
The standard brain of Drosophila
melanogaster and its automatic

segmentation

Dissertation zur Erlangung des
naturwissenschaftlichen Doktorgrades

der Bayerischen Julius-Maximilians-Universität Würzburg

vorgelegt von

Johannes Schindelin

Eingereicht am: .

Mitglieder der Promotionskommission:
Vorsitzender: .
Gutachter: .
Gutachter: .

Tag des Promotionskolloquiums: .

Doktorurkunde ausgehändigt am: .

The standard brain of Drosophila melanogaster

and its automatic segmentation

J. E. Schindelin
Johannes.Schindelin@biozentrum.uni-wuerzburg.de

Lehrstuhl für Genetik und Neurobiologie, Biozentrum,
Universität Würzburg,

Am Hubland, 97074 Würzburg, Germany

Abstract

In this thesis, I introduce the Virtual Brain Protocol, which facilitates applica-
tions of the Standard Brain of Drosophila melanogaster. By providing reliable and
extensible tools for the handling of neuroanatomical data, this protocol simplifies
and organizes the recurring tasks involved in these applications. It is demonstrated
that this protocol can also be used to generate average brains, i.e. to combine
recordings of several brains with the same features such that the common features
are emphasized.

One of the most important steps of the Virtual Insect Protocol is the aligning of
newly recorded data sets with the Standard Brain. After presenting methods com-
monly applied in a biological or medical context to align two different recordings, it
is evaluated to what extent this alignment can be automated. To that end, existing
Image Processing techniques are assessed. I demonstrate that these techniques do
not satisfy the requirements needed to guarantee sensible alignments between two
brains. Then, I analyze what needs to be taken into account in order to formulate
an algorithm which satisfies the needs of the Protocol.

In the last chapter, I derive such an algorithm using methods from Informa-
tion Theory, which bases the technique on a solid mathematical foundation. I
show how Bayesian Inference can be applied to enhance the results further. It is
demonstrated that this approach yields good results on very noisy images, detecting
apparent boundaries between structures. The same approach can be extended to
take additional knowledge into account, e.g. the relative position of the anatom-
ical structures and their shape. It is shown how this extension can be utilized to
segment a newly recorded brain automatically.

Zusammenfassung

In dieser Arbeit wird das Virtual Brain Protocol vorgestellt, das die Anwendun-
gen rund um das Standardgehirn von Drosophila melanogaster erleichtert. Durch
das Bereitstellen robuster und erweiterbarer Werkzeuge zum Verarbeiten neuro-
anatomischer Datensätze ermöglicht es ein strukturiertes Abarbeiten der häufig
benötigten Vorgänge im Zusammenhang mit der Arbeit mit dem Standardgehirn.
Neben der Einpassung neuer Daten in das Standardgehirn kann dieses Protokoll
auch dazu verwendet werden, sogenannte Durchschnittshirne zu erstellen; Aufnah-
men mehrerer Hirne mit der gleichen zu zeigenden Eigenschaft können zu einem
neuen Datensatz kombiniert werden, der die gemeinsamen Charakteristika her-
vorhebt.

Einer der wichtigsten Schritte im Virtual Insect Protocol ist die Alignierung
neuer Datensätze auf das Standardgehirn. Nachdem Methoden vorgestellt werden,
die üblicherweise im biologischen oder medizinischen Umfeld angewendet werden,
um Hirne aufeinander zu alignieren, wird evaluiert, inwiefern dieser Prozess au-
tomatisierbar ist. In der Folge werden diverse bildverarbeitende Methoden in dieser
Hinsicht beurteilt. Es wird demonstriert, dass diese Verfahren den Anforderun-
gen sinnvoller Alignierungen von Hirnen nicht genügen. Infolgedessen wird genauer
analysiert, welche Umstände berücksichtigt werden müssen, um einen Algorithmus
zu entwerfen, der diesen Anforderungen genügt.

Im letzten Kapitel wird ein solcher Algorithmus mithilfe von Methoden aus der
Informationstheorie hergeleitet, deren Verwendung das Verfahren auf eine solide
mathematische Basis stellt. Es wird weiterhin gezeigt, wie Bayesische Inferenz
angewendet werden kann, um die Ergebnisse darüber hinaus zu verbessern. Sodann
wird demonstriert, daß dieser Algorithmus in stark verrauschten Bilddaten ohne
zusätzliche Informationen Grenzen zwischen Strukturen erkennen kann, die mit den
sichtbaren Grenzen gut übereinstimmen. Das Verfahren kann erweitert werden,
um zusätzliche Informationen zu berücksichtigen, wie etwa die relative Position
anatomischer Strukturen sowie deren Form. Es wird gezeigt, wie diese Erweiterung
zur automatischen Segmentierung eines Hirnes verwendet werden kann.

Contents

1 Introduction 1
1.1 Overview . 2

1.1.1 Research Goal & Context . 2
1.1.2 Results . 4
1.1.3 Approach . 6

1.2 An apology to the reader . 6
1.3 Dedications . 7

2 Methods 8
2.1 The principle of confocal laser microscopy 8
2.2 The Gal4/UAS system . 8
2.3 The visualization suite Amira . 10
2.4 Uniform coordinates . 11
2.5 Some concepts of Information Theory 12
2.6 A short introduction into Bayesian Inference 13

3 The Virtual Insect Brain protocol 18
3.1 The standard brain of Drosophila melanogaster 18

3.1.1 Registration . 19
3.1.2 The standard brain of Drosophila melanogaster 19
3.1.3 The original set of Amira scripts 21

3.2 The Virtual Insect Brain protocol . 22
3.2.1 Error handling . 23
3.2.2 Automated book keeping of the segmentations 23
3.2.3 Easy configuration and navigation 23
3.2.4 Handling of multi channel data sets 24
3.2.5 Support for different file formats 24
3.2.6 Alternative registration methods 25
3.2.7 A tool to trim brains virtually 25
3.2.8 Logging . 25
3.2.9 Locking . 25
3.2.10 Visualization and comparison of the calculated transformations 26
3.2.11 Dependency checks . 26
3.2.12 Basic plausibility tests . 26
3.2.13 Documentation . 26
3.2.14 Graphical user interface . 27

3.3 Applying the VIB protocol . 28
3.3.1 Typical application of the standard brain 28
3.3.2 Generating average brains . 28
3.3.3 Comparison of registration methods 29

3.4 The need for an automatic segmentation 31
3.4.1 Survey of other frameworks to generate average brains 34

i

3.4.2 Evaluating the segmentation facilities of Amira 35

4 Examining the limits of traditional approaches to automatic seg-
mentation 42
4.1 Classical Image Processing . 42

4.1.1 Edge detection filters . 43
4.1.1.1 Experiments . 43

4.1.2 De-noising . 44
4.1.2.1 Experiments . 45

4.1.3 Blurring . 47
4.1.3.1 Experiments . 48

4.2 Common segmentation techniques 52
4.2.1 Watershed segmentation . 52

4.2.1.1 Experiments . 52
4.2.2 Level-set segmentation . 52

4.2.2.1 Experiments . 53
4.2.3 k-means segmentation . 53

4.2.3.1 Experiments . 55
4.3 Artificial Neural Networks . 55

4.3.1 Feed forward three-layer networks 55
4.3.1.1 Experiments . 57

4.3.2 Sparse coding networks . 58
4.3.2.1 Experiments . 59

4.4 ”Atlas-based” methods . 60
4.4.1 Elastic registration (based on untransformed gray values) . . 60

4.4.1.1 Experiments . 61
4.4.2 3D Differential Operators . 62

4.4.2.1 Discussion of the applicability to confocal recordings
and experiments with 2D images 62

4.4.3 Active Contours (”Snakes”) 64
4.4.3.1 Experiments . 64

4.4.4 Image Understanding . 65
4.4.4.1 Discussion of the applicability to Image Segmentation 65

4.4.5 Gestalt theory . 66
4.4.6 Object detection . 67

4.4.6.1 Discussion . 67
4.5 Summary . 68

5 Information Theory applied to Image Processing 69
5.1 Mutual Information applied as Edge Detection 70

5.1.1 Bayesian Rebinning . 74
5.1.2 Calculating a quality measure 74
5.1.3 Experiments . 75

5.2 Towards automatic segmentation . 77
5.2.1 Using Mutual Information to localize objects 78
5.2.2 Experiments . 79
5.2.3 Future plans: Deformation using thin-plate splines 80

6 Conclusions and Outlook 81

A Bayesian inference of the Mutual Information from experimental
data 82

ii

B The connection between the inferred Mutual Information and the
metric Dpq 86

C Inference of the variance of the Mutual Information 88

D Lebenslauf 90

Bibliography 91

iii

List of Figures

1.1 Volume rendering of an single brain 3
1.2 Volume rendering of an average brain 3
1.3 Segmented neuropiles of a single brain 4
1.4 Automatic segmentation of a neuropil 5

2.1 The principle of confocal laser scanning microscopy 9
2.2 Amira window layout . 10
2.3 Example of minimal description length 13
2.4 Visualization of the entropy . 14

3.1 The standard brain of Drosophila melanogaster 20
3.2 The standard brain custom modules for Amira 22
3.3 Configuration window for the VIB protocol 24
3.4 Dataflow of the VIB protocol . 27
3.5 Comparison of registration techniques of the VIB protocol (part 1) . 30
3.6 Comparison of registration techniques of the VIB protocol (part 2) . 32
3.7 Problems when trying to segment simultaneously from different angles 33
3.8 Several manual segmentations of the same brain 39
3.9 Amira’s Segmentation Editor . 40
3.10 Substructures visible in the medulla and the fanshaped body of Dro-

sophila melanogaster . 41
3.11 Slice showing the ellipsoid and fanshaped body of Drosophila mela-

nogaster . 41

4.1 Denoising algorithms . 46
4.2 Edge Detectors before and after Gaussian blurring 49
4.3 Canny’s edge detector demonstrated 50
4.4 Anisotropic diffusion . 50
4.5 Deriche’s method to approximate the derivative 51
4.6 Deriche based anisotropic diffusion 51
4.7 Watershed segmentation . 53
4.8 Levelset segmentation . 54
4.9 k-means segmentation . 54
4.10 Model of an artificial neural network 56
4.11 Artificial Neural Network classification 57
4.12 Sparse coding . 59
4.13 Elastic registration . 61
4.14 2D differential operators applied to landmark detection 63
4.15 Active contours (Snake) segmentation 65

5.1 Information-theoretic edge detection using the Mutual Information
as measure . 72

5.2 Comparison between histogram difference measures for edge detection 75

iv

5.3 Bayesian rebinning . 76
5.4 The inferred variance of the expectation of the Mutual Information . 77
5.5 Localizing objects . 78

v

Chapter 1

Introduction

The very basis of science is to have a standard, a common ground upon which
to place results. Mathematical studies, for example, always begin by defining the
terms to be used, and then continue by stating interrelations between the objects
described by those terms. Computer science inherits those standards, as do many
areas evolved from mathematical roots, but it also adds new types of standards like
platforms, languages or network protocols.

Fields like biology or theoretical medicine, which are geared towards explaining
results from experiments, also need another type of standard: observations are
inevitably imprecise. Thus, a standard is needed to describe differences which can
be explained by the process by which the data were obtained.

There exists still another kind of standard: if the observed data are ever chang-
ing, but certain aspects remain similar, the standard itself has to be adaptable. For
example, a human body normally has one liver, the purpose of which stays the same
between two people while the exact form and location does not.

This kind of standard is needed when doing research about brains: evolution
being at work, each individual brain has a different shape, but certain areas can be
identified by approximate shape and/or consistency. Certain functions of the brain
were shown to be performed in very specific areas of the brain, like the memory of
shapes or odors. It is important to be able to identify these locations for different
brains; So, a standard to do that was created.

What is such a standard? Geographers, who had a similar problem, namely to
localize regions, invented maps for that purpose. So, by introducing a coordinate
system, a location can be specified consistently by its coordinates. Sometimes it is
easier, or just preferable to refer to a location by name (like cities or rivers), which
is tantamount to stating the coordinates, as long as the same map is used.

The first attempts to define standard brains imitated the geographers’ approach,
interpreting brains as three-dimensional maps (also called atlas), where locations
were named, and identified by arrows pointing to them (see [1, 2, 3]).

However, the geographers’ topic is constant, i.e. there are not many similar
Earths, but it is one and the same. In contrast, when neurobiologists study the
brain, in fact they study many brains of the same species. However a brain is
recorded, deviations due to developmental differences and mechanical constraints
have to be expected. Corresponding regions of those brains are known to look still
similar enough, so that from a brain atlas created by naming landmarks in images of
one specific brain, an anatomist can find the same landmarks in images of another
brain of the same species. Mathematically speaking, the coordinate system of a
brain atlas can not be applied to every brain unalteredly, but has to be adapted
slightly to fit that brain. In this context, the term ”fitting” does not mean ”perfectly
matching”: the details of any two brains are too different for a perfect match.

1

An atlas as a reference to describe locations in the brain is one use of the stan-
dard brain. At the same time it is important to define the method of determining
the mapping of a newly recorded brain onto that atlas. This is usually the same
method used to create the standard brain, which involves recordings of several
brains and then mapping them onto a common template. Irrespective of the partic-
ular algorithm, in so doing the brains are put into a common context, where they
can be compared in a meaningful manner. Subsequently, the mean goodness of fit
can be calculated, which is often understood as an integral part of the standard
brain, because it is one way to measure the expected performance of fitting a newly
recorded brain onto the standard1.

1.1 Overview

1.1.1 Research Goal & Context

The work described here was performed in the Heisenberg laboratory in the context
of the Virtual Neuro Lab project (see [5]). The principal purpose of this project was
to explore and extend the possibilities of computers for neuroanatomical analyses
using confocal microscopy. Several laboratories interested in different aspects of
brains contributed to that project, studying such diverse subjects as the locations
of genetic activity in the brain of Drosophila melanogaster (see section 2.2), or the
efficient visualization of single neurons in 3d data sets of small brains.

As mentioned earlier, in science a standard is necessary to produce repeatable
results. In the context of neuroanatomy, this standard includes the generation of
average brains (see chapter 3). In fig. 1.2, an average brain is visualized by volume
rendering, as compared to a single brain in fig. 1.1. A special case of an average
brain is a standard brain2, that serves as a common reference. Ideally, only one
standard brain exists per species. In some cases, however, several Standard Brains
exist, as is the case with the human brain. If several Standard Brains exist for the
same species, they typically serve as reference in different research contexts.

For Drosophila melanogaster, there is only one Standard Brain, which was in-
troduced by K. Rein in [6]. A part of my work was to implement a software suite
to assist the neuroanatomist with the tasks related to the Standard Brain. The
most typical task is arguably the generation of average brains, which are registered
on the Standard Brain (see section 3.3.1). The main purposes of the software suite
are to relieve the user of repetitive tasks, and to provide methods to analyze the
results.

To generate an average brain, a reliable method is needed to match correspond-
ing locations in two different brains. In [6], a neuroanatomically sensible method
was presented, which was used to generate the Standard Brain of Drosophila mela-
nogaster. The most involved step of this method is the segmentation (the labeling
of neuropiles), which is necessary to obtain a neuroanatomically sensible matching.
In fig. 1.3, some segmented neuropiles of the data set in fig. 1.1 are shown. This
particular method of matching two data sets has proven to be of high value for
anatomical studies.

In [6], brains were segmented manually, which takes a substantial amount of
time: for every second slice of the 3d stack, the outlines of the neuropiles have to
be marked. Since the 3d stacks of Drosophila melanogaster brains typically consist
of 150 − −200 slices of 1024 × 1024 pixels, the segmenter usually spends several

1The need to have a robust standard, i.e. an atlas onto which most recordings can be mapped
well, was recognized and studied in the context of human brain MRI recordings in [4].

2The goodness of fit, which was mentioned earlier, is a byproduct of the average brain process.

2

Figure 1.1: A volume rendering of a single brain.

Figure 1.2: A volume rendering of an average brain.

3

Figure 1.3: Ten segmented neuropiles of the data set shown in fig. 1.1. The
neuropiles are color coded: the optic lobes to the right and left are divided in
the medulla (red), lobula (yellow) and lobula plate (green). From the central brain,
only the mushroom bodies (brown) and the antennal lobes (blue) are shown.

hours on one brain. One of the goals of my work was therefore to automate the
segmentation process.

1.1.2 Results

A software suite – the VIB protocol – has been set up facilitating the common
procedures related to the Standard Brain of Drosophila melanogaster (see chapter
3). These include the mapping of newly recorded brains on the standard brain,
generation of average brains and calculation of statistics of the recorded brains.
The VIB protocol proved to be a helpful tool for these tasks. Furthermore, it can
be easily extended to perform other tasks related to the Standard Brain, such as
registering single neurons into it.

The VIB protocol is in regular use by the Heisenberg laboratory, and in an
ongoing effort, it is being extended to quantify gene expression patterns obtained
from Gal4 lines. There exist several thousands of Gal4 lines. In many cases, these
lines can be associated with single genes. By studying their expression patterns,
changes in the behavior can be linked to genetic activity. Because of the high
variability of the anatomy of the brains, the standardization of expression patterns
is an important application of the VIB protocol.

Since the methods of the VIB protocol are not restricted to the Standard Brain
of Drosophila melanogaster, laboratories studying other species have shown interest
in the VIB protocol. Due to the fact that the protocol does not expect data from a
particular recording method, it is even possible to handle recordings from mammals,
such as MRI recordings from rat brains.

Traditional approaches to image segmentation have been analyzed, to determine
whether they can be used to segment the neuropiles of Drosophila melanogaster
automatically. It turned out that they fail, and can not be enhanced to segment
a brain (see chapter 4). However, some ideas proved to be useful for my further
research.

A new method has been developed, which can segment 2d images by localiz-
ing known shapes (see chapter 5). One such segmentation is shown in fig. 1.4.

4

Figure 1.4: Top: a slice through the data set shown in fig. 1.1. Bottom: The
automatic segmentation of the fanshaped body. Note that the shape (which is not
smooth on purpose to demonstrate that the algorithm can still locate the shape)
was obtained manually from a different data set, and not subject to adjustment.

5

The method as of time of writing only handles rigid 2d shapes (see section 5.2.2).
However, the mathematical principles can be applied to deformable 3d shapes as
well.

1.1.3 Approach

Using the existing visualization suite Amira (see section 2.3), the VIB protocol has
been written in the computer language Tcl. Several methods known from software
engineering, such as dependency checking and logging, have been integrated into a
library of functions. The tasks of the protocol have been implemented using these
functions. Following a few simple rules, the functions can be used to implement
new tasks, which integrate seamlessly into the user interface. The VIB protocol is
described in detail in section 3.2.

The traditional algorithms to segment images have been implemented in Java as
plugins to ImageJ (see [7]), except for the sparse coding algorithm, which includes
code written in C kindly provided by D. Endres. Using the scripting facilities
of ImageJ and the portability of Java, the algorithms were executed in parallel
(on all available computers) with different parameters, so that an evaluation of
the algorithms with near optimal3 parameter settings became feasible, even if the
execution sometimes took substantial amounts of time. From the generated images,
those best demonstrating the specific features of the algorithm are shown in chapter
4.

In section 5.2.2, a novel algorithm based on Information Theory is presented
which can locate a shape in a given slice. It performs well even on recordings
with a high noise level, such as recordings obtained using a confocal laser scanning
microscope (see section 2.1). The result is shown in fig. 1.4. This algorithm
detects 2d shapes, which have to be provided beforehand. In contrast to traditional
approaches to object detection, it does not rely on homogeneous gray values of the
object to be detected, but rather detects changes of texture at the boundaries of the
object. Therefore, it handles recordings from a confocal laser scanning microscope
much better than traditional object detection methods.

In an ongoing effort, this algorithm is enhanced to handle 3d shapes, and to refine
the segmentation by adjusting the shape of the object according to the recorded
data. To reduce distortions, this adjustment is constrained using ideas from the
Active Contours algorithm (see section 4.4.3). Estimating from the results of the
2d algorithm, the 3d algorithm can be expected to segment a brain in less than two
hours on a conventional personal computer.

1.2 An apology to the reader

This work spans several fields of research: Motivated by genetic studies of Drosophila
melanogaster, the presented approaches combine ideas of neurobiology, mathemat-
ics, information theory and the art of programming. Since it is illusory to assume
that each reader is deeply familiar with all of these fields, I decided to explain the
methods and ideas behind them in a manner such that the inclined reader need not
understand everything in detail, or even the terms, yet can follow my reasoning as
to why I preferred some approaches over others.

To make things complicated, each scientific field has invented its own language.
Not only is it sometimes difficult to find the right translation, merely the terms’
interpretations depend heavily on the context, often leading to confusion between
researchers of different areas of expertise. A mathematician, for example, will un-
derstand that a tuple of numbers is meant by the term ”vector”, while the computer

3Optimality was determined by visual expection.

6

scientist believes it stands for a resizable array of items. The geneticist will readily
comprehend that the subject is about a mechanism to transmit genes. Therefore, I
tried to avoid such terms.

Since it is not always possible to express ideas without using special terminology,
this thesis is organized as follows: chapter 3 describes the biological aspects of the
standard brain of Drosophila melanogaster, chapter 4 discusses its aspects from the
angle of computer science, and chapter 5 together with the appendices illustrates
an application of information theory.

1.3 Dedications

I dedicate this work to several people. Not so much because I could not think of
any single person who I want to thank sincerely, but rather because there are so
many. So, here come my dedications in no particular order, and with my sincere
apologies to those I forgot.

I want to dedicate this work to Prof. Martin Heisenberg, who gave me the
opportunity, and ample leeway, to follow up on my ideas to tackle the subject of
this thesis; for introducing me into a part of science I did not know or appreciate
before; for showing me that – even in an adverse environment – it is still possible
to retain one’s own character, not giving in to political games.

To Prof. Frank Puppe, who agreed without hesitation to support my thesis as
second mentor, when it became clear that the work relies as much on computer
science as on biology.

To Dr. Dominik Endres, who introduced me to the world of Information Theory,
patiently explaining and re-explaining time and time again the basic and advanced
concepts thereof, seemingly never tiring of my questions.

To Arnim Jenett, who was the best colleague to spend night and day with,
who taught me by explaining and asking, and who can do miracles with pasta and
tomatoes.

To Conny Grübel, who was always ready to laugh, and always amazed me with
the quality of her preparations.

To Jennifer Benson, a true friend and ”admirer”, who made me laugh and feel
at home.

To Marian Endres, who was there when I needed a friend, who is always good
for an argument, and never backs down, still being the best boss I ever had.

To my parents, for providing me with the highest good there is: an undestroyable
belief in the goodness of humankind, an undying optimism, and being able to laugh
about oneself, which are really only different views of the same quality.

To my sisters and my brother, who are the best siblings there are.
To all acquaintances, friends and relatives, who I did not mention yet, who had

to put up with me, my humor, and my escapades from time to time, who battled
me on a Badminton court, the 8×8 board populated by pawns& friends, or in other
circumstances, who partied, talked, sang and enjoyed silence with me.

And finally, but certainly most sincerely, to Anja Stotz, who never fails to amaze
me with her ésprit, her ability to fix my car or hair, and who is always dragging me
back into reality whenever work threatens to swallow me.

7

Chapter 2

Methods

Traditionally, theses in the context of biology begin by presenting the materials and
methods which were used. However, since some special methods were subject to
my studies, these are not introduced in this chapter, but instead where they are
evaluated.

This chapter is organized in the same way as the whole thesis: first, methods
from biology are discussed, then the mathematical concepts needed for chapter
4. After that, the basics of information theory together with an introduction to
Bayesian Inference are presented as needed in chapter 5. Since Bayesian Inference
is an important, but still too rarely applied, mathematical framework with applica-
tions in biology as well as computer science, it is explained in detail.

2.1 The principle of confocal laser microscopy

A setup for confocal laser microscopy is displayed in fig. 2.1. By moving the focus
of the laser and measuring the signals at certain intervals, the specimen is optically
sliced. The result is a 3D image.

When fluorescence is measured, the error distribution of the signal being recorded
by the light detector (usually a photo multiplying receptor) is a normal distribution.
Furthermore, when recording 3D images, theoretically one should obtain one value
for each coordinate, where in reality the value is measured only at intersections of
a regular grid (and the recorded values are called pixels).

The physical laws give rise to another problem: The confocal principle (see fig.
2.1) means that not only the light detector introduces errors, but also the refraction
and absorption by the recorded specimen itself. The light emitted by the laser
has to pass through optically dense matter, there excites fluorescence of a different
wavelength, which finds its way back through the same matter. Finally, the few
photons which pass through the pinhole are measured by a photon multiplying
detector.

