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GRAPHICAL ABSTRACT

1 Graphical abstract

RESEARCH OBJECTIVE

FEEDBACK EFFICIENCY AND TRAINING EFFECTS DURING ALPHA BAND MODULATION OVER THE HUMAN
SENSORIMOTOR CORTEX

How one can efficiently be trained to perform alpha band modulation over sensorimotor cortex?
Can training times and feedback exert significant effect of alpha frequency band training over sensorimotor areas?

STUDIES

STUDY I N=35 healthy participants; single session

Two offline feedback modalities: 2D and 3D limb
movement videos aiming to enhance event-related
desynchronisation (ERD) in the alpha band over
sensorimotor areas during motor imagery.

Is it possbile to amplify motor cortex activation
during motor imagery with 3D offline feedback in a
single training session?

¢ largest alpha band ERD during MI subsequent to the 3D visualization
¢ support of kinestehtic MI

STUDY II N=30 healthy participants; 5 sessions
Can multimodal and enriched online feedback affect Three online feedback modalities: conventional uni-
performance in motor imagery based BCI control in modal, enriched unimodal and enriched multimodal
five training sessions? feedback in 5 training sessions aiming to activate ERD

in the alpha band over sensorimotor areas.

* significant better perfomance after enriched feedback in the initial session

¢ no significant better perfomance of multimodality

STUDY III N=5 patients with schizophrenia, 4 healthy controls;
20 sessions

Can patients with schizophrenia learn to regulate
their alpha activity over sensorimotor cortex in
multiple training sessions?

Online feedback and 20 training sessions aiming to
learn to regulate the alpha band amplitude over sen-
sorimotor areas.

e patients learned to regulate alpha amplitude

* effects of enhanced resting alpha amplitude across the training time

OVERALL RESULTS

A realistic feedback can support end-user in motor imagery and enriched visual feedback can support
user in control of a BCI. Even patients with schizophrenia can learn to modulate their alpha band activity.




ABSTRACT

2 Abstract

Neural oscillations can be measured by electroencephalography (EEG) and these
oscillations can be characterized by their frequency, amplitude and phase. The
mechanistic properties of neural oscillations and their synchronization are able to
explain various aspects of many cognitive functions such as motor control,
memory, attention, information transfer across brain regions, segmentation of the
sensory input and perception (Arnal and Giraud, 2012). The alpha band frequency
is the dominant oscillation in the human brain. This oscillatory activity is found in
the scalp EEG at frequencies around 8-13 Hz in all healthy adults (Makeig et al.,
2002) and considerable interest has been generated in exploring EEG alpha
oscillations with regard to their role in cognitive (Klimesch et al, 1993;
Hanselmayr et al., 2005), sensorimotor (Birbaumer, 2006; Sauseng et al., 2009)
and physiological (Lehmann, 1971; Niedermeyer, 1997; Kiyatkin, 2010) aspects of
human life. The ability to voluntarily regulate the alpha amplitude can be learned
with neurofeedback training and offers the possibility to control a brain-computer
interface (BCI), a muscle independent interaction channel. BCI research is
predominantly focused on the signal processing, the classification and the
algorithms necessary to translate brain signals into control commands than on the
person interacting with the technical system. The end-user must be properly
trained to be able to successfully use the BCI and factors such as task instructions,
training, and especially feedback can therefore play an important role in learning
to control a BCI (Neumann and Kiibler, 2003; Pfurtscheller et al., 2006, 2007;
Allison and Neuper, 2010; Friedrich et al., 2012; Kaufmann et al., 2013; Lotte et al.,
2013).

The main purpose of this thesis was to investigate how end-users can efficiently be
trained to perform alpha band modulation recorded over their sensorimotor
cortex. The herein presented work comprises three studies with healthy
participants and participants with schizophrenia focusing on the effects of
feedback and training time on cortical activation patterns and performance. In the
first study, the application of a realistic visual feedback to support end-users in
developing a concrete feeling of kinesthetic motor imagery was tested in 2D and

3D visualization modality during a single training session. Participants were able
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to elicit the typical event-related desynchronisation responses over sensorimotor
cortex in both conditions but the most significant decrease in the alpha band
power was obtained following the three-dimensional realistic visualization. The
second study strengthen the hypothesis that an enriched visual feedback with
information about the quality of the input signal supports an easier approach for
motor imagery based BCI control and can help to enhance performance.
Significantly better performance levels were measurable during five online
training sessions in the groups with enriched feedback as compared to a
conventional simple visual feedback group, without significant differences in
performance between the unimodal (visual) and multimodal (auditory-visual)
feedback modality. Furthermore, the Ilast study, in which people with
schizophrenia participated in multiple sessions with simple feedback,
demonstrated that these patients can learn to voluntarily regulate their alpha
band. Compared to the healthy group they required longer training times and
could not achieve performance levels as high as the control group. Nonetheless,
alpha neurofeedback training lead to a constant increase of the alpha resting

power across all 20 training session.

To date only little is known about the effects of feedback and training time on BCI
performance and cortical activation patterns. The presented work contributes to
the evidence that healthy individuals can benefit from enriched feedback: A
realistic presentation can support participants in getting a concrete feeling of
motor imagery and enriched feedback, which instructs participants about the
quality of their input signal can give support while learning to control the BCI. This
thesis demonstrates that people with schizophrenia can learn to gain control of
their alpha oscillations recorded over the sensorimotor cortex when participating
in sufficient training sessions. In conclusion, this thesis improved current motor
imagery BCI feedback protocols and enhanced our understanding of the interplay

between feedback and BCI performance.



ZUSAMMENFASSUNG

3 Zusammenfassung (German abstract)

Das Elektroenzephalogramm (EEG) misst neuronale Oszillation, die sich generell
auf Basis ihrer Frequenz, Amplitude und Phase charakterisieren lassen. Die
physiologischen Eigenschaften neuronaler Oszillation und Synchronisation tragen
zur Erlauterung verschiedener Aspekte kognitiver Funktionen bei, wie
Motorsteuerung und Gedachtnis, Aufmerksamkeit, Informationsiibertragung tiber
Hirnregionen hinweg, Wahrnehmung und die Segmentierung des sensorischen
Input (Arnal und Giraud, 2012).

Die dominante Schwingung des menschlichen Gehirns ist die Alphafrequenz. Diese
Schwingungsaktivitdt wird an der Kopfhaut mittels EEG abgeleitet und kann bei
allen gesunden Erwachsenen bei Frequenzen um 8-13 Hz gemessen werden
(Makeig et al., 2002). Das Alpha Frequenzband spielt eine entscheidende Rolle bei
kognitiven (Klimesch et al, 1993; Hanselmayr et al., 2005), sensomotorischen
(Birbaumer, 2006; Sauseng et al.,, 2009) und physiologischen (Lehmann, 1971;
Niedermeyer, 1997; Kiyatkin 2010) Prozessen des menschlichen Lebens. Mittels
Neurofeedbacktraining erlernen Endnutzer, ihre Hirnstrome zu kontrollieren und
damit z.B. eine Gehirn-Computer-Schnittstelle (engl: brain-computer interface,
BCI), einen muskelunabhdngigen Kommunikationskanal zu bedienen.
Ublicherweise richtet sich die BCI-Forschung auf die Verbesserung der
Signalverarbeitung, die Klassifizierung und technische Weiterentwicklung des
BCIs, aber nicht auf die Person, die in Interaktion mit dem technischen System
steht. Der Benutzer selbst sollte entsprechend geschult werden, um in der Lage zu
sein, das BCI erfolgreich zu nutzen. Wichtige Faktoren sind hierbei die
Aufgabenstellung, das Training und insbesondere die Art der Riickmeldung, das
sogenannte Feedback (Pfurtscheller kontrollieren et al., 2006, 2007; Allison und
Neuper, 2010; Friedrich et al,, 2012; Kaufmann et al., 2013; Lotte et al., 2013).

Die hier vorgestellte Arbeit hatte zum Ziel, ein optimiertes Training fiir Endnutzer
zu entwickeln, um eine iiber den Sensormotorischen Cortex abgeleitete
Alphaband-Modulation zu erlernen. Zu diesem Zweck wurden drei Studien
durchgefiihrt, die sich mit den Auswirkungen von Feedback und Trainingsdauer
auf kortikale Aktivierungsmuster und BCI-Leistung von gesunden Probanden und

Patienten mit einer Schizophrenie Erkrankung befassen.
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ZUSAMMENFASSUNG

Die Ergebnisse dreier Studien, in denen Endnutzer erlernten, ihr Alphaband tiber
den sensomotorischen Kortizes zu regulieren, werden im Folgendem detailliert
erldutert: Die erste Studie konnte zeigen, dass eine realistische drei dimensionale
Visualisierung einer Bewegung eine nachfolgende Bewegungsvorstellung positiv
beeinflussen kann. Die Desynchronisation des Alphabandes (10-12 Hz) wurde
signifikant erh6ht und Endnutzer wurden dabei unterstiitzt, ein kinesthetisches
Gefiihl der Bewegungsvorstellung zu erlangen. Eine zweite Studie konnte zeigen,
dass ein multidimensionales Feedback, das den Endnutzer iiber die Qualitit der
Eingangssignale informiert, zu einer gesteigerten BCI-Kontrolle verhelfen kann.
Die Probandengruppe, die ein derartiges informationsreiches Feedback erhielt,
zeigte im Vergleich zu einer Gruppe mit einfachem Feedback signifikant héhere
Leistungswerte in fiinf online Trainingssitzungen. Keine signifikanten
Unterschiede in der BCI-Leistung zeigte der Vergleich der unimodalen (visuell)
und multimodalen (visuell, akustisch) Feedbackgruppen. In der letzten Studie
konnte gezeigt werden, dass auch Patienten mit einer Schizophrenie Erkrankung
lernen konnen, ihr Alphaband in mehreren Sitzungen mit einem einfachen
Feedback zu regulieren. Die Patienten zeigten im Gegensatz zu der gesunden
Kontrollgruppe ein héheres Pensum an Trainingssitzungen und ein niedrigeres
Leistungsniveau. Jedoch fiihrte das Neurofeedbacktraining  iiber die 20
Trainingssitzungen hinweg zu einem Kkontinuierlichen Anstieg des Alpha-
Ruhepeaks.

Die hier vorgestellten Arbeiten konnten zeigen, dass ein informationsreiches,
realistisches, visuelles Feedback positive Effekte auf die BCI-Leistung und kortikale
Aktivierungsmuster ausiiben kann. Eine realistische Bewegungsdarstellung kann
Menschen dabei helfen eine Bewegungsvorstellung zu erzeugen. Die
mehrdimensionale Visualisierung vermittelt dem Nutzer Informationen iiber die
Qualitat der Eingangssignale und erleichtert das Erlernen der Bedienung eines
BCIs. Zudem konnte gezeigt werden, dass auch Patienten mit einer Schizophrenie
Erkrankung in der Lage sind, Kontrolle iliber ihre Alphafrequenz iiber dem
sensomotorischen Kortizes zu erlangen. Zusammenfassend kann festgehalten
werden, dass diese Doktorarbeit bestehende BCI-Protokolle verbessern kann und
zu einem besseren Verstdndnis der Interaktionen von Feedback mit der BCI

Leistung und kortikalen Aktivierungsmustern beitragt.
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4 Introduction

The first section introduces the relevant brain structures and mechanisms for the
generation of neural signals. Non-invasive recording techniques such as the
electroencephalography (EEG) make it possible to detect spontaneous electrical
activity of the brain over a period of time recorded from multiple electrodes along
the scalp. The second section delves into the spectral content of EEG, with a focus
on the neural alpha oscillations recorded over the sensorimotor cortex. A brain-
computer interface (BCI) makes it possible to extract and translate specific
features of the EEG signals into a computer output. The capabilities of this
application and the end-user - BCI interactions are discussed in further details in

the last section.

The main purpose of this thesis was to investigate to what extended training time
and enriched feedback can influence alpha frequency band modulation with regard
to cortical activation and performance. The herein presented studies attempt to
answer the question on how one can efficiently be trained to perform alpha band
modulation. The goal was to develop an alpha frequency training system that can
help individuals to easily gain control of their alpha oscillations recorded over the

sensorimotor cortices.

4.1 Relevant structures of the human brain

4.1.1 Electrical activity in neurons

The human nervous system is defined at the cellular level by the presence of
neurons - types of cells that are specialized in information processing. A typical
neuron consists of a cell body (soma), dendrites, and one or more axons. Neurons
and neuroglia cells (cells which support the neurons’ activities in various ways)
are involved in sending signals rapidly and precisely to other cells. The
information processing on a single neuron is possible due to the membrane

potential, a voltage difference across the plasma membrane of each cell. This
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electrical polarization results from a complex interplay between protein structures
embedded in the membrane called ion pumps and ion channels (Kandel et al,,
2013). These voltage-gated ion channels allow the neuron to generate and
transmit an electrical signal called the action potential. The changes in the
resulting electric field potentials along the membrane and the magnetic field
orientated perpendicular to the electric field can be measured invasively and, if the
group of neurons is large enough, also by non-invasive recording techniques such

as electroencephalography (EEG) systems.

4.1.2 Sensory and motor areas of the cortex

The cerebral cortex is the outer thin mantle of gray matter covering the surface of
each cerebral hemisphere. It is typically 2-3 mm thick and includes sulci (grooves
created by folding of the mantle) and gyri (bumps). Certain cortical regions (Fig 1),
such as the primary cortices, can be organized by their different functions. These
include areas directly receiving sensory input, the so-called motor and sensory
cortex, or regions involved in various other cognitive tasks such as language,
vision, auditory perception, memory, consciousness, planning, reasoning etc.

(Haines, 2012).

primary motor

supplementary Cortex
motor cortex, S\

somatosensory
cortex

posterior
parietal cortex

Figure 1: The human sensorimotor cortex: Sensory areas and motor areas of the human
cerebral cortex seen from the left side (adapted by Gohlenhofen, 1997).
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The primary motor cortex, located on the anterior paracentral lobule of the medial
brain surface is the main contributor to generating neural impulses that pass down
to the spinal cord. Whereas this area is primarily responsible for the control and
the execution of movement, the anteriorly located premotor cortex is involved in
the more abstract concepts of movement, such as the preparation for movement,
the sensory guidance of movement or the direct control of movements with
respect to the spatial position of the body parts. The posterior parietal cortex is
thought to be responsible for some aspects of motor planning and for transforming
sensory information into motor commands. The primary somatosensory cortex,
which lies directly adjacent to the motor cortex, is considered to be a functional
part of the motor control loop. The supplementary motor areas are located on the
midline surface of the hemisphere anterior to the primary motor cortex. It has
many proposed functions such as the internally generated planning of movement
and sequences of movements and coordination of both hands (Penfield and Welch,

1951).

In the special case of the sensory and the motor cortex, some of the connections
between the body and the respective brain areas controlling voluntary movement
are known in detail and offer a map of the proportionate association of the cortex
with body members, known as homunculus (Fig 2). While the feet are located close
to the vertex, the hand is represented lateralized, following the head area with
mouth and tongue (Blankertz et al., 2007). It reflects kinesthetic proprioception,
the body as felt in motion, but mappings can vary in details between individuals.
The mapping was discovered when electrical stimulation of neurons led to the
illusion of a touch (for sensory neurons) or even to the movement (for motor

neurons) of the respective body part (Schott, 1993).
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Figure 2: The homunculus. It visualizes the mapping of body muscles to the motor cortex
(adapted by Gohlenhofen, 1997). The mapping is not isomorph as important areas as
tongue, hands and lips are overly represented.

4.1.3 Neuronal activity in the cerebral cortex

The soma and dendritic trees of the neurons are situated in the cerebral cortex.
The cells have an orientation in which the dendritic trees are closer to the surface.
If excited, an electric field emerges. The following difficulties can arise with
surface, non-invasive recording techniques that capture the electrical activity of
the cerebral cortex: 1) the orientation of the field can change outside the skull
depending on the position of the neuron in the sulcus or in the gyrus, 2) due to the
folds in the sulci. The sulci signal sources are possibly more distant to the
electrodes than those located in gyri, resulting in smaller signal amplitudes. Other
limiting factors are the volume conduction effects, such as poorly conducting
bones or skin, changes in the cerebral blood flow and electromyogenic influences
that can attenuate signal amplitudes and act as a low-pass filter. Any increase in
distance between the sensor and the signal source has to be overcome by the
signal and, therefore, it gets more difficult to determine the exact location of the

source (Wolpaw, 2012).

Non-invasive recording techniques can only detect the electric activity of large
clustered groups of neurons that have correlated activity and not individual
neurons. The sensors record electric or magnetic activity from outside of the

neural tissue and are placed either inside the skull (Electrocorticography, ECoG) or
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outside the skull (EEG and Magnetoencephalography, MEG). Their distance to the
signal source ranges from a few millimeters to a few centimeters. In practice, the
resulting orders of magnitude for the recording of electric field potentials varies
largely between the different recording techniques (EEG=% 30 uV; ECoG=% 200 pV;
MEG=% 50 fT). Other imaging techniques, such as functional magnetic resonance
imaging (fMRI) or positron emission tomography (PET), exist that try to capture
the neural activity via indirect effects, such as changes in the blood oxygenation

level (Aine, 1994).

4.1.4 Non-invasive recording technique EEG

In 1929, Hans Berger reported remarkable results of experiments in which he
showed that it is possible to pick up the electrical activity of the human brain by
placing electrodes on the scalp, amplifying the signal and plotting the changes in
voltage over time (Berger, 1935). This electrical activity recording is called the
EEG. These findings were confirmed by other work groups (Adrian and Matthews,
1934; Jasper and Carmichael, 1935; Gibbs et al., 1936) and led to the acceptance of
the EEG as a real phenomenon. Over the past decades, the EEG has proven to be
very useful in both scientific and clinical applications (Luck, 2005). This technique
allows direct access to the recording of the activity of neural assemblies and makes
it possible to detect activity in real-time. EEG signals are picked up by electrodes
(varying sizes and materials) that are stuck to the scalp with a contact gel. The EEG
signals are the electrical potentials that are determined at each position relative to
one or more reference electrodes and are not stationary recorded signals. The
signal channels are spread over the scalp whereas the reference electrode is
usually placed at the earlobe, mastoids or the tip of the nose (Wolpaw, 2012). EEG
recordings provide a high temporal resolution (~0.05 s) and activity changes in
the range of milliseconds can be observed but suffer from disadvantages in spatial

resolution (~10 mm, Nicolas-Alonso and Gomes-Gil, 2012).

