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Summary

The Venus flytrap, Dionaea muscipula, with its carnivorous life-style and its highly
specialized snap-traps has fascinated biologist since the days of Charles Darwin. The goal
of the D. muscipula genome project is to gain comprehensive insights into the genomic
landscape of this remarkable plant.

The genome of the diploid Venus flytrap with an estimated size between 2.6 Gbp to 3.0 Gbp
is comparatively large and comprises more than 70 % of repetitive regions. Sequencing
and assembly of genomes of this scale are even with state-of-the-art technology and
software challenging. Initial sequencing and assembly of the genome was performed by
the BGI (Beijing Genomics Institute) in 2011 resulting in a 3.7 Gbp draft assembly. I
started my work with thorough assessment of the delivered assembly and data. My
analysis showed that the BGI assembly is highly fragmented and at the same time
artificially inflated due to overassembly of repetitive sequences. Furthermore, it only
comprises about on third of the expected genes in full-length, rendering it inadequate for
downstream analysis.

In the following I sought to optimize the sequencing and assembly strategy to obtain an
assembly of higher completeness and contiguity by improving data quality and assembly
procedure and by developing tailored bioinformatics tools. Issues with technical biases
and high levels of heterogeneity in the original data set were solved by sequencing
additional short read libraries from high quality non-polymorphic DNA samples. To
address contiguity and heterozygosity I examined numerous alternative assembly software
packages and strategies and eventually identified ALLPATHS-LG as the most suited
program for assembling the data at hand. Moreover, by utilizing digital normalization to
reduce repetitive reads, I was able to substantially reduce computational demands while
at the same time significantly increasing contiguity of the assembly.

To improve repeat resolution and scaffolding, I started to explore the novel PacBio long
read sequencing technology. Raw PacBio reads exhibit high error rates of 15 % impeding
their use for assembly. To overcome this issue, I developed the PacBio hybrid correction
pipeline proovread (Hackl et al., 2014). proovread uses high coverage Illumina read data
in an iterative mapping-based consensus procedure to identify and remove errors present
in raw PacBio reads. In terms of sensitivity and accuracy, proovread outperforms existing
software. In contrast to other correction programs, which are incapable of handling data
sets of the size of D. muscipula project, proovread’s flexible design allows for the efficient
distribution of work load on high-performance computing clusters, thus enabling the
correction of the Venus flytrap PacBio data set.
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Summary

Next to the assembly process itself, also the assessment of the large de novo draft assem-
blies, particularly with respect to coverage by available sequencing data, is difficult. While
typical evaluation procedures rely on computationally extensive mapping approaches, I
developed and implemented a set of tools that utilize k-mer coverage and derived values
to efficiently compute coverage landscapes of large-scale assemblies and in addition allow
for automated visualization of the of the obtained information in comprehensive plots.

Using the developed tools to analyze preliminary assemblies and by combining my findings
regarding optimizations of the assembly process, I was ultimately able to generate a
high quality draft assembly for D. muscipula. 1 further refined the assembly by removal
of redundant contigs resulting from separate assembly of heterozygous regions and
additional scaffolding and gapclosing using corrected PacBio data. The final draft
assembly comprises 86 x 102 scaffolds and has a total size of 1.45 Gbp. The difference to
the estimated genomes size is well explained by collapsed repeats. At the same time, the
assembly exhibits high fractions full-length gene models, corroborating the interpretation
that the obtained draft assembly provides a complete and comprehensive reference for
further exploration of the fascinating biology of the Venus flytrap.



Zusammenfassung

Die Venus Fliegenfalle, D. muscipula fasziniert aufgrund ihres karnivoren Lebensstil
und ihrer hochspezialisierten Fallen Biologen schon seit der Zeit von Charles Darwins.
Das Ziel des D. muscipula Genomprojekts ist es, neue Einblicke in den genomischen
Grundlagen dieser besonderen Pflanze zu gewinnen.

Die diploide Venus Fliegenfalle verfiigt mit eine geschitzten Gréfle von 2.6 bp bis 3 Gbp
tiber ein vergleichsweise groies Genom, das zudem zu iiber 70 % aus repetitiven Regionen
besteht. Sequenzierung und Assembly von Genomen dieser Gréflenordnung stellen selbst
mit neusten technischen und informatischen Methoden eine grofle Herausforderung dar.
Zum ersten mal sequenziert und assembliert wurde das Genom 2011 durch das BGI
(Beijing Genomics Institute). Meine Arbeit am Genom der Fliegenfalle begann mit der
Analyse des 3.7 Gbp grofien Assemblies, welches wir vom BGI erhalten haben. Mit meinen
Untersuchungen konnte ich zeigen, dass das Assembly stark fragmentiert und gleichzeitig
durch iiberreprisentierte repetitive Sequenzen stark aufgebldht ist. Dariiberhinaus
beinhaltet es gerade ein mal eine drittel der erwarteten Gene in Volllinge, wodurch es
fiir die weiter Analyse ungeeignet ist.

In meiner weiteren Arbeit habe ich mich daher darauf konzentriert, unsere Sequenzierungs-
und Assemblierungsstrategie zu verfeinern um ein stirker zusammenhéngendes und
vollsténdigeres Assembly zu erhalten. Dafiir war es notwendig die Qualitdt der Sequen-
zierdaten so wie den Assemblierungsprozess selbst zu optimieren, und Programme zu
entwickeln, die eine Verbesserung der Daten und eine Analyse der Zwischenergebnisse
ermoglichen. So wurden etwa zur neue Bibliotheken von nicht-polymorphen DNA-Proben
sequenziert um die Heterogenitit im Datensatz zu verringern. Um die Kontinuitit der
Assemblies zu verbessern und Probleme mit der Heterozygositat der Daten zu 16sen habe
ich eine Reihe verschiedener Assemblierungsprogramme getestet. Dabei zeigte sich, dass
das Programm ALLPATHS-LG am besten geeignet ist fiir die Assemblierung von D.
muscipula Daten. Durch den Einsatz von digitaler Normalisierung konnte ich den Bedarf
an Computerressourcen fiir einzelne Assemblierungen deutlich reduzieren und gleichzeitig
die Kontinuitdt der Assemblies deutlich erhéhen.

Zur besseren Auflosung repetitiver Strukturen im Genom, habe ich auf eine neu entwickelte
Sequenziertechnologie von PacBio zuriickgegriffen, die deutlich ldnger Sequenzen erzeugt.
Um die neuen Daten trotz ihrer hohen Fehlerrate von 15 % fiir Assemblierungen nutzen
zu konnen, entwickelte ich das Korrekturprogramm proovread (Hackl et al., 2014).
proovread nutzt kurze Illumina Sequenzen mit hoher Sequenziertiefe um innerhalb eines
iterativen Prozess Fehler in PacBio Daten ausfindig zu machen und zu korrigieren.
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Zusammenfassung

Das Programm erreicht dabei eine bessere Genauigkeit und eine hohere Sensitivitat als
vergleichbare Software. Dariiber hinaus erlaubt sein flexibles Design auch Datensétze
in der GroBlenordung des Fliegenfallengenoms effizient auf groflen Rechenclustern zu
bearbeiten.

Neben dem Assemblierungsprozess an sich, stellt auch die Analyse von Assemblies
grofler Genome eine Herausforderung dar. Klassische Methoden basieren oft auf der
rechenintensiven Berechnung von Alignments zwischen Sequenzierdaten und Assembly.
Um vergleichbare Analysen deutlich schneller generieren zu kénnen, habe ich Programme
entwickelt die auf der Auswertung von k-mer Haufigkeiten beruhen, und die gewonnenen
Ergebnisse in iibersichtlichen Graphiken darstellen.

Durch Kombination der so gewonnenen Einblicke und der verschiedenen Erkenntnisse
beziiglich der Optimierung es Assemblierungsprozesses, war es mir am Ende moglich, ein
Assembly von hoher Qualitét fiir das Genom der Venus Fliegenfalle zu rekonstruieren.
Dieses habe ich weiter verfeinert, unter anderem durch das Entfernen heterozygoter
Sequenzen und durch das Flicken von Liicken mit Hilfe von PacBio Daten. Das so erstelle
Assembly besteht aus 86 x 10% Sequenzen und hat eine Gesamtgréfe von 1.45 Gbp. Der
Unterschied zur erwarteten Genomgrofle ldsst sich dabei gut durch kollabierte repetitive
Regionen erkliaren. Gleichzeitig untermauert ein hoher Anteil an Volllingengenen im
Assembly die Interpretation, dass das vorliegende Assembly eine vollstdndiges und
umfassendes Abbild der D. muscipula Genom zeigt, und dass es sich damit als gute
Grundlage fiir weitere Untersuchungen zur Biologie dieser faszinierenden Pflanze eignet.
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Part 1.

A draft genome for the Venus flytrap,
Dionaea muscipula






» THIS plant, commonly called Venus’ fly-trap, from the
rapidity and force of its movements, is one of the most
wonderful in the world. «

—  Charles Darwin

Nlustration and quote: C. Darwin (1875). “Insectivorous Plants Table of Contents”, pp. 286-287






1. Introduction

1.1. Carnivory in plants

Carnivorous plants with their seemingly paradox life-style — plants feeding on animals
— have fascinated naturalists since the days of Darwin and Hooker. For his work “In-
sectivorous Plants Table of Contents” (1875), Darwin conducted detailed studies and
experiments on morphology, physiology and ecology of a series of carnivorous plants
to shed light onto their biology. He and later his successors showed that carnivorous
plants can feed on insects and exhibit enhanced growth and increased rates of repro-
duction, although, feeding was found not to be essential for normal growth (Goebel,
1893; Oosterhuis, 1927; Lloyd, 1942). Cost-benefit analysis suggest that the investment
in the formation of traps is paid off by the uptake of nutrients rare to the respective
habitats, such as nitrate, potassium and phosphate (T. Givnish et al., 1984; A. Ellison,
2006). Carnivory in plants is thus considered an adaptation strategy to complement the
unfavorable conditions of nutrient-poor environments by extending the range of resources
that the plants are able to tap into (Adamec, 1997).

In general, carnivorous plants share three common characteristics: the capability to
disolve animal prey, usually by the secretion of digestive fluids, the ability to absorb the
metabolites from the digested matter for their own benefit, and morphological adaptation
to passively or actively attract and trap their prey (Darwin, 1875; Lloyd, 1942; T. Givnish
et al., 1984). As with most definitions, exceptions exist, such as the genera Pinguicula
and Philcozria, which lack obvious attractants, or Brocchinia, Darlingtonia and some
species of Sarracenia that depend on commensal microbes or insect larvae to break down
their prey (T. J. Givnish, 2015). Today, based on the aforementioned criteria, almost
600 plant species with a carnivorous life-style have been identified.

Despite the seeming uniqueness of the trait, already Darwin deduced from the existence of
carnivorous characteristics in distantly related phyla without a shared common carnivorous
ancestor that carnivory has evolved multiple times independently within the plant
kingdom. His findings have since been confirmed by molecular phylogenetic studies
suggesting at least nine independent origins of carnivory in five different orders of
flowering plants (Albert et al., 1992; A. Ellison and N. Gotelli, 2001; A. M. Ellison and
N. J. Gotelli, 2009; T. J. Givnish, 2015; Pavlovi and Saganové, 2015).

The diversity of carnivorous plants is also reflected in the broad variety of trapping
mechnisms that have evolved in the different lineages. There are five main types of traps:



1. Introduction

(1) pitcher plants possess pitfall traps with chambers formed by leaves and filled with
digestive fluid; (2) flypaper traps secrete a sticky mucilage from specialized glands; (3)
snap traps actively catch prey trough rapid movement of modified leaves; (4) bladder
traps suck in prey by negative pressure, and (5) in lobster pot traps, the prey is steered
into the digestive organ by modified inward-facing hairs. These main types, however, are
not confined to specific lineages, but have evolved independently several times across
different taxa, too. Pitfall traps, for example, can be found in five different families
(Sarraceniaceae, Nepenthaceae, Bromeliaceae, Cephalotaceae and Eriocaulaceae) with
six proposed independent origins, and flypaper traps have evolved at least five times
in Droseraceae, Lentibulariaceae (Pinguicula), Drosophyllaceae (Drosophyllum) and
Dioncophyllaceae ( Triphyophyllum)(T. J. Givnish, 2015).

In the cases of snap, bladder, and many flypaper traps, active recognition of prey and the
ability of the plant to respond to excitation by active movement are of high importantance
to the trapping process. These specialized adaptations further underpin the unique
evolutionary position of carnivorous plants amongst angiosperms. The polyphyletic origin
of carnivory and trapping mechanisms, with a high degree of novelty and convergent
evolution render carnivorous plants valuable model systems for addressing a large variety
of physiological, ecological and evolutionary questions (A. Ellison and N. Gotelli, 2001).

1.2. A most wonderful plant

Even among the carnivorous plants, the Venus flytrap D.
muscipula with its highly specialized and beautiful snap
trap, stands out (Darwin, 1875). The plant is native to the
nutrient-poor swamps found on the U.S. East Coast in North
and South Carolina (Govaerts, 2016). Phylogenetically, the
flytrap is grouped into the family of sundews (Droseracaea)
within the order of Caryophyllales, in the monotonic gen-
era of Dionaea (Rivadavia et al., 2003). D. muscipula and
its aquatic sister species, the waterwheel plant Aldrovanda
vesiculosa, are the only two members among the carnivo-
rous plants that possess an active snap trap. Both species
share a common ancestor and their traps are thought to have
evolved from flypaper traps found in many other members
of the Droseraceae family (Cameron et al., 2002; Gibson and
Waller, 2009).

Figure 1.1.: Open D. muscipula snap trap
with trigger hairs and glands on the inner The trap of D. muscipula is formed by a modified leaf compris-

surface of the cilia framed lobes. Photo ing a pair of terminal lobes hinged at the midrib (fig. 1.1)(Dar-
by Noah Elhardt @ ®® win, 1875). The edges of the lobes are decorated with stiff,
slightly inward-bent cilia, that upon closing aid in preventing the prey from escaping.
Below the cilia extrafloral nectaries are located, producing nectar and UV-reflective


https://commons.wikimedia.org/wiki/File:Venus_Flytrap_showing_trigger_hairs.jpg
http://creativecommons.org/licenses/by-sa/3.0

1.2. A most wonderful plant

substances (Gibson and Waller, 2009). In addition, the flytrap is secreting more than 60
voltile organic compounds mimicking the scent of fruits and flowers (Kreuzwieser et al.,
2014). In open state, the lobes of the trap are bent konvexly, exposing the enticing red
inner surface colored by anthocyanin pigments. The combination of chemical and visual
stimuli allows the plant to efficiently lure insects into its deadly trap.

The inner surface of the trap is covered with minute

glands and typically posesses six mechanosensitive trigger

hairs, three on each lobe, triangularly placed (Darwin,

1875; Lloyd, 1942; Scala et al., 1968; Robins and Juniper,

1980; Bailey and McPherson, 2012). If two of the hairs

or one hair within 20s to 25s are touched, the trap snaps

shut (Hodick and Sievers, 1988; Escalante-Pérez et al.,

2011; Volkov et al., 2011). The transduction of the me-

chanical stimuli is converted into receptor potentials by

mechanosensitive ion channels. The signal is propagated

throughout the trap by action potentials caused by fluxes

of chloride and calcium ions (Burdon-Sanderson, 1873;

Hodick and Sievers, 1988; Krol et al., 2006; Escalante- . . .
) L] . closing phase with prey captured and cilia

Pérez et al., 2011). The subsequent motion is driven by preventing escape through the remaining gap.
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of the konvex bent lobes of the meta-stable open trap.

During closing, the lobes switch into a koncav shape enclosing the prey within. With a

duration of 100 ms the closing of the trap is one of the fastest movements in the plant

kingdom (Division et al., 2005). Including transduction of stimuli and propagation of the

signal, the entire trapping process takes between 350 ms and 500 ms (Escalante-Pérez

and Scherzer, 2014). The underlying mechanims initating the release of the elastic energy

is still subject to debate: An early model proposed by Williams and Bennett (1982)

indicates a fast, pH-induced, irreversible growth of the outer part of the lobes, while more

recent studies favor rapid, reversible changes in turgor in particular cell layers within the

lobes (Volkov et al., 2008; Escalante-Pérez and Scherzer, 2014).

Figure 1.2.: D. muscipula snap trap after rapid

After the rapid closing phase the trap is shut almost completely with large prey prevented
from escaping by the cilia while very small prey is still allowed to leave (fig. 1.2). This
approach ensures that only prey of sufficient size from a cost-benefit point of view is
actually digested by the plant. The movement of the restricted prey further stimulates
the trigger hairs leading to an increase in cytosolic calcium (Escalante-Pérez et al., 2011),
which together with the detection of nitrogenous compounds derived from the prey,
results in a complete closing of the trap by growth and the formation of the digestive
stomach (Darwin, 1875). Dissolving of the prey is achieved by the secretion of a digestive
fluid — an acidic cocktail comprising a variety of hydrolytic enzymes (Scala et al., 1968;
Robins and Juniper, 1980; Rea, 1982; Takahashi et al., 2009; Escalante-Pérez et al.,
2011; Schulze et al., 2012) — from the gland complexes located on the trap’s inner surface
(Lloyd, 1942; Littge, 1963; Liittge, 1964). The uptake of the solubilized nutrients such
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as NH,t, KT and PO,®" occurs through specific channels expressed in the gland cells
(Scherzer et al., 2013; Gao et al., 2015; Bohm et al., 2015; Bohm et al., 2016) and is
assisted by the absorbtion of small organic compounds through endocytosis (Adlassnig
and KollerPeroutka, 2012).



1.3. Whole genome sequencing and assembly
1.3. Whole genome sequencing and assembly

DNA (Deoxyribonucleic acid) molecules, first discovered by Miescher F (1871), today are
known to be the primary carriers of heredity information in living organisms and many
viruses (Avery, 1946; Chase, 1952). The discovery of the three-dimensional structure of
the double-stranded DNA helix (Watson and Crick, 1953) and the associated concept
of semiconservative replication (Meselson and Stahl, 1958), followed by the decryption
of the genetic code (Crick et al., 1961; M. W. Nirenberg and Matthaei, 1961; Wahba
et al., 1963; M. Nirenberg et al., 1965), set the foundation for the understanding of the
information encoded in biological DNA sequences.

In the 1970’s, Sanger and Coulson (1975, 1977) and independently Maxam and Gilbert
(1977) were the first to establish universally applicable experimental techniques for the
determination of the exact order of nucleotides — the four bases (bp) adenine (A), guanine
(G), cytosine (C), and thymine (T) — present in biological DNA molecules. Soon after,
with the sequencing of the complete 5 kbp genome of the $X174 phage, Sanger, Air, et al.
(1977) heralded the era of genome sequencing and analysis, a new scientific field today
referred to as genomics. In the following, technical advances, particularly with respect
to automation of the procedure, lead to the sequencing and analyses of larger genomes.
In 1995, Fleischmann and Adams published the first fully sequenced bacterial genome,
the genome of Haemophilus influenzae with a size of 1.8 Mbp. At the beginning of the
century, a huge collaborative effort from researchers around the globe over a period of
more than a decade culminated in the release of "[t]he sequence of the human genome”
(Lander et al., 2001; Venter et al., 2001) with a total size of 3 Gbp.

Already in 1979, Staden noted that "[w]ith modern fast sequencing techniques’? and
suitable computer programs it is now possible to sequence whole genomes”. This statement
shows that right from the beginning, the experimental procedure of sequencing was tightly
linked to computational processing of the obtained sequencing data. The primary reason
for this relation lies with the fact that while genomic DNA sequences can be up to several
hundred megabases in length, sequencing technologies are only able to read much shorter
fragments, often of less than a couple of hundred bases and even with recently emerging
long read technologies rarely more than some 10kbp (Pettersson et al., 2009; Quail et al.,
2012). In order to obtain a complete genome sequence, the sequencing-derived reads
need to be tied together in a coherent manner, a process later labeled assembly. While
this is manually achievable for short genomes comprised of a couple of dozen reads, it is
infeasible for data sets comprising more than a few hundred reads.

The basic steps toward a systematic and thus computationally automatable reconstruction
of a continuous sequence from reads are the (1) identification of overlaps among different
reads and (2) the layout of the fragments in a way that they can be concatenated into
a consistent, longer sequence. The main challenges of the approach are (1) sequencing

!Sanger and Coulson, 1975.
Maxam and Gilbert, 1977.



1. Introduction

errors in read data, which obscure overlaps and (2) the existence of repeated subsequences
within longer sequences which complicate the layout (E. W. Myers, 1995).

Initially, most assembly algorithms were based on the OLC (Overlap-Layout-Consensus)
paradigm. Here, read overlaps are determined by exhaustive all-vs-all alignments. The
computation and assessment of pair-wise sequence alignments is a common problem in
bioinformatics and a series of algorithms and programs were developed (Needleman and
Wunsch, 1970; Smith and Waterman, 1981; Altschul et al., 1990; Chaisson and Tesler,
2012; G. Myers, 2014), and subsequently adapted for the use with assembly software. The
overlap information obtained from the alignments is usually represented as a string graph,
from which continuous, unambiguous paths, or contigs are reconstructed (Nagarajan and
Pop, 2013). Typical OLC assemblers are Phrap (Green, 2016), MIRA (Chevreux et al.,
1999), ARACHNE (Batzoglou et al., 2002) and Celera (E. Myers et al., 2000; Berlin
et al., 2015).

With the rise of next generation sequencing technologies (Pettersson et al., 2009), and in
particular, Illumina’s massively parallel sequencing by synthesis systems, which generate
highly accurate but very short reads, a novel assembly approach based on De Brujin
graphs (Bruijn, 1946s) was introduced by Pevzner et al. (2001). In a De Brujin graph, a
reads set is represented as a network of k-mers (all possible substrings of a read with the
length k), with connections made between k-mers occurring directly adjacent to each
other within a read. The resulting paths implicitly model read overlaps, yet without the
need of actually having to compute read-vs-read alignments (Nagarajan and Pop, 2013).
While k-mer graph approaches are more susceptible to sequencing errors, they offer a
computationally much more efficient way to represent and reconstruct sequencing data
than OLC approaches, in particular if the number of overlaps is high (Pevzner et al.,
2001; Zerbino and Birney, 2008; Pettersson et al., 2009). Commonly used De Brujin
graph assemblers include Velvet (Zerbino and Birney, 2008), ABySS (Simpson et al.,
2009), SOAP (SOAP-denovo2, R. Li et al., 2009), ALLPATHS (ALLPATHS-LG, Gnerre
et al., 2011) and SPAdes (Bankevich et al., 2012).

More recently, the emergence of third generation long read sequencing technologies
(PacBio, Oxford Nanopore Technologies), producing longer reads at the expense of higher
error rates, led to a renaissance of OLC-based assemblers, with novel implementations
such as FALCON (J. Chin, 2016), DAZZLER (G. Myers, 2014), DBG20OLC (Ye et al.,
2014) and miniasm (H. Li, 2015). While these new technologies and assembly programs
are considered the next big step toward perfect assemblies, current instruments, algorithms
and implementations are still under development and their actual impact has yet to be
substantiated.

Nevertheless, due to the developments in the field of sequencing and assembly as well
as downstream analysis and annotation over the last decades, genomic sequences today
constitute comprehensive blueprints of life, providing fundamental insights in the genetic
mark-up, the metabolic and functional capabilities as well as the evolutionary origins of
organisms.
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2. Sequencing data inventory

2.1. BGI Illumina data

DNA extraction, library design and construction as well as sequencing of the initial
D. muscipula short read libraries were carried out by the BGI. A total of 35 libraries
were sequenced on Illumina HiSeq (HiSeq instrument) instruments. 17 libraries were
designed in paired-end configuration, comprising three overlapping libraries with reads
of 100 bp in length and a mean targeted insert size of 170 bp, eleven libraries of 100 bp
reads with insert sizes of 200 bp, 350 bp, 500 bp and 800 bp, three libraries of 150 bp
reads, with inserts of 200 bp, 250 bp and 500 bp. 18 libraries were designed and processed
in mate-pair configuration, with all libraries having 49 bp reads and 4 libraries each
of insert size 2kbp and 5kbp and 5 libraries each of 10kbp and 20 kbp insert size. In
total 383 Gbp, (128 2 assuming 3 Gbp genome) of paired-end and 176 Gbp (59 x assuming
3 Gbp genome) of mate-pair data were sequenced.

2.1.1. Raw BGI paired-end libraries

Table 2.1.: Inventory of raw BGI paired-end sequencing libraries showing number of reads, total size of
the library, read length (rl), insert size (is) and relative GC and N content. Libraries are grouped into
three subsets according to read length and insert size, with sums of reads, library size and estimated
coverage given in highlighted rows.

11D reads size [bp] rl [bp] is [bp] GC [%] N [%]
Dm_GenIl_019 89811803 8981180300 100 170 42.44 0.01
89811803 8981180300 100 170 42.32 0.46
Dm_GenIl_020 85363731 8536373100 100 170 42.19 0.02
85363731 8536373100 100 170 42.00 0.64
Dm_GenIl_021 116389434 11638943400 100 170 42.09 0.01
116389434 11638943400 100 170 42.13 0.04
total (is=170) 583129936 58312993600 19.4 X
Dm_GenIl_022 84767343 8476734300 100 200 41.44 0.08
84767343 8476734300 100 200 41.32 0.30
Dm_GenIl_023 60975254 6097525400 100 350 42.55 0.17
60975254 6097525400 100 350 42.50 0.50
Dm_GenIl_024 97487970 9748797000 100 350 41.00 0.07
97487970 9748797000 100 350 40.89 0.32
Dm_GenIl_025 106036232 10603623200 100 350 42.40 0.01
106036232 10603623200 100 350 42.48 0.03

Continued on next page
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2. Sequencing data inventory

Table 2.1.: Inventory of raw BGI paired-end sequencing libraries showing number of reads, total size of
the library, read length (rl), insert size (is) and relative GC and N content. Libraries are grouped into
three subsets according to read length and insert size, with sums of reads, library size and estimated
coverage given in highlighted rows.

11D reads size [bp] rl [bp] is [bp] GC [%] N [%]
Dm_GenIl_026 81957925 8195792500 100 350 42.48 0.13
81957925 8195792500 100 350 42.67 0.01
Dm_GenIl_027 57973259 5797325900 100 500 42.17 0.13
57973259 5797325900 100 500 42.23 0.40
Dm_GenI1l_028 93532466 9353246600 100 500 41.02 0.10
93532466 9353246600 100 500 40.98 0.24
Dm_GenIl_029 60677178 6067717800 100 500 41.43 0.11
60677178 6067717800 100 500 41.49 0.23
Dm_GenI1l_030 84125305 8412530500 100 800 41.44 0.05
84125305 8412530500 100 800 41.44 0.32
Dm_GenIl_031 82914350 8291435000 100 800 41.69 0.26
82914350 8291435000 100 800 41.88 0.16
Dm_GenIl_032 90320320 9032032000 100 800 41.22 0.05
90320320 9032032000 100 800 41.22 0.28
total (is>170) 1801535204 180153520400 60.1 X
Dm_GenIl_033 136116175 20417426250 150 200 41.70 0.07
136116175 20417426250 150 200 41.58 0.25
Dm_GenIl_034 185983869 27897580350 150 250 41.44 0.00
185983869 27897580350 150 250 41.46 0.08
Dm_GenIl_035 161057909 24158686350 150 500 41.36 0.00
161057909 24158686350 150 500 41.42 0.08
total (rl=150) 966315906 144947385900 48.3 X
total 3350981046 383413899900 127.8 X

2.1.2. Raw BGI mate-pair libraries

Table 2.2.: Inventory of raw BGI mate-pair sequencing libraries showing number of reads, total size of the
library, read length (rl), insert size (is) and relative GC and N content. Libraries are grouped into three
subsets according to read length and insert size, with sums of reads, library size and estimated coverage
given in highlighted rows.

IID reads size [bp] rl [bp] is [bp] N50 [bp] GC [%]
Dm_GenI1_001 97111962 4758486138 49 2000 43.37 0.01
97111962 4758486138 49 2000 43.43 0.44
Dm_GenI1_002 83011755 4067575995 49 2000 41.89 0.01
83011755 4067575995 49 2000 42.15 0.16
Dm_GenI1_003 94143871 4613049679 49 2000 43.45 0.01
94143871 4613049679 49 2000 43.49 0.43
Dm_GenI1l_004 106125453 5200147197 49 2000 41.61 0.01
106125453 5200147197 49 2000 41.91 0.07
total (is=2000) 760786082 37278518018  12.4 X
Dm_GenI1_005 109995613 5389785037 49 5000 41.25 0.01
109995613 5389785037 49 5000 41.46 0.26

Continued on next page
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2.1. BGI Illumina data

Table 2.2.: Inventory of raw BGI mate-pair sequencing libraries showing number of reads, total size of the
library, read length (rl), insert size (is) and relative GC and N content. Libraries are grouped into three
subsets according to read length and insert size, with sums of reads, library size and estimated coverage
given in highlighted rows.

1ID reads size [bp] rl [bp] is [bp] N50 [bp] GC [%]
Dm_GenI1_006 89316107 4376489243 49 5000 42.70 0.01
89316107 4376489243 49 5000 42.88 0.16
Dm_GenI1_007 90045200 4412214800 49 5000 41.47 0.01
90045200 4412214800 49 5000 41.71 0.16
Dm_GenI1_008 102128251 5004284299 49 5000 42.55 0.01
102128251 5004284299 49 5000 42.63 0.47
total (is=5000) 782970342 38365546758  12.8 X
Dm_GenI1_009 82318433 4033603217 49 10000 42.20 0.03
82318433 4033603217 49 10000 42.39 0.04
Dm_GenI1_010 105420967 5165627383 49 10000 42.60 0.01
105420967 5165627383 49 10000 42.82 0.13
Dm_GenI1_011 104402212 5115708388 49 10000 42.61 0.01
104402212 5115708388 49 10000 42.83 0.14
Dm_GenIl_012 88151111 4319404439 49 10000 42.77 0.00
88151111 4319404439 49 10000 43.03 0.09
Dm_GenI1_013 87288979 4277159971 49 10000 42.19 0.01
87288979 4277159971 49 10000 42.44 0.02
total (is=10000) 935163404 45823006796  15.3 X
Dm_GenIl_014 88805534 4351471166 49 20000 41.60 0.00
88805534 4351471166 49 20000 41.79 0.04
Dm_GenI1_015 104439599 5117540351 49 20000 42.17 0.01
104439599 5117540351 49 20000 42.79 0.02
Dm_GenI1_016 169157218 8288703682 49 20000 41.83 0.01
169157218 8288703682 49 20000 42.40 0.16
Dm_GenI1_017 105071761 5148516289 49 20000 42.16 0.01
105071761 5148516289 49 20000 42.75 0.10
Dm_GenIl_018 88296535 4326530215 49 20000 41.48 0.03
88296535 4326530215 49 20000 41.68 0.03
total (is=20000) 1111541294 54465523406  18.2 X
total 3590461122 175932594978  58.6 X

2.1.3. Trimmed BGI paired-end libraries

Table 2.3.: Inventory of trimmed BGI paired-end sequencing libraries showing number of reads, total size
of the library, read length (rl), insert size (is) and relative GC and N content.

IID reads size [bp] rl [bp]l is [bp]l GC [%] N [%]
Dm_GenI1l_019 76537195 7584573949 75-100 170 41.45 0.00
76537195 7560928597 75-100 170 41.45 0.00
Dm_GenIl_020 73141684 7250065851 75-100 170 41.20 0.00
73141684 7226430829 75-100 170 41.20 0.00
Dm_GenIl_021 93450264 9146614827 75-100 170 40.62 0.00
93450264 9184917381 75-100 170 40.72 0.00

Continued on next page
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2. Sequencing data inventory

Table 2.3.: Inventory of trimmed BGI paired-end sequencing libraries showing number of reads, total size
of the library, read length (rl), insert size (is) and relative GC and N content.

11D reads size [bp] rl [bp]l is [bp] GC [%#]1 N [%]
Dm_GenIl1l_022 71075309 7002660562 75-100 200 40.30 0.00
71075309 6999519580 75-100 200 40.27 0.00
Dm_GenIl_023 50693908 4982498772 75-100 350 41.27 0.00
50693908 4966029357 75-100 350 41.33 0.00
Dm_GenIl_024 80078902 7909148528 75-100 350 39.88 0.00
80078902 7877032104 75-100 350 39.76 0.00
Dm_GenIl_025 83068511 8128602927 75-100 350 40.88 0.00
83068511 8134553475 75-100 350 41.02 0.00
Dm_GenIl_026 67178569 6617736594 75-100 350 41.23 0.00
67178569 6583167243 75-100 350 41.26 0.00
Dm_GenIl_027 47139008 4639144370 75-100 500 40.87 0.00
47139008 4613081880 75-100 500 40.90 0.05
Dm_GenIl_028 75995500 7509976442 75-100 500 39.89 0.00
75995500 7465373009 75-100 500 39.78 0.00
Dm_GenIl1l_029 50131206 4932765695 75-100 500 40.13 0.00
50131206 4897978659 75-100 500 40.10 0.00
Dm_GenI1_030 65931985 6522998784 75-100 800 40.07 0.00
65931985 6411327612 75-100 800 39.95 0.00
Dm_GenIl1l_031 62259973 6095929703 75-100 800 39.97 0.00
62259973 6039389384 75-100 800 39.89 0.00
Dm_GenIl_032 69625681 6885349502 75-100 800 39.76 0.00
69625681 6758247330 75-100 800 39.62 0.00
Dm_GenI1_033 109638366 15746813428 100-150 200 40.77 0.00
109638366 16891839422 100-150 200 40.75 0.00
Dm_GenIl_034 163273896 24243191798 100-150 250 41.11 0.00
163273896 23982381383 100-150 250 41.03 0.00
Dm_GenI1_035 129136047 19138795517 100-150 500 40.79 0.00
129136047 18791643727 100-150 500 40.64 0.00

total 2736712008 307720708221

2.1.4. Normalized BGI paired-end libraries
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2.1. BGI Illumina data

Table 2.4.: Inventory of digitally normalized BGI paired-end sequencing libraries showing number of reads,
total size of the library, read length (rl), insert size (is), relative amount of retained reads and relative GC
and N content.

IID reads size [bp] kept [%] <rl [bp]l] is [bp]
Dm_GenIl_019 88441386 8844188883 49.2 78-100 170
Dm_GenI1l_020 84765504 8476597655 49.6 78-100 170
Dm_GenI1_021 110193906 11019449432 47.3 78-100 170
Dm_GenIl_027 62416166 6241646924 53.8 78-100 500
Dm_GenI1l_033 102572142 15385976632 37.7 117-150 200
Dm_GenIl_034 137122500 20568588443 36.9 118-150 250
total 585511604 70536447969 43.6 =
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2.2. LGC IMlumina data

Four additional overlapping paired-end libraries were constructed and sequenced by the
LGC (LGC Genomics) with a read length of 100 bp and a targeted insert size of 180 bp.

2.2.1. Clipped LGC paired-end libraries

Table 2.5.: Inventory of clipped LGC paired-end sequencing libraries showing number of reads, total size
of the library, read length (r1), insert size (is) and relative GC and N content.

11D reads size [bp] rl [bp] is [bpl GC [%] N [%]
dm-il-01 342983444 34210566518 20-100 180 41.28 0.00
342983444 34208198231 20-100 180 41.50 0.04
dm-i1-02 346461493 34564374885 20-100 180 41.27 0.00
346461493 34562088172 20-100 180 41.48 0.04
dm-i1-03 344489284 34374751189 20-100 180 41.32 0.00
344489284 34372624536 20-100 180 41.52 0.04
dm-i1-04 441747363 44052248516 20-100 180 41.37 0.00
441747363 44048861064 20-100 180 41.55 0.04
total 2951363168 294393713111

2.2.2. Trimmed LGC paired-end libraries

Table 2.6.: Inventory of trimmed BGI paired-end sequencing libraries showing number of reads, total size
of the library, read length (rl), insert size (is) and relative GC and N content.

IID reads size [bp] rl [bp]l is [bp]l GC [%] N [%]
dm-i1-01_1 313,793,768 31,210,462,856 75-100 180 40.97 0.00
313,793,768 31,120,247,523 75-100 180 41.02 0.00
dm-il-02_1 316,052,118 31,437,234,885 75-100 180 40.95 0.00
316,052,118 31,336,387,709 75-100 180 40.99 0.00
dm-i1-03_1 315,219,698 31,350,938,056 75-100 180 40.99 0.00
315,219,698 31,264,539,637 75-100 180 41.04 0.00
dm-il-04_1 400,282,020 39,799,873,463 75-100 180 41.03 0.00
400,282,020 39,687,222,247 75-100 180 41.03 0.00
total 2,690,695,208 267,206,906,376
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2.2. LGC Illumina data

2.2.3. Normalized LGC paired-end libraries

Table 2.7.: Inventory of normalized LGC paired-end sequencing libraries showing number of reads, total
size of the library and relative amount of retained reads after normalization.

IID reads size [bp]l kept [%]

dm-il-nkh 518238768 51702495021 35.1
518238768 51701548333

dm-il-nbb 575343861 57404351676 39.0

575343861 57401075176
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2. Sequencing data inventory

2.3. PacBio data

2.3.1. Raw PacBio libraries

Table 2.8.: Inventory of raw PacBio sequencing libraries showing number of reads, total size of the library,
read length range (rl), N50 (Burton, 2008) and relative GC content. Libraries are grouped into five
batches according to their delivery date, with sums of reads, library size and estimated coverage given in
highlighted rows.

11D reads size [bp] rl [bp] N50 [bp]l GC [%]
dm-pb-001 19875 23234523 50- 7589 2547 49.74
dm-pb-002 51707 84566278 50- 7314 2414 43.96
dm-pb-003 21644 31238647 50- 6946 2078 43.2
dm-pb-004 19012 27057062 50- 7208 2065 43.22
dm-pb-005 24931 35413617 50- 6830 2051 43.08
dm-pb-006 28493 41225571 50- 7515 2109 43.37
dm-pb-007 24484 34450208 50- 6896 2047 43.27
dm-pb-008 16535 26839813 50-11511 2314 43.33
dm-pb-009 19439 32209205 50-11472 2414 43.19
dm-pb-010 21639 36174357 50-10784 2420 43.29
dm-pb-011 35786 61414464 50-11140 2491 43.31
dm-pb-012 24742 42348909 50-10444 2486 43.24
dm-pb-013 27253 80506605 50-17694 4238 44.65
dm-pb-014 13602 46170831 50-19784 4767 44 .62
dm-pb-015 17386 51909465 50-21238 4167 44 .41
dm-pb-016 19763 56131560 50-16360 3959 44 .44
dm-pb-017 18900 52312015 50-16900 3829 44 .52
dm-pb-018 19220 54898925 50-18176 4002 44 .54
dm-pb-019 22735 71267776 50-17743 4421 44 .55
dm-pb-020 22079 56937835 50-18965 3398 44 .48
dm-pb-021 28137 74795732 50-17080 3613 44 .63
dm-pb-022 31098 80019155 50-17284 3487 44 .58
dm-pb-023 49282 133189141 50-17880 3793 45.06
dm-pb-024 42245 114090557 50-19218 3756 44 .82
dm-pb-025 22651 58097830 50-17411 3420 44.74
dm-pb-026 28261 75054941 50-18873 3586 45.02
dm-pb-027 26395 69767206 50-18327 3575 44 .84
dm-pb-028 21774 60361915 50-16357 3879 44 .58
batch 1 719068 1611684143 0.5 X

dm-pb-029 45916 128383379 50-17971 3802 44 .31
dm-pb-030 52729 145693516 50-19716 3815 44 .17
dm-pb-031 47661 129369474 50-20675 3698 44 .23
dm-pb-032 58967 138878634 50-18583 3123 44 .18
dm-pb-033 66222 156215795 50-18863 3088 44 .2
dm-pb-034 60675 142391718 50-19306 3090 44 .28
dm-pb-035 60368 140907192 50-17717 3060 44 .31
dm-pb-036 58985 139631578 50-18190 3090 44 .31
dm-pb-037 62602 145582433 50-19103 3002 44 .33

Continued on next page
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2.3. PacBio data

Table 2.8.: Inventory of raw PacBio sequencing libraries showing number of reads, total size of the library,
read length range (rl), N50 (Burton, 2008) and relative GC content. Libraries are grouped into five
batches according to their delivery date, with sums of reads, library size and estimated coverage given in
highlighted rows.

