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Abstract Several extensions of the Standard Model of par-
ticle physics contain additional scalars implying a more
complex scalar potential compared to that of the Standard
Model. In general these potentials allow for charge- and/or
color-breaking minima besides the desired one with cor-
rectly broken SU(2)L × U(1)Y . Even if one assumes that a
metastable local minimum is realized, one has to ensure that
its lifetime exceeds that of our universe. We introduce a new
program called Vevacious which takes a generic expres-
sion for a one-loop effective potential energy function and
finds all the tree-level extrema, which are then used as the
starting points for gradient-based minimization of the one-
loop effective potential. The tunneling time from a given in-
put vacuum to the deepest minimum, if different from the
input vacuum, can be calculated. The parameter points are
given as files in the SLHA format (though is not restricted
to supersymmetric models), and new model files can be eas-
ily generated automatically by the Mathematica package
SARAH. This code uses HOM4PS2 to find all the minima of
the tree-level potential, PyMinuit to follow gradients to
the minima of the one-loop potential, and CosmoTransi-
tions to calculate tunneling times.

1 Introduction

A major part of the phenomenology of the incredibly suc-
cessful standard model of particle physics (SM) is the spon-
taneous breaking of some (but not all) of the gauge sym-
metries of the Lagrangian density by the vacuum expecta-
tion value (VEV) of a scalar field charged under a subgroup
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of the SM gauge group. The entire scalar sector of the SM
consists of a doublet of SU(2)L which also has a hyper-
charge under U(1)Y equal in magnitude to that of the lepton
SU(2)L doublet. The potential energy of the vacuum is min-
imized by the scalar field taking a constant non-zero value
everywhere. The presence of this VEV radically changes the
phenomenology of the theory, and allows for masses for par-
ticles that would be forced to be massless if the gauge sym-
metries of the Lagrangian density were also symmetries of
the vacuum state.

Since this scalar field is the only field in the SM that
can possibly have a non-zero VEV while preserving Lorentz
invariance, finding the minima of the potential energy is
straightforward, though of course evaluating it to the accu-
racy required is quite involved [1–3].

Also, with the current measurements for the masses of
the top quark and Higgs boson, one finds that the SM po-
tential at one-loop order is actually unbounded from below
for a fixed value of the renormalization scale. The value
of the Higgs field for which the potential is lower than the
desired vacuum is so high that one may worry that large
logarithms of the Higgs field over the electroweak scale
would render the loop expansion non-convergent. However,
the effect of large logarithms can be resummed, and the
conclusion that our vacuum is only metastable persists us-
ing the renormalization-group-improved effective potential
[1–5].

The existence of multiple non-equivalent vacua both
raises technical challenges and introduces interesting phys-
ics. The technical challenges are now that one has to find
several minima and evaluate which is the deepest, as well as
calculate the tunneling time from a false vacuum to the true
vacuum. However, this is an important ingredient in theo-
ries where a first-order phase transition explains the baryon
asymmetry of the universe through the sphalerons occuring
in the nucleation of bubbles of true vacuum (see [6] and ref-
erences therein).
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Many extensions of the SM introduce extra scalar fields.
Sometimes these fields are introduced explicitly to spon-
taneously break an extended gauge symmetry down to the
SM gauge group [7, 8], and they are assumed to have non-
zero VEVs at the true vacuum of the theory. Other times
they are introduced for other reasons, such as supersymme-
try [9], and often non-zero VEVs for such fields would be
disastrous, such as breaking SU(3)c and/or U(1)EM, which
excludes certain parts of the parameter space of the minimal
supersymmetric standard model (MSSM) from being phe-
nomenologically relevant.

The technical challenges are much tougher when mul-
tiple scalar fields are involved. Even a tree-level analysis
involves solving a set of coupled cubic equations, the so-
called minimization or tadpole equations. It has generally
only been attempted for highly symmetric systems such as
two Higgs doublet models (2HDM) [10, 11] or with only
a minimal amount of extra degrees of freedom such as the
(assumed) three non-zero VEVs of the next-to-minimal su-
persymmetric standard model (NMSSM) [12–14].

Since a general solution is usually too difficult, the ques-
tion of the stability of VEV configurations against tunneling
to other minima of the potential is often ignored. Instead,
potentials are often engineered to have a local minimum at
a desired VEV configuration through ensuring that the tad-
pole equations are satisfied for this set of VEVs. This ap-
proach allows one to go beyond tree level straightforwardly,
and one-loop tadpoles are the norm, and in supersymmet-
ric models two-loop contributions are often included [15].
This local minimum is implicitly assumed to be stable or
long-lived enough to be physically relevant. Unfortunately,
as some examples will show, local minima which are not
the global minimum of their parameter point are often ex-
tremely short-lived, excluding some benchmark parameter
points for some models.

The program Vevacious has been written to address
this. Given a set of tadpole equations and the terms needed
to construct the one-loop effective potential,1 first all the
extrema of the tree-level potential are found using homo-
topy continuation (HOM4PS2), which are then used as start-
ing points for gradient-based minimization (PyMinuit)
of the (real part of the) one-loop potential, and finally,
if requested, the tunneling time from an input minimum
to the deepest minimum found is estimated at the one-
loop level (CosmoTransitions). The program is in-
tended to be suitable for parameter scans, taking parame-
ter points in the SLHA format [16, 17] and giving a result
within seconds, depending on the number of fields allowed
to have non-zero VEVs and the accuracy of the tunneling

1The potential may include non-renormalizable terms, as long as the
one-loop effective potential is of the form of a polynomial plus V mass

as given in Eq. (4).

time required. Vevacious is available to download from
http://www.hepforge.org/downloads/vevacious.

2 The potential energy function at tree level
and one-loop level

The terminology of minimizing the effective potential of a
quantum field theory is rather loaded. Hence first we shall
clarify some terms and conventions that will be used in the
rest of this article. In the following we consider models
where only scalars can get a VEV as required by Lorentz
invariance.

In principle, the effective potential is a real-valued2 func-
tional over all the quantum fields of the model. However,
under the assumption that the vacuum is homogeneous and
isotropic, for the purposes of determining the vacua of the
model, the effective potential can be treated as a function of
sets of (dimensionful) numbers, which we shall refer to as
field configurations. Each field configuration is a set of vari-
ables which correspond to the classical expectation values
for the spin-zero fields which are constant with respect to
the spatial co-ordinates.

The example of the SM is relatively simple: the field con-
figuration is simply a set of two complex numbers, which are
the values of the neutral and charged scalar fields assuming
that each is constant over all space. These four real degrees
of freedom can be reduced to a single degree of freedom by
employing global SU(2)L and phase rotations, leaving an
effective potential that is effectively a function of a single
variable.

Henceforth we shall assume that each complex field is
treated as a pair of real degrees of freedom, and note that
this may obscure continuous sets of physically equivalent
degrees of freedom which are manifestly related by phase
rotations when expressed with complex fields.

Also we shall refer to the local minima of the effective
potential as its vacua, and label the global minimum as the
true vacuum, while all the others are false vacua. A potential
may have multiple true vacua, either as a continuous set of
minima related by gauge transformations as in the SM for
example, or a set of disjoint, physically inequivalent min-
ima, each of which may of course be a continuous set of
physically equivalent minima themselves. In cases where
there is a continuous set of physically equivalent minima,
we assume that a single exemplar is taken from the set for
the purposes of comparison of physically inequivalent min-
ima.

Furthermore, the term vacuum expectation value can be
used in many confusing ways. In this work, VEVs will only

2As noted in Sect. 2.4, the loop expansion may lead to complex values
for the one-loop effective potential. See [18, 19] for detailed discus-
sions.
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refer to the sets of constant values which the scalar fields
have at the field configurations which minimize the effective
potential. Hence we do not consider the effective potential
to be a “function of the VEVs”, rather a function of a set of
numbers that we call a field configuration.

2.1 The tree-level potential and tadpole equations

If one merely considers the SM at tree level, minimizing the
potential is straightforward. A global SU(2)L rotation can
bring the part of the potential due to the scalar doublet into
the form

V = λ

4
|φ|4 + μ2

2
|φ|2 (1)

where φ is the neutral component of the SU(2)L doublet.
After a little differentiation and algebra, one finds that if
λ > 0, μ2 < 0, then the potential is minimized for |φ| = v =√−μ2/λ.

However, for a set of N real scalar degrees of freedom φi

(writing complex scalar fields as two separate real scalars),
the scalar part of the tree-level potential of a renormalizable
quantum field theory in four space-time dimensions is of the
form

V tree = λijklφiφjφkφl + Aijkφiφjφk + μ2
ij φiφj

+ irrelevant constant term (2)

which, when differentiated with respect to the N indepen-
dent φi , yields N polynomial equations of up to degree
three. We have assumed that any terms linear in the fields
have been removed by constant shifts of the fields.

Although we assume renormalized potentials here for
simplicity, the methods used by Vevacious are equally
applicable to non-renormalizable potentials, as long as V tree

is expressed as a finite-degree polynomial. The value of loop
corrections to a non-renormalizable potential may be debat-
able, but Vevacious can be restricted to using just the
tree-level potential.

While closed-form solutions for cubic polynomials in
one variable exist, solving a coupled system in general
requires very involved algorithms, such as using Gröbner
bases to decompose the system [20, 21], or homotopy con-
tinuation to trace known solutions of simple systems as they
are deformed to the complicated target system of tadpole
equations.

2.1.1 The homotopy continuation method

The homotopy continuation method [22, 23] has found use
in several areas of physics [24–26], in particular to find
string theory vacua [27, 28] and extrema of extended Higgs
sectors [29], where the authors investigated a system of two
Higgs doublets with up to five singlet scalars in a general

tree-level potential, and [30], where systems of up to ten
fields were allowed to have non-zero VEVs. In contrast, the
Gröbner basis method is deemed prohibitively computation-
ally expensive for systems involving more than a few de-
grees of freedom [20].

The numerical polyhedral homotopy continuation meth-
od is a powerful way to find all the roots of a system of poly-
nomial equations quickly [31]. Essentially it works by con-
tinuously deforming a simple system of polynomial equa-
tions with known roots, with as many roots as the classical
Bézout bound of the system that is to be solved (i.e. the max-
imum number of roots it could have). The simple system
with known roots is continuously deformed into the target
system, with the position of the roots updated with each step.
While the method is described in detail in [22, 23], a light
introduction can be found for example in [29].

2.2 The one-loop potential

The general form of the renormalized one-loop effective po-
tential [32, 33] is

V 1-loop = V tree + V counter + V mass (3)

where V tree is as above and V counter has the same form
as V tree, i.e. a polynomial of the same degree in the same
fields, but the coefficients are instead the renormalization-
dependent finite parts of the appropriate counterterms [32].
The term V mass has the form, for a given field configura-
tion Φ ,

V mass = 1

64π2

∑

n

(
(−1)(2sn)(2sn + 1)

(
M̄2

n(Φ)
)2

× [
log

(
M̄2

n(Φ)/Q2) − cn

])
(4)

where the sum runs over all real scalar, Weyl fermion, and
vector degrees of freedom, with sn being the spin of the de-
gree of freedom. Complex scalars and Dirac fermions are
accounted for as mass-degenerate pairs of real scalars and
Weyl fermions respectively.

