d is a
pseudometric forM and

d(x, y) = 0 ⇒ x = y (5.8)

holds for any x, y ∈M.

Property 5.21
Any pseudometric d for a setM induces an equivalence relation ∼d onM via

x ∼d y :⇔ d(x, y) = 0. (5.9)
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Proof:

Reflexivity and symmetry of the relation ∼d follow from properties (i) and (ii) in Defi-
nition 5.19. Let x, y, z ∈ M with x ∼d y and y ∼d z. According to property (iii) from
Definition 5.19,

0 ≤ d(x, z) ≤ d(x, y) + d(y, z) = 0

holds, i.e. d(x, z) = 0 and therefore x ∼d z. �

Property 5.22
Any pseudometric d for a set M induces a metric δ on the equivalence classes of the
relation ∼d via

δ([x], [y]) := d(x, y). (5.10)

Proof:

The function δ is well-defined: let x, x ′, y, y ′ ∈Mwith x ′ ∼d x and y ′ ∼d y. Then,

δ([x], [y]) = d(x, y) ≤ d(x, x ′) + d(x ′, y ′) + d(y ′, y) = d(x ′, y ′) = δ([x ′], [y ′])

and

δ([x ′], [y ′]) = d(x ′, y ′) ≤ d(x ′, x) + d(x, y) + d(y, y ′) = d(x, y) = δ([x], [y])

hold, together δ([x], [y]) = δ([x ′], [y ′]). Furthermore, δ displays all properties of a metric:

(i) δ([x], [x]) = d(x, x) = 0

(ii) δ([x], [y]) = d(x, y) = d(y, x) = δ([y], [x])

(iii) δ([x], [y]) + δ([y], [z]) = d(x, y) + d(y, z) ≥ d(x, z) = δ([x], [z])

(iv) δ([x], [y]) = d(x, y) = 0 ⇒ x ∼d y ⇒ [x] = [y]

�

Distance measures can be defined on any kind of sets. In the following we will focus on
distance measures for geometric objects. Two well known measures will be presented,
namely the Hausdorff distance for point sets and the Fréchet distance for curves.

Furthermore, a new distance measure for curves will be introduced which considers
the relationship between the curves and obstacles in their environment, i.e. topological
properties of the curves.

However these distance measures are defined for arbitrary dimensional spaces, when
computation of distance values is considered, we restrict ourselves to the 2-dimensional
plane in the following.
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δ̃H(B,A)
A

δ̃H(A,B) B

c2

c1

(a) Hausdorff distance for line segments (b) Pathological example

Figure 5.5: Hausdorff distance examples

5.3.1 Hausdorff Distance

The Hausdorff distance is defined for point sets in Euclidean space. Informally, for two
point setsA and B, their distance is the minimum distance d such that no point fromA is
more than distance d away from a point B and vice versa. This is stated more precisely
in the following definition.

Definition 5.23 (Hausdorff Distance)
Let A,B ⊆ Rd sets of points, d : Rd × Rd → R+

0 the Euclidean metric. The function

δ̃H(A,B) := sup
a∈A

inf
b∈B

d(a, b) (5.11)

is called the directed Hausdorff distance of the two point sets A and B. Furthermore,
the (undirected) Hausdorff distance δH(A,B) of these two point sets is defined by

δH(A,B) := max
(
δ̃H(A,B), δ̃H(B,A)

)
(5.12)

The meaning of the directed Hausdorff distance is illustrated by Figure 5.5(a) for two
straight line segments. It should be kept in mind that there are cases where the Haus-
dorff distance is not suitable to compare curves. One such case is can be seen in Fig-
ure 5.5(b), where the distance of the two polygonal chains is small but their similarity is
low.
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5.3.2 Computation of the Hausdorff Distance

The significant step in the computation of the directed Hausdorff distance of two point
sets A and B is the search for a point q ∈ Bwith minimum distance to a given point p ∈
A, i.e. this is the spot where naive approaches will differ from sophisticated algorithms.
Clearly, efficient implementations will depend on the structure of the point setsA and B.

An efficient algorithm for computing the Hausdorff distance of two simple polygons is
presented by Alt et al. (1995). Their approach can be generalized to simple polygonal
chains easily.

A key to the efficiency of this algorithm are Voronoi diagrams of polygonal chains. The
Voronoi diagram Vor(A) of a set of geometric objects A (called sites in this context) as-
signs to each site a ∈ A its Voronoi cell, i.e. the set of points which are closer to a site a
than to any other site a ′ ∈ A. Voronoi cells are bounded by Voronoi edges. In the case of
polygonal chains, relevant sites are the edges and vertices of the chains, and the Voronoi
edges are either line segments (if they separate the cells of two edges or two vertices of
the polygonal chain) or parabolic segments (if they separate the cell of an edge from the
cell of a vertex of the polygonal chain). The (zero-dimensional) locations where Voronoi
edges meet are called Voronoi vertices, and they represent center points of empty circles
with locally maximum radius (i.e. infinitesimal displacement from this point will de-
crease the maximum radius of an empty circle). Fortune (1987) gives more details on
this data structure and an optimal algorithm for its computation.

In two dimensions, the structure of Voronoi edges and vertices is a planar graph. There-
fore, a voronoi diagram for |A| sites will consist of O(|A|) faces, edges, and vertices.
Furthermore, the Voronoi diagram of a set A of straight line segments or circular arcs
can be computed in time O(|A| log |A|) which is shown by Fortune (1987) for straight
lines and by Yap (1987) for circular arcs. As an example, Figures 5.6(a) and (b) show a
polygonal chain together with its Voronoi diagram.

Given two polygonal chainsA and B as well as the Voronoi diagram Vor(A) ofA, the di-
rected Hausdorff distance δ̃H(B,A) can be computed efficiently as following, according
to Alt et al. (1995).

Consider the intersection of an edge b from B with a cell C from Vor(A). When moving
monotonically on this part of the edge b, the distance to the corresponding site a fromA

defining cell C is a convex function. Therefore, the maximum distance is assumed at an
endpoint of this part of b, i.e. at a vertex of B or at an intersection of b with a Voronoi
edge (see for example the points marked as ‘1’ and ‘2’ in Figure 5.6(d)).

On the other hand, when moving monotonically on a Voronoi edge e of Vor(A), the
distance to the sites whose cells are bounded by e is a convex function, too. As a con-
sequence, for each Voronoi edge e of Vor(A) only its extremal intersections with sites
from B need to be considered (see for example the points marked as ‘2’ and ‘3’ in Fig-
ure 5.6(d)).
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(a) Polygonal chain A (b) Polygonal chain Awith Voronoi diagram Vor(A)

2
1

3

(c) Voronoi diagram Vor(A) (d) Voronoi diagram Vor(A) and polygonal chain B

Figure 5.6: Hausdorff distance of polygonal chains
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Therefore, in order to compute the directed Hausdorff distance δ̃H(B,A), the number of
points for which the distance to A needs to be considered is only O(|A| + |B|).

The extremal intersection points of Voronoi edges e from Vor(A) with edges b from B

can be found by two subsequent plane sweeps in opposite directions, whereby in each
sweep Voronoi edges are removed from the event and sweep structure as soon as a first
intersection is detected. Since there are O(|A| + |B|) event points, each sweep can be
accomplished in time O((|A| + |B|) log(|A| + |B|)). During the sweep, the cells of Vor(A)

containing the event points are known, and therefore the distances to the respective
sites can be computed in constant time. Note that the time required for constructing the
Voronoi diagram is dominated by the time required for the final plane sweeps.

As a result, the Hausdorff distance δH(A,B) of two polygonal chains can be computed in
timeO((|A|+|B|) log(|A|+|B|)), too, by computing the maximum of δ̃H(A,B) and δ̃H(B,A).

5.3.3 Fréchet Distance

As we have seen in the example of Figure 5.5(b), the Hausdorff distance is not always
suitable for the comparison of curves. These problems are avoided by the Fréchet dis-
tance, which is defined for curves only.

Definition 5.24 (Fréchet Distance)
Let c1 : [a1, b1]→ Rd and c2 : [a2, b2]→ Rd be curves in Rd, let d : Rd × Rd → R+

0 be the
Euclidean metric. Then, the function

δF(c1, c2) := inf
α,β

max
t∈[0,1]

d (c1(α(t)), c2(β(t))) (5.13)

where permissible functions α : [0, 1] → [a1, b1] and β : [0, 1] → [a2, b2] are continuous,
surjective, and monotonously increasing, is called Fréchet metric,

An intuitive description of the Fréchet distance of two curves can be given as follows.
Consider a dog and its master on a walk, where the master moves monotonically along c1

and the dogs moves monotonically along c2. Then, the Fréchet distance of c1 and c2 is
the minimum length of the leash which still allows such a walk.

5.3.4 Computation of the Fréchet Distance

An algorithm for computing the Fréchet distance of polygonal chains has been proposed
by Alt and Guibas (1996), and will be presented in the following.

Let c1 : [α0, αm]→ R2 and c2 : [β0, βn]→ R2 polygonal chains, without loss of generality
with linear parameterization (that is, the Euclidean arc length of the curve from c(t)

to c(t+ s) is s for any t and s), c1 linear on each interval [αi, αi+1] for 0 ≤ i < m, and c2

linear on each interval [βj, βj+1] for 0 ≤ j < n.
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c1(α0)

c1(α3)

c2(β3)

c2(β4)

c2(β1)

c2(β2)

c1(α2)c1(α1)

c2(β0)

α0 α1 α2 α3

β4

β3

β2

β1

β0

π

(a) Two polygonal chains (b) Combined parameterization

Figure 5.7: Computation of Fréchet distance of polygonal chains

As a first step, an algorithm is developed which decides if the Fréchet distance of two
given polygonal chains is smaller than a given value δ. Then, in a second step, binary
or parametric search is applied to incrementally compute the actual distance value.

So in the first step, a distance value δ is given, and the problem is to decide whether the
Fréchet distance of the given pair of polygonal chains c1 and c2 is not greater than δ (see
for example Figure 5.7(a)). That is, we have to decide if there is a curve π : [0, 1] →
[α0, αm] × [β0, βn] from (α0, β0) to (αm, βn) with π(t) = (α(t), β(t)), and α and β

monotonous as in the definition of the Fréchet distance, such that d(c1(α(t)), c2(β(t))) ≤
δ for any t ∈ [0, 1] (cf. Figure 5.7(b)).

In the case of polygonal chains, we can partition the set [α0, αm] × [β0, βn] into rect-
angles Rij = [αi, αi+1) × [βj, βj+1) where each rectangle Rij confers to a specific pair of
segments from the polygonal chains. Depending on the supporting lines l1 and l2 of the
segments c1|[αi,αi+1] and c2|[βj,βj+1], the set R̂ij = {(α,β) ∈ Rij |d(c1(α), c2(β)) ≤ δ} is the
intersection of the rectangle Rij with either

(i) the empty set, if l1 and l2 are parallel with distance greater than δ,

(ii) a strip of constant width, if l1 and l2 are parallel and their distance is not greater
than δ, or

(iii) a circle, if l1 and l2 intersect in one point.
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u

p1 + λu

p2 + µv

(p2 − p1) + (µv − λu)

p1l1

l2

v

p2

p ′2

Figure 5.8: Fréchet distance, parallel segment pair

Clearly, only points from the union of the sets R̂ij (0 ≤ i < m, 0 ≤ j < n) may be
traversed by a curve π for the combined parameterization of c1 and c2 when we want
to show δF(c1, c2) ≤ δ.

We will now examine the three cases for the relative pose of the supporting lines l1
and l2. At first, assume that l1 and l2 are parallel and given as l1 : λ 7→ p1 + λu,
l2 : µ 7→ p2 + µv, |u| = |v| = 1, v = k1u with k1 ∈ {−1, 1}, and p ′2 = p2 − k2v such
that (p ′2−p1) and u are orthogonal (cf. Figure 5.8). Obviously, case (i) is trivial. Therefore,
assume the distance d = |p ′2 − p1| of the parallel lines is not greater than δ. We have

((p2 + µv) − (p1 + λu))2 ≤ δ2 (5.14)⇔ ((p ′2 − p1) + ((k2 + µ)k1 − λ)u)2 ≤ δ2 (5.15)⇔ d2 + 2((k2 + µ)k1 − λ)(p ′2 − p1)u + ((k2 + µ)k1 − λ)2u2 ≤ δ2 (5.16)⇔ (k2 + µ)k1 − λ)2 ≤ δ2 − d2 (5.17)⇔ µ ∈
[
(λ/k1 − k2) −

√
δ2 − d2, (λ/k1 − k2) +

√
δ2 − d2

]
(5.18)

⇔ µ ∈
[
(k1λ− k2) −

√
δ2 − d2, (k1λ− k2) +

√
δ2 − d2

]
. (5.19)

Figure 5.9 illustrates this result. The strip is centered around a line µ = k1λ−k2 with k1 ∈
{−1, 1}, and its width is

√
δ2−d2

2
orthogonal to this line.

Now, assume that l1 and l2 intersect at point p0 and (without loss of generality) are
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√
δ2 − d2

√
δ2 − d2

λ1

µ1

µ0

λ0

|l2(µ) − l1(λ)| ≤ δ

Figure 5.9: Fréchet distance, allowed parameters R̂ for parallel lines
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Figure 5.10: Fréchet distance, intersecting segment pair
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given as l1 : λ 7→ p0 +λu, l2 : µ 7→ p0 +µv, and |u| = |v| = 1 (cf. Figure 5.10). We examine
the set of allowed parameters as follows:

(λu − µv)2 ≤ δ2 (5.20)⇔ λ2 + µ2 ≤ δ2 + 2λµ(uv). (5.21)

With the substitution r := µ+ λ and s := µ− λ, this equation becomes

(r− s)2 + (r+ 2)2 ≤ 4δ2 + 2(r− s)(r+ s)(uv) (5.22)⇔ 2r2 + 2s2 ≤ 4δ2 + 2r2(uv) + 2s2(uv) (5.23)

⇔ r2 + s2 ≤ 2δ2

1− uv
. (5.24)

Reversing the substitution, we get

r2 + s2 = 2(λ2 + µ2) ≤ 2δ2

1− uv
(5.25)

⇔ λ2 + µ2 ≤ δ2

1− uv
(5.26)

This result indicates that the set of allowed parameters is bounded by a circle with
radius δ√

1−uv and centered at (λ, µ) = (0, 0).

Figure 5.11 illustrates this result. The position of the center of the circle depends on the
actual parameterization of the line segments. That is, if they do not intersect in l1(0) =

l2(0), the center of the circle is moved accordingly.

As each set R̂ij is the intersection of a rectangle and a convex set, it is convex, too. Since
the components α and β of the curve πwhich expresses the combined parameterization
are monotonously increasing, each rectangle Rij can only be entered by π on the left or
bottom side, and can only be left by π on the right or top side. As R̂ij is convex, the sets
of allowed entrance and exit points on each side of the rectangle are single, connected
segments. We will call the sets of allowed parameter pairs on the left and bottom edges
the entrance windows of the cell and the allowed parameter pairs on the right and top
edge the exit windows of the cell.

In order to decide if there is a curve π from (0, 0) to (αm, βn) which increases mono-
tonically in both components, we have to consider the monotonically reachable parts of
entrance and exit windows of each cell (see Figure 5.12).

If a cell has a left entrance window, top exit windows are entirely monotonically reach-
able (cf. Figure 5.12(a)). If a cell has a bottom entrance window, right exit windows are
entirely monotonically reachable (cf. Figure 5.12(b)). If a cell has a left entrance window,
but no bottom entrance window, right exit windows are not monotonically reachable be-
low the lower border of the entrance window (cf. Figure 5.12(c)). If a cell has a bottom
entrance window, but no left entrance window, top exit windows are not monotonically
reachable to the left of the left border of the entrance window (cf. Figure 5.12(d)).
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λ0

(λu − µv)2 ≤ δ2

(λ, µ) = (0, 0)

δ2/(1− uv)

Figure 5.11: Fréchet distance, allowed parameters R̂ for intersecting lines
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(a) Left entrance, top exit (b) Bottom entrance, right exit

reachable
monotonically
not

not
monotonically

reachable

(c) Left entrance, right exit (d) Bottom entrance, top exit

Figure 5.12: Fréchet distance, monotonic reachability
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(a) c2 appears “more similar” to c1 than c3 (b) c3 appears “more similar” to c1 than c2

Figure 5.13: Motivating example of topological distance

Furthermore, the monotonically reachable right exit window of cell (i, j) is the (possibly
restricted) left entrance window of cell (i+1, j), and the monotonically reachable top exit
window of cell (i, j) is the (possibly restricted) bottom entrance window of cell (i, j+ 1).

