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Abstract

In the present work, a simulation system is proposed that can be used as an edu-
cational tool by physicians in training basic skills of minimally invasive vascular
interventions. In order to accomplish this objective, initially the physical model of
the wire proposed by Konings has been improved. As a result, a simpler and more
stable method was obtained to calculate the equilibrium configuration of the wire. In
addition, a geometrical method is developed to perform relaxations. It is particularly
useful when the wire is hindered in the physical method because of the boundary
conditions. Then a recipe is given to merge the physical and the geometrical meth-
ods, resulting in efficient relaxations. Moreover, tests have shown that the shape of
the virtual wire agrees with the experiment. The proposed algorithm allows real-time
executions, and furthermore, the hardware to assemble the simulator has a low cost.

1 Introduction

Over the last decades, minimally invasive surgery (MIS) has revolu-
tionized many surgical procedures (Basdogan, De, Kim, Muniyandi, Kim, &
Srinivasan, 2004). The treatment is delivered using image guidance, so that
skillful instrument navigation and a thorough understanding of the anatomy
are critical to avoid complications. According to Fuchs (2002), “. . . two major
drawbacks have emerged with the introduction of MIS: firstly, the prolonged
learning curve for most surgeons, in comparison to the learning process in
open surgery; and secondly, increased costs due to investment in the equipment
required and the use of disposable instruments . . .” Since the development of
MIS has a lesser sense of touch compared to open surgery, surgeons must rely
more on the feeling of net forces resulting from tool–tissue interactions and,
eventually, longer training is needed.

The combination of traditional learning methods and technology enhances
trainee satisfaction and skill acquisition level (Engum, Jeffries, & Fisher, 2003;
Tsang et al., 2008). The training methods include live observation of proce-
dures, practicing on mechanical models, and hands-on training using human
cadavers or live animals. In the past, hands-on training was considered the
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best available method (Lunderquist et al., 1995; Mori,
Hatano, Maruyama, & Atomi, 1998). However, it has
ethical issues and it is also expensive, owing to the costs
associated with the use of animals in the process and
because the instruments can be used only once (Coles,
Meglan, & John, 2011).

Several training sessions can be performed with the
aid of simulation techniques, providing certain levels of
proficiency to the physician. Based on these findings, the
U.S. Food and Drug Administration (FDA) accepted
the proposal that considers a virtual reality simulator
(VRS) as an important component of a training pack-
age for carotid stenting: “Trainees would learn catheter
and wire-handling skills on a high-fidelity VRS until the
trainees achieved a level of proficiency in didactic and
technical skills” (Gallagher & Cates, 2004).

Cardiac catheterization is a minimally invasive pro-
cedure commonly used to diagnose and treat heart
conditions (Balaji & Shah, 2011). During catheter-
ization, small tubes (catheters) are inserted into the
circulatory system through the femoral artery and vein
as the preferred access sites (Kasper, 2015). Using X-ray
fluoroscopy, information is obtained about blood flow
and pressures within the heart, and it is determined if
there are obstructions within the blood vessels feeding
the heart muscle. For interventional procedures (e.g.,
stenting and balloon angioplasty), a wire (WI) must be
inserted through the catheter and maneuvered in the
coronaries. Achieving optimal outcomes requires opera-
tor skills in guiding the WI, as well as selecting and using
the surgical tools (Moscucci, 2014).

In general, vascular simulators such as Angio Mentor
by Simbionox, VIST system by Mentince and CATHIS
by CATHi GmbH are expensive and complex. However,
they offer advantages: no radiation is required, specific
cases can be handled with multiple difficulty levels, and
there are no additional costs per training session. Pro-
cedures start with a needle insertion into the vascular
system, but current commercial simulators skip this step
in order to reduce complexity and cost. The guidewire
and the catheter are then manipulated within the vas-
cular anatomy to navigate to the position of interest.
The simulation can be used as an initial training step to
develop skills before further proceeding with training in

animals or humans (Alderliesten, Konings, & Niessen,
2004). Simulators are able to differentiate advanced
operators from novice operators, suggesting that it is
a valid tool in the assessment of performances (Tsang
et al., 2008). VRS are not exclusively used for train-
ing purposes because they can be easily customized to
provide both medical programs and certification boards
with an objective tool for assessing physician skill and
knowledge (Willaert, Aggarwal, Herzeele, Cheshire, &
Vermassen, 2012).

In this work, a complete system for the simulation of
minimally invasive vascular intervention is described.
The environment is composed of a hardware that cap-
tures the movements of the guidewire and an algorithm
that simulates the motion inside arteries. Furthermore,
the commands of the C-arm (an X-ray source and image
intensifier) are incorporated into the hardware.

The major contributions are as follows:

• In comparison with the paper of Konings, van de
Kraats, Alderliesten, and Niessen (2003):

– The WI model is more accurate, especially when
the bending is large.

– The update equations are simpler and the
numerical calculations faster.

– The WI segment can be introduced at once (it
is not necessary to make subdivisions).

• A geometrical method is introduced, which helps
to improve the speed when the WI is hindered by
boundary conditions.

• A hardware device is described, which is simple to
deploy and low cost. This can help to disseminate
the technique and make it widespread.

2 Related Research

This work is based on the developments of Kon-
ings et al. (2003) in an analytical approximation to
the problem of the guidewire. The algorithm is highly
generic and has good convergence properties. It is based
on quasi-static mechanics, which models the guidewire
propagation without specific knowledge about friction
forces. The motion is considered to be the result of a
forced translation of the proximal guidewire body into
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the introducer sheath, effected by the physician. The
translation is a stepwise process which calculates how the
guidewire reacts to an introduction of a small WI seg-
ment, giving a new steady-state position. Alderliesten,
Konings, and Niessen (2007) improved the model,
incorporating the friction between the guidewire and
the vasculature.

The guidewire is similar to the model of the rope
(knot) proposed by Brown, Latombe, and Montgomery
(2004) and extended by Müller, Kim, and Chentanez
(2012) to simulate hair and fur. They apply the idea
based on “Follow the Leader,” which is a purely geo-
metrical technique where a chain of particles defines a
curve representing a rope. Each particle moves towards
its predecessor to enforce their mutual distance to be
constant. The speed of the algorithm for computing
the global shape of the rope saves time that can be used
on the collision detection and on the management
modules.

The Cosserat continuum theory of thin objects
(shells, rods, and points) can be used to model the
guidewire (Pai, 2002; Rubin, 2000). Cao and Tucker
(2008) employed the Cosserat method to explore the
nonplanar nonlinear dynamics of elastic rods. Later,
Gao et al. (2015) described the dynamic behavior of
the guidewire with the Lagrange equations of motion
and applied the penalty method to maintain the con-
straints. They proposed a simplified solving procedure to
integrate the resulting equations more easily.

Another method to model the deformation of a
guidewire or a similar body is a representation based
on the 3D beam theory (Przemieniecki, 1985). The
elementary stiffness matrix relates angular and spatial
positions of each end of a beam element to the applied
forces and torques. Duriez, Cotin, Lenoir, and Neu-
mann (2006) improved the accuracy and treat geometric
nonlinearities, while maintaining real-time computation.
They considered a Finite Element Modeling approach
and developed a new mathematical representation com-
bined with an incremental technique, that allows for
highly nonlinear behavior. In particular, a new method
is presented for correctly handling contact response in
complex situations where a large number of nodes are
subject to nonholonomic constraints.