For scalar degrees of freedom, the M̄2
n(Φ) are the eigen-

values of the second functional derivative of V tree, i.e. the
eigenvalues of (M̄2

s=0)ij = (λijkl +λikjl +λiklj +· · ·)φkφl +
(Aijk +Aikj +Akij +· · ·)φk +μ2

ij +μ2
ji . Thus these M̄2

n(Φ)

are the eigenvalues of the tree-level scalar “mass-squared
matrix” that would be read off the Lagrangian with the
scalars written as fluctuations around the field configuration.
Unless the field configuration corresponds to a minimum of
the effective potential, these do not correspond to physical
masses in any way, of course.

Likewise, the M̄2
n(Φ) for fermionic and vector degrees of

freedom are the eigenvalues of the respective “mass-squared
matrices” where the scalar fields are taken to have constant
values given by the field configuration. (The fermion mass-
squared matrix is given by the mass matrix multiplied by its
Hermitian conjugate.)



Page 4 of 22 Eur. Phys. J. C (2013) 73:2588

The terms cn depend on the regularization scheme. In the
MS scheme, cn is 3/2 for scalars and Weyl fermions, but
5/6 for vectors, while in the DR

′
scheme [33, 34], more suit-

able for supersymmetric models, cn is 3/2 for all degrees of
freedom. Since this is a finite-order truncation of the expres-
sion, the renormalization scale Q also appears explicitly in
the logarithm, as well as implicitly in the scale dependence
of the renormalized Lagrangian parameters.

Much of the literature on one-loop potentials (including
[33]) assumes a renormalization scheme where V counter is
zero; however, such a scheme is often inconvenient for other
purposes, such as ensuring tadpole equations have a given
solution at the one-loop level, see e.g. the appendix of [35].
(SARAH automatically generalizes this approach to extended
SUSY models as explained in [36, 37].) Finally, we also note
that models can be constructed where spontaneous symme-
try breaking does not happen at tree level, but does exist
when one takes loop corrections into account [18, 38].

2.2.1 Scale dependence

As noted, the one-loop effective potential depends on the
renormalization scale. Ideally one would use the “renorma-
lization-group improved” expression for the potential [32]
as this is invariant under changes of scale; however, this is
often totally impractical except for potentials with only a
handful of parameters and a single scalar field.

If one must use a scale-dependent expression for the po-
tential, as is often the case, the renormalization scale should
be chosen carefully: if one chooses a scale too high or too
low, one may find that with a finite-loop-order (and thus
scale-dependent) effective potential, there is no spontaneous
breaking of any symmetry, or even that the potential is not
bounded from below [39]! This is often simply due to the
fact that higher orders become more important in such a
case, especially when corrections from the next order would
introduce new, large couplings, such as often happens when
going from tree level to one loop. It can also be that the scale
is so large or small that the loop expansion is no longer a
reliable expansion. We also note that rather undermines ar-
guments that radiative effects do not change tree-level con-
clusions on the absolute stability of vacua such as in [40]
(where the argument also fails to take into account that there
may not even be a scale at which the renormalization condi-
tion used can be satisfied).

Indeed, it is crucial that the scale is chosen so that
the loop expansion is valid. Explicitly, large logarithms
should not spoil the perturbativity of the expansion in
couplings. Loops with a particle n typically come with a
factor of ln(M̄2

n(Φ)/Q2) along with the factor of αn =
[relevant coupling]2/(4π), and thus αn ln(M̄2

n(Φ)/Q2)

should remain sufficiently smaller than one such that the
expansion can be trusted [32]. A rough first estimate then

of the region of validity, assuming that the dimensionful La-
grangian parameters are all of the order of the renormaliza-
tion scale to some power, is where ln(v2/Q2)/(4π) ≤ 1/2,
say, for a field configuration with vector length v, so where
the VEVs are within a factor of eπ � 20 of the renormaliza-
tion scale.

Furthermore, it is in general not valid to compare the
potential for different field configurations using a differ-
ent scale for each configuration, if one is using a scale-
dependent effective potential. The reason is that there is
an important contribution to the potential that is field-
independent yet still depends on the scale3 [41, 42]. Of
course, if one knows the full scale dependence of all the
terms of the Lagrangian regardless of whether they lead to
field-dependent contributions to the effective potential, then
one can correctly evaluate different field configurations at
different scales.

2.3 Gauge dependence

The one-loop potential is explicitly gauge-dependent [43,
44]. However, as shown in [44, 45], the values it takes at
its extrema are independent of the gauge chosen, except for
spurious extrema of poorly-chosen gauges. The popular Rξ

gauges are well-behaved and do not have fictitious gauge-
dependent extrema for reasonable choices of ξ [45].

It is also possible to formulate the effective potential in
terms of gauge-invariant composite fields [46], though this
may not always be practical. One can also verify the gauge-
independence of extrema using more complicated gauges
and applying BRST invariance [47].

2.4 Convexity

As shown in [18], the effective potential, which can be
thought of as the quantum analogue of the classical potential
energy for constant fields, is real for all values of the fields.
However, the loop expansion leads to complex values in re-
gions where the classical potential is non-convex. While one
can take the convex hull of the truncated expansion of the
potential when evaluating the potential for configurations of
fields in the convex region, it is not particularly helpful for
the purpose of computing tunneling transition times. Fortu-
nately, the one-loop truncation of the effective potential as
a function of constant values for the fields can consistently
be interpreted as a complex number with real part giving
the expectation value of the potential energy density for the
given field configuration and imaginary part proportional to
the decay rate per unit volume of this configuration [19].

3For example, if one is comparing two field configurations of the
MSSM potential where the squark fields happen to have zero values,
the mass of the gluino is independent of the non-zero fields and yet
provides a scale-dependent contribution to the effective potential.
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2.5 Comparing two vacua

If there are two or more physically inequivalent minima of
a potential, then it is vitally important to know if the phe-
nomenologically desired minimum is the global minimum,
or, if not, how long the expected tunneling time to the true
vacuum is.

Given the issues raised above in Sects. 2.2.1 and 2.3, it is
safe to use a scale- and gauge-dependent one-loop effective
potential to compare two inequivalent minima provided that
the scale is held fixed and that the two minima are within the
region of validity determined by the renormalization scale.
Of course, an explicitly gauge- and scale-independent ex-
pression for the effective potential would obviously be un-
burdened by such concerns, but unfortunately it is rare to be
able to formulate such an expression.

3 Tunneling from false vacua to true vacua

The usual expression for the decay rate Γ per unit volume
for a false vacuum is given in [48, 49] as

Γ/vol. = Ae(−B/�)
(
1 +O(�)

)
(5)

where A is a factor which depends on eigenvalues of a
functional determinant and B is the bounce action. The A

factor is typically estimated on dimensional grounds as it
is very complicated to calculate and, because of the ex-
ponentiation of B , is far less important than getting the
bounce action as accurate as possible. If A is taken to be
O((100–1000 GeV)4), then for Γ/vol. to be roughly the
age of the known Universe to the fourth power, B must be
around 400�, and a per-cent variation in B leads to a factor
of e variation in the tunneling time.

Given a path through the field configuration space from
one vacuum to another with a lower value, which for con-
venience we shall label as the false vacuum and true vac-
uum respectively, one can solve the equations of motion for
a bubble of true vacuum of critical size in an infinite volume
of false vacuum [48, 50]. This allows one to calculate the
bounce action and thus the major part of the tunneling time.

Unfortunately, this means that to calculate the tunneling
time from a false vacuum to a true vacuum, one needs to
evaluate the potential along a continuous path through the
field configuration space, and even though the extrema of
the potential are gauge-invariant as noted above, the paths
between them are not. However, it has been proved that at
zero temperature, the gauge dependence at one-loop order
cancels out [51].

At finite temperature, the situation is not so clear, though
the Landau gauge may be most appropriate [52]. While
some studies have shown that for “reasonable” choices of
gauge, the differences in finite-temperature tunneling times
are small [53], it is still possible to choose poor gauges that
can even obscure the possibility of tunneling [54].

4 Vevacious: objectives, outline, features
and limitations

4.1 Objectives

The Vevacious program is intended as a tool to quickly
evaluate whether a parameter point with a given set of
VEVs, referred to henceforth as the input vacuum, has, to
one-loop order,4 any vacua with lower potential energy than
the input vacuum, and, optionally, to estimate the tunneling
time from the input vacuum to the true vacuum if so.

A typical use envisaged is a parameter scan for a sin-
gle model. Some effort needs to be put into creating the
model file in the first place, though this is straightforward
if using SARAH as described in Sect. 6.1; once the model
file has been created, parameter points given in the form of
SLHA files should be evaluated within a matter of seconds,
depending on how complicated the model is, what simplifi-
cations have been made, and how accurately the tunneling
time should be calculated if necessary.

Given a model (through a model file) and a parameter
point (through an SLHA file), Vevacious determines the
global minimum of the one-loop effective potential, and a
verdict on whether the input minimum is absolutely stable,
by it being the global minimum, or metastable. The user
provides a threshold for which the metastability is rated as
long-lived or short-lived. Whether the tunneling time or just
an upper bound is calculated depends on whether the upper
bound is above or below the threshold, or may be forced by
certain options (see Sect. 6.3).

4.2 Outline

Here we present the steps taken by Vevacious, which are
schematically shown in Fig. 1.

(1) An input file in the SLHA format [16] is read in to ob-
tain the Lagrangian parameters defining the parameter
point, required to evaluate the potential. We emphasize
that even though the SUSY Les Houches Accord is used
as the format, the model itself does not need to be super-
symmetric, as long as the SLHA file contains appropriate
BLOCKs.

(2) All the extrema of the tree-level potential are found us-
ing the homotopy continuation method [22] to solve the
tree-level tadpole equations. The publicly available pro-
gram HOM4PS2 [31] is used for this.

(3) The tree-level extrema are used as starting points for
gradient-based minimization of the one-loop effec-
tive potential. The MINUIT algorithms [55] are used

4As mentioned in Sect. 2.2.1, a renormalization-group-improved effec-
tive potential would be better than the one-loop effective potential, but
at the moment it seems infeasible to implement.
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Fig. 1 Vevacious flow diagram. The member functions of Veva-
ciousRunner are shown from top to bottom in the order in which
they are called by Vevacious.exe, as can be seen by looking into

the Vevacious.cpp source file. All steps labeled with † are elabo-
rated in the text. (Most file names can be changed, see Sect. 6.3)

here through the Python wrapper PyMinuit [56].
The points where PyMinuit stops are checked to see
if they are really minima.5 Any saddle point is then split
into two further points, displaced from the original in the

5PyMinuit stops when it has found a sufficiently flat region without
checking whether it is at a minimum.

directions of steepest descent by amounts given by the
<saddle_nudges> arguments (see Sect. 6.3), which
are then also used as starting points for PyMinuit. By
default, PyMinuit is restricted to a hypercube of field
configurations where each field is only allowed to have
a magnitude less than or equal to one hundred times the
renormalization scale of the SLHA file. This is rather
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excessive by the reasoning of Sect. 2.2.1, which would
lead one to take at most maybe ten or twenty times the
scale as an upper limit; however, it was considered bet-
ter to allow the user to decide whether the results of
Vevacious are within a trustworthy region.

