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Zusammenfassung

Während des letzten Jahrzehnts haben sich topologische Isolatoren zu einem der aktivsten Be-
reiche der Festkörperphysik entwickelt. Diese neuartige Materialklasse charakterisiert sich durch
einen isolierenden Volumenzustand, welcher, in zweidimensionalen und zeitumkehrinvarianten
Systemen, durch helikale Randkanäle ergänzt wird. Diese Randkanäle machen topologische Iso-
latoren zu vielversprechenden Kandidaten für Anwendungen in den Bereichen der präzisen Spin-
tronik und der topologischen Quantencomputer. Diese Doktorarbeit trägt zu der Realisierung
dieser faszinierenden Konzepte bei, indem sie den Transport durch Heterostrukturen aus zwei-
dimensionalen topologischen Isolatoren und Metallen oder Supraleitern analysiert. Hierfür wer-
den analytische und numerische Methoden angewandt. Im Besonderen wird eine generalisierte
Methode zum Wellenfunktionsanpassung an Grenzflächen verwendet, um Rand- und Volumen-
zustände simultan beschreiben zu können.
Für die numerische Untersuchung nicht-supraleitender Systeme werden topologische Isolato-
ren als Tunnelbarrieren zwischen metallischen Kontakten betrachtet. Unerwarteterweise sind
die Leitfähigkeiten von Rand- und Volumenzuständen nicht additiv. In langen und breiten
Tunnelbarrieren wird der Transport ausschließlich durch die Randkanäle bestimmt. In kurz-
en Tunnelbarrieren hingegen ergibt sich die Leitfähigkeit aus einem Gemisch von Rand- und
Volumenzuständen, welches von der Breite der Probe abhängt. In kurzen Tunnelbarrieren zeigt
die Leitfähigkeit als Funktion der Probenlänge außerdem ein Maximum, welches das topologisch
nicht-triviale Regime von dem topologisch trivialen Regime unterscheidet. Diese nicht-monotone
Leitfähigkeit basiert auf der Formation einer effektiv propagierenden Mode, welche gegen Streu-
ung durch nicht-magnetische Störstellen geschützt ist.
Die Analyse des Zusammenspiels von Rand- und Volumenzuständen wird auf supraleitende
Tunnelbarrieren zwischen zwei topologischen Isolatoren ausgeweitet. Wenn die räumlichen Di-
mensionen der Tunnelbarriere klein genug sind, können die entgegenlaufenden Randkanäle an
gegenüberliegenden Rändern des topologischen Isolators durch die evaneszenten Volumenzu-
stände des Supraleiters gekoppelt werden. Hierdurch kann eine nicht-lokale Andreev-Reflexion
generiert und kontrolliert werden. In Experimenten wird dieser Prozess normalerweise durch
simultane Elektrontransmission überlagert. Für einzelne Kramers-Partner jedoch forciert die
Helizität der Randkanäle die räumliche Trennung beider Prozesse, was eine rein elektrische Mes-
sung der nicht-lokalen Andreev-Reflexion ermöglicht.
Im Weiteren wird eine Studie über Hybridsysteme aus helikalen Randkanälen und konventionel-
len Supraleitern im magnetischen Feld, welches in der Ebene des zweidimensionalen topologi-
schen Isolators liegt, präsentiert. Die Studie beschreibt den neuartigen supraleitenden Quanten-
Spin-Hall-Effekt. Die hierfür charakteristischen Randkanäle bleiben selbst in endlichen Magnet-
feldern helikal und gegen nicht-magnetische Störstellen geschützt. Gleichzeitig führt die Kombi-
nation von helikalen Randkanälen und Supraleitung zu einem riesigen Landé-Faktor, wodurch die
supraleitende Bandlücke und der Magnetotransport dieser Systeme mit kleinen Magnetfeldern
manipuliert werden kann. Dies kann durch einen nicht-monotonen supraleitenden Überschuss-
strom und ein aufgespaltenes Maximum der dI/dV -Charakteristik als Funktion des Magnetfeldes
gemessen werden. In der Folge stellt der supraleitende Quanten-Spin-Hall-Effekt einen effektiven
Generator und Detektor für Spinströme dar.
Die hier präsentierte Forschung vertieft das Verständnis des Zusammenspiels von Rand- und
Volumentransport in Heterostrukturen aus toplogischen Isolatoren. Außerdem werden realisier-
bare Experimente beschrieben, mit welchen die nicht-lokale Andreev-Reflexion rein elektrisch
gemessen und die Spinpolarisierung der helikalen Randkanäle getestet werden können.





Summary

Over the last decade, the field of topological insulators has become one of the most vivid areas in
solid state physics. This novel class of materials is characterized by an insulating bulk gap, which,
in two-dimensional, time-reversal symmetric systems, is closed by helical edge states. The latter
make topological insulators promising candidates for applications in high fidelity spintronics and
topological quantum computing. This thesis contributes to bringing these fascinating concepts
to life by analyzing transport through heterostructures formed by two-dimensional topological
insulators in contact with metals or superconductors. To this end, analytical and numerical
calculations are employed. Especially, a generalized wave matching approach is used to describe
the edge and bulk states in finite size tunneling junctions on the same footing.
The numerical study of non-superconducting systems focuses on two-terminal metal/topological
insulator/metal junctions. Unexpectedly, the conductance signals originating from the bulk and
the edge contributions are not additive. While for a long junction, the transport is determined
purely by edge states, for a short junction, the conductance signal is built from both bulk and
edge states in a ratio, which depends on the width of the sample. Further, short junctions show
a non-monotonic conductance as a function of the sample length, which distinguishes the topo-
logically non-trivial regime from the trivial one. Surprisingly, the non-monotonic conductance
of the topological insulator can be traced to the formation of an effectively propagating solution,
which is robust against scalar disorder.
The analysis of the competition of edge and bulk contributions in nanostructures is extended
to transport through topological insulator/superconductor/topological insulator tunneling junc-
tions. If the dimensions of the superconductor are small enough, its evanescent bulk modes
can couple edge states at opposite sample borders, generating significant and tunable crossed
Andreev reflection. In experiments, the latter process is normally disguised by simultaneous
electron transmission. However, the helical edge states enforce a spatial separation of both com-
peting processes for each Kramers’ partner, allowing to propose an all-electrical measurement
of crossed Andreev reflection.
Further, an analytical study of the hybrid system of helical edge states and conventional super-
conductors in finite magnetic fields leads to the novel superconducting quantum spin Hall effect.
It is characterized by edge states. Both the helicity and the protection against scalar disorder
of these edge states are unaffected by an in-plane magnetic field. At the same time its super-
conducting gap and its magnetotransport signals can be tuned in weak magnetic fields, because
the combination of helical edge states and superconductivity results in a giant g-factor. This is
manifested in a non-monotonic excess current and peak splitting of the dI/dV characteristics as
a function of the magnetic field. In consequence, the superconducting quantum spin Hall effect
is an effective generator and detector for spin currents.
The research presented here deepens the understanding of the competition of bulk and edge
transport in heterostructures based on topological insulators. Moreover it proposes feasible ex-
periments to all-electrically measure crossed Andreev reflection and to test the spin polarization
of helical edge states.
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1. Introduction

Computer chips are an indispensable part of our everyday life. The basic component of a com-
puter is the transistor [Bardeen48], which works as a logical unit by switching currents ON or
OFF. The actual power of a chip depends on the number of integrated transistors which was
predicted by Moore [Moore65] to double every 18 months, because progress in technology allows
to build smaller and smaller transistors. Despite the advances in building transistors [Tan10]
and data storage [Loth12] on an atomic level, Moore’s law is prone to face its end, when fun-
damental physical barriers [Lloyd00], like the Heisenberg uncertainty, or thermal fluctuations
[Kish02] prevent further miniaturization. Populating chips with even more and faster logical
circuits, causes heating problem and energy losses. The reduction of dissipation could lead to
substantial speed-up and energy savings, making it one of the biggest goals of modern solid state
physics [Awschalom07].
In the field of classical computing, the possible paths to reduce dissipative losses are twofold:
Firstly, new materials with high mobilities can outperform silicon devices, like it was shown
for transistors based on carbon nanotubes [Franklin12] or graphene naonoribbons [Han14].
Secondly, spintronics focuses on switching from charge to spin based information processing
[Wolf01, Awschalom07], where switching times are not limited by capacitance but by the much
shorter spin precession time. This requires to generate, store and manipulate spins and spin
currents. Moreover, a conceptually new way of information processing is provided by quantum
computing [Bennett00, Nielsen05]. In this case, the quantum of information (qubit) is stored in
a two level quantum system. Since long coherence times of the qubit are one of the key criterion
for successful calculations [DiVincenzo00], it is advantageous to perform the latter on protected,
anyonic states [Kitaev03, Nayak08]. The most prominent proposal to find non-abelian statistics
[Ivanov01] involves Majorana bound states, which are supposed to exist in p-wave superconduc-
tors [Kitaev01, Oreg10, Mourik12].
With the discovery of time-reversal invariant two-dimensional topological insulators [Kane05a,
Bernevig06, König07, Hasan10, Qi11], solid state physics has advanced in all three previously
mentioned aspects: The helical edge states of two-dimensional topological insulators generate
quasi dissipation-less charge and spin currents [Roth09, Brüne12] and, when combined with su-
perconductors, open the possibility to host [Fu08] as well as braid [Mi13] Majorana bound states.
The research field of topological states of matter was born with the discovery of the quantum
Hall effect [Klitzing80]. Unlike all previously known states of matter, it is not characterized by
symmetry arguments, but by a topological quantum number [Kohmoto85]. This introduces a
new and unexpected variety of different phases, which can be categorized by different topologi-
cal indices [Schnyder08]. Although the topological characterization is a bulk property, it reveals
itself by the existence of protected boundary modes through the bulk-boundary correspondence,
underlining the experimental and application-technical relevance of these systems. The most
prominent examples are topological insulators, which combine a band insulator in the bulk with
metallic edge states. The knowledge and understanding of the building blocks of topological
states of matters has led to a large number of proposals for topological band insulators in two
[Kane05a, Bernevig06, Liu08, Hu12] and three [Fu07b, Fu07a, Zhang09] dimensions, which often
have been verified experimentally [König07, Hsieh08, Xia09, Chen09, Brüne11, Knez11]. Further,
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1. Introduction

these concepts have been expanded to gapless phases [Matsuura13, Baum15a] and interaction
driven systems in form of topological superconductors [Fu08, Qi09], Mott insulators [Raghu08]
as well as Kondo insulators [Dzero10].
An apt tool to find new topological states of matter is to combine topological insulators with
other types of materials. A very prominent example for this procedure is the prediction [Fu08]
of topological superconductors, which arise in hybrid structures of topological insulators and
ordinary (s-wave) superconductors. On the experimental side, superconductivity has been suc-
cessfully induced into the helical edge states of two-dimensional topological insulators [Knez12,
Hart14, Pribiag15] as well as into the surface states of three-dimensional insulators [Maier12,
Sochnikov15]. Hosting zero energy bound states, topological superconductors are believed to
show a fractional, i.e., 4π-periodic Josephson effect [Kitaev01, Fu09]. However, the experimental
detection of the latter effect [Rokhinson12, Wiedenmann16] might be disguised by quasi-particle
poisoning [Houzet13].

About this thesis

Potential applications of topological insulators in spintronic devices would need the fabrication
of integrated circuits of topological insulators, which are finite in size and contacted by leads.
This thesis advances the understanding of transport effects in heterostructures of topological
insulators and introduces the novel superconducting quantum spin Hall effect. Moreover, it
addresses two outstanding problems in the field: the measurement of crossed Andreev reflection
and the detection of spin polarization in helical edge states.
Part I illustrates the physical background and methods needed to describe topological insulator
heterojunctions. To be specific, chapter 2 introduces the concept of time-reversal symmetric
topological insulators in terms of the Berry phase. Additionally, HgTe/CdTe quantum wells
are introduced as an explicit and prominent example of two-dimensional topological insulators.
Chapter 3 deals with the hybrid system of topological insulators and superconductors. The
second building block, conventional superconductors, is recapitulated in section 3.1. The prox-
imity effect, which induces superconductivity in normally conducting thin films, is presented in
section 3.2, where we also demonstrate, that inducing conventional superconductivity into the
helical boundary modes of a topological insulator gives rise to non-trivial triplet pairing terms.
Depending on the cleanliness of the interface, the induced superconductivity is accompanied by
a large (clean limit) or zero (dirty limit) doping of the thin film. Therefore, both limits will lead
to different effective pairing terms, because they induce superconductivity in the bulk (cf. chap-
ter 6) or the helical edge states (cf. chapter 7). Possible detection schemes for and applications
of topological states of matter involve their unique transport properties. Therefore, chapter 4
describes phase coherent transport in mesoscopic systems. In particular, we introduce a gener-
alized wave matching approach, the numerical solution of which allows to treat the scattering
of bulk and edge modes on the same footing.
Part II presents the scientific results. First, chapter 5 focuses on the non-superconducting case
and describes heterojunctions between two-dimensional topological insulators and highly doped
metals. The physics of these devices is significantly enriched by finite size effects. For example,
a single interface between a topological insulator and a metal cannot introduce backscattering
of the helical edge states, unless the latter are directly coupled in narrow samples. This insight
helps to interpret more sophisticated structures. Specifically, we analyze a topological insulator
tunneling junction coupled to two metallic leads. This geometry has been found to support a
conductance maximum in the tunneling bulk modes, providing a hallmark of the topologically
non-trivial regime [Novik10, Recher10]. This thesis completes the characterization of the con-
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1. Introduction

ductance maximum by introducing hard wall boundary conditions. The presence of protected
edge states does not alter the bulk mode transport, unless both species of modes are coupled
by finite size effects. In chapter 6, similar arguments are used to introduce the coupling of
helical edge states across a superconducting tunneling junction. This allows to generate and
tune crossed Andreev reflection, a process which is conceptually forbidden for a single pair of
helical edge states [Adroguer10]. Crossed Andreev reflection is connected with the non-local
splitting of singlet Cooper pairs, which is a possible source of spin-entangled electrons. The
measurement of this process is often disguised by simultaneously happening electron tunneling
processes. However, when the leads are in the quantum spin Hall insulator regime, crossed
Andreev reflection and electron tunneling are spatially separated for each Kramers’ partner due
to the helicity of the edge states. Based on this, we propose a feasible setup, which selects one
Kramers’ partner, and describe an all-electrical measurement scheme for the crossed Andreev
reflection. In chapter 7, we describe the hybrid system of helical edge states in proximity to
an ordinary superconductor in magnetic fields. We dub this phenomenon the superconducting
quantum spin Hall effect, because its edge states remain spin-polarized and protected against
elastic backscattering, even in finite in-plane magnetic fields. The interplay of helical states
with U(1)-symmetry breaking superconductivity generates a giant g-factor. The latter allows to
characterize the superconducting quantum spin Hall effect by tuning the edge state spectrum
in weak magnetic fields, paving the way to possibly apply this novel effect as generator and
detector of spin currents.
Chapter 8 concludes our results and gives some interesting prospects for future research.

Of course this thesis can only present a small part of the world-wide scientific struggle to under-
stand and engineer new phases of matter. Further research is needed to deepen the understanding
of the underlying physics and to bring these concepts to life in novel devices. Moreover, this
thesis potentially triggers future experiments aiming to confirm the proposed effects and mea-
surement schemes. Therefore, it is written in the spirit, that its research can be understood,
reproduced and, most importantly, continued by students, who bring the knowledge of advanced
quantum mechanics and basic solid state lectures but otherwise are new to the field. Especially
the theory part should serve as a self-contained and detailed introduction to the physical back-
ground. Often further reading is suggested, especially when details are left out for the sake of
brevity or readability.
The research presented in the chapters 5, 6 and 7 is based on the publications [Reinthaler12]1,
[Reinthaler13]2 and [Reinthaler15]3, which are copyrighted by the corresponding publisher.
These chapters adapt the text of the mentioned publications in parts word by word.

1 c©2012 American Physical Society. All rights reserved.
2 c©2013 American Physical Society. All rights reserved.
3 c©2015 American Physical Society. All rights reserved.
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Theory and Methods
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2. Two-dimensional topological insulators

In this chapter, we provide the reader with a notion of topologically protected states of matter.
Specifically, we will be concerned with topological phases of matter which emerge in the presence
of time-reversal symmetry. The latter is discussed in section 2.1. Section 2.2 classifies topological
phases of matter by evaluating the time-reversal polarization in terms of the system’s Berry
phase. The experimental relevance of topological states of matter becomes clear in section 2.2.3,
where we introduce the bulk-boundary correspondence. Finally, in section 2.3, we discuss HgTe
quantum wells, in which the two-dimensional topological insulator phase has been experimentally
realized for the first time.

2.1. Time-reversal symmetry

Our introduction to time-reversal symmetry (TRS) follows the classical textbook by Sakurai
[Sakurai94], if not cited differently.

2.1.1. Time-reversal operator and Kramers’ theorem

TRS is a discrete symmetry connected with the inversion of motion. The propagation of a wave
function is dominated by the Schrödinger equation

i~∂tψ(t) = Hψ(t), (2.1)

where ψ(t) is a solution to the time dependent problem. Since obviously ∂t → −∂t under time-
reversal, ψ(−t) cannot be another valid solution, but ψ∗(−t) is, provided that the system is
spinless. Hence, we demand that complex conjugation is an integral part of time-reversal. Fur-
ther, we would like to impose that the inner product of two states (〈α|β〉) remains unaltered
under time-reversal. This is true for any unitary symmetry operator, like, e.g., rotations. Con-
cerning TRS, however, this is in contradiction with the associated complex conjugation. Let us
define the time-reversal operator (Θ̂) as the product of a unitary operator (Û) and the complex
conjugation operator (K̂):

Θ̂ = ÛK̂. (2.2)

In order to describe the action of time-reversal (TR) on a state |α〉, let us define {|a〉} to be an
orthonormal basis of the Hilbert space. Assuming that K̂ does not change the basis kets |a〉1,

1 This is a valid assumption, if this basis has an explicit, real representation, e.g., {|a〉} =
{(1, 0, . . .)T , (0, 1, 0, . . .)T , . . .}. Note, however, that the general action of K̂ on the basis ket might change
upon basis transformation. In this sense, one has to additionally readjust the unitary operator Û according to
the chosen basis, see [Sakurai94] for details.
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2. Two-dimensional topological insulators

we can write the time-reversed state
∣∣∣Θ̂α〉 as

∣∣∣Θ̂α〉 := Θ̂ |α〉 = Θ̂

(∑
a

|a〉 〈a|α〉

)
=
∑
a

〈a|α〉∗ ÛK̂ |a〉 =
∑
a

〈α|a〉 Û |a〉 , (2.3)

where we used the completeness relation
∑

a |a〉 〈a| = I. The inner product hence transforms as

〈
Θ̂β|Θ̂α

〉
=

(∑
b

〈b|β〉
〈
Ûb
∣∣∣)(∑

a

〈α|a〉 Û |a〉

)
=
∑
a,b

〈α|a〉 〈b|β〉
〈
Ûb|Ûa

〉
︸ ︷︷ ︸
=〈b|a〉=δba

=
∑
a

〈α|a〉 〈a|β〉 = 〈α|β〉 , (2.4)

i.e., TRS is an anti-unitary operation conserving the absolute value of the inner product. A
simple corollary of Eq. (2.4) is〈

Θ̂α
∣∣∣ Θ̂ÂΘ̂−1

∣∣∣Θ̂β〉 =
〈
Âβ|α

〉
= 〈β| Â† |α〉 (2.5)

for any linear operator Â.
As mentioned before, TRS can be seen as inversion of motion. Consequently, we expect TRS to
invert the expectation value of the momentum operator p̂:〈

Θ̂α
∣∣∣ p̂ ∣∣∣Θ̂α〉 = −〈α| p̂ |α〉 ⇒ Θ̂p̂Θ̂−1 = −p̂, (2.6)

that is the momentum operator is odd under time-reversal. From this we can infer that p̂Θ̂ |p′〉 =
−Θ̂p̂Θ̂−1Θ̂ |p′〉 = −Θ̂p′ |p′〉 = (−p′)Θ̂ |p′〉, i.e., time-reversal inverses the momentum state

Θ̂ |p〉 = |−p〉 . (2.7)

In contrast, inversion of motion should not change the position. The position operator x̂ is
even under time-reversal, which can also be deduced from the invariance of the fundamental
commutation relation [x̂i, p̂j ] = i~δij .
The commutation relation for angular momentum transforms according to

Θ̂
[
Ĵi, Ĵj

]
|α〉 = Θ̂i~εijkĴk |α〉

⇔
[
Θ̂ĴiΘ̂

−1, Θ̂ĴjΘ̂
−1
]

Θ̂ |α〉 = −i~εijkΘ̂ĴzΘ̂−1Θ̂ |α〉 , (2.8)

and consequently remains unaltered for Ĵ being odd: Θ̂ĴΘ̂−1 = −Ĵ .
In the following, we will restrict our discussion to spin-1/2 systems. We choose the real Sz
eigenbasis representation, in which the spin operator is given by Ŝi = ~σi/2, with σi being the
Pauli matrices in spin space. In this basis

Θ̂ = ÛK̂ = −i
2

~
ŜyK̂ = −iσyK̂ (2.9)

8



2. Two-dimensional topological insulators

is a suitable choice for the time-reversal operator. The action of TRS on the eigenstates σz |±〉 =
± |±〉 is to flip the spin

Θ̂ |±〉 = ± |∓〉 . (2.10)

From Eq. (2.9), one finds

Θ̂2 = −I. (2.11)

This is in general true for all half-integer angular momentum states and has two striking con-
sequences: Kramers’ degeneracy and protection of the states against backscattering by any TR
symmetric perturbation.

Kramers’ degeneracy

Let |α〉 be an eigenstate of H with energy Eα. In case H preserves TRS, i.e.,
[
H, Θ̂

]
= 0, the

time-reversed state Θ̂ |α〉 has the same energy eigenvalue, because

HΘ̂ |α〉 = Θ̂H |α〉 = EαΘ̂ |α〉 . (2.12)

Assuming that |α〉 and Θ̂ |α〉 represent the same physical state, they may only differ by a phase
φα. In this case,

−I |α〉 = Θ̂(Θ̂ |α〉) = Θ̂(exp[iφα] |α〉) = exp[−iφα]Θ̂ |α〉 = |α〉 (2.13)

violates Eq. (2.11). In consequence, |α〉 and Θ̂ |α〉 are enegetically degenerate but distinct states,
called Kramers’ partners.
In the above argument, we did not make any assumption about H except from that the system
conserves TRS. This means that any TRS conserving interaction or potential cannot lift Kramers’
degeneracy. This is especially true for electric potentials. However, TRS can be broken, for
example, by applying a magnetic field.

Protection against backscattering

Let the Hamiltonian contain a TRS preserving scattering potential V , like it would, e.g., arise
from non-magnetic impurities. Can this potential elastically scatter the state |α〉 into its time-
reversed partner Θ̂ |α〉? We follow an argument by Xu and Moore [Xu06] and calculate the
matrix element of the scattering potential using Eqs. (2.4) and (2.11)〈

Θ̂α
∣∣∣V ∣∣∣α〉 =

〈
Θ̂V α|Θ̂2α

〉
[V,Θ̂]=0

= −
〈

Θ̂α
∣∣∣V †∣∣∣α〉 V=V †

= −
〈

Θ̂α
∣∣∣V ∣∣∣α〉 = 0. (2.14)

Thus, direct, elastic backscattering between Kramers’ partners is forbidden. This is at the heart
of the transport phenomena analyzed in this thesis, i.e., ballistic charge and spin transport
connected with the time-reversal symmetry protected, helical edge states in the quantum spin
Hall (QSH) effect.
In the previous argument, we neglected inelastic effects from electron-electron interaction [Xu06,
Wu06, Ström10, Crépin12] or electron-phonon interaction [Budich12b], which are expected to
induce backscattering without breaking TRS.

9



2. Two-dimensional topological insulators

2.1.2. Time-reversal symmetry for Bloch states

For the later use, let us analyze the effect of TR on Bloch waves. Bloch found that in a lattice
periodic system the solutions of H |ψnk〉 = En(k) |ψnk〉 take the form

|ψnk〉 = exp[ik · x] |un(k)〉 , (2.15)

where the index n stands for different degrees of freedom, like sub-bands or spins, and k is a con-
served lattice momentum, spanning the Brillouin zone (BZ). For example, in a one-dimensional
system with lattice constant a, the first BZ spans from −π/a to π/a. The states |un(k)〉 have
the same periodicity as the lattice and are eigenfunctions to the Bloch Hamiltonian H(k). We
want to find the action of TRS on the Bloch Hamiltonian

Θ̂HΘ̂−1 = Θ̂

∫
BZ

dk |k〉H(k) 〈k| Θ̂−1 (2.7)
=

∫
BZ

dk |−k〉 Θ̂H(k)Θ̂−1 〈−k|

=

∫
BZ

dk |k〉 Θ̂H(−k)Θ̂−1 〈k| . (2.16)

In order to find H which preserves TRS, we need to impose

H(k) = Θ̂H(−k)Θ̂−1 = ÛH∗(−k)Û−1 (2.17)

on the Bloch Hamiltonian. For Bloch states with spin-1/2, we find

|uα↑(k)〉 and |uα↓(−k)〉 (2.18)

to be Kramers’ partners. Here, ↑ and ↓ symbolize the Kramers’ partners, which do not necessarily
have to be perfect spin up or down states, and α is an additional degree of freedom, like, e.g., a
sub-band. They are related by TRS via

Θ̂ |uα↑(k)〉 = exp[−iχα(k)] |uα↓(−k)〉 , Θ̂ |uα↓(k)〉 = − exp[−iχα(−k)] |uα↑(−k)〉 , (2.19)

where the relative sign comes from the opposite spin in Eq. (2.10) and the phase χα(k) stems from
the fact, that there is not necessarily a one-to-one correspondence between Kramers’ partners
and spin-z eigenstates.
The periodicity of the system demands that k-points, which are connected by a vector K =
l 2πa êkx + m2π

a êky , l,m ∈ Z, are equivalent. Therefore, in the two-dimensional (2D) BZ there

exist four momenta which, upon TRS (k
Θ̂−→ −k), are mapped onto themselves or an equivalent

momentum. These time-reversal invariant momenta (TRIM) Λi are explicitly shown in Fig. 2.1a.
At these points we have Θ̂ |Λi ↑〉 = |Λi ↓〉. Thus, the two Kramers’ partners must be degenerate
at the TRIM. Fig. 2.1b shows the band structure of two pairs of Kramers’ partners along one
k-direction in the first BZ. At the two TRIM k = Λ0 and k = Λj = −Λj , the branches for ↑ and
↓ cross. These degeneracies cannot be lifted as long as TRS is conserved.
At the end of this section, let us discuss the properties of a convenient matrix representation
of Θ̂ using the Bloch wave basis [Ando13]. It will proof useful in writing down the topological
invariant of a TR symmetric system in an elegant way. We define

wαβ(k) := 〈uα(−k)| Θ̂ |uβ(k)〉 , (2.20)

10



2. Two-dimensional topological insulators

BZ

Λ0 = (0, 0) Λ1 = (π
a
, 0)

Λ3 = (0, π
a

) Λ2 = (π
a
, π
a

)Λ2

Λ2 Λ2

Λ1

Λ3

kx

ky

(a) 4 time-reversal invariant momenta
(TRIM) in the first BZ

k
Λ0

E

−Λj Λj

↑ ↓

↑ ↓

(b) Schematic of the bandstructure in
presence of TRS. Λj = −Λj , j =
1, 2, 3 is a TRIM at the BZ border.

Figure 2.1.: The 4 TRIM of a 2D square lattice. At these Λi the two Kramers’ partner branches
meet. This degeneracy cannot be lifted unless TRS is broken.

which is unitary, because∑
α

w†γα(k)wαβ(k) =
∑
α

〈
Θ̂uγ(k)|uα(−k)

〉〈
uα(−k)|Θ̂uβ(k)

〉
=
〈

Θ̂uγ(k)|Θ̂uβ(k)
〉

= 〈uβ(k)|uγ(k)〉 = δβγ . (2.21)

Further with Eq. (2.4), on can show show that

wβα(−k) = −wαβ(k), (2.22)

making the matrix antisymmetric at the TRIM: wβα(Λi) = −wαβ(Λi). The matrix w connects
two Bloch states at opposite k by

|uα(−k)〉 =
∑
β

〈
Θ̂uβ(k)|uα(−k)

〉 ∣∣∣Θ̂uβ(k)
〉

=
∑
β

w∗αβ(k)Θ̂ |uβ(k)〉 . (2.23)

As an example imagine 2N states, coupled in Kramers’ pairs according to Eq. (2.19). In this
case, the matrix w is given by

w(k) =


0 e−iχ1(k) 0 0 · · ·

−e−iχ1(−k) 0 0 0 · · ·
0 0 0 e−iχ2(k) · · ·
0 0 −e−iχ2(−k) 0 · · ·
...

...
...

...
. . .

 . (2.24)
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2. Two-dimensional topological insulators

2.2. Topological states of matter

In this section, we want to present an intuitive picture of topological states of matter from the
point of view of the Berry phase, following, if not cited differently, the review by Ando [Ando13].
We will not dive deep into differential geometry and topology. For more details, the interested
reader may consult, for example, the textbook by Nakahara [Nakahara03].

2.2.1. Adiabatic transport and Berry phase

Imagine a system, whose Hamiltonian is a function of a set of time dependent parameters
R(t) = (R1(t), R2(t), . . .)T . At each time t, we find a set of instantaneous eigenstates

H[R(t)] |α,R(t)〉 = Eα(t) |α,R(t)〉 . (2.25)

We want to calculate the time evolution of an arbitrary state by

H[R(t)] |ψ(t)〉 = i~
d

dt
|ψ(t)〉 . (2.26)

When the initial state at t = t0 is of the form |ψ(t = t0)〉 = |β,R(t0)〉, then the general solution
is given by

|ψ(t)〉 =
∑
α

cα(t) |α,R(t)〉 e−iφDα (t), (2.27)

where we defined the dynamical phase φDα (t) = 1
~
∫ t
t0

dt′Eα(t′). Plugging Eq. (2.27) into (2.26)
one finds a differential equation for the coefficients

ċβ = −cβ 〈β,R(t)| d

dt
|β,R(t)〉 −

∑
α 6=β

ei(φDα (t)−φDβ (t))cα(t) 〈α,R(t)| d

dt
|β,R(t)〉 . (2.28)

If the initial state |β,R(t0)〉 is separated from the rest of the spectrum by an energy gap, which
is larger than ∆ at all times t, then we can rescale the time dependence as t = sT , where ~/s
is of the order of ∆ and T is called the adiabatic time scale. Born and Fock [Born28] proved
that for slowly varying Hamiltonians, meaning T → ∞, the second term of Eq. (2.28) vanishes,
resulting in

cβ(t) = cβ(t0) exp

[
−
∫ t

t0

dt′
〈
β,R(t′)

∣∣ d

dt′
∣∣β,R(t′)

〉]
. (2.29)

The exponential is a pure phase factor, because

0 =
d

dt
〈β,R(t)|β,R(t)〉 = 〈β,R(t)| d

dt
|β,R(t)〉+

(
d

dt
〈β,R(t)|

)
|β,R(t)〉

= 〈β,R(t)| d

dt
|β,R(t)〉+ 〈β,R(t)| d

dt
|β,R(t)〉∗ (2.30)

and, consequently, 〈β,R(t)| d
dt |β,R(t)〉 is imaginary. Later on, the proof has been generalized to

systems with degeneracies [Kato50]. Eq. (2.29) means that, when the system is evolving slowly
on the scale of ∆, |ψ(t)〉 will not leave the eigenspace associated with the initial state |β,R(t0)〉.
This is called the adiabatic theorem of quantum mechanics. For a long time, it was believed

12



2. Two-dimensional topological insulators

that the phase in Eq. (2.29) can simply be gauged away and has no physical relevance. However,
Berry [Berry84] realized that the phase arising by performing a closed loop C in the parameter
space is gauge invariant and has physically observable consequences. When C is parametrized
to start at t = 0 and to return to the starting position in parameter space at t = T , i.e.,
R(0) = R(T ), then the Berry phase associated with the loop is

γα[C] :=i

∫ T

0
dt′
〈
α,R(t′)

∣∣ d

dt′
∣∣α,R(t′)

〉
= i

∫ T

0
dt′ 〈α,R| ∇R |α,R〉 · Ṙ(t′)

=i

∮
C

dR · 〈α,R| ∇R |α,R〉 = −
∮
C

dR ·Aα(R). (2.31)

The hereby defined Berry connection

Aα(R) = −i 〈α,R| ∇R |α,R〉 (2.32)

acts as a gauge potential on the parameter space R, because a gauge transformation |α,R〉 →
exp[iφ(R)] |α,R〉 results in

Aα(R)→ −i 〈α,R| exp[−iφ(R)]∇R (exp[iφ(R)] |α,R〉) = Aα(R) +∇Rφ(R). (2.33)

The algebraic similarity to the magnetic vector potential allows to define the Berry curvature

Bα(R) = ∇R ×Aα(R), (2.34)

which, analogously to the magnetic field, is gauge invariant. Let S be the surface encircled by
C. Stokes theorem allows to rewrite the Berry phase as

γα[C] = −
∫
S

dS ·Bα(R), (2.35)

showing that γα[C] is a gauge invariant quantity.
As a first example for the significance of the Berry phase, we calculate the Hall conductance in
the quantum Hall (QH) effect in appendix A. We find that it is quantized and given by summing
up the Berry phase associated with the BZ of the occupied bands

σxy =
e2

h

∑
α,occ

(
−γα[∂BZ]

2π

)
=
e2

h

∑
α,occ

nα. (2.36)

In this case, the Berry phase counts the number of flux quanta in the magnetic unit cell and is
defined for a system in which TRS is broken. This also defines an integer topological invariant
nα, the so-called Chern number or TKNN invariant.
In the following, we will mainly concentrate on systems which conserve TRS. Therefore, we
define the Berry connection matrix

aαβ(k) = −i 〈uα(k)| ∇k |uβ(k)〉 = a∗βα(k) (2.37)

in the Bloch basis, where we identified R with the lattice momentum k. In a system of d spatial
dimensions, a thus is a d-dimensional vector of matrices. In presence of TRS, we can relate the

13



2. Two-dimensional topological insulators

matrix entries at the points k and −k via (∇k = −∇−k = −Θ̂∇kΘ̂−1)

aαβ(−k) =− i 〈uα(−k)| ∇k |uβ(−k)〉 (2.23)
= −i

∑
γδ

wαδ(k)
〈

Θ̂uδ(k)
∣∣∣∇k

(∣∣∣Θ̂uγ(k)
〉
w∗βγ(k)

)
= + i

∑
γδ

wαδ(k)
〈

Θ̂uδ(k)
∣∣∣ Θ̂∇kΘ̂−1

∣∣∣Θ̂uγ(k)
〉

︸ ︷︷ ︸
(2.5)
= −〈uγ(k)|∇k|uδ(k)〉(2.37)

= −ia∗δγ(k)

w∗βγ(k)− i
∑
γδ

wαδ(k)∇kw
∗
βγ(k)δγδ

=
∑
γδ

[
wαδ(k)a∗δγ(k)w†γβ(k)− iwαδ(k)∇kw

†
γβ(k)δγδ

]
. (2.38)

Summing up the Berry connections of all bands corresponds to the trace

Tra(−k) = Tr
[
w(k)a∗(k)w†(k)

]
− i Tr

[
w(k)∇kw

†(k)
]

= Tra(k) + i Tr
[
w†(k)∇kw(k)

]
. (2.39)

In the last step, the term has been simplified by the cyclic invariance of the trace together with
Eqs. (2.21) and (2.37). For the second summand, we additionally employed w(k)∇kw

†(k) =
−[∇kw(k)]w†(k), which follows from the unitary of w(k). Finally, we arrive at

Tra(k) = Tra(−k)− i Tr
[
w†(k)∇kw(k)

]
. (2.40)

2.2.2. Time-reversal polarization and Z2 invariant

TR symmetric systems are not characterized by an integer invariant, like the TKNN invariant
derived in appendix A, but by a topological invariant which is defined as an integer modulo 2
(Z2 invariant). We want to motivate the Z2 invariant for a 2D system by looking at the pumping
of a time-reversal polarization in a one dimensional system [Fu06]. For the pumping process, we
assume the system to evolve in time with periodicity T :

H(t+ T ) = H(t). (2.41)

Hence, the system must be TR symmetric at times t = 0 and t = T/2. We consider a state |αs〉,
where α labels the energy band and s =↑, ↓ is the Kramers’ partner. Its charge polarization is
related to the Berry connection [King-Smith93]

Pαs = − 1

2π

∫ π

−π
dk Aαs(k). (2.42)

Here for the 1D system, we do not use the vector notation and the 1D BZ spans from −π to
π, because the lattice constant a = 1 has been chosen. Let us motivate the above form of the
charge polarization by introducing the Wannier states, which are localized at the lattice vector
R

|Wαs(R)〉 =
1√
2π

∫
BZ

dk exp[−ikR] |ψαsk〉 , (2.43)
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2. Two-dimensional topological insulators

as the Fourier transformation of the Bloch states (2.15). The polarization can be calculated as
the dipole moment of the Wannier charge density [Bohm03]

Pαs ∝ 〈Wαs(R = 0)| r̂ |Wαs(R = 0)〉 =
1

2π

∫
dk

∫
dk′ exp[−i(k − k′)R] 〈ψαsk| r̂ |ψαsk′〉 . (2.44)

The connection to Eq. (2.42) can be seen by the matrix element of the Bloch states with the
position operator, which is [Bohm03]

〈ψαsk| r̂ |ψαsk′〉 = −i∂kδ(k − k′) + δ(k − k′) 〈uαs(k)| i∂k |uαs(k)〉 . (2.45)

The first term is antisymmetric and vanishes upon integration in Eq. (2.44) for R = 0. We define
the total charge polarization for each Kramers’ partner flavor s

Ps =
N∑
α=1

Pαs. (2.46)

The total charge polarization P and the time-reversal polarization PΘ are thus given to by

P = P↑ + P↓, PΘ = P↑ − P↓ = 2P↑ − P. (2.47)

We assume 2N states to be occupied, of which always two have the same energy index α and -
due to Kramers’ degeneracy - are related by Eq. (2.19) at t = 0, T/2. The matrix representation
of Θ̂ is given by Eq. (2.24). With this, we derive a useful relation for the Berry connection
matrix

a(α↑)(α↑)(−k)
(2.38)

=
∑
ββ′ss′

w(α↑)(βs)(k)a∗(βs)(β′s′)(k)w†(β′s′)(α↑)(k)− i
∑
βs

w(α↑)(βs)(k)∂kw
†
(βs)(α↑)(k)

(2.24)
= w(α↑)(α↓)(k)a(α↓)(α↓)(k)w∗(α↑)(α↓)(k)− iw(α↑)(α↓)(k)∂kw

†
(α↓)(α↑)(k)

= a(α↓)(α↓)(k) + ∂kχα(k). (2.48)

By splitting the integral into two parts, we can simplify

P↑ = − 1

2π

N∑
α=1

(∫ π

0
dk a(α↑)(α↑)(k) +

∫ 0

−π
dk a(α↑)(α↑)(k)

)
= − 1

2π

∫ π

0
dk
∑
α

(
a(α↑)(α↑)(k) + a(α↓)(α↓)(k)

)
︸ ︷︷ ︸

=Tr[a(k)]

− 1

2π

∑
α

∫ π

0
dk ∂kχα(k)︸ ︷︷ ︸

=χα(π)−χα(0)

(2.24)
= − 1

2π

∫ π

0
dk Tr[a(k)]− i

2π
log

[∏
αw(α↑)(α↓)(π)∏
αw(α↑)(α↓)(0)

]
= − 1

2π

∫ π

0
dk Tr[a(k)]− i

2π
log

[
Pf[w(π)]

Pf[w(0)]

]
. (2.49)

At the TRIM, where −k = k, w takes the simple form w(α↑)(α↓) = −w(α↓)(α↑), cf. Eq. (2.24).

