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Abstract

in vitro was investigated.

pathways were determined.

cancer.

Background: Single drug use has not achieved satisfactory results in the treatment of prostate cancer, despite
application of increasingly widespread targeted therapeutics. In the present study, the combined impact of the
mammalian target of rapamycin (mTOR)-inhibitor RADOO1, the dual EGFr and VGEFr tyrosine kinase inhibitor
AEE788 and the histone deacetylase (HDAQ)-inhibitor valproic acid (VPA) on prostate cancer growth and adhesion

Methods: PC-3, DU-145 and LNCaP cells were treated with RADOO1, AEE788 or VPA or with a RAD-AEE-VPA
combination. Tumor cell growth, cell cycle progression and cell cycle regulating proteins were then investigated by
MTT-assay, flow cytometry and western blotting, respectively. Furthermore, tumor cell adhesion to vascular
endothelium or to immobilized extracellular matrix proteins as well as migratory properties of the cells was
evaluated, and integrin oo and B subtypes were analyzed. Finally, effects of drug treatment on cell signaling

Results: All drugs, separately applied, reduced tumor cell adhesion, migration and growth. A much stronger anti-
cancer effect was evoked by the triple drug combination. Particularly, cdk1, 2 and 4 and cyclin B were reduced,
whereas p27 was elevated. In addition, simultaneous application of RAD001, AEE788 and VPA altered the
membranous, cytoplasmic and gene expression pattern of various integrin o and f subtypes, reduced integrin-
linked kinase (ILK) and deactivated focal adhesion kinase (FAK). Signaling analysis revealed that EGFr and the
downstream target Akt, as well as p70S6k was distinctly modified in the presence of the drug combination.

Conclusions: Simultaneous targeting of several key proteins in prostate cancer cells provides an advantage over
targeting a single pathway. Since strong anti-tumor properties became evident with respect to cell growth and
adhesion dynamics, the triple drug combination might provide progress in the treatment of advanced prostate

Background

Prostate cancer (PC) is a major medical problem facing
the male population. It has become the second most
common cause of cancer death in men in the United
States [1]. In the western world it is the most common
solid tumor in men, followed by lung and colorectal
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cancer. Although PC is highly curable when diagnosed
early, 10 to 15% of patients present with metastases at
diagnosis [2-4]. Another 30% develop metastases after
initially seemingly curative local treatment fails [5]. Surgi-
cal or pharmacological castration is widely accepted as
the treatment of choice in advanced PC. However, after a
period ranging from 14 to 36 months the tumor becomes
hormone refractory. The transition to the hormone
refractory stage and metastatic progression pose severe
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problems in clinical management. Currently, docetaxel
chemotherapy has been shown to have a small positive
impact on survival, with a median survival gain of less
than three months [6,7]. Ultimately, patients succumb as
a result of advanced disease.

Over the past decade, several novel drugs have been
designed to target specific pathways involved in cancer
development and progression. It is assumed that reversal
of abnormal cell signaling observed in PC may effectively
and specifically slow the aggressive behavior of the disease.
This might be particularly true for the phosphatidylinositol
3-kinase (PI3K)/Akt/mammalian target of rapamycin
(mTOR) signaling network which critically regulates PC
growth and dissemination [8]. There is also evidence that
intracellular protein tyrosine kinases which are activated
by cell surface growth factor receptors (e.g. epidermal
growth factor receptor (EGFr) and vascular endothelial
growth factor receptor (VEGFr) control PC growth and
survival [9,10]. Finally, since histone deacetylases (HDAC)
have been demonstrated to be strongly up-regulated in
tumor tissue, HDAC-inhibitors are additionally considered
to be promising anti-tumor candidates [11].

Encouraging results have been reported from preclinical
studies, and a wide range of molecularly targeted therapy
is currently being evaluated in clinical trials. However,
because of the diversity of advanced PC and its capacity to
adapt to changing conditions, modification of only a single
pathway may not ensure long-term effects. Rather, tumor
cells might develop resistance to the inhibitor by activating
surrogate kinases or downstream components. Conse-
quently, inhibition of multiple pathways may be a promis-
ing strategy to avoid adverse effects connected with target
redundancy.

The present work was based on the hypothesis that
combined interference with VEGFr/EGFr, mTOR and
HDAC dependent activation processes might be superior
to blocking each pathway separately. The effect of a triple
drug combination on PC growth and adhesion properties
and the underlying molecular background was evaluated
using the PC cell lines PC-3, DU-145 and LNCaP. The
antitumor agents employed were the mTOR-inhibitor
RADOO01, the dual EGFr and VGEFr tyrosine kinase inhi-
bitor AEE788 and the HDAC-inhibitor valproic acid
(VPA). AEE788 served as the tyrosine kinase inhibitor of
choice due to its bispecific properties. VPA was chosen,
since it has been employed in clinical practice for more
than 40 years. It has a suitable pharmacokinetic profile
and negative side effects are moderate and rare [12].