1ID reads size [bp] rl [bp]l N50 [bp]l GC [%]
dm-pb-038 60063 140215114  50-19139 3023  44.31
dm-pb-039 61036 141259560  50-18764 3010  44.43
dm-pb-040 56821 145864585  50-18324 3493  44.49
dm-pb-041 63018 160209182  50-17068 3424  44.58
dm-pb-042 46321 126047840  50-19441 3694  44.66
dm-pb-043 67954 179300595  50-19285 3617  44.73
dm-pb-044 54814 144339645  50-18741 3630  44.37
dm-pb-045 58450 145343059  50-19021 3312  44.34
dm-pb-046 49026 124580239  50-20801 3412  44.45
dm-pb-047 60853 152609840  50-17235 3410  44.44
dm-pb-048 70638 162451560  50-15705 3034  44.63
dm-pb-049 71124 163719032  50-18197 3055  44.52
dm-pb-050 77576 177855053  50-18242 3027 44.5
dm-pb-051 77332 190024586  50-19045 3272  44.54
dm-pb-052 73592 174524235  50-23733 3146 44.5
dm-pb-053 75789 176808047  50-18584 3038  44.66
dm-pb-054 73347 171031969  50-20069 3047  44.79
dm-pb-055 70513 1617165621  50-17128 3015  44.64
dm-pb-056 58096 120420197  50-17891 2885  44.34
batch 2 1740488 4234373678 1.4 X

dm-pb-057 54270 132363604  50-17141 3196  44.45
dm-pb-058 48915 127402612  50-17802 3492 44.4
dm-pb-059 54519 127907670  50-17280 3042  44.39
dm-pb-060 54590 130075405  50-18739 3091  44.68
dm-pb-061 64289 152037939  50-18557 3114  44.67
dm-pb-062 69879 167466560  50-16948 3177 44.77
dm-pb-063 59812 145985395  50-22073 3237  44.56
dm-pb-064 61387 147498698  50-21659 3218  44.53
dm-pb-065 71415 168423532  50-20458 3129  44.52
dm-pb-066 63585 146725019  50-15300 3047  44.38
dm-pb-067 59821 136229580  50-17220 2948 44.4
dm-pb-068 56856 142570662  50-19006 3361  44.37
dm-pb-069 46823 113838183  50-18500 3207  44.04
dm-pb-070 46320 114599515  50-20225 3281  44.21
dm-pb-071 42177 110120483  50-17298 3524  44.16
dm-pb-072 39550 102055387  50-15653 3517  44.26
dm-pb-073 16474 48056257  50-16860 4080 44.5
dm-pb-074 32302 85820936  50-16579 3649  44.39
dm-pb-075 38881 99298426  50-17611 3485  44.32
dm-pb-076 49368 114760797  50-18050 2958 44.6
dm-pb-077 45345 102712412  50-19337 2873  44.43
dm-pb-078 5589 13854669  50-15840 3346  44.11
dm-pb-079 51091 118728700  50-17306 2983  44.55

Continued on next page
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2. Sequencing data inventory

Table 2.8.: Inventory of raw PacBio sequencing libraries showing number of reads, total size of the library,
read length range (rl), N50 (Burton, 2008) and relative GC content. Libraries are grouped into five
batches according to their delivery date, with sums of reads, library size and estimated coverage given in
highlighted rows.

IID reads size [bp] rl [bp]l N50 [bpl GC [%]
dm-pb-080 35737 80930917  50-15548 2875 44.5
dm-pb-081 35392 79704437  50-15284 2801  44.69
dm-pb-082 46830 105249187  50-18167 2854  44.46
dm-pb-083 47366 107318144  50-19006 2877  44.52
dm-pb-084 49563 113799849  50-19741 2084  44.45
batch 3 1348146 3235534975 1.1 X

dm-pb-085 68016 183880771  50-19273 3693  43.93
dm-pb-086 66431 175750220  50-16365 3475  43.83
dm-pb-087 88276 288051497  50-21703 4399  43.15
dm-pb-088 83200 263473446  50-19218 4291 43.5
dm-pb-089 83995 264854848  50-20788 4233  42.76
dm-pb-090 79245 243822139  50-22057 4116 42.9
dm-pb-091 86507 271530860  50-20840 4195  43.14
dm-pb-092 43037 125615937  50-17740 3984  42.74
dm-pb-093 33634 98510838  50-17843 3971 42.77
dm-pb-094 38528 111749230  50-18569 3951  42.74
dm-pb-095 38042 113262863  50-17065 4050 42.8
dm-pb-096 43230 125502585  50-16804 3917  42.69
dm-pb-097 43710 129385731  50-17783 4011  42.74
dm-pb-098 36353 106056303  50-18534 3914  42.69
dm-pb-099 93237 300988254  50-19811 4341  42.78
dm-pb-100 90480 288496554  50-20021 4275  42.91
dm-pb-101 86933 278851762  50-21098 4280  42.79
dm-pb-102 76488 237751508  50-19321 4142  42.76
dm-pb-103 79697 239296138  50-20515 4018 42.7
dm-pb-104 101696 321321447  50-18631 4266  42.99
dm-pb-105 93084 280983857  50-19668 4057  42.98
dm-pb-106 73252 251259901  50-19158 4516  43.36
dm-pb-107 99480 314909274  50-19799 4261  42.99
dm-pb-108 80235 262669108  50-21535 4320  43.25
dm-pb-109 101129 311528268  50-20298 4149  42.91
dm-pb-110 71572 240959466  50-18979 4416  43.39
batch 4 1879487 5830462805 1.9 X

dm-pb-111 97267 267880376 500-23536 3227  42.62
dm-pb-112 110121 315311416 500-25666 3350  42.00
dm-pb-113 77034 216630483 500-25404 3253  41.48
dm-pb-114 85905 227264202 500-21024 3074  41.36
dm-pb-115 91222 245976451 500-25982 3153  41.79
dm-pb-116 91836 238411148 500-25242 3004  41.25
dm-pb-117 89632 230817139  500-24002 2080  41.22
dm-pb-118 89519 234314025 500-24013 3028  41.55
dm-pb-119 27704 73992409 500-27649 3128  41.51
batch 5 760240 2050597649 0.7 X

Continued on next page
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2.3. PacBio data

Table 2.8.: Inventory of raw PacBio sequencing libraries showing number of reads, total size of the library,
read length range (rl), N50 (Burton, 2008) and relative GC content. Libraries are grouped into five
batches according to their delivery date, with sums of reads, library size and estimated coverage given in
highlighted rows.

1ID reads size [bp] rl [bp]l N50 [bp]l GC [%]

total 6447429 16962653250 5.7 X

2.3.2. In silico mate-pair libraries from corrected PacBio reads

Table 2.9.: Inventory of in silico mate-pair libraries generated with pb2il from corrected PacBio reads,
with number of reads, total size of the library, read length (rl), insert size (is) and relative GC. Libraries
are grouped into subsets according to insert size, with sums of reads, library size and estimated coverage
given in highlighted rows.

IID reads size [bp] rl [bp] is [bp] GC [%]
dm-pb2i1-2000 68209189 6795619379 100 2000 43.22
68209189 6809720662 100 2000 43.19

total (is=2000) 136418378 13605340041 4.5 X
dm-pb2i1-3000 38940574 3878469696 100 3000 43.21
38940574 3887657710 100 3000 43.16

total (is=3000) 77881148 7766127406 2.6 X
dm-pb2i1-5000 12349202 1229364230 100 5000 43.26
12349202 1232859951 100 5000 43.15

total (is=5000) 24698404 2462224181 0.82 X
dm-pb2i1-10000 381572 37916474 100 10000 43.21
381572 38077716 100 10000 43.05
dm-pb2i1-15000 6157 611203 100 15000 43.11
6157 613715 100 15000 42.82

total (is>=10000) 775458 77219108 0.03 X

239773388 23910910736 8.0 X
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3. Software and parameters

3.1. Computing resources

Many of the computational tasks performed during the project required specific architec-
tures and extensive amounts of computational capacities with respect to storage, CPU
and memory. Primary analyses were run on the grid architecture maintained at the
university of Wuerzburg. The grid comprises three HPC (High Performance Computing)
nodes with 30 processors and 192 GB RAM (node IDs: r5n02, r5n03, r5n05) and one
large memory HPC node with 40 hyper-threaded processors and 512 GB RAM (node ID:
ron01).

External computing resources on low-memory node cluster architectures with a total of
several hundred processors were procured through grant applications at the LRZ (Leibniz-
Rechenzentrum) and the DIAG (Data Intensive Academic Grid). Further, temporary
access to high memory nodes with >1TB of RAM for individual assembly runs was
available through cooperation with Prof. Dr. Chris-Carolin Schén at the Technische
Universitat Miinchen (node ID: mammoth) and through cooperation with Prof. Dr. Bernd
Weisshaar at the CeBiTec (Center for Biotechnology), Bielefeld University, Department
of Biology (node ID: robin).

3.2. Sequencing data quality control

Technical integrity and sequencing quality of data were verified with the FastQC (Andrews,
2015) pipeline (v0.10.1, v0.11.2). The tool computes a series of basic statistics from
FASTQ (Cock et al., 2009) files. The results are evaluated against internal standards
and potential problems are indicated by warnings or critical exceptions. FastQC was
applied to (a) Illumina data before and after trimming and (b) PacBio data before and
after correction.
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3. Software and parameters
3.3. Illumina data processing

3.3.1. Illumina adapter and quality trimming

During sample preparation, DNA fragments for Illumina high-throughput sequencing
machines are enclosed in adapters mediating flow cell binding, amplification and sample
identification. After sequencing the adapter information needs to be clipped. Similarly
regions of low sequencing quality have to be trimmed in order to prevent sequencing
errors from affecting downstream analyses (Minoche et al., 2011).

Clipping and trimming of 100 bp and 150 bp reads was performed with trimmomatic
(Bolger et al., 2014) v0.3. Read pairs with at least one read below a minimum length of
75bp and 100 bp, respectively, after trimming were removed. Quality was evaluated in
10 bp window requiring a minimum mean Phred quality score (Ewing et al., 1998; Ewing
and Green, 1998) of 20 (= 99 % base call accuracy).

Mate-pair reads with a length of 49 bp were trimmed with sickle v1.200, with a quality
cutoff of 25, a length cutoff of 40 and N containing reads removed entirely.

3.3.2. Insert size estimation

Illumina reads were sequenced in paired-end configuration. Frag-

e s (e ments of a targeted insert size were generated by size exclusion

c 1232 wmy during library preparation. The effective insert sizes of the se-
,-12, an . . .

o anz quenced libraries were evaluated through the following approach:

82 any Reads of each library (100 % of the LGC set, 5% of the BGI set,

C’Qo’i any sampled with SeqChunker) were mapped using bowtie2 (Langmead

C 0.0 ::z and Salzberg, 2012) v2.2.2 in paired-end mode and with strict

1000 < 250 settings (table 3.1) onto a 10 % sample of proovread corrected
2000 > 9250 PacBio reads. SAM < BAM conversion was performed with
samtools (H. Li et al., 2009) v0.1.19 and insert sizes parsed into

Table 3.1.: Bowtie2 parameters for esti-  a table with a custom script. The tables were processed with R

mation of insert size (is) distribution

(Statistical programming language) and plotted with ggplot2 (R
plotting library) grouped by expected insert size.

24



3.3. Illumina data processing

3.3.3. Overlap merging

Overlapping libraries are designed in a way that the ends of the

two reads of an insert overlap each other. The insert size (S;) of = Instrument 1l [bp]
overlapping libraries needs to be smaller than twice the sequenced H%Seq 100
read length (L,). The expected overlap length is given by 2L, — S;. ﬁi:: MiSeq ;zg
See table 3.2 for typical combinations of read lengths and insert MiSeq’ 300

sizes on current Illumina instruments.

The overlap information of read and mate can be used to merge

is [bp]
170-180
200-250
450
550

Table 3.2.: Typical read lengths (rl)
and insert sizes (is) of overlapping li-

both sequences into one longer fragment. Merging reads reduces  praries sequenced on Illumina HiSeq

sequencing error rates, and downstream processing benefits from  and MiSeq platforms
increased length. During library preparation, the insert size of a

library is determined by fragmentation and subsequent size exclusion procedures (Magoc
and Salzberg, 2011); therefore, resulting insert and overlap lengths vary. Accurate
overlaps need to be computed based on alignments of the read ends.

The D. muscipula BGI read set comprises five overlapping libraries

(table 3.3). Merging of read data was performed with FLASh (Fast = P ol [bpl
Length Adjustment of Short reads, Magoc and Salzberg, 2011) v1.2.10. ﬁz‘g:i‘égég_om] 1:2
Phred offset was set to 64, read length and insert size were set Dm:Gen11:034 50
according to library specifications. A standard deviation of 20 bp dm-1i1-[01-04] 20
and 30 bp were specified for 100 bp and 150 bp libraries, respectively.

Maximum mismatch density was set to 0.10. Table 3.3.: Overlap lengths (ol) of

sequenced D. muscipula libraries

The LGC set consists entirely of overlapping read data. Merging of
read data was performed with FLASh v1.2.10 and default parameters.

3.3.4. Read Error correction

Error correction of Illumina data was performed with the error correction module of
ALLPATHS. The ALLPATHS error correction is based on a k-mer approach first described
by Pevzner et al., 2001. It utilizes 24-mer stacks to identify reads with underrepresented
k-mers and modifies affected reads to only comprise non-erroneous k-mers.

BGI paired-end libraries have been corrected multiple times in different configurations. A
full correction of the entire raw read data set requires more than 1 TB of RAM, and thus
execution on the r5n01 node with 512 GB failed. The first corrected sequence set was
generated by subsetting the given libraries into three batches of similar size and running
the ALLPATHS correction on each batch individually. While this way, memory limits
are matched, each set is also reduced to about one third of the initial coverage, resulting
in subsets of less than 20 z. At this coverage level and, in particular, in the presence of
high levels of heterozygosity, the quality of the error correction impaired.

An all-at-once correction of the BGI set was subsequently achieved by utilizing normalized
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3. Software and parameters

libraries as input (see section 3.3.5 for details on normalization). Two corrections were
performed, the first with standard settings, the second with HAPLOIDIFY=TRUE. In this
mode, ALLPATHS tries to identify heterozygous sites in addition to errors, and to remove
those by consistently choosing k-mers of the same allel for all input reads.

A full correction of the entire BGI set with ALLPATHS was generated as soon as the
mammoth machine at the LRZ with 2 TB RAM became available. These reads were
further filtered by running the ALLPATHS deduplication module before correction. The
procedure included a deduplication step before and after correction.

3.3.5. Digital normalization

Digital normalization is a procedure to decrease sequencing data set size and redundancy
by identification and filtering of coverage threshold exceeding reads, thus creating a
read set with a systematically limited target coverage. If applied to genomic data of a
single organism, particularly unique genomic regions are unaffected, while removal of
repeat reads largely reduces RAM requirements and speeds up computing in subsequent
processing and assembly with little impact on the information content of the generated
contigs. (Brown and Crusoe, 2014).

For efficient implementation of digital normalization, reads are assessed by k-mer coverage.
The normalize-by-median.py script of the khmer (Brown and Crusoe, 2014) package
uses a single pass approach that filters each read according to its median k-mer coverage.
Reads are serially processed and k-mer counts are assessed on-the-fly. Therefore, at
the beginning of a run, each k-mer and thus the reads median k-mer coverage is below
the target threshold. While running through the reads, counts of abundant k-mers will
increase faster than those of k-mers of non-repetitive regions and at some point exceed
the specified threshold. If the majority of k-mers of a read, and thus the coverage median,
exceeds the threshold, the corresponding read pair will be removed from the set. This can
be understood as: If the information encoded in a read was seen often enough, adding
more reads of the same composition is omitted, as it only would increase redundancy
and not information content.

The normalize-by-median.py (khmer-20120916) script was used to generate the read set
for the Dm-gen-ap-6 assembly. As input for the normalization process, error corrected
overlapping libraries Dm_GenI1l_[019-021] and Dm_GenIl_[033-034] as well as the
500 bp insert size library Dm_GenI1_027, obtained from the Dm-gen-ap-5 assembly run
with the entire BGI short read data set, were used. Digital normalization with a target
coverage of 100X was applied. The estimated coverage for the raw reads set is 45 x. 100 x
was chosen in order to reduce excessively repetitive reads but at the same time keep
them at a higher coverage than reads derived from unique regions to allow the assembler
to still make the distinction of repetitive and non-repetitive regions.

A newer version of normalize-by-median.py (khmer-20130520) was applied to the LGC
raw libraries dm-il1-[01-04]. Target coverage was set to 200 x given a 80 x coverage for
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3.4. PacBio data processing

the raw set. The resulting reads were used for assembly Dm-gen-ap-10.

In 2014, improved digital normalization software packages - bbnorm.sh (Bushnell, 2014)
and NeatFreq (McCorrison et al., 2014) - were published. bbnorm.sh uses a faster and
less memory demanding k-mer hash and a two-pass approach with bloom filter making
it less sensitive to sequencing errors. This is of particular importance as normalization
tends to accumulate erroneous k-mers due to their low coverages.

bbnorm.sh of the BBMap (Bushnell, 2014) v34.86 release was used to obtain an improved
normalized set of the LGC raw libraries. The script requires coverage to be specified
as k-mer coverage, rather than expected per-base coverage. A target k-mer coverage of
140 was used, which given 31-mers and 100 bp reads is equivalent to a 200 x per-base
coverage (see section 8.1.1 for details on conversion). The resulting read set was used for
assembly Dm-gen-ap-13.

3.4. PacBio data processing

3.4.1. Preparation

Sequencing of PacBio read data was performed at the FGCZ (Functional Genomics Center
Zurich) on a PacBio RS II platform. Two initial test cells were sequenced in July and
September 2012. The additional 117 cells were sequenced in five batches between October
2012 and August 2014. The pre-processed data was sent from FGCZ on hard-disk drives
and upon receipt transferred onto the local computing infrastructure.

Processing of the data was carried out with a locally installed and hosted instance of
PacBio’s web-based SMRT-Portal analysis suite. Annotation of adapters and export of
subreads in FASTQ format from PacBio’s native HDF5 (Hierarchical Data Format 5)
compressed storage format was performed with default settings. For the latest batch,
SMRT-Portal was replaced by the faster dextract (G. Myers, 2014) module from the
DEXTRACTOR (G. Myers, 2014) package. Since the tool also provides a command line
interface, hosting and maintenance of the SMRT-Portal web-application was discontinued.
Application of dextract is limited to the recent bax.hb5 data format generated by PacBio
instruments since a software update in 2014. Older bas.h5 encoded data still needs to
be converted with SMRT-Portal derived scripts.

3.4.2. Hybrid correction

To prepare the highly erroneous PacBio reads for assembly and downstream processing, the
reads were corrected using an Illumina-PacBio hybrid correction approach implemented
in the software proovread. The development and functionality of proovread are described
in details in chapter 6 proovread — large-scale hybrid PacBio correction through iterative
consensus.
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3. Software and parameters

PacBio hybrid correction on data sets of gigabase-sized genomes is computationally highly
demanding. External computing time on large cluster architectures was procured through
successful applications for run-time at the LRZ and the DIAG. Both facilities offer
project-specific computing time and architecture free-of-charge to non-profit academic
research. Due to software incompatibilities and issues related to data transfer, only the
Linux cluster at the LRZ was actually used for correction of D. muscipula data. The
computing time at the DIAG was used with other data sets during the development of
the proovread software.

The entire sequence set of Illumina and PacBio data required for hybrid correction
comprises several hundred GB of raw data. Efficient transfer of the large amounts of data
was achieved through usage of the globusconnect system, which is specifically designed
to facilitate fast and secure transfer of large data set between research infrastructures.
A globusconnect client was set-up, configured and used to transfer bzip2 compressed
archives of the raw and corrected files to and from the LRZ servers.

Initial corrections of subsets of the first two batches were run with developmental versions
of proovread (< v1.00) to evaluate and optimize parameters.

A first full correction was run on all batches available at the time (batches 1-4) with
proovread v1.01 and digitally normalized BGI lllumina data. PacBio reads were split
with SeqChunker into 10MB chunks and jobs were submitted to the serial_long queue
with 4 CPUs, 8GB RAM and a 480h job run-time limit per node.

A second full correction was performed on batches 1 to 5 with proovread v2.12 and
digitally normalized LGC Illumina reads. PacBio reads were split with SeqChunker into
10MB chunks. Improved speed of the newer proovread version allowed to submit jobs to
the serial queue with 4 CPUs, 8GB RAM and a 240h job run-time limit per node.

3.5. k-mer analysis, genome size estimation and %£-mer-derived
plots

k-mer abundance based analyses, plots and assessments of derived data were performed
with custom scripts described in detail in chapter 8 Analysis and visualization of k-mer
distributions and derived data. Counting of k-mers was performed with Jellyfish (Margais
and Kingsford, 2011) v2.2.3 and v2.2.4.
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3.6. Assembly and scaffolding software

3.6. Assembly and scaffolding software

3.6.1. SOAP-denovo 2

SOAP was developed for human-sized de-novo short read assemblies based on a De
Brujin graph algorithm. The initial D. muscipula draft assembly delivered by the BGI
was generated with SOAP using merged overlapping reads and a final k-mer size of
127. However, particular details of the assembly process have not been disclosed further,
rendering it impossible to reproduce and assess the exact assembly procedure.

First assemblies with the purpose of testing our newly set up computational architecture
for the use with SOAP have been run by me and Felix Bemm with SOAP version r239
or older. The runs were executed with mostly default settings, all available libraries and
k-mer sizes <100. In all cases, the resulting assemblies were highly fragmented with
contig N50 <1kbp. Further analysis of the assemblies have been omitted. All assemblies
described in the following have been generated with SOAP r240.

The Dm-gen-so-4 assembly was run with a k-mer size of 127. Input for the initial assembly
graph construction were digitally normalized versions of the the BGI libraries with a
read length of 150 bp (Dm_GenI1_[033-035]). For scaffolding all mate-pair libraries were
used, after read pairs comprising repetitive k-mers were removed.

The Dm-gen-so-5 contig assembly was generated with a k-mer size of 127 and from
merged overlapping libraries of the BGI read set (Dm_GenI1_[019-021,033,034]).

The initial graph assembly Dm-gen-so-7 was constructed from all paired-end libraries
with 100 bp read length (Dm_Gen_I1[019-021,027-032]) and with a k-mer size of 49.
Scaffolds were generated with BGI mate-pair libraries of 2kbp and 5kbp insert size,
filtered for read pairs containing repetitive k-mers, as well as artificial mate-pair li-
braries generated from corrected PacBio reads (pb2il_2000, pb2il_3000, pb2il_4000,
pb2i15000). The PacBio mate-pair libraries were generated with the pb2il module, which
has been implemented by Markus Ankenbrand as an extension to the perl5lib-Fastq
library (see section 7.1).

Dm-gen-so-9 was constructed with a k-mer size of 127 and from merged LGC overlapping
libraries (dm-i1-[01-04]). BGI paired-end reads with 500 bp and 800 bp insert size and
mate-pair libraries with 2 kbp and 5 kbp insert size were used for scaffolding.

Assemblies Dm-gen-so-[10-12] have been generated with k-mer sizes of 67, 77 and 87,
respectively. Corrected LGC libraries were used as input. Scaffolding was performed
with all non-overlapping trimmed BGI libraries (Dm_GenI1_[023-032]).
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3. Software and parameters

3.6.2. ALLPATHS-LG

The ALLPATHS (Butler et al., 2008) assembler was originally developed as a De Brujin
graph assembler for bacterial and small eukaryotic genomes. Later, the algorithm was
adapted specifically for the use with large, repeat-rich vertebrate genome data and
released as ALLPATHS-LG, with LG denoting its usability for large genomes. Since
than, ALLPATHS was utilized to reconstruct a multitude of large eukaryotic genomes,
including human, mouse, rhino, manatee, hedgehogs, a series of rodents and more(The
ALLPATHS-LG developmental team, 2016).

Preliminary ALLPATHS assemblies were run by Felix Bemm and me on r5n01 with
ALLPATHS R41592, R42682 and R42811. Early runs failed due to technical issues with
the newly set-up computing grid and the underlying SuSE Enterprise OS. These problems
were fixed by switching to an Ubuntu OS and optimizing the configuration of the system.

On the stable system assemblies continued to fail as the full BGI data set when used
with ALLPATHS exceeded the 512 GB available memory. Successfully finishing runs
were obtained with reduced data sets. Dm-gen-ap-3 (s170_f100_c100k, Apr 27 2012)
comprised BGI paired-end libraries with an insert-size of 170 bp (Dm_GenI1_[019-021])
resulting in an estimated coverage of 15x. Dm-gen-ap-4 was run with 25 % of all BGI
libraries at an estimated coverage of 29 x.

Assembly Dm-gen-ap-5 (Blauwal, Dezember 2013) was run with ALLPATHS R47673
on Mammuth at the LRZ with 2TB of RAM. Access to the machine was granted to
us by Prof. Chris-Carolin Schén, Department of Plant Breeding, TU Munich. For
this assembly the entire BGI read data set was used, and read pre-processing was run
independently. First, reads were deduplicated using the RemoveDodgyReads module of
ALLPATHS, then reads were error-corrected with ALLPATHS followed by a second
round of deduplication. The thus obtained read set was used to run the assembly with
settings HAPLOIDFY=true, REMOVE_DODGY_READS_FRAG=false, PRE_CORRECT=false and
ERROR_CORRECT_FRAGS=false. The HAPLOIDIFY option modifies the behavior of ALL-
PATHS’s error correction module; each heterozygous SNV (Small nucleotide variation)
in the data set leads to the occurrence of two populations of k-mers, both at the het-
erogygous rather than the homozygous coverage. During error correction, these SNV
overlapping k-mers are identified by coverage, and consistently corrected to either one of
the to possible variants observed for the SNV, thus removing heterozygous noise from
the data.

Dm-gen-ap-6 (Wiesel, Oktober 2013) was run with ALLPATHS R47609 on r5n01 using
a digitally normalized version of the BGI data set derived from reads corrected during
the Dm-gen-ap-5 assembly procedure. The assembly was run with HAPLOIDFY=true. All
raw BGI mate pair libraries were supplied for scaffolding.

Dm-gen-ap-8 (Kuckkuck, October 2014) was a run with the same settings as Dm-gen-ap-6
and an additional artifical overlapping library of reads with a length of 250 bp and an
insert size of 400 bp. These reads have been generated from corrected PacBio long reads

30



3.6. Assembly and scaffolding software

with the pb2il module to add strong overlapping data aiding in ALLPATHS backbone
construction. However, the assembly was run without scaffolding libraries.

Dm-gen-ap-10 (Nerz, September 2014) is the first assembly generated from LGC se-
quenced overlapping libraries. The assembly was run with ALLPATHS R50599 on r5n01
using digitally normalized LGC libraries (dm-i1-[01-04]) and HAPLOIDFY=true. All
raw BGI mate pair libraries were supplied for scaffolding. Dm-gen-ap-12 was obtained
from the same data and with the same settings, yet with HAPLOIDFY=false.

Dm-gen-ap-11 (Orca, November 2014) was generated with ALLPATHS R50599 on
Mammauth with the full LGC library set, all BGI scaffolding libraries and HAPLOIDFY=true.

Dm-gen-ap-13 (Honeyguide, December 2014) was constructed from LGC libraries, dig-
itally normalized with bbnorm.sh. For scaffolding, all BGI mate pair libraries and
libraries with insert sizes of 500 bp and 800 bp (Dm_GenI1_[027-032]) as well as in silico
mate pair libraries generated from corrected PacBio reads (dm-pb2il-[1235]000-01,
dm-pb2i1-15000-01) were used; non-default parameters were HAPLOIDIFY=true and
MIN_CONTIG=200. Note that the MIN_CONTIG parameter not only affects the length of
the reported contigs, but is already applied at graph level and also excludes shorter
fragments from the scaffolding process.

3.6.3. ABySS

ABySS belongs to the first generation of De Brujin graph based short read assemblers
capable of handling gigabase-sized genomes. Originally, it has been tested on a full
human Ilumina data set, later Bombarely et al. (2012) used a combination of ABySS
and SOAP to assemble the 3 Gbp genome of Nicotiana benthamiana. Birol et al. (2013)
used it for the reconstruction of the 20 Gbp genome of the white spruce, Picea glauca.

Test runs for D. muscipula with ABySS have been performed by Felix Bemm. A proper
assembly, however, could not be obtained due to software problems and memory limits.

3.6.4. MaSuRCA

The MaSuRCA (Zimin et al., 2013) genome assembler uses a hybrid strategy, combining
advantages of De Brujin graph and OLC strategies. Illumina short reads are first
pre-assembled into super-reads and subsequently assembled into contigs, optimally in
combination with additional long read data from 454 (Roche 454 Pyro-sequencing) or
Sanger sequencing. The methods has been shown to outperform SOAP and ALLPATHS
on Rhodobacter sphaeroides and chromosome 16 of the mouse. In 2014, MaSuRCA was
used to assemble the 22 Gbp genome of the loblolly pine (Zimin et al., 2014; Hamilton
and Buell, 2014).

Dm-gen-ms-0 was run with MaSuRCA v2.3.2 on r5n01 with default settings, trimmed
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paired-end LGC reads (dm-i1-[01-04]) and 2kbp and 5kbp raw mate-pair libraries.

Dm-gen-ms-1 was run with untrimmed paired-end LGC reads (dm-i1-[01-041), 2kbp
and 5 kbp raw mate-pair libraries and GRAPH_KMER_SIZE=69.

3.6.5. Platanus

Platanus (Kajitani et al., 2014) has been designed particularly to address gigabase-sized
heterozygous genome assemblies. It is a De Brujin graph based assembler and employs
successively increasing k-mer sizes and graph simplifications to resolve heterozygous
structures during contig and scaffold assembly. Kajitani et al. (2014) showed it to
work well on the Assemblathon 2 (Bradnam et al., 2013) data set as well as the highly
heterozygous Oyster genome. Further, Roullier et al. (2013) reported notable results for
the assembly of different cultivated sweet potato strains.

The Dm-gen-pt-0 assembly has been generated with Platanus v1.2.1, default settings
and all trimmed paired-end LGC reads on r5n01.

3.6.6. Meraculous 2

Meraculous2 (Chapman et al., 2015) is a De Brujin graph assembler developed for large
and potentially polyploid genomes. It has been successfully used in the assembly of the
16 Gbp hexaploid wheat genome (Chapman et al., 2015).

Dm-gen-mc-0 and Dm-gen-mc-1 have been run with all trimmed paired-end LGC reads.
The first assembly was run at a k-mer size of 47 and also included 2 kbp, 5 kbp and 10 kbp
scaffolding libraries. The second run was executed with k-mer size 67, which excluded
49 bp mate-pair reads from the assembly.

3.6.7. Minia

The minia (Chikhi and Rizk, 2013) assembler employs a highly storage efficient, bloom
filter based De Brujin graph representation. The implementation allows to run gigabase-
sized genome assemblies with less than 10 GB of RAM.

The initial run Dm-gen-mn-0 was performed with minia v1.0.3 but did not finish due to
program crashes in the k-mer counting step.

Assemblies Dm-gen-mn-1 to Dm-gen-mn-5 were run with minia v1.0.4 and k-mer sizes 31,
51, 71, 91 and 111. All trimmed and merged reads of the LGC read set have been used.
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3.6.8. Discovar de novo

Discovar de novo (Weisenfeld et al., 2014) is a De Brujin graph based assembler designed
for gigabase-sized genomes sequenced at low cost using a PCR-free HiSeq 2000 (HiSeg-
2000 instrument) 250 bp library. The software is heterozygosity-aware and represents
assemblies as networks of haplotype contigs rather than as a single haplotype consensus.

Dm-gen-dc-0 and Dm-gen-dc-1 were run with Discovar de novo R51564 on rbn01,
trimmed LGC reads with a minimum length of 96 bp and with libraries dm-i1-[01-
04] and dm-il-[01-03], respectively.

Dm-gen-dc-2 was run with Discovar de novo R51828 on r5n01 and a digitally normalized
set of reads from libraries dm-i1-[01-04].

3.6.9. MIRA

MIRA is a rather old assembly program, originally designed for Sanger and 454 sequences.
Recent versions have been upgraded to offer support for CCS (Circular Consensus
Sequencing) as well as corrected PacBio reads.

A test run with proovread corrected D. muscipula PacBio reads was performed with
MIRA v4.0rcl and customized settings (listing 1).

3.6.10. Celera

The Celera assembler, also known as wgs-assembler, has initially been designed as a
whole-genome shotgun assembler for Sanger read data, and since has been successively
upgraded to work with newer technologies, such as 454, Illumina and, since 2013, high
coverage raw or hybrid corrected PacBio reads.

The first successful assembly runs with D. muscipula data were performed by Felix
Bemm with Celera v7.0. Dm-gen-cl-1 was generated from PacBio reads corrected
with proovread 1.01, comprising cells dn-pb-[001-110]. For Dm-gen-c1-2 merged BGI
overlapping libraries (Dm_Gen_I1[019-021,027,033,034]) were added. For details on
parameters see listing 2 Dm-gen-cl-1 assembly parameter and listing 3 Dm-gen-cl-1
assembly parameter.

Markus Ankenbrand ran Dm-gen-cl-3 and Dm-gen-cl-4 with Celera v8.0, using the
same corrected cells dm-pb-[001-110], and for the second assembly, additionally merged
BGI libraries Dm_Gen_I1[019-021,027,033,034]. For details on parameters see listing 4
Dm-gen-cl-1 assembly parameter and listing 5 Dm-gen-cl-1 assembly parameter.
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3.6.11. DBG20OLC

The DBG20OLC assembler combines the advantage of Illumina-based De Brujin graph and
PacBio-based OLC assemblies. Next to raw PacBio reads, it uses precomputed Illumina
contigs as input. The contigs are used to construct a compressed overlap graph from the
PacBio reads with all regions already present in an Illumina contig being removed. This
largely simplifies the underlying graph and renders the software highly efficient in terms
of speed and computational requirements even for mammalian sized genomes.

A series of assemblies has been generated in order to assess applicability and to opti-
mize the assembler for D. muscipula data. All assemblies have been constructed from
untrimmed proovread corrected reads of the second correction run. In particular, the
usage of corrected PacBio reads rather than raw reads has been accounted for in the
custom parameter settings.

Assembly k KmerCovTh MinOverlap AdaptiveTh LD1 RemoveChimera Contigs
Dm-gen-do-1 21 20 20 0.2 0 0 Dm-gen-ap-6.1
Dm-gen-do-2 17 2 20 0.02 0 0 Dm-gen-ap-6.1
Dm-gen-do-3 17 1 20 0.001 0 0 Dm-gen-ap-6.1
Dm-gen-do-4 31 1 20 0.001 0 0 Dm-gen-ap-6.1
Dm-gen-do-5 17 2 20 0.02 0 0 Dm-gen-ap-10.1
Dm-gen-do-6 17 2 20 0.02 0 0 Dm-gen-ap-11.1
Dm-gen-do-7 31 1 20 0.001 0 0 Dm-gen-ap-10.1
Dm-gen-do-8 31 1 20 0.001 0 0 Dm-gen-ap-11.1
Dm-gen-do-9 31 1 20 0.001 0 0 Dm-gen-ap-13.1

Table 3.4.: Parameter settings of DBG20OLC runs

3.6.12. PBJelly

PBJelly (Worley, 2014) is a automated pipeline for scaffolding and gap closing of draft
genomes with PacBio data. PBJelly was used on assembly Dm-gen-ap-13 after re-
moval of heterozygous contigs with proovread corrected PacBio reads and the following
optimized parameters: minSubreadLength 3000, -minMatch 17, -minPctIdentity 95,
-aggressivelntervalCut, -bestn 1, -nCandidates 20, -maxScore -750.

3.7. Assembly analysis

3.7.1. Assembly metrics with SeqFilter and QUAST

Assembly metrics, including number and size of contigs / scaffolds, N50 values and base
composition were generated with SeqFilter v2.1.4. For details on SeqFilter see section 7.2
SeqFilter — versatile manipulation of sequence files.

34



3.7. Assembly analysis

Raw assembly statistics were further assessed with QUAST (A. Gurevich et al., 2013).
The software produces a comparative table including contig numbers, total assembly
length and longest contigs. As single value measurement for contig size distribution, the
N50 length statistic is used.

Base composition is given by percentage GC and the fraction of N’s per 100 kbp. Additional
plots provide details on the distributions of specified statistics over the range of the given
contigs.

Unless otherwise stated, all QUAST derived statistics were obtained with a minimum
contig length of 1,000 bp.

3.7.2. Completeness of gene content with CEGMA and BUSCO

CEGMA (Parra et al., 2007) and BUSCO (Siméo et al., 2015) are programs designed to
assess the completeness and quality of gene models present in genome assemblies. Both
programs rely on reference gene sets comprising near-universal single-copy orthologs. In
comparison to CEGMA, BUSCO uses larger gene sets specifically designed for different
kingdoms, such as arthropods, vertebrates, fungi or plants. Further, BUSCO employs a
more complex gene detection procedure increasing its sensitive and predictive power.

Gene content analysis in this work were performed with default settings for both programs
and with plant specific reference profiles in the case of BUSCO.

3.7.3. Transcriptome coverage

Coverage of the D. muscipula reference transcriptome DM_tra_qt1.03.RefSeq by an-
alyzed genome assemblies was assessed using a custom mapping based approach. To
simplify statistical evaluation only the longest isoform of each unigene was used as single
representative for the respective cluster. The resulting set comprised 42,653 transcripts
in the range of 145 bp to 15,692 bp in length and with a total size of 46,601,336 bp. The
transcripts were mapped onto genome assemblies and corrected PacBio reads with BWA-
MEM (H. Li, 2013) v0.7.10-r868-dirty and converted to BAM (Binary SAM, SAM/BAM
Format Specification Working Group, 2015) format with samtools v1.2. Using BWA-
MEM as mapper rather than an aligner specifically designed for transcripts was based on
practical considerations, in particular computational feasibility. Although, the resolution
BWA-MEM mappings is not sufficient to capture the entire set of exons, in particular
exons shorter than 75 bp, the approach provides a reasonable approximation to infer the
coverage of coding regions by an assembly.

The horizontal coverage of each transcript was estimated with a custom Perl script. For
each transcript, the relative amount of bases mapped at least once in an alignment with a
normalized score of 0.9 (section 6.4.1 Sam::Alignment) were computed for (a) alignments
on the same reference sequence and (b) alignments on any reference sequence.
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For the stacked histograms generated, alignments with an overall coverage of at least
90 % were considered full-length. Full-length mappings were further classified as split if
alignments were distributed across more than one reference sequence. For partially covered
transcripts, distinction between split and unsplit was omitted because an unaligned regions
needs to be consider as not mapped to the same reference.
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The overall goal of the Venus flytrap genome project is to gain comprehensive insights into
the genetic mark-up of the non-model organism, prototype carnivorous plant D. muscipula.
The construction of a high quality draft assembly as a reference for downstream analyses
is an essential first step in this quest. The generated assembly needs to provide a
basis for gene prediction and annotation, based on which functional predictions and
interpretation, particularly with respect to the carnivorous life style of the plant can
be made. Additionally, we aim to explore regulatory features associated with specific
genes, such upstream promoters or enhancers, particularly if involved in carnivory related
processes. Next to the individual gene-based analysis, comparative analysis of genes and
genomic regions to other carnivorous and non-carnivorous plant are of high importance to
derive new insights into the differences, novelties and adaptations that the D. muscipula
genome acquired on its evolutionary path to a flesh eating plant.

