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ABSTRACT 

The microbial communities that live inside the human gastrointestinal tract -the human gut 
microbiome- are important for host health and wellbeing. Characterizing this new “organ”, 
made up of as many cells as the human body itself, has recently become possible through 
technological advances. Metagenomics, the high-throughput sequencing of DNA directly from 
microbial communities, enables us to take genomic snapshots of thousands of microbes living 
together in this complex ecosystem, without the need for isolating and growing them. 
Quantifying the composition of the human gut microbiome allows us to investigate its 
properties and connect it to host physiology and disease. The wealth of such connections was 
unexpected and is probably still underestimated. Due to the fact that most of our dietary as well 
as medicinal intake affects the microbiome and that the microbiome itself interacts with our 
immune system through a multitude of pathways, many mechanisms have been proposed to 
explain the observed correlations, though most have yet to be understood in depth.   

An obvious prerequisite to characterizing the microbiome and its interactions with the host is 
the accurate quantification of its composition, i.e. determining which microbes are present and 
in what numbers they occur. Historically, standard practices have existed for sample handling, 
DNA extraction and data analysis for many years. However, these were generally developed for 
single microbe cultures and it is not always feasible to implement them in large scale 
metagenomic studies. Partly because of this and partly because of the excitement that new 
technology brings about, the first metagenomic studies each took the liberty to define their own 
approach and protocols. From early meta-analysis of these studies it became clear that the 
differences in sample handling, as well as differences in computational approaches, made 
comparisons across studies very difficult. This restricts our ability to cross-validate findings of 
individual studies and to pool samples from larger cohorts. To address the pressing need for 
standardization, we undertook an extensive comparison of 21 different DNA extraction methods 
as well as a series of other sample manipulations that affect quantification. We developed a 
number of criteria for determining the measurement quality in the absence of a mock 
community and used these to propose best practices for sampling, DNA extraction and library 
preparation. If these were to be accepted as standards in the field, it would greatly improve 
comparability across studies, which would dramatically increase the power of our inferences 
and our ability to draw general conclusions about the microbiome. 

Most metagenomics studies involve comparisons between microbial communities, for example 
between fecal samples from cases and controls. A multitude of approaches have been proposed 
to calculate community dissimilarities (beta diversity) and they are often combined with 
various preprocessing techniques. Direct metagenomics quantification usually counts 
sequencing reads mapped to specific taxonomic units, which can be species, genera, etc. Due to 
technology-inherent differences in sampling depth, normalizing counts is necessary, for 
instance by dividing each count by the sum of all counts in a sample (i.e. total sum scaling), or by 
subsampling. To derive a single value for community (dis-)similarity, multiple distance 
measures have been proposed. Although it is theoretically difficult to benchmark these 
approaches, we developed a biologically motivated framework in which distance measures can 
be evaluated. This highlights the importance of data transformations and their impact on the 
measured distances.  

Building on our experience with accurate abundance estimation and data preprocessing 
techniques, we can now try and understand some of the basic properties of microbial 
communities. In 2011, it was proposed that the space of genus level variation of the human gut 
microbial community is structured into three basic types, termed enterotypes. These were 
described in a multi-country cohort, so as to be independent of geography, age and other host 



properties. Operationally defined through a clustering approach, they are “densely populated 
areas in a multidimensional space of community composition”(source) and were proposed as a 
general stratifier for the human population. Later studies that applied this concept to other 
datasets raised concerns about the optimum number of clusters and robustness of the 
clustering approach. This heralded a long standing debate about the existence of structure and 
the best ways to determine and capture it. Here, we reconsider the concept of enterotypes, in 
the context of the vastly increased amounts of available data. We propose a refined framework 
in which the different types should be thought of as weak attractors in compositional space and 
we try to implement an approach to determining which attractor a sample is closest to. To this 
end, we train a classifier on a reference dataset to assign membership to new samples. This way, 
enterotypes assignment is no longer dataset dependent and effects due to biased sampling are 
minimized. Using a model in which we assume the existence of three enterotypes characterized 
by the same driver genera, as originally postulated, we show the relevance of this stratification 
and propose it to be used in a clinical setting as a potential marker for disease development. 
Moreover, we believe that these attractors underline different rules of community assembly and 
we recommend they be accounted for when analyzing gut microbiome samples. 

While enterotypes describe structure in the community at genus level, metagenomic sequencing 
can in principle achieve single-nucleotide resolution, allowing us to identify single nucleotide 
polymorphisms (SNPs) and other genomic variants in the gut microbiome. Analysis 
methodology for this level of resolution has only recently been developed and little exploration 
has been done to date. Assessing SNPs in a large, multinational cohort, we discovered that the 
landscape of genomic variation seems highly structured even beyond species resolution, 
indicating that clearly distinguishable subspecies are prevalent among gut microbes. In several 
cases, these subspecies exhibit geo-stratification, with some subspecies only found in the 
Chinese population. Generally however, they present only minor dispersion limitations and are 
seen across most of our study populations. Within one individual, one subspecies is commonly 
found to dominate and only rarely are several subspecies observed to co-occur in the same 
ecosystem. Analysis of longitudinal data indicates that the dominant subspecies remains stable 
over periods of more than three years. When interrogating their functional properties we find 
many differences, with specific ones appearing relevant to the host. For example, we identify a 
subspecies of E. rectale that is lacking the flagellum operon and find its presence to be 
significantly associated with lower body mass index and lower insulin resistance of their hosts; 
it also correlates with higher microbial community diversity. These associations could not be 
seen at the species level (where multiple subspecies are convoluted), which illustrates the 
importance of this increased resolution for a more comprehensive understanding of microbial 
interactions within the microbiome and with the host.     

Taken together, our results provide a rigorous basis for performing comparative metagenomics 
of the human gut, encompassing recommendations for both experimental sample processing 
and computational analysis. We furthermore refine the concept of community stratification into 
enterotypes, develop a reference-based approach for enterotype assignment and provide 
compelling evidence for their relevance. Lastly, by harnessing the full resolution of 
metagenomics, we discover a highly structured genomic variation landscape below the 
microbial species level and identify common subspecies of the human gut microbiome. By 
developing these high-precision metagenomics analysis tools, we thus hope to contribute to a 
greatly improved understanding of the properties and dynamics of the human gut microbiome. 

  



ZUSAMMENFASSUNG 

Die mikrobiellen Gemeinschaften innerhalb des menschlichen Darmtrakts – das menschliche 
Darm-Mikrobiom - sind wichtig für das Wohlbefinden und die Gesundheit des Wirts. Die 
Charakterisierung dieses neuen “Organs”, welches aus ähnlich vielen Zellen besteht wie der 
menschliche Körper, ist in jüngster Zeit durch technologische Fortschritte möglich geworden. 
Die Metagenomik, die direkte Hochdurchsatz-Sequenzierung mikrobieller DNA, ermöglicht die 
Aufnahme “genomischer Schnappschüsse” tausender verschiedener, in einem komplexen 
Ökosystem zusammenlebender Bakterien, ohne dafür auf deren Isolierung und Wachstum 
angewiesen zu sein. Die Quantifizierung des menschlichen Mikrobioms erlaubt es uns, seine 
Eigenschaften zu untersuchen und Verbindungen zu Wirtsphysiologie und -krankheiten zu 
knüpfen. Der Reichtum dieser Informationen ist unerwartet hoch und wahrscheinlich noch 
immer unterbewertet. Aufgrund der Tatsache, dass der Großteil unserer Ernährung und 
unseres Medikamentenkonsums unser Mikrobiom, welches wiederum selbst über verschiedene 
Arten mit unserem Immunsystem interagiert, beeinflusst, wurden viele Mechanismen 
vorgeschlagen, um die beobachteten Korrelationen zu erklären. Die meisten davon sind jedoch 
noch nicht vollständig verstanden. 

Eine offensichtliche Komponente zur Charakterisierung des Mikrobioms und dessen 
Interaktionen mit dem Wirt ist eine akkurate Quantifizierung seiner genauen 
Zusammensetzung, womit sowohl die Anwesenheit von bestimmten Bakterien als auch deren 
Anzahl gemeint ist. Obwohl etablierte Standardprozeduren zur Probenbehandlung, DNA-
Extrahierung und Datenanalyse existieren, sind sie nicht immer für metagenomische Studien 
anwendbar, da sie für isolierte Bakterienkulturen entwickelt worden. Deswegen und auch 
wegen der Begeisterung, die neuartige Technologien mit sich bringen, nahmen sich die ersten 
metagenomischen Studien jeweils die Freiheit, ihre eigenen Protokolle und Herangehensweisen 
zu definieren. Die Metaanalyse dieser Studien zeigte, dass Unterschiede sowohl in der 
Probenbehandlung als auch in der statistischen Auswertung den Vergleich zwischen Studien 
sehr schwierig machen. Das wiederum beschneidet unsere Fähigkeit, Entdeckungen zu 
bestätigen und Daten über Studien hinweg zu kombinieren. Um die zwingend notwendige 
Standardisierung voranzutreiben haben wir einen umfassenden Vergleich von 21 
verschiedenen DNA-Extraktionsmethoden sowie verschiedener weiterer Probenbehandlungen, 
welche Quantifizierungen beeinflussen, vorgenommen. Wir haben eine Reihe von Kriterien 
entwickelt, um die Messqualität in Abwesenheit von Mock-Kontrollen zu bestimmen und 
schlagen anhand dieser Methoden für Probenbeschaffung, DNA-Extraktion und Library-
Generierung optimale Verfahren vor. Wenn diese als Standard akzeptiert werden, würde das 
eine stark verbesserte Vergleichbarkeit zwischen Studien ermöglichen und damit sowohl einen 
extremen Zuwachs an statistischer Power als auch unserer Fähigkeit, generelle Schlüsse über 
das Mikrobiom zu ziehen, zur Folge haben. 

Die meisten metagenomischen Studien teilen ihre Datensätze auf um Vergleiche anzustellen, z.B. 
zwischen Stuhlproben gesunder und erkrankter Menschen. Eine Vielzahl verschiedener 
Ansätze, welche wiederum oft mit verschiedenen Datenvorbehandlungen kombiniert werden, 
wurden vorgeschlagen, um Dissimilarität zwischen Gemeinschaften (Beta-Diversität) zu 
berechnen. Um metagenomische Daten auf Spezies-, Genus- und höheren Ebenen zu 
quantifizieren werden üblicherweise reads auf Referenzgenome bestimmter taxonomischer 
Einheiten aligniert und gezählt. Aufgrund technologieabhängiger Unterschiede in 
Sequenziertiefe müssen reads normalisiert werden, z.B. indem man alle counts durch die 
Gesamtanzahl der counts einer Sequenzierung teilt (total sum scaling), oder durch subsampling. 
Für die Messung der Gemeinschafts(dis)similarität wurden viele Distanzmaße vorgeschlagen. 
Da es schwierig ist diese Ansätze theoretisch zu vergleichen, haben wir ein biologisch 



motiviertes Konzept entwickelt, mit dem man Distanzmaße evaluieren kann. Dies unterstreicht 
die Wichtigkeit der Datentransformation und dessen Einwirkung auf Distanzmaße. 

Aufbauend auf unserer Erfahrung mit Häufigkeitsabschätzungen und Techniken zur 
Datenvorbehandlung können wir nun versuchen, grundlegende Eigenschaften mikrobieller 
Gemeinschaften zu verstehen. 2011 wurde vorgeschlagen, dass sich die Variation auf 
Genusebene im menschlichen Darm auf drei grundlegende Typen beschränkt, welche 
Enterotypen getauft wurden. Diese wurden in Datensätzen verschiedener Länder als 
unabhängig von Herkunft, Alter und anderer Wirtseigenschaften beschrieben. Die Enterotypen 
sind durch einen Cluster-Ansatz als „dicht besiedelte Bereiche in einem multidimensionalen 
Raum der Gemeinschaftszusammensetzung“ definiert und wurden als grundlegende 
Stratifikatoren für die menschlichen Population vorgeschlagen. Spätere Studien, welche dieses 
Konzept auf andere Datensätze anwandten, erhoben Zweifel bezüglich der optimalen Anzahl an 
Clustern und an der generellen Robustheit des Ansatzes. Dies leitete erneut eine langanhaltende 
Debate über die Existenz von Strukturen und die besten Wege, diese zu bestimmen und 
einzufangen, ein. Hier überdenken wir, in Anbetracht der stark gestiegenen Anzahl an 
verfügbaren Daten, das Enterotypen-Konzept. Wir schlagen ein überarbeitetes Konzept vor, in 
welchem die verschiedenen Enterotypen als schwache Attraktoren im multidimensionalen 
Raum verstanden werden und implementieren einen Ansatz zur Berechnung des Attraktors, der 
dem Datensatz am ähnlichsten ist. Dafür trainieren wir einen Klassifizierer auf einen Referenz-
Datensatz, um neue Datensätze zuzuordnen. Damit ist Enterotypisierung nicht mehr 
datensatzabhängig und der Effekt von sampling bias ist minimiert. Indem wir ein Modell nutzen 
für das wir die Existenz dreier Enterotypen (definiert durch die selben Genera wie ursprünglich 
postuliert) annehmen, zeigen wir die Relevanz dieser Stratifikation und schlagen es in einem 
klinischen Zusammenhang als potentiellen Marker für Krankheitsfortschritt vor. Außerdem 
glauben wir, dass diese Attraktoren verschiedene Regeln mikrobieller Zusammensetzung 
widerspiegeln und schlagen vor, sie bei der Analyse von mikrobiellen Daten zu berücksichtigen. 

Während Enterotypen Struktur in der Gemeinschaft auf Genusebene beschreiben, kann 
metagenomische Sequenzierung prinzipiell Auflösung auf Nukleotidebene erreichen, womit 
single nucleotide polymorphisms (SNPs) und andere genomische Variationen im Darm-
Mikrobiom identifiziert werden können. Analysemethoden für dieses Auflösungsniveau wurden 
erst kürzlich entwickelt und bis heute wurden diese erst wenig erforscht. Wir zeigen, dass die 
Landschaft an genomischer Variation von SNPs in einer großen, multinationalen Kohorte sogar 
über die Speziesebene hinaus geht und hochgradig strukturiert ist, was das Vorkommen klar 
abgrenzbarer Subspezies unter Darmmikroben suggeriert. In mehreren Fällen zeigen diese 
Subspezies geographische Stratifikation, wobei einige Subspezies nur in chinesischen 
Populationen vorkommen. Im Allgemein zeigen Sie jedoch nur eine geringfügige Beschränkung 
der Dispersion und sind in der Mehrzahl der Populationen vorhanden. Innerhalb eines 
Individuums dominiert häufig eine bestimmte Subspezies, nur selten dominieren verschieden 
gemeinsam im gleichen Ökosystem.  Eine Analyse von Zeitreihenexperimenten deutet darauf 
hin, dass die dominante Subspezies über Zeiträume von mehr als drei Jahren stabil bleibt. Wenn 
man ihre funktionalen Eigenschaften untersucht findet man viele Unterschiede, von denen 
bestimmte relevant für den Wirt erscheinen. Zum Beispiel identifizieren wir eine Subspezies 
von  E. rectale, welcher das Flagellum-Operon fehlt, die signifikant assoziiert ist mit geringerem 
BMI und geringerer Insulinresistenz ihres Wirts; sie korreliert zudem mit höherer mikrobieller 
Diversität. Diese Assoziationen konnten auf Speziesebene nicht gesehen werden (auf der 
mehrere Subspezies überlagert sind), was die Wichtigkeit dieser erhöhten Auflösung für ein 
umfassenderes Verständnis mikrobieller Interaktionen innerhalb des Mikrobioms und mit dem 
Wirt illustriert. 



Zusammenfassend bieten unsere Ergebnisse eine präzise Grundlage für vergleichende 
Metagenomik des menschlichen Darms, einschließlich Empfehlungen über experimentelles 
Sampling und statistische Analysen. Weiterhin verfeinern wir das Konzept der Enterotypen-
Stratifikation in Gemeinschaften, entwickeln referenzbasierte Ansätze für Enterotypen-
Zuordnung und bieten überzeugende Beweise für ihre Relevanz. Indem wir die volle Auflösung 
metagenomischer Sequenzierungen nutzen entdecken wir eine Landschaft hochgradig 
strukturierter genomischer Variation unterhalb der Speziesebene und identifizieren 
gemeinsame Subspezies des menschlichen Darm-Mikrobioms. Durch die Entwicklung dieser 
hochpräzisen metagenomischen Untersuchungsansätze tragen wir zu einem verbesserten 
Verständnis der Eigenschaften und Dynamiken des menschlichen Darm-Mikrobioms bei. 
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1.  INTRODUCTION 

Microbes and the communities they form have captivated people’s imagination ever since the 
first observations of Antonie Van Leeuwenhoek and Robert Hooke back in the 17th century1. 
From pond water and soil (the first communities to be studied) to the ocean and then human 
related habitats such as the oral cavity, skin and stool, microbes are our ubiquitous companion. 
They include bacteria, archaea, fungi, protists, algae and viruses, of which innumerable different 
types have been catalogued and classified to date, with many more remaining unknown2. They 
are estimated to make up approximately 60% of all living matter on earth. Modern microbiology 
is focused on the systematic cataloguing and characterization of this vast microbial diversity, 
with the ultimate goal of understanding not only the varied functions that each unit performs, 
but also how these units come together to form stable assemblages, i.e. ecosystems.  

This cataloguing, or classification, of various micro-organisms (starting with bacteria) is a 
relatively recent development, due to the fact that most of human history was spent in complete 
ignorance of the existence of microbes. After the observations of Leeuwenhoek and Hooke, 
microscopists of the 17th and 18th century thought of bacteria (‘infusion animalcules’) as all 
belonging to the same shape-shifting species (pleomorphic species) and kept busy with detailed 
drawing and descriptions of them. The first phenotypic classification of bacteria was put forth by 
Otto Mueller in 17733, more than 100 years after the first descriptions of bacteria. He split these 
‘animalcules’ into two form genera: punctiform (Monas) and elongated (Vibrio). More were 
added in consequent years, though all still based around microscopic morphology and simply 
motivated by curiosity. In comparison, the classification of the macro world had already been 
systematized in the early 18th century by Carolus Linnaeus and his introduction of a hierarchical 
classification system, which he used to partition the over 40,000 specimen he had collected 
throughout his life. Thus, the now familiar categories of kingdom, phylum, class, order, family, 
genus, species and strain were introduced and used to categorize specimen based on their 
relative similarity. 

The drive for classification in the microbial world changed radically with Pasteur and Koch. The 
first postulated the germ theory4 and the latter proved its truth value and concluded that it was 
necessary to view the different morphologies of pathogenic bacteria as belonging to distinct 
units5 (i.e. a bacterial species). Now, systematization was driven by a need to identify and name 
pathogenic bacteria, with very real implications to human health. 

In the process of proving Pasteur’s postulate, Koch introduced a cultivation technique, allowing 
the growing of one single microbe on solidified gelatin (later agar), and thus revolutionized the 
way microbiology studies were performed6. This way, scientists could isolate a specific strain 
and investigate its properties, instead of just observing a collection of microbes through the 
microscope. Thus, classification could be based on phenotypic descriptions, obtained through 
specific tests performed on single units. This brought about an explosion in the amount of 
bacteria described, with multiple compendia being published, listing an ever increasing amount 
of types. This culminated in the first modern taxonomy, “Bergey’s Manual of Determinative 
Bacteriology”, in 1923, which became the reference work for further additions and 
modifications7. The manual’s relevance consisted in the fact that it provided unifying criteria for 
describing bacterial phenotypes and morphology, as well as introducing a consistent 
nomenclature which greatly facilitated communication and exchange of results in the emerging 
microbiology community. Moreover, this first systematic description of microbial diversity was 
elaborated in the same terms as Linnaeus’s macro taxonomy, preserving all the different levels 
and seamlessly expanding the net cast over the diversity of living things to include a swath of 
new members. 
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In the various environments where microbes live, they perform a varied number of functions, 
without which life on the planet would not have arisen as we know it and its continuation would 
certainly not be possible. For example, photosynthetic bacteria (cyanobacteria) living in the 
oceans provide a large amount of oxygen in the atmosphere8 and are responsible for the original 
oxygenation of the earth’s atmosphere in the proterozoic era9. Of similar importance are various 
rhizobia (soil bacteria), which usually form nodules on the roots of legumes and fix nitrogen10,11. 
These are relevant because nitrogen is the most common nutrient deficiency of soils around the 
world12 and thus the most commonly supplied one. This supplementation, usually done through 
fertilizers, has been shown to have negative environmental impact and thus is not desirable13. 
Our understanding and ability to manipulate microbial environments would have multiple 
beneficial implications on such issues. 

Generally, due to their sheer numbers, microbes represent a cornucopia of enzymatic function, 
most of which we have barely begun to understand, though we are increasingly aware of their 
impact and importance for the environment. A recent study has shown that there are up to 40 
million different genes in the ocean alone14, most of which we know nothing about. It is hard to 
overstate the potential importance of all these different functionalities, from new avenues for 
tackling antibiotic resistance to enzymatic machinery that can be employed at will by synthetic 
biology. 

Focusing on human associated microbes, we find a large historical bias towards pathogenic 
bacteria, with most of microbiology work in the past century dealing with the relatively small 
number of microbes out there whose lifestyle seems to involve a huge discomfort for the host, 
sometimes even culminating in death. Such bias is easily explicable, especially when one 
considers that some of the greatest loss of life in human history was caused by bacteria (Yersinia 
pestis is estimated to have caused 200 million deaths in-between the years 1346 and 1353). 
Recently, however, the focus has shifted towards a more holistic and unbiased view of the 
human associated flora. So much so, that some have gone as far as equating the totality of 
microbes living in or on the human body (known as the human microbiome) to a separate organ. 
This may indeed be warranted, as the number of cells making up the human microbiome is 
comparable to the total number of host cells. Most of these bacteria, it should be noted, are 
referred to as “commensal”, indicating that they are unlikely (though not unable) to be harmful 
to the host. These consortia of microbes constitute the object of study that this thesis is built 
around. 

1.1 TAXONOMIC QUANTIFICATION OF MICROBIAL COMMUNITIES 

The key to the vastly increased knowledge about microbial communities has come from the 
discovery of systematic ways of assessing diverse assemblies of microbes and an ever increasing 
resolution of classification. From the development of gram staining by Hans Christian Gram in 
1884, through to the work of Woese and Fox in 1977 in using the 16S rRNA gene as a marker to 
describe a high resolution phylogeny of prokaryotes15, we have become increasingly adept at 
classifying (i.e. naming) the units of a very complex system. It is important to note at this stage 
that this classification is not necessarily natural16. Namely, there exist philosophical objections to 
what microbiology calls a species and its existence in the real environment. Competing models 
have been put forth, none of which actually necessitate the existence of a microbial species17–19, 
given what we currently know about genomic diversification, microbial evolution, lateral gene 
transfer20 and conjugation21. While these caveats do not invalidate the structure imposed by 
pragmatic classification schemes, they serve to highlight the fact that they are only an 
approximation of reality.   
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Unabated by these issues, the advent of polymerase chain reaction (PCR) and sequencing 
technologies allowed us to move to culture-independent techniques, which pushed the 
development of a systematic description of the microbial taxonomy in a less biased way. After 
using Sanger sequencing to decode the first bacterial genomes (Haemophilus influenzae22 and 
Mycoplasma genitalium23), characterization of microbes continued at breakneck speed with the 
advent of next generation sequencing technologies. This made the number of available 
references grow quickly, as it became easy to get a good quality bacterial genome assembly at a 
low cost24. This in turn meant that taxonomy had to keep up and the systematization needed to 
quickly generalize. 

Currently, there are two main avenues to estimating the relative abundance of prokaryotic taxa 
in a given microbial community: 16S rRNA gene amplicons (“16S rRNA gene sequencing”) and 
shotgun sequencing. Sequencing one of the hypervariable regions of the 16S rRNA gene (or the 
entire gene in some cases) can be used to assign reads to a taxonomic unit (i.e. species). 16S 
rRNA gene sequencing is made affordable by the fact that it only sequences a very small subset 
of the available DNA and thus can be heavily multiplexed. It was shown that as few as 10,000 
reads will yield a good approximation of the sample composition at genus level. The low cost and 
high throughput do however come with some disadvantages. The method introduces an 
amplification bias and the result is influenced by the choice of primers. This problem has 
recently been minimized by the generalized use of only one set of primers, making studies 
comparable, even if the resulting abundances are biased compared to reality. More importantly 
though, the phylogenetic resolution of the 16S rRNA gene is far from perfect and assignments at 
high levels of resolution (such as species or below) are often impossible. Lastly, even with an 
assignment at species level, this approach misses the functional variation often observed even 
between very closely related bacteria.  

The second approach to measuring taxonomic and functional composition of microbial 
communities is the metagenomics shotgun sequencing approach, which does not involve the 
amplification of the starting material and thus subjects the entire DNA pool to sequencing. This 
way, taxonomic abundances as well as gene and functional abundances can be estimated. There 
are a series of approaches for obtaining community composition estimates from shotgun 
metagenomic data, which will be introduced and discussed in the following subsections. It is 
important to understand the caveats and strengths of each one of these approaches, as they are 
the basis of all future inferences made from metagenomic data. 

1.1.1 METAPHLAN 

This method involves a heavy pre-computing step, but results in a small background to map to 
for abundance estimation25. Briefly, metaphlan searches the reference genome collection (a set 
of all available genome assemblies) for parts of genomes that can be used as a unique proxy 
identifier for a given taxonomic unit. For example, taking the NCBI taxonomy as a ground truth, 
the method searches for genes that are unique to most members of a predefined species. This 
then identifies units that act as a proxy for the presence and abundances of that species. This 
approach can be applied at all levels, thus resulting in pools of genes that are markers for 
different taxonomic units at different resolutions. Note that if the NCBI taxonomy has falsely 
classified a species, this will impact the outcome of this precomputing step. Finally, reads from a 
metagenomic sample are aligned against these proxy sequences and taxa abundances are 
estimated. 

The resulting gene pool is considerably smaller than the entire NCBI genome collection, which 
makes aligning reads to it very fast. Once mapped, the software estimates the relative abundance 
of a specified taxonomic level. The main drawback of this approach is its inability to estimate the 
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fraction of the measured community that it cannot quantify. This problem will disappear when 
the NCBI genome collection will have a representative for each extant bacterial species, but this 
does not seem to be a likely occurrence in the near future.   

To illustrate this issue, consider a community that is only composed of three members. Two are 
bacterial species for which we have a reference genome (call them bugA and bugB) and the third 
one is a type of bacterium we have not encountered before (call it bugX). Let us assume that all 
three taxa are in equal abundance (33.3% each). As we have marker genes for bugA and bugB, 
we will be able to map some of our metagenomic reads to them. Reads from bugX will not map 
to our reference set. Ultimately, our result will show a community composed of bugA and bugB, 
both representing roughly 50% of the community. Both these estimates would be wrong, 
because we are unable to quantify the unknown fraction. Fundamentally, this is because a non-
mapping read can be so for two undistinguishable reasons: because it comes from a region of 
bugA or bugB that is not unique to them, or because it comes from bugX. The inability to assess 
the unknown fraction is thus a property of the method. 

In an environment that has been extensively studied and for which a lot of reference genomes 
are available, this method should perform very well. Moreover, as the number of genomes 
increases, given that the pre-computing step is still feasible, this approach will only improve. 

1.1.2 SPECI CLUSTERS 

Unlike metaphlan, the specI method26 does not take the NCBI taxonomy as a necessary ground 
truth. Specifically, it defines and globally applies a molecular cutoff that is a better proxy for a 
microbial species. Given this definition, it clusters genomes into “species pools” and uses only 
one genome to represent the species. This results in a collection of representative genomes to 
which metagenomic samples can be aligned and species abundances quantified. 

As mentioned earlier, a considerable amount of research has focused on defining bacterial units 
(i.e. species) on the basis of their 16S rRNA gene. Recognizing that this definition is not perfect 
and a single similarity cutoff is a poor approximation of the bacterial phylogeny, Mende et al.26 
expanded the base on which a similarity cutoff may be used. As such, they focused on 40 
universal marker genes that are present in a single copy in most bacteria. Using these, it is 
possible to calibrate a per gene cutoff that allows the identification of bacterial species 
consistently across the phylogeny. Thus, any two bacterial genomes that are more similar than 
the similarity cutoff are considered to belong to the same bacterial species. This approach 
recovers a surprising overlap with the existing NCBI taxonomy, though, for clarity, the genomic 
clusters it defines are termed specI clusters. We generally think of these specI clusters as being a 
more systematic definition of what a bacterial species is.  

Before outlining the abundance estimation step, we need to also introduce the concept of a 
representative genome. This is a genome from a specI cluster, used to represent the species. It is 
usually chosen as the most complete genome in the collection. To test that this genome is indeed 
a representative of the cluster, we simulate reads27 from all the reference genomes and map 
them back to a collection of all representative genomes (referred to as the representative set). 
We observe that reads sampled from genomes of a specI cluster map exclusively to the 
representative of that cluster. We note however, that not all reads map uniquely to this 
representative set. Such multiple mappers (reads that have multiple equally good mappings) are 
discarded.  

Finally, using this representative set, we are able to quantify the relative abundances of 
microbes in a given sample. By mapping all reads to this set and normalizing for genome length 
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and other issues, we are able to estimate relative abundances of different microbes for which a 
specI cluster is available. Moreover, this method is able to estimate the unknown fraction of 
microbes, because reads that do not map to any of the representative are highly likely to have 
been samples from an unknown specI.  

1.1.3 MOTUS 

Building on the specI clusters, Sunagawa et al.28 proposed an approach that would not only 
quantify the known specI abundances in metagenomic data, but also the unknown ones. To 
achieve this, specI clusters are defined on marker genes assembled from metagenomic samples 
in addition to reference genomes. First, genes are assembled from every sample and a hidden 
markov-model (HMM) is used to pick out those genes that are orthologues of the 10 universal 
marker genes. This results in a collection of unconnected marker genes, representing the full 
diversity of the habitat being studied. All marker genes from reference genomes are added to 
this collection.  

To reduce the number of features in use, these genes are then clustered together at the similarity 
cutoff determined in the specI approach. Thus, for each marker gene, there will be clusters of 
genes that all belong to one species. At this point, there are pools of genes that represent a 
species, but they are not connected to each other. For this, samples are mapped back to a 
representative gene for each gene cluster and the abundance of these is measured. Then, all 
pairwise correlations are computed, to determine genes that covary. These are then linked 
together to form what is termed mOTU linkage groups. These groups link most of the 10 marker 
genes that a specI representative genome should have and are thus equivalent. They do however 
also identify linkage groups for which there is no reference genome. Due to this, the method 
does not suffer from the ”unknown” problem, making the quantification accurate. In the worst 
case scenario, species that are lowly abundant in all samples will be missed. This is because their 
marker genes will never be assembled. However, these would be of little consequence to the 
estimation error, as they are, by definition, lowly abundant across all samples.  

1.1.4 STRAIN LEVEL RESOLUTION 

The subsections above introduced the most widely used level of high resolution characterization 
for microbial communities, namely species level. However, strain level resolution has been a 
goal of multiple research groups, trying to disentangle the phenotypic difference observed even 
within a species. 

Previous work in the Bork group has highlighted the fact that most individuals harbor multiple 
strains of any given species, with a surprising degree of individuality29. Other approaches have 
taken the resolution even further, considering each variant position to determine a new 
strain30,31, and further highlighting the individuality of each sample. This level of resolution 
however is not very practical, as it makes it almost impossible to compare between samples, 
which is probably one of the reasons why most of the strain-level variation papers are focused 
on bacterial evolution and diversity rather than specific associations with the host or 
comparison between individuals. Of note, these investigations have also shown considerable 
functional differences at strain-level31. 
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1.2 FUNCTIONAL QUANTIFICATION OF MICROBIAL COMMUNITIES 

There are two aspects to consider when sampling microbial populations. To put it simply, these 
are “who is there” and “what are they doing”. In an ideal case, the latter could be directly and 
easily inferred from the former. However, when it comes to microbes, this is not the case. 
Fundamentally, this is because our ability to read out “who is there” is limited by our 
understanding of microbial genomics. Here, we have, through the systematization schemes 
introduced above, approximated the real variation and discretized it into countable types in 
order to be able to make sense of the complex system. As mentioned earlier, it is even possible 
that we have imposed a non-existing structure onto some of these units, as some have argued 
that there is no reason to presuppose the existence of prokaryotic species17. 

The natural inference would follow the path of generalization from one genome within the type 
to the entire set. So, we should be able to take the representative specI genome and infer from 
there that all species within that specI cluster perform the same function. While this has been 
used as an approximation and may indeed be a helpful one, there are clear examples in which 
this generalization does not hold. For example, E. coli is a prevalent species of the human gut 
microbiome, being found in most individual’s colons and thus can be considered a commensal 
bacteria. However, many pathogenic strains of E.coli also exist, which cause severe disease in 
humans. Thus, the label of E.coli is not a very informative one, as the outcome of having a lot of 
these bacteria in your gut can vary from non-problematic to death. Generally the differences will 
probably be at a much finer level, but they will certainly exist. As has been demonstrated by pan-
genomic studies, most prokaryotic species have a core genome (i.e. genes shared by all strain 
within a type) that is considerably smaller than the size of the genome, allowing for considerable 
functional potential differences between strains32.  

Due to all of these considerations, it is perhaps better to circumvent the species generalization 
and quantify the functional potential of a community directly. While a 16S rRNA gene based 
approach does not allow for this, it can be done with a shotgun approach. Generally, these 
methods are predicated on the generation of a gene catalog encompassing the totality of genetic 
variation. If we have a complete survey of all potential genes in a habitat, we are then able to 
compare all samples from the habitat on the background of that collection of genes.  

1.2.1 GENE CATALOGUES 

A gene catalogue is constructed by assembling all reads within all samples and determining the 
complete set of genes that these samples contain. First, we assemble contigs within each sample 
of interest. Then, within each sample, genes are determined on these contigs and separated. This 
results in a pool of genes for each sample. Next, all genes are put together and clustered at a 95% 
identity cutoff. That is, all genes that have an identity above 95% are clustered and a 
representative is chosen. The resulting set of representative genes forms the catalog. For the 
ocean for example, this catalog contains over 40 million genes14. The most recent human gut 
catalog contains roughly 10 million genes33. These genes are then annotated using functional 
databased such as KEGG34 and eggNOG35, to allow for functional inference. It should be noted 
here that the majority of genes in these catalogues do not actually get annotated with a function, 
highlighting the future need to better characterize these36.  

When a gene catalog is available for a habitat, samples can be mapped against it and their 
functional potential can be compared to others. This allows us to look for functional 
enrichments, independent of the taxonomic universe. Furthermore, using these, we can try and 
determine de-novo units of genes that co-correlate across multiple samples. These have been 
termed metagenomic species (MGS)37 and are yet another systematization of the genomic 
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variation observed in the environment. Thus, even with circumventing the taxonomic space, we 
have gone full circle and come back to a catalog based approach to determining core genomes of 
bacterial species. A comprehensive comparison of these two approaches to estimating the core 
genome has not been performed, though initial analysis suggests they are mostly consistent, 
lending weight to the hypothesis of the natural emergence and existence of microbial species. 

1.3 THE HUMAN GUT MICROBIOME 

All of the methodology introduced above allows us to determine the microbial composition of 
any metagenomic sample. In the context of this thesis, we are however narrowly interested in 
the human gut microbiome, that is, the collection of bacteria and archaea that populate the lower 
gastrointestinal tract (GIT). Viruses and fungi are also found across the GIT, but are commonly 
disregarded, due mostly to methodological issues. When performing 16S studies, viruses and 
fungi are ignored by definition, as they do not possess such a gene. In metagenomic studies, it is 
possible to recover both38,39, though focus has historically been on the bacterial and archaeal 
fraction.  