(4) The minima are sorted, and, if necessary, the tunneling
time from the input vacuum to the true vacuum is cal-
culated. The A factor of Eq. (5) is taken to be equal to
the fourth power of the renormalization scale, as this
is expected to be the typical scale of the potential and
thus the expected scale of the solitonic solutions, and
the bounce action is calculated with the code Cos-
moTransitions [50]. To save time, first Cosmo-
Transitions is called to calculate the bounce action
with a bubble profile given by a straight line in field
configuration space from the false vacuum to the true
vacuum to get an upper bound on the tunneling time.
If this upper bound is below the user-given threshold
<direct_time> (see Sect. 6.3), then no refinement
is pursued. If, however, the upper bound is above the
threshold, the bounce action is calculated again allowing
CosmoTransitions to deform the path in field con-
figuration space to find the minimal surface tension for
the bubble. If one wishes to calculate the tunneling time
with a different A factor, one can edit a line of Python
code as described in Sect. 4.3.

(5) The results are printed in a results file and also appended
to the SLHA input file.

4.3 Features

Finds all tree-level extrema The homotopy continuation
method is guaranteed to find all the solutions of the system
of tadpole equations (to the limitations of the finite precision
of the machine following the algorithm) [22]. One does not
have to worry that there may be solutions just beyond the
range of a scan looking for the solutions.

Rolls to one-loop minima Vevacious rolls from the tree-
level extrema to the minima of the one-loop effective poten-
tial before comparing them, because in general the VEVs get
shifted. In addition, extrema that change their nature with ra-
diative corrections, such as the field configuration with zero
values for all the fields in the Coleman–Weinberg model of
radiative spontaneous symmetry breaking [38], which is a
minimum of the tree-level potential but a local maximum of
the one-loop effective potential, are found.

Calculates tunneling times or upper bounds on them A pa-
rameter point in a model is not necessarily ruled out on
the basis that the desired minimum of the potential is not
the global minimum, since a metastable configuration with
a lifetime of roughly the observed age of the Universe or

longer is compatible with the single data point that we have.
Vevacious creates CosmoTransitions objects with
its effective potential function to evaluate the bounce action
and thus the tunneling time from a false vacuum to the true
vacuum of a parameter point.

Fast An important aspect of Vevacious is that it is fast
enough to be used as a check in a parameter scan of a model.
For example, on a laptop with a 2.4 GHz processor, a typ-
ical parameter point for the MSSM allowing six real non-
zero VEVs (two Higgs, two stau, two stop) can report within
3.2 seconds that no deeper vacuum than the input vacuum
was found, or, for a different parameter point, can report an
upper bound on the tunneling time within 18 seconds. How-
ever, borderline cases which require a full calculation of the
minimal bounce action can take up to 500 seconds. Reduc-
ing the number of degrees of freedom to four (fixing the stop
values at zero) reduces the calculation times to 0.6, 2.3 and
27 seconds respectively.

Flexible Vevacious has been written in a way that
should allow useful customizations with small changes to
the main Python code. For example, one can change a sin-
gle line (line 36) in Vevacious.py so that the tree-level
potential is used for the analysis rather than the one-loop
effective potential:

effectivePotentialFunction

= VPD.LoopCorrectedPotential

can be changed to

effectivePotentialFunction

= VPD.TreeLevelPotential

and no further changes are necessary (line breaks should not
be there in the Python: they are only here so that these
lines fit this text). Vevacious.exe does not overwrite
Vevacious.py, so any changes to the Python code will
be kept. This was chosen as the best compromise to allow
non-trivial changes without forcing the user to go very deep
into the code, though it does rely on the user learning some
Python to be able to do so. Another customization that one
may wish to make could be to change the A factor for the
calculation of the tunneling time (and hence the thresholds
for the bounce action calculations). This would be done by
editing line 433 of Vevacious.py to fix the fourth root
of A from the renormalization scale:

fourthRootOfSolitonicFactorA

= VPD.energyScaleFourth

can be changed to

fourthRootOfSolitonicFactorA= 246.0

to change the A factor to (246 GeV)4 for example, if one
feels that the electroweak scale is a more appropriate choice.
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4.4 Limitations

Garbage in, garbage out Vevacious performs very few
sanity checks, so rarely protects the user from their own
mistakes. For instance, Vevacious does not check if the
potential is bounded from below. However, there are some
checks, such as those which result in the warning that the
given input minimum was actually rather far from the near-
est minimum found by Vevacious (though Vevacious
carries on regardless after issuing the warning). Another
important sanity check that is not performed is to check
that the SLHA BLOCKs required by the model file are ac-
tually present in the given SLHA input file. The user is fully
responsible for providing a valid SLHA file to match the
model. As model files are expected to be produced automat-
ically by software such as SARAH, it is expected that the
SLHA files for the model will also be prepared consistently
with the expected BLOCKs. Unfortunately it is quite easy to
miss this point when using the example model files provided
by default with Vevacious: if one does use these files, one
must use the correct model file for the input SLHA files, as
described in Sect. 7.

May be excessively optimistic about the region of validity
By default, Vevacious allows VEVs to have values up to
a hundred times the renormalization scale, and it is up to the
user to decide whether any given set of results is meaning-
ful and within the region of validity of the one-loop effec-
tive potential used. However, it is straightforward to change
the allowed region to a smaller multiple of the renormaliza-
tion scale by editing line 85 of the default Vevacious.py
from

minuitObject.limits[ vevVariable ]
= (−100.0,100.0)

to, for example,

minuitObject.limits[ vevVariable ]
= (−20.0,20.0)

to limit VEVs to be no larger than twenty times the renor-
malization scale (again, the line breaks should not be present
in the Python). One could also insert more complicated
Python code here, but one should be aware that the PyMi-
nuit object deals with a potential where the field values are
in units of the renormalization scale.

Not guaranteed to find minima induced purely by radiative
effects While Vevacious does find all the extrema of
the tree-level effective potential, there is no guarantee that
these correspond to all the minima of the effective poten-
tial at the one-loop level. The strategy adopted by Veva-
cious will find all the minima of the one-loop effective
potential that are in some sense “downhill” from tree-level

extrema, but any minima that develop which would require
“going uphill” from every tree-level extremum will not be
found. Such potentials are not impossible: if the quadratic
coefficient in the Coleman–Weinberg potential [38] is small
enough while still positive, the single tree-level minimum
can remain a minimum at the one-loop level while deeper
minima induced by radiative corrections still appear. How-
ever, if the tree-level minimum is sufficiently shallow then
the finite numerical derivatives used by Vevacious may
be enough to push it over the small “hills” into the one-loop
minima.

Extreme slow-down with too many degrees of freedom
Like many codes, the amount of time Vevacious needs
to produce results increases worse than linearly with the
number of degrees of freedom. A proper quantification of
exactly how Vevacious scales with degrees of freedom
remains on the to-do list, but as a guide, some typical run-
ning times (again on a 2.4 GHz core) for the HOM4PS2 part
are: 3 degrees of freedom: 0.03 seconds; 5: 0.28 seconds;
7: 5.1 seconds; 10: 20 minutes; 15: 10 days. The PyMi-
nuit part depends on the number of solutions found by
HOM4PS2, but in general takes several seconds. The Cos-
moTransitions part is strongly dependent on the details
of a particular potential, and how rapidly the path defor-
mations converge; models with the same degrees of free-
dom can vary wildly from seconds to hours to be computed.
For this reason, Vevacious only calls the full calculation
of CosmoTransitions if the quick estimate of the upper
bound on the tunneling time is over the user-given thresh-
old, and also gives the user the option to never use the full
calculation, rather only the quick upper-bound calculation,
which in general takes only a few seconds at most.

Homotopy continuation method requires discrete extrema
The homotopy continuation method relies on tracking the
paths of a discrete number of simple solutions to a discrete
number of target solutions. There is no guarantee that a sys-
tem with a continuous set of degenerate solutions will be
solved by HOM4PS2, and unfortunately Vevacious can
not check that the system has redundant degrees of free-
dom such as those corresponding to a gauge transformation.
Hence the user must choose the degrees of freedom of the
model appropriately.

Homotopy continuation path tracking resolution The ho-
motopy continuation method guarantees that there is a path
from each solution of the simple system to its target solu-
tion, however, there is a danger that a finite-precision path-
tracking algorithm will accidentally “jump” from the path it
should be following onto a very close other path to a differ-
ent solution, possibly leading to one or more solutions re-
maining unfound (though not necessarily, since several sim-
ple solutions may map to the same (degenerate) target solu-
tion).
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Tunneling path resolution Calculating the tunneling time
requires finding a continuous path in field configuration
space from the false to the true vacuum. However, this must
be discretized to a finite number of points on a finite ma-
chine, and may even lead to a very small barrier between
the vacua disappearing entirely. However, in such cases the
tunneling time should be very short indeed, so Vevacious
notes this and takes a fixed very small tunneling time as the
result.

5 Subtleties: renormalization schemes and allowed
degrees of freedom

Currently, Vevacious performs very few sanity checks.
In particular, it remains blissfully ignorant of any physical
meanings the user intends for the values of the Lagrangian
parameters which are given. Thus is it entirely up to the user
to ensure that these values correspond correctly to the in-
tended renormalization conditions. However, Vevacious
does assume some form of dimensional regularization (e.g.
switching between DR

′
and MS depends on the value for

cn given for the vector mass-squared matrix in the model
file, see Appendix B, and providing explicit terms for the
“ε scalars”). So far, Lagrangian parameters as appearing in
the model files and as printed by the SPheno produced by
SARAH 4 are consistent with the renormalization conditions
as specified in the appendix of [35]. One should note though
that the VEVs from Vevacious are given for the Landau
gauge by default, and have slightly different values to those
they have in the Feynman–’t Hooft gauge that is used within
SPheno, for example.

In principle, every single degree of freedom should be
checked for a VEV, but this is often totally impractical, given
that about ten degrees of freedom is at the limit of what
might be considered tolerable with current processors. Thus
the user will often want to consider only a subset of scalars
as being allowed non-zero VEVs. For example, when con-
sidering a supersymmetric model, one might restrict one-
self to possible VEVs only for the third generation, or when
considering a model specifically engineered for light staus
but all other sfermions being very heavy, one might only
worry about stau VEVs as a first check. Hence Vevacious
should be used bearing in mind the caveat that it will not find
vacua with non-zero VEVs for degrees of freedom which are
not allowed non-zero VEVs in the model file. It is up to the
user to decide on the best compromise between speed and
comprehensiveness by choosing which degrees of freedom
to use.

