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Abstract

Virotherapy using oncolytic vaccinia virus strains is one of the most promising new strategies for cancer therapy. In this
study, we analyzed for the first time the therapeutic efficacy of the oncolytic vaccinia virus GLV-1h68 in two human
hepatocellular carcinoma cell lines HuH7 and PLC/PRF/5 (PLC) in cell culture and in tumor xenograft models. By viral
proliferation assays and cell survival tests, we demonstrated that GLV-1h68 efficiently colonized, replicated in, and did lyse
these cancer cells in culture. Experiments with HuH7 and PLC xenografts have revealed that a single intravenous injection
(i.v.) of mice with GLV-1h68 resulted in a significant reduction of primary tumor sizes compared to uninjected controls. In
addition, replication of GLV-1h68 in tumor cells led to strong inflammatory and oncolytic effects resulting in intense
infiltration of MHC class II-positive cells like neutrophils, macrophages, B cells and dendritic cells and in up-regulation of 13
pro-inflammatory cytokines. Furthermore, GLV-1h68 infection of PLC tumors inhibited the formation of hemorrhagic
structures which occur naturally in PLC tumors. Interestingly, we found a strongly reduced vascular density in infected PLC
tumors only, but not in the non-hemorrhagic HuH7 tumor model. These data demonstrate that the GLV-1h68 vaccinia virus
may have an enormous potential for treatment of human hepatocellular carcinoma in man.
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Introduction

Hepatocellular carcinoma (HCC) is one of the most common

malignancies worldwide [1,2]. Despite progress in the diagnosis

and treatment of HCC, overall patient treatment outcome has not

substantially improved in the past. Therefore, the development of

new therapies for HCC is a high priority. One of the most

promising novel cancer therapies is oncolytic virotherapy. This

method is based on the capacity of oncolytic viruses (OVs) to

preferentially infect and lyse cancer cells. At the moment, several

OV platforms (vaccinia virus, herpes simplex virus and reovirus)

are in or entering Phase III clinical trials.

Here, we have investigated the therapeutic potential of the

oncolytic vaccinia virus GLV-1h68 against HCC in preclinical

studies. GLV-1h68 was derived from vaccinia virus Lister strain

(LIVP) that contains an inactive thymidine kinase (tk) gene and

shows inherently more tumor-selective replication than vaccinia

virus WR strain [3,4]. The virus strain GLV-1h68 was engineered

by inserting 3 expression cassettes encoding a) Renilla luciferase-

green fluorescent protein (Ruc-GFP) fusion protein into the

F14.5L locus, b) ß-galactosidase into the thymidine kinase (tk)

locus, and c) ß-glucuronidase into the hemagglutinin locus in the

genome of the LIVP strain. The insertion resulted in highly

attenuated virus strain compared to the wild-type parental strain

[3].

We and others have already demonstrated tumor selectivity and

efficacy of GLV-1h68 in many different tumor xenograft models,

including human breast cancer [3], anaplastic thyroid carcinoma
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[5,6], malignant pleural mesothelioma [7], pancreatic tumor [8],

prostate carcinoma [9], squamous cell carcinoma [10], and canine

breast cancer [11,12]. In addition, Kelly et al. reported that GLV-

1h68 virus could be used as a tool for detection of melanoma

lymph node metastases in an immunocompetent animal model

[13]. More recently, a GLV-1h68 derivative (GLV-1h99) that

expresses the human norepinephrine transporter was shown to be

useful for both therapy and deep-tissue imaging of tumors [14,15].

Here, we describe that GLV-1h68 was able to infect, replicate

in, and lyse human hepatocellular carcinoma cell lines HuH7 and

PLC/PRF/5.

We also found that a single intravenous injection of GLV-1h68

into mice with subcutaneously grown hepatocellular carcinoma

xenografts dramatically reduced tumor growth. Lastly, the

oncolytic and immunological effects of GLV-1h68 in HCC tumors

were analyzed by fluorescence imaging, immunohistochemistry,

flow cytometry (FACS) and immune-related protein antigen

profiling.

Materials and Methods

Ethics statement
All animal experiments were approved by the government of

Unterfranken, Germany, and conducted according to the German

animal protection guidelines (permit number: 55.2–2531.01-17/

08).