With this, its determinant is given by det[w] =
[∏

αw(α↑)(α↓)
]2

, so that we could introduce the
Pfaffian into Eq. (2.49). The Pfaffian is defined as Pf[M ]2 = det[M ] for any skew symmetric
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matrix M . The time-reversal polarization becomes

PΘ = 2P↑ − P =
1

2π

(
−
∫ π

0
dk 2Tr[a(k)] +

∫ π

−π
dk Tr[a(k)]

)
− i

π
log

[
Pf[w(π)]

Pf[w(0)]

]
=

1

2π

∫ π

0
dk (−Tr[a(k)] + Tr[a(−k)])− i

π
log

[
Pf[w(π)]

Pf[w(0)]

]
(2.40)

=
i

2π

∫ π

0
dk Tr

[
w†(k)∂kw(k)

]
− i

π
log

[
Pf[w(π)]

Pf[w(0)]

]
=

i

2π

∫ π

0
dk ∂k log det[w(k)]− i

π
log

[
Pf[w(π)]

Pf[w(0)]

]
=

1

iπ
log

[√
det[w(0)]

Pf[w(0)]
· Pf[w(π)]√

det[w(π)]

]
. (2.50)

Again, we have made use of the explicit form of w, cf. Eq. (2.24), and evaluated the trace

Tr[w†(k)∂kw(k)] = ∂k
∑
α

(−i) [χα(k) + χα(−k)]

= ∂k log
∏
α

exp [−i (χα(k) + χα(−k))] = ∂k log det[w(k)]. (2.51)

The argument of the logarithm in Eq. (2.50) can only have the values 1 or −1. The angle in
the complex plane is 2π-periodic and, hence, the polarization at the TR symmetric times can
only describe two different states: PΘ mod 2 = 0 or 1, corresponding to the log[1] and log[−1]
solution, respectively. The difference in polarization at the two time-reversal invariant times

ν = PΘ

(
T

2

)
− PΘ(0) (2.52)

is only defined up to modulo 2. Thus, it is apt to define a topological invariant which is defined
as an integer modulo 2 (Z2 invariant). It casts the Hilbert space in two different groups: ν = 0
describes the trivial case, whereas ν = 1 means that a topological charge has been pumped
during the half circle from t = 0 to t = T/2. The last describes the topologically non-trivial
case.
The Z2 invariant defined for pumping a time-reversal charge in a 1D system is equivalent to
that of a 2D topological insulator (TI), as was argued by Fu and Kane [Fu06]. This is analogous
to the Laughlin argument [Laughlin81] for the quantization of the Hall conductance in the QH
effect. The equivalence can be understood by identifying the phase space (k, t) with (kx, ky),
because both have the same periodicity for T = 2π. The Z2 invariant then is given in terms of
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2. Two-dimensional topological insulators

the TRIM of the 2D BZ, which are specified in Fig. 2.1a:

νiπ = log

[√
det[w(Λ0)]

Pf[w(Λ0)]
· Pf[w(Λ1)]√

det[w(Λ1)]

]
− log

[√
det[w(Λ2)]

Pf[w(Λ2)]
· Pf[w(Λ3)]√

det[w(Λ3)]

]

⇔ νiπ = log

[
4∏
i=0

Pf[w(Λi)]√
det[w(Λi)]

]

⇔ (−1)ν =
4∏
i=1

Pf[w(Λi)]√
det[w(Λi)]

. (2.53)

Topological insulators with inversion symmetry

Spatial inversion is described by the parity operator (Π̂) acting according to

Π̂ |r, α, s〉 = |−r, α, s〉 , (2.54)

where r is the spatial position vector and s stands for the Kramers’ partner. Letting Π̂ act twice
on the same state, we find Π̂2 = I and thus the parity operator can only have the eigenvalues 1
or −1. Fu and Kane [Fu07a] showed that the Z2 invariant of a system which preserves TRS can
be expressed in the parity eigenvalues ξαs(Λi) of the Bloch states |uαs(Λi)〉 at the TRIM of the
BZ. Since the parity for the two Kramers’ partners is the same, ξα↑ = ξα↓ = ξα, one finds for
2N occupied states [Fu07a]

(−1)ν =
4∏
i=1

N∏
α=1

ξα(Λi). (2.55)

In section 2.3.2, we will use this simple formula to classify the topology of the effective model
for HgTe quantum wells (QWs).

Three-dimensional topological insulators

Although this work focuses on 2D TIs, we would like to mention that the above formalism for
2D systems can be generalized to three-dimensional (3D) TIs [Fu07b]. In this case, the BZ has
8 TRIM and six sides, each of which is equivalent to a 2D BZ, cf. Fig. 2.2. These systems are
characterized by four Z2 invariants (ν0; νx, νy, νz). The first one involves all 8 TRIM in Fig. 2.2

(−1)ν0 =
∏

kx=0,π

∏
ky=0,π

∏
kz=0,π

Pf[w(Λkx,ky ,kz)]√
det[(Λkx,ky ,kz)]

. (2.56)

It characterizes the system to be a ”strong” (ν0 = 1) or weak (ν0 = 0) topological insulator. The
remaining indices correspond to a certain direction in the reciprocal space and are given by

(−1)νi =
∏
j 6=i

∏
kj 6=i=0,π;ki=0

Pf[w(Λkx,ky ,kz)]√
det[(Λkx,ky ,kz)]

, i = x, y, z. (2.57)

In the case of ν0 = 0 and νi 6= 0, i = x, y, z, the system can be interpreted as 2D TIs stacked
in the G =

∑
i=x,y,z νiêi direction. These are characterized by unprotected surface states on the
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kz

ky

kx

Λ0,0,0

Λπ,0,0

Λπ,0,π

Λπ,π,0

Λπ,π,π

Λ0,0,π

Λ0,π,0

Λ0,π,π

Figure 2.2.: The 3D BZ has 8 TRIM, from which we can calculate 4 independent topological
indices.

side planes, i.e., the planes parallel to G.
A vast variety of different realizations of 3D TI phases has been predicted and measured, e.g., in
Bi1−xSbx [Fu07b, Hsieh08], in Bi2X3, where X=Se,Te, [Zhang09, Xia09, Chen09] and in strained
HgTe [Fu07a, Brüne11].
Moreover, each possible 3D TI is also a promising candidate for supporting a 2D TI phase.
In thin films of 3D TIs, the surface states of the top and bottom surface hybridize and open
a gap. This gap closes as the energetically lowest lying states, which have opposite parity,
cross at certain thicknesses dz of the thin film. The parity changes at each crossing, leading to
the oscillations between topologically trivial and non-trivial insulators as a function of the film
thickness [Shan10, Lu10, Liu10b]. Around the band crossing points, a folding of the Hamiltonian
of the 3D TI [Zhang09, Liu10a] to the energetically lowest sub-bands reproduces the 2D model
of a 2D TI. In chapters 5 and 7 we will use a 3D TI thin film as a concrete realization of a 2D
TI.

2.2.3. Topological protection and bulk-boundary correspondence

The time-reversal polarization in Eq. (2.50) can only have the two values 0 or 1. The two
polarization states are not adiabatically connected. This implies that the 2N occupied bands,
which we assumed in the derivation of Eq. (2.50), are always separated from the unoccupied
states by a finite energy gap, i.e., the system is an insulator. In other words: a continuous
deformation of the bands that does not close the gap is not able to flip the polarization state
from 0 to 1 or vice versa. In a QH insulator, the bands are Landau levels and the gap between
them is induced by a magnetic field. In a TRS conserving TI, the gap opening is induced by
spin-orbit interaction [Kane05a] or possibly by interactions [Raghu08, Dzero10].
A topological phase transition, that is the transition from the state with one polarization to
the other, can hence only occur upon gap closing. In consequence, a spatial transition from a
topologically non-trivial insulator to a topologically trivial one (e.g. vacuum) is accompanied
by a spatially local gap closure. This means that a topological insulator, although being an
insulator, is always associated with metallic states at its boundary. This is referred to as the
bulk-boundary correspondence which connects the topological invariant, which is defined as a bulk
property, with the existence of metallic states. In the case of the integer QH effect, Halperin
[Halperin82] found that the corresponding invariant (TKNN invariant) gives the number of
localized edge states surrounding the QH insulator. Since these states are chiral, i.e., they
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k

E

Λa Λb

EF

(a) ν = 0, trivial

k

E

Λa Λb

EF

(b) ν = 1, non-trivial

Figure 2.3.: Electronic dispersion of a 2D TR symmetric insulator for half of the BZ. The bulk
gap between the valence (blue) and conduction (green) bands is closed at the bound-
ary of the system (black lines). In the trivial case (a), an even number of edge modes
crosses the Fermi energy EF. The non-trivial case (b) shows an odd number of edge
channels at EF. At the neighboring TRIMs, Λa and Λb, the modes are degenerate.

propagate only in one direction, the absence of counter-propagating states leads to protection
against backscattering.
In the case of a TRS preserving TI, the situation is a bit different. The Z2 invariant (2.53) is only
defined modulo 2. It is thus not directly connected to the number of boundary modes crossing
the Fermi energy EF, but to the number of crossings in half of the BZ modulo 2. To illustrate
this better, we follow the argumentation in [Fu07a, Hasan10] and show the dispersion of a TR
symmetric insulator between two neighboring TRIM (Λa and Λb) in Fig. 2.3. For the following
argument, it is crucial to restrict the discussion to half the BZ, because the second half of the BZ
(−Λb to Λa) is determined by TRS. Therefore, looking at the whole BZ, there is always an even
number of modes at all energies2. At the TRIM, Kramers’ theorem dictates twofold degeneracy.
There are two possibilities to connect these degenerate states: pairwise, as in Fig. 2.3a, or by a
single branch, as in Fig. 2.3b. For the first case, where an even number of modes crosses EF,
the pair of edge states can simply be shifted out of the gap, corresponding to a topologically
trivial state with ν = 0. On the other hand, the single branch in Fig. 2.3b cannot be shifted
out of the band gap. This situation is identified by an odd number of crossings, describing the
topologically non-trivial insulator with ν = 1.
Kramers’ degeneracy dictates that for each mode at lattice momentum k there will always be
an additional mode at −k, cf. Fig. 2.1b. However, scattering into this mode is forbidden
according to Eq. (2.14). The protected edge states are helical, i.e., the momentum is locked to
the Kramers’ partner polarization. Therefore, these systems are often referred to as quantum
spin Hall insulator (QSHI) in accordance to the QH effect. Additionally to quantized charge
transport, the QSH effect allows for quantized spin currents [Kane05a].
In the discussion of Eq. (2.14), we already mentioned that there are corrections to the topological
protection against backscattering due to many-particle effects. An additional single-particle
backscattering process can be induced by the overlap of edge modes at opposite boundaries.
States at different boundaries do not belong to the same Kramers’ pair and hybridize, when

2Equivalently, we could have considered the full BZ and restrict the discussion to one Kramers’ partner.
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they are not sufficiently separated by the gapped bulk material. Such finite size effects have first
been reported in [Zhou08] and are of one of the central topics of chapters 5 and 6.

2.3. HgTe quantum wells as two-dimensional topological insulators

Graphene was the first material, for which a TR symmetric 2D TI phase has been predicted
[Kane05a]. Undoped graphene shows the linear dispersion of massless relativistic electrons, so-
called Dirac cones [Castro Neto09]. Kane and Mele found a TRS preserving spin-orbit interaction
(SOI), which opens a topologically non-trivial gap at the Dirac points. First principle calcula-
tions, however, revealed that this gap is too small to be observed experimentally [Min06, Yao07].
Heavy elements, which have strong SOI, became possible candidates for 2D TIs. Indeed the first
proposal using a HgTe/CdTe quantum well (QW) [Bernevig06] was soon confirmed experimen-
tally [König07] to show the QSH effect.
Following the course of using heavy elements, 2D TI phases have been proposed, e.g., in 2D
bismuth [Murakami06], in inverted type-II semiconductors [Liu08] and even in graphene, pro-
vided SOI is enhanced by heavy ad-atoms [Hu12]. However, the QSH effect has so far only been
observed in inverted HgTe/CdTe [König07] and InAs/GaSb [Knez11] QWs. Since the latter has
a very small and indirect band gap, HgTe/CdTe QWs remain the prime material for 2D TIs.
Here, we introduce an effective low-energy Hamiltonian to describe HgTe/CdTe QWs in section
2.3.1. In section 2.3.2, we calculate the topological classification as a bulk property of the ef-
fective model, while in section 2.3.3, we use the tight binding (TB) formalism to analyze the
resulting edge states.

2.3.1. Effective low-energy model

The compound HgTe was one of the first candidates for 2D [Bernevig06] and 3D [Fu07a] TIs,
because of its strong SOI . In the 2D case, a thin layer of HgTe is embedded in a CdTe barrier.
Both materials crystallize in the Zinc blende structure with roughly the same lattice constant.
Their bulk dispersions are plotted in Fig. 2.4. CdTe is a normal semiconductor, which has a large
energy gap at the Γ-point between the s-type Γ6 band and the p-type Γ8 bands3. HgTe exhibits
an inverted band structure, where the Γ6 band lies below the Γ8 bands. This is quantified by a
negative gap value of Egap = EΓ6 − EΓ8 = −0.303 eV [Pfeuffer-Jeschke00]. The band inversion
is the result of the interplay of relativistic mass-velocity correction terms and strong SOI in the
system [Brüne13]. The Fermi energy lies between the light- and heavy hole branch of the Γ8

band which touch each other, i.e., bulk HgTe behaves like a semi-metal. The gap can be opened
by strain in case of a 3D TI [Fu07a] or, for a 2D TI, by confining the system in a QW, e.g., by
sandwiching HgTe within CdTe layers [Bernevig06].
HgTe/CdTe QWs can be described in an 8×8-Kane Hamiltonian [Pfeuffer-Jeschke00, Novik05].
We assume the quantum well to be grown in z-direction. The well width, meaning the thick-
ness of the central HgTe layer, is dQW. Neglecting the spin split-off bands Γ7, Bernevig et al.
[Bernevig06] found the sub-band structure at kx = ky = 0, which is presented in Fig. 2.5 as a
function of dQW. One finds that the lowest lying states around the Fermi energy are an electron
like (E1) and heavy-hole like (H1) sub-band, which originate mainly from the Γ6 and Γ8 bands,
respectively. At large dQW, we observe the inverted band ordering of bulk HgTe. The heuristic
reason is that in a thick HgTe layer its bulk band structure survives. Going to very small dQW,
the quantum confinement increases and pushes the E1 band above the H1, restoring normal

3An explanation of the characterization of the bands can be found in [Winkler03].

20



2. Two-dimensional topological insulators

Figure 2.4.: The bulk dispersions of HgTe and CdTe. In HgTe, the Γ8 band is above the Γ6

band, resulting in an inverted band structure. Taken from [Bernevig06]. Reprinted
with permission from AAAS.

band ordering. In the intermediate region the gap closes at a critical thickness dc ≈ 6.4 nm. As
we will explore in the following section, the gap closure from the normal to the inverted regime
is connected with a topological phase transition.
Around the gap closing at dc, all sub-bands except E1 and H1 are energetically far separated
from the Fermi energy. Consequently, it is advantageous to describe the composite system in an
effective low-energy Hamiltonian considering only E1 and H1. To this end, one integrates out
the z-dependence and performs a Löwdin partitioning. Here, we will only state the results. A
very detailed description of the procedure can, for example, be found in [Winkler03, Rothe09].
The effective Hamiltonian is written in the basis

(|E1, ↑〉 , |H1, ↑〉 , |E1, ↓〉 , |H1, ↓〉) . (2.58)

It is named after Bernevig, Hughes, and Zhang (BHZ) and reads [Bernevig06]:

HBHZ(kx, ky) =

(
h(kx, ky) 0

0 h∗(−kx,−ky)

)
. (2.59)

It is block-diagonal in the Kramers’ partner polarizations. For each Kramers’ partner the be-
havior is governed by

h(kx, ky) = ε(kx, ky)τ0 + di(kx, ky)τi (2.60)

with the Pauli matrices in sub-band space (τi), τ0 = I2×2 and

ε(kx, ky) = C −D(k2
x + k2

y), d1 = Akx, d2 = −Aky, d3 = M −B(k2
x + k2

y). (2.61)

Since all z-dependence has been integrated out, HBHZ only depends on the in-plane momentum
k‖ = (kx, ky)

T . The material parameters C, M , A, B and D depend on the well width dQW.
The band off-set of the sub-bands at the Γ-point is given by C+Mτz. C is a shift in energy and
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Figure 2.5.: The sub-bands of a HgTe/CdTe QW show a well width (dQW) dependent energy
gap, which changes sign at a critical thickness dc ≈ 6.4 nm. Taken from [König08].
Reprinted with permission from JPSJ.

will be mostly chosen to be C = 0, which means the energy zero point is in the middle of the
band gap. In contrast, M denotes the energy gap Egap = EE1 − EH1 = 2M . From comparison
with Fig. 2.5, one finds that the sign of M is positive (negative) in the normal (inverted) regime.
For finite k‖ we have two competing terms: the diagonals of h(k‖) give rise to a quadratic
dispersion with effective masses m∗E1 = ~/2(−B − D) and m∗H1 = ~/2(B − D), where the
asymmetry of the bands is induced by D. On the other hand, the coupling of the E1 and H1
band on the off-diagonal of h(k‖) induces a Dirac-like linear dispersion with A being its Fermi
velocity. This makes HgTe/CdTe QWs a model system in which the interplay of linear and
quadratic terms can be analysed. For example, at low doping, quadratic terms in k can be
neglected [Schmidt09] and the carriers behave like relativistic electrons, giving rise to a Pauli
term, which has been predicted to alter spin transport significantly [Rothe10].
In the basis (2.58), the TRS operator is

Θ̂ = −iσy ⊗ I2×2K̂, (2.62)

where σi are the Pauli matrices in spin space. With Eq. (2.17), one can to check that HBHZ

indeed preserves TRS.
In the following, we discuss two corrections to the Hamiltonian (2.59), which are allowed by the
symmetries of the system: the bulk- and structure inversion asymmetry.

Bulk inversion asymmetry

Having two different atoms in the unit cell, the Zinc blende structure is not inversion symmetric,
which is referred to as bulk inversion asymmetry (BIA). This induces a spin-orbit term, which,
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A [nm eV] 365 · 10−3

B [nm2 eV] −706 · 10−3

D [nm2 eV] −532 · 10−3

M [eV] −10.09 · 10−3

Table 2.1.: Material parameters for n = 10−2 nm−2 and dQW = 7.0 nm taken from [Rothe10].

in the basis (2.58), takes the form [König08]

HBIA = ∆BIA


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 . (2.63)

The strength of the BIA has been estimated to be ∆BIA ≈ 1.6 meV [König08]. To the best
of our knowledge, detailed theoretical and experimental studies of the dependence of the BIA
coupling on the well width have not yet been performed, so that the real strength of BIA is still
unknown. Since ∆BIA is anyway much smaller than the rest of the energy scales in this model,
cf. [Novik05] and also Tab. 2.1, we will neglect BIA terms in the following. Only in section
6.2.1, we will comment on the influence of BIA on the separation of the two Kramers’ partners’
contribution to transport.

Structure inversion asymmetry

Inversion symmetry breaking can also be induced by the structure of the quantum well. On
the one hand, the growth of the QW will in general be asymmetric. On the other hand, the
asymmetry can be artificially imposed by a gate potential. In both cases, this so-called structure
inversion asymmetry (SIA) leads to an asymmetric well potential accompanied by an electric
field. In [Rothe10], the derivation of HBHZ has been generalized to the presence of a linearly
varying potential, i.e., E = Ez êz = const. With k± = kx± iky, the resulting correction was found
to be

HR =


0 0 −iR0k− −S0k

2
−

0 0 S0k
2
− iT0k

3
−

iR0k+ S0k
2
+ 0 0

−S0k
2
+ −iT0k

3
+ 0 0

 . (2.64)

The interaction scales with the electric field (R0, T0, S0 ∝ Ez) and corresponds to the linear,
cubic and quadratic Rashba terms for electrons, heavy holes and the coupling of electrons and
heavy holes, respectively. In contrast to the BIA term, the Rashba interaction can be controlled
by QW growth and/or applied gates. In the following, we will thus assume the Rashba interac-
tion to be ”switched off” and disregard HR.

At the end of this section, let us give exemplary material parameters, which have been de-
rived at dQW = 7 nm, i.e., in the inverted regime, cf. Tab. 2.1. Although we concentrate
on HgTe QWs here, let us mention that the same effective model is valid for inverted type-II
semiconductors like InAs/GaSb QWs [Liu08].
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i Λi = (kx, ky) d3(Λi) for B < 0

0 (0, 0) M

1
(
π
a , 0
)

M + 4|B|
a2

2
(
0, πa

)
M + 4|B|

a2

3
(
π
a ,

π
a

)
M + 8|B|

a2

Table 2.2.: The four TRIM in the 2D BZ together with their parities, cf. Eq. (2.71).

2.3.2. Topological classification of the HgTe quantum wells

Here, we want to calculate the Z2 invariant of the BHZ model (2.59). Since, in the employed
basis, the |E1〉 and |H1〉 sub-bands have parity −1 and 1, respectively, the parity operator Π̂
can be written as [Rothe10]4

Π̂ = −σ0 ⊗ τz. (2.65)

Neglecting inversion breaking terms in the off-diagonal blocks ofHBHZ, we find Π̂HBHZ(−k)Π̂−1 =
HBHZ(k). This is the condition for parity conservation, because space inversion leads to k→ −k
in the Bloch basis. Therefore, it is possible to use Eq. (2.55) and restrict our considerations to one
of the Kramers partners. To evaluate the parity at the time-reversal invariant momenta (TRIM),
we need to impose the periodicity of the BZ onto the model. Analogously to [König08], we can
do this by a lattice regularization

ki →
sin[kia]

2a
, k2

i →
2− 2 cos[kia]

a2
, (2.66)

where a is the lattice constant in real space (see appendix B for more details). The Hamiltonian
for one of the Kramers’ partner then takes the form

h(k) = d0τ0 + diτi, (2.67)

with: d0 = C − 4D

a2
+

2D

a2
(cos[kxa] + cos[kya])

d1 =
A

2a
sin[kxa]

d2 = − A
2a

sin[kya]

d3 = M − 4B

a2
+

2B

a2
(cos[kxa] + cos[kya]). (2.68)

At the four TRIM in the Brillouin zone (see Tab. 2.2 and Fig. 2.1a), the Hamiltonian takes the
simple form

h(Λi) = d0τ0 + d3τ3. (2.69)

4Again we use the convention, that the σi (τi) act on the Kramers’ partner (sub-band) degree of freedom.
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This can also be seen from the fact that only τ3 is even under the parity operator. The eigenvalues
of h(Λi) are

EE1 = d0 + d3 and EH1 = d0 − d3 (2.70)

and have E1 and H1 character, respectively. At half filling, i.e., the Fermi energy is in the band
gap, this means that ξ(Λi), which is the parity eigenvalue at the TRIM Λi and which has been
introduced in Eq. (2.55), is equal to sign [d3(Λi)], because

sign [d3(Λi)] = 1 ⇒EE1 > EH1 ⇒|H1〉 is occupied ⇒ξ(Λi) = 1

and sign [d3(Λi)] = −1 ⇒EE1 < EH1 ⇒|E1〉 is occupied ⇒ξ(Λi) = −1. (2.71)

With this, we find the topological index

(−1)ν =

4∏
i=1

sign [d3(Λi)] . (2.72)

For fixed B < 0, we can read off the parities from Tab. 2.2, yielding

M > 0⇒ ξ(Λ0123) > 0⇒ ν = 0

M < 0 & M > −4|B|
a2
⇒ ξ(Λ0) < 0, ξ(Λ123) > 0⇒ ν = 1

M < −4|B|
a2

& M > −8|B|
a2
⇒ ξ(Λ012) < 0, ξ(Λ3) > 0⇒ ν = 1 (2.73)

This means that a change in sign [M ] triggers a phase transition from the topologically trivial
(M > 0) to the topologically non-trivial regime (M < 0). The parameter M is related to
the bulk gap in the system. Hence, the phase transition is connected with a change of band
ordering, which first occurs at the Γ-point. The topologically non-trivial regime is consequently
also referred to as the inverted regime.
One might wonder, if there is a second topological phase transition when M < −8|B|/a2. Indeed
the formal evaluation results in ν = 0. However, this is an artifact of the TB formalism. In a 2D
system, the TB bandwidth is 4 times the hopping energy. Neglecting the linear terms at large
energies, one finds the hopping energy tE1,H1 = 4(B±D)/a2. Therefore, choosing M < −8|B|/a2

causes an artificial band inversion, which does not occur in the physical system.
The topological invariant and its physically measurable analogues are properties of the whole
BZ. Here, we calculated the Z2 invariant by evaluating an effective low-energy model, which is
valid around the Γ-point, at the border of the BZ. However, it was shown [Budich12a], that
low-energy models give the correct topological invariants, provided that the topological defect
is sufficiently localized around k = 0. This is true in the above case, because the topological
phase transition occurs around the Γ-point in Eq. (2.73), where the parity ξ(Λ0) changes sign.
Let us note that the topological defect is not localized at the center of the BZ, if we would fix
M and tune B, see [Budich12a] for more details.
Another way to understand the Z2 invariant is to calculate the spin Chern number [Kane05b].
The Chern number or TKNN invariant, which is presented in appendix A, usually describes the
quantized conductance of the QH effect, i.e., in the absence of TRS. In the presence of TRS, one
can calculate the first Chern number ns for each Kramers’ partner individually, provided that
Sz is conserved. TRS enforces that n↑ + n↓ = 0. However, it is possible to define a spin Chern
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Figure 2.6.: The QSH effect can be understood as a superposition of two opposite copies of the
QH effect. Taken from [Murakami07]. c©IOP Publishing & Deutsche Physikalische
Gesellschaft. CC BY-NC-SA.

number by n↑ − n↓ which is related to the Z2 invariant by [Kane05b]

ν = (n↑ − n↓)mod2. (2.74)

In this sense, one can interpret the QSH effect as two copies of the QH effect, like it is schemat-
ically demonstrated in Fig. 2.6. Each Kramers’ partner corresponds to one of the copies and
gives rise to a quantized charge polarization at the edges. Further, the two copies are related
by TRS, so that the associated magnetic fields/magnetic polarizations cancel, which is reflected
by a vanishing total charge polarization. However, this reinstalls TRS and leads to a finite
time-reversal polarization of the Kramers’ partners at the edges of the sample, as defined in
Eq. (2.52).

2.3.3. Tight binding dispersion and edge states

In this section, we analyze the model (2.59) within the TB formalism, introduced in appendix
B. To this end, we have chosen the lattice constant a = 1 nm. In Fig. 2.7, we plot the TB
dispersion of a 2D TI in the quasi 1D ribbon geometry, which extents infinitely in x-direction,
cf. Fig. B.1. Its width in y-direction (Ly) is discretized by Ny = 100 lattice points. Whereas the
gap parameter M changes strongly with the quantum well thickness dQW, we will neglect the
smaller changes of the other parameters and stick to the values presented in Tab. 2.1. However,
M changes sign at dQW = dc, triggering a topological phase transition. We therefore compare
the topologically trivial regime (M = 10.09 meV > 0) in Fig. 2.7a with the non-trivial regime
(M = −10.09 meV < 0) in Fig. 2.7b. In both regimes, the conduction- and valence band are
separated by a gap, which exceeds its continuum value 2M due to finite size effects. The band
character is color encoded, ranging from blue (H1 like) to red (E1 like). While, in the trivial
regime, the conduction and valence band have E1 and H1 character, respectively, we find that
M < 0 induces the band inversion, which characterizes bulk HgTe. It manifests itself in an
inverse band character at the band edges around the Γ-point.
The most striking difference between the two regimes, however, is the gap closing by a pair
of states for M < 0. In good approximation, these states disperse linearly with the Fermi
velocity vF = A/~ inside the gap. To analyze these states further, we plot their spatial density
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Figure 2.7.: The TB dispersion of a HgTe QW in the trivial (a) and non-trivial (b) regime. We
used a = 1 nm and Ny = 100. The color code indicates the band character to be
E1 like (1, red) or H1 like (-1, blue).
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Figure 2.8.: The density of states of the edge states.

of states (DOS) in Fig. 2.8. At fixed kx = 0.025 nm−1 (Fig. 2.8a), we find two states, which
propagate in the same direction. The helicity of the system dictates that such states are localized
at opposite edges of the system, which we find to be fulfilled. These states, hence, are the
previously discussed edge states and – according to the bulk-boundary correspondence – a direct
consequence of the non-trivial topology in the inverted regime. Since we evaluated the DOS at
a fixed kx, the two states shown in Fig. 2.8a are not Kramers’ partners, which in turn would
counter-propagate along the same edge. It was experimentally demonstrated by Brüne et al.
[Brüne12] that these states indeed carry opposite Karmers’ partner polarization, i.e., ↑ or ↓,
which strongly corresponds to the real electron spin in inverted HgTe QWs.
Elastic backscattering between the Kramers’ partner is forbidden. However, there are counter-
propagating states with the same pseudo-spin and opposite kx localized at the opposite edge of
the system, cf. Fig. 2.8b. The spatial separation between these states suppresses backscattering
in the limit of large Ly. For the narrow ribbon analyzed here, we find significant spatial overlap,
which introduces hybridization and backscattering between these states.
As a direct consequence of the hybridization, a small gap opens in the edge state spectrum at
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Figure 2.9.: The hybridization gap ∆Hyb of the edge states in a HgTe QW as a function of the
ribbon width Ly. We compare the TB solution (black, solid) with the analytical
approximation (red, dashed).

the Γ-point in Fig. 2.7b. This so-called mini-gap ∆Hyb can be approximated by [Zhou08]:

∆Hyb ≈
4|A(B2 −D2)M |√

B3(A2B − 4(B2 −D2)M)
exp [−λ2Ly] . (2.75)

To do so, Zhou et al. considered an exponentially decaying ansatz for the edge states

ψedge = exp[ikxx]
(
c+

1 exp[λ1y] + c−1 exp[−λ1y] + c+
2 exp[λ2y] + c−2 exp[−λ2y]

)
(2.76)

with decay lengths

λ2
1,2(kx, E) = k2

x + F ±
√
F 2 − M2 − E2

B2 −D2
, F =

A2 − 2(MB + ED)

2(B2 −D2)
. (2.77)

Eq. (2.75) shows the typical exponential decay of a finite-size effect. In order to evaluate it,
one has to plug the ansatz (2.76) into HBHZ and solve for the energy at a fixed kx. Since this
involves transcendental equations, it is impossible to give a closed analytical form of ∆Hyb as a
function of only kx or E.
Fig. 2.9 compares the analytical approximation (red, dashed line) with ∆Hyb obtained from TB
calculations (black, solid line). We find that Eq. (2.75) slightly underestimates the hybridization
gap. But there are only small corrections to the exponential decay at small Ly. This suggest
that hybridization and backscattering of the edge states can be neglected for very wide ribbons.
However, finite size effects can give rise to rich physics, which will be analyzed further in chapters
5 and 6.
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In this chapter, the reader will be equipped with the basics of superconductivity which is needed
in the course of this thesis. We give a quick introduction to the microscopic theory of a conven-
tional superconductivity in section 3.1 before we turn to the mechanism of induced superconduc-
tivity in 3.2. The combination of a topological insulator (TI) with a conventional superconductor
(SC) gives rise to unconventional superconducting phases, like p-wave pairing. The last section,
3.3, deals with Andreev reflection, a unique transport process, which will be used to characterize
the exotic transport features in superconducting TIs.

3.1. Intrinsic superconductivity

In presenting the essential basics of the superconducting state, we follow mainly the classic
textbooks by de Gennes [Gennes99] and Tinkham [Tinkham04].

3.1.1. The pairing mechanism

The research area of superconductivity was born in 1911, when Onnes discovered the breakdown
of electrical resistance in mercury at low temperatures [Onnes11]. The reason for the breakdown
is that the Fermi sea is unstable in the presence of an arbitrarily small attractive interaction V
[Cooper56]. To achieve an attraction between two electrons, the interaction has to be indirect.
In the case of ordinary SCs, it was found that the interaction is mediated by phonons. The
physical picture is that an electron attracts the positively charged atom cores along its path.
Being much faster than the heavy cores, the electron leaves a positive polarization cloud behind,
which by itself attracts another electron. In the case that this effective, retarded attraction
outweighs the screened Coulomb repulsion of two electrons with lattice momentum k and k′, it
can be approximated by

Vk,k′ =

{
−V if E(k) and E(k′) ≤ ~ωq

0 else
. (3.1)

Here, V is a positive constant and ~ωq is the energy scale of a phonon with wave vector q = k−k′.
In the following, we will consider the weak coupling limit D(Ef )V � 1, where D(Ef ) is the
density of states (DOS) at the Fermi energy Ef . For a pair of electrons with opposite momentum
(k′ = −k) and opposite spin, the effective interaction (3.1) leads to a decrease in energy

δE = E − 2Ef ≈ −2~ωq exp

[
− 2

D(Ef )V

]
. (3.2)

In their ground breaking paper, Bardeen, Cooper, and Schriefer (BCS) [Bardeen57] used so-
called Cooper pairs, that are pairs of electrons with opposite spin and momentum, to form the
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trial wave function

|ψ〉BCS =
∏
k

(
uk + vkc

†
k↑c
†
−k↓

)
|VAC〉 . (3.3)

Here, we introduced the annihilation (ckσ) and creation (c†kσ) operators for electrons with mo-
mentum k and spin σ. They obey the fermionic anticommutation relations ([a, b]+ = ab+ ba)

[ckσ, ck′σ′ ]+ =
[
c†kσ, c

†
k′σ′

]
+

= 0,
[
c†kσ, ck′σ′

]
+

= δσσ′δkk′ . (3.4)

Here, the operators act on the vacuum state |VAC〉. The combination c†k↑c
†
−k↓ creates Cooper

pairs. Hence, |ψ〉BCS does not have a fixed particle number. However, the simple form of
Eq. (3.3) is justified in the limit of many particles, where the relative fluctuations of the total
particle number are negligible. It can be interpreted as a condensate of Cooper pairs (k ↑,−k ↓),
which are occupied or empty with the probability |vk|2 and |uk|2, respectively. The condition

|uk|2 + |vk|2 = 1 (3.5)

ensures the normalization of |ψ〉BCS.
The general Hamiltonian of two interacting electrons is given by

H =
∑
k

∑
σσ′

Hσσ′(k)c†kσckσ′ −
V

2

∑
klq

∑
σσ′

c†(k+q)σc
†
(l−q)σ′clσ′ckσ, (3.6)

where Hσσ′(k) is the matrix element of the single-particle Bloch Hamiltonian. The Hamiltonian
(3.6) is in general not solvable. Bardeen, Cooper, and Schriefer, however, found a mean-field de-
scription, the so-called pairing Hamiltonian H∆, which has the ground state |ψ〉BCS of Eq. (3.3).
The amplitudes uk and vk as well as the ground state energy can then be determined by min-
imizing the expectation value BCS 〈ψ|H∆ |ψ〉BCS. This microscopic theory of SCs, called BCS
theory, was awarded with the Nobel prize in 1972. It was derived for superconductivity which
is mediated by phonons. However, understanding the superconducting ground state as a con-
densate of electron pairs is the building block for all kinds of SCs. Hence, we will focus on
conventional SCs and present a generalization of the BCS theory in the following.

3.1.2. The pairing Hamiltonian

Here, we present a generalized BCS theory, allowing for spatially varying potentials U(r) and
magnetic vector potentials A(r) . To this end, we introduce the field operators

ψ̂σ(r) =
∑
k

exp [ikr] ckσ, ψ̂†σ(r) =
∑
k

exp [−ikr] c†kσ, (3.7)

which annihilate and create electrons of spin σ at position r. They obey the Fermion statistics
and hence analogous anticommutation relations to Eq. (3.4)[

ψ̂σ(r), ψ̂σ′(r
′)
]

+
=
[
ψ̂†σ(r), ψ̂†σ′(r

′)
]

+
= 0,

[
ψ̂†σ(r), ψ̂σ′(r

′)
]

+
= δ(r − r′)δσσ′ . (3.8)
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In this basis, the Hamiltonian (3.6) becomes

H =

∫
dr
∑
σσ′

ψ̂†σ(r)Hσσ′(p̂, r)ψ̂σ′(r)− V

2

∫
dr
∑
σσ′

ψ̂†σ(r)ψ̂†σ′(r)ψ̂σ′(r)ψ̂σ(r). (3.9)

The single-particle Hamiltonian Hσσ′(p̂, r) may now depend on the potentials A and U . In
its general form, H is unsolvable. We will therefore treat it in mean-field theory. Since the
effective attraction creates singlet pairs, we will first approximate the interaction part by putting
σ′ = −σ,1 which yields:

−V
2

∫
dr
∑
σσ′

ψ̂†σ(r)ψ̂†σ′(r)ψ̂σ′(r)ψ̂σ(r)→ −V
2

∫
dr
∑
σ

ψ̂†σ(r)ψ̂†−σ(r)ψ̂−σ(r)ψ̂σ(r). (3.10)

The derivation of the mean-field Hamiltonian, in which the free energy has to be minimized
by the use of Wick’s theorem [Gennes99], results in an effective pair potential and a Hartree
potential. Since the latter can be incorporated into the single-particle Hamiltonian Hσσ′(p̂, r),
we will neglect it hereafter. The pure pairing Hamiltonian, H∆, can then be motivated following
a simple reasoning presented in [Tinkham04]. The idea is to rewrite pairs of operators by their
mean value

ψ̂σ(r)ψ̂−σ(r) =
〈
ψ̂σ(r)ψ̂−σ(r)

〉
+
(
ψ̂σ(r)ψ̂−σ(r)−

〈
ψ̂σ(r)ψ̂−σ(r)

〉)
︸ ︷︷ ︸

=δ

(3.11)

ψ̂†σ(r)ψ̂†−σ(r) =
〈
ψ̂†σ(r)ψ̂†−σ(r)

〉
+
(
ψ̂†σ(r)ψ̂†−σ(r)−

〈
ψ̂†σ(r)ψ̂†−σ(r)

〉)
(3.12)

and to consider the fluctuations δ around the mean value to be small. Plugging this into Eq. (3.9)
and neglecting terms quadratic in δ gives the effective pairing Hamiltonian

H ≈
∫

dr
∑
σσ′

ψ̂†σ(r)Hσσ′(p̂, r)ψ̂σ′(r)− V

2

∫
dr
∑
σ

(〈
ψ̂†σψ̂

†
−σ

〉
ψ̂−σψ̂σ +

〈
ψ̂−σψ̂σ

〉
ψ̂†σψ̂

†
−σ

)
=

∫
dr
∑
σσ′

ψ̂†σ(r)Hσσ′(p̂, r)ψ̂σ′(r) +

∫
dr
(

∆∗(r)ψ̂↓(r)ψ̂↑(r) + ∆(r)ψ̂†↑(r)ψ̂†↓(r)
)

=: H∆.

(3.13)

In the last line, we evaluate the sum over the different spin directions and used ψ̂↑ψ̂↓ = −ψ̂↓ψ̂↑.
Additionally, we defined the pair potential

∆(r) = −V
〈
ψ̂↓(r)ψ̂↑(r)

〉
= V

〈
ψ̂↑(r)ψ̂↓(r)

〉
, (3.14)

which has to be determined self-consistently.

