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Zusammenfassung

Klassische Novae sind thermonukleare Explosionen an der Oberfläche von Weißen
Zwergen. Wenn ein solcher sich in einem Doppelsternsystem zusammen mit einem
Hauptreihenstern oder einem späteren Stern befindet, kann Akkretion vom Begleiter
zum Weißen Zwerg stattfinden, falls der Begleitstern seine Roche-Grenze überschre-
itet. Die wasserstoffreiche Hülle, die sich auf der Oberfläche des Sterns bildet, zündet
aufgrund des enormen Gravitationsdrucks in einer Deflagration. Aufgrund der Entar-
tung des Gases führt das nukleare Brennen zu einem thermonuklearen Durchgehen
(engl. runaway) und schließlich zu einer Explosion mit Energien in der Größenord-
nung von 1046 erg. Der Weiße Zwerg bleibt dabei unberührt. Spektralanalysen der
ausgestoßenen Gase deuten auf Isotope hin, die am heißen CNO-Zyklus beteiligt
sind. Dies legt nahe, dass vor oder während der Brennphase eine Durchmischung von
Materie zwischen der akkretierten Hülle und dem Weißen Zwerg stattfinden muss.

Die Konvektion und nukleares Brennen entwickeln sich im Strömungsbereich kleiner
Machzahlen. Wir benutzten den Seven League Hydro code (SLH ), welcher über nu-
merische Verfahren verfügt, die auf einen weiten Bereich von Machzahlen anwend-
bar sind. Daraus errechneten wir Simulationen von Klassischen Novae in zwei und
drei Dimensionen. Basierend auf einem sphärisch-symmetrischen Modell, das wir mit
einem Sternentwicklungscode erstellten, entwickelten wir ein eigenes Nova-Modell.
Wir testeten dies in Kombination mit eienr Reihe von Gittern und Randbedingun-
gen. Anschließend analysierten wir im Detail das Verhalten von Temperatur, Dichte
und nuklearer Energieerzeugungsrate in den Schichten zwischen Weißem Zwerg und
Wasserstoffhülle, wo die Kernfusion hauptsächlich stattfindet, um die Struktur der
Brennzone und deren Einfluss auf die Nukleosynthese zu verstehen. Wir analysierten
die Effizienz der Konvektion, welche Elemente aus dem Weißen Zwerg nach oben in
die Hülle transportiert. Die Ergebnisse entsprechen denen der Literatur, dennoch
hängen sie stark von der numerischen Auflösung ab. Wir untersuchten die Isotopen-
häufigkeit der im CNO-Zyklus beteiligten Elemente, und schloßen hieraus, dass das
Brennen durch den weniger energetischen “kalten” CNO-Zyklus verläuft. Dies kann
darauf zurückgeführt werden, dass unter den Bedingungen, die die Mehrzahl der multi-
dimensionalen Modelle aus der Fachliteratur mit sich bringen, die Wasserstoffhülle
tatsächlich nicht entartet ist. Abschließend simulierten wir testweise 3D-Modelle, aber
neue Randbedingungen sind nötig, um mit den Berechnungen fortfahren zu können.



Abstract

Classical novae are thermonuclear explosions occurring on the surface of white dwarfs.
When co-existing in a binary system with a main sequence or more evolved star, mass
accretion from the companion star to the white dwarf can take place if the companion
overflows its Roche lobe. The envelope of hydrogen-rich matter which builds on
top of the white dwarf eventually ignites under degenerate conditions, leading to
a thermonuclear runaway and an explosion in the order of 1046 erg, while leaving
the white dwarf intact. Spectral analyses from the debris indicate an abundance of
isotopes that are tracers of nuclear burning via the hot CNO cycle, which in turn
reveal some sort of mixing between the envelope and the white dwarf underneath.
The exact mechanism is still a matter of debate.

The convection and nuclear burning in novae develop in the low Mach number
regime. We used the Seven League Hydro code (SLH ), which employs numerical
schemes designed to correctly simulate low Mach number flows, to perform two and
three-dimensional simulations of classical novae. Based on a spherically-symmetric
model created with aid of a stellar evolution code, we developed our own nova model
and tested it on a variety of numerical grids and boundary conditions for validation.
We focused on the evolution of temperature, density and nuclear energy generation
rate at the layers between white dwarf and envelope, where most of the energy is
generated, to understand the structure of the transition region, and its effect on the
nuclear burning. We analyzed the resulting dredge-up efficiency stemming from the
convective motions in the envelope. Our models yield similar results to the literature,
but seem to depend very strongly on the numerical resolution. We followed the
evolution of the nuclear species involved in the CNO cycle and concluded that the
thermonuclear reactions primarily taking place are those of the cold and not the hot
CNO cycle. The reason behind this could be that under the conditions generally
assumed for multi-dimensional simulations, the envelope is in fact not degenerate.
We performed initial tests for 3D simulations and realized that alternative boundary
conditions are needed.
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1. Old and New Stars

The oldest known historical literal reference to a “new star” dates back to 75 AD, by
Pliny the Elder1. In his Naturae Historia [Plinius 1855] he wrote about the Greek
astronomer, mathematician and geographer Hipparchus discovering a stella nova in
the sky. Novae reveal themselves as bright light sources that shine where there was
apparently no star before, and fade over the course of weeks. One can assume from
Hipparchus’s account that he was describing a comet and not a star. However, the
origins of novae in general (those called supernovae, classical novae and those that
reappear, recurrent novae) are still debated, and the debate is certainly not a recent
one. Already in the 17th century, in the Almagestum Novum, thirteen different theories
are quoted in Riccioli [1652], which appear quite outlandish to the modern reader.
Newton proposed a mechanism that resembles noticeably our modern explanation
(Newton [1726], English translation Newton [1729]):

So fixed stars, that have been gradually wasted by the light and vapors
emitted from them for a long time, may be recruited by comets that
fall upon them; and from this fresh supply of new fuel those old stars,
acquiring new splendor, may pass for new stars.

Later theories tried to explain these bursts of light as collisions of comets or friction
with clouds. But Newton had already deciphered two key aspects. First, that the
“new” stars could be instead aging dim stars; and second, that the sudden rise in
brightness could come from supply of new fuel.
We now know that comets are not the source of energy for novae. Instead, they

arise from the complex interactions of pairs of stars that orbit each other in a close
orbit of about the size of the Earth-Moon system. These close binary systems are
composed of a white dwarf (an evolved, old, compact and dim star) and a lower mass
companion star that is either on the main sequence or more evolved, commonly a
red giant. When mass transfer through the inner Lagrangian point ensues, the white
dwarf primary accretes an enveloping mass of hydrogen-rich material and accumulates
it on its surface. The densities and temperatures that follow enable powerful nuclear
reactions. The fate of the white dwarf depends on many factors, e.g. the orbital period
of the binary system, the mass of the white dwarf and the rate at which it accretes
mass from its companion. Two main different classes of events may occur2: either
the massive white dwarf undergoes a thermonuclear carbon explosion that fatally
disrupts and unbinds the whole star, or an explosive hydrogen ignition takes place at
the envelope on the star’s surface, expelling the previously accreted envelope. The
former are called supernovae of type Ia (SNIa) and the latter classical novae3, which

1There are Chinese catalogs of stars as old as 220 BC, referring as variable stars as “guest stars”,
[Xu et al. 2000].

2These are sub-classes of the so-called cataclysmic variables.
3Often in the literature the abbreviation CN for classical nova, or CNe for its plural, is used. We
avoid this convention due to the homonymous abbreviation for the carbon-nitrogen cycle as CN
cycle.
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are the subject of this work.
Supernovae are commonly known from novels, science fiction series and video games.

They are the most violent stellar events. In science, their interest stems in great part
from the use of Type Ia supernovae as “cosmic distance rulers”, or standardizable
candles. During explosion, their intrinsic luminosity and the shape of their lightcurve
(the light output as a function of time) are related. Measuring it, one can derive their
distance from the observer. This characteristic makes Type Ias invaluable tools for
cosmology, allowing us to measure the size and expansion of the visible universe. The
distinction from classical novae only became clear in the late 19th century, when novae
such as T Aurigae were observed to have different characteristics than supernovae
such as S And. The argument about the existence of (at least) two different kinds of
objects was settled in the 1920s during the “Great Debate”.
The interest in and study of Classical Novae is multifaceted. Due to relations

between their peak brightness and their decay rate, they can be used as distance
indicators [della Valle & Livio 1995]. They are also prominent producers of cosmic
dust: in the expulsion of the envelope, great quantities of small condensed particles
are released into the interstellar medium [Gehrz et al. 1998]. These dust grains have
isotopic ratios that are not reflected in the interstellar medium, probably hinting
at the composition of their source material at the time of their condensation from
gas into grains, revealing many aspects of the nucleosynthesis of their host star and
making them identifiers of star classes. Novae are also of interest for galactic chemical
evolution, as they are the principal source of elements such as 13C, 15O and 17O [José
& Hernanz 1998]. The nature of the progenitors of Type Ia supernovae is a heated
research topic, to which the study of Classical Novae may yet yield fruitful answers:
Because the explosion in classical novae happens only at its outskirts, in the bottom
layers of its accreted hydrogen shell, only these enveloping layers are expulsed, leaving
the white dwarf itself intact. In principle, this process can repeat itself in long periods
of 104 – 105 years, depending on the orbital parameters of the binary system. For very
massive white dwarfs, this period can be much shorter, in the range of 10 – 100 years
[José & Iliadis 2011]. Indeed several outbursts have been observed in the same nova.
The first was T Pyxidis, observed for the first time in 1890 but glimpsed again in
1902 (its latest outburst was as recent as April 14, 2011, see Figure 1.1). It has been
conjectured that massive white dwarfs, near the critical Chandrasekhar mass, could
expel less mass in the outburst than they accrete in the period between explosions,
so that they gradually gain mass, nearing the conditions that ignite a runaway of
carbon fusion in its core, and leading to a SNIa. These conditions have been found
for the recurrent novae U Scorpii [Kahabka et al. 1999] and RS Ophiuci [Osborne
et al. 2011].
Thus, Classical Novae are at the intersection of astronomy, astrophysics, nuclear

physics and cosmochemistry. Furthermore, a branch of study of classical novae focuses
on the theoretical modeling of the ignition process: the thermal state of the white dwarf
and its accumulated envelope, the fusion of elements and its associated energy release,
and ultimately the ejection of matter into the interstellar medium. As mentioned
above, elements such as C, N, O and up to Al are observed in their ejecta [Gehrz
et al. 1998; José & Hernanz 1998; Starrfield et al. 2009], some of them in amounts
up to 1000 times higher than in the Sun. The presence of these isotopes in such
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Figure 1.1.
Two images of the recurrent nova T Pyxidis. The left image shows the explosion as seen with
ground based telescopes. A ring or spherical shell is seen ejected from the system. The right
panel shows the same nova observed with the Hubble Space Telescope. The shell is revealed
to be composed of many thousands elements [Shara et al. 1997].

extreme abundance is enigmatic, because the timescales expected for the TNR to
occur (in the order of minutes) are too short to allow a heavy nuclear processing of the
hydrogen-rich envelope to higher mass elements. This has lead to the conclusion that
there must be some sort of mixing of matter between the hydrogen envelope and the
outermost layers of the white dwarf —composed of C and O, and where traces of Ne,
Mg and other elements can reside— at some point before or during the TNR. In this
work we focus on the last moments leading up to the explosive outburst. Computer
programs that solve the equations of stellar evolution in one spatial dimension provide
a theoretical model of the white dwarf primary and its envelope just minutes prior
to explosion. At this point, the envelope is fully convective and many details and
open questions regarding the mixing of matter are sensitive to a correct description
of convection, which can only be approximated in one dimension. This is one of the
motivations for this work, to study the explosion in two and three dimensions in a
novel computer code.

This introduction presents an overview of classical novae needed for a solid founda-
tion to understand them from the theoretical modeling point of view. In Section 1.1
we briefly present the binary system and its characteristic astronomical features, the
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nova lightcurve properties and interesting isotopes found in their spectra. These are
explained in the framework of the thermonuclear runaway model, our current under-
standing of the explosion’s origin. In Section 1.2.2, we review the work of the last
decades regarding 1D and multi-D simulations of the reactive flow. We conclude in
Section 1.3 by pointing out the gaps in our knowledge of novae, and stating the aims
and goals of this dissertation. For more details on observations and classifications,
the reader is referred to Bode [2011]. For a review of theoretical modeling, the author
wholeheartedly recommends José & Shore [2008], José et al. [2006] and José & Iliadis
[2011].

1.1. Classical novae: the basic picture

1.1.1. Astronomical properties

Nova outbursts arise in binary systems of a white dwarf (primary) and a companion
that is either a main sequence or more evolved star (secondary). They are in a close
orbit, with periods of 1 h – 12 h [José & Iliadis 2011]4. The companion must be a low
mass star. After the companion star has filled its Roche lobe, mass flows through
the Lagrangian point and creates an envelope around the WD (white dwarf). The
accretion rate is typically Ṁacc ∼ 10−9M�yr−1 [Warner 2008]. A nova’s defining
characteristic is a light curve with a rapid rise in optical emission in a few days, that
declines steadily after achieving its maximum brightness. While in the quiescent state,
the binary system has a luminosity of ∼ 1L� and at outburst rises to a few ×104 L�,
which is approximately equal to or above the Eddington luminosity for a 1M� WD
[Bode 2011]. The rate at which brightness declines after maximum—specifically, the
time taken for the optical luminosity to decline by two magnitudes—is used to sort
them into ‘speed classes’. A fast nova will take t < 25 d to decay by this amount, while
a slow nova can take t > 80 d [Glasner & Truran 2012]. The speed class is not only
an empirical classification method, the luminosity decay rate is in fact closely linked
to the ejecta velocity and the peak absolute magnitude: a faster nova will have faster
ejecta and higher luminosity. These relations depend on the fundamental physical
properties of the system: the mass of the accreting white dwarf, the temperature at
the core and the accretion rate. In our Galaxy, outburst rates of (31± 11) yr−1 have
been estimated, although this is probably a lower limit [Starrfield et al. 2009; José
et al. 2006; Shafter 1997].
The total radiant energy released during classical novae outbursts ranges between

1045 erg and 1046 erg [Warner 2008]. The nuclear energy release rates have values of
up to 1018 erg g−1 s−1. Because the white dwarfs survive their classical nova outbursts,
they are suspected to recur. It is estimated that around 104 to 105 flashes could occur
in a single system [José & Iliadis 2011, and references therein]. The inter-outburst
period of recurrent systems can range from hundreds of thousands of years to just
decades [José & Iliadis 2011]. In our Galaxy, only ten recurrent novae have been
sighted [Schaefer 2010]. The most prominent example is RS Ophiuci, which is known
to have experienced eight outbursts since 1898 (either through direct observation or

4For a comprehensive list of orbital properties of classical and recurrent novae refer to Bode [2011]
and Anupama [2008].
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retroactively through archival data), the last instance being in 2006 [Bode 2011]. RS
Oph is one of the best studied recurrent novae, and a favorite candidate for a SNIa
progenitor [Osborne et al. 2011].
The atomic make up of the white dwarf and of the accreted matter is of critical

importance for the nuclear processes that ultimately give rise to the thermonuclear
flash on its surface [Shen & Bildsten 2009]. The composition and mass of the star
are a result of its evolutionary history. White dwarfs are the final states of low
mass stars, those that start their lives in the main sequence5 with a mass of less than
MZAMS ∼ 10M�. During this long period, their main energy source is hydrogen fusion
into helium. After they expand into red giants, helium is burnt into carbon and oxygen
by means of the triple-alpha process and their outer layers are expelled in a so-called
planetary nebula6. For this reason, most white dwarfs are composed of carbon and
oxygen (CO type). The more massive cores (MZAMS between 8M� and 10.5M�) can
reach temperatures sufficient for carbon fusion, in which case the remaining degenerate
core will be made up of oxygen and neon (ONe type). When the white dwarf goes
nova, it expels its envelope with velocities from a few 102 km s−1 to a few 103 km s−1.
Masses of about 10−5M� to a few 10−4M� are released into the interstellar medium
[Bode 2011; Moore & Bildsten 2012]. Spectroscopic analyses indicate that the ejecta
have highly enhanced abundances of isotopes of the carbon-nitrogen-oxygen (CNO),
aluminum-magnesium (AlMg) and neon-sodium (NeNa) range compared to solar
values [José & Hernanz 1998; José et al. 2006; Gil-Pons et al. 2003; Livio & Truran
1994; Gehrz 2008].

Classical novae are also interesting as gamma ray sources. The most intense emission
predicted is a 511 keV line [Hernanz et al. 1999; Coc et al. 2000; Wiescher et al. 2010]
and a continuum at lower energies around 10 keV– 30 keV [Clayton & Hoyle 1974;
José et al. 2006, and references therein]. The fast emission of gamma rays shortly
after peak temperature is thought to be due to positrons from the β+decays of
13N and 18F annihilating with the electrons of the surrounding plasma [José et al.
2006, and references therein]. Novae were also long speculated to be producers of 7Li
[Starrfield et al. 1978]. The theory of big bang nucleosynthesis (BBN) has been very
successful at predicting the abundances of light elements 1H, 2H, 3He, 4He formed
after the universe became transparent to photons. However the observed abundance
of lithium in old stars in galactic halos is at odds with the predicted values, being
significantly lower than expected (for a review on the primordial lithium problem see
Fields [2011]). Possibly, the primordial abundance of lithium is depleted in stellar
interiors. On the other hand, its presence in young metal-rich stars point towards
production on a galactic scale. The production of lithium in classical novae would
help solve this discrepancy and further cement the validity of BBN. Early theoretical
calculations proposing significant synthesis of 7Li during nova outbursts and the first
claims of its detection were controversial. However, as recently as July 2015, the
first clear detection of lithium has been published [Izzo et al. 2015]. A team working
with telescopes at La Silla Observatory identified an absorption line at λ = 6708Å

5The main sequence is the phase of stars where stable hydrogen burning in the core takes place,
and the longest, most stable phase. The abbreviation ZAMS stands for Zero Age Main Sequence,
see Kippenhahn et al. [2013, Chapter 22]

6A term that has nothing to do with planets and has a historical reason.
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stemming from 7LiI in the ejecta of Nova V1369 Centauri. The authors put an
estimate to the amount of lithium that a single nova can introduce into the galaxy
as MLi = 0.3× 10−10 – 4.8× 10−10 M�.

Our present understanding of the underlying physical processes responsible for the
astronomical observations of novae are encapsulated in the so-called thermonuclear
runaway model, which we illustrate in the next section.

1.1.2. The thermonuclear runaway model

Classical novae originate from stellar binary systems, in which a CO or ONe white
dwarf of initially low luminosity (L ∼ 10−3 – 10−2 L�) accretes hydrogen-rich material
from its companion star. The accretion rate must be in a specific range to permit
the accumulation of an envelope on top of the white dwarf, typically Ṁacc ∼ 10−10 −
10−9M�yr−1 [Wolf et al. 2013, and references therein]. At higher accretion rates lies
the stable hydrogen burning regime, where the accreted mass is burnt at the same
rate as it is consumed. If mass is accreted even faster, the nuclear burning cannot
process all matter and it piles on top of the white dwarf, creating a red giant-like
object. As matter is piled up on the WD’s surface, the envelope is compressed and
heated due to the strong gravitational potential. The material becomes both hot and
electron degenerate. When temperatures reach T ∼ 107 K, nuclear hydrogen burning
starts at the bottom layers of the envelope through the proton-proton-chains. The
ongoing nuclear reactions release energy into the envelope and heat it, but due to
the degenerate conditions, the envelope cannot readjust the hydrostatic equilibrium
by expansion, so that temperatures continue to rise. As radiation cannot transport
all the heat fast enough away from the burning zone, convection in the envelope
ensues, transporting the newly synthesized elements to higher layers of the envelope
and enriching it with heavier elements. At temperatures above T ∼ 2× 104 K, the
nuclear time scale becomes shorter than the accretion time scale, such that the effects
of accretion become negligible [José & Hernanz 1998]. The convective motions at
the bottom of the envelope stir the material at the boundary between the envelope
and the WD’s surface, thereby mixing the matter across the boundary. When carbon
and oxygen are dredged up from the white dwarf to the envelope, nuclear energy
generation proceeds through the more efficient carbon-nitrogen-oxygen cycle, a process
that converts four protons into a helium nucleus by a succession of proton captures
unto CNO isotopes and radioactive decays. Its primary reaction is 12C(p, γ)13N,
which then decays by 13N(β+, ν)13C (for details on thermonuclear physics discussed
in this section, refer to Section 2.2.3 or Wiescher et al. [2010]). The rate of energy
generation ε from the so-called ‘cold’ CNO cycles is limited by the cross sections
of the proton capture reactions, which are temperature dependent. But while the
rates in the pp chains grow moderately as εpp ∝ T 4, the CNO cycle has a much
steeper temperature dependence of εCNO ∝ T 18. As temperatures reach values above
T ∼ 108 K, reaction paths previously inaccessible at lower temperatures, such as
13N(p, γ)14O, are unlocked. These extended cycles are dubbed ‘hot’ CNO cycles or
HCNO. At such temperatures, the time scales of proton captures become shorter
than the β+decay half lives of the radioactive nuclei, which range from 1min – 10min
and are insensitive to temperature, so that the abundances of CNO isotopes cluster
around the β+unstable nuclei. The slowest reactions and those which determine the
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energy generation rate are the β+decays. Therefore, the HCNO cycles are also known
as the ‘β+–limited’ CNO cycles. When the radioactive isotopes finally decay in the
upper, cooler strata of the envelope, the sudden rise of entropy lifts the degeneracy
and allows for the expansion and ejection of the envelope, now enriched with CNO
elements [Starrfield et al. 1972, 2008].

Material burning stably via the (H)CNO cycle slowly converts hydrogen, over many
full cycles, into heavier elements of the mass range A < 40. The time scales (∼
min) and temperatures (∼ 108 K) expected to develop during the thermonuclear
runaway in novae are much shorter/lower to be able to synthesize solar-like material
to significantly higher values. Temperatures are not expected to surpass the critical
temperature Tcrit = 4× 108 K at which breakout from the HCNO occurs [Wiescher
et al. 1986]. However, the isotopic abundances detected in nova ejecta can be as large
as f & 1000, with f = Xi/Xi,�, where Xi is the mass of matter made up of the isotope
i with respect to the whole mass [José & Hernanz 1998]. Therefore, the presence of
large amounts of CNO isotopes in the ejecta is understood to be an indication of
mixing between the white dwarf’s uppermost layers and the envelope [Livio & Truran
1994]. The specific mixing mechanism is as yet a matter of debate [see e.g. Starrfield
et al. 2008; Starrfield 2001; Gehrz et al. 1998, and references therein].

The cause of the final ejection of matter from the system is also as yet unclear. A
supersonic wind driven by the super-Eddington luminosity [Kato & Hachisu 1994]
and expansion of the ejecta as a result of its common-envelope interaction with the
companion star have been suggested [e.g. Livio et al. 1990].

1.2. Numerical simulations of classical novae

Astronomical observations of classical nova light curves and spectra provide clues
about the mechanism behind their powerful explosions. But the scales in which
the thermonuclear runaway presumably operates are just a few hundred to thousand
kilometers on the surface of white dwarfs. These are distances that cannot be resolved
with telescopes, and the timescales of mass accretion are many orders of magnitude
longer than human life spans, so the details of the explosions cannot as yet be studied
directly. The thermonuclear runaway is a theoretical model to explain the observations.
First proposed by Starrfield et al. [1972], it is based on numerical solutions of the
equations of stellar evolution, which describe the structure of stars and its change
in time. These are coupled with nuclear reaction networks, which are systems of
equations that represent the nuclear reactions involved.

We define the relevant timescales of the different processes that rule the evolution of
the classical nova outburst in Section 1.2.1. With these we can more easily understand
the TNR and discuss the practicability of numerical simulations. In Section 1.2.2 we
review previous work in the field.
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1.2.1. Defining timescales

The accretion timescale is the time in which mass infalling from the white dwarf’s
companion star increases the envelope’s mass,

τacc = Macc

Ṁacc
. (1.1)

With typical accretion rates of 10−10M�yr−1 – 10−8M�yr−1, and masses of Macc ∼
10−5M� – 10−6M�, the timescales range from τacc ∼ 104 yr – 105 yr.

The nuclear burning timescale is usually expressed as τnuc = Enuc/l, with the
luminosity l, when estimating the energy budget of stars. In our context it is expressed
as

τnuc ∼
cPT

εnuc
. (1.2)

Here, cP is the specific heat. Because of the very steep dependence of the nuclear
energy generation rate εnuc on temperature T , τnuc drops fast as temperature increases.
It is not only related to the rate of energy release, but consequently also on the change
in composition of the burning. For this reason, it is also commonly expressed in terms
of the mass fractions, e.g. Xi:

τburn = Xi

Ẋi
. (1.3)

The dynamical timescale is the ratio between a characteristic length and velocity
of a system. At the base of the envelope, the determining length scale is HP , the
pressure scale height. It is the distance in which pressure P decreases by 1/e. Pressure
gradients are equalized by sound waves with the local sound speed cs. Therefore:

τdyn ∼
HP

cs
∼ 1
g

√
P

ρ
, (1.4)

At very high densities ρ, τdyn can drop to the order of seconds.
Finally, the convective eddies circulate with a typical convective turnover timescale

[Montesinos et al. 2001]

τconv = HP

vconv
(1.5)

where vconv is the convective velocity.
Multidimensional simulations of stars are challenging, even with today’s massively

parallel computing’s capability of splitting the work between thousands of computer
cores. The size of the spatial discretization, that is, how finely the studied region
is divided into discrete grid cells, increases the computational cost. But also the
temporal discretization – how many time steps are needed for the duration of the
simulations – determines the total amount of work. The length of the numerical time
step is usually limited by the sound speed of the fluid and the spatial resolution.
For our case, during the build-up phase of the envelope, as mass spirals onto the
white dwarf and nuclear activity is scarce, τacc ≤ τnuc, so accretion is the determining
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timescale, which is of the order of τacc ∼ 104 yr – 105 yr. This phase elapses in low
Mach numbers, that is, in conditions where the velocity of fluid motions is much
slower than the sound speed: the ratio Ma = u/cs is of the order of Ma ∼ 10−6 – 10−2.
Therefore, many steps are required to resolve sound waves which, in fact, do not
have an effect on the dynamics of the system. Fortunately, the picture changes as
temperatures at the bottom of the envelope rise, and the envelope nears the TNR.
Nuclear reactions proceed at much faster pace, and nuclear burning time reduces from
years to seconds when temperatures are higher than 108 K, so that accretion becomes
negligible. The convective turnover time is τconv ∼ 101 s and the pressure scale height
is a few hundred km. All these scales converge to make it feasible to simulate a region
around the interface between white dwarf and envelope, having a dimension of a few
pressure scale heights, for many dynamical times.