There are means to account for those errors (see e.g. [8]). Since known error
sources are addressed specifically, this process is also called restoration. An impor-
tant class of restorations assumes that the original distortion can be modeled as a
convolution. These restorations are also known as deconvolutions. A good review
about techniques and error estimates is given in [9].

2.2 The Gal4/UAS system

The Gal4 method presented in [10] can be used to visualize expression patterns of
single genes. It works by inserting a specific transposon into an arbitrary genetic

8

Figure 2.1: The principle of confocal laser scanning microscopy: a light source
(laser) emits photons which are focused on one point in space. In our case, this elicits
a fluorescent response, which is reflected by a special mirror, the beam splitter, and
the resulting signal is recorded using a photo multiplier. The beam is focused using
a system of lenses and pinholes with very small apertures. By moving the specimen,
the focal point traverses the whole specimen, resulting in a 3D image. This picture
is reproduced from WikiPedia, the free encyclopedia, under the GFD license.

9

Figure 2.2: The three windows of Amira. Left: visualization window displaying a
volume rendering of a Drosophila brain. Upper right: the work area, Lower right:
the console window

location. This transposon codes for the Gal4 protein. Gal4 is a transcription factor
from yeast, which activates transcription by binding to a specific regulatory sequence
of a gene, the Upstream Activating Sequence (”UAS”). Since wild type Drosophila
melanogaster, i.e. a fly stock whose DNA was not modified by human intervention,
does not contain UAS, the Gal4 has no effect on the living organism. A stock of
flies whose genome contains this Gal4 sequence is called a Gal4 line. A fly stock is
called UAS reporter line, when its DNA contains a genomic sequence for an easily
detectable protein (such as the Green Fluorescent Protein, short GFP) controlled by
UAS. Since the reporter line does not include a gene coding for Gal4, no reporter
protein is synthesized. Only when a Gal4 line is crossed to a reporter line, the
reporter protein is produced at all. It is only synthesized where and when the Gal4
protein is transcribed.

The UAS/Gal4 system may appear overly complicated. However, the separation
between the driver strain and the effector strain allows for a greater flexibility:
By crossing a driver line to different effector lines, the cells expressing Gal4 can
be studied from different angles. For detailed explanations of the method, see
[10, 11, 12].

2.3 The visualization suite Amira

Originally designed for medical data, Amira is a versatile tool for investigating 3D
data. Amira provides tools to rotate and cut huge data sets easily and to visualize
them using different methods, among other manipulations.

As a tool directed at versatility, Amira has a very technical user interface. It
consists of three windows: a visualization window, a work area and a console window

10

(see fig. 2.2).
The visualization window shows a 2D projection of the currently loaded data sets

according to the chosen transformation and visualization mode. The mode is chosen
by creating a visualization module and connecting it to the data set. Examples of
such visualization modules are

• OrthoSlice, which displays a single slice of the 3D stack,

• ProjectionView, which displays cumulative projections parallel to the three
axes, and

• Voltex, which displays a volume rendering: the intensities are interpreted as
gray values as well as optical densities (this mode is shown in fig. 2.2).

Present in the visualization window are a few buttons to modify the display
behavior such as background color or gamma value.

The work area contains the menu, a canvas in which the currently loaded data
sets and other modules are displayed. The data sets are handled as a special case
of a module, and they can be connected to computation or visualization modules,
thus serving as input to the latter. At the bottom of the work area is a canvas
displaying the options of the currently selected modules, if any.

The console window is used to display messages concerning only advanced usage,
and is thus, for the most part, uninteresting to the user. There is one exception,
however: the console window not only shows messages, but a command line prompt.
By using the script language (see below), commands can be executed in that win-
dow.

A very important feature of Amira is its scripting feature: An embedded script
language, Tcl (see [13]), allows a user to write small programs, so-called scripts,
to facilitate repetitive tasks. For example, if one wants to enhance a set of images
equally, such as cropping each image to the same dimensions, then a simple script
containing a loop over the list of images can automate the task. It is also used in
some modules to allow for complex user input in the form of callback functions.

2.4 Uniform coordinates

Linear algebra provides the mathematical framework to describe linear transfor-
mations. These can be represented by a quadratic matrix. If each column vector
has the length 1 and the column vectors are pairwise orthogonal, the corresponding
transformation is called rigid, since it is isogonal and isoscalar.

Linear transformations always map the origin onto itself. Therefore, transla-
tions are not linear transformations. Still, linear algebra can be used to express
translations, by introducing uniform coordinates. A coordinate is transformed into
a uniform coordinate by adding another dimension, whose value is always 1, i.e.

 x
y
z

 7→

x
y
z
1

A linear transformation, followed by a translation, now can be expressed by a

3× 4 matrix by assigning the translation vector to the fourth column: For

~v =

 x
y
z

 , L =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,~t =

 t1
t2
t3

 ,

11

the combined transformation is

 a11 a12 a13 t1
a21 a22 a23 t2
a31 a32 a33 t3

x
y
z
1

 = L~x + ~t

2.5 Some concepts of Information Theory

Information Theory is the mathematical field, which is concerned with measure-
ments of information. It is mostly agnostic as to what type of information is being
related to (e.g. size or gender), but instead measures the variability of the data.
Another way to look at information theory is to ask the question: given certain a
priori knowledge about a certain subject: How many Yes/No questions have to be
answered before the subject is fully described? By counting the average number of
questions necessary to achieve that goal, the information can be quantified.

Arguably, the most important quantity in information theory is called the Mu-
tual Information between two random variables. It is a quantification of the term
”statistical dependence”: if two quantities are statistically independent, the Mutual
Information between them is zero, otherwise it is positive. As an example, let’s look
at a neuro-anatomist who is segmenting a fly brain. Given the knowledge about the
brain anatomy, if she already knows where the optical lobes and mushroom bodies
are, then she will find the antennal lobes quickly: the Mutual Information between
these locations is greater than zero.

The formula to calculate the Mutual Information between the quantities X and
Y is

I(X;Y) = H(X;Y)−H(X)−H(Y) (2.1)

where X;Y means the quantity obtained by pairing X and Y , and H denotes
the entropy1

H(X) = −
∑

x

P (X = x) log2 P (X = x) (2.2)

where the sum is carried out over all possible values x of the quantity X.
The Mutual Information and the entropy are measured in bit2, just like the unit

used to measure amounts of data in computer files. Indeed, when a text is optimally
coded in a computer file using a (prior) letter distribution, the average amount of
bits per letter is the entropy of the letter distribution. In fig. 2.3, an optimal code
for a simple example is illustrated.

To understand what this could mean in the context of neuroanatomy, let’s use
the example from before. When encoding the center coordinates3 of the antennal
lobe, and the center coordinates of the optical lobes and mushroom bodies are
known, certainly one needs fewer bits than if the other coordinates are not known:

1Since only the distribution is needed to calculate the entropy, the entropy can be interpreted
as a function which takes distributions as its arguments. However, it is common practice to refer
to an ”entropy of a quantity”.

2Some scientists prefer the natural logarithm over the dual logarithm. In this case, the unit is
called nats.

3In this context, it is not important which definition of center coordinates is used. However,
in this thesis, the center coordinates of a neuropil always denote the coordinates of the center of
gravity when all voxels are treated as equally heavy, i.e. the average coordinate.

12

Figure 2.3: Given a probability distribution, the items A, B and C are assigned
binary codes, such that the length of a coded message is minimal (for example,
ACBA is encoded as 011100): the average length per coded letter is 0.5 ·1+0.25 ·
2 + 0.25 · 2 = 1.5 bits, the entropy (see 2.2) of the probability distribution.

There are not only fewer possible locations of the antennal lobe, also some of these
locations are much more likely than others. The exact difference – provided that
the coding is optimal in information-theoretical terms – is the Mutual Information
between the center of the antennal lobe on one hand, and the other centers on the
other.

The lowest possible Mutual Information between two quantities is 0. In this case,
nothing can be said about one of the two quantities when only knowing the value of
the other, i.e. the quantities are statistically independent. The Mutual Information
is maximal when one of the quantities is a function of the other. This happens, for
example, when calculating the Mutual Information between one quantity and itself,
and the result is the entropy (see eq. 2.2). When a joint probability distribution
P (X;Y) of two quantities X, Y is given, the probabilities P (X) =

∑
y P (X; y) and

P (Y) =
∑

x P (x;Y) can be calculated. These distributions are called marginal
distributions, and their entropies accordingly marginal entropies.

The entropy of the gray value distribution is illustrated in fig. 2.4. In this figure,
at each coordinate the entropy in a neighborhood is displayed using a color code.
As can be seen, highly variable textures are presented by high entropies.

Sometimes one reads the term Normalized Mutual Information: The Mutual
Information I(X;Y) can not be greater than the minimum of the marginal entropies
min{H(X),H(Y)}. Therefore, a (weak) upper bound of the Mutual Information is
given by H(X)+H(Y)

2 . The Normalized Mutual Information is nothing else than the
Mutual Information divided by this upper bound.

2.6 A short introduction into Bayesian Inference

A common problem addressed by probability theory is classification. The question
one aspires to answer is: How likely do these data come from a particular class4? In
other words, given the data, calculate the conditional probability that the observed
data are from a certain class out of a (usually small) set of classes.

In most cases, it is difficult or not possible at all to calculate this probability
directly. Instead, the opposite direction is easier: to estimate or calculate the
probability of the data given the class membership. The Bayes’ theorem (see [14])
permits the reversal of this direction by a simple division:

4Strictly speaking: How likely were the data generated by a process which is described by the
class-conditional probability distribution.

13

Figure 2.4: Around each pixel of the original image (top), a gray value histogram of
a circular neighborhood is created, and its entropy visualized (bottom; blue denotes
low entropy and red high entropy).

P (C|D) =
P (D|C)P (C)

P (D)
, (2.3)

where D is the tuple of the observed data, C the class membership, and P (D|C)
means the conditional probability of the observed data given the class membership5.

As for the probability of the observed data, note that P (D) can be calculated
by a sum:

P (D) =
∑
Ci

P (D|Ci)P (Ci), (2.4)

where the sum runs over all6 possible classes Ci (P (D) is a marginal distribution,
see section 2.5). This means that one really only needs the class probabilities and

5In many works about Bayesian inference, it is argued that there is no such thing as an un-
conditional probability. For example, the recording of a sample always depends on the setup, the
equipment being used, and of course the observer. Thus, in a strict mathematical sense, I would
have to write P (D|E), where E means ”everything else”. For the sake of clarity, I refrain from
that tradition, and humbly request that the reader keep that fact in mind.

6For classification tasks, it is assumed that no two classes overlap, and that the union of all
classes makes up the total probability space.

14

the conditional probabilities of the observed data to infer the desired value, the
namely conditional class probability.

Let’s look at an example application of Bayes’ theorem. To make it simpler, I do
not yet use quantities like ”data” or ”class membership”. Assume that a medical
test for a certain malady has a reliability of 99%, i.e. the result of the test (be
that ”ill” or ”well”) is correct in 99 out of 100 cases. Assume further, that 0.1%
of the population, which is to be tested, actually is infected by this malady. The
somewhat surprising result of Bayesian inference tells us that a person, who was
labeled ”ill” by that test (denoted by positive), is likely in the best of health:

P (ill|positive) =
P (positive|ill)P (ill)

P (positive)

=
P (positive|ill)P (ill)

P (positive|ill)P (ill) + P (positive|well)P (well)

=
0.99 · 0.001

0.99 · 0.001 + 0.01 · 0.999
≈ 0.09

In other words, if that test (which has a reliability of 99%!) says that a person
is ill, the probability is actually about 91% that this person is not ill!

In the context of Bayesian classification, the quantities are ”data” and ”class
membership”, and the probabilities are interpreted as ”degrees of belief”.

Seemingly, Bayes’ theorem is not just a reversal of conditional probabilities,
because it needs more than just ”the other direction”: What are the probabilities
of the class membership? In the absence of further information, one should assume
that all classes are equally likely, but often more information is available about the
classes7. In Bayesian terminology, this probability is called the prior probability.

The strength of Bayesian inference is its sound mathematical basis: It can be
shown that trying to fulfill just five desiderata (see [15]), which match common
sense very well, leads to Bayesian inference as the only valid method for plausible
reasoning. Every other method fulfilling these desiderata is equivalent to Bayesian
inference.

It suggests itself to extend the concept of Bayesian inference: Instead of inferring
just the conditional probabilities, one can infer expectations of a scalar quantity
E (such as the entropy), by weighting the values with the inferred conditional
probabilities. In the following, I refer to this procedure as the ”inference of E”8.
In other words: By averaging E(C) weighted by P (C|D), one obtains the inferred
expectation of E given the evidence D.

As an example, let’s assume we have a coin which is being tossed, and we do
not know the probability assigned to the outcomes ”head” and ”tail”. Suppose that
all probabilities between 0 and 1 are a priori equally likely for the event ”head”,
i.e. we have no bias before observing the first coin toss9. Let’s call this probability
q. Since the probability for ”tail” is totally defined by q, namely 1 − q, the true
distribution10 can be parameterized by q.

7In the context of segmentation (see section 3.1.2), the classes are the neuropiles, and this
information is provided by the standard brain: from the set of brains used to create the standard
brain, one can easily estimate these probabilities at each coordinate.

8Strictly speaking, it is still the ”inference of the expectation of the quantity E”. However,
since one can not infer E (but only a probability distribution or density thereof), the expression
is unambiguous. Think of it as a kind of short hand.

9Note that I assign a probability density to a probability. This breaks tradition with the classical
probability theory, where probabilities or probability densities are only assigned to events (out-
comes of experiments). In the context of Bayesian inference, it is common to attach probabilities
to statements or values, which are more properly interpreted as degrees of belief, or plausibility.

10The term ”true distribution” is debatable. As mentioned earlier, in the context of Bayesian

15

Now, let’s infer the parameter q: E(q) = q. To apply Bayesian inference, we
need some evidence, so let’s toss the coin N times and record the outcomes, writing
k for the number of heads. The conditional probability P (D|q) is calculated by(
N
k

)
qk(1− q)N−k.
Since the parameter q is continuous, and the probability density for q is constant,

we have to calculate

< E(q) > =
∫ 1

0

E(q)p(q|D)dq

=
∫ 1

0

E(q)
P (D|q)p(q)∫ 1

0
P (D|q)p(q)dq

dq

=
∫ 1

0

q

(
N
k

)
qk(1− q)N−k∫ 1

0

(
N
k

)
qk(1− q)N−kdq

dq (2.5)

Note that by partial integration, for N − k > 0 it follows that

∫ 1

0

(
N

k

)
qk(1− q)N−kdq =

[(
N

k

)
qk+1

k + 1
(1− q)N−k

]1
0

−

−
∫ 1

0

(
N

k

)
qk+1

k + 1
(−1)(N − k)(1− q)N−k−1dq

= 0 +
∫ 1

0

(
N

k + 1

)
qk+1(1− q)N−(k+1)dq

= ...

=
∫ 1

0

(
N

N

)
qNdq

=
1

N + 1
(2.6)

Continuing 2.5, one obtains

< E(q) > =
∫ 1

0

q

(
N
k

)
qk(1− q)N−k

1
N+1

dq

= (N + 1)
∫ 1

0

(
N

k

)
qk+1(1− q)N−kdq

= (N + 1)

(
N
k

)(
N+1
k+1

) ∫ 1

0

(
N + 1
k + 1

)
qk+1(1− q)N+1−(k+1)dq

which, once again using 2.6, becomes:

< E(q) > = (N + 1)

(
N
k

)(
N+1
k+1

) 1
N + 2

inference it is popular to think of all probabilities as conditional. The more information is available,
the better the outcome can be estimated. For example, the outcome of a coin toss can be calculated
exactly when knowing enough physical parameters like the applied force, the weight of the coin,
the direction, etc. However hard I tried, I could not come up with a better term than ”true
distribution”. In the following, this term means the theoretical distribution when repeating the
same experiment over and over again, and assuming that the same prior information about the
outcome is available at each trial. In the case of a gray value distribution from confocal microscopy:
The ”true distribution” of the gray value is the limit, which would be reached if we were to record
the gray value at the same coordinate of the same specimen infinitely often.

16

=
(N + 1)N !(k + 1)!(N − k)!
k!(N − k)!(N + 1)!(N + 2)

=
k + 1
N + 2

In the limit N → ∞ (where k → qN), this result coincides with the näıve
estimate E(q) ≈ k

N . However, the inferred q tells us that we should not trust
extreme values of k, i.e. where k is near zero or N : If k < 1

2N , then k+1
N+2 > k

N , and
vice versa, meaning that the estimate q ≈ k

N should always be corrected towards 1
2 .

In other words, one should always be cautious when things look extreme!

17

Chapter 3

The Virtual Insect Brain
protocol

The generation of a standard brain typically involves these steps: A set of brains
is recorded, a template (usually the most typical of the brains) is picked and the
other brains are fit1 on the template, and then an average is calculated. The result
– called average brain – is the analogy to a map in geography.

To populate the standard brain, features – such as anatomic structures – are
marked in the standard brain. This is normally accomplished by marking these
structures in individual brains, and then using the same method as before to fit the
individual brains on the standard brain, and thereby the marks.

The averaging of several brains is necessary to factor out deviations of single
brains. If just one brain were chosen, it would be uncertain if a certain feature is
characteristic of that species in general, or just a peculiarity of the chosen brain.
This averaging process is therefore not only useful for the generation of a standard
brain, but for neuroanatomical studies in general. In that line of thought, the
standard brain can be interpreted as a special case of an average brain.

In this chapter, the ideas used to generate the human standard brain and the
standard brain of Drosophila melanogaster are presented, setting the historical con-
text for the Virtual Insect Brain protocol, which is subsequently described in detail.
Example applications of this protocol and the motivation for the next chapters con-
clude the chapter.

3.1 The standard brain of Drosophila melanogaster

Before generating a standard brain, it is sensible to study earlier endeavors towards
that end. One of the first applications of computers to the task of creating a
standard brain was presented by Dr. Jean Talairach and Dr. Pierre Tournoux in
[16]. They introduced a coordinate system to identify locations in the human brain.
By transforming this coordinate system to fit a newly recorded brain, a location
can be referenced relative to the standard brain.

Marking distinctive features (commissures and extrema of the cortex), which
can be found in most human brains, the transformation of the coordinate system
can easily be computed. Since [16], several promising computational methods have
come to existence which ease the burden of marking up the feature points manually
(see [17]).

1As mentioned in chapter 1, such a fit is necessarily imprecise, since no two brains match
perfectly.

18

For studies on Drosophila melanogaster, a similar general strategy was applied
by [6, 18]. Like in [16], the average of a set of brains has been chosen as the
standard brain. Since the Drosophila brain’s neuropiles and the human cortex differ
significantly in shape, the outlines of the neuropiles were used as features instead
of certain point landmarks.

Since the optical resolution of MRI (the method applied in [16] to record the
brains) is too coarse to visualize the small structures visible in insect brain record-
ings, such structures are averaged out in MR images. This averaging process leads
to more or less three classes of intensities. Background, gray and white matter are
easily recognizable, and algorithms using only the intensity to classify the piyels are
quite successful. However, it proved impossible to use the same algorithms to mark
the features in the brain of Drosophila melanogaster.

3.1.1 Registration

The method to fit two brains is to obtain a mapping between them. In mathematical
terms, such a mapping is a transformation which maps a coordinate from one brain
to the corresponding coordinate in the other brain.The process of finding such a
mapping is called registration, a term made popular by Ashburner and Friston (see
[19]).

The registration methods come in two flavors: rigid and non-rigid. Rigid regis-
trations allow only rigid transformations, i.e. the transformation preserves angles
and size. These transformations can be represented by a rotation followed by a
translation.

Since any two brains are different, rigid registrations can not optimally map
each landmark of one brain to the same landmark of the other brain. Therefore,
non-rigid registrations were introduced (see e.g. sections 3.1.2 and 4.4.1). Since the
generated mappings are not linear, they are often also referred to as warpings. It
should be noted that even non-rigid registrations can not cancel out all differences
between two brains.

Unintended distortions are a big problem with non-rigid registration methods:
without a proper mathematical model of what constitutes a valid mapping, it seems
that partially rigid registrations (as used in [6], see section 3.1.2) are superior to any
other method. This will be seen when applying elastic transformations (see section
4.4.1), which – lacking proper constraints – warp every location equally well – or
equally inadequately. However, if some coordinate which is outside of the brain is
wildly displaced, it does not matter as much as if a very fine structure is misplaced
by the same margin. Furthermore, comparisons between warped and unwarped
neuropiles bear a questionable relevance.

The registration is arguably the most important part of the generation of an
average brain (see also [20]).

3.1.2 The standard brain of Drosophila melanogaster

In [6], the standard brain of Drosophila melanogaster was generated from 28 brains.
Sixteen neuropiles were labeled in each data set by hand. Manual labeling works
like this: in every slice, the outlines of the neuropiles are marked, and the computer
labels the enclosed coordinates accordingly. Since the outlines separate the neu-
ropiles from the background, this marking job is called segmentation. Throughout
this thesis, the terms labeling and segmentation are used as if they denoted the
same task, because it is computationally easy to transform the result from one to
the result of the other.

Obviously, segmentation is a very tedious job. Without losing much precision,
every second slice can be interpolated by the enclosing slices, but still the time

19

Figure 3.1: The standard brain of Drosophila melanogaster from [6]. Left: After
mapping each brain of a set of 28, the average intensity is shown. Right: Using
the same mapping, the probability is shown that on that particular coordinate, a
neuropil is present (red denotes 100%, black 0%).

needed for only one brain easily surpasses a few hours.
After labeling the neuropiles, a template was picked, and the other brains were

registered to that template. Then, the average intensity was calculated. To evaluate
the quality of the registration, a so-called probability map was calculated from
the labelings by counting the number of the brains agreeing on the label at each
coordinate. These results are displayed in fig. 3.1.

The registration method chosen in [6] uses the labelings of the neuropiles. Each
neuropil was separately aligned rigidly. Between the neuropiles, the mapping was
obtained by solving a modified heat diffusion equation iteratively2. In this manner,
it is assured that the neuropiles are mapped rigidly, thus avoiding distortions which
do not make anatomical sense (such as eliminating unstained areas when they are
anatomically relevant).

The same approach was also chosen by [21], where an atlas of the honey-bee’s
antennal lobe was presented. This lobe has distinctive bulge-like structures, referred
to as glomeruli, playing a role when the bee classifies odors. These glomeruli were
labeled according to their location, and the labels were then overlaid on an image
of an antennal lobe. In this context, one does not need to specify their boundaries
explicitly, because the edges between the glomeruli are clearly visible. This is usually
not the case when treating whole insect brains.

A slightly different approach to generate a standard brain was chosen by [22] to
create a standard brain of the honeybee: First, the transformation was calculated
using the gray values instead of marked anatomical structures, and second, the
standard brain was not chosen out of the 20 recorded brains. Instead, a standard
brain was computed by iteratively adjusting each brain of the set to more closely
match the average of these brains, and after two iterations over the complete set
of 20 brains, they were averaged3. This approach has the advantage that it is less
biased towards one particular brain (the template), however, as will be illustrated
in section 4.4.1, the transformation not necessarily keeps anatomical structures
intact. The latter problem was overcome by carefully adjusting the transformation
algorithm until the resulting standard brain no longer showed obviously unnatural
structures. As with the methods for the human brain, the difference of scale4 made
it difficult to use the same technique on Drosophila melanogaster brains.

2The gray values are treated as denoting temperature at two different points in time, and the
force to establish the heat flow is minimized.

3While the original plan was to iterate until all transformed brains were identical, in practice
it proved to wash out too much detail.

4The bee brains were scanned using confocal laser microscopy at a resolution of 3.8µm×3.8µm×
8µm.

20

3.1.3 The original set of Amira scripts

The tasks for creating the standard brain in [6] were implemented as a set of Amira
scripts that can be downloaded from http://www.amiravis.com/vib/. These scripts
are meant to be called in a certain order:

1. down-sample the data sets

2. calculate a few statistics from the segmentations

3. calculate the mappings

4. calculate the average brain

5. calculate the average labelings

These scripts expose a user interface in Amira via the module interface, i.e.
they are visualized in the work area like the other modules. In order to have a
user interface, each script has to follow some relatively weak guide lines, such as a
special header, and an interface emulating object oriented methods. Since a script
following these rules is presented as a module in Amira, it is also referred to as
script module5.

To configure these scripts, i.e. specify the data sets to work on, one has to edit
a text file and then run the scripts in the correct order. The scripts are loaded just
like images; Amira recognizes them as scripts and executes them.

These scripts expect a set of 3D stacks containing one channel of 8-bit intensities,
and a corresponding set of labelings. Both gray values and the labelings have to be
in Amira’s own file format. It is very important that the neuropil list be identical
for all labelings, because these scripts do not check if they are (if the neuropil lists
are not identical these scripts will not hesitate to generate a wrong mapping).