Cell lines
African green monkey kidney fibroblasts (CV-1, American Type

Culture Collection, ATCC-No. CCL-70) and two human

hepatocellular carcinoma cell lines HuH7 (ATCC CCL-185)

and PLC/PRF/5 (PLC; ATCC CRL 8024) were maintained in

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with

antibiotics (100 units/ml penicillin G, 100 units/ml streptomycin)

and 10% fetal bovine serum (FBS; Invitrogen GmbH, Karlsruhe,

Germany) at 37uC under 5% CO2.

Virus strain
GLV-1h68 is a genetically stable oncolytic virus strain designed

to locate, enter, colonize and destroy cancer cells without harming

healthy tissues or organs [3].

Cell viability assay with GLV-1h68
HuH7 and PLC cells were seeded onto 24-well plates (Nunc,

Wiesbaden, Germany). After 24 h in culture, cells were infected

with GLV-1h68 using multiplicities of infection (MOI) of 0.1 and

1. Cells were incubated at 37uC for 1 h, then the infection medium

was removed and the cells were incubated in fresh growth

medium. The amount of viable cells after infection with GLV-

1h68 was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-

nyltetrazolium bromide (MTT) (Sigma, Taufkirchen, Germany).

At 24, 48, 72, or 96 h after infection of cells, medium was replaced

by 0.5 ml MTT solution at a concentration of 2.5 mg/ml MTT

dissolved in RPMI 1640 without phenol red and incubated at

37Cu for 2 h in a 5% CO2 atmosphere. After removal of the MTT

solution, the color reaction was stopped by adding 1 N HCl

diluted in isopropanol. The optical density was then measured at a

wavelength of 570 nm. Uninfected cells were used as reference

and were considered as 100% viable. The amount of viable cells

after infection with GLV-1h68 was measured in triplicates.

Viral replication
HuH7 and PLC cells grown in 24-well plates were infected with

GLV-1h68 at an MOI of 0.1. After incubation at 37uC for 1 h

with gentle agitation every 20 min, the infection medium was

removed and replaced by fresh growth medium. Supernatants

were collected from virally treated cells at 1, 6, 12, 24, 48, 72 or

96 h post-infection. Serial dilutions of supernatants were titrated

by standard plaque assays on CV-1 cells. All samples were

measured in triplicates.

Fluorescence imaging
The GFP signals of virus-infected cells were analyzed with a

fluorescence microscope (Leica DM IRB; Wetzlar, Germany).

Images were captured with an electronic camera and were

processed using META-MORPH (Universal Imaging; Downing-

town, PA, USA) and Photoshop 7.0 (Adobe Systems, Mountain

View, CA, USA).

GLV-1h68-mediated therapy of HuH7 and PLC xenografts
Tumors were generated by implanting hepatoma cells HuH7 or

PLC (56106 cells in 100 ml of PBS) subcutaneously on the right

flank above the hind leg of 6- to 8-week-old male or female nude

mice (NCI/Hsd/Athymic Nude-Foxn1nu, Harlan Winkelmann

GmbH, Borchen, Germany). Tumor growth was recorded twice a

week using a digital caliper. Tumor volume was calculated as

[(length x width2)/2]. On day 10 post implantation, a single dose

of the GLV-1h68 virus (56106 plaque forming units [pfu] in

100 ml PBS) was injected into the tail vein (i.v.) of HuH7 or PLC

tumor-bearing mice. The animals of the control groups were

injected i.v. with PBS only.

The statistical significance of the data was calculated by two-

way analysis of variance (ANOVA) with Bonferroni comparison

post-test (GraphPad Prism software, San Diego, USA). The post-

test was only performed when ANOVA revealed significance.

Results are displayed as means 6 s.d. P values of ,0.05 were

considered significant.

Histological analysis of tumors
For histological studies, tumors were excised and snap-frozen in

liquid N2, followed by fixation in 4% paraformaldehyde/PBS at

pH 7.4 for 16 h at 4uC. Tissue sectioning was performed as

described by Weibel et al. [16]. GLV-1h68 was labeled using

polyclonal rabbit anti-vaccinia virus (anti-VACV) antibody

(Abcam, Cambridge, UK), which was stained using Cy3-

conjugated donkey anti-rabbit secondary antibodies obtained

from Jackson ImmunoResearch (West Grove, PA, USA). Phalloi-

din-TRITC (Sigma Aldrich, Taufkirchen, Germany) was used to

label actin and Hoechst 33342 to label nuclei in tissue sections.