1.2.2. Previous work

In this section we present an overview of the advances in the theoretical understanding
of novae. For a detailed account of the history of the theory since Newton and before,
we refer the reader to Duerbeck [2008]. In the present work we are interested in
the developments since the 1970’s. The results from numerical simulations with 1D
evolutionary codes and analytical calculations with physical assumptions paved the
ground for our contemporary multidimensional simulations.

The picture of the thermonuclear runaway as exposed in Section 1.1.2 was laid out
by Starrfield et al. [1972]. In this seminal work, a Lagrangian code was coupled to a
nuclear reaction network to study thermonuclear runaways on white dwarfs. The enve-
lope, with solar abundances, was placed in situ without taking accretion into account.
The authors found that during the TNR, temperatures reach values of 3× 108 K. At
such temperatures the nuclear burning time is around a thousand of a second, and
the CNO cycle proceeds far form equilibrium, as convection and mixing from the
convective boundary constantly change the abundances in the envelope. During peak
temperatures, the β+-unstable nuclei become the most abundant elements, except for
1H and 4He.

There is general consensus that the origin of novae are thermonuclear runaways in
white dwarf envelopes. The numerical calculations yielded similar results as those from
observations. However, the inherent assumption of spherical symmetry in the stellar
evolution equations meant that no conclusion could be drawn regarding the initial
ignition of the TNR, whether it started from a single local eruption or simultaneously
throughout the white dwarf’s surface. Shara [1982] studied localized TNRs on the
basis of semi-analytic models. In this picture, if a TNR initiates as a point-source
ignition, and a ‘lava-like’ burning front spreads across the surface. A flame propagating
laterally solely by heat transport would take tens of years to cover the entire stellar
surface. However, this deduction was based on radiative and conductive transport
considerations alone, and did not consider the effect that convection could have in the
propagation of the flame. In contrast, Fryxell & Woosley [1982], similarly analyzing
TNRs in thin stellar shells and surface layers, suggested that the burning wave in
nova outbursts could be propagated by small scale turbulence. Making use of flame
theory and dimensional analysis, the authors derived an expression for the velocity
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of the deflagration front spreading across the stellar surface:

vdef ∼
(
HP vconv
τburn

)1/2
. (1.6)

With values typical of the bottom of the convective zone in classical novae, this
formula yields vdef ∼ 104 cm s−1 and therefore a time for the flame to traverse the
whole surface in only ∼ 1.3 d.

Fujimoto [1982], also using a semi-analytical description of the envelope, calculated
its evolution from the ignition to the final stage. He found that the decisive parameter
governing the fate of the TNR is the pressure at the base of the envelope:

Pb = GMWD
r2

b

Menv
4πr2

b
, (1.7)

whereG is the gravitational constant,MWD is the white dwarf mass,Menv the envelope
mass and rb the radius of the burning shell (the base of the envelope), from the center
of the star. Typical values range between 1018 dyne cm−2 and 1020 dyne cm−2 (these
are not absolute values, as the critical pressure depends on the mass of the white
dwarf; see also the discussion in Section 5.4 of Shen & Bildsten [2009]). For low Pb
the electrons are not degenerate at the onset, the nuclear heating time scale is long
even during peak (& 106 s) and the flash proceeds slowly. However, for sufficiently
large Pb the envelope develops under highly degenerate conditions, which lead to even
higher pressures and temperatures of & a few× 108 K.
The first multidimensional and fully hydrodynamic studies were performed by

Shankar et al. [1992]; Shankar & Arnett [1994]. A 1.25 M�WD was evolved in
1D and then mapped to 2D in the explicit and Eulerian code PROMETHEUS in
polar coordinates. The area considered was a small wedge of 25 km × 60 km at the
burning region. Due to the subsonic velocities of the convective motions and the
time-step constraint of explicit time-integration, only fractions of seconds could be
simulated. This work found that strong temperature fluctuations arise due to the
turbulent convective motions. These fluctuations make the fluid Rayleigh-Taylor
unstable. Because the unstable blobs rose, expanded and cooled fast, the authors
deduced that these fluctuations did not initiate the runaway. However, the limited
time and length scales that they probed meant that a more advanced simulations
were needed to determine the nature of the flame propagation in novae.

In their first of several papers on this subject, Glasner & Livne [1995] focused on
the first eruptions of the TNR. These were the first multi-D calculations to study the
TNR for several dynamical timescales. All previous simulations had been restricted
to only a few seconds due to the limited hardware capabilities of the time. Glasner
& Livne [1995] proceeded thus: the initial model was first computed from a one-
dimensional Lagrangian evolution code and then sampled at a given time step onto
a 2D code. The 1D simulations followed the evolution of a 1 M� carbon-oxygen WD
with a prescription for mass accretion on the upper boundary. The composition of the
accumulating mass is solar. When the temperature at the bottom of the envelope had
reached 1× 108 K, the simulation was stopped. At that point, only a few 102 seconds
were left until outburst. Afterward, the envelope and the top layers of the WD, just
below the envelope, were mapped to two dimensions to the VULCAN code [Livne
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1993]. The lateral extension of the simulation box spans 0.1 π radians of the stellar
sphere. The code is coupled to a nuclear reaction network of 12 isotopes in the CNO
range [Starrfield et al. 1985], in order to simulate the CNO cycle. This procedure
would become commonplace for all subsequent multi-dimensional nova simulations.
The accreted envelope in their simulation was unstable against convection. A few
seconds after the start of the run the first convective plumes arose from the numerical
noise alone, at the white dwarf-envelope interface. The TNR evolved in two stages
of burning. During the first 70 s of the run there is was quiet phase, with convection
cells of velocities of (2 to 3)× 107 cm s−1 reaching up to 2/3 of the envelope’s height
and nuclear energy rates of q = 2× 1014 erg g−1 s−1. During this period, the peak
temperature barely rises from T = 1× 108 K to 1.1× 108 K. In the second stage
there are localized eruptions of fast burning with q = 3× 1015 erg g−1 s−1, each one
surviving a couple of seconds. Due to the convective motions, streams of envelope
matter penetrate into the cold CO layers underneath and dredge up fresh carbon and
oxygen to the burning region. At t = 100 s the envelope expands upwards at velocities
of a few times 105 cm s−1, typical of nova models. Because the flow velocities are
subsonic at all times, pressure waves travel faster and equalize the pressure along radial
cells, making the expansion almost spherically symmetric. The authors concluded
that the TNR in novae is regulated not by convection but by the expansion of the
envelope.
In a second paper, Glasner et al. [1997] again considered a hydrogen-rich convec-

tively unstable envelope on a ∼ 1 M� white dwarf, which they evolved first from a
stellar evolution code. In the 1D simulation, no prescription for diffusion or mixing
was included. During the quiet burning stage, the energy rate slowly increased from
8× 1041 erg s−1 to 8× 1042 erg s−1, and the abundance of 12C went from its original
solar value of 3.03× 10−3 to around 0.15. Despite this enrichment, the temperature
stayed nearly constant. The thermal energy is initially spent on heating the cold
CO matter dredged up from the white dwarf. After a period of ≈ 150 s the energy
generation rate was high enough for a runaway of the temperature to take place.
The temperature at the source shell rose sharply from 1× 108 K to 2× 108 K within
90 s. Violent burning ensued, and mushroom-like structures spread over the envelope,
carrying β+-unstable isotopes to higher layers away from the base. From t = 200 s
to 240 s, the CO content in the hydrogen-rich strata increased from 15% to 30%.
This enrichment was attributed to Kelvin-Helmholtz (KH) instabilities at the base
of the envelope. These are excited by the shear flow at the core-envelope interface
induced by the convective motions. With linear theory [Chandrasekhar 1961], the
authors found that minimal unstable wavelength of the KH instability in their white
dwarf-envelope transition is λinf = 5× 105 cm. The smallest scales resolved in their
grid were 7× 105 cm. Glasner et al. [2007] were interested in the role that temperature
fluctuations played at the interface, and the spread of the flame front. Two timescales
regulate the development of temperature fluctuations. A positive temperature fluctu-
ation will increase the burning rate in a bubble of size l, which will expand in order
to equalize its pressure with the background on a timescale

τp = l/cs. (1.8)

After the equalization of pressure, the buoyant bubble will travel a distance ∆R in
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Figure 1.2.
The initial configurations of the novae studied in the literature listed in Table 1.1.
Wolf et al. [2013]’s models lie along the line of stable hydrogen burning. Below it,
unstable burning leads to a thermonuclear runaway.

the time

τbuo =
(

∆R/
(
g∆ρ
ρ

))1/2
, (1.9)

until it cools down to the background temperature. Calculating ∆R for several pertur-
bation amplitudes, they found values for velocities and length scales that agreed with
the general aspects of the flow in their 2D simulations Glasner et al. [1997, Table 2].
Furthermore, if the two timescales regulating the perturbations, and consequently the
burning rate, are much shorter than the burning time τburn (Equation (1.3)), then the
regulation is a local process. They found this is the case, with τp and τbuo in the order
of 10−1 s, and τburn ≤ 100 s. The authors speculate that the lateral dissipation of
energy should proceed by convection and convection-induced turbulence, supporting
the conclusion of Fryxell & Woosley [1982].
Simultaneously, studies were performed by Kercek et al. [1998], henceforth re-

ferred to in the text as KHT17. They used a modified version of the Eulerian code
PROMETHEUS [Fryxell et al. 1989] and the same stellar initial conditions as Glasner
et al. [1997]. However, their calculations were carried out in plane–parallel geometry,

7We discuss their work in Section 4.1 in more detail.
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because they observed what seemed to be unphysical symmetries in the Glasner et
al. runs when using polar coordinates. They chose a similarly dimensioned domain of
about 1800 km×1100 km and performed two simulations in a ‘coarse’ and a ‘fine’ reso-
lution, where the grid cells are not equidistant in the radial direction. The areas of the
smallest cells at the WD-envelope transition were ∼ 5 km× 5 km and ∼ 1 km× 1 km
respectively. The results were very distinct from those of Glasner et al. [1997]. Their
TNR developed more slowly, reached lower peak temperatures and slower velocities.
Indeed, they found that their peak velocities were two orders of magnitude smaller
than the escape velocity of the white dwarf, meaning the TNR would lead to no mass
ejection. Comparing snapshots of the velocity fields in both studies, large differences
in the convective flow patterns became evident. In Glasner et al. [1997] large turbulent
eddies dominate the envelope, while in KHT1 small stable eddies are present. These
were interpreted as stable solutions of the time-independent Euler equations. They
achieve convective velocities of near sound speed, yet they do not penetrate into the
CO core. Therefore, a great fraction of the kinetic energy is trapped in the eddies,
inhibiting faster enrichment of the envelope, ultimately leading to a less violent TNR.
Next, Kercek et al. [1999] (henceforth KHT2) performed what would be the only

3D simulations of a classical nova for almost 12 years. They applied the same initial
conditions as in their previous paper in a domain of 1800× 1800× 1000 km3 in the
coarse resolution, due to limited computational resources. They also ignited a larger
area at the interface than in the 2D case, to save computation time. They ran the
calculation for 400 s. Motivated by the slow TNR they previously obtained due to
insufficient C and O in the envelope, they increased its metallicity from Z = 0.02 to
Z = 0.1 in a second simulation, hoping to be able to compare the results with similarly
set up 1D simulations, in which the metallicity is increased to several factors higher
than solar in order to achieve a fast nova. In the solar metallicity 3D run they found no
stable eddies, but a very irregular velocity field, with sudden eruptions and recurrent
quiet burning phases. The velocities near the bottom of the envelope remain subsonic.
The peak temperature and velocities are achieved faster than in the 2D case, but this
is merely because they chose a larger ignition area. After 200 s the whole envelope
is stirred and in a steady burning state. The authors found that the total energy
generation rate due to nuclear reaction yields Q3D = 5.8× 1044 erg, compared to
Q2D = 2.1× 1045 erg. Moreover, typical temperatures are 10%– 20% lower, velocities
a factor of two below those in the 2D case and the metallicity was merely doubled to
Z ∼ 0.04 (compare to the much higher value in Glasner et al. [1997]: Z = 0.3). They
concluded that the envelope cannot be self-enriched through convection alone and
that other processes such as shear-induced instabilities at the interface or diffusive
mixing during the quiescent phase must be responsible for the enrichment. Having
concluded this, they ran a simulation with an envelope containing five times solar
metallicity. Peak velocities of 2.0× 107 cm s−1 (twice as much as the low-Z run) were
reached after only 80 s, but after 160 s a state of steady burning almost identical to
the previous case is reached. They concluded that the temperature rising time is too
long (∼ 100 s) compared to the mixing efficiency, allowing the envelope to expand
and cool. In the end, the simulations performed in 3D mixed even less material than
the ones in 2D.

Glasner et al. [2005] investigated the effects of different boundary conditions on the
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evolution of the TNR. Four different schemes were investigated: an Eulerian scheme
with free outflow at the upper boundary, an Eulerian scheme with inflow+outflow at
the upper boundary, an Eulerian scheme with no mass flux and finally a so-called
arbitrary Lagrangian-Eulerian (ALE) scheme. In the latter, two stages are performed
in a single time step. First, a Lagrangian explicit time step is performed. In the
second stage, the grid and its flow are re-mapped with a a high-order explicit scheme
into any desired grid. this the envelope to expand into a co-expanding mesh. The
criterion for goodness of the method was the evolution of the critical pressure Pb
(see Equation (1.7)). Ideally, Pb should remain constant during the slow phase of the
TNR. The study showed that in the simulations with outflow and inflow+outflow
pressure at the base of the envelope is lost very quickly and the runaway is quenched.
With a close boundary, the streams that cannot flow outwards fall back in, artificially
enhancing the convective velocities and the mixing and hence extending the TNR.
They assert that only their ALE scheme is able to maintain the correct behavior of
the pressure: constant during the slow phase of the TNR with a decline towards the
envelope expansion phase.

Casanova et al. [2011] performed the most recently published 3D-simulation of the
WD-envelope mixing process. They used the initial conditions of Glasner & Livne
[1995] and mapped them onto a 3D mesh in the code FLASH with up to five levels of
refinement. They argue that the highly inhomogeneous distribution of elements found
in the individual convective blobs reflect the observed patterns in observed spectra
of nova shells. As such, they interpret the observed inhomogeneities as the signature
of turbulence developed during the thermonuclear runaway.
We now take a brief step backwards to mention some of the results of one-

dimensional stellar evolution calculations, from which the initial conditions of the
multi-D simulations are commonly obtained. Many global parameters of the white
dwarf system, such as of the mass of the WD, its central temperature, luminosity,
the accretion rate and composition of the accreted material, have an effect on the
final outcome of the outburst, and span a very large parameter space, which can
be explored only in 1D. We refer the reader to the according literature [e.g. José &
Hernanz 1998; Denissenkov et al. 2013b; Wolf et al. 2013, and references therein],
here we merely highlight the following important results.

– Larger white dwarf masses MWD lead to faster accretion rates, due to the
stronger gravitational force.

– For a given MWD, lower accretion rates yield more powerful explosions. Higher
envelope masses mean higher densities at the bottom layers and therefore more
violent explosions. For this reason, processes that either lengthen the accretion
phase or otherwise increase the final envelope mass up to the TNR, lead to
more fierce outbursts. With fast accretion rates, the temperature at the bottom
of the envelope rises faster. Then the time between the onset of accretion and
the TNR is shortened.

– Lower initial luminosities and cooler WDs result in longer accretion times, and
therefore stronger outbursts, for the same reasons as above.

– Some small part of the energy generated is transported inward via degenerate
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electron conduction, but most of the energy is radiated to the surface [Townsley
& Bildsten 2004]. If mixing between the envelope and WD material takes place
during the accretion phase, the opacity in the burning region will increase.
A higher opacity will trap the heat from nuclear reactions and gravitational
compression, which in turn will raise the temperature in the burning region
more quickly than in an envelope with lower opacity. This will shorten the time
to the TNR, and hereby the total amount of matter accreted (and ejected) will
be smaller [Starrfield et al. 1998].

– The kind of white dwarf primary, CO or ONe, does not only play a role because
of the larger masses of the ONe type, but because of the elements contained in
them, which determine the nuclear chains that will dominate during the TNR.
The much lower abundance of 12C in ONe white dwarfs reduces the energy
generation through the CNO cycle prior to the TNR. This enables the growth
of a more massive envelope.

These results should inform and guide the choice of an appropriate 1D initial model
for further study in multi-D.

1.2.3. Three-dimensional stellar evolution

We have summarized the current state of the theoretical modeling of classical novae.
The critical aspect leading to the TNR and being ultimately responsible for the ejection
of matter is understood to be some sort of mixing across the white dwarf and envelope
transition. This is a process that must be treated with approximative prescriptions
when evolving the equations of stellar evolution (Sections 2.1 and 2.1.3). The full
effect of mixing can only be clarified by means of three-dimensional simulations. At
the writing of this thesis, only a few such simulations have been performed [Kercek
et al. 1999; Casanova et al. 2011]. Kercek et al. [1999] point out that small scale
dissipation and mixing are still dominated by numerical discretization effects. We will
show in Section 3.2 that common numerical schemes develop excessive dissipation in
the low Mach number regime. Other groups, working with the code MAESTRO, which
is designed to cope with low Mach number flows, have also employed it for convective
boundary mixing [Krueger 2012]. However, its application is limited exclusively to
low Mach number flows, and as we will see in Chapter 4, the convective eddies in the
nova envelope can develop high speeds and Mach numbers in the transonic regime.

Miczek [2013] developed a hydrodynamical code that solves the Euler equations in
one, two and three dimensions. It is written in a modular fashion, separating time and
space discretization by the method of lines; the geometry, the equation of state, and
so on. One of the key virtues of the code is its implementation of low Mach number
preconditioning, a method of modifying the flux functions such that the numerical
viscosity which affects the schemes at low Mach numbers is neutralized [Miczek et al.
2015]. The hydrodynamics is coupled to a nuclear reaction network [Edelmann 2014].
The result is called the Seven League Hydro code or SLH . The ability to use (large)
implicit time steps in low Mach number flows makes this code suitable for exploring
phases of stellar evolution in three dimensions which were previously only possible in
spherically symmetric simulations.
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Publication White dwarf Mwd lg Ṁacc Dimension
composition (M�) (M�yr−1)

Casanova et al. [2011] CO 1.00 -9 3D

Denissenkov et al. [2013b] CO 0.65 −9,−10,−11 1D
CO 0.85 −9,−10,−11 1D
CO 1.00 −9,−10,−11 1D
CO 1.15 −10,−11 1D

Denissenkov et al. [2013a] CO 1.15 1D
ONe 1.30 1D

Glasner & Livne [1995] CO 1.00 — 2D
Glasner et al. [1997] CO 1.00 −9 2D
Glasner et al. [2005] CO 1.14 — 2D
Glasner et al. [2007] CO 1.14 −1 2D
Glasner & Truran [2009] CO 1.25 −11 2D

CO 1.30 −11 2D
CO 1.35 −11 2D

Glasner et al. [2012] CO 1.147 −10 2D
ONe(Mg)∗ 1.147 −10 2D
He∗ 1.147 −10 2D

Kercek et al. [1998] CO 1.00 −9 2D
Kercek et al. [1999] CO 1.00 −9 3D

Wolf et al. [2013]† CO 0.51 – 1.00 ∼ −7 1D
idem. ONe 1.10 – 1.34 ∼ −7 1D

Table 1.1.
A selection of relevant literature for our work. Also listed are the masses of the white
dwarfs and their accretion rates. Some of these pairs are plotted in Figure 1.2. A
more extensive table can be found in José et al. [2006]. Notes: ∗ A layer of ONe(Mg)
and He was added to the CO core. † Wolf et al. [2013] studied a large grid of nova
masses and accretion rates to find the stable hydrogen burning regime.
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1.3. Outline & goal of this work
In this work we continue on the path described in last section, the study of convective
boundary mixing in nova outbursts. We employ SLH to perform multidimensional
simulations from initial conditions based on the work of Kercek et al. [1999] and the
stellar evolution code MESA [Paxton et al. 2011, 2013].
This thesis is structured as follows. Chapter 2 expands on the concepts of stel-

lar evolution (Section 2.1), convection (Section 2.1.2) and thermonuclear reactions
(Section 2.2.1). Chapter 3 explains the numerical methods employed, the low Mach
number preconditioning (Section 3.2), and well-balancing (Section 3.3). The core of
this work are Chapter 4, where we explain in detail the construction of our nova
models, and Chapter 5, where the result of mixing and nucleosynthesis studies are
presented. Finally, in Chapter 6 we conclude with a summary and an outlook of future
work.
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2. Astrophysical Background

Despite their tranquil appearance in the night sky, stars have long been known
to be dynamic. While the flickering of stars in the night’s sky is in fact due to
Earth’s atmosphere, and shooting stars are not stars at all, the detection of different
colors, sizes, masses, and population numbers in clusters of stars, all point to stars
participating in an universal cycle of birth, shine, and death. The rich star zoo we
observe over our human life spans are actually different stages of the stars’ cycles, mere
snapshots in the millions and billions of years of star’s life time. In this context, the
classical nova outburst belongs to one possible final chapter in the life of white dwarf
stars. The mathematical framework that connects all the pieces from observations and
physical reasoning is the theory of stellar evolution, pioneered by Rudolf Kippenhahn,
Alfred Weigert and Eva Meyer-Hofmeister [Kippenhahn et al. 1967]. This chapter
is devoted to a brief exposition of it, as it plays a central role in any kind of stellar
simulations. In the following sections, we follow mainly Kippenhahn et al. [2013] for
the section on stellar evolution, and Wiescher et al. [2010] for the presentation of
thermonuclear reactions.

2.1. Stellar structure and evolution

2.1.1. Basic equations

Stars are conventionally described by the equations of stellar structure. These equa-
tions, in their most simple from, assume that stars are perfectly spherical objects, both
on the surface and in their internal structure. That is to say, that a star’s structure is
composed of concentric, spherical shells, along which physical values are constant and
vary only radially. They are a set of partial differential equations expressed commonly
in Lagrangian coordinates with the mass variable m [Kippenhahn et al. 2013]:

∂r

∂m
= 1

4πr2ρ
(2.1)

∂P

∂m
= − Gm

4πr2ρ
(2.2)
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 . (2.5)

This set of equations ignores mass loss at the surface (e.g. through stellar winds), the
star’s differential rotation, and magnetic fields. The first equations do not describe
the evolution but the structure of the star (they do not contain any time derivatives).
Here and in the following pages, a denotes the radiation constant, c the speed of
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light, cs the speed of sound, G the gravitational constant and g the gravitational
acceleration.

The first of these equations describes the radial stratification of mass of a sphere with
density ρ(r). The second equation represents hydrostatic equilibrium: the gradient
of pressure P acts outwards against the self-gravitational pull towards the center of
the star and balances it out. The third equation describes the luminosity l, defined
as the total energy emitted per unit time through a mass shell dm. Nuclear fusion, as
one of the star’s primary sources of energy (the other being the gravitational binding
energy), enters the equation with the term εn, the nuclear energy generation rate.
Neutrinos are also created in nuclear processes and since they escape the boundaries
of the star unhindered, εν is a negative contribution to the energy equation. The last
two terms describe energy gain/loss through adiabatic contraction/expansion. They
include the specific heat cP , the temperature T and δ = −∂ ln ρ/∂ lnT , a derivative
of the equation of state. The fourth equation regards energy transport, which can
proceed via radiation or convection. In a specific layer of a star, one type of energy
transport will dominate over the other, and the quantity ∇ must be chosen according
to the present manner of transport. In the case of radiation-dominated transport,

∇rad = 3
16πacγG

κlp

mT 4 . (2.6)

This expression is a function of the stellar opacity κ (the transparency to photons),
which in turn depends on the thermodynamic state and nuclear composition. In
regions where the opacity becomes too large, radiation is not efficient enough to
transport all the energy outwards. Then, buoyant motions can transport energy more
efficiently and convection ensues (Section 2.1.2). In this case, ∇ is given by

∇ad =
(
∂ lnT
∂ lnP

)
s
. (2.7)

Convection, by nature, does not occur in spherical symmetry. Its inclusion in the
stellar evolution equations can only be realized as an approximation, commonly some
form of mixing length theory (see Section 2.1.3). Finally, the nuclear composition of
the stellar matter changes dynamically, either through the fluid motions advecting
nuclei, or their creation and destruction via nuclear reactions. The last equation
describes these changes in terms of the mass fractions Xi, namely the fraction of the
total mass inside the shell dm that is composed of the isotope i. The terms rji, rik
in Equation (2.5) represent the reactions that create the isotope (j → i) and destroy
it (i→ k), respectively (see Section 2.3).
The theory of stellar evolution has been been hugely successful in explaining the

observed stellar populations. Globular clusters are conglomerations of millions of stars
in the halos of galaxies. Their age can be determined by looking at their state in
the Hertzsprung-Russell diagram, which plots the state of the individual stars in a
luminosity-temperature space. From the position of the stars in this space, the nuclear
burning phases they have sustained can be derived, and with it their age. The oldest
globular clusters have been found to have an age between 11Gyr and 16Gyr [e.g.
Krauss & Chaboyer 2003] (the large error is due to the uncertainties in astronomical
measurements.) This way, stellar evolution provides an independent measurement of
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the age of the universe. Unfortunately the basic assumption of spherical symmetry
cannot possibly hold in the more dynamic phases of the stars: pulsation, rotation,
mass loss through stellar winds, or interaction with stellar companions. Also, the star
is not necessarily on hydrostatic equilibrium during all stages of stellar evolution,
therefore these equations are not valid at all points in stellar evolution. The basic
equations must be complemented by additional expressions to account for these effects.
We will elaborate on some of these limitations later on, limitations which are partly
the motivation for our study in multiple dimensions.

2.1.2. Convection and dynamical stability

The equations presented in the last section assume stars are spherically symmetric,
both in their shape and internal stratification. One can expect that in real stars,
which are dynamical objects, fluctuations from the mean values averaged over a shell
are always present, even in the more quiescent phases of the star. The question then
emerges, whether these fluctuations remain small, or whether they will continue to
grow. It is a question of stability.

Let us consider the fluctuation of a mass element (e) in relation to its surroundings
(s) [Kippenhahn et al. 2013, Sec. 6.1]. To this end, the operator

DA = Ae −As (2.8)

is introduced. Then, to a slightly hotter element corresponds a DT > 0. As pressure
gradients are balanced by sound waves, which are in general faster than the motions
of the fluid elements, its is reasonable to assume that the element is always in pressure
balance with its background, and so it holds:

DP = 0. (2.9)

For a gas with an equation of state as ρ ∼ P/T , a fluctuation DT > 0 means
Dρ < 0. The element is lighter than its surrounding medium and will be accelerated
upwards by the buoyancy force Kr = −gDρ (per unit area). After the element has
traveled a distance ∆r from its original position, its density will contrast from the
new surroundings by

Dρ =
[(
dρ

dr

)
e
−
(
dρ

dr

)
s

]
∆r. (2.10)

In this expression, (dρ/dr)e is the element’s change of density while it rises, the term
with subscript (s) is the background density gradient.