The many restrictions, together with a general lack of error handling routines
and documentation reduce the usability of these scripts for other laboratories. In
all, the scripts were built for the purpose of creating a standard brain, not for
working with it. For instance, when studying gene expression patterns, the data
sets need to hold an additional channel, which is not supported by the scripts.

In the course of a joint project6, the developers of Amira, Indeed 3D, designed
two custom extensions implementing mapping functions (see fig. 3.2):

• AverageBrain is a module to calculate the mean intensities of a set of brains.
The transformations to map those brains onto the standard brain can be
specified in the options of the module. AverageBrain only works with linear
transformations (including isotropic changes of size) and translation. These
transformations are specified as either a uniform matrix (if the transformation
is the same for each data set), or a Tcl procedure which returns a uniform
matrix for each data set.

This module is also able to compute a probability map of a set of labelings:
When labeled neuropiles are mapped onto a standard, there is no sensible
way to calculate an average. Instead, at each coordinate, the agreement of
the brain labels is shown, i.e. if all data sets agree on one label at a certain
coordinate, the value of the probability map at that coordinate is 100%. This
is used to calculate a goodness of fit, which – as mentioned earlier – is an
important part of a standard brain.

5Amira shows the different module types in different colors: Data modules are displayed in
green, compute modules in red, and script modules in blue.

6”Virtual Brain supported by Bundesministerium für Bildung und Forschung

21

Figure 3.2: The two custom Amira modules created for the VIB protocol. The
respective options are shown in the lower part of the work area.

• DiffusionInterpol2. This module computes the non-rigid mapping explained
in section 3.1.2. The input are two brain recordings, their respective neuropil
labelings and transformations for each single neuropil. The input form can be
seen in fig. 3.2.

Amira provides a facility (”Save Network”) to save a Tcl script, which reinstates
the current work area when executed, i.e. all data and script modules as seen in the
work area are loaded, the other modules are created and the connections between
them established. This feature is important, because Amira’s memory handling
often leads to memory fragmentation and program terminations.

3.2 The Virtual Insect Brain protocol

As part of this thesis, I revised the scripts of [6] and made them robust, expandable
and usable for a wider range of applications. It turned out that these scripts could
not be operated without a profound knowledge of Amira and its scripting language.

22

Moreover, without proper documentation it proved difficult to overcome certain
inflexibilities of the original framework.

Since the resulting set of scripts can be used to create a standard brain, to map
several newly recorded brains onto the existing standard brain, or to generate an
average brain, it was given the name Virtual Insect Brain protocol7 (or, in short,
VIB protocol). It is capable of handling multiple channels and working on different
platforms, and can be downloaded from http://www.neurofly.de. Examples of the
application of the VIB protocol will be presented in 3.3.3.

In the following, I describe my enhancements.

3.2.1 Error handling

Lacking error handling, the original scripts could return a result which did not
make sense, like when half of the data sets were transformed onto another standard
brain than the other half. Therefore, error handling and simple consistency checks
were introduced, such as checking the files for zero length: due to the size of the
data, it can easily happen that the hard disk is full, and in this case new files are
truncated. Unfortunately, Amira’s save function does not report that. Furthermore,
the neuropiles are referred to by name all the time, and not by index, avoiding a
common source of problems with the original scripts.

3.2.2 Automated book keeping of the segmentations

When segmenting several brains, it is unlikely one wants to label different neu-
ropiles, or have different colors for the segmented neuropiles. The ”label wizard”
was introduced to automate this process: When labeling the data sets, it automat-
ically loads the labels for the chosen template, and makes sure that the neuropil
list of the new data set matches that of the template. If no template (the specimen
to standardize on) was chosen yet, the first in the list is automatically selected.
Of course, if that recording seems inadequate, any other can be assigned that role.
When a data set is labeled, a click of a button saves that labeling and loads the
next data set to be labeled. If the template’s labels are modified, it is possible that
a new neuropil was added to the list, and consequently this script marks all brains
with older label data to be labeled again (retaining the original labeling). If at a
later stage, i.e. after the label wizard, a data set has older labels than the template,
a warning is issued and a button is shown which takes the user directly to the label
wizard with that data set loaded.

3.2.3 Easy configuration and navigation

Also, the way to configure the scripts, namely by editing a file with a very specific
syntax, was prone to errors. Therefore, a script was created to handle configuration
(see fig. 3.3). Simultaneously, a navigation infrastructure was added to make it
more obvious which step to take next, thus eliminating errors stemming from not
yet calculated values. The navigation presents itself in the form of three buttons:
previous script, next script and config. As seen in fig. 3.3, navigation buttons
are hidden when they would not make sense, i.e. when the configuration module
is loaded, there is no previous script to run. Depending on the chosen options,
some scripts – like the label wizard – are not needed. The navigation buttons
automatically skip these scripts.

7As is typical in biology, a certain list of instructions to be followed in order to reproduce an
experiment is called protocol

23

Figure 3.3: The configuration module. All 3D stacks have to be dropped into the
images/ directory. After the module is loaded, it shows the available file extensions,
and allows to specify so called File groups, containing the data sets which are
subsequently registered and averaged. A template (such as the standard from [6]),
can be selected as register target. When all options are set, the user proceeds by
clicking on next script.

3.2.4 Handling of multi channel data sets

As the most important application at hand was the comparison of gene expression
patterns, consistent handling of multiple channels was implemented. A side prod-
uct is a much improved record keeping which allows to add new files or modify
existing ones, and not having to perform all calculations again, but instead only
those calculations affected by the modifications. Another consequence is the ability
to continue easily the calculations after a crash (which happens quite often when
working with huge data sets).

3.2.5 Support for different file formats

Amira includes support to read several file formats, notably 3D TIFF, DICOM and
raw formats. Which file format is used, usually depends on the context: medical
3D stacks are typically stored in DICOM format, and recordings of a microscope
in TIFF. Internally, Amira uses a format called Amira Mesh, which is very simple,
thus facilitating efficient usage, but it lacks sophisticated features like compression
or multi-channel support8. While the original set of scripts worked only on Amira
Meshes, the VIB protocol supports virtually all file formats Amira can read.

8In later versions, the Amira Mesh format can contain several channels, but Amira does not
encourage use of this feature.

24

3.2.6 Alternative registration methods

Newer versions of Amira include a module, named Registration9, which can be used
to align two 3D stacks using their gray values. It calculates an affine transforma-
tion10 minimizing a distance measure between the two stacks. When applying this
registration to recordings of two brains, provided that the same neuropiles have the
same gray levels in both data sets, according to experience, this module achieves a
very good alignment. If neuropiles are labeled, the alignment of two brains can be
calculated also by using the surfaces of these neuropiles. An experimental module
was used in [22] to achieve a non-rigid registration, and other methods will follow.
Therefore, the VIB protocol lets the user choose the registration method.

3.2.7 A tool to trim brains virtually

When a registration method is chosen which relies solely on the gray values, and
thus does not need segmentation of the individual brains, it is important that the
data sets are ”cleaned up”: The process of extracting the brains from the fly heads
is a job which requires dexterity, and even then not all superfluous tissues can be
removed from the brain without inflicting damage to it.This is not important when
the brain is labeled, because an anatomist recognizes these unwanted signals and
ignores them. Not so the Registration module, which regards all signals equally
important and tries to match them, even if one specimen shows them and the other
does not.

Therefore these signals have to be removed from the 3D stacks, when working
with mappings calculated from the gray values. Amira offers a module to cut out
artifacts, i.e. replace them with black voxels (”volume pixels”). While this tool
is versatile, it is also complicated to operate. The VIB protocol includes a script
module, called VIBscissors, which permits the user to easily take the common
action, i.e. cut out certain regions when looking at a volume rendering of the
current 3D stack. VIBscissors works transparently, i.e. an expert Amira user can
still decide to take advantage of the more sophisticated features of the underlying
Amira module.

3.2.8 Logging

A logging facility was built into the scripts, which helps with the book keeping of
the different runs of the scripts: when unexpected things happen, the logs help to
reproduce, or sometimes even understand right away, the problem. Also, after un-
expected program failures it is possible that the last written file contains incomplete
data. The logging facilitates finding that file in order to recompute it.

3.2.9 Locking

For each data set, the mapping to the template has to be calculated. As the data
sets are independent of each other, they can be easily processed in parallel. An
option in the configuration enables locking of the data sets. The processing time
can therefore be reduced by using multiple computers on a shared network drive.
If this option is set, the logging automatically records the host name with each
message for improved book keeping.

9This naming is somewhat unfortunate, since the module only implements a particular regis-
tration method.

10An affine transformation is a linear transformation on the uniform coordinates, thus allowing
rotations, scalings and translations.

25

3.2.10 Visualization and comparison of the calculated trans-
formations

The result of the standard brain process sometimes shows artifacts, which almost
certainly originate from a single misaligned data set. In other cases, a certain fea-
ture invites investigation of a single brain in comparison to the template. So, a
script module was added which facilitates just that: from the current list of spec-
imens the user can choose which one to display together with the template. The
visualization method can be easily switched between the two most common modes:
a single slice, or volume rendering. It is still possible to deviate from this path
by using all functions Amira provides, in order to display the data differently. If
multiple registrations were carried out, by specifying another template or registra-
tion method, this module lets the user choose which one should be investigated.
The data set is then warped accordingly, and the appropriate template data set is
automatically loaded and displayed.

3.2.11 Dependency checks

When calculating the average of a set of brains, it could easily happen with the orig-
inal scripts that a few data sets went unlabeled, and only after running the script,
which can easily take a few hours, was the mistake detected. The VIB protocol of-
fers a mechanism known as dependency checking to discover such mistakes earlier.
The idea is that certain meta data depend on other meta data (for example, the
transformation onto the standard brain depends on the labeling of the neuropiles),
and when the latter changes, the former has to be recalculated. Meta data in this
context are stored in files, and these files show modification times. In order to check
on a dependency, it suffices to ensure that both files exist, and that the modification
times maintain the correct order11. The dependency checking also guarantees that
after adding new data sets, or after a crash, only the necessary calculations are
carried out.

3.2.12 Basic plausibility tests

Some mistakes are not as easy to realize, such as misnaming neuropiles. Therefore, a
function was included to check for outliers, i.e. labelings which contain neuropil sizes
or positions that substantially deviate from the average. By calling that function,
it is thus not only possible to find labelings with wrongly named neuropiles, but
also to find brains with unusual neuropil dimensions12.

3.2.13 Documentation

The VIB protocol comes with a proper documentation, which describes the options
and the typical usage. Also, a developer’s introduction was written, describing how
to extend the functionality, which is not only possible with the new version of the
scripts, but easy: the integration of a feature like VIBscissors is a matter of less
than an hour.

11The same principle forms the basis of Unix’ make utility (see [23], [24]), and is imitated by
every major Integrated Development Environment.

12If, for example, the left medulla of one brain shows a high deviation from the average, then it
is likely that by some accident the brain was deformed prior to recording it. Also, some specimens
show unusual anatomical features, and should therefore not be used to demonstrate a common
feature.

26

VIBcenter
Transform

VIBlabelDiffusion
Transformation

VIBdiffusion

VIBresample

VIBsplit
Channels

VIBscissors

VIBaverage
Grey

labelWizard

VIBresample
Labels

VIBtissue
Statistics

VIBaverage
Labels

VIBmerge
AverageLabels

MultiChannelField

Visualisation

Visualisation

Pattern Reference

LabelField

Pattern Reference

ProbabilityMaps

Statistics

VectorField

Transformation

Pattern Reference

Pattern Reference

LabelField

resample

multichannel

raw data

resample +
+

+

-

-

-

Transformation

Transformation

VIBvolumetry
BigVolTable

VolAvTable

ProbabilityMaps

Figure 3.4: The complete data flow of the enhanced set of scripts (A. Jenett, un-
published; with kind permission).

3.2.14 Graphical user interface

The graphical user interface (”GUI”) was enhanced as much as possible within the
framework of Amira. Critical errors result in meaningful popup messages. Repet-
itive tasks are accessible by simply pushing a button. If the user has to choose
between several options, a sensible default is preselected. The data flow can be
followed easily by using an intuitive navigation framework. Overall, most of the
complexity is hidden from the user.

However, Amira was never intended to be enhanced in points of the usability, but
rather in technical features such as new or enhanced algorithms for Image Processing
and visualization. The user interface exposed by all modules is derived from a basic
model which appeals mostly to programmers, because of its structured, modular
nature. On the one hand, this means that Amira exposes a neutral, consistent
user interface, but on the other it means also that it is hard to use Amira for
regular users, i.e. users who are unfamiliar with programming. In any case, the
VIB protocol can be exercised easily using the navigation buttons, even if the data
flow is complicated (see fig. 3.4). While the original set of scripts allowed only for
the execution of a fixed list of tasks, the options in the VIB protocol permit a more
elaborate organization.

27

3.3 Applying the VIB protocol

3.3.1 Typical application of the standard brain

In order to take advantage of genetics in studying how the brain of Drosophila mela-
nogaster works, geneticists have developed the Gal4/UAS method (see section 2.2).
With a confocal laser scanning microscope (see section 2.1), the resulting brains can
be recorded.

Instead of visualizing gene expression patterns by genetic manipulation, it is also
possible to stain the brains with antibodies, which recognize certain gene products.
Some expression patterns show the synaptic active regions of the brain, i.e. the
neuropiles. In the case of Drosophila melanogaster, the antibody proposed for the
standard brain is nc82. This antibody recognizes the Drosophila homologue of
vertebrate active zone protein ERC/CAST at the pre-synaptic terminals ([25]).

By ”double-staining”, i.e. by first recording the activity of a gene as made vis-
ible by the Gal4/UAS method, and subsequently recording the stained neuropiles,
the locations and levels of activity of a certain gene can be found. For consistency
reasons, it is important to apply this process to the brains of several flies, and con-
solidate the results into a standard, because biological systems are highly variable.
This has been done by M. Mader in [26], who used an early version of the VIB
protocol, in order to study expression patterns in the mushroom body, a neuropil
of Drosophila melanogaster which plays an important role in learning and memory.
The results of this work were subsequently used to understand which genes are
involved in the process of forming and retrieving memory.

If many fly lines13 are available, it becomes important to classify the lines by
their expression pattern. A good method to describe these patterns in a meaningful
manner is by using a tuple of intensities, which describes how much signal is present
in the different neuropiles. This eases the pre-selection for certain applications. The
VIB protocol is the tool of choice to create such catalogs of genetic lines.

3.3.2 Generating average brains

Whenever a new gene or expression pattern is investigated, the pattern has to be
mapped to a standard.This can be the standard brain from [6], or an average brain
using another template can be generated using the VIB protocol. Since individual
irregularities are averaged out, this procedure allows to study the stable parts of
the expression pattern.

Many mutants of Drosophila melanogaster affect brain morphology. For these
it is reasonable to generate an average brain in order to put the results of several
studies about the same mutant into context. If whole neuropiles are lacking from the
mutant, the mapping to the standard brain would lead to an undesirable distortion.

To compare expression patterns or mutants, the corresponding average brains
can be compared to the standard brain of [6]. As mentioned earlier, this is normally
done by an appropriate mapping function, which transforms the coordinates from
one brain to the anatomically corresponding coordinates in the standard brain.

If that transformation can be inverted, locations in the standard brain can be
mapped onto the newly recorded data sets. In this manner, corresponding sites can
be identified in two different brains by using the standard brain. This is important,
as it allows comparison of results from different laboratories.

In order to calculate an appropriate mapping, a function must be found first,
which measures the quality of a particular mapping, i.e. how well the mapping
performs. This measure should be maximized by the mapping. However, it is
difficult at best to formalize what is intuitively clear, namely how good a mapping

13A stock or strain or line is a small population of flies with a genetic identity.

28

is. For example, sometimes the antibodies used to stain the neuropiles do not diffuse
well into certain regions. In this case, there are regions with weak signals in one data
set, which correspond to regions with a strong signal in the reference. Evidently,
measures relying solely of the correspondence on gray values cannot give the desired
results in these cases.

From studies of human perception (see [27, 28, 29, 30, 31]), one is tempted to use
similarity of shapes as a quality measure. The problem here is that perceived simi-
larity of shapes relies on knowledge which is not easily expressed in mathematical
terms: An obvious choice for a similarity measure of shapes is the mean Euclidean
distance of points of the two shapes. However, using this measure, a triangle would
be more similar to a circle than to a square, which can be perceived as wrong (for
example, if the number of vertexes is important).

Another disadvantage of basing the similarity measure on shapes is that the data
are normally given as gray values, not shapes. The problem of calculating shapes
from gray values will be treated in detail in section 4.4.5.

When deciding upon a quality measure of the mapping between two data sets,
not only the agreement with intuition has to be taken into account, but also how
fast an algorithm calculating that measure runs on the computer, and how much
memory is needed. For all these reasons there exist several different, nevertheless
appropriate mappings.

3.3.3 Comparison of registration methods

As described in section 3.2.6, the VIB protocol was extended to support more
than one registration method. I used this facility to integrate and study several
registration methods. Since one of the intended applications of the VIB protocol
is the standardization of Gal4 lines (see section 2.2), I applied the protocol using
these registration methods to such a Gal4 line. Several fly brains from that strain
were recorded with a confocal microscope. The Gal4 signal and the nc82 signal were
recorded in two different channels. Using the protocol, the brains were registered
using only the nc82 channel. Applying the result of the registrations, the average
signals of both channels were calculated. The results of this study are presented in
the following, as well as in figures 3.5 and 3.6.

• The rigid center transformation was the only possible choice in the original
set of scripts. It is calculated by optimizing the parameters of a rigid transfor-
mation, by minimizing the distances of the centers of the labeled neuropiles.
Since the optic lobes’ location is relatively variable (as compared to the cen-
tral lobes) due to the preparation process, rigid transformations suffer from
the lack of precision at the individual neuropiles’ boundaries.

• The rigid surface transformation uses the surfaces of the labeled neuropiles in-
stead of the centers to determine a rigid transformation. Somewhat surprising,
the results are in general worse than those from the rigid center transforma-
tion. In my opinion, this stems from the higher variability of the neuropiles’
surfaces as compared to that of their centers.

• The rigid gray value transformation uses Amira’s Registration module, which
correlates the gray values. This method does not depend on segmentation of
the brain, and would therefore be the preferred choice of registration. How-
ever, as can be seen in fig. 3.6, the resulting goodness-of-fit is not even near
the one from the rigid center transformation. Furthermore, instead of labeling
the neuropiles, one has to exercise great care when preparing and recording
the specimen, and clean up the 3D stack by blackening voxels which show
tracheae or other unwanted structures. The effect when not cleaning up the

29

Figure 3.5: Example application of the VIB protocol with comparisons of the reg-
istration techniques. For the purpose of this demonstration, only 6 brains were
registered and averaged (only the left half of a slice shown). This number is usually
too low to produce reliable results, but was chosen on purpose, to demonstrate the
qualitative differences of the registrations. The large structure to the left is the
optic lobe, the small circle to the right is the peduncle. In the left column, the
goodness-of-fit is displayed, i.e. how many brains agree on the neuropil at each
coordinate, where blue means no neuropil, and red means that all brains agree. In
the middle column, the Gal4 channel is shown. The right column displays the nc82
channel, i.e. the information the registrations are based on. From top to bottom,
the rows show: the template onto which the other brains where registered, rigid
center transformation and rigid surface transformation

30

stacks first is illustrated in the figure: one brain is totally misaligned (the light
blue spot in the upper right corner is the single optic lobe signal), which leads
to the optic lobe of that brain not matching with the others, so that there is
nowhere a 100% correspondence of the brains.

• The non-rigid label diffusion transformation is the algorithm used in [6], which
transforms the labeled neuropiles rigidly, and interpolates between them. The
per-neuropil transformations are obtained by using the center transformation
as an initial value, and then maximizing the overlap of the volume of that
particular neuropil in both 3D stacks. This method is by far the slowest of
those presented.

• The non-rigid Landmark based warping transforms all centers of the neuropiles
to the corresponding centers of the template brain, and interpolates for all
other coordinates. This algorithm works very fast, and yields better results
than the center transformation. However, it is prone to mapping errors due
to the lack of anatomically motivated constraints.

The label diffusion approach turned out to give the most accurate results, as can
be seen when looking at the optic lobe: only the label diffusion transformation leaves
the lobula plate recognizable (the small structure at the right of the optic lobe).
Note that the variability of the neuropiles is much smaller than the variability of
the surrounding tissue. Therefore, the neuropiles in the average are about as clearly
visible as the neuropiles in a single brain, while the rest is ”washed out”.

3.4 The need for an automatic segmentation

The VIB protocol made work with the standard brain easier and more efficient.
Even so, there remain problems with the labeling process: It needs too much time,
and is not reproducible, since it depends on the operator.

For [6], all labelings had to be done by one and the same person, as early exper-
iments had shown a significant deviation between segmentations done by different
persons (in fact, it is inevitable that even the same person can not produce exactly
the same segmentation twice). These deviations are not errors, they are just con-
sequences of the uncertainties in the data. Being manual recordings, they never
are as precise as one wishes, and thus it is often difficult to decide if a pixel at the
border of a neuropil belongs to that neuropil, or is outside of it. This fact together
with time constraints does not allow for totally consistent labelings.

A less obvious problem is shown in fig. 3.7: Usually, the data set is segmented
only in xy slices. Experience showed that this is more efficient than using also
yz and xz slices. The reason for this is that whenever the segmented regions are
looked at from another direction, there seem to arise inconsistencies. As soon as
they are corrected, the segmentation appears to be wrong when seen from another
angle. This can be continued ad infinitum, leading to too much time spent adjusting
apparent mistakes. The root of this problem lies partly in the noisy nature of the
recordings, and partly in the outlines of the neuropiles not being as smooth as one
likes to segment them (see for example the lower left slice in fig. 3.7). The segmenter
therefore has to compromise between accuracy and time. One could now ask why
an automated procedure is expected to be more accurate, but this is the wrong
question. In order to find a mapping between two brains – which is the final goal
of the VIB protocol, after all – it is not important to segment the neuropiles in a
very accurate fashion. Instead, it is sufficient to label identifyable structures both
reliably and consistently. These structures need not necessarily coincide with the

31

Figure 3.6: The comparison of fig. 3.5 continued. From top to bottom: rigid gray
value transformation using Amira’s Registration module, non-rigid label diffusion
transformation and non-rigid Landmark based warping. Note that the last two
transformations are non-rigid, i.e. they warp the data, so that no reliable volumet-
rical and only limited anatomical studies are possible on the averaged brain. Still,
they can match the single neuropiles better than the other methods. Since the best
agreement on the neuropiles is obtained by using the label diffusion transformation,
this method was chosen as the registration mechanism preselected by default in the
VIB protocol.

32

Figure 3.7: The medulla is shown in 3D (upper left), along with three orthogonal
cuts through the data set, where the outline of the medulla is shown in red. The
segmentation was done using only the xy slices (upper right), and therefore the
other two cuts show irregular outlines. Because of the high noise level, it is difficult
to take the yz and xz slices into account. Note for example the lower left peak in
the xz slice. The corresponding outlines in the xy slices look correct, though.

neuropiles. If the algorithm yields similar results in two different data sets, a good
mapping between them can be calculated.

In addition to said problems, other laboratories can not fall back to the same
person who did the original labelings for the standard brain. However, in order
to fit results into the standard brain, the standard brain and the newly recorded
brains have to be labeled in the same way. This problem can be solved to a certain
extent by relabeling the standard brain, but it bears the risk of introducing an
inconsistency from the bias of the segmenter.

It is more desirable to have an automatic procedure, which may have a certain
bias, but reliably so. All we want is a consistent mapping: possibly unintended
deviations in the labeling would be present not only in the newly labeled data
set, but also in the standard brain (which is just re-labeled using the automatic
procedure). Therefore, the mapping becomes reproducible, and thus robust.

It should be noted that manual labelings are variable, too. If one anatomist
labels the same data set twice, differences can be noted. An automated segmentation
should therefore be rated by comparing it with multiple manual labelings produced
by the same operator. Using the VIB protocol with 10 labelings of the same brain,
the standard deviations were calculated, and are shown in fig. 3.8. In this setting,

33

only a few neuropiles were labeled, in particular, only half of the neuropiles which
are present both left and right in the brain were segmented. Note that there is
a remarkable difference between the results when using registration or not: In one
case, it is not assumed that the underlying 3D stacks are identical, and a registration
is performed on the labels. The irregularities in the registration are implied by
the procedure, and would normally be invisible to the observer. In this special
case, though, the optimal mapping is known, since the data sets are identical (but
not their labelings). However, one should keep in mind that the same effects are
present when registering different brains. This experiment thus gives not only rise
to a sensible assessment of automatic procedures, but also cautions against overly
broad expectations of the performance of the protocol. Similar studies were done in
[32, 33] for MRI images, but they were only used to assess the quality of different
working methods.