Endothelial cells were labeled with monoclonal rat anti-mouse

CD31 antibody (BD Pharmingen, San Diego, CA) or hamster

anti-mouse CD31 antibody (Chemicon, International, Temecula,

CA). Immune cells were labeled using rat anti-mouse MHCII

antibody detecting a polymorphic determinant present on B cells,

monocytes, macrophages and dendritic cells (eBioscience, San

Diego, CA). The Cy3- or Cy5-conjugated secondary antibodies

(donkey) were obtained from Jackson ImmunoResearch (West

Grove, PA).

The fluorescence-labeled preparations were examined using the

MZ16 FA Stereo-Fluorescence microscope (Leica) equipped with

the digital DC500 CCD camera and the Leica IM1000 4.0

software (130061030 pixel RGB-color images) as well as the Leica

TCS SP2 AOBS confocal laser microscope equipped with an

argon, helium-neon and UV laser and the LCS 2.16 software

(102461024 pixel RGB-color images). Digital images were

processed with Photoshop 7.0 (Adobe Systems, Mountain View,

CA, USA) and merged to yield overlay images.

Virotherapy with Oncolytic Vaccinia Virus
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Measurements of microvessel density
The vascular density was determined in microscopic images

(x10 objective, x10 ocular, tissue region 1445 mm by 1445 mm) of

CD31-labeled tumor sections captured with identical settings using

the Leica TCS SP2 AOBS confocal laser microscope. All images

were decorated with eight horizontal lines at identical positions

using Photoshop 7.0 and all vessels which intersected these lines

were counted to yield the vascular density. The vascular density

was calculated for six images per group and presented as mean

values 6 standard deviations (s.d.).

Preparation of tumor lysates for a mouse immune-related
protein profiling

For preparation of tumor lysates, at 10 days after virus

treatment, three mice from each group were sacrificed. Tumors

were removed, resuspended in 9 volumes (W/V) lysis buffer

[50 mM Tris-HCl (pH 7.4), 2 mM EDTA (pH 7.4), 2 mM PMSF

and Complete Mini protease inhibitors (Roche, Mannheim,

Germany)] and lysed using FastPrep FP120 Cell Disruptor (BIO

101, Qbiogene, Germany) at a speed of 6 for 20 s (three times).

Samples were then centrifuged at 20,000 g at 4uC for 5 min and

the supernatants were analyzed for mouse immune-related protein

antigen profiling by Multi-Analyte Profiles (mouse MAPs; Rules

Based Medicine, Austin, USA) using antibody linked beads.

Results were normalized based on total protein concentration.

Flow cytometric (FACS) analysis
For flow cytometric analysis, three or four mice from each group

were sacrificed by CO2 inhalation and the tumors were removed.

The tumor tissues were minced and incubated individually in

10.000 CDU/ml Collagenase I (Sigma, Steinheim, Germany),

32 mg/ml Dispase II (Roche Diagnostic, Mannheim, Germany)

and 5 MU/ml DNase I (Calbiochem, Darmstadt, Germany) for

40 min at 37uC and then passed through a 70-mm nylon mesh filter

(BD Biosciences, Erembodegem, Belgium). Cells were incubated at

4uC for 40 min in PBS with 2% FCS, in the presence of appropriate

dilutions of labeled monoclonal antibodies: anti-mouse MHCII-PE

(Clone M5, eBioscience, Frankfurt, Germany), anti-CD19-PE-

Cy5.5 (Clone 6D5, Beckman Coulter, Krefeld, Germany), anti-F4/

80-APC (Clone BM8, eBioscience), and anti-Ly6G-PE (Clone 1A8,

BD Biosciences). Stained cells were subsequently analyzed, using an

Accuri C6 Cytometer and FACS analysis software CFlow Version

1.0.227.4 (Accuri Cytometers, Inc. Ann Arbor, MI USA).

Results

Viral replication and viability of the human hepatocellular
carcinoma cells HuH7 and PLC after infection with GLV-
1h68 in culture

The replication efficiency of GLV-1h68 in HuH7 and PLC cells

was analyzed as described in Materials and Methods. As a result,

GLV-1h68 was found to replicate efficiently in both hepatocellular

carcinoma cell lines HuH7 (Fig. 1A) and PLC (Fig. 1B). The

highest virus titer was identified in wells of virus-infected PLC cells

at 72 h post infection (2.76105 pfu/well).

