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Abstract

Tardigrades have fascinated researchers for more than 300 years because of their extraordinary capability to undergo
cryptobiosis and survive extreme environmental conditions. However, the survival mechanisms of tardigrades are still poorly
understood mainly due to the absence of detailed knowledge about the proteome and genome of these organisms. Our
study was intended to provide a basis for the functional characterization of expressed proteins in different states of
tardigrades. High-throughput, high-accuracy proteomics in combination with a newly developed tardigrade specific protein
database resulted in the identification of more than 3000 proteins in three different states: early embryonic state and adult
animals in active and anhydrobiotic state. This comprehensive proteome resource includes protein families such as
chaperones, antioxidants, ribosomal proteins, cytoskeletal proteins, transporters, protein channels, nutrient reservoirs, and
developmental proteins. A comparative analysis of protein families in the different states was performed by calculating the
exponentially modified protein abundance index which classifies proteins in major and minor components. This is the first
step to analyzing the proteins involved in early embryonic development, and furthermore proteins which might play an
important role in the transition into the anhydrobiotic state.
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Introduction knowledge concerning the proteome and genome of these animals,
which provides the basis for further investigations including
developmental analysis and also characterizing the molecular
" ! ) - b mechanisms of the protections and survival mechanisms in
of carnivorous tardigrades and is analyzed regarding different tardigrades during anhydrobiosis. With our investigation we
aspects of its life history [1,2]. Tardigrades have been in focus in intended to fill this gap by performing shotgun proteomics on
the last decades because of their amazing capability to undergo tardigrades using 1D-SDS-PAGE and high srensitivity nanoLC-

anhydrobiosis and survive physical extremes including high and ESI-MS/MS on an LTQ-Orbitrap mass spectrometer.
subzero temperatures [3,4,5,6], high pressure [5,7] and extreme

levels of ionizing radiation [8,9,10]. There are two known
strategies to cope with water deficiency: “desiccation-avoidance
strategy” and “desiccation-tolerance strategy” [11]. The term
“desiccation-avoidance strategy” describes physiological and
morphological adaptations to reduce water loss. For example the
African lungfish build a waterproof cocoon to prevent the over-

Tardigrades are small invertebrates with a body length of 0.1—
1.0 mm. Milnesium tardigradum Doyére (1840) belongs to the species

Up to date there are only few published transcriptomic [13,14]
and proteomic [15,16] studies available, which were carried out
using EST sequences generated by Sanger sequencing from M.
tardigradum. Using a newly established EST database based on 454
sequencing, we present in this study a comprehensive comparative
analysis of the proteome of tardigrades in three different states:
) R ! early embryonic state (EES), adult tardigrades in active (AS) and
de_thydrau?n [11]. “Desiccation-tolerance strategy” is L}sed for anhydrobiotic (tun) state (T'S). More than 3000 proteins were
w1ths.ta1.1d1ng the dehydrateq state. The best .example 1 anhy— identified with high sequence coverage. This comprehensive
drobiosis, wh(?n the metabolic activity is rever§1bly at a standstill. proteome resource includes different protein families such as
Thereby, tardigrades contract their legs and build the so-called tun chaperones, antioxidants, ribosomal proteins, cytoskeletal proteins,
[12]’. %n which they are resistance to extreme environmental transporters, protein channels, nutrient reservoirs, and develop-
conditions. mental proteins. In addition proteins such as Late Embryogenesis

Even though detailed aspects of the life cycle of tardigrades are Abundant protein (LEA), which were previously identified by
already described, there remains a notable absence of detailed homology search against the NCBInr database [15] are now
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characterized by MS/MS analysis using the M. tardigradum
database for the first time.

Our study presents not only a milestone in analyzing the
proteome of tardigrades, but also a comparative analysis of
different states of tardigrades using a label-free semi-quantification
method. All proteins were quantified by calculating their
exponentially modified Protein Abundance Index (emPAI), which
allows the classification of proteins in major and minor compo-
nents and thereby a semi-quantitative analysis of differentially
expressed proteins in different states. Applying this method, we
firstly compared the proteome of tardigrades in early embryonic
state versus adult tardigrades (in both active and tun state) and
secondly adult tardigrades in active state versus tun state.

Results

Identification and Classification of Proteins Expressed in
M. tardigradum

One dimensional gel electrophoresis in combination with high
sensitive nanoLLC-ESI-MS/MS allowed us the identification of
proteins on a large scale. We investigated the proteome of AL
tardigradum in early embryonic state (EES) and of adult animals in
active (AS) and tun state (T'S) (Figure 1). The analysis yielded 1982
proteins in EES, 2345 proteins in AS and 2281 proteins in T'S.
The complete results of database searches and protein identifica-
tions for each state including decoy analysis are provided in Tables
S1 (EES), S2 (AS) and S3 (TS). Identifications based on one
peptide were allowed only in cases we found the same protein in
different gel slices. By setting the search parameters as such that
they refer to a match probability of p<0.01, we minimized the
false discovery rate (FDR) to values below 5%. Only the FDRs in
gel slices in the low molecular weight range (e.g. slice 26 and 27)
were higher than 5%. Since proteins identified in these slices were
mostly one peptide identifications, they were excluded from
further analyses. Database search of the MS/MS spectra resulted
in proteins that could be separated into two groups: identified
proteins with annotation (annotated by Blast search against
SwissProt and NCBInr databases) and those without annotation.
Proteins with annotation were classified into different functional
groups defined by gene ontology using Blast2GO program. A
summary of all identified proteins and their classification in
selected protein families and functional groups is given in Table
S4. A broad range of diverse protein families including chaper-
ones, antioxidants, ribosomal proteins, cytoskeletal and motor
proteins, transporters, protein channels, nutrient reservoirs, and
developmental proteins are present in the results. Identified
proteins, which could not be annotated using homology search
against the SwissProt and NCBInr database were analyzed for
specific protein domains using DomainSweep. A total of 1135
contigs without annotation were identified including one-peptide
identifications. The DomainSweep analysis resulted in 129
proteins, which showed significant protein domains. For another
455 proteins we found putative protein domains. For the
remaining 551 contigs we could not receive any information.
The result of DomainSweep analysis for not annotated proteins
identified with more than one peptide is available in Table S4.

Determination of Major Components in Early Embryonic
State and of Adult Animals in Active and Tun State

The comparative analysis of tardigrades in different states was
performed using a label-free technique based on emPAI. The
emPAI (exponentially modified Protein Abundance Index) is
defined as the ratio of the number of identified tryptic peptides to
the number of theoretically observable tryptic peptides for each
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protein [17]. In our study the emPAI (included in Tables S1, S2
and S3) was only used to give an approximate estimate of relative
protein concentration to grouping the proteins into minor and
major components for each state. Thus, our data provide an
overview of protein classes, which are highly abundant in each
state.

Selected proteins associated with diverse processes such as
response to stimulus, protection and development were compared
based on their emPAI Data are summarized in Table 1.

To analyze the major components in each state we selected
protein hits which showed an emPAI of >30. We found 38
proteins as major components in EES, from which 20 are without
annotation (Table 2). Among annotated proteins we found 10
protein members of the large lipid transporter protein (LLTP)
superfamily [18] such as apolipophorins and vitellogenins. Heat
shock proteins and ribosomal proteins are further proteins of the
major component category. 60S ribosomal protein L7 and 40S
ribosomal proteins S30 are involved in translation and in
particular 60S ribosomal protein L7 is known to be involved in
reproduction and embryonic development ending in birth or egg
hatching [19]. Two heat shock proteins are present: Hsc71 and
sHsp p40 (major egg antigen) which is highly expressed in EES.
Furthermore we found only one protein belonging to structural
constituent of cytoskeleton (actin-5C). Other cytoskeleton proteins
seem to be not highly expressed at this state.

