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Abstract
The pro-apoptotic Bcl-2-family protein Bim belongs to the BH3-only proteins known as initia-

tors of apoptosis. Recent data show that Bim is constitutively inserted in the outer mitochon-

drial membrane via a C-terminal transmembrane anchor from where it can activate the

effector of cytochrome c-release, Bax. To identify regulators of Bim-activity, we conducted a

search for proteins interacting with Bim at mitochondria. We found an interaction of Bim with

Tom70, Tom20 and more weakly with Tom40, all components of the Translocase of the

Outer Membrane (TOM). In vitro import assays performed on tryptically digested yeast mito-

chondria showed reduced Bim insertion into the outer mitochondrial membrane (OMM) indi-

cating that protein receptors may be involved in the import process. However, RNAi against

components of TOM (Tom40, Tom70, Tom22 or Tom20) by siRNA, individually or in combi-

nation, did not consistently change the amount of Bim on HeLa mitochondria, either at

steady state or upon de novo-induction. In support of this, the individual or combined knock-

downs of TOM receptors also failed to alter the susceptibility of HeLa cells to Bim-induced

apoptosis. In isolated yeast mitochondria, lack of Tom70 or the TOM-components Tom20

or Tom22 alone did not affect the import of Bim into the outer mitochondrial membrane. In

yeast, expression of Bim can sensitize the cells to Bax-dependent killing. This sensitization

was unaffected by the absence of Tom70 or by an experimental reduction in Tom40. Al-

though thus the physiological role of the Bim-TOM-interaction remains unclear, TOM com-

plex components do not seem to be essential for Bim insertion into the OMM. Nevertheless,

this association should be noted and considered when the regulation of Bim in other cells

and situations is investigated.
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Introduction
A key step of mitochondrial apoptosis is the release of cytochrome c from the mitochondrial in-
termembrane space into the cytosol [1]. This release is regulated by the Bcl-2 family of proteins
and occurs as a consequence of the activation of the effectors of the group, Bax and/or Bak.
Bax/Bak are themselves activated by members of the BH3-only subgroup of Bcl-2-family pro-
teins, such as Bim and tBid. The third group, the anti-apoptotic Bcl-2-like proteins, inhibit apo-
ptosis by binding members of either of the two pro-apoptotic groups [2, 3].

BH3-only proteins are the triggers of mitochondrial apoptosis. Some BH3-only proteins
(Bim, Puma, tBid) very likely activate Bax and Bak directly [4, 5] while the others may act by
binding to and inhibiting anti-apoptotic Bcl-2 proteins [6, 7]. Bak is constitutively mitochon-
drial and therefore must be activated there. Bax on the other hand is under basal conditions cy-
tosolic (some pre-activated Bax is found at mitochondria in many cell lines) and translocates to
mitochondria during apoptosis [3, 8]. It is possible that Bax can be activated also in the cytosol
(and then translocate to mitochondria) but we have recently shown that Bax-activation by Bim
can occur at the outer mitochondrial membrane [9].

It is therefore clear that the decisive steps in intrinsic apoptosis must occur at the mitochon-
drial outer membrane, requiring that Bcl-2-family members be located there. C-terminal
transmembrane-domains that act as localization sequences, so-called tail anchors, have been
identified in a number of proteins of the Bcl-2 family [10]; the localization for instance of Bcl-2
and of Bak is at mitochondria and the endoplasmatic reticulum (ER), while Mcl-1 is largely mito-
chondrial [2].

The localization of BH3-only proteins however has not received much attention. We have re-
cently found that the BH3-only proteins Bim, Puma, tBid, Bmf and Noxa are imported (i.e. specif-
ically inserted) into the outer mitochondrial membrane (OMM) via a C-terminal mitochondrial
targeting signal, and that this localization is required for the Bax-activating function of Bim, Puma
and tBid [9, 11]. The organization of the import of BH3-only proteins and possibly their regula-
tion after insertion into the OMM is therefore likely of importance for the initiation of apoptosis.