Importantly, the user is responsible for ensuring that the
model file has a tree-level potential which has a discrete
number of minima. Mostly this means that the user has to
identify unphysical phases and hence remove the associated

degrees of freedom from the imaginary parts of such com-
plex fields. Another way that problems can arise is when
there are flat directions such as the tanβ = 1 direction of
the MSSM with unbroken supersymmetry, even though the
degeneracy of these directions may be lifted by loop correc-
tions.

6 Using Vevacious

Vevacious needs at least two input files: the model file
and the parameter file. The model file contains the informa-
tion about the physical setup. This file is most easily gen-
erated by SARAH, as explained in Sect. 6.1. Should the user
intend to modify this file by hand, we give more information
about the format in Appendix B. The parameter file should
be in the SLHA format, extended within the spirit of the
format, as required in general for extended models, as de-
scribed in Sect. 6.2. Finally, there is the option of supplying
an initialization file in XML to save giving several command-
line arguments, and this file is described along with these
arguments in Sect. 6.3.

6.1 Preparing the input file for SARAH

SARAH [57–60] is a tool to derive many analytical prop-
erties of a particle physics model, like mass matrices, tad-
pole equations, vertices and renormalization group equa-
tions, from a very short user input. This information can
be used, for instance, to write model files for several ma-
trix generators or source code for SPheno [61, 62]. While
previous versions of SARAH were optimized for super-
symmetric models but supported also to some extent non-
supersymmetric models, SARAH 4 will provide a simplified
input and new features also for non-supersymmetric mod-
els [63]. In addition, SARAH 4 supports also the output of
input files for Vevacious. To get this file, run in Mathe-
matica

< </ p a t h / t o /SARAH/SARAH.m;
S t a r t [ " MyModel " ] ;
MakeVevacious [ O p t i o n s ] ;

The possible options are:

– ComplexParameters, Value: list of parameters, De-
fault: {}:
By default, all parameters are assumed to be real when
writing the Vevacious input files. However, the user
can define those parameters which should be treated as
complex.

– IgnoreParameters, Value: list of parameters, De-
fault: {}:
The user can define a list of parameters which should be
set to zero when writing the Vevacious input.
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– OutputFile, Value: String, Default MyModel.vin,
where MyModel here is the same name as is given in
Start["MyModel"]; above:
The name used for the output file.

The first two options allow one to treat parameters differ-
ently in the Vevacious output as defined in the SARAH
model file. It may be in the user’s interest to try to speed
up the evaluation by taking out those parameters which on
physical grounds play only a subdominant role, but the gain
by doing so has yet to be quantified.

Example: MSSM with stau VEVs Here we discuss briefly
the main steps to prepare an MSSM version including stau
VEVs. For a more general discussion of the format of
the SARAH model files, we refer the interested reader to
[60, 64]. In general, three changes are always necessary to
include new VEVs in a model.

1. Defining the particles which can get a VEV

DEFINITION [EWSB] [ VEVs]=
{{SHd0 , { vdR , 1 / S q r t [ 2 ] } , { sigmad , I / S q r t [ 2 ] } ,

{ phid , 1 / S q r t [ 2 ] } } ,
{SHu0 , { vuR , 1 / S q r t [ 2 ] } , { sigmau , I / S q r t [ 2 ] } ,

{ phiu , 1 / S q r t [ 2 ] } } ,
{SeL , { vLR [ 3 ] , 1 / S q r t [ 2 ] } , { vLI [ 3 ] , I / S q r t [ 2 ] } ,

{ sigmaL , I / S q r t [ 2 ] } , { phiL , 1 / S q r t [ 2 ] } } ,
{SeR , { vER [ 3 ] , 1 / S q r t [ 2 ] } , { vEI [ 3 ] , I / S q r t [ 2 ] } ,

{ sigmaR , I / S q r t [ 2 ] } , { phiR , 1 / S q r t [ 2 ] } } ,
{SHdm, { 0 , 0 } , { sigmaM , I / S q r t [ 2 ] } ,

{phiM , 1 / S q r t [ 2 ] } } ,
{SHup , { 0 , 0 } , { sigmaP , I / S q r t [ 2 ] } ,

{ phiP , 1 / S q r t [ 2 ] } } ,
{SvL , { 0 , 0 } , { sigmaV , I / S q r t [ 2 ] } ,

{ phiV , 1 / S q r t [ 2 ] } }
} ;

where it is important that the VEVs have names that
are at least two characters long. The first two lines are
the standard decomposition of the complex Higgs scalar
H 0

i → 1√
2
(vi + iσi + φi) and are the same as in the

charge-conserving MSSM. The third and fourth line de-
fine the decomposition of the three generations of left-
and right-handed charged sleptons. The last three lines
define the decomposition of the charged Higgs fields and
the sneutrinos into CP-even and -odd eigenstates. This is
necessary for the adjacent mixing, see below.
There are two new features in SARAH 4 which are shown
here: (i) it is possible to give VEVs just to specific gener-
ations of a field, such as in this example we only use the
third one (vLR[3])—in the same way, one can allow for
smuon and stau VEVs using vLR[2,3]; (ii) VEVs can
have real and imaginary parts. Until now, complex VEVs
in SARAH had been defined by an absolute value and a
phase (veiφ); however, it is easier to handle within Ve-
vacious in the form vR + ivI .

2. Changing the rotation of the vector bosons:

DEFINITION [EWSB] [ GaugeSec to r ] =
{{{VB,VWB[ 1 ] ,VWB[ 2 ] ,VWB[ 3 ] } ,

{VB1 , VB2 , VB3 , VB4} ,ZZ} ,
{{fWB [ 1 ] , fWB [ 2 ] , fWB[ 3 ] } , {fWm, fWp , fW0} ,ZfW} } ;

With non-zero stau VEVs the photon won’t be massless
any more but will mix with the massive gauge bosons.
In general, there can be a mixing between the B gauge
boson (VB) and the three W gauge bosons (VWB[i]) to
four mass eigenstates (VB1 . . .VB4). The mixing matrix
is called ZZ.

3. Changing the rotation of matter fields:

DEFINITION [EWSB] [ M a t t e r S e c t o r ]=
{ . . .
{{ phid , phiu , phiM , phiP , phiV , phiL , phiR } ,{ hh , ZH}} ,
{{ sigmad , sigmau , sigmaM , sigmaP , sigmaV , sigmaL ,

sigmaR } ,{Ah , ZA}} ,
{{ fB , fW0 , FHd0 , FHu0 , FvL , FeL , c o n j [ FeR ] , fWm, FHdm,

fWp , FHup } ,{ L0 , ZN}} ,
. . . } ;

The stau VEVs generate new bilinear terms in the scalar
potential which trigger a mixing between the neutral and
charged Higgs fields, the charged sleptons and the sneu-
trinos. Note that even if we had used above complex stau
VEVs to present the new syntax, we don’t take the poten-
tial mixing between CP-even and -odd eigenstates into
account here. To incorporate this, the new basis would
read

DEFINITION [EWSB] [ M a t t e r S e c t o r ]=
{ . . .
{{ phid , phiu , phiM , phiP , phiV , phiL , phiR , sigmad ,

sigmau , sigmaM , sigmaP , sigmaV , sigmaL , sigmaR } ,
{hh , ZH}} ,

. . . } ;

Also, stau VEVs lead to a mixing of all the uncolored
fermions, which are now also Majorana in nature. In this
model file, they are now all labeled as L0 with mixing
matrix ZN. The spinor sector also has to be adjusted:

DEFINITION [EWSB] [ D i r a c S p i n o r s ]={
Fd −>{ FDL , c o n j [FDR] } ,
Fu −>{ FUL , c o n j [FUR] } ,
Chi −>{ L0 , c o n j [ L0 ] } ,
Glu −>{ fG , c o n j [ fG ] }

} ;

6.2 Preparing the SLHA data

To check for the global minimum in a given model for a
specific parameter point all necessary numerical values of
parameters have to be provided via an SLHA spectrum file.
The conventions of this file have to be, of course, identical
to the ones used for preparing the Vevacious model file.
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The SLHA (1 [16] and 2 [17]) conventions are only con-
cerned with the MSSM and the NMSSM, but do specify
that extra BLOCKs within the same format should be accept-
able within SLHA files, and should be ignored by programs
that do not recognize them. Vevacious is intended to be
used for many other models, so accepts any BLOCKs that are
mentioned in its model file and looks for them in the given
SLHA file. In this sense, the user is free to define BLOCKs
as long as the names are unbroken strings of alphanumeric
characters (e.g. BLOCK THISISAVALIDNAME or BLOCK
MY_BLOCK_01236). However, we strongly advise against
redefining those BLOCKs specified by [16] and [17], or any
of their elements, to have meanings other than those given
in [16] and [17].

With this in mind, two sets of pre-generated model files
for the MSSM (each file within a set allowing for differ-
ent scalars to have non-zero VEVs) are provided: one set
being that produced by SARAH 4, which assumes a certain
extension of the SLHA BLOCK HMIX, the other restricted
to quantities completely specified by the SLHA 1 and 2 con-
ventions. The extensions of HMIX are three additional ele-
ments: 101, providing the value of m2

3 (often written as Bμ)
directly, and 102 and 103 providing the values of vd and
vu respectively. All three can be derived from elements 2,
3, and 4 of HMIX, but are much more suited to conversion
between renormalization schemes and different gauges (as
vd and vu, and thus tanβ , are gauge-dependent quantities,
with values which also depend on the renormalization con-
ditions).

6.2.1 Scale dependence in the SLHA file

Vevacious is a tool for finding minima for a one-loop ef-
fective potential evaluated at a single scale, and thus it is
important that the Lagrangian parameters are provided con-
sistently at this scale. The scale is also required to be given
explicitly. Since the SLHA convention specifies that running
parameters are given in BLOCKs each with their own scale,
at first glance this may seem problematic. Even worse, the
format allows for multiple instances of the same BLOCK,
each with its own scale. However, the default behaviour of
SPheno, SoftSUSY, SuSpect, and ISAJET when writ-
ing SLHA output is to give all running parameters consis-
tently at a single scale. This is the behaviour that Veva-
cious assumes.

The explicit value of the scale Q used in V mass in Eq. (4)
is that given by the BLOCK GAUGE. All other BLOCKs are

6The SLHA papers [16, 17] do not specify whether BLOCK names
should be case-sensitive (so that HMIX and Hmix would be considered
equivalent for example) and many spectrum generators have already
adopted different case conventions for their output, so Vevacious
reads in BLOCK names as case-insensitive.

assumed to be at this same scale Although it is not the de-
fault behaviour of any of the popular spectrum generators to
give the same BLOCKs at different scales, if Vevacious
finds multiple instances of the same BLOCK, the BLOCK
with the lowest scale is used and the others ignored. In addi-
tion, Vevacious performs a consistency check that all the
BLOCKs used have the same scale, aborting the calculation
if not.