An EEG can measure neural oscillations and, in general, these oscillations can be
characterized by their frequency, amplitude and phase. In large-scale oscillations,

amplitude changes are considered to result from changes in the synchronization
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within a neural ensemble, also referred to as local synchronization. The
mechanistic properties of neural oscillations and synchronization are
computationally interesting for explaining various aspects of many cognitive
functions such as motor control and memory, attention and information transfer
across brain regions, segmentation of the sensory input and perception (Arnal and

Giraud, 2012).

Different names are given to different ranges of the oscillation frequency also
called rhythms (see Fig 3). The frequency represents how fast the signal oscillates
and is measured by the number of waves per second (Hz). The amplitude
represents the magnitude of those oscillations, i.e. how large the oscillation are in
microvolts and the power is a measure that estimates the magnitude of oscillatory
amplitudes within a defined time window (Klimesch, 2012). Both, the amplitude
and the power of an oscillation are dictated by the number of neurons in a

population, that fire during a burst (Haken, 1996).
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Figure 3: Typical brain oscillations in humans. The oscillations are created by rhythmic
synchrony of large coalitions of neurons in the brain. Different behaviors lead specific
brain areas to synchronize at different frequencies.
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The detected EEG signal sometimes includes signal components that are not
caused by neural activity. These artifacts can arise from muscle activity,
movements of the eyeball, eye blinks or stray detections from exterior signal
sources etc. and can be strong in amplitude. Most of these disturbances can be
controlled by proper instruction of the participants, by using additional control
electrodes close to possible artifact locations and by proper frequency filtering of
the recorded signals (Luck, 2005; Wolpaw, 2012). EEG offers a high temporal
resolution with low risk and easy to handle equipment which makes it therefore
the optimal technique to record brain signals that can be used as a control input
for brain-computer interfaces (BCI) or to provide neurofeedback (NF) to

participants (Hwang et al., 2009; Neuper and Pfurtscheller, 2010).

4.1.5 Brain-computer interfaces (BCI)

Non-invasive EEG-based BCIs provide a direct connection between the brain and
technical devices by means of EEG signals recorded from outside the brain
(Birbaumer et al, 1999; Kiibler et al., 2001a; Wolpaw et al, 2002, 2007;
Birbaumer, 2006, 2007; Millan et al.,, 2010). It monitors the end-user’s brain
activity and translates it into commands while bypassing signals from muscles and
peripheral nerves. BCI as a proof-of-concept has already been demonstrated in
several contexts and several possible applications: selecting letters from a virtual
keyboard (Birbaumer et al., 1999; Nijboer et al., 2008b; Kaufmann et al., 2011a;
Halder et al., 2013; Kathner et al.,, 2013), brain painting (Miinfdinger et al., 2010;
Zickler et al., 2013; Holz et al.,, 2015), control of computer cursor (Kiibler et al,,
2005; Trejo et al.,, 2006; Allison et al., 2012), control of a robot or wheelchair (Leeb
et al., 2007a; Carlson et al, 2012; Kaufmann et al, 2014), internet browsing
(Bensch et al., 2007; Mugler et al.,, 2010; Halder et al., 2015), operating prosthetic
devices (Pfurtscheller et al, 2000, 2003; Miiller-Putz et al., 2005, 2006) or
navigating in virtual realities (Bayliss and Ballard, 2000; Leeb et al., 2007b;
Lecuyer et al., 2008; Zhao et al., 2009). Such kinds of BCIs are particularly relevant
as an aid for disabled people by providing a new interaction link with the outside

world. Signals are acquired, processed (digitized, amplified, filtered, features
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extracted and classified) and translated into a command. The outcome of signal
classification is fed back to the end-user, thereby completing the brain-computer
interface loop (Fig 4). Thus, EEG-based BClIs can map certain frequencies (i.e. Delta,
Theta, Alpha) as well as very fast electrical responses to certain stimuli in real time
(i.e. ERP BCIs such as P300). Different features from the EEG can be used to enable
the end-user to control an output device. In the herein presented thesis, the focus
lies on BCls driven by the mu rhythm recorded over the sensorimotor cortex,
which is why alternative BCI systems are not further explained. For a review

please see Wolpaw and colleagues (2002).

Amplification . .
Digitazition Translational Algorithm

Filtering - Feature extraction - Feature
classification - Signal translation

Device Commands

Signal
Acquisition

Brain Signal
Modulation

Applications

Feedback

Figure 4: The BCI loop. Electrodes placed on the scalp acquire signals from the brain,
which are processed to extract specific signal features that are sent to an output: a device
command. Feedback is provided to the end-user and thereby closing the circle.
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4.2 Alpha oscillations over sensorimotor cortex

The frequency of brain oscillations depends not only on the membrane properties
of single neurons but also on the interconnectivity of networks to which they
belong (Pfurtscheller, 2003). Large neuronal pools that are activated coherently
can result in high-amplitude, low frequency oscillations, such as the classical alpha
band brain rhythm, which is usually identified as oscillations at frequencies,
around 8-13 Hz (Neuper and Pfurtscheller, 2001). Although the EEG comprises a
range of frequency bands, for the purposes of this thesis the focus will be on the
alpha frequency band. Alpha oscillations are sinusoidal, particularly dominant
when eyes are closed (Kaiser, 2001). This frequency varies as a result of age, with
an increase from childhood to adulthood followed by a decrease in older age
(Klimesch, 1999). The exact mechanisms responsible for alpha oscillations
generation are still unknown (Bollimunta et al., 2011) but there is evidence that
they are generated from communication between thalamocortical and
corticocortical structures (Lopes da Silva et al.,, 1980). This oscillatory activity is
found in the scalp EEG in all healthy adults (Makeig et al., 2002) and considerable
interest has been generated in exploring EEG alpha oscillations with regard to
their role in cognitive (Klimesch et al, 1993; Hanselmayr et al, 2005),
sensorimotor (Birbaumer, 2006; Sauseng et al., 2009) and physiological (Lehmann,
1971; Niedermeyer, 1997; Kiyatkin, 2010) aspects of human life. Alpha-band
oscillations reflect dynamic and integrative sensory and motor processes and it
plays an active role in information processing, which is to link perception and
action (Pineda, 2005). An EEG rhythmical component that is described by the same
dominant frequency as the alpha rhythm, but with distinct frequency and
topographical boundaries, is the mu rhythm. This term is used for a special rhythm
that reaches its maximum over the rolandic or central area of the sensorimotor
cortex within the alpha range (Kuhlmann, 1978b) and is strongly connected to

motor activities and can be modulated by motor imagery.

The dynamic of a neural network can result in phasic changes in the synchrony of
cell populations due to externally or internally paced events which lead to

characteristic EEG patterns: desynchronized alpha activity (event-related
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desynchronization, ERD) with small amplitudes in the scalp EEG reflects an
activation of a distinct cortical area, whereas synchronized alpha activity (event-
related synchronization, ERS), with large amplitudes in the scalp EEG reflects a
state of inhibition of neighboring cortical areas with comparatively low excitability
(Kuhlman, 1978b; Pfurtscheller and Lopes da Silva, 1999; Neuper and
Pfurtscheller, 2001; Pfurtscheller, 2001; Klimesch et al.,, 2007). The reduction in
the signal power may be a result of either the reduction in the magnitude of the
source or the reduction in the amplitude recorded over the sensorimotor cortex
(Haueisen et al, 2000; Bazanova and Vernon, 2014). A greater level of alpha
amplitude reflects the inhibition of non-essential activity, which in turn may
facilitate performance in cognitive or motor tasks (Klimesch et al, 2007). The
signal-to-noise ratio is increased within the cortex by actively inhibiting non-
essential or conflicting processes (von Stein and Sarnthein, 2000; Cooper et al,,
2003). Such enhanced alpha oscillations are always time-locked to an event but
can be either phase-locked (evoked) or induced (Pfurtscheller, 2003). The
generators of this alpha oscillation are not known yet. The question as to whether
alpha oscillation is induced by inhibitory activity and/or other factors such as
network, resonance or intrinsic properties of certain neuron populations cannot
be sufficiently answered yet (Klimesch et al., 2007). Different approaches have
been proposed how to measure alpha frequency: the individual alpha peak
frequency (Angelakis et al, 2004), the mean peak frequency within a fixed
bandwidth (Hooper, 2005) and the individual alpha peak at the center of gravity
within the individual alpha frequency range (Klimesch et al, 1993). Inter-
individual differences in alpha peak frequency were found to correlate with
different aspects such as performance on memory (Dopplmayr et al, 2005),
intelligence (Jausovec and Jausovec, 2000) and the efficiency of neurofeedback

training (Bazanova et al., 2009).

The characteristics of alpha oscillations and the fact that people can learn to
control this particular brain rhythm, makes it possible to use it as a control signal
for a brain-computer interface (McFarland and Wolpaw, 2011) or for

neurofeedback training (Hwang et al., 2009; Neuper and Pfurtscheller, 2010).
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4.2.1 Motor imagery (MI)-based brain-computer interfaces

Motor imagery (MI)-based brain-computer interfaces are a special type of BCI, that
analyzes and classifies dynamics of single frequency component, such as the mu
rhythm or multiple components of sensorimotor rhythms (Wolpaw et al,, 1991,
2002; Pfurtscheller et al., 2006a). Mu amplitudes increase in the absence of any
movement or sensation, but decrease by sensory stimulation, motor behavior and
imagination of movements (Curran and Stokes, 2003). The imagination of
movements, or motor imagery, can be defined as a dynamic state during which the
representation of a specific motor action is internally reactivated within working
memory without any overt motor output (Decety et al., 1989; Sharma et al., 2006).
It is a cognitive process in which a subject imagines to perform a movement and it
requires the conscious activation of brain regions that are also involved in
movement preparation and execution, accompanied by a voluntary inhibition of
the actual movement (Lotze, 1999; Mulder, 2007). The execution, observation or
motor imagery of limb movement’s result in similar somatotopically organized
activation patterns (Lotze et al., 1999) and the blocking effects are visible
bilaterally but with a clear predominance contralaterally to the moved limb
(Blankertz et al., 2007). The discrimination between different limbs motor imagery
has shown to be very useful for ERD-based classification (Pfurtscheller et al., 1997;
Pfurtscheller and Neuper, 1997; Neuper et al., 2005). For example, one-sided hand
motor imagery reveals an ERD of mu rhythm focused over the contralateral hand
representation area (Curran and Stokes, 2003; Naeem et al., 2006). Usually, two
classes work most reliably, for example, imagination of a grasping movement of
one hand against the other hand or one hand against both feet. In some
participants, even three classes may lead to successful control (left hand vs. right
hand vs. both feet; Pfurtscheller et al., 2006a; Halder et al., 2011; Holz et al., 2013).
These features in the EEG can be translated into a computer output in the form of a
movement of a cursor on a computer screen and MI-based BClIs can be applied in
various ways. It enables communication in healthy end-users (Millan and Mourino,
2003; Birbaumer, 2006; McFarland and Wolpaw, 2011) as well as in patients with
severe motor impairment (Neuper et al., 2003; Kiibler et al., 2005). The latter is

possible due to the fact that conditions affecting the motor system, such as in
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patients with neurodegenerative diseases, leave the ability to generate motor
imagery intact (Neuper et al.,, 2003; Kiibler et al., 2005). Several other terminal
devices can be controlled by this kind of BCIs such as prostheses (Pfurtscheller et
al,, 2000, 2003; Miiller-Putz et al., 2005), robots (Millan et al., 2004) or wheelchairs
(Galan et al., 2008). In recently published literature MI-based BCls are used in a
therapeutic approach as a training tool for stroke rehabilitation (Grosse-Wentrup
et al., 2011; Pichiorri et al., 2011; Ramos-Murguialday et al., 2013). The speed and
precision of the MI-based BCIs that can be achieved by healthy participants
(Wolpaw and McFarland, 2004; Hammer et al, 2012) equals or exceeds that
achieved so far with invasive methods (Kennedy et al., 2000; Daly and Wolpaw,
2008). The operant conditioning process to enable end-users to volitional control

their brain signals is called neurofeedback training.

4.2.2 Neurofeedback

The most common type of EEG neurofeedback (NF) is achieved by using either a
single or multiple electrodes to alter the amplitude or power of one or two specific
frequency bands in a particular area of the brain (Sterman, 1973; Evans and
Adarbanel, 1999; Vernon et al,, 2003; Weber et al,, 2011; de Zambotti et al., 2012).
This thesis will concentrate on this form of neurofeedback. Individuals learn to
exert a conscious control over some aspect of their brain oscillations in an operant
conditioning procedure (Lubar, 1997). Neurofeedback training involves providing
the subject in real time with acoustic, visual or combined acoustic-visual
information relating to the rhythmic electrical activity of specific cortical areas and
functions (Vernon et al., 2003; Masterpasqua and Healey, 2003; Vernon, 2005).
The aim is to enable the subject to become aware of particular patterns of cortical

activity that are assumed to be associated with a more optimal behavior or state.

Different kind of frequency band NF training has not only been used for treating
various neuropsychological impairments such as epilepsy (Rockstroh et al., 1993;
Kotchoubey et al, 1999; Sterman and Egner, 2006), attention deficit and
hyperactivity disorder (Lubar et al., 1995; Butnik, 2005; Strehl et al., 2006; Arns et
al., 2009) and depression and anxiety (Baehr et al., 1997; Hammond, 2005), but
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also in the treatment of substance use addictions (Scott et al., 2005; Sokhadze et al.,
2008; Dehghani-Arani et al., 2013). Neurofeedback in clinical populations is based
on the idea that if there is an abnormality in the EEG which has been associated
with a particular disorder, for instance, a less well-organized alpha activity in the
EEG of patients suffering from schizophrenia (Itil, 1977), neurofeedback can be
used to alter a particular brain frequency to what would be expected in healthy

individuals to improve the patient’s condition.

The effect of alpha neurofeedback training was established especially in the
context of cognitive performance. The relation between cognitive performance and
EEG alpha activity has been reported by several studies in the previous years
(Vernon et al., 2003; Hanslmayr et al., 2005; Gruzelier et al., 2006; Zoefel et al,,
2011; Gruzelier, 2014). A large alpha resting power can be a predictor of good
cognitive performance; as such, those with higher frequency of resting alpha
power may be able to utilize this to actively inhibit irrelevant processes, depending
on the needs of the task (Doppelmayr et al, 2002; Herrmann et al, 2004;
Hanslmayr et al,, 2005; Zoefel et al., 2011; Klimesch, 2012; Wan et al., 2014). Alpha
band NF training on different scalp locations has successfully been used to enhance
attention and memory performance in healthy younger subjects (Vernon et al.,
2003; Escolano et al,, 2011; Zoefel et al.,, 2011; Nan et al,, 2012b; Dekker et al,,
2014) and in elderly subject groups (Angelakis et al., 2007; Gruzelier, 2014). Those
subjects who were able to enhance their frontal alpha power during training
performed better on attention, short-term memory and working memory tasks. A
greater improvement in cognitive performance was observed in subjects that were

able to increase their alpha power following NF training (Hanslmayr et al., 2005).

24



INTRODUCTION — THE MODULATION OF ALPHA OSCILLATIONS

4.3 The modulation of alpha oscillations

Conventionally, BCI research is focused mostly on the signal processing,
classification and algorithms necessary to translate brain signals into control
commands. Although a lot of effort was expended to enhance usability and control
over BCIs, patients with neurodegenerative or psychological diseases showed a
decrease in BCI performance (Kiibler et al., 2004, 2008; Piccione et al., 2006;
Nijboer et al., 2010) and an increased training effort was required (Kiibler et al,,
2001a). However, approximately 10-30 % of healthy subjects are not able to gain
control over the BCI (Guger et al., 2003; Allison and Neuper, 2010; Blankertz et al.,
2010), or cannot achieve accurate control or display large performance variations
across sessions and runs (Blankertz et al., 2010; Halder et al., 2011; Hammer et al.,
2012; Grosse-Wentrup and Schélkopf, 2013). This non-successful BCI use has often
been described with the term “BCI illiteracy” (Kiibler and Miiller, 2007; Blankertz
et al.,, 2010; Vidaurre and Blankertz, 2010), but was replaced in recent publications
by “BCI inefficiency” to better stress that the inability may be inherent in the
system and not in the end-user (Kiibler et al., 2011; Hammer et al., 2012). Several
theories exist to try to explain the phenomenon of BCI inefficiency: In some end-
users the neuronal systems needed for voluntary control might not produce
suitable electrical activity that is detectable on the scalp by EEG, although the
necessary neuronal populations are presumably healthy and active in these
participants (Kober et al., 2013). Approaches to alleviate this problem have been
explored, such as improved signal processing or filter adjustments (Vidaurre and
Blankertz, 2010; Vidaurre et al., 2011; Sannelli, 2013). Nevertheless, the end-user
and the context in which learning to regulate brain pattern takes place seem to be

equally important.
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4.3.1 Inter-subject variation

Several factors have been identified which contribute to inter-subject variations in
the ability to affect the mu rhythm. Randolph and colleagues (2010) reported that
the interaction between age and the amount of time spent daily on hand/arm
movements correlates with mu rhythm modulation. Burde and Blankertz (2006)
could show that end-users tend to have better BCI performances when they are
more comfortable with their ability to deal with technology. A significant positive
correlation was found between performance and the extent to which end-users
can perceive an imagination task (Vuckovic and Osuagwu, 2013), visuomotor
coordination (Hammer et al,, 2012) or the ability to concentrate on a particular
task (Ahn and Jun, 2015). Besides these factors, mental states and processes might
affect the ability to gain control over the EEG signals. This could include
concentration, mental strategies, frustration, emotional states, fatigue, distraction
and motivation (Curran and Stokes, 2003; Guger et al.,, 2003; Kleih et al,, 2010;
Nijboer et al.,, 2010; Hammer et al., 2012; Kober et al., 2013; Kathner et al., 2014).

