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Abstract

Background: Genes that, when mutated, cause Fanconi anemia or greatly increase breast cancer risk encode for
proteins that converge on a homology-directed DNA damage repair process. Mutations in the SLX4 gene, which
encodes for a scaffold protein involved in the repair of interstrand cross-links, have recently been identified in
unclassified Fanconi anemia patients. A mutation analysis of SL.X4 in German or Byelorussian familial cases of breast

detect seven of them.

cancer without detected mutations in BRCAT or BRCA2 has been completed, with globally negative results.

Methods: The genomic region of SLX4, comprising all exons and exon-intron boundaries, was sequenced in 94
Spanish familial breast cancer cases that match a criterion indicating the potential presence of a highly-penetrant
germline mutation, following exclusion of BRCAT or BRCA2 mutations.

Results: This mutational analysis revealed extensive genetic variation of SLX4, with 21 novel single nucleotide
variants; however, none could be linked to a clear alteration of the protein function. Nonetheless, genotyping 10
variants (nine novel, all missense amino acid changes) in a set of controls (138 women and 146 men) did not

Conclusions: Overall, while the results of this study do not identify clearly pathogenic mutations of SLX4
contributing to breast cancer risk, further genetic analysis, combined with functional assays of the identified rare
variants, may be warranted to conclusively assess the potential link with the disease.

Background

A functionally coherent network of gene and/or protein
interactions, altered in Fanconi anemia (FA) and breast
cancer (BrCa), has emerged in recent years [1]. Fifteen
genes that, when mutated, cause FA (FANC genes) and
several genes that may harbor mutations of high, mod-
erate or low penetrance for BrCa risk encode for pro-
teins that converge on a homology-directed DNA
damage repair process [2]. As further evidence of a fun-
damental common causal basis between these diseases,
germline bi- and mono-allelic loss-of-function mutations
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in four of these genes cause FA and BrCa, respectively:
FANCDI1/BRCA2 [3,4], FANCJ/BRIP1 [5-8], FANCN/
PALB2 [9-11] and FANCO/RADS51C [12,13] (more
recent data suggests that mutations in RADS51C may be
primarily linked to ovarian cancer risk [14]). This evi-
dence marks any novel gene involved in the aforemen-
tioned network or process as a candidate to harbor
mutations in unclassified FA and/or BrCa patients.
Interstrand DNA cross-link agents, such as mitomy-
cin-C used in diagnostic tests for FA, block replication
forks and may therefore cause genome instability.
Homologs of SLX4 in model organisms were initially
identified as necessary for replication fork restart follow-
ing exposure to DNA-damaging agents [15]. Subse-
quently, SLX4 homologs have been shown to play a key
role as docking molecules for the repair of interstrand
cross-links [16,17]. These observations pointed to the
human SLX4 gene as a FANC candidate for unclassified
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patients and, as a result, two groups have recently
described mutations (renamed FANCP gene or FA-P
subtype) [18,19]. The potential link to BrCa risk has
been examined, to date, in 52 German or Byelorussian
patients with familial breast cancer [20]: the study has
not revealed truncating or clearly pathogenic mutations,
but has identified four unclassified missense variants.
Here, we conducted a more detailed study of the SLX4
gene in 94 index BrCa cases from Spanish families nega-
tive for BRCA1 and BRCA2 mutations. As recently
reported [20], our results do not show truncating or
clearly pathogenic mutations, although they do describe
seven missense variants of unknown biological signifi-
cance that are not found in controls.