Methods

Cell cultures

Human prostate tumor cell lines PC-3, DU-145 and LNCaP
were obtained from DSMZ (Braunschweig, Germany).
Normal adult prostatic epithelial PNT-2 cells were
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purchased from Sigma-Aldrich, Miinchen, Germany.
Tumor and normal cells were grown and subcultured in
RPMI 1640 (Gibco/Invitrogen; Karlsruhe, Germany). The
medium contained 10% fetal calf serum (FCS), 2% HEPES-
buffer (1 M, pH 7.4), 2% glutamine and 1% penicillin/strep-
tomycin. Subcultures from passages 7-11 were selected for
experimental use.

Human endothelial cells (HUVEC) were isolated from
human umbilical veins and harvested by enzymatic
treatment with chymotrypsin. HUVEC were grown in
Medium 199 (M199; Biozol, Munich, Germany), supple-
mented with 10% FCS, 10% pooled human serum,
20 pg/ml endothelial cell growth factor (Boehringer,
Mannheim, Germany), 0.1% heparin, 100 ng/ml genta-
mycin and 20 mM HEPES-buffer (pH 7.4). Subcultures
from passages 2-6 were selected for experimental use.

Drugs

AEE788 (provided by Novartis Pharma AG, Basel, Swit-
zerland) was dissolved in DMSO as a 10 mM stock solu-
tion and stored in aliquots at -20°C. Prior to the
experiments, AEE788 was diluted in cell culture medium
to 1 uM. RADOO1 (provided by Novartis Pharma AG,
Basel, Switzerland) was dissolved in DMSO as a 10 mM
stock solution and stored in aliquots at -20°C. Prior to
the experiments, RAD0OO1 was diluted in cell culture
medium to 1 nM. VPA (gift from G. L. Pharma GmbH,
Lannach, Austria) was used at a final concentration of
1 mM. Prostate carcinoma cells were treated either with
1 UM AEE788 or 1 nM RADOO1 for 24 h or with 1 mM
VPA for 3 days, or with all compounds in combination,
AEE788+RAD001+VPA. AEE788 and RADOO1 were then
added for the final 24 h. Controls remained untreated.
To exclude toxic effects of the compounds, cell viability
was determined by trypan blue (Gibco/Invitrogen). For
apoptosis detection the expression of Annexin V/propi-
dium iodide (PI) was evaluated using the Annexin
V-FITC Apoptosis Detection kit (BD Pharmingen, Hei-
delberg, Germany). Tumor cells were washed twice with
PBS, and then incubated with 5 pl of Annexin V-FITC
and 5 pl of PI in the dark for 15 min at RT. Cells were
analyzed on a FACScalibur (BD Biosciences, Heidelberg,
Germany). The percentage of apoptotic cells (early and
late) in each quadrant was calculated using CellQuest
software (BD Biosciences).

Tumor cell adhesion

To analyze tumor cell adhesion, HUVEC were transferred
to 6-well multiplates (Falcon Primaria; BD Biosciences) in
complete HUVEC-medium. When confluency was
reached, PC-3, DU-145 or LNCaP cells were detached
from the culture flasks by accutase treatment (PAA
Laboratories, Colbe, Germany) and 0.5 x 10° cells were
then added to the HUVEC monolayer for 1 h, 2 h or 4 h.
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Subsequently, non-adherent tumor cells were washed off
using warmed (37°C) Medium 199. The remaining cells
were fixed with 1% glutaraldehyde. Adherent tumor cells,
which appeared translucent with a rounded morphology,
were counted in five different fields of a defined size (5 x
0.25 mm?) using a phase contrast microscope and the
mean cellular adhesion rate was calculated.

Attachment to extracellular matrix components

6-well plates were coated with collagen G (extracted from
calfskin, consisting of 90% collagen type I and 10% col-
lagen type III; Seromed; diluted to 400 pg/ml in PBS),
laminin (derived from the Engelbreth-Holm-Swarm
mouse tumor; BD Biosciences; diluted to 50 pg/ml in
PBS), or fibronectin (derived from human plasma; BD
Biosciences; diluted to 50 pug/ml in PBS) overnight. Unspe-
cific cell binding was evaluated by culture plates treated
with Poly-D-Lysin (Nunc, Wiesbaden, Germany). Plastic
dishes served as the background control. Plates were
washed with 1% BSA (bovine serum albumin) in PBS to
block nonspecific cell adhesion. Thereafter, 0.5 x 10°
tumor cells were added to each well for 60 min. Subse-
quently, non-adherent tumor cells were washed off, the
remaining adherent cells were fixed with 1% glutaralde-
hyde and counted microscopically. The mean cellular
adhesion rate, defined by adherent cells oaed wen - adherent
cellspackgrounds Was calculated from five different observa-
tion fields.