The monotonically reachable windows can be computed incrementally in constant time
per cell, and a curve π representing an allowed combined parameterization exists if (0, 0)

and (αm, βn) are allowed parameter pairs, and the cell (m−1, n−1) has a monotonically
reachable entrance window. This yields an algorithms which decides δF(c1, c2) ≤ δ in
time O(mn).

In order to actually compute the distance value, Alt and Guibas (1996) claim using
a variant of parametric search yields an algorithm of running time O(mn log (mn)).
However, it might appear equally practical to compute the distance value bit by bit,
applying the decision algorithm once per step.

5.3.5 Topological Distance

Another approach to similarity of paths might not only consider geometric properties
of the paths themselves, but may also take the relationship to external obstacles into
account.

For a motivating example, see Figure 5.13. Sub-figure (a) shows three (s, t)-curves in a
space without an obstacle. One could show that the Hausdorff and Fréchet distances
of c1 and c2 are smaller than the respective distances between c1 and c3. Sub-figure (b)
displays the same three (s, t)-curves, but now in a space with one obstacle. However
the facts about Hausdorff and Fréchet distances of the curves still hold as above, one
could argue that c1 is now more similar to c3 than to c2 since it passes on the same side
of the obstacle.

In other words, c1 and c3 are from the same homotopy classes, and c2 is from a different
homotopy class of (s, t)-curves. Therefore, any continuous mapping Γ : [0, 1]×[0, 1]→ E

with the properties (i) to (iii) from Definition 5.8 which transforms c1 · c2 to a degener-
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ate closed curve consisting of a single point will touch at least one obstacle. We will
define the topological distance of two (s, t)-curves to be the minimum number of obsta-
cle crossings which are caused by such a continuous mapping Γ . Note that the result of
that definition will be a distance measure for the set of homotopy classes of (s, t)-curves,
since in general d(c1, c2) = 0 will not imply c1 = c2 but only means that c1 and c2 are
homotopic.

Definition 5.25 (Topological Norm)
Let c be a closed curve in E. LetM be the set of continuous mappings Γ : [0, 1]×[0, 1]→ E

with

(i) Γ(0, t) = c(t) for t ∈ [0, 1],

(ii) Γ(1, t) = c(0) for t ∈ [0, 1], and

(iii) Γ(s, 0) = Γ(s, 1) for any s ∈ [0, 1].

Let cc(M) denote the set of connected components of a metric space M. Then the num-
ber

|c|T := min
Γ∈M

∣∣cc
(
{(s, t) ∈ [0, 1]2 | Γ(s, t) /∈ E}

)∣∣ , (5.27)

is called the topological norm of c.

For an illustrating example to that definition, see Figure 5.14, where a space with two ob-
stacles and a closed curve which loops once around the first obstacle and twice around
the second obstacle are considered. The effect of a continuous mapping Γ is shown
for some values of s as well as the set of pairs (s, t) where Γ crosses an obstacle, i.e.
where Γ(t, s) /∈ E. Apparently there are three connected components in the set of these
pairs, so the topological norm of the closed curve in that example is not greater than 3.

Property 5.26
For any closed curve c, |c|T = |c|T holds.

Proof:

Let Γ be a mapping which transforms c into the degenerate curve crossing obstacles |c|T
times. Then,

Γ ′ : (s, t) 7→ Γ(s, 1− t)

transforms c into the degenerate curve crossing obstacles |c|T times, i.e. |c|T ≤ |c|T . Simi-
larly one can show |c|T ≤ |c|T . Since c = c, we have |c|T = |c|T . �

Property 5.27
Let c1 and c2 be closed curves in E. If c1 and c2 are homotopic, then |c1|T = |c2|T .
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h1 h2 h1 h2

(a) Curve t 7→ Γ(0, t) (b) Curve t 7→ Γ(1/7, t)

h1 h2 h1 h2

(c) Curve t 7→ Γ(2/7, t) (d) Curve t 7→ Γ(3/7, t)

h1 h2 h1 h2

(e) Curve t 7→ Γ(4/7, t) (f) Curve t 7→ Γ(5/7, t)

h1 h2 h1 h2

(g) Curve t 7→ Γ(6/7, t) (h) Curve t 7→ Γ(1, t)

s = 6/7

s = 5/7

s = 3/7

s = 2/7

s = 1/7

s = 0

s = 4/7

s = 1

t
=
1

t
=
0

Γ(s, t) ∈ h2

Γ(s, t) ∈ h2

Γ(s, t) ∈ h1

(i) Set of obstacle intersections {(s, t) | Γ(s, t) /∈ E}

Figure 5.14: Definition of topological norm
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Proof:

Let Γ1 be a mapping which proves homotopy of c1 to c2, let Γ2 be a mapping which
transforms c2 to the degenerate closed curve according to Definition 5.25 and crossing
obstacles |c2|T times during this transformation. Now define a continuous mapping Γ3
as

Γ3(s, t) =

{
Γ1(2s, t) if s ≤ 1/2,
Γ2(2s− 1, t) else.

Then, Γ3 transforms c1 to the degenerate closed curve, crossing obstacles |c2|T times
during this transformation, i.e. |c1|T ≤ |c2|T . Repeating this construction with exchanged
roles of c1 and c2 yields |c2|T ≤ |c1|T . Combined we have |c2|T = |c1|T . �

Property 5.28
Let c1 and c2 be closed curves in E with source(c1) = source(c2). Then, the triangle
inequality

|c1 · c2|T ≤ |c1|T + |c2|T (5.28)

holds.

Proof:

Let Γ1 a mapping which transforms c1 to the degenerate closed curve according to Def-
inition 5.25 and crossing obstacles |c1|T times during this transformation. Let Γ2 a map-
ping which transforms c2 to the degenerate closed curve according to Definition 5.25
and crossing obstacles |c2|T times during this transformation. Now define a continuous
mapping Γ3 as

Γ3(s, t) =

{
Γ1(s, 2t) if t ≤ 1/2,
Γ2(s, 2t− 1) else.

Then, Γ3 transforms the curve c1 ·c2 to the degenerate closed curve and crosses obstacles
at most |c1|T + |c2|T times during this transformation. Mapping Γ3 proves that |c1 · c2|T
cannot be greater than |c1|T + |c2|T . �

Definition 5.29 (Topological Distance)
Let c1 and c2 be (s, t)-curves in E. Then the number

δT (c1, c2) := |c1 · c2|T (5.29)

is called the topological distance of c1 and c2.

Property 5.30
Let c1 and c2 be (s, t)-curves. Then, δT (c1, c2) = 0 if and only if c1 and c2 are path
homotopic.
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Proof:

Assume δT (c1, c2) = 0. Then |c1 · c2|T = 0 which means that c1 · c2 can be transformed
into the degenerate curve without touching an obstacle. This matches the definition of
homotopy among (s, t)-curves, therefore c1 and c2 are homotopic.

Now assume c1 and c2 are homotopic, i.e. there is a mapping Γ which transforms the
closed curve c1 ·c2 into the degenerate closed curve without touching any obstacle. This
mapping Γ proves |c1 · c2|T = 0. �

Property 5.31
The topological distance δT is a pseudo-metric on the set of (s, t)-curves.

Proof:

We verify the properties of a pseudometric. The distance of a curve to itself is always
zero,

δT (c1, c1) = |c1 · c1|T = 0, (5.30)

since path homotopy is reflexive.

Symmetry follows mainly from the facts that |c|T = |c|T and that c1 · c2 and c2 · c1 are
homotopic (in fact equal up to a shift in parameterization). Therefore,

δT (c1, c2) = |c1 · c2|T = |c1 · c2|T = |c2 · c1|T = |c2 · c1|T = δT (c2, c1) (5.31)

holds.

The triangle inequality is shown as follows,

δT (c1, c2) + δT (c2, c3) = |c1 · c2|T + |c2 · c3|T

≥ |c1 · c2 · c2 · c3|T

= |c2 · c2 · c3 · c1|T

= |c3 · c1|T

= |c1 · c3|T

= δT (c1, c3),

using the triangle inequality for the norm, and successively replacing the argument
curve of the norm by a homotopic curve. �

Property 5.32
On the set of (s, t)-curves in a space with obstacles, the equivalence relation ∼δT

induced
by the pseudometric δT is identical to the homotopy relation.
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Proof:

Let c1 and c2 be (s, t)-curves. At first, assume c1 and c2 are homotopic. Then, δT (c1, c2) =

|c1 · c2|T = 0 holds, which implies c1 ∼δT
c2.

Now assume c1 ∼δT
c2, i.e. δT (c1, c2) = 0. This implies |c1 · c2|T = 0 which is equivalent

to c1 and c2 being homotopic. �

Corollary 5.33
Let E be an environment with obstacles. Then, the topological distance δT on the set of
(s, t)-curves in E induces a metric on the set of homotopy classes of (s, t)-curves.

5.3.6 Computation of Topological Distances

As before, we will restrict ourselves to two dimensional spaces when considering the
computation of a distance function. Furthermore, unbounded obstacles are irrelevant
for the topological norm or distance, since they cannot be surrounded by a closed curve.
Accordingly, we will also restrict ourselves to bounded obstacles.

The road-map for the computation of topological norms (and thereby distances) is as fol-
lows. First, a method to capture the structure of the space with obstacle in an embedded
planar graph G is presented. Second, a closed curve c (for which the topological norm
is to be computed) is transformed to a homotopic embedded graph cycle s in G. Next,
a tree GT in G is fixed, and from the sequence of non-tree arcs in s, a representation for
the homotopy class [c] by means of a composition of primitive elements from the funda-
mental group is deduced. Finally, this element of the fundamental group is transformed
to the neutral element using a minimum number of primitive element deletions.

Skeleton of a Space with Obstacles

In order to process homotopy classes of curves on a computer, we need some kind of
discrete representation of these objects. We will use embedded planar graphs to capture
the structure of the space with obstacles. This allows us to map homotopy classes of
closed curves to cycles in embedded planar graphs.

Definition 5.34 (Planar Embedding of a Planar Graph)
Let G = (V,A) be a simple directed planar graph. A planar embedding of G is a
pair (φ,ψ) of an injective function φ : V → R2 and a function ψ : A × [0, 1] → R2,
where each vertex v ∈ V is embedded as point φ(v), and each arc a ∈ A ⊆ V × V is
embedded as a simple curve ca : [0, 1]→ R2 with

(i) ca : t 7→ ψ(a, t),

(ii) ψ(a, 0) = φ(α(a)),
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(iii) ψ(a, 1) = φ(ω(a)), and

(iv) ψ(a1, [0, 1]) ∩ψ(a2, (0, 1)) = ∅ for any a1, a2 ∈ Awith a1 6= a2.

Furthermore, the connected components of R2 − ψ(A, [0, 1]) are called the faces of the
embedded planar graph.

Given a chain in an embedded planar graph, a plane curve is induced in an intuitive
manner by concatenating the embedded curves of the traversed arcs. This idea is speci-
fied more precisely as follows.

Definition 5.35 (Curve of a Chain)
Let G = (V,A) be a simple directed planar graph with embedding (φ,ψ). Let

s = (δ1a1, δ2a2, . . . , δnan)

be a chain in G. Then, a curve c(s) is induced by s via

c(s) = c(δ1a1) · c(δ2a2) · · · · · c(δnan) (5.32)

where

c(δa) =

{
ca if δ=‘+’,
ca else.

(5.33)

Note that the definition above maps graph cycles to closed curves as well. Furthermore,
by mapping chains in a skeleton to plane curves, we may talk of homotopy and path
homotopy among cycles and chains in a skeleton, referring to their embedded curves.

Property 5.36
Let G = (V,A) be a simple directed planar graph with embedding (φ,ψ). For any
elementary chain s in G, the induced curve c(s) is simple.

Proof:

Let s = (δ1a1, δ2a2, . . . , δnan) be an elementary chain in G. Assume c(s) is not simple,
i.e. there are i, j ∈ {1, 2, . . . , n} such that cai

(t1) = caj
(t2) for some t1, t2 ∈ [0, 1]. Since

arcs are embedded as simple curves, i 6= j holds. Furthermore, since s is elementary,
any vertex of s is traversed only once, and since φ is injective, each vertex is embedded
at a different point in the plane. Therefore, the intersection cannot occur at a vertex. But
by definition, the curves which embed the arcs may intersect each other only in their
endpoints. This is a contradiction, so c(s) must have been simple. �

Corollary 5.37 (Elementary Cycles Induce Simple Closed Curves)
Let G = (V,A) be a simple directed planar graph with embedding (φ,ψ). For any
elementary cycle s in G, the induced curve c(s) is closed and simple.



92 Chapter 5. Similarity of Paths

According to the Jordan Curve Theorem, we may talk of the (bounded) interior and the
(unbounded) exterior of embedded elementary cycles.

Definition 5.38 (Face Cycles of an Embedded Planar Graph)
Let G = (V,A) be a simple directed planar graph with a planar embedding (φ,ψ). An
elementary cycle s = (δ1a1, δ2a2, . . . , δnan) in G is called a face cycle of G (with respect
to (φ,ψ)), if the interior or the exterior of its induced Jordan curve is equal to a face of
the embedded planar graph.

Given a space with obstacles, there is a special class of embedded planar graphs, where
each face contains exactly one obstacle. Intuitively it is clear that such graphs capture
the topological properties of the space with obstacles, since the obstacles may be trans-
formed into the according full faces in a continuous manner. In general, these structures
are called deformation retracts. In the given special context of planar environments
with obstacles, we will call these graphs skeletons, and their properties are given in the
following definition.

Definition 5.39 (Skeleton of a Space with Obstacles)
Let E be a 2-dimensional space with obstacle set H = {h1, . . . , hk}. A simple directed
planar graph G = (V,A) with a planar embedding (φ,ψ) is called skeleton of E, if

(i) G is weakly connected,

(ii) the embedding does not touch any obstacles, i.e. ψ(A, [0, 1]) ⊆ E,

(iii) every obstacle hi ∈ H is located inside a bounded face of the embedded planar
graph, and

(iv) every face of the embedded planar graph is either unbounded or contains exactly
one obstacle hi ∈ H.

As an example, Figure 5.15 shows a skeleton of a space with four obstacles. The face
cycles of this skeleton are

• cycle abi for the face containing h1,

• cycle cnd for the face containing h2,

• cycle īnem̄k̄ for the face containing h3,

• cycle hkmf̄ḡ for the face containing h4, and

• cycle abc̄d̄ef̄ḡh for the unbounded face

as well their respective inverses.
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Figure 5.15: Skeleton of space with obstacles

Mapping Closed Curves to Skeleton Cycles

As mentioned above, we aim at mapping a closed planar curve to a homotopic embed-
ded planar graph cycle. In order to accomplish this task, we will use the dual graph of
the skeleton and an embedding thereof.

An example of an embedded planar graph G and an embedding of its dual graph G∗ is
depicted by Figure 5.16. The original planar graphG = (V,A) is shown in Figure 5.16(a),
its faces are painted with different shades of gray. In order to find its dual graph G∗ =

(V∗, A∗), each face f of the original graph is taken as a vertex f ∈ V∗ of the dual graph,
and for each arc a ∈ A which separates faces fi (on the right side of the arc) and fj
(on the left side) of G, an arc a∗ ∈ A∗ exists in the dual graph with source vertex fi
and target vertex fj (see Figure 5.16(b)). It is an easy exercise to show that each arc a∗

of G∗ can be embedded in a manner such that no other embedded arc is intersected
but the embedded image of its corresponding arc a in G. Furthermore, the faces of G∗

correspond to vertices of G, and G∗ can be embedded in a way such that each face of G∗

contains the embedding of its corresponding vertex v ∈ V of G. Additionally, we will
require that the vertex f∞ of G∗ representing the unbounded face of G is embedded at
infinity, i.e. no Jordan curve contains the image of f∞ in its interior.

We know that each bounded face of a skeleton G contains exactly one obstacle. There-
fore, the dual graph G∗ of a skeleton can be embedded such that each of its vertices is
located inside a different obstacle, see Figure 5.17. As a consequence, the faces of G∗

partition the space with obstacles E. Given a curve c in that space E, we can trace the
faces of G∗ which are traversed by that curve. Since the vertices of G∗ are located in the
obstacles, only proper non-degenerate transitions1 from one face to another face will

1We will ignore cases where the curve touches an arc without crossing it.
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Figure 5.16: Embedded planar graph and its dual graph
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Figure 5.17: Skeleton and its embedded dual graph
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(a) Induced chain (b) Induced cycle

Figure 5.18: Curves induce cycles or chains in a skeleton

occur on the course of c.

