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Abstract

Primary osteoporosis is an age-related disease characterized by an imbalance in bone homeostasis. While the resorptive
aspect of the disease has been studied intensely, less is known about the anabolic part of the syndrome or presumptive
deficiencies in bone regeneration. Multipotent mesenchymal stem cells (MSC) are the primary source of osteogenic
regeneration. In the present study we aimed to unravel whether MSC biology is directly involved in the pathophysiology of
the disease and therefore performed microarray analyses of hMSC of elderly patients (79–94 years old) suffering from
osteoporosis (hMSC-OP). In comparison to age-matched controls we detected profound changes in the transcriptome in
hMSC-OP, e.g. enhanced mRNA expression of known osteoporosis-associated genes (LRP5, RUNX2, COL1A1) and of genes
involved in osteoclastogenesis (CSF1, PTH1R), but most notably of genes coding for inhibitors of WNT and BMP signaling,
such as Sclerostin and MAB21L2. These candidate genes indicate intrinsic deficiencies in self-renewal and differentiation
potential in osteoporotic stem cells. We also compared both hMSC-OP and non-osteoporotic hMSC-old of elderly donors to
hMSC of ,30 years younger donors and found that the transcriptional changes acquired between the sixth and the ninth
decade of life differed widely between osteoporotic and non-osteoporotic stem cells. In addition, we compared the
osteoporotic transcriptome to long term-cultivated, senescent hMSC and detected some signs for pre-senescence in hMSC-
OP. Our results suggest that in primary osteoporosis the transcriptomes of hMSC populations show distinct signatures and
little overlap with non-osteoporotic aging, although we detected some hints for senescence-associated changes. While
there are remarkable inter-individual variations as expected for polygenetic diseases, we could identify many susceptibility
genes for osteoporosis known from genetic studies. We also found new candidates, e.g. MAB21L2, a novel repressor of BMP-
induced transcription. Such transcriptional changes may reflect epigenetic changes, which are part of a specific
osteoporosis-associated aging process.
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Introduction

Primary osteoporosis is a polygenetic disease characterized by

low bone mineral density and microarchitectural deteriorations,

leading to an increased risk of fragility fractures of vertebrae,

femoral neck and other typical localizations of lower incidence [1].

Advanced age, gender and immobilization are major risk factors

for developing osteoporosis besides a series of other contributors,

e.g. diminished sex steroid production in elderly individuals and

after menopause [2,3]. During the first decades of osteoporosis

research the main focus has been the imbalance of bone resorption

over bone formation as a consequence of pathologically enhanced

osteoclast development and function [4]. Hence, antiresorptive

treatment, targeting mature osteoclasts and the osteoclastogenesis

promoting RANK (Receptor Activator of NF-kB)/RANKL

(RANK ligand) pathway has evolved as a standard therapy over

the last decades [1,5]. In contrast, research on presumptive

deficiencies in bone anabolism has been relatively neglected. Little

is known about the impact of bone forming osteoblasts on the

pathophysiology of osteoporosis in humans, although evidence was

found for reduced activity [6] and enhanced apoptosis [7,8].

Osteoblasts derive from mesenchymal stem cells (MSC), which can
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also give rise to other mesodermal cell types, such as adipocytes,

chondrocytes and fibroblasts [9]. Despite of MSC as the source for

bone regeneration it is currently unknown if intrinsic deficiencies

in these cells contribute to osteoporotic bone loss.

Three major signaling pathways have been identified to govern

bone regeneration with an intense intracellular crosstalk: a) Bone

morphogenetic protein (BMP) signaling, b) WNT signaling and c)

signaling through parathyroid hormone receptor (PTH1R) acti-

vation. Recent research has highlighted the relevance of inhibitors

of the respective pathways for the regulation of bone mass and

thereby suggested new targets for the treatment of bone loss [1].

BMP proteins belong to the TGFb superfamily and activation of

BMP receptors leads to induction of transcription through either

MAP kinase signaling or phosphorylation of SMAD1/5/8

proteins [10,11]. Signaling through BMP proteins is regulated

by either extracellular antagonists such as Noggin and Gremlin

[12,13] or by intracellular inhibitors, e.g. inhibitory SMAD

proteins [14] or nuclear MAB21L2 (Mab-21-like 2), a recently

discovered BMP4 inhibitor [15].

Depending on coreceptors WNT signaling can be divided into

canonical and non-canonical pathways. Canonical signaling is

induced by binding of WNT ligands to the receptors of the

Frizzled (FZD) family and LRP5/6 coreceptors, which results in

activation of WNT-specific gene transcription by stabilization and

nuclear translocation of b-Catenin. Non-canonical WNT signaling

is transduced through FZD and ROR2/RYK coreceptors, which

leads to the activation of G-protein or Ca2+-dependent cascades

[16]. In MSC canonical signaling through WNT2, WNT3 or

WNT3a induces proliferation and keeps the cells in an undiffer-

entiated state, whereas non-canonical signaling, e.g. by WNT5a,

WNT5b or WNT11, supports osteogenesis [17,18,19].

The osteocyte-specific factor Sclerostin (SOST) was described as

an inhibitor of canonical WNT signaling, whereas there is ongoing

discussion about its putative inhibitory effect on BMP signaling

[20,21]. Sclerostin leads to reduced bone formation [22] and loss

of function mutations are responsible for the high bone mass

syndromes Van Buchem disease and sclerosteosis [23]. A

neutralizing antibody against Sclerostin is a new, upcoming

therapeutic treatment for osteoporosis [1,24].

Intermittent treatment with parathyroid hormone (PTH) is

another therapeutical approach for osteoporosis and activates the

third major signaling pathway in bone regeneration. However,

continuous activation of PTH receptor has negative effects on

bone homeostasis because subsequently enhanced RANKL

expression on maturing osteoblasts stimulates osteoclast formation

and bone resorption [25,26].

