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KEYWORDS Abstract
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5-HT transporter; Human gene association studies have produced conflicting findings regarding the relationship
Anxiety; between the 5-HT transporter (5-HTT) and anxiety. In the present study genetically modified
Transgenic mice; mice were utilised to examine the effects of changes in 5-HTT expression on anxiety. In addition,
Body weight the influence of 5-HTT expression on two innate “species-typical” behaviours (burrowing and

marble burying) and body weight was explored. Across a range of models, 5-HTT overexpressing
mice displayed reduced anxiety-like behaviour whilst 5-HTT knockout mice showed increased
anxiety-like behaviour, compared to wildtype controls. In tests of species-typical behaviour 5-
HTT overexpressing mice showed some facilitation whilst 5-HTT knockout mice were impaired.
Reciprocal effects were also seen on body weight, as 5-HTT overexpressors were lighter and 5-
HTT knockouts were heavier than wildtype controls. These findings show that variation in 5-HTT
gene expression produces robust changes in anxiety and species-typical behaviour. Furthermore,
the data add further support to findings that variation of 5-HTT expression in the human
population is linked to changes in anxiety-related personality traits.

© 2010 Elsevier B.V. and ECNP. Open access under CC BY license.

1. Introduction disorders, including depression, anxiety, obsessive compulsive
disorder and eating disorders (Owens and Nemeroff, 1994;
Handley, 1995; Gorwood, 2004; Hu et al., 2006). After release,
5-HT is removed from the synapse primarily by the 5-HT
transporter (5-HTT), which is thus instrumental in regulating 5-
HT activity (Bradley and Blakely, 1997). Studies have demon-

The neurotransmitter 5-hydroxytryptamine (5-HT/serotonin)
has been linked to the pathology of a number of psychiatric
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(D.M. Bannerman). factors (Pirker et al., 2000; Rhodes et al., 2007). However, the
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effects of this variation on personality, cognition, and psycho-
pathology are poorly understood.

The 5-HTT-linked promoter region (5-HTTLPR) contains a 44
base pair insertion/deletion polymorphism which gives rise to a
long (!) or a short (s) allele (Heils et al., 1996) with the s allele
leading to reduced 5-HTT expression and the [ allele increasing
5-HTT expression (Heils et al., 1996; Lesch et al., 1996; Hu et
al., 2006), although this remains controversial (Mann et al.,
2000; Preuss et al., 2000; Parsey et al., 2006). The s allele has
been associated with a number of outcomes, including anxiety-
related personality traits (Lesch et al., 1996; Du et al., 2000;
Greenberg et al., 2000; Melke et al., 2001), mood disorders
(Lotrich and Pollock, 2004; Lasky-Su et al., 2005), and suicide
(Anguelova et al., 2003; Roy et al., 2007). s allele carriers have
also been found to display significantly greater amygdala
activation to fearful faces (Hariri et al., 2002; Hariri et al.,
2005) aversive pictures (Heinz et al., 2005) and negative words
(Canli et al., 2005) compared to non-carriers, which may
indicate a role for amygdala hyperresponsivity in the observed
vulnerabilities. In addition, s allele carriers appear to be more
sensitive to stressful life events (Caspi et al., 2003; Pluess et al.,
2010).

A major difficulty with these studies is that the multitude of
genetic and environmental factors which influence behaviour in
heterogeneous human populations makes it difficult to firmly
establish the role of single genes. Because of this, genetic mouse
models have been developed to examine the effect of changes
in the expression of the 5-HTT in isolation from other influences.
Initial studies examined the effects of loss-of-function of the 5-
HTT and observed increased anxiety in some circumstances
(Holmes et al., 2001; Holmes et al., 2003a; Holmes et al.,
2003b). However, although the 5-HTT knockout (KO) mouse
provides useful clues as to the role of the 5-HTT, complete loss-
of-function of the 5-HTT is not observed in humans. Thus, an
overexpressor (OE) mouse was developed with 5-HTT expression
increased to levels similar to those expected from the high
expressing human 5-HTT gene variants (Heils et al., 1996; Lesch
etal., 1996; Jennings et al., 2006). Furthermore, in comparison
to the effects of 5-HTT KO, an initial study indicated reduced
anxiety in these animals (Jennings et al., 2006).