6.2.2 SLHA expression of parameters
at different loop orders

The output BLOCKs enumerated in the SLHA papers are
specified to be in the DR

′
renormalization scheme,7 but

some users may prefer a different renormalization scheme.
The SLHA does not insist on private BLOCKs adhering to the
same standards of those explicitly part of the accord, so Ve-
vacious allows for a certain pattern of private BLOCKs to
give values for a different renormalization scheme. (Again,
we strongly advise against using the BLOCKs explicitly
mentioned in [16, 17] to convey values that do not adhere to
the definitions in [16, 17].) The additional renormalization
schemes that Vevacious allows are those where the finite
parts of Lagrangian parameters are themselves apportioned
into loop expansions, e.g. μ + δμ, where δμ is considered
to be a parameter already of at least one order higher than μ.

To allow for different renormalization conditions of this
type, Vevacious first looks for extra (“private”) SLHA
BLOCKs that specify particular loop orders. Since Veva-
cious deals with one-loop effective potentials, it has two
categories of parameters: “tree-level” and “one-loop”. When
writing the minimization conditions for the tree-level poten-
tial, it uses exclusively the “tree-level” values. When writing
the full one-loop effective potential, it uses both sets appro-
priately to avoid including spurious two-loop terms. With
reference to Eqs. (2), (3), and (4), Vevacious writes com-
bines the sum V tree + V counter by inserting the “one-loop”
parameter values into V tree as part of V 1-loop. (The tree-
level potential function that is also written automatically for
convenience, as mentioned in Sect. 4.3, uses the “tree-level”
values, of course.) The term V mass is already a loop correc-
tion, so “tree-level” values are used in the M̄2

n(Φ) functions.
If only a single value for any parameter is given, it is as-
sumed to be in a scheme where it has a single value which
is to be used in all parts of the effective potential.

As an example, within the renormalization used by
SPheno3.1.12, at the point SPS1a′, μ has the value
374.9 GeV at tree level, and 394.4 GeV at one loop. Ve-
vacious inserts the value 374.9 for μ in the minimization
conditions (as the units are assumed to be in GeV, as per the
SLHA standard), and also into the “mass-squared” matrices

7The DR
′

scheme is just called the DR scheme in [16, 17], however.
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that are part of the evaluation of the V mass contributions
to the one-loop effective potential. Vevacious inserts the
value 394.4 for μ in the polynomial part of the potential,
accounting for the contributions of both V tree and V counter

together.
In detail, when inserting a “tree-level” value, Veva-

cious looks for an SLHA BLOCK with the prefix “TREE”
first, and uses that value as its “tree-level” value. If there is
no BLOCK with that prefix, or if there is such a BLOCK but
it does not specify the appropriate element, then the BLOCK
without the prefix is assumed to have the appropriate value.
Likewise, when inserting a “one-loop” value, BLOCKs with
the prefix “LOOP” have priority. Hence for the SPS1a′ ex-
ample above, Vevacious could be given an SLHA file
with 394.4 as element 1 of HMIX8 and 374.9 as element 1 of
TREEHMIX. When Vevacious is writing the “tree-level”
value of μ, it would first look for element 1 of TREEHMIX,
and since it would find 374.9, this value would be used, and
element 1 of HMIX would not be looked for. When writing
the “one-loop” value, element 1 of LOOPHMIX would be
looked for, but not found, and because of this, element 1 of
HMIX would then be looked for, and 394.4 would be found
and used. One can specify element 1 of both TREEHMIX
and LOOPHMIX, and then Vevacious would never use
element 1 of HMIX, which could give the DR

′
value, for

example, without worrying that it might mix schemes in
the calculation. (If one prefers to use other prefixes, both
“TREE” and “LOOP” can be replaced by other strings in the
model file in the <block_prefixes> element; e.g.

< block_prefixes tree= "LO" loop= "NLO"/ >,

so that LOHMIX and NLOHMIX would be looked for appro-
priately.)

Those aspects are taken into account in the SPheno [61,
62] output of SARAH 4 [63]. For this purpose, a new flag has
been introduced which can be used in the SLHA input file

Block SPhenoInpu t # SPheno specific input
. . .
530 1 . # Use Vevacious conventions

In that case, the new tree and one-loop level block will be
present.

6.3 Setting up and running Vevacious

There are many options that can be passed to Vevacious.
If values other than the defaults are required, they can ei-
ther be passed by command-line arguments or with an ini-
tialization file in XML format. If an option is given by both

8Technically this is already an abuse of the BLOCK HMIX, since the

value entering here is not exactly the value it should have in the DR
′

scheme, but the difference is a two-loop order effect.

command-line argument and in an initialization file, the
command-line argument takes precedence.

We enumerate the options as they would be as command-
line arguments setting the options to the defaults. All float-
ing point numbers may be given as standard decimals, such
as 0.1234, or in scientific E notation, such as 1.234E− 1
(uppercase ‘E’ or lowercase ‘e’, with or without preceding
‘0’ characters, with or without ‘+’ in the exponent, e.g. 987
or 9.874E+ 002 or 0098.7e001).

1. --hom4ps2_dir=./HOM4PS2/
This is a string giving the path to the directory where
the HOM4PS2 executable is.

2. --homotopy_type=1
This is an integer used to decide which mode HOM4PS2
should run in: 1 is used for polyhedral homotopy and 2
for linear homotopy.

3. --imaginary_tolerance=0.0000001
This is a floating-point number giving the tolerance for
imaginary parts of VEVs found as solutions to the tree-
level minimization conditions, since it is possible that a
numerical precision error could lead to what should be
an exact cancellation leaving behind a small imaginary
part. It is in units of GeV, as the other dimensionful val-
ues are assumed to be so since that is how they are in
the SLHA standard.

4. --model_file=./MyModel.vin
This is a string giving the name of the model file dis-
cussed in Sect. 6.1, including the (relative or absolute)
directory path.

5. --slha_file=./MyParameters.slha.out
This is a string giving the name of the SLHA file dis-
cussed in Sect. 6.2, including the (relative or absolute)
directory path.

6. --result_file=./MyResult.vout
This is a string giving the name of the XML output file,
discussed in Sect. 6.2, to write, including the (relative
or absolute) directory path.

7. <saddle_nudges>1.0,5.0,20.0</saddle_
nudges>
(Unfortunately this option does not work very well as a
command-line argument, so instead here we display the
XML element as it should appear in the XML initializa-
tion file. No initialization file has to be used, of course,
if the default 1.0, 5.0, 20.0 is fine.) As discussed
in Sect. 4.2, PyMinuit may get stuck at saddle points,
and Vevacious creates pairs of nearby points as new
starting points for PyMinuit in an attempt to get it
to roll away to minima. Using the default list shown, if
Vevacious finds that PyMinuit stopped at a saddle
point, it will create two new starting points displaced
by 1.0 GeV either side of this saddle point. If PyMi-
nuit rolls from either or both of these displaced points
to new saddle points (or just does not roll as it is still
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in a region that is too flat), Vevacious will repeat the
process for each new saddle point, but this time displac-
ing the new starting points by 5.0 GeV. Vevacious
can repeat this a third time, using 20.0 GeV, but after
this gives up. Giving a longer comma-separated list of
floating-point numbers will lead to Vevacious per-
forming this “nudging” as many times as there are ele-
ments of the list.

8. --max_saddle_nudges=3
This is an integer giving the length of the list of floating-
point numbers of the saddle_nudges option: if it is
larger than the length of the list Vevacious already
has, the list is extended with copies of the last element;
if it is shorter, the list is truncated after the given number
of elements.

9. --ct_path=./CosmoTransitions
This is a string giving the path to the directory where the
CosmoTransitions files pathDeformation.
py and tunneling1D.py are.

10. --roll_tolerance=0.1
This is a floating-point number giving a tolerance for
extrema are identified with each other, since PyMi-
nuit may roll to the same minimum from two differ-
ent starting points, but not stop at exactly the same point
numerically. If the length of the vector that is the differ-
ence of the two field configurations is less than the tol-
erance multiplied by the length of the longer of the two
vectors that are the displacements of the two field con-
figurations from the origin, then the two field configu-
rations are taken to be the same minimum within errors;
e.g. if A is vd = 24.42, vu = 245.0 and B is vd = 24.39,
vu = 242.7, the length of A is 246.2140, the length
of B is 243.9225, so the longer length is 246.2140;
the length of their difference is 2.300196 which is less
than 0.1 ∗ 246.2140, so A and B are considered to be
the same extremum. (This is important for avoiding at-
tempting to calculate a tunneling time from a point back
to itself.)

11. --direct_time=0.1
This is a floating-point number giving a threshold tun-
neling time as a fraction of the age of the Universe for
whether the metastability is decided by the upper bound
from the fast CosmoTransitions calculation taking
a straight line from the false vacuum to the true vacuum
as described in Sect. 4.2. If the upper bound resulting
from this calculation is below this number, the input
vacuum is considered to be short-lived and no refine-
ment in calculating the tunneling time is pursued; e.g. if
it is 0.1, and the upper bound on the tunneling time is
found to be 10−20 times the age of the Universe, the
input vacuum is judged to be short-lived since the tun-
neling time is definitely below 0.1 times the age of the
Universe. If the value given for direct_time is neg-
ative, this fast calculation is skipped.

12. --deformed_time=0.1
This is a floating-point number giving a threshold tun-
neling time as a fraction of the age of the Universe
for whether the input vacuum is consider short-lived or
long-lived when the full CosmoTransitions calcu-
lation is performed. If the tunneling time was calculated
to have an upper bound above the threshold given by
the direct_time option (or if the calculation of the
upper bound was skipped because direct_time was
given a negative value), then CosmoTransitions is
called to calculate the bounce action allowing it to de-
form the path in VEV space to find the minimal bounce
action. If the tunneling time calculated from this bounce
action is less than the deformed_time value, the in-
put vacuum is considered short-lived, otherwise it is
reported to be long-lived. (In order to prevent over-
flow errors when exponentiating a potentially very large
number, the bounce action is capped at 1000.) If de-
formed_time is set to a negative value, this calcula-
tion is skipped.

As mentioned above, an XML initialization file can be
provided with values for these options. By default, Ve-
vacious looks for ./VevaciousInitialization.
xml for these options, but a different file can be specified
with the command-line option --input=/example/
MyVevaciousInit.xml to use /example/MyVeva-
ciousInit.xml as the initialization file. Any other
command-line arguments take priority over options set in
the initialization file.

An example XML initialization file called Vevacious-
Initialization.xml is provided with the download,
which shows how to set each option.