An automatic segmentation procedure, disposing of volatile errors, would itself
become a standard.

3.4.1 Survey of other frameworks to generate average brains

The VIB protocol is not the only implementation of a framework facilitating the
work with a standard brain. Especially in medicine, it is important to compare and
standardize brains.

To evaluate if these frameworks can be used to generate average insect brains,
one should first note the differences between human and insect brains in the context
of standardization:

The Talairach system as described in [16] needs 12 rectangular regions to be
marked in order to calculate a piece-wise linear mapping between two different
brains. This approach relies on those regions being very distinctive, so that two
different anatomists can reliably identify them. If they were not easy to locate in
a precise fashion, this method would not produce robust warpings. When trying
to use the same procedure for fly brains, one realizes at once that not only the
structure is different between human brains (whose most distinctive features are the
sulci) and fly brains (which possess structures with more or less smooth surfaces,
i.e. without reliable point landmarks), but also that in the insect brain, the relative
position between different neuropiles is more variable than the form of the neuropiles
themselves. The latter fact is responsible for imprecise mappings when using piece-
wise linear transformations.

I analyzed the applicability of the 4 most known software packages to the task
of generating average insect brains:

• A system to facilitate working with the human brain was presented in [34],
and is called the LONI pipeline. The concept is similar to Amira: work is
done on modules which are connected by arrows. However, there are a few
important differences: the LONI pipeline was created expressly for the pur-
pose of working with brain data, while Amira was intended as an all purpose
visualization software with additional computation facilities. Furthermore, in
LONI the connections between modules have a direction, which is more in-
tuitive. In Amira it can get quite complicated to keep track of the meaning
of the connections: depending on how this connection was established, it can
stand for input or output of a module. Another important distinction is that
LONI is free of cost, while Amira is a commercial product. In addition, LONI
is written in Java, which means that it runs on any platform supported by
Java, such as Windows, Linux, MacIntosh, and most Unix variants. In con-
trast, Amira runs on Windows, Linux and a few selected Unix platforms. All
that said, Amira was chosen for the Drosophila melanogaster VIB protocol,

34

because it was ready to be used at the time, and its developers were ready to
engage in a research project together with a few work groups in the quest for
a common method to create a standard brain.

• Another software package with a similar philosophy is 3D slicer (see [35]),
which is written in C. It is in less wide-spread use than LONI, mostly for
two reasons: it is more difficult to obtain (requires personal approval), and
it is much more complicated to install. Nevertheless, it provides a viable, if
complex user interface to work with brain data, including their visualization
and segmentation. Recently, an automatic segmenter was added ([36]), which
targets MRI brain images.

• In the context of human brain standardization, a lot of research is currently go-
ing on, since ever more precise recordings of invasive and non-invasive electro-
physiology become available. While earlier methods often took the whole
brain into account, it turned out that for neurophysiological studies, the sur-
face of the cortex is much more relevant. Many standardization techniques
therefore target the surface rather than the volume, and consequently the
mappings use surface data. To name a few, the Caret system ([37, 38]), and
the FreeSurfer package ([39, 40]) use this approach. These programs are of
small value to insect brain researchers, because the functional structure of
an insect brain emphasizes volumetric data. Furthermore, the scale of the
recordings complicates the reconstruction of surfaces as a reliable means to
describe the neuropiles (this will be elaborated in section 4.4.5).

The described programs all contain only rudimentary facilities for automated
segmentations, but do provide tools to ease the burden of manual segmentation, thus
introducing semi-automated segmentation14. The idea is to let the anatomist click
on a structure, and then execute a detection algorithm which labels the outlines of
this structure, subject to correction by the human segmenter. With the exception
of Amira, all programs are targeted to MRI or CT images, which explains why
experiments with insect brains, using these programs, mostly fail to please.

3.4.2 Evaluating the segmentation facilities of Amira

In chapter 4, I will describe a whole plethora of algorithms which were designed for
the purpose of segmentation. But first, let us have a look at how things were done
in [6] based on work done in [41, 42], using Amira, and what tools Amira provides
to ease the process of segmentation.

The data sets were manually segmented using Amira’s segmentation editor (see
fig. 3.9 top left). It shows one slice through the stack at a time. Confocal recordings
usually have a higher xy than z resolution, therefore it is common to work on xy
slices. The editor allows to select voxels and assign them to a neuropil. To this end,
it provides the following tools:

• The brush (see fig. 3.9 top right) is well-known from many painting programs
such as Adobe Photo Shop or GIMP: using a circular shape with adjustable
diameter, an operator can paint thick lines with the mouse. A nice feature in
Amira is that you can mark the outline of the structure, then right click in
the middle, and the region inside will be marked, too. It is quite easy to mark
up large structures like the optic lobes with this tool, but not finer structures
like the mushroom bodies’ peduncle.

14Recently, there were advances towards automatic segmentations of MR images, which look
promising for medical applications (see [32]).

35

• The lasso (see fig. 3.9 middle left) is similar to the brush, but it does not
have an adjustable diameter, instead fixing it to one pixel. In contrast to the
brush, this tool automatically produces connected lines (which is important
when moving the mouse very fast). By right clicking the mouse, the marked
line is automatically closed, and the interior is selected. This tool is much more
precise than the brush, but also harder to operate: with the brush, a mistake
can be corrected at once, either painting the missing part, or unpainting the
wrongly labeled area. With the lasso, one needs to complete the curve first,
and add or subtract another selection after that.

An option allows to activate auto tracing, which tries to guess the exact outline
of line segments guided by the gray values. A new line segment can be started
by pressing the mouse button. With brain images obtained by confocal laser
microscopy, this algorithm often fails spectacularly. The grained nature of the
images does not allow for smooth color gradients, a feature the auto tracing
algorithm relies upon.

• The magic wand (see fig. 3.9 middle right) is also called select contiguous
regions in other applications. By moving the mouse into the desired region,
pressing the mouse button down, and then dragging the mouse farther away
from the first position, a growing region is selected by merging pixels according
to their distance in space and color. It became clear after just a few trials that
this tool, if it worked, would speed up the segmentation process dramatically.
It also became painfully evident that this tool does not work at all with brain
images obtained by confocal laser microscopy. The reason is the same as
for the lasso’s auto trace option not working: those images do not contain
particularly smooth color gradients.

As mentioned earlier, these tools operate in the segmentation editor of Amira.
This implies that they work only in two dimensions, because it is not possible to
display a truly three-dimensional image on the screen (at most, a 2D projection
can be viewed, but this would not help the segmentation process)15. As such, the
selected items are always pixels. All the same, a slice has a thickness, and the pixels
are not really two dimensional, but rather small cuboids16. To reflect this, a pixel
with a depth is also referred to as voxel.

Another method to segment is also included in Amira: segmentation by thresh-
old. By specifying a certain gray level, all voxels whose gray level is below that
threshold are assigned to the outside, and all others are assigned inside. The original
idea was that once outside and inside were automatically found, connected regions
could be separated into the neuropiles. Again, like the problem of the magic wand,
the character of the brain images at hand does not permit this method to succeed.

Over the time, Amira, as well as the VIB protocol, evolved. Amira, as of version
3.1, supports these additional segmentation tools:

• The propagation contour (see fig. 3.9 bottom left) is an implementation
of the active contour algorithm, which will be described in detail in 4.4.3. Its
idea and its handling are very similar to the magic wand. Two points make
this tool less valuable in the context of Drosophila melanogaster’s standard
brain, however. It is necessary to pre-calculate certain values depending on
the starting point, which takes substantially more time than the other tools,
and the region growing can not be limited to a certain direction, instead it is

15Notice that Amira supports what it calls a ”4 viewer layout”, displaying a 2D projection of
the selected area, and 3 orthogonal slices through the stack (see fig. 3.7). However, the tools can
only be used on one slice at a time, effectively restriction operations to two dimensions.

16The sides do not necessarily have to have the same length; in fact, confocal recordings rarely
have the same resolution laterally as along the z axis

36

assumed that the texture stays the same along the outlines, which is not the
case for many neuropiles.

• The blow tool (see fig. 3.9 bottom right) is a generalization of the magic
wand. Instead of starting with a single point, a more or less rough outline
has to be provided manually by the operator, and the region growing starts
with this outline. If this concept were combined with a region growing based
on active contours, it would likely be another important tool for the VIB
protocol.

• The wrap tool truly works in 3D: it uses selections of several slices (possi-
bly orthogonal ones), and fits a 3D surface on these data. The underlying
mathematical concept is the optimization of a polynomial function satisfying
a constraint implied by the segmented slices, minimizing the degree of the
polynomial. In theory, this allows the user to segment only a fraction of the
data, ideally using slices in all three orthogonal directions to obtain a smooth
surface fitting the data. In practice, the processing time is very high, and the
implementation in Amira is unstable, leading to program crashes when the
size of the structure to be labeled exceeds a very small threshold. As of the
time of writing, these problems could not be resolved by the developers of
Amira.

It can be seen in fig. 3.9 that the brush and the lasso yield more accurate results
than the other tools. The more sophisticated tools (lasso with auto-tracing, magic
wand, propagation contour and blow tool) are too dependent on local gray value
extrema, and are not able to extrapolate a sensible neuropil boundary. To a certain
extent, this problem can be overcome by smoothing the selections, i.e. fill holes and
fit smooth curves to the outlines. However, it turned out in my experiments that
no set of parameters (for the tools and the smoothing process) works reliably17.
For each choice of parameters, there were a few data sets which could be labeled
well, but more which could not. Apparently, the structure of the staining is not
homogeneous enough, and the stainings of different brains are not similar enough,
for the sophisticated tools to work reliably, even after smoothing the results.

Since the wrap tool does not rely on the gray values, but only on selections fed
to it, it can be viewed as a smoothing tool. While the result is visually pleasing,
often undesired labelings can be found, when looking on slices in which the labeling
was interpolated. Furthermore, I could not test this tool as much as I would have
liked, because Amira tends to crash when using the wrap tool, especially when large
neuropiles are processed. Unfortunately, the labeling of large neuropiles would gain
the most from this tool.

As illustrated above, the tools (brush and lasso) are adequate to segment a 3D
stack of a brain, but the amount of manual work is still substantial. The number
of tools invented for the sole purpose of speeding up the segmentation process,
and their respective success, shows how difficult the problem of automatic or semi-
automatic segmentation is. Another important point to mention is that however
refined these tools became, they never led into a direction making the manual
interaction unnecessary. Indeed, for most of these tools the actual times needed to
operate them are fairly equal, the only difference being the taste of the user.

This is how far it goes without taking into account the anatomical constraints.
As long as the algorithms do not permit the inclusion of knowledge of several seg-
mented brains, they will always fail at the same points. This becomes obvious when

17I limited my tests to one neuropil, the fanshaped body, which is displayed in 3.9. After rigid
alignment to the standard brain, and using the goodness-of-fit, the center of each neuropil can
be estimated reasonably well. Thus one could define a set of parameters for each neuropil and
recording method, and still automate the process.

37

comparing different regions of the brain: some neuropiles are less clearly separated
from each other than the substructures of other neuropiles. As an example, the
substructures of the medulla are almost visible enough to label them (see fig. 3.10),
while the distinction between the ellipsoid body and the fan-shaped body is usually
very difficult (as illustrated in fig. 3.11). In the latter case, it is usually impos-
sible to draw the line between the neuropiles without prior knowledge about the
anatomy. Even then, one often has to take into account the surrounding sections,
i.e. the slices above and beneath the current slice.

38

Figure 3.8: From top to bottom: a slice of the original data set, a probability
map of ten segmentations of the same brain (without registration; red denotes total
congruence of the segmentations, blue means outside), the difference between the
original and the average gray image after mapping was calculated from the labeled
neuropiles and treating the different segmentations as if they were from different
brains (blue means no difference, red is 50 or above, where 256 gray values are
available), and a probability map after registration using the information from the
labelings.

39

Figure 3.9: Top left: The segmentation editor. On the upper left is a neuropil list,
below the tool window, and to the right the image to be segmented. Top right:
Using the brush. Middle left: Using the lasso. Middle right: Using the magic wand.
Bottom left: Using active contours. Bottom right: Using the blow tool.

40

Figure 3.10: Left: a closeup of the medulla. Nicely visible are the dark bands,
which are substructures of the medulla. Right: a closeup of the fanshaped body.
This time, there is a bright band spanning from the left to right.

Figure 3.11: Left: a closeup of the ellipsoid body enclosed in the fanshaped body.
Right: the same closeup, but without the outlinees of the neuropiles. These two
neuropiles are so close that it is often difficult even for experienced neuro-anatomists
to distinguish them.

41

Chapter 4

Examining the limits of
traditional approaches to
automatic segmentation

Quite a number of strategies have been developed which attempt to solve the prob-
lem of segmentation. The common starting point is that the images are treated
as intensity functions of the coordinates, i.e. each coordinate is mapped to a gray
value. Strictly speaking, it is mapped to a feature vector, whether that be a gray
value (1-dimensional), a color (normally represented by a triplet of red, green and
blue), or any other vector. However, the images presented in chapter 3 contain only
gray values1. Therefore, this chapter only discusses algorithms for such images.

The gray values are usually given only for discrete Cartesian coordinates, i.e. an
image is organized into an orthogonal grid of pixels which have equal rectangular
dimensions2.

It is assumed, however, that the image theoretically is a mostly smooth function
of the coordinates, i.e. the derivative of the function is well-defined on the whole
plane with the possible exception of a zero set of coordinates. While many algo-
rithms work by assuming that the pixel value is the exact intensity of the center
of the pixel, this is not so. Rather, the pixel value is the mean intensity of the
pixel’s area. This fact does not matter much if the resolution is fine compared to
the structures one hopes to find. But for images of Drosophila melanogaster, where
some structures of interest have diameters of about 10 to 20 pixels, it is important
to use the precise version.

4.1 Classical Image Processing

As mentioned in the introduction, an image can be looked upon as a function
mapping coordinates onto gray values. In the same manner, a ”derivative” of the
image can be defined: It is a new image of the same dimensions, but each pixel is
mapped to the derivative of the intensity function instead of the intensity, sampled
in the same way as the original image.

1In scientific imaging, a gray value can mean something else than a recorded shade of gray, for
example for radiological images, or images from a confocal laser scanning microscope. In the latter
case, the gray values denote intensities of fluorescence excited by a laser, which are indicative of
the fluophore count at that location.

2There are applications where this is not so: Geographers often work on spherical images where
the pixels do not have uniform dimensions. For purposes of this work, however, it is irrelevant to
treat those cases.

42

Another popular method to process an image is to convolve it: For each pixel, a
square neighborhood is treated as a matrix. The pixel value in the convolved image
is the sum of the component-wise products of the convolution matrix’s entries with
the corresponding pixel values from the original image. Many procedures in Image
Processing are implemented as convolutions, because they are very fast due to their
linear complexity.

The derivative of an image can be approximated by a convolution matrix. The
original data being defined only at discrete locations, the derivative has to be ap-
proximated by differences of pixel values, assuming more or less smooth underlying
functions. A somewhat surprising consequence of this is that such approximations
are anisotropic, i.e. the data are not treated equally in each direction. This stems
from the fact that adjacent pixels’ center points do not have equal distances: Rela-
tive to the grid, horizontal and vertical distances of neighbors are shorter than diag-
onal distances. The approximation of the derivative from a neighborhood therefore
introduces different errors depending on the direction of the gradient.

4.1.1 Edge detection filters

One of the first viable methods to detect outlines was based on the observation that
borders between objects3 (called edges in Image Processing) usually coincide with
a high gray value gradient at that pixel (see [43]). This stems from the fact that
many objects bear a homogeneous gray value, and the gray value differs between
different objects.

By calculating the local maxima of the absolute value of the derivative of the
image, one obtains local edges. Connecting these edges, the outlines of the objects
can be found. Or so the theory goes.

In practice, a lot of prerequisites have to be met for this algorithm to work.
Among others, these are: the object of interest has to have uniform gray value,
the background has to have uniform gray value, these two gray values have to be
substantially different, and the physical process of recording the image has to be
very precise to minimize measurement errors. In industrial applications, for which
the first edge detecting filters were implemented, it is usually possible to adapt the
processes to this end.

Instead of using the first order derivative, the zero-crossings of the second order
derivative can be used. In theory, this yields better results, but it is even less robust
than the first order derivative, because the second derivative is approximated from
the approximated first derivative.

4.1.1.1 Experiments

The edge detecting filters I tested are described in the following. Note that each
filter consists of two convolution matrices, so as to detect edges in perpendicular
directions. The absolute values of the two convolutions are then added, and the
result is shown in the left column of fig. 4.2.

• The Roberts detector is defined by the matrices(
0 −1
1 0

)
and

(
−1 0
0 1

)
In contrast to the filters which are described later, the edges are not located on
the same grid as the gray values. Instead, they are located on a grid which is
translated by half the pixels’ width and height: Since the convolution matrix

3For purposes of edge detection, the outside is also treated as object.

43

is 2 × 2, the corresponding neighborhoods are also 2 × 2. Therefore, the
center of these neighborhoods, which are the coordinates of the approximated
derivatives, do not lie on the lattice points, but in-between.

• The Prewitt detector consists of the matrices −1 −1 −1
0 0 0
1 1 1

 and

 −1 0 1
−1 0 1
−1 0 1

By approximating the derivative in this manner, the data are treated as if the
gray values were constant either horizontally or vertically.

• The Isotropic detector consists of the matrices −1 −
√

2 −1
0 0 0
1

√
2 1

 and

 −1 0 1
−
√

2 0
√

2
−1 0 1

This approach emphasizes the center more than the Prewitt filter.

• The Sobel detector consists of the matrices −1 −2 −1
0 0 0
1 2 1

 and

 −1 0 1
−2 0 2
−1 0 1

The Sobel filter is probably the best known edge detecting filter, because it
has been used by Canny in a more complex edge detection scheme, which will
be described in section 4.1.3.

As is shown in the left column of fig. 4.2, the results are less than pleasing. The
most common reason for these algorithms to fail is described in the next section.

4.1.2 De-noising

One of the most difficult problems since the beginnings of Computational Image
Processing has been the noise: The sensors of the camera, together with physical
constraints, invariably lead to measurement errors. These are visible as speckles
or general inhomogeneity in the image. The trouble is that many algorithms, like
estimating the derivative, are highly susceptible to noise.

So, the next step was the invention of denoising: Based on the neighborhood
of a pixel, which is supposed to have similar intensity and error distribution, an
estimate of the true intensity is calculated. The result is an image which is much
smoother than the original, but still shows the important features. In particular,
the derivative of the result can be estimated much more reliably.

The intrinsic drawback of denoising is that it is often hard to distinguish between
noise and signal. Most algorithms therefore provide a parameter to adjust the
sensitivity. Setting that parameter is always a trade-off between leaving too much
noise and removing details unintentionally.

One such method is also called despeckling: For each pixel, the median4 of
the values from a neighborhood is assigned as the new value. This method was
motivated by two facts: Often, the recording process implicates an error which is

4The median of a set of numbers is determined by first ordering the set, and then taking the
middle value.

44

proportional to, or at least increasing with, the true value. Second, the observed
value can not be smaller than zero. Thus, the error distribution is skewed towards
positive errors. In theory, the true value can be obtained by recording the same
pixel over and over again, and taking the peak of the distribution5. The despeckling
process takes values from the neighborhood instead, thus assuming that the values
are close for near by coordinates.

In practice, it is more robust to take the median of the observed values, rather
than the average. One reason is that the median is less affected by outliers. Further-
more, the median approximates more reliably the mean of a skewed distribution. In
many cases, error distributions are found to be skewed, due to a natural bound on
one side only. For example, the intensity of fluorescence has no theoretical upper
bound, but it can not be less than zero.

Instead of ignoring the spatial relationship, as is done when computing the
median, smooth functions can be fitted to the sampled data (see a review [44]).
Even if this algorithm does not strive for a correction of the underlying error by
modeling that error, but instead approximates the observed data, this approach
has its benefits. The big advantage is that the function to be fitted can be chosen
according to the task. For example, when one wants to compute the gradient of
an image, one will fit a differentiable function. In [45], for example, splines were
used. However, that choice is not always wise: Since splines have a linear second
derivative, albeit being easy to work with, the approximation often misrepresents
complex scenarios. Furthermore, when it comes to edge detection, the principal
problem of such approximations is that edges are discontinuities in the derivative.
If one now chose to fit a smooth function to the observed image, even if there were
visible edges, the fitted function attenuates them.

A related denoising technique is low pass filtering: The signal is transformed
onto a (vector6) base of functions which can be sorted by spatial frequency. Then,
the frequency components, which correspond to higher oscillations, are set to zero,
and the reverse transformation is applied. To apply this theory to images, one has
to find a base to represent the image. Common choices are wavelets, or windowed
sine functions7. The sensitivity of this algorithm can be controlled by the cutoff
frequency. This frequency need not be global, if the base functions are localized. In
the case of wavelets, a viable method to determine the cutoff selectively has been
presented in [46], and a slightly different algorithm in [47].

4.1.2.1 Experiments

I tested three different denoising techniques (see fig. 4.1):

• The despeckling algorithm works by taking the median of a 3×3 neighborhood
of each pixel. Obviously, this algorithm is very fast. Somewhat to my surprise,
it nevertheless produces adequate results.

• The low pass filtering works by applying a fast Fourier transformation on
the image, then setting all factors outside a band (or, in the case of a two-
dimensional image, outside a ring) to zero. The denoised image is obtained
by the inverse transformation on the modified factors. In my experiments
it turned out that a band of 5 to 60 (pronouncing structures with extents
between 5 and 60 pixels) gives good results. Since the Fourier transform is

5This peak is referred to as the modal value in statistics.
6The mathematical term is meant here.
7A windowed function features a finite support, i.e. its values are zero outside a certain interval,

which is called window.

45

Figure 4.1: Experiments with three different denoising algorithms on two different
brains. From top to bottom: original, despeckling, low pass filter using fast Fourier
transformations and wavelet based denoising. The right slice was chosen to demon-
strate that a denoising algorithm which appears to produce good results on one
brain can fail on others and vice versa.

46

not localized8, the gray values change drastically, while the edges of the desired
structures are still visible. However, for the purpose of edge detection, the
difference of the gray values before and after denoising is of little consequence,
since the differences between adjacent gray values are smoothed, rather than
distorted. Thus, the approximations of the derivatives, upon which the edge
detection relies, are straightened out, and not mutilated.

• The wavelet based filtering is similar in approach to the low pass filtering.
Instead of a Fourier transform, a wavelet transformation is applied. Since it is
highly localized, the gray values remain about the same, as one would expect
from a denoising algorithm. The price one has to pay is that the resulting
image is not smooth. Indeed, in my experiments I had to despeckle the image
first, in order to get the result displayed in fig. 4.1. Still, small speckles here
and there can be seen. Furthermore, this algorithm takes the longest time of
the three investigated denoising schemes.

As demonstrated in fig. 4.1, the wavelet based filter succeeds mostly in reducing
the noise, but fails miserably in some cases. The sample shown in the right column
indicates a common staining artifact: Even when handled carefully, sometimes the
staining does not get through the tissue, resulting in darker areas. Still, the low
pass filter appears to cope quite well with that artifact.

Many more strategies and variations have been proposed to remove noise from
images (for a survey, see [48]). However, the edge detection filters from section 4.1.1
need a smooth image, not a denoised one. A more directed approach towards that
goal is presented in the next section.

4.1.3 Blurring

The denoising process in practice often produces artifacts which are much more
visible in the derivative of the image than in the original. However, there is a pro-
cedure which smooths both the image and the derivative of the image, and reduces
the amount of noise: Gaussian blurring. This means that a Gaussian diffusion9 is
applied to the original image, and it works extremely well when the original noise
is normally distributed.

The underlying idea is that the recording process, being a physical process, is
necessarily affected by measurement errors, which obey a Gaussian distribution (see
section 2.1).

In Image Processing applications, a Gaussian blur is often applied to smooth
the data. As discussed before, the gradients calculated from discrete image data,
and the second derivatives even more so, suffer from a high error when applied
to the original data. When blurring before the derivative is calculated, the mean
error is sometimes actually smaller than without blurring, depending on the used
discretization method. Often it is more important to have a smooth gradient than a
precise approximation of the image: The derivatives can be used to optimize certain
functions of the gray values, and in most cases, there are only iterative methods
available to find the optimum. In these cases, using unblurred data to obtain the
derivatives would lead to an unstable algorithm, i.e. it would not converge towards
the global optimum.

Gaussian blurring is used to level out a normally distributed spatial error: As-
sume that each gray value is spatially dispersed according to a normal distribution.

8A transformation is localized if changes in a small area in the original image affect only a small
area in the transformed image.