Cell migration and invasion

Serum induced cell migration was examined using 6-well
Transwell chambers (Greiner, Frickenhausen, Germany)
with 8- um pores, precoated with collagen (400 pg/ml).
0.5 x 10° PC-3 or LNCaP cells/ml were incubated with
VPA, AEE788, RADO0O1, or the drug combination.
Controls remained untreated. To evaluate cell migration,
cells were then placed in the upper chamber for 20 h in
serum-free medium. The lower chamber contained 10%
serum. After incubation, the upper surface of the Trans-
well membrane was wiped gently with a cotton swab to
remove non-migrating cells. Cells which migrated to the
lower surface of the membrane were stained using hema-
toxylin and counted. Graphical results are shown as %
inhibition as compared to the 100% untreated control.

Measurement of tumor cell growth

Cell proliferation was assessed using the 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) dye reduction assay (Roche Diagnostics, Penzberg,
Germany). Treated versus non-treated PC-3, DU-145 or
LNCaP cells (100 pl, 1 x 10* cells/ml) were seeded onto
96-well tissue culture plates. After 24, 48 and 72 h, MTT
(0.5 mg/ml) was added for an additional 4 h. Thereafter,
cells were lysed in a buffer containing 10% SDS in 0.01 M
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HCIL. The plates were allowed to stand overnight at 37°C,
5% CQO,. Absorbance at 570 nm was determined for each
well using a microplate ELISA reader. Each experiment
was done in triplicate. After subtracting background
absorbance, results were expressed as mean cell number.

Cell cycle analysis

PC-3, DU-145 or LNCaP cells were grown to 70% con-
fluency and then treated with AEE788, RADOO1 or with
VPA or with all compounds in combination (controls
remained untreated). Cell cycle analyses were carried out
after 24 h. After 24 h tumor cell populations were stained
with propidium iodide using a Cycle TEST PLUS DNA
Reagent Kit (Becton Dickinson) and then subjected to
flow cytometry with a FACScan flow cytometer (Becton
Dickinson). 10,000 events were collected from each sam-
ple. Data acquisition was carried out using Cell-Quest
software and cell cycle distribution calculated using the
ModFit software (Becton Dickinson). The number of
gated cells in G1, G2/M or S-phase was presented as %.

Integrin surface expression

PC-3 or LNCaP cells were washed in blocking solution
(PBS, 0.5% BSA) and then incubated for 60 min at 4 C
with phycoerythrin (PE)-conjugated monoclonal antibo-
dies directed against the following integrin subtypes: Anti-
al (IgG1; clone SR84), anti-a2 (IgG2a; clone 12F1-H6),
anti-a.3 (IgG1; clone C3IL.1), anti-a4 (IgG1; clone 9F10),
anti-o5 (IgG1; clone ITIA1), anti-a6 (IgG2a; clone GoH3),
anti-B1 (IgG1; clone MAR4), anti-33 (IgG1; clone VI-PL2)
or anti-B4 (IgG2a; clone 439-9B; all: BD Biosciences).
Integrin expression of tumor cells was then measured
using a FACscan (Becton Dickinson; FL-2H (log) channel
histogram analysis; 1 x 10* cells/scan) and expressed as
mean fluorescence units. A mouse IgG1-PE (MOPC-21)
or IgG2a-PE (G155-178; all: BD Biosciences) was used as
an isotype control.

Real Time (RT) qPCR

RT qPCR was also done in triplicate. cDNA-synthesis was
performed using 3 pg of total RNA per sample according
to the manufacturer’s protocol by AffinityScript QPCR
c¢DNA Synthesis Kit (Stratagene, Amsterdam, Nether-
lands). Quantitative gene expression analysis by Real Time
PCR was performed by the M x 3005 p (Stratagene,
Amsterdam, Netherlands) using SYBR-Green SuperArray
(SABioscience Corporation, USA) and SuperArray primer
sets: GAPDH (NM_002046.3, Hs.592355), integrin
ol (ITGA1l, NM_181501, Hs.644352), integrin a2
(ITGA2, NM_002203, Hs.482077), integrin a3 (ITGA3,
NM_002204, Hs.265829), integrin a5 (ITGA5, NM _
002205, Hs.505654), integrin 0.6 (ITGA6, NM_000210,
Hs.133397), integrin B1 (ITGB1, NM_002211, Hs.643813),
integrin 3 (ITGB3, NM_000212, Hs.218040), integrin 34
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(ITGB4, NM_000213, Hs.632226; all: SABioscience Cor-
poration). Calculation of the relative expression of each
gene was done by the AACt method in the analysis pro-
gram of SABioscience Corporation. The housekeeping
gene GAPDH was used for normalisation.