Here we aimed to compare 5-HTT KO and 5-HTT OE mice with
respective wildtype controls on a range of anxiety tasks with
varying sensorimotor and motivational demands. In addition,
the performance of these mice in three measures of “species-
typical” behaviour was investigated. Although previous findings
have suggested impaired species-typical behaviour in 5-HTT KO
mice (Zhao et al., 2006), 5-HTT OE mice have not been
examined. This is significant as these behaviours are sensitive to
pharmacological blockade of the 5-HTT (Njung'e and Handley,
1991; Ichimaru et al., 1995).

2. Experimental procedures

For full methods please see supporting supplementary information.

2.1. Animals

Experiments were conducted in accordance with the United Kingdom
Animals (Scientific Procedures) Act of 1986. 5-HTT OE mice and
wildtype (WT) littermates were generated on a CBA x C57BL/6J
background, as described previously (Jennings et al., 2006), and bred
in the University of Oxford. 5-HTT KO mice and WT littermates were

generated on a 129P1 (129P1/ReJ) x C57BL/6J hybrid background,
before being repeatedly backcrossed onto a C57BL/6J background for
more than eight generations (Bengel et al., 1998). Both males and
females were examined on all tasks. Mice were group housed (4-6 per
cage) and all animals were provided with enrichment and ad libitum
food and water unless otherwise stated. Mice were maintained on a
12 h light/dark cycle (lights off 19:00 to 7:00) in a temperature-
controlled environment (21 +1 °C). Three separate cohorts were used
for the tests of anxiety, locomotor activity and species-typical
behaviour.

2.2. Behavioural protocols

Tasks were performed in the order described with no more than one
task performed per day.

2.2.1. Anxiety tasks

2.2.1.1. Elevated plus maze. The plus maze consisted of two “open”
arms and two “closed” arms, arranged in a plus formation, joined by
a central rectangular region Animals were placed individually at the
distal end of a closed arm facing away from the centre, and were
allowed to explore the apparatus for 300s. The amount of time
spent in the open arms, number of entries into the open arms, total
number of arm entries, and latency to first enter an open arm were
measured.

2.2.1.2. Hyponeophagia. Prior to testing animals were food deprived
overnight for approximately 18 h. Animals were presented with a novel
food in an unfamiliar environment and the latency to begin continuous
eating was recorded.

2.2.1.3. Successive alleys. The apparatus consisted of four successive,
increasingly anxiogenic (each succeeding alley was painted a lighter
colour, had lower walls and/or was narrower than the previous alley)
linearly connected alleys. Animals were placed at the closed end of
alley 1, facing the end wall. The latency to first enter each alley, the
amount of time spent in each alley, and the number of entries into
each alley were recorded during a total test time of 300 s.

2.2.1.4. Black-white alley. The test apparatus consisted of a long
alley with the floor and walls of one half painted black and the other
half painted white. Each mouse was placed individually into the
black section of the test alley facing the end wall. The mouse was
observed for 120 s. Latency to first cross from the black section to
the white section, total time spent in the white section, and number
of crossings between the two sections were recorded.

2.2.2. Locomotor activity

Spontaneous locomotor activity was assessed by placing mice
individually in transparent plastic cages. Two infrared beams crossed
each cage and the number of beam breaks made per 5 min time bin
was recorded during a 2 h test session.

2.2.3. Species-typical behaviour

2.2.3.1. Burrowing.Burrows consisted of grey plastic cylinders raised
at the open end and filled with 200 g of standard laboratory chow.
Each animal was left undisturbed with a burrow for 2 h, after which
the amount burrowed was recorded (Deacon, 2006).

2.2.3.2. Marble burying. Transparent plastic cages were filled with a
10 cm deep layer of sawdust on top of which 10 glass marbles were
placed in two rows. Each animal was left undisturbed in a cage for
30 min, after which the number of marbles that were buried to at
least 2/3 of their depth was recorded.
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2.3. Statistical analysis

Data from the two cohorts (5-HTT OEs and KOs) were analysed
separately. Parametric data were analysed using two-way ANOVAs
(genotype and sex as between-subject factors). Where data violated
assumptions of normality or equality of variance, transformations
(log10 or square root) were utilised. For repeated measures ANOVAs,
homogeneity of variance was tested using Mauchly's test of
sphericity, and where this was violated, Huyn—Feldt corrections
were used. Non-parametric data were analysed using Mann—Whitney
U tests. A p-value<0.05 was considered statistically significant
throughout.

