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Abstract Reliable biomarkers that can be used for early

diagnosis and tracking disease progression are the corner-

stone of the development of disease-modifying treatments

for Parkinson’s disease (PD). The German Society of

Experimental and Clinical Neurotherapeutics (GESENT)

has convened a Working Group to review the current status

of proposed biomarkers of neurodegeneration according to

the following criteria and to develop a consensus statement

on biomarker candidates for evaluation of disease-modi-

fying therapeutics in PD. The criteria proposed are that the

biomarker should be linked to fundamental features of PD

neuropathology and mechanisms underlying neurodegen-

eration in PD, should be correlated to disease progression

assessed by clinical rating scales, should monitor the actual

disease status, should be pre-clinically validated, and

confirmed by at least two independent studies conducted by

qualified investigators with the results published in peer-

reviewed journals. To date, available data have not yet

revealed one reliable biomarker to detect early neurode-

generation in PD and to detect and monitor effects of drug

candidates on the disease process, but some promising

biomarker candidates, such as antibodies against neuro-

melanin, pathological forms of a-synuclein, DJ-1, and

patterns of gene expression, metabolomic and protein

profiling exist. Almost all of the biomarker candidates were

not investigated in relation to effects of treatment, vali-

dated in experimental models of PD and confirmed in

independent studies.
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Introduction and aims of the present review

A biomarker (or biological marker) is defined as a char-

acteristic that can be objectively measured and evaluated as

an indicator of normal biological processes, pathogenic

processes or pharmacologic responses to a therapeutic

intervention (Biomarkers Definitions Working Group

2001). According to the type of information they provide,

biomarkers for central nervous system (CNS) diseases can

be classified as clinical, neuroimaging, biochemical,

genetic or proteomic biomarkers. Biomarkers serve a wide

range of purposes, including confirmation of diagnosis,

epidemiological screening, predictive testing, monitoring

of disease progression after diagnosis, drug development

and response to treatment, and studies of brain–behaviour

relationship.

There is a growing need for biomarkers of Parkinson’s

disease (PD, synonyms: idiopathic Parkinson syndrome,

paralysis agitans) pathology to improve drug development

related to the disease (Eller and Williams 2009; Gerlach

et al. 2008; Halperin et al. 2009; Maetzler et al. 2009a;

Marek et al. 2008; Michell et al. 2004; Morgan et al. 2010).

Current therapeutic strategies for PD focus primarily on

reducing the severity of its symptoms using dopaminergic

medications. Although these strategies significantly

improve motor symptoms and the quality of life for

patients suffering from this neurodegenerative disease,

treatment does not slow or halt the underlying pathologic

processes. The goal of finding such a therapy (i.e., a neu-

roprotective or disease-modifying therapy) or one that

could reverse pathologic damage (i.e., a neurorestorative

therapy) is a major drive for preclinical research in PD.

Despite 25 years of work dedicated to this goal, success

has remained elusive. Several promising candidates for a

disease-modifying therapy have failed in human studies,

although they showed neuroprotective effects in experi-

mental models of PD. Problems with establishing a dis-

ease-modifying therapy arise from the complexity of the

disease process as well as the limitations of clinical tools

available to monitor the progression of the disease and to

observe the effects of an intervention. Major issues of the

complexity of the disease, which become frequently evi-

dent in clinical studies are the long duration and slow

progressive course of the disease, the variability and het-

erogeneity of symptoms and signs, cyclic episodes in

severity of the symptoms during the day related to the time

of medication (wearing-off and on/off fluctuations) and

polypharmacy. In addition, misdiagnosis, co-morbidity and

co-medication add to the heterogeneity of the patient

population.

Since a disease-modifying therapy is likely to be most

effective early in the course of disease, early diagnosis is

highly desirable before neurodegeneration becomes severe

and widespread. Thus, there is a great need for biomarkers

that can be used for early diagnosis and tracking disease

progression to monitor a disease-modifying therapy.

The German Society of Experimental and Clinical

Neurotherapeutics (GESENT) has convened a Working

Group to develop a position paper and, if possible, a con-

sensus statement on biomarker candidates of neurodegen-

eration in PD for evaluation of disease-modifying

therapeutics. In June 2010, the Working Group met to

define the criteria for evaluation biomarkers of neurode-

generation in PD, to review the current status of all pro-

posed biomarkers of neurodegeneration according to the

defined criteria and to develop this consensus statement.

This paper is planned as a basis for further discussion to

finally reach the goal of a comprehensive evaluation of

biomarkers for progression in PD.

Criteria for the development of biomarkers

of neurodegeneration in PD for proof

of disease-modifying therapeutics

Driven in part by Alzheimer’s disease (AD) drug discovery

research, AD is at the forefront of biomarker development

for CNS diseases, and many current concepts about ideal

biomarkers for PD have come from AD research (Frank

et al. 2003; Hampel et al. 2004, 2010; Shaw et al. 2007;

The Ronald and Nancy Reagan Research Institute of the

Alzheimer’s Association and the National Institute on

Aging Working Group 1998). We propose the following

criteria for an ideal biomarker to be useful to assess neu-

rodegeneration in PD and to evaluate disease-modifying

therapeutics: The biomarker should be

• linked to fundamental features of PD neuropathology

and mechanisms underlying neurodegeneration in PD,

• correlated to disease progression assessed by clinical

rating scales,

• able to monitor the actual disease status,

• pre-clinically validated,

• confirmed by at least two independent studies con-

ducted by qualified investigators with the results

published in peer-reviewed journals.