Interestingly, the genetic loci of proteins involved in the

signaling pathways mentioned above, e.g. LRP5, LRP4, Scler-

ostin, PTH, BMPs or BMP receptor BMPR1B, have already been

linked to the polygenetic nature of primary osteoporosis by whole-

genome association studies and meta-analyses [27,28,29,30].

Besides genetic predisposition, advanced age is another strong

risk factor for developing osteoporosis with adult stem cells being

the restrictive parameter for unlimited tissue regeneration. In vitro,

cells exhibit limited dividing capacity and enter replicative

senescence, a state of irreversible G1 phase arrest, after about 50

population doublings [31,32]. It is caused by multiple factors like

telomere shortening, oxidative stress, deficiencies in DNA repair

and epigenetic changes. Currently it is still controversial, whether

clock-driven, organismic aging is caused by the loss of self-

regeneration due to replicative senescence of stem cells or by

extrinsic environmental factors [33].

The impact of presumptive deficiencies of hMSC in elderly,

osteoporotic patients has not been studied intensely yet and to our

knowledge changes at the gene expression level have not been

examined before. Therefore, we performed microarray analyses of

hMSC of elderly donors with and without osteoporosis to detect

disease-associated changes in gene expression. With osteoporosis

being an age-related disease, we also investigated the impact of

aging on hMSC in general by analyzing the transcriptome of in

vivo-aged and in vitro-aged, senescent cells. We discovered that

hMSC of patients suffering from severe osteoporosis display a

disease-specific gene expression pattern that is distinct from the

effects of organismic aging per se. Besides the induced expression of

inhibitors of bone formation we detected promising new candidate

genes for osteoporosis and even found evidence for reduced stem

cell function.

Results

Osteoporosis-induced changes in gene expression
In this study, we compared the transcriptome of hMSC from 5

patients (79–94 years old) suffering from primary osteoporosis

(hMSC-OP) with hMSC of the age-matched control group

(hMSC-old; donor age 79–89 years) (Table 1). Genome-wide

gene expression patterns were examined by employing microarray

hybridizations; the obtained data was compared by SAM method

(GEO accession number GSE35958). Fold changes (FC) in gene

expression were regarded as significant at a threshold of at least

2fold and a false discovery rate (FDR) of less than 10%. We

detected 2477 gene products with higher and 1222 gene products

with reduced expression in osteoporotic hMSC-OP in comparison

to non-osteoporotic hMSC-old (Figure 1A, Table S1).

Osteoporosis as a polygenetic disease has been studied

intensively on gene level, resulting in the detection of gene loci

and polymorphisms associated with low bone mineral density

(BMD), osteoporosis and fracture risk. In contrast to these

approaches, our data represents the effects of both genetic and

epigenetic changes in hMSC during the development of osteopo-

rosis.

To see if our results coincide at least partly with the genes

associated to BMD by specific single nucleotide polymorphisms

(SNP) and copy number variations, we searched the NCBI data

base for genome-wide association studies, meta-analyses and

candidate gene association studies. The genes listed in these

studies were compared to all gene products differentially expressed

in the approach hMSC-OP versus hMSC-old.

We identified enhanced expression of 39 genes in hMSC-OP

and reduced expression of 16 genes that are already described as

reliable or promising candidates for osteoporosis, including

susceptibility genes like LRP5, SPP1 (Osteopontin), COL1A1 and

SOST (Table 2).

Effects of osteoporosis are independent of clock-driven
aging

One of the main risk factors for developing primary osteoporosis

is advanced age. Therefore, in the next step, we focused on gene

expression patterns that were identical in hMSC-OP of elderly

patients suffering from osteoporosis and hMSC-old of non-

osteoporotic, elderly donors. As a new control group for

microarray comparisons, we used hMSC of middle-aged donors

(hMSC-C; donor age 42–67 years).

In the comparison of hMSC-OP versus hMSC-C (GEO

accession number GSE35956) we detected 630 gene products

with higher and 368 gene products with reduced expression due to

osteoporosis and advanced donor age. By comparing hMSC-old

with hMSC-C (GEO accession number GSE35955) we obtained

gene expression changes due to advanced age per se and found

Transcriptome of Osteoporotic MSC
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enhanced expression of 540 gene products and decreased

expression of 1741 gene products in hMSC-old.

Due to the fact that we used hMSC-C as a control in both SAM

approaches we could compare the differentially gene expression

patterns of hMSC-OP and hMSC-old (Figure 1C and D).

Surprisingly we detected a minority of 28 gene products with

enhanced and 36 gene products with reduced expression in both

approaches (for gene names see Table S2).

One of the genes that was enhanced expressed due to

osteoporosis but also due to advanced age was MAB21L2 with

FC[hMSC-old versus hMSC-C] = 2.7 and FC[hMSC-OP versus

hMSC-C] = 14.4. By performing qPCR analysis with up to 13

samples per hMSC group we confirmed that the expression of

MAB21L2 is significantly higher in osteoporotic hMSC-OP than in

hMSC-old when compared to hMSC-C of the middle-aged

control group (Figure 1B).

In contrast, SOST, the gene coding for Sclerostin, is not

associated with advanced age (no significant FC), but both

microarray analysis (FC[hMSC-OP versus hMSC-C] = 7.3) and

qPCR revealed the enhanced expression of the gene in osteopo-

rotic hMSC-OP (Figure 1B).

Osteoporotic stem cells show few signs of replicative
senescence

Because donors of osteoporotic cells were of highly advanced

age (79+ years old) and due to the hypothesis that aging is caused

by stem cells losing their self-renewal capacity due to replication

limits, we investigated whether hMSC-OP showed any signs of

replicative senescence. Therefore, we performed long-term culti-

vation of hMSC from healthy donors of medium age (42–64 years

old) until they entered senescence (hMSC-senescent), proved by

proliferation stop and positive senescence-associated b-galactosi-

dase staining (data not shown).

Microarray analyses of hMSC in senescent passage Px revealed

500 gene products with enhanced and 1049 gene products with

reduced expression when compared to the previously used control

group hMSC-C of early passages (GEO accession number

GSE35957).