In order to test the ability of the GLV-1h68 virus to infect and lyse

HuH7 and PLC cells we performed a cell viability assay (Fig. 2).

Ninety-six hours after GLV-1h68 infection at MOIs of 0.1 and 1.0,

18.7% and 17.2% of the HuH7 cells (Fig. 2A) and 24.2% and 16.2%

of the PLC cells (Fig. 2B) survived the treatment, respectively.

To confirm the efficient infection and replication of GLV-1h68

in hepatocellular carcinoma HuH7 and PLC cells, we followed the

virus-mediated expression of the Renilla luciferase-green fluores-

cent protein (Ruc-GFP) fusion protein by fluorescence microscopy.

In this experimental setting we found that infection with GLV-

1h68 at an MOI of 1.0 exhibited the strongest GFP expression at

96 h in both HuH7 and PLC cells (Figure S1). At this time point

most dead/dying cells (detectable by positive propidium iodide (PI)

staining) were observed.

These results indicated that GLV-1h68 was able to efficiently

infect and kill both, HuH7 and PLC cells in cell culture.

Effects of the GLV-1h68 treatment in vivo
To test the therapeutic efficacy of GLV-1h68 against human

hepatocellular carcinoma in vivo, nude mice at the age of 6-8 weeks

were implanted with either HuH7 or PLC tumor cells. Ten days

after transplantation, tumor-bearing mice were intravenously

injected either with 56106 pfu of GLV-1h68 (n = 5) or with PBS

only (n = 5) and were monitored for tumor growth twice a week

(Fig. 3). As a result, intravenous injection of GLV-1h68 was found

to significantly inhibit the growth of both HuH7 (Fig. 3A) and PLC

tumors (Fig. 3B) at 21 dpi. Since one mouse of the virus-injected

HuH7 xenograft group developed a tumor volume greater than

3000 mm3 at 35 dpi we prematurely had to terminate the study

with this verum group. In contrast, all virus-treated PLC

xenografted mice showed a significant tumor reduction compared

to controls by the end of the study (at 46 dpi) (Fig. 3B).

Analysis of tumor phenotype differences in
GLV-1h68-infected and uninfected HuH7/PLC
xenograft-bearing animals by visual inspection,
immunohistochemistry and FACS

In the animal studies previously described, we observed a

phenotypic difference (switch) in the tumor appearance of virus-

Figure 1. Replication efficiency of vaccinia virus strain GLV-
1h68 in HuH7 (A) and PLC (B) cells at an MOI of 0.1. Supernatants
were collected from virus-infected cells at various time points (hours)
post-infection (hpi). Viral titers were determined as pfu per well in
triplicates. Averages plus standard deviation are plotted.
doi:10.1371/journal.pone.0022069.g001
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infected versus mock-treated PLC tumor-bearing mice by day

14 p.i. The control mice developed dark bluish, hemorrhagic

tumors as shown in (Fig. 4A, C), the PLC tumors with GLV-1h68,

however, remained small and exhibited light colors (Fig. 4B, D). In

contrast to PLC tumors, no hemorrhagic phenotype was observed

in the uninfected HuH7 tumors (data not shown). Histological and

immunological analysis was made to study the phenotypic

differences in two groups (n = 4 per group) of virus-infected and

uninfected PLC mice. Tumorous mice were sacrificed at 10 dpi

and using CD31 immunohistochemistry tumor vasculature in

GLV-1h68-treated and control-PLC tumors was quantified (Fig. 5).

The data showed a significant (**P,0.01) decrease in the number

of blood vessels in virus-treated PLC xenografts in comparison to

controls at day 10 after virus injection (Fig. 5A). HuH7 tumors

treated with GLV-1h68, however, exhibited no difference in

density of the tumor vasculature. The drastic change in tumor

vascularization in virus-treated PLC tumors may explain the loss

of the hemorrhagic phenotype. Subsequently, we also analyzed the

cell entry of GLV-1h68 virus into and the presence of host

immune cells in tumor tissue of virus-infected and uninfected mice

(Fig. 6). Ten-days post-infection HuH7 and PLC tumors both

revealed an intense intratumoral virus colonization and a specific

peri- and intra-tumoral infiltration of MHC class II-expressing host

cells (monocytes/macrophages, dendritic cells and B cells) sur-

rounding virus-infected cancer cells (Fig. 6). Interestingly, we found

more extensive viral load in the tumor tissues of PLC tumor-bearing

mice (Fig. 6D, GFP) compared to the HuH7 tumor-bearing mice at

10 dpi (Fig. 6B, GFP), as indicated by the amount of GFP detection.