Some simulators also include interactive fluid dynam-
ics of blood flow, volumetric contrast agent propagation,
and real-time collision detection and response (Coles
et al., 2011). Current efforts are aimed towards integrat-
ing performance assessment and user guidance (Willaert
et al., 2012).

One of the most time-consuming tasks in the sim-
ulation is the calculation of energy gradients in the
Physical Relaxation (PR). This problem has previously
been addressed (Baier, Srinivasan, Baier-Saip, Voelker,
& Schilling, 2015). In particular, an efficient collision–
detection algorithm was developed based on space
partitioning. Furthermore, a continuous vector field
(modulus and direction) was proposed, giving a realis-
tic representation of the WI-surface interaction. On the
other hand, Luboz, Blazewski, Gould, and Bello (2009)
introduced a simplified deformable vascular model, but
it is not smooth and contains surface irregularities which
affect the collision response.

Besides the virtual model, the simulator must cap-
ture the WI motion. The hardware can be built, for
example, using an optical encoder (Kodama et al.,
2012) or a haptic device (Luboz et al., 2009). For
instance, the Vascular Simulation Platform by Xitact is
specifically designed to coaxially track a catheter and a
guidewire. However, these solutions are expensive to
buy or difficult to assemble.

Another promising surgery technique uses teleop-
eration. This technique protects the physician from
X-ray radiation and solves the lack of experienced physi-
cians in remote areas (Yu, Guo, Guo, & Shao, 2015).
The slave manipulator detects the force of a catheter
being inserted into the blood vessels. Then the master
manipulator produces an equal damping force based
on magnetorheological fluids. Since VRS is similar
to teleoperation, any progress made on one front can
contribute to the other one.

3 Methods

The model of Konings et al. (2003) considers the
WI as a discrete set of joints at positions x0, . . . , xn , with
x0 fixed. There are n segments and the i-th segment
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Figure 1. (a) The WI has a curved tip (red) with M segments. They

are numbered from the proximal end to the distal end of the WI.

(b) The new segment (green) points to the same direction as the

segment number n − M, and the total number increases to n + 1.

λi = xi − xi−1 is represented by a small rigid rod which
is neither compressible nor bendable. Further, the size
|λi | is the same for all segments (Alderliesten, Bosman,
& Niessen, 2006).

When parts of the WI are inserted into the vessel,
the current representation is adapted by adding seg-
ments and computing a new configuration with an
optimization algorithm (relaxations). Pushing the WI
into the vessel mainly affects its end, while the rest of
the scene looks almost static. Hence, the natural way
to add a new segment is to introduce it just before the
curved tip, with the same orientation as the previous
segment (see Figure 1). The WI can also be rotated
but this action affects only the tip which is intrinsically
curved.

In Sections 3.1 and 3.2, two different and com-
plementary methods are explained to implement the
relaxation. The combination of both methods is shown
in Section 3.3. In addition, Section 3.4 presents a
hardware which can be used to build this simulator.

3.1 Physical Relaxation

Figure 2 illustrates the WI geometry. Since

xj = x0 +
j∑

k=1

λk ,

updating the i-th segment λi influences the joints from
xi up to xn . For this reason, more relaxations are needed

Figure 2. The WI geometry. The difference between the coordinates

of two consecutive joints xj − xj−1 is equal to the vector λj , which has

a constant length λ. Changing λi modifies only xi , xi+1, . . . , xn−1, xn,

and the difference between the new and the old coordinates

x′
j − xj = λ′

i − λi is the same for j = i, i + 1, · · · , n − 1, n.

close to the distal end of the WI. A PR cycle is defined to
be the sequence of n iterations

iteration 1: update segment n,
iteration 2: update segments n, n − 1,
iteration 3: update segments n, n − 1, n − 2,
...
iteration n: update segments n, n − 1, . . . , 2, 1.

The algorithm of Konings et al. (2003) also pro-
ceeds from the distal end to the proximal end.
The total number of updates in one cycle equals
1
2 n(n + 1).
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To ensure numerical stability, every time an “action”
is performed (add a segment, remove a segment, or
rotate the WI) a Tip Relaxation is executed:

1. A number of 1
2 m(m + 1) updates (corresponding

to the first m iterations) is carried out. Thus, the
m segments closest to the tip are always updated.
Since the actions take place just before the curved
tip (see Figure 1), m is chosen as M + 5 to ensure
that all affected segments will be updated at least
five times before a new action is performed. How-
ever, if the WI is very stiff, then it is necessary to
replace 5 by a bigger number.

2. Additionally, one update is executed for the seg-
ment numbers n−m−5, n−m−10, n−m−15, . . .
up to the proximal end of the WI. This ensures
some degree of relaxation besides the tip. Other-
wise, if a large number of actions is performed in a
short time interval, the rest of the WI would be far
away from equilibrium.

The numerical performance can be increased if
incomplete cycles are carried out; that is, some of
the last iterations (Alderliesten et al., 2007) are sup-
pressed. In what follows, the physical model of the
WI is improved and an updating recipe is given, which
is simpler to apply than the recipe of Konings et al.
(2003).

3.1.1 Bending Energy. Consider the bending
energy Ui of a WI segment (an arc) defined by three
points xi−1, xi , and xi+1 (see Figure 3)

Ui = 1
2

EIi

R2
i

si , (1)

where EIi represents the flexural rigidity, Ri is the
radius, and si = Riθi is the arc length between xi−1 and
xi (or equivalently between xi and xi+1). Note that Ui

does not represent the elastic energy between the points
xi−1 and xi+1, but only half of this arc.

From Figure 3 it follows that the distance between
two points is given by λ = 2Ri sin(θi/2). Hence
Equation 1 can be put in the form

Ui = EIi

2Ri
θi = EIi

λ
θi sin

θi

2
. (2)

Figure 3. Three successive points xi−1 , xi , and xi+1 separated by an

equal distance λ = |λi| = |λi+1| define a circular arc of radius Ri and

angle 2θi .

For θi � 1 the last equation reduces to Equation 3 of
Alderliesten et al. (2004)

Ui = 1
2

EIi

λ
θ2

i .

The angle θi can be calculated using the formula
cos θi = λi .λi+1/λ2. If the WI is intrinsically curved at
joint i, then λi+1 must be replaced by xi+1 − xi − ωi+1

(see Figure 4). Further, rotating the WI changes the
orientation of ωi+1. Since

θ sin
θ

2
≈ (1 − cos θ) + 1

12
(1 − cos θ)2 + 3

1280
θ6 , (3)

up to fourth order in θi

Ui
(
λi , λi+1

) = EIi

12λ

[
13 − 14 cos θi + cos2 θi

]

= Ci

12

[
13 − 14

λi .λi+1

λ2 +
(
λi .λi+1

)2

λ4

]
,

(4)

where Ci = EIi/λ is a spring constant.

3.1.2 Energy Minimization. The orienta-
tion of the i-th segment is updated (λi → λi + αi)
while the others λj are kept constant, in such a way
that the energy decreases. The energy variation of
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Figure 4. The minimum energy of a WI without external forces

results when λi−1 is parallel to λi , and λi is parallel to λi+1 .

If λi−1 = xi−1 − xi−2 + ωi , λi = xi − xi−1 , and λi+1 = xi+1 −
xi − ωi+1 ; then the equilibrium is obtained when xi−2 , xi−1 , xi , and

xi+1 are in the positions indicated. Thus, the vectors ωi bend a free WI.