By using hMSC-C as control cells for all three SAM datasets we

could compare the differential gene expression pattern of hMSC-

OP, hMSC-old and hMSC-senescent to find parallels in gene

expression. We detected small overlap for gene products with

enhanced expression when comparing hMSC-OP with hMSC-

senescent (15) and hMSC-old with hMSC-senescent (14)

(Figure 1C). More senescence-associated gene products were

found reduced expressed in hMSC-old (114) and hMSC-OP (74)

(Figure 1 D, Table S2). Few genes were differentially expressed in

all three datasets: TMEFF1 showed induced expression, whereas

MED13L, ANLN, ZWILCH, CMPK2, DDX17, MCM2 and MCM8

showed diminished expression in hMSC-OP, hMSC-old and

hMSC-senescent when compared to hMSC-C.

By generating a heat map for gene products at least 2fold

differentially expressed in hMSC-OP compared to hMSC-C we

Table 1. Human MSC populations used for microarray hybridization.

hMSC group hMSC-C hMSC-OP hMSC-old hMSC-senescent

Donors (n) 5 5 4 5

Average donor age (years) 57.669.56 86.265.89 81.7564.86 56.468.96

Donors showed signs of osteoporosis no yes no no

Gender 4x f, 1x m 5x f 3x f, 1x m 3x f, 2x m

RNA of hMSC used in passage 4x P1, 1x P2 4x P1, 1x P2 P1 Px

hMSC-C = control hMSC; hMSC-OP = osteoporotic hMSC; hMSC-old = hMSC of non-osteoporotic, elderly donors; hMSC-senescent = long term-cultivated hMSC in the
state of replicative senescence; standard deviations are indicated by 6; n = number; f = female; m = male; P = passage; Px = senescent passage.
doi:10.1371/journal.pone.0045142.t001

Figure 1. Differential gene expression of osteoporotic and
aged hMSC. (A) Microarray comparison of hMSC-OP of elderly patients
suffering from primary osteoporosis to age-matched control group
hMSC-old. The numbers indicate the number of gene products with
enhanced expression (red) and reduced expression (green) in hMSC-OP
(for gene names see Table S1). Black numbers mark expressed gene
products without significant change in expression. (B) Quantitative PCR
of relative change in gene expression of SOST (Sclerostin) and MAB21L2
(Mab-21-like 2) in hMSC-old and osteoporotic hMSC-OP in comparison
to hMSC-C. Complementary DNA of hMSC-OP of patients suffering from
primary osteoporosis (n = 12, including 4 samples also used for
microarray hybridization; age 84.266.3), hMSC-old from non-osteopo-
rotic donors of advanced age (n = 13, including 4 samples also used for
microarray hybridization; age 82.363.6) and hMSC-C of middle-aged,
healthy donors (n = 11, including one sample also used for microarray
hybridization; age 41.662.6) was used. Asterisks indicate significant
differences as analyzed by Mann-Whitney U test (*p,0.05, **p,0.01,
***p,0.001). (C–D) Comparison of differential gene expression patterns
of hMSC-OP, hMSC-old and hMSC-senescent when compared to hMSC-
C of middle-aged, healthy donors by microarray analyses. The numbers
indicate the number of gene products (GP) with significantly enhanced
(C) or reduced (D) expression, respectively (for gene names see Table
S2).
doi:10.1371/journal.pone.0045142.g001
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Table 2. Differentially expressed genes in hMSC-OP in comparison to hMSC-old with known association to BMD or fracture risk.

Symbol Gene name Probeset ID FC FDR (%) Reference

Enhanced expression in hMSC-OP

AAS achalasia, adrenocortical insufficiency, alacrimia 218075_at 3.57 0.08 [58]

ANKH ankylosis, progressive homolog 223094_s_at 3.60 0.26 [27]

1560369_at 3.40 0.35

ARHGAP1 Rho GTPase activating protein 1 216689_x_at 7.06 0.00 [58]

ASPH aspartate beta-hydroxylase 205808_at 7.80 0.00 [28]

ASXL2 additional sex combs like 2 1555266_a_at 9.07 0.00 [59]

218659_at 2.39 0.33 [59]

CAMK1G calcium/calmodulin-dependent protein kinase IG 217128_s_at 2.45 0.44 [60]

CKAP5 cytoskeleton associated protein 5 1555278_a_at 2.78 0.26 [58]

COL1A1 collagen, type I, alpha 1 217430_x_at 22.19 0.00 [27]

CRTAP cartilage associated protein 1554464_a_at 2.44 0.86 [61]

CUL7 cullin 7 203558_at 4.09 0.00 [28]

241747_s_at 3.41 0.35

36084_at 3.07 0.08

DBP D site of albumin promoter (albumin D-box) binding protein 209782_s_at 2.87 2.45 [27]

DIO2 deiodinase, iodothyronine, type II 231240_at 4.48 0.00 [62]

DMWD dystrophia myotonica, WD repeat containing 213231_at 4.11 0.26 [59]

33768_at 3.11 0.23

1554429_a_at 2.71 0.19

E2F7 E2F transcription factor 7 241725_at 2.21 0.86 [63]

ERCC2 excision repair cross-complementing rodent repair deficiency, complementation
group 2

213468_at 2.97 0.08 [59]

ERLIN1 ER lipid raft associated 1 202444_s_at 4.33 0.08 [58]

FOXC2 forkhead box C2 (MFH-1, mesenchyme forkhead 1) 214520_at 6.24 0.00 [27]

FZD1 frizzled homolog 1 204452_s_at 2.85 0.35 [27]

GSR glutathione reductase 205770_at 2.10 2.06 [64]

GSTM1 glutathione S-transferase mu 1 204550_x_at 3.57 0.19 [64]

215333_x_at 3.19 0.35

HMGA2 high mobility group AT-hook 2 1558682_at 3.33 0.63 [27]

HSD11B1 hydroxysteroid (11-beta) dehydrogenase 1 205404_at 2.15 9.00 [65]