9A diffusion of an image means to treat the gray values as heat energy, which disperses in a
small number of discrete time steps. It is common to limit this number to 1.

47

Then, the distribution of the likely origins of the gray value at a certain coordinate
is the same normal distribution.

When applying a Gaussian blur, the algorithm has to be provided with the stan-
dard deviation (called σ for historical reasons). Usually, the data used to calculate
the blurred value at a coordinate are taken only from a circle with radius 2σ. A
faster, but less accurate version blurs the image horizontally first (using only a one
dimensional blurring), and vertically after that.

The best known all purpose edge detection algorithm was presented in [49]. It
consists of a Gaussian blurring, the application of a simple convolution like the
Sobel filter (as presented in section 4.1.1), and non-maximum suppression. The
suppression consists of a simple local search, i.e. the value is compared to the
pixel’s neighbors, and set to zero if the neighborhood contains a larger value. In
practice, the pixels are only compared to their 4 immediate neighbors (or 6 when
working on 3D images).

Based on the work of Canny, Deriche in [50] tried to enhance the localization
of the Canny edge detector. It was reasoned that to improve the sharpness of the
filter, the blurring process has to take a larger neighborhood into account. Since the
Gaussian blurring assumes a normally distributed error, which can be disregarded
outside a window four times the standard deviation, it was no longer possible to
treat the error as normally distributed. Therefore, this algorithm assumes a different
distribution. Since the neighborhood no longer can be restricted to a small window,
it was important to implement this filter as a recursive algorithm in order to cut
down the execution time.

As the name suggests, blurring an image washes out the detail. To overcome
this limitation, and still smooth the image, anisotropic smoothing was invented
(see [51]). The idea is to apply a diffusion to the gray values with a locally variable
diffusion factor. Usually, the diffusion factor is proportional to the gradient of the
image. Of course, here surfaces a chicken-egg problem: In order to calculate the
derivative, the image has to be blurred. But to blur it anisotropically, the derivative
is needed. In general, this problem is solved by calculating the derivative after a
Gaussian blur was applied, and exercise the anisotropic smoothing on the original.

4.1.3.1 Experiments

I applied the same edge filters as in section 4.1.1 after applying a Gaussian blur to
the image. The result can be seen in the right column of fig. 4.2. The results are
consistent with the image: If only the gray values are taken into account, there are
many more edges than the desired boundaries of the neuropiles.

Consequently, an application of Canny’s edge detector fails to recognize the
complete optical lobe. The results for different parameters for the Gaussian blurring
are displayed in fig. 4.3.

Anisotropic diffusion can ameliorate the edge detection, because the edges are
still clearly visible after a few iterations. The choice of the diffusion parameter is
very delicate: As demonstrated in fig. 4.4, a low value leaves much of the noise,
while higher values already wash out details like the boundary between the optical
lobes.

The Deriche detector failed in my experiments. The reason is that the approx-
imation of the derivative is too biased to parallels of the axis, as seen in fig. 4.5.
This is the consequence of the recursive nature of the implementation. To overcome
that problem, the scheme could be applied without recursion, thus avoiding the
artifacts. However, the complexity of the algorithm (meaning the execution time)
makes this highly unattractive.

In [52], an enhancement of the anisotropic diffusion was proposed. It uses De-
riche’s method to approximate the derivatives, which was described earlier. As can

48

Figure 4.2: Edge Detectors before (left) and after (right) Gaussian blurring (where
the standard deviation was assumed to be 3, as was found by experimentation).
The rows show from top to bottom: original, Roberts filter, Prewitt filter, Isotropic
filter and Sobel filter. To pronounce the (minor) differences between these filters,
the images are color coded: blue denotes small derivative, and red means large
derivative.

49

Figure 4.3: Application of Canny’s edge detector to the same slice as in fig. 4.2.
The parameter to tinker with is the standard deviation of the Gaussian blur. Top
left: σ = 1.8, right: σ = 2, bottom left: σ = 3, right: σ = 5.

Figure 4.4: Anisotropic diffusion smooths regions with similar gray values, but
still pronounces sharp edges. This algorithm heavily depends on the choice of
parameters. The displayed images were created using a diffusion parameter of 5 for
the top row, and 20 for the lower row. Left: 10 iterations, right: 20 iterations.

50

Figure 4.5: Application of Deriche’s algorithm to approximate the derivative. Top
left: α = 1

12 , right: α = 1
6 , bottom left: α = 1

3 , right: α = 2
3 .

Figure 4.6: Anisotropic diffusion, using Deriche’s algorithm to smooth the image
before calculating the derivatives instead of Gaussian blurring. Left: anisotropic
diffusion applied. Right: Canny edge detection on the diffused image. Bottom
row: before anisotropic diffusion, a moderate Gaussian blur (σ = 3) was applied to
despeckle the image. With Gaussian blur pre-applied, the gray image looks much
better than without, but the detected edges do not differ significantly.

51

be seen in fig. 4.6, the method is promising. However, the choice of the parame-
ters still appears to be a trade off between too many structures being detected in
the optic lobes, and too few structures in the central brain. There is no clear cut
between desired an undesired edges. If the parameter is chosen so as to detect the
edges in the central brain sufficiently well, then the optical lobes are cluttered with
edges inside the neuropiles.

4.2 Common segmentation techniques

The idea leading to edge detection algorithms was that structures should be bounded
by visible edges. Ideally, the set of edges would be the points making up boundaries
of structures, and nothing else. In reality, however, one has to isolate meaningful
edges and chain them together to obtain a segmentation of the image. Instead of
finding edges and then linking them, algorithms were introduced which try to find
closed curves right away. The underlying concept is to use a model which only
allows for closed boundaries, thus obviating the need to worry about linking pieces
together.

4.2.1 Watershed segmentation

The idea behind the Watershed algorithm is that an image, viewed as a mapping
of 2D coordinates onto gray values, can also be interpreted as a mapping of 2D
coordinates onto a third coordinate. The result is a surface embedded in a 3D
space, and it looks more or less like mountains and valleys. The height of a point
on the surface thus is proportional to the brightness of the corresponding pixel.

The same view can be taken of the derivative of the image. In this case, the
ridges correspond to edges, and the valleys to homogeneous regions in the pictures.
Suppose a rain goes down, then the valleys turn into lakes, the lakes join and finally
everything is drained in water. Each point on the surface can be associated with the
lake it joins first, thus obtaining a segmentation. A less graphic, but mathematically
accurate description can be found in [53].

4.2.1.1 Experiments

As displayed in fig. 4.7, most of the boundaries of the neuropiles coincide with
detected boundaries. However, if the contrast is low (see bottom row), that method
fails.

4.2.2 Level-set segmentation

A common operation on images is thresholding: All pixels whose intensity is above
a certain threshold are labeled ”inside”, and the others ”outside”. It is used to
segment a foreground structure, but it relies on the fact that the structures to be
labeled have similar gray values, while the background has a high contrast. So, a
method has to be found to adapt that threshold locally.

To pursue this idea, the concept underlying the watershed algorithm is used:
If an image is treated like a three dimensional surface, it is easy to draw contour
lines, i.e. lines on the surface which have the same height. Structures identified by
one such contour line are called level sets. Thresholding is nothing else than using
the same height for all structures. In contrast to threshold segmentation, level-
set segmentation typically uses different level lines for different structures. The
threshold is adjusted according to some function, which is minimized by the choice
of the threshold.

52

Figure 4.7: Demonstration of the Watershed algorithm. After a vigorous low pass
filter from section 4.1.2 (left image), the segmentation is depicted as black lines
(right image).

A verbose explanation and discussion of enhancements to this algorithm can be
found in [54]. Of main interest for me was the reduction of complexity by using a
Fast Marching Method, an adaption of the venerable Marching Cube method from
[55].

4.2.2.1 Experiments

In [56], a method was introduced to enhance level-set segmentation by a regularizing
component, which in turn is based on the Mumford-Shah cartoon model described in
[57, 58]. Basically, it minimizes the length of the boundary along with the variance
of the gray values inside the segmented region. This model will be explained in
more detail in section 4.4.3. The results of my experiments are shown in fig. 4.8.
As can be seen, the algorithm is highly susceptible to different gray levels in one
and the same neuropil, and the Mumford-Shah regularization appears to restrict
the segmentation to small regions.

4.2.3 k-means segmentation

Given a set of vectors, the idea of k-means clustering is to assign each vector ran-
domly to one of k clusters. After that, the means of these clusters are calculated.
Now, every vector is assigned to the cluster whose mean is closest. The last two
steps are iterated until either the average error (usually the average distance be-
tween the vector and the mean of its cluster) is small enough, or an iteration limit
has been reached. This method of clustering along others has been explained in
[59].

K-means segmentation is nothing else than treating each pixel as a vector con-
sisting of its coordinates and its gray value. In practice, this algorithm works
amazingly well if the structures do not have a texture.

53

Figure 4.8: Demonstration of the levelset segmentation. Given the seed points
(top left), and a despeckled (top right), Gaussian blurred (bottom left) or low pass
filtered (bottom right) image respectively, the results of a levelset segmentation are
shown.

Figure 4.9: Demonstration of the k-means segmentation. After applying a low pass
filter (left), k-means segmentation was executed (right).

54

4.2.3.1 Experiments

As demonstrated in fig. 4.9, the k-means clustering indeed finds clusters. However,
they do not coincide with neuropiles. Rather, the regions of similar gray value
scattered over the whole image are combined into one cluster.

4.3 Artificial Neural Networks

Artificial Neural Networks (ANNs) were first built by Rosenblatt [60], who simu-
lated a single neuron with his Perceptron model. It is a simplistic model, which
nevertheless achieved good results. Set back by devastating criticism by [61] (the
famous XOR problem, which is described later on), it took over a decade until the
concept was redeemed by the work of Rumelhart in [62].

The fundamental idea is that the activation level of one neuron can be repre-
sented by a single number. The neuron is represented by a threshold value: Until
the input to the neuron reaches the threshold, the output is zero. When it is greater,
the output is calculated by subtracting the threshold from the input.

The key point in Rumelhart’s work was to introduce a ”hidden” layer of neurons,
yielding a three layer model: All input neurons connect to all hidden neurons, and
all hidden neurons are connected to all output neurons.To be able to formulate an
efficient learning algorithm, the activation is only propagated in one direction, i.e.
the hidden neurons do not provide input to the input neurons, and neither do they
receive input from the output neurons10. Thus, the output connections from one
layer are the input connections to the next layer.

4.3.1 Feed forward three-layer networks

When ANNs are displayed, the neurons are usually depicted by circles, whose con-
nections have weights attached (see fig. 4.10). Like the biological neuron, artificial
neurons have inbound connections and outbound connections. Continuing the anal-
ogy, the signal from the inbound connections is not mapped linearly: Only when a
certain threshold is reached, the neuron emits a signal, which depends on its input.
It is this feature, which sets the theory of ANNs apart from simple regression anal-
ysis, and it is the reason for the robust behavior of ANNs (regression analysis tends
to suffer from outliers, which is not the case for neural networks). Since an ANN
is meant to calculate values from inputs, there are special ”input” and ”output”
neurons. All other neurons are called ”hidden”. The neurons are organized into
layers, one input layer, one output layer and optionally some hidden layers. For
each pair of neurons from adjacent layers, there is a connection with an attached
weight.

The process of adjusting these weights so that the network fits a set of in-
put/output examples is called the learning phase11. Once the learning phase is
over, the weights are fixed, and the network is ready to be applied to new input.

The hidden neurons were introduced by [62], because the simple model of [60]
proved not to be able to calculate the unlikeliness function (given two inputs with
values 0 or 1, the result is 1 if the inputs are different, and 0 if they are equal). This
problem is called the XOR problem. Experience shows that usually a small number

10There are different models with sophisticated algorithms, where feedback loops are allowed.
However, they exhibit a substantially higher computational complexity, and are therefore not
addressed in this thesis.

11This is only true for so-called supervised learning. There are types of neural networks, like the
sparse coding networks presented in section 4.3.2, which do not need example outputs. However,
these types are not relevant to this section.

55

Figure 4.10: The model of an artificial neural network. At the top, the input layer
is shown (blue neurons). Two hidden layers process the information, whose neurons
are depicted in gray. The output layer is shown at the bottom (red neurons).
Usually each neuron has the same activation threshold. All pairs of neurons from
adjacent layers have a connection (displayed as a straight line), which has a weight
attached to it. Each connection has a direction: The activation level from the input
side is propagated to the output side. Thus, the output of the network is obtained
by calculating the activation levels of each layer in succession, from input layer to
output layer.

56

Figure 4.11: Results from training an Artificial Neural Network to recognize neuropil
texture. Top left: the original slice. Top right: the neuropil labeling for the original.
The ANN was trained on 16104 samples of 61×61 pixels from the original to output
0.9 for neuropil and 0.1 for background. Bottom left: reconstruction of the neuropil
label. Bottom right: reconstruction of the neuropil from fig. 4.2 using the same
network as for the lower left image.

of neurons in just one hidden layer is often sufficient to learn the desired functions
(see [63, 64, 65]).

The most commonly used learning algorithm for networks containing at least
one hidden layer is the back propagation algorithm presented in [62]. It works
basically like this: Using the current weights and the input example, an output is
calculated. From the difference of this output to the desired output, the required
change of the weights between the last two layers is calculated. This change is not
applied fully, but only multiplied with a factor smaller than one. Then the desired
output is back propagated (hence the name of the method) to the last hidden layer
using the adjusted weights. Treating the result as desired output of that layer, the
same procedure can be applied as if the last hidden layer was the output layer. By
iterating over all layers, all weights are ”nudged” into the right direction.

4.3.1.1 Experiments

Artificial neural networks have been called ”the second best way to do just about
anything” (see [66]). When another approach is available, usually it should be
preferred. But when one does not get a hold on the problem, it is always possible to
train a neural network to do the job. A huge advantage of artificial neural networks
is that the same algorithm, the same implementation usually does a good job on a
wide range of applications. The downside is that training takes a very long time,
and depending on the complexity of the network sometimes also the evaluation of
the learned function, i.e. the application of the network to a particular input.

In my experiments I trained an Artificial Neural Network to distinguish neuropil
from background. The results are displayed in fig. 4.11. The network was presented
patches of 61×61 pixels as input, and as desired output a value telling if the center
of that patch is supposed to be neuropil (0.9) or background (0.1). It turned out in
my experiments that using a pair 0.1/0.9 resulted in a much faster and more robust

57

learning than the pair 0/1, which seemed more appealing to me at first. The most
likely reason is that I use a sigmoid activation function, which never takes on the
values 0 or 1, but only approximates those values. By the same token, the gray
values were normalized to the interval from 0.1 to 0.9. The bottom row of fig. 4.11
shows the output of the trained network. Centered around each pixel, a 61 × 61
neighborhood was presented as input, and the output is displayed at that pixel. A
bright pixel in the reconstruction means that according to the trained network, the
corresponding coordinate is inside a neuropil.

The images demonstrate nicely the biggest advantage of ANNs, which is at the
same time their biggest curse: One does not need to specify what the network should
learn12. For example, the white bands on the top in both reconstructions appear in
all reconstructions with that particular network. Likewise, the black bands on the
bottom are present in all reconstructions. This anomaly was not a peculiarity of
one trained net. When I changed the parameters, or the examples, similar artifacts
appeared in the reconstructions.

In summary, it can be ascertained that the trained network mostly succeeds
in distinguishing neuropil from background. It should be noted, however, that
the misclassifications seem to happen due to either too homogeneous gray value in
neuropiles, leading to an output erroneously indicating background, or too variable
gray value in the background, which gets labeled as neuropil. This fact gave rise to
a few experiments with the mean and variance of the gray values in a small region,
which eventually were the motivation for my work presented in chapter 5.

4.3.2 Sparse coding networks

Instead of a matrix (like in section 4.1.1), an image can also be understood as one big
vector, whose values are the gray values, and the dimension is the number of pixels
of the image. The same principle can still be applied for arbitrary subsets of the
pixels. For purposes of image compression, it is common to use small rectangular
sections of the image and then make use of similarities between them. Using the
vector representation, these similarities can be expressed in terms of linear algebra:
Given a (vector) base, the image (or a section thereof) can be represented by a
linear combination of this base. Since this mathematical framework deals with
vectors, in the following I will call the building blocks base vectors, even if they are
usually perceived as ”patches”. The JPEG compression scheme, for example, uses
a two-dimensional cosine base. Depending on a quality factor, factors of vectors,
which appear to hold less important visual information13, can be set to zero, thus
reducing the file size.

Such codings have more applications than Image Compression: Using the same
techniques as before, a priori known patterns can be detected by creating a base
consisting of such patterns. When decomposing a section of the image into a linear
combination of that base, the larger factors of that linear combination suggest the
presence of the corresponding pattern.

When using this approach to detect patterns, it is important that the factors
can be interpreted in an easy manner. Nothing is gained by a decomposition which
is ambiguous. One method to ensure clear cut detections is to create a so called
sparse base, i.e. a base where most of the decompositions have only few non-zero
factors. That means that the pattern no longer corresponds to one base vector,
but to a certain set of base vectors. There are strong indications that the primary
visual cortex uses this method to condense visual information prior to processing
(see [68, 69]).

12According to Murphy’s law, the ANN will learn to distinguish features, which one did not
expect, but neither cares about (see e.g. [67]).

13For example, high frequency signals, which are usually perceived as noise.

58

Figure 4.12: Sparse coding of the Drosophila melanogaster brain. Random 13× 13
samples from the original (top left) were presented during the training phase of
a sparse coding network comprising 20 base vectors. The top right image shows a
reconstruction using the learned base, which is shown on the bottom left (where the
top left patch corresponds to the first base vector, and the lower rightmost patch
to the 20th). The factors of the first base vector are shown on the bottom right,
where gray denotes 0, dark means negative, and bright positive.

4.3.2.1 Experiments

The approach I used to create such a sparse base was presented in [70]. The basic
idea is to introduce a penalty term which punishes a non-sparse linear combination
for the current example, i.e. a linear combination where many factors are signifi-
cantly differing from zero. This penalty term is just the sum of the absolute values
of the factors. Since the implementation involves quadratic programming, a rather
complicated optimization technique, I refer the interested reader to [70] for details.

My intention was to use the factors to find features: Every base vector represents
a visual ”concept” found in the presented examples. More than that, this concept
has to be presented a few times, else the training phase will phase that concept out.
To find those concepts in the image, one only needs to present each coordinates
neighborhood to the sparse coding, and look at the factor of the base vector of the
desired feature.

In fig. 4.12, the results are shown from a sparse network, which contains 20
base vectors (patches of 13 × 13 pixels). During the training, 1.200.000 random
patches from the same image were presented to the network. The reconstruction
shows that the basic features were indeed learned, and the lower right image shows
the locations of the feature represented by the first base vector.

The shown base illustrates how geometric features are recognized: All but 4 base
vectors show edge like features, or a dotted pattern. In the reconstruction, which
shows how the image looks like according to the (non-complete) base, these features
can be recognized. Most of these base vectors no longer appear noisy, even if the
training was on the original data, and the base vectors were initialized with white
noise14.

14This type of initialization turned out to speed up the convergence to a steady state.

59

Note that sparse coding networks – just like any Artificial Neural Network ap-
proach – can be forced to learn specific features, if this feature can be formalized.
For example, if the gradient of the patches should be smooth, this constraint can be
put into a term, which favors such patches. To a limited extent, the network can be
coaxed towards learning certain features, even if a proper mathematical term is not
found. One way is to present cherry picked examples, which display that feature.
Another way is to provide additional input in the form of values calculated from
the raw input, where the involved functions seem to have a close relationship to the
desired feature. In the latter case, the network becomes a so called functional-link
networks (see [71]). However, both methods introduce a bias towards certain fea-
tures, which may or may not reflect the data well. Thus, the network is potentially
tuned into the wrong direction, not exploiting the full power of ANNs. On the
other hand, this supplemental information often can be cast into a straightforward
algorithm right from the start. For example, if the goal is segmentation of untex-
tured regions, one should rather make an effort to apply edge detection and tune
the parameters, than train an Artificial Neural Network.

4.4 ”Atlas-based” methods

An atlas in the context of Image Segmentation consists of a deformable 3D model
together with a labeling. When this model is transformed onto a newly recorded
data set, the same transformation can be applied to the labeling. The result is a
labeling for the data set, and thus it is segmented.

Of course, this only moves the problem of segmentation on to finding sensible
mappings between two different data sets based on their gray values.

4.4.1 Elastic registration (based on untransformed gray val-
ues)

In section 3.3.3, I presented one method to find a good mapping between two
3D stacks, which is already integrated into the VIB protocol: Amira’s Registration
module. It optimizes the parameters of a rotation and translation so as to maximize
the correspondence between the gray values at each coordinate. Since two different
brains have differences in their anatomy, the matching is not optimal, as was seen
in fig. 3.5.

Consequently, the idea is to find a mapping which is not rigid, but instead allows
minimal deformations. A common method to parameterize such a deformation is
to sample the deformation at uniformly distributed points, and interpolate between
them. Such an approach, using splines for interpolation, was presented in [72].
Splines are an excellent choice if one expects smooth deformations, i.e. if the local
deformations are approximately affine. Also, the computational cost is relatively
low as compared to other means, like the diffusion process illustrated in section
3.1.2.

Usually such an elastic registration is accomplished by applying a rigid regis-
tration first, and approximating the local deformations from that point on. This is
sensible, given that the registration already takes a long time (in the experiments
that I performed, the rigid registration took about 12 minutes on a standard PC).

However, there are a few problems with that approach: Since the two images do
not exhibit identical gray values, the optimization is highly unstable, often preferring
aberrant mappings, because too much importance was ascribed to the gray value,
and not so much to the anatomic features. For that reason, regularizing terms were
introduced (see for example [73]), which penalize local deviations of the deformation
from the average of a larger neighborhood.

60

Figure 4.13: Elastic registration (also known as non-rigid registration). Top row:
two original slices. Middle row: the results of elastic registration (the left image
shows original from top right registered onto top left, and the right image vice
versa). Bottom row: differences between the upper two rows.

Other techniques have been proposed for the regularizing: In [74], a soft vol-
ume preserving constraint was used, and a generalization of that, using weighted
divergence and rotation measures, was implemented in [75].

Especially for confocal recordings, where the noise level is relatively high as
compared to e.g. MR images, the choice of the distance between the gray values
plays an important role. While in [75], the Euclidean distance of the gray levels was
used after a smoothing (see section 4.1.3) was applied, the approach in [74] used
a different measure. Instead of using point by point differences of the gray value,
the Mutual Information between the gray values and the brain was calculated.
The Mutual Information is a powerful measure from Information Theory, which is
described in detail in section 2.5.

4.4.1.1 Experiments

In fig. 4.13, the elastic registration is demonstrated. There are obvious differences
in the originals, which explain why the match is far from perfect. Still, this is
a relatively good match compared to other specimens (compare fig. 4.1). The

61

problem is not the interior of the neuropiles, but their outline. If the outlines are
not correct, they have to be relabeled manually (see e.g. the discrepancy along the
outlines of the peduncles). The performance of a segmentation algorithm therefore
should not be measured in terms of how many voxels were labeled accurately, but
instead how much effort has to be put into the manual adjustment of the outlines.

4.4.2 3D Differential Operators

In [76], an overview about 3D differential operators was given. This family of op-
erators are the logical extension of the edge detectors described in section 4.1.1.
Instead of using just 2D information, they approximate derivatives in three dimen-
sions, but like the 2D detectors, they use a discrete convolution of neighborhoods
for the approximation.

However, these operators are not used to detect edges: Each of the operators
described in [76] aspires to detect very specific features. It is the intention to have a
massive reduction of brightness to only a few points, which can be reliably detected
by the operators. These points can be interpreted as reference points, so called point
landmarks, which can be matched up in two different recordings. By interpolating a
mapping between these landmarks, a complete mapping between the recordings can
be constructed. In section 3.3.3, this method of using landmarks for registration
was already described (in that section, the landmarks were obtained by calculating
the centers of the labeled neuropiles).

4.4.2.1 Discussion of the applicability to confocal recordings and exper-
iments with 2D images

The same unfavorable circumstances as for the edge detectors from section 4.1.1 are
still present: If the image is noisy, derivatives can be approximated only in a highly
unreliable manner. In particular, the 3D operators do not strive for the detection
of edges. Therefore, not just the first derivative has to be approximated, but higher
order derivatives. For example, Rohr3D, arguably one of the sharpest landmark
detectors in [76], uses the determinant of the Hessian matrix. Since approximated
derivatives are multiplied, and thus their approximation errors, one can expect bad
results from the application to unsmoothed confocal recordings.