Western blot analysis

To explore cell cycle regulating proteins as well as the
whole cellular integrin level, tumor cell lysates were
applied to a 7% polyacrylamide gel and electrophoresed
for 90 min at 100 V. The protein was then transferred to
nitrocellulose membranes. After blocking with non-fat
dry milk for 1 h, the membranes were incubated over-
night with monoclonal antibodies directed against cell
cycle proteins: Cdkl (IgGl, clone 1), cdk2 (IgG2a, clone
55), cdk4 (IgG1, clone 97), cyclin B (IgG1, clone 18),
cyclin D1 (IgG1, clone G124-326), cyclin E (IgG1, clone
HE12), Rb (IgG2a, clone 2), Rb2 (IgG2a, clone 10), p21
(IgG1, clone 2G12), p27 (IgG1, clone 57; all: BD Bios-
ciences). Integrins were analyzed using the monoclonal
antibodies listed above. Additionally, integrin-related sig-
naling was explored by anti-integrin-linked kinase (ILK;
clone 3), anti-focal adhesion kinase (FAK; clone 77) and
anti-phospho-specific FAK (pFAK; pY397; clone 18) anti-
bodies (all: BD Biosciences). HRP-conjugated goat-anti-
mouse [gG (Upstate Biotechnology, Lake Placid, NY,
USA; dilution 1:5.000) served as the secondary antibody.
The membranes were briefly incubated with ECL detec-
tion reagent (ECL™, Amersham/GE Healthcare,
Miinchen, Germany) to visualize the proteins and
exposed to an x-ray-film (Hyperfilm™ EC™, Amersham/
GE Healthcare). B-actin (1:1.000; Sigma, Taufenkirchen,
Germany) served as the internal control.

For control purposes, EGF receptor (EGFr) and mTOR
signaling were evaluated. Prostate carcinoma cells were
treated with each drug alone or with the triple drug com-
bination as indicated above. Cells were then kept for 2 h
in serum-free cell culture medium and subsequently sti-
mulated for 30 min with EGF (100 ng/ml). The following
monoclonal antibodies were used: Akt (IgG1, clone 55,
dilution 1:500), phospho Akt (pAkt; IgG1, clone 104A282,
dilution 1:500), ERK1 (IgG1, clone MK12, dilution
1:5000), ERK2 (IgG2b, clone 33, dilution 1:5000), phospho
ERK1/2 (pERK; IgG1, clone 20A, dilution 1:1000), EGFr
(IgG1, clone 13/EGFR, dilution 1:500), phospho EGFr
(pEGFr; 1gG1, clone 74, dilution 1:1000; all: BD Bios-
ciences), p70S6k (IgG, clone 49D7, dilution 1:1000), phos-
pho p70S6k (pp70S6k; IgG, clone 108D2, dilution 1:1000;
all: New England Biolabs, Frankfurt, Germany).

Statistics
All experiments were performed 3-6 times. Statistical
significance was investigated by the Wilcoxon-Mann-
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Whitney-U-test. Differences were considered statistically
significant at a p value less than 0.05.

Results

Analysis of tumor cell growth and cell cycle progression
Growth of PC-3, DU-145 or LNCaP cells was inhibited
significantly by each drug alone, whereby VPA or
RADOO1 application was superior to AEE788 treatment
(Figure 1). VPA distinctly reduced the amount of G2/
M-phase and S-phase cells and strongly enhanced the
amount of GO/G1 phase cells. RAD0OO1 particularly
diminished the amount of G2/M-phase cells and up-
regulated the number of GO/G1 phase cells, which both
may account for the observed reduction of tumor
growth. With respect to PC-3, the amount of S-phase
cells was also slightly elevated, compared to controls,
which points to an S-phase arrest as a further mechan-
ism of RADO0O1.

AEE788 exerted only minor effects on phase shift. The
triple drug treatment resulted in a dramatic loss of
tumor cell growth, which was more pronounced than
growth blockade induced by the single drug regimen. In
addition, more cells accumulated in GO/G1 and fewer
cells remained in the S-phase, compared to the single
drug application. In all experiments, cell growth reduc-
tion due to apoptotic events could be excluded as
revealed by the Annexin V-FITC assay.

Cell growth studies were also carried out with PNT-2
cells. Cell number of controls moderately increased
from 100% to 166 +/- 21% (72 h values). RAD001 did
not interfere with this event. VPA (-16.9 +/- 2.2%) and
AEE788 (-10.8 +/- 1.9%) slightly but significantly dimin-
ished PNT-2 cell number after 72 h, however, not in the
magnitude seen with PC-3, DU-145 or LNCaP cells.