In addition, an ideal biomarker of neurodegeneration

should be inexpensive, non-invasive, simple to use, and

technically validated (e.g., reliable, sensitive to change).
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Clinical biomarker candidates

Symptoms associated with motor function

The most widely used scale currently available for the

clinical evaluation of motor dysfunction in PD is the

Unified Parkinson’s Disease Rating Scale III (UPDRS-III)

(Goetz et al. 2007). This scale is subjective, has suboptimal

sensitivity, and it is widely accepted that more objective

and shorter assessments are needed. A promising tool is the

timed motor test, and, in particular, the pegboard test

(Haaxma et al. 2008). At group level, a trial using ‘‘change

from baseline’’ as endpoint and applying these tests would

require only 57–75% of the patients needed with the UP-

DRS-III (Haaxma et al. 2008).

In addition, there is a relevant and growing body of

literature which reports about objective, quantitative and

mobile assessments of movement disturbances in PD using

technical devices, such as accelerometers and gyroscopes.

A definite advantage of such methods is the possibility to

focus on cardinal motor disturbances, i.e. bradykinesia,

rigidity, tremor and postural instability, but also on prob-

lems of sensorimotor integration which is also a key

symptom associated with PD. So far, studies carried out

have mainly focused on the usefulness of the parameters in

differentiating PD from controls, but not on correlation

aspects, e.g. with disease duration. In addition, most of

them have not been put into context to clinical scales and

are thus not validated with regard to measuring disease

progression. Nevertheless, as these methods are generally

easy to perform (e.g. in an ambulatory setting), cheap,

unobtrusive, focus on mechanisms underlying the neuro-

degeneration in PD (e.g. cardinal motor symptoms), and

based on a well-investigated pathophysiological back-

ground (many of the investigated symptoms have been—

directly of indirectly—validated in pre-clinical models in

an extensive way), they should be seriously considered

when defining e.g. an assessment panel for future pro-

gression studies in PD.

Mobile quantitative assessment of bradykinesia

According to the definition of Berardelli et al. (2001),

‘‘bradykinesia’’ encompasses problems of slowness or

absence of movement (including increased gait variability

and freezing): Promising quantitative markers are sit-to-

stand and stand-to-sit procedures (Bloem et al. 1997;

Hausdorff 2008; Najafi et al. 2002; Weiss et al. 2010),

anticipatory postural adjustment (i.e. the attempt to vol-

untarily initiate the first step to begin walking) (Carpinella

et al. 2007; Mancini et al. 2009), gait variability (Plotnik

et al. 2007, 2009), and peak arm swing velocity (Zampieri

et al. 2010).

Mobile quantitative assessment of rigidity

Rigidity is defined as an increase in muscle tone leading to

a resistance to passive movement throughout the range of

motion. Promising quantitative markers are turning pro-

cedures when walking or receiving rotational perturbations

(Carpenter et al. 2004; Carpinella et al. 2007; Huxham

et al. 2008; Visser et al. 2007; Zampieri et al. 2010) and

straight walking (pelvic oscillations) (Huxham et al. 2008).

Mobile quantitative assessment of tremor

Although tremor is an obvious sign of PD, and clinically

easily to diagnose, the quantification of this symptom

remains a technical challenge. In a study with PD patients

using electromyography, tremor amplitude and burst

duration increased, whereas frequency decreased with

longer disease duration (Milanov 2002). The first results

with acceptable accuracy in detecting the severity of rest-

ing tremor using tri-axial accelerometers have been pub-

lished (Mamorita et al. 2009; Rigas et al. 2009; Schlesinger

et al. 2009).

Mobile quantitative assessment of postural instability

Accurate assessment of postural instability in PD remains

difficult with currently available clinical measurement

tools, but may be quantifiable with ambulatory devices

which focus on anterior–posterior and medial–lateral

angular velocity deviations, e.g. at the trunk (Adkin et al.

2005). In addition, prospective detection of frequency of

near-falls and falls may be a promising approach to detect

PD progression.

Mobile quantitative assessment of sensorimotor integration

deficits

There is an increasing awareness of sensorimotor integra-

tion deficits in PD patients, and it is highly probable that

this feature also declines with increasing disease duration.

Promising markers may be the switch from kinaesthetic-

dependent to vision-dependent balance control (De Nunzio

et al. 2007), and overestimation of (balance) limits (Kamanli

et al. 2008).