Proteins without annotation are indicated with an asterisk, in
case we found putative candidates in DomainSweep results. For
one contig (EZ760287/contig08235:1:820:2) DomainSweep anal-
ysis delivered a significant candidate (indicated with #), namely
the whey acidic protein (WAP) 4-disulfide core. This protein has a
peptidase inhibitor activity.

Contigl8794:1:101:3 (EZ761369) contains only 33 amino acids
and shows a high emPAI of 874.69 in EES. Generally, proteins
with short sequences deliver a small number of observable peptides
resulting in high emPAI values [17,20]. On the other hand we
have performed a relative comparative analysis of different states
using the same database. The emPAI of this contig is considerably
lower in AS (70.62) and TS (29.55), which means that the high
emPAI is in fact due to the higher abundance in EES than AS or
TS. Blast search of this contig against NCBInr delivered ribosomal
protein L4 (Danw rerio), however with an insufficient e-value.
DomainSweep analysis of this contig resulted in ribosomal protein
L4/Lle as putative candidate. In-depth proteomics analysis is
needed to verify these results.

We found 53 proteins as major components in adult tardigrades
in AS and 49 in TS (Table 3). Comparing the annotated proteins
in AS and TS we found the same three major functional groups,
members of structural constituent of cytoskeleton and muscle,
furthermore members of LLTP superfamily. Proteins without
annotation include contigs (indicated with asterisk), for which we
have found putative candidates by DomainSweep analysis.

The same protein members of LLTP superfamily are present in
AS as well as in TS. These include the following vitellogenin
proteins: VI'G-1, VI'G-2, VI'G-4 (2 different contigs), VI'G-6 (3
different contigs). The early embryonic state contains all these
vitellogenins except for vitellogenin-2. Interestingly, vitellogenin-2
is described to be involved in biological process of determination of
adult lifespan, which means the control of viability and duration in
the adult phase of the life-cycle [21,22]. Actin 5-C (2 contigs),
cytoplasmic actin and filamin-A belong to the structural constit-
uent of cytoskeleton. Myosin heavy chain, paramyosin, myosin-7,
myosin-3, and troponin I are muscle proteins and except troponin
I have all motor activity function. We found one isoform of myosin
heavy chain, troponin I, two protein members of heat shock
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Figure 1. Separation of protein lysates of tardigrades in three different states by one-dimensional polyacrylamide gel
electrophoresis. Lane 1: Rainbow molecular weight marker. Lane 2: Protein extract of adult tardigrades in active state (AS). Lane 3: Protein
extract of adult tardigrades in tun state (TS). Lane 4: Protein extract of tardigrades in early embryonic state (EES). Bottom. SEM-images of M.

tardigradum in the corresponding states.
doi:10.1371/journal.pone.0045682.9001

protein family (Hsc 71 and AGAP000941-PA) and 40S ribosomal
protein S3 as major components in AS, and annexin All,
transketolase-like protein 2 and 60S acidic ribosomal protein PO as
member of major component group in TS. Con-
tig01971:138:399:3 is annotated as AGAP000941-PA from
Anopheles gambiae, which shows high homology to small heat shock
proteins. Among proteins without annotation, there are 18
proteins present in both AS and TS.

Proteins Found in One State Only

The proteome analysis yielded 1982 proteins in EES, 2345
proteins in adult tardigrades in AS, and 2281 proteins in TS. A
total of 1301 proteins are found in all three states as shown in the
Venn diagram in Figure 2. 472 proteins are only identified in EES,
199 only in T'S and 256 only in AS. To compare and demonstrate
the main GO categories of biological process of proteins in single
and overlapping regions (Venn diagram, a-f) Blast2GO program
was applied. The highest ranked biological processes for each
region are shown in Figure 2a-f.
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A total of 472 proteins were identified only in EES, 122 of
which are without annotation. Among the proteins identified only
in EES, ribosomal proteins represent the majority as shown in
Figure 2a. Although various ribosomal proteins are found in all
states, there are 32 ribosomal proteins that are only observed in
EES. The second main protein category present in EES contains
proteins involved in embryonic development, which is expected
(Figure 2a).

Specific proteins like protein members of the piwi family are
identified only in EES. Piwi like proteins are developmental
proteins that play a central role during gametogenesis [23].
Proteins involved in iron homeostasis like soma ferritin are also
found only in EES. In total four contigs annotated as proteins
belonging to ferritin family are identified (Table S4), two of which
are present in all three states, one in EES and T'S and another one
only in EES. Two members of heat shock protein family are
identified only in EES: the small heat shock protein C4 involved in
stress response and 10 kDa heat shock protein belonging to the
GroES chaperonin family and involved in protein folding. In
addition two different contigs annotated as small heat shock
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Table 2. Major protein components in early embryonic state (EES).

NCBInr accession Protein length

(Q90473)|Evalue: 0.0

Protein description no. (aa) Slice no. emPAI
contig18794:1:101:3|No Annotation* EZ761369 33 EES1, 3 874.69
contig18438:8:349:2|No Annotation* EZ761288 113 EES9, 1-24 535.33
contig04531:1:1454:1|similar to Apolipophorins (Q9U943)|Evalue: 7e-11 EZ759740 484 EES5, 1-25 434.48
contig08625:1:110:2|No Annotation EZ760340 36 EES8, 2-22 27513
contig10105:1:309:3|No Annotation EZ760515 102 EES6, 1-23 258.84
contig18673:1:499:2|similar to Major egg antigen (P12812)|Evalue: 2e-05 EZ761340 166 EES9, 1, 3-23 227.19
contig02293:1:648:1|similar to Vitellogenin-6 (P18948)|Evalue: 5e-14 EZ759327 216 EES6, 2-23, 27 219.67
contig06595:1:952:2|similar to Vitellogenin-1 (P87498)|Evalue: 3e-07 EZ760059 317 EES6, 1-25 206.56
contig08235:860:1596:2|No Annotation*# EZ760287 245 EES12, 3-24 197.64
contig24531:1:590:3|PREDICTED: apolipoprotein B [Danio rerio] EZ762575 196 EESS5, 1-23 162.83
(XP_694827.3)|Evalue: 2e-05

contig18537:1:1312:2|PREDICTED: similar to apolipoprotein B [Strongylocentrotus EZ761306 437 EES5, 1-22, 24 141.61
purpuratus] (XP_800206.2)|Evalue: 1e-07

contig26443:1:303:1|No Annotation EZ763018 101 EES8, 1-20 126.67
contig06373:1:1480:1|similar to Vitellogenin-4 (P18947)|Evalue: 9e-11 EZ760037 493 EES6, 1-24 107.82
contig24202:107:1017:2|similar to Apolipoprotein B-100 (P04114)|Evalue: 3e-18 EZ762460 303 EES5, 1-24 106.16
contig13035:1:170:1|No Annotation EZ760790 56 EES10, 2-21 90.14
contig26295:1:531:2|similar to Vitellogenin-6 (P18948)|Evalue: 4e-16 EZ762991 176 EES6, 1-20 76.29
contig02295:455:757:2|No Annotation EZ759329 101 EES6, 3-23 72.73
contig19498:1:162:1|No Annotation EZ761534 53 EES17, 16-18 69.57
contig23734:1:153:2|similar to Transketolase-like protein 2 EZ762348 50 EES8, 8-11, 13-16  66.59
(Q9D4D4)|Evalue: 6e-16

contig02294:1:661:1|similar to Vitellogenin-4 (P18947)|Evalue: 5e-11 EZ759328 220 EES6, 4-22 65.94
contig21262:473:652:1|No Annotation EZ761852 59 EES18, 1, 4, 16-21  60.53
contig08235:1:820:2|No Annotation EZ760287 272 EES12, 3-21, 23 57.82
contig24360:1:563:3|No Annotation EZ762516 187 EES6, 3-20 54.9
contig21510:1907:2014:1|similar to 40S ribosomal protein S30 EZ761888 35 EES20, 1, 21 43.57
(P62861)|Evalue: 3e-05