In addition, MHC class II-positive host cells were absent in the

uninfected PLC tumors (Fig. 6C, row 3). In contrast, a strong peri-

tumoral recruitment of MHC class II-positive cells was observed in

uninfected HuH7 tumors (Fig. 6A, row 3).

These immunohistological data were also quantitatively ana-

lyzed and verified by flow cytometric analysis (FACS) of tumor

single cell suspensions derived from infected and uninfected HuH7

and PLC tumors at 7dpi (Table 1). The amount of MHCII+, F4/

80+, CD19+ and Ly6G+ cells were much higher in cells derived

from virus-infected tumors than from uninfected controls. The

Figure 2. Viability of hepatocellular carcinoma HuH7 (A) and PLC (B) cells after GLV-1h68 infection at MOIs of 0.1 and 1.0,
respectively. Viable cells after infection with GLV-1h68 were determined by use of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) (Sigma, Taufkirchen, Germany). Mean values (n = 3) and standard deviations are shown as percentages of respective controls.
doi:10.1371/journal.pone.0022069.g002

Figure 3. Growth of HuH7 and PLC tumors in GLV-1h68- and mock-treated mice. Groups of HuH7 (Fig. 5A) or PLC tumor-bearing nude
mice (Fig. 5B) were either treated with a single dose of 56106 pfu GLV-1h68 (n = 5) or with PBS (mock control, n = 5). Tumor size was measured twice
a week. Two-way analysis of variance (2way ANOVA) with Bonferroni post-test was used for comparison of two corresponding data points between
groups. P,0.05 was considered statistically significant. ** P,0.01. In addition, statistical power was calculated post-hoc using G*power 3.1.2 software
(http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/). The statistical power for alpha = 0.05 was 75%, for alpha = 0.01 42%.
doi:10.1371/journal.pone.0022069.g003
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increased accumulation of host immune cells after virus injection

was observed in both xenograft models (Table 1). Interestingly, the

presence of F4/80+, MHCII+, CD19+ and Ly6G+ was 2.79- to

12.98-fold higher in uninfected HuH7 mice compared to

uninfected PLC mice (Table 1). We found also 5.91-fold more

GFP-positive cells in infected PLC tumors upon comparison to

infected HuH7 tumor at 7dpi (Table 1).

The increased presence of host immune cells in tumor tissue

before virus injection might be responsible for the different

infection and therapeutic efficacies of GLV-1h68 in these two

xenograft models.

Mouse immune-related protein profiling of infected and
uninfected HuH7 and PLC derived tumors

In order to study the influence of the tumor microenvironment

on the efficiency of cancer therapy, we analyzed and compared the

protein profiles of infected and uninfected HuH7 and PLC

tumors. Lysates of tumors were prepared and aliquots used for

examination of the expression levels of immune-related proteins of

mouse origin, as described in Materials and Methods. Data

showed that, GLV-1h68 injection led to an increased production

of most of the pro-inflammatory cytokines and chemokines tested

(Table 2). Many of these cytokines and chemokines, such as IP-10,

IL-6, IL-12, IL-18, MCP-1, MCP-3, MCP-5, M-CSF, TNF-alpha

etc., are known to activate macrophages, monocytes, neutrophils,

eosinophils, etc., and to trigger pro-inflammatory responses in

target tissues. In contrast, only MIP-1-gamma was highly down-

regulated upon virus injection in both xenograft models. In

addition, our protein profile data revealed a 6.4- to 22.2-fold

down-regulation of coagulation factors such as fibrinogen and

factor VII, concerning the ratio of GLV-1h68 treated/untreated

PLC human hepatoma xenografts when compared with the ratio

of GLV-1h68 treated/ untreated HuH7 human hepatoma

xenografts at 10 dpi (Table 2).

