BEITRÄGE ZUR CHEMIE DES HÖHERKOORDINIERTEN SILICIUMS: SYNTHESE, STRUKTUR UND EIGENSCHAFTEN NEUER HÖHERKOORDINIERTER SILICIUM(II)- UND SILICIUM(IV)-KOMPLEXE

Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg

> vorgelegt von Diplom-Chemikerin Claudia Kobelt aus Würzburg

> > Würzburg 2016

meiner Familie

Eingereicht am:

Bei der Fakultät für Chemie und Pharmazie

1	Gutachtor	
1.	Outachier.	

2. Gutachter:

der Dissertation

- 1. Prüfer:
- 2. Prüfer:
- 3. Prüfer:

des öffentlichen Promotionskolloquiums

Tag des öffentlichen Promotionskolloquiums:

Doktorurkunde ausgehändigt am:

Die vorliegende Arbeit wurde im Zeitraum Mai 2010 bis Mai 2015 am Institut für Anorganische Chemie der Julius-Maximilians-Universität Würzburg unter Anleitung von Herrn Prof. Dr. Reinhold Tacke durchgeführt. Die vorliegende Arbeit wurde auszugsweise veröffentlicht:

Synthesis and Structural Characterisation of Neutral Pentacoordinate Silicon(IV) Complexes with a Tridentate Dianionic N,N,S Chelate Ligand

Claudia Kobelt, Christian Burschka, Rüdiger Bertermann, Célia Fonseca Guerra, F. Matthias Bickelhaupt, Reinhold Tacke

Dalton Transactions 2012, 41, 2148–2162.

Synthesis, Structure and Reactivity of a Donor-Stabilised Silylene with a Bulky Bidentate Benzamidinato Ligand

Reinhold Tacke, Claudia Kobelt, Johannes A. Baus, Rüdiger Bertermann, Christian Burschka *Dalton Transactions* **2015**, *44*, 14959–14974.

Free Radical Reactivity of N-Donor Stabilized Silicon(II) Compounds Probed by Muon Spin Spectroscopy

Kerim Samedov, Robert West, Paul W. Percival, Jean Claude Brodovitch, Lalangi Chandrasena, Mina Mozafari, Reinhold Tacke, Konstantin Junold, Claudia Kobelt, Prinson P. Samuel, Ramachandran Azhakar, Kartik Chandra Mondal, Herbert W. Roesky, Matthias Driess, Wenyuan Wang

Organometallics 2015, 34, 3532–3537.

Abkürzungsverzeichnis

Dipp	Diisopropylphenyl
DMSO	Dimethylsulfoxid
Et	Ethyl
i	ipso
<i>i</i> Pr	Isopropyl
т	meta
Me	Methyl
n	normal
0	ortho
р	para
Ph	Phenyl
tBu	tert-Butyl
THF	Tetrahydrofuran
TMS	Tetramethylsilan
A L L	A 1 1 1 1
Abb. 	
aq	
ax	axial
Ber.	berechnet
bzw.	beziehungsweise
ca.	circa
Gef.	gefunden
GUI	Graphical User Interface
HSAB	Hard and Soft Acids and Bases
KZ	Koordinationszahl
max	maximal(e)
mer	meridional
p. a.	pro analysi
Sdp.	Siedepunkt
Smp.	Schmelzpunkt
Tab.	Tabelle
u. a.	unter anderem
usw.	und so weiter

v. a.	vor allem
vgl.	vergleiche
z. B.	zum Beispiel
Zers.	Zersetzung
d	Tag(a)
u 1	
h	Stunde(n)
min	Minute(n)
br.	breit(es)
COSY	Correlated Spectroscopy
CSA	Chemical Shift Anisotropy
d	Dublett
DEPT	Distortionless Enhancement by Polarisation Transfer
HMBC	Heteronuclear Multiple Bond Correlation
HMQC	Heteronuclear Multiple Quantum Correlation
HPDec	High Power Decoupling
J	Kopplungskonstante
m	Multiplett
MAS	Magic Angle Spinning
NMR	Nuclear Magnetic Resonance
NOESY	Nuclear Overhauser Effect Spectroscopy
ppm	Parts per Million
q	Quartett
quint	Quintett
S	Singulett
s. br.	sehr breit(es)
sept	Septett
t	Triplett
VACP	Variable Amplitude Cross Polarisation
VT	Variable Temperature

Inhaltsverzeichnis

1 Einl	eitung1
2 Ziel	setzung4
2.1 N	Veutrale pentakoordinierte Silicium(IV)-Komplexe
2.1.1	Neutrale pentakoordinierte Chlorohydridosilicium(IV)-Komplexe mit einem
	bidentaten Amidinato-Liganden 4
2.1.2	Neutrale pentakoordinierte Chlorosilicium(IV)-Komplexe mit einem bidentaten Amidinato-Liganden
2.1.3	Neutrale pentakoordinierte Chlorosilicium(IV)-Komplexe mit einem
	tridentaten N,N',S- und einem Alkyl- bzw. Aryl-Liganden 5
2.1.4	Neutrale pentakoordinierte Chalkogenosilicium(IV)-Komplexe mit einem tridentaten <i>N</i> , <i>N</i> ', <i>S</i> -Liganden
2.2 N	Jeutrale hexakoordinierte Silicium(IV)-Komplexe
2.2.1	Neutrale hexakoordinierte Chlorohydridosilicium(IV)-Komplexe mit zwei
	bidentaten Amidinato-Liganden
2.2.2	Neutrale hexakoordinierte Silicium(IV)-Komplexe mit einem tridentaten
	N,N',S- und einem bidentaten N,X -Liganden (X = O, S, Se)
2.3 L	Darstellung und Charakterisierung tri- bzw. tetrakoordinierter Donor-
S	tabilisierter Silvlene mit bidentaten Amidinato-Liganden
231	Darstellung trikoordinierter Donor-stabilisierten Silvlene mit einem
2.3.1	bidentaten Amidinato und einem monodentaten Chloro- bzw Amido-
	Liganden
2.3.2	Darstellung eines tetrakoordinierten Donor-stabilisierten Silylens mit zwei
	bidentaten Amidinato-Liganden
2.4 T	Intersuchung der Reaktivität sowie der strukturellen und
S	pektroskopischen Eigenschaften der tri- bzw. tetrakoordinierten Donor-
S	tabilisierten Silylene
241	Lewis-Säure/Base-Reaktionen der Donor-stabilisierten Silvlene des Typs G 8
2.4.2	Nukleophile Substitutionsreaktionen der Donor-stabilisierten Silvlene des
	Typs G
2.4.3	Oxidative Additionsreaktionen der Donor-stabilisierten Silylene des Typs G 9
3 Syn	thoson 11
5 Syn	
3.1 8	ynthesen neuer neutraler pentakoordinierter Silicium(IV)-Komplexe
a	usgenena von Silicium(Iv)-naltigen vorstufen II
3.1.1	Synthese neutraler pentakoordinierter Chlorohydridosilicium(IV)-Komplexe
	mit einem bidentaten Amidinato-Liganden

	3.1.1.1 Synthese von Verbindung 2 (SiCl ₂ N ₂ H-Gerüst)	. 11
	3.1.1.2Synthese von Verbindung 3 (<i>Si</i> ClN ₃ H-Gerüst)	. 11
	3.1.1.3 Synthese von Verbindung 4 (SiClN ₃ H-Gerüst)	. 12
	3.1.2 Synthese neutraler pentakoordinierter Chlorosilicium(IV)-Komplexe mit	
	einem bidentaten Amidinato-Liganden	. 13
	3.1.2.1 Synthese von Verbindung 5 (<i>Si</i> Cl ₃ N ₂ -Gerüst)	. 13
	3.1.2.2Synthese von Verbindung 6 (SiCl ₂ N ₃ -Gerüst)	. 14
	3.1.2.3 Synthese von Verbindung 7 (SiCl ₂ N ₂ C-Gerüst)	. 14
	3.1.2.4 Synthese von Verbindung 8 (SiCl ₂ N ₂ C-Gerüst)	. 15
	3.1.3 Synthesen neutraler pentakoordinierter Chlorosilicium(IV)-Komplexe mit	
	einem tridentaten N,N',S-Liganden	. 15
	3.1.3.1 Synthese von Verbindung 10 (<i>Si</i> ClSN ₂ C-Gerüst)	. 15
	3.1.3.2Synthese von Verbindung 11 (<i>Si</i> ClSN ₂ C-Gerüst)	. 16
	3.1.3.3 Synthese von Verbindung 12 (<i>Si</i> ClSN ₂ C-Gerüst)	. 17
	3.1.4 Synthese eines neutralen pentakoordinierten Azidosilicium(IV)-Komplexes	
	mit einem tridentaten N,N,O-Liganden — Synthese von Verbindung 15	
	(SiON ₃ C-Gerüst)	. 18
	3.1.5 Synthesen neutraler pentakoordinierter Chalkogenosilicium(IV)-Komplexe	
	mit einem tridentaten N,N',S-Liganden	. 19
	3.1.5.1 Synthese von Verbindung 17 (SiSON ₂ C-Gerüst)	. 19
	3.1.5.2Synthese von Verbindung 18 (SiS ₂ N ₂ C-Gerüst)	. 20
	3.1.5.3 Synthese von Verbindung 19 (SiSeSN ₂ C-Gerüst)	. 20
	3.1.5.4Synthese von Verbindung 20 (SiTeSN ₂ C-Gerüst)	. 21
	3.2 Synthesen neuer neutraler hexakoordinierter Silicium(IV)-Komplexe	
	ausgehend von Silicium(IV)-haltigen Vorstufen	. 22
	3.2.1 Synthesen neutraler hexakoordinierter Chlorohydridosilicium(IV)-Komplexe	
	mit zwei bidentaten Amidinato-Liganden	. 22
	3.2.1.1 Synthese von Verbindung 21 (<i>Si</i> ClN ₄ H-Gerüst)	. 22
	3.2.1.2 Synthese von Verbindung 22 (<i>Si</i> ClN ₄ H-Gerüst)	. 22
	3.2.2 Synthese eines neutralen hexakoordinierten Silicium(IV)-Komplexes mit	
	einem tridentaten N.N.S- und einem bidentaten N.O-Liganden — Synthese	
	von Verbindung 23 (<i>Si</i> SON ₃ C-Gerüst)	. 23
	3.3 Synthesen neuer tri- hzw. tetrakoordinierter Donor-stabilisierter Silvlene	
•	mit bidentaten Amidinato-Liganden	. 24
	2.2.1 Symthese trikeerdinierter Deper stehilicierter Silvlene mit einem hidenteten	
	Amidinate und einem monodontaton Chloro, haw Amido Ligondon	ว 1
	3.3.1.1 Versuch zur Synthese von Verhindung 24 (SiCIN). Cerüst)	· 24 21
	3.3.1.1 versuen zur Synthese von Verbindung 25 (SiN ₂ Cerüst)	. 24 25
	5.5.1.25 ynurese von verondung 25 (Suv3-Oelust)	. 29

	3.3.2 Versuche zur Synthese tetrakoordinierter Donor-stabilisierter Silylene mit	
	zwei bidentaten Amidinato-Liganden	. 26
	3.3.2.1 Versuche zur Synthese von Verbindung 27 (SiN ₄ -Gerüst)	. 26
	3.3.2.2 Versuche zur Synthese von Verbindung 28 (<i>Si</i> N ₄ -Gerüst)	. 26
	3.4 Synthesen von tetrakoordinierten Silicium(II)- sowie tetra- und	
	pentakoordinierten Silicium(IV)-Komplexen ausgehend von dem Donor-	
	stabilisierten Silylen 25	. 27
	3.4.1 Versuche zur Synthese von neutralen tetrakoordinierten Silicium(II)-	
	Komplexen mit einem Amidinato- und einem Amido-Liganden sowie einer	
	Si–B- bzw. Si–Zn-Bindung	. 27
	3.4.1.1 Versuch zur Synthese von Verbindung 29 (<i>Si</i> N ₃ B-Gerüst)	. 27
	3.4.1.2 Versuch zur Synthese von Verbindung 30 (<i>Si</i> N ₃ B-Gerüst)	. 28
	3.4.1.3 Versuche zur Synthese von Verbindung 31 (<i>Si</i> ZnN ₃ -Gerüst)	. 28
	3.4.2 Versuche zur Synthese von neutralen tetrakoordinierten Silicium(II)-	
	Komplexen mit einem Amidinato- und einem Amido-Liganden sowie einer	
	Si–M-Bindung (M = Cr, Mo, W, Fe)	. 29
	3.4.2.1 Versuche zur Synthese der Verbindungen 32–34 ($SiMN_3$ -Gerüste) (M = Cr,	
	Mo, W)	. 29
	3.4.2.2 Synthese von Verbindung 35 (<i>Si</i> FeN ₃ -Gerüst)	. 30
	3.4.3 Synthesen von neutralen tetrakoordinierten Silicium(IV)-Komplexen mit	
	einem mono- bzw. bidentaten Amidinato-Liganden und einer Si=N-	
	Doppelbindung	. 30
	3.4.3.1 Synthese von Verbindung 36 (SiN_4 -Gerüst)	. 30
	3.4.3.2 Synthese von Verbindung 37 (SiN_4 -Gerüst)	. 31
	3.4.3.3 Synthese von Verbindung 38 (<i>Si</i> N ₄ -Gerüst)	. 32
	3.4.4 Synthesen von neutralen tetra- bzw. pentakoordinierten Silicium(IV)-	
	Komplexen mit einem mono- bzw. bidentaten Amidinato-, einem Amido-	
	und einem bzw. zwei Chalkogeno-Liganden	. 33
	3.4.4.1 Synthese von Verbindung 39 ($SiON_3$ -Gerüst)	. 33
	3.4.4.2 Synthese von Verbindung 40 (<i>Si</i> SN ₃ -Gerüst)	. 34
	3.4.4.3 Synthese von Verbindung 41 (<i>Si</i> SeN ₃ -Gerüst)	. 35
	3.4.4.4 Synthese von Verbindung 42 (Si TeN ₃ -Gerüst)	. 35
4	NMR-Untersuchungen	37
	4.1 NMR-Untersuchung der neutralen tri- bzw. tetrakoordinierten	
	Silicium(II)-Komplexe 25 und 35 mit einem Amidinato-Liganden	. 37
	4.1.1 Untersuchung der tri- bzw. tetrakoordinierten Silicium(II)-Komplexe 25 und	
	35 mit Amidinato-Liganden in Lösung	. 37

4.1.2	Untersuchung der tri- bzw. tetrakoordinierten Silicium(II)-Komplexe 25 und				
	35 mit einem Amidinato-Liganden im Festkörper				
4.1.3	Vergleich der ²⁹ Si-chemischen Verschiebungen der tri- bzw.				
	tetrakoordinierten Silicium(II)-Komplexe 25 und 35 mit einem Amidinato-				
	Liganden in Lösung und im Festkörper				
4.2 N	MR-Untersuchung der neutralen tetrakoordinierten Silicium(IV)-				
K	Complexe 36, 37', 38' \cdot C ₆ H ₅ CH ₃ , 40' \cdot C ₆ H ₅ CH ₃ , 41 und 42 mit Amidinato-				
L	iganden				
421	Untersuchung der tetrekoordinierten Silicium(W) Kompleye 36 37				
4.2.1	40 '.C H CH 41 und 42 mit Amidinato Ligandan in Lösung 30 , 37 ,				
122	40 C ₆ H ₅ CH ₃ , 41 und 42 mit Annumato-Liganden in Losung				
4.2.2	38 . C H CH. 40 . C H CH. 41 und 42 mit Amidinato Ligandon im				
	So Centserna, 40 Centserna, 41 unu 42 mit Annumato-Erganden mi				
123	Vergleich der chemischen Verschiebungen der tetrakoordinierten				
4.2.3	Silicium(IV) Kompleye 36 37' 38' C.H.CH. 40' C.H.CH. 41 und 42 mit				
	Amidinato Liganden in Lösung und im Eestkörper				
	Amidinato-Liganden in Losung und im Pestkorper				
4.3 N	MR-Untersuchungen der neutralen pentakoordinierten Silicium(IV)-				
K	Complexe 2–8 und 39' mit einem Amidinato-Liganden				
4.3.1	NMR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplexe 2, 4–7				
	und 39' mit einem Amidinato-Liganden in Lösung				
4.3.2	NMR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplexe 2-8				
	und 39' mit einem Amidinato-Liganden im Festkörper				
4.3.3	Vergleich der chemischen Verschiebungen der pentakoordinierten				
	Silicium(IV)-Komplexe 2-8 und 39' mit einem Amidinato-Liganden in				
	Lösung und im Festkörper				
4.4 N	MR-Untersuchungen der neutralen pentakoordinierten Silicium(IV)-				
K	tomplexe $10.5C_6H_5CH_3$, 11, 12 und 17–20 mit einem N,N',S-Liganden				
SC	owie 15 mit einem <i>N</i> , <i>N</i> ', <i>O</i> -Liganden44				
4.4.1	NMR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplexe				
	10 ·0.5C ₆ H ₅ CH ₃ , 11 , 12 und 17–20 mit einem <i>N</i> , <i>N</i> ', <i>S</i> -Liganden sowie 15 mit				
	einem <i>N</i> , <i>N</i> ', <i>O</i> -Liganden in Lösung				
4.4.2	NMR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplexe				
	10 ·0.5C ₆ H ₅ CH ₃ , 11 , 12 und 17–20 mit einem <i>N</i> , <i>N</i> ', <i>S</i> -Liganden sowie 15 mit				
	einem <i>N</i> , <i>N</i> ', <i>O</i> -Liganden im Festkörper				
4.4.3	Vergleich der chemischen Verschiebungen der pentakoordinierten				
	Silicium(IV)-Komplexe $10.0.5C_6H_5CH_3$, 11, 12 und 17–20 mit einem N,N',S-				
	Liganden sowie 15 mit einem <i>N</i> , <i>N</i> ', <i>O</i> -Liganden im Festkörper				

	4.5	NMR-Untersuchungen der neutralen hexakoordinierten Silicium(IV)-	
		Komplexe 21 und 22 mit zwei Amidinato-Liganden	. 48
	4.5.1	NMR-Untersuchungen der hexakoordinierten Silicium(IV)-Komplexe 21 und	
		22 mit zwei Amidinato-Liganden in Lösung	. 49
	4.5.2	2 NMR-Untersuchungen der hexakoordinierten Silicium(IV)-Komplexe 21 und	
		22 mit zwei Amidinato-Liganden im Festkörper	. 49
	4.5.3	³ Vergleich der chemischen Verschiebungen der hexakoordinierten	
		Silicium(IV)-Komplexe 21 und 22 mit zwei Amidinato-Liganden in Lösung	
		und im Festkörper	. 50
5	Kri	stallstrukturanalysen	.52
	5.1	Allgemeine Bemerkungen	. 52
	52	Kristallstrukturen	53
	5.2		
	5.2.	Kristallstruktur von 1.2El ₂ O	. 55
	5.2.2	Chlorohydridosilisiym(W) Kompleya mit sinom bidantatan Amidinata	
		Ligenden	51
	5.2	Liganden	. 54 54
	5.2.2	2.7 Kristallstruktur von 2	56
	5.2.2	2 3Kristallstruktur von 4	. 57
	5.2.3	3 Kristallstrukturen der neutralen pentakoordinierten Chlorosilicium(IV)-	
		Komplexe mit einem bidentaten Amidinato-Liganden	. 58
	5.2.3	3.1 Kristallstruktur von 5	. 58
	5.2.3	3.2Kristallstruktur von 6	. 60
	5.2.3	3.3Kristallstruktur von 7	. 61
	5.2.3	3.4Kristallstruktur von 8	. 63
	5.2.4	Kristallstrukturen der neutralen pentakoordinierten Chlorosilicium(IV)-	
		Komplexe mit einem tridentaten N,N',S- und einem Phenyl- bzw. Methyl-	
		Liganden	. 64
	5.2.4	1.1 Kristallstruktur von $10.0.5C_6H_5CH_3$. 64
	5.2.4	1.2 Kristallstruktur von 11	. 65
	5.2.4	1.3Kristallstruktur von 12	. 66
	5.2.5	Kristallstruktur des Azidosilicium(IV)-Komplexes 15	. 67
	5.2.6	5 Kristallstrukturen der neutralen pentakoordinierten Chalkogenosilicium(IV)-	
		Komplexe mit einem tridentaten <i>N</i> , <i>N</i> ', <i>S</i> -Liganden	. 68
	5.2.6	5.1 Kristallstruktur von 17	. 68
	5.2.6	5.2Kristallstruktur von 18	. 69
	5.2.6	5.3 Kristallstruktur von 19	. 70
	5.2.6	0.4 Kristallstruktur von 20	. 71

5.2.7	Kristallstrukturen	der	neutralen	hexak	coordinierten	
	Chlorohydridosilicium(IV)-Komplexe	mit zwei	bidentaten	Amidinato-	
	Liganden				••••••	. 73
5.2.7.	.1 Kristallstruktur von 21				••••••	. 73
5.2.7.	.2 Kristallstruktur von 22				••••••	. 74
5.2.8	Kristallstruktur des neu	ıtralen hexakoo	ordinierten S	ilicium(IV)-K	omplexes 23	
	mit einem tridentaten Λ	,N',S- und eine	m bidentaten	N,O-Ligande	n	. 75
5.2.9	Kristallstruktur des tr	ikoordinierten	Donor-stabi	lisierten Sily	lens 25 mit	
	einem bidentaten Amid	inato und einen	n monodenta	ten Amido-Li	ganden	. 77
5.2.10	0 Kristallstruktur des ne	utralen tetrakoo	ordinierten S	Silicium(II)-Ko	omplexes 35	
	mit einem Amidinato	- und einem	Amido-Liga	nden sowie	einer Si-Fe-	
	Bindung					. 78
5.2.1	1 Kristallstrukturen der	neutralen tetra	akoordinierte	en Silicium(IV	/)-Komplexe	
	mit einem mono- bzw	v. bidentaten A	Amidinato-L	iganden und	einer Si=N-	
	Doppel- und Si-N-Einf	achbindung bzv	w. zwei Si–N	-Einfachbind	ungen	. 80
5.2.1	1.1 Kristallstruktur v	on 36			••••••	. 80
5.2.1	1.2 Kristallstruktur v	on 37'		•••••	••••••	. 81
5.2.1	1.3 Kristallstruktur v	on 38' · C_6H_5CH	I ₃		•••••	. 83
5.2.12	2 Kristallstrukturen der 1	eutralen tetra-	bzw. pentak	oordinierten	Silicium(IV)-	
	Komplexe mit einem	Amidinato, et	inem Amido	o- und einen	ı oder zwei	
	Chalkogeno-Liganden.					. 84
5.2.12	2.1 Kristallstruktur v	on 39'				. 84
5.2.12	2.2 Kristallstruktur v	on $40' \cdot C_6 H_5 CH$	I ₃		•••••	. 86
5.2.12	2.3 Kristallstruktur v	on 41				. 87
5.2.12	2.4 Kristallstruktur v	on 42			•••••	. 88
5.3 V	/ergleich der Molekülst	rukturen		••••••	•••••	. 90
5.3.1	Vergleich der neu	tralen pentak	oordinierten	Chlorohyd	rido- bzw.	
	Chlorosilicium(IV)-Kor	nplexe mit eine	em bidentater	n Amidinato-I		. 90
5.3.2	Vergleich der r	eutralen pe	entakoordinie	erten Chlo	oro- bzw.	
	Chalkogenosilicium(IV))-Komplexe mi	t einem tride	ntaten N,N',S-	Liganden	. 92
5.3.3	Vergleich der neutr	alen hexakoor	rdinierten (Chlorohydrido	silicium(IV)-	
	Komplexe mit zwei bid	entaten Amidir	nato-Ligande	n	•••••	. 94
5.3.4	Vergleich der neutraler	ı tetrakoordinie	rten Siliciun	n(IV)-Komplex	ke mit einem	
	mono- bzw. bidentater	n Amidinato-Li	iganden und	einer Si=N-	Doppel- und	
	Si–N- Einfachbindung	bzw. zwei Si–N	I-Einfachbin	dungen		. 95
5.3.5	Vergleich der neutra	len tetra- bz	w. pentako	ordinierten	Silicium(IV)-	
	Komplexe mit einem	Amidinato-, e	einem Amid	o- und einen	n oder zwei	
	Chalkogeno-Liganden.					. 95
Zusa	ammenfassung		•••••			. 98
	0					

7	Summary	
8	Experimenteller Teil	
	8.1 Arbeits- und Messtechniken	
	8.1.1 Allgemeine Arbeitstechniken	
	8.1.2 Messtechniken	
	8.2 Synthesen	
9	Literaturverzeichnis und Anmerkungen	
A	nhang A: Daten zu den Kristallstrukturanalysen	147
A	nhang B: Formelregister	
D	anksagung	

1 Einleitung

Das Element Silicium wird wie sein Gruppenhomologes Kohlenstoff der vierten Hauptgruppe des Periodensystems zugeordnet. Somit ergeben sich viele ähnliche physikalische und chemische Eigenschaften, wie beispielsweise die Anzahl der Valenzelektronen (C: 2s²2p²; Si: die in stabilen Verbindungen von beiden Elementen bevorzugte $3s^2 3p^2$) und Koordinationszahl vier in der Oxidationsstufe +IV. Da Silicium aber ein Element der dritten Periode ist, existieren neben den Gemeinsamkeiten auch bedeutende Unterschiede, welche aus den unterschiedlichen Elektronegativitäten, Atomradien und der energetischen Lage der sund p-Orbitale zueinander resultieren. Während Kohlenstoff eine Vielzahl von Verbindungen mit den Koordinationszahlen zwei (z. B.: Alkine, Carbene) und drei (z. B.: Alkene, Aromaten, Carbonyle) realisiert, sind Verbindungen des Siliciums mit Koordinationszahlen kleiner als vier (z. B.: Silylene, Siline (KZ = 2); Silene, Disilene (KZ = 3)) weitaus seltener. So sind niedervalente Silicium-Spezies, vergleichbar den Carbenen, meist hochreaktive, kurzlebige Verbindungen, die lange Zeit nur durch indirekte Nachweismethoden spektroskopisch greifbar waren. Seit einiger Zeit gewinnt diese Verbindungsklasse aber immer mehr an Bedeutung und steht nun durch ihr mannigfaltiges Reaktivitätsspektrum im aktuellen wissenschaftlichen Forschungsinteresse.^[1,2] Ziel dabei war und ist zunächst die Stabilisierung solcher Verbindungen einerseits durch elektronische Effekte von Elektronen-Donor- bzw. -Akzeptor-Substituenten (z. B. I^[2a]) oder andererseits durch sterische Effekte von sterisch anspruchsvollen Substituenten (z. B. **II**^[2g]). Desweiteren rückt die systematische Erforschung des Reaktionspotentials dieser Verbindungsklasse immer weiter in den Fokus wissenschaftlicher Arbeiten und lässt auf vielfältige Anwendungen in den verschiedensten Bereichen der synthetischen Chemie, wie beispielsweise in der Katalyse hoffen.^[1,3] Hierbei werden seit einiger Zeit vor allem höherkoordinierte Donor-stabilisierte Amidinatosubstituierte Silicium(II)-Komplexe (KZ \geq 3) (z. B. III^[4a] und IV^[4n]) intensiver untersucht.^[4,5]

Während höherkoordinierte Kohlenstoff-Verbindungen meist nur als Übergangszustände durchlaufen werden, sind zahlreiche stabile Verbindungen des Siliciums mit den Koordinationszahlen fünf und sechs bekannt.^[6–9] Vor allem durch kleine, stark elektronegative Ligandatome wie Stickstoff, Sauerstoff oder Fluor (z. B. $V^{[7]}$) wird die Ausbildung der Höherkoordination am Silicium-Zentrum begünstigt. Mittlerweile ist aber durchaus eine ganze Reihe penta- und hexakoordinierter Silicium(IV)-Komplexe mit weichen Ligandatomen, wie z. B. Schwefel, Selen oder sogar Tellur ($VI^{[9h]}$), bekannt und bieten ganz neue Perspektiven auf diesem Forschungsgebiet.^[9b,k,m,p]

Allgemein können höherkoordinierte Silicium-Verbindungen in drei verschiedene Kategorien unterteilt werden: Kationische (z. B. $VIII^{[8c]}$), anionische (z. B. $V^{[7]}$) und neutrale Komplexe (z. B. $VIII^{[9p]}$); zu letzteren werden auch zwitterionische Komplexe (z. B. $IX^{[9c]}$) gezählt.^[8,9]

Durch systematisches Studium der Synthese, der Struktur und der charakteristischen Eigenschaften penta- und hexakoordinierter Silicium(IV)-Komplexe können zum einen die Reaktivitäten und zum anderen die Bindungssituationen in diesen Systemen besser verstanden und im Idealfall vorhergesagt werden.

Desweiteren werden Verbindungen des höherkoordinierten Siliciums als Modellsysteme für Substitutionsreaktionen an Silicium-Zentren herangezogen.^[6a] Die dabei gewonnenen Resultate spielen auch für die Untersuchung von Substitutionsreaktionen an Kohlenstoff-Zentren eine wichtige Rolle, weil die dabei auftretenden Zwischenstufen meist nicht greifbare Übergangszustände darstellen.^[10]

Auch als reaktive Einheiten in C–C-Bindungsknüpfungsreaktionen in der organischen Synthese oder als Pharmaka in der photodynamischen Tumortherapie spielen höherkoordinierte Silicium(IV)-Komplexe eine Rolle.^[11,12]

Zu dem werden höherkoordinierte Silicium(IV)-Verbindungen im Zusammenhang mit den bislang ungeklärten Transport- und Speicherprozessen in der SiO₂-Biomineralisation in Pflanzen (z. B. Schachtelhalme) und marinen Organismen (z. B. Kieselalgen und Schwämme) diskutiert.^[13]

2 Zielsetzung

2.1 Neutrale pentakoordinierte Silicium(IV)-Komplexe

2.1.1 Neutrale pentakoordinierte Chlorohydridosilicium(IV)-Komplexe mit einem bidentaten Amidinato-Liganden

Aufbauend auf vorangegangene Arbeiten unseres Arbeitskreises über hexakoordinierte Silicium(IV)-Komplexe mit zwei bidentaten monoanionischen Amidinato-, einem monodentaten Halogeno- und einem monodentaten Hydrido-Liganden^[4n,5r] sollten im Rahmen dieser Arbeit neue neutrale pentakoordinierte Chlorohydridosilicium(IV)-Verbindungen des Formeltyps **A** synthetisiert und hinsichtlich ihrer Reaktivität, Struktur und Eigenschaften untersucht werden. Besonders im Hinblick auf eine potentielle baseninduzierte Chlorwasserstoff-Abspaltung stellt diese Verbindungsklasse eine reizvolle Vorstufe für die Synthese neuartiger Donor-stabilisierter Silicium(II)-Verbindungen dar.

2.1.2 Neutrale pentakoordinierte Chlorosilicium(IV)-Komplexe mit einem bidentaten Amidinato-Liganden

Desweiteren sollten die mit Verbindungen des Typs **B** verwandten Chlorosilicium(IV)-Verbindungen des Formeltyps **B** dargestellt und charakterisiert werden. Wegen der möglichen Reduktion dieser Verbindungen durch Umsetzung mit Alkalimetallen stellt diese Verbindungsklasse ebenfalls eine reizvolle Vorstufe für die Synthese neuartiger Donorstabilisierter Silicium(II)-Verbindungen dar.

2.1.3 Neutrale pentakoordinierte Chlorosilicium(IV)-Komplexe mit einem tridentaten N,N',S- und einem Alkyl- bzw. Aryl-Liganden

Bereits im Vorfeld dieser Arbeit wurden der neutrale pentakoordinierte Chlorosilicium(IV)-Komplex **VIII** mit einem dianionischen tridentaten N,N',S-Ligandsystem sowie sein N,N',O-Analogon synthetisiert, strukturell charakterisiert und vergleichend untersucht (formaler O/S-Austausch).^[9p,14] Da sich derartige Verbindungen als sehr geeignete Edukte für Substitutionsreaktionen an der reaktiven Si–Cl-Bindung erwiesen haben, sollten nun weitere analoge pentakoordinierte Chlorosilicium(IV)-Komplexe des Formeltyps **C** mit unterschiedlichem sterischen und elektronischen Anspruch des organischen Rests an der fünften Koordinationsstelle des Silicium-Atoms synthetisiert und hinsichtlich ihrer Struktur und Reaktivität untersucht werden.

Ausgehend von diesem Strukturtyp können zum einem durch den Austausch des Chloro-Substituenten weitere neue neutrale pentakoordinierte Silicium(IV)-Komplexe synthetisiert und zum anderen durch die verbleibende freie Koordinationsstelle am Silicium-Zentrum anhand von Umsetzung mit bidentaten Substituenten auch neuartige neutrale hexakoordinierte Silicium(IV)-Komplexe dargestellt werden.

2.1.4 Neutrale pentakoordinierte Chalkogenosilicium(IV)-Komplexe mit einem tridentaten *N*,*N*',*S*-Liganden

Ein weiteres Ziel dieser Arbeit bestand darin, ausgehend von dem entsprechenden Chloromethylsilicium(IV)-Komplex des Typs C durch Substitutionsreaktionen an der reaktiven Si–Cl-Bindung Verbindungen des Formeltyps D darzustellen und zu charakterisieren. Dabei sollte der Vergleich der Verbindungen mit harten und weichen Substituenten am Silicium-Atom, hier in Form von PhX-Liganden (O, S, Se, Te), im Vordergrund stehen.^[9h,v] Vor allem höherkoordinierte Silicium(IV)-Verbindungen mit einer

stabilen Si-Te-Bindung sind dabei aufgrund ihrer Seltenheit von großem Interesse (siehe hierzu Lit. [9h] und [9p]).

2.2 Neutrale hexakoordinierte Silicium(IV)-Komplexe

2.2.1 Neutrale hexakoordinierte Chlorohydridosilicium(IV)-Komplexe mit zwei bidentaten Amidinato-Liganden

In Anlehnung an die Darstellung pentakoordinierter Chlorohydridosilicium(IV)-Komplexe mit einem monoanionischen bidentaten Amidinato-Liganden (siehe hierzu Kapitel 2.1.1) bzw. vorangegangene Arbeiten unseres Arbeitskreises zu hexakoordinierten Silicium(IV)-Komplexen des Formeltyps **E** ($\mathbf{R}^1 = i\mathbf{Pr}, \mathbf{R}^2 = \mathbf{Ph}; \mathbf{R}^1 = i\mathbf{Pr}, \mathbf{R}^2 = \mathbf{N}i\mathbf{Pr}_2$),^[4n,5r] sollten weitere Vertreter dieses Typs ($\mathbf{R}^1 = i\mathbf{Pr}, \mathbf{R}^2 = \mathbf{C}_6\mathbf{F}_5$; $\mathbf{R}^1 = \mathrm{SiMe}_3, \mathbf{R}^2 = \mathbf{Ph}$) dargestellt und bezüglich ihrer Struktur, Reaktivität und Eigenschaften untersucht werden.

Die reduktive Abspaltung von Chlorwasserstoff vom Silicium-Koordinationszentrum dieser Verbindungen zur Darstellung neuer Donor-stabilisierter Silylene war ein wesentliches Ziel dieser Arbeit.^[4n,5r]

2.2.2 Neutrale hexakoordinierte Silicium(IV)-Komplexe mit einem tridentaten *N*,*N*',*S*und einem bidentaten *N*,*X*-Liganden (X = O, S, Se)

Desweiteren sollten, ausgehend von neutralen pentakoordinierten Chlorosilicium(IV)-Komplexen des Formeltyps **C**, die entsprechenden hexakoordinierten Silicium(IV)-Komplexe des Formeltyps **F** durch Einführung bidentater monoanionischer Liganden dargestellt und charakterisiert werden. Im Vordergrund dieser Untersuchungen stand die Fragestellung, inwieweit weiche Ligandatome in der Silicium-Koordinationssphäre toleriert werden.

2.3 Darstellung und Charakterisierung tri- bzw. tetrakoordinierter Donorstabilisierter Silylene mit bidentaten Amidinato-Liganden

2.3.1 Darstellung trikoordinierter Donor-stabilisierten Silylene mit einem bidentaten Amidinato und einem monodentaten Chloro- bzw. Amido-Liganden

Alternativ zur obenerwähnten Darstellung Donor-stabilisierter Silylene mittels reduktiver Chlorwasserstoff-Abspaltung war es ein weiteres Ziel dieser Arbeit, einen alternativen Syntheseweg über eine Reduktionsreaktion mit Alkalimetallen zu untersuchen. Ausgehend von den entsprechenden pentakoordinierten Silicium(IV)-Komplexen des Typs **B** sollten Donor-stabilisierte Silylene des Formeltyps **G** synthetisiert und hinsichtlich ihrerReaktivität untersucht werden.

2.3.2 Darstellung eines tetrakoordinierten Donor-stabilisierten Silylens mit zwei bidentaten Amidinato-Liganden

Ein weiteres Ziel dieser Arbeit war es, neuartige Donor-stabilisierte Silicium(II)-Verbindungen des Formeltyps **H** darzustellen und deren Reaktivität zu untersuchen. Die Synthese dieser Verbindungen sollte, aufbauend auf frühere Arbeit unseres Arbeitskreises, durch eine reduktive Abspaltung von Chlorwasserstoff ausgehend von entsprechenden hexakoordinierten Silicium(IV)-Komplexen des Typs **E** realisiert werden (siehe hierzu Lit. [4n] und [5r]).

2.4 Untersuchung der Reaktivität sowie der strukturellen und spektroskopischen Eigenschaften der tri- bzw. tetrakoordinierten Donor-stabilisierten Silylene

Schon in der Vergangenheit wurde auf das hochinteressante und vielfältige Reaktivitätsprofil Donor-stabilisierter Silylene aufmerksam gemacht.^[1,2,4,5] Dieses ermöglicht Lewis-Säure/Base-, nukleophile Substitutions- und oxidative Additions-Reaktionen. Darauf aufbauend sollten die im Rahmen dieserArbeit dargestellten Silylene diesbezüglich untersucht und die in diesen Reaktionen erhaltenen Produkte strukturell wie spektroskopisch charakterisiert werden.

2.4.1 Lewis-Säure/Base-Reaktionen der Donor-stabilisierten Silylene des Typs G

Die trikoordinierten Donor-stabilisierten Silylene des Formeltyps **G** sollten mit Lewis-Säuren, wie z. B. Triorganylboranen und Zinkdichlorid, im Sinne einer Lewis-Säure/Base-Reaktion umgesetzt werden. Die dabei entstandenen tetrakoordinierten Addukte des Formeltyps **I** sollten dann strukturell und spektroskopisch charakterisiert werden.^[15]

2.4.2 Nukleophile Substitutionsreaktionen der Donor-stabilisierten Silylene des Typs G

Desweiteren sollten die Donor-stabilisierten Silylene als Nukleophil in Substitutionsreaktionen mit Übergangsmetallcarbonyl-Komplexen der Gruppe 6 (Cr, Mo, W) und des Eisens eingesetzt werden (siehe hierzu Lit. [16–18]). Durch Substitution eines der Carbonyl-Liganden sollten so tetrakoordinierte Silicium(II)-Verbindungen des Formeltyps **J** mit einer Si–M-Bindung (M = Cr, Mo, W, Fe) entstehen.

2.4.3 Oxidative Additionsreaktionen der Donor-stabilisierten Silylene des Typs G

Oxidative Additionsreaktionen an Silylenen stellen den am intensivsten untersuchten Reaktionstyp dar. Daher galt es, auch mit den Donor-stabilisierten Silylenen des Typs **G** entsprechende Reaktionen mit den elementaren Chalkogenen Sauerstoff, Schwefel, Selen und Tellur durchzuführen, welche zu neutralen pentakoordinierten Silicium(IV)-Komplexen des Formeltyps **K** mit einer Si=El-Doppelbindung (El = O, S, Se, Te) führen sollten. Die resultierenden Verbindungen sollten hinsichtlich ihrer strukturellen und spektroskopischen Eigenschaften untersucht werden (siehe hierzu Lit. [19] und [20]).

Desweiteren sollten **G** in oxidativen Additionsreaktionen mit verschiedenen Aziden, wie z. B. Azidotrimethylsilan, tetrakoordinierte Silicium(IV)-Verbindungen mit einer Si=N-

Doppelbindung des Formeltyps L unter Abspaltung von elementarem Stickstoff dargestellt und charakterisiert werden (siehe hierzu Lit. [21]).

3 Synthesen

3.1 Synthesen neuer neutraler pentakoordinierter Silicium(IV)-Komplexe ausgehend von Silicium(IV)-haltigen Vorstufen

3.1.1 Synthese neutraler pentakoordinierter Chlorohydridosilicium(IV)-Komplexe mit einem bidentaten Amidinato-Liganden

3.1.1.1 Synthese von Verbindung 2 (SiCl₂N₂H-Gerüst)

Der pentakoordinierte Silicium(IV)-Komplex 2 wurde durch Umsetzung von Trichlorsilan mit Lithium-*N*,*N*'-diisopropylphenylbenzamidinat (1) gemäß Schema 3.1 dargestellt.

Hierzu wurde zunächst *N*,*N*'-Diisopropylphenylcarbodiimid mit einem Moläquivalent *n*-Phenyllithium bei –78 °C in Diethylether umgesetzt.^[9z] Das so gebildete Lithiumamidinat **1** wurde dann direkt bei –40 °C mit einem Moläquivalent Trichlorsilan versetzt. Zur Isolierung des bei Produktes wurden die flüchtigen Bestandteile im Vakuum entfernt, und der Rückstand wurde mit Dichlormethan versetzt, das ausgefallene Lithiumchlorid abfiltriert und das Lösungsmittel des Filtrats im Vakuum entfernt. Der feste Rückstand wurde aus Dichlormethan kristallisiert und **2** in einer Ausbeute von 85% als farbloser kristalliner Feststoff isoliert. Die Identität von **1**·2Et₂O wurde durch Kristallstrukturanalyse sichergestellt. Die Identität von **2** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C-, ²⁹Si-NMR) und im Festkörper (¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.1.1.2 Synthese von Verbindung 3 (SiClN₃H-Gerüst)

Die Umsetzung von Verbindung 2 gemäß Schema 3.2 mit einem Moläquivalent Lithiumdimethylamid in Toluol bei 20 °C führte nicht wie erwartet zu einer reduktiven Chlorwasserstoff-Eliminierung, sondern unter Substitution eines Chloro-Liganden durch einen Dimethylamido-Liganden zum pentakoordinierten Silicium(IV)-Komplex **3**.

Schema 3.2

Das bei der Reaktion gebildete Lithiumchlorid wurde durch Filtration und das Lösungsmittel des Filtrats im Vakuum entfernt. Der feste Rückstand wurde aus Acetonitril kristallisiert und **3** in einer Ausbeute von 85% als farbloser kristalliner Feststoff isoliert. Die Identität von **3** wurde durch NMR-Spektroskopie im Festkörper (¹⁵N- und ²⁹Si-VACP/MAS-NMR), Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt. Eine NMR-spektroskopische Charakterisierung in Lösung war aufgrund der schlechten Löslichkeit von **3** in allen gängigen deuterierten organischen Lösungsmittel (auch bei höheren Temperaturen) nicht möglich.

3.1.1.3 Synthese von Verbindung 4 (SiClN₃H-Gerüst)

Die Umsetzung von Verbindung 2 gemäß Schema 3.3 mit einem Moläquivalent Kaliumbis(trimethylsilyl)amid in Toluol bei 20 °C führte auch hier zur Substitution eines Chloro-Liganden durch einen Bis(trimethylsilyl)amido-Liganden zum pentakoordinierten Silicium(IV)-Komplex 4. Der höhere sterische Anspruch der Amid-Base, welcher den beiden Trimethylsilyl-Gruppen geschuldet ist, hätte eine bevorzugte reduktive Chlorwasserstoff-Eliminierung zum entsprechenden trikoordinierten Silylen anstelle einer Substitutionreaktion erwarten lassen.

Das bei der Reaktion gebildete Kaliumchlorid wurde durch Filtration und das Lösungsmittel des Filtrats im Vakuum entfernt. Der feste Rückstand wurde aus Benzol kristallisiert und **4** in einer Ausbeute von 53% als farbloser kristalliner Feststoff isoliert.

Die Identität von **4** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.1.2 Synthese neutraler pentakoordinierter Chlorosilicium(IV)-Komplexe mit einem bidentaten Amidinato-Liganden

3.1.2.1 Synthese von Verbindung 5 (SiCl₃N₂-Gerüst)

Die Umsetzung von Verbindung 1 gemäß Schema 3.4 mit einem Moläquivalent Tetrachlorsilan in Diethylether bei –40 °C führte zur Bildung des neutralen pentakoordinierten Silicium(IV)-Komplexes 5.

Zur Isolierung des Produktes wurden die flüchtigen Bestandteile im Vakuum entfernt, und der Rückstand wurde mit Dichlormethan versetzt, das ausgafallene Lithiumchlorid abfiltriert und das Lösungsmittel des Filtrats im Vakuum entfernt. Der feste Rückstand wurde dann aus Dichlormethan kristallisiert und **5** in einer Ausbeute von 89% als farbloser kristalliner Feststoff isoliert. Die Identität von **5** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.1.2.2 Synthese von Verbindung 6 (SiCl₂N₃-Gerüst)

Die Umsetzung von Verbindung **5** gemäß Schema 3.5 mit einem Moläquivalent Lithiumdimethylamid in Toluol bei 20°C führte zur Bildung des neutralen pentakoordinierten Silicium(IV)-Komplexes **6**.

Zur Isolierung des Produktes wurden die flüchtigen Bestandteile im Vakuum entfernt, und der Rückstand wurde mit Dichlormethan versetzt, das ausgefallene Lithiumchlorid abfiltriert und das Lösungsmittel des Filtrats im Vakuum entfernt. Der feste Rückstand wurde dann aus Acetonitril kristallisiert und **6** in einer Ausbeute von 83% als farbloser kristalliner Feststoff isoliert. Die Identität von **6** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.1.2.3 Synthese von Verbindung 7 (SiCl₂N₂C-Gerüst)

Die Umsetzung von Verbindung **1** gemäß Schema 3.6 mit einem Moläquivalent Trichlormethylsilan in Diethylether bei –40 °C führte zur Bildung des neutralen pentakoordinierten Silicium(IV)-Komplexes **7**.

Zur Isolierung des Produktes wurden die flüchtigen Bestandteile im Vakuum entfernt, der Rückstand wurde mit Dichlormethan versetzt, das ausgefallene Lithiumchlorid abfiltriert und das Lösungsmittel des Filtrats im Vakuum entfernt. Der feste Rückstand wurde dann aus Dichlormethan kristallisiert und **7** in einer Ausbeute von 73% als farbloser kristalliner Feststoff isoliert. Die Identität von 7 wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³Cund ²⁹Si-NMR) und im Festkörper (¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.1.2.4 Synthese von Verbindung 8 (SiCl₂N₂C-Gerüst)

Die Umsetzung von Verbindung 1 gemäß Schema 3.7 mit einem Moläquivalent Trichlorphenylsilan in Diethylether bei –40 °C führte zur Bildung des neutralen pentakoordinierten Silicium(IV)-Komplexes 8.

Zur Isolierung des Produktes wurden die flüchtigen Bestandteile im Vakuum entfernt, und der Rückstand wurde mit Dichlormethan versetzt, das ausgefallene Lithiumchlorid abfiltriert und das Lösungsmittel des Filtrats im Vakuum entfernt. Der feste Rückstand wurde dann aus Dichlormethan kristallisiert und **8** in einer Ausbeute von 64% als farbloser kristalliner Feststoff isoliert. Die Identität von **8** wurde durch NMR-Spektroskopie im Festkörper (¹⁵N-und ²⁹Si-VACP/MAS-NMR), Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt. Eine NMR-spektroskopische Charakterisierung in Lösung war aufgrund der schlechten Löslichkeit von **8** in allen gängigen deuterierten organischen Lösungsmittel (auch bei höheren Temperaturen) nicht möglich.

3.1.3 Synthesen neutraler pentakoordinierter Chlorosilicium(IV)-Komplexe mit einem tridentaten *N*,*N*',*S*-Liganden

3.1.3.1 Synthese von Verbindung 10 (SiClSN₂C-Gerüst)

Der pentakoordinierte Silicium(IV)-Komplex **10** wurde gemäß Schema 3.8 dargestellt.^[9p] Dazu wurde zunächst der tridentate *N*,*N*',*S*-Präligand **9** durch eine zweistufige Synthese in Anlehnung an Lit. [22] und [23] gewonnen. So führte die Umsetzung von 2-Aminothiophenol mit einem Moläquivalent Pyridincaboxaldehyd in Methanol in der Siedehitze zur Bildung von 2-((Pyridin-2-yl)methylimino)thiophenol. Dieses wurde dann ohne weitere Aufreinigung bei 20 °C mit 20 Moläquivalenten Natriumborhydrid umgesetzt. Zur Isolierung des Produktes wurden die flüchtigen Bestandteile im Vakuum entfernt, und der Rückstand wurde mit Wasser versetzt und die resultierende Lösung mit konzentrierter Essigsäure neutralisiert. Nach Extraktion der wässrigen Phase mit Dichlormethan und Entfernen des Lösungsmittels im Vakuum verblieb 2-((Pyridin-2-yl)methylamino)thiophenol (**9**) in 92%-iger Ausbeute in Form eines dunkelgrünen, zähen Öls.

Die Umsetzung von Trichlorphenylsilan mit einem Moläquivalent **9** und zwei Moläquivalenten Triethylamin in Tetrahydrofuran bei 20 °C gemäß Schema 3.8 führte zur Bildung des neutralen pentakoordinierten Silicium(IV)-Komplexes **10**.

Das bei der Reaktion gebildete Triethylammoniumchlorid wurde durch Filtration entfernt, das Lösungsmittel des Filtrats im Vakuum entfernt und der feste Rückstand aus Toluol kristallisiert. Dabei wurde **10** als das Hemitoluol-Solvat **10**·0.5C₆H₅CH₃ in einer Ausbeute von 54% als gelber kristalliner Feststoff isoliert. Die Identität von **10**·0.5C₆H₅CH₃ wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N, S) und Kristallstrukturanalyse sichergestellt.

3.1.3.2 Synthese von Verbindung 11 (SiClSN₂C-Gerüst)

Der pentakoordinierte Silicium(IV)-Komplex **11** wurde in Analogie zur Synthese von Verbindung $10.0.5C_6H_5CH_3$ gemäß Schema 3.9 dargestellt.^[9p] Dazu wurde Trichlormethylsilan mit einem Moläquivalent **9** und zwei Moläquivalenten Triethylamin in Tetrahydrofuran bei 20 °C umgesetzt.

Das bei der Reaktion gebildete Triethylammoniumchlorid wurde durch Filtration entfernt und das Lösungsmittel des Filtrats im Vakuum entfernt. Der feste Rückstand wurde dann aus Acetonitril kristallisiert und **11** in einer Ausbeute von 50% als gelber kristalliner Feststoff isoliert. Die Identität von **11** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N, S) und Kristallstrukturanalyse sichergestellt.

3.1.3.3 Synthese von Verbindung 12 (SiClSN₂C-Gerüst)

Der pentakoordinierte Silicium(IV)-Komplex **12** wurde in Analogie zur Synthese von Verbindung **10**·0.5C₆H₅CH₃ gemäß Schema 3.10 dargestellt werden.^[9p] Dazu wurde Trichlor(pentafluorphenyl)silan^[24] mit einem Moläquivalent **9** und zwei Moläquivalenten Triethylamin in Tetrahydrofuran bei 20 °C umgesetzt.

Das bei der Reaktion gebildete Triethylammoniumchlorid wurde durch Filtration entfernt und das Lösungsmittel des Filtrats im Vakuum entfernt. Der feste Rückstand wurde dann aus Acetonitril kristallisiert und **12** in einer Ausbeute von 65% als gelber kristalliner Feststoff isoliert. Die Identität von **12** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N, S) und Kristallstrukturanalyse sichergestellt.

3.1.4 Synthese eines neutralen pentakoordinierten Azidosilicium(IV)-Komplexes mit einem tridentaten N,N',O-Liganden — Synthese von Verbindung 15 (SiON₃C-Gerüst)

In Analogie zu Verbindung $10.0.5C_6H_5CH_3$ wurde gemäß Schema 3.11 der entsprechende pentakoordinierte Silicium(IV)-Komplex 15 dargestellt. Dazu wurde zunächst der analoge tridentate *N*,*N'*,*O*-Präligand 13 durch eine zweistufige Synthese gemäß Lit. [14] gewonnen. Die Umsetzung von Trichlorphenylsilan mit einem Moläquivalent 13 und zwei Moläquivalenten Triethylamin in Tetrahydrofuran bei 20 °C führte dann zur Bildung des neutralen pentakoordinierten Silicium(IV)-Komplexes 14.CH₃CN.^[14]

Anschließend wurde 14 gemäß Schema 3.11 mittels einer Transsilylierungsreaktion mit einem Moläquivalent Azidotrimethylsilan in Acetonitril bei 20 °C umgesetzt. Die flüchtigen Bestandteile der resultierenden Reaktionsmischung wurden im Vakuum entfernt, der feste Rückstand aus Acetonitril kristallisiert und 15 in einer Ausbeute von 80% als gelber kristalliner Feststoff isoliert.

Die Identität von **15** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.1.5 Synthesen neutraler pentakoordinierter Chalkogenosilicium(IV)-Komplexe mit einem tridentaten *N*,*N*',*S*-Liganden

3.1.5.1 Synthese von Verbindung 17 (SiSON₂C-Gerüst)

Zur Darstellung des neutralen pentakoordinierten Silicium(IV)-Komplexes **17** wurde zunächst Dichlormethylphenoxysilan (**16**) durch Umsetzung von Triethylamin mit je einem Moläquivalent Phenol und Trichlormethylsilan in Tetrahydrofuran bei –40 °C gemäß Schema 3.12 gewonnen.

Das bei der Reaktion gebildete Triethylammoniumchlorid wurde durch Filtration abgetrennt, das Lösungsmittel des Filtrats bei Normaldruck entfernt und **16** in einer Ausbeute von 33% als farblose Flüssigkeit durch Destillation bei vermindertem Druck isoliert. Die Identität von **16** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) sowie Elementaranalyse (C, H, N) sichergestellt.

Durch Umsetzung von **16** mit einem Moläquivalent **9** und zwei Moläquivalenten Triethylamin in Tetrahydrofuran bei 20 °C wurde dann der neutrale pentakoordinierte Silicium(IV)-Komplex **17** gemäß Schema 3.13 erhalten.^[9p]

Das bei der Reaktion gebildete Triethylammoniumchlorid wurde durch Filtration entfernt und das Lösungsmittel des Filtrats im Vakuum entfernt. Der feste Rückstand wurde dann aus Acetonitril kristallisiert und **17** in einer Ausbeute von 50% als gelber kristalliner Feststoff isoliert. Die Identität von **17** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N, S) und Kristallstrukturanalyse sichergestellt.

3.1.5.2 Synthese von Verbindung 18 (SiS₂N₂C-Gerüst)

Der neutrale pentakoordinierte Silicium(IV)-Komplex **18** wurde gemäß Schema 3.14 durch Umsetzung der Verbindung **11** mit je einem Moläquivalent Triethylamin und Benzolthiol in Tetrahydrofuran bei 20 °C dargestellt.^[9p]

Schema 3.14

Das bei der Reaktion gebildeten Triethylammoniumchlorid wurde durch Filtration abgetrennt und das Lösungsmittel des Filtrats im Vakuum entfernt. Der feste Rückstand wurde dann aus Acetonitril kristallisiert und **18** in einer Ausbeute von 50% als gelber kristalliner Feststoff isoliert. Die Identität von **18** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N, S) und Kristallstrukturanalyse sichergestellt.

3.1.5.3 Synthese von Verbindung 19 (SiSeSN₂C-Gerüst)

Der neutrale pentakoordinierte Silicium(IV)-Komplex **19** wurde gemäß Schema 3.15 durch Umsetzung der Verbindung **11** mit je einem Moläquivalent Triethylamin und Benzolselenol in Tetrahydrofuran bei 20 °C dargestellt.^[9p]

Das bei der Reaktion gebildeten Triethylammoniumchlorid wurde durch Filtration abgetrennt und das Lösungsmittel des Filtrats im Vakuum entfernt. Der feste Rückstand wurde dann aus Acetonitril kristallisiert und **19** in einer Ausbeute von 53% als gelber kristalliner Feststoff isoliert. Die Identität von **19** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C-, ²⁹Si und ⁷⁷Se-NMR) und im Festkörper (¹⁵N-, ²⁹Si- und ⁷⁷Se-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N, S) und Kristallstrukturanalyse sichergestellt.

3.1.5.4 Synthese von Verbindung 20 (SiTeSN₂C-Gerüst)

Im Gegensatz zu den Synthesen der Verbindungen **18** und **19** wurde der analoge pentakoordinierte Silicium(IV)-Komplex **20** gemäß Schema 3.16 mittels einer Transsilylierungsreaktion dargestellt. Hierzu wurde Verbindung **11** mit einem Moläquivalent Phenyltrimethylsilyltellurid in Acetonitril bei –18 °C umgesetzt.^[9p]

Schema 3.16

Nach Erwärmen der Reaktionsmischung auf 20 °C wurden die flüchtigen Bestandteile im Vakuum entfernt, und der feste Rückstand wurde aus Acetonitril kristallisiert und **20** in einer Ausbeute von 58% als orange gefärbter kristalliner Feststoff isoliert. Die Identität von **20** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C-, ²⁹Si- und ¹²⁵Te-NMR) und im Festkörper (¹⁵N- und ²⁹Si-VACP/MAS-NMR und ¹²⁵Te-HPDec/MAS-NMR) sowie durch Elementaranalyse (C, H, N, S) und Kristallstrukturanalyse sichergestellt.
3.2 Synthesen neuer neutraler hexakoordinierter Silicium(IV)-Komplexe ausgehend von Silicium(IV)-haltigen Vorstufen

3.2.1 Synthesen neutraler hexakoordinierter Chlorohydridosilicium(IV)-Komplexe mit zwei bidentaten Amidinato-Liganden

3.2.1.1 Synthese von Verbindung 21 (SiClN₄H-Gerüst)

Der hexakoordinierte Silicium(IV)-Komplex **21** wurde durch Umsetzung von Trichlorsilan mit zwei Moläquivalenten Lithium-N,N'-diisopropylpentafluorbenzamidinat in Diethylether bei –78 °C gemäß Schema 3.17 dargestellt.

Hierzu wurde zunächst Pentafluoriodbenzol mit einem Moläquivalent *n*-Buthyllithium bei –78 °C in Diethylether umgesetzt und die Reaktionsmischung anschließend mit einem Moläquivalent *N*,*N*'-Diisopropylcarbodiimid versetzt. Das so gebildete Lithiumamidinat wurde dann bei 20 °C mit 0.5 Moläquivalenten Trichlorsilan versetzt. Zur Isolierung des Produktes wurden die flüchtigen Bestandteile im Vakuum entfernt, und der Rückstand wurde mit Dichlormethan versetzt, das ausgefallene Lithiumchlorid abfiltriert und das Lösungsmittel des Filtrats im Vakuum entfernt. Der feste Rückstand wurde dann aus *n*-Hexan kristallisiert und **21** in einer Ausbeute von 56% als farbloser kristalliner Feststoff isoliert. Die Identität von **21** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.2.1.2 Synthese von Verbindung 22 (SiClN₄H-Gerüst)

Der neutrale hexakoordinierte Silicium(IV)-Komplex **22** wurde gemäß Schema 3.18 durch Umsetzung von Trichlorsilan mit zwei Moläquivalenten Lithium-N,N'-bis(trimethylsilyl)benzamidinat in Diethylether bei -40 °C dargestellt.

Das entsprechende Lithiumamidinat wurde zunächst durch Umsetzung von Lithiumbis(trimethylsilyl)amid mit einem Moläquivalent Benzonitril bei 20 °C gewonnen und sodann bei -40 °C mit 0.5 Moläquivalenten Trichlorsilan versetzt. Zur Isolierung des Produktes wurden die flüchtigen Bestandteile im Vakuum entfernt, und der Rückstand wurde mit Dichlormethan versetzt, das ausgefallene Lithiumchlorid abfiltriert und das Lösungsmittel des Filtrats im Vakuum entfernt. Der feste Rückstand wurde dann aus n-Hexan kristallisiert und 22 in einer Ausbeute von 41% als farbloser kristalliner Feststoff isoliert. Die Identität von 22 wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.2.2 Synthese eines neutralen hexakoordinierten Silicium(IV)-Komplexes mit einem tridentaten *N,N',S*- und einem bidentaten *N,O*-Liganden — Synthese von Verbindung 23 (*Si*SON₃C-Gerüst)

Durch Umsetzung der pentakoordinierten Silicium(IV)-Komplexe **10**, **11** bzw. **12** (vgl. Kapitel 3.1.3) mit jeweils einem Moläquivalent Triethylamin und 8-Hydroxy- bzw. 8-Mercaptochinolin in Tetrahydrofuran bei 20 °C sollten die entsprechenden neutralen hexakoordinierten Silicium(IV)-Verbindungen gemäß Schema 3.19 gewonnen werden.

Mit Ausnahme von Verbindung 23 wurde hierbei jedoch lediglich die Bildung komplexer Substanzgemische bzw. Zersetzung beobachtet, aus denen die angestrebten Produkte nicht isoliert werden konnten.

Das bei der Reaktion gebildete Triethylammoniumchlorid wurde durch Filtration entfernt und das Lösungsmittel des Filtrats im Vakuum entfernt. Der feste Rückstand wurde dann aus Acetonitril kristallisiert und **23** in einer Ausbeute von 64% als gelber kristalliner Feststoff isoliert. Die Identität von **23** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N, S) und Kristallstrukturanalyse sichergestellt.

3.3 Synthesen neuer tri- bzw. tetrakoordinierter Donor-stabilisierter Silylene mit bidentaten Amidinato-Liganden

3.3.1 Synthese trikoordinierter Donor-stabilisierter Silylene mit einem bidentaten Amidinato- und einem monodentaten Chloro- bzw. Amido-Liganden

3.3.1.1 Versuch zur Synthese von Verbindung 24 (SiClN₂-Gerüst)

Durch Umsetzung des Trichlorosilicium(IV)-Komplexes **5** mit zwei Moläquivalenten Kalium in Tetrahydrofuran bei 20 °C gemäß Schema 3.20 sollte das trikoordinierte Donor-stabilisierte Silylen **24** dargestellt werden.

Schema 3.20

Allerdings konnte nur die Bildung eines Gemisches verschiedener Silicium-Spezies detektiert werden, aus denen sich das gewünschte Produkt nicht isolieren ließ.

3.3.1.2 Synthese von Verbindung 25 (SiN₃-Gerüst)

Durch Umsetzung des Dichlorosilicium(IV)-Komplexes 6 mit zwei Moläquivalenten Kalium in Tetrahydrofuran bei 20 °C wurde gemäß Schema 3.21 das trikoordinierte Donor-stabilisierte Silylen 25 dargestellt.

Schema 3.21

Zur Isolierung des Produktes wurden die flüchtigen Bestandteile im Vakuum entfernt, und der Rückstand wurde mit Toluol versetzt, das ausgefallene Kaliumchlorid abfiltriert und das Lösungsmittel im Vakuum entfernt. Der feste Rückstand wurde dann aus *n*-Hexan kristallisiert und **25** in einer Ausbeute von 96% als orange gefärbter kristalliner Feststoff isoliert. Die Identität von **25** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

Ursprünglich sollten das trikoordinierte Donor-stabilisierte Silylen 25 bzw. das analoge Silylen 26 gemäß Schema 3.22 durch Umsetzung der Chlorohydridosilicium(IV)-Komplexe 3 bzw. 4 mit den entsprechenden Amid-Basen in Toluol bei 20 °C bzw. 110 °C dargestellt werden. Jedoch konnte hier zum einen wiederum nur eine weitere Substitution eines ChloroLiganden durch einen Amido-Liganden und zum anderen die Bildung eines Gemisches verschiedener Silicium-Spezies sowie Spuren der Edukte detektiert werden, aus denen sich die gewünschten Produkte nicht isolieren ließen.

3.3.2 Versuche zur Synthese tetrakoordinierter Donor-stabilisierter Silylene mit zwei bidentaten Amidinato-Liganden

3.3.2.1 Versuche zur Synthese von Verbindung 27 (SiN₄-Gerüst)

In Analogie zur Synthese bekannter Donor-stabilierten Silylene unseres Arbeitskreises mit zwei Amidinato- bzw. Guanidinato-Liganden^[4n,5r] wurde gemäß Schema 3.23 versucht, den Chlorohydridosilicium(IV)-Komplex **21** mit jeweils einer variierender Anzahl an Moläquivalenten (1.00, 1.05 bzw. 1.20 Moläquivalente) Lithium-, Natrium- bzw. Kaliumbis(trimethylsilyl)amid in Toluol bei 20 °C und 110 °C zu dem Donor-stabilisierten Silylen **27** umzusetzen.

Hierbei konnte jedoch lediglich die Bildung von komplexen Gemischen verschiedener Silicium-Spezies beobachtet werden, aus denen sich die gesuchte Verbindung nicht isolieren ließ.

3.3.2.2 Versuche zur Synthese von Verbindung 28 (SiN₄-Gerüst)

Gleichermaßen wurde gemäß Schema 3.24 versucht, den Chlorohydridosilicium(IV)-Komplex **22** mit jeweils einer varriierenden Anzahl an Moläquivalenten (1.00, 1.05 bzw. 1.20 Moläqivalente) Lithium-, Natrium- bzw. Kaliumbis(trimethylsilyl)amid in Benzol bei 20 °C zu dem Donor-stabilisierten Silylen **28** umzusetzen.

Auch hier konnte lediglich die Bildung von komplexen Gemischen verschiedener Silicium-Spezies beobachtet werden, aus denen sich die gesuchte Verbindung nicht isolieren ließ.

3.4 Synthesen von tetrakoordinierten Silicium(II)- sowie tetra- und pentakoordinierten Silicium(IV)-Komplexen ausgehend von dem Donorstabilisierten Silylen 25

Nach erfolgreicher Darstellung des Donor-stabilisierten Silylens **25** sollte nun im Folgenden (vgl. Kapitel 3.4.1–3.4.4) das Reaktivitätsspektrum dieser Verbindung mittels Umsetzungen im Sinne von Lewis-Säure/Base-, nukleophilen Substitutions- und oxidativen Additions-Reaktionen untersucht werden.

3.4.1 Versuche zur Synthese von neutralen tetrakoordinierten Silicium(II)-Komplexen mit einem Amidinato- und einem Amido-Liganden sowie einer Si–B- bzw. Si–Zn-Bindung

3.4.1.1 Versuch zur Synthese von Verbindung 29 (SiN₃B-Gerüst)

Durch die Umsetzung von **25** mit einem Moläquivalent Triphenylboran in Toluol bei 20 °C sollte gemäß Schema 3.25 im Sinne einer Lewis-Säure/Base-Reaktionen die tetrakoordinierte Silicium(II)-Verbindung **29** dargestellt werden.

Hierbei konnte nach Aufarbeitung allerdings kein Reaktionsumsatz festgestellt werden, und es konnten somit nur die eingesetzten Edukte zurückgewonnen werden. Gründe hierfür könnten im hohen sterischen Anspruch der beiden Dipp-Gruppen am Amidinato-Liganden bzw. der drei Phenyl-Gruppen am Bor-Atom gefunden werden.

3.4.1.2 Versuch zur Synthese von Verbindung 30 (SiN₃B-Gerüst)

Alternativ wurde versucht, das Donor-stabilisierte Silylen **25** in Toluol bei 20 °C gemäß Schema 3.26 mit der sterisch weniger anspruchsvollen Lewis-Säure Triethylboran umzusetzen.

Schema 3.26

Allerdings konnte auch hierbei nach der Aufarbeitung kein Reaktionsumsatz festgestellt werden, und es konnten somit nur die eingesetzten Edukte zurückgewonnen werden.

3.4.1.3 Versuche zur Synthese von Verbindung 31 (SiZnN₃-Gerüst)

Weiterhin wurde versucht, das Donor-stabilisierte Silylen 25 mit einem Moläquivalent Zinkdichlorid in Tetrahydrofuran bzw. Toluol bei 20 °C gemäß Schema 3.27 zu Verbindung 31 umzusetzen.

Nach Aufarbeitung der Reaktionsmischung wurden allerdings nur Zersetzungsprodukte erhalten, aus denen sich das gewünschte Produkt nicht isolieren ließ.

- 3.4.2 Versuche zur Synthese von neutralen tetrakoordinierten Silicium(II)-Komplexen mit einem Amidinato- und einem Amido-Liganden sowie einer Si–M-Bindung (M = Cr, Mo, W, Fe)
- 3.4.2.1 Versuche zur Synthese der Verbindungen 32–34 (SiMN₃-Gerüste) (M = Cr, Mo, W)

Die neutralen tetrakoodinierten Silicium(II)-Komplexe **32–34** sollten gemäß Schema 3.28 durch Umsetzung von **25** mit jeweils einem Moläquivalent Chrom-, Molybdän- bzw. Wolframhexacarbonyl in Toluol oder Tetrahydrofuran bei 20 °C bzw. 60 °C mittels einer nukleophilen Substitutionsreaktion dargestellt werden.

Schema 3.28

In allen drei Fällen konnte nach der Aufarbeitung allerdings kein Reaktionsumsatz festgestellt werden, und es konnten somit nur die jeweils eingesetzten Edukte zurückgewonnen werden.

3.4.2.2 Synthese von Verbindung 35 (SiFeN₃-Gerüst)

Der neutrale tetrakoordinierte Silicium(II)-Komplex **35** wurde gemäß Schema 3.29 durch Umsetzung von **25** mit einem Moläquivalent Eisenpentacarbonyl in Toluol bei 20 °C dargestellt.

Die flüchtigen Bestandteile des Reaktionsgemisches wurden im Vakuum entfernt, und der feste Rückstand wurde dann aus einem *n*-Hexan/Toluol-Gemisch 3/2 (v/v) kristallisiert und Verbindung **35** in einer Ausbeute von 50% als gelber kristalliner Feststoff isoliert. Die Identität von **35** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹⁵N- und ²⁹Si-VACP/MAS-NMR), Elementaranalyse (C, H, N), IR-Spektroskopie im Festkörper und Kristallstrukturanalyse sichergestellt.

3.4.3 Synthesen von neutralen tetrakoordinierten Silicium(IV)-Komplexen mit einem mono- bzw. bidentaten Amidinato-Liganden und einer Si=N-Doppelbindung

3.4.3.1 Synthese von Verbindung 36 (SiN₄-Gerüst)

Durch Umsetzung von Verbindung **25** mit einem Moläquivalent Azidotrimethylsilan in Toluol bei 20 °C konnte der neutrale tetrakoordinierte Silicium(IV)-Komplex **36** gemäß Schema 3.30 mittels Abspaltung von elementarem Stickstoff dargestellt werden.

Schema 3.30

Die flüchtigen Bestandteile des Reaktionsgemisches wurden im Vakuum entfernt, und der feste Rückstand wurde dann aus *n*-Hexan kristallisiert und Verbindung **36** in einer Ausbeute von 66% als farbloser kristalliner Feststoff isoliert. Die Identität von **36** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.4.3.2 Synthese von Verbindung 37 (SiN₄-Gerüst)

Der neutrale tetrakoordinierte Silicium(IV)-Komplex **37** sollte gemäß Schema 3.31 (mit eingezeichnetem Umlagerungsmechanismus) durch Umsetzung von Verbindung **25** mit einem Moläquivalent (Azidomethyl)phenylsulfan in Toluol bei 20 °C dargestellt werden.

Jedoch führte diese Umsetzung gemäß Schema 3.32 ausschließlich zu dem entsprechenden neutralen tetrakoordinierten Silicium(IV)-Komplex **37'**, wobei **37** wohl zunächst als Zwischenstufe gebildet wird, die dann aber weiter zu **37'** umlagert.^[9z]

Schema 3.32

Die flüchtigen Bestandteile des Reaktionsgemisches wurden im Vakuum entfernt, und der feste Rückstand wurde dann aus *n*-Hexan kristallisiert und Verbindung **37'** in einer Ausbeute von 52% als farbloser kristalliner Feststoff isoliert. Die Identität von **37'** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹⁵N- und ²⁹Si-

VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N, S) und Kristallstrukturanalyse sichergestellt.

3.4.3.3 Synthese von Verbindung 38 (SiN₄-Gerüst)

Der neutrale tetrakoordinierte Silicium(IV)-Komplex **38** sollte gemäß Schema 3.33 durch die Umsetzung von Verbindung **25** mit einem Moläquivalent Diphenylphosphorylazid in Toluol bei 20 °C dargestellt werden.

Schema 3.33

Jedoch führte diese Umsetzung gemäß Schema 3.34 ausschließlich zu dem entsprechenden Dimer **38'**, wobei eine Verbrückung über den am Phosphor gebundenen Sauerstoff zum Silicium-Zentrum stattfindet. Durch Abspaltung jeweils eines der beiden Stickstoff-Atome der Amidinato-Liganden vom Silicium-Zentrum (\rightarrow monodentater Bindungsmodus) entsteht so der neutrale tetrakoordinierte Silicium(IV)-Komplex **38'**.

Verbindung **38'** kristallisierte direkt aus der eingeengten Reaktionslösung und wurde als das Toluol-Solvat **38'**·C₆H₅CH₃ in einer Ausbeute von 59% als farbloser kristalliner Feststoff isoliert. Die Identität von **38'**·C₆H₅CH₃ wurde durch NMR-Spektroskopie im Festkörper (15 N-, 29 Si- und 31 P-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt. Aufgrund der schlechten Löslichkeit in allen gängigen deuterierten organischen Lösungsmitteln (auch bei höheren Temperaturen) war eine NMRspektroskopische Charakterisierung in Lösung nicht möglich.

3.4.4 Synthesen von neutralen tetra- bzw. pentakoordinierten Silicium(IV)-Komplexen mit einem mono- bzw. bidentaten Amidinato-, einem Amido- und einem bzw. zwei Chalkogeno-Liganden

3.4.4.1 Synthese von Verbindung 39 (SiON₃-Gerüst)

Der neutrale tetrakoordinierte Silicium(IV)-Komplex **39** sollte gemäß Schema 3.35 durch die Umsetzung von Verbindung **25** mit Distickstoffmonoxid in Toluol bei –78 °C mittels einer oxidativen Additionsreaktion dargestellt werden.

Schema 3.35

Jedoch konnte bei dieser Umsetzung gemäß Schema 3.36 lediglich das entsprechende pentakoordinierte Dimer **39'** erhalten werden. Der neutrale pentakoordinierte Silicium(IV)-Komplex **39** mit einer Si=O-Doppelbindung stellt vermutlich ein Intermediat in der Bildung von **39'** dar (siehe hierzu Lit. [4j], [4m] und [25]), allerdings scheiterten alle Versuche, Verbindung **39** nachzuweisen bzw. zu isolieren.

Verbindung **39'** kristallisierte direkt aus der eingeengten Reaktionslösung (zusammen mit einem bisher nicht identifizierten zweiten Produkt) und wurde in einer Ausbeute von *ca.* 45 mol% als farbloser kristalliner Feststoff isoliert. Die Identität von **39'** wurde durch NMR-Spektroskopie in Lösung und (²⁹Si-NMR) und im Festkörper (¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.4.4.2 Synthese von Verbindung 40 (SiSN₃-Gerüst)

Der neutrale tetrakoordinierte Silicium(IV)-Komplex **40** sollte gemäß Schema 3.37 durch die Umsetzung von Verbindung **25** mit elementarem Schwefel in Toluol bei 20 °C dargestellt werden.

Schema 3.37

Analog zur Synthese von Verbindung **39** bzw. **39'** konnte bei dieser Umsetzung zunächst gemäß Schema 3.38 lediglich das entsprechende Dimer **40'** erhalten werden, in dem die beiden Amidinato-Liganden jeweils monodentat gebunden sind.

Verbindung **40'** kristallisierte als das Toluol-Solvat **40'**·C₆H₅CH₃ direkt aus der eingeengten Reaktionslösung und wurde in einer Ausbeute von 79% als farbloser kristalliner Feststoff isoliert. Die Identität von **40'**·C₆H₅CH₃ wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) und im Festkörper (¹⁵N- und ²⁹Si-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N, S) und Kristallstrukturanalyse sichergestellt.

Weiterführende VT-NMR-Experimente in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) zunächst bei 75 °C und anschließend bei Raumtemperatur zeigten jedoch auch eindeutig die Existenz der entsprechenden monomeren Silicium(IV)-Spezies **40** mit einer Si=S-Doppelbindung, die sich durch thermische Spaltung aus dem Dimer bildet und in Lösung stabil ist.

3.4.4.3 Synthese von Verbindung 41 (SiSeN₃-Gerüst)

Durch Umsetzung von Verbindung **25** mit einem Moläquivalent elementarem Selen gemäß Schema 3.39 in Toluol bei 20 °C konnte der neutrale tetrakoordinierte Silicium(IV)-Komplex **41** dargestellt werden.

Schema 3.39

Das Lösungsmittel des Reaktiongemisches wurde im Vakuum eingeengt und Verbindung **41** nach Kristallisation aus einem *n*-Hexan/Toluol-Gemisch 2:1 (v/v) in einer Ausbeute von 67% als gelber kristalliner Feststoff isoliert. Die Identität von **41** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C-, ²⁹Si- und ⁷⁷Se-NMR) und im Festkörper (¹⁵N-, ²⁹Si- und ⁷⁷Se-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

3.4.4.4 Synthese von Verbindung 42 (SiTeN₃-Gerüst)

Durch Umsetzung von Verbindung 25 mit einem Moläquivalent elementarem Tellur gemäß Schema 3.40 in Toluol bei 20 °C konnte der neutrale tetrakoordinierte Silicium(IV)-Komplex 42 dargestellt werden.

Verbindung **42** kristallisierte direkt aus der eingeengten Reaktionslösung und wurde in einer Ausbeute von 62% als farbloser kristalliner Feststoff isoliert. Die Identität von **42** wurde durch NMR-Spektroskopie in Lösung (¹H-, ¹³C-, ²⁹Si- und ¹²⁵Te-NMR) und im Festkörper

(¹⁵N-, ²⁹Si- und ¹²⁵Te-VACP/MAS-NMR) sowie durch Elementaranalyse (C, H, N) und Kristallstrukturanalyse sichergestellt.

4 NMR-Untersuchungen

4.1 NMR-Untersuchung der neutralen tri- bzw. tetrakoordinierten Silicium(II)-Komplexe 25 und 35 mit einem Amidinato-Liganden

Das trikoordinierte Donor-stabilisierte Silylen **25** sowie der neutrale tetrakoordinierte Silicium(II)-Komplex **35** wurden anhand von NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) sowie im Festkörper (¹⁵N- und ²⁹Si-VACP/MAS-NMR) untersucht. Aufgrund der identischen Oxidationszahl (+II) der Verbindungen **25** und **35** wird an dieser Stelle der Vergleich beider Komplexe in Lösung und im Festkörper gezogen.

4.1.1 Untersuchung der tri- bzw. tetrakoordinierten Silicium(II)-Komplexe 25 und 35 mit Amidinato-Liganden in Lösung

Die isotrope ²⁹Si-chemische Verschiebung der Verbindung **25** in Lösung liegt bei 12.1 ppm. Desweiteren findet man im ¹H-NMR-Spektrum für die vier Wasserstoff-Atome an den sekundären Kohlenstoff-Atomen der Isopropyl-Gruppen zwei gut aufgelöste Septetts im Bereich von *ca.* 4.00 ppm (${}^{3}J({}^{1}\text{H},{}^{1}\text{H})$ -Kopplungskonstante; 6.8 Hz) sowie vier Dubletts im Bereich von 1.00 ppm (${}^{3}J({}^{1}\text{H},{}^{1}\text{H})$ -Kopplungskonstante; 6.8 Hz) für die acht Methyl-Gruppen der Isopropyl-Gruppen, was auf einen *C*2-symmetrischen Aufbau des Moleküls in Lösung schließen lässt. Diese Beobachtung wird auch durch das ¹³C-NMR-Spektrum bekräftigt.

Der neutrale tetrakoordinierte Silicium(II)-Komplex **35** besitzt eine Si–Fe-Bindung. Betrachtet man die isotrope ²⁹Si-chemische Verschiebung von **35** (δ^{29} Si = 76.4 ppm) im Vergleich zu der des Silylens **25** (δ^{29} Si = 12.1 ppm), wird ein mit einer Abweichung von 64.3 ppm eine deutliche Tieffeld-Verschiebung durch das Fe(CO)₄-Fragment erkennbar (vgl. Tab. 4.1).

4.1.2 Untersuchung der tri- bzw. tetrakoordinierten Silicium(II)-Komplexe 25 und 35 mit einem Amidinato-Liganden im Festkörper

Die isotrope ²⁹Si-chemische Verschiebung von Verbindung **25** im Festkörper liegt bei 15.8 ppm. Verglichen mit der des tetrakoordinierten Silicium(II)-Komplexes **35** (δ^{29} Si = 76.5 ppm) ist eine mit einer Abweichung von 60.7 ppm deutliche Tieffeld-Verschiebung erkennbar (vgl. Tab. 4.1). Beide Verbindungen zeigen für die beiden Stickstoff-Atome des Amidinato-Liganden jeweils zwei Resonanzsignale im Bereich von *ca.* –215 ppm im ¹⁵N-VACP-MAS-NMR, was auf die unterschiedliche räumliche Ausrichtung der daran gebundenen Dipp-

Gruppen sowie die unterschiedlichen N-C-Bindungslängen innerhalb der Moleküle schließen lässt.

4.1.3 Vergleich der ²⁹Si-chemischen Verschiebungen der tri- bzw. tetrakoordinierten Silicium(II)-Komplexe 25 und 35 mit einem Amidinato-Liganden in Lösung und im Festkörper

Vergleicht man die isotropen ²⁹Si-chemischen Verschiebung von Verbindung **25** in Lösung $(\delta^{29}\text{Si} = 12.1 \text{ ppm})$ und im Festkörper $(\delta^{29}\text{Si} = 15.8 \text{ ppm})$, sind diese in guter Übereinstimmung (vgl. Tab. 4.1). Dies weist darauf hin, dass in Lösung und im Festkörper eine ähnliche Struktur vorliegt. Analoges ist für Verbindung **35** zu erkennen. Hier sind die isotropen ²⁹Si-chemischen Verschiebungen in Lösung ($\delta^{29}\text{Si} = 76.4 \text{ ppm}$) und im Festkörper $(\delta^{29}\text{Si} = 76.5 \text{ ppm})$ fast gleich, was somit eine sehr ähnliche Struktur in Lösung und im Festkörper zeigt.

Tabelle 4.1: Vergleich der isotropen ²⁹Si-chemischen Verschiebungen [ppm] von **25** und **35** in Lösung^[a] (T = 23 °C) und im Festkörper (T = 22 °C).

Verbindung	δ^{29} Si (Lösung)	δ^{29} Si (Festkörper)	$ \Delta \delta^{29} Si $	Gerüsttyp
25	12.1	15.8	3.7	SiN ₃
35	76.4	76.5	0.1	SiFeN ₃

[a] **25** und **35**: C₆D₆.

4.2 NMR-Untersuchung der neutralen tetrakoordinierten Silicium(IV)-Komplexe 36, 37', 38'·C₆H₅CH₃, 40'·C₆H₅CH₃, 41 und 42 mit Amidinato-Liganden

Die neutralen tetrakoordinierten Silicium(IV)-Komplexe **36**, **37'**, **40'**·C₆H₅CH₃, **41** und **42** wurden anhand von NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) sowie im Festkörper (¹⁵N- und ²⁹Si-VACP/MAS-NMR) untersucht (vgl. Tab. 4.2). Da die Verbindungen **38'**·C₆H₅CH₃, **41** bzw. **42** darüber hinaus ein NMR-aktives Phosphor-, Selenbzw. Tellur-Atom besitzen, konnten sie zusätzlich durch ³¹P- (**38'**·C₆H₅CH₃), ⁷⁷Se- (**41**) bzw. ¹²⁵Te-NMR-Spektroskopie (**42**) untersucht werden. Verbindung **38'**·C₆H₅CH₃ konnte aufgrund der sehr schlechten Löslichkeit in allen gängigen deuterierten organischen NMR-Lösungsmitteln auch bei hohen Temperaturen nur im Festkörper und nicht in Lösung untersucht werden. Verbindung **40'** wurde zusätzlich durch NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) bei 75 °C untersucht.

4.2.1 Untersuchung der tetrakoordinierten Silicium(IV)-Komplexe 36, 37', 40'·C₆H₅CH₃, 41 und 42 mit Amidinato-Liganden in Lösung

Die isotropen ²⁹Si-chemischen Verschiebungen der Verbindungen **36**, **37' 40'**·C₆H₅CH₃, **41** und **42** in Lösung liegen im Bereich von –57.6 ppm bis 0.1 ppm (vgl. Tab. 4.2). Die Silicium(IV)-Verbindungen **41** und **42** weisen in den ²⁹Si-NMR-Spektren zudem ⁷⁷Se- bzw. ¹²⁵Te-Satelliten mit einer ¹*J*(²⁹Si,X)-Kopplungskonstante von 308 Hz für X = ⁷⁷Se bzw. 910 Hz für X = ¹²⁵Te auf, da die Isotope dieser Kerne ebenfalls NMR-aktiv sind (⁷⁷Se (*I* = 1/2 [7.63%]) und ¹²⁵Te (*I* = 1/2 [0.89%])). Verbindung **37'** zeigt im ¹³C-NMR-Spektrum eine für das –N=*C*H₂-Fragment mit 169.2 ppm eine stark Tieffeld-verschobene isotrope ¹³Cchemische Verschiebung. Die isotrope ²⁹Si-chemische Verschiebung von Verbindung **40'** in Lösung bei 75 °C zeigt mit –4.2 ppm im Einklang mit den isotropen ¹H- und ¹³C-chemischen Verschiebungen die Existenz einer dominierenden monomeren Silicium(IV)-Spezies mit einer Silicium–Schwefel-Doppelbindung (**40**) anstatt des bei Raumtemperatur dominierenden Dimers. Allerdings zeigten weiterführende ²⁹Si-VT-NMR-Experimente mit Verbindung **40'**, dass das bei hohen Temperaturen gebildete Monomer **40** auch bei Raumtemperatur (δ^{29} Si = – 4.8 ppm) über mehrere Stunden in Lösung stabil ist.