As already mentioned, the recording process of confocal microscopy is not isotropic,
i.e. the voxels are sampled from a grid with a lateral resolution which is about 5 to
10 times higher than the axial resolution. Therefore, voxels have to be interpreted
as average gray values in a cuboid. To calculate a 3D derivative, isotropic sam-
plings of the data are necessary, so the lack of level of detail has to be countered
by interpolation. However, the approximation of the 3D derivative does not take
the different levels of significance into account. For example, the gradient along an
interpolated axis will tell more about the interpolation than about the data.

For that reason, I decided to experiment with 2D images first, and if the results
were promising, try to solve the 3D detail problem. The most promising operator
from [76] appeared to be Rohr3D, which calculates the determinant of the Hessian
matrix, i.e. ∣∣∣∣∣∣∣

∂
∂x

∂
∂x

∂
∂y

∂
∂x

∂
∂z

∂
∂x

∂
∂x

∂
∂y

∂
∂y

∂
∂y

∂
∂z

∂
∂y

∂
∂x

∂
∂z

∂
∂y

∂
∂z

∂
∂z

∂
∂z

∣∣∣∣∣∣∣
The same method can be reduced to 2 dimensions: The Hessian is a 2×2 matrix

then, but the principle holds. Since the experiments from section 4.1.1 showed bad
results, I applied several denoising techniques first. As can be seen in fig. 4.14,

62

Figure 4.14: The 2D version of the Rohr3D differential operator from [76]. It makes
no sense to apply such a delicate operator to unsmoothed data, therefore different
smoothing algorithms were applied first (left), and then the differential operator
(right). Top to bottom: Low pass filter, despeckling and Gaussian blur.

63

the signal is highly susceptible to differences in the contrast. For example, the two
bright regions at the bottom center, which are substructures of the suboesophageal
ganglion, are detected nicely (in the form of black regions in the right column).
From the view point of anatomy, however, this landmark is a bad choice, because
it is highly variable as can be seen from the average image displayed in fig. 3.6.

The results of fig. 4.14 suggest that this approach does not lead to reliable
landmarks for the purpose of image registration. There is a lesson to be learned,
however. If one aspires to use gray values to calculate a mapping from one brain
onto the other, one has to find a way to detect features depending on a priori
knowledge. A human segmenter, after orienting herself, is able to ignore some dis-
tinct structures, which are unimportant for the segmentation. Strictly speaking, the
presented edge detection algorithms already use a priori knowledge: After all, the
basic edge detectors of section 4.1.1 imply the knowledge about typical structures.
Nevertheless, for the purpose of segmentation of the brain of Drosophila melano-
gaster, it appears that the algorithm should be improved by providing a means to
supply additional a priori knowledge, such as supposed locations of the structures.

4.4.3 Active Contours (”Snakes”)

One problem with the edge detectors described in 4.1.1 was that the detected edges
were not closed curves, indeed not necessarily continuous lines. To overcome this,
as detailed in 4.2, models were devised, which can only produce closed curves to
begin with. However, as shown, in practice these algorithms still detect too many
undesired outlines. Therefore, in [57, 58], an algorithm was proposed which takes
an initial contour as input in addition to the image, and adapts that contour so
that it fits the gray values given by the image.

Similar to anisotropic smoothing (see 4.1.2), instead of the gray values, the con-
tour is set in motion, and large derivatives serve as stop gaps, i.e. the motion
decreases with the image gradient. The gradient is now estimated in a different
manner, though: The variance of the gray values inside the enclosed region is mini-
mized. Strictly speaking, this is not estimating the gradient, but it is equivalent to
it: When the outline moves across a large gradient, the variance of the gray values
inside the region increases, and vice versa, provided the image is smooth (if the
image is not smooth, it is not sensible to speak of a gradient of the image).

The main improvement in [57] however, is the introduction of a regularizing
term. Often, segmentation algorithms like those presented in 4.2 produce very
ragged outlines, tribute to the noise. Human segmenters prefer to straighten out
the outlines, and so does the regularizing term. It punishes longer outlines by adding
the length multiplied with a factor, and the variance of the enclosed gray values
to the function which is to be minimized. The resulting function is often referred
to as the Mumford-Shah functional. By adjusting the factor, it can be controlled
how important the smoothness of the curve is in relation to the variance of the gray
values.

4.4.3.1 Experiments

In fig. 4.15, this approach is demonstrated. The rough outlines are presented as
polygon, and the iterative refinement of the outlines is executed until the Mumford-
Shah functional is minimized. The implementation does not use polygons, however,
but instead fits a spline curve through the sampling points given by the polygon.
Whenever the curve minimizes the functional, new sampling points are introduced
by interpolating along the curve, and the process is started again. This is repeated
until the resolution of the sampling curve reaches the resolution of the image.

64

Figure 4.15: The active contours algorithm takes rough outlines of the region to
be segmented as input (left) and refines these outlines according to the gray values
under a regularizing constraint (right).

This approach can be used to segment newly recorded brains: The idea is to
register the newly recorded image rigidly onto the standard brain, and then take
the labeled neuropiles of the standard brain to initialize the curves. Thereby, the
standard brain serves as atlas. After further adjustment by the active contour
algorithm, the outlines are accepted as labelings of the new image.

As is displayed in fig. 4.15, the outline for the peduncle (the circular structure)
is accurate. The outlines of the fanshaped body (compare with fig. 3.10) and
the medulla are unsatisfactory, though. The reason lies in the functional to be
minimized: The structure of these two neuropiles is not uniform. Therefore, dark
areas at the boundaries, whose gray value is found inside the structure, too, tend to
be merged into the region, especially if the outline becomes shorter by that. This
effect is nicely visible at the bottom of the fanshaped body and the left side of the
medulla.

4.4.4 Image Understanding

The field of Image Understanding is the logical continuation of Image Processing
for the purposes of recognizing objects and their 3D orientations and locations from
2D images. By modeling the 3D objects and the recording process, and optimizing
the parameters of these models so that the model fits the recorded image, the most
likely orientations and locations can be calculated.

Evidently, the computational cost of this optimization depends on the number
of parameters and their respective degrees of freedom: If an object has a texture,
the optimization is much more involved than when that object has a uniform color.
Because of these complications, researchers in the field of Image Understanding
invented several methods to cut down the time needed to calculate the desired
parameters.

One recurring concept is that of an invariant: When a certain value, calculated
from the parameters of an object, does not depend on a certain parameter, it is
called invariant to that parameter. For example, if a red ball is depicted on an
image, both the outline (a circle) as well as the color (red) are invariant to rotation,
but the luminosity is not.

4.4.4.1 Discussion of the applicability to Image Segmentation

While Image Understanding tackles a completely different problem than Image Seg-
mentation, the concepts of one can be put to use in the other. For instance, an edge
can be seen as invariant to rotation. The derivative of an image is also invariant to
rotation, but not the approximation of it from sampled data.

65

In this sense, the 3D differential operators introduced in section 4.4.2 detect
invariants: The idea is to find landmarks with specificity. Even if I was not able
to apply the techniques of Image Understanding to accomplish the task of Image
Segmentation, the concept of invariants, together with the ideas from the next
section, eventually provided the inspiration for the method I will present in chapter
5.

The main difficulty of deploying the techniques of Image Understanding in the
context of the segmentation of the brain of Drosophila melanogaster, is that not
only the recording process has to be modeled: The staining procedure has a much
higher variability. Even though the physical process, namely the diffusion, can be
described very well, it is hard to quantify. See fig. 4.1 for differences in staining,
which are quite common. Any viable model for the staining process would have to
account for those variabilities, which necessarily would further the complexity of
the optimization.

4.4.5 Gestalt theory

Ever since psychologists became aware that already at early vision stages, humans
are able to distinguish certain shapes better than others, understanding the mecha-
nisms behind that fact has been an active field of research. Commonly referred to as
Gestalt theory, this field has applications in a number of areas, including marketing
(for example in [77]) and medicine (e.g. [78]).

In Image Processing, Gestalt theory is put to use to compress images: An ele-
mentary principle of Gestalt theory is that human vision can selectively ignore noise,
i.e. a noisy image of a triangle is still perceived as a triangle. Therefore, images can
usually be compressed better after a Fourier transformation was applied, and often
the perceived image quality is hardly affected when high-frequency components are
filtered (I presented this technique for the purpose of denoising in section 4.1.2).

However, the true power of Gestalt theory in Image Processing unfolds when
deducing shapes from sampled data. To get a computational grip on the concept of
a Gestalt, i.e. to quantify a shape, in [79], shapes were parameterized by sampling
points. Shapes are interpreted as closed curves, and the sampling points are chosen
along that curve so that any two neighbors have approximately the same distance.
The application of quantitative Gestalt theory permits to reliably compare shapes.

When trying to deduce shapes from 3D stacks, one necessarily introduces yet an-
other layer of quantization errors. As illustrated earlier, image data are never fully
specified when working with computers, but rather quantized15. When working
with recordings from a confocal microscope, in general the resolution is anisotropic,
i.e. the quantization is finer in the lateral directions than in the vertical direc-
tion. If a surface is fitted to a segmented region, where the region membership is
only defined on discrete coordinates on such a grid, it suffers heavily from these
anisotropic quantizations, especially when surfaces are to be compared, which stem
from specimens recorded in different orientations.

But how to define a 3D shape properly? A shape is commonly perceived as
synonymous to a closed surface. A surface can be described by parameterizing it
in 2D coordinates, choosing an arbitrary origin and axis. However, the coordinates
may not be mistaken for what they are not: It is no longer trivial to calculate the
distance between two points on the surface.

Furthermore, when matching shapes, there is the problem of how to define a
quality measure of the match. If one were to measure the distance between their
surfaces, the calculations needed are complicated, or may be only approximated,
depending on the choice of the parameterization of the shapes.

15Here, quantization means the process of sampling using a regular grid.

66

Nevertheless, some studies suggest to create a shape model of the brain, which
should then be fitted to a newly recorded brain, thus obviating the segmentation.
This task can be accomplished more easily than matching shapes: Testing whether
the new (sampled) data have a certain property – like a large gradient – at a certain
point on the (deformed) surface is relatively easy. However, one has to keep in mind
that to average over points on the surface, one needs to sample these points so that
they are equally distributed over the surface. If one can not guarantee at least
approximate even distribution, the average will be biased towards the clustered
points.

4.4.6 Object detection

Related to Gestalt theory and Image Understanding is the theory of Object detec-
tion. However, instead of modeling all aspects from the structure of the specimen to
the recording process, Object Detection aspires only to model the outline of certain
objects of interest. Thereby the complexity of the processing as well as the com-
plexity of the results is substantially reduced. Gestalt theory comes into play when
comparing the model of the object one tries to find with the recognized outlines in
the image.

A segmentation method relying on some of these concepts was presented in
[80]. There, boundaries of level sets (see section 4.2.2) are filtered, rejecting those
with only minimal contrast change perpendicular to their outlines. So far, this
approach would rely on the objects having a uniform gray value, at least near
their boundaries. However, in [80] the concept of a local boundary was introduced.
This concept allows the segmentation to coincide with level set outlines only locally,
permitting unclosed lines and segmented regions with non-uniform gray values along
the outlines. Nevertheless, it is not possible to segment textured regions with this
algorithm.

4.4.6.1 Discussion

The application of object detection needs a model of the object to be detected.
This may be an exact outline, or a curve (or surface when working on 3D data)
with a small set of parameters to be fitted on the image. If the parameters can be
further constrained, for example by providing a probability distribution, one can
enhance the quality of the object detection by punishing the less likely choices for
the parameters, or if an algorithm is used which searches through the parameter
space, the values can be ordered according to their probability.

In the context of the VIB protocol, the objects to be detected are the neuropiles
of the brain. To find a parameterized model of their outlines, the obvious choice is
to find a surface model of the labelings of the standard brain. The goodness-of-fit,
while not a completely accurate probability distribution describing the variability
of the neuropiles, can still be used to enhance the detection.

Whenever curves or surfaces are to be handled efficiently by a computer program,
a common choice is to approximate them by cubic splines. The reason is that splines
are piecewise cubic polynomials, thus enabling a speedy execution of the algorithm.
Therefore, a spline model for the neuropiles is a good choice. The goodness-of-
fit provides an estimate of the probability distribution of the shape, which can
be approximated by a normal distribution of the parameters. Since the chosen
method is an approximation technique, the parameters are the sampling points of
the splines.

67

4.5 Summary

Looking once again at fig. 4.1, it appears that boundaries of objects have to be
detected reliably, before the objects themselves can be detected. All schemes devised
to detect known shapes, or shapes which are parameterized, rely in one way or
another on recognizing sufficiently many points on the boundary to localize the
structures.

Since – as demonstrated in this chapter – none of the tested algorithms ap-
peared to be able to detect reliably edges of structures, I decided to investigate
why they fail. Furthermore, I tried to find out why human operators are capable
of distinguishing such edges, and to find a model which is adequately reproducing
the results, and at the same time can be implemented efficiently as a computer
program. The results of this research are presented in the next chapter.

68

Chapter 5

Information Theory applied
to Image Processing

The algorithms described in the previous chapter all failed, for a reason which
is obvious when looking at sample images: The provided data differ in significant
ways from the images those algorithms were designed for. First, they do not contain
homogeneous gray values for pixels belonging to the same neuropil. On the contrary,
it is quite common that inside a neuropil, the gray values have a high variance.
Second, the gray values obey certain patterns, which are not easily described in a
mathematical fashion. Third, the noise observed in our images can not be removed
with those algorithms, because it is not pure noise in the classical sense1. The
”noise” (noise or features indistinguishable from noise) stems partly from technical
sources, like the physical constraints of the method2, partly from the biological
realities3. Furthermore, this noise varies with several factors, such as density of the
brain.

When analyzing how perception can recognize boundaries between structures,
one finds that the repetitive spatial patterns (textures) help to distinguish the neu-
ropiles. If the patterns are regular, i.e. they are repetitious, one can analyze them
by Fourier or Wavelet transforms. See for example fig. 3.10 for a semi-regular
texture: Even if the bands are overall spanning from left bottom to right top in
a smooth slope, the bands consist of structures which are perpendicular to that
direction.

Experiments done with monkeys, who seem to perceive visual stimuli similarly
to humans (see [81]), suggest that the rotationally invariant classification of textures
plays an important role in vision.

The textures found in sections of Drosophila melanogaster’s brain have a high
variability in size, orientation and regularity. Thus, the search space of texture
parameters for an algorithm is huge, and a computational classification would take
a long time. A more practical approach is to treat the textures as if only the
intensity spectrum mattered, and not also the spatial distribution of the intensity.
In practical terms, one can compare textures by comparing intensity histograms of
small regions.

The idea to compare histograms leads to Information Theory, the theory which
tells how to measure information. For a few years, the idea that statistical methods

1The term ”noise” as used in Image Processing usually denotes measurement errors due to the
recording process.

2For example: The photo-multiplier magnifies single photons’ potentials, thus a single photon
which misses the pinhole yields a high error in the result.

3The optical resolution is not high enough to discern fibers from their environment, resulting
in single blips which cannot be distinguished from noise.

69

might result in good Image Processing techniques, given that the acquisition of
images itself can be treated as a statistical process, has become more and more
popular. In [82], statistical methods were used to classify textures to segment
the images. A more general application of statistics can be found in [83]: Here,
statistical methods are used to construct invariants, a concept I described in section
4.4.4. See [84] for a good review of such invariants.

A related approach has been used in [85] to classify textures by color distribu-
tions. However, the difference between two color distributions was measured by
using the Earth Movers’ Distance. It has the advantage of being easy to calcu-
late, and being well studied. The disadvantage is that nobody can possibly explain
how this quantification of the difference should bear any meaning regarding the
differences of the textures.

Therefore, in [86] Information Theory was applied to measure the similarity be-
tween two probability distributions. Information theory is the right tool in this
context, because it is not only important that the measure can tell about good
matches. If two pairs of textures appear to be equally different, then the difference
measure should reflect that. The Renyi entropy (which was applied in [86]) certainly
fulfills this requirement when the pairs match up, but what about (perceived) dis-
similar pairs? This requirement can be expressed in mathematical terms, as I will
demonstrate later, and Information Theory can be used to find such a measure. In
the course of my work, in collaboration with D. Endres (see [87]), I found such a
measure which has the nice property of being a metric. In the following sections,
also a few shortcomings of the approach in [86] when applied to confocal recordings
are addressed.

For the purpose of texture classification, in [88, 89] a method was presented
which compares the textures by calculating the χ2 measure of their gray value dis-
tributions. The metric described in [87] has a close relationship to the χ2 measure,
which explains the results of [88].

In this chapter, I apply Information Theory and Bayesian Inference (see chapter
2 to edge detection on confocal recordings of brains of Drosophila melanogaster.
Using the framework provided by Information Theory, I then discuss the quality of
this approach. In the second part, I illustrate how this method can be enhanced by
prior knowledge, which is not embedded in the algorithm, but is instead provided
as additional data, in order to produce robust segmentations.

5.1 Mutual Information applied as Edge Detection

In order to distinguish textures regardless of their scale and orientation, I chose to
compare the distributions of their gray values. For the sake of clarity, let’s name the
textures: One gets the label ”outside”, the other ”inside”. The idea is now to ask
the question: How much can one learn about the texture label when only looking at
the gray value distribution? The answer is given by the Mutual Information between
texture label and gray value. The higher this Mutual information is, the more one
can learn about the texture label given the gray value distributions. Conversely,
given the texture label, the mutual information indicates how much one knows
about the difference between the gray value distributions. It can thus be employed
as a measure of dissimilarity between textures.

During my research, I became aware of a work which is similar in motivation,
presented in [86]. While – as in my work – information-theoretic ideas were used, I
chose to take a slightly different path: It became obvious already at an early stage,
that the choice of the information-theoretic measure is critical to the result. If one
were to choose just about any differential measure between two distributions, the
results would not tell anything about the differences of the textures. For example,

70

the Euclidean distance (which interprets finite distributions as vectors) would pun-
ish small differences in the gray value as much as big differences. In [86], the Renyi
entropy has been used. In mathematical terms, Renyi’s entropy is a generalization
of Shannon’s entropy, because the latter is a special case of the former. However,
in statistical terms, Renyi’s approach is a restriction, because that entropy measure
is only sensible, if the random variables, for which it is computed, are statistically
independent. If the textures are similar, then this condition is not fulfilled. If the
textures are dissimilar, the Renyi entropy is only sensible in the limit, where it
equals the Shannon entropy. Therefore it is not surprising that one of the results
of [86] is that to obtain favorable outcomes, the parameter of the Renyi entropy
should be chosen so as to equal the Shannon entropy.

The measure D2
pq investigated in [87] is defined by

D2
pq =

∑
i

(
pi log

2pi

pi + qi
+ qi log

2qi

pi + qi

)
(5.1)

Its motivation has a close relationship to the question of how different the tex-
tures are. In fact, it is very similar to the Mutual Information: Suppose that
samples are drawn from one of two given distributions, but it is not known which.
The measure D2

pq is the result when inferring the average information gain by one
sample about which distribution it is. In other words, it answers the question how
much one gray value tells about the class it is taken from. N.B.: Why is the measure
written as a square? Because Dpq :=

√
D2

pq is a metric, its square is not.

Since no Bayesian Inference was applied in [86], that method needs a lot of
samples in order to obtain a good estimate of the distributions. Therefore, the
whole inside has to be compared to the whole outside4. Implicitly, this method
assumes that the structure has a homogeneous texture. That may be true for MR
images of the human brain, but it is certainly not true for confocal recordings of
the brain of Drosophila melanogaster (see fig. 3.10).

Instead of the Renyi entropy, I decided to use the Mutual Information, since that
measure was successfully used for similar purposes: In [90], Mutual Information
between multi spectral images was used to denoise the images. Also, the method
described in section 4.4.1 can use the Mutual Information between the gray value
and what brain it came from, to measure the agreement of a mapping.

To detect edges, at each coordinate the hypothesis is tested, that the bound-
ary between inside and outside runs through that coordinate. This test needs two
regions, the inside and outside. Since the direction of the edge is not known before-
hand, I test all directions. At each coordinate and for each direction, I therefore
chose to divide a circular region around that coordinate by an axis in that direction
into two regions. For each pair of regions obtained in that manner, the Mutual
Information between the gray value and the texture label is calculated, and the
maximum is calculated. In the following, I refer to this measure as the edge infor-
mation at that coordinate. It denotes how much information in the data support
the hypothesis that a textured edge is present at that coordinate. This algorithm
is illustrated in fig. 5.1.

As can be seen in this figure, a major complication is the usage of histograms
as estimates of probability distributions. There is always a trade-off involved: I am
interested in the distribution on that particular coordinate, but only one value is
observed at that point. To construct a histogram, it is therefore assumed that in

4The Renyi entropy as well as the Shannon entropy allow to compare more than two distri-
butions, and therefore it is possible to segment more than one structure. However, this is not
important for the point I am trying to make here.

71

Figure 5.1: The hypothesis, that an edge is visible at a certain point and angle, can
be tested by defining half-circular regions around the hypothesized edge, construct-
ing the joint histogram between the gray values and the side relative to that edge,
and then inferring the Mutual Information between gray value and region member-
ship. The higher this Mutual Information is, the more visible is the hypothesized
edge.

72

a spatial neighborhood, the distribution is very similar, and values from a region
around the coordinate of interest are counted. This elicits three problems:

• A precise localization is not possible when a lot of pixels are taken into account,

• the assumption that the distribution of adjacent pixels is similar can be totally
wrong (for example when an edge goes through the region),

• and the estimate of the distribution degrades when only a few values are
counted.

As a remedy for the first and the third problem, I chose to use Bayesian inference.
Instead of directly using the histograms as if they actually were the underlying
distributions, the Mutual Information is inferred. This approach makes it feasible
to extract meaningful measures from limited data. (the same observation motivated
the use of Information Theory in [70, 91]). As will be shown in section 5.1.3, the
application of Bayesian Inference actually makes a huge difference. As for the
second problem, the method is to test each direction through that coordinate and
take the maximal value of the Mutual Information as edge information. Since the
Mutual Information will be low, when the proposed boundary does not coincide
with a boundary, that direction will not be considered when another direction is
supported by the data.

When two adjacent structures have gray values which are constant inside a
structure, then the edges detected by the presented method coincide with those
detected by Canny’s method (see 4.1.3) regardless of the chosen approximation to
the derivative. However, when using the Mutual Information as edge measure, it is
not important how different these two gray values are, whereas Canny and related
algorithms prefer strong differences in the gray value.

A big advantage of the Mutual Information as edge detector over most detectors
presented in the last chapter is that it is quite robust to the addition of noise. The
reason is that spatial relationships are ignored to the extent that permutations
of the gray values in the neighborhood of a coordinate do not change the Mutual
Information. Algorithms depending on an approximation of derivatives of the image
do not have this advantage.

Since the inference of the Mutual Information involves some rather complicated
mathematics, it is presented in appendix A. The calculation of the inferred Mutual
Information is relatively cheap in computational terms: It involves a sum with one
operand for each gray value, and partial harmonic series. For practical purposes, the
partial harmonic series can be stored in a small lookup table, so that the complexity
is linear in the number of gray values.

Originally, I tried to infer the metric presented in [87], because of the nice metric
properties as compared to the Mutual Information. The properties of a metric are
well suited to formulate an approximation procedure. As will be shown in section
5.2, this is a desirable setting for segmentation: It is easier to approximate a closed
contour by adjusting the parameters of a closed curve than to join disjointed edges.
However, it proved hard to apply Bayesian Inference to that metric. However, in
the limit, i.e. when the histograms approach the true distributions, and assuming
that the number of points in the histograms grow equally, i.e. that the two regions
being compared have the same size, the inferred Mutual Information becomes

< I >→ 1
2
D2

pq.

The calculations to prove this are carried out in appendix B. Since each his-
togram represents a probability distribution (which – in theory – could be the true

73

distribution), the following corollary holds: Given two discrete probability distribu-
tions Pi(X = x), i = 1, 2 for a random variable X, which are equally likely the true
distribution of X (i.e. P (i = 1) = P (i = 2) = 1

2), the square root of the Mutual
Information between X and i is a metric between P1 and P2.

5.1.1 Bayesian Rebinning

To further enhance the outcome of the Mutual Information based edge detection, a
rebinning process can be applied. The idea of rebinning is that the reliability of the
inference of the expectation of the Mutual Information depends highly on the ratio
of bins (the number of gray values) to the number of samples. The error decreases
as the number of samples increases in relation to the bin number. Luckily, there is
a sensible way to reduce the number of bins, because noise and sampling errors of
a gray value histogram are not uniform. The gray values are located on a natural
scale, and deviations are much more likely be local on that scale. Therefore, it can
be reasonable to join adjacent gray values into bins.

Indeed, a very simple rebinning into just two bins is quite popular: the thresh-
olding. By splitting the pixels at a certain gray value threshold, one obtains a
classification in dark and bright pixels. For a survey on finding an optimal thresh-
old value, see [92].