The colon is the part of the GIT with the highest diversity and number of microbes (comparable 
to the total number of cells in the host40). It represents a collection of all other organisms 
present throughout the tract and was thus chosen as the focal point of study. It is also the easiest 
to sample, as humans excrete the content of their colon on a daily basis.  

With stool in our hands and sophisticated measuring techniques, we can start to understand the 
complex community of prokaryotes that have made a home of our digestive tract. 

1.3.1 EARLY LIFE COLONIZATION 

A natural starting point for interrogating the gut associated microbiome is at birth, where 
humans should emerge with a blank slate and a pristine colon. Blank slate aside, it has recently 
become obvious that we may not have such a pristine starting point after all.  

Firstly, the question of the microbial load of the placenta has gotten renewed attention, as 
evidence has surfaced that it may not actually be sterile after all41, even under normal 
conditions. It seems to contain a specific microbiome, distinguishable from other human body 
sites, composed of a diverse collection of commensal microbes from the Firmicutes, Tenericutes, 
Proteobacteria, Bacteroidetes, and Fusobacteria phyla and can be linked to antenatal infections 
and even pre-term birth. More work is necessary to determine the robustness of these findings, 
as they are dealing with extremely low amounts of microbes and are thus highly prone to 
contaminations. For example, it has been shown that each extraction kit used in these studies 
has its own distinct microbiome42,43, requiring caution when drawing conclusions from small 
amounts of material.  In the status quo, pregnant women are regularly screened against bacterial 
infections and are generally told to abstain from consuming raw fish or unpasteurized products 
as they may contain pathogenic bacteria which are highly problematic for the pregnancy. The 
existence of commensal placental microbes and their potential implications for fetus 
development add a new dimension to these considerations.  

Independently of the placental microbial population, the fetus gets into contact with a plethora 
of microbes once it gets born. And here, the way in which it emerges from the mother may also 
play a role in the development and acquisition of microbes. Two options exist, that of natural 
birth or that of caesarian section. In the former, the fetus is exposed to the vaginal and stool 
microbiome as it emerges, while in the latter it is directly exposed to the mother’s skin and thus 
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is more likely to acquire a different set of microbes44–46. In the initial weeks of life, the delivery 
mode strongly imprints the newborn’s composition. However, this fades over time, though 
diversity differences can be observed even later in development. This has led researchers to 
hypothesize that the original exposure may have a long lasting influence on the development of 
the immune system, in part because caesarian section births have long been associated with a 
slight increase in asthma, allergies47 or type I diabetes48. 

The considerations above have led some to suggest that caesarian section born babies should be 
inoculated with vaginal bacteria through artificial means49 and such studies have shown that 
such a transfer would indeed bring the composition of c-section born babies to a more similar 
state to that of vaginally born ones. There is, however, no long term evidence that such an 
inoculation would be advantageous, so - given the higher risk of infection associated with 
vaginal births50 - it may be too soon to ask this of your doctor. 

After the initial weeks of life, the microbiome is highly unstable, up to age 651, though it is 
consistently characterized by high levels of Bifidobacterium, which is comparatively low in 
adults. It has been indicated that the composition can be influenced by breast feeding and long-
lasting effects are observed after antibiotic treatment, with implications for the later 
development of obesity and type I diabetes52–55. Moreover, given the interconnection between 
the microbiome and the immune system, extensive research has associated compositional shifts 
in early life to the development of the immune system and inflammatory disorders such as 
allergies and asthma56,57.  

1.3.2 THE ADULT MICROBIOME 

Following the original colonization, the gut microbiome of children up to the age of 6 is 
dramatically distinct from that of adults51. Enriched in Bifidobacterium spp., it is highly variable 
over time. After childhood, the composition of the gut microbiome becomes fixed, through 
mechanisms not yet understood. While there is still temporal variation within an individual58, 
the magnitude of this variation is smaller than the differences observed between people. For 
example, in a cohort of nearly 2000, samples taken from the same individual are clearly 
distinguishable from all other ones, when considering taxonomic composition. The functional 
space is a lot less variable, with no distinguishable individual specific features59. Of note, this 
may be due to our poor understanding of the functional diversity and our inability to annotate 
most of the genes in the human gut to a known function. Thus, the low variation functional space 
is made up of very basic functions, relating to amino acid synthesis, DNA repair and replication 
and other clearly necessary machinery for the life and replication of microbes. It is however also 
possible that a lot of the differences observed on a taxonomic level do not reflect in the functions 
of the microbiome, as different microbes can perform the same functions and are thus, from this 
perspective at least, interchangeable. Pan-genomic and phenotypic studies have suggested that a 
bacterial genus is considerably homogenous in term of functional potential60, making the choice 
of species within that genus irrelevant to the broad functional space. Again, though, none of 
these statements should be generalized too much, as clear violations of these rules can easily be 
found in the literature, where even at strain level there are considerable and relevant differences 
in functional potential32.  

The variation observed in both the taxonomic and functional spaces represent highly relevant 
considerations when thinking about the human associated gut microbiome and the type and size 
of experiments needed. For example, in the taxonomic space, any association with other 
variables will need to overcome the large background variation. Consider Prevotella corpi, which 
is one of the most prevalent bacterial species of the gut (i.e. is preset in most samples). It ranges 
from 0 to almost 40% in some samples, which, given our detection limit of approximately 
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0.001%, is a span of five orders of magnitude. Conversely, large populations will be needed to 
distinguish very small effect sizes at the functional level. 

1.3.3 THE MICROBIOME IN HEALTH AND DISEASE 

The consortia of gut microbes are believed to have evolved together with their human host and 
formed a working symbiosis61,62. While the gut provides protection and a rich environment for 
the bacteria to thrive, they in turn are important to the wellbeing and health of the host. Most 
importantly, they provide an additional barrier against outside pathogenic microbes, by 
occupying the space through which these would have to pass in order to infect the host. This 
barrier aids the colon mucosal layer, which is the physical barrier that the host interposes 
between the epithelial layer and the gut lumen. This layer is rich in glycoproteins and water, 
forming a slippery film on top of the epithelium63. Apart from this apparent out-numbering 
game, there are specific mechanisms through which certain members of the commensal 
microbiome offer protection from pathogens. For example, commensal E. coli has been shown to 
protect against Salmonella infection in mice, by engagement of the NLRC4 inflammasome and 
IGF-1 signaling64. This suggests the possibility of immunizing humans from various pathogens by 
cultivating the right microbiome, which would potentially circumvent the emerging antibiotic 
resistance problem. 

Apart from pathogen protection, the microbiome participates in important metabolic functions 
that humans cannot perform, acting as a fermenter to degrade various complex molecules and 
transform them into valuable compounds that can be taken up and used by the host. Among 
these are a range of vitamins that can be produced by members of the human gut community65. 
For example, bacteria like Lactobacillus reuteri and others are capable of producing cobalamin 
(vitamin B12), which is crucial for the functioning of the brain and nervous system, though the 
host does not possess the necessary enzymes to produce it. Moreover, some of the gut bacteria 
are able to break down otherwise indigestible dietary fibers into short chin fatty acids (SCFAs) 
(butyrate, propionate and acetate), which can then be taken up by the host66. For example, 
colonocytes (epithelial cells that line the colon) uptake butyrate and use it as their main energy 
source. Moreover, this small molecule has been shown to influence expression patterns in the 
colon lining by a direct activity on DNA acetylation67. Studies following the compound outcome 
of different levels of butyrate in stool have however been contradictory. There is evidence of a 
small overall effect of butyrate enemas on infection outcomes68 and a beneficial effect on 
colitis69, though others have shown there was little effect on expression of mucins, which had 
been thought to be the main mode of action70. 

Some species of bacteria, such as Akkermansia muciniphila have been shown to feed directly on 
the mucus71, suggesting the interaction between the host and microbiome is complex and two-
sided. This view of interacting entities gave birth to the main assumptions behind the human 
microbiome field, namely that this colossal gut ecosystem interacts with, and thus must have an 
effect on the host. 

While work has been done to catalogue the variation in the healthy population, a lot of research 
has focused on associations between the gut microbiome and disease. These associations range 
from the expected to the unexpected and all the way to the unlikely. One potential reason for this 
wide variation resides in all the confounding factors that we have yet to identify and thus control 
for72. Moreover, it is important to note that for most of these correlations, causation 
directionality remains to be proven. It should also be noted that a biased expectation is 
acceptable in these conditions. By this we mean that the expectation should be that for most of 
these cases the causality flows from host changes to changes in the microbiome, simply because 
this is a more parsimonious explanation. One other issue to consider is that of confounding 
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factors, of which we know very little at the moment. Interactions between drugs and the 
microbiome as well as effects driven by host inflammation can rarely be accounted for in our 
correlations, but they can represent a significant effect. Moreover, the expectation of the 
involvement of the microbiome should be contextualized by the already mentioned vast 
variation observed between healthy individuals, suggesting little restrictions when it comes to 
which microbes inhabit the host. The case for disease though is different with multiple examples 
of specific changes associated with host phenotypes. For example, a robust association between 
the microbiome and host has been observed in the case of colorectal cancer (CRC)73,74. Here, we 
were able to build a classifier based on microbial abundance data which was able to confidently 
classify CRC cases. We further identified marker species which were informative in this 
classification. Most of these were known oral pathogens, with the most informative being 
Fusobacterium nucleatum, which showed a dramatic enrichment in samples from CRC patients. 
Such classifiers have since been built on other cohorts and similar marker species recovered, 
suggesting a robust signal for CRC, independently of the study. The question remains whether 
these marker species thrive because of the existence of cancer or they are implicated in its 
etiology. F. nucleatum for example has been shown to play a role in the carcinogenesis of 
proximal colon cancer75 and to be able to invade the epithelium. Of the other marker species it is 
known that they are capable of adhering to non-mucosal layers, which could explain their 
growth around the tumor site and thus why they are more abundant in cancer samples. 

Other applications where the microbiome can be used as a good predictive measure include liver 
cirrhosis76 and obesity77, though the predictive power in the latter is more limited. A case where 
it was thought that the microbiome was a good predictor was that of type II diabetes, though it 
was later discovered that these studies were confounded by a specific drug that the diabetic 
patients were prescribed, namely metformin72. Controlling for that confounder showed that the 
microbiome of type II diabetics cannot be distinguished from that of controls. This should be a 
cautionary tale when considering other reports, as the microbiome seems sensitive to many 
factors we are currently not aware of and which may ultimately explain the effects we are 
observing. 

In the direction of the more unlikely associations, it has been proposed that the microbiome is 
involved in controlling satiation by direct signaling to the brain, through the so-called gut-brain-
axis. Other effects on the brain are specific to the development of the immune system, with some 
recent implications for Alzheimer and even autism. More work is needed before any of these 
associations can be considered robust or before we can understand their causal directionality. 

1.3.4 STRUCTURE OF THE HUMAN GUT MICROBIOME 

It is becoming clear that the presence or absence of specific species is unlikely to explain 
complex disease states. Much more likely, such states are caused by an imbalance (dysbiosis78) 
in the community structure which in turn causes the “bioreactor”79 to alter its function80,81. The 
reasons and consequences of this imbalance constitute another major focus of research. This 
underlines the need to view the microbiome as a complex interconnected system and asses its 
properties accordingly. Stability over time, robustness and stress response become crucial areas 
of investigation.  

The compositional space of the western adult human gut microbiome is not uniformly 
populated. That is to say, that there appear to be preferred states that the taxonomic units 
assemble into. Trying to get a handle on the properties of these “attractors”, Arumugam et al 
proposed clustering the space into what they termed enterotypes82. These appeared at the time 
to be independent of geography, age and other measure variables and were thus proposed as a 
general feature of human associated gut communities. In the meantime, it turned out that 
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geography does play a role, at least insofar as highly distinct populations, such as those from 
Malawi, clearly harbor a different microbiome51. This consideration aside, multiple other 
datasets from western populations, analysed using a range of methods83–86, have been found to 
cluster into a similar structure. Furthermore, such states may exist in a similar structure across 
other primates61, are influenced by long-term diet83 and can be associated with health status86. 
Further refinements in enterotypes will bring about a better understanding of community 
structure. Some methods have yielded as many as 4 enterotypes87, while others have argued for 
only two distinguishable clusters88. Some have even gone as far as suggesting there is no 
structure in the human gut and everything should be treated as a gradient, though an exact 
mathematical formulation for what that implies is lacking. The number of sub-communities is 
not as important as their predictive power, from different metabolic behavior to interactions 
with the host. Once stable communities have been identified, some of the above considerations 
can be applied to them.  

The level of resolution needed to make inferences about the bacterial community may have to be 
increased if the right dynamics are to be captured. Variation at genus level has been a long-
standing approach. However, with the ability to robustly detect bacteria down to species level28, 
unhampered by the lack of reference genomes, it has become clear that considerations on the 
genus level have limited power. Going down to species and beyond will greatly increase the 
complexity of the system, but it will allow us to capture more fine-grained features which can be 
highly relevant for understanding both the microbial ecosystem and its interaction with the host. 
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2.  RESULTS 

In the following chapters we shall present a summary of multiple studies, each geared towards a 
better understanding of microbial communities. These studies are at times narrowly technical, 
focusing on seemingly small issues such as data normalization or sample storage. Other times 
they are overtly general, aiming for a grand scheme understanding of these complex systems. 
They are not presented in chronological order, but in the order in which they are logically 
dependent on each other. Thus, the discussion will start from the small and technical aspects, in 
the hope of building a firm backbone on which a more global view can come to rest. 

Metagenomics studies crucially depend on sample collection, storage and DNA extraction. These 
steps have been shown to greatly influence the measured community composition and thus are 
prone to confounding results of different studies89–94. These combined factors add up to such a 
great effect that most studies to date are not comparable95, making US collected samples in one 
study appear to have a completely different microbial composition compared to European or 
Chinese samples collected within other studies. While there is an expectation that geography 
plays a role in the assembly of the gut community, this effect cannot at the moment be 
distinguished from the batch effect introduced by the different sample handling steps performed 
by the different laboratories. This is currently the greatest factor limiting comparison between 
studies and thus hampering our ability to acquire a global picture of the human gut associated 
microbiome. When striving for an understanding of a complex system, one needs to be able to 
measure its relevant variables. If direct measurement is not possible, a proxy measurement must 
be devised and its error needs to be quantified. This is exactly the case for the gut microbiome 
too. Firstly, most studies to date focus on excreted stool as a proxy measurement for the 
community composition in the gut. While there have been multiple studies showing that the 
makeup of feces along the gastro-intestinal tract (GIT) is variable63,96, stool composition has 
been selected as the proxy measurement point, for two main reasons: it is proximal to the colon, 
which is the most dense and diverse community along the GIT and it is easy to sample, which is a 
very important consideration when planning large cohort studies.  

Multiple problems then arise, related to measuring the community composition of stool, two of 
which we have studied and assessed in depth. First is the issue of storage: after a stool sample 
has been collected, it needs to be shipped to a lab for analysis and then stored until such analysis 
can take place. The initial storage can be for hours or even days and weeks, depending on the 
setup of the study. Ideally, the donor would freeze the specimen at -20 degrees Celsius and 
simply ship it to the laboratory that will further process it. In reality, the logistics of such 
freezing are not feasible as they would impose very high additional costs. Furthermore, such an 
approach is actually impossible in some circumstances, where the donor does not have access to 
means of achieving such low temperatures (high powered freezers, dry ice, etc.). We show that 
using RNALater as a fixing agent for the collected specimen allows it to be handled and shipped 
at room temperature without significantly distorting the final measurement. Next, we focused on 
DNA extraction. Once a stool sample arrives in the lab, bacterial cells within it need to be broken 
and their DNA recovered, in such a way that the measured community composition matches that 
of the sample. To test the effect of DNA extraction methods on observed bacterial composition, 
we performed an extensive comparison across 21 different protocols used around the world. 
These protocols are representative of the main alternatives available for extraction and cover 
methodologies used by the most extensive metagenomic studies to date. We show that the 
biggest component of the measurement error is indeed the DNA extraction method, and propose 
a standard, automatable approach to be used by everyone performing DNA extractions from 
human stool samples. 
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The next step in the logical chain relates to data transformations. Given the nature of our 
measurement, we are currently unable to obtain absolute counts of our features within a sample 
and can only measure relative composition. That is to say, we cannot know that an individual has 
106 Prevotella copri (a common gut bacterium), we can only know that Prevotella corpi 
represents 20% of the total amount. Such measures are called “compositional” and have some 
specific properties. Most importantly, after normalization, they are defined on a unit simplex and 
thus the increase of one necessitates the decrease of all others (i.e. it is a 1 sum game). Such 
compositional issues are discussed in the methods section. One other issue that is presented is 
that of variance stabilization and additional data transformation to allow for comparison 
between samples. These problems arise from the way abundances are distributed, with more 
than six orders of magnitude between the most abundant taxon and the least abundant one we 
can measure. Furthermore, once comparable, deciding on a distance measure between 
community compositions remains a vexing question. While we do not claim to have solved these 
issues, we strive to present the reader with a digestion of the main challenges and a set of simple 
guiding rules for choosing a distance measure. 

Accumulated expertise in dealing with sample collection and data transformations allowed me 
to be involved in multiple other projects where I aided in data analysis. These include work on 
using the gut microbiome to predict colorectal cancer73, a description of the confounding effects 
of medication (specifically metformin) on type II diabetes microbiome studies72, as well as work 
on the taxonomic and functional diversity of bacteria in the world’s oceans14. Involvement in all 
these studies allowed me to get familiar with microbial data from a wide range of environments 
and understand the wide applicability of acquired technical notions. 

Returning to the main thread of my work, having satisfactorily established that we can store and 
extract DNA from stool bacterial communities and that we can consistently compare across 
samples, we proceed to investigate the properties of these communities in relation to each other 
and the host they inhabit. To this end, we followed up and refined a previously described 
clustering of individual microbiomes, termed enterotypes82.  

2.1 STANDARDS FOR METAGENOMIC SAMPLE COLLECTION AND DNA 
EXTRACTION 

Any inference, and indeed any attempt to understand the microbial ecosystem of the human gut 
is bound to be impacted by measurement error. While this error can be split into multiple 
components, there are two important ones that we have considered.  

The first consideration is that of sample storage prior to arrival and DNA extraction in the 
laboratory. In Paper 1, we show that RNALater storage is comparable to frozen storage at -20 
degrees Celsius, in that it introduces only minor (non-significant) changes in the observed 
microbial composition at species level, while eliminating the need for immediate freezing or 
sample processing. RNALater is an aqueous solution used to preserve biological specimen, 
generally used for protecting RNA. According to the manufacturer, samples fixed in this buffer 
are stable at room temperature for up to one week, at +4°C for one month and at −20°C and 
−80°C indeϐinitely.  

Briefly, we used seven subjects, with samples collected over a period of up to two years to 
investigate temporal variability and assess preservation-induced variation. We assess 
community composition using the mOTU approach28 to determine bacterial species relative 
abundances. We collect multiple samples from the same stool specimen (without 
homogenization) and subject them to different storage methods: freezing at -20 degrees, chilling 
at between 4 and 10 degrees and finally room temperature storage, with and without RNALater 
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as a buffer. We show that RNALater storage does not introduce a significant effect for any of the 
observed species when compared to freezing. Furthermore, samples from the same individual 
cluster together, even in the context of 888 additional samples. This suggests that the storage 
effect is comparable to the natural variation in a stool specimen and thus that alternative storage 
methods are desirable. 

The second consideration is that of DNA extraction bias, by which we mean the error resulting 
from using different methodologies to break open bacterial cells in order to access and sequence 
their DNA. For quantifying this error and determining an optimal extraction approach, we have, 
in Paper2, undertaken a comparison 21 of the most widely used extraction protocols. In the first 
phase, we quantify measurement errors introduced by various factors and present a 
comprehensive comparison between them, which allows us to rank these factors according to 
effect size. We show that the extraction method has the highest effect and can dramatically 
distort observed community composition. In phase two of the study we show that the natural 
biological variation within a stool specimen is greater than the one induced by applying a 
standard protocol across different laboratories, supporting a standardization effort.  

Generally, methods relying on mechanical breaking of cells walls, using shaking and bead 
beating, perform well in terms of recovering a highly diverse bacterial community and lysing 
gram-positive cell walls. Furthermore, we note that formaldehyde based extractions also 
perform well, though we recommend against them, as they are potentially dangerous. Finally, we 
propose a standardized extraction method, the use of which would allow for better comparison 
across future studies. 

Taken together, these two studies pave the way to large scale studies which one may compare 
across, allowing new work to compare with and build on old one. 

2.2 DATA NORMALIZATION AND TECHNICAL CONSIDERATIONS 

Because of the nature of the measurement performed in metagenomics studies, we cannot at the 
moment obtain absolute counts for the different taxonomic units. All measurements are 
compositional, i.e. defined on a simplex. This results in an intrinsic negative correlation between 
the considered features; this is easy to model if we were to imagine that we are measuring only 
two variables. As they have to sum up to 100%, if one increases, that would cause the other one 
to decrease, thus leading to a correlation of -1. However, we cannot assume that the total 
number of bacteria in the gut community will always be the same, so it is entirely possible that 
the growth of one bacterium does not influence the number of cells of the others. The inability to 
disentangle such dynamics is termed the “compositional” issue.  

Complications further arise when trying to compare between samples, as the total number of 
bacteria may be different, or each may have been sampled to a higher depth (by sequencing 
more DNA molecules). We hold that a total sum scaling (i.e. dividing by the sum of counts per 
each sample) is a sufficient normalization and will allow comparison between samples. We 
illustrate this point in the following publication, highlighting also the necessity of a variance 
normalizing transform after the normalization. 

2.3 STRUCTURE OF GUT COMMUNITY COMPOSITION 

Of primary interest in the papers covered in this section are the properties of the overall 
community composition, such as they can be observed through different resolutions.  
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As a general framework of what structure may conceivably be, the reader should consider 
community compositions of different human associated body-sites. These consist of different 
microbes, in different abundances, making them easy to distinguish from each other. This 
however does not mean that compositions are homogenous within a body-site. Indeed, much 
variation remains within each of these groups, though this also varies by site. For example, the 
urogenital tract is a low diversity community, consisting mostly of Lactobacilii, which makes this 
body-site more homogenous than, for instance, the skin, which can itself be further split into 
multiple sub-sites, each with its specific habitat. 

2.3.1 ENTEROTYPES IN THE SPACE OF MICROBIAL COMPOSITIONAL LANDSCAPE 

One of the first observations made on the compositional variation of the human gut was that 
different people have very different communities that are stable over time. Even in a large 
cohort, one can easily identify samples from an individual for which a previous time-point exists. 
So, the closest sample in composition space will be another sample from the same individual and 
all other samples will be relatively distant.  

When further investigating the general composition landscape, it became clear that this space is 
not evenly populated. So, while each individual is unique, there are some states that are more 
likely than others, causing the multi-dimensional space resulting from all abundance measures 
to appear somewhat structured.  

The identification of this structure is the topic of paper 4. It mainly focuses on the issues that 
have been encountered when trying to identify this structure de-novo in new datasets and deals 
with concerns that such structure is artificial. It goes to great lengths to discuss the properties 
that these enterotypes have, both from a species composition perspective and from a functional 
one. Finally, it proposes a new, classifier based, method of enterotype assignment. It shows that 
this method is robust at recovering known structure across datasets and outlines the advantages 
of the new approach, specifically for small datasets where recovery of de-novo structure is 
cumbersome. It furthermore provides a filtering step in which the composition of the new 
samples is compared to a reference set and a determination is made regarding the likelihood 
that these samples are similar to those. This is important as we would like to limit the 
classification into enterotypes to samples for which such an exercise is meaningful. For example, 
a determination of enterotype for an ocean sample should not be made. This filter step also 
ensures that new types can be found. With this improved concept of enterotypes it should be 
possible to consistently identify and compare between different datasets. 

2.3.2 SUB-SPECIES STRUCTURE 

There is constant tension between the desire for a simple categorization and the ability to make 
confident inferences based on this simplification. This tension can be seen in prokaryotic 
taxonomy between the “splitter” and the “lumper” camps. The former want more high resolution 
determination of types, with constant additions and refinements to current taxonomy, while the 
latter prefer condensing the nomenclature to a restricted number of types. In many cases, there 
are no objective measures by which to decide on a level of resolution, because in these cases we 
are dealing with units that we know little about. In the few cases where more is known, it seems 
that the splitters have an advantage. Such cases are those of human pathogens, like Escherichia 
coli or Samonella enterica. Both are bacterial species which contain strains that can be 
dangerous to the human host and thus studies split them into very fine-grained types, which are 
specifically informative of the phenotypic outcome the human host will experience when 
exposed to them32.  
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In Paper 5, we tried to determine the existence and properties of structure below the currently 
accepted level of microbial species. We were able to investigate the genomic variation landscape 
of 73 highly abundant species of the human gut, using more than 2000 samples. These include 
the most abundant archaeon in the gut, namely Methanobreivbacter smithii, as well as the most 
commonly studied gut bacteria such as Prevotella copri, Eubacterium rectale and many more. Of 
these 73 species, 39 showed strong clustering structure in the variation landscape and these 
clusters were termed subspecies. 

The subspecies we have identified appear to be mutually exclusive within an individual, stable 
over time and show specific geography distributions. Mostly in the Firmicutes phylum, we see 
strong geographic enrichments of subspecies based on geography. Of note, E. rectale, E. eligens 
and others show subspecies that are specific to Chinese samples. Moreover, general dispersal 
limitations are observed for most species, whose subspecies are not randomly distributed across 
the globe. In individuals for whom we have time-series sampling of up to 3 years, we rarely see 
the dominant subspecies changing. In some of the few cases where this happens, we can explain 
this change by the fact that the individual in question went through a course of antibiotic 
treatment.  

Investigating host associations and functional differences between subspecies, we find 
flagellated and non-flagellated subspecies of E. rectale associated with host inflammation, insulin 
resistance and body mass index. We propose that the presence in high abundance of the 
flagellum carrying subspecies causes low-grade inflammation in the gut, which has been 
repeatedly associated with higher insulin resistance and obesity.  

Thus, this new level of taxonomic resolution is a naturally emerging, host significant one, which 
should in the future be considered when trying to associate the human gut microbiome to the 
host. Furthermore, attempts at understanding the interactions between microbes and the 
networks and ecosystems they form should also account for this newly described structure. 
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3.  CONCLUDING REMARKS 

Complete solutions to complex issues rarely exist. Thus, it is unsurprising that the work 
presented in this thesis cannot be taken to have completely solved the issues it set out to tackle. 
However, it is our contention that each publication presented here is a well formulated attempt 
at getting closer to such a solution. 

The sample storage method proposed in Paper 1, together with the DNA extraction method 
proposed in Paper 2, form the basis for comparable estimations of bacterial composition in stool 
samples across multiple studies. This tackles one of the most pressing issues in the field of 
human metagenomics, namely the impossibility of comparison across studies. Large dataset 
specific effects have been reported for all major cohorts95, making their comparison 
cumbersome. With everyone in the field adhering to the same protocol, which we have shown is 
easily implementable and reproducible across locations, study batch effects should stop being an 
issue. Moreover, our proposed DNA extraction method is easy to automate and thus can be 
applied in large, high-throughput situations.  

One drawback of the proposed standard is that it does not necessarily provide the exact sample 
composition and is thus subject to change and improvement. As Paper 2 does not provide a 
sample in which the ground truth is known, it is impossible to assess what the actual extraction 
biases are. The reason for which such a mock community does not exist has to do with the 
technical challenges of building one, highlighted by the repeated failure of multiple groups to 
definitively quantify extraction biases. For these reasons, we use a series of other proxy 
measures for assessing the quality of the extraction, but leave open the possibility that 
measurement error still exists. 

Our studies, as well as others on the same topic, ask the question of statistically significant 
changes in composition between a control set and a treated set. For example, the storage method 
is shown to not significantly bias the estimate of any of the measured species. This, however, 
does not mean that the storage method does not introduce an effect, but just that this variation is 
undetectable given the number of replicates used. Same considerations hold true of Paper 2, in 
which the question is similarly phrased, only this time regarding the effect of DNA extraction 
methods. Here, a more thorough analysis focuses not only on the significance of the differences, 
but on their size as well. The size of the effect then becomes the important consideration. 
Namely, we can now tradeoff accuracy for practicability. This is not to say that we should not 
aim for better extraction methods or better storage alternatives, just that we should consider the 
added benefit of these in the context of how they influence the overall outcome of the 
measurement and how relevant this is for the questions that the data is then used for.  

The standard DNA extraction protocol we propose is not guaranteed to recover the exact 
bacterial composition of the sample. However, the size of the measurement error that it may 
introduce will be smaller than all biological observation quantified to date. For example, it will 
be smaller than the differences observed between samples taken from different parts of the 
same specimen, or differences between samples taken from the same individual at different time 
points. Thus, as long as the effect of interest is of a greater magnitude than this background 
biological variation, the implementation of our standard sample storage and DNA extraction 
methodology will allow for its measurement, as well as facilitate future comparisons to other 
cohorts that have used the same approach.  

Having tackled some of the major challenges of metagenomic sampling, we revisited the 
discussion related to structure of the human gut microbiome. We show, using additional data, 
that the originally proposed concept of enterotypes can be recovered across three extensive data 
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sets. Moreover, we develop a classification approach that allows the assignment of enterotypes 
independently of the study, which was a major hurdle to comparability. With this new approach, 
there is no requirement to the study size that is necessary for considering such structure and, 
importantly, enterotypes can be controlled for even in small studies.  

Zooming in, below the genus level at which enterotypes are found, we have defined a new, 
subspecies resolution taxonomic level that we show is relevant to ecological considerations as 
well as to the host. We propose using this new resolution in addressing questions about the 
interactions between the microbiome and host, as functional differences between subspecies can 
be dramatic and thus will have an impact on our observations. 

 Taken together, the findings and proposals herein are a considerable advancement of the field 
of human metagenomics that will strengthen our ability to understand important and complex 
interactions and ensure a more rigorous inference framework, in which findings can be 
compared and tested across multiple studies. 
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Abstract

Background: Metagenomics has become a prominent approach for exploring the role of the gut microbiota in
human health. However, the temporal variability of the healthy gut microbiome has not yet been studied in depth
using metagenomics and little is known about the effects of different sampling and preservation approaches. We
performed metagenomic analysis on fecal samples from seven subjects collected over a period of up to two years
to investigate temporal variability and assess preservation-induced variation, specifically, fresh frozen compared to
RNALater. We also monitored short-term disturbances caused by antibiotic treatment and bowel cleansing in
one subject.

Results: We find that the human gut microbiome is temporally stable and highly personalized at both taxonomic
and functional levels. Over multiple time points, samples from the same subject clustered together, even in the context
of a large dataset of 888 European and American fecal metagenomes. One exception was observed in an antibiotic
intervention case where, more than one year after the treatment, samples did not resemble the pre-treatment state.
Clustering was not affected by the preservation method. No species differed significantly in abundance, and only
0.36% of gene families were differentially abundant between preservation methods.