contig02022:1:119:3|No Annotation EZ759264 39 EES13, 3-11, 12-15 41.58
contig28231:1:506:3|No Annotation EZ763311 168 EES8, 1-17, 20, 21, 2340.43
contig13522:1:269:3|No Annotation EZ760825 89 EES6, 1, 3, 5-17, 21 39.96
contig08851:1:613:2|similar to 60S ribosomal protein L7 (001802)|Evalue: 4e-82 EZ760361 203 EEST, 1-4 39.62
contig20910:105:416:3|similar to Histone H4 (P62799)|Evalue: 9e-40 EZ761805 103 EES20, 1-5, 14-24 37.24
contig03062:1:281:2|No Annotation EZ759470 93 EES6, 3-22 37.22
contig17982:1:724:2|similar to Actin-5C (P10987)|Evalue: 1e-138 EZ761195 240 EES12, 13 36.13
contig18941:155:934:2|No Annotation EZ761416 259 EES14, 1, 11-21 35.41
contig02694:1:571:2|No Annotation* EZ759400 189 EES10, 6-20 34.64
contig24586:1:771:2|similar to Vitellogenin-6 (P18948)|Evalue: 5e-10 EZ762594 256 EES6, 3-20 34.26
contig26339:1:396:1|No Annotation EZ762998 131 EES15, 14-16 33.54
contig22711:32:1325:2|similar to Elongation factor 1-alpha (P41752)|Evalue: 0.0 EZ762083 431 EES10, 6-21 3272
contig07785:1:816:1|No Annotation EZ760233 272 EES6, 2-17 31.07
contig07915:1:1267:2|similar to Heat shock cognate 71 kDa protein EZ760247 422 EES8, 7-20 3043

ordered by their biological function.
doi:10.1371/journal.pone.0045682.t002

protein major egg antigen (p40) are identified. One is only found
in EES and the other one in all states.

A total of 256 proteins are found only in AS, from which 71
proteins are without annotation. The two proteins (EZ760543,
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38 proteins were found as major components in EES, 10 of which belong to the large lipid transporter superfamily. Other members are the heat shock protein family,
structural constituent of ribosome and cytoskeleton. In addition, 20 proteins are without annotation. The contig description is indicated with asterisk, in case we found
putative candidates by DomainSweep analysis. For one contig DomainSweep analysis delivered a significant candidate (indicated with #). Proteins with annotation are

EZ762990) with the highest emPAI value are without annotation
and DomainSweep analysis delivered no specific protein domains.
Dixin, a developmental protein involved in Wnt signalling
pathway is the protein with the third highest emPAI value. Wnts
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Table 3. Major protein components in adult tardigrades in active and tun state. 53 proteins were found as major components in
adult tardigrades in AS and 49 in TS.

NCBInr Protein

accession length emPAI
Protein annotation no. (aa) Slice no. (AS) emPAl (AS) Slice no. (TS) (TS)
contig18438:8:349:2|No Annotation* EZ761288 113 AS6, 4-19 164.93 TS6, 4-19 431.91
contig08625:1:110:2|No Annotation EZ760340 36 AS7, 4-20 175.51 TS7, 4-20 208.2
contig06212:1:430:3|No Annotation* EZ760013 142 AS15 85.41 TS14, 10-19 150.89
contig04531:1:1454:1|similar to Apolipophorins (Q9U943)|Evalue: 7e-11 EZ759740 484 AS5, 2-20 148.6 TS5, 4-20 131.78
contig02293:1:648:1|similar to Vitellogenin-6 (P18948)|Evalue: 5e-14 EZ759327 216 AS7, 4-19 134.37 TS7, 4-27 113.52
contig17982:1:724:2|similar to Actin-5C (P10987)|Evalue: 1e-138 EZ761195 240 AS13, 11-15, 17-19192.6 TS13, 12-14, 18,101.14

19
contig06595:1:952:2|similar to Vitellogenin-1 (P87498)|Evalue: 3e-07 EZ760059 317 AS6, 3-26 107.89 TS6, 4-26 97.94
contig18673:1:499:2|similar to Major egg antigen (P12812)|Evalue: 2e-05 EZ761340 166 AS11, 4-19 108.34 TS10, 4-19 97.24
contig22876:95:450:2|similar to Actin, cytoplasmic 1 EZ762129 118 AS13, 4-8, 10-20 75.63 TS13,1,4-19  89.85
(P68142)|Evalue: 3e-67
contig02294:1:661:1|similar to Vitellogenin-4 (P18947)|Evalue: 5e-11 EZ759328 220 AS7, 5-19 95.06 TS7, 4-20 73.72
contig00571:1:108:2similar to Myosin-3 (P12844)|Evalue: 4e-08 EZ759003 35 AS12, 4, 6,10, 14, 31.51 TS7,4,6-9, 11, 66.84
15,17 12,13

contig13522:1:269:3|No Annotation EZ760825 89 AS7, 4-18 35.97 TS6, 4-19 66.72
contig22232:1:250:2|No Annotation EZ761993 83 AS17, 16-19 33.65 TS17, 16-19 61.15
contig24360:1:563:3|No Annotation*® EZ762516 187 AS7, 4-17 60 157, 4-17 60.76
contig24586:1:771:2|similar to Vitellogenin-6 EZ762594 256 AS7, 4-19 55.07 TS7, 4-19 60.25
(P18948)|Evalue: 5e-10
contig26443:1:303:1|No Annotation EZ763018 101 AS7, 3-18, 20 54.39 TS7, 4-21 58.75
contig08235:860:1596:2|No Annotation#* EZ760287 245 AS13, 4-19 68.46 TS13, 4-20 58.55
contig13035:1:170:1|No Annotation EZ760790 56 AS9, 3-21 58.2 TS7, 4-21 58.5
contig23734:1:153:2similar to Transketolase-like protein 2 EZ762348 50 not identified TS9, 10, 12, 13, 57.59
(Q9D4D4)|Evalue: 6e-16 16
contig06373:1:1480:1|similar to Vitellogenin-4 (P18947)|Evalue: 9e-11 EZ760037 493 AS6, 3-20 60.6 TS6, 2-21 56.55
contig24531:1:590:3|PREDICTED: apolipoprotein B [Danio rerio] EZ762575 196 AS5, 3-19 38.74 TS5, 4-19 55.8
(XP_694827.3)|Evalue: 2e-05
contig02694:1:571:2|No Annotation* EZ759400 189 AS11, 6-20 40.57 TS11, 5-20 55.6
contig18537:1:1312:2|PREDICTED: similar to apolipoprotein B EZ761306 437 AS5, 2-19 65.75 TS5, 4-19 55.45
[Strongylocentrotus purpuratus] (XP_800206.2)|Evalue: 1e-07
contig14962:1:769:2|similar to Myosin heavy chain, muscle EZ7692 255 AS5, 4-19 62.42 TS4,4-17,19 5471
(P05661)|Evalue: 6e-58
contig00982:1:961:2similar to Actin-5C (P10987)|Evalue: 3e-137 EZ759080 319 AS13, 3-26 62.7 TS13, 4-25, 27 52.95
contig01345:1:144:1|similar to Myosin heavy chain, muscle EZ759146 48 AS4, 4-11,13-18 4396 TS5, 4-17 51.66
(P05661)|Evalue: 2e-08
contig02107:1:417:1|similar to Myosin heavy chain, muscle EZ759286 139 AS8, 4-19 45.53 T54, 4-19 49.63
(P05661)|Evalue: 4e-35
contig10105:1:309:3|No Annotation EZ760515 102 AS10, 4-20, 24 49.63 TS10, 4-19 49.34
contig24758:1:1673:3|similar to Paramyosin (Q86RN8)|Evalue: 2e-126 EZ762631 556 AS7, 4-19 62.28 157, 4-19 47.74
contig02295:455:757:2|No Annotation EZ759329 101 AS7, 4-19 58.29 TS7, 4-19 47.7
contig02022:1:119:3|No Annotation EZ759264 39 AS6, 4-17 438 TS7,4-13, 15-1746.92
contig24202:107:1017:2|similar to Apolipoprotein B-100 EZ762460 303 ASS5, 4-20, 23,24 47.92 TS5, 4-19 4538
(P04114)|Evalue: 3e-18
contig22711:32:1325:2|similar to Elongation factor 1-alpha EZ762083 431 AS11, 4-20 38.85 TS11, 4-20 44.47
(P41752)|Evalue: 0.0
contig25609:1:118:2|No Annotation EZ762840 38 AS11, 10-16, 18 37.44 TS11, 10-16 41.76
contig05208:1:597:1|similar to Myosin heavy chain, muscle EZ759850 199 AS8, 4-17 48.82 TS4, 4-14, 16, 1741.35
(P05661)|Evalue: 3e-50
contig26295:1:531:2|similar to Vitellogenin-6 (P18948)|Evalue: 4e-16 EZ762991 176 AS6, 4-19 37.64 157, 4-19 40.05
contig18052:1:207:1|No Annotation EZ761213 69 AS8, 5-9, 16 3533 TS9, 4,8,9,16 39.78
contig07785:1:816:1|No Annotation EZ760233 272 AS6, 4-19 48.7 TS7, 4-19 39.71