1In this notation we assume that −σ indicates the opposite spin as σ.
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3.1.3. The Bogoliubov-de Gennes formalism

To solve the pairing Hamiltonian (3.13), we perform the Bogoliubov-Valatin transformation

ψ̂σ(r) =
∑
n

(
uσn(r)γn + v∗σn(r)γ†n

)
,

ψ̂†σ(r) =
∑
n

(
u∗σn(r)γ†n + vσn(r)γn

)
. (3.15)

The sum runs over a discrete or continuous set of quasi-particle states, which are created and
annihilated by the operators γ†n and γn, respectively. The operators again obey the fermionic
anticommutation relations (3.4). The dependence of the field operators on spin and on position
has been shifted to the coefficients uσn(r) and vσn(r), which will be identified as the wave
functions of the elementary excitations in the system. We want to determine the coefficients so
that Eq. (3.15) diagonalizes the pairing Hamiltonian:

H∆ = EG +
∑
n

εnγ
†
nγn. (3.16)

First, we will use the identity

[AB,C]− = A [B,C]+ −B [A,C]+ (3.17)

together with Eq. (3.8) to calculate[
ψ̂σ(r),H∆

]
−

=
∑
σ′

Hσ′σ(p̂, r)ψ̂σ′(r) + sign [σ] ∆(r)ψ̂†−σ(r). (3.18)

Here, we defined sign [↑] = 1 and sign [↓] = −1. Replacing the field operators with Eq. (3.15)
and using

[γn,H∆]− = εnγn,
[
γ†n,H∆

]
−

= −εnγ†n, (3.19)

one finds

∑
n

(
εnuσn(r)−

∑
σ′

Hσ′σ(p̂, r)uσ′n(r) + sign [σ] ∆(r)v−σn(r)

)
γn

=
∑
n

(
εnv
∗
σn(r) +

∑
σ′

Hσ′σ(p̂, r)v∗σ′n(r)− sign [σ] ∆(r)u∗−σn(r)

)
γ†n. (3.20)

Setting the prefactors of γn and γ†n individually to zero for σ =↑, ↓ results in a coupled system
of linear equations for the coefficients. In this process, one has to conjugate the prefactors of
either γn or γ†n, of which we choose the latter here. We define the spinors

un(r) = (u↑n(r), u↓n(r))T , vn(r) = (v↑n(r), v↓n(r))T (3.21)
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to write the so-called Bogoliubov-de Gennes (BdG) equations in matrix form(
H(p̂, r) iσy∆(r)
−iσy∆

∗(r) −H∗(p̂, r)

)
︸ ︷︷ ︸

=:HBdG

(
un(r)
vn(r)

)
= εn

(
un(r)
vn(r)

)
(3.22)

and to define the BdG Hamiltonian HBdG. The paring potential becomes a matrix, whose

structure iσy =

(
0 1
−1 0

)
reflects the spin-singlets formed in BCS theory. The BdG equations

are the first quantization analog to the pairing Hamiltonian H∆. In this sense, un(r) and vn(r)
are the wave functions of the quasi-particle excitations of energy εn above the superconducting
condensate, which has the ground state energy EG.

Nambu basis

The SC’s ground state (3.3) is a condensate of Cooper pairs with total energy EG. The number
of pairs is not fixed, meaning that adding or removing a Cooper pair does not change EG.
The elementary excitations are described by quasi-particles γn. From the Bogoliubov-Valatin
transformation (3.15), one finds that ψ̂σ and ψ̂†σ consist of combinations of γn and γ†n. Creating
and annihilating an electron, hence, has the same effect, i.e., creating an excitation in the SC.
Both leaves an un-paired electron behind and thus is also referred to as Cooper pair breaking.
The structure of the elementary excitations is reflected in the so-called Nambu basis, which we
introduced in writing down Eq. (3.22). In terms of the field operators, it takes the form

Ψ̂(r) =
(
ψ̂↑(r), ψ̂↓(r), ψ̂†↑(r), ψ̂†↓(r)

)T
. (3.23)

It combines creation and annihilation operators. This resembles a doubling of the Hilbert space
by introducing sub-spaces connected with the creation and annihilation of an electron. In the
following, we will refer to these as the electron-like and the hole-like sub-spaces, where we have
identified an annihilated (missing) electron with a hole-like excitation2.
The pairing Hamiltonian becomes diagonal in the basis of the Nambu operators Ψ̂(r): H∆ =∫

dr Ψ̂†(r)HBdGΨ̂(r), allowing to obtain the excitation spectrum by solving the BdG equations
(3.22). Comparing Eq. (3.23) with the BdG equations, we find that the coefficients uσn and vσn
describe the weights of electron- and hole-like excitations, respectively.
Another frequently used basis can be obtained by the unitary transformation [Tkachov15]

U =

(
σ0 0
0 iσy

)
, (3.24)

where σ0 is the identity in spin-space. The explicit transformations are

UΨ̂ =
(
ψ̂↑(r), ψ̂↓(r), ψ̂†↓(r),−ψ̂†↑(r)

)T
(3.25)

2There is a subtle difference between a missing electron and a hole-like excitation, which does not touch the
physics discussed in this chapter. The exact relation between a missing electron and a hole is elaborated in
appendix D.
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and

UHBdGU
† =

(
H(p̂, r) σ0∆(r)
σ0∆∗(r) −(iσy)H

∗(p̂, r)(−iσy)

)
=

(
H(p̂, r) σ0∆(r)

σ0∆∗(r) −Θ̂H(p̂, r)Θ̂−1

)
, (3.26)

where we used the definition of the time-reversal operator for spin-1/2 systems Θ̂ = −iσyK̂, cf.
Eq. (2.9).

Particle-hole symmetry

In deriving the BdG equations from Eq. (3.20), we have arbitrarily chosen to conjugate the

prefactor of γ†n. If we instead conjugate the prefactor of γn, we arrive at the equivalent equation

HBdG

(
v∗n(r)
u∗n(r)

)
= −εn

(
v∗n(r)
u∗n(r)

)
. (3.27)

Hence, each solution (un(r), vn(r))T with excitation energy εn is accompanied by a second
solution (v∗n(r), u∗n(r))T at −εn. This is a direct consequence of the particle-hole symmetry
(PHS) in superconductors. We already encountered it, when we realized that the creation
and annihilation of an electron has the same effect on the superconducting condensate. The
transformation connected with this symmetry is particle-hole or charge conjugation. It can be
written in terms of the Pauli matrices in particle-hole space (πi) as

Ĉ =

(
0 σ0

σ0 0

)
K̂ = πx ⊗ σ0K̂, (3.28)

which can be directly seen from comparing Eqs. (3.22) and (3.27). Since PHS contains the
complex conjugation operator (K̂), it is anti-unitary.
The BdG equations determine the excitation spectrum of H∆ in Eq. (3.16). Therefore, we can
restrict the further discussion to positive energies and the BdG equations in Eq. (3.22). As a
consequence of PHS, HBdG has two eigenenergy branches

ε± = ±
√
|H(p̂, r)|2 + |∆|2. (3.29)

When we will plot the excitation energy spectrum later, we will always show all solutions. The
reader should, however, keep in mind that the positive and negative branch are redundant and
each one can be chosen to describe all physical solutions. The second branch emerges from the
doubling of the space by introducing the Nambu spinors.

3.1.4. Self-consistent pair potential

Having solved the mean-field Hamiltonian, one has to solve the self-consistency equation for
∆(r) (3.14). With Eq. (3.15), it becomes

∆(r) = V
〈
ψ̂↑(r)ψ̂↓(r)

〉
= V

∑
nm

〈
u↑n(r)v∗↓m(r)γnγ

†
m + v∗↑n(r)u↓mγ

†
nγm

〉
, (3.30)

where all terms
〈
γ†nγ

†
m

〉
and 〈γnγm〉 do not contribute to averages, because the number of

quasi-particles is conserved. At zero temperature, where no excitations are present, we use
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γnγ
†
m = δmn − γ†mγn and simplify

∆(r) = V
∑
n

u↑n(r)v∗↓n(r). (3.31)

For the solution, we make three assumptions, which correspond to the original BCS scenario
[Bardeen57]: 1. The system should be translational invariant, so that we can drop all r-
dependences. 2. The single-particle Hamiltonian is spin independent and thus real. It will
now only depend on the state n and we write Hn, where n could, for example, be a momentum
eigenstate, like in the original BCS theory. 3. Also ∆ is real, which can always be chosen for an
isolated conventional SC. With these conditions met, we can restrict the analysis to a reduced
system of BdG-equations

εn

(
u↑n
v↓n

)
=

(
Hn ∆
∆ −Hn

)(
u↑n
v↓n

)
(3.32)

with eigenenergies εn = ±
√
H2
n + ∆2. The normalized eigenvector of the positive energy branch

is

1√
2εn
√
εn +Hn

(
Hn + εn

∆

)
. (3.33)

Now

∆ =
V

2

∑
n

∆√
∆2 +H2

n

(3.34)

can be evaluated by dividing by ∆ and replacing

∑
n

=

∫ ~ωq

−~ωq

dξ D(ξ) ≈ D(Ef)

∫ ~ωq

−~ωq

dξ. (3.35)

Here, ξ is the single-particle energy of Hn and we made use of the range of the attraction
potential V in Eq. (3.1). Finally, we obtain

1 = D(Ef )V

∫ ~ωq

0
dξ

1√
∆2 + ξ2

= V D(Ef ) sinh−1

[
~ωq

∆

]
⇔ ∆ = ~ωq sinh

[
1

V D(Ef )

]
V D(Ef )�1
≈ 2~ωq exp

[
1

V D(Ef )

]
. (3.36)

Condensation energy

Knowing ∆, it is possible to calculate the expectation value of the interaction Hamiltonian (3.6)
with the ground state of the superconductor (3.3). Subtracting the expectation value for a
normal, non-superconducting state, one obtains the condensation energy at zero temperature
[Gennes99]

EG −D(Ef )Ef
Ef�~ωq

≈ −1

2
D(Ef )∆2. (3.37)
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This shows the same functional dependency as the simple evaluation for only two electrons by
Cooper [Cooper56], cf. Eq. (3.2).

Excitation gap

From Eq. (3.29), we find that ∆ is the minimum energy of an excitation, i.e., ∆ is the minimum
energy one has to pay to add (remove) an un-paired electron to (from) the SC. Additionally to
”pair potential”, ∆ is hence often referred to as superconducting gap or quasi-particle gap.
In the case of a finite magnetic field B, the spin branches split in energy, leading to a shift of
the excitation gap for each spin flavor. When this change in energy exceeds ∆, the SC becomes
gapless. In chapter 7, we study superconducting 2D TIs and find gapless superconductivity at
very small magnetic fields. Throughout this thesis, we stick to the name pair potential to avoid
confusion between the parameter ∆ and the B-dependent, effective quasi-particle gap.

Gauge invariance

In the derivation of the BdG Eqs. (3.22), the single-particle HamiltonianH(p̂, r) may incorporate
a magnetic field via a vector potential A(r). A gauge transformation

A′(r) = A(r) +∇χ(r), (3.38)

where χ(r) is an arbitrary, two times differentiable function, does not change the magnetic field
and, hence, must not have any effect on physical observables. Suppose (un(r), vn(r))T to be a
solution to HBdG in the gauge A(r). In order to ensure that the excitation energies εn are gauge
invariant, the solutions for the transformed vector potential A′(r) must fulfill(

u′n(r)
v′n(r)

)
=

(
un(r) exp

[
i e~χ(r)

]
vn(r) exp

[
−i e~χ(r)

]) . (3.39)

From Eq. (3.31), we find that the pair potential has to accordingly change by

∆′(r) = ∆(r) exp

[
i
2e

~
χ(r)

]
. (3.40)

A complex superconducting gap can be written as ∆(r) = |∆(r)| exp[iφ(r)]. Choosing the
so-called London gauge

χ(r) = − ~
2e
φ(r) (3.41)

ensures a real pair potential ∆′(r) = |∆(r)|. In a single, homogeneous SC, this is equivalent to
the Coulomb gauge [Gennes99]

∇ ·A(r) = 0. (3.42)

Let us shortly remark that the phase of the pair potential may have striking physical conse-
quences. For example, when two SCs with different phases φ1 and φ2 are coupled by a tunneling
junction, the phase difference ∆φ = φ1 − φ2 cannot be gauged away. In contrast, ∆φ drives the
tunneling of Cooper pairs from one SC to the other, even in the absence of an electric voltage.
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This is the so-called DC Josephson effect [Josephson62], which carries the current

IJ ∝ sin ∆φ. (3.43)

3.1.5. Macroscopic wave function

The superconducting condensate was very successfully described in a phenomenological theory
by Ginzburg and Landau. It assumes the superconducting condensate to be described by a
macroscopic, complex wave function

ψ(r) = |ψ(r)| exp[iφ(r)], (3.44)

in which the phase factor is inherited from the complex pair potential, with the same gauge
dependence (3.40). It gives the local density of superconducting electrons

nSC(r) = |ψ(r)|2, (3.45)

which, at zero temperature, is equal to the total density of electrons. Since nSC = 0 corresponds
to a non-superconducting metal, ψ takes the role of an order parameter of the SC. Writing the
free energy in terms of ψ allows the description of the electro- and thermodynamics of the SC.
Here, we will just state two results of this theory, which are needed in the further course of the
thesis:

Coherence length

The explicit position dependence of the macroscopic wave function allows to describe the bound-
aries of a SC and in particular the coexistence of superconducting and normal regions, like, e.g.,
in the presence of a magnetic field. Imagine the SC to be broken at a point r0. The length scale
on which the superconducting order parameter changes around such an inhomogeneity is given
by the coherence length. At zero temperature, it reads

ξSC =
~vF

π∆
, (3.46)

where vF is the Fermi velocity of the electrons. ξSC is of the order of the spacial extension of
a Cooper pair, which is much larger than the average interparticle distance. Its value usually
ranges from 10 to 100 nm [Kittel96]. For example, one finds ξSC ≈ 40 nm for clean Nb.

London equations

The electrodynamics of SCs can be phenomenologically described by the London equations
[London35]. They can be motivated from the macroscopic wave function by considering the
current density of superconducting electrons

jSC = −e〈v̂〉ψ = −e
〈p̂〉ψ
m∗

= −enSC

m∗
[~(∇rφ) + eA] , (3.47)

where the canonical momentum p̂ = −i~∇r + eA with e > 0 was used. Again, we observe the
physical relevance of the phase, whose gradient adds to the supercurrent. For a constant phase,
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we obtain the London equation

jSC = −e
2nSC

m∗
A. (3.48)

This simple picture is enough to explain the two fundamental properties of SCs:
Perfect conductivity: The time derivative of Eq. (3.48) is

∂tjSC = −e
2nSC

m∗
∂tA =

e2nSC

m∗
E. (3.49)

In Ohmic conductors this acceleration would be balanced by a damping term, −m∗v/τs, which
originates from the scattering from impurities after a scattering time τs. For the heuristic (and
not rigorous) motivation here, we assume τs → ∞ for SCs, resulting in an unlimited growth of
the supercurrent in presence of a constant electric field E.
The Meissner effect: Taking the curl of Eq. (3.48) and using Ampère’s law, we get a differential
equation for the magnetic field

∇× jSC =∇×∇×B = −∇2B = −µ0
e2nSC

m∗
B = − 1

λ2
L

B, (3.50)

whose characteristic scale is the London length

λL =

√
m∗

e2µ0nSC
. (3.51)

In a simple one-dimensional model, where the SC covers the half space x > 0, we find the
solution B(x) = B(x = 0) exp[−λLx]. The SC screens the magnetic field on a length scale of λL

which is of the order of 10 nm and which usually is smaller than the coherence length [Kittel96].

3.2. Proximity effect

Bringing SCs in contact with thin films of normal conductors, Meissner [Meissner58, Meissner60]
realized that the latter become superconducting, provided that the films’ thickness is small
enough. In contrast, if the superconducting film itself is too thin, it looses its superconduct-
ing properties. Therefore, it was suggested that this so-called proximity effect is mediated by
electrons tunneling from the SC to the normal conductor and vice versa, which was described
in a microscopic theory [McMillan68]. The effective or induced pair potential ∆̃ inherits some
of the features of the band structure of the normal conductor, allowing for the generation of
exotic states. For example, combining conventional SCs with TIs leads to an induced pairing
with p-wave components [Fu08]. Hence, the proximity effect allows to engineer unconventional
SCs using conventional ones.
Here, we will first give some introductory remarks on unconventional superconductivity in sec-
tion 3.2.1. Then, we describe the induced superconductivity in TIs in detail by presenting the
full tunneling model in section 3.2.2, deriving the reduced model for the superconducting TI in
section 3.2.3 and finally analyzing the induced pair potential in section 3.2.4.
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3.2.1. Unconventional superconductivity

In general, the minimal excitation energy above the superconducting condensate can depend
on the direction of the momentum within the BZ. In analogy to atomic orbitals, which are
eigenstates of the angular momentum l, the pair potentials are characterized by their functional
dependence on the momentum direction p̂ as l-wave pairing. So far, we have considered con-
ventional superconductivity, which has an isometric (l = 0) pair potential and hence is referred
to as s-wave pairing. The term unconventional superconductivity collects the phenomena of all
pair potentials with l > 0 [Norman11]. For example, the high temperature superconductivity,
which is realized in cuprates, has been shown to have d-wave symmetry [Norman11]. While the
pairing mechanism is known to be mediated by phonons in case of conventional SCs, it is still
an open question how the superconducting condensate is formed in unconventional SCs.
Unconventional superconductivity allows for exotic states with non-trivial topology. The BdG
Hamiltonian (3.22) is analogous to a Hamiltonian describing a band insulator, where ∆ takes
the role of the band gap. Hence, it is possible to assign topological invariants to superconducting
systems [Qi11]. These states are referred to as topological superconductors.
Here, we focus on p-wave pairing (l = 1) which is linear in the momentum p. In contrast to
isotropic s-wave SCs, which pair electrons to spin singlets, the p-wave pairing leads to an an-
tisymmetric wave function. Consequently, p-wave SCs pair electrons in spin triplets and even
allow for the condensation of spinless fermions [Qi11].
In the case of spinless fermions, the p-wave pairing breaks TRS (p → −p) and the topology is
described by an integer N , analogously to the TKNN invariant in appendix A. In accordance
with the bulk-boundary correspondence, the SC with topological index N is accompanied by N
protected edge modes at zero energy. Since SCs are inherently particle-hole symmetric, states
at zero energy are realizations of Majorana fermions, which are their own anti-particle. Indeed,
it was shown, that the pair potential ∆(p) ∝ px + ipy supports Majorana zero energy bound
states at its borders and vortices, see, e.g., [Alicea12]. Having a second copy of the system with
pairing px − ipy allows to form a spin-full system which conserves TRS. This is analogous to
understanding the QSH effect as two copies of the QH effect, cf. Fig. 2.6 and its discussion in
section 2.3.2. The spin-full models are characterized by a Z2 invariant, which indicates the pres-
ence or absence of a pair of helical Majorana fermions [Qi11]. Due to their non-abelian statistics
[Ivanov01], Majorana fermions are possible building blocks for topological quantum computing
[Nayak08]. Unfortunately, the only currently known candidate for intrinsic p-wave pairing is
Sr2RuO4, whose exact pairing structure is still on debate [Norman11]. However, in 2008, Fu
and Kane [Fu08] realized that the p-wave pairing could be engineered by the combination of an
s-wave SC with the helical spin structure in TIs by the proximity effect.

3.2.2. The tunneling model

The microscopic description of the proximity effect was introduced by McMillan [McMillan68].
Here, we follow Tkachov [Tkachov13, Tkachov15], who applied the tunneling model to (3D)
TIs. A schematic of the system in question is shown on Fig. 3.1. It consists of an ordinary
(s-wave) SC, which is coupled to a TI via an interface in the x− y plane. At the interface, the
superconducting order parameter changes on the length scale of the superconducting coherence
length ξSC in Eq. (3.46). Since this is also the spatial extension of a Cooper pair, we can assume,
that it is also the range, in which electrons from the SC will tunnel and induce superconductivity
into a normal conductor. For example ξSC ≈ 40 nm for Nb [Kittel96], which has a rather small
coherence length.

39



3. Superconducting topological insulators

z
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τ̂

τ̂ †
SC

TI

Figure 3.1.: A SC (blue) is brought in contact with a TI (red) via a planar interface in the x− y
plane. Electrons can tunnel from the SC into the TI and vice versa, inducing a
superconducting pairing inside the TI.

Here, we assume the normal conductor to be either the surface state of a 3D TI, like it was
calculated in [Tkachov13], or a 2D TI. In case of the 3D TI surface, the effective thickness is
given by the penetration depth of the surface states, which ranges from about 4 nm (2-3 quintuple
layers) for Bi-based compounds [Zhang10b] to about 20 nm in strained HgTe [Brüne14]. For
typical 2D TIs, we find thicknesses of dQW ≈ 7 nm in HgTe QWs [Bernevig06] and of about 4
quintuple layers for Bi-compound thin films [Shan10, Liu10b]. Altogether, we can conclude that
the layer, into which superconductivity should be induced is much smaller than the tunneling
range ξSC. Therefore, we will neglect any z-dependence in the tunneling strength in the following.
Without space dependencies, the tunneling Hamiltonian can be written in the basis of the in-
plane momentum k = (kx, ky)

T

H =
1

2

∑
k,k′

(
A†k, B

†
k

)(HSC
k δkk′ τ̂kk′

τ̂ †
kk′

HTI
k δkk′

)
︸ ︷︷ ︸

=:Hkk′

(
Ak′

Bk′

)
. (3.52)

Here, Ak and Bk are the Nambu spinors of the SC and the TI in momentum space:

Ak =
(
ak↑, ak↓, a

†
−k↑, a

†
−k↓

)T
, Bk =

(
bk↑, bk↓, b

†
−k↑, b

†
−k↓

)T
. (3.53)

Since all the akσ and bkσ (a†kσ and b†kσ) are annihilation (creation) operators, also the full
operator

Ck = (Ak, Bk)T (3.54)

fulfills the fermionic anticommutation relations (3.4), with
[
Ck, C

†
k′

]
+

= 8δkk′ . The Hamiltonian

in the superconducting part is the singlet pairing BdG Hamiltonian (3.22) in momentum basis

HSC
k =

(
(ξk − µSC)σ0 iσy∆ exp[iφ]
−iσy∆ exp[−iφ] −(ξk − µSC)σ0

)
(3.55)

where we assume that the SC’s dispersion ξk is diagonal in spin-space and the chemical potential
µSC � ∆. Here, we have written the phase of the pair potential φ explicitly and assume ∆ ∈ R.
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The BdG Hamiltonian for the TI

HTI
k =

(
hk 0
0 −h∗−k

)
(3.56)

is diagonal in electron-hole space. hk has an arbitrary spin-structure and will be specified later.
The tunneling matrix is assumed not to couple electron- and hole-like states or different spin
polarizations, but might mix different k values. It takes the general form

τ̂kk′ =

(
σ0tkk′ 0

0 −σ0t
∗
−k−k′

)
. (3.57)

In the next section, we will use the Green’s function formalism to reduce the hybrid system
(3.52) to an effective description of the TI layer alone.

3.2.3. The superconductor’s self-energy

The time-ordered Green’s function for the bilayer system in terms of the time-dependent oper-
ators (3.54) is defined by

G(k, t;k′, t′) =
1

i~

〈
T̂Ck(t)⊗ C†

k′
(t′)
〉

(3.58)

=
1

i~

〈
T̂

(
Ak(t)
Bk(t)

)
⊗
(
A†

k′
(t′), B†

k′
(t′)
)〉

=

(
GSC(k, t;k′, t′) Gτ̂ (k, t;k′, t′)

Gτ̂
†
(k, t;k′, t′) GTI(k, t;k′, t′)

)
.

On the right hand side, we introduced the Green’s functions of the respective subsystems GSC,
GTI, Gτ̂ and Gτ̂

†
. Time ordering is enforced by the operator T̂ , which acts on two time dependent

operators a(t) and b(t′) according to

T̂ a(t)b(t′) =

{
a(t)b(t′) , t > t′

−b(t′)a(t) , t < t′
. (3.59)

With this, one can reformulate the time-ordered Green’s function in terms of step functions
Θ(t):

G(k, t;k′, t′) =
Θ(t− t′)

i~

〈
Ck(t)⊗ C†

k′
(t′)
〉
− Θ(t′ − t)

i~

〈
C†
k′

(t′)⊗ Ck(t)
〉
. (3.60)

The dynamics of the Green’s function is determined by the dynamics of the operators which in
turn is given by the Heisenberg equation of motion together with Eq. (3.52)

i~∂tCk = [Ck,H]− =
∑
k′

Hkk′Ck′ . (3.61)

Calculating the time derivative of Eq. (3.60) with ∂tΘ(t− t′) = δ(t− t′) leads to

i~∂tG(k, t;k′, t′)−
∑
l

HklG(l, t;k′, t′) = δ(t− t′)δkk′ . (3.62)
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For time independent systems, the Green’s function only depends on the time difference t − t′
and it is convenient to use the energy representation

G(k,k′, t− t′) =

∫
dE

h
G(k,k′, E) exp

[
− i

~
E(t− t′)

]
, (3.63)

because its dynamics (I is the unit matrix)

I δkk′ =
∑
l

[Eδlk −Hkl]G(l,k′, E)

=
∑
l

(
(E −HSC

k )δkl −τ̂kl
−τ̂ †kl (E −HTI

k )δkl

)(
GSC(l,k′, E) Gτ̂ (l,k′, E)

Gτ̂
†
(l,k′, E) GTI(l,k′, E)

)
(3.64)

can be solved by matrix inversion.
We assume that the SC’s Fermi surface is much larger than that of the TI: kSC

F � kTI
F , where

kF is the Fermi momentum. In this case, we can neglect the influence of the electrons tunneling
into the SC and solve GSC(k,k′, E) independently of the TI layer. To determine GTI(k,k′, E),
we reformulate the second column of Eq. (3.64) into a system of coupled equations

0 =
[
E −HSC

k

]
Gτ̂ (k,k′, E)−

∑
l

τ̂klG
TI(l,k′, E) (3.65a)

δkk′ =
[
E −HTI

k

]
GTI(k,k′, E)−

∑
l

τ̂ †klG
τ̂ (l,k′, E). (3.65b)

Eliminating Gτ̂ (k,k′, E) in the second equation gives Dyson’s equation for the Green’s function
of the TI [

E −HTI
k

]
GTI(k,k′, E)−

∑
ll′

τ̂ †klG
SC
0 (l, E)τ̂ll′G

TI(l′,k′, E) = δkk′ . (3.66)

Since we assumed that the SC can be solved independently,

GSC
0 (k, E) =

[
E −HSC

k

]−1

=
1

E2 −∆2 − (ξk − µSC)2

(
E − µSC + ξk iσy∆ exp[iφ]
−iσy∆ exp[−iφ] E + µSC − ξk

)
(3.67)

is the SC’s free Green’s function. The solution of Eq. (3.66) is non-trivial and requires expansions
in orders of the tunneling strength. To get an intuitive picture of the proximity effect let us
start with the analytically solvable model of a clean interface.

Clean interface

In the simplest model, we treat a clean interface. In this case, the tunneling process conserves
k and is assumed to be of constant strength τ . The tunneling matrix (3.57) thus is diagonal in
k-space

tkk′ = τδkk′ , (3.68)
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and the Dyson equation takes the form[
E −HTI

k − ΣSC
k (E)

]
GTI(k,k′, E) = δkk′ . (3.69)

We have arrived at an effective model within the sub-space of the TI. The proximity coupled
SC appears in form of the self-energy, which can be found from Eqs. (3.66) and (3.67)

ΣSC
k (E) = τ̂ †GSC

0 (k, E)τ̂ =
τ2

E2 −∆2 − (ξk − µSC)2

(
E − µSC + ξk −iσy∆ exp[iφ]
iσy∆ exp[−iφ] E + µSC − ξk

)
. (3.70)

Comparing with the dynamics of the Green’s function
[
Ẽ −HTI

BdG

]
GTI(k,k′, E) = δkk′ , we find

the effective BdG Hamiltonian for the superconducting TI

HTI
BdG(k) = HTI

k + ΣSC
k (E) =

(
hk − µ̃ iσy∆̃ exp[iφ]

−iσy∆̃ exp[−iφ] −h∗−k + µ̃

)
. (3.71)

The spectral shift Ẽ−E = ΓE, the doping µ̃ = Γ(ξk−µSC) as well as the induced gap ∆̃ = Γ∆
are given in terms of the effective tunneling energy scale

Γ =
τ2

(ξk − µSC)2 + ∆2 − E2
≈ τ2

(ξk=0 − µSC)2 + ∆2 − E2
. (3.72)

The approximation to neglect the k dependence is valid, again because kSC
F � kTI

F .

Dirty interface

A more sophisticated modelling of the bilayer takes into account that the interface in general is
dirty [McMillan68, Tkachov13]. This breaks translational symmetry and the tunneling cannot
conserve k anymore. When the contact area is large, the tunneling strength can be assumed to
fluctuate randomly. The tunneling matrix (3.57) becomes a random matrix, whose correlation
function 〈

tkk′tk̃k̃′
〉

=
τ2

a
δ
k−k′,k̃′−k̃ (3.73)

is given by the tunneling strength τ and the contact area a. Now, one cannot find an analytical
solution of the Dyson equation (3.66) anymore. In the approximation, in which the SC is not
affected by the TI, one can keep the mean value of the tunneling strength to be τ and assume
that the dirty interface simply randomizes the momenta of the electrons which tunnel from the
SC into the TI. In this case, we approximate Eq. (3.66) by[

E −HTI
k − τ2(πz ⊗ σ0)GSC0 (E)(πz ⊗ σ0)

]
GTI(k,k′, E) = δkk′ , (3.74)

where we used the Pauli matrices in particle-hole space (πi) and we have replaced the SC’s
Green’s function in Eq. (3.70) by its momentum integrated version [Tkachov13]

GSC0 (E) =

∫
dk

(2π)2
GSC

0 (k, E) = −i
πD(µSC)√
E2 −∆2

(
E iσy∆ exp[iφ]

−iσy∆ exp[−iφ] E

)
. (3.75)
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Here D(µSC) is the DOS at the Fermi energy of the SC. Surprisingly, a rigorous calculation within
second order self-consistent Born approximation confirms this simple picture [Tkachov13].
Comparing with the clean case, we find that the effective Hamiltonian for the superconducting TI
(3.71) remains unchanged, except of the induced doping µ̃, which becomes zero upon averaging
over all k. The effective tunneling strength now is k independent

Γ =
πτ2D(µSC)√

∆2 − E2
. (3.76)

The effective tunneling strength Γ becomes imaginary, when E2 > ∆2. This leads to an non-
hermitian part in the spectral shift Ẽ−E = ΓE, describing the finite life-time of electrons which
escape into the SC at energies above the excitation gap [Datta05].

In conclusion, we have found that the effective BdG Hamiltonian of a TI, into which super-
conductivity is induced by the proximity effect, can be written in Nambu basis as3

HTI
BdG(k) =

(
hk iσy∆̃ exp[iφ]

−iσy∆̃ exp[−iφ] −h∗−k

)
. (3.77)

Here and in the following, we will neglect the excitation energy dependence of the effective
tunneling strength and treat the induced pair potential as constant. The induced doping µ̃ has
been absorbed into hk and can only be non-zero, when the interface is sufficiently clean, an
assumption we will use in chapter 6.
On the experimental side, induced superconductivity has been measured in the surface states
of the 3D TI strained HgTe in contact with Niobium, resulting in an induced gap ranging from
∆̃ ≈ 50 µeV [Maier12] up to ∆̃ / 190 µeV [Sochnikov15]. Studies on 2D TIs using inverted
InAs/GaSb QWs found ∆̃ . 125 µeV [Knez12, Pribiag15]. For HgTe/CdTe QWs ∆̃ ≈ 20 µeV
has been measured [Hart14]. The last value is smaller in comparison with the induced pairing
measured in InAs/GaSb QWs, because Hart et al. used aluminum instead of niobium for the
superconducting layer.

3.2.4. p-wave pairing contribution

In the previous section, we have derived the effective BdG Hamiltonian HTI
BdG, cf. Eq. (3.77),

for the superconducting TI layer. On the level of the Hamiltonian, the pairing term keeps the
singlet symmetry iσy∆ of the ordinary SC in contact with the TI, cf. Fig. 3.1. Here, we will
analyze the structure of the pair potential in detail. To do so, we evaluate the Green’s function
of the normal system explicitly by inversion of

[E −HTI
BdG(k)]GTI(k,k′, E) = δkk′ . (3.78)

Since all terms only depend on k, we seek the solution in terms of GTI(k, E) = GTI(k,k′, E)δkk′ .
In order to see the connection of the pair potential with the Green’s function, we will go back
to its time-ordered formulation in the Nambu basis (3.53)

GTI(k, t, t′) =
1

i~

〈
T̂Bk(t)⊗B†k(t

′)
〉

=

(
GTI
e (t, t′) GTI

eh(t, t′)
GTI
he(t, t

′) GTI
h (t, t′)

)
. (3.79)

3The derived effective Hamiltonian is also valid for other systems than TIs. Since we did not make any assumption
about the normal system, hk could indeed describe any 2D system which preserves momentum.
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It consists of parts describing the electron- (GTI
e ) and hole-like (GTI

h ) excitations as well as their
coupling (GTI

eh). At t = t′, we find that

GTI
eh(k, t, t) =

1

i~

(
〈bk↑b−k↑〉 〈bk↑b−k↓〉
〈bk↓b−k↑〉 〈bk↓b−k↓〉

)
(3.80)

resembles the k space equivalent to the pair correlation function, which defines the pair potential
in mean field theory. Using Pauli matrices in spin space (σi), the Green’s function can be written
as

GTI
eh(k, t, t) = iσy [∆singlet + σ ·∆triplet] , (3.81)

where the first part, which is proportional to ∆singlet, corresponds to the definition of the singlet
pairing in an s-wave SC in Eq. (3.14). The remaining terms are proportional to σ0, σx or σz and
result in a triplet pairing, which is even in spin. Consequently, ∆triplet must be antisymmetric
in k, so that the total state shows fermionic symmetry.
Here, we consider induced superconductivity on the surface of a 3D TI as well as in 2D TIs.
We will find that the interplay of helical modes with singlet Cooper pairs leads to a p-wave
contribution in the effective pairing terms [Fu08]. While the induced pairing in 3D TI surface
states has been analyzed in literature, a detailed description in case of 2D TIs has not yet been
published to the best of our knowledge. Therefore, we will present detailed calculations for the
latter, while only mentioning the results for the 3D TI surface states.

Surface states of a 3D TI

The simplest model for a surface state of a 3D TI is that of massless Dirac fermions [Fu07b,
Zhang09, Liu10a]

Hsurface(k) = ~vF(kxσx + kyσy)− µ, (3.82)

where vF and µ are the Fermi velocity and the chemical potential, respectively. Plugging this
into Eq. (3.77) and inverting Eq. (3.78), leads to4

GTI
eh(k) = iσy∆̃

E2 − µ2 − ~2v2
Fk

2 − |∆̃|2 + 2µ~vF(σxkx − σyky)[
E2 − (~vFk − µ)2 − |∆̃|2

] [
E2 − (~vFk + µ)2 − |∆̃|2

] , (3.83)

where k =
√
k2
x + k2

y. The triplet component

∆triplet ∝ 2∆̃µ~vk (3.84)

corresponds to the p-wave pairing mechanism [Fu08].

Two-dimensional topological insulators

The two experimentally realized 2D TIs HgTe/CdTe and InAs/GaSb QWs are described by
the BHZ model (2.59). This model has an additional pseudo-spin structure, encoded in the

4The calculation is similar to the one for 2D TIs presented below. A detailed derivation can also be found in
[Tkachov15].
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Pauli matrices in sub-band space (τi). In this sense, the fermionic operators become pseudo-
spinors in the sub-band space (E1,H1): bσk = (bkσE1, bkσH1)T , where σ =↑, ↓. In the basis(
bk↑, bk↓, b

†
−k↑, b

†
−k↓

)T
, the BdG Hamiltonian reads

HBdG(k) =


ε(k) + di(k)τi 0 0 ∆̃

0 ε(−k) + di(−k)τ∗i −∆̃ 0

0 −∆̃∗ −ε(−k)− di(−k)τ∗i 0

∆̃∗ 0 0 −ε(−k)− di(k)τi

 ,

(3.85)

where we omitted the unity matrix τ0 for simplicity and the di(k) are defined in Eq. (2.61).
In contrast to Eq. (3.82), the linear k terms couple the pseudo-spin. Here, we assume the pair
potential, iσy ⊗ τ0∆̃, to be diagonal in the sub-band space, so that electron-like E1 (H1) sub-
bands with spin σ couple to the corresponding hole-like E1 (H1) states with −σ. In general,
the induced pairing might couple different sub-bands. The off-diagonal contributions have been
found to be important, when the bulk gap M is of the same order as the induced superconducting
correlation [Khaymovich11]. However, for typical parameters of HgTe/CdTe (InAs/GaSb) QWs
the bulk gap M ≈ 10 meV (≈ 4 meV) [Ando13] is much larger than the induced pairing discussed
at the end of section 3.2.3.
The Hamiltonian in Eq. (3.85) is block diagonal in the Kramers’ partners and can thus be

decoupled in two blocks H↑↓BdG and H↓↑BdG, which describe the superconducting coupling of spin-↑
electron-like to spin-↓ hole-like excitations and vice versa. In order to solve H↑↓BdG independently,
we rewrite Eq. (3.78) in two coupled equations for GTI

h,↑↓ and GTI
eh,↑↓:

[E − ε(k)− di(k)τi]G
TI
eh,↑↓ − ∆̃GTI

h,↑↓ = 0 (3.86a)

−∆̃∗GTI
eh,↑↓ + [E + ε(k) + di(k)τi]G

TI
h,↑↓ = 1. (3.86b)

Multiplying Eq. (3.86b) from the left by [E − ε(k)− di(k)τi] allows to eliminate GTI
eh,↑↓ by virtue

of Eq. (3.86a) and we obtain[
E2 − |∆̃|2 − (ε(k) + di(k)τi)

2
]
GTI
h,↑↓ = E − ε(k)− di(k)τi. (3.87)

Multiplying again from the left by[
E2 − |∆̃|2 − (ε(k)− di(k)τi)

2
]

= [E + ε(k)− di(k)τi] [E − ε(k) + di(k)τi] (3.88)

leaves the left hand side of Eq. (3.87) to be purely proportional to τ0. Defining

N =
[
E2 − |∆̃|2 − (ε(k) + d(k))2

] [
E2 − |∆̃|2 − (ε(k)− d(k))2

]
, (3.89)

where d(k) = ||d(k)||, we arrive at

GTI
h,↑↓ =

1

N

[(
(E − ε(k))2 − d2(k)

)
(E + ε(k)− di(k)τi)− |∆̃|2 (E − ε(k)− di(k)τi)

]
. (3.90)
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Inserting into Eq. (3.86a), results in

GTI
eh,↑↓ =

∆̃

N

[
E2 − |∆̃|2 − ε2(k)− d2(k) + 2ε(k)di(k)τi

]
. (3.91)

Here, we observe a similar structure in the pseudo-spin space like the correlation function for
the surface states shows for the real spin in Eq. (3.83). Analogously, we calculate

GTI
eh,↓↑ = − ∆̃

N

[
E2 − |∆̃|2 − ε2(k)− d2(k) + 2ε(k)di(−k)τ∗i

]
, (3.92)

and combine to the closed form

GTI
eh =

∆̃

N

[
iσy ⊗

(
E2 − |∆̃|2 − ε2(k)− d2(k) + 2ε(k)d3(k)τz

)
︸ ︷︷ ︸

singlet

+ 2ε(k)A (kxσx ⊗ τx − ikyσy ⊗ τy)︸ ︷︷ ︸
triplet

]
, (3.93)

where we explicitly wrote d1 = Akx and d2 = −Aky, cf. Eq. (2.61). Interestingly, despite
being diagonal in the Kramers’ partners, the helical coupling in pseudo-spin space leads to
triplet pairing terms, which consequently are proportional to the coupling strength A. To better
understand this, we define κ0 = E2 − |∆̃|2 − ε2(k)− d2(k), rewrite Eq. (3.93) in explicit matrix
form and compare it with the definition of Eq. (3.80):

GTI
eh =

∆̃

N


0 0 κ0 + 2ε(k)d3(k) 2ε(k)A(kx + iky)
0 0 2ε(k)A(kx − iky) κ0 − 2ε(k)d3(k)

−κ0 − 2ε(k)d3(k) 2ε(k)A(kx − iky) 0 0
2ε(k)A(kx + iky) −κ0 + 2ε(k)d3(k) 0 0



=
1

i~


〈bk↑E1b−k↓E1〉 〈bk↑E1b−k↓H1〉
〈bk↑H1b−k↓E1〉 〈bk↑H1b−k↓H1〉

〈bk↓E1b−k↑E1〉 〈bk↓E1b−k↑H1〉
〈bk↓H1b−k↑E1〉 〈bk↓H1b−k↑H1〉

 . (3.94)

All finite pairing terms couple states of different Kramers’ partner polarization σ =↑, ↓. There-
fore, it is important to look at the combination of pseudo-spin and Kramers’ partner polarization
to identify the correct pairing symmetry. The terms proportional to iσy ⊗ τ0 and iσy ⊗ τz pair
states with the same pseudo-spin (τ =E1,H1). The relative sign of these terms, i.e.,

〈bkστ b−k−στ 〉 = −〈bk−στ b−kστ 〉 , (3.95)

is odd in the spinor structure of the Nambu basis. At the same time, these entries of GTI
eh have

an even structure in k, which identifies them as singlet pairing terms. In contrast, all terms
proportional to σx ⊗ τx and iσy ⊗ τy correspond to triplet symmetry:

〈bkστ b−k−σ−τ 〉 = 〈bk−σ−τ b−kστ 〉 . (3.96)

These terms couple states of different Kramers’ partner and pseudo-spin flavor. Analogously to
the surface of a 3D TI, the triplet pairing contribution of Eq. (3.93) is proportional to k, i.e., it

47



3. Superconducting topological insulators

N SC

E

EF 2|∆|ε

(a) electron reflection

N SC

E

EF 2|∆|ε > ∆

(b) electron transmission

N SC

E

EF 2|∆|ε
−ε

(c) Andreev reflection

Figure 3.2.: An electron, which is injected onto a junction between a normal metal (left) and a
SC (right), can be reflected (a) or transmitted (b) as an electron or reflected as a
hole (c).

has p-wave character.