4.2.2 Untersuchung der tetrakoordinierten Silicium(IV)-Komplexe 36, 37', 38'·C₆H₅CH₃, 40'·C₆H₅CH₃, 41 und 42 mit Amidinato-Liganden im Festkörper

Die isotropen ²⁹Si-chemischen Verschiebungen der Verbindungen **36**, **37'**, **40'**·C₆H₅CH₃, **41** und **42** im Festkörper liegen im Bereich von –55.4 ppm bis 0.1 ppm (vgl. Tab. 4.2). Die Silicium(IV)-Verbindungen **41** und **42** weisen auch in den ²⁹Si-VACP/MAS-NMR-Spektren ⁷⁷Se- bzw. ¹²⁵Te-Satelliten mit einer ¹*J*(²⁹Si,X)-Kopplungskonstante von 302 Hz für X = ⁷⁷Se bzw. 910 Hz für X = ¹²⁵Te auf. Die Verbindung **37'** (δ^{29} Si = –36.8 ppm und –28.0 ppm) und **41** (δ^{29} Si = –1.7 ppm und 0.1 ppm) zeigen im ²⁹Si-VACP/MAS- und ¹⁵N-VACP/MAS-NMR-Spektrum jeweils einen doppelten Signalsatz, was im Falle von **37'** mit den Ergebnissen der Einkristall-Röntgenstrukturanalysen übereinstimmt. Für Verbindung **41** konnte jedoch keine zweite kristallographisch unabhängige Struktur bzw. Fehlordnung detektiert werden, die den zweiten Signalsatz in den VACP-MAS-NMR-Spektren erklären würde. Die isotrope ²⁹Sichemische Verschiebung von **40'**·C₆H₅CH₃ im Festkörper liefert mit –35.8 ppm keinen Hinweis auf die Existenz einer monomeren Silicium(IV)-Spezies, sondern stimmt mit der Einkristall-Röntgenstrukturanalyse des Silicium(IV)-Dimers **40'**·C₆H₅CH₃ überein. Entgegen den Erwartungen weisen die ²⁹Si- sowie ³¹P-VACP/MAS-NMR-Signale von **38'**·C₆H₅CH₃ eine sehr komplexe Strukturierung auf (Abb. 4.1). Aufgrund der geringen Kristallqualität und der damit lediglich qualitativen Aussage über die tatsächliche Molekülstruktur kann nur spekuliert werden, dass dies den Kopplungen der ³¹P- und ¹⁴N-Kerne mit den ²⁹Si-Zentren bzw. einer Phasenunreinheit geschuldet ist. Erwähnenswert für Verbindung **37'** ist, dass die ¹⁵N-Resonanzsignale mit –11.8 ppm und –11.0 ppm eine für das –*N*=CH₂-Fragment deutliche Tieffeld- Verschiebung im Vergleich zu den übrigen Stickstoff-Atomen dieser Verbindung zeigen.

Abb. 4.1: ²⁹Si-VACP/MAS-NMR- (A) und ³¹P-VACP/MAS-NMR-Spektrum (B) von **38'**·C₆H₅CH₃.

4.2.3 Vergleich der chemischen Verschiebungen der tetrakoordinierten Silicium(IV)-Komplexe 36, 37', 38'·C₆H₅CH₃, 40'·C₆H₅CH₃, 41 und 42 mit Amidinato-Liganden in Lösung und im Festkörper

Da die isotropen chemischen Verschiebungen von **36**, **37'**, **40'**·C₆H₅CH₃, **41** und **42** in Lösung bei Raumtemperatur und im Festkörper vor allem in Bezug auf die ²⁹Si-chemischen Verschiebungen sehr ähnlich sind, kann davon ausgegangen werden, dass diese Verbindungen in beiden Phasen ähnliche Strukturen aufweisen. Die geringen Abweichungen lassen sich für diese Verbindungen durch kleine strukturelle Unterschiede in Lösung und im Festkörper erklären, wobei jedoch in beiden Phasen die Koordinationszahl vier vorliegt. Eine Ausnahme bilden die isotropen ²⁹Si-chemischen Verschiebungen von Verbindung **40'** in Lösung bei hohen Temperaturen bzw. bei Raumtemperatur kurz nach dem Erhitzen. Diese zeigen deutlich die Existenz einer monomeren Spezies (**40**) in Lösung (δ^{29} Si = -4.2 ppm bzw. -4.8 ppm) an im Gegensatz zum Dimer im Festkörper bzw. in Lösung nach längerer Zeit bei Raumtemperatur (δ^{29} Si = -35.8 ppm bzw. -36.6 ppm). Wie aus Tabelle 4.2 ersichtlich, zeigen die ²⁹Si-chemischen Verschiebungen der tetrakoordinierten Silicium(Iv)-Komplexe **36**, **37'**, **38'**·C₆H₅CH₃, **40'**·C₆H₅CH₃, **41** und **42** allerdings eine starke Abhängigkeit vom Substitutionsmuster und liegen im Bereich von -57.6 ppm bis 0.1 ppm (Lösung) bzw. -67.2 ppm (Mittelpunkt des Multipletts von **38**'·C₆H₅CH₃) bis 0.1 ppm (Festkörper). Diese Abhängigkeit ist vor allem in Bezug auf die Verbindungen **41** und **42** mit einer Si=El-Doppelbindung (El = Se, Te) zu erkennen. Die isotropen ²⁹Si-chemischen Verschiebungen in Lösung sowie im Festkörper sind im Vergleich zu den Verbindungen **36**, **37'**, **38'**·C₆H₅CH₃ und **40'**·C₆H₅CH₃ um bis zu 57.7 ppm in Lösung bzw. 67.3 ppm (vom Mittelpunkt des Multipletts von **38'**·C₆H₅CH₃ (δ^{29} Si = -67.2 ppm)) im Festkörper zu höherem Feld verschoben.

Tabelle 4.2: Vergleich der isotropen ²⁹Si-chemischen Verschiebungen [ppm] von **36**, **37'**, **38'**·C₆H₅CH₃, **40**'·C₆H₅CH₃, **41** und **42** in Lösung^[a] (T = 23 °C) und im Festkörper (T = 22 °C).

Verbindung	δ^{29} Si (Lösung)	δ^{29} Si (Festkörper)	$ \Delta \delta^{29} \mathrm{Si} $	Gerüsttyp
36 ^[b]	-57.6, -19.5	-55.4, -19.1	2.2, 0.4	SiN_4
37' ^[c]	-32.4	-36.8 / -28.0	4.4	$SiSN_3$
38' ^[d]	—	-70.3 bis -64.0 (m) ^[e]	—	SiON ₃
40' ^[d]	$-36.6/-\!\!4.2^{[f]}/-\!\!4.8^{[g]}$	-35.8	0.8 / 31.6 / 31.0	SiS_2N_2
41 ^[b]	0.1 ^[h]	$-1.7 / 0.1^{[i]}$	1.8 / 0.0	SiSeN ₃
42	-8.8 ^[j]	-8.5 ^[j]	0.3	SiTeN ₃

[a] **36**, **37'**, **41** und **42**: C₆D₆; **40'**·C₆H₅CH₃: [D₈]THF; [b] die Daten im Festkörper beziehen sich auf zwei kristallographisch unabhängige Moleküle; [c] die Daten im Festkörper beziehen sich auf durch eine kristallographische Fehlordnung um das Si-Zentrum unterscheidbare Datensätze; [d] als Toluol-Solvat; [e] komplexes Aufspaltungsmuster des Signals durch ²⁹Si, ³¹P-Kopplungen; [f] in C₆D₅CD₃ bei 75 °C; [g] in [D₈]THF bei RT kurz nach Erhitzen; [h] ⁷⁷Se-Satelliten, ¹*J*(²⁹Si, ⁷⁷Se) = 308 Hz; [i] ⁷⁷Se-Satelliten, ¹*J*(²⁹Si, ⁷⁷Se) = 302 Hz; [j] ¹²⁵Te-Satelliten, ¹*J*(²⁹Si, ⁷²Te) = 910 Hz.

4.3 NMR-Untersuchungen der neutralen pentakoordinierten Silicium(IV)-Komplexe 2–8 und 39' mit einem Amidinato-Liganden

Die neutralen pentakoordinierten Silicium(IV)-Komplexe **2–8** und **39'** wurden anhand von NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR; ohne **3** und **8**) sowie im Festkörper (¹⁵N- und ²⁹Si-VACP/MAS-NMR) untersucht (vgl. Tab. 4.3).

4.3.1 NMR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplexe 2, 4–7 und39' mit einem Amidinato-Liganden in Lösung

Die isotropen ²⁹Si-chemischen Verschiebungen der Verbindungen 2, 4–7 und 39' in Lösung liegen mit -90.6 ppm bis -43.1 ppm im erwarteten Bereich für neutrale pentakoordinierte Silicium(IV)-Verbindungen. Allerdings liegen die Werte für 4 und 7 mit -45.0 ppm bzw. -43.1 ppm in einem Bereich, der Hinweise auf Tetrakoordination gibt. Gründe hierfür könnten in den durch den hohen sterischen Anspruch der Liganden sowie durch die starke Verzerrung des Koordinationspolyeders durch den viergliedrigen Ring teilweise sehr deutlich verlängerten Si-N1-Bindungslängen (vgl. Kapitel 5.2.2 und 5.2.3) gefunden werden. Tabelle 4.3 zeigt, dass die ²⁹Si-chemischen Verschiebungen der pentakoordinierten Silicium(IV)-Komplexe 2, 4–7 und 39' in Lösung mit einer Abweichung von bis zu 47.5 ppm eine starke Abhängigkeit vom Substitutionsmuster aufweisen. Dies liegt an der unterschiedlichen chemischen Natur der Liganden, wie z. B. dem elektropositiven, sterisch anspruchslosen Hydrido-Liganden von 2-4 im Gegensatz zu den drei elektronegativen Chloro-Liganden von 5 bzw. dem sterisch anspruchsvolleren Bis(trimethylsilyl)amido-Liganden von 3 und 6. Aufgrund der geringen Löslichkeit in allen gängigen deuterierten organischen NMR-Lösungsmitteln konnte Verbindung 39' nur bei 90 °C in deuteriertem Toluol untersucht werden, was zu einer erhöhten Moleküldynamik und einer damit verbundenen Signalverbreiterung führte. Ebenso konnten Verbindung 3 und 8 aufgrund ihrer sehr geringen Löslichkeit in allen gängigen deuterierten organischen NMR-Lösungsmitteln auch bei höheren Temperaturen nicht NMR-spektroskopisch in Lösung untersucht werden. Die isotrope ²⁹Si-chemische Verschiebung von Verbindung **39'** in Lösung liegt mit –81.1 ppm im Bereich pentakoordinierter Silicium(IV)-Komplexe, wobei eine zweite tetrakoordinierte Silicium(IV)-Spezies (δ^{29} Si = -54.6 ppm) erkennbar ist, deren genaue Struktur unbekannt ist. Die Verbindungen 2–4 besitzen jeweils eine Si–H-Bindung, wobei 2 und 4 im ¹H-NMR-Spektrum aufgrund von ¹H, ²⁹Si-Kopplungen ²⁹Si-Satelliten (${}^{1}J({}^{1}H, {}^{29}Si) = 358.5$ (2) Hz bzw. 310.7 Hz (4)) zeigen.

4.3.2 NMR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplexe 2–8 und 39' mit einem Amidinato-Liganden im Festkörper

Die neutralen pentakoordinierten Silicium(IV)-Komplexe **2–8** besitzen alle jeweils mindestens eine Silicium–Chlor-Bindung. Da beide Isotope des Chlors NMR-aktiv sind, ist zu erwarten, dass die ²⁹Si-VACP/MAS-NMR-Spektren bedingt durch die ²⁹Si,Cl-Kopplungen eine Strukturierung aufweisen (³⁵Cl (I = 3/2 [75.8%]) und ³⁷Cl (I = 3/2 [24.2%]). Da Chlor zudem ein Quadrupol-Kern ist, trägt noch ein weiteres wohlbekanntes Phänomen zur Strukturierung bei: Da die MAS-Methode den Effekt dipolarer Kopplungen für einen Spin-1/2-Kern nicht vollständig unterdrücken kann, wenn dieser mit einem Quadrupol-Kern koppelt, der eine Quadrupol-Frequenz nahe der Zeeman-Frequenz hat, trägt dies zu einer starken Verbreiterung und/oder Strukturierung dieser Signale bei.^[26] Desweiteren ist auch aufgrund von Kopplungen der ¹⁴N-Quadrupol-Kerne der Amido- bzw. Amidinato-Liganden mit dem Silicium-Atom ein gewisser Einfluss auf die ²⁹Si-VACP/MAS-NMR-Spektren in Form einer Verbreiterung bzw. Strukturierung zu erwarten. Dies veranschaulicht vor allem das stark strukturierte ²⁹Si-VACP/MAS-NMR-Spektrum von Verbindung **6** (vgl. Abb. 4.2).

Abb. 4.2: ²⁹Si-VACP/MAS-NMR-Spektrum von 6.

Auffällig ist, dass für Verbindung **4** im Festkörper zwei ²⁹Si-VACP/MAS-NMR-Signale für die Silicium-Atome des Bis(trimethylsilyl)amido-Liganden (δ^{29} Si = 3.4 ppm und 5.6 ppm) in Erscheinung treten. Eine Begründung hierfür ist in der unterschiedlichen räumlichen Lage bzw. Umgebung dieser Liganden zu finden. Die isotrope ²⁹Si-chemische Verschiebung von Verbindung **39'** im Festkörper liegt mit –89.5 ppm im Bereich pentakoordinierter Silicium(IV)-Komplexe, wobei eine zweite tetrakoordinierte Silicium(IV)-Spezies (δ^{29} Si = -53.1 ppm) erkennnbar ist, deren genaue Struktur unbekannt ist.

4.3.3 Vergleich der chemischen Verschiebungen der pentakoordinierten Silicium(IV)-Komplexe 2–8 und 39' mit einem Amidinato-Liganden in Lösung und im Festkörper

Vergleicht man die isotropen ²⁹Si-chemischen Verschiebungen der Verbindungen 2–8 und 39' in Lösung und im Festkörper (vgl. Tab. 4.3), wird ersichtlich, dass diese teilweise eine starke Abweichung aufweisen, was darauf schließen lässt, dass strukturelle Unterschiede der Moleküle im Festkörper und in Lösung existieren. Dies wird besonders deutlich für die Verbindungen **4** ($|\Delta\delta^{29}Si| = 26.9$ ppm) und **7** ($|\Delta\delta^{29}Si| = 9.7$ ppm), bei denen die ²⁹Sichemischen Verschiebungen um bis zu 26.9 ppm voneinander abweichen. Diese Tieffeld-Verschiebung der Resonanzsignale in Lösung verglichen mit denen im Festkörper lässt darauf schließen, dass eine strukturelle Veränderung am Silicium-Koordinationszentrum in Lösung vorliegen muss, welche beispielsweise den sterisch anspruchsvolleren Trimethylsilyl-Resten des Amido-Liganden und der damit verbundenen deutlichen Bindungsverlängerung zum Amidinato-Liganden (vgl. Kapitel 5.2.2 und 5.2.3) geschuldet ist.

Tabelle 4.3: Vergleich der isotropen ²⁹Si-chemischen Verschiebungen [ppm] von **2–8** und **39'** in Lösung^[a] (T = 23 °C bzw. 90 °C) und im Festkörper (T = 22 °C).

Verbindung	δ^{29} Si (Lösung)	δ^{29} Si (Festkörper)	$ \Delta \delta^{29} \mathrm{Si} $	Gerüsttyp
2	-87.7	-86.0	1.7	SiCl ₂ N ₂ H
3	_	-59.7	—	SiClN ₃ H
4	-45.0, 5.2	-71.9, 3.4, 5.6	26.9, 1.8, 0.4	SiClN ₃ H
5	-90.6	-88.9	1.7	SiCl ₃ N ₂
6	-57.6	-54.6 bis -45.2 (m)	7.0 ^[b]	SiCl ₂ N ₃
7	-43.1	-52.8	9.7	SiCl ₂ N ₂ C
8	—	-68.4	—	SiCl ₂ N ₂ C
39' ^[c]	-81.1 / -54.6	-89.5 / -53.1	8.4 / 1.5	SiO_2N_3

[a] 2, 5 und 7: CD₂Cl₂; 3 und 6: C₆D₆; 4, 8 und 39': C₆D₅CD₃; [b] Differenz zum Mittelpunkt des Multipletts (²⁹Si,¹⁴N- und ^{35,37}Cl-Kopplungen) (δ^{29} Si = -49.9 ppm); [c] Produktgemisch bestehend aus 39' und einer unbekannten tetrakoordinierenden Silicium(IV)-Spezies.

Wie aus Tabelle 4.3 ersichtlich, zeigen die ²⁹Si-chemischen Verschiebungen der pentakoordinierten Silicium(IV)-Komplexe **2–8** und **39'** eine starke Abhängigkeit vom Substitutionsmuster. Diese Abhängigkeit ist vor allem der unterschiedlichen chemischen Natur der Liganden, wie z. B. dem elektropositiven, sterisch anspruchslosen Hydrido-Liganden, im Vergleich zum deutlich größeren, elektronenziehenden Phenyl-Liganden geschuldet.

4.4 NMR-Untersuchungen der neutralen pentakoordinierten Silicium(IV)-Komplexe 10·0.5C₆H₅CH₃, 11, 12 und 17–20 mit einem *N*,*N*',*S*-Liganden sowie 15 mit einem *N*,*N*',*O*-Liganden

Die neutralen pentakoordinierten Silicium(IV)-Komplexe $10.0.5C_6H_5CH_3$, 11, 12, 15 und 17-20 wurden anhand von NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) sowie im

Festkörper (¹⁵N- und ²⁹Si-VACP/MAS-NMR) untersucht (vgl. Tab. 4.4). Da die Verbindungen **19** und **20** darüber hinaus ein NMR-aktives Selen- bzw. Tellur-Atom besitzen, konnten diese in Lösung und im Festkörper zusätzlich durch ⁷⁷Se- bzw. ¹²⁵Te-NMR-Spektroskopie untersucht werden.

4.4.1 NMR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplexe 10·0.5C₆H₅CH₃, 11, 12 und 17–20 mit einem *N*,*N*',*S*-Liganden sowie 15 mit einem *N*,*N*',*O*-Liganden in Lösung

Die isotropen ²⁹Si-chemischen Verschiebungen der Verbindungen **10**·0.5C₆H₅CH₃, **11**, **12**, **15** und 17–20 in Lösung liegen mit –90.6 ppm bis –59.8 ppm im erwarteten Bereich für neutrale pentakoordinierte Silicium(IV)-Verbindungen (vgl. Tab. 4.4). Die Silicium(IV)-Verbindungen **19** und **20** zeigen im ²⁹Si-NMR-Spektrum Resonanzsignale mit ⁷⁷Se- bzw. ¹²⁵Te-Satelliten mit einer ${}^{1}J({}^{29}Si,X)$ -Kopplungskonstante von 136 Hz (X = ${}^{77}Se$) bzw. 367 Hz (X = ${}^{125}Te$), da diese Isotope ebenfalls NMR-aktiv sind (⁷⁷Se (I = 1/2 [7.63%]) und ¹²⁵Te (I = 1/2 [0.89%])). Verbindung 12 weist eine Strukturierung des ²⁹Si-Resonanzsignals in Form eines Multipletts auf, was auf die ²⁹Si,¹⁹F-Kopplungen der Fluor-Atome zurückzuführen ist (¹⁹F (I = 1/2[100%])). Für die Verbindungen 10.0.5C₆H₅CH₃, 11, 12 und 19 wurden zur Untersuchung des dynamischen Verhaltens dieser Verbindungen in Lösung ²⁹Si-VT-NMR-Experimente durchgeführt und diese anhand quantenchemischer Berechnungen der isotropen²⁹Sichemischen Verschiebungen, der freien Gibbs`schen Energie sowie der chemischen Struktur unterstützt bzw. verglichen.^[9p] Wie exemplarisch für Verbindung **11** gezeigt (vgl. Abb. 4.3), konnte beim Abkühlen der gelösten Verbindung (CD2Cl2) von 23 °C auf -90 °C eine Hochfeld-Verschiebung des ²⁹Si-Resonanzsignals von -64.0 ppm auf -67.0 ppm beobachtet werden.

Abb. 4.3: Temperaturabhängigkeit der ²⁹Si-NMR-Spektren von **11** (CD₂Cl₂; 99.4 MHz).^[9p]

Im Gegensatz dazu wurde beim Erhitzen der gelösten Verbindung **11** ($C_2D_2Cl_4$) von 23 °C auf 90 °C eine Tieffeld-Verschiebung des ²⁹Si-chemische Resonanzsignals von –64.3 ppm auf – 61.9 ppm beobachtet (vgl. Abb. 4.4).

Abb. 4.4: Temperaturabhängigkeit der ²⁹Si-NMR-Spektren von **11** (C₂D₂Cl₄; 99.4 MHz).^[9p]

Diese Ergebnisse können anhand der Annahme eines hypothetischen dynamischen Gleichgewichts zwischen einer pentakoordinierten Silicium(IV)- und zwei möglichen tetrakoordinierten Silicium(IV)-Spezies interpretiert werden (vgl. Schema 4.1; **11**: X = Cl, R = Me).

Schema 4.1: Hypothetisches dynamisches Gleichgewicht zwischen der penta- (**A**) und den tetrakoordinierten Silicium(IV)-Spezies **B** (neutral) bzw. **B**` (kationisch).^[9p]

Demzufolge würde die beobachtete Hochfeld-Verschiebung bei niedrigen Temperaturen für eine zunehmende Besetzung des pentakoordinierten Zustandes **A**, also hin zu den erhaltenen Messwerte der Verbindung im Festkörper, und die entsprechende Tieffeld-Verschiebung für eine zunehmende Besetzung der tetrakoordinierten Zustände **B** bzw. **B**` sprechen. Dieser These widersprechen allerdings die erhaltenen Messwerte für Verbindung **19**. Hierbei ist zwar ebenfalls eine Hochfeld-Verschiebung der ²⁹Si-NMR-Signale bei niedrigen Temperaturen zu beobachten; da sich die Daten in Lösung und im Festkörper jedoch von Beginn an kaum unterscheiden, ist eine von der Koordination losgelöste Temperaturabhängigkeit der chemischen Verschiebung eine mögliche Erklärung dieses Phänomens (siehe hierzu Lit. [9p]).

4.4.2 NMR-Untersuchungen der pentakoordinierten Silicium(IV)-Komplexe 10·0.5C₆H₅CH₃, 11, 12 und 17–20 mit einem *N*,*N*',*S*-Liganden sowie 15 mit einem *N*,*N*',*O*-Liganden im Festkörper

Die neutralen pentakoordinierten Silicium(IV)-Komplexe $10.0.5C_6H_5CH_3$, 11 und 12 besitzen jeweils eine Silicium-Chlor-Bindung. Da die beiden Isotope des Chlors NMR-aktiv sind, ist zu erwarten, dass die ²⁹Si-VACP/MAS-NMR-Spektren bedingt durch die ²⁹Si,Cl-Kopplungen eine Strukturierung aufweisen (³⁵Cl (I = 3/2 [75.8%]) und ³⁷Cl (I = 3/2 [24.2%])). Da die beiden Chlor-Isotope zudem Quadrupol-Kerne sind, trägt noch ein weiteres wohlbekanntes Phänomen zur Strukturierung bei: Da die MAS-Methode den Effekt dipolarer Kopplungen für einen Spin-1/2-Kern nicht vollständig unterdrücken kann, wenn dieser mit einem Quadrupol-Kern koppelt, der eine Quadrupol-Frequenz nahe der Zeeman-Frequenz hat, trägt dies zu starken Verbreiterungen und/oder Strukturierungen dieser Signale bei.^[26] Desweiteren ist auch aufgrund der Kopplungen der ¹⁴N-Kerne der Amido- und Pyridin-Stickstoff-Atome mit dem ²⁹Si-Kern ein gewisser Einfluss auf die ²⁹Si-VACP/MAS-NMR-Spektren in Form einer Verbreiterung bzw. Strukturierung zu erwarten. Verbindung 12 besitzt zusätzlich einen Pentafluorphenyl-Liganden am Silicium-Koordinationszentrum. Da auch der ¹⁹F-Kern NMRaktiv ist, ist auch hier zu erwarten, dass die ²⁹Si-VACP/MAS-NMR-Spektren bedingt durch die ²⁹Si, ¹⁹F-Kopplungen eine Strukturierung aufweisen (¹⁹F (I = 1/2 [100%])). In der Tat wurde für Verbindung **12** im ²⁹Si-VACP/MAS-NMR-Spektrum eine deutliche Strukturierung in Form eines stark verbreiterten Resonanzsignals beobachtet (vgl. Abb. 4.5).

Abb. 4.5: ²⁹Si-VACP/MAS-NMR-Spektrum von 12.

Die Verbindungen $10.0.5C_6H_5CH_3$ und 11 zeigen, dagegen eine deutlich geringere Verbreiterung der ²⁹Si-Resonanzsignale. Dies gilt auchfür die Verbindungen 15 und 17–20.

Insgesamt liegen die isotropen ²⁹Si-chemischen Verschiebungen der Verbindungen **10**·0.5C₆H₅CH₃, **11**, **12**, **15** und **17–20** im Festkörper mit –91.7 ppm bis –61.4 ppm im erwarteten Bereich für neutrale pentakoordinierte Silicium(IV)-Verbindungen (vgl. Tab. 4.4).

4.4.3 Vergleich der chemischen Verschiebungen der pentakoordinierten Silicium(IV)-Komplexe 10·0.5C₆H₅CH₃, 11, 12 und 17–20 mit einem *N*,*N*',*S*-Liganden sowie 15 mit einem *N*,*N*',*O*-Liganden im Festkörper

Vergleicht man die jeweiligen isotropen ²⁹Si-chemischen Verschiebungen der Verbindungen $10 \cdot 0.5C_6H_5CH_3$, **11**, **12**, **15** und **17–20** in Lösung und im Festkörper (vgl. Tab. 4.4), wird ersichtlich, dass diese sich vergleichsweise wenig voneinander unterscheiden, was darauf schließen lässt, dass die jeweiligen Strukturen im Festkörper und in Lösung sehr ähnlich sind. In allen Fällen kann auch eine Pentakoordination des Silicium-Atoms in Lösung angenommen werden.

Tabelle 4.4: Vergleich der isotropen ²⁹Si-chemischen Verschiebungen [ppm] von **10**·0.5C₆H₅CH₃, **11**, **12**, **15** und **17–20** in Lösung^[a] (T = 23 °C) und im Festkörper (T = 22 °C).

Verbindung	δ^{29} Si (Lösung)	δ^{29} Si (Festkörper)	$ \Delta \delta^{29} Si $	Gerüsttyp
10 ^[b]	-70.9	-75.8	4.9	SiClSN ₂ C
11	-64.0	-70.3	6.3	SiClSN ₂ C
12	-84.8 bis -84.4 (m)	-88.4	3.8 ^[c]	SiClSN ₂ C
15	-87.6	-90.4	2.8	SiON ₃ C
17	-70.0	-73.0	3.0	SiSON ₂ C
18	-59.8	-61.4	1.6	SiS_2N_2C
19	$-70.2^{[d]}$	-70.1	0.1	SiSeSN ₂ C
20	-90.6 ^[e]	-91.7	1.1	SiTeSN ₂ C

[a] $10 \cdot 0.5C_6H_5CH_3$, 11, 12, 15 und 17–20: CD₂Cl₂; [b] als Hemitoluol-Solvat; [c] Differenz zum Mittelpunkt des Multipletts (²⁹Si,¹⁹F- und ^{35,37}Cl-Kopplungen) (δ^{29} Si = -84.6 ppm); [d] ⁷⁷Se-Satelliten, ¹*J*(²⁹Si,⁷⁷Se) = 136 Hz; [e] ¹²⁵Te-Satelliten, ¹*J*(²⁹Si,¹²⁵Te) = 367 Hz.

4.5 NMR-Untersuchungen der neutralen hexakoordinierten Silicium(IV)-Komplexe 21 und 22 mit zwei Amidinato-Liganden

Die neutralen hexakoordinierten Silicium(IV)-Komplexe **21** und **22** wurden anhand von NMR-Spektroskopie in Lösung (¹H-, ¹³C- und ²⁹Si-NMR) sowie im Festkörper (¹⁵N- und ²⁹Si-VACP/MAS-NMR) untersucht (vgl. Tab. 4.5).

4.5.1 NMR-Untersuchungen der hexakoordinierten Silicium(IV)-Komplexe 21 und 22 mit zwei Amidinato-Liganden in Lösung

Die isotropen ²⁹Si-chemischen Verschiebungen der Verbindungen **21** und **22** in Lösung liegen mit –177.6 ppm bzw. –177.8 ppm im erwarteten Bereich für neutrale hexakoordinierte Silicium(IV)-Verbindungen (vgl. Tab. 4.5). Zusätzlich lassen sich für **22** zwei weitere ²⁹Si-Signale bei 0.3 ppm und 2.5 ppm detektieren, die den Trimethylsilyl-Resten der beiden Amidinato-Liganden zugeordnet werden können. Die Verbindungen **21** und **22** besitzen jeweils eine Si–H-Bindung und zeigen deshalb im ¹H-NMR-Spektrum aufgrund von ¹H,²⁹Si-Kopplungen ²⁹Si-Satelliten (¹*J*(¹H,²⁹Si) = 297.1 Hz (**21**) bzw. 296.4 Hz (**22**)).

4.5.2 NMR-Untersuchungen der hexakoordinierten Silicium(IV)-Komplexe 21 und 22 mit zwei Amidinato-Liganden im Festkörper

 $(\delta^{29}Si$ ²⁹Si-chemischen Verschiebungen der Verbindungen Die isotropen 21 = -172.5 ppm) und **22** (δ^{29} Si = -178.5 ppm bis -175.9 (m) ppm) im Festkörper liegen im erwarteten Bereich für neutrale hexakoordinierte Silicium(IV)-Verbindungen (vgl. Tab. 4.5). Für Verbindung 22 wird im Festkörper eine starke Strukturierung des ²⁹Si-VACP/MAS-NMR-Signals aufgrund von ²⁹Si,Cl-Kopplungen (³⁵Cl (I = 3/2 [75.8%]) und ³⁷Cl (I = 3/2[24.2%]) beobachtet (vgl. Abb. 4.6), wohingegen für Verbindung 21 lediglich ein verbreitertes ²⁹Si-Resonanzsignal gefunden wird. Da die beiden Chlor-Isotope zudem Quadrupol-Kerne sind, trägt noch ein weiteres wohlbekanntes Phänomen zur Strukturierung bei: Da die MAS-Methode den Effekt dipolarer Kopplungen für einen Spin-1/2-Kern nicht vollständig unterdrücken kann, wenn dieser mit einem Quadrupol-Kern koppelt, der eine Quadrupol-Frequenz nahe der Zeeman-Frequenz hat, trägt dies zu starken Verbreiterungen und/oder Strukturierung dieser Signale bei.^[26] Auch aufgrund der Kopplungen mit den ¹⁴N-Kernen der Amidinato-Liganden ist ein gewisser Einfluss auf das ²⁹Si-VACP/MAS-NMR-Spektrum in Form einer Verbreiterung bzw. Strukturierung zu erwarten.

Abb. 4.6: ²⁹Si-VACP/MAS-NMR-Spektrum von 22.

Desweiteren sind für die vier Trimethylsilyl-Reste von Verbindung **22** drei unterschiedliche Signale im ²⁹Si-VACP/MAS-NMR-Spektrum erkennbar (δ^{29} Si = -0.6 ppm, 1.9 ppm und 2.5 ppm; Intensitätsverhältnis: 2:1:1). Für zwei der vier ²⁹Si-Kerne wird also Isochronie beobachtet, während im ¹⁵N-VACP/MAS-NMR-Spektrum für jedes der vier Stickstoff-Atome der beiden Amidinato-Liganden ein Signal zu erkennen ist (δ^{15} N = -195.2 ppm, -192.2 ppm, -185.1 ppm und -180.1 ppm).

4.5.3 Vergleich der chemischen Verschiebungen der hexakoordinierten Silicium(IV)-Komplexe 21 und 22 mit zwei Amidinato-Liganden in Lösung und im Festkörper

Da die isotropen ²⁹Si-chemischen Verschiebungen von **21** und **22** in Lösung und im Festkörper ähnlich sind, kann davon ausgegangen werden, dass diese Verbindungen in beiden Phasen ähnliche Strukturen aufweisen. Tabelle 4.5 zeigt interessanterweise, dass die ²⁹Sichemischen Verschiebungen dieser hexakoordinierten Silicium(IV)-Komplexe ($|\Delta\delta^{29}Si| = 0.2$ ppm (Lösung) bzw. 4.7 ppm (Festkörper)) nur eine geringe Abhängigkeit vom Substitutionsmuster aufweisen, obwohl die beiden unterschiedlichen Aryl-Gruppen bzw. die Trimethylsilyl- und Isopropyl-Substituenten der Amidinato-Liganden aufgrund ihrer elektronischen und sterischen Eigenschaften eine sehr unterschiedliche chemische Natur aufweisen.

Verbindung	δ^{29} Si (Lösung)	δ^{29} Si (Festkörper)	$ \Delta \delta^{29} \mathrm{Si} $	Gerüsttyp
21	-177.6	-172.5	5.1	SiClN ₄ H
22	-177.8,	-178.5 bis -175.9 (m),	0.6 ^[b] ,	SiClN ₄ H
	0.3, 2.5	-0.6, 1.9, 2.5 ^[c]	0.0–3.1	

Tabelle 4.5: Vergleich der isotropen ²⁹Si-chemischen Verschiebungen [ppm] von **21** und **22** in Lösung^[a] (T = 23 °C) und im Festkörper (T = 22 °C).

[a] **21** und **22**: CD_2Cl_2 ; [b] Differenz zum Mittelpunkt des Multipletts (²⁹Si,¹⁴N- und ^{35,37}Cl-Kopplungen) ($\delta^{29}Si = -177.2 \text{ ppm}$); [c] Intensitätsverhältnis: 2:1:1.

5 Kristallstrukturanalysen^[a]

5.1 Allgemeine Bemerkungen

Die Verbindungen 1-8, 10-12, 15, 17-23, 25, 35, 36, 37'-40', 41 und 42 wurden durch Einkristall-Röntgenstrukturanalysen strukturell charakterisiert. Die Verbindungen 1, 10, 38' und 40' wurden als das Addukt 1.2Et₂O bzw. die Solvate 10.0.5C₆H₅CH₃, 38'·C₆H₅CH₃ und 40'·C₆H₅CH₃ untersucht. Geeignete Einkristalle wurden montiert und in den kalten Stickstoff-Strom des Diffraktometers gebracht. Die Messung erfolgte mit einem Diffraktometer des Stoe-IPDS (2,4–6, **10**·0.5C₆H₅CH₃, **12**, **17–20**, 21 - 23, 39' und **41**: Typs graphitmonochromatisierte Mo- K_{α} -Strahlung, $\lambda = 0.71073$ Å), des Typs Bruker Nonius KAPPA APEX II (1·2Et₂O, 3, 8, 25, 35, 36, 37', 40'·C₆H₅CH₃ und 42; graphitmonochromatisierte Mo- K_{a} -Strahlung, $\lambda = 0.71073$ Å) oder des Typs Bruker Nonius KAPPA APEX II (7, 11, 15 und 38'·C₆H₅CH₃; Montel-Spiegel, Mo- K_{α} -Strahlung, $\lambda =$ 0.71073 Å). Alle Strukturen wurden mit direkten Methoden gelöst (Programme SHELXS-97 bzw. 2013^[27]). Die Verfeinerung erfolgte mit den Programmen SHELXL-97 bzw. 2013.^[27] SHELXLE wurde als GUI bei der Verfeinerung der Strukturen verwendet.^[28] Alle Nichtwasserstoff-Atome wurden anisotrop verfeinert. Für an Kohlenstoff gebundene Wasserstoff-Atome wurde ein Reitermodell verwendet. In den Legenden der jeweiligen Strukturabbildungen sind ausgewählte Bindungslängen und -winkel angegeben. Die Abbildungen der Molekülstrukturen mit Angabe der vollständigen Nummerierungsschemata, die Tabellen mit den kristallographischen Daten und den Angaben zu den Kristallstrukturanalysen, die Tabellen der Atomkoordinaten und der äquivalenten isotropen Auslenkungsparameter der Nichtwasserstoff-Atome sowie die Tabellen mit den Bindungslängen und -winkeln finden sich im Anhang A. Die zur Diskussion der Bindungslängen herangezogenen Kovalenzradien wurden aus Lit. [29] entnommen.

Pentakoordinierte Verbindungen können als Koordinationspolyeder eine trigonale Bipyramide oder eine quadratische Pyramide ausbilden. Häufig finden sich jedoch auch Geometrien, die dazwischen auf der Berry-Pseudorotations-Koordinate liegen. Diese Geometrien lassen sich durch die sogenannte Berry-Verzerrung beschreiben. Dabei repräsentiert ein Verzerrungsgrad von 0% eine ideale trigonale Bipyramide und ein Verzerrungsgrad von 100% eine ideale quadratische Pyramide. Die Verzerrungsgrade wurden mit Hilfe des Programms Platon^[30] ermittelt.

^[a] Alle in diesem Kapitel aufgeführten Kristallstrukturanalysen wurden von Herrn Dr. Christian Burschka bzw. Herrn Dipl.-Chem. Johannes A. Baus, Institut für Anorganische Chemie der Universität Würzburg, durchgeführt.

5.2 Kristallstrukturen

5.2.1 Kristallstruktur von 1·2Et₂O^[b]

Verbindung 1 kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Diethylether) auf -18 °C als 1·2Et₂O. Die Struktur von 1·2Et₂O ist bezüglich eines der beiden Diethylether-Moleküle in Molekül II mit einer Besetzungszahl von 65.8% teilweise fehlgeordnet. Die dominierende Molekülstruktur eines der beiden kristallographisch unabhängigen Moleküle von 1·2Et₂O im Kristall ist in Abb. 5.1 gezeigt.

Abb. 5.1: Molekülstruktur von Molekül I im Kristall von $1.2Et_2O$ mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°] (die Strukturen von Molekül I und II sind ähnlich; die entsprechenden Daten von Molekül II sind in Klammern angegeben): Li–O1 196.1(5) (198.7(5)), Li–O2 199.5(5) (200.7(5)), Li–N1 202.3(5) (208.4(5)), Li–N2 204.4(5) (201.3(5)), N1–C1 133.2(3) (134.0(3)), N2–C1 133.5(3) (133.6(3)); O1–Li–O2 106.6(2) (104.0(3)), O1–Li–N1 108.8(2) (113.7(2)), O1–Li–N2 130.9(2) (122.2(2)), O2–Li–N1 123.9(2) (139.4(3)), O2–Li–N2 115.6(2) (105.5(3)), N1–Li–N2 67.05(16) (66.75(16)), N1–C1–N2 114.8(2) (114.8(2)). Die Struktur von $1.2Et_2O$ ist teilweise fehlgeordnet; die angegebenen Daten beziehen sich auf das dominierende Molekül mit einer Besetzungszahl von 65.8%.

Das Li-Koordinationspolyeder (*Li*O₂N₂-Gerüst) entspricht dem eines stark verzerrten Tetraeders. Die Verzerrung des Koordinationspolyeders wird zum einen durch den hohen sterischen Anspruch des Dipp-Liganden und der beiden Diethylether-Liganden, zum anderen durch die starke Vierringspannung innerhalb des viergliedrigen LiN₂C-Rings hervorgerufen,

^[b] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe $P2_1/c$ (14); a = 15.646(6) Å; b = 13.477(6) Å; c = 35.262(14) Å; $a = 90^\circ$; $\beta = 101.163(12)^\circ$; $\gamma = 90^\circ$; R1 [$I > 2\sigma(I)$] = 0.0641.

welchen der bidentate Amidinato-Ligand mit dem Li-Koordinationszentrum bildet (N–Li–N-Winkel: 67.05(16)° (66.75(16))°). Die maximale Abweichung vom idealen 109.47°-Tetraeder-Winkel beträgt 42.42(16)° (42.72(16)°). Die beiden Li–N-Bindungslängen (202.3(5) pm (208.4(5) pm) bzw. 204.4(5) pm (201.3(5) pm)) sowie N–C1-Bindungsabstände (133.2(3) pm (134.0(3) pm) bzw. 133.5(3) pm (133.6(3) pm)) weichen jeweils nur wenig voneinander ab, was auf eine stark ausgeprägte Elektronendelokalisation hinweist. Dies gilt ebenso für die beiden Li–O-Bindungslängen (196.1(5) pm (198.7(5) pm) und 199.5(5) pm (200.7(5) pm)). Dabei ist auffällig, dass sowohl die Li–O- (Summe der Kovalenzradien: 189 pm) als auch die Li–N-Bindungslängen (Summe der Kovalenzradien: 193 pm) im Vergleich zur Summe der jeweiligen Kovalenzradien verlängert sind, was auf den erhöhten sterischen Anspruch der Liganden zurückzuführen ist. Vergleicht man die Bindungswinkel der beiden kristallographisch unabhängigen Moleküle miteinander, werden starke Abweichung um das Lithium-Zentrum deutlich. Die in Abbildung 5.1 beschriebenen O–Li–N-Winkel sind sehr unterschiedlich und weichen dabei um bis zu 22.1° (33.9°) voneinander ab.

5.2.2 Kristallstrukturen der neutralen pentakoordinierten Chlorohydridosilicium(IV)-Komplexe mit einem bidentaten Amidinato-Liganden

5.2.2.1 Kristallstruktur von 2^[c]

Verbindung 2 kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Dichlormethan) auf 20 °C. Die Molekülstruktur eines der drei kristallographisch unabhängigen Moleküle von 2 im Kristall ist in Abb. 5.2 gezeigt.

Das Si-Koordinationspolyeder von **2** (*Si*Cl₂N₂H-Gerüst) entspricht dem einer stark verzerrten trigonalen Bipyramide (Summe der äquatorialen Bindungswinkel: 353.6° (355.8° bzw. 357.0°)) mit einer Berry-Verzerrung von 33.4% (13.1% bzw. 13.1%). Die Verzerrung des Koordinationspolyeders wird durch die starke Vierringspannung innerhalb des viergliedrigen SiN₂C-Rings hervorgerufen, welchen der bidentate Amidinato-Ligand mit dem Si-Koordinationszentrum bildet (N–Si–N-Winkel: 68.0(4)° (67.5(3)° bzw. 68.0(3)°). Diese Verzerrung wird auch durch die Abweichung des Cl_{ax}–Si–N_{ax}-Bindungswinkels (164.5(2)° (164.3(2)° bzw. 164.4(2)°)) vom idealen 180°-Winkel mit 15.5(2)° (15.7(2)° bzw. 15.6(2)°) deutlich. Die beiden Stickstoff-Atome des bidentaten Amidinato-Liganden besetzen jeweils eine axiale und eine äquatoriale Position am Silicium-Koordinationszentrum.

^[c] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P3_2$ (145); a = 25.208(4) Å; b = 25.208(4) Å; c = 12.2893(18) Å; $a = 90^\circ$; $\beta = 90^\circ$; $\gamma = 120^\circ$; R1 [$I > 2\sigma(I)$] = 0.0398.

Abb. 5.2: Molekülstruktur von Molekül I im Kristall von **2** mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°] (die Strukturen von Molekül II und III sind sehr ähnlich, die entsprechenden Daten sind in Klammern angegeben): Si–Cl1 213.5(3) (213.5(3)) (212.9(3)), Si–Cl2 206.5(3) (205.7(3)) (206.9(3)), Si–N1 202.4(7) (201.7(7)) (200.7(7)), Si–N2 177.9(7) (181.4(7)) (180.2(7)), Si–H1a 142(7) (145(6)) (147(7)), N1–C1 130.2(10) (130.6(10)) (132.3(11)), N2–C1 138.3(11) (134.2(10)) (135.0(10)); Cl1–Si–Cl2 97.42(14) (97.64(12)) (97.24(13)), Cl1–Si–N1 164.5(2) (164.3(2)) (164.4(2)), Cl1–Si–N2 96.7(2) (97.0(2)) (96.5(2)), Cl1–Si–H1a 102(3) (97(3)) (94(2)), Cl2–Si–N1 92.7(2) (92.6(2)) (92.1(2)), Cl2–Si–N2 120.6(3) (118.8(3)) (119.0(3)), Cl2–Si–H1a 106(2) (123(2)) (123(2)), N1–Si–N2 68.0(4) (67.5(3)) (68.0(3)), N1–Si–H1a 87(3) (87(3)) (92(2)), N2–Si–H1a 127(3) (114(3)) (115(2)), N1–C1–N2 105.4(8) (107.4(7)) (106.1(8)).

Der axiale Si–N-Bindungsabstand (202.4(7) pm (201.7(7) pm bzw. 200.7(7) pm)) ist um 24.5 pm (20.3 pm bzw. 20.5 pm) länger als der äquatoriale Si–N-Bindungsabstand (177.9(7) pm (181.4(7) pm bzw. 180.2(7) pm)) und auch deutlich länger als die Summe der Kovalenzradien (187 pm). Dies spiegelt sich auch in den N–C1-Bindungslängen wider. Der N_{äq}–C1-Bindungsabstand (138.3(11) pm (134.2(10) pm bzw.135.0(10) pm)) ist um 8.1 pm (3.6 pm bzw. 2.7 pm) länger als der N_{ax}–C1-Bindungsabstand (130.2(10) pm (130.6(10) pm bzw. 132.3(11) pm)), was eine eingeschränkte Elektronendelokalisation innerhalb des N–C1–N-Fragments andeutet. Die strukturellen Parameter sind denen eines literaturbekannten strukturverwandten Chlorohydridosilicium(IV)-Komplexes mit Guanidinato-Liganden sehr ähnlich.^[5r]

5.2.2.2 Kristallstruktur von 3^[d]

Verbindung **3** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf 20 °C. Die Molekülstruktur von **3** im Kristall ist in Abb. 5.3 gezeigt.

Abb. 5.3: Molekülstruktur von **3** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–Cl 212.9(2), Si–N1 215.7(5), Si–N2 180.1(4), Si–N3 185.9(5), Si–H1 135(5), N1–C1 129.3(7), N2–C1 136.2(7); Cl–Si–N1 161.69(14), Cl–Si–N2 96.51(15), Cl–Si–N3 101.30(15), Cl–Si–H1 96.9(19), N1–Si–N2 65.69(17), N1–Si–N3 91.98(18), N1–Si–H1 87.6(19), N2–Si–N3 120.1(2), N2–Si–H1 115(2), N3–Si–H1 118.4(19), N1–C1–N2 109.5(4).

Das Si-Koordinationspolyeder von **3** (*Si*ClN₃H-Gerüst) entspricht dem einer stark verzerrten trigonalen Bipyramide (Summe der äquatorialen Bindungswinkel: 353.5°) mit einer Berry-Verzerrung von 19.2%. Die Verzerrung des Koordinationspolyeders wird durch die starke Vierringspannung innerhalb des viergliedrigen SiN₂C-Rings hervorgerufen, welchen der bidentate Amidinato-Ligand mit dem Si-Koordinationszentrum bildet (N–Si–N-Winkel: $65.69(17)^{\circ}$). Dies wird auch durch die Abweichung des Cl_{ax}–Si–N_{ax}-Bindungswinkels ($161.69(14)^{\circ}$) vom idealen 180° -Winkel mit $18.31(14)^{\circ}$ deutlich. Analog zu Verbindung **2** besetzen die beiden Stickstoff-Atome des bidentaten Amidinato-Liganden wiederum jeweils eine axiale und eine äquatoriale Position. Der Chloro-Ligand befindet sich ebenfalls in axialer Position, der Amido- bzw. Hydrido-Ligand befinden sich jeweils in äquatorialer Position. Der axiale Si–N-Bindungsabstand (215.7(5) pm) ist um 35.6 pm bzw. 29.8 pm länger als die äquatorialen (180.1(4) pm bzw. 185.9(5) pm) und auch deutlich länger als die Summe der

^[d] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe $P3_2$ (145); a = 14.760(3) Å; b = 14.760(3) Å; c = 12.482(3) Å; $a = 90^\circ$; $\beta = 90^\circ$; $\gamma = 120^\circ$; R1 [$I > 2\sigma(I)$] = 0.0475.

Kovalenzradien (187 pm). Dies spiegelt sich auch in den N-C1-Bindungslängen wider. Der N_{äq}-C1-Bindungsabstand (136.2(7) pm) ist um 6.9 pm länger als der N_{ax}-C1-Bindungsabstand (129.3(7))pm). Dies deutet zwar eine eingeschränkte Elektronendelokalisation innerhalb des N-C1-N-Fragments an, es ist aber zu erkennen, dass das an das Si-Koordinationszentrum gebundene Stickstoff-Atom des monodentaten Amido-Liganden trigonal planar umgeben ist (Summe der Bindungswinkel: 358.9°), während aufgrund des freien Elektronenpaares eine (pseudo)tetraedrische Umgebung zu erwarten gewesen wäre. Dieses Phänomen kann durch eine partielle Delokalisation der Elektronen über das Si–N3–C-Fragment des Liganden erklärt werden.

5.2.2.3 Kristallstruktur von 4^[e]

Verbindung **4** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Benzol) auf 20 °C. Die Molekülstruktur von **4** im Kristall ist in Abb. 5.4 gezeigt.

Das Si-Koordinationspolyeder von 4 (SiClN₃H-Gerüst) entspricht dem einer stark verzerrten trigonalen Bipyramide (Summe der äquatorialen Bindungswinkel: 354.67°) mit einer Berry-Verzerrung von 42.1%. Die Verzerrung des Koordinationspolyeders wird durch die starke Vierringspannung innerhalb des viergliedrigen SiN₂C-Rings hervorgerufen, welchen der bidentate Amidinato-Ligand mit dem Si-Koordinationszentrum bildet (N-Si1-N-Winkel: 64.39(6)°). Dies wird auch durch die Abweichung des Cl-Si-Nax-Bindungswinkels (158.88(5)°) vom idealen 180°-Winkel mit 21.12(5)° deutlich. Die beiden Stickstoff-Atome des bidentaten Amidinato-Liganden besetzen wiederum jeweils eine axiale und eine äquatoriale Position. Der Chloro-Ligand befindet sich ebenfalls in axialer Position, die Amido- bzw. Hydrido-Liganden befinden sich jeweils in äquatorialer Position. Der axiale Sil-N-Bindungsabstand (220.46(15) pm) ist um 39.46 pm bzw. 47.51 pm länger als die äquatorialen (181.00(15) pm bzw. 172.95(14) pm) und auch deutlich länger als die Summe der Kovalenzradien (187 pm). Dies spiegelt sich auch in den N-C1-Bindungslängen wider. Der N_{äq}-C1-Bindungsabstand (136.4(2) pm) ist um 6.0 pm länger als der N_{ax}-C1-Bindungsabstand (130.4(2) pm), was zwar eine eingeschränkte Elektronendelokalisation innerhalb des N–C1–N-Fragments andeutet, vergleichbar mit Verbindung 3 ist aber auch hier zu erkennen, dass das an das Si-Koordinationszentrum gebundene Stickstoff-Atom des Amido-Liganden trigonal-planar umgeben ist (Summe der Bindungswinkel: 359.91°),

^[e] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/n$ (14); a = 12.057(3) Å; b = 18.309(3) Å; c = 18.785(4) Å; $a = 90^\circ$; $\beta = 107.27(3)^\circ$; $\gamma = 90^\circ$; R1 [$I > 2\sigma(I)$] = 0.0386.
während aufgrund des freien Elektronenpaares wiederum eine (pseudo)tetraedrische Umgebung zu erwarten gewesen wäre. Dieses Phänomen kann durch eine partielle Delokalisation der Elektronen über das Si1–N3–Si-Fragment des Liganden erklärt werden.

Abb. 5.4: Molekülstruktur von **4** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si1–Cl 215.54(7), Si1–N1 220.46(15), Si1–N2 181.00(15), Si1–N3 172.95(14), Si1–H1 137.8(19), N1–C1 130.4(2), N2–C1 136.4(2); Cl–Si1–N1 158.88(5), Cl–Si1–N2 94.50(5), Cl–Si1–N3 98.69(5), Cl–Si1–H1 99.9(7), N1–Si1–N2 64.39(6), N1–Si1–N3 96.77(6), N1–Si1–H1 86.9(7), N2–Si1–N3 135.97(7), N2–Si1–H1 105.0(8), N3–Si1–H1 113.7(8), N1–C1–N2 108.44(14).

5.2.3 Kristallstrukturen der neutralen pentakoordinierten Chlorosilicium(IV)-Komplexe mit einem bidentaten Amidinato-Liganden

5.2.3.1 Kristallstruktur von 5^[f]

Verbindung **5** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Dichlormethan) auf 20 °C. Die Struktur von **5** im Kristall ist bezüglich der drei Chlor-Atome teilweise fehlgeordnet. Die dominierende Molekülstruktur von **5** (Besetzungszahl: 90.0%) im Kristall ist in Abb. 5.5 gezeigt.

Das Si-Koordinationspolyeder von **5** (*Si*Cl₃N₂-Gerüst) entspricht dem einer verzerrten trigonalen Bipyramide (Summe der äquatorialen Bindungswinkel: 357.39°), wobei die Berry-

^[f] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P3_121$ (152); a = 14.761(2) Å; b = 14.761(2) Å; c = 24.465(4) Å; $a = 90^\circ$; $\beta = 90^\circ$; $\gamma = 120^\circ$; R1 [$I > 2\sigma(I)$] = 0.0481.

Verzerrung aufgrund der kristallographisch fehlgeordneten Chloro-Liganden nicht bestimmt werden konnte.

Abb. 5.5: Molekülstruktur von **5** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–Cl1 205.23(9), Si–Cl2 205.54(10), Si–Cl3 212.54(9), Si–N1 200.37(17), Si–N2 180.34(19), N1–C1 131.5(3), N2–C1 135.8(3); Cl1–Si–Cl2 114.37(5), Cl1–Si–Cl3 96.03(4), Cl1–Si–N1 92.15(6), Cl1–Si–N2 125.85(7), Cl2–Si–Cl3 95.01(4), Cl2–Si–N1 94.63(6), Cl2–Si–N2 117.17(7), Cl3–Si–N1 163.49(6), Cl3–Si–N2 95.01(6), N1–Si–N2 68.64(7), N1–C1–N2 107.28(18). Die Struktur von **5** ist teilweise fehlgeordnet; die angegebenen Daten beziehen sich auf das dominierende Molekül mit einer Besetzungszahl von 90.0%.

Die Verzerrung des Koordinationspolyeders wird durch die starke Vierringspannung innerhalb des viergliedrigen SiN₂C-Rings hervorgerufen, welchen der bidentate Amidinato-Ligand mit dem Si-Koordinationszentrum bildet (N–Si–N-Winkel: $68.64(7)^{\circ}$). Dies wird auch durch die Abweichung des Cl_{ax} –Si–N_{ax}-Bindungswinkels ($163.49(6)^{\circ}$) vom idealen 180° -Winkel mit $16.51(6)^{\circ}$ deutlich. Die beiden Stickstoff-Atome des bidentaten Amidinato-Liganden besetzen wiederum jeweils eine axiale und eine äquatoriale Position. Ein Chloro-Ligand befindet sich ebenfalls in axialer Position, zwei weitere Chloro-Liganden befinden sich jeweils in äquatorialer Position. Der axiale Si–N-Bindungsabstand (200.37(17) pm) ist um 20.03 pm länger als der äquatoriale (180.34(19) pm) und auch deutlich länger als die Summe der Kovalenzradien (187 pm). Dies spiegelt sich auch in den N–C1-Bindungslängen wider. Der N_{äq}–C1-Bindungsabstand (135.8(3) pm) ist um 4.3 pm länger als der N_{ax}–C1-Bindungsabstand (131.5(3) pm), was eine eingeschränkte Elektronendelokalisation innerhalb des N–C1–N-Fragments andeutet. Auffällig hierbei ist, dass sowohl die äquatorialen Si–Cl-Bindungslängen (205.23(9) pm bzw. 205.54(10) pm) als auch die axiale Si–Cl-Bindungslängen

(212.54(9) pm) im Vergleich zur Summe der Kovalenzradien (Si-Cl: 216 pm) deutlich verkürzt sind.

5.2.3.2 Kristallstruktur von 6^[g]

Verbindung **6** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf -18 °C. Die Struktur von **6** im Kristall ist in Abb. 5.6 gezeigt.

Das Si-Koordinationspolyeder von **6** (*Si*Cl₂N₃-Gerüst) entspricht dem einer stark verzerrten trigonalen Bipyramide (Summe der äquatorialen Bindungswinkel: 353.89°) mit einer Berry-Verzerrung von 26.6%. Die Verzerrung des Koordinationspolyeders wird durch die starke Vierringspannung innerhalb des viergliedrigen SiN₂C-Rings hervorgerufen, welchen der bidentate Amidinato-Ligand mit dem Si-Koordinationszentrum bildet (N–Si–N-Winkel: 65.51(11)°). Dies wird auch durch die Abweichung des Cl_{ax}–Si–N_{ax}-Bindungswinkels (161.24(9)°) vom idealen 180°-Winkel mit 18.76(9)° deutlich. Die beiden Stickstoff-Atome des bidentaten Amidinato-Liganden besetzen wiederum jeweils eine axiale und eine äquatoriale Position.

Abb. 5.6: Molekülstruktur von **6** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–Cl1 207.83(15), Si–Cl2 212.72(17), Si–N1 219.3(3), Si–N2 176.3(3), Si–N3 168.1(3), N1–C1 129.4(4), N2–C1 138.2(4); Cl1–Si–Cl2 96.67(7), Cl1–Si–N1 91.22(9), Cl1–Si–N2 115.36(11), Cl1–Si–N3 114.42(15), Cl2–Si–N1 161.24(9), Cl2–Si–N2 95.75(10), Cl2–Si–N3 102.17(15), N1–Si–N2 65.51(11), N1–Si–N3 89.88(17), N2–Si–N3 124.11(18), N1–C1–N2 108.4(3).

^[g] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P3_1$ (144); a = 15.1910(19) Å; b = 15.1910(19) Å; c = 12.3499(18) Å; $a = 90^\circ$; $\beta = 90^\circ$; $\gamma = 120^\circ$; R1 [$I > 2\sigma(I)$] = 0.0470.

Chloro- sowie der Amido-Ligand befinden sich jeweils in äquatorialer Position. Der axiale Si–N-Bindungsabstand (219.3(3) pm) ist um 43.0 pm bzw. 51.2 pm länger als die äquatorialen (176.3(3) pm bzw. 168.1(3) pm) und auch deutlich länger als die Summe der Kovalenzradien (187 pm). Dies spiegelt sich auch in den N–C1-Bindungslängen wider. Der N_{äq}–C1-Bindungsabstand (138.2(4) pm) ist um 8.8 pm länger als der axiale N_{ax}–C1-Bindungsabstand (129.4(4) pm), was zwar eine eingeschränkte Elektronendelokalisation innerhalb des N–C1–N-Fragments andeutet, vergleichbar mit den Verbindungen **3** und **4** ist aber auch hier zu erkennen, dass das an das Si-Koordinationszentrum gebundene Stickstoff-Atom des Amido-Liganden nahezu trigonal-planar umgeben ist (Summe der Bindungswinkel: 358.4°), während aufgrund des freien Elektronenpaares wiederum eine (pseudo)tetraedrische Umgebung zu erwarten gewesen wäre. Dieses Phänomen kann durch eine partielle Delokalisation der Elektronen über das Si–N3–C-Fragment des Liganden erklärt werden.

5.2.3.3 Kristallstruktur von 7^[h]

Verbindung 7 kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Dichlormethan) auf 20 °C. Die Struktur von 7 im Kristall ist bezüglich der Chloro- und des Methyl-Liganden mit einer Besetzungszahl von 77.4% (90.6% bzw. 92.4%) teilweise fehlgeordnet. Die dominierende Molekülstruktur eines der drei kristallographisch unabhängigen Moleküle von 7 im Kristall ist in Abb. 5.7 gezeigt. Das Si-Koordinationspolyeder von 7 (SiCl₂N₂C-Gerüst) entspricht dem einer verzerrten trigonalen Bipyramide (Summe der äquatorialen Bindungswinkel: 356.20° (357.44° bzw. 355.79°)), wobei die Berry-Verzerrung aufgrund der kristallographisch fehlgeordneten Chloro- und Methyl-Liganden nicht bestimmt werden konnte. Die Verzerrung des Koordinationspolyeders wird durch die starke Vierringspannung innerhalb des viergliedrigen SiN₂C-Rings hervorgerufen, welchen der bidentate Amidinato-Ligand mit dem Si-Koordinationszentrum bildet (N-Si-N-Winkel: 66.43(13)° (66.39(14)° bzw. 66.43(14)°)). Dies wird auch durch die Abweichung des Cl_{ax}–Si–N_{ax}-Bindungswinkels (162.22(12)° (159.33(14)° bzw. 162.76(11)°), vom idealen 180°-Winkel mit 17.78(12)° (20.67(14)° bzw. 17.24(11)°) deutlich. Die beiden Stickstoff-Atome des bidentaten Amidinato-Liganden besetzen wiederum jeweils eine axiale und eine äquatoriale Position.

^[h] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe $P3_2$ (145); a = 25.6051(5) Å; b = 25.6051(5) Å; c = 12.2497(3) Å; $a = 90^\circ$; $\beta = 90^\circ$; $\gamma = 120^\circ$; R1 [$I > 2\sigma(I)$] = 0.0241.

Abb. 5.7: Molekülstruktur von Molekül I im Kristall von 7 mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°] (die Strukturen von Molekül II und III sind sehr ähnlich; die entsprechenden Daten sind in Klammern angegeben): Si–Cl1 206.38(16) (205.80(18)) (206.42(16)), Si–Cl2 215.51(17) (220.2(2)) (214.01(16)), Si–N1 211.9(4) (207.2(4)) (214.3(4)), Si–N2 179.1(4) (184.7(4)) (179.9(3)), Si–Cla 187.6(4) (182.5(5)) (186.9(6)), N1–Cl 130.8(5) (130.9(5)) (132.1(5)), N2–Cl 137.9(5) (135.8(5)) (137.7(5)); Cl1–Si–Cl2 95.80(7) (94.19(8)) (95.99(7)), Cl1–Si–N1 92.26(11) (93.41(12)) (91.36(10)), Cl1–Si–N2 115.19(13) (116.75(13)) (115.65(12)), Cl1–Si–Cla 115.73(14) (117.19(19)) (114.84(17)), Cl2–Si–N1 162.22(12) (159.33(14)) (162.76(11)), Cl2–Si–N2 95.79(13) (93.05(14)) (96.35(12)), Cl2–Si–Cla 97.76(13) (98.72(17)) (98.1(2)), N1–Si–N2 66.43(13) (66.39(14)) (66.43(14)), N1–Si–Cla 92.93(16) (94.8(2)) (92.9(2)), N2–Si–Cla 125.28(18) (123.5(2)) (125.3(2)), N1–Cl–N2 106.9(3) (107.7(3)) (107.7(3)). Die Struktur von 7 ist teilweise fehlgeordnet; die angegebenen Daten beziehen sich auf das dominierende Molekül mit einer Besetzungszahl von 77.4% (90.6% bzw. 92.4%). Das Kohlenstoff-Atom C1a (C1b und C1c) konnte aufgrund der kristallographischen Fehlordnung lediglich isotrop verfeinert werden.

Einer der beiden Chloro-Liganden befindet sich ebenfalls in axialer Position, der zweite Chloro- sowie der Methyl-Ligand befinden sich jeweils in äquatorialer Position. Der axiale Si–N-Bindungsabstand (211.9(4) pm (207.2(4) pm bzw. 214.3(4) pm)) ist um 32.8 pm (22.5 pm bzw. 34.4 pm) länger als die äquatorialen (179.1(4) pm (184.7(4) pm bzw. 179.9(3) pm)) und auch deutlich länger als die Summe der Kovalenzradien (187 pm). Dies spiegelt sich auch in den N–C1-Bindungslängen wider. Der N_{äq}–C1-Bindungsabstand (137.9(5) pm (135.8(5) pm bzw. 137.7(5) pm)) ist um 7.1 pm (4.9 pm bzw. 5.6 pm) länger als der N_{ax}–C1-Bindungsabstand (130.8(5) pm (130.9(5) pm bzw. 132.1(5) pm)), was eine eingeschränkte Elektronendelokalisation innerhalb des N–C1–N-Fragments andeutet.

5.2.3.4 Kristallstruktur von 8^[i]

Verbindung **8** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Dichlormethan) auf 20 °C. Die Struktur von **8** im Kristall ist in Abb. 5.8 gezeigt.

Abb. 5.8: Molekülstruktur von **8** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–Cl1 206.97(4), Si–Cl2 212.60(3), Si–N1 211.55(8), Si–N2 178.46(8), Si–C32 186.48(10), N1–C1 130.87(11), N2–C1 136.94(11); Cl1–Si–Cl2 95.981(14), Cl1–Si–N1 91.79(2), Cl1–Si–N2 116.51(3), Cl1–Si–C32 114.32(3), Cl2–Si–N1 162.07(3), Cl2–Si–N2 95.88(3), Cl2–Si–C32 99.98(3), N1–Si–N2 66.21(3), N1–Si–C32 91.42(4), N2–Si–C32 124.35(4), N1–C1–N2 106.63(8).

Das Si-Koordinationspolyeder von **8** (*Si*Cl₂N₂C-Gerüst) entspricht dem einer stark verzerrten trigonalen Bipyramide (Summe der äquatorialen Bindungswinkel: 355.18°) mit einer Berry-Verzerrung von 25.5%. Die Verzerrung des Koordinationspolyeders wird durch die starke Vierringspannung innerhalb des viergliedrigen SiN₂C-Rings hervorgerufen, welchen der bidentate Amidinato-Ligand mit dem Si-Koordinationszentrum bildet (N–Si–N-Winkel: $66.21(3)^{\circ}$). Dies wird auch durch die Abweichung des Cl_{ax}–Si–N_{ax}-Bindungswinkels (162.07(3)°) vom idealen 180°-Winkel mit 17.93(3)° deutlich. Die beiden Stickstoff-Atome des bidentaten Amidinato-Liganden besetzen wiederum jeweils eine axiale und eine äquatoriale Position. Einer der beiden Chloro-Liganden befindet sich ebenfalls in axialer Position, der zweite Chloro- sowie der Kohlenstoff-Ligand befinden sich jeweils in äquatorialer Position. Der axiale Si–N-Bindungsabstand (211.55(8) pm) ist um 33.09 pm länger als der äquatoriale (178.46(8) pm) und auch deutlich länger als die Summe der

^[i] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe $P2_1/n$ (14); a = 12.0674(5) Å; b = 15.2394(6) Å; c = 18.5176(7) Å; $a = 90^\circ$; $\beta = 102.973(2)^\circ$; $\gamma = 90^\circ$; R1 [$I > 2\sigma(I)$] = 0.0337.

Kovalenzradien (187 pm). Dies spiegelt sich auch in den N–C1-Bindungslängen wider. Der N_{aq} –C1-Bindungsabstand (136.94(11) pm) ist um 6.07 pm länger als der N_{ax} –C1-Bindungsabstand (130.87(11) pm), was eine eingeschränkte Elektronendelokalisation innerhalb des N–C1–N-Fragments andeutet.

5.2.4 Kristallstrukturen der neutralen pentakoordinierten Chlorosilicium(IV)-Komplexe mit einem tridentaten N,N',S- und einem Phenyl- bzw. Methyl-Liganden

5.2.4.1 Kristallstruktur von 10·0.5C₆H₅CH₃^[j]

Verbindung **10** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Toluol) auf 20 °C als das Hemitoluol-Solvat **10** \cdot 0.5C₆H₅CH₃. Die Molekülstruktur von **10** im Kristall von **10** \cdot 0.5C₆H₅CH₃ ist in Abb. 5.9 gezeigt.

Das Si-Koordinationspolyeder von **10** (*Si*ClSN₂C-Gerüst) entspricht dem einer sehr stark verzerrten trigonalen Bipyramide mit einer Berry-Verzerrung von 46.8%, wobei der tridentate N,N',S-Ligand zwei Fünfringe mit dem Si-Koordinationszentrum ausbildet.

Abb. 5.9: Molekülstruktur von **10** im Kristall von **10**·0.5C₆H₅CH₃ mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–Cl 214.30(7), Si–S 224.87(6), Si–N1 199.58(12), Si–N2 176.37(12), Si–Cl 187.61(14); Cl–Si–S 89.85(2), Cl–Si–N1 88.32(4), Cl–Si–N2 135.87(5), Cl–Si–Cl 107.34(5), S–Si–N1 165.34(4), S–Si–N2 88.67(4), S–Si–Cl 100.71(5), N1–Si–N2 82.57(5), N1–Si–Cl 93.72(6), N2–Si–Cl 116.25(6).

^[j] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe C2/c (15); a = 21.132(3) Å; b = 12.5246(17) Å; c = 17.107(2) Å; $a = 90^{\circ}$; $\beta = 120.487(13)^{\circ}$; $\gamma = 90^{\circ}$; R1 [$I > 2\sigma(I)$] = 0.0366.

Die maximalen Abweichungen von den idealen 90°-, 120°- und 180°-Winkeln betragen $10.71(5)^\circ$, $15.87(5)^\circ$ bzw. 14.66(4)°. Das Schwefel-Atom und das Pyridin-Stickstoff-Atom des Chelat-Liganden besetzen die beiden axialen, das Chlor-, das Amido-Stickstoff- und das Kohlenstoff-Atom des Phenyl-Liganden die drei äquatorialen Positionen. Die äquatorialen Si-Cl-, Si-N2- und Si-Cl-Bindungslängen (214.30(7) pm, 176.37(12) pm bzw. 187.61(14) pm) liegen im erwarteten Bereich, wohingegen der axiale Si-N1-Bindungsabstand (199.58(12) pm) im Vergleich zur Summe der Kovalenzradien (187 pm) deutlich verlängert ist. Die strukturellen Parameter von **10** sind denen des verwandten pentakoordinierten Silicium(IV)-Komplexes **14** mit einem analogen tridentaten *N,N',O*-Chelat-Liganden sehr ähnlich.^[14]

5.2.4.2 Kristallstruktur von 11^[k]

Verbindung **11** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf 20 °C. Die Struktur von **11** im Kristall ist bezüglich des Chloro- und des Methyl-Liganden fehlgeordnet. Die dominierende Molekülstruktur von **11** (Besetzungszahl: 71.1%) im Kristall ist in Abb. 5.10 gezeigt.

Das Si-Koordinationspolyeder von **11** (*Si*ClSN₂C-Gerüst) entspricht dem einer stark verzerrten trigonalen Bipyramide mit einer Berry-Verzerrung von 32.7%, wobei der tridentate *N*,*N'*,*S*-Ligand zwei Fünfringe mit dem Si-Koordinationszentrum ausbildet. Die maximalen Abweichungen von den idealen 90°-, 120°- und 180°-Winkeln betragen 8.2(2)°, 12.19(13)° bzw. 11.56(4)°. Das Schwefel-Atom und das Pyridin-Stickstoff-Atom des Chelat-Liganden besetzen die beiden axialen, das Chlor-, das Amido-Stickstoff- und das Kohlenstoff-Atom des Methyl-Liganden die drei äquatorialen Positionen. Die äquatorialen Si–Cl-, Si–N2- und Si–Cl-Bindungslängen (212.50(6) pm, 174.92(11) pm bzw. 186.9(4) pm) liegen im erwarteten Bereich, wohingegen der axiale Si–N1-Bindungsabstand (198.03(12) pm) im Vergleich zur Summe der Kovalenzradien (187 pm) deutlich verlängert ist.

^[k] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe $P2_1/c$ (14); a = 7.1864(15) Å; b = 9.7269(19) Å; c = 18.971(4) Å; $a = 90^\circ$; $\beta = 96.328(5)^\circ$; $\gamma = 90^\circ$; R1 [$I > 2\sigma(I)$] = 0.0355.

Abb. 5.10: Molekülstruktur von **11** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–Cl 212.50(6), Si–S 225.20(6), Si–N1 198.03(12), Si–N2 174.92(11), Si–Cl 186.9(4); Cl–Si–S 91.30(3), Cl–Si–N1 89.03(4), Cl–Si–N2 130.77(5), Cl–Si–Cl 107.81(13), S–Si–N1 168.44(4), S–Si–N2 88.56(4), S–Si–Cl 98.2(2), N1–Si–N2 82.50(5), N1–Si–Cl 92.7(2), N2–Si–Cl 120.91(16). Die Struktur von **11** ist teilweise fehlgeordnet; die angegebenen Daten beziehen sich auf das dominierende Molekül mit einer Besetzungszahl von 71.1%.

5.2.4.3 Kristallstruktur von 12^[1]

Verbindung **12** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf 20 °C. Die Molekülstruktur von **12** im Kristall ist in Abb. 5.11 gezeigt.

Das Si-Koordinationspolyeder von **12** (*Si*ClSN₂C-Gerüst) entspricht dem einer stark verzerrten trigonalen Bipyramide mit einer Berry-Verzerrung von 23.6%, wobei der tridentate *N*,*N'*,*S*-Ligand zwei Fünfringe mit dem Si-Koordinationszentrum ausbildet. Die maximalen Abweichungen von den idealen 90°-, 120°- und 180°-Winkeln betragen $6.58(5)^\circ$, $9.16(5)^\circ$ bzw. 7.64(4)°. Das Schwefel-Atom und das Pyridin-Stickstoff-Atom des Chelat-Liganden besetzen die beiden axialen, das Chlor-, das Amido-Stickstoff- und das Kohlenstoff-Atom des Pentafluorphenyl-Liganden die drei äquatorialen Positionen. Die äquatorialen Si–Cl-, Si–N2- und Si–Cl-Bindungslängen (211.78(6) pm, 174.38(13) pm bzw. 192.42(14) pm) liegen im erwarteten Bereich, wohingegen der axiale Si–N1-Bindungsabstand (197.81(13) pm) im Vergleich zur Summe der Kovalenzradien (187 pm) deutlich verlängert ist. Dabei ist der Si–

^[1] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/c$ (14); a = 7.7449(10) Å; b = 15.308(2) Å; c = 15.082(2) Å; $a = 90^\circ$; $\beta = 98.831(15)^\circ$; $\gamma = 90^\circ$; R1 [$I > 2\sigma(I)$] = 0.0348.

C1-Bindungsabstand (192.42(14) pm) im Vergleich zu Verbindung **10** (187.61(14) pm) um 4.81 pm verlängert.

Abb. 5.11: Molekülstruktur von **12** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–Cl 211.78(6), Si–S 223.62(6), Si–N1 197.81(13), Si–N2 174.38(13), Si–Cl 192.42(14); Cl–Si–S 93.39(3), Cl–Si–N1 88.07(4), Cl–Si–N2 128.63(5), Cl–Si–Cl 110.84(5), S–Si–N1 172.36(4), S–Si–N2 89.83(4), S–Si–Cl 96.26(5), N1–Si–N2 83.42(5), N1–Si–Cl 90.22(6), N2–Si–Cl 119.72(7).

5.2.5 Kristallstruktur des Azidosilicium(IV)-Komplexes 15^[m]

Verbindung **15** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf 20 °C. Die Molekülstruktur von **15** im Kristall ist in Abb. 5.12 gezeigt.

Das Si-Koordinationspolyeder von **15** (*Si*ON₃C-Gerüst) entspricht dem einer stark verzerrten trigonalen Bipyramide mit einer Berry-Verzerrung von 24.7%, wobei der tridentate *N*,*N'*,*O*-Ligand zwei Fünfringe mit dem Si-Koordinationszentrum ausbildet. Die maximalen Abweichungen von den idealen 90°-, 120°- und 180°-Winkeln betragen 8.72(7)°, 9.35(8)° bzw. 12.11(7)°. Das Schwefel-Atom und das Pyridin-Stickstoff-Atom des Chelat-Liganden besetzen die beiden axialen, das Amido-, das Azido-Stickstoff- und das Kohlenstoff-Atom des Phenyl-Liganden die drei äquatorialen Positionen. Die äquatorialen Si–N2-, Si–N3- und Si–C1-Bindungslängen (174.09(17) pm, 179.11(17) pm bzw. 188.1(2) pm) liegen im erwarteten Bereich, wohingegen der axiale Si–N1-Bindungsabstand (198.51(17) pm) im Vergleich zur Summe der Kovalenzradien (187 pm) deutlich verlängert ist.

^[m] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe $P2_1/c$ (14); a = 8.8091(13) Å; b = 13.4945(19) Å; c = 14.4969(19) Å; $a = 90^\circ$; $\beta = 102.187(7)^\circ$; $\gamma = 90^\circ$; R1 [$I > 2\sigma(I)$] = 0.0421.

Abb. 5.12: Molekülstruktur von **15** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–O 175.69(14), Si–N1 198.51(17), Si–N2 174.09(17), Si–N3 179.11(17), Si–C1 188.1(2), N3–N4 120.2(2), N4–N5 114.2(3); O–Si–N1 167.89(7), O–Si–N2 88.29(7), O–Si–N3 94.77(7), O–Si–C1 97.89(8), N1–Si–N2 81.28(7), N1–Si–N3 86.40(7), N1–Si–C1 92.95(8), N2–Si–N3 125.54(8), N2–Si–C1 122.74(8), N3–Si–C1 110.65(8), Si–N3–N4 124.40(14), N3–N4–N5 174.6(2).

5.2.6 Kristallstrukturen der neutralen pentakoordinierten Chalkogenosilicium(IV)-Komplexe mit einem tridentaten *N*,*N*',*S*-Liganden

5.2.6.1 Kristallstruktur von 17^[n]

Verbindung **17** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf 20 °C. Die Molekülstruktur von **17** im Kristall ist in Abb. 5.13 gezeigt.

Das Si-Koordinationspolyeder von **17** (*Si*SON₂C-Gerüst) entspricht dem einer stark verzerrten trigonalen Bipyramide mit einer Berry-Verzerrung von 21.3%, wobei der tridentate *N*,*N*',*S*-Ligand zwei Fünfringe mit dem Si-Koordinationszentrum ausbildet. Die maximalen Abweichungen von den idealen 90°-, 120°- und 180°-Winkeln betragen 7.75(6)°, 7.22(7)° bzw. 11.38(4)°. Das Schwefel-Atom und das Pyridin-Stickstoff-Atom des Chelat-Liganden besetzen die beiden axialen, das Sauerstoff-, das Amido-Stickstoff- und das Kohlenstoff-Atom des Methyl-Liganden die drei äquatorialen Positionen. Die äquatorialen Si–O-, Si–N2- und Si–C1-Bindungslängen (168.54(12) pm, 176.78(13) pm bzw. 187.89(15) pm) liegen im

^[n] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/c$ (14); a = 10.258(2) Å; b = 7.6485(12) Å; c = 22.037(5) Å; $a = 90^\circ$; $\beta = 94.92(3)^\circ$; $\gamma = 90^\circ$; R1 [$I > 2\sigma(I)$] = 0.0382.

erwarteten Bereich, wohingegen der axiale Si–N1-Bindungsabstand (198.44(13) pm) im Vergleich zur Summe der Kovalenzradien (187 pm) deutlich verlängert ist.

Abb. 5.13: Molekülstruktur von **17** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–S 227.92(7), Si–O 168.54(12), Si–N1 198.44(13), Si–N2 176.78(13), Si–C1 187.89(15); S–Si–O 95.84(4), S–Si–N1 168.62(4), S–Si–N2 88.44(5), S–Si–C1 96.67(6), O–Si–N1 84.11(5), O–Si–N2 124.03(6), O–Si–C1 112.78(7), N1–Si–N2 82.25(6), N1–Si–C1 93.81(7), N2–Si–C1 122.08(7).

5.2.6.2 Kristallstruktur von 18^[0]

Verbindung **18** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf 20 °C. Die Molekülstruktur von **18** im Kristall ist in Abb. 5.14 gezeigt.

Das Si-Koordinationspolyeder von **18** (SiS_2N_2C -Gerüst) entspricht dem einer stark verzerrten trigonalen Bipyramide, mit einer der Verbindung **12** ähnlichen Berry-Verzerrung von 22.2%, wobei der tridentate *N*,*N'*,*S*-Ligand zwei Fünfringe mit dem Si-Koordinationszentrum ausbildet. Die maximalen Abweichungen von den idealen 90°-, 120°- und 180°-Winkeln betragen 8.34(7)°, 6.14(6)° bzw. 11.81(5)°. Das Schwefel-Atom und das Pyridin-Stickstoff-Atom des Chelat-Liganden besetzen die beiden axialen, das Schwefel-Atom des Benzolthiolato-Liganden, das Amido-Stickstoff- und das Kohlenstoff-Atom des Methyl-Liganden die drei äquatorialen Positionen.

^[o] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/c$ (14); a = 7.5524(15) Å; b = 16.297(3) Å; c = 14.284(3) Å; $a = 90^\circ$; $\beta = 97.34(3)^\circ$; $\gamma = 90^\circ$; R1 [$I > 2\sigma(I)$] = 0.0404.

Abb. 5.14: Molekülstruktur von **18** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–S1 226.34(7), Si–S2 220.87(8), Si–N1 202.84(15), Si–N2 176.90(14), Si–C1 187.78(18); S1–Si–S2 97.66(3), S1–Si–N1 168.19(5), S1–Si–N2 88.65(5), S1–Si–C1 98.34(7), S2–Si–N1 81.83(5), S2–Si–N2 124.17(5), S2–Si–C1 113.86(6), N1–Si–N2 82.01(6), N1–Si–C1 92.60(8), N2–Si–C1 119.94(8).

Die äquatorialen Si–S2-, Si–N2- und Si–C1-Bindungslängen (220.87(8) pm, 176.90(14) pm und 187.78(18) pm) liegen im erwarteten Bereich, wohingegen der axiale Si–N1-Bindungsabstand (202.84(15) pm) im Vergleich zur Summe der Kovalenzradien (187 pm) deutlich verlängert ist.

5.2.6.3 Kristallstruktur von 19^[p]

Verbindung **19** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf 20 °C. Die Molekülstruktur von **19** im Kristall ist in Abb. 5.15 gezeigt.

Das Si-Koordinationspolyeder von **19** (*Si*SeSN₂C-Gerüst) entspricht dem einer stark verzerrten trigonalen Bipyramide, mit einer den Verbindungen **17** und **18** ähnlichen Berry-Verzerrung von 21.7%, wobei der tridentate *N*,*N*',*S*-Ligand zwei Fünfringe mit dem Si-Koordinationszentrum ausbildet. Die maximalen Abweichungen von den idealen 90°-, 120°- und 180°-Winkeln betragen $8.40(7)^\circ$, $6.74(7)^\circ$ bzw. 11.66(5)°.

^[p] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/c$ (14); a = 7.5484(12) Å; b = 16.447(4) Å; c = 14.428(2) Å; $a = 90^\circ$; $\beta = 97.973(19)^\circ$; $\gamma = 90^\circ$; R1 [$I > 2\sigma(I)$] = 0.0294.

Abb. 5.15: Molekülstruktur von **19** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–Se 234.49(7), Si–S 226.16(8), Si–N1 202.94(16), Si–N2 177.09(16), Si–C1 187.8(2); Se–Si–S 97.18(3), Se–Si–N1 82.23(5), Se–Si–N2 124.16(6), Se–Si–C1 113.26(7), S–Si–N1 168.34(5), S–Si–N2 89.23(6), S–Si–C1 98.06(7), N1–Si–N2 81.60(7), N1–Si–C1 92.83(8), N2–Si–C1 120.60(9).

Das Schwefel-Atom und das Pyridin-Stickstoff-Atom des Chelat-Liganden besetzen die beiden axialen, das Selen-, das Amido-Stickstoff- und das Kohlenstoff-Atom des Methyl-Liganden die drei äquatorialen Positionen. Die äquatorialen Si–Se-, Si–N2- und Si–C1-Bindungslängen (234.49(7) pm, 177.09(16) pm und 187.8(2) pm) liegen im erwarteten Bereich, wohingegen der axiale Si–N1-Bindungsabstand (202.94(16) pm) im Vergleich zur Summe der Kovalenzradien (187 pm) deutlich verlängert ist.

5.2.6.4 Kristallstruktur von 20^[q]

Verbindung **20** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf 20 °C. Die Struktur von **20** im Kristall ist über das gesamte Molekül fehlgeordnet. Die dominierende Molekülstruktur von **20** (Besetzungszahl: 94.4%) im Kristall ist in Abb. 5.16 gezeigt.

^[q] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $R\overline{3}$ (148); a = 18.327(2) Å; b = 18.327(2) Å; c = 18.327(2) Å; $\alpha = 116.627(17)^{\circ}$; $\beta = 116.627(17)^{\circ}$; $\gamma = 116.627(17)^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0471$.

Abb. 5.16: Molekülstruktur von **20** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–Te 256.08(12), Si–S 227.9(6), Si–N1 199.2(6), Si–N2 176.0(3), Si–C1 187.2(5); Te–Si–S 86.97(7), Te–Si–N1 94.22(11), Te–Si–N2 119.23(12), Te–Si–C1 118.56(17), S–Si–N1 171.28(12), S–Si–N2 89.10(12), S–Si–C1 96.1(2), N1–Si–N2 82.78(14), N1–Si–C1 90.9(2), N2–Si–C1 122.2(2). Die Struktur von **20** ist fehlgeordnet; die angegebenen Daten beziehen sich auf das dominierende Molekül mit einer Besetzungszahl von 94.4%.

Das Si-Koordinationspolyeder von **20** (*Si*TeSN₂C-Gerüst) entspricht dem einer verzerrten trigonalen Bipyramide, ähnlich wie **17**, **18** und **19**, allerdings mit einer wesentlich geringeren Berry-Verzerrung von 9.4%, wobei der tridentate *N*,*N*',*S*-Ligand wiederum zwei Fünfringe mit dem Si-Koordinationszentrum ausbildet. Die maximalen Abweichungen von den idealen 90°-, 120°- und 180°-Winkeln betragen 7.22(14)°, 2.2(2)° bzw. 8.72(1)°. Das Schwefel-Atom und das Pyridin-Stickstoff-Atom des Chelat-Liganden besetzen die beiden axialen, das Tellur-, das Amido-Stickstoff- und das Kohlenstoff-Atom des Methyl-Liganden die drei äquatorialen Positionen. Die äquatorialen Si–Te-, Si–N2- und Si–C1-Bindungslängen (256.08(12) pm, 176.0(3) pm und 187.2(5) pm) liegen im erwarteten Bereich, wohingegen der axiale Si–N1-Bindungsabstand (199.2(6) pm) im Vergleich zur Summe der Kovalenzradien (187 pm) deutlich verlängert ist.

Auffällig hierbei ist die Orientierung der Phenyl-Gruppe am Tellur-Liganden, die in Richtung des Pyridin-Liganden zeigt und nicht, wie bei den Verbindungen **17–19**, in Richtung des Schwefel-Liganden ausgerichtet ist. Diese Orientierung gibt Hinweise auf eine Stabilisierung des Silicium(IV)-Komplexes **20** durch die Wechselwirkung der delokalisierten Elektronen der π -Orbitale des aromatischen Phenyl- und Pyridin-Rings, auch " π -Stacking" genannt.

5.2.7 Kristallstrukturen der neutralen hexakoordinierten Chlorohydridosilicium(IV)-Komplexe mit zwei bidentaten Amidinato-Liganden

5.2.7.1 Kristallstruktur von 21^[r]

Verbindung **21** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (*n*-Hexan) auf -18 °C. Die Struktur von **21** im Kristall ist bezüglich einer der vier Isopropyl-Gruppen fehlgeordnet. Die dominierende Molekülstruktur von **21** (Besetzungszahl: 65.2%) im Kristall ist in Abb. 5.17 gezeigt.

Abb. 5.17: Molekülstruktur von **21** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–Cl 220.87(15), Si–N1 195.9(3), Si–N2 186.9(3), Si–N3 194.2(3), Si–N4 187.2(3), Si–H1 144(3), N1–Cl 132.2(4), N2–Cl 132.5(4), N3–Cl4 131.1(4), N4–Cl4 133.6(4); Cl–Si–N1 164.28(10), Cl–Si–N2 95.96(10), Cl–Si–N3 90.34(9), Cl–Si–N4 94.31(10), Cl–Si–H1 92.6(11), N1–Si–N2 68.35(12), N1–Si–N3 90.42(12), N1–Si–N4 100.56(13), N1–Si–H1 89.7(11), N2–Si–N3 95.97(12), N2–Si–N4 161.24(13), N2–Si–H1 94.5(11), N3–Si–N4 68.27(12), N3–Si–H1 168.8(11), N4–Si–H1 100.7(11), N1–C1–N2 108.8(3), N3–C14–N4 108.0(3). Die Struktur von **21** ist teilweise fehlgeordnet; die angegebenen Daten beziehen sich auf das dominierende Molekül mit einer Besetzungszahl von 65.8%.