PLOS ONE | www.plosone.org 15 September 2012 | Volume 7 | Issue 9 | e45682



Comparative Proteome Analysis of Tardigrades

control development in organisms ranging from nematodes to
mammals. The Blast2GO analysis of annotated proteins
(Figure 2b) delivered metabolic process, oxidation reduction and
proteolysis as abundant categories, which are important processes
for a living organism.

We identified 199 proteins in TS, from which 58 are without
annotation. Two proteins without annotation (EZ758977,
EZ762549) followed by myosin heavy chain (EZ763186) are the
proteins with the highest emPAI value found only in TS. The
result of Blast2GO analysis of annotated proteins is shown in
Figure 2c. The first ten biological process categories include three
categories involved in response to stimulus, such as heat, oxidative
stress and xenobiotic stimulus (Figure 2c). Only the last one is also
present in AS (Figure 2b). Heat shock protein 81-2 (Hsp90 family),
hypoxia up-regulated protein 1 (Hsp70 family), and two members
of Dna]J protein family are present as chaperones involved in stress
response In tun state. Although activation of stress response was
expected in TS, it seems there are other processes which are
probably associated with anhydrobiosis. Proteins involved in
intracellular signaling cascade and phosphorylation are present.
Protein amino acid phosphorylation as a biological process
category is present in Blast2GO results of proteins identified only
in AS and TS (Figure 2b). However, the involved proteins in
phosphorylation in both states seem to be different. Dual specifity

PLOS ONE | www.plosone.org
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Table 3. Cont.

NCBInr Protein

accession length emPAI
Protein annotation no. (aa) Slice no. (AS) emPAl (AS) Slice no. (TS) (TS)
contig04301:1:1559:3|similar to ATP synthase subunit beta (Q39Q56)|Evalue:EZ759701 518 AS11, 8-21 34.93 TS11, 10-21 39.26
0.0
contig26339:1:396:1|No Annotation* EZ762998 131 AS17, 14-18 55.04 7517, 15-18 36.42
contig20019:1:1092:1|similar to Arginine kinase (Q95V58)|Evalue: 1e-145  EZ761641 363 AS14, 12-23 371 TS14, 8, 12-20 35.73
contig00641:1:549:1|similar to Myosin heavy chain, striated muscle EZ759017 183 AS6, 4-13, 15-18 34.33 TS4, 4-12, 15, 1735.67
(P24733)|Evalue: 3e-50
contig04802:115:695:1|No Annotation EZ759786 193 AS11,5,7,9-25 49.23 TS11, 10-23, 25,34.66

26
contig13127:1:930:1|similar to Myosin-7 (Q91Z83)|Evalue: 1e-116 EZ760799 310 AS7,2-18 46.57 TS4, 2, 4-15,17-34.4
19

contig10543:1:889:2|similar to Filamin-A (Q8BTM8)|Evalue: 1e-72 EZ760561 295 AS8, 4-18 36.73 TS8, 4-18 32.72
contig20321:1:864:1|similar to 60S acidic ribosomal protein PO EZ761707 287 not identified TS14, 14-20 31.26
(Q9U3UO0)|Evalue: 8e-85
contig26360:1:1109:3|similar to Vitellogenin-2 (P05690)|Evalue: 2e-12 EZ763003 368 AS9, 4-18 33.27 TS6, 4-19 30.89
contig26565:106:1698:1|similar to Protein disulfide-isomerase 2 EZ763042 530 AS10, 8-20 36.48 TS10, 9-20 30.18
(Q17770)|Evalue: 6e-144
contig00947:1:818:3|similar to Annexin A11 (P33477)|Evalue: 6e-48 EZ759075 271 not identified TS14, 13-19 30.15
contig18794:1:101:3|No Annotation* EZ761369 33 AS12, 12-19 70.62 not identified
contig19607:1:514:2|No Annotation EZ761554 171 AS6, 4-19 34.15 not identified
contig23852:3162:3608:1|similar to Troponin | (P36188)|Evalue: 2e-23 EZ762384 148 AS16, 14-20 3294 not identified
contig07915:1:1267:2|similar to Heat shock cognate 71 kDa protein EZ760247 422 AS9, 8-18 3248 not identified
(Q90473)|Evalue: 0.0
contig01191:1:298:2|similar to 40S ribosomal protein S3 (Q90YS2)|Evalue: 2e-EZ759116 98 AS16, 4, 5,12, 14- 31.11 not identified
32 19
contig26256:1:544:1|similar to Myosin heavy chain, muscle (P05661)|Evalue: EZ762982 181 AS6, 3-17, 19 30.15 not identified
4e-37
contig01971:138:399:3]AGAP000941-PA [Anopheles gambiae str EZ759251 87 AS13, 11-16 30.05 not identified
(XP_560153.3)|Evalue: 8e-05
Comparing the annotated proteins in AS and TS we found the same two major functional groups, protein members of structural constituent of cytoskeleton/muscle and
protein members of large lipid transporter family. The contig description is indicated with asterisk, in case we found putative candidates in DomainSweep analysis.
doi:10.1371/journal.pone.0045682.t003

mitogen-activated protein kinase (EZ759901/con-
tig05524:314:1363:2), RAC  serine/threonine-protein  kinase
(EZ760607) and cell division cycle 2-like protein kinase 6
(EZ761193), which are involved in phosphorylation have been
identified only in T'S.

Reanalysis of our data by including phosphorylation of serine,
threonine and tyrosine as modification delivered 49 proteins
(Table S5). We have identified 13 different phosphoproteins only
in EES, 11 phosphoproteins only in AS and another 11
phosphoproteins only on TS. Further seven phosphoproteins are
identified in both AS and TS, two phosphoproteins in both EES
and AS and another two phosphoproteins in both EES and TS.
We found 3 phosphoproteins in all three states. The comparison of
the phosphoproteins which are found only in AS or T'S shows that
almost half of the phosphoproteins in T'S are without annotation.
Also of major interest are proteins involved in intracellular
signaling cascade: calcium-regulated heat stable protein 1
(EZ759268), RAC serine/threonine-protein kinase (EZ760607)
and Drebrin-like protein (EZ760971/contigl6604:102:1247:3).
However, the role of these proteins in relation to desiccation
tolerance has to be investigated.