The majority of mitochondrial proteins are encoded in the nucleus and transported to and
into the mitochondria. For entry into most mitochondrial compartments specialized translo-
cases/import machines are required. Proteins passing the OMM require the preprotein translo-
case complex of the outer membrane (TOM), where the subunits Tom20 and Tom70 act as
initial receptors, transferring the protein to the central receptor Tom22 before they pass into
the import channel Tom40 [12–14]. The requirements may vary for proteins imported/in-
serted into the OMM (i.e. proteins inserting into but not crossing the membrane) [15]. We
have previously found evidence that Bim may be able to insert at least to some extent into the
OMM of isolated membranes in the absence of additional proteins [9].

We here report that in yeast mitochondria, protease treatment leads to reduced amounts of
inserted Bim in the OMM. Furthermore, we find interaction of Bim with the TOM-components
Tom70, Tom20 and (more weakly) Tom40, which co-isolate with Bim from mammalian mito-
chondria. Although we did not find a dependency of Bim-import in mammalian cells and Bim-
induced apoptosis on these TOM proteins, this interaction may serve as a regulatory mechanism
in situations of apoptosis.

Materials and Methods

Cell lines and Culture Conditions
Mouse embryonic fibroblasts (MEF) deficient for Bax and Bak (bax-/-/bak-/- DKO; immortal-
ised with SV40 large T antigen (Dr. David Huang, Walter and Eliza Hall Institute (WEHI),
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Melbourne) were cultured in DMEM containing 10% FCS, antibiotics (100 U/ml penicillin G
and 100 U/ml streptomycin sulfate) and 50 μM of 2-mercaptoethanol. HeLa cells were cultured
in RPMI-1640 medium (PAA) containing 10% FCS and antibiotics as above. HeLa cells carry-
ing a doxycycline-inducible shRNA directed against either Tom40 (Tom40-KD) or Tom70
(Tom70-KD) have been characterized for mitochondrial protein import earlier [16]. All cul-
tures were incubated under standard culture conditions (37°C, 5% CO2). For SILAC labeling
cells were cultured for 3 weeks in Dulbecco's modified Eagle's medium (PAA, Coelbe, Ger-
many) supplemented with penicillin/streptomycin, glutamine, and 10% dialyzed fetal calf
serum (Gibco, Invitrogen, Karlsruhe, Germany). To differentially label parallel cultures
(MEF bax-/-/bak-/- DKO) these were grown in media containing L-arginine (Arg0) and L-lysine
(Lys0) (MEF 3xHA-BimEL cells), or L-lysine–U-

13C6-
15N2 (Lys8) and L-arginine–U-

13C6-
15N4

(Arg10) (MEF-BimEL cells) to generate ‘light’ and ‘heavy’ labeled cells, respectively. Fully la-
beled cells were grown to 80–90% confluence prior fractionation and anti-HA-IP followed by
mass-spectrometry analyses.

Construction of BimEL expression vectors and generation of cell lines
Retroviral constructs (pMIG-GW) of murine BimEL or 3xHA-BimEL (N-terminal triple-HA-tag)
were generated as described earlier [9]. Retroviral particle production was done by transfecting
Phoenix-ECO cells together with packaging vector pCLEco. Bax-/-/bak-/- DKOMEF cells were
transduced with retrovirus carrying either BimEL (pMIG-BimEL) or 3xHA-BimEL (pMIG-
3xHA-BimEL). To inhibit splicing of BimEL to BimL and BimS we used a mutant deficient for
splicing [17]. Expression of BimEL and 3xHA-BimEL was analysed byWestern blotting prior to
anti-HA-IP to check for comparable expression levels (Fig 1B). For the generation of HeLa cells
with an inducible 3xHA-BimEL (splice-mutant) we used a tamoxifen-regulated lentiviral system
introduced into the HeLa Tom40-KD and HelaTom70-KD cell lines described above. HeLa
Tom40-KD and HeLa Tom70-KD cells were first transduced with pFU-G147EV16-PGK-Hygro
as a second generation lentiviral vector expressing the fusion protein GAL4 147 ERt2 VP16. This
Protein acts as a tamoxifen inducible transcription factor for expression of 3xHA-BimEL from a
second lentiviral vector (pF 5xUAS‐GW‐3xHA-BimEL-SV40_Puro) that was transduced subse-
quently [18]. Selection of HeLa cells was done using hygromycin (800mg/ml) and puromycin
(5μg/ml) for 10 days. 3xHA-BimEL was induced using 100nM 4-hydroxy-tamoxifen (4HT,
Sigma) for the indicated times. When indicated the shRNA knock-down of either Tom40 or
Tom70 was induced by doxycycline (1μg/ml).