Definition 5.40 (Chain Induced by a Curve)
Let E be a space with obstacles,G = (V,A) a skeleton of Ewith planar embedding (φ,ψ),
and G∗ = (V∗, A∗) the dual graph of G with embedding (φ∗, ψ∗) such that each vertex
of G∗ is embedded in an according obstacle of E, or at infinity if the vertex corresponds
to the unbounded face of G.

Let c : [a, b]→ E be a curve, let

(α1, t1,ω1, α2, t2,ω2, . . . , αn, tn,ωn)

be a sequence of parameter values with α1 = a,ωn = b, and

(i) a ≤ αi < ti < ωi ≤ αi+1 ≤ b,

(ii) c(ti) and c(ti+1) are located in different faces of G∗,

(iii) c(t) and c(ti) are located in the same face of G∗ for αi < t < ωi

(iv) c([ωi, αi+1]) is part of an arc of G∗

for any 0 < i ≤ n.2 Then, the chain s = (v1, v2, . . . , vn) in the skeleton G is called
induced by curve c, if c(ti) is located in the same face of G∗ as Φ(vi) for i = 1, 2, . . . , n.

In a similar way, the above definition is applied to closed curves, which induce cycles
in the skeleton graph. For example, the curve c1 in Figure 5.18(a) induces a chain s1 =

(v4, v1, v2, v3, v1, v4) in the skeleton of the previous example. The closed curve c2 in Fig-
ure 5.18(b) induces a cycle s2 = (v4, v3, v4, v2, v3, v2, v1, v4) in the same skeleton.

2We ignore cases where a curve oscillates infinitely between two faces.
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Figure 5.19: Proving homotopy of closed curve and its embedded induced cycle

Property 5.41
Let c be a closed curve in a space with obstacles E, let c ′ be the curve of a cycle s which
is induced by curve c. Then, c and c ′ are homotopic.

Proof:

Let

s = (v1, δ1a1, v2, δ2a2, . . . , vn, δnan, vn+1)

be the induced cycle of c,

(α1, t1,ω1, α2, t2,ω2, . . . , αn, tn,ωn)

the according parameter values as required by Definition 5.40. Then there is a continu-
ous mapping Γ : [0, 1]× [0, 1]→ Ewhich

(i) transforms c(ti) to the embedded skeleton vertex vi and

(ii) transforms c|[ti,ti+1] to the embedded skeleton arc δiai

simultaneously for 1 ≤ i ≤ n without crossing any obstacle (see Figure 5.19), since
both the restriction of c to [t1, ti+1] and the embedded arc δiai are completely contained
within the union of the image of a∗i and its incident faces minus the obstacles. This
mapping proves the claimed property. �

So far we transformed a given closed plane curve c to a skeleton cycle s whose embed-
ding is homotopic to c, i.e. they have the same topological norm.
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Group Representation of Homotopy Classes

Now we will transform a cycle s in the skeleton to a product p = Πn
i=1ei of primitive

elements of the fundamental group representing the homotopy class [s] of s, i.e. p = [s].
To accomplish this task, a tree of the skeleton will be used.

Definition 5.42 (Forest, Tree)
A directed graph G = (V,A, α,ω) is called forest, if G does not contain a simple cycle.
A forest G = (V,A, α,ω) is called tree, if G is weakly connected.

Definition 5.43 (Spanning Tree of a Graph)
Let G = (V,A, α,ω) be a directed graph. Then, a tree GT = (V,A ′, α|A ′,ω|A ′) with A ′ ⊆
A is called spanning tree of G.

Property 5.44 (Equivalent Definitions of a Spanning Tree)
Let G = (V,A, α,ω) be a directed graph, and A ′ ⊆ A a subset of arcs. Then, the follow-
ing propositions are equivalent:

(i) GT = (V,A ′, α|A ′,ω|A ′) is a spanning tree of G.

(ii) A ′ is a minimal subset of arcs such that GT is weakly connected.

(iii) A ′ is a maximal subset of arcs such that GT has no simple cycles.

(iv) For any pair vi, vj ∈ V of vertices, there is a unique simple chain from vi to vj inGT .

For a proof, see for example (Krumke et al., 2000), or any other good textbook on ele-
mentary graph theory.

Property 5.45 (Reduced Chains in Trees are Elementary)
Let T = (V,A, α,ω) be a tree, s = (v1, δ1a1, v2, . . . , δnan, vn) a reduced chain in T . Then,
the chain s is elementary.

Proof:

Assume s is not simple. Then, some arc ai in s is repeated, i.e.

s = (. . . , δiai, . . . , δjaj, . . . )

with ai = aj, and j ≥ i+1, i.e. there is at least one other arc between the two occurrences
of ai = aj, since s is reduced.

If δi = δj, then there are two different simple chains from α(δiai) to ω(δiai) in T ,
namely (δiai) and (δ̄j−1aj−1, . . . , δ̄i+1ai+1), which is a contradiction to T being a tree.

If δi 6= δj, then there are two different simple chains from ω(δiai) to ω(δi+1ai+1),
namely (δi+1ai+1) and (δj−1aj−1, . . . , δi+2ai+2) (the latter being empty for j = i + 1),
which is a contradiction to T being a tree. Therefore, chain smust have been simple.
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Now assume s is not elementary. Then, some vertex vi is repeated, i.e.

s = (. . . , vi, δiai, . . . , δj−1aj−1, vj, . . . )

with vi = vj, and, without loss of generality, vk 6= vi for i < k < j. Since T is a tree,
arc ai is not a loop, and therefore vi+1 6= vi. Since s is simple, it is ai 6= aj−1, and
therefore (δiai) and (δj−1aj−1, . . . , δi+1ai+1) are two different simple chains from α(δiai)

to ω(δiai), which is a contradiction to T being a tree. Thus, chains s must have been
elementary. �

Corollary 5.46
Let T = (V,A, α,ω) be a tree, and s a chain in T . Then the following propositions are
equivalent:

(i) Chain s is reduced.
(ii) Chain s is simple.
(iii) Chain s is elementary.

Proof:

According to 5.45, (i) implies (iii). The implications (iii) ⇒ (ii) (elementary chains are
simple) and (ii)⇒ (i) (simple chains are reduced) are obvious. �

Definition 5.47 (Rooted Tree)
Let G = (V,A) be a tree, and r ∈ V a tree vertex which we will call root of tree G.
Let v ∈ V be another vertex of G, and s = (v0, v1, . . . , vn) the unique simple chain
from r = v0 to v = vn. Then, for 1 ≤ i ≤ n, vertex vi is called child of vertex vi−1. If
vertex v is a child of vertex u, vertex u is called parent of v. Vertices of a tree which have
no children are called leaves.

Given a chain s in a skeleton G = (V,A) and a spanning tree GT = (V,A ′) of G, each
arc a of s will be either a tree arc a ∈ A ′ or a non-tree arc a ∈ A − A ′. Furthermore, if
the chain s is a cycle in G, it has to contain at least one non-tree arc a ∈ A−A ′.

Definition 5.48 (Induced Chains and Cycles)
Let G = (V,A, α,ω) be a weakly connected directed graph, and let T = (V,AT ) be a
spanning tree of G.

For vertices vi, vj ∈ V , we denote by sT (vi, vj) the unique simple chain from vi to vj

in T .

For a non-tree arc a ∈ A −AT , we denote by sT (δa) the concatenation of the chain (δa)

and the chain sT (ω(δa), α(δa)), that is, the unique simple cycle in G induced by δa
and T . If the tree T is fixed, its specification may be omitted.

Property 5.49 (Non-tree Edges Define Reduced Cycles)
Let G = (V,A) be a skeleton, GT = (V,A ′) a spanning tree of G, and s a reduced cycle
in G. Then, the cycle s is uniquely defined by its (cyclic) sequence of non-tree edges.
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Proof:

Let (δ1a1, δ2a2, . . . , δkak) be the (cyclic) sequence of non-tree arcs of s. Then, according
to 5.44 and 5.45, there is a unique reduced chain in GT from ω(δiai) to α(δi+1ai+1) for
each i = 1, . . . , k. Therefore, the cycle s is uniquely defined by its sequence of non-tree
arcs. �

Now we are approaching a point where we can make use of a result from algebraic
topology, which continues to undisclose the structure of the fundamental group of an
environment with obstacles. But first the notion of a free group needs to be introduced.

Definition 5.50 (Free Group)
A group G is called free if there is a subset S of G such that any element of G can be
written in a unique way as a product of finitely many elements of S and their inverses
(neglecting trivial variations as ab = acc−1b). The elements of such a subset S of G are
called generators of the group G.

A proof of the following theorem can be found in the book by Massey (1967).

Theorem 5.51 (Fundamental Group of a Graph)
Let G be any connected graph, and let T = (V,A ′) be a spanning tree of G. Then,
fundamental group of G is a free group on the set of generator {sT (a) | a ∈ A−A ′}.

To put it in other words, the homotopy class of any closed curve in an environment with
obstacles can be uniquely characterized by a sequence of non-tree arcs, if a skeleton of
the environment and a spanning tree thereof are fixed. Yet we have to note that, in
general, the cycles which are induced by the non-tree arcs are not guaranteed to contain
exactly one obstacle in their interior. That is, the generators are not guaranteed to be
primitive.

For example in the special case where the skeleton is an outerplanar graph (together
with an according embedding), a spanning tree of the skeleton can be found such that
the resulting generators of the fundamental group are primitive. Thereby a planar graph
is called outerplanar, if it can be embedded in the plane such that all its vertices are
incident to the unbounded face.

In the general case, we will have to choose a set of primitive elements as generators, and
then express the homotopy classes of the cycles induced by the non-tree arcs (i.e. the
generators from the theorem) using these primitive generators. In order to accomplish
this task, we will define an arc labeling scheme, such that each arc label is a product
of primitive elements, and the product of arc labels along a cycle is the group element
corresponding to the homotopy class of the cycle.

The next two corollaries from the theorem above will be used later, helping to argue
that moving on a tree will not interfere with homotopy.



100 Chapter 5. Similarity of Paths

G∗T = (V∗, A∗T )

G = (V,A)

ai ∈ AT
aj /∈ AT

a∗j ∈ A∗T

Figure 5.20: Non-tree arcs correspond to a tree in the dual graph

Corollary 5.52 (Homotopy of Cycles in Trees)
Let GT = (V,A) be an embedded planar tree. Any embedded cycle c(s) in GT is homo-
topic to a single point.

Proof:

A cycle in a tree cannot contain any non-tree edge. Therefore, its homotopy class is the
empty product of generators. �

Corollary 5.53 (Homotopy of Chains in Trees)
Let GT = (V,A) be an embedded planar tree. Let s1, s2 be chains in GT with same initial
and terminal vertices. Then, the embedded chains c(s1) and c(s2) are homotopic.

Property 5.54 (Non-tree Arcs Correspond to a Tree in the Dual Graph)
LetG = (V,A) be a skeleton with dual graphG∗ = (V∗, A∗), andGT = (V,AT ) a spanning
tree in G. Then the graph G∗T = (V∗, A∗T ) with

A∗T = {a∗ ∈ A∗ | a∗ is the dual of a non-tree arc a /∈ AT } (5.34)

is a spanning tree of G∗ (see Figure 5.20).

Proof:

Assume G∗T contains a simple cycle. Then, this cycle separates a proper subset of faces
of G∗ from the other faces. These separated faces correspond to a set of vertices in GT

which are not connected to the other vertices in GT . This is a contradiction to GT being
a tree. Therefore, the graph G∗T must not have contained a simple cycle, i.e. it is a forest.

Now assumeG∗T is not connected. Then, there is a set V ′ ⊂ V∗ of vertices ofG∗T such that
arcs from A∗ that connect vertices from V ′ to vertices from V∗ − V ′ are not contained
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in A∗T . These arcs are the dual arcs of a cycle in AT , which is a contradiction to GT being
a tree. Therefore, the forest G∗T must have been connected, i.e. it is a tree. �

In order to convert a skeleton cycle into a product of primitive elements of the fun-
damental group, we will choose a spanning tree GT of the skeleton G, and label the
non-tree arcs of the skeleton with products of primitive elements of the fundamental
group. These labels are multiplied as the non-tree arcs are traversed, and the result is
the desired representation of the homotopy class of the embedded original cycle.

These non-tree arc labels are constructed incrementally along a tree G∗T in the dual
graph G∗ of the skeleton. The construction starts at the leaves and terminates at the
root of G∗T , which is the vertex representing the unbounded face of G.

Definition 5.55 (Non-tree Arc Labels)
Let G = (V,A) be a skeleton of a space Ewith obstacles. Let GT = (V,AT ) be a spanning
tree of G, and G∗ = (V∗, A∗) the dual graph of G. Let v∗i ∈ V∗ be the vertex of G∗

corresponding to the face of obstacle hi, and v∗∞ ∈ V∗ the vertex of G∗ corresponding
to the unbounded face of G. Let G∗T = (V∗, A∗T ) a spanning tree of G∗ induced by GT as
in 5.54, i.e. each arc a∗i of G∗T is the dual of the non-tree arc ai of G. We choose v∗∞ as root
vertex of G∗T .

Without loss of generality (by means of appropriate index renaming), let (v∗i , δja
∗
j , v

∗
j )

denote the (unique) simple chain connecting a parent vertex v∗i to a child vertex v∗j inG∗T ,
i.e. the non-tree arc aj is part of the face cycle of obstacle hj. Furthermore, we will iden-
tify each obstacle hi with a Jordan curve hi : [0, 1] → E which contains only obstacle hi

in its interior and surrounds hi in counterclockwise orientation. Thereby, the classes [hi]

and [hi] are primitive elements of the fundamental group.

Let ai ∈ A − AT be a non-tree arc of G. Let si be the face cycle in G surrounding
obstacle hi in counterclockwise orientation. Cycle hi contains at least one non-tree arc,
since otherwise there was a simple cycle in the tree GT . Assume that arc ai is the only
non-tree arc in cycle si, i.e. si = (. . . , δiai, . . . ). Then, we define the label of arc ai as

l(ai) :=

{
[hi] if δi=‘+’,
[hi] else.

(5.35)

Furthermore, we will write

l(δa) :=

l(a) if δ=‘+’,

l(a) else.
(5.36)

Now assume there are k+ 1 non-tree arcs ai, aj1, . . . , ajk in cycle si, i.e.

si = (. . . , δiai, . . . , δj1aj1, . . . , δjkajk, . . . ). (5.37)



102 Chapter 5. Similarity of Paths

GT

∞
a4

a3

a1 a2

h3

h1
h2

h4

∞
a4

a3

a1 a2

h3

h1
h2

h4

(a) Tree arcs (bold) and non-tree arcs a1,2,3,4 (b) Cycles induced by non-tree arcs

Figure 5.21: Computing arc labels

Then, we define the label of arc ai as

l(ai) :=

{
[hi] · l(δjkajk) . . . l(δj1aj1) if δi=‘+’
l(δj1aj1) . . . l(δjkajk) · [hi] else.

(5.38)

For the sake of completeness, we will define l(at) := 1 for any tree arc at ∈ AT .

Example 5.1 (Arc Labels)
For an example see Figure 5.21. Arc a1 will be labeled as l(a1) = [h1], since +a1 is the
only non-tree arc in the counterclockwise face cycle of h1. Analogously, arc a2 will be
labeled as l(a2) = [h1], since the face cycle of h2 contains −a2. Now consider arc a3. The
counterclockwise face cycle of h3 contains +a3, −a1, and +a2 in that order. Therefore,
according to the definition above,

l(a3) = [h3] · l(+a2) · l(−a1)

= [h3] · [h2] · [h1].

Note that the first line is equivalent to

l(+a3) · l(−a1) · l(+a2) = [h3],

and in a short moment we will prove that in general the product of the arc labels along
any cycle is the homotopy class of the respective closed curve.
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Back to the example, consider arc a4 at last. The counterclockwise face cycle of h4 con-
tains −a4 and −a3 in that order, and therefore

l(a4) = l(−a3) · [h4]

= [h3] · [h2] · [h1] · [h4]

= [h1] · [h2] · [h3] · [h4].

Let us point out that the arc labels are well defined. Equation 5.38 in Definition 5.55 con-
tains a recursive self-reference, and we have to clarify that termination is guaranteed.
The non-tree arc ai, for which the label l(ai) is currently being defined, has a dual arc a∗i
in the tree G∗T . In the definition of the label l(ai), labels of non-tree arcs aj1, . . . , ajk are
being used. These arcs have dual arcs a∗j1, . . . , a

∗
jk

in the tree G∗T , which are the succes-
sors of arc a∗i on chains from the root of G∗T to leaves of this tree. If an arc a∗jr is incident
to a leaf, the label of arc ajr is given directly. Otherwise, the label of arc ajr can be com-
puted without using the labels of any of the arcs ai, aj1, . . . , ajk , since trees are acyclic.
Therefore, the arc labels are well defined.