IBSP integrin-binding sialoprotein 207370_at 9.41 0.00 [29,66]

236028_at 4.88 0.26

KPNA4 karyopherin alpha 4 (importin alpha 3) 209653_at 4.04 0.19 [58]

LRP5 low density lipoprotein receptor-related protein 5 209468_at 3.54 0.33 [27]

MRPL2 mitochondrial ribosomal protein L2 218887_at 2.07 0.73 [28]

ND2 mitochondrially encoded NADH dehydrogenase 2 (MTND2) 1553551_s_at 2.66 0.14 [67]

PDE7B phosphodiesterase 7B 220343_at 3.39 0.55 [28]

PRR16 proline rich 16 1554867_a_at 2.12 2.72 [68]

PTPRD protein tyrosine phosphatase, receptor type, D 213362_at 3.07 3.21 [69]

205712_at 2.91 1.67

RARG retinoic acid receptor, gamma 204189_at 3.85 0.26 [58]

RERE arginine-glutamic acid dipeptide (RE) repeats 221643_s_at 5.26 0.00 [27]

RUNX2 runt-related transcription factor 2 216994_s_at 11.86 0.00 [27]

SIX5 SIX homeobox 5 229009_at 2.69 0.26 [59]

SOST sclerostin 223869_at 4.60 1.00 [27]

SOX4 SRY (sex determining region Y)-box 4 201418_s_at 2.23 2.72 [29]

SP1 Sp1 transcription factor 1553685_s_at 4.19 0.08 [58]

214732_at 3.49 0.35

SPP1 secreted phosphoprotein 1 209875_s_at 2.53 4.15 [70]
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could highlight the difference between hMSC-OP, hMSC-old and

hMSC-senescence (Figure 2). Osteoporotic cells exhibit a distinct

gene expression profile independent of both clock-driven aging

and cellular aging.

Relevance of transcriptional changes for stem cell
function

To unravel if changes in gene expression profile could cause

deficiencies in cellular processes we carried out gene function and

pathway identifications by Gene Ontology classification and by

searching within the NCBI database for literature. By comparing

functions of genes differentially expressed in hMSC-OP, hMSC-

old and hMSC-senescent when compared to hMSC-C we

detected differences in the effect of osteoporosis, age and

senescence on stem cell characteristics. Hereby we focused on

genes with known relevance in the following 4 processes: (1)

osteoblastogenesis, (2) osteoclastogenesis, (3) proliferation and (4)

DNA repair (Table 3). These categories play important roles in

sustaining bone homeostasis by influencing bone formation, bone

resorption and self-renewal of stem cells.

In hMSC-OP we found enhanced expression of gene products

with relevance in osteoblastogenesis by autocrine and paracrine

stimulation, respectively (PTH1R, IBSP, IGF2, VEGFA and

VEGFB). In senescent hMSC and hMSC-old we detected reduced

expression of genes coding for enhancers of osteoblast differenti-

ation and matrix mineralization (SPP1, ALPL, EFNB2, COL1A1,

RUNX2 and ANKH).

Genes coding for inhibitors of WNT signaling (SOST, KRE-

MEN1) showed enhanced expression in hMSC-OP in comparison

to hMSC-C, whereas activators of canonical WNT signaling that

indirectly inhibit osteogenic differentiation by augmenting prolif-

eration, were more highly expressed in in vitro- aged and senescent

hMSC (WNT2, WNT3, CTNNB1). Next to MAB21L2, which codes

for a repressor of BMP-induced transcription, another negative

regulator of osteoblastogenesis was enhanced expressed in hMSC-

OP and hMSC-old: Follistatin (FST), which is associated with

inhibition of Activin.

Genes linked to bone resorption were differentially expressed in

all three hMSC groups with senescent cells exhibiting strongly

diminished potential for inducing osteoclastogenesis by decreased

expression of secreted ligands (TGFB, VEGF, IL7, IL1A) and other

stimulators like TNFSF11 (RANKL). The gene coding for the

osteoclast inhibitor Osteoprotegerin (TNFRSF11B) was expressed

to a higher extent in hMSC-senescent. In vivo-aged hMSC-old

showed a similar gene expression pattern whereas osteoporotic

hMSC-OP revealed enhanced expression of genes indirectly

(PTH1R, PTGS2 and IGF2) as well as directly (CSF1, VEGFA

and VEGFB) involved in promoting osteoclast formation.

By examining the expression of genes related to proliferation we

found a substantial number of repressed genes that code for

proteins important for cell division, like several Cyclins, CDC2

and CDC25 proteins in hMSC-senescent. Markers for cellular

senescence and genes described as mediators of cell cycle were also

differentially expressed in these cells, e.g. CDKN2A (P16), several

PSG, PTN, ARHGAP29 (PARG1), HMMR and HELLS. Clock-

driven aging and osteoporosis showed less negative effects on

proliferative capacity of stem cells, but in hMSC-OP the

expression of a second well known marker of replicative

senescence – besides P16 – was increased: CDKN1A, which codes

for P21.

DNA repair is one of the reasons for cell cycle arrest at the G1,

S or G2 checkpoints of mitosis to prevent the accumulation of

DNA damage or mutations that could result in tumor develop-

ment. Again hMSC-senescent exhibited the most severe deficien-

Table 2. Cont.