Among diverse proteins only identified in TS we found lipid
storage droplets surface-binding protein which is involved in lipid
transport and is reported to be required for normal deposition of
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Figure 2. Comparative proteome analysis of proteins identified in different states. The Venn diagram illustrates the number of protein
identifications in EES, AS and TS. A total of 1301 proteins were found in all three states, 472 proteins are found only in EES (a) and 680 proteins are
found only in adult tardigrades in TS and AS (f). Proteins which are non-overlapping (a, b, ) or partially overlapping (d, e, f) between the different
states are analyzed using Blast2GO program to determine the involved biological processes. The ten major biological processes for non-overlapping
proteins are listed in 2a-2c and for partially overlapping proteins in 2d-2f.

doi:10.1371/journal.pone.0045682.g002

neutral lipids in the oocytes [24,25]. Lipids represent probably the
only nutrient sources during all steps from dehydration (transi-
tional state I) to rehydration (transitional state II) and thus are
essential for surviving.

Proteins Overlapping in Two States

Whereas 680 proteins were identified only in adult tardigrades
(active and tun), the number of proteins which are overlapping

PLOS ONE | www.plosone.org

17

between EES and adults is significantly lower (108 between EES
and AS and 101 between EES and TS), which is expected (Venn
diagram in Figure 2). Whereas cellular component organisation
and transport are main processes in both EES and AS (Figure 2d),
translation, development and biological regulation are abundant
categories found in both EES and TS (Figure 2e). Proteins found
only in AS and TS are mainly involved in cellular process,
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oxidation reduction,
(Figure 2f).

Proteins involved in metabolic processes are present in TS but
reduced to half compared to AS, which is in accordance to the
expectation since during anhydrobiosis a metabolic dormancy is

described [26,27].

proteolysis and biological regulation

Discussion

Comprehensive Analysis of the M. tardigradum Proteome

In our previous publication a proteome map of tardigrades was
developed utilizing 2D gel electrophoresis and LC-ESI-MS/MS
analysis [15]. 2D gel electrophoresis offers high resolution and
allows analysis of single spots, which contain at most only a few
proteins. In particular, the absence of a comprehensive database at
the time of our previous study made the reduction of complexity
achieved by 2D gel electrophoresis necessary to increase the
number of detected peptides which belong to the same protein.
Since our parallel tardigrade EST sequencing project provided us
recently with a high number of new EST sequences generated by
454 sequencing, we could consider the 1D gel electrophoresis as a
complementary platform to 2D gel electrophoresis to analyze the
proteome of tardigrades (Figure 3). The present study includes a
comprehensive proteome resource of M. tardigradum and demon-
strates the first comparative analysis of expressed proteins in three
different states.

In addition we have reanalyzed the MS/MS data of protein
spots from our 2D gel study [15] against the 454 database (Table
S6). Interestingly, our 2D proteomics data of active tardigrades
support the quantification analysis based on emPAI. Proteins with
a high emPAI could be identified repeatedly in different protein
spots on the 2D gel, which indicates the high amount of these
proteins in the whole protein extract. For instance major egg
antigen (EZ761340) shows a high emPAI of 108.34 and could be
identified in 22 protein spots. Other proteins such as vitellogenin,
apolipoproteins and actin show the same relation between emPAI
and number of spots on the 2D gel.

Although the present 454 protein database is the most
comprehensive one available at the moment, it is still an
incomplete database. Calculation of emPAI using an incomplete
database delivers high values for contigs with very short sequences,
which can lead to misinterpretation [17,20]. In these cases the
high emPAI is caused by the calculation using a short sequence
present in the database and therefore is not related to the amount
of the protein. Nevertheless, a comparative analysis of the same
protein in different states is possible, since we perform a relative
quantification using the same database for all three states. In total
we identified more than 3000 proteins, 2460 of which could be
functionally annotated by homology search against the SwissProt
and NCBInr databases. The results cover two main aspects:

(i)  Identifcation of diverse protein families for the first time in
M. tardigradum. Of major interest are proteins that have been
reported to be related to anhydrobiosis such as heat shock
proteins, Late Embryogenesis Abundant protein, aquaporins,
and antioxidant proteins.

(i) Comparative analysis of major components in different
states. Protein families identified only in early embryonic
state deliver new aspects in terms of developmental biology.
Comparative analysis of proteins in active versus tun state
could bring us closer to understanding the molecular
mechanisms during anhydrobiosis.
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These two aspects are discussed in the following section by
selected protein families.

Comparative Analysis of Proteins Associated with
Anhydrobiosis and Survival

Among the numerous proteins identified in this study some
proteins have already been reported to play an important role
during anhydrobiosis, most importantly Late Embryogenesis
Abundant (LEA) proteins. Although the precise role of LEA
proteins has not yet been fully elucidated, different studies have
reported on the association of these proteins with tolerance to
water stress by desiccation [28,29]. The presence of LEA proteins
in tardigrades has been shown by analyzing 2D gels prepared from
whole protein lysates of M. tardigradum and homology search
against NCBInr database [15]. In the present study LEA could be
identified also in our tardigrade specific database. Contig
EZ759004 shows high similarity to the LEA protein from
Alteromonas macleodii. The predicted sequence from M. tardigradum
was confirmed by MS/MS analysis of peptides covering 61.9% of
the entire sequence (length: 147aa). This protein is up-regulated in
adults and shows a 1.2 times higher emPAI in tun state compared
to active state. The search for specific protein patterns using
DomainSweep (Table S4) resulted in two significant hits
(EZ759288, EZ761565) and 5 putative candidates (EZ759004,
EZ759235, EZ761969, EZ762343, EZ762913) for LEA proteins.
Among these candidates only contigs EZ759004, EZ759288 and
EZ759235 are identified with more than one peptide.

Chaperones in particular heat shock proteins (Hsps) play key
roles in cell protection and response to diverse stimuli like stress,
heat and hypoxia by preventing protein aggregation (Table 1).
The relation of Hsps in particular low molecular weight Hsps in
desiccation tolerance and dormancy is reported in different studies
[12,30]. A comprehensive proteomic study of Hsps in tardigrades
In active versus tun state has been reported earlier [16]. Different
Hsp families are present in our results: Hsp90, Hsp70, Hsp60,
Hsp40 and Hsp20, GroES, and GrpE families. We identified three
sHsps that are described for the first time in M. tardigradum: the
small heat shock protein C4 and 10kDa heat shock protein (GroES
chaperonin family) identified only in the EES and a sHsp
(AGAP0O00941-PA, sHsp 20.6 isoform 3 (EZ759251)) in all three
states. In addition other chaperonin families such as TCP-1 and
calreticulin were identified in all three states (Table S4). Our semi-
quantitative analysis indicates an up-regulation of a small heat
shock protein (major egg antigen, p40) and furthermore a ferritin
homologue in EES of M. tardigradum. Major egg antigen is found in
Schistosoma mansoni and is described to be involved in response to
heat. In all analyzed states major egg antigen (EZ761340) 1s the
heat shock protein with the highest emPAI particularly in EES.
Artemin, the ferritin homologue identified in Artemia is reported to
protect cells from stress and acts similar to molecular chaperones
such as small heat shock proteins. In studies on Artemia it has been
shown that the small heat shock protein and artemin are
associated with anhydrobiosis [31]. Since we found p40 and soma
ferritin both up-regulated in EES and not in anhydrobiotic state,
we assume that these proteins are involved in development and
hence are specific markers for the EES. However, the role of p40
and ferritin in anhydrobiotic tardigrades has to be investigated.