^[r] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/n$ (14); a = 9.6383(18) Å; b = 29.880(4) Å; c = 11.176(2) Å; $a = 90^\circ$; $\beta = 113.88(2)^\circ$; $\gamma = 90^\circ$; R1 [$I > 2\sigma(I)$] = 0.0579.

Das Si-Koordinationspolyeder (*Si*ClN₄H-Gerüst) von **21** entspricht dem eines stark verzerrten Oktaeders. Die maximalen Abweichungen von den idealen 90°- und 180°-Winkeln betragen 21.73(12)° bzw. 18.76(13)°, und die N–Si–N-Winkel innerhalb der viergliedrigen SiN₂C-Ringe betragen 68.35(12)° und 68.27(12)°. Die Si–N-Bindungslängen *trans* zu einem Stickstoff-Atom sind mit 186.9(3) pm und 187.2(3) pm deutlich kürzer als diejenigen *trans* zu dem Chloro- bzw. Hydrido-Liganden (195.9(3) pm und 194.2(3) pm). Die Delokalisation der Elektronen in den N–C–N-Fragmenten der Amidinato-Liganden zeigt sich durch die sehr ähnlichen N–C-Bindungslängen von 131.1(4)–133.6(4) pm. Der Si–Cl-Bindungsabstand beträgt 220.87(15) pm und liegt wie der Si–H-Bindungsabstand (144(3) pm) im Vergleich zur Summe der Kovalenzradien (Si–Cl: 216 pm; Si–H: 147 pm) im erwarteten Bereich. Verbindung **21** stellt den ersten vollständig charakterisierten hexakoordinierten Chlorohydridosilicium(IV)-Komplex mit einem Pentafluorphenyl-substituierten Amidinato-Liganden dar, wobei die strukturellen Parameter denen einer Serie literaturbekannter strukturverwandter Silicium(IV)-Komplexe sehr ähnlich sind.^[4n,9m]

5.2.7.2 Kristallstruktur von 22^[s]

Verbindung **22** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (*n*-Hexan) auf 20 °C. Die Molekülstruktur von **22** im Kristall ist in Abb. 5.18 gezeigt.

Das Si-Koordinationspolyeder von **22** (*Si*ClN₄H-Gerüst) entspricht dem eines stark verzerrten Oktaeders. Die maximalen Abweichungen von den idealen 90°- und 180°-Winkeln betragen 20.91(5)° bzw. 14.95(5)°, und die N–Si–N-Winkel innerhalb der viergliedrigen SiN₂C-Ringe betragen 69.09(5)° und 69.38(6)°. Die Si–N-Bindungslängen *trans* zu einem Stickstoff-Atom sind mit 190.03(13) pm und 190.10(13) pm deutlich kürzer, als diejenigen *trans* zu dem Chloro- bzw. Hydrido-Liganden (195.41(15) pm und 196.11(13) pm). Die Delokalisation der Elektronen in den N–C–N-Fragmenten der Amidinato-Liganden zeigt sich durch die sehr ähnlichen N–C-Bindungslängen von 132.35(19)–133.48(19) pm. Der Si–Cl-Bindungsabstand beträgt 223.80(7) pm und liegt im Gegensatz zum deutlich verkürzten Si–H-Bindungsabstand (139.2(17) pm) im Vergleich zur Summe der Kovalenzradien (Si–Cl: 216 pm; Si–H: 147 pm) im erwarteten Bereich.

Verbindung 22 stellt den ersten vollständig charakterisierten hexakoordinierten Chlorohydridosilicium(IV)-Komplex mit einem Trimethylsilyl-substituierten Amidinato-

^[s] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P\overline{1}$ (2); a = 11.5643(18) Å; b = 12.6965(19) Å; c = 12.9269(18) Å; $a = 70.822(16)^{\circ}$; $\beta = 79.800(17)^{\circ}$; $\gamma = 71.114(17)^{\circ}$; R1 $[I > 2\sigma(I)] = 0.0325$.

Liganden dar, wobei die strukturellen Parameter denen von Verbindung **21** sowie einer Serie literaturbekannter strukturverwandter Silicium(IV)-Komplexe sehr ähnlich sind.^[4n,9m]

Abb. 5.18: Molekülstruktur von **22** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si1–Cl 223.80(7), Si1–N1 196.11(13), Si1–N2 190.03(13), Si1–N3 195.41(15), Si1–N4 190.10(13), Si1–H1 139.2(17), N1–Cl 132.35(19), N2–Cl 133.48(19), N3–Cl4 132.98(19), N4–Cl4 133.3(2); Cl–Si1–N1 90.44(5), Cl–Si1–N2 92.88(5), Cl–Si1–N3 165.56(4), Cl–Si1–N4 96.19(5), Cl–Si1–H1 90.4(8), N1–Si1–N2 69.09(5), N1–Si1–N3 91.37(6), N1–Si1–N4 98.91(6), N1–Si1–H1 166.0(8), N2–Si1–N3 101.14(6), N2–Si1–N4 165.05(5), N2–Si1–H1 96.9(8), N3–Si1–N4 69.38(6), N3–Si1–H1 91.3(8), N4–Si1–H1 94.9(8), N1–C1–N2 110.96(12), N3–Cl4–N4 110.98(14).

5.2.8 Kristallstruktur des neutralen hexakoordinierten Silicium(IV)-Komplexes 23 mit einem tridentaten *N*,*N*',*S*- und einem bidentaten *N*,*O*-Liganden^[t]

Verbindung **23** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Acetonitril) auf 20 °C. Die Molekülstruktur von **23** im Kristall ist in Abb. 5.19 gezeigt.

Das Si-Koordinationspolyeder von **23** (*Si*SON₃C-Gerüst) entspricht dem eines stark verzerrten Oktaeders. Die maximalen Abweichungen von den idealen 90°- und 180°-Winkeln betragen $12.11(8)^{\circ}$ bzw. $14.26(5)^{\circ}$.

^[t] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/n$ (14); a = 7.2721(15) Å; b = 19.020(4) Å; c = 14.073(3) Å; $a = 90^\circ$; $\beta = 99.25(3)^\circ$; $\gamma = 90^\circ$; R1 [$I > 2\sigma(I)$] = 0.0352.

Abb. 5.19: Molekülstruktur von **23** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–S 226.33(7), Si–O 177.08(14), Si–N1 198.93(15), Si–N2 181.78(16), Si–N3 217.39(15), Si–C1 191.24(18); S–Si–O 93.16(5), S–Si–N1 165.74(5), S–Si–N2 88.74(5), S–Si–N3 87.94(5), S–Si–C1 99.37(6), O–Si–N1 92.73(6), O–Si–N2 166.04(7), O–Si–N3 79.63(6), O–Si–C1 91.23(7), N1–Si–N2 82.50(6), N1–Si–N3 80.36(6), N1–Si–C1 93.47(8), N2–Si–N3 86.62(7), N2–Si–C1 102.11(8), N3–Si–C1 168.65(8).

Verbindung **23** besitzt einen tridentaten *N,N',S-* und einen bidentaten *N,O-*Liganden sowie einen Methyl-Liganden. Der dreizähnige *N,N',S-* Ligand nimmt eine *mer-*Anordnung ein. Das Amido-Stickstoff-Atom des *N,N',S-*Liganden und das Sauerstoff-Atom des *N,O-*Liganden stehen *trans* zueinander. Das Chinolin-Stickstoff-Atom und das Kohlenstoff-Atom des Methyl-Liganden stehen ebenfalls *trans* zueinander. Die Si–S-, Si–O- und Si–N2-Bindungslängen liegen mit 226.33(7) pm, 177.08(14) pm bzw. 181.78(16) pm im erwarteten Bereich, wohingegen die Si–N1- und Si–N3-Bindungslängen mit 198.93(15) pm bzw. 217.39(15) pm im Vergleich zur Summe der Kovalenzradien (Si–N: 187 pm) deutlich verlängert sind. Die strukturellen Parameter sind denen einer Serie literaturbekannter strukturverwandter Silicium(Iv)-Komplexe sehr ähnlich sind.^[9w]

5.2.9 Kristallstruktur des trikoordinierten Donor-stabilisierten Silylens 25 mit einem bidentaten Amidinato und einem monodentaten Amido-Liganden^[u]

Verbindung **25** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (*n*-Hexan) auf 20 °C. Die Molekülstruktur von **25** im Kristall ist in Abb. 5.20 gezeigt.

Abb. 5.20: Molekülstruktur von **25** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–N1 192.32(16), Si–N2 194.55(14), Si–N3 172.49(15), N1–C1 134.34(18), N2–C1 133.59(19); N1–Si–N2 67.41(6), N1–Si–N3 103.38(7), N2–Si–N3 102.70(7), N1–C1–N2 106.51(12).

Das Si-Koordinationspolyeder von 25 (SiN₃-Gerüst) entspricht dem eines stark verzerrten (Pseudo)tetraeders, wobei drei Bindungspositionen von den Stickstoff-Atomen und eine von dem freien Elektronenpaar eingenommen werden. Die Verzerrung des Koordinationspolyeders wird durch die starke Vierringspannung innerhalb des viergliedrigen SiN₂C-Rings hervorgerufen, welchen der bidentate Amidinato-Ligand mit dem Si-Koordinationszentrum bildet (N-Si-N-Winkel: 67.41(6)°). Damit beträgt die maximale Abweichung vom idealen 109.47°-Tetraeder-Winkel 42.06(6)°. Die beiden Si-N-Bindungslängen zum bidentaten Amidinato-Liganden weichen mit 192.32(16) pm bzw. 194.55(14) pm nur gering voneinander ab, was auf eine ausgeprägte Elektronendelokalisation hinweist. Weiterhin findet man mit einer maximalen Abweichung der N-C1-Bindungsabstände von 0.75 pm im bidentaten Amidinato-Liganden sehr ausgeglichene Werte,

^[u] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe $P\overline{1}$ (2); a = 9.049(5) Å; b = 9.540(3) Å; c = 18.295(8) Å; $a = 99.41(3)^{\circ}$; $\beta = 89.90(3)^{\circ}$; $\gamma = 97.53(3)^{\circ}$; R1 [$I > 2\sigma(I)$] = 0.0384.

was ebenfalls die Delokalisation der Elektronen innerhalb des N–C1–N-Fragments widerspiegelt. Dagegen beträgt der Si–N-Bindungsabstand zum Amido-Liganden nur 172.49(15) pm und nähert sich somit schon einem Doppelbindungscharakter (Summe der Kovalenzradien: 167 pm). Auffällig ist auch hier, dass das an das Si-Koordinationszentrum gebundene Stickstoff-Atom des Amido-Liganden trigonal-planar umgeben ist (Summe der Bindungswinkel: 359.84°), während aufgrund des freien Elektronenpaares eine (pseudo)tetraedrische Umgebung zu erwarten gewesen wäre. Dieses Phänomen kann durch eine partielle Delokalisation der Elektronen über das Si–N3–C-Fragment des Liganden erklärt werden. Ein ähnliches Phänomen wurde nicht nur für **3**, **4** und **6**, sondern auch für die erste literaturbekannte strukturell vollständig charakterisierte Silicium(II)-Verbindung mit zwei Amidinato-Liganden beobachtet.^[4n,25]

5.2.10 Kristallstruktur des neutralen tetrakoordinierten Silicium(II)-Komplexes 35 mit einem Amidinato- und einem Amido-Liganden sowie einer Si–Fe-Bindung^[v]

Verbindung **35** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (*n*-Hexan/Toluol: 3/2 (v/v)) auf 20 °C. Die Molekülstruktur von **35** im Kristall ist in Abb. 5.21 gezeigt.

Das Si-Koordinationspolyeder von **35** (*Si*N₃Fe-Gerüst) entspricht dem eines stark verzerrten Tetraeders, wobei zwei Bindungspositionen von den Stickstoff-Atomen des bidentaten Amidinato-, eine von dem Amido-Liganden und eine weitere Bindungsposition vom Eisen-Atom eingenommen werden. Die Verzerrung des Koordinationspolyeders wird durch die starke Vierringspannung innerhalb des viergliedrigen SiN₂C-Rings hervorgerufen, welchen der bidentate Amidinato-Ligand mit dem Si-Koordinationszentrum bildet (N–Si–N-Winkel: 70.12(7)°). Die maximale Abweichung vom idealen 109.47°-Tetraeder-Winkel beträgt 39.35(7)°. Die beiden Si–N-Bindungslängen zum bidentaten Amidinato-Liganden weichen mit 187.50(16) pm bzw. 186.22(16) pm kaum voneinander ab, was auf eine ausgeprägte Elektronendelokalisation hinweist. Dagegen beträgt der Si–N-Bindungsabstand zum Amido-Liganden nur 170.87(17) pm und besitzt somit schon fast Doppelbindungscharakter (Summe der Kovalenzradien: 167 pm). Weiterhin findet man mit einer maximalen Abweichung der N– C1-Bindungsabstände von 2.3 pm im bidentaten Amidinato-Liganden sehr ausgeglichene

^[v] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe $P\overline{1}$ (2); a = 10.2963(19) Å; b = 10.5302(19) Å; c = 16.804(3) Å; $a = 93.254(17)^{\circ}$; $\beta = 93.943(17)^{\circ}$; $\gamma = 104.57(2)^{\circ}$; R1 [$I > 2\sigma(I)$] = 0.0338.

Werte, was ebenfalls die Delokalisation der Elektronen innerhalb des N-C1-N-Fragments widerspiegelt.

Abb. 5.21: Molekülstruktur von **35** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Fe–Si 225.74(7), Fe–C34 178.5(2), Fe–C35 178.0(2), Fe–C36 179.1(2), Fe–C37 177.7(2), Si–N1 187.50(16), Si–N2 186.22(16), Si–N3 170.87(17), N1–C1 133.4(2), N2–C1 135.7(2), C34–O1 115.4(2), C35–O2 115.6(2), C36–O3 114.6(2), C37–O4 115.8(2); Si–Fe–C34 93.50(7), Si–Fe–C35 86.16(7), Si–Fe–C36 173.03(7), Si–Fe–C37 81.68(7), C34–Fe–C35 117.52(9), C34–Fe–C36 92.28(9), C34–Fe–C37 121.10(9), C35–Fe–C36 94.62(9), C35–Fe–C37 120.60(9), C36–Fe–C37 92.00(9), Fe–Si–N1 113.40(5), Fe–Si–N2 128.82(5), Fe–Si–N3 115.67(6), N1–Si–N2 70.12(7), N1–Si–N3 114.22(8), N2–Si–N3 106.63(8), N1–C1–N2 105.85(15), Fe–C34–O1 175.55(18), Fe–C35–O2 178.41(18), Fe–C36–O3 178.76(18), Fe–C37–O4 177.54(18).

Analog den zuvorgenannten Silicium-Verbindungen mit einem Amido-Liganden ist auch hier wiederum das auf die Elektronendelokalisation zurückzuführende Phänomen erkennbar, dass das an das Si-Koordinationszentrum gebundene Stickstoff-Atom dieses Liganden trigonalplanar umgeben ist (Summe der Bindungswinkel: 358.17°), während aufgrund des freien Elektronenpaares eine (pseudo)tetraedrische Umgebung zu erwarten gewesen wäre.

Die Si–Fe-Bindungslänge beträgt 225.74(7) pm und steht somit im Einklang mit weiteren Si– Fe-Einfachbindungslängen in Eisen(0)-Komplexen mit tri- bzw. tetrakoordinierten Silylenen.^[18] Das Fe-Koordinationspolyeder von **35** (*Fe*SiC₄-Gerüst) entspricht dem einer verzerrten trigonalen Bipyramide (Summe der äquatorialen Bindungswinkel: 359.22°), wobei das Silicium-Atom eine axiale Position einnimmt. Betrachtet man ähnliche literaturbekannte Verbindungen diesen Types, wird deutlich, dass der Silylen-Ligand dieser Verbindungen die Besetzung der äquatorialen Position am Fe-Koordinationspolyeder im Gegensatz zur axialen Position bevorzugt.^[9x,17m,31] Der axiale Si–Fe–C-Winkel von **35** beträgt 173.03(7)° und die Berry-Verzerrung 10.6%.

5.2.11 Kristallstrukturen der neutralen tetrakoordinierten Silicium(IV)-Komplexe mit einem mono- bzw. bidentaten Amidinato-Liganden und einer Si=N-Doppel- und Si–N-Einfachbindung bzw. zwei Si–N-Einfachbindungen

5.2.11.1 Kristallstruktur von 36^[w]

Verbindung **36** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (*n*-Hexan) auf 20 °C. Die Molekülstruktur eines der beiden kristallographisch unabhängigen Moleküle von **36** im Kristall ist in Abb. 5.22 gezeigt.

Das Si-Koordinationspolyeder von 36 (SiN₄-Gerüst) entspricht dem eines stark verzerrten Tetraeders. Die Verzerrung des Koordinationspolyeders wird durch die starke Vierringspannung innerhalb des viergliedrigen SiN₂C-Rings hervorgerufen, welchen der bidentate Amidinato-Ligand mit dem Si-Koordinationszentrum bildet (N-Si1-N-Winkel: 70.47(9)° (70.31(9)°). Die maximale Abweichung vom idealen 109.47°-Tetraeder-Winkel beträgt 39.00(9)° (39.16(9)°). Die beiden Si1-N-Bindungslängen zum bidentaten Amidinato-Liganden weichen mit 185.6(2) pm (187.4(2) pm) bzw. 185.6(2) pm (184.8(2) pm) kaum voneinander ab, was auf eine stark ausgeprägte Elektronendelokalisation hinweist. Dagegen betragen der Si1-N3- und Si1=N4-Bindungsabstand nur 168.8(2) pm (169.5(2) pm) bzw. 159.0(2) pm (159.0(2) pm) und deuten somit auf einen (partiellen) Doppelbindungscharakter hin (Summe der Kovalenzradien: 167 pm). Weiterhin findet man mit einer maximalen Abweichung der N-C1-Bindungsabstände von 0.4 pm (1.3 pm) im bidentaten Amidinato-Liganden sehr ausgeglichene Werte, was ebenfalls die Delokalisation der Elektronen innerhalb des N-C1-N-Fragments widerspiegelt. Analog den zuvorgenannten Silicium-Verbindungen mit einem Amido-Liganden ist auch hier wiederum das auf die Elektronendelokalisation zurückzuführende Phänomen erkennbar, dass das an das Si-Koordinationszentrum gebundene Stickstoff-Atom dieses Liganden trigonal-planar umgeben

^[w] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe $P2_1/n$ (14); a = 17.885(10) Å; b = 10.954(7) Å; c = 36.93(2) Å; $a = 90^{\circ}$; $\beta = 91.253(10)^{\circ}$; $\gamma = 90^{\circ}$; R1 [$I > 2\sigma(I)$] = 0.0558.

ist (Summe der Bindungswinkel: 359.76° (359.85°)), während aufgrund des freien Elektronenpaares eine (pseudo)tetraedrische Umgebung zu erwarten gewesen wäre.

Abb. 5.22: Molekülstruktur von Molekül I im Kristall von **36** mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°] (die Struktur von Molekül II ist sehr ähnlich; die entsprechenden Daten sind in Klammern angegeben): Si1–N1 185.6(2) (187.4(2)), Si1–N2 185.6(2) (184.8(2)), Si1–N3 168.8(2) (169.5(2)), Si1–N4 159.0(2) (159.0(2)), Si2–N4 166.7(2) (166.4(2)), N1–C1 133.9(3) (133.5(3)), N2–C1 134.3(3) (134.8(3)); N1–Si1–N2 70.47(9) (70.31(9)), N1–Si1–N3 109.39(11) (108.73(11)), N1–Si1–N4 116.56(10) (117.37(11)), N2–Si1–N3 109.04(11) (110.11(11)), N2–Si1–N4 120.56(11) (118.27(11)), N3–Si1–N4 120.35(12) (121.17(12)), Si1–N4–Si2 147.06(14) (152.59(15)), N1–C1–N2 106.0(2) (106.1(2)).

5.2.11.2 Kristallstruktur von 37'^[x]

Verbindung **37'** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (*n*-Hexan) auf 20 °C. Die Struktur von **37'** im Kristall ist bezüglich des Silicium-Zentrums teilweise fehlgeordnet. Die dominierende Molekülstruktur von **37'** (Besetzungszahl: 82.3%) im Kristall ist in Abb. 5.23 gezeigt.

Das Si-Koordinationspolyeder von **37'** (*Si*SN₃-Gerüst) entspricht dem eines stark verzerrten Tetraeders, wobei der Amidinato-Ligand monodentat an das Silicium-Atom gebunden ist.

^[x] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe $P\overline{1}$ (2); a = 9.866(3) Å; b = 12.248(4) Å; c = 16.690(6) Å; $a = 92.69(3)^{\circ}$; $\beta = 98.34(2)^{\circ}$; $\gamma = 108.06(3)^{\circ}$; R1 [$I > 2\sigma(I)$] = 0.0412.

Abb. 5.23: Molekülstruktur von **37'** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–S 216.10(19), Si–N1 176.1(2), Si–N3 170.2(2), Si–N4 173.5(2), N1–C1 139.6(2), N2–C1 128.9(2), N4–C40 124.9(4); S–Si–N1 107.58(9), S–Si–N3 110.86(9), S–Si–N4 115.78(10), N1–Si–N3 110.12(11), N1–Si–N4 108.19(10), N3–Si–N4 104.23(11), Si–N4–C40 124.2(2), N1–C1–N2 115.82(14). Die Struktur von **37'** ist teilweise fehlgeordnet; die angegebenen Daten beziehen sich auf das dominierende Molekül mit einer Besetzungszahl von 82.3%.

Die drei anderen Bindungspositionen werden von dem Amido-, Methylenamido- und Benzolthiolato-Liganden eingenommen. Die maximale Abweichung vom idealen 109.47°-Tetraeder-Winkel beträgt 6.31(10)°. Die Si–N-Bindungslängen des Amidinato- bzw. Methylenamido-Liganden betragen 176.1(2) pm bzw. 173.5(2) pm. Dagegen beträgt der Si–N-Bindungsabstand des Amido-Liganden nur 170.2(2) pm und besitzt somit potentiellen Doppelbindungscharakter (Summe der Kovalenzradien: 167 pm). Die Abweichung der N–C1-Bindungsabstände von 10.7 pm spiegelt den monodentaten Bindungsmodus des Amidio-Liganden wider. Analog den zuvorgenannten Silicium-Verbindungen mit einem Amido-Liganden ist auch hier wiederum das auf die Elektronendelokalisation zurückzuführende Phänomen erkennbar, dass das an das Si-Koordinationszentrum gebundene Stickstoff-Atom des Amido-Liganden trigonal-planar umgeben ist (Summe der Bindungswinkel: 357.11°), während aufgrund des freien Elektronenpaares eine (pseudo)tetraedrische Umgebung zu erwarten gewesen wäre.

5.2.11.3 Kristallstruktur von 38'·C₆H₅CH₃^[y]

Verbindung **38'** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Toluol) auf 20 °C als das Toluol-Solvat **38'**·C₆H₅CH₃. Die Molekülstruktur eines der beiden kristallographisch unabhängigen Moleküle von **38'** im Kristall von **38'**·C₆H₅CH₃ ist in Abb. 5.24 gezeigt.

Abb. 5.24: Molekülstruktur von Molekül I im Kristall von $38' \cdot C_6H_5CH_3$ mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome (die Struktur von Molekül II ist sehr ähnlich). Aufgrund der mangelhaften Kristallqualität können keine genaueren quantitativen Aussagen über Bindungslängen und -winkel gemacht werden.

Die Si-Koordinationspolyeder von **38'** (*Si*ON₃-Gerüste) entsprechen denen von verzerrten Tetraedern, wobei es durch Verbrückung über die Sauerstoff-Atome der Phosphoryl-Liganden zur Bildung eines cyclischen Moleküls kommt, welches einen achtgliedrigen Ring mit zwei Silicium-Zentren beinhaltet, die durch Rotation um eine *C*2-Symmetrieachse ineinander überführt werden können. Die jeweiligen Bindungspositionen an den beiden Si-Koordinationszentren werden von einem monodentaten Amidinato- und einem Amido-

^[y] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe C2/c (15); a = 35410(2) Å; b = 17.816(11) Å; c = 32.780(2) Å; $a = 90^{\circ}$; $\beta = 107.349(17))^{\circ}$; $\gamma = 90^{\circ}$; R1 [$I > 2\sigma(I)$] = 0.1100.

Liganden sowie von einem Stickstoff- und Sauerstoff-Ligandatom der verbrückenden Phosphoryl-Liganden besetzt.

Aufgrund der mangelhaften Kristallqualität können keine genaueren quantitativen Aussagen über Bindungslängen und -winkel von **38'** gemacht werden. Die gezeigte Abbildung der Struktur im Kristall kann daher nur zur qualitativen Veranschaulichung der Atomkonnektivitäten im Molekül herangezogen werden.

5.2.12 Kristallstrukturen der neutralen tetra- bzw. pentakoordinierten Silicium(IV)-Komplexe mit einem Amidinato, einem Amido- und einem oder zwei Chalkogeno-Liganden

5.2.12.1 Kristallstruktur von 39^[z]

Verbindung **39'** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Toluol) auf 20 °C. Die Molekülstruktur von **39'** im Kristall ist in Abb. 5.25 gezeigt.

Die beiden Si-Koordinationspolyeder (SiO₂N₃-Gerüste) entsprechen denen von stark verzerrten trigonalen Bipyramiden (Summen der äquatorialen Bindungswinkel: jeweils 357.5°) mit einer Berry-Verzerrung von jeweils 48.3%. Die Verzerrung des Koordinationspolyeders wird u. a. durch die starke Vierringspannung innerhalb des viergliedrigen SiN₂C-Rings hervorgerufen, welchen der bidentate Amidinato-Ligand mit dem Si-Koordinationszentrum bildet (N-Si-N-Winkel: 66.36(6)°). Dies wird auch durch die Abweichung des Oax-Si-Nax-Bindungswinkels (155.32(7)°) vom idealen 180°-Winkel mit 24.68(7)° deutlich. Die beiden Stickstoff-Atome des bidentaten Amidinato-Liganden besetzen jeweils eine axiale und eine äquatoriale Position. Einer der beiden Sauerstoff-Liganden befindet sich ebenfalls in axialer Position, der zweite Sauerstoff- sowie der Amido-Ligand befinden sich jeweils in äquatorialer Position. Der axiale Si-N-Bindungsabstand (205.74(16) pm) ist jeweils um 20.31 pm bzw. 35.38 pm länger als die äquatorialen Si-N-Bindungsabstände (185.43(16) pm bzw. 170.36(17) pm) und auch deutlich länger als die Summe der Kovalenzradien (187 pm). Der N_{äq}-C1-Bindungsabstand (135.0(2) pm) ist um 3.5 pm länger als der N_{ax}-C1-Bindungsabstand (131.5(2) pm), was auf eine eingeschränkte Elektronendelokalisation innerhalb des N-C1-N-Fragments hindeutet. Vergleichbar mit den Verbindungen 3 und 4 ist aber auch hier zu erkennen, dass das an das Si-Koordinationszentrum gebundene Stickstoff-Atom des Amido-Liganden trigonal-planar

^[z] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe C2/c (15); a = 26.888(4) Å; b = 17.559(2) Å; c = 12.8562(18) Å; $a = 90^{\circ}$; $\beta = 93.712(17)^{\circ}$; $\gamma = 90^{\circ}$; R1 [$I > 2\sigma(I)$] = 0.0380.

umgeben ist (Summe der Bindungswinkel: 355.5°), während aufgrund des freien Elektronenpaares wiederum eine (pseudo)tetraedrische Umgebung zu erwarten gewesen wäre.

Abb. 5.25: Molekülstruktur von **39'** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–O 166.99(13), Si–O' 170.44(13), Si–N1 205.74(16), Si–N2 185.43(16), Si–N3 170.36(17), N1–C1 131.5(2), N2–C1 135.0(2); O–Si–O' 85.96(6), O–Si–N1 92.57(6), O'–Si–N1 155.32(7); O–Si–N2 129.22(7), O'–Si–N2 95.73(6), O–Si–N3 115.02(8), O'–Si–N3 105.52(7), N1–Si–N2 66.36(6), N1–Si–N3 97.43(7), N2–Si–N3 113.26(8), Si–O–Si' 93.04(6), N1–C1–N2 107.33(15).

Dieses Phänomen könnte durch eine partielle Delokalisation der Elektronen über das Si–N3– C-Fragment des Liganden erklärt werden. Die Oxo-Liganden verbrücken die beiden Si-Koordinationszentren, die durch Rotation um eine *C*2-Symmetrieachse ineinander überführt werden können, unter Ausbildung eines viergliedrigen Si₂O₂-Rings (Si–O–Si-Winkel: jeweils 93.04(6)°); O–Si–O-Winkel: jeweils 85.96(6)°). Ebenso sind die äquatorialen Si–O-Bindungen (jeweils 166.99(13) pm) deutlich kürzer als die axialen (jeweils 170.44(13) pm) und auch als die Summe der Kovalenzradien (177 pm).

5.2.12.2 Kristallstruktur von 40'·C₆H₅CH₃^[aa]

Verbindung **40'** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Toluol) auf 20 °C als das Toluol-Solvat **40'**·C₆H₅CH₃. Die Molekülstruktur von **40'** im Kristall von **40'**·C₆H₅CH₃ ist in Abb. 5.26 gezeigt.

Abb. 5.26: Molekülstruktur von **40'** im Kristall von **40'**· $C_6H_5CH_3$ mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–S 212.43(7), Si–S' 216.83(7), Si–N1 178.31(14), Si–N3 169.90(15), N1–C1 140.1(2), N2–C1 128.8(2); S–Si–S' 96.54(3), S–Si–N1 118.51(5), S'–Si–N1 105.70(5), S–Si–N3 111.70(5), S'–Si–N3 109.04(6), N1–Si–N3 113.39(7), Si–S–Si' 83.46(3), N1–C1–N2 113.54(14).

Die Si-Koordinationspolyeder (SiS_2N_2 -Gerüste) entsprechen denen von stark verzerrten Tetraedern. Die Verzerrung des Koordinationspolyeders wird u. a. durch die starke Vierringspannung innerhalb des viergliedrigen Si₂S₂-Rings hervorgerufen, welchen die verbrückenden Schwefel-Liganden mit den Si-Koordinationszentren bilden (S–Si–S-Winkel: 96.54(3)°). Der Amidinato-Ligand ist jeweils monodentat an das Silicium-Atom gebunden. Die übrigen Bindungspositionen am Silicium-Atom werden von dem Stickstoff-Atom des Amido-Liganden und den beiden Schwefel-Atomen besetzt. Die maximale Abweichung vom idealen 109.47°-Tetraeder-Winkel beträgt 12.93(3)°. Die Si–N-Bindungslängen der Amidinato- bzw. Amido-Liganden betragen 178.31(14) pm bzw. 169.90(15) pm. Mit einer

^[aa] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe $P\overline{1}$ (2); a = 10.4605(17) Å; b = 13.003(2) Å; c = 13.411(2) Å; $a = 111.238(10)^{\circ}$; $\beta = 91.783(7)^{\circ}$; $\gamma = 96.105(17)^{\circ}$; R1 [$I > 2\sigma(I)$] = 0.0431.

maximalen Abweichung der N–C1-Bindungsabstände von 11.3 pm im monodentaten Amidinato-Liganden findet man sehr unterschiedliche Werte, was die eingeschränkte Elektronendelokalisation innerhalb des N–C1–N-Fragments widerspiegelt. Analog den zuvorgenannten Silicium-Verbindungen mit einem Amido-Liganden ist auch hier wiederum das auf die Elektronendelokalisation zurückzuführende Phänomen erkennbar, dass das an das Si-Koordinationszentrum gebundene Stickstoff-Atom des Amido-Liganden trigonal-planar umgeben ist (Summe der Bindungswinkel: 358.09°), während aufgrund des freien Elektronenpaares eine (pseudo)tetraedrische Umgebung zu erwarten wäre. Die Sulfido-Liganden verbrücken die beiden Si-Koordinationszentren, die durch Inversion als Symmetrieoperation ineinander überführt werden können, unter Ausbildung eines viergliedrigen Si₂S₂-Rings (Si–S–Si-Winkel: jeweils $83.46(3)^\circ$); S–Si–S-Winkel: jeweils 96.54(3)°). Die Si–S-Bindungen (212.43(7) pm bzw. 216.83(7) pm) sind deutlich kürzer als die Summe der Kovalenzradien (221 pm).

5.2.12.3 Kristallstruktur von 41^[bb]

Verbindung **41** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (*n*-Hexan/Toluol: 2/1 (v/v)) auf 20 °C. Die Molekülstruktur von **41** im Kristall ist in Abb. 5.27 gezeigt.

Das Si-Koordinationspolyeder (SiSeN₃-Gerüst) entspricht dem eines stark verzerrten des Koordinationspolyeders Tetraeders. Die Verzerrung wird durch die starke Vierringspannung innerhalb der viergliedrigen SiN₂C-Ringe hervorgerufen, welchen der bidentate Amidinato-Ligand mit dem Si-Koordinationszentrum bildet (N-Si-N-Winkel: 70.81(10)°). Die übrigen Bindungspositionen am Silicium-Atom werden von dem Amido-Liganden und dem Selen-Atom eingenommen. Die maximale Abweichung vom idealen 109.47°-Tetraeder-Winkel beträgt 38.66(10)°. Die Si-N-Bindungslängen zum bidentaten Amidinato-Liganden weichen mit 185.4(2) pm bzw. 187.6(2) pm kaum voneinander ab, was auf eine stark ausgeprägte Elektronendelokalisation hinweist. Dies spiegelt sich auch in den N-C1-Bindungslängen mit einer Abweichung von 0.2 pm wider. Analog den zuvorgenannten Silicium-Verbindungen mit einem Amido-Liganden ist auch hier wiederum das auf die Elektronendelokalisation zurückzuführende Phänomen erkennbar, dass das an das Si-Koordinationszentrum gebundene Stickstoff-Atom des Amido-Liganden jeweils trigonal-

^[bb] Ausgewählte Parameter der Kristallstrukturanalyse: T = 173(2) K; Raumgruppe $P2_1/c$ (14); a = 20.372(4) Å; b = 9.872(2) Å; c = 17.527(4) Å; $a = 90^\circ$; $\beta = 113.44(3)^\circ$; $\gamma = 90^\circ$; R1 [$I > 2\sigma(I)$] = 0.0462.

planar umgeben ist (Summe der Bindungswinkel: 359.7°), während aufgrund des freien Elektronenpaares eine (pseudo)tetraedrische Umgebung zu erwarten gewesen wäre.

Abb. 5.27: Molekülstruktur von **41** mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–Se 212.41(10), Si–N1 185.4(2), Si–N2 187.6(2), Si–N3 168.3(3), N1–C1 134.7(3), N2–C1 134.9(3); Se–Si–N1 116.17(9), Se–Si–N2 120.83(8), Se–Si–N3 117.75(10), N1–Si–N2 70.81(10), N1–Si–N3 113.44(13), N2–Si–N3 109.16(13), N1–C1–N2 106.5(2).

Verbindung **41** besitzt eine Si=Se-Doppelbindung mit einer Bindungslänge von 212.41(10) pm. Diese ist etwas kürzer als die Summe der jeweiligen Kovalenzradien (214 pm), was aber in gutem Einklang mit Werten weiterer literturbekannter tetrakoordinierter Silicium(IV)-Komplexe mit Si=Se-Doppelbindungen steht.^[19,20]

5.2.12.4 Kristallstruktur von 42^[cc]

Verbindung **42** kristallisierte durch langsames Abkühlen einer heißen gesättigten Lösung (Toluol) auf 20 °C. Die Molekülstruktur von **42** im Kristall ist in Abb. 5.28 gezeigt.

Das Si-Koordinationspolyeder (*Si*TeN₃-Gerüst) entspricht dem eines stark verzerrten Tetraeders. Die Verzerrung des Koordinationspolyeders wird durch die starke Vierringspannung innerhalb des viergliedrigen SiN₂C-Rings hervorgerufen, welchen der

^[cc] Ausgewählte Parameter der Kristallstrukturanalyse: T = 100(2) K; Raumgruppe $P2_1/c$ (14); a = 20.332(11) Å; b = 9.991(4) Å; c = 17.444(6) Å; $a = 90^\circ$; $\beta = 113.408(18)^\circ$; $\gamma = 90^\circ$; R1 [$I > 2\sigma(I)$] = 0.0289.

bidentate Amidinato-Ligand mit dem Si-Koordinationszentrum bildet (N–Si–N-Winkel: 70.46(8)°).

Abb. 5.28: Molekülstruktur von **42** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%) ausgewählter Atome. Ausgewählte Bindungslängen [pm] und -winkel [°]: Si–Te 235.55(11), Si–N1 188.4(2), Si–N2 185.00(19), Si–N3 169.7(2), N1–C1 133.7(3), N2–C1 134.4(3); Te–Si–N1 121.21(6), Te–Si–N2 116.83(7), Te–Si–N3 117.57(8), N1–Si–N2 70.46(8), N1–Si–N3 109.22(10), N2–Si–N3 112.80(10), N1–C1–N2 106.91(19).

Dabei besetzen die Stickstoff-Atome des Amidinato-Liganden zwei Bindungspositionen am Silicium-Zentrum. Neben dem Amido-Liganden wird eine weitere Bindungspositionen von einem Tellur-Atom eingenommen. Die maximale Abweichung vom idealen 109.47°-Tetraeder-Winkel beträgt 39.01(8)°. Die beiden Si–N-Bindungslängen zum bidentaten Amidinato-Liganden weichen mit 188.4(2) pm und 185.00(19) pm nur wenig voneinander ab, was auf eine stark ausgeprägte Elektronendelokalisation hinweist. Dies spiegelt sich auch in den N–C1-Bindungslängen mit einer maximalen Abweichung von 0.7 pm wider. Analog den zuvorgenannten Silicium-Verbindungen mit einem Amido-Liganden ist auch hier wiederum das auf die Elektronendelokalisation zurückzuführende Phänomen erkennbar, dass das an das Si-Koordinationszentrum gebundene Stickstoff-Atom des Amido-Liganden trigonal-planar umgeben ist (Summe der Bindungswinkel: 359.75°), während aufgrund des freien Elektronenpaares eine (pseudo)tetraedrische Umgebung zu erwarten gewesen wäre. Verbindung **42** besitzt eine Si=Te-Doppelbindung mit einer Bindungslänge von 235.55(11) pm. Diese entspricht in etwa der Summe der jeweiligen Kovalenzradien (234 pm), was in

gutem Einklang mit Werten von weiteren literturbekannten tetrakoordinierten Silicium(IV)-Komplexen mit Si=Te-Doppelbindungen steht.^[20]

5.3 Vergleich der Molekülstrukturen

5.3.1 Vergleich der neutralen pentakoordinierten Chlorohydrido- bzw. Chlorosilicium(IV)-Komplexe mit einem bidentaten Amidinato-Liganden

Aufgrund der strukturellen Ähnlichkeit bietet sich an dieser Stelle ein Vergleich der neutralen pentakoordinierten Silicium(IV)-Komplexe **2–8** an. Die Si-Koordinationspolyeder dieser Verbindungen lassen sich am besten als stark verzerrte trigonale Bipyramiden mit Berry-Verzerrungen von 13.1–42.1% (vgl. Tab. 5.1) beschreiben.

Die Verbindungen **2–8** besitzen jeweils einen bidentaten Amidinato-Liganden, dessen Stickstoff-Atome jeweils eine axiale und eine äquatoriale Bindungsposition am Silicium-Atom besetzen. Die zweite äquatoriale Position wird von einem Chloro-Liganden besetzt. Auffällig ist, dass alle axialen Si–N-Bindungsabstände (200.37(15)–220.46(15) pm) dieser Verbindungen deutlich länger sind als die äquatorialen (168.1(3)–185.9(5) pm) (vgl. Tab. 5.2).

Verbindung	$\Delta_{\rm max}90^\circ$	$\Delta_{max} 120^{\circ}$	$\Delta_{max} 180^{\circ}$	Berry-Verzerrung ^[a]	Gerüsttyp
2 ^[b]	22.0(4)	14.0(2)	15.5(2)	33.4	SiCl ₂ N ₃
	22.5(3)	6.0(3)	15.7(2)	13.1	
	22.0(3)	5.0(2)	15.6(2)	13.1	
3	24.31(17)	5.0(2)	18.31(14)	19.2	SiClN ₃ H
4	25.61(6)	15.97(7)	21.12(5)	42.1	SiClN ₃ H
5 ^[c]	21.36(7)	5.85(7)	16.51(6)	—	SiCl ₃ N ₂
6	24.49(11)	5.58(15)	18.76(9)	26.6	SiCl ₂ N ₃
7 ^[b]	23.57(13) ^[d]	5.28(18) ^[d]	17.78(12) ^[d]	—	SiCl ₂ N ₂ C
	23.61(14) ^[e]	3.5(2) ^[e]	20.67(14) ^[e]	—	
	23.57(14) ^[f]	5.3(2) ^[f]	17.24(11) ^[f]	—	
8	23.79(3)	5.68(3)	17.93(3)	25.5	SiCl ₂ N ₂ C

Tabelle 5.1: Vergleich der maximalen Abweichungen [°] von den idealen 90°-, 120°- bzw. 180°-Winkeln und der Berry-Verzerrungen [%] von 2-8.

[a] Lit. [30]; [b] Daten für drei kristallographisch unabhängige Moleküle; [c] Molekül mit der Besetzungszahl 90.0%; [d] Molekül mit der Besetzungszahl 77.4%; [e] Molekül mit der Besetzungszahl 90.6%; [f] Molekül mit der Besetzungszahl 92.4%.

Diese Unterschiede in den Si $-N_{ax}$ - und Si $-N_{aq}$ -Bindungslängen korrelieren mit den unterschiedlichen N_{ax} -C- und N_{aq} -C-Bindungsabständen (129.3(7)–138.3(11) pm); letztere sind größer als die axialen (maximale N–C-Bindungslängendifferenz 8.8 pm).

Verbindung	Si–N _{ax}	Si–N _{äq}	ΔSi–N	N _{ax} –C	N _{äq} –C	ΔN–C	Gerüsttyp
2 ^[a]	202.4(7)	177.9(7)	24.5	130.2(10)	138.3(11)	8.1	SiCl ₂ N ₃
	201.7(7)	181.4(7)	20.3	130.6(10)	134.2(10)	3.6	
	200.7(7)	180.2(7)	20.5	132.3(11)	135.0(10)	2.7	
3	215.7(5)	180.1(4)	35.6	129.3(7)	136.2(7)	6.9	SiClN ₃ H
4	220.46(15)	181.00(15)	39.46	130.4(2)	136.4(2)	6.0	SiClN ₃ H
5 ^[b]	200.37(17)	180.34(19)	20.03	131.5(3)	135.8(3)	4.3	SiCl ₃ N ₂
6	219.3(3)	176.3(3)	43.0	129.4(4)	138.2(4)	8.8	SiCl ₂ N ₃
7 ^[a]	211.9(4) ^[c]	179.1(4) ^[c]	32.8	130.8(5) ^[c]	137.9(5) ^[c]	7.1	SiCl ₂ N ₂ C
	207.2(4) ^[d]	184.7(4) ^[d]	22.5	130.9(5) ^[d]	135.8(5) ^[d]	4.9	
	214.3(4) ^[e]	179.9(3) ^[e]	34.4	132.1(5) ^[e]	137.7(5) ^[e]	5.6	
8	211.55(8)	178.46(8)	33.09	130.87(11)	136.94(11)	6.07	SiCl ₂ N ₂ C

Tabelle 5.2: Vergleich ausgewählter Bindungslängen [pm] der Amidinato-Liganden von 2-8.

[a] Daten für drei kristallographisch unabhängige Moleküle; [b] Molekül mit der Besetzungszahl 90.0%; [c]Molekül mit der Besetzungszahl 77.4%; [d] Molekül mit der Besetzungszahl 90.6%; [e] Molekül mit der Besetzungszahl 92.4%.

Wie zu erwarten ist, sind auch die übrigen äquatorialen Si–X-Bindungen (vgl. Tab. 5.3) kürzer als die axialen, wobei alle äquatorialen Si–X-Bindungen kürzer sind als die Summen der jeweiligen Kovalenzradien. Hierbei fällt vor allem die starke Abweichung der Si–H-Bindungslängen der Verbindungen 2–4 mit bis zu 12.2 pm auf.

Der Vergleich zwischen diesen Verbindungen zeigt, dass die unterschiedliche chemische Natur der verschiedenen Liganden und die damit verbundenen sterischen und elektronischen Eigenschaften einen deutlichen Einfluss auf die restlichen Bindungslängen und -winkel an den Si-Koordinationspolyedern ausüben.

Verbindung	Si–Cl _{ax}	$Si-X^{1}_{aq}$	$Si-X^2_{aq}$	Σ Kovalenzradien (Si,X ^{1 bzw. 2})
$2^{[a]} (X^1 = Cl, X^2 = H)$	213.5(3)	206.5(3)	142(7)	216 bzw. 147
	213.5(3)	205.7(3)	145(6)	
	212.9(3)	206.9(3)	147(7)	
3 ($X^1 = N, X^2 = H$)	212.9(2)	185.9(5)	135(5)	187 bzw. 147
4 ($X^1 = N, X^2 = H$)	215.54(7)	172.95(14)	137.8(19)	187 bzw. 147

Tabelle 5.3: Ausgewählte Bindungslängen [pm] von 2–8 mit den entsprechenden Kovalenzradien [pm].

$5^{[b]}(X^1 = X^2 = Cl)$	212.54(9)	205.23(9)	205.54(10)	216
6 ($X^1 = Cl, X^2 = N$)	212.72(17)	207.83(15)	168.1(3)	216 bzw. 187
$7^{[a]} (X^1 = Cl, X^2 = C)$	215.51(17) ^[c]	206.38(16) ^[c]	187.6(4) ^[c]	216 bzw. 194
	220.2(2) ^[d]	205.80(18) ^[d]	182.5(5) ^[d]	
	214.01(16) ^[e]	206.42(16) ^[e]	186.9(6) ^[e]	
8 ($X^1 = Cl, X^2 = C$)	212.60(3)	206.97(4)	186.48(10)	216 bzw. 194

[a] Daten für drei kristallographisch unabhängige Moleküle; [b] Molekül mit der Besetzungszahl 90.0%; [c]Molekül mit der Besetzungszahl 77.4%; [d] Molekül mit der Besetzungszahl 90.6%; [e] Molekül mit derBesetzungszahl 92.4%.

5.3.2 Vergleich der neutralen pentakoordinierten Chloro- bzw. Chalkogenosilicium(IV)-Komplexe mit einem tridentaten *N*,*N*',*S*-Liganden

Ein Vergleich der neutralen pentakoordinierten Silicium(IV)-Komplexe 10-12 und 17-20 zeigt die große strukturelle Ähnlichkeit dieser Moleküle. Die Si-Koordinationspolyeder dieser Verbindungen lassen sich am besten als stark verzerrte trigonale Bipyramiden beschreiben. Die Si-Koordinationszentren besitzen jeweils einen tridentaten dianionischen N,N',S-Liganden, einen Chloro- bzw. Chalkogeno-Liganden und einen Organyl-Liganden. Der dreizähnige Chelat-Ligand bildet jeweils zwei Fünfringe mit den Si-Koordinationszentren aus. Die Schwefel-Atome und Pyridin-Stickstoff-Atome der tridentaten N,N',S-Liganden besetzen jeweils die beiden axialen, die Chloro- bzw. Chalkogeno-Liganden und die Amido-Stickstoff- und Kohlenstoff-Atome jeweils die drei äquatorialen Positionen. Auffällig ist dabei, dass die axialen Si-N-Bindungsabstände (197.81(13)-202.94(16) pm) mit einer maximalen Abweichung von 25.85 pm deutlich länger sind als die äquatorialen (174.38(13)-177.09(16) pm). Dagegen liegen die Si-S- (223.62(6)-227.92(7) pm) und Si-C1-Bindungsabstände (186.9(4)–192.42(14) pm) im erwarteten Bereich (vgl. Tab. 5.4). Unterschiede zwischen den Verbindungen 10-12 und 17-20 sind in den verschieden stark ausgeprägten Berry-Verzerrungen (9.4-46.8%) zu finden (vgl. Tab. 5.5), was an der unterschiedlichen chemischen Natur der monodentaten Liganden und den damit verbundenen sterischen und elektronischen Eigenschaften Desweiteren dürften liegt. Kristallpackungseffekte wohl eine gewisse Rolle spielen. Dabei fallen vor allem die starken Abweichungen in der Berry-Verzerrung der sehr ähnlichen Verbindungen 10 und 11 um 14.1% auf, die sich nur durch den Organyl-Liganden unterscheiden.

Der Vollständigkeit halber wird hier auch der Vergleich zur neutralen pentakoordinierten Silicium(IV)-Verbindung 15 gezogen, welche einen analog aufgebauten tridentaten

dianionischen N,N',O-Liganden sowie einen Azido- und Organyl-Liganden besitzt. Durch den formalen O/S-Austausch ($10 \rightarrow 15$) ändern sich die Bindungslängen am Si-Koordinationspolyeder, natürlich mit Ausnahme der Si–O/S-Bindungslängen, nur unwesentlich. Ebenso ist hier der deutliche Längenunterschied zwischen dem axialen Si–N-Bindungsabstand (198.51(17) pm) und dem äquatorialen Si–N-Bindungsabstand (174.09(17) pm) zu erkennen (vgl. Tab. 5.4). Die Berry-Verzerrung liegt mit 24.7% im Bereich der zuvorgenannten neutralen pentakoordinierten Silicium(IV)-Komplexe **12–19** (vgl. Tab. 5.5).

Verbindung	Si–S	Si–N _{ax}	Si–N _{äq}	ΔSi–N	Si–C1	Gerüsttyp
10 ^[a]	224.87(6)	199.58(12)	176.37(12)	23.21	187.61(14)	SiClSN ₂ C
11 ^[b]	225.20(6)	198.03(12)	174.92(11)	23.11	186.9(4)	SiClSN ₂ C
12	223.62(6)	197.81(13)	174.38(13)	23.43	192.42(14)	SiClSN ₂ C
15	175.69(14) ^[c]	198.51(17)	174.09(17)	24.42	188.1(2)	SiON ₃ C
17	227.92(7)	198.44(13)	176.78(13)	21.66	187.89(15)	SiSON ₂ C
18	226.34(7)	202.84(15)	176.90(14)	25.94	187.78(18)	SiS_2N_2C
19	226.16(8)	202.94(16)	177.09(16)	25.85	187.8(2)	SiSeSN ₂ C
20 ^[d]	227.9(6)	199.2(6)	176.0(3)	23.2	187.2(5)	SiTeSN ₂ C

Tabelle 5.4: Vergleich ausgewählter Bindungslängen [pm] von 10–12, 15 und 17–20.

[a] als Hemitoluol-Solvat; [b] Molekül mit der Besetzungszahl 71.1%; [c] Si–O; [d] Molekül mit der Besetzungszahl 94.4%.

Tabelle 5.5: Vergleich der maximalen Abweichungen [°] von den idealen 90°-, 120°- bzw. 180°-Winkeln und der Berry-Verzerrungen [%] von 10–12, 15 und 17–20.

Verbindung	$\Delta_{\rm max}90^\circ$	$\Delta_{max} 120^{\circ}$	$\Delta_{\rm max} 180^\circ$	Berry-Verzerrung ^[a]	Gerüsttyp
10 ^[b]	10.71(5)	15.87(5)	14.66(4)	46.8	SiClSN ₂ C
11	8.2(2)	12.19(13)	11.56(4)	32.7	SiClSN ₂ C
12	6.58(5)	9.16(5)	7.64(4)	23.6	SiClSN ₂ C
15	8.72(7)	9.35(8)	12.11(7)	24.7	SiON ₃ C
17	7.75(6)	7.22(7)	11.38(4)	21.3	SiSON ₂ C
18	8.34(7)	6.14(6)	11.81(5)	22.2	SiS_2N_2C
19	8.40(7)	6.74(7)	11.66(5)	21.7	SiSeSN ₂ C
20	7.22(14)	2.2(2)	8.72(1)	9.4	SiTeSN ₂ C

[a] Lit. [30]; [b] als Hemitoluol-Solvat.
5.3.3 Vergleich der neutralen hexakoordinierten Chlorohydridosilicium(IV)-Komplexe mit zwei bidentaten Amidinato-Liganden

Aufgrund der strukturellen Ähnlichkeit bietet sich an dieser Stelle ein Vergleich der beiden neutralen hexakoordinierten Silicium(IV)-Komplexe 21 und 22 an. Deren verzerrt oktaedrische Si-Koordinationspolyeder besitzen jeweils zwei bidentate monoanionische Amidinato- sowie einen Chloro- und Hydrido-Liganden. Die beiden monodentaten Liganden stehen jeweils cis zueinander, sodass jeweils ein Stickstoff-Atom der beiden Amidinato-Liganden trans zu einem weiteren Amidinato-Stickstoff-Atom und jeweils ein Stickstoff-Atom trans zu einem der monodentaten Liganden steht. Auffällig bei diesen beiden Verbindungen ist, dass jeweils die Si-N-Bindungslängen trans zu einem Stickstoff-Atom (186.9(3)-190.10(13) pm) deutlich kürzer sind als diejenigen trans zum Chloro- bzw. Hydrido-Liganden (194.2(3)-196.11(13) pm) (vgl. Tab. 5.6). Im Gegensatz dazu sind die N-C-Bindungslängen der N–C–N-Fragmente der Amidinato-Liganden (131.1(4)–133.6(4) pm) durch die Elektronendelokalisation sehr ähnlich. Die Si-Cl-Bindungslängen (220.87(15) pm (21) bzw. 223.80(7) pm (22)) und Si-H-Bindungslängen (139.2(17) pm (22) bzw. 144(3) pm (21)) liegen im erwarteten Bereich für hexakoordinierte Silicium(IV)-Komplexe. Insgesamt wird deutlich, dass die unterschiedlichen Liganden (Trimethylsilyl-/iso-Propyl- bzw. Pentafluorphenyl/Phenyl-Gruppen) von 21 und 22 somit nur geringe Auswirkungen auf die restlichen Bindungslängen und -winkel des Si-Koordinationspolyeders haben, obwohl aufgrund der unterschiedlichen elektronischen und sterischen Eigenschaften ein deutlicher Einfluss zu erwarten gewesen wäre.

Tabelle 5.6: Vergleich der Si–N-Bindungslängen [pm] zu den Amidinato-Liganden von **21** und **22** sowie N–C-Bindungslängen [pm] der N–C–N-Einheiten der Amidinato-Liganden von **21** und **22**. Diejenigen Si–N-Bindungen *trans* zu einem weiteren Stickstoff-Atom der Amidinato-Liganden sind mit Si–N_{trans} bezeichnet.

Verbindung	Si–N	Si–N _{trans}	$\Delta_{max}Si-N$	N _{ax} –C	N _{äq} –C	Δ_{max} N-C	Gerüsttyp
21 ^[a]	195.9(3)	186.9(3)	9.0	132.5(4)	132.2(4)	2.5	SiClN ₄ H
	194.2(3)	187.2(3)		133.6(4)	131.1(4)		
22	196.11(13)	190.03(13)	6.08	133.48(19)	132.35(19)	1.13	SiClN ₄ H
	195.41(15)	190.10(13)		133.3(2)	132.98(19)		

[a] Molekül mit der Besetzungszahl 65.8%.

5.3.4 Vergleich der neutralen tetrakoordinierten Silicium(IV)-Komplexe mit einem mono- bzw. bidentaten Amidinato-Liganden und einer Si=N-Doppel- und Si–N-Einfachbindung bzw. zwei Si–N-Einfachbindungen

Ein Vergleich der neutralen tetrakoordinierten Silicium(IV)-Komplexe **36**, **37'** und **38'**·C₆H₅CH₃ zeigt, dass zwar eine strukturelle Ähnlichkeit dieser Moleküle besteht, da zwar alle drei Si-Koordinationspolyeder aus stark verzerrten Tetraedern aufgebaut sind bei genauerer Betrachtung werden aber auch deutliche Unterschiede erkennbar. Alle drei Verbindungen beinhalten neben einem Amido-Liganden einen monoanionischen Amidinato-Liganden, der aber nur in Verbindung **36** bidentat gebunden ist, während er in den Verbindungen **37'** und **38'**·C₆H₅CH₃ monodentat bindet. Der vierte Ligand von **36** ist ein Imido-Ligand, und die beiden übrigen Bindungspositionen am Silicium-Atom von **37'** und **38'**·C₆H₅CH₃ werden jeweils von einem Chalkogeno-Liganden und einem Methylenamido-(**37'**) bzw. (RO)₃P=N⁻-Liganden (**38'**) besetzt.

Verbindung	Si–N1	Si–N2	Si–N3	Gerüsttyp
36	185.6(2)	185.6(2)	168.8(2)	SiN_4
	187.4(2)	184.8(2)	169.5(2)	
37' ^[a]	176.1(2)	_	170.2(2)	SiSN ₃

Tabelle 5.7: Ausgewählte Bindungslängen [pm] von 36 und 37'.

[a] Molekül mit der Besetzungszahl 82.3%.

Wie aus Tabelle 5.7 zu erkennen, ist ein tatsächlicher Vergleich der Bindungslängen und -winkel an dieser Stelle schwierig, da sich aufgrund der unterschiedlichen Liganden die Koordinationsmodi der Silicium-Zentren zu stark unterscheiden und die Konnektivitäten im Molekül **38'**· $C_6H_5CH_3$ sogar nur qualitativ beschrieben werden können.

5.3.5 Vergleich der neutralen tetra- bzw. pentakoordinierten Silicium(IV)-Komplexe mit einem Amidinato-, einem Amido- und einem oder zwei Chalkogeno-Liganden

Aufgrund der strukturellen Ähnlichkeit bietet sich an dieser Stelle ein Vergleich der neutralen tetra- bzw. pentakoordinierten Silicium(IV)-Komplexe **39'**, **40'**·C₆H₅CH₃, **41** und **42** an. Diese besitzen neben einem Amido-Liganden einen monodentaten (**40'**·C₆H₅CH₃) oder bidentaten (**39'**, **41**, **42**) Amidinato-Liganden. Interessant ist, dass bei der Reaktion mit den niederen Chalkogenen Sauerstoff und Schwefel jeweils ein über diese Atome verbrücktes Dimer gebildet wird. Diese unterscheiden sich weiterhin dadurch, dass der Amidinato-Ligand in Verbindung **39'** bidentat an das Si-Koordinationszentrum gebunden ist und damit Pentakoordination in Form einer trigonalen Bipyramide auftritt, wohingegen der Amidinato-Ligand in Verbindung **40'**·C₆H₅CH₃ monodentat ist und somit ein Tetraeder gebildet wird. Dagegen werden bei Reaktion mit elementarem Selen und Tellur jeweils Monomere mit Si=El-Doppelbindungen aufgebaut. Die Si–N-Bindungslängen der Verbindungen **41** und **42** (185.00(19)–188.4(2) pm) zum bidentaten Amidinato-Liganden sind mit einer maximalen Abweichung von 3.4 pm einander sehr ähnlich, was auf eine stark ausgeprägte Elektronendelokalisation hinweist. Dies spiegelt sich auch in den entsprechenden N–C1-Bindungslängen (133.7(3)–134.9(3) pm) innerhalb der N–C–N-Fragmente mit einer maximalen Abweichung von 0.7 pm wider (vgl. Tab. 5.8 und Tab. 5.9).

Tabelle 5.8: Ausgewählte Bindungslängen [pm] von **39'**, **40'**·C₆H₅CH₃, **41** und **42** mit den entsprechenden Summen der Kovalenzradien [pm].

,X)

[a] als Toluol-Solvat.

Die Si–X-Einfach- bzw. Doppelbindungen (X = O, S, Se, Te) von **39'**, **40'**·C₆H₅CH₃ und **41** sind im Vergleich zu den Summen der jeweiligen Kovalenzradien etwas verkürzt, wohingegen der Si–Te-Doppelbindungsabstand von **42** in guter Übereinstimmung mit der Summe der Kovalenzradien ist (vgl. Tab. 5.8).

Tabelle 5.9: Vergleich ausgewählter Bindungslängen [pm] von 39', 40'·C₆H₅CH₃, 41 und 42.

Verbindung	N1C1	N2C1	ΔNC1	Gerüsttyp
39'	131.5(2)	135.0(2)	3.5	SiO ₂ N ₃
40' ^[a]	140.1(2)	128.8(2)	11.3	SiS_2N_2
41	134.7(3)	134.9(3)	0.2	SiSeN ₃
42	133.7(3)	134.4(3)	0.7	SiTeN ₃

[a] als Toluol-Solvat.

Der Vergleich zwischen den Verbindungen zeigt, dass die unterschiedliche chemische Natur der verschiedenen Liganden und die damit verbundenen sterischen und elektronischen Eigenschaften einen entscheidenden Einfluss nicht nur auf die restlichen Bindungslängen und -winkel der Si-Koordinationspolyeder, sondern auch auf die Koordinationsmodi selbst ausüben.

6 Zusammenfassung

Die vorliegende Arbeit stellt einen Beitrag zur Chemie des höherkoordinierten Siliciums dar. Dabei standen die Synthese und Charakterisierung neuer neutraler tetra-, penta- und hexakoordinierter Silicium(IV)-Komplexe sowie die Synthese, Charakterisierung und Reaktivität eines neuartigen Donor-stabilisierten Silylens im Vordergrund.

Im Rahmen dieser Arbeit wurden das Silan 16, die neutralen tetrakoordinierten Silicium(IV)-Komplexe 36, 37', 38' · C₆H₅CH₃, 40' · C₆H₅CH₃, 41 und 42, die neutralen pentakoordinierten Silicium(IV)-Komplexe 2-8, 10.0.5C₆H₅CH₃, 11, 12, 15, 17-20 und 39', die neutralen hexakoordinierten Silicium(IV)-Komplexe 21-23, das Donor-stabilisierte trikoordinierte Silylen 25, der neutrale tetrakoordinierte Silicium(II)-Komplex 35 sowie das Lithiumamidinat 1.2Et₂O erstmalig dargestellt und charakterisiert. Die Charakterisierung dieser Verbindungen erfolgte durch NMR-Spektroskopie in Lösung und Festkörper. im durch Kristallstrukturanalyse sowie durch Elementaranalyse. Die Synthesen und Eigenschaften dieser Verbindungen können wie folgt zusammengefasst werden:

Synthese und Charakterisierung neutraler pentakoordinierter Silicium(IV)-Komplexe

Ausgehend von entsprechenden Silicium(IV)-haltigen Vorstufen wurden die neutralen pentakoordinierten Silicium(IV)-Komplexe 2–8, $10.0.5C_6H_5CH_3$, 11, 12, 15 und 17–20 dargestellt. So konnten die Verbindungen 2, 5, 7 und 8 durch Umsetzung der entsprechemden Trichlorsilane bzw. Tetrachlorsilan mit 1 in Diethylether erhalten werden. Diese Verbindungen besitzen an den beiden Stickstoff-Atomen des Amidinato-Liganden jeweils eine sterisch sehr anspruchsvolle Diisopropylphenyl-Einheit (Dipp), welche den Einbau eines zweiten Amidinato-Liganden nicht zulässt und sich so ausschließlich pentakoordinierte Silicium(IV)-Komplexe bilden. Durch Weiterreaktion von 2 und 5 mit Lithiumdimethyl- bzw. Kaliumbis(trimethylsilyl)amid entstanden die Komplexe 3, 4 und 6.

Die Si-Koordinationspolyeder von **2–8** im Kristall entsprechen denen von stark verzerrten trigonalen Bipyramiden, wobei die Stickstoff-Atome des Amidinato-Liganden eine axiale bzw. äquatoriale Position besetzen. Die zweite axiale Position wird jeweils von einem Chloro-Liganden eingenommen. Die genannten Verbindungen besitzen alle einen stark gespannten viergliedrigen SiN₂C-Ring mit mehr oder weniger stark ausgeprägter Elektronendelokalisation innerhalb de N–C–N-Fragmentes, welcher durch den Amidinato-Liganden mit dem Si-Koordinationszentrum gebildet wird und hauptverantwortlich für die starke Verzerrung der Si-Koordinationspolyeder ist.

Die Verbindungen $10.0.5C_6H_5CH_3$, 11 und 12 entstanden durch Umsetzung der entsprechenden Trichlorsilane mit 9 und zwei Moläquivalenten Triethylamin in Tetrahydrofuran. Durch Weiterreaktion von 11 mit Benzolthiol bzw. Benzolselenol und Triethylamin in Tetrahydrofuran wurden die Komplexe 18 und 19 gebildet. Die Verbindungen 15 und 20 entstanden mittels einer Transsilylierungsreaktion von 14 mit Azidotrimethylsilan bzw. 11 mit Trimethylsilyl(phenyl)tellurid in Tetrahydrofuran. Verbindung 17 wurde durch Umsetzung von $Cl_2Si(OPh)Me$ (16) mit 9 und zwei Moläquivalenten Triethylamin in Tetrahydrofuran erhalten.

Die Si-Koordinationspolyeder von $10.0.5C_6H_5CH_3$, 11, 12, 15 und 17–20 im Kristall entsprechen denen von stark verzerrten trigonalen Bipyramiden, wobei der tridentate *N*,*N*',*S*bzw. *N*,*N*',*O*-Ligand zwei Fünfringe mit dem Si-Koordinationszentrum ausbildet. Das Pyridin-Stickstoff- und das Schwefel-Atom des *N*,*N*',*S*-Liganden (bzw. Sauerstoff-Atom des *N*,*N*',*O*-Liganden) besetzen die axialen Bindungspositionen.

Synthese und Charakterisierung neutraler hexakoordinierter Silicium(IV)-Komplexe

Die neutralen hexakoordinierten Silicium(IV)-Komplexe **21** und **22** wurden durch Umsetzung von Trichlorsilan mit zwei Moläquivalenten des entsprechenden Lithiumamidinats in Diethylether dargestellt.

Die Si-Koordinationspolyeder von **21** und **22** im Kristall entsprechen denen von stark verzerrten Oktaedern, wobei jeweils eines der beiden Stickstoff-Atome der zwei Amidinato-Liganden *trans* zueinander angeordnet sind. Die beiden anderen Stickstoff-Atome der Amidinato-Liganden befinden sich in *trans*-Position zum Chloro- bzw. Hydrido-Liganden.

Der neutrale hexakoordinierte Silicium(IV)-Komplex 23 wurde durch Umsetzung des pentakoordinierten Silicium(IV)-Komplexes 11 mit 8-Hydroxychinolin und Triethylamin in Tetrahydrofuran dargestellt.

Das Si-Koordinationspolyeder von 23 im Kristall entspricht dem eines stark verzerrten Oktaeders, wobei der dreizähnige *N*,*N*',*S*-Ligand eine *mer*-Anordnung einnimmt und das Chinolin-Stickstoff-Atom und das Kohlenstoff-Atom des Methyl-Liganden *trans* zueinander stehen.

Mit den hier beschriebenen Synthesen konnte gezeigt werden, dass pentakoordinierte Chlorosilicium(IV)-Komplexe – wie beispielsweise 2, 5 oder 11 – sehr gut geeignete

Ausgangsstoffe für die Darstellung neuartiger penta- und hexakoordinierter Silicium(IV)-Verbindungen darstellen.

Synthese und Charakterisierung eines neuartigen Donor-stabilisierten Silylens

Nachdem alle Versuche, ein entsprechendes Donor-stabilisiertes Silylen durch Baseninduzierte reduktive HCl-Eliminierung der penta- bzw. hexakoordinierten Chlorohydridosilicium(IV)-Komplexe 2–4, 21 und 22 darzustellen, fehlschlugen, wurde daraufhin der pentakoordinierte Dichlorosilicium(IV)-Komplex 6 mit zwei Moläquivalenten elementarem Kalium in Tetrahydrofuran erfolgreich zum trikoordinierten Donor-stabilisierten Silylen 25 umgesetzt.

Das Si-Koordinationspolyeder von 25 entspricht dem eines stark verzerrten (Pseudo)tetraeders, wobei die drei Bindungspositionen von den Stickstoff-Atomen und eine vierte von dem freien Elektronenpaar eingenommen werden. Die starke Verzerrung ist auf den stark gespannten viergliedrigen SiN₂C-Ring des Komplexes zurückzuführen.

Reaktivität des Donor-stabilisierten Silylens 25

Der trikoordinierte Silicium(II)-Komplex **25** reagierte mit Eisenpentacarbonyl in Toluol im Sinne einer nukleophilen Substitutionsreaktion unter Ausbildung einer Si–Fe-Bindung zum neutralen tetrakoordinierten Silicium(II)-Komplex **35**.

Das Si-Koordinationspolyeder von 35 im Kristall entspricht dem eines stark verzerrten Tetraeders. Das Fe-Koordinationspolyeder entspricht dem einer stark verzerrten trigonalen

Bipyramide, wobei der sterisch sehr anspruchsvolle Silylen-Ligand interessanterweise eine axiale Bindungsposition am Eisen-Koordinationszentrum einnimmt.

Desweiteren wurde **25** mit den Aziden Me₃SiN₃, PhSCH₂N₃ und (PhO)₂P(O)N₃ in Toluol im Sinne einer oxidativen Addition unter Abspaltung von elementarem Stickstoff zu **36**, **37'** bzw. **38'**·C₆H₅CH₃ umgesetzt. Bemerkenswert ist, dass bei der Reaktion mit PhSCH₂N₃ zu **37'** eine Umlagerungsreaktion stattfindet, wobei eine Si–S-Bindung geknüpft und ein Si–N=CH₂-Fragment gebildet wird. Bei der Reaktion von **25** mit (PhO)₂P(O)N₃ zu **38'**·C₆H₅CH₃ wird ein Sauerstoff-verbrücktes Dimer gebildet, wodurch ein achtgliedriger Ring mit zwei Silicium(IV)-Zentren aufgebaut wird.

Die Si-Koordinationspolyeder von **36**, **37'** und **38'**·C₆H₅CH₃ im Kristall entsprechen denen von stark verzerrten Tetraedern, wobei der Amidinato-Ligand nur in Verbindung **36** bidentat an das Silicium-Zentrum koordiniert ist, während für **37'** und **38'**·C₆H₅CH₃ ein monodentater Koordinationsmodus beobachtet wird.

Durch Umsetzung von 25 mit N₂O, S, Se bzw. Te in Toluol entstanden ebenfalls im Sinne einer oxidativen Addition die tetra- bzw. pentakoodinierten Silicium(IV)-Komplexe 39', $40' \cdot C_6H_5CH_3$, 41 und 42. Die Verbindungen 39' und $40' \cdot C_6H_5CH_3$ sind Dimere der eigentlichen Zielverbindungen 39 und 40, wobei 40' bei höheren Temperaturen zu dem Monomer 40 dissoziiert, welches dann nach Abkühlen auf Raumtemperatur auch in Lösung stabil ist. Die Verbindungen 41 sowie 42 bilden jedoch ausschließlich Monomere.

Die Si-Koordinationspolyeder von **39'** im Kristall entsprechen dem einer stark verzerrten trigonalen Bipyramide, während die Si-Koordinationspolyeder von **40'**· $C_6H_5CH_3$, **41** und **42** denen eines stark verzerrten Tetraeders entsprechen. Dabei ist der Amidinato-Ligand in **39'**, **41** und **42** bidentat, in **40'**· $C_6H_5CH_3$ dagegen monodentat an das Silicium-Koordinationszentrum koordiniert ist.

Mit den hier beschriebenen Synthesen konnte gezeigt werden, dass das Donor-stabilisierte Silylen **25** ein außergewöhnliches Reaktivitätsspektrum aufweist und damit ein sehr interessantes Synthesepotential zur Darstellung neuartiger Silicium(II)- und Silicium(IV)-Komplexe besitzt.

7 Summary

This thesis deals with the chemistry of higher-coordinate silicon, with a special emphasis on the synthesis and characterization of novel neutral tetra-, penta- and hexacoordinate silicon(IV) compounds, as well as the synthesis, characterization, and reactivity studies of a novel donor-stabilized silylene.

In the course of these studies, the silane **16**, the neutral tetracoordinate silicon(IV) complexes **36**, **37'**, **38'**·C₆H₅CH₃, **40'**·C₆H₅CH₃, **41**, and **42**, the neutral pentacoordinate silicon(IV) complexes **2–8**, **10**·0.5C₆H₅CH₃, **11**, **12**, **15**, **17–20**, and **39'**, the neutral hexacoordinate silicon(IV) complexes **21–23**, the donor-stabilized tricoordinate silylene **25**, the neutral tetracoordinate silicon(II) complex **35**, and the lithium amidinate **1**·2Et₂O were synthesized and characterized for the first time. All of these compounds were characterized by NMR spectroscopy in the solid state and in solution, single-crystal X-ray diffraction, and elemental analyses. The syntheses and properties of these compounds can be summarized as follows:

Synthesis and characterization of neutral pentacoordinate silicon(IV) complexes

The neutral pentacoordinate silicon(IV) complexes 2–8, $10 \cdot 0.5C_6H_5CH_3$, 11, 12, 15 and 17–20 were synthesized, starting from suitable silicon(IV) containing precursors. Compounds 2, 5, 7, and 8 were obtained by reaction of the respective trichlorosilanes or tetrachlorosilane with 1 in diethyl ether. These compounds contain a sterically demanding diisopropylphenyl unit (Dipp) at each of the two nitrogen atoms of the amidinato ligand, which prevents the introduction of a second amidinato ligand, and therefore only pentacoordinate silicon(IV) complexes were obtained. In a subsequent reaction of 2 and 5 with lithium dimethyl or potassium bis(trimethylsilyl) amide, the complexes 3, 4, and 6 were formed.

The silicon coordination polyhedra of 2-8 in the crystal are strongly distorted trigonal bipyramids, in which the nitrogen atoms of the amidinato ligand occupy an axial and an equatorial position, respectively. All these compounds contain a strongly strained four-membered SiN₂C ring with a more or less distinct electron delocalization within the N–C–N fragment, which is built up by the amidinato ligand and the silicon coordination center, and which is primarily responsible for the strong distortion of the silicon coordination polyhedra.

Complexes $10.0.5C_6H_5CH_3$, 11, and 12 were obtained by treatment of the respective trichlorosilanes with 9 and two molar equivalents of triethylamine in tetrahydrofuran. Subsequent reaction of 11 with benzenethiol and benzeneselenol, respectively, and triethylamine in tetrahydrofuran yielded the complexes 18 and 19. Compounds 15 and 20 were synthesized by a transsilylation reaction of 14 with azidotrimethylsilane in acetonitrile or 11 with phenyl trimethylsilyl telluride in tetrahydrofuran. Compound 17 was obtained by treatment of $Cl_2Si(OPh)Me$ (16) with 9 and two molar equivalents of triethylamine in tetrahydrofuran.

The silicon coordination polyhedra of $10.0.5C_6H_5CH_3$, 11, 12, 15, and 17–20 in the crystal are strongly distorted trigonal bipyramids, in which the tridentate *N*,*N*',*S* or *N*,*N*',*O* ligand forms two five-membered rings with the silicon coordination center. The pyridine nitrogen and sulfur atom of the *N*,*N*',*S* ligand (or the oxygen atom of the *N*,*N*',*O* ligand) occupy the two axial positions.

Synthesis and characterization of neutral hexacoordinate silicon(IV) complexes

The neutral hexacoordinate silicon(IV) complexes **21** and **22** were synthesized by treatment of trichlorosilane with two molar equivalents of the respective lithium amidinate in diethyl ether.

The silicon coordination polyhedra of **21** and **22** in the crystal are strongly distorted octahedra, in which one of the two nitrogen atoms each of the two amidinato ligand are *trans* to each other. The two other nitrogen atoms of the amidinato ligands are in *trans* position to the chloro or hydrido ligand.

The neutral hexacoordinate silicon(IV) complex 23 was obtained by treatment of the pentacoordinate silicon(IV) complex 11 with 8-hydroxychinoline and triethylamine in tetrahydrofuran.

The silicon coordination polyhedron of **23** in the crystal is a strongly distorted octahedron, in which the tridentate N,N',S ligand forms a *mer* arrangement and the chinoline nitrogen atom and the carbon atom of the methyl ligand are *trans* to each other.

With the syntheses described above, it could be demonstrated that pentacoordinate chlorosilicon(IV) complexes, such as 2, 5 or 11, are versatile precursors for the synthesis of novel penta- and hexacoordinate silicon(IV) compounds.

Synthesis and characterization of a novel donor-stabilized silylene

After all attempts to synthesize the respective donor-stabilized silylenes by base-induced reductive HCl elimination of the penta- and hexacoordinate silicon(IV) complexes 2–4, 21, and 22 failed, the neutral pentacoordinate dichlorosilicon(IV) complex 6 was treated with two molar equivalents of elemental potassium in tetrahydrofuran to yield the tricoordinate donor-stabilized silylene 25

The silicon coordination polyhedron of **25** in the crystal is a strongly distorted (pseudo)tetrahedron, in which three binding positions are occupied by the nitrogen atoms and a fourth position by the lone pair. The strong distortion can be attributed to the strongly strained four-membered SiN₂C ring of the complex.

Reactivity of the donor-stabilized silylene 25

The tricoordinate silicon(II) complex **25** reacts with iron pentacarbonyl in toluene in terms of a nucleophilic substitution reaction to yield the neutral tetracoordinate silicon(II) complex **35** with an Si–Fe bond.

The silicon coordination polyhedron of **35** in the crystal a strongly distorted tetrahedron. The iron coordination polyedron is a strongly distorted trigonal bipyramid, in which the sterically demanding silylene ligand occupies an axial position.

Furthermore, compound **25** was treated with the azides Me_3SiN_3 , $PhSCH_2N_3$ and $(PhO)_2P(O)N_3$ in toluene in terms of an oxidatve addition reaction, under elimination of elemental nitrogen, to yield **36**, **37'**, and **38'**·C₆H₅CH₃, respectively. Remarkably, a

rearrangement takes place in the reaction with $PhSCH_2N_3$ to afford compound **37'**, which contains an Si–SPh and Si–N=CH₂ fragment. The reaction of **25** with $(PhO)_2P(O)N_3$ leads to the oxygen-bridged dimer **38'**·C₆H₅CH₃, which contains an eight-membered ring with two silicon(IV) centers.

The silicon coordination polyhedra of **36**, **37'**, and **38'**·C₆H₅CH₃ in the crystal are strongly distorted tetrahedra. In compounds **37'** and **38'**·C₆H₅CH₃, the amidinato ligand binds in a monodentate fashion, whereas a bidentate coordination mode was observed for **36**.

Treatment of 25 with N₂O, S, Se, or Te in toluene leads to respective tetra- and pentacoordinate silicon(IV) complexes 39', $40' \cdot C_6H_5CH_3$, 41, and 42, also in terms of oxidative addition reactions. Compounds 39' and $40' \cdot C_6H_5CH_3$ are dimers of the monomeric target compounds 39 and 40. Upon heating, however, dimer 40' dissociates to the monomer 40, which upon cooling to room temperature is stable in solution. Compounds 41 and 42 exist only as monomers.

The silicon coordination polyhedron of **39'** in the crystal is a strongly distorted trigonal bipyramid, whereas the silicon coordination polyhedra of $40' \cdot C_6H_5CH_3$, **41**, and **42** are strongly distorted tetrahedra. In compounds **39'**, **41**, and **42**, the amidinato ligand binds in a bidentate fashion, whereas a monodentate coordination mode was observed for $40' \cdot C_6H_5CH_3$.

With the syntheses discribed above, it could be demonstrated that the donor-stabilized silylene **25** shows remarkable reactivity profile and a very interesting synthetic potential for the preparation of novel silicon(II) and silicon(IV) complexes.

8 Experimenteller Teil

8.1 Arbeits- und Messtechniken

8.1.1 Allgemeine Arbeitstechniken

Chemische Synthesen

Alle Synthesen wurden in getrockneten, sauerstofffreien Lösungsmitteln unter einer trockenen Argonatmosphäre durchgeführt. Das verwendete Schutzgas wurde durch einen mit Silica-Gel und zwei mit Phosphorpentoxid/Bimsstein gefüllte Trockentürme geleitet und dadurch wasserfrei erhalten.

Die verwendeten Lösungsmittel wurden nach Standardverfahren getrocknet und desoxygeniert, durch Destillation gereinigt und unter einer trockenen Argonatmosphäre aufbewahrt. Alle kommerziell erhältlichen Reagenzien besaßen mindestens p.a.-Qualität und wurden ohne weitere Reinigung direkt verwendet.

Deuterierte Lösungsmittel für die NMR-Spektroskopie

Die für die NMR-Spektroskopie eingesetzten kommerziell erhältlichen deuterierten Lösungsmittel wurden aus abgeschmolzenen Glasampullen ohne weitere Reinigung direkt für die Messungen eingesetzt bzw. nach Standardverfahren getrocknet und desoxygeniert, durch Destillation gereinigt und unter einer trockenen Argonatmosphäre aufbewahrt (C_6D_6 , $C_6D_5CD_3$, [D_8]THF, CD_2Cl_2 , $C_2D_2Cl_4$).

8.1.2 Messtechniken

¹H-NMR-Spektren

Geräte DRX-300, Avance III HD 300 (300.1 MHz) und Avance 500 (500.1 MHz) der Firma Bruker; Lösungsmittel und "Lock"-Substanzen: CD₂Cl₂ (interner Standard CHDCl₂, $\delta = 5.32$ ppm), C₂D₂Cl₄ (interner Standard C₂HDCl₄, $\delta = 5.97$ ppm), C₆D₆ (interner Standard C₆HD₅, δ = 7.28 ppm), [D₆]DMSO (interner Standard [D₅]DMSO, $\delta = 2.49$ ppm), [D₈]THF (interner Standard [D₇]THF, $\delta = 1.73$ ppm), C₆D₅CD₃ (interner Standard C₆D₅CHD₂, $\delta = 2.09$ ppm); Messtemperatur (wenn nicht anders angegeben) *ca.* 23 °C. Die Zuordnungen wurden durch ¹H, ¹H- (¹H, ¹H-COSY, ¹H, ¹H-NOESY) und ¹H, ¹³C-Korrelationsexperimente unterstützt; die Ergebnisse sind in den entsprechenden Zuordnungen enthalten.

¹³C-NMR-Spektren

Geräte DRX-300, Avance III HD 300 (75.5 MHz) und Avance 500 (125.8 MHz) der Firma Bruker; Lösungsmittel und "Lock"-Substanzen: CD₂Cl₂ (interner Standard CD₂Cl₂, $\delta = 53.8$ ppm), C₂D₂Cl₄ (interner Standard C₂D₂Cl₄, $\delta = 74.2$ ppm), C₆D₆ (interner Standard C₆D₆, $\delta =$ 128.0 ppm), [D₆]DMSO (interner Standard [D₆]DMSO, $\delta = 39.5$ ppm), [D₈]THF (interner Standard [D₈]THF, $\delta = 25.3$ ppm), C₆D₅CD₃ (interner Standard C₆D₅CD₃, $\delta = 20.4$ ppm); Messtemperatur (wenn nicht anders angegeben) *ca*. 23 °C. Alle ¹³C-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen. Die Signalzuordnungen wurden durch DEPT-90- und DEPT-135-Experimente sowie ¹H,¹³C-Korrelationsexperimente (HMBC bzw. HMQC) unterstützt; die Ergebnisse sind in den entsprechenden Zuordnungen enthalten.

¹⁵N-NMR-Spektren

Gerät Avance 500 (50.7 MHz) der Firma Bruker; Lösungsmittel und "Lock"-Substanz: C₆D₆ (externer Standard Formamid mit 10 Gewichtsprozent DMSO, $\delta = -268.0$ ppm); Messtemperatur (wenn nicht anders angegeben) *ca.* 23 °C. Alle ¹⁵N-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen. Die Signalzuordnungen wurden durch ¹H,¹⁵N-Korrelationsexperimente (HMBC) unterstützt; die Ergebnisse sind in den entsprechenden Zuordnungen enthalten.

²⁹Si-NMR-Spektren

Geräte DRX-300, Avance III HD 300 (59.6 MHz) und Avance 500 (99.4 MHz) der Firma Bruker; Lösungsmittel und "Lock"-Substanzen: CD₂Cl₂, C₂D₂Cl₄, C₆D₆, [D₈]THF, C₆D₅CD₃ (externer Standard TMS, $\delta = 0$ ppm); Messtemperatur (wenn nicht anders angegeben) *ca.* 23 °C. Alle ²⁹Si-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen. Die Zuordnungen wurden durch ¹H,²⁹Si-Korrelationsexperimente (HMQC) unterstützt; die Ergebnisse sind in den entsprechenden Zuordnungen enthalten.

⁷⁷Se-NMR-Spektren

Gerät Avance 500 (95.4 MHz) der Firma Bruker; Lösungsmittel und "Lock"-Substanzen: CD_2Cl_2 , C_6D_6 (externer Standard Me₂Se mit 5 Gewichtsprozent C_6D_6 , $\delta = 0$ ppm); Messtemperatur *ca.* 23 °C. Alle ⁷⁷Se-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen.

¹²⁵Te-NMR-Spektren

Gerät Avance 500 (157.8 MHz) der Firma Bruker; Lösungsmittel und "Lock"-Substanzen: CD_2Cl_2 , C_6D_6 (externer Standard Ph₂Te, 0.1 M in CDCl₃, $\delta = 422.0$ ppm); Messtemperatur *ca*. 23 °C. Alle ¹²⁵Te-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen.

¹³C-VACP/MAS-NMR-Spektren

Gerät DSX-400 (100.6 MHz) der Firma Bruker; externer Standard TMS, $\delta = 0$ ppm; Messtemperatur *ca.* 22 °C. Alle ¹³C-VACP/MAS-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen. Die Messungen wurden in "Bottom-Layer"-Rotoren aus ZrO₂ (Durchmesser 4 mm bzw. 7 mm) mit 80 mg (4 mm) bzw. 200 mg (7 mm) Probensubstanz durchgeführt. Kontaktzeit 2 ms; 90°-¹H-Pulslänge 2.6 μ s (4 mm) bzw. 3.6 μ s (7 mm); Signalakkumulationswartezeit 4–7 s.

¹⁵N-VACP/MAS-NMR-Spektren

Gerät DSX-400 (40.6 MHz) der Firma Bruker; externer Standard Glycin, $\delta = -342.0$ ppm; Messtemperatur *ca.* 22 °C. Alle ¹⁵N-VACP/MAS-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen. Die Messungen wurden in "Bottom-Layer"-Rotoren aus ZrO₂ (Durchmesser 4 mm bzw. 7 mm) mit 80 mg (4 mm) bzw. 200 mg (7 mm) Probensubstanz durchgeführt. Kontaktzeit 3–15 ms; 90°-¹H-Pulslänge 2.6 μ s (4 mm) bzw. 3.6 μ s (7 mm); Signalakkumulationswartezeit 4–7 s.