Ui
(
λi + αi , λi+1

)
around the new position λi + αi →

λi + αi + δαi is up to first order

δUi
(
λi + αi , λi+1

)
= Ci

6λ2

[
− 7 + λi+1.λi + λi+1.αi

λ2

]
λi+1.δαi . (5a)

Furthermore, Ui−1 also varies

δUi−1
(
λi−1, λi + αi

)
= Ci

6λ2

[
−7 + λi−1.λi + λi−1.αi

λ2

]
λi−1.δαi . (5b)

Similarly, if the WI is intrinsically curved at joint i − 1,
then λi−1 must be replaced by xi−1 − xi−2 + ωi (see
Figure 4).

It is convenient to introduce the vectors ûi , ηi , εi , and
the scalar κi defined by

ûi = λi/λ

ηi = ûi−1 − ûi

εi = ûi+1 − ûi

κi = ûi .ûi+1 . (6)

The elastic energy variation of the WI is the sum of
Equations 5a and 5b

δUelas = −Ci

λ

[
(pi + qi)ûi + piηi + qiεi

]
.δαi , (7)

with

pi = 1
6

[
7 − κi−1 − (ûi + ηi).

αi

λ

]
≈ 7 − κi−1

6

qi = 1
6

[
7 − κi − (ûi + εi).

αi

λ

]
≈ 7 − κi

6
, (8)

because κi � 1 and |αi | � λ for small corrections (i.e.,
nearby equilibrium).

Usually, the artery deformations caused by the WI
are tiny (Takashima et al., 2014), so that close to equi-
librium the relation between stress and strain is linear.
Changing λi + αi by δαi affects the coordinates xi , · · · ,
xn by the same amount. Hence, due to the interactions
between the WI and the artery, the surface energy also
varies δUsurf = Gi .δαi . Here Gi stands for the sum of
the gradients from joint i up to the distal end of the WI
(Alderliesten et al., 2004)

Gi =
n∑

j=i

∇j Usurf (xj ) , (9)

where Usurf (xj ) represents energy interaction of joint j
with the artery’s surface.

The total energy variation is

δU =
[
−Ci

λ
(pi + qi)ûi − Ci

λ
(piηi + qiεi) + Gi

]
.δαi

= [
(Bui − ρi)ûi + Bvi v̂i + Bwiŵi

]
.δαi , (10)

where v̂i and ŵi are two unit vectors perpendicular to
ûi , i.e. the set {ûi , v̂i , ŵi} forms an orthonormal basis
with ûi parallel to λi . Furthermore,

ρi = Ci

λ
(pi + qi)

Bi = Gi − Ci

λ
(piηi + qiεi) , (10′)

and Bui = Bi .ûi , Bvi = Bi .v̂i , Bwi = Bi .ŵi .
Since the modulus of λi + αi remains constant, it

follows that |λi + αi |2 = λ2 or 2λi .αi = −|αi |2. Thus,
αi can be written in the form (see Figure 5)

αi = − a2
i

2λ
ûi + H (ai)(cos ψi v̂i + sin ψiŵi) , (11)

with

H (ai) = ai

2λ

√
4λ2 − a2

i . (11′)

Any variation of αi can be expressed using the parame-
ters ai and ψi

δαi =
[
−ai

λ
ûi + dH

dai
(cos ψi v̂i + sin ψiŵi)

]
δai

+ H (ai)(− sin ψi v̂i + cos ψiŵi) δψi . (12)
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Figure 5. The lengths of the vectors λi (old), λ′
i (new) are equal, and

the modulus of αi = λ′
i − λi is ai . Further, the unit vector ûi is parallel

to λi and perpendicular to t̂i = cos ψiv̂i + sin ψiŵi , where ψi

represents the azimuthal angle of αi around λi .

At the minimum, δU = 0 for arbitrary δai and δψi .
Considering first the case δai = 0 and δψi �= 0[ − Bvi sin ψi + Bwi cos ψi

]
H (ai) δψi = 0 ,

from which it is deduced that Bwi cos ψi = Bvi sin ψi .
Hence

cos ψi v̂i + sin ψiŵi = Bvi v̂i + Bwiŵi√
B2

vi + B2
wi

. (13)

Now, the case δai �= 0 and δψi = 0 is examined. From
Equation 11′

dH
dai

= d
dai

(
ai − a3

i
8λ2 + · · ·

)
= 1 − 3a2

i
8λ2 + · · · ,

so that up to first order in ai/λ Equation 12 becomes

δαi =
⎡
⎢⎣−ai

λ
ûi + Bvi v̂i + Bwiŵi√

B2
vi + B2

wi

⎤
⎥⎦ δai ,

where Equation 13 has been used. Therefore Equation
10 gives[

−ai

λ
(Bui − ρi) +

√
B2

vi + B2
wi

]
δai = 0 (14)

and solving

ai = λ

√
B2

vi + B2
wi

Bui − ρi
. (15)

Note that changing the sign of Equation 13, as in the
work of Alderliesten et al. (2004), also changes the sign

of ai in the last equation. Since H (ai) is an odd func-
tion, the product H (ai) (cos ψi v̂i + sin ψiŵi) is the same
irrespective of the chosen sign.

3.1.3 First Order Correction. Because the
norm of the vector λi remains constant, only the change
of direction needs to be updated in the calculations:
ûi → ûi + Δûi = ûi + αi/λ. In particular, note that
for ai � λ Equation 11 becomes

αi ≈ ai(cos ψi v̂i + sin ψiŵi) = λ
Bvi v̂i + Bwiŵi

Bui − ρi

or

Δûi = αi

λ
≈ − ûi × (Bi × ûi)

ρi − ûi .Bi
. (16)

The scalar ûi .Bi = Bi‖ is the projection of Bi along ûi

and ûi × (Bi × ûi) = Bi − ûi(ûi .Bi) = Bi − Bi‖ = Bi⊥
represents the component of Bi perpendicular to ûi (the
infinitesimal variation of a vector with a constant modu-
lus is perpendicular to the vector). Since Δûi is only an
approximation, after updating ûi a renormalization must
be performed.

Mostly ûi .Bi � ρi ∼ 2Ci/λ, so that from Equation
16

Δûi ≈ − ûi × (Bi × ûi)

ρi
. (17)

As ρi is nearly constant, to achieve equilibrium (Δûi →
0) the component of ûi perpendicular to Bi must be
minimized. Notice that Bi depends on Gi , so that the
calculation of Gi plays a crucial role.

Suppose that all updates Δûi have nearly the same
magnitude and are randomly oriented. As in random
walks, the average distance covered by the tip when the
segments between i and n are updated is proportional to√

n + 1 − i. Thus |xn,new−xn,old| can become very large.
To avoid this unstable behavior, the update is bounded
using the formula

|Δûi | ≤ Δumax√
n + 1 − i

, (18)

where i = 1, · · · , n and Δumax is small (∼0.1). In
a frontal collision of the WI with the surface, a single
update can bend the tip at most by the amount Δumax.
When the calculation proceeds, the next iterations will
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bend the tip further until |Δûi | naturally decreases and
the WI approaches equilibrium.

The updates Δûi for small i are tiny because they are
bounded by Equation 18. Hence, instabilities are dissi-
pated and do not propagate to the proximal end of the
WI. It is the tip of the WI (i close to n) which plays an
important role in the simulation and, in this region, a
higher number of updates is performed. Since the relax-
ation is stable, there is no need to introduce the segment
in small steps as in the work of Alderliesten et al. (2004),
and it can be performed at once.