It does not matter what the root element is called (the
example file provided with the download uses <Veva-
cious_defaults>, but it really doesn’t matter, as long
as it is closed properly). Taking the option slha_file as
an example, the body of the XML element with the name
slha_file is used as the value of the option (stripped of
leading and trailing whitespace). Hence

< s l h a _ f i l e >
/ some / p a t h / SPheno . spc .MSSM. SPS1ap
</ s l h a _ f i l e >

would serve instead of

--slha_file

= /some/path/SPheno.spc.MSSM.SPS1ap

being passed as a command-line argument. Likewise,

< d i r e c t _ t i m e > 0 . 0 1 </ d i r e c t _ t i m e >

would set the quick calculation threshold to a more conser-
vative time of a hundredth of the age of the Universe.
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6.4 The results of Vevacious

When Vevacious is finished it returns the results twice:
(i) as separate file with the name defined in the initialization
file, (ii) attached to the used SLHA spectrum file. The format
of the output file is again in XML. As an example of a point
which is reported to be stable, we present the result of a
run on the CMSSM point SPS1a [65] (which is strongly ex-
cluded by experimental non-observation, but suffices as an
example). This parameter point was checked with the model
file described in Sect. 6.1 for the MSSM allowing real VEVs
for the neutral components of the Higgs doublets (vdR and
vuR) and for the staus (vLR3 and vER3), and reads

< V e v a c i o u s _ r e s u l t >
< r e f e r e n c e v e r s i o n = " 1 . 0 . 7 "

c i t a t i o n =" a rXiv : 1 3 0 7 . 1 4 7 7 ( hep−ph ) " / >
< s t a b i l i t y > s t a b l e </ s t a b i l i t y >
<global_minimum

r e l a t i v e _ d e p t h =" −89467096.8481"
vdR ="24 .2105220258" vER3 = " 0 . 0 " vLR3 = " 0 . 0 "
vuR ="241 .158873762" / >

<input_minimum
r e l a t i v e _ d e p t h =" −89467096.8481"
vdR ="24 .2105220258" vER3 = " 0 . 0 " vLR3 = " 0 . 0 "
vuR ="241 .158873762" / >

< l i f e t i m e a c t i o n _ c a l c u l a t i o n =" u n n e c e s s a r y " >
−1.0 </ l i f e t i m e >

</ V e v a c i o u s _ r e s u l t >

(where some line breaks have been inserted to fit on the
page).

The element <stability> can have the values sta-
ble, if the input minimum is the global minimum, long-
lived if the lifetime of the input minima is longer than the
specified limit, or short-lived if the tunneling time of
the input minimum to the global minimum is shorter than
the specified threshold.

The elements <global_minimum> and <input_

minimum> contain the numerical values of all VEVs at the
global and input minima respectively as well as the depth
of the potential at this point, relative to the (real part of the)
value of the one-loop effective potential for the field config-
uration where all fields are zero. The VEVs are given in units
of GeV, while the potential depths are in units of (GeV)4.

Finally, <lifetime> contains information about the
method used for the calculation of the lifetime of the in-
put minimum as well as the lifetime as a fraction of the
age of the Universe (taken as 1041/GeV by default, and
this can be changed by editing line 436 of the default
Vevacious.py). If the global minimum is the input
minimum, −1 is returned as lifetime. For a point with a
global charge-breaking minimum (with the provided ex-
ample CMSSM_CCB), again using the MSSM allowing real
Higgs and stau VEVs, the output file would look like

< V e v a c i o u s _ r e s u l t >
< r e f e r e n c e v e r s i o n = " 1 . 0 . 7 "

c i t a t i o n =" a rXiv : 1 3 0 7 . 1 4 7 7 ( hep−ph ) " / >
< s t a b i l i t y > s h o r t − l i v e d </ s t a b i l i t y >
<global_minimum

r e l a t i v e _ d e p t h =" −2.11285984487 e +13"
vdR ="4132 .33029884" vER3 ="5551 .67597322"
vLR3 ="5115 .06350174" vuR ="5241 .9876933" / >

<input_minimum r e l a t i v e _ d e p t h =" −109122205.646"
vdR ="6 .19344185577" vER3 = " 0 . 0 "
vLR3 ="1 .13686838E−010" vuR ="241 .242512796" / >

< l i f e t i m e
a c t i o n _ c a l c u l a t i o n =" d i r e c t _ p a t h _ b o u n d " >

4.38300042027 e−26 </ l i f e t i m e >
</ V e v a c i o u s _ r e s u l t >

(where some line breaks have been inserted so that the out-
put fits the width of the page). We can see that the nu-
merical minimization did not quite roll properly to a zero
VEV for τ̃L at the input minimum, but stopped extremely
close to it. Here, an upper limit of the lifetime has been
calculated using a direct path between the input and the
global minimum. The same information is also written to
the SLHA file using the new block VEVACIOUSRESULTS,
which has elements given by two integer indices followed
by a floating-point number and a string of characters.

BLOCK VEVACIOUSRESULTS # results from Vevacious . . .
0 0 −1.00000000E+000 s h o r t − l i v e d
0 1 +4.38300042E−026 d i r e c t _ p a t h _ b o u n d
1 0 −1.09122206E+008 r e l a t i v e _ d e p t h
1 1 +0.00000000E+000 vER3
1 2 +1.13686838E−010 vLR3
1 3 +6.19344186E+000 vdR
1 4 +2.41242513E+002 vuR
2 0 −2.11285984E+013 r e l a t i v e _ d e p t h
2 1 +5.55167597E+003 vER3
2 2 +5.11506350E+003 vLR3
2 3 +4.13233030E+003 vdR
2 4 +5.24198769E+003 vuR

The conventions are that the (0,0) entry of this block gives
the information about the stability (−1 for short-lived, 0
for long-lived, 1 for stable as the floating-point number, fol-
lowed by the description as the second part of the informa-
tion for these indices). For metastable points, the lifetime is
saved in (0,1) (capped at 1000), with the string following
giving the type of calculation (unnecessary if the input
minimum was the true vacuum, direct_path_bound
if the upper bound from a direct path in field configura-
tion space was below the threshold, or full_deformed_
path if CosmoTransitions had to calculate the action
using path deformation). The entries (1,1) to (1,n) con-
tain the numerical values of all n VEVs and their names as
strings at the input minimum and (2,1) to (2,n) give the
values and names of the VEVs at the global minimum. En-
tries (1,0) and (2,0) are the depths of the input and global
minimum (followed by the string relative_depth).
Vevacious first deletes any files with the same name

as was given as the output file, and if Vevacious was un-
able to end properly, no output is produced. In the case that
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there were problems during the run which did not crash the
program, Vevacious prints warnings, and creates an addi-
tional XML element <warning> in the results file, and also
appends these warnings in a BLOCK VEVACIOUSWARN-

INGS. Possible warnings are (with <...> standing for
strings describing field configurations, potential depths, or
the string given by PyMinuit when it throws an excep-
tion)

– No tree-level extrema were found. This might happen for
example if HOM4PS2 did not find any real solutions (re-
calling that complex fields have already been written as
pairs of real scalars) because it was given a system with
continuous degenerate solutions—however, it is not nec-
essarily the case that this is indicative of this problem,
and also it is not necessarily guaranteed to result from
such problematic systems.

No t r e e − l e v e l ex t r ema were found .

– PyMinuit threw exceptions:

PyMinui t had prob lems s t a r t i n g a t < . . . >
[ m i n u i t . M i n u i t E r r o r : < . . . > ] . PyMinui t
s t o p p e d a t < . . . > wi th r e l a t i v e d e p t h < . . . >
a t one−l oop l e v e l and < . . . > a t t r e e l e v e l .
Minui t ’ s e s t i m a t e o f how much d e e p e r i t
s h o u l d go i s < . . . > .

– PyMinuit got stuck at saddle points with very shallow
descending or possibly flat directions:

<N> extremum / a wi th a t l e a s t one d e s c e n d i n g
or f l a t d i r e c t i o n remained a f t e r a l l nudg ing :
< . . . >

– No one-loop extrema were found. (This shouldn’t ever
happen, even for a potential that is unbounded from be-
low, as by default, PyMinuit is restricted to a hypercube
of field configurations where no field is allowed a value
greater than a hundred times the scale Q.)

No one−l oop ex t r ema were found .

– The nearest extremum to the input field configuration is
actually a saddle point:

I n p u t VEVs seem t o c o r r e s p o n d t o a s a d d l e
p o i n t !

– The nearest extremum to the input field configuration is

further away than the permitted tolerance:

PyMinui t r o l l e d q u i t e f a r from t h e i n p u t VEVs!
( from < . . . > t o < . . . > )

– The energy barrier between the false and true vacua is
thinner than the resolution of the tunneling path:

Energy b a r r i e r from i n p u t VEVs t o g l o b a l
minimum t h i n n e r t h a n r e s o l u t i o n o f
t u n n e l i n g p a t h !

7 Comparison with existing tools and examples
with supersymmetric models

The major components of Vevacious have been tested
and used already in the literature: HOM4PS2, MINUIT, and
CosmoTransitions. The innovations of Vevacious
are the automatic preparation and parsing of input and out-
put of the various components in a consistent way, optimiza-
tion of the running time with respect to how short-lived a
metastable vacuum might be, and the feature that SARAH 4
can automatically generate Vevacious model files for any
new model that can be implemented in SARAH.

Very few tools are currently available to do the same job
as Vevacious. One can of course implement the mini-
mization conditions of a tree-level potential in HOM4PS2
or other implementations of the homotopy continuation
method, or any implementation of the Gröbner basis method,
on a case-by-case basis.

To our knowledge, there is only one publicly-available
program that purports to find the global minimum of a poten-
tial of a quantum field theory: ScannerS [66]. However, at
the time of writing, the routines to actually find the global
minimum are still under development and are not available.

The model files generated by SARAH use the internal ex-
pressions that have already been cross-checked in [59, 64].
In addition, the potential was always found to have a local
minimum at the input field configuration, as expected, for a
wide range of test points. Furthermore, using the model file

SARAH-SPhenoNMSSM_

JustNormalHiggsAndSingletVevs.vin

described below and with the modification to Vevacious
to use only a tree-level analysis as described in Sect. 4.3, we
confirmed the results of [20].

Several example model and parameter files are provided
with the download of Vevacious. Three model files are
given for the MSSM with different allowed non-zero VEVs:

– SARAH-SPhenoMSSM_JustNormalHiggsVevs.
vin with only the normal real neutral Higgs VEVs al-
lowed;
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– SARAH-SPhenoMSSM_RealHiggsAndStauVevs.
vin with real VEVs allowed for the neutral Higgs com-
ponents and for the staus;

– SARAH-SPhenoMSSM_RealHiggsAndStauAnd
StopVevs.vin with real VEVs allowed for the neu-
tral Higgs components, for the staus, and for the stops.