Symbol Gene name Probeset ID FC FDR (%) Reference

TBC1D1 TBC1 (tre-2/USP6, BUB2, cdc16) domain family, member 1 1568713_a_at 4.11 0.35 [58]

Reduced expression in hMSC-OP

CTNNB1 catenin (cadherin-associated protein), beta 1, 88 kdf 201533_at 0.44 1.67 [66]

1554411_at 0.23 0.23

FAM3C family with sequence similarity 3, member C 236316_at 0.44 9.00 [27]

FBXL17 F-box and leucine-rich repeat protein 17 227203_at 0.32 0.55 [68]

FGF14 fibroblast growth factor 14 230231_at 0.50 5.82 [68]

FGFR2 fibroblast growth factor receptor 2 208229_at 0.20 0.73 [70]

IFNAR2 interferon (alpha, beta and omega) receptor 2 204786_s_at 0.43 2.72 [71]

ITIH5 inter-alpha (globulin) inhibitor H5 1553243_at 0.30 2.72 [69]

JAG1 Jagged 1 (Alagille syndrome) 231183_s_at 0.33 2.06 [72]

NHS Nance-Horan syndrome 242800_at 0.38 2.72 [28]

PLCL1 phospholipase C-like 1 205934_at 0.25 5.82 [27]

PTN pleiotrophin 211737_x_at 0.49 6.81 [70]

209465_x_at 0.46 5.82

PTPRM protein tyrosine phosphatase, receptor type, M 1555578_at 0.47 6.81 [28]

RAPGEF4 Rap guanine nucleotide exchange factor (GEF) 4 205651_x_at 0.46 3.67 [69]

SERPINE2 Serpin peptidase inhibitor, clade E, member 2 227487_s_at 0.44 4.93 [28]

SFRP4 secreted frizzled-related protein 4 204052_s_at 0.26 3.67 [73]

SMAD1 SMAD family member 1 227798_at 0.47 3.21 [71]

FC = fold change; FDR = false discovery rate.
doi:10.1371/journal.pone.0045142.t002
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cies with a diminished expression of genes involved in DNA repair

like TOP2A, EXO1 and several DNA polymerases. Osteoporotic

and aged hMSC showed minor changes.

Discussion

During aging, a continuous decrease in bone mass and bone

density occurs and peaks in the development of primary

osteoporosis in one of three women and one of eight men over

the age of 50 [2,27]. Induced by a variety of risk factors like

advanced age, loss of sex steroid production and unhealthy life

style [2,3,34], recent research has largely unraveled the polyge-

netic nature and the multifaceted pathophysiology of this

syndrome [27,29,35]. Hitherto, approaches for studying the

disease mostly consisted of whole genome association studies of

BMD-associated gene loci as well as of manipulating expression of

candidate genes in animal models or cells in vitro, followed by

characterization of phenotypes [36,37,38]. However, bone loss

associated with increasing age is a continuous process not only

caused by gene polymorphisms but very likely also by epigenetic

modulations of gene expression changes that accompany aging

[39]. So far, analyses of these changes in primary cells of

osteoporotic patients or in whole bone samples have been almost

neglected.

We analyzed the effect of primary osteoporosis on the source of

bone regeneration and performed microarray hybridizations of

hMSC of elderly patients suffering from severe osteoporosis

(hMSC-OP) and of donors of advanced age without any indication

for the syndrome (hMSC-old). We detected several genes

connected to BMD with either reduced (16) or increased (39)

expression in hMSC-OP including well-investigated susceptibility

genes like LRP5, SPP1 (Osteopontin), COL1A1 and SOST (Table 2)

[27]. The latter codes for the osteocyte-specific protein Sclerostin,

which acts as a WNT antagonist and is also controversially

discussed as a BMP inhibitor [20,22,23]. Upon release, the protein

inhibits proliferation of MSC and osteoblasts, blocks osteogenic

differentiation and even induces apoptosis in osteoblasts [23,40].

Direct connections between the protein and osteoporosis have

already been described: serum levels of Sclerostin were found

enhanced in postmenopausal women [41] and one of the

upcoming treatments for osteoporosis is the application of anti-

Sclerostin-antibodies [24,42]. It is conceivable that the premature

expression of SOST in osteoporotic stem cells auto-inhibits

proliferation and self-renewal of hMSC-OP and thereby leads to

the reduced ratios of formation to resorption observed in primary

osteoporosis [43].

Furthermore we also found higher expression of MAB21L2

(Mab-21-like 2) in hMSC-OP in comparison to hMSC-old. QPCR

revealed that, even though the expression was induced by

advanced donor age itself, the transcription of MAB21L2 was

even more triggered in osteoporotic stem cells (Figure 1B). In

Xenopus laevis gastrulae it was shown that MAB21L2 antagonizes

the effects of BMP4 by repressing the BMP-induced gene

expression. The nuclear protein binds SMAD1, the transducer

of BMP2/4/7 signaling, but so far it is still unknown if MAB21L2

exerts its effects in a DNA-binding or a non-binding fashion [15].

Our data of age- and osteoporosis-induced expression of

MAB21L2 in hMSC made us hypothesize that BMP-signaling in

stem cells is less effective in advanced age and even less so in

primary osteoporosis due to transcriptional repression of BMP-

target genes.

Despite high inter-individual variability in the gene expression

level, as demonstrated in our heat map (Figure 2), we could

validate the microarray results for both SOST and MAB21L2 in

qPCR analysis with up to 13 different hMSC-OP and hMSC-old

populations. We hereby demonstrate the reliability of our

microarray approach, which was performed with a comparably

low number of samples. Being inhibitors of WNT and BMP

signaling, our two leading candidates are major hubs in blocking

differentiation programs right at the beginning. Hereby, our data

support the results of Rodriguez et al. and Dalle Carbonare et al.,

who demonstrated in vitro that osteoporotic hMSC exhibit

diminished osteogenic differentiation potential [44,45]. Future

research will have to unravel how many of the genes differentially

expressed in osteoporotic hMSC-OP (Table S1) are downstream

SOST or MAB21L2 over-expression.

Figure 2. Heat map of microarray results of osteoporotic and
aged hMSC. Color-coded microarray hybridization signals (green to
red = low to high signals) of hMSC-OP, hMSC-old and hMSC-senescent.
The 998 gene products depicted showed at least 2fold differential gene
expression (630 enhanced, 368 reduced; FDR,10%) in SAM comparison
of hMSC-OP versus hMSC-C (for gene names see Table S2).
doi:10.1371/journal.pone.0045142.g002
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Table 3. Functional clustering of differentially expressed genes of hMSC-OP, hMSC-old and hMSC-senescent when compared to
hMSC-C.