If |Bi | � ρi , the update will be small. In this case, the
denominator in Equation 16 is positive and the update
moves the WI in a direction so as to cancel Bi . But in a
frontal collision of the tip with the artery, Bi can become
very large because of Gi . If the sign of the denominator
is negative, Bi will increase instead of canceling, and the
calculations diverge. In particular, for ρi − ûi .Bi ≈ 0
the modulus |αi | becomes larger than 2λ, which is geo-
metrically impossible. In such cases, the approximation
dH /dai = 1 fails.

To overcome this drawback, Equation 14 should be
considered without approximations

−ai

λ
(Bui − ρi) + 2λ2 − a2

i

λ

√
4λ2 − a2

i

√
B2

vi + B2
wi = 0,

and solve numerically for ai . However, a simple estima-
tion for Δûi can be found. Taking the absolute value in
the denominator of Equation 16

Δûi = − ûi × (Bi × ûi)

|ρi − ûi .Bi | , (19)

the update will always be in the right direction. Note
that using Equation 17 in place of Equation 19 gives
similar results. The magnitude of the correction can still
be large, but since |Δûi | is bounded and ûi is renormal-
ized after each update, it poses no problem. Applying
Equations 18 and 19 in the Tip Relaxation results in a
stable algorithm, even if in a short time interval, a large
number of actions are performed by the user.

Lastly, it is observed that Equation 19 basically
involves the calculation of Bi and the computation
of scalar and cross products with ûi . On the other
hand, Equation 11 of Alderliesten et al. (2004) works

implicitly with an orthonormal basis. It is necessary to
calculate the projections of Bi in this base, to determine
the modulus ai , the angle ψi , and then to construct
the vector αi again using the base. Thus, the method
developed in this work is simpler to apply.

3.1.4 Pseudocode.

void PhysicalUpdate(segment i){
1. calculate the gradient Gi , see Equation 9;
2. calculate the update Δûi , see Equations 18
and 19;
3. update ûi and renormalize;
4. update xi , xi+1, · · · , xn ;
5. update ωi , ωi+1, · · · , ωn ;

}

The function PhysicalUpdate implements the
method described in this section. Next, the process-
ing time (PT) spent in calling the function during a
complete PR cycle is analyzed.

For a segment number i, the calculation of Gi

involves the collision test for n − i segments. During
the cycle of the PR, this function is called 1

2 n(n + 1)

times, and the total number of collision tests in one cycle
is 1

6 n(n + 1)(n + 2). If there is a collision for j > i, then
∇j Usurf (xj ) must be calculated. The number of times
the gradient is computed depends on j . For example, if
j = n/2 the computation is repeated 1

8 n(n + 2) ≈ n2/8
times, and in general it will be a fraction of n2. Thus, the
PT of line 1 has the form 1

6 n(n + 1)(n + 2)T1 + n2T2,
where T1 and T2 are positive constants.

The lines 2 and 3 involve a single execution, so that
the PT of one cycle is proportional to 1

2 n(n + 1).
Finally, lines 4 and 5 give a contribution similar to the
number of collision tests executed, i.e. proportional
to 1

6 n(n + 1)(n + 2). Hence, the estimated PT of the
physical update cycle is

tphy = tp1n + tp2n2 + tp3n3

≈ tp2n2 + tp3n3 . (20)

In the last line, the PT is approximated by the two main
contributions for large n.
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Since Tip Relaxation plays a central role in the algo-
rithm, its PT will also be examined. In the first part,
when the first m segments are updated, the PT is similar
to Equation 20 but with n → m = M + 5 (a con-
stant). In the second part, when the segment numbers
n − m − 5, n − m − 10, n − m − 15, · · · are updated
once, instead of 1

2 n(n + 1) only ∼ (n − m)/5 steps
are executed. Hence, for large n the term n2/2 must be
replaced by n/5 in Equation 20. The overall result is

ttip ≈ tp1m + tp2m2 + tp3m3 + tp3

(
2n
5

)3/2

= const + tp4n3/2 . (21)

For example, if m = 5 + 5 and n = 250, then m3 =
1000 = (2n/5)3/2, that is, the constant has the same
order of magnitude as the last term in Equation 21.

3.2 Geometrical Relaxation

Consider the problem of finding the minimum
energy of a homogeneous WI (EI = const) with the fol-
lowing boundary conditions. The end points xμ and xν

are fixed as well as the tangent vectors to the trajectory
ẋμ and ẋν (the dot denotes differentiation with respect
to the curve parameter τ). Between these points there is
no contact with the surface and the total length of the
curve is not fixed.

3.2.1 Bending Energy. Here, it is necessary to
derive a generalization of Equation 2 when the modu-
lus λi = |λi | is variable. In Figure 6 the three points
xi−1, xi , and xi+1 are joined by two arcs having the
same angle θi but different radii Ri and Ri+1. It is also
possible to join the points using the same radius and dif-
ferent angles, but the calculations become cumbersome.
The sum of the energies in half arc under and in half arc
above the point xi is

Ui = 1
2

EI
R2

i

si
2

+ 1
2

EI
R2

i+1

si+1

2

= EI
2

(
θi

2Ri
+ θi

2Ri+1

)

= EI
2

(
1
λi

+ 1
λi+1

)
θi sin

θi

2
,

Figure 6. Three points xi−1 , xi , and xi+1 are separated by different

distances |λi| �= |λi+1|. The two circular arcs have the same angle θi

but the radii Ri and Ri+1 are not equal.

because sin(θi/2) = λi/2Ri = λi+1/2Ri+1. Using
Equation 3 with cos θi = ûi .ûi+1 results in

Ui = EI
12

(
1
λi

+ 1
λi+1

)
13 − 14 ûi .ûi+1 + (ûi .ûi+1)2

2
.

3.2.2 Energy Minimization. Since only λi and
λi+1 are functions of xi , it follows that Ui−1, Ui , and
Ui+1 depend on this coordinate. Omitting the con-
stant multiplicative factor EI /12, it suffices to analyze
the function

Ψ(xi) =
(

1
λi−1

+ 1
λi

) 13 − 14 κi−1 + κ2
i−1

2

+
(

1
λi

+ 1
λi+1

)
13 − 14 κi + κ2

i
2

+
(

1
λi+1

+ 1
λi+2

) 13 − 14 κi+1 + κ2
i+1

2
. (22)

Notice that Ψ does not contain any physical parameter
and depends solely on the geometry.

The label ∗ will be used to refer to the coordinates of
the improved curve. In order to minimize Ψ, substitute
x∗

i by x∗
i + yi ŷi + zi ẑi , where ŷi and ẑi are orthogonal to

the vector xi+1 − xi−1. The calculation of yi and zi can
be carried out using the Hessian matrix and the gradient(

Ψyy ,i Ψyz,i

Ψyz,i Ψzz,i

) (
yi

zi

)
= −

(
ŷi .∇iΨ

ẑi .∇iΨ

)
. (23)
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The Hessian matrix gives essentially a metric to find
the length of the update

∣∣x∗
i,new − x∗

i,old

∣∣ in the direc-
tion of steepest descent. This direction is determined by
the negative components of the gradient in the plane
defined by ŷi and ẑi . Near the minimum, the Hessian
approaches a constant. Thus, the matrix elements can be
computed numerically

Ψyy ,i = 1
(δλ)2

[
Ψ(x∗

i + δλŷi) − 2Ψ(x∗
i ) + Ψ(x∗

i − δλ ŷi)
]

Ψyz,i = 1
4(δλ)2

[
Ψ(x∗

i + δλ ŷi + δλ ẑi)

− Ψ(x∗
i + δλ ŷi − δλ ẑi)

− Ψ(x∗
i − δλ ŷi + δλ ẑi)

+ Ψ(x∗
i − δλ ŷi − δλ ẑi)

]
Ψzz,i = 1

(δλ)2

[
Ψ(x∗

i + δλẑi) − 2Ψ(x∗
i ) + Ψ(x∗

i − δλ ẑi)
]
,

(23a)

where δλ = λ/104 for calculations performed with
double precision.