Conclusions: Technical variability is small compared to the temporal variability of an unperturbed gut microbiome,
which in turn is much smaller than the observed between-subject variability. Thus, short-term preservation of fecal
samples in RNALater is an appropriate and cost-effective alternative to freezing of fecal samples for metagenomic
studies.
Background
Microbial communities that inhabit the human gut are
essential to human health. To better understand the role
of gut microbes in health, major efforts have been
undertaken including large-scale studies such as the
European Metagenomics of the Human Intestinal Tract
(MetaHIT) project and the US American Human Micro-
biome Project (HMP) [1,2]. These studies have provided
insights into the gut microbial community composition
in healthy human individuals. Changes in the microbial
community composition have been associated with diet
[3,4] as well as with multiple diseases, such as athero-
sclerosis, inflammatory bowel diseases and obesity [5-7].
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In addition to these cross-sectional studies that com-
pared healthy and diseased cohorts, longitudinal studies
have helped shed light not only on the community com-
positional variability but also on the temporal variability,
providing a more complete picture of the factors that
shape the gut microbiome in health and disease. Several
studies have demonstrated considerable between-subject
variability of the gut microbial composition. However,
the gut microbiome has been described to be con-
strained around a highly personal and stable compo-
sition within each healthy subject over time [8-12].
Perturbation of the human gut microbiome is known

to occur as a result of antibiotics treatment, a frequently
prescribed medication. Antibiotic intervention leads to a
rapid decrease of diversity and post-treatment recovery
is slow and incomplete, even up to 4 years after the
treatment [13-17]. Resistant bacterial species, as a result
his is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
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of antibiotics treatment, can persist over years [18-20]
and the resistance potential of gut microbiota displays re-
gional differences [21,22]. Similarly, there are indications
of other long-term community shifts caused by endo-
genous (for example, disease) or environmental perturba-
tions (for example, diet and lifestyle change [3,4,23]) that
have not yet been studied in depth.
Studies on the temporal variability of the gut micro-

biome have mostly been performed over short periods
(weeks to one year; for example, [8,12,23,24]) and only
rarely over long periods (5 and 12 years [9,11]). The
methods of deriving the taxonomic community compo-
sition were primarily based on PCR-denaturing gradient
gel electrophoresis (PCR-DGGE; for example, [25]), 16S
rRNA gene sequencing (for example, [26,27]), and the
HITChip microarray (for example, [11,28]). Only two
studies [12,29] have so far analyzed longitudinal non-
amplified metagenomic shotgun sequencing data that
were collected from 43 subjects in the context of the
HMP [1]. However, the majority (41 out of 43) were only
sampled twice, making it difficult to assess temporal
stability.
Despite their common aim to better understand micro-

bial community shifts over time, the aforementioned
studies do not attempt to quantify different sources of
variability, from technical to biological ones. In particular,
technical aspects have been shown to be important for the
comparison between data sets. Limited comparability in
human microbiome data sets often results from dif-
ferences in sample preservation and DNA isolation proto-
cols as well as readout methods (for example, sequencing
of different 16S rRNA gene regions or application of
different sequencing technologies). A meta-analysis [30]
assessing the effect size of technical differences on data
comparability showed that samples rather cluster by study
or the methods applied (for example, for DNA isolation)
than by the parameter of interest (for example, disease
state). To counteract these batch effects, the International
Human Microbiome Standards (IHMS) project was
launched to suggest standards for sample processing
(mainly DNA isolation) with the goal to maximize
future data comparability. However, different storage
conditions of a fecal sample can also impact the compo-
sitional readout, as different microbes respond differently
to environmental exposure [31]. Research in this direction
has been conducted previously to compare different stor-
age and preservation conditions (for example, different
temperatures or preservatives such as RNALater) [32,33].
RNALater, a quaternary ammonium salts-based solution,
is commonly used as a logistically convenient solution to
preserve RNA from biological samples at room tempe-
rature when freezing is not possible, and was recently also
considered for omics technologies [34]. It was shown to
have a minor effect on the recovered composition and
thus represents a potential alternative to immediate
freezing [35-37]. To date, the technical variability on a taxo-
nomic and functional level has not been put in the context
of temporal and within-sample variability (meaning within
the stool from a single bowel movement).
We collected fecal samples over up to two years from

seven subjects to investigate the temporal variability and
individuality of the human gut microbiome using meta-
genomic shotgun sequencing. To disentangle technical,
temporal and between-subject variability we contrasted
the variability of microbial community composition
within a fecal sample [38,39] with the variability intro-
duced by different preservation methods, RNALater or
freezing after two different time intervals. By comparing
the fecal metagenomes of the seven subjects over time
and in the context of 888 published metagenomes, we
generally found between-subject variability to be much
larger than within-subject variability. This high degree of
individuality can, however, be disrupted by antibiotic
treatment, which in one subject triggered a large and long-
lasting community shift. Bowel cleanse was also investi-
gated but did not appear to cause a major disturbance.
Technical variability (within-sample and preservation-
induced variability) was smaller than temporal within-
subject variability and therefore we propose RNALater as
an alternative to fresh freezing fecal samples.
Results and discussion
Study design
Fecal samples were self-collected from seven adults at
short (few days) and longer (weeks to months) time in-
tervals (Additional file 1). All subjects were considered
healthy at the time of sampling, unless stated otherwise
(see Material and methods). The study was split into five
sub-studies as shown in Figure 1. Out of the seven sub-
jects, five subjects performed sampling for more than
one year while three subjects collected over more than
two years (sub-study 3). At two time points, seven days
(d7; sub-study 1) and 392 days (d392; sub-study 2) after
the first sampling event, feces from three and five sub-
jects, respectively, were collected and replicates either
frozen or preserved in RNALater. One subject (Alien)
collected additional fecal samples after antibiotics treat-
ment (d376–380, sub-study 4) and bowel cleanse (d630–637,
sub-study 5).
All fecal samples were subjected to whole genome shot-

gun sequencing and the data analyzed at species-level
using mOTUs (metagenomic operational taxonomic units
based on single-copy phylogenetic marker genes [29]),
and at a number of functional levels: clusters of ortholo-
gous groups (COGs) [40], KEGG (Kyoto Encyclopedia of
Genes and Genomes) groups of orthologous genes (KOs),
modules and pathways [41].
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Figure 1 Overview of the study design. This variability assessment was subdivided into five sub-studies. The comparison of technical variability
due to fecal preservation methods and stool homogeneity was addressed in sub-studies 1 and 2, respectively. The conditions for the different
preservation methods and the numbers of replicates taken are described for these sub-studies. Sub-study 3 was about the temporal variability
within and between subjects. One subject underwent antibiotics treatment (sub-study 4) and bowel cleanse (sub-study 5) in the time course of
the study. The sampling time points and number of subjects that collected fecal samples are indicated in the timeline.
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Preservation-induced variability of the fecal species
community
Biological samples are generally stored frozen or pro-
cessed immediately to maintain their integrity. However,
this is often logistically inconvenient, especially in remote
areas. In contrast, preservation in RNALater eliminates
the need for immediate freezing or sample processing.
RNALater is an aqueous solution that preserves biological
samples by protecting especially RNA from degradation
(for example, [42]). The solution penetrates and stabilizes
the sample for later analysis. According to the manu-
facturer’s instruction, these samples are stable at room
temperature (RT) for up to one week, at +4°C for one
month and at −20°C and −80°C indefinitely. Thus, the
usage of RNALater for sample collection would facilitate
sample preservation and shipping prior to metagenomic
analysis.
We collected fresh samples from which aliquots were

frozen immediately (to be used as reference samples)
or preserved in RNALater. At d7, RNALater-preserved
samples from five subjects were kept at both +4 to 10°C
and RT for one week. However, at d392 RNALater-
preserved samples were kept at +4°C for 24 h from three
subjects before storing at −80°C (sub-studies 1 and 2;
Figure 1).
To analyze the taxonomic variability of frozen and

RNALater-preserved replicates, we performed hierar-
chical clustering of the mOTU abundances based on
Euclidean distance. This analysis revealed that samples
from the same subject clustered together irrespective of
the preservation method. This similarity held true for
both d7 and d392 with the exception of subject Alien,
who underwent an antibiotics treatment in between
these time points (Figures 2A,B and 3A). Within the
cluster of each subject (at d392), the replicates did not
cluster by the preservation protocol (Figure 2B), sugges-
ting that biological within-sample variability was larger
than preservation-induced effects.
To extend this observation, we clustered all collected

samples from all subjects in the context of 888 published
metagenomes from MetaHIT and HMP (Figure 4; details
in Material and methods). We found that the samples
from d7 and d392 had other samples from the same sub-
ject as nearest neighbors. All d7 samples had the other
two replicates from d7 as nearest neighbors (Figure 4).
For d392, the first three Peacemaker and four Bugkiller



Figure 2 Comparison of methods for fecal sampling. (A,B) The samples collected in sub-studies 1 (d7) and 2 (d392) clustered by subject (A) and
time point (B) but not according to the preservation method (frozen, RNALater (+4 to 10°C or RT for 1 week (1w) on d7; frozen and RNALater +4°C,
24 h on d392) applied (complete linkage clustering based on Euclidean distance). (C) Shannon diversity index, richness and evenness are shown for d7
(upper panels) and d392 (lower panels) and statistically significant differences are indicated by asterisks with P-value ≤0.05 (unpaired Wilcoxon test).
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neighbors were their corresponding replicates from d392.
For subject Alien, all samples from d392 clustered to-
gether but the nearest neighbor was not necessarily the
samples preserved under the same condition. Thus, the
samples did not cluster by preservation method. Taken
together, these results show that RNALater does not
introduce a bias in the overall microbiome composition
and its effect is smaller than within-subject variability.
We repeated the taxonomic analyses using gene abun-

dances summarized at different functional levels. Rela-
tive abundance of orthologous groups, that is, COG and
KO profiles, (see Material and methods) of all collected
samples were clustered in the context of 888 published
metagenomes from MetaHIT and HMP (Additional files
2 and 3). For both COG and KO profiles, the nearest
neighbor of samples from d7 and d392 were very similar
to those seen in taxonomic clustering (Figure 4). Using
COG abundances, with the exception of one Peacemaker
sample, all d7 replicates clustered together, and for
Peacemaker and Alien four and five of the d392 sample
replicates, respectively, clustered together. Using KO
profiles, the clustering of samples was similar.
To get a deeper insight into potential preservation-

induced changes of the microbiome, we compared indi-
ces for species diversity and community evenness. At d7,
RNALater-preserved samples (storage at RT or at +4 to
10°C) compared to the immediately frozen samples
showed a significant decrease in their Shannon diversity
index (P = 0.016 and P = 0.0008, unpaired Wilcoxon-test)
and species evenness (P = 0.016 and P = 0.016, unpaired
Wilcoxon-test) but not richness (P = 0.056 and P = 0.056,
unpaired Wilcoxon-test). In contrast, at d392, RNALater
preservation did not have the same effect on these eco-
logical indices (Figure 2C).
To determine preservation-induced and temporal within-

subject and between-subject differences, we correlated
mOTU, COGs, KOs, KEGG modules and pathways
(Spearman correlation) between different preservation
techniques, sampling time points and subjects (Figure 3A,B;
Figure S3A-C in Additional file 4). We found that the
similarity between protocols is consistently high for both
species and COGs (minimum Spearman’s r = 0.82 and
0.95, respectively), similar to previous findings [36]. Due
to our longitudinal study design we could extend the
analysis performed by Franzosa et al. [36], and verify that
the correlation between time points was lower for both
species and COGs (maximum Spearman’s r = 0.75 and 0.93,
respectively) than between preservation methods. Between-
subject correlations were even lower than between-time
point correlations.
To estimate differences in taxonomic (species) and func-

tional (eggNOG COGs, and KEGG KOs, modules and
pathways) composition between frozen and RNALater-
preserved samples from d7 and d392, we performed two-
way ANOVA testing on both the taxonomic and functional
relative abundances (see Material and methods). We



Figure 3 Comparison of technical, temporal within-subject and between-subject variability at taxonomic and functional levels. (A,B) Spearman’s
rank correlations of species profiles (A) and cluster of orthologous groups (COG) profiles (B) were highly correlated between different preservation
methods (frozen versus RNALater (+4 to 10°C or RT for 1 week (1w) each), RNALater at +4 to 10°C versus RNALater at RT and frozen versus
RNALater at +4°C, 24 h), less correlated between sampling time points (d7 versus d392), with lower correlation seen between subjects. Black bars
represent group-wise medians. Relatively lower correlation between time points was apparent for the Alien samples (red squares), which were taken
before and after antibiotics treatment (see main text). (C,D) Preservation-induced changes relative to between-subject variability was quantified by
two-way ANOVA for species (C) and COGs (D), including only features with a relative abundance of at least 0.01% in three or more samples. In total,
7.3% and 5.33% of species and COGs, respectively, showed greater between-method variation than between-subject variation (features above the
horizontal black line), but this was statistically significant for only 0.36% of COGs and none of the species tested (Benjamini-Hochberg false discovery
rate, α = 0.05, Additional file 5). Vertical blue and green lines represent the threshold for statistical significance for d7 and d392, respectively. Percentages
left and right of these lines identify the fractions of statistically significant and insignificant features with larger between-protocol variation for each time
point, respectively.
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found that 5.0% (d7) and 2.3% (d392) of the species with a
relative abundance exceeding 0.01% in at least 3 of the 33
tested samples varied more between preservation methods
than between subjects. However, none of these were sta-
tistically significant after correction for multiple hypoth-
esis testing (Benjamin-Hochberg α = 0.05; Figure 3C;
Additional file 5). For d7 and d392, 0.77% and 4.2% of the
COGs, respectively, varied more between the preservation
methods than between subjects, but only 0.36% of COGs
were statistically significant (Figure 3D; Additional file 5),
which is in the range of previous findings [36]. We found
that 0.72%, 0% and 0% of the KOs, modules and pathways,
respectively, varied more between preservation methods
than between subjects (Figure S3D-F in Additional file 4).
In summary, RNALater appears, in line with a pre-
vious publication [36], to be a suitable alternative to im-
mediate freezing at least for short-term storage of a few
days, as the variability between protocol replicates is
lower than that between time points of the same subject
and between subjects.

Within-sample variability of the fecal species community
It was previously shown that there is considerable spatial
within-sample variation of parasites in human feces [38]
and low abundant bacteria were only sporadically de-
tected in all replicates of the same sample [39]. To ad-
dress within-sample and technical reproducibility in our
study, triplicates at distinct sites of the same fecal



Figure 4 Nearest neighbor plot. The mOTU abundances of the fecal metagenomes of the time series and replicates were clustered in the
context of 888 published metagenomes. Only the 14 nearest neighbors (NN) are shown for visual clarity. The colored boxes indicate the
respective subject. Non-self samples (samples from another subject, including HMP and MetaHIT) are shaded in grey. Subjects are color-coded,
sampling time points are indicated and text color corresponds to the preservation condition of each sample (see key). The column on the right
shows how many NNs of each respective sample are depicted, indicating the subject-specificity of the clustering (complete linkage clustering
based on Euclidean distances). The figure shows that, with very few exceptions, all time series samples and all fecal replicates (from d7 and d392)
from one subject were closer to each other than to any other sample from another subject. Pre-treatment samples from subject Alien were nearest
neighbors to each other while the samples right after the treatment (d376–380) had highest similarity to each other but not to the pre-treatment
samples. The samples collected long after the treatment (d600–773) were most similar to each other but a slow recovery to the pre-antibiotics state was
visible since pre-treatment samples are among the 14 neighbors shown.
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sample were collected from three subjects at d392 using
two preservation protocols (RNALater and freezing;
Figure 1, sub-study 2).
For two subjects the replicates showed only minor

variation in ecological indices (Shannon diversity index,
species richness and community evenness). Larger fluc-
tuations were detected for diversity and evenness of
fresh frozen samples from subject Bugkiller only (Figure 2C,
lower panel). Nevertheless, all replicates clustered by sub-
ject (including Bugkiller) in the context of the samples col-
lected on d392 (Figure 2B). To set within-sample variation
in the context of all time series samples and the MetaHIT
and HMP samples (N = 888), we clustered all samples to-
gether (Figure 4). The replicates from all three subjects
had the other replicates from the same subject as nearest
neighbors. All replicates from subject Alien clustered by
d392 but not with the pre-/post-treatment samples,
highlighting the drastic change introduced by the treat-
ment. These results for Alien remained the same when
clustering based on abundances of functional categories
(Additional files 2 and 3). This implies that subject-
specificity and community similarity is high for all
replicates of a fecal sample with only minor fluctuations
in diversity and evenness. Together with the fact that rep-
licates preserved under different conditions did not cluster
by preservation method (Figures 2B and 4) this supports
our study design which was based on samples that were
deliberately not homogenized before aliquoting since
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(i) samples included in our study were self-collected by lay
participants and usually not homogenized in large metage-
nomic studies and (ii) we aimed to assess within-sample
variability.

Temporal variability of fecal microbial communities
In order to assess how technical variability compares to
temporal variability, all samples collected by the seven
subjects were clustered. It showed that the temporal
variability was small and the samples clustered by sub-
ject except for Alien (Figure 5A,B). Omitting all samples
taken from Alien after antibiotics treatment resulted in
consistent clustering by subject (Figure 5C), showing
high subject-specificity and individuality of the gut mi-
crobiome. In order to test whether the individuality of
the gut microbiome persists on the background of 888
published metagenomes from MetaHIT and HMP, we
clustered them together and show the nearest neighbors
in Figure 4. The time series samples from the seven sub-
jects were closest to other samples from the same sub-
ject rather than to another subject. This was also seen
for the 43 subjects in the HMP study, which have mul-
tiple time-points. Only few samples from our dataset
had the sample of another subject as closer neighbor
than a time series sample when comparing the relative
taxonomic abundances. For example, the d392 sample
from Scavenger has a sample from another subject as
fifth neighbor instead of the Scavenger d0 sample. The
Figure 5 Clustering of the complete time series data set. (A) The unpertur
samples, which showed a decline of the Shannon diversity index upon ant
no detectable effect. The separation of the post-antibiotics from the pre-an
Jensen-Shannon divergence distances was significantly correlated with the
(A, lower panel) and explained the separate clustering of pre-and post-trea
microbiome was highly personal and when omitting the post-antibiotics sa
years can be resolved.
number of samples having another subject as closer
neighbor rather than a time series sample from the same
subject increased when clustering was performed using
relative COG and KO abundances (Additional files 2
and 3).
To characterize the temporal variability of the commu-

nity structure, we calculated the ecological indices, such
as the Shannon diversity index, and found that they
varied little over time for all subjects (Figure 5A, lower
panel for diversity) except Alien, who underwent anti-
biotics treatment.
Our results support previous studies reporting that the

temporal variability of the species composition within a
subject is smaller than between-subject variability and
that in the absence of larger perturbation each indi-
vidual’s microbiota remains relatively stable over time
[6,8,9,11,12,14,24,26-29]. However, here we show that
even in the context of a large cohort of fecal metage-
nomes the subjects can be resolved based on the taxo-
nomic composition of their fecal metagenomes with very
few exceptions. Thus, the gut microbiome, if unper-
turbed, is highly subject-specific and the variability is
small compared to the between-subject variability.

The effect of perturbations on fecal microbial
communities
During the time period of the study, one subject (Alien)
suffered from an infection that was treated with antibiotics
bed microbiomes of the subjects were stable except for the Alien
ibiotics treatment (d376–392) while the bowel cleanse (d630–637) had
tibiotics samples along the first principal coordinate (PC1) based on
decline of the Shannon diversity index (dotted line, P-value = 3.9e−14)
tment samples (A, upper panel and (B)). (C) The unperturbed gut
mples, all subjects that collected time series samples over up to two
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and underwent colonoscopy screening, which required
bowel cleanse. The antibiotics treatment comprised four
days with ceftriaxone, a third-generation cephalosporin
antibiotic with broad-spectrum activity against Gram-
positive and Gram-negative bacteria. To investigate the
consequences of these medical treatments, additional
samples were collected for this subject after antibiotics in-
take (d376, d377 and d380) and bowel cleanse (d630, d632,
and d637) (Figure 1, sub-studies 4 and 5; for further details
see Material and methods).
To observe the response of the fecal microbiome to these

two perturbations, we performed hierarchical clustering
and found that the post-antibiotics samples separated from
the pre-antibiotics samples, but were still distinct from
other subjects (Figure 5A,B). The samples taken 226 to
399 days after antibiotics treatment (d600–773) clustered
closer to the pre-treatment samples (Figure 5A,B), sug-
gesting a (partial) recovery. Determining the nearest
neighbor samples in the context of the 888 HMP and
MetaHIT samples, using Euclidean distance on taxonomic
and functional profiles, confirmed the aforementioned ob-
servation suggesting that the gut community composition
was still distinct even 399 days (d773) post-antibiotics
treatment but gained similarity with the pre-antibiotics
community composition (Figure 4). A similar pattern was
observed for nearest-neighbor analysis of COG abun-
dances, but individual specificity was less clear for KO
abundances (Additional files 2 and 3).
The immediate post-treatment samples (d376–380)

showed a drastic reduction in Shannon diversity index,
species richness and evenness, indicating that fewer and
less evenly abundant microbial species were detected.
The Shannon diversity index, species richness and even-
ness of the post-treatment samples dropped from 3.5 to
0.2, 100 to 37 and 0.75 to 0.05, respectively, and were
still reduced at d392 (18 days after the treatment), com-
pared to the pre-treatment state. At d600, the diversity
had returned to its initial level (Figure 5A, lower panel),
yet the samples still clustered separately from the pre-
treatment samples, indicating that the recovery is not
complete (Figures 4 and 5B). Separation of community
profiles from the initial state along the first principal co-
ordinate in an ordination analysis (using Jensen-Shannon
divergence) correlated with the decline of the Shannon
diversity index (Pearson correlation rho = 0.86, P = 3.9e−14;
Figure 5A).
The bowel cleanse on the day before d630 did not have

a considerable effect on the community composition:
the samples cluster closely with d600, which was before
colonoscopy and the fluctuation of the Shannon diver-
sity index was similar to the other subjects and notably
smaller than the impact of the antibiotics treatment
(Figure 5A,B). Although this case study comprises only
one subject, our result that bowel cleanse has little effect
on gut microbiome composition is in line with the find-
ing by O’Brien et al. [43].
It has been reported that antibiotics have a strong im-

pact on the gut microbial community composition for
an extended period of time, although the community
was sometimes found to be similar to its pretreatment
state within weeks. The return was subject-dependent
and often incomplete, at least for some species moni-
tored for time periods of two to six months [14,17] and
up to two years [19,44]. Even though we studied the ef-
fect of antibiotics in only one subject, we can show that,
at least in this subject, despite species diversity recovery,
the gut microbial composition was still distinct from the
pre-treatment state, even 399 days after the antibiotics
treatment. It would be worthwhile exploring in the fu-
ture how antibiotics effects vary between subjects and
depends on factors such as dosage, duration of the treat-
ment and type of antibiotics.

Conclusion
Several studies have addressed the temporal variability
or the technical variability (for example, induced by dif-
ferent DNA isolation methods or preservation tech-
niques) of the gut microbiome separately but none set
them in a broader context. Hence, these studies have so
far not disentangled the biological temporal variability
(like, for example, community shifts due to disease or
medication) from technical variability (for example, in-
duced by preservation conditions or insufficient stool
homogeneity).
In our study we provide the to date largest metage-

nomic data set of fecal samples collected over more than
two years. We addressed the aspects of comparing tech-
nical and temporal variability, finding that temporal vari-
ability within each subject’s gut microbiome was smaller
than that between subjects. Even in the context of 888
metagenomes, all time series samples could be recovered
using taxonomic abundances, as long as antibiotics did
not perturb the gut microbiome. The technical varia-
bility introduced by RNALater was small compared to
freezing, for both taxonomic and functional features,
and does not disrupt subject-specificity nor time point-
specificity of the gut microbiome. Thus, we suggest
RNALater as an alternative to freezing for the preserva-
tion of the fecal microbiome for metagenomic studies.

Material and methods
Sample collection
Fecal sample collection for time series
Informed consent to obtain time series samples of fecal
samples was obtained from seven healthy subjects in
Germany through the my.microbes project [45]. The
study protocol was approved by the EMBL Bioethics
Internal Advisory Board, and is in agreement with the
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WMA Declaration of Helsinki. All subjects were living
in Heidelberg, Germany at the beginning of the study
and the mean age of the subjects upon enrollment was
34 ± 6 years. Among these subjects were five males
(Alien, Bugkiller, Peacemaker, Halbarad and Scavenger)
and two females (Daisy and Tigress). Subjects reported
themselves as healthy, if they did not undergo prescribed
medical treatment or showed any indication of disease
symptoms. Fecal samples were collected and conserved
under anaerobic conditions in a sealed bag, kept at −20°C
for short-term storage and stored at −80°C upon arrival in
the laboratory. The fecal samples were collected at days 0,
2, 7, 60, 392, 600 and 773 (sub-study 3) and are referred
to here as d0, d2, d7 and so on. One male subject (Alien)
contracted a bacterial infection and collected further sam-
ples after being hospitalized and receiving 2 g of ceftriax-
one. Ceftriaxone is an antibiotic with broad-spectrum
activity against Gram-positive and Gram-negative bacteria
that was administered parenterally over 4 days. The last
injection was two days before the first sampling time point
(d376) and further samples were then collected on the sub-
sequent days (d377, d378 and d380; sub-study 4). Additional
samples were taken starting one day after undergoing
bowel cleanse for routine colonoscopy (d630, d632 and d637;
sub-study 5). Figure 1 shows the study design in detail and
metadata and sequencing information are given in the
Additional file 1.

Fecal sample collection for method comparison
In parallel to the fresh frozen fecal samples, additional sam-
ples (1 g each) were collected from five subjects at time
point d7 and from three subjects at d392 (without ho-
mogenization) and were stored in 10 ml RNALater®
Stabilization Solution (Life Technologies GmbH, Darmstadt,
Germany). Short-term storage was either at +4 to 10°C or
at RT for one week (d7, sub-study 1) or at +4°C (d392, sub-
study 2) for 24 h and frozen at −80°C upon arrival in the
laboratory. At d392, each subject collected samples in trip-
licate, preserved in both RNALater and freshly frozen
(Figure 1).

Inclusion of published fecal metagenomes
Published metagenomes from MetaHIT [2,46,47] and
HMP [1] were included in our study to set our time
series in context of a large collection of metagenomes.

Sample processing and sequencing
DNA isolation from fecal samples
One milliliter of defrosted samples immersed in RNA-
Later was taken and diluted with sterile phosphate-
buffered saline and pelleted by centrifugation. Genomic
DNA was extracted from frozen or RNALater-preserved
fecal samples as previously described [48] using the
G’NOMEs kit (MP Biomedicals, Illkirch, France). The
following minor modifications were made to the proto-
col: cell lysis/denaturation was performed (30 minutes,
55°C) before protease digestion was carried out over-
night (55°C). Mechanical lysis was followed by RNAse
digestion (50 μl, 30 minutes, 55°C). The purified DNA
was resuspended in TE buffer after final precipitation
for storage at −20°C.

Library preparation and metagenomic sequencing
Library generation and whole genome shotgun sequen-
cing of the fecal samples was carried out on the Illumina
HiSeq 2000/2500 (Illumina, San Diego, CA, USA) plat-
form as described in Zeller et al. [49]. All samples were
paired-end sequenced with 100 bp read lengths at the
Genomics Core Facility, European Molecular Biology
Laboratory, Heidelberg, to a sequencing depth of ap-
proximately 5 Gbp (see Additional file 1 for sequencing
results).

Data processing
Taxonomic profiling of fecal samples
Using MOCAT [50], a software package used to process
raw Illumina reads to generate taxonomic and functional
profiles (option screen with alignment length cutoff
45 and minimum 97% sequence identity), taxonomic
relative abundance profiles were generated by mapping
screened HQ reads from each metagenome to a database
consisting of 10 universal single-copy marker genes
extracted from 3,496 NCBI reference genomes and 263
human gut metagenomes that had previously been clus-
tered and linked by co-variance into mOTUs [29,51].
Quantification of mOTU linkage groups was performed
using MOCAT, but is also available as a standalone tool
at [29].

Functional profiling of fecal samples
Using MOCAT [50] (option screen with alignment
length cutoff 45 and minimum 95% sequence identity)
functional relative abundance profiles were generated by
first calculating gene abundance profiles by mapping
screened HQ (high quality) reads from each metage-
nome to an functionally annotated database consisting
of predicted genes from 263 human gut metagenomes
[29,49], and estimating each gene’s abundance as gene
length-normalized nucleotide counts of all reads that
matched the protein-coding region of the gene. And
second, for each functional feature, its abundance in the
metagenomic gene pool was estimated as the sum of the
relative abundances of all genes belonging to this family.
The genes were summarized into COGs [40], and
KEGG KOs, modules and pathways [41]. The metage-
nomic gene catalog had already been functionally anno-
tated to the KEGG database [48], and was additionally
annotated to different COGs by aligning the translated
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amino acid sequence of each gene to the eggNOG
(version 3) [40] database using BLAST (version 2.2.24)
[52] (maximum e-value 0.01) and then annotating the
genes using SmashCommunity (version 1.6) [53].
Data analysis
For the statistical data analysis at the species level,
mOTU abundances were used [29] and samples were in-
cluded in the data analysis if they had more than 3,800
insert counts.
Ecological indices
For the comparison of RNALater with fresh frozen feces
and time series samples with each other, mOTU abun-
dances [29] were used to calculate Shannon diversity
index, evenness and species richness. To standardize sam-
pling depth, richness, Shannon diversity index and even-
ness were assessed after rarefaction of the insert count
tables to 3,800 insert counts per sample. Differences were
assessed using the Wilcoxon test (unpaired) on the de-
viation from the mean of each subject. P-values ≤0.05
were considered statistically significant.
Clustering
Principal coordinate analyses and complete linkage clus-
tering of Euclidean distances (Figure 2A) and Jensen-
Shannon divergence distances (Figure 5A) were performed
using the ape and ade4 R packages. The dendrograms
shown are based on Euclidean distance measurements on
the logged abundances (Figures 2B and 3B,C). Nearest
neighbors were determined to be the samples with the
smallest Euclidean distance (Figure 4; Additional files 2
and 3). Due to large differences in sequencing depth, the
metagenomes collected in this study and the HMP [1] and
MetaHIT [2,46,47] taxonomic data were only analyzed
after rarefaction to an insert count of 5,000 per sample.
All samples that passed these criteria were included in the
functional analysis.
Two-way ANOVA
To observe taxonomic and functional-specific biases
introduced by RNALater preservation across all sub-
jects, a two-way ANOVA was performed for d7 and
d392 separately. Our setup was analogous to a pre-
vious analysis [36]. Relative species, COG, KO, mo-
dule and pathway abundances were arcsine square
root transformed (for variance stabilization) and only
features with a relative abundance of more than
0.01% in at least three samples were included. For
d392, the median value of the three replicates for each
feature was used.
Data availability
The shotgun metagenomic sequencing data from this
study are available from the European Nucleotide Archive
(ENA) database [54], accession number ERP009422.

Description of additional data files
The following additional data are available with the on-
line version of this paper. Additional file 1 is a table
listing the metadata and sequencing information of the
analyzed samples. Additional file 5 is a table listing sta-
tistically significant taxonomic and functional features
resulting from the method comparison.
Additional files

Additional file 1: Table S1. Overview of the metadata of the subjects
and sequencing information of the samples included.

Additional file 2: Figure S1. Nearest neighbor plot based on COGs.

Additional file 3: Figure S2. Nearest neighbor plot based on KOs.

Additional file 4: Figure S3. Comparison of technical, temporal and
between-subject variability based on functional profiles.

Additional file 5: Table S2. Overview of taxonomic and functional
features. The features include those above the horizontal black line in
Figure 3 and Additional file 4.
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ABSTRACT  

Metagenomic analysis of fecal samples suffers from challenges in achieving high comparability 
and reproducibility that need to be addressed in order to better establish microbiota 
contributions to human health. To test and improve current protocols, we quantified the effect of 
the DNA extraction process on the observed variation in microbial composition, by comparing 
21 representative protocols. Furthermore, we determined the contributions of sequencing, 
sample storage and biological variability, and show that the DNA extraction process is the 
strongest technical factor to impact the results. We characterized the biases of different 
methods, introduced a quality scoring scheme and quantified transferability of the best methods 
to different labs. Finally, we propose a standardized sample handling and DNA extraction 
methodology for human fecal samples. Its use will greatly improve the comparability and 
consistency of different human gut microbiome studies and facilitate future meta-analyses. 

INTRODUCTION  

Over 3000 publications in the past five years have used DNA- or RNA- based profiling methods 
to interrogate microbial communities in locations ranging from ice columns in the remote arctic 
to the human body, resulting in more than 160,000 published metagenomes (both shotgun and 
16S)1. To date, one of the most studied ecosystems is the human gastrointestinal tract. The gut 
microbiome is of particular interest due to its large volume, high diversity and potential 
relevance to human health and disease. Numerous studies have found specific microbial 
fingerprints that may be useful in distinguishing disease states, for example diabetes2–4, 
inflammatory bowel disease5,6 or colorectal cancer7. Others have linked the human gut microbial 
composition to various factors, such as mode of birth, age, diet and medication8–11. Such studies 
have almost exclusively used their own specific, demographically distinct cohort and 
methodology. Given the many reports of batch effects12 and known differences when analyzing 
data generated using different protocols13–18, comparisons or meta-analyses will be hampered 
and, limited in their interpretability. For example, healthy Americans from the HMP study 
showed lower taxonomic diversity in their stool, than patients with inflammatory bowel disease 
(IBD) from a European study19, although it is established that IBD patients worldwide have 
reduced taxonomic diversity20. It is thus currently very difficult to disentangle biological from 
technical variation when comparing multiple studies21.  

In metagenomic studies, the calculation of compositional profiles and ecological indices is 
preceded by a complex data generation process, consisting of multiple steps (Figure 1), each of 
which is subject to technical variability22. Usually, a small sample is collected by an individual 
shortly after passing stool and stored in a domestic freezer, prior to shipment to a laboratory. 
The location within the specimen that the sample is taken from has been shown to impact the 
measured composition23, which is why in some studies24 larger quantities were homogenized 
prior to storage in order to generate multiple, identical aliquots. Furthermore, different fixation 
methods can be used to preserve the sample for shipping and long-term storage. Freezing at 
below -20°C is the standard, though more practical alternatives exist23–25. Eventually, the sample 
is subjected to DNA extraction, library preparation, sequencing and downstream bioinformatics 
analysis (Figure 1). 

Here we examined to what extend DNA extraction influences the quantification of microbial 
composition16,26,27, as compared to other sources of technical and biological variation23,24,28. We 
further compared a wide range of extraction methods, using metagenomic shotgun sequencing, 
in respect to both taxonomic and functional variability, while keeping all other steps 
standardized. We investigated the most commonly used extraction kits with varying 
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modifications and additional protocols, which do not make use of commercially available kits 
(see Supplementary Table 1 and Supplementary Information). While other studies have 
previously investigated the differences between extraction methods in a given setting12,15,16,29, 
we here systematically tested for reproducibility within and across laboratories on three 
continents, by applying strict and consistent quality criteria. In addition, we assessed the impact 
of a more automated library preparation method, for increased throughput of the extraction 
pipeline. Based on these analyses we recommend a standardized protocol for DNA extraction 
alongside a library preparation method for application to human stool samples which should 
serve as a benchmark for new methods and will greatly enhance comparability among 
metagenomic studies.  

RESULTS  

STUDY DESIGN  

This study consisted of two phases. In the first phase, in order to assess the variability 
introduced by different extraction methods, we produced multiple aliquots of two stools 
samples (obtained from two individuals, referred to as sample A and B). Within two hours of 
emission, the samples were homogenized in an anaerobic cabinet to ensure that the different 
aliquots have identical microbial compositions, and subsequently aliquoted in 200mg amounts, 
frozen at -80°C within four hours and shipped frozen on dry-ice, to 21 collaborating laboratories, 
spanning 11 countries over three continents. These laboratories employed extraction 
methodologies ranging from the seven most commonly used extraction kits (Invitek’s PSPStool, 
Mobio’s PowerSoil, Omega Bio Tek’s EZNAstool, Qiagen’s QiIAampStoolMinikit, Bio101’s 
G'Nome, MP-Biomedicals’s FastDNAspinSoil and Roche’s MagNAPureIII) to non-kit-based 
protocols (Supplementary Table 1 and Supplementary Information). Once extracted, the DNA 
was shipped to a single sequencing center (GENOSCOPE, France), which tested two different 
library preparation methods, before performing identical sequencing and analytical methods in 
an attempt to minimize other possible sources of variation.  

After applying a panel of quality criteria, including quantity and integrity of extracted DNA, 
recovered diversity and ratio of recovered gram-positive bacteria, we selected five protocols (1, 
6, 7, 9, and 15) for the second phase. Extractions were then performed in the initial laboratory 
applying the protocol and in three other laboratories, which had not used the method before, in 
order to assess reproducibility of these protocols and their transferability between laboratories. 
For the same samples A and B, three replicates/aliquots were provided per sample per 
laboratory, as detailed above. 

QUALITY  CONTROL FOR DNA YIELD AND FRAGMENTATION 

Maximizing DNA concentration while also minimizing fragmentation are key aspects to consider 
when selecting an extraction protocol. This is both because good quality libraries are required 
for shotgun sequencing and because protocols that consistently recover low yield or highly 
fragmented DNA are likely to skew the measured composition. We found considerable variation 
in the quantity of extracted DNA, in line with previous observations27 (Figure 2). For example, 
protocol 18 recovered 100 times more DNA than protocols 3 and 12, and 10 times more than 
protocols 8, 19 and 20 (Figure 2). Furthermore, there was considerable variation in the 
fragmentation of the recovered DNA, as measured by the percentage of total DNA in fragments 
below 1.8 kb in length; for example protocols 4, 10 and 12 consistently yielded highly 
fragmented DNA while for protocol 1 no fragmentation was noticeable. For subsequent analysis, 
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samples that yielded below 500ng of DNA or were very fragmented (median sample 
fragmentation above 25%), were not subjected to sequencing. In total, 143 libraries, extracted 
using 21 different protocols passed the quality requirements imposed above, though as an 
example only four of 18 samples extracted with protocol 16 (one sample A and three sample B 
replicates) met the requirements (Supplementary Table 2). For other protocols, a small number 
of samples were discarded for lack of compliance with quality/quantity criteria.  

QUALITY  CONTROL FOR VARIABILITY IN TAXONOMIC AND FUNCTIONAL 
COMPOSITION 

All metagenomes were compared with respect to taxonomic and functional compositions to 
quantify the relative abundances of microbial taxa and their respective gene-encoded functions 
(Methods). Briefly, based on the extracted DNA, shotgun sequencing libraries were prepared and 
subjected to sequencing on the Illumina HiSeq2000 platform, yielding a mean of 3.8 Gb (+/- 0.7 
Gb) per sample. Raw sequencing data were then processed using the MOCAT30 pipeline and 
relative taxonomic and gene functional abundances were computed by mapping high-quality 
reads to a database of single copy taxonomic marker genes (mOTUs)19 and annotated human gut 
microbial reference genes31, respectively (Methods). 

There are, as outlined above (Figure 1), many steps in which sample handling can differ and 
batch effects can be introduced. The resulting variation in taxonomic and gene functional 
composition estimates should be considered in terms of both effect size and consistency: if 
protocol differences lead to an effect larger than the biological variation of interest (e.g. in an 
intervention study), it will mask that signal. Effects that are systematically consistent (biases) 
will introduce “batch effects” that can confound any meta-analysis even if their absolute size is 
comparatively small. It is thus important to minimize these biases in order to facilitate cross-
study comparisons.  

To contextualize the magnitude of the extraction effect, we compared the technical variation 
quantified here (caused by extraction protocol) to other technical and biological effects (Figure 
3), assessed on data from multiple other studies23,24,28 (Methods). The biggest biological 
difference assessed here was that observed between individuals. Next was the within individual 
variation, as measured between different sampling time points. This effect was much smaller 
than the between individual variation, resulting in individual-specific microbial composition 
preserved over time as noted before19,23,32. Both these effects are quantified using time-point 
data from the Human Microbiome Project28. The smallest biological effect considered was within 
specimen variation, resulting from sampling different parts of the stool itself, as quantified in 
Voigt et al.23. In terms of technical sources of variation we have considered measurement errors 
(assessed through technical replication), library preparation,  and effects induced by 
preservation23,24 and extraction. It is important to note that these effects have not all been 
measured independently of each other, resulting in some of the quantified variations being a 
convolute of multiple effects (Figure3 – checkboxes). 