Symbol Gene name hMSC-OP hMSC-old hMSC-senescent Reference

(1) Osteoblastogenesis

positive

PTH1R parathyroid hormone 1 receptor q [74]

IBSP integrin-binding sialoprotein q [75]

INHA inhibin, alpha q [76]

IGFBP2 insulin-like growth factor binding protein 2 q [77]

IGF2 insulin-like growth factor 2 q Q [77]

VEGFB vascular endothelial growth factor B q Q [78]

VEGFA vascular endothelial growth factor A q Q Q [78]

FOXC2 forkhead box C2 (MFH-1, mesenchyme forkhead 1) q Q [79]

COL1A1 collagen, type I, alpha 1 Q [75]

RUNX2 runt-related transcription factor 2 Q [75]

ANKH* ankylosis, progressive homolog Q Q [80]

SMAD3B SMAD family member 3 Q [81]

SPP1 secreted phosphoprotein 1 Q [75]

EFNB2 ephrin-B2 Q [82]

ALPL alkaline phosphatase, liver/bone/kidney Q [80]

CYP2R1 cytochrome P450, family 2, subfamily R, polypeptide 1 Q [80,83]

FOXC1 forkhead box C1 q Q [84]

IL6ST interleukin 6 signal transducer (Oncostatin M receptor) Q q [85]

PDGFA platelet-derived growth factor alpha polypeptide q [11]

VDR vitamin D receptor q [80]

FGFR2* fibroblast growth factor receptor 2 q Q [86]

BMP6B bone morphogenetic protein 6 q [11]

ROR1W receptor tyrosine kinase-like orphan receptor 1 Q q [87]

ANKRD6W ankyrin repeat domain 6 q [16,18]

negative

TGFB1 transforming growth factor, beta 1 q Q [88]

MAB21L2B mab-21-like 2 q q [15]

FST follistatin q q [89,90]

FSTL3 follistatin-like 3 q [91]

KREMEN1W kringle containing transmembrane protein 1 q [38]

SOSTW B sclerostin q [23]

FGFR1 fibroblast growth factor receptor 1 q [92]

IGFBP5 insulin-like growth factor binding protein 5 q q [11]

IGFBP4 insulin-like growth factor binding protein 4 Q [11]

EGFR epidermal growth factor receptor Q [93]

GREM2B gremlin 2, cysteine knot superfamily, homolog Q Q [94]

NOGB noggin q [11]

CTNNB1W catenin, beta 1 q [17,18]

SFRP4W secreted frizzled-related protein 4 q [95]

WNT2W wingless-type MMTV integration site family, member 2 q [17,18]

WNT3W wingless-type MMTV integration site family, member 3 q [17,18]

(2) Osteoclastogenesis

positive

PTH1R parathyroid hormone 1 receptor q [25]

CSF1 colony stimulating factor 1 q [4]

PTGS2 prostaglandin-endoperoxide synthase 2 q Q [96]
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Table 3. Cont.

Symbol Gene name hMSC-OP hMSC-old hMSC-senescent Reference

IGF2 insulin-like growth factor 2 q Q [97]

TNFSF11 tumor necrosis factor superfamily, member 11 Q [98]

SPP1 secreted phosphoprotein 1 Q [99]

IL7 interleukin 7 Q [100]

THBS1 thrombospondin 1 q [101]

IL1A* interleukin 1, alpha Q q [67]

TNFSF10 tumor necrosis factor superfamily, member 10 Q Q [102]

TGFB2 transforming growth factor, beta 2 Q Q [103]

VEGFA vascular endothelial growth factor A q Q Q [46]

VEGFB vascular endothelial growth factor B q Q [46]

TGFB1 transforming growth factor, beta 1 q Q [47]

RUNX2 runt-related transcription factor 2 Q [104]

negative

TNFRSF11B tumor necrosis factor receptor superfamily, member 11b q [98]

FSTL3 follistatin-like 3 q [105]

(3) Proliferation

positive

HMMR hyaluronan-mediated motility receptor Q Q [49]

HELLS helicase, lymphoid-specific Q [106]

PTN pleiotrophin Q [107]

SOD2 superoxide dismutase 2, mitochondrial Q q [108]

CCNB2 cyclin B2 Q [109]

CDC2 cell division cycle 2, G1 to S and G2 to M Q Q [109]

CCNA2 cyclin A2 Q Q Q [109]

CCNE2 cyclin E2 Q Q Q [109]

CCNF cyclin F Q [110]

CCND1 cyclin D1 q [109]

CCND2 cyclin D2 q [109]

CDC25A cell division cycle 25 homolog A Q [111]

CDC25B cell division cycle 25 homolog B Q [112]

CDC25C cell division cycle 25 homolog C Q [113]

CDK2 cyclin-dependent kinase 2 Q [109]

negative

PSG1 pregnancy specific beta-1-glycoprotein 1 q [114]

PSG2 pregnancy specific beta-1-glycoprotein 2 q [114]

PSG3 pregnancy specific beta-1-glycoprotein 3 Q q [114]

PSG4 pregnancy specific beta-1-glycoprotein 4 q [114]

PSG6 pregnancy specific beta-1-glycoprotein 6 q [114]

PSG7 pregnancy specific beta-1-glycoprotein 7 q [114]

ARHGAP29 Rho GTPase activating protein 29 Q q [107]

CDKN2A cyclin-dependent kinase inhibitor 2A q [107]

CDKN1A cyclin-dependent kinase inhibitor 1A q [50]

(4) DNA-repair

positive

POLD1 polymerase (DNA directed), delta 1, catalytic subunit 125kDa Q [115]

POLE2 polymerase (DNA directed), epsilon 2 (p59 subunit) Q Q [115]

POLQ polymerase (DNA directed), theta Q [115]

POLH polymerase (DNA directed), eta Q [115]

POLK polymerase (DNA directed) kappa Q [115]
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Furthermore, we detected indications for osteoporotic stem cells

actively enhancing osteoclastogenesis and therefore bone resorp-

tion. Besides the enhanced expression of genes coding for

osteoclast stimulating ligands, e.g. VEGF, TGFB and CSF1

[4,46,47], we also detected the osteoporosis-induced expression of

Parathyroid hormone receptor PTH1R. Activation of PTH1R

triggers osteoblast maturation and induces RANKL expression

which leads to osteoclast precursor differentiation and activation

[26]. The enhanced expression of osteoclastogenesis promoting

factors has already been described in fragility fractured bone [48]

and is in general consistent with the enhanced bone resorption

described for osteoporosis [2].