4.3.2 Performance prediction

In order to understand the phenomenon of BCI inefficiency in more detail a few
studies tried to assess predictors of successful performance in order to have a
simple and valid predictor to judge whether or not a participant will be able to
learn to modulate their brain oscillation. For example, the strength of the resting
mu peak in the EEG is an essential indicator of the successful performance with a
BCI controlled with motor imagery (Blankertz et al., 2010; Reichert et al., 2015)
and makes it possible to explain approximately 28 % of the variance in feedback
accuracy. A method for predicting the performance of individual participants
before the end of the eleventh training session was introduced by Weber and
colleagues (2011). They calculated the amplitude increase from session one to
eleven in order to quantify each end-user’s performance: participants had to show
a clear increase in the EEG amplitudes by the end of their training (> 8 % in the last

five training sessions) and this increase should be consistent across all of their

26



INTRODUCTION — THE MODULATION OF ALPHA OSCILLATIONS

training sessions to be categorized as “learner”. Several studies demonstrated that
the performance obtained during the initial training phase with patients suffering
from Amyotrophic lateral sclerosis (ALS) indicates the duration of training that
will be necessary to achieve control over the BCI with more than a 70 % accuracy

(Neumann and Birbaumer, 2003; Kiibler et al., 2004).

4.3.3 End-user - BCI interaction

There are many variables that degrade BCI performance and a precise
categorization may not be a simple issue. Two categories can be defined that are
either user-related, such as the individual characteristics and the feedback and
instruction that are presented, or system-related, such as the characteristics of the
BCI and its application (Kiibler et al., 2014, Fig 5). In the machine learning
approach, the EEG classifier is optimized on examples of EEG signals that are
collected from the end-user while a targeted mental task is performed. With this
approach, the training time before the end-users can control the BCI is shortened
(Millan et al, 2002; Blankertz et al, 2006). Wolpaw and colleagues (2002)
established that “BCI use is a skill” and the end-user may not be able to produce
reliable EEG patterns, making it impossible for the BCI to correctly identify the
desired mental commands (Allison and Neuper, 2010). Focusing on the person
interacting with the technical system, the end-user him/herself must be properly

trained to be able to successfully use the BCI.
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Signal processing
and classification

Task and

Instructions Feedback

End-User

Figure 5: End-user - BCI interaction. BCI research can focus on different aspects to
improve performance for example on the signal processing and algorithms necessary to
translate mental patterns into control commands but also on the context in which learning
takes place which includes the task, given instructions and type of feedback.

Neuper and Pfurtscheller (2010) proposed that NF training is a necessary
component to learning the BCI skill, specifically for BCIs based on the recognition
of mental imagery tasks, such as motor imagery, the so-called spontaneous BCI,
which are the focus of this thesis. The operant conditioning approach is one model
to gain control over one’s own brain activity (Neuper and Pfurtscheller, 2010). The
EEG signal classifier is fixed and unknown to the end-user and one has to find out
over several sessions how to control a cursor by modulating the brain activity in a
specific way (Wolpaw et al., 1991, 2000; Curran and Stokes, 2003; Birbaumer et al.,
2006). Operant learning as in NF studies declares that the occurrence of a
positively reinforced behavior will increase, therefore correct or desired brain
responses are rewarded by getting points or smiling face (Kiibler et al., 1999;
Kober et al., 2013). To improve performance the end-user's control strategy has to
be optimized and the mental task appropriate to be controlled has to be
determined (Curran and Stokes, 2003). Factors, such as task instructions, training
time and feedback, can therefore play an important role in learning to control a BCI
(Pfurtscheller et al., 2007; Allison and Neuper, 2010; Friedrich et al, 2012;

Kaufmann et al., 2013) and are further discussed in the following:
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- Instructions and tasks: Instructions are inevitable to explain the
feedback meaning. It should, therefore, provide the end-user with a clear
and specific learning objective and should activate prior experience with
the task that the end-user will use to demonstrate correct BCI control. For
example, Neuper and colleagues (2005) showed that specifically instructing
the end-user to perform kinesthetic imagination of movements rather than
the visual imagination of movements substantially improved performances
in BCIs based on motor imagery. Additionally the BCI task itself may be

improved.

- Number of training sessions: A highly discussed variable in the process
of learning to use a BCI is the number of sessions necessary to gain control
over the brain activity. Existing literature offers a wide spectrum of training
times that are proposed for BCI or neurofeedback training. Although some
approaches exist that allow providing BCI control already during the very
first session (Guger et al., 2000; Blankertz et al., 2007, 2008), by using a
preceded calibration and more channels, most of the existing BCI systems
require several training sessions (Kiibler et al, 2001a; Vidaurre et al.,
2006). Healthy end-users are able to learn to significantly increase motor
cortical excitability in less than ten sessions (Siniatchkin et al.,, 2000; Egner
et al,, 2002; Vernon et al.,, 2003; Hanslmayr et al., 2005; Friedrich et al,,
2009; Pichiorri et al., 2011; Zoefel et al., 2011), or 10-20 sessions (Egner
and Gruzelier 2004; Raymond et al. 2005; Dempster and Vernon, 2009;
Dekker et al., 2014; Nan et al., 2012b), whereas patients (with some form of
psychological or physiological disability) often require more training
sessions (Rockstroh et al., 1993; Kotchoubey et al., 1999; Fuchs et al,, 2003;
Kiibler et al., 2005, 2008; Kouijzer et al., 2009; Dehghani-Arani et al., 2013;
Escalano etal., 2014).

- Feedback: Feedback seems to be an important feature in learning to get in
control of the own alpha rhythm activity (Shute, 2008). Feedback is

provided during the imagery tasks to enhance participants’ performance
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thereby reinforcing correct behavior. Lotte and colleagues (2013) have
suggested that a successful BCI feedback independent of the modality
should be non-evaluative and supportive, to give the end-user the feeling of
competence. It should be clear, purposeful and meaningful (Hattie and
Timperley, 2007). Furthermore, it should not distract the end-user from the
task but rather provide enough information about the quality of the
performed mental activity. An MI-based BCI or neurofeedback training can

use different modalities to meet the demands of the end-user.

4.3.4 User-centered approach

To focus on the end-user - BCI interaction, it is important to take into account the
development of the BCI system and to instruct and support the end-user in the
most efficient way. This demands for a close investigation of the end-users’ needs
(e.g. spelling device, motor or cognitive training), requirements (e.g.
communication device, motor or cognitive rehabilitation) and restrictions (e.g.
limitation in concentration or perception). Valuable work in this direction has been
performed in recent years by the BCI community and the potential user of a BCI
came more into the focus of BCI development. A user-centered design (USD)
involves the individual user, the task and the environment from an early
developmental process into implementation and offers appropriate solutions by an
iterative process whereby a prototype is designed, tested and modified (Kiibler et
al., 2014a). The usability was standardized with the International Organization for
Standardization (ISO) 9241-210 and was addressed with the three components
(Kiibler et al., 2014b): effectiveness (i.e., how accurate and complete the task can
be mastered by the target group), efficiency (i.e., how much effort and time is
needed to be effective), and satisfaction (i.e,, how much comfort and acceptability
is perceived by the end-user while using the product). Kiibler and colleagues
(2014b) introduced a USD in end-users with severe motor impairment and in the
locked-in state. They could show that the evaluation metrics within the framework
of the USD proved to be an applicable and informative approach to evaluate BCI

controlled applications.
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5 Studies of this dissertation

The main purpose of this thesis was to investigate to what extent training time and
enriched feedback can influence alpha frequency band modulation recorded over

the sensorimotor cortex.

To address this issue, the first study investigated the role of a three-dimensional
offline feedback in healthy participants in a single motor imagery training session,
by measuring the effects on the event-related desynchronization of the mu rhythm
(10-12 Hz). Subsequently, participants were trained in several online MI-based BCI
sessions with enriched and multimodal feedback, to compare their BCI
performance and user satisfaction with respect to the different feedback types. The
last study focused on the trainability of the alpha rhythm (10-12 Hz) in patients
with schizophrenia, questioning the effects on activation patterns and cognitive
performance. All studies refer to the modulation of the alpha rhythm over the
sensorimotor cortex and represent practical applications such as a communication

technique or motor and cognitive rehabilitation.

The herein presented studies follow a user-centered design, supporting the
interplay of the end-user with the BCI system with respect to the end-users’ needs,
requirements and restrictions. Variables like instruction, feedback types and
training time are reported by the measurements of cortical activation, BCI
performance and user satisfaction in healthy participants and in patients with

schizophrenia and are based on the following hypothesis:

- Healthy participants, as well as patients with the reduced ability to
concentrate, can learn to modulate the alpha power (study 1, 2 and 3).

- Feedback has significant effects on cortical activation patterns, BCI
performance, and user satisfaction. An informative online feedback that is
distinct and comprehensible can support end-user in getting in control of
the alpha modulation (study 1 and 2).

- Training time is an individual feature in the process of learning to modulate

specific frequency band (study 2 and 3).
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The following studies incorporate the interplay of these variables to answer the
question as to how one can efficiently be trained to perform alpha band
modulation. The goal of this thesis was to develop guidelines for an user centered
design for alpha frequency training that can help individuals to easily gain control

over their alpha oscillations recorded over the sensorimotor cortex.
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6 Study I - 3D visualization of movements and motor cortex
activation during subsequent motor imagery

The following study has been published elsewhere (Sollfrank et al., 2015a). The

methodological approach and the results were adopted.

6.1 Introduction

As already described earlier, the mental imagery of motor actions can produce
replicable EEG patterns over primary sensory motor cortex areas that are very
similar to the EEG patterns following the planning, the execution and the
observation of real movements (Beisteiner et al, 1995; Lang et al., 1996;
Pfurtscheller and Neuper, 1997). The mental process during motor imagery refers
to an active procedure during which a specific action is reproduced within working
memory without any actual movements (Decety and Grezes, 1999; Jackson et al,,
2001); function, behavior, and performance are rehearsed mentally as if the
person is actually performing them (Zimmermann-Schlatter et al, 2008).
Imagining movements of upper or lower limbs result in a desynchronization of the

mu rhythm (8-12 Hz) over specific areas of the sensorimotor cortex.

These EEG signal features can be translated into a BCI command to support motor
rehabilitation: by affecting motor learning, this approach could help to guide brain
plasticity by demanding close attention to a specific motor task (for Review see
Zimmermann-Schlatter et al., 2008) and it has recently been suggested that motor
imagery-based BCI training can restore motor control in persons with hemiplegia
due to stroke (Daly and Wolpaw, 2008; Broetz et al., 2010; Caria et al., 2011;
Pichiorri et al., 2014).

“The activation of cortical networks through repetitive motor imagery practice can
be supported with suitable feedback and training approaches. First time end-users
cannot be expected to perform the required mental tasks perfectly and the poor
performance during the calibration task can result in the feedback being wrong

(Lotte et al, 2013). The feedback and the feedback environment should be
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inherently motivating and a rich visual representation of the signal, in the form of a
three-dimensional video game or virtual reality environment, may enhance the
end user's control over a MI-based BCI (Pineda et al., 2003). Subjects learned to
control levels of sensorimotor rhythm activity and were able to control a BCI
during a motivationally engaging and a realistic, interactive task (Pfurtscheller et
al., 2007; Friedmann et al., 2007). On the basis of these findings, some researchers
have proposed that realistic feedback is a powerful medium to improve BCI-
presentation by creating immersive and motivating environments (Leeb et al,,
2007a, b; Friedmann et al., 2007; Ron-Angevin and Diaz-Estrella, 2009). This may
also be expected to help the end-user adapting to richer and more complex
environments; thus, lowering the mismatch between the provided feedback during
training and during the real-world use. For example, one could expect that
observing a realistic moving hand should have a greater effect on the sensorimotor
rhythms than watching an abstract feedback (Pfurtscheller et al., 2007)” (Sollfrank
et al., 2015a).

Some people report having difficulties in performing motor imagery. Neuper and
colleagues (2005) argued that subjects should imagine a self-performed action
with an interior view, such as a kinesthetic experience of movement, while
avoiding muscle tension. To improve motor imagery based BCI control, user
training should emphasize kinesthetic experiences instead of visual
representations of actions. These different types of motor imagery are very likely
associated with dissimilar electrophysiological activation patterns on the
sensorimotor cortex in terms of time, frequency and spatial domains. Instructions
are crucial for explaining the task to the end-user and to support motor imagery

and visual cues can help to acquire the feeling of a kinesthetic experience.

6.2 Study aims

Interventions that optimally involve the most effective kind of feedback
visualization must be properly identified in order to enhance standard care

approaches for the rehabilitation of motor function (Daly and Wolpaw, 2008;
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Mulder, 2007). Thus, a study was conducted to assess the effects of visual offline

feedback on the process of learning kinesthetic motor imagery.

Firstly, it is investigated, if offline feedback during a single session can influence
event-related activation patterns over the sensorimotor cortex. Secondly, the
patterns of event-related desynchronization of the mu rhythm (10-12 Hz) during
motor imagery are compared with respect to the three-dimensional and two-
dimensional visualization of five different upper and lower limb movements.
Thirdly, it shall be clarified, if there is an advantage associated with the use of
enriched three-dimensional movement visualizations that can thereby give

prospective support for the use of an MI-based BCI.

It is assumed that offline feedback can support end-users in controlling their brain
oscillation (McFarland et al., 1998). Further, event-related desynchronization is
expected to be more pronounced after the three-dimensional compared to the
two-dimensional condition (Pfurtscheller et al., 2007). In addition, it is predicted
that the three-dimensional visualization of the limb movements supports end-
users in getting a kinesthetic feeling during subsequent motor imagery (Neuper et

al,, 2005).

6.3 Methods

6.3.1 Participants

“In total, 39 healthy MI-based BCI novices took part in the study which was
approved by the Human Research Ethics Committee of the Office of Research and
Development at Curtin University. Each participant was informed about the
purpose of the study and signed informed consent prior to participation. Four of
the participants were excluded from analysis due to noise in the data: Three of
them were moving too much during the experiment and for one it was not possible
to attain impedances lower than 20 k(. Of the 35 participants whose data were
included in the final analysis, 18 were women and the mean age of the sample was
26.56 years (SD 5.33, range 18-54). Two participants were left-handed. All

participants had normal or corrected-to-normal vision” (Sollfrank et al.,, 2015a).
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6.3.2 Experimental set-up

“Participants were seated in a comfortable chair directly in front of a True3Di 24"
SDM-240M Stereoscopic 3D Monitor wearing stereoscopic glasses. Each
participant’s chin lay on a pre-assembled chin holder. Participants were instructed
to sit in a relaxed posture with their eyes open and avoiding any eye and body
movements. Using a within-subjects design, all participants were instructed to
watch attentively 18 randomized videos of different limb movements for the left
and right body part that were presented on a stereoscopic screen. Videos were
displayed in 2D and 3D (Fig 6), portraying the following movements of computer-
generated models: rotation of the wrist, elbow, knees and ankle anteriorly and an
arm flexion towards the spectator. The videos displayed the movements from the
perspective of the participant to encourage the feeling that each participant was
moving their own limbs. At the end of each video a 6 s recording phase started,
with a blank screen being presented during this phase. During this recording
period, participants were requested to replicate subsequently the just observed
movement by motor imagery. The task was to perform a kinesthetic rather than
visual motor imagery (Neuper et al., 2005). Instructions were important during
this experiment, as the participants only received offline feedback before the
motor imagery phase. Participants were instructed to feel the just observed
motion in their muscles and they should vividly remember a situation in which
they performed a given movement before imagining it during the subsequent EEG
recording phase. This should activate their prior experience with the task they will
imagine, which is expected to make the learning easier (Merrill, 2007). Data
collection lasted 45 min, with participants performing three runs of 10 min each,

with five-minute breaks between each run” (Sollfrank et al., 2015a).
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Figure 6: Limb movement visualizations. Five different limb movements were
animated: wrist movement, elbow rotation, arm flexion, knee and ankle rotation. All
movements were shown for the left and right limb, except the ankle rotation, which
showed both feet rotating simultaneously. All videos were displayed randomized in 2D
and 3D. Figure reproduced with permission from Sollfrank and colleagues (2015a),
Copyright Frontiers Media SA. The publication 1is available online at
http://www.ncbi.nlm.nih.gov.

6.3.3 Data acquisition

“The EEG was recorded from 40 channels located over the sensorimotor cortex.
The locations of the Ag/AgCl electrodes were based on the modified 10-20 system
of the American Electroencephalographic Society (Sharbrough et al., 1991). Each
channel was referenced to the left and grounded at the right mastoid. Impedances
were kept below 5kQ via application of conductive gel. Data were collected via

Neuroscan EEG equipment and signals were amplified using NuAmps amplifier.
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Data were sampled at 1000 Hz and bandpass filtered between 0.1-70 Hz with an
additional notch filter applied to remove 50 Hz noise. A program algorithm was
written to determine the presence of eye-blink artifacts; if identified, data from
these periods were deleted. Data processing and storage were performed on a

conventional laptop with an additional external monitor” (Sollfrank et al., 2015a).