Effective model for helical edge states

In this context, it is interesting to analyze the induced pair potential in an effective description
of the helical edge states. A single pair of helical edge states along a boundary disperses linearly
in k, leading to the effective Hamiltonian

Hedge = ~vFkσz − µ, (3.97)

where σz again acts on the Kramers’ partner sub-space. The pseudo-spin of the sub-bands is
not explicitly contained, but its linear coupling parameter A determines the Fermi velocity vF

of the edge states, as discussed in section 2.3.1. In contrast, to the surface Hamiltonian (3.82),
Hedge conserves the Kramers’ partner, but the helicity of the edge states shifts the energy of the
Kramers’ partner branches k-dependently. Therefore, the corresponding correlation function

Gedge
eh (k) = iσy∆̃

E2 − µ2 − ~2v2
Fk

2 − |∆̃|2 + 2µ~vFkσz[
E2 − (~vFk − µ)2 − |∆̃|2

] [
E2 − (~vFk + µ)2 − |∆̃|2

] (3.98)

shows triplet pairing terms ∝ 2∆̃µ~vFk, analogously to that of a surface state in Eq. (3.83).

3.3. Andreev reflection

The exotic features of SCs in general and especially superconducting TIs can often be character-
ized by transport through a junction between a normal conductor and a superconductor (N-SC
junction). Before we turn to transport in mesoscopic systems in chapter 4, we here introduce the
transport process of Andreev reflection (AR), which is unique for N-SC junctions. An exemplary
N-SC junction is depicted in Fig. 3.2. Here, the normal conducting material on the left is a metal
with spin-degenerate, quadratic dispersion, which is filled with electrons up to the Fermi energy
EF. The SC’s BdG dispersion is shown on the right side. It consist of electron like excitations
with excitation energy ε > |∆| and an artificial hole-like band for ε < −|∆|, which are separated
by the excitation gap around EF. In this configuration, the normal conductor is an (infinitely)
extended contact. Thus, we consider the interface as step-like and neglect interface effects, like
induced superconductivity in the normal region.
We consider a spin-↑ electron with excitation energy ε above EF to be injected from the normal
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conductor towards the junction. At the junction, it can undergo three different elastic scattering
processes, which are sketched in Fig. 3.2. The electron can be reflected from the interface into the
counter-propagating branch of the dispersion at excitation energy ε, cf. Fig. 3.2a. When ε > |∆|,
the incoming electron carries enough energy to enter the SC as a quasi-particle excitation. This
electron transmission is shown in Fig. 3.2b. In N-SC junctions an additional scattering process
can occur, which has been named Andreev reflection after its discoverer [Andreev64]. Since the
number of Cooper pairs is not conserved in a SC, the incoming electron can also be absorbed into
the superconducting condensate, when it pairs with an electron which has energy −ε, spin-↓ and
momentum −k. This second electron is taken out of the Fermi sea of the normal conductor and
leaves behind a missing electron with spin-↓, which is propagating away from the interface, cf.
Fig. 3.2c. Since not only the incoming electron but also the second electron enters the SC, AR
processes can be identified by a doubling of the charge conductance. We will describe transport
in N-SC junctions in detail in the next chapter, when we discuss the BTK formalism.
To better understand AR, let us describe the scattering process in the BdG formalism of section
3.1.3, where missing electrons at energy −ε are incorporated as hole-like excitation at ε, cf. ap-
pendix D. The superconducting condensate does not enter the BdG formalism explicitly and the
AR has to be seen as a conversion of an electron-like to a hole-like excitation. Both excitation
branches are decoupled in the normal region, where ∆ = 0. The coupling happens in the SC,
where the solution for ε > 0 is given by Eq. (3.33)5. The Andreev reflection amplitude (Rh)
must then be proportional to the relative weight of the hole-like component and its probability
is given by

|Rh|2 ∝
∣∣∣∣ v↓u↑
∣∣∣∣2 =

∣∣∣∣ ∆

H + ε

∣∣∣∣2 =

∣∣∣∣ ∆√
ε2 −∆2 + ε

∣∣∣∣2 . (3.99)

While for ε < |∆| both branches are perfectly mixed, the hole-like component decreases for
ε > |∆|. This means that the states far above the quasi-particle gap behave as normal, non-
superconducting electrons. In consequence, AR can only occur around the gap and will decrease
at higher excitation energies, where electron transmission becomes dominant.
As we will calculate explicitly in section 7.2.4, Eq. (3.99) is correct in the absence of electron
reflection. In this case, the scattering process is characterized by perfect AR for ε < |∆|, making
AR an apt tool to explore the superconducting gap in transport experiments. However, the
interface between a normal conductor and a SC is not perfect. This situation is best described in
a so-called normal-insulator-superconducting interface, in which an insulating tunneling barrier
at the interface introduces backscattering.

Andreev reflection in helical edge states

In this thesis, we discuss junctions between 2D TIs as normal conductors and superconducting
2D TIs, into which superconductivity has been induced by the proximity effect. The edge states
of a 2D TI are protected against backscattering and are perfectly transmitted through a possible
insulating tunneling barrier at the junction, leading to perfect Andreev reflection (|Rh|2 = 1)
for ε < |∆| [Adroguer10]. Thus, it is sufficient to neglect the insulating layer and simply treat
N-SC junctions. We discuss corrections to this simple model in chapter 6, where we deal with
finite size effects in junctions between 2D TIs and SCs.

5This discussion is valid for any quantum number n in Eq. (3.33). Therefore, we neglect the index n here. In
this case, the Hamiltonian of the normally conducting system is referred to simply by H.
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N SC N

L

E

EF
ε

(a) electron tunneling

N SC N

L

E

EF
ε

−ε

(b) crossed Andreev reflection

Figure 3.3.: When the superconducting part has a finite length L, two new processes can occur:
electron tunneling at ε < |∆| and crossed Andreev reflection.

N-SC-N junctions

Often, one is interested in transport through a superconducting junction of finite length L.
Such a normal - superconducting - normal junction (N-SC-N junction) is schematically drawn in
Fig. 3.3, where we assume both normally conducting regions to have the same band-structure and
Fermi energy. There are two elastic transport processes, which scatter the incoming electron
from the left lead into a charge carrier in the right lead: Firstly, the incoming electron can
tunnel through the superconducting region even at energies ε < |∆|. Secondly, the incoming
spin-↑ electron can form a Cooper pair with a spin-↓ electron from the second lead. The last
process is called crossed Andreev reflection (CAR) and ejects a hole into the right lead with
probability |Th|2. Both scattering processes are non-local and decay exponentially with L.
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4. Mesoscopic transport

This chapter gives a short introduction into transport in mesoscopic structures. Defining the
mesoscopic regime in section 4.1, we will realize that a full quantum mechanical treatment is
needed to describe transport in these systems, which is cast in the non-equilibrium Green’s func-
tion formalism. For an introduction, the interested reader is referred to, e.g., [Datta05, Datta07].
In this thesis, however, we restrict our discussion to a phase coherent single-particle picture, in
which the non-equilibrium Green’s function formalism reduces to the S-matrix formalism pre-
sented in section 4.2. Section 4.2.4 treats the generalization to superconducting systems within
the BTK formalism. The S-matrix formalism connects the transport coefficients to the scat-
tering problem, which we solve for quasi-one dimensional systems within the wave matching
approach in section 4.3. The solution is found for periodic boundary conditions as well as
hard-wall boundary conditions, for which we generalize the wave matching approach in section
4.3.2.

4.1. The mesoscopic regime

The principal setup, which we analyze in this thesis, is the Hall bridge depicted in Fig. 4.1.
It consists of a two-dimensional conductor of length L and width W , which is connected at
each side to a contact via a lead of the same width. The whole system can be seen as a quasi
one-dimensional wire, which conventionally points along x-direction.
In order to define the mesoscopic regime, we focus on the conductor. It consists of a periodic
atomic lattice, in which the particles move freely with momentum k and effective mass m∗ =

~2
[
∂2E/∂k2

]−1
. The particles carry the charge q. In most cases, they will be electrons with

q = −e. Their movement is characterized by three length scales:
Fermi wave length: In the nearly free electron picture, the particles move as plane waves with
wave length λ. At zero temperature, all states up to the Fermi energy EF are filled and only
states close to EF can contribute to transport. Hence, we can define a unique Fermi wavelength

λF =
2π

kF
, (4.1)

y

x

conductor

L
W

lead lead

contact 1

µ1

contact 2

µ2

Figure 4.1.: Schematic of a mesoscopic Hall bridge of length L and width W , which is connected
to contacts 1 and 2 via two leads.
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by the Fermi momentum kF. In a spin-degenerate 2D system, the Fermi momentum is given
in terms of the electron density n: kF =

√
2πn. For typical HgTe/CdTe QWs n ranges from

1010 cm−2 to 1012 cm−2 [Pfeuffer-Jeschke00]. Hence, the Fermi wavelength is of the order 10 nm
to 100 nm.
Mean free path: The particle can either scatter from static disorder, like impurities or va-
cancies in the lattice, or from dynamic degrees of freedom, like phonons or other electrons. In
the single-particle picture at zero temperature, we neglect dynamic scatterers and restrict the
discussion to elastic collisions. The mean free path lm is the length scale which the carrier
propagates in average before its momentum k is randomized. For HgTe/CdTe QWs lm ≈ 1 µm
[König08]. The mean free path hence allows to cast the system into two regimes: the ballistic
(lm ' L) and the diffusive (lm � L) one.
Phase coherence length: As long as a quantum mechanical particle propagates phase coher-
ently, the relative phases of its trajectories can interfere, leading to phase coherent phenomena
like the Aharonov-Bohm effect [Aharonov59] or weak localization [Abrahams79, Gor’kov79].
The phase coherence length lφ gives the length scale, on which the quantum mechanical phase
of the carrier is randomized. Since static disorder without internal degrees of freedom does not
change the phase of the scattered state, only dynamic scatterers contribute to phase relaxation
processes. Therefore, lφ and lm can differ by several orders of magnitude and phase coherent
transport can take place in the diffusive regime. For example, the phase coherence of the super-
conducting condensate wave function (3.44) extends to macroscopic scales.

When the dimensions of the conductor exceed these three length scales, transport can be
described in terms of classical particles with independent trajectories. In this so-called Ohmic
regime the conductance

G = σ0
W

L
(4.2)

is described in Drude theory, in which the conductivity σ0 is a structure independent material
parameter.
In contrast, in the mesoscopic regime L and W are of the same order as the three length scales
above, i.e., the sample dimensions range from several nm up to microns. For these and smaller
length scales, quantum mechanical effects become important. Despite being much larger than
individual atoms, mesoscopic systems hence require a full quantum mechanical treatment. In this
thesis, we restrict ourselves to the single-particle picture at low temperatures, leading to phase
coherent transport over the whole sample. In this case, we are able to use the Landauer-Büttiker
formalism in section 4.2, to see how the conductance changes from its classical analogue.
In the case of non-interacting electrons, one often speaks of two-dimensional electron gases
(2DEGs), which form in QW structures, like HgTe/CdTe QWs discussed in section 2.3.1. The
layer structure of a QW allows for high mobilities, because the dopants can be separated from
the electron gas itself, making 2DEGs a prime candidate to test mesoscopic physics.
The small width dQW of the QW along the z-direction leads to the formation of discrete sub-
bands. Integrating out the z-degrees of freedom allows a description in strictly 2D, like the BHZ
model (2.59). When we assume an infinitely long sample (L → ∞) with finite width W , kx
remains a good quantum number, but ky will split into discrete sub-bands n with the energy
offset E0

n. These sub-bands are referred to as modes in equivalence to photons in wave guides.
An exemplary dispersion E(n, kx) of the lowest lying modes is sketched in Fig. 4.2. In the
tight binding formalism, cf. appendix B, the total number of modes scales with the number
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E

kx

1234 = n

EF

Figure 4.2.: Schematic of the dispersion of the modes n = 1, 2, . . . in a 2DEG with L → ∞ but
finite W .

of lattice points discretizing the sample in y-direction. In a continuum description the total
number of modes is infinite. However, since only states close to the Fermi energy can contribute
to transport, only the modes, which are occupied and cross EF, are important for transport
calculations. The number of occupied modes M ∈ N generally depends on the details of the
bulk band structure and the boundary conditions in the y-direction. Experimental knobs to
changeM are EF and the width W , which enters the energy offset E0

n. While the Fermi energy
can be varied inside of the leads by the applied bias, it can also be shifted electrostatically by a
top- or back gate.
We will provide an estimate for M, when we discuss different boundary conditions in sections
4.3.1 and 4.3.2.

4.2. Phase coherent transport

4.2.1. Reflectionless contacts

In order to describe transport within the Landauer-Büttiker formalism, we return to the setup
sketched in Fig. 4.1 and follow [Datta07], if not stated otherwise. Since the two leads and the
conductor generally have a comparable width, both host a finite number of occupied modesM,
which may be different in each region. In contrast, the contacts are assumed to be macroscopi-
cally wide, so that they carry an infinite number of modes and act as thermodynamic reservoirs.
Hence, the contacts are in thermal equilibrium and not affected by being attached to the con-
ductor via the leads. This allows to assign a chemical potential µi to each of it. The difference
in chemical potentials can be adjusted by the applied voltage U12 = (µ1 − µ2)/q, which drives a
current through the sample. The huge number of available modes in the contacts make it very
unlikely that a particle, which approaches a contact from a lead, will be reflected back into the
lead, a property often referred to as reflection-less contacts. In consequence, all modes in a lead,
which carry current towards the conductor, are in thermal equilibrium with the contact and have
the same chemical potential µi. The counter propagating modes might have a different chemical
potential, but will always vanish into the contact. Therefore, we can neglect the contacts in
the following, by replacing the hybrid system of contact and lead with the simpler picture of
semi-infinite leads, provided that no backscattering takes place in the leads, i.e., the leads are
ballistic.
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conductorlead 1 lead 2

U12 = (µ1 − µ2)/q

L→α

L←α′

R→β

R←β′

Figure 4.3.: Sketch of the in- and outgoing asymptotic modes in lead 1 and 2, which are connected
by the S-matrix.

Since, in the simplified picture, the total system now has a finite number of occupied, meaning
current carrying, modes, its conductance cannot rise above a limiting value GC. This is in stark
contrast to the classical expectation (4.2), which predicts G→∞ for short samples with L→ 0.
In the next sections, we will calculate this so-called contact resistance1 assuming phase coherence
throughout the whole structure.

4.2.2. S-matrix formalism

In the following, we will treat the conductor as a black box and describe transport in the
asymptotic states inside the two leads which are defined far away from the conductor as

ψαkx(y) =
exp [ikαxxi]√

2π
χαkαx (y). (4.3)

The asymptotic states consist of a plane wave along the wire and the spinor of a transversal
mode α, which form a full, orthogonal set∫

dy χ†αkαx
χ
βkβx

= δαβ. (4.4)

We assume that the modes in the two leads form the same orthonormal set, because it is always
possible to expand the modes in a common orthogonal basis, which we will do explicitly in
section 4.3.2. The subscript α may again be a collective index, combining the mode number n
and an internal degree of freedom which is conserved by the scattering process. Additionally,
we introduced xi, which describes an x-coordinate inside of lead i = 1, 2, cf. Fig. 4.3. In a phase
coherent system, we can formulate transport in standard scattering theory, see, e.g., [Schwabl07].
The scattering state

φβα(y) = δαβψαkαin(y) + Sβα(E)ψ
βkβout

(y) (4.5)

connects the incoming asymptotic state ψαkαin(y) in mode α with the outgoing one ψ
βkβout

(y) in

mode β by the S-matrix Sβα. Since the scattering state has to conserve the probability current,

1The name contact resistance reflects the fact that an electron, which is injected from the contact towards the
lead, will most likely be reflected due to the drastic mismatch in available modes.
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the S-matrix is defined to connect the in- and outgoing current amplitudes, cf. Fig. 4.3,(
L←α′
R→β′

)
= S(E)

(
L→α
R←β

)
. (4.6)

The current amplitudes L and R are defined in the left and right lead, respectively. They carry
a current in the direction indicated by the superscript → or ←. The current amplitudes can be
defined as the product of the wave functions (4.3) with the square root of its velocity expectation

value:
√
〈v̂〉ψαkxψαkx , where v̂ is the velocity operator along the x-axis.

The S-matrix is energy dependent via the implicit energy dependence of the momentum kαx (E)
in Eq. (4.3). We will solve the S-matrix explicitly in section 4.3. For the rest of this section,
it is enough to remind ourselves of some of the key features of the S-matrix. Since evanescent
modes do not contribute to transport, the S-matrix only connects occupied modes and hence
is of dimension MT (E) ×MT (E), with MT (E) being the total number of occupied modes at
energy E. It is given by MT (E) :=

∑
iMi(E), where Mi(E) is the number of propagating

modes in lead i. The probability that the current is transmitted from mode α to mode β is
given by

Tβα(E) = |Sβα(E)|2, (4.7)

with which we define the transmission function from lead i to lead j as

T̄ji(E) =
∑
α∈i

∑
β∈j

Tβα(E). (4.8)

In order to ensure the conservation of the probability current, the S-matrix has to be unitary,
which can be expressed in the sum rule∑

i

∑
α∈i

Tβα(E) =
∑
i

∑
β∈i

Tβα(E) = 1, (4.9)

i.e., the incoming current has to be distributed completely into the outgoing modes.
From Heisenberg’s equation of motion, we find the current operator

Î = qv̂ =
q

~
∂H

∂k
, (4.10)

with which we calculate the current associated with the scattering state (4.5) to be

Iβα(kαin) =
q

2

∫
dy
(
φ†βαv̂φβα + cc.

)
=

q

2π~

(
δαβ

∂Eα
∂k

∣∣∣∣
k=kαin

− Tβα(E)
∂Eβ
∂k

∣∣∣∣
k=kβin

)
. (4.11)

The first and second term correspond to the incoming and transmitted mode, respectively. The
mixed terms cancel, because of the symmetrization. Further, we used

∂Eβ
∂k

∣∣∣∣
k=kβin

= −
∂Eβ
∂k

∣∣∣∣
k=kβout

, (4.12)

assuming that each mode at an energy E propagates with the same velocity to the left and right
at the respective kβin and kβout. Note that kβin = −kβout is not generally true. For example, a finite
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vector potential Ax shifts the zero point of the dispersion via Peierl’s substitution.
Let fµα(E) be the distribution according to which the incoming mode α is occupied at energy
E and chemical potential µα. The total current from α to β is

Iβα =

∫
dkin fµα(E)Iβα(kin) =

q

h

∫
dE fµα(E) (δαβ − Tβα(E)) . (4.13)

In a setup with only two leads, current conservation enforces that the absolute value of the
current must be the same in both leads. The total current I can then be evaluated by summing
over the outgoing modes β in lead 1 as well as over all incoming modes α :

I =
∑
β∈1

∑
i=1,2

∑
α∈i

Iβα =
q

h

∫
dE

∑
β∈1

∑
i=1,2

∑
α∈i

(
δαβfµβ (E)− Tβα(E)fµα(E)

)
(4.9)
=

q

h

∫
dE

∑
β∈1

∑
i=1,2

∑
α∈i

Tβα(E)
(
fµβ (E)− fµα(E)

)

=
q

h

∫
dE

∑
β∈1

∑
α∈1

Tβα(E) (fµ1(E)− fµ1(E))︸ ︷︷ ︸
=0

+
∑
α∈2

Tβα(E) (fµ1(E)− fµ2(E))


(4.8)
=

q

h

∫
dE T̄12(E) (fµ1(E)− fµ2(E)) . (4.14)

Here, we used that all incoming modes are in thermal equilibrium with the reflectionless contacts
and are hence occupied with the distribution function fµi(E) in lead i = 1, 2. Eq. (4.14) was
generalized by Büttiker et al. [Büttiker85] to be applicable to multi terminal structures.

Transmission and reflection probabilities

The total current I in Eq. (4.14) is carried by transmitted modes generated in lead 2 and
transmitted into lead 1 with probability Tβα. Looking again at Eq. (4.9) we reformulate the sum
rule to ∑

α∈2

Tβα = 1−
∑
α∈1

Tβα (4.15)

When β is a mode in lead 1, the left hand side corresponds to the transmitted modes from lead
2 in Eq. (4.14). In contrast, the right hand side connects modes in the same lead, and can hence
be seen as the contribution of reflected modes, which will often be labeled with Rβα. With this,
we can rewrite Eq. (4.14) in terms of reflected modes:

I =
q

h

∑
β∈1

∑
α∈1

∫
dE (δαβ −Rβα(E)) (fµ1(E)− fµ2(E)) . (4.16)

4.2.3. Landauer formula

For the calculation of the conductance, we assume that the system is in equilibrium, so that we
can identify µ2 = EF and µ1 = EF + qU12 as well as use the Fermi distribution at EF: fEF

(E).
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At low temperatures, we can simplify

fEF
(E) ≈ Θ(EF − E) and

∂fEF+qU12(E)

∂U12
≈ qδ (EF + qU12 − E) . (4.17)

Further, we only consider the linear response for small applied bias U12 � EF, transforming
Eq. (4.14) into

I ≈ I(U12 = 0)︸ ︷︷ ︸
=0

+ [∂U12I]U12=0 U12 =
q2

h
U12

∫
dE δ (EF − E) T̄12(E) =

q2

h
T̄ (EF)U12. (4.18)

Again, we find that only states in a range ±kBT around the Fermi energy contribute to transport.
The linear conductance takes the form of Landauer’s formula

G =
I

U12
=
q2

h
T̄12(EF) =

q2

h
T̄M(EF), (4.19)

where we rewrote the transmission function as the product of T̄ , the average transmission prob-
ability per mode, and M(EF), the number of propagating modes per lead at EF. In the small
bias limit, we have M =M1 =M2. In the case where all modes are perfectly transmitted, the
maximal conductance GC = q2M/h gives rise to the previously mentioned contact resistance

RC =
1

GC
=

h

q2M
q=e
=

25.8 kΩ

M
. (4.20)

Such perfect transmission can for example be realized in the QH effect, cf. appendix A, or in
2D TIs, in which the edge states are protected from backscattering, cf. section 2.2.3.
In contrast to the classical conductance (4.2), G does not vary linearly with the width, but
stepwise with the number of occupied modes.

4.2.4. Blonder-Tinkham-Klapwijk formalism

In order to describe the transport in superconducting hybrid systems, the Landauer-Büttiker
formalism has to be generalized to the BTK formalism, named after Blonder, Tinkham, and
Klapwijk [Blonder82]. The systems in question are N-SC junctions, which have been introduced
in section 3.3. Such setups combine a normal (left lead) with a superconducting (right lead)
region. In this case, the conductor shrinks to the interface, which is the sole source of scattering
processes in this modeling of N-SC junctions.
Superconducting systems are described in the language of the BdG equations (3.22), which
couple electron- and hole-like excitations, cf. appendix D. An incoming electron hence can be
reflected as a hole. As we have seen in section 3.3, this so-called Andreev reflection (AR) adds to
the transported charge current. The reason, why electron- and hole-like excitations contribute
differently to the charge transport, is their opposite charge. Thus, we will motivate the BTK
formalism by introducing a charge qβ, which depends on the particle character of the outgoing
mode. Inside the SC, the current is partially carried by the superconducting condensate, which
is not part of the BdG formalism. Moreover, the SC couples electron- and hole-like solutions,
making it impossible to assign a unique charge to the excitations. Therefore, a complete de-
scription of the transport within the BdG framework requires to restrict the treatment on the
normally conducting regions, where the electron and hole branch decouple. This breaks the
equivalence of Eqs. (4.14) and (4.16). When we only consider incoming electronic modes (αe),
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the BTK current in the left lead (lead 1) reads

IBTK,1 =
1

h

∑
β∈1

∑
αe∈1

∫
dE (−eδαeβ − qβRβαe(E)) (fµ1(E)− fµ2(E))

=− e

h

∑
αe∈1

∫
dE

1−
∑
βe∈1

Rβeαe(E) +
∑
βh∈1

Rβhαe(E)

 (fµ1(E)− fµ2(E)) , (4.21)

where the sub-script 1 is used as a reminder, that the equation describes the current in the lead
1, and will later be neglected. We used −e and e as the charge of electrons and holes. The
indices βe (βh) indicates the outgoing electron-like (hole-like) modes. With this in mind, we see
that the reflection probabilities Rβhαe can be identified with the AR probability |Rh|2, which
has been introduced in Eq. (3.99).
Note that the different charges qβ in the electric current do not influence the sum rule (4.9),
because the sum rule is derived from the conservation of the probability current.

Excess current

As we have already anticipated in section 3.3, the AR increases the transported charge above
the pure electronic current. The difference of the BTK current and the current arising in a
non-superconducting junction is expressed by the excess current [Blonder82]

Iex = IBTK − I =
e

h

∑
αe∈1

∫
dE

∑
βh∈1

Rβhαe(E)−
∑
βe∈1

∆Rβeαe

 (fµ1(E)− fµ2(E)) , (4.22)

where ∆Rβeαe(E) = RSC
βeαe

(E)−RN
βeαe

(E) is the difference of the electron reflection probabilities
in N-SC junctions and interfaces between two normally conducting wires. In systems, which are
protected against backscattering, ∆Rβeαe(E) is zero and the excess current is hence given by
the integrated probability of AR. Iex is often measured at high voltages.

dI/dV characteristics

Since AR only gives significant contributions around the superconducting quasi-particle gap, it
is an apt tool to experimentally measure the SC’s spectrum, see section 3.3 for details. Since
the current measurements do not resolve the spectrum at specific excitation energies E, it is
advantageous to measure dI/dV characteristics, where V = U12 is the applied bias2. When we
again assume the system to be in quasi-equilibrium at low temperatures, the dI/dV characteristic
simply depends on U12:

dIBTK

dU12
= − e

h

∑
αe∈1

∫
dE

1−
∑
βe∈1

Rβeαe(E) +
∑
βh∈1

Rβhαe(E)

 ∂fEF−eU12(E))

∂U12

(4.17)
≈ e2

h

∑
αe∈1

1−
∑
βe∈1

Rβeαe(EF − eU12) +
∑
βh∈1

Rβhαe(EF − eU12)

 . (4.23)

2The applied bias in theses cases is conventionally labeled by V . We stick to this nomenclature here to avoid
confusion with the literature.
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N-SC-N junctions

When we consider N-SC-N junctions, the system is characterized by two normally conduct-
ing leads (N) connected by a SC. In this kind of setup, charging effects due to the formation of
Cooper pairs, e.g., by Andreev processes, might shift EF in the SC. Additionally, a self-consistent
treatment of the order parameter might be needed. Both corrections can be neglected by as-
suming the SC to be set to ground. Additionally to Eq. (4.21), one can calculate the current in
the right lead (2), which is induced by electrons injected from the left lead:

IBTK,2 = − e
h

∑
αe∈1

∫
dE

∑
βe∈2

Tβeαe(E)−
∑
βh∈2

Tβhαe(E)

 (fµ1(E)− fµ2(E)) . (4.24)

The first part results from electron transmission or tunneling and the second summand stems
from crossed Andreev reflection (CAR). In contrast to AR, the latter diminishes the electronic
current in the right lead. Here, where we only consider incoming electrons from the left lead, the
currents (4.21) and (4.24) do not need to be the same, because the SC can carry a supercurrent
to the ground contact.

4.3. Solution to the scattering problem

In the last section, we have seen that the transport problem can be reduced to a scattering prob-
lem in coherent systems. Here, we want to describe the solution of the S-matrix. A convenient
way is to use discretized samples within the TB formalism, cf. appendix B. It can deal with
arbitrary structure geometries and leads, see, for example, the implementation in [Wimmer08].
Moreover, it allows to include static disorder in form of on-site energies or spatially varying ma-
terial parameters. We will use this technique in section 5.3.4, for which reason we give a short
introduction to this formalism in appendix C. The rest of this thesis concentrates on quasi-one
dimensional wire geometries and neglects any disorder. Therefore, scattering processes only
occur at the interfaces between the leads and the conductor (cf. Fig. 4.1). This problem is
solvable in a wave matching approach. In contrast to the TB formalism, for which the compu-
tational needs grow with the systems length, the complexity of the wave matching formalism
only grows with the number of modes and interfaces. Moreover, it has the advantage of being a
(semi-)analytical method, often providing a better understanding of the underlying processes.
Here, we will start with the discussion of the two different boundary conditions used in the
later course of the thesis: periodic boundary conditions (PBC) in section 4.3.1 and hard-wall
boundary conditions (HBC) in 4.3.2. The latter causes complicated mode structures, which re-
quire a generalized wave matching approach, in which we expand the system’s eigenstates in an
orthogonal set of Fourier modes. With this, we ensure that we can match different transversal
modes independently when using the matching conditions presented in section 4.3.3.

4.3.1. Periodic boundary conditions

Like the name suggests, PBC assume the sample to be periodically continued. Here, we assume
periodicity in y-direction with the width W as period length. Consequently, the eigenmodes of
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the system have to fulfill

ψαkx(y) = ψαkx(y +W ). (4.25)

This has the advantage of a conserved quasi-momentum, which is discretized to be commensurate
to that of the periodic BZ:

kαy = ±α2π

W
. (4.26)

The number of propagating modes at energy E, M(E), can then be evaluated by counting the
number of modes for which kαy ≤ kF(E), resulting in

M(E) = floor

[
kF(E)W

π

]
, (4.27)

where floor[x] returns the largest integer not greater than x. Having a conserved momentum
ky, the incoming modes can be associated with the angle θα(E), under which the mode hits the
interface between the lead and the conductor. The mode can then be expressed in plane waves

ψαE ∝ exp
[
ikαy y + kαx (E)x

]
(4.28)

with wave vectors kαy = kF(E) sin θα and kαx (E) = kF(E) cos θα. Since the different modes in
Eq. (4.26) are only dependent on the widthW , the modes in both leads as well as in the conductor
are forming an equivalent orthonormal set, which allows us to match each mode independently
with the appropriate matching conditions in section 4.3.3.
In Eq. (4.25), we have identified the two edges of the sample, making the edges indistinguishable
from the bulk of the system. In consequence, all edge related physics is lost and phenomena
like the formation of edge states in a 2D TI do not occur under these boundary conditions. In
conclusion, PBC are the tool of choice to model pure bulk physics.

4.3.2. Hard wall boundary and generalized wave matching approach

A more natural boundary condition than PBC is to consider the system’s edges as hard walls,
which suppress the wave function 3

ψαkx(y = 0) = ψαkx(y = W ) = 0. (4.29)

In case of 2D TIs, a semi-analytical solution to the effective low energy model (2.59) was pro-
vided by Zhou et al. [Zhou08], cf. Eqs. (2.76) and (2.77). This solution, however, is impractical
for transport calculations. Firstly, it involves finding numerically the root of an unstable tran-
scendental equation. Secondly, a generalization to systems with more degrees of freedom, like
the superconducting 2D TI in Eq. (3.77), is cumbersome, if not impossible to solve. Even worse:
the eigenmodes (2.77) are labeled by λ = iky, which are a function of energy and of kx. Regions
of different doping, thus, are characterized by different sets of modes, which are not orthonormal
to each other. In consequence, a wave matching procedure of individual modes, like in PBC,
becomes impossible.

3The suppression of the wave function in Eq. (4.29) is only feasible, if the Hamiltonian contains terms with
quadratic or higher order in k. Purely linear Hamiltonians, like Dirac systems, require different boundary
conditions to enforce hard walls. We will deal with those when needed in section 7.2.1.
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The generalized wave matching approach [Zhang10a, Reinthaler12, Reinthaler13] provides a con-
venient work around, which allows the treatment of normal and superconducting systems on the
same footing. Its basic idea is to expand the eigenstates in a set of orthogonal Fourier modes

φn(y) =

√
2

W
sin
[nπy
W

]
, n ∈ N, (4.30)

in which the asymptotic scattering states with mode number α and conserved kαx become

ψα(x, y) = exp [ikαxx]
∞∑
n=1

χαnφn(y). (4.31)

The energy- and kx-dependence are shifted to the expansion coefficients χαn. The orthogonality
of the W -dependent modes restores a unique identification of the modes in different parts of the
setup, so that an S-matrix can be defined and solved for.
Let the Hamiltonian be of second order in k, so that it can be written as

H = Hconst +Hkxkx +Hk2
xk2
x +Hkyky +Hk2

yk2
y +Hkxkykxky, (4.32)

where we collected all constant terms in Hconst and separated the prefactors of kx, k2
x, ky = −i∂y,

k2
y as well as kxky in Hkx , Hk2

x , Hky , Hk2
y and Hkxky , respectively. This general form of the

Hamiltonian is valid for 2D TIs (2.59) as well as for superconducting 2D TIs (3.77). In doing so,
the different summands in Eq. (4.32) inherit the matrix structures of the underlying Hamiltonian
and the expansion coefficients χαn are the corresponding spinors with components reflecting, e.g.,
the spin, sub-band or particle degree of freedom. Putting the Fourier ansatz (4.31) into the

Schrödinger equation and multiplying from left by
∫W

0 dy φ†m(y) leads to

0 =
[
Hconst − E +Hkxkαx

]
χαm +Hk2

xkαxχ
′α
m

+
∞∑
n=1

∫ W

0
dy φ†m(y)

([
Hkyky +Hk2

yk2
y

]
χαn +Hkxkykyχ′αm

)
φn(y). (4.33)

Here, we introduced the spinors χ′αm = kαxχ
α
m. The integral can be solved straight forwardly by

κnm = −
∫ W

0
dy φ†m(y)∂2

yφn(y) =
(nπ
W

)2
δnm (4.34)

ηnm = −i

∫ W

0
dy φ†m(y)∂yφn(y) =


nπ
W , n = m
4i
W

nm
m2−n2 , n+m odd

0 , else

. (4.35)

Combining the spinors into the vectors χα = (χαn=1, χ
α
n=2, . . .)

T and χ′α = (χ′αn=1, χ
′α
n=2, . . .)

T

allows to rewrite Eq. (4.33) as a matrix equation(
I 0

0
(
Hk2

x

)−1

)(
0 I

Hconst +Hky Hkx

)(
χα

χ′α

)
= kαx

(
χα

χ′α

)
, (4.36)
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with the sub-matrices

Hconst
nm = δnm

(
Hconst − E

)
, Hkx

nm = δnmHkx +Hkxkyηnm,

Hk2
x
nm = δnmHk

2
x , H

ky
nm = Hkyηnm +Hk2

yκnm. (4.37)

By introducing χ′α, we have doubled the Hilbert space, allowing to reduce the problem of finding
all modes with momentum kαx and coefficients χαn at energy E to solving the linear eigenvalue
problem (4.36).

Quality of the expansion

Eq. (4.35) shows that the terms proportional to ky and k2
y couple an infinite number of Fourier

modes. However, the coupling strength decays with the difference in mode number, allowing for
a numerical approximation, which only takes a finite number of Fourier modes N into account.
Here, we want to give an estimate of the approximation for one Kramers’ partner block of
a HgTe QW. To this end, we compare the aforementioned analytical solution from [Zhou08],
which is discussed in section 2.3.3 and especially in Eq. (2.76), with its Fourier pendant. The
latter is obtained by plugging Eq. (2.60) into (4.36) and solving for all kαx . In doing so, we
truncate the series (4.31) at different N . Explicitly, we use the parameters of Tab. 2.1 and
choose W = 200 nm. The energy zero point is set in the middle of the bulk gap (C = 0). In
Fig. 4.4, we compare two different energies: In the upper row, E = 0 lies within the bulk gap,
resulting in the single propagating mode of an edge state. The lower row shows the bulk states
at the doping E = 50 meV, which corresponds to 7 propagating modes. For both configurations,
we compare the Fourier approximation for N = 20, 50, 100. In Figs. 4.4a and 4.4d (4.4b and
4.4e) we plot the difference of kαx between the analytical model and the Fourier approximation for
the propagating (evanescent) modes as a function of the mode number α. For all four situations
we find that the error of the approximation is diminishing strongly with the number of modes
considered. The deviation increases slightly with the mode number, which is due to the fact that
higher modes oscillate stronger and need higher Fourier components. However, the strongest
increase is observed for evanescent modes, which, for larger α, decay on very short length scales
and thus play a minor role in transport.
The kαx of the analytical model result from a unique transcendental equation, whose solution
can be sorted by the value of Im kαx . In contrast, the kx solutions of the eigenvalue problem
(4.36) always come in pairs, where one solution corresponds to the conduction and the other to
the valence band. This can be seen, for example, for N = 20. While the first half of solutions
coincides quite well with the analytically calculated wave vectors, the second half (corresponding
to the valence band) is shifted to larger wave vectors, disregarding solutions with smaller |kαx |.
Especially for tunneling setups, in which evanescent modes carry the transport, it is important
to take enough Fourier modes into account.
Finally, let us examine how the eigenspinors are approximated. In Fig. 4.4f, we plot the DOS of
the propagating bulk mode, corresponding to the α = 7 mode in Fig. 4.4d. While N = 20 again
fails to give a reasonable approximation, N = 50 and N = 100 can barely be distinguished from
the correct solution. The same conclusion can be drawn for the edge state at E = 0, whose DOS
is shown in Fig. 4.4c. In this case, an insufficient approximation results in a shift of the state’s
weight to the edge at y = W . This decreases the separation of counter-propagating edge states
artificially and can introduce backscattering.
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Figure 4.4.: The quality of the Fourier approximation in respect to the exact solution of the ana-
lytical model for different mode cut-offs N and E. W = 200 nm and the parameters
of Tab. 2.1 have been used.