Property 5.56 (Arc Label is the Homotopy Class of Induced Cycle)
Let G = (V,A, α,ω) be a skeleton with spanning tree GT = (V,AT ) and arc labels as
in Definition 5.55. Let a ∈ A − AT be a non-tree arc of G, and let s be a chain in GT

fromω(a) to α(a). Then, the concatenation of +a and s is a cycle s ′ in G, and the closed
curve c(s ′) is in the homotopy class l(a).

Proof:

Clearly, the concatenation of a and s is a cycle in G.

Since the embedded curves c(s) of all chains from ω(a) to α(a) in GT are homotopic
(cf. 5.53), we can assume that, without loss of generality (cf. 5.10), the chain s is the
unique simple chain

sGT
(ω(a), α(a)) = (v1, δ1a1, v2, . . . , vn−1, δn−1an−1, vn).

from v1 = ω(a) to vn = α(a) in GT .

Since a /∈ AT , the cycle s ′ (i.e. the concatenation of s and a) is simple, and as the concate-
nation adds no further vertices, the cycle s ′ is also elementary. Therefore, the embedded
closed curve c(s ′) is a Jordan curve, and contains a certain number of obstacles in its
interior. The remaining claim will be proved by induction for all numbers of contained
obstacles.

The Jordan curve c(s ′) contains at least one obstacle in its interior, since the cycle s ′ is
simple. Assume h is the only obstacle in the interior of c(s ′). Then, the cycle s ′ is a face
cycle of h, and contains only one non-tree arc. If s ′ surrounds hi in counterclockwise
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Figure 5.22: Non-tree arc labels are homotopy classes of induced cycles

orientation, then the label l(a) is defined as the homotopy class of closed curves sur-
rounding exactly hi in counterclockwise orientation, i.e c(s ′) ∈ l(a). If s ′ surrounds hi

in clockwise orientation, the inverse chain of s ′ will surround hi in counterclockwise
orientation and contains −a. Therefore, the label l(a) is defined as the homotopy class
of closed curves surrounding exactly hi in clockwise orientation, i.e. c(s ′) ∈ l(a).

Now assume that there are n obstacles in the interior of c(s ′), and the claim has been
proven for elementary cycles whose induced Jordan curve contains up to n−1 obstacles.

Let h be the obstacle in the interior of c(s ′) which corresponds to the face of G which is
bounded by arc a. A face cycle sh of hmust contain other non-tree arcs besides a, since
otherwise hwas the only obstacle in c(s ′). Without loss of generality, let

sh = (. . . , δ0a0, . . . , δ1a1, . . . , δ2a2, . . . , δkak, . . . ) (5.39)

for a0 = a, non-tree arcs ar, r = 0, 1, 2, . . . , k, and δ0 ∈ {−,+} such that sh surrounds h
counterclockwise, i.e. c(sh) ∈ [h] (see Figure 5.22). Each non-tree arc ar, r = 1, 2, . . . , k,
induces an elementary cycle sr which contains at most n − 1 obstacles in the interior
of its curve c(sr), and c(sr) ∈ l(ar) by induction hypothesis. Furthermore, for different
non-tree arcs ai and aj, i, j ∈ {1, 2, . . . , k}, the obstacles contained in the interior of c(si)
and c(sj), respectively, are disjunct, since the duals of the non-tree arcs form a tree G∗T
in the dual graph G∗, and a non-empty intersection of these obstacle sets would imply
a simple cycle in G∗T . Therefore, the labels of different non-tree arcs ai and aj contain
different primitive group elements.
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Let r ∈ V be a vertex of GT , and let ui = α(δiai) and vi = ω(δiai) for i = 0, 1, . . . , k.
Then, the chains s(vi, ui+1) and s(vi, r) · s(r, ui+1) are path homotopic, and

[sh] = [(δ0a0) · s(v0, u1) · (δ1a1) · s(v1, u2) . . . s(vk−1, uk) · (δkak) · s(vk, u0)]

= [s(r, u0) · (δ0a0) · s(v0, r) · s(r, u1) · (δ1a1) · s(v1, r) . . . s(r, uk) · (δkak) · s(vk, r)]

= [s(r, u0) · (δ0a0) · s(v0, r)] · [s(r, u1) · (δ1a1) · s(v1, r)] . . . [s(r, uk) · (δkak) · s(vk, r)]

= [s(δ0a0)] · l(δ1a1) . . . l(δkak),

by induction hypothesis. Multiplication with inverse elements yields

[sh] · l(δkak) . . . l(δ1a1) = [s(δ0a0)], (5.40)

where the left hand side is the label of δ0a0 (according to definition 5.55), and the right
hand side is the homotopy class of the cycle induced by δ0a0. Checking the cases of δ0 ∈
{−,+} proves the claim. �

Corollary 5.57 (Product of Arc Labels is Homotopy Class of Cycle)
Let G = (V,A) be a skeleton with spanning tree GT and arc labels as in 5.55.

Then, for any cycle s = (δ1a1, . . . , δnan) in G, the equation

[c(s)] =

n∏
i=1

l(δiai). (5.41)

holds.

Proof:

Let ui = α(δiai) ∈ V and vi = ω(δiai) ∈ V . Let aj1, aj2, . . . , ajk the non-tree arcs in s,
ji < ji+1, and r ∈ V a vertex in G. Then, by simple curve concatenation, and since only
non-tree arcs are relevant for the homotopy class,

[s] = [(δj1aj1) · s(vj1, uj2) · (δj2aj2) . . . (δjkajk) · s(vjk, uj1)]

and after adding some detours without affecting homotopy,

[s] =

[
k∏

i=1

(s(r, uji) · (δjiaji) · s(vji, r))

]
,

which can be expressed as

[s] =

k∏
i=1

[s(r, uji) · (δjiaji) · s(vji, r)],
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using the group product. Since s(r, uji) and s(vji, r) are chains within the tree GT for i =

1, . . . , k, we may use Property 5.56 and write

[s] =

k∏
i=1

l(δjiaji)

which can be transformed into

[s] =

n∏
i=1

l(δiai)

by adding some neutral elements, i.e. the labels of the remaining tree arcs, which com-
pleted the proof. �

Theorem 5.58 (Correspondence between Cycles and Homotopy Classes)
Let E be a space with obstacles, and G a skeleton of E. For each homotopy class [c]

of closed curves, there is a unique (except for cyclic shifts) reduced cycle s in G such
that c(s) ∈ [c].

Proof:

Each homotopy class is an element of a free group (i.e. the fundamental group) which is
uniquely determined by a product of generators. This product of generators is uniquely
determined by a sequence of non-tree arcs, which are uniquely determined by a reduced
cycle in G. �

Neutralization of Group Elements

Let p = (e1 ·e2 ·· · ··en) be a product of primitive elements from the fundamental group of
a space with obstacles. By deleting some of the factors ei of p, other factors may become
adjacent to their inverses, and eventually the product itself becomes equivalent to the
neutral element. Here we are interested in a minimal sequence of factors to be deleted
such that the resulting product becomes equal to the neutral element of the group.

For example, consider the product

p = a · c · ā · b · c̄ · b̄.

One could first remove the third and fourth factors (ā and b), which makes the second
factor (c) adjacent to its inverse, and then remove the two remaining factors, resulting a
neutralization with four deletions. Alternatively, one could remove the second and fifth
factors (c and c̄), which results in a neutralization with only two deletions. Obviously,
it has to be decided which occurrences of an element and its inverse will be used for
neutralization.
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Definition 5.59 (Deletion from a Sequence)
Let S = (ai)i∈N be a sequence, and let I = {i1, i2, . . . , im} ⊆ N be a set of natural numbers,
without loss of generality i1 < i2 < . . . im. Then, we will denote by S/I the sequence S
after simultaneous removal of the elements indicated by I, i.e.

S/I = (a1, a2, . . . , ai1−1, ai1+1, . . . , ai2−1, ai2+1, . . . , aim−1, aim+1, . . . ). (5.42)

Note that the removal index set I specifies the indices of sequence elements, not their
positions:

(S/I1)/I2 = S/(I1 ∪ I2). (5.43)

Property 5.60 (Number of Deletions Required for Neutralization)
Let p = (e1 · e2 · · · · · en) be a product of primitive elements from the fundamental group
of a space with obstacles.

By wj
i(p) we will denote the minimum cardinality of an index set I ⊂ N such that the

product of the elements of (ei, ei+1, . . . , ej)/I is equivalent to the neutral element.

Then, the values wj
i(p) satisfy the following property:

w
j
i(p) =


0 if i > j,
1 if i = j,

w
j−1
i+1(p) if i < j and ei = ēj,

min
{
wk

i (p) +wj
k+1(p) | k ∈ {i, i+ 1, . . . , j− 1}

}
else

(5.44)

Proof:

Clearly, the index set I = {1, 2, . . . , j − i + 1} neutralizes the product of (ei, ei+1, . . . , ej)

by deleting all elements. Since only the finite number of subsets of this index set need
to be considered, the value wj

i(p) is well defined for any 1 ≤ i, j ≤ n.

The claimed properties wi−1
i (p) = 0 (empty product) and wi

i(p) = 1 are trivial. For the
proof of the other claimed properties, we use the notation∏

s = e1 · e2 . . . en (5.45)

for the product of the elements of a sequence s = (e1, e2, . . . , en).

Consider the case i < j and ei = ēj, i.e. we have to prove the equality wj
i(p) = w

j−1
i+1(p).

Clearly,wj
i(p) ≤ w

j−1
i+1(p) holds, since neutralization of the product ei+1 · ei+2 . . . ej−1 will

leave ei · ej = 1. There is a set I ⊂ N with∏
(ei, . . . , ej)/I = 1, (5.46)
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and |I| = w
j
i(p).

We check the four cases of i and j being members or not being members of I. As-
sume {i, j} ⊂ I. Then ∏

(ei, . . . , ej)/(I− {i, j}) = ei · ej = 1, (5.47)∏
(ei+1, . . . , ej−1)/(I− {i, j}) = 1, (5.48)

and therefore
w

j−1
i+1(p) ≤ w

j
i(p) − 2 < wj

i(p) ≤ w
j−1
i+1(p), (5.49)

which is a contradiction.

Assume {i, j} ∩ I = ∅. Then ∏
(ei+1, . . . , ej−1)/I = 1, (5.50)

and therefore
w

j−1
i+1(p) ≤ w

j
i(p) ≤ w

j−1
i+1(p), (5.51)

which implies the claimed equality.

Assume j ∈ I and i /∈ I. Then,∏
(ei, . . . , ej)/(I− {j}) = ej, (5.52)

and ∏
(ei, . . . , ej−1)/(I− {j}) = 1. (5.53)

Since i /∈ I, there must be a k /∈ I, i + 1 ≤ k ≤ j − 1 with ek = ēi which neutralizes ei.
With this k, ∏

(ei+1, . . . , ej−1)/((I− {j}) ∪ {k}) = 1, (5.54)

and therefore
w

j−1
i+1(p) ≤ |I| − 1+ 1 = w

j
i(p) ≤ w

j−1
i+1(p), (5.55)

which proves the claimed equality.

Analogously, assume i ∈ I and j /∈ I. Then,∏
(ei, . . . , ej)/(I− {i}) = ei (5.56)

and ∏
(ei+1, . . . , ej)/(I− {i}) = 1. (5.57)

Since j /∈ I, there must be a k /∈ I, i + 1 ≤ k ≤ j − 1 with ek = ēj which neutralizes ej.
With this k, ∏

(ei+1, . . . , ej−1)/((I− {i}) ∪ {k}) = 1, (5.58)
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and therefore
w

j−1
i+1(p) ≤ |I| − 1+ 1 = w

j
i(p) ≤ w

j−1
i+1(p), (5.59)

which proves the claimed equality, and closes the case i < j and ei = ēj.

Now consider the case i < j and ei 6= ēj, i.e. we have to prove the equality

w
j
i(p) = min

{
wk

i (p) +wj
k+1(p) | k ∈ {i, i+ 1, . . . , j− 1}

}
. (5.60)

Clearly, wj
i(p) is equal to or less than the right hand side minimum, since each combi-

nation of neutralizations of ei . . . ek and ek+1 . . . ej on the right hand side neutralizes the
complete product ei . . . ej, too. The other inequality remains to be proven.

Let k ∈ {i, . . . , j− 1} such that wk
i (p) +wj

k+1(p) is minimal. Let I ⊂ N with |I| = wk
i and∏

(ei, . . . , ej)/I = 1. (5.61)

Assume j ∈ I. Then ∏
(ei, . . . , ej)/(I− {j}) = ej (5.62)

and ∏
(ei, . . . , ej−1)/(I− {j}) = 1, (5.63)

therefore
w

j−1
i (p) +wj

j(p) ≤ |I| − 1+ 1 = w
j
i(p) (5.64)

which proves the remaining inequality, and thereby the claimed equality.

Now assume i ∈ I. Then ∏
(ei, . . . , ej)/(I− {i}) = ei (5.65)

and ∏
(ei+1, . . . , ej)/(I− {i}) = 1, (5.66)

therefore
wi

i(p) +wj
i+1(p) ≤ 1+ |I| − 1 = w

j
i(p) (5.67)

which proves the remaining inequality, and thereby the claimed equality.

Finally, assume {i, j} ∩ I = ∅, i.e. I ⊆ {i+ 1, . . . , j− 1}. Then∏
(ei, . . . , ej)/I = ei · ej = 1, (5.68)

which implies ei = ēj, which is a contradiction to the considered case. Therefore, {i, j} ∩
I 6= ∅, and the claimed equality has been proven. �

Property 5.60 indicates that the topological norm of an element p of the fundamental
group can be computed using a dynamic programming approach, as illustrated by Al-
gorithm 5. Since it is not important where the concatenation of closed loops starts, we
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Algorithm 5 PRODUCT NEUTRALIZATION

1: input: a product p = (e1e2 . . . en) of primitive group elements
2: consider cyclic shifts of p by treating indices as i = i+ kn mod n for k ∈ Z
3: letM = (mi,j) ∈ Nn×n

0 be a matrix
4: for j = 1, 2, . . . , n do {consider each subproduct of length j}
5: for i = 1, 2, . . . , n do {consider the subproduct eiei+1 . . . ei+j−1}
6: if j = 1 then
7: mi,j ← 1

8: else if ei = ēi+j−1 then
9: if j > 2 then

10: mi,j ← mi+1,j−2

11: else
12: mi,j ← 0

13: end if
14: else
15: mi,j ← j

16: for k = 1, 2, . . . , j− 1 do
17: let s = mi,k +mi+k,j−k

18: mi,j ← min {s,mi,j}

19: end for
20: end if
21: end for
22: end for
23: return min{mi,n | i = 1, 2, . . . , n}

have compute the minimum number of required factor deletions for each cyclic shift of
the product, in order to find the topological norm of the product.

Due to the three nested loops starting in lines 4, 5, and 16, the algorithm runs in time
at most O(n3), where n is the number of factors in the product p, and returns the min-
imum number of factor deletions required to neutralize a cyclic shifted copy of p. The
correctness of the algorithm follows from Property 5.60: After round j of the outer loop,
each matrix element mi,r with 1 ≤ i ≤ n and 1 ≤ r ≤ j contains the minimum number
of factor deletions required to neutralize the subproduct of p of length r starting at in-
dex i, i.e. the value mi,r = wi+r−1

i (p), since the applied operations correspond directly
to the cases in Property 5.60. Therefore, after round n of the outer loop, the returned
minimum number has the claimed property.

Example 5.2
Let a, b, c be primitive group elements corresponding to three different obstacles. Con-
sider the product

p = (ab̄cāc̄b).
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For its neutralization, each substring of length 1 requires the deletion of 1 factor, and
each of the substrings ab̄, b̄c, cā, āc̄, c̄b, and ba of length 2 requires deletion of 2 factors.
The following table shows the required number w of deletions for each substring of
length greater than 2 to be neutralized.

String w String w String w String w

ab̄c 3 ab̄cā 2 ab̄cāc̄ 3 ab̄cāc̄b 2
b̄cā 3 b̄cāc̄ 2 b̄cāc̄b 3 b̄cāc̄ba 2
cāc̄ 1 cāc̄b 2 cāc̄ba 3 cāc̄bab̄ 2
āc̄b 3 āc̄ba 2 āc̄bab̄ 3 āc̄bab̄c 2
c̄ba 3 c̄bab̄ 2 c̄bab̄c 1 c̄bab̄cā 2
bab̄ 1 bab̄c 2 bab̄cā 3 bab̄cāc̄ 2

Property 5.61 (Alternative Neutralization Approach)
Let p = (e1 · e2 · · · · · en) be a product of primitive elements from the fundamental group
of a space with obstacles.