Biomarker candidates of cognition

and neuropsychiatric symptoms

Cognitive symptoms

There is an increasing awareness of the high prevalence of

cognitive dysfunction in the course of PD. Independent

studies found a higher incidence of dementia in PD patients

Biomarker candidates of neurodegeneration in Parkinson’s disease 41
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as compared to healthy persons of the same age (Aarsland

et al. 2001; de Lau et al. 2004). There is compelling evi-

dence that dementia prevalence increases with disease

duration (Maetzler et al. 2009a). Deterioration of cognitive

decline was most often assessed with the MMSE and the

cognitive section of the Cambridge Examination for

Mental Disorders (CAMCOG), two assessment tools vali-

dated for AD (Aarsland et al. 2004; Athey and Walker

2006). As cognitive symptoms in PD clearly differ from

AD symptoms, it was more and more realised that AD-

related assessment tools have relevant flaws in determining

cognitive dysfunction in PD, and effort has been put into

the development of sensitive and reliable PD-relevant

measurement tools. One of the most promising tools is the

‘‘Scales for outcomes in Parkinson’s disease-cognition

(SCOPA-COG)’’ having advantages as compared to the

MMSE, the most important having a greater discriminative

capacity (Serrano-Duenas et al. 2010); however, longitu-

dinal studies are not yet available.

Hallucinations and depression

Based on the retrospective pathologically confirmed (Wil-

liams and Lees 2005) and prospective studies (Forsaa et al.

2008; Goetz et al. 2005) visual hallucinations are regularly

observed in PD patients in particular at later disease stages,

and frequency increases with longer disease duration.

Depression has been shown to occur with higher inci-

dence in PD as compared to the general population, but

incidence and severity of symptoms may not relevantly

change during disease course (Karlsen et al. 1999; Rojo

et al. 2003; Schrag et al. 2007).

Sleep disturbances

Among a number of sleep disturbances which are associated

with PD rapid eye movement (REM) sleep behaviour dis-

order (RBD) may be the most promising biomarker candi-

date for detecting disease progression. A prospective

longitudinal study investigating patients with questionnaire

and polysomnography found an increase of RBD-associated

features from baseline (6–11% after 3, 24% after 6, and 39

percent after 8 years) (Onofrj et al. 2002). This increase in

occurrence could be confirmed in an evidence level II study

with mid- to late-stage PD patients using a semi-structured

interview and a sleep questionnaire (Gjerstad et al. 2007).

Biomarker candidates of autonomic and sensory

dysfunction

Based on a controlled prospective study of 3 years duration

(Mesec et al. 1999) and a cross-sectional study (Linden

et al. 1997) heart rate variability decreases, and orthostatic

dysfunction probably increases with longer disease dura-

tion. A reduction in sympathetic skin response with

increasing disease duration has been demonstrated in two

cross-sectional studies (Orimo et al. 1999; Schestatsky

et al. 2006). Prevalence and severity of urinary and gas-

trointestinal symptoms most probably also increase during

PD course (Wullner et al. 2007); however, it may be dif-

ficult to quantify these changes adequately.

There is compelling evidence from prospective longi-

tudinal studies (Diederich et al. 2002; Katsarou et al. 1998)

that visuospatial and colour discrimination deteriorate with

longer PD duration. These symptoms may be influenced by

medication status (Onofrj et al. 2002). There is no evidence

that olfactory dysfunction progresses significantly during

PD course (Maetzler et al. 2009a).

Myocardial [123I]metaiodobenzylguanidine (MIBG)

scintigraphy and [18F]fluorodopamine positron emission

tomography (PET) are used to detect local sympathetic

nerve damage in the heart, which regularly occurs in PD,

but rarely in healthy older people and in other forms of

parkinsonism. However, it is unlikely that cardiac sympa-

thetic innervation decreases with PD duration in the clini-

cal phase (Orimo et al. 1999; Shibata et al. 2009; Suzuki

et al. 2007).

Biomarker candidates of brain imaging

Presynaptic imaging of dopaminergic neurons is part of

clinical diagnostics of PD and appears to be a useful pro-

gression marker (Table 1). Disadvantages of this approach

are that the subjects are exposed to radioactivity, that the

costs are relatively high, and that the method is only

available at specialised centres. The imaging of the dopa-

minergic system is possible by measuring aromatic amino

acid decarboxylase activity (e.g. with [18F]-DOPA) or by

visualisation of synaptic membrane dopamine transporter

(e.g. [123I]b-CIT, [123I]FP-CIT, [123I]IPT, [18F]CFT). In

longitudinal studies of PD progression, PET and single

photon emission computed tomography (SPECT) studies

using these tracers have shown an annualised striatal rate of

reduction in tracer uptake of about 4–13% in PD patients

versus 0–2.5% change in healthy controls (Marek et al.

2008; Nurmi et al. 2001). This decline may rather be

exponentially (Hilker et al. 2005). With regard to using

these functional imaging techniques for measuring disease

progression, it needs to be considered that correlations of

changes in imaging and clinical findings are rather incon-

sistent, probably, because different aspects of the disease

are reflected (Marek et al. 2008).

[18F]-2-F-Deoxyglucose-PET may have some potential

in detecting metabolic changes associated with motor

(Huang et al. 2007) and cognitive decline (Huang et al.