3. Results

3.1. Anxiety tests

3.1.1. Elevated plus maze

5-HTT OE mice were significantly faster to enter an open arm
[F(1,34)=9.17 p<0.01] (Fig. 1A), spent a significantly greater
proportion of time in the open arms [F(1,34)=10.16 p<0.005]
(Fig. 1B) and made a greater proportion of entries into the open
arms [F(1,34)=6.42 p<0.05] than their wildtype littermates. In
contrast, although 5-HTT KO mice did not differ from wildtypes on
the latency to first enter an open arm [F(1,12)=2.20 p=0.16]

(Fig. 2A), they spent a significantly reduced proportion of time in
the open arms [F(1,12)=11.64 p<0.01], and made a significantly
smaller proportion of entries into these arms [F(1,12)=15.23
p<0.005] (Fig. 2B) compared to wildtypes. Neither the 5-HTT OE
mice [F(1,34)=2.73 p=0.11], nor the 5-HTT KO mice [F(1,12)=
1.59 p=0.23], differed from their wildtype littermates on the
number of entries made into the closed arms of the maze,
suggesting that differences in open arm behaviour do not simply
reflect general changes in locomotor activity. There were no
significant effects of sex or genotype*sex interactions on any
measure.

3.1.2. Hyponeophagia

When presented with a novel food in a novel environment, 5-HTT
OE mice did not differ from wildtypes on the latency to make first
contact with the food [F(1,39)=1.12 p=0.30] (data not shown),
but were significantly faster to begin eating [F(1,39)=11.32
p<0.005] (Fig. 1C). Although males had a significantly longer
latency to begin eating than females [F(1,39)=4.22 p<0.05],
there was no significant genotype * sex interaction. In contrast to
5-HTT OE mice, 5-HTT KO mice took significantly longer to begin
eating than their wildtype littermates [F(1,12)=4.78 p<0.05]
(Fig. 2C). There were no significant effects of sex or a
genotype*sex interaction.
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5-HTT OE mice on anxiety tasks. A: Elevated plus maze — latency to enter an open arm (WT n=19; OEn=19). B: Elevated plus

maze — percentage time spent in open arms and percentage of entries to open arms (WT n=19; OE n=19). C: Hyponeophagia — latency to
begin eating (WT n=21; OE n=22). D: Successive alleys — latency to enter the first open alley and time spent in the open alleys (WT n=23;
OE n=25). E: Black-white alley — latency to enter white alley and time in white alley (WT n=23; OE n=25). Values represent the
mean+ SEM. *p<0.05; *p<0.01; ***p<0.005 compared to wildtype littermates.
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5-HTT KO mice on anxiety tasks. A: Elevated plus maze — latency to enter an open arm (WT n=9; KO n=7). B: Elevated plus

maze — percentage time spent in open arms and percentage of entries to open arms (WT n=9; KO n=7). C: Hyponeophagia — latency to
begin eating (WT n=9; KO n=7). D: Successive alleys — latency to enter the first open alley and time spent in open alleys (WT n=9; KO
n=7). E: Black-white alley — latency to enter white alley and time in white alley (WT n=9; KO n=7). Values represent the mean+SEM.

*p<0.05; **p<0.01 compared to wildtype littermates.

3.1.3. Successive alleys

Because only a very small number of animals explored further
than alley 2, the results from alleys 2 to 4 (the “open” alleys)
were combined. The 5-HTT OE mice displayed a significantly
shorter latency to enter the first open alley [F(1,44)=4.08
p=0.05] (Fig. 1D) and spent significantly more time in the open
alleys [F(1,44)=5.62 p<0.05] than wildtypes. They also made
more crossings between alleys [F(1,44)=6.71 p<0.05]. In the
5-HTT KO cohort no significant effects of genotype were present
on any measure [F<1] (Fig. 2D). There were no significant
effects of sex or genotype *sex interactions in either cohort.

