

POSTER PRESENTATION

Molecular magnetic resonance imaging (MRI) of inflamed myocardium using ferucarbotran in patients with acute myocardial infarction

Ali Yilmaz^{1*}, Sabine Rösch¹, Karin Klingel², Reinhard Kandolf², Xavier Helluy³, Karl-Heinz Hiller³, Peter M Jakob³, Udo Sechtem¹

From 2011 SCMR/Euro CMR Joint Scientific Sessions Nice, France. 3-6 February 2011

Introduction

Superparamagnetic iron oxide nanoparticle (SPIO)-based molecular imaging agents targeting macrophages have been developed and successfully applied in animal models of myocardial infarction.

Purpose

The purpose of this clinical trial was to investigate whether molecular magnetic resonance imaging (MRI) of macrophages using ferucarbotran (Resovist[®]) allows improved visualization of the myocardial (peri-)infarct zone compared to conventional gadolinium-based necrosis/fibrosis imaging in patients with acute myocardial infarction.

Methods

The clinical study NIMINI-1 was performed as a prospective, non-randomised, non-blinded, single agent phase III clinical trial. Twenty patients who had experienced either an acute ST-elevation or non-ST-elevation myocardial infarction (STEMI/NSTEMI) were included to this study. Following coronary angiography, a first baseline cardiovascular magnetic resonance (CMR) study (pre-SPIO) was performed within seven days after onset of cardiac symptoms. A second CMR study (post-SPIO) was performed either 10min, 4h, 24h or 48h after ferucarbotran administration. The CMR studies comprised cine-CMR, T2-weighted "edema" imaging, T2*-weighted cardiac imaging and T1-weighted lategadolinium-enhancement (LGE) imaging.

Results

The median extent of short-axis in-plane LGE was 28% (IQR 19-31%). Following Resovist[®] administration the median extent of short-axis in-plane T2*-weighted hypoenhancement (suggestive of intramyocardial hemorrhage and/or SPIO accumulation) was 0% (IQR 0-9%; p=0.68 compared to pre-SPIO). A significant in-slice increase (>3%) in the extent of T2*-weighted "hypoenhancement" (post-SPIO compared to pre-SPIO) was seen in 6/16 patients (38%). However, no patient demonstrated "hypoenhancement" in T2*-weighted images following Resovist[®] administration that exceeded the area of LGE.

Conclusions

T2/T2*-weighted MRI aiming at non-invasive myocardial macrophage imaging using the approved dose of ferucarbotran does not allow improved visualization of the myocardial (peri-) infarct zone compared to conventional gadolinium-based necrosis/fibrosis imaging.

Author details

¹Robert-Bosch-Krankenhaus, Stuttgart, Germany. ²Department of Molecular Pathology, Tübingen, Germany. ³University of Würzburg, Würzburg, Germany.

Published: 2 February 2011

doi:10.1186/1532-429X-13-S1-P149 Cite this article as: Yilmaz *et al*: Molecular magnetic resonance imaging (MRI) of inflamed myocardium using ferucarbotran in patients with acute myocardial infarction. *Journal of Cardiovascular Magnetic Resonance* 2011 13(Suppl 1):P149.

¹Robert-Bosch-Krankenhaus, Stuttgart, Germany

Full list of author information is available at the end of the article

© 2011 Yilmaz et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.