4.3.3. Matching conditions

Above, we have discussed the solutions of a quasi-one dimensional system with conserved mo-
mentum along the x-axis. In a scattering setup, like that sketched in Fig. 4.3, these states
take the role of the asymptotic solutions. The solutions kαx can be characterized as propagating
(kαx ∈ R) or evanescent (Im(kαx ) 6= 0). For real kαx , the propagation direction can be determined
by the sign of

vα =

∫ W

0
dy ψ†α(x, y) [∂kxH(kx)]kx→kαx ψα(x, y). (4.38)

Analogously, evanescent states with Im(kαx ) > 0 (Im(kαx ) < 0) are decaying to the right (left). In
the following, the right (left) going modes will be labeled as αR (αL). In order to write down the
full scattering state in the three parts of the setup, we will further introduce the index i, where
i = 1 stands for the left lead stretching from x = −∞ to x = −L/2, i = 0 for the conductor
(−L/2 < x < L/2) and i = 2 for x ≥ L/2.4 In the case of an incoming electron from the left

4The numbering, where i = 0 indicates the conductor, makes it easer to compare with our previous notation,
where the leads have been labeled by 1 (left) and 2 (right).
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lead in mode βR, the scattering state takes the form:

ΨβR(x, y) =


ψβR,1(x, y) +

∑
αL
rαL,βRψαL,1(x, y) , x ≤ −L

2∑
αR
cαR,βRψαR,0(x, y) +

∑
αL
dαL,βRψαL,0(x, y) , x ∈

]
−L

2 ,
L
2

[∑
αR
tαR,βRψαR,2(x, y), , x ≥ L

2

(4.39)

We used the same index α in all three parts, because all parts are built by the same set of
modes. For HBC, these are the Fourier modes (4.30), while in PBC, the quantized ky is con-

served and only the mode with kαy = kβRy contributes to ΨβR(x, y). The coefficients of the
different asymptotic wave functions can be obtained by matching the wave functions at the in-
terfaces at xint = −L/2 and L/2. The interfaces might act as tunneling barriers, because of an
imperfect contact between the leads and the conductor. Therefore, they are often modeled as
local potentials

Λδ (x− xint) . (4.40)

The matching conditions at an interface can be obtained by integrating the Schrödinger equation
across the interface twice. Assuming the solutions ΨβR(x, y) to be Riemann integrable, we find
the matching conditions for each interface to read

0 = −i~
[
v̂ΨβR(x+

int, y)− v̂ΨβR(x−int, y)
]

+ ΛΨβR(xint, y), (4.41a)

0 = ΨβR(x+
int, y)−ΨβR(x−int, y), (4.41b)

where x±int = limε→±0 [xint + ε] addresses states right and left to the interface. In the following,
we will generally set Λ = 0, neglecting the tunneling barrier at the interface. We may do so
because of two reasons: Firstly, the helical edge states, with which we are concerned in this
thesis, are protected against backscattering and thus are not strongly affected by the presence of
a local tunneling barrier. Secondly, when we deal with N-SC junctions in chapters 6 and 7, we
assume the superconducting and normally conducting part to consist of the same material, into
which superconductivity has been induced locally, so that a contact area between two different
materials is avoided. Neglecting the tunneling barrier means that backscattering is induced
purely by the mismatch of the modes in the different parts of the wire. This mismatch can
originate from different band structures or Fermi energies on both sides of the interface.
Solving Eqs. (4.41) simultaneously for both interfaces determines all coefficients and fixes the
scattering states (4.39) up to normalization. The amplitudes of the reflected (transmitted)
modes αL (αR) are given by rαL,βR (tαR,βR). Since these amplitudes are defined to connect the
states rather than the current amplitudes, the S-matrix (4.6) can be obtained by renormalizing
with the velocities of the incoming and outgoing modes:

SαRβR = tαRβR

√
vαR

vβR
, SαLβR = rαLβR

√
vαL

vβR
. (4.42)

Single interface

In case of a single interface, we can use the same ansatz (4.39) with L = 0. The matching
conditions (4.41) then only have to be evaluated for a single interface at xint = 0.
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Numerical implementation

The wave matching across one or two interfaces in PBC has been solved semi-analytically in
Mathematica [Wolfram Research12, Wolfram Research14]. The generalized wave matching ap-
proach and the corresponding wave matching routines have been implemented in C++ using
the matrix package Eigen [Guennebaud10] as well as the matrix solvers provided by LAPACK
[Anderson99].
As discussed above, the advantage of the generalized wave matching approach in comparison
with the TB formalism is, that the memory needed for the computation only depends on the
number of modes N , but not on the length L of the conductor. Theoretically, this allows to treat
arbitrarily long samples. However, a good approximation of the physical states requires to take
evanescent modes with Im kαx 6= 0 into account. These modes grow or decay exponentially with
increasing L. Thus, the different modes, which contribute to the scattering problem (4.41), can
differ by many orders of magnitude, leading to potential instabilities in the numerical solution
for large L. With our implementation, we have been able to calculate sample lengths ranging
up to L ' 500 nm, when wide, metallic leads are considered in chapter 5, and L > 2000 nm for
incoming edge states in chapter 6.
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5. Interplay of bulk and edge states in transport
of two-dimensional topological insulators

As a first application of the generalized wave matching routine of chapter 4, we calculate the
transport in two-terminal metal-quantum spin Hall insulator (QSHI)-metal junctions. This
allows a novel characterization of the non-trivial topological regime by tunneling bulk modes,
which we will motivate in the introductory section 5.1. In order to better understand the signals
of the tunneling setups, we conclude in section 5.2 that the edge states of a QSHI are protected
against the backscattering from a single interface to a metallic lead in a vast range of parameter
configurations. To distinguish the signals from edge and bulk states even more clearly, we use
periodic boundary conditions (PBC) as well as hard-wall boundary conditions (HBC), when
we calculate the transport of the two interface setup in section 5.3.2. We demonstrate that
the conductance signals originating from the bulk and the edge contributions are not additive.
While for a long junction, the transport is determined by the edge states, the conductance signal
of a short junction is built from both bulk and edge states in a ratio which depends on the width
of the sample. Further, the conductance for short junctions shows a non-monotonic behavior
as a function of the sample length in the topologically non-trivial regime. Surprisingly, the
non-monotonic behavior can be traced to the formation of an effectively propagating mode, cf.
section 5.3.3, which is found to be robust against scalar disorder in section 5.3.4.
Our results, which have been published in [Reinthaler12]1, pave the way to better understand
hybrid structures of 2D TIs, facilitating the analysis of the superconducting junctions treated
in the following chapters 6 and 7.

5.1. Introduction and model

Although the topological invariant has been introduced as a bulk property in section 2.2, this
classification can be translated to the existence of topologically protected states at the edges
of the system due to the bulk-boundary correspondence [Halperin82, Hasan10]. Experiments
usually focus on the properties of these edge states. Indeed, the confirmation, that HgTe/CdTe
quantum wells (QWs) are two-dimensional topological insulators [Bernevig06], was provided
through the measurement of the quantized conductance of edge channels [König07, König08,
Roth09, Brüne12].
As can be seen Fig. 2.5, HgTe/CdTe QWs allow for a direct control of the topological order by
the thickness of the HgTe layer dQW: below the critical thickness of dc ≈ 6.4 nm, the system is
a trivial insulator, whereas above dc, the system behaves as QSHI. This gives the possibility to
observe the topological phase transition directly. Therefore, it is of great interest to find further
experimental measurable indicators for this phase transition, which can be tested in HgTe/CdTe
QWs. Since the topological invariant is a bulk property, it seems natural that the bulk conduc-
tivity could also carry information about topological properties of the system. Indeed, Novik et

1 c©2012 American Physical Society. All rights reserved.
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al. [Novik10] proposed to measure the conductance in metal-QSHI-metal junctions, in which in-
coming metallic bulk states tunnel through an insulating barrier. When the tunneling barrier is
in the topologically non-trivial regime, they found that the conductance becomes non-monotonic
and shows a characteristic maximum as a function of the geometrical aspect ratio of the QSHI
tunneling barrier. The conductance maximum is robust against scalar disorder of the order of
the band gap [Recher10]. So far, this analysis was limited to PBC and neglected the existence
of edge states, which can significantly modify the behavior in experimentally relevant setups.
Here, we carefully analyze the properties of a single QSHI-metal interface as well as the interplay
between edge states and bulk states in metal-QSHI-metal junctions.
We tackle this problem in the wave matching approach, which is described in sections 4.3.1 and
4.3.2 for PBC and HBC, respectively. The Hamiltonian under consideration is the BHZ model
(2.59). Neglecting all couplings of Kramers’ partner blocks, HBHZ simplifies to Eq. (2.60),
where the second Kramers’ partner follows from TRS. Since this is a generic Hamiltonian
for 2D TIs, the results presented in the following are general features of 2D TIs. Specif-
ically, we calculate HgTe/CdTe QWs and compare them to thin films of Bi2Se3. For the
HgTe/CdTe QWs, we use, unless specified otherwise, the parameters taken from [Novik10]:
A = 0.375 nmeV, B = −1.120 nm2eV, D = −0.730 nm2eV, M = −3.10 meV. When we
are referring to the normal regime, we put M = +3.10 meV. These parameters differ from
that given in Tab. 2.1, because a smaller QW width dQW, which is closer to the topological
phase transition point dc, was assumed. Remarkably, dQW mainly influences M [Rothe10]. Thin
films of Bi2Se3 map to the same Hamiltonian (2.59) with parameters A = 0.406 nmeV, B =
−0.250 nm2eV, D = 0.070 nm2eV, M = ∓22.5 meV [Lu10].
The single and double junctions, which we consider in this chapter, are shown in Figs. 5.1a and
5.2, respectively. The transport problem is solved by applying the matching conditions (4.41)
between the lead 1 on the left and lead 2 on the right. The resulting transmission coefficients
are given by Eq. (4.42) and can be summed up to give the total conductance according to
Eq. (4.19):2

G =
e2

h
T̄21(EF) =

e2

h

∑
βR,1

∑
αR,2

∣∣SαR,2βR,1∣∣2 . (5.1)

Spinors in periodic boundary conditions

In order to apply the matching conditions (4.41), one has to solve for the asymptotic solutions in
form of the eigenspinors of the system. In the case of HBC, the latter are obtained numerically
from the eigensystem (4.36). Here, we present the corresponding analytical eigenspinors for
PBC.
Since the lattice momentum k is conserved, we can find the eigenenergies and eigenspinors by
direct diagonalization of the Hamiltonian (2.60), yielding up to normalization

E±(k) =C −Dk2 ±
√
A2k2 + (M −Bk2)2 (5.2)

φα±(k) =

(
±A(kx + iky)

g(k)

)
, g(k) =

√
A2k2 + (M −Bk2)2 − (M −Bk2). (5.3)

2Here, we assume the modes to be injected only from lead 1 (left) and sum over the outgoing modes in lead 2.
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The ± sign indicates the conduction and valence band. At a fixed energy EF, we find four
solutions for k: ±k1

F and ±k2
F with 3

k1,2
F =

√
−F ±

√
F 2 − M2 − (C − EF)2

B2 −D2
, F =

A2 − 2MB − 2(C − EF)D

2(B2 −D2)
. (5.4)

In the following, we will set EF = 0 and define the Fermi energy solely by the doping C. For
energies outside of the band gap, k1 gives a propagating solution, while k2 is imaginary. The
asymptotic modes are labeled by a collective index (αi), where α identifies the transversal mode
kαy of Eq. (4.26) and i = {1, 2} refers to the Fermi wave vectors in Eq. (5.4). With the definitions

of kαy = kiF sin θα and k
(αi)
x = kiF cos θα, we can rewrite the spinors for the positive energy branch

φα+ as the asymptotic wave functions

ψ(αi)± =

(
±AkiFe±iθα

g(kiF)

)
exp

[
ikiF(± cos θα + sin θα)

]
. (5.5)

The sign ± directly indicates the direction of motion of the solution. The angles θα are implicit
functions of k1

F, which defines the propagating incoming solution at a given Fermi energy −C.

5.2. Interface between a quantum spin Hall insulator and a metal

Here, we analyze the injection of the helical edge states from the QSHI on the left into a metallic
lead. The latter is modeled by Eq. (2.60) with a high doping, i.e., large |C|. The setup is sketched
in Fig. 5.1a. It consists of a single interface in a quasi-one dimensional wire of width W . On the
QSHI side, the Fermi energy is chosen to be zero, while, in the metallic lead, EF is shifted by C.
In this sense C also characterizes the energetic height (strength) of the interface, where negative
(positive) C indicate a QSHI/n-type metal (QSHI/p-type metal) junction. Additionally, we
schematically present the corresponding band structures (see also section 2.3.3), in which the
metallic bulk states (green) are connected by the helical edge states (red and dashed blue). Since
we consider incoming edge states, this setup has to be solved within HBC using the generalized
wave matching approach, cf. section 4.3.2. In Fig. 5.1b, we show the transmission through
such an interface as a function of C for different widths of the system: W = 250, 1000 and
2000 nm. While, for narrow samples, strong interfaces introduce a significant backscattering
due to an overlap of counter-propagating edge states, perfect transmission is observed for wide
samples. The perfect transmission for wide samples can be explained analogously to that of
the topologically protected edge states in graphene [Prada13], for which it was found that the
counter propagating edge states for the same Kramers’ partner are orthogonal. Indeed, taking
into account an exponentially decaying wave function of the edge state, like it was done in
Eq. (2.76), it can be confirmed that the overlap between edge states goes to zero for W →∞ in
the presence of any x dependent potential:

〈ψedge(kx)|V (x) |ψedge(−kx)〉 = V (x)

∫ W

0
dy ψ†edge(kx)ψedge(−kx)

W→∞−→ 0. (5.6)

In the same way, the Onsager-Casimir symmetry relation [Büttiker86, Büttiker88] ensures that
electrons, which are injected from the metallic lead, perfectly populate the edge states of a very

3This is equivalent to Eq. (2.77) for kF = iλ.
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(a) Schematic of the single interface.
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Figure 5.1.: The single interface between a QSHI and a metal is sketched in (a) together with the
respective dispersions. (b) shows the conductance as a function of C, the energetic
height of the interface for different lead widths W . Perfect transmission is observed
in wide samples where counter-propagating edge states with the same Kramers’
partner polarization do not couple. Adapted from [Reinthaler12]. c©2012 American
Physical Society. All rights reserved.

wide QSHI. Let us mention for completeness, that a linear Rashba coupling [Rothe10] does not
increase the backscattering, because there are still two orthogonal eigenstates at the same edge,
although the direction of the spin polarization is rotated.

5.3. Quantum spin Hall insulator as a tunneling barrier between two
metallic leads

In this section, we consider the setup of Fig. 5.2, in which the QSHI acts as a tunneling barrier
of length L in between two metallic leads. For the latter, we fix the n-type doping to be
C = −2.5eV. In [Novik10, Recher10], such junctions have been analyzed using only PBC which
neglect the topological edge states. In particular, it was found that such junctions allow for
the distinction of different topological phases purely due to evanescent bulk modes. While the
conductance rises monotonically with decreasing L in the topologically trivial regime (M > 0),
the topologically non-trivial regime (M < 0) is characterized by a conductance maximum at
Lmax. The purpose of this section is to better understand the formation of the conductance
maximum in the topologically non-trivial regime as well as to study the interplay of the bulk
and edge contributions by comparing results obtained within PBC and HBC.

5.3.1. Analytical approach to the conductance maximum

The matching conditions (4.41) together with the spinors in PBC (5.5) allow for an analytical
solution of the scattering problem. However, the resulting coefficients are in general lengthy
expressions, so that no additional insight can be drawn from them. In order to get a better
idea of the conductance maximum, we follow the supplementary material of [Novik10] and use
the limiting parameters D = 0 and BC � A2 � BM (C < 0), which facilitate the analytical
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Figure 5.2.: Sketch of a QSH insulator which acts as a tunneling junction of length L and width
W in between two metallic leads. The doping of the leads was fixed to C = −2.5 eV.
Adapted from [Reinthaler12]. c©2012 American Physical Society. All rights re-
served.

expressions significantly. In these limits, the Fermi energy offset C is the dominating energy
scale in the metallic leads, approximating Eqs. (5.3) and (5.4) by

k1
F ≈

√
C

B
=: k1, g(k1) ≈ −A

2

2B
, k2

F ≈ i

√
C

B
=: k2, g(k2) ≈ −2C. (5.7)

In the QSHI with C = 0, we analogously define

k1
F ≈ i

|M |
A

=: k3, g(k3) = −M, k2
F ≈ −i

A

B
=: k4, g(k4) = −A

2

B
. (5.8)

As we will also find in the numerical results, especially in Fig. 5.3b, the conductance maximum
is mainly built by the lowest mode, which in PBC is k0

y = θ0 = 0. In this case, the velocity
operator v̂ acting on a mode ψ(0i)± can be replaced by multiplying the mode with kiF · ψ(0i)±.
Since Im k4 � Im k3, we further set exp[ik4L] = 0. With these simplifications, one finds (lengthy)
analytical solutions to all the coefficients of the scattering state (4.39). There are two transmitted
modes labeled by k1 and k2, respectively. Due to the evanescent character of the latter, only k1

has to be taken into account to calculate the conductance in the lowest mode G0 = e2

h |tk1k1 |2
with 4

|tk1k1 |2 =
16BC(A3 + 4ABC)2 exp

[
2LMA

]
64A4B2C2(1 + 2 exp

[
2LMA

]
) + (A4 + 16B2C2)2

[
4LMA

]
≈

4A2BC exp
[
2LMA

]
A2
(
1 + 2 exp

[
2LMA

])
+ 4B2C2 exp

[
4LMA

] . (5.9)

The approximation in the second line is valid in the approximation BC � A2 � |M |B. While
for M > 0, in the topologically trivial regime, this describes an exponential decay, M < 0 causes

4For the calculation here, we shifted the x coordinate by L/2, so that the interfaces lie at x = 0 and x = L,
respectively.
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Figure 5.3.: Conductance through a metal-QSHI-metal junction as a function of the length L.
The metallic leads are treated as highly doped QSHIs. In accordance with the defini-
tion of the bulk gap M , the topologically trivial (non-trivial) regime is indicated by
M > 0 (M < 0). Adapted from [Reinthaler12]. c©2012 American Physical Society.
All rights reserved.

a distinct conductance maximum, the position of which is found by setting ∂L|tk1k1 |2 = 0:

Lmax ≈
A

2|M |
ln

(
2BC

A2

)
. (5.10)

5.3.2. Conductance and local density of states

In Fig. 5.3a, we present the total conductance (5.1) as a function of the sample length L. Looking
at the dotted lines for the topologically trivial regime (indicated by M > 0), we observe that
the conductance decreases exponentially with the increase of L, independent of the boundary
conditions. Indeed, in this regime, we expect only evanescent solutions and therefore the same
results for PBC and HBC.
We now focus on the topological insulator regime with inverted gap M < 0, which is presented
by solid lines. For HBC, both, evanescent and edge states contributions to the conductance, are
present and the signal depends on the length and the width of the sample. The red and orange
lines represent the conductance of a very wide tunneling junction of W = 2000 nm for HBC and
PBC, respectively. For wide and long QSHIs, G is dominated by the edge states contribution
and equals 2e2/h. This means that the two different boundary conditions give very different
results up to medium lengths L. In contrast, the conductance through a short and wide QSHI
is almost independent of the applied boundary condition. This indicates that in this regime,
the transport is dominated by tunneling evanescent modes5. This is a very interesting result,
because naively one would expect that the edge state conductance of 2e2/h simply adds to the

5Please note, that the position of the maximum in Fig. 5.3 cannot be predicted by Eq. (5.10) even for PBC,
since we included a finite D parameter in the numerical calculations.
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transport of the tunneling bulk states, when the width W is large enough to prevent scattering
of the edge states from the interfaces. The same behavior is found for an intermediate width of
1000 nm, cf. the green and blue solid lines in Fig. 5.3a.
The signal changes for very narrow QSHIs with W = 250 nm. For HBC (black line), we find
Fabry-Pérot like oscillations in the transmission of the edge states. At large L, the distance
between two oscillation maxima is given by π/kedge, where kedge is the real wave vector of the
edge states. The Fabry-Pérot oscillations are caused by scattering of the edge states at the
interfaces and thus can only be present for narrow tunneling barriers with finite overlap between
counter-propagating edge states, as we elaborated in section 5.2. In this case, the existence of
edge states has a dramatic effect on the behavior of the conductance as a function of L. The
quantum confinement in narrow wires shifts the bulk states to higher energies. This increases
the corresponding imaginary kx values, which in turn leads to a faster decay of the contribution
of evanescent modes. The combination of the edge states with the bulk modes alters the position
and the shape of the conductance maximum, which does not coincide with the maximum gener-
ated by either the evanescent bulk states or the Fabry-Pérot oscillations alone. In consequence,
the conductance maximum in HBC differs significantly from that in PBC (gray line). For the
latter, the position of conductance maximum is independent of the width.
For comparison, we show the conductance for a 250 nm wide ribbon of a Bi2Se3 thin film in
the inset of Fig. 5.3a. Instead of a maximum, we observe a conductance plateau in the inverted
regime.6 Despite the narrow width, the signals of HBC and PBC coincide around the plateau.
This can be explained by the larger bulk gap in Bi2Se3, which decreases the overlap of the edge
states [Zhou08].
In Fig. 5.3b, we focus on a 1000 nm wide HgTe/CdTe QW in the topologically non-trivial regime
in HBC and plot the conductance as a function of L for different incoming modes βR. Only in-
coming modes with small βR / 5 contribute to the conductance maximum, while higher modes
show the typical decaying transport signal of evanescent modes. Therefore, it is justified to
restrict the further analysis to βR = 1.
Since we have shown in the last section that the transmission through a sufficiently wide
metal/QSHI junction is perfectly quantized, the scattering from the interfaces cannot cause the
suppression of the edge state contribution in Fig. 5.3a. To better understand the non-additive
behavior of bulk and edge contributions and the formation of the conductance maximum, we
plot the local DOS for different sample lengths L in Fig. 5.4. The local DOS of the lowest
incoming mode can be calculated from Eq. (4.39) by |ΨβR=1(x, y)|2, which in the plots has been
normalized according to ∫ W

0
dyΨ†1(x = −L

2
, y)Ψ1(x = −L

2
, y) = 1. (5.11)

Let us first concentrate on the Figs. 5.4a, 5.4c and 5.4d, for which L 6= Lmax. Due to the large
doping mismatch C, a strong reflection occurs at the left interface, which causes standing waves
in the left lead, see, e.g., Fig. 5.4d. The local DOS peaks inside the tunneling junction. The
incoming modes from the left lead are purely metallic bulk states without any admixture of edge
states. In the short tunneling junctions (see Fig. 5.4a), these metallic states are not able to
adjust to the shape of the edge states, so that they keep their form and tunnel directly through
the QSH insulating region. Therefore, the conductance signals from HBC and PBC should
coincide for short L, as indeed found in Fig. 5.3a. When the length of the QSHI is comparable

6The conductance maximum can be restored by increasing |C| even further.
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Figure 5.4.: The local DOS in a metal-QSHI-metal junction for fixed width W = 1000 nm and
different sample lengths L. The DOS was calculated as the response to the first
incoming mode from the left lead. The color code ranges from white for high DOS
to black (vanishing DOS). The interfaces at ±L/2 are indicated by two black lines.
In the plot, only one edge state at the upper edge is present, because the calculations
have been restricted to one Kramers’ partner block. Adapted from [Reinthaler12].
c©2012 American Physical Society. All rights reserved.

to the decay length of the evanescent modes, (see Fig. 5.4c), electrons are more likely to scatter
from the bulk into the edge states, until the transport is driven exclusively by the edge states
in long QSHIs, cf. Fig. 5.4d.
It is interesting to compare Figs. 5.4a, 5.4c and 5.4d with Fig. 5.4b, where we choose the length
of the tunneling junction to correspond to the peak in conductance, i.e., L = 100 nm ≈ Lmax.
Here, one finds the local DOS of the QSHI to be strongly enhanced in comparison with the
cases where L 6= Lmax. Additionally, we do not observe standing waves in the left lead, which
indicates a weak reflection from the interfaces. Further, the edge states are not yet populated,
causing the coincidence of conductance signals for PBC and HBC.
In conclusion, we observe coherent tunneling with suppressed backscattering around the sample
length L ≈ Lmax. Moreover, the edge states cannot form in short tunneling junctions.

Detection of the conductance maximum as a function of the gate voltage

So far, we have established, that the topologically trivial and non-trivial regime can be distin-
guished by a distinct conductance maximum which originates purely from the evanescent bulk
modes. This effect does not depend on the applied boundary conditions, as long as the sample is
wide enough. Before we discuss the underlying mechanism in more detail in the next section, let
us describe an experimentally realizable detection scheme which does not rely on the possibility
of changing the sample length L.
This can be achieved by analyzing the conductance for a fixed length as a function of the Fermi
energy EF, which can be varied by a top or back gate. For PBC, the two topological regimes
show indistinguishable conductance signals as long as the Fermi energy lies within the conduc-
tion or the valence band of the QSHI [Novik10]. The QSHI can be distinguished from the normal
insulator by a non-monotonic conductance peak for energies within the bulk gap. To analyze
this, we plot the conductance as a function of L and EF in Fig. 5.5. The calculations have been
performed within PBC for a 1000 nm wide tunneling barrier. Around L ≈ Lmax, the conduc-
tance peak is found at zero doping. If the length of the tunneling barrier does not match Lmax,
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Figure 5.5.: The conductance as a function of the EF and L of the QSHI. The doping C =
−2.5 meV of the leads is kept constant. We used a tunneling barrier in the topo-
logically non-trivial regime (M < 0) of width W = 1000 nm as well as PBC. The
conductance maximum is shifted away from EF = 0, when the length of the sample
does not match Lmax.

the conductance peak is shifted to finite energies within the bulk gap.
In wide and short tunneling junctions where the bulk states dominate the transport, we find the
same behavior for HBC and PBC. When we increase the length of the QSHI above the decay
length of the evanescent modes, the conductance is governed by the edge state contribution.
In this limit, the signal for PBC drops to zero, while for HBC, the conductance is 2e2/h, if
the width is large enough to suppress Fabry-Pérot oscillations. In narrow and short tunneling
junctions, however, the transport is mediated by a mixture of edge and bulk states. Exactly
this latter limit is shown in Fig. 5.6, which presents the conductance as a function of the Fermi
energy in the QSHI tunneling junction. In contrast, the doping inside the metallic leads has
been kept constant at C = −2.5 eV. The bulk gap of the QSHI is indicated by two black
vertical lines in Fig. 5.6. It is enhanced above 2|M | due to quantum confinement. Additionally,
the blue vertical lines present the energy range, in which the overlap of the edge states opens
the mini-gap in the system, cf. [Zhou08] and section 2.3.3. Outside of the bulk gap, the signals
of the normal and the inverted regime behave similar, like it was predicted for large widths in
[Novik10, Recher10]. Within the gap, however, the signal depends on the boundary conditions:
for PBC, (black lines) a clear conductance peak is found in the topologically non-trivial regime
(M < 0, solid lines) around EF = 0, because of L ≈ Lmax. In contrast, the transport is almost
completely suppressed in the topologically trivial regime (dotted lines). For HBC (red lines), one
observes a similar behavior for the normal regime, but the existence of the edge states changes
the signal drastically for M < 0. Within the gap and for energies smaller than zero, we find
the quantized conductance of the edge states. Around zero and for positive energies, the signal
is strongly reduced and resembles that of the bulk modes. This behavior can be understood by
looking at the local DOS in an infinitely long QSHI, which we present in the inset to Fig. 5.6
as a function of the y-coordinate and of EF. It has been obtained within HBC by summing
over all incoming modes

∑
βR
|ΨβR(y)|2. As before, we consider just one of the Kramers’ part-

ner blocks, so that only one edge state is present. The mini-gap can be identified in the local
DOS by the lack of propagating solutions. Around the mini-gap, the edge state spreads over
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Figure 5.6.: The conductance as a function of the Fermi energy in the QSHI. We compare PBC
(black lines) with HBC (red lines) for M > 0 (dotted lines) and M < 0 (solid lines).
The doping C = −2.5 meV of the leads is kept constant. The sample is 250 nm wide
and 100 nm long. The vertical lines indicate the bulk gap (black), which is larger
than 2|M | due to quantum confinement, and the mini-gap (blue). The inset shows
the total DOS of a single Kramers’ partner as a function of EF and y, which has
been calculated for an infinitely long QSHI wire within HBC. The mini-gap can be
identified by a zero DOS over the whole sample width. Adapted from [Reinthaler12].
c©2012 American Physical Society. All rights reserved.

the whole width of the QSHI, leading to an overlap of the counter propagating edge states
which crucially influences the transport in narrow metal-QSHI-metal junctions. The overlap of
the edge states is in general a function of the energy [Zhou08, Krueckl11, Lu12], which is also
confirmed by the inset to Fig. 5.6. This behavior is asymmetric around the charge neutrality
point EF = 0, because a finite D parameter breaks the symmetry of the E1 and H1 bands. For
negative energies, the edge state is strongly localized at the upper edge (y = W ). The small
decay length leads to the existence of the edge state even at energies inside the valence band.
For our parameters, it merges to the valence band at energies around EF = −80 meV. Up to
this energy, the strong localization ensures the quantization of the conductance, which can be
verified in Fig. 5.6. In contrast, at energies above the mini-gap (EF > 3 meV) the edge state
is delocalized, so that a strong backscattering occurs. Moreover, it merges quickly to the bulk
states around EF = 10 meV. Therefore, we conclude that at these energies the transport is
dominated by evanescent bulk states and the conductance signals of PBC and HBC coincide
qualitatively.
To summarize this section, the conductance maximum can be observed as a function of EF in
short and wide tunneling barriers. In narrow samples, the edge states can contribute to transport
at Fermi energies where they are most localized.
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Figure 5.7.: The effective wave vector keff
βR

for tunneling junctions in the topologically non-trivial
(M < 0) regime. The conductance maximum is Lmax ≈ 100 nm. The calculation
was done for W = 1000 nm. Adapted from [Reinthaler12]. c©2012 American
Physical Society. All rights reserved.

5.3.3. Effectively propagating solution

To further investigate the origin of the conductance maximum when bulk states dominate trans-
port, we analyze the effective wave vector in the direction of propagation for the QSHI

keff
βR

(x) =

W∫
0

dyΨ†βR(x, y) (−i∂x) ΨβR(x, y), x ∈
[
−L

2
,
L

2

]
, (5.12)

where ΨβR(x, y) is the full scattering solution in Eq. (4.39). Our analysis will focus on the lowest
incoming modes βR in PBC and HBC, which give the largest contribution to the signal7. In
Fig. 5.7a, we present the imaginary as well as the real (inset) part of keff

βR
(x) for different lengths

and boundary conditions. In general, keff
βR

can exhibit a finite real part even for PBC, i.e., in
absence of edge states, due to the combination of evanescent solutions with complex amplitudes
in ΨβR(x, y). Indeed, Fig. 5.7a confirms that the real part of keff

βR
is non-zero and decays expo-

nentially away from the two interfaces. The imaginary part instead has a more sophisticated
behavior with several crossings of zero. In particular, Im keff

βR
(x) shows an antisymmetric behav-

ior with respect to the middle of the tunneling barrier at x = 0, when the length corresponds
to the conductance maximum, i.e., L = 100 nm ≈ Lmax. This behavior is observed for PBC
and HBC, which are shown as blue dashed and red solid lines, respectively. This resembles
a mode, which enters and decays in the QSH region equivalently from both interfaces, albeit
the presented keff

βR
is the response of an incoming mode only from the left. This suggests that

the lowest mode coherently traverses the tunneling barrier and that the imaginary part of keff
βR

7For PBC, the lowest incoming mode is ky = 0, which is represented by the index βR = 0 in Eq. (4.26). In the
case of HBC, we label it, like in Fig. 5.3b, with βR = 1.
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vanishes after averaging over the x-coordinate. We define the averaged keff
βR

as:

〈keff
βR
〉 :=

L/2∫
−L/2

dx keff
βR

(x) (5.13)

Fig. 5.7b shows 〈keff
βR
〉 as a function of L for PBC. The dotted red curve in Fig. 5.7b demonstrates

that Im〈keff
βR
〉 indeed vanishes at Lmax for the zero mode. The vanishing evanescent part of the

effective wave vector coincides with a maximum of the real part of 〈keff
βR
〉 (solid red line), which

gives the impression of an effectively propagating state, which causes the conductance maximum.
Away from Lmax, Re〈keff

βR
〉 decreases while Im〈keff

βR
〉 becomes finite, even for βR = 0. Indeed,

Fig. 5.7a shows that the signal for Im keff
βR

and L = 200 nm ≈ 2Lmax is not antisymmetric.
The inset to Fig. 5.7b shows G(L) for different modes βR and for PBC. Although higher modes
contribute less to the conductance maximum, the mode with βR = 1 still exhibits a maximum
of Re〈keff

βR
〉 around Lmax (solid green line in Fig. 5.7b). The maximum for βR = 1 is smaller in

comparison to βR = 0 and is shifted in the same way as the respective conductance maximum
in the inset to Fig. 5.7b. Im〈keff

βR
〉 for βR = 1 has a zero value at Lmax as well. In contrary,

for βR = 5, which does not contribute to the maximum, Im〈keff
βR
〉 (blue dotted line) is constant

and Re〈keff
βR
〉 (blue solid line) drops to zero. For our parameters, the modes with βR > 4 thus

behave like modes in the topologically trivial regime and have evanescent character. This can
exemplary be verified by comparing the black (βR = 0 for M > 0) with the blue (βR = 5 for
M < 0) lines.
In principle, one could use the parameter limits of section 5.3.1 to derive an analytical condition
for Im〈keff

βR
〉 = 0. However, one of the key assumptions was to set exp[ik4L] to zero. Since this

adds to the effective wave vector keff
βR

, this simplification drastically influences the shape of 〈keff
βR
〉,

i.e., it will not go to zero at Lmax.
In short, we found that the lowest modes of the topologically non-trivial regime, which carry
the conductance maximum, form effectively propagating modes, while the higher modes are
indistinguishable from trivial bulk modes.

5.3.4. Robustness against scalar disorder

One of the Hallmarks of topologically protected states is their robustness against elastic backscat-
tering by scalar disorder. Here, we want to check, if this protection, which is normally associated
with the spatially separated edge states, is also found for the effectively propagating bulk mode
which carries the conductance maximum. Disorder breaks the translational symmetry along
the x-direction, rendering the application of wave matching of asymptotic states impossible. As
described in appendices B and C, spatially varying disorder potentials can be most conveniently
implemented using tight binding (TB) calculations within the equilibrium Green’s function for-
malism, which naturally implements the HBC. In principle, we could have performed the whole
analysis, which we reported in this chapter, using TB calculations. However, to check the validity
of the conclusions for experimentally relevant setups, one needs to simulate large structures. Fur-
ther, a good approximation within the TB formalism, requires a small lattice constant a, because
many fast decaying evanescent modes have to be taken into account. In consequence, we would
have to use large matrix implementations with dimensions up to (2000 · 200 · 2)× (2000 · 200 · 2)
(width · length · degrees of freedom), which demand an extraordinary amount of memory and
CPU time.
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One might wonder, if it is possible to rescale the parameters in a way, that the same signal of a
tunneling junction of width W and length L is reproduced by a smaller system with dimension
W ′×L′. The rescaling can be done by choosing one parameter to be constant and by expressing
the rest of the parameters in terms of the constant one. Setting C as the constant reference
leads to the dimensionless parameters

C̃ =
C

C
= 1, M̃ =

M

C
, Ã =

A

CW
, B̃ =

B

CW 2
, D̃ =

D

CW 2
, L̃ =

L

W
. (5.14)

Rescaling to width W ′ and length L′ gives

C ′ = C, M ′ = M, A′ = A
W ′

W
, B′ = B

W ′2

W 2
, D′ = D

W ′2

W 2
, L′ = L

W ′

W
. (5.15)

While the new set of parameters leads to an equivalent conductance signal in wave matching
approaches, its application to the TB formalism cannot reduce the dimensionality of the matrix
implementations. The reason is that the TB bands are cosine like, while the continuum dispersion
is of leading order k2. For a good approximation of the continuum results, the bandwidth of
the TB model has to be wide enough, so that the Fermi energy, which is determined by −C, is
positioned in a low energy regime, for which cosx ≈ 1−x2/2 is still valid. For this to be true, we
need −C to be a small fraction of the bandwidth, which for the E1 band is around eight times
the hopping parameter t, cf. appendix B. This is also important to fix the number of incoming
modes. For the hopping parameter of the E1 band tE1 = (−B −D)/a2 however, the rescaling

t′E1 = (−B −D)
W ′2

a2W 2
=
W ′2

W 2
tE1, (5.16)

changes all energy scales, except one simultaneously readjusts the lattice constant by

a′ = a
W ′

W
. (5.17)

In other words: a bisection of the width (and of the length), should be accompanied by a
bisection of the lattice constant, in order to keep the energy scale, band width and number of
propagating modes unchanged. Therefore, the number of grid points cannot be decreased by
rescaling.
A convenient work around can be found by the functional dependencies of the hybridization of
edge states in Eq. (2.75) as well as of the position of the conductance maximum in Eq. (5.10)
on the bulk gap M . According to these equations, increasing M has two benefits: Firstly, the
overlap of counter-propagating edge states decreases. This diminishes the interplay of bulk and
edge states, which dominates the conductance in narrow QSHIs in Fig. 5.3a. Secondly, Lmax

is considerably decreased, allowing to test our predictions in shorter tunneling barriers. In this
spirit, we choose a ten times larger bulk gap of M = −31 meV, for which Lmax ≈ 10 nm is
expected. This parameter choice has the drawback of departing by a considerable margin from
the parameters describing the experimental realizations of HgTe/CdTe QWs. Looking at the
sub-band dispersion of HgTe/CdTe QWs in Fig. 2.5, one finds that M := EE1−EH1 = −31 meV
could in principle be found around dQW ≈ 10 nm. However, the principle gap at this QW
thickness is built by H2 and H1 bands, undermining the validity of the BHZ model. Consequently,
the following results have to be seen as conceptual ones rather than as exact predictions for
experiments.
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Figure 5.8.: The charge conductance G as a function of the sample length L. We compare the
wave matching (WM) approach for PBC (dotted red line) and for HBC (solid red
line) with the TB calculations (solid black line) and find good coincidence. Adding
scalar disorder with Gaussian correlations influences the signal slightly but does not
destroy the conductance peak. We used W = 150 nm, C = −2.5 eV, M = −31 meV
and Wd = 0.06 eV. The inset shows the influence of the Fermi energy Ef inside the
tunneling barrier. Adapted from [Reinthaler12]. c©2012 American Physical Society.
All rights reserved.