³¹P-VACP/MAS-NMR-Spektren

Gerät DSX-400 (162.0 MHz) der Firma Bruker; externer Standard H₃PO₄ (85%), $\delta = 0$ ppm; Messtemperatur *ca.* 22 °C. Alle ³¹P-VACP/MAS-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen. Die Messungen wurden in "Bottom-Layer"-Rotoren aus ZrO₂ (Durchmesser 7 mm) mit 200 mg Probensubstanz durchgeführt. Kontaktzeit 2 ms; 90°-¹H-Pulslänge 3.6 µs; Signalakkumulationswartezeit 4–7 s.

²⁹Si-VACP/MAS-NMR-Spektren

Gerät DSX-400 (79.5 MHz) der Firma Bruker; externer Standard TMS, $\delta = 0$ ppm; Messtemperatur *ca.* 22 °C. Alle ²⁹Si-VACP/MAS-MR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen. Die Messungen wurden in "Bottom-Layer"-Rotoren aus ZrO₂ (Durchmesser 4 mm bzw. 7 mm) mit 80 mg (4 mm) bzw. 200 mg (7 mm) Probensubstanz durchgeführt. Kontaktzeit 5 ms; 90° -¹H-Pulslänge 2.6 μ s (4 mm) bzw. 3.6 μ s (7 mm); Signalakkumulationswartezeit 4–7 s.

⁷⁷Se-VACP/MAS-NMR-Spektren

Gerät DSX-400 (76.3 MHz) der Firma Bruker; externer Standard Me₂Se, $\delta = 0$ ppm; Messtemperatur *ca.* 22 °C. Alle ⁷⁷Se-VACP/MAS-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen. Die Messungen wurden in "Bottom-Layer"-Rotoren aus ZrO₂ (Durchmesser 4 mm bzw. 7 mm) mit 80 mg (4 mm) bzw. 200 mg (7 mm) Probensubstanz durchgeführt. Kontaktzeit 5 ms; 90°-¹H-Pulslänge 2.6 μ s (4 mm) bzw. 3.6 μ s (7 mm); Signalakkumulationswartezeit 5–7 s.

¹²⁵Te-HPDec- bzw. ¹²⁵Te-VACP/MAS-NMR-Spektren

Gerät DSX-400 (126.2 MHz) der Firma Bruker; externer Standard Te(OH)₆, $\delta = 685.5$ und 692.2 ppm; Messtemperatur *ca*. 22 °C. Alle ¹²⁵Te-HPDec- bzw. ¹²⁵Te-VACP/MAS-NMR-Spektren wurden ¹H-breitbandentkoppelt aufgenommen. Die Messungen wurden in "Bottom-Layer"-Rotoren aus ZrO₂ (Durchmesser 4 mm bzw. 7 mm) mit 80 mg (4 mm) bzw. 200 mg (7 mm) Probensubstanz durchgeführt. 90°-¹H-Pulslänge 2.6 μ s (4 mm) bzw. 3.6 μ s (7 mm); Signalakkumulationswartezeit 7 s.

VT-NMR-Spektren

Die Thermoelemente, welche in den Probenköpfen für die VT-NMR-Messungen verwendet wurden, wurden für höhere und tiefere Temperaturen gemäß Lit. [32] mit einer Lösung von Ethan-1,2-diol in $[D_6]DMSO$ (80%) bzw. einer Lösung von MeOH in $[D_4]MeOH$ (4%), welche eine Spur HCl enthielt, kalibriert.

Schmelzpunkte (unkorrigiert)

Gerät Melting Point B540 der Firma Büchi; die Messungen wurden in abgeschmolzenen Glaskapillaren durchgeführt.

Elementaranalysen

Gerät Leco CHNS-932 der Firma Leco Instruments und Gerät VarioMicro der Firma Elementar.

IR-Spektren

Gerät JASCO FT/IR-6200 Typ A Spektrometer. Als Lichtquelle für photochemische Experimente diente eine Hg/Xe-Lichtbogenlampe (400–550 W), ausgestattet mit IR-Filtern (Wellenlängenbereich: 210–600 nm).

8.2 Synthesen

Verbindung $1.2Et_2O$

Zu einer Lösung von Bis(2,6-diisopropylphenyl)carbodiimid (5.05 g, 13.9 mmol) in Diethylether (100 mL) wurde unter Rühren bei –78 °C in einer Portion Phenyllithium (2 M in n-Bu₂O, 6.96 mL, 13.9 mmol PhLi) gegeben und das resultierende Gemisch innerhalb von 1.5 h unter Rühren auf 20 °C erwärmt. Die flüchtigen Bestandteile wurden im Vakuum entfernt, und der Rückstand wurde mit Diethylether (30 mL) versetzt. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf –18 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Die erhaltene kristalline Verbindung $1.2Et_2O$ (vgl. hierzu Kapitel 5.2.1.1) ließ sich aufgrund einer teilweisen Diethylether-Abspaltung im präperativen Maßstab nicht mit eindeutig definierter Stöchiometrie isolieren und wurde deshalb zur Darstellung der Verbindungen 2, 5, 7 und 8 jeweils *in situ* generiert.

Verbindung 2

Zu einer Lösung von Bis(2,6-diisopropylphenyl)carbodiimid (9.69 g, 21.7 mmol) in Diethylether (180 mL) wurde unter Rühren bei -78 °C in einer Portion Phenyllithium (2 M in *n*-Bu₂O, 10.9 mL, 21.7 mmol PhLi) gegeben und das resultierende Gemisch innerhalb von 1.5 h unter Rühren auf 20 °C erwärmt. Anschließend wurde unter Rühren bei -40 °C innerhalb von 1 min Trichlorsilan (2.94 mg, 21.7 mmol) zugegeben und das resultierende Gemisch innerhalb von 16 h unter Rühren auf 20 °C erwärmt. Das Lösungsmittel wurde im Vakuum entfernt und der Rückstand mit Dichlormethan (120 mL) versetzt. Die resultierende Suspension wurde filtriert, der verbliebene Feststoff mit Dichlormethan (2 × 15 mL) gewaschen und verworfen und das Lösungsmittel des Filtrats inklusive der Waschlösungen im Vakuum entfernt. Der Rückstand wurde mit Dichlormethan (40 mL) versetzt, und die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit n-Hexan (30 mL) gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 9.95 g (18.4 mmol, 85%) eines farblosen kristallinen Feststoffs. Smp. >199 °C (Zers.). — ¹H-NMR $(CD_2Cl_2, 500.1 \text{ MHz}): \delta = 0.91 \text{ (d, } {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}; CH_3), 1.29 \text{ (d, } {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}; CH_3), 1.29 \text{ (d, } {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}; CH_3), 1.29 \text{ (d, } {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}; CH_3), 1.29 \text{ (d, } {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}; CH_3), 1.29 \text{ (d, } {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}; CH_3), 1.29 \text{ (d, } {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}; CH_3), 1.29 \text{ (d, } {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}; CH_3), 1.29 \text{ (d, } {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}; CH_3), 1.29 \text{ (d, } {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}; CH_3), 1.29 \text{ (d, } {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}; CH_3), 1.29 \text{ (d, } {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}; CH_3), 1.29 \text{ (d, } {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}; CH_3), 1.29 \text{ (d, } {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}; CH_3), 1.29 \text{ (d, } {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}; CH_3), 1.29 \text{ (d, } {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}; CH_3), 1.29 \text{ (d, } {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}; CH_3), 1.29 \text{ (d, } {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}; CH_3), 1.29 \text{ (d, } {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}; 12 \text{ H$ Hz, 12 H; CH₃), 3.25 (sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 4 H; CH₃CHCH₃), 6.38 (s, ${}^{29}Si$ -Satelliten, ${}^{1}J({}^{1}H, {}^{29}Si) = 358.5 \text{ Hz}, 1 \text{ H}; SiH), 7.00-7.03, 7.10-7.14, 7.14-7.18, 7.27-7.34 ppm (m, 11 \text{ H}; 11 \text$ C_6H_3, C_6H_5). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): $\delta = 23.2$ (4 C), 25.3 (4 C) (CH₃), 29.3 (4 C; CH₃CHCH₃), 124.5 (4 C; *m*-C₆H₃), 125.7 (*i*-C₆H₅), 128.1 (2 C; *p*-C₆H₃), 128.6 (2 C; *m*-C₆H₅), 130.3 (2 C; o-C₆H₅), 133.0 (p-C₆H₅), 134.5 (2 C; i-C₆H₃), 145.6 (4 C; o-C₆H₃), 169.6 ppm (N₂*CC*). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -87.7$ ppm. — ¹⁵N-VACP/MAS-NMR:^[33a] δ = -210 ppm (br., 6 N, C₂NSi). $- {}^{29}$ Si-VACP/MAS-NMR: ${}^{[33a]}\delta = -86.0$ ppm (br., 3 Si). C₃₁H₄₀Cl₂N₂Si (539.66) Ber. C 69.00 H 7.47 N 5.19 Gef. C 69.0 H 7.52 N 5.23

Verbindung **3**^[34]

Zu einer Mischung von 2 (892 mg, 1.65 mmol) und Lithiumdimethylamid (84.3 mg, 1.65 mmol) wurde unter Rühren bei 20 °C in einer Portion Toluol (60 mL) gegeben und das resultierende Gemisch 16 h bei dieser Temperatur gerührt. Die resultierende Suspension wurde im Vakuum auf ein Volumen von 40 mL eingeengt und der Feststoff durch Filtration abgetrennt, mit Toluol (2 × 5 mL) gewaschen und verworfen. Das Lösungsmittel des Filtrats inklusive der Waschlösungen wurde im Vakuum entfernt und der Rückstand mit Acetonitril (7 mL) versetzt. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (5 mL) gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 770 mg (1.41 mmol, 85%) eines farblosen kristallinen Feststoffs. Smp. >178 °C (Zers.). — ¹⁵N-VACP/MAS-NMR: ^[33b] δ = -360.3, -359.6 (*N*(CH₃)₂), -251.0, 247.7, -152.2, -151.8 ppm (C₂*N*Si). - ²⁹Si-VACP/MAS-NMR:^[33b] $\delta = -59.7 \text{ ppm}$ (br., 2 Si). C₃₃H₄₆ClN₃Si (548.29) Ber. C 72.29 N 7.66 H 8.46 Gef. C 71.9 H 8.2 N 7.5

Verbindung 4

Zu einer Mischung von 2 (1.04 g, 1.93 mmol) und Kaliumbis(trimethylsilyl)amid (384 mg, 1.93 mmol) wurde unter Rühren bei 20 °C in einer Portion Toluol (40 mL) gegeben und das resultierende Gemisch 16 h bei dieser Temperatur gerührt. Der entstandene Feststoff wurde durch Filtration abgetrennt, mit Toluol $(2 \times 5 \text{ mL})$ gewaschen und verworfen. Das Filtrat wurde mit den Waschlösungen vereinigt und im Vakuum vom Lösungsmittel befreit. Der Rückstand wurde mit Benzol (10 mL) versetzt und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit n-Pentan (5 mL) gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 679 mg (1.02 mmol, 53%) eines farblosen kristallinen Feststoffs. Smp. >144 °C (Zers.). — ¹H-NMR (C₆D₅CD₃, 500.1 MHz): $\delta = 0.42$ (s, 18 H; Si(CH₃)₃), 0.48 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 6 H; CH₃), 1.25 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 6 H; CH_3), 1.39 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 6 H; CH_3), 1.49 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 6 H; CH_3), 3.13 $(\text{sept}, {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 2 \text{ H}; \text{CH}_{3}\text{CHCH}_{3}), 4.02 (\text{sept}, {}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 6.8 \text{ Hz}, 2 \text{ H};$ CH₃CHCH₃), 6.16 (s, ²⁹Si-Satelliten, ${}^{1}J({}^{1}H, {}^{29}Si) = 310.7$ Hz; SiH), 6.55–6.63, 6.79–7.17 ppm (m, 11 H; C₆H₅, C₆H₃). — ¹³C-NMR (C₆D₅CD₃, 125.8 MHz): $\delta = 4.9$ (3 C; Si(CH₃)₃), 23.2 (2 C), 24.3 (2 C), 25.3 (2 C), 26.5 (2 C) (CH₃), 28.5 (2 C), 28.7 (2 C) (CH₃CHCH₃), 124.1 (2 C), 124.6 (2 C) (*m*-C₆H₃), 126.5 (2 C; *p*-C₆H₃), 127.4 (2 C; *m*-C₆H₅), 129.5 (*p*-C₆H₅), 130.2 (2 C; o-C₆H₅), 131.2 (*i*-C₆H₅), 140.4 (2 C; *i*-C₆H₃), 143.2 (2 C), 144.3 (2 C) (o-C₆H₃), 164.2 ppm (N_2CC) . — ²⁹Si-NMR (C₆D₅CD₃, 99.4 MHz): $\delta = -45.0$ (SiClN₃H), 5.1 ppm (2 Si; SiMe₃). — ¹⁵N-VACP/MAS-NMR: $\delta = -326.0$ (*N*(SiMe₃)₂), -240.7, -162.0 ppm (C₂*N*Si). — ²⁹Si-VACP/MAS-NMR: $\delta = -71.4$ (br.; *Si*ClN₃H), 3.4, 5.6 ppm (*Si*Me₃). C₃₇H₅₈ClN₃Si₃ (664.60) Ber. C 66.87 H 8.80 N 6.32 Gef. C 66.5 H 8.9 N 6.2

Verbindung 5

Zu einer Lösung von Bis(2,6-diisopropylphenyl)carbodiimid (893 mg, 2.00 mmol) in Diethylether (80 mL) wurde unter Rühren bei –78 °C in einer Portion Phenyllithium (2 M in *n*-Bu₂O, 1.00 mL, 2 mmol PhLi) gegeben und das resultierende Gemisch innerhalb von 1.5 h unter Rühren auf 20 °C erwärmt. Anschließend wurde unter Rühren bei –40 °C innerhalb von 1 min Tetrachlorsilan (340 mg, 2.00 mmol) zugegeben und das resultierende Gemisch innerhalb von 1.5 h unter Rühren auf 20 °C erwärmt. Das Lösungsmittel wurde im Vakuum entfernt und der Rückstand mit Dichlormethan (40 mL) versetzt. Die resultierende Suspension

wurde filtriert, der verbliebene Feststoff mit Dichlormethan (2×5 mL) gewaschen und verworfen und das Lösungsmittel des Filtrats inklusive der Waschlösungen im Vakuum entfernt. Der Rückstand wurde mit Dichlormethan (15 mL) versetzt und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit Diethylether (2 x 5 mL) gewaschen und im Vakuum getrocknet (20 °C, 5 h, 0.01 mbar). Ausbeute: 1.02 g (1.78 mmol, 89%) eines farblosen kristallinen Feststoffs. Smp. >234 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): δ $= 0.90 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 Hz, 12 H; CH_{3}), 1.33 (d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 Hz, 12 H; CH_{3}), 3.40$ (sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 4 H; CH₃CHCH₃), 7.11–7.18 (m, 4 H; *o*-C₆H₅, *m*-C₆H₅), 7.18–7.21 (m, 4 H; m-C₆ H_3), 7.31–7.35 (m, 2 H; p-C₆ H_3), 7.36–7.40 ppm (m, 1 H; p-C₆ H_5). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): $\delta = 23.9$ (4 C), 25.2 (4 C) (CH₃), 29.3 (4 C; CH₃CHCH₃), 124.8 (*i*-C₆H₅), 125.0 (4 C; *m*-C₆H₃), 128.8 (4 C; *p*-C₆H₃, *m*-C₆H₅), 131.3 (2 C; *o*-C₆H₅), 134.0 (*p*- $C_{6}H_{5}$), 134.1 (2 C; *i*- $C_{6}H_{3}$), 146.5 (4 C; *o*- $C_{6}H_{3}$), 171.9 ppm (N₂CC). — ²⁹Si-NMR (CD₂Cl₂), 99.4 MHz.): $\delta = -90.6$ ppm. — ¹⁵N-VACP/MAS-NMR: $\delta = -208.9$ ppm (2 N; C₂NSi). — ²⁹Si-VACP/MAS-NMR: $\delta = -88.8$ ppm.

C ₃₁ H ₃₉ Cl ₃ N ₂ Si (574.10)	Ber.	C 64.86	H 6.85	N 4.88
	Gef.	C 64.9	Н 7.2	N 4.9

Verbindung 6

Zu einer Lösung von 5 (5.00 g, 8.71 mmol) in Toluol (40 ml) wurde unter Rühren bei 20 °C innerhalb von 2 min eine Lösung von Lithiumdimethylamid (444 mg, 8.71 mmol) in Toluol (60 ml) gegeben und das resultierende Gemisch 16 h bei dieser Temperatur gerührt. Die resultierende Suspension wurde im Vakuum auf ein Volumen von 40 mL eingeengt, und der Feststoff wurde durch Filtration abgetrennt, mit Toluol (2×5 mL) gewaschen und verworfen. Das Lösungsmittel des Filtrats inklusive der Waschlösungen wurde im Vakuum entfernt und der Rückstand mit Acetonitril (10 mL) versetzt. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde anschließend langsam auf –18 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (2×5 mL) gewaschen und im Vakuum getrocknet (20 °C, 6 h, 0.01 mbar). Ausbeute: 4.20 g (7.21 mmol, 83%) eines farblosen kristallinen Feststoffs. Smp. >183 °C (Zers.). — ¹H-NMR (C₆D₆, 500.1 MHz): $\delta = 1.12$ (d, ${}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8$ Hz, 12 H; CH₃), 1.52 (d, ${}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8$ Hz, 12 H; CH₃), 2.82 (s, 6 H; N(CH₃)₂), 3.77 (sept, ${}^{3}J({}^{1}\text{H},{}^{1}\text{H}) = 6.8$ Hz, 4 H; CH₃CHCH₃), 6.68–6.73 (m, 3 H; *m*-, *p*-C₆H₅), 7.09–7.13 (m, 4 H; *m*-C₆H₃), 7.14–7.19 (m, 2 H; *p*-C₆H₃), 7.21–7.26 ppm (m, 2 H; *o*-C₆H₅).

— ¹³C-NMR (C₆D₆, 125.8 MHz): δ = 23.7 (4 C), 25.5 (4 C) (CH₃), 28.8 (4 C; CH₃CHCH₃), 39.5 (2 C; N(CH₃)₂), 124.3 (4 C; *m*-C₆H₃), 127.1 (2 C; *p*-C₆H₃), 127.4 (2 C; *m*-C₆H₅), 129.2 (*i*-C₆H₅), 130.37 (*p*-C₆H₅), 130.44 (2 C; *o*-C₆H₅), 139.1 (2 C; *i*-C₆H₃), 144.6 (4 C; *o*-C₆H₃), 164.9 ppm (N₂CC). — ²⁹Si-NMR (C₆D₆, 99.4 MHz): δ = -57.5 ppm. — ¹⁵N-VACP/MAS-NMR: δ = -353.7 (*N*(CH₃)₂), -249.2, -140.1 ppm (C₂*N*Si). ²⁹Si-VACP/MAS-NMR: δ = -50.2 ppm (br.).

C ₃₃ H ₄₅ Cl ₂ N ₃ Si (582.73)	Ber.	C 68.02	H 7.78	N 7.21
	Gef.	C 67.9	H 7.8	N 7.5

Verbindung 7

Zu einer Lösung von Bis(2,6-diisopropylphenyl)carbodiimid (1.67 g, 3.75 mmol) in Diethylether (60 mL) wurde unter Rühren bei -78 °C in einer Portion Phenyllithium (2 M in n-Bu₂O, 1.87 mL, 3.75 mmol PhLi) gegeben und das resultierende Gemisch innerhalb von 1.5 h unter Rühren auf 20 °C erwärmt. Anschließend wurde unter Rühren bei -40 °C innerhalb von 1 min Trichlormethylsilan (560 mg, 3.75 mmol) zugegeben und das resultierende Gemisch innerhalb von 16 h unter Rühren auf 20 °C erwärmt. Das Lösungsmittel wurde im Vakuum entfernt und der Rückstand mit Dichlormethan (40 mL) versetzt. Die resultierende Suspension wurde filtriert, der verbliebene Feststoff mit Dichlormethan $(2 \times 5 \text{ mL})$ gewaschen und verworfen und das Lösungsmittel des Filtrats inklusive der Waschlösungen im Vakuum entfernt. Der Rückstand wurde mit Dichlormethan (10 mL) versetzt und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit Diethylether (5 mL) gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 1.52 g (2.75 mmol, 73%) eines farblosen kristallinen Feststoffs. Smp. >197 °C (Zers.). — ¹H-NMR $(CD_2Cl_2, 500.1 \text{ MHz})$: $\delta = 0.96 \text{ (d, } {}^3J({}^1\text{H}, {}^1\text{H}) = 6.8 \text{ Hz}, 12 \text{ H}; CH_3), 1.17 \text{ (s, 3 H; SiCH_3)}, 1.28$ $(d, {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 12 \text{ H}; CH_{3}), 3.35 \text{ (sept, } {}^{3}J({}^{1}H, {}^{1}H) = 6.8 \text{ Hz}, 4 \text{ H}; CH_{3}CHCH_{3}), 7.00-$ 7.05, 7.07–7.12, 7.16–7.21 ppm (m, 11 H; C₆ H_3 , C₆ H_5). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): δ = 10.4 (SiCH₃), 23.6 (4 C), 25.5 (4 C) (CH₃), 29.0 (4 C; CH₃CHCH₃), 124.4 (4 C; m-C₆H₃), 127.3 (2 C; p-C₆H₃), 128.0 (2 C; m-C₆H₅), 128.1 (i-C₆H₅), 130.2 (2 C; o-C₆H₅), 131.5 (p- $C_{6}H_{5}$), 137.0 (2 C; *i*- $C_{6}H_{3}$), 145.2 (4 C; *o*- $C_{6}H_{3}$), 167.5 ppm (N₂CC). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz,): $\delta = -43.1$ ppm. — ¹⁵N-VACP/MAS-NMR:^[33a] $\delta = -248.3$ (br.), -202.6 (s. br.) ppm (6 N; C₂*N*Si). — ²⁹Si-VACP/MAS-NMR:^[33a] δ = -52.8 ppm (3 Si).

C ₃₂ H ₄₂ Cl ₂ N ₂ Si (553.69)	Ber.	C 69.42	H 7.65	N 5.06
	Gef.	C 69.5	H 7.8	N 5.1

Verbindung 8^[34]

Zu einer Lösung von Bis(2,6-diisopropylphenyl)carbodiimid (1.40 g, 3.13 mmol) in Diethylether (50 mL) wurde unter Rühren bei -78 °C in einer Portion Phenyllithium (2 M in *n*-Bu₂O, 1.57 mL, 3.13 mmol PhLi) gegeben und das resultierende Gemisch innerhalb von 1.5 h unter Rühren auf 20 °C erwärmt. Anschließend wurde unter Rühren bei -40 °C innerhalb von 1 min Trichlorphenylsilan (662 mg, 3.13 mmol) zugegeben und das resultierende Gemisch innerhalb von 16 h unter Rühren auf 20 °C erwärmt. Das Lösungsmittel wurde im Vakuum entfernt und der Rückstand mit Dichlormethan (40 mL) versetzt. Die resultierende Suspension wurde filtriert, der verbliebene Feststoff mit Dichlormethan $(2 \times 5 \text{ mL})$ gewaschen und verworfen und das Lösungsmittel des Filtrats inklusive der Waschlösungen im Vakuum entfernt. Der Rückstand wurde mit Dichlormethan (5 mL) versetzt und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit Diethylether (5 mL) gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 1.23 g (2.00 mmol, 64%) eines farblosen kristallinen Feststoffs. Smp. >171 °C (Zers.). — ¹⁵N-VACP/MAS-NMR: $\delta = -245.5, -167.1 \text{ ppm}$ (C₂NSi). — ²⁹Si-VACP/MAS-NMR: $\delta = -68.4$ ppm (br.).

$C_{37}H_{44}Cl_2N_2Si$ (644.50)	Ber.	C 72.17	H 7.20	N 4.55
	Gef.	C 72.2	H 7.4	N 4.6

Verbindung 9

Verbindung **9** wurde in Anlehnung an die Synthese von 4-Methyl-2-[(pyridin-2yl)amino]phenol dargestellt:^[22,23] Zu einer Lösung von 2-Aminobenzolthiol (5.00 g, 39.9 mmol) in Methanol (150 mL) wurde unter Rühren bei 20 °C in einer Portion Pyridin-2carboxaldehyd (4.47 g, 41.7 mmol) gegeben und das resultierende Gemisch 3 h bei 65 °C gerührt. Nach Abkühlen auf 20 °C wurden die flüchtigen Bestandteile des Reaktionsgemisches im Vakuum entfernt, und der Rückstand wurde mit Ethanol (40 mL) versetzt und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert, im Vakuum getrocknet (20 °C, 1 h, 0.01 mbar) und mit Methanol (200 mL) versetzt. Zu der resultierenden Lösung wurde unter Rühren bei 0 °C innerhalb von 3 h Natriumborhydrid (15.1 g, 399 mmol) gegeben und das resultierende Gemisch auf 65 °C erhitzt und 4 h bei dieser Temperatur Nach Abkühlen auf 20 °C wurden die flüchtigen Bestandteile gerührt. des Reaktionsgemisches im Vakuum entfernt, und der Rückstand wurde mit Wasser (200 mL) versetzt und die resultierende Suspension mit konzentrierter Essigsäure (20 mL) neutralisiert. Die wässrige Phase wurde mit Dichlormethan $(3 \times 50 \text{ mL})$ extrahiert, und die vereinigten organischen Phasen wurden mit Wasser (50 mL) gewaschen und über wasserfreiem Natriumsulfat getrocknet. Die flüchtigen Bestandteile des organischen Extraktes wurden im Vakuum entfernt, und der grüne ölige Rückstand wurde erneut mit Methanol (200 mL) versetzt und die resultierende Lösung auf 0 °C gekühlt. Zu dieser Lösung wurde unter Rühren innerhalb von 3 h Natriumborhydrid (15.1 g, 399 mmol) gegeben und die resultierende Suspension auf 65 °C erhitzt und 4 h bei dieser Temperatur gerührt. Nach Abkühlen auf 20 °C wurden die flüchtigen Bestandteile des Reaktionsgemisches im Vakuum entfernt, und der Rückstand wurde mit Wasser (200 mL) versetzt und die resultierende Suspension mit konzentrierter Essigsäure (20 mL) neutralisiert. Die wässrige Phase wurde mit Dichlormethan $(3 \times 50 \text{ mL})$ extrahiert, und die vereinigten organischen Phasen wurden mit Wasser (50 mL) gewaschen und über wasserfreiem Natriumsulfat getrocknet. Die flüchtigen Bestandteile des organischen Extraktes wurden im Vakuum entfernt, und der verbleibende ölige Rückstand wurde im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 7.94 g (36.7 mmol, 92%) eines grünen Öls. — ¹H-NMR ([D₆]DMSO, 300.1 MHz): $\delta = 3.34$ (br. s, 1 H; SH), 4.46 (s, 2 H; NCH₂C), 5.33 (br. s; NH), 7.45–7.60 (m, 3 H; H-4/H-5/H-6, C₆H₄), 8.07–8.17 (m, 3 H; H-3/H-5, NC₅H₄; H-3, C₆H₄), 8.23–8.34 (m, 1 H; H-4, NC₅H₄), 8.68–8.74 ppm (m, 1 H; H-6, NC₅*H*₄). — ¹³C-NMR ([D₆]DMSO, 75.5 MHz): δ = 48.3 (NCH₂C), 122.5 (C-6; C₆H₄), 123.3 (C-2; C₆H₄), 125.9 (C-4; C₆H₄), 126.1 (C-3; NC₆H₄), 126.6 (C-5; NC₆H₄), 135.4 (C-5; C₆H₄), 137.8 (C-3; C₆H₄), 149.1 (C-4; NC₅H₄), 150.3 (C-1; C₆H₄), 153.7 (C-6; NC₅H₄), 169.0 ppm $(C-2; NC_5H_4).$

$C_{12}H_{12}N_2S$ (216.31)	Ber.	C 66.63	H 5.59	N 12.95	S 14.82
	Gef.	C 66.7	Н 5.5	N 12.9	S 14.8

Verbindung $10.0.5C_6H_5CH_3$

Zu einer Lösung von 9 (5.00 g, 23.0 mmol) und Triethylamin (4.87 g, 48.1 mmol) in Tetrahydrofuran (200 mL) wurde unter Rühren bei 20 °C innerhalb von 2 min

Trichlorphenylsilan (4.87 g, 23.0 mmol) gegeben und das resultierende Gemisch 2.5 h bei dieser Temperatur gerührt. Der resultierende Feststoff wurde durch Filtration abgetrennt, mit Tetrahydrofuran (10 mL) gewaschen und verworfen. Das Lösungsmittel des Filtrats inklusive der Waschlösung wurde im Vakuum entfernt und der Rückstand mit Toluol (160 mL) versetzt. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit Diethylether $(2 \times 5 \text{ mL})$ gewaschen und im Vakuum getrocknet (20 °C, 6 h, 0.01 mbar). Ausbeute: 4.97 g (12.4 mmol, 54%) eines gelben kristallinen Feststoffs. Smp. >211 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 300.1 MHz): $\delta = 2.35$ (s, 1.5 H; C₆H₅CH₃), 4.84, 4.89 (AB-System, ${}^{2}J({}^{1}H, {}^{1}H) = 18.1$ Hz, 2 H; NCH₂C), 6.64–6.70, 6.74–6.86, 6.97–7.10, 7.12–7.31, 7.34–7.46, 7.60–7.66, 7.96–8.03, 8.38–8.42 ppm (m, 15.5 H; C_6H_4 , C_6H_5 , NC_5H_4 , $C_6H_5CH_3$). -¹³C-NMR (CD₂Cl₂, 75.5 MHz): δ = 21.5 (C₆H₅CH₃), 48.7 (NCH₂C), 111.4, 120.1, 122.4, 123.6, 124.4, 125.6, 125.9, 126.1, 128.3 (2 C), 128.5 (2 C), 128.6, 129.3 (2 C), 130.8 (2 C), 131.1, 138.3, 141.5, 142.5, 144.8, 153.4 ppm (C₆H₄, C₆H₅, NC₅H₄, C₆H₅CH₃). — ²⁹Si-NMR $(CD_2Cl_2, 59.6 \text{ MHz}): \delta = -70.9 \text{ ppm.} - {}^{15}\text{N-VACP/MAS-NMR}: \delta = -297.5 (NCH_2C), -125.9$ ppm (NC₅H₄). — ²⁹Si-VACP/MAS-NMR: $\delta = -75.8$ ppm (br.).

$C_{21.5}H_{19}ClN_2SSi$ (401.01)	Ber.	C 64.40	H 4.78	N 6.99	S 8.00
	Gef.	C 64.1	H 4.8	N 7.0	S 8.0

Verbindung 11

Zu einer Lösung von **9** (3.80 g, 17.6 mmol) und Triethylamin (3.55 g, 35.1 mmol) in Tetrahydrofuran (75 mL) wurde unter Rühren bei 20 °C innerhalb von 1 min Trichlormethylsilan (2.63 g, 17.6 mmol) gegeben und das resultierende Gemisch 2 h bei dieser Temperatur gerührt. Der resultierende Feststoff wurde durch Filtration abgetrennt, mit Tetrahydrofuran (10 mL) gewaschen und verworfen. Das Lösungsmittel des Filtrats inklusive der Waschlösung wurde im Vakuum entfernt und der Rückstand mit Acetonitril (14 mL) versetzt. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (2 × 5 mL) gewaschen und im Vakuum getrocknet (20 °C, 6 h, 0.01 mbar). Ausbeute: 2.60 g (8.88 mmol, 50%) eines gelben kristallinen Feststoffs. Smp. >208 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 300.1 MHz): $\delta = 1.04$ (s, 3H; CH₃), 4.69, 4.72 (AB-System, ²*J*(¹H, ¹H) = 17.8 Hz, 2 H; NCH₂C), 6.34–6.44, 6.61–6.78, 6.93–7.09, 7.19–7.26, 7.38–8.09, 8.25–8.40, 8.62– 8.69, 8.77–8.81 ppm (m, 8 H; C₆H₄, NC₅H₄). — ¹³C-NMR (CD₂Cl₂, 75.5 MHz): $\delta = 16.1$ (CH₃), 48.6 (NCH₂C), 111.1, 119.8, 122.6, 123.4, 124.5, 126.0, 135.6, 141.3, 143.0, 144.0, 153.5 ppm (C_6H_4 , N C_5H_4). — ²⁹Si-NMR (CD₂Cl₂, 59.6 MHz): $\delta = -64.0$ ppm. — ¹⁵N-VACP/MAS-NMR: $\delta = -297.3$ (NCH₂C), -128.0 ppm (NC₅H₄). $-^{29}$ Si-VACP/MAS-NMR: δ = -70.3 ppm (br.). C₁₃H₁₃ClN₂SSi (292.86) H 4.47 N 9.57 S 10.95 Ber. C 53.32 Gef. C 53.3 H 4.6 N 9.5 S 11.2

Verbindung 12

Zu einer Lösung von 9 (3.50 g, 16.2 mmol) und Triethylamin (3.28 g, 32.4 mmol) in Tetrahydrofuran (80 mL) wurde unter Rühren bei 20 °C innerhalb von 2 min Trichlor(pentafluorphenyl)silan^[24] (4.88 g, 16.2 mmol) gegeben und das resultierende Gemisch 3 h bei dieser Temperatur gerührt. Der resultierende Feststoff wurde durch Filtration abgetrennt, mit Tetrahydrofuran (20 mL) gewaschen und verworfen. Das Lösungsmittel des Filtrats inklusive der Waschlösung wurde im Vakuum entfernt und der Rückstand mit Acetonitril (100 mL) versetzt. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (2 × 10 mL) gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 4.66 g (10.5 mmol, 65%) eines gelben kristallinen Feststoffs. Smp. >227 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 300.1 MHz): $\delta = 4.81, 4.88$ (AB-System, ²J(¹H, ¹H) = 18.0 Hz, 2 H; NCH₂C), 6.43–6.48, 6.75–6.86, 7.00–7.09, 7.18–7.23, 7.49–7.57, 7.68–7.74, 8.08–8.16, 8.44–8.50 ppm (m, 8 H; C₆H₄, NC₅H₄). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): $\delta =$ 47.8 (NCH₂C), 111.6, 116.6–117.3 (m; C-1, C₆F₅), 120.5, 122.6, 124.0, 124.9, 126.0, 129.4, 137.6 (dm, ${}^{1}J({}^{13}C, {}^{19}F) = 252$ Hz; C-2/C-6, C₆F₅), 141.4, 141.9 (dm, ${}^{1}J({}^{13}C, {}^{19}F) = 253$ Hz; C-4. $C_{6}F_{5}$, 142.2, 143.4, 146.8 (dm, ${}^{1}J({}^{13}C, {}^{19}F) = 241$ Hz; C-3/C-5, C₆F₅), 153.8 ppm (C₆H₄, NC₅H₄). — ²⁹Si-NMR (CD₂Cl₂, 59.6 MHz): $\delta = -84.8$ bis -84.4 ppm (m). — ¹⁵N-VACP/MAS-NMR: $\delta = -297.8$ (NCH₂C), -95.0 ppm (NC₅H₄). - ²⁹Si-VACP/MAS-NMR: δ = -88.4 ppm (br.).

$C_{18}H_{10}ClF_5N_2SSi$ (444.89)	Ber.	C 48.60	H 2.27	N 6.30	S 7.21
	Gef.	C 48.6	H 2.3	N 6.3	S 7.0

Verbindung 13

Verbindung 13 wurde gemäß Lit. [14] dargestellt.

Verbindung 14.0.5CH₃CN

Verbindung 14.0.5CH₃CN wurde gemäß Lit. [14] dargestellt.

Verbindung 15

Zu einer Lösung von 14.0.5CH₃CN (1.02 g, 2.84 mmol) in Acetonitril (40 mL) wurde unter Rühren bei 20 °C in einer Portion Azidotrimethylsilan (327 mg, 2.84 mmol) gegeben und das resultierende Gemisch 16 h bei dieser Temperatur gerührt. Die flüchtigen Bestandteile des Reaktiongemisches wurden im Vakuum entfernt, und der Rückstand wurde mit Acetonitril (10 ml) versetzt und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit Diethylether (5 mL) gewaschen und im Vakuum getrocknet (20 °C, 6 h, 0.01 mbar). Ausbeute: 786 mg (2.27 mmol, 80%) eines gelben kristallinen Feststoffs. Smp. >161 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = 4.72$, 4.76 (AB-System, ²J(¹H, ¹H) = 17.5 Hz, 2 H; NCH₂C), 6.67–6.74, 6.75–6.81, 7.22–7.30, 7.36–7.43, 7.61–7.65, 7.96–8.02, 8.28– 8.33 ppm (m, 13 H; C₆H₄, C₆H₅, NC₅H₄). ¹³C-NMR (CD₂Cl₂, 125.8 MHz): $\delta = 45.8$ (NCH₂C), 108.3, 110.9, 118.8, 119.2, 122.7, 124.4, 128.1 (2 C), 129.1, 132.4 (2 C), 137.7, 140.4, 141.2, 144.7, 150.6, 154.7 ppm (C_6H_4 , C_6H_5 , N C_5H_4). — ²⁹Si-NMR (CD₂Cl₂, 99.4) MHz): $\delta = -87.6$ ppm. — ¹⁵N-VACP/MAS NMR: $\delta = -312.1$ (NCH₂C), -305.3 (SiNNN), -197.3 (SiNNN), -136.6 (SiNNN), -128.1 ppm (NC₅H₄). — ²⁹Si-VACP/MAS-NMR: δ = -90.4 ppm (br.).

C ₁₈ H ₁₅ N ₅ OSi (345.44)	Ber.	C 62.59	H 4.38	N 20.27
	Gef.	C 62.4	H 4.7	N 20.5

Verbindung 16

Zu einer Lösung von Trichlormethylsilan (6.00 g, 40.1 mmol) in Tetrahydrofuran (40 mL) wurde unter Rühren bei –40 °C innerhalb von 2 min eine Lösung von Triethylamin (4.06 g, 40.1 mmol) und Phenol (3.78 g, 40.2 mmol) in Tetrahydrofuran (180 mL) gegeben, und das resultierende Gemisch wurde unter Rühren innerhalb von 18 h auf 20 °C erwärmt. Der

resultierende Feststoff wurde durch Filtration entfernt, mit Tetrahydrofuran (20 mL) gewaschen und verworfen. Das Lösungsmittel des Filtrats inklusive der Waschlösung wurde durch Destillation (20 °C / 1 bar) entfernt und der Rückstand bei vermindertem Druck durch fraktionierende Destillation gereinigt. Ausbeute: 2.72 g (13.1 mmol, 33%) einer farblosen Flüssigkeit. Sdp. 58 °C / 5 mbar. — ¹H-NMR (CD₂Cl₂, 300.1 MHz): δ = 1.00 (s, 3 H; CH₃), 7.06–7.13 (m, 2 H; *H*-2/*H*-6, C₆*H*₅), 7.14–7.18 (m, 1 H; *H*-4, C₆*H*₅), 7.31–7.39 ppm (m, 2 H; *H*-3/*H*-5, C₆*H*₅). — ¹³C-NMR (CD₂Cl₂, 75.5 MHz): δ = 4.80 (CH₃), 120.3 (2 C; C-2/C-6, C₆H₅), 124.1 (C-4, C₆H₅), 130.2 (2 C; C-3/C-5, C₆H₅), 152.3 ppm (C-1, C₆H₅). — ²⁹Si-NMR (CD₂Cl₂, 59.6 MHz): δ = –11.7 ppm. C₇H₈Cl₂OSi (207.13) Ber. C 40.59 H 3.89

Gef.	C 40.6	Н 3.9

Verbindung 17

Zu einer Lösung von 10 (1.26 g, 5.83 mmol) und Triethylamin (1.18 g, 11.7 mmol) in Tetrahydrofuran (25 mL) wurde unter Rühren bei 20 °C innerhalb von 1 min Verbindung 16 (1.21 g, 5.84 mmol) gegeben und das resultierende Gemisch 20 min bei dieser Temperatur gerührt. Der resultierende Feststoff wurde durch Filtration abgetrennt, mit Tetrahydrofuran (10 mL) gewaschen und verworfen. Das Lösungsmittel des Filtrats inklusive der Waschlösung wurde im Vakuum entfernt und der Rückstand mit Acetonitril (5 mL) versetzt. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf 20 °C abgekühlt und 2 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (5 mL) gewaschen und im Vakuum getrocknet (20 °C, 5 h, 0.01 mbar). Ausbeute: 1.02 g (2.91 mmol, 50%) eines gelben kristallinen Feststoffs. Smp. >155 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 300.1 MHz): $\delta = 0.86$ (s, 3 H; CH₃), 4.73, 4.75 (AB-System, ²J(¹H, ¹H) = 18.0 Hz, 2 H; NCH₂C), 6.59–6.80, 6.83–6.91, 6.93–7.35, 7.49–7.65, 7.97–8.05, 8.70–8.75 ppm (m, 13 H; C_6H_4 , C_6H_5 , NC_5H_4). — ¹³C-NMR (CD₂Cl₂, 75.5 MHz): $\delta = 12.5$ (CH₃), 49.2 (NCH₂C), 110.6, 120.6 (2 C), 121.2, 122.4, 123.0, 124.4, 126.5, 129.5 (2 C), 130.8, 140.9, 144.1 (2 C), 144.2, 154.0, 155.6 ppm (C_6H_4 , C_6H_5 , N C_5H_4). — ²⁹Si-NMR (CD₂Cl₂, 59.6 MHz): $\delta = -70.0$ ppm. — ¹⁵N-VACP/MAS-NMR: $\delta = -295.7$ (NCH₂C), -129.4 ppm (NC₅H₄). — ²⁹Si-VACP/MAS-NMR: $\delta = -73.0$ ppm (br.).

C ₁₉ H ₁₈ N ₂ OSSi (350.52)	Ber.	C 65.11	H 5.18	N 7.99	S 9.15
	Gef.	C 65.0	Н 5.3	N 8.0	S 9.2

Verbindung 18

Zu einer Lösung von 11 (456 mg, 1.56 mmol) und Triethylamin (158 mg, 1.56 mmol) in Tetrahydrofuran (20 mL) wurde unter Rühren bei 20 °C innerhalb von 1 min Benzolthiol (172 mg, 1.56 mmol) gegeben und das resultierende Gemisch 30 min bei dieser Temperatur gerührt. Der resultierende Feststoff wurde durch Filtration abgetrennt, mit Tetrahydrofuran (10 mL) gewaschen und verworfen. Das Lösungsmittel des Filtrats inklusive der Waschlösung wurde im Vakuum entfernt und der Rückstand mit Acetonitril (3 mL) versetzt. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf 20 °C abgekühlt und 2 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan ($2 \times$ 5 mL) gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 284 g (775 μ mol, 50%) eines gelben kristallinen Feststoffs. Smp. >171 °C (Zers.). — ¹H NMR (CD₂Cl₂, 300.1 MHz): $\delta = 1.13$ (s, 3 H; CH₃), 4.66, 4.68 (AB-System, ²J(¹H, ¹H) = 18.5 Hz, 2 H; NCH₂C), 6.53–6.79, 6.80–7.02, 7.06–7.31, 7.51–7.56, 7.89–7.96, 8.46–8.51 ppm (m, 13 H; C_6H_4 , C_6H_5 , NC_5H_4). — ¹³C-NMR (CD₂Cl₂, 75.5 MHz): $\delta = 16.1$ (CH₃), 48.9 (NCH₂C), 110.7, 119.2, 122.4, 123.3, 123.5, 126.3, 127.0, 128.8 (2 C), 131.0, 135.4 (2 C), 135.9, 141.0, 143.8, 144.2, 154.2 ppm (C_6H_4 , C_6H_5 , NC₅H₄). — ²⁹Si-NMR (CD₂Cl₂, 59.6 MHz): $\delta = -59.8$ ppm. — ¹⁵N-VACP/MAS-NMR: $\delta = -300.5$ (NCH₂C), -127.8 ppm (NC₅H₄). — ²⁹Si-VACP/MAS-NMR: $\delta = -61.4$ ppm (br.).

C ₁₉ H ₁₈ N ₂ S ₂ Si (366.58)	Ber.	C 62.25	H 4.95	N 7.64	S 17.49
	Gef.	C 62.2	H 5.1	N 7.9	S 17.1

Verbindung 19

Zu einer Lösung von **11** (1.42 mg, 4.85 mmol) und Triethylamin (491 mg, 4.85 mmol) in Tetrahydrofuran (25 mL) wurde unter Rühren bei –18 °C innerhalb von 1 min Benzolselenol (762 mg, 4.85 mmol) gegeben und das resultierende Gemisch unter Rühren innerhalb von 20 min auf 20 °C erwärmt. Der resultierende Feststoff wurde durch Filtration abgetrennt, mit Tetrahydrofuran (10 mL) gewaschen und verworfen. Das Lösungsmittel des Filtrats inklusive der Waschlösung wurde im Vakuum entfernt und der Rückstand mit Acetonitril (5 mL) versetzt. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (5 mL) gewaschen und im Vakuum getrocknet (20 °C, 3 h, 0.01 mbar). Ausbeute: 1.06 g (2.56 mmol, 53%) eines gelben kristallinen Feststoffs. Smp. >175 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 300.1 MHz): $\delta = 1.23$ (s, 3 H; CH₃), 4.70, 4.71 (AB-System, ²*J*(¹H, ¹H) = 18.8 Hz, 2 H; NCH₂C), 6.52–6.82, 6.83–7.04, 7.07–7.30, 7.46–7.54, 7.76–7.84, 7.97–8.03 ppm (m, 13 H; C₆H₄, C₆H₅, NC₅H₄). — ¹³C-NMR (CD₂Cl₂, 75.5 MHz): $\delta = 17.3$ (CH₃), 48.8 (NCH₂C), 111.0, 119.3, 122.4, 122.9, 123.5, 126.6, 126.9, 128.9 (2 C), 131.1, 133.4, 136.2 (2 C), 140.8, 142.8, 144.2, 153.6 ppm (C₆H₄, C₆H₅, NC₅H₄). — ²⁹Si-NMR (CD₂Cl₂, 59.6 MHz): $\delta = -70.2$ ppm (⁷⁷Se-Satelliten, ¹*J*(²⁹Si,⁷⁷Se) = 136 Hz). ⁷⁷Se-NMR (CD₂Cl₂, 95.4 MHz): $\delta = 194.5$ ppm. — ¹⁵N-VACP/MAS-NMR: $\delta = -301.7$ (NCH₂C), -125.3 ppm (NC₅H₄). — ²⁹Si-VACP/MAS-NMR: $\delta = -70.1$ ppm (br.) (⁷⁷Se-Satelliten nicht detektiert). — ⁷⁷Se-VACP/MAS-NMR: $\delta = 236.8$ ppm.

C ₁₉ H ₁₈ N ₂ SSeSi (413.48)	Ber.	C 55.19	H 4.39	N 6.78	S 7.76
	Gef.	C 55.2	H 4.5	N 7.1	S 7.9

Verbindung 20

Zu einer Lösung von 11 (1.30 mg, 4.44 mmol) in Acetonitril (40 mL) wurde unter Rühren bei -18 °C innerhalb von 1 min Phenyltrimethylsilyltellurid (1.23 mg, 4.44 mmol) gegeben und das resultierende Gemisch unter Rühren innerhalb von 20 min auf 20 °C erwärmt. Die flüchtigen Bestandteile des Reaktionsgemisches wurden im Vakuum entfernt, und der Rückstand wurde mit Acetonitril (5 mL) versetzt und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit n-Pentan (5 mL) gewaschen und im Vakuum getrocknet (20 °C, 3 h, 0.01 mbar). Ausbeute: 1.20 g (2.59 mmol, 58%) eines orange farbenen kristallinen Feststoffs. Smp. >163 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 300.1 MHz): $\delta = 1.35$ (s, 3 H; CH₃), 4.71, 4.75 (AB-System, ${}^{2}J({}^{1}H, {}^{1}H) = 18.2$ Hz, 2 H; NCH₂C), 6.52–6.82, 6.83–7.04, 7.07–7.30, 7.46–7.54, 7.76–7.84, 7.97–8.03 ppm (m, 13 H; C_6H_4 , C_6H_5 , NC_5H_4). — ¹³C-NMR (CD₂Cl₂, 75.5 MHz): $\delta = 18.1$ (CH₃), 47.7 (NCH₂C), 110.2, 118.4, 121.4, 121.8, 122.8, 125.9, 126.2, 128.1 (2 C), 130.5, 138.2, 139.2 (2 C), 139.7, 141.1, 143.3, 151.9 ppm (C₆H₄, C_6H_5 , N C_5H_4). — ²⁹Si-NMR (CD₂Cl₂, 59.6 MHz): $\delta = -90.6$ ppm (¹²⁵Te-Satelliten, ${}^{1}J({}^{29}\text{Si},{}^{125}\text{Te}) = 367 \text{ Hz}$). — ${}^{125}\text{Te-NMR}$ (CD₂Cl₂, 157.8 MHz): $\delta = 135.3 \text{ ppm.}$ — ${}^{15}\text{N-}$ VACP/MAS-NMR: $\delta = -303.7$ (NCH₂C), -133.0 ppm (NC₅H₄). - ²⁹Si-VACP/MAS-NMR: δ = -91.7 ppm (br.) (¹²⁵Te-Satelliten nicht detektiert). — ¹²⁵Te-HPDec/MAS-NMR: δ = 104.5 ppm.

$C_{19}H_{18}N_2SSiTe$ (462.12)	Ber.	C 49.38	H 3.93	N 6.06	S 6.94
	Gef.	C 49.4	Н 3.9	N 6.2	S 6.6

Verbindung 21

Zu einer Lösung von Pentafluoriodbenzol (16.5 g, 56.1 mmol) in Diethylether (130 mL) wurde unter Rühren bei -78 °C innerhalb von 3 min n-Butyllithium (2.5 M in n-Hexan, 22.5 mL, 56.1 mmol n-BuLi) gegeben und das resultierende Gemisch innerhalb von 1 h unter Rühren auf 20 °C erwärmt. Die resultierende Suspension wurde unter Rühren bei -78 °C innerhalb von 3 min mit N,N'-Diisopropylcarbodiimid (7.08 g, 56.1 mmol) versetzt und das resultierende Gemisch innerhalb von 1 h unter Rühren auf 20 °C erwärmt. Zur resultierenden Suspension wurde unter Rühren bei 20 °C innerhalb von 5 min tropfenweise Trichlorsilan (3.80 g, 28.1 mmol) gegeben und die Reaktionsmischung 16 h bei dieser Temperatur gerüht. Die flüchtigen Bestandteile wurden im Vakuum entfernt, und der Rückstand wurde mit Dichlormethan (160 mL) versetzt. Die resultierende Suspension wurde filtriert, der Feststoff mit Dichlormethan (2 x 20 mL) gewaschen und verworfen und das Lösungsmittel des Filtrats inklusive der Waschlösungen im Vakuum entfernt. Der Rückstand wurde mit n-Hexan (20 mL) versetzt und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf -18 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit n-Pentan (5 mL) gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 10.3 g (15.8 mmol, 56%) eines farblosen kristallinen Feststoffs. Smp. >156 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = 0.99 - 1.34$ (m, 24 H; CH₃), 3.25 - 3.61 (m, 4 H; CH₃CHCH₃), 5.04 ppm (s, ²⁹Si-Satelliten, ¹ $J(^{1}H,^{29}Si) = 297.1$ Hz, 1 H; SiH). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): $\delta = 22.7-24.4$ (m, 8 C; CH₃), 47.9 (br.), 48.2, 48.2 (br.), 48.7 (CH₃CHCH₃), 105.8-106.8 (m, 2 C; $p-C_6F_5$), 137.3 (2 C), 139.3 (br., 2 C) ($m-C_6F_5$), 141.8–142.2 (m; $i-C_6F_5$), 142.9 (br., 2 C; *o*-*C*₆F₅), 143.9–144.2 (m; *i*-*C*₆F₅), 144.9 (br., 2 C; *o*-*C*₆F₅), 154.3, 155.1 ppm (br.; N₂*CC*). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -177.6$ ppm. — ¹⁵N-VACP/MAS-NMR: $\delta = -$ 210.7, -203.6, -183.1, -180.4 ppm (C₂NSi). — ²⁹Si-VACP/MAS-NMR: $\delta = -172.5$ ppm (br.).

$C_{26}H_{29}ClF_{10}N_4Si$ (651.07)	Ber.	C 47.97	H 4.49	N 8.61
	Gef.	C 47.9	H 4.7	N 8.5

Verbindung 22

Zu einer Lösung von Lithiumbis(trimetylsilyl)amid (2.80 g, 27.2 mmol) in Diethylether (80 mL) wurde unter Rühren bei 20 °C innerhalb von 1 min Benzonitril (4.54 g, 27.2 mmol) gegeben und das resultierende Gemisch 16 h bei dieser Temperatur gerührt. Die resultierende Suspension wurde unter Rühren bei –40 °C innerhalb von 3 min mit Trichlorsilan (1.84 g,

13.6 mmol) versetzt und das resultierende Gemisch innerhalb von 16 h unter Rühren auf 20 °C erwärmt. Die flüchtigen Bestandteile wurden im Vakuum entfernt, und der Rückstand wurde mit Dichlormethan (80 mL) versetzt. Die resultierende Suspension wurde filtriert, der verbliebene Feststoff mit Dichlormethan (2 \times 10 mL) gewaschen und verworfen und das Lösungsmittel des Filtrats inklusive der Waschlösungen im Vakuum entfernt. Der Rückstand wurde mit n-Hexan (15 mL) versetzt und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit n-Pentan (10 mL) gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 3.28 g (5.55 mmol, 41%) eines farblosen kristallinen Feststoffs. Smp. >175 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 500.1 MHz): $\delta = -0.02$ (s, 18 H), 0.05 (s, 18 H) (CH₃), 5.05 (s, ²⁹Si-Satelliten, ¹ $J(^{1}H, ^{29}Si) = 296.4$ Hz, 1 H; SiH), 7.25–7.47 ppm (m, 10 H; C₆H₅). — ¹³C-NMR (CD₂Cl₂, 125.8 MHz): $\delta = 1.48$ (6 C), 1.72 (6 C) (CH₃), 127.2 (br., 2 C), 127.5 (br., 2 C) (o-C₆H₅), 128.5 (br., 2 C), 128.7 (2 C) (m-C₆H₅), 129.9 (2 C; p-C₆H₅), 137.0 (2 C; i- $C_{6}H_{5}$), 177.2 ppm (2 C; N₂CC). — ²⁹Si-NMR (CD₂Cl₂, 99.4 MHz): $\delta = -177.8$ (SiN₄), 0.3 (2 Si), 2.5 ppm (2 Si) (SiMe₃). — ¹⁵N-VACP/MAS-NMR: $\delta = -195.2, -192.2, -185.1, -180.1$ ppm (C₂NSi). — ²⁹Si-VACP/MAS-NMR: $\delta = -178.5$ bis -175.9 (m; SiN₄), -0.6 (2 Si), 1.9, 2.5 ppm (*Si*Me₃).

C ₂₆ H ₄₇ ClN ₄ Si ₅ (591.57)	Ber.	C 52.79	H 8.01	N 9.47
	Gef.	C 52.6	H 8.2	N 9.7

Verbindung 23

Zu einer Lösung von **11** (700 mg, 2.39 mmol) in Tetrahydrofuran (40 mL) wurden unter Rühren bei 20 °C nacheinander in jeweils einer Portion Triethylamin (242 mg, 2.39 mmol) und 8-Hydroxychinolin (347 mg, 2.39 mmol) gegeben, und das resultierende Gemisch wurde 3 h bei dieser Temperatur gerührt. Der entstandene Feststoff wurde durch Filtration abgetrennt, mit Tetrahydrofuran (10 mL) gewaschen und verworfen. Das Lösungsmittel des Filtrats inklusive der Waschlösung wurde im Vakuum entfernt und der Rückstand mit Acetonitril (10 mL) versetzt. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (10 mL) gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 616 mg (1.53 mmol, 64%) eines gelben kristallinen Feststoffs. Smp. >178 °C (Zers.). — ¹H-NMR (CD₂Cl₂, 300.1 MHz): $\delta = 0.81$ (s, 3 H; *CH*₃), 4.84 (br., AB- System, ${}^{2}J({}^{1}H, {}^{1}H) = \text{nicht aufgelöst}$, 2 H; NCH₂C), 6.54–6.64, 6.90–6.97, 7.09–7.18, 7.28– 7.38, 7.42–7.49, 7.53–7.60, 7.81–7.89, 8.10–8.16, 8.59–8.54, 8.90–8.96 ppm (m, 14 H; C₆H₄, NC₅ H_4 , C₉ H_6 NO). — ¹³C-NMR (CD₂Cl₂, 75.5 MHz): $\delta = 11.8$ (CH₃), 49.6 (NCH₂C), 109.6, 116.4, 117.8, 119.0, 121.8, 122.1, 123.58, 123.64, 126.4, 128.4, 128.5, 129.6, 136.9, 139.7, 145.60, 145.64, 146.2, 149.6, 152.1, 155.8 ppm (C_6H_4 , N C_5H_4 , C_9H_6NO). — ²⁹Si-NMR $(CD_2Cl_2, 59.6 \text{ MHz}): \delta = -68.5 \text{ ppm.} - {}^{15}\text{N-VACP/MAS-NMR}: \delta = -285.7 (NCH_2C), -118.1$ (NC_5H_4) , -102.2 ppm (C₉H₆NO). — ²⁹Si-VACP/MAS-NMR: $\delta = -115.2$ ppm. C₂₂H₁₉N₃OSSi (401.56) Ber. C 65.80 H 4.77 N 10.46 S 7.99 Gef. C 65.3 H 4.9 N 10.5 S 8.2

Verbindung 25

Zu einer Mischung von 6 (1.17 g, 2.01 mmol) und elementarem Kalium (157 mg, 4.02 mmol) wurde unter Rühren bei 20 °C in einer Portion THF (50 mL) gegeben und das resultierende Gemisch 16 h bei dieser Temperatur gerührt. Das Lösungsmittel wurde im Vakuum entfernt und der Rückstand mit Toluol (40 mL) versetzt. Die resultierende Suspension wurde filtriert und der verbliebene Feststoff mit Toluol (2 \times 5 mL) gewaschen und verworfen. Das Lösungsmittel des Filtrats inklusive der Waschlösungen wurde im Vakuum entfernt und der Rückstand mit n-Hexan (15 mL) versetzt. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit n-Pentan (2 mL) gewaschen und im Vakuum getrocknet (20 °C, 5 h, 0.01 mbar). Ausbeute: 900 mg (1.93 mmol, 96%) eines orange farbenen kristallinen Feststoffs. Smp. >104 °C (Zers.). — ¹H-NMR (C₆D₆, 500.1 MHz): $\delta =$ 0.99 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 6 H; CH₃), 1.07 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 6 H; CH₃), 1.37 (d, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 6 H; CH₃), 1.59 (d, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 6 H; CH₃), 3.07 (s, 6 H; $N(CH_3)_2$, 3.85 (sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 2 H; CH₃CHCH₃), 4.07 (sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 2 H; CH₃CHCH₃), 6.71–6.77 (m, 2 H; m-C₆H₅), 6.77–6.83 (m, 1 H; p-C₆H₅), 7.16–7.30 ppm (m, 8 H; *m*-, *p*-C₆*H*₃, *o*-C₆*H*₅). — ¹³C-NMR (C₆D₆, 125.8 MHz): δ = 23.09 (2 C), 23.12 (2 C), 25.3 (2 C), 27.2 (2 C) (CH₃), 28.9 (2 C), 29.1 (2 C) (CH₃CHCH₃), 39.9 (2 C; N(CH₃)₂), 124.1 (2 C), 124.6 (2 C; *m*-C₆H₃), 126.7 (2 C; *p*-C₆H₃), 128.2 (2 C; *m*-C₆H₅), 129.1 (*i*-C₆H₅), 130.2 (2 C; o-C₆H₅), 130.6 (p-C₆H₅), 137.2 (2 C; i-C₆H₃), 144.4 (2 C), 144.6 (2 C; o-C₆H₃), 160.1 ppm (N₂CC). — ²⁹Si-NMR (C₆D₆, 99.4 MHz): δ = 12.1 ppm. — ¹⁵N-VACP/MAS-NMR: δ = $-323.6 (N(CH_3)_2), -220.4, -204.5 \text{ ppm} (C_2NSi). - {}^{29}Si-VACP/MAS-NMR: \delta = 15.8 \text{ ppm}.$
C ₃₃ H ₄₅ N ₃ Si (511.83)	Ber.	C 77.44	H 8.86	N 8.21
	Gef.	C 77.1	H 9.1	N 8.4

Verbindung 35

Zu einer Lösung von 25 (345 mg, 674 μ mol) in Toluol (15 mL) wurde unter Rühren bei 20 °C innerhalb von 1 min Eisenpentacarbonyl (132 mg, 674 μ mol) gegeben und das resultierende Gemisch 16 h bei dieser Temperatur gerührt. Die flüchtigen Bestandteile des Reaktionsgemisches wurden im Vakuum entfernt, und der Rückstand wurde mit n-Hexan (3 mL) und Toluol (2 mL) versetzt und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert, mit n-Hexan (2 mL) gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 229 mg (337 µmol, 50%) eines gelben kristallinen Feststoffs. Smp. >227 °C (Zers.). — ¹H-NMR (C₆D₆, 500.1 MHz): $\delta = 0.73$ (d, ³J(¹H, ¹H) = 6.8 Hz, 6 H; CH₃), 0.91 (d, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 6 H; CH₃), 1.29 (d, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 6 H; CH₃), 1.64 (d, ${}^{3}J({}^{1}H,{}^{1}H) =$ 6.8 Hz, 6 H; CH₃), 2.83 (s, 6 H; N(CH₃)₂), 3.44 (sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 2 H; CH₃CHCH₃), 4.09 (sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 2 H; CH₃CHCH₃), 6.51–6.59 (m, 2 H; m-C₆H₅), 6.66–6.73 (m, 1 H; p-C₆ H_5), 7.06–7.13 (m, 2 H; m-C₆ H_3), 7.14–7.25 ppm (m, 6 H; m-, p-C₆ H_3 , o-C₆ H_5). — ¹³C-NMR (C_6D_6 , 125.8 MHz): $\delta = 23.9$ (2 C), 24.4 (2 C), 24.6 (2 C), 26.3 (2 C) (CH₃), 29.2 (2 C), 29.3 (2 C) (CH₃CHCH₃), 40.5 (2 C; N(CH₃)₂), 125.0 (2 C), 125.9 (2 C; m-C₆H₃), 126.3 $(i-C_6H_5)$, 128.3 (2 C; $p-C_6H_3$), 128.9 (2 C; $m-C_6H_5$), 131.1 (2 C; $o-C_6H_5$), 132.6 $(p-C_6H_5)$, 134.3 (*i*-C₆H₅), 144.3 (2 C), 145.3 (2 C) (*o*-C₆H₃), 168.3 (N₂CC), 215.6 ppm (4 C; CO). — ²⁹Si-NMR (C₆D₆, 99.4 MHz): δ = 76.4 ppm. — ¹⁵N-VACP/MAS-NMR: δ = -327.8 $(N(CH_3)_2)$, -233.9, -205.2 ppm (C₂NSi). — ²⁹Si-VACP/MAS-NMR: δ = 76.5 ppm. IR (Festkörper, cm⁻¹): 2022 (CO), 1939 (CO), 1902 (CO). C₃₇H₄₅FeN₃O₄Si (679.71) Ber. C 65.38 H 6.67 N 6.18 Gef. C 65.2 H 6.8 N 6.2

Verbindung 36

Zu einer Lösung von **25** (499 mg, 972 μ mol) in Toluol (20 mL) wurde unter Rühren bei 20 °C innerhalb von 1 min Azidotrimethylsilan (112 mg, 975 μ mol) gegeben und das resultierende Gemisch 10 min bei dieser Temperatur gerührt. Die flüchtigen Bestandteile des Reaktionsgemisches wurden im Vakuum entfernt, und der Rückstand wurde mit *n*-Hexan (7

mL) versetzt und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert, mit n-Pentan (2 mL) gewaschen und im Vakuum getrocknet (20 °C, 6 h, 0.01 mbar). Ausbeute: 382 mg (638 µmol, 66%) eines farblosen kristallinen Feststoffs. Smp. >118 °C (Zers.). — ¹H-NMR (C₆D₆, 500.1 MHz): $\delta = 0.60$ (s, 9 H; Si(CH₃)₃), 0.81 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 6 H; CH₃), 1.00 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ = 6.8 Hz, 6 H; CH₃), 1.29 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 6 H; CH₃), 1.68 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 6 H; CH₃), 2.98 (s, 6 H; N(CH₃)₂), 3.44 (sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 2 H; CH₃CHCH₃), 4.41 (sept, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 2 H; CH₃CHCH₃), 6.57–6.63 (m, 2 H; m-C₆H₅), 6.70–6.77 (m, 1 H; p- C_6H_5 , 7.07–7.13 (m, 2 H; *m*- C_6H_3), 7.16–7.24 ppm (m, 6 H; *m*-, *p*- C_6H_3 , *o*- C_6H_5). — ¹³C-NMR (C₆D₆, 125.8 MHz): $\delta = 6.4$ (3 C; Si(CH₃)₃), 22.9 (2 C), 23.7 (2 C), 25.5 (2 C), 26.3 (2 C) (CH₃), 28.86 (2 C), 28.87 (2 C) (CH₃CHCH₃), 38.4 (2 C; N(CH₃)₂), 124.2 (2 C), 125.4 (2 C) (*m*-C₆H₃), 126.0 (*i*-C₆H₅), 127.9 (2 C; *p*-C₆H₃), 128.5 (2 C; *m*-C₆H₅), 130.7 (2 C; *o*-C₆H₅), 132.5 (*p*-*C*₆H₅), 134.4 (2 C; *i*-*C*₆H₃), 144.0 (2 C), 146.4 (2 C) (*o*-*C*₆H₃), 174.1 ppm (N₂CC). -²⁹Si-NMR (C₆D₆, 99.4 MHz): $\delta = -57.6$ (SiN₄), -19.5 ppm (SiMe₃). -¹⁵N-VACP/MAS-NMR:^[33d] $\delta = -359.4$ (2 N; *N*(CH₃)₂), -330.9 (2 N; *N*SiMe₃), -228.0 (2 N), -221.2 ppm (2 N) (C_2NSi) . — ²⁹Si-VACP/MAS-NMR:^[33d] $\delta = -55.4$ (2 Si; SiN₄), -19.1 ppm (2 Si; SiMe₃). C₃₆H₅₄N₄Si₂ (599.02) H 9.09 N 9.35 Ber. C 72.18 Gef. C 71.9 H 8.8 N 9.4

Verbindung 37'

Zu einer Lösung von **25** (500 mg, 977 μ mol) in Toluol (20 mL) wurde unter Rühren bei 20 °C innerhalb von 1 min (Azidomethyl)phenylsulfan (161 mg, 974 μ mol) gegeben und das resultierende Gemisch 10 min bei dieser Temperatur gerührt. Die flüchtigen Bestandteile des Reaktionsgemisches wurden im Vakuum entfernt, und der Rückstand wurde mit *n*-Hexan (3 mL) versetzt und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (2 mL) gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 330 mg (508 μ mol, 52%) eines farblosen kristallinen Feststoffs. Smp. >137 °C (Zers.). — ¹H-NMR (C₆D₆, 500.1 MHz): δ = 0.97 (d, ³J(¹H, ¹H) = 6.8 Hz, 6 H; CH₃), 1.43 (d, ³J(¹H, ¹H) = 6.8 Hz, 6 H; CH₃), 1.56 (d, ³J(¹H, ¹H) = 6.8 Hz, 6 H; CH₃), 1.60 (d, ³J(¹H, ¹H) = 6.8 Hz, 6 H; CH₃), 2.39 (s, 6 H; N(CH₃)₂), 3.73 (sept, ³J(¹H, ¹H) = 6.8 Hz, 2 H; CH₃CHCH₃), 4.18 (sept, ³J(¹H, ¹H) = 6.8 Hz, 2 H; CH₃CHCH₃), 4.18 (sept, ³J(¹H, ¹H) = 6.8 Hz, 2 H; CH₃CHCH₃), 4.18 (sept, ³J(¹H, ¹H) = 6.8 Hz, 2 H; CH₃CHCH₃), 7.00–7.05 (m, 1

H; *p*-SC₆*H*₅), 7.05–7.10 (m, 4 H; *m*-C₆*H*₃, *m*-SC₆*H*₅), 7.10–7.16 (m, 2 H; *p*-C₆*H*₃), 7.17–7.22 (m, 2 H; *m*-C₆*H*₃), 7.29–7.33 (m, 2 H; *o*-C₆*H*₅), 7.52–7.56 (m, 2 H; *o*-SC₆*H*₅), 8.40 ppm (s, 2 H; NC*H*₂). — ¹³C-NMR (C₆D₆, 125.8 MHz): $\delta = 24.0 (2 \text{ C})$, 24.1 (2 C), 26.0 (2 C), 26.2 (2 C) (*C*H₃), 28.2 (2 C), 28.6 (2 C) (CH₃CHCH₃), 39.1 (2 C; N(CH₃)₂), 124.1 (2 C), 124.3 (2 C) (*m*-C₆H₃), 125.9 (2 C; *p*-C₆H₃), 126.2 (*p*-SC₆H₅), 127.0 (2 C; *m*-C₆H₅), 128.6 (2 C; *m*-SC₆H₅), 129.2 (*p*-C₆H₅), 130.8 (2 C; *o*-C₆H₅), 131.4 (*i*-C₆H₅), 133.9 (*i*-SC₆H₅), 134.6 (2 C; *o*-SC₆H₅), 140.5 (2 C; *i*-C₆H₃), 143.5 (2 C), 144.3 (2 C) (*o*-C₆H₃), 162.4 (N₂CC), 169.2 ppm (NCH₂). — ²⁹Si-NMR (C₆D₆, 99.4 MHz): $\delta = -32.4$ ppm. — ¹⁵N-VACP/MAS-NMR:^[33c] $\delta = -367.0^*$, – 366.1 (*N*(CH₃)₂), -260.4^{*}, -256.5 (C₂NSi), -124.8^{*}, -123.4 (CNC), -11.8^{*}, -11.0 ppm (NCH₂). — ²⁹Si-VACP/MAS-NMR:^[33c] $\delta = -36.8, -28.0^*$ ppm.

C ₄₀ H ₅₂ N ₄ SSi (649.03)	Ber.	C 74.02	H 8.08	N 8.63	S 4.94
	Gef.	C 74.1	H 8.3	N 8.7	S 4.7

Verbindung $38' \cdot C_6 H_5 C H_3^{[34]}$

Zu einer Lösung von **25** (500 mg, 977 μ mol) in Toluol (20 mL) wurde unter Rühren bei 20 °C innerhalb von 1 min Diphenylphosphorylazid (269 mg, 977 μ mol) gegeben und das resultierende Gemisch 10 min bei dieser Temperatur gerührt. Die flüchtigen Bestandteile des Reaktionsgemisches wurden im Vakuum entfernt, und der Rückstand wurde mit Toluol (10 mL) versetzt und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde. Diese wurde langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (5 mL) gewaschen und im Vakuum getrocknet (20 °C, 3 h, 0.01 mbar). Ausbeute: 465 mg (578 μ mol, 59%) eines farblosen kristallinen Feststoffs. Smp. >264 °C (Zers.). — ¹⁵N-VACP/MAS-NMR:^[33e] δ = -354.5 (4 N; *N*(CH₃)₂), -264.0 (2 N), -261.8 (2 N) (C₂*N*Si), -113.4 (2 N), -112.0 (2 N) ppm (C₂*N*). — ²⁹Si-VACP/MAS-NMR:^[33e] δ = -70.3 bis -64.0 ppm (m, 4 Si; OS*i*N₃). — ³¹P-VACP/MAS-NMR:^[33e] δ = -33.5 bis -31.4, -24.8 bis -23.4 ppm (m, 4 P; O₃*P*N).

$C_{97}H_{118}N_8O_6P_2Si_2$ (1610.17)	Ber.	C 72.36	H 7.39	N 6.96
	Gef.	C 72.1	Н 7.5	N 7.00

Verbindung 39'

Durch eine Lösung von **25** (512 mg, 1.00 mmol) in Toluol (20 mL) wurde unter Rühren bei –78 °C innerhalb von 30 s Distickstoffmonoxid (*ca.* 300 mg) geleitet, und das resultierende

Gemisch wurde 10 min bei dieser Temperatur und anschließend 4 h bei 20 °C gerührt. Die resultierende Lösung wurde im Vakuum auf ein Volumen von 3 mL eingeengt und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (1 mL) gewaschen und im Vakuum getrocknet (20 °C, 3 h, 0.01 mbar). Ausbeute: 365 mg eines farblosen kristallinen Produktgemisches bestehend aus **39'** (*ca.* 45 mol%, im Folgenden markiert durch *) und einer tetrakoordinierten Silicium(IV)-Spezies, deren genaue Struktur unbekannt ist. — ²⁹Si-NMR (C₆D₅CD₃, 59.6 MHz, 90 °C):^[35] δ = -81.1*, -54.6 ppm. — ¹⁵N-VACP/MAS-NMR: δ = -365.8, -358.6* (2 N) (*N*(CH₃)₂), -263.7, -227.6* (2 N), -194.8* (2 N), -117.2 ppm (C₂NSi). — ²⁹Si-VACP/MAS-NMR: δ = -89.5*, -53.1 ppm.

Verbindung $40' \cdot C_6 H_5 C H_3$

Zu einer Lösung von 25 (533 mg, 1.04 mmol) in Toluol (20 mL) wurde unter Rühren bei 20 °C in einer Portion elementarer Schwefel (33.4 mg, 1.04 mmol) gegeben und das resultierende Gemisch 16 h bei dieser Temperatur gerührt. Die resultierende Lösung wurde im Vakuum auf ein Volumen von 3 mL eingeengt und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit n-Pentan (3 mL) gewaschen und im Vakuum getrocknet (20 °C, 4 h, 0.01 mbar). Ausbeute: 971 mg (823 µmol, 79%) eines farblosen kristallinen Feststoffs. Smp. >199 °C (Zers.). — ¹H-NMR ([D₈]THF, 500.1 MHz): $\delta = 0.73$, 0.88 (s. br. s, Σ 24 H; CH₃), 1.34 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.4$ Hz, 24 H; CH₃), 2.31 (s, 3 H; C₆H₅CH₃), 2.40 (s, 12 H; N(CH₃)₂), 3.28, 3.69 (s. br. s, Σ 8 H; CH₃CHCH₃; teilweise mit dem [D₇]THF-Signal überlagert), 6.88–7.22 ppm (m, 27 H; C_6H_3 , C_6H_5 , $C_6H_5CH_3$). — ¹³C-NMR ([D₈]THF, 125.8 MHz): $\delta = 21.5$ (C₆H₅CH₃), 25.0 (8 C), 25.9 (8 C) (CH₃), 28.7 (8 C; CH₃CHCH₃), 39.0 (4 C; N(CH₃)₂), 124.7 (br., 8 C; m-C₆H₃), 125.96 (4 C; p-C₆H₃), 126.02 (p-C₆H₅CH₃), 127.9 (4 C; m-C₆H₅), 128.9 (m-C₆H₅CH₃), 129.7 (o-C₆H₅CH₃), 130.3 (2 C; p-C₆H₅), 131.7 (2 C; i-*C*₆H₅), 132.0 (4 C; *o*-*C*₆H₅), 138.4 (*i*-*C*₆H₅CH₃), 141.1 (4 C; *i*-*C*₆H₃), 142.3 (4 C), 145.7 (4 C) $(o-C_6H_3)$, 163.2 ppm (2 C; N₂CC). — ²⁹Si-NMR ([D₈]THF, 99.4 MHz): $\delta = -36.6$ ppm. — ¹⁵N-VACP/MAS-NMR: $\delta = -355.0$ (*N*(CH₃)₂), -254.3 (C₂*N*Si), -124.6 ppm (C₂*N*). — ²⁹Si-VACP/MAS-NMR: $\delta = -35.8$ ppm.

$C_{73}H_{98}N_6S_2Si_2$ (1179.92)	Ber.	C 74.31	H 8.37	N 7.12	S 5.44
	Gef.	C 74.1	H 8.6	N 7.4	S 5.6

Verbindung 40

a) Verbindung **40** wurde durch Erhitzen einer Lösung von **40**' ·C₆H₅CH₃ in C₆D₅CD₃ bei 75 °C über einen Zeitraum von 1 h in einem NMR-Rohr generiert. — ¹H-NMR (C₆D₅CD₃, 300.2 MHz, 75 °C): $\delta = 0.72$ (d, ³ $J(^{1}H,^{1}H) = 6.8$ Hz, 6 H; CH₃), 0.81 (d, ³ $J(^{1}H,^{1}H) = 6.8$ Hz, 6 H; CH₃), 1.15 (d, ³ $J(^{1}H,^{1}H) = 6.8$ Hz, 6 H; CH₃), 1.53 (d, ³ $J(^{1}H,^{1}H) = 6.8$ Hz, 6 H; CH₃), 2.90 (s, 6 H; N(CH₃)₂), 3.34 (sept, ³ $J(^{1}H,^{1}H) = 6.8$ Hz, 2 H; CH₃CHCH₃), 4.29 (sept, ³ $J(^{1}H,^{1}H) = 6.8$ Hz, 2 H; CH₃CHCH₃), 6.55–6.77 (m, 3 H; *m*-, *p*-C₆H₅), 6.90–7.02 (m, 2 H; *m*-C₆H₃), 7.03– 7.12 ppm (m, 6 H; *m*-, *p*-C₆H₃, *o*-C₆H₅). — ¹³C-NMR (C₆D₅CD₃, 75.5 MHz, 75 °C): $\delta = 23.3$ (2 C), 23.7 (2 C), 25.3 (2 C), 26.8 (2 C) (CH₃), 29.2 (2 C), 29.5 (2 C) (CH₃CHCH₃), 39.0 (2 C; N(CH₃)₂), 124.3 (2 C), 125.9 (2 C) (*m*-C₆H₃), 126.5 (*i*-C₆H₅), 128.3 (2 C; *p*-C₆H₃), 128.7 (2 C; *m*-C₆H₅), 131.3 (2 C; *o*-C₆H₅), 132.9 (*p*-C₆H₅), 134.4 (2 C; *i*-C₆H₃), 144.5 (2 C), 147.3 (2 C) (*o*-C₆H₃), 172.9 ppm (N₂CC). — ²⁹Si-NMR (C₆D₅CD₃, 59.6 MHz, 75 °C): $\delta = -4.2$ ppm.

b) Verbindung **40** wurde durch Erhitzen einer Lösung von **40**'·C₆H₅CH₃ in [D₈]THF bei 60 °C über einen Zeitraum von 6 h und anschließendes Abkühlen auf 25 °C in einem NMR-Rohr generiert. — ¹H-NMR ([D₈]THF, 500.1 MHz): $\delta = 0.72$ (d, ³J(¹H,¹H) = 6.8 Hz, 6 H; CH₃), 0.77 (d, ³J(¹H,¹H) = 6.8 Hz, 6 H; CH₃), 1.22 (d, ³J(¹H,¹H) = 6.8 Hz, 6 H; CH₃), 1.33 (d, ³J(¹H,¹H) = 6.8 Hz, 6 H; CH₃), 2.89 (s, 6 H; N(CH₃)₂), 3.31 (sept, ³J(¹H,¹H) = 6.8 Hz, 2 H; CH₃CHCH₃), 4.01 (sept, ³J(¹H,¹H) = 6.8 Hz, 2 H; CH₃CHCH₃), 7.06–7.26 (m, 10 H; *m*-, *p*-C₆H₃, *o*-, *m*-C₆H₅), 7.37–7.42 ppm (m, 1 H; *p*-C₆H₅). — ¹³C-NMR ([D₈]THF, 125.8 MHz): δ = 23.3 (2 C), 23.8 (2 C), 25.5 (2 C), 26.8 (2 C) (CH₃), 29.6 (2 C), 29.7 (2 C) (CH₃CHCH₃), 38.9 (2 C; N(CH₃)₂), 124.8 (2 C), 126.0 (2 C) (*m*-C₆H₃), 126.3 (*i*-C₆H₅), 128.5 (2 C; *p*-C₆H₃), 129.6 (2 C; *m*-C₆H₅), 131.8 (2 C; *o*-C₆H₅), 134.1 (*p*-C₆H₅), 134.4 (2 C; *i*-C₆H₃), 144.9 (2 C), 147.1 (2 C) (*o*-C₆H₃), 173.9 ppm (N₂CC). — ²⁹Si-NMR ([D₈]THF, 99.4 MHz): δ = -4.8 ppm.

Verbindung 41

Zu einer Mischung von **25** (500 mg, 977 μ mol) und elementarem Selen (77.1 mg, 976 μ mol) wurde unter Rühren bei 20 °C in einer Portion Toluol (20 mL) gegeben und das resultierende Gemisch 16 h bei dieser Temperatur gerührt. Die resultierende Lösung wurde im Vakuum auf ein Volumen von 2 mL eingeengt und mit *n*-Hexan (4 mL) versetzt. Die resultierende Suspension wurde so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit *n*-Pentan (3 mL) gewaschen und im Vakuum getrocknet (20 °C, 5 h, 0.01 mbar). Ausbeute: 385 mg (652 μ mol, 67%) eines gelben

kristallinen Feststoffs. Smp. >154 °C (Zers.). — ¹H-NMR (C₆D₆, 500.1 MHz): δ = 0.81 (d, ³*J*(¹H, ¹H) = 6.8 Hz, 6 H; C*H*₃), 0.94 (d, ³*J*(¹H, ¹H) = 6.8 Hz, 6 H; C*H*₃), 1.27 (d, ³*J*(¹H, ¹H) = 6.8 Hz, 6 H; C*H*₃), 1.78 (d, ³*J*(¹H, ¹H) = 6.8 Hz, 6 H; C*H*₃), 3.07 (s, 6 H; N(C*H*₃)₂), 3.47 (sept, ³*J*(¹H, ¹H) = 6.8 Hz, 2 H; CH₃C*H*CH₃), 4.54 (sept, ³*J*(¹H, ¹H) = 6.8 Hz, 2 H; CH₃C*H*CH₃), 6.58–6.63 (m, 2 H; *m*-C₆*H*₅), 6.72–6.77 (m, 1 H; *p*-C₆*H*₅), 7.07–7.12 (m, 2 H; *m*-C₆*H*₃), 7.19–7.24 (m, 4 H; *m*-C₆*H*₃), 7.24–7.27 ppm (m, 2 H; *o*-C₆*H*₅). — ¹³C-NMR (C₆D₆, 125.8 MHz): δ = 23.2 (2 C), 23.6 (2 C), 25.2 (2 C), 27.2 (2 C) (CH₃), 29.1 (2 C), 29.6 (2 C) (CH₃CHCH₃), 39.2 (2 C; N(CH₃)₂), 124.3 (2 C), 125.9 (2 C) (*m*-C₆H₃), 126.0 (*i*-C₆H₅), 128.3 (2 C; *p*-C₆H₃), 128.7 (2 C; *m*-C₆H₅), 131.0 (2 C; *o*-C₆H₅), 132.9 (*p*-C₆H₅), 134.0 (2 C; *i*-C₆H₃), 144.2 (2 C), 146.8 (2 C) (*o*-C₆H₃), 172.4 ppm (N₂CC). — ²⁹Si-NMR (C₆D₆, 99.4 MHz): δ = 0.1 ppm (⁷⁷Se-Satelliten, ¹*J*(²⁹Si,⁷⁷Se) = 308 Hz). — ⁷⁷Se-NMR (C₆D₆, 95.4 MHz): δ = -567.3 ppm (²⁹Si-Satelliten, ¹*J*(²⁹Si,⁷⁷Se) = 302 Hz). — ⁷⁷Se-VACP/MAS-NMR: ^[32b] δ = - 1.7, 0.1 ppm (²⁹Si-Satelliten nicht detektiert).