Triple drug treatment alters the expression of cell cycle
regulating proteins

Drug evoked effects on cell cycle proteins depended on
both the agent and the cell line used. VPA diminished
cdkl in all prostate cancer cell lines, whereas cdk2 and
cdk4 were reduced in DU-145 and LNCaP, but not in
PC-3 cells (Figure 2). Cyclin B was reduced in PC-3 and
DU-145, but not in LNCaP cells. The opposite was true
for cyclin E, which was enhanced in PC-3 and DU-145.
p21 was elevated by VPA in PC-3 and DU-145 cells,
p27 was highly up-regulated in PC-3 and moderately in
DU-145 and LNCaP cells.

AEE788 diminished cyclin B and D1 in PC-3 and DU-
145 cells, whereas cyclin E was down-regulated in all
cell lines. Elevation of p27 was exclusively evoked in
DU-145 cells.

RADOO01’s effects were particularly seen in blocking
cyclin B and E expression. Cyclin D1 was enhanced in
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Figure 1 Cell growth (left) and cell cycle (right) analysis of PC-3, DU-145 or LNCaP cells. Tumor cells were treated either with 1 uM
AEE788, T mM VPA or 1 nM RADOO1, or with all compounds simultaneously (triple drug), as indicated in the materials section. Controls
remained untreated. Cells were counted after 24, 48 and 72 h using the MTT dye reduction assay. One representative experiment of six is
shown. Cell cycle analysis was carried out after 24 h. The cell population at each specific checkpoint is expressed as percentage of the total cells
analyzed. One representative experiment of three is shown. *indicates significant difference to controls, #indicates significant difference to single

PC-3

),

-

[e2]
o
L

S
o
L

zzz G2/IM
s
N G0/G1

20 -

control  VPA RADO01 AEE788 Triple

120

100 7 , vz W

80 +

60 |

G2/M
s
Il G0/G1

control  VPA RADO01 AEE788 Triple

120

LNCaP

zza G2IM

s
N G0/G1

control  VPA RADO01 AEE788 Triple

PC-3 cells in contrast to the action of AEE788 on this
cell line.

Triple drug treatment reduced cdkl, cdk2, cdk4 and
cyclin B in all cell lines to a higher extent than did sin-
gle drug treatment. A combinatorial benefit was also
seen with respect to Rb and Rb2. p27 expression was
much more elevated in PC-3, DU-145 and LNCaP cells

by triple drug use, compared to incubation with each
agent alone.

Down-regulation of tumor cell adhesion and migration by
triple drug treatment

Subsequent experiments evaluated the impact of the test
compounds on prostate cancer cell adhesion. All drugs
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figure shows one representative from three separate experiments.

Figure 2 Western blot analysis of cell cycle proteins, listed in methods. PC-3, DU-145 or LNCaP cells were treated either with 1 uM AEE788,
1 mM VPA or 1 nM RADOO1, or with all compounds simultaneously (triple drug). Controls remained untreated. Cell lysates were then subjected
to SDS-PAGE and blotted on the membrane incubated with the respective monoclonal antibodies. B-actin served as the internal control. The

significantly down-regulated tumor cell attachment to
HUVEC, compared to the untreated controls, with VPA
being most potent (Figure 3). The combined use of
three compounds was superior to single drug applica-
tion in down-regulating tumor cell attachment with PC-
3 and DU-145 but not with LNCaP cells. VPA did not
influence PNT-2-HUVEC interaction, whereas AEE788
and RADOO1 slightly diminished this process by 23.6 +/-
4.9 or 20.6 +/- 4.7%, respectively (2 h values each). No
beneficial effect was seen in presence of the triple drug
regimen, compared to single drug treatment.

The influence of single versus triple drug treatment
on tumor cell binding to extracellular matrix proteins
is shown in Figure 4. Binding to immobilized collagen,
fibronectin or laminin (PC-3, DU-145) or to immobi-
lized collagen or fibronectin (LNCaP) was strongly
blocked by VPA, RADO001 or AEE788. Since untreated
LNCaP cells only marginally attached to laminin, drug

induced effects on LNCaP-laminin interaction were
not analyzed. No drug effects were seen on prostate
carcinoma cell lines grown on Poly-D-Lysin coated
dishes (data not shown). The triple drug regimen
further diminished the amount of attached cells in all
assays except the DU145-fibronectin experiment. Bind-
ing of PNT-2 cells to collagen revealed no differences
between controls and drug treated cells (data not
shown).