Methods

Study samples

Since its creation in 1999, the Hereditary Cancer Pro-
gram at the ICO has identified a set of high-risk
families with suspected hereditary breast and/or ovar-
ian cancer syndrome. Following the Catalan Consensus
Onco Guidelines on genetic testing for this condition,
patients are analysed for mutations in the BRCAI or
BRCA2 genes after receiving appropriate genetic coun-
selling and providing written informed consent. This
genetic analysis consists of screening for point muta-
tions and large rearrangements affecting those genes.
For the present study, a total of 94 affected individuals
belonging to 94 unrelated families negative for BRCA1
or BRCA2 mutations were selected. In addition to
negativity for mutations in BRCAI or BRCA2, the
inclusion criteria were: at least three first-degree rela-
tives affected by breast or ovarian cancer; or at least
two first-degree female relatives affected by breast can-
cer (at least one of them diagnosed before the age of
50); or at least one case of female breast cancer plus at
least one case of either ovarian, female bilateral breast,
or male breast cancer. Among the selected cases, 10
families were represented with an elevated prior risk of
harboring a high-penetrance mutation, as calculated
with the BRCAPRO [21] algorithm (briefly, 94 families
mean = 0.40, standard deviation = 0.26, 95% confi-
dence interval 0.11-0.99). Control samples, consisting
of 138 women and 146 men, were taken from a hospi-
tal-based cancer association study (a detailed descrip-
tion of the study population, composition and
interviews has been given elsewhere [22]). Specifically,
these individuals were randomly enrolled from non-
cancer patients admitted to the same general hospital
as the BrCa cases. To avoid selection bias, the inclu-
sion criterion for controls was that the current admis-
sion to the hospital should be for a new disease (not
previously diagnosed). The studies were approved by
the IDIBELL ethics committee and participants gave
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written informed consent for their participation, and
for the genetic analysis of their biological samples,
according to the Declaration of Helsinki.

Mutation analysis

The SLX4 exons and exon-intron boundaries were
sequenced from polymerase chain reactions using pre-
viously defined primers and conditions [18]; for exon 7,
AmpliTaq Gold DNA Polymerase (Applied Biosystems)
and 10% of dimethyl sulfoxide were used. The reaction
products were purified from remaining primers using
ExoSAP-IT (GE Healthcare) and sequencing reactions
performed following a standard Sanger method with the
BigDye Terminator v3.1 Cycle Sequencing Kit (Applied
Biosystems). Samples harboring DNA variants were re-
sequenced at least once using an independent DNA ali-
quot from the first-pass analysis. The guidelines of the
Human Genome Variation Society and the reference
sequences NM_032444.2 and NP_115820.2 of the
National Center for Biotechnology Information were
used for nomenclature.

Genotyping

Assays based on the KASPar technology were performed
following the manufacturer’s instructions (KBioscience).
Reactions were carried out in a 384-well format with 2%
of duplicates, and negative and positive (i.e. BrCa patient
carrier) sample controls present in each plate.

Results and discussion

The genomic region of SLX4, comprising all exons and
exon-intron boundaries, was sequenced in 94 BrCa
familial cases that match a criterion indicating the
potential presence of a highly-penetrant germline
mutation, following exclusion of BRCA1 or BRCA2
mutations (see Methods). This mutational analysis
revealed 49 variants: 21 novel and 28 which are cur-
rently annotated in the single nucleotide polymorphism
database (dbSNP [23]) (Table 1). Of the 49 variants, 21
were found only once, which include three changes
identified by the 1,000 Genomes Project [24] (Table 1):
rs72778139-T has no known frequency data;
rs76488917-A has an allele frequency of 0.02 in Cauca-
sians; and rs115694169-A has an allele frequency of
0.03 in the Yoruba people of Ibadan (there is no data
for Caucasians). Excluding these from the set of 21 with
low frequency revealed eight missense and five silent
changes at the protein level, and five intronic changes
(Table 1). A neural network splicing prediction [25]
model did not strongly support alteration by any of the
identified intronic variants (data not shown). Together,
these results suggest extensive genetic variation at the
SLX4 locus among individuals in our population, but
provide no obvious link to BrCa risk.
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Table 1 SLX4 variants found in non-BRCA1/2-mutated familial BrCa cases

Exon Nucleotide change Change Amino acid change Number of carriers* dbSNPt
type
Het (%) Hom (%) Total