In order to be able to perform the aforementioned analyses, the generated draft genome
must meet the following criteria: The assembly needs to be complete in a sense that,
in particular, the entire gene set and other elements of interest are represented. The
contiguity of the assembly must at least allow the identification of full-length gene models,
ideally, it should comprise entire gene clusters including up -and downstream regulatory
elements. Moreover, the amount of assembly errors should be kept to a minimum and
artifacts, such as redundancy of contigs due to heterozygosity need to be reduced as far
as possible.

4.1. Evaluation of the BGI draft assembly reveals substantial
deficiencies

4.1.1. Basic metrics

The initial D. muscipula draft genome assembly was generated by the BGI and delivered
at the end of 2011. The BGI employed an Illumina-based paired-end and mate-pair
sequencing strategy, tailored to work well with their in-house developed large genome
assembly software SOAP-denovo2. In total, the assembly is based on 35 libraries, 17 in
paired-end configuration with reads of 100 bp or 150 bp in length and insert-sizes ranging
from 180 bp to 800 bp, and 18 mate-pair libraries with 49 bp reads and inserts ranging
from 2kbp to 20kbp. For the draft assembly, a customized strategy was employed by
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the BGI, details have only partially been disclosed. To my knowledge, first, overlapping
reads were merged in a way similar to the approach described in section 4.5.5 Merging of
overlapping libraries. The resulting fragments were assembled with SOAP and a k-mer
size of 127 bp. Subsequently the assembly was scaffolded and gap-closed using paired-end

and mate-pair libraries.

Metrics Dm-gen-so-1.1 Dm-gen-so-1.2
Contigs >O0bp 8470,199 6571,343
Contigs >1kbp 476,500 337,902
Length >0 [bp] 3167,489,463 3752,455,584
Length > 1k[bp] 784,079,898 2287,688,755
Longest [bpl 16,745 355,463
N50 [bp] 514 3350
GC [%] 42.4 42.4
VA 0.0 21.9

Table 4.1.: Metrics of assembly Dm-gen-so-1. Contigs: num-
ber of Contigs or Scaffolds; Length: length of the total
assembly; Longest: length of longest contig/scaffold; N50:
length of the sequence that together with all longer se-
quences adds up to >50% of the total assembly length;
GC: percentage of nucleotides G and C relative to A, T,G
and C (N-nucleotides are ignored); N: percentage of N-
nucleotides in the total assembly.

35.8%.

The complete draft assembly comprises 8.4 x 106
contigs with a minimum length of 128 bp and a
total assembly length of 3.2 Gbp. The longest
contig has a length of 17 kbp. If one ignores con-
tigs shorter than 1kbp, a recommended practice,
given that very small contigs are of little value
to — and at the same time a complicating factor
for — downstream analysis and annotation, the
number of contigs decreases to 4.7 x 10° and a
total assembly length of 784 Mbp. The N50 for
the minimum 1kbp contig set is 1.6 kbp.

After scaffolding, the assembly comprises
6.6 x 10° scaffolds with a total length of 3.7 Gbp.
Omitting scaffolds shorter than 1,000 bp, the num-
ber of scaffolds is 337,902 and the total scaffold
length is 2.3 Gbp. The scaffold N50 is 26 kbp.
The fraction of N’s in the scaffold assembly is

The basic statistics of the assembly, on contig as well as scaffold level, show that the D.
muscipula draft assembly generated by the BGI is highly fragmented and discontiguous.
The majority of contigs is less than 1kbp in length, contigs equal or longer than 1kbp
comprise 784 Mbp, contigs larger than 10 kbp less than 1.2 Mbp. The estimated haploid
genome size for the Venus flytrap is 2.8 Gbp. The total contig assembly length is in
congruence with this estimate. However, when looking at longer contigs of reasonable
size for downstream analysis (<1kbp), a substantial part of the genome is missing.

Scaffolding substantially improves the contiguity of the assembly, resulting in about
2.3 Gbp of contigs equal to or longer than 1 kbp and 1.6 Gbp longer than 10 kbp. However,
with 35.8 %, a significant fraction of the scaffolds consists of uninformative N’s, and when
looking at the total assembly size of 3.75 Gbp including short contigs, the assembly
exceeds the expected genome size by almost 1 Gbp.

4.1.2. Conserved gene content

The completeness of an assembly on gene level can be inferred by annotation of conserved
ubiquitous single copy genes. I performed conserved gene annotation on for the BGI
assembly with two tools, CEGMA (on contigs only) and BUSCO. Respective results are
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shown in table 4.2 and table 4.3.

Proteins Completeness [/] Total Average Orthologs [%]
contigs Complete a7 18.95 78 1.66 46.81
Partial 126 50.81 271 2.15 63.49

Table 4.2.: CEGMA analysis of assembly Dm-gen-sp-1.1.

CEGMA analysis of the assembly Dm-gen-so-1.1, based on a total of 248 conserved
protein templates, revealed 47 complete (18.95%) and 126 partial hits (50.81 %). On
average, for each annotated complete protein, 1.66 copies and for each partial hit, 2.15
copies were found.

The very low number of complete genes can mainly be attributed to the high level
of fragmentation of the assembly; the large amount of partial hits corroborates this
interpretation. Nevertheless, even if partials and completes are added up, a substantial
fraction (30.2 %) of expected conserved genes is missing from the assembly. Furthermore,
the high average number of hits per gene indicate a high level of redundancy in the
assembly for gene containing contigs, congruent with allels being assembled into separated
sequences.

Core gene annotation with BUSCO based on 956 near-

universal single-copy orthologs resulted in 6.1 % of complete
and 2 % of partial genes found in the contig assembly, and
32 % of complete and 3.5 % of partial genes in the scaffold
assembly. Duplication rates were 0.2 % and 0.8 % for contig
and scaffold analysis, respectively.

in [#]: compl. dupl. part.
Dm-gen-so-1.1 6.1 0.2 2.0
Dm-gen-so-1.2 32 0.8 3.5

Table 4.3.: BUSCO analysis of assembly
Dm-gen-sp-1 based on 956 near-universal

. . single-copy orthologs
The amount of detected core genes with BUSCO is even

lower than the results obtained with CEGMA, although

scaffolding substantially increases the number of annotated genes. Overall, the CEGMA
and BUSCO analyses supports the general assumption that the BGI draft assembly is
fragmented beyond the level of genes. This renders the assembly incomplete at least in
the sense that contigs of length <1kbp, even if they contain parts of genes, due to the
lack of context cannot be annotated. Moreover, duplication levels reported by CEGMA
suggest a considerable degree of redundancy, potentially caused by heterozygosity.

4.1.3. Transcript coverage

While CEGMA and BUSCO analyses provide an indirect completeness estimate based on
homology of universal conserved core genes, a picture more specific to D. muscipula can
be obtained by assessing the coverage of the D. muscipula transcriptome by the genome
assembly.

Figure 4.1 shows the results of the transcriptome coverage analysis for the draft assembly
Dm-gen-so-1. The stacked histogram bars indicate the amount of transcripts that
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Figure 4.1.: Transcriptome coverage of the BGI assemblies Dm-gen-so-1.1 (contigs) and Dm-gen-so-1.2
(scaffolds). Bars of the stacked histogram represent the amount of full-length (red), full-length but split across
reference sequences (green) and partially (blue) mapped longest isoforms with maximum 42,653 (black line)
derived from transcriptome assembly DM_tra_qt1.03.

mapped to contigs and scaffolds, respectively. About 42% (approx. 18 x 10%) of the
available transcripts were mapped in full length, either on the same or split across multiple
sequences of the assemblies. For the scaffold assembly, the number of split mappings was
slightly lower than for the contig assembly. A similar fraction of transcripts (18 x 10%)
aligned partially to the contig assembly, yet only 30 % (13 x 10%) to the scaffold assembly.

In particular, the low fractions of full-length mappings support the argument that the
assembly generated by the BGI is fragmented and that for a considerable fraction at
least parts of the genes are missing.

4.1.4. Contig coverage and GC landscape

To further explore the underlying reasons for the high level of fragmentation of the
BGI assembly, contigs and scaffolds were analyzed in the context of their coverage and
GC content. Existing tools for this type of analysis, such as Blobology (Kumar et al.,
2013), require read mappings in order to obtain per sequence coverage information. This
approach is impractical for the large D. muscipula genome, as it would require several
days per analysis as well as extensive hard-disk space.

Therefore, I utilized a much more efficient k-mer count based approach, which I specifically
developed for this purpose (see chapter 8 Analysis and visualization of k-mer distributions
and derived data for details). k-mer coverages can easily be obtained in less than an
hour for an entire D. muscipula assembly. This allows to repeatedly run the procedure
on different assemblies, and thus to use it as a practical tool for comparative evaluation.

Raw k-mer coverage can be used directly to assess the repetitive nature of the analyzed
sequences. However, for read mapping based coverage approaches, it is common practice
to use random placement for multi-mappings, thus encoding relative usage information
for certain sequence region in the coverage values: Assuming ideal data, a sequencing
depth of 100z and a perfect assembly, a unique region will have a coverage of 100 z and
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will occur once in the assembly, i.e. have a copy number (CN) of 1. A repeat with 5
copies will gather reads depending on how much it collapsed. If only one copy of the
repeat is present in the assembly, all reads will be assigned to it and the coverage will
be around 500 z. If all five copies are present in the assembly, reads will be randomly
assigned to either one copy and the coverage for each copy will be approximately 100 x.

The same effect can be obtained using k-mers by computing an adjusted coverage (sec-
tion 8.4 kmer-coverage — representative, frequency adjusted k-mer coverage). Analogous
to the above example the adjusted coverage is given by the ratio of coverage to copy
number. In case of k-mers, the k-mer copy number can be obtained by counting the
occurrence of the k-mer in the assembly. The resulting coverages encode k-mer and, by
extrapolation, sequence over- and underrepresentation in a given assembly. For collapsed
repeats the resulting adjusted coverage for the corresponding k-mers will be higher than
the sequencing depth. Similarly, if heterozygosity leads to separate assembly of allels,
non-allel-specific k-mers will be overused, giving them higher copy numbers, which results
in reduced adjusted coverages. Overall, adjusted k-mer coverages are largely equivalent
to mapping derived coverages with random placement of multi-mapping, but can be
computed far more efficiently.

Moreover, while existing approaches use either mean or median coverage to characterize
the the coverage of a sequence by a single value, my implementation employs an algorithm
that computes another so called representative coverage, which is given by the peak
coverage of the largest population of k-mers with similar coverage in the sequence
(section 8.4 kmer-coverage — representative, frequency adjusted k-mer coverage). This
approach is particularly robust on sequence sets comprising regions with different copy
numbers, e.g. contigs containing different repeat species as well as unique and low copy
number regions.

The following plots describe the coverage landscape of D. muscipula assemblies based on
either raw median or representative adjusted k-mer coverages. The k-mer coverages used
for the computation of the raw distribution and the assembly coverages derive form the
LGC Illumina read data set and not the BGI read set that was actually used to generate
the assemblies. While this introduces a slight bias due to k-mers of the BGI set missing
in the LGC set, the analysis greatly benefits from the less biased, higher covered and
more robust LGC k-mer set (see section 4.2 for details on BGI data set issues).

Analysis of cumulative contig lengths with respect to raw median coverage for contigs
and scaffolds (fig. 4.2) shows that the majority of sequences in the assembly is short and
of repetitive character while only a minor fraction of assembled sequences (<300 Mbp) is
non-repetitive. The amount of longer contigs is much greater for lower coverages. This is
in congruence with assembly theory, which only guarantees unambiguously resolvable
graphs for unique sequences.

If one employs representative adjusted coverage instead of raw median coverage, the
topology of the distribution changes: The long tail of high coverage sequences disappears
(fig. 7) and the data accumulates at coverage between 40 x and 200 = for contigs as well
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Figure 4.2.: Sequence length distribution of assembly Dm-gen-so-1 as a function of raw median k-mer coverage.
Stacked histogram bars depict cumulative length of contigs (upper panel) and scaffolds (lower panel) in different
length intervals (color-coded, largest at the bottom). Coverages are scaled by Anscombe transformation
(section 8.2) and limited to a maximum of 10,000 .

as scaffolds, as shown in fig. 4.3 with a maximum coverages >300 x, missing less than
1% of data points due to the cut-off.

The majority of assembled sequences is comprised of sequences between 100 bp and
999 bp, and a minor part is comprised of contigs >1kbp. Contigs greater than 10kbp
are missing. The distributions exhibit a single prominent peak with a maximum between
50z and 60 x. The three largest bars in total comprise about 2 Gbp of the total 3.2 Gbp
assembly. For scaffolds, sequence length is shifted towards sequences >10kbp with a
small fraction of greater than 100 kbp (<200 Mbp). The two major bars comprise ~3 Gbp
of sequences of the total 3.8 Gbp assembly.

The raw k-mer distribution (dotted black line) obtained from the Illumina read data is
plotted on top of the histogram. It exhibits a bimodal distribution with a major peak at
~80 x corresponding to k-mers shared between allels of the diploid genome and a minor
peak representing k-mers unique to a haploid copy of the genome.

As expected given the large assembly sizes close to the expected 3GB, the vast majority
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Figure 4.3.: Sequence length distribution of assembly Dm-gen-so-1 as a function of representative adjusted
k-mer coverage. Stacked histogram bars depict cumulative length of contigs (upper panel) and scaffolds (lower
panel) in different length intervals (color-coded, largest at the bottom). Coverages are scaled by Anscombe
transformation (section 8.2) and limited to a maximum of 300 xz. The raw k-mer distribution obtained from
LGC Illumina reads (black dotted line, section 4.2 Assessment of the BGI read data shows technical bias and
high level of heterogeneity) and with frequencies scaled to fit the size of the plot, exhibits a bimodal distributions
with peaks corresponding to haplotype-specific (40x) and haplotype-shared k-mer populations (80zx)

of contigs is represented by coverages close to the sequencing depth, indicating a overall
low level of collapsed repeats. Ideally, one would expect the contig coverage peak to
coincide with the diploid k-mer peak. For the BGI assembly, however, the peak does
not fit the diploid peak nor does it match the haploid peak. It majority of sequences is
represented by a coverage in between diploid and haploid. At a first glance, this result is
surprising. For unique regions, one would expect that the bimodal distribution of the
underlying k-mer distribution to be retained. A k-mer can be used once, which would
not change the adjusted coverage, twice, which would half the coverage, shifting it to
the haploid peak and indicating allel specific assembly, or several times, indicating great
overuse and resulting in below haplo-peak adjusted coverage.

In the case of the flytrap, however, the majority of sequences consists of repetitive regions
with high copy numbers and hence high raw coverages. The adjusted coverages of these
k-mers are generated by dividing the raw coverage with the observed occurrence in the
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assembly. Proper amount of usage would put the k-mer coverage in the range of the
diploid peak. In contrast to unique k-mers, overuse of repetitive k-mers can be more
gradual. While a unique k-mers can be used either once or twice, which already means
overuse by a factor of 2, a k-mer with a CN of 10, can for example be used 15 times.
This also means overuse but only by a factor of 1.5. Based on this fact the obtained
representative coverages for the BGI assembly sequences can be interpreted as follows:

The majority of sequences in the assembly is dominated by repeats with a relative overuse
factor of 1.5. The overuse of these sequences adds redundant information and is the
primary reason for the overall oversized assembly. There are several contributing factors
potentially causing relative overuse of repetitive sequences: (1) allel specific assembly
of unique regions driving overuse of adjacent repetitive regions, (2) increased level of
heterozygosity in repeats due to pooling and (3) an assembly strategy optimized to
generate a large assembly, e.g. by fusing different draft assemblies.
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Figure 4.4.: GC-content and sequence length distribution of assembly Dm-gen-so-1.1 as a function of repre-
sentative adjusted k-mer coverage. Left Panel: Circles represent individual sequences of a 1% subsample with
length encoded by size and color. Subsampling increases readability while the overall topology of the scatter
plot is preserved. Right Panel: Histogram bars depict cumulative lengths of the entire sequence set binned
according to length intervals, color coded and stacked in decreasing order.

To further resolve the structure of the assembly I included GC composition as an
additional parameter next to length and coverage. Figure 4.4 and fig. 4.5 show the
resulting GC-coverage composite plots for the BGI contig and scaffold assembly. The
right panel is a stacked histogram of cumulative lengths per bin. In the left panel, each
circle represents a sequence in the assembly, with relative GC content on the x-axis and
representative adjusted coverage on the y-axis. Color and size of the circles represent
the length of the sequence. To allow the graphs to be properly readable, only a 1%
subsample of the all sequences is displayed in the scatter plot. The overall structure
and topology of the graph is well preserved by this down-sampling procedure, however
differences and clustering behavior are much easier to recognize in the thinned out plot.

The vast majority of sequences in both plot are sequences of <1kbp (blue). These
sequences also exhibit the largest variance in terms of coverage as well as GC content.
Larger sequences (green, red, purple) are mostly located between 40 2 and 100 z and 30 %
to 50 % GC. Within this accumulation, two clusters can be distinguished: a larger cluster
at 60z and >40% GC and a smaller cluster at 80x and <40z GC. Additionally, at
least two clusters can be identified at 35 % GC and coverage >200 x. These two clusters
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Figure 4.5.: GC-content and sequence length distribution of assembly Dm-gen-so-1.2 as a function of repre-
sentative adjusted k-mer coverage. See fig. 4.4 for detailed plot description.

comprise roughly 50 Mbp of sequences, however, the high coverages are indicative of a
collapsed nature under the assumption that the sequences derive from the nuclear genome
and not a high coverage contamination or organelle genome. Properly resolved, these
clusters could make up several hundred Mbp and hence represent a significant proportion
of the overall assembly.

The analysis of sequence length and GC-coverage composition of the BGI assembly
further corroborate the findings of the previous analyses: the BGI assembly is highly
fragmented. The fragmentation, on the one hand is related to the high amount of
repeats present in the data, on the other hand seems to be equally driven by a high
level of heterozygosity. Although the assembly roughly fits the expected size of about
3 Gbp, GC-coverage analysis revealed that this is an artifact caused by having both,
overrepresented repeats and missing data. Downstream analyses performed on the BGI
assembly and aimed at identifying genes etc. would therefore fail to produce proper and
conclusive results.
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4.2. Assessment of the BGI read data shows technical bias and
high level of heterogeneity

4.2.1. Quality control of BGI libraries

The general quality metrics of the BGI sequencing libraries were compiled with FastQC.
A summary of the results for raw paired-end and mate-pair as well as trimmed paired-end
libraries is shown in fig. 4.6.

More than half of the raw paired-end libraries failed the test on Per base sequence quality.
The reason for this is the typical 5 quality bias, an issue that is solved by trimming of
low quality tails. As a result all trimmed libraries pass the test but at the same time
receive warnings for Sequence Length Distribution, as trimmed reads differ in length. The
warning issued across all libraries for Per base sequence content can be attributed to a
minor compositional bias at the 3’ end of the reads.

A more complex picture emerges from the analysis of Per sequence GC' content. Figure
4.7 shows plots of the number of observed reads versus the relative GC content for raw
paired-end (upper panel) and raw mate-pair libraries (lower panel). The expected shape
for this distribution under generic conditions is a single Gaussian peak. However, for
genomic DNA of D. muscipula, a bimodal distribution with a large peak at 44 % and a
smaller peak at 31 % relative GC content is observed. The deviation from the expected
Gauss distribution is the reason for the warn/fail states in the FastQC tests. The
consistency of the bimodal distribution across libraries suggests an underlying biological
phenomenon. The second, smaller peak comprises a subpopulation of reads of low GC
content distinctly different from that of the majority of reads. Given the repetitive
character of the flytrap genome, a likely explanation is that these reads derive from a
species of highly abundant elements that comprise at least large portions of low GC
regions. However, soley based on this analysis, a definitive assessment cannot be made.
Potential alternative explanations include systematic contamination, e.g. by associated
symbionts / parasites or an extreme technical bias.

Furthermore, warnings and failures are reported for Sequence Duplication Level, Overrep-
resented Sequences and k-mer Content for different libraries. The issues implied by all
of the aforementioned categories need to be interpreted in the context of the repetitive
nature of the flytrap genome, by which they are affected in similar fashion. The underly-
ing assumption for the applied models are diverse, unenriched libraries (Andrews, 2015).
The presence of high copy repeat species, however, contradicts this assumption, because
highly abundant repeat derived reads behave similar to highly enriched reads resulting
from a particular technical or experimental setup. Therefore, the poor performance in
the categories in question can be attributed to a particular biological scenario rather
than technical issues related to library prepartion or sequencing. The difference in the
results for mate-pair and paired-end libraries can be explained by a) the substantial
difference in read length (100 bp vs. 49bp) and b) the difference in library preparation,
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4. Assembling the genome of D. muscipula

with mate-pair libraries undergoing a more complex procedure that introduces additional
biases.

4.2.2. Insert-size distribution of BGI libraries

Typically, Illumina sequencing generates reads in paired-end conformation as a result of
the bridging based amplication procedure for the DNA on the sequencing chip (Quail
et al., 2012). The two reads of a pair are generated from both ends of a longer DNA
fragment, called insert. For paired-end data, the distance of the reads is given by the
initial size of the sequenced fragment. Orientation wise, the reads face each other.
Typical distances are 180 bp to <1kbp. Mate-pair reads with larger insert-sizes (1kbp -
20kbp) are generated with a more complex protocol, utilizing a circularized intermediate,
resulting in a reversed orientation of the reads of a pair.

The information about the insert-size /distance of the reads in a pair is used in assembly
to connect contigs into scaffolds. The inital fragments are generated by size exclusion
during library preparation. In order to use read pair information properly during assembly,
it is important that the resulting sizes for each library are of similar (and desired) length.

Paired-end libraries

Figure 4.8 show the distribution of insert-sizes across all BGI libraries sequenced in paired-
end confirmation. All libraries exhibit a single peak in the distribution of sizes coinciding
with the expected insert-size within an acceptable margin of error. For the majority of
libraries, the peak is narrow and sharp, indicating unbiased library preparation. Lower
peaks can be observed of libraries of 200 bp and 800 bp insert-size, as well as libraries
Dm_GenI1l_024 (350 bp) and Dm_GenI1l_035 (500 bp). These libraries are of lower quality
with respect to insert-size, however, still can be used for scaffolding.

Mate-pair libraries

The procedure for the estimation for insert-sizes for mate-pair libraries is the same as
for paired-end libraries. However, obtaining conclusive results is more difficult. Since
the reads of a pair need to be aligned to a single reference sequence in order to compute
their distance reliably, having reference sequence larger than the insert-size of the tested
library is a requirement. In the case of the flytrap, however, the vast majority of contigs
generated in assemblies is shorter than the mate-pair insert-sizes and, in particular, for
the 10kbp and 20 kbp libraries, practically no potential reference sequence for insert-
size assessment exist in the available contig assemblies. This problem is illustrated by
the results obtained from ALLPATHS insert-size size estimation module for mate-pair
libraries shown in table 4.4. For the 2kbp and 5kbp libraries, the results match the
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targeted sizes, and are consistent between different assemblies. Therefore, these libraries

are of good quality.

For the 10kbp library, estimated sizes are
far off. However, when comparing align-
ments Dm-gen-ap-6 and Dm-gen-ap-13, a
clear trend can be observed. The estimated
sizes for the second assembly are much
larger and much closer to the expected size.
The reason for that is the increased conti-
guity of the underlying Dm-gen-ap-13 con-
tig assembly. While the on Dm-gen-ap-6,
the estimates are almost entirely driven
by improperly mapped pairs, a much
larger fraction of pairs actually mapping
with larger distances can be observed for
Dm-gen-ap-13. In case of the 20kbp li-
braries, ALLPATHS did not report any es-
timate in the first place due to a lack of
large enough reference contigs. Therefore,
we can conclude that the mapping-based
insert-size estimation for the large insert-
size mate-pair libraries are inconclusive and
a reliable assessment regarding the quality
of the libraries cannot be made.

library target Dm-gen-ap-6  Dm-gen-ap-13
IID is is & sd [bp]l is £ sd [bp]
Dm_GenI1_001 2000 2017 + 148 2016 + 149
Dm_GenI1_002 2000 2035 + 227 2042 + 228
Dm_GenI1_003 2000 2030 £ 141 2022 £ 146
Dm_GenI1l_004 2000 2053 £ 228 2044 + 234
Dm_GenIl_005 5000 4936 £+ 185 4912 + 184
Dm_GenI1_006 5000 4697 £ 194 4722 £ 210
Dm_GenI1_007 5000 4926 + 176 4909 £ 176
Dm_GenI1_008 5000 4702 £+ 188 4726 + 216

Dm_GenIl_009 10000 1858 + 1664 3850 + 1330

Dm_GenIl_010 10000 400 £ 393 2910 + 2449
Dm_GenIl_011 10000 414 + 400 2830 + 2473
Dm_GenIl_012 10000 412 + 396 2769 + 2444

Dm_GenIl_013 10000 1856 + 1653 3717 £+ 1331

Table 4.4.: Insert-size distribution of different BGI mate-pair
libraries as estimated by ALLPATHS during assembly runs
Dm-gen-ap-6 and Dm-gen-ap-13. Library sizes are estimated based
on alignments of pairs to previously generated contigs. Lack of
sequences larger than the insert size in the initial contig set render
the estimation faulty and inconclusive.
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Dm_Genll_019_100_170 -
Dm_Genll—020-100_170 -
Dm_GenllZ021-100_170 -
Dm_Genll~022-100_200 -
Dm_Genll—023-100_350 -
Dm_Genll~024-100_350 -
Dm_GenllZ025_100_350 -
Dm_Genll_026_100_350 -
Dm_Genll_027_100_500 -
Dm_Genll_028_100_500 -
Dm_GenllZ029_100_500 -
Dm_Genll_030_100_800 -
Dm_Genll_031_100_800 -
Dm_Genll_032_100_800 -
Dm_Genll_033_150_200 -
Dm_Genll_034_150_250 -
Dm_Genll_035_150_500 -

Dm_Genll_019_100_170 -
Dm_Genll_020_100_170 -
Dm_Genll_021_100_170 -
Dm_Genll_022_100_200 -
Dm_Genll_023-100_350 -
Dm_Genll_024-100_350 -
Dm_Genll_025_100_350 -
Dm_Genll_026_100_350 -
Dm_Genll_027_100_500 -

Dm_t |

result
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Genll_028_100_500 - warn
Dm_Genll_029_100_500 - fail

Dm~Genl"030_100-800 -
Dm_Genl"031_-100-800 -
Dm_Genl"032-100800 -
Dm_Genl"033~150_200 -
Dm_Genl"034~150~250 -
Dm_Genl~035_150_500 -

Dm_Genll_001 49 2000 -
Dm—Genl—002-49-2000 -
Dm_Genl— 003492000 -
Dm—Genl—004-49-2000 -
Dm—Genl—005-49-5000 -
Dm_Genl—006 495000 -
Dm—Genl—007-49-5000 -
Dm_Genl_008~49 5000 -
Dm_Genll_009_29_T0000 -
Dm~Genl"010_49-10000 -
Dm—Genl"011-49-10000 -
Dm~Genl"012-49-10000 -
Dm—Genl"013-49-10000 -
Dm—Genl"014-49-20000 -
Dm_Genl"015_49-20000 -
Dm—Genl"016_49-20000 -
Dm~Genl"017-49-20000 -
Dm—Genl"018~49-20000 -
1 1
Q

Figure 4.6.: Summary of quality control tests preformed on BGI raw and trimmed paired-end
and raw mate-pair libraries with FastQC. Test outcomes are colour coded (pass: green, warn:
yellow, fail: red), empty columns indicate missing data due to differences between versions of
FastQC utilized for raw and trimmed data.
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Figure 4.7.: Per sequence GC-content for different BGI paired-end (top) and mate-pair libraries
(bottom).
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Figure 4.8.: Insert-size distribution of different BGI paired-end libraries, grouped by target insert-size (black
vertical bars). Distributions were computed based on 5% of randomly sampled pairs of each library, mapped to
corrected pacbio reads (see section 4.7.2 PacBio hybrid correction with proovread).
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4.2.3. k-mer analysis, genome size estimation and repeat content

The analysis of the distribution of k-mer coverages in a NGS (Next Generation Sequencing,
Pettersson et al., 2009) read data set allows for the assessment of actual sequencing
depth, potential biases and heterozygosity as well as an estimation of genome size and
repeat content. Figure 4.9 shows an Anscombe transformed histogram (red bars) of the
coverage-frequency distribution of 19-mers in the full set of BGI paired-end libraries (See
section 8.2 for details on and significance of Anscombe transformation.). The maximum
displayed coverage is 1 x 10° z. The Maximum frequency was set 7 x 107. The majority
of k-mers is concentrated at coverages below 2502 with a prominent peak at about
100 z. This peak corresponds to the unique portion of the sequenced diploid genome and
indicates the sequencing depth of the template DNA. k-mers with very low coverages
represent contaminations, sequencing errors and reads derived from low copy templates,
such as rare allels in the pooled sample. k-mers of high coverages derive from repetitive
regions. In addition to the primary peak at 100 x, a second small peak at 200z can
be identified in the histogram. This peak comprises duplicated genomic regions, which
could include large segmental duplications as well as duplicated genes with no or little
differences. At higher coverages, no other population of reads with a an accumulation of
k-mers at a specific range can be identified.
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dm-il-bgi-pe-raw-m19 (2.8 Gbp)
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Figure 4.9.: Frequency distribution of 19-mers in all BGI paired-end reads plotted as Anscombe! transformed
histogram with maximum displayed coverage of 1 x 10* z and maximum displayed frequency of 7 x 107. The
estimated genome size is 2.8 .

Figure 4.10 shows the k-mer distribution of BGI paired-end libraries without transfor-

1See section 8.2 for details on and significance of Anscombe transformation.

93



4. Assembling the genome of D. muscipula

mation and only for coverages up to 300 x. The distribution exhibits a primary peak at
105 x representing homozygous k-mers with an estimated length of 240 Mbp. A distinct
peak for heterozygous k-mers at half the coverage of the homozygous peak cannot be
identified, yet generally rather high frequencies for k-mers with coverages of 30 x to 80 x
are observed. A second, smaller peak, corresponding to duplicated regions, is observed at
196 = comprising 37 Mbp. The expected total genome size based on the all k-mers with
coverages >10x and a coverage standard of 105 x for unique sequences is 2.8 Gbp.

set

240 Mbp / 105X dm-il-bgi-pe-raw-m19 (2.8 Gbp)
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Figure 4.10.: Frequency distribution of 19-mers in all BGI paired-end reads with maximum displayed coverage
of 300 z and maximum displayed frequency of 7 x 107. Triangles indicate peaks detected by the peak-calling
algorithm, horizontal bars indicate the range used for peak size computation. The estimated genome size is
2.8 Gbp.

Based on this k-mer distribution the overall coverage of the D. muscipula genome in
the pooled set of all raw BGI Illumina libraries is slighly more than 100 x. The large
amount of k-mers at coverages between 2z to 10z indicate a high level of low copy
templates, either due to high levels of contaminations or as a consequence of the pooling
of a highly heterogenious set of plants. On top, high frequency levels at coverages around
50 x indicate a high level of heterozygosity in individual plants. Accurate estimates on
heterozygosity rate, however, cannot be made, because the haploid peak is obscured by
the overlap with both, the unusual wide low coverage peak as well as wide main peak.

The amount of regions in the genome with unique character can be estimated from all
k-mers in the range of 10300 — it roughly comprises 500 Mbp. Consequently regions of
repetitive character add up to at least 2 Gbp (>70 %) of the flytrap genome.
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4.2.4. GC bias in BGI sequencing data

The chemical difference in the interaction of A-T and G-C DNA base pairs (3 versus 2
hydrophobic bonds) causes a bias in polymerase-dependent ligation and amplification
steps as well as the actual synthesis process monitored during sequencing. In general,
Nlumina HiSeq sequencing is known to work less efficiently on higher (>70%) as well
as low GC levels (<30%) (Quail et al., 2012). The severity of the bias depends on
sequencing chemicals and other experimental parameters and can vary between different
samples.

Figure 4.11 shows a heatmap of k-mer coverages with respect to GC content of the
individual k-mers. The 19 possible discrete GC counts for 19-mers are given on the y-axis,
coverage is given on the x-axis. Relative k-mer counts are encoded by color, ranging from
low (blue) to high (red) coverage. Black dots indicate the main peaks for each GC count
level.
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Figure 4.11.: Heatmap of 19-mer frequencies in BGI overlapping libraries with respect to coverage and GC-
content. Frequencies are encoded by color ranging from blue (low) to red (high). Grey diamonds indicate
individual peaks for each GC count as called by kmer-plot gcmx.

For the GC count range of 4 to 13 (21 %-68 %), the corresponding peaks range from
coverages 37 x to 44 x. Without bias, one would expect all peaks to line up on a vertical
line. For the BGI Hlumina read set, medium GC levels (37 %-47 %) exhibit maximum
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peak coverages, while higher /lower GC levels show decreasing coverage levels. The
relative shift of the minimum compared to the maximum is at about 15%. This GC-
correlated shift in coverage is one of the contributing factors causing the broad left-hand
side flank of the main peak in the 2D-k-mer distribution, which blurs the distinction of
haploid and diploid k-mer populations.

This GC-related bias can also be observed when comparing per base quality-scores of
different trimmed read data sets. The Phred quality scores analyzed during trimming
represent the level of confidence for the base call made by the sequencer. The decreased
accuracy of the Illumina sequencing technology in low /high GC regions of reads is
directly reflected in the reported quality scores. During trimming, tails of reads with
quality scores below a certain threshold are removed. ?? shows the change in relative GC
content (y-axis) in trimmed data set with respect to the number of accepted maximum
of trimmed bases per read.

Bp loss and gc content decrease for different gtrim min—length cutoffs
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Figure 4.12.:
minimum read length cutoffs during trimming. Libraries Dm_GenI1l_[019-035] are indicated by line color, line
type encodes window sizes 4 (continuous) and 10 (dashed), symbol shape represents different original read
lengths of 100 bp (bullet) and 150 bp (triangle) and symbol color encodes maximum number of allowed bases
missing after trimming, ranging from Obp to 100 bp or 150 bp, respectively.
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GC-content of BGI paired-end libraries as function of varying library size caused by different

GC-rich regions are particularly overrepresented in trimmed read regions resulting in
an overall drop of GC level in trimmed data sets. The bias is linearly correlated with
the strictness of trimming. If reads of arbitrary length are allowed in the trimmed read
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set, the GC content ranges between 40 % and 42 %. If only full-length reads are allowed
in the trimmed set, GC content for all libraries drops by 2% to 3.5%. Therefore, in
trimmed data sets, the shift in coverage for GC-rich regions is even higher and the overall
coverage distribution of the set is skewed even more.

In summery, the BGI data suffers from a combination of technical and biological problems
resulting in non-optimal quality of libraries, which render the reconstruction of a high
quality assembly infeasible. The only viable option to overcome the problems inherent to
the data, is the sequencing of new libraries with optimized protocols and an improved
strategy.
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4.3. Various SOAP and ALLPATHS assemblies shed light on
specific challenges

4.3.1. SOAP assemblies

To put the overall quality of the BGI assembly into context and as a starting point for
further improving assembly quality, in cooperation with Felix Bemm, I performed and
analyzed assemblies built from the BGI read data with SOAP on our in-house computing
infrastructure.

Initial trials with straight-forward application and mostly default parameters generated
assemblies of very low quality and contiguity. The primary conclusion was that given
the particular genomic structure and the variety of shortcomings in the design and
execution of the sequencing, generation of a high quality draft assembly requires extensive
optimization of the default procedure. For the sake of brevity, detailed descriptions of
the results of these initial runs were omitted here.

The first noteworthy assembly (Dm-gen-so-5) was obtained with

Hetrics Dm-gen-so-5.1 SOAP and a strategy similar to the one presumably used by

gzzziiz i(l)zip 17’223’2;3 the BGI. The assembly was constructed with a k-mer size of

Length 0 [bp] 4779.79 1:269 127 from 446 x 10° single-end reads obtained through merging

Length > 1k[bp] 546,533,018 of all available overlapping paired-end libraries Dm_GenI1_[019-
Longest [bp] 30,558 021,033,034].

1;1(5:0 [,/E;)p] 426'32 The resulting contig assembly (table 4.5) comprised 17.8 x 106

N %] 0.0 contigs with an minimum length of 128 bp and 350 x 103 longer

than or equal to 1 kbp with a total length of 4.8 Gbp and 550 Mbp,

Table 4.5.: Metrics of assembly respectively. The N50 for the entire set is 260 bp, the longest

Dm-gen-so-5. See table 4.1 for detailed  contig has 30,558 bp. A scaffold assembly for this data set is

description of metrics.

not available as all reads were single-end, and hence could not
be used for scaffolding. Stand-alone scaffolding with additional
libraries was not performed at the time.

With more than 90% of contigs shorter than 1kbp, the assembly is highly fragmented.
However, in contrast to assemblies previously computed with smaller kmer sizes, which
always were much smaller size than the Dm-gen-so-1 assembly, the assembly Dm-gen-so-5
surpasses the BGI assembly in total size and number of contigs with a minimum length of
128 bp. The number and total length of contigs >1 kbp is slightly lower, yet of comparable
magnitude.

The observed trend of increasing assembly size with increased kmer size fits well with
previously described characteristics of the D. muscipula genome and the sequenced
samples in particular. Especially the high level of heterogeneity in combination with a
suspected high level of heterozygosity can generate this effect. Heterogeneity in general
introduces ambiguities in the constructed assembly graph. With increasing kmer size (and
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given sufficient coverage), initially intertwined bubbly paths, which cannot be resolved
and, hence, are removed from the assembly, start to separate into longer independent
stretches, which eventually will be reported as individual short contigs.

4.3.2. ALLPATHS assemblies from low coverage data sets

While SOAP is capable of constructing assemblies of giga-byte sized genomes with
reasonable computational demands, other assembly programs apt for the task were
developed. To date, ALLPATHS is consider one of the best De Brujin graph based
assembler available for large eukaryotic genomes (Bradnam et al., 2013). It was reported
to outperform assemblers like SOAP and ABySS in terms of contiguity and accuracy,
particularly on complex data sets. Application to the D. muscipula read data thus has
the potential to generate assemblies of improved quality in comparison to the assembly
constructed by the BGI with SOAP.

The main disadvantage of ALLPATHS is its comparatively large demand on computational
resources and in particular memory. Initial assembly trial runs utilizing the full BGI
read data failed on a machine with 500 GB RAM (r5n01) due to insufficient memory.

The first successful ALLPATHS assembly

(Dm-gen-ap-3) was obtained from a largely re- kmer analysis Dm-gen-ap-3  Dm-gen-ap-4
. . . Genome size [bp] 1669,924,270 2549,272,689

duced read set comprising only overlapping
ired-end libraries with an insert-size of 170 - o=t 499,304,323 605,928,211
palred-end Lbrares w 12 _ Repetitive [%] 70.1 76.2
bp in combination with the full set of mate pair Coverage [x] 15 29

data. Theoretical coverage based on the total SNP rate 1/254
size of the supplied libraries was 19.4 . k-mer

1/274

analysis by ALLPATHS put coverage at 15z, Table 4.6.: ALLPATHS kmer analysis of Dm-gen-ap-3

estimated genome size at 1.7 Gbp with a 70 %

proportion of repetitive sequences, and a SNP rate of 1 in 254 bp (table 4.6). The assem-
bly took 100 h and required 431 GB of peak memory. The obtained assembly comprised
75 x 103 scaffolds of at least 1kbp in length and with a total size of 353 Mbp (table 4.7).

A second assembly (Dm-gen-ap-4) was obtained from a 25 % subsample of all BGI paired-
end libraries. Theortical coverage was 32 z. ALLPATHS estimated a coverage of 29, a
genome size of 2.5 Gbp with 76 % repetitive content and an average rate of 1 SNP per
274bp (Tab. 4.6). The final scaffold assembly comprised 67k contigs longer than 1kbp
and had a total size of 419 Mbp (Tab. 4.7).