For a negative Dρ, the buoyancy force Kr > 0 lifts the element upwards, increasing
the initial fluctuation, the stratification is unstable. If, however, Dρ > 0, then Kr < 0
and the element is accelerated back towards its original position. Thus, the condition
for stability becomes:(

dρ

dr

)
e
−
(
dρ

dr

)
s
> 0. (2.11)

Density gradients (dρ/dr) do not appear in the basic equations Equation (2.1) to
Equation (2.5), but they can be related to the corresponding temperature gradients
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via the equation of state. For simplicity, it is assumed that no exchange of energy
takes place between the element and its surroundings, the process is adiabatic. Deep
in the interior of the star, this is a valid assumption.
Consider the total differential of the equation of state ρ = ρ(P, T, µ):

dρ

ρ
= α

dP

P
− δ dT

T
+ ϕ

dµ

µ
, (2.12)

where the partial derivatives are defined as

α :=
(
∂ ln ρ
∂ lnP

)
, δ := −

(
∂ ln ρ
∂ lnT

)
, ϕ :=

(
∂ ln ρ
∂ lnµ

)
. (2.13)

The sign in the definition of δ is a convention, chosen so that for an ideal gas α =
δ = ϕ = 1.
Inserting the differential in Equation (2.12) in Equation (2.11) we can rewrite the

condition for stability in terms of temperature gradients:

�
����(
α

P

dP

dr

)
e
−

�
����(
α

P

dP

dr

)
s

+
��

���
(
ϕ

µ

dµ

dr

)
e
−
(
δ

T

dT

dr

)
e

+
(
δ

T

dT

dr

)
s
−
(
ϕ

µ

dµ

dr

)
s
> 0.

(2.14)

The pressure dP derivatives vanish due to the assumption DP = 0. The composition
gradient dµ/dr also vanishes for the element, when its original composition does not
change as it is advected.
The pressure scale height is

HP = − dr

d lnP = −P dr

dP
. (2.15)

Multiplying the remaining terms of Equation (2.14) by this expression leads to the
relation(

d lnT
d lnP

)
s
<

(
d lnT
d lnP

)
e

+ ϕ

δ

(
d lnµ
d lnP

)
s
.

In addition to the gradients ∇rad and ∇ad defined in Equations (2.6) and (2.7), the
above quantities are defined as:

∇ :=
(
d lnT
d lnP

)
s
, ∇e :=

(
d lnT
d lnP

)
e
, ∇µ :=

(
d lnµ
d lnP

)
s
. (2.16)

When P is considered as a measure of depth, then the derivatives can be interpreted as
spatial derivatives of the quantities T and µ.Using the above definitions, the condition
for stability becomes

∇ < ∇e + ϕ/δ∇µ. (2.17)

The gradient ∇rad was defined for the case in which energy is transported by radiation
only. If that is the case in the actual gradient ∇, then ∇rad = ∇. Applying again the
assumption of adiabatic change, ∇e = ∇ad. Finally we finally arrive at the condition

∇ < ∇ad + ϕ

δ
∇µ. (2.18)
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This is known as the Ledoux criterion for dynamical stability. In case that the nuclear
composition in a region is homogeneous,∇µ = 0 and the last equation becomes simply

∇ < ∇ad, (2.19)

the so-called Schwarzschild criterion.
If the criteria are fulfilled, then the layers are dynamically stable, and the energy

flux is carried by radiation. If the opposite is true, the region is unstable: small
perturbations will grow and convective motions will ensue, carrying some part of the
flux.

2.1.3. Mixing-length theory

Ludwig Prandtl developed a simple model of convection analogous to molecular
heat transfer [Prandtl 1925]. In this model, the fluid ‘bubbles’ correspond to the
molecules and the mixing length is equivalent to the mean free path. That is to say,
the mixing length lm is the distance a fluid element can flow before it is absorbed into
its surroundings. These bubbles or “elements” have different temperatures DT/T and
densities Dρ/ρ than their surroundings, yet the assumption is made that they are in
pressure equilibrium with them (DP = 0). This assumption is valid, provided that
the element’s speed is small compared to the sound speed cs. We follow the derivation
of Böhm-Vitense [1958] found in Kippenhahn et al. [2013, Sec. 7.1].
The total flux through a concentric sphere is the sum of radiative and convective

fluxes Frad + Fcon. Equation (2.6) gives the stratification necessary for the energy to
be transported solely by radiation,

Frad + Fcon = 4acG
3

T 4m

κPr2∇rad. (2.20)

Some flux is carried by convection, so the radiative flux depends on the actual gradient
∇:

Frad = 4acG
3

T 4m

κPr2∇. (2.21)

On the other hand, the convective flux is given by the mass flux ρv and the change
in internal energy cPDT of the bubbles

Fcon = ρvcPDT = 4acG
3

T 4m

κpr2 (∇rad −∇) . (2.22)

Consider a convective stellar region with rising and sinking bubbles, and a given
radial shell at radius r. The convective elements started their motion some distance
away from r. The difference in temperature from its surroundings DT increases with
the traveled distance, but the bubbles eventually merge with the surrounding fluid
after having traveled the distance lm. On average, they will have moved lm/2 when
crossing the shell r. Then the temperature difference is

DT

T
= 1
T

∂DT

∂r

lm
2 = (∇−∇e)

lm
2

1
Hp

. (2.23)
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In the second step the temperature gradient∇ = ∂ lnT/∂ lnP and the definition of the
pressure scale heightHp = ∂r/∂ lnP were inserted. ∇e is the gradient of the convective
element. Using δ = −∂ ln ρ/∂ lnT , the density contrast from the background reads:

Dρ

ρ
= −δDT

T
. (2.24)

Then, the radial buoyancy force is

kr = −gDρ
ρ
. (2.25)

Using the same argument as above, one assumes that while crossing r, averaging over
all bubbles, half of the work krlm/2 has been done:

1
2kr

lm
2 = gδ(∇−∇e)

l2m
8Hp

. (2.26)

Further, if half of it used in the kinetic energy of the element v2/2 (by mass) while
the rest is lost to the surroundings, one obtains for the velocity

v2 = gδ(∇−∇e)
l2m

8Hp
. (2.27)

Inserting Equation (2.27) and Equation (2.23) into the expression for the convective
flux, Equation (2.22), gives:

Fcon = ρcPT
√
gδ

l2m
4
√

2
H−3/2
p (∇−∇e)3/2. (2.28)

The final step is to consider convective element e and its change of temperature as
it moves through the background. This can occur through adiabatic expansion or
contraction and through radiative exchange with the surroundings. Approximating
the convective bubbles as spherical, with volume V , surface S, and diameter lm, one
can derive the temperature gradient in the normal direction ∂T/∂n and find an
expression for the radiative loss λ per unit time through the surface. Together with
Equation (2.23) and assuming a form factor for the bubble lmS/V d, this leads to:

∇e −∇ad
∇−∇e

= 6acT 3

κρ2cP lmv
. (2.29)

The five equations Equations (2.20) to (2.29) constitute the mixing-length model.
They provide expressions for the five quantities Frad, Fconv, v, ∇e and ∇. The task of
this theory is to calculate ∇. However, the quantity missing is still the mixing length
lm itself. In its framework there is no equation to actually derive it. It remains a
free parameter and the strongest caveat of the model. It is usually calibrated from
observations, especially of the Sun, but it is assumed to be universal.
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MLT in classical novae

An area where the limitations of MLT can critically affect the results is convective
boundary mixing or CBM. The Ledoux criterion, Equation (2.18), dictates how the
actual gradient ∇ ought to be behave radially, if a region can transport the energy
flux solely by radiation or convection. It is a local description, and as such it defines a
sharp division between stable and unstable layers. However, the boundaries between
adjacent regions are more or less smooth transitions. Convective bubbles may cross
the formal boundary into dynamically stable layers because of their inherent momenta.
As such, there will generally be some degree of mass transfer across the boundaries of
convective and radiative shells. This mixing is commonly treated in one dimension as
a diffusive process, with a diffusion coefficient that decays exponentially away from
the formal convective boundary r0 [e.g. Freytag et al. 1996; Herwig et al. 1997; Herwig
2000; Paxton et al. 2013]:

D = D0 exp
(
−2|r − r0|

fHp

)
. (2.30)

D0 is a diffusion coefficient calculated using MLT and f is a free parameter, which
depends on the specific conditions at the boundaries. It also must be calibrated either
by observations or multidimensional simulations. In 1D simulations of He-shell flash
convection in post-AGB stars, for example, a value of f ∼ 0.008 is routinely used
[Werner & Herwig 2006; Herwig et al. 2006]. The boundary between the convective
H-rich envelope and the stable CO core in classical nova progenitors is much stiffer.
A value of

fnova ∼ 0.004 (2.31)

is commonly found in the literature of one-dimensional classical nova simulations [e.g.
Denissenkov et al. 2013b].

2.2. Thermonuclear astrophysics
It is widely accepted that the single parameter that most strongly determines the
evolution of a star is its mass. Larger masses imply higher temperatures and pressures
in the core. Therefore, energy must be generated in the core at a higher rate to balance
gravity and stabilize the star. This means that a massive star must have a higher
luminosity, consume its material faster, and consequently have a shorter lifespan than
a less massive star. [e.g. Iliadis 2010]. The mechanism of energy generation, and the
one ultimately responsible for the star’s evolution, is nuclear reactions.

Nuclear fusion is the process by which two atomic nuclei coalesce to form another.
Such union is inhibited by the strong repulsive force between nuclei. Extremely high
energies are required to breach the barrier, yet the densities and temperatures found
in stellar cores – in conjunction with a quantum-mechanical effect – allow for such a
breaching to take place. Indeed, nuclear fusion was long theorized to be the origin of
the Sun’s light. Its hydrogen make-up was indicated by the observation of absorption
lines in the spectrum of the sun – the Fraunhofer lines – that closely matched the
lines of hydrogen [Kirchhoff 1860]. This assumption gained a foothold after Bethe
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& Critchfield [1938] proposed a nuclear reaction chain (nowadays referred to as PPI
chain) by which two hydrogen atoms are fused into deuterium, which then forms
helium. Bethe [1939] and Von Weizsäcker [1938] found an alternative, cyclic, reaction
sequence involving C, N and O isotopes, that equally results in He.

Heavier nuclei than hydrogen experience even stronger repulsion, and so even higher
temperatures are required to force their fusion – temperatures that primarily depend
on the star’s mass. Higher temperatures unlock nuclear pathways that were previously
unachievable, generating new elements and modifying the atomic composition of the
star in the process. The escape from a given nuclear cycle to a higher region of more
massive nuclei is often called break-out. The active nuclear cycles define the phase that
a star is undergoing. The core temperature essentially defines which burning stages
are accessible to the star. Therefore, the life of the stars is intimately entangled with
the nuclear physics of their composing nuclei and as such, nuclear energy generation
enters the theory of stellar evolution in Equation (2.3).

In the case of classical novae, it is the ignition of the hydrogen-rich mantle that has
been accreted on its surface which is responsible for all the interesting nucleosynthesis
and energetics that arise in these stellar systems. Therefore, we are mainly concerned
with explosive hydrogen burning in this work. In this section, we will delve into the
mechanisms that power the nova outburst. First, in Section 2.2.1 we will present
some general aspects of nuclear physics, starting with a brief explanation of the
quantum-mechanical basis of the reactions and expanding on the energy generation
of thermonuclear reactions. In Section 2.2.2 and Section 2.2.3 we deal with specific
reaction chains, the proton-proton chains and the CNO cycles.

2.2.1. Nuclear physics

The basis of charged particle fusion is the quantum tunnel effect. For this discussion
we follow Iliadis [2010]. A simple model for the potential for nuclear reactions consists
of an attractive square potential well of depth V0 that represents the atomic nucleus
(0 < r < R0, region I) and a repulsive square barrier of height V1 (R0 ≤ r < R1, region
II). In classical mechanics, if the energy E of an incident particle (r ≥ R1, region
III) is smaller than V1, it is not allowed to bypass the barrier. In quantum mechanics,
the Schrödinger equation must be solved for each of the regions. In regions I and III,
the solutions Ψ are sine functions, while in region II they are exponential functions.
The derivatives of these functions at the interfaces R0 and R1 must be continuous.
This continuity condition yields four equations that can be solved for the intensity
of the transmitted wave in region I. The ratio of this intensity |ΨI|2 compared to the
intensity of the impinging wave |ΨIII|2 is called the transmission coefficient and is
positive. That is, some part of the wave function tunneled through the barrier. In real
nuclei, the potential is not a square barrier but the Coulomb potential (ignoring the
centripetal barrier). The same formalism can be applied to this potential, treating
it as n infinitesimal square barriers and going to the limit n → ∞. The resulting
transmission coefficient, for very low energies, becomes [Iliadis 2010]

T̂ ≈ exp
(
−2π

~

√
µ

2EZ0Z1e
2
)
≡ e−2πη, (2.32)
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where ~ is the reduced Planck constant, µ the reduced mass of the particles, Z0 and
Z1 the charges of the nuclei and e the elementary charge. This tunnel probability has
an energy dependance that goes as exp

(
1/
√
E
)
, called the Gamow factor.

Nuclear reactions change the composition of stars and are the sources and sinks
of energy that critically determine their evolution. Therefore, the rate at which they
occur are a central component of their evolution. How often a projectile particle k
will interact with a target j is quantified by the nuclear cross section. It is defined by
the number of reactions per target per second rnj , with the reaction rate r, and the
flux of particles nkv, where v is the relative velocity between the two species [Hix &
Meyer 2006]:

σ = r/nj
nkv

(2.33)

In stellar plasmas the velocity of particles derives from their thermal energy, their
distribution can be described by Maxwell-Boltzmann statistics. Therefore, the mean
cross section between particles j and k is calculated from the integration of Maxwell-
Boltzmann velocities. One writes

〈σv〉j,k =
( 8
µπ

)1/2
(kBT )−3/2

∫ ∞
0

Eσ(E) exp (−E/kBT ) dE (2.34)

where µ is the reduced mass of the target and projectile, E the center of mass energy,
T the temperature and kB is Boltzmann’s constant. In a very general form, a nuclear
reaction between two particles I and J is written as

I+J→ K+L or I(J,K)L . (2.35)

The particles on the left side of the arrow form the entry channel, those on the right
the exit channel. Each type of reaction between two or more particles has its own
unique cross section 〈σv〉I,J . The experimental determination of the reaction rates
forms the basis of theoretical reaction network calculations (see Section 2.3).
The reaction cross sections determine the rate of reaction. How much energy is

released depends on the nuclei components. The total mass of a nucleus MN is less
than the sum of the masses of the individual protons Mp and neutrons Mn, because
a fraction of the mass-energy is contained in the bond. Thus, the binding energy is:

EB = ∆E = (MN − ZMp −NMn)c2. (2.36)

Conversely, EB is the energy necessary to unbind the nucleus. Another useful quantity
is the binding energy per nucleon Eb/A. For example, the nucleus 12C has the binding
energy EB = 92.16MeV and EB/A = 7.68

The difference of the total energy after and before a nuclear reaction is referred to
as the Q-value. If Q is positive, the energy balance is positive, and energy was released.
In this case, the reaction is called exothermic. On the other hand, if the Q-value is
negative, energy was consumed and the reaction is called endothermic. In general,
reactions between two nuclei I and J with mass numbers AI and AJ, and AI +AJ < 56,
will be exothermic. When one of the resulting particles after an interaction is a photon,
the reaction is called radiative capture. The intermediate state, after fusion, but before
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evaporation, is called compound nucleus. For example, the radiative capture on 12C
is described by:

12C + p→13 N∗ →13 N + γ, (2.37)

which has Q = 1.95MeV. These kind of reactions have in general positive Q-values
and are therefore sources of energy for the star.
Non-explosive stellar hydrogen burning proceeds principally by two reaction se-

quences: the proton-proton (pp) chains and the carbon-nitrogen-oxygen (CNO) cycles.
Both convert four protons into a 4He nucleus, and release an energy that corresponds
to the 4He binding energy of EB = 26.7MeV. However, the reaction paths they tread
are quite distinct. The pp chains proceed by a sequence of hydrogen nuclei fusions,
while in the CNO cycles, the C, N and O isotopes serve as catalysts to capture protons,
decay, and in the last step eject a 4He nucleus. The next two sections explain these
processes.

2.2.2. The pp and pep chains

Here and in the following sections on nuclear processes, Wiescher et al. [2010] is our
principal source.
Hydrogen is the most abundant element in the universe. It makes out the bulk of

the chemical composition of star forming regions, therefore the composition of young
stars is primarily hydrogen. The transmission coefficient depends on the charge of
interacting nuclei as ∝ exp (−Z0Z1) (Equation (2.32)), hence the tunnel probability
drops fast for heavy nuclei. Due to this fact and the predominance of light nuclei,
primary fuel for nuclear reactions in hydrogen-rich matter at low temperatures (the
core temperature of gravitationally contracting protostars is T ≈ 6× 106 K) is the
fusion of the light isotopes 1He, 2H and 3He. The pp chain starts with proton-proton
fusion, which creates deuterium 2H under emission of a positron and an electron-
neutrino ν. The first chain, PPI, is given by the following reactions:

1H(p, β+ν)2H(p, γ)3He(3He, 2p)4He. (2.38)

There are alternative nuclear pathways that start with proton fusion and result in
4He. After the proton capture on deuterium, a subsequent radiative capture with an
α particle to form 7Be leads to the PPII chain:

1H(p, β+ν)2H(p, γ)3He(α, γ)7Be(β−, ν)7Li(p, α)4He. (2.39)

Alternatively, 7Be can be destroyed by radiative capture, instead of beta decay, forming
the PPIII chain:

1H(p, β+ν)2H(p, γ)3He(α, γ)7Be(p, γ)8B(β+ν, α)4He. (2.40)

respectively. Independent of the reaction path, the total energy release is Q =
26.73MeV, but the effective energy differs slightly in each case, due to different en-
ergy loss by neutrinos. Both PPII and PPIII chains require 4He as a catalyst. This is
provided either by the PPI chain of from the primordial abundance.
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The total rate of energy generation of a sequence of different nuclear reactions,
each with characteristic cross sections and reaction rates, is determined by the rate
of the slowest reaction. Consider a species i, with mass fraction Xi, mass number Ai
at density ρ. Let the reaction rate of the proton capture reaction be 〈συ〉i, and for
radioactive species, the β-decay rate λβ. Then the lifetime of the nucleus i is:

τi = 1
λβ + ρ×Xi/Ai ×NA〈συ〉i

. (2.41)

The total cycle time is the sum of the lifetimes of all involved nuclei, τ =
∑
i τi.

Therefore, it will be determined the largest τi, owing to very long decay times (small
λβ) or very small reaction rates. In this case, it is the very first pp fusion, 1H(p, β+ν)2H,
because it involves the proton decay

p→ n+ β+ + ν, (2.42)

which is mediated by the weak interaction. Its much weaker strength with respect
to the strong nuclear force means that the processes due to the weak interaction
operate in much longer timescales. This is the reason behind the long periods that
intermediate-mass stars can sustain hydrogen burning in the main sequence, for stars
with M = 1M� this time can be t ≈ 1010 yr.

The so-called pep reaction supplements the first step of the pp chains:

p+ e− + p→2 H + ν. (2.43)

In the Sun, the branching ratio for the pep reaction is only 0.4% [Carroll & Ostlie
2007] and its contribution is negligible, except for the neutrino losses. However, in
classical novae it can play an important role . The envelope densities can reach
ρ ∼ 104 g cm−3, a value two orders of magnitude larger than that of the Sun’s core.
The increase in energy generation, compared to calculations that do not include the
pep reaction is ∼ 40% [Starrfield et al. 2007]. This has an effect on the envelope’s
evolution prior to the outburst, when most of the energy is produced by the pp chains.
The increased energy release reduces the amount of accreted material, because the
temperature rises faster per unit mass. As the envelope approaches the conditions for
TNR, less mass has been accreted, the degree of degeneracy is lower, as well as the
peak temperature at outburst [Starrfield et al. 2007, 2009].

2.2.3. The cold and hot CNO cycles

The pp are the primary sequences of hydrogen burning at ignition temperatures of
hydrogen-rich matter. They have a relatively low Coulomb barrier and the energy
release rates have a temperature dependence that goes as εpp ∝ T 4. Reactions with
nuclei in the CNO range involve higher Coulomb barriers, so they need significantly
higher temperatures to ignite, but the total rate of energy generation of the CNO cycles
has a much steeper dependence on temperature εCNO ∝ T 18 [Wiescher et al. 2010].
Therefore, in the initial stages of envelope mass accretion, the pp chains dominate the
energy generation, but at runaway temperatures the CNO cycles process hydrogen
much more efficiently. They are called cycles, because the last reaction in the sequence
produces the nucleus for the entry channel of the first reaction, making a loop. Also,
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Figure 2.1.
Diagram of the cold (a, blue arrows) and hot (b, red arrows) CNO cycles. Figure adopted
from Wiescher et al. [2010]

because under conditions below a critical temperature1 the nuclear structure of the
involved CNO isotopes prevents the reactions from breaking out into other reaction
channels. Sometimes they are referred to in singular - cycle - or plural form - cycles.
This is for two reasons. First, because the cycle is a set of four distinct “intertwined
tetra-cycles”2, and to distinguish from the cold and hot CNO cycles which, as the
name suggests, operate on different temperatures.

Cold CN and NO cycles

Figure 2.1 shows a diagram of the reactions taking place in the CNO cycles. In
Fig. (a), starting from the reaction 12C(p, γ) and following the arrows clockwise one
identifies the CN cycle:

12C(p, γ)13N(β+ν)13C(p, γ)14N(p, γ)15O(β+ν)15N(p, α)12C. (2.44)

The chain starts with a radiative proton capture on 12C, followed by a series of β+

decays and more radiative captures. The last reaction, 15N(p, α)12C is the step where
helium-4 is synthesized (the α particle). This reaction also be diverted to another
nuclear path. Instead of ejecting an alpha particle to form 12C and close the cycle, it
can undergo radiative capture, 15N + p →16 O∗ →12 C + α. The excited compound
nucleus decays to the ground state of 16O via gamma-ray emission, allowing for a
breakout into another channel, the NO cycle:

15N(p, γ)16O(p, γ)17F(β+ν)17O(p, α)14N(p, γ)15O(β+ν)15N (2.45)

However, the radiative capture happens in a ratio of (1 : 1000) compared to the α
reaction. Due to the low branching ratio of the radiative capture, this cycle is powered
mainly by the already present abundance of 16O in the burning material.

1Breakout into the NeNa range occurs at T ≥ 0.4GK [Wiescher et al. 2010].
2An expression borrowed also from Wiescher et al. [2010].
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The NO cycle has also a branching point, occurring with the 17O isotope: α-decay
leads the chain back to 14N and into the NO cycle, alternatively radiative capture
opens a third branch:

17O(p, γ)18F(β+ν)18O(p, α)15N(p, γ)16O(p, γ)17F(β+ν)17O (2.46)

The strong interaction (p, α) reactions are generally stronger than the electromagnetic
branch (p, γ). Also for the radiative capture on 17O the cross section is three orders
of magnitude weaker. For this reason, energy is mostly generated through the CN
cycle. In any case, the total energy rate of a cycle is dependent on the slowest of the
partaking reactions. In the CN cycle, it is the reaction 14N(p, γ)15O. In the NO cycle,
the cross section of the reaction 16O(p, γ)17F is very low and makes this the slowest
process in the cycle.
The sum of these reaction chains can be written in compact form as

4p+ 2e− → α+ 2e+ + 2e− + 2νe + 3γ + 24.7MeV
→ α+ 2νe + 3γ + 26.7MeV.

In the second step, the additional 2.04MeV are the result of electron-positron annihi-
lation, a process that releases gamma rays. Thus the energy released is the same as
in the pp chain. However, the CN cycle has a much higher burning rate than the pp
chain, which is slowed down by the p+ p→ d+ e+ + ν reaction. We emphasize that
these reaction cycles are a hydrogen burning process. Carbon, oxygen and nitrogen
nuclei act as catalysts that capture four protons and result in a helium nucleus. Under
the conditions found in stellar interiors and the early stages of novae, the cycles do
not break out beyond the branching points already discussed, therefore the total
initial mass fraction of CNO elements does not change through the nuclear reactions,
it is merely divided among the participating species. A system in which many full
cycles would run for timescales much longer than the cycle’s total time would reach
a state of equilibrium in which the abundances of the CNO elements and the energy
generation would be constant.

Hot CNO cycles

We have seen that proton capture reaction rates rise drastically with temperature,
hereby shortening the total time of one cycle. In the cold CN and NO cycles, the
time is limited by the slowest reactions: the radiative captures on 14N and 16O.
Radioactive beta decays, e.g. 13N(β+, ν)13C, however, are not affected by temperature.
Therefore, at temperatures nearing T ∼ 108 K (0.1GK), beta decays become the
slowest processes,

λβ ≤ ρ
X

A
NA〈συ〉, (2.47)

and those that determine the cycle time. The time scales of alternative proton capture
reactions, such as 13N(p, γ)14O become shorter than the beta decay half-lives, listed
in table Table 2.1. Of the competing branches

13N(β+ν)13C vs. 13N(p, γ)14O
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Species Half life τ1/2 (s)
13N 598
14O 71
15O 122
17F 65

Table 2.1.
Half lives of the radioactive nuclei in the CNO cycles.

the latter becomes the shortest option, and energy generation ensues along the hot
CNO (HCNO) cycle. This is shown in Panel (b) of Figure 2.1. This cycle is also
referred to as ‘beta-limited’, due to the fact that in the ‘hot’ case the half-lives of
the β+-unstable nuclei delay the succession of nuclear events and characterize the
nucleosynthesis. The hot CN cycle becomes:

12C(p, γ)13N(p, γ)14O(β+ν)14N(p, γ)15O(β+ν)15N(p, α)12C. (2.48)

The cycle time of τ ≈ 200 s is determined by the decay of 14O and 15O, which are called
waiting points. Due to their independence from temperature, the energy generation
rate is constant

εCNO ≈ 4.6× 1015 × ZCNO erg g−1s−1. (2.49)

Precisely the isotopes of the waiting points, 14O and 15O, will be substantially enriched.
The cold NO cycle also has its hot counterpart, 16O(p, γ) 17F(p, γ) 18Ne(β+ν)

18F(p, α) 15O(β+ν) 15N(p, γ) 16O with waiting points at 15O and 18Ne. 18F(p, γ)
19Ne(β+ν) 19F(p, α) 16O(p, γ) 17F(p, γ) 18Ne(β+ν) 18F. However, we will see that at
the temperatures achieved in our simulations, only the hot CN cycle is available.

2.3. Nuclear reaction networks

Nuclear reactions create and destroy particles, changing the elemental abundances in
the plasma. Their rates depend on the (number) density of the corresponding species
in the gas. Reaction rates depend also on temperature, and are themselves sinks
are sources of energy, which alter the pressure and temperature of the gas, causing
hydrodynamic motions. Therefore, nuclear reactions must be coupled in some manner
to the hydrodynamic equations.