Different distance measures can be used to assess the magnitude of these effects. We focused 
here on two, which are complementary in terms of the features of the data they consider and 
thus the dimensions which become relevant. These distance measures were computed on both 
metagenomics operational taxonomic units (mOTUs21) and clusters of orthologous groups 
(COGs33) abundance data, to derive species and functional variation (see Methods). Firstly, we 
used a Spearman correlation to assess how well species abundance rankings are preserved and 
found that the variation between most extraction protocols is smaller than the technical within-
specimen variation (summarized by the median, Figure 3a). This suggests that, with the 
exception of protocols 8 and 12, all others recover comparable species rankings. Consequently, if 
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only the ranks are of interest, most of the available protocols would provide highly comparable 
results. However, for many applications the abundances of the taxonomic units are important 
and need to be commensurable. Using a Euclidean distance (which cumulates abundance 
deviations) we found that many protocols were not comparable and actually introduce large 
batch effects at the species level, with the median between-protocol distance being higher than 
the within-specimen variation (Figure 3a), hampering the comparability of samples generated 
with different extraction methods. To assess similarity between extraction protocol effects, we 
used principle coordinate analysis (PCoA, see Methods) to visualize these distance spaces 
(Supplementary Figure 1). These indicated that protocol 12, and to a lesser extent also protocols 
3, 8, 11, 16 and 18, had abundance profiles that were different from most of to the other 
protocols. 

Analysis of functional microbiome composition, based on COGs (see Methods, Figure 3b), shows 
that the majority of protocol effects were greater than biological variation within specimen and 
across time points within the same individual (Figure 3b), with some of them being greater even 
than between-subject variability. This may in part be due to the known relatively low variation 
between individuals in this space28,34 and would dramatically influence conclusions take from 
comparative studies. 

Among the sources of technical variation, the within-protocol variation (i.e. measurement error) 
was consistently smallest, with the magnitude of the library preparation effect being comparable 
(Figure 3a,b). The variation introduced by storage method (in RNA Later vs. frozen) was larger 
than within-protocol variation, and, as previously shown, smaller than within-specimen 
variation in taxonomic space23,24. 

Taken together, our analysis demonstrates that different DNA extraction protocols induced the 
largest technical variation, both in taxonomic and in functional space, highlighting that this is a 
crucial parameter to consider when designing microbiome studies. 

QUALITY CONTROL FOR SPECIES-SPECIFIC ABUNDANCE VARIATION 

Having quantified and contextualized the different biological and technical sources of variation, 
we next assessed the quality of different DNA extraction protocols. While a mock community 
may provide a standard to compare to and thus make a quality assessment more robust, 
multiple attempts of such approaches have in the past met with problems to recover the 
expected abundance profiles with either metagenomic or 16S rRNA gene amplicon 
sequencing18,27,35. We thus quantified the variation between protocols independent of a known 
true composition, first by investigating species-specific effects and secondly by a comprehensive 
measure of diversity, which we argue provides a good proxy for the overall extraction quality.  

We investigated species-specific abundance variation to assess which were most influenced by 
the extraction protocols. For this, we compared the estimated abundance of a given species in all 
replicates of a given protocol to the abundances of that species in all replicated of all other 
protocols, by performing a Kruskal-Wallis test (see Methods). We then applied a false discovery 
rate (FDR) correction to the obtained p-values. Of the 366 tested species, we found 90 that were 
significantly affected by extraction protocol (q-value< 0.05). The majority of these were gram-
positive, accounting for 37% (+/- 7%) of the sample abundance on average.  

These results are in line with previous observations that gram-positive bacteria are more likely 
to be affected by extraction method13,35 and are also to be expected based on our extensive 
knowledge of gram-positive cell walls and their considerably higher mechanical strength. These 
differences do not reflect the overall performance of any of the protocols, but highlight upper 
limits of the effect size that may be observed for these species. For a fair comparison, we 
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contrasted the recovered abundance of some of the significantly affected species, to the mean of 
the top five highest estimates. This clearly showed that most protocols estimated considerably 
lower gram-positive bacteria fractions, while the variation in gram-negative abundance 
estimations is comparatively small (Figure 4).  

As the observed biases hint at protocol-dependent incomplete lysis of gram-positive bacteria, we 
hypothesized that this would correspond to decreased diversity. We thus evaluated whether 
diversity is a good general indicator of DNA extraction performance. Using the Shannon 
diversity, which accounts for both richness and evenness, we saw that the recovered relative 
abundance of gram-positive bacteria correlates with the observed diversity, with a higher 
fraction of gram-positives resulting in higher diversity (Supplementary Figure 3). Furthermore, 
we found dramatically reduced diversity in protocols already determined to perform poorly 
from a DNA quality perspective (i.e. protocols 3, 11 and 12) (Supplementary Figure 2). We 
conclude that a diversity measure is a good proxy for overall protocol performance and accuracy 
of the recovered abundance profile. 

FACTORS INFLUENCING DNA EXTRACTION OUTCOME 

Using diversity as an optimality criterion, we determined protocol parameters that are 
significantly associated with this indicator (Figure 5). For this purpose we focused on protocols 
that use the “Qiagen QiIAamp Stool Minikit” 15, namely numbers 5, 6, 8, 9, 11, 13, 15 and 20, 
which reduces the number of variables that can influence the outcome. We find that “mechanical 
lysis”, “zirconia beads” and “shaking” are positively associated with diversity. We note that there 
is no association with DNA fragmentation, as all of the samples extracted with these protocols 
had a low number of fragments below 1.8 kb (Figure2). This was consistent with the notion that 
mechanical lysis and bead beating are necessary to efficiently extract the DNA of gram-positive 
bacteria that have cell walls that are harder to break35 and also in line with our postulation that 
effective gram-positive recovery will increase the observed diversity. The only significant 
negative association was with the InhibitEX tablet, which was included in the kit and which the 
manufacturer recommends for “absorb[ing] substances that can degrade DNA and inhibit 
downstream enzymatic reactions so that they can easily be removed by a quick centrifugation 
step”36, though our assessment suggests an adverse effect on DNA extraction quality.  

PROTOCOL REPRODUCIBILITY AND TRANSFERABILITY ACROSS 
LABORATORIES 

Based on the quality of the extracted DNA, species diversity as well as species-specific biases, we 
selected the five best performing protocols: 15, 7, 6, 9, and 1 (in this order), to be tested for 
reproducibility across laboratories (phase II). Protocols 15, 6 and 9 use the same Qiagen-based 
lysis and extraction kit and were combined into a slightly modified protocol, “Q” (Supplementary 
Information). Protocols 1 and 7 were coded as H and W, respectively. 

The laboratories that originally delivered DNA based on the protocol implementations Q, W and 
H tested once again their variation by replication analysis, ensuring that the variability was 
comparable to that observed in the first set of extractions (Supplementary Figure 4).  

Each extraction method was established and performed in three other laboratories which had 
no experience with the respective protocol, in order to assess the wider applicability of each as a 
standard extraction protocol. All three methods were reproducible across locations, though only 
protocol H had an effect below that of the smallest biological variation (i.e. within-sample). 
Protocols W and Q introduced a cross-lab effect comparable to within-sample variation.  
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Although protocol H seemed to be more reproducible across facilities, it underestimated gram-
positive bacteria compared to the other two protocols (Figure 5) and so yielded less diverse 
estimates of microbial composition. Protocol W, while also more reproducible and accurate in 
terms of extracted relative abundances (Figure 5), is impractical and hard to automate as it 
involves the use of phenol-chloroform. While no method ranks top on all imposed 
considerations, protocol Q recovers a highly diverse estimate of the microbial composition 
which it appears to achieve through lysis of gram-positive bacteria. It is moreover easy to 
implement and use across facilities. In a tradeoff between practical concerns, reproducibility and 
accuracy of assessed composition we thus propose protocol Q (see Methods) as a baseline 
extraction method that future methods should be compared to. 

DISCUSSION  

We have shown that of all the quantified technical variation considered herein, that introduced 
by variations in extraction protocol has the largest effects on the observed microbial 
composition. The outcome of extraction protocols can be influenced by many variables and 
implementation details, creating a parameter space which is challenging to test exhaustively. 
Thus, we recognize the limits of our modest recommendations regarding which protocol steps 
are most crucial to prevent distortions. The 21 laboratories involved in our study have 
implemented these protocols in order to test reproducibility within and between sites. 

In the absence of a universal standard, we stress key criteria comprising DNA integrity, quality 
and yield, as well as develop a framework of assessing extraction quality independent of a gold-
standard. Protocols were validated for transferability (across labs), ensuring reproducible use. 
Although for particular applications some of the tests are more important than others (e.g. in a 
multisite consortium reproducibility across labs is more important than in an in depth study in 
one location) and there is no objective quantification possible, overall protocol Q seems a 
compromise that should suit most applications. 

We anticipate that procedures for DNA extraction will likely further improve in the future. 
Therefore at this time we recommend that the community adheres to protocol Q as a benchmark 
for cross-assessment of the diverse protocols used to date. Barring background variation that is 
difficult to control, any new method that is comparable to these benchmarks within the 
measurement error assessed in this study should be considered valid. The proposed protocol, 
together with standard practices for sample collection and library preparation can be found on 
the IHMS website (http://www.microbiome-standards.org/). Taken together, these 
recommendations will greatly improve cross-study comparability and with this our ability to 
make stronger inferences about the properties of the microbiome. 

METHODS 

LIBRARY PREPARATION AND SEQUENCING 

Library preparation started with fragmentation of 250 ng genomic DNA to a 150-700 bp range 
using the Covaris E210 instrument (Covaris, Inc., USA). The SPRIWorks Library Preparation 
System and SPRI TE instrument (Beckmann Coulter Genomics) were used to perform end repair, 
A tailing and Illumina compatible adaptors (BiooScientific) ligation. We also performed a 300-
600 bp size selection in order to recover most of the fragments.  

DNA fragments were then amplified by 12 cycles PCR using Platinum Pfx Taq Polymerase Kit 
(Life Technologies) and Illumina adapter-specific primers. Libraries were purified with 0.8x 
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AMPure XP beads (Beckmann Coulter). After library profile analysis by Agilent 2100 Bioanalyzer 
(Agilent Technologies, USA) and  qPCR quantification, the libraries were sequenced using 100 
base-length read chemistry in paired-end flow cell on the Illumina HiSeq2000 (Illumina, San 
Diego, USA). 

In the second library preparation protocol, the three enzymatic reactions were performed by a 
high throughput liquid handler, the Biomek® FX Laboratory Automation Workstation 
(Beckmann Coulter Genomics) especially conceived for library preparation of 96 samples 
simultaneously. The size selection was skipped. DNA amplification and sequencing was then 
performed as in the case of the first approach.  

DETERMINING TAXONOMIC AND FUNCTIONAL PROFILES 

For determining the taxonomic composition of each sample, shotgun sequencing reads were 
mapped to a database of selected single copy phylogenetic marker genes19 and summarized into 
species-level (mOTU) relative abundances. Functional profiles of clusters of orthologous groups 
(COGs) were computed using MOCAT30 by mapping shotgun sequencing reads to an annotated 
reference gene catalogue as described in Voigt et al.23. COG category abundances were calculated 
by summing the abundance of the respective COGs belonging to each category per sample, 
excluding NOGs. 

COMPARISON TO OTHER TECHNICAL AND BIOLOGICAL VARIATION 

To contextualize the size of the effect introduced by different extraction methods, we have 
assessed different effects caused by either technical or biological factors. These are due to: 
within protocol variation, library preparation, sample preservation, within specimen variation, 
between time-points samples from the same individual and between individuals. 

For assessing the variation induced by different preservation methods (namely freezing and 
RNA-later) we use the data from Franzosa et al.24 and compared the same sample, preserved 
with the two different methods. For within specimen variation we used data from Voigt et al.23, 
where they have sampled the same stool multiple times at different locations along the 
specimen. As this study also used different storage methods for some samples, we are able to 
quantify the effect of both within-specimen variation and storage together. For the between time 
point and individual effect assessment we used the data from the time series data from Voigt et 
al.23 as well as a subset of stool samples from the Human Microbiome Project28. 

For assessing library preparation induced variation, we used the same extracted DNA and 
subjected it to two library preparation methods (Supplementary Information). The first method 
was the one routinely used for all library preparations presented in the study. 

DETERMINING SIGNIFICANTLY DIFFERENT SPECIES 

A Kruskal-Wallis test was applied for each species with non-zero abundance in at least two 
protocols, across both samples. To account for multiple testing we apply a Bonferroni correction 
to the test p-values and reject the null for any corrected values below 0.05.  

PRINCIPAL COORDINATE ANALYSIS 

Principal coordinate analysis was performed with the R ade4 package (version 1.6.2), using the 
dudi.pco function.  



Paper 2  Page 9 of 56 

 
 

REFERENCES 

1. Meyer, F. et al. The metagenomics RAST server - a public resource for the automatic 
phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 386 (2008). 

2. Larsen, N. et al. Gut microbiota in human adults with type 2 diabetes differs from non-
diabetic adults. PLoS One 5, e9085 (2010). 

3. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. 
Nature 490, 55–60 (2012). 

4. Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in 
the human gut microbiota. Nature 528, 262–266 (2015). 

5. Manichanh, C. et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by 
a metagenomic approach. Gut 55, 205–11 (2006). 

6. Carroll, I. M. et al. Molecular analysis of the luminal- and mucosal-associated intestinal 
microbiota in diarrhea-predominant irritable bowel syndrome. Am. J. Physiol. Gastrointest. 
Liver Physiol. 301, G799–807 (2011). 

7. Zeller, G. et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. 
Mol. Syst. Biol. 10, 766 (2014). 

8. Dethlefsen, L., McFall-Ngai, M. & Relman, D. a. An ecological and evolutionary perspective 
on human-microbe mutualism and disease. Nature 449, 811–8 (2007). 

9. Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the 
initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. U. S. A. 
107, 11971–5 (2010). 

10. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 
486, 222–7 (2012). 

11. Chatelier, E. Le et al. Richness of human gut microbiome correlates with metabolic 
markers. Nature 500, 541–546 (2013). 

12. Wesolowska-Andersen, A. et al. Choice of bacterial DNA extraction method from fecal 
material influences community structure as evaluated by metagenomic analysis. 
Microbiome 2, 19 (2014). 

13. McOrist, A. L., Jackson, M. & Bird, A. R. A comparison of five methods for extraction of 
bacterial DNA from human faecal samples. J. Microbiol. Methods 50, 131–139 (2002). 

14. Smith, B., Li, N., Andersen, A. S., Slotved, H. C. & Krogfelt, K. A. Optimising bacterial DNA 
extraction from faecal samples: comparison of three methods. Open Microbiol. J. 5, 14–7 
(2011). 

15. Maukonen, J., Simões, C. & Saarela, M. The currently used commercial DNA-extraction 
methods give different results of clostridial and actinobacterial populations derived from 
human fecal samples. FEMS Microbiol. Ecol. 79, 697–708 (2012). 

16. Kennedy, N. A. et al. The impact of different DNA extraction kits and laboratories upon the 
assessment of human gut microbiota composition by 16S rRNA gene sequencing. PLoS 
One 9, e88982 (2014). 

17. Salonen, A. et al. Comparative analysis of fecal DNA extraction methods with phylogenetic 
microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis. J. 
Microbiol. Methods 81, 127–34 (2010). 

18. Ariefdjohan, M. W., Savaiano, D. A. & Nakatsu, C. H. Comparison of DNA extraction kits for 
PCR-DGGE analysis of human intestinal microbial communities from fecal specimens. 



Paper 2  Page 10 of 56 

 
 

Nutr. J. 9, 23 (2010). 

19. Sunagawa, S. et al. Metagenomic species profiling using universal phylogenetic marker 
genes. Nat. Methods 10, 1196–9 (2013). 

20. Manichanh, C., Borruel, N., Casellas, F. & Guarner, F. The gut microbiota in IBD. Nat. Rev. 
Gastroenterol. Hepatol. 9, 599–608 (2012). 

21. Lozupone, C. A. et al. Meta-analyses of studies of the human microbiota. Genome Res. 23, 
1704–14 (2013). 

22. Raes, J. & Bork, P. Molecular eco-systems biology: towards an understanding of 
community function. Nat. Rev. Microbiol. 6, 693–9 (2008). 

23. Voigt, A. Y. et al. Temporal and technical variability of human gut metagenomes. Genome 
Biol. 16, 73 (2015). 

24. Franzosa, E. A. et al. Relating the metatranscriptome and metagenome of the human gut. 
Proc. Natl. Acad. Sci. U. S. A. 111, E2329–38 (2014). 

25. Song, S. J. et al. Preservation Methods Differ in Fecal Microbiome Stability, Affecting 
Suitability for Field Studies. mSystems 1, (2016). 

26. Sinha, R., Abnet, C. C., White, O., Knight, R. & Huttenhower, C. The microbiome quality 
control project: baseline study design and future directions. Genome Biol. 16, 276 (2015). 

27. Yuan, S., Cohen, D. B., Ravel, J., Abdo, Z. & Forney, L. J. Evaluation of methods for the 
extraction and purification of DNA from the human microbiome. PLoS One 7, e33865 
(2012). 

28. Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. 
Nature 486, 207–14 (2012). 

29. Claassen, S. et al. A comparison of the efficiency of five different commercial DNA 
extraction kits for extraction of DNA from faecal samples. J. Microbiol. Methods 94, 103–
10 (2013). 

30. Kultima, J. R. et al. MOCAT: a metagenomics assembly and gene prediction toolkit. PLoS 
One 7, e47656 (2012). 

31. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic 
sequencing. Nature 464, 59–65 (2010). 

32. Franzosa, E. A. et al. Identifying personal microbiomes using metagenomic codes. Proc. 
Natl. Acad. Sci. 112, 201423854 (2015). 

33. Powell, S. et al. eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different 
taxonomic ranges. Nucleic Acids Res. 40, D284–9 (2012). 

34. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability 
and resilience of the human gut microbiota. Nature 489, 220–30 (2012). 

35. Santiago, A. et al. Processing faecal samples: a step forward for standards in microbial 
community analysis. BMC Microbiol. 14, 112 (2014). 

36. No Title. Available at: https://www.qiagen.com/fr/shop/lab-basics/buffers-and-
reagents/inhibitex-tablets/.  

 

  



Paper 2  Page 11 of 56 

 
 

ACKNOWLEDGEMENTS 

We would like to acknowledge the help of Sebastian Burz and Kevin Weizer for the editing and 
web-posting of the SOPs. This study was funded by the European Community's Seventh 
Framework Programme via International Human Microbiome Standards (HEALTH-F4-2010-
261376) grant. We also received support from Scottish Government Rural and Environmental 
Science and Analytical Services. 

AUTHOR CONTRIBUTIONS 

PIC, SS, GZ analyzed data, drafter and finalized the manuscript. EP and AA analyzed data, 
sequenced samples and wrote the manuscript. FL, JRK, MRH and EAV analyzed data and wrote 
the manuscript. MB, JB, LB, TC, SCP, MD, MD, AD, WMV, BBF, HJF, FG, MH, HH, JHV, JJ, IK, PL, ELC, 
VM, CM, JCM, CM, HM, CO, POT, JP, SP, NP, MP, AS, DS, KPS, BS, KS, PV, JV, LZ, EGZ extracted 
samples and wrote the manuscript. SDE, JD and PB designed the study and wrote the 
manuscript. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Paper 2  Page 12 of 56 

 
 

FIGURES 

 

Figure 1: Schematic workflow of human fecal samples processing. 

Illustration of the main steps involved in extracting and analyzing DNA sequences from human 
fecal samples, from collection to bioinformatics analysis. Importantly, none of the outlined steps 
are standardized, which may introduce strong effects between different studies, making their 
results hard to compare. For example, differences between freezing and RNA-later fixation have 
been previously described23 to bias the measured sample composition.  
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Figure 2: Quality control of extracted DNA 

Quality (a) and quantity (b) of extracted DNA from 21 different protocols. a) Percentage of DNA 
molecules shorter than 1.8 kb, b) quantity of extracted DNA. Protocols failing quality cut-offs 
(indicated by dashed lines) for either measurement are highlighted in red and boxed. 
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Figure 3: Effect of DNA extraction protocol and library preparation on sample 
composition  

Using both a Euclidean and an Spearman distance measure (see Methods) on  species 
abundances (using mOTU19)  (a) as well functional abundances (using COGs33) (b), shows the 
relative effect size of different sources of variation. The library preparation and the within-
protocol variation are the smallest effects, while the between protocol variation may be greater 
than some biological effects23,24. Heat maps on the right show all pairwise distances between 
protocols, highlighting which protocol may be considered comparable and which not under 
different measures of similarity as encoded by letters D,H and G on the bottom-right.  
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Figure 4: Species specific abundance variation  

Assessing variation of species abundances shows that biases are consistent across the two 
samples. Gram-positive bacteria are heavily under-estimated compared to the mean across the 
five highest recovered ratios, while gram-negative bacteria are only slightly skewed. 
Abundances are calculated using mOTUs19 , with only those having a species level annotation 
being shown. 
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Figure 5: Effects of protocol manipulations on sample composition 

Out of 22 protocol descriptors that vary between the Qiagen based methods, 7 are significantly 
associated with diversity outcomes. Associations are coded as negative (red) and positive (blue), 
with significance highlighted by * < 0.05 and ** < 0.01. P-values have been FDR corrected for 
multiple testing.  
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SUPPLEMENTARY FIGURES 

 

Supplementary Figure 1: Extraction bias across the two samples. 

Extraction bias is consistent across the two samples, independent of the distance measure that 
was used. (a) shows a PCoA projection of the species abundances for each sample, 
independently, using a Spearman ranked correlation as well as a Euclidean distance. Most of the 
variation is captured by the first two principal coordinates and the clustering of extraction 
methods is easily observable. (b) shows a PCoA projection of the functional distance, both 
Spearman ranked and Euclidean. 
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Supplementary Figure 2: Shannon diversity of samples composition 

Observed Shannon diversity is consistently influenced by extraction method, as illustrated in 
both samples. Furthermore, there is a considerable difference in diversity between the two 
samples, which is not overwritten by extraction bias. 
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Supplementary Figure 3: Lysis of gram-positive bacteria positively correlates with 
Shannon diversity. 

Recovery of gram-positive bacteria correlates with overall Shannon diversity. Considering only 
the top 20 most abundant species within each sample, ratios were computed between all gram-
positive and gram-negative bacteria as well as gram-negative to gram-negative bacteria. The top 
panel shows the correlation of these ratios with the Shannon diversity index, while the lower 
panel exemplifies this correlation on the most abundant gram-positive and gram-negative 
bacteria that are common to both samples A and B, indicating the strong positive relation 
between recovery of gram-positive bacteria and observed Shannon diversity. 
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Supplementary Figure 4: Extraction bias of best performing protocols considered in 
Phase II 

Phase II variation considerations. Extraction variation is the same in Phase II replicates as that of 
Phase I (bars 1 and 2, respectively). Furthermore, the three protocols that have been merged for 
Phase II, namely 6, 9 and 15, are similar below the biological replicate variation. The 
reproducibility of the tree Phase II protocols (H, W and Q) are comparable of below that of 
biological variation within one specimen. 
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SUPPLEMENTARY INFORMATION 

IHMS DNA EXTRACTION PROTOCOL #1 

CELL LYSIS 

- Turn on heating block 70°C in advance. 
- Take samples out of -80°C and before thawing of stool, add to samples:  

o 250µL Guanidine Thiocyanate 4M   
o 40µL N-Lauroyl sarcosine 10%, 
o And homogenize with a sterile tooth pick (1 per sample).  

- Add 500µL N-Lauroyl sarcosine 5%. 
- Vortex vigorously. 
- Incubate for 1h at 70°C on heating block. 
- Weigh in cupules :  

o 15mg PVPP per sample 
o 200mg for 20 ml of TENP solution per batch of 12 samples. 

- After incubation, add 750µL sterile glass beads (0,1mm) to each sample. 
- Vortex vigorously. 
- Apply bead-beating for 10 minutes in homogenizer set at 25r/s. 

REMOVAL OF IMPURITIES 

- Add 15mg of PVPP powder to each sample 
- Vortex vigorously. 
- Centrifuge 5 minutes at 12,700 RPM at 4°C. 
- Transfer supernatant to sterile 2mL tube. 
- Add to pellet 500µL of TENP solution (Homogenize TENP suspension before pipeting). 
- Vortex vigorously until complete dissociation of the pellet. (Use sterile tooth pick if needed) 
- Centrifuge 5 minutes at 12,700 RPM at 4°C. 
- Collect surnageant and pool with the first one. 
- Repeat operation of pellet wash with TENP two more times (3 washes total). 
- Centrifuge pooled supernatants for 10 minutes at 12,700 RPM at 4°C. 
- Divide supernatant in two equal volumes ( 850µl) in two 2mL tubes containing 1 mL 

isopropanol 2 (2 tubes per sample).  

(Attention : take care not to draw the pellet). 

PRECIPITATION OF NUCLEIC ACIDS AND PROTEINS 

- Gently mix by turning the tubes a few times. (DNA floculation not always visible). 
- Let settle for 10 minutes at room temperature. 
- Centrifuge 15 to 30 minutes at 12,700 RPM at 4°C. 
Attention : pellet not always visible. 
- Discard supernatant by inversion of the tube into liquid biohazards bin. 
- Let dry. 
Attention : for fecal samples in stabilizing suspensions or liquid stool, supernatant must be 
discarded using a pipet and tips (not by tube inversion). 

REMOVAL OF PROTEINS 
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- Add 450/540µL phosphate buffer (PH8 0,1M) and 50/60µL potassium acetate (5M) in the 
first tube and flick pellet in suspension. 

Attention : adjust volume depending on size of pellet, but use the same volume for all samples of 
a given project. 

- Transfer all liquid of first tube containing resuspended pellet into second tube. 
- Resuspend pellets by aspiration using P1000 automatic pipet (adjusted to 350µl). 
- Complete resuspension by aspiration using P200 automatic pipet (adjusted to 150µl). 
- Leave on ice in the fridge for 1h30 minutes minimum. 

PRECIPITATION OF PURIFIED DNA 

- Centrifuge 30 minutes at 12,700 RPM at 4°C.  
- Turn on heating block 37°C in advance. 
- After centrifugation, transfer cupernatant to sterile 1,5mL tube. 
- Add 2µL Rnase (10mg/mL) to each DNA preparation (stored at -20°C) 
- Incubate for 30 minutes à 37°C in heating block. 
- Add 50µL sodium acetate 3M and 1mL absolute ethanol kept at -20°C. 
- Mi Gently mix by turning the tubes a few times. 
- Leave overnight at -20°C. 
- Centrifuge 15 to 30 minutes at 12,700 RPM at 4°C (depending on the amonut of visible DNA 

flock). 
- Discard supernatant in liquid biohazard bin. 
- Eliminate droplets by tapping tubes upside down on tissue paper. 
- Add 1mL 70% ethanol to wash the pellet. 
- Centrifuge 5 minutes at 12,700 RPM at 4°C. 
- Discard supernatant in liquid biohazard bin. 
- Eliminate droplets by tapping tubes upside down on tissue paper. 
- Repeat the wash in 70% ethanol a second time. 
- Eliminate droplets of 70% ethanol with P200 automatic pipet. 
- Set pellets to dry for 10 minutes in laminar flow hood. 
- Resuspend DNA pellet using a pipet in a fixed volume of TE buffer (50 to 300µL depending 

on pellet size and sample origin). 
- Discard all spoiled/exposed material in biohazard bins. 

STORAGE 

Store long term at -20°C or less. 

PREPARATION OF SOLUTIONS  

- Phosphate buffer pH 8, 1M  
o 9,32 mL Na2HPO4 : 14,2 g for 100mL H2O (dissolve on heating stirrer)  
o 0,68 mL NaH2PO4 (1M) : 12 g for 100mL H2O  
o 90 mL H2O  
o Check pH = 8 with pH paper  

- EDTA, 2 H2O pH 8, 0.5M  
o 9,305g qs for 50 mL H2O (dissolve by heating)  
o Adjust to pH 8 with NaOH pellet (approximately one) using a pH meter  

- Tris-HCL (pH 7.5, 1M or pH 8.0, 1M)  
o 6,05 g Trizma base qs for 50mL H2O.  
o Adjust to pH 7.5 or 8.0 with concentrated HCL using a pH meter  

- TENP(50 mM Tris pH8, 20 mM EDTA pH8, 100 mM NaCl, 1% of PVPP)  
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o 1,5 mL Tris-HCL pH 8, 1M  
o 1,2 mL EDTA pH 8, 0.5M  
o 0,6 mL NaCl, 5M  
o 0,3 g PVPP (attention, will not dissolve)  
o qs for 30ml H2O. 

- Guanidine Thiocyanate 4M  
o 12,37g guanidine thiocyanate in a Falcon tube, manipulation under hood (careful 

with toxicity)  
o 13,5 mL H2O  
o 2,6 mL Tris-HCL 1M pH7.5  
o Shake overnight on a rocking agitator: in closed flacon, protected from light by 

aluminum foil  
o Completing to 26.1 mL of H2O  
o Heat in Dry bath or in an oven at 60-70 ° C for 10min (if not totally dissolved) 
o Filter through 0.2 microns Millipore filter  
o Store at 4°C protected from light  

- NaCl 5M  
o 14.6g qs for 50mL H2O (in a Falcon tube)  

- N-Lauroyl Sarcosine 10%  
o 2g for 20mL H2O (in a Falcon tube)  

- N-Lauroyl Sarcosine 5%  
o 1g for 20mL phosphate buffer pH8, 0,1M (in a Falcon tube)  

- TE pH 8 (10mM Tris.HCl pH8, 1mM EDTA pH8)  
o 200µl Tris HCL 1M pH8  
o 40µl EDTA 0,5M pH8  
o qs for 20mL H2O (in a Falcon tube)  

- Potassium acetate (5M for Acetate , 3M for potassium)  
o 29,44g Potassium acetate  
o + 11,5 mL Glacial acetate  
o + 28,5 mL H2O  
o qs for 100 mL with H2O 

- Sodium acetate 3M  
o 12,304g in 40mL d’ H2O (in a Falcon tube)  
o Adjust pH at 5,2 with Glacial acetate  
o qs for 50 mL with H2O  

- Rnase (Ribonuclease) 10mg/mL 

  



Paper 2  Page 24 of 56 

 
 

IHMS DNA EXTRACTION PROTOCOL #2 

SYNOPSIS OF THE METHOD 

The protocol involves the following steps 
- chemical and mechanical lysis of cells 
- removal by precipitation and centrifugation of aromatic compounds, cellular debris and proteins  
- enzymatic digestion of RNAs 
- alcoholic precipitation of purified DNAs 

PRODUCTS 

Na2HPO4   M : 142 g/mol   Sigma    
NaH2PO4    M : 120 g/mol   Sigma  S3139 
EDTA   M : 372,2 g/mol  Sigma  E5134 
Trizma base   M : 121,1 g/mol  Sigma  T8524 
NaOH   M : 40,0 g/mol  Prolabo 28.244.295 
HCl concentrated  M : 36,48 g/mol  Prolabo 20.252.290 
PVPP( polyvinylpoly-pyrrolidone)   Sigma  P6755 
Guanidine Thiocyanate M : 118,2 g/mol  Sigma   G6639 
NaCl   M : 58.44g/mol  Prolabo  28.244.295 
N-Lauroyl Sarcosine M : 293.38g/mol  Sigma   L9150  
Acétate de Potassium M :98.14g/mol  Sigma  P3542  
Acétate de Sodium  M : 82.03g/mol  Sigma   S7545 
Acide acétique glacial M : 60.05g/mol :   Prolabo 20.104.243 
Isopropanol =  M : 60.1 g/mol  Merck  20842.298 
Propan-2-ol = 2-Propanol 
Ethanol 100% (Analyse) M : 46.07 g/mol  Merck  1.00983.1000 
Rnase (Ribonuclease) 10mg/mL   Sigma   R6513  
         ou Amersham  E78020Y 

MATERIALS 

Filtres 0.22µm      Millipore 
Glass beads 0.1mm    Bioblock  B74471 
Sterile screw-cap tubes 2mL, round bottom ATGC  0214209510 
Eppendorf Tubes 2 mL; 1,5 mL autoclaved    
Tooth picks autoclaved 
Bench-top Micro centrifuge 
Refrigerated Centrifuge (4°C) 
Heating blocks at 70°C & 37°C 
Bead-BeaterTM ( Biospec Products,USA) 

SOLUTIONS 

Wear gloves at all times. 
Use only MilliQ water (mq) sterile. 