Because high age is one of the main risk factors for developing

osteoporosis, we tried to dissect effects of aging from effects of

primary osteoporosis by using hMSC from middle-aged donors as

control cells (hMSC-C) for comparisons with hMSC-OP and

hMSC-old, respectively, of elderly individuals (Figure 1C and 1D,

Table S2). Surprisingly, the patterns of the differential gene

expression in aged and osteoporotic hMSC differed widely. Only a

few gene products with identical expression profiles in hMSC-old

and hMSC-OP were observed and we therefore conclude that

osteoporosis-associated changes are very distinct and independent

of effects of clock-driven aging. We hypothesize that donors of

advanced age who suffered from osteoarthritis but not from

osteoporosis, aged in a healthier way than osteoporotic patients, or

vice versa that osteoporosis is a distinct syndrome of premature

aging.

One hypothetical reason for aging is the loss of tissue

regeneration due to replicative senescence of stem cells, which

accumulates over time and ends in organ failure and death of the

organism [33]. Due to the fact that donors of hMSC-OP were of

advanced age we analyzed whether these cells exhibited signs of

replicative senescence by comparing them to the gene expression

pattern of long term-cultivated, senescent hMSC. Thereby we

detected a small overlap of genes differentially expressed in

hMSC-OP and hMSC-senescent when compared to the identical

control group hMSC-C (Figure 1C and D). Despite the distinct

gene expression pattern, we found some markers for replicative

senescence in osteoporotic hMSC-OP, like the reduced expression

of Hyaluronan receptor HMMR, which was described as inversely

regulated to tumor suppressor P53 [49], and the induction of

CDKN1A, which codes for P21, another inhibitor of cyclin-

dependent kinases (Table 3) [50]. In contrast, analyses of non-

osteoporotic hMSC-old of the age-matched donor group revealed

no expression of markers for senescence and highlighted even

more the differences between aging with and without primary

osteoporosis. Our findings suggest that osteoporotic stem cells

exhibit deficiencies in proliferation and might already be prone to

a pre-senescent state. So far, reduction in proliferative activity in

osteoporotic cells has only been described for osteoblasts [51,52].

For confirmation, more detailed investigations of hMSC-OP on

protein level and by proliferation or senescence studies are needed.

In summary, this study indicates that intrinsic alterations in stem

cell biology are involved in the pathophysiology of osteoporosis. By

microarray analyses, we detected significant differences between

hMSC of elderly donors with and without osteoporosis, suggesting

that primary osteoporosis causes distinct transcriptional changes,

which differ from age-related changes in non-osteoporotic donors.

Next to indications for a pre-senescent state we detected enhanced

transcription of inhibitors of WNT and BMP signaling in

osteoporotic hMSC-OP, which can lead to functional deficiencies,

such as autoinhibition of osteogenic differentiation and loss of self-

renewal. Our data facilitate the importance of well-known

susceptibility genes of osteoporosis such as SOST, COL1A1 and

LRP5, and additionally, we detected new candidate genes for

further investigations, e.g. MAB21L2. Our study confirms that

disturbed bone homeostasis by inhibition of osteogenic regener-

ation is at least an equally important feature of primary

osteoporosis besides enhanced bone resorption. Therefore, ‘‘inhi-

bition of inhibitors’’ of bone regeneration by using, e.g. SOST

antibodies, is a mechanistically plausible treatment of the

syndrome and will get even more attention in the future.

Materials and Methods

Ethics Statement
Bone material was used under agreement of the local Ethics

Committee of the Medical Faculty of the University of Wuerzburg

with written informed consent of each patient.

Cell culture
Human MSC of non-osteoporotic donors were obtained from

bone marrow of femoral heads according to the described protocol

[53] after total hip arthroplasty due to osteoarthritis and/or hip

Table 3. Cont.

Symbol Gene name hMSC-OP hMSC-old hMSC-senescent Reference

MRE11A MRE11 meiotic recombination 11 homolog A Q [116]

PARP3 poly (ADP-ribose) polymerase family, member 3 Q [117]

RAD50 RAD50 homolog Q [116]

RAD51 RAD51 homolog Q [116]

RAD51AP1 RAD51 associated protein 1 Q Q [118]

TOP2A topoisomerase (DNA) II alpha 170 kDa Q Q [119]

EXO1 exonuclease 1 Q [116]

CHEK1 CHK1 checkpoint homolog Q [120]

HMGB2 high-mobility group box 2 Q [121]

arrows pointing downward = at least 2fold reduced expression in comparison to hMSC-C; arrows pointing upward = at least 2fold enhanced expression in comparison to
hMSC-C;
W = gene associated with WNT signaling;
B = gene associated with BMP signaling;
* = probesets that refer to the gene are not identical in the indicated comparisons.
doi:10.1371/journal.pone.0045142.t003
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dysplasia. MSC of patients suffering from osteoporosis were

isolated from femoral heads after low-energy fracture of the

femoral neck. Additional criteria for confirming primary osteopo-

rosis in these donors were vertebrae fractures and advanced age.

Cell culture medium, fetal calf serum (FCS), trypsin-EDTA and

antibiotics were obtained from PAA Laboratories GmbH, Linz,

Austria. Human MSC were selected by surface adherence and

expanded in DMEM/Ham’s F-12 (1:1) medium supplemented

with 10% heat-inactivated FCS, 1 U/ml penicillin, 100 mg/ml

streptomycin and 50 mg/ml L-ascorbic acid 2-phosphate (Sigma

Aldrich GmbH, Schnelldorf, Germany).