We choose Ny = 250 grid points along the y-axis. This fixes the lattice constant to a =
150 nm/251, so that the number of lattice points in x-direction varies with L. In order to check
the applicability of this model, we compare the TB calculations in the absence of disorder (black
solid line in Fig. 5.8) with the signal computed in the wave matching formalism (WM, red solid
line). The signals of the two models coincide very well, showing that the above procedure does
indeed not change the results qualitatively but shifts the position of the conductance maximum
to system sizes which can be easily calculated within the TB model. Further, the conductance
for PBC (red dotted line) coincides with the TB signal, indicating that the overlap between the
edge states is negligible.
We include scalar disorder by introducing an on-site energy Vd which varies randomly in the
range [−Wd,Wd] and is characterized by 〈Vd(r)〉 ≈ 0. The maximal disorder strength, which
can be applied without coupling the valence to the conduction band, is Wd = 2|M |. Instead
of applying a different potential at each lattice point (Anderson disorder)8, we choose isolated
scatterers on a fraction Nd = nd(Nx ·Ny) of lattice points, where we fix nd = 0.1 in the following.
The impurities are assumed to be isometric and to spread Gaussian-like over the neighboring
lattice points, with a decay length rd, which is given in units of the lattice constant a. The results
for finite disorder strength Vd have been averaged over 100 different disorder configurations.
After having established the robustness of the conductance maximum using PBC [Recher10], we
focus on HBC in Fig. 5.8, where we apply the constant disorder strength Wd = 0.06 eV and vary
rd from a (green dashed line) to 2a (dotted blue line). For long sample lengths L, the disorder
has no influence on the quantized conductance of the edge states, which are protected against
scattering from scalar disorder. At smaller L, however, the disorder has a visible influence on

8For more details on the characterizations of different types of disorder, the reader is referred to [Akkermans07].
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the evanescent modes. The effect of the disorder on G increases for larger rd. It shifts and,
surprisingly, increases the conductance maximum slightly. This can be understood taking into
account the evanescent character of the populated modes. In this regime, the extension of the
impurities can be comparable with L, which causes large fluctuations in energy over a relatively
large part of the tunneling junction. A change in Fermi energy of the QSHI shifts the position
of the conductance maximum, as shown in Fig. 5.5 for PBC as well as in the inset to Fig. 5.8 for
HBC. Despite these small changes in the transport signal, we can conclude that the conductance
signal is robust against scalar disorder in HBC.

5.4. Conclusion

We have explicitly demonstrated that the evanescent bulk modes of a QSHI carry information
about the topology of the system. This is particularly interesting, because the topology, albeit
being a bulk property, is usually characterized by the presence or absence of protected helical
edge states in experiments, cf. section 2.2.3. Unlike previous publications [Novik10, Recher10],
we included the helical edge states in our analysis by choosing HBC.
In long and wide tunneling junctions in the topologically non-trivial regime, the transport is
dominated by the edge states. However, when L becomes shorter, the edge states are no longer
populated due to the mismatch with the incoming bulk modes. In this regime, we have found
that the bulk states of the topologically non-trivial regime form effectively propagating solu-
tions, which carry the conductance maximum around L = Lmax. Surprisingly, the effectively
propagating modes are robust against scalar disorder. Further, we have analyzed narrow tun-
neling junctions, where finite size effects lead to an interplay of edge and bulk states. The latter
regime is characterized by Fabry-Pérot oscillations as well as a change of the position of the
conductance peak.
In our analysis, the leads have been modeled by highly doped QSHIs. These behave almost like
purely metallic leads at high doping, where the dispersion is dominated by terms of quadratic or-
der in k. In principle, we could have also chosen metallic leads, like for example in [Yokoyama09],
and would have qualitatively obtained the same conductance maximum, because the latter is
formed by the low energetic modes of the QSHI alone.
In section 5.2, we found that the edge state is not reflected from a metallic interface in a wide
parameter range. This auxiliary result considerably helped to understand the tunneling junc-
tions with two interfaces. It will also prove to be very useful, when we carry it over to chapter
6, where we analyze the injection of helical edge states into a highly doped SC.
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states

In the last chapter, we have found that finite size effects can significantly enrich the physical
phenomena in tunneling junctions. Driven by this experience, we generalize our numerical de-
scription to superconducting systems within the BdG formalism. To be specific, we analyze
the fate of helical edge states, which are injected into a superconducting tunneling junction.
When this tunneling junction is wide enough to prevent backscattering, its Andreev reflection
(AR) probability becomes unity, providing a tool to characterize transport in protected edge
states [Adroguer10]. As anticipated, finite size effects introduce a richer variety of transport
channels, including a finite crossed Andreev reflection (CAR). Surprisingly, the modes associ-
ated with CAR can be spatially separated from the electron tunneling contribution, when only
one Kramers’ partner block is considered. Based on this, we propose an all-electrical meter for
CAR processes in QSHI-SC-QSHI tunneling junctions. We will motivate the usefulness of these
results in section 6.1.1. The principle mechanism how to separate CAR from electron tunneling
is presented in section 6.1.2. In section 6.2, we support our argumentation by numerically calcu-
lating the transport through finitely sized tunneling junctions in the generalized wave matching
approach. We explicitly show how the CAR can be tuned by the parameters of the system up
to about 50% of the non-local transport. This chapter is based on [Reinthaler13]1.

6.1. All-electrical measurement scheme for crossed Andreev
reflection

6.1.1. Crossed Andreev reflection as a source of spin entangled electrons

Many applications of quantum information, like quantum encryption or the error correction by
CSS codes, named after Calderbank, Shor and Steane, require the entanglement of quantum
states [Einstein35, Bennett00, Nielsen05]. While entanglement was achieved using the circular
polarization of photons [Aspect82, Zeilinger99], it is an ongoing challenge to create entangled
electrons in solid state devices. Promising candidates are found in s-wave SCs, which couple
spin-↑ and spin-↓ electrons to Cooper pairs, as we have discussed in section 3.1. Splitting
the Cooper pairs into two spatially separate electrons should provide a natural source of spin
entangled electrons [Recher01, Lesovik01]. Since this is exactly the inverse process to CAR, it is
interesting to study the properties of CAR and how its magnitude can be controlled. CAR was
introduced in section 3.3 as a transport process in N-SC-N junctions, i.e., a SC connected to two
normally conducting leads. In these setups, the splitting of Cooper pairs is driven by a finite bias
difference between the left and right lead. A straightforward way to observe CAR, is by non-local
conductance measurements [Beckmann04, Russo05]. However, this method has the drawback
that CAR is disguised by electron tunneling [Falci01], which does not involve Cooper pairs and,
therefore, is a parasitic process. More involved experimental setups could recently detect Cooper

1 c©2013 American Physical Society. All rights reserved.
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(a) 5-terminal setup. We show the corresponding
excitation energy spectrum schematically above
each region. Solid lines indicate edge states,
dashed lines are bulk solutions. For simplicity,
only electronic states are shown in the leads.

(b) Spin selection via an H-bar structure of a QSHI.
Driving a current I in the upper leg of the struc-
ture leads to spin-↑ injection to the QSHI-SC-
QSHI junction in the lower leg.

Figure 6.1.: We consider a QSHI-SC-QSHI junction. Electron and hole edge states are indicated
by red and blue lines as well as + and − signs, respectively. The SC is doped
with energy C2 and grounded, as explicitly shown by contact 5 in (a). Taken from
[Reinthaler13]. c©2013 American Physical Society. All rights reserved.

pair splitting circumventing the electron tunneling processes by including additional quantum
dots [Hofstetter09, Herrmann10] or by current noise [Wei10] measurements.
In this chapter, we make use of the helicity conservation of the edge states in QSHIs to achieve
a spatial separation of the CAR from all other transport channels. Unlike previous works
on QSHI-SC-QSHI interfaces [Sato10, Adroguer10, Chen11], we do not restrict ourselves to a
phenomenological model of the edge states, but are interested in the full solution including both
edge and bulk transport.

6.1.2. Working principle of the all-electrical cross Andreev reflection meter

The basic setup is shown in Fig. 6.1a. It consist of a QSHI-SC-QSHI junction, in which the
SC acts as tunneling barrier. Here, we assume that the SC consist of the hybrid system of a
QSHI proximity coupled to an s-wave SC. This can be realized by growing a SC thin film of,
e.g., Niobium on top of a QSHI slab. In this case, the normally- and superconducting parts
of the setup are based on the same material, avoiding the difficulty to engineer a conducting
contact between a SC and a QSHI. In order to avoid charging effects due to the creation of
Cooper pairs, the SC is always set to ground by contact 5. The rest of the contacts will be
important for the spin selection. On top of all three parts of the junction, the excitation energy
spectrum is schematically presented. In the QSHI leads, transport can only take place in the
edge states (solid lines). In contrast, we assume that the Fermi energy of the superconducting
part is shifted by the energy C2. In section 3.2.3, this doping was shown to occur as a byproduct
of the proximity effect, if the interface in the hybrid structure of Fig. 3.1 is sufficiently clean.
We assume that the doping shifts the Fermi energy of the superconducting part deep into the
conduction band. This assumption is essential for the physics discussed in the following, because
the evanescent bulk states stretch over the whole sample, which facilitates the coupling of the
edge states at opposite edges and aids the generation of a large CAR signal.
To be specific, let us consider a spin-↑ electron to be injected from the left lead, like shown in
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Fig. 6.1a. There are four possible scattering mechanisms which conserve the spin2. Conserv-
ing the particle character of the incoming electron, this can be either electron reflection (R) or
electron tunneling (T). To enter the superconducting condensate, the electron needs a partner
of opposite spin, which ejects a spin-↑ hole3 either in the left or right lead by AR or CAR,
respectively. Due to the helicity of the edge states, AR and T can only take place on the edge of
the incoming electron, while R and CAR are restricted to the opposite edge. This is the basic
idea of the spatial separation of the cross Andreev reflected holes from the tunneled electrons:
Occupying locally separated edges of the system, both can be detected all-electrically by con-
tacting these edges independently, cf. contacts 2 and 3 in Fig. 6.1a.
Neglecting the doping due to the superconductor, i.e., C2 = 0, Adroguer et al. [Adroguer10]
found that in such superconducting tunneling junctions helicity conservation enforces perfect
AR, when the width (W ) and length (L) of the SC become large. However, CAR and T are not
conceptually forbidden in structures of finite size. In section 6.2, we will provide a numerical
solution, demonstrating how CAR can be tuned up to 50% of the non-local signal by varying
the geometry or the doping of the tunneling junction. For the following discussion about the
working principle of the all-electrical CAR meter, it is sufficient to assume CAR to be finite.
The key requirement to obtain the spatial separation of non-local electron- and hole-like modes
is to restrict transport to one spin polarization, here spin-↑. Indeed, injecting a spin-↓ electron
leads to an analogous distribution of scattering channels upon mirroring the QSHI slab about
y = W/2. In consequence, the spin-↓ CAR mode overlaps with the electron tunneling contribu-
tion of the spin-↑ electron and vice versa. In this case, all spatial resolution of electron and hole
signals is lost. Here, we propose two different ways to select one spin polarization: It is possible
to contact the edges independently in a 5-terminal setup [Roth09], like it is shown in Fig. 6.1a.
Grounding all but contact 1, where a voltage V1, is applied, drives only spin-↑ electrons towards
the junction. Non-local conductance measurements, explicitly ∂I2/∂V1 and ∂I3/∂V1, then serve
as a direct electrical measurement of T and CAR, respectively. In Fig. 6.1b, we propose to use
the non-equilibrium QSH effect in an H-bar structure for spin selection. Applying a current I
in the upper leg drives electrons from right to left in the upper leg. Due to helicity, only spin-↑
electrons propagate along the lower edge of the upper leg. These spin-↑ electrons are transmitted
through the bridge to the lower leg, where they are injected to the QSHI-SC-QSHI junction.
Note that the measurement scheme, which we propose to experimentally detect CAR, relies on
restricting the transport to a single spin polarization. This spin filtering destroys the spin en-
tanglement of the underlying Cooper pair. However, spin-entangled electrons could be produced
by the inverse CAR in similar setups, when both spin polarizations are present. This could, for
example, be achieved by coupling both edges to the same reservoirs in Fig. 6.1a.

6.2. Spatial separation of the non-local transport signals

For a concrete numerical treatment, we concentrate on HgTe/CdTe QWs. Nevertheless, our pro-
posal relies on finite size effects as well as the helicity of the edge states of a general QSHI. There-
fore, it should be equally relevant to other 2D topological insulators, like graphene [Kane05a],
inverted type-II semiconductors [Liu08] and thin films of 3D TIs [Shan10, Lu10, Liu10b].

2In this chapter, we use the term spin polarization or simply spin for the Kramers’ partner quantum number.
This is only a matter of wording, because the Kramers’ partners can always be mapped onto two orthogonal
(pseudo-)spin states in the system, although these do not have to be pure spin-z states, cf. section 2.1.2.

3Throughout this chapter, we will always refer to the hole picture introduced in appendix D. In this sense an
incoming spin-↑ electron is Andreev reflected as a spin-↑ hole.
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6. Crossed Andreev reflection in helical edge states

6.2.1. Numerical model

A HgTe/CdTe QW into which superconductivity is induced is described by the BdG Hamiltonian
(3.85). Here, we focus on a single spin polarization, so that we can reduce the Hamiltonian to

H↑BdG(k) =

(
ε(k) + di(k)τi ∆̃

∆̃∗ −ε(−k)− di(k)τi

)
, (6.1)

where ε(k) and di(k) are defined in Eq. (2.61) and the inversion asymmetric terms of Eqs. (2.63)
and (2.64) are neglected. The τi are the Pauli matrices in sub-band space. For convenience of
notation, we did not write the 2 × 2 unit matrix τ0 explicitly. The N-SC-N junction is shown
in Fig. 6.1. The non-superconducting QSHI leads are modeled by H↑BdG(k) with ∆̃ = 0 and
C = 0, i.e., zero Fermi energy, while in the SC region, we choose the doping C2 = −50 meV and
∆̃ = 0.5 meV, which is a realistic value for the induced superconductivity by an s-wave SC, like,
e.g., bulk Niobium with ∆(Nb) ≈ 1.45 meV at zero temperature [Chrestin97]. The rest of the
parameters has been adjusted according to [Rothe10] and are given in Tab. 2.1.
Since we are interested in the edge mode transport of a QSHI, we apply HBC and the generalized
wave matching approach of section 4.3.2 to solve for the asymptotic modes in the three regions
of the QSHI-SC-QSHI junction. The full scattering state is found according to the matching
procedure described in section 4.3.3. Since the evanescent states in the leads do not enter the S-
matrix (4.6), the transport is purely determined by the scattering amplitudes of the edge states.
Let βRe label the right (R) propagating electronic edge mode, which is injected towards the

junction from the left lead. The outgoing modes are indicated by α
e/h
R/L, where e and h indicate

electrons and holes, respectively. Describing outgoing states, the modes, which propagate to the

right (α
e/h
R ) or left (α

e/h
L ) are always located in the right or left lead. Eq. (4.42) determines the

different transport coefficients

T =
∣∣∣SαeR,βeR∣∣∣2 , R =

∣∣∣SαeL,βeR∣∣∣2 , CAR =
∣∣∣SαhR,βeR∣∣∣2 , AR =

∣∣∣SαhL,βeR∣∣∣2 , (6.2)

where we identify the name of the transport process with its probability for simplicity of notation.
Using these transport coefficients, we can express the local and non-local conductances Gij(ε) =
dIi/dVj , i.e., the conductance from contact j to i, where i, j = 1, . . . , 4 correspond to the
contacts in Fig. 6.1a. ε = eV1 is the voltage applied at contact 1. Assuming spatially well
separated transport signals, the conductance at zero temperature can be approximated by using
the BTK formalism. From Eqs. (4.21) and (4.24), we find

G11(ε) =
e2

h
(1 + AR(ε)), G21(ε) =

e2

h
T(ε), G31(ε) = −e

2

h
CAR(ε). (6.3)

The full scattering state Ψ(x, y), which is defined in Eq. (4.39), is the response to an incoming
mode ψβeR,1(x, y) from the left lead. Therefore, it allows us to calculate the local non-equilibrium
charge density

n(x, y) = Ψ†(x, y)ΛΨ(x, y), Λ = diag[1, 1,−1,−1]. (6.4)

Here positive (negative) values of n(x, y) indicate electron-like (hole-like) charge. For plotting
the charge density, we use Eq. (5.11) to normalize Ψ(x, y) at the left interface.
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6. Crossed Andreev reflection in helical edge states

The influence of bulk inversion asymmetry

The general form of the BHZ Hamiltonian contains couplings between the Kramers’ partner
blocks stemming from structure inversion asymmetry (SIA), Eq. (2.64), and bulk inversion asym-
metry (BIA), Eq. (2.63). These effects can in general compromise the spin selection proposed in
Fig. 6.1, endangering the proposed measurement scheme. Here, we focus on the effects of BIA,
because SIA can in principal be adjusted by the interplay of QW growth and gate voltage, cf.
the discussion of Eq. (2.64).
The strength of the BIA terms, ∆BIA, has been estimated to be around 1 meV.4 Up to this cou-
pling strength, the BIA terms only slightly influence the probabilities of the individual scattering
processes. Although the energy splitting which is generated in the edge state by BIA shows en-
ergy dependence, it is generally much smaller than the coupling parameter itself [Michetti12].
However, there are two ways in which BIA terms could influence the spatially separated mea-
surement of electrons and holes. Firstly, BIA couples and hybridizes the degenerate edge states,
leading to states which exist simultaneously on both edges. One option to circumvent this prob-
lem is to inject electrons with a given spin polarization. This is not an eigenstate of the system
but the equilibration process should take longer than the actual transport event due to the small
influence of BIA on the edge states [Michetti12]. Another solution is to lift the degeneracy of the
states at opposite edges, which suppresses the hybridization of the corresponding edge states.
Since the energy shift generated by BIA is very small, already small fluctuations in experimen-
tally relevant samples should overcome the hybridization. For example, random variations in the
thickness of the QW can cause small fluctuations of the bulk gap M , which has been observed
in [Tkachov11].
The second effect is based on the energy dependence of the spin rotation due to the BIA terms.
This causes a more subtle problem, because the spin quantization axis in the leads and the SC
may differ due to the large doping mismatch C2. In this sense, the coupling of different spins in
the leads due to the SC is no longer conceptually prohibited, because the spin precesses within
the SC on a length scale which is inversely proportional to the coupling parameter. In order to
calculate the spin precession length semi-analytically, we first determine the spin-↑ and spin-↓
eigenstates of a doped QSHI in the absence of BIA in an infinite plane. Then, we calculate
the time-dependent overlap of the spin-↓ state with the spin-↑ state, which undergoes a time
evolution in the presence of BIA. The time-dependent overlap is shown in Fig. 6.2a. From the
periodicity, we extract the spin precession time tBIA, which is proportional to the spin precession
length. In Figs. 6.2b and 6.2c we plot tBIA as a function of the BIA coupling strength and as
a function of the doping C2, respectively. We find that the spin precession time decreases with
∆BIA and increases with the doping. To decrease the influence from the spin rotation, which
leads to different spin quantization axes in the leads and in the SC, the spin precession length
should be as large as possible in comparison with the extension of the sample. One can estimate
the spin precession length, by assuming the Fermi velocity of the states to match that of the
incoming electron edge state vF ≈ A/~, where A = 0.365 nm eV [Rothe10]. At C2 = −50 meV
and ∆BIA = 1 meV, where tBIA ≈ 2 ps, the precession lenght is about 1100 nm, exceeding
the dimensions of the tunneling junction, which we propose for the all-electrical CAR meter
(L = 100 nm and W = 200 nm), see below. Therefore, we conclude to neglect the BIA terms
and restrict our calculations to a single Kramers’ partner block.

4So far, experiments, in particular on Shubnikov-de Haas oscillations, do not reveal BIA characteristic signatures,
suggesting that the real value might be much smaller than the current estimate (L. W. Molenkamp, private
communication).
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(a) Time dependent spin preces-
sion calculated from the over-
lap of spin-↑ and spin-↓ states
in the presence of BIA. From
the fit (red line) one can ex-
tract tBIA.
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Figure 6.2.: Semi-analytical estimate of the spin precession time tBIA caused by BIA. We used
an infinite QSHI, whose Fermi energy is shifted into the conduction band by C2.

The influence of inter-edge Coulomb coupling

Another way to couple the edge states at opposite sides of the sample would be the inter-edge
Coulomb interaction, which might play a significant role in narrow samples. Indeed, Tanaka
and Nagaosa [Tanaka09] found that 2D TIs allow for the formation of an inter-edge correlated
liquid. The therefor relevant process, the inter-edge pseudo-spin-flip backward scattering, opens
a gap, which was estimated to be ∼ M exp [−ε′/0.7] for HgTe QWs with a width of the order
of 100 nm, where ε′ is the dielectric constant of the substrate. Using ε′ ∼ 2 − 3 Tanaka and
Nagaosa found an interaction induced gap of ∼ 0.5 meV, which is comparable to the induced
superconducting gap, which we assume. However, their estimate of ε′ is about a factor 5 too small
for HgTe/CdTe QWs. Applying the same reasoning as [Tanaka09] and using a more realistic
estimate of the dielectric constant of CdTe [Strzalkowski76], decreases the gap by interaction
effects drastically, so that the inter-edge Coulomb interaction should not influence the transport
effects significantly.

6.2.2. Tuning the crossed Andreev reflection

In Fig. 6.3, we show the transport coefficients as a function of the width W for the constant
length L = 100 nm. We find that R and CAR approach zero for W & 600 nm, which is in
agreement with Adroguer et al. [Adroguer10], although C2 = −50 meV dopes the system far
outside the bulk gap in our setup. We do not find quantized AR, since L was chosen relatively
small and electrons can tunnel through the junction. Increasing L restores perfect AR. In
contrast to [Adroguer10], we are interested in finite size effects which dominate at W < 600 nm.
In particular, we observe large fluctuations in the signal as well as finite R and CAR. The latter
reaches its maxima at points, where T is relatively small. Therefore, it is possible that CAR
and T have the same probability of about 10% of the total signal in this configuration. At these
points, the total charge current in the right lead, which is the sum of the currents measured in
contacts 2 and 3 in Fig. 6.1a, becomes minimal, because the electron- and hole-like contributions
cancel. The total signal in the right lead can thus be tuned to pure spin currents, similarly to
proposals for quasi-1D wires [Das08].
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Figure 6.3.: The transport coefficients as a function of the width W at constant L = 100 nm
and C2 = −50 meV. Taken from [Reinthaler13]. c©2013 American Physical Society.
All rights reserved.

Fig. 6.4 shows the non-equilibrium charge density n(x, y) of Eq. (6.4). The geometrical dimension
of the junction, which is fixed to W = 200 nm and length L = 100 nm, has been adjusted to
support a large CAR contribution. The corresponding transport coefficients are indicated by
a black vertical line in Fig. 6.3. Warm colors show electron-like charge density, cold colors
symbolize an excess of holes. The two interfaces at −L/2 and L/2 are indicated by vertical
black lines. Inside the leads, the charge density is only distributed along the edges, supporting
the main result of this chapter: the spatial separation of the contributions of T on the upper
edge and of CAR on the lower edge in the right lead, which is enforced by helicity conservation.
This separation works, as long as the edge states, which according to Eq. (2.76) decay like
exp[−λy] away from the edges, do not overlap. This is fulfilled for our setup, where we read
1/λ ≈ 20 nm�W from Fig. 6.4.
In the left lead, we have the incoming electron, which overlaps with a locally reflected hole at the
upper edge. In section 5.2, we found that the direct electron reflection R is strongly suppressed
at the left interface, again because the edge modes do not overlap. Thus, the incoming electron is
either directly Andreev reflected as a hole or enters the SC. Inside the SC, the tunneling solution
is reflected several times between the two interfaces, which explains the resonant behavior at
small width. Since all superconducting solutions are evanescent for 0 = ε < ∆̃, the resonant
behavior due to multiple reflections decays with increasing W . A rough estimate for the length
scale, up to which the resonant behavior can be observed, is obtained by W . ξ0, where ξ0

is the SC’s coherence length defined in Eq. (3.46). For small energies, quadratic terms in the
BdG Hamiltonian (6.1) play a minor role [Schmidt09], allowing the approximation ξ0 ≈ A/∆̃ =
729 nm. In Fig. 6.3, R and CAR are suppressed earlier, which can be understood in the way
that the tunneling solution does not take the direct way, but bounces back and forward between
the interfaces and traverses the SC several times.
In Fig. 6.5a, we plot the transport coefficients as a function of the SC’s length L at fixed
W = 200 nm. For long L, the unit probability of AR is restored [Adroguer10], because the other
transport coefficients decay due to the evanescent nature of the particles. From comparison with
an exponentially decaying envelope function, we find the decay lengths ξ0 for T, ξ0/2 for R and
ξ0/3 for CAR. The different decay lengths directly indicate that the tunneling particle needs to
traverse the sample several times in order to be scattered to the lower edge. Since the direct
overlap of the edge states is suppressed, the transition between the edges is mainly mediated
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Figure 6.4.: The local charge density n(x, y) as response to the incoming electronic mode at
the upper edge in the left lead. L = 100 nm and W = 200 nm were chosen to
meet large CAR and have been indicated by a black line in Fig. 6.3. Warm (cold)
colors and positive (negative) values correspond to electron (hole) densities. The
interfaces at x = −L/2 and x = L/2 are marked by black lines. In the right lead,
we observe a strict separation of the charge densities of electrons and holes. Taken
from [Reinthaler13]. c©2013 American Physical Society. All rights reserved.

by the existence of evanescent bulk modes, which span over the whole sample. In contrast, the
absence of weakly decaying bulk modes at C2 = 0 prohibits transitions between the different
edges. In this case, only the direct overlap of edge states in very narrow QSHI junctions can
couple the upper edge to the lower one. However, the direct overlap of edge states destroys the
spatial separation of electrons and holes in the right lead. Therefore, the large doping C2 is a
key ingredient of our setup, because it generates finite R and CAR.
On top of the evanescent decay, we find resonant oscillations of the signal. The latter can be
understood in the context of Fabry-Pérot oscillations. As long as L � ξ0 is fulfilled, the signal
oscillates on length scales of L = π/Re(kαx ). Although the bulk modes α are evanescent, the
corresponding wave vectors kαx may have a finite real part, analogously to the discussion in section
5.3.3. The periodicity of the Fabry-Pérot oscillations can in general not be quantified uniquely,
because many different bulk modes contribute to the resonant behavior. Nevertheless, instead
of changing the geometry, which is experimentally difficult, the Fabry-Pérot condition can be
fulfilled for a fixed L by varying Re(kαx ). Since the wave vector explicitly depends on the Fermi
energy EF, it is possible to maximize the CAR contribution by using gates as experimentally
realizable knobs. Since the SC screens the system, gating can be realized most efficiently by
back gates. In Fig. 6.5b, we present the behavior when the back gate changes the Fermi energy
by ∆C in the SC as well as in the leads. For the EF range, which is shown, the leads are not
doped outside of the bulk gap, ensuring edge state transport and spatial separation of T and
CAR channels. The transport coefficients oscillate in a similar manner, like when L is varied,
demonstrating the tunability of CAR as a function of the gate voltage. The breakdown of the
conductance around ∆C ≈ −7.5 meV is caused by the opening of the mini-gap (2.75) in the
leads [Zhou08]. In the inset to Fig. 5.6, we have already observed that the edge states become
delocalized around the mini-gap. This couples the opposite edges and generates a peak in the
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Figure 6.5.: Analysis of the transport coefficients to tune the CAR in experimental setups.
Adopted from [Reinthaler13]. c©2013 American Physical Society. All rights re-
served.

CAR. As discussed above, these delocalized edge states do not allow for a spatially separate
measurement of electron and hole solutions.

6.3. Conclusions

In this chapter, we have used the helicity conservation of the edge states of a QSHI to propose
an all-electrical measurement scheme for the CAR based on QSHI-SC-QSHI junctions. Our
proposal relies on the selection of a single spin polarization. The latter can be achieved by
choosing appropriate contact voltages in a 5-terminal setup or, more interestingly, by exploiting
the transport properties of the helical edge states in an H-bar structure.
At the same time, the helicity conservation of the edge states also suppresses the CAR, render-
ing the realization of the proposal impossible in large samples. Using numerical calculations, we
demonstrated that finite size effects can generate significant CAR. Our analysis revealed that a
gate voltage can be used as experimental knob to tune the non-local conductance signals.
In order to obtain a finite and all-electrically measurable CAR, the SC has to couple the edge
states associated with the opposite edges of the sample. In our setup, this is achieved by inducing
the superconductivity into the metallic bulk modes. The latter has been modeled by a SC-QSHI
hybrid system, in which the SC induces superconductivity and, at the same time, a high doping
into the QSHI. The induced doping relies on a clean interface between the SC and the QSHI
and might cause considerable experimental effort. For example, first measurements on proximity
coupled 2D TIs did not reveal high dopings in the hybrid systems [Knez12, Hart14, Pribiag15].
A possible work around would be to use other mechanisms to couple the edge states at opposite
boundaries. In HgTe/CdTe QWs one could locally decrease the thickness of the QW beneath the
SC in the tunneling region. Around the critical thickness, dc ≈ 6.4 nm, the system is in a semi-
metallic phase, for which already a small doping leads to metallic states. Another way, which
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does not rely on doping the system, would be to directly couple the edge states by changing the
geometry of the tunneling junction. For example, edging a constriction into the superconducting
region introduces a local overlap of the edge states [Krueckl11], which does not compromise the
spatial separation of the edge states in the leads.

In the next chapter, we will induce the superconducting condensate directly in the QSHI edge
states, which will lead to the formation of the novel superconducting quantum spin Hall effect.
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The combination of known physical systems often paved the way to construct new states and
exotic physical effects. For example, the combination of SCs with normally conducting tunneling
junctions form Josephson junctions [Josephson62] which nowadays are used as highly sensitive
flux meters [Jaklevic64]. More recently, Fu and Kane [Fu08] opened the field of engineered topo-
logical SCs by predicting p-wave pairing in hybrid systems of helical states and conventional
SCs.
In this chapter, which is based on [Reinthaler15], we induce superconductivity in the edge states
of a QSHI. Adding the orbital effect of an in-plane magnetic field, we find the novel supercon-
ducting quantum spin Hall effect. The latter is characterized by edge states, which remain helical
and protected against scalar disorder in finite in-plane magnetic fields. The system’s giant or-
bital g-factor, which is a non-trivial consequence of the U(1)-symmetry breaking, makes the edge
states tunable by magnetic fields well below the critical field of the SC. The resulting gapless
superconductivity and strong spin polarization can be used to detect the superconducting QSH
effect by its density of states (DOS) or by its unique transport properties: a non-monotonic
excess current and a zero-bias conductance peak splitting.
The magnetic field and the QSHI, which is realized in a 3D TI thin film, are described in section
7.1. The excitation spectrum and the edge states on the semi-infinite half plane are discussed in
section 7.2. First, sections 7.2.1 and 7.2.2 provide a detailed description of the chosen boundary
conditions and of the analytical solution of the problem. The main results of these calculations
are then highlighted in sections 7.2.3, where we discuss the giant g-factor and gap closing, and
7.2.4, which links the protection of the edge states to symmetry. Finally, in section 7.3, we
propose feasible experiments to test our predictions.

7.1. Specification of the quantum spin Hall insulator-superconductor
hybrid structure

7.1.1. In-plane magnetic field in the hybrid structure

In this section, we determine the vector potential Ax associated with an external in-plane mag-
netic field, taking into account its screening by a diamagnetic current in the SC. Like in section
3.2.2, we introduce a hybrid system of a QSHI and a SC, the interface of which is lying in the
z = 0 plane. The profile of this system is sketched in Fig. 7.1. We assume the in-plane magnetic
field By to be constant and to point in y-direction, which can be most conveniently formulated
in the London gauge (3.41)

A = Ax(z)x̂. (7.1)
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Figure 7.1.: Geometry of SC-QSHI hybrid structure. The dashed curve shows the z-dependence
of the vector potential in Eq. (7.4). Adapted from the supplementary material of
[Reinthaler15]. c©2015 American Physical Society. All rights reserved.

This ensures a real pair potential, so that the screening current density can be described by the
London equation (3.48). Ampère’s law then yields for our geometry

∂2
zAx(z) = µ0

e2nSC

m∗
Ax(z) =

1

λ2
L

Ax(z), (7.2)

where the London length λL is defined by Eq. (3.51) in terms of the vacuum permeability µ0,
the effective electron mass m∗ and the density of the Cooper pairs in the SC nSC. The boundary
conditions to Eq. (7.2) are symmetric with respect to the applied field

∂zAx(z = 0) = By, ∂zAx(z = dSC) = By. (7.3)

Here, dSC is the thickness of the SC in z-direction. Consequently, the solution of this boundary
problem is anti-symmetric with respect to the middle of the SC:

Ax(z) = ByλL

sinh
[

1
λL

(
z − dSC

2

)]
cosh

[
dSC
2λL

] , 0 ≤ z ≤ dSC. (7.4)

By continuity, the vector potential in the QSHI is

Ax(z) = Byz +Ax(0+) = Byz −ByλL tanh
dSC

2λL
, −dQW ≤ z ≤ 0, (7.5)

where the first term is the vector potential of the external field and Ax(0+) is the solution
(7.4) at the surface z = 0. Since, for typical SC-QSHI structures, the thickness of the QSHI
dQW � λL tanh (dSC/2λL), we can approximate Eq. (7.5) by a constant

Ax(z) ≈ Ax(0+) = −ByλL tanh
dSC

2λL
, −dQW ≤ z ≤ 0. (7.6)

The vector potential inside the QSHI can thus be tuned by the parameters of the SC, particularly
by its geometry. We will rely on our choice of a real pair potential in the following calculations.
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In this sense, the solutions (7.4) to (7.6) are unique and may not be changed by an arbitrary
gauge potential.

7.1.2. 3D to 2D crossover

The physics we discuss in the following relies on the combination of superconductivity with the
helical edge states of a QSHI. Our results should therefore be applicable for any realization of
the QSH phase, like, e.g., HgTe/CdTe QWs [Bernevig06] or inverted type-II semiconductors
[Liu08]. For an explicit model, we choose thin films of 3D TIs [Shan10, Lu10, Liu10b].
To motivate this, let us have a short look at the tight binding (TB) dispersion in a 3D TI
thin film in the ribbon geometry. To be specific, we assume the 3D TI to be described by the
Hamiltonian for Bi2X3 (X = Se or Te) in the orbital basis (|P1+

z , ↑〉 , |P2−z , ↑〉 , |P1+
z , ↓〉 , |P2−z , ↓〉)

[Zhang09, Liu10a]

H3DTI =

 ε(k) +M(k) B(kz) 0 A(kx, ky)(kx − iky)
B(kz) ε(k)−M(k) A(kx, ky)(kx − iky) 0

0 A(kx, ky)(kx + iky) ε(k) +M(k) −B(kz)
A(kx, ky)(kx + iky) 0 −B(kz) ε(k)−M(k)

,
ε(k) = C0 + C1k

2
z + C2(k2

x + k2
y)

M(k) = M0 +M1k
2
z +M2(k2

x + k2
y)

A(kx, ky) = A0 +A2(k2
x + k2

y)

B(kz) = B0 +B1kz. (7.7)

We discretize the Hamiltonian on a square lattice according to appendix B. The ribbon is infinite
in x-direction. Ny and Nz give the number of lattice points in y- and z-direction, respectively.
While Ny is large, Nz gives the thickness of the thin film. To identify the qualitative behavior,
we choose the unit-less toy parameters

A0 = B0 = M1 = M2 = 1, M0 = −1, C0 = A2 = B1 = C1 = C2 = 0, a = 1 (7.8)

where a is the lattice constant of the TB discretization. Further, the Fermi energy is at the charge
neutrality point (C0 = 0), the valence and the conduction band are symmetric (C1 = C2 = 0)
and terms of the order of k3 and kz are disregarded. The formation of edge states out of the
surface states is presented in Fig. 7.2, where the TB dispersion is plotted for Ny = 40 and
varying Nz. The color code symbolizes the weight of the state on the first and last 10% of lattice
sites in y-direction. For Nz = 10 in Fig. 7.2a, the quadratic bulk states are connected by linearly
dispersing surface states. The gap in the surface states is caused by hybridization of the states
at the top (z = Nz) and bottom (z = 1) surface, in analogy to the mini-gap in the edge state
spectrum in section 2.3.3. When the film thickness becomes thinner in Figs. 7.2b and 7.2c, the
surface states gap out and a pair of strongly localized edge states appears.
The low energetic behavior of 3D TIs can be described in an effective model for the linearly
dispersing surface states [Fu07b, Liu10a]

Ht,b ≈ ±vF(pxσx + pyσy), (7.9)

where the top (t) and bottom (b) surface have opposite helicity. vF is the Fermi velocity and
σi are the Pauli matrices in spin basis. The Peierls’ substitution p → ~k + eA includes the
magnetic vector potential. For the in-plane magnetic field of section 7.1.1, this specifically
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Figure 7.2.: The TB dispersions of Hamiltonian (7.7) show a 3D to 2D crossover when Nz is
decreased. The color code gives the localization in y-direction: the darker the color
the stronger localized are the states to the edges at y = 1 and y = Ny. Ny = 40 and
the rest of the parameters has been chosen according to Eq. (7.8).

results in p→ (~kx + eAx, ~ky)T . The hybridization of the surface states can be introduced by
the coupling strength Γ, so that the effective Hamiltonian for the QSHI takes the form

HQSHI =

(
−µσ0 +Ht Γσ0

Γσ0 −µσ0 +Hb

)
= −µτ0σ0 + vFpxτzσx + vFpyτzσy + Γτxσ0. (7.10)

The Pauli matrices τi refer to the top and bottom surface. The latter can be interpreted as a
pseudo-spin degree of freedom and is treated like the sub-bands in the basis of the BHZ model
(2.58). In Eq. (7.10) we assume that the chemical potential µ is the same for both surfaces.
HQSHI coincides, up to a unitary transformation, with the Hamiltonian derived by projecting
Eq. (7.7) onto the low energetic states in [Lu10]. Since we are interested in the vicinity of the
p = 0 point, we only keep the terms which are constant or linear in p.
The low energy behavior of HgTe/CdTe QWs can be similarly described by only considering
the constant and linear in k terms in the BHZ Hamiltonian (2.59) [Schmidt09], resulting in a
Hamiltonian which is closely related to Eq. (7.10). In HQSHI, the coupling energy Γ takes the
role of the bulk gap M . In contrast to the thin film Hamiltonian (7.10), the terms of the BHZ
model that are linear in k do not couple the real spin (σi) but the pseudo-spin in form of the
sub-bands (τi). Nevertheless, we have explicitly calculated in section 3.2.4 that both models
lead to triplet pairing terms, making our results for the 3D TI thin film applicable to general
superconducting QSHIs.