- Phosphate buffer pH 8, 0.1M 
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o 9,32 mL Na2HPO4 : 14,2 g for 100mL H2O (dissolve using heating stirrer) 
o 0,68 mL NaH2PO4 (1M) : 12 g for 100mL H2O  
o 90 mL H2O   pH  8  

- EDTA, 2 H2O  pH 8, 0.5M   
o 9,305g and H2O to 50 mL (dissolve using heating stirrer) 
o Adjust pH at 8 avec NaOH in pellets (~one) 

- Tris-HCL (pH 7,5 at 1M or pH 8 at 1M) 
o 6,05 g Trizma base and H2O to 50mL.  
o Adjust pH at 7,5 or 8.0 with concentrated HCL   

- TENP(50 mM Tris pH8, 20 mM  EDTA pH8, 100 mM NaCl, 1% de PVPP)  
o 20 mL H2O (Falcon tube) 
o 1,5 mL de Tris-HCL pH 8, 1M 
o 1,2 mL EDTA pH 8, 0.5M  
o 0,6 mL NaCl, 5M 
o 0,3 g de PVPP (attention, unsoluble : it will remain in suspension) 

- Guanidine Thiocyanate 4M  
o 12,37 g guanidine thiocyanate under hood in Falcon tube (attention toxic) 
o 13,5 mL H2O  
o 2,6 mL Tris-HCL 1M pH7.5 
o Let closed vessel protected from light, overnight in rotating device. 
o Adjust with H2O to 26.1 mL  
o Warm up at 60-70°C for 10min 
o Filter with 0,2 µm Millipore filter 
o Store at 4°C protected from light 

- NaCl 5M 
o 14.6g and H2O to 50mL (in Falcon tube) 

- N-Lauroyl Sarcosine 10%  
o 2g in 20mL H2O (inFalcon tube) 

- N-Lauroyl Sarcosine 5%  
o 1g in 20mL phosphate tampon pH8 , 0,1M (in Falcon tube) 

- TE pH 8 (10mM Tris.Cl pH8, 1mM EDTA pH8) 
o 200µl Tris HCL 1M pH8 
o 40µl EDTA 0,5M pH8 
o H2O to 20mL (in Falcon tube) 

- Potassium Acetate (5M Acetate , 3M de Potassium) 
o 29,44g  potassium acetate 
o + 11,5 mL glacial acetic acid 
o + 28,5 mL H2O  
o H2O to 100 mL 

- Sodium Acetate 3M 
o 12,304g in 40mL H2O (in Falcon tube) 
o Adjust pH at 5,2 with glacial acetic acid.  
o H2O to 50 mL  

- Isopropanol = Propan-2-ol = 2-Propanol 
- Ethanol 100% for Analyses  stored at –20°C 
- Ethanol 70% 

o 70mL ethanol 100% + 30mL sterile H20, stored at –20°C 
- Rnase (Ribonuclease) 10mg/mL    

o 20 mg Rnase, 
o + 20 µl Tris.Cl 1M pH 7,5 
o + 6 µl NACL 5M 
o H2O to 2 ml  
o If necessary, bring to 100°C, 15 min, and let cool at room temperature 
o Aliquot in 50µl, store at -20°C 
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ALIQUOTING BIOLOGICAL SAMPLES 

 Samples may be aliquotes in sterile Sarstedt screw cap tubes 

- take frozen samples (-80°c) and work on a bed of dry-ice  
- Use scalpel to cut pieces of sample on aluminium foil, to make 200mg  
- Keep tubes on dry-ice or at -80°C 

DNA EXTRACTION 

- Turn on heating block set at 70°C  
- in each tube containing 200mg stool aliquot, add 250µL Guanidine Thiocyanate 
- Add 40µL N-Lauroyl sarcosine 10% 
- Add 500µL N-Lauroyl sarcosine 5% 
- Crush the stool aliquot with tooth pick (1 per sample) 
- Vortex to homogeneity  
It is possible to stop here and freeze samples overnight at –20°C 
- Give a quick spin before incubation (centrifugation at 14000RPM for a few seconds) 
- Incubate at 70°C in heating block for 1h (OK up to max 2h) 
Note: the chemical treatment contributes to cell lysis and prevents degradation of nucleic acids. 
The Guanidine Thiocyanate inhibits nucleases and N-Lauroyl Sarcosine is a detergent lysing 
cells. 
- During incubation, prepare Eppendorf tubes 2 ml containing ~750µL glass beads 0.1 mm. (1 

per sample) 
- weigh 15 mg PVPP on aluminium (1 per sample) + 300mg PVPP for the TENP solution 
- at the end of incubation, add the beads to each sample. 
- Shake in Bead-BeaterTM   for 5min (average speed) 
- Let Bead-BeaterTM still for 5min 
- Shake again in Bead-BeaterTM   for 5min  
Note: this ensures mechanical lysis of cells. 
- Add 15mg PVPP per sample 
Note: PVPP precipitates/adsorbs aromatic molecules 
- Vortex : PVPP should not separate or float  
- Centrifuge 3min at 14000RPM  
- Collect supernatant in 2mL sterile tube with pipett 
Note: possible to stop for up to 2 hours setting samples at 4°C 
- Add 500µL TENP to the pellet (TENP homogenized before use) 
- Vortex to fully resuspend the pellet 
- Centrifuge 3min at 14000RPM 
- Collect supernatant and pool with first one 
- Repeat this TENP washing operation twice (3 washes total) 
- Centrifuge the 2mL tube containing the pooled supernatants for 1min at 15000rpm 
Note: this eliminates any particle in suspension. 
- Dispense supernatant in two equal volumes in 2mL Eppendorf tubes (2 tubes per sample) 
- Add 1mL isopropanol (propanol-2) in each tube 
Note: isopropanol will precipitate nucleic acids 
- mix gently by returning tubes a few times (DNA may be visible as a floculum) 
- Leave for 10 min at room temperature (or overnight at 4°C) 
- Centrifuge 5min at 14000RPM 
- discard supernatant (using pipett) 
- Dry tubes upside down on a kimwipe (making sure pellet is stable) 
- Add 225µL phosphate buffer 
- Add 25µL potassium acetate 
Note : the latter precipitates proteins 
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- Vortex to resuspend the pellets 
- Pool the 2 of the same sample in one of the 2 tubes 
- Vortex and use a P200 pipett to dissolve  
- leave 1h30 minimum on ice 
Note: possible to stop for up to 2 hours at 4°C or overnight setting samples on ice  
- Centrifuge 30min at 14000RPM at 4°C  
- turn on heating blocks at 37°C 
- collect supernatant containing DNA in 1.5mL Eppendorf tubes 
- Add 2µL Rnase (10mg/mL)/vortex/spin 
- Incubate 30 minutes at 37°C 
Note : this ensures full digestion of RNA 
- Add 50µL sodium acetate 
- Add 1mL Ethanol 100% from –20°C 
- mix gently by returning tubes a few times  
- Leave 5 min at room temperature 
Note: possible to stop overnight at 4°C or for longer periods at -20°C 
Note: This step leads to DNA precipitation  
- Prepare a  1.5mL tube with 500 µL cold ethanol 70% per sample 
- If the DNA forms a floc, it is collected with the sterile tip of a Pasteur pipette and transferred 

to the tube containing 500µl ethanol 70%. 
- Otherwise, collect the DN by centrifugation 3mns at 14000RPM remove ethanol and rinse 

with 500 µl Ethanol 70%, vortex 
- Centrifuge 3 mns at 14000RPM and discard ethanol (wash 1) 
- Do a second wash with 500 µl Ethanol 70%, vortex 
- Centrifuge 3 mns at 14000RPM and discard ethanol (wash 2) 
- Eliminate residual ethanol tapping tubes gently on a kimwipe 
- Dry for 1h30 in laminar flow hood  
- re suspend pellet in 200µL TE (more if necessary)  
- leave at room temperature for 1 to 2h 
- Vortex and re suspend completely using P200 pipette  
- Store frozen at –20°C ; or at 4°C if to be used within a couple of days 
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IHMS DNA EXTRACTION PROTOCOL # 3 

 

MoBio PowerSoil (HMP modification)  

STEP 1:  

- Measure out 2.0 grams stool sample in a 15ml Falcon tube  
- Add 5 ml of Bead Solution  
- Vortex until the stool is homogenized with the stool sample  
- Centrifuge for 5 mins @ 1500 g  
- Split the supernantant into 5 bead tubes (750μl/tube)  
- Incubate sample 10 min at 65°C, then 10 min at 95°C.  
- Place @ -80°C overnight  

STEP 2:  

If Solution C1 is precipitated, heat to 60°C until dissolved before use.  

- Add 60μl of Solution C1 and vortex briefly.  
- Secure PowerBead Tubes on a flat-bed vortex pad with tape. Vortex at maximum speed for 

10 minutes.  
- Spin tubes at 10,000 x g for 30 seconds at room temperature.  
- Transfer the supernatant to a clean 2 ml Collection Tube. Expect ~400-500μl supernatant.  
- Add 250μl of Solution C2 and vortex for 5 sec. Incubate at 4°C for 5 min.  
- Spin the tubes at room temperature for 1 minute at 10,000 x g.  
- Transfer no more than, 600μl of supernatant to a 2 ml Collection Tube.  
- Add 200μl of Solution C3 and vortex briefly. Incubate at 4°C for 5 minutes.  
- Spin tubes at 10,000 x g for 2 minutes at room temperature..  
- Transfer no more than 750μl of supernatant to a 2 ml Collection Tube  
- Add 1200μl of Solution C4 to the supernatant and vortex for 5 seconds.  
- Load 675μl onto a Spin Filter and spin at 10,000 x g for 1 minute at room temperature. 

Discard the flow through. Repeat a total of three times to process all sample.  
- Add 500μl of Solution C5 and spin for 30 seconds at 10,000 x g.  
- Discard the flow through.  
- Centrifuge again at room temperature for 1 minute at 10,000 x g.  
- Place Spin Filter in a clean 1.5 ml tube avoiding splashing Solution C5 onto the Spin Filter.  
- Add 100μl of sterile DNA-Free PCR Grade Water to the center of the white filter membrane.  
- Spin for 30 seconds at 10,000 x g.  
- Store frozen (-20° to -80°C).  
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IHMS DNA EXTRACTION PROTOCOL #4 

 

- Turn on heating block to 75◦C 
- Label up screw-capped tubes, add 200 mg glass beads to each tube 
- Take frozen fecal samples out of freezer to thaw 
- Add 300 µL SLX buffer (from Omega Bio-Tek E.Z.N.A.® Stool DNA Kit) to each tube 
- Add 10 µL proteinase K solution to each tube (20mg/mL proteinase K in 0.1mM CaCl2) 
- Invert tube 6 times to mix, add 200 mg of each fecal sample to prepared screw capped tubes 
- Bead beat screw capped tubes 4 x 45 sec 
- Incubate tubes at 70◦C for 10 min (after 8 minutes has elapsed, turn heating block up to 

95◦C) 
- Incubate for a further 5 min  
- Incubate on ice for 2 min 
- Add 100 µL Buffer P2 (from Omega Bio-Tek E.Z.N.A.® Stool DNA Kit), vortex for 30 sec 
- Incubate on ice for 5 min 
- Spin at 14500 x g for 5 min 
- Remove supernatant to new 1.5 mL tube (discard pellet) 
- Add 200 µL HTR reagent (from Omega Bio-Tek E.Z.N.A.® Stool DNA Kit) to each tube using a 

wide bore tip, vortex for 10 sec (mix HTR reagent bottle well before pipetting) 
- Incubate at room temperature for 2 minutes (prepare Maxwell kit components  (from 

Promega’s Maxwell®16 DNA Purification Kit )while waiting) 
- Spin at 14500 x g for 2 min  
- Add supernatant to Maxwell cartridge (adding 300 µL Elution buffer to each blue collection 

tube), run through Maxwell 16 Instrument cycle.  
- Transfer DNA from elution tube into labelled screw-cap 1.5 mL tube, store in -80◦C freezer 
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IHMS DNA EXTRACTION PROTOCOL #5 

Adapted from Zhongtang Yu and Mark Morrison, BioTechniques, 36:808-812.  

This procedure is known as Repeated Bead-Beating (RBB) or the “double bead-beater 
procedure”. 

MATERIALS 

- Gloves 
- 1.5 ml eppendorf tubes (B74085-BIOplastics) 
- 2.0 ml eppendorf tubes (623 201 Greiner) 
- 2.0 ml screw cap tubes (B91211-BIOplastics) 
- screw caps (B91303-BIOplastics) 
- Glass beads 3mm  
- Silicium / Zirkonium beads 0.5 mm (11079101 BioSpec) 
- RNase-free Filtertips 10 (B95012-BIOplastics) 
- RNase-free Filtertips 200 (4810-Corning) 
- RNase-free Filtertips 1000 (B95210-BIOplastics) 
- Nuclease free water (Promega-P1193) 
- RNase H (Promega- M428A) 
- Ethanol, >99% (Merck-) 
- Ammonium acetate (Merck-) 
- 2-Propanol (Merck 1.01040) 
- Ethanol, pure (Merck 1.00983) 
- QIAamp DNA stool Minikit (Qiagen 51504) 

EQUIPMENT 

- Thermoblock (<100oC) 
- waterbath (<100oC) 
- eppendorf centrifuge 
- eppendorf centrifuge with cooling (5417R) 
- Nanodrop-ND-1000 
- Beat Beater (Precellys 24, Bertan Technologies) 

SOLUTIONS 

- Lysis buffer 
- 500 mM NaCl,50 mM Tris-HCl (pH 8), 50 mM EDTA, 4 % SDS. 
- 10 M ammonium acetate 
- Measure 192.7gr C2H7NO2 and fill to 250ml with water. 
- 70% ethanol 
- 35ml pure ethanol, add 15 ml water. 

CELL LYSIS 

1. Add 0,5g of 0,1mm zirconia beads and 4 glass beads (3 mm) to a 2,0ml screw-cap tube, then 
sterilize.  

2. Weigh 0,25 g of faeces into the tube and  add 1,0 ml of Lysis buffer. 
a. If buffer is precipitated heat at +70°C 

3. Treat sample in FastPrep at room temperature (RT) at 5,5 ms for 3x 1min (cool samples on 
ice in between). 
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4. Heat at 95°C for 15 min mix samples shaking by hand every 5 min. 
5. Centrifuge at +4°C for 5 min at full speed (to pellet stool particles). 

a. Transfer the supernatant into new 2ml eppendorf tube. 
6. Add 300 ul of fresh lysis buffer to the lysis tube and repeat steps 3-4, then pool the 

supernatants. 

PRECIPITATION OF NUCLEIC ACIDS: 

7. Add 260 ul of 10 M ammonium acetate to each lysate tube, mix well, and incubate on ice for 
5 min 

8. Centrifuge at  4°C for 10 min at full speed in a cooled centrifuge. Discard pellet. 
9. Transfer the supernatant to two 1,5 ml eppendorf tubes, add one volume of isopropanol and 

mix well, and incubate on ice for 30 min 
10. Centrifuge at RT for 15 min at full speed, remove the supernatant by decanting. Wash nucleic 

acids pellet with 500 µl 70 % EtOH for 2 min. and dry the pellet to air with cups turned up-
side down. 

11. Dissolve the nucleic acid pellet in 200 ul (100 ul each) of TE buffer, leave at 4°C overnight 
and pool the two aliquots.  

REMOVAL OF RNA, PROTEIN AND PURIFICATION (QIAMP DNA MINI KIT): 

12. Add 2 ul of DNase-free RNase (10 mg/ml) and incubate at 37°C for 15 min. 
13. Add 15 ul of proteinase K and 200 ul of Buffer AL mix well and incubate at 70°C for 10 min. 

a. Do not mix proteinase K and Buffer AL in advance! 
14. Add 200 ul of EtOH and mix well. Transfer to a QIAmp column and centrifuge for 1 min at 

13.000 rcf. 
15. Discard the flow through, add 500 ul of Buffer AW1 and centrifuge for 1 min at RT at 13.000 

rcf. 
16. Discard the flow through, add 500 ul of Buffer AW2 and centrifuge for 1 min at RT at 13.000 

rcf. 
17. Dry the column by centrifugation at RT for 1 min, leaving the cup open. 
18. Add 100 ul  of Buffer AE and incubate at room temperature for 1 min. Then centrifuge at 

13.000 rcf for 1 min. 
19. Re-use the elute with the DNA, incubate for 1 min. Then centrifuge at 13.000 rcf for 1 min. 
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IHMS DNA EXTRACTION PROTOCOL #6 

Protocol of the Repeated Bead Beating Plus Column (RBB+C) Method 

(Improved extraction of PCR-quality community DNA from digesta and fecal samples.  
Zhongtang Yu and Mark Morrison. Short Technical Reports. BioTechniques 36:808-812 (May 
2004) 

CELL LYSIS:  

1. Transfer 0.25 g of sample into a fresh 2-mL screw-cap tube. Add 1 mL of lysis buffer [500 
mM NaCl, 50 mM Tris-HCl, pH 8.0, 50 mM EDTA, and 4% sodium dodecyl sulfate (SDS)] and 
0.4 g of sterile zirconia beads (0.3 g of 0.1 mm and 0.1 g of 0.5 mm).  

2. Homogenize for 3 min at maximum speed on a Mini-Beadbeater™ (BioSpec Products, 
Bartlesville, OK, USA).  

3. Incubate at 70°C for 15 min, with gentle shaking by hand every 5 min.  
4. Centrifuge at 4°C for 5 min at 16,000× g. Transfer the supernatant to a fresh 2-mL 

Eppendorf® tube.  
5. Add 300 μL of fresh lysis buffer to the lysis tube and repeat steps 2–4, and then pool the 

supernatant. 

PRECIPITATION OF NUCLEIC ACIDS:  

6. Add 260 μL of 10 M ammonium acetate to each lysate tube, mix well, and incubate on ice for 
5 min.  

7. Centrifuge at 4°C for 10 min at 16,000× g.  
8. Transfer the supernatant to two 1.5-mL Eppendorf tubes, add one volume of isopropanol 

and mix well, and incubate on ice for 30 min.  
9. Centrifuge at 4°C for 15 min at 16,000× g, remove the supernatant using aspiration, wash the 

nucleic acids pellet with 70% ethanol, and dry the pellet under vacuum for 3 min. 
10. Dissolve the nucleic acid pellet in 100 μL of TE (Tris-EDTA) buffer and pool the two aliquots. 

REMOVAL OF RNA, PROTEIN, AND PURIFICATION: 

11. Add 2 μL of DNase-free RNase (10 mg/mL) and incubate at 37°C for 15 min.  
12. Add 15 μL of proteinase K and 200 μL of Buffer AL (from the QIAamp DNA Stool Mini Kit), 

mix well, and incubate at 70°C for 10 min. 
13. Add 200 μL of ethanol and mix well. Transfer to a QIAamp column and centrifuge at 16,000× 

g for 1 min. 
14. Discard the flow through, add 500 μL of Buffer AW1 (Qiagen), and centrifuge for 1 min at 

room temperature. 
15. Discard the flow through, add 500 μL of Buffer AW2 (Qiagen), and centrifuge for 1 min at 

room temperature. 
16. Dry the column by centrifugation at room temperature for 1 min. 
17. Add 200 μL of Buffer AE (Qiagen) and incubate at room temperature for 2 min. 
18. Centrifuge at room temperature for 1 min to elute the DNA.  
19. Aliquot the DNA solution into four tubes. Run 2 μL on a 0.8% gel to check the DNA quality.  
20. Store the DNA solutions at -20°C. 
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IHMS DNA EXTRACTION PROTOCOL # 7 

Initial samples of 200mg stool => n=8, split into several aliquots of approximately 20mg each 
(see below). 

DNA EXTRACTION PROCEDURE 

- Take out the sample tube (feces pellet aliquot) from freezer. 
- Add X µL Tris-SDS solution, homogeneize and dispatch in Y tubes (with cutted tips). 
- Add 0.3 g glass beads, Z µl tris-SDS and 500 µl TE-saturated phenol 

 

Sample name Weight (mg) X µl Tris-SDS Y tubes Z µL tris-SDS 
A1-033 123 600 µl 6 200 µl 
A1-083 185 900 µl 9 200 µl 
A1-133 152 700 µl 7 200 µl 
A1-183 183 900 µl 9 200 µl 
B1-033 182 900 µl 9 200 µl 
B1-083 203 1 ml 10 200 µl 
B1-133 196 1 ml 10 200 µl 
B1-183 175 800 µl 8 200 µl 
C1-010 bacterial pool 300 µl 1 0 
C1-030 from 0,9 ml 300 µl 1 0 
  

- Shake the tube vigorously using FastPrep at 5.0 power level for 30 seconds to disrupt the 
bacterial cells.  

- Centrifuge the tube (15,000 rpm × 5 min, 4˚C). 
- Transfer 400 µl of the supernatant into a new 2ml screw cap micro tube. Add 400 µl 

phenol/chloroform/isoamyl alcohol (25:24:1). 
- Shake the tube vigorously using FastPrep FP120 at 4.0 power level for 45 seconds.  
- Centrifuge the tube (15,000 rpm × 5 min, 4˚C). 
- Transfer 250 µl of the supernatant into a new 1.5 ml screw cap micro tube. 
- Add 25 µl 3 M sodium acetate (pH5.2). 
- Add 300 µl isopropanol, and mix the solution by inversion.  
- Centrifuge the tube (15,000 rpm × 5 min, 4˚C). 
- Discard the supernatant.  
- Add 500 µl 70% ethanol. 
- Centrifuge the tube (15,000 rpm × 5 min, 4˚C).  
- Discard the supernatant.  
- Dry the pellet by heating the tube on a heat block incubator at 60˚C. 
- Add 100 µl TE. Vortex the solution by pulses to dissolve the pellet. 
- Let the tubes one night at 4°C 
- Add 1µl of RNase (20 mg/ml), heat 30 minutes at 37°C 
- store at -80°C  
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IHMS DNA EXTRACTION PROTOCOL #8 

NECESSARY MATERIAL 

- Scale 
- Water bath 
- Heating blocks 
- Homogenizer-Beater Retsch MM200  
- Micro-Centrifuge 
- Vortex 
- Spatula 
- Pipetts  
- Sterile cones 
- Sterile Microtubes 1,5 and 2 mL  
- Lysozyme solution: 

o Lysozyme 
o Tris-HCl 1 M, pH 8 
o EDTA 0.5 M, pH 8 
o Triton X-100 
o H2O  

- QIAamp DNA Stool Mini Kit (Qiagen) 
- Zirconium beads 0,1 mm  
- Absolute ethanol 

METHOD 

- Aliquot 300 mg zirconium beads per sample.  
- Pre-heat heating block at 37°C take stool samples of the freezer. 
- Prepare lysozyme : 
- Weigh 100 mg lysozyme 
- Add 100 µl Tris-HCL 1M pH8 

o 20 µl EDTA 0,5M pH8 
o 60 µl Triton X-100 
o 5 ml H2O 

- for 200 mg stool in a 2 mL screw-cap tube, give a short pulse of centrifuge to pellet stool 
material. 

- Add 180 μl lysozyme solution to the 200 mg stool. 
- Vortex to homogeneity of the suspension. 
- Incubate 30 min at 37°C. ste the ASL buffer at 37°C at the same time. 
- Add 1,220 ml of ASL buffer to each tube and vortex 15 seconds.  
- Set the heating block at 95°C. 
- Add 1 aliquot of zirconium beads (300 mg) to each tube and insert tubes in bead beater 

MM200 ; run during 3 min at 30 revolutions per second (maximum speed). 
- Incubate 10 min at 95°C and vortex 15 sec. 
- Centrifuge 1 min at 13000 rpm at room temperature. 
- Transfer 1,2 ml of supernatant in an Eppendorf 2 mL tube. 
- Add an InhibitEX pill to each tube, vortex untill complete dissolution (approximately 1 

minute) and leave 1 min at room temperature. 
- Set the heating block at 70°C. 
- Centrifuge 6 min at 13200 rpm. 
- Make sure that InhibitEX did pellet. If necessary, recentrifuge 6 min at 13200 rpm. 
- Transfer supernatant to an Eppendorf 1,5 mL tube.  
- Centrifuge 3 min at 13200 rpm. 
- Dispense 15 μl of proteinase K in new Eppendorf 1,5 mL tubes. 
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- Transfer 200 μl of surnageant in tubes containing proteinase K; store remaining supernatant 
at -20°C. 

- Add 200 μl of AL buffer and vortex to complete homogeneity. 
- Incubate 10 min at 70°C and centrifuge a few seconds. 
- Add 200 μL absolute ethanol and vortex. give a short pulse of centrifuge.   
Tubes may be kept at 4°C for a maximum of 2 hours. 
- Draw out mini-columns and label them. 
- Set the content of the tubes on the columns (Volume is ~700μL). 
- Centrifuge 2 min at 13200 rpm. Discard filtrate and reset in collection tube. 
- Add 500 μL of AW1 buffer. 
- Centrifuge 1 min at 13200 rpm. Discard filtrate and reset in collection tube. 
- Add 500 μL of AW2 buffer. 
- Centrifuge 1 min at 13200 rpm. Discard filtrate and reset in collection tube. 
- Perform a second wash with 500µl of AW2 buffer.  
- Centrifuge 3 min à 13200 rpm. Discard filtrate and transfer column to a 1,5 mL tube. 
- Add 200 μL of AE buffer.  
- Incubate 5 min at room temperature 
- Centrifuge 1 min at 13200 rpm. Discard column. 
- Store eluate at -20°C. 
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IHMS DNA EXTRACTION PROTOCOL #9 

Fecal DNA extraction with Repated Beat Beating (RBB) method 

CELL LYSIS 

1. Add 0,25g of Ø 0,1mm zirconia/silica beads (BioSpec, Cat. No. 11079101z) and 3 glass beads 
(Ø 3 mm) into 2,0ml screw-cap tube (Sarstedt, 72.693). 

2. Weigh 0,125g of faeces and add 0,5 ml of Lysis buffer (500 mM NaCl,50 mM Tris-HCl (pH 8), 
50 mM EDTA, 4 % SDS) If buffer is precipitated heat at +70°C. 

3. Treat sample in FastPrep®-24 Instrument (116004500) with CoolPrep Adapter (6002-528) 
(MP biomedicals) at 5,5 ms for 3x1 min (after every min wait for 5 min samples on ice to 
cool down the instrument). Use cool prep adapter with small amount of dry ice. 

4. Incubate at 95°C for 15 min with gentle shaking by thermomixer. 
5. Centrifuge at +4°C for 5 min at full speed (to pellet stool particles) 

Transfer the supernatant into new 2 ml eppendorf tube and store supernatant on ice. 
6. Add 150 ul of fresh lysis buffer to the lysis tube and repeat steps 3-5, and then pool the 

supernatants. 

PRECIPITATION OF NUCLEIC ACIDS 

7. Add 130 ul of 10 M ammonium acetate to each lysate tube, mix well, and incubate on ice for 
5 min. 

8. Centrifuge at +4°C for 10 min at full speed. 
9. Transfer the supernatant to 2 ml eppendorf tube, add 750 ul of isopropanol and mix well, 

and incubate on ice for 30 min. 
10. Centrifuge at +4°C for 15 min at full speed, remove the supernatant using aspiration, wash 

nucleic acids pellet with 70 % EtOH (0,5 ml) and dry the pellet under vacuum for 3 min. 
11. Dissolve the nucleic acid pellet in 200 ul of TE buffer . 

REMOVAL OF RNA, PROTEIN AND PURIFICATION: (WITH QIAAMP DNA MINIKIT (QIAGEN, 
51306) 

12. Add 2 ul of DNase-free RNase (10 mg/ml) (Roche, 10109142001) and incubate at +37°C for 
15 min. 

13. Add 15 ul of proteinase K and 200 ul of Buffer AL mix well and incubate at +70°C for 10 min. 
14. Add 200 ul of EtOH and mix well. Transfer to a QIAmp column and centrifuge for 1 min at full 

speed. 
15. Discard the flow through, add 500 ul of Buffer AW1 and centrifuge for 1 min at RT. 
16. Discard the flow through, add 500 ul of Buffer AW2 and centrifuge for 1 min at RT. 
17. Dry the column by centrifugation at RT for 1 min. 
18. Add 100 ul + 100 ul of Buffer AE and incubate at room temperature for 1 min. 
19. Centrifuge at RT for 1 min to elute the DNA. 
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IHMS DNA EXTRACTION PROTOCOL #10 

LYSIS 

- Resuspend fecal sample (100-200 mg) in 750 μl Lysis buffer and transfer to 2 ml screw- cap 
tube containing 300 mg of zirconium beads (0.1 mm, BioSpec Products).  

- Incubate at 37˚C for 30 min. 
- Add 85 μl 10 % SDS solution and 40 μl Proteinase K (15 mg/ml) and incubate 30 min at 60˚C. 
- Add 500 μl of Phenol:Chloroform:Isoamyl alcohol (25:24:1). 
- Disrupt cell that did not lyse with enzymatic lysis using a bead beater (BioSpec Products) set 

on high/homogenize for 2 min. 
- Put on ice (2-5 min). 
- Spin 13,000 rpm for 5 min, remove top layer and put into 1.5 ml eppendorf tube.  
- Extract with Phenol:Chloroform:Isoamyl alcohol (25:24:1), vortex, spin at 13,000 rpm for 5 

min and carefully remove upper phase. 
- Extract once with Chloroform:Isoamylalcohol, vortex, spin, carefully remove top layer into 

new eppendorf tube. 
- Precipitate DNA with 2.5 Vol ethanol and 1/10 vol 3 M sodium acetate (pH 5.2) and leave at -

20 at least 1 hour (can be over night), or -80 for 30 min 
- Spin at 13,000 rpm for 5 min to pellet DNA. 
- Carefully discard Ethanol without disturbing DNA pallet (which may be brown) and air dry 

for 30 min. 
- Resuspend DNA in 200 μl Tris Buffer (10 mM, pH 8) or H2O. 
- Comment: From here use the DNeasey Blood and Tissue kit and follow their instructions or 

instructions below.  
- Add 200 μl Buffer AL (without added ethanol). Mix thoroughly by vortexing. 
- Ensure that ethanol has not been added to Buffer AL (see “Buffer AL”, page 18). 
- Buffer AL can be purchased separately (see page 56 for ordering information). 
- It is essential that the sample and Buffer AL are mixed immediately and thoroughly by 

vortexing or pipetting to yield a homogeneous solution. 
- Add 200 μl ethanol (96–100%) to the sample, and mix thoroughly by vortexing. It is 

important that the sample and the ethanol are mixed thoroughly to yield a 
- homogeneous solution. 
- Pipet the mixture into the DNeasy Mini spin column placed in a 2 ml collection tube 

(provided). Centrifuge at _6000 x g (8000 rpm) for 1 min. Discard flow-through and 
collection tube.* 

- Place the DNeasy Mini spin column in a new 2 ml collection tube (provided), add 500 μl 
Buffer AW1, and centrifuge for 1 min at _6000 x g (8000 rpm). Discard flow-through and 
collection tube.* 

- Place the DNeasy Mini spin column in a new 2 ml collection tube (provided), add 500 μl 
Buffer AW2, and centrifuge for 3 min at 20,000 x g (14,000 rpm) to dry the DNeasy 
membrane. Discard flow-through and collection tube. 

- It is important to dry the membrane of the DNeasy Mini spin column, since residual ethanol 
may interfere with subsequent reactions. This centrifugation step ensures that no residual 
ethanol will be carried over during the following elution.  Following the centrifugation step, 
remove the DNeasy Mini spin column carefully so that the column does not come into 
contact with the flow-through, since this will result in carryover of ethanol. If carryover of 
ethanol occurs, empty the collection tube, then reuse it in another centrifugation for 1 min at 
20,000 x g (14,000 rpm). 

- Place the DNeasy Mini spin column in a clean 1.5 ml or 2 ml microcentrifuge tube (not 
provided), and pipet 200 μl Buffer AE directly onto the DNeasy membrane. Incubate at room 
temperature for 1 min, and then centrifuge for 1 min at _6000 x g (8000 rpm) to elute. 

LYSIS BUFFER: 
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- 200 mM NaCl 
- 100 mM Tris (pH 8.0) 
- 20 mM EDTA 
- Prepare and autoclave 
- Add Lysozyme to 20 mg/ml before use 
- PBS (per liter): 
- 8 g NaCl 
- 0.2 g KCl 
- 1.44 g Na2HPO4 
- 0.24 g KH2PO4 
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IHMS DNA EXTRACTION PROTOCOL # 11 

OVERVIEW OF STEPS AND MATERIAL NEEDED 

- lysis of stool samples in Buffer ASL 
- adsorption of impurities to InhibitEX matrix 
- purification of DNA on QIAamp Mini spin columns (QIAamp DNA Stool Mini Kit) 

EQUIPMENT AND REAGENTS NEEDED – NOT IN KIT 

- Ethanol (96-100%) 
- BSA (for downstream PCR) 
- 1.5 and 2 ml microcentrifuge tubes ( locking caps/screw caps) 
- Pipet tips with filter and barrier 
- Microcentrifuge 
- Water bath for incubation or heat block at 70˚ C 
- Spatulas 
- Vortex 
- Ice 

KIT CONTENTS 

Number of preps 50 

QIAamp Mini Spin Columns 50 

Collection Tubes (2 ml) 200 

InhibitEX® Tablets 50 

Buffer ASL 140 ml 

Buffer AL* 33 ml 

Buffer AW1* (concentrate) 19 ml 

Buffer AW2† (concentrate) 13 ml 

Buffer AE 12 ml 

Proteinase K 1.4 ml 

 
- Buffer ASL (store at room temp) 

o mix buffer ASL by shaking 
o if precipitate has formed, incubate at 70˚ C 

- Buffer AL (store at room temp) 
o mix buffer AL by shaking 
o if precipitate has formed, incubate at 70˚ C 
o DO NOT add proteinase K directly to Buffer AL 

- Buffer AW2 (store at room temp) 
o Add 30 ml ethanol to Buffer AW2 concentrate (indicated on the bottle) 
o Mix thoroughly before use 

- InhibitEX Tablets 
o Pop tablet directly out of packet into suitable 2 ml tube without touching 
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o 2 ml tubes should be check to make sure mouth is wide enough to accomodate tablet 
- QIAamp Mini Spin Columns - PRECAUTIONS 

o Carefully apply the sample or solution to the Mini spin column.  Pipet into column 
without moistening the rim of the column. 

o Change pipet tips between all transfers (aerosol barrier pipet tips only) 
o Do not touch pipet tip to the Mini spin column membrane 
o After all vortexing steps, centrifuge tubes to remove drops from inside lid 
o Close Mini spin column before placing in microcentrifuge. 
o Remove both Mini spin column and collection tube from the centrifuge.  Place Mini 

spin column into a new collection tube.  Discard the filtrate and collection tube in 
Biohazard bin. 

o Open only one QIAamp Mini spin column at a time and avoid generating aerosols. 
o Set up a rack with multiple labeled collection tubes for transferring the Mini spin 

columns after centrifugation. 
- Centrifugation 

o All centrifugation steps are carried out at room temperature. 
o Speed should be 20,000 x g (14,000 rpm).  If centrifuge cannot reach 20,000 x g, 

increase time proportionately (e.g. as a proxy, at 10,000, centrifuge for double the 
time required at 20,000) 

SET UP 

- Check that 2 ml tubes used in step 5 are wide enough to accommodate InhibitEX tablet. 
- Prepare all buffers according to label instructions. 
- Deal with any precipitate in buffer solutions by placing in 70°C water bath until precipitate 

dissipates. 
- Prepare a 70°C water bath for buffers and heat block for other steps (3 and 12). 

PROCEDURE 

LYSE CELLS IN BUFFER ASL 

NOTE:  Steps 1-8 involve material that is a biohazard.  Use all precautions appropriate for 
handling biohazards. 

1. Weigh 180–220 mg (best at 190-210 mg) stool in a 2 ml microcentrifuge tube, weigh the 
tube and place the tube on ice.  If the sample is frozen, use a scalpel or spatula to scrape bits 
of stool into a 2 ml microcentrifuge tube on ice.  Do not allow sample to thaw. 

2. Add 1.4 ml Buffer ASL (700 ul and 700 ul) to each stool sample. Vortex continuously for 1 
min or until the stool sample is thoroughly homogenized.  Note: It is important to vortex the 
samples thoroughly and this step usually requires > 1 min. This helps ensure maximum DNA 
concentration in the final eluate. 

3. Heat the suspension for 5 min at 70°C (up to 95°C for hard-to-lyse bacteria). Use heat block 
rather than water bath.  This heating step increases total DNA yield 3- to 5-fold and helps to 
lyse bacteria and other parasites. The lysis temperature can be increased to 95°C for cells 
that are difficult to lyse (such as Gram-positive bacteria). 

4. Vortex for 15 s and centrifuge sample at full speed for 1 min to pellet stool particles. 
5. Pipet 1.2 ml (600 µl and 600 µl) of the supernatant into a new 2 ml microcentrifuge tube and 

discard the pellet.  Note: The 2 ml tubes used should be wide enough to accommodate an 
InhibitEX Tablet.  Transfer of small quantities of pelleted material will not affect the 
procedure. 

ABSORB INHIBITORS WITH INHIBITEX 
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6. Add 1 InhibitEX Tablet to each sample and vortex immediately and continuously for 1 min or 
until the tablet is completely suspended. Incubate suspension for 1 min at room temperature 
to allow inhibitors to adsorb to the InhibitEX matrix. 

7. Centrifuge sample at full speed for 3 min to pellet inhibitors bound to InhibitEX matrix. 
8. Pipet all the supernatant into a new 1.5 ml microcentrifuge tube and discard the pellet. 

Centrifuge the sample at full speed for 3 min. Transfer of small quantities of pelleted 
material from step 7 will not affect the procedure. 

DIGEST PROTEINS 

9. Pipet 15 μl proteinase K into a new 1.5 ml microcentrifuge tube. 
10. Pipet 200 μl supernatant from step 8 into the 1.5 ml microcentrifuge tube containing 

proteinase K. 
11. Add 200 μl Buffer AL and vortex for 15 s. Note: Do not add proteinase K directly to Buffer AL.  

It is essential that the sample and Buffer AL are thoroughly mixed to form a homogeneous 
solution. 

12. Incubate at 70°C for 10 min. Centrifuge briefly to remove drops from the inside of the tube 
lid (optional). 

13. Add 200 μl of ethanol (96–100%) to the lysate, and mix by vortexing. Centrifuge briefly to 
remove drops from the inside of the tube lid (optional). 