C ₃₃ H ₄₅ N ₃ SeSi (590.79)	Ber.	C 67.09	H 7.68	N 7.11
	Gef.	C 67.1	H 7.7	N 7.1

Verbindung 42

Zu einer Mischung von 25 (1.00 g, 1.95 mmol) und elementarem Tellur (249 mg, 1.95 mmol) wurde unter Rühren bei 20 °C in einer Portion Toluol (40 mL) gegeben und das resultierende Gemisch 15 h bei dieser Temperatur gerührt. Die resultierende Lösung wurde im Vakuum auf ein Volumen von 6 mL eingeengt und die resultierende Suspension so lange erhitzt, bis eine klare Lösung erhalten wurde, welche anschließend langsam auf 20 °C abgekühlt und 1 d bei dieser Temperatur ungestört aufbewahrt wurde. Der entstandene Feststoff wurde durch Filtration isoliert, mit n-Pentan (3 mL) gewaschen und im Vakuum getrocknet (20 °C, 5 h, 0.01 mbar). Ausbeute: 770 mg (1.20 mmol, 62%) eines farblosen kristallinen Feststoffs. Smp. >202 °C (Zers.). — ¹H-NMR (C₆D₆, 500.1 MHz): $\delta = 0.79$ (d, ³J(¹H, ¹H) = 6.8 Hz, 6 H; CH₃), 0.89 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 6 H; CH₃), 1.27 (d, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 6 H; CH₃), 1.78 (d, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 6 H; CH₃), 3.07 (s, 6 H; N(CH₃)₂), 3.44 (sept, ${}^{3}J({}^{1}H,{}^{1}H) = 6.8$ Hz, 2 H; CH₃CHCH₃), 4.51 (sept, ${}^{3}J({}^{1}H, {}^{1}H) = 6.8$ Hz, 2 H; CH₃CHCH₃), 6.57–6.63 (m, 2 H; m-C₆H₅), 6.71–6.76 (m, 1 H; *p*-C₆H₅), 7.07–7.12 (m, 2 H; *m*-C₆H₃), 7.19–7.24 ppm (m, 6 H; *m*-C₆H₃, *p*- C_6H_3 , $o-C_6H_5$). — ¹³C-NMR (C_6D_6 , 125.8 MHz): $\delta = 23.3$ (2 C), 23.5 (2 C), 25.2 (2 C), 28.2 (2 C) (CH₃), 29.1 (2 C), 30.0 (2 C) (CH₃CHCH₃), 40.1 (2 C; N(CH₃)₂), 124.4 (2 C), 126.0 (2 C) (*m*-C₆H₃), 126.4 (*i*-C₆H₅), 128.4 (2 C; *p*-C₆H₃), 128.8 (2 C; *m*-C₆H₅), 131.0 (2 C; *o*-C₆H₅), 132.9 (*p*-*C*₆H₅), 133.8 (2 C; *i*-*C*₆H₃), 144.2 (2 C), 146.6 (2 C) (*o*-*C*₆H₃), 171.9 ppm (N₂CC). — ²⁹Si-NMR (C₆D₆, 99.4 MHz): $\delta = -8.8$ ppm (¹²⁵Te-Satelliten, ¹*J*(²⁹Si,¹²⁵Te) = 910 Hz). — ¹²⁵Te-NMR (C₆D₆, 157.8 MHz): $\delta = -1339.5$ ppm (²⁹Si-Satelliten, ¹*J*(²⁹Si,¹²⁵Te) = 910 Hz). — ¹⁵N-VACP/MAS-NMR: $\delta = -339.4$ (*N*(CH₃)₂), -225.4, -222.8 ppm (C₂*N*Si). — ²⁹Si-VACP/MAS-NMR: $\delta = -8.5$ ppm (¹²⁵Te-Satelliten, ¹*J*(²⁹Si,¹²⁵Te) = 910 Hz). — ¹²⁵Te-VACP/MAS-NMR: $\delta = -8.5$ ppm (¹²⁵Te-Satelliten, ¹*J*(²⁹Si,¹²⁵Te) = 910 Hz). — ¹²⁵Te-VACP/MAS-NMR: $\delta = -1312.0$ ppm (²⁹Si-Satelliten nicht detekiert). C₃₃H₄₅N₃SiTe (639.43) Ber. C 61.99 H 7.09 N 6.57

9 Literaturverzeichnis und Anmerkungen

- [1] Ausgewählte Übersichtsartikel über stabile Silicium(II)-Verbindungen: a) M. Haaf, T. A. Schmedake, R. West, Acc. Chem. Res. 2000, 33, 704–714; b) B. Gerhus, M. F. Lappert, J. Organomet. Chem. 2001, 617–618, 209–223; c) S. Nagendran, H. W. Roesky, Organometallics 2008, 27, 457–492; d) Y. Mizuhata, T. Sasamori, N. Tokitoh, Chem. Rev. 2009, 109, 3479–3511; e) M. Asay, C. Jones, M. Driess, Chem. Rev. 2011, 111, 354–396; f) S. Yao, Y. Xiong, M. Driess, Organometallics 2011, 30, 1748–1767; g) S. S. Sen, S. Khan, P. P. Samuel, H. W. Roesky, Chem. Sci. 2012, 3, 659–682; h) R. S. Ghadwal, R. Azhakar, H. W. Roesky, Acc. Chem. Res. 2013, 46, 444–456; i) B. Blom, M. Stoelzel, M. Driess, Chem. Eur. J. 2013, 19, 40–62.
- [2] Ausgewählte Publikationen über stabile dikoordinierte Silicium(II)-Verbindungen: a) M. Denk, R. Lennon, R. Hayashi, R. West, A. V. Beljakov, H. P. Verne, A. Haaland, M. Wagner, N. Metzler, J. Am. Chem. Soc. 1994, 116, 2691-2692; b) B. Gehrhus, M. F. Lappert, J. Heinicke, R. Boese, D. Bläser, J. Chem. Soc. Chem. Commun. 1995, 1931–1932; c) B. Gehrhus, P. B. Hitchcock, M. F. Lappert, J. Heinicke, R. Boese, D. Bläser, J. Organomet. Chem. 1996, 521, 211–220; d) R. West, M. Denk, Pure Appl. Chem. 1996, 68, 785–788; e) J. Heinicke, A. Oprea, M. K. Kindermann, T. Karpati, L. Nyulászi, T. Veszprémi, Chem. Eur. J. 1998, 4, 541–545; f) M. Haaf, A. Schmiedl, T. A. Schmedake, D. R. Powell, A. J. Millevolte, M. Denk, R. West, J. Am. Chem. Soc. **1998**, 120, 12714–12719; g) M. Kira, S. Ishida, T. Iwamoto, C. Kabuto, J. Am. Chem. Soc. 1999, 121, 9722–9723; h) M. Driess, S. Yao, M. Brym, C. van Wüllen, D. Lentz, J. Am. Chem. Soc. 2006, 128, 9628–9629; i) P. Zark, A. Schäfer, A. Mitra, D. Haase, W. Saak, R. West, T. Müller, J. Organomet. Chem. 2010, 695, 398-408; j) Y. Xiong, S. Yao, M. Driess, Chem. Eur. J. 2012, 18, 3316-3320; k) A. V. Protchenko, K. H. Birjkumar, D. Dange. A. D. Schwarz, D. Vidovic, C. Jones, N. Kaltsoyannis, P. Mountford, S. Aldrige, J. Am. Chem. Soc. 2012, 134, 6500-6503; l) B. D. Rekken, T. M. Brown, J. C. Fettinger, H. M. Tuononen, P. P. Power, J. Am. Chem. Soc. 2012, 134, 6504–6507; m) T. Abe, R. Tanaka, S. Ishida, M. Kira, T. Iwamoto, J. Am. Chem. Soc. 2012, 134, 20029-20032.
- [3] a) L. Lorey, G. Roewer, *Silicon Chem.* 2002, *1*, 299–308; b) M. Okamoto, *Res. Chem. Intermed.* 2006, *32*, 317–330.
- [4] Ausgewählte Publikationen über stabile höherkoordinierte Silicium(II)-Verbindungen mit Amidinato-Liganden: a) C.-W. So, H. W. Roesky, J. Magull, R. B. Oswald,

Angew. Chem. 2006, 118, 4052–4054; Angew. Chem. Int. Ed. 2006, 45, 3948–3950; b) C.-W. So, H. W. Roesky, P. M. Gurubasavaraj, R. B. Oswald, M. T. Gamer, P. G. Jones, S. Blaurock, J. Am. Chem. Soc. 2007, 129, 12049-12054; c) W. Yang, H. Fu, H. Wang, M. Chen, Y. Ding, H. W. Roesky, A. Jana, Inorg. Chem. 2009, 48, 5058-5060; d) S. S. Sen, H. W. Roesky, D. Stern, J. Henn, D. Stalke, J. Am. Chem. Soc. 2010, 132, 1123–1126; e) G. Tavčar, S. S. Sen, R. Azhakar, A. Thorn, H. W. Roesky, Inorg. Chem. 2010, 49, 10199–10202; f) S. S. Sen, J. Hey, R. Herbst-Irmer, H. W. Roesky, D. Stalke, J. Am. Chem. Soc. 2011, 133, 12311-12316; g) A. Jana, D. Leusser, I. Objartel, H. W. Roesky, D. Stalke, *Dalton Trans.* 2011, 40, 5458–5463; h) R. Azhakar, S. P. Sarish, H. W. Roesky, J. Hey, D. Stalke, Inorg. Chem. 2011, 50, 5039–5043; i) R. Azhakar, R. S. Ghadwal, H. W. Roesky, H. Wolf, D. Stalke, J. Am. Chem. Soc. 2012, 134, 2423–2428; j) R. Azhakar, R. S. Ghadwal, H. W. Roesky, H. Wolf, D. Stalke, Chem. Commun. 2012, 48, 4561–4563; k) R. Azhakar, H. W. Roesky, J. J. Holstein, B. Dittrich, Dalton Trans. 2012, 41, 12096–12100; 1) P. P. Samuel, R. Azhakar, R. S. Ghadwal, S. S. Sen, H. W. Roesky, M. Granitzka, J. Matussek, R. Herbst-Irmer, D. Stalke, Inorg. Chem. 2012, 51, 11049-11054; m) R. Azhakar, K. Pröpper, B. Dittrich, H. W. Roesky, Organometallics 2012, 31, 7586-7590; n) K. Junold, J. A. Baus, C. Burschka, R. Tacke, Angew. Chem. 2012, 124, 7126-7129; Angew. Chem. Int. Ed. 2012, 51, 7020–7023; o) R. Azhakar, R. S. Ghadwal, H. W. Roesky, R. A. Mata, H. Wolf, R. Herbst-Irmer, D. Stalke, Chem. Eur. J. 2013, 19, 3715–3720; p) R. Azhakar, H. W. Roesky, H. Wolf, D. Stalke, Chem. Commun. 2013, 49, 1841–1843; q) B. Blom, S. Enthaler, S. Inoue, E. Irran, M. Driess, J. Am. Chem. Soc. 2013, 135, 6703–6713; r) K. Junold, J. A. Baus, C. Burschka, T. Vent-Schmidt, S. Riedel, R. Tacke, Inorg. Chem. 2013, 52, 11593–11599; s) K. Junold, J. A. Baus, C. Burschka, C. Fonseca Guerra, F. M. Bickelhaupt, R. Tacke, Chem. Eur. J. 2014, 20, 12411–12415; t) G. Tan, B. Blom, D. Gallego, M. Driess, Organometallics 2014, 33, 363–369; u) K. Junold, K. Sinner, J. A. Baus, C. Burschka, C. Fonseca Guerra, F. M. Bickelhaupt, R. Tacke, Chem. Eur. J. 2014, 20, 16462–16466; v) N. Laskowski, K. Junold, C. Kupper, J. A. Baus, C. Burschka, R. Tacke, Organometallics 2014, 33, 6141–6148; w) K. Junold, J. A. Baus, C. Burschka, M. Finze, R. Tacke, Eur. J. Inorg. Chem. 2014, 5099–5102; x) K. Samedov, R. West, P. W. Percival, J.-C. Brodovitch, L. Chandrasena, M. Mozafari, R. Tacke, K. Junold, C. Kobelt, P. P. Samuel, R. Azhakar, K. C. Mondal, H. W. Roesky, M. Driess, W. Wang, Organometallics 2015, 34, 3532–3537.

- [5] Ausgewählte Publikationen über stabile höherkoordinierte Silicium(II)-Verbindungen: a) P. Jutzi, D. Kanne, C. Krüger, Angew. Chem. 1986, 98, 163–164; Angew. Chem. Int. Ed. Engl. 1986, 25, 164; b) H. H. Karsch, U. Keller, S. Gamper, G. Müller, Angew. Chem. 1990, 102, 297-298; Angew. Chem. Int. Ed. Engl. 1990, 29, 295-296; c) P. Jutzi, D. Eikenberg, A. Möhrke, B. Neumann, H.-G. Stammler, Organometallics 1996, 15, 753–759; d) P. Jutzi, A. Mix, B. Rummel, W. W. Schoeller, B. Neumann, H. G. Stammler, Science 2004, 305, 849-851; e) S. Yao, M. Brym, C. van Wüllen, M. Driess, Angew. Chem. 2007, 119, 4237-4240; Angew. Chem. Int. Ed. 2007, 46, 4159-4162; f) P. Jutzi, K. Leszczyńska, B. Neumann, W. W. Schoeller, H.-G. Stammler, Angew. Chem. 2009, 121, 2634–2637; Angew. Chem. Int. Ed. 2009, 48, 2596–2599; g) R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn, D. Stalke, Angew. Chem. 2009, 121, 5793-5796; Angew. Chem. Int. Ed. 2009, 48, 5683-5686; h) A. C. Filippou, O. Chernov, G. Schnakenburg, Angew. Chem. 2009, 121, 5797–5800; Angew. Chem. Int. Ed. 2009, 48, 5687-5690; i) Y. Xiong, S. Yao, M. Driess, J. Am. Chem. Soc. 2009, 131, 7562–7563; j) R. S. Ghadwal, H. W. Roesky, S. Merkel, D. Stalke, Chem. Eur. J. 2010, 16, 85-88; k) Y. Gao, J. Zhang, H. Hu, C. Cui, Organometallics 2010, 29, 3063–3065; 1) J. Li, S. Merkel, J. Henn, K. Meindl, A. Döring, H. W. Roesky, R. S. Ghadwal, D. Stalke, Inorg. Chem. 2010, 49, 775–777; m) A. Meltzer, S. Inoue, C. Präsang, M. Driess, J. Am. Chem. Soc. 2010, 132, 3038–3046; n) A. C. Filippou, O. Chernov, B. Blom, K. W. Stumpf, G. Schnakenburg, Chem. Eur. J. 2010, 16, 2866-2872; o) R. Rodriguez, D. Gau, Y. Contie, T. Kato, N. Saffon-Merceron, A. Baceiredo, Angew. Chem. 2011, 123, 11694–11697; Angew. Chem. Int. Ed. 2011, 50, 11492-11495; p) W. Wang, S. Inoue, E. Irran, M. Driess, Angew. Chem. 2012, 124, 3751-3754; Angew. Chem. Int. Ed. 2012, 51, 3691-3694; q) K. Leszczyńska, K. Abersfelder, A. Mix, B. Neumann, H.-G. Stammler, M. J. Cowley, P. Jutzi, D. Scheschkewitz, Angew. Chem. 2012, 124, 6891-6895; Angew. Chem. Int. Ed. 2012, 51, 6785–6788; r) F. M. Mück, K. Junold, J. A. Baus, C. Burschka, R. Tacke, Eur. J. Inorg. Chem. 2013, 5821–5825.
- [6] Ausgewählte Übersichtsartikel über höherkoordinierte Silicium(IV)-Komplexe: a) R.
 R. Holmes, *Chem. Rev.* 1996, 96, 927–950; b) V. Pestunovich, S. Kirpichenko, M.
 Voronkov, in: *The Chemistry of Organic Silicon Compounds, Vol. 2, Part 2* (Hrsg.: Z.
 Rappoport, Y. Apeloig), Wiley, Chichester, 1998, S. 1447–1537; c) C. Chuit, R. J. P.
 Corriu, C. Reye, in: *Chemistry of Hypervalent Compounds* (Ed.: K.-y. Akiba), WileyVCH, New York, 1999, S. 81–146; d) R. Tacke, M. Pülm, B. Wagner, *Adv.*

Organomet. Chem. 1999, 44, 221–273; e) M. A. Brook, Silicon in Organic, Organometallic, and Polymer Chemistry, Wiley, New York, 2000, S. 97–114; f) R.
Tacke, O. Seiler, in: Silicon Chemistry: From the Atom to Extended Systems (Hrsg.: P.
Jutzi, U. Schubert), Wiley-VCH, Weinheim, 2003, S. 324–337; g) D. Kost, I.
Kalikhman, Adv. Organomet. Chem. 2004, 50, 1–106; h) M. G. Voronkov, O. M.
Trofimova, Y. I. Bolgova, N. F. Chernov, Russ. Chem. Rev. 2007, 76, 825–845; i) D.
Kost, I. Kalikhman, Acc. Chem. Res. 2009, 42, 303–314; j) E. P. A. Couzijn, J. C.
Slootweg, A. W. Ehlers, K. Lammertsma, Z. Anorg. Allg. Chem. 2009, 635, 1273– 1278; k) W. Levason, G. Reid, W. Zhang, Coord. Chem. Rev. 2011, 255, 1319–1341.

- [7] K. N. Radhamani, K. D. Padma, J. Fluor. Chem. 1993, 64, 95–99.
- [8] Ausgewählte Publikationen anderer Arbeitsgruppen höherkoordinierte über Silicium(IV)-Komplexe: a) W. Dilthey, Chem. Ber. 1903, 36, 923-930; b) H. H. Karsch, B. Deubelly, U. Keller, O. Steigelmann, J. Lachmann, G. Müller, Chem. Ber. 1996, 129, 671-676; c) I. Kalikhman, B. Gostevskii, O. Girshberg, A. Sivaramakrishna, N. Kocher, D. Stalke, D. Kost, J. Organomet. Chem. 2003, 686, 202–214; d) R. S. Ghadwal, S. S. Sen, H. W. Roesky, G. Tavcar, S. Merkel, D. Stalke, Organometallics 2009, 28, 6374-6377; e) S. Yakubovich, I. Kalikhman, D. Kost, Dalton Trans. 2010, 39, 9241-9244; f) P. Bombicz, I. Kovács, L. Nyulászi, D. Szieberth, P. Terleczky, Organometallics 2010, 29, 1100-1106; g) E. Kertsnus-Banchik, B. Gostevskii, M. Botoshansky, I. Kalikhman, D. Kost, Organometallics 2010, 29, 5435–5445; h) R. S. Ghadwal, S. S. Sen, H. W. Roesky, M. Granitzka, D. Kratzert, S. Merkel, D. Stalke, Angew. Chem. 2010, 122, 4044–4047; Angew. Chem. Int. Ed. 2010, 49, 3952–3955; i) D. Schöne, D. Gerlach, C. Wiltzsch, E. Brendler, T. Heine, E. Kroke, J. Wagler, Eur. J. Inorg. Chem. 2010, 461–467; j) A. R. Bassindale, M. Sohail, P. G. Taylor, A. A. Korlyukov, D. E. Arkhipov, Chem. Commun. 2010, 46, 3274–3276; k) R. S. Ghadwal, K. Pröpper, B. Dittrich, P. G. Jones, H. W. Roesky, Inorg. Chem. 2011, 50, 358–364; l) S. Yakubovich, B. Gostevskii, I. Kalikhman, M. Botoshansky, L. E. Gusel'nikov, V. A. Pestunovich, D. Kost, Organometallics 2011, 30, 405–413; m) S. Muhammad, A. R. Bassindale, P. G. Taylor, L. Male, S. J. Coles, M. B. Hursthouse, Organometallics 2011, 30, 564–571; n) R. S. Ghadwal, K. Pröpper, B. Dittrich, P. G. Jones, H. W. Roesky, Inorg. Chem. 2011, 50, 358-364; o) D. Schwarz, E. Brendler, E. Kroke, J. Wagler, Z. Anorg. Allg. Chem. 2012, 638, 1768-1775; p) N. A. Kalashnikova, S. Y. Bylikin, A. A. Korlyukov, A. G. Shipov, Y. I. Baukov, P. G. Taylor, A. R. Bassindale, *Dalton Trans.* **2012**, *41*, 12681–12682; q) A.

A. Nikolin, E. P. Kramarova, A. G. Shipov, Y. I. Baukov, A. A. Korlyukov, D. E. Arkhipov, A. Bowden, S. Y. Bylikin, A. R. Bassindale, P. G. Taylor, *Organometallics* 2012, *31*, 4988–4997; r) M. Sohail, A. R. Bassindale, P. G. Taylor, A. A. Korlyukov, D. E. Arkhipov, L. Male, S. J. Coles, M. B. Hursthouse, *Organometallics* 2013, *32*, 1721–1731.

[9] Ausgewählte Publikationen unserer Arbeitsgruppe über höherkoordinierte Silicium(IV)-Komplexe: a) R. Willeke, R. Tacke, Z. Anorg. Allg. Chem. 2001, 627, 1537–1541; b) R. Tacke, M. Mallak, R. Willeke, Angew. Chem. 2001, 113, 2401– 2403; Angew. Chem. Int. Ed. 2001, 40, 2339-2341; c) O. Seiler, C. Burschka, M. Penka, R. Tacke, Silicon Chem. 2002, 1, 355–365; d) R. Bertermann, A. Biller, M. Kaupp, M. Penka, O. Seiler, R. Tacke, Organometallics 2003, 22, 4104-4110; e) O. Seiler, M. Büttner, M. Penka, R. Tacke, Organometallics 2005, 24, 6059-6062; f) S. Metz, C. Burschka, D. Platte, R. Tacke, Angew. Chem. 2007, 119, 7136–7139; Angew. Chem. Int. Ed. 2007, 46, 7006–7009; g) S. Metz, C. Burschka, R. Tacke, Organometallics 2008, 27, 6032-6034; h) B. Theis, S. Metz, C. Burschka, R. Bertermann, S. Maisch, R. Tacke, Chem. Eur. J. 2009, 15, 7329-7338; i) S. Metz, C. Burschka, R. Tacke, Organometallics 2009, 28, 2311-2317; j) B. Theis, S. Metz, F. Back, C. Burschka, R. Tacke, Z. Anorg. Allg. Chem. 2009, 635, 1306-1312; k) S. Metz, B. Theis, C. Burschka, R. Tacke, Chem. Eur. J. 2010, 16, 6844-6856; 1) S. Cota, M. Beyer, R. Bertermann, C. Burschka, K. Götz, M. Kaupp, R. Tacke, Chem. Eur. J. 2010, 16, 6582-6589; m) K. Junold, C. Burschka, R. Bertermann, R. Tacke, Dalton Trans. 2010, 39, 9401–9413; n) K. Junold, C. Burschka, R. Bertermann, R. Tacke, Dalton Trans. 2011, 40, 9844–9857; o) K. Junold, C. Burschka, R. Tacke, Eur. J. Inorg. Chem. 2012, 189–193; p) C. Kobelt, C. Burschka, R. Bertermann, C. Fonseca Guerra, F. M. Bickelhaupt, R. Tacke, Dalton Trans. 2012, 41, 2148–2162; q) B. Theis, J. Weiß, W. P. Lippert, R. Bertermann, C. Burschka, R. Tacke, Chem. Eur. J. 2012, 18, 2202–2206; r) J. Weiß, B. Theis, S. Metz, C. Burschka, C. Fonseca Guerra, F. M. Bickelhaupt, R. Tacke, Eur. J. Inorg. Chem. 2012, 3216-3228; s) K. Junold, J. A. Baus, C. Burschka, D. Auerhammer, R. Tacke, Chem. Eur. J. 2012, 18, 16288-16291; t) J. A. Baus, C. Burschka, R. Bertermann, C. Fonseca Guerra, F. M. Bickelhaupt, R. Tacke, Inorg. Chem. 2013, 52, 10664–10676; u) J. Weiß, K. Sinner, J. A. Baus, C. Burschka, R. Tacke, Eur. J. Inorg. Chem. 2014, 475-483; v) J. Weiß, B. Theis, J. A. Baus, C. Burschka, R. Bertermann, R. Tacke, Z. Anorg. Allg. Chem. 2014, 640, 300-309; w) J. Weiß, J. A. Baus, C. Burschka, R. Tacke, Eur. J. Inorg. Chem. 2014, 2449–

2455; x) K. Junold, M. Nutz, J. A. Baus, C. Burschka, C. Fonseca Guerra, F. M. Bickelhaupt, R. Tacke, *Chem. Eur. J.* 2014, *20*, 9319–9329; y) K. Junold, F. M. Mück, C. Kupper, J. A. Baus, C. Burschka, R. Tacke, *Chem. Eur. J.* 2014, *20*, 12781–12785; z) R. Tacke, C. Kobelt, J. A. Baus, R. Bertermann, C. Burschka, *Dalton Trans.* 2015, *44*, 14959–14974; aa) F. M. Mück, J. A. Baus, M. Nutz, C. Burschka, J. Poater, F. M. Bickelhaupt, R. Tacke, *Chem. Eur. J.* 2015, *21*, 16665–16672.

- [10] a) A. A. Korlyukov, K. A. Lyssenko, M. Y. Antipin, *Russ. Chem. Bull., Int. Ed.* 2002, 51, 1423–1432; b) N. Kocher, J. Henn, B. Gostevskii, D. Kost, I. Kalikhman, B. Engels, D. Stalke, *J. Am. Chem. Soc.* 2004, *126*, 5563–5568.
- [11] S. Rendler, M. Oestreich, *Synthesis* **2005**, 1727–1747.
- [12] a) N. L. Oleinick, A. R. Antunez, M. E. Clay, B. D. Rihter, M. E. Kenney, *Photochem. Photobiol.* 1993, *57*, 242–247; b) J.-D. Huang, W.-P. Fong, E. Y. M. Chann, M. T. M. Choi, W.-K. Chan, M.-C. Chan, D. K. P. Ng, *Tetrahedron Lett.* 2003, *44*, 8029–8032; c) J. D. Miller, E. D. Barton, H. Scull, A. Hsia, J. C. Berlin, T. McCormic, V. Colussi, M. E. Kenney, K. D. Cooper, N. L. Oleinick, *Toxicol. Appl. Pharmacol.* 2007, *224*, 290–299.
- Ausgewählte Publikationen über die Biomineralisation von SiO₂: a) R. K. Iler, The [13] Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry, Wiley, New York, 1978, S. 783–784; b) P. B. Kaufman, P. Dayanandan, Y. Takeoka, W. C. Bigelow, J. D. Jones, R. Iler, in: Silicon and Siliceous Structures in Biological Systems (Hrsg.: T. L. Simpson, B. E. Volcani), Springer-Verlag, New York, 1981, S. 442–446; c) C. W. Sullivan, in: Silicon Biochemistry (Hrsg.: D. Evered, M. O'Connor), Wiley, Chichester, 1986, S. 70–73; d) S. D. Kinrade, J. W. Del Nin, A. S. Schach, T. A. Sloan, K. L. Wilson, C. T. G. Knight, Science 1999, 285, 1542–1545; e) R. Tacke, C. Burschka, I. Richter, B. Wagner, R. Willeke, J. Am. Chem. Soc. 2000, 122, 8480–8485; f) R. Tacke, A. Steward, J. Becht, C. Burschka, I. Richter, Can. J. Chem. 2000, 78, 1380–1387; g) S. D. Kinrade, R. J. Hamilton, A. S. Schach, C. T. G. Knight, J. Chem. Soc., Dalton Trans. 2001, 961–963; h) K. Benner, P. Klüfers, M. Vogt, Angew. Chem. 2003, 115, 1088–1093; Angew. Chem. Int. Ed. 2003, 42, 1058– 1062; i) S. D. Kinrade, E. W. Deguns, A.-M. Gillson, C. T. G. Knight, J. Chem. Soc., Dalton Trans. 2003, 3713–3716; j) K. Benner, P. Klüfers, M. Vogt, Angew. Chem. 2003, 115, 1088–1093; Angew. Chem. Int. Ed. 2003, 42, 1058–1062; k) N. Sahai, Geochim. Cosmochim. Acta 2004, 68, 227-237; 1) S. D. Kinrade, R. J. Balec, A. S.

Schach, J. Wang, C. T. G. Knight, *Dalton Trans*. **2004**, 3241–3243; m) X. Kästele, P. Klüfers, F. Kopp, J. Schuhmacher, M. Vogt, *Chem. Eur. J.* **2005**, *11*, 6326–6346.

- [14] B. Theis, *Dissertation*, Universität Würzburg, **2009**.
- [15] Ausgewählte Publikationen über Silylen–Boran-Addukte: a) N. Metzler, M. Denk, *Chem. Commun.* 1996, 2657–2658; b) R. Azhakar, G. Tavčar, H. W. Roesky, J. Hey, D. Stalke, *Eur. J. Inorg. Chem.* 2011, 475–477; c) A. Jana, R. Azhakar, S. Pillai Sarish, P. P. Samuel, H. W. Roesky, C. Schulzke, D. Koley, *Eur. J. Inorg. Chem.* 2011, 5006–5013; d) S. M. I. Al-Rafia, A. C. Malcolm, R. McDonald, M. J. Ferguson, E. Rivard, *Chem. Commun.* 2012, 48, 1308–1310; e) R. Rodriguez, T. Troadec, T. Kato, N. Saffon-Merceron, J.-M. Sotiropoulos, A. Baceiredo, *Angew. Chem.* 2012, 124, 7270–7273; *Angew. Chem. Int. Ed.* 2012, 51, 7158–7161; f) S. Inoue, K. Leszczyńska, *Angew. Chem.* 2012, 124, 8717–8721; *Angew. Chem. Int. Ed.* 2012, 51, 8589–8593.
- [16] Ausgewählte Übersichtsartikel über Silylen–Übergangsmetall-Komplexe: a) P. D. Lickiss, *Chem. Soc. Rev.* 1992, 271–279; b) R. Waterman, P. G. Hayes, T. D. Tilley, *Acc. Chem. Res.* 2007, 40, 712–719; c) Lit. [1h].
- Ausgewählte Publikationen über Silylen-Gruppe-6-Metall-Komplexe: a) H. Nakatsuji, [17] J. Ushio, T. Yonezawa, J. Organomet. Chem. 1983, 258, C1-C4; b) R. J. P. Corriu, B. P. S. Chauhan, G. F. Lanneau, Organometallics 1995, 14, 1646–1656; c) S. H. A. Petri, D. Eikenberg, B. Neumann, H.-G. Stammler, P. Jutzi, Organometallics 1999, 18, 2615–2618; d) K. Ueno, A. Masuko, H. Ogino, Organometallics 1999, 18, 2694– 2699; e) T. A. Schmedake, M. Haaf, B. J. Paradise, J. A. Millevolte, R. D. Powell, R. West, J. Organomet. Chem. 2001, 636, 17-25; f) M. Hirotsu, T. Nunokawa, K. Ueno, Organometallics 2006, 25, 1554–1556; g) H. Sakaba, T. Hirata, C. Kabuto, K. Kabuto, J. Organomet. Chem. 2007, 692, 402-407; h) K. Takanashi, V. Y. Lee, T. Yokoyama, A. Sekiguchi, J. Am. Chem. Soc. 2009, 131, 916–917; i) K. Dannappel, R. Nienhaus, M. Schürmann, B. Costisella, K. Jurkschat, Z. Anorg. Allg. Chem. 2009, 635, 2126-2134; j) A. Shinohara, J. McBee, T. D. Tilley, Inorg. Chem. 2009, 48, 8081-8083; k) H. Sakaba, H. Oike, Y. Arai, E. Kwon, Organometallics 2012, 31, 8172-8177; 1) I. S. M. Al-Rafia, A. C. Malcom, R. McDonald, M. J. Ferguson, E. Rivard, Chem. Commun. 2012, 48, 1308–1310; m) Lit. [4r]; n) F. M. Mück, D. Kloß, J. A. Baus, C. Burschka, R. Tacke, Chem. Eur. J. 2014, 20, 9620-9626.

- [18] Ausgewählte Publikationen über Silylen–Eisen-Komplexe: a) G. Schmid, E. Welz, Angew. Chem. 1977, 89, 823–824; Angew. Chem. Int. Ed. Engl. 1977, 16, 785–786; b)
 A. Marinetti-Mignani, R. West, Organometallics 1987, 6, 141–144; c) K. Ueno, H. Tobita, M. Shimoi, H. Ogino, J. Am. Chem. Soc. 1988, 110, 4092–4093; d) K. Ueno, H. Tobita, H. Ogino, J. Organomet. Chem. 1992, 430, 93–104; e) U. Bodensieck, A. Braunstein, W. Deck, T. Faure, M. Knorr, C. Stern, Angew. Chem. 1994, 106, 2561– 2564; Angew. Chem. Int. Ed. Engl. 1994, 33, 2440–2442; f) K. Ueno, S. Ito, K.-I. Endo, H. Tobita, S. Inomata, H. Ogino, Organometallics 1994, 13, 3309–3314; g) H. Tobita, T. Sato, M. Okazaki, H. Ogino, J. Organomet. Chem. 2000, 611, 314–322; h)
 Lit. [4c]; i) R. S. Ghadwal, R. Azhakar, K. Pröpper, J. J. Holstein, B. Dittrich, H. W. Roesky, Inorg. Chem. 2011, 50, 8502–8508; j) Lit. [4r]; k) B. Blom, M. Pohl, G. Tan, D. Gallego, M. Driess, Organometallics, 2014, 33, 5272–5282.
- [19] Ausgewählte Übersichtsartikel über Silicium(IV)-Verbindungen mit Si=X-Doppelbindungen (X = S, Se, Te): a) R. Okazaki, N. Tokitoh, Acc. Chem. Res. 2000, 33, 625–630; b) N. Tokitoh, R. Okazaki, Adv. Organomet. Chem. 2001, 47, 121–166; c) Lit. [9s].
- Ausgewählte Publikationen über Silicium(IV)-Verbindungen mit [20] Si=X-Doppelbindungen (X = O, S, Se, Te): a) P. Arya, J. Boyer, F. Carré, R. Corriu, G. Lanneau, J. Lapasset, M. Perrot, C. Priou, Angew. Chem. 1989, 101, 1069-1071; Angew. Chem. Int. Ed. Engl. 1989, 28, 1016-1018; b) H. Suzuki, N. Tokitoh, S. Nagase, R. Okazaki, J. Am. Chem. Soc. 1994, 116, 11578-11579; c) H. Suzuki, N. Tokitoh, R. Okazaki, S. Nagase, M. Goto, J. Am. Chem. Soc. 1998, 120, 11096-11105; d) N. Tokitoh, T. Sadahiro, K. Hatano, T. Sasaki, N. Takeda, R. Okazaki, Chem. Lett. 2002, 34-35; e) T. Iwamoto, K. Sato, S. Ishida, C. Kabuto, M. Kira, J. Am. Chem. Soc. 2006, 128, 16914-16920; f) C.-W. So, H. W. Roesky, R. B. Oswald, A. Pal, P. G. Jones, *Dalton Trans.* 2007, 5241–5244; g) S. Yao, Y. Xiong, M. Brym, M. Driess, Chem. Asian J. 2008, 3, 113-118; h) A. Mitra, J. P. Wojcik, D. Lecoanet, T. Müller, R. West, Angew. Chem. 2009, 121, 4130-4133; Angew. Chem. Int. Ed. 2009, 48, 4069–4072; i) Y. Xiong, S. Yao, M. Driess, J. Am. Chem. Soc. 2009, 131, 7562-7563; j) S. Yao, Y. Xiong, M. Driess, Chem. Eur. J. 2010, 16, 1281-1288; k) J. D. Epping, S. Yao, M. Karni, Y. Apeloig, M. Driess, J. Am. Chem. Soc. 2010, 132, 5443–5455; l) Y. Xiong, S. Yao, R. Müller, M. Kaupp, M. Driess, Nature Chem. 2010, 2, 577-580; m) S.-H. Zhang, H.-X. Yeong, C.-W. So, Chem. Eur. J. 2011, 17, 3490-3499; n) F. M. Mück, A. Ulmer, J. A. Baus, C. Burschka, R. Tacke, Eur. J. Inorg. Chem. 2015, 1860-1864; o) Lit. [9z]; p) F. M. Mück, D. Kloß, J. A. Baus, C.

Burschka, R. Bertermann, J. Poater, C. Fonseca Guerra, F. M. Bickelhaupt, R. Tacke, *Chem. Eur. J.* **2015**, *21*, 14011–14021.

- [21] Ausgewählte Publikationen über Reaktionen von Silylenen bzw. Germylenen mit Aziden: a) X. Wang, C. Ni, Z. Zhu, J. C. Fettinger, P. P. Power, *Inorg. Chem.* 2009, 48, 2464–2470; b) R. Azhakar, H. W. Roesky, J. J. Holstein, K. Pröpper, B. Dittrich, *Organometallics* 2013, 32, 358–361; c) F. M. Mück, B. Förster, J. A. Baus, M. Nutz, C. Burschka, R. Bertermann, R. Tacke, unveröffentliche Ergebnisse.
- [22] L. Durán Pachón, A. Golobič, B. Kozlevčar, P. Gamez, H. Kooijman, A. L. Speck, J. Reedijk, *Inorg. Chim. Acta* 2004, 357, 3697–3702.
- [23] U. Brand, H. Vahrenkamp, Chem. Ber. 1996, 129, 435–440.
- [24] H. J. Frohn, M. Giesen, A. Klose, A. Lewin, V. V. Bardin, J. Organomet. Chem. 1996, 506, 155–164.
- [25] K. Junold, *Dissertation*, Universität Würzburg, **2014**.
- [26] J. Böhm, D. Fenzke, H. Pfeiffer, J. Magn. Reson. 1983, 55, 197–204.
- [27] G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112–122.
- [28] C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 2011, 44, 1281– 1284.
- [29] Hollemann Wiberg, Lehrbuch der Anorganischen Chemie, 102. Auflage, Walter de Gruyter, Berlin, 2007, S. 2002–2005.
- [30] A. L. Speck, *PLATON*, Utrecht University, Utrecht, The Netherlands, 2008.
- [31] A. Ulmer, *Masterarbeit*, Universität Würzburg, 2013.
- [32] S. Berger, S. Braun, 200 and More Basic NMR Experiments, VCH, Weinheim, 2004, S. 141–144.
- [33] Anmerkungen zu den VACP/MAS-NMR-Daten: a) Dreifache Signalsätze aufgrund von drei strukturell ähnlichen Molekülen in der asymmetrischen Einheit; b) doppelte Signalsätze, obwohl kein zweites kristallographisch unabhängiges Molekül durch Kristallstrukturanalyse gefunden werden konnte; c) doppelte Signalsätze aufgrund einer kristallographischen Fehlordnung im Molekül (Integralverhältnis 16:84); die Signale mit dem größeren Integral sind im ¹⁵N- und ²⁹Si-VACP/MAS-NMR-Spektrum mit * markiert; d) doppelte Signalsätze aufgrund von zwei strukturell sehr ähnlichen Molekülen in der asymmetrischen Einheit; e) doppelte Signalsätze aufgrund von zwei

strukturell sehr ähnlichen Molekülen sowie zwei Toluol-Molekülen in der asymmetrischen Einheit.

- [34] Aufgrund der sehr geringen Löslichkeit von 3, 8 und 38'·C₆H₅CH₃ in allen gängigen deuterierten organischen NMR-Lösungsmittel konnten keine ¹H-, ¹³C- und ²⁹Si-NMR-Daten in Lösung erhalten werden.
- [35] Die NMR-Daten in Lösung wurden aufgrund der geringen Löslichkeit von 39' in allen gängigen deuterierten organischen NMR-Lösungsmitteln bei 90 °C aufgenommen. Dies führte aufgrund einer stark ausgeprägten Moleküldynamik zu sehr schlecht aufgelösten ¹H- und ¹³C-Resonanzsignalen, weshalb auf deren Abgabe verzichtet wurde.

Anhang A: Daten zu den Kristallstrukturanalysen

	$1 \cdot 2Et_2O$	2	3	4
Empirische Formel	C ₃₉ H ₅₉ LiN ₂ O ₂	$C_{31}H_{40}Cl_2N_2Si$	C ₃₃ H ₄₆ ClN ₃ Si	C ₃₇ H ₅₈ ClN ₃ Si ₃
Molekülmasse [g mol ⁻¹]	594.82	539.64	548.27	664.58
Messtemperatur [K]	100(2)	173(2)	100(2)	173(2)
Wellenlänge [Å]	0.71073	0.71073	0.71073	0.71073
Kristallsystem	monoklin	trigonal	trigonal	monoklin
Raumgruppe (Nr.)	$P2_{1}/c$ (14)	<i>P</i> 3 ₂ (145)	<i>P</i> 3 ₂ (145)	$P2_1/n$ (14)
a [Å]	15.646(6)	25.208(4)	14.760(3)	12.057(3)
<i>b</i> [Å]	13.477(6)	25.208(4)	14.760(3)	18.309(3)
<i>c</i> [Å]	35.262(14)	12.2893(18)	12.482(3)	18.785(4)
α [°]	90	90	90	90
β[°]	101.163(12)	90	90	107.27(3)
γ [°]	90	120	120	90
V [Å ³]	7295(5)	6762.9(17)	2354.9(12)	3960.0(15)
Ζ	8	9	3	4
$\rho_{\rm ber} [{ m g \ cm}^{-3}]$	1.083	1.193	1.16	1.115
$\mu (\mathrm{mm}^{-1})$	0.065	0.278	0.185	0.215
<i>F</i> (000)	2608	2592	888	1440
Kristalldimensionen [mm]	0.35×0.30×0.25	0.45×0.45×0.40	0.383×0.381×0.301	0.50×0.35×0.25
Messbereich 2θ [°]	3.188-52.044	4.94–52.78	3.262-52.036	4.996-52.044
Index-Breite	$-19 \le h \le 19,$	$-31 \le h \le 31,$	$-18 \le h \le 18,$	$-14 \le h \le 14,$
	$-16 \le k \le 16,$	$-15 \le k \le 31,$	$-18 \le k \le 18,$	$-22 \leq k \leq 22,$
	$-39 \le l \le 43$	$-15 \le l \le 15$	$-15 \le l \le 15$	$-23 \le l \le 23$
gemessene Reflexe	63534	18458	29526	42738
unabhängige Reflexe	14347	18458	6189	7440
R _{int}	0.0863	0.0000	0.0697	0.0432
verfeinerte Parameter	859	1007	358	415
Restraints	33	1	7	0
$S^{a)}$	1.008	1.006	1.043	1.045
Gewichtungsschema <i>a</i> / <i>b</i> ^{b)}	0.0670/1.5766	0.1015/0.0000	0.062/0.0000	0.0635/0.6788
$R1^{c}$ [$I > 2\sigma(I)$]	0.0641	0.0398	0.0475	0.0386
$wR2^{d}$ (alle Daten)	0.1676	0.1138	0.1088	0.1072
abs. Strukturparameter		-0.06(6)	0.02(3)	
Restelektronendichte [e $Å^{-3}$]	+0.229/-0.239	+0.753/-0.248	+0.502/-0.325	+0.233/-0.378

Tabelle A1: Kristallographische Daten und Angaben zu den Kristallstrukturanalysen von $1.2Et_2O$ und 2-4.

^{a)} $S = \{\Sigma [w(F_o^2 - F_c^2)^2] / (n-p)\}^{0.5}; n = \text{Anzahl der Reflexe}; p = \text{Anzahl der Parameter}.$

^{b)}
$$w^{-1} = \sigma^2 (F_o^2) + (aP)^2 + bP$$
, mit $P = [\max(F_o^2, 0) + 2F_c^2] / 3$.

	5	6	7	8
Empirische Formel	$C_{31}H_{39}Cl_3N_2Si$	$C_{33}H_{45}Cl_2N_3Si$	$C_{32}H_{42}Cl_2N_2Si$	$C_{37}H_{44}Cl_2N_2Si$
Molekülmasse [g mol ⁻¹]	574.08	582.71	553.66	615.73
Messtemperatur [K]	173(2)	173(2)	100(2)	100(2)
Wellenlänge [Å]	0.71073	0.71073	0.71073	0.71073
Kristallsystem	trigonal	hexagonal	trigonal	monoklin
Raumgruppe (Nr.)	<i>P</i> 3 ₁ 21 (152)	<i>P</i> 3 ₁ (144)	<i>P</i> 3 ₂ (145)	$P2_{1}/n$ (14)
<i>a</i> [Å]	14.761(2)	15.1910(19)	25.6051(5)	12.0674(5)
<i>b</i> [Å]	14.761(2)	15.1910(19)	25.6051(5)	15.2394(6)
<i>c</i> [Å]	24.465(4)	12.3499(18)	12.2497(3)	18.5176(7)
α [°]	90	90	90	90
β[°]	90	90	90	102.973(2)
γ [°]	120	120	120	90
V [Å ³]	4616.5(12)	2468.1(6)	6955.2(3)	3318.5(2)
Ζ	6	3	9	4
$\rho_{\rm ber} [{ m g cm}^{-3}]$	1.239	1.176	1.190	1.232
$\mu (\mathrm{mm}^{-1})$	0.359	0.259	0.272	0.260
<i>F</i> (000)	1824	936	2664	1312
Kristalldimensionen [mm]	0.5×0.5×0.5	0.45×0.45×0.20	0.5×0.5×0.5	0.420×0.350×0.305
Messbereich 2 <i>θ</i> [°]	5.00-58.44	6.20-52.02	3.324–51.972	3.50-66.96
Index-Breite	$-20 \le h \le 20,$	$-18 \le h \le 9,$	$-31 \le h \le 31,$	$-18 \le h \le 18,$
	$-20 \le k \le 20$,	$-18 \le k \le 18,$	$-31 \le k \le 31,$	$-23 \le k \le 23,$
	$-33 \le l \le 33$	$-15 \le l \le 15$	$-15 \le l \le 15$	$-28 \le l \le 28$
gemessene Reflexe	51169	6471	6767	9103
unabhängige Reflexe	8352	6471	18182	12996
R _{int}	0.0494	0.0000	0.0438	0.0548
verfeinerte Parameter	355	363	1091	387
Restraints	3	1	91	0
$S^{a)}$	1.037	0.971	1.042	1.021
Gewichtungsschema a/b^{b}	0.0907/0.0000	0.0807/0.0000	0.0433/0.7163	0.0429/0.1196
$R1^{c}$ [$I > 2\sigma(I)$]	0.0481	0.0470	0.0241	0.0337
$wR2^{d}$ (alle Daten)	0.1328	0.1178	0.0649	0.0929
abs. Strukturparameter	-0.05(6)	0.01(8)	-0.004(6)	
Restelektronendichte [e $Å^{-3}$]	+0.539/-0.457	+0.461/-0.270	+0.266/-0.215	+0.493/-0.252

Tabelle A2: Kristallographische Daten und Angaben zu den Kristallstrukturanalysen von **5–8**.

^{b)}
$$w^{-1} = \sigma^2 (F_0^2) + (aP)^2 + bP$$
, mit $P = [\max(F_0^2, 0) + 2F_c^2] / 3$.

	$10.0.5C_6H_5CH_3$	11	12	15
Empirische Formel	C _{21.5} H ₁₉ ClN ₂ SSi	C ₁₃ H ₁₃ ClN ₂ SSi	$C_{18}H_{10}ClF_5N_2SSi$	$C_{18}H_{15}N_5OSi$
Molekülmasse [g mol ⁻¹]	400.99	292.85	444.88	345.44
Messtemperatur [K]	173(2)	100(2)	173(2)	100(2)
Wellenlänge [Å]	0.71073	0.71073	0.71073	0.71073
Kristallsystem	monoklin	monoklin	monoklin	monoklin
Raumgruppe (Nr.)	<i>C</i> 2/ <i>c</i> (15)	$P2_1/c$ (14)	$P2_1/c$ (14)	$P2_{1}/c$ (14)
<i>a</i> [Å]	21.132(3)	7.1864(15)	7.7449(10)	8.8091(13)
<i>b</i> [Å]	12.5246(17)	9.7269(19)	15.308(2)	13.4945(19)
<i>c</i> [Å]	17.107(2)	18.971(4)	15.082(2)	14.4969(19)
α [°]	90	90	90	90
β[°]	120.487(13)	96.328(5)	98.831(15)	102.187(7)
γ [°]	90	90	90	90
V [Å ³]	3901.6(9)	1318.0(5)	1767.0(4)	1684.5(4)
Ζ	8	4	4	4
$\rho_{\rm ber} [{ m g \ cm}^{-3}]$	1.365	1.476	1.672	1.362
$\mu (\mathrm{mm}^{-1})$	0.373	0.521	0.460	0.156
<i>F</i> (000)	1672	608	896	720
Kristalldimensionen [mm]	0.5×0.5×0.4	0.40×0.22×0.17	0.6×0.4×0.3	0.6×0.4×0.3
Messbereich 2θ [°]	5.04-58.22	4.32–64.72	5.32–58.14	4.168-52.038
Index-Breite	$-28 \leq h \leq 28,$	$-9 \le h \le 10,$	$-10 \le h \le 10,$	$-10 \le h \le 10,$
	$-17 \le k \le 17,$	$-14 \le k \le 14,$	$-20 \le k \le 20,$	$-16 \le k \le 16,$
	$-23 \le l \le 23$	$-27 \le l \le 28$	$-20 \leq l \leq 20$	$-17 \le l \le 17$
gemessene Reflexe	24326	35821	23304	68717
unabhängige Reflexe	5193	4669	4706	3262
$R_{\rm int}$	0.0333	0.0360	0.0371	0.0548
verfeinerte Parameter	242	172	253	226
Restraints	0	14	0	0
$S^{a)}$	1.080	1.110	1.078	1.117
Gewichtungsschema $a/b^{b)}$	0.0495/2.8691	0.0292/0.1081	0.0522/0.4979	0.0319/1.7684
$R1^{\rm c}$ $[I > 2\sigma(I)]$	0.0366	0.0355	0.0348	0.0421
$wR2^{d}$ (alle Daten)	0.0975	0.0898	0.0957	0.1075
Restelektronendichte [e $Å^{-3}$]	+0.417/-0.306	+0.523/-0.443	+0.420/-0.370	+0.520/-0.360

Tabelle A3: Kristallographische Daten und Angaben zu den Kristallstrukturanalysen von $10.0.5C_6H_5CH_3$, 11, 12 und 15.

^{b)}
$$w^{-1} = \sigma^2 (F_o^2) + (aP)^2 + bP$$
, mit $P = [\max(F_o^2, 0) + 2F_c^2] / 3$.

	17	18	19	20
Empirische Formel	$C_{19}H_{18}N_2OSSi$	$C_{19}H_{18}N_2S_2Si$	C ₁₉ H ₁₈ N ₂ SSeSi	C ₁₉ H ₁₈ N ₂ SSiTe
Molekülmasse [g mol ⁻¹]	350.50	366.56	413.46	462.10
Messtemperatur [K]	173(2)	173(2)	173(2)	173(2)
Wellenlänge [Å]	0.71073	0.71073	0.71073	0.71073
Kristallsystem	monoklin	monoklin	monoklin	trigonal
Raumgruppe (Nr.)	$P2_1/c$ (14)	$P2_{1}/c$ (14)	$P2_1/c$ (14)	R3 (148)
<i>a</i> [Å]	10.258(2)	7.5524(15)	7.5484(12)	18.327(2)
<i>b</i> [Å]	7.6485(12)	16.297(3)	16.447(4)	18.327(2)
<i>c</i> [Å]	22.037(5)	14.284(3)	14.428(2)	18.327(2)
α [°]	90	90	90	116.627(17)
β[°]	94.92(3)	97.34(3)	97.973(19)	116.627(17)
γ [°]	90	90	90	116.627(17)
V [Å ³]	1722.7(6)	1743.6(6)	1773.8(6)	2869.9(6)
Ζ	4	4	4	6
$\rho_{\rm ber} [{ m g cm}^{-3}]$	1.351	1.396	1.548	1.604
$\mu (\mathrm{mm}^{-1})$	0.266	0.377	2.305	1.729
<i>F</i> (000)	736	768	840	1368
Kristalldimensionen [mm]	$0.5\times0.5\times0.2$	$0.5\times0.2\times0.2$	$0.5\times0.3\times0.2$	$0.5\times0.3\times0.2$
Messbereich 2θ [°]	5.68-58.24	5.76-58.42	5.70–58.36	5.22-58.42
Index-Breite	$-14 \le h \le 14,$	$-10 \le h \le 10$,	$-10 \le h \le 10,$	$-25 \le h \le 25$,
	$-10 \le k \le 10,$	$-22 \le k \le 22,$	$-22 \leq k \leq 22,$	$-24 \leq k \leq 25,$
	$-30 \le l \le 30$	$-19 \le l \le 19$	$-19 \le l \le 19$	$-25 \le l \le 25$
gemessene Reflexe	26739	22364	24275	45772
unabhängige Reflexe	4556	4684	4716	5129
R _{int}	0.0375	0.0476	0.0622	0.0542
verfeinerte Parameter	218	218	218	232
Restraints	0	0	0	0
$S^{a)}$	1.082	1.057	1.049	1.068
Gewichtungsschema a/b^{b}	0.0502/0.5564	0.0624/0.5214	0.0521/0.0445	0.0095/9.5443
$R1^{\rm c} [I > 2\sigma(I)]$	0.0382	0.0404	0.0294	0.0471
$wR2^{d}$ (alle Daten)	0.1045	0.1134	0.0797	0.0987
Restelektronendichte [e $Å^{-3}$]	+0.291/-0.271	+0.338/-0.351	+0.566/-0.327	+0.698/-1.064

Tabelle A4: Kristallographische Daten und Angaben zu den Kristallstrukturanalysen von 17–20.

^{b)}
$$w^{-1} = \sigma^2(F_o^2) + (aP)^2 + bP$$
, mit $P = [\max(F_o^2, 0) + 2F_c^2] / 3$.

	21	22	23	25
Empirische Formel	$C_{26}H_{29}ClF_{10}N_4Si$	$C_{26}H_{47}ClN_4Si_5$	C ₂₂ H ₁₉ N ₃ OSSi	C ₃₃ H ₄₅ N ₃ Si
Molekülmasse [g mol ⁻¹]	651.07	591.57	401.55	511.81
Messtemperatur [K]	173(2)	173(2)	173(2)	100(2)
Wellenlänge [Å]	0.71073	0.71073	0.71073	0.71073
Kristallsystem	monoklin	triklin	monoklin	triklin
Raumgruppe (Nr.)	$P2_{1}/n$ (14)	$P\overline{1}$ (2)	$P2_1/n$ (14)	<i>P</i> 1(2)
<i>a</i> [Å]	9.6383(18)	11.5643(18)	7.2721(15)	9.049(5)
<i>b</i> [Å]	29.880(4)	12.6965(19)	19.020(4)	9.540(3)
<i>c</i> [Å]	11.176(2)	12.9269(18)	14.073(3)	18.295(8)
α [°]	90	70.822(16)	90	99.41(3)
β[°]	113.88(2)	79.800(17)	99.25(3)	98.90(3)
γ [°]	90	71.114(17)	90	97.53(3)
V [Å ³]	2943.0(10)	1690.8(5)	1921.2(7)	1519.5(12)
Ζ	4	2	4	2
$ ho_{\rm ber} [{ m g \ cm}^{-3}]$	1.469	1.162	1.388	1.119
$\mu (\mathrm{mm}^{-1})$	0.258	0.312	0.249	0.102
<i>F</i> (000)	1336	636	840	556
Kristalldimensionen [mm]	0.5×0.5×0.2	0.75×0.55×0.50	0.35×0.35×0.25	0.60×0.39×0.21
Messbereich 2θ [°]	4.726–52.044	6.250–52.044	5.20-52.04	2.30-52.04
Index-Breite	$-11 \le h \le 11,$	$-14 \le h \le 14,$	$-8 \le h \le 8,$	$-11 \le h \le 11,$
	$-36 \le k \le 36,$	$-15 \le k \le 15,$	$-23 \le k \le 23,$	$-11 \le k \le 11,$
	$-13 \le l \le 13$	$-15 \le l \le 15$	$-17 \le l \le 17$	$-22 \le l \le 22$
gemessene Reflexe	26481	18494	20665	17741
unabhängige Reflexe	5786	6233	3602	5986
$R_{\rm int}$	0.0619	0.0396	0.0514	0.0271
verfeinerte Parameter	402	341	255	344
Restraints	0	0	0	0
$S^{a)}$	0.947	1.033	1.058	1.036
Gewichtungsschema a/b^{b}	0.0668/1.5898	0.0607/0.1506	0.0507/0.8181	0.0423/0.6708
$R1^{c}$ [$I > 2\sigma(I)$]	0.0579	0.0325	0.0352	0.0384
$wR2^{d}$ (alle Daten)	0.1816	0.0915	0.0967	0.1000
Restelektronendichte [e $Å^{-3}$]	+0.244/-0.233	+0.0607/-0.1506	+0.0507/-0.8181	+0.392/-0.340

Tabelle A5: Kristallographische Daten und Angaben zu den Kristallstrukturanalysen von **21–23** und **25**.

$$w^{-1} = \sigma^2 (F_o^2) + (aP)^2 + bP$$
, mit $P = [\max(F_o^2, 0) + 2F_c^2] / 3$.

	35	36	37'	38' ·C ₆ H ₅ CH ₃
Empirische Formel	C37H45FeN3O4Si	$C_{36}H_{54}N_4Si_2$	$C_{40}H_{52}N_4SSi$	$C_{97}H_{118}N_8O_6P_2Si_2$
Molekülmasse [g mol ⁻¹]	679.70	599.01	649.00	1610.11
Messtemperatur [K]	100(2)	100(2)	100(2)	100(2)
Wellenlänge [Å]	0.71073	0.71073	0.71073	0.71073
Kristallsystem	triklin	monoklin	triklin	monoklin
Raumgruppe (Nr.)	<i>P</i> 1(2)	$P2_1/n$ (14)	P1 (2)	<i>C</i> 2/ <i>c</i> (15)
<i>a</i> [Å]	10.2963(19)	17.885(10)	9.866(3)	35.410(2)
<i>b</i> [Å]	10.5302(19)	10.954(7)	12.248(4)	17.816(11)
<i>c</i> [Å]	16.804(3)	36.93(2)	16.690(6)	32.780(2)
α [°]	93.254(17)	90	92.69(3)	90
β[°]	93.943(17)	91.253(10)	98.34(2)	107.349(17)
γ [°]	104.57(2)	90	108.06(3)	90
V [Å ³]	1753.9(6)	7234(8)	1888.0(11)	19739(23)
Ζ	2	8	2	8
$ ho_{\rm ber} [{ m g \ cm}^{-3}]$	1.287	1.100	1.142	1.084
$\mu (\mathrm{mm}^{-1})$	0.507	0.127	0.150	0.121
<i>F</i> (000)	720	2608	700	6896
Kristalldimensionen [mm]	0.595×0.472×0.345	0.560×0.357×0.314	0.522×0.341×0.339	0.55×0.35×0.01
Messbereich 2θ [°]	2.436-52.040	2.552-52.044	5.406-52.040	2.410-52.044
Index-Breite	$-12 \le h \le 12,$	$-21 \le h \le 22,$	$-12 \le h \le 12,$	$-43 \le h \le 43,$
	$-12 \le k \le 12,$	$-13 \le k \le 13,$	$-15 \le k \le 15,$	$-21 \le k \le 21,$
	$-20 \leq l \leq 20$	$-44 \le l \le 45$	$-20 \le l \le 20$	$-34 \le l \le 40$
gemessene Reflexe	23098	83339	22773	49264
unabhängige Reflexe	6894	14140	7434	19006
R _{int}	0.0394	0.0684	0.0388	0.1657
verfeinerte Parameter	425	784	449	1021
Restraints	0	0	13	6
S ^{a)}	1.054	1.071	0.953	1.159
Gewichtungsschema a/b^{b}	0.0336/1.0409	0.0469/6.1688	0.0795/0.2039	—
$R1^{c}$ [$I > 2\sigma(I)$]	0.0338	0.0558	0.0412	0.1100
$wR2^{d}$ (alle Daten)	0.0892	0.1404	0.1233	0.3157
Restelektronendichte [e $Å^{-3}$]	+0.347/-0.321	+0.516/-0.343	+0.341/-0.298	+0.214/-0.215

Tabelle A6: Kristallographische Daten und Angaben zu den Kristallstrukturanalysen von 35, 36, 37' und $38' \cdot C_6H_5CH_3$.

^{b)}
$$w^{-1} = \sigma^2(F_o^2) + (aP)^2 + bP$$
, mit $P = [\max(F_o^2, 0) + 2F_c^2] / 3$.

	39'	40' ·C ₆ H ₅ CH ₃	41	42
Empirische Formel	C66H90N6O2Si2	C ₇₃ H ₉₈ N ₆ S ₂ Si ₂	C ₃₃ H ₄₅ N ₃ SeSi	C ₃₃ H ₄₅ N ₃ SiTe
Molekülmasse [g mol ⁻¹]	1055.62	1179.87	590.77	639.41
Messtemperatur [K]	173(2)	100(2)	173(2)	100(2)
Wellenlänge [Å]	0.71073	0.71073	0.71073	0.71073
Kristallsystem	monoklin	triklin	monoklin	monoklin
Raumgruppe (Nr.)	<i>C</i> 2/ <i>c</i> (15)	<i>P</i> 1(2)	$P2_{1}/c$ (14)	$P2_{1}/c$ (14)
a [Å]	26.888(4)	10.4605(17)	20.372(4)	20.332(11)
<i>b</i> [Å]	17.559(2)	13.003(2)	9.872(2)	9.991(4)
<i>c</i> [Å]	12.8562(18)	13.411(2)	17.527(4)	17.444(6)
α [°]	90	111.238(10)	90	90
β[°]	93.712(17)	91.783(7)	113.44(3)	113.408(18)
γ [°]	90	96.105(17)	90	90
V [Å ³]	6057.0(14)	1685.9(5)	3234.2(13)	3252(2)
Ζ	4	1	4	4
$ ho_{\rm ber} [{ m g \ cm}^{-3}]$	1.158	1.162	1.213	1.306
$\mu (\mathrm{mm}^{-1})$	0.107	0.160	1.223	0.976
<i>F</i> (000)	2288	638	1248	1320
Kristalldimensionen [mm]	0.50×0.25×0.10	0.53×0.30×0.29	0.5×0.3×0.2	0.511×0.317×0.186
Messbereich 2 θ [°]	5.12-52.16	3.26-56.72	4.666–52.038	2.182-52.044
Index-Breite	$-33 \le h \le 32,$	$-13 \le h \le 13,$	$-25 \le h \le 25,$	$-25 \le h \le 25$,
	$-21 \le k \le 21,$	$-17 \le k \le 17,$	$-12 \le k \le 12,$	$-12 \le k \le 12,$
	$-15 \le l \le 15$	$-17 \le l \le 17$	$-21 \le l \le 21$	$-21 \le l \le 21$
gemessene Reflexe	24116	26026	34256	34122
unabhängige Reflexe	5990	8368	6362	6399
<i>R</i> _{int}	0.0759	0.0396	0.0637	0.0491
verfeinerte Parameter	353	405	353	353
Restraints	0	24	0	0
$S^{a)}$	0.802	1.083	0.910	0.825
Gewichtungsschema a/b^{b}	0.0385/0.0000	0.0611/0.4343	0.0746/0.0000	0.1000/0.0000
$R1^{c}$ [$I > 2\sigma(I)$]	0.0380	0.0431	0.0462	0.0289
$wR2^{d}$ (alle Daten)	0.0869	0.1263	0.1182	0.1043
Restelektronendichte [e \AA^{-3}]	+0.214/-0.215	+0.705/-0.360	+0.664/-0.682	+0.786/-1.058

Tabelle A7: Kristallographische Daten und Angaben zu den Kristallstrukturanalysen von $39' \cdot C_6H_5CH_3$, $40' \cdot C_6H_5CH_3$, 41 und 42.

^{b)}
$$w^{-1} = \sigma^2 (F_o^2) + (aP)^2 + bP$$
, mit $P = [\max(F_o^2, 0) + 2F_c^2] / 3$.

Abb. A1: Struktur der beiden kristallographisch unabhängigen Moleküle von $1.2Et_2O$ im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A8: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von $1.2Et_2O$. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij} -Tensors.

	Х	У	Z	U _{eq}
Li1	1174(3)	3597(3)	3799(1)	26(1)
01	513(1)	2949(1)	4148(1)	27(1)
O2	1533(1)	2530(1)	3470(1)	32(1)
N1	539(1)	4845(2)	3586(1)	16(1)
N2	1952(1)	4828(2)	3873(1)	16(1)
C1	1258(2)	5369(2)	3716(1)	16(1)
C2	1281(2)	6479(2)	3687(1)	16(1)
C3	796(2)	6971(2)	3370(1)	21(1)
C4	784(2)	7998(2)	3349(1)	25(1)
C5	1271(2)	8560(2)	3645(1)	26(1)
C6	1761(2)	8085(2)	3960(1)	23(1)
C7	1768(2)	7061(2)	3981(1)	19(1)
C8	-298(2)	5252(2)	3482(1)	18(1)
C9	-685(2)	5866(2)	3727(1)	19(1)
C10	-1505(2)	6270(2)	3585(1)	26(1)
C11	-1959(2)	6053(2)	3220(1)	30(1)
C12	-1615(2)	5383(2)	2995(1)	29(1)
C13	-799(2)	4967(2)	3120(1)	21(1)

C14	-265(2)	6065(2)	4144(1)	20(1)
C15	-217(2)	7170(2)	4243(1)	31(1)
C16	-751(2)	5515(2)	4419(1)	26(1)
C17	-431(2)	4223(2)	2871(1)	25(1)
C18	91(2)	4746(2)	2603(1)	36(1)
C19	-1126(2)	3540(2)	2641(1)	42(1)
C20	2801(2)	5217(2)	3976(1)	16(1)
C21	3253(2)	5666(2)	3712(1)	18(1)
C22	4088(2)	6040(2)	3849(1)	22(1)
C23	4491(2)	5948(2)	4231(1)	24(1)
C24	4069(2)	5455(2)	4486(1)	23(1)
C25	3233(2)	5076(2)	4366(1)	18(1)
C26	2882(2)	5741(2)	3282(1)	21(1)
C27	2884(2)	6806(2)	3129(1)	30(1)
C28	3389(2)	5055(2)	3054(1)	31(1)
C29	2770(2)	4557(2)	4651(1)	22(1)
C30	2176(2)	5271(2)	4816(1)	30(1)
C31	3372(2)	4033(2)	4982(1)	35(1)
C32	-204(2)	2321(2)	3978(1)	34(1)
C33	-1047(2)	2870(2)	3877(1)	38(1)
C34	572(2)	3133(2)	4554(1)	34(1)
C35	1100(2)	2346(2)	4800(1)	45(1)
C36	1857(2)	1533(2)	3547(1)	46(1)
C37	1950(2)	1294(2)	3967(1)	49(1)
C38	1709(2)	2901(2)	3111(1)	37(1)
C39	1250(2)	2327(3)	2760(1)	53(1)
Li2	6222(3)	2111(3)	3848(1)	25(1)
O3	6583(1)	3190(1)	3528(1)	33(1)
N3	7028(1)	867(2)	3897(1)	18(1)
N4	5608(1)	882(2)	3611(1)	18(1)
C40	6321(2)	341(2)	3738(1)	17(1)
C41	6326(2)	-777(2)	3710(1)	20(1)
C42	5854(2)	-1262(2)	3390(1)	24(1)
C43	5828(2)	-2290(2)	3371(1)	30(1)
C44	6275(2)	-2842(2)	3675(1)	32(1)
C45	6756(2)	-2375(2)	3993(1)	30(1)
C46	6779(2)	-1348(2)	4013(1)	22(1)
C47	4770(2)	463(2)	3506(1)	20(1)
C48	4280(2)	736(2)	3136(1)	23(1)
C49	3470(2)	298(2)	3008(1)	31(1)
C50	3130(2)	-365(2)	3237(1)	35(1)
C51	3572(2)	-560(2)	3606(1)	28(1)
C52	4386(2)	-138(2)	3751(1)	22(1)

C53	4647(2)	1475(2)	2886(1)	27(1)
C54	5144(2)	956(2)	2611(1)	41(1)
C55	3954(2)	2179(3)	2666(1)	46(1)
C56	4792(2)	-307(2)	4173(1)	24(1)
C57	4809(2)	-1397(2)	4292(1)	38(1)
C58	4300(2)	310(2)	4430(1)	34(1)
C59	7871(2)	443(2)	3991(1)	17(1)
C60	8306(2)	491(2)	4381(1)	21(1)
C61	9149(2)	105(2)	4484(1)	27(1)
C62	9571(2)	-300(2)	4211(1)	27(1)
C63	9154(2)	-318(2)	3831(1)	26(1)
C64	8310(2)	49(2)	3710(1)	20(1)
C65	7873(2)	927(2)	4691(1)	28(1)
C66	7756(2)	172(3)	5000(1)	54(1)
C67	8379(2)	1821(2)	4884(1)	39(1)
C68	7919(2)	26(2)	3280(1)	25(1)
C69	7900(2)	-1026(2)	3115(1)	34(1)
C70	8415(2)	727(2)	3056(1)	34(1)
C71	6783(2)	2848(2)	3170(1)	36(1)
C72	6322(2)	3412(2)	2818(1)	49(1)
C73	6898(2)	4186(2)	3618(1)	49(1)
C74	6911(2)	4421(2)	4029(1)	53(1)
O4	5384(3)	2774(5)	4132(1)	25(1)
C75	4693(3)	3272(5)	3878(2)	30(2)
C76	3797(3)	2824(4)	3867(2)	36(1)
C77	5366(3)	3001(3)	4536(1)	33(1)
C78	6069(5)	2440(6)	4793(2)	31(2)
O4b	5601(7)	2690(12)	4233(2)	25(1)
C75b	4764(5)	3122(8)	4160(3)	38(3)
C76b	4322(10)	2979(11)	3750(3)	52(5)
C77b	6127(6)	2893(7)	4599(2)	29(3)
C78b	5904(12)	2277(16)	4918(4)	54(5)

Tabelle A9: Bindungslängen [Å] und -winkel [°] von $1.2Et_2O$.

Li1–O1	1.961(5)	C21–C22	1.396(3)	C47–C48	1.425(3)
Li1–O2	1.995(5)	C21–C26	1.519(3)	C48–C49	1.390(3)
Li1–N1	2.023(5)	C22–C23	1.379(3)	C48–C53	1.516(4)
Li1–N2	2.044(5)	C23–C24	1.382(4)	C49–C50	1.379(4)
Li1–C1	2.412(5)	C24–C25	1.392(3)	C50–C51	1.375(4)
O1–C34	1.438(3)	C25–C29	1.519(3)	C51–C52	1.398(3)
O1–C32	1.440(3)	C26–C27	1.533(4)	C52–C56	1.517(4)