6.3.4 ERD/ERS analyzes

“EEG signals were visually inspected and trials contaminated with muscle or eye
movement activity were discarded. ERD/ERS calculation was undertaken by
bandpass filtering of each trial, squaring of samples and subsequent averaging
over trials and over sample points (Graimann et al., 2002). The ERD/ERS were
expressed as proportional power decrease (ERD) or power increase (ERS) of the
imagery period in the upper alpha frequency band (10-12 Hz) and were calculated
relative to the baseline, in relation to a 1-s reference interval before the imagery
period started. Topographical maps were generated averaged for all participants
for each task and visualization modality. The resulting maps represent plots of
significant ERD within the given frequency range of 10-12 Hz. Based on the results
of the topographical maps, mean ERD/ERS in the alpha frequency band were
computed with the traditional ERD/ERS method proposed by Pfurtscheller and
Lopes da Silva (1999). For statistical analyzes, ERD/ERS values obtained from the
right (C4) versus left sensorimotor cortex (C3) temporally aggregated over the
imagery period (1-6 s) were used (Fig 7). In order to analyze the potential
influence of the visualization modality on the ERD/ERS patterns during task
performance a repeated measure ANOVA was performed using the visualization
modality, task, electrode position and task side as within-subjects variables. The

probability of a Type I error was maintained at 0.05” (Sollfrank et al., 2015a).
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6.4 Results

“The topographical maps of the mean ERD values for the two visualization
modality groups are compared in Figure 7, separately for the respective tasks
(rotation of the wrist, elbow, knees and ankle in front and arm flexion towards the
spectator) and pooled for both left and right motor imagery in the upper alpha
frequency band (10-12 Hz). In general, the results show a strong increase of the
characteristic patterns of sensorimotor ERD of the upper alpha band components
for left and right limb motor imagery present over the sensorimotor areas in both
visualization conditions. On basis of these findings electrode positions C3 and Cs
were selected for further analyses, which is in accordance to other motor imagery
studies (Ron-Angevin and Diaz-Estrella, 2008; Neuper et al, 2009; Ono et al,,
2013). A repeated measures ANOVA was performed on the ERD/ERS data using
the visualization modality (VM, 2 levels: 2D vs. 3D), task (5 levels: wrist movement,
elbow rotation, arm flexion, knee and ankle rotation), electrode position (2 levels:
Cz vs. C4) and task side (2 levels: left vs. right) as within-subjects variables, in order
to analyze the potential influence of the visualization modality on the ERD patterns
during motor imagery. In addition, two 5x2x2 ANOVAs were performed using the
variables task, EP and task side as within-subjects variables for the two VM groups
separately. Table 1 provides an overview of the significant ANOVA effects. Overall,
significant differences were observed as a function of visualization modality. This
main effect is primarily due to the larger ERD during motor imagery after 3D
feedback. The significant main effect of Task indicates that ERD varied upon the
different tasks. The averaged data for all upper limb (wrist rotation, elbow
rotation, arm flexion) and lower limb MI tasks (knee rotation, ankle rotation)
separated for the 2D and 3D condition were checked for normal distribution.
Afterwards a post hoc paired sample t-test revealed significant smaller ERD values
for lower limb MI tasks compared to upper limb MI tasks for the 2D (t(zs68)=3.74,
p=.041) and for the 3D (t@zss)=4.21, p=.0433) visualization modality. A significant
interaction between electrode position and the task was found, which established
the contralateral dominance of ERD. This analysis revealed significant interactions
involving the factors visualization modality, task, electrode position and task side

(Table 1). Post hoc paired t-test comparison indicated that the largest upper alpha
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band power decrease during motor imagery was obtained subsequent to the three-
dimensional visualization averaged or all tasks and both electrode positions

(t1007=3.126, p=.002)” (Sollfrank et al., 2015a).

Table 1: ANOVA analysis. Summary of significant F-values2 for ERD/ERS analyses for the
whole sample and separated for each visualization modality (VM). Table reproduced with
permission from Sollfrank and colleagues (2015a), Copyright Frontiers Media SA. The
publication is available online at http://www.ncbi.nlm.nih.gov.

ANOVA effects
Whole sample (N=35) 2D VM (N=35) 3D VM (N=35)
VM (2) x Task (5) x Task (5) x EP (2) Task (5)xEP (2)

EP (2) x x Task Side (2) x Task Side (2)
Task Side (2)

VM F(1.73)=20.48**
VM x Task F(1.73)=9.12**
VM x EP F(1.73)=8.54**
VM x Task x EP F(1.73)=4.57**
VM x Task x Task side  F(1.73)=4.32*
Task F(1.73)=6.90** F(1,73)=2.69* F(1,73)=12.51**
Task x EP F(1.73)=2.95** F(1,73)=5.81**
Task x Task Side F(1.73)=4.72** F(1,73)=6.89**
EP x Task Side F(1.73)=4.08* F(1,73)=4.78*
Task x EP X Task Side  F(1.73)=8.21** F(1,73)=6.57**

ap-values 5 % (*) and 1 % (**). All repeated measures tests are Huynh-Feldt corrected.
EP = Electrode position

“A detailed overview of the mean ERD/ERS values, with standard deviation, is
presented in Figure 8. For t-test post hoc comparisons a conservative significance
level of 0.01 was used, since no correction was done for multiple comparisons for
the two visualization modalities (2D and 3D), separately for the different task, task
side (left and right motor imagery) and electrode position (C3 and C4). A difference
between the visualization modalities can be seen in almost all tasks, depending on
the electrode position and side of the movement. In total in 12 out of 20 tasks the
end-user of the 3D visualization group showed an enhanced upper alpha ERD
relative to 2D visualization modality group, with statistical significance (although

not corrected for multiple comparisons) in nine tasks. The pattern of results
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suggests a generally higher ERD over the right (as compared to the left)

sensorimotor region” (Sollfrank et al., 2015a).

ankle

alpha wrist elbow arm
band  rotation rotation flexion

Figure 7: Topographical maps. ERD/ERS patterns averaged over all end-users for the
five motor imagery tasks (averaged across left and right limb movements) for 2D and 3D
visualization modality in the upper alpha frequency band (10-12 Hz). Note: ERD is
indicated in blue and ERS is indicated in red. The black dots represent the electrode
positions. Figure reproduced with permission from Sollfrank and colleagues (2015a),
Copyright Frontiers Media SA. The publication 1is available online at
http://www.ncbi.nlm.nih.gov.
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Figure 8: Mean ERD/ERS values. Mean ERD/ERS values and standard deviation obtained
for the left (left panel) and right (right panel) limb motor imagery side of the 10-12 Hz
upper alpha frequency band for all subjects with the two visualization conditions (2D,
light grey bar; 3D, dark grey bar) on electrode position Cz and Cs4. Significant differences
between the visualization modalities are indicated (p-value, * <.01). Figure reproduced
with permission from Sollfrank and colleagues (2015a), Copyright Frontiers Media SA. The
publication is available online at http://www.ncbi.nlm.nih.gov.

41



STUDY |

6.5 Discussion

“The present study was performed to investigate whether a three-dimensional
visualization of upper and lower limb movements can amplify motor cortex
activation during a subsequent motor imagery phase. Little is currently known
about the impact of such a ‘realistic’ visualization modality. The mu rhythm in
humans can characteristically be found over the sensorimotor area with peaks
around 10-12 Hz (Kuhlman, 1978b; Hari et al., 1998; Pfurtscheller and Neuper,
2001). This frequency shows typical reactivity in association with motor imagery
(Pfurtscheller et al., 1997; McFarland et al., 2000; Wolpaw et al., 2002; Blankertz et
al,, 2010). In the present study, discernable decrease of the mu rhythm (10-12 Hz)
was detectable during imagery of limb movements over sensorimotor areas that
significantly increased in the 3D visualization condition. The results showed in
both VM conditions a more pronounced ERD for motor imagery of the upper limbs
compared to the lower limbs. This could be explained with the fewer difficulties
that the MIl-based BCI naive participants have in imagining hand and arm
movements. In daily life, we pay more attention to our movements of the upper
limbs than conscious movements with the foot or knees and could explain the

effect on motor cortex activation during motor imagery.

The visualization of the different limb movements in a first person perspective was
supposed to facilitate the task of performing motor imagery. One potential
limitation of the realistic video presentation was due to the fact that computerized
limb models were used. We tried to create them as realistic as possible with skin
color, texture, and anatomical correct movement sequences. Especially for
rehabilitation a computer-animated version can give the advantage to adapt the
limb to each individual end-user. Although a lot of effort was contributed in video
programming still a visible difference exists compared to a video of a real limb
movement. We refrained from using videos of taped limb motion, as this would not
be an option for impaired patients. Previous work has suggested an important role
for the perception of the body within a three-dimensional environment (Slater et
al., 1995). The body should be used naturally and should be anchored into the

feedback for a successful ERD reproducibility. A possible explanation for this effect
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is the activation of the sensorimotor rhythm, which is in correspondence to the
human mirror neuron system. This system matches action observation and
execution and is capable of performing a simulation of just observed actions
(Pineda, 2005; Neuper et al., 2009) and some researchers proposed a functional
link between the observation of an action, the internal simulation, motor imagery
and the execution of the motor action (Grezes and Decety, 2001; Neuper et al,,
2005). The execution, imagination or observation of motor actions produces
asynchronous firing in the mirror neurons and causes a suppression or
desynchronization of the mu rhythm (Lopes da Silva, 2006). To exclude an
overlaying effect of ‘motion observation’ on the ERD in the alpha band
(Muthukumaraswamy et al., 2004; Hammon et al., 2006; Perry and Bentin, 2009) a
short pause between the videos and the motor imagery phase was integrated,
where the screen turned blank. How long the ERD of such a motion observation
can last is not yet known. To be sure that the effects on the upper alpha band are
only due to actual motor imagery, the motor imagery phase was expanded to 6 s.
The current findings indicate that a three-dimensional realistic presentation of
movements to support a subsequent motor imagery phase seems to be a suitable

strategy to achieve locally restricted activation patterns for MI-based BCI use.

In a study by Friedmann and colleagues (2007), participants tried to control an MI-
based BCI in a CAVE system and showed that navigation was possible. Participants
reported afterward that they were more motivated in this kind of task compared
to the training on a conventional visual monitor. They reported that the interaction
seemed more natural to them than traditional BCI. Virtual reality (VR) and 3D non-
VR visualization are powerful tools with significant possibilities to improve BCI-
feedback presentation (Pineda et al., 2003; Pfurtscheller et al., 2006b; Ron-Angevin
and Diaz-Estrella, 2008). With this technology immersive and motivating
environments can be created, which can positively influence a successful training
(Leeb et al., 2007b). A study by Gruzelier and colleagues published in 2010 could
show that sensorimotor rhythm neurofeedback training in virtual reality could
enhance the artistic performance of actors more successfully than training with a

2D feedback rendition. The efficacy of this training was attributed to the
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psychological engagement through the ecologically relevant learning context of the

immersive VR technology.

The three-dimensional visualization enhanced ERD in the upper alpha band in
some but not in all motor imagery tasks. Eleven tasks showed no significant
differences in the mean ERD values however, a high variance in this data can be
found. A study by Neuper and colleagues (2009) compared the effects of abstract
and realistic feedback on MI-based BCI performance and could not find any
significant differences between the two groups. One explanation for that was that
feedback stimuli seem to become closely associated with the action goal during
motor imagery and, therefore, both feedback types were able to enhance the
desired electrophysiological signals for individuals to perform accurately. This
could also be true for our experiment. Most of the present studies compared
‘abstract’ versus ‘realistic’ feedback (Neuper et al., 2009), presented activation
maps during BCI training (Hwang et al., 2009) or game-like feedback in VR (Ron-
Angevin and Diaz-Estrella, 2008; Scherer et al., 2008; Zhao et al., 2009). This study
compared for the first time the actual effects of 2D and 3D visualization on motor

imagery during the same limb motion tasks.” (Sollfrank et al., 2015a).

6.6 Conclusion

“In future studies, the influence of these two visualization modalities have to be
further investigated as it is possible that the effect can be increased in an online
setting where the end-user imagined movements affect the animated limb in real
time. Following the herein presented results, we can conclude that visualization
modality plays an important role in a BCI controlled with motor imagery.
Providing a realistic three-dimensional presentation of limb movements may help
the end-user to get a concrete feeling of kinesthetic motor imagery and exerts

significant effects on motor cortex activation” (Sollfrank et al., 2015a).

44



STUDY Il

7 Study II - The effect of multimodal and enriched feedback on
motor imagery (MI)-based BCI performance

The data presented in the following study have been published elsewhere
(Sollfrank et al., 2015b). Several parts of this publication were adapted. Study 1
revealed that an enriched visualization supports end-users in a single offline
training session to achieve characteristic event-related desynchronization patterns
during motor imagery. Study 2 connects to these findings and investigates the
elicitation of ERDs while controlling a motor imagery based BCI during several

online training sessions with visually enriched and multimodal feedback.

7.1 Introduction

Feedback is a necessary feature for initial learning of the BCI skill (Brown, 1970;
Kuhlman, 1978a; McFarland et al., 1998; Wolpaw et al,, 1991, 2002). The end-user
have to be properly trained to be able to successfully control their EEG signals,
especially for the use of a BCI based on the recognition of mental imagery tasks
(e.g., motor imagery, Neuper and Pfurtscheller, 2010). Unimodal visual feedback is
usually provided in order for the subject to learn how to modulate mu band power.
The end-user receives feedback by an extending bar or a moving cursor in one or
two dimensions according to the classification results (Pfurtscheller, 2004; Neuper
and Pfurtscheller, 2010; Schreuder et al., 2010). It provides no information about
the quality of the mental imagery as it provides feedback only about which MI is
classified at any one point in time. This presentation can be inaccurate because
often the input signal contains a degree of uncertainty, which can make a precise
classification difficult (van Beers et al., 2002; Hattie and Timperley, 2007; Shute,
2008).

The crucial step is to reliably extract the relevant information from EEG signals,
although only a limited amount of data is available which includes various noises
and a signal non-stationarity (McFarland and Wolpaw, 2011; van Erp et al,, 2012)
and to give meaningful and precise feedback (Hattie and Timperley, 2007; Shute,
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2008). Uncertainty is not static and can vary substantially over time. Therefore, we
created the visually enriched ‘funnel feedback’ to provide more information about
the quality of the EEG signal: A liquid cursor model was implemented in a funnel
shape that can provide the end-user with additional information about their input
signal. The stability of the EEG was mirrored by the speed of the liquid cursor
through the funnel. Being not in control of a BCI can make its use frustrating (Holz
et al.,, 2015). Frustration has been experienced as problematic in BCI use (Curran
and Stokes, 2003) and further Kleih and colleagues (2010, 2013) further
demonstrated that learning an SMR-BCI task is facilitated by increased motivation.
If the enriched funnel feedback allowed for better learning, frustration may be

lowered and motivation increased.

Although the most common feedback is visual, there is evidence that training can
be enhanced by providing multimodal feedback with the same granularity and
specificity for each modality (Ainsworth, 2006). Kaufman and colleagues (2011)
provided their BCI users with a cursor indicating the integrated classifier output,
as well as the instantaneous sign and absolute value, coded as the color and
intensity of the cursor. Results suggested that the end-user could handle a multi-
dimensional feedback although no significant increase in performance was found.
Auditory feedback provides an alternative to a visually based BCI system
(McCreadie et al.,, 2012; Simon et al., 2014), specifically for those potential end-
user with impaired vision. Nijboer and colleagues (2008a) found that although the
initial BCI performance in the visual feedback group was superior to the auditory
feedback group, there was no significant difference in performance at the end of
training. A study by Schreuder and colleagues published in 2010 illustrated that
the combination of audio and visual feedback did not lead to an enhancement in
BCI performance, whereas Gargiulo and colleagues (2012) concluded that
multimodal feedback could increase performance in some naive subjects and could
relieve the sense of frustration that came from the feeling of not being in control of
the visual cue. Thus, studies provided mixed results and further investigation are

warranted to elucidate the effect of multimodal feedback on SMR-BCI performance.
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7.2 Study aims

The goal of this study was to investigate the effects of a visually enriched and
multimodal feedback on performance and user satisfaction during MI-based BCI
control in a between-subject design. This study should clarify, if end-user can learn
to control a motor imagery based BCI in several operant conditioning training
sessions with online feedback. It should investigate if an informative visual
feedback can facilitate the learning process in MI-based BCls. Furthermore, the
study includes the comparison of unimodal (visual) and multimodal (visual and
auditory) feedback and attempts to identify the effects on BCI performance and

user satisfaction.

Although a number of end-users are not able to control a BCI (Kiibler et al., 2011)
it is expected that around 70 % can learn to control the BCI across five training
sessions, but differential effects of the feedback types were expected. The visually
enriched feedback, which contains information about the quality of the input
signal, is expected to facilitate the learning process and enhance end-user
performance as compared to the conventional cursor bar feedback. The
presentation of uncertainty information should render end-users confident toward
the functionality of the MI-based BCI, especially during the training phase, where
the subject tends to explore different mental strategies to determine the optimal
one for achieving control (Lotte et al., 2013). The combination of auditory and
visual feedback is expected to motivate end-users while controlling the BCI and,

therefore, enhance the satisfaction with the BCI system.

7.3 Methods

7.3.1 Participants

“Thirty healthy MI-based BCI novices took part in the study which was approved
by the Ethical Review Board of the Medical Faculty, University of Tiibingen. Each
participant was informed about the purpose of the study and signed informed

consent prior to participation. None of the participants was excluded from
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analysis. Of the 30 participants 20 were women, and mean age of the sample was

27.73 years (SD 6.57, range 19-51); six were left-handed” (Sollfrank et al., 2015b).

7.3.2 Experimental set-up

“The participants were seated in a comfortable chair approximately 1 m away from
the computer screen. Participants were asked to sit relaxed with eyes open and to
avoid any eye and body movements. After the specific task instruction, all
participants underwent a screening session (0.5 h). During this period, end-users
were instructed to perform Kkinesthetic imagery (Neuper et al., 2005) of a
movement with their right or left hand, with their arms relaxed. They had to
perform three runs with individual breaks in between. Every run consisted of 30
trials with 15 trials per class (left vs. right) presented in random order. The trial
started with the presentation of a fixation cross (2 s). Afterwards, one of the two
visual cues (arrows pointing left and right) indicated to the participant which type
of motor imagery task to perform (2 s, Fig 9). The period of movement imagery
lasted for four seconds and the end-users could control a cursor bar to the left and
to the right side until the screen turned blank. After a two-second pause the next

trial started.

After the screening session, following a between-subject design, participants were
randomly assigned to three feedback groups with ten subjects each. Multimodal
funnel feedback: six female, aged between 23-51, mean age 30.2 +7.8 SD; unimodal
funnel feedback: six female, aged between 19-46, mean age 27.1 +7.5 SD;
conventional cursor bar feedback: eight female, aged between 23-38, mean age
25.9 £4.4 SD. They then performed the first training session, consisting of six runs
with 20 trials each. The timing was the same in all feedback groups (Fig 9): Each
started with the presentation of a fixation cross at the center of the monitor. For
two seconds, a visual cue indicated to the participants which type of motor
imagery task to perform (left or right hand). The duration of online feedback
depended on the end-user’s ability to control the BCI. It terminated when the
decision threshold (classification values: left/right, cursor hit one of the corners of

the lower part of the funnel visualization) was reached or by timeout after 15 s.