Since distinct adhesion differences were seen between
LNCaP and DU-145/PC-3 but not between DU-145 and
PC-3 cells, subsequent migration experiments were con-
centrated on PC-3 and LNCaP. In doing so, VPA dimin-
ished migration properties of PC-3 and LNCaP cells.
AEE788 and RADOO1 also acted on PC-3 but not of
LNCaP cells (Figure 5). PC-3 and LNCaP migration was
further reduced when the three drugs were applied
simultaneously.
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Drug treatment alters integrin oo and  subtype
expression

In ongoing studies, integrin subtype expression was
explored in PC-3 and LNCaP cells. Figure 6 (left)
depicts the percentage change of integrin surface level
induced by single or tripled drug treatment. VPA
enhanced a1 and a3 and diminished the a5, a6, B3 and
B4 expression level on PC-3 cells. The a4 integrin sub-
type was not detected on the surface of untreated PC-3
cells (data not shown). Differently from PC-3, VPA
induced 0.2, a3, a5, a6 and B1 up-regulation on LNCaP
cells. LNCaP control cells were negative for a1, a4, 3
and B4 integrins. In contrast to VPA, RADOO1 elevated
a2 and B3 and diminished a5 on PC-3, and enhanced
a3 on LNCaP cells. AEE788 exclusively reduced the a5
integrin subtype on PC-3 and up-regulated a3 on
LNCaP cells. When tumor cells were exposed to the

triple drug regimen, al surface expression further
increased on PC-3 cells, compared to VPA single drug
use, and additive effects were evoked on a3 expression
on LNCaP cells.

Western blotting demonstrated enhanced a2, a3, a5,
B1 and B4 protein expression accompanied by a dimin-
ished a6, B3 and ILK protein level in PC-3 cells when
exposed to VPA. VPA also induced a2, a3, a5 elevation
and a6 reduction in LNCaP cells. However, the 1
integrin was down-regulated by VPA in this cell line
(Figure 6, right). VPA also triggered the loss of ILK and
FAK (total and activated). RAD0OO1 enhanced a2, 33
and B4 integrins and reduced both the a5 integrin and
ILK in PC-3 cells. It triggered a3 and o5 elevation and
simultaneously evoked down-regulation of ILK and
pFAK in LNCaP cells. AEE788 diminished 3 in PC-3
cells. Concerning LNCaP cells, the a3 integrin portion
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was up-regulated, whereas ILK and pFAK were reduced
by this compound.

Analysis of integrin coding genes revealed that VPA
considerably reduced the B3 coding mRNA in PC-3 cells
(Figure 7). The same effect, although to a lesser extent,
was seen when AEE788 or RAD001 was used. An addi-
tive action was evoked by the triple drug combination. In
contrast, only VPA acted on LNCaP cells by elevating a3
integrin mRNA, and no additive effects were induced by
the triple drug protocol.

Analysis of intracellular signaling

The interference of RADO001, AEE788 or VPA with
intracellular signaling (Figure 8) was investigated. VPA
diminished EGFr (total and activated), pERK and

phosphorylated p70S6k in all cell lines. Analysis of pAkt
revealed conflicting results, since this protein was dis-
tinctly reduced in DU-145, strongly enhanced in
LNCaP, whereas a protein double band appeared in PC-
3 cells. Both, pEGFr and pERK were down-regulated in
all tumor cells following AEE788 exposure, but pp70S6k
expression was similar between treated and untreated
cells. The latter was also true with respect to pAkt.
RADOO01 reduced pEGFr in PC-3 and LNCaP and pERK
in PC-3 and DU-145 cells. RAD001 also down-regulated
pp70s6 k in all explored cell lines.

Triple drug treatment provided combinatorial benefit
with respect to EGFr (PC-3, LNCaP), pEGFr (DU-145),
pERK (all cell lines) and pp70S6k (all cell lines) loss.
Furthermore, the amount of pAkt proteins was greatly
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elevated in PC-3 and LNCaP cells, exceeding the pAkt
levels evoked by single drug use. pEGFr down-regulation
induced by single drug treatment in PC-3 and LNCaP
cells was reverted by the triple drug application.

Discussion

The combined inhibition of EGFr/VEGFr and mTOR
related pathways, coupled with HDAC deactivation, pro-
foundly blocked PC growth and adhesion. The blocking
effect was similar in all employed cancer cell lines and
more extensive, compared to the single drug regimen.
This is important, since each compound interferes with
the tumor’s molecular machinery differently. Cdk2 and
cdk4 were diminished by VPA in DU-145 and LNCaP
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but not in PC-3 cells. Cyclin E was elevated by VPA but
reduced by AEE788. RAD001 profoundly altered cyclin
B in DU-145 but not in PC-3 and LNCaP cells. Several
investigators have recently demonstrated that a tumor
cell’s response to a particular drug depends on receptor
and protein configuration, which is characteristic in the
different PC cell lines [13,14]. It has been shown that
the PC phenotype determines its sensitivity towards
treatment with a tyrosine kinase inhibitor [15], mTOR
[16] or HDAC-inhibitor [17].