Let G = (V,A) be a simple directed graph with V = {1, 2, . . . , n}, arc length c : A → N,
and the arc set A incrementally defined as follows (vertices modulo n):

• (i, i+ 1) ∈ A and c(i, i+ 1) = 1 for i ∈ V ,
• for d = 1, 2, . . . , n− 1,

• if ei = ēi+d, then (i, i+d+ 1) ∈ A and c(i, i+d+ 1) is the length of a shortest
path from i+ 1 to i+ d in the graph as constructed so far,

• and no other arcs are in A.

Then, the topological norm of p is the length of a shortest closed path in G.

Proof:

Let c = (v1, v2, . . . , vn) with vn = v1 be a shortest closed path in a graph G = (V,A)

defined for a product p = (e1e2 . . . en) as described. Clearly, path c is simple, and its
length

∑n−1
i=1 c(vi, vi+1) is not greater than n, since the path (1, 2, . . . , n) is closed and has

length n.

One can show by induction over d > 0 and by using Property 5.60, that for each arc a =

(i, i + d) ∈ A, its arc label c(a) is the minimum number of factor deletions required
to neutralize the product eiei+1 . . . ei+d−1, and that for each pair of vertices i and i + d,
the length of a shortest path from i to i + d is the minimum number of factor deletions
required to neutralize the product eiei+1 . . . ei+d−1.

Therefore, the shortest closed path cwitnesses that the minimum number of factor dele-
tions required to neutralize the product ev1

ev1+1 . . . ev1−1 is
∑n−1

i=1 c(vi, vi+1), and no other
cyclic shift of the product p can be neutralized with less deletions. �
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Figure 5.23: Topological norm as length of shortest cycles

Example 5.3
For an example, see Figure 5.23, where a graph as described in Property 5.61 is shown
for the product acābc̄b̄. The shortest cycle traverses vertices 1 and 4, and has length 2.

Algorithm and Complexity

In order to implement the presented approach, one can use a triangulation of the space
with obstacles to generate a skeleton, More specifically, the dual graph of a triangula-
tion of a space with obstacles can serve as a skeleton of that space. Furthermore, it is
sufficient to consider only one single point from each obstacle, which makes it possible
to use standard computational geometry libraries for the computation of the skeleton.
A triangulation G∗ of a set of nh points can be computed in time O(nh lognh), and the
number of edges, faces, and vertices of G∗ is O(nh), since G∗ is a planar graph.

Next, a given closed curve has to be mapped to a cycle in the skeleton. When the curve
is a polygonal chain c, this step will take time O(ns + nt) where ns is the number of
segments of c, and nt is the number of triangulation faces which are traversed by c. In
the worst case, curve c may traverse Ω(ns · nh) triangulation faces, i.e. each segment
of cmay cross all faces of the triangulation (up to a constant factor).

Each non-tree arc in G is labeled with a product of primitive group elements, and the
maximum number of factors in these products is Ω(nh), since in the worst case an in-
duced cycle sGT

(δa) for a non-tree arc a contains all of the nh obstacles. This results in
a group product describing the homotopy class of cwithΩ(ns ·n2

h) factors in the worst
case. Using the dynamic programming approach as described above for the neutraliza-
tion of the product, the topological norm of c can be computed in time O(n3

s · n6
h).

Future work is required to investigate if there are more efficient approaches. For exam-
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Figure 5.24: Skeleton G with shallow dual tree G∗T

ple, a skeleton G of a space with obstacles could be chosen as indicated by Figure 5.24,
such that any path from the root node of G∗T to a leaf node has length 1, and thereby
each non-tree arc of G is labeled with a degenerate product consisting of a single prim-
itive group element. If such an approach is applicable in general, the complexity of
computing the topological norm can be reduced to O(n3

s · n3
h).

5.4 Conclusion

In this chapter we presented metrics for curves, and algorithms to compute according
distance values for plane curves. Motivation for curve metrics in the context of cooper-
ative motion coordination is provided by quality assessment of robot behaviors as well
as by prospective failure detection systems which shall be able to decide if a guide is still
accompanied well. Furthermore, distance measures for paths could be applied to the
paths of obstacles in order to detect some correlation among them. Besides the already
known Hausdorff metric and the Fréchet metric, a topological metric on the set of ho-
motopy classes of curves has been proposed, which takes into account the obstacles in
the ambient space of the curves. Finally, an approach to the computation of topological
distances of plane curves has been given.





Chapter 6

Situation Assessment

6.1 Introduction

In dynamic motion planning literature, moving obstacles are commonly modeled as
solid objects traveling at a certain speed and being unaware of their environment. This
assumption does not hold well for mobile robots operating in natural environments,
where dynamic obstacles are mostly humans that are able to perceive and react on the
robot’s motion to avoid collisions, too. On the other hand there are situations where the
robot unintentionally gains other agents’ attention and might be obstructed by them.
Thus we should not be concerned only by the problem of collision avoidance but might
also want to reason about what level of “self-confident” driving is permissible to a robot
in a given situation.

So for real world applications of autonomous mobile robots it is a promising idea not to
reason only about shapes, positions and velocities of moving obstacles in the environ-
ment but also about their actions and intentions.

6.1.1 Motivating Examples

Figure 6.1(a) shows the situation where an autonomous mobile robot, depicted as a solid
circle, encounters dense traffic when its plan was to perform a right turn. An obviously
suboptimal reaction would be to stop and wait for the traffic to decrease. A human
would recognize that in this situations it is necessary to carefully but resolutely join the
stream, as a decrease of traffic or its end is not in sight. Figure 6.1(b) shows a situation
where a moderate traffic stream is confronted with a narrow passage, so that involved
agents have to line up. A human recognizes immediately that he or she has to join the
queue at its end in order to get through the narrow passage. But this is a challenging
situation for an autonomous mobile robot. Another example is shown in Figure 6.1(c),
where a group of agents is walking together in a highly ordered manner. For instance



116 Chapter 6. Situation Assessment

this might be a group of pupils on an excursion. A human recognizes that it would be
quite a bad idea to try to join or cross this sort of traffic stream and instead prefers to
wait. So this is an example where a robot that is able to recognize and join or cross dense
traffic should still behave respectfully. Last but not least Figure 6.1(d) shows one human
deliberately obstructing the robot. Here a robot that is not aware of this situation surely
is trapped.

robot

humans

robot

humans

bad
good

(a) Stream of traffic (b) Lining up

badgood
robot

group of humans

robot

human

(c) Walking together (d) Malevolence

Figure 6.1: Example situations in crowded environments

So we expect mobile robots to behave more efficiently in real-world scenarios by in-
creased situation awareness. This appears plausible as such robots are able to reason
about up to which degree other agents behave respectfully (i.e., decelerate to permit
the robot to safely join a traffic stream) or disrespectfully (i.e., deliberately obstruct the
robot’s desired motion) on the robot’s behalf in a certain situation. Recognition of a
certain situation may move the robot to adapt its current behavior or choose a new
behavior to reflect the newly recognized circumstances.
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6.1.2 Overview

Section 6.2 proposes a situation taxonomy that is based on the agents being involved
and the interactions taking place. Since we do not expect to be able to recognize any
imaginable situation, we focus on a collection of important prototypical situations en-
countered in a crowded environment that are presented in Section 6.3. Subsequently,
various existing and related approaches to the recognition of actions, intentions and sit-
uation among agents are reviewed in Section 6.4. Finally, a solution to the problem of
recognizing deliberate obstructions is proposed in Section 6.5.

6.2 Situation Taxonomy

We consider situations as configurations of sets of agents, where an agent is a human
or the unique robot. Thereby, possible sets of agents involved in one situation are (a) a
single human, (b) several humans, (c) a single robot, (d) one robot and one human, or
(e) one robot and several humans. The robot is supposed to observe the environment
and appropriately detect occurrences of situations. Furthermore, we assume the agents
involved in one situation to be located close to each other.

At the top-level of our taxonomy, situations are classified according to the interaction
among the agents. So there are situations with interaction taking place and the agents
being located close to each other deliberately. On the other hand, proximity that is
not caused by intended interaction raises situations from the complement class, where
agents are situated or moving close to each other merely by accident. Clearly, a situation
is not an interaction situation if there is only one agent involved in it.

6.2.1 Situations Driven by Interaction

Interaction between two or more humans occurs frequently and might be some form of
communication or exchange of some objects (however we do not expect to be able to
further distinguish this case given contemporary sensor and processing techniques).

Interaction of humans with a robot may be motivated in many ways, for example by
cooperation, curiosity, or even hostility. Situations of cooperation can be regarded in
two different ways. Firstly, the robot may be explicitly told to cooperate with a human
(for example to accompany that human). Secondly, the robot might autonomously rec-
ognize a situation where cooperation is possible and appreciated (for example opening
a door for a human moving towards that door). Situations initiated by curiosity might
be driven by the robot as well as by a human agent in order to discover some interesting
facts about the other agent. Finally, hostile situations are not provoked by the robot in
the ideal case, but might be encountered by the robot in public environments.
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6.2.2 Situations Without Deliberate Interaction

Situations that are not induced by interaction are mainly traffic situations, where the
participating agents share a common goal or follow up interfering goals of motion. This
class contains all situations involving only a single agent, too. Collective traffic situ-
ations include streams, queues and jams (as partially shown by Figure 6.1), crossing
streams surely being one of the more complex examples. A very common example in-
volving a robot is given if this robot has to navigate through dense pedestrian traffic.

Situations involving only a single agent profoundly correspond to the agent’s mental
state. For example an agent may be waiting for some event and be bored. So he, she, or
it will stand still or wander at low speeds, in contrast to an agent pursuing a clear goal.

6.3 Situations in Crowded Public Areas

The previous section introduced a synthetic approach to a set of observable situations.
Now it is also interesting to examine which situations are experienced in practice. Below
we describe situations which have been encountered during several experiments in the
concourse of the railway station of Ulm.

6.3.1 Situations Involving Humans

From a temporal point of view the most widespread situation for a human in a con-
course is waiting for some event to take place. So a large amount of people are sitting,
standing still or wandering around slowly. In contrast to that some humans walk at a
notably higher speed and obviously towards a clear target, and often even small groups
of individuals staying close to each other walk through the hall in a similar manner. The
largest group of humans walking together that has been detected was a basic school
class of about twenty pupils walking side by side as shown in Figure 6.1(c).

From time to time agents spontaneously change from the state of waiting and wander-
ing to walking directly to a goal, for example into a book store.

Large crowds occur when trains arrive as then the number of humans in the railway
station increases suddenly. Those crowds move from the platform towards the exit in a
dense stream, but queuing at the exit doors has not been observed. Those streams were
geometrically bounded rather well as long as their density permitted the members to
walk still sufficiently fast. We observed spontaneous transitions with stream members,
too, when some of them stopped in order to talk to each other more easily, hence forcing
the stream to fork in front of them.
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6.3.2 Situations Involving Humans and the Robot

In our experimental environment we are confronted with several situations that involve
the robot. A first situation is the one for which the system has been designed initially:
navigation through dense pedestrian traffic with dynamic avoidance of collisions. This
situation can be further subdivided according to the class of traffic (sparse, streaming,
turbulent, etc.), and the robot’s desired direction relative to a predominant direction of
traffic. When navigating through dense traffic it is interesting to notice that collision
avoidance is performed cooperatively by the robot and humans. There are even people
that refuse to approach the robot and prefer to choose another path. However most
passers-by are not bothered by the robot’s presence.

Another class of situations we want to consider are deliberate obstructions that occur
when people become interested in the robot and try to fool it. This is in fact an important
situation as robots are not yet quite common and thus do have to cope with curious
people when operated in public areas.

6.4 Existing Approaches

This section presents some approaches to situation recognition and related problems
and sub problems. Remarkably, only few of them are applied within robotic domains
today. This overview neither claims to be complete nor to present a unique applicable
classification.

6.4.1 Scene Analysis

Scene analysis is the basis for situation recognition, as before reasoning about actions
and intentions of agents we have to be aware of the agents themselves and their geo-
metric configuration (positions and velocities, absolute and relative to each other). This
analysis can be done for example by computer vision using video images or by geomet-
ric computations on range images, and gives a first clue to the situation.

Scene analysis can be subdivided according to static and dynamic scenes. Static scene
analysis is expected to identify occurrences of known or unknown objects in an image of
the environment. When a sequence of images of a dynamic scene is given, the problem
of single or multiple object tracking arises (Isard and Blake, 1998; Kluge et al., 2001;
Schulz et al., 2001; Sobottka and Bunke, 1998), where the goal is to correctly identify the
object motion between successive images.

Furthermore, Mohnhaupt and Neumann (1991) accumulate trajectories of tracked ob-
jects into a spatio-temporal buffer and abstract from the seen examples by a generaliza-
tion step (which is similar to a dilatation step) and a convergence step (which is similar
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to the computation of a medial axis) in order to obtain generic models of motion in the
environment.

6.4.2 Action Recognition

More information about a scene and the current situation is obtained if objects are iden-
tified as agents and the motion that an agent performs is interpreted, i.e. the occurring
action is recognized. Then an agent’s motion can be described by additional attributes
such as wandering, purposeful, or periodical, and its relation to other agents’ motion may
reveal further information.

Visual recognition of single agent actions is an active field of research, and many ap-
proaches have been developed (Bobick and Ivanov, 1998; Davis and Bobick, 1997; Nagel
et al., 1995; Pentland and Liu, 1995; Rosales and Sclaroff, 1999). However they do not
play an important role in our context of crowded public areas as they focus only on a
single individual performing the action to be recognized. However, the work of Nagel
et al. (1995) who introduced the notion of situation graphs is worth mentioning here. A
situation graph is a bipartite directed graph with situation nodes, link nodes, and argument
nodes at link nodes. Link nodes represent admitted transitions between a current situ-
ation and a possible successor situation. A situation represented by an according node
comprises action options for the observed agent and the observable state of the world.
Hence path in a situation graph represents the situational development of an aspect of
the world. The situation is tracked by comparing changes in the world to the successor
situation nodes of the current situation node.

More relevant approaches focus on recognition of coordinated multi agent action. De-
vaney and Ram (1997) analyze the spatial distribution and motion of participants in US
Army training battles. From the spatial distribution they deduce significant portions
of the battlefield and label them (for example as left flank rear). Indicators based on the
change of concentration of participants in the labeled areas are used to recognize ongo-
ing actions.

Symbolic names for locations and regions are also used by Intille (1999) in order to
recognize American football plays. The plays are recognized by Bayesian belief net-
works (Charniak, 1991), their input being primitive single agent actions (recognized by
Bayesian belief networks, too) along with temporal and logical relationships between
these actions and labeled regions of the football field.

In contrast to the two preceding approaches addressing actions of tens or hundreds of
agents, Oliver et al. (1999) use coupled hidden Markov models for the recognition of
interaction between two human agents. The agents’ relative distance, speed, orienta-
tion etc. are provided as input to the training process and to the recognition process,
respectively. In order to obtain enough training data, the authors had to make use of a
software simulator for the addressed types of agent interactions, since the most inter-
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esting situations were the most rare, too.

6.4.3 Intention Reasoning

Given a sequence of an agent’s actions, one might ask what the agent’s intention or
plan is. If the observed agent cooperates in the plan recognition process, the problem is
known as intended plan recognition. If the agent tries to hinder the discovery of its plans,
the problem is called obstructed plan recognition. The problem of recognizing the plan
of an agent that does not try to cooperate nor hinder the recognition is know as keyhole
plan recognition.

Charniak and Goldman (1993) apply Bayesian belief networks to plan recognition for
story understanding. Others like Bobick and Ivanov (1998) or Pynadath (1999) employ
stochastic context-free grammars to describe action sequences and recognize complex
actions or plans as most likely deductions in this grammar. A comprehensive determin-
istic framework for plan recognition is presented by Kautz (1991).

These approaches might become interesting within the context of intelligent personal
robot assistants that infer their users’ intentions from their users’ actions and can react
by performing some helping action. But the plans considered by them appear far too
detailed within the context of intentions of agents in public crowded areas.

However, there are approaches to intention reasoning that are of interest within our
domain. For example Bayesian reasoning is applied to plan recognition in a robotic
domain by Huber and Durfee (1993). They consider a mobile robot, some points of
interest in the environment, and another moving agent. The robot reasons from the
perceived motion of the other agent about the other agent’s goal position (which is one
of the points of interest) and moves to that point in order to meet him or her there.

If the system which observes and reasons about the environment also participates in
this environment, recursive agent tracking (Gmytrasiewicz, 1992; Tambe, 1995) is an
interesting paradigm. Given the robot R and an agent A, this principle proposes that R
should not only track actions of A (i.e. track a model MR(A) of A’s actions) but also
should track at least a modelMR(MA(R)) of A’s model of R. Depending on the domain,
one or several deeper recursive models might be tracked, too.