With less than 350 Mbp and 420 Mbp of total scaffold length, both assemblies are
substantially smaller than the expected genome size of 2.8 Gbp as well as the respective
estimated genome sizes. One obvious explanation is the low coverage of the utilized read
sets that directly resulted in increased number of insufficiently supported or entirely
missing connections in the underlying assembly graph.

However, one key setting of ALLPATHS, especially in comparison to SOAP assemblies,
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4. Assembling the genome of D. muscipula

has to be considered. ALLPATHS applies a minimum length cutoff of 1kbp for contigs;
minor fractions of smaller contigs observed in the final assembly result from the application
of the cutoff prior to refinement and scaffolding. In contrast, the minimum contig length
for SOAP assemblies is determined by the utilized k-mer size and computes to k-mer size
+ 1. Given the large number of short contigs in the SOAP assemblies, it is reasonable to
assume that also for the ALLPATHS assembly, initally a large fraction of short contigs
was constructed. Yet, due to the minimum length cutoff these contigs were reported in
the final assembly. The fact that contigs are also already removed prior to the scaffolding
step also causes the subtantial difference in size of the scaffold assemblies with minimum
sequence length of 1kbp. While SOAP scaffolds a large portion of <1kbp contigs into
>1 kbp scaffolds and hence greatly increases the proportion of larger scaffolds, ALLPATHS
lacks this vast pool of short contigs and only can scaffold together the limited number of
contigs already larger than 1kbp.

Metrics

Dm-gen-ap-3.1

Dm-gen-ap-3.2

Contigs >O0bp 130,532 79,444
Contigs >1kbp 121,946 75,237
Length >0 [bp] 319,449,775 356,891,523
Length >1k[bp] 311,310,950 352,864,087
Longest [bpl 44,489 112,772
N50 [bp] 3299 7640
GC [%4] 42.2 42.2
N [%] 0.0 10.5
Metrics Dm-gen-ap-4.1 Dm-gen-ap-4.2
Contigs 131,259 72,656
> 1kbp 121,899 67,321
Length [bp] 323,302,065 424,312,843
> 1kbp 314,411,581 419,215,516
Longest [bp] 55,979 157,218
N50 [bp] 3344 12,445
GC [%] 42.4 42.4
N [%] 0.0 23.8

Table 4.7.: Metrics of assemblies Dm-gen-ap-3 and

Dm-gen-ap-4. See table 4.1 for detailed description of met-
rics.

Due to these conceptual differences between the
two assemblers, the only metric that can be com-
pared directly is the number and size of contigs
larger than 1kbp. Here, the BGI assembly has
a total size of 780 Mbp, while both ALLPATHS
assemblies have about 310 Mbp. The analysis of
the coverage landscape of the BGI assembly has
revealed a large overuse for the majority of se-
quences, i.e. the assembly comprises redundant
information and it true size is more likely to be
somewhere close to 520 Mbp. Compared to this
value, Dm-gen-ap-3 and Dm-gen-ap-4 still fall
short by 200 Mbp.

4.3.3. Transcriptome
coverage and comparison
of SOAP and ALLPATHS assemblies

Figure 4.13 shows the results of the comparative
analysis of transcriptome coverage by the BGI and
ALLPATHS assemblies. The stacked histogram
bars represent the amount of transcripts that
could be aligned to an assembly and color encode

for subsets of full-length covered (red), full-length covered, but split across multiple contigs
(green) and partially covered transcripts. Of a total number of >4.2 x 10* transcripts,
3.1 x 10* are covered by Dm-gen-so-1. Dm-gen-ap-3 and Dm-gen-ap-4 cover ~2.6 x 10*
and ~2.2 x 10%, respectively. The same trend can also be observed for the individual
subsets. The largest amount of covered transcripts in each category are observed for
the SOAP assembly, slightly lower numbers for full-length hits for Dm-gen-ap-4 and
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4.3. Various SOAP and ALLPATHS assemblies shed light on specific challenges

about 80 % for Dm-gen-ap-3. For both ALLPATHS assemblies, about 3/4 of partial hits
compared the BGI assembly have mappings.

Transciptome Coverage

Dm-gen-so-1.2 -
Dm-gen-ap-3.2 -
Dm-gen—-ap—4.2 -

Dm-gen—-ap-5.2 -

I I
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20,600
Number of mapped transcripts

I
10,000
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Figure 4.13.: Transcriptome content of the ALLPATHS assemblies Dm-gen-ap-3.2, Dm-gen-ap-4.2 and
Dm-gen-ap-5.2 including comparison to Dm-gen-so-1. Bars of the stacked histogram represent the amount of
full-length (red), full-length but split across reference sequences (green) and partially (blue) mapped longest
isoforms with maximum 42,653 (black line) derived from transcriptome assembly DM_tra_qt1.03.

Therefore, the conclusion is that although the SOAP metrics are overestimates, the
smaller ALLPATHS assemblies are incomplete to a larger degree in plain size as well as
on the level of coding potential and hence are inferior to the BGI assembly.

4.3.4. ALLPATHS assembly with a high coverage data set

To explore the impact of not having to use low

coverage data sets due to hardware restraints, we fetrics

Dm-gen-ap-5.1 Dm-gen-ap-5.2

procured computing time for an additional as- Zzzziz iizip iz’zg :_1/’32:
sembly run on a 2 TB RAM machine at the LRZ. Length Z’O [bp] 125,963:777 128’132:705
After configuration of the machine, data trans- Length > 1k[bp] 112,970,769 115,421,489
fer and installation of software, read correction Longest [bp] 30,348 51,692
and assembly of the full data set were performed N50 [bp] 1454 1495
under my supervision by Markus Ankenbrand GC [%] 43.0 43.0
(Master student). The total runtime of the as- ¥ [4] 0.0 1.7

sembly (Dm-gen-ap-5) was 473 h, peak memory
consumption was 1.98 TB. The resulting assem-
bly (Tab. 4.8) comprised 6.8 x 10* scaffolds with

Table 4.8.: Metrics of assembly Dm-gen-ap-5. See table 4.1
for detailed description of metrics.

at least 1kbp in length and had a total size of 115 Mbp.

At a first glance, the very low size of the assembly and its high level of incompleteness,
as corroborated by transcriptome coverage (Fig. 4.13), comes as a surprise, given that

61



4. Assembling the genome of D. muscipula

the assembly was constructed from the data set with a theoretical coverage of 52 2 — the
maximum coverage in available in overlapping libraries. On close inspection, however,
this result matches a trend already indicated by the two previous ALLPATHS assemblies.
With an increase in the coverage of overlapping reads (Dm-gen-ap-3: 15, Dm-gen-ap-3:
29z, Dm-gen-ap-3: 52x), the completeness of the obtained assembly decreases. A
potential explanation is the high heterogeneity of the different sequenced samples and
libraries. Rather than increasing overall support of the underlying assembly graph,
additional data increase the level of noise and introduce additional paths and connections
and thus reduce overall length of well-supported unambiguously resolvable regions.
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4.4. Redundancy reduction through digital normalization boosts
assembly computation and quality

Given the highly repetitive nature of the flytrap genome in combination with the fact
that repetitive reads contribute overproportionally to computational demands, digital
normalization is a particular promising approach in order to target repeat-related assembly
issues. Digital normalization reduces redundancy and hence size of [llumina read sets.
Using k-mer coverage abundant reads are identified and only a fraction up to a specified
target coverage is kept in the sample. In the filtered set coverage of unique and low
coverage region remains mostly unaffected, while excessive coverage of repetitive regions
is decreased.

Digital normalization is prone to accumulate sequencing errors

in the data set, as errors generate low coverage k-mers, which (HICES EEITEES Dn-gen-ap-6
. . . Genome size [bp] 1,251,048,130
are not recognized as potentially redundant regions and hence
e L. . . L CN<1 671,203,606
always make it into the filtered set. Initially, I experimented with . .
) ) Repetitive [] 46.3
normalized raw read data for assemblies (data not shown), but Coverage [v] 45

based on the above observation, decided to run error correction SNP rate 1/91
on the reads prior to normalization in order to mitigate the

effect. This approach, however, required a full corrected set  Table 4.9.: ALLPATHS k-mer analysis of
of short reads, which was only available after the generation Dm-gen-ap=6

of ALLPATHS assembly Dm-gen-ap-5 on a machine with 2 TB

RAM.

For assembly Dm-gen-ap-6 all available overlapping libraries (Dm_GenI1l_[019-021],
Dm_GenIl_[033-034]) and one library with insert-size 500 bp (Dm_GenI1_027) were used.
Through digital normalization, the read set was reduced to 43.6 % of its original size.
k-mer spectrum analysis by ALLPATHS (table 4.9) shows that peak coverage was retained
at 45 x, as compared to the expected 24 x for a non-normalized set of the same size.
Estimated genome size, however, was reduced to 1.2 Gbp, as a result of lowered coverage
of repetitive regions.

With the normalized read set, it was possible to
successfully run an ALLPATHS assembly within tetrics Dn-gen-ap=6.1  Dm-gen-ap-6.2

the limits of our hardware. Peak memory con- cont%gs =0bp 173,104 75,466

. . Contigs >1kbp 157,636 71,438

sumption was 429.8 Gbp. Total runtime was re- Length >0 [bp] 464029 794 623.269 190

duced substantially as well, the complete run took Length o1 k [bp] 449’801’249 619’ 404’082

100.5 h. Longest [bp] 91,443 496,750

. . N50 [b 3946 19,699

The resulting assembly (table 4.10) comprised cc [5]13] 49 9 4 9
4 : 4 . o . .

16 x 10* contigs and 7.1 x 10* scaffolds with N %] 0.0 25.6

450kbp and 619kbp in total length, respec-

tively. The N50 increased from 3.9 kbp to 19.7kbp  Table 4.10.: Metrics of assembly Dm-gen-ap-6. See table 4.1
through scaffolding. 25.6 % of the scaffold assem- for detailed description of metrics.

bly are made up of N filled gaps.
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4. Assembling the genome of D. muscipula

Even after scaffolding, the assembly is much smaller than the expected 2.8 Gbp, as
well as the 1.2 Gbp estimated by ALLPATHS for the normalized set. To assess the
completeness of the assembly in terms of coding potential, I mapped D. muscipula
transcripts and computed the corresponding coverage. Results are shown in fig. 4.14.
More than 20 x 10 transcripts can be mapped full-length, about 1 x 10 split over
different scaffolds and about 9 x 103 can be mapped partially. Compared to the BGI
SOAP assembly (Dm-gen-so-1), the total number of mapped transcripts is with 30 x 103
and 31 x 10% comparable. However, out of these mappable transcripts, 25% more
(~5 x 103) can be mapped to the ALLPATHS assembly in full-length. This indicates
that in spite of the small size, the ALLPATHS assembly is with respect to coding regions
similarly complete as Dm-gen-so-1. At the same time, the increased contiguity of the
assembly allows for a much higher fraction of full-length mappings, indicating a higher
fraction of full-length gene models in the Dm-gen-ap-6.2 assembly.

Transciptome Coverage

type
Dm-gen-so-1.2 - .fuII

Dm-gen—-ap-6.2 -

I I I I I
0 10,000 20,000 30,000 40,000
Number of mapped transcripts

Figure 4.14.: Transcriptome content of the assembly Dm-gen-ap-6 in comparison to Dm-gen-so-1. Bars of the
stacked histogram represent the amount of full-length (red), full-length but split across reference sequences (green)
and partially (blue) mapped longest isoforms with maximum 42,653 (black line) derived from transcriptome
assembly DM_tra_qt1.03.

Figure 4.15 shows the GC-coverage landscape and cumulative contig length distribution
of the Dm-gen-ap-6.2 assembly. In the left panel each circle represents a scaffold with
relative GC in the x-axis and representative adjusted coverage on the y-axis; color and
size correspond to its length. For better readability, only a 1% subsample of scaffolds
is actually displayed in the scatterplot. The overall topology of the plot is not affected
by this down-sampling procedure. The panel on the left is a stacked histogram of the
unsampled cumulative scaffold length.

The majority of scaffolds in terms of number as well as total length is concentrated in a
cluster between 70 x to 90 x coverage and between 35 % and 50 % GC. The trend of lower
coverages at higher GC levels is consistent with the GC bias observed in the raw read
data. The total length of all sequences in the cluster makes up for a total of ~450 Mbp.
The second cluster at about half the coverage of the primary cluster and at a similar
GC range comprises 50 Mbp. The two clusters correspond to the expected coverage for
scaffolds present in either one or two allelic copies. Another 50 Mbp fraction of scaffolds
exist at zero coverage. These scaffolds either derive from contaminations or sequences
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4.4. Redundancy reduction through digital normalization boosts assembly computation and quality

that are by majority specific to the BGI read data set. Given a total assembly size of
620 Mbp, less than 70 Mbp are to be attributed to sequences predominantly consisting of
collapsed repeats.
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Figure 4.15.: GC-content and length distribution of assembly Dm-gen-ap-6.2 as a function of representative

adjusted k-mer coverage. See fig. 4.4 for detailed plot description.

Compared to the BGI SOAP assembly Dm-gen-so-1, which shows a strong bias towards
relative overuse of repetitive sequences and lacks proper distinction of homozygous and
heterozygous sequences, the Dm-gen-ap-6 assembly exhibits a well structured sequence
coverage landscape. The majority of bases is assembled and scaffolded into sequences of
at least 10kbp length and at the expected coverage level. Separate assembly of allelic
regions due to heterozygosity affects a minor proportion of the scaffold set. The amount
of collapsed, unconnected repeat sequences is negligible.

In addition to ALLPATHS, I also tested the performance of SOAP on digitally normalized
data. From different runs with varying library compositions (data not shown), the best

results in terms of contig assembly statistics were obtained from assembly Dm-gen-so-4.

The assembly was constructed with a k-mer size of 127 and from a digitally normalized
set of all BGI 150 bp libraries Dm_GenI1l_[033-035]. The coverage of 48 x of the set is
comparable to the set used for the ALLPATHS assembly. Scaffolding of the obtained
contigs was not performed.
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4. Assembling the genome of D. muscipula

Metrics Dm-gen-so-4.1

Contigs >O0bp
Contigs >1kbp
Length >0 [bp]
Length > 1k[bp]
Longest [bp]
N50 [bpl

GC 4]

N %]

Table 4.11.: Metrics

1177,868
107,022
671,847,278
157,492,207
24,098

615

41.2

0.0

of assembly

Dm-gen-so-4. See table 4.1 for detailed

description of metrics.
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The assembly comprises 107 x 10% contigs of a length >1kbp
with a total length of 157 Mbp (table 4.11). The N50 of contigs
of all lengths is 615 bp. Compared to other SOAP assemblies as
well as the ALLPATHS assemblies generated from normalized
data, assembly Dm-gen-so-4 is very small and incomplete. This
result supports the interpretation that obtaining large assem-
blies from running SOAP with large k-mer sizes can mostly be
attributed to the overuse of heterogeneous repetitive regions.
Through normalization and the resulting reduction in coverage,
the support for individual paths of different repeat species drops
below threshold and thus repetitive regions are removed from
the final assembly.



4.5. Resequencing solves heterogeneity issue and mitigates technical bias

4.5. Resequencing solves heterogeneity issue and mitigates
technical bias

The analysis of the BGI Illumina read data and the evaluation of the derived assemblies
clearly indicate that the BGI paired-end read set suffers from technical (GC-bias) and
experimental problems (heterogeneity due to pooling), which are likely to contribute
substantially to the poor quality of the obtained assemblies.

In addition, while at least with normalized read data, ALLPATHS seems to be the the
assembler most suitable to generate an assembly of proper quality for D. muscipula, the
design of the libraries generated by the BGI is less than ideal for the use with ALLPATHS.
The initial assembly graph of ALLPATHS is solely based on overlapping paired-end
libraries. fig. 4.16 shows the comparison of the k-mer distribution of the complete paired-
end set (red line) and the overlap only set (blue line). The actual sequencing depth
of all raw overlapping libraries combined is 42 x. The estimate for the main peak size
changes slightly from 240 Mbp to 320 Mbp, the overall genome size estimate of 2.9 Gbp
is quite similar. Due to the shift in coverage and the resulting compression of the peaks,
resolution of erroneous, contaminant, homozygous and heterozygous k-mer populations
is complicated further.

1.5e+07 = set
320 Mbp / 42X dm-il-bgi-pe-raw-m19 (2.8 Gbp)
—— dm-il-bgi-ovl-raw-m19 (2.9 Gbp)
1.0e+07 -
>
8
c
(0]
S
g 240 Mbp / 105X
5.0e+06 -
37 Mbp / 196X
0.0e+00 =
I I I I
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Figure 4.16.: Frequency distribution of 19-mers in BGI overlapping (blue line) and all BGI paired-end reads
(red line) with maximum displayed coverage of 300 2 and maximum displayed frequency of 1.5 x 107. Triangles
indicate peaks detected by the peak-calling algorithm, horizontal bars indicate the range used for peak size
computation. The estimated genome sizes are 2.9 Gbp and 2.8 Gbp for the overlapping and the full paired-end
set, respectively.
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4. Assembling the genome of D. muscipula

To obtain high quality results, the recommendations for ALLPATHS assemblies are
100 x coverage in overlapping libraries of high quality, i.e. little sequencing bias, and
with low heterogeneity and only little heterozygosity. The BGI library set with less
than 50 x coverage in overlapping libraries, high heterogeneity, heterozygosity and the
GC-dependent coverage bias clearly contrasts these recommendations.

In order to address these non-biological issues identified for the BGI read set, four new
paired-end Illumina libraries in overlapping configuration with read length 100 bp and
insert-size of 180bp were sequenced at LGC. The DNA was prepared in-house with
an optimized protocol from a small batch of most likely mono-clonal plants to reduce
heterogeneity. Newer sequencing chemicals with a potentially lower composition based
sequencing bias were used.

After adapter clipping the four libraries (dm-il-[01-04]) comprised 1.4 x 10° read
pairs with a total size of 294 Gbp and relative GC content between 41.3 % and 41.6 %
(table 2.5).

4.5.1. Quality control of LGC libraries

The quality of the libraries obtained from LGC was assessed with FastQC. fig:dm-il-lgc-
fastqc provides a schematic overview of the basic quality metrics on both, the raw and
trimmed LGC read set. The results for each test are color-coded (pass: green, warn:
yellow, fail: red). Warnings are issued for raw and trimmed reads in the categories: Per
base sequence content, Per base GC content, Sequence Length Distribution and Sequence
Duplication Levels. The test on k-mer Content failed for raw reads and produced a
warning after trimming.
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The warning on Per base sequence content can be attributed to slight compositional bias
at the 5’ of the reads. The signal, however, is quite weak and was also already observed
for the BGI reads.

The reason for the Per sequence GC content warning is a particular feature of the
D. muscipula genome and was already observed and described for the BGI data (see
section 4.2.1). The bimodal distribution in relative GC content per read derives from a
subpopulation of reads with significantly lower relative GC content, which most likely
are part of an abundant class of repetitive elements in the genome.

The warning on Sequence Length Distribution can simply be attributed to the fact that
the test expects all sequences to be of identical length, while the program was run on
clipped / trimmed read sets comprising already shortened reads.

Sequence Duplication Levels and k-mer Content warnings / failure were also already
observed for the BGI set. While these results can indicate biases in library preparation
or amplification, these test are only conclusive under the assumption of homogeneously
distributed coverage levels as obtained form smaller, unenriched samples with high
complexity. In the case of D. muscipula it is most likely that the warnings are triggered
by the high content of repetitive sequences rather than technical artifacts.

Overall, the evaluation of the FastQC results on the libraries sequenced by LGC indicate
properly generated libraries without obvious technical issues.

4.5.2. Insert-size distribution of LGC Illumina libraries
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Figure 4.17.: Insert-size distribution of LGC paired-end libraries with target insert-size of 180 bp (black vertical
bars). Distributions were computed based on 5 % of randomly sampled pairs of each library, mapped to corrected
PacBio reads (see section 4.7.2)

The libraries sequences by LGC were designed as overlapping libraries with an insert-
size of 180 bp. The actual distribution of insert-sizes obtained through mapping using
corrected PacBio reads as reference are consistent among the four libraries and match
the target size of 180bp (fig. 4.17).
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4. Assembling the genome of D. muscipula

4.5.3. k-mer-analysis, genome size estimation and repeat content

To assess actual sequencing depth, error rate, potential biases and heterozygosity as well
as confirm the estimates on genome size and repeat content derived from the BGI read
set, I performed a k-mer analysis of the LGC read set. Figure 4.18 shows an Anscombe
transformed histogram (red bars) of the coverage-frequency distribution of 19-mers in
the full LGC library set (See section 8.2 for details on and significance of Anscombe
transformation.). The maximum displayed coverage is 1 x 10* z, maximum frequency
was automatically set to 1 x 10® by the plot script based on the size of the primary peak.
The majority of k-mers in the plot has coverages below 200 x. Next to the half peak at 1z
to bx coverage comprising mostly k-mers derived from sequencing errors, one major and
two minor peaks can be distinguished. The main peak corresponds to the unique regions
of the diploid genome shared between allels (homozygous peak), the first minor peak at
half the coverage of the main peak comprises haplotype specific k-mers (heterozygous
peak). The second minor peak at twice the main peak coverage derives from duplicated
genomic regions. At higher coverage, no accumulation or k-mers corresponding to specific
subpopulation of reads can be observed.
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Figure 4.18.: Frequency distribution of 19-mers in LGC reads plotted as Anscombe transformed histogram
with maximum displayed coverage of 10,000 z and maximum displayed frequency of 1.0 x 10%. The estimated
genome size is 2.6 Gbp.

Figure 4.19 provides a closer look at the >300x part of the k-mer distribution of the
LGC set (red line) and, for comparison, the spectrum of BGI k-mers (blue line) in
untransformed space. Peaks are indicated by triangles and labels comprising estimated
size and coverage, peak width by gray horizontal bars. The estimated genome size for
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4.5. Resequencing solves heterogeneity issue and mitigates technical bias

D. muscipula based on the LGC data is 2.6 Gbp. In close-up as well, the distribution
exhibits three distinct peaks: A major peak at 82 x with an estimated size of 300 Mbp
comprising unique haplotype shared k-mers, a clearly distinct peak at half of the main
peak coverage (40 x) comprising haplotype specific k-mers with an estimated size of
130 Mbp and a minor peak at twice the main peak coverage (158 x) with an estimated
size of 43 Mbp.
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Figure 4.19.: Frequency distribution of 19-mers in LGC (blue) and BGI paired-end (red) reads with maximum
displayed coverage of 300 z and maximum displayed frequency of 1.1 x 107. Triangles indicate peaks detected by
the peak-calling algorithm, horizontal bars indicate the data range used for peak size computation. Estimated
genome sizes are 2.6 Gbp and 2.8 Gbp for the LGC and BGI data set, respectively.

In comparison to the BGI spectrum with overlapping and due to biases indistinguishable
peaks, the k-mer spectrum of the LGC library set exhibits distinct and sharp peaks
with a Poisson-like shape for homo- and heterozygous k-mer populations. The half peak
comprising erroneous k-mers is narrow and clearly separated from non-erroneous data
at higher coverages. This on the one hand indicates a much lower level of technical
bias than for the BGI data, on the other hand also is a result of the strongly reduced
heterogeneity due to the limited pooling of individuals. The slightly reduced genome
size estimate - 2.6 Gbp versus 2.8 Gbp - as a result of reduced diversity in the sequenced
sample further supports this interpretation. The overall estimate of >70% of repetitive
sequence content remains unchanged.

The distinct haploid peak also allows for an estimate of the SNV rate in the sequence
D. muscipula sample. Under the simplified assumption that heterozygosity is primarily
caused by randomly distributed SN'Vs (comprising mostly ), an approximate rate of 1
SNV in 147bp can be estimated according to eq. (8.3) and eq. (8.4), given a heterozygous
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peak size of 130 Mbp and a non-repetitive genome size of 500 Mbp. This, however, is
only a rough estimate due to two factors:

First, the model assumes that each SNV affects the maximum number of k-mers, however,
if two SNVs are closer together than the utilized k-mer size, the effective number of
affected k-mers is reduced, as k-mers affected by both variants still only occur once. In
natural samples, clustering of polymorphisms is common. The effect is further enhanced
by an overall high SNV rate, which already puts SNVs closer together by chance. Overall,
this leads to an underestimate of the SNV rate.

Second, SN'Vs introduced in repeat copies put affected k-mers within the heterozygous
peak as long as the SNV is present in a single allelic copy. The corresponding unaffected
k-mers, however, due to their repetitive nature, remain at a high coverage levels and are
not considered during heterozygosity rate estimation. Thus, the number of heterozygous
k-mers in the non-repetitive genome is overestimated, resulting in an overestimate of the
total SNV rate.

set
dm-il-lgc-raw-m19 (2.6 Gbp)
—— dm-il-lgc-trm-m19 (2.5 Gbp)

dm-il-lgc—crr—-m19 (2.6 Gbp)

0 100 200 300

coverage

Figure 4.20.: Frequency distribution of 19-mers in raw (red), trimmed (green) and corrected (blue) LGC read
sets with maximum displayed coverage of 300z and maximum displayed frequency of 1.1 x 107. Estimated
genome sizes are 2.6 Gbp, 2.5 Gbp and 2.6 Gbp, respectively.

Figure 4.20 comprises a comparison of k-mer spectra obtained from the LGC reads
without processing (red), after trimming (green) and after ALLPATHS error correction
of the raw reads (blue). Through trimming, the overall coverage of the set is reduced by
about 10 %. Thus, homozygous and heterozygous peak are shifted to lower coverages and
brought closer together. The increased overlap between the peaks partially accounts for
the less distinct valley. However, in combination with a slightly increased peak width, a
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4.5. Resequencing solves heterogeneity issue and mitigates technical bias

minor systematic bias seems to be introduced most likely similar to the GC-bias observed
during trimming of the BGI set, yet much less severe. Error correction of the raw read
data only has a minor impact on the shape of the two main peaks, however, erroneous
k-mers with coverages close to 1z are substantially reduced.
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Figure 4.21.: Heatmap of 19-mer frequencies in LGC overlapping libraries with respect to coverage and GC-
content. Frequencies are encoded by color ranging from blue (low) to red (high). Grey diamonds indicate
individual peaks for each GC count, as called by kmer-plot.

To assess a potentially GC-related bias in sequencing depth, I analyzed the k-mer
distribution with respect to the GC composition of the quantified k-mers. Figure 4.21
shows a plot of the k-mer coverage against the GC-count per k-mer. Frequency is color
coded by a spectrum ranging from blue (low) to red (high). The population of erroneous,
heterozygous and homozygous k-mers form distinct clusters. Grey dots indicate the
individual peak values for each GC level. Under unbiased conditions one would expect
all peaks to line up vertically. For the GC range of the main peak at 4 to 13 (21 %-68 %),
peak coverages range from 72z to 85 x, which computes to a relative shift of 15 %. This
is equivalent to the GC-correlated shift in the BGI sequencing data. This suggests that a
GC-related sequencing bias at this level is a general trend for D. muscipula sequencing
samples on Illumina platforms, rather than an issue specific to the sequencing procedure
used by the BGI.
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4. Assembling the genome of D. muscipula

4.5.4. Digital normalization of LGC sequencing data

Given the success of applying digital normal-

11D reads sl (Tl Tees (B ization to the BGI read set in order to facil-
dm-il-nkh 518238768 51702495021 35.1 . cl1 . .. .
e itate the assembly within limit computational
518238768 51701548333 1 at th e to |
dm-il-nbb 575343861 57404351676 39.0 resources and at the saine tine to 1nprove

575343861 57401075176 the overall assembly quality, digital normaliza-

tion was also run on the LGC reads prior to

Table 4.12.: Metrics of LGC libraries digitally normalzed with  assembly. Normalization of the four libraries
normalize-by-median.py (Brown and Crusoe, 2014) (dm-il-nkh)  combined using normalize-by-median.py with
and bbnorm.sh (dn-31-rbb). a threshold coverage of 200z produced a li-
brary of 518 x 10° read pairs and a total size

of 103 Gbp (35 % of the raw set, table 4.12).

In addition to normalize-by-median.py, digital normalization was also performed with
bbnorm.sh of the BBMap package. This program uses a more sophisticated two-pass
approach, which makes it less sensitive to sequencing errors and reduces the bias intro-
duced to the non-repetitive fraction of the reads. Using a target k-mer coverage of 140 x
(equivalent to 200 2 per-base coverage), the set was reduced 575 x 105 read pairs with a
total size of 115 Gbp (39 %, table 4.12).

4.5.5. Merging of overlapping libraries

In order to obtain read fragments of maxi-

LD merged [%] size [bp]l [« mum length, the two reads of a pair in an
dm-i1-01 59.5 29525041403 9.8 . . . .

. overlap library can be combined into a single
dm-i1-02 60.0 29994918620 10.0 f t by alien d e th .
dm-11-03 65.4 30207905589 10.1 ragment by alghing and merging theml a
dm-i1-04 61.6 38110998025 12.7 their overlapping ends. Using FLASh merging
dm-il-nkh 54.3 40156843701 - was successful for 60 % to 65% of the pairs

per library in case of the raw LGC libraries,
Table 4.13.: Metrics of raw (dm-il-[01-04]) and normalized creating a set of reads with an approximate
(dm-il-nkh) LGC overlapping libraries merged with FLASh. length of 180 bp and a combined coverage of

43 = (table 4.13).

For the combined, khmer normalized library of the LGC set, merging was successful for
54 % of the read pairs, producing a library with a total size of 40 Gbp.
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4.6. LGC reads further improve assembly contiguity and

completeness

4.6.1. SOAP assemblies corroborate higher quality of LGC reads

To assess the behavior of the newly sequenced libraries in assembly, a series of SOAP
assemblies was performed using strategies analogous to the ones previously applied to

the BGI data.

Assembly Dm-gen-so-9 was constructed in a
way similar to Dm-gen-so-1 and Dm-gen-so-5,

Metrics

Dm-gen-so0-9.1

Dm-gen-so0-10.1

. . . . Contigs >O0bp 4678,921 46,280,104
using merged overlapping libraries and a k-mer i
. . . Contigs >1kbp 36,686 136,524
size of 127. The resulting total assembly size Length > 0 [bp] 1910.730 901 5007 245993
was 1.2Gbp, yet only 37 x 103 contigs were Length glk[bp] 46:632z545 269:553:853
at least 1kbp long, resulting in total length Longest [bp] 12,606 31,576
of 47 Mbp for large contigs (table 4.14). Scaf- N50 [bp] 388 101
folding was not performed. The high level of GC [%] 40.0 43.1
fragmentation of the assembly is somewhat sur- N (%] 0.0 0.0
prising, given that Dm-gen-so-5 has a total LETEE WIEEER L ), S
length of 550 Mbp for contigs >1kbp and was Contigs >0bp 35,100,734 16,706,681
constructed from BGI data with a much higher Contigs = 1Kkbp 176,752 104,239
. . Length >0 [bp] 4591,817,142 2449,395,592
level of heterogeneity. However, it has to be Length > 1k[bp] 348 549 133 160 961473
noted that while the level of heterogeneity was Longest_[bp] | 36: 450 ’ 14:004
greatly reduced, the read set is still highly het- N50 [bp] 1929 170
erozygous and the underlying assembly graph GC [%] 42.6 41.5
remains highly ambiguous. In addition, the N [%] 0.0 0.0

average length of merged fragments from the
LGC set is 180 bp, whereas due to two libraries
with 150 bp reads and insert-sizes of 200 bp and
250 bp, the average read length for the BGI set
is about 220 bp. This roughly 20 % difference in read length has disproportionate impact
on the coverage of the underlying k-mer graph. A read of 180 bp comprises 54 127-mer,
while a read of 220 bp comprises 94 127-mers. With both sets of similar size and esti-
mated coverages close to 40 x, the overall support of the BGI data derived k-mer graph is
substantially higher. The poor contiguity of the LGC based assembly can be attributed
to regions of low k-mer support trimmed from the graph.

Table 4.14.: Metrics of assemblies Dm-gen-so-9, Dm-gen-so-10,
Dm-gen-so-11 and Dm-gen-so-12. See table 4.1 for detailed
description of metrics.

Assemblies Dm-gen-so-10 to Dm-gen-so-12 were constructed from ALLPATHS corrected
LGC libraries with k-mer sizes 67, 77 and 87, respectively. Obtained assembly metrics
are shown in table 4.14. Dm-gen-so-10 consists of 46 x 10% contigs with a total size of
5 Gbp. When looking at contigs of at least 1kbp, these numbers decrease substantially
to 270 x 10% contigs and a total size of 349 Mbp. A similar trend can be observed for
assembly size and contig numbers of the two assemblies, with raw counts of 35 x 106
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4. Assembling the genome of D. muscipula

(4.6 Gbp) and 16 x 108 contigs (2.5 Gbp) compared to 177 x 10? (349 Mbp) and 104 x 10?
(160 Mbp) contigs >1kbp.

Scaffolding of the assemblies did generate extremely poor results (data not shown), and
may have been caused by an application error. Further analysis of the data was therefore
omitted.

All three assemblies are highly fragmented with less than 8 % of their respective total
sizes made up by contigs of at least 1kbp. The assembly with the highest contiguity
could be obtained for a k-mer size of 77, while a smaller as well as a larger k-mer size
performed worse. While larger k-mer size in general tend to mitigate graph ambiguities
and hence further assembly contiguity and size, k-mer sizes too close to the length of
the utilized reads decrease support for individual paths (as elaborated on for 127-mers
and different read length above). This leads to an increased level of disruption of the
graph and thus a more fragmented and at the same time smaller assembly. This series of
assemblies illustrates that there exists local optima for different assembly parameters, in
this case k-mer size, and that these optima often can only be determined empirically.

4.6.2. Alternative assemblers fail on the D. muscipula data

In the beginning of the flytrap genome projects, ALLPATHS and SOAP were the only
assembly programs with the out-of-the-box capability of properly handling a 3 Gbp
genome with reasonable hardware demands. In the course of the project, however, a
handful of software was either upgraded or newly developed to take on this challenge. In
order to verify the usability of these assemblers for the flytrap genome, the majority of
these programs was tested on D. muscipula data.

ABySS was the first new assembler reportedly applied to large plant genomes, such as
the 3Gbp N. benthamiana genome (Bombarely et al., 2012) and the 20 Gbp P. glauca
genome (Birol et al., 2013). Tests on D. muscipula data were performed by Felix Bemm.
A proper assembly, however, could not be obtained due to problems with the software as
well as computational requirements.

MaSuRCA, an assembler build on the Celera assembly framework, was used to assembly
the 22 Gbp genome of Pinus taeda (Zimin et al., 2014; Hamilton and Buell, 2014). An
assembly of D. muscipula data, however, failed. During error correction and with different
settings and input data, the program required more than the available 512GB of RAM.
While the author of MaSuRCA agreed that in theory, the program should be able to
handle the data set within the available memory, the issue could not be resolved.

Platanus was used for the assembly of the hexaploid Ipomoea batatas (Roullier et al.,
2013). Assemblies for D. muscipula did compute, yet, even the best contig assembly
comprised only 7.3 Mbp of contigs with at least 1kbp. Due to the high fragmentation
and low quality, further analyses of the assemblies were omitted.

Meraculous2 was used to generate an assembly of the 6 Gbp hexaploid Triticum aestivum
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4.6. LGC reads further improve assembly contiguity and completeness

genome by Chapman et al. (2015). With the flytrap data, however, the software repeatedly
crashed during its unitig construction phase. Attempts to fix the issue in cooperation
with the authors did not succeed.

minia is an assembler with an extremely resource efficient implementation for De Brujin
graph construction and processing. minia was tested with k-mer sizes of 31, 51, 71, 91
and 111 on D. muscipula data. Only for a k-mer size of 51, a contig assembly comprising
6.9 x 10% with a total size of 1.2 Gbp and an N50 of 177 bp could be obtained. Given the
high level of fragmentation of the assembly, further analysis was omitted. Noteworthy,
however, is that the assembly was constructed with a peak memory demand of less than
10 Gbp.

Discovar de novo, an assembler specifically developed for the assembly of large heterozy-
gous data sets with the primary goal of identifying SN'Vs, was also tested on D. muscipula
data. However, Discovar de novo is designed to work with Illumina paired-end libraries
generated on a HiSeq 2000 with a specific protocol generating overlapping read with a
length of 250 bp. When provided with the 100 bp reads of D. muscipula, the program
quickly ran out of memory and hence no assembly was obtained.

4.6.3. Combination of ALLPATHS and digital normalization is the superior

strategy

The corrected LGC read data utilized in the
SOAP assemblies described above, were gen- = Hetrics Dm-gen-ap-11.1  Dm-
erated from a full-data ALLPATHS assembly, Cont%gs =0bp 268,506

.. . Contigs > 1kbp 111,335
similar to Dm-gen-ap-5. Again, external com- Length >0 [bp] 398,543,028
putation time on the 2TB RAM node mam- Length ;1k[bp] 304,128,659
moth at the LRZ had to be procured in order Longest [bp] 65,605
to match the computational demands of ALL- N50 [bp] 2492
PATHS for reads sets of this size. The obtained Ge [%] 42.6
assembly comprised 73 x 103 scaffolds of at least N (%] 0.0

1kbp and a total scaffold length of 660 Mbp (ta-
ble 4.15). With these metrics, the assembly is
clearly superior to the full-data ALLPATHS as-
sembly constructed from the BGI reads (68k contigs, 115Mbp). Yet, with an N50 of
17 kbp contiguity is lower than for assembly Dm-gen-ap-6 generated from normalized
data and with 40 % N-content, a considerable fraction of the assembly is comprised of
uninformative gaps. Nevertheless, the obtained assembly indicates that the new read
data when used with ALLPATHS produces better assemblies.

for detailed description of metrics.

77

gen-ap-11.2
76,042
73,052
661,574,300
658,714,918
602,575
17,051

42.6

39.8

Table 4.15.: Metrics of assembly Dm-gen-ap-11. See table 4.1
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4. Assembling the genome of D. muscipula

Dm-gen-ap=10/12  Assemblies Dm-gen-ap-10 and Dm-gen-ap-12 were constructed

Genome size [bp] 952,546,772 from digitally normalized read sets generated from raw data
;e?:fiiive - 562’8126?2 with khmer. Dm-gen-ap-10 was run with haploidification,
Coverage [z] 89 whereas Dm-gen-ap-12 was run without allowing to directly
SNP rate 1/107 assess the impact of the procedure. k-mer analysis resulted in

Table 4.16.: ALLPATHS k-mer analysis of

an estimated genome size for the normalized set of 953 Mbp
and a coverage of single copy regions of 82z (table 4.16).

Dm-gen-ap-10 / Dm-gen-ap-12

Assembly Dm-gen-ap-10 finished in 334h and with a peak

memory consumption of 453 Gbp. The assembly comprised
69 x 103 scaffolds of at least 1kbp with a total size of 1,104 Mbp (Tab 4.17). Without
haploidification, the assembly took with 588h with peak memory usage of 453 GB.
The resulting scaffold assembly was with 72 x 10? scaffolds >1kbp and a total size
of 1,007 Mbp slightly smaller and less contiguous. This supports the assumption that
haploidification of the heterozygous data set increases assembly quality. Overall, the
obtained assembly are of high contiguity outperforming all previously produced assemblies,
with the exception of the BGI assembly.

Figure 4.22 shows the topology of the assem-

Metrics Dm-gen-ap-10.1
Contigs >O0bp 271,863
Contigs > 1kbp 177,093
Length >0 [bp] 718,849,301
Length > 1k[bp] 657,422,302
Longest [bp] 81,999
N50 [bp] 5407
GC [%] 42.5
N 4] 0.0
Metrics Dm-gen-ap-12.1
Contigs >O0bp 288,147
Contigs >1kbp 186,445
Length >0 [bp] 696,714,361
Length > 1k[bp] 630,192,449
Longest [bp] 78,053
N50 [bpl] 4508
GC [%] 42.6
N [4] 0.0
Table 4.17.: Metrics

rics.