BIND DNA IN SPIN COLUMN 

14. Label the lid of a new QIAamp spin column placed in a 2 ml collection tube. Carefully apply 
the complete lysate from step 13 to the QIAamp spin column without moistening the rim. 
Close the cap and centrifuge at full speed for 1 min. 

15. Place the QIAamp spin column in a new 2 ml collection tube, and discard the tube containing 
the filtrate. Close each spin column in order to avoid aerosol formation during 
centrifugation. If the lysate has not completely passed through the column after 
centrifugation, centrifuge again until the QIAamp spin column is empty. 

WASH SPIN COLUMN 

16. Carefully open the QIAamp spin column and add 500 μl Buffer AW1. Close the cap and 
centrifuge at full speed for 1 min. Place the QIAamp spin column in a new 2 ml collection 
tube, and discard the collection tube containing the filtrate. 

17. Carefully open the QIAamp spin column and add 500 μl Buffer AW2. Close the cap and 
centrifuge at full speed for 3 min. Discard the collection tube containing the filtrate. Note: 
Residual Buffer AW2 in the eluate may cause problems in downstream applications. Some 
centrifuge rotors may vibrate upon deceleration, resulting in the flow-through, which 
contains Buffer AW2, contacting the QIAamp spin column. Removing the QIAamp spin 
column and collection tube from the rotor may also cause flow-through to come into contact 
with the QIAamp spin column. 

18. Recommended (definitely do): Place the QIAamp spin column in a new 2 ml collection tube 
and discard the old collection tube with the filtrate. Centrifuge at full speed for 1 min. This 
step helps to eliminate the chance of possible Buffer AW2 carryover. 

ELUTE DNA 

19. Transfer the QIAamp spin column into a new, labeled 1.5 ml microcentrifuge tube. Carefully 
open the QIAamp spin column and pipet 200 μl Buffer AE directly onto the QIAamp 
membrane. Close the cap and incubate for 1 min at room temperature, then centrifuge at full 
speed for 1 min to elute DNA. 
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IHMS DNA EXTRACTION PROTOCOL # 12 

 
- Starting material: 200 mg solid faeces or 200 µL faeces-water suspension contained in a 2 

mL Eppendorf tube. 
- 400 µL NucleoSENS Lysis Buffer (Biomerieux) is added and mixed by vortexing. 
- Next, shaking for 5 min at maximum speed on a TissueLyser (Qiagen). 
- Centrifugation for 2 min at 13.000 rpm. 
- 100 µL supernatant is mixed with 2 mL NucleoSENS Lysis Buffer and incubated at room 

temperature for 10 min. 
- 2.1 mL sample is transferred to sample vessel on the Easymag (Biomerieux) apparatus. 
- Easymag protocol: “Specific A” with 140 µL magnetic silica and 110 µL output volume. 
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IHMS DNA EXTRACTION PROTOCOL # 13 

Protocol for Isolation of DNA from Stool Sample 

(Qiagen stool DNA extraction kit) 

Homogenize a fresh fecal sample (kept cold for a maximum of 12 hours) by kneading in a strong 
plastic bag (preferably at 4 °C, keep samples cold throughout). DNA extraction can be performed 
on previously frozen stool (avoid multiple freeze/thaw cycles). 

1. Weigh 200-300 mg (half pea sized) solid stool in a 2 ml microcentrifuge tube and place the 
tube on ice. Use 300-500 l of loose stool (more for watery stools) 

2. Put 4-5 glass beads along with 1 ml 0.05 M phosphate buffer, vortex until the stool sample is 
thoroughly homogenized. 

3. Spin down at full speed (table centrifuge >10.000 rpm) and save pellet (pellet needs to be 
clearly visible). Add 1 ml 0.05 M phosphate buffer to wash, vortex and spin down again, save 
the pellet.  

4. Add 1.4 ml buffer ASL to each tube. Vortex continuously for 1 min or until the sample is 
completely suspended. 

5. Heat the suspension for 5 min at 70 C. 
6. Add 0.3 g zirconia beads and fill with ASL buffer, beat for 3 min on “homogenize”.  
7. Centrifuge the sample at full speed for 1 min to pellet the particles. 
8. Pipet 1.2 ml of the supernatant into a new 2 ml microcentrifuge tube and discard the pellet. 
9. Add 1 InhibitEX tablet to each sample and vortex immediately and continuously for 1 min or 

until the tablet is completely suspended. Incubate suspension for 1 min at room temperature 
to allow inhibitors to absorb to the inhibitEX matrix. 

10. Centrifuge sample at full speed for 3 min to pellet inhibitors bound to InhibitEX. 
11. Pipet the supernatant into a new 1.5 ml microcentrifuge tube and discard the pellet. 

Centrifuge the sample at full speed for 3 min. 
12. Pipet 25 l Proteinase K into a new 1.5 ml microcentrifuge tube. 
13. Pipet  400 l supernatant from step 8 into the 1.5 ml microcentrifuge tube containing 

Proteinase K. 
14. Add 400 l buffer AL and vortex for 15 s. 
15. Incubate at 70 C for 10 min. 
16. Add 400 l ethanol of 200 proof to the lysate, and mix by vortexing. 
17. Label the lid of TWO QIAamp spin columns placed in 2 ml collecting tubes. Carefully apply 

610 ul of the complete lysate from step 16 to each of the two QIAamp spin column without 
moistening the rim. Close the cap and centrifuge at full speed for 1 min. Discard the filtrate. 
Place the QIAamp spin column in a new 2 ml collection tube, and discard the tube containing 
the filtrate. 

18. Carefully open the QIAamp spin column and add 500 l buffer AW1. Centrifuge at full speed 
for 1 min. Place the QIAamp spin column in a new 2 ml collection tube, and discard the 
collection tube containing the filtrate. 

19. Carefully open the QIAamp spin columns and add 500 l buffer AW2. Centrifuge at full speed 
for 3 min. Discard the collection tubes containing the filtrates. 

20. Preheat the AE buffer at 65 C for 5-10 min. 
21. Transfer the QIAamp spin columns into new, labeled 1.5 ml microcentrifuge tubes and pipet 

100 l preheated buffer AE directly onto the QIAamp membranes. Incubate for 5 min at 
room temperature, then centrifuge at full speed for 1 min to elute DNA. 

22. Mix the two DNA samples together (200l total) then split into on tube containing 175l and 
the other containing 25l. Ethanol precipitate the larger volume and dry the resulting pellet 
in a biosafety hood. Store the other sample (25l) at -70C.  
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IHMS DNA EXTRACTION PROTOCOL #14 

gDNA extraction using FastDNA SPIN Kit for Soil (new instructions 2011) 

- Remove samples for gDNA extraction from -80 °C freezer and place straight on ice, add 122 
μl MT buffer and allow to thaw. Flick to get air out of beads, then add ~800 μl Sodium 
Phosphate Buffer into tube, do not add too much buffer or it will leak out of top of tube. 

- Homogenize in the FastPrep® Instrument for 30 seconds at a speed setting of 6.5. 
- Centrifuge at 14,000 x g for 5 minutes to pellet debris. 
- Transfer supernatant to a clean 2.0 ml microcentrifuge tube. Add 250 μl PPS 
- (Protein Precipitation Solution) and mix by shaking the tube by hand 10 times. 
- Centrifuge at 14,000 x g for 5 minutes to pellet precipitate. Transfer supernatant to 
- a clean 15 ml Corning tube.  
- Resuspend Binding Matrix suspension and add 1.0 ml to supernatant in 15 ml tube. 
- Place on rotator or invert by hand for 2 minutes to allow binding of DNA. Place tube 
- in a rack for 3 minutes to allow settling of silica matrix. 
- Remove and discard approx 1000 μl of supernatant being careful to avoid settled Binding 
- Matrix. 
- Resuspend Binding Matrix in the remaining amount of supernatant. Transfer approximately 

600 μl of the mixture to a SPIN™ Filter and centrifuge at 14,000 x g for 1 minute. Empty the 
catch tube and add the remaining mixture to the SPIN™ Filter and centrifuge again at14,000 
x g for 1 minute. Empty the catch tube again. Note – may take longer spins to get all liquid 
through. 

 
- Add 500 μl prepared SEWS-M wash buffer using the force of the liquid from the pipette tip to 

gently resuspend the pellet. 
NOTE: Ensure that ethanol has been added to the Concentrated SEWS-M. 
- Centrifuge at 14,000 x g for 1 minute. Empty the catch tube and replace. 
- Without any addition of liquid, centrifuge a second time at 14,000 x g for 2 minutes to “dry” 

the matrix of residual wash solution. Discard the catch tube and replace with a new, clean 1.5 
ml eppendorf tube. 

- Air dry the SPIN™ Filter for 5 minutes at room temperature. 
- Gently resuspend Binding Matrix (above the SPIN filter) in 180 μl of DES (DNase/Pyrogen-

Free Water). Incubate for 5 minutes at 55˚C in a heat block. 
- Centrifuge at 14,000 x g for 1 minute to bring eluted DNA into the eppendorf tube. Discard 

the SPIN filter. DNA is now ready for PCR and other downstream applications. 
- Store 50 μl aliquot at -20°C for backup and remainder at 4°C for use. 
 

Do not store DNA in tubes supplied in the kit. Lids do not seal well and evaporation will occur. 
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IHMS DNA EXTRACTION PROTOCOL #15 

 

Extraction of bacterial DNA from fecal samples using the QIAamp DNA stool kit (Qiagen, Hilden, 
Germany) with a modified protocol for cell lysis. 

- Homogenization of 220 mg feces with 1.2 ml ASL lysis buffer of the kit by vortexing for 2 min 
in a 2 ml tube containing 0.75 g of sterile zirconia/silica beads (0.1 mm in diameter) 

- Suspension is incubated for 15 min at 95°C with continuous shaking (1,400 min-1, 
Thermomixer 5436, Eppendorf) 

- The sample is allowed to cool down on ice for 2 min 
- Cells are mechanically lysed by running the FastprepTM Instrument (Thermo Electron 

Corperation) for 8 min 15 sec 
- After cooling down on ice for 2 min coarse particles cell debris and the zirconia/silica beads 

are spun down by centrifugation (20,000 x g, 4°C, for 1 min) 
- Supernatant is transferred to a 2 ml tube 
- The pellet is mixed with 350 μl ASL lysis buffer of the kit, vortexed for 1 min and incubated 

for 5 min at 95°C with continuous shaking as described above. 
- After centrifugation at 20,000 x g and 4°C for 1 min the supernatants are combined  
- InhibitEX tablet provided by the kit is added to the supernatant (DNA-damaging 

- substances and PCR inhibitors adsorb to InhibitEX matrix, sample is vortexed immediately and 
continuously for 1 min, incubation of the suspension for 1 min at RT 

 The InhibitEX matrix is separated by centrifugation at 20,000 x g for 6 min at RT 
 The supernatant is collected and filled up to 1 ml with sterile phosphate-buffered 

- saline (pH 7) 
 DNA was purified with the QIAcube machine (Qiagen) and eluted from the silica-

based membrane with 200 μl ultra-pure water. 
- QIAcube machine steps 
- see Protocol QIAamp DNA Stool Handbook p. 16 from 9.-18. 
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IHMS DNA EXTRACTION PROTOCOL #16 

DNA extraction with PSP® Spin Stool DNA Kit (Invitek) 

1. SAMPLE HOMOGENIZATION AND PRELYSIS  
- Weigh 50 mg of stool sample (frozen) into a 2.0 ml Safe-Lock-Tube and add 1.2 ml Lysis 

Buffer P to each stool sample .Vortex vigorously for 1 min. 
- Incubate the homogenized sample for 10 min at 95°C in a thermomixer under continuous 

shaking at 900 rpm. 
- Incubate the sample on ice for 3 minutes 
- Add 5 Zirconia Beads II to the homogenate. 
- Put the sample back to the 95°C thermo block, incubate for further 3 min at 95°C under 

continuous shaking at 900 rpm. 
- Vortex the sample for 2 min. 
- Centrifuge the sample at 13.400 x g (12.000 rpm) for 1 min to pellet solid stool particles. 

2. REMOVAL OF PCR INHIBITIORS 
- Transfer the supernatant into an InviAdsorb-Tube and vortex vigorously for 15 

sec. Incubate 

3. SECOND SAMPLE CLEANUP 
- Transfer the supernatant completely into a new 1.5 ml Receiver Tube. Discard the pellet. 
- Centrifuge the sample again at full speed for 3 min. 

4. PROTEINASE K DIGESTION 
- Transfer 25 μl Proteinase K into a new 1.5 ml Receiver Tube and pipet 400 μl of the 

supernatant from step 3 to the 1.5 ml Receiver Tube containing Proteinase K, 
- mix shortly by vortexing and incubate the sample for 10 min at 70°C in a thermomixer under 

continuous shaking at 900 rpm. 

5. BINDING OF THE DNA 
- Add 200 μl of Binding Buffer P to the lysate and mix shortly by vortexing or by pipetting up 

and down several times. 
- Transfer the mixture completely onto the membrane of the RTA Spin Filter. Incubate for 1 

min at room temperature and centrifuge at 9.300 x g (10.000 rpm) for 2 min. Discard the 
filtrate and the RTA Receiver Tube. 

6. WASHING STEPS 
- Put the RTA Spin Filter in a new RTA Receiver Tube.  
- Add 500 μl Wash Buffer I to the membrane of the RTA Spin Filter.  
- Close the lid and centrifuge at 9.300 x g (10.000 rpm) for 1 min. 
- Discard the filtrate and the RTA Receiver Tube. 
- Put the RTA Spin Filter in a new RTA Receiver Tube.  
- Add 700 μl Wash Buffer II to the membrane of the RTA Spin Filter. 
- Close the lid and centrifuge at 9.300 x g (10.000 rpm) for 1 min. 
- Discard the filtrate and put the RTA Spin Filter back to the same RTA Receiver Tube. 

7. ETHANOL REMOVAL 
- To eliminate any traces of ethanol, centrifuge again for 3 min at maximum speed, discard the 

RTA Receiver Tube 

8. DNA ELUTION 
- Place the RTA Spin Filter into a new 1.5 ml Receiver Tube  
- Add 100 μl preheated (70°C) PCR-H2O. 
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- Incubate for 15 min. Centrifuge at 9.300 x g (10.000 rpm) for 1 min to elute the DNA.  
- Finally discard the RTA Spin Filter. 
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IHMS DNA EXTRACTION PROTOCOL # 17 

Fecal DNA extraction protocol with adapted G'NOME kit (BIO 101) 

EQUIPMENT AND MATERIALS USED 

- Centrifuge 
- Speed Vacuum 
- Screw-cap tubes & eppendorf tubes 
- Glass beads 0.1 mm (Fisher Bioblock Scientific B74471) 
- Water bath 55°C 
- Bead-beater 
- toothpicks 

REAGENTS 

- Cell Lysis/Denaturing solution (from kit) 
- RNase Mix (from kit) 
- Protease Mix (from kit) 
- "Salt-Out" Mixture (from kit) 
- PVPP (PolyVinylPolyPyrrolidone) (Sigma) 
- TENP (50 mM Tris pH 8, 20 mM EDTA pH 8, 100 mM NaCl, 1% PVPP) 
- Molecular water (Eurobio) 
- Isopropanol 
- Ethanol 100% 
- Ethanol 70% 
- TE buffer 

SOLUTIONS PREPARATION 

- EDTA pH 8, 0.5M 
o MM: 372.2 g.mol-1 
o 9.305 g for 50 mL H2O sterile 
o Adjust pH with NaOH 

- Tris-HCl pH 8 1M 
o MM: 121.1 g.mol-1 
o 6.05 g for 50 mL H20 sterile 
o Adjust pH with HCl 

- NaCl 5M 
o MM: 58,44 g.mol-1 
o 14.61 g for 50 mL H2O sterile 

- TENP (50 mM Tris pH 8, 20 mM EDTA pH 8, 100 mM NaCl, 1% PVPP) 
o 20 mL H2O sterile 
o 1.5 mL Tris-HCl pH 8 1M 
o 1.2 mL EDTA pH 8 0.5M 
o 0.6 mL NaCl 5M 
o 0.3 g PVPP 



Paper 2  Page 49 of 56 

 
 

EXTRACTION PROTOCOL 

From 200 mg of feces sample (conserved at -80°C). : 
- Add 550 μL of Cell suspension Solution (buffer). Use a toothpick to homogenize. 
- Add 50 μL of RNase Mix (4°C). Vortex vigorously. 
- Add 100 μL of Cell Lysis/Denaturing Solution. Vortex. 
- Incubate at 55°C for 30 minutes. 
- Add 25 μL of protease mix and vortex. 
- Incubate 55°C for 120 minutes. 
- Add 750 μL of glass beads 0.1 mm in each sample. 
- Put samples for 10 minutes on Bead beater. 
- Add 15 mg of PVPP and vortex vigorously. 
- Centrifuge 3 minutes at 20 000g 
- Retrieve the supernatant in new tubes (Lysate) 
- Add 400 μL of TENP to the remaining pellet and vortex (to fully resuspended the pellet) 
- Centrifuge 3 minutes at 20 000g. 
- Pool the supernatant with the first one for each sample. 
- Repeat the washing operation twice.  
- Centrifuge 3 minutes at 20 000g all the retrieved supernatant. 
- Transfer 750 μL of the supernatant in a new tub (almost half of the whole supernatant). 
- Add 1mL of cold Isopropanol (-20 °C) and mix slowly. Let 10 minutes at -20°C. Centrifuge 5 

minutes at 20 000g and discard the supernatant. Dry the pellet with the speed vaccum. Take 
back the DNA pellet with 400 μL of molecular H20. 

- Add 100 μL of "Salt Out" mixture. Mix slowly. Let 10 minutes 4°C. Centrifuge 10 minutes at 
20 000g. Put the supernatant in a new sterile tub. 

- Add 1.5 mL of Ethanol 100% (-20°C) and mix slowly. Let 5 minutes at ambient temperature 
and centrifuge 5 minutes at 20 000g. Discard the supernatant. 

- Take back the pellet with 1 mL of Ethanol 70% (-20°C). Centrifuge 5 minutes at 20 000g. 
- Discard the supernatant. Residual ethanol should be removed using Speed Vaccum for 5 
- minutes. 
- Take back the pellet with 150 μL of TE buffer (10 mM pH 7.5, 1 mM EDTA) 
- Transfer in a screw tub. 
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IHMS DNA EXTRACTION PROTOCOL #18 

PREPARATION OF FECAL SAMPLE SUSPENSION  

Collected feces were immediately suspended in 20% glycerol (Wako) / phosphate buffer saline 
(PBS) solution (GIBCO), frozen in liquid nitrogen, and stored at -80 °C until use. In each 
experiment, 1.0 g of those of stool were used, respectively. 

RECOVERY OF BACTERIA FROM FECAL SAMPLES 

Frozen fecal sample (1.0 g of human feces) was thawed gradually on ice and suspended 
vigorously in a 50 mL tube (Falcon). The suspension of feces was filtered with a 100 µm-mesh 
nylon filter (Falcon) to separate bacterial cells from eukaryotic cells and other debris. The debris 
on the filter was washed using a glass or plastic bar with 10 ml of PBS buffer twice. The filtrate 
was centrifuged at 5,000 rpm for 10 min at 4 °C and the supernatant was then discarded. The 
bacterial pellet was rinsed with 35 ml of PBS buffer twice, and finally rinsed with 35 ml of TE10 
(10mM Tris-HCl, 10mM EDTA, pH8.0) buffer. The bacterial pellet was used for microbial DNA 
isolation. Bacterial cells suspended in glycerol (20%)-PBS buffer were quickly frozen in liquid 
nitrogen and could be stored in freezer at -80 °C for at least half a year without degradation. 

MICROBIAL CELL LYSIS AND DNA ISOLATION BY ENZYMATIC LYSIS METHOD 

The bacterial pellet was suspended in 10 mL of TE10 buffer. The suspension was incubated with 
lysozyme (SIGMA, final conc. 15 mg/mL of cell suspension) at 37 °C for 1 h with gentle mixing. 
Purified achromopeptidase (Wako, final conc. 2,000 units/mL of cell suspension) was then 
added and the sample was incubated at 37 °C for 0.5 h. The sample was treated with 10 % 
(wt/vol) sodium dodecyl sulfate (SDS; final conc. 1 %) and proteinase K (Merck, final conc. 1 
mg/mL of cell suspension) and incubated at 55 °C for 1 h. The solution was mixed with equal 
volume of phenol/chloroform/isoamyl alcohol (Invitrogen) and centrifuged at 5,000 rpm for 10 
min. DNA was precipitated by adding 1/10 volume of 3 M sodium acetate (pH 4.5, Wako) and 2 
volume of ethanol (Wako). DNA was pelleted by centrifugation at 5,000 rpm at 4 °C for 15 min. 
DNA pellet was rinsed with 75 % ethanol, dried in vacuum and dissolved in TE buffer. 
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IHMS DNA EXTRACTION PROTOCOL #19 

Magna Pure LC DNA III Isolation Kit (Bacteria, Fungi), Cat. No. 03 264 785 001 

All preparations are performed sterile under the laminar flow hood  
- prepare Lysozyme (100mg/ml): 100mg ad 1ml 5% Glycerol/PBS  
 
Stool: Take a peanut-size stool-sample and suspend it in 500μl PBS (2 ml tube)  
Do NOT centrifuge!  
Take 100μl of the stool-suspension into a MagnaLyser tube  
Immediately (!) proceed with step 1) into Magnalyser Bead tube  

PROCEDURE  

- add 130μl Bacteria Lysis buffer (BLB) to 100μl sample into Magnalyser tubes, mix well  
- homogenize at 6500rpm/20sec  
- add 5,75μl lysozyme (100mg/ml) to 230μl BLB/sample mixture and mix well,  
- Incubate at 37°C for 30min  
- add 20μl Proteinase K (Roche ProteinaseK Magna Pure LC, dissolved in 1,2 ml Elution  
- buffer)  
- mix thoroughly, incubate for 10min at 65°C  
- Incubate for a further 10min at 95°C, spin down, cool samples on ice (5min)  
- centrifuge 2min at full speed (RT)  
- transfer 100μl of the lysate supernatant into a MagnaPure sample tube  

MAGNA PURE PREPARATIONS  

- Use buffers free from precipitates, use buffers at room temperature.  
- dissolve Prot.K (1,2ml Elution buffer); mix completely; RT!  
- Magnetic Glass Particles: vortex immediately before use!, add the MGPs to the container just 

before starting the run  
- mark 1,5ml-Eppis for Eluates, fill Magnalyser  
- select the protocol: ‘DNA Bacteria III’ (sample volume: 100μl, elution volume: 100μl) and 

follow the instructions of the software  
- transfer samples from Sample cartridge to marked 1.5mL tubes and store at -20°C 

 

  



Paper 2  Page 52 of 56 

 
 

IHMS DNA EXTRACTION PROTOCOL # 20 

Protocol modified from the QIAamp DNA stool handbook (Stool pathogen detection pp15-
18)(Cat#51504) 

Before starting: Make sure 70C water bath is pre-heated. 
1. Record the weight of the Dry Bead tubes (MoBio Cat# 12811-100-DBT).  
2. Place a pea size sample (for human stool) into each bead tube. 

NB. Protocol will work for smaller amounts of 50mg and up to 250mg. 
3. Record the weight of the tube again to identify the amount of stool sample used. 
4. Add 1.4 mL Buffer ASL to each stool sample. Mechanically lyse cells using 

Fastprep/homogenizer  for 1 minute (repeated twice) at a frequency of 5.5.  

NB. Make sure that ASL buffer has not precipitated.  If it has, put in 70C water bath to dissolve. 
5. Heat the suspension for 5 minutes in a 70oC water bath. 
6. Vortex for 15 sec and centrifuge sample at 15000 rpm for 1 min to pellet stool particles. 
7. Add 1 InhibitEX Tablet into new 2.0 mL centrifuge tubes. 
8. Pipet 1.2 mL of the supernatant from Step 6 into the 2.0 mL centrifuge tubes containing 

InhibitEX Tablet and vortex immediately until the tablet is completely suspended. Incubate 
suspension for at least 1 min at room temperature.  

9. Centrifuge sample at 15000 rpm for 3 min to pellet inhibitors bound to InhibitEX matrix. 
10. Pipet all the supernatant into a new 1.5 mL centrifuge tube and discard the pellet. Centrifuge 

the sample at 15000 rpm for 3 min.  
11. Pipet 15 μL proteinase K into a new 1.5 mL centrifube tube.  
12. Pipet 200 μL supernatant from Step 10 into the 1.5 mL centrifuge tube containing proteinase 

K. 
13. Add 200 μL Buffer AL and vortex for 15 sec. 
14. Heat the tubes for 10 minutes in a 70oC water bath. 
15. Add 200 μL of 100% ethanol to the lysate and mix by vortexing. 
16. Centrifuge sample for 30 sec to remove drops from inside of the tube lid. 
17. Pipet the complete lysate from Step 13 to the QIAamp spin column without moistening the 

rim. Centrifuge at 15000 rpm for 1 min. Place the QIAamp spin column into a new 2 mL 
collection tube and discard the tube containing the filtrate. 

18. Add 500 μL Buffer AW1 to the spin column. Centrifuge at 15000 rpm for 1 min. Place the 
QIAamp spin column into a new 2 mL collection tube and discard the tube containing the 
filtrate. 

19. Add 500 μL Buffer AW2. Centrifuge at 15000 rpm for 3 min. Place the QIAamp spin column 
into a new 2 mL collection tube and discard the tube containing the filtrate. Centrifuge again 
at 15000 rpm for 1 min to eliminate possible Buffer AW2 carryover. Transfer the QIAamp 
spin column into new 1.5 mL centrifuge tube. 

20. Add 30 μL Buffer AE. Incubate for at least 5 min at room temperature. Centrifuge at 15000 
rpm for 1 min to elute DNA. 
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IHMS DNA EXTRACTION PROTOCOL #21 

Standard Operating Procedure for isolation of genomic DNA from feces, in preparation for 
molecular analysis 

PSP® Spin Stool DNA Kit (Invitek) 

EQUIPMENT AND REAGENTS  

- microcentrifuge 
- thermomixer (for 70°C AND 95°C) 
- bead beater (MagNA Lyser, Roche) 
- measuring cylinder (250 ml) 
- disposable gloves 
- RNase-free Filtertips 10  
- RNase-free Filtertips 200  
- RNase-free Filtertips 1000  
- reagents reservoirs for multichannel pipets 
- Optional: RNase A (10 mg/ml) 
- 96 - 100% ethanol 
- Ultra pure water (Milli-Q) 
- vortexer or other homogenizer 
- Glass beads 3mm  
- Silicium / Zirkonium beads 0.5 mm (BioSpec)  
- 2.0 ml screw cap tubes  
- screw caps  
- PSP Spin Stool DNA Kit (Invitek) 

PREPARING TUBES FOR BEAD BEATING 

Add 0,5g of 0,1mm zirconia beads and 4 glass beads (3 mm) to a 2,0ml screw-cap tube, then 
sterilize.  

PREPARING REAGENTS AND BUFFERS FOR THE PSP® SPIN STOOL DNA KIT  

1. adjust the thermomixer to 70°C. 
2. dissolve Proteinase K in ddH2O 
3. warm up the needed amount of Elution Buffer D to 70°C, (200 μl Elution Buffer D are needed 

per sample). 
4. heat heating blocks (e.g. thermomixer) to 70°C and 95 °C 
5. label the needed amount of 2.0 ml RTA Spin Filter Sets 
6. label the needed amount of 1.5 ml Receiver Tubes (per sample: 1 Receiver Tube), add the 

needed amount of ethanol to the Wash Buffer I and II  

3 or 10 total DNA extractions: 
add 250 μl ddH2O to Proteinase K, mix thoroughly and store the tube at -20°C 
Wash Buffer I and  II are ready to use 
50 total DNA-extractions: 
add 1.5 ml ddH2O to  Proteinase K, mix thoroughly and store the tube at -20°C 
add 30 ml 96-100% ethanol to the bottle  Wash Buffer I 
add 42 ml 96-100% ethanol to each bottle  Wash Buffer II 
mix thoroughly and always keep the bottle firmly closed 
250 total DNA-extractions: 
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add 1.5 ml ddH2O to  Proteinase K, mix thoroughly and store the tube at -20°C 
add 80 ml 96-100% ethanol to each bottle  Wash Buffer I 
add 105 ml 96-100% ethanol to each bottle  Wash Buffer II 
mix thoroughly and always keep the bottle firmly closed 

 

 

1. SAMPLE HOMOGENIZATION AND PRELYSIS 
- Add 0,5g of 0,1mm zirconia beads and 4 glass beads (3 mm) to a 2,0ml 

screw-cap tube, then sterilize.  
- Weigh 200 mg of stool sample (fresh or frozen) into the 2.0 ml screw-cap 

tube and add 1.2 ml Lysis Buffer P.  

Important: If the sample is liquid, pipet 200 μl into the 2.0 ml screw-cap tube. Cut-off the end of 
the pipet tips to make pipetting easier (sterilize the tips after cutting!). If the sample is frozen, 
use a scalpel or spatula to scrape bits of stool into the provided 2.0 ml screw-cap tube on 
ice. Take care, that this samples do not thaw until Lysis Buffer P is added, otherwise the DNA in 
the sample may degrade. After addition of the buffer, the following steps can be performed at RT 
or like recommended. 

- Treat sample in Magna Lyser at room temperature (RT) at 5,5 ms for 3x 1min 
(cool samples on ice in between).  

- Incubate the sample for 10 min at 95°C in a thermomixer under continuously 
shaking at 900 rpm. 

- Centrifuge the sample at 13.400 x g (12.000 rpm) for 1 min to pellet solid 
stool particles and beads. 

2. REMOVAL OF PCR INHIBITORS 
- Transfer the supernatant into an InviAdsorb-Tube and vortex vigorously for 15 sec. 
- Incubate the suspension for 1 min at room temperature.  
- Centrifuge the sample at full speed for 3 min. 
 

3. SECOND SAMPLE CLEANUP 
- Transfer the supernatant completely into a new 1.5 ml Receiver Tube.  
- Discard the pellet. 
- Centrifuge the sample again at full speed for 3 min. 

4. PROTEINASE K DIGESTION 
- Transfer 25 μl Proteinase K into a new 1.5 ml Receiver Tube and pipet 400 μl of the 

supernatant from step 3 to the 1.5 ml Receiver Tube containing Proteinase K.  
- Mix shortly by vortexing and incubate the sample for 10 min at 70°C in a 

Important Notes: 

The centrifugation steps were made with the Centrifuge 5415 D from Eppendorf. 

The indicated settings refer to this centrifuge. 

Preheat the Elution Buffer D to 70°C (e.g. transfer the needed volume into a tube and place it at the 
appropriate temperature into a thermomixer) 
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thermomixer under continuous shaking at 900 rpm. 

OPTIONAL: REMOVING TRACES OF RNA 

Invisorb® RTA Spin filter can also purify low amounts of RNA besides DNA. For the elimination 
of RNA (if necessary) add 20 μl RNase A (10 mg/ml) before adding the Binding Buffer P. Vortex 
briefly and incubate the sample at room temperature for 5 minutes. Then go on as described in 
the protocol. 

5. BINDING OF THE DNA 
- Add 200 μl Binding Buffer P to the lysate and mix shortly by vortexing or by pipetting up and 

down several times. 
- Transfer the mixture completely onto the membrane of the RTA Spin Filter. Incubate for 1 

min at room temperature and centrifuge at 9.300 x g (10.000 rpm) for 2 min.  
- Discard the filtrate and the RTA Receiver Tube. 

6. WASHING STEPS 
- Put the RTA Spin Filter in a new RTA Receiver Tube.  
- Add 500 μl Wash Buffer I to the membrane of the RTA Spin Filter.  
- Close the lid and centrifuge at 9.300 x g (10.000 rpm) for 1 min.  
- Discard the filtrate and the RTA Receiver Tube. 
- Put the RTA Spin Filter in a new RTA Receiver Tube.  
- Add 700 μl Wash Buffer II to the membrane of the RTA Spin Filter.  
- Close the lid and centrifuge at 9.300 x g (10.000 rpm) for 1 min.  
- Discard the filtrate and put the RTA Spin Filter back to the same RTA Receiver Tube. 

7. ETHANOL REMOVAL 
- To eliminate any traces of ethanol, centrifuge again for 3 min at maximum 

speed, discard the RTA Receiver Tube. 

8. DNA ELUTION 
- Place the RTA Spin Filter into a new 1.5 ml Receiver Tube and add 100μl preheated (70°C) 

Elution Buffer D to the sample.  
- Incubate for 3 min at RT.  
- Centrifuge at 9.300 x g (10.000 rpm) for 1 min. to elute the DNA. 
- Add another 100μl preheated (70°C) Elution Buffer D to the filter membrane 
- Incubate for 3 min at RT.  
- Centrifuge at 9.300 x g (10.000 rpm) for 1 min. to elute the DNA. 
- Finally discard the RTA Spin Filter. 
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IHMS DNA EXTRACTION PROTOCOL Q 

Fecal DNA extraction with the use of Qiagen QIAamp DNA stool kit 
 
1. Homogenize the 150 to 200mg frozen feces with 1.0mL ASL lysis buffer of the kit by 

vortexing for 2min in a 2mL tube containing 0.3g of sterile zirconia beads Ø 0,1mm zirconia 
(BioSpec, Cat. No. 11079101z). [if buffer shows precipitate, heat at 70°C before use] 

2. Incubate for 15min at 95°C. 
3. Cells are mechanically lysed by running the Fastprep™ Instrument for 8min15sec (series of 

beating 1 min and resting 5 min are preferable). 
4. Samples are allowed to cool down on ice for 2min. 
5. Samples are centrifuged at 16000 x g, 4°C, for 5min. 
6. Supernatant is transferred to a new 2mL tube. 
7. The pellet is mixed with 300µL ASL lysis buffer of the kit, and steps 2-5 are repeated. 
8. Supernatants are pooled in the new 2mL tube. 
 
9. Add 260µl of 10M ammonium acetate to each lysate tube, mix well, and incubate on ice for 5 

min. 
10. Centrifuge at 16000 g, 4°C, for 10min. 
11. Transfer the supernatant to two 1.5mL Eppendorf tubes, add one volume of isopropanol, mix 

well, and incubate on ice for 30 min. 
12. Centrifuge at 16000 g, 4°C, 15min, remove the supernatant using aspiration, wash nucleic 

acids pellet with 70 % EtOH (0,5mL) and dry the pellet under vacuum for 3min. 
13. Dissolve the nucleic acid pellet in 100µL of TE (Tris-EDTA) buffer and pool the two aliquots. 
14. Add 2µL of DNase-free RNase (10mg/mL) and incubate at 37°C, 15 min. 
15. Add 15µL proteinase K and 200µL AL buffer to the supernatant, vortex for 15sec and 

incubate at 70°C for 10 min.  
16. Add 200µL of ethanol (96-100%) to the lysate, and mix by vortexing. 
17. Transfer to a QIAamp spin column and centrifuge at 16000 g for 1min, at Room Temperature 

(RT). 
18. Discard flow through, add 500µL buffer AW1 (Qiagen) and centrifuge at 16000 g for 1min, at 

RT. 
19. Discard flow through, add 500µL buffer AW2 (Qiagen) and centrifuge at 16000 g for 1min, at 

RT 
20. Dry the column by centrifugation at RT for 1min. 
21. Add 200µL Buffer AE (Qiagen), incubate for 1min at RT  
22. Centrifuge for 1min at 16000 g to elute DNA. 
 
Quality control: use 1% agarose gel 
Sample concentration: use Nanodrop or Qubit 
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the data normalized with their CSS method but not to the data nor-
malized by the other methods. Combining the log transformation 
with each of the normalizations shows that differences in cluster 
separation are due mainly to this additional transformation and 
not to the normalization itself (Fig. 1). Thus, conceptually simpler 
methods, such as relative-abundance normalization (also called 
total-sum scaling (TSS)), should not be dismissed on these grounds.