7.1.3. Bogoliubov-de Gennes Hamiltonian and symmetries

When the SC of Fig. 7.1 induces the pair potential ∆̃, the system can be described in the Nambu
basis (

bkt↑, bkt↓, bkb↑, bkb↓, b
†
−kt↑, b

†
−kt↓, b

†
−kb↑, b

†
−kb↓

)
, (7.11)
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where the operators bkτσ are defined in Eq. (3.53). The additional pseudo spin τ again refers to
the top (t) and bottom (b) surface state. The BdG Hamiltonian reads

HBdG(k) =

(
HQSHI(k) i∆̃τ0σy
−i∆̃τ0σy −H∗QSHI(−k)

)
= ~vFkxπ0τzσx + vFeAxπzτzσx + ~vFkyπzτzσy

− µπzτ0σ0 + Γπzτxσ0 − ∆̃πyτ0σy, (7.12)

where we introduced the Pauli matrices in particle-hole space (πi). Here and in the following, we
restrict our discussion to real ∆̃, in accordance with the gauge (7.1). Since the thickness of the
QSHI is much smaller than the coherence length of the superconductor (3.46), we assume ∆̃ to
be the same for the top and bottom surface, in accordance with the discussion in section 3.2.2.
Further, we assume that the induced superconductivity does not notably dope the QSHI, which
coincides with the case of a dirty interface between the QSHI and the SC, as discussed in section
3.2.3. Although the explicit form of the induced pair potential is purely s-wave, we found in
section 3.2.4 that the combination with spin-momentum locking induces effective triplet pairing
contributions.
Note that the term proportional to the magnetic vector potential Ax has a different structure in
particle-hole space than that proportional to kx. The reason can be understood from the BdG
formalism. The latter describes the superconductor as a system composed of electron- and hole-
like excitations1. The charge q of the electron- and hole-like excitations is opposite, resulting
in a qualitatively different influence of the magnetic vector potential on the two sub-systems.
This difference between the superconducting and normal QSHI has striking consequences in the
response to the in-plane magnetic field, as will be shown in section 7.2.3.
The relevant symmetry operations for our system are time-reversal symmetry (TRS), particle-
hole symmetry (PHS) and the combination of time-reversal and particle-hole symmetry (TPS).
TRS has been introduced in section 2.1. In the Nambu basis (7.11), the time-reversal operator
acts according to

Θ̂ = −iπ0τ0σyK̂, with Θ̂HBdG(A)Θ̂−1 = HBdG(−A). (7.13)

As expected, a finite magnetic vector potential breaks TRS2. In the same way, one finds for the
PHS, which has been discussed in the context of the BdG formalism in section 3.1.3,

Ĉ = −πxτ0σ0K̂, with ĈHBdG(A)Ĉ−1 = −HBdG(A). (7.14)

1 Throughout this chapter, when we talk about hole-like excitations, we will always refer to the missing electron
picture introduced in appendix D. In this sense, an incoming spin-↑ electron is Andreev reflected as an empty
electronic state with spin-↓.

2Note that also an imaginary pair potential apparently breaks TRS. In this case, the Hamiltonian contains the
term

−|∆̃| sinφπxτ0σy
Θ̂−→ +|∆̃| sinφπxτ0σy.

This can be understood by Eq. (3.40), which connects the phase of the pair potential to the gauge of the
magnetic vector potential. In the case that the gauge corresponds to a zero magnetic field, the TRS breaking
is an artifact and can be cured by a redefinition of Θ̂. Anyway, throughout this chapter, we work in the London
gauge (3.41), which ensures real ∆̃.
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QSHI
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By ψ ∝ e−
y
δ

Figure 7.3.: Sketch of the semi-infinite superconducting QSHI as cut in the y − z-plane. The
system is assumed to be infinitely long in x-direction and covers the half space y ≥ 0,
leading to localized edge states ψ (dotted line), see Eq. (7.21).

The operator and action of TPS can be inferred from the above to be

X̂ := Θ̂Ĉ = iπxτ0σy, with X̂HBdG(A)X̂−1 = −HBdG(−A). (7.15)

7.2. The edge states in the semi-infinite geometry

In this section, we solve HBdG (7.12) on the semi-infinite half plane y ≥ 0, which is depicted
in Fig. 7.3. This geometry breaks translational invariance in y-direction and ky = −i∂y is not
conserved. In contrast, the system stretches infinitely in x-direction, so that kx remains the only
good momentum quantum number in the gauge (7.1). In the following, we will refer to kx by k
for simplicity of notation.

7.2.1. Boundary conditions

In order to confine the wave function at y = 0, we have to impose the correct boundary con-
ditions. Simply setting the wave function to zero, ψ|y=0 = 0, does not work, because of the
Dirac-like nature of the BdG Hamiltonian (7.12). Instead, imposing that the boundary condi-
tions define the Hamiltonian as a hermitian operator within its domain, which here is the half
plane, it was shown [Berry87, McCann04], that the most general boundary condition is given by
the matrix equation

ψ|y=0 = Mψ|y=0. (7.16)

In the Nambu basis Eq. (7.11), the wave function ψ has 8 components:

ψ =
(
ψpt↑, ψpt↓, ψpb↑, ψpb↓, ψ

∗
−pt↑, ψ

∗
−pt↓, ψ

∗
−pb↑, ψ

∗
−pb↓

)T
. (7.17)

Consequently, M is given by an 8 × 8 unitary matrix, which meets the requirement M2 = 1

and
[
M, ĵy

]
+

= 0. The anti-commutation relation with the current operator in y-direction is

equivalent to the condition that the current through the boundary vanishes

jy=0 = 〈ψ| ĵy |ψ〉
∣∣∣
y=0

= 0. (7.18)

The confinement of the states can in general be enforced by opening an energy gap in the
spectrum, which is assumed to rise to infinity at the boundary of the system. In a purely
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2D Dirac system, the gap is induced by a magnetic term ∝ mzσz [Berry87], which by itself
breaks TRS. In the case of two hybridizing surface states, the gap opening can by achieved by
the coupling terms ∝ Γσ0. The latter conserve TRS, which is a fundamental symmetry of the
underlying QSHI. One can understand this confinement by considering the physical nature of
the surface states at the boundary: cutting the sample will leave a new surface, which connects
the top and bottom surface states, leading to a strong hybridization and the opening of a gap.
From Heisenberg’s equation of motion, we find the current operator ĵy = vFπzτzσy and write
Eq. (7.18) explicitly as

jy=0 = ivF

(
−ψ∗pt↑ψpt↓ + ψ∗pt↓ψpt↑ + ψ∗pb↑ψpb↓ − ψ∗pb↓ψpb↑

+ψ−pt↑ψ
∗
−pt↓ − ψ−pt↓ψ∗−pt↑ − ψ−pb↑ψ∗−pb↓ + ψ−pb↓ψ

∗
−pb↑

) !
= 0, (7.19)

which can be solved by

ψpb↑ = ψpt↓, ψpb↓ = −ψpt↑, ψ∗−pb↑ = ψ∗−pt↓, ψ∗−pb↓ = −ψ∗−pt↑
⇔ ψ = π0τyσyψ ⇒ M = π0τyσy. (7.20)

As expected this boundary condition couples the top and bottom surface states and preserves
TRS. Using the confinement (7.20) ensures that the applied magnetic field is the only term in
our model, which breaks TRS.

7.2.2. Dispersion and spinors

Here, we present a detailed analytical calculation of the eigenstates for the interested reader.
The main results, the giant orbital g-factor and the protection of the edge states are then
recapitulated and discussed in sections 7.2.3 and 7.2.4, respectively.
To solve for the edge states in the bulk gap, we choose an ansatz, which decays exponentially
away from the boundary for y ≥ 0

ψ = Φk exp
[
ikx− y

δ

]
. (7.21)

Plugging it into the stationary Schrödinger equation, HBHZψ = Eψ, we arrive at[
vF~kπ0τzσx + vFeAxπzτzσx +

i~vF

δ
πzτzσy − µπzτ0σ0 + Γπzτxσ0 − ∆̃πyτ0σy

]
Φk = EΦk.

(7.22)

At y = 0, where Eq. (7.20) holds, we use

πzτxσ0Φk = πzτxσ0(π0τyσy)Φk = πz(iτz)σyΦk (7.23)

to cast the sum (i~vF/δ)πzτzσy + Γπzτxσ0 into (Γ + ~vF/δ)πzτxσ0. Equating this term to zero,
we find the decay length

δ = −~vF

Γ
=

~vF

|Γ|
. (7.24)
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The edge solution exists only for the inverted band structure with Γ < 0. Since the boundary
condition (7.20) relates the top and bottom surface, the spinor Φk simplifies to

Φk = (χk, iσyχk, ξk, iσyξk)
T . (7.25)

Now, we can reformulate the problem as a system of coupled linear equations

0 = [vF(~k + eAx)σx − (µ+ E)σ0]χk + ∆̃iσyξk (7.26a)

0 = [−vF(~k + eAx)σx − (µ+ E)σ0] iσyχk + ∆̃iσy(iσy)ξk (7.26b)

0 = −∆̃iσyχk + [vF(~k − eAx)σx + (µ− E)σ0] ξk (7.26c)

0 = −∆̃iσy(iσy)χk + [−vF(~k − eAx)σx + (µ− E)σ0] iσyξk. (7.26d)

Upon multiplication by −iσy, Eqs. (7.26b) and (7.26d) correspond to Eqs. (7.26a) and (7.26c),
respectively. We hence solve Eqs. (7.26a) and (7.26c) independently. From Eq. (7.26a), we find

ξk =
1

∆̃
[vF(~k + eAx)σz − i(µ+ E)σy]χk. (7.27)

Plugging this into Eq. (7.26c), we arrive at

0 =
[
(2vF~kµ− 2vFeAxE)σz −

(
v2

F(~2k2 − e2A2
x) + µ2 − E2 + ∆̃2

)
iσy

]
χk | · iσy

0 = − (2vF~kµ− 2vFeAxE)σxχk +
(
v2

F(~2k2 − e2A2
x) + µ2 − E2 + ∆̃2

)
σ0χk (7.28)

so that χk must be an eigenstate to σx:

χks = (s, 1)T , s = ±1. (7.29)

Finally, we can solve the excitation energy spectrum at the interface

Esα = svFeAx + α

√
∆̃2 + (µ− svF~k)2, (7.30)

where α = ±1 designates conduction or valence bands. We will discuss the dispersion in detail
in section 7.2.3.
The normalized solutions can be found from Eq. (7.21) together with (7.25), (7.27) and (7.29)
to be

ψαks(y) =
exp

[
ikx− y |Γ|~vF

]
N

(
uαksφs
vαksφ−s

)
(7.31)

The solution decouples in a part which comes from the particle solution exp
[
ikx− y |Γ|~vF

]
φs with

the spinor

φs = (s, 1, 1,−s)T (7.32)
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and a part containing the superconducting coherence factors:

uαks =
1

Ñ(α, k, s)
=

1√
2

|∆̃|√
∆̃2 + (µ− svF~k)2 + α(µ− svF~k)

√
∆̃2 + (µ− svF~k)2

(7.33a)

vαks =
1

∆̃Ñ(α, k, s)

(
−vF~k + sµ+ αs

√
∆̃2 + (µ− svF~k)2

)
=

1√
2

sα|∆̃|√
∆̃2 + (µ− svF~k)2 − α(µ− svF~k)

√
∆̃2 + (µ− svF~k)2

. (7.33b)

The coherence factors are normalized according to |uαks|2 + |vαks|2 = 1 by setting

Ñ2(α, k, s) =
2

∆̃2

[
∆̃2 + (µ− svF~k)2 + α(µ− svF~k)

√
∆̃2 + (µ− svF~k)2

]
. (7.34)

Further, the normalization over the half space y > 0 and over the dimensions of the spinor takes
the form

N2 =

∫ ∞
0

dy exp

[
−2y

|Γ|
~vF

]
(φ∗s · φs) = (2 + 2s2)

~vF

2|Γ|
= 2

~vF

|Γ|
. (7.35)

In the following, we will analyze how the eigenstates behave under the symmetry operations of
section 7.1.3. For this, it is useful to reformulate the eigenstates in an energy dependent form
and to identify the quasi-particle character of the states:

Excitation energy representation of the states

We solve the dispersion (7.30) for

kβs (E) =
1

vF~

(
sµ+ β

√
(E − sevFAx)2 − ∆̃2

)
, β = ±1. (7.36)

By squaring the dispersion one looses the information about the sign of α, so that β is not in
one-to-one correspondence to α.3 The correct relation can be found by checking the consistency
of the equation

Eαs = svFeAx + α

√
∆̃2 + (µ− svF~kβs (E))2 !

= E, (7.37)

where we fix E and β. The result is independent of β:

Eαs = svFeAx + α|E − sevFAx| ⇒ α =

{
1, E > sevFAx

−1, E < sevFAx
(7.38)

3 Although α and β are not in one-to-one correspondence, both are related to the quasi-particle character of the
solution, as we will find later in Eq. (7.42). Throughout this chapter, we will always use α (β) when we refer
to the momentum (energy) representation.
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and α is fixed by energetic constraints. In total, the energy dependent formulation takes the
form

ψβEs(y) =
exp

[
ikβEsx− y

|Γ|
~vF

]
N

(
uβEsφs
vβEsφ−s

)
. (7.39)

The coherent factors in the excitation energy representation

uβEs =
1√
2

∆̃√
(E − sevFAx)2 − sβ(E − sevFAx)

√
(E − sevFAx)2 − ∆̃2

(7.40a)

vβEs =
1√
2

s∆̃sign [E − sevFAx]√
(E − sevFAx)2 + sβ(E − sevFAx)

√
(E − sevFAx)2 − ∆̃2

. (7.40b)

are related by

vβEs = s sign [E − sevFAx]u−βEs , (7.41)

indicating that the sign of β determines the carrier as electron- or hole-like.

Quasi-particle character of the states

A full estimate of the quasi-particle character P can be obtained by the expectation value of the
operator πzτ0σ0:

P βEs =
〈
ψβEs

∣∣∣πzτ0σ0

∣∣∣ψβEs〉 =
(
uβEs

)∗
uβEs −

(
vβEs

)∗
vβEs = sβ

√
(E − sevFAx)2 − ∆̃2

E − sevFAx

Pαks = 〈ψαks|πzτ0σ0 |ψαks〉 = (uαks)
∗ uαks − (vαks)

∗ vαks = −α µ− s~vFk√
∆̃2 + (µ− s~vFk)2

, (7.42)

showing how the quasi-particle character depends on α (β), s and k (E). At the Fermi points,
kF = sµ

~vF
(EF = Esα(kF) = svFeAx + α∆̃), one finds

P βEFs
= PαkFs

= 0, (7.43)

i.e., electron- and hole-like states are perfectly mixed at the band edges. Far away from the
quasi-particle gap, we get (k = κ|k|, E = ε|E|, where κ = ε = ±1)

lim
|E|→∞

P βEs = εsβ, lim
|k|→∞

Pαks = κsα, (7.44)

where P → 1 (P → −1) indicates electrons (holes). Especially, we find that, for fixed energy E,
magnetic vector potential Ax and spin s, the quasi-particle character is determined by α (β) in
the momentum (energy) representation.
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Symmetry relations for the edge states

Here, we finally analyze, how TRS (7.13), PHS (7.14) and TPS (7.15) act on the edge state (7.39).
This knowledge will help us to understand the edge states’ protection against backscattering in
section 7.2.4. Since the spinors are real, the complex conjugation simply inverts the propagation
in x-direction:

exp
[
ikβEs(Ax)x

]
K̂−→ exp

[
−ikβEs(Ax)x

]
= exp

[
ik−βE−s(−Ax)x

]
= exp

[
ik−β−E−s(Ax)x

]
, (7.45)

where the last two equalities are obtained by comparison with Eq. (7.36). The last equality
especially holds, because the excitation energy E and the vector potential Ax enter the solution
in a symmetric way. The coherence factors (7.40a) and (7.40b) show an analogous behavior

uβEs(Ax) = u−βE−s(−Ax) = u−β−E−s(Ax), vβEs(Ax) = −v−βE−s(−Ax) = −v−β−E−s(Ax). (7.46)

Considering TRS, the particle spinor transform as

φs = (s, 1, 1,−s)T Θ̂→ −iτ0σy(s, 1, 1,−s)T = (−1, s, s, 1)T = sφ−s (7.47)

and with Eqs. (7.45) and (7.46) one obtains

ψβEs(Ax)
Θ̂−→ sψ−βE−s(−Ax). (7.48)

For preserved TRS at Ax = 0, this resembles the Kramer’s partner relation (2.19). Similarly,
one obtains the relations for PHS and TPS

ψβEs
Ĉ−→ −s sign [E − svFeAx]ψ−β−E−s (7.49)

ψβEs
X̂−→ sign [E − svFeAx] exp

[
i(kβEs − k

−β
Es )x

]
πzτ0σ0ψ

−β
Es . (7.50)

The prefactor in Eq. (7.50)

exp
[
i(kβEs − k

−β
Es )x

]
= exp

i
2β
√

(E − sevFAx)2 − ∆̃2

~vF
x

 (7.51)

simplifies to a phase factor for propagating solutions, for which (E−svFeAx)2 > ∆̃2. In contrast
to Eqs. (7.48) and (7.49), the relation for TPS is not broken by a finite vector potential and
connects states at the same energy. The price is the x-dependent phase and a transformation
in particle-hole space. It is interesting to note that both, Ĉ and X̂, invert the quasi-particle
character (7.42) of the states.

7.2.3. Giant orbital g-factor

In Eq. (7.30), we found the excitation energy spectrum of the edge states

Esα = svFeAx + α

√
∆̃2 + (µ− svF~k)2

= −sg∗µBBy + α

√
∆̃2 + (µ− s~vFk)2. (7.52)
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In section 3.1.5 and especially in Eq. (3.48), we discussed that a magnetic vector potential
generates the momentum of the superconducting condensate. Hence, the term ∝ sAx is to be
interpreted as the locking of the spin to the momentum of the superconducting condensate. In
consequence, the SC restores and stabilizes the helicity of the edge states and the eigenenergies
are characterized by the conserved spin s, even in finite in-plane magnetic fields. We will
therefore refer to these edge states as the superconducting quantum spin Hall effect.
In the second line of Eq. (7.52), we used the dependence of the vector potential in the QSHI in
Eq. (7.6) and introduced the effective g-factor

g∗ =
2mvF

~
λL tanh

dSC

2λL
(7.53)

as well as the Bohr magneton µB. Eq. (7.52) shows that the orbital effect takes the form
similar to the Zeeman spin splitting in thin superconducting films [Meservey70]. However,
in the superconducting QSH effect the effective g-factor can be tuned and engineered by an
appropriate choice of the material and structure parameters, i.e., the edge state velocity vF, the
thickness of the SC dSC and the London length λL. Let us estimate g∗ for Bi2X3 (where X=Se,
Te) and HgTe-based structures which typically have ~vF ≈ 300 meV nm [Liu10a, Brüne11]
and, consequently, g∗ ≈ 7.9 nm−1 × λL tanh(dSC/2λL). For the commonly used SC Nb with
λL ≈ 50 nm [Maxfield65] and nanoscale thicknesses ranging from dSC = 50 nm up to 250 nm,
we obtain g∗ ≈ 200 − 400, which exceeds the electron spin g-factor by at least two orders of
magnitude.
Note, that the giant g-factor is not a trivial consequence of the helical edge states of the non-
superconducting QSHI. The orbital effect of Ax enters via the Peierls substitution and gauges
the wave function by a complex phase factor. In a non-superconducting QSH system, this phase
factor cannot have any physical consequences due to Noether’s theorem. In terms of the energy
dispersion, the orbital effect of Ax only causes a shift of the band structure in the magnetic
Brillouin zone (p̃x = px + qAx) and can be taken out of the calculations by a simple redefinition
of the lattice momentum (p̃x − qAx). This is not possible in superconducting systems, which
break U(1)-gauge symmetry. In this case, the vector potential Ax couples differently to electron-
and hole-like states, due to their opposite charge q, allowing for non-trivial effects, which can be
measured.
In conclusion, this novel effect is non-trivial and fundamentally relies on the interplay of the
helical edge states with the superconducting condensate, which breaks U(1)-symmetry. As
a direct consequence, we find that the orbital g-factor depends on λL and dSC, i.e., on the
parameters of the SC.

Gap closing

Exhibiting a giant orbital g-factor, the superconducting QSH effect does not require high mag-
netic fields to generate spin splitting, which we analyze in Fig. 7.4. At µ = Ax = ∆̃ = 0,
Eq. (7.52) describes a Dirac cone, which is double degenerate due to the redundancy of the BdG
formalism. A finite chemical potential shifts the electron- and hole-like branches relatively to
each other, so that the pair potential ∆̃ opens a gap at the two Fermi points ±kF = ±µ/(~vF),
cf. Fig. 7.4a for Ax = By = 0. Note that the Fermi points ±kF correspond to the opposite-spin
states with s = ±1. Therefore, the magnetic field splits the states at different Fermi points,
shifting them relatively to each other in energy, as depicted in Fig. 7.4b. The excitation gap
vanishes in Fig. 7.4c, when the orbital energy scale matches the induced gap at |Ax| = ∆̃/(evF).
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Figure 7.4.: Excitation energy spectrum of the superconducting QSH effect for different in-plane
magnetic fields. Solid and dashed curves correspond to the opposite spin states
with s = ±1, respectively. Red and blue colors schematically indicate electron- and
hole-like branches corresponding to those in the normal system. For By = 0, there
is an excitation gap at the two Fermi points ±kF indicated by the vertical lines.
For By 6= 0, the gap is reduced (b) and vanishes completely for |By| = B∗ (c). For
|By| > B∗ (d) the spectrum remains gapless, albeit each spin branch separately has
a gap at finite energies. Adapted from [Reinthaler15]. c©2015 American Physical
Society. All rights reserved.

The magnetic field, at which the superconducting gap closes, takes the form

B∗ =
∆̃

evFλL tanh(dSC/2λL)
=

~
eξSCλL tanh(dSC/2λL)

, (7.54)

where ξSC is the coherence length introduced in Eq. (3.46). For the induced gap ∆̃ / 0.1 meV
[Maier12] and the Nb-structure parameters used above, B∗ / 5.5 mT is much smaller than the
critical field of Nb. For |By| > B∗, the spectrum remains gapless, as can be observed in Fig. 7.4d.
The branches for each spin polarization, however, remain gapped between the spin-dependent
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band edges

E± = sevFAx ± ∆̃. (7.55)

Zero energy modes

For |By| > B∗, see Eq. (7.54), there are always four states at zero excitation energy4. At the
transition |By| = B∗, their number is reduced to two:

ψ0
s(y) =

exp
[
iskFx− y |Γ|~vF

]
N

(
φs

−signAxφ−s

)
. (7.56)

These states are equivalent to two Majorana zero modes, which are proposed to occur in p-wave
superconductors [Kitaev01, Alicea12]. Indeed, defining η = (1 + signAx)/2, one can construct
new states γ1 = exp[iηπ/2](ψ0

s + ψ0
−s) and γ2 = −i exp[iηπ/2](ψ0

s − ψ0
−s) with the self-adjoint

properties of emergent Majorana zero modes.

7.2.4. Protection against backscattering

In the following, we show that the superconducting edge states are protected against elastic
scattering even in finite in-plane magnetic fields. To this end, we introduce the non-magnetic
disorder potential Hdis = U(x)πzτ0σ0 and calculate the matrix element of Hdis between states
with the same energy E:〈

ψβ1

Es1

∣∣∣Hdis

∣∣∣ψβ2

Es2

〉
=
U(x)

2
exp

[
i(kβ2

Es2
− kβ1

Es1
)x
]

·(1 + s1s2)
((
uβ1

Es1

)∗
uβ2

Es2
−
(
vβ1

Es1

)∗
vβ2

Es2

)
. (7.57)

The matrix element vanishes for the states with opposite spin projections s1 = −s2. This
means the absence of backscattering that couples different Fermi points k±F = ±µ/~vF. This
is true irrespective of the presence or absence of the magnetic field. Furthermore, there is no
scattering between the states belonging to the same spin branch. For such states s1 = s2 = s,
β1 = −β2 = β, and (uβEs)

∗u−βEs = (vβEs)
∗v−βEs , also yielding a vanishing matrix element (7.57).

This can be interpreted as protection by the TPS, whose operator X̂ has the same matrix
structure as Hdis, leading to a generalized Kramers’ theorem〈

ψβEs

∣∣∣ X̂ ∣∣∣ψβEs〉 ∝ 〈ψβEs∣∣∣πzτ0σ0

∣∣∣ψ−βEs 〉 = 0. (7.58)

However, TPS is not a rigorous symmetry of the underlying system in finite magnetic fields,
for which HBdG does not respect TPS, cf. Eq. (7.15). To better understand the protection
against scalar disorder, note that the states at finite Ax can always be mapped to a system
with an effectively vanishing vector potential but with a finite phase of the superconducting
pair potential φ, cf. Eq. (3.40) and its discussion. In the approximation (7.6), the effect of
the magnetic field is equivalent to a linearly varying phase φ(x) = (2e/~)Ax x, whose gradient
generates a condensate flow with the momentum 2eAx. As we have mentioned in section 7.1.3,
the full HBdG does not conserve TRS for φ 6= 0. Nevertheless, the gauge transformation shifts
the TRS breaking terms from the single-particle part HQSHI to the superconducting condensate.

4Note that two of the solutions are redundant because of the PHS in the BdG formalism.
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In consequence, all single-particle processes, like electron reflection, cannot depend on Ax and
are protected exactly as in the zero field situation. In contrast, all processes, which rely on the
superconducting condensate, are influenced by the magnetic field.

Andreev reflection

Physically, the TPS protection means that the states with opposite β, i.e., opposite particle char-
acter cannot be converted into each other without being Andreev reflected, see, e.g., [Blonder82]
and section 3.3.
In order to allow for Andreev reflection (AR) processes, we need to introduce a barrier between
two regions of different induced pair potentials. Imagine a sharp interface between ∆̃1 at x ≤ 0
and ∆̃2 at x > 0. For a state incoming from the left, the scattering problem can be written as

ψβEs(∆̃1) +Rh
sψ−βEs (∆̃1) +Rseψ

−β
E−s(∆̃1) = T seψ

β
Es(∆̃2) + Th

sψβE−s(∆̃2), (7.59)

where Rse and T se are the amplitudes of electron reflection and electron tunneling processes
with spin s. Analogously, Rh

s and Th
s describe AR and crossed Andreev reflection (CAR).

The barrier cannot couple branches with different s eigenvalue due to the orthogonality of the
eigenstates. The solutions

Th
s = Rse = 0

Rh
s =

uβEs(∆̃2)vβEs(∆̃1)− uβEs(∆̃1)vβEs(∆̃2)

u−βEs (∆̃1)vβEs(∆̃2)− uβEs(∆̃2)v−βEs (∆̃1)

T se =
u−βEs (∆̃1)vβEs(∆̃1)− uβEs(∆̃1)v−βEs (∆̃1)

u−βEs (∆̃1)vβEs(∆̃2)− uβEs(∆̃2)v−βEs (∆̃1)
, (7.60)

show finite AR, while CAR and electron reflection are suppressed for a single pair of helical edge
states [Adroguer10]. By virtue of Eq. (7.41), the solutions fulfill

T se
∆̃1=∆̃2= 1, Rh

s ∆̃1=∆̃2= 0. (7.61)

N-SC junction

In the special case of a N-SC junction, the normal part of the junction is described by HBdG

with ∆̃1 → 0. Defining DEs = E − sevFAx and using√
D2
Es + ∆̃2

∆̃�DEs≈ |DEs|

(
1− ∆̃2

2D2
Es

)
, (7.62)
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we perform the limits

lim
∆̃→0

uβEs =
1√
2

∆̃√
D2
Es(1− sβsign[DEs]) + sβsign[DEs]

∆̃2

2

=

{
0, sign[DEs]sβ < 0

1, sign[DEs]sβ > 0

lim
∆̃→0

vβEs =
s sign[DEs]√

2

∆̃√
D2
Es(1 + sβsign[DEs])− sβsign[DEs]

∆̃2

2

=

{
0, sign[DEs]sβ > 0

s sign[DEs], sign[DEs]sβ < 0
. (7.63)

The solutions in the normal regime take the form

electrons: ψ
β(e−)
Es (y) =

exp
[
ik
β(e−)
Es x− y |Γ|~vF

]
2

(
φs
0

)

holes: ψ
β(h+)
Es (y) =

exp
[
ik
β(h+)
Es x− y |Γ|~vF

]
2

(
0
φ−s

)
, (7.64)

where β no longer is a degree of freedom, but fixed by Eq. (7.63). In order to describe incoming
electrons,

β(e−) = s sign[DEs] (7.65)

has to be chosen. With this, the spin-dependent Andreev reflection coefficient (7.60) becomes

Rh
s = s sign[DEs]

vβEs

uβEs
, (7.66)

meaning that the Andreev reflection is given by the ratio of the weight of electron- and hole-like
components in the SC’s solution, as we have already anticipated in Eq. (3.99).

7.3. Proposal to measure the superconducting quantum spin Hall
effect

The superconducting QSH effect is characterized by a giant g-factor. Here, we propose to
experimentally verify our predictions by the tunability of the edge states and their excitation
spectra in rather weak external magnetic fields. Especially, we demonstrate, how the closure of
the quasi-particle gap and the resulting spin polarization can be detected in the spin-dependent
density of states (DOS). Further, we analyze transport through N-SC junctions in section 7.3.2.
We find that the gap closure translates into unusual magnetotransport signals. To be specific, we
predict a non-monotonic excess current as well as a peak splitting in the dI/dV characteristics.
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7.3.1. Density of states and spin polarization

The spin splitting in the superconducting QSHI can be characterized by the spin-dependent
DOS, which, in the interval [E,E + dE] and at position y, is defined by [Datta07]

ρs(y,E) = − 1

π
Tr Im

[
GRs (y, y)

]
11
. (7.67)

The retarded Green’s function GRs (y, y) can be evaluated in the eigenfunction expansion or
Lehmann representation

GRs (y, y′) =
∑
k,α=±

ψαks(y)⊗ (ψαks(y
′))†

E − Esα(k) + i0+
(7.68)

=
∑
k,α=±

ψαks(y)⊗ (ψαks(y
′))†

(E − Esα(k))2 + (0+)2

[
E − Esα(k)− i0+

]
. (7.69)

The (11) component
[
GRs (y, y′)

]
11

corresponds to the electron block of the Green’s function. The

diagonal parts of ψαks(y)⊗ (ψαks(y
′))† are purely real, because the y-dependence is an exponential

decay instead of a plain wave. Using the Lorentz representation of the Dirac delta-distribution

δ(x) = lim
ε→0+

δε(x) = lim
ε→0+

1

π

ε

x2 + ε2
, (7.70)

we find that the diagonal elements of the imaginary part of the Green’s function can be written
as

Im
(
GRs (y, y′)

)
m,m

= −
∑
k,α=±

0+

(
ψαks(y)⊗ (ψαks(y

′))†
)
m,m

(E − Esα(k))2 + (0+)2

= −π
∑
k,α=±

(
ψαks(y)⊗

(
ψαks(y

′)
)†)

m,m
δ (E − Esα(k)) . (7.71)

Evaluating the trace, we arrive at the simple form (DEs = E − sevFAx)

ρs(y,E) =
∑
k,α=±

‖[ψαks(y)]e−‖
2 δ (E − Esα(k)) (7.72)

=
∑
k,α=±

∑
{k0|Esα(k0)=E}

‖[ψαks(y)]e−‖
2 δ (k − k0)

∣∣∣∣dEsα(k′)

dk′

∣∣∣∣−1

k′=k0

=
∑
β=±

∥∥∥[ψβEs(y)
]
e−

∥∥∥2 1

~vF

|E − sevFAx|√
(E − sevFAx)2 − ∆̃2

(
Θ[−DEs − ∆̃] + Θ[DEs − ∆̃]

)
.

where only the electron-like components of the solution (7.39) have to be taken into account. In
effect, ρs(y,E) is the summation over the propagating modes with energy E and spin s weighted
with the slope of the corresponding excitation energy spectrum. To arrive at the last line, we
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have evaluated the derivative of the excitation energy spectrum∣∣∣∣dEsα(k′)

dk′

∣∣∣∣−1

k′=kβs

=
1

~vF

|E − sevFAx|√
(E − sevFAx)2 − ∆̃2

, (7.73)

which neither depends on α nor β. Further, we switched to the energy representation of the
eigenstates, which naturally respects the restrictions imposed by the δ-distribution. Additionally,
we have introduced the Heavyside-Θ functions to restrict the evaluation of ρs(y,E) to propa-
gating solutions outside the spin-dependent quasi-particle gap. Summing over the electron-like
components of Eq. (7.39) leads to the closed form

ρs(y,E) =
2|Γ|
~vF

exp

[
−2y

|Γ|
~vF

]
1

~vF

|E − sevFAx|√
(E − sevFAx)2 − ∆̃2(

Θ[sevFAx − ∆̃− E] + Θ[E − (sevFAx + ∆̃)]
)
. (7.74)

Further, the full signal can be obtained by integration over the half space y > 0:

ρs(E) =
1

~vF

|E − sevFAx|√
(E − sevFAx)2 − ∆̃2

(
Θ[sevFAx − ∆̃− E] + Θ[E − (sevFAx + ∆̃)]

)
. (7.75)

Its main contribution comes from the inverted band curvature (7.73), which shows poles at the
band edges (7.55) and goes to (~vF)−1 far above the superconducting gap. The sum ρ↑(E)+ρ↓(E)
yields the DOS, while the difference ρ↑(E)− ρ↓(E) characterizes the spectral spin polarization.
Clearly, the spin polarization vanishes for Ax = 0, because all s dependence vanishes. But also
for ∆̃ = 0, we find zero spin polarization, because of

1

~vF

|E − sevFAx|√
(E − sevFAx)2 − ∆̃2

∣∣∣∣∣∣
∆̃=0

=
1

~vF
= const. (7.76)

together with Θ[E − sevFAx] + Θ[sevFAx − E] ≡ 1, which is expected for a gapless system.
Again ρ↑ and ρ↓ are equivalent and the spin polarization vanishes.
The DOS and spectral spin polarization are plotted as a function of E and By in Fig. 7.5. The
gray shaded planes indicate By/B∗ = 0, 1 and 1.5 used in Fig. 7.4. At zero magnetic field, the
DOS shows a quasi-particle gap between E = ±∆̃. Within the bands, the DOS is constant and
spin degenerate. Hence, the spin polarization vanishes. A finite By shifts the energy of the spin
branches by −sg∗µBBy. This is reflected by a splitting of the peaks in Fig. 7.5a. At gap closing,
cf. Eq. (7.54), the two peaks cross and the gaps for the different spin branches separate in
energy. In the energy range, where only one s-branch is gaped, a finite spin polarization arises,
which can be seen from comparing Figs. 7.5a and 7.5b.
Although the spin s, which characterizes the states, is derived from a σx eigenstate χs, the
structure of the solution (7.25) always combines parts with opposite σx expectation values. The
reason is that the eigenstates of the thin film Hamiltonian (7.10) consist of a perfect mixture of
the two surface states with opposite helicity. Hence, s is to be understood as a pseudo-spin and
the spin polarization does not result in a spin signal, which is directly measurable by a magnetic
tip. This might be seen as a disadvantage of the realization of the QSHI, which we have chosen
in section 7.1.2, whereas in HgTe/CdTe QWs, the eigenstates would show polarization in the
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(a) charge DOS (b) spin polarization

Figure 7.5.: The DOS and spectral spin polarization as a function of By and E. The gap closing
is clearly visible at By = B∗. The shaded planes indicate the By values used
in Figs. 7.4a, 7.4c and 7.4d, respectively. Adapted from [Reinthaler15]. c©2015
American Physical Society. All rights reserved.

real spin [Brüne12]. However, comparing Figs. 7.5a and 7.5b, we see that the spectral spin
polarization is identically mapped on the regions with unit DOS, which therefore is an indirect
measure of the spin polarization for general QSHIs. Moreover, in the next section, we will explore
magnetotransport signals, which serve as a direct measure of the spin polarization of the edge
states.

Scanning tunneling spectroscopy

The DOS can be measured by the scanning tunneling microscope technique. This can be done in
two different measurement setups: the usual out-of-plane geometry and in-plane one. The first
can be achieved, when the principle setup in Fig. 7.1 is inverted by growing the QSHI on top of
the SC, which then serves as the substrate. In this case the the QSHI layer becomes accessible
from above. The in-plane geometry requires to adjust the tunneling junction in the plane of the
QSHI [Kashiwaya11], i.e., from the left in Fig. 7.3.

7.3.2. Signatures in transport

A direct measurement of the spin polarization can be realized in transport experiments. To this
end, we propose the Y-forked 3 terminal N-SC junction, sketched in Fig. 7.6. In this realization,
the SC is the superconducting QSHI described by HBdG (7.12). The normal conductor (N) is
the non-superconducting QSHI, which has been introduced in section 7.1.2 and is described by
HBdG with ∆̃ → 0. This has the advantage, that the 3 terminal N-SC junction can be etched
out of a single QSHI slab, onto which an s-wave SC is grown for x > 0. The slab has a finite
width W in y-direction. When W is large enough, that the edge states, which are localized at
y = 0 and y = W , have a sufficiently small overlap, we can treat the edges independently. In
this sense, the edge channels, for which the local DOS is sketched for spin-↑ (green line) and
spin-↓ (red line) in Fig. 7.6, correspond to independent realizations of the edge state in the half
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|ψ↓|2

|ψ↑|2

x
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electron

missing electron

SCN

2

1

Figure 7.6.: Y-shaped N-SC junction between a normally conducting (indicated by N) and a
superconducting QSHI (indicated by SC). The incoming spin branches ↑ and ↓
(solid lines) are in one-to-one correspondence with the physical edges of the system.
The width W in y direction is assumed to be large enough, so that the states with
different s do not overlap, as shown in the sketch of the edge states’ local DOS on
the right. In this case, the states with opposite spin polarization can be measured
independently in the leads 1 or 2. The total charge transport is obtained by summing
up the contributions of both leads. Adapted from [Reinthaler15]. c©2015 American
Physical Society. All rights reserved.

plane, cf. Fig. 7.3. Therefore, we can apply the results of the semi-infinite system. Especially,
we can calculate the transport through the N-SC junction using the transport coefficients, which
we obtained in section 7.2.4. Since the spin orientations are in one-to-one correspondence to
the geometrical edges, the two spin branches can be detected directly by measuring transport
in contacts 1 and 2 independently.
We assume a voltage V to be applied across the junction. The transport at µ = 2∆̃ and finite
temperature kBT = 0.1∆̃ is calculated within the BTK formalism, which has been introduced
in section 4.2.4. In Fig. 7.7a we plot the excess current Iex (4.22) as a function of By. While the
total current (blue dotted line) is symmetric, the individual spin branches (black dashed and
solid red lines) are odd and show a distinct, spin-dependent maximum at finite By = Bmax

s . To
determine Bmax

s , we write the excess current per spin Isex at zero temperature

Isex =
e

h

eV∫
0

dE |Rhs|2 =
e

h

eV+sg∗µBBy∫
+sg∗µBBy

dDEs |Rhs|2, (7.77)

where in the last step we used, that E and By only enter the AR amplitude Rh
s via DEs =

E + sg∗µBBy in Eq. (7.66). The maximum in By is obtained by setting

∂ByI
s
ex ∝ |Rhs(eV + sg∗µBBy)|2 − |Rhs(+sg∗µBBy)|2

!
= 0. (7.78)
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Figure 7.7.: Transport through the 3 terminal N-SC junction of Fig. 7.6 as a function of By
at temperature kBT = 0.1∆̃ and chemical potential µ = 2∆̃. The different spin
branches, depicted as black, dashed (s=1, ↑) and red, solid (s=-1, ↓) lines, can
be measured independently in the leads 2 or 1 and sum up to the total signal
(blue, dotted). We show the excess current Iex (a) and the dI/dV characteristics
(b,c). Adapted from [Reinthaler15]. c©2015 American Physical Society. All rights
reserved.