Dm-gen-ap-10.2
70,029

68,704
1015,218,851
1013,945,149
999,304

31,814

42.5

29.2
Dm-gen-ap-12.2
73,733

72,327
1008,033,297
1006,682,621
996,199

29,570

42.6

30.9

of assembly Dm-gen-ap-10 and
Dm-gen-ap-12. See table 4.1 for detailed description of met-

bly in the context of GC-content versus k-
mer-coverage, and its cumulative contig length
distribution. Color and size encoded circles on
the left panel represent scaffolds with relative
GC-content on the x-axis and representative ad-
justed k-mer-coverage on the y-axis. For better
readability, only a 1% subsample of the total
number of scaffolds is actually displayed in the
scatterplot. Overall topology of the plot is not
affected by this procedure. The panel on the
left holds a stacked histogram of the unsampled
cumulative scaffold lengths at the respective
k-mer-coverage bin.

The majority of scaffolds in terms of number as
well as total length is found in a cluster between
80 2 and 100 x and in a relative GC range of 35 %
to 55 %. The cluster comprises sequences with
a total length of at least 800 Mbp. A second,
smaller cluster at half the coverage and with
similar GC-content consists of sequences with

a total length of at least 100 Mbp. Taken together, both clusters represent more than
95 % of the total assembly size (1 Gbp), indicating that only a small fraction of sequences
dominated by collapsed repeats is present in the assembly. Sequences in the cluster
around 50z coverage are predominantly composed of k-mers used twice as often as
their number of occurrence in the read set indicates. This is the result of assembling
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heterozygous regions into separate contigs and scaffolds. With 10 % of the total assembly
size, the fraction of these heterozygous contigs is still quite high.
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Figure 4.22.: GC-content and length distribution of assembly Dm-gen-ap-10.2 as a function of representative
adjusted k-mer coverage. See fig. 4.4 for detailed plot description.
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4.7. PacBio sequencing, correction and assembly

4.7.1. Low coverage PacBio sequencing

While digital normalization can mitigate the challenge of repeats in the assembly process
by removing repetitive data and making computation feasible, it cannot solve the actual
underlying problem: paths connecting genomic regions interspersed by repeats can only
be resolved unambiguously by sequencing data directly tying together the flanks at either
side of the repetitive region. In classic Illumina based sequencing, this is achieved by
sequencing large insert paired-end and mate-pair libraries. The linkage information
stored in the pairs is used to scaffold across ambiguities, filling the gaps with Ns, and in
turn to largely increase contiguity.

For this form of scaffolding to work, the type of repeats in the genome at hand is of
high importance. If the size of these repeats is larger than that of the inserts of the
sequencing library, the repeats cannot be bridged. Preliminary studies by me (data not
shown) followed by an in-depth analysis by Niklas Terhoeven in his master thesis showed
that the D. muscipula genome predominantly comprises LTR repeats of the Tyl-copia
and Ty3-gypsy class. With lengths of up to 20kbp, these transposable elements are
comparatively long. The BGI mate pair reads designed for scaffolding consist of libraries
with insert-sizes of 2 kbp, 5 kbp, 10 kbp and 20 kbp. Therefore, only a part of the available
read pairs is suited to close LTR-related assembly gaps.

Next to the length of the insert, also the length of the actually sequenced read matters.
The concept of repetitiveness is relative with respect to the scope and scale one applies
during the assessment. At the extremes, within a genome each single nucleotide is
repetitive, as it occurs multiple time, whereas the entire genome is always unique.
Repetitiveness can only be used in the context of smaller units occuring once or multiple
times within a larger set. Applied to the scaffolding procedure, this means that contigs
which are to be scaffolded together across a gap need to be non-repetitive in the sense that
reads mapped to the corresponding flanks can be placed there uniquely. The mate-pair
libraries generated by the BGI have a read length of only 49bp. Compared to 100 bp
reads obtained from paired-end sequencing, the short mate-pair reads are less likely to
generate unique mappings, which considerably reduces their applicability and efficiency.

Recently emerging long reads sequencing technologies, such as PacBio’s SMRT (Single
molecule realtime, Eid et al., 2009; Levene et al., 2003) sequencing or Oxford Nanopore
Technologies’ nanopore sequencing are promising alternatives to mate-pair sequencing
(and related technologies encoding long range information by linkage of multiple short
fragments, e.g. phosmids). Nanopore sequencing, however, only became broadly available
in late stages of the flytrap genome project and therefore was not considered.

The major advantages of PacBio reads in comparison to mate-pair libraries are that
PacBio libraries can be constructed from smaller amounts of extracted DNA and at lower
costs. Further, the technology exhibits no coverage-affecting compositional bias and the
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information obtained from the read is not only long-ranged but continuous along the
entire length of the read (Quail et al., 2012). This is particularly noteworthy in the
context of the previously described relativity of repetitiveness, with longer reads having
considerable higher likelihoods of being uniquely mappable.

The main disadvantage of PacBio reads is the high error rate of 15 % and more. These
errors, mostly comprising insertions and deletions, impede usage of raw PacBio data for
assembly as well as scaffolding (Koren et al., 2012; C.-S. Chin et al., 2013; Hackl et al.,
2014). Two general strategies for the assembly of PacBio read data were developed (see
section 6.1 for details): approaches solely relying on PacBio data require high sequencing
depth for the PacBio data to overcome the inherent high error rate. With respect to the
difficulties in DNA extraction and preparation and the cost of sequencing, this rendered
an application to D. muscipula infeasable. The alternative hybrid correction-based
approach, on the contrary, utilizes high coverage Illumina short reads to construct highly
accurate consensus sequences for PacBio long reads, thus integrating the advantages
of both technologies. High coverage of PacBio data are not required. With Illumina
data already available and motivated by the potential of the PacBio data to improve D.
muscipula assembly contiguity, low coverage PacBio sequencing with subsequent hybrid
correction and assembly was envisaged to further push the quality of the flytrap draft
genome.

Including initial test cells, a total of 119 PacBio SMRT cells were sequenced at the FGCZ.
After processing, the cells yieled a total amount of 6.5 x 10? reads with an overall length
of 17 Gbp, equivalent to an estimated coverage of the 3 Gbp flytrap genome of 5.7 x.

4.7.2. PacBio hybrid correction with proovread

Initial attempts to correct D. muscipula PacBio data with an early version of the PBcR
(Koren et al., 2012) pipeline failed. Execution of the pipeline on in-house HPC nodes is
infeasible due to excessive runtime requirements. Distribution on low memory cluster
architectures was not possible due to incompatibilities with the scheduling software and
the limited capabilities of the software to process subsets of data independently and at
low computational demands.

These issues motivated the development of the PacBio hybrid correction pipeline proovread.
proovread is designed on the divide and conquer principle and is capable of handling
large-scale data by distribution of arbitrary sized subsets on any given hardware architec-
ture.

Nevertheless, hybrid correction is computationally highly demanding. In order to complete
the task for the flytrap data in reasonable time, computing time on the Linux cluster
at the LRZ was procured through a project specific proposal. Additionally, digitally
normalized reads Illumina read set were used to speed up correction.
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read set reads size [bp] rl [bp] N50 [bp]
Dm_GenPb raw 5687189 14912055601 50-23733 3560
untrimmed 4932208 13348560023 500-23548 3392

trimmed 6173046 8676296048 500-16381 1708

dm-pb raw 6447429 16962653250 50-26971 3485
untrimmed 3884492 11954357927 500-26971 3874

trimmed 4617106 9158050856 500-19366 2580

Table 4.18.: Metrics of PacBio libraries corrected with proovread v1.01 and normalized BGI Illumina reads
(Dm_GenPb) / and proovread v2.12 and normalized LGC Illumina reads (dm-pb). Shown are number of
reads, total library size, read length range and N50 for raw, corrected untrimmed and corrected trimmed
data.

Two independent corrections were performed on the D. muscipula PacBio data. The first
run was executed with v1.01 on PacBio batches 1 to 4 with digitally normalized BGI
Ilumina data. The generated set (Dm_GenPb) comprised 5.3 x 10 untrimmed reads with
a total length of 13.5 Gbp and 10.5 Gbp respectively (Table 4.18). Trimming increased
the number of reads to 14 x 10% and reduced the total length to 10.5 Gbp.

The second run was performed with proovread v2.12 on batches 1 to 5 with digitally
normalized LGC Illumina data. The obtained set dm-pb consisted of 3.9 x 105 untrimmed
reads with a total length of 12 Gbp. Trimming resulted in 4.6 x 10° reads with a total
length of 9.2 Gbp.

Compared to the raw data, the untrimmed sets comprise 90 % and 71 %, and the trimmed
sets 58 % and 54 % of the total amount of bases, respectively. Read counts for the trimmed
data sets are higher than for untrimmed set, while their N50s drop considerably. In order
to interpret the output and efficiency of the correction procedure properly, however, the
following considerations have to be taken into account: proovread applies a dynamic
minimum length cutoff of about two times the mean length of the provided Illumina data
set. Further, given an error profile consisting of 10 % insertions and 5% deletion, the net
length of a fully corrected read on average is reduced by 5%. Untrimmed reads comprise
both, corrected and uncorrected regions, which puts them somewhere in between. Taken
together, these reasons account for the difference of 10 % between raw and untrimmed
corrected data in the case of the first correction run.

For the second run with proovread v2.12, an additional mechanism has to be considered.
Due to the sequencing of circularized templates, a single DNA template can give rise
to more than on PacBio subread. Essentially, all subreads of the same template encode
identical and hence redundant information. To speed up correction and improve quality,
proovread utilizes this information and collapses redundant subreads into a single repre-
sentative consensus. Together with a minimum length the general reduction in size of
corrected reads, this accounts for the decrease of the data set size by 29 %. However, as
in the first case, these data cannot truly be considered lost, as they either derived from
errors, reads to short to be useful or redundant information.

Trimming removes parts of the reads that obtained low quality scores during correction
due to missing or insufficient per base support. Because mappings cannot extend across
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PacBio read ends, terminal regions (approx. 1bp-75bp) exhibit low coverages. As a
consequence, terminal regions are trimmed in the majority of reads. In addition, low
quality regions can occur mid-read, splitting the read into multiple, independent parts.
This increases the overall number of reads and has great impact on the N50, as cutting a
read in the middle immediately halves its N50, even if only a small fraction of data is
actually lost.

A more robust estimation of the through-put efficiency of the correction can be obtained
from the direct comparison of untrimmed and trimmed reads. For the first run this ratio
is 65 %, for the second run 77 %. The difference can be attributed to the optimizations
implemented in proovread between the two releases as well as improved quality of the
utilized reads data. Nevertheless, both values are at the lower end of output rates observed
for proovread on other data sets. The efficiency of the correction directly depends on
the quality of the sequencing of the PacBio data. In particular the first batches of D.
muscipula data are inferior due to a less optimized sequencing chemistry and DNA of
lower quality. In addition, the high level of heterozygosity makes the construction of
robust consensus sequences more difficult and affects overall correction efficiency.

4.7.3. Transcriptome coverage of the PacBio data

To estimate completeness of the PacBio read set, transcriptome coverage was assessed.
For the sake of comparability, the same methodology as for Illumina based assemblies
was used. Figure 4.23 shows a stacked histogram comparing the results obtained for the
BGI assembly Dm-gen-so-1, the trimmed PacBio reads and PacBio-based assemblies
described later in this chapter. In total, slightly less than 35 x 103 transcripts could
be mapped to the PacBio reads set. Of these, approximately 23 x 103 were aligned
full-length (red), 3 x 103 aligned full-length but split over different reads and about
8.5 x 103 transcripts only aligned partially.

Compared to Dm-gen-so-1, the amount of alignments mapped in full-length is consider-
ably larger, indicating that the high level of fragmentation of the assembly is a major issue
with respect to the identification of complete gene models. However, the total amount
of mappable transcripts is with 3 x 103 additional transcripts only slightly larger. This
result can be interpreted in two ways: On the one hand, PacBio reads are, in contrast to
contigs, not affected by any assembly graph related trimming. Given sufficient coverage,
the PacBio read set should comprises the complete transcriptome. Therefore, the missing
alignments could imply incompleteness of the PacBio read set due to insufficient coverage.
On the other hand, if one were to assume completeness, the result would indicate an
upper boundary for the resolution of the employed method. Transcripts without mapping
would either not actually derive from the flytrap genome or are not mappable with the
utilized method. The first case would point towards contaminations, the latter holds true
for transcripts, for example composed entirely of very short (<100bp) exons, which can
easily missed by .
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Figure 4.23.: Transcriptome content of corrected PacBio reads and PacBio based assemblies Dm-gen-cl-1,
Dm-gen-cl-2, Dm-gen-c1-3, Dm-gen-do-7 and Dm-gen-tr-3 in comparison to Dm-gen-so-1. Bars of the stacked
histogram represent the amount of full-length (red), full-length but split across reference sequences (green)
and partially (blue) mapped longest isoforms with maximum 42,653 (black line) derived from transcriptome
assembly DM_tra_qt1.03.

For the flytrap PacBio data, incompleteness due to insufficient coverage cannot be
excluded. However, given a coverage of 5x, at least from a statistical point of view,
the effect should be minor. Consequently, it can be concluded, that in fact, the applied
method for the estimation of transcriptome coverage is limited, and that the results
obtained for the PacBio read set indicate an upper boundary of resolution for the method.

4.7.4. PacBio-only and PacBio-Illumina hybrid assemblies

Assemblies Dm-gen-cl-1 and Dm-gen-c1-3 were generated with Celera v7 and v8, respec-
tively, from corrected PacBio reads of the first proovread run. The resulting assemblies
comprised 248 x 103 and 543 x 10 contigs with a total lengths of 1 Gbp and 1.3 Gbp.
With N50s of 4.9kbp and 2.8 kbp, both assemblies are fragmented. With sizes above
1 Gbp, the assemblies are larger than the majority of assemblies obtained from Illu-
mina data, however, compared the an estimated genome size of 2.8 Gbp, the assemblies
appear incomplete. This is further corroborated by analysis of transcriptome cover-
age (fig. 4.23). With approximately 20 x 10% and 24 x 10 of total mapped transcripts
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(12 x 10% and 14 x 103 full-length) both assemblies are inferior to the BGI assembly and
lack a substantial portion of gene coding regions present in the PacBio read data.
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Figure 4.24.: GC-content and length distribution of assembly Dm-gen-c1-3.1 as a function of representative
adjusted k-mer coverage. See fig. 4.4 for detailed plot description.

Analysis of the GC-coverage and contig length

landscape (fig. 4.24) revealed that a considerable Hetrics Pm-gen-cl=1.1 Dm-gen-cl=3.1
. . . . Contigs >O0bp 248,345 542,858
fraction of contigs is comprised of collapsed re- i
ts. At the same time, the obtained cover Gontigs > 1kbp 248,345 542,857
peats. ’ Length >0 [bp] 1083,811,606  1325,334,332

ages are more scattered across a range of cover- Length >1k[bp]  1083,811,606  1325,333,333

ages rather than concentrated at either the hap- Longest [bp] 30,443 24,132
loid or the diploid genome coverage, as observed N50 [bp] 4857 2762
for Illumina-based ALLPATHS assemblies. This GC [%4] 43.4 43.6
shows that the assembly comprises both, over- N %] 0.0 0.0

and underrepresented sequences and that the as-

sembly is of overall low quality. Table 4.19.: Metrics of assembly Dm-gen-cl-1 and

Dm-gen-cl-3. See table 4.1 for detailed description of met-
Attempts to assemble the corrected low coverage

PacBio read sets with MIRA did not succeed. The

best assembly obtained comprised less the 5 x 10% contigs with a total length of 10 Mbp

(data not shown). Further exploration of MIRA assemblies hence was omitted.
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4. Assembling the genome of D. muscipula

While Celera and MIRA are suited (at least in theory) to work with corrected PacBio data,
assemblers developed for raw PacBio data was also considered. The HGAP (Hierachical
Genome Assembly Process, C.-S. Chin et al., 2013) pipeline uses a hierarchical approach
to pre-correct PacBio reads by PacBio-PacBio consensus and ultimately assembles the
resulting reads with Celera. Given that the recommendation for the HGAP pre-correction
is at least 20 x PacBio coverage and that the procedure itself is likely to be computationally
infeasible for the flytrap genome, no test runs with this software were performed.

A similar reasoning holds true for the assembler. While this assembler was shown to be
capable of assembling large diploid genomes from raw PacBio data, the required PacBio
coverage is 20 x or more. Additionally, the software is still in developmental stage, and
any attempts to properly install and execute it, failed.

In addition to PacBio-only assemblies, also the performance

tetrics Dm-gen-cl1-2.1 of various hybrid approaches was evaluated. For assembly
Cont%gs = 0bp 754,009 Dm-gen-cl-2, generated with Celera v7, in addition to the cor-
Contigs >1kbp 754,008 . . . .
Length > 0 [bp] 2027352, 664 rected PacBio reads, merged BGI overlapping libraries were
Length >1k[bp]  2027,351,665 supplied. The obtained assembly yielded 754k contigs with total
Longest [bp] 25,605 length of 2Gbp and an N50 of 3.2kbp (Table 4.20). The as-
N50 [bp] 3204 sembly is considerably larger than the assemblies obtained with
GC [%] 44.0 Celera and PacBio data only, while of similar contiguity. How-
N %] 0.0 ever, the amount of mappable transcript dropped substantially
Table 420; Metrics of asembly (Figure 4.23) implying that the assembly is highly incomplete

Dm-gen-cl-2. See table 4.1 for detailed

with respect to non-repetitive and coding regions. A comparable

description of metrics. run with Celera v8 was terminated after having taken more than

four weeks to get to the buildUnitigs step.

Next to OLC approaches, also the applicability of PacBio data for De Brujin graph based
assemblies was analyzed. For ALLPATHS assembly Dm-gen-ap-8, additional artificial
overlapping libraries generated with pb2il (section 7.1) from corrected PacBio reads
were utilized. The obtained assembly, however, was of smaller size and contiguity than
comparable Illumina-only assemblies.

4.7.5. PacBio hybrid assemblies with DBG20OLC and corrected PacBio reads

The recently published DBG20OLC assembler employs a novel approach that tries to
integrate advantages of [llumina and PacBio-based assembly. DBG20OLC uses PacBio
reads and in addition precomputed unitigs or contigs obtained from an Illumina De
Brujin graph-based assembly as input. The assembly sequences are used as anchors and
to construct a compressed overlap graph for the PacBio reads. This makes DBG2OLC
computationally highly efficient in terms of speed as well as resource requirements.
However, Similar to FALCON, the software is in a developmental stage. I was able to
fix problems occurring during the initial assembly step by modifying the source code,
yet the second, consensus refinement stage continued to fail. Nevertheless, a series of
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Figure 4.25.: GC-content and length distribution of assembly Dm-gen-c1-2.1 as a function of representative

adjusted k-mer coverage. See fig. 4.4 for detailed plot description.

preliminary assemblies for D. muscipula was computed.

In contrast to the published approach, the assemblies were con-
structed from proovread corrected PacBio reads and with cus-
tomized parameter settings. Next to faster computation this has
the advantage that the unrefined assemblies have lower per base
error rates allowing for qualitative assessment despite the failing
of the consensus step.

Overall, the assemblies generated (section 8.6) with DBG20OLC
were of mediocre contiguity with N50s ranging from 11kbp
to 16 kbp. Total sizes, however, varied substantially with pa-
rameter settings and the utilized contig set. Contig sets ob-
tained from non-normalized Illumina reads in general performed
worse. The largest assembly (Dm-gen-so-7) was obtained with
Dm-gen-ap-10.1 contigs (table 4.21). It comprises 84 x 103 con-
tigs with a total length of 940 Mbp and an N50 of 13 kbp.

Metrics Dm-gen-do-7.1
Contigs >O0bp 84,310
Contigs > 1kbp 84,230
Length >0 [bp] 940,091,810
Length > 1k[bp] 940,037,689
Longest [bp] 77,231
N50 [bp] 13,049
GC [%4] 43.8
N [%] 0.0

Table 4.21.: Metrics of assembly
Dm-gen-do-7. See table 4.1 for detailed
description of metrics.

The structure of the assembly was further assessed by GC-coverage and contig length
distribution (fig. 4.26). Due to the utilization of untrimmed PacBio reads, which include
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Figure 4.26.: GC-content and length distribution of assembly Dm-gen-do-7.1 as a function of representative
adjusted k-mer coverage. See fig. 4.4 for detailed plot description.

erroneous regions, a large fraction (400 Mbp) of the contigs is dominated by k-mers
absent from the Illumina derived k-mer hash. The majority of non-zero coverage contigs
is shifted from the expected coverages for haploid and diploid sequences towards higher
coverage, indicating the predominant presence of k-mers derived from collapsed repeats
in the constructed contigs.

Using DBG20OLC wit ALLPATHS-derived contigs does not produce assemblies of higher
contiguity and quality than scaffolded ALLPATHS assemblies. By design, DBG20OLC does
not work with scaffolds, because the N-gaps do not provide any additional information
that could be used to further compress or simplify the overlap graph. With stand-alone
scaffolding being inferior to ALLPATHS and the overall lower contiguity of the DBG20LC
assemblies, in combination with potential issues related to the presence of collapsed
repeats and a high level of erroneous bases, an actual improvement of the assembly
quality through the use of DBG20OLC could not be established.
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4.7.6. Custom approaches towards a PacBio assembly

The overall unsatisfying results obtained from PacBio based assemblies motivated the
exploration of customized approaches towards PacBio based assemblies. With the major
goal of deciphering the gene content and coding potential of the flytrap, completeness of
individual genes as well as the entire gene set captured in the assemblies is a primary
concern.

With the transcript guided assembly pipeline, gene containing regions are specifically
targeted for assembly. Exon containing long reads (or contigs) are identified by alignment
to available transcriptomic data. For each transcript, reads are collected and assembled
individually in order to obtain full length gene models.

Assembly Dm-gen-tr-3 was generated from proovread cor-

rected PacBio reads and the reference transcriptome assembly Hetrics Dm-gen-tr-3.1
DM_tra_qt1.03. The assembly resulted in a total number of 42k cont%gs =0bp 42,120

. . . Contigs >1kbp 38,900
contigs with total assembly 51ze. of 189 Mbp and an N50 of 6 kbp Length > 0 [bp] 188,765 959
(table 4.22). The very small size of the assembly makes sense, Length > 1k[bp] 186,836,727
given that the assembly mostly comprises exons and introns Longest [bp] 41,097
as well as some up- and downstream regions of targeted genes. N50 [bp] 5925
Analysis of the transcriptome content (fig. 4.23 shows very high GC [%4] 39.6
amounts of mappable transcripts and, in particular, full-length N [%] 0.0

hits, only surpassed by the entire corrected PacBio reads set and

the ALLPATHS assembly Dm-gen-ap-10. Table 4.22.: Metrics of assembly

Dm-gen-tr-3. See table 4.1 for detailed

In terms of k-mer coverage, the generated contigs exhibit a  description of metrics.

pattern very similar to ALLPATHS assemblies, with the majority

of contigs belonging to either one of two distinct populations of heterozygous and
homozygous sequences (fig. 4.27). In addition, a minor population of contigs was found
at about one third of the expected diploid genome coverage, representing sequences
with a relative overuse factor of three. This effect can probably be attributed to either
redundant seeds (isoforms) or nested gene models, which due to independent assembly of
the recruited reads generate multiple contigs for overlapping regions.

The obtained results show that transcript guided assembly is a viable approach towards a
targeted assembly of D. muscipula gene models. However, the fact that the amount of full-
length transcripts as well as the overall amount of mapped transcripts in the assembled
reads slightly decreases compared to the corrected PacBio reads, also demonstrates
the limitations of the current data set and implementation. The micro assembly of
recruited PacBio reads only in very few cases led to the completion of gene models
only partially present in the unassembled reads, while at the same time some regions
containing transcripts were lost. This could either be caused by the parts of the targeted
genes not being covered by PacBio data (or by reads not overlapping enough to actually
be assembled together) or by exons being to far apart from each other to be connected
by any PacBio read present in the data set. Nevertheless, the transcript guided assembly
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Figure 4.27.: GC-content and length distribution of assembly Dm-gen-tr-3.1 as a function of representative
adjusted k-mer coverage. See fig. 4.4 for detailed plot description.

serves as valuable case study on how available transcriptome data can be used to further
the D. muscipula genome assembly.
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4.8. The D. muscipula draft genome assembly

4.8. The D. muscipula draft genome assembly

To produce a final, high quality draft assembly for the Venus
flytrap, I combined the findings described in previous chapters
regarding assembly optimization into a single strategy. The
assembly Dm-gen-ap-13 was generated using ALLPATHS with
a minimum contig size of 200 bp and haploidification enabled.
As overlapping paired-end libraries I used digitally normalized
LGC reads, obtained through an improved normalization run

with bbnorm.sh. For scaffolding, the entire set of BGI mate-
pair libraries plus the BGI paired-end libraries with insert sizes

of 500bp and 800bp as well as artificial mate-pair generated
from corrected PacBio reads were supplied. ALLPATHS k-mer analysis resulted in an
estimated genome size of 1.1 Gbp for the normalized read set and a coverage of single

copy regions of 78 x (table 4.23).

Assembly Dm-gen-ap-13 finished in 1,400 h and
with a peak memory consumption of 453 GB. The
resulting contig assembly comprises 247.8 x 103
contigs >1kbp with a total length of 1.08 Gbp, an
Nb50 of 5.0kbp and a longest sequence of 77 kbp
(table 4.24). The scaffold set has 104 x 103 se-
quences >1kbp, with a total length of 1.45 Gbp,
an N50 of 34.7kbp and a longest scaffold of
>1Mbp. With these statistics, Dm-gen-ap-13
is the most contiguous of all available flytrap
assemblies, and at the same time the largest as-
sembly in comparison to all previously obtained
ALLPATHS assemblies. This suggests that the
assembly is of high quality and completeness.

Two additional post-processing steps were per-
formed to further improve the assembly. First,
Redundans (Pryszcz and Gabaldén, 2016) was
used to identify and merge redundant scaffolds
that resulted from the assembly of different het-
erozygous regions into separate contigs. The pro-

Metrics
Contigs >0bp
Contigs > 1kbp
Length >0 [bp]
Length > 1k[bp]
Longest [bp]
N50 [bp]

GC [%]

N [/]

Metrics
Contigs >0bp
Contigs >1kbp
Length >0 [bp]
Length > 1k[bp]
Longest [bp]
N50 [bpl]

GC [%]

N [/4]

k-mer analysis
Genome size [bp]
L CN<1
Repetitive [%]
Coverage [x]
SNP rate

Dm-gen-ap-13.1
533,480
246,538

1077,631,653
961,303,673
77,013

5014

42.8

0.0
Dm-gen-ap-13.3
87,488
87,285
1420,612,294
1420,417,640
1004,118
35,927

42.7

26.5

Dm-gen-ap-13
1,105,865,866
570,805,138
48.4

78

1/163

Table 4.23.: ALLPATHS k-mer analysis
of Dm-gen-ap-13

Dm-gen-ap-13.2
104,847
104,089

1454,767,257
1454,046,846
1004,118
34,655

42.8

25.9
Dm-gen-ap-13.4
87,002
86,832
1445,729,224
1445,566,239
1010,313
36,397

42.7

23.4

Table 4.24.: Metrics of assembly Dm-gen-ap-13. See ta-
ble 4.1 for detailed description of metrics.

cedure reduced the number of scaffolds to 87.3 x 10% and the overall assembly size
to 1.42 Gbp, with an N50 of 35.9kbp (table 4.24). Subsequently, I used PBJelly to
further increase the contiguity of the assembly by scaffolding and extending the avail-
able sequences and filling N containing gaps. PBJelly returned an assembly comprising
86.6 x 10 sequences >1kbp with a total assembly size of 1.45 Gbp and an N50 of 36.4 kbp

(table 4.24).
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4. Assembling the genome of D. muscipula

Figure 4.28 shows the topology of the refined assembly Dm-gen-ap-13.4 in the context of
GC-content versus k-mer-coverage, and its cumulative contig length distribution. Color
and size coded circles on the left panel represent scaffolds with relative GC-content
on the x-axis and representative adjusted k-mer-coverage on the y-axis. For better
readability, only a 1% subsample of the total number of scaffolds is actually displayed in
the scatterplot. Overall topology of the plot is not affected by this procedure. The panel
on the left holds a stacked histogram of the unsampled cumulative scaffold lengths at the
respective k-mer-coverage bin.

The majority of scaffolds in terms of number as well as total length is found in a cluster
between 80z and 100 z and in a relative GC range of 35 % to 55 %. The cluster comprises
sequences with a total length of about 1.3 Gbp. A second, smaller cluster at half the
coverage and with similar GC-content consists of sequences with a total length of less than
80 Mbp. Taken together, both clusters represent more than 95 % of the total assembly
size (1.45 Gbp), indicating that only a small fraction of sequences dominated by collapsed
repeats is present in the assembly. Sequences in the cluster around 50 x coverage are
represent either heterozygous contigs that could not be merged, or sequences actually
present only in of the two chromosomal copies. With less than 5% of the of the total
assembly size, the fraction of these potentially heterozygous contigs is lower than for
any of the previously generated assemblies further corroborating the comparatively high
quality of this assembly.
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Figure 4.28.: GC-content and length distribution of assembly Dm-gen-ap-13.4 as a function of representative

adjusted k-mer coverage. See fig. 4.4 for detailed plot description.

Further evidence for the high level of completeness for the
assembly is given by the results of the BUSCO analysis
(table 4.25) and transcriptome coverage. Scaffold as well
as refined assemblies contain 79 % of full-length and 2.7 %
to 2.9 % of partially annotated single-copy core orthologs.
The duplication level for the initial scaffold assembly is
5.3 % and decreases slightly to 4.9 % after the application
of Redundans to the data. These values are in congruence
with the observations of the GC-coverage plot, which also
suggests that a portion of ~5% of the scaffolds seem to be
redundant due to separate assembly of heterozygous regions.
In terms of transcriptome coverage (data shown in fig. 5.1,

in [%]: compl. dupl. part.
Dm-gen-ap-13.2 79 5.3 2.7
Dm-gen-ap-13.3 79 4.9 2.7
Dm-gen-ap-13.4 79 4.9 2.9
Table 4.25.: BUSCO analysis of assem-

bly Dm-gen-ap-13 based on 956 near-
universal single-copy orthologs for scaf-
folds (Dm-gen-ap-13.2), after removal
of heterozygous contigs with Redundans
(Dm-gen-ap-13.3) and after additional
scaffolding and gapclosing with corrected
PacBio reads using PBJelly.

chapter 5), Dm-gen-ap-13 is superior to all other assemblies and even outmatches the
transcriptome coverages observed for the corrected PacBio reads set. In summary, it
can be concluded that the assembly at hand is healthy with respect to coverage and
heterozygous contigs and that it shows a high level of completeness and contiguity with

respect to potential coding regions.
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5. Conclusion

The de novo assembly of large plant genomes in general, and of D. muscipula, in particular,
is a highly challenging endeavor. The size of the diploid flytrap genome was estimated to
a range of 2.6 Gbp to 3.0 Gbp and the relative amount of repetitive sequences to at least
70 %. The initial draft assembly was sequenced and assembled by the BGI in 2011. With
a size of 3.7 Gbp and more than 6.5 x 105 scaffolds (2.3 Gbp and 355 x 10% >1kbp) the
assembly appears to be rather complete, however, with the huge number of sequences
and an N50 of for the entire set, highly fragmented as well. Assessment of the assembly
with respect to gene content showed that only about one third of the expected genes is
represented in the assembly in full-length, while the rest is either only present partially
or missing entirely. Moreover, coverage analyses revealed that due to an overassembly
of repetitive regions the sequence set is artificially inflated, enhancing the illusion of
completeness.

The assembly was generated from a series of Illumina HiSeq paired-end and mate-pair
libraries constructed and sequenced at the BGI. In-depth analysis of the read data
revealed technical biases with respect to GC-content and error rate, as well as high levels
of heterozygosity and heterogeneity, caused by the pooling of samples form different,
non-monoclonal plants. In combination with the high level of repetitiveness of the genome,
these issues pose major challenges for the construction of an high quality draft assembly
and are the reasons for the low quality of the BGI assembly.

For the computation of the assembly, the BGI utilized the assembly software SOAP.
While SOAP is capable of constructing assemblies of gigabase-sized genomes within
reasonable time and computational demands, other assemblers, such as ALLPATHS, have
been shown to produce superior assemblies from challenging eukaryotic data sets, however
at the expense of substantially higher hardware requirements. Through application of
digital normalization, an computational technique to reduce the amount of repetitive
data in sequencing sets while maintaining the overall information content, I was able to
overcome these computational challenges. The resulting ALLPATHS assemblies were of
higher completeness with respect to gene content and showed a much better resolution of
heterozygous and repeat regions. However, the overall quality of the assembly remained
poor and did not allow for proper downstream analyses.

While it was possible to address the issue of repeats and heterogeneity to some extend
computationally, further improvement of the assembly, at this point, could only be
achieved by the generation new data of improved quality. The issue of heterogeneity was
solved by the sequencing of four new Illumina overlapping libraries from non-polymorphic
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high-quality DNA samples at LGC. Moreover, to support scaffolding and resolution of
repeats, a 5z set of PacBio reads was generated. Correction of the large PacBio data
set was performed with , a hybrid correction pipeline, which I developed specifically for
this purpose. While different assembly approaches directly based on the low-coverage
PacBio read data did not produce assemblies of high quality, artificial mate-pair libraries
generated from corrected PacBio libraries were successfully used to improve the scaffolding
process of Illumina-based assemblies.

Ultimately, I was able to combine all of the aforementioned findings into a unified assembly
strategy. Using LGC libraries with low heterogeneity, normalized with an optimized pro-
cedure, BGI and PacBio-derived scaffolding libraries and customized assembler settings
accounting for heterozygosity and graph complexity, I generated a preliminary D. mus-
cipula draft genome assembly. The assembly was further refined by removing redundant
sequences constructed due to heterozygosity, and by scaffolding of the remaining sequence
set with corrected PacBio reads. The final assembly is 1.45 Gbp in size and comprises
86 x 10 scaffolds >1kbp. Figure 5.1 shows a comparison of different milestone assembly
with respect to assembly size and contig / scaffold length distribution and transcriptome
coverage. The latter serves as simple measurement representing the level of completeness
of the respective assembly. Through a series of optimizations to the assembly strategy,
addressing all the aforementioned issues, I was able to consequently push the quality of
the draft assemblies as indicated by the gradual increase of transcriptome coverage.

Sequences
contigs scaffolds transcriptome > 100000

> 10000
51000
100
[ o

Mapped

1 1 1 : 1 1 1 1 : 1 1 1 1 1 1 :
0e+00 1e+09 2e+09 3e+09 0e+00 1e+09 2e+09 3e+09 0 10,000 20,000 30,000 40,000 .fu”

Assembly length Assembly length Mapped transcripts =:ZI:

Figure 5.1.: Comparison of different milestone assemblies with respect to assembly size and contig / scaffold
length distribution and transcriptome coverage

While with a total size of 1.45 Gbp, the draft genome, at the first glance, still seems to
be incomplete, transcriptome coverage and conserved gene analysis show otherwise. The
absolute difference in size between the assembly and the estimate for the flytrap genome,
can be explained by accounting for the low level of complexity within the vast amount
repetitive elements present in the genome. From the k-mer analysis, it is possible to
compute the amount of the unique sequence information represented by all repetitive
k-mers present in D. muscipula, simply by counting the number of k-mers and ignoring
their individual abundances: it adds up to less than 40 Mbp. That means, that the flytrap
only comprises a very limited set of different repeat species, yet the copies of these repeats
are of very low diversity and at the same time extremely abundant. During assembly,
the vast majority of these repeat sequence is collapsed. This is illustrated particularly
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well by the case of a ~128 bp tandem repeat, most likely the generic repetitive unit of
the centromeres of D. muscipula, that based on k-mer coverage estimates, makes up for
about 300 Mbp of the entire genome, yet only a couple of hundred bases of the assembly.
This interpretation is also corroborated by the results obtained from mapping available
genomic read data to the assembly, for which mapping rates of >99 % were observed
(data not shown). Moreover, preliminary gene prediction and annotation, currently
performed by colleague Niklas Terhoeven, indicate that a comparatively complete set of
gene models can be compiled from the draft assembly. In summary, it can be concluded
that the assembly generated for the D. muscipula genome constitutes a draft assembly
of high quality. It represents the genetic mark-up of Venus flytrap to a high degree
of completeness and, therefore, serves as a proper reference in our quest of deeping
the understanding of carnivorous plant in general and this most wonderful plant, in
particular.
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6. proovread — large-scale hybrid PacBio
correction through iterative consensus

6.1. Introduction

The development of the Illumina high-throughput next generation sequencing platforms
gave rise to a new era in sequencing-based research fields, such as genomics, transcrip-
tomics and metagenomics. The massive amounts of reads that can be generated rapidly,
at low costs and with low error rates revolutionized molecular biology (Quail et al., 2012).
However, Illumina reads have a particular drawback: with typical read lengths of 100 bp
to 300 bp, depending on platform and chemistry (Illumina, 2016), the reads are very short.
Although, paired-end sequencing allows to co-encode limited long-range information, the
assembly of complex genomes comprising repeats, conserved motives and domains poses
a challenge, unresolvable with short read data alone (Gnerre et al., 2011).

More recently, this particular problem was addressed by emerging third generation
real-time single molecule sequencing technologies. SMRT (Single molecule realtime, Eid
et al., 2009; Levene et al., 2003) sequencing developed by PacBio (Pacific Biosciences),
monitors the incorporation of fluorecently labelled nucleotides into a newly synthesized
DNA strand by an immobilized polymerase, thus indirectly determining the sequence
of the template. The MinlON (Kasianowicz et al., 1996) system developed by Oxford
Nanopore Technologies infers nucleotide directly from analysis of electric properties of
individual bases, which are measured during the translocation of a DNA molecule through
a protein nanopore. Both technologies generate long reads of several kilobases. However,
in both cases, the gain in read length comes at the price of a largely reduced accuracy.
The high error rates of 15% to 20 % for PacBio (Ono et al., 2013; Ross et al., 2013)
and 5% to 40 % for Nanopore sequencing (Goodwin et al., 2015), greatly hamper the
usability of the long read data in assembly and downstream analysis. Further, production
ready MinlON systems for large scale projects, have only become available very recently.

For PacBio data, different approaches for the assembly of the erroneous reads have been
developed. The HGAP (Hierachical Genome Assembly Process, C.-S. Chin et al., 2013)
pipeline, released by PacBio, uses alignments of shorter to longer PacBio reads of the
same sample to generate long consensus sequences of high accuracy. These pre-corrected
reads are further constructed into an assembly with OLC (Overlap-Layout-Consensus)
assemblers suited for long accurate reads, such as Celera (E. Myers et al., 2000; Berlin
et al., 2015) and MIRA (Chevreux et al., 1999).
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For HGAP and similar PacBio-only assembly approaches currently in development, such
as DAZZLER (G. Myers, 2014) and FALCON (J. Chin, 2016), high PacBio coverage
is required in order to allow for efficient pre-correction of the longest reads subset. If
generation of high PacBio coverage is problematic, lllumina-PacBio hybrid procedures
offer a PacBio-coverage independent alternative. Here, only a low coverage set of PacBio
reads is sequenced, and in addition, a high coverage set of Illumina reads. Using
computational methods, the Illumina data can be used to identify and correct errors
in the complementary PacBio read set. The tools PBcR (Koren et al., 2012) and LSC
(Au et al., 2012) use Illumina-PacBio alignments as basis for consensus computation.
The more recently developed LORDEC (Salmela and Rivals, 2014) first constructs a De
Brujin graph (Bruijn, 1946) from provided Illumina data, then matches PacBio reads
based on k-mers to error-free paths in the graph.