To understand the large effect of the log transformation on this 
comparison, it is important to note that it is nonlinear, a feature 
that can fundamentally change the distribution of the data (skewing 
reduction, for example). Because the transformation is undefined 
for input values ≤0, one typically adds a small value (pseudocount) 
to non-negative input data to avoid log(0). However, owing to the 
nonlinearity of the log, this value also affects the transformation 
result (Supplementary Fig. 2). Paulson et al.1 set the pseudocount 
to 1 as a way to preserve zero counts. However, as the four nor-
malizations compared produce output values whose ranges differ 
by several orders of magnitude, the same pseudocount may not 
be optimal for all of them. It should instead be chosen to ensure 

a consistent treatment: for instance, 
by setting it to a value smaller than the 
minimum abundance value before trans-
formation (Supplementary Fig. 2 and 
Supplementary Note).

Methodological improvements are 
crucial in highly complex fields such as 
metagenomics. We feel, however, that in 
a comparison of different approaches, it is 
important to minimize the potential con-
founding sources by ensuring equal treat-
ment of all methods under study.

Note: Any Supplementary Information and Source Data 
files are available in the online version of the paper 
(doi:10.1038/nmeth.2897).
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Paulson et al. reply: Costea et al.1 chal-
lenge the fairness of the results presented 
in the first figure of our paper2, which 
explored the effect of normalization 
and transformation procedures on clus-
tering analysis of marker-gene survey 

A fair comparison

To the Editor: Recently, Paulson et al.1 introduced a normaliza-
tion method, reporting that it improves clustering of meta-genomic 
abundance data, which is very important for many applications in 
the fast-growing area of microbiome research. However, in our 
view, the perceived improvement is due to a postprocessing pro-
cedure that is preferentially combined with some, but not all, nor-
malizations included in their method comparison, rather than to 
the proposed normalization itself.

Paulson et al.1 compared their normalization method to three 
existing ones using a data set from a study of microbial commu-
nities in the mouse gut and concluded that their method, called 
cumulative-sum scaling (CSS), “substantially improved” the sep-
aration between two known clusters present in the data1. As the 
authors kindly provided us with the source code, we were able to 
reproduce their first figure (Supplementary Fig. 1). However, this 
was possible only when we applied a logarithm transformation to 
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Figure 1 | Clustering analysis of different normalization methods. (a–d) First two principal coordinates of 
multidimensional-scaling (MDS) analysis of mouse stool data normalized by CSS (a), DESeq size factors (b), 
trimmed mean of M-values (TMM) (c) and total-sum scaling (d). The pseudocount (z) used with the log 
transformation is indicated in parentheses (Supplementary Note). Colors indicate clinical phenotype (diet). 
LF-PP, low-fat, plant polysaccharide–rich diet. All normalizations separate samples by diet. (e) Class  
posterior probability log ratio for Western diet obtained from linear discriminant analysis. Each box 
corresponds to the distribution of leave-one-out posterior probability of assignment to the ‘Western’ cluster 
across normalization methods. Samples were optimally distinguished by phenotypic similarity regardless 
of the method of normalization used. This figure corresponds to Figure 1 in Paulson et al.1 (see also 
Supplementary Fig. 1).
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INTRODUCTION 

The human body is colonized by trillions of microbes that contribute to human health and well-
being. Different communities of microbes inhabit various anatomical regions (Figure 1). Inter-
individual variation at each body site is considerable, but the separation among sites within 
individuals remains apparent 1. The most densely populated habitat is the gut, with an estimated 
1.5 kg of microbial biomass 2. The gut harbors hundreds of bacterial and archaeal species, with 
Firmicutes and Bacteroidetes as dominant phyla 1,3–5. Considerable variation in species composition 
has been described among individuals, for example in the US NIH Human Microbiome Project 
(HMP) 1 and the European Metagenomics of the Human Intestinal Tract project (MetaHIT) 3,6. The 
gut microbial ecosystem shows a succession of different microbiota stages: community composition 
changes rapidly in early childhood, stabilizes in adults and subsequently degrades with age 7,8. 
There is no satisfying description of this complex landscape across large populations and 
geographies, in part because some taxa seem to vary in abundance among individuals 
monotonously while others appear to have bimodal or more complex distributions 9. Given the 
importance and complexity of the gut ecosystem, there is great interest in identifying compositional 
patterns and their underlying rules to understand human health and disease states. Such 
classification would potentiate microbiota-based diagnostics, therapies or prevention of disease, 
with the potential for personalized treatment through nutritional, microbial, and pharmaceutical 
interventions. 

Reproducible patterns of variation in the microbiota have been observed in the adult gut. Separated 
into community clusters, they have been termed “enterotypes” 10. Ecosystem types have also been 
described in the vagina 11 and other body sites 12–14. In the gut, multiple studies have built on the 
original approach 10, while others have proposed different methodology or questioned the 
stratification methods. Interpretations of the results include variation in cluster numbers and 
proposals for gradients. Alternative interpretations are often discussed in the literature, indicating 
the difficulty of finding a clear-cut solution (e.g. 7,8,12,15,16). 

Here, we review gut microbial community compositions in light of vastly increased amounts of 
data. We use refined methodologies and perform meta-analyses to propose an adapted concept of 
enterotypes, with the goal of reconciling divergent viewpoints, and illustrate the practical value of 
reproducible stratification. This approach does not diminish the need to pursue other analyses and 
avenues for interpretation, as stratification only captures some of the dimensions of microbiota 
complexity.  

ENTEROTYPES: EVOLUTION OF A CONCEPT FOR STRATIFYING GUT 
COMMUNITY COMPOSITION 

In 2011, clustering human fecal metagenomic samples based on their taxonomic composition 
resulted in the proposal of three “enterotypes” 10. These “densely populated areas in a 
multidimensional space of community composition” showed similar taxonomic properties in 
datasets from 6 nationalities (US-American, Danish, French, Italian, Japanese and Spanish) using 
three sequencing technologies (Illumina, 454, Sanger), as well as 16S rRNA profiling data, and were 
independent of age, gender, cultural background, and geography.   
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Each enterotype was characterized by an ecological network centered around one indicator 
(driver) taxon: enterotype 1, here denoted ET B for clarity, is a Bacteroides-dominated cluster; ET P 
(enterotype 2) is dominated by Prevotella, a genus whose abundance is inversely correlated with 
Bacteroides; and ET F (enterotype 3), which is distinguished by an overrepresentation of 
Firmicutes, most prominently Ruminococcus (Arumugam et al. 2011 and supplement therein). 
Analyses were performed at genus level, where microbial ecological niches are hypothesized to be 
reflected 17. One caveat of this approach is that species- and strain-level variations are neglected, 
although they contribute to functional differences between individuals and can be important in a 
clinical context 18,19.  

In Japanese individuals, a study focused on drivers identified via principal component analysis, 
reported the same genera as those representing the enterotypes 20. A large scale, diet-focused study 
in a U.S. cohort reported a link between long term-diet and Bacteroides, and proposed that a 
gradient of Bacteroides and Prevotella may also explain the observed pattern 15. One of the clusters 
shared similar dominant taxa with ET P, while the other is similar to a merge of ETs F and B. 
Following this, a study of individuals from Venezuelan and Malawian rural areas, and US 
metropolitan areas also emphasized the importance of Prevotella and Bacteroides as driving taxa, as 
well as a strikingly different composition in infants, with communities dominated by Bifidobacteria 
and Proteobacteria 8. This highlights the need for caution when extrapolating overall community 
patterns from a potentially biased sampling of the world population at different ages. With similar 
methods, subsequent studies on the HMP 16S rRNA data 14, and a meta-analysis of four large 
studies 21, also recovered three enterotypes. 

Using Dirichlet multinomial mixture models (DMMs), four optimal clusters were identified in one of 
the datasets analyzed in the original enterotype paper 16. Two of the clusters resembled ET B and P, 
while a third showed an increased prevalence of Ruminococcus and other Firmicutes genera. The 
last cluster was driven by a high fraction of unidentified taxa, but was close to the Firmicutes 
cluster. DMMs have also been used to identify three optimal clusters in a healthy Swedish cohort, 
again showing  compositions similar to ET B and ET P, with one additional cluster dominated by 
unknown taxa 22. A further study that applied the same method to the HMP 16S rRNA data, found 
that the gut microbiome could be separated into four optimal clusters 13, similar to those previously 
identified 22. When applying DMMs to the MetaHIT metagenomics dataset, we identify four clusters, 
consistent in their relationships to the three previously proposed enterotypes (Figure 2, Suppl. Fig. 
1).  

An ensemble-based network approach confirmed that the three dominant gut taxa that contribute 
to enterotype clustering (Prevotella, Bacteroides and Ruminococcaceae) in the HMP 16S rRNA data 
are hubs of three co-occurrence network clusters and showed that their abundances are mutually 
negatively correlated (Ref. 1 and Suppl. Figure 4 therein). This negative correlation could also be 
shown with qPCR data of 35 signature taxa 23. Three distinct networks were found in adult Amish 
individuals 24; the dominant genera contributing to these networks overlap partly with the driver 
taxa of the original enterotypes. Similarly, six species co-abundance groups (CAGs) were reported 
in a dataset consisting of Irish adults and elderly individuals, with the healthy ones mostly 
associated with three networks that contained similar taxa to those separating the enterotypes 7,25. 
Thus, independent of clustering approaches, bacterial co-abundance networks provide an 
underlying species network that may explain the existence of enterotypes. 
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Enterotype-like structures have also been reported with varying levels of confidence in some 
studies on mammalian gut microbiota, such as non-human primates 26,27, mice 28,29 and pigs 30. 
Although they harbor compositionally distinct gut microbial communities, some of the same 
taxonomic groups of bacteria appear to drive clustering in both human and non-human mammals. 
Should compositionally similar enterotypes occur across a large range of different host species, it 
would suggest that these community patterns coevolved with mammalian diversification. 
Enterotypes might thus be a widespread attribute of mammalian gut communities present in 
different forms in a multitude of datasets (Figure 2 and Suppl. Table 1).  

CHALLENGES IN DEFINING MICROBIAL COMMUNITY TYPES 

Many recent studies have discussed whether the compositional landscape is best represented by 2, 
3, 4 or even 6 clusters or ecological “states” (Figure 2, Suppl. Table 1). Assessing clustering in fecal 
microbiota profiles is non-trivial, given that demonstration of alternate states is debated in 
disciplines from  ecology to philosophy 12,31. Changing taxonomic levels, distance metrics, clustering 
algorithms or cluster optimality scores can yield different numbers of clusters (Suppl. Fig. 2 and 
Supplementary Material), even on the same dataset (e.g. 12). However, it remains possible that 
confounding factors could obfuscate the underlying structure (Suppl. Fig. 3). Although numerous 
studies have reported on clustered enterotypes (Figure 2), some have questioned even the validity 
of enterotypes as states and proposed a gradient-based interpretation of microbial community 
compositions instead, arguing that clustering with weak separation among clusters may be 
misleading 8,12,15,24,32. Proponents of “enterogradients” 33 hold that a gradient between Bacteroides, 
Prevotella, and Firmicutes abundance sufficiently explains the data.  

Regardless of clustering outcome or modelling assumptions, an analysis of the MetaHIT data 6, 
backed by reports from the literature (Suppl. Table 1), reveals that the local substructure is always 
similar (Figure 2C), i.e. a three cluster model finds Bacteroides, Prevotella and Firmicutes-dominated 
clusters, and a two cluster model identifies  Prevotella- and  Bacteroides-dominated subsets of 
samples. Partitioning of the gut microbiota is thus considered stable in the sense that related 
cluster compositions are recovered if the number of clusters is pre-specified, reconciling many 
studies in which different numbers were reported. However, a similar outcome would also be 
observed if the underlying data represented a gradient, bisected by an artificial division. 

There is agreement that there are distinct areas within the microbial composition landscape in 
which the respective communities show biological differences. The concept of enterotypes can help 
capture such differences, although defining meaningful and robust boundaries is challenging. This 
is analogous to clustering of macro-biomes, which faces similar problems. One example includes the 
differences between Treeless, Savannah, and Forest ecosystems in sub-Saharan Africa; these states 
could equally be represented as a gradient in response to mean precipitation 34 or as contrasting 
stable states 35. Are data from a single time point sufficient (e.g. examining the distribution of these 
three zones across Africa), or should explicit community modeling and transitions between states 
guide the approach? Although this question has not yet been conclusively resolved, it seems 
intuitive to consider the ecosystem clustering (Treeless, Savannah, Forest) when describing the 
local fauna, even though the boundaries between states may not be sharp.  

Many of the conclusions from previous studies, especially those relating to the strength of 
stratification, are based on the original clustering approach 10. We assessed the power of this 
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method by clustering 16S rRNA data from the HMP project 1, trying to separate samples according 
to body-site. Although the originally proposed Jensen-Shannon distance (JSD) at genus level and the 
weighted UniFrac on the OTU level find the expected four clusters corresponding to skin, stool, 
vaginal, and oral microbiomes, they do so with little “statistical support” (Suppl. Fig. 2). With 
simplifying assumptions, a modeling approach, such as the DMMs, may prove better at resolving 
such separation (Suppl. Fig. 1). Regardless of methodological and clustering considerations most 
studies of the human gut report Prevotella-enriched samples as forming a separate cluster (Figure 
2B, Suppl. Table 1). This is in line with recent reports 9 of bimodal Prevotella distributions among 
individuals, also visible in the datasets analyzed here (see Figure 3A, Suppl. Fig. 4, Suppl. Table 1 
and references therein). While this implies at least two community types, the discussion about 
gradients or the number of types remains relevant and centers around the difficulty of reliably 
separating ET B and ET F, based on the current, mostly cross-sectional datasets (Suppl. Table 1). If 
ET P samples are discarded, the abundance of Bacteroides is distributed in a gradient across typical 
gut samples. However, bimodal distributions of Parabacteroides and less abundant genera such as 
Methanobrevibacter are also present (Figure 3A, Suppl. Fig. 4); although the latter is not detected by 
most bacterial 16S rRNA primers and can thus escapes analysis in many datasets. ET B and ET F 
may represent two extremes of a Bacteroides/Firmicutes gradient within a merged ET B+F cluster. 
However, given that some distance-based clustering approaches do not capture an intuitively 
strong clustering structure exemplified by different body sites (Suppl. Fig. 2). Clustering based on 
explicit underlying data models such as co-occurrence networks and DMMs may be able to identify 
a more refined substructure of 3-6 groups 13,16,25 that subdivides ET F + B (Figure 2, Suppl. Fig. 1).  

Given the practical challenges in accurately determining the gut community structure, such as 
overcoming batch effects, taking into account confounders (Suppl. Fig. 3) and accounting for 
temporal variation, an objective number of stable states are difficult to determine. Still, in the 
(mostly Western) subjects studied cross-sectionally, Bacteroides and Prevotella act as driving taxa 
that explain inter-individual differences, and delineate the main sources of variation regardless of 
the technique used. The extremes of the gradient within the ET B+F cluster are substantially 
different in composition and diversity. These are discussed in the following sections in terms of 
function, ecology, disease and diet. While the three enterotypes may not always be the best 
explanation of the data, it is the model that has been most used and provides a framework that we 
use below. 

FUNCTIONAL PROPERTIES OF ENTEROTYPES 

The functional potential of enterotypes appears to differ among the extremes of the enterotype 
landscape (Figure 3B). In the following, we describe patterns of functional composition and their 
potential implications. 

The gut microbiota can harvest energy for the host by catabolizing and digesting polysaccharides 
using carbohydrate-active enzymes (CAZymes). When analyzing driver taxa of enterotypes Purushe 
et al. 36 found that the number of genes encoding CAZymes was higher in genomes of taxa within the 
phylum Bacteroidetes (which includes both Bacteroides and Prevotella) compared to those of 
Firmicutes 37; this suggests that Bacteroidetes may have the potential to metabolize more diverse 
polysaccharides, facilitating host access to complex glycans (Suppl. Table 2). Communities enriched 
in Firmicutes have differences in energy harvesting behaviours with implications for the host. 
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For the MetaHIT samples 6, most KEGG Orthologs (KOs) and Clusters of Orthologous Groups (COGs) 
showed significantly different abundances (FDR<0.1) between enterotypes in any of the two-, 
three- or four-enterotype stratifications. On average 14,291 (SD=2,988) of 22,029 tested COGs and 
4,316 (SD=694) of 5,623 analyzed KOs were significantly different (FDR<0.1, methods as ref. 38, 
Suppl. Table 3).  The two enterotype clustering gave the least number of significant COG/KO 
differences (10,848/2,493), while the three enterotype clustering had the highest number of 
significantly different KOs (3,474) and the four enterotype model the highest number of COGs 
(16,211), suggesting that finer-grained divisions of the microbiome reveal more functionally 
distinct communities (Suppl. Fig. 5). Functionally, ET F is most rich, perhaps contributing to 
community stability through functional redundancy. COG categories representing broad functional 
categories were significantly different between three enterotypes (23 out of 25, Suppl. Table 3), 
although the effect size was small compared to taxonomic levels (Suppl. Fig. 6). Consistent with the 
CAZymes analysis, Carbohydrate metabolism is overrepresented in ET B. Taken together these data 
suggest there are considerable functional differences between enterotypes.  

ECOLOGICAL PROPERTIES OF ENTEROTYPES 

Differences in taxonomic and functional composition suggest that enterotypes also differ in 
ecological properties; here, we discuss properties of enterotypes that are relevant to microbial 
community ecology. High richness can contribute to community resilience by, for example, 
compensating for perturbational challenges through functional redundancy. This may make 
ecosystems less susceptible to invasion because niches are already filled by resident species 39. 
Conversely, reduced richness can have a negative impact by making communities more susceptible 
to dysbiosis upon perturbation 40. The latter is likely to apply to gut communities, as several 
diseases have been associated with reduced bacterial diversity and richness, including 
inflammatory bowel disease (IBD) 41, irritable bowel syndrome (IBS) 42, C. difficile infection 43, and 
obesity 4,6,44. 

Taxonomic richness was found to differ among three community clusters identified in an Amish 
population 24, with ET F having the highest and ET B the lowest values. This also was the case for 
enterotypes derived from HMP 16S rRNA gene data and shotgun metagenomes 1 as well as a 
Chinese dataset 45. A diversity gradient exists between the extremes of these two enterotypes in all 
datasets (Figure 3C). ET F, which is mostly dominated by the phylum Firmicutes, represents the 
community state with the highest species richness and also the densest co-occurrence network 46. 
Simulations of community compositions have yielded enterotype-like clusters over a range of 
species interaction strengths, consistent with the notion that enterotypes can be an emergent 
feature of a community 47. Differences in genetic, functional and metabolic richness also exist 
among different enterotypes (Suppl. Fig. 5, 7).  

Gut community composition in healthy adults is relatively stable over long time periods 48. Studies 
investigating enterotypes within a time-series generally reported high enterotype stability over 
several months/years in healthy human 24,49 or chimpanzee hosts 26. Two subjects showed 
stationary dynamics in 75-88% of the OTU’s recorded daily for more than a year 50. In an 8 to 10 
years longitudinal study, enterotypes were stable, with only a few switches possibly occurring due 
to life style changes 51. These observations are in line with two possible interpretations of gut 
community dynamics: a) the existence of globally applicable attractors (i.e., enterotypes, Suppl. Fig. 
8A) or b) individual-specific attractors that exist mostly due to temporal autocorrelation of that 
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individual’s gut community (Suppl. Fig. 8B). The response of the microbial community to different 
perturbations needs to be better studied because at present only limited data on gut community 
perturbations are available—e. g. antibiotics, fecal microbiota transplantation (FMT) and diet. 

Only a few studies have addressed the impact of antibiotics on the gut microbiota. Antibiotic 
(ciprofloxacin) treatment of three human subjects resulted in incomplete recovery of the 
microbiota at the end of a 10 month period that encompassed repeated treatment, and the 
responses varied between individuals 52. Long-term exposure to sub-therapeutic antibiotic doses 
profoundly changed the mouse gut microbiota composition 53, and short-term therapeutic doses 
induced substantial, partially recoverable shifts in humans 52,54. Antibiotics usage in humans can 
result in prolonged, recurring infections with C. difficile, which is treatable by FMT (e.g. 43). We have 
only begun to gain insight into  the potential mechanisms underlying such interventions 55. 
Although not yet studied, enterotype assignment may help guide donor choice in FMT or aid in 
promoting microbial community recovery following antibiotics exposure.  

Diet is also known to influence microbiome composition, and has been investigated both within and 
outside the realm of enterotypes. For example, Prevotella enrichment has been linked to non-
western and/or fiber-rich diets 8,56,57, also reported as overrepresentation of ET P 15,24,58,59. This may 
be due to the ability of Prevotella hydrolases to metabolize plant fibers 36, in contrast with ET B 
associations with a diet rich in animal proteins and saturated fats 15,57. In murine models, high-fat 
dietary intervention can decrease Bacteroidetes and favor Firmicutes 60,61. Subjects on controlled 
diets for a 10-day period retained their original enterotype 15, as was also observed in travelling 
subjects 57. However, dietary interventions over a year had a strong impact on the 
Bacteroidetes/Firmicutes ratio 15,62, which could lead to enterotype switches. Using the ratio from 
qPCR of Prevotella to Bacteroides as a proxy, enterotypes remained stable within the 6 months of a 
food intervention study, although cholesterol levels increased after intervention in individuals with 
ET P 23, suggesting broad implications of enterotypes in human health.  

Whether extrinsic or intrinsic factors can lead to shifts in enterotypes is not presently clear, as the 
strength and direction of a response to a given perturbation is still controversial. Nonetheless, the 
composition of the microbiota can be modulated and may be exploited therapeutically. 

ENTEROTYPES AND DISEASE 

Enterotypes and their driving taxa have been repeatedly associated with diseases (Figure 3D). For 
example, a pilot study showed an increased prevalence of ET P in healthy individuals who had the 
heterozygous form of a Crohn’s Disease (CD) risk allele 22. Similarly, Prevotella was associated in 
mouse knockout models with colitis 63, highlighting that host genotypes can influence gut 
composition. However, in a study of more than 1,000 genotyped twin pairs, no heritability of 
enterotypes was apparent 64. 

Overall, ET F appears linked to high microbiota diversity and decreased host inflammatory status 
(Figure 3C and D); this follows from multiple studies that associated a diseased host state to either 
Prevotella- or Bacteroides-enriched gut communities; CD patients harbor more Prevotella 65, while 
both Prevotella and Bacteroides were increased in the mucosa of UC patients 66. Increased 
Bacteroides and Prevotella relative abundance has been linked to patients with colorectal cancer, 
coeliac disease and acute intestinal graft-versus-host disease in mice 67–69. Furthermore, long term 
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antibiotic usage 70, rheumatoid arthritis 71, HIV infection 72 as well as Type 2 Diabetes73 have also 
been linked to increased Prevotella abundance.  

Increase in Bacteroides or ET B itself has been linked to NASH 44, colorectal cancer 58,69,74, celiac 
disease 68, immune-senescence and constant low-grade inflammation. The Bacteroides dominated 
CAG was correlated with increased C-reactive protein (CRP) levels 25. Bacteroides abundance has 
also been linked to inflammatory parameters (insulin resistance, lymphocyte counts, CRP), fatty 
liver and insulin resistance 6. In reanalysis of the MetaHIT dataset we find lymphocyte counts and 
CRP to be significantly increased in ET B compared to ET F (FDR<0.1), with ET F samples on 
average lower in insulin levels and Insulin resistance index (HOMA IR),  (FDR=0.107 for both) 
(Suppl. Table 4). Mice with an ET B-like enterotype had increased local inflammation in the gut, as 
measured by calprotectin levels 28. Thus far, ET F has only been associated with atherosclerosis 75, 
though an increase in the Firmicutes-Bacteroidetes ratio has been observed in IBD patients 76. The 
causality of these observations is still in question because it is not clear whether the disease state 
selects for an altered microbiota or vice versa. Furthermore, some of these associations may 
manifest at higher resolution taxonomical units, with specific species or even strains being the 
affected unit. 

CLINICAL RELEVANCE OF STRATIFICATION 

The many factors that can influence the gut microbiota suggest that an enterotype classification by 
itself will not be sufficiently specific as a stand-alone diagnostic marker of a relevant state 77. Thus, 
enterotypes should rather be viewed as a potential indicator of increased risk and complications 
and used to complement other clinical markers. Stratification could improve the efficacy of drugs, 
nutrients, or diets in a more personalized setting. Such approaches can be implemented largely 
independently of a gradient- or cluster-centric view, as any clinical stratification can potentially be 
useful if accurate. For example, defined cutoffs for body mass index (BMI) are important guides to 
patient disease risk, although such cutoffs are imposed on a continuous gradient 78.  

In clinical research, one role of enterotyping should be to define the boundaries of ‘normal’ gut 
communities and identify individuals outside of them, serving as a health indicator. A model of six-
species communities showed striking distribution patterns among patients; the networks 
resembling the three enterotypes most strongly were overrepresented in healthy patients, while 
two of the new states were overrepresented in frail, elderly patients 7.  

An intriguing case is the newly reported enterotype H, enriched in Enterobacteriaceae, but 
compositionally located “between” ET B and ET P, that was linked to obesity, NASH, high blood 
ethanol levels and high reactive oxygen species (ROS) 44. ET H could be an early example of a 
dysbiotic enterotype. A single pathogenic strain may be changing the ecosystem by inducing a 
strong immune reaction, as in the case of C. difficile 79 or Salmonella infections 50. Similarly, since ET 
B has been associated with host inflammation (section “Enterotypes and disease”), that knowledge 
could be exploited in evaluation of health status 

Further applications lie in supporting biomarker discovery and intervention studies. Possibly, some 
diseases will have different etiologies, depending on enterotype. Enterotype stratification could 
allow discovery of underlying, weaker signals that are dominated by the large variation in microbial 
communities between individuals. In one mouse study, for example, only an enterotype 
stratification allowed discovery of genotype-microbiome and cage-microbiome associations 28. 
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Similarly, stratifying patients into 8 ecotypes helped identify medical parameters that correlated 
with microbial composition 25, and clustering before classifying C. difficile samples significantly 
improved accuracy 80. Because enterotypes can be associated with disease, immune function and 
diet, they might provide a proxy for the risks linked to patient lifestyle. In clinical trials, determining 
enterotype at entry might reduce microbiome-induced response variation. Therefore, defined 
microbiota profile clusters can be a useful clinical tool. 

TOWARDS STANDARDS FOR ENTEROTYPING 

Standardization of enterotyping is essential to enable comparable research and clinical efforts. In 
addition to the technical challenges mentioned above, an inherent property of clustering is that 
assignments of single samples depend on which other samples are analyzed at the same time. An 
enterotype defined this way makes comparisons across studies difficult. For example, if by chance 
the majority of samples in a single study are ET B or ET F and only a few are ET P, the optimal 
cluster score might indicate two or one cluster(s). Nevertheless, one might identify these few ET P 
samples, based on the knowledge that such a state exists. Combining data from multiple studies is 
often challenging, because differences in DNA extraction methods, sample handling, sequencing 
technology, primer choice (for 16S rRNA gene amplification) and data processing (e.g. 16S rRNA 
clustering, copy number correction and chimera reduction) influence the proportions of bacteria 
detected, which may lead to a per-study clustering and a bias in detecting enterotype clusters 81. 
Extreme rigor is needed in standardizing these steps, perhaps in conjunction with artificial “mock” 
communities that span a large proportion of the phylogenetic spectrum of microbes found in the 
gut and enable comparability between standard and clinical samples. Furthermore, there is a need 
for more longitudinal studies involving larger population cohorts across multiple continents to 
identify additional confounding factors. Indeed, several consortia such as IHMS40, MBQC41 and GSC42 
are already trying to set standards for metagenomics and identify sources of variation. 

We propose two synergistic approaches geared towards de-novo enterotype assignment and 
recovery of structure defined in a reference dataset (Figure 4). For the latter, we propose a 
classification standard that both circumvents many of the problems outlined above and provides 
more comparable results as well. While we do not want to limit other explorations of the data or 
novel analysis options, any different scheme should at least be compared with the results from the 
procedure we describe here. Based on the MetaHIT data 6 set, we have trained a classifier at genus 
level on taxonomic and functional features, that recovers intrinsic clustering observed in the 
Chinese type 2 diabetes study 45 and in the HMP 1 dataset (Suppl. Fig. 10). The classifier is available 
at [http://enterotypes.org] and can easily be obtained following the instructions therein. If the 
results of a de-novo clustering differ from the classifier results, we recommend caution in naming 
the stratification outcome as enterotypes. 

CONCLUSIONS 

                                                             
40 http://www.microbiome-standards.org/ 
41 http://www.mbqc.org/ 
42 http://gensc.org/ 
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Identification and characterization of the major patterns related to human gut microbiota 
configurations remain challenging. Given an array of available approaches, each with their 
advantages and caveats, the number of recovered enterotype states and their statistical support 
will vary. With more standardization and control of sample processing and data analysis, increased 
concordance among different studies can be achieved. Enterotype attribution must be refined with 
a wider range of samples and contextual information, extending beyond the industrialized world to 
better represent the global human population. 

Despite the difficulties outlined above, multiple studies have found enterotypes with similarities in 
compositional properties (Figure 2). While not clearly discrete and confounded by various factors, 
they differ in taxonomic, functional and ecological properties and can be recovered across large 
datasets (Suppl. Fig. 10). To improve comparability among future studies, we propose here a 
standard enterotyping procedure that can serve as a reference to guide the interpretation of results.  

Enterotypes may be relevant in various clinical settings, ranging from direct disease associations to 
guidance about compatible donor-recipient pairs in fecal microbiota transplantation. They may also 
become important for more personalized dietary interventions or other gut modulation treatments. 
We believe, despite our still limited knowledge, that enterotypes are a useful concept to describe 
the human microbial community landscape. 
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FIGURES 

 

Figure 1: The microbiota of distinct body locations within the healthy human is separable at the genus 
level. 
 
(A) From 2,910 HMP samples, the six most discriminating genera between body sites are represented. 
Their interquartile range (indicated by the width of the ribbon) within each body site, show clear 
differences in site abundance for each. (B) Median inter-sample distances (error bars ranging from the 
25th to the 75th quantile) compared to the median between all body-sites (red line) illustrate that the 
most widely used distance measures are able to capture similarities and differences between these 
biomes, albeit with different effectiveness. 
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Figure 2: Overview of publications that specifically address enterotypes, published before January 
2015.  
 
(A) The geographical distribution of samples from which enterotypes have been derived (Suppl. Table 1), 
are colored according to the number of microbial clusters they report. The location on the map indicates 
the country that the samples were collected from. The links between locations represent samples 
belonging to one single study. The overrepresentation of “western” countries is a well-known bias and 
probably misses a portion of global variation in other human societies. (B) Number of enterotypes 
derived from a study as “Result”, and less likely “Alternative” enterotype model that is often proposed 
within the same study or cannot be ruled out (“Discussed”). (C) Projection onto a set of 278 Danish 
samples6 of the three most frequent enterotype classification schemes, based on different methods, and 
including the Prevotella/Bacteroides gradient. This shows a split into a gradient and two, three (distance 
based clustering) or four enterotypes (Dirichlet multinomial mixture models). The local structure is 
preserved regardless of the method applied and Prevotella (ET P) remains separated, suggesting the 
methods mostly differ in dividing the area between ET B and ET F. 
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Figure 3: Microbiota of human fecal samples has local substructure. 
  
Ordination of 278 Danish6 samples on Jensen-Shannon distance transformed space.  
For orientation, a three-enterotype model is illustrated by color in A, B and D. (A) The log-transformed 
relative abundance of the most significantly differing genera. On the adjacent axis, the projected 
abundance changes between the respective community types are shown. Bimodal abundance profiles 
(dotted lines, dip test p-value < 0.05) as well as gradual abundance changes (solid lines) can be 
identified, supporting a gradient or cluster model, respectively. (B) Abundance changes of selected COG 
categories were projected onto the ordination, illustrating that functional composition differs between 
enterotypes. (c) mOTU level Shannon diversity index and gene richness (low gene count (LGC) is 
considered for subjects with less than 480k genes according to Le Chatelier et al., 2013; all other 
subjects have high gene count (HGC)) are significantly different between enterotypes (Suppl. Fig. 7), 
mostly following gradual changes over the whole enterotype space. (D) Summary of the diseases and 
dietary constituents that have been associated with Prevotella, Firmicutes or Bacteroides -dominated 
gut communities (Suppl. Table 5). 
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Figure 4: Determination of Enterotype structure. 

Flow diagram including recommended steps for determining enterotype assignment based on microbial 
abundance data. Two main routes to obtain enterotype assignments are depicted: de-novo 
identification of enterotypes (discovery) and assignment based on a reference dataset. The suitability of 
existing models imposed on the data to describe the composition landscape (1) can be assessed by 
either determining the existence of cluster structure, using one of  the proposed clustering strength 
measures (Suppl. Fig. 2) or by using a DMM modeling framework 16. Other models might also be useful 
in capturing the structure in the data, although an exact implementation is not yet available. 
Determining whether samples are within the enterotype space (2) is based on similarity in composition 
to adult human stool samples from the HMP 1 and MetaHIT 6 studies. This suitability check and a 
respective classifier are available at [http://enterotypes.org]. There are many explanations for the 
different compositional structure (3); for example, they may come from non-western individuals, or 
from infants. Technical issues such as DNA extraction, PCR primers, and/or bioinformatics preprocessing, 
may skew the analysis. The consistency of the separation (4) obtained from the classifier may be 
determined using a Silhouette index. 
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SUPPLEMENTARY MATERIAL 

DATA SOURCE 

All analyses were performed on previously published data. 16S rRNA gene abundance data from 
2910 samples, comprising 1266 oral, 357 airways, 187 stool, 836 skin and 264 vaginal, originating 
from the Human Microbiome Project (HMP)1 were downloaded from their web resource 
(http://www.hmpdacc.org/). An additional 139 stool metagenomic shotgun sequenced samples 
were downloaded from the same location. Additional metagenomic shotgun sequencing data 
originate from samples (368 Chinese samples and 278 samples from the MetaHIT project) 
described in Qin et al. (2012) and Le Chatelier et al. (2014), respectively. Three additional samples 
from the US were used, which are described in Schloissnig et al. (2013). 

Data, together with code for generating the main figures can be found at: 
https://hub.docker.com/r/costeapaul/enterotype_figures/. Instructions for pulling and running 
the docker can also be found there. 

TAXONOMIC AND FUNCTIONAL ANALYSIS 

For 16S rRNA gene-based taxonomic composition analysis, we used operational taxonomic unit 
(OTU) or genus level relative abundances. Genus level abundance matrices were calculated by 
adding relative abundances of all taxonomically annotated OTUs. OTUs not annotated at genus level 
are considered “unclassified” and their relative abundances were agglomerated into that category. 

For cross-study analyses, shotgun sequencing reads were mapped to a database of selected single 
copy phylogenetic marker genes (mOTU.v1.padded)82 and summarized into species-level (mOTU) 
and genus-level relative abundances. Functional profiles of clusters of orthologous groups (COGs) 
and KEGG orthology groups (KO), including both those of eukaryotic and bacterial origin, for 
MetaHIT, Chinese, and HMP samples were computed using MOCAT83 by mapping shotgun 
sequencing reads to an annotated reference gene catalogue as described in Voigt et al.54. COG 
category abundances were calculated by summing the abundance of the respective COGs belonging 
to each category per sample, excluding NOGs. 