42 M. Gerlach et al.
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Table 1 Qualification of some biomarker candidates for the use in clinical trials of disease-modifying therapeutics in Parkinson’s disease (PD)

Analyte/method Link to

neuropathology/

pathomechanisms

Track of disease

progression

Monitoring the

actual

disease status

Validation in

experimental

models of PD

Confirmation

by others

Clinical biomarker candidates

Mobile quantitative

assessment of

bradykinesia

Yes (cardinal

symptom)

Not investigated No (Yes: models

for bradykinesia)

Yes

Mobile quantitative

assessment of rigidity

Yes (cardinal

symptom)

Not investigated No (Yes: models for

rigidity)

Yes

Mobile quantitative

assessment of tremor

Yes (cardinal

symptom)

Not investigated No (Yes: models for

tremor)

Yes

Mobile quantitative

assessment of postural

instability

Yes (cardinal

symptom)

Not investigated No (Yes: models for

postural

instability)

No

Mobile quantitative

assessment of

sensorimotor integration

deficits

No Not investigated ? No No

Sleep disturbances ? Yes Not investigated Not investigated Yes

Reduction in sympathetic

skin response

No Yes Not investigated Not investigated Yes

Visuospatial and colour

discrimination

Yes Yes No Not investigated Yes

Olfactory dysfunction Yes No Not investigated Not investigated Yes

Cardiac sympathetic

innervation

Yes No Not investigated Not investigated Yes

Neuroimaging biomarker candidates

[18F]-DOPA-PET Yes Yes No Yes Yes

b-CIT–SPECT Yes Yes No Yes Yes

Magnet resonance imaging

(T2 relaxation time)

Yes No Not investigated Yes Yes

Biochemical biomarker candidates

Antibody response against

neuromelanin

Yes Not affected by disease

severity assessed by Hoehn

and Yahr staging and the

UPDRS

Negative correlation with

disease duration

It appears to be,

but has to be

confirmed in

larger samples

Not investigated No

a-Synuclein concentrations

in the CSF

Yes No association with the

severity of PD

It appears to be,

but has to be

confirmed in

larger samples

Not investigated No, there are

inconsistent

results

obtained

Complex I and IV activity

in platelet mitochondria

Yes Negative correlation between

activity and disease duration

Not investigated Not investigated No

8-Hydroxydeoxyguanosine

concentrations in urine

and blood

Yes Stage-dependent increase in

one study

Surprisingly no

effect of L-

DOPA therapy

in one study

Not investigated Yes

DJ-1 concentrations in the

CSF

Yes No association to severity of

PD

It appears to be,

but has to be

confirmed in

larger samples

Not investigated No, there are

inconsistent

results

obtained

Reduced glutathione (GSH)

in CSF

Yes No association to severity of

PD

It appears to be,

but has to be

confirmed in

larger samples

Not investigated No

Biomarker candidates of neurodegeneration in Parkinson’s disease 43
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2007; Liepelt et al. 2009), but these preliminary data

should be confirmed in prospective longitudinal studies.

There is only limited evidence that magnetic resonance

imaging is of added value in detecting disease progression

in PD: Two cross-sectional studies with advanced PD

patients showed a positive correlation between T2 relaxa-

tion time in the putamen and disease duration which indi-

cates a progressive loss of iron (Graham et al. 2000; Ryvlin

et al. 1995). However, a recent study in PD patients and

controls measuring quantitative magnetic resonance

parameters sensitive to complementary tissue characteris-

tics (i.e. volume atrophy, iron deposition and microstruc-

tural damage) in six subcortical structures including the SN

and the putamen showed no relation of the relaxation rates

such as R2* as an indirect measure of the iron level to

disease progression (Peran et al. 2010).

Genetic and biochemical biomarker candidates

Genetic markers

PD-associated DNA variants (including mutations and

polymorphisms) are by definition predictive markers and

are not suitable for measuring progression. However, gene

expression profiling may be a promising approach for

defining valuable progression markers as human SN pars

compacta of PD patients showed down-regulation of 68,

and up-regulation of 69 genes, as compared to control SN

(Grunblatt et al. 2004). Based on the recent publications

particularly interesting targets are pyridoxal kinase and

pyruvate metabolism (Ahmed et al. 2009; Elstner et al.

2009).

A recent study (Grunblatt et al. 2010) examined the

profiling of 12 transcripts via quantitative RT-PCR in RNA

originating from peripheral blood samples that were chosen

based on the previous postmortem brain profiling (Grunblatt

et al. 2004). Multiple analyses resulted in four significant

genes: proteasome (prosome, macropain) subunit-a type-2

(PSMA2), laminin, b-2 (laminin S) (LAMB2), aldehyde

dehydrogenase 1 family-member A1 (ALDH1A1), and

histone cluster-1 H3e (HIST1H3E) differentiating between

medicated PD subjects versus controls. Using the combi-

nation of these four gene profiles for PD diagnosis, a sen-

sitivity and specificity of more than 80% was achieved. In

AD subjects, no significant results were observed. There-

fore, the authors concluded that this combination is specific

for PD.

A transcriptome-wide scan using RNA microarrays in

whole blood of patients with early-stage PD (Scherzer et al.

2007) identified a molecular multigene marker that is

associated with risk of PD in 66 samples of the training set

comprising healthy and disease controls. This was further

validated in 39 independent test samples. Insights into

disease-linked processes detectable in peripheral blood are

offered by 22 unique genes differentially expressed in

patients with PD versus healthy individuals (Scherzer et al.

2007). These include the co-chaperone ST13, which sta-

bilises heat-shock protein 70, a modifier of a-synuclein

misfolding and toxicity. ST13 messenger RNA copies are

lower in patients with PD than in controls in two inde-

pendent populations.