siRNA Knock-down of Tom22 and Tom20 in HeLa cells
Hela cells were seeded in medium without antibiotics the day before KD induction and medi-
um was again changed directly before RNAi. siRNA (20nM final concentration) was mixed
with Lipofectamin RNAiMAX from Invitrogen (ratio1:0.83) in serum free medium (Optimem,
PAA), incubated for 20min at RT and added to the cells. siRNAs specific for Tom20 (Stealth
RNAi TOMM20HSS145307 from Invitrogen) and Tom22 (Silencer Select siRNA TOMM22
#4392420 from Ambion) were mixed at a ratio of 3 to 2.

Subcellular fractionation of MEFs and HeLa cells
Cells were collected, washed once in PBS and resuspended in MB-EDTA buffer prior fraction-
ation as described elsewhere [9]. Subcellular localization of endogenous BimEL or ectopic
3xHA-BimELwas analyzed by loading same protein amounts of the mitochondria-enriched frac-
tion (after centrifugation at 10,000 x g) and the cytosolic fraction after 1 h ultra-centrifugation
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Fig 1. Interaction of BimEL with TOM complex components. (A) Proteins identified as enriched in 3xHA-BimEL purifications compared to control cells from
bax-/- bak-/- MEF cells. Columns display: Gene Names, fold enrichment (light labeling of 3xHA-BimEL against heavy labeling of untagged Bim (see S1 Table
for details)). (B) Western blots showing results of co-IP using anti-HA antibodies in MEF bax-/- bak-/- cells overexpressing either untagged or 3xHA-tagged
murine BimEL. Mitochondria enriched fractions were isolated followed by anti-HA-IP in the presence of 1% digitonin. Data are representative of 4 independent
experiments (Tom70), 2 independent experiments (Tom40) or 3 independent experiments (Tom20). Levels of overexpressed untagged and tagged BimEL

(Input) and HA-IP efficiency (compare IP and Unbound) is shown on the right. (C) Western blots showing results of anti-HA-IP in HeLa cells either
overexpressing 3xHA-tagged murine BimEL (+tamoxifen (4HT), 100 nM for 24h) or not. To inhibit 3xHA-BimEL-induced cell death QVD (10μM) was added.
Again the IP was done with mitochondria enriched fractions in the presence of 1% digitonin. Induction and IP of 3xHA-mBimEL is shown on the right.
(D) BimEL/TOM20 interaction does not require binding to anti-apoptotic Bcl-2 family proteins. Western blots showing results of anti-HA-IP in HEK-293FT cells
transient transfected for 24h with either untagged murine BimEL (neg. control), 3xHA-tagged BimEL (positive control) or BH3-mutant BimEL (3xHA-BimELΔΔ;
unable to bind to antiapoptotic proteins [11]). Whole cell extracts (1% digitonin) were used for IP. To inhibit BimEL-induced cell death QVD (10μM) was added
(n = 3).

doi:10.1371/journal.pone.0123341.g001

Bim Interacts with TOMComponents

PLOS ONE | DOI:10.1371/journal.pone.0123341 April 15, 2015 4 / 17



(4°C at 120,000 x g) on SDS-PAA gels. Hsp60 or tubulin (detected byWestern blot) served as
loading controls and marker proteins for cytosolic and mitochondrial fractions.