An important aspect of desiccation tolerance is protection
against free radicals [32,33]. Superoxide dismutases (SODs) are
one of the most important antioxidant enzymes in defense against
ROS and particularly superoxide anion radicals [34,35]. Gener-
ally SOD is present in two forms inside the eukaryotic cell, SOD
(Cu-Zn) in the cytoplasm and outer mitochondrial space, and
SOD (Mn) in the inner mitochondrial space [36]. Both superoxide
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Figure 3. The experimental workflow to analyze the proteome of Milnesium tardigradum. Tardigrades in different states were
homogenized directly in lysis buffer. Total protein extracts of tardigrades in early embryonic state and adult tardigrades in active and tun state were
separated by 1D gel electrophoresis. After staining gel lanes were sliced and proteins in-gel digested with trypsin. MS/MS data obtained by nanoLC-
ESI-MS/MS analysis were searched against the tardigrade specific database. The database was developed by translating EST sequences of M.
tardigradum, which were obtained by 454 sequencing. Identified proteins with annotation were classified in different functional groups using the
Blast2GO program. Identified proteins without annotation were analyzed with the DomainSweep program to search for specific protein domains.

doi:10.1371/journal.pone.0045682.g003

dismutases SOD (Cu-Zn) (6 contigs) and SOD (Mn) (2 contigs)
have been identified in tardigrades (Table S4). The superfamily of
glutathione transferases (GSTs) builds a further cellular detoxifi-
cation system [37]. In addition GSTs have cellular physiology
roles such as regulators of cellular pathways of stress response and
housekeeping roles in the binding and transport of specific ligands
[38]. We have found 27 different contigs that belong to the GST
superfamily. The expression of 1-cysteine (1-Cys) peroxiredoxin
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family of antioxidants is reported in Arabidopsis thaliana and is
shown to be related to dormancy [39]. Different isoforms of
peroxiredoxins (8 contigs) are included in our results. Peroxir-
edoxins and diverse other proteins like catalase, peroxidasin,
thioredoxin reductase and glutamate cysteine ligase are described
to be involved in response to oxidative stress (Table 1). The
comparison of the total emPAI (sum of emPAI of each protein
member) of protein families with antioxidant activity shows that
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GSTs are approximately 3 fold higher in adults compared to EES
(Figure 4), which is probably due to the exposition to higher
amounts of endobiotics and xenobiotics. Eggs are laid inside the
old cuticle and remain there during the embryonic development.
Therefore embryos are not directly attacked by xenobiotics. In
contrast Cu-Zn SODs are up-regulated in EES compared to adults
(Figure 4). The studies on development of mouse embryos i vitro
have shown that thioredoxin and SODs promote the i wvitro
development of mouse embryos fertilized i vitro [40]. This suggests
that protection of embryos from oxidative stress is a prerequisite
for their development i vitro. We assume that the up-regulation of
Cu-Zn SODs in EES is related to their important roles in
development. Comparing active to tun state we observed up-
regulation of GSTs and peroxiredoxins in active state and in
contrast up-regulation of SODs in tun state.

We identified 350 transmembrane proteins, 53 of which are
involved in transmembrane transport. One group of channel
proteins that plays an important role in “desiccation-tolerance
strategy” 1s the aquaporin (AQP) protein family [11]. AQPs are
passive transport channels for water and permit water to move in
the direction of an osmotic gradient. Kikawada et al. could show

Comparative Proteome Analysis of Tardigrades

that AQP is involved in the removal of water in the desiccation
process en route to anhydrobiosis [11]. Different AQPs are
identified in M. tardigradum: AQP 3, AQP 4, AQP 9, AQP 10 (2
contigs). AQP 4 is the most abundant one in all three states and in
particular up-regulated in EES. Compared to the active state AQP
4 i1s 1.2 times more expressed in the tun state. However, the
question whether identified AQPs are involved in anhydrobiosis in
M. tardigradum needs to be answered by performing functional
analysis.

Although a high number of 1981 proteins overlaps between AS
and TS, there are also numerous proteins (256 in AS and 199 in
TS) that are identified only in one state. The Blast2GO analysis of
proteins identified only in T'S led to the assumption that not only
the response to stimuli plays an important role in the anhydro-
biotic state, but also further processes and mechanisms are
associated such as response to heat, oxidative stress, intracellular
signalling cascades, and phosphorylation. As shown in Table 1 we
found not only Hsps involved in response to stimuli, but also two
other main groups namely kinases in particular those involved in
mitogen-activated (MAPK) signaling pathway and translation
initiation factor, which is associated with protein biosynthesis.

Expression of selected protein families in different states
1800 |
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< 1000 —
o
=
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E 800 —
=
600 |
400 —
200 — p—
0 __ERTUES = - — — | -
Large lipid Structural Structural Structural Structural GsT Cu-Zn
transfer protein | constituent of constituent | constituent of | constituent of il superoxide
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Figure 4. Comparative expression analysis of selected proteins. Total emPAl is the sum of emPAl of each protein member. Large lipid
transfer protein (LLTP) superfamily belong to major components in all three states. This protein family is highly expressed in EES compared to adults.
Semi-quantitative analysis of proteins contributing to the structural integrity of ribosome indicates a significant up-regulation of ribosomal proteins
in EES. In contrast proteins involved in cytoskeletal-, muscle- and vitellin membrane structure are not highly abundant at this state compared to
adults in AS and TS. Proteins with antioxidant activity such as GSTs are approximately 3 fold higher in adults compared to EES. In contrast Cu-Zn SODs

are upregulated in EES.
doi:10.1371/journal.pone.0045682.g004
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There are reports of observed changes in protein phosphorylation
in plants which were exposed to water deficit, suggesting reversible
phosphorylation as a regulator [41]. In particular mitogen-
activated protein kinases (MAPKSs) and other kinases belonging
to the MAPK cascade have been identified in plants in response to
dehydration, suggesting that the MAPK cascade is mvolved in
stress signaling [42,43].

The analysis for phosphorylation delivered 49 phosphoproteins
(Table S5). As expected the number of identified phosphopeptides
was very low, since we did not perform any enrichment steps for
phosphopeptides prior to the mass spectrometry analysis. Enrich-
ment steps need high amounts of peptides and have to be
optimized. In our study the starting material was limited and did
not allow any further procedures. However, we found specific
phosphoproteins for each state. Almost half of the phosphoproteins
in TS (5 out of 11) are without annotation. The functional analysis
of these tardigrade specific proteins has to be investigated.

Comparative Analysis of Proteins Identified in EES Versus
AS and TS

Members of large lipid transfer protein (LLTP) superfamily
belong to major components in all three states. In addition this
superfamily is highly expressed in EES compared to adults as
shown by calculating total emPAI (Figure 4). Lipid transport in
animals is mediated by members of the LLTP superfamily, which
are grouped into three major families: the apoB-like LLTPs, the
vitellogenin-like LL'TPs, and the microsomal triglyceride transfer
protein (MTP)-like LLTPs, or MTPs [18]. In addition to lipid
transport they have also been reported to play an important role in
animal development [44], reproduction [22], and immunity [45]
as well as aging and lifespan regulation [46]. The high regulation
of protein members of LLTP superfamily in adults can be
explained by the fact that we used middle age, egg producing
adults in our experiments. ApoB-like LLTPs are represented in
our study by the following protein members: three contigs which
show high homology to apolipoprotein B, apolipoprotein O and
apolipophorin (Table 1). Glycolipophosphoprotein vitellogenin
(VTG) is the major precursor of the egg-yolk protein, vitellin (Vn),
which provides sources of nutrients during embryonic develop-
ment in oviparous organisms [22,47]. It has been reported that
lower vertebrates possess multiple Vtg genes and proteins [47] as
has been shown for Danio rerio [48], Xenopus laevis [49], and
salmonid fishes [50] as well as for the nematode Caenorhabditis
elegans [51]. Similarly multiple Vtg proteins are found in M.
tardigradum: VTG-1, VI'G-2, VI'G-4 (2 contigs) and VITG-6 (3
contigs). Whereas apoB-like LLTPs and vitellogenin-like LLTPs
are present abundantly in EES, MTP-like LLTPs are underrep-
resented and are found only in adult tardigrades.