3.1.4. Black-white alley

5-HTT OE mice did not differ from wildtypes on either the
latency to enter the white half of the alley [F(1,44)=1.80
p=0.19] (Fig. 1E) or the total amount of time spent in this
region [F(1,44)=1.04 p=0.31]. However, 5-HTT KO mice were
significantly slower to enter the white part of the alley [F(1,12)
=8.93 p<0.05] (Fig. 2E) and spent significantly less time in this
region [F(1,12)=5.36 p<0.05] compared to wildtypes. Neither
the 5-HTT OE mice nor the 5-HTT KO mice differed from their
wildtype littermates on the number of crossings made between
the two regions ([F<1] and [F(1,12)=2.48 p<0.14], respec-
tively). Although female 5-HTT KO mice made significantly
fewer crossings than male 5-HTT KO mice [F(1,12)=5.10

p<0.05], no other effects of sex or genotype*sex interactions
were present.

3.2. Locomotor activity

Both 5-HTT OE and 5-HTT KO mice exhibited significantly less
spontaneous locomotor activity than their wildtype littermates
([F(1,44)=7.27 p<0.05] (Fig. 3A) and [F(1,12)=13.60 p<0.005]
(Fig. 3B), respectively). Although males were more active than
females in the KO cohort [F(1,12)=10.68 p<0.01], there were
no genotype *sex interactions in either cohort.

3.3. Species-typical behaviour

3.3.1. Burrowing

5-HTT OE mice burrowed a significantly greater weight of
pellets than wildtypes [F(1,37)=4.96 p<0.05] (Fig. 4A). In
contrast, 5-HTT KO mice failed to burrow [U(7,8)=52.5
p<0.005] (Fig. 5A). There were no significant effects of sex.

3.3.2. Marble burying

The number of marbles buried by the 5-HTT OE mice did not
differ from the number buried by their wildtype littermates [U
(21,29)=270 p=0.48] (Fig. 4B). However, 5-HTT KO mice buried
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Figure 3  Locomotor activity in 5-HTT OE and KO mice compared to their respective wildtype littermates. A: Locomotor activity in 5-HTT

OE mice and wildtype littermates (WT n=23; OE n=25). B: Locomotor activity in 5-HTT KO mice and wildtype littermates (WT n=9; KO
n=7). Values represent mean photocell beam breaks per 5 min block + SEM.

significantly fewer marbles than wildtypes [U(7,8)=55.5
p<0.001] (Fig. 5B).

3.4. Body weight

Mice were weighed at approximately 6 months of age. 5-HTT OE
mice were significantly lighter than their wildtype littermates
(wildtype=31.4g+0.9 OE=24.5 g+0.6 [F(1,42)=56.14 p<0.001])
whilst 5-HTT KO mice were significantly heavier than wildtypes
(wildtype=23.6 g+1.4K0=30.4.5g+3.5[F(1,12)=7.23 p<0.05]).
Males were heavier than females in both cohorts ([F(1,42)=8.07
p<0.01] and [F(1,12)=24.87 p<0.001], respectively). In addition,
there was a trend towards a genotype * sex interaction in the 5-HTT
OE mice [F(1,42)=3.68 p=0.06] because the genetic manipulation
had a greater effect on males than females, and a significant
genotype*sex interaction in the 5-HTT KO mice [F(1,12)=5.48
p<0.05], because loss of the 5-HTT only had an effect on the body
weight of males.
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Figure 4 Species-typical behaviour in 5-HTT OE mice. A:

Weight of pellets burrowed (mean+SEM). B: Marbles buried out
of 10 (median+IQR). WT n=21; OE n=29. *p<0.05 compared to
wildtype littermates.

4. Discussion

The results of these studies demonstrate a powerful impact
of variation in 5-HTT expression on anxiety-related behav-
iour. Thus, across a range of tasks, genetically-manipulated
mice with increased 5-HTT expression showed reduced
anxiety-like behaviour, whereas mice lacking 5-HTT expres-
sion showed increased anxiety. The results also indicate the
importance of 5-HTT expression in species-typical behaviour,
with increased and decreased 5-HTT expression being
associated with facilitation and disruption, respectively.
These differences were observed in both male and female
mice, suggesting that the effects of altered 5-HTT expression
on anxiety are not influenced by sex in these tests.