Biochemical markers

A summary of the most thoroughly investigated biochem-

ical biomarker candidates that may be used in the diag-

nostics of PD was published previously (Fasano et al. 2008;

Halperin et al. 2009; Morgan et al. 2010; Nyhlen et al.

2010). Here we focus on biomarker candidates with a

particular reference to their potential for monitoring neu-

rodegeneration and disease-modifying therapeutics.

Table 1 continued

Analyte/method Link to

neuropathology/

pathomechanisms

Track of disease

progression

Monitoring the

actual

disease status

Validation in

experimental

models of PD

Confirmation

by others

Osteopontin in CSF Yes Positive (weak) correlation

with disease duration

It appears to be,

but has to be

confirmed in

larger samples

Yes No

Total homocysteine in

plasma

No Correlation with disease

duration and duration of

L-DOPA treatment

Probably not Not investigated No, there are

inconsistent

results

obtained

CSF cerebrospinal fluid, L-DOPA L-3,4-dihydroxyphenylalanine, PET positron emission tomography, SPECT single photon emission computed

tomography
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PD is neuropathologically characterised at the cellular

level by a relative selective destruction of neuromelanin

(NM)-containing dopaminergic cells in the SN pars com-

pacta (Hirsch et al. 1988). When melaninised dopaminergic

neurons die, NM is released from the degenerating cell

body and removed from the brain by the cells of the

immune system (Beach et al. 2007; Depboylu et al. 2011;

Orr et al. 2005). It was hypothesised that the removal of

NM from the brain by immune cells might stimulate an

antibody response that could be measured in blood. Indeed,

a novel enzyme-linked immunosorbent assay (ELISA) to

measure levels of antibodies against NM in human blood

sera (NM-ELISA) demonstrated an increased antibody

response in the sera of PD patients when compared with

age-matched controls (Double et al. 2009). The immune

response was not affected by disease severity assessed by

Hoehn and Yahr staging and the UPDRS. However, there

was a negative correlation with disease duration.

a-Synuclein is the major component of Lewy bodies,

one of the pathological hallmarks of PD, and mutations and

multiplications of the a-synuclein-encoding gene, SNCA,

have been found to cause familial forms of PD. Aberrant

metabolism of the protein has been suggested as a possible

driving force in the degenerative process of PD in a manner

similar to Ab1–42 in AD. Cerebrospinal fluid (CSF) Ab1–42

levels in PD tend to be lower with longer disease duration

and cognitive decline (Maetzler et al. 2009b; Mollenhauer

et al. 2006). A recent study demonstrated that the CSF

fractalkine (an inflammatory marker)/Ab1–42 ratio was

positively correlated with PD severity in cross-sectional

samples as well a with PD progression in longitudinal

samples (Shi et al. 2011).

Increased concentrations of soluble a-synuclein oligo-

mers in plasma appear to have good specificity (85%) for

detecting PD when compared with controls in some studies

(El-Agnaf et al. 2006). The most consisting finding is

decreased a-synuclein concentrations in the CSF from PD

when compared with controls (see for a review, Morgan

et al. 2010; Nyhlen et al. 2010), but there is still no con-

vincing evidence that these levels change over disease

course (Hong et al. 2010). There is increasing evidence that

a-synuclein can be used to distinguish PD and related

synucleinopathies (dementia with Lewy bodies and multi-

ple system atrophy) from other movement disorders and

dementia (Mollenhauer et al. 2011); however, discrimina-

tory power is limited. In addition, the current a-synuclein

assays are limited because they do no not attempt to dis-

criminate between normal and pathological (phosphory-

lated and/or aggregated) forms of this protein.

The major hypotheses believed to contribute to the

eventual demise of nigral dopamine producing cells

include protein aggregation, oxidative stress, mitochondrial

dysfunction, dysfunction of proteasomal pathways and

neuroinflammation (Alvarez-Erviti et al. 2010; Chu et al.

2009; Double et al. 2010; Gerlach et al. 2006; Hatano et al.

2009; Schiesling et al. 2008; Yang et al. 2009). Complex I

and IV mitochondrial activity has been shown to be lower

in PD patients than in controls, and at very early disease

stages a negative correlation between complex I and IV

activity in platelet mitochondria, and disease duration has

been demonstrated (Benecke et al. 1993).

Markers of oxidative stress showed that in the blood of

PD patients there is either an increased production of free

radicals, reactive oxygen and nitrogen species or a dis-

turbed defence mechanisms against oxidative damage

(Gerlach et al. 2008; Morgan et al. 2010; Younes-Mheni

et al. 2007). However, these markers are not specific for PD

because similar results in other neurodegenerative diseases,

including AD were found. In addition, a variety of condi-

tions alter oxidative stress in a given patient (for example

normal ageing, smoking, vigorous exercise, antioxidants,

food, drugs, cancer, and chemotherapy), and these may be

hard to control for. Interestingly, some markers of oxida-

tive stress appear to be useful for tracking disease pro-

gression in PD. For example, concentrations of

8-hydroxydeoxyguanosine, a product of oxidised DNA,

were shown to be stage-dependently increased in the urine

of PD patients (Sato et al. 2005). Surprisingly, this increase

was not influenced by L-DOPA (3,4-dihydroxyphenylala-

nine, levodopa) therapy. Multiple large epidemiological

studies have demonstrated a reduced risk of developing PD

with higher concentrations of uric acid (a potent antioxi-

dant and free radical scavenger in the blood) in serum

(Schlesinger and Schlesinger 2008), but recent evidence

also indicates a potential for slower progression of PD with

higher uric acid levels (Schwarzschild et al. 2008). Clinical

use for uric acid as a biomarker is not supported by existing

knowledge, since the studies conclude that it is a risk

marker rather than a diagnostic marker. In addition, to date

there are no data available which make hope that uric acid

is a potential progression marker.