2 €.248G > C Missense p.Gly83Ala 1(1.1) 0 94 NA
2 c.339T > C Silent p. = 1(1.1) 0 94 NA
2 cA21G > T Missense p.Gly141Trp 1(1.1) 0 94 NA
3 c555C > T Silent p. = 9 (9.5) 0 94 174640850
3 c610C > T Missense p.Arg204Cys 10 (10.6) 0 94 1579842542
3 c678C > T Silent p. = 3.2 0 94 rs28516461
3 c.590T > C Missense p.Val197Ala 1(1.1) 0 94 NA
3 c710G > A Missense p.Arg237GIn 2020 0 94 NA
3 753G > A Silent p. = 24 (25.5) 2.(2.0) 94 rs8061528
4 c761-32T > G Intronic p. = 220 0 94 NA
5 c1152A > G Silent p. = 11 (11.7) 0 94 rs112511042
5 c1153C > A Missense p.Pro385Thr 1(01.1) 0 94 rs115694169
5 c.1156A > G Missense p.Met386Val 11 (11.7) 0 94 rs113490934
5 c1163 + 10C > T Intronic p. = 11 (11.7) 0 94 rs80116508
6 c1164-16T > C Intronic p. = 1(1.1) 0 94 NA
6 c.1164-40C > A Intronic p. = 1(1.1) 0 94 NA
6 c.1164-66T > A Intronic p. = 2020 0 94 NA
6 c1164-75C > G Intronic p. = 11 (11.7) 0 94 1s59622164
6 1366 + 11T > C Intronic p. = 12 (12.8) 0 94 rs76350200
7 c1371T > G Missense p.Asn457Lys 10 (10.6) 0 94 rs74319927
7 c1419C > T Silent p. = 1(1.1) 0 94 NA
8 c.1846G > A Missense p.Val616Met 1(1.1) 0 94 NA
9 c2012T > C Missense p.Leu671Ser 11 (11.8) 0 93 1577985244
9 c2013 +23G > A Intronic p. = 11 (11.7) 0 94 15112226642
9 c2013 + 137G > C Intronic p. = 11 01.7) 0 94 rs80186343
10 c2160 + 50C > T Intronic p. = 10 (10.6) 0 94 1575762935
12 c2346C > T Silent p. = 1(1.1) 0 94 NA
12 €.2469G > C Missense p.Trp823Cys 1(1.1) 0 94 NA
12 €.2854G > A Missense p.Ala952Thr 8 (8.5) 0 94 1s59939128
12 c2855C > T Missense p.Ala952Val 8 (8.5) 0 94 1578637028
12 c3162G > A Silent p. = 1(1.1) 0 94 1576488917
12 c3365C > T Missense p.Pro1122Leu 12 (12.8) 1(1.1) 94 rs714181
12 c3662C > T Missense p.Ala1221Val 10 (10.6) 0 94 s3827530
12 c3812C>T Missense p.Ser1271Phe 4 (4.2) 0 94 rs3810813
12 c3872C>T Missense p.Thr1291Met 1(1.1) 0 94 NA
12 CA426TA > T Missense p.lle1421Phe 1(1.1) 0 94 NA
12 c4400C > T Missense p.Pro1470Leu 1(1.1) 0 94 1572778139
12 c4500T > C Silent p. = 42 (44.7) 21 (22.3) 94 rs3810812
12 c4530G > T Silent p. = 1(1.1) 0 94 NA
13 c4637-125C > T Intronic p. = 1(1.1) 0 94 NA
13 cA4637-227C > T Intronic p. = 9 (9.6) 0 94 r1s75693937
13 c4739 + 10C > T Intronic p. = 1(1.1) 0 94 NA
13 cA4739 4+ 24G > T Intronic p. = 20 (21.3) 2(20) 94 rs12933120
14 c.5072A > G Missense p.Asn1691Ser 1(00.1) 0 94 NA
15 c5389C > T Silent p. = 1(1.1) 0 93 NA
15 c.5501A > G Missense p.Asn1834Ser 222 0 93 rs111738042
15 Cc¥8A > G Intronic p. = 9 (9.7) 0 93 rs3751839
15 c¥102G > A Intronic p. = 1(1.1) 0 93 NA
15 c¥113C>T Intronic p. = 8 (8.6) 0 93 1s76661336