The variable response of the cell lines to a single drug
treatment is not foreseeable, due to the PC’s heteroge-
neous nature, resulting in different malignant matura-
tion pathways and protein profiling. Analysis of mTOR
in PC patients revealed distinct heterogeneity in the
study cohort [18]. The same was true with respect to
EGFr and VEGF expression [19], and to the HDAC level
[20]. Given the molecular specificity of each targeted
compound, it is unrealistic to expect similar biochemical
reactions in every PC cell line. The data presented here
demonstrate that the triple drug combination circum-
vents this problem by exerting anti cancer properties in
different tumor cell types according to the particular
molecular profile. From a clinical viewpoint, simulta-
neous use of a set of drugs with complementary phar-
macological characteristics may enhance the total
percentage of responders, as well as the elimination rate
of tumor clones in each individual patient. The VPA-
RADO01-AEE788 drug combination diminished cdkl,
cdk2, cdk4 and cyclin B in PC-3, DU-145 and LNCaP
cells to a similar extent, although each compound modi-
fied these proteins differently when given separately. In
a TRAMP mouse model, it has been shown that PC
growth and progression is regulated by these proteins
and that blocking cdk2, cdk4 and cyclin B expression
results in suppression of cell cycle progression and cell
proliferation [21]. There is also evidence that therapeutic
elevation of Rb2 and p27 contributes to PC prevention
[22], and indeed, Rb2 (PC-3, DU-145) and p27 up-regu-
lation was observed when the triple drug combination
was applied. The role of p21 is difficult to interpret,
since it was only marginally expressed in PC-3 and DU-
145 cells and slightly enhanced by the triple drug proto-
col. Enhancement of p21 has been attributed to growth
delay and apoptosis induction [23,24], although reduc-
tion of p21 did not hinder this process [25]. Therefore,
it may be assumed that p21 plays a minor role in VPA-
RADO001-AEE788 evoked cell growth blockade.

A noteworthy phenomenon was seen with cyclin E,
becoming elevated by VPA but diminished by AEE788.
Controversial data has been published relevant to this
phenomenon. HDAC-inhibition led to tumor growth
arrest, accompanied by increased levels of cyclin E in
leukemia and lung cancer cells [26,27], decreased cyclin
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Figure 6 Analysis of integrin surface expression (left) and intracellular integrin protein level (right). PC-3 or LNCaP cells were treated
either with 1 uM AEE788, 1 mM VPA or 1 nM RADOOT1, or with all compounds simultaneously (triple). Non-treated cells served as the controls.
To explore integrin surface expression, cells were washed in blocking solution and stained with specific monoclonal antibodies as listed in
materials and methods. A mouse IgG1-PE or IgG2a-PE was used as the isotype control. Fluorescence was analysed using a FACScan flow
cytometer, and a histogram plot was generated to show PE-fluorescence. The mean fluorescence units are given in percentage difference to the
controls. One of three independent experiments is shown here. *indicates significant difference to controls, #indicates significant difference to
single drug treatment. To carry out western blotting, cell lysates were subjected to SDS-PAGE and blotted on the membrane incubated with the
respective monoclonal antibodies (including anti-ILK, anti-FAK and anti-pFAK). B-actin served as the internal control. The figure shows one

E levels in breast cancer [28], whereas cyclin E was not
changed in bladder cancer [29]. Information about
AEE788 is sparse. AEE788 reduced cyclin E in one (of
three) kidney tumor cells [30], which was also inhibited
by the dual EGFr and VEGFr inhibitor ZD6474 in breast
tumors [31]. Down-regulation of cyclin E also takes
place in several tumor types when the tyrosine kinase
inhibitors sorafenib or sunitinib was applied [32-34].
Considering that cyclin D1 was simultaneously dimin-
ished by AEE788 (in PC-3 and DU-145 cells), we
assume that cyclin reduction represents a specific
mechanism of this compound. In contrast, VPA’s activ-
ity on cyclin E may vary with the tumor type. Whether
the VPA triggered cyclin E increase in PC contributes to
a loss of proliferative capacity, reflects a negative

feedback loop or an unspecific phenomenon warrants
further evaluation.