02-C381.438(3)C26-C281.542(3)C53-C5402-C361.442(3)C29-C311.523(3)C56-C57N1-C11.332(3)C32-C331.494(4)C56-C58N2-C11.355(3)C34-C351.511(4)C59-C60N2-C201.410(3)C36-C371.496(4)C59-C64C1-C21.501(3)C38-C391.515(4)C60-C61C2-C31.392(3)L12-O4b1.976(8)C60-C65C2-C71.401(3)L12-O42.007(5)C62-C63C3-C41.387(4)L12-O42.007(5)C62-C63C4-C51.392(4)L12-N32.084(5)C66-C67C5-C61.380(4)L12-N32.084(5)C66-C66C6-C71.383(4)L12-C402.426(5)C65-C67C8-C91.413(3)O3-C711.434(3)C68-C69C9-C101.394(3)N4-C471.410(3)C71-C72C10-C111.377(4)N3-C591.417(3)O4-C75C12-C131.385(3)C40-C411.393(3)C77-C78C14-C151.527(4)C41-C421.389(3)C75-C76C14-C161.533(3)C42-C431.387(4)O4b-C75C17-C191.532(4)C44-C451.377(4)C75b-C76C17-C191.532(4)C44-C451.377(4)C75b-C76C17-C191.532(4)C47-C221.403(3)C77-C78C14-C161.336(3)C42-C441.379(4)O4b-C77bC17-C191.52(4)C47-C221.236(2)<						
02-C36 1.442(3) C29-C31 1.523(3) C53-C55 NI-C1 1.332(3) C29-C30 1.530(3) C56-C57 NI-C8 1.402(3) C32-C33 1.494(4) C56-C58 N2-C1 1.335(3) C34-C35 1.511(4) C59-C60 N2-C20 1.410(3) C36-C37 1.496(4) C59-C64 C1-C2 1.501(3) C38-C39 1.515(4) C60-C61 C2-C3 1.392(3) Li2-O4 2.007(5) C62-C63 C4-C5 1.392(4) Li2-N3 2.084(5) C64-C68 C6-C7 1.383(4) Li2-C40 2.426(5) C65-C67 C8-C9 1.413(3) O3-C71 1.434(3) C68-C69 C9-C10 1.394(3) N4-C40 1.336(3) C68-C70 C9-C11 1.377(4) N3-C40 1.340(3) C73-C74 C11-C12 1.377(4) N3-C59 1.417(3) O4-C75 C12-C13 1.385(3) C40-C41 1.399(3) C75-C76 C14-C1	O2–C38	1.438(3)	C26–C28	1.542(3)	C53–C54	1.526(4)
N1-C1 1.332(3) C29-C30 1.530(3) C56-C57 N1-C8 1.402(3) C32-C33 1.494(4) C56-C58 N2-C1 1.335(3) C34-C35 1.511(4) C59-C60 N2-C20 1.410(3) C36-C37 1.496(4) C60-C61 C2-C3 1.392(3) Li2-O4b 1.976(8) C60-C65 C2-C7 1.401(3) Li2-O4 2.007(5) C62-C63 C3-C4 1.387(4) Li2-O4 2.007(5) C63-C64 C5-C5 1.392(4) Li2-N3 2.084(5) C64-C68 C6-C7 1.380(4) Li2-C40 2.426(5) C65-C67 C8-C9 1.413(3) O3-C71 1.434(3) C68-C69 C9-C10 1.394(3) N4-C40 1.336(3) C71-C72 C10-C11 1.377(4) N3-C59 L417(3) O4-C75 C12-C13 1.385(3) C40-C41 1.510(4) O4+C75 C14-C15 1.537(4) C41-C45 1.387(4) C75-C76 C14-C16<	O2–C36	1.442(3)	C29–C31	1.523(3)	C53–C55	1.533(4)
N1-C8 1.402(3) C32-C33 1.494(4) C56-C58 N2-C1 1.335(3) C34-C35 1.511(4) C59-C60 N2-C20 1.410(3) C36-C37 1.496(4) C59-C64 C1-C2 1.501(3) C38-C39 1.515(4) C60-C61 C2-C3 1.392(3) Li2-O4b 1.976(8) C60-C62 C3-C4 1.387(4) Li2-O3 1.987(5) C61-C62 C3-C4 1.387(4) Li2-O4 2.007(5) C62-C63 C4-C5 1.392(4) Li2-N3 2.084(5) C64-C68 C5-C6 1.380(4) Li2-C40 2.426(5) C65-C67 C8-C13 1.416(3) O3-C71 1.434(3) C68-C69 OP-C10 1.394(3) N4-C40 1.336(3) C71-C72 C10-C11 1.377(4) N3-C59 1.417(3) O4-C75 C12-C13 1.385(3) C40-C41 1.510(4) O4-C75 C14-C15 1.527(4) C41-C42 1.387(4) O4b-C75b C17-C	N1-C1	1.332(3)	C29–C30	1.530(3)	C56–C57	1.527(4)
N2-C1 1.335(3) C34-C35 1.511(4) C59-C60 N2-C20 1.410(3) C36-C37 1.496(4) C59-C64 C1-C2 1.501(3) C38-C39 1.515(4) C60-C61 C2-C3 1.392(3) Li2-O4b 1.976(8) C60-C65 C2-C7 1.401(3) Li2-O4 2.007(5) C62-C63 C3-C4 1.387(4) Li2-N4 2.013(5) C63-C64 C5-C6 1.380(4) Li2-N4 2.038(5) C64-C68 C6-C7 1.383(4) Li2-C40 2.426(5) C65-C66 C8-C9 1.413(3) O3-C71 1.43(3) C68-C69 C9-C10 1.394(3) N4-C40 1.336(3) C73-C74 C11-C12 1.377(4) N3-C40 1.340(3) C75-C76 C12-C13 1.385(3) C40-C41 1.510(4) O4-C75 C12-C13 1.385(3) C40-C41 1.39(3) C75-C76 C14-C15 1.527(4) C41-C42 1.387(4) O4b-C75b C14-C	N1-C8	1.402(3)	C32–C33	1.494(4)	C56–C58	1.541(4)
N2-C20 1.410(3) C36-C37 1.496(4) C59-C64 C1-C2 1.501(3) C38-C39 1.515(4) C60-C61 C2-C3 1.392(3) Li2-O4b 1.976(8) C60-C65 C2-C7 1.401(3) Li2-O3 1.987(5) C61-C62 C3-C4 1.387(4) Li2-O4 2.007(5) C62-C63 C4-C5 1.392(4) Li2-N4 2.013(5) C64-C68 C6-C7 1.380(4) Li2-C40 2.426(5) C65-C67 C8-C9 1.413(3) O3-C71 1.443(3) C68-C69 C9-C10 1.394(3) N4-C40 1.336(3) C71-C72 C10-C11 1.377(4) N3-C40 1.340(3) C73-C74 C11-C12 1.377(4) N3-C40 1.390(3) C77-C78 C11-C12 1.377(4) N3-C40 1.390(3) C75-C76 C12-C13 1.385(3) C40-C41 1.519(4) O4b-C77 C13-C17 1.519(4) C41-C46 1.393(3) C77-C78 C14	N2C1	1.335(3)	C34–C35	1.511(4)	C59–C60	1.413(3)
C1-C2 1.501(3) C38-C39 1.515(4) C60-C61 C2-C3 1.392(3) Li2-O4b 1.976(8) C60-C65 C2-C7 1.401(3) Li2-O3 1.987(5) C61-C62 C3-C4 1.387(4) Li2-O4 2.007(5) C62-C63 C4-C5 1.392(4) Li2-N3 2.084(5) C64-C68 C5-C6 1.380(4) Li2-C40 2.426(5) C65-C67 C8-C9 1.413(3) O3-C71 1.434(3) C68-C69 C9-C10 1.394(3) N4-C40 1.336(3) C68-C70 C9-C14 1.515(3) N4-C47 1.410(3) C71-C72 C10-C11 1.377(4) N3-C40 1.340(3) C47-C75 C12-C13 1.385(3) C40-C41 1.510(4) O4-C75 C14-C15 1.527(4) C41-C42 1.389(3) C75-C76 C14-C16 1.533(3) C42-C43 1.37(4) O4b-C75b C17-C19 1.532(4) C41-C45 1.377(4) O4b-C75b C1	N2-C20	1.410(3)	C36–C37	1.496(4)	C59–C64	1.414(3)
C2-C3 1.392(3) Li2-O4b 1.976(8) C60-C65 C2-C7 1.401(3) Li2-O3 1.987(5) C61-C62 C3-C4 1.387(4) Li2-O4 2.007(5) C62-C63 C4-C5 1.392(4) Li2-N4 2.013(5) C64-C68 C5-C6 1.380(4) Li2-N3 2.084(5) C64-C68 C6-C7 1.383(4) Li2-C40 2.426(5) C65-C67 C8-C9 1.413(3) O3-C71 1.434(3) C68-C69 C9-C10 1.394(3) N4-C40 1.336(3) C68-C70 C9-C14 1.515(3) N4-C47 1.410(3) C71-C72 C10-C11 1.377(4) N3-C59 1.417(3) O4-C75 C12-C13 1.385(3) C40-C41 1.510(4) O4-C75 C14-C15 1.527(4) C41-C42 1.389(3) C77-C78 C14-C16 1.533(3) C42-C43 1.37(4) O4b-C75b C17-C18 1.535(4) C44-C45 1.37(4) C75b-C76b C20-	C1–C2	1.501(3)	C38–C39	1.515(4)	C60–C61	1.398(3)
C2-C7 1.401(3) Li2-O3 1.987(5) C61-C62 C3-C4 1.387(4) Li2-O4 2.007(5) C62-C63 C4-C5 1.392(4) Li2-N3 2.084(5) C64-C68 C5-C6 1.380(4) Li2-Va 2.024(5) C65-C67 C8-C9 1.413(3) O3-C71 1.434(3) C65-C66 C8-C13 1.416(3) O3-C73 1.443(3) C68-C69 C9-C10 1.394(3) N4-C40 1.336(3) C68-C70 C9-C14 1.515(3) N4-C47 1.410(3) C71-C72 C10-C11 1.377(4) N3-C59 1.417(3) O4-C75 C12-C13 1.385(3) C40-C41 1.510(4) O4-C77 C13-C17 1.519(4) C41-C42 1.389(3) C75-C76 C14-C16 1.533(3) C42-C43 1.387(4) O4b-C77b C17-C18 1.535(4) C44-C45 1.377(4) C75b-C76b C20-C21 1.410(3) C45-C46 1.386(4) C77b-C78b <t< td=""><td>C2–C3</td><td>1.392(3)</td><td>Li2–O4b</td><td>1.976(8)</td><td>C60–C65</td><td>1.512(4)</td></t<>	C2–C3	1.392(3)	Li2–O4b	1.976(8)	C60–C65	1.512(4)
C3-C4 1.387(4) Li2-O4 2.007(5) C62-C63 C4-C5 1.392(4) Li2-N4 2.013(5) C63-C64 C5-C6 1.380(4) Li2-N3 2.084(5) C64-C68 C6-C7 1.383(4) Li2-C40 2.426(5) C65-C67 C8-C9 1.413(3) O3-C73 1.443(3) C68-C69 C9-C10 1.394(3) N4-C40 1.336(3) C68-C70 C9-C14 1.515(3) N4-C47 1.410(3) C71-C72 C10-C11 1.377(4) N3-C40 1.340(3) C73-C74 C11-C12 1.377(4) N3-C40 1.389(3) C75-C76 C12-C13 1.385(3) C40-C41 1.510(4) O4-C77 C13-C17 1.519(4) C41-C46 1.393(3) C75-C76 C14-C16 1.533(3) C42-C43 1.387(4) O4b-C77b C17-C19 1.532(4) C43-C44 1.379(4) O4b-C77b C17-C19 1.532(4) C47-C52 1.403(3) C75-C76b <	C2–C7	1.401(3)	Li2-O3	1.987(5)	C61–C62	1.379(4)
C4-C5 1.392(4) Li2–N4 2.013(5) C63–C64 C5-C6 1.380(4) Li2–N3 2.084(5) C64–C68 C6-C7 1.383(4) Li2–C40 2.426(5) C65–C67 C8–C9 1.413(3) O3–C71 1.434(3) C65–C66 C8–C13 1.416(3) O3–C73 1.443(3) C68–C69 C9–C10 1.394(3) N4–C40 1.336(3) C68–C70 C9–C14 1.515(3) N4–C47 1.410(3) C71–C72 C10–C11 1.377(4) N3–C40 1.340(3) C73–C74 C11–C12 1.377(4) N3–C40 1.389(3) C75–C76 C12–C13 1.385(3) C40–C41 1.510(4) O4–C77 C13–C17 1.519(4) C41–C46 1.393(3) C75–C76 C14–C16 1.533(3) C42–C43 1.387(4) O4b–C77b C17–C18 1.535(4) C44–C45 1.377(4) C7b–C76b C20–C21 1.410(3) C45–C46 1.386(4) C77b–C78b	C3–C4	1.387(4)	Li2-04	2.007(5)	C62–C63	1.374(4)
C5-C6 1.380(4) Li2–N3 2.084(5) C64–C68 C6-C7 1.383(4) Li2–C40 2.426(5) C65–C67 C8-C9 1.413(3) O3–C71 1.434(3) C65–C66 C8–C13 1.416(3) O3–C73 1.443(3) C68–C69 C9–C10 1.394(3) N4–C40 1.336(3) C68–C70 C9–C14 1.515(3) N4–C47 1.410(3) C71–C72 C10–C11 1.377(4) N3–C40 1.340(3) C73–C74 C11–C12 1.377(4) N3–C59 1.417(3) O4–C75 C12–C13 1.385(3) C40–C41 1.510(4) O4–C77 C13–C17 1.519(4) C41–C42 1.389(3) C75–C76 C14–C16 1.533(3) C42–C43 1.387(4) O4b–C77b C17–C18 1.55(4) C44–C45 1.377(4) C75b–C76b C20–C21 1.410(3) C45–C46 1.386(4) C77b–C78b C20–C25 1.421(3) C47–C52 1.403(3) C43–C42–C41	C4–C5	1.392(4)	Li2–N4	2.013(5)	C63–C64	1.397(3)
C6-C7 1.383(4) Li2-C40 2.426(5) C65-C67 C8-C9 1.413(3) O3-C71 1.434(3) C65-C66 C8-C13 1.416(3) O3-C73 1.443(3) C68-C69 C9-C10 1.394(3) N4-C40 1.336(3) C68-C70 C9-C14 1.515(3) N4-C47 1.410(3) C71-C72 C10-C11 1.377(4) N3-C40 1.340(3) C73-C74 C11-C12 1.377(4) N3-C59 1.417(3) O4-C75 C12-C13 1.385(3) C40-C41 1.510(4) O4-C77 C13-C17 1.519(4) C41-C42 1.389(3) C75-C76 C14-C15 1.527(4) C41-C46 1.393(3) C77-C78 C14-C16 1.533(3) C42-C43 1.387(4) O4b-C75b C17-C19 1.532(4) C43-C44 1.379(4) O4b-C75b C20-C21 1.410(3) C45-C46 1.386(4) C77b-C78b C20-C25 1.421(3) C47-C52 1.403(3) C43-C42-C41 <tr< td=""><td>C5–C6</td><td>1.380(4)</td><td>Li2–N3</td><td>2.084(5)</td><td>C64–C68</td><td>1.521(3)</td></tr<>	C5–C6	1.380(4)	Li2–N3	2.084(5)	C64–C68	1.521(3)
C8-C9 1.413(3) O3-C71 1.434(3) C65-C66 C8-C13 1.416(3) O3-C73 1.443(3) C68-C69 C9-C10 1.394(3) N4-C40 1.336(3) C68-C70 C9-C14 1.515(3) N4-C47 1.410(3) C71-C72 C10-C11 1.377(4) N3-C40 1.340(3) C73-C74 C11-C12 1.377(4) N3-C59 1.417(3) O4-C75 C12-C13 1.385(3) C40-C41 1.510(4) O4-C77 C13-C17 1.519(4) C41-C42 1.389(3) C77-C78 C14-C16 1.533(3) C42-C43 1.387(4) O4b-C77b C17-C19 1.532(4) C43-C44 1.379(4) O4b-C77b C17-C18 1.535(4) C44-C45 1.386(4) C77b-C78b C20-C21 1.410(3) C45-C46 1.386(4) C77b-C78b C20-C25 1.421(3) C47-C52 1.403(3) C44-C43-C42 O1-Li1-O2 106.6(2) N2-C20-C25 116.6(2) C44-C43-C42	C6–C7	1.383(4)	Li2-C40	2.426(5)	C65–C67	1.527(4)
C8-C13 1.416(3) O3-C73 1.443(3) C68-C69 C9-C10 1.394(3) N4-C40 1.336(3) C68-C70 C9-C14 1.515(3) N4-C47 1.410(3) C71-C72 C10-C11 1.377(4) N3-C40 1.340(3) C73-C74 C11-C12 1.377(4) N3-C59 1.417(3) O4-C75 C12-C13 1.385(3) C40-C41 1.510(4) O4-C77 C13-C17 1.519(4) C41-C42 1.389(3) C75-C76 C14-C16 1.533(3) C42-C43 1.387(4) O4b-C77b C17-C18 1.535(4) C44-C45 1.37(4) C75b-C76b C20-C21 1.410(3) C45-C46 1.386(4) C77b-C78b C20-C25 1.421(3) C47-C52 1.403(3) C43-C42-C41 O1-Li1-O2 106.6(2) N2-C20-C25 116.6(2) C44-C43-C42 O2-Li1-N1 123.9(2) C21-C20-C25 119.3(2) C45-C44-C43 O1-Li1-N2 130.9(2) C22-C21-C20 118.8(2)	C8–C9	1.413(3)	O3–C71	1.434(3)	C65–C66	1.529(4)
C9-C10 1.394(3) N4-C40 1.336(3) C68-C70 C9-C14 1.515(3) N4-C47 1.410(3) C71-C72 C10-C11 1.377(4) N3-C40 1.340(3) C73-C74 C11-C12 1.377(4) N3-C59 1.417(3) O4-C75 C12-C13 1.385(3) C40-C41 1.510(4) O4-C77 C13-C17 1.519(4) C41-C42 1.389(3) C75-C76 C14-C15 1.527(4) C41-C46 1.393(3) C77-C78 C14-C16 1.533(3) C42-C43 1.387(4) O4b-C75b C17-C19 1.532(4) C43-C44 1.379(4) O4b-C7b C17-C18 1.535(4) C44-C45 1.377(4) C75b-C76b C20-C21 1.410(3) C45-C46 1.386(4) C77b-C78b C20-C25 1.421(3) C47-C52 1.403(3) C44-C43-C42 O1-Li1-O2 106.6(2) N2-C20-C25 116.6(2) C44-C43-C42 O2-Li1-N1 123.9(2) C21-C20-C25 119.3(2) C44-C45	C8–C13	1.416(3)	O3–C73	1.443(3)	C68–C69	1.532(4)
C9-C14 1.515(3) N4-C47 1.410(3) C71-C72 C10-C11 1.377(4) N3-C40 1.340(3) C73-C74 C11-C12 1.377(4) N3-C59 1.417(3) O4-C75 C12-C13 1.385(3) C40-C41 1.510(4) O4-C77 C13-C17 1.519(4) C41-C42 1.389(3) C75-C76 C14-C15 1.527(4) C41-C46 1.393(3) C77-C78 C14-C16 1.533(3) C42-C43 1.387(4) O4b-C75b C17-C19 1.532(4) C43-C44 1.379(4) O4b-C77b C17-C18 1.535(4) C44-C45 1.377(4) C75b-C76b C20-C21 1.410(3) C45-C46 1.386(4) C77b-C78b C10-L1 1.410(3) C47-C52 1.403(3) U V V V V V C1-L1-N1 108.8(2) N2-C20-C25 116.6(2) C44-C43-C42 O2-Li1-N1 123.9(2) C21-C20-C25 119.3(2) C44-C45-C46	C9–C10	1.394(3)	N4-C40	1.336(3)	C68–C70	1.536(4)
C10-C11 1.377(4) N3-C40 1.340(3) C73-C74 C11-C12 1.377(4) N3-C59 1.417(3) O4-C75 C12-C13 1.385(3) C40-C41 1.510(4) O4-C77 C13-C17 1.519(4) C41-C42 1.389(3) C75-C76 C14-C15 1.527(4) C41-C46 1.393(3) C77-C78 C14-C16 1.533(3) C42-C43 1.387(4) O4b-C75b C17-C19 1.532(4) C43-C44 1.379(4) O4b-C77b C17-C18 1.535(4) C44-C45 1.377(4) C75b-C76b C20-C21 1.410(3) C45-C46 1.386(4) C77b-C78b C20-C25 1.421(3) C47-C52 1.403(3) C43-C42-C41 O1-Li1-O2 106.6(2) N2-C20-C25 116.6(2) C44-C43-C42 O2-Li1-N1 123.9(2) C21-C20-C25 119.3(2) C45-C44-C43 O1-Li1-N2 130.9(2) C22-C21-C20 118.8(2) C44-C45-C46 O2-Li1-N2 115.6(2) C22-C21-C26 118.2(2)	C9–C14	1.515(3)	N4-C47	1.410(3)	C71–C72	1.514(4)
C11-C12 1.377(4) N3-C59 1.417(3) O4-C75 C12-C13 1.385(3) C40-C41 1.510(4) O4-C77 C13-C17 1.519(4) C41-C42 1.389(3) C75-C76 C14-C15 1.527(4) C41-C46 1.393(3) C77-C78 C14-C16 1.533(3) C42-C43 1.387(4) O4b-C75b C17-C19 1.532(4) C43-C44 1.379(4) O4b-C77b C17-C18 1.535(4) C44-C45 1.377(4) C75b-C76b C20-C21 1.410(3) C45-C46 1.386(4) C77b-C78b C20-C25 1.421(3) C47-C52 1.403(3) C43-C42-C41 O1-Li1-O2 106.6(2) N2-C20-C25 116.6(2) C44-C43-C42 O2-Li1-N1 123.9(2) C21-C20-C25 119.3(2) C45-C44-C43 O1-Li1-N2 130.9(2) C22-C21-C20 118.8(2) C44-C45-C46 O2-Li1-N2 115.6(2) C20-C21-C26 118.2(2) C45-C46-C41 N1-Li1-N2 67.05(16) C20-C21-C26	C10–C11	1.377(4)	N3-C40	1.340(3)	C73–C74	1.482(4)
C12-C13 1.385(3) C40-C41 1.510(4) O4-C77 C13-C17 1.519(4) C41-C42 1.389(3) C75-C76 C14-C15 1.527(4) C41-C46 1.393(3) C77-C78 C14-C16 1.533(3) C42-C43 1.387(4) O4b-C75b C17-C19 1.532(4) C43-C44 1.379(4) O4b-C77b C17-C18 1.535(4) C44-C45 1.377(4) C75b-C76b C20-C21 1.410(3) C45-C46 1.386(4) C77b-C78b C20-C25 1.421(3) C47-C52 1.403(3) C45-C44 O1-Li1-O2 106.6(2) N2-C20-C21 123.9(2) C43-C42-C41 O1-Li1-N1 108.8(2) N2-C20-C25 116.6(2) C44-C45-C46 O2-Li1-N1 123.9(2) C21-C20-C25 119.3(2) C45-C44-C43 O1-Li1-N2 130.9(2) C22-C21-C26 118.8(2) C44-C45-C46 O2-Li1-N1 123.9(2) C22-C21-C26 118.2(2) C45-C46-C41 N1-Li1-N2 67.05(16) C20-C21-C26 123.0(2) C52-C47-C48 O2-Li1-C1 128.0(2) <t< td=""><td>C11–C12</td><td>1.377(4)</td><td>N3-C59</td><td>1.417(3)</td><td>O4–C75</td><td>1.430(6)</td></t<>	C11–C12	1.377(4)	N3-C59	1.417(3)	O4–C75	1.430(6)
C13-C17 1.519(4) C41-C42 1.389(3) C75-C76 C14-C15 1.527(4) C41-C46 1.393(3) C77-C78 C14-C16 1.533(3) C42-C43 1.387(4) O4b-C75b C17-C19 1.532(4) C43-C44 1.379(4) O4b-C77b C17-C18 1.535(4) C44-C45 1.377(4) C75b-C76b C20-C21 1.410(3) C45-C46 1.386(4) C77b-C78b C20-C25 1.421(3) C47-C52 1.403(3) C45-C46 O1-Li1-O2 106.6(2) N2-C20-C21 123.9(2) C43-C42-C41 O1-Li1-N1 108.8(2) N2-C20-C25 116.6(2) C44-C43-C42 O2-Li1-N1 123.9(2) C21-C20-C25 119.3(2) C45-C44-C43 O1-Li1-N2 130.9(2) C22-C21-C26 118.8(2) C44-C45-C46 O2-Li1-N2 115.6(2) C22-C21-C26 118.2(2) C45-C46-C41 N1-Li1-N2 67.05(16) C20-C21-C26 123.0(2) C52-C47-C48 O2-Li1-N2 115.6(2) C23-C24-C25 121.2(2) C45-C46-C41 N1-Li1-C1 124.4(2) <td>C12–C13</td> <td>1.385(3)</td> <td>C40-C41</td> <td>1.510(4)</td> <td>O4–C77</td> <td>1.465(5)</td>	C12–C13	1.385(3)	C40-C41	1.510(4)	O4–C77	1.465(5)
C14-C15 1.527(4) C41-C46 1.393(3) C77-C78 C14-C16 1.533(3) C42-C43 1.387(4) O4b-C75b C17-C19 1.532(4) C43-C44 1.379(4) O4b-C77b C17-C18 1.535(4) C44-C45 1.377(4) C75b-C76b C20-C21 1.410(3) C45-C46 1.386(4) C77b-C78b C20-C25 1.421(3) C47-C52 1.403(3) O1-Li1-O2 106.6(2) N2-C20-C21 123.9(2) C43-C42-C41 O1-Li1-N1 108.8(2) N2-C20-C25 116.6(2) C44-C43-C42 O2-Li1-N1 123.9(2) C21-C20-C25 119.3(2) C45-C44-C43 O1-Li1-N2 130.9(2) C22-C21-C20 118.8(2) C44-C45-C46 O2-Li1-N2 115.6(2) C22-C21-C26 118.2(2) C45-C46-C41 N1-Li1-N2 67.05(16) C20-C21-C26 123.0(2) C52-C47-C48 O2-Li1-N2 115.6(2) C22-C23-C24 119.5(2) N4-C47-C48 N1-Li1-N2 67.05(16) C20-C21-C26 123.0(2) C52-C47-C48 O2-Li1-C1 128.0(2)	C13–C17	1.519(4)	C41–C42	1.389(3)	C75–C76	1.519(7)
C14-C16 1.533(3) C42-C43 1.387(4) O4b-C75b C17-C19 1.532(4) C43-C44 1.379(4) O4b-C77b C17-C18 1.535(4) C44-C45 1.377(4) C75b-C76b C20-C21 1.410(3) C45-C46 1.386(4) C77b-C78b C20-C25 1.421(3) C47-C52 1.403(3)	C14–C15	1.527(4)	C41–C46	1.393(3)	C77–C78	1.489(8)
C17-C19 1.532(4) C43-C44 1.379(4) O4b-C77b C17-C18 1.535(4) C44-C45 1.377(4) C75b-C76b C20-C21 1.410(3) C45-C46 1.386(4) C77b-C78b C20-C25 1.421(3) C47-C52 1.403(3) C43-C42-C41 O1-Li1-O2 106.6(2) N2-C20-C21 123.9(2) C43-C42-C41 O1-Li1-N1 108.8(2) N2-C20-C25 116.6(2) C44-C43-C42 O2-Li1-N1 123.9(2) C21-C20-C25 119.3(2) C45-C44-C43 O1-Li1-N2 130.9(2) C22-C21-C20 118.8(2) C44-C45-C46 O2-Li1-N2 115.6(2) C22-C21-C26 118.2(2) C45-C46-C41 N1-Li1-N2 67.05(16) C20-C21-C26 123.0(2) C52-C47-C48 O2-Li1-C1 128.0(2) C22-C23-C24 119.5(2) N4-C47-C48 N1-Li1-C1 33.52(10) C23-C24-C25 121.2(2) C49-C48-C47 N2-Li1-C1 33.61(10) C24-C25-C29 120.5(2) C47-C48-C53 C34-O1-C32 114.3(2) C24-C25-C29 120.5(2) C47-C48-C53 C	C14–C16	1.533(3)	C42–C43	1.387(4)	O4b-C75b	1.411(8)
C17-C18 1.535(4) C44-C45 1.377(4) C75b-C76b C20-C21 1.410(3) C45-C46 1.386(4) C77b-C78b C20-C25 1.421(3) C47-C52 1.403(3) C43-C42-C41 O1-Li1-O2 106.6(2) N2-C20-C21 123.9(2) C43-C42-C41 O1-Li1-N1 108.8(2) N2-C20-C25 116.6(2) C44-C43-C42 O2-Li1-N1 123.9(2) C21-C20-C25 119.3(2) C45-C44-C43 O1-Li1-N2 130.9(2) C22-C21-C20 118.8(2) C44-C45-C46 O2-Li1-N2 115.6(2) C22-C21-C26 118.2(2) C45-C46-C41 N1-Li1-N2 67.05(16) C20-C21-C26 123.0(2) C52-C47-N4 O1-Li1-C1 124.4(2) C23-C22-C21 121.7(2) C52-C47-C48 O2-Li1-C1 128.0(2) C22-C23-C24 119.5(2) N4-C47-C48 N1-Li1-C1 33.52(10) C23-C24-C25 121.2(2) C49-C48-C53 C34-O1-C32 114.3(2) C24-C25-C29 120.2(2) C49-C48-C53 C34-O1-Li1 127.5(2) C20-C25-C29 120.2(2) C50-C49-C48	C17–C19	1.532(4)	C43–C44	1.379(4)	O4b–C77b	1.417(11)
C20-C21 1.410(3) C45-C46 1.386(4) C77b-C78b C20-C25 1.421(3) C47-C52 1.403(3) C43-C42-C41 O1-Li1-O2 106.6(2) N2-C20-C21 123.9(2) C43-C42-C41 O1-Li1-N1 108.8(2) N2-C20-C25 116.6(2) C44-C43-C42 O2-Li1-N1 123.9(2) C21-C20-C25 119.3(2) C45-C44-C43 O1-Li1-N2 130.9(2) C22-C21-C20 118.8(2) C44-C45-C46 O2-Li1-N2 115.6(2) C22-C21-C26 118.2(2) C45-C46-C41 N1-Li1-N2 67.05(16) C20-C21-C26 123.0(2) C52-C47-C48 O2-Li1-C1 128.0(2) C22-C23-C24 119.5(2) N4-C47-C48 N1-Li1-C1 33.52(10) C23-C24-C25 121.2(2) C49-C48-C47 N2-Li1-C1 33.61(10) C24-C25-C20 119.2(2) C49-C48-C53 C34-O1-C32 114.3(2) C20-C25-C29 120.5(2) C47-C48-C53 C34-O1-Li1 127.5(2) C20-C25-C29 120.2(2) C50-C49-C48 C32-O1-Li1 117.6(2) C21-C26-C27 112.8(2) C51-C50-C49	C17–C18	1.535(4)	C44–C45	1.377(4)	C75b-C76b	1.489(12)
C20-C25 1.421(3) C47-C52 1.403(3) O1-Li1-O2 106.6(2) N2-C20-C21 123.9(2) C43-C42-C41 O1-Li1-N1 108.8(2) N2-C20-C25 116.6(2) C44-C43-C42 O2-Li1-N1 123.9(2) C21-C20-C25 119.3(2) C45-C44-C43 O1-Li1-N2 130.9(2) C22-C21-C20 118.8(2) C44-C45-C46 O2-Li1-N2 115.6(2) C22-C21-C26 118.2(2) C45-C46-C41 N1-Li1-N2 67.05(16) C20-C21-C26 123.0(2) C52-C47-C48 O1-Li1-C1 124.4(2) C23-C22-C21 121.7(2) C52-C47-C48 O2-Li1-C1 128.0(2) C22-C23-C24 119.5(2) N4-C47-C48 N1-Li1-C1 33.52(10) C23-C24-C25 121.2(2) C49-C48-C47 N2-Li1-C1 33.61(10) C24-C25-C29 120.5(2) C47-C48-C53 C34-O1-Li1 127.5(2) C20-C25-C29 120.2(2) C50-C49-C48 C32-O1-Li1 117.6(2) C21-C26-C27 112.8(2) C51-C50-C49 C38-O2-C36 111.6(2) C21-C26-C28 110.2(2) C50-C51-C52 C	C20–C21	1.410(3)	C45–C46	1.386(4)	C77b–C78b	1.493(12)
O1-Li1-O2106.6(2)N2-C20-C21123.9(2)C43-C42-C41O1-Li1-N1108.8(2)N2-C20-C25116.6(2)C44-C43-C42O2-Li1-N1123.9(2)C21-C20-C25119.3(2)C45-C44-C43O1-Li1-N2130.9(2)C22-C21-C20118.8(2)C44-C45-C46O2-Li1-N2115.6(2)C22-C21-C26118.2(2)C45-C46-C41N1-Li1-N267.05(16)C20-C21-C26123.0(2)C52-C47-N4O1-Li1-C1124.4(2)C23-C22-C21121.7(2)C52-C47-C48O2-Li1-C1128.0(2)C22-C23-C24119.5(2)N4-C47-C48N1-Li1-C133.52(10)C23-C24-C25121.2(2)C49-C48-C47N2-Li1-C133.61(10)C24-C25-C29120.5(2)C47-C48-C53C34-O1-C32114.3(2)C21-C26-C27112.8(2)C50-C49-C48C32-O1-Li1117.6(2)C21-C26-C27112.8(2)C51-C50-C49C38-O2-C36111.6(2)C21-C26-C28110.2(2)C50-C51-C52C38-O2-Li1112.6(2)C27-C26-C28110.0(2)C51-C52-C47	C20–C25	1.421(3)	C47–C52	1.403(3)		
O1-Li1-N1108.8(2)N2-C20-C25116.6(2)C44-C43-C42O2-Li1-N1123.9(2)C21-C20-C25119.3(2)C45-C44-C43O1-Li1-N2130.9(2)C22-C21-C20118.8(2)C44-C45-C46O2-Li1-N2115.6(2)C22-C21-C26118.2(2)C45-C46-C41N1-Li1-N267.05(16)C20-C21-C26123.0(2)C52-C47-N4O1-Li1-C1124.4(2)C23-C22-C21121.7(2)C52-C47-C48O2-Li1-C1128.0(2)C22-C23-C24119.5(2)N4-C47-C48N1-Li1-C133.52(10)C23-C24-C25121.2(2)C49-C48-C47N2-Li1-C133.61(10)C24-C25-C29120.5(2)C47-C48-C53C34-O1-C32114.3(2)C20-C25-C29120.2(2)C50-C49-C48C32-O1-Li1177.5(2)C20-C25-C29120.2(2)C50-C49-C48C32-O1-Li1117.6(2)C21-C26-C27112.8(2)C51-C50-C49C38-O2-C36111.6(2)C21-C26-C28110.2(2)C50-C51-C52C38-O2-Li1112.6(2)C27-C26-C28110.0(2)C51-C52-C47	01-Li1-O2	106.6(2)	N2-C20-C21	123.9(2)	C43-C42-C41	121.0(3)
O2-Li1-N1123.9(2)C21-C20-C25119.3(2)C45-C44-C43O1-Li1-N2130.9(2)C22-C21-C20118.8(2)C44-C45-C46O2-Li1-N2115.6(2)C22-C21-C26118.2(2)C45-C46-C41N1-Li1-N267.05(16)C20-C21-C26123.0(2)C52-C47-N4O1-Li1-C1124.4(2)C23-C22-C21121.7(2)C52-C47-C48O2-Li1-C1128.0(2)C22-C23-C24119.5(2)N4-C47-C48N1-Li1-C133.52(10)C23-C24-C25121.2(2)C49-C48-C47N2-Li1-C133.61(10)C24-C25-C20119.2(2)C49-C48-C53C34-O1-C32114.3(2)C24-C25-C29120.5(2)C47-C48-C53C34-O1-Li1127.5(2)C20-C25-C29120.2(2)C50-C49-C48C32-O1-Li1117.6(2)C21-C26-C27112.8(2)C51-C50-C49C38-O2-C36111.6(2)C21-C26-C28110.2(2)C50-C51-C52C38-O2-Li1112.6(2)C27-C26-C28110.0(2)C51-C52-C47	01–Li1–N1	108.8(2)	N2-C20-C25	116.6(2)	C44–C43–C42	119.8(3)
O1-Li1-N2130.9(2)C22-C21-C20118.8(2)C44-C45-C46O2-Li1-N2115.6(2)C22-C21-C26118.2(2)C45-C46-C41N1-Li1-N267.05(16)C20-C21-C26123.0(2)C52-C47-N4O1-Li1-C1124.4(2)C23-C22-C21121.7(2)C52-C47-C48O2-Li1-C1128.0(2)C22-C23-C24119.5(2)N4-C47-C48N1-Li1-C133.52(10)C23-C24-C25121.2(2)C49-C48-C47N2-Li1-C133.61(10)C24-C25-C20119.2(2)C47-C48-C53C34-O1-C32114.3(2)C24-C25-C29120.5(2)C47-C48-C53C34-O1-Li1127.5(2)C20-C25-C29120.2(2)C50-C49-C48C32-O1-Li1117.6(2)C21-C26-C27112.8(2)C51-C50-C49C38-O2-C36111.6(2)C21-C26-C28110.2(2)C50-C51-C52C38-O2-Li1112.6(2)C27-C26-C28110.0(2)C51-C52-C47	O2-Li1-N1	123.9(2)	C21-C20-C25	119.3(2)	C45-C44-C43	120.1(3)
O2-Li1-N2115.6(2)C22-C21-C26118.2(2)C45-C46-C41N1-Li1-N267.05(16)C20-C21-C26123.0(2)C52-C47-N4O1-Li1-C1124.4(2)C23-C22-C21121.7(2)C52-C47-C48O2-Li1-C1128.0(2)C22-C23-C24119.5(2)N4-C47-C48N1-Li1-C133.52(10)C23-C24-C25121.2(2)C49-C48-C47N2-Li1-C133.61(10)C24-C25-C20119.2(2)C49-C48-C53C34-O1-C32114.3(2)C24-C25-C29120.5(2)C47-C48-C53C34-O1-Li1127.5(2)C20-C25-C29120.2(2)C50-C49-C48C32-O1-Li1117.6(2)C21-C26-C27112.8(2)C51-C50-C49C38-O2-C36111.6(2)C21-C26-C28110.2(2)C50-C51-C52C38-O2-Li1112.6(2)C27-C26-C28110.0(2)C51-C52-C47	01–Li1–N2	130.9(2)	C22-C21-C20	118.8(2)	C44-C45-C46	120.1(3)
N1-Li1-N267.05(16)C20-C21-C26123.0(2)C52-C47-N4O1-Li1-C1124.4(2)C23-C22-C21121.7(2)C52-C47-C48O2-Li1-C1128.0(2)C22-C23-C24119.5(2)N4-C47-C48N1-Li1-C133.52(10)C23-C24-C25121.2(2)C49-C48-C47N2-Li1-C133.61(10)C24-C25-C20119.2(2)C49-C48-C53C34-O1-C32114.3(2)C24-C25-C29120.5(2)C47-C48-C53C34-O1-Li1127.5(2)C20-C25-C29120.2(2)C50-C49-C48C32-O1-Li1117.6(2)C21-C26-C27112.8(2)C51-C50-C49C38-O2-C36111.6(2)C21-C26-C28110.2(2)C50-C51-C52C38-O2-Li1112.6(2)C27-C26-C28110.0(2)C51-C52-C47	O2-Li1-N2	115.6(2)	C22-C21-C26	118.2(2)	C45-C46-C41	120.7(3)
O1-Li1-C1124.4(2)C23-C22-C21121.7(2)C52-C47-C48O2-Li1-C1128.0(2)C22-C23-C24119.5(2)N4-C47-C48N1-Li1-C133.52(10)C23-C24-C25121.2(2)C49-C48-C47N2-Li1-C133.61(10)C24-C25-C20119.2(2)C49-C48-C53C34-O1-C32114.3(2)C24-C25-C29120.5(2)C47-C48-C53C34-O1-Li1127.5(2)C20-C25-C29120.2(2)C50-C49-C48C32-O1-Li1117.6(2)C21-C26-C27112.8(2)C51-C50-C49C38-O2-C36111.6(2)C21-C26-C28110.2(2)C50-C51-C52C38-O2-Li1112.6(2)C27-C26-C28110.0(2)C51-C52-C47	N1–Li1–N2	67.05(16)	C20-C21-C26	123.0(2)	C52-C47-N4	123.7(2)
O2-Li1-C1128.0(2)C22-C23-C24119.5(2)N4-C47-C48N1-Li1-C133.52(10)C23-C24-C25121.2(2)C49-C48-C47N2-Li1-C133.61(10)C24-C25-C20119.2(2)C49-C48-C53C34-O1-C32114.3(2)C24-C25-C29120.5(2)C47-C48-C53C34-O1-Li1127.5(2)C20-C25-C29120.2(2)C50-C49-C48C32-O1-Li1117.6(2)C21-C26-C27112.8(2)C51-C50-C49C38-O2-C36111.6(2)C21-C26-C28110.2(2)C50-C51-C52C38-O2-Li1112.6(2)C27-C26-C28110.0(2)C51-C52-C47	01-Li1-C1	124.4(2)	C23-C22-C21	121.7(2)	C52–C47–C48	119.6(2)
N1-Li1-C133.52(10)C23-C24-C25121.2(2)C49-C48-C47N2-Li1-C133.61(10)C24-C25-C20119.2(2)C49-C48-C53C34-O1-C32114.3(2)C24-C25-C29120.5(2)C47-C48-C53C34-O1-Li1127.5(2)C20-C25-C29120.2(2)C50-C49-C48C32-O1-Li1117.6(2)C21-C26-C27112.8(2)C51-C50-C49C38-O2-C36111.6(2)C21-C26-C28110.2(2)C50-C51-C52C38-O2-Li1112.6(2)C27-C26-C28110.0(2)C51-C52-C47	O2-Li1-C1	128.0(2)	C22-C23-C24	119.5(2)	N4-C47-C48	116.5(2)
N2-Li1-C133.61(10)C24-C25-C20119.2(2)C49-C48-C53C34-O1-C32114.3(2)C24-C25-C29120.5(2)C47-C48-C53C34-O1-Li1127.5(2)C20-C25-C29120.2(2)C50-C49-C48C32-O1-Li1117.6(2)C21-C26-C27112.8(2)C51-C50-C49C38-O2-C36111.6(2)C21-C26-C28110.2(2)C50-C51-C52C38-O2-Li1112.6(2)C27-C26-C28110.0(2)C51-C52-C47	N1-Li1-C1	33.52(10)	C23-C24-C25	121.2(2)	C49-C48-C47	118.8(3)
C34-O1-C32114.3(2)C24-C25-C29120.5(2)C47-C48-C53C34-O1-Li1127.5(2)C20-C25-C29120.2(2)C50-C49-C48C32-O1-Li1117.6(2)C21-C26-C27112.8(2)C51-C50-C49C38-O2-C36111.6(2)C21-C26-C28110.2(2)C50-C51-C52C38-O2-Li1112.6(2)C27-C26-C28110.0(2)C51-C52-C47	N2-Li1-C1	33.61(10)	C24-C25-C20	119.2(2)	C49–C48–C53	120.9(2)
C34-O1-Li1127.5(2)C20-C25-C29120.2(2)C50-C49-C48C32-O1-Li1117.6(2)C21-C26-C27112.8(2)C51-C50-C49C38-O2-C36111.6(2)C21-C26-C28110.2(2)C50-C51-C52C38-O2-Li1112.6(2)C27-C26-C28110.0(2)C51-C52-C47	C34–O1–C32	114.3(2)	C24–C25–C29	120.5(2)	C47–C48–C53	120.2(2)
C32-O1-Li1117.6(2)C21-C26-C27112.8(2)C51-C50-C49C38-O2-C36111.6(2)C21-C26-C28110.2(2)C50-C51-C52C38-O2-Li1112.6(2)C27-C26-C28110.0(2)C51-C52-C47	C3401Li1	127.5(2)	C20-C25-C29	120.2(2)	C50-C49-C48	121.1(3)
C38-O2-C36 111.6(2) C21-C26-C28 110.2(2) C50-C51-C52 C38-O2-Li1 112.6(2) C27-C26-C28 110.0(2) C51-C52-C47	C3201Li1	117.6(2)	C21-C26-C27	112.8(2)	C51-C50-C49	119.8(3)
C38–O2–Li1 112.6(2) C27–C26–C28 110.0(2) C51–C52–C47	C38-O2-C36	111.6(2)	C21-C26-C28	110.2(2)	C50-C51-C52	121.7(3)
	C38-O2-Li1	112.6(2)	C27–C26–C28	110.0(2)	C51-C52-C47	118.5(2)

C36-O2-Li1	133.7(2)	C25-C29-C31	114.7(2)	C51-C52-C56	118.4(2)
C1-N1-C8	124.5(2)	C25-C29-C30	111.5(2)	C47-C52-C56	123.0(2)
C1-N1-Li1	89.47(19)	C31-C29-C30	109.2(2)	C48-C53-C54	111.4(2)
C8-N1-Li1	142.1(2)	O1–C32–C33	112.8(2)	C48-C53-C55	113.0(2)
C1-N2-C20	123.7(2)	O1–C34–C35	111.9(2)	C54–C53–C55	111.0(2)
C1-N2-Li1	88.49(19)	O2-C36-C37	110.4(2)	C52-C56-C57	113.3(2)
C20-N2-Li1	147.5(2)	O2-C38-C39	113.6(2)	C52-C56-C58	109.4(2)
N1C1N2	114.8(2)	O4b-Li2-O3	109.4(5)	C57-C56-C58	110.0(2)
N1-C1-C2	122.3(2)	O3-Li2-O4	104.0(3)	C60-C59-C64	119.3(2)
N2C1C2	122.9(2)	O4b-Li2-N4	110.5(6)	C60-C59-N3	117.5(2)
N1C1Li1	57.02(16)	O3-Li2-N4	122.2(2)	C64-C59-N3	123.0(2)
N2C1Li1	57.90(16)	O4-Li2-N4	105.5(3)	C61-C60-C59	119.3(2)
C2C1Li1	176.2(2)	O4b-Li2-N3	129.0(4)	C61-C60-C65	119.3(2)
C3–C2–C7	117.5(2)	O3-Li2-N3	113.7(2)	C59–C60–C65	121.4(2)
C3-C2-C1	120.8(2)	O4-Li2-N3	139.4(3)	C62-C61-C60	121.4(3)
C7–C2–C1	121.7(2)	N3-Li2-N4	66.75(16)	C63-C62-C61	119.1(2)
C4–C3–C2	121.2(2)	O4b-Li2-C40	123.5(6)	C62-C63-C64	122.2(3)
C3-C4-C5	120.2(2)	O3-Li2-C40	126.6(2)	C63-C64-C59	118.6(2)
C6-C5-C4	119.4(3)	O4-Li2-C40	125.8(3)	C63-C64-C68	118.0(2)
C5-C6-C7	120.2(3)	N4-Li2-C40	33.42(10)	C59–C64–C68	123.3(2)
C6-C7-C2	121.5(2)	N3-Li2-C40	33.50(10)	C60–C65–C67	111.3(2)
N1-C8-C9	124.0(2)	C71–O3–C73	111.5(2)	C60-C65-C66	112.9(2)
N1-C8-C13	117.1(2)	C71-O3-Li2	113.5(2)	C67–C65–C66	109.2(2)
C9–C8–C13	118.8(2)	C73-O3-Li2	132.8(2)	C64–C68–C69	111.9(2)
С10-С9-С8	118.9(2)	C40-N4-C47	123.0(2)	C64–C68–C70	110.8(2)
C10-C9-C14	118.3(2)	C40-N4-Li2	90.52(19)	C69–C68–C70	110.3(2)
C8-C9-C14	122.7(2)	C47-N4-Li2	141.6(2)	O3-C71-C72	114.2(2)
C11–C10–C9	121.6(3)	C40-N3-C59	122.6(2)	O3-C73-C74	110.6(3)
C10-C11-C12	119.3(3)	C40-N3-Li2	87.37(18)	C75–O4–C77	110.8(4)
C11–C12–C13	121.4(3)	C59-N3-Li2	149.8(2)	C75-O4-Li2	112.6(4)
C12-C13-C8	119.4(2)	N3-C40-N4	114.8(2)	C77-O4-Li2	135.8(3)
C12-C13-C17	120.9(2)	N4-C40-C41	122.5(2)	O4-C75-C76	114.4(6)
C8-C13-C17	119.7(2)	N3-C40-C41	122.7(2)	O4–C77–C78	109.5(4)
C9-C14-C15	112.7(2)	N4-C40-Li2	56.07(16)	C75b-O4b-C77b	116.1(8)
C9–C14–C16	110.7(2)	N3-C40-Li2	59.13(16)	C75b-O4b-Li2	126.9(7)
C15-C14-C16	109.7(2)	C41-C40-Li2	173.0(2)	C77b-O4b-Li2	115.3(6)
C13–C17–C19	113.2(2)	C42-C41-C46	118.3(2)	O4b-C75b-C76b	111.3(9)
C13–C17–C18	111.0(2)	C42-C41-C40	121.0(2)	O4b-C77b-C78b	113.6(13)
C19–C17–C18	111.0(2)	C46-C41-C40	120.7(2)		
-					

Abb. A2: Struktur der drei kristallographisch unabhängigen Moleküle von **2** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A10: Atomkoordinaten (× 10 ⁴) und äquivalente isotrope Auslenkungsparameter ($Å^2 \times 10^3$) der
Nichtwasserstoff-Atome von 2. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten
U _{ii} -Tensors.

	X	у	Z	U _{eq}
Cl1	1266(1)	8378(1)	654(2)	45(1)
C12	1296(1)	8232(1)	3200(2)	51(1)
Si1	1852(1)	8351(1)	1880(2)	30(1)
N2	1897(3)	7721(3)	1334(6)	27(1)
N1	2412(3)	8158(3)	2766(6)	28(2)
C1	2325(3)	7739(3)	2057(5)	25(2)
C2	2620(4)	7365(3)	1974(5)	28(2)
C3	2305(5)	6757(4)	1672(8)	37(2)
C4	2617(5)	6429(5)	1603(9)	44(2)
C5	3224(5)	6711(5)	1815(10)	57(3)
C6	3554(5)	7328(5)	2121(10)	49(3)
C7	3246(4)	7652(4)	2190(8)	35(2)
C8	1709(4)	7365(4)	343(7)	29(2)
C9	1120(4)	6842(4)	301(7)	30(2)
C10	963(4)	6474(4)	-646(7)	36(2)
C11	1354(4)	6637(4)	-1495(7)	38(2)
C12	1923(4)	7153(4)	-1455(7)	34(2)
C13	2114(4)	7531(4)	-522(7)	27(2)
C14	2738(4)	8110(4)	-539(7)	32(2)
C15	3254(4)	7976(4)	-819(9)	45(2)

C16	2734(6)	8578(5)	-1317(10)	51(3)
C17	655(4)	6651(4)	1216(7)	36(2)
C18	75(5)	6661(6)	810(10)	56(3)
C19	471(6)	6021(5)	1681(10)	67(3)
C20	2727(4)	8266(4)	3789(7)	26(2)
C21	3287(4)	8812(4)	3916(6)	29(2)
C22	3590(4)	8913(4)	4922(7)	34(2)
C23	3342(4)	8490(4)	5747(7)	40(2)
C24	2794(4)	7957(4)	5607(8)	38(2)
C25	2467(4)	7829(4)	4625(7)	30(2)
C26	3558(4)	9298(4)	3036(7)	36(2)
C27	3397(5)	9795(4)	3274(9)	46(2)
C28	4247(4)	9584(5)	2893(9)	53(2)
C29	1854(4)	7240(4)	4526(8)	36(2)
C30	1394(5)	7214(6)	5367(9)	50(3)
C31	1917(5)	6667(4)	4649(9)	48(2)
Cl4	5065(1)	5342(1)	908(2)	52(1)
C13	4906(1)	5352(1)	3454(2)	46(1)
Si2	4931(1)	4775(1)	2208(2)	33(1)
N3	5121(3)	4219(3)	1314(5)	28(1)
N4	5580(3)	4730(3)	2735(5)	28(1)
C32	5552(4)	4318(4)	2011(5)	25(2)
C33	5920(4)	4013(3)	2026(5)	27(2)
C34	5648(5)	3389(4)	1784(9)	39(2)
C35	6008(6)	3110(5)	1807(10)	51(3)
C36	6611(5)	3433(5)	2061(8)	58(3)
C37	6879(5)	4041(6)	2303(10)	54(3)
C38	6542(4)	4343(5)	2286(8)	36(2)
C39	4979(4)	3878(4)	319(6)	29(2)
C40	5395(4)	4116(4)	-541(7)	27(2)
C41	5236(4)	3766(4)	-1515(7)	37(2)
C42	4704(4)	3212(4)	-1588(8)	40(2)
C43	4303(4)	2985(4)	-723(7)	38(2)
C44	4426(4)	3317(4)	244(7)	33(2)
C45	5993(4)	4728(4)	-514(7)	35(2)
C46	6545(4)	4632(5)	-699(9)	48(2)
C47	5993(5)	5174(4)	-1354(8)	48(2)
C48	3961(4)	3078(4)	1159(7)	41(2)
C49	3442(5)	3205(5)	880(8)	49(2)
C50	3712(6)	2394(4)	1371(9)	63(3)
C51	5916(3)	4886(4)	3744(6)	25(2)
C52	6443(4)	5465(4)	3858(6)	32(2)
C53	6772(4)	5593(4)	4829(7)	39(2)

C54	6592(4)	5168(4)	5661(7)	36(2)
C55	6065(4)	4600(4)	5533(7)	36(2)
C56	5715(4)	4440(4)	4588(7)	30(2)
C57	6652(4)	5953(4)	2995(7)	45(2)
C58	7320(5)	6182(5)	2662(9)	64(3)
C59	6594(5)	6496(5)	3375(9)	52(2)
C60	5133(4)	3825(4)	4521(8)	36(2)
C61	4657(5)	3812(5)	5303(10)	55(3)
C62	5243(5)	3290(4)	4765(10)	54(3)
Cl6	8450(1)	2054(1)	850(2)	54(1)
C15	8299(1)	2066(1)	3393(2)	45(1)
Si3	8331(1)	1490(1)	2161(2)	33(1)
N5	8541(3)	955(3)	1262(6)	28(1)
N6	8985(3)	1466(3)	2693(5)	26(1)
C63	8969(3)	1049(3)	1983(5)	26(2)
C64	9326(4)	732(4)	2040(5)	29(2)
C65	9040(4)	103(4)	1824(8)	37(2)
C66	9376(5)	-194(5)	1933(9)	50(2)
C67	9979(5)	115(5)	2231(9)	54(3)
C68	10264(5)	746(5)	2441(9)	47(2)
C69	9942(4)	1048(4)	2347(8)	35(2)
C70	8433(4)	632(4)	251(7)	29(2)
C71	8859(4)	894(4)	-592(7)	29(2)
C72	9452(4)	1512(4)	-502(8)	36(2)
C73	8730(4)	574(4)	-1574(7)	35(2)
C74	8204(4)	16(4)	-1722(7)	38(2)
C75	7785(4)	-233(4)	-886(7)	39(2)
C76	7886(4)	64(4)	112(6)	32(2)
C77	10017(4)	1440(5)	-629(11)	51(3)
C78	9455(5)	1962(5)	-1337(10)	51(3)
C79	7403(4)	-195(4)	1004(7)	38(2)
C80	7114(5)	-891(4)	1129(8)	54(2)
C81	6896(5)	-35(5)	778(9)	49(2)
C83	9336(3)	1645(4)	3684(6)	24(2)
C84	9858(4)	2231(4)	3748(7)	30(2)
C85	10207(4)	2384(4)	4680(7)	34(2)
C86	10062(4)	1983(4)	5562(7)	36(2)
C87	9160(4)	1228(4)	4566(7)	29(2)
C88	9530(4)	1412(4)	5481(7)	35(2)
C89	10050(4)	2709(4)	2834(7)	39(2)
C90	10691(5)	2905(5)	2411(9)	56(2)
C91	8590(4)	598(4)	4551(8)	34(2)
C92	8719(5)	85(4)	4825(9)	45(2)

	Anhang A	: Daten	zu den	Kristallstr	ukturanalysei
--	----------	---------	--------	-------------	---------------

C93	8119(5)	591(5)	5338(9)	49(3)
C94	10020(5)	3260(5)	3237(9)	50(2)

Cl1–Si1	2.135(3)	Cl4–Si2	2.057(3)	Cl6–Si3	2.069(3)
Cl2–Si1	2.065(3)	Cl3–Si2	2.135(3)	Cl5–Si3	2.129(3)
Si1–H1a	1.42(7)	Si2–H1b	1.45(6)	Si3–H1c	1.47(7)
Si1–N2	1.779(7)	Si2–N4	1.814(7)	Si3–N6	1.802(7)
Si1–N1	2.024(7)	Si2–N3	2.017(7)	Si3–N5	2.007(7)
Si1–C1	2.387(9)	Si2-C32	2.373(9)	Si3-C63	2.377(10)
N2C1	1.383(11)	N3-C32	1.306(10)	N5-C63	1.323(11)
N2-C8	1.445(11)	N3-C39	1.434(10)	N5-C70	1.435(10)
N1C1	1.302(10)	N4-C32	1.342(10)	N6-C63	1.350(10)
N1-C20	1.438(11)	N4-C51	1.440(10)	N6-C83	1.439(10)
C1–C2	1.466(13)	C32–C33	1.472(13)	C63–C64	1.473(14)
C2–C3	1.379(12)	C33–C38	1.396(12)	C64–C69	1.397(12)
C2–C7	1.394(12)	C33–C34	1.399(13)	C64–C65	1.401(12)
C3–C4	1.399(13)	C34–C35	1.397(14)	C65–C66	1.389(13)
C4–C5	1.352(15)	C35–C36	1.355(15)	C66–C67	1.367(15)
C5–C6	1.398(15)	C36–C37	1.364(16)	C67–C68	1.401(15)
C6–C7	1.383(13)	C37–C38	1.393(14)	C68–C69	1.368(13)
C8–C13	1.386(12)	C39–C40	1.395(12)	C70–C71	1.398(12)
C8–C9	1.411(12)	C39–C44	1.407(12)	C70–C76	1.415(12)
C9–C10	1.415(12)	C40-C41	1.420(12)	C71–C73	1.397(12)
C9–C17	1.518(12)	C40–C45	1.527(12)	C71–C72	1.530(13)
C10-C11	1.352(13)	C41–C42	1.374(13)	C72–C78	1.527(14)
C11–C12	1.374(13)	C42–C43	1.379(13)	C72–C77	1.533(14)
C12–C13	1.412(12)	C43–C44	1.396(12)	С73–С74	1.379(13)
C13–C14	1.519(12)	C44–C48	1.515(12)	C74–C75	1.379(13)
C14–C16	1.521(13)	C45–C47	1.526(13)	C75–C76	1.393(12)
C14–C15	1.539(13)	C45–C46	1.543(13)	C76–C79	1.522(12)
C17–C19	1.527(14)	C48–C49	1.531(14)	C79–C80	1.533(12)
C17–C18	1.557(14)	C48-C50	1.536(13)	C79–C81	1.545(14)
C20–C21	1.403(12)	C51–C52	1.406(11)	C83–C84	1.406(11)
C20–C25	1.406(12)	C51–C56	1.425(11)	C83–C87	1.416(12)
C21–C22	1.408(12)	C52–C53	1.396(12)	C84–C85	1.376(12)
C21–C26	1.518(12)	C52–C57	1.506(12)	C84–C89	1.539(11)
C22–C23	1.374(13)	C53–C54	1.382(13)	C85–C86	1.400(12)
C23–C24	1.375(13)	C54–C55	1.391(13)	C86–C88	1.397(13)
C24–C25	1.404(13)	C55–C56	1.391(12)	C87–C88	1.385(13)
C25–C29	1.521(13)	C56-C60	1.512(12)	C87–C91	1.518(12)

Tabelle A11: Bindungslängen [Å] und -winkel [°] von 2.

C26–C28	1.523(13)	C57–C59	1.519(14)	C89–C94	1.512(14)
C26–C27	1.526(13)	C57–C58	1.538(14)	C89–C90	1.526(13)
C29–C30	1.529(14)	C60–C61	1.525(14)	C91–C92	1.520(13)
C29–C31	1.538(14)	C60–C62	1.534(14)	C91–C93	1.524(13)
H1a–Si1–N2	127(3)	H1b–Si2–N4	114(3)	H1c-Si3-N6	115(2)
H1a–Si1–N1	87(3)	H1b–Si2–N3	87(3)	H1c-Si3-N5	92(2)
N1-Si1-N2	68.0(4)	N4-Si2-N3	67.5(3)	N6-Si3-N5	68.0(3)
H1a–Si1–Cl2	106(2)	H1b–Si2–Cl4	123(2)	H1c-Si3-Cl6	123(2)
N2-Si1-Cl2	120.6(3)	N4-Si2-Cl4	118.8(3)	N6-Si3-Cl6	119.0(3)
N1-Si1-Cl2	92.7(2)	N3-Si2-Cl4	92.6(2)	N5-Si3-Cl6	92.1(2)
H1a–Si1–Cl1	102(3)	H1b–Si2–Cl3	97(3)	H1c-Si3-Cl5	94(2)
N2-Si1-Cl1	96.7(2)	N4-Si2-Cl3	97.0(2)	N6-Si3-Cl5	96.5(2)
N1-Si1-Cl1	164.5(2)	N3-Si2-Cl3	164.3(2)	N5-Si3-Cl5	164.4(2)
Cl2–Si1–Cl1	97.42(14)	Cl4-Si2-Cl3	97.64(12)	Cl5-Si3-Cl6	97.24(13)
H1a–Si1–C1	107(3)	H1b–Si2–C32	101(3)	H1c-Si3-C63	103(3)
N2-Si1-C1	35.1(3)	N4-Si2-C32	34.2(3)	N6-Si3-C63	34.3(3)
N1-Si1-C1	33.0(3)	N3-Si2-C32	33.4(3)	N5-Si3-C63	33.8(3)
Cl2-Si1-C1	110.9(2)	Cl4-Si2-C32	109.8(2)	Cl6-Si3-C63	110.5(2)
Cl1–Si1–C1	131.5(2)	Cl3-Si2-C32	131.0(2)	Cl5-Si3-C63	130.57(19)
C1-N2-C8	124.7(7)	C32-N3-C39	127.4(7)	C63-N5-C70	126.0(7)
C1-N2-Si1	97.3(5)	C32-N3-Si2	88.5(5)	C63-N5-Si3	88.6(5)
C8-N2-Si1	136.5(6)	C39-N3-Si2	143.8(5)	C70-N5-Si3	145.0(6)
C1-N1-C20	126.2(7)	C32-N4-C51	125.3(7)	C63-N6-C83	124.4(7)
C1–N1–Si1	89.0(5)	C32-N4-Si2	96.4(5)	C63-N6-Si3	96.8(5)
C20-N1-Si1	144.1(5)	C51-N4-Si2	135.6(5)	C83-N6-Si3	136.6(5)
N1-C1-N2	105.4(8)	N3-C32-N4	107.4(7)	N5-C63-N6	106.1(8)
N1-C1-C2	129.5(7)	N3-C32-C33	126.2(7)	N5-C63-C64	126.8(7)
N2-C1-C2	125.0(6)	N4-C32-C33	126.3(7)	N6-C63-C64	127.0(7)
N1–C1–Si1	58.0(5)	N3-C32-Si2	58.2(4)	N5-C63-Si3	57.6(5)
N2-C1-Si1	47.7(4)	N4-C32-Si2	49.4(4)	N6-C63-Si3	48.8(4)
C2C1Si1	170.8(5)	C33-C32-Si2	173.2(5)	C64–C63–Si3	171.1(5)
C3–C2–C7	120.1(9)	C38–C33–C34	119.4(9)	C69–C64–C65	119.5(9)
C3-C2-C1	122.6(8)	C38–C33–C32	120.4(7)	C69–C64–C63	120.7(7)
C7–C2–C1	117.3(7)	C34–C33–C32	120.2(7)	C65–C64–C63	119.8(7)
C2C3C4	119.5(9)	C35–C34–C33	119.1(9)	C66-C65-C64	119.0(9)
C5–C4–C3	120.0(9)	C36-C35-C34	121.2(10)	C67–C66–C65	121.5(9)
C4–C5–C6	121.6(10)	C35-C36-C37	120.1(11)	C66–C67–C68	119.3(10)
C7–C6–C5	118.4(9)	C36–C37–C38	121.1(10)	C69–C68–C67	120.3(9)
С6-С7-С2	120.4(9)	C37–C38–C33	119.2(9)	C68–C69–C64	120.4(9)
С13-С8-С9	121.8(7)	C40–C39–C44	122.5(7)	C71–C70–C76	121.3(7)
C13-C8-N2	119.8(7)	C40-C39-N3	118.6(7)	C71-C70-N5	119.3(7)
C9-C8-N2	118.4(7)	C44-C39-N3	118.9(7)	C76-C70-N5	119.4(7)

C8-C9-C10	117.5(8)	C39-C40-C41	116.9(7)	C73-C71-C70	117.6(8)
C8–C9–C17	123.7(7)	C39–C40–C45	124.7(7)	C73–C71–C72	118.6(8)
C10C9C17	118.9(8)	C41-C40-C45	118.3(8)	C70–C71–C72	123.8(7)
C11-C10-C9	120.9(8)	C42-C41-C40	121.1(8)	C78–C72–C71	110.4(8)
C10-C11-C12	121.2(8)	C41-C42-C43	120.7(8)	C78–C72–C77	111.0(9)
C11-C12-C13	120.7(8)	C42-C43-C44	120.8(8)	C71–C72–C77	111.4(8)
C8-C13-C12	117.9(8)	C43-C44-C39	117.9(8)	C74–C73–C71	122.1(8)
C8-C13-C14	123.5(7)	C43-C44-C48	119.9(7)	C75–C74–C73	119.5(8)
C12-C13-C14	118.5(8)	C39–C44–C48	122.1(7)	C74–C75–C76	121.2(8)
C13-C14-C16	110.4(8)	C47-C45-C40	111.5(8)	C75–C76–C70	118.2(8)
C13-C14-C15	112.0(7)	C47-C45-C46	110.4(8)	C75–C76–C79	120.7(7)
C16-C14-C15	111.3(8)	C40-C45-C46	110.5(7)	C70–C76–C79	120.9(7)
C9–C17–C19	113.0(8)	C44-C48-C49	108.8(7)	C76–C79–C80	112.6(8)
C9–C17–C18	109.8(8)	C44-C48-C50	111.8(8)	C76–C79–C81	110.3(7)
C19–C17–C18	109.7(9)	C49-C48-C50	111.2(8)	C80–C79–C81	109.6(8)
C21-C20-C25	122.2(8)	C52-C51-C56	121.7(7)	C84–C83–C87	121.2(7)
C21-C20-N1	118.2(7)	C52-C51-N4	119.4(7)	C84-C83-N6	118.8(7)
C25-C20-N1	119.6(7)	C56-C51-N4	118.9(7)	C87-C83-N6	120.0(7)
C20-C21-C22	117.7(7)	C53-C52-C51	118.0(7)	C85–C84–C83	118.3(8)
C20-C21-C26	122.5(7)	C53–C52–C57	119.2(8)	C85–C84–C89	118.7(7)
C22-C21-C26	119.7(7)	C51–C52–C57	122.8(7)	C83–C84–C89	123.0(7)
C23-C22-C21	120.8(8)	C54–C53–C52	121.7(8)	C84–C85–C86	122.7(8)
C22–C23–C24	120.7(8)	C53–C54–C55	119.2(8)	C88–C86–C85	117.3(8)
C23-C24-C25	121.3(9)	C56-C55-C54	122.3(8)	C88–C87–C83	117.7(8)
C24-C25-C20	117.3(8)	C55-C56-C51	117.0(8)	C88–C87–C91	119.1(8)
C24–C25–C29	119.1(8)	C55-C56-C60	119.6(8)	C83–C87–C91	123.2(8)
C20-C25-C29	123.6(8)	C51-C56-C60	123.3(7)	C87–C88–C86	122.8(8)
C21-C26-C28	114.2(8)	C52–C57–C59	111.6(8)	C94–C89–C90	110.3(8)
C21-C26-C27	109.2(7)	C52–C57–C58	111.4(8)	C94–C89–C84	109.8(7)
C28-C26-C27	110.0(8)	C59–C57–C58	108.9(8)	C90–C89–C84	111.7(7)
C25-C29-C30	111.5(8)	C56-C60-C61	109.7(8)	C87–C91–C92	113.2(8)
C25-C29-C31	112.2(8)	C56-C60-C62	112.4(8)	C87–C91–C93	109.2(8)
C30-C29-C31	109.0(8)	C61-C60-C62	110.1(8)	C92–C91–C93	110.2(8)

Verbindung 3

Abb. A3: Struktur von **3** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A12: Atomkoordinaten (× 10^4) und äquivalente isotrope Auslenkungsparameter (Å ² × 10^3) der
Nichtwasserstoff-Atome von 3. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten
U _{ij} -Tensors.

	X	У	Z	U _{eq}
Cl	3294(1)	2180(1)	2003(1)	38(1)
Si	3788(1)	1618(1)	3321(1)	26(1)
N1	4134(3)	634(3)	4315(3)	23(1)
N2	3208(3)	285(3)	2866(3)	21(1)
N3	3203(4)	1952(3)	4466(3)	26(1)
C1	3625(4)	-82(4)	3605(4)	23(1)
C2	3545(5)	-1126(4)	3537(4)	28(1)
C3	2626(6)	-2008(5)	3219(5)	44(2)
C4	2583(8)	-2975(6)	3150(7)	61(2)
C5	3435(8)	-3051(6)	3413(7)	71(3)
C6	4343(7)	-2187(6)	3711(7)	61(2)
C7	4409(6)	-1230(5)	3794(5)	40(2)
C8	2719(4)	-199(4)	1878(4)	22(1)
C9	3321(5)	-250(4)	1033(4)	27(1)
C10	2821(5)	-712(5)	76(4)	37(1)
C11	1755(5)	-1143(5)	-38(4)	41(1)
C12	1164(5)	-1100(5)	786(5)	33(1)
C13	1623(4)	-636(4)	1765(4)	24(1)
C14	4503(5)	218(5)	1105(5)	35(1)
C15	4842(5)	-578(5)	843(6)	42(2)
-----	---------	----------	---------	-------
C16	5060(5)	1192(5)	380(5)	44(2)
C17	928(4)	-618(5)	2658(4)	30(1)
C18	103(7)	-1717(6)	2985(6)	60(2)
C19	404(5)	-5(5)	2317(5)	41(1)
C20	4512(4)	494(4)	5315(4)	25(1)
C21	3804(4)	-135(5)	6096(4)	30(1)
C22	4194(5)	-259(5)	7072(5)	38(2)
C23	5271(6)	264(6)	7279(5)	44(2)
C24	5944(5)	900(5)	6505(5)	36(1)
C25	5594(5)	1020(5)	5515(5)	31(1)
C26	2617(5)	-677(5)	5969(5)	37(1)
C27	2104(5)	-1874(6)	6049(6)	48(2)
C28	2149(6)	-254(7)	6797(6)	58(2)
C29	6367(5)	1781(6)	4693(5)	44(2)
C30	7363(6)	1699(8)	4660(6)	63(2)
C31	6665(7)	2903(6)	4964(7)	61(2)
C32	2296(6)	1982(7)	4303(6)	60(2)
C33	3781(7)	2325(7)	5340(7)	67(2)

Tabelle A13: Bindungslängen [Å] und -winkel [°] von 3.

Cl–Si	2.129(2)	C3–C4	1.399(9)	C17–C18	1.518(10)
Si–H1	1.35(5)	C4–C5	1.358(13)	C20–C21	1.391(8)
Si–N2	1.801(4)	C5–C6	1.360(12)	C20–C25	1.405(8)
Si–N3	1.859(5)	C6–C7	1.370(10)	C21–C22	1.397(8)
Si–N1	2.157(5)	C8–C9	1.404(8)	C21–C26	1.528(8)
Si–C1	2.424(5)	C8–C13	1.419(7)	C22–C23	1.401(9)
N1C1	1.293(7)	C9–C10	1.390(8)	C23–C24	1.367(10)
N1-C20	1.424(7)	C9–C14	1.525(8)	C24–C25	1.384(8)
N2C1	1.362(7)	C10-C11	1.379(10)	C25–C29	1.528(9)
N2-C8	1.427(6)	C11–C12	1.369(9)	C26–C28	1.538(10)
N3-C33	1.324(9)	C12–C13	1.399(8)	C26–C27	1.538(10)
N3-C32	1.376(9)	C13–C17	1.523(8)	C29–C31	1.524(11)
C1–C2	1.488(7)	C14–C15	1.525(9)	C29–C30	1.535(10)
C2–C3	1.388(9)	C14–C16	1.543(9)		
C2–C7	1.396(9)	C17–C19	1.516(8)		
H1-Si-N2	115(2)	N1-C1-C2	126.7(5)	C9C14C15	112.3(5)
H1-Si-N3	118.4(19)	N2-C1-C2	123.7(5)	C9-C14-C16	110.1(5)
N2-Si-N3	120.1(2)	N1-C1-Si	62.5(3)	C15-C14-C16	111.4(5)
H1–Si–Cl	96.9(19)	N2-C1-Si	47.2(2)	C19–C17–C18	109.7(5)

N2–Si–Cl	96.51(15)	C2–C1–Si	168.3(4)	C19–C17–C13	110.8(5)
N3–Si–Cl	101.30(15)	С3-С2-С7	118.7(5)	C18-C17-C13	111.4(5)
H1-Si-N1	87.6(19)	C3-C2-C1	121.5(5)	C21-C20-C25	120.7(5)
N2-Si-N1	65.69(17)	C7–C2–C1	119.9(6)	C21-C20-N1	119.6(5)
N3–Si–N1	91.98(18)	C2C3C4	120.0(7)	C25-C20-N1	119.6(5)
Cl-Si-N1	161.69(14)	C5-C4-C3	119.8(8)	C20-C21-C22	118.5(5)
H1-Si-C1	101(2)	C4–C5–C6	120.6(6)	C20-C21-C26	123.9(5)
N2-Si-C1	33.69(18)	C5-C6-C7	121.0(8)	C22-C21-C26	117.5(5)
N3-Si-C1	110.08(18)	С6С7С2	119.9(7)	C21–C22–C23	121.1(6)
Cl-Si-C1	129.78(15)	C9-C8-C13	120.6(5)	C24–C23–C22	118.9(5)
N1-Si-C1	32.12(17)	C9-C8-N2	120.1(5)	C23–C24–C25	121.9(6)
C1-N1-C20	126.3(5)	C13-C8-N2	119.3(5)	C24-C25-C20	118.8(5)
C1–N1–Si	85.4(3)	С10-С9-С8	118.5(5)	C24-C25-C29	120.2(6)
C20-N1-Si	147.6(3)	C10-C9-C14	118.6(5)	C20–C25–C29	120.8(5)
C1-N2-C8	127.1(4)	C8-C9-C14	122.8(5)	C21-C26-C28	110.4(5)
C1–N2–Si	99.1(3)	С11-С10-С9	121.2(5)	C21–C26–C27	111.8(5)
C8–N2–Si	131.6(3)	C12-C11-C10	120.5(5)	C28-C26-C27	111.1(5)
C33-N3-C32	122.9(6)	C11-C12-C13	121.0(6)	C31–C29–C25	110.7(6)
C33–N3–Si	117.1(5)	C12-C13-C8	118.1(5)	C31-C29-C30	109.0(6)
C32–N3–Si	118.9(4)	C12-C13-C17	118.9(5)	C25-C29-C30	110.7(6)
N1-C1-N2	109.5(4)	C8-C13-C17	123.0(5)		

Abb. A4: Struktur von **4** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A14: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **4**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	х	У	Z	U_{eq}
Cl1	4541(1)	5746(1)	1856(1)	45(1)
Si1	4654(1)	6899(1)	1656(1)	24(1)
Si2	5089(1)	7118(1)	117(1)	29(1)
Si3	6897(1)	6464(1)	1430(1)	34(1)
N1	4091(1)	8042(1)	1422(1)	24(1)
N2	3142(1)	7077(1)	1567(1)	24(1)
N3	5499(1)	6858(1)	1057(1)	26(1)
C1	3145(1)	7822(1)	1559(1)	22(1)
C2	2246(2)	8280(1)	1737(1)	26(1)
C3	1079(2)	8102(1)	1482(1)	39(1)
C4	259(2)	8541(1)	1656(2)	56(1)
C5	605(2)	9148(1)	2107(2)	58(1)
C6	1766(2)	9326(1)	2372(1)	45(1)
C7	2591(2)	8898(1)	2189(1)	32(1)
C8	4375(1)	8780(1)	1293(1)	24(1)
C9	3619(2)	9228(1)	746(1)	29(1)
C10	3996(2)	9932(1)	654(1)	37(1)
C11	5067(2)	10190(1)	1062(1)	38(1)
C12	5812(2)	9740(1)	1578(1)	33(1)
C13	5491(2)	9031(1)	1700(1)	26(1)
C14	2447(2)	8996(1)	226(1)	34(1)
C15	2467(2)	8982(1)	-590(1)	45(1)
C16	1461(2)	9495(1)	290(1)	48(1)
C17	6319(2)	8551(1)	2275(1)	31(1)
C18	7602(2)	8746(1)	2418(1)	48(1)
C19	6008(2)	8557(1)	3009(1)	42(1)
C20	2341(2)	6632(1)	1830(1)	26(1)
C21	1562(2)	6186(1)	1312(1)	33(1)
C22	810(2)	5743(1)	1561(1)	38(1)
C23	834(2)	5741(1)	2298(1)	42(1)
C24	1609(2)	6183(1)	2801(1)	40(1)
C25	2385(2)	6638(1)	2584(1)	31(1)
C26	1488(2)	6176(1)	489(1)	50(1)
C27	325(3)	6434(2)	-9(1)	70(1)
C28	1758(3)	5419(2)	250(2)	83(1)
C29	3232(2)	7094(1)	3174(1)	38(1)
C30	2604(2)	7583(1)	3595(1)	51(1)
C31	4131(2)	6605(2)	3715(1)	56(1)

	Anhang A: Daten zu den Kristallstrukturanalysen					
C32	3484(2)	7131(1)	-282(1)	41(1)		
C33	5584(2)	6442(1)	-471(1)	48(1)		
C34	5681(2)	8032(1)	-19(1)	38(1)		
C35	6959(2)	5490(1)	1155(1)	56(1)		
C36	7986(2)	7000(1)	1116(1)	50(1)		
C37	7427(2)	6501(1)	2470(1)	46(1)		

Tabelle A15: Bindungslängen [Å] und -winkel [°] von 4.

Cl1–Si1	2.1554(7)	N2-C20	1.457(2)	C14-C16	1.532(3)
Si1–H1	1.378(19)	C1–C2	1.485(2)	C14–C15	1.540(3)
Si1–N3	1.7295(14)	C2–C3	1.384(3)	C17–C19	1.532(3)
Si1-N2	1.8100(15)	C2–C7	1.403(2)	C17–C18	1.532(3)
Si1-N1	2.2046(15)	C3–C4	1.386(3)	C20–C21	1.397(3)
Si2–N3	1.7515(15)	C4–C5	1.385(3)	C20–C25	1.402(2)
Si2-C32	1.857(2)	C5–C6	1.379(3)	C21–C22	1.397(2)
Si2-C34	1.8652(19)	C6–C7	1.387(2)	C21–C26	1.523(3)
Si2-C33	1.872(2)	C8–C13	1.413(2)	C22–C23	1.376(3)
Si3–N3	1.7754(16)	C8–C9	1.415(3)	C23–C24	1.376(3)
Si3-C35	1.865(2)	C9–C10	1.396(3)	C24–C25	1.401(2)
Si3-C37	1.868(2)	C9–C14	1.521(3)	C25–C29	1.515(3)
Si3-C36	1.871(2)	C10-C11	1.375(3)	C26–C27	1.512(4)
N1C1	1.304(2)	C11–C12	1.381(3)	C26–C28	1.522(3)
N1-C8	1.432(2)	C12–C13	1.393(2)	C29–C31	1.535(3)
N2C1	1.364(2)	C13–C17	1.516(3)	C29–C30	1.536(3)
H1-Si1-N3	113.7(8)	C1-N2-Si1	100.12(10)	C12-C13-C17	120.12(16)
H1-Si1-N2	105.0(8)	C20-N2-Si1	128.20(11)	C8-C13-C17	121.09(15)
N3-Si1-N2	135.97(7)	Si1-N3-Si2	126.84(9)	C9-C14-C16	112.21(17)
H1-Si1-Cl1	99.9(7)	Si1–N3–Si3	115.69(8)	C9C14C15	110.93(15)
N3-Si1-Cl1	98.69(5)	Si2–N3–Si3	117.38(8)	C16-C14-C15	109.23(17)
N2-Si1-Cl1	94.50(5)	N1-C1-N2	108.44(14)	C13–C17–C19	110.59(15)
H1-Si1-N1	86.9(7)	N1-C1-C2	127.57(14)	C13–C17–C18	113.93(16)
N3-Si1-N1	96.77(6)	N2-C1-C2	123.83(14)	C19–C17–C18	110.21(17)
N2-Si1-N1	64.39(6)	C3–C2–C7	119.14(16)	C21-C20-C25	121.52(15)
Cl1-Si1-N1	158.88(5)	C3-C2-C1	121.67(15)	C21-C20-N2	117.90(15)
N3-Si2-C32	111.01(8)	C7–C2–C1	119.17(16)	C25-C20-N2	120.54(16)
N3-Si2-C34	112.19(9)	C2C3C4	120.35(18)	C22-C21-C20	118.43(17)
C32-Si2-C34	109.22(10)	C5-C4-C3	120.2(2)	C22–C21–C26	119.01(18)
N3-Si2-C33	111.73(9)	C6C5C4	120.03(18)	C20-C21-C26	122.54(15)
C32-Si2-C33	104.29(11)	C5-C6-C7	120.13(18)	C23–C22–C21	121.09(19)
C34-Si2-C33	108.06(9)	C6–C7–C2	120.11(18)	C24–C23–C22	119.72(17)

N3-Si3-C35	112.96(10)	С13С8С9	120.55(15)	C23–C24–C25	121.73(18)
N3-Si3-C37	112.89(8)	C13-C8-N1	116.96(15)	C24-C25-C20	117.50(18)
C35-Si3-C37	107.19(11)	C9-C8-N1	122.33(15)	C24–C25–C29	118.56(16)
N3-Si3-C36	109.58(9)	С10-С9-С8	117.55(17)	C20-C25-C29	123.92(15)
C35-Si3-C36	108.96(11)	C10-C9-C14	116.96(17)	C27–C26–C28	110.0(2)
C37–Si3–C36	104.88(11)	C8–C9–C14	125.43(16)	C27-C26-C21	112.86(18)
C1-N1-C8	126.28(14)	С11-С10-С9	122.34(18)	C28-C26-C21	110.9(2)
C1–N1–Si1	84.46(10)	C10-C11-C12	119.59(17)	C25-C29-C31	110.71(18)
C8–N1–Si1	148.69(11)	C11-C12-C13	121.13(18)	C25-C29-C30	111.69(17)
C1-N2-C20	124.55(13)	C12–C13–C8	118.77(17)	C31–C29–C30	110.97(17)

Abb. A5: Struktur von **5** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A16: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **5**. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	X	у	Z	U _{eq}
Si	5311(1)	5258(1)	7594(1)	36(1)
N1	6653(1)	6000(1)	7172(1)	29(1)
N2	6144(1)	6564(1)	7850(1)	30(1)
C1	6943(2)	6810(2)	7496(1)	30(1)
C2	7947(2)	7802(2)	7493(1)	33(1)
C3	8867(2)	7791(2)	7377(1)	43(1)
C4	9815(2)	8718(2)	7378(1)	56(1)

C_{6} $g_{0}(8)(2)$ $g_{6}(6)(2)$ $7_{6}(2)(1)$ $5_{6}(1)$	
$C_0 = \frac{6946(2)}{9009(2)} = \frac{9009(2)}{7013(1)} = \frac{50(1)}{50(1)}$	
C7 7997(2) 8744(2) 7613(1) 43(1)	
C8 7132(2) 6035(2) 6652(1) 30(1)	
C9 7067(2) 6636(2) 6223(1) 34(1)	
C10 7570(2) 6677(2) 5732(1) 41(1)	
C11 8112(2) 6149(2) 5662(1) 43(1)	
C12 8151(2) 5552(2) 6085(1) 40(1)	
C13 7665(2) 5472(2) 6586(1) 34(1)	
C14 6456(2) 7211(2) 6257(1) 40(1)	
C15 7158(3) 8392(2) 6166(1) 58(1)	
C16 5557(2) 6758(3) 5840(1) 55(1)	
C17 7698(2) 4765(2) 7026(1) 42(1)	
C18 8787(3) 4899(3) 7103(1) 60(1)	
C19 6916(3) 3618(2) 6886(1) 54(1)	
C20 6190(2) 7130(2) 8341(1) 30(1)	
C21 5623(2) 7660(2) 8358(1) 35(1)	
C22 5693(2) 8215(2) 8835(1) 42(1)	
C23 6299(2) 8251(2) 9273(1) 46(1)	
C24 6849(2) 7720(2) 9245(1) 40(1)	
C25 6815(2) 7150(2) 8780(1) 33(1)	
C26 4926(2) 7634(2) 7894(1) 44(1)	
C27 5293(3) 8712(3) 7656(2) 80(1)	
C28 3792(2) 7155(3) 8085(1) 63(1)	
C29 7431(2) 6577(2) 8779(1) 37(1)	
C30 8591(2) 7312(2) 8913(1) 52(1)	
C31 6941(3) 5659(2) 9180(1) 53(1)	
Cl1 4432(1) 4872(1) 6893(1) 56(1)	
Cl2 5580(1) 4104(1) 7880(1) 52(1)	
Cl3 4058(1) 4905(1) 8140(1) 50(1)	
Cl1b 4159(9) 5514(10) 7220(5) 90(3)	
Cl2b 4912(12) 4037(10) 6993(5) 111(4)	
Cl3b 5020(18) 4335(16) 8292(7) 151(7)	

Tabelle A17: Bindungslängen [Å] und -winkel [°] von 5.

Si–N2	1.8034(19)	C2–C3	1.394(3)	C17–C18	1.529(4)
Si–N1	2.0037(17)	C3–C4	1.384(4)	C17–C19	1.537(4)
Si–Cl1	2.0523(9)	C4–C5	1.377(5)	C20–C21	1.403(3)
Si-Cl2	2.0554(10)	C5–C6	1.374(5)	C20–C25	1.408(3)
Si–Cl3b	2.092(11)	C6–C7	1.386(4)	C21–C22	1.399(3)
Si–Cl1b	2.125(10)	C8–C9	1.408(3)	C21-C26	1.521(3)

Si–Cl3	2.1254(9)	C8–C13	1.411(3)	C22–C23	1.379(4)
Si–Cl2b	2.167(11)	C9–C10	1.397(3)	C23–C24	1.384(3)
Si–C1	2.364(2)	C9–C14	1.518(3)	C24–C25	1.401(3)
N1C1	1.315(3)	C10-C11	1.379(4)	C25–C29	1.519(3)
N1–C8	1.445(2)	C11–C12	1.378(4)	C26–C27	1.517(4)
N2-C1	1.358(3)	C12–C13	1.395(3)	C26–C28	1.529(4)
N2-C20	1.444(2)	C13–C17	1.518(3)	C29–C31	1.530(3)
C1–C2	1.473(3)	C14–C15	1.536(4)	C29–C30	1.537(4)
C2–C7	1.387(3)	C14–C16	1.538(4)		
N2-Si-N1	68.64(7)	Cl2-Si-C1	108.21(6)	C11-C10-C9	122.0(2)
N2-Si-Cl1	125.85(7)	Cl3b–Si–C1	119.5(6)	C12-C11-C10	119.2(2)
N1-Si-Cl1	92.15(6)	Cl1b–Si–C1	107.6(3)	C11-C12-C13	122.0(2)
N2-Si-Cl2	117.17(7)	Cl3–Si–C1	129.88(6)	C12-C13-C8	117.8(2)
N1-Si-Cl2	94.63(6)	Cl2b–Si–C1	117.3(4)	C12-C13-C17	119.4(2)
Cl1–Si–Cl2	114.37(5)	C1-N1-C8	124.58(17)	C8-C13-C17	122.84(19)
N2-Si-Cl3b	102.7(6)	C1–N1–Si	88.31(12)	C9-C14-C15	112.0(2)
N1–Si–Cl3b	126.9(6)	C8–N1–Si	143.58(13)	C9-C14-C16	110.2(2)
Cl1–Si–Cl3b	127.3(7)	C1-N2-C20	126.26(17)	C15-C14-C16	110.0(2)
Cl2–Si–Cl3b	40.9(6)	C1–N2–Si	95.74(13)	C13-C17-C18	113.1(2)
N2–Si–Cl1b	97.9(3)	C20-N2-Si	135.86(14)	C13-C17-C19	109.5(2)
N1–Si–Cl1b	110.0(3)	N1C1N2	107.28(18)	C18-C17-C19	109.4(2)
Cl1–Si–Cl1b	40.4(3)	N1C1C2	127.48(19)	C21-C20-C25	122.13(18)
Cl2–Si–Cl1b	142.9(4)	N2C1C2	125.23(19)	C21-C20-N2	118.61(18)
Cl3b–Si–Cl1b	123.0(7)	N1–C1–Si	57.91(11)	C25-C20-N2	119.25(18)
N2-Si-Cl3	95.01(6)	N2–C1–Si	49.38(10)	C22-C21-C20	117.6(2)
N1-Si-Cl3	163.49(6)	C2–C1–Si	174.21(15)	C22-C21-C26	119.2(2)
Cl1-Si-Cl3	96.03(4)	С7-С2-С3	119.4(2)	C20-C21-C26	123.20(19)
Cl2-Si-Cl3	95.01(4)	C7–C2–C1	121.2(2)	C23-C22-C21	121.7(2)
Cl3b–Si–Cl3	57.1(6)	C3-C2-C1	119.5(2)	C22-C23-C24	119.5(2)
Cl1b–Si–Cl3	68.8(3)	C4–C3–C2	119.9(2)	C23-C24-C25	121.7(2)
N2-Si-Cl2b	151.9(4)	C5-C4-C3	119.9(3)	C24-C25-C20	117.28(19)
N1–Si–Cl2b	83.6(4)	C6C5C4	121.0(3)	C24-C25-C29	118.99(19)
Cl1–Si–Cl2b	48.0(4)	C5-C6-C7	119.4(3)	C20-C25-C29	123.71(18)
Cl2–Si–Cl2b	68.1(4)	C6-C7-C2	120.5(3)	C27-C26-C21	112.2(3)
Cl3b–Si–Cl2b	97.5(7)	C9–C8–C13	121.27(18)	C27-C26-C28	109.6(3)
Cl1b–Si–Cl2b	87.0(5)	C9–C8–N1	119.58(17)	C21-C26-C28	110.7(2)
Cl3–Si–Cl2b	112.4(4)	C13-C8-N1	119.15(18)	C25-C29-C31	110.0(2)
N2-Si-C1	34.88(7)	C10C9C8	117.7(2)	C25-C29-C30	111.87(19)
N1-Si-C1	33.77(7)	C10-C9-C14	118.3(2)	C31-C29-C30	110.8(2)
Cl1–Si–C1	112.40(6)	C8-C9-C14	123.89(18)		

Abb. A6: Struktur von **6** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

	х	у	Z	U_{eq}	
Cl1	4365(1)	1971(1)	5159(1)	57(1)	
Cl2	2062(1)	771(1)	4489(1)	68(1)	
Si	3016(1)	1897(1)	5628(1)	53(1)	
N1	3852(2)	3354(2)	6481(2)	34(1)	
N2	2819(2)	2867(2)	5110(2)	34(1)	
N3	2548(3)	1304(3)	6815(3)	67(1)	
C1	3429(2)	3666(2)	5788(2)	34(1)	
C2	3535(3)	4679(3)	5708(3)	42(1)	
C3	4460(3)	5537(3)	5974(3)	55(1)	
C4	4557(4)	6491(4)	5940(5)	86(2)	
C5	3751(5)	6599(4)	5653(6)	102(2)	
C6	2849(5)	5773(4)	5359(6)	103(2)	
C7	2736(4)	4817(3)	5385(4)	66(1)	
C8	4291(3)	3849(2)	7479(3)	37(1)	
C9	3676(3)	3937(3)	8277(3)	45(1)	
C10	4144(3)	4419(3)	9248(3)	51(1)	
C11	5156(3)	4787(3)	9425(3)	52(1)	
C12	5744(3)	4681(3)	8663(3)	44(1)	
C13	5328(2)	4215(3)	7662(2)	36(1)	

Tabelle A18: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von 6. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

C14	2533(3)	3502(3)	8163(3)	60(1)	
C15	2226(4)	4307(5)	8230(5)	90(2)	
C16	1968(4)	2661(5)	9001(4)	93(2)	
C17	6021(3)	4115(3)	6828(3)	41(1)	
C18	6942(3)	5148(3)	6544(3)	55(1)	
C19	6380(3)	3417(3)	7226(3)	55(1)	
C20	2387(2)	2947(2)	4096(2)	34(1)	
C21	3042(3)	3404(3)	3198(2)	37(1)	
C22	2586(3)	3397(3)	2217(3)	52(1)	
C23	1558(3)	2972(4)	2114(3)	60(1)	
C24	934(3)	2546(3)	3012(3)	51(1)	
C25	1333(3)	2516(3)	4004(3)	40(1)	
C26	4184(3)	3870(3)	3244(3)	43(1)	
C27	4722(3)	5004(4)	2989(4)	65(1)	
C28	4543(4)	3317(4)	2500(3)	60(1)	
C29	596(3)	2065(3)	4953(3)	45(1)	
C30	72(4)	2679(4)	5195(5)	75(1)	
C31	-200(3)	958(4)	4766(4)	69(1)	
C32	3273(4)	1334(4)	7629(4)	85(2)	
C33	1494(3)	594(3)	6983(4)	64(1)	
-					

Tabelle A19: Bindungslängen [Å] und -winkel [°] von ${\bf 6}.$

Cl1–Si	2.0783(15)	C3–C4	1.382(7)	C17–C19	1.497(5)
Cl2–Si	2.1272(17)	C4–C5	1.362(8)	C17–C18	1.533(5)
Si–N3	1.681(3)	C5–C6	1.366(8)	C20–C25	1.399(5)
Si–N2	1.763(3)	C6–C7	1.375(6)	C20–C21	1.418(5)
Si–N1	2.193(3)	C8–C13	1.402(5)	C21–C22	1.392(5)
N1-C1	1.294(4)	C8–C9	1.410(5)	C21–C26	1.512(5)
N1-C8	1.424(4)	C9–C10	1.401(5)	C22–C23	1.366(6)
N2C1	1.382(4)	C9–C14	1.524(5)	C23–C24	1.391(6)
N2-C20	1.447(4)	C10-C11	1.364(6)	C24–C25	1.377(5)
N3-C33	1.429(5)	C11–C12	1.361(6)	C25–C29	1.526(5)
N3-C32	1.476(6)	C12–C13	1.409(5)	C26–C28	1.518(6)
C1–C2	1.467(5)	C13–C17	1.534(5)	C26–C27	1.525(6)
C2–C7	1.389(5)	C14–C15	1.514(8)	C29–C31	1.519(6)
C2–C3	1.397(5)	C14–C16	1.531(7)	C29–C30	1.529(6)
N3-Si-N2	124.11(18)	С7-С2-С3	118.3(4)	C9-C14-C16	109.9(4)
N3-Si-Cl1	114.42(15)	C7–C2–C1	122.1(3)	C19–C17–C18	109.3(3)
N2-Si-Cl1	115.36(11)	C3-C2-C1	119.6(3)	C19–C17–C13	111.2(3)
N3-Si-Cl2	102.17(15)	C4–C3–C2	120.1(4)	C18-C17-C13	111.9(3)

N2-Si-Cl2	95.75(10)	C5-C4-C3	120.3(5)	C25-C20-C21	121.6(3)
Cl1–Si–Cl2	96.67(7)	C4–C5–C6	120.5(5)	C25-C20-N2	119.5(3)
N3–Si–N1	89.88(17)	C5-C6-C7	120.2(5)	C21-C20-N2	118.8(3)
N2-Si-N1	65.51(11)	С6С7С2	120.6(4)	C22-C21-C20	116.9(3)
Cl1-Si-N1	91.22(9)	С13-С8-С9	121.1(3)	C22-C21-C26	119.1(3)
Cl2-Si-N1	161.24(9)	C13-C8-N1	119.1(3)	C20-C21-C26	124.0(3)
C1-N1-C8	124.4(3)	C9-C8-N1	119.9(3)	C23-C22-C21	122.1(4)
C1–N1–Si	84.82(18)	С10-С9-С8	117.5(3)	C22-C23-C24	119.9(3)
C8–N1–Si	146.2(2)	С10-С9-С14	118.5(3)	C25-C24-C23	121.1(4)
C1-N2-C20	125.7(3)	C8-C9-C14	124.0(3)	C24-C25-C20	118.4(3)
C1-N2-Si	101.3(2)	С11-С10-С9	121.6(3)	C24-C25-C29	117.5(3)
C20-N2-Si	131.1(2)	C12-C11-C10	120.8(3)	C20-C25-C29	124.0(3)
C33-N3-C32	117.4(4)	C11-C12-C13	120.7(3)	C21-C26-C28	111.3(3)
C33–N3–Si	123.0(3)	C8-C13-C12	118.3(3)	C21-C26-C27	111.2(3)
C32–N3–Si	118.0(3)	C8-C13-C17	122.9(3)	C28-C26-C27	111.3(3)
N1-C1-N2	108.4(3)	C12-C13-C17	118.8(3)	C31-C29-C25	112.3(3)
N1-C1-C2	127.9(3)	C15-C14-C9	112.9(4)	С31-С29-С30	109.7(4)
N2-C1-C2	123.7(3)	C15-C14-C16	111.5(4)	C25-C29-C30	111.4(3)

Abb. A7: Struktur der drei kristallographisch unabhängigen Moleküle von 7 im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A20: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von 7. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	x	у	Z	U _{eq}
Si1	3173(1)	1590(1)	8082(1)	19(1)
Cl1	3422(1)	983(1)	7533(2)	22(1)
Cl2	3735(1)	2300(1)	6962(1)	22(1)
C1a	3541(2)	1995(2)	9382(3)	14(1)
Cl1b	3545(8)	2361(8)	8836(17)	65(6)
Cl2b	3628(10)	1245(8)	9611(19)	86(7)
C1b	3510(17)	1267(16)	7120(30)	49(12)
N2	2471(2)	1478(2)	7560(3)	15(1)
N1	2409(1)	907(1)	8909(3)	12(1)
C1	2079(2)	1015(2)	8234(3)	13(1)
C2	1414(2)	703(2)	8176(4)	17(1)
C3	1076(2)	93(2)	8374(4)	21(1)
C4	463(2)	-206(2)	8310(4)	30(1)
C5	158(2)	113(2)	8060(5)	30(1)
C6	484(2)	715(2)	7842(4)	27(1)
C7	1116(2)	1030(2)	7895(4)	18(1)
C8	2295(2)	1661(2)	6574(3)	13(1)
C9	2066(2)	1248(2)	5684(4)	16(1)
C10	1877(2)	1423(2)	4748(4)	18(1)
C11	1904(2)	1984(2)	4699(4)	23(1)
C12	2139(2)	2383(2)	5581(3)	16(1)
C13	2341(2)	2230(2)	6526(4)	17(1)
C14	2029(2)	633(2)	5681(4)	19(1)
C15	2518(2)	657(2)	4885(4)	26(1)
C16	1404(2)	123(2)	5374(4)	25(1)
C17	2607(2)	2695(2)	7435(3)	22(1)
C18	2138(2)	2814(2)	7973(4)	35(1)
C19	3135(2)	3290(2)	7015(4)	32(1)
C20	2198(2)	589(2)	9938(3)	13(1)
C21	2038(2)	852(2)	10788(4)	15(1)
C22	1843(2)	540(2)	11776(4)	21(1)
C23	1822(2)	-7(2)	11934(4)	19(1)
C24	1990(2)	-261(2)	11079(4)	19(1)
C25	2182(2)	38(2)	10062(3)	14(1)
C26	2074(2)	1463(2)	10710(4)	18(1)
C27	2525(2)	1903(2)	11536(4)	30(1)
C28	1455(2)	1420(2)	10844(4)	29(1)
C29	2385(2)	-243(2)	9187(4)	21(1)

C30 1956(2) –918(2)	9043(4)	35(1)
C31 3025(2) -126(2)	9471(4)	27(1)
Si2 5025(1) 4874(1)	4717(1)	27(1)
Cl3 5560(1) 5747(1)	4185(2)	25(1)
Cl4 4309(1) 4665(1)	3509(2)	26(1)
C2a 4588(2) 4762(2)	5959(4)	23(1)
Cl3b 5236(2) 5648(2)	6046(4)	29(1)
Cl4b 4234(2) 4331(2)	5475(4)	28(1)
C2b 5135(7) 5357(6)	3664(13)	26(3)
N4 5192(2) 4303(2)	4159(3)	17(1)
N3 5731(2) 4852(2)	5500(3)	14(1)
C41 5655(2) 4417(2)	4842(3)	12(1)
C42 6008(2) 4094(2)	4836(4)	14(1)
C43 6617(2) 4402(2)	5052(4)	22(1)
C44 6943(2) 4108(2)	5072(5)	30(1)
C45 6639(3) 3475(2)	4870(5)	35(1)
C46 6037(2) 3166(2)	4630(4)	30(1)
C47 5702(2) 3469(2)	4615(4)	21(1)
C49 6077(2) 5005(2)	6505(4)	16(1)
C50 6604(2) 5571(2)	6586(3)	17(1)
C51 6940(2) 5706(2)	7558(4)	22(1)
C52 6762(2) 5307(2)	8413(4)	22(1)
C53 6238(2) 4754(2)	8312(4)	21(1)
C54 5876(2) 4586(2)	7380(4)	15(1)
C55 6813(2) 6046(2)	5682(4)	23(1)
C56 7472(2) 6283(2)	5343(5)	46(1)
C57 6743(2) 6578(2)	6059(4)	27(1)
C58 5298(2) 3981(2)	7348(4)	17(1)
C59 5417(2) 3452(2)	7563(4)	26(1)
C60 4836(2) 3957(2)	8162(4)	28(1)
C61 5066(2) 3976(2)	3140(3)	15(1)
C62 5483(2) 4234(2)	2266(3)	16(1)
C63 5343(2) 3917(2)	1279(4)	18(1)
C64 4809(2) 3368(2)	1141(4)	26(1)
C65 4420(2) 3130(2)	2006(4)	22(1)
C66 4532(2) 3412(2)	3010(4)	20(1)
C67 6057(2) 4852(2)	2342(4)	21(1)
C68 6622(2) 4805(2)	2069(5)	33(1)
C69 6004(2) 5296(2)	1553(4)	30(1)
C70 4076(2) 3107(2)	3933(4)	34(1)
C71 3481(2) 3091(3)	3729(6)	57(2)
C72 3952(2) 2453(2)	4089(4)	51(1)
S:2 6507(1) 9261(1)	8340	18(1)

Cl6	7052(1)	8105(1)	9472(1)	30(1)
C15	6770(1)	9124(1)	8862(1)	35(1)
C3a	6876(2)	8218(2)	7052(5)	24(1)
Cl6b	6790(30)	8050(20)	7020(60)	35(1)
Cl5b	6770(1)	9124(1)	8862(1)	35(1)
C3b	6810(40)	9270(50)	8120(90)	24(1)
N5	5750(2)	8204(1)	7485(3)	14(1)
N6	5791(1)	7678(1)	8846(3)	12(1)
C81	5411(2)	7759(2)	8161(3)	16(1)
C82	4749(2)	7408(2)	8221(3)	14(1)
C83	4429(2)	7718(2)	8022(4)	19(1)
C84	3791(2)	7388(2)	8067(4)	28(1)
C85	3494(2)	6794(2)	8338(5)	33(1)
C86	3819(2)	6486(2)	8519(5)	32(1)
C87	4436(2)	6803(2)	8462(4)	22(1)
C88	5542(2)	8312(2)	6478(3)	15(1)
C89	5533(2)	8860(2)	6312(4)	21(1)
C90	5330(2)	8951(2)	5325(4)	26(1)
C91	5132(2)	8535(2)	4503(4)	30(1)
C92	5156(2)	8007(2)	4639(4)	21(1)
C93	5353(2)	7883(2)	5633(4)	18(1)
C94	5767(2)	9352(2)	7197(4)	27(1)
C95	5326(3)	9598(2)	7366(5)	46(1)
C96	6399(2)	9869(2)	6913(4)	33(1)
C97	5367(2)	7292(2)	5704(4)	22(1)
C98	5809(2)	7291(2)	4843(4)	27(1)
C99	4745(2)	6742(2)	5561(4)	34(1)
C100	5610(2)	7334(2)	9845(3)	13(1)
C101	5632(2)	6793(2)	9879(4)	17(1)
C102	5442(2)	6454(2)	10847(4)	26(1)
C103	5248(2)	6639(2)	11729(4)	27(1)
C104	5236(2)	7167(2)	11679(4)	26(1)
C105	5417(2)	7532(2)	10732(4)	16(1)
C106	5876(2)	6581(2)	8926(4)	30(1)
C107	6419(2)	6533(2)	9294(5)	37(1)
C108	5390(2)	5979(2)	8443(5)	54(1)
C111	5893(2)	8577(2)	11479(4)	32(1)
C109	5404(2)	8118(2)	10743(3)	18(1)
C110	4779(2)	8020(2)	11040(4)	30(1)

Si1–N2	1.791(4)	Si2–C2b	1.710(14)	Si3–C3b	2.33(11)
Si1–C1b	1.876(4)	Si2–C2a	1.825(5)	Si3–N6	1.799(3)
Si1–C1a	1.876(4)	Si2–N4	1.847(4)	Si3–C3a	1.869(6)
Si1–Cl1b	1.944(16)	Si2–Cl4b	2.020(4)	Si3–Cl6b	1.94(7)
Si1–Cl1	2.0638(16)	Si2–Cl3	2.0580(18)	Si3-C15	2.0642(16)
Si1-N1	2.119(4)	Si2–N3	2.072(4)	Si3–Cl6	2.1401(16)
Si1–Cl2	2.1551(17)	Si2–Cl4	2.202(2)	Si3–N5	2.143(4)
Si1–C1	2.434(4)	Si2–Cl3b	2.409(4)	N5-C81	1.321(5)
Si1–Cl2b	2.58(2)	Si2-C41	2.426(4)	N5–C88	1.426(5)
N2C1	1.379(5)	N4-C41	1.358(5)	N6-C81	1.377(5)
N2-C8	1.447(5)	N4-C61	1.446(5)	N6-C100	1.442(5)
N1C1	1.308(5)	N3-C41	1.309(5)	C81–C82	1.471(5)
N1-C20	1.450(5)	N3-C49	1.451(5)	C82–C87	1.373(6)
C1–C2	1.476(5)	C41–C42	1.497(5)	C82–C83	1.419(6)
C2–C3	1.377(6)	C42–C47	1.413(6)	C83–C84	1.416(6)
C2–C7	1.428(6)	C42–C43	1.378(6)	C84–C85	1.360(7)
C3–C4	1.364(6)	C43–C44	1.373(6)	C85–C86	1.421(7)
C4–C5	1.417(7)	C44–C45	1.425(7)	C86–C87	1.370(7)
C5–C6	1.361(7)	C45–C46	1.367(7)	C88–C93	1.408(6)
C6–C7	1.405(6)	C46–C47	1.414(6)	C88–C89	1.427(5)
C8–C13	1.403(5)	C49–C50	1.407(5)	C89–C90	1.380(6)
C8–C9	1.425(6)	C49–C54	1.418(6)	C89–C94	1.538(6)
C9–C10	1.402(6)	C50–C51	1.406(6)	C90–C91	1.366(7)
C9–C14	1.529(6)	C50–C55	1.531(5)	C91–C92	1.392(6)
C10-C11	1.406(6)	C51–C52	1.373(6)	C92–C93	1.413(6)
C11–C12	1.400(6)	C52–C53	1.387(6)	C93–C97	1.535(5)
C12–C13	1.402(5)	C53–C54	1.395(6)	C94–C96	1.534(6)
C13–C17	1.521(6)	C54–C58	1.517(5)	C94–C95	1.557(6)
C14–C16	1.523(6)	C55–C57	1.529(6)	С97–С99	1.519(6)
C14–C15	1.565(6)	C55–C56	1.538(6)	C97–C98	1.548(6)
C17–C18	1.529(6)	C58–C60	1.527(6)	C100-C105	1.391(5)
C17–C19	1.535(6)	C58–C59	1.551(5)	C100-C101	1.414(5)
C20–C25	1.399(5)	C61–C66	1.416(5)	C101-C102	1.406(6)
C20–C21	1.409(5)	C61–C62	1.422(6)	C101–C106	1.545(6)
C21–C22	1.398(6)	C62–C63	1.400(6)	C102–C103	1.369(7)
C21-C26	1.523(5)	C62–C67	1.531(5)	C103-C104	1.369(7)
C22–C23	1.388(6)	C63–C64	1.396(6)	C104-C105	1.413(6)
C23–C24	1.408(6)	C64–C65	1.371(7)	C105-C109	1.518(5)
C24–C25	1.415(6)	C65–C66	1.382(6)	C106–C107	1.522(6)
C25–C29	1.520(5)	C66–C70	1.530(5)	C106-C108	1.534(6)
C26–C27	1.524(6)	C67–C68	1.546(6)	C111-C109	1.514(6)

Tabelle A21: Bindungslängen [Å] und -winkel [°] von 7.