DJ-1 is a part of the cellular defence against oxidative

stress (Kahle et al. 2009), and mutations in its gene are

responsible for some forms of familial PD (Klein et al.

2009). A study has also found elevated DJ-1 levels in CSF

from patients with multiple sclerosis (Hirotani et al. 2008),

suggesting a link between secreted DJ-1, neuroinflamma-

tion and oxidative stress. Studies using CSF of PD patients

have demonstrated both increased (Waragai et al. 2006) and

decreased values compared with controls (Hong et al.

2010), thus warranting further investigations. In the study

by Hong et al. (2010), no association between DJ-1 and the

severity of PD was demonstrated. The results obtained from

studies using serum of PD patients are also inconsistent,

showing no change (Maita et al. 2008) or elevated con-

centrations compared with controls (Waragai et al. 2006).
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The complement system is part of the non-specific

immune system. Using 2D-gel-electrophoresis, Goldknopf

et al. (2006) found differences in serum levels of nine

complement factors between PD and controls. Osteopontin

is a molecule with multiple functions, including modula-

tion of inflammatory response of microglia, and shows

much higher levels in CSF than in serum. Higher CSF and

serum levels are detectable in PD as compared to controls,

and there is some evidence that CSF osteopontin levels

increase with disease duration (Maetzler et al. 2007).

Several studies suggest that elevated plasma total

homocysteine, an endogenous product of methionine

metabolism, is a risk factor for cognitive impairment and

AD (Clarke et al. 1998; McCaddon et al. 2003). However,

other studies did not detect significant associations with

AD or cognitive status (Miller et al. 2002). In agreement

with these studies, it was recently reported that plasma

total homocysteine concentrations did not differ across

AD, mild cognitive impairment, cerebral amyloid angio-

pathy, and non-demented control subjects, but were

increased in the PD group (Irizarry et al. 2005). The

elevated levels within the PD group were the result of

high concentrations of plasma total homocysteine in PD

patients treated with L-DOPA. Two cross-sectional studies

found also increased homocysteine plasma levels in PD

compared with controls, these levels correlated positively

with disease duration (Dos Santos et al. 2009; Hassin-

Baer et al. 2006). In one study, in addition, homocysteine

levels were associated with L-DOPA treatment duration,

but not with L-DOPA dose (Hassin-Baer et al. 2006). In

the other study (Dos Santos et al. 2009), L-DOPA treat-

ment did not significantly correlate with plasma homo-

cysteine levels.

There are some interesting first results which may

potentially reflect very early disease activity. Serum

insulin-like growth factor 1 (IGF-1) levels have been

shown to be higher in PD patients compared with controls,

with high levels in particular at early PD disease stages,

and a negative correlation between serum IGF-1 levels and

disease duration (Godau et al. 2010). In addition, using

rapidly processed CSF samples, we recently found lowered

levels of reduced glutathione in the CSF of Lewy body

disease patients as compared to controls (Maetzler et al.

2011)—which basically confirms neuropathological find-

ings in the brainstem of PD patients (Sian et al. 1994)—

and these levels were negatively associated with age but

not with disease-associated parameters. Thus, it is tempt-

ing to speculate that changes of the glutathione system,

similar to IGF-1, may be an early event in the disease

course.

Several recent studies have used hypothesis-unrelated,

explorative proteomic and metabolomic techniques to find

novel biomarker candidates for PD in brain tissue and CSF

(see for a review Fasano et al. 2008; Morgan et al. 2010;

Nyhlen et al. 2010). Generally, these studies may be con-

sidered promising. However, these techniques require

considerable technical expertise and have not been well

tested for PD versus other neurodegenerative diseases and

the link to disease progression. In addition, the biomarker

candidates found in these studies need to be validated in a

greater and statistically significant universe of individual

samples employing distinct methodologies, such as Wes-

tern blot, ELISA or single and multiple reaction monitoring

(Martins-de-Souza 2010).

A study using a multiplex quantitative proteomics

method for detecting biomarkers in the CSF of patients

with neurodegenerative diseases, including AD, dementia

with Lewy body and PD, suggests as potential candidates

for the clinical diagnosis of PD and monitoring disease

progression chromogranins, amyloid precursor protein-like

protein 1 and the prion protein (Abdi et al. 2006), but more

studies are needed to confirm or refute the findings and to

assess the specificity of the protein profiles against other

neurodegenerative diseases (Zetterberg et al. 2008). Recent

research has identified an eight-protein CSF multi-analyte

profile using proteomics that fully differentiate PD patients

from controls, with the profile designation agreeing with an

expert clinical diagnosis of PD 95% of the time (Zhang

et al. 2008).