48



STUDY Il

During the last two seconds of the trial, the screen was blank. There were breaks of
5-10 min between the runs, depending on the participants’ individual needs. The
subsequent four training sessions were performed on different days over a period
of two to three weeks. No classifier adaptation or retraining occurred at any time”

(Sollfrank et al., 2015b).

Screening session Online session - feedback types

3 x 10 left and right trials (randomised) 6 x 20 left and right trials (randomised)

Cursor bar feedback

Fixation Cue: left Cursor bar
cross , orright , movement , Break | -

L
2s | 2s | ?15s |2s

v

Unimodal funnel feedback

Fixation Cue: left Liquid cursor
cross  orright , movement , Break | --.

2s | 2s | 7 15s IZS

Multimodal funnel feedback

Fixation Cue: left Liquid cursor
cross , orright , movement , Break | --.

2s | 2s | 7 15s I2S

Fixation Cue: left Cursor bar

cross , orright , movement , Break

2s | 2s I 4s I2s

v

Figure 9: Experimental design. Timing of the paradigm used in the screening session
and in the online session with the three different feedback types: cursor bar feedback,
visual unimodal funnel feedback and multimodal funnel feedback. Figure reproduced with
permission from Sollfrank and colleagues (2015b), Copyright Elsevier E.V. The publication
is available online at http://www.sciencedirect.com/.

7.3.3 Feedback modalities

- “Cursor bar (CB) feedback: Visual feedback was provided by a cursor bar
that moved to the left and right according to the classification values along a
horizontal line between two arrows (Fig 10 upper left). It provided
feedback about which MI was classified at any one point in time (further

details on classification in section 7.3.5).
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- Visual unimodal funnel (UF) feedback: Visualization of a liquid cursor
moving in a funnel shape connected to a ‘test tube’ at the bottom (Fig 10
right). The BCI provided two types of information: an estimate of how stable
the end-user’s control was and a left/right MI classification value. The
respective quality of the EEG was visualized as the dispersion of the cursor.
The liquid cursor began in an amorphous, diffuse state (Fig 10, mode of
control: incoherent) and remained like this until the stability estimate of the
end-user’s EEG signal increased. With larger steadiness in the input signal,
the liquid condensed and altered into a transitional mode while it moved to
the lower region (mode of control: transitional). The cursor could shift
between the two modes of control according to the classification values.
When the liquid cursor reached the ‘test tube’, it remained in a stabilized
mode and could not return to one of the previous states, independent of the
signal quality, to avoid any negative feedback (mode of control: stabilized).
As the input signals became more accurate to discriminate between the two
(left and right hand motor imagery) classification values, the end-user could
control the liquid cursor to the left and to the right (mode of control:

controlled).

- Multimodal funnel (MF) feedback: In addition to the described visual
feedback participants were provided simultaneously with auditory
feedback: The ‘incoherent’ to ‘transitional’ visual state was acoustically
discernible by bubble sounds (Fig 10). Metal sounds were presented while
the liquid cursor was in a ‘stabilized’ mode and the movement of the liquid
cursor to the left and to the right was supported by the sound of clinking
glasses. No sounds were played when moving from ‘transitional’ to

‘incoherent’ or from ‘controlled’ to ‘stabilized’ ” (Sollfrank et al., 2015b).
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7.3.4 Data acquisition

“The EEG was recorded from 16 channels located over the sensorimotor cortex (F,
FCs, FCy, FC,, FCy, FC4, C3, Cq, C4, Cz, C4, CP3, CP1, CP,, CP2, CP4). The locations of the
Ag/AgCl electrodes were based on the modified 10-20 system of the American
Electroencephalographic Society (Sharbrough et al, 1991). Each channel was
referenced to the left and grounded at the right mastoid. Impedances were kept
below 5k(). The EEG was recorded using a g.USBamp amplifier (manufactured by
g.tec Medical Engineering GmbH, Austria), notch filtered at 50 Hz and sampled at
512 Hz. Data processing, storage, and online display were performed on a

conventional laptop with an additional external monitor” (Sollfrank et al., 2015b).

test tube

incoherent - transitional stabilized controlled

) bubble ) metal ) clinking
of glasses

Figure 10: Visual feedback. Top left: conventional cursor bar feedback, top right, and
bottom: visualization of the funnel feedback and the feedback sequence of the unimodal
and multimodal funnel display. Multimodality: Each of the three different modes of control
corresponded to specific sounds. Auditory feedback was provided simultaneously to
changes in the visual display. Figure reproduced with permission from Sollfrank and
colleagues (2015b), Copyright Elsevier E.V. The publication is available online at
http://www.sciencedirect.com/.
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7.3.5 Feature extraction, selection and classification

“After the screening session, power spectral density (PSD) features were computed
in 1-second sliding windows (Polat and Giinef3, 2007; Leeb et al, 2013). EEG
signals were first spatially filtered with a local Laplacian derivation and the PSD
was estimated within 4-48 Hz with 2 Hz resolutions, accounting for 23 frequency
bands per channel. The PSD was computed every 62.5 ms using the Welch method
(five 25 %-overlapping internal Hanning windows of 500 ms) and was log-
transformed to better comply with the normality assumption of the classification
method subsequently employed. The overall candidate feature vectors were thus
368 (16x23) band power estimated on combinations of channels and frequency
bands. For the classification of left versus right hand motor imagery trials Fisher’s
linear discriminant analysis (LDA) was applied. Three to six features were
identified as optimal using the Canonical Discriminant Spatial Patterns (CDSP)
method, which best discriminated between the two classification values (left
versus right hand) within the motor imagery period (Leeb et al., 2013). A classifier
was then built for each pair of MI tasks, with the selected MI pair (highest
controllability), and the corresponding EEG channels and PSD features identified
by the feature selection process, which were used online to control the BCI. In the
online feedback sessions, the BCI used the individual classifier of each participant
to translate the end-users’ EEG over the sensorimotor area during motor imagery

into a continuous output on the computer screen.

For the cursor bar feedback, the LDA classified a single sample (decision = +-1) and
then the bar moved from its current position x, as x = x + decision*dx. dx was
adjusted per subject obtaining a movement to the threshold in 0.5-2 s, depending

on individual performance.

In the visual unimodal and multimodal funnel feedback, uncertainty in the input
signal was displayed by the combination of two visualizations: the liquid cursor
that could be moved and deformed by pseudo-physical forces, that was basically a
Monte Carlo visualization, where 60 particles represented the state of the
classifiers input: Each particle had a Gaussian density field around it. The physics

were defined by attractive and repulsive fields around each particle, which had an
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inverse-square-exponential falloff such that there was an equilibrium point at a set
inter-particle spacing. As the strength of the forces increased, the points coalesced
into a single blob and eventually into a fairly solid object. The implementation used
an Euler integrator to provide the physics functionality. The second visualization
of uncertainty in the end-users input signal was the movement speed of the liquid
cursor along the vertical axis in the funnel shape to the ‘test tube’. The uncertainty
index was computed by calculating the Euclidian distance of the sample from the
global mean. The dispersion was a complex nonlinear and time-varying function of
the distance; but the cohesive force in the liquid varied monotonically with d_c(x):
The classifier assumed a Gaussian distribution N(u., Mc) for each prototype of the
class c and then, a feature vector x was assigned to the class that corresponded to
the nearest prototype, according to the so-called Mahalanobis distance dc(x) (Lotte

et al., 2007).

dc(x) = \/(X - .uc)Mc_l(x - .uc)T (1)

The user interface and the interface to the incoming BCI signal were written as a
Python module, using TOBI interfaces C and D, which were established during the
TOBI project (EU grant FP7-224631, Tools for Brain-Computer Interaction,
http://www.tobi-project.org/)” (Sollfrank et al., 20015b).

7.3.6 BCI performance

“Accuracy was calculated as the ratio between the number of correct selections
and the total number of selections. The maximum duration of each motor imagery
period was up to 15 s. If the target side was not reached within this time window,
the trial was terminated and separately counted as a ‘time out’ (miss). To decide
whether the performance was above chance level, indicating that the cursor
control and classification rates exceeded chance level and reached statistical
significance, the number of trials has to be taken into account. Kiibler and

Birbaumer (2008) stated that for the two-choice MI-based BCI the observed
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frequencies (of hits (cursor into the correct target) and misses) have to be
compared to the expected frequencies given chance performance and can be tested

for significance as follows:

With

2 — ¥ (o-fe)?
x? =y 4o 2)

more than 75 trials (f,, observed frequency; 63 % correct trials in one session)
have to be hits to get performance above chance level with f, as the expected
frequency of 60 hits in 120 trials and a x? value with a probability of 0.05 (df=1)"
(Sollfrank et al., 2015b).

7.3.7 ERD/ERS analyses

“EEG signals were visually inspected and trials contaminated with muscle or eye
movement activity were removed. The ERD/ER was quantified in the artifact-free
EEG in the following steps: The ERD/ERS was expressed as percentage powers
decrease (ERD) or powers increase (ERS) and were quantified relative to the
baseline (in relation to a 1 s reference interval before the imagery period) for the
upper alpha frequency band (10-12 Hz) and beta (13-25 Hz). The ERD/ERS values
of the imagery period were calculated by the squared value of the raw EEG over a
250 ms non-overlapping interval across 8 s of each tasks. The natural log ratio of
the EEG power value and the baseline power was estimated for all sample points
and the ERD was represented as the mean of these. For statistical comparison a
3x5 repeated measures ANOVA was computed, with the ERD values of the imagery
period as dependent variable and sessions (5) as within and feedback type (3) as

between subjects factors” (Sollfrank et al., 2015b).
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7.3.8 Questionnaires

“After the last training session, subjects were asked to rate five questions by
assigning a score between one and ten (1 = not at all, not very likely and 10 = a lot,
very much likely). Questions were related to the subjective feeling of the subject
during and after the experiment (see Table 3). There was no time constraint for
answering the questions, and the questionnaire was completed immediately
following the experiment while the subject was still in the lab. A one-way analysis
of variance was conducted to evaluate significant differences in the ratings of the
different feedback groups. Tuckey HSD was used for post hoc pairwise

comparisons” (Sollfrank et al., 2015b).

7.4 Results

7.4.1 Performance

“Feedback accuracy varied largely between participants (mean 62.29 % + 16.1 %),
covering the full range from chance-level performance (63 %) to perfect control
(100 %). For most participants, performance varied strongly between sessions.
More specifically, the intra-participant performance variability between the five
training sessions ranged from 3.5 % to 21.3 % (mean 6.2 % * 4.4 %, Fig 11).
Above-chance level performance (>63 % hits) was reached by the end-users in 21
training sessions (42 %) in the MF group, in 17 sessions (34 %) of the UF group
and in 15 sessions (30 %) of the CB group (Table 2).

One-way ANOVA for the classification results of the screening session did not
reveal any significant main effect, indicating that the performance was similar in
all three groups. Mean MI-based BCI performance as a function of feedback in the
online training sessions is summarized in Table 2. For the online classification in
the feedback sessions, a classifier, built on a distinctive data set was applied. The
3x5 repeated measures ANOVA with feedback and number of sessions as
independent variables yielded a significant main effect of Session (Fi236=3,00;

p=.019) and a significant session x feedback interaction (Fg472=2,11; p=.034). Post
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hoc comparisons revealed weakest performance for all feedback groups in session
2 (Tuckey HSD test, p=.005) as compared to the initial training session. The cursor
bar (CB) feedback group revealed the lowest level of performance during the first
session (58.40 + 16.05 SD) but could afterwards continuously increase the level
with significantly best results during session 4 compared to the initial session
(64.64, SD = 15.03; p=.037). In session 1 the funnel feedback groups, both
unimodal (66.25 * 18.47 SD) and multimodal (66.40 * 20.02 SD) could achieve a
significantly better performance as compared to the cursor bar feedback group
(MF*CB, tq18)=-2,96; p=.004; UF*CB, t(18)=2,53; p=.013). This effect vanished
during the following training sessions (Fig 12). A significant higher occurrence of
‘time outs’ was present in the funnel feedback group across all training sessions

(Table 2, F3255=1,89; p=.012)" (Sollfrank et al., 2015b).
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Figure 11: Feedback performance. The black crosses show the feedback performance
averaged across all recorded sessions for each end-user. Vertical lines indicate
performance range for every end-user and the horizontal line indicates above chance level
performance). End-users were re-ordered by increasing performance. Figure reproduced
with permission from Sollfrank and colleagues (2015b), Copyright Elsevier E.V. The
publication is available online at http://www.sciencedirect.com/.
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Figure 12: Mean performance. Mean performance values and SE obtained for the three
feedback groups during five training sessions. Significant differences between sessions are
indicated: p -values 5 % (*) and 1 % (**) level. Figure reproduced with permission from
Sollfrank and colleagues (2015b), Copyright Elsevier E.V. The publication is available
online at http://www.sciencedirect.com/.

“The grand average time-frequency representations (0-30 Hz) of significant
ERD/ERS values at electrode position C; for all five training sessions for the two
tasks (right and left hand motor imagery together) are shown in Figure 13. The
differentiation of the frequencies between ERD and ERS revealed a mean
frequency of the desynchronized components of 10.1 Hz + 1.0 (CB), 10.2 Hz + 1.0
(UF) and 10.2 Hz * 1.1 (MF) and a corresponding frequency of the synchronized
components of 12.5 Hz * 1.4 (CB), 12.4 Hz + 1.4 (UF) and 12.5 Hz * 1.2 (MF). This
difference was significant for all feedback groups for the alpha band (t(149)=-
16,23, p=0), but not for the beta band (13-25 Hz; t(149)=-1,69, p=.108), that is why
the beta band was excluded from further analysis. In order to analyze the potential
influence of the feedback on the ERD/ERS patterns during task performance in the
different sessions, a 3 (feedback) x 5 (session) repeated measures ANOVA was
performed. The feedback x session interaction and the main effect of feedback
were not significant. The main effect of session was significant (F436=3,35; p=.023)
with higher ERD values in session 1 compared to session 2 (t29)=2,75; p=.010) and
session 4 (t29)=3,96; p=0) for all feedback groups” (Sollfrank et al., 2015b).
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Figure 13: Grand average time-frequency maps. Representation of significant ERD
values (marked in blue, p<0.01) at electrode position C, pooled for the left and right hand
motor imagery periods, for all five training sessions, separately for the three feedback
groups. The maps are plotted for the mean duration of a whole trial (0-8 s; x-axis) and for
the frequency range of 0-30 Hz (y-axis). A vertical line indicates the cue onset level. Figure
reproduced with permission from Sollfrank and colleagues (2015b), Copyright Elsevier
E.V. The publication is available online at http://www.sciencedirect.com/.
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7.4.2 Questionnaire and end-user satisfaction

“Quantitative analyses of the questionnaire are shown in Table 3. Post hoc
comparisons to evaluate pairwise differences among group means were conducted
with the use of Tuckey HSD test since equal variances were tenable. The
visualization of the funnel feedback was rated as more helpful than the CB
feedback (MF*CB feedback group, p=.002 and UF*CB p=.006). The MF group
reported less frustration (MF*CB feedback group, p=.009) and was afterwards
more motivated (MF*CB feedback group, p=.033) as compared to the CB group”
(Sollfrank et al., 2015b).

Table 2: Mean performance. Mean values of accuracies (%) of participants of the three
different feedback groups for the offline screening session and across the five training
sessions level. Figure reproduced with permission from Sollfrank and colleagues (2015b),

Copyright Elsevier E.V. The publication is available online at
http://www.sciencedirect.com/.
Type of feedback CB UF MF
N 10 10 10
Mean screening performance2 +SD  55.05+13.43 55.33+17.23 57.55+15.22
Mean online performance2 +SD 61.04 +16.53 61.36+15.85 64.84 +17.02
Range online performance 40.00-97.00 41.67-99.17 44.17-98.33
Time out trialsb 16 % 27 % 25%
Above chance level performancec 30 % 34 % 42 %

apercentage of correct responses,
b percentage of ‘time out’ trials,

c percentage of sessions, where performance was above chance level.
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Table 3: Average ratings per question. Every question could be rated between one and
ten (1= not at all, not very likely and 10= a lot, very much likely). Standard deviations are
noted in brackets. Quantitative analysis shows that the one-way ANOVA was significant for
Question 2 (F(2,179=8,756, p=.001**), Question 4 (F217.1)=5,33, p=.011**) and Question 5
(F2159) =3,649, p=.040*), level. Table reproduced with permission from Sollfrank and
colleagues (2015b), Copyright Elsevier E.V. The publication is available online at
http://www.sciencedirect.com/.

Question CB UF MF
1. Did you find the task difficult? 7.71 7.11 6.23
(¥1.29) (¥x1.21) (¥1.42)
2. Did you find the visualization helpful? 5.33 7.56 7.87
(¥x1.41) (¥1.37  (*1.64)**
3. Did you find the sound helpful? 6.34
(¥1.14)
4. Did you feel frustration during the experiment? 8.34 6.45 5.23
(¥1.50) (¥1.92) (¥2.81)**
5. How motivated are you to be test end-user for 5.34 6.55 7.21
this kind of experiment again? (£1.56) (£2.05) (x1.71)*

p-values 5% (*) and 1% (**) level.

7.5 Discussion

“We investigated the MI-based BCI performance as a function of feedback type. The
performance was measured as the percentage of correct responses during motor
imagery tasks. Averaged for all feedback groups 56 % of the end-user performed at
least one session above chance level with more than 63 % correct responses and

could, thus, achieve significant control over the required brain response.