Figure 4. Phenotypic difference between GLV-1h68- and non-treated PLC-tumor-bearing mice. Pictures were taken at day 18 after
injection with PBS (mock) (A, C) or GLV-1h68 (B, D).
doi:10.1371/journal.pone.0022069.g004

Figure 5. Analysis of GLV-1h68 virus-induced changes in HuH7- or PLC-tumor vascularization by confocal laser microscopy.
Determination of vascular density using CD31 immunohistochemistry in virus- treated and non-treated HuH7 or PLC, tumors (A).
The vascular density was measured in CD31-labeled tumor cross-sections (n = 6 per group) and presented as mean values +/2 standard deviations.
The asterisks (**) indicate a significant difference between experimental groups (** P,0.01; Student’s t-test). Confocal images of virus-treated
and non-treated HuH7- or PLC-tumors (B). Tumor vasculature was labeled with anti-CD31 antibody (blue) and viral infection was indicated by
GFP fluorescence (green). Scale bars represent 300 mm.
doi:10.1371/journal.pone.0022069.g005

Virotherapy with Oncolytic Vaccinia Virus
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Thus, the drastic reduction of fibrinogen and factor VII in the

course of application of GLV-1h68 could also be an explanation

for the loss of the hemorrhagic phenotype in virus-treated PLC

human hepatoma xenografts.

Lastly, we also compared the protein profiles of uninfected

HuH7 and PLC derived tumors (Table 3). Interestingly, several

significant differences in the expression levels of factors such as

CD40, factor VII, GST-alpha, haptoglobin and MPO were

observed (Table 3).

Discussion

Approximately 7% of all newly diagnosed cancers worldwide

are liver cancers with the third most common cause of death

worldwide (http://globocan.iarc.fr/factsheets/cancers/liver.asp).

The increasing incidence and poor prognosis of hepatocellular

carcinoma [1,17] emphasizes the urgent need to find novel

therapies for HCC (http://globocan.iarc.fr).

In this study, we investigated the oncolytic efficiency of the

vaccinia virus strain GLV-1h68 against the two hepatocellular

carcinoma cell lines HuH7 and PLC in culture and the therapeutic

efficacy in xenograft models. The results showed that GLV-1h68

was able to effectively infect, replicate in, and lyse hepatocellular

carcinoma cells in culture. The efficiency of viral replication

correlated well with degree of cell lysis and with expression of the

marker Renilla luciferase-green fluorescent protein fusion protein.

In addition, the current study also demonstrated the suitability of

GLV-1h68 to achieve a highly effective form of virotherapy in

Figure 6. Immunohistochemical staining of MHC class II-positive cells in GLV-1h68-infected and uninfected HuH7 or PLC xenograft
tumors at 10 dpi. Mice bearing tumors of HuH7 (A, B) or PLC (C, D) origin either were mock treated (A, C) or infected with GLV-1h68 (B, D). Tumor
sections were labeled with an anti-MHCII antibody (red) and viral infection was indicated by GFP fluorescence (green). In addition, overlays of MHCII
and GFP signals and transmission images (bright-field) are shown. Scale bars represent 1 mm.
doi:10.1371/journal.pone.0022069.g006

Table 1. FACS characterization and comparison of tumor single cell suspensions derived from infected and uninfected HuH7 and
PLC tumors.

TumorB GLV-1h68/untreated Ratio (HuH7) GLV-1h68/untreated Ratio (PLC) uninfected HuH7/uninfected PLC

MarkerA

MHCII 2.28 5.68 4.68

F4/80 1.01 3.34 2.79

CD19 1.56 5.63 6.41

Ly6G 1.86 10.22 12.98

CTotal virus-infected cells (GFP-
positive in %)

1.20% +/2 0.012% 7.10% +/20.044%

AMarkers: MHCII-PE antibody detects a polymorphic determinant present on B cells, monocytes, macrophages and dendritic cells.
F4/80-APC antibody recognises the F4/80 antigen, that is expressed by a majority of mature macrophages and is the best marker for this population of cells.
CD19 is expressed on B cells and follicular dendritic cells.
Ly6G-PE, also known as Gr-1- antigen, is expressed on mouse neutrophils, predominantly granulocytes.
BSingle cell suspensions derived from infected and uninfected HuH7 and PLC tumors 7dpi (n = 4 for uninfected and n = 3 for virus-infected groups) were used for FACS
characterization. Ratios greater than 1 indicate an increased accumulation of host immune cells.