On the other hand, the gradient is very sensitive to
numerical round off errors near the minimum. Hence
∇iΨ must be determined analytically with the help of
∇iλ

∗
i−1 = 0, ∇iλ

∗
i = û∗

i , ∇iλ
∗
i+1 = −û∗

i+1, ∇iλ
∗
i+2 = 0,

and

∇iκ
∗
i−1 = û∗

i−1 − κ∗
i−1û∗

i

λ∗
i

∇iκ
∗
i = û∗

i+1 − κ∗
i û∗

i

λ∗
i

− û∗
i − κ∗

i û∗
i+1

λ∗
i+1

∇iκ
∗
i+1 = − û∗

i+2 − κ∗
i+1û∗

i+1

λ∗
i+1

. (23b)

The minimization update is executed for the sequence
i = μ + 1, μ + 2, · · · , ν − 1, which is defined to be an
iteration in the geometrical relaxation (GR) cycle. After
repeating ∼ ν − μ times the iteration, the modulus of
∇iΨ is reduced by a considerable amount, i.e. the curve
approaches the desired solution. Hence, one Geomet-
rical Relaxation (GR) cycle consists of ν − μ iterations,
which has (ν − μ)(ν − μ − 1) ≈ (ν − μ)2 minimization
updates.

Observe that the vectors ŷi and ẑi are calculated only
at the beginning of the minimization procedure. Since

Figure 7. (a) Original curve xi (red), curve after executing the

energy minimization x∗
i (green), and displaced points x′

i (black).

(b) Closer view of three coordinates x∗
i−2 , x∗

i−1 , and x∗
i after the

minimization. The unit vector û∗
i points from x∗

i−1 to x∗
i , and the vector

bij goes from x′
j−1 to the line passing through x∗

i−1 and x∗
i .

The distance between x′
j−1 and x′

j equals λ.

the plane over which the point x∗
i can move is kept con-

stant, the possibility λ∗
i → 0 is ruled out and numerical

instabilities are avoided.

3.2.3 Point Slide. After executing the energy
minimization, the point must be shifted (x∗

i → x′
i) to

restore |λ′
i | = λ. Specifically, x′

i is displaced following
the polyline to obtain |x′

i − x′
i−1| = λ as depicted in

Figure 7(a), an idea which is based on the “Follow the
Leader” technique.

To find x′
j explicitly, consider Figure 7(b). Let x∗

i−1
and x∗

i be two vertices in the polyline such that |x∗
i−1 −

x′
j−1| < λ and |x∗

i − x′
j−1| > λ. Then construct the

vector

bij = û∗
i × [

(x∗
i−1 − x′

j−1) × û∗
i
]

. (24)

The j -th coordinate is calculated with the formula

x′
j = x′

j−1 + bij + û∗
i

√
λ2 − |bij |2 . (25)

In particular, at the beginning x′
μ = xμ.

The previous displacement is performed using a linear
interpolation between x∗

i−1 and x∗
i . It is not difficult to

find a second order correction for the interpolated point
x′

j . This procedure is illustrated in Figure 8: the point x′
j

is displaced in the direction of the unit vector ê∗
i which is

perpendicular to x∗
i −x∗

i−1 = λ∗
i = λ∗

i û∗
i . In order to find



118 PRESENCE: VOLUME 25, NUMBER 2

Figure 8. Second order correction εijê∗
i to the coordinate x′

j . The

displacement is indicated by the green arrow. The arc segment has an

angle θ
∗
i and a radius R∗

i . The distance between x∗
i−1 and x∗

i is λ∗
i ,

and the distance between x′
j and x∗

i is dij .

a formula for ê∗
i , let v̂∗

i− and v̂∗
i+ be two vectors parallel

to û∗
i−1×û∗

i and û∗
i ×û∗

i+1 respectively. Then ê∗
i is chosen

to point in the direction û∗
i × (v̂∗

i− + v̂∗
i+). Notice that ê∗

i
lies in the average of the planes specified by û∗

i−1, û∗
i and

by û∗
i , û∗

i+1. But if v̂∗
i−.v̂∗

i+ ≤ 0 it is not convenient to
perform the second order correction, because the curve
has an inflection and the circumference in Figure 8 is no
longer a good approximation.

To determine the length εij of the displacement, first
calculate the radius of the circumference

R∗
i = λ∗

i

2 sin
(
θ
∗
i /2

) = λ∗
i√

2 − 2 cos θ
∗
i

.

The cosine of the angle θ
∗
i can be found with the dot

product û∗
i−1.û∗

i or û∗
i .û∗

i+1. In general, these prod-
ucts will be different and cos θ

∗
i is set equal to the mean

value. Then the radius becomes

R∗
i = λ∗

i√
2 − û∗

i .
(
û∗

i−1 + û∗
i+1

) . (26)

Let dij be the distance between xi and x′
j . From Figure 8

it is inferred that

εij =
√

(R∗
i )2 −

(
λ∗

i
2

− dij

)2

−
√

(R∗
i )2 −

(
λ∗

i
2

)2

.

(27)

Finally, the replacement x′
j → x′

j + εij ê∗
i is carried out.

Observe that, after replacing, the modulus of the vector
λ′

j = x′
j − x′

j−1 becomes slightly different from λ. There-
fore, it is necessary to move the point x′

j to fix the length
of λ′

j .
The second order correction is in practice very small.

But it is important for points close to the surface because
it avoids abrupt changes of the interaction force in the
PR.

3.2.4 Cubic Spline. To select the interval to
apply the GR, it is desirable to have an approximate ana-
lytical solution x(τ) with boundary conditions xμ, ẋμ,
xν, and ẋν. The two-dimensional static Euler–Bernoulli
equation describing a beam having a small deflection υ is

d4υ

dτ4 = Q
EI

.

For zero transverse load (Q = 0) the solution is a cubic
spline. The four integration constants are determined
using the boundary conditions υ(τμ), υ̇(τμ), υ(τν), and
υ̇(τν).

In 3D the cubic spline becomes

xcub = (1 − τ)xμ + τxν + τ(1 − τ)
[
(1 − τ)sμ − τsν

]
,

(28)

where τ ∈ [0, 1]. Let Xμν = xν − xμ and Ûμ, Ûν be two
unit vectors parallel to ẋμ, ẋν respectively. If the vectors
sμ and sν (associated with the cubic dependencies on τ)
are perpendicular to the line (1 − τ)xμ + τxν connecting
the points xμ and xν, then

sμ = |Xμν|2
Xμν.Ûμ

Ûμ − Xμν

sν = |Xμν|2
Xμν.Ûν

Ûν − Xμν . (29)
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A small deflection occurs when Ûμ and Ûν are nearly
parallel to X̂μν = Xμν/|Xμν|.

3.2.5 Interval Selection. To find a suitable inter-
val to apply the GR, the first step is to search for intervals
whose end points xμ, xν are close to the surface, and
whose inner points xμ+1, · · · , xν−1 are far from the sur-
face. Specifically, a point is considered to be close (far)
when the distance to the surface is smaller (larger) than
5% of the average artery diameter. It will be seen that in
the PR cycle a point near to the surface can be bouncing
(Section 4.4).