For long term cultivation, cells were expanded at 70–90%

confluence by trypsinization with 16trypsin-EDTA and reseeding

in a ratio of 1:3. This procedure was repeated for up to x passages

when the hMSC did not become confluent within 3 weeks due to

replicative senescence.

RNA isolation
At 80–90% confluence human MSC monolayers were lysed

directly in the cell culture flask in passage (P) 1 or 2 and the last,

senescent passage Px, respectively. Total RNA was isolated using

the NucleoSpin RNA II Purification Kit (Macherey-Nagel, Düren,

Germany) according to the manufacturer’s instructions including

DNase digestion.

Microarray analysis
For microarray analyses total RNA of hMSC-C, hMSC-

senescent and hMSC-OP (Table 1) was amplified and labeled

according to the GeneChip One-Cycle cDNA Synthesis Kit

(Affymetrix, High Wycombe, United Kingdom). Total RNA of

hMSC-old was amplified and labeled according to the Affymetrix

GeneChip 39IVT Express Kit. Following fragmentation, 10 mg of

cRNA were hybridized for 16 hr at 45uC on Affymetrix

GeneChips Human Genome U133_Plus_2.0. GeneChips were

washed and stained in the Affymetrix Fluidics Station 450 using

the Affymetrix Hybridization, Wash and Stain Kit. Hybridization

signals were detected with Affymetrix Gene Chip Scanner 3000

and global scaling was performed by Affymetrix GeneChipOper-

atingSoftware 1.4 using the MAS5 algorithm. Microarray data of

all 4 hMSC groups have been published in Gene Expression

Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) and are

accessible through GEO superSeries accession number

GSE35959. Gene expression patterns of two groups of hMSC

populations were compared with the significance analysis of

microarrays (SAM) approach by using the SAM software of

Stanford University, Palo Alto, USA (http://www-stat.stanford.

edu/,tibs/SAM/) [54]. For data interpretation we only took

those gene products into account that provided present hybrid-

ization signals in at least 3 of x hMSC populations in at least one of

the two groups compared. Furthermore, only gene products

(probesets) with fold changes (FC) #0.5 or $2.0, and a false

discovery rate (FDR) ,10% were considered as significantly,

differentially expressed.

Heat maps were generated by CARMAweb using globally

normalized data [55].

Differentially expressed gene products were assigned to protein

function by Gene Ontology classification (http://www.

geneontology.org/) and NCBI PubMed literature search (http://

www.ncbi.nlm.nih.gov/sites/entrez). Genes with at least one

differentially expressed probeset were taken into account.

Additionally, SAM data was compared to publically available

data from genome-wide association studies, meta-analyses or

candidate gene association studies obtained by a NCBI PubMed

search for reviews and original publications from 2010 and later

with the following search terms: genome-wide association/

polymorphism/meta-analysis+osteoporosis or+bone mineral den-

sity.

Quantitative PCR analysis
One microgram of total RNA was reverse-transcribed with

Oligo(dT)15 primers (peqlab Biotechnologie GmbH, Erlangen,

Germany) and MMLV reverse transcriptase (Promega GmbH,

Mannheim, Germany) according to the manufacturer’s instruc-

tions. Quantitative real-time PCR (qPCR) was performed in

triplets in 20 ml with 16 ng cDNA, 5 ml KAPA SYBR FAST

Universal 26 qPCR Master Mix (peqlab Biotechnologie GmbH)

and 0.25 pmol of sequence specific primers obtained from

biomers.net GmbH, Ulm, Germany. The following primer

sequences were used (59-39 forward and reverse, respectively):

RPLP0 (ribosomal protein, large, P0) as housekeeping gene

(NM_001002.3) [56], TGCATCAGTACCCCATTCTATCAT

and AGGCAGATGGATCAGCCAAGA; SOST

(NM_025237.2), CAGGCGTTCAAGAATGATGC and

TACTCGGACACGTCTTTGGTC; and MAB21L2

(NM_006439.4), TGGGTGCTACAGTTCG and CAGGCAG-

GAGATGAGC. QPCR was performed with Opticon DNA

Engine (MJ Research, Waltham, USA) and the following

conditions: 95uC for 3 min; 40 cycles: 95uC for 15 s; 60uC for

15 s; 72uC for 10 s; followed by melting curve analysis. Results

were calculated with the DDCT method.

Senescence-associated b-galactosidase staining
To confirm replicative senescence in the last, non-confluent

passage of hMSC after long time cultivation, senescence-associated

b-galactosidase staining was performed as described [57]. After

each passage 26105 cells were seeded on coverslips in 9.6 cm2

petri dishes and cultured to 70–90% confluence. After fixation in

2% formaldehyde/0.2% glutaraldehyde for 5 min the coverslips

were stored at 4uC. Staining was performed for hMSC in P1and

Px simultaneously by incubating the cells for 16 h at 37uC (normal

air CO2) with 1 ml staining solution (1 mg/ml 5-bromo-4-chloro-

3-indolyl b-D-galactosidase (Sigma Aldrich GmbH), 40 mM citric

acid/sodium phosphate (pH 6.0), 5 mM potassium ferrocyanide,

5 mM potassium ferricyanide, 150 mM NaCl and 2 mM MgCl2).

Counterstaining with nuclear fast red was performed after washing

twice with ddH2O.

Supporting Information

Table S1 Gene products with significant expression
changes in hMSC-OP compared to hMSC-old. FC = fold

change (at least 2fold); FDR = false discovery rate (,10%).

(DOC)

Table S2 Gene products differentially expressed in
hMSC-OP, hMSC-old and hMSC-senescent when com-
pared to hMSC-C. arrows pointing downward = significant,

reduced expression in comparison to hMSC-C; arrows pointing

upward = significant, enhanced expression in comparison to

hMSC-C; FC = fold change (at least 2fold); FDR = false discovery

rate (,10%); — = no expression in both hMSC groups compared.

(DOC)
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