The development of the new hybrid correction software proovread (Hackl et al., 2014) was
motivated by the challenges encountered during the Venus flytrap genome assembly. For
the highly repetitive genome, in addition to Illumina data, PacBio reads with a coverage
of 5x were sequenced to support the assembly procedure. The large size of the genome
rendered sequencing of PacBio data with higher coverages, as required for a PacBio-
only correction and assembly strategy, inpracticle. Hybrid correction, however, was a
promising alternative given that Illumina data was already available. Yet, PacBioToCA
(an early version of PBcR), the only hybrid correction software available at the time, was
incapable of handling the large amount of D. muscipula read data on available hardware
infrastructures. proovread, thus, was designed as a mapping and consensus bases hybrid
correction pipeline with particular focus on being applicable to large-scale projects, both
in terms of hardware as well as run-time demands.
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6.2. proovread 1.0 — legacy implemention and evaluation

6.2.1. Hybrid scoring model and suitable mappers

The first step toward a consensus based Illumina-hybrid correction is the successful and
efficient generation of alignments of Illumina and PacBio reads referred to as hybrid
alignments. The high error rate and distinctive nature of the SMRT sequencing, however,
renders this task challenging (Chaisson and Tesler, 2012). Common alignment scoring
models are designed to either account for evolutionary differences, mostly comprising
nucleotide exchanges and a moderate amount of gaps, or in the case of most mappers for
the very low error rates of Illumina data and naturally occurring nucleotide variations.
The alignment of Illumina reads onto erroneous PacBio reads with default settings, as
tested on sample data, results in no or at best spurious alignments (data not shown).

However, based on the specific error profile of PacBio reads with roughly 10 % insertions,
5% deletions and 1-2 % substitutions (Ono et al., 2013; Ross et al., 2013), it is possible
to formulate a new, generalized model with the following constraints: Gaps caused by
indels (Insertion / Deletions) appear frequent in both, query (Illumina read) and reference
(PacBio read) and hence need to have low costs as compared to mismatches attributed
to substitutions. Insertions (gaps in query) occur twice as often as deletions (gaps in
reference), which should be reflected by halved costs. Substitutions are rare, which should
result in penalties of about 10 times the gap costs. Contrasting to biological scenarios,
for which multi-base deletions and insertions are likely and which is accounted for by
affine gap cost models, the distribution of errors in PacBio reads is random (Quail et al.,
2012). Hence, costs for gap extensions need to be at least as high as gap opening costs.

The implementation of the hybrid model in practice strongly

depends on the utilized mapping software. The alignment of parameter
high-coverage Illumina short read data to large reference genomes m"?tCh
. . . . . . mismatch -11
is computationally challenging and gave rise to a series of highly

. . . N . gap open reference -2
optimized mapping algorithms (Langmead et al., 2009; H. Li gap extension reference 1
and Durbin, 2009; David et al., 2011; H. Li, 2013; Bushnell, gap open query —4
2014). For Illumina-PacBio hybrid alignment, the scenario is gap extension query -3

further complicated: PacBio read sets, even if sequenced at
low coverage, will have a total size several times larger than
the actual sequenced genome. Mapping to a 10x read set is
similar to mapping to a ten times larger genome. On top, the
main factor determining alignment speed (and a key target of
algorithm optimizations), is the amount of tolerated differences,

which in this case is equal to the amount of tolerated errors.

While lllumina mappers are designed to operate at accuracies

Table 6.1.: Hybrid alignment scoring
scheme used by proovread with SHRiMP-
2.0 and BWA-MEM. Penalty costs are
denoted as negative values, as provided
to the SHRiMP-2.0 command line inter-
face. For BWA-MEM costs are provided
as positive values.

close to 100 % (Langmead et al., 2009), hybrid correction requires alignments of reads
with as little as 80 % accurate bases. Hence, a combination of high speed and high
sensitivity is essential for mappers suited for usage with hybrid correction. In addition,
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the constraints regarding the scoring scheme are complex. Thus, only mapping software
providing comprehensive customization options for alignment parameters can be used.

Originally, two mappers matching the general requirements were considered for use
with proovread: bowtie2 (Langmead and Salzberg, 2012) and SHRiMP-2.0. While both
mappers work with Illumina and PacBio data, only SHRiMP-2.0 (SHort Read Mapping
Package 2.0, Rumble et al., 2009; David et al., 2011) allows for the full implemention of
the hybrid scoring scheme (table 6.1) and thus was chosen as default software.

Later, proovread was adapted for use of the more recently published BWA-MEM (see
section 6.3.2 bwa-proovread — a modified BWA-MEM implementation). BWA-MEM
(H. Li, 2013) offers comparable sensitivity but considerably outperforms SHRiMP-2.0 in
terms of speed. BBMap (Bushnell, 2014) was tested as well, yet no improvement over
BWA-MEM was observed and full implementation was omitted.

6.2.2. Localized score comparison and trusted alignments

Given the highly sensitive mapping parameters, which are necessary to handle PacBio
error rates, additional evaluation of the generated alignments is required in order to
distinguish valid alignments from spurious ones. Due to sequence similarity, particularly
repetitive regions and conserved domains recruit Illumina reads deriving from genomic
locations other than the PacBio reads true origin, as observed in perliminary experiments.
If mapped to an error free reference, these alignments could easily be detected and filtered
based on their non-optimal scores caused by minor differences in the sequences. However,
when aligned to PacBio reads with high error rates, the minor differences of similar
genomic regions often are lower than local fluctuations of the PacBio error rate.

For example, consider two locations L, and Ly of different, yet highly similar origin
(>97 % identity), and with two PacBio reads p, and p}, obtained from those locations.
Let p, have an error rate of 10% and py, an error rate of 20 %. If short reads from both
locations are aligned to both PacBio reads, even alignments of Illumina reads derived
from Ly, are likely to have higher scoring alignments with the p, than with py,, as the total
sum of errors plus biological differences to p, is smaller than the amount of differences
caused by errors in pp. The local error rate of the PacBio read reshapes local score
optima and, thus, obscures biological differences if alignments are assessed in a global
context. Nevertheless, if both locations are evaluated independently, the highest scoring
alignments for p, and py, consistently are obtained from L, and L}, derived Illumina reads,
respectively. In the local context, the biological differences are sufficient to allow the
distinction of valid and spurious alignments.

To facilitate the comparison and evaluation of alignments in local context, PacBio reads
are represented by proovread as a series of consecutive bins (section 6.4.3). For the
common case of 100 bp reads, the default bin size is 20 bp. Alignments are allocated to
a bin by the coordinates of their center. Alignments within the same bin are aligned
in the same local context and hence, their scores can be compared directly. Only the
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best scoring alignments within a bin, up to a coverage cutoff chosen with respect to the
expected sample coverage, are considered for the consensus computation.

6.2.3. Optimized speed and sensitivity through an iterative mapping procedure

Initially, proovread was implemented as an iterative correction procedure primarily for
the sake of optimizing run-time while maintaining high overall sensitivity. The underlying
math is closely connected to the utilized mapper SHRiIMP-2.0. The distribution of errors
along PacBio reads varies a lot between windows as small as the 100 bp [llumina reads
used in alignments. Maximum sensitivity of alignments, however, is only required for
a minor fraction of the full read set, yet sensitivity exponentially increases run-time.
The overall alignment process was sped up substantially by implementing an iterative
approach with increasing sensitivity with each cycle and in combination with masking
of already processed regions. The following reasoning applies: Initially, Illumina reads
are aligned at medium sensitivity, sufficient for the majority of PacBio read regions, yet
several times faster than with sensitivity settings required for erroneous regions. After
the iteration, regions with alignments are masked by replacing respective nucleotides in
the sequence with ‘N’s. Essentially, this reduces the size of the reference prior to the next
iteration significantly (depending on the actual sensitivity settings and the particular
sample). Subsequently, a more sensitive, slower iteration is run on the pre-masked
reference to address regions of higher error rates. Since the run-time for SHRiMP-2.0
scales rather linearly with the size of the reference, but exponentially with sensitivity,
running the entire set on medium sensitivity plus a small fraction at high sensitivity in
an second iteration, is faster than running everything within a single high sensitivity
cycle. The process can be further optimized by using multiple iterations with a step wise
increase in sensitivity. An optimal setup based on three iterations has been implemented
as default.

Next to the speed-up, the iterative procedure has an additional benefit. Actual alignment
computation for most mappers including the aforementioned ones, is triggered by seed
matches - usually one to several small regions of absolute identity between query and
reference. With the random distribution and local accumulation of errors, seed generation
can be impeded at some locations along the PacBio read. By leaving terminal bases
of pre-corrected regions unmasked, these regions facilitate seeding, thus increasing the
chance of generating alignments across regions of high error rate.

With the introduction of BWA-MEM as default mapper and the recommended utilization
of longer short reads (MiSeq or merged overlapping HiSeq reads), the main purpose of
the iterative procedure shifted from a means to increase speed to a means for optimizing
sensitivity and contiguity. The gain in speed obtained through masking as well as the
loss due to increased sensitivity are much smaller for BWA-MEM than SHRiMP-2.0.
Running BWA-MEM at high sensitivity from the start is faster than a step-wise increase
of sensitivity. However, in particular with longer Illumina reads, (which are handled much
more efficiently by BWA-MEM than SHRiMP-2.0) the closing of gaps by seed-walking
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Figure 6.1.: Tterative correction procedure of proovread by short read consensus (Hackl et al., 2014). Comple-
menting subsets of Illumina reads (green bars) with varying coverage (green pies) are mapped onto erroneous
PacBio reads (blue bars) in four iterations (il-i3, if). During initial iterations, reads are mapped with high
sensitivity, and sufficiently covered regions of high quality (light green areas) are masked (red bars) prior to
the next iteration. Mappings for the final iteration are generated on entirely unmasked sequences with strict
settings, to obtain a high-accuracy consensus and annotation of chimera break points (yellow X).

from pre-corrected regions is a much more rewarding procedure. Even with BWA-MEM,
running proovread in iterative mode is highly recommended as it produces superior
results.

As an additional run-time reduction mechanism, proovread applies complementary
subsampling of the provided Illumina reads for each iteration. In general, coverages of
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40 x to 50 x are necessary to ensure that each region of the sample, despite biases and
stochastic fluctuations is sufficiently covered. However, even at coverages of 15 x, the
majority of the underlying genome is covered. proovread by default uses 15z subsamples
for initial iterations. The samples are generated with SeqChunker (section 7.3) such that
after three iterations, every read of a 45 x set has been mapped at least once. That way,
each mapping step can be run three times faster, while potential coverage gaps present in
any one of the individual subsets are complemented by previous / subsequent iterations.

In addition to the initial iterations, which are run with sensitive settings, a final iteration
on the mostly pre-corrected, unmasked reads and with at least 30 z Illumina coverage is
performed with strict and fast settings. The reads obtained from this final consensus
call are for the most parts of high quality, however, still comprise regions for which no
correction occured, e.g. due to insufficient short read support or very high error rates.
Using a window-based quality filter implemented in SeqFilter, these low-quality regions
are detected and trimmed from the reads. Both, trimmed and untrimmed reads are
reported by proovread as output, and can be utilized for further analyses as the user
sees fit.

6.2.4. High flexibility through scalability and parallelization

Due to the binning of alignments and filtering based on local score context, the correction
of individual PacBio reads with proovread is independent. Therefore, PacBio data sets
can be split into chunks of arbitrary size without affecting correction quality. At the
same time the amount of required memory and the total run-time for a particular chunk
of long read data is directly determined by its size. By adjusting chunk size and threads,
run time and hardware requirements of individual proovread jobs can be matched to a
large spectrum of different machines, including desktop PCs, cheap low memory nodes as
well as powerful HPC nodes. This allows for an effective distribution of proovread jobs
on different cluster architectures and a high level of parallelization.

6.2.5. Benchmark of proovread and comparison to other tools

An extensive assessment of correction quality indicating criteria of proovread v1.01 as
well as the previously released hybrid correction tools PacBioToCA (included in Celera
v7.0) and LSC (v0.3.1) was generated for and analyzed in the proovread publication
(Hackl et al., 2014). The obtained results are shown in fig. 6.2. Performance of the tools
was evaluated in four categories — accuracy, output, N50 and run-time — on three genomic
sets with varying size (E. coli, A. thaliana and H. sapiens) and one transcriptomic read
set (H. sapiens). For the large genomic H. sapiens as well as the transcriptomic set, next
to a default proovread run, also a run with a custom-tailored setup was included in the
study. In case of the genomic read set, the performance of proovread with a digitally
normalized (section 4.4) short read data set was tested. On the transcriptomic data
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Figure 6.2.: Benchmark of hybrid corrections performed on three genomic ( Escherichia coli, Arabidopsis thaliana,
Homo sapiens) and one transcriptomic read set (H. sapiens Transcriptome) with proovread (red), PacBioToCA
(blue) and LSC (purple). For the large human genomic set an additional run with normalized short read data
(green) and for the transcriptomic set a run with increased sensitivity for low abundance data (brown) were
analyzed. Results were assessed in categories accuracy, relative output, N50 (Burton, 2008) and runtime and
are indicated by the height of the respective bar with exact values plotted on top.

set, proovread was reconfigured to obtain higher sensititivity for reads derived from low
abundance transcripts.

The correction of the genomic H. sapiens set was carried out on a cluster infrastructure
to acquire sufficient computational power. Unfortunately, neither PacBioToCA (software
incompatibility with SLURM (Simple Linux Utility for Resource Management) queuing
engine) nor LSC (excessive memory requirements) could be used on this infrastructure
and hence, no correction results for these tools could be obtained for comparison to the

108



6.2. proovread 1.0 — legacy implemention and evaluation

preformance of proovread.

Across all test data sets, proovread achieved highest accuracies, ranging from 99.48 % (A.
thaliana) to 99.98 % (E. coli). PacBioToCA obtained slightly lower values, ranging from
97.44 % (A. thaliana) to 99.93 % (E. coli). Accuracies of the two read sets corrected with
LSC were substantially lower (88.79 %, 95.43 %). However, the correction process of LSC
differs from proovread and PacBioToCA in one important aspect: proovread as well as
PacBioToCA apply a post-correction trimming to the reads thereby removing un- / poorly
corrected regions from the data. This trimming step is missing in the LSC procedure.
Therefore, LSC corrected reads comprise both, corrected as well as uncorrected regions
affecting overall read accuracies.

proovread also retained the highest fraction of input data after correction for all genomic
data sets (79 % to 88 %) and — after parameter customization accounting for low abundance
trancripts — also for the transcriptomic set. On the E. coli set, PacBioToCA and LSC
performed similar, on the A. thaliana set, PacBioToCA only recovered 46 % of the input
data. On the transcriptomic set, PacBioToCA performed worst (29 %), while LSC with
60 % output outperformed proovread with default settings.

Similar to accuracy, also the N50 length of the corrected reads need to be interpreted
with respect to the missing trimming step in LSC. For LSC, differences in N50 derive
from the general shrinkage of corrected reads compared to uncorrected ones due to
removal of insertions, as well as the removal of complete reads, which potentially skews
the overall read length distribution. Therefore, LSC N50 values are close to the raw
Nb50s and provide limited information regarding correction quality. For proovread and
PacBioToCA, on the other hand, low N50 values indicate a higher level of fragmentation
of the read data caused by trimming of internal read regions. With proovread and default
settings, comparably high N50s ranging from 2,147 bp to 2,714 bp on genomic and 821 bp
on transcriptomic reads were obtained. The utilization of normalized read data, however,
resulted in a much higher level of fragmentation indicated by a strong decrease of the N50
(1,327 bp). With PacBioToCA, substantially lower values than with default proovread,
ranging from 1,528 bp to 1,639 bp for genomic data and 193 bp for transcriptomic reads
were observed.

For all sets but the genomic H. sapiens set, PacBioToCA was the fasted tool. LSC was
the slowest program on the E. coli set, slower than proovread on the transcriptomic
set, yet faster than the transcriptome-optimized proovread. On small sets proovread
was between two and four times slower than PacBioToCA, on the larger A. thaliana set
almost ten times. The utilization of normalized reads on for the genomic H. sapiens set
reduced the overall run-time by more than two fold.

Overall, the benchmark revealed that proovread achieves high accuracy as well as
sensitivity on the entire range of assessed data sets. Further, proovread outperforms
existing software in terms of accuracy, as well as output and contiguity. Decreased speed
compared to PacBioToCA is compensated for by the more flexible implementation that
allows processing of large data sets on cluster architectures.
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6.3. Upgrades and extensions to the proovread pipeline

6.3.1. Storage-efficient best alignment filter through progressive minimum
score adjustment

The reads obtained from a sequencing run are because of the random shot-gun sequencing
procedure entirely unordered with respect to their true location on the sequenced reference
genome. Yet, in order to determine the highest scoring alignments of a bin, all alignments
of a bin have to be compared against each other. For unsorted input, this is only
guaranteed, if the entire read set has been analyzed. For large data sets, the total amount
of alignments cannot be kept in memory, therefore the most straight-forward approach is
to first, compute and store all alignments to disk, than sort the data and in a second
pass process each bin and apply the filter. The major disadvantage of this exhaustive
approach is that also the majority of sub-optimal and spurious alignments, which are
exponentially more for repetitive data sets, have to be saved to disk and on top sorted.
For gigabase-sized projects, this is impracticle or even infeasible.

Therefore, for proovread I developed a progressive two pass filtering approach that is
particularly effective in reducing sub-optimal alignments caused by repetitive reads. Here,
alignments are already assessed on-the-fly during generation. In the beginning, the
scores of all alignments are memorized for each bin, and the alignments are written
to disk. Once the maximum amount of alignments for a particular bin given by the
coverage cutoff is reached, new alignments are only memorized and written to disk if
they score better than the alignments already present in the bin. Every time a higher
scoring alignment is added to a full bin, the lowest scoring alignment is removed. This,
however, is only possible for the scores, which are kept in memory. The actual alignment
already written to disk remains. Nevertheless, with this procedure, the required minimum
score for each bin is progressively raised, converging to its true value. While in the
beginning all alignments are kept, later only alignments closed to the local optimum
are considered. This pre-filtered and thus smaller set can be sorted and cleaned of
sub-threshold alignments much faster.

(6.1)  E[N] = ne+ 1 n 1 T l n: Number of observed scores
. = ne
2 3 n Ne: Number of best scores

E[N]: Expected number of stored scores
(6.2) E[N] < n¢+In(n)

The convergence of the progressively adjusted minimum score cutoff can be modeled as
stochastic process. The expected number of stored scores can be computed according to
equation 6.1, or for large numbers of observed scores approximated according to equation
6.2%. Figure 6.3 shows the number of stored scores as function of the number of observed

1Special thanks to Johannes H. for helping me figuring out the math for this elegant solution
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scores, for exhaustive as well as the precise and approximated progressive approaches,
in the simplest case of one alignment per bin. While for the the exhaustive approach,
the expected number of stored scores is correlated linearly with the number of observed
scores, for the progressive method, the correlation is logarithmic, resulting in a drastic
decrease of the relative amount of actually stored scores for high numbers of observed
scores.
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Figure 6.3.: Storage-efficiency of progressive minimum score adjustment alignment filter. The number of expected
scores required to be stored are plotted as a function of the number of observed scores, without (red) and with
progressive adjustment computed precisely (Eq. 6.1) and approximately (Eq. 6.2).

The impact of the progressive filtering was also assessed directly on D. muscipula data.
Merged LGC (LGC Genomics) Illumina libraries were mapped onto a 5 Mbp sample of D.
muscipula raw PacBio reads, with and without filter. Without filter, the obtained BAM
(Binary SAM, SAM/BAM Format Specification Working Group, 2015) file containing
the alignments had an approximated size of 300 GB (the run was cancelled after one
fourth of the data had been mapped with a file size of 77 GB), with filter the file had a
size of only 367 MB. These results suggest that for the repetitive D. muscipula read set,
about 99.9 % of required disk space can be saved through progressive minimum score
adjustment and filtering.

Initially, the procedure was implemented as a Perl-based parser, through which plain
mapper output was piped and selectively stored to disk. This implementation, however,
was inefficient and produced a bottleneck, particularly when used with multi-threaded
mappers. With the introduction of BWA-MEM, I thus implemented the progressive
filtering directly into the C (Programming language) source code of the mapper itself
(see section 6.3.2 bwa-proovread — a modified BWA-MEM implementation), resulting in
a multi-thread ready, highly efficient filter procedure.
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6.3.2. bwa-proovread — a modified BWA-MEM implementation

In order to optimize BWA-MEM for the use with proovread, two key modification of the
published source code have been introduced. First, to facilitate score assessment, the
default reporting and filtering mode for alignment scores was changed from an absolute
to a length-relative system. That way, reads of different length can be filtered with a
single, comparable cutoff.

Second, the basic structure holding the compressed nu-

Ié OINT PER BASE mini 0,50 cleotide reference (bnt_seq_t) was extended to be able to
Binning fninum seore ° also hold the best scores for each bin in a sorted, mem-
. bin size 20 ory efficient and quickly accessible form. The extension

-1 max basepairs per bin 100 was implemented as an array of double linked lists using
TAIL_QUEUES macros provided by the FreeBSD QUEUE
Table 6.2.: Customizations of the BWA-MEM library (The FreeBSD Project, 2016). Thread safety, was
command line interface in bwa-proovread. achieved by declaring mutually exclusive access to indi-
vidual queues (Dijkstra, 1965; Taubenfeld, 2004). The
memory footprint of the implementation scales linear with both, size of the indexed
genome as well as the maximum number of stored alignments per bin. Given 20 bp bins,
100 bp reads and a target coverage of 15z (300 bp per bin), length, score and two pointers
of the double linked list need to be stored for three alignments in each bin. Embedded in
an array structure and accounting for mutex flags, this computes to roughly 20 B per bin,
which is equal to 1B per 1bp. This ratio is similar to that of the regular bwa memory
structure, which comprises a 2-bit compressed representation of the genome and the
index obtained through Burrows- Wheeler transform (Langmead et al., 2009; H. Li and
Durbin, 2009; R. Li et al., 2009). Thus, the overall memory footprint of bwa-proovread
is in the order of two times the footprint of the standard BWA-MEM implementation.
Customization options for the binning algorithm were added to BWA-MEM’s command
line interface (table 6.2).

6.3.3. Redundancy reduction through circular consensus computation

PacBio SMRT sequencing uses circularized DNA templates branded SMRT-bells. These
templates are generated form linear double stranded molecules through ligation of a
single-stranded adapters to both ends of both strands at each side of the molecule
(fig. 6.4). Due to the circularization, sequencing is not terminated once the polymerase
has processed a template one time, but will continue until either the polymerase stops
working due to laser-induced damage or until the run itself is terminated. There-
fore, a read can contain one or multiple copies of its template, referred to as sub-
reads, but present in alternating orientation and interspersed with adapter sequences
(forward-adapter-reverse-adapter-. ..). The number of subreads per read is primar-
ily determined by the initial size of the template. Shorter templates can be sequenced
more often within the same time.
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Processing of raw PacBio read data including adapter clipping
and splitting into subreads is usually performed along side base
calling by the software of the sequencing platform. The sub-
sequent analysis of PacBio read data in general is based on
subreads, which for the sake of simplicity are in this work com-
monly referred to as PacBio reads.

With respect to correction, the existence of multiple subreads has
two key implications: subreads of the same template comprise
redundant information and independent correction of the copies
unnecessarily increases run-time. At the same time, because of
the random distribution or errors, alignment of multiple sub-
reads can be exploited to uncover errors in individual copies and
compute a more accurate representative consensus.

The ccseq module of proovread has been designed to address
both of these issues. It identifies subreads derived from the same
template by parsing the corresponding information from the
sequence header, aligns the fragments against each other using
BWA-MEM, and generates a single representative consensus for
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Figure 6.4.: Sequencing of double-
stranded DNA template (1) after
SMRT-bell circularization (2), result-
ing in a read with multiple subreads in
alternating, adapter interspersed con-
formation (3), merged into a represen-
tative subread consensus (4).

each processed template. In contrast to the circular consensus

algorithm provided with the SMRT-Portal software, the ccseq

module also infers consensus from two-fold covered and only partially overlapping reads,
facilitated by a quality-weighted consensus procedure (section 6.4.3 State matrix). The
module was introduced to the proovread pipeline with release v2.01 and is run as first
step.

6.3.4. Advanced trimming of undetected SMRT-bell adapters

In rare cases, the proper detection and clipping of adapters fails during initial processing,
e.g. if adapter sequences are obscured by very high error rates. As a result, PacBio
subread data can contain a small fraction (<1 %) of reads actually comprising multiple
copies of the template in the same alternating, adapter-interspersed conformation as
observed for unprocessed data. In typical samples, the vast majority of these reads will
comprise less than two complete copies, as DNA templates are selected to be as long as
possible and having multiple copies of adapters would facilitate detection by the initial
processing software.

Although, the fraction of these chimeric reads is low, their negative impact on assembly
quality can be drastic. In the test assembly generated from proovread corrected PacBio
data of the giant Virus CroV, without SMRT-bell-chimera trimming, more than 20
additional small contigs and at least 4 additional breaks to large contigs can be observed
(fig. 6.5 A). Contig ends at those breaks as well as the small contigs exhibit the typical
structure observed for improperly processed PacBio reads with the terminal region being
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Figure 6.5.: Whole genome alignments of the giant virus CroV (Garza and Suttle, 1995) reference genome (red)
against assemblies (blue) generated with Celera from proovread corrected PacBio reads, without (A) and with

(B) SMRT-bell-chimera trimming. Colored areas connecting contigs indicate aligned regions with color encoding
for the level of identity (dark green: 100 % to red: <70%).

an inverted copy of its respective upstream / downstream region.

proovread’s SMRT-bell-chimera module (siamera) specifically targets this disrupted
palindromic structure in order to identify improperly trimmed reads. After the iterative
hybrid correction, each read is aligned to itself with BLAST (Altschul et al., 1990) using
custom settings (table 4). Only hits on the reverse strand are considered, as these hits
derive from palindromic regions. Depending on the level of degradation of the adapter,
either a single alignment covering the template, its (partial) reverse complement counter
part and the adapter, or two adjacent alignment of the same length, covering reverse
complement regions at either side of the non-palindromic adapter can be observed. In
case of multiple untrimmed adapters or poor correction, also a more complex layout
of alignments is possible. The alignment structure is further assessed and if it can be
simplified to a structure with a single adapter the shorter part of the sequence, either up-
or downstream of the adapter, as well as the adapter itself are trimmed. If alignments
cannot be resolved, by default the entire read is discarded.

By detecting the palindromic signature in corrected reads rather than highly degraded
adapters, much higher sensitivity is achieved. However, the approach will also trim
genuine palindromic motives if they occur at the terminal region of a read. Yet, with
respect to assembly, this is a negligibly small disadvantage. Just like the SMRT-bell-
chimeras, also genuine palindromes introduce potentially unresolvable structures in the
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assembly graph that can result in an assembly break. Only if reads exist that span
the entire palindromic structure and link their respective up- and downstream flanks a
break can be prevented. Those reads, however, by design do not qualify as potential
SMRT-bell-chimeras, as the palindrome they carry, is not terminal. Whether or not
genuine palindromes can be resolved in a certain read set is determined by the existence
of the respective spanning reads rather than the degree to which partially overlapping
reads are trimmed. Hence, trimming of genuine palindromic motifs that fit the structure
of SMRT-bell-chimeras does not impair the assembly potential of the processed read data.
At the same time, the removal of true positive SMRT-bell-chimeras is highly beneficial
(fig. 6.5): After application of SMRT-bell-chimera trimming to the reads set used for
the CroV assembly, all small chimeric contigs as well as chimera-related break points
disappeared from the assembly (fig. 6.5 B).

The siamera filter is executed as part of the proovread pipeline along with quality based
trimming as last step of the correction process.

6.3.5. Usability of pre-computed unitigs for correcion

The vast amount of high coverage Illumina data and the computational power required
for their alignment are a key challenge of hybrid correction approaches. The information
contained in the reads, due to their overlaps is highly redundant. This fact can be
exploited to reduce the amount of data required to be mapped and thus substantially
speed up the entire process: Rather than aligning individual reads to erroneous PacBio
reads, the reads can be assembled into unitigs first, creating non-redundant and longer
sequences of high accuracy. Then, these sequences are mapped to PacBio reads at largely
reduced computational costs.

While in theory, the usage of contigs or scaffolds derived from short read assembly, is
possible, the utilization of unitigs is recommended. Unitigs represent the most complete,
non-redundant sequence set that unambiguously can be constructed from short read
data, while contigs and scaffolds usually derive from processed graphs, with potentially
collapsed and trimmed regions.

For the alignment of sequences longer then typical [llumina reads, proovread uses BLASR
(Chaisson and Tesler, 2012) or DALIGNER (experimentally) instead of less sensitive BWA-
MEM. While BLASR directly outputs alignments in SAM (Sequence Alignment/Map,
SAM/BAM Format Specification Working Group, 2015) format, DALIGNER output is

converted with a custom script (dazz2sam).

The unitig correction is implemented in proovread as independent, optional step, which
by default is run prior to read based correction using previously generated unitigs as
additional input. The consensus procedure for aligned unitigs is similar to the one used for
short reads, however, differs in some key aspects: By definition, for every region of a read,
there can only exist one correct unitig representing the same genomic location. Hence,
the maximum coverage for unitig consensus is 1 z. While short reads are assessed and
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filtered based on scores, the best unitig for each region is determined by a more complex
approach that takes accounts for their longer and varying lengths (see section 6.4.3,
section 6.4.3) as well as the low coverage using a quality-weighted consensus matrix
(section 6.4.3).

Test runs generated with the unitig mode on different sample data sets (data not shown)
revealed that in the case of small genomes (<100 MB) results of higher quality could be
generated in shorter time. On more complex genomes, however, the increased amount
of ambiguities resulted in fractions lower than <50 % of pre-masked read regions after
unitig correction. The speed-up of the subsequent read-based iterations was, thus, not as
high as for smaller genomes, and taken together with the unitig iteration, did not result
in significant overall improvement of the run-time of the entire correction procedure.
On top, results obtained with unitigs were in terms of quality and contiguity at best
comparable to short read only corrections, in some cases even worse. Therefore, the
proovread’s unitig mode is a useful extension to the pipeline for the correction of small
genomes, however, it is not recommended for large data sets.

6.3.6. Optimized correction for transcriptomic and metagenomic data

proovread has been designed with primarily genomic sequencing data in mind. A
key assumption for the coverage based best alignment filtering is, that the coverage
distribution of the sample is even, or that at least every location has been sequenced
with the minimum depth of coverage. While this assumption in general holds true for
genomic samples (biases can disturb coverage distribution), it fails on transcriptomic and
metagenomic data sets. The particular problem of correction of low coverage regions,
besides a genuine lack of alignments, is the distinction of valid and spurious alignments if
both are present in the below-threshold coverage alignment fraction. As soon as spurious
alignments are in the majority, the consensus will be driven towards a false result. This
effect, for example, can be observed for low abundance transcripts sharing conserved
regions with other high abundant transcripts. Similarly, correction of low abundance
species in metagenomic samples is affected by the presence of closely related species with
higher abundances.

proovread-meta is an experimental proof-of-concept implementation that takes on the
challenge of correcting data that includes low coverage read populations. In contrast to
proovread with a universal coverage cutoff, proovread-meta tries to determine a reads
true coverage and dynamically adjusts the cutoff accordingly. The estimation of a reads
true coverage is based on discriminating SNPs (Single nucleotide polymorphisms) as
described in section 6.4.3 Haplotype coverage.
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To benchmark the performance of proovread-meta, the
program was run with a mixed set of simulated Illumina
reads generated from E. coli strains K-12 and REL.
Illumina coverage was set to 10z for F. coli REL and
30z for E. coli K-12. Correction was only applied
to PacBio reads simulated from FE. coli REL. After
correction with proovread-meta, the reads could mapped
back with very high identity of 99.8% to the E. coli
REL genome, but only with an identity of 97.0% to E.

Ec-REL [%] Ec-K-12 [%]
proovread-meta 99.8 97.0
LoRDEC 96.2 97.1

Table 6.3.: Accuracies of corrected PacBio reads sim-
ulated from FE. coli REL. The Illumina reads were
provided as a mixed set of 10z E. coli REL and
30x E. coli K-12. PacBio reads were corrected
with proovread-meta and LoRDEC and aligned with
BBMap.

coli K-12. This is in congruence with the average distance between both strains. In
contrast, processing of the reads with LoORDEC results in a much lower identity of 96.2 %
for alignments to the E. coli REL genome, as well as a poor rate of 97.1 % for alignments
to the F. coli K-12 genome. While proovread-meta is able to properly distinguish both
species and produce an unbiased consensus reflecting the true origin of the erroneous
PacBio reads, lordec corrected reads are hybrid consensus sequences that neither match
the original nor the higher covered genome at high accuracy.

The applicability of proovread to
metagenomic data sets was further ex-
plored in a collaboration with Beate
Slaby? for metagenomic study on the

Metrics
Contigs >O0bp

demosponge A. aerophoba. Originally, Length > 1k[bp]
samples were sequenced and assem- Longest [bp]
bled by the JGI. Later complementing N50 [bp]
PacBio data was generated with the GC [%]

goal to improve assembly quality. Pre- N [

liminary test for proovread correction

Contigs >1kbp
Length >0 [bp]

aa-so-jgi aa-sp aa-sp-hybrid
662,400 262,763 59,859
125,969 104,868 29,744
657,215,853 584,430,936 317,514,008
419,980,954 490,586,800 301,207,972
334,550 1120,532 1117,843
1916 6417 32,477

57.2 57.8 60.5

0.0 0.1 0.1

. . Table 6.4.: Assembly metrics of Aplysina aerophoba metagenomes gen-
and assembly of metagenomic PacBio erated with SOAP (SOAP-denovo2, R. Li et al., 2009) and Illumina
data were carried out on simulated  reads by the JGI (Jount Genome Institute), generated with SPAdes
data (section 8.6) generated based on  (Bankevich et al., 2012) and Illumina read and generated from Illumina
the organismic composition used for in combination with proovread-meta corrected PacBio data. Contigs:

the evaluation of the metagenome as-

number of Contigs or Scaffolds; Length: length of the total assembly;
Longest: length of longest contig/scaffold; N50: length of the sequence

sembler Omega (Haider et al., 2014)' that together with all longer sequences adds up to 50 % of the total
Correction with proovread-meta re- assembly length; GC: percentage of nucleotides G and C relative to
sulted in an overall read accuracy A,T,G and C (N-nucleotides are ignored); N: percentage of N-nucleotides

>99.99 % for the 200 MB set accord- ™ the total assembly.

ing to the assessment of BBMap align-
ments.

In the following, the A. aerophoba data set was corrected with the same setup of proovread-
meta used for the Omega set. After correction an Illumina-only and a Illumina-PacBio
hybrid assembly were constructed with SPAdes and assessed in comparison to the assembly

2GEOMAR Helmholtz Centre for Ocean Research, Kiel; University of Wuerzburg, Botany II at the

start of the collaboration
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generated by the JGI (table 6.4) using SOAP. With an N50 of 32.4 kbp, compared to
6.4 kbp for the Illumina-only SPAdes assembly and 1.9 kbp for the JGI assembly, the
hybrid strategy proofed to be highly superior with respect to contiguity of the produced
assembly. Whether or not the decrease in total assembly size (-28 % /-39 %) can be
attributed to a loss of data or rather a better resolution of heterogeneity is currently
under investigation. Nevertheless, the results obtained in this study so far, strongly
suggest that proovread-meta can be used to efficiently perform hybrid correction for
metagenomic data, and that utilization of such data for assembly has the potential to
greatly improve assembly contiguity.

6.3.7. Haplotype awareness through variant calling and read-backed phasing

Heterozygosity is a common issue when dealing with eukaryotic sequence data that adds
an additional level of complexity to hybrid correction. Variable sites introduce noise,
which complicate accurate consensus computation. Further, SNVs (Small nucleotide
variations) can be present in both Illumina and PacBio read sets, and depending on the
experimental design, these sets not necessarily match each other.

In general, there are two different desired behaviors for how SNVs should be handled
during correction: Depending on the goals of a particular project, variant sites present
in the data after correction either need to be considered detrimental, e.g. during
construction of an assembly graph, or they are of special interest, e.g. in haplotype
specific trait analysis, such as reconstruction of a di- / polyploid genome structure or
GWAS (Genome-wide association study). In the first case, hybrid correction ideally
should remove ambiguous sites consistently among all reads by always using the same
base(s) for a particular locus. In the latter case, variable sites need to be preserved
exactly as present in PacBio read.

With the proovread default correction procedure, the fate of SNVs is not explicitly
addressed, yet the outcome can be steered by the setup of the correction run. proovread
consensus is based on majority vote, therefore if different variants are present for a specific
locus in the best alignment set, the most abundant will be chosen. By lowering the
coverage cutoff for the correction to a value close the coverage of a single haplotype (or
by increasing the total amount of provided short reads), the set of best alignments will be
driven towards comprising mostly reads with the same variant as the underlying PacBio
reference. Thus, applying individual haplotype-coverage as cutoff the correction will
retain most of the heterozygosity shared between the Illumina and PacBio set. Raising
the coverage cutoff, on the other hand, will have the opposite effect. If all available
variants are considered at each locus, the most abundant variant will dominate the
consensus calls regardless of the state observed in the PacBio read and heterozygosity
in the corrected read set will be reduced. Nevertheless, both approaches only allow to
set a general trend for individual SNV processing. Evaluation of different test runs (e. g.
fig. 6.7) indicates that only in 75 % to 85 % of the cases the desired variant state is chosen
for a specific locus. In order to obtain more consistent results additional mechanisms
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had to be introduced.

However, before dealing with the actual inference of proper SNV
states, a more general problem related to SN'Vs, and also observed
in the test data, needed to be addressed. After proovread correction,
for most variable sites, one of the states present in the short reads set
is also chosen in the consensus. For a significant fraction, however, a
new false state is reported. This is caused by the particular consensus
implementation of proovread, which assesses each position of the
reference independently and in case of equal frequencies, chooses
one state randomly®. The effect is further enhanced by the high
level of insertions /deletions present in raw PacBio reads. The
two most common cases potentially leading to erroneous consensus
sequences are described in fig. 6.6. In the case of multi-base deletions,
even without errors in the PacBio sequence, proovread’s consensus
algorithm does not guarantee a consistent inference of either one of
the true states. Taking into account PacBio errors, false consensus
sequences also can result from insertions directly adjacent to SNPs
loci. Given an average insertion rate of 10 %, two potential target
sites (upstream and downstream) and a chance of 25% for each
base, the likelihood for a detrimental insertion next to a SNP can
be estimated at about 5%. Propagation of the ambiguity along
homopolymers further increases the overall likely-hood.

To mitigate the effect of heterozygosity-derived consensus errors, an
improved refinement step (refine) with a SNV-robust consensus
mechanism was developed (fig. 6.7-1). The module replaces the
default finishing iteration and is also based on an additional mapping

iteration with strict settings onto pre-corrected reads. Prior to
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Figure 6.6.: Potential consensus er-
rors introduced by (1) a 3-base
indel without adjacent PacBio se-
quencing error and (2) a PacBio
insertion error next to a SNP
matching the alternative variant.
Ra/B: Reference with variants; P,:
PacBio read without and with er-
ror (orange); reads: Illumina read
alignments; Consensuses: possible
correct (blue) and erroneous (yel-
low) consensus sequences called
with equal likelihoods.

consensus computation, variants present in the data are called and subsequently stabilized
by transforming adjacent sites from independent into combined multi-base compound
states of actually observed permutations covering the entire locus (?? ??). That way,
introduction of new, false states during consensus computation, as observed for the legacy

consensus routine, is prevented.