C26–C28	1.542(6)	C67–C69	1.550(6)	C109–C110	1.534(6)
C29–C30	1.527(6)	C70-C71	1.524(7)		
C29–C31	1.552(5)	C70–C72	1.552(7)		
N2–Si1–C1b	110.6(13)	C21-C26-C28	112.8(3)	C64-C65-C66	122.8(4)
N2–Si1–C1a	125.28(18)	C27–C26–C28	110.8(4)	C65-C66-C61	118.4(4)
N2–Si1–Cl1b	105.9(5)	C25-C29-C30	113.2(3)	C65-C66-C70	119.1(4)
C1b–Si1–Cl1b	130.2(13)	C25-C29-C31	109.2(3)	C61-C66-C70	122.6(4)
N2-Si1-Cl1	115.19(13)	C30-C29-C31	109.7(3)	C62–C67–C68	111.0(3)
C1a–Si1–Cl1	115.73(14)	C2b-Si2-N4	105.8(5)	C62–C67–C69	109.3(3)
N2-Si1-N1	66.43(13)	C2a-Si2-N4	123.5(2)	C68-C67-C69	110.5(4)
C1b–Si1–N1	112.0(12)	C2b-Si2-Cl4b	126.2(5)	C71–C70–C66	112.9(4)
C1a–Si1–N1	92.93(16)	N4-Si2-Cl4b	100.07(17)	C3b-Si3-N6	127(2)
Cl1b-Si1-N1	113.1(6)	C2a-Si2-Cl3	117.19(19)	N6–Si3–C3a	125.3(2)
Cl1-Si1-N1	92.26(11)	N4-Si2-Cl3	116.75(13)	C3b–Si3–Cl6b	104(3)
N2-Si1-Cl2	95.79(13)	C2b-Si2-N3	122.6(5)	N6–Si3–Cl6b	115.0(15)
C1a–Si1–Cl2	97.76(13)	C2a-Si2-N3	94.8(2)	N6-Si3-Cl5	115.65(12)
Cl1-Si1-Cl2	95.80(7)	N4-Si2-N3	66.39(14)	C3a–Si3–Cl5	114.84(17)
N1-Si1-Cl2	162.22(12)	Cl4b-Si2-N3	110.85(16)	N6-Si3-Cl6	96.35(12)
N2-Si1-C1	33.98(14)	Cl3-Si2-N3	93.41(12)	C3a–Si3–Cl6	98.1(2)
C1b–Si1–C1	115.2(12)	C2a-Si2-Cl4	98.72(17)	Cl5-Si3-Cl6	95.99(7)
C1a–Si1–C1	112.14(16)	N4-Si2-Cl4	93.05(14)	C3b-Si3-N5	78(2)
Cl1b-Si1-C1	114.1(5)	Cl3-Si2-Cl4	94.19(8)	N6-Si3-N5	66.43(14)
Cl1-Si1-C1	105.36(11)	N3-Si2-Cl4	159.33(14)	C3a–Si3–N5	92.9(2)
N1-Si1-C1	32.46(13)	C2b-Si2-Cl3b	91.6(5)	Cl6b-Si3-N5	91(2)
Cl2-Si1-C1	129.77(12)	N4–Si2–Cl3b	148.86(16)	Cl5-Si3-N5	91.36(10)
N2-Si1-Cl2b	142.4(5)	Cl4b-Si2-Cl3b	89.46(17)	Cl6-Si3-N5	162.76(11)
C1b–Si1–Cl2b	85.4(14)	N3-Si2-Cl3b	82.50(14)	C81-N5-C88	124.2(3)
Cl1b–Si1–Cl2b	85.8(8)	C2b-Si2-C41	119.2(5)	C81-N5-Si3	86.2(2)
N1-Si1-Cl2b	76.1(5)	C2a-Si2-C41	112.1(2)	C88-N5-Si3	145.4(3)
C1–Si1–Cl2b	108.5(5)	N4-Si2-C41	33.74(14)	C81-N6-C100	125.1(3)
C1-N2-C8	124.6(3)	Cl4b-Si2-C41	108.56(15)	C81-N6-Si3	99.7(3)
C1–N2–Si1	99.5(2)	Cl3-Si2-C41	107.54(12)	C100-N6-Si3	133.0(3)
C8–N2–Si1	134.1(3)	N3-Si2-C41	32.64(13)	N5-C81-N6	107.7(3)
C1-N1-C20	124.7(3)	Cl4-Si2-C41	126.77(14)	N5-C81-C82	128.1(4)
C1–N1–Si1	87.2(2)	Cl3b-Si2-C41	115.13(15)	N6-C81-C82	124.2(4)
C20-N1-Si1	144.1(2)	C41-N4-C61	125.1(3)	C87–C82–C83	119.5(4)
N1C1N2	106.9(3)	C41-N4-Si2	97.2(3)	C87–C82–C81	123.0(4)
N1C1C2	127.5(4)	C61-N4-Si2	134.7(3)	C83-C82-C81	117.4(4)
N2-C1-C2	125.6(4)	C41-N3-C49	124.2(3)	C82–C83–C84	118.5(4)
N1–C1–Si1	60.4(2)	C41-N3-Si2	88.7(2)	C85–C84–C83	120.7(4)
N2-C1-Si1	46.53(18)	C49-N3-Si2	144.0(3)	C84–C85–C86	120.2(4)
C2C1Si1	172.0(3)	N3-C41-N4	107.7(3)	C87–C86–C85	119.1(4)

C3–C2–C7	119.4(3)	N3-C41-C42	126.8(4)	C86–C87–C82	121.9(4)
C3-C2-C1	120.4(4)	N4-C41-C42	125.5(4)	C93-C88-C89	119.6(4)
C7-C2-C1	120.2(4)	N3-C41-Si2	58.6(2)	C93-C88-N5	120.0(4)
C4–C3–C2	121.4(4)	N4-C41-Si2	49.07(19)	C89–C88–N5	120.4(4)
C3–C4–C5	120.0(4)	C42-C41-Si2	174.5(3)	C90–C89–C88	118.8(4)
C6C5C4	119.6(4)	C47-C42-C43	120.8(3)	C90–C89–C94	120.3(4)
C5–C6–C7	121.2(4)	C47–C42–C41	118.7(4)	C88–C89–C94	120.9(4)
C2C7C6	118.4(4)	C43-C42-C41	120.5(4)	C91–C90–C89	122.6(4)
C13-C8-C9	121.9(4)	C44–C43–C42	121.0(4)	C90–C91–C92	119.2(4)
C13-C8-N2	119.6(4)	C43–C44–C45	119.0(4)	C91–C92–C93	121.0(4)
C9-C8-N2	118.5(3)	C46-C45-C44	120.8(4)	C92–C93–C88	118.7(4)
C10C9C8	117.9(4)	C45-C46-C47	120.2(4)	C92–C93–C97	117.2(4)
C10C9C14	118.3(4)	C42–C47–C46	118.3(4)	C88–C93–C97	124.0(4)
C8–C9–C14	123.8(4)	C50-C49-C54	121.5(4)	C89–C94–C96	111.0(3)
C11–C10–C9	120.9(4)	C50-C49-N3	118.7(4)	C89–C94–C95	111.2(4)
C12-C11-C10	119.8(4)	C54-C49-N3	119.7(4)	C96–C94–C95	110.3(4)
C11-C12-C13	121.1(4)	C51-C50-C49	117.9(4)	С99–С97–С93	112.1(4)
C8-C13-C12	118.4(4)	C51-C50-C55	119.3(4)	С99–С97–С98	110.4(4)
C8-C13-C17	123.7(4)	C49–C50–C55	122.8(4)	С93–С97–С98	110.0(3)
C12-C13-C17	117.9(3)	C52-C51-C50	121.8(4)	C105-C100-C101	121.9(4)
C16-C14-C9	112.4(3)	C51–C52–C53	118.9(4)	C105-C100-N6	120.3(3)
C16-C14-C15	110.9(3)	C52–C53–C54	122.9(4)	C101-C100-N6	117.7(3)
C9-C14-C15	109.0(3)	C53–C54–C49	116.9(4)	C102-C101-C100	117.3(4)
C18-C17-C13	112.5(3)	C53–C54–C58	119.6(4)	C102-C101-C106	119.8(4)
C18-C17-C19	109.7(4)	C49–C54–C58	123.5(3)	C100-C101-C106	122.9(4)
C13-C17-C19	111.0(4)	C57-C55-C50	109.9(3)	C103-C102-C101	121.7(4)
C25-C20-C21	122.3(4)	C57–C55–C56	109.0(3)	C104-C103-C102	119.9(4)
C25-C20-N1	118.3(3)	C50-C55-C56	112.7(4)	C103-C104-C105	121.8(4)
C21-C20-N1	119.3(3)	C54-C58-C60	111.4(3)	C100-C105-C104	117.4(4)
C22-C21-C20	118.2(4)	C54–C58–C59	111.7(3)	C100-C105-C109	123.7(4)
C22-C21-C26	117.6(4)	C60-C58-C59	109.9(3)	C104-C105-C109	118.9(4)
C20-C21-C26	124.3(4)	C66–C61–C62	120.5(4)	C107-C106-C101	110.5(4)
C23-C22-C21	121.4(4)	C66-C61-N4	120.7(4)	C107-C106-C108	110.4(4)
C22–C23–C24	119.7(4)	C62-C61-N4	118.8(3)	C101-C106-C108	112.1(4)
C25-C24-C23	120.6(4)	C63-C62-C61	117.8(4)	C105-C109-C111	110.8(4)
C20-C25-C24	117.8(4)	C63–C62–C67	119.2(4)	C105-C109-C110	112.2(3)
C20-C25-C29	123.8(3)	C61–C62–C67	123.0(3)	C111-C109-C110	112.0(4)
C24–C25–C29	118.3(3)	C64–C63–C62	121.8(4)		
C21–C26–C27	110.6(3)	C65–C64–C63	118.8(4)		

Abb. A8: Struktur von **8** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Fabelle A22: Atomkoordinaten (× 10^4) und äquivalente isotrope Auslenkungsparameter (Å ² × 10^3) der
Nichtwasserstoff-Atome von 8. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten
J _{ij} -Tensors.

	Х	у	Z	U_{eq}
C1	6582(1)	2827(1)	8400(1)	11(1)
C2	6628(1)	2453(1)	7672(1)	12(1)
C3	6004(1)	2858(1)	7029(1)	16(1)
C4	5958(1)	2483(1)	6338(1)	20(1)
C5	6532(1)	1707(1)	6283(1)	20(1)
C6	7183(1)	1315(1)	6915(1)	20(1)
C7	7237(1)	1689(1)	7608(1)	16(1)
C8	8529(1)	2411(1)	9125(1)	11(1)
C9	9366(1)	2905(1)	8895(1)	14(1)
C10	10453(1)	2543(1)	8988(1)	17(1)
C11	10703(1)	1729(1)	9313(1)	18(1)
C12	9865(1)	1258(1)	9546(1)	16(1)
C13	8764(1)	1582(1)	9458(1)	13(1)
C14	9133(1)	3811(1)	8556(1)	21(1)
C15	9135(1)	3801(1)	7731(1)	31(1)
C16	9987(1)	4481(1)	8967(1)	36(1)
C17	7874(1)	1035(1)	9718(1)	18(1)
C18	7584(1)	188(1)	9265(1)	27(1)
C19	8251(1)	810(1)	10543(1)	23(1)

C20	4600(1)	3289(1)	8139(1)	12(1)
C21	4119(1)	4104(1)	7879(1)	14(1)
C22	2971(1)	4123(1)	7514(1)	19(1)
C23	2326(1)	3367(1)	7407(1)	22(1)
C24	2813(1)	2570(1)	7661(1)	20(1)
C25	3955(1)	2510(1)	8033(1)	14(1)
C26	4798(1)	4949(1)	7974(1)	17(1)
C27	4826(1)	5372(1)	7228(1)	24(1)
C28	4335(1)	5600(1)	8462(1)	24(1)
C29	4427(1)	1610(1)	8284(1)	16(1)
C30	4405(1)	1009(1)	7615(1)	22(1)
C31	3778(1)	1173(1)	8810(1)	23(1)
C32	5527(1)	2901(1)	10033(1)	14(1)
C33	4457(1)	3301(1)	9835(1)	15(1)
C34	3555(1)	3005(1)	10121(1)	18(1)
C35	3696(1)	2293(1)	10601(1)	20(1)
C36	4746(1)	1883(1)	10800(1)	20(1)
C37	5660(1)	2193(1)	10528(1)	17(1)
Cl1	6798(1)	4696(1)	9624(1)	17(1)
Cl2	8082(1)	3193(1)	10611(1)	17(1)
N1	5747(1)	3277(1)	8562(1)	11(1)
N2	7404(1)	2759(1)	9042(1)	12(1)
Si	6729(1)	3340(1)	9661(1)	12(1)

Tabelle A23: Bindungslängen [Å] und -winkel [°] von 8.

C1-N1	1.3087(11)	C11–C12	1.3849(15)	C26–C28	1.5295(15)
C1-N2	1.3694(11)	C12–C13	1.3928(13)	C26–C27	1.5311(15)
C1–C2	1.4758(12)	C13–C17	1.5209(14)	C29–C31	1.5323(15)
C1–Si	2.4313(9)	C14–C16	1.5274(18)	C29–C30	1.5360(14)
C2–C7	1.3955(13)	C14–C15	1.5281(17)	C32–C37	1.4004(14)
C2–C3	1.4018(13)	C17–C19	1.5319(15)	C32–C33	1.4006(13)
C3–C4	1.3902(14)	C17–C18	1.5367(16)	C32–Si	1.8648(10)
C4–C5	1.3869(16)	C20–C25	1.4086(13)	C33–C34	1.3891(14)
C5–C6	1.3893(15)	C20–C21	1.4089(13)	C34–C35	1.3883(16)
C6–C7	1.3921(13)	C20-N1	1.4287(11)	C35–C36	1.3869(15)
C8–C9	1.4012(13)	C21–C22	1.3983(13)	C36–C37	1.3934(14)
C8–C13	1.4056(13)	C21–C26	1.5160(14)	Cl1–Si	2.0697(4)
C8–N2	1.4335(11)	C22–C23	1.3792(16)	Cl2–Si	2.1260(3)
C9–C10	1.3974(13)	C23–C24	1.3843(16)	N1–Si	2.1155(8)
C9–C14	1.5158(14)	C24–C25	1.3990(13)	N2–Si	1.7846(8)
C10-C11	1.3823(15)	C25–C29	1.5178(14)		

N1-C1-N2	106.63(8)	C9-C14-C15	111.26(10)	C35–C34–C33	120.28(9)
N1-C1-C2	126.87(8)	C16-C14-C15	110.59(10)	C36-C35-C34	119.67(9)
N2-C1-C2	126.49(8)	C13-C17-C19	111.50(9)	C35–C36–C37	120.15(10)
N1-C1-Si	60.35(5)	C13-C17-C18	112.23(9)	C36–C37–C32	120.85(9)
N2-C1-Si	46.29(4)	C19–C17–C18	109.70(9)	C1-N1-C20	125.64(8)
C2–C1–Si	172.71(6)	C25-C20-C21	121.48(8)	C1–N1–Si	87.13(5)
С7–С2–С3	119.13(8)	C25-C20-N1	120.16(8)	C20-N1-Si	142.28(6)
С7-С2-С1	121.95(8)	C21-C20-N1	118.23(8)	C1-N2-C8	127.25(8)
C3-C2-C1	118.88(8)	C22-C21-C20	118.13(9)	C1–N2–Si	100.02(6)
C4–C3–C2	120.28(9)	C22-C21-C26	119.30(9)	C8–N2–Si	132.25(6)
C5–C4–C3	120.06(9)	C20-C21-C26	122.57(8)	N2-Si-C32	124.35(4)
C4–C5–C6	120.11(9)	C23-C22-C21	121.15(10)	N2-Si-Cl1	116.51(3)
C5–C6–C7	120.06(10)	C22-C23-C24	120.10(9)	C32-Si-C11	114.32(3)
С6-С7-С2	120.29(9)	C23–C24–C25	121.34(10)	N2-Si-N1	66.21(3)
С9-С8-С13	121.88(8)	C24–C25–C20	117.80(9)	C32–Si–N1	91.42(4)
C9-C8-N2	119.91(8)	C24–C25–C29	118.00(9)	Cl1-Si-N1	91.79(2)
C13-C8-N2	118.18(8)	C20-C25-C29	124.19(8)	N2-Si-Cl2	95.88(3)
С10-С9-С8	118.11(9)	C21-C26-C28	111.16(9)	C32–Si–Cl2	99.98(3)
C10C9C14	119.52(9)	C21-C26-C27	111.91(8)	Cl1-Si-Cl2	95.981(14)
С8-С9-С14	122.37(8)	C28-C26-C27	110.17(9)	N1-Si-Cl2	162.07(3)
C11-C10-C9	120.99(9)	C25-C29-C31	112.15(8)	N2-Si-C1	33.69(3)
C10-C11-C12	119.84(9)	C25-C29-C30	110.80(9)	C32-Si-C1	110.15(4)
C11-C12-C13	121.59(9)	C31–C29–C30	109.61(8)	Cl1-Si-C1	106.47(2)
C12-C13-C8	117.58(9)	C37–C32–C33	118.11(9)	N1-Si-C1	32.52(3)
C12-C13-C17	119.39(8)	C37–C32–Si	122.24(7)	Cl2–Si–C1	129.56(2)
C8-C13-C17	123.03(8)	C33–C32–Si	119.62(7)		
C9-C14-C16	111.17(9)	C34–C33–C32	120.89(9)		

Verbindung 10.0.5C₆H₅CH₃

Abb. A9: Struktur von $10.0.5C_6H_5CH_3$ im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A24: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von 10·0.5C₆H₅CH₃. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	Х	у	Z	U _{eq}
C1	1601(1)	5472(1)	1026(1)	23(1)
C2	919(1)	5629(1)	239(1)	35(1)
C3	414(1)	6359(2)	221(1)	41(1)
C4	582(1)	6946(1)	991(1)	35(1)
C5	1258(1)	6815(1)	1773(1)	31(1)
C6	1764(1)	6084(1)	1791(1)	26(1)
C7	3044(1)	6212(1)	802(1)	31(1)
C8	3275(1)	6827(1)	321(1)	36(1)
C9	3062(1)	6536(1)	-563(1)	39(1)
C10	2625(1)	5644(1)	-944(1)	34(1)
C11	2425(1)	5042(1)	-416(1)	26(1)
C12	1973(1)	4048(1)	-726(1)	26(1)
C13	1493(1)	2706(1)	-129(1)	24(1)
C14	1158(1)	2135(1)	-946(1)	31(1)
C15	781(1)	1188(1)	-1024(1)	37(1)
C16	729(1)	800(1)	-303(1)	37(1)
C17	1064(1)	1357(1)	522(1)	33(1)
C18	1441(1)	2302(1)	609(1)	26(1)
C19	5000	6400(2)	2500	61(1)
C20	5000	7613(2)	2500	35(1)
C21	5446(1)	8183(2)	2272(1)	41(1)
C22	5446(1)	9288(2)	2264(1)	48(1)

C23	5000	9850(2)	2500	52(1)
Cl	3253(1)	4550(1)	2272(1)	29(1)
N1	2631(1)	5325(1)	439(1)	24(1)
N2	1890(1)	3658(1)	20(1)	24(1)
S	1919(1)	3031(1)	1624(1)	30(1)
Si	2224(1)	4401(1)	1030(1)	21(1)

Tabelle A25: Bindungslängen [Å] und -winkel [°] von $10{\cdot}0.5C_6H_5CH_3.$

C1–C2	1.399(2)	C10-C11	1.398(2)	C18–S	1.7568(15)
C1–C6	1.4010(19)	C11-N1	1.3444(17)	C19–C20	1.519(4)
C1–Si	1.8761(14)	C11–C12	1.493(2)	C20–C21´	1.386(2)
C2–C3	1.394(2)	C12-N2	1.4569(17)	C20–C21	1.386(2)
C3–C4	1.388(2)	C13–C14	1.400(2)	C21–C22	1.385(3)
C4–C5	1.385(2)	C13-N2	1.4048(19)	C22–C23	1.389(3)
C5–C6	1.396(2)	C13–C18	1.4160(19)	C23–C22′	1.389(3)
C7–N1	1.353(2)	C14-C15	1.397(2)	Cl–Si	2.1430(7)
С7–С8	1.385(2)	C15-C16	1.381(3)	N1–Si	1.9958(12)
C8–C9	1.390(3)	C16–C17	1.402(2)	N2–Si	1.7637(12)
C9–C10	1.384(3)	C17–C18	1.392(2)	S–Si	2.2487(6)
C2C1C6	117.80(13)	C14-C13-C18	118.56(14)	C7–N1–Si	125.95(10)
C2–C1–Si	118.82(11)	N2-C13-C18	116.83(12)	C13-N2-C12	116.84(11)
C6–C1–Si	123.26(11)	C15-C14-C13	120.35(15)	C13-N2-Si	122.01(9)
C3-C2-C1	121.12(15)	C16-C15-C14	120.84(15)	C12–N2–Si	121.02(10)
C4–C3–C2	120.17(16)	C15-C16-C17	119.73(15)	C18–S–Si	95.90(5)
C5–C4–C3	119.67(14)	C18-C17-C16	120.01(15)	N2-Si-C1	116.25(6)
C4C5C6	120.16(14)	C17-C18-C13	120.51(14)	N2-Si-N1	82.57(5)
C5-C6-C1	121.07(14)	C17–C18–S	123.96(12)	C1–Si–N1	93.72(6)
N1-C7-C8	121.58(15)	C13–C18–S	115.45(11)	N2-Si-Cl	135.87(5)
С7–С8–С9	118.95(16)	C21´-C20-C21	118.1(2)	C1–Si–Cl	107.34(5)
С10-С9-С8	119.60(15)	C21′-C20-C19	120.96(12)	N1-Si-Cl	88.32(4)
C9-C10-C11	118.68(15)	C21–C20–C19	120.96(12)	N2–Si–S	88.67(4)
N1-C11-C10	121.57(14)	C22-C21-C20	121.33(18)	C1–Si–S	100.71(5)
N1-C11-C12	113.76(12)	C21–C22–C23	120.04(19)	N1–Si–S	165.34(4)
C10-C11-C12	124.66(13)	C22´-C23-C22	119.2(3)	Cl–Si–S	89.85(2)
N2-C12-C11	107.87(11)	C11-N1-C7	119.58(13)		
C14-C13-N2	124.60(13)	C11–N1–Si	114.35(10)		

Abb. A10: Struktur von **11** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A26: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **11**. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij} -Tensors.

	X	у	Z	U _{eq}
S	2644(1)	12828(1)	2157(1)	19(1)
Si	2551(1)	10768(1)	1612(1)	16(1)
Cl	277(4)	11057(3)	892(2)	21(1)
C1	5052(15)	11114(12)	1201(6)	21(1)
Sib	2551(1)	10768(1)	1612(1)	16(1)
Clb	4914(1)	11275(1)	1094(1)	21(1)
C1b	250(6)	11179(4)	976(2)	21(1)
N2	2365(2)	9995(1)	2434(1)	17(1)
N1	2790(2)	8834(1)	1308(1)	18(1)
C7	2180(2)	10753(1)	3048(1)	16(1)
C2	2297(2)	12189(1)	2994(1)	17(1)
C8	2358(2)	8513(1)	2514(1)	17(1)
C3	2153(2)	13016(2)	3580(1)	22(1)
C9	2681(2)	7906(1)	1820(1)	17(1)
C10	2878(2)	6507(1)	1704(1)	22(1)
C6	1898(2)	10171(2)	3701(1)	21(1)
C11	3191(2)	6071(2)	1033(1)	25(1)
C12	3273(2)	7036(2)	497(1)	26(1)
C5	1739(2)	11018(2)	4286(1)	25(1)
C4	1875(2)	12428(2)	4230(1)	25(1)
C13	3064(2)	8404(2)	648(1)	22(1)

S-C2	1.7488(14)	N2-C8	1.4491(16)	C3–C4	1.392(2)
S–Si	2.2520(6)	N1-C9	1.3353(17)	C9–C10	1.3886(18)
Si–N2	1.7492(12)	N1-C13	1.3548(17)	C10C11	1.383(2)
Si–N1	1.9805(12)	С7–С6	1.3970(18)	C6–C5	1.396(2)
Si–Cl	2.031(3)	С7–С2	1.4034(18)	C11–C12	1.389(2)
Si–C1	2.064(11)	C2–C3	1.3864(18)	C12–C13	1.373(2)
N2-C7	1.3978(16)	C8–C9	1.4835(18)	C5–C4	1.380(2)
C2–S–Si	95.76(5)	C7–N2–Si	122.67(9)	С2-С3-С4	120.13(13)
N2-Si-N1	82.50(5)	C8–N2–Si	121.47(9)	N1C9C10	122.09(12)
N2-Si-Cl	121.64(9)	C9-N1-C13	119.35(12)	N1C9C8	113.85(11)
N1-Si-Cl	91.41(9)	C9–N1–Si	114.55(9)	С10-С9-С8	124.06(12)
N2-Si-C1	124.2(3)	C13-N1-Si	126.10(10)	С11-С10-С9	118.48(13)
N1-Si-C1	86.4(4)	C6-C7-N2	124.20(12)	С5-С6-С7	119.83(13)
Cl-Si-C1	113.1(3)	С6С7С2	118.95(12)	C10-C11-C12	119.40(13)
N2–Si–S	88.56(4)	N2-C7-C2	116.86(11)	C13-C12-C11	119.18(13)
N1–Si–S	168.42(4)	С3-С2-С7	120.56(13)	C4–C5–C6	120.88(14)
Cl–Si–S	99.57(8)	C3–C2–S	123.58(11)	C5-C4-C3	119.64(13)
C1–Si–S	92.6(4)	C7–C2–S	115.86(10)	N1-C13-C12	121.49(13)
C7-N2-C8	115.85(10)	N2-C8-C9	107.48(10)		

Tabelle A27: Bindungslängen [Å] und -winkel [°] von 11.

Abb. A11: Struktur von **12** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A28: Atomkoo	rdinate	en (×	10 ⁴)	und äquivale	ente isotropo	e Aus	lenkungsp	aram	eter	(Å ² >	× 10 ³)	der
Nichtwasserstoff-Atome	von	12.	Die	angegebenen	U _{eq} -Werte	sind	definiert	als	1/3	der	Spur	des
orthogonalisierten U _{ii} -Te	nsors.											

	X	у	Z	U _{eq}
C1	9026(2)	1015(1)	8048(1)	24(1)
C2	7840(2)	1076(1)	8646(1)	27(1)
C3	8315(2)	1101(1)	9573(1)	31(1)
C4	10066(2)	1047(1)	9932(1)	31(1)
C5	11296(2)	959(1)	9368(1)	31(1)
C6	10767(2)	950(1)	8444(1)	26(1)
C7	7358(2)	-910(1)	6275(1)	28(1)
C8	7187(2)	-1804(1)	6096(1)	35(1)
С9	5543(3)	-2168(1)	5826(1)	37(1)
C10	4075(2)	-1635(1)	5726(1)	34(1)
C11	4224(2)	-737(1)	5898(1)	27(1)
C12	5866(2)	-370(1)	6181(1)	23(1)
C13	4629(2)	1086(1)	6294(1)	23(1)
C14	5240(2)	1992(1)	6550(1)	23(1)
C15	4162(2)	2721(1)	6547(1)	29(1)
C16	4901(2)	3520(1)	6818(1)	31(1)
C17	6701(2)	3574(1)	7086(1)	30(1)
C18	7699(2)	2832(1)	7072(1)	27(1)
Si	8232(1)	928(1)	6778(1)	22(1)
Cl	9983(1)	1568(1)	6044(1)	34(1)
F1	6106(1)	1096(1)	8336(1)	36(1)
F2	7105(2)	1160(1)	10116(1)	46(1)
F3	10554(2)	1054(1)	10826(1)	42(1)
F4	12988(1)	874(1)	9718(1)	44(1)
F5	12030(1)	856(1)	7930(1)	38(1)
N2	6151(2)	519(1)	6392(1)	22(1)
N1	6972(2)	2050(1)	6804(1)	22(1)
S	9371(1)	-391(1)	6602(1)	37(1)

Tabelle A29: Bindungslängen [Å] und -winkel [°] von 12.

C1–C2	1.386(2)	C6–F5	1.3453(19)	C14-N1	1.3407(18)
C1–C6	1.392(2)	С7–С8	1.397(2)	C14–C15	1.393(2)
C1–Si	1.9242(14)	C7–C12	1.410(2)	C15–C16	1.386(2)
C2-F1	1.3528(17)	C7–S	1.7518(16)	C16–C17	1.393(2)
C2–C3	1.390(2)	C8–C9	1.392(3)	C17–C18	1.376(2)
C3-F2	1.338(2)	C9–C10	1.388(3)	C18–N1	1.3577(19)

C3–C4	1.384(2)	C10–C11	1.400(2)	Si–N2	1.7438(13)
C4–F3	1.3424(17)	C11-C12	1.397(2)	Si–N1	1.9781(13)
C4–C5	1.378(3)	C12-N2	1.4062(18)	SiCl	2.1178(6)
C5-F4	1.3417(18)	C13–N2	1.4527(18)	Si–S	2.2362(6)
C5–C6	1.391(2)	C13-C14	1.497(2)		
C2C1C6	114.87(13)	C8-C7-C12	120.21(15)	N2-Si-C1	119.72(7)
C2–C1–Si	120.65(11)	C8–C7–S	123.52(13)	N2–Si–N1	83.42(5)
C6–C1–Si	124.26(12)	C12–C7–S	116.25(11)	C1–Si–N1	90.22(6)
F1C2C1	119.90(12)	C9–C8–C7	120.24(16)	N2–Si–Cl	128.63(5)
F1C2C3	116.22(14)	С10-С9-С8	119.59(15)	C1–Si–Cl	110.84(5)
C1C2C3	123.86(14)	C9-C10-C11	120.93(16)	N1-Si-Cl	88.07(4)
F2C3C4	120.02(14)	C12C11C10	119.82(15)	N2–Si–S	89.83(4)
F2C3C2	121.02(15)	C11-C12-N2	124.23(13)	C1–Si–S	96.26(5)
C4–C3–C2	118.95(15)	C11-C12-C7	119.20(14)	N1–Si–S	172.36(4)
F3-C4-C5	120.41(15)	N2-C12-C7	116.56(13)	Cl–Si–S	93.39(3)
F3-C4-C3	120.01(16)	N2-C13-C14	107.93(11)	C12-N2-C13	117.26(12)
C5–C4–C3	119.54(14)	N1-C14-C15	121.38(14)	C12–N2–Si	121.85(10)
F4-C5-C4	119.53(14)	N1-C14-C13	113.46(12)	C13–N2–Si	120.87(10)
F4-C5-C6	120.83(16)	C15-C14-C13	125.16(13)	C14-N1-C18	119.63(13)
C4–C5–C6	119.64(14)	C16-C15-C14	119.08(14)	C14–N1–Si	114.30(10)
F5-C6-C5	116.73(13)	C15-C16-C17	119.21(15)	C18–N1–Si	126.04(10)
F5-C6-C1	120.16(13)	C18-C17-C16	119.05(14)	C7–S–Si	95.30(5)
C5-C6-C1	123.10(15)	N1-C18-C17	121.65(14)		

.

Abb. 12: Struktur von **15** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A30: Atomkoordina	ten (>	< 10 ⁴)	und äquivale	ente isotrope	e Aus	lenkungsp	aram	eter	(Å ² ;	× 10 ³)	der
Nichtwasserstoff-Atome vor	15.	Die	angegebenen	U _{eq} -Werte	sind	definiert	als	1/3	der	Spur	des
orthogonalisierten U _{ij} -Tensors	•										

	X	у	Z	U _{eq}
Si	4192(1)	3860(1)	2307(1)	21(1)
0	3009(2)	3746(1)	1173(1)	26(1)
N1	5182(2)	3820(1)	3670(1)	23(1)
N2	3506(2)	2711(1)	2582(1)	25(1)
N3	3418(2)	5037(1)	2545(1)	27(1)
N4	2630(2)	5554(1)	1958(1)	31(1)
N5	1888(3)	6101(2)	1453(2)	50(1)
C1	6105(2)	4019(1)	1942(1)	22(1)
C2	6179(2)	4623(1)	1162(1)	24(1)
C3	7549(2)	4742(2)	837(1)	29(1)
C4	8888(3)	4246(2)	1282(2)	34(1)
C5	8850(3)	3638(2)	2046(2)	35(1)
C6	7479(2)	3534(2)	2375(2)	28(1)
C7	2221(2)	2873(1)	1036(1)	24(1)
C8	1204(2)	2593(2)	213(2)	28(1)
C9	468(2)	1674(2)	192(2)	35(1)
C10	733(3)	1067(2)	976(2)	38(1)
C11	1741(2)	1354(2)	1819(2)	31(1)
C12	2483(2)	2257(1)	1837(1)	24(1)
C13	3957(2)	2246(2)	3495(1)	28(1)
C14	4970(2)	2978(2)	4116(1)	26(1)
C15	5659(3)	2824(2)	5063(2)	33(1)
C16	6584(3)	3558(2)	5541(2)	35(1)
C17	6795(2)	4434(2)	5084(2)	31(1)
C18	6082(2)	4543(2)	4146(1)	27(1)

Tabelle A31: Bindungslängen [Å] und -winkel [°] von 15.

Si–N2	1.7409(17)	N3–N4	1.202(2)	C8–C9	1.397(3)
Si–O	1.7569(14)	N4N5	1.142(3)	C9–C10	1.379(3)
Si–N3	1.7911(17)	C1–C6	1.402(3)	C10-C11	1.405(3)
Si–C1	1.881(2)	C1–C2	1.407(3)	C11–C12	1.380(3)
Si–N1	1.9851(17)	C2–C3	1.394(3)	C13–C14	1.498(3)
O–C7	1.361(2)	C3–C4	1.390(3)	C14–C15	1.394(3)
N1-C14	1.340(3)	C4–C5	1.385(3)	C15–C16	1.374(3)
N1-C18	1.351(3)	C5–C6	1.396(3)	C16–C17	1.387(3)
N2-C12	1.394(2)	C7–C8	1.384(3)	C17–C18	1.380(3)

N2-C13	1.442(2)	C7–C12	1.407(3)		
N2–Si–O	88.29(7)	C12–N2–Si	114.40(13)	С7–С8–С9	118.2(2)
N2-Si-N3	125.54(8)	C13–N2–Si	123.75(13)	С10-С9-С8	120.8(2)
O-Si-N3	94.77(7)	N4–N3–Si	124.40(14)	C9-C10-C11	121.2(2)
N2-Si-C1	122.74(8)	N5-N4-N3	174.6(2)	C12-C11-C10	118.0(2)
O-Si-C1	97.89(8)	C6C1C2	116.63(18)	C11-C12-N2	129.01(19)
N3-Si-C1	110.65(8)	C6–C1–Si	124.09(15)	C11-C12-C7	120.70(18)
N2-Si-N1	81.28(7)	C2–C1–Si	119.22(14)	N2-C12-C7	110.27(17)
O-Si-N1	167.89(7)	C3-C2-C1	121.90(18)	N2-C13-C14	106.22(16)
N3-Si-N1	86.40(7)	C4–C3–C2	119.89(19)	N1C14C15	121.73(19)
C1–Si–N1	92.95(8)	C5–C4–C3	119.61(19)	N1C14C13	113.23(17)
C7–O–Si	113.35(12)	C4C5C6	120.1(2)	C15-C14-C13	125.03(18)
C14-N1-C18	119.48(18)	C5-C6-C1	121.82(19)	C16-C15-C14	118.5(2)
C14–N1–Si	115.28(13)	0–C7–C8	125.38(18)	C15-C16-C17	119.9(2)
C18–N1–Si	125.17(14)	O-C7-C12	113.62(17)	C18–C17–C16	118.9(2)
C12-N2-C13	121.84(16)	C8–C7–C12	120.97(18)	N1-C18-C17	121.49(19)

Abb. A13: Struktur von **17** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A32:	Atomkooi	rdinate	en (×	10 ⁴)	und äquivale	ente isotrop	e Aus	lenkungsp	aram	eter	$(\text{\AA}^2$ >	< 10 ³)	der
Nichtwassersto	off-Atome	von	17.	Die	angegebenen	U _{eq} -Werte	sind	definiert	als	1/3	der	Spur	des
orthogonalisie	rten U _{ij} -Tei	nsors.											

	X	у	Z	U _{eq}
C1	4392(2)	6696(2)	3162(1)	39(1)
C2	2910(1)	11071(2)	3222(1)	32(1)
C3	2250(2)	12412(2)	3487(1)	45(1)
C4	1151(2)	13154(3)	3173(1)	52(1)
C5	717(2)	12571(3)	2596(1)	47(1)
C6	1402(2)	11265(2)	2328(1)	45(1)
C7	2499(2)	10510(2)	2638(1)	38(1)
C8	6737(2)	9685(2)	3378(1)	42(1)
C9	8040(2)	10134(2)	3452(1)	50(1)
C10	8741(2)	9839(3)	4010(1)	53(1)
C11	8117(2)	9124(2)	4479(1)	46(1)
C12	6792(1)	8698(2)	4378(1)	35(1)
C13	5978(1)	7943(2)	4840(1)	34(1)
C14	3714(1)	7135(2)	4934(1)	31(1)
C15	3994(2)	6606(2)	5540(1)	39(1)
C16	3007(2)	5946(2)	5868(1)	46(1)
C17	1736(2)	5805(2)	5606(1)	47(1)
C18	1442(2)	6354(2)	5009(1)	41(1)
C19	2411(1)	7020(2)	4670(1)	33(1)
N1	6129(1)	8970(2)	3838(1)	33(1)
N2	4639(1)	7799(2)	4564(1)	30(1)
0	4015(1)	10388(1)	3527(1)	36(1)
S	2106(1)	7801(1)	3926(1)	40(1)
Si	4248(1)	8331(1)	3789(1)	29(1)

Tabelle A33: Bindungslängen [Å] und -winkel [°] von 17.

C1–Si	1.8789(15)	C9–C10	1.389(3)	C16–C17	1.384(3)
C2–O	1.3712(16)	C10-C11	1.376(3)	C17–C18	1.389(2)
C2–C3	1.386(2)	C11–C12	1.397(2)	C18–C19	1.390(2)
C2–C7	1.387(2)	C12-N1	1.3352(19)	C19–S	1.7492(15)
C3–C4	1.392(2)	C12–C13	1.488(2)	N1–Si	1.9844(13)
C4–C5	1.385(3)	C13-N2	1.4583(17)	N2–Si	1.7678(13)
C5–C6	1.382(3)	C14-N2	1.3984(19)	O–Si	1.6854(12)
C6–C7	1.390(2)	C14–C15	1.401(2)	S–Si	2.2792(7)
C8-N1	1.351(2)	C14–C19	1.413(2)		
C8–C9	1.376(2)	C15–C16	1.390(2)		

OC2C3	119.25(13)	N2-C13-C12	107.88(11)	C14–N2–Si	122.51(9)
OC2C7	120.65(14)	N2-C14-C15	124.48(13)	C13–N2–Si	120.91(10)
C3–C2–C7	119.98(14)	N2-C14-C19	116.66(12)	C2–O–Si	127.65(9)
C2C3C4	119.73(16)	C15-C14-C19	118.86(14)	C19–S–Si	95.05(6)
C5-C4-C3	120.54(17)	C16-C15-C14	120.18(15)	O-Si-N2	124.03(6)
C6C5C4	119.31(15)	C17-C16-C15	120.84(15)	O–Si–C1	112.78(7)
C5–C6–C7	120.67(16)	C16-C17-C18	119.48(16)	N2-Si-C1	122.08(7)
C2C7C6	119.73(16)	C17-C18-C19	120.81(15)	O-Si-N1	84.11(5)
N1-C8-C9	121.28(17)	C18-C19-C14	119.81(14)	N2-Si-N1	82.25(6)
C8–C9–C10	119.21(17)	C18–C19–S	123.39(12)	C1–Si–N1	93.81(7)
С11-С10-С9	119.40(15)	C14–C19–S	116.77(11)	O–Si–S	95.84(4)
C10-C11-C12	118.85(17)	C12-N1-C8	119.92(13)	N2–Si–S	88.44(5)
N1-C12-C11	121.33(16)	C12–N1–Si	115.39(10)	C1–Si–S	96.67(6)
N1-C12-C13	113.44(12)	C8–N1–Si	124.66(11)	N1–Si–S	168.62(4)
C11-C12-C13	125.22(14)	C14-N2-C13	116.50(12)		

Abb. A14: Struktur von **18** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A34: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **18** Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	Х	у	Z	U _{eq}
C1	7038(2)	3716(1)	2423(1)	39(1)
C2	12261(2)	4795(1)	3214(1)	30(1)

C3	13420(2)	5422(1)	3026(2)	40(1)
C4	14078(3)	5958(1)	3733(2)	54(1)
C5	13612(3)	5872(1)	4626(2)	53(1)
C6	12489(3)	5246(1)	4822(1)	47(1)
C7	11820(3)	4703(1)	4115(1)	39(1)
C8	9630(2)	2709(1)	1072(1)	36(1)
C9	10007(3)	2186(1)	372(1)	42(1)
C10	9704(3)	2450(1)	-561(1)	42(1)
C11	8989(2)	3219(1)	-759(1)	37(1)
C12	8633(2)	3721(1)	-17(1)	30(1)
C13	7851(2)	4558(1)	-131(1)	31(1)
C14	7201(2)	5718(1)	837(1)	30(1)
C15	6450(2)	6165(1)	47(1)	36(1)
C16	5812(3)	6960(1)	163(2)	44(1)
C17	5927(3)	7316(1)	1044(2)	46(1)
C18	6696(3)	6885(1)	1831(1)	40(1)
C19	7335(2)	6090(1)	1730(1)	32(1)
N1	8979(2)	3474(1)	880(1)	30(1)
N2	7856(2)	4918(1)	798(1)	29(1)
Si	8632(1)	4363(1)	1834(1)	28(1)
S1	8435(1)	5530(1)	2674(1)	37(1)
S2	11472(1)	4092(1)	2304(1)	32(1)

Tabelle A35: Bindungslängen [Å] und -winkel [°] von 18.

C1–Si	1.8778(18)	C9–C10	1.392(3)	C16–C17	1.379(3)
C2–C7	1.378(2)	C10-C11	1.379(3)	C17–C18	1.389(3)
C2–C3	1.394(2)	C11–C12	1.392(2)	C18–C19	1.396(2)
C2-S2	1.7770(16)	C12-N1	1.336(2)	C19–S1	1.7485(17)
C3–C4	1.379(3)	C12–C13	1.488(2)	N1–Si	2.0284(15)
C4–C5	1.372(4)	C13-N2	1.450(2)	N2–Si	1.7690(14)
C5–C6	1.378(3)	C14-N2	1.398(2)	Si–S2	2.2087(8)
C6–C7	1.388(3)	C14–C15	1.400(2)	Si–S1	2.2634(7)
C8-N1	1.356(2)	C14–C19	1.403(2)		
C8–C9	1.371(3)	C15–C16	1.399(3)		
С7–С2–С3	119.52(16)	N2-C13-C12	108.42(13)	C14–N2–Si	121.66(11)
C7–C2–S2	120.93(13)	N2-C14-C15	124.14(16)	C13–N2–Si	121.35(11)
C3-C2-S2	119.46(13)	N2-C14-C19	116.97(14)	N2-Si-C1	119.94(8)
C4–C3–C2	119.92(19)	C15-C14-C19	118.88(16)	N2-Si-N1	82.01(6)
C5–C4–C3	120.3(2)	C16-C15-C14	119.72(18)	C1-Si-N1	92.60(8)
C4C5C6	120.16(19)	C17-C16-C15	121.02(17)	N2-Si-S2	124.17(5)

Anhang A: Daten zu den Kristallstrukturanalysen						
119.97(19)	C16-C17-C18	119.79(18)	C1–Si–S2	113.86(6)		
120.08(18)	C17–C18–C19	120.03(18)	N1-Si-S2	81.83(5)		
121.86(17)	C18-C19-C14	120.54(16)	N2-Si-S1	88.65(5)		
118.85(18)	C18-C19-S1	122.78(14)	C1–Si–S1	98.34(7)		
119.28(18)	C14-C19-S1	116.59(12)	N1-Si-S1	168.19(5)		
119.09(17)	C12-N1-C8	119.49(15)	S2–Si–S1	97.66(3)		
121.36(16)	C12–N1–Si	113.77(11)	C19–S1–Si	94.97(6)		
114.02(14)	C8–N1–Si	126.55(12)	C2–S2–Si	108.42(6)		
124.61(15)	C14-N2-C13	116.98(13)				
	Anhang 119.97(19) 120.08(18) 121.86(17) 118.85(18) 119.28(18) 119.09(17) 121.36(16) 114.02(14) 124.61(15)	Anhang A: Daten zu den 119.97(19) C16-C17-C18 120.08(18) C17-C18-C19 121.86(17) C18-C19-C14 118.85(18) C18-C19-S1 119.28(18) C14-C19-S1 119.09(17) C12-N1-C8 121.36(16) C12-N1-Si 114.02(14) C8-N1-Si 124.61(15) C14-N2-C13	Anhang A: Daten zu den Kristallstrukturat 119.97(19) C16–C17–C18 119.79(18) 120.08(18) C17–C18–C19 120.03(18) 121.86(17) C18–C19–C14 120.54(16) 118.85(18) C18–C19–S1 122.78(14) 119.28(18) C14–C19–S1 116.59(12) 119.09(17) C12–N1–C8 119.49(15) 121.36(16) C12–N1–Si 113.77(11) 114.02(14) C8–N1–Si 126.55(12) 124.61(15) C14–N2–C13 116.98(13)	Anhang A: Daten zu den Kristallstrukturanalysen119.97(19)C16-C17-C18119.79(18)C1-Si-S2120.08(18)C17-C18-C19120.03(18)N1-Si-S2121.86(17)C18-C19-C14120.54(16)N2-Si-S1118.85(18)C18-C19-S1122.78(14)C1-Si-S1119.28(18)C14-C19-S1116.59(12)N1-Si-S1119.09(17)C12-N1-C8119.49(15)S2-Si-S1121.36(16)C12-N1-Si113.77(11)C19-S1-Si114.02(14)C8-N1-Si126.55(12)C2-S2-Si124.61(15)C14-N2-C13116.98(13)		

Abb. A15: Struktur von 19 im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A36: Atomkoordinaten (× 10^4) und äquivalente isotrope Auslenkungsparameter (Å 2 \times 10^3) der Nichtwasserstoff-Atome von 19. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

	х	у	Z	U_{eq}
C1	7898(3)	6366(1)	2600(1)	34(1)
C2	2578(3)	5162(1)	1694(1)	27(1)
C3	3023(3)	5235(1)	800(1)	39(1)
C4	2412(4)	4670(2)	116(2)	50(1)
C5	1366(4)	4034(2)	327(2)	57(1)
C6	911(4)	3957(2)	1215(2)	61(1)
C7	1505(3)	4521(2)	1903(2)	44(1)
C8	5254(3)	7340(1)	3913(1)	33(1)

C9	4832(3)	7853(1)	4599(2)	38(1)
C10	5126(3)	7591(1)	5533(2)	38(1)
C11	5863(3)	6837(1)	5742(1)	33(1)
C12	6257(2)	6345(1)	5012(1)	26(1)
C13	7066(3)	5518(1)	5137(1)	26(1)
C14	7792(2)	4380(1)	4183(1)	26(1)
C15	8544(3)	3941(1)	4973(1)	31(1)
C16	9204(3)	3160(1)	4871(2)	39(1)
C17	9119(3)	2808(1)	3991(2)	42(1)
C18	8353(3)	3231(1)	3206(2)	36(1)
C19	7686(3)	4011(1)	3295(1)	29(1)
N2	7107(2)	5168(1)	4214(1)	25(1)
N1	5929(2)	6584(1)	4115(1)	26(1)
S	6589(1)	4560(1)	2343(1)	36(1)
Se	3307(1)	5964(1)	2638(1)	28(1)
Si	6332(1)	5709(1)	3175(1)	24(1)

Tabelle A37: Bindungslängen [Å] und -winkel [°] von 19.

C1–Si	1.878(2)	C9–C10	1.403(3)	C16–C17	1.389(3)
C2–C3	1.383(3)	C10-C11	1.376(3)	C17–C18	1.385(3)
C2–C7	1.388(3)	C11–C12	1.393(3)	C18–C19	1.391(3)
C2–Se	1.9204(19)	C12-N1	1.342(2)	C19–S	1.753(2)
C3–C4	1.387(3)	C12–C13	1.491(3)	N2–Si	1.7709(16)
C4–C5	1.369(4)	C13-N2	1.455(2)	N1–Si	2.0294(16)
C5–C6	1.378(5)	C14-N2	1.399(2)	S–Si	2.2616(8)
C6–C7	1.387(4)	C14–C15	1.402(3)	Se–Si	2.3449(7)
C8-N1	1.360(3)	C14–C19	1.409(3)		
C8–C9	1.371(3)	C15–C16	1.393(3)		
С3-С2-С7	119.6(2)	N2-C13-C12	108.09(15)	C12-N1-Si	114.26(13)
C3–C2–Se	121.27(16)	N2-C14-C15	124.13(17)	C8–N1–Si	126.28(13)
C7–C2–Se	119.06(15)	N2-C14-C19	116.95(16)	C19–S–Si	94.60(7)
C2C3C4	120.3(2)	C15-C14-C19	118.92(18)	C2–Se–Si	106.38(6)
C5-C4-C3	120.0(2)	C16-C15-C14	119.9(2)	N2-Si-C1	120.60(9)
C4C5C6	120.1(2)	C17–C16–C15	120.6(2)	N2-Si-N1	81.60(7)
С5-С6-С7	120.5(3)	C18-C17-C16	120.0(2)	C1–Si–N1	92.83(8)
С6-С7-С2	119.5(2)	C17-C18-C19	120.2(2)	N2–Si–S	89.23(6)
N1-C8-C9	121.67(19)	C18-C19-C14	120.38(18)	C1–Si–S	98.06(7)
C8-C9-C10	118.9(2)	C18–C19–S	122.70(16)	N1–Si–S	168.34(5)
С11-С10-С9	119.51(19)	C14–C19–S	116.85(14)	N2–Si–Se	124.16(6)
C10-C11-C12	118.68(19)	C14-N2-C13	116.82(15)	C1–Si–Se	113.26(7)

N1-C12-C11	121.90(19)	C14–N2–Si	121.27(12)	N1–Si–Se	82.23(5)
N1-C12-C13	113.73(16)	C13-N2-Si	121.91(13)	S–Si–Se	97.18(3)
C11-C12-C13	124.37(17)	C12-N1-C8	119.27(16)		

Abb. A16: Struktur von **20** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A38: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **20**. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij} -Tensors.

	Х	у	Z	U _{eq}
C1	7447(6)	2252(6)	-1912(6)	58(1)
C2	6264(4)	-941(4)	-3013(4)	46(1)
C3	5399(5)	-2323(5)	-3990(5)	57(1)
C4	5951(6)	-2651(5)	-3956(6)	62(1)
C5	7381(6)	-1607(5)	-2922(6)	56(1)
C6	8262(5)	-213(5)	-1923(5)	43(1)
C7	7724(4)	141(4)	-1958(4)	38(1)
C8	10040(4)	2611(4)	92(4)	35(1)
C9	10720(4)	3978(4)	1059(4)	33(1)
C10	12144(4)	5270(4)	2249(4)	45(1)
C11	12644(5)	6466(5)	3071(5)	51(1)
C12	11695(5)	6330(5)	2667(5)	50(1)
C13	10293(5)	5021(4)	1468(5)	43(1)
C14	9313(4)	4156(4)	2218(4)	40(1)

C15	10403(5)	4495(5)	2978(5)	50(1)
C16	11717(6)	5841(7)	4350(6)	66(2)
C17	11955(6)	6862(7)	4996(6)	77(2)
C18	10869(6)	6528(6)	4274(6)	65(1)
C19	9541(5)	5172(5)	2877(5)	49(1)
N1	9817(3)	3863(3)	680(3)	35(1)
N2	8541(3)	1506(3)	-1015(3)	36(1)
Si	7815(1)	1900(1)	-1087(1)	38(1)
S	5648(1)	-436(1)	-3040(1)	62(1)
Te	7340(1)	2104(1)	61(1)	45(1)
C1b	8986(15)	3796(15)	-364(14)	39(3)
C2b	11757(14)	4272(15)	1780(14)	39(3)
C3b	12981(18)	5016(19)	2982(18)	39(3)
C4b	12960(20)	4470(20)	3310(20)	39(3)
C5b	11810(70)	3190(70)	2400(70)	39(3)
C6b	10480(20)	2376(19)	1190(19)	39(3)
C7b	10465(15)	2920(15)	851(14)	39(3)
C8b	7960(15)	829(15)	-1293(15)	39(3)
C9b	6820(14)	209(15)	-2558(14)	39(3)
C10b	5436(18)	-1110(19)	-3696(18)	39(3)
C11b	4484(19)	-1560(20)	-4815(19)	39(3)
C12b	4966(16)	-650(20)	-4730(18)	39(3)
C13b	6352(13)	652(16)	-3562(14)	39(3)
C14b	7726(10)	685(10)	-4068(10)	39(3)
C15b	7116(13)	-453(12)	-4482(12)	39(3)
C16b	5791(17)	-1781(16)	-5842(17)	39(3)
C17b	5072(18)	-1988(19)	-6810(18)	39(3)
C18b	5675(16)	-876(18)	-6434(17)	39(3)
C19b	7009(12)	475(14)	-5051(13)	39(3)
N1b	7270(11)	1076(13)	-2490(12)	39(3)
N2b	9260(12)	2219(12)	-338(12)	39(3)
Sib	9308(8)	2943(9)	-723(8)	39(3)
Sb	11668(11)	4918(11)	1330(10)	39(3)
Teb	9711(5)	2722(6)	-1929(6)	42(2)

Tabelle A39: Bindungslängen [Å] und -winkel [°] von $\mathbf{20}$.

C1–Si	1.872(5)	C14–Te	2.125(7)	C8b–C9	1.483(5)
C2–C3	1.387(7)	C15-C16	1.376(8)	C9b–N1b	1.332(4)
C2–C7	1.413(6)	C16–C17	1.383(9)	C9b-C10b	1.367(6)
C2–S	1.751(5)	C17–C18	1.382(9)	C10b-C11b	1.383(5)
C3–C4	1.382(8)	C18–C19	1.394(8)	C11b-C12b	1.383(4)

C4–C5	1.388(8)	N1–Si	1.992(6)	C12b-C13b	1.358(5)
C5–C6	1.395(6)	N2–Si	1.760(3)	C13b–N1b	1.339(4)
C6–C7	1.398(6)	Si–S	2.279(6)	C14b-C15b	1.381(4)
C7–N2	1.390(5)	Si–Te	2.5608(12)	C14b-C19b	1.385(5)
C8–N2	1.449(5)	C1b–Si1b	1.864(6)	C14b–Teb	2.113(9)
C8–C9	1.488(5)	C2b–C3b	1.371(5)	C15b-C16b	1.368(6)
C9–N1	1.338(5)	C2b–C7b	1.411(5)	C16b-C17b	1.373(5)
C9–C10	1.380(6)	C2b–Sb	1.743(6)	C17b-C18b	1.375(5)
C10-C11	1.385(6)	C3b–C4b	1.380(4)	C18b-C19b	1.388(5)
C11-C12	1.388(7)	C4b–C5b	1.29(8)	N1b–Sib	1.979(8)
C12–C13	1.369(7)	C5b–C6b	1.42(7)	N2b–Sib	1.750(6)
C13-N1	1.347(5)	C6b–C7b	1.393(4)	Sib–Sb	2.267(9)
C14–C19	1.390(6)	C7b–N2b	1.382(5)	Sib–Teb	2.554(8)
C14-C15	1.392(6)	C8b–N2b	1.433(5)		
C3–C2–C7	119.8(5)	C7–N2–Si	122.0(3)	C13b-C12b-C11b	119.4
C3–C2–S	123.6(4)	C8–N2–Si	120.9(3)	N1b-C13b-C12b	121.6
C7–C2–S	116.6(3)	N2-Si-C1	122.2(2)	C15b-C14b-C19b	119.6
C4–C3–C2	120.5(5)	N2-Si-N1	82.78(14)	C15b-C14b-Teb	119.1
C3-C4-C5	120.8(5)	C1-Si-N1	90.9(2)	C19b-C14b-Teb	121.2
C4C5C6	119.1(5)	N2–Si–S	89.10(12)	C16b-C15b-C14b	120.6
C5-C6-C7	121.1(5)	C1–Si–S	96.1(2)	C15b-C16b-C17b	119.7
N2-C7-C6	123.8(4)	N1-Si-S	171.28(12)	C16b-C17b-C18b	120.7
N2-C7-C2	117.5(4)	N2–Si–Te	119.23(12)	C17b-C18b-C19b	119.6
C6-C7-C2	118.7(4)	C1–Si–Te	118.56(17)	C14b-C19b-C18b	119.6
N2-C8-C9	108.2(3)	N1-Si-Te	94.22(11)	C9b–N1b–C13b	119.6
N1-C9-C10	121.2(4)	S–Si–Te	86.97(7)	C9b–N1b–Sib	114.5
N1C9C8	113.8(3)	C2–S–Si	94.70(15)	C13b–N1b–Sib	125.9
С10-С9-С8	124.9(4)	C14–Te–Si	104.51(11)	C7b–N2b–C8b	117.1
C9-C10-C11	119.1(4)	C3b-C2b-C7b	120.0	C7b–N2b–Sib	122.0
C10-C11-C12	119.0(4)	C3b–C2b–Sb	123.9	C8b–N2b–Sib	120.8
C13-C12-C11	119.3(4)	C7b–C2b–Sb	116.1	N2b–Sib–C1b	122.3
N1-C13-C12	121.4(4)	C2b-C3b-C4b	120.57(10)	N2b-Sib-N1b	82.1
C19-C14-C15	119.5(5)	C5b-C4b-C3b	119(3)	C1b–Sib–N1b	90.6
C19-C14-Te	121.3(3)	C4b-C5b-C6b	123(6)	N2b–Sib–Sb	89.1
C15-C14-Te	119.3(3)	C7b-C6b-C5b	117(3)	C1b–Sib–Sb	96.5
C16-C15-C14	120.4(5)	N2b-C7b-C6b	124.0	N1b–Sib–Sb	171.2
C15-C16-C17	120.1(5)	N2b-C7b-C2b	117.8	N2b–Sib–Teb	119.0
C18-C17-C16	120.1(6)	C6b-C7b-C2b	118.3	C1b–Sib–Teb	118.6
C17-C18-C19	120.1(5)	N2b-C8b-C9b	108.7	N1b–Sib–Teb	94.2
C14-C19-C18	119.7(5)	N1b-C9b-C10b	121.8	Sb–Sib–Teb	86.9
C9-N1-C13	120.0(4)	N1b-C9b-C8b	113.2	C2b–Sb–Sib	94.9
C9–N1–Si	114.2(3)	C10b-C9b-C8b	125.0	C14b-Teb-Sib	104.5

C13–N1–Si	125.7(3)	C9b-C10b-C11b	118.9
C7-N2-C8	117.0(3)	C10b-C11b-C12b	118.7
C7-N2-C8	117.0(3)	C10b-C11b-C12b	118.7

Abb. A17: Struktur von **21** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A40: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **21**. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij} -Tensors.

	Х	у	Z	U _{eq}		
Cl	12181(1)	852(1)	6758(1)	67(1)		
Si	9682(1)	906(1)	5911(1)	46(1)		
F1	7276(3)	231(1)	7898(3)	78(1)		
F2	5652(4)	211(1)	9348(3)	113(1)		
F3	4593(3)	982(2)	9944(3)	120(1)		
F4	5000(3)	1772(1)	8909(3)	98(1)		
F5	6647(3)	1793(1)	7443(2)	70(1)		
F6	12609(2)	1742(1)	4638(2)	64(1)		
F7	13074(3)	2262(1)	2863(2)	66(1)		
F8	10690(3)	2500(1)	612(2)	64(1)		
F9	7856(3)	2223(1)	161(2)	67(1)		
F10	7376(2)	1707(1)	1934(2)	60(1)		
N1	7566(3)	993(1)	5656(3)	43(1)		
N2	9517(3)	1020(1)	7493(3)	50(1)		
N3	9816(3)	1529(1)	5473(3)	43(1)		
N4	9511(3)	971(1)	4191(3)	48(1)		
C27015(4)1015(1)7658(3)45(1)C36726(4)613(1)8151(4)58(1)C45911(5)599(2)8881(4)72(1)C55366(5)979(2)9179(4)76(1)C65581(5)1388(2)8686(4)69(1)C76406(4)1398(1)7917(4)52(1)C85999(4)918(1)4725(3)52(1)C95856(6)454(2)4143(5)87(2)C105509(5)1276(2)3692(5)77(1)C1110517(6)1031(1)8893(4)79(2)C1210998(5)580(1)9475(4)69(1)C13a10313(9)1361(2)9618(6)64(2)C149753(4)1412(1)4322(3)43(1)C159977(4)1711(1)3340(3)46(1)C1611411(4)1860(1)3547(3)49(1)C1711669(4)2251(1)1517(3)50(1)C1810462(4)2251(1)1517(3)50(1)C199029(4)2105(1)1290(3)51(1)C208800(4)1842(1)200(3)47(1)	C1	8014(4)	1020(1)	6939(3)	42(1)	
--	------	-----------	---------	----------	--------	--
C36726(4)613(1)8151(4)58(1)C45911(5)599(2)8881(4)72(1)C55366(5)979(2)9179(4)76(1)C65581(5)1388(2)8686(4)69(1)C76406(4)1398(1)7917(4)52(1)C85999(4)918(1)4725(3)52(1)C95856(6)454(2)4143(5)87(2)C268533(7)636(2)2005(5)115(2)C105509(5)1276(2)3692(5)77(1)C1110517(6)1031(1)8893(4)79(2)C1210998(5)580(1)9475(4)69(1)C13a10313(9)1361(2)9618(6)64(2)C149753(4)1412(1)4322(3)43(1)C159977(4)1711(1)3340(3)46(1)C1611411(4)1860(1)5547(3)49(1)C1711669(4)2251(1)1517(3)50(1)C1810462(4)2251(1)1517(3)50(1)C199029(4)2105(1)1290(3)51(1)C208800(4)1842(1)2200(3)47(1)	C2	7015(4)	1015(1)	7658(3)	45(1)	
C45911(5)599(2)8881(4)72(1)C5536(5)979(2)9179(4)76(1)C65581(5)1388(2)8686(4)69(1)C76406(4)1398(1)7917(4)52(1)C85999(4)918(1)4725(3)52(1)C95856(6)454(2)4143(5)87(2)C268533(7)636(2)2005(5)115(2)C105509(5)1276(2)3692(5)77(1)C1110517(6)1031(1)8893(4)79(2)C1210998(5)580(1)9475(4)69(1)C13a10313(9)1361(2)9618(6)64(2)C149753(4)141(3)9485(10)48(3)C159977(4)1711(1)3340(3)46(1)C1611411(4)1860(1)3547(3)49(1)C1711669(4)2128(1)2648(4)51(1)C1810462(4)2251(1)1517(3)50(1)C199029(4)2105(1)1290(3)51(1)C208800(4)1842(1)2200(3)47(1)C219764(5)1968(1)6047(4)65(1)	C3	6726(4)	613(1)	8151(4)	58(1)	
C55366(5)979(2)9179(4)76(1)C65581(5)1388(2)8686(4)69(1)C76406(4)1398(1)7917(4)52(1)C85999(4)918(1)4725(3)52(1)C95856(6)454(2)4143(5)87(2)C268533(7)636(2)2005(5)115(2)C105509(5)1276(2)3692(5)77(1)C1110517(6)1031(1)8893(4)79(2)C1210998(5)580(1)9475(4)69(1)C13a10313(9)1361(2)9618(6)64(2)C149753(4)141(3)9485(10)48(3)C159977(4)1711(1)3340(3)46(1)C1611411(4)1860(1)3547(3)49(1)C1711669(4)2128(1)2648(4)51(1)C180462(4)2251(1)1517(3)50(1)C199029(4)2105(1)1290(3)51(1)C208800(4)1842(1)2200(3)47(1)C219764(5)1968(1)6047(4)65(1)	C4	5911(5)	599(2)	8881(4)	72(1)	
C65581(5)1388(2)8686(4)69(1)C76406(4)1398(1)7917(4)52(1)C85999(4)918(1)4725(3)52(1)C95856(6)454(2)4143(5)87(2)C268533(7)636(2)2005(5)115(2)C105509(5)1276(2)3692(5)77(1)C1110517(6)1031(1)8893(4)79(2)C1210998(5)580(1)9475(4)69(1)C13a10313(9)1361(2)9618(6)64(2)C149753(4)1412(1)4322(3)43(1)C159977(4)1711(1)3340(3)46(1)C1611411(4)1860(1)3547(3)49(1)C1711669(4)2251(1)1517(3)50(1)C1810462(4)2251(1)1517(3)50(1)C208800(4)1842(1)2200(3)47(1)C219764(5)1968(1)6047(4)65(1)	C5	5366(5)	979(2)	9179(4)	76(1)	
C76406(4)1398(1)7917(4)52(1)C85999(4)918(1)4725(3)52(1)C95856(6)454(2)4143(5)87(2)C268533(7)636(2)2005(5)115(2)C105509(5)1276(2)3692(5)77(1)C1110517(6)1031(1)8893(4)79(2)C1210998(5)580(1)9475(4)69(1)C13a10313(9)1361(2)9618(6)64(2)C149753(4)141(3)9485(10)48(3)C159977(4)1711(1)3340(3)46(1)C1611411(4)1860(1)3547(3)49(1)C1711669(4)2128(1)2648(4)51(1)C1810462(4)2251(1)1517(3)50(1)C199029(4)2105(1)1290(3)47(1)C208800(4)1842(1)2200(3)47(1)C219764(5)1968(1)6047(4)65(1)	C6	5581(5)	1388(2)	8686(4)	69(1)	
C85999(4)918(1)4725(3)52(1)C95856(6)454(2)4143(5)87(2)C268533(7)636(2)2005(5)115(2)C105509(5)1276(2)3692(5)77(1)C1110517(6)1031(1)8893(4)79(2)C1210998(5)580(1)9475(4)69(1)C13a10313(9)1361(2)9618(6)64(2)C149753(4)1412(1)4322(3)43(1)C159977(4)1711(1)3340(3)46(1)C1611411(4)1860(1)3547(3)49(1)C1711669(4)2128(1)2648(4)51(1)C1810462(4)2251(1)1517(3)50(1)C199029(4)105(1)1290(3)51(1)C208800(4)1842(1)2200(3)47(1)C219764(5)1968(1)6047(4)65(1)	C7	6406(4)	1398(1)	7917(4)	52(1)	
C95856(6)454(2)4143(5)87(2)C268533(7)636(2)2005(5)115(2)C105509(5)1276(2)3692(5)77(1)C1110517(6)1031(1)8893(4)79(2)C1210998(5)580(1)9475(4)69(1)C13a10313(9)1361(2)9618(6)64(2)C149753(4)1441(3)9485(10)48(3)C159977(4)1711(1)3340(3)46(1)C1611411(4)1860(1)3547(3)49(1)C1711669(4)2128(1)2648(4)51(1)C1810462(4)2251(1)1517(3)50(1)C199029(4)2105(1)1290(3)51(1)C208800(4)1842(1)2200(3)47(1)C219764(5)1968(1)6047(4)65(1)	C8	5999(4)	918(1)	4725(3)	52(1)	
C268533(7)636(2)2005(5)115(2)C105509(5)1276(2)3692(5)77(1)C1110517(6)1031(1)8893(4)79(2)C1210998(5)580(1)9475(4)69(1)C13a10313(9)1361(2)9618(6)64(2)C13b11387(13)1441(3)9485(10)48(3)C149753(4)1412(1)4322(3)43(1)C159977(4)1711(1)3340(3)46(1)C1611411(4)1860(1)3547(3)49(1)C1711669(4)2128(1)2648(4)51(1)C1810462(4)2251(1)1517(3)50(1)C199029(4)2105(1)1290(3)51(1)C208800(4)1842(1)2200(3)47(1)C219764(5)1968(1)6047(4)65(1)	C9	5856(6)	454(2)	4143(5)	87(2)	
C105509(5)1276(2)3692(5)77(1)C1110517(6)1031(1)8893(4)79(2)C1210998(5)580(1)9475(4)69(1)C13a10313(9)1361(2)9618(6)64(2)C13b11387(13)1441(3)9485(10)48(3)C149753(4)1412(1)4322(3)43(1)C159977(4)1711(1)3340(3)46(1)C1611411(4)1860(1)3547(3)49(1)C1711669(4)2128(1)2648(4)51(1)C1810462(4)2251(1)1517(3)50(1)C199029(4)2105(1)1290(3)51(1)C208800(4)1842(1)2200(3)47(1)C219764(5)1968(1)6047(4)65(1)	C26	8533(7)	636(2)	2005(5)	115(2)	
C1110517(6)1031(1)8893(4)79(2)C1210998(5)580(1)9475(4)69(1)C13a10313(9)1361(2)9618(6)64(2)C13b11387(13)1441(3)9485(10)48(3)C149753(4)1412(1)4322(3)43(1)C159977(4)1711(1)3340(3)46(1)C1611411(4)1860(1)3547(3)49(1)C1711669(4)2128(1)2648(4)51(1)C1810462(4)2251(1)1517(3)50(1)C199029(4)2105(1)1290(3)51(1)C208800(4)1842(1)2200(3)47(1)C219764(5)1968(1)6047(4)65(1)	C10	5509(5)	1276(2)	3692(5)	77(1)	
C1210998(5)580(1)9475(4)69(1)C13a10313(9)1361(2)9618(6)64(2)C13b11387(13)1441(3)9485(10)48(3)C149753(4)1412(1)4322(3)43(1)C159977(4)1711(1)3340(3)46(1)C1611411(4)1860(1)3547(3)49(1)C1711669(4)2128(1)2648(4)51(1)C1810462(4)2251(1)1517(3)50(1)C199029(4)2105(1)1290(3)47(1)C208800(4)1842(1)2200(3)47(1)C219764(5)1968(1)6047(4)65(1)	C11	10517(6)	1031(1)	8893(4)	79(2)	
C13a10313(9)1361(2)9618(6)64(2)C13b11387(13)1441(3)9485(10)48(3)C149753(4)1412(1)4322(3)43(1)C159977(4)1711(1)3340(3)46(1)C1611411(4)1860(1)3547(3)49(1)C1711669(4)2128(1)2648(4)51(1)C1810462(4)2251(1)1517(3)50(1)C199029(4)2105(1)1290(3)51(1)C208800(4)1842(1)2200(3)47(1)C219764(5)1968(1)6047(4)65(1)	C12	10998(5)	580(1)	9475(4)	69(1)	
C13b11387(13)1441(3)9485(10)48(3)C149753(4)1412(1)4322(3)43(1)C159977(4)1711(1)3340(3)46(1)C1611411(4)1860(1)3547(3)49(1)C1711669(4)2128(1)2648(4)51(1)C1810462(4)2251(1)1517(3)50(1)C199029(4)2105(1)1290(3)51(1)C208800(4)1842(1)2200(3)47(1)C219764(5)1968(1)6047(4)65(1)	C13a	10313(9)	1361(2)	9618(6)	64(2)	
C149753(4)1412(1)4322(3)43(1)C159977(4)1711(1)3340(3)46(1)C1611411(4)1860(1)3547(3)49(1)C1711669(4)2128(1)2648(4)51(1)C1810462(4)2251(1)1517(3)50(1)C199029(4)2105(1)1290(3)51(1)C208800(4)1842(1)2200(3)47(1)C219764(5)1968(1)6047(4)65(1)	C13b	11387(13)	1441(3)	9485(10)	48(3)	
C159977(4)1711(1)3340(3)46(1)C1611411(4)1860(1)3547(3)49(1)C1711669(4)2128(1)2648(4)51(1)C1810462(4)2251(1)1517(3)50(1)C199029(4)2105(1)1290(3)51(1)C208800(4)1842(1)2200(3)47(1)C219764(5)1968(1)6047(4)65(1)	C14	9753(4)	1412(1)	4322(3)	43(1)	
C1611411(4)1860(1)3547(3)49(1)C1711669(4)2128(1)2648(4)51(1)C1810462(4)2251(1)1517(3)50(1)C199029(4)2105(1)1290(3)51(1)C208800(4)1842(1)2200(3)47(1)C219764(5)1968(1)6047(4)65(1)	C15	9977(4)	1711(1)	3340(3)	46(1)	
C1711669(4)2128(1)2648(4)51(1)C1810462(4)2251(1)1517(3)50(1)C199029(4)2105(1)1290(3)51(1)C208800(4)1842(1)2200(3)47(1)C219764(5)1968(1)6047(4)65(1)	C16	11411(4)	1860(1)	3547(3)	49(1)	
C1810462(4)2251(1)1517(3)50(1)C199029(4)2105(1)1290(3)51(1)C208800(4)1842(1)2200(3)47(1)C219764(5)1968(1)6047(4)65(1)	C17	11669(4)	2128(1)	2648(4)	51(1)	
C199029(4)2105(1)1290(3)51(1)C208800(4)1842(1)2200(3)47(1)C219764(5)1968(1)6047(4)65(1)	C18	10462(4)	2251(1)	1517(3)	50(1)	
C208800(4)1842(1)2200(3)47(1)C219764(5)1968(1)6047(4)65(1)	C19	9029(4)	2105(1)	1290(3)	51(1)	
C21 9764(5) 1968(1) 6047(4) 65(1)	C20	8800(4)	1842(1)	2200(3)	47(1)	
	C21	9764(5)	1968(1)	6047(4)	65(1)	

Tabelle A41: Bindungslängen [Å] und -winkel [°] von 21.

Cl–Si	2.2087(15)	F10-C20	1.343(4)	C8–C9	1.515(6)
Si–H1	1.44(3)	N1C1	1.322(4)	C26–C24	1.426(7)
Si–N2	1.869(3)	N1–C8	1.464(4)	C11–C13a	1.339(7)
Si–N4	1.872(3)	N2C1	1.325(4)	C11-C13b	1.480(11)
Si–N3	1.942(3)	N2C11	1.469(5)	C11–C12	1.489(5)
Si–N1	1.959(3)	N3-C14	1.311(4)	C14–C15	1.496(5)
Si-C1	2.349(4)	N3-C21	1.469(4)	C15-C20	1.376(5)
Si-C14	2.353(3)	N4-C14	1.336(4)	C15-C16	1.380(5)
F1-C3	1.338(5)	N4-C24	1.470(5)	C16–C17	1.382(5)
F2C4	1.336(5)	C1–C2	1.483(5)	C17–C18	1.377(5)
F3–C5	1.342(5)	C2–C7	1.369(5)	C18–C19	1.370(5)
F4C6	1.343(5)	C2–C3	1.394(5)	C19–C20	1.373(5)
F5-C7	1.352(4)	C3–C4	1.342(6)	C21–C23	1.463(6)
F6-C16	1.343(4)	C4–C5	1.350(7)	C21–C22	1.505(6)
F7-C17	1.338(4)	C5–C6	1.389(7)	C24–C25	1.469(6)
F8–C18	1.344(4)	C6–C7	1.388(6)		

F9C19	1.356(4)	C8–C10	1.503(6)		
H1-Si-N2	94.5(11)	C14-N3-C21	132.2(3)	N2-C11-C13b	120.3(5)
H1-Si-N4	100.7(11)	C14–N3–Si	90.5(2)	C13a–C11–C12	119.8(5)
N2-Si-N4	161.24(13)	C21–N3–Si	136.7(3)	N2-C11-C12	113.5(3)
H1-Si-N3	168.8(11)	C14-N4-C24	129.8(3)	C13b-C11-C12	122.3(5)
N2-Si-N3	95.97(12)	C14–N4–Si	92.9(2)	N3-C14-N4	108.0(3)
N4-Si-N3	68.27(12)	C24–N4–Si	132.2(3)	N3-C14-C15	126.6(3)
H1-Si-N1	89.7(11)	N1C1N2	108.8(3)	N4-C14-C15	125.3(3)
N2-Si-N1	68.35(12)	N1C1C2	126.1(3)	N3-C14-Si	55.62(17)
N4-Si-N1	100.56(13)	N2C1C2	125.0(3)	N4-C14-Si	52.60(17)
N3-Si-N1	90.42(12)	N1-C1-Si	56.51(18)	C15-C14-Si	173.3(2)
H1–Si–Cl	92.6(11)	N2-C1-Si	52.61(18)	C20-C15-C16	117.2(3)
N2-Si-Cl	95.96(10)	C2-C1-Si	170.6(2)	C20-C15-C14	122.6(3)
N4-Si-Cl	94.31(10)	C7–C2–C3	117.7(3)	C16-C15-C14	120.2(3)
N3-Si-Cl	90.34(9)	C7-C2-C1	122.2(3)	F6-C16-C15	120.1(3)
N1-Si-Cl	164.28(10)	C3-C2-C1	120.1(3)	F6-C16-C17	118.0(3)
H1-Si-C1	89.9(11)	F1-C3-C4	118.7(4)	C15-C16-C17	121.9(3)
N2-Si-C1	34.28(12)	F1-C3-C2	119.4(3)	F7-C17-C18	120.2(3)
N4-Si-C1	133.98(13)	C4–C3–C2	121.9(4)	F7-C17-C16	120.6(3)
N3-Si-C1	96.49(12)	F2-C4-C3	120.9(5)	C18-C17-C16	119.2(3)
N1-Si-C1	34.25(11)	F2-C4-C5	118.8(4)	F8-C18-C19	119.7(3)
Cl-Si-C1	130.15(10)	C3C4C5	120.3(4)	F8-C18-C17	120.3(3)
H1-Si-C14	135.2(11)	F3-C5-C4	122.3(5)	C19–C18–C17	120.0(3)
N2-Si-C14	129.56(13)	F3-C5-C6	117.2(5)	F9-C19-C18	119.3(3)
N4-Si-C14	34.54(12)	C4C5C6	120.4(4)	F9-C19-C20	120.9(3)
N3-Si-C14	33.86(11)	F4-C6-C7	118.9(4)	C18-C19-C20	119.8(3)
N1-Si-C14	98.72(12)	F4-C6-C5	122.4(4)	F10-C20-C19	117.7(3)
Cl-Si-C14	90.60(9)	C7–C6–C5	118.7(4)	F10-C20-C15	120.4(3)
C1-Si-C14	120.74(12)	F5-C7-C2	119.4(3)	C19–C20–C15	122.0(3)
C1-N1-C8	124.7(3)	F5-C7-C6	119.6(4)	C23-C21-N3	115.2(3)
C1–N1–Si	89.2(2)	C2C7C6	121.0(4)	C23–C21–C22	118.2(4)
C8–N1–Si	142.9(2)	N1-C8-C10	110.5(3)	N3-C21-C22	110.5(4)
C1-N2-C11	128.3(4)	N1-C8-C9	109.5(3)	C26-C24-C25	117.4(4)
C1–N2–Si	93.1(2)	C10–C8–C9	112.1(4)	C26-C24-N4	115.4(4)
C11-N2-Si	137.8(3)	C13a-C11-N2	117.9(4)	C25-C24-N4	114.9(4)

Abb. A18: Struktur von **22** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A42:	Atomkoon	rdinate	en (×	× 10 ⁴)	und äquivale	ente isotrope	e Aus	lenkungsp	aram	eter	$(\text{\AA}^2 >$	< 10 ³)	der
Nichtwasserst	off-Atome	von	22.	Die	angegebenen	U _{eq} -Werte	sind	definiert	als	1/3	der	Spur	des
orthogonalisie	erten U _{ij} -Tei	nsors.											

	X	у	Z	U _{eq}
Cl	10069(1)	5224(1)	1704(1)	34(1)
Si1	8546(1)	6277(1)	2601(1)	22(1)
Si2	8246(1)	8701(1)	232(1)	26(1)
Si3	6896(1)	4646(1)	2287(1)	30(1)
Si4	6013(1)	7879(1)	3921(1)	30(1)
Si5	11102(1)	6889(1)	2917(1)	27(1)
N1	8013(1)	7422(1)	1204(1)	24(1)
N2	7319(1)	5924(1)	2082(1)	24(1)
N3	7541(1)	7348(1)	3424(1)	26(1)
N4	9518(1)	7035(1)	2972(1)	25(1)
C1	7286(1)	6816(1)	1172(1)	23(1)
C2	6571(1)	7045(1)	228(1)	26(1)
C3	7192(2)	6804(2)	-727(1)	35(1)
C4	6536(2)	7023(2)	-1615(2)	44(1)
C5	5274(2)	7491(2)	-1547(2)	43(1)
C6	4657(2)	7719(2)	-600(2)	39(1)
C7	5298(2)	7498(1)	302(1)	31(1)
C8	9524(2)	8317(2)	-791(2)	39(1)
C9	6852(2)	9638(1)	-510(2)	38(1)
C10	8581(2)	9573(1)	993(1)	35(1)

C11	7591(2)	3988(2)	1160(2)	62(1)
C12	5204(2)	4931(2)	2370(2)	49(1)
C13	7478(2)	3638(2)	3612(2)	57(1)
C14	8560(1)	7544(1)	3557(1)	25(1)
C15	8622(1)	8156(1)	4346(1)	28(1)
C16	9012(2)	7478(2)	5385(1)	33(1)
C17	9025(2)	8005(2)	6165(2)	43(1)
C18	8663(2)	9208(2)	5917(2)	52(1)
C19	8296(2)	9880(2)	4886(2)	56(1)
C20	8265(2)	9363(2)	4100(2)	42(1)
C21	5848(2)	8038(2)	5320(2)	50(1)
C22	5308(2)	9308(2)	2946(2)	80(1)
C23	5197(2)	6824(3)	3984(2)	67(1)
C24	11881(2)	5406(2)	3760(2)	38(1)
C25	11370(2)	8024(2)	3401(2)	42(1)
C26	11777(2)	7120(2)	1471(1)	38(1)

Tabelle A43: Bindungslängen [Å] und -winkel [°] von **22**.