These model files were generated automatically with
SARAH 4. They assume that the SLHA parameter file
will use the standard SARAH-generated SPhenoMSSM
(SPheno using the MSSM SARAH model file) output,
which uses the SLHA 2 flavor violation conventions, i.e. that
the BLOCKs TE, TD, TU, MSQ2, etc., are present, and also
the extra HMIX parameters 101, 102, and 103, that SPhe-
noMSSM prints out. There are no tadpoles for the first two
generations of sfermions, which is strictly inconsistent with
non-zero VEVs for the third generation along with the Higgs
doublets in the presence of non-zero off-diagonal Yukawa
and trilinear soft SUSY-breaking terms. However, the as-
sumption is that any point with e.g. non-zero stop VEVs has
such small sup and scharm VEVs that the stability of the in-
put vacuum can be judged by comparison to the minimum in
the zero-sup-and-scharm-VEV plane nearest the true global
minimum.

Three variants which use only SLHA 2-specified BLOCKs
are also present:

pure_SLHA2_MSSM_JustNormalHiggsVevs.vin,

pure_SLHA2_MSSM_RealHiggsAndStauVevs.vin,

and

pure_SLHA2_MSSM_

RealHiggsAndStauAndStopVevs.vin.

These model files also assume that the SLHA parameter file
will use the SLHA 2 flavor violation conventions, i.e. that
the BLOCKs TE, TD, TU, MSQ2, etc., are present, but do not
require the extra HMIX parameters of the SARAH-SPheno
versions.

Three variants which use only SLHA 1-specified BLOCKs
are also present:

pure_SLHA1_MSSM_JustNormalHiggsVevs.vin,

pure_SLHA1_MSSM_RealHiggsAndStauVevs.vin,

and

pure_SLHA1_MSSM_

RealHiggsAndStauAndStopVevs.vin.

These model files assume that the SLHA parameter file
will use the SLHA 1 conventions without flavor violation,
i.e. that the BLOCKs AE, AD, AU, etc., are present, that the
sfermion soft SUSY-breaking sfermion mass-squared pa-
rameters are given by the MSOFT BLOCK instead of in MSQ2
etc., and also do not require the extra HMIX parameters of
the SARAH-SPheno versions.

Three model files are also provided for a constrained ver-
sion of the NMSSM (where the dimensionful superpotential
parameters μ, μ′, and ξF , and the soft SUSY-breaking pa-
rameters m2

3, m′2
S , and ξS , in the notation of [17], are set to

zero) with different allowed non-zero VEVs:

– SARAH-SPhenoNMSSM_JustNormalHiggsAnd
SingletVevs.vin
with only the normal real neutral Higgs and singlet VEVs
allowed;

– SARAH-SPhenoNMSSM_RealHiggsAndSinglet-
AndStauVevs.vin
with real VEVs allowed for the neutral Higgs compo-
nents, for the singlet, and for the staus;

– SARAH-SPhenoNMSSM_RealHiggsAndSinglet-
AndStauAndStopVevs.vin
with real VEVs allowed for the neutral Higgs compo-
nents, for the singlet, for the staus, and for the stops.

Again, the same flavor issues as the MSSM model files have
apply, and again, three variants which use only SLHA 2-
specified BLOCKs are also present:

pure_SLHA2_NMSSM_

JustNormalHiggsAndSingletVevs.vin,

pure_SLHA2_NMSSM_

RealHiggsAndSingletAndStauVevs.vin,

and

pure_SLHA2_NMSSM_

RealHiggsAndSingletAndStauAndStopVevs.

vin.

(There are no SLHA 1 variants, as the NMSSM was not
specified in the SLHA 1 conventions. It is important to note
though that these SLHA 2 model files still also require the
flavor violation conventions, i.e. that TE, TD, TU, MSQ2,
etc., are present, even though an NMSSM SLHA 2 file with-
out flavor violation, using AE instead of TE etc., is still a
valid SLHA 2 file.)

In addition, several example parameter points have been
provided to demonstrate the existence of metastable points:

– SPS1a, the CMSSM point SPS1a from [65] (which is
stable);

– CMSSM_CCB, which corresponds to the CMSSM best-fit
point including LHC and mh = 126 GeV constraints from
[67] (which has a global charge- and color-breaking min-
imum);

– NUHM1_CCB, which corresponds to the NUHM1 best-fit
point (“low”) from [68] (which also has a global charge-
and color-breaking minimum);

– CNMSSM_wrong_neutral, which corresponds to
benchmark point P1 from [69] (which also has a neutral
global minimum which however is not the input mini-
mum).
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These parameter files are given in the SLHA output of
SPheno as SPS1a.slha.out and so on, with example
output as SPS1a.vout and so on. (The SLHA input files
are SPS1a.slha.in and so on.)

We note that the CCB vacua found for CMSSM_CCB, for
example, have VEVs of the order of five times the renor-
malization scale (shown in Sect. 6.4). This should not cause
much concern, as ln(52)/(4π) � 0.256 so the one-loop ef-
fective potential should still be reasonable around this min-
imum. However, even if one restricts the VEVs to be less
than twice the scale, as described in Sect. 4.4, Vevacious
still finds a tunneling time (upper bound) of 10−6 times the
age of the known Universe to a CCB configuration at the
edge of the bounding hypercube.

The MSSM model and parameter files are in the MSSM
subdirectory and those of the NMSSM are in the NMSSM
subdirectory.

8 Conclusion

Several extensions of the Standard Model contain additional
scalar states. Usually one engineers the model such that one
obtains a phenomenologically acceptable vacuum with the
desired breaking of SU(2)L × U(1)Y to U(1)EM . However,
in general it is not checked if the minimum obtained is the
global minimum, as this in general quite an involved task
already at tree level, where hardly any analytical conditions
can be given. Often loop corrections become important too.

To tackle this problem, we have presented the program
Vevacious as a tool to quickly evaluate one-loop effective
potentials of a given model. It finds all extrema at tree level,
which allows for a first check for undesired minima. Start-
ing from these extrema, it calculates the one-loop effective
potential to obtain a more reliable result. This is important
as loop contributions can potentially change the nature of an
extremum. In the case that the original minimum turns out
to be merely a local minimum rather than the global mini-
mum, the possibility is given to evaluate the tunneling time.
As test cases we have considered supersymmetric models,
but the program can be used for a general model provided
that the tree-level potential is polynomial in the scalar fields.
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Appendix A: Installation and pre-requisites

To fully evaluate a parameter point with Vevacious and
the connected tools, you need a Linux or MacOS system
with . . .

– . . . a C++ compiler such as gcc
– . . . the Python environment, at least version 2.7.1
– . . . the python-dev headers (Python.h) for gcc or

the equivalent—this is important! (MacPorts for OSX
automatically installs Python.h as part of the installa-
tion of Python 2.7)

If you want to create new input files using SARAH, you need
at least Mathematica 7. To compile SPheno to create
the numerical input for Vevacious, a Fortran compiler
such as gfortran or ifort is needed.
Vevacious makes use of several public tools. We give

here only a brief introduction to the installation of these
tools but refer to the corresponding references and authors
for more information.

We assume in this description that all codes are down-
loaded and extracted in the same directory. The placeholder
for the path to this directory is called $VPATH in the follow-
ing.

1. HOM4PS2
(a) Download HOM4PS2 from http://www.math.nsysu.

edu.tw/~leetsung/works/HOM4PS_soft_files/
HOM4PS_Linux.htm (without the line break)

(b) Extract the tar file

> tar -xf HOM4PS2_64-bit.tar.gz

which should create $VPATH/HOM4PS2/.
(c) No compilation is necessary but now would be a

good point to check that HOM4PS2 works with one
of its examples.

2. MINUIT and PyMinuit Detailed instructions about the
installation and compilation of PyMinuit and MINUIT
are given at https://code.google.com/p/pyminuit/wiki/
HowToInstall (without the line break) We summarize
only briefly the main steps
(a) Download MINUIT from http://code.google.com/p/

pyminuit/. Choose Minuit-1_7_9-patch1.
tar.gz.

(b) Extract the tarball

> tar -xf Minuit-1_7_9-patch1.tar.gz

which should create $VPATH/Minuit-1_7_9/.
(c) Configure and compile MINUIT

> cd Minuit-1_7_9

> ./configure – –prefix = $VPATH/Min/

> make

> make install

which should create $VPATH/Min/.

http://www.math.nsysu.edu.tw/~leetsung/works/HOM4PS_soft_files/HOM4PS_Linux.htm
http://www.math.nsysu.edu.tw/~leetsung/works/HOM4PS_soft_files/HOM4PS_Linux.htm
http://www.math.nsysu.edu.tw/~leetsung/works/HOM4PS_soft_files/HOM4PS_Linux.htm
https://code.google.com/p/pyminuit/wiki/HowToInstall
https://code.google.com/p/pyminuit/wiki/HowToInstall
http://code.google.com/p/pyminuit/
http://code.google.com/p/pyminuit/
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(d) Download pyminuit-1.2.1.tar.gz or a
more recent version from http://code.google.com/p/
pyminuit/

(e) Extract PyMinuit

> tar -xf pyminuit-1.2.1.tar.gz

which should create $VPATH/pyminuit/.
(f) Run the setup of PyMinuit stating the location

of MINUIT where the .o files are, so $VPATH/
Minuit-1_7_9/ rather than $VPATH/Min/

> cd pyminuit-1.2.1

> python setup.py install

– –home = $VPATH/pym/

– –with–minuit = $VPATH/Minuit-1_7_9/

which should create $VPATH/pym/ (with the sec-
ond command broken over three lines to fit on the
page).

3. Make sure that you have properly exported PYTHON-
PATH (which should include the path to minuit.so,
in $VPATH/pym/lib/python/ in our example) and
LD_LIBRARY_PATH (which should include the path to
liblcg_Minuit.a, in $VPATH/Min/lib/ in our
example). Now would be a good time to check that
PyMinuit works by running the following test pro-
gram:

>>> import minuit

>>> def ( x, y ) :
. . . return ( ( x ∗ ∗2 + y ∗ ∗2 ) ∗ ∗2

. . . − 0.5 ∗ x ∗ ∗2 )

. . .

>>> m = minuit.Minuit ( f )

>>> m.values = { ′x′ : 0.1, ′y′ : 0.2 }
>>> m.migrad ( )

>>> m.values, m.fval

4. CosmoTransitions
(a) Ensure that the Python packages Numpy and

SciPy are installed (if not, please use your favorite
Internet search engine to find out how to install them
on your system)

(b) Download CosmoTransitions_package_v1.
0.2.zip or a more recent version from http://
chasm.uchicago.edu/cosmotransitions

(c) unzip the archive

> unzip

CosmoTransitions_package_v1.0.2.zip

which should create $VPATH/CosmoTransi-
tions_package_v1.0.2/ (with the command
broken over two lines to fit on the page)

5. LHPC
(a) Download LHPC from http://www.hepforge.org/

downloads/lhpc/
(b) Extract the files from the compressed tarball (change

the version number appropriately)

> tar -xf LHPC-0.8.5.tar.gz

(c) Enter the LHPC directory and compile it

> cd LHPC-0.8.5

> make

6. Vevacious
(a) Download the most recent version from http://www.

hepforge.org/downloads/vevacious/
(b) Extract the files from the compressed tarball and

compile Vevacious stating the path to LHPC

> tar -xf Vevacious-1.0.7.tar.gz

> cd Vevacious-1.0.7

> make LHPCDIR = $VPATH/LHPC-0.8.5/

Now would be a good time to check that Vevacious
works. Edit $VPATH/Vevacious-1.0.7/bin/
VevaciousInitialization.xml to correctly
set all the paths, then run

> ./bin/Vevacious.exe

– –input = ./bin/VevaciousInitialization.xml

(with the command broken over two lines to fit on the
page) which should produce the result file with the
name given in the initialization file.