Other proteins could be identified that are associated with lipid
transport and metabolism such as low-density lipoprotein recep-
tors (LDLR family), vigilins (perilipin family) and high density
lipoprotein-binding proteins. Also of interest are proteins associ-
ated with lipid catabolic process such as lipases. Lipoprotein lipases
are assumed to be involved in fatty acid uptake, transport and
metabolism. They are also known to serve as yolk proteins in
dipterans eggs [52]. All protein categories related to lipid
transport, storage and metabolism (Table 1) are significantly up-
regulated in EES, since they most likely present a key source for
energy during embryonic development. Similarly it has been
shown that lipid metabolic pathways were up-regulated in the C.
elegans dauer larval stage [53]. Furthermore association of these
proteins with hibernation and dormancy can be expected since it is
shown that lipids also serve as the main energy source in
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hibernating mammals [54]. Lipid metabolism associated proteins
are almost similarly expressed in both AS and TS in tardigrades.

Other major components in EES are ribosomal proteins. This is
also reflected in the semi-quantitative analysis of ribosomal
proteins by comparing the total emPAI of all three states
(Figure 4). Furthermore we found 32 ribosomal proteins that are
only identified in EES. This result can be explained by the high
need of protein synthesis with diverse functions including
development en route to a mature organism. Proteins contributing
to the structural integrity of cytoskeletal, muscle and vitelline
membrane structure are weakly expressed in EES (Figure 4). Since
vitelline membrane is a portion of egg shell, we expected the
expression of those proteins only in mature animals, which is also
reflected in our semi-quantitative analysis. Similarly proteins
associated with pathogenesis such as pathogenesis-related protein
5 (PR-5, thaumatin family) are mainly expressed in adults. Eggs
are laid inside the old cuticle and remain there during the
embryonic development. Therefore developing embryos are not
directly attacked by pathogens. The need of defence mechanisms
against pathogens and fungi leads to higher expression of these
proteins in adults (Table 1). Chitinases are widely distributed in a
broad range of species and are described to be involved in
digestion, arthropod molting, defence/immunity and pathogenic-
ity by degrading of chitin and chitodextrins of chitin containing
fungal pathogens (for review see [55]. Ophanin belonging to
cysteine-rich secretory protein (CRISP) family is characterized as a
snake venom protein that acts as a neurotoxin by targeting and
inhibiting the voltage-gated calcium channels on smooth muscle
[56]. Two contigs are annotated as ophanin; one is found only in
EES and TS and the other one in all three states and is up-
regulated in AS. Since adult tardigrades are carnivorous we
assume that ophanin has not only defence function but is also used
to trap the prey animals.

Conclusion

The current study presents the first comparative proteome
analysis of tardigrades in different states, which is an important
resource for future research in this area. Since the amount of
biological material was highly limited we were not able to perform
biological replicates. However, the main focus of our study was to
obtain information of highly abundant protein families present in
the different life states of tardigrades rather than an accurate
quantification of differentially expressed proteins. The semi-
quantitative analysis of proteins served predominantly for estima-
tion of relative protein concentration to grouping the proteins into
minor and major components. This method mainly delivered
results in comparing EES with adult animals in AS and T'S. The
up-regulation of specific protein families such as large lipid transfer
(LLTP) superfamily and ribosomal proteins in EES could clearly
be demonstrated. However, since the majority of 1981 unique
proteins overlapped between AS and T'S there is a need to extend
the applied label-free quantification method to other more
accurate techniques such as labeling-based approaches to detect
even subtle differences in protein expression between AS and T'S.
For selecting the suitable quantification technology there are some
limitations. Technologies such as SILAC [57] and "*N/"°N [58]
metabolic labeling rely on metabolic incorporation of heavy
isotopes and are suitable for cell culture and only in rare cases for
whole organism [59] because the whole food chain of the organism
has to be considered for labeling. Furthermore the number of
tardigrades cultivated in the laboratory is limited and only the
homogenization of a high number of individuals results in enough
protein amount to perform experiments with biological replicates.
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This represents the major limitation in investigating tardigrades
and makes quantification a challenging task.

Materials and Methods

Tardigrade Culture and Sampling

Tardigrades of the species Milnesium tardigradum Doyére (1840)
were obtained from Dr. Ralph O. Schill (Department of Zoology,
University of Stuttgart, Stuttgart, Germany) as described in our
previous study and were maintained in a laboratory culture [12].
Briefly, the culture was grown on agarose plates (3%) (peqGOLD
Universal Agarose, peqLAB, Erlangen Germany) covered with
Volvic™ water (Danone Waters, Wiesbaden, Germany) at 20°C.
The juveniles were fed on green algae Chlorogonium elongatum, the
adults with bdelloid rotifers Philodina citrina. The specimens for the
experiments were all of middle-age (egg producing), thus effects of
age can be excluded. Tardigrades were starved for 3 days before
harvesting and washed several times with Volvic™ water to avoid
contamination with food-organisms. Subsequently the animals
were transferred to microliter tubes (200 individuals per tube) and
surrounding water was reduced to approx. 1-2 pl. Active (I) and
anhydrobiotic states (III) according to Schill et al. [12] and eggs in
the early embryonic state (blastula state), according to Suzuki [2]
were investigated in this study. For the induction of the
anhydrobiotic state (III), animals were desiccated in open
microliter tubes (Biosphere SafeSeal Micro Tubes, Sarstedt,
Niimbrecht, Germany) exposed to 85% relative humidity (RH)
in a chamber containing a saturated solution of KCIl (Roth,
Karlsruhe, Germany) at 21°C for 24 h, subsequently transferred to
a chamber containing a saturated MgCly, solution (Roth,
Karlsruhe, Germany), where they were exposed to 33% RH for
at least 48 h.

During egg deposition which is always accompanied by a moult
process, eggs are laid inside the old cuticle. The average clutch
contains about 7 eggs with a minimum of 3 and a maximum of 12.
The egg laying process usually takes less than two minutes from
the first to the last egg. Egg containing cuticles (780 eggs in total)
were collected 24 h after egg deposition and washed several times
with Volvic™ water. Eggs were not separated from the cuticles
because this process would damage the eggs. All samples were
frozen in liquid nitrogen and stored at —80°C.

Sample Preparation and One Dimensional Gel
Electrophoresis

The animals (200 individuals each for active and tun state) and
eggs (blastula, 780 eggs) were homogenized as described before
[15] with the slight modification of adding phosphatase inhibitors
to the lysis buffer. Briefly, collected animals/eggs were homoge-
nized in 60 pl lysis buffer containing 8 M urea, 4% CHAPS,
30 mM Tris, Protease Inhibitor Mix (GE Healthcare, Miinchen,
Germany), Phosphatase Inhibitor Cocktail 1+2 (Sigma-Aldrich,
Miinchen, Germany) and orthovanadate (50 mM), pH 8.5 by
ultrasonication (SONOPULS, HD3100, Bandelin Electronic,
Berlin, Germany) with 45% amplitude intensity and 1-0.5 sec
intervals at 4°C. Orthovanadate (50 mM) was prepared as
described by Thingholm et al. [60]. 20 pl of each Phosphatase
Inhibitor Cocktail 142 and orthovanadate (50 mM) were added to
1 ml lysis buffer to inhibit phosphatase activity. After homogeni-
zation the samples were shock frozen and stored at —80°C. For gel
electrophoresis insoluble particles were removed by centrifugation
for 2 min at 14,000g and 4°C and the supernatant was quantified
using BCA mini-assay. One dimensional gel electrophoresis was
performed using precast 4-12% Bis-Tris mini gels (Invitrogen,
Karlsruhe, Germany) in MES buffer system. Gels were loaded
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with 40 pg of protein per lane and stained using protein staining
solution from Fermentas (St. Leon-Rot, Germany). The entire lane
was cut into 27 equal slices (except slice 26 and 27, which were
twice as large) and used for in-gel digestion with trypsin. Since the
amount of material is highly limited no biological replicates could
be performed.