6.4.4 Opponent Modeling

The opponent modeling paradigm is related to the domain of automated game playing.
Given the rules of a game like chess or checkers, one might derive (in theory) an optimal
strategy φ for a player, where φ is a function that maps the current state of the game to
an action for the player to take in order to maximize (or minimize) the outcome of the
game, under the assumption that the other plays optimally, too. In a complex domain,
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an opponent model can help to predict the action of an opponent (or, more general,
interaction partner), narrowing the set of actions for which an appropriate reaction has
to be generated.

The opponent is modeled as an agent that repeatedly decides about its actions based
on the perceived state of the world. This decision making process can be modeled in
various ways. A simple representation for the decision process of the opponent is a de-
terministic finite automaton, where its action depends on its state, and transitions depend
on its perception (Carmel and Markovitch, 1996). However, inference of a finite automa-
ton by passively observing its input/output behavior is infeasible (Rivest and Schapire,
1994).

Other models of the opponent include concepts like recent history adversaries and sta-
tistical adversaries as proposed by Freund et al. (1995). A recent history adversary uses
boolean formulae over the preceeding history of play to compute its action, while a sta-
tistical adversary uses linear functions of simple statistics over the complete history of
the play to determine its next action.

However, the approaches from literature presented above share one common drawback:
they model only one agent and its interaction with the subject.

6.4.5 Other Approaches

Dousson et al. (1993) describe situations in complex dynamic systems as temporal pat-
terns, i.e. as a set of events related by temporal constraints. They present an approach to
recognize occurrences of such situations efficiently and on the fly. Forthcoming events
are predicted depending on which situations are possibly emerging.

In automated highway applications, autonomous vehicles surely will have to track the
situation of their environment. The approach of Sukthankar (1997) to situation aware-
ness in this domain associates reasoning objects to each object of interest in the vicinity
of the vehicle, which are for example other traffic members, the car’s self-state (includ-
ing its desired speed), neighboring lanes, and exit lanes. Decisions for the autonomous
vehicle are made by these reasoning objects using a voting scheme. As an example,
the self-state might vote for overtaking a preceding slower vehicle while a car in the
neighboring lane vetoes against this overtaking.

6.5 Situation Recognition in Crowded Public Areas

Some clues to situation recognition for a robot operating in crowded public areas can be
drawn from the previous section. It appears sensible (and maybe necessary) to describe
agents’ positions and motions in terms of points and directions of interest in the envi-
ronment (Devaney and Ram, 1997; Intille, 1999). Thereby we are able to reason about an
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agent’s motion symbolically, avoiding for example the large training effort necessary for
other approaches that use low level data for recognition. Furthermore recursive agent
tracking (Tambe, 1995) appears important since the robot’s animate presence surely in-
fluences its environment.

We implemented an approach to detect deliberate obstructions of an autonomous robot
that makes use of these two paradigms, and the remainder of this section is dedicated
to its description.

6.5.1 Detecting Deliberate Obstructions

When operated in public areas, an autonomous robot attracts the attention of pedes-
trians passing by. So from time to time some fearless pedestrian approaches the robot
and tries to block its path, forcing the robot to perform evasive maneuvers (see Fig-
ure 6.1(d)). If the robot is not aware of this situation, it is trapped and unable to accom-
plish its task.

Region of Interest

In order to recognize these obstructions we identify a relevant region of interest (ROI)
such that the motion of an obstructor can be described basically in terms of this region.
Clearly this region comprises some area in front of the robot, as only objects in front of
the robot really are obstacles.

Obstructor

ROI

Robot

Figure 6.2: Region of Interest (ROI)

We defined the robot’s ROI to be a rectangular area immediately in front it (see Fig-
ure 6.2). Objects located inside this area but moving at a sufficiently high speed (i.e. 50%
of the robot’s maximum speed) into the robot’s desired direction are treated as if they
were outside of this region.
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Recursive Agent Tracking

The robot continuously tracks moving objects and humans in its vicinity. It does not rea-
son about any global goal positions of these objects but does note their actual positions
relative to its ROI. Hence the robot’s model of an opponent for obstruction detection is
rather simple: either he or she is located inside the ROI, or not.

Humans located close to the robot can easily estimate its desired direction, as it shows
a clear orientation and cannot move sideways or backwards. So the recursive model of
an obstructor’s model of the robot’s local goal (i.e. the direction it intends to drive into)
is equal to the robot’s actual local goal.

Note that a robot may utilize recursive agent tracking in order to deceive and conse-
quently evade an obstructor. If there are several ways to circumvent an obstructor the
robot might choose a plan that it believes to be a behavior that is most unexpected (and
thereby hopefully unobstructed) by its opponent. For example the robot might perform
a left turn imitating an evasion on the left, but then drive backwards and circumvent a
surprised obstructor on the right side. However such deception techniques are not im-
plemented in the current version of our system, as due to the lack of backward sensors
the robot is not allowed to drive backwards.

Obstruction Detection

If a human intends to obstruct the robot, he or she will move in front of the robot, i.e.
into its ROI, since a human correctly recognizes that this is the only action that might
bother the robot. On the other hand humans may cross the robot’s region of interest in
order to pursue goals of motion that are completely unrelated to the robot. In order to
separate these cases the robot has to accumulate evidence about the occurrence of an
obstruction. Thus a human has to enter the robot’s ROI repeatedly or stay inside this
region actively for some time before he or she is recognized as an obstructor. Note that
any passive object eventually leaves the ROI (which moves with the robot), since static
obstacles are circumvented.

Experimental Results

In our experiments we defined the ROI to be a rectangular area in front of the robot
with a width equal to the width of the robot (0.7 m) and a length of 2.0 m. A human
is considered to be deliberately obstructing if he or she enters the ROI a third time or
actively stays inside the ROI for more than 10 sec. Each time the same agent is consid-
ered obstructing the reaction of the system is increased. At first, there is only a spoken
notification that the obstruction has been detected. The next time, the system stops for a
short period of time and asks the obstructor to let it pass by, the speech output directed
to the opponent becoming more and more resolute. Finally, the system gives up.
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The system has been tested in our lab environment and in the concourse of the railway
station of Ulm. It proved to recognize deliberate obstructions fairly reliably without
tending to be over-sensitive. However, a future system should not give up as quickly
as our current implementation, but choose an alternative path or employ deception
techniques as described above.

6.6 Conclusion

We introduced the problem of situation awareness for autonomous robots operating in
crowded public areas and illustrated its importance by means of several examples. A
taxonomy of situations among agents in the considered environment was proposed and
substantiated with observed examples. Next we presented a collection of approaches
related to situation recognition from various domains like action recognition or inten-
tion reasoning. Finally, we proposed an approach to detect deliberate obstructions of an
autonomous robot, which has been implemented on a robotic wheelchair and tested in
public, populated environments.
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Reflective Navigation

7.1 Introduction

Motion planning for a robot in an environment containing obstacles is a fundamental
problem in robotics. For the task of navigating a mobile robot among moving obsta-
cles, numerous approaches have been proposed. However, moving obstacles are most
commonly assumed to be traveling without having any perception or motion goals (i.e.
collision avoidance or goal positions) of their own.

In the expanding domain of mobile service robots deployed in natural, everyday envi-
ronments, this assumption does not hold, since humans (which are the moving obstacles
in this context) do perceive the robot and its motion and adapt their own motion accord-
ingly. Therefore, reflective navigation approaches which include reasoning about other
agents’ navigational decision processes become increasingly interesting.

In this chapter an approach to reflective navigation is presented which extends the ve-
locity obstacle navigation scheme to incorporate reasoning about other objects’ percep-
tion and motion goals.

7.1.1 Related Work

Predictive navigation is a domain where a prediction of the future motion of the ob-
stacles is used to yield more successful motion (with respect to travel time or collision
avoidance), see for example the work of Foka and Trahanias (2002) and Miura and Shi-
rai (2000). However, reflective navigation approaches are an extension of this concept,
since they include further reasoning about perception and navigational processes of
moving obstacles.

The velocity obstacle paradigm, which belongs to the class of predictive navigation
schemes, has been presented by Fiorini and Shiller (1998) for obstacles moving on straight
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lines, and has been extended by Shiller et al. (2001) for obstacles moving on arbitrary
(but known) trajectories.

Modeling other agents’ decision making similar to the own agent’s decision making
is used by the recursive agent modeling approach (Gmytrasiewicz, 1992), where the
own agent bases its decisions not only on its models of other agents’ decision making
processes, but also on its models of the other agents’ models of its own decision making,
and so on (hence the label recursive).

7.1.2 Overview

Assume a robot B uses deterministic velocity obstacles (as presented in Section 3.3) for
its navigation. As we have seen, there is some freedom in choice of avoiding velocities.
That is, a unique velocity vB ∈ R2 cannot be an adequate prediction of the future velocity
of B. Therefore, if velocity obstacles are used in a recursive manner (as it is the objective
of this chapter), they have to be extended in a way which allows to express uncertainty
about the velocity of the obstacles, i.e. by using (possibly multi-modal) probability dis-
tributions. Such a probabilistic extension of the velocity obstacle approach is presented
in Section 7.2.

Being able to cope with uncertain obstacle velocities, Section 7.3 describes how to apply
the velocity obstacle scheme recursively in order to create a reflective navigation behav-
ior. The proposed method is evaluated for a collection of simulated in Section 7.4, and
finally concluded after discussing the presented work.

7.2 Probabilistic Velocity Obstacles

Let Bi and Bj be circular objects with radii ri and rj, placed at positions ci ∈ R2 and cj ∈
R2, as in the deterministic velocity obstacle approach.

However, now we will consider uncertainty in shape and velocity of the objects. This
allows to reflect the limitations of real sensors and object tracking techniques.

7.2.1 Shape Uncertainty

A first source of uncertainty is the actual shape of the obstacles. With real sensors,
there will always be measurement errors, which should be reflected by the navigation
approach.

It turns out that giving an adequate probabilistic counterpart to the definition of de-
terministic rigid bodies in Definition 3.1 is not straightforward. One possible way of a
definition would be to model uncertainty about the actual shape of a rigid body B by a
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function
PB : R2 → [0, 1] (7.1)

where PB(p) is interpreted as the probability of point p belonging to B. However, we
would have to specify dependencies between the points, too, which will become clear
after the following definition of a simple class of “probabilistic” objects.

Definition 7.1 (Disc with Uncertain Radius)
A disc with uncertain radius D(a, b) is a disc centered at the origin whose radius is a
variate Rwith range [a, b] and

P(R ≤ r) =


0, if r < a,
r−a
b−a

if r ∈ [a, b], and
1, if r > b.

(7.2)

For the sake of brevity, we may call a disc with uncertain radius probabilistic disc or
p-disc, too.

Note that discs with uncertain radius cannot be represented by a mapping as in Equa-
tion 7.1, since for example for a p-disc B we may have

0 < P ((0, r) ∈ B) = P ((r, 0) ∈ B) < 1,

but

P ((0, r) ∈ B∧ (r, 0) ∈ B) = P ((0, r) ∈ B)

6= P ((0, r) ∈ B) · P ((r, 0) ∈ B) .

The reason is that, as announced, statistical dependencies are not taken into account
properly when uncertain shapes are modeled by mappings according to Equation 7.1.

Therefore we will focus on p-discs as probabilistic objects in the following. This is not a
severe restriction, since the remainder of this chapter remains valid after changing the
definition of probabilistic objects, provided that the definition of probabilistic collision
cones is adapted accordingly.

Definition 7.2 (Placed Disc with Uncertain Radius)
The ordered pair (D(a, b), c) of a p-disc D(a, b) and a position c ∈ R2 is called a placed
disc with uncertain radius.

The ordered triple (D(a, b), c,v) of a p-discD(a, b), a position c ∈ R2, and a velocity v ∈
R2 is called a moving disc with uncertain radius, and the point c + v · t is called its
position at time t.

Property 7.3 (Collision of Discs with Uncertain Radius)
Let (D(ai, bi), ci) and (D(aj, bj), cj) be placed p-discs with variates Ri and Rj represent-
ing their radii. Then, the placed p-discs are colliding if Ri + Rj ≤ |ci − cj|.
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vij

PCCij(vij) = 1

PCCij(vij) = 0

0

ai + aj

bi + bj

0 < PCCij(vij) < 1
cj − ci

Figure 7.1: Probabilistic collision cone of two discs (D(ai, bi), ci) and (D(aj, bj), cj) with
uncertain radii

In the deterministic velocity obstacle approach, the collision cone of an ordered pair of
moving objects is a set of relative velocities which lead to a collision. If the shapes of the
objects are uncertain, e.g. the radius of a circular objects is only known up to some error,
all we can expect as a probabilistic collision cone is a mapping which assigns collision
probabilities to relative velocities.

Definition 7.4 (Probabilistic Collision Cone)
The probabilistic collision cone of an ordered pair of placed discs (D(ai, bi), ci) and
(D(aj, bj), cj) with uncertain radii Ri and Rj is a mapping PCCij : R2 → [0, 1] with

PCCij : vij 7→ P

(
Ri + Rj ≥ min

t∈R+
0

|ci + vij · t− cj|

)
, (7.3)

that is, in words, PCCij(vij) is the probability of (D(ai, bi), ci + vij · t) colliding with
(D(aj, bj), cj) for some t ∈ R+

0 .

As an example, Figure 7.1 shows the probabilistic collision cone of two discs with un-
certain radii.
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7.2.2 Velocity Uncertainty

Another source of uncertainty is the motion of the obstacles. In fact, we are confronted
with two types of uncertainty here, one which stems from the measurement errors of
the sensor system, and another one which stems from unpredictable changes of the
motion of the obstacles. Therefore we represent the uncertain velocity of object Bj as a
probability density function

Vj : R2 → R+
0 . (7.4)

Given such a blurred velocity Vj of a placed p-disc Dj = (D(aj, bj), cj), we may ask for
the collision probability with respect to a moving p-disc Di = (D(ai, bi), ci,vi) repre-
senting the robot, which leads us to a probabilistic formulation of a velocity obstacle as
a function

PVOij : R2 → [0, 1] (7.5)

which maps absolute velocities vi of Bi to the according probability of colliding withDj.
AssumeDj moves with velocity vj ∈ R2. Then, the probability of a collision betweenDi

andDj is PCCij(vi − vj). Since the velocity ofDj is uncertain, we have to weigh that col-
lision probability with Vj(vj), the probability density at vj. Integrating over all possible
velocities vj of Dj delivers

PVOij(vi) =

∫
R2

Vj(vj)PCCij(vi − vj)d
2vj, (7.6)

which is equivalent to
PVOij = Vj ∗ PCCij (7.7)

where ∗ denotes the convolution of two function.

When a moving p-disc Di is confronted with a set of moving p-discs B = {Dj | 1 ≤
j ≤ n, i 6= j}, the probability of Di colliding with any other obstacle Dj ∈ B equals the
probability of not avoiding collisions with any other moving obstacle. Here and in the
remainder of this chapter we will assume that the velocities of the moving obstacles are
statistically independent. Therefore, the function PVOi : R2 → [0, 1] with

PVOi(vi) = 1−
∏

j6=i, Dj∈B

(1− PVOij(vi)) . (7.8)

assigns to a velocity vi of Di the probability of colliding with any other p-disc from B.
That is, PVOi is the probabilistic counterpart of the composite velocity obstacle.

7.2.3 Navigating with Probabilistic Velocity Obstacles

In the deterministic case, navigating is rather easy since we consider only collision free
velocities and can choose a velocity which is optimal for reaching the goal. But here,
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we have to balance two objectives: reaching a goal and minimizing the probability of a
collision.

Let Ui : R2 → [0, 1] be a function representing the utility of velocities vi for the motion
goal of Di. However, the full utility of a velocity vi is only attained if (a) vi is reachable,
and (b) vi is collision free. Therefore we define the relative utility function

RUi = Uα
i · R

β
i · (1− PVOi)

γ, (7.9)

where Ri : R2 → [0, 1] describes the reachability of a new velocity, i.e. it corresponds
to the set RV of reachable velocities in the deterministic velocity obstacle approach.
This uncertainty about the reachability of a new velocity may also take into account
the uncertainty about the robot’s own current velocity. The exponents α,β, γ ∈ R+ are
weights for the three factors of the relative utility.

A simple navigation scheme for p-disc Di based on probabilistic velocity obstacles can
be obtained by periodically choosing a velocity vi which maximizes the relative util-
ity RUi. In order to implement this approach, the use of continuous functions has to
be replaced by discretized version, and explicitly represented functions have to be re-
stricted to a finite size.