4.1. Anxiety

5-HTT OE mice displayed reduced anxiety on the elevated
plus maze, hyponeophagia and successive alleys tasks, whilst
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Weight of pellets burrowed (median +1QR). B: Marbles buried out
of 10 (median+IQR). WT n=8; KO n=7. **p<0.005 compared to
wildtype littermates.
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5-HTT KO animals showed increased anxiety on the elevated
plus maze, hyponeophagia and black-white alleys tasks. The
finding that differences were not observed in both strains on
all tasks may result from floor/ceiling effects (e.g. 5-HTT KO
on the successive alleys). However, the present data suggest
that both lines exhibit robust changes in anxiety. In
particular, the findings of altered anxiety in both (i) the
hyponeophagia test and (ii) the elevated plus maze/
successive alleys tests suggest that the observed anxiety
phenotypes are unlikely to be due to non-specific alterations
in motivation or locomotion as these tests produced
corresponding results despite differing sensorimotor and
motivational demands.

Anxiety can be conceptualised as occurring when an animal
experiences conflict between approach and avoidance
responses (Gray and McNaughton, 2000). As such, increased
anxiety manifests as a greater degree of behavioural inhibi-
tion, resulting in increased threat avoidance. Therefore,
changes in baseline locomotor activity can present a difficulty
when interpreting the results of anxiety tasks as they can both
result from, and give the appearance of, alterations in anxiety.
For example, reduced locomotor activity in the 5-HTT KO mice
might result in reduced open arm entries on the plus maze and
thus cause them to appear anxious. However, the lack of a
change in closed arm entries suggests that the change in open
arm behaviour cannot be explained solely by altered locomo-
tor activity. In addition, the 5-HTT KO animals were
significantly slower to begin eating on the test of hyponeo-
phagia, suggesting increased anxiety independent of locomo-
tor activity (Britton and Britton, 1981; Shephard and
Broadhurst, 1982; Shephard et al., 1984). Changes in baseline
locomotor activity are also unable to explain the reduction in
anxiety-like behaviour of the 5-HTT OE mice as the reduced
spontaneous activity seen in these animals would be expected
to make them appear more — not less — anxious on tests such as
the elevated plus maze, successive alleys and black-white
alley. Therefore, it is unlikely that differences in baseline
locomotor activity account for the observed relationship
between anxiety and 5-HTT expression.

The behaviour of the two groups of wildtypes differed
considerably, which is likely to result from the different
genetic background of the two lines. The 5-HTT KO mutation
was backcrossed onto a C57/BL6 background whilst the 5-
HTT OE mutation remained on a hybrid background, which
would be expected to increase intra-group variation in these
animals. However, because transgenic animals were com-
pared only to their respective wildtype littermates, and
because the observed phenotypes were diametrically oppo-
site, the differing background strains of the two cohorts are
unlikely to account for the pattern of results seen.

The observed anxiety phenotypes are in agreement with
the putative effects of the 5-HTTLPR on 5-HTT expression and
anxiety traits in humans. In studies of human personality, the
[ allele of the 5-HTT has been associated with lower levels of
neuroticism and associated anxiety-related traits (Lesch et al.,
1996; Du et al., 2000; Greenberg et al., 2000; Melke et al.,
2001). Although not all studies have concurred, there is
evidence that individuals carrying two copies of the [ allele (in
particular, the [, allele) of the 5-HTTLPR exhibit 2-3 times
higher levels of 5-HTT expression and/or uptake activity (Heils
etal., 1996; Lesch et al., 1996; Hanna et al., 1998; Greenberg
etal., 1999; Heinz et al., 2000; Hu et al., 2006). Thisincrease is

comparable in magnitude to that seen in 5-HTT OE mice (both
approximately 1.5 to 3-fold) (Jennings et al., 2006). Thus, the
current findings suggest a direct link between increased 5-HTT
expression and reduced anxiety, and that decreased levels of
anxiety-related traits observed in [ allele homozygotes may be
the result of higher levels of expression of the 5-HTT. In
contrast, selective serotonin reuptake inhibitors (SSRIs) act to
reduce the activity of the 5-HTT and yet have anxiolytic effects
(Katzman, 2009). This suggests that genetic alterations in 5-
HTT expression (which are present throughout development)
result in qualitatively different effects on anxiety to those
produced by pharmacological manipulations during adulthood.
The causes of this are likely to be complex, but may reflect
developmental alterations in stress reactivity (Mueller et al.,
2010; Way and Taylor, 2010).