With

|Rhs(DEs)|2 :=

∣∣∣∣∣∣
DEs − sβ(e−)

√
D2
Es − ∆̃2

DEs + sβ(e−)
√
D2
Es − ∆̃2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
DEs − signDEs

√
D2
Es − ∆̃2

DEs + signDEs

√
D2
Es − ∆̃2

∣∣∣∣∣∣
=|Rhs(−DEs)|2 (7.79)

we arrive at the solution

Bmax
s = −s eV

2g∗µB
= −s eV

2∆̃
B∗, (7.80)

where B∗ is the magnetic field at which the SC becomes gapless, as defined in Eq. (7.54) and
shown in Fig. 7.4c.
Further, we show the dI/dV characteristics, cf. Eq. (4.23), as a function of By in Figs. 7.7b
and 7.7c. The quasi-particle gap of each spin polarization corresponds to a conductance plateau
of 2e2/h and can be detected directly by measuring the non-local conductances in lead 1 and
2 separately. The peak in the total conductance at zero field splits, when eV exceeds the su-
perconducting gap, i.e., when the quasi-particle gap is closed at By = B∗. This is a rather
general signature of spin-split superconducting states [Tkachov05]. Since excitation energy and
magnetic field enter the solutions (7.39) in the same way, an analogous signal can be obtained
by varying V for fixed By.
The non-monotonic excess current and the split conductance peak are both hallmarks of the spin
polarization in a superconducting quantum spin Hall insulator. This kind of experiments is real-
izable and has been used to explore the spin polarization of ferromagnetic contacts [Meservey70].
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7. Superconducting quantum spin Hall effect

7.4. Conclusion

We have described the hybrid system of a QSHI in proximity to an ordinary SC in magnetic
fields. Surprisingly, the edge states of this system remain spin polarized and protected against
elastic backscattering even in finite in-plane magnetic fields, opening the new area of the su-
perconducting quantum spin Hall effect. We have traced the protection of the edge states to a
combination of time-reversal and particle-hole symmetry, which map the system in presence of
a magnetic field to the zero field problem. This novel effect is characterized by a giant g-factor,
which cannot be found in the absence of superconductivity. Therefore, this system allows a
strong tuning of the edge states in weak in-plane magnetic fields with possible applications in
the generation of spin currents.
We further have demonstrated that the helical nature of the states causes a non-monotonic
excess current and a split conductance peak. On the one hand, this provides a measurement
scheme of this new phenomenon. On the other hand, this addresses the problem of measuring
the spin polarization of helical edge states in general. The main difficulty of measuring the spin
polarization of edge states is that normally both counter-propagating modes are simultaneously
probed, canceling any net spin polarization. Therefore, the only successful experiment so far
had to rely on an indirect and non-local measurement of the spin polarization of the edge states
[Brüne12]. The giant g-factor allows to split the edge states in small magnetic fields, without
breaking the helicity of the edge states. The resulting unique dI/dV and Iex characteristics pave
the way for a direct detection of the spin polarization of the underlying QSH system.
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8. Conclusion and outlook

The field of topological insulators offers promising prospectives for future information processing.
Their helical edge states turn topological insulators into prime candidates to generate ballistic
spin currents for high fidelity spintronics. Moreover, hybrid systems of topological insulators and
superconductors are believed to host Majorana bound states, which are at the center of interest
for topological quantum computing. A large research community is working on bringing these
fascinating concepts to life in functional devices. This thesis contributes to the understanding
of heterostructures based on topological insulators in contact to metals or superconductors. In
particular, we demonstrate how bulk and edge contributions compete in finite size heterostruc-
tures. We describe how these effects can be applied in measurement schemes for topologically
non-trivial bulk transport signals and crossed Andreev reflection. Moreover, we predict a super-
conducting quantum spin Hall effect, which remains robust in finite magnetic fields. To conclude
this thesis, we want to wrap up our results and point out interesting aspects for future research.
Part I has introduced the theory and methods needed to describe heterojunctions of topological
insulators. The latter have been discussed in chapter 2, where topological indices have been
connected to the geometrical phase. As an explicit example we have derived the TKNN invari-
ant in appendix A. Chapter 3 has focused on superconducting topological insulators. We have
demonstrated how triplet pairing is induced in topological insulators upon combination with an
ordinary s-wave superconductor. The introduction of superconductivity has been completed by
pointing out subtle differences between missing electrons and holes in appendix D. Chapter 4
has linked the transport through mesoscopic structures to elastic scattering theory. The scat-
tering problem for bulk and edge states has been simultaneously solved in the generalized wave
matching approach, which we have described in section 4.3.2. Additionally, transport calcula-
tions within the tight binding formalism have been reviewed in appendices B and C.
In chapter 5, we have presented a numerical study of finite size tunneling junctions of two-
dimensional topological insulators in between two metallic leads. In narrow conductors, the
finite size effects are twofold: Firstly, the overlap of two edge states, which are associated with
the same Kramers’ partner polarization but different boundaries, introduces backscattering, even
when time-reversal symmetry is unbroken. Secondly, bulk and edge contributions to the con-
ductance are mixed in a ratio which depends on the width of the sample. In contrast, when the
system is wide enough, transport is determined entirely by the edge or bulk states for long and
short tunneling junctions, respectively. The latter regime is particularly interesting, because it
confirms and strengthens the prediction [Novik10, Recher10] of a non-monotonic tunneling con-
ductance, which identifies the topologically non-trivial regime. In section 5.3.3, we have linked
the emerging conductance maximum to an effectively propagating bulk solution. This allows a
direct classification of different topological regimes by transport measurements, without relying
on the bulk-boundary correspondence. For future research, it would thus be very interesting
to look for similar conductance properties in a wider range of topologically non-trivial phases.
This might be of importance especially for transport measurements of the topological regime in
materials, where surface or edge transport is obscured by a residual bulk contribution, like in
three-dimensional topological insulators [Xia09, Chen09] and in gapless two-dimensional topolog-
ical insulators [Baum15a, Baum15b]. On the experimental side, topological insulator structures
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in the sub-micrometer domain have been realized [Brüne12, Pribiag15]. Nevertheless, the ver-
ification of the predicted conductance maximum requires further efforts in nanolithography to
decrease the length of the tunneling junction to the order of 100 nm. Since the measurement
of the conductance maximum needs short but not narrow tunneling junctions, it would also be
possible to grow a large topological insulator slab and to create a short tunneling junction by
attaching metallic leads from the top. This procedure has, for example, been used to realize
superconductor - topological insulator - superconductor junctions in [Hart14].
The finite size effects in superconducting tunneling junctions in between leads of two-dimensional
topological insulators have been analyzed in chapter 6. For the helical edge states, crossed An-
dreev reflection is spatially separated from the electron tunneling and becomes significant, when
the system is narrow enough so that the evanescent bulk states in the superconductor couple
both edges. We have studied the effectiveness of this separation as a function of the system
geometry and the doping of the superconductor. Moreover, based on the spatial separation
we have proposed an all-electrical measurement of crossed Andreev reflection in multi-terminal
setups, in which one spin polarization can be selected by choosing appropriate contact volt-
ages or by using the quantum spin Hall effect in an H-bar structure. Our setup couples the
opposite edges of the sample via the highly doped superconductor, which relies on very clean
interfaces between the topological insulator and the superconductor and which to achieve might
need considerable experimental effort. Indeed, although superconductivity has been successfully
induced into two-dimensional topological insulators [Knez12, Hart14, Pribiag15], the associated
doping into the bulk regime has not been observed so far. Therefore, it would be desirable that
the experimental realization of the all-electrical measurement of crossed Andreev reflection is
supported by the theoretical exploration of other mechanisms to couple the edge states at oppo-
site boundaries. For example, one could directly couple the edge states without endangering the
spatial separation by etching local restrictions in the superconducting part [Krueckl11]. Further,
the topological properties of HgTe/CdTe quantum wells can be tuned by the well width. De-
creasing the latter to the critical thickness of about 6.4 nm causes a topological phase transition
[Bernevig06], which is characterized by a semi-metallic phase. A local variation of the quantum
well width could allow the coupling of the edge states via the semi-metallic phase. Another
possibility would be to implement the tunneling setup in gapless two-dimensional topological
insulators, which can be realized in HgTe/CdTe double quantum wells [Baum15b]. The latter
materials allow to control the coupling of the coexisting bulk and edge states by applying a small
gate voltage.
In chapter 7, we have described the superconducting quantum spin Hall effect. The latter arises
in a hybrid system of helical edge states and ordinary superconductors. We have demonstrated
that the helicity of the system’s edge states as well as their protection against scalar disorder
is immune to the presence of an in-plane magnetic field, because the system can be mapped to
the zero field case. However, the magnetic field has a strong effect on the dispersion and the
magnetotransport signals due the giant g-factor, which characterizes the superconducting quan-
tum spin Hall effect. Especially, we have predicted a non-monotonic excess current and a peak
splitting in the dI/dV characteristics. Both are Hallmarks for this novel effect as well as for the
spin polarization of helical edge states in general. Since it has already been achieved to induce
superconductivity into helical edge states [Knez12, Hart14, Pribiag15], we can be confident, that
our predictions can be experimentally tested in the near future. On the theoretical side, the
immunity of the edge states should be tested for arbitrary orientations of the magnetic field.
Moreover, in section 7.2.3, we have discussed the emergence of Majorana bound states at gap
closing in the systems. The latter can be controlled by a weak in-plane magnetic field, which
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should allow to use these exotic states in measurement and braiding proposals similar to [Mi13].

We have already discussed some prospects for further research, which might extend the re-
sults of this thesis. The general field of topological states of matter has been growing at rapid
speed with new candidate materials being proposed and found [Ando13]. Current developments
are at the stage where the conducting properties of a device can be designed to accomplish
certain tasks [Fiete11]. In order to fulfill this goal, further scientific progress in understanding
the fundamental physical properties of these materials has to be achieved: the theoretical anal-
ysis and experimental realization of topological insulators with sufficiently large band gaps is
essential to realize functional components, which operate at room temperature. Further experi-
mental advances in sample fabrication might, for example, lead to the reduction of residual bulk
conductance, the minimization of aging problems of samples and the growth of cleaner contacts
as well as interfaces. On the theoretical side, a generalization of the classification scheme of
topological insulators [Schnyder08] would help to predict new kinds of topological materials,
whose protection does not rely on time-reversal symmetry, like crystalline topological insula-
tors [Fu11, Hsieh12, Tanaka12]. The understanding of strong interactions might enrich the field
with new kinds of topological phase transitions, like predicted for topological Mott insulator
[Raghu08]. In the field of topological quantum computation, the experimental verification of
Majorana bound states in InAs quantum wires [Mourik12, Das12, Deng12] is still on debate
[Pikulin12]. Therefore, it would be desirable to experimentally test the formation of Majorana
bound states in the helical edge states of topological insulators [Mi13, Crépin14]. In the mean
time, theorists can search for ways to scale and braid these states, analogously to proposals for
InAs quantum wires [Alicea11, Sau11, Hyart13].
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A. The TKNN invariant

In order to give an example how the Berry phase (2.31) is connected with physical observables,
we calculate the topological invariant defined for the integer QH effect (TKNN invariant), named
after Thouless, Kohmoto, Nightingale, and den Nijs [Thouless82]. Let us assume a 2D system
of size L × L in the x − y-plane. We apply a magnetic field Bz in z-direction and an electric
field Ey, which drives a current along the y-axis. We will find that in linear response, the Hall
conductance is proportional to the Berry phase.
To start, we write the Hamiltonian in two parts

H = H0 − eEyŷ, (A.1)

where the non-degenerate spectrum H0 |α〉 = Eα |α〉 is known and we perturb the system with
the potential U = −eEyŷ. In lowest order, the new eigenstates are [Schwabl07]

|α〉E = |α〉+
∑

β(β 6=α)

〈β| − eEyŷ |α〉
Eα − Eβ

. (A.2)

With this, the current density in x-direction becomes

〈jx〉 =
∑
α

fEα 〈α|E
ev̂x
L2
|α〉E = (A.3)

= 〈jx〉Ey=0 −
e2

L2

∑
α

∑
β(β 6=α)

fEα

(
〈α| v̂x |β〉 〈β| Eyŷ |α〉

Eα − Eβ
− 〈α| Eyŷ |β〉 〈β| v̂x |α〉

Eα − Eβ

)
︸ ︷︷ ︸

=〈jx〉E

+O(E2
y ).

Since we assume zero temperature, the Fermi distribution function fEα is 1 for occupied states
and 0 else. We can therefore restrict the sum to occupied states. For the further analysis, we
will work in the Bloch basis: |α〉 = |uκ(k)〉, where the index α splits in a band index κ and a
conserved lattice momentum k. In this basis the canonical commutation relations tell us that
ŷ = i∂ky . Using the Heisenberg equation ˙̂y = v̂y = −i/~ [ŷ, H] one finds

〈β| v̂i |α〉 =
1

i~
(Eα − Eβ) 〈β| î |α〉 =

1

~
(Eκ(k)− Eκ′(k)) 〈uκ(k)| ∂ki |uκ′(k)〉 , i = x, y. (A.4)

The Hall conductance is defined by (we stick to the composite indices α and β here)

σxy :=
〈jx〉E
Ey

= −i
e2

~L2

∑
α,occ

∑
β,occ,β 6=α

(
〈α| ∂ky |β〉 〈β| ∂kx |α〉 − 〈α| ∂kx |β〉 〈β| ∂ky |α〉

)
. (A.5)

Now, we follow the steps

1. Note that for α = β the two summands cancel ⇒ sum over all β
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2. Use the completeness relation:
∑

β |β〉 〈β| = I.

3. Use 0 = ∂ki 〈α|β〉︸ ︷︷ ︸
=δαβ

= (∂ki 〈α|) |β〉+ 〈α| ∂ki |β〉 to write 〈α| ∂ki |β〉 = −(∂ki 〈α|) |β〉.

4. Replace (∂ki 〈α|)∂kj |β〉 with ∂ki 〈α| ∂kj |β〉, because the mixed terms 〈α| ∂ki∂kj |β〉 cancel
due to

[
∂ki , ∂kj

]
= 0.

5. Do the continuum limit
∑

α =
∑

k

∑
κ = 1

∆k

∑
k ∆k

∑
κ −→

(
L
2π

)2∑
κ

∫
BZmag

d2k in order

to integrate over the whole magnetic Brillouin zone BZmag
1.

6. Identify −i 〈α| ∂kj |β〉 with the Berry connection [Aκ(k)]j in Eq. (2.32) .

to find

σxy =
e2

h

∑
κ,occ

∫
BZmag

d2k

2π

(
∂kx [Aκ(k)]y − ∂ky [Aκ(k)]x

)
=
e2

h

∑
κ,occ

∫
BZmag

d2k

2π
[∇k ×Aκ(k)]z =

e2

h

∑
κ,occ

nκ. (A.6)

For each occupied band, we defined the TKNN invariant

nκ =

∫
BZmag

d2k

2π
[∇k ×Aκ(k)]z (A.7)

as an integral of the Berry curvature (2.34) over the magnetic BZ. To show that this is a
quantized number, we follow the argumentation of [Shen12]. Let ã (b̃) be the lattice constants
of the magnetic unit cell in x (y)-direction. With this we can rewrite Eq. (A.7) to

nκ =
1

2π

∫ 2π
ã

0
dkx

∫ 2π
b̃

0
dky

(
∂kx [Aκ(k)]y − ∂ky [Aκ(k)]x

)
=

1

2π

∫ 2π
b̃

0
dky ([Aκ(2π/ã, ky)]y − [Aκ(0, ky)]y)

− 1

2π

∫ 2π
ã

0
dkx

(
[Aκ(kx, 2π/b̃)]x − [Aκ(kx, 0)]x

)
. (A.8)

Due to the periodicity of the system, the BZ can be identified with a torus T 2. Hence, the states
at the boundaries of the BZ are equivalent up to a phase:∣∣∣uκ(kx, 2π/b̃)

〉
= exp [iθx(kx)] |uκ(kx, 0)〉 ,

|uκ (2π/ã, ky)〉 = exp [iθy(ky)] |uκ(0, ky)〉 . (A.9)

1The magnetic unit cell contains an integer multiple of the magnetic flux quantum and will be introduced in
detail below. For the calculations here, it is sufficient to interpret it as a conventional unit cell of a lattice
periodic system.
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In terms of the Berry connection, this resembles the gauge transformation[
Aκ(kx, 2π/b̃)

]
x

= −∂kxθx(kx) + [Aκ(kx, 0)]x ,

[Aκ (2π/ã, ky)]y = −∂kyθy(ky) + [Aκ(0, ky)]y . (A.10)

This simplifies Eq. (A.8) further to

nκ =
1

2π

(
−
∫ 2π

b̃

0
dky ∂kyθy(ky) +

∫ 2π
ã

0
dkx ∂kxθx(kx)

)
=

1

2π

(
θy(0)− θy(2π/b̃) + θx(2π/ã)− θx(0)

)
. (A.11)

Since the states at the four corners of the BZ are physically indistinguishable, we can identify
them with one another via Eq. (A.9)

|uκ(0, 0)〉 = e−iθy(0)

∣∣∣∣uκ(2π

ã
, 0

)〉
= e−i(θy(0)+θx( 2π

ã ))
∣∣∣∣uκ(2π

ã
,
2π

b̃

)〉
= e
−i

(
θy(0)+θx( 2π

ã )−θy
(

2π
b̃

)) ∣∣∣∣uκ(0,
2π

b̃

)〉
= e
−i

(
θy(0)+θx( 2π

ã )−θy
(

2π
b̃

)
−θx(0)

)
|uκ (0, 0)〉 . (A.12)

In order to ensure a single valued |uκ(0, 0)〉, the condition

θy (0) + θx

(
2π

ã

)
− θy

(
2π

b̃

)
− θx (0) = 2πν, ν ∈ Z (A.13)

has to hold. Consequently, the TKNN invariant (A.7) must be an integer and the Hall conduc-
tance (A.6) is quantized in units of e2/h in the so-called integer QH effect [Klitzing80].
In the remainder of this section, we will present an instructive picture of how the TKNN in-
variant is connected with the number of flux quanta in the magnetic unit cell [Kohmoto85].
Therefore, we return to the unperturbed system

H0 |α〉 =

[
~2

2m
(k + eA)2 + U(x, y)

]
|α〉 = E |α〉 . (A.14)

Here, we used the symmetric gauge A = B × r/2 and the periodic lattice potential

U(r) = U(r +R). (A.15)

The Bravais vector is defined by R = laêx + mbêy with l,m ∈ Z and lattice constants a and b
along the x and y-axis, respectively. Since generally A(r) 6= A(r +R), the usual translation
operator

T̂Rf(r) = f(r +R), T̂R = exp[ik ·R] (A.16)
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does not commute with the Hamiltonian. Redefining the translation by

T̃R = exp [iR · (k − eA)] = exp

[
iR ·

(
k + e

r ×B
2

)]
= T̂R exp

[
i
e

2
(B ×R) · r

]
(A.17)

ensures [T̃R, H0] = 0. However, the r dependence causes (a = aêx, b = bêy)

T̃aT̃b = exp[i2πφ]T̃bT̃a, (A.18)

where we defined the magnetic flux through the unit cell to be

φ =
eB

h
ab. (A.19)

This means that the newly defined translation operators do not commute unless the magnetic
flux takes integer values. Imagine the flux to be a rational number φ = p/q, p, q ∈ Z. The
Bravais lattice with lattice constants ã = qa and b̃ = b

R̃ = lqa+mb (A.20)

defines the so-called magnetic unit cell which contains an integral flux φ̃ = p. All translations
by the new Bravais lattice vectors commute and we can define magnetic Bloch wave functions

ψκkxky(x, y) = exp[ikxx+ ikyy]uκkxky(x, y),

T̃R̃ψ
κ
kxky(x, y) = exp[ikxlã+ ikymb̃]ψ

κ
kxky(x, y), (A.21)

which obey the generalized Bloch conditions

uκkxky(x+ ã, y) = exp

[
− iπpy

b̃

]
uκkxky(x, y), uκkxky(x, y + b̃) = exp

[
iπpx

ã

]
uκkxky(x, y). (A.22)

Since a U(1) gauge transformation

A′ = A+∇f(x, y)⇒ ψκkxky
′(x, y) = exp

[
− ie

~
f(x, y)

]
ψκkxky(x, y) (A.23)

must not influence the physical observables, we look for gauge independent quantities. From
Eq. (A.22), we find that the accumulated phase along the boundary of the magnetic unit cell
is gauge invariant and yields 2πp, which is proportional to the enclosed magnetic flux p. This
number is a topological invariant, because it corresponds to the number of magnetic vortices in
the magnetic unit cell [Kohmoto85]. The transition to momentum space shows that the phase
accumulated around the boundary of the magnetic BZ in Eq. (A.12) is equally determined by
the number of flux quanta per magnetic unit cell.
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B. Tight binding formalism

The thorough description of a solid state system requires a full quantum mechanical treatment.
Often, it is impossible to find an analytical solution to these problems. Hence, one searches for
appropriate approximations and/or numerical solutions. For example, the highly mobile con-
duction band electrons in metals can be modeled as free electrons, where the structure of the
underlying crystal is disregarded.
The tight binding (TB) method considers the atomic structure of the solid (or molecule) explic-
itly. Electrons can move on the atomic lattice by tunneling from one atomic site i to another
site j. The likeliness of this so-called hopping is determined by the overlap of the wave function
of the electron at i with the atom j. The approximation now lies in neglecting all hopping
processes where i and j are far from each other. The strictest approximation in this sense is
to take only nearest neighbor hoppings into account. This is a good approximation when the
electrons are tightly bound to the atoms and their wave functions decay exponentially on the
length scale of the atomic lattice. Higher corrections can be considered by taking into account
the hopping to next-nearest neighbors and so on. The nearest neighbor and the next-nearest
neighbor hoppings in a square lattice are exemplarily depicted in Fig. B.1.
A convenient way to write down this approximation is to use second quantization. Let ψ̂†iα (ψ̂iα)
be field operators which create (annihilate) an electron at atom i in state α, where α may be a
spin or an orbital degree of freedom. In this language, the TB Hamiltonian takes the form

HTB =
∑
i

∑
α,α′

εi,αα′ψ̂
†
iαψ̂iα′ −

∑
〈i,j〉

∑
α,α′

tiα,jα′ψ̂
†
iαψ̂jα′ . (B.1)

Here, εi,αα′ is an on-site energy, like, e.g., an electrostatic potential. The sum 〈i, j〉 runs over
nearest neighbors and the hopping term tiα,jα′ is determined by the overlap of the electronic
wave functions ψiα(r) and ψjα′(r). If the hopping is independent of the position on the lattice,

ρy = 1

ρy = 2

...

ρy = Ny

tnn

t†nn

tnnn

y

x

Ly

a

Figure B.1.: The TB method is visualized for a square lattice with lattice constant a. The sample
has a finite width in y-direction: Ly = (Ny+1)a. Exemplary nearest neighbor (tnn)
and next-nearest neighbor (tnnn) hoppings are indicated by black and gray arrows.
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it can be written as a constant matrix tnn which acts on the different quantum numbers α.
In order to ensure that HTB is hermitian, the hoppings in forward (i → i + 1) and backward
(i+ 1→ i) direction have to be connected by hermitian conjugation, cf. Fig. B.1.
So far, we have considered a real atomic lattice, but in the following we will use the TB for-
malism to find the numerical solutions to continuum Hamiltonians. To do so, we discretize the
system on an artificial square lattice with lattice constant a. An explicit example of a discretized
sample is shown in Fig. B.1. The lattice points are labeled by the collective index ρ = {ρx, ρy}.
Explicitly, we assume a quasi one-dimensional nano-ribbon, which is infinitely extended along
the x-axis. The number of lattice points in y-direction Ny is connected to the ribbon’s width by
Ly = (Ny + 1)a.
We assume a continuous, single-particle Hamiltonian which depends on position r and momen-
tum p

Hαα′(r, p̂) = H0
αα′(r) +

∑
i

H1,i
αα′(r)p̂i +

∑
i

H2,i
αα′(r)p̂2

i +O(p̂3). (B.2)

For Nα different degrees of freedom α, the continuous Hamiltonian is a matrix of dimension
Nα × Nα and, consequently, its eigenvectors ψα(r) are Nα-dimensional wave functions. In the
TB formalism, the Hamiltonian is only evaluated on the discrete points of the lattice. The
discretized wave functions can be written as vectors with components

Ψαρ={ρx,ρy ,...} = ψα (r(ρ) = ρxaêx + ρyaêy + . . .) , ρx, ρy, . . . ∈ Z. (B.3)

In the real space representation, the momentum operator is p̂ = −i~∇. Its jth component acts
on a discretized wave functions according to

p̂jΨαρ = −i~∂jΨαρ = − i~
2a

(
Ψα{...,ρj+1,...} −Ψα{...,ρj−1,...}

)
(B.4)

p̂2
jΨαρ = −~2∂2

jΨαρ = −~2

a2

(
Ψα{...,ρj+1,...} + Ψα{...,ρj−1,...} − 2Ψα{...,ρj ,...}

)
. (B.5)

Up to second order in momentum, only nearest neighbor sites are connected1. Higher derivatives
will require additional next-nearest neighbor, next-next-nearest neighbor, . . . hopping terms.
Being associated with the momentum operator, the hopping terms are to be interpreted as

1 To ensure this, we had to use a different discretization of the first derivative in Eq. (B.5):

−~2∂2
jΨα

ρ = −i~∂j
[
− i~
a

(
Ψ{α...,ρj+0.5,...} −Ψα{...,ρj−0.5,...}

)]
.

This is consistent with Eq. (B.4), because both definitions yield the exact derivative in the continuum limit
a→ 0.
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B. Tight binding formalism

moving electrons. With this, the Schrödinger equation can be rewritten in matrix form∑
α′ρ′

Hαρ,α′ρ′Ψα′ρ′ = EαΨαρ (B.6)

with: Hαρ,α′ρ′ =


H0
αα′ − 2~2

a2

∑
iH

2,i
αα′(ρ) , ρ = ρ′

− i~
2aH

1,j
αα′(ρ) + ~2

a2H
2,j
αα′(ρ) , ρj = ρ′j + 1[

− i~
2aH

1,j
αα′(ρ)

]†
+ ~2

a2

[
H2,j
αα′(ρ)

]†
, ρj = ρ′j − 1

0 , else

. (B.7)

The dependence of Eq. (B.7) on ρ offers the possibility to directly implement spatially dependent
potentials, like, e.g., scalar disorder or gate potentials. Including a magnetic field via the Peierls
substitution p̂− qA(r) has a more subtle effect. It can be shown from gauge invariance that in
this case the matrix elements obtain a space dependent phase [Datta07, Rothe09]

Hαρ,α′ρ′ −→ Hαρ,α′ρ′ exp

[
iq

~

∫ r(ρ′)

r(ρ)
dr ·A(r)

]
. (B.8)

Since the momentum p̂j generates translation in j-direction, we can connect the wave functions
at different lattice points by the translation operator (T̂ ) [Sakurai94]

T̂ [aêj ]Ψα{...,ρj ,...} = exp

[
i

~
p̂ja

]
Ψα{...,ρj ,...} = Ψα{...,ρj+1,...}. (B.9)

From comparison to Eqs. (B.4) and (B.5), we find the lattice regularization

p̂j →
~
a

sin

[
p̂ja

~

]
, p̂2

j →
2~2

a2

(
1− cos

[
p̂ja

~

])
. (B.10)

An easy example

Consider a quadratic, one-dimensional system

H(x, p) = ε(x) +
p̂2

2m∗
. (B.11)

This is a spinless one-band model with an x-dependent band off-set ε and an effective mass m∗.
Its discretized version reads

Hρx,ρ′x = δρxρ′x (2t+ ε(ρxêx))− t
(
δρ′xρx+1 + δρ′xρx−1

)
, t =

~2

2m∗a2
. (B.12)

The translational symmetry is preserved, when the lattice is infinitely extended and ε = const.
In this case, we can replace the momentum operator by its eigenvalue p = ~k, which labels the
solutions with eigenenergies

E(k) = ε+ 2t (1− cos [ka]) . (B.13)
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Boundary conditions and numerical solution

The TB formalism is a very apt tool to describe edge- and finite size effects in topological insu-
lators. For example, the lattice in Fig. B.1 has a finite number of lattice points in y-direction,
meaning that the system is cut at the lattice points ρy = 1, Ny due to the lack of additional hop-
ping terms. This resembles hard-wall boundary conditions. On the contrary, periodic boundary
conditions can be implemented by adding an additional hopping term, which connects the lattice
points ρy = 1 and ρy = Ny. Doing so, all edge related effects are lost and the result reflects the
pure bulk properties of the system. This technique has, for example, been used in [Recher10].
Having reformulated the system in matrix form allows to find the numerical solutions by diago-
nalization. The energy spectrum is given by the matrix’ eigenvalues. Further information, like
the DOS or the spin polarization, can be extracted from its eigenstates.
The simulation of realistically sized systems often requires large lattices, the matrix implemen-
tations of which demand high memory and CPU time consumption. In general, it is possible
to decrease the number of necessary lattice points by increasing a in the TB model. Being an
artificial parameter, the exact value of a should not influence the outcome of the calculations.
However, to ensure comparability with the continuum model (a → 0), the lattice constant has
to be chosen small enough, so that the outcome converges.
Since the TB approximation couples only neighboring lattice sites, Eq. (B.7) takes the form of
a band matrix. Hence, it is possible to use sparse matrix solvers, when one is only interested in
a small subset of the solutions. This reduces memory consumption and CPU time significantly.
In this thesis, the implementation and diagonalization of the TB matrices was implemented
in Mathematica 9.0 [Wolfram Research12] and Mathematica 10.0 [Wolfram Research14], which
provide dense and sparse matrix solvers.
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The technique of equilibrium transport in TB is only used shortly in section 5.3.4. It, however,
has been the main tool in the author’s master thesis [Reinthaler10], from which we adopt a
shortened description of the formalism. The interested reader is referred to [Wimmer08, Rothe09,
Reinthaler10] for details.

Equilibrium Green’s function formalism

We are interested in the transport through a conductor which is attached to leads, like, for
example, the quantum wire depicted in Fig. 4.3. We formulate the problem at energy E in
terms of the Green’s function

G := [E −H]−1 =

(
E −Hp HCp

H†Cp E −HC

)−1

=

(
Gp GpC
GCp Gp

)
, (C.1)

where HC and Hp are the Hamiltonians for the conductor and lead p, respectively. HCp describes
the coupling of the lead p to the conductor. The sub-matrix structure of G reflects the different
sub-systems of the total Hamiltonian H. In the TB formulation (cf. appendix B), the Green’s
function has a discrete matrix structure. HC is of finite dimension (NxNyF )× (NxNyF ), where
Nx (Ny) is the number of lattice points along x (y) direction and F the number of degrees
of freedom per lattice site. However, the semi-infinite leads transform in matrices of infinite
dimension, rendering a direct numerical implementation of G impossible. Following the steps
which led to an effective description of the superconducting TI layer in section 3.2.3, we find

GC = [E −HC − Σ]−1 , (C.2)

which is of finite dimension. The self energy Σ describes the coupling to the leads effectively. It
is given by the sum over all leads p

Σ =
∑
p

Σp =
∑
p

H†Cp [E −Hp]
−1HCp, (C.3)

which still contains the multiplication of infinitely dimensional matrices, which will be solved
below. The imaginary part of the self energy, Γp = i(Σp − Σ†p), gives the finite lifetime of the
carriers, which exit the conductor and vanish into the leads. The transmission function, cf.
Eq. (4.8), from lead q to lead p can be calculated by the Fisher-Lee relation [Datta07]

T̄pq =

{
Tr
[
ΓpGCΓqG

†
C

]
, p 6= q

Mp −
∑

m6=p T̄mq , p = q
, (C.4)

where Mp is the number of propagating modes in lead p. Moreover, we made use of the sum
rule (4.9). Eq. (C.4) is only valid in the absence of magnetic fields in the leads. A generalized
version, which is valid for all classes of TB Hamiltonians, is discussed in [Wimmer08].
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C. Transport in the tight binding formalism

The transmission function and the Green’s function have to be evaluated at a fixed energy E,
corresponding to an equal chemical potential in all leads. Like in the derivation of Landauer’s
formula in section 4.2.3, this corresponds to an equilibrium regime, where a finite bias is only
taken into account in lowest order. The description of a biased conductor in the non-equilibrium
regime requires a self-consistent solution, see, e.g., [Datta05].

Self energy of the leads

We follow [Sanvito99, Rocha06, Rungger08] and give a short recipe how to calculate the self
energy of a semi-infinitely long lead. For a start, imagine the lead to be infinitely extended
in x-direction, which corresponds to the schematic in Fig. B.1. We can imagine the system as
consisting of slices at points . . . , x−a, x, x+a, . . ., which contain Ny lattice points in y-direction.
Let H0 be the on-site Hamiltonian for a slice x. When only nearest neighbor processes are
considered, H1 and H−1 = H†1 are the hopping terms which connect the slice x to x+a and x−a,
respectively. H0 and H1 are matrices of dimension (NyF )×(NyF ), which have to be independent
of x to ensure translational invariance along the x-axis inside the leads. The periodicity of the
infinite lead allows to write the systems eigenstates in Bloch form, Ψx ∝ exp[ikxx]φkx , and the
system’s Schrödinger equation becomes[

H0 − E +H1e
ikxa +H−1e

−ikxa
]
φkx = 0. (C.5)

A transformation analogously to that of Eq. (4.36) leads to the matrix(
−H−1

1 (H0 − E) −H−1
1 H−1

I 0

)
, (C.6)

which has the eigenvalues eikαa and eik̄αa. Here, kα and k̄α characterize the right- and left
moving solutions, respectively. The corresponding eigenvectors contain φkα and φk̄α in their
upper (NyF ) components, where α denotes the (NyF ) different modes. These solutions can be
combined to the right- and left going transfer matrices

T x =
∑
α

φkαe
ikαxφ̃†kα and T̄ x =

∑
α

φk̄αe
ik̄αxφ̃†

k̄α
. (C.7)

Here, we introduced the dual vectors φ̃kα as the columns of the matrix[(
φk1 , φk2 , . . . , φk(NyF )

)†]−1

, (C.8)

and the dual vectors φ̃k̄α are equivalently defined. Truncating the infinitely long lead results in
the self energies of lead 1 and 2 in Fig. 4.3 [Rungger08]:

Σ1 = H−1T̄
a and Σ2 = H1T

a. (C.9)

Since the system (C.6) does not need to be hermitian, its eigenvectors might become linear
dependent, rendering the matrix inversion (C.8) numerically unstable. A possible solution is
provided in form of a Schur decomposition and is discussed in detail in [Wimmer08].
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C. Transport in the tight binding formalism

Implementation

For the numerical solution of the transport problem in section 5.3.4, we have adapted a highly
efficient code by Dietrich Rothe [Rothe09], which was written in functional Fortran 95.
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D. From the missing electron to the hole
picture

The pairing Hamiltonian for superconductivity (3.13) contains the pairwise creation and anni-
hilation of electrons, describing the formation of Cooper pairs. The system can be conveniently
solved in the BdG formalism by rewriting it in the Nambu basis (3.23), in which the pairing
of electrons is incorporated by a doubling of the Hilbert space into sub-spaces connected with
the creation and annihilation of an electron. Here, we elaborate the description of the second
sub-space as hole-like excitations and point out a subtle difference between its interpretation as
a missing electron or as a hole, which is often neglected in literature.
In Fig. D.1a, we show the annihilation of an electron from the Fermi sea, which describes the
filled electronic states up to the Fermi energy EF and is indicated by a blue shading. The main
idea of the BdG formalism is to describe the annihilation of an electron at energy −ε, which
is measured relatively to EF, analogously to the creation of an electron at ε above the Fermi
sea. To this end, one mirrors the band structure ξk around the Fermi energy and around k = 0,
creating an inverted band structure −ξ−k. The inverted band structure allows to describe all
operations at positive ε, making the interpretation of ε as an excitation energy above the ground
state energy obvious. In Fig. D.1b, we present the original dispersion ξk (solid line) together
with the inverted one (dashed line). The states at ε < 0 are redundant and can be neglected in
the following, cf. section 3.1.3. In this picture, the annihilation of an electron in Fig. D.1a is
represented by the creation of an electron in the inverted band at −k and excitation energy ε.
Since the inverted band has a negative curvature, its effective mass m ∝ ∂2ξ/∂k2 is negative.
Electronic states with negative effective mass respond to an electric field in the same way as
states with positive effective mass and positive charge. Therefore, the inverted bands are often
referred to as hole-like states [Ashcroft76].
In Fig. D.2b, we depict a current, which is created by a right-moving spin-↑ electron. Imagine
a fully occupied, spin-degenerate Fermi sea1. It consists of right- and left-moving electrons for

1One might think that the situation changes for helical states, for which the spin polarization is coupled to
the direction of motion. However, the main arguments remain valid. To see this, imagine a single edge of a

ck,↑

ξk

=

ξk

−ε

(a) electron annihilation

c†−k,↑ = ε

(b) creation of an electron in the inverted band

Figure D.1.: The BdG formalism treats the annihilation of an electron from the Fermi sea at
−ε (a) like the creation of an electron at ε in a band with inverted band structure
(dashed curve) (b).
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D. From the missing electron to the hole picture

(a) missing electron
with spin-↑

(b) effective charge and
spin current

(c) hole with spin-↓

Figure D.2.: The annihilation of a left-moving spin-↑ electron (a) causes a charge current, which
is equivalent to a right-moving spin-↑ electron (b). This can be described as a
left-moving hole with spin-↓ (c).

both spin polarizations. The annihilation of a left-moving spin-↑ electron in Fig. D.2a causes
an imbalance of left- and right-moving carriers and results in the current of Fig. D.2b. This is
the missing electron picture, in which we interpret the annihilation of the electron as a spin-↑
excitation, like in Fig. D.1b. When we want to describe the same physical situation with a single
positively charged particle in Fig. D.2c, it has to be a left-moving spin-↓ hole. In this so-called
hole picture the same physical excitation is associated with the opposite spin.
Both pictures are different interpretations of the same physical situation. As long as the spin is
not important, we do not explicitly distinguish between both interpretations and simply call it
a hole-like excitation. However, when we deal with Andreev reflection of a spin-↑ electron we
will either talk about an empty electronic state with spin-↓ in chapter 7 or about a spin-↑ hole
in chapter 6.

2D TI, where a spin-↓ (spin-↑) electron moves to the right (left). While the charge current vanishes, there
is a spin current flowing to the right, which corresponds to two neutral spin-↓ particles moving rightwards.
Removing the left-going particle, causes a finite charge current and decreases the spin current by half, i.e., a
spin-↑ current to the right has been generated, analogously to Fig. D.2b.
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Acronyms and Symbols

Rh Andreev reflection amplitude.
Th crossed Andreev reflection amplitude.

Ĉ charge conjugation operator.

K̂ complex conjugation operator.

T̂ translation operator.

X̂ operator for combined time-reversal and particle-hole
symmetry.

Π̂ parity operator.

Θ̂ time-reversal operator.
I identity operation.
πi Pauli matrices in particle-hole space.
σi Pauli matrices in spin space.
τi Pauli matrices in sub-band space.
2D two-dimensional.
2DEG two-dimensional electron gas.
3D three-dimensional.

AR Andreev reflection.

BCS Bardeen, Cooper, and Schriefer.
BdG Bogoliubov-de Gennes.
BHZ Bernevig, Hughes, and Zhang.
BIA bulk inversion asymmetry.
BTK Blonder, Tinkham, and Klapwijk.
BZ Brillouin zone.

CAR crossed Andreev reflection.

DOS density of states.

HBC hard-wall boundary conditions.

N-SC junction junction between a normal conductor and a super-
conductor.

N-SC-N junction normal - superconducting - normal junction.

PBC periodic boundary conditions.
PHS particle-hole symmetry.

QH quantum Hall.
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Acronyms and Symbols

QSH quantum spin Hall.
QSHI quantum spin Hall insulator.
QW quantum well.

R electron reflection.

SC superconductor.
SIA structure inversion asymmetry.
SOI spin-orbit interaction.

T electron tunneling.
TB tight binding.
TI topological insulator.
TKNN invariant topological invariant defined for the integer QH ef-

fect.
TPS combination of time-reversal and particle-hole sym-

metry.
TR time-reversal.
TRIM time-reversal invariant momenta.
TRS time-reversal symmetry.

Z2 invariant topological invariant which is defined as an integer
modulo 2.
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[Brüne11] C. Brüne, C. X. Liu, E. G. Novik, E. M. Hankiewicz, H. Buhmann,
Y. L. Chen, X. L. Qi, Z. X. Shen, S. C. Zhang, and L. W. Molenkamp.
Quantum Hall effect from the topological surface states of strained bulk
HgTe. Phys. Rev. Lett. 106:126803 (2011).
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