In stellar applications, interactions between up to three particles are relevant. Single-
particle reactions, including beta-decays, depend only on the number density of one
species. Two particle reactions, like proton- and alpha-captures, depend on the number
density of both species. The triple-alpha process, 4He +4 He +4 He →12 C, is an
example of a three-particle reaction, but its rate depends on the number density
of only one species: 4He. The change in number density ni of species i, due to all
reactions involving i, can be written by grouping the reactions rates r into those three
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categories, namely:
∂ni
∂t

∣∣∣∣
ρ=const

=
∑
j

N i
j rj +

∑
j,k

N i
j,krj,k +

∑
j,k,l

N i
j,k,lrj,k,l. (2.50)

Because the species i appears also in the rate equations of other species j, the rates
should not be counted doubly. The numbers N account for the correct counting. The
expressions read:

N i
j = Ni

N i
j,k = Ni/

nj,k∏
m=1

(|Nm|!)

N i
j,k,l = Ni/

nj,k,l∏
m=1

(|Nm|!),

(2.51)

where the Ni can also be negative numbers if the species is destroyed in the reaction.
However, the number density can also change due to hydrodynamical motions. In

order to have an expression that only due to the nuclear reactions, the equations are
written instead in terms of the nuclear abundance:

Yi = ni
ρNA

, (2.52)

where NA is Avogadro’s number. For a nucleus with atomic weight Ai, the mass
fraction is Xi = AiYi, and the total mass fraction is one:

∑
iAiYi = 1. Equation (2.50),

rewritten in terms of Yi, reads:

Ẏi =
∑
j

N i
jλjYj +

∑
j,k

ρNAN i
j,kλj,kYjYk +

∑
j,k,l

(ρNA)2N i
j,k,lλj,k,lYjYkYl, (2.53)

where the definition of the reaction cross sections (Equations (2.33) and (2.34)) were
inserted. For all species i in the network, Equation (2.53) is a set of first order ordinary
differential equations for the evolution of Yi depending only on the nuclear reaction
rates.

The energy release from nuclear reactions is due to the binding energy of the nuclei,
Equation (2.36). The total nuclear energy release rate, from all Yi, is therefore:

ε̇nuc = −
∑
i

NAMic
2Ẏi [MeVg−1 s−1] (2.54)

For the coupling to the hydro equations, only the total energy release rate is of
importance, Equation (2.54). However, for our detailed analysis of nucleosynthesis
in the envelope, we are interested in the contributions from individual interaction of
the CNO cycle to the TNR. Therefore, we use use another expression for the nuclear
energy rate, presented in the Results chapter, Section 5.2.
In SLH , the numerical solution to the rate equations is performed with the code

YANN [Pakmor et al. 2012], using the implicit integration method of Bader & Deu-
flhard [1983]. The coupling to hydrodynamics is done using the Godunov operator
splitting method. First, a normal hydrodynamics step is performed (Section 3.1.3).
Then, the thermodynamic variables of the new state are used to solve the nuclear
reaction network in every grid cell. The resulting energy release and composition
define the new state are used to update the state, which is the initial data for the
next hydrodynamics step (see Edelmann [2014, Section 2.5.3] for more details).
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3. Description of the code

3.1. Multidimensional hydrodynamic simulations

The stellar evolution equations described in the last chapter make the assumption of
perfect spherical symmetry, reducing the three spatial dimensions to only one radial
coordinate. To account for multi-dimensional processes like convection, approxima-
tions such as the mixing length theory, Section 2.1.3, must be included. But to be able
to fully account for the effects of these processes, three-dimensional hydrodynamics
equations are needed. Stellar environments can be appropriately described as fluids in
the continuum approximation, because the mean free path of the nuclei and particles
that compose it is orders of magnitude smaller than the dynamical length scale. Then,
the fluid can be described by its thermodynamical variables and velocity field. Any
fluid volume must fulfill the conservation of mass, momentum and energy. These are
expressed as a set of conservation laws, its mathematical formalism known as the
Navier-Stokes equations. The presentation of this chapter is inspired by the layout
in Edelmann [2014], and is but a short summary of the methods implemented in the
code. A detailed account can be found in Edelmann [2014], Miczek [2013] and Miczek
et al. [2015].

3.1.1. Euler equations

Conservation laws are continuity equations for the conserved quantities of the flow.
In a general case, a continuity equation in differential form can be written as:

dU

dt
+∇ · f(U) = 0. (3.1)

where U is the conserved quantity and f(U) its flux function. Integrating this equation
over any volume V with surface ∂V and using Gauss’s theorem yields

d

dt

∫
V
UdV +

∫
∂V
f(U) · ndS = 0. (3.2)

The integral manifests that U changes inside V only because of the fluxes at its
boundary. If the right hand side of the equation is non-zero, those terms are called
source terms. They can include effects that influence U regardless of the boundaries,
such as gravity, chemical or nuclear reactions.
The equations of fluid dynamics are a system of conservation laws, commonly

expressed in terms of the variables U :

U = (ρ, ρu, ρv, ρw, ρE, ρXi)T (3.3)

where ρ is the density, ρu, ρv, ρw the three components of momentum and ρE is the
total energy (internal and kinetic) per volume. In the last expression,Xi stands for any
other scalar value advected with the flow. In the framework of stellar simulations Xi
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is the mass fraction of the nuclear species i, and the vector U has nsp components Xi,
one for each of the nsp species considered. The fully viscous Navier-Stokes equations
can be concisely written as [Toro 2009]:

∂tU + ∂xF (U) + ∂yG(U) + ∂zH(U) = ∂xF
d + ∂yG

d + ∂zH
d + S (3.4)

where F , G and H are the flux functions, F d, Gd and Hd the diffusive terms and
S the source terms. The diffusive terms include terms of the viscous stress tensor τ .
Contrary to many engineering applications, stellar matter is commonly assumed to
be inviscid. A quantity commonly used to estimate the importance of viscosity is the
Reynolds number Re, which is the ratio of inertial to viscous forces:

Re = ρ uL

η
. (3.5)

For Re ' 1− 100, viscous effect dominate the flow. In flows with very high Reynolds
numbers viscosity can be neglected, the flow is said to be in the turbulent regime.
For instance, with values typical of the Sun’s radiative zone the Reynolds number is
Re = 3× 1012 [Edelmann 2014]. At the convective boundary of white dwarf novae
progenitors the corresponding values are typically ρ = 103 g cm−3, u = 107 cm s−1,
L ∼ Hp = 3× 107 cm. Assuming a value for the viscosity of ionized gases η =
1g cm−1 s−1 [Kippenhahn et al. 2013, Sec. 45.1] we get an estimated Re = 3× 107.
Therefore the flow in our simulations of novae will be in the turbulent regime. Any
kind of spatial discretization introduces numerical diffusivity that is generally orders
of magnitude larger than the physical viscosity, so that including viscous terms does
not represent an improvement of the scheme. Indeed, the motivation for the SLH was
the implementation of a hydro code whose numerical fluxes reduced the diffusivity
typical of low Mach number flows1. Dropping the stress tensor from the Navier–Stokes
equations results in the Euler equations of gas dynamics:

∂tU + ∂xF + ∂yG+ ∂zH = S, (3.6)

1Viscous terms can in fact be optionally included in SLH , but are generally switched off. They
were included to test if the viscosity helped control the exponential growth of the checkerboard
instability discussed in Section 3.3.1.
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with the fluxes

F =



ρu

ρu2 + p

ρuv

ρuw

u(ρE + p)−K∂xT
ρuXi


, G =



ρv

ρuv

ρv2 + p

ρvw

v(ρE + p)−K∂yT
ρvXi


,

H =



ρw

ρuw

ρvw

ρw2 + p

w(ρE + p)−K∂zT
ρwXi



(3.7)

and source terms

S =



0
ρgx

ρgy

ρgz

ρu · g + ρ
∑
i enuc,iẊi

ρẊi


. (3.8)

Equation (3.6) is the system of partial differential equations that SLH solves to model
stellar regions.

The energy equation includes thermal radiation. If the mean free path of the photons
is small compared to the length scales of thermal fluctuations, the gas is said to be
in local thermodynamic equilibrium. In this case, the thermal conductivity

K = 4acT 3

eρκ
(3.9)

has a source function of the form

Srad = ∇ · (K∇T ), (3.10)

where a is the radiation density constant and κ the opacity. Equation (3.10) can
be viewed as the divergence of the radiative flux, so in this description it is added
directly to the flux functions. Heat conduction follows an equation of the same form
as Equation (3.10), only the definition of the conductivity is different. Therefore both
can be included in the same term. It should be noted that radiation in the diffusion
limit holds only when the matter is optically think, i.e. it has a large opacity κ. In
regions with lower opacities the mean free path of photons is large and radiation
cannot be approximated as a diffusive process anymore.
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The source terms include the gravitational acceleration g. In principle, the gravita-
tional force acting on any cell depends on a whole density distribution ρ, inside and
outside of the computational domain. The gravitational potential φ is a solution of
Poisson’s equation ∇2φ = 4πGρ, and the gravitational acceleration g its gradient

g = −∇φ. (3.11)

At the time of writing, gravity is included only as a temporally constant term, inde-
pendently of any gravitational potential.2 In our simulations of convective boundaries
at the surface of white dwarfs we adopt a point-source acceleration from the core of
the star, which is outside of the computational domain.

Lastly, the energy equation also includes the nuclear energy release enuc,i, discussed
in detail in Section 2.2.1.

Equation of state

The thermodynamic variables ρ, T , p and e are connected by a relation called the
equation of state (EoS). The simplest kind is the ideal gas, in which the particles are
assumed to interact frictionless and scatter elastically. It is defined by the equations:

pideal = ρRgas
T

µ
, eideal = 1

γ − 1Rgas
T

µ
. (3.12)

There Rgas is the universal gas constant and µ the mean molecular weight. Several
mono-atomic gases on Earth can be described by ideal gases with good approximation.
For mono-atomic gases γ is 5/3. In the high-temperature environment of stellar
interiors the energy is much larger than the molecular dissociation energy, so that the
existence of molecules can be ruled out and the gas can be treated as mono-atomic.

Stellar matter is subject to very different and extreme conditions that depart from
the idealization of Equation (3.12). An immense amount of energy is carried by the
photons liberated from thermonuclear reactions, so that the radiation field contributes
significantly to the energy and pressure. A correct treatment of the energy conduction
by photons would require the equations of radiative transfer. However, in regions of
high opacity κ, i.e a small mean free path, radiation can be treated as a diffusive
process. In this limit, the terms for radiation pressure simplify and the equation of
state becomes:

p(ρ, T,X) = ρRT

µ
+ 4σT 4

3c

e(ρ, T,X) = ρRT

(γ − 1)µ + 4σT 4

c
,

(3.13)

where σ is the Stefan-Boltzmann constant.
A more accurate equation of state can be constructed by adding subsequent terms

to the energy and pressure [Timmes & Arnett 1999]:

ptot = prad + pion + pele + ppos (3.14)
etot = erad + eion + eele + epos. (3.15)

2The implementation of a multigrid gravity-solver is currently being carried out by Aron Michel.
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Which terms are relevant, depends on the stellar region that is being modeled. Full
ionization is true of stellar interiors. In high energy regions the contribution of electron-
positron pair creation must be considered. Electron degeneracy pressure is a defining
property of white dwarfs.
The pressure in Equation (3.15) cannot be expressed in terms of the conservative

variables analytically. If however the conservative variables ρ and ρE are given, the
temperature can be iterated numerically with the Newton-Raphson method. The
temperature from the ideal gas Equation (3.12) is used as the initial guess for the
iteration. The use of tabulated equations of state is widespread, because for multi-
dimensional simulations the interpolation from tabulated values is often less costly
than direct calculation. The EoS chosen for SLH is the so-called Helmholtz EoS of
Timmes & Swesty [2000]. Here, the interpolation is performed in the Helmholtz free
energy and its derivatives:

F = E − TS, dF = −SdT + P

ρ2dρ (3.16)

The remaining thermodynamic variables are calculated from the derivatives of F . This
method guarantees that the EoS remains thermodynamically consistent, i.e. that the
Maxwell relations are always satisfied regardless of the interpolation.
In stellar interiors at temperatures above 107 K, one can assume full ionization.

Then, the mean molecular weight from all species Xi, each with molecular weight Mi

and charge number Zi, can be written as

µ =
(∑

i

(1 + Zi)
Xi

Mi

)−1
. (3.17)

The temporal evolution of each of the species in the system is calculated in a nuclear
reaction network (Section 2.3).

3.1.2. Finite-volume schemes

To show the conservative character of the Euler equations, Equation (3.6), we can
write them in the integral form analogous to Equation (3.2). For simplicity, let us
assume a Cartesian geometry and define a grid of discrete cells, indexed with integer
values i for to indicate their centers and half-valued indices for the cell faces. Then
the integral over the control volume Ωi,j,k, defined by the boundaries [xi−1/2, xi+1/2],
[yj−1/2, yj+1/2], and [zk−1/2, zk+1/2] yields:

∂tUi,j,k + Vi,j,k
−1
(∫

Ωi,j,k

∂xF +
∫

Ωi,j,k

∂yG+
∫

Ωi,j,k

∂zH

)
= Si,j,k, (3.18)

which introduces the cell-averages quantities

Ui,j,k = 1
Vi,j,k

∫
Ωi,j,k

UdΩi,j,k, Si,j,k = 1
Vi,j,k

∫
Ωi,j,k

SdΩi,j,k. (3.19)

Interchanging the integral and derivative operators is legitimate when starting from
the strong form of the differential equation. Invoking again Gauss’s theorem, the
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volume integrals can be rewritten as integrals over the surface, and the finite volume
discretization of the Euler equations becomes:

∂tUi,j,k + Vi,j,k
−1(Fi+1/2,j,k − Fi−1/2,j,k

+Gi,j+1/2,k −Gi,j−1/2,k

+Hi,j,k+1/2 −Hi,j,k−1/2) = Si,j,k.

(3.20)

From this form, the conservative character of the method is also evident, i.e. that
the variables Ui,j,k of a volume (cell) change only due to the fluxes at the boundaries
or the cell-averaged source terms Si,j,k. Therefore, the information stored after each
iteration are the cell-averaged values. Equation (3.20) expresses the time evolution of
a single cell (i, j, k), but its conservative nature extends to the whole computational
domain. The flux across the boundary between two neighboring cells is the same and
cancels out when integrating over the whole domain – the values U are conserved
except for source terms and for fluxes at the boundaries of the domain.

So far we have not specified how the fluxes are calculated from the cell’s values. The
specific form of the flux functions is what distinguishes the many different existing
numerical schemes to solve the Euler equations. A category of schemes is based on the
solution of the Riemann problem at the boundary between two cells, with piecewise
constant left and right states UL and UR. For a general m×m non-linear hyperbolic
system, the initial-value problem is defined by [Toro 2009]:

Ut + F (U)x =0

U(x, 0) =

UL for x < 0,
UR for x > 0.

(3.21)

In the above equation, F is the flux function. The solution consists of m+ 1 constant
states separated by m waves. The waves correspond to the eigenvalues of the system.
In non-linear systems such as the Euler equations, the waves can not only be smooth
(advection, rarefaction) but also discontinuous (shock, contact). The solutions of the
Riemann problem can be used in so-called Reconstruct-Solve-Average schemes (RSA),
three-step algorithms to discretize hydrodynamical systems and evolve them in time.
We have already described the first step, namely to define cell-averaged quantities
as in Equation (3.19), written for the nth time step Un. In the second step, the
reconstructed states are evolved in time by a discrete step ∆t. The last step is to take
the evolved solution from the previous time step and average them to define the new
states Un+1.
The solution to the Riemann problem at position x and time step t + 1 can be

written as [Toro 2009]:

Un+1
i = 1

∆xi

∫ ∆xi/2

0
Ui−1/2

(
x

∆t

)
dx+ 1

∆xi

∫ 0

−∆xi/2
Ui+1/2

(
x

∆t

)
dx. (3.22)

where Ui−1/2(x/∆t) is the solution to the Riemann problem at the interface i−1 and
∆xi is the width of cell i. By using the conservation property of the Euler equations,
the expression can be simplified to:

Un+1 = Un + ∆t
∆x

(
Fi−1/2 − Fi+1/2

)
, (3.23)
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where the need to integrate over the cells has been removed. At this point, the
Riemann problem needs to be solved, either exactly or by some approximation. The
most widespread approximate Riemann solver is that of Roe [1981]:

F1/2 = 1
2 (F (UL) + F (UR)− |Aroe|(UR −UL)) , (3.24)

where Aroe is the Jacobian matrix of the flux function F . It is called approximate
because in this method, the Riemann problem that is solved is a simplified version
of the original Equation (3.21). In the original PDE, which can be written as

Ut +A(U)Ux = 0, (3.25)

the Jacobian matrixA(U) is replaced by a constant Jacobian matrix Ã = Ã(UL,UR).
The approximate Riemann problem then reads:

Ut + ÃUx =0

U(x, 0) =

UL for x < 0,
UR for x > 0,

(3.26)

which is a linear system with constant coefficients. This system is then solved exactly.
A detailed explanation can be found in Toro [2009, Chapter 11]. In SLH , a variation
of this scheme is used, modified to treat low Mach numbers.

3.1.3. Time-stepping

The numerical scheme as presented in last section by Equation (3.20), can be rewritten
in a semi-discrete ordinary differential equation:

∂Ui,j,k
∂t

+Ri,j,k(U) = 0. (3.27)

Here,Ri,j,k is called the spatial residual. In general, it may depend on the conservative
variables in all other grid cells. For this reason, U is written without any indices. This
representation is semi-discrete, i.e. the discretization has been done only in space,
but not in time. Separating the spatial and temporal derivatives in a form such as
Equation (3.27) is called the method of lines. The separation allows for great flexibility,
as the time-marching scheme can be chosen independently from the hydrodynamic
scheme.

The time-evolution of the flow variables, the cell-averaged Ui,j,k, is usually approx-
imated by discrete time steps Un

i,j,k, as in Equation (3.23). The method by which a
step Un+1

i,j,k is calculated from the previous one can be explicit or implicit. A method
is called explicit, if the calculation of the new quantities can be done directly from
the known quantities of the previous step. If instead the scheme does not permit
an analytic expression for the next time step, the new quantities are defined by a
coupled system of equations that need to be solved iteratively. Such are called implicit
methods.

In practice, the choice of explicit or implicit schemes is often decided on the expected
flow properties. A necessary condition for the convergence of numerical schemes for
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partial differential equations (PDE) is the Courant-Friedrichs-Lewy (CLF) condition
[Courant et al. 1928] (the difference between explicit and implicit schemes is explained
in the next section). It states that the true domain of dependence of the PDE must be
contained within the domain of dependence of the numerical scheme. In other words,
the CFL condition ensures that the length of the time step ∆t is not longer than the
time it takes information to travel from one grid cell to the next. It is limited by the
maximum signal speed Snmax in the system:

∆t ≤ ∆x
Snmax

. (3.28)

The index n in the speed denotes an iteration step, i.e. the size of the time step ∆t
is not fix and is adjusted after each iteration. The exact determination of the largest
signal speed, in the case of the Euler equations, depends on the local solutions to the
Riemann problem. Instead, a simplified constraint for the time step is the acoustic
CLF condition

∆t ≤ CFLuc min
q∈{u,v,w}

∆x
|q|+ c

, (3.29)

whereby the time step is limited by the speed of sound waves traveling at speeds
|q| + c. The minimum function has to be applied to all coordinate directions. The
dimensionless number CFLuc represents the number of grid cells that a sound wave
can traverse in a single time step, whose upper limit is of order one.

Explicit time-stepping

A simple way to discretize Equation (3.27) is to replace the time derivative with a
simple finite difference, and to evaluate the residual at the previous time step:

Un+1
i,j,k −Un

i,j,k

∆t +Ri,j,k(Un) = 0. (3.30)

In this form we can explicitly solve for the state of the new time step Un
i,j,k. This

method of discretization, called the forward Euler method, is first-order accurate in
time. The order of accuracy is the power with which the discretization error scales, in
this case ∝ ∆t1. Usually methods of second-order accuracy or higher are preferred.
In SLH the explicit Runge-Kutta methods [Shu & Osher 1988] are implemented.

Here, the solution of the next time step is performed in three steps:

U
(1)
i,j,k = U

(1)
i,j,k −∆tRi,j,k(Un)

U
(2)
i,j,k = 3

4U
n
i,j,k + 1

4U
(1)
i,j,k −

1
4∆tRi,j,k

(
U (1)

)
Un+1
i,j,k = 1

3U
n
i,j,k + 2

3U
(2)
i,j,k −

2
3∆tRi,j,k

(
U (2)

) (3.31)

It is commonly called RK3 because of its third-order accuracy. Another desirable
property of the scheme is that it fulfills the total variation diminishing (TVD) property.
Explicit methods are generally easy to implement and consume low resources per

time step. Their drawback lies on the limitation of the time step size ∆t, which is
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strictly constrained by the CFL condition. Violating the CFL criterion makes the
scheme unstable and makes the numerical solution quickly depart from the true
solution. For simulations of low Mach number flows,

Ma = |q|
cs
, (3.32)

where |q| is the fluid velocity. This constrain becomes particularly restrictive. There,
the fluid motions of interest are per definition much smaller than the sound speed cs,
which is the fastest signal in the system, yet resolving sound waves is not important.
The step sizes ∆t resulting from the CFL criterion become very small, so that many
iterations are needed to traverse even short time scales.

Implicit time-stepping

If we consider the semi-discrete Equation (3.27) and apply the same finite difference
approximation to the time derivative as before, but evaluate the spatial residual in
the new time step n+ 1 we obtain:

Un+1
i,j,k −Un

i,j,k

∆t +Ri,j,k(Un+1) = 0. (3.33)

Generally, this equation cannot be solved directly for Un+1
i,j,k , since it is also contained

in the residual. This means that the numerical domain of dependence of one cell has
expanded from just its neighboring cells – as in the explicit methods – to the whole
numerical grid. This is because the new values of one cell (i, j, k) depend also on the
new values of its the neighbors, and hence this dependence propagates to the entire
domain. Consequently, the size of the time step is not limited by the fastest wave
from one cell reaching its neighboring cells (the CFL condition).
The liberty from the strict CFL condition comes at a cost. It is generally not

possible to analytically invert the residual in Equation (3.33). Therefore, numerical
methods are necessary to solve this expression. This implies that one or more non-
linear equations need to be solved. To this end, Equation (3.33) is rewritten in the
standardized form suitable for numerical solvers:

Di,j,k(Un+1) = Ri,j,k(Un+1) + ctU
n+1
i,j,k +Ci,j,k = 0. (3.34)

Here, D is called the defect, and must equal zero in all grid cells. For the backward
Euler method, Equation (3.33), the constants ct and Ci,j,k take the values ct = 1/∆t
and Ci,j,k = −1/∆tni,j,k. However, this method is only first order in time.
Higher order methods can be constructed via a generalized Runge-Kutta scheme

with a number of s stages, which can be written as:

U
(q)
i,j,k = ∆tR

(
Un +

s∑
l=1

aqlU
(l), tn + cq∆t

)
,

Un+1
i,j,k =

s∑
l=1

blU
(l)
i,j,k.

(3.35)
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Each intermediate step U (q) has the coefficients a (s × s matrix), b (row vector of
size s) and c (column vector of size s), all of which can be visualized in a so-called
Butcher-tableau:

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
... . . . ...

cs as1 as2 · · · ass

b1 b2 · · · bs

. (3.36)

If the aql form a lower diagonal matrix (the values on the diagonal and upper right
half are zero) then the explicit case is recovered, and the system can be solved by s
successive evaluations of R, without the need to solve any non-linear equations.

In the general case where a is a full matrix, all the intermediate stepsU (q) are implic-
itly coupled. This means that a large non-linear system must be solved, and not only
for one set of conservative values, but for s sets. This requires a high computational
cost, as a large Jacobian matrix needs to be inverted at every time step.

A type of Runge-Kutta methods alleviates this problem by using Butcher tableaus
in which the upper right part are zero and the diagonal values are equal (a22 = a33 =
· · · = ass), except for the first diagonal element, which is a11 = 0. Therefore, the first
step is explicit, saving computational resources, while the method as a whole remains
implicit. This class of methods are called ESDIRK (Explicit Singly Diagonally Implicit
Runge-Kutta). In SLH , the following schemes are implemented: ESDIRK23 [Hosea
& Shampine 1996], ESDIRK34, ESDIRK46, and ESDIRK58 [Kennedy & Carpenter
2001], where the first number stands for the formal order of accuracy of the method
and the second is the number of stages. The Butcher tableaus of these methods are
shown in Miczek [2013, Annex B].
For implicit methods, the constraint for stability dictated by the CFL criterion is

lifted. In practice, however, the time step cannot be arbitrary large, as the physical
time scale of interest needs to be resolved. One possibility is to use the so-called
advective CFL condition [Miczek 2013, Section 5.3.1]:

∆t ≤ CFLu min
q∈{u,v,w}

∆x
|q|

. (3.37)

The sole modification to the original CFL criterion, Equation (3.29), is that only the
fluid speed |q| without the sound speed c is considered. A CFLu number of 1, means
that an advection wave will move approximately one cell per time step. Time steps of
that size will dampen the sound waves, but will resolve the advective ways properly.
This criterion is appropriate for applications with low Mach numbers, where sound
waves become irrelevant (see Section 3.2).

Additional source terms to the Euler equations beget processes, like thermal conduc-
tion or nuclear reactions, that evolve in different time scales than the sound crossing
time. Therefore, the criterion in Equation (3.37) alone does not necessarily impose
a sufficiently strict time step condition. To take account of the gravity source term
and the corresponding free-fall time scale, an alternative criterion was suggested by
Miczek [2013], labeled the CFLug criterion. It is in fact somewhat overly restrictive
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in the case of stellar atmospheres, which are anyhow close to hydrostatic equilibrium.
Nevertheless, it is useful also in the case of initial conditions with zero or near-zero
velocity, as is the case in our own simulations, where the advective CFL criterion
would yield a time step size that is larger than the age of the universe.

3.1.4. Boundary conditions

The time-marching methods presented in the previous section require for each of
the cell states Ui,j,k the information of their neighboring cells. The grid cells at the
limits of the numerical domain represent a special case, as per definition they lack
neighboring cells on at least one cell face. In addition, the finite volume schemes
defined by Equation (3.20) have the property to conserve the quantities U , except for
fluxes at the boundaries of the domain (and excepting source terms). Therefore, the
behavior of these cells needs to be treated with appropriate boundary conditions, in a
manner that adequately represents the physical scenario. Especially in the case of box
in a star simulations as our own, where the computational domain is located inside
a star. Lateral boundaries may or not take into account spherical symmetry, while
correct vertical boundaries are crucial for the stability of hydrostatic atmospheres.
One possibility is to add so-called ghost cells at the boundaries of the domain.

These are layers of cells around the domain, whose values are chosen to alter the
flux at the boundaries. Alternatively, the fluxes at the boundary cells can be altered
directly without using extra ghost cells. Then, the reconstruction schemes must use
one-sided interpolation.