Immunoprecipitation (IP)
300μg of mitochondrial lysates (lysis buffer: 20 mM Tris/HCl pH 7,4; 150 mMNaCl; 10% Glyc-
erol; 1% digitonin; 1x Protease Inhibitor Mix (Roche) from bax-/-/bak-/- DKOMEF stable
transduced with pMIG-BimEL or pMIG-3xHA-BimEL were immunoprecipitated with antibod-
ies to the HA-tag (anti-HA affinity matrix, Roche). After preclearing for 1h (4°C) with prote-
inG Sepharose (Roche), the flow-throughs were incubated with 40μl anti-HA slurry (each,
35μg anti-HA-antibody) for 4 h at 4°C. The anti-HA matrix was collected and washed with 25
ml of lysis buffer. Elution was done in the presence of 3xSDS-Laemmli buffer at 95°C for 5 min
(3x50μl). After elution the samples were mixed and identification of BimEL interacting proteins
was done by LC-MS/MS. Verification of TOM components as interacting proteins of BimEL

was done using SDS-PAGE followed by Western blotting for Tom70 or Tom40. To test if an
active BH3-only domain and therefor binding of BimEL to antiapototic proteins is needed for
BimEL/TOM interaction, we transiently transfected HEK-293FT cells (3.5x106 cells/10 cm dish,
Invitrogen) with either 10μg of pMIG-GW-BimEL (negative control), pMIG-GW-3xHA-BimEL

(positive control) or pMIG-GW-3xHA-BimEL Δ Δ (a Bim mutant incapable of binding to anti-
apoptotic proteins because of a double deletion in the BH3-domain of murine BimEL (deletion
of amino acid L150 and I153 [11])) using FuGene HD (Promega). All three constructs were
splice mutants of BimEL. 24h after transfection cells were solubilized in 1% digitonin (see
above) and an anti HA-IP was performed using 1 mg of whole cell lysates as described above.

MS sample and analysis
IP eluates were reduced with 1 mM DTT for 5 min at 95°C and alkylated using 5.5 mM iodace-
tamide for 30 min at 25°C in the dark. Protein mixtures (after denaturing elution from the HA-
beads) were separated by SDS-PAGE (4–12% Novex Bis-Tris mini gradient gel), gel lanes were
cut into 10 equal slices, and in-gel digested using trypsin [19]. Resulting peptide mixtures were
processed on STAGE tips as described [20].

Samples for LC-MS/MS were fractionated by nanoscale—HPLC on either an Agilent 1200
or an Eksigent NanoLC-ultra connected online to a LTQ-Orbitrap XL (Thermo Scientific).
Peptides were separated over a linear gradient from 10–30% ACN in 0.5% acetic acid with a
flow rate of 250 nl/min. All full-scan acquisition was done in the FT-MS part of the mass spec-
trometers in the range from m/z 350–2000 with an automatic gain control target value of 106

and at resolution 60,000 at m/z 400. MS acquisition was done in data-dependent mode to se-
quentially perform MS/MS on the five most intense ions in the full scan in the LTQ using the
following parameters. AGC target value: 5,000. Ion selection thresholds: 1000 counts and a
maximum fill time of 100 ms. Wide-band activation was enabled with an activation q = 0.25
applied for 30 ms at a normalized collision energy of 35%. Singly charged and ions with unas-
signed charge state were excluded fromMS/MS. Dynamic exclusion was applied to reject ions
from repeated MS/MS selection for 45 s.

LC-MS/MS raw files were processed together in MaxQuant [21] with default parameters.
For databases searching parameters were mass accuracy thresholds of 0.5 (MS/MS) and 6 ppm
(precursor), maximum two missed cleavages, carbamidomethylation (C) as fixed modification,
and oxidation (M) and protein N-terminal acetylation as variable modifications. MaxQuant
was used to filter the identifications for a FDR below 1% for peptides and proteins using for-
ward-decoy searching. Match between runs were enabled with a retention time window of
2 min.
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Detection of apoptosis by BimEL induction
HeLa Tom40-KD or Tom70-KD cells with the 4HT-inducible 3xHA-BimEL were treated with-
out or with doxycycline (1μg/ml, Sigma) to induce the knock-down of Tom40 or Tom70. Then
4HT [100nM] was or was not added to induce 3xHA-BimEL for 24h. After induction of apopto-
sis, cells were washed in PBS, fixed and incubated in the presence of monoclonal anti-active
caspase-3 antibody (Abcam, dilution 1:500 or BD Pharmingen 1:500) as described earlier [22].
Flow cytometry was performed using a FACSCalibur (Becton Dickinson). Apoptosis was in-
hibited with Q-VD-OPh (QVD, 10μM, SM Biochemical) added 30min prior or together with
stimulation with 4HT.