For example, in Debian-based Linux distribution one
can ensure that the paths are properly set by adding the
following to .bashrc:

export PYTHONPATH =
$VPATH/pym/lib/python/ : $PYTHONPATH

export PYTHONPATH =
$VPATH/CosmoTransitions_package_v1.0.2/

cosmoTransitions/ : $PYTHONPATH

export LD_LIBRARY_PATH =
$VPATH/Min/lib/ : $LD_LIBRARY_PATH

(without the line breaks inserted after the ‘=’ characters
or in the middle of the CosmoTransitions path, of
course). To get the input for a point, you can use a spec-
trum generator based on SPheno based on the correspond-
ing SARAH output

http://code.google.com/p/pyminuit/
http://code.google.com/p/pyminuit/
http://chasm.uchicago.edu/cosmotransitions
http://chasm.uchicago.edu/cosmotransitions
http://www.hepforge.org/downloads/lhpc/
http://www.hepforge.org/downloads/lhpc/
http://www.hepforge.org/downloads/vevacious/
http://www.hepforge.org/downloads/vevacious/
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1. SARAH
(a) Download the most recent version of SARAH 4 from

http://sarah.hepforge.org
(b) Extract SARAH and run Mathematica

> tar -xf SARAH4b-0.0.5.tar.gz

> mathematica

(c) Load SARAH, evaluate a model and generate the
SPheno output

<< "$VPATH/SARAH4b-0.0.5/SARAH.m";
Start["MyModel"];
MakeSPheno[];
MyModel can be for instance MSSM or NMSSM.

2. SPheno
(a) Download SPheno from http://spheno.hepforge.org
(b) Extract SPheno

> tar -xf SPheno-3.2.3.tar.gz

(c) Enter the SPheno directory and create a new subdi-
rectory for the new model

> cd SPheno-3.2.3

> mkdir MyModel

(d) Copy the source code produced by SARAH to the new
sub directory

> cp $VPATH/SARAH4b-0.0.5/Output/

MyModel/EWSB/SPheno/∗ MyModel/

(without the line break)
(e) Compile SPheno and the new SPheno module

> make Model=MyModel

Appendix B: Model file format

Vevacious is not restricted to a specific model, but any
necessary information to evaluate the one-loop effective po-
tential in a given model, assuming a particular set of VEVs,
must be provided by the user as a model file. This file can
usually be produced by SARAH as described in Sect. 6.1.
However, in the case that the user wants to modify things
manually, we give here more information about the for-
mat.

The Lagrangian parameters that will take values given by
the SLHA file are written in the form SLHA::BLOCKNAME
[ENTRY], where ENTRY is a comma-separated list of in-
dices. For example, element 1 of the HMIX BLOCK is
written as SLHA::HMIX[1] and the 2,3 element of
the YD BLOCK is written as SLHA::YD[2,3] (floating
point numbers are still interpreted as integers, so SLHA::
YD[2.0,3.0] would also work). Any BLOCKs with no
index should use an empty list, e.g. SLHA::ALPHA[].

This file is in XML and begins/ends with

< V e v a c i o u s _ s t u f f >
. . .
</ V e v a c i o u s _ s t u f f >

(though the actual name of the root element is not important:
one could use

<MyModelForVevacious >
. . .
</ MyModelForVevacious >

for example instead). The model file must contain the fol-
lowing information:

1. The names of all VEVs which can be present

< i n p u t _ v e v s vdR="SLHA : : HMIX[ 1 0 2 ] "
vuR= "SLHA : : HMIX[ 1 0 3 ] "
vLR3 ="0" vER3 = "0" >

< t a k e n _ p o s i t i v e > vdR , vER3 </ t a k e n _ p o s i t i v e >
</ i n p u t _ v e v s >

(though the line breaks should not be present in the
<input_vevs> opening tag). The XML element
<input_vevs> serves the dual purpose of enumer-
ating the allowed non-zero VEVs along with speci-
fying what is considered to be the input minimum.
In the MSSM example here, the Higgs fields of course
are allowed VEVs, and the input minimum is speci-
fied by vdR (vd ) being provided in the SLHA file in
the BLOCKHMIX as entry 102, and vuR (vu) by en-
try 103. The model file is also allowing non-zero stau
VEVs (vLR3, vER3), and also at the same time spec-
ifying that their value at the input minimum is 0. (One
can actually put valid Python code here within the
quote marks for the input minimum values, though it
is not recommended, and surrounding the code with
brackets is advised if one insists on going through with
it.)

In addition, the is usually some redundancy in the
sets of VEVs which minimize the tree-level scalar po-
tential, since different minima can be related by phase
rotations. To reduce the number of redundant solu-
tions, it can be explicitly defined that some VEVs
have to be positive using <taken_positive> . . .

</taken_positive>.

http://sarah.hepforge.org
http://spheno.hepforge.org
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2. The tree-level tadpole equations

< t a d p o l e s >
{
. . .
( 0 . 5 ∗ vLR3∗SLHA : : MSL2 [ 1 , 3 ] )
+ ( 0 . 5∗ vLR3∗SLHA : : MSL2 [ 3 , 1 ] )
+(0 .7071067811865475∗vdR∗vER3∗SLHA : : TE [ 3 , 1 ] )
+ ( 0 . 5∗ vdR^2∗vLR3∗SLHA : : YE[ 1 , 1 ]∗SLHA : : YE[ 1 , 3 ] )
+ ( 0 . 5∗ vdR^2∗vLR3∗SLHA : : YE[ 2 , 1 ]∗SLHA : : YE[ 2 , 3 ] )
+( −0.7071∗vER3∗vuR∗SLHA : : HMIX[ 1 ]∗SLHA : : YE[ 3 , 1 ] )
+ ( 0 . 5∗ vdR^2∗vLR3∗SLHA : : YE[ 3 , 1 ]∗SLHA : : YE[ 3 , 3 ] )
+ ( 0 . 5∗ vER3^2∗vLR3∗SLHA : : YE[ 3 , 1 ]∗SLHA : : YE[ 3 , 3 ] )
;
. . .
}
</ t a d p o l e s >

(digits from the second decimal expansion of
√

2 have
been truncated just to fit on the page). This element
contains a list of entries in the format (t1; t2; t3; . . . ; tn).
Here, ti are the tadpole equations of the tree-level
scalar potential, i.e. ti = ∂V

∂φi
= 0. Note that each

equation has to end with a semi-colon. In addition,
to circumvent problems during parsing this file, it
is convenient to use for each term a separate line
and to put it into brackets. Furthermore, to asso-
ciate the different parameters with the numerical val-
ues given later on via an SLHA spectrum file, all pa-
rameters but the field configurations have to be re-
placed by their corresponding entries in the SLHA

file, in the SLHA::BLOCKNAME[ENTRY] format
explained above. For instance, using the SLHA 2
conventions [17], the hypercharge g1 is replaced by
SLHA::GAUGE[1] and the top Yukawa coupling
Yt = Y 33

u by SLHA::YU[3,3].
3. The polynomial part of the scalar potential

< p o l y n o m i a l _ p a r t >
( 0 . 0 3 1 2 5∗ vdR^4∗SLHA : : GAUGE[ 1 . ] ^ 2 )

+ ( −0.125∗vdR^2∗vE3^2∗SLHA : : GAUGE[ 1 . ] ^ 2 )
+ ( 0 . 1 2 5∗ vE3^4∗SLHA : : GAUGE[ 1 . ] ^ 2 )
+ ( 0 . 0 6 2 5∗ vdR^2∗vL3^2∗SLHA : : GAUGE[ 1 . ] ^ 2 )
+ ( −0.125∗vE3^2∗vL3^2∗SLHA : : GAUGE[ 1 . ] ^ 2 )

. . .
</ p o l y n o m i a l _ p a r t >

This element contains the scalar potential V (φi;gi, Yi,

Ti, . . . ,m
2
i ) as function of all possible field configura-

tions and the other parameters like gauge and Yukawa
couplings or mass terms. The conventions are similar
to those of <tadpoles>: (i) choose a separate line
for each term, (ii) put each term into brackets, (iii) re-
place all parameters but the field configurations by their
SLHA entries.

4. All mass-squared matrices to calculate the full one-
loop effective potential

<mass−s q u a r e d _ m a t r i x
p a r t i c l e ="Sd " r o t a t i o n m a t r i x ="ZD" f a c t o r ="6" >
( −0.0416666666666∗vdR^2∗SLHA : : GAUGE[ 1 . ] ^ 2 + . . . ) ,
. . .
</ mass−s q u a r e d _ m a t r i x >

To calculate the one-loop effective potential all field-
configuration-dependent “masses” M̄2

n(Φ) have to be
specified. This happens by using for each mass-squared
matrix the XML element <mass-squared_matrix
...>. Two attributes must be given: an overall con-
stant (factor) which takes into account the degrees
of freedom of the particle, including the spin sn from
Eq. (4), and also saves reproducing identical matri-
ces due to color factors or pairs of charge conju-
gates, for example. This factor is given by r · cF ·
(−1)s(2s + 1), where r = 1 holds for real bosons or
Majorana fermions, and r = 2 for complex bosons
and Dirac fermions, and cF is the number of degen-
erate states (e.g. 6 = 3 colors ×2 charge-conjugate
states for quarks, if SU(3)c is unbroken in the model
file).

The body of each block contains all entries of the
mass-squared matrix. Here, the convention is that each
line consists of one element of the mass matrix which
is placed into brackets and ends with a comma. The or-
der is that first all elements of a line are given from
left to right, before the entries of the next line fol-
low, i.e. for an n × n mass-squared matrix, the order
is
((

M̄2
11

)
,
(
M̄2

12

)
, . . . ,

(
M̄2

1n

)
,
(
M̄2

21

)
, . . . ,

(
M̄2

n1

)
, . . . ,

(
M̄2

nn

))
.

It is, of course, necessary to express the tadpole equations,
the potential as well as the mass matrices taking into account
all field configurations that the user wants to check. For in-
stance, to study charge-breaking minima in the MSSM, the
tadpole equations for the stau VEVs have to be given as in-
put as well as all possible terms in potential. Furthermore,
the mass matrices must include the mixing between the
Higgs fields, the sneutrinos and the charged sleptons which
can be triggered by non-vanishing stau VEVs. If, in addition,
color conservation should be checked, also stop VEVs have
to be included with their entire impact. Obviously, preparing
this input by hand can easily become a cumbersome task.
Therefore, we recommend automatic generation of the input
using the Mathematica package SARAH.
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