CGFP-positive cells of the infected tumors were presented as mean values (n = 3) +/2 standard deviations in percentages.
doi:10.1371/journal.pone.0022069.t001
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mice. We also observed a significant inhibition of tumor growth

and damage to the tumor tissues in the GLV-1h68-treated HuH7

and PLC tumor-bearing mice when compared to untreated

controls.

More importantly, the data clearly demonstrated that the

optimal oncolytic effect of the GLV-1h68 is dependent on the

interactions with the components of the tumor microenvironment,

such as tumor vasculature and with the cells of the host immune

system. The finding of the phenotypic switch in virus-infected

PLC-xenograft tumors revealed a significant decrease in the

number of blood vessels when compared to controls at day 10 after

virus injection (P,0.01). The vascular density in infected HuH7

tumors, however, did not change in comparison to uninfected

controls, which were non-hemorrhagic.

The protein profiling data of infected and uninfected PLC

tumors (Table 2) clearly revealed that this process was associated

with a strong induction of cytokines like TNF-a, IL-12 and IP-10

that are known to have negative effects on vascularization

[18,19,20]. We also found a significant down-regulation of factor

VII, fibrinogen, glutathione S-transferase alpha (GST-alpha), and

haptoglobin in GLV-1h68-colonized PLC tumors only (Table 2).

Increased levels of these proteins are found upon injury to blood

vessels or interference with hemorrhagic process (Table 3,

classification). Taken together, these data did provide direct

evidence for the anti-vascular and anti-hemorrhagic effects of

GLV-1h68-virus, which may be responsible for the phenotypic

switch of PLC-tumor xenografts. In contrast, no hemorrhagic

tumor phenotype was observed in HuH7 xenografts. Molecular

Table 2. Comparison of mouse immune-related protein antigen profiling in primary PLC and HuH7 tumors with or without GLV-
1h68 at day 10 after virus injection (n = 3).

Antigen
GLV-1h68 / untreated Ratio
(HuH7)

GLV-1h68 / untreated Ratio
(PLC) Classification

GM-CSF 2.18 6.23 granulocyte-macrophage colony-stimulating factor

IFN-gamma 1.29 1.24 proinflammatory cytokine

IL-6 5.67 11 proinflammatory cytokine

IL-12 (IL-12p70) 3 4.27 pleiotropic cytokine

IL-18 1.2 3.7 proinflammatory cytokine

IP-10 (CXCL10) 3.12 112.2 interferon-gamma-induced protein

MCP-1 (CCL2) 6.55 40.9 proinflammatory cytokine

MCP-3 (CCL7) 2.06 26.6 proinflammatory cytokine

MCP-5 (CCL12) 18.17 40.6 proinflammatory cytokine

MPO 0.9 70 myeloperoxidase

M-CSF-1 1.15 5.23 proinflammatory cytokine

MIP-1beta 1.59 6.57 proinflammatory cytokine

MIP-2 (CXCL2) 0.81 15.44 proinflammatory chemokine

TNF-alpha 1.2 2.91 proinflammatory cytokine

MIP-1gamma (CCL9) 0.03 0.0227 macrophage inflammatory protein

Factor VII 1.045 0.047 plays a role in coagulation cascade

Fibrinogen 0.812 0.126 plays a role in coagulation cascade

GST-alpha 0.92 0.0071 biomarker

Haptoglobin 1.632 0.17 biomarker

All ratios greater than 1 indicate an up-regulation of the protein expression, and all ratios less than 1 indicate down-regulation.
doi:10.1371/journal.pone.0022069.t002

Table 3. Comparison of mouse immune-related protein antigen profiling in uninfected primary HuH7 and PLC tumors at day 20
after implantation (n = 3).

Antigen (least detectable dose *) HuH7 tumor tissue PLC tumor tissue Classification

CD40 * 3.3 pg/ml 272 pg/ml 109 pg/ml a type I glycoprotein belonging to the TNF receptor
superfamilyjavascript:void(0);

Factor VII (FVII) * 3.5 ng/ml 198 ng/ml 851 ng/ml plays a role in coagulation cascade (increased FVII
indicates blood vessel injury)

Fibrinogen * 0.89 mg/ml 38 mg/ml 300 mg/ml plays a role in coagulation cascade

GST-alpha * 0.083 ng/ml 6.3 ng/ml 851 ng/ml biomarker of hepatocyte injury

Haptoglobin * 0.072 mg/ml 0.98 mg/ml 14 mg/ml biomarker

MPO * 0.21 ng/ml 822 ng/ml 25 ng/ml myeloperoxidase

*The least detectable dose was determined as the mean + 3 standard deviations of 20 blank readings.
doi:10.1371/journal.pone.0022069.t003
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mechanisms causing such differences between PLC and HuH7

tumors in nude mice are currently unknown.