Reflective boundary conditions act as a solid, non-transmissive, wall. To this end,
the ghost cells are filled with reflected states, in which the momenta components
mirror the momenta normal to the boundary. This way, after the reconstruction
step, the mass flux at the boundary is approximately zero. Unfortunately, not all
reconstruction schemes are able to ensure an absolute zero mass flux. In addition,
because the density and energy profiles at the boundary are also mirrored in the
ghost cells, this represents an unphysical situation in hydrostatic atmospheres.

Wall boundary conditions are also a zero-flux method, but they belong to the flux
boundary conditions. Here, the boundary flux function is modified so that the
momenta normal to the boundary interface are zero. The flux depends then
only on the wall pressure. This way, sound waves can exit the domain, but there
is zero mass flux.

Constghost or constant ghost cells, are filled at the start with values from the initial
conditions with zero velocity, but don’t change for the rest of the simulation. This
boundary condition allows for inflow and outflow, but generally the velocities
adjacent to the boundary are underestimated because of the zero velocity at
the ghost cells. Nevertheless, this method is well-suited to maintain hydrostatic
profiles without excessive artifacts.

Far-field condition, in which a background state of the fluid far-away from the do-
main is defined, which allows hydrodynamically consistent inflow and outflow.
However, this method cannot be used in hydrostatic atmospheres, where the
state (pressure and density) is a function of the height.
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In our simulations of classical novae, we used mainly the wall condition for zero
flux, and the constghost condition for inflow and outflow.

3.1.5. Coordinate systems and frames of reference

The derivation of the discretization techniques presented in the past sections assumed,
for simplicity, Cartesian coordinates. In practice, the discretized Euler equations in
SLH are implemented in general curvilinear coordinates: ξ, η, ζ. These coordinates
are transformed from a global Cartesian coordinate system:

x(ξ, η, ζ), y(ξ, η, ζ), z(ξ, η, ζ). (3.38)

These functions must be invertible and the second derivative of the transformation
must commute, but can else be arbitrary. This allows the grid cells, defined by the
coordinates of their nodes, to have arbitrary shapes. Skewed or contorted grids, such
as the cubed sphere, can be used to get around coordinate singularities of polar or
spherical grids. The details of the coordinate transformations can be found in Miczek
[2013, Section 3.1 and Section 3.3].
The fluid equations presented in this section are written in the Eulerian form.

That is, the quantities are treated as fields moving through a fixed coordinate system.
The velocity field u(x, t), for instance, is expressed by its value at a given position
x and a time t. The positions x are often (in structured meshes) discretized values
that are chosen according to a specific geometry. In the Lagrangian description, the
coordinates ξ move with the fluid particles – an infinitesimal volume of the fluid, still
many times larger than the mean free path. It is equivalent to tracking a fluid particle
as it moves through a streamline, its shape changing due to stress and motion. Then
the velocity U(ξ, t) refers to the velocity of this particle at time t. The Lagrangian
and Eulerian velocities are related by

U(ξ, t) = u (X(ξ, t), t) . (3.39)

The map X(ξ, t) gives the physical location of the particle ‘labeled’ by ξ. The La-
grangian coordinates

ξ =
∫ x

x0
ds ρ0(s) (3.40)

have the units of mass. ξ gives the total mass between x0 and X(ξ, t), and ξ1 − ξ0
the total mass of all fluid particles between them [LeVeque 2002]. When symmetries
exist in the system, they can be useful in the Lagrangian formalism. In a spherically
symmetric star that is undergoing pulsations, the radius is changing with time (an
Eulerian coordinate), but the mass enclosed within its outermost shell (a Lagrangian
coordinate) is constant in time. However, in the presence of convection, turbulence
or differential rotation, spherical symmetry is broken and the description becomes
simpler in the Eulerian formalism. For these reasons, the equations of stellar evolution
are more commonly expressed in Lagrangian coordinates, but our simulations of
convective flow are performed in an Eulerian grid.
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3.2. Low Mach number hydrodynamics

The use of approximate Riemann solvers in RAE schemes enables the efficient simu-
lation of fluid flow in a wide range of applications from engineering to astrophysics.
In the supersonic regime (M ≥ 1), they are able to capture shocks very accurately
within a few cells. On the other hand, the phases of stellar evolution in which we are
interested proceed in low Mach numbers (M ≈ 10−6− 10−1), where strong shocks are
absent. However, common Roe schemes become increasingly dissipative as the Mach
number decreases. In stellar plasma, where viscosity is assumed to play a negligible
role, numerical viscosity dominates over any kind of true physical viscosity, so that
an untreated solver smears out the true solution. Guillard & Viozat [1999] performed
an analysis of the asymptotic behavior of the dissipation term in the numerical flux
as the Mach number tends to zero, and found that the discretized equations have the
wrong scaling order when compared to the analytical result. The solution lies in the
use of flux preconditioning techniques.

3.2.1. Scaling of the fluid equations with low Mach numbers

The analysis starts with the non-dimensional Euler equations, where the physical
quantities are replaced by the multiplication of a non-dimensional factor and a global
reference value, e.g. for the density ρ:

ρ = ρ̂ρr. (3.41)

The hat denotes the dimensionless quantity, the subscript ‘r’ the reference value.
Replacing all quantities in the homogeneous Euler equations with such expressions
and canceling the reference quantities results in the non-dimensional fluxes:

F̂ =



ρ̂û

ρ̂û2 + 1
M2

r
p̂

ρ̂ûv̂

ρ̂ûŵ

û(ρ̂Ê + p̂)


, Ĝ =



ρ̂v̂

ρ̂ûv̂

ρ̂v̂2 + 1
M2

r
p̂

ρ̂v̂ŵ

v̂(ρ̂Ê + p̂)


, Ĥ =



ρ̂ŵ

ρ̂ûŵ

ρ̂v̂ŵ

ρ̂ŵ2 + 1
M2

r
p̂

ŵ(ρ̂Ê + p̂)


. (3.42)

Out of all reference quantities, the only one remaining in the system is the refer-
ence Mach number Mr = ur/cr, the ratio of the reference velocity to the reference
sound speed. To analyze the scaling of the equations with Mr, all quantities are
asymptotically expanded for Mr → 0 in powers of Mr, e.g for ρ:

ρ̂ = ρ̂(0) + Mrρ̂
(1) + M2

r ρ̂
(2) +O(M3

r ). (3.43)
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The expanded equations read:

∂tρ
(0) +∇ · (ρ(0)q(0)) +O(Mr) = 0

(3.44)

∂t(ρ(0)q(0)) +∇ · (ρ(0)q(0) ⊗ q(0)) + 1
M2

r
∇p(0) + 1

Mr
∇p(1) +∇p(2) +O(Mr) = 0

(3.45)
∂t(ρ(0)E(0)) +∇ · (ρ(0)E(0)q(0) + p(0)q(0)) +O(Mr) = 0,

(3.46)

where q is the velocity vector. The terms with negative powers of Mr must vanish
individually, in order for the equation to converge in the limit M → 0. This yields
two conditions:

∇p(0) = 0, ∇p(1) = 0. (3.47)

Therefore, the pressure is constant in space up to terms of order M2
r [Guillard &

Viozat 1999]:

p(x, t) = p(0)(t) + M2
r p

(2)(x, t). (3.48)

The equation of state is assumed to be that of an ideal gas. Expanding the non-
dimensional quantities in Mr in the non-dimensional equation of state yields:

p(0) = (γ − 1)ρ(0)E(0). (3.49)

A time-dependance of p(0) according to Equation (3.48) can only be imposed by source
terms or boundary conditions. If they are set as constant in the initial conditions,
then p(0) remains constant in space and time. With the EoS, Equation (3.49), and
the conditions Equation (3.47), the energy equation can be rewritten as:

∂tp
(0) + γ p(0)∇ · q(0) +O(Mr) = 0, (3.50)

and because of the temporally constant p(0), it holds:

∇ · q(0) = 0. (3.51)

Therefore, the velocity field must be divergence-free in the zero Mach number limit,
i.e., the incompressible case is recovered.
The expansion in Mr of the compressible Euler equations shows that the pressure

fluctuations scale with M2
r , see Equation (3.48). However, linear stability analysis of

the Euler equations (keeping terms up to order Mr) shows that sound waves with
arbitrarily small velocity fluctuations are also allowed solutions to the equations, at
arbitrarily small Mr [Miczek et al. 2015]. In sound waves, pressure fluctuations scale
linearly with Mr, i.e.:

p(x, t) = p(0)(t) + Mr p
(1)(x, t). (3.52)

Sound waves are not solutions to the incompressible Euler equations. Therefore, in
the M → 0 limit, the compressible Euler equations allow for two different solutions:
incompressible flows – with p ∝ M2

rp
(2) – and sound waves – with p ∝ +Mrp

(1) –
which decouple as the Mach number declines.
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3.2.2. Flux preconditioning

Miczek [2013] performed an alternative kind of analysis, based on the work of Turkel
[1999], to compare the asymptotic behavior of the analytical and discretized equations.
In this approach, the scaling with Mr of the individual matrix elements in the flux
functions is compared. The flux function from a Godunov-like scheme can be written
as

F1/2 = 1
2 (ALUL +ARUR −D(UR −UL)) , (3.53)

where A denotes the flux Jacobian matrix and D the upwind matrix. It referred to as
upwind, because the spatial derivative is one-sided, namely on the side from which the
information flows. This ensures that the numerical domain of dependence contains
the original domain of dependence of the PDE. The opposite case is called downwind,
which is unconditionally unstable. Therefore, the upwind term can be regarded as a
stabilizing term, equivalent in its effect to dissipation.
Transforming the terms in Equation (3.53) into the so-called primitive variables

V = (ρ, u, v, w, p)T makes the expressions simpler. Then, the non-dimensional flux
Jacobian matrix is given by AV = ∂V

∂U
∂F
∂U

∂U
∂V , and its individual elements scale as:

AV ∝



O(1) O(1) O(1) O(1) 0 0
0 O(1) 0 0 O( 1

M2
r
) 0

0 0 O(1) 0 O( 1
M2

r
) 0

0 0 0 O(1) O( 1
M2

r
) 0

0 O(1) O(1) O(1) O(1) 0
0 0 0 0 0 O(1)


. (3.54)

Applying the same analysis to the Roe scheme, Equation (3.24), reveals the asymptotic
scaling of the discretized flux Jacobian:

AV ,Roe ∝



O(1) O(Mr) O(Mr) O(Mr) O( 1
Mr

) 0
0 O( 1

Mr
) O( 1

Mr
) O( 1

Mr
) O( 1

Mr
) 0

0 O( 1
Mr

) O( 1
Mr

) O( 1
Mr

) O( 1
Mr

) 0
0 O( 1

Mr
) O( 1

Mr
) O( 1

Mr
) O( 1

Mr
) 0

0 O(Mr) O(Mr) O(Mr) O( 1
Mr

) 0
0 0 0 0 0 O(1)


. (3.55)

Clearly, the scaling behavior is significantly different in both cases. As the Mach
number tends to zero, the elements in the numerical Jacobian that scale as ∝ 1/Mr
grow faster than in the analytical case, and dominate over all other terms of the flux
function. The numerical dissipation becomes greater than the physical one.

A popular approach in the solution of steady-state flows is the use of preconditioning
matrices. These are specifically chosen operators that applied to matrices

A→ P−1A, (3.56)

reduce the stiffness of the system, i.e, they even out the eigenvalues of the new
matrix3. This operation speeds up the convergence to a steady state. Preconditioning

3In this context, a stiff system of equations is one where the ratio of the eigenvalues is large.
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can also be applied to time-dependent flows. In the case of the Roe fluxes, the upwind
matrix is multiplied by an appropriate matrix P . The term flux preconditioning is
used to distinguish this procedure from the preconditioning of linear system. The
flux-preconditioned Roe solver reads:

F1/2 = 1
2
(
F (UL) + F (UR)− (P−1|PA|)roe(UR −UL)

)
. (3.57)

Miczek [2013] found that the scaling of this modified Roe-Turkel scheme4 is signifi-
cantly improved, but still contains terms in the fifth column of the upwind matrix
which exaggerate the response of density and pressure fluxes to pressure gradients.
This is problematic for the simulation of stellar atmospheres, because the stratifi-
cation in stars has very large pressure gradients. Therefore, even small fluctuations
in pressure can lead to spurious fluxes. For this reason, Miczek [2013] proposed an
alternative preconditioning matrix:

PV =



1 nx
ρδMr
c ny

ρδMr
c nz

ρδMr
c 0 0

0 1 0 0 −nx δ
ρcMr

0
0 0 1 0 −ny δ

ρcMr
0

0 0 0 1 −nz δ
ρcMr

0
0 nxρcδMr nyρcδMr nzρcδMr 1 0
0 0 0 0 0 1


, (3.58)

where

δ = 1
min(1,max(M,Mcut))

− 1. (3.59)

The Roe fluxes preconditioned with the above matrix, christened Roe-Lowmach
scheme, have the asymptotic scaling:

O(1) O(1) O(1) O(1) O(1) 0
0 O(1) O(1) O(1) O( 1

M2
r
) 0

0 O(1) O(1) O(1) O( 1
M2

r
) 0

0 O(1) O(1) O(1) O( 1
M2

r
) 0

0 O(1) O(1) O(1) O(1) 0
0 0 0 0 0 O(1)


. (3.60)

This behavior is compatible with the scaling of the analytic flux Jacobian of Equa-
tion (3.54). Therefore, the numerical viscosity resulting form the upwind term should
be independent of the Mach number. A rigorous mathematical prove of the stability
is still missing, but numerical tests with the Gresho vortex [Liska & Wendroff 2003]
have shown the ability of Roe-Lowmach scheme to correctly handle low Mach number
flows (see Miczek et al. [2015]).

4The specific form of the matrix, as well as a more extensive discussion can be found in the PhD
thesis of Miczek [2013, Section 4.3]
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3.2.3. AUSM+-up

An alternative approach to the common approximate Roe solver was proposed by
Liou & Steffen [1993], motivated by the observation that convective transport and
pressure waves are different mechanisms, acting in distinct timescales. Hence, the
hydrodynamic fluxes (here exemparily in one dimension) are split into an advective
and a pressure part, thusly:

F =


ρ

ρu

ρH

u+


0
p

0

 = F (c) +


0
p

0

 , (3.61)

or concisely as

F = F (c) + P = ṁψ + P , (3.62)

with the definitions

ṁ := ρu, ψ := (1, u,H)T (3.63)

Here, H is the total specific enthalpy H = E + p/ρ. The convective term can be
considered as a set of passive scalars advected with the flow with a suitable velocity or
Mach number. The pressure flux terms, conversely, are associated with the acoustic
speed. Therefore, the discretization of the two parts is done separately.
The numerical flux is written analogously to the analytical flux:

f1/2 = ṁ1/2ψL/R + p1/2. (3.64)

The subscript ‘1/2’ indicates the interface, and ‘L/R’ the left and right states. The
aim of the method is to define an appropriate cell-face advection Mach number from
the values of the adjacent cells, and use the Mach number to determine the upwind
extrapolation of the convective variables. The specific method used to define the mass
and pressure fluxes is what distinguishes the different AUSM methods (AUSM [Liou
& Steffen 1993], AUSM+ [Liou 1996] and AUSM+-up [Liou 2006]). Very generally,
the mass flux will be written, in conformance to the idea of upwinding, as:

ṁ1/2 = a1/2M1/2

ρL if M1/2 > 0,
ρR otherwise,

(3.65)

where a1/2 is the sound speed at the interface. In Liou [2006], the interface Mach
number is, in terms of the left and right Mach numbers ML/R = uL/R/aL/R:

M1/2 =M+
(m)(ML) +M−(m)(ML) + Mp. (3.66)

The ‘split Mach numbers’M±(m) are polynomial functions of degree m(= 1, 2, 4). More
importantly, the pressure diffusion term Mp was introduced to improve the behavior
of the scheme in the low Mach number regime. It ensures pressure–velocity coupling
at low speeds.
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However, Miczek [2013] realized that the pressure diffusion term in the mass flux
suffers from the same vulnerability as the Roe-Turkel scheme for nearly-hydrostatic
flows. The term scales ∝ 1/M and the local pressure gradient. Such gradients are
an attribute of hydrostatic atmospheres, in which case the diffusion term generates
vertical mass fluxes. By setting the factor fa = 1 [Miczek 2013, Equation (4.3.25)], the
problem is removed. The new scheme is called AUSM+-Lowmach. In tests examining
its performance in low Mach numbers and the conservation of hydrostatic stability,
the scheme proved to be on a par with the Roe-Lowmach preconditioning.

3.3. Well-balancing

3.3.1. Checkerboard instability

The flux preconditioning methods presented in Section 3.2.2 solve the dissipation
problems typical of low Mach number flows. Inadvertently, they also introduce a side
effect. In simulations of atmospheres that are initially stable against convection, an
instability appears when using the preconditioned fluxes. It shows up as alternating
maxima and minima in various physical values. Due to its appearance, it is called
‘checkerboard instability’. An example is shown in Figure 3.1, which displays the
fluctuations in density from the horizontal mean, just 0.5 s after the start of one of
our 2D classical nova simulations. In a given time step, the amplitude is strongest at
the white dwarf-envelope interface, where the Brunt–Väisälä frequency has a peak. It
is also called bouyancy frequency, and is the frequency with which a fluid element in
a dynamically stable layer oscillates around its equilibrum position, as ∆r = ∆r0e

iNt.
It is defined as [Kippenhahn et al. 2013, Section 6.2]:

N2 = gδ

HP

(
∇ad −∇+ φ

δ
∇µ
)
, (3.67)

where the terms in the parenthesis correspond to those in the Ledoux criterion, see
Equation (2.18). This means that in layers where the criterion is not satisfied N2 < 0,
N is imaginary and a displaced fluid element does not oscillate but is propelled away.
Without flux preconditioning, in an atmosphere stable against convection, small

Mach numbers are present due to discretization errors, and in time they settle at a
small mean value. However, with preconditioning, self-amplifying modes grow expo-
nentially in time, leading to spurious motions with Mach numbers which also rise
exponentially, eventually surpassing the values of the untreated atmosphere without
preconditioning (see e.g. Figure 2.7 in Edelmann [2014]). Ultimately, the true solution
is destroyed by the instability. Miczek [2013] realized that this instability emerges
with every low Mach number scheme implemented, and also observed this instabil-
ity in simulations of hydrostatic stratifications in an unrelated code, Fire Dynamics
Simulator, designed for simulations of fire propagation in buildings. Therefore, it is
very unlikely that the instability stems from a bug in our program.

Edelmann [2014, Section 2.4] describes the checkerboard instability in more detail.
He suggests that the reason of the checkerboard instability is missing pressure-velocity
coupling in the preconditioned Roe schemes. That is, the four-field mode (or checker-
board mode) allowed by the preconditioned schemes are excited – possibly through
discretization errors at the cell boundaries or through source terms like gravity or
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Figure 3.1.
Horizontal density fluctuations in a 2D nova simulation at t = 0.5 s, before the start of convection.
A ‘checkerboard’ pattern is clearly discernible. The fluctuations are strongest at the interface (r =
5.5× 108 cm), where the Brunt–Väisälä frequency has a maximum. The fluctuations at this point reach
±0.1% (the colors are scaled to show that the checkerboard pattern reaches up to higher layers of the
envelope).

nuclear energy – at a faster rate than they would naturally damp down. One possi-
ble way to solve problems introduced by a gravity source term is well-balancing. A
method is said to be well-balanced if it is able to preserve the hydrostatic equilibrium.
Violations of HSE occur in many schemes at the discrete level, because the ρg source
term has a different discretization than the ∇p term. Therefore, an analytically hy-
drostatic structure will generally have ∇p 6= ρg in the discrete description. In the
next section, the well-balancing method of Cargo & Le Roux is presented.

3.3.2. The Cargo–Le Roux method

The original method was developed for the one-dimensional Euler equations with
gravity [Cargo & Le Roux 1994]:

∂t


ρ

ρu

ρE

+ ∂x


ρu

ρu2 + p

u(ρE + p)

 =


0
ρg

uρg

 . (3.68)

An additional variable can be defined, a potential q with the properties:

∂xq = ρg (3.69)
∂tq = −ρgu. (3.70)

The potential can be regarded for the moment to behave like a passive scalar, i.e. it
obeys a normal advection equation:

∂t(ρq) + ∂x(ρqu) = 0. (3.71)
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This equation can be simplified by applying the product rule and the conservation
law for mass, yielding:

∂tq + u∂xq = 0, (3.72)

which relates the Equations (3.69) and (3.70). Consequently, if the potential at the ini-
tial conditions fulfills Equation (3.69) and its evolution is dictated by Equation (3.71),
then Equation (3.70) is also satisfied.
The right hand side of the potential properties, Equations (3.69) and (3.70), are

precisely the inhomogeneous side of Equation (3.68). Inserting the terms into the
Euler equations thus:

∂t


ρ

ρu

ρE

+ ∂x


ρu

ρu2 + p

u(ρE + p)

 =


0
∂xq

−∂tq

 , (3.73)

incorporating the derivatives with respect to the same variable, and adding a zero,
0 = q − q, yields:

∂t


ρ

ρu

ρE + q

+ ∂x


ρu

ρu2 + p− q
u(ρE + q + p− q)

 =


0
0
0

 . (3.74)

A modified equation of state can be defined, with the modified pressure φ and total
energy per volume F :

φ = p− q F = ρE + q. (3.75)

The modified Euler equations have the same form as the original, homogeneous
equations, with the replaced pressure and energy:

∂t


ρ

ρu

F

+ ∂x


ρu

ρu2 + φ

u(F + φ)

 =


0
0
0

 . (3.76)

From the property Equation (3.69) and the equation of hydrostatic equilibrium,
∂xp = −ρg, follows that the potential q is the same as the original pressure p up to
a spatial constant. Therefore, the modified pressure in a hydrostatic atmosphere is
equally spatially constant. The Euler equations with gravity source term has been
recast back to a homogeneous, hyperbolic system. Therefore, the Riemann invariants
are the same as for the Euler equations. An atmosphere in near hydrostatic equilibrium
is close to an isobaric state in terms of the Cargo–Le Roux method. When solving
the system Equation (3.76) in SLH , the well-balancing property is preserved by all
implemented schemes when using pressure and density as the reconstruction variables.
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Extension to multi-D

The seemingly obvious extension to multiple dimensions of the potential equation
Equation (3.69) would be:

∇q = ρg (3.77)

However, necessary condition for the existence of such a potential, from the funda-
mental theorem of calculus and Stokes’ theorem, is:

∇× ρg = 0 (3.78)

Then, using ∇× g = 0 it follows that

∇× ρg = −g ×∇ρ. (3.79)

Therefore, q can only be defined if the density gradient ∇ρ is (anti-) parallel to
the direction of gravity. That is, there should be no lateral density gradients, as in
the spherically-symmetric case. Clearly, fluid motions in any direction are allowed
by the Euler equations, and particularly in convective regions, lateral variations of
temperature and density are natural.

Edelmann [2014] suggests the definition of an appropriate horizontal mean ρ0, such
that ∇ρ0 is indeed parallel to g, and hence a potential q can be found:

∇q = ρ0g. (3.80)

The equation of state is modified as previously. The resulting equations preserve some
of the advantageous properties of the 1D method. However, they are not entirely
equivalent, and the momentum components in the modified Euler equations contain
source terms of the form (ρ− ρ0)gi (for i = x, y, z), which correspond to acceleration
due to buoyancy. In this method, q is fixed in time. Therefore, if the densities start
to depart to much away from ρ0, the properties of the scheme are partially lost. A
possible solution is to regularly update the mean ρ0 (for details see Edelmann [2014,
Section 2.4.4])

3.3. Well-balancing • 55





4. Engineering a nova model

The origin of classical novae is binary stellar systems. Global parameters such as
the masses of both stellar companions and the orbital period determine the mass
accretion rate. The composition of the transferred material depends on the type of
companion. The macroscopic parameters of the whole system ultimately affect the
conditions at the bottom of the accreted envelope, the burning region, in which the
physical processes giving birth to the nova outburst take place. In order to perform
a multidimensional calculation of a nova explosion, the first deliberation revolves
around the stellar parameters: the kind of white dwarf (CO/ONe), mass of the white
dwarf and the nuclear composition of the accreted matter. Typically, the evolution of
the white dwarf under the influence of accretion is studied in stellar evolution codes
until hours or minutes before the final outburst. Multidimensional simulations start
from the mapping of such a spherically symmetric configuration to a 2D or 3D grid.
Therefore, the crucial part of multi-D nova modeling is the choice of an appropriate
model of the radial profiles of the white dwarf–envelope region.

To take the values describing the thermodynamical state of a stellar object obtained
through calculation from a one-dimensional Lagrangian code and adapt them for
use in multi-dimensional Eulerian code requires several steps. Attention to detail is
crucial to ensure consistency between the original model and its multidimensional
counterpart. Intuitively, one could take a one-dimensional scalar field –representing
any physical value of the star– along the radial coordinate and expand it across one or
two orthogonal dimensions to create a two or three-dimensional field, respectively. The
programmatic operation is trivial. However, the different nature of Lagrangian 1D and
Eulerian hydrodynamical codes means that their values must first be ‘translated’ from
one to the other. Lagrangian codes can capture very steep gradients, while Eulerian
codes tend to smooth them out. More importantly, the methods by which these values
are computed differ. For instance, if the equations of state differ, a stellar atmosphere
that was in hydrostatic equilibrium in the Lagrangian code will not necessarily be so
in the Eulerian case, due to differences in the pressure gradients that will not balance
the gravitational acceleration. Moreover, boundaries between regions where energy
transport is radiation dominated and convective regions can shift, as the Ledoux
or Schwarzschild criteria (Equations (2.18) and (2.19)) will not be met at the same
positions.

This chapter is structured as follows. In Section 4.1, we discuss the initial conditions
of the nova envelope models of Kercek et al. [1998], which form the template for our
models. In Section 4.2, we describe our own model-building procedure. A large part
of it concerns the spatial discretization mesh, a topic upon which we expand in
Section 4.3. With a particular set of simulations, we inspect the details of the core-
envelope transition and burning regions in Section 4.4. Section 4.5 briefly describes
some experiments with the code MESA.The susceptibility of the numerical solution
to boundary conditions, box size and perturbations is tested in Section 4.6.
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4.1. The Kercek Model

Kercek et al. [1998, 1999] performed 2- and 3D simulations of the thermonuclear
runaway in classical nova envelopes. In Section 1.2.2 their results were discussed in
the context of the historical progress of the study of novae. In this section we discuss
in detail their initial conditions, as they served as template for our own models.