During the initial training session, significant better performance was measurable
in the MF and UF groups as compared to the conventional CB group. It seems that
the enriched unimodal and multimodal online feedback, with information about
the quality of the input signal, supports an easier approach for BCI control. The
two modalities of auditory and visual feedback seemed to be not as important as
the enriched information of the feedback, as there was no significant difference in
performance of the two funnel feedback groups. This is in accordance with
Schreuder and colleagues (2010) who also found no effect of multimodal (auditory
and visual) feedback on performance with a BCI using slow cortical potentials as

input signal. An efficient feedback should not be too complex, and should be
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provided in manageable pieces (Lotte et al, 2013). It may be that the visual
feedback was too dominant such that the simultaneous auditory feedback did not
provide any beneficial information. However, in line with results of Gargiulo and
colleagues (2012) we could show that multimodal feedback can reduce frustration
and enhance motivation, making the use of a BCI more enjoyable. Learning to
control a BCI is a complex task and psychological factors like motivation and
frustration may play an important role (Nijboer et al, 2010; Kleih et al., 2010;
Kleih and Kiibler, 2013). Such psychological factors could be influenced by the
choice of feedback presentation. An engaging, stimulus-rich feedback (Pineda et al,,
2003; Pfurtscheller et al., 2006b, 2007) might, in turn, increase the success in
controlling a BCI application. A study by Gruzelier and colleagues published in
2010 showed that neurofeedback training in virtual reality (VR) enhanced the
artistic performance of actors more successful than training with a 2D feedback
rendition. The efficacy of this training was attributed to the psychological
engagement through the ecologically relevant learning context of the immersive
VR technology. The liquid cursor in combination with sounds was judged more
helpful and descriptive than the conventional CB feedback and the motivation for
participating again in another BCI experiment was higher for the MF group than
for the CB group. However, on the physiological level the ERD analyses revealed no
significant difference between the ERD in the alpha band of sensorimotor areas
between the three feedback groups. Significantly highest values of performance
and ERD were present only in the first session in all feedback groups and along
with training, performance and ERD values of the feedback groups converged.
Thus, we may cautiously conclude that the funnel feedback may support the initial
training phase and represents an alternative feedback for BCI-controlled by motor

imagery.

Another explanation for the significantly better performance during the initial
training session could be due to the fact that no online adaptation was included.
Classification accuracy is certainly affected by inter-session non-stationarity of
brain patterns and the uncertainty metric used for the funnel might be even more

affected by this issue. This may explain the drop of performance in subsequent
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sessions of the funnel feedback group, which did not occur in the conventional

cursor bar group.

In each group were end-users who did not achieve any significant cursor control.
This phenomenon is known as BCI inefficiency (Kiibler and Miiller, 2007; Vidaurre
and Blankertz, 2010; Hammer et al., 2012), and it seems to be present in 10-30 %
of potential BCI end-users (Guger et al., 2003; Blankertz et al., 2010). Approaches
to alleviate this phenomenon have been explored, such as improved signal
processing (Blankertz and Vidaurre, 2010). Blankertz and colleagues (2007)
demonstrated that participants, who had no peak of the sensorimotor idle rhythm
at the beginning of the experiment, could develop such peak during the course of
the session with an end-user-optimized state-of-the-art classifier. They developed
the BBCI - a machine learning BCI approach - which provides BCI control during
the first session after 20 min screening period. A statistical analysis of the
screening measurement is used to adapt the system to the specificities of the end-
user's current brain signals. Kindermans at al. (2010) could show that a
combination of Reservoir Computing and a feature selection algorithm based on
Common Spatial Patterns can be used to improve performance in an non-cued
motor imagery based BCI. They enhanced the discrimination of the motor imagery
classes that made the system more robust against potential changes in the
environment. Besides online, or even offline adaptation in the classifier, other
factors like training, new task instructions and feedback (Pfurtscheller et al.,
2006b, 2007; Allison and Neuper, 2010) can also play an important role in learning
to control a BCI. We decided to train end-user with a non-adaptive classifier to
focus on the potential effect of an enriched feedback and to be able to exclude any

other factors besides the type of feedback.

A rather unexpected result was that there was no improvement of classification
accuracy with training and overall performance in all groups was surprisingly low.
Contrarily, all four patients with amyotrophic lateral sclerosis of a study by Kiibler
and colleagues published in 2005 were able to achieve regulation of their
sensorimotor rhythm of more than 75 % accuracy within less than 20 training
sessions. The performance was around chance level during the first ten sessions

but increased significantly during the last ten sessions. A study by Nijboer and
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colleagues (2008a) also showed that healthy participants were able to control an
MI-based BCI with solely auditory feedback. Although BCI performance in the
visual feedback group was superior to the auditory feedback group there was no
difference in performance at the end of the third training session. Participants in
the auditory feedback group learned slower, but four of eight end-users reached an
accuracy of more than 70% correct responses in the last session which was
comparable to the visual feedback group. Both studies have in common that the
participants had to perform a high number of trials: In the study of Nijboer and
colleagues (2008b) around 2070 trials were conducted in three sessions, and
Kiibler and colleagues (2005) included a minimum of 3200 to even 10500 trials in
20 sessions, depending on the physical and psychological condition of the patient.
For end-user with low control the duration of a trial was maybe too long. In some
trials the liquid cursor remained in the center of the test tube and it was not
possible or too exhausting for the end-user to maintain motor imagery over the 15
s before the ‘time out’ occurred. A higher number of ‘time outs’ were found in the
funnel feedback groups compared to the CB group and every ‘time out’ was rated
as a miss, even though the tendency of the cursor was toward the correct target.
On average, the experiment for the funnel feedback took 2.2h, whereas the same
number of trials in the CB feedback training was often faster. This may have had a
negative impact on the accuracy results of the funnel feedback groups” (Sollfrank

etal., 2015b).

7.6 Conclusions

“Taken together, healthy participants were able to control a BCI when presented
with multimodal funnel feedback including information about uncertainty. The
enriched visual feedback in combination with auditory feedback leads to a
significantly better performance in the initial training session. Such feedback may
boost initial performance, but beneficial effects were not maintained. Studies
possibly with more training sessions are required to replicate this finding and to
elucidate the long-term effect. Independent of performance, multimodal funnel

feedback was rated more helpful, more motivating, and less frustrating than the
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unimodal and cursor bar feedback. Especially in the operant conditioning
approach feedback plays an important role in learning to control a BCI. The herein
presented results can partly support our hypothesis and contribute to the idea that
an enriched feedback can support end-users in learning to control an MI-based
BCI. Thus, the multimodal funnel feedback represents an alternative approach for
training end-users to modulate their SMR and may be advantageous for training
adherence. It can facilitate the initial training phase and render end-users
confident toward the functionality of the BCI controlled by motor imagery.
Combined with adaptive classification and feature selection approaches, more

distinct differences might arise between feedback types” (Sollfrank et al.,, 2015b).
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8 Study III - Alpha neurofeedback training in patients with
schizophrenia

Study 1 and 2 could show that healthy participants were able to get in control of
their alpha rhythm over the sensorimotor cortex to control a BCI. It revealed that
feedback can play an important role by supporting the end-user with various
information but has to be distinct to not distract from the actual task. Study 3
builds upon these results and attempts to bring the BCI to the end-user - the
patient. This study is investigating if patients with schizophrenia can learn to

control their alpha rhythm in several online training sessions in a clinical setting.

8.1 Introduction

Alpha oscillations are of special interest because they are largely associated with
attentional, cognitive and verbal memory processes (Lecomte and Juhel, 2011).
The magnitude of activation, meaning the amount of alpha suppression, is an index
of cortical activation and Alexander and colleagues (2006) could demonstrate that
patients with cognitive impairments show a decreased activation compared to
healthy able-bodied participants. Several studies suggest that a large alpha resting
power can be a predictor of good cognitive performance (Doppelmayr et al., 2002;
Hanslmayr et al,, 2005; Zoefel et al., 2011; Klimesch, 2012; Wan et al., 2014). Alpha
band neurofeedback (NF) training has successfully been used to enhance attention
and memory performance in healthy younger subjects (Vernon et al., 2003;
Angelakis et al., 2007; Escolano et al., 2011; Zoefel et al.,, 2011; Nan et al., 2012a,b;
Dekker et al., 2014; Gruzelier, 2014) and in elderly subject groups (Angelakis et al.,
2007; Gruzelier, 2014). Those subjects who were able to enhance their alpha
power during training performed better in attention, short-term memory and
working memory tasks. The better subjects were able to increase their alpha
power the larger was the improvement in cognitive performance after NF training
(Hanslmayr et al., 2005). NF has mainly been used as a therapeutic tool to treat

different types of disorders such as attention deficit hyperactivity disorder
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(Butnik, 2005; Strehl et al., 2006; Friel, 2007; Arns et al.,, 2009; Escolano et al,,
2014), addictive disorder (Trudeau, 2000; Sokhadze et al., 2008), autistic spectrum
disorder (Coben et al., 2010) and epilepsy (Rockstroh et al., 1993; Kotchoubey et
al., 1999; Walker and Kozlowski, 2005; Sterman and Egner, 2006).

Worldwide around 21 million people suffer from schizophrenia (World Health
Organization, 2015). This disease comprises a wide spectrum of symptoms such as
delusions, hallucination, depression or avolition (Kay et al.,, 1987). It is a chronic
and devastating brain disorder and even after pharmacological treatment, not all
symptoms disappear and can still negatively influence the patient's social and
occupational lives (Ritsner et al.,, 2003; Harvey and Strassing, 2012; Keefe and
Harvey, 2012). Besides these core symptoms, 73 % of the patients’ further
experience cognitive deficits (Palmer et al, 1997) such as reduced attention,
working memory, verbal learning and short-term memory performance (Gold and
Harvey, 1993; Heinrichs and Zakzanis, 1998; Lesh et al.,, 2010; Fioravanti et al,,
2012; Keefe and Harvey, 2012). These deficits are relatively stable over time and
independent of the symptomatic manifestations of the illness (Gold, 2004).
Oscillatory abnormalities in the EEG of these patients seem to play an important
role in this dysfunctional information processing (Haenschel et al., 2009; Uhlhaas
and Singer, 2010, 2015; Phillips and Uhlhaas, 2015). Abnormalities in the
oscillatory activity of patients with schizophrenia include less well-organized
alpha activity as compared to healthy subjects (Itil, 1977), a reduced event-related
alpha desynchronization (Higashima et al., 2007; Ikezawa et al., 2011; Popov et al.,
2012; Ilana and Gomez-Ramirez, 2014) and a reduced frontal EEG alpha power
(Boutros et al., 2008; Koh et al., 2011; Popov et al., 2011b).

Neurofeedback is an operant conditioning procedure in which individuals learn to
regulate their brain activity, i.e., to increase or decrease the power of one or two
specific frequency bands (Lubar, 1997) or the amplitude of specific potentials
measured with EEG. Electrodes are placed on the scalp at locations linked to the
specific EEG activity. Cognitive remediation in patients with schizophrenia is an
increasingly prominent goal of rehabilitation programs (Popov et al., 2011a) and
different therapeutic approaches may be needed to address the different aspects of

the illness (Gold, 2004). A daily alpha neurofeedback training that focuses on the
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increase of alpha resting power to improve cognitive performance could be
effective, inexpensive and easy to handle for the patients and for the clinical staff
(Weber et al,, 2011). Alpha neurofeedback training can consist of tasks to either
enhance, suppress or both enhance and suppress the individual’s mean level of
alpha amplitude (Cho et al. 2008). Whereas most studies learn to consciously
enhance alpha (Hanslmayr et al., 2005; Zoefel et al, 2011; Lopez-Larraz et al,,
2012), it has been suggested that incorporating both the suppression and
enhancement into the training procedure is more beneficial for learning overall
control (Plotkin, 1976). The alternation between alpha enhancement and
suppression enables participants to gain an understanding of how each direction
feels, which facilitates the learning process of having a conscious control over their

alpha activation.

To date, little is known about the effects of such an alpha NF training in patients
with schizophrenia. Nan and colleagues (2012a) published data of a single patient
with schizophrenia who could learn to increase individual alpha power in four
sessions and simultaneously enhance short-term memory. This single case study
gives an example of a successful NF training, but further data of more patients is
missing. In another study by Bolea (2010) more than 70 patients with chronic
schizophrenia were involved in mixed neurofeedback training on different
frequency bands (alpha, beta, delta) with temporal stages and altering electrode
recording sites. The author obtained positive progress in the EEG patterns and in
cognitive, affective and behavioral patterns of the schizophrenic inpatients.
Furthermore, a two-year follow-up found that these improvements were
sustained. Due to the complex procedure of the presented neurofeedback training
it is not quite clear which frequency band training led to these positive results. The
author holds the opinion that the reinforcement of the right parietal alpha and
inhabitation of the frontal delta and fast beta activity obtained the determining

effects.
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8.2 Study aims

Alpha NF seems to be a promising technique for the cognitive rehabilitation of
patients with schizophrenia, but to date only little is known about the ability of
those patients to control their alpha amplitudes. This study attempts to clarify how
the alpha neurofeedback training should be designed to fulfill the patient’s specific
needs with respect to training time and feedback type. Furthermore, it shall be
investigated whether (1) these patients are able to get in control of their alpha
rhythm (10-12 Hz) over the sensorimotor cortex, (2) the amplitude of the alpha
resting power increases within and across the training sessions, and (3) if an
increase in alpha resting power has positive effects on the patients’ cognitive

performance.

It is assumed that schizophrenic patients can learn to get in control of their alpha
rhythm but due to their lack in concentration a higher training effort is needed
(Gold, 2004). These patients react sensibly to visual input as some suffer from
hallucination (Kay et al, 1987). It is predicted that a simple but distinct
informative online feedback can support the training progress. In a successful
training, where patients learned to enhance and suppress their alpha power it is
expected that effects on the resting alpha power are detectable associated with

positive effects on behavioral performance (Zoefel et al., 2011).

8.3 Methods

8.3.1 Participants

This study was approved by the Ethical Review Board of the Psychology Faculty of
the University of Konstanz. In-patients were recruited at the Center of Psychiatry
Reichenau, Konstanz, Germany. Inclusion criteria were an ICD diagnosis of
paranoid-hallucinatory schizophrenia (code number 10.0). All patients were
receiving psychoactive medication and were trained with neurofeedback in a
clinically stable state. A total of six patients and four healthy controls took part in

the experiment (see Table 1). The t-test for independent samples showed no
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significant difference in age between the patient and the control group t(7) =
2.065, p=.078. Each participant gave written informed consent, the procedure was
explained in detail to them and they received monetary reward for participation.
One patient had to be entirely excluded from training (dropout) and another one
was included in the neurofeedback training but could not participate in the

behavioral test due to insufficient German language skills.

Table 4: Demographic variables for schizophrenic patients and healthy controls.
PANSS= positive and negative syndrome scale (Kay et al., 1987): P=positive, N=negative,
G=general psychopathology; F=female, M=male.

Subject Gender Age PANSS-Score
P-scale N-scale G-scale

Patient #1 M 39 9 8 19
Patient #2 F 36 24 23 44
Patient #3 M 24 8 16 29
Patient #4 M 24 10 27 42
Patient #5* F 43 25.5 11 31
Control #1 F 24

Control #2 M 25

Control #3 F 24

Control #4 M 23

* Insufficient German language skills

8.3.2 Design

For each participant, the experiment consisted of 22 appointments with two pre
and post behavioral test sessions and 20 neurofeedback training sessions within
three to five weeks, with one or two sessions each day. A baseline of 3.5 min with
alternating eyes open and eyes closed intervals of 15 s each was recorded before
and after each training session (Fig 14). Each session comprised three runs of 75

trials and lasted 10 min, with short breaks in between.
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8.3.3 EEG recordings

EEG was measured with five Ag/AgCl electrodes (F, Cs, C; Cs4, P;), placed in an
elastic cap according to the international 10-20 system, grounded to the left and
referenced to the right mastoid. A large Laplacian spatial filter was applied, with
the values on electrode location C, used for online feedback, calculated by
combining the value at that location with the values of a set of the surrounding
next-nearest-neighbor electrodes F,, C3, C4+ and P, (McFarland et al., 1997). The
signals were amplified by a g.tec amplifier system (g.tec, medical engineering,
Austria). The EEG signals were analogue filtered between 0.1 and 30 Hz and
digitally stored at a sampling frequency of 256 Hz. The raw EEG data was
inspected for signal quality and further processed using a custom-made software
programmed in BCI2000. EEG power was calculated by means of a sliding FFT
algorithm, updated every 0.5 s during each training run. Every 12 s the past data
was included into statistic to update the gain and offset of the online feedback. This
calculation of alpha frequency-specific EEG-power (10-12 Hz) was used during
training sessions to provide a fast and reliable feedback. During the pre and post
baseline, raw EEG signals with eyes open and eyes closed were recorded for offline

statistical analyses.

8.3.4 Neurofeedback training

The NF training was consistently performed with eyes open. Subjects trained to
regulate their alpha band (10-12 Hz) amplitude. Participants received instructions
drawn from the literature. Alpha rhythms are often said to be associated with
feelings of calmness, pleasant relaxation, and increased inner awareness (Beatty,
1972, Holmes et al., 1974) and patients had to produce this particular state of
mind. The trial started with the presentation of four arrows on the screen (2 s)
which pointed inward or outward indicating the task direction to either decrease
or increase alpha amplitude (Fig 14). The 4 s feedback phase started with a vertical
grey bar that appeared in the middle of the screen. This bar could be extended and

contracted in real time according to the online classification results by means of a
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sliding FFT algorithm. Positive feedback was either given by the change of the
color of the bar, which turned green when it was controlled to the requested
direction and by a smiley which appeared at the end of each successful trial,
indicating that the user controlled the bar > 50 % of the feedback phase time into
the requested direction. To avoid negative feedback, the bar remained grey when
the correct alpha regulation could not be achieved. Increase and decrease trials

occurred randomly, but not more than two times the same consecutive in each run.

Baseline Neurofeedback

EINNE

1

Nt

> ©
Nt .
<o

Figure 14: Illustration of the baseline and neurofeedback measurements. Each trial
segment was initiated by a visual cue.

8.3.5 Data analysis

Performance

The level of performance for both subject groups was calculated as the percentage
of correct selections across all runs per session. Due to the small sample size it was
not possible to assume normal distribution of the data across the subjects. The
nonparametric Wilcoxon signed-rank test for paired samples was applied to
compare means. Further, to measure of the development of power the slope of the

linear trend of the performance curves was considered.
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Physiological data

The alpha amplitude was calculated for the training and the pre and post session
baseline data sets in EEGlab, an open source Matlab toolbox. Raw EEG data was
inspected by eye and artefacts were rejected. The data set of the training runs was
split in ‘up’ and ‘down’ trial segments. Afterwards the mean power for each
segment was calculated and averaged for each session. To investigate changes in
alpha power over time, a Spearman correlation was calculated between the power
in the alpha band and the number of sessions. The Mann Whitney U Test for
independent data sets was used to compare alpha amplitude power means for the

patient and the control group.