3Note that with low default sub-sample coverage of 15z, ties are likely
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Figure 6.7.: Haplotype aware correction procedure im-
plemented in proovread modules refine and polish.
(1) Variants (yellow) are called and stabilized based
on Illumina alignments (green) onto the pre-corrected
PacBio read (blue). (2) Variants are scored according
to alignment of preliminary, complementary consensus
sequences back to the raw PacBio read. (3) Other
refined reads of the same sample are aligned to the re-
fined PacBio read and miscalled variants are corrected
by read-backed phasing.

Further, to facilitate inference of variant states in
accordance with the underlying PacBio read a new
mechanism for the assessment of SNVs was intro-
duced (fig. 6.7-2). After construction of the consen-
sus matrix and stabilization of variants, two pre-
liminary consensus sequences are generated: one
comprising the most abundant states and one con-
taining the second most abundant variants for each
variable site. These sequences are then aligned
back to the original raw PacBio read. Based on
these alignments, possible variants can be directly
compared to the respective base(s) in the raw read.
In the best case, one of the possible variants will
match the respective raw read locus exactly and
thus can directly be considered as the mostly cor-
rect state. Due to the sequencing errors in PacBio
reads, many sites however, will not produce exact
matches. In these cases, variants are scored by
string similarity based on the algorithm described
by Ukkonen (1985) and E. W. Myers (1986) and
implemented in the String::Similarity module*. If
scoring is indecisive, and coverage for the variants
differ, the variant with a coverage closer to the
coverage of the majority of unambiguously scored
variants, is chosen. As a last resort, variants are
assigned randomly. With this procedure, accurate
determination of variants is achieved on test data
for 90 % to 95 % of variable sites (fig. 6.8-2). The
remaining miscalled sites can be attributed to po-
sitions obscured by PacBio sequencing errors and
unresolvable by only considering Illumina data and

the individual PacBio read alone. The most common cases include SNPs sites either
coinciding with deletions or detrimental insertions, as described above.

Having established an average accuracy of 90 % for variable sites on PacBio reads, further
improvement of haplotype resolution can be achieved by exploring the pre-corrected
PacBio reads set as a whole (fig. 6.7-3). proovread’s polish module runs an all-versus-all
alignment of corrected PacBio reads and identifies variable sites by superimposition of
variant annotations generated from Illumina data. In this setup, miscalled variants then
can be identified and corrected by read-back phasing. To that end, a greedy, heuristic,
read-backed phasing algorithm inspired by Levy et al. (2007) and further optimized for the
use with long read data was implemented (section 6.4.4). During phasing, the likelihood

“Marc Lehmann, http://search.cpan.org/~mlehmann/String-Similarity-1.04/Similarity.pm
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Figure 6.8.: Alignments of simulated PacBio reads to a 30kbp A. thaliana reference genome segment corrected
with a heterozygous Illumina set with 10 z coverage for the correct and 30 x coverage for the complementary
haplotype. Corrections have been carried out with (1) proovread-legacy, (2) proovread + refine, (3) proovread +
refine + polish and (4) low coverage variant insensitive PBcR. Visualization was created with IGV (Integrative
Genomics Viewer, Robinson et al., 2011). For each panel, the top histogram represents per base coverage with
variable sites and frequencies of the observed variants indicated by colored columns. Grey bars in the lower part
represent, corrected PacBio reads with mismatches and indels indicated by black dots.

of a sequence of variants occurring together as observed in the read at hand, is assessed by
computing a Boolean support matrix for each position according to other aligned refined
PacBio reads. On perfect data, with two haplotypes present, the alignment of a read of
the same haplotype will consistently result in matching variants, while the alignment
of a read of the complement haplotype results in mismatches for each variable site. If,
however, a miscalled variant is present in the reference read, matches and mismatches
with respect to other reads will be inverted at this position. The noise caused by miscalled
variants present in the query reads is compensated for by having multiple reads aligned
at each location.

On test data with high PacBio coverage, accuracies of >99.9 % for variable sites were
observed for corrected reads after refinement and subsequent polishing(fig. 6.8-3). How-
ever, the current read-backed phasing polish module is an experimental proof-of-concept
implementation. In particular, the all-versus-all alignment procedure in its current form
is inefficient with respect to run-time and renders application of the program to larger
data sets infeasible. Nevertheless, the results obtained so far demonstrates the high
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potential of the approach towards haplotype-aware and -consistent hybrid correction.
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6.4. perl5lib-Sam — a perl API to read alignment data

The basis of proovread’s correction procedure is the evaluation of sequence alignments
generated by different mapping programs. Most mappings programs including the aligners
used within proovread, except for DALIGNER, report result in the de-facto standard
SAM format. Thus, the ability to parse and process SAM data efficiently is a key
prerequisite to the implementation of consensus-based read correction.

The SAM format is text-based TAB-separated file format designed for storage of large
numbers of nucleotide alignments against a set of reference sequences. Optional header
lines are identified by an ‘@’ as first line character. The header section is further structured
by a combination of line tags and tagged fields, comprising information about reference
sequences, sample groups, programs used to produce the alignments and other general
information. The header section is followed by the alignment section. An alignment is
represented by a single line comprising eleven mandatory (see table 3) and an arbitrary
number of optional fields further characterized by tags.

Listing 6.1: sample SAM file®

@HD VN:1.5 SO:coordinate

@SQ SN:ref LN :45

r001 99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG =*

r002 O ref 9 30 3S6M1P1I4M * 0O O AAAAGATAAGGATA x

r003 O ref 9 30 5S6M * 0 O GCCTAAGCTAA *x SA:Z:ref,29,-,6H5M,17,0;
r004 O ref 16 30 6M14N5M * O O ATAGCTTCAGC =x*

r003 2064 ref 29 17 6H5M * 0 O TAGGC * SA:Z:ref ,9,+,556M,30,1;
r001 147 ref 37 30 9M = 7 -39 CAGCGGCAT * NM:i:1

Lo I B e S . N

The BAM format is the compressed, binary equivalent of the SAM format. SAM to
BAM conversion and vice versa are provided by the samtools (H. Li et al., 2009) and
sambamba (Tarasov et al., 2015) utilities. Further, sorting and indexing of BAM files
allows random access to alignment subsets by reference coordinates. Thus, BAM files
can be used as a simple database-like solution for alignment information storage and
retrieval.

To allow efficient processing of SAM data, I developed the Perl-based perl5lib-Sam library
as an object-oriented API (Application programming interface) to SAM / BAM encoded
mapping data. The library provides basic parsing and filtering functionalities as well as
complex methods required for proovread’s binning-based filter algorithm and consensus
computation.

*modified from the Sequence Alignment/Map Format Specification, SAM/BAM Format Specification
Working Group, 2015
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6.4.1. Sam::Alignment

The Sam::Alignment class provides a flexible interface to individual SAM encoded
alignment records. In addition to generic accessor methods (retrieval and manipulation of
primary field data) and Boolean tests against the bit-wise flag (see table 3), the interface
offers access to derived information. These include alignment length, full length of the
(partially) aligned sequence, a representation of the read sequence transformed into
reference coordinate space and different alignment score derivatives.

Score, nscore and ncscore

Alignment scores are the fundamental units of measurement for alignment quality as-
sessment. While the score of an alignment is not a mandatory attribute in SAM format,
most mappers report it as optional value in the AS tagged field. The reported score S is
a raw score derived from the mappers scoring scheme. In addition to this raw score the
Sam::Alignment class provides access to two derived scores: S, and Spe.
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Figure 6.9.: Length-corrected length-normalized score computed according to eq. 6.4. Scores are plotted as a
percentage of the respective uncorrected score and as function of the length of the alignment for different score
correction constants C,..

Sy, is the length-normalized version of the raw score (Eq. 6.3). Sy is the length-normalized
score corrected for the increasing level of uncertainty associated with very short alignments
(Eq. 6.4). S, asymptotically approaches S,, for long alignments (fig. 6.9). The degree
to which shorter alignments are penalized is controlled via a special constant Cj,.. A
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default value of 40 has been empirically determined to work well with typical short and
long read data.

S .
(6.3) s, =2 l: length
! S: raw score
Sp:  length-normalized score
l Sne:  corrected length-normalized score

6.4.2. Sam::Parser

The Sam::Parser class provides an interface to SAM / BAM files and data streams. For
both, header and alignment section, parser methods returning single record entries are
available. Header entries are split in a hash structure using tags as keys, alignment
records are returned as Sam::Alignment objects. Advanced filter options restricting the
stream to a specific subset, e.g. using SAM binary flags, can be configured. The class
also provides methods for creating and writing to SAM files.

6.4.3. Sam::Seq

The Sam::Seq class is an auxiliary class, providing access to individual reference sequences
and associated alignment records (Sam::Alignment objects). Its design focuses on the
efficient computation of a consensus sequences from the given alignment data.

Typically, a Sam::Seq object is initiated from the reference sequence information (ID,
length) provided in the header section of the underlying SAM file. The actual reference
sequence data, if available, is stored as a Fasta::Seq /Fastq::Seq (section 7.1) object.
Alignments are stored in a plain hash structure using unique internal IDs. This otherwise
unordered association allows to quickly add, access and remove alignments and is sufficient
to execute all basic operations.

Score based filter

Basic functionality of the Sam::Seq class comprises generic filters for alignments based
on scores. The three defined score derivatives S, S,, and S, can be used. Filters can be
executed during initialization, which can help to keep the memory footprint low, or run
independently.
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Repeat region filter

Handling of repeats and repetitive sequence motives is a common challenge when dealing
with biological alignment data. Given a sufficient similarity, each existing copy of the
repeat is likely to contribute alignments to a region even if it only comprises a single
copy. This introduces noise through variations in different copies and at the same time is
highly impractical from a computational point of view due to the multiplication of data.
The Sam::Seq repeat region filter is designed to address local alignments of repeat core
regions observed with long read and sequence data. The filter itself is based on the idea
that correct placement of an alignment can be inferred if the alignment is placed at least
partially outside the repetitive region.

In the Sam::Seq object, a repetitive region is defined as a region exceeding a certain repeat
coverage threshold. This threshold needs to be set with respect to the given experimental
background. Applying the repeat region filter will remove all alignments entirely placed
within a repeat region. Sensitivity of the filter can be increased by configuring initially
annotated repeat regions for symmetric extension, either by an absolute or relative length.

Containee filter

In some cases it is required to only keep one optimal alignment for each location in
the reference sequence. Deciding on the best alignment, however, is difficult if long
alignments of different length overlap each other. In this scenario, the containee filter
handles the very common case of shorter alignments being contained within longer ones.

In order to detect contained alignments efficiently, alignments are first sorted by length
in descending order. Starting from the second longest alignment, each alignment is
compared against all available, longer alignments. Alignments are considered contained
if at least 90 % of the shorter alignment is located within start and end of the longer
alignment. Each pair of alignments fulfilling the containment criteria is then processed
according to a following rules: (1) Given alignments of similar length (Al < 40bp) the
alignment with the higher length-normalized, corrected score (S,.) is kept. (2) Given
alignments of different length (Al > 40bp), the longer alignment is kept, even if it scores
worse (fig. 6.10).

126



H.s. Chr-9

6.4. perl5lib-Sam — a perl API to read alignment data

[m130928_232712_42213_c100518541910000001823079209281310_s1_p0/20552/1942_11602]

7 kb 8 kb

P i T I T | L TR

w0

"Nt N

5 !(b

[0 - 622]
unfiltered
mappings

[0 -10]

repeat EEEE=
filtered

[0-10]

containee B

filtered

Figure 6.10.: Repeat and containee filters provided by the Sam::Seq class. Local alignments of
uncorrected PacBio reads (grey bars) with alignment mismatches and indels (black dots) to a
5kbp region of the H. sapiens Chromosome 9 comprising a repeat (7.3kbp to 8.6kbp). In the
unfiltered output (panel 3) 622 alignments to the repeat regions are reported (only a subset of
35 is shown) including one alignment spanning across the repeat into adjacent regions. After
application of the repeat region filter (panel 4), all but one partial alignment are removed. The
remaining alignment is not considered repetitive as it extends to far outside the determined repeat
region. The successive application of the containee filter (panel 5) further simplifies the scenario
and reduces the alignment set to the only alignment covering the repeat as well as adjacent

regions.
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Binning based filter

Typically, genomic short read data is operated at coverages of tens to several hundred x. In
the simple case of 1-to-1 relations of short reads and reference locations and high mapping
specificity, this produces stable and manageable quantities of alignments for each Sam::Seq
object. However, when working with repetitive or unevenly covered (transcriptomic,
metagenomic) data sets and in combination with high mapping sensitivity and the
possibility of multi-mappings, the number of alignments per reference sequence multiplies
exponentially.

In this scenario, two major challenges need to be addressed to allow efficient handling of
alignment data and consensus computation in particular: (a) Redundancy needs to be
kept or reduced to a minimum sufficient level to allow the generation of a reliable signal
from low resources. (b) Non-optimal alignments need to be identified and filtered in an
efficient way to remove noise and further minimize computational demands (??). Both
challenges can be met by assuming the following principles: (a) A sufficient minimum
subset for consensus calling comprises a subset of all optimal alignments sampled in a
way that all regions of the reference sequence are covered up to a certain maximum. (b)
Optimal alignments can be identified by local score assessment.

In order to efficiently implement these principles, the Sam::Seq class is equipped with
an additional auxiliary structure providing localized context for associated alignments.
In this structure, the reference sequence is represented as a series of consecutive bins of
defined length (default 20 bp). Alignments are assigned to their respective bin based on
the center coordinate of their aligned sequence. Each bin holds ID, S, and length for
each of its alignments, ranked by S,.. Using this structure, an optimal alignment subset
is given by the highest scoring alignments of each bin up to a customizable maximum
per bin base pair threshold.

Binning based filtering can either be applied after loading all alignments of a Sam::Seq
or already during loading. In the second case, each new alignment is checked against
its respective bin. The alignment is added if the bin’s total length plus the length of
the new alignment does not exceed the bin’s maximum base pair capacity. Otherwise,
only alignments with scores higher than the lowest scoring alignment already in the
bin are added while lowest scoring alignments are removed to satisfy the maximum
base criteria. This way a fixed maximum memory footprint is guaranteed, given by
number of bins X maximum bin coverage. At the same time, the resulting Sam::Seq
object holds a subset of optimal alignments for each location of the reference with evenly
distributed coverage.

Binning and bin based alignment filtering make a powerful tool for the efficient handling
of high coverage short read alignment data. However, parameters such as bin size and the
maximum base pair threshold need to be set with care and require tuning with respect
to technological and biological background.
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State matrix

The basic structure for consensus computation in a Sam::Seq object is the state matriz (see
Fig. 6.12). In this two-dimensional representation of the available alignment information,
each position in the reference sequence is represented by one column. In this reference
based coordinate system two different types of states are required to cover all possible
relations: Simple states represent either a match, mismatch or insertion to the reference,
holding a single nucleotide or a gap (A,T,G,C,-,N). Compound states originate from
one or multiple successive deletions in the reference. The resulting orphaned nucleotides
in the query are appended to their preceding state, creating multi-nucleotide states of
arbitrary length within columns directly preceding deletions (e.g. AT,GGC,CCGAT).

The rows of the matrix hold the sum of weights of a specific

state observed in all alignments at a particular position. In GAAACGA T A R
default mode, the weight of a state is modeled by its frequency. TAA--GATCA L
In the advanced, quality weighted mode, the weight of a state TAA--GTTCA &
is inferred from its ASCII (American Standard Code for In- GAA - -GATCA g
formation Interchange) encoded Phred quality score (Ewing Bl -BcHcE o
et al., 1998; Ewing and Green, 1998). For details on conversion a
(section 6.4.3 proovread coefficient} . This approach introduces N A - O TC
base-call confidence information to the matrix and the consensus ¥

model, increasing sensitivity on low quality / coverage data, as A 55 3 5

for example observed in unitig-based correction (section 6.3.5 T 4 ﬁ
Usability of pre-computed unitigs for correcion) or circular G 1 5 g
consensus computation (section 6.3.3 Redundancy reduction C 3
through circular consensus computation). i 5 5 %
Within the matrix, state-weight association is provided by a # 5 8
semi-dynamic index. For the highly abundant simple states the 3

index is static (A:0,T:1,C:2,G:3,-:4,N:5). For compound "N cHlicHl C

states, the index is dynamically extended on as-need basis for
each individual Sam::Seq. This approach is both, memory
efficient and fast.

Figure 6.11.: proovread state matrix
and consensus. Reference (R) and
query states (alignments) are parsed

The state matrix of a Sam::Seq is initialized by serially travers- into a state frequ‘?ncy matrix with refer-

ing all associated Sam::Alignments. Individual states are parsed egce_ based Csogfnates' tThe tc.onse?:ﬁs

from the sequence through transformation into reference coordi- (C) is generated by concatenation of the
. B . T T most abundant state for each column,

nate space using the CIGAR string annotation. The initialization ignoring gaps in the final sequence.

of the matrix can be restricted locally by (a) providing a subset

of available alignments and (b) specifying coordinate ranges to

be ignored.

In addition to state information derived from the alignments, also the states of the
reference sequences can be added to the matrix. This feature, however, usually only make
sense in quality weighted mode, as the frequencies for the reference states are all one.
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Trimming and Consensus
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Figure 6.12.: Pre-consensus trimming
of alignment ends. A sequencing error
(yellow) in the reference sequence (R)
shifts terminal bases (dotted parts) of
aligned reads (green bars) in case that
the introduction of two gaps is cheaper
than the mismatch at the erroneous
position. This introduces an artifact
into the consensus (y), which can be
avoided by trimming of gap contain-
ing alignment ends prior to consensus
computation (t).

After the matrix has been constructed and alignment informa-
tion has been loaded, a consensus can be determined. The
consensus sequence is generated by concatenation of the highest
weighted state in each column, ignoring gaps. In addition, a
confidence score is calculated for each position based on the
weight of the most abundant state. The weight is converted into
a Phred quality score and encoded in ASCII to produce a quality
string. That way, consensus sequences can be reported in com-
mon FASTQ (Cock et al., 2009) format, facilitating downstream
processing with other software.

The accuracy of a consensus call from state matrix highly de-
pends on the accuracy of the initial alignment information.
Apart from misplaced reads a common source of errors are
poorly aligned read ends. In particular gap favoring scoring
schemes, as used with PacBio data, are prone to introduce
cheap gaps at the ends of alignments instead of actually correct
mismatches.

To avoid introducing these errors into the state matrix, the
Sam::Seq object offers customizable trimming options for align-
ment ends, which are executed during matrix construction.
Within a specified absolute or relative window at the beginning
and the end the alignment is scanned for gaps. If gaps are found,
the alignments are trimmed to remove all positions up to and
including the most inner gap. This way only the more reliable
core of the alignment is utilized increasing overall accuracy of

subsequent operations such as consensus calling.

proovread coefficient

The conversion of weights (or frequencies) into Phred quality scores and vice versa
is implemented according to equations 6.5 and 6.6. Cp, is an empirically determined
conversion coefficient. It effectively models the amount of trust put into weight / frequency
when calling bases from a state matrix and at the same time the amount of trust that is
put into Phred quality scores when comparing nucleotides between alignments. Using the
conversion in both directions with the same coefficient ensures mathematical symmetry
for weights and Phred quality scores < 40. The upper limit of 40 has been introduced
for consistency with FASTQ Phred quality score specifications.

Cpr = 120 is used as default setting since Sam::Seq-0.11. Earlier versions, including
the one used in the original proovread publication, employed a less generalized and less
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2
(6.5) w = Cp w: weight
pr

(6.6) p = max (ww X Cpr, 40)

flexible precursor of the described conversion system, roughly equivalent to Cp, = 50.

p: phred

The generic two-way conversion model is an essential feature of the Sam::Seq class and
its consensus calling capabilities. It facilitates the integration of sequence information
derived from fundamentally different backgrounds — high quality / coverage short reads,
low quality / coverage long reads as well as synthetic data, such as unitigs and CCS
(Circular Consensus Sequencing) reads — in a straightforward and consistent manner.

Chimera detection

Aside from true sequence errors affecting regions of one to several adjacent bases, structural
aberrations are a common source of error in PacBio sequence data. These aberrations
manifest in fusion sequences, composed of two (or more) sequences from different origin,

referred to as chimeras.
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Figure 6.13.: Detection of chimera break points (Hackl et
al., 2014). (1) Mapping of Illumina (light blue and green
bars) onto pre-corrected PacBio read (blue bar) con-
taining a chimeric break point (yellow X); black strokes
indicate non-matching alignment positions. While not
detectable by per-base coverage (gray curve), break point
candidate sites (c1, ¢2) can be inferred from drops in
bin coverage (green histogram, red arrows). Reads over-
lapping candidate sites from the right (dark green bars)
and the left (light green bars) are considered for classifi-
cation of each a site. (2) Entropy profiles derived from
the alignment matrix at two candidate sites, comprising
four entropies each: H; calculated from the entire read
set (gray bar), H, for reads placed upstream (dark green
bar), H, for reads placed downstream (light green bar)
and Ha (red bar), which is the difference of H; and the
greater value of H, and Hy. An accumulation of Hx> 0
(yellow arrows) is observed at true chimera locations.

The Sam::Seq class chimera detection is designed to identify chimeric break points based
on the associated alignments. Two general cases of how alignments look like at break
point can be distinguished: (a) If the fused sequence differs from the original sequence
(and alignments settings are strict), alignments will not extend across a break point. (b)

131



6. proovread — large-scale hybrid PacBio correction through iterative consensus

If original and fused sequence are similar (and alignment settings are sensitive) reads
will extend across the break point.

In accordance with the first case, a lack of coverage can indicate a break point. However,
generating no alignment data for a location can have different reasons including genuine
lack of data or a locally high error rate, exceeding alignment sensitivity. Therefore, lack
of coverage does not qualify as criterion for positive break point identification. Removal
of uncovered break points needs to be handled through alternative mechanisms, e.g.
trimming of uncovered regions from the consensus sequence.

In the second scenario, break points cannot be identified by coverage. On the contrary,
if coverage lies within expected limits, break points will go undetected in subsequent
quality based trimming. Thus, advanced detection for covered break points is essential
to prevent the generation of structurally inconsistent consensus sequences. The basis for
detections of covered break points relies on differences between the expected and the
actually present sequence on the other side of a break point. Break points at locations
without differences in original and actual sequence cannot be detected based on alignment
data. The detection process (Figure 6.13) is carried out in two steps.

First, candidate sites are gathered based on bin coverage. In contrast to per base
coverage, bin coverage is affected in a more distinct manner at break points. Bin coverage
is determined by placement of the alignment center coordinates. Only alignments located
directly on top of a break point will contribute to the coverage of the according bin.
Placement directly on top of the break point, however, requires about 50 % of the read
to be aligned to a false reference. Given differences in the underlying sequence, this is
highly unlikely. Most reads overlapping a break point will be positioned largely at either
side and only extend across the break point with a couple of bases. Thus, bin coverage at
a break point is expected to be close to 0. Chimera candidate sites are given as regions
of 2 to 5 consecutive bins below a customizable bin coverage threshold.

H: Shannon entropy
p: probability

n

(6.7) H(w) = — Zp(wi) x logy p(w;) w: state weight
i=1 1 state iterator
n: number of states

In a second step, candidate sites are verified through analysis of error patterns in the
alignments surrounding the potential break point. An increase of non-matching bases
alone can be attributed to noisy data, e.g. due to heterozygosity. However, at a true break
point, upstream overlapping reads produce a consistent, yet distinctly different error
pattern than downstream placed reads due to there separate origins. These differences
can be detected from the alignment data by comparison of flank-specific local state
matrices and the according overall matrix. For each column of the matrices, the Shannon
entropy (Eq. 6.7) as a measurement for information content (Shannon, 1948) is computed.
This produces three values per site: upstream entropy H,, downstream entropy Hy and
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the total entropy H;, comprising both read groups. For comparison, the difference of H;
and the greater value of H, and Hy, Ha is utilized. Positive values indicate an increase in
information content per site in case flanking reads are assessed separately. A true chimera
break point, in contrast to noisy spots introduced by other effects, is characterized by
an accumulation of positive Ha values. The Sam::Seq chimera detection transforms the
ratio of Ha > 0.7 to the total number of signal containing columns into a chimera score
Xx- By choosing an adequate threshold for y with respect to the given biological and
technological background, Sam::Seq objects can be identified as chimeric and processed
further accordingly.

Haplotype coverage

An important factor for the accuracy of consensus computation is the composition of the
actually used optimal alignment set. Usually, this is controlled by a global coverage cutoff
applied through binning. Binning based filtering ensures that the consensus is driven
by reads actually derived from the reference sequence, with similar but lower scoring
alignments being ignored. A global cutoff, however, is problematic if a data set comprises
low coverage sequences, as for example transcriptomic or metagenomic samples do. Here,
sequences with low coverage alignment support are driven towards similar sequences of
higher coverage, because sup-optimal alignments contribute in higher numbers to the
state matrix. Low coverage SNP positions in heterozygous genome data are affected in a
similar manner.

Calling haplotype coverage on a Sam::Seq object will run an analysis aimed to identifying
the true coverage of the underlying reference sequence. The analysis is based on the con-
cept of discriminating SNPs: At a discriminating SNP position, true positive alignments
uniformly carry a nucleotide different from alignments of other origins. These sites can
be identified by first calling potential SNP positions, and second by assessing the score
distribution of the alignments associated with the SNP. If within the highest scoring
alignments, the distribution of states coincides with a state different from the overall
most abundant state, then this state is considered the true state despite its low support.
By computing the coverages for all most likely true states of each SNP positions along
a read, the true overall coverage to the read can be inferred. This newly determined
read-specific coverage can be used to further filter alignments and thus increase haplotype
resolution.

6.4.4. Sam::Phase

The Sam::Phase class provides methods pertaining to the experimental read-back phasing
algorithm described in section 6.3.7 Haplotype awareness through variant calling and read-
backed phasing. The implementation of the phasing is based on the algorithm introduced
by Levy et al. (2007), yet with significant modifications to optimize performance for longer
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and with respect to variable sites less accurate pre-corrected long reads. Further, not
only SNPs, but also insertions, deletions and more complex small variants are supported.

The approach itself uses 0 /1 encoding to represent reference matching and mismatching
variant states for each SNV position. The obtained states for each read are concatenated
forming short binary sequences. Using a greedy heuristic, the layout of the binary
sequences of aligned reads is determined and sequences are subsequently merged into a
consensus covering all variable sites present in the reference read. Finally, the states of
the reference read are matched to the obtained consensus and corrected if necessary.
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6.5. Conclusion

PacBio reads, due to their length, are a promising means in the quest towards the
perfect assembly. The high sequencing error rate of the technology, however, impairs
the usefulness of the generated data. Correction is a viable option, yet PacBio-only
strategies are limited to small scale projects because of computational and economic
constraints. Hybrid correction strategies, which integrate cheap and accurate Illumina
with low coverage, long PacBio reads, are from a sequencing point of view suited for
large genome assemblies. However, available software can only be applied to a very
limited degree to large-scale projects. The proovread hybrid correction pipeline has been
designed to fill this gap and enable correction of PacBio data generated for gigabase-sized
genomes.

proovread uses a short read mapping based consensus approach, that assesses optimal
alignments by localized score comparison. This renders the correction of individual
PacBio reads independent of each other, facilitating distribution of computing jobs on
arbitrary hardware architectures. As a result proovread scales well on data sets ranging
in size from viral and bacterial to large eukaryotic genomes.

On benchmark data, proovread’s legacy implementation outperformed competing software
in terms of correction accuracy as well as sensitivity, as indicated by highest total output
and contiguity. The pipeline has since been further improved by the introduction of a
faster, and specifically modified mapper (bwa-proovread), the addition of a pre-correction
step utilizing precomputed unitigs and the implementation of processing steps addressing
SMRT sequencing specific issues. Ultimately, proovread was used to successfully correct
more than 15 Gbp of PacBio reads sequenced from Venus flytrap samples (section 4.7
PacBio sequencing, correction and assembly), demonstrating its applicability to large-scale
projects.

Further, the usability of proovread for metagenomic data sets was explored. First,
based on simulated data, the correction procedure was optimized with respect to low
abundance read data. Subsequently, the resulting proovread-meta program was used for
the correction of a marine sponge metagenome data set. Analysis of assemblies generated
from only Illumina and from Illumina plus corrected PacBio reads, revealed substantial
improvements to assembly quality for the hybrid approach.

With the latest upgrades to the pipeline, the challenge of haplotype aware hybrid correction
was addressed. The basic Illumina-to-PacBio alignment and consensus approach was
extended to include identification and stabilization of variable sites, coverage independent
inference of the most likely state from the raw read and a final polishing step performing
read-backed phasing. Preliminary test runs showed an increase in haplotype consistent
variant calling from less than 80 % to over more than 99.9 %. Although still experimental,
this proof-of-concept implementation demonstrates, that haplotype resolution on single
read level during correction with proovread is achievable.
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7. Efficient processing of sequence data

7.1. perl5lib-Fasta/-Fastq — a Perl API to sequence data

FASTA (Lipman and Pearson, 1985) and FASTQ (Cock et al., 2009) are the two most
common text-based formats for storage of sequence data. Efficient processing of data
in these formats is therefore a key prerequisite to the development of bioinformatic
applications.

In the FASTA format (listing 7.1) each record is identified by a ‘>’ directly followed by a
unique sequence identifier without white-space and and optional white-space delimited
description. Subsequent lines hold the actual sequence information.

The FASTQ format (listing 7.2) is a de facto extension if the FASTA format for storing
NGS (Next Generation Sequencing, Pettersson et al., 2009) sequence information and
corresponding quality scores. A record is identified by a ‘@, followed by a sequence
identifier and an optional description. The second line holds the sequence information.
The third line starts with ‘+’, optionally followed by additional descriptive information.
Line four holds the ASCII encoded per base quality scores, usually Phred quality scores,
representing estimated base call error probabilities during sequencing.

Listing 7.1: sample FASTA record

1 >ID [DESCRIPTION]
2 GTCGTACGTATATCGCTGCTACGTAACCACACAGACCGACTGCTAGCTATTTGACCAACGCTGCTAGC
3 ACTGTTACGTACTGACTGGA

Listing 7.2: sample FASTQ record

QID [DESCRIPTIONI]
GTCGTACGTATATCGCTGCTACGTAACCACACAGACCGACTGCTAGCTAGAAATCGGTGGCTACGTAA
+
ADACEE9GDIIIJIJGIFHIFGIIBFJKIBFKFKKIKJJFKBKHFEJFGKGJ=K5CCJ7JKEFEJAQK

BWw N =

The Perl-based perlblib-Fasta and perlblib-Fastq libraries were developed as object-
oriented APIs to sequence data stored in the respective formats. The libraries provide
basic parsing functionalities as well as the more complex analysis, modification and
conversion routines. This includes the masking / unmasking operations and window-
based quality trimming employed by proovread. The libraries are publicly hosted
at the GitHub repositories https://github. com/BioInf-Wuerzburg/perlslib-Fasta
and https://github.com/BioInf-Wuerzburg/perl5lib-Fastq.
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7. Efficient processing of sequence data
7.2. SeqFilter — versatile manipulation of sequence files

SeqFilter is a Perl based tool for analysis and manipulation of sequence data stored
in FASTA or FASTQ format. The program is implemented using the perl5lib-Fasta/q
libraries (section 7.1). Its key functionalities comprise the compilation of basic sequence
statistics (sequence count, length, shortest, longest, N50 and others Nxx values, sequence
length distribution as histogram if filters are applied, statistics are provided for input and
output), manipulation of sequence headers and sequences (modify ID and description,
lowercase/uppercase conversion, mask irregular characters, reverse complement, extract
or modify parts of sequences based on IDs and coordinates), extraction, removal or
distribution of sequences based on length, ID lists or pattern matches and quality based
manipulation of sequences (convert to FASTA, transform phred-offsets, trim/extract /-
masked regions of low/high quality). SeqFilter is publicly available for download at
https://github.com/BioInf-Wuerzburg/SeqFilter.

SeqFilter is a core component of the proovread correction pipeline. It was also used to
generate the assembly metrics tables of the D. muscipula assemblies presented in this
work.

7.3. SeqChunker — efficient subset generation and reproducable
sampling for sequence data

Two important methods for computationally efficient processing of NGS sequencing data
are parallelization and sub-sample analysis. Both approaches require that sequencing
data is split into subsets of defined size and composition. SeqChunker has been developed
in cooperation with Frank Forster and Simon Pfaff to provide an efficient solution for
both of these tasks. The tool digests FASTA and FASTQ data with sequences of arbitrary
length. The data are split either into chunks of a specified size (s) or alternatively into
a specified number of chunks (n). Optimal performance in comparison to exhaustively
parsing each sequence individually, is achieved by limiting parsing to chunk boundaries,
while chunk cores are copied en bloc.

Systematic sampling (fig. 7.1) is realized by skipping defined subsets of chunks in the
output. Skipping rules are defined through low-level integer arithmetic. Available
parameters are chunk-step (x), chunks-per-step (y), first-chunk (f) and last-chunk (I).
For example, an approximately 25 % en bloc subset covering the second quarter of the
input data set can be generated withn =4, f =2 and [l = 2. A 25 % subset systematically
sampled across the entire data set is generated by using x =4 and y =1 and n > z. Its
75 % complementary subset, comprising all sequences not yet utilized is produced with
x =4,y =3 and f = 2. For convenience it is also possible to specify the desired subset
size as percentage. In this case, SeqChunker will internally compute appropriate values
for x and y.
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7.3. SeqChunker — efficient subset generation and reproducable sampling for sequence data
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Figure 7.2.: Benchmark of SeqChunker sub-sampling procedure. Bars indicate the required run-time of different
methods for sampling sets of 5% (blue) and 25% (red) from a large FASTQ file. SeqChunker was used with
default settings and with respective -percentage values. sed was set to extract four lines every 16 and 80
lines, respectively. The Perl approach is based on parsing each individual sequence and reporting every fourth /
twentieth record. With head, the first 5% /25 % of bytes present in the file were extracted.

The chunk-based systematic sub-sampling approach employed by Se-
qChunker is similarly robust as an entirely random sampling procedure
with respect to introducing / obscuring biases. At the same time, bench-
marks on test data (fig. 7.2) show that the implementation is 50 to 100
times faster than approaches requiring parsing of individual sequences.

Further, the procedure can be applied directly to a stream of data
without requiring temporary storage or noteworthy processing resources.
The method is deterministic and hence, results are fully reproducible.
Contrasting to random sampling, it is also possible, to generate entirely
complementary subsets.

SeqChunker is available as stand-alone tool at https://github.com/
BioInf-Wuerzburg/SeqChunker. Additionally, it is distributed along
with proovread, which utilizes SeqChunker for short reads sampling.
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Figure 7.1.: Systematic sam-
pling with SeqChunker. Col-
ored bars represent extracted
file regions for different sam-
pling parameters (top panels)
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8. Analysis and visualization of k-mer
distributions and derived data

8.1. Introduction

8.1.1. The concept of k-mers in sequence analysis

k-mers, next to their key role in short read assembly (see section 1.3), are a particularly
useful tool for the inference of sequencing sample characteristcs, such as genome size,
repeat content and ploidy. The major advantages of the technique is that the inital
analysis is directly performed on sequencing data, thus rendering the process independent
of the potentially complex assembly procedure (B. Liu et al., 2013).

k-mers — referred to as I-tuples in early publications — were first introduced to “estimat|e]
the repeat structure and length of DNA sequences” by X. Li and Waterman (2003).
Since then, k-mer-frequency analysis has become a commonly used method for assessing
characteristics of genomic sequencing data sets (Chor et al., 2009; Huang et al., 2009;
R. Li et al., 2010; Andrews, 2015). Further, k-mer-based approaches have been explored
to facilitate similarity independent identification and assembly of repetitive elements (Gu
et al., 2008; Koch et al., 2014; Nicolas et al., 2016). In combination with assemblies,
k-mers can be used to aid in assessment of copy number variations (Shen and Kidd,
2015; Sinha and Kundu, 2015), classification of metagenomic sequences (Schmieder and
R. Edwards, 2011; R. A. Edwards et al., 2012) or quantification of gene expression from
RNA-Seq data (Patro et al., 2014).

Fast and efficient counting of k-mers on large NGS data sets is computationally chal-
lenging (Margais and Kingsford, 2011). Different software, such as Meryl (E. Myers
et al., 2000), Tallymer (Raphael et al., 2004), Jellyfish (Margais and Kingsford, 2011),
BFcounter (Melsted and Pritchard, 2011) and KMC 2 (Deorowicz et al., 2014), have
been implemented to address the task.

In sequence analysis, the term k-mer refers to all possible substrings of a sequence of
the length k. The total number of k-mers of a sequence is given by (Eq. 8.1). The
abundance (ay) of a k-mer is the number of times a distinct k-mer occurs within a
sequence / a set of sequences: The sequence ATGGC, for example, comprises three distinct
3-mers ATG,TGG,GGC, each with an abundance of 1. If regions of a template sequence
occur multiple times within the sequence, this is reflected in the number of distinct
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8. Analysis and visualization of k-mer distributions and derived data

k-mers and the corresponding abundances: ATGGATGC comprises a total of six 3-mers,
yet only a set of five distinct ones (ATG,TGG,GGA,GAT,TGC) with ATG occuring twice,
thus having an abundance of 2. In contrast to abundance, the term frequency (f,) does
not apply to individual k-mers and their rate of occurance, but is used to describe the
distribution of k-mer abundances in a set. k-mer frequency refers to the number of
times k-mers with the same abundance are observed; it therefore denotes the frequency
of kmer abundances. In the example above, 3-mers with the abundance of 1 have a
frequeny of 4 (TGG,GGA,GAT,TGC occur once) and 3-mers with the abundance of 2 have
a frequency of 1 (ATG occurs twice). Note that the definitions of k-mer abundance and
frequency given here is widely accepted, yet can differ in other publications (team, 2016).
The distribution of k-mer frequencies with respect to abundance, referred to as k-mer
distribution or k-mer spectrum (Chor et al., 2009), is typically represented as smoothed
curve connecting the discrete values of the distribution or as k-mer histogram with a bin
size of 1 (Chikhi and Medvedev, 2014).

NE: Number of kmers
ls: Sequence length

(8.1) e =ls —k+1 k: Size of k-mer

The k-mer abundances obtained from sequencing data are directly related to the depth
of coverage (c¢) of the sequenced sample. If the template sequence ATGGC is covered
by 50 reads from end to end, this read set comprises the same three distinct 3-mers
(ATG,TGG,GGC) as observed for the reference, however, each with an abundance of 50.
Yet, the coverage values obtained from k-mer abundances, due to edge effects, differ from
physical per-base coverage on actual data: Consider the reads ATGC and GCGA, which
together cover the template ATGGCGA, resulting in an average per-base coverage of >1 (six
bases with ¢ = 1 plus one base with ¢ = 2). On k-mer level, both reads each comprise two
of the total of five 3-mers present in the template. The average c; thus computes to 0.8.
Because the number of k-mers in a read always is lower than the number of bases (Eq.
8.1), kmer-based coverages always fall short of actual per-base coverages. For typical
[lumina data sets with 100 bp reads and typcial k-mer sizes (19 to 31 used in analyses
in this work), the maximum obtainable kmer-coverage is in the range of 70 % to 82 % of
the true sequencing coverage.

In contrast to abundance, which refers to the actual count of a k-mer in the read set,
the term copy number (CN) refers the number of times the k-mer is present in the
sequenced template. In the aforementioned simple example with 50 x read coverage,
the abundance of each k-mer is 50, but the copy number is 1. Duplicated or repeated
regions within a template by definition have higher copy numbers (2 to n), and derived
k-mers proportionally higher abundances (ar x n). Due to the random generation of
sequencing fragments, the coverage of the underlying template within a set varies, and in
turn, so do the observed abundances. Because of the random, independent nature of the
events, the k-mer frequency distributions for each population of k-mers with identical
copy number can be modelled as Poisson distributions, and for high coverages (>1000)
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approximated with the Gauss distribution (Chikhi and Medvedev, 2014). On real data,
biases associated with PCR (Polymerase Chain Reaction, Bartlett and Stirling, 2003) and
amplification, which are part of the sequencing process (Quail et al., 2012), constitute a
non-independent component that can skew the distribution. Depending on the severity
of the effects, the negative binomial distribution, which allows for larger variances than
Poisson, can provide an alternative, more accurate model (Anders and Huber, 2010).