The Kercek model consists of a 1 M� CO white dwarf with a hydrogen-rich envelope
accreted at a rate of 5× 10−9 M� yr−1 with solar composition in a stellar evolution
code. When the temperature at the bottom of the envelope reaches 1× 108 K in
the 1D model, the simulation is stopped. The star’s structure is given by the radial
profiles of density, temperature, pressure and the mass fractions of twelve nuclear
species involved in the CNO cycle. These are 1H, 4He, 12C, 13C, 13N, 14N, 15N, 14O,
15O, 16O, 17O and 17F. These are mapped onto a 2D grid of a modified version of
the code PROMETHEUS [Fryxell et al. 1989]. The code solves the hydrodynamic
equations together with a nuclear reaction network. The equation of state is that
of ideal Boltzmann gases of the nuclei, an electron gas component with arbitrary
degeneracy and a photon gas component. Heat conduction and magnetic fields are
ignored. The atmosphere is relaxed for several hundred dynamical time scales before
being mapped onto the full 2D grid. The simulation box spans 1000 km in the vertical
direction (several pressure scale heights), where the lower 100 km are the uppermost
layers of the white dwarf. Laterally, the domain spans a 0.1π arc of the white dwarf
circumference, approximately 1800 km. The curvature of the white dwarf is ignored,
the grid has a plan-parallel geometry in Cartesian coordinates. They performed two
simulations with equal initial conditions but different grid resolutions. In the first, 100
unevenly-spaced cells in the radial direction and 220 evenly-spaced horizontal cells
cover the domain. The second has a finer grid: 500 uneven radial times 1000 even
horizontal cells. The cells at the burning region have 5 km× 8 km and 1 km× 2 km,
respectively.

Even though the initial conditions were essentially the same in Kercek et al. [1998]
and Kercek et al. [1999] as in Glasner et al. [1997], their results stand in stark contrast.
Some differences were to be expected, as they employed different codes. However,
Kercek et al. obtain a much more modest enrichment of envelope than the Glasner
team. In a subsequent paper, Glasner et al. [2005] argue that the reason behind
the discrepancy is the boundary condition at the top of the simulation box. For a
runaway to occur, a critical pressure must be present at the bottom of the envelope
(Equation (1.7)). An inflow-outflow boundary at the top of the simulation box, as
implemented in the simulations of the Kercek team, allows mass to escape from the
domain, resulting in a gradual drop of pressure. The arbitrary-Lagrangian-Eulerian
scheme of Glasner et al. expands with the envelope, while preserving the pressure at
the burning region.

The next section illustrates in detail the modifications applied to the one-dimensional
model for appropriate use in our multi-dimensional code. In the first part, we explain
how we dealt with the distribution of nuclear mass fractions. Next, we explain the
integration of the hydrostatic equilibrium equation. In some cases, the integration
is performed twice: first to ensure that hydrostatic equilibrium holds throughout
the computational domain, and a second time to constrain convection only to the
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envelope.

4.2. The Würzburg Model

The initial conditions for our calculations are based on the Kercek model. Lacking the
actual numerical data, our model building procedure starts by digitizing the figures
of the paper Kercek et al. [1998]1. Radial profiles of temperature and density are
accessible. However, not all quantities needed to fully describe the atmosphere are
presented in the publication. Profiles of 12C, 14O, 15O and 17O are included in the
publication; for the remaining isotopes, we take several steps to fill the gaps and
obtain a sensible model. Our region of interest comprises the outermost layers of the
degenerate white dwarf and about 900 km of the accreted envelope. They are treated
separately, as they are quite distinct in composition and density.

4.2.1. Treatment of the isotopic mass fractions

In the envelope region (we define this to be above R ≥ 5500 km), we used the solar
composition values for the species not included in Kercek et al. [1998]. The elemental
abundances of the “solar-like” envelope used in KHT are the same as in Glasner et al.
[1997]; they used tables provided by Anders & Grevesse [1989]. The abundances used
in MESA stem from more recent data of abundances in the solar system by Lodders
[2003]2. Specifically, the mass fraction of 1H and 4He are X = 0.749 and Y = 0.237.
We want to preserve the profiles of the four isotopes mentioned above. These exhibit
some features near the burning region, which are traces of the nuclear activity of the
evolution of the model in 1D, up to the point where the simulation was stopped. Two
criteria must be fulfilled. First, the metallicity of the envelope is normalized to the
canonical Z = 0.02. Second, for each cell, the sum

∑
iXi = 1 must hold.

For the core, we assume mass fractions of 12C and 16O in equal parts. As in the
envelope, we want to preserve the profiles available from the Kercek paper. In a small
area 5500 km > r > 5498 km just above the interface, the mass fractions of 14O, 15O
and 17F from Kercek et al. [1998] exhibit some features stemming from the quiescent
burning stage prior to the runaway. These details are preserved. In the final step, all
mass fractions are normalized to 1.

4.2.2. Hydrostatic equilibrium

Once the mass fractions have been treated appropriately, all quantities needed for
describing the thermal state of the star are at hand. In general, after re-gridding
and interpolation steps, the stratification is not hydrostatically stable. To enforce
hydrostatic equilibrium (HSE), the equation

dp

dr
= −ρg (4.1)

1This is the reason we refer to the model as ‘Kercek’ and not ‘Glasner’.
2The elements H, C, N and O are highly volatile and incompletely condensed in meteorites. They are
also depleted at the solar corona through a fragmentation process. Therefore, only photospheric
data can be used for their abundance determination.
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must be integrated numerically. The density ρ and pressure are related by the equation
of state, so we rewrite the equation as

p′(r) = ρ (p(r), Xi(r), T (r)) gr(r). (4.2)

The vertical extension of the domain in our simulations is typically 1000 km, which
is ≈ 20% of the white dwarf’s radius. Over this distance, gravitational acceleration
can’t be approximated as being radially constant. We use a point-source square law
for the acceleration g acting on each radial shell. Temporally constant gravity is an
acceptable approximation because the free-fall time scale during a nova event is much
larger than the nuclear time scales and the typical time scales of our simulations,
which is in the order of minutes.

Equation (4.2) can be solved numerically for p if an initial value p0 and the profiles
of Xi and T for each cell are given. Alternatively, one can use the specific entropy s
instead of T as the given variable. Also, if the density ρ is known, p can be calculated by
numerical integration. When performing these operations, only the ‘given’ quantities
will remain identical to the original data, while the rest are derived from the EOS
and the hydrostatic equilibrium.

First integration

In classical novae, where the nuclear energy rate from the CNO cycle is extremely
sensitive to temperature variations, (see Figure 4.6), it is of critical importance to
capture the peak of the temperature profile. It lies at the base of the envelope. For
this reason, when integrating Equation (4.2), we choose the temperature to be the
fixed variable. The density is then derived from the EOS, but the nuclear energy
rate is less dependent on density, so the difference between integrated model and the
original data will be smaller.

Second integration: definition of the convective boundary

A common characteristic of nova models is the strict boundary between the envelope,
which at the stage of the mapping from 1D to multi-D is fully convective, and the
surface layers of the white dwarf, which according to 1D models energy transport is
radiative.

A stratification is said to be radiative if it fulfills the Ledoux criterion (Section 2.1.2,
Equation (2.18)), convective otherwise. This criterion can be rewritten in terms of
the Brunt–Väisälä frequency as N2 < 0. Analyzing the Brunt–Väisälä frequency
after the first HSE integration, we find that the situation is not clear-cut across the
interface. The envelope displays alternating stable/unstable layers, where we would
expect one homogeneous layer of convective instability (see Figure 4.1, panel (a)). In
some cases, N2 becomes negative also in parts of the white dwarf, where it ought to
be free of convection. Panel (b) shows a snaphot of a simulation that initiated from
an atmosphere with such an alternating stratification. Convection arises in disjoint
layers that do not merge with time. The eddies remain small (smaller than a pressure
scale height) throughout the length of the run, and with small velocities. The results
are slow cross-boundary mixing and a paucity of white dwarf 12C in the envelope,
which does not lead to a runaway in the simulated time of a few hundred seconds.
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To solve this problem, we solve Equation (4.2) again, this time with the specific
entropy s from the last step as the given variable. By setting the entropy in the
envelope as a constant, slightly superadiabatic gradient ∂s/∂r, we aim to ensure that
the buoyancy frequency is negative throughout the envelope. Conversely, the gradient
in the white dwarf should be radiative. The results from this procedure are not always
predictable, and some patience is needed to fine-tune the temperature and entropy
profiles until the desired result is obtained; hence the term ‘stellar engineering’. An
improved stratification, where N2 < 0 is constrained to the base of the envelope, is
shown in panels (c) and (d).
In a discrete atmosphere, the balance of both sides of Equation (4.1) will seldom

be exact. Deviations from perfect equilibrium are especially large at the convective
boundary, where the density changes in a small region by one order of magnitude.

One aspect omitted in the previous paragraphs, but also implicitly present in Equa-
tion (4.2), is the discretization of the radial coordinate r. The spatial discretization
in curvilinear coordinates Equation (3.38) allows for a flexible definition of meshes
by the coordinates of cell centers or cell nodes (‘corners’). This mesh remains fixed
in time, as our code includes neither adaptive mesh refinement nor a moving grid at
the time of this writing. Therefore, the shape of the grid must be chosen carefully. It
turns out that the specific way in which the spatial grid is defined and the subsequent
integration of the HSE equation along this grid is the single most difficult step in
our modeling procedure. While the definition of a prescription for the cell radii is a
menial task, the strong change of all important physical quantities across the white
dwarf–envelope boundary makes the effects of the discretization particularly laborious.
Therefore Section 4.3, is dedicated to this regard, explaining some alternatives and
pointing out possible pitfalls.
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Figure 4.1.
Panel (a) shows the entropy profile in red resulting from the first hydrostatic equilibrium integration.
The shaded blue regions signal the strata that are unstable against convection. In this case, some regions
almost at the uppermost end are also convectively unstable at the start of the simulations. (b) The result
are disjoint convective layers that do not merge, the eddies at the burning region do not grow and the
velocities are small. (c) The profile from the upper panel is straightened slightly to restrict convection to
a few layers above the star-envelope. (d) The convective eddies resulting from this initial configuration
ultimately fill up the whole box and achieve higher velocities.
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4.3. The spatial grid

The differential equations that govern the flow must be solved on a discrete grid with
a finite number of cells. A physical scenario with complete isotropy, per definition,
does not require a mesh with a singled-out axis. On the other hand, in box in a star
simulations where a concrete region of a star is calculated in a computational box of
finite volume, the radial axis of the star is a clear reference axis. In our specific case
where we study a stellar region with a convective boundary, the radial coordinates
of the grid cells sampling this boundary acquire a particular importance. Consider
two hypothetical cases where the vertical extension ∆r of a volume centered around
the core-envelope interface is sampled with a number nr of equilateral cells in one
grid, and the cell centers are shifted by a small and arbitrary amount δr in a second
grid. Our experience shows that the results will be in general significantly different.
This was noted by Krueger [2012]. The large effect of the grid radial coordinates
is due to several issues. First, the large density and composition jump across the
star-envelope boundary means that interpolating from a stellar evolution model onto
a hydrodynamic grid, where the former in general has many times the number of cells
than the latter, will inevitably create some aliasing effects when interpolating. This
in turn strongly affects the calculation of the hydrostatic equilibrium discussed in the
last section. The second issue concerns the very steep dependence on temperature of
the energy generation rate of the hot CNO cycle. In the case in which the hydro grid
does not sample the peak of the temperature profile of the initial model appropriately,
the cells around the peak will have values different from the initial model. Due to
interpolation effects, particularly noticeable in discontinuous data, the shape of the
peak becomes distorted, so that the peak position is shifted to neighboring cells.
Because we integrate the HSE with the temperature as the given value, this effect
propagates to the entire stratification. A third issue involves the spatial position of
the point where the integration of the hydrostatic equilibrium starts. These issues
are explained in detail in the following paragraphs.

When the resolution of the grid is increased (the cell size is reduced and the number
of cells in the domain increased), the spatial discretization errors become smaller. With
increasing resolution, these errors should should asymptotically approach zero and the
numerical solution, ideally, approaches the true physical solution. Figure 4.2 shows
the density profiles of two nova setups, where one grid has twice the vertical resolution
of the other. In an ideal situation, both curves should fall on top of each other. In a
logarithmic scale, almost no difference is observable. However, a detailed inspection
reveals significant differences. The grid with resolution nr = 512 has a consistently
higher density ρ both in the core and envelope sections. The difference between the
profiles suffice to make them not physically equivalent; the dynamics and energetics
resulting from them will be not only different because of the numerical resolution, but
also for physical reasons. In a comparison of both simulations, it becomes challenging
to distinguish between numerical and ‘real’ physical effects. The profiles shown in
Figure 4.2 are from two of our simulations. The origin of this defect went undetected
for some time. The reason lies in the subtleties in which the sampling points for the
grid are defined.
Let the typical height of our simulation boxes be ∆r. One can distinguish two
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Figure 4.2.
Density profiles of initial conditions of the same atmosphere, in two resolutions. Modifying the resolution
shouldn’t affect the profile’s shape. The marginal shift of the bottom cell’s center r0 without correcting
for the density results in small but critical differences at the burning region and envelope.

ways of specifying this length. For one, it can be defined as the distance between the
lower boundary of the deepest cell and the upper boundary of the highest cell. In this
approach, the cell faces of the lowest and highest cells f0, fnr−1 are fixed – their cell
centers are not – when the number of cells are doubled: n′r = 2m×nr. This kind of grid
was implemented in our initial runs, in which we tested the sensitivity of the solution
to the boundary conditions. In that case, the distance between the boundaries ∆r
should be equal when comparing different setups (see Section 4.6.1). The disparity in
the models in Figure 4.2 lies at integrating the hydrostatic equilibrium starting from
the bottommost cell, while taking the same initial density ρ0 from the original model
in both cases, despite the fact that the radii r0 –the cell centers– are not identical,
as shown in Figure 4.3. An alternative approach is to define the grids by fixing the
boundary cells’ centers, r0, rnr−1, of the extreme cells instead. In this case, doubling
the resolution keeps the cell center r0 intact.

The ideal discrete grid should have fine enough cells to resolve the smallest scales of
the physical processes one intends to simulate. Diffusion across a chemically inhomo-
geneous boundary operates in microscopical scales that are many orders of magnitude
smaller than the size of the computational box. Shear flow-induced Kelvin-Helmholtz
(KH) instabilities, on the other hand, can be resolved. According to Chandrasekhar

64 • 4. Engineering a nova model



∆r

Fixed cell faces Fixed cell centers

(a) (b) (c) (d)

MESA SLH

(e) (f) (g)

Figure 4.3.
Schematic of possible grid prescriptions. The typical vertical size of our simulation boxes is ∆r. (a,b)
Doubling the resolution while preserving distance between the extreme cell faces as ∆r displaces the
cell center of the bottommost cell. (c,d) Alternatively, defining ∆r as the distance between the extreme
cell centers makes the integration from the bottom consistent. (e) The grid in stellar evolution codes is
irregular. (f,g) The grid in the hydro code must capture the peak source shell temperature of the 1D
model.

[1961], the minimal unstable wavelength to the KH instability is

λinf = 2πα2(U1 − U2)2

(α1 − α2)g , (4.3)

where the two indices indicate the white dwarf and the envelope, respectively. The
αi are

α1 = ρ1
ρ1 + ρ2

, α2 = ρ2
ρ1 + ρ2

, (4.4)

the Ui are the transversal velocities and g the gravitational acceleration. Glasner et al.
[1997] found a value of λinf = 5km for their simulations. The smallest cells in the
grid of Kercek et al. [1998] had a size of 1 km× 2 km. We aim to resolve comparable
scales.
We are typically computing models with grid cell numbers nr × 2nr, with nr =
{256, 512, 1024}. A simulation box of size L × 2L, with L = 1000 km would require
1024× 2048 grid cells to resolve λinf = 1km. The explicit timestep is limited by the
CLF criterion, which scales also with the cell size ∆x:

∆t ≤ CFLuc min
q∈{u,v,w}

∆x
|q|+ c

. (4.5)

With the sound speed at the base of the envelope cs ≈ 1.5× 108 cm s−1 and grid cells
with ∆x = 1× 105 cm (radial resolution nr = 1024), the timestep is ∆t ≈ 3× 10−4 s.
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It takes approximately 200 s for the TNR to develop. This is also about the same
time scale of a full CNO cycle. Ideally, a simulation should run for at least two cycles.
A simulation of 500 s duration would require 15million time steps. Running multiple
simulations to test the effect of the many numerical and physical parameters that
can affect the solution becomes very expensive. One option may be to reduce the
resolution when performing only tests. In our case this is not a solution, as large cells
affect very strongly the flow at the interface and, as numerous runs showed, often
lead to undesirable results (negative energy or density).
The burning region lies at the base of the envelope; the onset of convection and

mixing occur at the region around the interface. Therefore it is reasonable to resolve
that region with finer cells and sample the regions farther away from it with larger
cells. This is the idea behind the radially ‘uneven mesh’, whose cell sizes are computed
according to the following derivation.
Consider two neighboring grid cells i and i + 1, the latter standing farther away

from the interface cell i0. The cell i+ 1 will have a slightly larger height than i, thus
dri+1 = (1 + α)dri, with some α > 1 yet to be derived. Let the height of the cell i0
at the interface be dr0, then the height of the ith cell must be

dri = (1 + α)i−1dr1. (4.6)

If r1 is the radius at which one starts the grid spacing and r2 is the upper boundary,
then r2 is reached from r1 after summing over the heights of n cells:

r2 = r1 +
n∑
i=1

dri = r1 + dr0

n∑
i=1

(1 + α)i−1

= r1 + dr0
1 + α

n∑
i=1

(1 + α)i

= r1 + dr0
1 + α

(
1− (1 + α)n+1

1− (1 + α) − 1
)
.

In the last step, the geometric series was applied. Finally, rewriting r2− r1 as ∆r and
simplifying yields

∆r
dr0

= −1− (1 + α)n

α
(4.7)

Thus, with a fixed ∆r, a given number of cells n and an initial (smallest) height
dr0, one can solve Equation (4.7) for α and the height of every cell is then given by
Equation (4.6).
Assuming a uniform grid and a computational domain of 1000 km height in the

vertical direction, the smallest scales that can be resolved with nr cells are listed in
Table 4.1. A visualization of this is given in Figure 4.4. It shows the cell height of
various grids in an area around the interface. The horizontal lines are the cell sizes for
grids with uniform, equilateral cell spacing, with nr = 256, 384 and 512. To understand
the scatter plots showing the non-uniform grid, further explanation is needed. The
white dwarf’s outer layers take up the bottom ≈ 12% of the computational domain.
For a coarse resolution of nr = 256, this corresponds to the bottom ∼ 31 cells. If we
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Figure 4.4.
Cell sizes in the uneven grid in the echo setup using Equation (4.6). The cells become progressively
smaller as they approach the interface (vertical line). Details in the text.

wished to resolve the envelope with a finer discretization than the core, based on the
observation that the fluid motions are much faster in the envelope, we could choose to
increase the total number of cells, but leave the cell number on the core around 30, as
in Table 4.1. The resulting cell sizes are the scatter plots in Figure 4.4. The area close
to the interface (vertical line) is more finely resolved. Consequently, the areas close to
the bottom and top boundaries have larger cells than they would in an evenly spaced
mesh. Increasing the number of cells from 256 to 512 while assigning only 30 cells
to the core allows us to resolve the burning region with even higher precision. We
performed several test runs with these parameters, the echo runs, listed in Table 4.2.
This stands in contrast to the distribution of cells between core and envelope in
the Glasner and Kercek simulations, where the core has a higher cell density than
the envelope. Experience shows that strong gradients where the density changes by
one order of magnitude should be resolved with at least 10 cells (Rüdiger Pakmor,
personal communication). In hindsight, it appears more reasonable to dedicate more
cells to the core than the envelope.
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Even spacing Uneven spacing
nr ncore nenv dr0 ncore nenv dr0

256 30 226 3.91 32 224 3.13
384 —a —a 2.60 32 352 2.01
512 55 457 1.95 30 482 1.56
1024 111 913 0.98 —a —a 0.78

Table 4.1.
Smallest scales resolved with two different prescriptions for the grid. aSimulations
that were not actually performed.

Nevertheless, let’s entertain the echo for the next discussion. With a small, fixed
dr0 in Equation (4.7) at the core-envelope interface, one forces the desired resolution
where it is most important. In practice, with a computational box of fixed horizontal
width of the box, the horizontal resolution cannot be completely neglected. Varying
cell height dr and constant cell width r dφ means the cells change their aspect ratio
as their distance from the interface increases. Cells whose aspect ratio depart too
much from ar,φ = dr/(r dφ) ≈ 1 have different numerical viscosities along their two
axes. It also means that convective eddies, which in two dimensions are approximately
circular, will be better resolved in one direction than the other(s), and thus more
quickly distorted by the rectangular form of the cells and the anisotropy of the
viscosities. Let the horizontal width of the box3 be W = 800 km. In test run (a), we
force dr = 1km at the interface. With 256 × 256 cells and equidistant horizontal
spacing dφ, it amounts to r dφ = 3.125 km. In a second test, (b) the minimal cell
height at the interface ri is chosen so that ar,φ ≈ 1. Figure 4.5 shows the Mach
numbers in two simulations with meshes according to these prescriptions, at t = 23 s.
In case (a), allowing the cells at the interface to be arbitrarily thin results in radially
elongated cells in the envelope, ar,φ � 1. The convective eddies become deformed
and the velocities in the vertical fluxes are disproportionately high. Case (b) shows a
flow similar to a grid with equilateral cells. The eddies remain approximately circular
and no excessive Mach numbers develop.

Despite all of the above considerations, one final issue is missing. Resolving the peak
of the temperature as given by the initial model onto the hydro grid is of paramount
importance [Krueger 2012]. The “clipping” of the temperature peak by choosing an
inappropriate sampling not only lowers the value of the maximum temperature, but
it also shifts its radial position, altering the stratification of the upper atmosphere.
Therefore, the grid must be chosen so as to capture the temperature peak in the cell
center of a given cell and constructing the rest of the cells around this key cell. This
method was proposed by Zingale et al. [2002] and is presented in the next section.

3In the echo simulations we chose a box with similar dimensions to that of Casanova et al. [2011],
both to be able to compare to their 3D runs and to reduce the cell width dφ
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Figure 4.5.
Two simulations with uneven radial cell spacing according to Equation (4.7), at t = 23 s. (a) Arbitrarily
thin cells at the interface make the cells at the envelope vertically elongated and the velocities in the
radial direction are magnified. (b) has ‘equilateral’ cells at the interface. The maximum Mach numbers
are Ma = 0.42 and Ma = 0.17, respectively.
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(Left) The cell sizes of the Langrangian grid in the evolution code MESA, compared with a uniform
grid in SLH . In the transition region and especially at the base of the envelope (red area) the MESA
grid has very fine cells. (Right) The sensitivity of the nuclear energy rate to temperature and density at
the burning layer in the MESA model. When interpolating, even a 1% deviation from the initial model
create large errors (≈ 10%) in the resulting nuclear energy generation rate.
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Simulation nr ncore nenv Resolutiona (km)

Dp256 256 32 224 3.91
Dp512 512 64 448 1.95
Dp1024 1024 128 896 0.98

Ep256 256 32 224 3.13
Ep384 384 32 352 2.08
Ep512b30 512 30 482 1.56
Ep512b40 " 40 472 "
Ep512b50 " 50 462 "
Ep512b60 " 60 452 "

Glasner et al. [2005] 180 130 50 —b

Glasner et al. [2007] 113 22 91 1.4
Glasner et al. [2012] —b — — 1.4

Table 4.2.
The number of cells in the literature and our own simulations. a The resolution of
the smallest cell at the interface. b Not specified in the source.

4.3.1. Improved integration of hydrostatic equilibrium

Zingale et al. [2002] performed an extensive study of many issues regarding the
mapping of one-dimensional models to multi-dimensional codes, including the choice
of proper boundary conditions and restoring hydrostatic equilibrium after a re-gridding
step. In one test case the authors investigated a model with similar characteristics to
ours: a neutron star star accreting H and He until it has formed a fuel layer on top,
which ignites into a TNR. This layer is much more compact than on a white dwarf
because of the deeper gravitational well of neutron stars. The model was evolved in the
one-dimensional code KEPLER [Weaver et al. 1978], and stopped shortly before the
runaway. The composition change is abrupt between the dense neutron star matter
and the H/He layer, as is the density jump. The Lagrangian grid is irregular and
denser than the Eulerian grid that would be used in the multi-dimensional FLASH
code, so the data must be re-gridded and interpolated, just as in our case. Because the
EOS in KEPLER and FLASH differ, the thermodynamic variables must be updated.
They find a difference in the values of less than 1%. The particular characteristic
in this and our model is the strong density and composition jump at the region of
interest. When hydrostatic equilibrium is recalculated after the re-gridding step, a
point in the model must be chosen, where ρ, T and Xi remain fixed variables and
the integration is performed outward from there. In the last section, we discussed
that the location of this point must be consistent when resizing the grid. In the cases
shown in Figure 4.2, we always integrated from the lowest cell (including ghost cells)
upward (recall also Figure 4.3). [Zingale et al. 2002, Fig. 9] shows an example of
a similar procedure. Because of the differences in the EOS between the codes, the
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disagreement between the original model and the newly integrated model propagates
upward with the integration, and is especially strong across the star-fuel discontinuity.
The density of the envelope is then significantly lower than in the original model. The
alternative is to start the integration at the core-envelope transition, they chose the
cell at the bottom of the fuel layer. Integrating outward from there keeps the area
just below and above the interface fairly close to the original model, and the greatest
differences are at the bottom and top boundaries, which should affect the results to
a lesser degree. In the most recent version of our model builder, we center the grid
around the peak of energy generation [Krueger 2012] and start the integration at the
interface [Zingale et al. 2002], thus profiting from the benefits of both methods.

4.4. Behavior of the core-envelope transition

The last section covered the several details of the spatial discretization needed for
our nova simulations. In this section, we analyze a particular subset of them, with
an emphasis on the quantities at and around the core-envelope transition and the
burning region. An overview of the evolution of our modeling procedure is given in
Table 4.3. In this section, we deal primarily with the delta runs.

For our preliminary test runs, we chose a radial resolution of nr = 256. As we
worked toward higher resolutions in search for convergence, our analysis showed the
discrepancies illustrated in Figure 4.2 and thoroughly discussed in the previous section.
No convergence was found. Instead, with finer gridding, the flow develops lower
Mach numbers, lower peak temperatures and slower dredge-up efficiencies. The reason
behind this is investigated in the next paragraphs.
Figure 4.7 shows the crucial quantity for the dynamics and nucleosynthesis of

the TNR, the nuclear energy generation rate ε̇nuc for three simulations of increasing
resolution: Dp256, Dp512 and Dp1024. At the start of the simulations, the energy rate
is higher in the more finely resolved simulations. This difference is owed to sampling
error of the temperature peak. The relevant question is how these differences in the
initial conditions will affect the outcome of the simulation. In the first dozen seconds,
the energy generation drops quickly in all three cases. They fall with practically the
same slope (in a log scale) for the first ∼ 101 seconds. Afterward, energy generation
recovers and rises steadily for Dp256 and Dp512. The run with the coarsest resolution
develops the highest energy rates. In Dp1024, ε̇nuc reaches a plateau and falls again.
We expect that the curve would rise again in time, if the simulation were to continue.
The simulations with higher resolution were not run for much longer times due to
time constraints. At this stage, it seems puzzling that the simulation with the initially
highest ε̇nuc should exhibit the least violent burning.