For indexed color images, i.e. images containing only a very limited number of
colors (typically at most 256 colors), algorithms were invented to reduce arbitrary
images to a small number of colors. These algorithms are called quantization in
Image Processing (see e.g. [93]). If the original image contains only gray values,
then this quantization achieves a rebinning of the image.

In [94], however, a fast algorithm was presented for rebinning any histogram,
applying Bayesian inference with a uniform prior. This algorithm uses a clever
scheme to reuse precomputed values to reduce the exponential complexity to cubic
complexity. While it still is slower than the classical quantization algorithms, its
outcome is more accurate.

Furthermore, in [94], again applying Bayesian inference, an algorithm is given
to infer the optimal number of bins, which still has cubic complexity. These two
algorithms5 constitute a parameter free rebinning algorithm.

5.1.2 Calculating a quality measure

Whenever a new algorithm is proposed, the authors claim that it is better than all
algorithms hitherto invented. While claiming the same, I go one step further: The
tools which were used to formulate the edge detection can be used to calculate a
goodness of these results: Not only the Mutual Information, but also its standard
deviation is inferred. In the latter case, there is no easily computable closed form,
but instead a good approximation for the variance was found in [95], which I present
in appendix C.

When the standard deviation of the Mutual Information is small compared to
its value, it can reasonably be assumed that different values of the inferred Mutual
Information indeed contain information about the differences in textures present in
the image. Further, it gives an idea how much better the results could possibly
be: When the standard deviation is relatively high, so is the uncertainty about the
true Mutual Information. In that case one can only hope to find out more prior
information, which then can lead to a better approximation of the true value.

74

Figure 5.2: A comparison between four histogram difference measures for edge
detection. The histograms are constructed as described in fig. 5.1, and the difference
measure is depicted as a gray level at the corresponding coordinate. Top left:
the Euclidean distance. Top right: the metric presented in [87]. Bottom left:
the Mutual Information. Bottom right: the inferred expectation of the Mutual
Information.

5.1.3 Experiments

In fig. 5.2, four measures are compared:

• the Euclidean distance, |p− q| =
√∑

i(pi − qi)2,

• the metric from [87], Dpq =
√∑

i

(
pi log 2pi

pi+qi
+ qi log 2qi

pi+qi

)
,

• the Mutual Information, I = 1
2

∑N
j=1

(
p1j log 2p1j

p1j+p2j
+ p2j log 2p2j

p1j+p2j

)
,

• and the inferred expectation of the Mutual Information (see appendix A).

It turns out that the Euclidean distance produces very sharp indications of edges,
but at the same time looses most visually perceivable boundaries. The metric and
the Mutual Information, which are closely related (see appendix B), yield compa-
rable results, while the Bayesian inference boosts the performance of the latter.

In fig. 5.3, the results of the edge detection presented in fig. 5.2 (lower left) are
repeated after Bayesian rebinning (see section 5.1.1). The improvement over the
edge detection without rebinning is substantial.

Note that Bayesian rebinning can be understood as a Bayesian optimal pixel
wise denoising. This is somewhat counterintuitive when looking at the left column
of fig. 5.3. However, from a pixel wise instead of a spatial perspective, there are
now less errors to be expected: When adding (or multiplying) noise to a gray value,
the original value and the noisy value are more likely to be in the same bin than not.
Still, information (in terms of entropy) is reduced by the rebinning. Nevertheless,
one can expect that the entropy stemming from the original data is much larger than
the entropy of the noise, else a human operator could not make sense of the image

5In fact, these two algorithms are just variations of the same underlying scheme.

75

Figure 5.3: Demonstration of Bayesian rebinning. In the left column, the rebinned
images are displayed. For the sake of clarity, the maximal gray value of the bin is
displayed at each pixel. In the right column, the Mutual Information based edge
detection is displayed. From top to bottom: 4 bins, 12 bins and 30 bins.

76

Figure 5.4: The inferred variance of the expectation of the Mutual Information.
Left: this image corresponds to the lower left image in fig. 5.2, which was not
rebinned. Right: this image corresponds to the middle row of fig. 5.3, which was
rebinned to 12 gray levels before the edge detection was applied.

either. Therefore, the rebinning process typically results in a significant reduction
of noise, while retaining most of the desired signal.

The quality measure described in section 5.1.2 is demonstrated in fig. 5.4. Dark
gray values correspond to a low variance of the expectation, while bright gray values
denote a high variance. Note that the standard deviation is well below 10% of the
inferred expectation of the Mutual Information at each pixel. This means that
the error involved in the inference is noticable (as one should expect by the small
number of samples.), albeit small enough that the results can be deemed robust.

It should also be noted that the estimated variance is uniformly lower after
Bayesian rebinning than before. The relevant edges are still detected – a strong
hint that the Bayesian rebinning indeed succeeded to reduce the per-coordinate
noise.

5.2 Towards automatic segmentation

The method described in the last section was shown to detect edges in the ab-
sence of smooth gradients. Nevertheless, this approach still uses the paradigm of
edge detectors, which still has the problems described in section 4.4.2: There may
be structures present, which are highly distinguishable, but they are nevertheless
unimportant for the segmentation of the brain.

As solution to this problem, in the last chapter I proposed to use the information
already available in the form of the standard brain. It consists not only of recordings
of particular high quality, it includes also a complete segmentation thereof, and
– last, but certainly not least – it features an estimate of the variability of the
neuropiles. As mentioned in section 4.4.6, this information can be transformed into
a shape model of the neuropiles of the standard brain. Furthermore, a deformation
model can be conceived, which takes the expected variability into account.

A shape model, as illustrated in section 4.4.5, has severe shortcomings if used for
the purpose of registration, and both brains are represented as shapes rather than
3D stacks. However, if only one of them is parameterized as a shape model, but the
other still remains in the original form, one can bypass these problems. Even better,
the idea to match a shape model onto a 3D stack has one big advantage over the
registration of two 3D stacks: A shape model, which is given as a smooth surface,
does not have the transformation error attached, that haunts all mappings of 3D
stacks. There are no average gray values to be sampled, but instead coordinates.
Therefore, no sampling errors occur, and the interpolation method does not have
a bias towards one rotation or another. Therefore, rigid transformations do not
affect the accuracy of a shape model. Since the optimal mappings between two

77

Figure 5.5: Applying the edge detection to object detection. Top left: the original
slice, and the object to be found (a very rough outline of the fanshaped body).
Top right: the edge information for each coordinate to be the center of the shape
(brighter is more likely than darker). Bottom left: the same information, visualized
as the shape. Bottom right: the edge information for each coordinate to be the
center, when using the isotropic edge detector. The ellipse designates the location
of the fanshaped body.

brains ideally do not imply large aberrations from the rigid transformation, the
same advantage holds to a certain extent for non-rigid transformations.

5.2.1 Using Mutual Information to localize objects

When a shape is given a priori in the form of a surface model, the following idea
can be applied to find out if this shape is present at a certain location: Given an
approximately uniform sampling of the coordinates on the surface, at each of these
coordinates it can be tested, to what extent the data supports the hypothesis that
an edge is present at that point. The outcome of this test can be interpreted as
edge information, i.e. the higher the edge information is, the more does the data
suggest the presence of an edge. By summing6 these edge informations over all
sampling points, one obtains the edge information for the whole shape. Thus, by
maximizing the edge information through adjustments to the location at first, and
then the shape parameters, the shape can be localized in the 3D stack.

To improve that scheme in terms of accuracy as well as speed, the surface gradi-
ents can be sampled as well as the surface points. The edge detection by means of
the Mutual Information is just a hypothesis testing algorithm, therefore the infor-
mation about the gradient speeds up the algorithm. Furthermore, by requiring the
edge to be detected in that angle, the fidelity of the match should improve (this was
tested and found to be true in the context of Elastic Registration using manually
specified landmarks with attributes in [96]).

78

5.2.2 Experiments

In fig. 5.5, results from a 2D experiment with the fanshaped body are shown. First,
a rough outline was defined. A not completely matching outline of a shape which
is hard to detect in the gray image was chosen on purpose, to demonstrate the
strengths and weaknesses of my approach.

As described, for each coordinate, the rough shape was centered on that coor-
dinate, along the outlines the edge information of an edge in the direction of the
outline at that point were calculated, and the sum of these values was the result for
that coordinate.

In the upper right image, the edge information is displayed for each coordinate,
that the given outline centered on that coordinate would be justified by the data in
the original image. Note that there is a single dot right on target, indicating that
the algorithm had no problem identifying the fanshaped body.

However, the algorithm tries to tell us that there are hints for more than one
fanshaped body. This is visualized in the lower left image, which contains the
same information as the upper right image, but instead of a dot, whose intensity
corresponds to the edge information of the shape, the shape itself is displayed with
that intensity. Again, it can be seen that the fanshaped body is nicely detected
at the correct place. But it becomes evident that the object localization fails at
the outlines of the whole brain, detecting the shape where it is not. However, by
comparing the misdetections with the original image, one finds that parts of the
shape are indeed present. For example, roof-like outlines – just like the upper part
of the fanshaped body – are in plain view where the optic lobes, the central brain
and the outside touch. As explained, the algorithm does not care, if the neuropil
is on the wrong side of the outline. Instead, boundaries between different textures
are sought.

The lower right image displays the result when applying the same calculation
as for the upper right image, only that this time, the edges are not tested with a
specific direction. In other words: From the middle right image of fig. 5.3, at each
coordinate the intensities along the shape centered around this coordinate where
accumulated, and visualized. As one would expect with this approach, it is very
sensitive to differences in the edge signal. As demonstrated in fig. 5.3, while still
being highly distinguishable, the detected edges have by no means the same edge
information. This leads to the somewhat funny heart-like structure, which really is
just the input shape turned by 180 degrees. This is due to the strong signal of the
peduncles (the small, bright circular structures in fig. 5.3), which single-handedly
outweighs all other signals: Even just a few values from the peduncle along the shape
are as bright as the edge signal from the fanshaped body. Still, in a neighborhood
of the fanshaped body, the detection is accurate.

As demonstrated by the isotropic approach, and less so by the anisotropic ap-
proach, the edge detection still does not rely only on visible differences of texture,
but is highly affected by brightness differences. Along the outline of the whole brain,
this difference is very large, and therefore, misdetections occur mostly there. How-
ever, as I showed, in a quite large neighborhood of the true location the detection
achieves a high degree of reliability.

These results are promising, as they show that objects can be detected reliably,
just by restricting the search to a sensible area. Nevertheless, a few simple ex-
tensions to the algorithm should be investigated, such as ways to incorporate the
variance of the edge information along the outline, multi resolution approaches, and
methods to take intensities or textures into account, too.

6Since it is not known a priori if the shape is present at that location, each sampling point
denotes an independent test.

79

5.2.3 Future plans: Deformation using thin-plate splines

To give a parameterized model of a neuropile’s surface, it could be specified using
thin-plate splines. These were used successfully for the purpose of elastic regis-
tration (see e.g. [96, 74, 75, 72]), so it seemed the appropriate choice. Thin-plate
splines are the two-dimensional continuation of one dimensional cubic splines. Both
types of splines are motivated by the same setup: An elastic material (like splines
in shipbuilding) is clamped tautly on a set of support points. Since the material
is elastic, the tension of the material is distributed linearly. Therefore, the points
along the spline can be given as a piecewise cubic polynomial.

Now, the parameters of a spline approximation of a surface are the coordinates
of the sampling points. Using these sampling points, the deformation can be pa-
rameterized by the deformation vectors which begin at these sampling points. In
less mathematical terms, the deformation is done by moving each sample point a
little bit, and interpolating the motion between the sample points using a two di-
mensional cubic spline. The effect is the same as modifying the coordinates of each
sample point directly. However, it is much easier to assess the amount of defor-
mation, and to regularize it, when the deformation is itself modeled as a vector
field which is added to the vector field of the surface model. For example, a good
regularization term might be the sum of the lengths of the deformation vectors at
the sampling points. A perfect match would then correspond to no deformation,
i.e. the regularization term would be zero.

This concept can be turned into a segmentation algorithm, which automatically
segments a newly recorded Drosophila melanogaster brain. To this end, the param-
eters of the surface model described above have to be calculated from the existing
standard brain. The implementation of the algorithm used in section 5.2.2 has to
be extended to work with 3D data. The algorithm from section 5.1.2 has to be
adapted, so that it assesses the quality of the segmentation. This information can
be used to review the areas potentially needing manual relabeling. Finally, these
algorithms have to be integrated into, and called from the VIB protocol.

80

Chapter 6

Conclusions and Outlook

In this thesis, I presented the Virtual Insect Brain protocol, a framework which
facilitates the use and application of the standard brain of Drosophila melanogas-
ter. It was shown to provide a consistent user interface on top of Amira. The
protocol relieves the anatomist of many recurring tasks, such as keeping track of
the different files depending on each other, and processing steps still necessary to
finalize the processing.

It is easily extensible, by making a library of Tcl procedures available to Amira
scripts, which then integrate seamlessly into the protocol. This was demonstrated
by extending it to operate on multichannel data, and by offering new methods for
registration.

Despite the name, this protocol is by no means limited to insect brains. It can
be effortlessly applied to any type of brain, or even other anatomical structures.
Wherever a standardization process similar to the creation of a standard brain is
needed, the VIB protocol is likely to be of value.

After the VIB protocol, I presented a few approaches to enhance the registration
process by automating parts of the segmentation, or by avoiding it altogether. I
demonstrated, that these approaches do not live up to their claims, often requiring
a complete manual relabeling.

I introduced Information Theoretical considerations to improve edge detection
techniques and Atlas-based segmentation methods. The shown examples demon-
strate that indeed, this algorithm finds edges which coincide with the boundaries
a neuro-anatomist would agree to. Furthermore, the algorithm was enhanced to
provide an estimate of its performance.

The proposed edge detection algorithm itself represents a novel way to cope
with noisy images and textured regions. Indeed, it is one of the first of a whole
family of robust Image Processing algorithms, which employ the natural concept of
Information Theory.

By the results, one can expect that the extension to 3D data exceeds the quality
of the results in 2D. This opens the door for massive parallel processing of recordings.
Since a performance measure can be calculated at the same time, imperfect labelings
can be flagged for inspection.

With this powerful tool, it becomes feasible to build a huge catalog of existing
Gal4 lines along with quantified expression patterns, permitting fast querying of
said lines by neuro-anatomical features. For instance, a researcher could look up all
Gal4 lines whose expression patterns show a high signal in the antennal lobe, but a
negligible signal in the peduncle.

This catalog could further be integrated with the standard brain of Drosophila
melanogaster, by automatically localizing the expression patterns.

81

Appendix A

Bayesian inference of the
Mutual Information from
experimental data

Let M be the number of gray values (for 8-bit gray images, M = 256), l1, .., lM
and m1, ..,mM the histograms of inside and outside respectively. Further, let both
regions contain the same number N of samples, i.e.

∑M
i=1 li =

∑M
i=1 mi = N .

These two histograms can be merged into a joint histogram Jc,i between the
gray value and the class membership: Jinside,i := li and Joutside,i := mi.

Of course, this histogram, when normalized, is only an estimate of the prob-
ability distribution. The true distribution is of the form p̂side,i ∈ [0; 1], side =
inside, outside, i = 1, ..,M , where

∑
side,i pside,i = 1. To enhance the readability,

in the following I write pj :=
{

pinside,j for j ≤ M
poutside,j−M for M < j ≤ 2M

and similarly Jj

instead of Jside,i.
I now use the Bayesian approach to infer the probability p({pj}|D) of one such

model {pj}:

p({pj}|D) =
P (D|{pj})p({pj})

P (D)

=
P (D|{pj})p({pj})∫∫
{pj} P (D|{pj})p({pj})

(A.1)

The integral
∫∫
{pj} is meant to be carried out over all possible models {pj}, i.e.

all tuples of values pj ∈ [0; 1] where
∑

j pj = 1.
Since I do not want to put an emphasis on any particular distribution, I treat

them as equally likely. Thus the term p({pj}) is constant. Consequently this factor
can be canceled out.

The probability for the data given the model is:

P (D|{pj}) = (J1, J2, ..., J2N)!
∏
j

p
Jj

j (A.2)

where (J1, J2, ..., J2N)! is the multinomial coefficient, telling the number of per-
mutations of the samples, which still show the same histogram {Jj}. Putting A.1
and A.2 together, one obtains

82

p({pj}|D) =
(J1, J2, ..., J2N)!

∏
j p

Jj

j∫∫
{pj}(J1, J2, ..., J2N)!

∏
j p

Jj

j

(A.3)

The multinomial coefficient does not depend on the values {pj}, so it can be
canceled out. I now carry out the integration in the denominator of A.3:

∫ ∫
{pj}

∏
j

p
Jj

j =
∫ 1

0

pJ1
1

∫ 1−p1

0

pJ2
2 · · ·

∫ 1−
∑

j<2M−1
pj

0

p
J2M−1
2M−1 · p

J2M

2M dp2M−1 · · · dp2dp1 (A.4)

By substituting s := 1 −
∑

j<2M−1 pj , x := p2M−1, a := J2M−1 and b := J2M ,
the probability p2M is equal to s− x, and the innermost integral becomes

∫ 1−
∑

j<2M−1
pj

0

p
J2M−1
2M−1 · p

J2M

2M dp2M−1 =
∫ s

0

xa(s− x)b dx

Further substitution of x := sy reveals the equality

∫ s

0

xa(s− x)b dx =
∫ 1

0

sa+b+1ya(1− y)bdy

= sa+b+1B(a + 1, b + 1) (A.5)

where B(x, y) = Γ(x)Γ(y)
Γ(x+y) is the Beta function, and the Gamma function is defined

by Γ(x) =
∫ 1

0
eyyx−1dy. A nice feature of the Gamma function is that it is an

extension of the factorial n! :=
∏n

i=1 i to the whole complex plane1(see [97]):

Γ(n + 1) = n!

Therefore, at positive integer values of x, the Gamma function can be evaluated
easily. Furthermore, the Gamma and Beta functions have been studied extensively,
so that calculations may be based on well known results of those studies.

Putting back A.5 into A.3 yields a multiple integral of the same form as in A.3,
reduced by one integral, and the term pJ2M

2M is replaced by the factor sa+b+1 =
p

J2M−1+J2M+1
2M−1 . Just the factor B(a + 1, b + 1) = J2M−1!J2M !

(J2M−1+J2M+1)! is new, and can be
put in front of the integral.

By iterating this procedure, all integrals in A.4 can be evaluated. The result is:

∫ ∫
{pj}

∏
j

p
Jj

j =
J1!(2M − 2 +

∑
j>1 Jj)!

(2M − 1 +
∑

j Jj)!
· · ·

· · · (J2M−2)!(J2M−1 + J2M + 1)!
(J2M−2 + J2M−1 + J2M + 2)!

· (J2M−1)!J2M !
(J2M−1 + J2M + 1)!

=

∏
j(Jj)!

(2M − 1 +
∑

j Jj)!
(A.6)

1Indeed, the Gamma function is completely characterized by the equation Γ(x + 1) = xΓ(x)
and the convexity on R+.

83

Applying this result to A.1 yields:

p({pj}|D) =
(2M − 1 +

∑
j Jj)!∏

j(Jj)!

∏
j

p
Jj

j (A.7)

I want to infer the expectation of the Mutual Information I(side, i) = H(side, i)−
H(side)−H(i), where H is the entropy, i.e.

I(side, i) = −
∑

j

pj log pj +
∑
j≤M

p̂j log p̂j +
∑
side

p̂side log p̂side

where p̂j = pj + pM+j is the marginal probability for the gray value j, and
likewise for p̂side. To calculate this expectation, the following integral has to be
calculated:

< I(side, j) > =
∫ ∫

{pj}
I(side, j)p({pj}|D)

=
∫ ∫

{pj}

−∑
j

pj log pj +
∑
j≤M

p̂j log p̂j −
∑
side

p̂side log p̂side

·
(2M − 1 +

∑
j Jj)!∏

j(Jj)!

∏
j

p
Jj

j (A.8)

This integral can be written as a sum of integrals in the form of A.4 and integrals
which contain an additional factor log pĵ for a particular ĵ ∈ 1, .., 2M .

I now calculate the latter integrals: Using the same technique as before, the
problem is reduced to the integral

∫ 1

0

log x · xa(1− x)bdx =
∫ 1

0

∂

∂a
xa(1− x)bdx

=
∂

∂a

∫ 1

0

xa(1− x)bdx

=
∂

∂a
B(a + 1, b + 1)

=
∂

∂a

Γ(a + 1)Γ(b + 1)
Γ(a + b + 2)

=
Γ′(a + b + 2)Γ(a + 1)Γ(b + 1)− Γ(a + b + 2)Γ′(a + 1)Γ(b + 1)

Γ2(a + b + 2)

=
Γ(a + 1)Γ(b + 1)

Γ(a + b + 2)

(
Γ′(a + 1)
Γ(a + 1)

− Γ′(a + b + 2)
Γ(a + b + 2)

)
(A.9)

Note that the Weierstraß product form (see [97]) of the Gamma function is

Γ(x) =
1
x

e−γx
∞∏

i=1

e
x
i

1 + x
i

By differentiating the logarithm of both sides, one obtains

Γ′(x)
Γ(x)

= −γ − 1
x

+
∞∑

i=1

(
1
i
− 1

x + i

)

84

Using this result in A.9 leads to

∫ 1

0

log x · xa(1− x)bdx =
a!b!

(a + b + 1)!

(
−γ − 1

a + 1
+

∞∑
i=1

(
1
i
− 1

a + i + 1

)
+

+γ +
1

a + b + 2
−

∞∑
i=1

(
1
i
− 1

a + b + i + 2

))

=
a!b!

(a + b + 1)!

(
− 1

a + 1
+

1
a + b + 2

−
a+b+2∑
i=a+2

1
i

)

Note that the integrals including terms of the form log(pj1 + pj2 + .. + pjK
) can

be reordered in such a manner that the innermost integral looks like this:∫ ∫
{pjk

},
∑

j
pj=1

log

(∑
k

pjk

)
·
∏
k

p
Jjk
jk

The argument of the logarithm is therefore
∑

k pjk
= 1−

∑
j 6∈{j1,...,jK} pj , thus

constant, and the logarithm can be factored out from the integrals. The integration
then goes forward as in A.4.

After a lengthy, nevertheless straightforward summation of these integrals, one
obtains the following formula for the inferred expectation of the Mutual Information:

< I(side, j) > = G2(M+N) −GM+N − 1
4N

N∑
j=1

(
(n1j + 1)(Gn1j+n2j+2 −Gn1j+1)+

+(n2j + 1)(Gn1j+n2j+2 −Gn2j+1)
)

(A.10)

where

Gn :=
n∑

i=1

1
i

(A.11)

85

Appendix B

The connection between the
inferred Mutual Information
and the metric Dpq

The Mutual Information can be inferred for joint histograms of any size, i.e. the
same calculation as in appendix A can be carried out for a histogram given by
the values nij ∈ {0, 1, 2, ...}, where i = 1, ..,M, j = 1, .., N . This is in contrast
to what was assumed so far, namely that one quantity denotes the two classes
inside and outside, which are equally likely, or in mathematical terms: M = 2 and
P (i = 1) = P (i = 2) = 1

2 . For this special case, the Mutual Information can be
viewed as a distance measure between the probability distributions of the classes
i = 1 and i = 2.

Indeed, the inferred Mutual Information approximates half the square of the
metric presented in [87]. This is demonstrated in the following:

When N →∞, the bin counts divided by the total counts approximate the true
probabilities (n1j

N → p1j and n2j

N → p2j). Further, using Gn as defined in A.11 note
that

lim
n→∞

Gn − log(n) = γ

where γ ≈ 0.5772156 is the Euler-Mascheroni constant, and therefore

lim
n→∞

Gmn −Gn = log m

The Mutual Information then becomes:

< I > = G2(M+N) −GM+N − 1
4N

N∑
j=1

(
(n1j + 1)(Gn1j+n2j+2 −Gn1j+1)+

+(n2j + 1)(Gn1j+n2j+2 −Gn2j+1)
)

→ log(2)− 1
2

N∑
j=1

(
p1j log

p1j + p2j

p1j
+ p2j log

p1j + p2j

p2j

)

=
1
2

N∑
j=1

(
p1j log

2p1j

p1j + p2j
+ p2j log

2p2j

p1j + p2j

)
=

1
2
D2

p1p2

86

This relationship holds only in the limit N →∞, however. In order to infer the
metric itself, the integral

< Dp1p2 > =
∫ ∫

{pj}

√√√√∑
j

(
p1j log

2p1j

p1j + p2j
+ p2j log 2p2jp1j + p2j

)∏
j

p
n1j

1j p
n2j

2j

would have to be carried out, under the further constraint that
∑

j p1j =∑
j p2j = 1

2 . To my knowledge, this integral has not yet been successfully com-
puted.