The idea that the whole metabolism, regulated by genes,

exogenous substances and proteins, might be affected in

diseased patients, and that these affected molecules could

together, form a distinct profile, underlies metabolomics

(Kaddurah-Daouk and Krishnan 2005). This approach has

been tested in PD and some results appear promising, such

as the confirmatory finding of reduced concentrations of

uric acid in plasma of idiopathic PD patients and PD

patients with LRRK2 mutations (Johansen et al. 2009).

However, both idiopathic and LRRK2 PD subjects involved

in this study were taking anti-parkinsonian medications,

and no samples from the un-medicated patients were

available. Therefore, it is possible that the observed sepa-

ration could be related to drug effects, which could involve

unknown drug metabolites and drug-induced changes in

metabolism.

Bogdanov et al. (2008) were able to accurately catego-

rise 25 controls and 66 un-medicated PD patients based

only on their metabolic profiles in blood, obtaining com-

plete separation between the two groups. Interestingly,

concentrations of 8-hydroxydeoxyguanosine, a marker of

oxidative DNA damage, were significantly increased in PD

patients (confirming results obtained in urine), but over-

lapped controls. In addition, concentrations of two other

markers of oxidative stress, uric acid and glutathione were

significantly reduced and significantly increased in PD,

respectively.
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Review of some putative biomarkers for the use

in clinical trials of disease-modifying therapeutics

Table 1 summarises the qualification of biomarker candi-

dates for the use in studies to proof disease-modifying

therapeutics by considering the criteria for the development

of biomarkers of neurodegeneration in PD as defined

above. Qualification is used to mean the establishment of

the credibility of a biomarker assay in its application to

questions relevant to drug treatment (Hampel et al. 2010).

Validation is usually applied to mean the determination of

the performance characteristics of an assay such as for

example sensitivity and specificity in measuring a specific

analyte. Qualification requires specific patient populations

and a specific therapeutic intervention. For example, a

validated assay may be qualified as a PD biomarker to

detect and monitor effects of drug candidates on the disease

process by intervention in the a-synuclein aggregation, but

not in non-a-synuclein mechanisms. It could be said

therefore that the assay which was validated for quantifi-

cation of a-synuclein fibrillisation in the brain or CSF is

‘‘qualified for use’’ as a biomarker in a-synucleinopathies

such PD and Lewy body dementia for drugs that inhibit the

aggregation of a-synuclein. The ultimate use of a bio-

marker is a surrogate end point, which requires that a

biomarker has been qualified to substitute for a well-

established clinical endpoint such that the biomarker rea-

sonably predicts the clinical outcome and therefore can

serve as a surrogate (Hampel et al. 2010).

The first criterion means that the biomarker is linked to

the neuropathology of PD and/or mirror fundamental

pathogenetic events in PD. The validity of a biomarker

with respect to a supposed pathogenetic mechanism will be

relevant for the evaluation of disease-modifying treat-

ments. Pathologically, PD is characterised by a preferential

loss of NM-containing dopamine neurons in the pars

compacta of the SN, with intracellular proteinaceous

inclusions named Lewy bodies in the SN and other brain

regions, and a reduction in striatal dopamine (Bernheimer

et al. 1973; Braak et al. 1995; Jellinger 1991). This ongoing

loss of nigral dopaminergic neurons mainly leads to clini-

cal diagnosis due to occurrence of motor symptoms such as

rigidity, tremor and bradykinesia, which results from a

reduction of about 70% of striatal dopamine (Bernheimer

et al. 1973; Riederer and Wuketich 1976).

To mirror a pathological feature it would be helpful to

know the cause of the disease. However, despite numerous

attempts, the cause of PD remains unclear. It is hypothe-

sised that the cause of neurodegeneration in PD is multi-

factorial in terms of both aetiology and pathogenesis.

Genetic factors are known to cause PD in small numbers of

patients with a familial form of the disorder. Mutations in

different genes (for example, SNCA-synuclein, LRRK2,

parkin, DJ1 and PINK1) have been identified, and PD

subtypes have been linked in addition to different chro-

mosomal loci (for example, Hatano et al. 2009; Schiesling

et al. 2008; Yang et al. 2009).These Mendelian forms of

PD are relatively rare. However, high-throughput geno-

typing and sequencing technologies have more recently

provided evidence that low-penetrance variants in some of

these and other genes may also contribute significantly to

the aetiology of the common sporadic disease. Moreover,

rare variants in further genes, such as the glucocerebro-

sidase A gene associated with Gaucher’s disease, have

been found to be important risk factors in a subgroup of

patients (Gasser 2010). Therefore, an increasingly complex

interplay of different genes seems to contribute in distinct

ways to disease risk and progression. Hence, current

thinking favours the hypothesis that most sporadic cases

are caused by a complex interplay between different

genetic and environmental factors. This interplay may

result in alterations of biochemical cascades. Altered bio-

chemical pathways involved in the pathogenetic cascade of

events leading to cell dysfunction and neuronal cell death

in PD result among others in measurable mitochondrial

complex I deficiency, a disturbed iron metabolism, free

radicals, excitotoxicity, disturbed calcium homeostasis,

microglia activation and protein aggregation (Alvarez-

Erviti et al. 2010; Chu et al. 2009; Double et al. 2010;

Gerlach et al. 2006; Hatano et al. 2009; Schiesling et al.