Discretization

Step functions s : R2 → R with s(x, y) = s(x ′, y ′) for iκ ≤ x, x ′ < (i + 1)κ and jκ ≤
y, y ′ < (j + 1)κ are used for discretization of continuous (in the sense of non-discrete)
functions. In other words we use functions which are piecewise constant on squares of
size κ× κ, where κ is a predefined constant.

For a point p = (x, y) ∈ R2, its discretization is

discr(p) = p =
(⌊x
κ

⌋
,
⌊y
κ

⌋)
∈ Z2. (7.10)

Conversely, for a discretized point p = (z1, z2) ∈ Z2 we define its cell as

cell(z1, z2) = {p ∈ R2 | discr(p) = (z1, z2)}

= [z1κ, (z1 + 1)κ)× [z2κ, (z2 + 1)κ) .
(7.11)

For any function F : R2 → [0, 1] we define the discretization of F to be the function F :

Z2 → [0, 1] with

F(z1, z2) =
1

κ2

∫
cell(z1,z2)

F(x, y)dxdy, (7.12)

i.e. F(z1, z2) is the average of F on cell(z1, z2). However, in practise we will only re-
quire F(z1, z2) ∈ F(cell(z1, z2)) for F to be called a discretization of F, since the com-
putation of the integral is expensive and not negligible. A simple extension to over-
come potential difficulties would be to draw a constant number n of random points pi
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from cell(p) and use the average value 1
n

∑
F(pi) as value for F(p), approaching the ex-

act value for n → ∞. A more thorough treatment of this problem involves sampling
theory, i.e. an analysis of the spectrum of F and the selection of κ according to Shannon’s
sampling theorem, and goes beyond the scope of this thesis. We will call a function F a
strict discretization of F, if it fulfills Equation 7.12, and otherwise assume that the value
of κ is adequate for F.

Finally, for a discretized function F : Z2 → R+
0 the set

σ(F) = {(x, y) ∈ Z2 | F(x, y) > 0} (7.13)

is called the supporting set of F, which is the set of cells on which the discretized function
does not vanish. The property

σ(FG) = σ(F) ∩ σ(G) (7.14)

is easily shown. Furthermore, ∑
p∈Z2

F(p)κ2 =

∫
R2

F(p)d2p (7.15)

holds for strict discretizations.

Restriction

Now we discuss the restriction problem in the context of navigating a p-disc Di. As-
suming that the velocity of any other p-disc Dj is bounded or is known with bounded
error, the supporting set σ(Vj) is finite. Therefore, PVOij(vi) can be computed for any vi

by using
PVOij(vi) =

∑
vj∈σ(Vj)

Vj(vj)PCCij(vi − vj)κ
2, (7.16)

which is the discrete version of Equation 7.6. The unbounded probabilistic collision
cones PCCij have to be represented implicitly by a subroutine which computes the re-
spective collision probabilities on demand.

Furthermore, for any real (i.e. physical) p-disc Di, the set σ(Ri) describing reachable
velocities is finite, as any bounded acceleration applied to a body of non-zero mass for
a bounded period of time results in a bounded change of velocity. Since only velocities
from σ(RUi) will be considered for navigating Di, and since σ(RUi) ⊆ σ(Ri), we can
restrict velocities to the finite domain σ(RUi).

Algorithm

Combining the results from the previous subsections, we get

PVOi = 1−
∏
j6=i

(1− PVOij) (7.17)



134 Chapter 7. Reflective Navigation

Algorithm 6 RELATIVE UTILITY

1: input: a set of placed p-discs B = {Di = (D(ai, bi), ci) | i = 1, 2, . . . , n}

2: input: uncertain velocities Vi : R2 → [0, 1] for each p-disc Di ∈ B
3: input: a function Ui : R2 → [0, 1] describing utility of velocities
4: input: a function Ri : R2 → [0, 1] describing reachable velocities
5: input: a function PCC : N× N× Z2 → [0, 1] with PCC(i, j, vij) = PCCij(vij)

6: input: the index i of the p-disc representing the robot
7: for vi ∈ σ(Ri) do
8: RUi(vi)← Uα

i (vi) · Rβ
i (vi)

9: for j ∈ {1, 2, . . . , n} − {i} do
10: PVOij(vi)← 0

11: for vj ∈ σ(Vj) do
12: PVOij(vi)← PVOij(vi) + Vj(vj) · PCCij(vi − vj) · κ2

13: end for
14: RUi(vi)← RUi(vi) · (1− PVOij(vi))

γ

15: end for
16: end for
17: return RUi

and further

RUi(vi) = Ui(vi)Ri(vi)(1− PVOi(vi))

= Ui(vi)Ri(vi)
∏
j6=i

(1− PVOij(vi))
(7.18)

for any vi ∈ σ(RUi). This observation is summarized in Algorithm 6, too.

Assuming that PCCij(vi), Ri(vi), and Ui(vi) can be computed in time O(1) for vi ∈ Z2,
we can compute PVOij(vi) in time O(|σ(Vj)|) (according to Equation 7.16 and lines 10–
13 in Algorithm 6), and RUi(vi) in time O(

∑
j6=i |σ(Vj)|) (according to Equation 7.18 and

lines 8–15 in Algorithm 6). Finally, a discrete velocity vi maximizing RUi can be found
in time

O

(
|σ(Ri)| ·

∑
j6=i

|σ(Vj)|

)
, (7.19)

integrating the search into the loop from line 7 to line 16 in Algorithm 6. That is, the
dependence of the running time on the number of obstacles is only linear, but the de-
pendence on the discretization is O(1/κ4).
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7.3 Recursive Probabilistic Velocity Obstacles

Traditionally, when navigating a mobile robot among moving obstacles (like humans),
these obstacles’ abilities to avoid collisions and their resulting motion behaviors are not
taken into account. In contrast to this plain obstacle modeling, recursive modeling ap-
proaches presume the opponents (or more generally, the interaction partners) to apply
decision making processes for navigation similar or equivalent to the own process. In
the given context of mobile robot navigation, this means to put the robot into the posi-
tion of its obstacles, let it reason about their decisions and then integrate the resulting
insight into its own decision making. We will call such intelligent moving obstacles (or,
obstacles which are considered intelligent) agents. Furthermore, we will consider a fi-
nite set of agents B = {Di = (D(ai, bi), ci) | i = 1, 2, . . . , n} with uncertain velocity Vi for
each Di ∈ B for the remainder of this section.

7.3.1 Agent Modeling

Agents are assumed to perceive their environment and deduce according reactions, the
reasoning process being similar to that of the robot. That is, any agent Dj is assumed
to take actions maximizing its relative utility function RUj. Therefore, in order to pre-
dict the action of agent Dj, we need to know its current utility function Uj, reachable
velocities Rj, and velocity obstacle PVOj.

The utility of velocities can be inferred by recognition of the current motion goal of the
moving obstacle. For example, Bennewitz et al. (2002) learn and recognize typical mo-
tion patterns of humans. If no global motion goal is available through recognition, one
can still assume that there exists such a goal which the agent strives to approach, expect-
ing it to be willing to keep its current speed and heading. By continuous observation of
a moving agent it is also possible to deduce a model of its dynamics, which describes
feasible accelerations depending on its current speed and heading. These two problems
are beyond the scope of this thesis and will not be addressed in detail in the following.

The remaining problem is the computation of a probabilistic velocity obstacle for an
agentDj, and this requires to presume assumptions on the velocities of the other moving
agents Dk, k 6= j, to agent Dj. In principle, we can base assumptions on the future
velocities of an agent on its probabilistic velocity obstacle again and again. This is a
recursive description, hence these probabilistic velocity obstacles will be called recursive
probabilistic velocity obstacles, and will be abbreviated as “RPVO.”

However, at some point the recursion has to be terminated, i.e. the velocity obstacle
must be based on perceived velocities. Therefore, we may distinguish different levels or
depths of recursion, denoted by superscript d as in PVO(d)

i for agentDi, such that PVO(1)
i

is based on perceived velocities of the other agents, and PVO(d)
i for d > 1 is based on

velocities of the other agents deduced using probabilistic velocity obstacles of recursive
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depth d− 1.

Of course this recursive modeling is not restricted to any constant depth of recursion by
a matter of principle. However, computational demands will increase with the depth of
the recursion, and intuitively, one does not expect recursion depths of more than three
or four to be of broad practical value, since such deeper modeling is not likely to happen
when we are walking as human beings among other humans.

Note that accurate recursive models of moving agents are prerequisite for more sophis-
ticated reflective navigation approaches in order to be able to deceive and feint particu-
larly malevolent agents like deliberate obstructors. However being dreams of the future,
such potential abilities indicate the importance of reflective navigation approaches and
their investigation.

7.3.2 Formal Representation

In order to interact with their surroundings, intelligent agents create models of their
environment. If this environment contains other agents, these can become part of the
model, as well as these agents’ models of the environment and so forth. This section
presents a formal representation of recursive models in the given context, which serves
as a basis for the implementation later on.

Definition 7.5 (Models of Functions by Agents, Interpretation of Models)
Let F be the symbol of a function from R2 to [0, 1]. Then, the symbol µi[F] denotes a
function from R2 to [0, 1] and is verbalized as model of F by agent i.

An interpretation I assigns functions to symbols µi[F], that is, I(µi[F]) : R2 → [0, 1].

Informally, we denote by µi[F] the current knowledge of agent i about an entity F. For
example, if Ri : R2 → [0, 1] is the function which specifies the reachability of veloci-
ties for an agent i, we will denote by µj[Ri] the function specifying the reachability of
velocities as attributed to agent i by agent j.

Using these symbols, we can now express the basic principle of recursive agent mod-
eling in the context of probabilistic velocity obstacle navigation as follows. Each agent
assumes that the others will choose their velocity according to their relative utility func-
tion, that is

µi[V
(d)
j ] =

{
1
w
µi[RU(d)

j ] if d > 0 and w :=
∫

RU(d)
j d2v > 0,

µi[Vj] else.
(7.20)

Note that V (d)
j is a probability density, that is∫

R2

Vj(vj)
(d) d2vj = 1,
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but RU(d)
j is a [0, 1]-valued function with bounded support, that is

0 ≤ w :=

∫
R2

RU(d)
j (vj)d

2vj <∞.
This is the reason for the scaling factor 1

w
in the first case of Equation 7.20, and the

second case in that equation terminates the recursion for d = 0 or is a fallback position
for w = 0.

For a recursive depth d = 0, no reflection about the other agents’ motion is assumed,
and therefore the relative utility RU(0)

i will depend only on the utility Ui of reachable
velocities as indicated by Ri. For a recursive depth d > 0, the relative utility RU(0)

i of an
agent i depends on its probabilistic velocity obstacle PVO(d)

i , too. Together, we have

RU(d)
i =

{
Uα

i · R
β
i if d = 0,

Uα
i · R

β
i ·
(
1− PVO(d)

i

)γ

else,
(7.21)

with weights α,β, γ ∈ R+.

The actual reflection appears in the specification of the recursive probabilistic velocity
obstacle PVO(d)

i : R2 → [0, 1] of depth d for agent i, since this entity depends on the
(recursive) model of other agents’ velocities µi[V

(d−1)
j ] and is defined as

PVO(d)
i = 1−

∏
j6=i

(
1− µi[V

(d−1)
j ] ∗ PCCij

)
, (7.22)

which completes our specification of RPVO.

Before any utility RU(d)
i (v) for v ∈ R2 can be computed, we have to specify an interpre-

tation of symbols µi[F] for function symbols F, which will be given in a recursive way by
a set of rules, and two sets of rules will distinguished. Motivation for the first set stems
from the given context of reflective navigation. The second set of rules stems from our
assumptions on the way how the agents acquire information about each other, and is
more or less specific to a certain implementation.

The first set of interpretation rules is defined as follows.
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Definition 7.6 (Interpretation of RPVO Function Models)
Let F be a symbol for a function from R2 to [0, 1]. Then, F will be interpreted as follows

I(F) =



I(µi[G]) if F = µi[µi[G]],
I(µi[G]) op I(µi[H]) if F = µi[G opH] with op ∈ {+, ·, ∗},
I(µi[G])α if F = µi[G

α] with α ∈ R,
I(C) if F = µi[C] and C symbolizes a constant function,
Ui if F = µi[Ui],
Ri if F = µi[Ri],
Vi if F = µi[Vi],
PCCij if F = µi[PCCij], and
F if F is not of the shape µi[G],

(7.23)
for i, j ∈ {1, 2, . . . , n}.

The first rule, I(µi[µi[G]]) = I(µi[G]), is motivated by the assumption that an agent
“knows what it knows,” i.e. its model of its model of an entity is the model of that
entity.

The second and the third rule are motivated by the assumption that all agents use the
same approach for decision making, i.e. they perform the same operations to compute
a certain function.

The remaining rules terminate the interpretation, either for a symbol of a constant func-
tion (e.g. “1”), or when an agent models itself, since we assume that each agent has
accurate information about itself, or when no modeling is involved.

For d > 1, and wj :=
∫

RU(d−1)
j d2v > 0 for j 6= i, we get

RU(d)
i = Uα

i R
β
i

∏
j6=i

(
1−

1

wj

µi[RU(d−1)
j ] ∗ PCCij

)γ

, (7.24)

from Equations 7.20–7.22, and with the rules from 7.6 follows

µi[RU(d)
j ] = µi

[
Uα

j R
β
j

∏
k6=j

(
1−

1

wk

µj[RU(d)
k ] ∗ PCCjk

)γ
]

= µi[Uj]
αµi[Rj]

β
∏
k6=j

(
1−

1

wk

µi[µj[RU(d)
k ]] ∗ µi[PCCjk]

)γ

,

(7.25)

that is, modeling is propagated towards the primitive (i.e. not composed) functions Ui,
Ri, Vi, and PCCij. Furthermore, the number of models µi1[. . . µid [F] . . . ] of primitive
functions occurring in a full expansion of RU(d)

i may increase exponentially with the
recursive depth d, depending on their interpretation.
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Interpretation under Equal Information

As seen above, we must specify interpretations of (recursive) models of the functionsUj,
Rj, Vj and PCCjk in order to evaluate a relative utility RU(d)

i . That is, we must say what
agents assume or know about other agents’ perception, intention, and reachable veloci-
ties.

As a first simple approach, we will assume equal information among the agents. That
is, no agent “knows more” or has a “more accurate model” of an entity than an other
agent. This is expressed technically in the following definition.

Definition 7.7 (Interpretation of RPVO Function Models under Equal Information)
We say all agents have equal information, iff

I(µi[F]) = I(µj[F]) (7.26)

for agents i and j, and F symbolizing a function from R2 to [0, 1].

If all agents have equal information, any recursive model µi1[. . . µik[F] . . . ] collapses to
a simple model µi[F] for any i1, . . . , ik, i:

I(µi1[µi2[. . . µik[F] . . . ]]) = I(µi2[µi2[. . . µik[F] . . . ]])

= I(µi2[. . . µik[F] . . . ])

. . .

= I(µik[F])

= I(µi[F]),

(7.27)

and with Definition 7.6 we have

I(µi1[. . . µik[F] . . . ]) = F, for F ∈ {Ui, Ri, Vi,PCCij} (7.28)

and any agent i1, . . . , ik, i, j. Consequently, when agents have equal information, we
do not reason about mutual perception but on relative positions and velocity selections
only. Furthermore, relative utilities RU(d)

i (vi) of velocities vi for an agent i at a recursive
depth d > 0 can now be computed efficiently using dynamic programming.

7.3.3 Implementation

For the implementation we assume equal information among the agents as defined
above. With this simplification, the dependence of the complexity on the recursion
depth is reduced to linear, since the number of models to be computed is equal on each
level of recursion. Algorithm 7 gives the details of the used dynamic programming
approach
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Algorithm 7 RECURSIVE RELATIVE UTILITY

1: input: a set of placed p-discs B = {Di = (D(ai, bi), ci) | i = 1, 2, . . . , n}

2: input: uncertain velocities Vi : R2 → [0, 1] for each Di ∈ B
3: input: functions Ui : R2 → [0, 1] describing utility of velocities for each Di ∈ B
4: input: functions Ri : R2 → [0, 1] describing reachable velocities for each Di ∈ B
5: input: a function PCC : N× N× Z2 → [0, 1] with PCC(i, j, vij) = PCCij(vij)

6: input: the desired recursive depth r ∈ N
7: for i = 1, . . . , n do
8: V(0)

i ← discr(Vi)

9: RU(0)
i ← discr(UiRi)

10: end for
11: for d = 1, . . . , r do
12: for i = 1, . . . , n do
13: RU(d)

i ← RELATIVE UTILITY as in Algorithm 6 for
• p-discs B,
• uncertain velocities V(d−1)

j for each Dj ∈ B,
• functions Uj and Rj for each Dj ∈ B,
• the function PCC, and
• considering Di as the robot.