87

Appendix C

Inference of the variance of
the Mutual Information

In this appendix, I assume a general joint histogram, namely nij ∈ {0, 1, 2, ...} for
j = 1, ..,M and i = 1, .., N . In the following, the näıve estimate of the probability
is denoted by p̂ij := nij

n , where n :=
∑

ij nij. As in appendix A, I write ”the
inference” when I mean the inference given a uniform prior, i.e. p({pij}) is assumed
to be constant.

As shown in [95], the variance of the inferred Mutual Information can be ap-
proximated by

1
n

∑
ij

nij

n

(
log

nijn

ni·n·j

)2

− 1
n

∑
ij

nij

n
log

nijn

ni·n·j

2

+ O(n−2) (C.1)

where ni· :=
∑

j nij , n·j :=
∑

i nij , and O(n−2) denotes the Landau symbol,
meaning that the error of this approximation is bounded by a constant times n−2.
The error term decreases with the second power of the number of samples.

The method used in [95] to derive this formula is elegant, and I will outline it
here: The Mutual Information is interpreted as a function which maps the vector
{pij} to its corresponding Mutual Information. By expanding this function into
a Taylor series around the expected distribution < {pij} >= {p̂ij}, the following
result is obtained:

VarI(i, j) = < (I(i, j)− < I(i, j) >)2 >

= <

∑
ij

log
(

p̂ij

p̂i·p·j

)
∆ij

2

>

︸ ︷︷ ︸
=:Fij

+O(n−2)

where ∆ij := pij − p̂ij . The first summand can be evaluated further:

Fij =
∑
ijkl

log
p̂ij

p̂i·p·j
log

p̂kl

p̂k·p̂·j
Cov(pij , pkl)

To infer the variance of the Mutual Information, the following integral has to
be carried out:

88

< VarI(i, j) > =
∫ ∫

{pj}
VarI(i, j)p({pij}|D) (C.2)

Since the term Fij approximates the variance of the Mutual Information, one
can substitute Fij +O(n−2) for VarI(i, j) in the integral to approximate the inferred
variance of the Mutual Information. The error term is to be treated as a constant,
which can be factored out. The integral then looks similar enough to the integral
in A.8, that the same techniques can be applied as in appendix A. The final result
is stated above.

In [98, 99] an exact formula was given for the inferred Mutual Information.
Since it uses the confluent hyper-geometric function of the first order, which is best
avoided when it comes to computational cost, I did not use it in my research. Due
to the fact that the definition of the confluent hyper-geometric function alone would
go beyond the scope of the present work, I will not even repeat the result of [99].

89

Appendix D

Lebenslauf

Persönliche Daten: Johannes E. Schindelin
Hans-Löffler-Str. 20a
97074 Würzburg
geb. 15.01.1973

Schulausbildung: 1979-1983
Grundschule Zellingen

1983-1988
Mozartgymnasium Würzburg

1988-1992
Röntgengymnasium Würzburg
Abschluss: Abitur

Zivildienst: 07/1992-11/1992
Rudolf-Alexander-Schröder-Haus Würzburg

12/1992-09/1993
Arbeiter-Samariter-Bund in Würzburg

Studium: 10/1993-07/1999
Universität zu Würzburg
Hauptfach Mathematik, Nebenfach Informatik
Abschluss: Diplom

Promotion: seit 04/2001 bei Prof. Dr. M. Heisenberg
am Lehrstuhl für Genetik und Neurobiologie
Biozentrum Würzburg

Wissenschaftlicher Mitarbeiter der Universität Würzburg
im Zeitraum 04/2001-03/2005 im Rahmen des
BMBF Forschungsverbundes ”Virtual Brain”

90

Bibliography

[1] Nick Strausfeld. Atlas of an Insect Brain. Springer-Verlag, Berlin, Heidelberg,
New York, 1976.

[2] Armstrong, J. D. and Kaiser, K. and Müller, A. and Fischbach, K.-F. and
Merchant, N. and Strausfeld, N. J. Flybrain, an on-line atlas and database of
the drosophila nervous system. Neuron, 15:17–20, 1995.

[3] Heisenberg, M. and Kaiser, K. The Flybrain Project. Trends in Neurosciences,
18:418–483, 1995.

[4] Guimond, A. and Meunier, J. and Thirion, J. P. Average brain models: A
convergence study. Computer Vision and Image Understanding, 77:192–210,
2000.

[5] Virtual Neuro Lab. http://www.virtual-neurolab.org/.

[6] Karlheinz Rein, Malte Zöckler, Michael T Mader, Cornelia Grübel, and Martin
Heisenberg. The Drosophila standard brain. Curr Biol, 12(3):227–231, Feb
2002.

[7] W.S. Rasband. ImageJ. http://rsb.info.nih.gov/ij/, 1997–2005.

[8] G. M. P. van Kempen, H. T. M. van der Voort, and van Vliet L. J. A quantative
comparison of two restoration methods as applied to confocal microscopy. In
ASCI’96, Proceedings of the second Annual Conference of the Advanced School
for Computing and Imaging, pages 196–201. Advanced School for Computing
and Imaging, June 1996.

[9] J. B. (editor) Pawley. Handbook of Biological Confocal Microscopy 2nd ed.
Plenum Press, New York, 1995.

[10] AH Brand and N Perrimon. Targeted gene expression as a means of altering
cell fates and generating dominant phenotypes. Development, 118(2):401–415,
1993.

[11] Tzumin Lee and Liqun Luo. Mosaic analysis with a repressible cell marker for
studies of gene function in neuronal morphogenesis. Neuron, 22(3):451–461,
1999. TY - JOUR.

[12] Tzumin Lee and Liqun Luo. Mosaic analysis with a repressible cell marker
(marcm) for drosophila neural development. Trends in Neurosciences,
24(5):251–254, 2001. TY - JOUR.

[13] John K. Ousterhout. Scripting: Higher-level programming for the 21st century.
Computer, 31(3):23–30, 1998.

[14] T. Bayes. Essay towards solving a problem in the doctrine of chances. Philo-
sophical Transactions of the Royal Society of London, 1763.

91

[15] E. T. Jaynes. Probability theory: the logic of science. Cambridge University
Press, New York, 2003.

[16] J. Talairach and P. Tournoux. Co-planar stereotaxic atlas of the human brain:
3-dimensional proportional system: An approach to cerebral imaging. Thieme,
New York, 1988.

[17] A W Toga and P M Thompson. Maps of the brain. Anat Rec, 265(2):37–53,
Apr 2001.

[18] Zöckler, M. and Rein, K. and Stalling, D. and Brandt, R. and Hege, H.-C.
Creating Virtual Insect Brains with Amira. Report of Zuse Institut Berlin,
2001.

[19] J. Ashburner and K.J. Friston. Spatial normalization. In A.W. Toga, editor,
Brain Warping, pages 27–44. Academic Press, 1999.

[20] A. W. Toga and P. Thompson. The role of registration in brain mapping.
Image Vision Comput., 19:3–24, 2001.

[21] C. G. Galizia, S. L. McIlwrath, and R. Menzel. A digital three-dimensional
atlas of the honeybee antennal lobe glomeruli based on optical sections acquired
using confocal microscopy. Cell and Tissue Research, 295:383–394, 1999.

[22] Robert Brandt, Torsten Rohlfing, Jürgen Rybak, Sabine Krofczik, Alexander
Maye, Malte Westerhoff, Hans-Christian Hege, and Randolf Menzel. A three-
dimensional average-shape atlas of the honeybee brain. Journal of Comparative
Neurology, .(.):(in press), 2005.

[23] Stuart Feldman. Make–a computer program for maintaining computer pro-
grams. Software-Practice and Experience, 9(4):255–265, 4 1979.

[24] Evan L. Ivie. The programmer’s workbench – a machine for software develop-
ment. Commun. ACM, 20(10):746–753, 1977.

[25] D. Wagh. personal communication, 2002.

[26] M. T. Mader. Analyse von Expressionsmustern in den Pilzkörpern von
Drosophila melanogaster. Diplomarbeit, University Würzburg, 2001.

[27] J. E. Hochberg and E. McAllister. A quantitative approach to figural ’good-
ness’. J. Experimental Psychol., 46:361–364, 1953.

[28] J. E. Hochberg. Effects of the Gestalt Revolution: The Cornell Symposium on
Perception. Psychological Review, 64(2):73–84, 1957.

[29] D. G. Kendall. A Survey of the Statistical Theory of Shape. Statistical Science,
4(2):87–120, 1989.

[30] F. L. Bookstein. Size and Shape Spaces for Landmark Data in Two Dimensions.
Statistical Science, 1(2):181–242, 1986.

[31] T. R. Reed and H. Wechsler. Segmentation of Textured Images and Gestalt
Organization Using Spatial/Spatial-Frequency Representations. IEEE Trans.
Pattern Anal. Mach. Intell., 12(1):1–12, 1990.

[32] M R Kaus, S K Warfield, A Nabavi, P M Black, F A Jolesz, and R Kikinis. Au-
tomated segmentation of MR images of brain tumors. Radiology, 218(2):586–
591, Feb 2001.

92

[33] Edward A Ashton, Chihiro Takahashi, Michel J Berg, Andrew Goodman, Saara
Totterman, and Sven Ekholm. Accuracy and reproducibility of manual and
semiautomated quantification of MS lesions by MRI. J Magn Reson Imaging,
17(3):300–308, Mar 2003.

[34] David E Rex, Jeffrey Q Ma, and Arthur W Toga. The LONI Pipeline Processing
Environment. Neuroimage, 19(3):1033–1048, Jul 2003.

[35] David T. Gering, Arya Nabavi, Ron Kikinis, W. Eric L. Grimson, Nobuhiko
Hata, Peter Everett, Ferenc A. Jolesz, and III William M. Wells. An inte-
grated visualization system for surgical planning and guidance using image
fusion and interventional imaging. In MICCAI ’99: Proceedings of the Second
International Conference on Medical Image Computing and Computer-Assisted
Intervention, pages 809–819. Springer-Verlag, 1999.

[36] David T. Gering. Automatic segmentation of cardiac mri. In MICCAI (1),
pages 524–532, 2003.

[37] H A Drury, D C Van Essen, C H Anderson, C W Lee, T A Coogan, and
J W Lewis. Computerized mappings of the cerebral cortex: a multiresolution
flattening method and a surface-based coordinate system. J Cogn Neurosci,
8(1):1–28, 1996.

[38] D C Van Essen, H A Drury, J Dickson, J Harwell, D Hanlon, and C H Anderson.
An integrated software suite for surface-based analyses of cerebral cortex. J
Am Med Inform Assoc, 8(5):443–459, Sep 2001.

[39] A. M. Dale, B. Fischl, and M. I. Sereno. Cortical surface-based analysis. i:
Segmentation and surface reconstruction. NeuroImage, 9(2):179–194, 1999.

[40] E. Busa. FreeSurfer Manual. Massachusetts General Hospital, Boston, Mas-
sachusetts, 2002.

[41] Rein, K. and Zöckler, M. and Heisenberg, M. A quantitative three-dimensional
model of the Drosophila optic lobes. Curr. Biol., 9:93–96, 1999.

[42] Rein, K. and Hiesinger, P. and Zöckler, M. and Kirsten, J. and Fischbach,
K.-F. and Heisenberg, M. Three-dimensional reconstruction of the Drosophila
larval and adult brain. Flybrain (http://www.flybrain.org), 2000.

[43] E. Argyle. Techniques for edge detection. Proc. IEEE, 59:285–286, 1971.

[44] Thomas Martin Lehmann, Claudia Gönner, and Klaus Spitzer. Survey: In-
terpolation methods in medical image processing. IEEE Trans. Med. Imaging,
18(11):1049–1075, 1999.

[45] M. Unser. Splines: A perfect fit for signal and image processing. IEEE Signal
Processing Magazine, 16(6):22–38, November 1999. IEEE Signal Processing
Society’s 2000 Magazine Award.

[46] A. Bijaoui, J.-L. Starck, and F. Murtagh. Restauration des images multi-
échelles par l’algorithme à trous. Traitement du Signal, 11:229–243, 1994.

[47] E P Simoncelli. Bayesian denoising of visual images in the wavelet domain.
In P Müller and B Vidakovic, editors, Bayesian Inference in Wavelet Based
Models, chapter 18, pages 291–308. Springer-Verlag, New York, 1999. Lecture
Notes in Statistics, vol. 141.

93

[48] M. Motwani, M. Gadiya, R. Motwani, and F. Harris. A Survey of Image
Denoising Techniques. In Proceedings of GSPx 2004, pages 27–30, Santa Clara,
CA, September 2004. Santa Clara Convention Center.

[49] J Canny. A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 8:679–698, 1986.

[50] R. Deriche. Using Canny’s criteria to derive a recursively implemented optimal
edge detector. The International Journal of Computer Vision, 1(2):167–187,
May 1987.

[51] J. Weickert. Anisotropic Diffusion in Image Processing. Dissertation, Univer-
sity of Kaiserslautern, Faculty of Mathematics, 1996.

[52] D. Tschumperle and R. Deriche. Vector-valued image regularization with pde’s:
A common framework for different applications. In In IEEE Conference on
Computer Vision and Pattern Recognition, 2003.

[53] Lee Vincent and Pierre Soille. Watersheds in digital spaces: An efficient al-
gorithm based on immersion simulations. IEEE PAMI, 1991, 13(6):583–598,
1991.

[54] James Albert Sethian. Level Set Methods and Fast Marching Methods. Cam-
bridge Monograph on Applied and Computational Mathematics. Cambridge
University Press, 1999.

[55] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution
3d surface construction algorithm. In SIGGRAPH ’87: Proceedings of the 14th
annual conference on Computer graphics and interactive techniques, pages 163–
169, New York, NY, USA, 1987. ACM Press.

[56] L. Guigues, H. Le Men, and J. Cocquerez. Scale-sets image analysis. In ICIP03,
pages II: 45–48, 2003.

[57] D. Mumford and J. Shah. Boundary detection by minimizing functionals. In
Proc. IEEE Conf. Comp. Vis. Pattern Recognition, 1985.

[58] D. Mumford and J. Shah. Optimal approximations by piecewise smooth func-
tions and associated variational problems. Comm. Pure Appl. Math., 42:577–
685, 1989.

[59] Anil K. Jain and Richard C. Dubes. Algorithms for clustering data. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1988.

[60] F Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological Review, 65:386–408, 1958.

[61] M Minsky and S Papert. Perceptrons: An Introduction to Computational Ge-
ometry. MIT Press, Cambridge, Massachussets, 1969.

[62] D Rumelhart and J McClelland. Parallel Distributed Processing. MIT Press,
Cambridge, Massachussets, 1986.

[63] Y. Ito. Approximation of Continuous Functions on Rn by Linear Combinations
of Shifted Rotations of a Sigmoid Function with and without Scaling. Neural
Networks, 5(1):105–115, 1992.

[64] V. Kurkova. Kolmogorov’s Theorem and Multilayer Neural Networks. Neural
Networks, 5(3):501–506, 1992.

94

[65] H. J. Sussmann. Uniqueness of the Weights for Minimal Feedforward Nets with
a Given Input-Output Map. Neural Networks, 5(4):589–593, 1992.

[66] John Hertz, Richard G. Palmer, and Anders S. Krogh. Introduction to the
Theory of Neural Computation. Perseus Publishing, 1991.

[67] E.B. Baum and D. Haussler. What size net gives valid generalization? Neural
Computation, 1(1):151–160, 1989.

[68] B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field
properties by learning a sparse code for natural images. Nature, 381(6583):607–
609, 1996.

[69] William E. Vinje and Jack L. Gallant. Sparse coding and decorrelation in
primary visual cortex during natural vision. Science, 287(5456):1273–1276,
February 2000.

[70] D. Endres. Bayesian and Information-theoretic Tools for Neuroscience. PhD
thesis, School of Psychology, University of St Andrews, St Andrews, UK, 2005.

[71] Yoh-Han Pao and Yoshiyasu Takefuji. Functional-link net computing: Theory,
system architecture, and functionalities. IEEE Computer, 25(5):76–79, 1992.

[72] Richard Szeliski and James Coughlan. Spline-Based Image Registration. In-
ternational Journal of Computer Vision, 22(3):199–218, March/April 1997.

[73] Karl Rohr, Mike Fornefett, and H. Siegfried Stiehl. Approximating thin-plate
splines for elastic registration: Integration of landmark errors and orientation
attributes. In IPMI ’99: Proceedings of the 16th International Conference on
Information Processing in Medical Imaging, pages 252–265. Springer-Verlag,
1999.

[74] Torsten Rohlfing, Robert Brandt, Calvin R. Maurer, Jr., and Randolf Men-
zel. Bee brains, B-splines and computational democracy: Generating an aver-
age shape atlas. In Lawrence Staib, editor, IEEE Workshop on Mathematical
Methods in Biomedical Image Analysis, pages 187–194, Kauai, HI, 2001. IEEE
Computer Society, Los Alamitos, CA.

[75] C.Ó Sánchez Sorzano, M. Blagov, P. Thévenaz, E. Myasnikova, M. Samsonova,
and M. Unser. Algorithm for spline-based elastic registration in application
to confocal images of gene expression. In Proceedings of the Seventh Inter-
national Conference on Pattern Recognition and Image Analysis: New Infor-
mation Technologies (PRIA-7’04), volume 3, pages 928–931, St. Petersburg,
Russian Federation, October 18-23, 2004.

[76] Thomas Hartkens, Karl Rohr, and H. Siegfried Stiehl. Evaluierung von differ-
entialoperatoren zur detektion charakteristischer punkte in tomographischen
bildern. In DAGM-Symposium, Informatik Aktuell, pages 637–644. Springer,
1996.

[77] Jan Borchers, Oliver Deussen, and Clemens Knörzer. Getting it across: layout
issues for kiosk systems. SIGCHI Bull., 27(4):68–74, 1995.

[78] C Piotrowski. A review of the clinical and research use of the Bender-Gestalt
Test. Percept Mot Skills, 81(3 Pt 2):1272–1274, Dec 1995.

[79] Song-Chun Zhu. Embedding Gestalt Laws in Markov Random Fields. IEEE
Trans. Pattern Anal. Mach. Intell., 21(11):1170–1187, 1999.

95

[80] F. Cao, P. Musé, and F. Sur. Extracting meaningful curves from images.
Journal of Mathematical Imaging and Vision, 22(2–3):159–181, 2005.

[81] C. Keysers, D. Xiao, P. Földiák, and D. I. Perrett. The speed of sight. Journal
of Cognitive Neuroscience, 13(1):90–101, 2001.

[82] M. Heiler and C. Schnorr. Natural image statistics for natural image segmen-
tation. In ICCV03, pages 1259–1266, 2003.

[83] Terry S. Yoo. Multiscale statistical image invariants. In 7th International
Conference on Computer Vision, 1999.

[84] A Srivastava, A B Lee, E P Simoncelli, and S-C Zhu. On advances in statistical
modeling of natural images. J. Math. Imaging and Vision, 18(1):17–33, January
2003.

[85] Mark A. Ruzon and Carlo Tomasi. Edge, junction, and corner detection using
color distributions. IEEE Trans. Pattern Anal. Mach. Intell., 23(11):1281–
1295, 2001.

[86] Lyndon S. Hibbard. Region segmentation using information divergence mea-
sures. In MICCAI (2), pages 554–561, 2003.

[87] D. Endres and J.E. Schindelin. A new metric for probability distributions.
IEEE Transactions on Information Theory, 49(7):1858–1860, 2002.

[88] M. Varma and A. Zisserman. A statistical approach to texture classification
from single images. International Journal of Computer Vision, 62(1–2):61–81,
April 2005.

[89] M. Varma and A. Zisserman. Unifying statistical texture classification frame-
works. Image and Vision Computing, 22(14):1175–1183, 2005.

[90] H.Z. Rafi and H. Soltanian-Zadeh. Mutual Information Restoration of Mul-
tispectral Images. In 10th International Workshop on Systems, Signals and
Image Processing (IWSSIP’03), Prague, Czech Republic, Sept. 2003.

[91] I. Nemenman, W. Bialek, and R.R. van Steveninck. Entropy and information
in neural spike trains: Progress on the sampling problem. Physical Review E,
69(5), 2004.

[92] P.K. Sahoo and S. Soltani and K.C. Wong and Y.C. Chen. A Survey of Thresh-
olding Techniques. Computer Vision, Graphics, and Image Processing, 41:233–
260, 1988.

[93] P. S. Heckbert. Color Image Quantization for Frame Buffer Display. ACM
Computer Graphics (ACM SIGGRAPH ’82 Proceedings), 16(3):297–307, 1982.

[94] D. Endres and P. Földiák. Baysian bin distribution inference and mutual in-
formation. IEEE Transactions on Information Theory, 2005, in press.

[95] M. Hutter. Distribution of mutual information. In Advances in Neural In-
formation Processing Systems 14, pages 339–406, Cambridge, MA, 2002. MIT
Press.

[96] K. Rohr and M. Fornefett and H.S. Stiehl. Spline-Based Elastic Image Regis-
tration: Integration of Landmark Errors and Orientation Attributes. Computer
Vision and Image Understanding, 90(2):153–168, May 2003.

96

[97] I. N. Bronstein and K. A. Semendyayev. Handbook of mathematics. Harri
Deutsch, Frankfurt/Main, 24th edition, 1989.

[98] D. Wolpert and D. Wolf. Estimating functions of probability distributions from
a finite set of samples, part 1: Bayes estimators and the shannon entropy.

[99] D. Wolpert and D. Wolf. Estimating functions of probability distributions
from a finite set of samples, part 2: Bayes estimators for mutual information,
chi-squared, covariance, and other statistics.

97

Hiermit erkläre ich, Johannes E. Schindelin, dass ich

1. die Dissertation mit dem Titel

The standard brain of Drosophila melanogaster and its automatic
segmentation

selbständig und nur unter Zuhilfenahme der in der Arbeit selbst angegebenen
Mittel und Quellen erstellt habe,

2. die Dissertation mit dem Titel

The standard brain of Drosophila melanogaster and its automatic
segmentation

zum ersten mal in einem Prüfungsverfahren vorlege, und dass ich

3. ausser dem Diplom in Mathematik bisher weder einen akademischen Grad
erworben, noch einen solchen zu erwerben versucht habe.

Johannes E. Schindelin

	Introduction
	Overview
	Research Goal & Context
	Results
	Approach

	An apology to the reader
	Dedications

	Methods
	The principle of confocal laser microscopy
	The Gal4/UAS system
	The visualization suite Amira
	Uniform coordinates
	Some concepts of Information Theory
	A short introduction into Bayesian Inference

	The Virtual Insect Brain protocol
	The standard brain of Drosophila melanogaster
	Registration
	The standard brain of Drosophila melanogaster
	The original set of Amira scripts

	The Virtual Insect Brain protocol
	Error handling
	Automated book keeping of the segmentations
	Easy configuration and navigation
	Handling of multi channel data sets
	Support for different file formats
	Alternative registration methods
	A tool to trim brains virtually
	Logging
	Locking
	Visualization and comparison of the calculated transformations
	Dependency checks
	Basic plausibility tests
	Documentation
	Graphical user interface

	Applying the VIB protocol
	Typical application of the standard brain
	Generating average brains
	Comparison of registration methods

	The need for an automatic segmentation
	Survey of other frameworks to generate average brains
	Evaluating the segmentation facilities of Amira

	Examining the limits of traditional approaches to automatic segmentation
	Classical Image Processing
	Edge detection filters
	Experiments

	De-noising
	Experiments

	Blurring
	Experiments

	Common segmentation techniques
	Watershed segmentation
	Experiments

	Level-set segmentation
	Experiments

	k-means segmentation
	Experiments

	Artificial Neural Networks
	Feed forward three-layer networks
	Experiments

	Sparse coding networks
	Experiments

	"Atlas-based" methods
	Elastic registration (based on untransformed gray values)
	Experiments

	3D Differential Operators
	Discussion of the applicability to confocal recordings and experiments with 2D images

	Active Contours ("Snakes")
	Experiments

	Image Understanding
	Discussion of the applicability to Image Segmentation

	Gestalt theory
	Object detection
	Discussion

	Summary

	Information Theory applied to Image Processing
	Mutual Information applied as Edge Detection
	Bayesian Rebinning
	Calculating a quality measure
	Experiments

	Towards automatic segmentation
	Using Mutual Information to localize objects
	Experiments
	Future plans: Deformation using thin-plate splines

	Conclusions and Outlook
	Bayesian inference of the Mutual Information from experimental data
	The connection between the inferred Mutual Information and the metric Dpq
	Inference of the variance of the Mutual Information
	Lebenslauf
	Bibliography