Injection of GLV-1h68 to tumorous mice led to inhibition of

tumor growth in both HuH7 and PLC xenografts at 21 dpi and

beyond. Therefore, we investigated which components of the

tumor microenvironment may play a crucial role in the optimal

oncolytic effect of GLV-1h68-virus. In this context, we analyzed

the virus colonization and the presence of host immune cells in the

tumor tissues of virus-infected and uninfected HuH7- and PLC-

tumor bearing mice at 7 and 10 dpi (Fig. 6, Table 1). We found a

more extensive viral load in the tumor tissues of PLC mice in

comparison to the HuH7 mice at 7 and 10 dpi (Fig. 6, Table 1).

Further, at these time points we also observed a 2.79- to 12.98-fold

higher peri-tumoral infiltration of MHC class II-expressing host

cells especially granulocytes and CD19+ in uninfected HuH7 mice

than in uninfected PLC mice (Fig.6, Table 1). These findings were

also confirmed by mouse protein profiling experiments. Approx-

imately a 2.5- to 33-fold higher presence of CD40- or MPO-

positive cells were located in uninfected HuH7 tumors upon

comparison with uninfected PLC tumor (Table 3). The marker

CD40 is constitutively expressed by antigen presenting cells,

including dendritic cells, B cells and macrophages [21]. MPO is an

enzyme, most abundantly present in neutrophil granulocytes [22].

The increase in MHC class II-expressing immune cells which

surround HuH7 tumor tissues already before virus treatment may

be responsible for the lower tumor colonization shortly after virus

injection resulting possibly in less efficient therapeutic effect of

GLV-1h68 in the HuH7 mice, but not in PLC xenografts. The

differences between PLC and HuH7 tumors might be due to the

different expression levels of cyclooxygenase-2 (COX-2) in these

cancer cell lines [23]. It has been shown that COX-2 is associated

with carcinogenesis in hepatocellular carcinoma [24,25] and an

elevated COX-2 levels led to inflammation in liver tissues [26].

Such high COX-2 expression in HuH7 tumors might be

responsible for stronger peri-tumoral infiltration of MHC class

II-expressing host cells in comparison to PLC tumors. The

observed heterogeneity of tumor tissues indicates the need for

analysis of the tumor microenvironment which may help to design

optimized therapeutic strategies. In our opinion an optimally

designed vaccinia virus therapy needs to consider the interplay

among the components of the tumor microenvironment.

In summary, use of GLV-1h68 strain demonstrated outstanding

anti-tumor and anti-vascular effects in PLC and lesser efficacy in

HuH7 hepatocellular carcinoma xenografts. Therefore we pro-

pose that GLV-1h68 strain is a very potent live drug in preclinical

studies to be used soon for the treatment of primary liver cancer in

humans. Moreover, results of a Phase 1 study of intravenous

administration of GL-ONC1 (GLV-1h68) Vaccinia virus in

patients with advanced solid cancer demonstrated acceptable

safety, preliminary evidence of anticancer activity and virus

replication in several patients (positive for GL-ONC1 viral plaque

assay and GFP imaging; (http://www.ncri.org.uk/ncriconfer-

ence/2010abstracts/abstracts/C122.htm).

Supporting Information

Figure S1 Figure S1 shows the effects of GLV-1h68 virus

infection on HuH7 and PLC cells. Hepatocellular carcinoma cells

HuH7 (Fig. 1A) and PLC (Fig. 1B) were infected with GLV-1h68

at an MOI of 1.0 followed by monitoring of virus-mediated

expression of the Ruc-GFP fusion protein by fluorescence

microscopy. (BF) Transmitted light view of virus-infected cells;

(GFP) Expression of GFP in infected cells detected by direct

fluorescence; (PI) Propidium iodide staining of dead cells;

(Hoechst) Nuclear staining; (Merged) Co-localization of GFP

with the dead cells. All pictures in this set were taken at the same

magnification. Scale bars represent 0.25 mm.

(TIF)
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