For the pre and post baseline measurements the ‘eyes open’ segments were
extracted. The average alpha amplitude power of the ‘eyes open’ segments was
calculated for each baseline before and after each NF session to detect changes in
alpha resting power. Due to the small sample size the Wilcoxon signed-rank test
for paired samples was calculated to compare means of the pre and post segments

for each subject and for the averaged values for the patient and for the control

group.
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8.3.6 Cognitive performance

Cognitive performance of all patients was assessed by the German version of the
California Verbal Learning Test (CVLT), the digit span and the d2 test of attention
before the first and after the last NF session. All tests were conducted with pencil
and paper. The procedure and the targeted cognitive function are presented in

Table 5. The test analysis was conducted with the respective test manual.

Table 5: Cognitive tests. Pencil-and-paper tests conducted to evaluate three aspects of
cognitive performance (verbal learning, short-term memory and attention), which are
known to be reduced in patients with schizophrenia.

Cognitive test Cognitive Procedure
function
- serial learning of a word list with 15 items
CVLT immediate recall: number of words recalled after the
German Adaptation, Verbal first presentation
(Niemann et al,, learning working memory: number of successfully recalled
2008) items after five repetitions

delayed recall: intermission after 30 min including
the distraction of a second word list

- series of trials presenting random digits at the rate

Digit Span of 1 digit/s
(Conway et al,, Short- - number of digits is increased by one in each trial
2005) term until the participant failed twice to recollect

memory everything correct
- digits are repeated with the same (forward digit
span) or with the inverse order (backward digit
span)

- 14 test lines with 47 characters in each line

d2 test - each character consists of a letter, 'd' or 'p' marked
(Brickenkamp, ) with one, two, three or four small dashes

Attention .
2000) - lines must be scanned and all occurrences of the

letter 'd' with two dashes must be crossed out while
ignoring all other characters
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8.4 Results

8.4.1 Neurofeedback training

The NF training could be integrated into the daily clinical routine. Five patients
managed to attend all 22 appointments. Patients were motivated and accepted the
NF, but reported that training was challenging depending on their mental and

physical condition on each day.

Performance

The averaged performance values separated for the patient and for the healthy
control group are shown in Figure 15. Patients and controls started at the same
level of performance (patient: M=.671; control: M= .652). Both groups showed a
positive linear trend across the 20 training sessions with an enhancement of the
performance scores of up to M=.7136 in the patient group and M=.8251 in the
control group. The slope of this trend was larger for the healthy control group
(m=.002) than for the patient group (m=.000). The overall average performance in
patients (M=.692) was significant lower than in healthy control groups (M=.791,
7=-11.525, p<.001).

Furthermore, the separation in ‘up’ and ‘down’ trials could show that the control
group performed better than the patient group in both tasks (up: Z=-6.653, p<
.001; down: Z=-11.547, p< .00). Both groups revealed a better performance for the
‘up’ trials than for the ‘down’ trials (patients: Z=-6.648, p<.001; control group: Z=-
3.662, p<.000).
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Figure 15: Mean performance values. Performance of the patient and control group
with linear regression and standard deviation across all training session.

Physiological data

The average of the amplitude power in the alpha band during NF training for each
patient is shown in Figure 16. Four of the five patients showed a positive
correlation of the alpha amplitudes with the training session (patient: #1 r=.676;
p=.001; #3 r=.465; p=.039; #4 r=.724; p=.001; #5 r=.587; p=.01). Patient ##2, #4
and #5 show a power trend indicating a strong improvement of performance

during session one to five followed by an asymptotic performance with practice.
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Figure 16: Mean amplitude values during training. Average alpha (10-12 Hz)
amplitudes during training across each patient according to the temporal course of the
study. The polynomial trend line results from a regression and indicates the temporal
course of the amplitude values over sessions. Significance values p<.05 are marked with .
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Figure 18: Averaged mean alpha amplitude values during baseline. Averaged mean
alpha amplitude values for all patients and for the control group according to the temporal
course of the study. The straight line results from a regression and indicates a linear
increase in amplitude values over sessions.

The amplitude values of each patient during baseline measurements (eyes open)
recorded before and after each training session and across the 20 NF training
sessions are presented in Figure 17. Regarding the eyes open resting baseline four
patients showed lower amplitudes in the baseline pre compared to the baseline
post training with statistical significance in patient #3 (Z=-2.240; p= .025) and
patient #5 (Z=-2.320; p=.024; Wilcoxon signed-rank test for paired samples, *=
p<.05).

Figure 18 gives an overview of the averaged baseline values for both the control
and the patient group before and after each training session and across the 20
training sessions. Both groups had significant lower amplitudes in their baseline
pre compared to the baseline post (patients: Z=-1.941, p=.05; control: Z=1.979,
p=.048; Wilcoxon signed-rank test for paired samples). The overall amplitude
values for the pre (U=-3.841, p=.000) and post (U=-3.327, p=.001) measurements
during the baseline were significantly smaller in patients than in controls (Mann

Whitney U Test for independent samples).
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8.4.2 Cognitive Performance

Descriptive results of the cognitive test scores both before and after NF training
were available for four patients and are represented in Figure 19. Patient #5 had to
be excluded due to insufficient German language skills. Whereas patient #1 and #2
showed strongest improvements in digit span and CVLT post tests, patient #3 and
#4 could not enhance their performance in the cognitive tests. The results of the
cognitive performance tests are not in accordance with the physiological data of

the training or baseline alpha amplitude measurements.

Patient #1 Patient #2
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Figure 19: Cognitive performance. Test scores of each patient before and after the alpha
neurofeedback training. Performance is represented separately for the three cognitive
tasks and their respective subtests. Ordinate denotes the number of items recalled. TPI =
total performance index.
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8.5 Discussion

In line with our hypothesis the trainability of the alpha frequency amplitude of
patients with schizophrenia was confirmed. Patient #3 and #5 could learn to
regulate their brain activity with an effect on pre and post session baseline. Across
the session, patients achieved higher alpha resting amplitudes and according to
findings of Zoefel and colleagues (2011) significant differences between the

baseline values pre and post each training session can be measured.

It is highly discussed how to most effectively measure alpha modulation. Three
methods have been proposed: the individual alpha peak frequency (Angelakis et
al., 2004), the mean peak frequency within a fixed bandwidth (Hooper, 2005) and
the individual alpha peak at the center of gravity within the individual alpha
frequency range (Klimesch et al., 1993). According to the established method by
Dempster and Vernon (2009) the herein presented study used a fixed predefined
bandwidth for alpha modulation. This approach can minimize the time of the
session due to the no longer required pre-calibration. It simplifies the handling of
equipment and software, especially for BCI untrained clinical staff, and it adjusts
the same training for every participant. Other research groups claimed that the
large inter-individual differences in the alpha frequency band can be problematic
and therefore, suggested to train subjects instead with their individual alpha
frequency (IAF) band (Klimesch, 1999; Vernon, 2005; Zoefel et al, 2011). We
cannot exclude that training with the individual alpha frequency could have been
more successful or if it would have shortened the overall training time. To clarify
the potential of these alternative alpha measurement methods it would be
necessary to implement further studies detecting differences in performance or

training times with an IAF training.

In the herein presented study four out of five patients learnt to regulate the fixed
alpha frequency range across 20 training sessions. Huge differences in the
suggested number of session for NF exist in the published literature. Whereas
some studies with healthy participant showed that 10-20 lessons are necessary to
learn to regulate brain activity (Dempster and Vernon, 2009; Nan et al., 2012;
Dekker et al., 2014), others could show differences in EEG activity and behaviour
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were detectable within less than ten sessions (Hanslmayr et al., 2005; Zoefel et al.,
2011). Depending on the signal of interest and classification approaches,
significant regulation can be even achieved in the first session (Blankertz et al,,
2010). The two studies published on alpha neurofeedback training in patients with
Schizophrenia applied different training times: Whereas Nan and colleagues
(2012b), could report positive training effects in cortical activity and short-term
memory after only four sessions on consecutive days, Bolea (2010) conducted a
study with more than 140 sessions within 1,5 years. Our results could show that
patients featured the strongest enhancement in performance and an increase in
their amplitudes in the first five sessions, followed by an asymptotic performance
across the following sessions. This is in accordance to findings by Kiibler and
colleagues (2010). They compiled an overview of existing literature and concluded
that studies that rely on neurofeedback and operant conditioning to achieve self-
regulation on a specific oscillation feature performance followed a power trend
indicating a strong improvement of performance at the beginning of the training.
Cho and colleagues (2008) pointed out that there is likely to be a limit on how
many sessions can be undertaken before there is no more improvement to be

made and the learning curve flattens out.

In the cognitive performance tests, only four patients could be included. The
remaining data set for the behavioral tests can only be seen with a descriptive
interpretation without statistical evaluation due to the small sample size.
Nonetheless, it is possible to see trends in this preliminary data set with a shift
towards better tests scores after NF in verbal learning and attention. This is in
accordance to findings of other studies with healthy participants (Vernon et al,,
2003; Escolano et al,, 2011; Zoefel et al.,, 2011; Nan et al.,, 2012a; Dekker et al,,
2014). The CVLT was tested with different pre and post versions with a minimum
of three weeks in between. However we cannot exclude training effects as patients

got used to the surrounding, the test situations, procedure and requirements.

Another important aspect that has to be kept in mind when interpreting the results
is that all patients were on medication and took part in the rehabilitation program
at the clinic for psychiatry Reichenau. Cordes and colleagues (2015) noted in their
study that cognitive therapy usually addressed patients on antipsychotic
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medications. Therefore, this present sample represents a realistic treatment
setting of patients with schizophrenia that may be more relevant to study than a

group of non-medicated patients.

8.6 Conclusions

The herein presented work is the first study that investigated the implementation
of alpha neurofeedback training in several patients with schizophrenia in a clinical
setting. Cognitive remediation in patients with schizophrenia is an increasingly
prominent goal of rehabilitation programs (Popov et al., 2011a) and our results are
promising that a daily alpha NF training that focuses on the increase of alpha
resting power can be effective, inexpensive and easy to handle for the patients and

for the clinical staff.
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9 General Discussion and perspectives

For successful and efficient alpha neurofeedback training, the following questions
have to be answered: In which way, how often, and how long has to be trained for
to detect changes over time. The fundamental objective of this thesis was to
examine the relationship between alpha frequency band modulation recorded over
the sensorimotor cortex and training efficiency. The studies sought to isolate the
effect of feedback and training time on cortical activation patterns and BCI
performance. Healthy participants, as well as patients suffering from
schizophrenia, were trained to intentionally regulate their alpha amplitude in a

single or several training sessions.

The following is a summary of the major findings, including a discussion of the
results in the light of published research and, lastly, limitations as well as clinical

implications are reviewed.

The herein presented studies demonstrated that participants were able to enhance
the desired electrophysiological modulation, which was an increase or decrease of
their alpha amplitude recorded over the sensorimotor cortex in a user centered
design . In study I, averaged data of 35 participants revealed characteristic mu
rhythm ERD patterns during motor imagery. In study II, the performance was
measured as the percentage of correct responses during motor imagery tasks. In
56 % of all feedback group’s end-users performed at least one session above
chance level with more than 63 % correct responses and could, thus, achieve
significant control over the required brain response. In study III, in line with our
hypothesis, the trainability of the alpha frequency amplitude of patients with
schizophrenia was confirmed. Patients were able to learn to alter their alpha
activity, enhancing it in the desired direction with an effect on the baseline during
rest. In accordance with the findings of Zoefel and colleagues (2011), significant
differences between the baseline values pre- and post-training session were
measurable and the alpha resting amplitudes increased across the 20 training

sessions.
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9.1 Instructions and feedback in alpha activity

Current BCI training protocols rarely include a detailed overview of the
instructions provided to the end-user and several studies exist that even omit any
kind of guidance during NF training. In that case, training is thought to be self-
guiding and participants should intuitively find a way to control their brain
oscillation, just relying on the feedback (van Boxtel et al., 2012; Dekker et al,,
2014).

In the herein presented studies, participants were instructed to feel a kinesthetic
experience while imagining movements of their limbs but avoiding any muscle
tension. The objectives of the training were explicitly mentioned to the end-users
to help to produce clear, specific and stable brain patterns (Neuper et al., 2005). In
that way, the end-user could benefit from the realistic pre-visualizations. Further,
we investigated the effects of enriched feedback on BCI performance. Instructions
were carefully made to the end-user in order to explain them the meaning of this
abstract feedback. Comparable to a study by Dempster and Vernon in 2009, the
feedback loop was explained to each participant, which involved instructions
about the goal of the task. It was therefore explicitly mentioned to the end-user
what was expected from him/her. This seems particularly important if the
feedback is related to a classifier output whose actual meaning, in this case, the
movement of a liquid cursor through a funnel shape is unlikely to be intuitive for
people not familiar with the classification of motor imagery and BCI (Lotte et al,,
2013). In the alpha NF training patients were instructed by explaining the BCI
system and the goal of the training. Examples were given on how different states in
their brain oscillations can be elicited and what could alter the amplitude power,
such as different states of alertness. At the beginning of each session, participants
were instructed to imagine a realistic situation in which they felt concentrated or
relaxed, before imagining it during the subsequent NF training. Merrill (2007)
recommended that this would activate their prior experience, facilitating the
learning process. After the instruction, participants seemed to feel more confident
with the task. Naive end-users are often not aware on how the BCI system works,

and often tend to control it with eye movements, breathing techniques or muscle
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tension. Our findings support the importance of instructions provided to the end-
user before the actual training to improve BCI learning approaches and making
feedback more efficient (Hattie and Timperley, 2007; Shute, 2008). The effect of
instructions and feedback are not yet completely understood, but earlier studies

focused on the interplay between these two features on NF performance.

Studies by Beatty (1972) and Holmes and colleagues (1980) could show that
subjects who were carefully instructed how to modulate their alpha amplitude
were as effective at increasing alpha as subjects who were both instructed to
increase alpha and given feedback to aid them. The feedback itself did not seem to
have any effect on alpha production at all. It appears, then, that the subjects who
received the instructions simply put themselves into the alpha-related emotional
state that was described to them and that they could do that without the feedback
to guide them. Prfwett and colleagues (1976) could show that alpha enhancement
was associated with instructions but was independent of feedback. However, alpha

activity suppression needed both, accurate instructions and a meaningful

feedback.

From our results, we can conclude that feedback is a necessary feature to support
end-users in the initial contact with the BCI system. Moreover, several studies
underline the hypothesis that providing meaningful feedback to an end-user leads
to efficient and faster learning (Hattie and Timperley, 2007; Shute, 2008).
Feedback can benefit from improved technical capabilities that are nowadays
available to make it more meaningful and descriptive. Especially for several
sessions and longer trial length it can keep the participant involved and motivated
by applying different mediums like virtual reality (VR) or 3D games characteristics
(Pfurtscheller et al., 2007; Leeb et al., 2007b; Scherer et al., 2008). However, this
holds not true for any kind of feedback. Protocols that are poorly designed could

actually deteriorate motivations and impede a successful learning (Shute, 2008).
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9.2 Choice of feedback

During the online feedback studies the end-users received continuous feedback of
their alpha activity in real time in form of an expansible moving bar or liquid
cursor that changed its color or velocity when controlled in the right direction. The
participant was aware of when the desired aspect of their alpha activity, in this
case the amplitude, increased or decreased. The feedback should enable them to
attempt the most effective way at influencing this process so that they could learn
to alter their alpha power in the desired direction. To date, the majority of BCls
controlled by motor imagery employ continuous process control. This means that
the signal obtained primarily from the cortex is used to determine the position,
velocity and/or acceleration of the controlled cursor. The end-user receives
continuous feedback regarding the input signal and must encode the details
necessary to achieve that action. A study of Neuper and colleagues (1999)
suggested that continuous feedback can have facilitating effects depending on the
end-user and can lead to more efficient BCI learning than delayed discrete
feedback. According to Guger and colleagues (2000) instantaneous feedback
information can lead to an improvement in the differentiation of left versus right
hand motor imagery in the EEG. An alternative control strategy is a discrete goal
selection, in which the BCI uses the signal it obtains to determine the selection of
the desired target to the end-user. The end-user must only encode the desired
action to achieve the target (Wolpaw 2007). This feedback is not very common in
MI-based BCls, but several studies have demonstrated that control is possible
(Friedrich et al., 2009; McFarland et al., 2008). Royer and He (2009) affirmed that
goal selection leads to more hits per run, was faster, more accurate and had a
higher information transfer rate than process control. However, a study by
Middendorf and colleagues (2000) failed to support these findings and found no

difference between discrete and proportional feedback.

Regardless of whether feedback is continuous or contingent, it has been suggested
that including a scoring system in addition to the feedback could help to improve
participants’ performance. Kiibler and colleagues (1999) established a

combination of both a continuous feedback during cursor movement and a
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discrete delayed feedback at the end of each trial and demonstrated that all
patients suffering from Amyotrophic lateral sclerosis (ALS) could achieve self-
control in a training of SCP. We followed this suggestion in study IIl and provided a
continuous feedback in form of a moving bar and a smiley presented at the end of
successful trials. Preliminary studies could show that patients seemed to be very
insecure about their NF performance. They reported to have difficulties to judge
their own performance but a score gives them guidance to measure their
performance. Hardt and Kamiya (1976) affirmed that using a scoring system helps

to motivate participants and helps to keep them on task and alert.