Previous work suggests that 5-HTT OE mice display a normal
distribution of 5-HTT expression, which is largely confined to
raphé 5-HT neurons and their projections (Jennings et al.,
2006). However, because these projections are spread across a
variety of cortical and subcortical regions, changes in 5-HTT
expression results in altered 5-HT activity in a number of brain
regions. This makes it difficult to draw firm conclusions
regarding the anatomical basis of the phenotypes displayed by
5-HTT OE and KO animals. Despite this, it is notable that all the
anxiety tasks described here are sensitive to lesions of the
ventral hippocampus (Bannerman et al., 2003; Bannerman et
al., 2004; McHugh et al., 2004), whereas they are not affected
by amygdala lesions (Treit et al., 1993; Kjelstrup et al., 2002;
McHugh et al., 2004). Thus these data — coupled with the
known serotonergic innervation of the hippocampus (McQuade
and Sharp, 1997; Adams et al., 2008) — implicate the
hippocampal formation as a possible anatomical substrate of
some of the altered behaviours seen in 5-HTT mutants.

4.2. Species-typical behaviour

5-HTT KO mice have previously been found to display
reduced marble burying behaviour (Zhao et al., 2006),
which was confirmed by the present study, whereas 5-HTT
OE mice did not differ from wildtypes on this test (although
this may have been due to ceiling effects). Exploration of
species-typical behaviours was expanded with an examina-
tion of burrowing. Although burrowing has been utilised less
than marble burying in the laboratory, it represents a
sensitive and robust test of species-typical behaviour and —
like marble burying — has been shown to be hippocampal-
dependent (Deacon et al., 2002; Deacon, 2006). 5-HTT KO
mice displayed a dramatic impairment in burrowing (none of
these mice performed any burrowing), whilst 5-HTT OE
animals showed a significant increase in this behaviour. This
indicates that — as with anxiety-like behaviour — opposing
alterations in 5-HTT expression produce opposite effects on
species-typical behaviour.

4.3. Body weight

5-HT is known to have a suppressive effect on feeding through
its actions in both the central nervous system and periphery
(Blundell, 1986; Silverstone and Goodall, 1986; Leibowitz et
al., 1988; Neill and Cooper, 1989) and drugs which act on the 5-
HTT to increase 5-HT availability (such as fenfluramine) have
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been used clinically to induce weight-loss (Davis and Faulds,
1996; Carvajal et al., 2000). However — as was seen with
anxiety — the effects of genetically-induced changes in 5-HTT
activity on body weight were diametrically opposed to the
effects of acute pharmacological manipulations. Thus, 5-HTT
overexpression caused a significant reduction in body weight
compared to wildtypes, whereas 5-HTT knockout resulted in
an increase in body weight. These results also concord with
studies associating the s allele of the 5-HTTLPR with obesity
(Sookoian et al., 2007; Sookoian et al., 2008; Lan et al., 2009).
As these animals have previously been found to display normal
feeding behaviour (Pringle et al., 2008), 5-HTT overexpression
may result in peripheral metabolic or developmental changes.
It is also interesting to note that there are indications that the
genetic manipulation had a larger effect on the body weight of
males than females. This is in agreement with previous findings
inanimals (Uceyler et al., 2010), and raises the possibility that
the 5-HTTLPR might have a greater influence on obesity in
males than females.

4.4, Conclusions

Overall, these findings provide direct evidence that changes in
5-HTT gene expression have robust effects on anxiety and
species-typical behaviour. In addition, the findings of this
study correlate well with what is known of the behavioural
effects of 5-HTT gene variants in humans, supporting the
hypothesis that these phenotypes are the result of altered 5-
HTT expression.

Supplementary materials related to this article can be
found online at doi:10.1016/j.euroneuro.2010.08.005.
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