A particular strength of the Illumina sequencing technology is its high rate of accuracy
of >99 % — nevertheless errors, mostly substitutions, do occur (Morozova and Marra,
2008; Dohm and Lottaz, 2008). From a k-mer persective, an error in a sequencing read
is an alteration of all k-mers within the read that overlap with the erroneous position.
For large enough k-mers, the vast majority of the erroneous k-mers are novel distinct
k-mers that do not match the set of k-mers present in the template (Kelley et al., 2010).
Further, the introduction of an individual error to a read, usually represents an event
unique to a single read. Thus, the abundance of erroneous k-mers is 1, or slightly higher
in rare cases of coinciding errors.

Typically, sequencing is performed from non-strand specific sequencing libraries (Levin
et al., 2010). Thus, sequencing read sets comprise reads and consequently k-mers from
both strands conveying the same information. This is accounted for in k-mer analysis by
using canonical k-mers (Y. Liu et al., 2013; Kundeti et al., 2010). A canonical k-mer
is defined as the lexically smaller representation of a k-mer and its reverse complement.
The sequence ATGGC comprises three distinct pairs of forward / reverse complement 3-
mers, ATG/CAT,TGG/CCA/ and GGC/GCC, which correspond to the three canonical 3-mers
ATG,CCA and GCC. Reads generated from the template, by definition, comprise the same
three canonical 3-mers regardless of the strand they were sequenced from.

Unless otherwise stated, all analysis in this work were carried out based on canonical
k-mer representation. Furthermore, counting of k-mers was performed with Jellyfish.

8.1.2. Interpretation of k-mer distributions

The typical k-mer distribution of a haploid genomic sample, as plotted in fig. 8.1 exhibits
a unimodal k-mer frequency distribution. The main peak represents k-mers with a
copy number of 1 and with abundances corresponding to the depth of sequencing of
the analyzed library. The k-mer coverage of a sample is determined by the center of
the main peak, here 78 x. Low abundance (also referred to as low coverage) k-mers at
high frequencies correspond to k-mers resulting from sequencing errors. k-mers with
abuncances greater than the main peak correspond to regions of higher copy numbers, i. e.
repetitive k-mers. The k-mer coverage observed in the example is in congruence with the
expected per-base coverage of the sample: The size of the E. coli K-12 substr. MG1655
reference genome is 4.64 Mbp (Accession NC__000913); the analyzed sample comprises
5 x 10° reads at 100bp and thus a total of 500 Mbp. This computes to a theoretical
maximum per-base sequencing depth of 109 x. The true coverage needs to be assumed
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lower, as the read set usually contains minor cross and RNA contaminations as well as
adapter sequences and regions comprising uninformative Ns (Quail et al., 2012). The
theoretical maximum for the k-mer coverage for 19-mers on 100 bp due to edge-effects, is
82 % of the true per-base coverage. This maximum, however is shifted to lower values
because of sequencing errors, which remove k-mers from the main distribution. Thus,
assuming a reduced maximum per-base coverage of 100z, 78 z k-mer coverage fits the
expected range of less than 82 % of the per-base coverage well.
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Figure 8.1.: Distribution of 19-mers in 5 x 10° reads Figure 8.2.: Bimodal distribution of 19-mers for

of E. coli K-12 library ERR008613; red points conn-
tected by a line represent frequencies of the observed
k-mer abundances. The dashed and dotted lines
represent Poisson and negative binomial fits, respec-
tively.

heterozygous D. muscipula libraries; red points conn-
tected by a line represent frequencies of the observed
k-mer abundances. The dashed and dotted lines
represent Poisson and negative binomial fits, respec-
tively.

For diploid, heterozygous samples, the k-mer distribution typically shows a bimodal
frequency distribution (fig. 8.2). The first, usually smaller peak corresponds to k-mers
present only in one allel, and thus is referred to as heterozygous peak comprising heterozy-
gous k-mers. The second, homozygous peak, at twice the coverage of the heterozygous
peak represents the majority of k-mers, which are shared between the two allels. Note,
that the term copy number in di- and polyploid scenarios is not applied at the level
of allels, but on the polyploid genome as a whole, meaning, a region present in all
homologous chromosomes has a copy number of 1.

In general, peaks in a k-mer distribution represent read populations and consequently
regions of the sequenced sample with a distinct copy numbers. In the D. muscipula
example (fig. 8.2), a minor, third peak at 160z, which is twice the homozygous coverage
indicates regions with a copy number of 2. Depending on the structure of the genome, this
can either be attributed to several smaller duplicated regions (e.g. paralogous genes) or
to larger segmental duplications. Further, peaks at coverages lower than the heterozygous
peak often correspond to contaminations, while peaks at higher coverages can represent
genomes of plastids or mitochondria, which are present in the sequencing set in much
higher abundances than the nuclear genome.
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8.1.3. Estimation of genome size, repeat content and heterozygosity

The size of a sequenced genome can directly be inferred from the k-mer distribution
according to eq. 8.2 (X. Li and Waterman, 2003). The assumption is that all non-
erroneous (and non-contamination derived) k-mers belong to the genome and that
abundances directly convey the underlying copy numbers. For long sequences, such as
chromosomes, the sequence length can be approximated by the total number of k-mers
contained in the sequence. If the set of k-mers is represented by distinct k-mers with
abundances, each k-mer with copy number > 1 needs to be multiplied by its abundance
to obtain the size of the entire set. This logic also applies to read data derived from
genomes, however, with an additional normalization to transform abundances into copy
numbers.

a: abundance
00 f: frequency
Z ai X fi a: threshold for non-erroneous k-mers
(8.2) Sg = Ll Cr: k-mer coverage (CN==1)
Ck Sq: size of the genome

Similarly, also the sizes of subsets of the genome for different ranges of copy numbers
can be estimated. The total length of repetitive sequences in a set can be inferred using
eq. 8.2 with an abundance threshold a; corresponding to copy numbers > 1. SNV
counts and SNV rates can be estimated based on the size of the heterozygous peak
and the non-repetitive fraction of the genome using eq. 8.3 and 8.4, respectively (B.
Liu et al., 2013). Here the reasoning is that, similar to sequencing errors, each SNV
ideally affects k SNV-overlapping k-mers. Therefore, as an approximation, the amount
of SNVs in a diploid genome is proportional to the amount of reference k-mers affected
by SNVs. However, if a SNV is introduced, the set of overlapping k-mers is split in two
subsets, each representing one of the two variants with halfed abundances. Therefore,
the heterozygous peak comprises 2 X k k-mers per SNV. It should be noted, though, that
this approximation does not generally hold true for repeats. Here, SN'Vs often affect only
one allele of a single copy of the repeat. Therefore, k-mers derived from this particular
copy will contribute to the heterozygous peak, while the corresponding k-mers of the
other copies will remain in the repetitive fraction of the distribution. Therefore, the ratio
of heterozygous to homozygous k-mers can be shifted towards the heterozygous peak and
lead to an overestimation of the heterozygosity rate deduced from the k-mer distribution.

Shet k: kmer size
(8.3) Ny = I k Shet:  size of the heterozygous peak
Tyt number of SN'Vs
s Su: size of the non-repetitive genome
(84) Ty =1 in 772 Ty SNV rate
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8.2. Anscombe transformation facilitates computational analysis
and visualization of k-mer distributions

k-mer distributions and plots carry valuable information about the underlying sequenced
sample. Yet, inference of underlying properties, visualization and annotation of the distri-
bution often require manual investigation or alternatively the fitting of specialized models
(Chaisson and Pevzner, 2008; Kelley et al., 2010; Chikhi and Medvedev, 2014). Although,
these models, which comprise mixtures of binomial, Poisson or Gauss distributions, are
not necessarily complex from a mathematical point of view, their implementation in
non-statistical languages and the computations required for fit optimizations can be
challenging. Further, these models are designed for particular scenarios, e.g. haploid or
diploid genomes at coverage ranges from 20 z to 200 x, and, based on experience, perform
rather poorly on other data sets.

The proper (automated) visualization of k-mer distributions is closely related to the
ability of inferring basic characteristics directly from the raw abundance—frequency data.
While usually plots are drawn in a way that the entire data set is displayed, for k-mer
distributions, this does not make a lot of sense. The maximum frequencies, observed
for low coverage erroneous k-mers, can be several orders of magnitude larger than the
frequencies of the peaks of interest. The same holds true for high abundances observed for
repetitive k-mers. Therefore, plot regions need to be restricted with respect to location
and size of the signal containing peaks, rather than the full data set. This, however,
requires that size and location of potential peaks can be inferred directly from the data
prior to the generation of the actual plot.

The key problem for peak detection is that the width and height of a peak directly
depend on the position of the peak on the x-axis: the higher the abundances, the broader
and lower the peaks (fig. 8.3 A) — or in mathematical terms: For Poissonian data, the
variance of the data is equal to the mean of the distribution (02 = u). As a result of
this dependency, peaks have to be assessed with respect to their abundances, which
complicates regressions-based fits, but also graphical data exploration (Everitt, 2002).
Consider the two peaks in fig. 8.3 A at mean abundances of 33z and 671 x. Because of
the difference in shape, it is difficult to compare the two peaks by eye, for example to
tell, which peak is larger and represents a larger fraction of the sequenced sample.

The challenge of mean—variance dependency in general, can be met with variance stabiliz-
ing transformation (Everitt, 2002). In this procedure, the raw values of the data set are
transformed by a function in a way that in the resulting data set, the variance and mean
are independent. For Poissonian data, for example, variance stabilization can be achieved
by a simple square root transformation. A more practical transformation was introduced
first by Anscombe (1948): The Anscombe transformation (Eq. 8.5) turns Poissonian into
approximately Gaussian data with a fixed standard deviation (o) of 1. While utilization
of Anscombe transformation has been proposed for RNA-Seq (RNA sequencing, Chu and
Corey, 2012) data analysis (Kulinskaya et al., 2008; Rau et al., 2014), to my knowlegde,

146



8.2. Anscombe transformation facilitates computational analysis and visualization of k-mer distributions

8e+04 =
1000 kbp / 33X k—-mer distribution of:
—4— AB-m19.tsv (22 Mbp)

6e+04 —
>
3}
& 46404 -
Q de+
o
o

2e+04 — 990 kbp / 671X

08100 = @ e e eeeeeeeeeeeeoeeenrnenrnrnoononoooe e e me i - - - -

1 1 1 1 1 1
0 250 500 750 1000 1250
abundance
4e+05 - 1000 kbp / 33X 990 kbp / 671X k-mer distribution of:
. AB-m19.tsv (22 Mbp)

3e+05 —
>
3)
c
g
o 2e+05 -
o
&=

1le+05 -

0e+00 —

5 50 200 500 1000
abundance

Figure 8.3.: Frequency distribution of 19-mers in an artificial read set comprising to populations of reads with
different coverage levels, generated with kmer-plot kcov. The distribution is shown as continious smoothed
curve in linear space (A) and as stacked histogram in Anscombe transformed space. Peak sizes and coverages
are indicated by the respective labels. Dashed and dotted lines represent Poisson and negative binomial fits,
respectively. While in linear space the dependency of the variance of Poisson distributed data from the mean of
the distribution renders direct comparison of the peaks in terms of size and shape difficult, transformation into
Anscombe space allows for an intuitive interpretation.

this work is the first exploring and demonstrating its applicability for the improvement
of k-mer distribution analysis.

Figure 8.3 A and B both show the k-mer distribution of a simulated read set generated from
two artificial 1 Mbp templates, with per-base coverage of 50 z and 1,000 =, respectively.
While plot A was directly generated from the raw abundance-frequency data, plot B shows
the distibution as histogram in Anscombe transformed space with transformed abundances
cumulatively binned in intervals of 1. x-axis labels of the plot were retransformed to
regular space values for better comparability. In terms of readability, the Anscombe
transformed plot has two distinct advantages: First, the size and shape (Gauss) of the
peaks is independent of their position on the x-axis, and thus peaks can be directly
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3 Ty Anscombe transformed value
(8.5) To =2\/x + 3

compared. While in the non-transformed plot, the difference in size of the two peaks is
difficult to determine, in the Anscombe transformed histogram, it is evident that both
peaks are of the same size and thus represent genomic regions of similar size. Second,
the non-linear scaling of the x-axis increases the resolution on low abundance data
while compressing distances at high abundances. Therefore, Anscombe transformation
facilitates the graphical exploration of signals ranging over several orders of magnitude.

From a computational point of view, Anscombe transformation is also highly benefitial.
For Gaussian data, the relative amount of data points within a certain range around the
mean (p) of the function can be directly expressed as function of the standard deviation
of the distribution. A range of one standard deviation (u 4 o) accounts for 68 %, a range
of two standard deviations (u + 20) for 95% and a range of three standard deviations
(1 £ 30) for 99.7% of the data. Given that Anscombe transformation turns Poissonian
into Gaussian data with a fixed standard deviation of 1, and given a representation of the
transformed data in a discrete Anscombe transformed histogram with an interval size of 1,
which is equal to o, the 5 bins closest to the peaks maximum represent 97.6 % to 98.8 % of
the total data of a single peak. This generalized assumption allows for the formulation of a
simple and efficient peak calling heuristic: Peaks are given by local maxima obtained from
a sliding window analysis with window size 5 on aggregated Anscombe transformed data.
This heuristic is straight-forward in its implementation, does not require computationally
intensive fit optimization, works on any scale of abundances, and imposes no additional
assumptions on the data, such as state of ploidy, rendering it universally applicable.

This important concept new forms the basis for the k-mer based analytical tools described
in the following sections, and which were essential to the assessment of the D. muscipula
draft assemblies presented in the Part ?? ??f this work.
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8.3. kmer-plot kcov — visualization and automated annotation of
k-mer distributions

The kcov command of the kmer-plot toolkit provides a versatile interface for the gen-
eration and automated annotation of k-mer distribution plots. The primary interface
is written in Bash (Unix shell and command language), data processing and plotting
are implemented in R (Statistical programming language) and using ggplot2 (R plot-
ting library). The program is able to process multiple input files, either provided as
tab-separated plain files or as binary Jellyfish hashes. Initial analysis of the raw data and
inference of plot-relevant metrics, such as location and size of peaks rely on Anscombe
transformation based heuristics, as described in the previous section (section 8.2), and
are executed automatically during each run. The generated plots are scaled accordingly,
peak locations and sizes are indicated by labels, genome size estimates are added to the
legend. Distributions can either be drawn in regular or Anscombe space representation.

Figure 8.4 and fig. 8.5 show sample plots generated from two real experiments and
demonstrate the range of applicability of the program. Figure 8.4 was generated from
different D. muscipula data sets with estimated genome sizes of 2.6 Gbp and 2.7 Gbp,
respectively; it is displayed in regular space and focuses on size and topology of the
annotated main peaks at abundances between 1 x and 300 z. fig. 8.5 depicts distributions
of high coverage sequencing samples in Anscombe space obtained from viral samples,
before and after quality trimming. Although the samples exhibit extreme sequencing
biases — indicated by very broad peaks — the annotation heuristic employed by kcov is
capable of recognizing the signals of interest and scale the plot accordingly.
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Figure 8.4.: 19-mer distribution plot of sequencing data of a large diploid genome generated with kmer-plot
kcov. The two lines represent two D. muscipula data set from different sequencing experiments. Axis scaling,
genome sizes indicated in the legend (2.6 Gbp and 2.7 Gbp) and peak annotations indicating size and coverage
have been automatically determined by the script with default settings.
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Figure 8.5.: 19-mer distribution of different viral, high coverage sequencing samples plotted with kmer-plot
kcov as histograms in Anscombe space and oriented in multiple panels.
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8.4. kmer-coverage — representative, frequency adjusted k-mer
coverage

While k-mer abundances obtained from high coverage read data inherently car, ry
information about general characteristics of the sequenced sample, k-mer abundances can
also be used to specifically assess reference sequences, such as assembly contigs. For this
appraoch, instead of computing the abundances of k-mers present in the reference directly,
the abundance of each reference k-mer is determined based on its abundance in the high
coverage read data. This transfer of abundances from read data onto reference sequences
results in sequence specific k-mer coverage profiles, or short k-mer profiles, which convey
sequence specific characteristics, such as copy numbers, zygosity and repetitiveness of
contained regions as well as potential assembly errors.

For example, given a read set with 100z k-mer coverage, regions comprising mostly
k-mers with abundances close to 100 z correspond to regions with a copy number of 1.
Regions with higher abundances correspond to higher copy numbers and hence indicate
repeats. k-mer profiles offer insights similar to per-base coverage obtained from analysis
of mapped reads. However, the k-mer-based approach is computationally much more
efficient as neither the computation nor the processing of alignments to obtain actual per-
base coverages, is required. Moreover, once the k-mer-abundances have been computed
for the read set, these precomputed abundances can be used to analyze an arbitrary
number of sequence sets. There is, however, a distinct difference between read-based
and k-mer-based coverages: Mapping-derived per-base coverages are context dependent,
meaning the results obtained for a specific sequence can differ depending on which other
sequences are present in the analyzed data set. For example, reads from repetitive
regions potentially map to multiple locations in the reference. To avoid multi-mappings
in the output, only the best mapping for each read is reported. If several alignments
score equally, the mapping location is determined by random choice. Therefore, if the
genome comprises a repeat with 5 copies, the genome is sequenced and assembled, and
the assembly also comprises all 5 copies, the corresponding reads will during mapping be
evenly distributed among those copies. Ultimately, the per-base coverages also for the
repeats will be in the range of the sequencing depth. However, if during the assembly,
the repeat sequences are collapsed and only a single copy is reported in the contigs, this
regions will gather all reads matching the repeat, and thus get per-base coverages 5 times
higher than the sequencing depth. The same applies if only single sequences or subsets
of sequences of an assembly are analyzed. A decrease of the copy number of a particular
region in a sequence set will cause an increase in observed read-based coverages for the
remaining copies of said region. k-mer profiles, in contrast to mapping-derived per-base
coverages, are independent of the context the sequence occurs in. A repetitive k-mer will
always have the abundance with which it occurs in the read set, regardless of the number
of times, the repeat is present in the assembly. Therefore, k-mer coverages directly, and
even out of context, indicate repetitive regions within a sequence.
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Adjusted k-mer coverage

Carrying context information, as per-base coverage does, however, can be of high value
in the analysis of assembly data as well. As mentioned before, collapsed repeats can be
identified using per-base coverage, as these regions exhibit higher per-base coverages than
non-collapsed regions. Similar, if for a heterozygous data set, allels are assembled into
separate contigs, the coverage will be split between these two copies and thus only be half
as high as for regular regions. To introduce context dependency into k-mer abundance
data, I devised a new approach that produces k-mer profiles of adjusted coverage. The
adjusted coverage of a k-mer is given by the ratio of its abundance in the read set and
the number of its occurance in the analyzed reference sequence set. Again, consider the
example of the assembly of a 5 copy repeat from a 100 z sequencing sample. If the repeat
is fully resolved in the assembly and present in 5 copies, its raw k-mer coverages are
approx. 500z, its adjusted coverages, however, compute to 100 x. This is equal to the
coverages expected for regions with a copy number of 1 and present once in the assembly.
If, however, the repeat would have been collapsed during assembly the adjusted coverages
would increase proportionally. Therefore, adjusted k-mer coverage can be interpreted
analogous to mapping-derived coverages, but at the same time generated much faster.

Representative k-mer coverage

While the detailed analysis of k-mer profiles allows to assess particular regions of a
sequence individually, it often is useful to make more generalized assertion on the overall
nature of a complete sequence, such as: “contig A is repetitive, contig B has low coverage,

.. Typically, this is done by either using the mean or the median of the observed
coverages to describe the overall tendency in the data. However, mean as well as median
only provide a robust measure for unimodal distributions. k-mer distribution as well as
profiles often are multimodal mixtures, with different peaks corresponding to distinct
populations of reads and by extension to regions of distinct copy numbers. To better
reflect this multimodal topology representing distinct levels of copy numbers, I devised
an alternative approach that defines the representative coverage of a sequence. The
concept of representative coverage is based on the notion that the global nature of a
sequence is more adequately given by the coverage corresponding to the distinct copy
number of the largest portion of the analysed sequence, rather than mere mean / median.
Representative coverage, thus, is given by the coverage determined for the largest peak
within the distribution. In contrast to mean and median, representative coverage is a
robust measure in the sense that (a) only coverages actually representing a significant
fraction of the entire data set are considered in the first place and that (b) the measure
is independent of size and position of any additional peaks corresponding to other, minor
populations of k-mers.
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Implementation

The kmer-coverage tool is a multi-thread ready, Perl-based script that allows the com-
putation of the raw and adjusted k-mer coverages for all positions in a set of given
reference sequences. Based on these profiles, median and representative coverage for
both, raw and adjusted coverages of each analyzed sequence are reported. Internally, the
Jellyfish software is employed for k-mer counting. k-mer abundances in the reference
sequence set required for adjusted coverages are computed on the fly. Peak calling,
required for the computation of the representative coverage, is premised on the Anscombe
transformation based heuristic described in section 8.2. The kmer-coverage tool was used
for the generation of all k-mer coverage dependent analyses presented in this work.

8.5. kmer-plot gccov — automated visualization of GC-coverage
plots

GC-coverage plots were introduced to characterize bacterial contaminations in assemblies
of nonaxenic cultures by Nederbragt and Rounge (2010). Later, they were adopted for
the analysis of metagenome assemblies of bacterial consortia (D’haeseleer et al., 2013) and
simulataneous sequencing experiments of host-symbiont systems (Kumar and Blaxter,
2011; Kumar et al., 2013). GC-coverage plots are scatter-plots, in which individual
contigs are represented by a single data point with their relative GC content given on
the x-axis and their mean / median per-base coverage on the y-axis. Because of small
intra-species GC content variations but often large inter-species differences, and because
of the propotionality of coverage and abundance of different templates in the inital sample,
contigs derived from the same source cluster together in GC-coverage plots. GC-coverage
plots, in general, provide a mean for the graphical exploration of an assembly with
respect to the composition of the underlying sequencing sample. This not only holds
true for contigs derived from independent templates, but also for assemblies of complex
genomes, for which, especially if the level of fragmentation is high, different contigs can
represent different subsets of the total genome with diverse properties, such as high
copy number genes, transposable elements or viral integrations. Usually, GC-coverage
plots are generated from mapping-derived per-base coverages. This, however, renders the
approach compationally impracticle on large data sets.

To allow the efficient generation of the GC-coverage plots for large data sets, I adopted
the underlying idea, however used it with k-mer-derived coverages rather than mapping-
based ones. As described in the previous section (section 8.4), representative adjusted
k-mer coverages can be utilized as an alternative to mapping-derived coverages and
interpreted in a similar manner, yet can be computed much more efficiently. To facilitate
the automatic generation of GC-coverage plots I developed the kmer-plot gccov tool.
It extends the R / ggplot2 based kmer-plot implementation for processing and plotting
GC-coverage and associated taxonomic information.
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8. Analysis and visualization of k-mer distributions and derived data

To illustrate the utility of the gccov plots, let me introduce a short background story. In
December 2015, Boothby and Tenlen (2015) published the draft genome of the tardigrade
Hypsibius dujardini. Based on the identification of high levels of non-tardigrade derived
genes in the assembly, the authors concluded that the assembly is proof of a high level of
horizontal gene transfer between tardigrades and bacteria. Soon after the publication
of the study, that claim became the subject of a heated debate among scientist, mostly
communicated through social media channels. Less than two weeks later, Koutsovoulos
et al., 2015 submitted a paper to BioRyiv entitled Koutsovoulos2015. The obvious
question is: Who is right?
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Figure 8.6.: GC-content and sequence length distribution as a function of representative adjusted k-mer coverage
for the draft genome of Hypsibius dujardini. Left Panel: Circles represent individual sequences with length
encoded by size and taxonomic classification indicated by color. Right Panel: Histogram bars depict cumulative
lengths of the entire sequence set binned according to length intervals, color coded and stacked in decreasing
order.

Figure 8.6 shows the GC-coverage for the genome assembly of Hypsibius dujardini
generated with gccov from the published data. Each spot in the left panel represents
a contigs plotted with respect to its relative GC-content and representative adjusted
k-mer coverage. Dot / circle size indicate contig length. Different colors correspond to
taxonomic classifications assigned to each sequence by my colleague Frank Forster using
a homology-based approach. One major fraction of contigs clusters within a GC-range of
40 % to 50 % and a coverage range of 20z to 100 x. The vast majority of these sequences
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8.6. Conclusion

is characterized as metazoan and can be attributed to the genome of Hypsibius. The
second major fraction comprises sequences of bacterial origin and show coverages of
>20z and are distributed over a large GC-range. The difference in coverage levels for
genomic and bacterial sequences clearly indicates that the bacterial sequences in the
sample are not integrated into the tardigrade genome, but but constitute independent
contaminations. Contrasting, only a very small fraction of bacterial sequences shows
coverages similar to those of the tardigrade sequence. This clearly contradicts the claim
of excessive levels of horizontal gene transfer made by Boothby and Tenlen (2015).

8.6. Conclusion

k-mer distributions and derived k-mer profiles of assembly sequences are powerful means
for the exploratory analysis of genomic data as well as generated assemblies. Compared
to mapping-derived coverage, the concept of k-mer coverage provides a computationally
advantageous approach, that with the introduction of adjusted and representative cov-
erages also is superior in terms range of application and interpretation of results. The
kmer-coverage and kmer-plot scripts facilitate the automated generation of k-mer based
plots and, thus, are valuable tools for analysis of, in particular, large assembly data sets.
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Length-coverage distribution of Dm-gen-so-1
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Figure 7.: Sequence length distribution of assembly Dm-gen-so-1 as a function of raw
median (panel 1 and 3) and representative adjusted k-mer coverage (panel 2 and 4). Stacked
histogram bars depict cumulative length of contigs (panel 1 and 2) and scaffolds (panel 3
and 4) in different length intervals (color-coded, largest at the bottom). Coverages are
scaled by Anscombe transformation (section 8.2) and limited to a maximum of 10,000 z.
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Assembly parameter specifications

Listing 1: MIRA parameters

job = genome,denovo,draft
parameters = -GE:not=20
parameters = -NW:check_nfs=no
parameters = -HS:mnr=yes
parameters = -HS:nrc=15

parameters = PCBIOHQ_SETTINGS
readgroup = PCBIOHQ
data = Dm_GenPb_fillb5.renamed
technology = PCBIOHQ

-CL:pec=yes

fastq

Listing 2: Dm-gen-cl-1 assembly parameter

ovlErrorRate = 0.06
cnsErrorRate = 0.06
cgwErrorRate = 0.10
utgErrorRate = 0.015
utgErrorLimit = 2.5
doFragmentCorrection = 1
merylMemory = 100000
merylThreads = 24
mbtBatchSize = 10000000
mbtConcurrency = 24

mbtThreads = 24
ovlStoreMemory = 2048
ovlThreads = 12
ovlHashBlockLength = 10000000
ovlRefBlockSize = 5000000
ovlHashBits = 24
ovlConcurrency = 24
merOverlapperThreads
merOverlapperSeedBatchSize
merOverlapperExtendBatchSize
merOverlapperSeedConcurrency
frgCorrBatchSize = 2000000

frgCorrThreads = 24
frgCorrConcurrency = 24
ovlCorrBatchSize = 1000000
ovlCorrConcurrency = 24
cnsMinFrags = 10000
cnsConcurrency = 24

doExtendClearRanges = 2

0

24
100000
75000
24

Listing 3: Dm-gen-cl-1 assembly parameter

ovlErrorRate = 0.06
cnsErrorRate = 0.06
cgwErrorRate 0.10
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utgErrorRate = 0.015

utgErrorLimit = 2.5
merylMemory = 100000
merylThreads = 40
mbtBatchSize = 10000000
mbtConcurrency = 24

mbtThreads = 2

ovlStoreMemory = 2048

ovlThreads = 2
ovlHashBlockLength = 100000000
ovlRefBlockSize = 5000000
ovlHashBits = 24

ovlConcurrency = 24
merOverlapperThreads = 2
merOverlapperSeedBatchSize = 100000
merOverlapperExtendBatchSize 75000
merOverlapperSeedConcurrency 24
frgCorrBatchSize = 2000000

frgCorrThreads = 2
frgCorrConcurrency = 24
ovlCorrBatchSize = 1000000
ovlCorrConcurrency = 24
cnsMinFrags = 10000
cnsConcurrency = 24

doExtendClearRanges = 2

Listing 4: Dm-gen-cl-1 assembly parameter

ovlErrorRate = 0.06
cnsErrorRate = 0.06
cgwErrorRate = 0.10
utgErrorRate = 0.015
utgErrorLimit = 2.5
merylMemory = 100000
merylThreads = 40
mbtBatchSize = 10000000
mbtConcurrency = 24

mbtThreads = 2

ovlStoreMemory = 2048

ovlThreads = 2
ovlHashBlockLength = 100000000
ovlRefBlockSize = 5000000
ovlHashBits = 24

ovlConcurrency = 24
merOverlapperThreads = 2
merOverlapperSeedBatchSize 100000
merOverlapperExtendBatchSize 75000
merOverlapperSeedConcurrency 24
frgCorrBatchSize = 500000
frgCorrThreads = 2
frgCorrConcurrency = 4
ovlCorrBatchSize = 800000
ovlCorrConcurrency = 4
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doExtendClearRanges = 2

cnsMinFrags = 10000

cnsConcurrency = 8

merQC=1 # compute a mer based QC report (default=0)
cleanup=none # or light or heavy or aggressive (default=none)
doToggle=1

Listing 5: Dm-gen-cl-1 assembly parameter

ovlErrorRate = 0.06
cnsErrorRate = 0.06
cgwErrorRate = 0.10
utgErrorRate = 0.015

utgErrorLimit = 2.5
gkpAllowInefficientStorage = 1

merylMemory = 100000
merylThreads = 40
mbtBatchSize = 10000000
mbtConcurrency = 24

mbtThreads = 2

ovlStoreMemory = 10000

ovlThreads = 2
ovlHashBlockLength = 100000000
ovlRefBlockSize = 5000000
ovlHashBits = 24

ovlConcurrency = 24
merOverlapperThreads 2
merOverlapperSeedBatchSize = 100000
merOverlapperExtendBatchSize 75000
merOverlapperSeedConcurrency = 24
frgCorrBatchSize = 500000
frgCorrThreads = 2
frgCorrConcurrency = 4
ovlCorrBatchSize = 800000
ovlCorrConcurrency = 4
doExtendClearRanges = 2

cnsMinFrags = 10000

cnsConcurrency = 8

merQC=1 # compute a mer based QC report (default=0)
cleanup=none # or light or heavy or aggressive (default=none)
doToggle=1
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List of Assembly software abbreviations

Table 1.: Abbreviations of assembly software used in assembly naming schemes

Assembly software Abbrev.
ABySS (Simpson et al., 2009) ab
ALLPATHS ap
Celera cl

Discovar de novo (Weisenfeld et al., 2014) dc

dipSPAdes (Safonova et al., 2014) dp
minia (Chikhi and Rizk, 2013) mn
MIRA mr
MaSuRCA (Zimin et al., 2013) ms
Meraculous2 (Chapman et al., 2015) mc
Platanus (Kajitani et al., 2014) pt
SOAP so
SPAdes sp
backbone bb
tr-guided tr

Assembly metrics inventory

Assembly reads bases max min N50 YA
Dm-gen-so-1.1.fa 8470199 3167489463 16745 128 514  0.00
Dm-gen-so-1.1.fa 476500 784079898 16745 1000 1626  0.00
Dm-gen-so-1.2.fa 6571343 3752455584 355463 128 3350 21.92
Dm-gen-so-1.2.fa 337902 2287688755 355463 1000 26023 35.79
Dm-gen-so-4.1.fa 1177868 671847278 24098 128 615 0.00
Dm-gen-so-4.1.fa 107022 157492207 24098 1000 1422 0.00
Dm-gen-so-5.1.fa 17834956 4779791269 30558 128 260 0.00
Dm-gen-so-5.1.fa 349327 546533018 30558 1000 1522  0.00
Dm-gen-so-7.1.fa 75538900 5632532763 16136 50 69 0.00
Dm-gen-so-7.1.fa 51753 85530928 16136 1000 1628 0.00
Dm-gen-so-7.2.fa 8204536 1479523081 16136 100 173 0.00
Dm-gen-so-7.2.fa 51753 85530928 16136 1000 1628 0.00
Dm-gen-so-9.1.fa 4678921 1210730901 12606 128 388 0.00
Dm-gen-so-9.1.fa 36686 46632545 12606 1000 1210 0.00
Dm-gen-so-10.1.fa 46280104 5007245923 31576 68 101 0.00
Dm-gen-so-10.1.fa 136524 269553853 31576 1000 2063  0.00
Dm-gen-so-10.2.fa 11651795 2545846025 33678 100 237  2.61
Dm-gen-so-10.2.fa 173965 330777880 33678 1000 1950 2.58
Dm-gen-so-11.1.fa 35100734 4591817142 36450 78 129  0.00
Dm-gen-so-11.1.fa 176794 348549133 36450 1000 2057 0.00
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Dm-gen-so-11.

Dm-gen-so-11.

Dm-gen-so-12.

Dm-gen-so-12.

Dm-gen-so-12.

Dm-gen-so-12.

Dm-gen-ap-3.
Dm-gen—-ap-3.
Dm-gen-ap-3.
Dm-gen-ap-3.
Dm-gen-ap-4.
Dm-gen-ap-4.
Dm-gen-ap-4.
Dm-gen-ap-4.
Dm-gen—-ap-5.
Dm-gen-ap-5.
Dm-gen-ap-6.
Dm-gen-ap-6.
Dm-gen—-ap-6.
Dm-gen-ap-6.
Dm-gen-ap-8.
Dm-gen-ap-8.
Dm-gen-ap-8.
Dm-gen-ap-8.

N N~ P, NN P PP NDNDE 2NN -

Dm-gen-ap-10.

Dm-gen—-ap-10.

Dm-gen-ap-10.

Dm-gen-ap-10.

Dm-gen-ap-10.

Dm-gen—-ap-10.

Dm-gen-ap-10.

Dm-gen-ap-10.

Dm-gen-ap-11.

Dm-gen-ap-11.

Dm-gen-ap-11.

Dm-gen-ap-11.

Dm-gen-ap-11.

Dm-gen-ap-11.

Dm-gen-ap-12.

Dm-gen-ap-12.
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NN~ = NN

.fa
.fa
.fa
.fa
.fa
.fa

.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa

P o~ D DA DNDNDERE R D PDWWwWNN R

.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa

11365857
245254
15706681
104239
6725843
225751
130532
121946
79444
75237
131259
121899
72656
67321
82977
69319
173104
157636
75466
71438
143703
129479
70988
66855
271863
177093
70029
68704
130130
93295
130012
91519
253506
111335
76042
73052
120427
73897
288147
186445

2723441110
458348838
2449395592
160261473
1716157617
334044066
319449775
311310950
356891523
352864087
323302065
314411581
424312843
419215516
125963777
112970769
464029794
449801249
623269190
619404082
398042183
385036546
521916307
517959941
718849301
657422302
1015218851
1013945149
838025396
814802398
987731519
963349224
398543028
304128659
661574300
658714918
517610805
487266012
696714361
630192449

36450
36450
14004
14004
15435
15435
444389
444389
112772
112772
55979
55979
157218
157218
30348
30348
91443
91443
496750
496750
63064
63064
339789
339789
81999
81999
999304
999304
312707
312707
280514
280514
65605
65605
602575
602575
193891
193891
78053
78053

100
1000
88
1000
100
1000
125
1000
879
1000
244
1000
788
1000
503
1000
84
1000
880
1000
158
1000
880
1000
125
1000
845
1000
125
1000
125
1000
239
1000
845
1000
259
1000
78
1000

283
1886
170
1487
372
1414
3299
3404
7640
7747
3344
3462
12445
12623
1454
1558
3946
4125
19699
19814
4237
4472
17764
17932
5407
6194
31814
31886
16871
17497
26837
27735
2492
3644
17051
17145
10894
11726
4508
5307

O O N = O O NN

=
o O

.00
.72
.00
.00
.32
.89
.00
.00
.49
.61

0.00

.00
.81
.10
.00
.00
.00
.00
.55
.71
.00
.00
.73
.92
.00
.00
.19
.23
.48
.89
.38
.07
.00
.00
.76
.93
.49
.95
.00
.00



Dm-gen-ap-12.

Dm-gen-ap-12.

Dm-gen-ap-13.

Dm-gen—-ap-13.

Dm-gen-ap-13.

Dm-gen-ap-13.

Dm-gen-mn-2.
Dm-gen-mn-2.
Dm-gen-cl-2.
Dm-gen-cl-2.
Dm-gen-do-1.
Dm-gen-do-1.
Dm-gen-do-2.
Dm-gen-do-2.
Dm-gen—-do-3.
Dm-gen-do-3.
Dm-gen-do-4.
Dm-gen-do-4.
Dm-gen—-do-5.
Dm-gen-do-5.
Dm-gen-do-6.
Dm-gen-do-6.
Dm-gen-do-7.
Dm-gen-do-7.
Dm-gen-do-8.
Dm-gen—-do-8.
Dm-gen-do-9.
Dm-gen-do-9.
Dm-gen-tr-3.
Dm-gen-tr-3.

N T e e = e e e e e S i S S T L e e e = T = T = =

NN~ P NN

.fa
.fa
.fa
.fa
.fa
.fa

.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa
.fa

73733
72327
533480
246538
104847
104089
6698143
77811
754009
754008
1096
1096
26754
26743
56937
56885
70532
70434
14064
14063
44155
44140
84310
84230
5960
5952
96678
96596
42120
38900

1008033297
1006682621
1077631653
961303673
1454767257
1454046846
1272448859
154980348
2027352664
2027351665
11129563
11129563
315532794
315525165
648708028
648672206
742309688
742242856
188282016
188281483
573840283
573830821
940091810
940037689
82819863
82813182
1076755135
1076695894
188765959
186836727

996199
996199
77013
77013
1004118
1004118
20463
20463
25605
25605
31505
31505
54506
54506
79214
79214
64927
64927
63626
63626
83510
83510
77231
77231
65737
65737
100397
100397
41097
41097

845
1000
27
1000
809
1000
103
1000
999
1000
2204
2204
307
1014
83
1003
70
1001
533
1000
157
1013
209
1015
416
1005
210
1007
100
1000

29570
29628
5014
5974
34655
34677
177
2117
3204
3204
10866
10866
13320
13320
13181
13181
12340
12340
15423
15423
14770
14770
13049
13050
16845
16845
13127
13127
5925
5978

30.
30.
.00

88
93

0.00

NN
a1 O

O O O O O O O O O O O O O O O O O O o oo o oo

.92
.94
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
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SAM alignement column specification

Table 3.: SAM alignment column specification, modified from SAM/BAM Format Specification
Working Group, 2015

Col Field Type Brief description
1 QNAME String Query template NAME
2 FLAG Int bitwise FLAG
3 RNAME String Reference sequence NAME
4 POS Int 1-based leftmost mapping POSition
5 MAPQ Int MAPping Quality
6 CIGAR String CIGAR string
7 RNEXT String Ref. name of the mate/next read
8 PNEXT Int Position of the mate/next read
9 TLEN Int observed Template LENgth
10 SEQ String segment SEQuence
11 QUAL String ASCII of Phred quality score-scaled base QUALity+33

siamera blastn parameter

Table 4.: blastn parameter used for annotation of SMRT-bell chimeras by siamera module.

parameter initial blast refinement of multi-HSP alignments
—-dust no no

-strand ‘minus’  ‘minus’

-xdrop_gap_final 25 100

-soft_masking false false

-gapopen 3 default

-gapextend 2 default

-penalty -4 default

-culling_limit 1 1

-perc_identity 97.5 95.5

proovread-meta Omega test set
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