*Het, heterozygous; Hom, homozygous
TBuild 133; NA, not applicable
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Having identified rare variants in BrCa familial cases,
we next assessed the presence of 10 of these variants in
a cohort of controls collected at the same hospital as
the cases (see Methods). The selection of these variants
was based on the observed low frequency in the 94
BrCa cases and on their identification as missense varia-
tions. In addition, a causative prediction was obtained
using two algorithms (PolyPhen-2 [26] and SIFT [27]),
plus a weighted average of scores (Condel [28]). Seven
of these variants were not found in controls and, intri-
guingly, five of them were predicted to be “deleterious”
(Table 2). Among this group, only one amino acid posi-
tion (Trp823) showed some evolutionary conservation
(Figure 1), and the substitution may be disfavored (Trp
to Cys) [29]; tumor samples were not available for any
case that would have allowed assessment of the exis-
tence of loss of heterozygosity at the SLX4 locus. None-
theless, predictions of a deleterious effect should be
taken with caution as neutral polymorphisms can fre-
quently be misclassified (from ~15-50% depending on
the method [28]). On the other hand, extensive genetic
variation in SLX4 might reflect an unknown evolution-
ary pressure or could be related to a similar observation
made for other DNA repair-related genes [30].

While SLX4 serves as a scaffold for multiple proteins
involved in the DNA damage response [16,17], the func-
tional involvement of the Trp823 position, and of the
other rare variants not found in controls in this study, is
unknown. None of the identified variants changes a
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N
Trp (W) 823 in human SLX4

Homo sapiens
Mus musculus

Gallus gallus FQDLLKS GEDEEEA
Drosophila melanogaster SMKVYKI ISERSSSV
Danio rerio FLELLQSMWQHENSEEE

Saccharomyces cerevisiae

Figure 1 CLUSTALW-based multi-alignment of human SLX4
and eukaryotic homologs. The region surrounding human Trp823
is shown.

critical amino acid residue and there is no data that
could suggest an alteration of protein interactions or
complexes; however, the Pro1470Leu variant might dis-
rupt a mitotic phosphorylation site at Ser1469 [31,32].
In this context, a SLX4 pathological variant linked to
BrCa should consist of a hypomorphic mutation that
would cause genome instability. Accordingly, SLX4 is a
key regulator of the function of structure-specific endo-
nucleases involved in the repair of DNA damage; in par-
ticular, proper function of SLX4 is fundamental for
repair during replication and for resolving Holliday
junctions formed during homologous recombination
[16,17,33,34]. Overall, the results of this study do not
support the existence of loss-of-function mutations of
SLX4 associated with BrCa risk; nonetheless, further
genetic analysis in patients and controls, combined with

Table 2 Pathological prediction and frequency in controls of selected SLX4 missense variants

Exon Nucleotide = Amino dbSNPt Pathological prediction Controls Number of
change acid tested  control
change (n) carriers (%)
SIFT PolyPhen-2 Condel Condel
(score < 0.05, (false positive (weighted prediction
deleterious) rate) average
of scores)
2 248G > C  pGly83Ala NA 0.14 015 0.15 Neutral 283
2 c421G>T pGly141Tmp NA 0.00 0.86 0.86 Deleterious 284 2(0.7)
3 c590T > C  pVall97Ala NA 048 0.01 0.00 Neutral 284
3 c710G > A p. NA 049 0.00 0.38 Neutral 284
Arg237GIn
8 c.1846G > p. NA 0.17 0.62 0.80 Deleterious 281 0
A Val616Met
12 ¢2469G > p. NA 0.01 1.00 0.97 Deleterious 282 0
C Trp823Cys
12 c3872C > p. NA 0.05 0.98 0.99 Deleterious 283 0
T Thr1291Met
12 cA4261A > p. NA 0.08 0.77 0.77 Deleterious 285 0
T llle1421Phe
12 c4409C > p. rs72778139 0.02 0.99 0.96 Deleterious 283 0
T Pro1470Leu
14 c.5072A > p. NA 0.56 0.00 0.01 Neutral 285 0
G Asn1691Ser

TBuild 133; NA, not applicable
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functional assays of specific rare variants, may be
warranted.

Conclusions

The mutational analysis of SLX4 in 94 familial BrCa
index cases without mutations in BRCAI or BRCA2 has
revealed extensive genetic variation. Twenty-nine novel
single nucleotide variants have been detected, 21 of
them showing relatively low allele frequencies: however,
none can be linked to a clear alteration of the protein
function. Nonetheless, analysis of 10 of these variants
failed to detect seven of them in a set of controls. While
the results of this study do not support the common
existence of SLX4 mutations contributing to BrCa risk,
additional studies may be warranted.
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