Preparation of Peptides and Protein Identification

Tryptic digestion of proteins and extraction of peptides were
performed as described [61]. After extraction the solutions were
dried in a speed-vac at 37°C for 2 h. Peptides were redissolved in
5ul 0.1% TFA by sonication for 15 min and were applied for
separation using a nanoAcquity UPLC (Waters GmbH, Eschborn,
Germany). Peptides were trapped on a nanoAcquity C18 column,
180 pm x 20 mm, particle size 5 um (Waters GmbH, Eschborn,
Germany). The liquid chromatography separation was performed
at a flow rate of 400 nl/min on a BEH 130 C18 column, 100 um
x 100 mm, particle size 1.7 pm (Waters GmbH, Eschborn,
Germany). Slices 1-22 were analyzed using a 2 h gradient and for
slices 2327 a 1 h gradient was applied. The 2 h gradient was set
as follows: from 0 to 4% B in 1 min, from 4 to 30% B in 80 min,
from 30 to 45% B in 10 min, from 45 to 90% B in 10 min, 10 min
at 90% B, from 90 to 0% B in 0.1 min, and 10 min at 0% B. The
1 h gradient was set as follows: from 0 to 4% B in 1 min, from 4 to
40% B in 40 min, from 40 to 60% B in 5 min, from 60 to 85% B
in 0.1 min, 6 min at 85% B, from 85 to 0% B in 0.1 min, and
9 min at 0% B. Solvent A contains 98.9% water, 1% acetonitrile,
0.1% formic acid, solvent B contains 99.9% acetonitrile and 0.1%
ul formic acid. The nanoUPLC system was coupled online to an
LTQ Orbitrap XL mass spectrometer (Thermo Fisher Scientific,
Bremen, Germany). Data were acquired by scan cycles of one
FTMS scan with a resolution of 60000 at 400 m/z and a range
from 370 to 2000 m/z in parallel with six MS/MS scans in the ion
trap of the most abundant precursor ions.

The mgf-files were used for database searches with the
MASCOT search engine (Matrix Science, London, UK; version
2.2) against a newly developed tardigrade database containing
contigs from 454 sequencing (unpublished data). The peptide mass
tolerance for database searches was set to 5 ppm and fragment
mass tolerance to 0.6 Da. Carbamidomethylation of C was set as
fixed modification. Variable modifications included oxidation of
M and deamidation of NQ. In a separate search we selected
phosphorylation of S, T and Y as additional modification for the
identification of phosphopeptides. One missed cleavage site in case
of incomplete trypsin hydrolysis was allowed. Furthermore,
proteins were considered as identified if more than one unique
peptide had an individual ion score exceeding the MASCOT
identity threshold (ion score cut-off of 24). Identification under the
applied search parameters refers to a match probability of p<<0.01,
where p is the probability that the observed match is a random
event.

The abundance of proteins was estimated by comparing the
exponentially modified Protein Abundance Index (emPAI) [17]
which was automatically calculated by the MASCOT search
engine. We analyzed each slice separately and avoided to merge
the MS/MS data prior to protein database search to maintain the
information about molecular weight of each protein. Since emPAI
is defined to represent the absolute protein amount we manually
calculated the sum of emPAI for proteins that were found
repeatedly in different slices. The Protein Abundance Index (PAI)
is defined as the number of identified peptides divided by the
number of theoretically observable tryptic peptides for each
protein, and was later converted to exponentially modified PAI
(emPAI, the exponential form of PAI minus one) [17]. The success
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of using emPAI was demonstrated by determining absolute
abundance of 46 proteins in a mouse whole-cell lysate, which
had been measured using synthetic peptides [62]. The emPAI can
be directly used for reporting approximate protein abundance in a
large-scale analysis as shown in different studies [63,64,65,66,67].

Preparation of Tardigrade Protein Database

Assembly of the 454 sequences. 1 million reads from the
454 sequencing and their de novo assembly by Newbler (454/
Roche) were received by GATC (http://www.gatc-biotech.com/
de/index.html). From the reads 400890 clusters were included in
the assembly with 85% aligned reads. The assembly yielded 28345
contigs, 13076 contigs with a length larger than 500 bases.
of the proteins from the EST
sequences. FrameDP peptide detection [68] (version 1.0.3;
standard parameters) was performed locally on a 2.4 Ghz quad-core
desktop computer with 4 Gb RAM running GNU/Linux (Ubuntu
8.10). The learning set was split using the GC3%-method (i.e. GC
content of the third codon position) and FrameDP was trained on M.
tardigradums coding style against Drosophila melanogaster protein data as a
reference database (Flybase:dmel-all-translation-r5.21 fasta,ftp://ftp.
flybase.net/genomes/Drosophila_melanogaster). The annotation of
the predicted proteins was performed using BlastX search [69]
against Uniprot/Swissprot (version 57.7, September 2009), Uniprot/
TrEMBL (version 40.7, September 2009, The UniProt Consortium,
2008) and NRDB (version September, 1* 2009) with an E-value cut-
off of 1e-3 and a hmmer2-search against PFAM database (release 23,
[70]) with an E-value cut-off of 1e-3.

Prediction

Classification of Proteins

For functional analysis of identified proteins we used Blast2GO
program, which consists of three main steps: blast to find
homologous sequences, mapping to collect GO-terms associated
with blast hits and annotation to assign functional terms to query
sequences from the pool of GO terms collected in the mapping
step [71]. Functional assignment is based on GO database.
Sequence data of identified proteins were uploaded as a multiple
FASTA file to the Blast2GO software. We performed the blast step
against the public NCBInr database using blastp. Other param-
eters were kept at default values: e-value threshold of le-3 and a
recovery of 20 hits per sequence. Furthermore, minimal alignment
length (hsp filter) was set to 33 to avoid hits with matching regions
smaller than 100 nucleotides. QBlast-NCBI was set as Blast mode.
An annotation configuration with an e-value-hit-filter of 1.0E-6,
Annotation CutOff of 55 and GO weight of 5 have been selected.
To grouping all identified proteins in selected subgroups of GO
categories (molecular function and biological process) we used the
analysis tool of combined graph. To obtain a compact represen-
tation of the information, we selected a sequence filter of 20 [72].
The sequence information of proteins in every GO subgroup can
be exported as a text file.

Protein Domain Analysis of Proteins without Annotation

Six frame translations of the author constructed cDNA clusters
were run through the DomainSweep pipeline [73] and the
significant and putative hits were collected. For each of the
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protein/domain databases used, different thresholds and rules
were established [73]. Domain hits are listed as ‘significant’.

i. if two or more hits belong to the same INTERPRO [74]
family. The task compares all true positive hits of the different
protein family databases grouping together those hits, which
are members of the same INTERPRO family/domain.

i. if the motif shows the same order as described in PRINTS
[75] or BLOCKS [76]. Both databases characterize a protein
family with a group of highly conserved motifs/segments in a
well-defined order. The task compares the order of the
identified true positive hits with the order described in the
corresponding PRINTS or BLOCKS entry. Only hits in
correct order are accepted.

All other hits above the trusted thresholds are listed as ‘putative’.
By comparing the peptides which were identified by mass
spectrometry with the six translations, the correct frame and the
associated domain information was listed.
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