Next, discard intervals having few segments, say less
than 5. Also exclude the tip of the WI, which is curved,
and any other interval having a nonconstant flexural
rigidity.

For each of the remaining intervals execute the fol-
lowing operations. Given xμ and xν with tangent vectors
ẋμ = ûμ+ûμ+1 and ẋν = ûν+ûν+1, determine the cubic
spline xcub,i . Then calculate the mean square deviation

σ2
μν = 1

ν − μ

ν∑
i=μ

σ2
i , (30)

where σ2
i = |xi − xcub,i |2. The cases of interest occur

when the deviation σμν is large. Moreover, the cubic
spline is not a good approximation unless Ûμ and Ûν

are nearly parallel to X̂μν; that is, a bad approximation
results if 1 + Ûμ.X̂μν or 1 + Ûν.X̂μν are small. Hence,
calculate the following figure of merit

χμν = (1 + Ûμ.X̂μν)
2(1 + Ûν.X̂μν)

2 σμν, (31)

and select the interval with the largest χμν.
It is not mandatory to move the points when the dis-

tance between xi and xcub,i is small, so that a reduced
interval can be chosen. If σi < 0.10 σμν for i =
μ + 1, μ + 2, · · · , μ+, then replace μ → μ+. Like-
wise, if σi < 0.10 σμν for i = ν − 1, ν − 2, · · · , ν−,
then replace ν → ν−. Note that a shorter interval
decreases the PT to calculate the improved curve, which
is proportional to (ν − μ)2. Moreover, the angles
�(N̂μ, Ûμ), �(N̂ν, Ûν) are likely bigger than the angles
�(N̂μ+, Ûμ+), �(N̂ν−, Ûν−), where N̂i stands for a
vector normal to the artery’s surface. Hence, there is a

smaller probability that the improved curve intercepts
the surface when the interval is reduced.

If an interception occurs, then do not update xi → x∗
i

but use a linear interpolation xi → ζx∗
i + (1 − ζ)xi with

ζ ∈ (0, 1). In practice, ζ should be large but it must avoid
the intersection. Further, to ensure numerical stability it
is convenient to limit ζ such that the tip of the WI does
not displace a distance greater than λ. Thus, after exe-
cuting the GR check if |xn − x′

n| < λ, otherwise decrease
ζ and repeat the interpolation.

3.2.6 Pseudocode.

void GeometricalRelaxation(void){
6. select the interval μ < i < ν to apply the GR, see
Section 3.2.5;
7. execute ν − μ iterations (with a total of (ν − μ)2

energy minimization updates), see Section 3.2.2;
8. shift the points xμ+1, xμ+2, · · · , xn to restore the
length |λj | = λ, see Section 3.2.3;

}

Now, the PT of the GR will be analyzed. The num-
ber of operations necessary to determine the interval in
line 6 is proportional to n. Let us change the resolution
of the WI in such a way that λ ∝ 1/n. If the shape of
the WI does not vary appreciably, then the position of
the points xμ1, xν1 before and xμ2, xν2 after changing
the resolution will be nearly the same. Thus, it is con-
cluded that μ, ν are proportional to n and the PT in line
7 scales with n2 (see Section 3.2.5). Similarly, the PT in
line 8 (proportional to n −μ) scales with n. In summary,
the average PT of the GR cycle is

tgeo = tg1n + tg2n2 . (32)

3.3 Combination of PR and GR

A major drawback of the PR is that the WI
moves as rigid structure about a fixed point. Depend-
ing on the boundary conditions this can be very
hard to achieve. For example, the segment P1P2 in
Figure 9 needs to turn up but it is hindered by contact
points.
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Figure 9. WI segments inside an artery. In order to relax, the

segment P1P2 should rotate upwards about point P1 as indicated by

the arrow. Note that from P2 to P6 the WI is rigid, so that the resulting

translation is hindered by the contact points P3 and P4 . Nor can it

move downwards because of P5 . The GR is not subjected to this

restriction, since from P3 up to P6 the WI can slide. It is especially

designed to relax intervals like from P0 to P3 (red).

One possible solution is the GR developed in Section
3.2, which allows the WI to slide. The GR is executed
after a PR cycle (see Figure 10) and does not inter-
fere with it, because the GR is much faster than the PR
(Section 4.3). In particular, if a user action takes place
during a PR or a GR cycle, then it is interrupted and
a Tip Relaxation is executed (this ensures stability).
Moreover, the shape of the tip (where the actions take
place) looks more natural. The combination of both
techniques results in a more realistic WI behavior than
using only the relaxation proposed by Konings et al.
(2003).

3.4 Wire Device

Here, a simple device to capture the WI motion is
described (see Figure 11). In cardiovascular procedures,
the WI sweeps at most a length of 150 mm inside the
coronary. In view of this fact, the required materials are
as follows:

• Support box.
• Pipe tube of length 320 mm, with a small window in

the middle.
• Light and opaque cylinder 170 mm long.

Figure 10. Workflow. In the “Tip Relaxation” (Section 3.1) the

function PhysicalUpdate is applied to the tip of the WI and also

to some selected segments. When the “Physical Relaxation” is called,
1
2 m(m + 1) updates are executed. The PR is completed if the cycle

ends; that is, after 1
2 n(n + 1) updates. In the same way, when the

“Geometrical Relaxation” is called, m(m + 1)/(ν − μ) iterations are

executed to improve the curve. The GR is completed after ν − μ

iterations.

• Optical mouse with a precision of 1200 dpi or
higher.

• Set of catheter and steerable guidewire with 150
mm free length.

The WI is attached to the cylinder, which is put inside
the pipe. In particular, the friction between the pipe and
the cylinder must be small. The mouse is fixed over the
pipe in such a way that the light-emitting diode stays
on the window. Moreover, it is possible to add extra
commands to improve the simulator. For instance, the
mouse buttons can simulate the contrast injection or
the activation of the X-ray employed in video genera-
tion. Also, a USB-joystick with two axes can be used to
change the C-arm perspective.
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Figure 11. Photography (top-view) and sketch (cross-view) of the

WI device. The pipe has a small window and the mouse is over the

window. Translating and rotating the WI also translates and rotates the

cylinder, which is captured by the mouse.

The WI movement is transferred to the cylinder and
captured by the mouse according to:

• Pushing and pulling the WI = cursor up and down.
• Rotating the WI = cursor left and right.

The mouse must be aligned with the axis of the cylinder;
otherwise translations and rotations will appear mixed.
Depending on the mouse resolution, pointer speed,
and cylinder diameter, different cursor movements are
obtained. Hence, a calibration is required to provide
a correct feedback to the user. As an alternative to the
optical mouse, a piezoelectric captor can be connected
to detect the cylinder motion.

The device has the technology of an optical mouse,
whose movements can be read with basic functions in
any programming language. The manufacturing cost
is low and the portability allows the device to be used
without platform restrictions.

Since the tip of the WI is soft, the contribution to
the sense of touch is not significant. The force feed-
back is due mainly to the friction between the WI and
the catheter (Takashima et al., 2014). In our device this
force is already embodied because the WI slides inside
the catheter. This removes the complex problem of cou-
pling haptics and graphic simulation, especially because
they proceed at different frequencies (of the order of
1000 Hz and 30 Hz, respectively).