Cl-Si1	2.2380(7)	Si3-C13	1.854(2)	C1–C2	1.492(2)
Si1–H1	1.392(17)	Si3-C12	1.8623(19)	C2–C3	1.386(2)
Si1-N2	1.9003(13)	Si4–N3	1.7611(14)	C2–C7	1.394(2)
Si1–N4	1.9010(13)	Si4-C23	1.847(2)	C3–C4	1.390(2)
Si1–N3	1.9541(15)	Si4-C21	1.855(2)	C4–C5	1.386(3)
Si1-N1	1.9611(13)	Si4-C22	1.858(2)	C5–C6	1.372(3)
Si1-C14	2.3330(17)	Si5–N4	1.7713(13)	C6–C7	1.394(2)
Si1–C1	2.3416(15)	Si5-C24	1.8562(17)	C14–C15	1.494(2)
Si2–N1	1.7642(13)	Si5-C26	1.8597(18)	C15-C20	1.391(2)
Si2–C8	1.854(2)	Si5-C25	1.8742(19)	C15–C16	1.397(2)
Si2-C10	1.8625(18)	N1C1	1.3235(19)	C16–C17	1.386(3)
Si2–C9	1.8684(17)	N2C1	1.3348(19)	C17–C18	1.386(3)
Si3–N2	1.7679(13)	N3-C14	1.3298(19)	C18–C19	1.380(3)
Si3-C11	1.847(2)	N4-C14	1.333(2)	C19–C20	1.390(3)
H1-Si1-N2	96.9(8)	N1-Si2-C9	112.65(7)	C14-N4-Si1	90.58(9)
H1-Si1-N4	94.9(8)	C8–Si2–C9	108.63(9)	Si5-N4-Si1	136.45(8)
N2-Si1-N4	165.05(5)	C10-Si2-C9	106.55(8)	N1-C1-N2	110.96(12)
H1-Si1-N3	91.3(8)	N2-Si3-C11	110.70(9)	N1C1C2	125.29(13)
N2-Si1-N3	101.14(6)	N2-Si3-C13	106.12(8)	N2C1C2	123.67(13)
N4-Si1-N3	69.38(6)	C11–Si3–C13	110.28(12)	N1C1Si1	56.86(7)
H1-Si1-N1	166.0(8)	N2-Si3-C12	112.16(8)	N2C1Si1	54.23(7)
N2-Si1-N1	69.09(5)	C11-Si3-C12	108.46(11)	C2C1Si1	173.79(11)

N4-Si1-N1	98.91(6)	C13-Si3-C12	109.10(11)	C3–C2–C7	120.46(14)
N3-Si1-N1	91.37(6)	N3-Si4-C23	107.53(9)	C3-C2-C1	118.99(14)
H1-Si1-Cl	90.4(8)	N3-Si4-C21	114.10(8)	C7–C2–C1	120.55(15)
N2-Si1-Cl	92.88(5)	C23-Si4-C21	107.28(12)	C2–C3–C4	119.51(17)
N4-Si1-Cl	96.19(5)	N3-Si4-C22	108.63(9)	C5–C4–C3	120.04(19)
N3-Si1-Cl	165.56(4)	C23-Si4-C22	109.80(15)	C6C5C4	120.49(16)
N1-Si1-Cl	90.44(5)	C21-Si4-C22	109.45(13)	С5-С6-С7	120.26(17)
H1-Si1-C14	90.9(8)	N4-Si5-C24	108.98(7)	С6-С7-С2	119.23(17)
N2-Si1-C14	135.54(6)	N4-Si5-C26	110.02(7)	N3-C14-N4	110.98(14)
N4-Si1-C14	34.86(6)	C24-Si5-C26	109.68(9)	N3-C14-C15	123.54(14)
N3-Si1-C14	34.73(5)	N4-Si5-C25	111.55(8)	N4-C14-C15	125.22(13)
N1-Si1-C14	99.09(5)	C24-Si5-C25	110.73(9)	N3-C14-Si1	56.85(8)
Cl-Si1-C14	130.91(4)	C26-Si5-C25	105.85(9)	N4-C14-Si1	54.57(8)
H1-Si1-C1	131.6(8)	C1-N1-Si2	128.49(10)	C15-C14-Si1	169.37(10)
N2-Si1-C1	34.75(5)	C1-N1-Si1	88.74(9)	C20-C15-C16	119.34(16)
N4-Si1-C1	133.04(5)	Si2-N1-Si1	142.75(7)	C20-C15-C14	122.68(14)
N3-Si1-C1	99.09(5)	C1–N2–Si3	128.34(11)	C16-C15-C14	117.94(14)
N1-Si1-C1	34.41(5)	C1-N2-Si1	91.02(9)	C17-C16-C15	120.13(16)
Cl-Si1-C1	90.45(4)	Si3-N2-Si1	134.84(7)	C18-C17-C16	120.29(17)
C14-Si1-C1	123.12(5)	C14-N3-Si4	130.41(12)	C19–C18–C17	119.70(19)
N1-Si2-C8	109.75(8)	C14-N3-Si1	88.41(10)	C18-C19-C20	120.64(19)
N1-Si2-C10	107.66(7)	Si4–N3–Si1	141.11(8)	C19–C20–C15	119.90(17)
C8-Si2-C10	111.60(9)	C14-N4-Si5	131.19(11)		

Abb. A19: Struktur von **23** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A44: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **23**. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij} -Tensors.

	Х	у	Z	U _{eq}
S	746(1)	937(1)	2852(1)	29(1)
Si	2139(1)	1951(1)	3421(1)	24(1)
0	529(2)	2098(1)	4220(1)	27(1)
N1	3881(2)	2682(1)	4046(1)	24(1)
N2	4136(2)	1713(1)	2861(1)	25(1)
N3	3466(2)	1364(1)	4671(1)	25(1)
C1	841(3)	2595(1)	2505(1)	30(1)
C2	2539(2)	671(1)	2232(1)	25(1)
C3	2455(3)	57(1)	1683(1)	29(1)
C4	3928(3)	-133(1)	1210(1)	31(1)
C5	5497(3)	294(1)	1286(1)	31(1)
C6	5603(2)	914(1)	1825(1)	26(1)
C7	4141(2)	1114(1)	2303(1)	24(1)
C8	5795(2)	2148(1)	3011(1)	26(1)
С9	5538(2)	2697(1)	3747(1)	25(1)
C10	6906(3)	3185(1)	4113(1)	29(1)
C11	6541(3)	3651(1)	4816(1)	32(1)
C12	4820(3)	3629(1)	5126(1)	33(1)
C13	3518(3)	3143(1)	4727(1)	29(1)
C14	5063(3)	1017(1)	4860(1)	28(1)
C15	5549(3)	621(1)	5716(1)	32(1)
C16	4344(3)	581(1)	6364(1)	32(1)
C17	2630(3)	950(1)	6190(1)	28(1)
C18	1260(3)	968(1)	6798(1)	33(1)
C19	-311(3)	1369(1)	6544(1)	33(1)
C20	-630(3)	1772(1)	5677(1)	30(1)
C21	652(2)	1750(1)	5066(1)	25(1)
C22	2289(3)	1340(1)	5326(1)	25(1)

Tabelle A45: Bindungslängen [Å] und -winkel [°] von 23.

S-C2	1.7570(19)	N3-C14	1.325(2)	C(12)–C(13)	1.376(3)
S–Si	2.2633(7)	N3-C22	1.356(2)	C(14)–C(15)	1.416(3)
Si–O	1.7708(14)	C2–C3	1.396(2)	C(15)–C(16)	1.365(3)
Si–N2	1.8178(16)	C2–C7	1.428(2)	C(16)–C(17)	1.418(3)
Si–C1	1.9124(18)	C3–C4	1.396(3)	C(17)–C(22)	1.410(2)
Si–N1	1.9893(15)	C4–C5	1.390(3)	C(17)–C(18)	1.415(3)

Si–N3	2.1739(15)	C5–C6	1.398(2)	C(18)–C(19)	1.373(3)
O-C21	1.353(2)	C6–C7	1.399(3)	C(19)–C(20)	1.427(3)
N1-C9	1.339(2)	C8–C9	1.503(2)	C(20)–C(21)	1.367(3)
N1-C13	1.356(2)	C9–C10	1.397(2)	C(21)–C(22)	1.421(2)
N2-C7	1.383(2)	C10–C11	1.387(3)		
N2-C8	1.451(2)	C11–C12	1.390(3)		
C2–S–Si	95.48(6)	C7-N2-C8	118.36(15)	С11-С10-С9	118.77(19)
O-Si-N2	166.04(7)	C7–N2–Si	121.74(12)	C10-C11-C12	119.31(17)
O-Si-C1	91.23(7)	C8–N2–Si	119.90(12)	C13-C12-C11	119.22(18)
N2-Si-C1	102.11(8)	C14-N3-C22	118.30(15)	N1-C13-C12	121.49(18)
O-Si-N1	92.73(6)	C14–N3–Si	132.81(13)	N3-C14-C15	121.82(18)
N2-Si-N1	82.50(6)	C22-N3-Si	108.74(11)	C16-C15-C14	119.92(17)
C1-Si-N1	93.47(8)	C3–C2–C7	119.73(17)	C15-C16-C17	119.83(17)
O-Si-N3	79.63(6)	C3–C2–S	123.11(14)	C22-C17-C18	117.80(17)
N2-Si-N3	86.62(7)	C7–C2–S	117.17(13)	C22-C17-C16	115.93(18)
C1–Si–N3	168.65(8)	C4–C3–C2	120.72(17)	C18-C17-C16	126.26(17)
N1-Si-N3	80.36(6)	C5-C4-C3	119.72(17)	C19–C18–C17	119.49(17)
O–Si–S	93.16(5)	C4-C5-C6	120.49(18)	C18-C19-C20	122.35(19)
N2–Si–S	88.74(5)	C5-C6-C7	120.69(17)	C21-C20-C19	119.23(18)
C1–Si–S	99.37(6)	N2-C7-C6	124.60(16)	O-C21-C20	125.74(16)
N1–Si–S	165.74(5)	N2-C7-C2	116.74(16)	O-C21-C22	115.42(16)
N3–Si–S	87.94(5)	C6–C7–C2	118.66(16)	C20-C21-C22	118.83(16)
C21–O–Si	121.66(11)	N2-C8-C9	107.70(15)	N3-C22-C17	124.15(17)
C9-N1-C13	119.75(15)	N1-C9-C10	121.45(17)	N3-C22-C21	113.58(15)
C9–N1–Si	114.64(11)	N1C9C8	114.84(15)	C17-C22-C21	122.26(18)
C13–N1–Si	125.61(13)	С10-С9-С8	123.70(17)		

Abb. A20: Struktur von **25** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

	x	У	Z	\mathbf{U}_{eq}	
Si	7454(1)	2096(1)	2306(1)	15(1)	
N1	9399(1)	1866(1)	2047(1)	13(1)	
N2	8159(1)	381(1)	2583(1)	13(1)	
N3	6210(1)	1417(1)	1471(1)	19(1)	
C1	9522(2)	768(2)	2416(1)	12(1)	
C2	10906(2)	131(2)	2590(1)	13(1)	
C3	11904(2)	82(2)	2079(1)	16(1)	
C4	13198(2)	-543(2)	2210(1)	20(1)	
C5	13509(2)	-1121(2)	2853(1)	19(1)	
C6	12531(2)	-1067(2)	3367(1)	18(1)	
C7	11231(2)	-452(2)	3237(1)	16(1)	
C8	10632(2)	2940(2)	2003(1)	13(1)	
С9	11532(2)	3798(2)	2661(1)	16(1)	
C10	12640(2)	4894(2)	2582(1)	20(1)	
C11	12850(2)	5154(2)	1881(1)	22(1)	
C12	11957(2)	4303(2)	1240(1)	19(1)	
C13	10840(2)	3188(2)	1286(1)	15(1)	
C14	11317(2)	3624(2)	3453(1)	19(1)	
C15	12775(2)	3349(2)	3917(1)	34(1)	

Tabelle A46: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **25**. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij} -Tensors.

017	10751(2)	4024/2	0050/1)	22(1)
C16	10/51(2)	4934(2)	3850(1)	33(1)
C17	9844(2)	2286(2)	575(1)	18(1)
C18	10751(2)	1838(2)	-39(1)	29(1)
C19	8582(2)	3083(2)	275(1)	27(1)
C20	7725(2)	-736(2)	2978(1)	14(1)
C21	7542(2)	-2193(2)	2629(1)	15(1)
C22	7065(2)	-3242(2)	3031(1)	20(1)
C23	6792(2)	-2868(2)	3756(1)	22(1)
C24	6991(2)	-1433(2)	4092(1)	21(1)
C25	7454(2)	-342(2)	3717(1)	16(1)
C26	7885(2)	-2674(2)	1845(1)	17(1)
C27	9149(2)	-3602(2)	1873(1)	24(1)
C28	6466(2)	-3487(2)	1296(1)	23(1)
C29	7706(2)	1222(2)	4124(1)	21(1)
C30	9048(2)	1531(2)	4777(1)	26(1)
C31	6278(2)	1635(2)	4392(1)	37(1)
C32	4915(2)	2124(2)	1258(1)	25(1)
C33	6340(2)	228(2)	891(1)	22(1)

Tabelle A47: Bindungslängen [Å] und -winkel [°] von 25.

Si–N3	1.7249(15)	C4–C5	1.384(2)	C17–C19	1.534(2)
Si–N1	1.9232(16)	C5–C6	1.387(2)	C20–C21	1.408(2)
Si–N2	1.9455(14)	C6–C7	1.387(2)	C20–C25	1.411(2)
Si–C1	2.3947(18)	C8–C13	1.405(2)	C21–C22	1.398(2)
N1C1	1.3434(18)	C8–C9	1.408(2)	C21–C26	1.523(2)
N1–C8	1.4341(19)	C9–C10	1.392(2)	C22–C23	1.384(2)
N2C1	1.3359(19)	C9–C14	1.525(2)	C23–C24	1.382(2)
N2-C20	1.4288(19)	C10-C11	1.382(2)	C24–C25	1.391(2)
N3-C33	1.450(2)	C11–C12	1.383(2)	C25–C29	1.526(2)
N3-C32	1.460(2)	C12–C13	1.392(2)	C26–C28	1.531(2)
C1–C2	1.477(2)	C13–C17	1.521(2)	C26–C27	1.535(2)
C2–C7	1.395(2)	C14–C16	1.529(2)	C29–C31	1.527(2)
C2–C3	1.397(2)	C14–C15	1.532(2)	C29–C30	1.527(2)
C3–C4	1.389(2)	C17–C18	1.529(2)		
N3-Si-N1	103.38(7)	C7-C2-C1	122.33(13)	C13-C17-C18	112.52(14)
N3-Si-N2	102.70(7)	C3-C2-C1	118.60(13)	C13–C17–C19	110.80(13)
N1-Si-N2	67.41(6)	C4–C3–C2	120.48(14)	C18-C17-C19	110.41(14)
N3-Si-C1	110.39(6)	C5–C4–C3	119.99(14)	C21-C20-C25	121.05(13)
N1-Si-C1	34.09(5)	C4C5C6	119.94(14)	C21-C20-N2	120.56(13)
N2-Si-C1	33.89(5)	C7–C6–C5	120.35(14)	C25-C20-N2	118.38(13)

C1-N1-C8	125.13(12)	C6–C7–C2	120.19(14)	C22-C21-C20	118.21(14)
C1–N1–Si	92.56(9)	С13-С8-С9	120.96(14)	C22–C21–C26	118.76(13)
C8–N1–Si	129.52(10)	C13-C8-N1	118.10(13)	C20-C21-C26	123.01(13)
C1-N2-C20	127.46(12)	C9–C8–N1	120.76(13)	C23-C22-C21	121.22(15)
C1-N2-Si	91.82(9)	С10-С9-С8	118.16(14)	C24–C23–C22	119.73(14)
C20-N2-Si	139.22(10)	C10C9C14	118.41(14)	C23-C24-C25	121.61(15)
C33-N3-C32	112.61(13)	C8-C9-C14	123.39(13)	C24-C25-C20	118.16(14)
C33–N3–Si	127.20(10)	C11-C10-C9	121.48(15)	C24–C25–C29	119.46(14)
C32–N3–Si	120.03(11)	C10-C11-C12	119.72(15)	C20-C25-C29	122.33(13)
N2-C1-N1	106.51(12)	C11-C12-C13	121.13(15)	C21-C26-C28	111.58(13)
N2-C1-C2	127.82(13)	C12-C13-C8	118.54(14)	C21-C26-C27	111.09(13)
N1-C1-C2	125.67(13)	C12-C13-C17	120.38(14)	C28-C26-C27	110.32(13)
N2-C1-Si	54.29(8)	C8-C13-C17	121.06(13)	C25-C29-C31	111.67(14)
N1-C1-Si	53.35(7)	C9-C14-C16	110.77(13)	C25-C29-C30	111.41(13)
C2–C1–Si	170.81(10)	C9-C14-C15	111.45(14)	C31-C29-C30	110.99(14)
С7-С2-С3	119.05(13)	C16-C14-C15	111.11(15)		

.

Abb. A21: Struktur von **35** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A48: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **35**. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij} -Tensors.

	Х	v	Z	U _{eq}
Fa	2586(1)	1200(1)	2210(1)	12(1)
ге с:	3360(1)	-1200(1)	2310(1)	13(1)
01	3204(1)	1766(2)	2943(1)	10(1)
01	1082(2)	-1700(2)	1255(1)	26(1)
02	3469(2)	-2310(1)	3874(1)	26(1)
03	4360(2)	-3409(1)	1498(1)	26(1)
04	6074(2)	648(1)	1931(1)	25(1)
N1	3309(2)	2004(1)	2273(1)	9(1)
N2	1685(2)	1182(1)	2978(1)	10(1)
N3	4150(2)	1111(2)	3854(1)	14(1)
C1	2054(2)	2032(2)	2407(1)	10(1)
C2	1208(2)	2758(2)	1985(1)	11(1)
C3	1778(2)	4006(2)	1740(1)	16(1)
C4	970(2)	4676(2)	1337(1)	20(1)
C5	-403(2)	4101(2)	1171(1)	20(1)
C6	-976(2)	2858(2)	1409(1)	17(1)
C7	-174(2)	2187(2)	1822(1)	14(1)
C8	4126(2)	2653(2)	1680(1)	11(1)
С9	3782(2)	2321(2)	859(1)	15(1)
C10	4625(2)	3024(2)	331(1)	19(1)
C11	5767(2)	4002(2)	604(1)	21(1)
C12	6104(2)	4296(2)	1417(1)	17(1)
C13	5300(2)	3622(2)	1972(1)	13(1)
C14	2563(2)	1232(2)	514(1)	18(1)
C15	1582(2)	1758(2)	-27(1)	27(1)
C16	3016(2)	145(2)	42(1)	27(1)
C17	5685(2)	3948(2)	2865(1)	15(1)
C18	5289(2)	5192(2)	3167(1)	24(1)
C19	7184(2)	4075(2)	3083(1)	23(1)
C20	590(2)	1132(2)	3482(1)	11(1)
C21	533(2)	2252(2)	3980(1)	12(1)
C22	-459(2)	2085(2)	4518(1)	16(1)
C23	-1355(2)	879(2)	4579(1)	18(1)
C24	-1323(2)	-184(2)	4061(1)	16(1)
C25	-380(2)	-71(2)	3497(1)	13(1)
C26	1456(2)	3632(2)	3954(1)	14(1)
C27	686(2)	4555(2)	3578(1)	19(1)
C28	2091(2)	4269(2)	4787(1)	20(1)
C29	-456(2)	-1231(2)	2894(1)	15(1)

	Anhang A: Daten zu den Kristallstrukturanalysen				
C30	-1827(2)	-1640(2)	2406(1)	24(1)	
C31	-153(2)	-2404(2)	3288(1)	22(1)	
C32	5503(2)	924(2)	4031(1)	16(1)	
C33	3855(2)	2030(2)	4460(1)	17(1)	
C34	2058(2)	-1496(2)	1678(1)	18(1)	
C35	3499(2)	-1868(2)	3260(1)	18(1)	
C36	4055(2)	-2555(2)	1822(1)	17(1)	
C37	5076(2)	-64(2)	2073(1)	18(1)	

Tabelle A49: Bindungslängen [Å] und -winkel [°] von 35.

Fe–C37	1.777(2)	N3-C33	1.464(2)	C14–C15	1.538(3)
Fe-C35	1.780(2)	N3-C32	1.469(2)	C14–C16	1.540(3)
Fe-C34	1.785(2)	C1–C2	1.469(3)	C17–C19	1.531(3)
Fe-C36	1.791(2)	C2–C3	1.396(3)	C17–C18	1.537(3)
Fe–Si	2.2574(7)	C2–C7	1.399(3)	C20–C25	1.405(3)
Si–N3	1.7087(17)	C3–C4	1.386(3)	C20–C21	1.424(3)
Si–N2	1.8622(16)	C4–C5	1.392(3)	C21–C22	1.394(3)
Si–N1	1.8750(16)	C5–C6	1.387(3)	C21–C26	1.528(3)
Si–C1	2.3360(19)	C6–C7	1.391(3)	C22–C23	1.383(3)
O1–C34	1.154(2)	C8–C9	1.403(3)	C23–C24	1.386(3)
O2–C35	1.156(2)	C8–C13	1.408(3)	C24–C25	1.393(3)
O3–C36	1.146(2)	C9–C10	1.395(3)	C25–C29	1.525(3)
O4–C37	1.158(2)	C9–C14	1.525(3)	C26–C27	1.537(3)
N1-C1	1.334(2)	C10-C11	1.384(3)	C26–C28	1.543(3)
N1-C8	1.439(2)	C11–C12	1.385(3)	C29–C31	1.523(3)
N2C1	1.357(2)	C12–C13	1.395(3)	C29–C30	1.532(3)
N2-C20	1.447(2)	C13–C17	1.523(3)		
C37-Fe-C35	120.60(9)	C32–N3–Si	122.22(13)	C9-C14-C16	110.49(17)
C37-Fe-C34	121.10(9)	N1-C1-N2	105.85(15)	C15-C14-C16	109.73(17)
C35-Fe-C34	117.52(9)	N1-C1-C2	127.25(16)	C13-C17-C19	112.00(16)
C37-Fe-C36	92.00(9)	N2-C1-C2	126.78(16)	C13-C17-C18	111.56(16)
C35-Fe-C36	94.62(9)	N1-C1-Si	53.34(9)	C19–C17–C18	110.87(16)
C34-Fe-C36	92.28(9)	N2-C1-Si	52.83(9)	C25-C20-C21	120.63(17)
C37–Fe–Si	81.68(7)	C2–C1–Si	171.90(13)	C25-C20-N2	118.25(16)
C35–Fe–Si	86.16(7)	C3–C2–C7	119.95(17)	C21-C20-N2	121.04(16)
C34–Fe–Si	93.50(7)	C3-C2-C1	120.34(17)	C22-C21-C20	117.66(17)
C36–Fe–Si	173.03(7)	C7-C2-C1	119.71(17)	C22-C21-C26	117.62(17)
N3-Si-N2	106.63(8)	C4–C3–C2	119.74(18)	C20-C21-C26	124.71(17)
N3-Si-N1	114.22(8)	C3C4C5	120.13(19)	C23-C22-C21	121.99(18)
N2-Si-N1	70.12(7)	C6C5C4	120.51(18)	C22–C23–C24	119.39(18)

	115 (5)(6)		110 (7(10)	G00 G04 G05	101 07(10)
N3-S1-Fe	115.6/(6)	C5-C6-C/	119.6/(18)	C23-C24-C25	121.27(18)
N2–Si–Fe	128.82(5)	C6-C7-C2	120.00(18)	C24-C25-C20	118.77(18)
N1–Si–Fe	113.40(5)	C9–C8–C13	122.06(17)	C24-C25-C29	119.45(17)
N3-Si-C1	117.83(7)	C9–C8–N1	121.75(16)	C20-C25-C29	121.75(17)
N2-Si-C1	35.50(6)	C13-C8-N1	116.18(16)	C21-C26-C27	110.89(15)
N1-Si-C1	34.79(6)	С10-С9-С8	117.42(18)	C21-C26-C28	113.26(16)
Fe-Si-C1	126.08(5)	С10-С9-С14	118.48(18)	C27-C26-C28	107.80(16)
C1-N1-C8	128.09(15)	C8–C9–C14	124.10(17)	C31-C29-C25	112.39(16)
C1–N1–Si	91.87(11)	С11-С10-С9	121.55(19)	C31-C29-C30	110.48(16)
C8–N1–Si	138.69(12)	C10-C11-C12	120.10(18)	C25-C29-C30	111.12(16)
C1-N2-C20	126.59(15)	C11-C12-C13	120.80(19)	O1-C34-Fe	175.55(18)
C1–N2–Si	91.67(11)	C12-C13-C8	118.03(18)	O2–C35–Fe	178.41(18)
C20–N2–Si	140.05(12)	C12-C13-C17	120.30(17)	O3–C36–Fe	178.76(18)
C33-N3-C32	110.75(15)	C8-C13-C17	121.66(16)	O4–C37–Fe	177.54(18)
C33–N3–Si	125.20(13)	C9-C14-C15	112.14(17)		

Abb. A22: Struktur der beiden kristallographisch unabhängigen Moleküle von **36** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A50: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **36**. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij} -Tensors.

	Х	у	Z	U _{eq}
Si1	8799(1)	1400(1)	1371(1)	15(1)
Si2	9503(1)	-1033(1)	1658(1)	20(1)
N1	8360(1)	1833(2)	930(1)	13(1)
N2	7775(1)	1578(2)	1424(1)	13(1)
N3	9238(1)	2625(2)	1554(1)	20(1)
N4	9176(1)	87(2)	1393(1)	19(1)
C1	7677(1)	1844(2)	1071(1)	13(1)
C2	6964(1)	2155(2)	886(1)	14(1)
C3	6816(1)	1823(2)	526(1)	16(1)
C4	6135(1)	2117(2)	363(1)	20(1)
C5	5603(1)	2752(3)	552(1)	23(1)
C6	5746(2)	3094(3)	909(1)	24(1)
C7	6420(1)	2786(2)	1075(1)	19(1)
C8	8545(1)	1960(2)	553(1)	14(1)
C9	8686(1)	885(2)	359(1)	15(1)
C10	8847(1)	1000(3)	-7(1)	19(1)
C11	8874(1)	2136(3)	-172(1)	24(1)
C12	8745(1)	3175(3)	26(1)	22(1)
C13	8577(1)	3119(2)	393(1)	17(1)
C14	8662(1)	-384(2)	526(1)	16(1)
C15	8032(1)	-1161(3)	357(1)	22(1)
C16	9415(1)	-1030(3)	487(1)	22(1)
C17	8449(2)	4294(2)	600(1)	24(1)
C18	7778(2)	5013(3)	449(1)	33(1)
C19	9156(2)	5078(3)	609(1)	38(1)
C20	7215(1)	1097(2)	1660(1)	15(1)
C21	7158(1)	1607(2)	2008(1)	19(1)
C22	6604(2)	1163(3)	2232(1)	24(1)
C23	6135(2)	230(3)	2122(1)	23(1)
C24	6227(1)	-302(3)	1786(1)	21(1)
C25	6768(1)	103(2)	1550(1)	16(1)
C26	7680(2)	2616(3)	2139(1)	23(1)
C27	7297(2)	3865(3)	2104(1)	33(1)
C28	7966(2)	2398(3)	2526(1)	36(1)
C29	6883(1)	-616(2)	1203(1)	18(1)
C30	6157(2)	-784(3)	983(1)	28(1)
C31	7257(2)	-1840(3)	1295(1)	27(1)
C32	8972(2)	3883(3)	1551(1)	27(1)

C33	9930(2)	2500(3)	1768(1)	27(1)
C34	9372(2)	-2571(3)	1444(1)	38(1)
C35	9021(2)	-1079(3)	2102(1)	45(1)
C36	10527(2)	-906(3)	1758(1)	41(1)
Si3	6239(1)	6306(1)	-1484(1)	15(1)
Si4	5377(1)	3901(1)	-1716(1)	22(1)
N5	6648(1)	6720(2)	-1029(1)	14(1)
N6	7250(1)	6620(2)	-1523(1)	14(1)
N7	5733(1)	7504(2)	-1644(1)	20(1)
N8	5957(1)	4941(2)	-1539(1)	21(1)
C37	7328(1)	6840(2)	-1165(1)	13(1)
C38	8021(1)	7185(2)	-972(1)	15(1)
C39	8180(1)	6784(2)	-620(1)	18(1)
C40	8838(1)	7129(3)	-446(1)	21(1)
C41	9341(1)	7893(3)	-616(1)	22(1)
C42	9182(1)	8306(3)	-963(1)	24(1)
C43	8531(1)	7950(2)	-1142(1)	19(1)
C44	6452(1)	6866(2)	-653(1)	14(1)
C45	6286(1)	5796(2)	-459(1)	15(1)
C46	6130(1)	5933(2)	-90(1)	18(1)
C47	6140(1)	7059(3)	75(1)	21(1)
C48	6287(1)	8095(3)	-124(1)	21(1)
C49	6448(1)	8024(2)	-494(1)	18(1)
C50	6274(1)	4537(2)	-626(1)	18(1)
C51	6918(2)	3751(3)	-478(1)	25(1)
C52	5527(2)	3893(3)	-567(1)	25(1)
C53	6580(1)	9198(2)	-700(1)	20(1)
C54	7240(2)	9935(3)	-548(1)	28(1)
C55	5872(2)	9973(3)	-715(1)	34(1)
C56	7839(1)	6189(2)	-1753(1)	14(1)
C57	7939(1)	6793(2)	-2084(1)	18(1)
C58	8506(1)	6379(3)	-2308(1)	21(1)
C59	8947(1)	5398(3)	-2208(1)	22(1)
C60	8824(1)	4784(3)	-1888(1)	19(1)
C61	8260(1)	5161(2)	-1654(1)	17(1)
C62	7422(1)	7809(2)	-2208(1)	20(1)
C63	7800(2)	8845(3)	-2410(1)	37(1)
C64	6777(2)	7273(3)	-2441(1)	34(1)
C65	8125(1)	4397(2)	-1319(1)	21(1)
C66	8834(2)	4262(3)	-1084(1)	34(1)
C67	7798(2)	3160(3)	-1426(1)	34(1)
C68	5943(2)	8780(3)	-1639(1)	25(1)
C69	5017(2)	7324(3)	-1836(1)	29(1)

Anhang A: Daten zu den Kristallstrukturanalysen					
C70	5732(2)	2320(3)	-1626(1)	38(1)	
C71	5220(2)	4033(3)	-2218(1)	46(1)	
C72	4415(2)	3983(3)	-1524(1)	36(1)	

Tabelle A51: Bindungslängen [Å] und -winkel [°] von 36.

Si1–N4	1.590(2)	C14–C15	1.532(3)	C38–C39	1.395(3)
Si1–N3	1.688(2)	C17–C19	1.530(4)	C38–C43	1.398(3)
Si1–N1	1.856(2)	C17–C18	1.531(4)	C39–C40	1.382(4)
Si1-N2	1.856(2)	C20–C21	1.406(3)	C40–C41	1.389(4)
Si1–C1	2.323(3)	C20–C25	1.407(4)	C41–C42	1.382(4)
Si2–N4	1.667(2)	C21–C22	1.393(4)	C42–C43	1.382(4)
Si2-C36	1.865(3)	C21–C26	1.519(4)	C44–C49	1.399(4)
Si2-C35	1.869(3)	C22–C23	1.378(4)	C44–C45	1.409(4)
Si2-C34	1.874(3)	C23–C24	1.383(4)	C45–C46	1.405(3)
N1-C1	1.339(3)	C24–C25	1.390(3)	C45-C50	1.510(4)
N1-C8	1.445(3)	C25–C29	1.519(4)	C46–C47	1.377(4)
N2C1	1.343(3)	C26–C28	1.524(4)	C47–C48	1.380(4)
N2-C20	1.442(3)	C26–C27	1.535(4)	C48–C49	1.405(4)
N3-C32	1.457(4)	C29–C30	1.530(4)	C49–C53	1.516(4)
N3-C33	1.462(3)	C29–C31	1.533(4)	C50–C51	1.529(4)
C1–C2	1.473(3)	Si3–N8	1.590(2)	C50–C52	1.532(4)
C2–C7	1.393(3)	Si3–N7	1.695(2)	C53–C55	1.524(4)
C2–C3	1.398(3)	Si3–N6	1.848(2)	C53–C54	1.527(4)
C3–C4	1.385(3)	Si3–N5	1.874(2)	C56–C61	1.398(4)
C4–C5	1.381(4)	Si3–C37	2.328(3)	C56–C57	1.406(3)
C5–C6	1.389(4)	Si4–N8	1.664(2)	C57–C58	1.397(3)
C6–C7	1.382(4)	Si4-C70	1.872(3)	C57–C62	1.511(4)
C8–C13	1.402(4)	Si4-C71	1.873(3)	C58–C59	1.378(4)
C8–C9	1.403(4)	Si4-C72	1.879(3)	C59–C60	1.383(4)
C9–C10	1.395(3)	N5-C37	1.335(3)	C60–C61	1.404(3)
C9–C14	1.521(4)	N5-C44	1.446(3)	C61–C65	1.518(4)
C10-C11	1.387(4)	N6-C37	1.348(3)	C62–C63	1.526(4)
C11–C12	1.376(4)	N6-C56	1.447(3)	C62–C64	1.540(4)
C12–C13	1.396(4)	N7-C68	1.448(4)	C65–C67	1.524(4)
C13–C17	1.517(4)	N7-C69	1.463(3)	C65–C66	1.529(4)
C14–C16	1.530(3)	C37–C38	1.466(3)		
N4-Si1-N3	120.35(12)	C8-C13-C17	123.3(2)	N5-C37-N6	106.1(2)
N4-Si1-N1	116.56(10)	C9-C14-C16	110.6(2)	N5-C37-C38	127.6(2)
N3-Si1-N1	109.39(11)	C9-C14-C15	111.7(2)	N6-C37-C38	126.4(2)
N4-Si1-N2	120.56(11)	C16-C14-C15	110.3(2)	N5-C37-Si3	53.57(12)

N3-Si1-N2	109.04(11)	C13-C17-C19	110.6(2)	N6-C37-Si3	52.50(12)
N1-Si1-N2	70.47(9)	C13-C17-C18	112.2(2)	C38-C37-Si3	178.80(18)
N4-Si1-C1	125.13(10)	C19–C17–C18	111.1(2)	C39–C38–C43	119.1(2)
N3-Si1-C1	114.42(11)	C21-C20-C25	121.4(2)	C39–C38–C37	121.7(2)
N1-Si1-C1	35.18(8)	C21-C20-N2	118.2(2)	C43-C38-C37	119.2(2)
N2-Si1-C1	35.30(8)	C25-C20-N2	120.3(2)	C40-C39-C38	120.2(2)
N4-Si2-C36	113.06(13)	C22-C21-C20	118.1(2)	C39-C40-C41	120.4(2)
N4-Si2-C35	111.80(14)	C22-C21-C26	120.3(2)	C42-C41-C40	119.7(2)
C36-Si2-C35	107.27(16)	C20-C21-C26	121.6(2)	C43-C42-C41	120.4(2)
N4-Si2-C34	112.05(13)	C23-C22-C21	121.4(2)	C42-C43-C38	120.3(2)
C36-Si2-C34	105.30(14)	C22-C23-C24	119.5(2)	C49-C44-C45	122.5(2)
C35-Si2-C34	106.92(16)	C23–C24–C25	121.9(3)	C49-C44-N5	120.5(2)
C1-N1-C8	127.2(2)	C24-C25-C20	117.6(2)	C45-C44-N5	116.9(2)
C1–N1–Si1	91.83(15)	C24-C25-C29	118.2(2)	C46-C45-C44	116.9(2)
C8–N1–Si1	140.35(16)	C20-C25-C29	124.0(2)	C46-C45-C50	119.5(2)
C1-N2-C20	126.1(2)	C21-C26-C28	112.1(2)	C44-C45-C50	123.6(2)
C1–N2–Si1	91.70(14)	C21-C26-C27	110.5(2)	C47-C46-C45	121.7(2)
C20-N2-Si1	136.44(16)	C28-C26-C27	111.1(2)	C46-C47-C48	120.1(2)
C32-N3-C33	111.3(2)	C25-C29-C30	112.4(2)	C47-C48-C49	121.2(3)
C32–N3–Si1	126.93(18)	C25-C29-C31	109.5(2)	C44-C49-C48	117.6(2)
C33–N3–Si1	121.53(19)	C30-C29-C31	111.9(2)	C44-C49-C53	123.7(2)
Si1-N4-Si2	147.06(14)	N8-Si3-N7	121.17(12)	C48-C49-C53	118.7(2)
N1C1N2	106.0(2)	N8-Si3-N6	118.27(11)	C45-C50-C51	111.4(2)
N1-C1-C2	127.5(2)	N7-Si3-N6	110.11(11)	C45-C50-C52	111.5(2)
N2-C1-C2	126.5(2)	N8-Si3-N5	117.37(11)	C51-C50-C52	110.0(2)
N1–C1–Si1	52.99(12)	N7–Si3–N5	108.73(11)	C49-C53-C55	110.6(2)
N2–C1–Si1	53.00(12)	N6-Si3-N5	70.31(9)	C49–C53–C54	113.0(2)
C2C1Si1	178.57(19)	N8-Si3-C37	124.17(10)	C55-C53-C54	110.7(2)
С7–С2–С3	119.1(2)	N7-Si3-C37	114.62(11)	C61-C56-C57	121.9(2)
C7–C2–C1	119.2(2)	N6-Si3-C37	35.36(8)	C61-C56-N6	120.3(2)
C3-C2-C1	121.7(2)	N5-Si3-C37	34.96(8)	C57-C56-N6	117.7(2)
C4–C3–C2	119.9(2)	N8-Si4-C70	110.95(13)	C58-C57-C56	117.9(2)
С5-С4-С3	120.5(2)	N8-Si4-C71	114.45(14)	C58-C57-C62	120.6(2)
C4-C5-C6	120.1(2)	C70-Si4-C71	106.88(16)	C56-C57-C62	121.4(2)
C7-C6-C5	119.7(2)	N8-Si4-C72	112.78(13)	C59–C58–C57	121.0(2)
C6–C7–C2	120.7(2)	C70-Si4-C72	106.68(14)	C58-C59-C60	120.4(2)
С13-С8-С9	122.5(2)	C71-Si4-C72	104.55(15)	C59-C60-C61	120.9(3)
C13-C8-N1	120.3(2)	C37-N5-C44	126.4(2)	C56-C61-C60	117.8(2)
C9-C8-N1	117.2(2)	C37–N5–Si3	91.46(15)	C56-C61-C65	124.2(2)
C10-C9-C8	117.5(2)	C44-N5-Si3	142.14(16)	C60-C61-C65	117.9(2)
C10C9C14	118.9(2)	C37-N6-C56	124.8(2)	C57–C62–C63	114.9(2)
C8–C9–C14	123.6(2)	C37-N6-Si3	92.14(14)	C57–C62–C64	109.5(2)
C11-C10-C9	121.2(2)	C56-N6-Si3	135.36(17)	C63-C62-C64	110.1(2)

Anhang A: Daten zu den Kristallstrukturanalysen						19
C12-C11-C10	120.0(2)	C68–N7–C69	111.2(2)	C61–C65–C67	110.3(2)	
C11-C12-C13	121.6(3)	C68–N7–Si3	127.29(18)	C61–C65–C66	111.9(2)	
C12–C13–C8	117.4(2)	C69–N7–Si3	121.36(19)	C67–C65–C66	111.7(2)	
C12-C13-C17	119.4(2)	Si3–N8–Si4	152.59(15)			

Verbindung 37'

Abb. A23: Struktur von 37' im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A52: Atomkoordinaten (× 10^4) und äquivalente isotrope Auslenkungsparameter (Å² × 10^3) der Nichtwasserstoff-Atome von 37'. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij} -Tensors.

	Х	у	Z	U _{eq}
N1	1712(1)	7357(1)	2518(1)	14(1)
N2	2380(1)	9318(1)	2639(1)	14(1)
C1	1652(2)	8373(1)	2191(1)	14(1)
C2	755(2)	8298(1)	1375(1)	19(1)
C3	-703(2)	7628(2)	1219(1)	26(1)
C4	-1538(2)	7607(2)	472(1)	39(1)
C5	-931(3)	8226(2)	-124(1)	41(1)
C6	519(3)	8878(2)	20(1)	40(1)
C7	1359(2)	8928(2)	773(1)	27(1)
C8	1257(2)	6288(1)	1989(1)	15(1)
C9	-8(2)	5398(1)	2077(1)	20(1)
C10	-437(2)	4396(1)	1543(1)	24(1)
C11	334(2)	4264(2)	942(1)	26(1)

C12	1583(2)	5134(2)	872(1)	24(1)
C13	2081(2)	6152(1)	1390(1)	17(1)
C14	-925(2)	5463(2)	2727(1)	31(1)
C15	-2526(2)	5231(2)	2371(2)	45(1)
C16	-831(2)	4586(2)	3340(1)	48(1)
C17	3500(2)	7056(2)	1292(1)	22(1)
C18	3551(2)	7332(2)	407(1)	33(1)
C19	4792(2)	6651(2)	1600(1)	32(1)
C20	2278(2)	10420(1)	2457(1)	14(1)
C21	3510(2)	11249(1)	2266(1)	16(1)
C22	3470(2)	12361(1)	2156(1)	21(1)
C23	2260(2)	12669(2)	2234(1)	23(1)
C24	1064(2)	11853(2)	2428(1)	22(1)
C25	1043(2)	10727(1)	2550(1)	19(1)
C26	4896(2)	10976(1)	2207(1)	19(1)
C27	5458(2)	11321(2)	1415(1)	32(1)
C28	6034(2)	11566(2)	2953(1)	28(1)
C29	-300(2)	9904(2)	2808(1)	23(1)
C30	-1656(2)	9747(2)	2175(1)	31(1)
C31	-508(2)	10356(2)	3640(1)	32(1)
C34	5893(2)	7997(1)	4193(1)	23(1)
C35	5743(2)	7962(2)	5005(1)	25(1)
C36	6622(2)	7535(2)	5541(1)	28(1)
C37	7679(2)	7161(2)	5271(1)	33(1)
C38	7850(3)	7205(2)	4463(1)	41(1)
C39	6950(2)	7611(2)	3925(1)	34(1)
S1	4837(1)	8659(1)	3526(1)	22(1)
C32	3268(4)	5528(4)	3552(3)	31(1)
C33	2324(3)	6044(2)	4711(1)	30(1)
N3	2595(2)	6303(2)	3889(1)	20(1)
Si	2637(1)	7588(1)	3528(1)	15(1)
N4	1672(2)	8141(2)	4135(1)	25(1)
C40	2181(4)	9082(3)	4567(2)	41(1)
S1b	4988(8)	8488(6)	3400(4)	22(1)
C32b	1512(12)	7150(8)	4844(7)	31(1)
C33b	2669(18)	9122(12)	4620(12)	30(1)
N3b	2301(11)	7906(7)	4290(5)	20(1)
Sib	2851(8)	7416(6)	3488(5)	15(1)
N4b	2724(13)	6011(10)	3623(7)	25(1)
C40b	3580(30)	5490(20)	3542(18)	41(1)

N1-C1	1.396(2)	C12–C13	1.393(2)	C34–C39	1.390(3)
N1-C8	1.452(2)	C13–C17	1.528(2)	C34–S1b	1.725(7)
N1–Si	1.761(2)	C14–C16	1.532(3)	C34–S1	1.804(2)
N1–Sib	1.817(8)	C14-C15	1.537(3)	C35–C36	1.389(3)
N2-C1	1.289(2)	C17–C18	1.535(3)	C36–C37	1.382(3)
N2-C20	1.427(2)	C17–C19	1.537(3)	C37–C38	1.385(3)
C1–C2	1.495(2)	C20–C25	1.409(2)	C38–C39	1.388(3)
C2–C7	1.387(2)	C20–C21	1.410(2)	S1–Si	2.1610(19)
C2–C3	1.397(3)	C21–C22	1.394(2)	C32-N3	1.452(4)
C3–C4	1.385(3)	C21–C26	1.521(2)	C33–N3	1.466(3)
C4–C5	1.373(3)	C22–C23	1.380(2)	N3–Si	1.702(2)
C5–C6	1.384(3)	C23–C24	1.381(3)	Si–N4	1.735(2)
C6–C7	1.389(3)	C24–C25	1.398(2)	N4-C40	1.249(4)
C8–C13	1.410(2)	C25–C29	1.528(2)	S1b–Sib	2.141(10)
C8–C9	1.412(2)	C26–C28	1.531(3)	C32b–N3b	1.470(10)
C9–C10	1.395(2)	C26–C27	1.533(2)	C33b–N3b	1.478(13)
C9–C14	1.524(3)	C29–C31	1.534(3)	N3b–Sib	1.668(9)
C10-C11	1.377(3)	C29–C30	1.535(2)	Sib–N4b	1.713(12)
C11–C12	1.381(3)	C34–C35	1.386(3)	N4b–C40b	1.219(16)
C1-N1-C8	119.49(13)	C9-C14-C16	110.25(17)	C34–C35–C36	120.52(18)
C1–N1–Si	113.31(11)	C9-C14-C15	112.79(17)	C37–C36–C35	120.11(18)
C8–N1–Si	126.34(11)	C16-C14-C15	108.35(16)	C36–C37–C38	119.84(18)
C1-N1-Sib	120.4(2)	C13–C17–C18	112.68(15)	C37–C38–C39	119.93(19)
C8–N1–Sib	117.3(2)	C13–C17–C19	110.55(15)	C38–C39–C34	120.59(19)
C1-N2-C20	123.32(13)	C18-C17-C19	108.91(15)	C34–S1–Si	103.28(9)
N2-C1-N1	115.82(14)	C25-C20-C21	119.96(14)	C32-N3-C33	111.1(3)
N2-C1-C2	125.05(14)	C25-C20-N2	121.42(14)	C32–N3–Si	123.4(2)
N1-C1-C2	119.12(13)	C21-C20-N2	118.27(14)	C33–N3–Si	122.61(17)
C7–C2–C3	119.33(17)	C22-C21-C20	119.00(15)	N3-Si-N4	104.23(11)
C7-C2-C1	119.92(16)	C22-C21-C26	119.21(14)	N3-Si-N1	110.12(11)
C3-C2-C1	120.72(16)	C20-C21-C26	121.76(14)	N4-Si-N1	108.19(10)
C4–C3–C2	120.10(19)	C23-C22-C21	121.64(16)	N3-Si-S1	110.86(9)
C5-C4-C3	120.3(2)	C22-C23-C24	118.91(15)	N4-Si-S1	115.78(10)
C4-C5-C6	120.07(19)	C23-C24-C25	122.04(16)	N1-Si-S1	107.58(9)
C5–C6–C7	120.2(2)	C24-C25-C20	118.44(15)	C40–N4–Si	124.2(2)
C2-C7-C6	119.98(19)	C24–C25–C29	118.24(15)	C34–S1b–Sib	97.1(4)
С13-С8-С9	120.79(14)	C20-C25-C29	123.28(15)	C32b-N3b-C33b	109.2(10)
C13-C8-N1	119.63(14)	C21-C26-C28	109.39(14)	C32b–N3b–Sib	123.4(7)
C9-C8-N1	119.58(14)	C21-C26-C27	112.05(14)	C33b–N3b–Sib	127.0(9)
С10С9С8	118.05(16)	C28-C26-C27	111.36(15)	N3b–Sib–N4B	106.0(6)

Tabelle A53: Bindungslängen [Å] und -winkel [°] von $\boldsymbol{37'}.$

C10C9C14	118.06(15)	C25-C29-C31	110.19(14)	N3b–Sib–N1	114.6(5)
C8–C9–C14	123.89(15)	C25-C29-C30	111.21(15)	N4b–Sib–N1	105.4(5)
C11-C10-C9	121.80(16)	C31–C29–C30	109.95(15)	N3b–Sib–S1b	110.0(5)
C10-C11-C12	119.43(16)	C35–C34–C39	118.98(17)	N4b–Sib–S1b	113.8(5)
C11-C12-C13	121.74(17)	C35–C34–S1b	130.9(3)	N1–Sib–S1b	107.2(4)
C12C13C8	118.14(15)	C39–C34–S1b	110.1(2)	C40b–N4b–Sib	130.1(18)
C12-C13-C17	118.52(15)	C35–C34–S1	119.73(14)		
C8-C13-C17	123.33(14)	C39–C34–S1	121.05(15)		

Verbindung **38'**·C₆H₅CH₃

Abb. A24: Struktur der beide kristallographisch unabhängigen Moleküle von **38'** im Kristall von **38'** \cdot C₆H₅CH₃ mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide

(Aufenthaltswahrscheinlichkeit: 50%).

Aufgrund der mangelhaften Kristallqualität können keine genaueren quantitativen Aussagen über Bindungslängen bzw. -winkel in der Kristallstruktur gemacht werden. Die gezeigte Abbildung der Struktur im Kristall dient daher nur als qualitative Veranschaulichung der Atomkonnektivitäten im Molekül.

Verbindung 39'

Abb. A25: Struktur von **39'** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A54: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **39'**. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij} -Tensors.

	Х	у	Z	U_{eq}	
Si	454(1)	3274(1)	7477(1)	30(1)	
0	-29(1)	3184(1)	6603(1)	33(1)	
N1	951(1)	2886(1)	6447(1)	33(1)	
N2	886(1)	2533(1)	8031(1)	30(1)	
N3	686(1)	4174(1)	7620(1)	36(1)	
C1	1125(1)	2399(1)	7158(1)	29(1)	
C2	1473(1)	1762(1)	6993(1)	31(1)	
C3	1420(1)	1374(1)	6045(2)	37(1)	
C4	1720(1)	761(1)	5852(2)	46(1)	
C5	2079(1)	531(1)	6599(2)	49(1)	

C6	2138(1)	911(1)	7542(2)	46(1)
C7	1835(1)	1518(1)	7743(2)	38(1)
C8	1171(1)	3064(1)	5484(1)	32(1)
C9	878(1)	2995(1)	4539(1)	36(1)
C10	1078(1)	3248(1)	3623(2)	44(1)
C11	1548(1)	3549(1)	3630(2)	48(1)
C12	1835(1)	3597(1)	4555(2)	43(1)
C13	1658(1)	3358(1)	5499(1)	35(1)
C14	365(1)	2643(1)	4469(2)	42(1)
C15	-38(1)	3213(2)	4101(2)	54(1)
C16	351(1)	1937(1)	3771(2)	56(1)
C17	2011(1)	3430(1)	6472(2)	40(1)
C18	2194(1)	4245(1)	6661(2)	62(1)
C19	2460(1)	2905(1)	6410(2)	48(1)
C20	1020(1)	2211(1)	9055(1)	31(1)
C21	1335(1)	2635(1)	9762(1)	34(1)
C22	1463(1)	2316(1)	10739(2)	46(1)
C23	1288(1)	1613(1)	11019(2)	55(1)
C24	983(1)	1209(1)	10321(2)	51(1)
C25	842(1)	1494(1)	9322(2)	38(1)
C26	1550(1)	3404(1)	9516(2)	38(1)
C27	2114(1)	3363(1)	9411(2)	51(1)
C28	1442(1)	3998(1)	10345(2)	56(1)
C29	517(1)	1000(1)	8592(2)	43(1)
C30	5(1)	877(1)	9017(2)	53(1)
C31	769(1)	237(1)	8384(2)	62(1)
C32	825(1)	4646(1)	6758(2)	60(1)
C33	573(1)	4658(1)	8501(2)	52(1)

Tabelle A55: Bindungslängen [Å] und -winkel [°] von $39^{\prime}.$

Si–O	1.6699(13)	C2–C7	1.392(3)	C14–C16	1.530(3)
Si–N3	1.7036(17)	C2–C3	1.395(3)	C17–C19	1.525(3)
Si–O´	1.7044(13)	C3–C4	1.378(3)	C17–C18	1.527(3)
Si–N2	1.8543(16)	C4–C5	1.378(3)	C20–C25	1.399(3)
Si–N1	2.0574(16)	C5–C6	1.385(3)	C20–C21	1.414(3)
Si–C1	2.4239(19)	C6–C7	1.377(3)	C21–C22	1.398(3)
Si–Si´	2.4486(11)	C8–C13	1.406(3)	C21–C26	1.511(3)
O–Si´	1.7045(13)	C8–C9	1.410(3)	C22–C23	1.377(3)
N1-C1	1.315(2)	C9–C10	1.399(3)	C23–C24	1.373(3)
N1-C8	1.440(2)	C9–C14	1.508(3)	C24–C25	1.407(3)
N2C1	1.350(2)	C10-C11	1.369(3)	C25–C29	1.513(3)

N2-C20	1.456(2)	C11–C12	1.378(3)	C26–C28	1.533(3)
N3-C32	1.452(3)	C12–C13	1.396(3)	C26–C27	1.535(3)
N3-C33	1.462(3)	C13–C17	1.527(3)	C29–C30	1.528(3)
C1–C2	1.484(3)	C14–C15	1.526(3)	C29–C31	1.534(3)
O-Si-N3	115.02(8)	C1-N2-Si	97.04(11)	C9C14C15	112.16(18)
O–Si–O´	85.96(6)	C20-N2-Si	137.01(12)	C9-C14-C16	110.82(17)
N3-Si-O1´	105.52(7)	C32-N3-C33	109.66(17)	C15-C14-C16	111.07(17)
O-Si-N2	129.22(7)	C32–N3–Si	123.85(15)	C19–C17–C18	109.01(18)
N3-Si-N2	113.26(8)	C33–N3–Si	121.99(13)	С19-С17-С13	111.07(16)
O´-Si-N2	95.73(6)	N1-C1-N2	107.33(15)	C18-C17-C13	112.65(18)
O-Si-N1	92.57(6)	N1-C1-C2	126.17(16)	C25-C20-C21	121.11(17)
N3-Si-N1	97.43(7)	N2-C1-C2	126.12(16)	C25-C20-N2	120.23(16)
O´-Si-N1	155.32(7)	N1-C1-Si	58.07(9)	C21-C20-N2	118.66(16)
N2-Si-N1	66.36(6)	N2-C1-Si	49.40(9)	C22-C21-C20	118.00(18)
O-Si-C1	112.41(6)	C2–C1–Si	170.34(13)	C22-C21-C26	118.12(18)
N3–Si–C1	109.65(7)	C7–C2–C3	118.93(17)	C20-C21-C26	123.86(17)
O´-Si-C1	126.78(7)	C7-C2-C1	123.45(17)	C23-C22-C21	121.7(2)
N2-Si-C1	33.56(6)	C3-C2-C1	117.58(17)	C24–C23–C22	119.4(2)
N1-Si-C1	32.86(6)	C4–C3–C2	120.69(19)	C23-C24-C25	121.9(2)
O–Si–Si´	44.04(4)	C5–C4–C3	119.7(2)	C20-C25-C24	117.82(19)
N3–Si–Si´	110.79(5)	C4-C5-C6	120.30(19)	C20-C25-C29	123.82(17)
O´–Si–Si´	42.93(4)	C7–C6–C5	120.2(2)	C24–C25–C29	118.34(18)
N2–Si–Si´	126.25(5)	C10C9C14	118.71(17)	C21-C26-C28	111.67(17)
N1–Si–Si′	134.90(5)	C8–C9–C14	123.04(17)	C21-C26-C27	111.76(17)
C1–Si–Si′	139.34(5)	C11-C10-C9	121.53(19)	C28-C26-C27	109.05(17)
Si–O–Si´	93.04(6)	C10-C11-C12	119.59(19)	C25-C29-C30	110.88(17)
C1-N1-C8	126.23(15)	C11-C12-C13	121.9(2)	C25-C29-C31	111.37(18)
C1–N1–Si	89.07(11)	C12-C13-C8	117.93(18)	C30-C29-C31	110.91(18)
C8–N1–Si	143.30(12)	C12-C13-C17	117.26(17)		
C1-N2-C20	125.51(15)	C8-C13-C17	124.81(16)		

Verbindung 40'·C₆H₅CH₃

Abb. A26: Struktur von $40' \cdot C_6H_5CH_3$ im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

	Х	у	Z	U _{eq}	
S	524(1)	3817(1)	4669(1)	11(1)	
Si	-1169(1)	4455(1)	4362(1)	9(1)	
N1	-1529(1)	4421(1)	3041(1)	10(1)	
N2	-1799(1)	2594(1)	2759(1)	11(1)	
N3	-2460(1)	4003(1)	4900(1)	12(1)	
C1	-1897(2)	3325(1)	2330(1)	11(1)	
C2	-2388(2)	3102(1)	1207(1)	13(1)	
C3	-3216(2)	3777(2)	990(1)	18(1)	
C4	-3731(2)	3543(2)	-47(2)	23(1)	
C5	-3426(2)	2627(2)	-885(1)	20(1)	
C6	-2600(2)	1944(2)	-679(1)	18(1)	
C7	-2085(2)	2176(1)	357(1)	14(1)	
C8	-1034(2)	5304(1)	2675(1)	11(1)	
C9	143(2)	5245(1)	2181(1)	14(1)	
C10	669(2)	6169(2)	1964(2)	20(1)	
C11	66(2)	7122(2)	2225(2)	23(1)	
C12	-1117(2)	7147(2)	2662(2)	19(1)	
C13	-1700(2)	6240(1)	2879(1)	14(1)	

Tabelle A56: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **40'**·C₆H₅CH₃. Die angegebenen U_{eq}-Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij}-Tensors.

C14	855(2)	4221(2)	1835(1)	16(1)
C15	909(2)	3751(2)	609(2)	23(1)
C16	2221(2)	4474(2)	2379(2)	23(1)
C17	-3055(2)	6298(1)	3270(1)	15(1)
C18	-3988(2)	6521(2)	2477(2)	22(1)
C19	-3101(2)	7205(2)	4383(1)	19(1)
C20	-2270(2)	1445(1)	2265(1)	12(1)
C21	-3599(2)	1052(1)	2023(1)	14(1)
C22	-3963(2)	-97(2)	1588(1)	18(1)
C23	-3074(2)	-846(2)	1394(2)	21(1)
C24	-1770(2)	-446(2)	1654(2)	19(1)
C25	-1349(2)	690(1)	2102(1)	15(1)
C26	-4645(2)	1814(2)	2207(1)	16(1)
C27	-5391(2)	1650(2)	1143(2)	20(1)
C28	-5594(2)	1627(2)	2990(2)	22(1)
C29	81(2)	1101(2)	2400(2)	18(1)
C30	863(2)	764(2)	1409(2)	32(1)
C31	603(2)	696(2)	3249(2)	29(1)
C32	-2581(2)	2960(2)	5081(2)	17(1)
C33	-3661(2)	4476(2)	4943(2)	17(1)
C34	-6707(7)	9608(7)	4670(7)	62(2)
C38	-2631(3)	10516(3)	5278(3)	48(2)
C37	-3185(3)	9959(3)	4238(2)	41(1)
C36	-4512(3)	9669(3)	4058(2)	32(1)
C35	-5287(2)	9935(4)	4917(3)	50(2)
C40	-4734(4)	10492(4)	5956(3)	49(2)
C39	-3406(4)	10783(3)	6137(2)	49(1)

Tabelle A57: Bindungslängen [Å] und -winkel [°] von $40' \cdot C_6H_5CH_3$.

S–Si	2.1243(7)	C6–C7	1.388(2)	C22–C23	1.381(3)
S–Si´	2.1683(7)	C8–C9	1.412(2)	C23–C24	1.393(3)
Si–N3	1.6990(15)	C8–C13	1.412(2)	C24–C25	1.393(2)
Si–N1	1.7831(14)	C9–C10	1.397(2)	C25–C29	1.524(2)
Si–S´	2.1683(7)	C9–C14	1.526(2)	C26–C28	1.532(2)
N1-C1	1.401(2)	C10–C11	1.386(3)	C26–C27	1.537(2)
N1-C8	1.459(2)	C11–C12	1.384(3)	C29–C31	1.526(3)
N2-C1	1.288(2)	C12–C13	1.397(2)	C29–C30	1.533(3)
N2-C20	1.422(2)	C13–C17	1.526(2)	C34–C35	1.493(7)
N3-C33	1.450(2)	C14–C16	1.531(3)	C38–C37	1.3900
N3-C32	1.456(2)	C14–C15	1.538(2)	C38–C39	1.3900
C1–C2	1.490(2)	C17–C19	1.537(2)	C37–C36	1.3900

228	228 Anhang A: Daten zu den Kristallstrukturanalysen						
C2–C3	1.392(2)	C17–C18	1.545(2)	C36–C35	1.3900		
C2–C7	1.399(2)	C20–C25	1.413(2)	C35–C40	1.3900		
C3–C4	1.389(2)	C20–C21	1.414(2)	C40–C39	1.3900		
C4–C5	1.385(3)	C21–C22	1.397(2)				
C5–C6	1.391(3)	C21–C26	1.520(2)				
Si–S–Si´	83.46(3)	C7–C6–C5	120.47(17)	C22-C21-C20	118.01(16)		
N3–Si–N1	113.39(7)	C6C7C2	120.31(16)	C22–C21–C26	118.52(16)		
N3–Si–S	111.70(5)	C9C8C13	120.92(15)	C20-C21-C26	123.47(15)		
N1–Si–S	118.51(5)	C9C8N1	119.68(15)	C23-C22-C21	122.19(17)		
N3–Si–S´	109.04(6)	C13-C8-N1	119.28(14)	C22–C23–C24	119.12(17)		
N1–Si–S´	105.70(5)	С10-С9-С8	118.01(16)	C23–C24–C25	121.29(17)		
S–Si–S´	96.54(3)	C10-C9-C14	117.84(16)	C24-C25-C20	118.82(16)		
C1-N1-C8	122.18(13)	C8-C9-C14	124.11(15)	C24–C25–C29	120.07(16)		
C1–N1–Si	110.55(11)	C11-C10-C9	121.59(17)	C20-C25-C29	121.11(15)		
C8–N1–Si	123.21(11)	C12-C11-C10	119.64(17)	C21-C26-C28	111.96(15)		
C1-N2-C20	124.96(14)	C11-C12-C13	121.23(17)	C21-C26-C27	110.97(14)		
C33-N3-C32	113.78(14)	C12-C13-C8	118.38(16)	C28-C26-C27	109.28(14)		
C33–N3–Si	120.99(11)	C12-C13-C17	117.79(15)	C25-C29-C31	111.17(16)		
C32–N3–Si	123.32(12)	C8-C13-C17	123.76(15)	C25-C29-C30	111.46(15)		
N2-C1-N1	113.54(14)	C9C14C16	111.98(15)	C31-C29-C30	111.14(16)		
N2-C1-C2	126.31(15)	C9C14C15	110.38(15)	C37–C38–C39	120.0		
N1-C1-C2	120.12(14)	C16-C14-C15	109.86(15)	C38–C37–C36	120.0		
C3–C2–C7	118.66(16)	C13–C17–C19	113.09(15)	C37–C36–C35	120.0		
C3-C2-C1	120.48(15)	C13-C17-C18	110.92(15)	C40-C35-C36	120.0		

C19-C17-C18

C25-C20-C21

C25-C20-N2

C21-C20-N2

108.01(14)

120.51(15)

116.70(15)

122.59(15)

C40-C35-C34

C36-C35-C34

C39–C40–C35

C40-C39-C38

122.6(4)

117.4(4)

120.0

120.0

С7-С2-С1

С4-С3-С2

C5-C4-C3

C4-C5-C6

120.77(15)

120.92(17)

120.16(17)

119.48(17)

Abb. A27: Struktur von **41** mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A58:	Atomkoor	dinate	en (×	10 ⁴)	und äquivale	ente isotrope	e Aus	lenkungsp	arame	eter	$(\text{\AA}^2 \rightarrow$	< 10 ³)	der
Nichtwassersto	off-Atome	von	41 .	Die	angegebenen	U _{eq} -Werte	sind	definiert	als	1/3	der	Spur	des
orthogonalisier	ten U _{ij} -Ter	nsors.											

	Х	У	Z	U_{eq}	
Se	1876(1)	8429(1)	4738(1)	44(1)	
Si	1999(1)	10495(1)	5108(1)	28(1)	
N1	1903(1)	10887(3)	6093(1)	25(1)	
N2	2874(1)	11142(2)	5889(1)	22(1)	
N3	1634(1)	11674(3)	4365(1)	38(1)	
C1	2599(1)	11224(3)	6472(2)	22(1)	
C2	2980(1)	11613(3)	7351(2)	26(1)	
C3	2638(2)	12437(4)	7722(2)	38(1)	
C4	2996(2)	12844(4)	8547(2)	49(1)	
C5	3690(2)	12391(4)	8996(2)	49(1)	
C6	4027(2)	11566(4)	8632(2)	41(1)	
C7	3682(2)	11170(3)	7804(2)	32(1)	
C8	1446(1)	10535(3)	6518(2)	24(1)	
C9	1608(2)	9423(3)	7064(2)	30(1)	
C10	1173(2)	9202(4)	7504(2)	39(1)	
C11	590(2)	10003(4)	7384(2)	42(1)	
C12	408(2)	11054(4)	6809(2)	37(1)	
C13	837(1)	11346(3)	6371(2)	29(1)	
C14	2202(2)	8418(4)	7170(2)	41(1)	

C152735(2)8295(5)8082(2)62(1)C161877(2)7030(4)6839(3)61(1)C17636(2)12494(3)5749(2)34(1)C18345(3)13728(4)6040(2)69(1)C1992(2)12007(4)4904(2)47(1)C203586(1)11556(3)5993(1)21(1)C213805(1)12915(3)6162(2)24(1)C224506(2)13237(3)6265(2)31(1)C234974(1)12271(3)6208(2)31(1)C244750(1)10954(3)6040(2)28(1)C254058(1)10553(3)5933(2)22(1)C263339(2)14065(3)6233(2)33(1)C273678(2)15072(4)5522(2)46(1)C283195(2)15072(4)5522(2)46(1)C293861(2)9076(3)5788(2)28(1)C304303(2)8245(4)6559(2)50(1)C313948(2)8538(4)5020(2)48(1)C321647(2)1309(4)4489(2)48(1)C331186(2)11327(5)3499(2)55(1)					
C161877(2)7030(4)6839(3)61(1)C17636(2)12494(3)5749(2)34(1)C18345(3)13728(4)6040(2)69(1)C1992(2)12007(4)4904(2)47(1)C203586(1)11556(3)5993(1)21(1)C213805(1)12915(3)6162(2)24(1)C224506(2)13237(3)6265(2)31(1)C234974(1)12271(3)6208(2)31(1)C244750(1)10954(3)6040(2)28(1)C254058(1)10553(3)5933(2)22(1)C263339(2)14065(3)6233(2)33(1)C273678(2)14767(4)7084(2)42(1)C283195(2)15072(4)5522(2)46(1)C293861(2)9076(3)5788(2)28(1)C304303(2)8245(4)6559(2)50(1)C313948(2)8538(4)5020(2)48(1)C321647(2)13099(4)4489(2)48(1)C331186(2)11327(5)3499(2)55(1)	C15	2735(2)	8295(5)	8082(2)	62(1)
C17636(2)12494(3)5749(2)34(1)C18345(3)13728(4)6040(2)69(1)C1992(2)12007(4)4904(2)47(1)C203586(1)11556(3)5993(1)21(1)C213805(1)12915(3)6162(2)24(1)C224506(2)13237(3)6265(2)31(1)C234974(1)12271(3)6208(2)31(1)C244750(1)10954(3)6040(2)28(1)C254058(1)10553(3)5933(2)22(1)C263339(2)14065(3)6233(2)33(1)C273678(2)14767(4)7084(2)42(1)C283195(2)15072(4)5522(2)46(1)C293861(2)9076(3)5788(2)28(1)C304303(2)8245(4)6559(2)50(1)C313948(2)8538(4)5020(2)48(1)C321647(2)13099(4)4489(2)48(1)C331186(2)11327(5)3499(2)55(1)	C16	1877(2)	7030(4)	6839(3)	61(1)
C18345(3)13728(4)6040(2)69(1)C1992(2)12007(4)4904(2)47(1)C203586(1)11556(3)5993(1)21(1)C213805(1)12915(3)6162(2)24(1)C224506(2)13237(3)6265(2)31(1)C234974(1)12271(3)6208(2)31(1)C244750(1)10954(3)6040(2)28(1)C254058(1)10553(3)5933(2)22(1)C263339(2)14065(3)6233(2)33(1)C273678(2)14767(4)7084(2)42(1)C283195(2)15072(4)5522(2)46(1)C293861(2)9076(3)5788(2)28(1)C304303(2)8245(4)6559(2)50(1)C313948(2)8538(4)5020(2)48(1)C331186(2)11327(5)3499(2)55(1)	C17	636(2)	12494(3)	5749(2)	34(1)
C1992(2)12007(4)4904(2)47(1)C203586(1)11556(3)5993(1)21(1)C213805(1)12915(3)6162(2)24(1)C224506(2)13237(3)6265(2)31(1)C234974(1)12271(3)6208(2)31(1)C244750(1)10954(3)6040(2)28(1)C254058(1)10553(3)5933(2)22(1)C263339(2)14065(3)6233(2)33(1)C273678(2)14767(4)7084(2)42(1)C283195(2)15072(4)5522(2)46(1)C293861(2)9076(3)5788(2)28(1)C304303(2)8245(4)6559(2)50(1)C313948(2)8538(4)5020(2)48(1)C321647(2)13099(4)4489(2)48(1)C331186(2)11327(5)3499(2)55(1)	C18	345(3)	13728(4)	6040(2)	69(1)
C203586(1)11556(3)5993(1)21(1)C213805(1)12915(3)6162(2)24(1)C224506(2)13237(3)6265(2)31(1)C234974(1)12271(3)6208(2)31(1)C244750(1)10954(3)6040(2)28(1)C254058(1)10553(3)5933(2)22(1)C263339(2)14065(3)6233(2)33(1)C273678(2)14767(4)7084(2)42(1)C283195(2)15072(4)5522(2)46(1)C293861(2)9076(3)5788(2)28(1)C304303(2)8245(4)6559(2)50(1)C313948(2)8538(4)5020(2)48(1)C331186(2)11327(5)3499(2)55(1)	C19	92(2)	12007(4)	4904(2)	47(1)
C213805(1)12915(3)6162(2)24(1)C224506(2)13237(3)6265(2)31(1)C234974(1)12271(3)6208(2)31(1)C244750(1)10954(3)6040(2)28(1)C254058(1)10553(3)5933(2)22(1)C263339(2)14065(3)6233(2)33(1)C273678(2)14767(4)7084(2)42(1)C283195(2)15072(4)5522(2)46(1)C293861(2)9076(3)5788(2)28(1)C304303(2)8245(4)6559(2)50(1)C313948(2)8538(4)5020(2)48(1)C321647(2)13099(4)4489(2)48(1)C331186(2)11327(5)3499(2)55(1)	C20	3586(1)	11556(3)	5993(1)	21(1)
C224506(2)13237(3)6265(2)31(1)C234974(1)12271(3)6208(2)31(1)C244750(1)10954(3)6040(2)28(1)C254058(1)10553(3)5933(2)22(1)C263339(2)14065(3)6233(2)33(1)C273678(2)14767(4)7084(2)42(1)C283195(2)15072(4)5522(2)46(1)C293861(2)9076(3)5788(2)28(1)C304303(2)8245(4)6559(2)50(1)C313948(2)8538(4)5020(2)48(1)C321647(2)13099(4)4489(2)48(1)C331186(2)11327(5)3499(2)55(1)	C21	3805(1)	12915(3)	6162(2)	24(1)
C234974(1)12271(3)6208(2)31(1)C244750(1)10954(3)6040(2)28(1)C254058(1)10553(3)5933(2)22(1)C263339(2)14065(3)6233(2)33(1)C273678(2)14767(4)7084(2)42(1)C283195(2)15072(4)5522(2)46(1)C293861(2)9076(3)5788(2)28(1)C304303(2)8245(4)6559(2)50(1)C313948(2)8538(4)5020(2)48(1)C321647(2)13099(4)4489(2)48(1)C331186(2)11327(5)3499(2)55(1)	C22	4506(2)	13237(3)	6265(2)	31(1)
C244750(1)10954(3)6040(2)28(1)C254058(1)10553(3)5933(2)22(1)C263339(2)14065(3)6233(2)33(1)C273678(2)14767(4)7084(2)42(1)C283195(2)15072(4)5522(2)46(1)C293861(2)9076(3)5788(2)28(1)C304303(2)8245(4)6559(2)50(1)C313948(2)8538(4)5020(2)48(1)C321647(2)13099(4)4489(2)48(1)C331186(2)11327(5)3499(2)55(1)	C23	4974(1)	12271(3)	6208(2)	31(1)
C254058(1)10553(3)5933(2)22(1)C263339(2)14065(3)6233(2)33(1)C273678(2)14767(4)7084(2)42(1)C283195(2)15072(4)5522(2)46(1)C293861(2)9076(3)5788(2)28(1)C304303(2)8245(4)6559(2)50(1)C313948(2)8538(4)5020(2)48(1)C321647(2)13099(4)4489(2)48(1)C331186(2)11327(5)3499(2)55(1)	C24	4750(1)	10954(3)	6040(2)	28(1)
C263339(2)14065(3)6233(2)33(1)C273678(2)14767(4)7084(2)42(1)C283195(2)15072(4)5522(2)46(1)C293861(2)9076(3)5788(2)28(1)C304303(2)8245(4)6559(2)50(1)C313948(2)8538(4)5020(2)48(1)C321647(2)13099(4)4489(2)48(1)C331186(2)11327(5)3499(2)55(1)	C25	4058(1)	10553(3)	5933(2)	22(1)
C273678(2)14767(4)7084(2)42(1)C283195(2)15072(4)5522(2)46(1)C293861(2)9076(3)5788(2)28(1)C304303(2)8245(4)6559(2)50(1)C313948(2)8538(4)5020(2)48(1)C321647(2)13099(4)4489(2)48(1)C331186(2)11327(5)3499(2)55(1)	C26	3339(2)	14065(3)	6233(2)	33(1)
C283195(2)15072(4)5522(2)46(1)C293861(2)9076(3)5788(2)28(1)C304303(2)8245(4)6559(2)50(1)C313948(2)8538(4)5020(2)48(1)C321647(2)13099(4)4489(2)48(1)C331186(2)11327(5)3499(2)55(1)	C27	3678(2)	14767(4)	7084(2)	42(1)
C293861(2)9076(3)5788(2)28(1)C304303(2)8245(4)6559(2)50(1)C313948(2)8538(4)5020(2)48(1)C321647(2)13099(4)4489(2)48(1)C331186(2)11327(5)3499(2)55(1)	C28	3195(2)	15072(4)	5522(2)	46(1)
C304303(2)8245(4)6559(2)50(1)C313948(2)8538(4)5020(2)48(1)C321647(2)13099(4)4489(2)48(1)C331186(2)11327(5)3499(2)55(1)	C29	3861(2)	9076(3)	5788(2)	28(1)
C313948(2)8538(4)5020(2)48(1)C321647(2)13099(4)4489(2)48(1)C331186(2)11327(5)3499(2)55(1)	C30	4303(2)	8245(4)	6559(2)	50(1)
C321647(2)13099(4)4489(2)48(1)C331186(2)11327(5)3499(2)55(1)	C31	3948(2)	8538(4)	5020(2)	48(1)
C331186(2)11327(5)3499(2)55(1)	C32	1647(2)	13099(4)	4489(2)	48(1)
	C33	1186(2)	11327(5)	3499(2)	55(1)

Tabelle A59: Bindungslängen [Å] und -winkel [°] von 41.

Se–Si	2.1241(10)	C3–C4	1.395(4)	C17–C18	1.528(5)
Si–N3	1.683(3)	C4–C5	1.390(5)	C17–C19	1.532(4)
Si–N1	1.854(2)	C5–C6	1.375(5)	C20-C21	1.408(4)
Si–N2	1.876(2)	C6–C7	1.393(4)	C20–C25	1.413(4)
Si–C1	2.324(3)	C8–C9	1.406(4)	C21–C22	1.403(4)
N1C1	1.347(3)	C8–C13	1.411(4)	C21–C26	1.515(4)
N1-C8	1.447(3)	C9–C10	1.405(4)	C22–C23	1.380(4)
N2C1	1.349(3)	C9–C14	1.518(4)	C23–C24	1.371(4)
N2-C20	1.447(3)	C10-C11	1.372(5)	C24–C25	1.402(4)
N3-C32	1.422(5)	C11–C12	1.390(5)	C25–C29	1.506(4)
N3-C33	1.467(4)	C12–C13	1.403(4)	C26–C28	1.529(4)
C1–C2	1.474(3)	C13–C17	1.511(4)	C26–C27	1.538(4)
C2–C3	1.389(4)	C14–C16	1.532(6)	C29–C31	1.522(4)
C2–C7	1.403(4)	C14–C15	1.538(4)	C29–C30	1.531(4)
N3-Si-N1	113.44(13)	N2-C1-Si	53.81(12)	C9C14C15	112.2(3)
N3-Si-N2	109.16(13)	C2–C1–Si	177.1(2)	C16-C14-C15	110.1(3)
N1-Si-N2	70.81(10)	C3–C2–C7	120.4(2)	C13-C17-C18	112.8(3)
N3–Si–Se	117.75(10)	C3-C2-C1	119.2(2)	C13-C17-C19	110.2(3)
N1–Si–Se	116.17(9)	C7-C2-C1	120.3(3)	C18-C17-C19	110.2(3)

N2–Si–Se	120.83(8)	C2C3C4	120.1(3)	C21-C20-C25	121.1(2)
N3-Si-C1	118.12(13)	C5–C4–C3	119.2(3)	C21-C20-N2	120.8(2)
N1-Si-C1	35.40(9)	C6-C5-C4	120.7(3)	C25-C20-N2	118.1(2)
N2-Si-C1	35.49(9)	C5–C6–C7	120.8(3)	C22-C21-C20	117.6(3)
Se–Si–C1	124.12(8)	С6С7С2	118.7(3)	C22-C21-C26	117.3(3)
C1-N1-C8	124.9(2)	C9–C8–C13	121.3(3)	C20-C21-C26	125.1(2)
C1–N1–Si	91.75(17)	C9–C8–N1	120.8(2)	C23-C22-C21	122.1(3)
C8–N1–Si	139.23(18)	C13-C8-N1	117.9(2)	C24–C23–C22	119.3(3)
C1-N2-C20	125.9(2)	С10С9С8	117.7(3)	C23-C24-C25	121.9(3)
C1–N2–Si	90.71(16)	C10-C9-C14	118.5(3)	C24-C25-C20	118.0(3)
C20–N2–Si	143.32(17)	C8-C9-C14	123.7(3)	C24-C25-C29	118.8(3)
C32-N3-C33	110.8(3)	C11-C10-C9	121.5(3)	C20-C25-C29	123.2(2)
C32–N3–Si	126.2(2)	C10-C11-C12	120.4(3)	C21-C26-C28	110.2(3)
C33–N3–Si	122.7(3)	C11-C12-C13	120.4(3)	C21-C26-C27	111.3(2)
N1-C1-N2	106.5(2)	C12-C13-C8	118.5(3)	C28-C26-C27	111.4(3)
N1-C1-C2	126.4(2)	C12-C13-C17	120.0(3)	C25-C29-C31	111.7(3)
N2-C1-C2	127.0(2)	C8-C13-C17	121.6(3)	C25-C29-C30	110.3(2)
N1–C1–Si	52.86(13)	C9-C14-C16	109.5(3)	C31-C29-C30	111.1(3)

-

Abb. A28: Struktur von **42** im Kristall mit Angabe des Nummerierungsschemas und Abbildung der thermischen Auslenkungsellipsoide (Aufenthaltswahrscheinlichkeit: 50%).

Tabelle A60: Atomkoordinaten (× 10⁴) und äquivalente isotrope Auslenkungsparameter (Å² × 10³) der Nichtwasserstoff-Atome von **42**. Die angegebenen U_{eq} -Werte sind definiert als 1/3 der Spur des orthogonalisierten U_{ij} -Tensors.

	X	у	Z	U _{eq}
Те	3175(1)	1573(1)	422(1)	24(1)
Si	3004(1)	-652(1)	-64(1)	14(1)
N1	2113(1)	-1234(2)	-861(1)	12(1)
N2	3082(1)	-979(2)	-1068(1)	13(1)
N3	3369(1)	-1885(2)	648(1)	20(1)
C1	2382(1)	-1286(2)	-1446(1)	13(1)
C2	2001(1)	-1659(2)	-2332(1)	14(1)
C3	1292(1)	-1257(2)	-2787(1)	16(1)
C4	944(1)	-1644(2)	-3613(2)	23(1)
C5	1286(1)	-2456(3)	-3984(2)	26(1)
C6	1988(1)	-2868(3)	-3530(2)	28(1)
C7	2343(1)	-2472(3)	-2708(1)	21(1)
C8	1394(1)	-1595(2)	-974(1)	11(1)
C9	933(1)	-584(2)	-920(1)	11(1)
C10	236(1)	-923(2)	-1036(1)	14(1)
C11	-10(1)	-2233(2)	-1207(1)	16(1)
C12	450(1)	-3208(2)	-1261(1)	16(1)
C13	1156(1)	-2929(2)	-1148(1)	13(1)
C14	1154(1)	886(2)	-778(1)	15(1)
C15	734(2)	1705(2)	-1558(2)	22(1)
C16	1051(2)	1450(2)	-17(2)	22(1)
C17	1611(1)	-4082(2)	-1219(1)	18(1)
C18	1269(1)	-4775(2)	-2073(2)	23(1)
C19	1739(1)	-5086(2)	-502(1)	25(1)
C20	3538(1)	-575(2)	-1486(1)	13(1)
C21	4155(1)	-1347(2)	-1343(1)	15(1)
C22	4586(1)	-990(3)	-1764(1)	20(1)
C23	4404(1)	74(3)	-2318(1)	22(1)
C24	3809(1)	832(3)	-2436(2)	22(1)
C25	3367(1)	551(2)	-2010(1)	17(1)
C26	4362(1)	-2516(2)	-735(1)	19(1)
C27	4674(2)	-3699(3)	-1041(2)	34(1)
C28	4891(1)	-2042(3)	125(2)	24(1)
C29	2755(1)	1510(2)	-2122(2)	25(1)
C30	2217(2)	1597(3)	-3034(2)	38(1)
C31	3058(2)	2912(3)	-1807(2)	36(1)
C32	3345(2)	-3307(3)	468(2)	27(1)
C33	3816(2)	-1619(3)	1527(2)	29(1)

Te-Si	2.3555(11)	C3–C4	1.384(3)	C17–C18	1.535(3)
Si–N3	1.697(2)	C4–C5	1.386(4)	C17–C19	1.543(3)
Si–N2	1.8500(19)	C5–C6	1.392(4)	C20–C25	1.404(3)
Si–N1	1.884(2)	C6–C7	1.383(3)	C20–C21	1.408(3)
Si–C1	2.322(2)	C8–C9	1.407(3)	C21–C22	1.394(3)
N1C1	1.337(3)	C8–C13	1.410(3)	C21–C26	1.520(3)
N1-C8	1.440(3)	C9–C10	1.391(3)	C22–C23	1.385(4)
N2C1	1.344(3)	C9–C14	1.526(3)	C23–C24	1.373(3)
N2-C20	1.447(3)	C10–C11	1.391(3)	C24–C25	1.402(3)
N3-C32	1.451(3)	C11–C12	1.380(3)	C25–C29	1.521(3)
N3-C33	1.463(3)	C12–C13	1.398(3)	C26–C28	1.533(3)
C1–C2	1.475(3)	C13–C17	1.512(3)	C26–C27	1.534(3)
C2–C7	1.391(3)	C14–C15	1.526(3)	C29–C30	1.534(4)
C2–C3	1.400(3)	C14–C16	1.531(3)	C29–C31	1.542(4)
N3-Si-N2	112.80(10)	N2-C1-Si	52.78(11)	C15-C14-C16	110.8(2)
N3-Si-N1	109.22(10)	C2–C1–Si	178.24(17)	C9–C14–C16	111.30(18)
N2-Si-N1	70.46(8)	С7-С2-С3	119.7(2)	C13-C17-C18	111.53(18)
N3-Si-C1	117.48(10)	C7–C2–C1	119.2(2)	C13-C17-C19	109.90(19)
N2-Si-C1	35.35(8)	C3-C2-C1	121.1(2)	C18-C17-C19	111.0(2)
N1-Si-C1	35.17(8)	C4C3C2	119.7(2)	C25-C20-C21	121.8(2)
N3–Si–Te	117.57(8)	C3-C4-C5	120.4(2)	C25-C20-N2	120.62(19)
N2–Si–Te	116.83(7)	C4C5C6	119.9(2)	C21-C20-N2	117.56(19)
N1–Si–Te	121.21(6)	C7–C6–C5	120.0(2)	C22-C21-C20	117.9(2)
C1–Si–Te	124.94(6)	C6C7C2	120.3(2)	C22-C21-C26	120.4(2)
C1-N1-C8	125.94(18)	C9–C8–C13	120.8(2)	C20-C21-C26	121.7(2)
C1-N1-Si	90.60(14)	C9-C8-N1	118.56(18)	C23-C22-C21	121.1(2)
C8–N1–Si	143.42(14)	C13-C8-N1	120.60(19)	C24–C23–C22	120.1(2)
C1-N2-C20	125.58(18)	С10-С9-С8	118.9(2)	C23–C24–C25	121.5(2)
C1-N2-Si	91.87(14)	C10-C9-C14	118.32(19)	C24-C25-C20	117.4(2)
C20–N2–Si	137.88(15)	C8-C9-C14	122.74(19)	C24-C25-C29	118.0(2)
C32-N3-C33	111.0(2)	C11-C10-C9	121.3(2)	C20-C25-C29	124.5(2)
C32–N3–Si	125.80(17)	C12-C11-C10	118.9(2)	C21-C26-C28	109.7(2)
C33–N3–Si	122.95(19)	C11-C12-C13	122.4(2)	C21-C26-C27	112.8(2)
N1-C1-N2	106.91(19)	C12–C13–C8	117.7(2)	C28-C26-C27	110.6(2)
N1-C1-C2	127.2(2)	C12–C13–C17	117.6(2)	C25-C29-C30	112.2(2)
N2-C1-C2	125.8(2)	C8-C13-C17	124.7(2)	C25-C29-C31	109.6(2)
N1-C1-Si	54.23(11)	C15-C14-C9	110.24(18)	C30-C29-C31	109.7(2)

Tabelle A61: Bindungslängen [Å] und -winkel [°] von ${\bf 42}.$

,Dipp

Śi=O

NMe₂

39

Dipp-

Danksagung

Ich bedanke mich bei *Herrn Prof. Dr. Reinhold Tacke* für die freundliche Aufnahme in den Arbeitskreis, für die interessante Themenstellung und die Möglichkeit, diese Doktorarbeit anfertigen zu können. Außerdem möchte ich mich für das entgegengebrachte Vertrauen, die vielen Freiheiten während der Anfertigung dieser Arbeit und für die Möglichkeit, an diversen internationalen Tagung teilzunehmen, bedanken.

Herrn Dr. Rüdiger Bertermann, Frau Marie-Luise Schäfer und Herrn Dr. Konstantin Junold danke ich für die Aufnahme zahlloser NMR-Spektren und für die Hilfestellung bei deren Auswertung und Interpretation.

Ganz besonders bedanke ich mich bei *Herrn Dr. Christian Burschka* sowie *Herrn Dipl.-Chem. Johannes Baus* für die Anfertigung zahlreicher Kristallstrukturanalysen.

Frau Liselotte Michels und *Frau Sabine Timmroth* danke ich für die Durchführung der Elementaranalysen.

Unseren Kooperationspartnern *Prof. Dr. F. Matthias Bickelhaupt* und *Frau Dr. Célia Fonseca Guerra* sowie deren beteiligten Mitarbeitern danke ich für die Durchführung der quantenchemischen Berechungen.

Für die stets freundliche Unterstützung bei allen organisatorischen Belangen danke ich *Herrn Dr. Stephan Wagner, Frau Loretta Tietze* und *Frau Cornelia Walter*.

Für die Anfertigung und Reparatur unzähliger Glasgeräte danke ich *Herrn Berthold Fertig*. Mein Dank gilt desweiteren allen Mitarbeitern der Werkstatt, besonders *Herrn Manfred Reinhart* sowie *Herrn Alfred Schertzer*, für die Hilfe bei allen technischen Problemen, und *Frau Maria Kromm* danke ich für die Unterstützung während der Studentenpraktika.

Meinen langjährigen Laborkollegen aus dem "Kompetenz-Zentrum für Höherkoordination", *Herrn Dr. Jörg Weiß* und *Herrn Dr. Konstantin Junold*, danke ich für die sehr angenehme Arbeitsatmosphäre, den regen Ausstausch von Gedanken, Chemikalien und Glasgeräten sowie für die gründliche Durchsicht dieser Arbeit. Ebenso möchte ich *Frau Dr. Katharina Werner, Frau Dr. Nadine Laskowski* und *Frau Dr. Daniela Werlich* u. a. und ganz besonders für ihre Aufmunterungen vor allem in schwierigeren Zeiten danken.
Ich danke allen *Mitgliedern des Arbeitskreises*, die mich während der Zeit meiner Diplomund Doktorarbeit unterstützt haben, herzlich für die vielen Diskussionen und Anregungen sowie für ihr Verständnis, besonders in hektischen Zeiten.

Mein ganz besonderer und herzlicher Dank gilt *meinen Eltern*, welche mir mein Studium ermöglichten, mir immer wieder Mut zum Durchhalten gaben und mich zu jeder Zeit, nicht zuletzt auch finanziell, unterstützt haben. Ebenso möchte ich ganz besonders meiner gesamten *Familie*, meinem *Partner Eric* und meinen *Freunden* für ihre liebevolle Unterstützung und ihr Verständnis danken.