14: w← κ2 ·
∑

v∈σ
“

RU(d)
i

” RU(d)
i (v)

15: if w > 0 then
16: V(d)

i ← 1
w

RU(d)
i

17: else
18: V(d)

i ← V(0)
i

19: end if
20: end for
21: end for
22: output: relative utilities RU(d)

i for each Di ∈ B and d = 0, 1, . . . , r

23: output: uncertain velocities V(d)
i for each Di ∈ B and d = 0, 1, . . . , r
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Complexity

We begin the complexity assessment by measuring the sizes of the supporting sets of
the discretized functions used in Algorithm 7, where line 9 implies

σ(RU(0)
i ) ⊆ σ(Ri), (7.29)

and from line 13 follows
σ(RU(d)

i ) ⊆ σ(Ri) (7.30)

for d > 0. Line 8 implies
σ(V(0)

i ) = σ(Vi), (7.31)

and from lines 16 and 18 follows

σ(V(d)
i ) ⊆ σ(Ri) ∪ σ(Vi) (7.32)

for d > 0, using the three preceding Equations.

Now we count the numbers of operations used in the algorithm, which we write down
usingNi := |σ(Ri)∪σ(Vi)| as an abbreviation. Line 13 requiresO(Ni ·

∑
j6=iNj) operation

(cf. Equation 7.19). Lines 14, 16, and 18 require O(Ni) operations each, and are thus
dominated by line 13. Therefore the loop from line 12 to line 20 requires

O(

n∑
i=1

(Ni

∑
j6=i

Nj)) (7.33)

operations, and the loop from line 11 to line 21 requires

O(r

n∑
i=1

(Ni

∑
j6=i

Nj)) (7.34)

operations. The complexity of the loop from line 11 to 21 clearly dominates the complex-
ity of the initialization loop from line 7 to 10. Therefore Equation 7.34 gives an upper
bound of the overall time complexity of our implementation. That is, the dependence
on the maximum recursive depth is linear, the dependence on the number of objects
is O(n2), and the dependence on the discretization remains O(1/κ4).

7.4 Results

The approach has been evaluated in different simulated situations, including (a) two
objects on a collision course, (b) a faster object approaching and overtaking a slower ob-
ject, and (c) two objects encountering each other close to a static obstacle, see Figure 7.2.
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(a) Collision course (b) Overtaking (c) Static obstacle

Figure 7.2: Situations for RPVO simulation
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B

final position of B initial position of B

initial position of A final position of A
(a) Resulting motion

A, d=0

A, d=2

B, d=0
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B, d=2

RU(0)
B

RU(1)
B

RU(2)
B

RU(0)
A

RU(1)
A

RU(2)
A

selected velocities

recursive depth

vy

vx0

object maximum relative utility

(b) Relative utilities and velocity selection

Figure 7.3: Legend for simulation results
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For each situation, varying values for the recursive depth for each moving object have
been used.

The results for each situation and selected recursive depths are presented in the follow-
ing. For each experiment, the entire resulting motion is depicted as in Figure 7.3(a),
where one disc is drawn per four iteration steps. For selected points in time the relative
utilities for the involved agents are depicted as in Figure 7.3(b). Higher values of rela-
tive utility are indicated by darker shades of grey. For better visibility, maximum values
are emphasized in black.

Collision Course

In this situation, two agents are involved which face each other initially. Their desired
velocities are conflicting, i.e. they are directed against each other. Both agents have the
same maximum velocities and accelerations.

Figure 7.4 shows the collision course experiment with two agents A and B, where agent A
from the left uses recursive depth 1 and agent B from the right uses recursive depth 2.
That is, agent B models agent A correctly and assumes that A is able to perceive its en-
vironment and to avoid collisions. As a result, agent B displays a straighter motion with
less deviation from its optimal path than agent A.

Similarly, Figure 7.5 shows the encounter of agent A from the left and agent B from the
right, but now agent A uses recursive depth d = 3, and agent B uses depth d = 2 as
before. Depth 3 means that agent A assumes agent B to move according to depth 2,
i.e. in a somewhat “self-confident” way, so agent A appears to choose rather defen-
sive velocities for its motion, and apparently deviates more decidedly and with higher
velocity from its optimal path than above. This becomes visible when comparing the
velocities of A with maximum relative utility for recursive depths d = 1 and d = 3 in
Figure 7.5(c). Furthermore, the distance between agent A and agent B when they meet
is smaller when agent A uses recursive depth 3, compare Figures 7.4(a) and 7.5(a).

Finally, an agent which uses recursive depth d = 2, i.e. assuming the other agents to
avoid collisions, is still able to avoid collisions with moving obstacles which are oblivi-
ous to other agents, as shown in Figure 7.6.

Overtaking

In this situation, two agents are moving in the same direction, agent A behind agent B,
whereby agent A desires a much higher velocity than agent B. This creates a conflict
that the two agents have to solve.

Figure 7.7 shows the result when agent A uses recursive depth 1 and agent B uses recur-
sive depth 2. Agent B does not leave its optimal path as much as agent A does, which
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is what one expects for this chosen pair of depths.

When agent A uses recursive depth 3 instead of 1, its downward velocity component
is slightly larger than in the previous experiment, which is visible when comparing its
relative utilities and selected velocities at step 10 between Figure 7.7 and Figure 7.8. Fur-
thermore, agent B starts to move horizontally again earlier when agent A uses depth 3,
which can be seen when comparing Figure 7.7(a) to Figure 7.8(a). All this indicates that
in the latter experiment agent A passes by faster than in the former experiment.

In the overtaking examples until now, we had a slow agent B using recursive depth 2.
Now we will consider examples where the fast agent A uses depth 2 and encounters a
slow agent B at depth 1 or 3.

We start with agent B using depth 1. Having seen the experiments above, we would
expect the fast agent at depth 2 to force the slow agent to leave its optimal path. This
is not the case, as can be seen in Figure 7.9. The reason for this is simple: agent B
cannot move fast enough out of agent A’s path. In the first step, agent B chooses an
avoiding velocity while agent A moves straight ahead, as depicted in Figure 7.9(b). In
the next step, agent B has moved a little downward, and therefore agent A starts to move
upward, allowing agent A a faster motion in its desired direction (i.e. to the right).

If agent B uses recursive depth 3, it assumes that agent A expects it to avoid collisions,
and therefore appears to start moving out of the way more quickly. As a result, the
vertical component of agent A’s velocity is smaller in this case, which can be seen when
comparing the relative utility (which is centered at the current velocity) of agent A for
step 10 in both cases. Anyhow, the avoidance maneuver of agent B is more prominent
when using depth 3 than when using depth 1, which becomes obvious when comparing
Figures 7.9(a) and 7.10(a).

Finally we will consider overtaking examples where both agents use the same recursive
depth. We will start with both agents using depth d = 2, see Figure 7.11. Due to
the symmetry, none of the agents considers deviating from its optimum path, and the
initially slower agent B accelerates to avoid a collision.

But if both agents use recursive depth d = 3, the conflict is solved in a more intelligent
way. In a first step, both agents deviate in the same direction in order to avoid the pend-
ing collision, see Figure 7.12. In the next step, agent B still chooses a velocity with a
small deviating component, while agent A decides to move horizontally. This asymme-
try is amplified during the subsequent steps, such that both agents avoid the collision
cooperatively.

A possible explanation for the different observed behaviours can be seen in Figure 7.12(b).
At odd depths, the relative utility functions are bimodal, and at even depths, they are
unimodal. Thereby, in the case of even depths, the velocities might be “stabilized” in
the center, whereas in the case of odd depths, there might be no “stable” velocities until
each object has decided where to move.
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Figure 7.8: Overtaking, object A at depth 3 versus object B at depth 2
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Figure 7.10: Overtaking, object A at depth 2 versus object B at depth 3
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Figure 7.11: Overtaking, object A at depth 2 versus object B at depth 2
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Figure 7.12: Overtaking, object A at depth 3 versus object B at depth 3



154 Chapter 7. Reflective Navigation

Static Obstacle

The last set of experiments which we will consider two agents moving in opposite di-
rections with an encounter close to a static obstacle.

In the first example of this type, agent A uses depth 2 and agent B uses depth 1, see
Figure 7.13. Having seen the examples above, the result of this experiment is not sur-
prising, since agent A using depth 2 appears to be able to exploit the collision avoiding
behavior of agent B and succeeds in moving on the shorter path, closer to the static
obstacle C.

Similarly, when agent B uses depth d = 3 instead of depth d = 1, agent A succeeds in
moving on the shorter path, too, see Figure 7.14.

Finally, Figure 7.15 demonstrates that the “defensive” behavior of agent B at depth 3
allows agent A to move on its desired path even when using depth 1.

Note that in no case the agents decided to pass by obstacle C on different sides. The rea-
son is the way a velocity with maximum relative utility is selected. A simple approach
is to accept the first velocity with that property, when (discrete) velocities are considered
in their lexical order, resulting in the observed velocity selection. Another approach is
to select one velocity from the optimal (discrete) velocities by random, which will at
least remove artifacts which stem from some velocities being systematically preferred
to others.

7.5 Discussion

To navigate a mobile robot Bi using depth-d recursive probabilistic velocity obstacles,
we repeatedly choose a velocity vi maximizing RU(d)

i . For d = 0, we get a behavior that
only obeys the robot’s utility functionUi and its dynamic capabilitiesDi, but completely
ignores other obstacles. For d = 1, we get the plain probabilistic velocity obstacle be-
havior as described in Section 7.2. Something new happens for d > 1, when the robot
starts modeling the obstacles as perceptive and decision making. Agents navigating at
depth d = 2 appear to move more aggressively than agents navigating at depths d = 1

or d = 3, whereby especially depth d = 3 appears to result in rather defensive behav-
iors, and may become an an attractive option for considerate service robots.

Finding good models of another agent’s dynamic capabilities Rj and utility functionsUj

is a problem beyond the scope of this thesis. When the action to be taken is considered
the first step of a longer sequence, computing the utility function may involve motion
planning, or even game-tree search, if reactions of other objects are taken into account.
Due to the recursive nature of the approach, such a procedure would have to be applied
for any object at any recursive level. This renders such enhancements of utility functions
rather infeasible, since already single applications of such procedures are computation-
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Figure 7.13: Static obstacle C, object A at depth 2 versus object B at depth 1
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Figure 7.15: Static obstacle C, object A at depth 1 versus object B at depth 3
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ally expensive.

The role of the weights α, β, and γ of the three factors of relative utility is largely
unexplored. Some first experiments indicated that they in fact do influence the re-
sults, but not in a ground-breaking manner. This might change when the uncertainty
about shapes and velocities is increased. During the experiments presented above,
weights α = β = γ = 1 were used. Note that each agent might use a different set
of weights.

Oscillations may appear in models for successive depths. Reconsider the collision course
example with both agents facing each other. Assume at depth d, both objects avoid a
collision by deviating to the left or to the right. Then at depth d+ 1, none of the objects
will perform an avoidance maneuver, since each object’s depth-d model of the other
object predicts that other object to avoid the collision. Subsequently, in depth d+2, both
objects will perform collision avoidance maneuvers again, an so on.

When driving a car on a highway, reasoning similar to the presented approach arises.
Cars in front have to be avoided, and when they are already driving on the rightmost
lane, they expect faster cars from behind to perform all maneuvers necessary for over-
taking without further collaboration. That is, cars from behind are to be modeled with
depth 1 or depth 3, and cars in front are to be modeled with depth 0 or depth 2. But the
situation is different for emergency cars from behind. They expect any other car to give
way to them, and therefore need to be modeled with depth 2.

In the context of pedestrian traffic, a rather different aspect of the presented recursive
modeling scheme is that it can serve as a basis for an approach to reasoning about the
objects in the environment. One could compare the observed motion of the objects to the
motion that was predicted by recursive modeling, possibly discovering relationships
among the objects. An example for such a relationship is deliberate obstruction, when
one object obtrusively refrains from collision avoidance.

Finally, more accurate models of the interaction partners are required for effectively gen-
erating unexpected actions. If µj[Ui] “differs notably” from Ui, but µi[µj[Ui]] is “rather
close” to µj[Ui], agent i can detect the difference between µi[µj[Ui]] and Ui, and exploit
this situation by doing something that is unexpected, and therefore unobstructed by
agent j.

7.5.1 Conclusion

An approach to coordinated motion in dynamic environments has been presented, which
reflects the peculiarities of natural, populated environments: obstacles are not only
moving, but also perceiving and making decisions based on their perception. This per-
ception and decision making of the intelligent obstacles is taken into account, i.e. it is
modeled and integrated into the robot’s own decision making.
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The approach can be seen as a twofold extension of the velocity obstacle framework.
Firstly, object velocities and shapes may be known and processed with respect to some
uncertainty (by means of a probabilistic extension). Secondly, the perception and de-
cision making of other objects is modeled and included in the own decision making
process (by means of a recursive extension).





Chapter 8

Conclusion

Recently robot technology and applications are leaving the domain of factory automa-
tion and spread to our everyday environments, as for example offices, supermarkets,
and homes. Today, customers can even buy robotic lawn mowers (Husqvarna AB;
Friendly Robotics Ltd.) or vacuum cleaners (Electrolux, 2002; iRobot, 2002) for their
personal use. Thus human-machine interaction, especially human-robot interaction is
becoming a more and more important topic.

This thesis addressed several problems which arise when mobile robots are operat-
ing among humans, for example providing fetch-and-carry, cleaning, or inspection ser-
vices in public environments like train stations, airports, or even pedestrian areas. For
some problems, new solutions have been proposed, whereas new problems haven been
opened elsewhere.

8.1 Perception in Dynamic Environments

A basic requirement for a mobile robot operating in populated environments is a robust
perception of obstacles and their motion. We devised an approach which uses scans
from a laser range finder to detect objects, and generates object matchings between suc-
cessive scans using network optimization algorithms. The benefit of using globally op-
timal matchings is an increased robustness with respect to clutter by smaller objects.
Thereby, the proposed method served as a solid basis for the approaches presented in
subsequent chapters.

Other sensors besides the laser range finder where considered in brief only, and fusion
of data from different sensors has not been considered at all. This may serve as a starting
point for future research, since the cost measure used in the data association step for
object tracking can be easily extended to incorporate information from other sensors
(e.g. computer vision), too.
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8.2 Navigation and Motion Coordination

Robot motion planning is a wide field of research with numerous existing approaches.
Here we did not come up with another new approach, but decided to use a promising
existing method based on velocity obstacles. This method has been introduced on a for-
mal basis, and an adaptation to commonly used vehicle kinematics has been proposed.

Furthermore, since the output of the chosen approach is a set of collision-free velocities,
a mobile robot behavior for cooperative motion coordination with a human is easily
created by an appropriate selection rule for the effective velocity.

Future work in this area might include a better kino-dynamic adaptation, for exam-
ple aiming at a fusion of the dynamic window approach (which obeys kino-dynamic
constraints) and velocity obstacles (incorporating moving obstacles). Considering co-
operative motion coordination, better models of the motion of the guide (including his
angular velocity when in circular motion) and intentions (goal positions or intermediate
goal positions likes doors or points of interest) can be expected to improve the perfor-
mance of the robot behavior.

8.3 Situation Assessment

For mobile service robots to be widely accepted when operated among humans, they
should display at least basic capabilities of situation awareness, which enables them
to deliver high performance of service without becoming disregardful with respect to
humans. Here, we presented a taxonomy of situations which we substantiated by ob-
served human behavior, and a survey of related work in that area has been given. Un-
fortunately we were not able to deal with the full potential complexity of situations in
populated environments, and therefore only a simple approach to the detection of delib-
erate obstructions of a mobile robot has been proposed. A lot of future research remains
to be done here, and a reasonable point to start from might be to try to transfer one or
two approaches from other domains like action recognition or opponent modeling to
the context of interactive robots.

Another type of situation assessment is more closely related to failure detection. Here,
we presented an approach to determine the similarity of paths in the presence of ob-
stacles, using a metric on the set of path homotopy classes. Prospective applications
of such abstract distance measures include the selection and refinement of cooperative
motion coordination behaviors as well as failure detection for such behaviors in case the
guide gets lost or the quality of the coordination becomes insufficient.
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8.4 Reflective Navigation

A final contribution of this thesis is an approach to reflective navigation, where the robot
puts itself into the position of the obstacles, reasons about their goals and future veloci-
ties, and uses its insight from that reflective reasoning for its own motion decision. This
scheme can be applied recursively, resulting in different types of behavior depending
on the depth of cascade reasoning. The proposed approach has been evaluated in a
simulated environment only, but appears to be a promising starting point for future re-
search, for example addressing the acquisition of accurate models of other agents’ goals
and capabilities.
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