4 Technical Evaluation

In order to validate the usefulness and to examine
the limitations of the methods developed in this work,
several analyses are performed including the stability, WI
resolution, and PT of the PR and GR. Moreover, the
interaction between the WI and the artery is inspected.
Finally, the present model is compared with the model
of Alderliesten et al. (2004).

In the simulations, a flexural rigidity EI equal to
6.35 × 10−9 Nm2 is assumed. The algorithm was
implemented in C++, and the tests were performed in
a computer having a Intel Core i7-4500U (2.40 GHz)
and 16 GB of RAM.

4.1 Stability Analysis

The total PT was tested for the artery shown in
Figure 12, which includes a T-like and a Y-like bifur-
cation (Baier et al., 2015). In the first part of the
simulation, the WI is outside the artery and it is quickly
pushed inside (only the Tip Relaxation is applied). The
result (green curve) looks unphysical, but the algorithm
does not crash during a fast insertion of the WI. The sta-
bility is also verified if λ increases to 2.5 mm, so that a
deeper frontal collision occurs at the T-like bifurcation.
However, if the WI becomes very stiff (a huge flexu-
ral rigidity), then it will “perforate” the artery (like a
needle) and the behavior becomes unstable.

In contrast, the algorithm of Alderliesten et al. (2004)
demands a slow insertion of the WI; otherwise it can
crash. For example, in numerical tests Konings et al.
(2003) and Alderliesten et al. (2007) used an internal

http://www.mitpressjournals.org/action/showImage?doi=10.1162/PRES_a_00250&iName=master.img-000.jpg&w=204&h=117
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Figure 12. Artery with a T-like and a Y-like bifurcation. (Left) The WI has 250 segments, λ = 1 mm, and it has been quickly inserted into the

artery (green curve). In this part, the program executed only Tip Relaxations and the time consumed was 0.24 seconds. In the second part, no

action takes place and a combination of 100 relaxation cycles (Physical and Geometrical) is executed, so that equilibrium is attained (blue curve).

The coordinates indicate the location of some WI joints. (Right) Mockup representing the stiff artery. The WI inserted in the artery has the same

shape as the blue curve. The average separation between the physical WI and the blue curve is 0.262 mm with a standard deviation of 0.227

mm. Hence, the calculations with the model developed in this work give a realistic result.

stepsize smaller than λ/10. Since they insert the new
segment in the proximal end of the WI, to guarantee
stability they must execute at least ten times the com-
plete relaxation cycle before a new action takes place.
As in Equation 20, their PT is proportional to n3 for
large n, but in our case it is proportional to a constant
plus n3/2 (see Equation 21). Hence, this method works
much faster under stress conditions.

In the second part of the simulation, a large number
of cycles are executed. The result is the blue curve in
Figure 12 (left) and a numerical comparison with exper-
iment (right) shows that the calculations are truthful.
Besides the specific case in Figure 12, several paths have
been tested and the results were always good.

In real procedures, the physician should not insert
the WI quickly, to avoid vascular damage. For security
reasons, in the specific case of teleoperation the speed
of the slide platform is less than 10 mm/s (Yu et al.,
2015). On the other hand, one of the most annoying
situations encountered by users in simulators is the time

delay between the action and the response. In our sim-
ulator (green curve in Figure 12) the average speed was
(250 mm)/(0.24 s) ≈ 1 m/s.

4.2 Segment Size

The PT will depend on the artery’s resolution
and on the size of the segment λ. The method of Baier
et al. (2015) to calculate Gi is almost independent of
the artery’s resolution. This artery model refers to a
geometry which does not depend on time. Otherwise
the proposed method is not feasible because changes
of shape make it more difficult to use precomputed
data structures for expediting collision tests during
simulation (Brown et al., 2004).

If λ decreases but the WI length remains the same,
the total number of segments n increases. Hence,
with a higher WI resolution the PT becomes longer.
To determine the optimal segment size (Alderliesten
et al., 2004), the influence of λ on the shape of the

http://www.mitpressjournals.org/action/showImage?doi=10.1162/PRES_a_00250&iName=master.img-001.jpg&w=162&h=218
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Figure 13. The green WIA has nA = 100 segments, λA = 2.5 mm

and the blue WIB has nB = 250 segments, λB = 1 mm. Hence

nAλA = nBλB. The arrows indicate one of the intervals μ < i < ν

where the GR is applied. In the case of WIA it was found that μA = 1,

νA = 13 and in the case of WIB it was found that μB = 2, νB = 30.

Thus, μ and ν are closely proportional to n.

WI must be investigated. Afterwards, set the size to
the maximum value which gives a satisfactory visual
effect.

In Figure 13, the simulations for λA = 2.5 mm (WIA)
and λB = 1 mm (WIB) are compared. The equilibrium
looks similar, but the time tA required for WIA is only
11% of the time tB required for WIB . The shape differ-
ence is not due to the precision of the calculations with
different values of λ, but to the contact points with the
artery, which is not the same in the case of WIA and in
the case of WIB . The WIA has less contact points and in
the T-like bifurcation the WIA penetrates deeper inside
the corner of the artery wall. The WIB has a bigger res-
olution and the result is closer to the real artery (see
Figure 12).

Table 1. PT of the PR (tphy) and of the GR (tgeo) for Different
Resolutions: λA = 2.5 mm, λB = 1.0 mm, and λC = 0.4 mm.
The PT Does Not Include the Fast Insertion of the WI, but only
the Relaxation between the Green and the Blue Curves in
Figure 12. The Approximated Times tphy,fit and tgeo,fit Have
Been Obtained with Equation 33

λX 2.5 1.0 0.4

tphy 0.9840 9.330 103.7
tgeo 0.0160 0.0704 0.2431
tphy,fit 1.026 9.321 103.7
tgeo,fit 0.0220 0.0671 0.2435

4.3 Physical and Geometrical PT

A further comparison is made using λC = 0.4
mm (WIC ), so that λA/λB = λB/λC = 2.5 or
nB/nA = nC/nB = 2.5. The relative PT is in Table 1
and for increasing resolution the PT of the PR becomes
much larger than the PT of the GR. The data can be
approximated with Equations 20 and 32

tphy = 0.716
( n

100

)2 + 0.310
( n

100

)3

tgeo = 0.01875
n

100
+ 0.00323

( n
100

)2
. (33)

From Table 1 it can be read that

• For λA = 2.5 mm or nA = 100: tphy/tgeo = 61.6
• For λB = 1.0 mm or nB = 250: tphy/tgeo = 132.5
• For λC = 0.4 mm or nC = 625: tphy/tgeo = 426.5

Note that the ratio tphy/tgeo increases from nA to nB

by a factor 2.15, and from nB to nC by a factor 3.22.
These factors are close to nB/nA = nC/nB = 2.5 or
nearly proportional to n. Indeed, for tp1 = tp2 = 0
in Equation 20 and tg1 = 0 in Equation 32, it follows
that tphy/tgeo ∝ n. In general, for large n the time tgeo is
much smaller than tphy.

The PT of the GR is discussed now in detail. For a
fixed n and given μ, ν, the time in Equation 32 can be
put in the form

tgeo = tμν0 + tμν1(ν − μ) + tμν2(ν − μ)2 . (34)
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Figure 14. GR relaxation time tgeo as function of the interval length

ν − μ. The blue color represents the WIB with nB = 250 segments

(blue curve in Figure 13) and the red color represents the WIC with

nC = 625 segments (not shown in Figure 13). The points are the PT

measured in numerical simulations and the lines are the fits performed

with Equation 34.