Weighted and unweighted UniFrac distances were downloaded from the HMP web resource 
(http://www.hmpdacc.org/). Jensen-Shannon distances were computed on genus level relative 
abundance matrices, as described in the enterotyping tutorial 
(http://enterotype.embl.de/enterotypes.html). 

For determining the optimal number of clusters on all data matrices, three different measures were 
used from the R fpc package84 (version 2.1.9). The Calinski-Harabasz index85 and the silhouette 
index86 of a given distance matrix and a set number of clusters were computed using the function 
pamk with default parameters. The prediction strength87 was calculated with a modified version of 
the prediction.strength function, allowing a distance matrix as a parameter, with the dataset being 
randomized 50 times. For all the different measures, we varied the number of clusters between two 
and ten and considered the cluster number with the highest value for each measure to be the 
optimal one.   
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ORDINATION 

Visualization of distance matrices was performed using unsupervised ordination methods. 
Principal coordinate analysis was performed with the R ade4 package (version 1.6.2), using the 
dudi.pco function.  

Parallel to each pair of enterotypes, we plotted the abundances of selected genera and functional 
categories (Figure 3). For each combination, we performed principal component analysis on the 2-
dimensional PCoA coordinates, to identify the axis that explains the greatest variation between 
enterotypes (i.e. the first eigenvector). This component forms the x-axis for the distributional plots. 
Subsequently, we log transformed abundance of genera/ functions, then scaled and centered them. 
The plotted line is a smoothed spline fitted to these transformed abundances, using the R base 
function smooth.spline. To test for significant bimodal distribution of feature abundance, Hartigan’s 
dip test statistic from R package diptest was used. 

FEATURE SIGNIFICANCE TESTING 

Univariate testing for differential abundances of taxonomic and functional features between two or 
more groups was tested using a Wilcox-Rank Sum test or Kruskal-Wallis test (p-value), 
respectively, corrected for multiple testing using the Benjamini-Hochberg false discovery rate (q- 
value). COGs and KOs occurring in less than four samples or with an average normalized count 
abundance < 30 across were excluded from the univariate analysis.  

DIVERSITY ANALYSIS 

Richness and Shannon diversity index for taxonomic and functional features, mOTU and OTU were 
calculated after rarefaction of matrices to 3 000 and5 000, units per sample, respectively, using the 
vegan R package. Rarefactions of COG, KO and gene matrices were done using a C++ program 
developed for the Tara project 88 with a per sample rarefaction depth of 6 900 000. In total we 
performed 30 repetitions, in each of which we measured the richness and Shannon diversity metrics 
within a rarefaction. The median value of these was taken as the respective richness/ diversity 
measurement for each sample. These thresholds were chosen to include most samples. 

PARAMETER-DEPENDENCE OF CLUSTERING 

Clustering algorithms have been developed and employed for nearly 100 years (e.g. Driver and 
Kroeber 1932) and have more recently been applied to analyze microbial compositions, especially 
those of the human gut. However, it is challenging to determine whether there are actual clusters 
present, and if so, how many? A number of clustering optimality measures, as well as distance 
measures were employed for determining the number of microbial clusters that may be present in 
the human gut microbiota.  To describe inter-sample differences, most studies use a combination of 
weighted and unweighted UniFrac distances or Jensen-Shannon distance (JSD) (Suppl. Table 1). To 
determine the optimal number of clusters in the space described by the distance measure, the CH-
index85, silhouette index86 and prediction strength87 are commonly used.  

Different distance metrics will give a different weight to community features. For example, the 
UniFrac distance90, be it weighted (taking abundance into account) or unweighted (presence-
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absence only), is based on the importance of phylogenetic distance between the components of the 
community. In contrast, the JSD distance does not take phylogenetic information into account, and 
measures the mutual information shared between two samples. For both weighted UniFrac and 
Jensen-Shannon, the underlying hypothesis is that variation in highly abundant members is the 
most relevant feature for describing similarities. The hypothesis of unweighted analysis is that 
community membership is the most important feature. While these distances are conceptually very 
distinct, they may result in the same outcome, though they exhibit quantitatively and qualitatively 
different properties (Suppl. Fig. 9). Another property worth considering is the absolute numbers of 
microbes in any given sample; it may be that observed fluctuations in composition poorly reflect 
the actual cell counts of the members, as the total amount varies considerably. This may constitute 
a further confounder when trying to disentangle compositional properties. 

Within the Human Microbiome Project (HMP) dataset, 2910 samples are available from a range of 
human body sites1. We used this dataset to benchmark the aforementioned distances and 
optimality criteria, based on the assumption that human body-sites are inhabited by different 
microbial populations and that their separation should be clear (Figure 1).  The PCoA projections of 
the distance space into two dimensions shows that the largest part of the variation does not 
separate the body sites properly, except in the case of the JSD distance on genus level (Suppl. Fig. 
2a). This metric and weighted UniFrac both recovered the four expected clusters in conjunction 
with PS or Silhouette index (Suppl. Fig. 2b). However, even when recovered, the separation appears 
not to be very strong, with silhouette values being low (0.4 at best). Since often three or less 
clusters are chosen to be the optimal cluster number, we conclude that the clustering approach is 
underpowered. 

CROSS-STUDY ENTEROTYPE COMPARISON 

Comparability of the structure across multiple datasets is a necessary characteristic of the 
enterotype concept. However, although similar genera were reported as being most abundant in 
gut stratifications (Suppl. Table 1), this does not automatically imply similar communities or 
structure. To test the assumption of comparability, we used three unrelated large datasets, with a 
different sampling procedures (US HMP1, Chinese diabetes type 2 study45, European MetaHIT 
consortium6) and clustered these with the PAM clustering algorithm on a JSD distance at genus 
level10. The obtained clusters had an overrepresentation of Prevotella, Bacteroides or Firmicutes 
(the latter represented by Ruminococcus, Eubacterium and Subdilogranulum respectively), as 
expected. 

Although we do not exclude alternative scenarios (see Figure 2), we first trained a LASSO logistic 
regression classifier 91 to recover the three enterotypes within the MetaHIT samples. This was then 
used to classify samples from the other two studies. The respective ROC-AUC was high (Figure 4), 
meaning that the classifier and unsupervised clustering mostly assigned the same cluster 
memberships to samples. One difference is that the classifier can be used on any arbitrarily small 
dataset. This approach could also be expanded to classify single samples based on other machine 
learning techniques, e.g. a trained DMM model. 

Furthermore, if enterotypes reflect community compositions and not just differences in the driver 
species, i.e. are reflecting different ecological networks, we expect the classification to remain 
pertinent after removing Bacteroides and Prevotella from the data. Indeed, although with lower 
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accuracy than when including these two taxa, the classification still captures the initial enterotypes 
in all datasets.  

Further, using the abundance of gene families within each respective enterotype, the prediction of 
enterotype state is even stronger in cross validation than when using taxa abundances (Figure 4). 
For this analysis, we used only commonly represented functional categories (i.e., COG’s that have 
representative genes in at least five of the 50 most abundant genera), ensuring that the classifier 
does not exploit functional categories which are restricted to taxonomic subgroups.  

DETERMINING IF SAMPLES ARE WITHIN ENTEROTYPE SPACE 

Using the HMP dataset1, we compute the distance between all stool samples using a genus 
summarized OTU table. This allows us to define the expected distance distribution of stool samples. 
For any novel sample, we compute the distance to all stool samples in the HMP data and consider it 
to be in the enterotyping space if its average distance is within one standard deviation of the stool 
distance distribution. Using this approach, we correctly identify western-like stool sample and 
reject all other body-site samples as not being in the enterotyping space. Furthermore, we also 
correctly classify infant samples as being outside the enterotyping space (data not shown). 
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SUPPLEMENATRY INFORMATION 

 
Supplementary Table 1: Microbial community studies researching the presence of enterotypes 
(ET). Abbreviations: F=ET F (Firmicutes enriched), B=ET B (Bacteroides enriched), P=ET P 
(Prevotella enriched), CH= Calinski−Harabasz pseudo F−statistic, SIL= Silhouette internal cluster 
optimality criterion.  

Study Year Technology ET reported Optimal Cluster 
number 

Notes 

10 2011 454 rRNA, 
illumina 
WGS, Sanger 
WGS 

B, F, P CH (3) First study to show 
ET’s 

20 2011 Sanger rRNA B, F, P visual clone library 
15 2011 454 rRNA (F+B), P CH (3), SIL (2) Diet relation to 

ET’s 
24 2012 454 rRNA B, F, P 92 (3), SIL (2) Species network 

based ET 
identification 

8 2012 454 rRNA P, (F+B), 
Bifidobacteria 

SIL (2) Includes children 
that form a 
separate cluster 

32 2012 454 rRNA gradient visual Analysis not based 
on clustering, HMP 

12 2013 454 rRNA, 
illumina 
WGS 

various SIL(2), CH(3) 
(rDNA); 2 (WGS) 

Extensive testing of 
methodology, HMP 

7,25 2012  P, B, 
Ruminococcus
, Oscillibacter, 
Alistipes, 
Odoribacter 

CAGs (6), SIL(2), 
CH(2) 

co-abundance 
groups  

45 2012 illumina 
WGS 

B, F, P SIL (3)  

75 2012 illumina sg B, F, P CH (3), SIL (2) Atherosclerosis 
associated to ET F 

16 2012 Sanger rRNA Similar to F, 
P, B, F2 

Dirichlet 
Multinomial 
Mixtures (4) 

 

26 2012 illumina 
rRNA 

B, F, P CH (3), SIL(2/3) Chimpanzee 

22 2013 454 rRNA B, F, P 16 (3) Association of ET P 
to CD risk allele 

44 2013 454 rRNA B, F, P Based on 
composition 

obesity and NASH 
in adolescents 

28 2013 Illumina F, B CH (2), SIL (2) Mouse; ET B shows 
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rRNA links to 
inflammation 

49 2013 454 rRNA B, F, P Based on 
composition 

Time series 

13 2014 454 rRNA Similar to B, 
F, P, F2 

Dirichlet 
Multinomial 
Mixtures (4) 

HMP reanalysis 

14 2014 454 rRNA B, F, P Complete linkage, 
Bray-Curtis 
clustering, SIL(3) 

HMP reanalysis 

23 2014 qPCR B, P Prevotella to 
Bacteroides ratio 

Time series on 
Food trials 

93 2014 454 rRNA B, P Weighted Unifrac 
SIL(2) 

 

29 2014 454 rRNA B, Robinsella 
(Firmicutes 
dominated) 

CH (2) Wild mice; 
predictable ET 
switch after 
capture 

21 2014 Illumina 
WGS 

B, F, P CH(3), SIL(3) 4 datasets 
combined 1,3,45,94 

27 2015 Illumina 
rRNA 

Similar to F, P CH(2) Gorilla, no 
association to SIV 
infection 

30 2015 454 rRNA F, P CH(2), SIL(2) Swine, juvenile 
development into 
adult enterotypes 

95 2016 Illumina 
rRNA 

F,B,P JSD clustering 
(2,3), DMM(4) 

3984 Samples from 
US and Europe 

Supplementary Table 2: Percentage of CAZY enzymes annotated within 8 substrate categories 
on a selected subset of gut specific bacterial genomes as published in 37. Bacteroides contains 
15 genomes of genus Bacteroides, Firmicutes are 104 genomes of phylum Firmicutes and 
Prevotella contains 3 genomes of genus Prevotella. Note that due to multiple substrate 
specificities, percentage do not add up to 100%. 

CAZY category Bacteroidetes Firmicutes Prevotella 
Plant.Cell.Wall.Carbohydrates 50% 35% 42% 
Chitin 0% 0% 0% 
Alpha.glucans 5% 20% 10% 
Animal.Carbohydrates 50% 28% 35% 
Bacterial.Cell.Wall.Carbohydrates 4% 23% 12% 
Fructans 1% 4% 1% 
Fungal.Carbohydrates 11% 7% 9% 
Dextran 0% 0% 0% 
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Supplementary Table 3: Functional differences between 3 different enterotype models: 2 
Types represents a model comparing ET P against a combined ET F+ ET B, 3 Types compares the 
three first reported enterotypes (ET B, ET F, ET P) and 4 Types are enterotypes as determined 
by DMM modelling. Used gene families are derived from COG 96 and KEGG 97 annotations. 

Supplementary Table 4: Associations between obesity related parameters reported in 6 and ET 
state, split for the 2, 3 and 4 clusters. 

Supplementary Table 5: Studies reporting associations between enterotype drivers and host 
states 

Study Enriched driver Phenotype 
75 Bacteroides Atherosclerosis 
4,61 Bacteroides High-fat diet 
22 Prevotella CD risk allele 
63,98 Prevotella Colitis susceptible mice 
8,15,56–58 Prevotella Fiber-rich diet  
44 Bacteroides NASH and ROS 
15,57 Bacteroides Protein & animal fat 
99 Bacteroides Fibers & fructans 
6,25,28,100,101 Bacteroides Low-grade inflammation, CRP and insulin resistance  
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SUPPLEMENTARY FIGURES 

 

Supplementary Figure 1: Hierarchical structure of different clusterings using MetaHIT6 samples. 
Each circle represents a cluster, as obtained by PAMk for 2 and 3 clusters and DMM for 4 clusters. 
The connecting lines show the number of samples that overlap between the cluster definitions. 
Overall, the different clusterings are highly associated, forming a hierarchical structure. 
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Supplementary Figure 2: Clustering of human body sites, based on their genus level abundance 
composition. Body-site separation as in Figure 1, using frequently used enterotype clustering methods. 
(a) Ordination of the HMP 16S rRNA (v35) dataset using four common inter-sample distance measures. 
(b) The optimal cluster number calculated within each distance measure using common clustering 
optimality measures. Body site separation was recovered by Jensen Shannon divergence (JSD) distance 
and weighted UniFrac.   
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Supplementary Figure 3: Systematic shifts in the microbiota composition under different 
conditions can obscure clusters in the data. These confounders could be immune system or food 
related, but also technical biases, such as different DNA extraction methods. For the mouse 
microbiota 28, a discrete separation between ET F and ET B is possible. Due to the design of this 
study, more factors were controlled for than possible in human studies, like diet and environment. 
The figure illustrates how confounders may impact the observed landscape (not based on real 
data). 
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Supplementary Figure 4: Log10 transformed relative abundance of relevant genera, 
superimposed onto the PCoA ordination of the MetaHIT dataset6, showing the bimodal 
distributions of Prevotella and Methanobrevibacter and the unimodal distribution of Bacteroides 
and Firmicutes, similar to Figure 3a.  

 

Supplementary Figure 1: Functional richness differs substantially between enterotypes defined 
on the MetaHIT dataset, as measured on COG 96 and KO 97 level data.  
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Supplementary Figure 6: Although 23/25 COG categories are significantly different between three 
enterotype (Suppl. Table 3), the overall composition remains relatively stable between enterotypes. 
This is probably due to consistently small effect size differences between enterotypes in their 
functional composition that is more stable than the taxonomic composition. 
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Supplementary Figure 7: ET richness differences calculated on (a) MetaHIT gene catalog 6 (b) 
HMP v35 OTUs 1 (c)  Chinese samples 45. Note that MetaHIT genes do encompass functional as well 
as taxonomic diversity. Ecological properties of the enterotypes, such as richness and diversity, 
derived using marker genes (97) recapitulate the same trends within each of the datasets (d). 
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Supplementary Figure 8: Three hypotheses that could account for the observed enterotype 
gradient in temporal data: (a) the Bacteroides/Firmicutes gradient could be driven by 2 global 
optimal states or (b) temporal samples are auto correlating to an optimum specified by each 
microbiota individually, but not driven by global attractors. Last, (c) the Bacteroides/Firmicutes 
gradient does not reflect an ecological pattern and is subject to strong temporal changes, but this is 
unlikely to apply to the majority of samples.  
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Supplementary Figure 9: Sensitivity of distance measures to low abundant features. OTU’s are 
sorted from low to high abundant and removed one by one. Each resulting neighbor constellation is 
compared to the original one (computed using all the OTU’s) showing the weight features get in the 
final nearest neighbor determination. JSD and weighted Unifrac are not influenced by low abundant 
features, while the unweighted Unifrac approach is.   
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Supplementary Figure 10: Robust classification of enterotypes across studies. A three enterotype 
model classifier was trained on genus level abundances of the MetaHIT6 samples. This model also 
recovers enterotypes in the HMP and Chinese metagenomic datasets. The receiver operating 
characteristic area under the curve (ROC-AUC) for classifier performance on the MetaHIT (internal 
cross-validation), Chinese and HMP datasets are shown, with the clustering ground truth being 
estimated using unsupervised clustering of samples in the respective dataset. Although there are 
known batch effects between these datasets 94, the properties of the enterotypes are comparable 
and recoverable. Furthermore, the classification is possible even when removing the genera 
Bacteroides and Prevotella from the feature set (“Without drivers”). The classification of 
enterotypes on functional (COG) abundances in almost all cases outperforms the taxonomic 
classification across all three datasets. In the functional context, “Without drivers” represents a 
dataset where COGs that contain a gene from either the Bacteroides or Prevotella genus were 
removed prior to training and subsequent classification.  
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ABSTRACT 

The concept of prokaryotic species has been a topic of discussion in microbiology for over a 
century. However, with the advance of sequencing technologies, operational definitions of 
species have become more widely used and have proven crucial to our continued understanding 
of microbial ecology. Here, for the first time, we tested for substructure within species in large, 
natural habitats, without isolation and cultivation biases. We surveyed the variation landscape of 
73 prevalent microbial species in 2144 human fecal metagenomes, and show that the majority, 
accounting for 70% of the known abundance, can be further stratified into subspecies. 
Individuals are usually dominated by only one such subspecies (per species), as expected from 
ecological theory, although we also find co-occurrence in rare cases. The geographical 
distribution of these subspecies reveals phylogenetic differences in dispersal patterns, ranging 
from globally distributed Bacteroidetes subspecies to several geographically restricted 
Firmicutes subspecies. To show their functional significance, we perform reference independent 
pan-genomic analysis, determining and comparing the core and accessory genomes based on co-
variation in metagenomes. With this approach we find, for example, that some Eubacterium 
rectale subspecies specifically harbor a flagellum operon and associate with lower community 
diversity, higher host BMI and higher blood insulin levels. 
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INTRODUCTION 

While there is still long-standing debate on whether there is a coherent species concept in the 
prokaryotic world1–5, modern molecular technologies offer multiple operational definitions of 
species that are being successfully applied to understanding microbial ecology. They are based 
on molecular considerations, some genome-wide, such as DNA-DNA hybridization6 (DDH) or 
pair-wise average nucleotide identity4 (ANI) while others are restricted to a specific marker 
gene (i.e. 16S rRNA gene, or a variable region therein) or multiple marker genes7 (i.e. multilocus 
sequence typing). Ideally, these operational definitions would identify a measurable unit, within 
which there is little to no phenotypic difference. More generally though, they define a space of 
low genotypic variation, which is sometimes only poorly predictive of phenotypic outcomes8. As 
phenotypic differences can be observed within operationally defined species, the concept of 
subspecies, a taxonomic rank subordinate to species, has been discussed in the literature as 
early as the 1950s9, in the case of Bacillus cereus, for which there exist virulent and non-virulent 
subspecies. Sometimes, differently adapted members of the same bacterial species were called 
“ecotypes”. For example in the case of the ocean-dwelling Procholorococus10, multiple 
subspecies exist that are specialized for different temperatures and light conditions, but the 
ecotype concept has been advocated in a range of habitats, indicating this to be a global property 
of prokaryotes. Pan-genomic analysis of a small number of species has sometimes confirmed the 
existence of population structure within species, but such datasets can be biased by differences 
in the ability to isolate and culture individual subspecies11.  

In 1997, Palys proposed a framework for determining and classifying ecological diversity based 
on clusters of DNA sequence data similarity12, which has not been applied as a large enough 
sample is lacking. In order to quantify the occurrence of subspecies in this framework in a 
natural setting, we here use gut metagenomes from 2144 fecal samples of a wide geographic 
range, encompassing 9 countries from three continents. We demonstrate that substructure 
within species is the rule rather than the exception, analyze global subspecies dispersal patterns, 
show that subspecies are mutually exclusive in most individuals and illustrate the utility of the 
concept by associating particular ones to specific genes and host phenotypes, with implications 
for disease. Moreover, these finding support the ecotype view of bacterial evolution, suggesting 
the existence of cohesive clusters of strains with the same fundamental dynamic properties, 
bound together in their evolutionary fate13.  

SUBSPECIES DELINEATION 

Building on recently developed methodology to study metagenomic samples at strain level14, we 
here explore genomic variation to identify population structure within species of the human gut 
microbiome, the ecosystem that is most extensively sampled by metagenomics. To this end, we 
combined DNA shotgun data from 2144 deeply sequences human stool metagenomes (X Gb +- Y) 
from 9 countries, spanning 3 continents by including published15–19 as well as newly generated 
data (see Methods). We profiled and assessed the variation of single nucleotide polymorphisms 
(SNP) of 73 microbial species with sufficient read coverage and prevalence in our set of gut 
metagenomes (Methods and Supplementary Table 1). These accounted for an average of 95.5% 
(SD=6%) of the sequencing reads per sample that can be mapped to reference genomes, 
covering 50% of the total reads (Figure 1c, see Methods).  

The existence of subspecies was assessed by computing a per-species pairwise distance matrix 
of SNP profiles between all samples with enough coverage over the respective representative 
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genome. For the latter we used a Manhattan distance between non-reference allele frequencies 
(see Methods). This distance matrix is then the basis for assessing the existence of subspecies 
clusters, by using a prediction strength measure20. We imposed a very stringent cutoff and 
operationally defined the number of subspecies as being the highest number of clusters with 
prediction strength above 0.8 (see Methods). This way we identified subspecies in 39 of the 73 
species, accounting for 70% (SD=3%) of the reads mapping to the representative genomes. 
Thus, our approach detects subspecies in the majority of highly abundant members of the 
human gut microbiome. 

Once subspecies had been identified, we determined a set of unique alleles which 
unambiguously identify each one; the number of such “genotyping” positions ranges from 100 to 
10000. Using only these genotyping positions, we could assign subspecies in a substantially 
expanded set of samples. This greatly expands our power to investigate the relation between 
subspecies and host properties and allows subspecies level abundances estimations in novel 
samples.  

To assess which of the subspecies have a sequenced reference genome, we mapped all NCBI 
genomic sequences into our variation landscape and assigned them to the corresponding 
subspecies genotypes. Out of the 39 bacterial species with clear substructure, only 12 are 
completely covered, while for the remaining 27 at least one subspecies is without a 
representative reference genome (Figure 1). In some cases, a reference sequence is lacking for 
the subspecies most commonly found in the sampled population thus limiting the applicability of 
classical reference-based pan-genomic analysis to major gut microbial species. 

In order to identify gene content differences between subspecies, we developed a new method 
based on the co-abundance concept, previously used to pool genes into metagenomic species 
independent of reference genomes21. Using the allele frequencies at the genotyping positions of 
each subspecies, we could identify genes that consistently correlated with these (i.e. subspecies 
accessory genes), while also being able to determine the set of genes that highly correlated with 
the species abundance, which we term core genes (see Methods). For these pan-genome 
reconstructions we used a human gut reference gene catalog22, consisting of nearly 10 million 
genes to which the vast majority of gut metagenomics reads could be mapped. To evaluate the 
accuracy of this approach we used Bacteroides vulgatus/dorei, for which multiple reference 
genomes are available. For a global assessment of the accuracy of our pan-genomic 
reconstruction we considered the genus level annotation of the gene catalog (the highest 
taxonomic resolution for which confident assignments have been made) and found that the 
median accuracy for the core is 0.99 and 0.96 for the accessory components. Comparing the 
number of genes that are unique to a subspecies with the number of genotyping SNPs we find 
both measures to correlate, suggesting proportionality between acquired mutations and 
phenotypic distance (Figure 1b).  

To quantify these functional differences and their potential consequences, we tested for 
enrichment of functional annotations between the accessory gene content of conspecific 
subspecies. Using homology-based KEGG annotation and, we found at least one significant (P < 
0.05, corrected for multiple testing within each species) pathway enrichment between 
subspecies in 11 of the 39 species (see Methods). We note that on average 70% of the subspecies 
specific genes did not have an annotation at the KEGG pathway level, highlighting the need for 
better functional annotations to understand microbial diversity and explaining why more 
significant differences were not found. Generally, significant differences were found in nitrogen 
and carbon metabolism, and in chemotaxis-related pathways. Of note, we find significant 
differences in invasion potential in two of the four E. coli subspecies and show, using strain 
pathogenicity information from PATRIC23, a highly significant enrichment in disease 
annotations. Metagenomic data from a recent outbreak24 indicate that the offending strain 
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comes from one of the two subspecies enriched in invasion associated potential (Supplementary 
Figure). This highlights the utility of the subspecies concept as a way of stratifying bacterial 
populations. 

SUB-SPECIES DISPERSAL  

As we analyzed metagenomics samples from nine countries and three continents (Austria, China, 
Denmark, France, Germany, Kazakhstan, Spain, Sweden, and USA), we could assess the global 
geographic range of each subspecies. While for many there was no clear geographical signal, 
some do show striking regional enrichments (Figure 1). For example, for Eubacterium rectale, 
one subspecies (E. rectalis spp. MG3) was found exclusively in Chinese samples, while the other 
two were found in all other countries, including Kazakhstan. To validate our finding, we profiled 
an additional set of 300 samples from a Chinese cohort, not included in our initial dataset and 
confirmed that all individuals exclusively harbored E. rectale spp. MG3 (and none of the other 
subspecies of E. rectale). In contrast, when investigating 13 individuals from US American 
studies that are reported to be of Asian descent we found none of them to harbor MG3. This, 
together with the fact that other samples Asian samples (from Kazakhstan) do not harbor the 
Chinese subspecies, suggests very low dispersal This may also explain why associations between 
E. rectale and host physiology have often proven to be unstable when testing in different 
cohorts, as these subspecies could not be profiled previously.  

For most other species, geo-stratification appeared less extreme, with certain subspecies 
observed predominantly, but not exclusively in certain countries. This might reflect an 
adaptation to specific environmental factors, many of which are more prevalent in some 
geographic regions, but not exclusively found there. Conversely, the observed structure could be 
the result of drift and differential dispersal potential among gut microbial sub-species (Figure 1). 
Overall, the strongest geographical restrictions across subspecies were observed in the Chinese 
samples, followed by the ones from Kazakhstan (Figure 1), while European and American 
samples appeared more similar in their gut subspecies compositions. When comparing 
geographic ranges across bacterial taxa, members of the Firmicutes phylum show significantly 
more geographic restrictions compared to other phyla (one-sided Wilcoxon test p-value = 
0.0004). Escherichia coli, for example, shows an almost uniform geographic distribution, 
indicating pervasive dispersal, in line with previous observations26. 

SUB-SPECIES DOMINANCE AND PERSISTENCE IN INDIVIDUALS  

Having considered global trends in subspecies distribution and their potential dispersal 
limitation, we further interrogated their properties when confined to the gut of a single 
individual. Here, overall strain-level stability has been shown14, allowing for an individual to be 
confidently identified at a later time point based on a SNP profile over all species. However, 
strain variation and complex co-occurrence patterns have been reported27 when an individual 
undergoes fecal microbial transplant, indicating that the strain level stability can be disturbed. 

In order to study the population structure of conspecific subspecies and their temporal stability, 
we recorded the allele frequency of each subspecies in each sample, for 124 individuals for 
which we have longitudinal data (Fig.2). For all 39 stratifiable species, we saw a clear dominance 
of one conspecific subspecies per individual, in line with ecological theory that predicts that 
among closely related taxa (species) the most adaptable one outcompetes the others in the same 
ecological niche. Only, in very few cases and only for some of the studied species were more than 
one conspecific subspecies observed in the same individual. In these rare cases we noted 
considerable fluctuation in the relative abundance of these sub-species over time, suggesting 
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cohabitation/co-occurrence to be an unstable constellation (Figure 2). However, in general we 
observed sub-species composition to be stable exchanges of one subspecies for another to be 
very uncommon when considering multiple time-points for hundreds of individuals up to three 
years apart. A striking exception to this was seen in an individual who changed microbial 
composition dramatically and persistently after antibiotics treatment28 with a corresponding 
switch of subspecies (Figure2).  Such rare exceptions aside, the combinatorics of subspecies and 
their apparent persistence over time provides another layer contributing to gut microbial 
individuality. 

SUBSPECIES ASSOCIATIONS WITH HOST PHENOTYPES 

Given persistence and dominance of subspecies within individuals over long periods of time, we 
asked whether their presence was associated with community and host properties. Accounting 
for differences between studies and non-random distribution of samples across subspecies, our 
statistical analysis identified eleven associations with microbial community diversity, two with 
host BMI, three with gender and one with type II diabetes. The latter appears to be a strongly 
protective subspecies of B. coprocola, which is highly significant in a Chinese type II diabetes 
cohort17 but does not show the same effect in the Swedish16 or MetaHIT29 diabetic cohorts.  

The strongest association with host BMI is presented by E. rectale, which is split into 3 
subspecies, one of which (spp. MG3) is almost completely restricted to samples from China 
(Figure 3). The remaining human populations are colonized by one of the other two subspecies, 
with some samples containing a combination of the two. We note that the only reference genome 
available is representative of E. rectale spp. MG2, meaning no reference-dependent method can 
be applied to this case. Using our reference-independent reconstruction of each subspecies’ gene 
content, as well as analysis of the coverage over the reference genome (Figure 3), we can relate 
functional differences to BMI. Specifically, E. rectale spp. MG1 is missing at least 18 genes related 
to bacterial chemotaxis and flagellar assembly. These genes are necessary for bacterial motility 
and also represent an important signal for host immune activation30. The TLR5 receptor in 
human epithelial cells (in this case colonocytes) recognizes flagellin and induces a downstream 
cascade which results in initiation of pro-inflammatory pathways and secretion of IL8. Flagellin 
from E. rectale has been directly shown to induce inflammation in human colonocytes30. Such 
low-grade inflammation has been repeatedly linked to obesity, increased insulin resistance and 
diabetes31. Using the MetaHIT29 and Swedish16 type 2 diabetes cohorts, we showed that BMI and 
insulin resistance are significantly higher in individuals who predominantly harbour the 
flagellum-carrying sub-species. Furthermore, their microbiomes appeared to have lower 
community diversity (Shannon species index), in line with previous observations of a negative 
correlation between community diversity and host BMI. Similar observations can be made for 
Eubacterium eligens, which splits into four subspecies. At least 8 genes related to bacterial 
chemotaxis and flagellar assembly are specific only to E. eligens spp. MG3. Only few samples from 
the MetaHIT and Swedish T2D studies contain this subspecies, which explains why none of the 
observed phenotypic differences are significant (Figure 3.b). However, all of the group median 
differences are in the same direction as for E. rectale.  

We note that there is no association between flagellum positive E. eligens and E. rectale, 
indicating that both flagella gene containing subspecies from different species have independent 
effects. Many genes have been shown to be transferred across lineages and mechanisms like 
conjugation also exist for transfer within a species. Yet, we clearly observe restrictions as judged 
from this diverse cohort of 1800 different individuals implying clear transmission limitations of 
genes that are functionally relevant for the host. The existence of such clear-cut functional 
difference between subspecies has implication for disease treatment as the respective 
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“detrimental” subspecies could be replaced or outcompeted by subspecies without the 
respective gene cassettes.  

 

DISCUSSION 

We have developed a classification of strain populations into prevalent subspecies of the human 
gut and investigated their geographic, ecological, and functional properties illustrating that this 
level of resolution can be relevant to unravelling specific interactions between microbiota and 
host physiology. As most of the abundant species in the human gut can be split into higher-
resolution clusters of genomic variation, this might also provide a further handle towards more 
personalised diagnosis and treatment strategies. Here we have restricted our analysis to the 
most common and clearly identifiable subspecies (using stringent cut-offs), likely 
underestimating their true number. We further hypothesize the differing functional potential of 
conspecific subspecies may explain some of the unclear associations between taxonomic 
composition and host phenotypes reported at species, genus and higher taxonomic levels.  

Our approach identified subspecies commonly found in human gut microbiomes that are 
typically distinguished from conspecific subspecies. While this approach identifies population 
structure below the species level, considerable allelic variation can still be observed within a 
sub-species. However, we consider this lower resolution to be a strength, as it enables powerful 
comparisons across samples. Ultimate resolution, entailing a distinction between two genomes 
when just one SNP is present, would make comparison impossible, as no two strains are likely to 
be the same. Any other arbitrary definition of how many positions should be distinct for the 
determination of a different taxonomic unit would most likely not hold across species (as is the 
case for most 16S based identity cutoff definitions). Furthermore, we believe this level to be a 
natural and informative taxonomic unit to consider, because it arises from external evolutionary 
pressures which have shape separate bacterial populations. This implies a qualitative difference 
between sub-species and makes then the likely unit of selection. 
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FIGURES 

Figure 1. Overview of gut microbial 
subspecies.  

Gut microbial species explored for the 
existence of sub-species show wide 
phylogenetic spread according to NCBI 
taxonomy (a) and include the main archaeal 
member of the human gut microbiome, as 
well as representatives of all abundant 
phyla. The circles on the cladogram 
represent each species’ average abundance 
across 2144 gut metagenomes. Bars 
represent the number of sub-species 
identified in each, with ‘1’ indicating no 
subspecies. The black portion of the bar 
represents sub-species for which no 
representative genome sequence is available 
from NCBI. Geographic preferences of 
subspecies are displayed as heatmap 
(showing significant enrichment per country 
as maximum log-odds ratio across 
conspecific subspecies), highlighting that 
subspecies with a restricted geographic 
range are predominantly found in the 
Chinese and Kazakh population sampled 
here. The number of variant positions 
specific to a sub-species (defining genotypes, 
see main text) and the number of accessory 
genes unique to this subspecies show a 
positive correlation (b). Our assessment of 
gut microbial subspecies included the vast 
majority of abundant community members 
and identified subspecies in the majority of 
these (c). 

 

 

 

 

 

 

 

 

 



Paper 5  Page 11 of 12 
 

 

 

Figure 2. Sub-species co-
occurrence and phylogenetic 
consistency. 

For two species (M. smithii and B. 
vulgatus) we represent a PCoA 
projection of the between-sample and 
between samples and reference 
genomes distances (top plots in a and 
b). We chose these two examples, as 
many representative genomes are 
available for them, covering all of the 
subspecies. For each sample, we 
quantify the frequency of each one of 
the subspecies (bottom bplot in a and 
b) and show that for M. smithii only 
one sample has two sub-species co-
occurring while all the other have a 
single dominating one. More samples 
show this co-occurrence pattern for 
Bacteroides vulgatus. We further 
present a phylogeny of the reference 
genomes, fully consistent with the 
observed clustering.  

Importantly, sub-species are stable 
over time, with most individuals (x%) 
keeping their sub-species for up to 
1000 days (c). The highlighted 
individual (purple line), who switches 

from one sub-species to the other, underwent at least one antibiotic intervention before the 
switch. 

  



Paper 5  Page 12 of 12 
 

 

Figure 3. Gene complement differences between sub-species and their implication for the 
host. 

PCoA projections of two Eubacterium species, E. rectale (a) and E. eligens (b) show the existence 
of three and four sub-species, respectively. Very few individuals have more than one of these 
sub-species present at one time as seen in plots at bottom showing sub-species frequencies. 
Functionally, the main distinction between some of the sub-species is the deletion of multiple 
flagellum and chemotaxis related genes, relative to the representative genome (c). Grouping 
Eubacterium rectale samples based on this deletion, shows a significant increase in BMI and 
blood insulin levels as well as a decrease in overall diversity in samples dominated by the 
flagellum carrying sub-species. The direction is recovered when considering Eubacterium 
elignes, though the difference is not significant (d). 

 

 

 

 



 