Rather than just indicating whether the task was done correctly or not (Hattie and
Timperley, 2007), feedback should be specific, that means explanatory, and should
suggest how the end-users could improve the task. Given feedback could benefit
from more engaging environments and additional information, describing the
actual quality of the performed mental task in order to enhance the end-users
motivation and engagement. The herein presented results support the positive
effects of enriched feedback presentation on BCI performance during the initial
training session. A realistic feedback in form of a three-dimensional visualization
of upper and lower limb movements could amplify motor cortex activation during
a subsequent motor imagery phase. This is in accordance with previous findings:
Pfurtscheller and colleagues (2007) have argued that observing a realistic moving
hand should have a greater effect on the desynchronization than watching an
abstract feedback in the form of a moving bar. A study by Ono and colleagues
(2013) could show that anatomically congruent feedback produced the highest
reproducibility of ERD with the smallest inter-trial variance. However, Neuper and
colleagues (2009) proposed some limitations of the positive effects: They
suggested that the type of task is of prime importance as the processing of such a
realistic feedback stimulus may interfere with the mental motor imagery task and
can therefore, in some cases, impair the development of EEG control. Furthermore,
they argued that when the feedback contains equivalent information on both the
continuous and final outcomes of mental actions, the form of presentation, if it is
abstract or realistic, does not influence the performance in a BCI, at least in initial

training sessions. Some promising results were found for the effect of an enriched
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feedback presentation. 3D and VR feedback environments have been shown to
increase BCI performances (Pfurtscheller et al., 2007; Leeb et al., 2007b; Scherer et
al., 2008). This technology has the capability of creating immersive and motivating
environments in order to improve the effectiveness of the training process and

reduce training times (Ron-Angevin and Diaz-Estrella, 2009).

The results in study Il revealed significantly better performance scores measurable
in the enriched feedback group as compared to the conventional group during the
initial training session. It seems that the enriched online feedback, with
information about the quality of the input signal, supports an easier approach for
BCI control. This is an alternative method to enrich visual feedback proposed by
Kaufmann and colleagues (2011b). They provided their BCI end-users with
multidimensional feedback information regarding the classifier output, decoded in
the color of the cursor, and the strength of the absolute value of the classifier
output, decoded in the intensity changes of the cursor. The preliminary results
demonstrated that participants were able to control the BCI with the same
accuracy as compared to a conventional cursor feedback. By providing the end-
users with the information about how well he/she is controlling at any point in
time during the trial, the BCI feedback could facilitate the learning process in the
initial training session and, therefore, minimize frustration and increase

motivation.

The two modalities of auditory and visual feedback seemed to be not as important
as the enriched information, as there was no significant difference in the
performance of the two funnel feedback groups. Ainsworth (2006) suggested that
the content of the representations might be more important than the modalities
used for each representation. A multimodal BCI feedback has to follow some
guidelines to be meaningful for the end-user. Furthermore, the paired modalities
should have a similar specificity, using the same amount of details of explanatory
content, so that the end-user can easily relate them. The missing effect in
performance our study may either be due to an overflow of information which
distracts the subject from the specific task or due to the visual feedback being too
dominant to such an extent that the simultaneous auditory feedback did not

provide any beneficial information (Hinterberger et al, 2004). However,
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participants objectively judged the combination of liquid cursor and sounds to be
more helpful and more descriptive than the unimodal funnel feedback and the

motivation for participating again in another BCI experiment was rated higher.

As explained previously, NF training allows the end-user to receive real-time
feedback of their alpha activity. The participant should be aware of when the
desired aspect of their alpha activity, e.g. the amplitude, increases or decreases.
The feedback should enable them to attempt the most effective way at influencing
this process so that they can learn to alter their alpha in the desired direction.
Some patients with schizophrenia suffer from delusions, hallucinations and deficits
in their perception (Kay et al., 1987). The feedback used should be carefully
adjusted to this patient group. The effects of different types of visual feedback have
not been established; however, in order to neither distract or to irritate patients, it
seems beneficial to support them with simple but meaningful feedback, to help the
user in producing clear, specific and stable brain pattern. The results of the herein
presented studies suggest that feedback is an important feature when learning to

control a BCI.
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9.3 Effect of training time

As mentioned in section 4.3.3 different amounts of sessions are proposed to train
end-users to modulate their alpha oscillation. Issues relating to how long each
session should last and how many sessions are needed to detect enhancement in
NF performance are of major interest. In the machine learning approach,
participants learned in a single session to gain control over an MI-based BCI
(Vidaurre and Blankertz, 2010), whereas neurofeedback studies with an operant
learning approach exist with more than 50 training sessions over a period of
several years (Rockstroh et al., 1993; Birbaumer et al., 1999; Fuchs et al., 2003;
Kiibler et al., 1999, 2005, 2008; Kouijzer et al., 2009; Dehghani-Arani et al., 2013;
Escalano et al., 2014). The causes for the diverse training times can be various.
Variables that influence performance are i.e. the frequency bandwidth that was
chosen; whether it is an operant conditioning or a machine learning approach;
whether healthy subjects or patients are participating; and whether the training is

performed with eyes open or eyes closed, etc.

Still no recommendations exist on how long a single training session should take.
The herein presented results showed that healthy participants were able to take
part in sessions that took around 1.5 h, but patients with schizophrenia often
suffer from attention deficits due to the disease and medication. Therefore, we
recommend shorter training times (30-40 min) with longer breaks in between.
How long each session should last should be closely tied up to the targeted group

and their capabilities in concentration.

The issue of how many sessions are needed to learn to exert a conscious control
over the alpha oscillation, and how many sessions are needed that such training
has the desired effect on optimal performance, is not uniform and needs to be
individually answered. Whereas in study I, healthy participants were able to elicit
characteristic event-related desynchronization of the mu rhythm in a single
session in accordance to other studies (Hanslmayr et al, 2005, Vidaurre and
Blankertz, 2010), some researcher groups argue that more than one session is
needed to detect the progress of learning (e.g. Schneider et al., 1992; Egner and
Gruzelier 2004; Raymond et al. 2005; Dempster and Vernon, 2009; Nan et al,,
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2012b; Dekker et al., 2014). In study III, patients learned to control their alpha
rhythm across 20 sessions. Performance increased significantly with time for both
the patient and the control group. Whereas, the control group showed a fast
increase from session one to three, the patient group showed a slow continuously
increase from session one to twenty. Nowlis and Wortz (1973) found similar
results. They trained their participants between five and 52 sessions and found
that their degree of control over their alpha increased with the number of sessions.
Cho and colleagues (2008) pointed out that there is likely to be a limit on how
many sessions can be undertaken before there is no more improvement to be

made and the learning curve flattens out.

In study II, unexpectedly no improvement of classification accuracies were found
across the five training sessions and the overall performance in all groups was
surprisingly low. The significantly highest values of performance and ERD were
present only in the first session in all feedback groups. Along with training,
performance and ERD values of the feedback groups converged and maybe more
training sessions would have been necessary to detect learning. Other studies also
failed to detect learning across multiple training sessions (Lynch et al., 1974;
Vernon, et al., 2003). The training duration might be relevant in detecting learning
effects (Pichiorri et al., 2011) but the issue of how much learning is involved in BCI
control still remains an open question. Participants often report that as training
proceeds, the task itself, e.g. the imagined movement or state of alertness, becomes
less important and the use of a BCI system becomes more automatic (Daly and
Wolpaw, 2008). Kiibler and colleagues (2010) compiled an overview of existing
literature and concluded that studies that rely on neurofeedback and operant
conditioning to achieve self-regulation on a specific oscillation feature
performance followed a power trend indicating a strong improvement of
performance at the beginning of the training followed by an asymptotic

performance with practice.

In general, healthy end-users learned faster to achieve control over a BCI than
patients. This is in accordance to findings in other studies: Patients suffering from
ALS needed more training time and did not show asymptotic behavior (Kiibler et

al., 1999). Overall, the level of BCI performance seems to be diminished in those
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patients compared to healthy controls (Nijboer et al, 2008b). Only studies
including a long-term training could report linear or power trends in the
performance of severely motor impaired end-users, indicating either a constant
improvement of performance or a strong improvement of performance at the

beginning of training (Kiibler et al., 2004).

Slower learning progress in patients can be explained by recording difficulties,
such as noisy data and large electromyogenic artifacts due to the restless behavior
of patients with schizophrenia or neurodegeneration as a consequence of the ALS
disease (Mateen et al., 2008). Furthermore, patients suffer from cognitive
impairment and psychological problems and may be in need of antipsychotic
medication that affects attention, concentration or even directly individual EEG
components (Nijboer et al, 2010). The success of studies, especially in a clinical
setting, may be diminished by several factors and further limitations are presented

in the next chapter.
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9.4 Limitations

Although each study was planned and conducted with greatest diligence some
aspects of the proposed hypotheses reveal a lack of statistically significant results.
Therefore, it is important to consider several limitations, such as sample

characteristics and medication effects.

9.4.1 Sample Characteristics

A relatively small sample size in study Il and IIIl must be considered as a possible
explanation for the lack of statistically significant results. Each feedback group in
study II included ten subjects, but the performance within the groups showed a
high variability between the end-users. Only four patients could be included in the
cognitive performance tests in study III. The data set for the behavioral tests can
only be seen with a descriptive interpretation without statistical evaluation due to
the small sample size. The small sample size is due to the time-consuming work
with patients in the clinic: Not all patients fulfilled the requirements for this study
and they had to agree to take part in more than 20 appointments that took a
minimum of three weeks. It was not possible to simultaneously measure more
than three patients as the experiment could only be conducted in time slots
between clinical interventions. Sometimes patients had to cancel at short notice
due to changes in their clinical timetable. Conducting studies in a clinical setting
with patients are always more time consuming and elaborate and a huge effort

must be put in the scheduling and appointment management.

9.4.2 Medication effects

All participants of study III were taking medication at the time the NF training was
conducted. Antipsychotic medications, especially neuroleptics, can alter resting
EEG activity, introducing a potential confound into the EEG (Hammond and

Gunkelman, 2001; Surmeli et al., 2012). Since the effects of medication on alpha
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activity are uncertain, this represents a threat to internal validity. In addition,
certain medications may have influenced participants’ attention and alertness. In
this study we tried to control for medication by keeping it constant during the
experiment time. Cordes and colleagues (2015) took up the position that cognitive
therapy usually addressed patients on antipsychotic medications. Therefore this
present sample represents a typical clinical population that may be more relevant
to study than a group of un-medicated patients, thereby increasing the

generalizability of results.
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9.5 Clinical Implications

9.5.1 MI-based BClIs for communication

Study II could show that healthy participants were able to control a cursor on a
computer screen through modulation of their mu rhythm amplitude of the
sensorimotor area with motor imagery (MI). Such MI-based BCI enables
communication in healthy end-users (Millan and Mourino, 2003; Birbaumer, 2006;
McFarland and Wolpaw, 2011) as well as in patients with severe motor
impairments. Kiibler and colleagues (2005) could show that four ALS patients
acquired control over their sensorimotor rhythms. Furthermore, the performance
of all patients achieved over 20 sessions exceeded the 70 % accuracy that is
sufficient for using a language support program. A study by Neuper and colleagues
(2003) showed a case study where a completely paralyzed patient, diagnosed with
severe cerebral palsy, could learn to gain control over a BCI-controlled spelling

device.

However, the MI-based BCI is not always the first choice for communications in
patients. Nijboer and colleagues (2010) compared the performance level of six
participants with advanced ALS that were trained for a block of 20 sessions with a
BCI based either on sensorimotor rhythms or on event-related potentials (P300-
BCI). The MI-based BCI required more training than the P300-BCI and the
information transfer rate was higher with the P300-BCI (3.25 bits/min) than with
the SMR-BCI (1.16 bits/min). Nevertheless, it seems justifiable to enhance MI-
based BCls because of the advantage that it relies on the modulation of the mu
rhythm. Even when control is poor in the first session, it can be learned by means
of operant conditioning, which is not an option for the BCIs relying on the P300
signal feature (Neuper et al., 2010). The MI-based BCI used in this thesis relies on
learning via neurofeedback training to train the ability to self-regulate alpha
rhythms (Kiibler et al., 2001a; Wolpaw et al., 2002), which is a skill that can be

achieved through practice.
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9.5.2 MI-based BClIs for motor rehabilitation

In recently published literature BCIs that are controlled by motor imagery are used
in a therapeutic approach. It can be used as a training tool for stroke rehabilitation,
in order to restore the impaired motor function (Grosse-Wentrup et al., 2011;
Pichiorri et al., 2014; Keng-Ang and Guan, 2013; Ramos-Murguialday et al., 2013).
MI-based BCIs might restore motor function by inducing activity-dependent brain
plasticity to induce recovery of normal motor control and restore more normal
brain function. They could help to guide brain plasticity by affecting motor
learning, for example by demanding close attention to a motor task or by requiring
the activation or deactivation of specific brain signals (Daly and Wolpaw, 2008).
During motor imagery BCI training end-users mentally rehearse the function,
behavior and performance of a movement like they are actually performing them
(Lotze and Cohen 2006). Motor imagery training in an early stage of recovery
allows patients to practice and exercise movements, which they cannot carry out
physically due to their motor impairment (for Review see Zimmermann-Schlatter

et al.,, 2008; Sharma et al., 2006).

Several studies could report the successful implementation of such training for
stroke rehabilitation (Page, 2000, 2001, 2005; Daly et al., 2009; Pichiorri et al,,
2013). And first results indicate that patients are able to regain control over
volitional motor movement within this BCI intervention. The review by
Zimmermann-Schlatter and colleagues found modest evidence supporting the
additional benefit of motor imager training compared to only conventional

physiotherapy in patients with stroke.

Therefore, we support the use of a more realistic feedback especially for BCI use
for rehabilitation. In stroke patients, motor imagery may, therefore, provide a
promising alternative to motor rehabilitation intervention that is not dependent
on residual function but still incorporates voluntary drive (for Review see Sharma

et al., 2006).
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9.5.3 Neurofeedback and cognitive rehabilitation in schizophrenia disease

Around 73 % of the patients with schizophrenia have cognitive impairments
(Palmer et al., 1997) and abnormal EEG findings are common in 20 % to 60 % of
these patients (Ellingson, 1954; Itil, 1977). Most often the EEGs are characterized
by decreased resting alpha activity (Sponheim et al., 1994; Saletu, et al., 1990; for
review see Boutros et al, 2008). Currently, the treatment of choice for the
symptoms of schizophrenia is an antipsychotic medication, but the effects of these
medications are not consistent and the side effects can be severe, especially when
used long term. Findings indicate that neurofeedback (NF) training can be an
alternative or at least complementary intervention that has clinical significance for
patients with schizophrenia (Schneider et al., 1992; Gruzelier, 2000; Bolea, 2010;
Nan et al., 2012b). The aim of NF training is to teach the individual how to modify
aspects of their own brain activity and, in doing so, potentially influence their

behavior.

Of interest to NF clinicians is whether the alpha rhythms recorded over the
sensorimotor cortex should be targeted in EEG training. Results of study III suggest
that the training of the alpha frequency band should be considered in developing
and executing NF training protocols. Studies with patients suffering from autism
spectrum disorder (ASD) have begun to examine the effects of NF training on the
alpha rhythm recorded over the sensorimotor cortex: Coben and Hudspeth (2006)
demonstrated that operant training of the alpha rhythm resulted in a significantly
reduced alpha activity and improved social and emotional functioning in these
patients. A study by Pineda and colleagues (2008) demonstrated that alpha NF
training could induce EEG changes and enhance attention in children diagnosed

with ASD.

As suggested in our hypothesis, the trainability of the alpha frequency amplitude of
patients with schizophrenia was confirmed. Patients could learn to regulate their
brain activity with an effect on the pre- and post-session baseline. This is in
accordance with the findings of Zoefel and colleagues (2011). Across the sessions,
patients achieved higher alpha resting amplitudes. The self-regulation of the alpha

rhythm seems to be a viable training modality and, taken together, these findings
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suggest that alpha neurofeedback offers a promising alternative as a cognitive
rehabilitation technique. With the growing importance of personalized medicine,

this type of treatments may become more common in the future.
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9.6 Conclusive recommendations and perspectives

In summary, this thesis successfully targeted factors improving alpha modulation
training, thereby increasing the understanding of the role of training in practical,
clinically useful BCIs. The herein presented studies revealed a high individual
variability in the performance demands and abilities of each end-user. These
findings support the need of an iterative process in BCI development, in which the
researchers and end-users communicate about the requirements of a product and
its implementation. This seems beneficial especially when the final product is
thought to be used in the daily life of the target population or in a clinical setting as

for cognitive and motor rehabilitation.

On the basis of the herein presented results, several recommendations can be
proposed to increase the efficiency of an alpha rhythm training over the

sensorimotor cortex in an operant learning approach.

Guidelines to improve training of alpha modulation with regard to
performance and activation patterns:

Feedback - Realistic feedback to support motor imagery
- Enriched multidimensional feedback: Quality of the input signal
- Continuous feedback (moving shape, color change etc.)
- Positive reinforcement (smiley, score system, etc.)

- Multimodal feedback is not a necessary feature

This thesis provided proof that feedback and training time have an influence on
the performance and the activation patterns observed during BCI control and
several recommendations for future research follow from the results of these

studies.
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First, the presented MI-based BCI systems should be transferred from the
laboratory to the end-users home in order to reach the targeted group that is in
actual need of a reliable BCI training, namely the patients. It has to be verified if
patients could benefit from realistic enriched feedback with an enhancement in
performance and activation patterns, without being overwhelmed with
information or distracted from the actual motor imagery task. A larger sample size
is needed for the alpha neurofeedback training in patients with schizophrenia. This
would make it possible to statistically verify not only changes in the amplitude
values across the training session but also for variances in behavioral data, e.g.
cognitive performance including short-term memory and attention. In order to
make reliable statements regarding the effects of neurofeedback training it is
necessary to exclude the impact of medication and psychological intervention,
especially in studies that are made in a clinical setting over longer periods of time.
Therefore, we recommend controlling for medication effects. Furthermore, several
measurements after a longer period of time are necessary to detect long-term
effects on cognitive performance. This would prove the relevance of alpha

neurofeedback training as a successful rehabilitation intervention.

The recent improvements of the efficiency and reliability of BCI systems are
promising and they have the potential to support various aspects such as
communication and rehabilitation in patients with disabilities. The importance of a
correct training procedure, with regard to efficiency and comfort, cannot be
overestimated. In the worst case, training success can be diminished and end-users
are dissatisfied with the BCI system or with their own performance. The BCI - end-
user interaction is a closed loop and all aspects have to be carefully adjusted in

order to transfer BCIs successfully into the clinical setting.
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