The results for WIB and WIC are shown in Figure 14.
Note that there are points missing in the numerical
experiments because in the calculations not every inter-
val size ν − μ occurs. In particular, the blue points are
not far from the red points for ν − μ ≈ 60.

The blue points in the interval 20 < ν − μ < 30
correspond to the red points in the interval 60 < ν −
μ < 90, because μ and ν are nearly proportional to n
(Section 3.2.6). Also, the blue points in 55 < ν−μ < 60
correspond to the red points in 165 < ν − μ < 175.

The PT for a single energy minimization does not
depend on the total number of WI segments. Since
(ν − μ)2 minimization updates are executed in a GR
cycle, the quadratic coefficient in Equation 34 should
always be the same. Indeed, this coefficient is equal to
tg2 = 0.003663, 0.003586 for WIB , WIC , respectively,
and the difference is 2%.

It is also interesting to compare the PT using the PR
(case P ) and using both the PR and the GR (case G).
The outcomes are highly dependent on the initial WI

Figure 15. Initial curve (green) and the final equilibrium curve (blue)

obtained after a very long relaxation time. The final result is the same

with or without the GR. The analysis is focussed in the WI portion

located inside the gray box, which goes from WI segment number 90

to 95. In this interval are seen the most relevant changes during

relaxation.

shape and on the boundary conditions (artery geom-
etry). For instance, Figure 15 shows an initial curve
(green) and the situation is similar to that depicted
in Figure 9. Although the final result is the same in
cases P and G (blue curve in Figure 15), the relax-
ation times are very different. Specifically, the time is
computed so that the difference, between the blue
and green curve for the segments inside the gray box,
is reduced to 10%. The result is tP /tG = 3.73, which
means that the PT with GR is only 27% of the PT
without GR.

As pointed out previously, the ratio tP /tG depends on
the specific boundary conditions and on the initial WI
shape. In all cases tG < tP is obtained, but the reduction
is not always noticeable. In summary, using both the PR
and GR a shorter PT is achieved, although the pertinent



Baier et al. 125

Figure 16. The red bars represent the percentage of the time in

which each joint (blue curve in Figure 12) is in contact with the artery’s

surface. The magenta curve represents the average modulus of the unit

vector update Δûi during a PR cycle.

improvement of the method is found when the WI is
hindered.

4.4 Wire-Artery Contact

It will now be analyzed how much time each
point is in contact with the artery in a static solution (see
Figure 16). In general, a softer WI (small flexural rigidity
EI ) will have more points (a longer interval) in contact
with the artery than a stiffer one (Alderliesten et al.,
2007; Tang et al., 2010). Also, the shape of the artery
will influence the number of collisions. Hence, the flex-
ural rigidity and the shape affect the PT to compute the
surface energy gradient in Equation 9.

Only few points are effectively touching the surface,
holding the WI to the equilibrium position. The points
bounce in the artery and the total number of contacts
vary from one step to the next. For instance, the surface
force can eject the point and then it becomes zero. In
the next steps, due to the elastic restoring force of the
WI, the same point can move back.

The magenta curve in Figure 16 shows the mod-
ulus of the update Δûi . In particular, the maximum

|Δû137| = 9.2 × 10−3 corresponds to an amplitude
variation of 4.6 μm around the average position of xi for
137 ≤ i ≤ 250. Note that in one complete PR cycle,
the unit vector ûi will be updated i times. Furthermore,
after a joint collision has been surpassed, the modulus
drops because the contribution of the surface gradient is
suppressed from the sum in Equation 9.

Although the numerical solution looks unstable,
the oscillations are tiny and they are not percepti-
ble. Moreover, the algorithm is usually applied in
dynamic simulations where the WI is moving, and a final
equilibrium configuration is not required.

4.5 Comparison of Physical Models

The PR is essentially the same relaxation intro-
duced by Alderliesten et al. (2004). The difference is
that in the energy of the i-th joint Ui = Cig(θi) we use
the approximation g1(θi) = (13−14 cos θi +cos2 θi)/12,
while Alderliesten et al. (2004) use g2(θi) = (1 −
cos2 θi)/2. Thus, in the calculations

ki

λ2 = κi−1 � 1

k′
i

λ2 = κi � 1

are replaced by

pi � 1

qi � 1

respectively (see Equation 8).
The functions g1(θ) and g2(θ) are compared with the

exact g(θ) = θ sin(θ/2) in Figure 17. All functions have a
minimum at θ = 0 and, in the absence of external forces,
equilibrium is achieved when there is no bending. For
θ < 0.1 rad = 5.7◦ they are almost identical: the errors
of g1(θ) and g2(θ) are less than 4.7 × 10−5% and 0.29%
respectively. But for θ ∼ 1 rad = 57◦ the function g1(θ)

is clearly superior.
Numerical simulations performed with g1 and with

g2 have been compared. Specifically, the blue curve in
Figure 13 (λB = 1 mm) is relaxed over a long period of
time using our model (without including the GR) and
using the model of Alderliesten et al. (2004). The aver-
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Figure 17. Comparison of the functions g(θ) (red; exact), g1(θ)

(blue; this work), and g2(θ) (green; Alderliesten et al., 2004) in the

interval 0 < θ < π/2.

age difference between both calculations is 0.052 mm,
which is nearly the same precision of the calculations
due to tiny oscillations around the equilibrium position
(Section 4.4). Moreover, for λA = 2.5 mm and for
λC = 0.4 mm the average differences are 0.121 mm and
0.010 mm respectively. Note that for small λ (higher
resolution) the calculations are more precise.

Further, the following average and maximum values
of the angle θi between ûi−1 and ûi were obtained

• For λA : θ = 4.7◦ and θmax = 13.6◦
• For λB : θ = 1.9◦ and θmax = 6.7◦
• For λC : θ = 0.75◦ and θmax = 2.9◦

Hence, the results with g1 and with g2 are practically the
same because the angles θi are small. However, in a deep
frontal collision of the WI with the artery, the angle is
very large. In such situations, it is advantageous to use g1

which gives a better approximation.

5 Conclusions

Using hardware in combination with an algorithm
that responds in real time is helpful for training MIS.

More physicians can be trained over longer periods of
time (increasing skills) and no disposable instruments are
needed (decreasing costs).

In this work, a simulation system for minimally inva-
sive vascular interventions was presented. It consists of
a simple device to capture the guidewire motion and
two complementary methods to relax the WI. The phys-
ical model introduced by Konings et al. (2003) was
improved. Specifically, the results are nearly the same
for small beam deflections, but for larger deflections our
approximation g1(θ) is superior.

The divergence problem, when the denominator in
Equation 16 becomes small or negative, was detected
and solved. The updated formula in Equation 19 is sim-
pler than Equation 11 of Alderliesten et al. (2004). Also,
the algorithm does not crash when the surface gradient
becomes large. Hence, the WI can be moved quickly
into the artery.

The PR has some drawbacks which have been
amended with the GR. The PT of the GR is propor-
tional to n2 and the PT of the PR is proportional to n3.
Therefore, the GR is faster, does not interfere with the
PR, and helps to correct some WI distortions. Using
both methods gives stable and realistic results, as seen in
comparisons of experiments with numerical calculations.

In a stiff artery only few points of the WI are in
contact with the surface. Although these points are
bouncing, the numerical instability is not perceptible.
Moreover, several other cases besides the ones shown
in Section 4 (e.g., different artery shapes, rigidity levels,
paths of the WI inside the mockup) have been tested and
the outcomes have been similar to the previous ones.
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