Figure A.1 (in Appendix A) shows the time evolution of four key values of the run
Dp256 in a small region around the WD-envelope transition. Time points to the right
along the abscissa. The ordinate is the radius in units of RWD. For each t and r, the
averages of all cells in horizontal direction of a physical value is plotted. We define
the lateral average of the quantity q as

qavg(y, t) = 〈q(x, y, t)〉x (4.8)
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Generation Description

alpha Proof of concept
Test of boundary conditions, box size, resolution

bravo Digitized Kercek et al. [1998]
Tests of perturbations

charlie
Control BV-frequency: correct interpolation and mapping 1D → 2D

delta

echo Uneven vertical grid cells, finer at the burning region
3D simulations

foxtrot Using Zingale et al. [2002]

Table 4.3.
Outline of the simulations performed in the scope of this work. In Chapter 5, we
mainly discuss simulations from the delta generation. The 3D simulations belong to
the echo generation.

in Cartesian coordinates, or equivalently in polar coordinates:

qavg(r, t) = 〈q(φ, r, t)〉φ. (4.9)

The first panel shows the nuclear energy generation rate: In the initial conditions, the
energy rate is at its highest value ε̇nuc = 4.4× 1013 erg g−1s−1 or ε̇nuc = 1.3× 1016

erg cm−3 s−1 at the bottom of the envelope. This small point is barely noticeable in
the heatmap. Already in the first computed timestep, ε̇nuc drops to a fraction of the
original rate. It rises steadily afterward, but never reaches the initial values. In the
initial condition, the nuclear energy rate is high in the whole of the envelope, but
for the rest of the simulated time, the burning is restricted to a thin layer in the
envelope’s bottom. The second panel shows the difference between the current and
the initial temperature, ∆T = T (t)/T0 − 1, in percent. With the onset of convection,
the hot matter at the burning region streams up with the convective eddies and heats
up the envelope. Also evident is a strong cooling of the white dwarf’s upper layers
(the values are even lower than −4%, but the color scale in Figure A.1 was chosen so
as to not lose sight of the warming in the envelope). The green diamonds pinpoint
the location of the peak of nuclear energy rate (the maxima in the upper panel). All
throughout the simulation, the burning zone lies in a region of lower temperature than
initially, possibly explaining the radical drop in ε̇nuc. The WD-envelope transition
has wandered a few cells upward. The next panel shows ∆ρ = ρ(t)/ρ0 − 1 (again in
percent). We observe that burning is taking place in a lower density region. Finally,
the metallicity enrichment is shown in the last panel. At time t = 120 s, the mean
metallicity in the envelope has risen to ZCNO ≈ 0.04 from the initial 0.02.

A more practical way to analyze the state of the nova is by looking at the evolution
of its radial profile in ρ–T space. For every radial shell r, the averages ρavg(r, t0) and
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Figure 4.7.
(Left) Average of nuclear energy generation rate ε̇nuc in the envelope, for the delta simulations. Initially,
the rates are larger for the finest mesh with nr = 1024. After a turning point around t = 20 s the relations
are inverted and the coarsest mesh, nr = 256, develops the highest values. (Right) The pressure at the
base of the envelope Pb as a function of time, for the simulation Dp256. Within the 240 s of simulated
time, the pressure has dropped by approximately 20%.

Tavg(r, t0) are calculated and marked as points in ρ and T . Figure 4.8 shows the
profiles of the three runs with increasing resolution in such a diagram, for the initial
conditions at t = t0. In each profile, three segments are clearly recognizable. Starting
from the right, with the highest densities and (comparably) lower temperatures, is the
white dwarf matter. The sharp rise in temperature and fall in density characterizes the
star-envelope boundary. In the accreted envelope, density and temperature fall mono-
tonically. Recall that in these simulations, when calculating HSE, the temperature is
fixed for each grid cell and the density is calculated from the EOS (see Section 4.2.2).
Therefore, when comparing nearby sections of the curves, points along an isothermal
are also at the same radius on the grid. There are systematic discrepancies in the
envelope and core among all three setups: the density is consistently lower in the
coarser meshes. These differences are stronger at the interface. Panel (b) shows a
detail around the peak of temperature. The small jump in temperature stems from the
ignition perturbation applied to the cells just above the interface. The scatter points
are color-coded to visualize the strength of nuclear burning. It is clearly observable
that more energy is released in the finer resolution meshes, due to the higher densities
at equal temperatures, in part explaining the trend seen in Figure 4.7.

Figure 4.9 again shows the nova models in the ρ–T space, focusing on the core-
envelope transition. To observe their evolution in time, we track the position of the
two most important layers: the layer of maximum temperature –sometimes called the
maximum shell source temperature and the layer of maximum nuclear energy release
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Figure 4.8.
Initial thermal state of the atmospheres in the delta runs. (Left) For each radial row in the grid, the
mean density is plotted against mean temperature, Equation (4.9). In this ρ–T space, the stratification
shows a characteristic Z-shape. The lines with positive slope correspond to the envelope and white dwarfs
respectively, while the section with ∂T/∂ρ < 0 corresponds to the transition region. There, the differences
between the initial conditions of the three runs is more evident. The (right panel) figure shows a detail
around the bottom of the envelope. The rate of nuclear energy generation is superposed as a scatter plot;
the color scale indicates the magnitude.

(burning shell):

Tss = max (Tavg(r, t)) (4.10)
ε̇bs = max (ε̇nuc,avg(r, t)) . (4.11)

These layers are shown with orange and blue markers, respectively. The opacity
visualizes the change in time, darker meaning later time steps. The first and last
states of the atmosphere are drawn for reference as dashed and full black curves,
respectively. The five-pointed stars pinpoint the first and last ρ-T coordinates of the
burning zone. In the simulations Dp256 and Dp512, we recognize a similar general
trend: the interface and envelope drop in density; for Dp1024, density rises at the
interface. Most important is the observation that the burning shell ε̇bs generally does
not coincide with the point of Tss. They are only identical for the initial conditions
(golden star), yet generally the burning zone lies at lower temperatures and higher
densities, a few layers deeper into the white dwarf. Instants after the start of the
simulations, the burning zone shifts to significantly lower layers with T = 0.8× 108 K
and progressively moves to higher T and lower ρ. We will see that this drop is not
owed to a shift in pressure equilibrium, but due to the swift consumption of particular
nuclei as fusion fuel. From the atmospheric profiles it is evident that the area in ρ-T
space between the initial and final states drops as resolution rises. Also, the path that
the burning shell ε̇bs traverses through this space is simpler in the higher resolution
cases. In Dp256, it moves along a jagged curve up until almost merging with the point
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of maximum temperature, explaining the overall increase in ε̇nuc for this run. Dp512
displays an oscillating burning zone that almost reaches Tss, but seems to converge
at slightly lower temperatures. Dp1024 shows much quieter behavior. The burning
zone drops instantly to (ρ, T ) = (500 g cm−3, 0.8× 108 K) and steadily moves upward
again, never reaching such high temperatures as Dp256 in roughly the same simulated
time.
The upper boundary of the computational domain in the delta and echo runs

allows for outflow. An initial guess for the reason behind the quiet burning was pressure
loss due to mass loss through the upper boundary, seen in Figure 4.7. However, the
mass loss and drop in pressure are stronger for the coarsest mesh. Therefore, the
outflow through the boundary cannot explain the lower convective efficiency. So far
we have considered density, pressure and temperature. The remaining two factors
which play a role in the CNO-burning cycle are the amounts of fuel X(1H) and of the
catalyzing nuclei ZCNO (Section 2.2.3). Indeed, the reason behind the sudden drop of
ε̇nuc in the first seconds of our simulations is due to the fast consumption of 15N in
just fractions of a second. The reaction 15N(p, α)12C was responsible for most of the
energy release in the initial conditions. We defer the discussion of nuclear reactions
to the Results chapter (Chapter 5).
The power of the nova flash depends strongly on the amount of 12C available in

the burning zone. As the CNO elements are being consumed, a continuous supply of
12C must come from the white dwarf to sustain the TNR. Some sort of ‘dredge-up
efficiency’ must be responsible for the flow of 12C into the envelope and therefore
for the success of the nova flash. We are interested in the factors that influence this
efficiency.
Consider Figure 4.10, which shows the various contributions to the Brunt–Väisälä

frequency N2. In Section 4.2.2 and Figure 4.1, we explained that in the second
integration of hydrostatic equilibrium, we constrained N2 < 0 to the bottom of the
envelope. Figure 4.10 shows that N2 is indeed negative around that region, even if not
exactly at the same position across the three simulations. More importantly, the value
of N2 is much lower for the coarser resolutions. This is due to the integration errors
explained in Figures 4.2 and 4.8. Specifically, the adiabatic gradient∇ad is consistently
higher for higher resolutions, ∇ad,Dp256 < ∇ad,Dp512 < ∇ad,Dp1024. Consequently, the
ratio between the real and adiabatic gradients ∇/∇ad decreases, as does the power
of convection. This could be the physical reason behind the lower overall values in
Mach number, metallicity enrichment and nuclear energy rate, instead of a resolution
effect.
Another factor affecting the dredge-up efficiency is the stiffness of the convective

boundary. By ‘stiffness’, the permeability of the stable layer to overshooting streams
from the unstable region is meant. A smooth boundary allows streams to trespass
the formal convective boundary, deep into the stable region, unlike a stiff boundary,
which behaves more like an impenetrable wall. Freytag et al. [1996] analyzed shallow
surface convection zones in models of A-type stars, solar-like stars and cool DA-type
white dwarfs. They found that in all of those cases, the convective motions breach the
convective boundary. The radial velocities of the downdrafts decay exponentially as
they penetrate into the stable region. Meakin & Arnett [2006] studied simultaneous
carbon- and oxygen shell burning in a late 23M� star. In this case, there are abrupt
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Figure 4.9.
Tracks in ρ-T space of two critical layers of the novae: the hottest zone (orange) and
the burning layer (blue). The initial and final points of the red track are signaled by
the golden and black stars respectively. For reference, the initial (dashed) and final
(full) states of the atmosphere are drawn as black lines. The opacity of the colored
tracks serves to visualize time – darker means later.
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Figure 4.10.
The different components of the Ledoux criterion, ∇ < ∇ad + φ

δ∇µ. The composition gradient everywhere
is smaller than the actual gradient ∇, and near zero, except at the transition region (r ≈ 5.5× 108 cm).
The gradient ∇ad has around the same magnitude as ∇. Where ∇ > ∇ad, the envelope is super-adiabatic,
and the Brunt–Väisälä frequency becomes N2 < 0. The last panel shows N2 for the initial conditions of
the three delta simulations. The value of N2 is lower for lower resolutions. Specifically, the adiabatic
gradient ∇ad is consistently higher for higher resolutions and therefore, the superadiabaticity is lower.

composition gradients at the convective boundaries, which result in equally steep
density gradients and large spikes of the buoyancy frequency. N2 is regarded as a
measure of stiffness of the boundary. In the regions where it spikes, the adjacent
convective motions give rise to density perturbations, but the overshoot of convective
plumes is minimal. Similarly, in simulations of He-shell flash convection [Herwig et al.
2006], the convective region is bounded by very stiff gradients. The velocities decay
exponentially into the stable layer, but the decay already starts in the convective
region. The overshoot is even smaller than in O-shell convection. In the stable regions,
the velocity amplitudes are dominated by g-modes, excited at the boundary by the
convective motions. The velocity field in the stable zone, and with it the mixing, is a
superposition of exponentially decaying overshooting streams and g-mode oscillations.
In the shallow surface regions of Freytag et al. [1996], no g-mode excitation was
found, probably due to the smoothness of the convective boundary. In another set of
simulations of O-shell burning [Meakin & Arnett 2007], the position of the boundary
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is measured by the gradient of the oxygen mass fraction. The convective region is
bounded in its floor and ceiling by stable regions. Each boundary has vastly different
values of N2: the bottom has a very sharp spikes in N2; the top displays only a small
bump. In Figure 4 of Meakin & Arnett [2007], the decidedly distinct behavior of both
boundaries becomes evident. While the bottom boundary remains practically static,
the upper boundary is seen to migrate into the stable layers.
Stable strata with an adjacent convective or turbulent layer are common on geo-

and astrophysical flows. The process by which the turbulent layer ‘diffuses’ into the
stable layer and the boundary recedes, expanding the extent of the turbulent region,
is called entrainment. Its rate is a function of the bulk Richardson number, defined
as [Meakin & Arnett 2007]:

RiB = ∆bL
vrms2 (4.12)

Here, ∆b is the buoyancy jump across the boundary, vrms the rms turbulent velocity
along the interface and L the length scale of the turbulent motions. The relative
buoyancy is defined by the integral of the buoyancy frequency across the boundary

b(r) =
∫ r

ri

N2dr. (4.13)

Meakin & Arnett [2007] find values of 20 ≤ RiB ≤ 420 in their O-shell convection
boundaries.

If the stiffness of a boundary and with it the impenetrability of overshooting plumes
depends on the buoyancy jump ∆b, then this argument lends credence to the discussion
regarding the shape of the Brunt–Väisälä frequency in Figure 4.10. The integral N2

will clearly be the largest in Dp256.

4.5. A model from a stellar evolution code
In the overwhelming part of our studies, a modified version of the Kercek model
(Section 4.2) was used as initial conditions for the multi-D simulations, the “Würzburg
model’. Of course, a comprehensive study of novae explosions should examine a variety
of models: different progenitor white dwarfs masses, envelope compositions, etc. In
order to build our own models we employed the freely available stellar evolution code
MESA (Modules for Experiments in Stellar Astrophysics, Paxton et al. [2011, 2013]).
MESA is written in a modular fashion, where one module is responsible for the nuclear
network, another for the EoS, etc. The main module, star, combines the necessarily
modules to run a full stellar evolution calculation. MESA comes with an array of
test problems ready to use and experiment with. We used the test problem WD, which
simulates the ignition of a hydrogen shell burning in a 1� WD, and modified it to be
similar to our Würzburg model. The solar-composition accretion rate was changed
to 5× 10−9M�yr−1 and we used the same criterion for choosing the moment when
to stop the 1D simulation and map to 2d. Specifically, the peak temperature in the
envelope should be Tss = 1× 108 K.
A handful of multi-D simulations based on these initial conditions were tested.

However, there were many uncertainties about the quality of the model in regard to
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the smoothing and interpolation of the data. Here we will only point out Figure 4.6.
It shows how small deviations in T and ρ lead to large fluctuation in the nuclear
energy rate.
Further numerical experiments with MESA initial conditions were abandoned.

These were later carried out by Florian Lach [Lach 2016].

4.6. Validation tests

4.6.1. alpha: proof of concept

In the early stages of the present work, before engaging in all the detailed model-
building steps (Sections 4.2 and 4.3), a quick approach was taken to test the feasibility
of nova simulations in our code. Taking figures in Kercek et al. [1998, 1999] as an
example, the radial profile of the temperature was mimicked with a combination of
analytic functions: a hyperbolic tangent for the star–envelope transition, and a linear
function for the envelope. The peak temperature is fixed at 1× 108 K, as in the paper.
The white dwarf consists of carbon and oxygen in equal parts, the envelope is mostly
hydrogen, although at this stage the exact mass fractions of the individual species
was not taken into account. The hydrostatic equilibrium is integrated. The result,
model alpha, is shown in Figure 4.11.
In this set of simulations, the grid geometry is always Cartesian and the lateral

boundary conditions are periodic. The bottom boundary of the box towards the center
of the star is reflective. We vary two parameters in order to study the impact of the
choice of the upper boundary condition on the results: the kind of boundary and the
height of the box. The types of boundary tested were wall, hystat-wall and constghost
(see Section 3.1.4). To limit the effects of the upper boundary on the burning region,
the height of the box can be made larger. In one case, the height of is ∆y = 1000 km,
the second ∆y = 1500 km. The height is increased by 50%, and keeping the cell sizes
intact, the number of cells increase from nx = 128 in the short box to nx = 192 in
the tall box. Table 4.4 lists the characteristics of the alpha models.
In the original Kercek model, convective movements start just seconds after the

start of the simulation, as the stratification in the 1D data is already unstable to
convection. In the alpha model, although we have the same Tb = 1× 108 K, the
temperature gradient from the analytical functions is smaller than in the original
and the stratification is initially stable against convection. The constant heating from
nuclear reactions raises the peak temperature at the base and makes the temperature
gradient steeper, until the stratification becomes super-adiabatic. This happens after
approximately t ≈ 80 s. Figure 4.12 shows the evolution in time of some key quan-
tities of the simulations: the critical pressure Pb and source shell temperature Tss,
both horizontally averaged, and the mean Mach numbers. Observe the steady rise in
pressure and temperature until t ≈ 80 s. When convection ensues, cold CO matter
rises to the envelope and lowers the temperature, after which the temperature rises
again due to nuclear energy release.
The base pressure Pb in the simulations with the fixed upper boundary ‘wall’ is

substantially higher than with the constant ghost cells. The end of the curves at
t ≈ 200 s are due to the code crashing. Typically this results from values outside of
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Figure 4.11.
Initial temperature and density in the alpha model. The curves mimic the values from the Kercek et al.
[1998] with analytic functions. The transition from white dwarf to envelope is much smoother than in
the original model.

the tabulated Helmholtz EoS. Both simulations with the constant ghost cells boundary
continue for several hundred seconds. However, they do not achieve such high energy
generation rates, temperatures or velocities.Glasner et al. [1997], Kercek et al. [1998]
and Kercek et al. [1999] all find that the peak temperature during runaway lies at
about T ∼ 2.0× 108 K. Recall that Kercek et al. use a boundary with outflow, while
the simulations in the Glasner group have an ALE grid. It is natural that in our
simulations with closed upper boundary, the temperature rises above this, reaching
even T & 2.5× 108 K in individual cells. The runs with constant ghost cells do not
quite reach this threshold, because the pressure at the bottom of the envelope is
decreases after reaching maxima before t = 200 s. They eventually go into a state of
steady burning at a temperature Tb ∼ 1.3× 108 K. In all simulations the, flow remains
subsonic. Again, with fixed upper boundaries, the values are greater, nearing M ∼ 0.8
in individual cells (the mean value does not surpass M ∼ 0.25), while constant ghost
cells yield and average Ma ∼ 0.1.

In summary, a fixed upper boundary yields curves comparable to the ones found in
past works: steady growing ε̇nuc in a time scale of 2× 102 s. In our case, even higher
temperature values than in the literature are reached. Nevertheless, these boundaries
do not represent the conditions in the stellar atmosphere realistically, and it will not
be used in the future cases. We will perform all of our simulations with the constant
ghost cells, despite some drawbacks that will be discussed in Chapter 5. In addition,
the pressure in the simulation with the taller box decreases to a fraction of its initial
value.

4.6.2. bravo: test of perturbations

Starting from the second generation of our models, bravo, we used the Würzburg
model described in Section 4.2. Because our models are at t = 0 already convectively
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Parameters of the alpha models

Model name Cells Box height Boundary conditions
nx ny (km) lateral lower upper

Ac192.wl 320 192 1500 periodic wall wall
Ac192.cg " 192 1500 " " constghost
Ac128.wl " 128 1000 " " wall
Ac128.cg " 128 1000 " " constghost

Table 4.4.
Overview of the alpha models. The number of cells in the vertical direction was
varied, as well as the upper boundary condition.

unstable, convection plumes should arise after only a few seconds. To break the
symmetry of 1D atmosphere simply extended to 2D, a tiny momentum in each spatial
dimension is added to each cell in the grid, with randomly generated amplitudes. The
simulations of the Glasner group do not add any perturbation, as the intrinsic machine
rounding errors suffice them. We found in early tests, that in our simulations errors
on the machine-level precision are not enough, and the flow develops plumes that are
perfectly symmetric if the simulation box has lateral periodic boundary conditions.
[Kercek et al. 1999] choose some cells in one layer directly at the interface and enhance
their temperature by 1%. In the 3D case [Kercek et al. 1999], to save computation
time, they perturb 10 cells to have a larger ignition surface. All publications from the
Kercek, Glasner and Casanova groups claim that any information about the initial
perturbation is lost after a couple of seconds of the simulations, and that the result is
independent of it. Nevertheless, we conducted a series of tests to assess the dependence
of our solution to initial perturbations. In bravo, as in alpha, all simulations were
performed in the plane-parallel approximation, using periodic boundary conditions
at the lateral borders.

In an initial test, a small area in the horizontal center is perturbed with 10% higher
pressure. Although 10% may be a rather strong amplitude, this was done to have the
largest effect in the shortest time possible. In a resolution of 512× 256, a quadratic
area comprising four cells at the core-envelope interface were perturbed, while in a
second run with twice the resolution, 16 cells occupying the same physical area were
perturbed.

Figure 4.14 shows a detail of the simulations around the interface at three different
times. Plotted is the Mach number in a logarithmic scale. The left column shows the
coarse resolution snapshots (a), the right one the fine resolution run (b). The first
panels, at t ∼ 2 s, show the location of the perturbation at the horizontal middle of
the interface plane. The other time steps were chosen as follows. The second row
shows the moment in which the smallest plumes arise even at the farthest point
away from the perturbation. In the last row the whole burning region above the
interface is convective. With finer resolution, convection plumes start much faster
(∼ 10 s compared to ∼ 45 s). Also, the point where the whole bottom of the envelope
is convective is reached sooner, after only 30 s. The convective eddies become also
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Figure 4.12.
Time evolution of the alpha simulations, listed in Table 4.4. The simulations with the closed boundary
condition ‘wall’ barely reach 200 s. They reach very high pressures and temperatures, and eventually
values outside of the tabulated EoS, which terminates the simulation. The simulations with constant
ghost cells ran for up to 700 s, but in neither case can they sustain the base pressure Pb.

smaller with finer resolution.
A perturbation with sinusoidal amplitude in the lateral direction and a Gaussian

form in the vertical one was also tried out. As in the previous case, the information
about the perturbation does not survive a couple of convective turnover times. For
the rest of the production runs, only the simplest form of the perturbation – tiny
random momentum in each cell – was employed.

4.6.3. Box width

In our multi-D simulations with 2D polar (and subsequently in 3D spherical) coordi-
nates, a fairly narrow arc of the star’s surface is modeled, usually an angle of around
φ ≈ 0.06π with an arc length of W ≈ 1000 km. Expanding the horizontal extension
of the domain pushes the lateral boundaries apart. This reduces possible boundary
effects on the solution, but slows down the computation due to the increased number
of cells. In the following test, the delta profile is used to set up the nova, in a box
with W = 2000 km (a) and a box with twice this width (b), see Figure 4.15. 4 This

4In Kercek et al. [1998, 1999] the width of their plane-parallel box was W = 1800 km, in Glasner
et al. [2007] they used slices in polar coordinates with a base of W ≈ 1680 km and W ≈ 840 km,
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Figure 4.13.
Snapshots of two alpha simulations – (a) Ac192.cg and (b) Ac128.cg – comparing the effects of the
effects of the box size. The cell sizes in both setups is equal, but (b) has a smaller vertical extension, see
Table 4.4. Shown is the Mach number.

Figure 4.14.
Two bravo simulations with a strong perturbation in the initial conditions at the interface’s center. Any
sign of the initial perturbation is lost after a few seconds. Shown is only a detail just above the envelopes
base (r =5.5× 108 cm – 5.8× 108 cm). The left column corresponds to a resolution of 512 × 256, the
right to 1024× 512. Shown is the log of the Mach number, note that the color bars have different scales,
as the mean Mach numbers in the higher-resolution case are smaller. Also, the convective eddies decay
into smaller scales, and the enrichment from CO matter into to the envelope is slower.
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Figure 4.15.
Mach number in simulations testing the effect of the lateral extension of the box. These belong to
the delta generation of our models (see Table 4.3). (a) W = 2000 km with resolution 512 × 256, (b)
W = 2000 km with resolution 512× 256, (c) W = 4000 km with resolution 1024× 512.
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is done in two resolutions 512 × 256 and 1024 × 512. Figure A.2 shows the global
maximum of the temperature T8 in the simulations as a function of time. In the
roughly 90 s of simulation time, basically there is no difference in the mean values.
This indicates that W = 2000 km is an appropriate width, and that extending it does
not purvey more accuracy to the result. At this width, a handful of large eddies fill
the envelope. W = 2000 km is the width of the Dp256 simulation discussed in length
in Chapter 5.

An example of a simulation with a higher resolution, 1024× 512 and W = 2000 km,
is also shown in Figure 4.15 panel (c). As in the bravo simulations, the increased
resolution allows to resolve finer structures, and even more eddies fill the box. However,
a simulation with a corresponding wider box of 2048 × 512 and W = 4000 km was
not carried out for comparison.
For the set of simulations echo, a shorter width of W = 800 km was chosen, in

order to have a simulation box in 3D with similar dimensions to that of Casanova
et al. [2011]. Convective eddies generally appear in pairs, and the box size should be
at least as wide as the diameter of two eddies [Hillebrandt, private communication].
The width in the echo simulations is enough to fulfill this condition.

and Casanova et al. [2011] had a box with W = 800 km.

4.6. Validation tests • 85





5. Results

The previous chapter dealt with the details of the simulation setup: the region of
interest, the discrete mesh and interpolation methods, and the sensitivity of the
numerical solution on several parameters. We now turn our attention to the physical
interpretation of the results of selected simulations. We are interested in the interplay
of convection, mixing, the energy release from the nuclear reactions of the CNO cycle
and the resulting modification of the envelope’s atomic composition. In Section 5.1, we
describe the general properties of the convective flow. Section 5.2 presents a detailed
analysis of the individual nuclear reactions contributing to the total thermonuclear
energy rate.

5.1. Morphology of the convective flow

In this section, we discuss the results from the simulation Dp256 (polar coordinates,
256 cells of vertical resolution), which we ran for 240 s.