Interestingly, moderate growth blocking effects of VPA
and AEE788 were also induced on normal prostatic
epithelial PNT-2 cells. When interpreting these data, it
should be considered that PNT-2 cell lines have been
immortalized by introducing the SV40 large T antigen.
This procedure significantly alters the physiology of the
cells with the consequence that the “normal” cells acquire
tumor-specific characteristics [35,36]. Indeed, PNT-2
demonstrated a significant proliferative activity in the
MTT-assay, contrasting the behavior of physiologically
intact prostate cells. Since the drugs applied act on cell
cycle progression, it is not surprising to see moderate
anti-proliferative action also on this cell type.
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Beside cell growth reduction, the VPA-RADOO1-
AEE788 combination interfered with processes related
to tumor invasion. This is highly relevant, because meta-
static spread is the major obstacle in treating PC.
Alterations of the integrin adhesion receptors caused by
the agents did not reveal a straightforward pattern.
Based on PC-3 cells, a2 and 1 integrins were elevated,
a6 and B3 integrins reduced, while B4 integrins were
diminished on the cell membrane, but the total $4
integrin level (including the cytoplasmic content) was
enhanced.

It has recently been demonstrated that blocking 33 or
B4 integrin membrane presentation significantly lowers
PC cell attachment to endothelium and extracellular
matrix [13]. Therefore, prevention of 3 and 4 integrin
driven cell-cell or cell-matrix communication might be
one mechanism accounting for how the drug combination
modulates invasive processes. A positive correlation
between 33 or B4 integrin expression and PC metastasis
has already been reported [37-39]. A different background
should be considered when interpreting 1 (as well as a.2)
integrin expression. Obviously, the f1 integrin does not
exclusively serve as a mechanistic binding receptor but
rather transduces signals that inhibit the invasive behavior
of epithelial cells [40]. Possibly, the elevation of integrin 1
reported in this investigation may cause the neoplastic
phenotype to revert to a less invasive phenotype as has
previously been reported [41]. Blocking an antibody to 1
integrin did not impair PC migration in vitro [39], which
is in good accordance with this hypothesis. An interesting
aspect has been proposed by Goel et al. who discovered
that integrin B1 prevents PC cancer progression by up-
regulating the secretion of angiogenesis blocking factors
[42]. Therefore, use of VPA-RADO001-AEE788 may not
only be beneficial in inhibiting tumor growth and invasion
but also for counteracting processes related to angiogen-
esis. Overall, the role of integrins is complex. Beside sur-
face expression, integrin clustering, spatiotemporal
dynamics of integrin internalization and recycling deter-
mine whether a tumor cell becomes motile or not [43]. It
should also be considered that drugs with a chemical
structure slightly different from those used in the present
investigation may not necessarily induce the same
response.

A strong de-activation of p70S6k was induced in all cell
lines by the triple drug regimen, which may explain how
the drugs diminished PC growth in the present investiga-
tion. In fact, attenuation of p70S6k was reported to sup-
press proliferation of aggressive PC and to trigger
autophagic death in vitro [44,45]. Paradoxically, phos-
phorylation of Akt increased in PC-3 and LNCaP cells
following drug exposure. A similar phenomenon has
been observed by Sun and coworkers who discovered
that suppression of p70S6k activity was paralleled by
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elevation of Akt activity [46]. The clinical relevance is not
clear. Analysis of peripheral blood mononuclear cells in
patients treated with RADOO1 for relapsed or refractory
hematologic malignancies revealed a decreased phos-
phorylation of both p70S6k and pAkt [47]. The latter
report corresponds to the effects of the triple drug com-
bination on DU-145 cells in our assay which were also
paralleled by down-regulation of p70S6k and pAkt (in
contrast to PC-3 and LNCaP). At this point, it is not pos-
sible to determine which of the pAkt modifications
reflect the desired pharmacological mode of action and
which may be correlated to a negative feedback loop.

Conclusions

Simultaneous targeting of three intracellular mechan-
isms profoundly blocks PC cell adhesion and growth in
vitro. This strategy may provide a clinical benefit in PC
patients. No study data are available so far in this mat-
ter. However, there is no doubt that pathway crosstalk
should be considered when designing an optimum treat-
ment protocol [48]. Analyses of human PC tissue micro-
arrays demonstrated that Akt/mTOR and growth factor
related ERK/MAPK signaling are often coordinately
deregulated during PC progression [49]. Carracedo et al.
reported that tumor cell biopsies obtained from patients
treated in the neoadjuvant setting with RADOO1 dis-
played activation of ERK [50]. The authors concluded
that combined interruption of both pathways may signif-
icantly increase the efficacy of clinically relevant mTOR
inhibitors. When discussing the future role of combined
tumor targeting, additional integration of cytotoxic
agents should also be considered to improve the current
standard of care for men with PC. In fact, combination
treatment with docetaxel and several different targeted
drugs has shown potential for increased efficacy and
good tolerability compared with docetaxel alone [51].
Further investigation including animal studies is now
warranted to validate our findings.
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