2008; Yang et al. 2009).

The second criterion for the development of a biomarker

of neurodegeneration and to detect and monitor effects of

drug candidates on the disease process is that the biomarker

must track disease progression. We defined a progression

marker as a disease-associated feature that changes in the

frequency of occurrence or severity, or both, over time.

The definitions used in our evaluation of progression of

features have been published previously (Maetzler et al.

2009a). For the qualification of a biomarker as a surrogate

endpoint, there should be a link between a treatment-

induced change in the biomarker and the desired clinical

outcome measure, as well as a link between the treatment-

induced change in the biomarker and change of disease

process (Hampel et al. 2010).

Although imaging techniques measuring the presynaptic

nigrostriatal system with, for example [18F]-DOPA or

[123I]b-CIT, can readily distinguish subjects with early PD

from controls, and abnormalities can be observed even

before motor symptoms and signs are apparent, these

studies have been failed in monitoring both disease-modi-

fying (Ponsen et al. 2009) and neurorestorative therapies

(Freed et al. 2001; Whone et al. 2003). This was discussed

to be due, in part, to potential pharmacological modulation

or regulation of presynaptic proteins that may not relate to

the actual disease status. Therefore, we postulated as a third
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criterion that the biomarker is monitoring the disease sta-

tus. This would require that the drug aimed to proof a

disease-modifying effect does not pharmacologically

influence the biomarker. To date, trials to proof disease-

modifying drugs have largely evaluated subjects in the

early clinical stages of the disease (generally untreated),

using clinical endpoints that involve either the change in a

classical clinical measure of the disease over time or pro-

gression to the point of reaching a disease milestone (for

example, need for a dopaminergic therapy). The greatest

concern in these studies has been the potential for the study

intervention to cause symptomatic benefit that precludes

the determination of disease-modifying effects. Approa-

ches developed to overcome this problem, such as the

washout and delayed-start design, however, have either

failed to adequately overcome this problem or is not

without its own potential problems (Lang, 2010). There-

fore, clinical biomarkers that are changed by symptomatic

drug therapy cannot be considered sufficient surrogate

biomarkers for the evaluation of disease-modifying

therapeutics.

The fourth criterion for the development of a biomarker

of neurodegeneration for proof of disease-modifying ther-

apeutics in PD is that the biomarker candidate is validated

in experimental models of PD. This means that in an in

vivo model of PD there should be a correlation between the

degree of neurodegeneration and the change of the bio-

marker candidate. In addition, based on the assumed

mechanism of action of a given compound, the proposed

mechanism underlying neurodegeneration should be modi-

fied. This validation will be relevant for predicting the

response of PD patients to putative disease-modifying

therapies.

The fifth criterion, validation of the biomarker in inde-

pendent studies is essential but also trivial. Only a pro-

gression marker that mirrors progression independent from

the investigator can be used as a biomarker for disease-

modifying therapeutics.

Conclusions and future perspectives

Reliable biomarkers that can be used for early diagnosis

and tracking disease progression are the cornerstone of the

development of disease-modifying treatments for PD. To

date, available data have not yet revealed one reliable

biomarker to detect early neurodegeneration in PD and to

detect and monitor effects of drug candidates on the disease

process, but some promising biomarker candidates, such as

antibodies against NM, pathological forms of a-synuclein,

DJ-1, and patterns of gene expression, metabolomic

and protein profiling exist (Table 1). Most of the reported

disease-associated changes are relatively small, with a

clinically problematic overlap between patients and con-

trols. Almost all of the biomarker candidates were not

investigated in relation to effects of treatment, validated in

experimental models of PD and confirmed in independent

studies.

To solve some of the problems associated with the

development of biomarkers that can be used for early

diagnosis and tracking disease progression, the Parkinson’s

Progression Markers Initiative (PPMI) was founded

(http://www.ppmi-info.org). This public–private partnership

leaded by the Michael J. Fox Foundation aims to identify

clinical, imaging, and biological markers of disease pro-

gression. The emphasis will initially be on fluid markers

including a-synuclein, DJ-1, amyloid b, and tau in CSF and

urate in blood. The initiative will enrol 400 newly diag-

nosed patients who are not yet on medication and who have

evidence of dopamine transporter loss on dopamine trans-

porter imaging with SPECT and 200 healthy age-matched

controls. As with the AD Neuroimaging Initiative (ADNI),

a crucial aspect of the PPMI is that all data and biological

specimens, stored in a central repository, will be available

for the research community. The PPMI will thus provide a

valuable resource to fuel further academic and industry-ini-

tiated studies and innovations, and promising biomarker

candidates identified through such efforts could be validated

and qualified against the large, prospective PPMI dataset.

However, to fulfil the promise of the PPMI for deliv-

ering objective biomarkers that can be used for early

diagnosis and tracking disease progression, specimen col-

lection, processing, and storage methods have to be

standardised. Further, quality-control mechanisms should

be in place to ensure data are acceptable before they are

made publicly available. Finally, well-defined quantitative

biomarker outcomes that are consistent among many

research sites and laboratories should be established.
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