Around t = 10 s after the start of the simulation, buoyant plumes rise from the
base of the envelope all along the interface. The gas at the bottom of the envelope
becomes hotter and lighter than the layers above, becoming Rayleigh-Taylor unstable.
Minuscule random fluctuations in momentum at the grid level serve only to break
the lateral symmetry. In less than 30 s, the ‘mushroom caps’ of these plumes reach a
height of about one pressure scale height and farther. At this height of the envelope,
the gas temperature is down to T = 65MK from the 100MK at the base, and the
plumes start to fragment from cool streams flowing down their sides. Figure 5.1 shows
the morphology of the flow with contours of the mass fraction X(12C). The plumes
carry carbon-rich material to the envelope. Most of the 12C is concentrated along
inner, denser filaments of the plumes with mass fractions X(12C) ∼ 7× 10−3, ten
times higher than the mean mass fraction ∼ 7× 10−4 of the surroundings. At t = 30 s,
some of it has reached heights of over 2HP , yet in very small concentrations: the last
contour line in Figure 5.1 has a value of 1× 10−4.
The plumes first reach the upper boundary of the box shortly after the 30 s mark;

convective eddies fill the envelope in its entirety from around t ∼ 40 s onwards. The
structures in our simulation are markedly distinct from those of Kercek et al. The
flow is highly irregular. It does not display the multiple, stable and isolated vortices
of Kercek et al. [1998, Fig. 1]. Instead, the dozen initial plumes merge into circular
vortices, the largest having a diameter of about a pressure scale height. Only about
two of these large vortices exist simultaneously at any given time. A handful of smaller
vortices circulate between them in erratic trajectories, intermittently merging into
larger eddies, creating new ones and destroying previous ones. The mean convective
velocities are on the order of ∼ 11× 106 cm s−1. With eddies of half the size of the
envelope, this translates into a convective time of about τconv ∼ 4 s. Higher peak values
are reached when the fluid streams downwards and collides with other eddies or against
the interface. These values are in agreement with those in Glasner et al. [1997], who
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find velocities of a few ∼ 106 cm s−1 in the slow phase (and up to ∼ 5× 107 cm s−1 in
the fast phase).
The mean Mach number grows almost monotonically for the first 41 s, when it

reaches a local maximum of Ma = 0.4. For the rest of the simulation, the mean
Mach number varies between 0.09 < Ma < 0.15, with an overall temporal mean of
Ma ≈ 0.12. The instantaneous maximum Mach numbers are much higher; at the
same t = 41 s, the value is max(Ma) = 0.39. With a much larger scatter than the
mean numbers, the maximum values grow from 50 s to the end of the simulation from
Ma = 0.3 to 0.5. The flow remains subsonic throughout the length of the simulation,
in agreement with the other simulations of 2D nova envelopes.
Panel (b) in Figure 5.1 shows a snapshot of the 12C mass fraction at a later time.

The contours in this diagram go from X(12C) = [0.01, 0.1] in 50 steps. At this point,
the envelope is fully convective. We find individual bubbles and filaments of high
carbon content in the eyes of the vortices that survive for several tens of seconds,
until they eventually merge into the background as the vortices are deformed through
collisions with the neighboring vortices. At the base of the envelope, no clear trace of
symmetric, easily identifiable plumes or ‘mushrooms’ is left. The convective eddies,
extending in diameter from the base of the envelope to over 1Hp, warp the upcoming
streams of WD matter as soon as they reach the surface. By shoveling the dense
filaments of WD matter up to higher layers away from the burning zone, the carbon
bubbles are saved from destruction by proton capture. Panel (b) also reveals a fault in
our numerical setup. The upper boundary of the simulation box is set with ‘constant
ghost cells’, such that the values of nuclear composition are fixed on those cells. Inflow
from the boundary is allowed, so that when the largest eddies induce currents that
reach up to the highest row of cells, material from the ghost cells streams downwards
with fresh, unprocessed, solar composition. This is seen as the void area at the upper
boundary in panel (b), where the contours accumulate until the lowest value is reached.
In the uppermost layers of the envelope, the bulk of energy generation stems from
beta decays. This intermittent inflow of solar matter leaves a trace in time-profile of
energy generation rate in Figure 5.7. The drop in metallicity in the upper envelope
is seen as dark patches, a behavior that is mirrored in the heatmap of nuclear energy
rate.
Figure 5.2 shows the radial structure of our WD-envelope simulation. The solid

lines are the laterally averaged quantities, also averaged in time over two convective
turnover times: (τconv ∼ 8 s)

qτconv(r) = 〈q(φ, r, t)〉. (5.1)

To give a sense of the fluctuations, the maximum and minimum values per layer,
averaged over the same period are shown:

qτconv(r) = max〈q(φ, r, t)〉 (5.2)

The shear flow at the WD-envelope transition induces strong fluctuations in tem-
perature. While the mean value for the period 150 s < t < 180 s has not risen from
the initial Tss = 1× 108 K, individual cells at the base of the envelope reach peak
values of over 1.4× 108 K. These fluctuations lead to even stronger fluctuations in the
energy generation rate. All over the extent of the atmosphere, we find fluctuations in
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Figure 5.1.
Two snapshots of the simulation Dp256. (a) Fifty contour lines show the mass fraction of 12C
from 10−4 to 10−2 in equal steps. The vector field shows the fluid velocities. At t = 30s the
first convective bubbles bring carbon rich-material from the interface to heights comparable
to one pressure scale height. Some material reaches almost the box height, but in very small
concentrations. (b) At t ∼ 130s 12C is present in all the envelope. The highest concentration
of 12C remains in small bubbles and filaments. The contours sample 50 values between 10−2

and 10−1.
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Figure 5.2.
Profiles of ε̇nuc, T , ρ and P , averaged over two convective turnover times. The shaded regions
encompass the maximum and minimum values averaged over the same period.

ε̇nuc. At the base of the envelope, the mean value is 5.6× 1015 erg g−1 s−1, but peak
values of 2.4× 1016 erg g−1 s−1 are reached. Thus, fluctuations in T of ≈ 40% lead to
fluctuations in the nuclear energy rate of ≈ 420%.
The nuclear energy generation rate grows steadily from 6× 1014 erg g−1 cm−1 to

1× 1015 erg g−1 cm−1, as 12C is dredged up from the WD and powers the CNO cycle.
The peak values are a little over one order of magnitude above the mean rates, due to
the temperature fluctuations seen in Figure 5.2. Despite the steady growth of nuclear
energy release, our numbers are not as high as those reported by the Glasner group,
whose simulations yield rates that grow over several orders of magnitude in about
the same simulated time.
Glasner et al. [2005] propose the definition for the ‘success’ of simulated nova

outburst as “a TNR for which the amount of thermonuclear energy pumped into the
envelope on a dynamic timescale is comparable to the binding energy of the envelope”.
In their paper, the gravitational binding energy of the envelope is ∼ 1046 erg. Glasner
et al. decide that for their runs to be successful, a thermonuclear rate larger than
1044 erg s−1 must be sustained for a dynamical time of ∼ 50 s, which their simulations
with the “correct” upper boundary conditions achieve [Glasner et al. 2005, Fig. 1].
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Figure 5.3.
Energy production from two key reactions. The heatmaps are ordered as follows: the left column
shows the mass fraction of 15N; the right column shows the energy generation rate from two reactions
15N(p, α)12C, and 12C(p, γ)13C; the top row corresponds to t = 30s, the bottom row to t = 100s.
(a) 15N gets depleted in the first seconds of the simulations. At t = 30, when convection plumes rise
to the higher layers of the envelope, the ‘ashes’ of this reaction are visible as dark swatches. Unburnt
15N remains only in the uppermost strata. The energy rate is shown in (b). Observe the correlation of
the morphology of the flames and the abundance of 15N. In the same diagram, the energy release from
12C(p, γ)13N is also shown. While the energy from 15N(p, α) is released up to about half the envelope
height, the energy deposition from 12C is very strongly localized at the base of the envelope. Panels
(c) and (d) show the situation at much later times, when there is barely any 15N in the envelope. Any
remaining quantity that gets advected by descending convective plumes is instantly burnt.

Our envelope has a significantly lower binding energy. Due to the smaller mass of
the white dwarf, MWD = 1M�, the accreted mass is smaller. The energy GM2

env/R

is ∼ 4.5× 1018 erg. This energy is pumped into our envelope after about t ∼ 170 s,
see Figure 5.4. To the author it is unclear what Glasner et al. [2005] mean by a
dynamical time, which they specify as 50 s. Employing the common definition of the
ratio of typical length scale ∆R to sound speed, we have τ (1)

dyn ∼ ∆R/cs ≈ 0.6 s. The
convective timescale is τconv ∼ ∆R/vconv ≈ 8 s, which is still significantly smaller
than the purported 50 s. However, we expect that the timescales in our envelope will
be longer, because of the smaller pressure at the bottom of the envelope. Without a
clear definition for the so-called dynamical time, it is difficult to assess the criterion
of TNR success by Glasner et al. Nevertheless, at the end of the simulation, nuclear
reactions in the envelope have produced just over 2.5 times its binding energy.
Let us inspect the individual reactions taking place in the CNO cycle.
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Figure 5.4.
Nuclear energy rate summed over the simulation time. At the end of the simulated time, over 2.5 times
the envelope binding energy has been produced from nuclear reactions.

5.2. Nuclear reactions
The reaction network YANN calculates the total thermonuclear energy release by the
change in abundance Ẏi of all species i

ε̇nuc = −
∑
i

NAMic
2Ẏi. (5.3)

Here, we are interested in the contribution of the individual reactions, and need a
different expression. Let’s first look at charged particle reactions. The energy release
of a reaction between two partners i and j with Q-value Qij→kl is given by [Iliadis
2007]:

εij→kl = Qij→kl rij→kl
ρ

(5.4)

= Qij→kl
ρ

NiNj〈σv〉ij→kl
1 + δij

, (5.5)

where r, < σv > and Ni are defined by Equation (2.33). In the second step, the
reaction rate r was inserted from Equations (2.33) and (2.34). The factor 1/(1 + δij),
where δij is the Kronecker delta, stands to take account for the interaction between
identical partners. The numbers Ni are linked to the nuclear abundance and the mass
fraction Xi by the relations

Yi = Ni

ρNA
, Xi = AiYi, Ni = ρNA

Xi

Ai
(5.6)

We rewrite the equation in terms of the mass fractions, because this is the quantity
obtained from our hydro code, and drop the ij → kl. The expression for the energy
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release becomes

ε = Q

ρ
ρ2N2

A

X0X1
A0A1

〈σν〉
1 + δij

. (5.7)

For three interacting particles 012 in the input channel, Equation (5.5) gets an extra
factor ρNAX2/A2. The expression for the energy generation rate then results in

ε = Qρn−1NA λN
n−1∏
i=0

Xi

Ai
(5.8)

where n is the number of particles in the input channel. Here, λ is the reduced reaction
rate:

λ =

NA〈σv〉 if n = 2
N2
A〈σv〉 if n = 3.

(5.9)

This is the quantity tabulated in the REACLIB database [Cyburt et al. 2010]. Lastly,
the multiplicity factor N accounts for identical particles [Fowler et al. 1967]:

N =

(1 + δ01)−1 if n = 2
(1 + ∆012)−1 = (1 + δ01 + δ12 + δ20 + 2 δ012)−1 if n = 3.

(5.10)

In practice, the only trinary reaction included in our network is the triple-alpha
reaction. All radiative proton captures and (α, p) reactions are binary reactions.
Figure 5.5 shows the radial profile of the nuclear energy release rate from all

reactions in our network (rates above 104 erg g−1 s−1). Panel (a) shows the situation
at the start of the simulation. Proton capture reactions are identifiable as the sloped
curves; β+-decays have approximately flat distributions. The reaction 15N(p, α)12C
is the primary source of energy at t0. There are almost two orders of magnitude
difference between its energy rate and that of the secondary reactions – the radiative
proton captures on 12,13C. This great difference explains the drop in energy already
discussed in Figure 4.7 and visualized in Figure 5.3.

At the start, 13C(p, γ) produces more energy than 12C(p, γ) throughout the envelope,
except at the very base, where the energy rate from the proton capture on 12C exhibits
a peak. Three more proton capture reactions contribute significantly to the total
energy rate: 14N(p, γ), 15N(p, γ) and 16O(p, γ). Their rates at the base of the envelope
range between 3× 1010 and 3× 1011 erg g−1 s−1. There is a difference of two orders
of magnitude between the rates from 12C(p, γ) and 16O(p, γ). The only trace of the
HCNO cycle is from 13N(p, γ), which in this scale is visible only at the base of the
envelope. Above r8 = 6.3, the rates of all proton capture reactions has dropped below
104 erg g−1 s−1 and nuclear energy stems mainly from the positron decays.

The profiles at the last timestep of the simulation (t = 240 s) is shown in panel
(b). 12C(p, γ) is the primary reaction, as expected, before 13C(p, γ). At this point, the
energy rate from the ‘hot’ reaction 13N(p, γ) at the base of the envelope surpasses
2× 1011 erg g−1 s−1 and has about the same profile as 14N(p, γ). In the simulated
time, it has climbed almost 7 orders of magnitude. The profiles of both reactions on
15N, (p, γ) and (p, α) show a very similar shape: they reach a maximum at r8 = 5.7

5.2. Nuclear reactions • 93



and have a dip in below that radius as it nears the burning region, where 15N is
quickly burned, and a peak again at the burning layer. This particular shape of the
profile must be due to a detailed balance between the rates at which 15N is produced
through 15O(β+ν) and destroyed by proton captures. All other profiles have rather
smooth curves.
Figure 5.5 shows the evolution of the energy rates over time, averaged over the

burning region (the lower third of the envelope). The rates from 15N(p, α) show a
very ragged curve due to the its strong fluctuations (see Figure 5.3). The rise of the
rates from 13N(β+, ν)13C is interesting. While in the upper envelope, the β+decays
are always dominant, even in the burning region, the decay of 13N becomes the third
most important source of energy, owed to its extreme production by 12C, (p, γ). Also,
the proton capture on 13N from the hot CNO cycle is seen to rise over several orders
of magnitude. Despite the overall increasing rates, the principal reaction is more
powerful than any other by two orders of magnitude.

Isotopic abundances

In our simulation box, the envelope takes up 90% of the height, the lower 10% cor-
responding to the white dwarf’s surface layers. For the nucleosynthesis analysis, the
envelope is divided in the radial direction into three equal parts. The bottom third
includes some layers of the WD-envelope transition and the layers of peak energy
generation. The next third is the middle of the envelope. The last third is excluded
from the analysis due to its proximity to the upper boundary. When convective ed-
dies already enriched in CNO isotopes reach the upper boundary, material with the
initial solar composition is dredged down. This is due to the nature of our boundary
conditions. The hydrogen-rich down-flow continuously sinks the metallic content in
the upper envelope, leading to spurious fluctuations in the mass fractions.
In the two analyzed regions - labeled ‘burning region’ and ‘envelope’ - the mean

mass fractions of all species were calculated for the entire length of the simulation.
These values between species differ by many orders of magnitude, owed to the large
difference in reactivity λ between the participating reactions. To better visualize their
evolution in time, the abundances relative to the initial value at t = 0 are calculated,
〈Xi/Xi,0〉. The results are shown in Figure 5.6. The upper panels show the evolution
of the mass fractions; the lower panels the relative quantities of temperature T , Mach
number M, energy generation rate ε̇nuc and metallicity Z are plotted, so that their
correlations is made evident.
Consider Figure 5.6. Two abundances change dramatically right from the start

of the simulation. The curve corresponding to 13N rises so rapidly that it exits the
frame. The radiative capture on 12C is the most active reaction by many orders of
magnitude, because of its high cross section at temperatures above 1× 108 K. The
sudden drop in ε̇nuc already mentioned in Section 4.4 is also reflected in the curve of
15N.

Recall from Section 2.2.3 that in matter burning via the CNO cycles, the total
abundance of CNO elements does not change, only the relative mass fractions of their
isotopes do. Therefore, any observed change of their abundances is due to external
processes, in this case the convective dredge up. Small convective eddies develop
from t = 5 s, but only around t = 20 s do large structures of about half the envelope
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height arise (Figure 5.1). This is echoed in the curve of the Mach number. Around
this time, the curves of metallicity and ε̇nuc follow suit. The parallel trend of these
quantities and the sharp rise of X(12C) demonstrate the close relationship between
convection and energy generation: after the consumption of 15N, energy rates rise
only because of new fuel coming from the white dwarf due to convection. During the
first 120 s of the run, the mean temperature gradually falls. This is because the peak
temperature at the burning region is decreasing, as shown in Figure 4.9. However, the
temperature gradient in the envelope rises as heat is transferred to the upper layers.
This is reflected in the T curve in panel (b). Consider again panel (a). The curves
of X(17O) and X(17F) reveal a key process. The production of 17F in the cold CNO
cycles is strongly suppressed due to the low cross section of the radiative captures
15N(p, γ)16O and 16O(p, γ)17F (Section 2.2.3). Therefore, its over-abundance in the
burning region must be a signature of the reaction 14O(α, p)17F, that is, some amount
of the burning is proceeding through the hot CNO cycle. This is also observed in the
stark depletion of 14O: the negative slope until t ≈ 20 s is due to its radioactive decay,
with a half life of τ1/2 = 71 s. After the initial 20 s, the negative gradient increases,
a sign of its transmutation into 17F. The decay slows down and its ‘abundance rate’
reverses due to 13N(p, γ)14O, another sign of the hot CNO cycle’s activity. The one
element that is depleted almost monotonically is 15O. It decays to 15N with a half
life of τ1/2 (also evident from the figure, X(15O)/X0(15O) ≈ 0.5 after 120 s) and its
production is limited by the slowest reaction in the CN cycle. After its half life, almost
exactly half its initial abundance is present, therefore the radiative capture on 14N
would seem to be practically inactive at the present conditions. We will see in the
next section that it contributes significantly to the energy generation. The under-
production of 15O limits the abundance of 15N, which in turn is easily consumed to
12C, therefore limiting the energy rate of the entire cycle.

The same analysis was applied to some layers above the burning region, shown in
panel (b) of Figure 5.6. This way, the delayed action of the convective eddies is more
evident and helps discern the important reactions. Before t2 = 20 s, only the decay of
the radioactive nuclei is evident. The sharp curve of 13N is also visible, therefore even
at the lower temperatures of the upper envelope, 12C captures protons efficiently. The
sudden change in nuclear activity is more clearly appreciated. Also in the envelope,
15N is almost used up in a matter of ≈ 20 s, after the heat of convection reaches r =.
The hot CNO cycle is also more easily recognized in the curve of 14O, where the
sharp increase is due to 12C(p, γ)13N(p, γ)14O. The energy release rate doubles from
t ≈ 50 s in 70 s.
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Figure 5.5.
Profiles of the nuclear energy rate at two times of the simulations, showing the contribution from each
reaction. (a) At t0, 15N(p, α) yields the highest energy rate, larger by almost two orders of magnitude
than all other proton capture reactions for most of the envelope’s height. (b) In the envelope, the beta
decay of 13N becomes the most important source of energy. Except for the bottom region, where fusion
takes places, most of the nuclear energy in the envelope stems from the beta decays. Due to the mixing
from envelope matter into the core (which takes place substantially only after t ≈ 100 s), proton captures
on 12C do happen. (c) Nuclear energy rates for each reaction in the nuclear network. At the start of
the run (Dp256), the proton captures on 15N generate most of the energy. In the envelope, most of the
energy comes from the beta decay of 13N.
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Figure 5.6.
Evolution of the mass fractions of the nuclear species in the run Dp256. The ‘burning region’ and ‘envelope’
(defined in the text) are analyzed separately. The effect of convection is more clearly appreciated in the
envelope, because of its retardation by ∼ 20 s.
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To further demonstrate the role of convection, a comparison run with exactly the
same initial conditions as Dp256 was performed, yet without the action of convection.
This was achieved by switching off the hydro fluxes (Section 3.1.2). This way, any
changes in the physical quantities originate from the nuclear reaction network - no
fluid motions take place. The envelope evolves solely by burning the material available
from the initial time step. This is clearly an unphysical setting, but it is interesting
to contemplate, as it corresponds in a way to the situation in spherically symmetric
solutions. There, the Ledoux criterion is fulfilled in a slab of the star’s atmosphere,
but no prescription for mixing with contiguous stable layers is accounted for. We ran
the simulation only long enough to compare to the action of convection, which is
more clearly appreciated after 30 s in the envelope of Dp256. Without hydro fluxes,
the abundances progress almost linearly. Temperature rises due to the exothermic
reactions, albeit at a very slow rate. Moreover, metallicity falls, as no fresh carbon
or oxygen is dredged up from the WD and hydrogen get continuously transmuted
into helium. The number fraction of CNO elements does not change, but the doubly
larger mass of helium with respect to hydrogen increases their combined mass fraction.
Lastly, the decline of Mach number is due not to hydrodynamical velocities, but to
the changing sound speed. Most importantly, the rate of energy generation drops,
because no additional fuel is supplied. After only 30 s, it has lost 20% of its power.
Therefore, a TNR in classical nova envelopes can only arise from the continuous flux
of CNO material. This simple test run shows the need for the proper treatment of
mixing.

98 • 5. Results



time

1.00

1.05

1.10

1.15
Nuclear energy rate

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

lo
g 1

0
(e

rg
/g

/s
)

time

1.00

1.05

1.10

1.15

R
ad

iu
s

(R
W

D
)
→

Metallicity

0.02

0.03

0.04

0.05

0.06

0.07

Z
C

N
O

0 50 100 150 200

Time (s)

1.00

1.05

1.10

1.15
Convective flux

−0.8
−0.6
−0.4
−0.2
0.0
0.2
0.4
0.6
0.8

ar
b.

un
it

Figure 5.7.
A visual summary of the Dp256 run. The panels show the horizontal averages over time (the ordinate
is the vertical coordinate in units of the WD radius), of the nuclear energy generation rate ε̇nuc, the
metallicity ZCNO and the convective flux Fconv. In the top panel, the sudden rise of plumes and subsequent
‘vacuum’ from the quick consumption of 15N is seen as an arc in the first 30 s of the run. Afterward, the
nuclear energy generation rate rises. The rise in metallicity is also clearly visible from t = 50 s onwards.
The effect of the ghost cells with constant solar composition is visible also as inflows with darker values.
The last panel shows the convective flux. Upward flux (orange) is strongest at the base of the envelope.
A parallel fringe of downward flux (purple) hints at the size of the convective eddies. There is a clear
separation between WD and envelope.
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Figure 5.8.
Comparison of the simulations Dp256, Dp512 and Dp1024 at the time t = 30 s. The 12C mass
fraction is shown with 50 contour lines in the range [10−4, 10−2]. In the simulations with finer
resolution, the white dwarf material has reached lower layers. The high carbon concentrations
are found mostly in fine filaments and dilute fast away from them. In Dp512 and most clearly
in Dp2014 we observe the presence of high-concentration bubbles, forming already at the
deepest layers of the envelope.
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6. Conclusions & Outlook

The time will come when diligent research over long periods will
bring to light things which now lie hidden. A single lifetime, even
though entirely devoted to the sky, would not be enough for the inves-
tigation of so vast a subject... And so this knowledge will be unfolded
only through long successive ages. There will come a time when our
descendants will be amazed that we did not know things that are so
plain to them... Many discoveries are reserved for ages still to come,
when memory of us will have been effaced.
— Seneca, Natural Questions

A note on the interpretation of the simulations

The study of classical novae by means of direct numerical simulations (DNS) centers
on the multi-dimensional simulation of the processes leading to the thermonuclear
flash. One of the main aspects, pronounced several times in this work, is the mixing
of CO matter into the envelope. However, there is a tacit assumption – and in a
way, inconsistency – about the initial models commonly shared in the literature, and
that is the solar-like composition of the accreted envelope. All published multi-D
calculations start a few hundred seconds from the time of expected outburst, with a
clear, unmixed envelope of pure solar composition at a temperature of Tss ≥ 108 K.
However, we know from 1D stellar evolution calculations, that convection starts, for
WD masses of ≈ 1M�, at about Tss = 2× 107 K. In the time elapsed between start of
convection and outburst, the abundance of carbon and oxygen in the envelope should
be rather higher than solar. The underlying assumption is that, if the enrichment
achieved in the few× 102 s of simulated time is enough to fuel the TNR, then surely
the convection acting for many years prior to the TNR ignition will also be sufficient.

Most of the published multi-D simulations are based on the model by Glasner et al.
[1997] (see Section 1.2.2 and Section 4.1) . All models start from 1D stellar evolution
simulations without a prescription for mixing. The core-envelope transition in such
calculations is then rather sharp, as in our own models. In reality, the transition should
be smooth, especially in view of the long period of cross-boundary mixing prior to
the outburst. A stellar model built thusly would have super-solar abundances in the
envelope at the TNR threshold, before the map to multi-D, consequently enabling a
faster nova. Indeed, Denissenkov et al. [2013b] show that allowing for mixing in their
MESA simulations allows for a much earlier outburst.

A second possible flaw in current models is the assumption of a bare CO white
dwarf. When formed, white dwarfs retain on their surface a thin helium layer, a
residue of the AGB phase. This layer, if stable against convection, represents a barrier
between the CO fuel and the burning H-rich layer, inhibiting combustion via the CNO
cycle. The search for new initial models that take into account mixing, a He-layer and
the ‘fluff’ cells suggested by Zingale et al. [2002] was performed in a parallel work by
Lach [2016].
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Figure 6.1.
Snapshot of a three-dimensional simulation with the echo setup. Color-coded in warm hues is the energy
generation rate from the 12C(p, γ) reaction, and in cold hues the rate from 15N(p, α). In this representation,
the carbon burning flames resemble those of earthly fire, bound to the bottom of the envelope. The
combustion of 15N takes place in an expanded cloud above.

Summary & Future work

Despite the mentioned caveats, we have shown that our code is capable of simulating
the convective burning in classical nova envelopes. We have found that the stiffness
of the convective boundary is very high, and consequently the permeability of the
WD surface to impinging convective eddies very low. Extrapolating to longer time
scales than those we simulated, the metallicity in the envelope reaches eventually the
commonly cited value of Z = 0.1 (see Figure A.3 in the Appendix). However, the
dredge-up efficiency depends very strongly on the resolution.
To understand the rate at which nuclear energy is released, we analyzed in detail

the evolution of the physical values at the core-envelope interface. We found that
generally the layer of peak nuclear energy generation rate does not coincide with that
of the peak temperature, but lies a few layers deeper, where the density is higher. This
has also consequences when building the initial numerical mesh for the simulation.
Furthermore, we found that at the temperatures attained in our calculations, the
energy is mostly generated by nuclear reactions in the cold CN cycle, specifically by
proton captures on 12C and 13C. There is almost no contribution form the hot CNO
cycle, possibly because the envelope in the simulation is in fact not degenerate, in
contrast to what is commonly described in the literature.
We performed some 3D simulations as well, in a ‘box’ of 800× 800× 1000 km3 in
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spherical coordinates (see Figure 6.1). These lasted only around 30 s, due to unresolved
issues at the boundaries. Here, all four lateral faces have the wall boundary condition
(Section 3.1.4). The convective plumes, seen in 2D in Figure 5.1, reach the upper
boundary very fast. In our 3D simulations, the plumes arise prominently at the four
corners of the box, where the bottom of the envelope touches the box walls. They
then flow fast, simultaneously, upward along the four vertical edges until reaching
the top face and converging in its center. In the cells where of the four ‘columns’
collide, the Mach numbers can reach supersonic values. This behavior is clearly an
artifact, and the simulations break down shortly afterward. This is a glitch that still
needs to be resolved. Ultimately, the goal of future simulations will be to simulate
the convective burning with the full effects of turbulence in three dimensions.
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A. Additional figures
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Figure A.1.
The evolution of four key quantities at the core-envelope interface for a nova simulation with nr = 256.
For the temperature and density, the difference from the initial condition is plotted: ∆T = T (t)/(T0)− 1
and ∆ρ = ρ(t)/(ρ0) − 1. peak of nuclear energy generation lies at lower temperatures throughout the
length simulation.
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Fits to the metallicity curves in the echo simulations, assuming their evolution con-
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