Bim stability assay
Stability of endogenous BimEL was analysed in HeLa Tom40-KD cells (without doxycycline) by
addition of cycloheximide (1–2.5 μg/ml, CHX, Sigma) for 0–8 h. Cell lysates were separated by
SDS-PAGE followed by Bim detection using Western blot.

Western Blotting
Whole cells or mitochondria enriched fractions were extracted in buffer containing 1% triton X-
100 and protein concentrations were determined using the Badford assay. Protein samples were
separated by SDS-PAGE. Antibodies against Bim, Hsp60 (both Cell Signaling), Tom40 (Santa
Cruz), Tom70 (Abnova), Tom22 (Santa Cruz), Tom20 (Santa Cruz), tubulin (Sigma), CoxIV
(Cell signaling), NDUFA9 (provided from the AGMeisinger, Freiburg) were used as suggested
by the manufacturers. Signals were detected using horseradish peroxidase-conjugated secondary
antibodies (anti mouse (Dianova) or rabbit (Sigma) IgG) and enhanced chemiluminescence
(GE Healthcare).

Isolation of mitochondria from yeast
The following yeast strains were used: Wild-type (MATα, ade2-101, his3-Δ200, leu2- Δ1, ura3-
52, trp1- Δ63, lys2-801), tom70 Δ (MATα, ade2-101, his3- Δ200, leu2- Δ1, ura3-52, trp1- Δ63,
lys2-801, tom70::HIS3; [23]), tom20 Δ(MATα, ade2-101, his3-Δ200, leu2-Δ1, ura3-52, trp1-
Δ63, lys2-801, tom20::URA3, Yep(LEU2)::Tom22; (23)) and tom22Δ (MATα, his3-Δ200, leu2-
Δ1, ura3-52, trp1-Δ63, tom22::URA3 rho0; [24].

Tom20Δ, tom70Δ and corresponding WT yeast cells were grown on YPG (1% (w/v) yeast
extract, 2% (w/v) bacto peptone, 3% (w/v) glycerol, pH 5.0) at 24°C. Tom22Δ andWTrho- were
grown on YPD (1% (w/v) yeast extract, 2% (w/v) bacto peptone, 3% (w/v) glycerol, pH 5.0).
The cells were harvested (OD600 0.7–1.5) and mitochondria isolated by differential centrifuga-
tion using standard protocols [25]. Aliquots were snap-frozen and stored in SEM buffer
(250 mM sucrose, 1 mM EDTA, 10 mMMOPS-KOH, pH 7.2) at -80°C.

In organello import of radiolabeled BimEL
35S-Met labeled BimEL precursor was generated in vitro using the TNT Quick Coupled Tran-
scription/Translation System (Promega). Radiolabeled precursor was pre-incubated in import
buffer (10 mMMOPS-KOH, pH 7.2, 3% (w/v) bovine serum albumin, 250 mM sucrose, 5 mM
MgCl2, 80 mM KCl, 5 mM KPi) supplemented with 2 mM ATP and 2 mMNADH for 10 min
at 25°C. Samples were centrifuged at 16,000g for 10 min at 4°C. The obtained supernatant was
mixed with 45 μg mitochondria and the samples were incubated at 20°C for 1, 2 or 5 minutes.
For trypsin treatment prior to the import reaction, mitochondria were incubated with trypsin
(25 μg/ml) for 15 min on ice, followed by further incubation for 10 min after addition of 20×
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excess of soy trypsin inhibitor. Where indicated samples were treated with proteinase K to re-
move non-imported precursor proteins. After prot. K digestion (final concentration 50 μg/ml)
for 10 min on ice the protease was inhibited by addition of 2 mM PMSF (phenylmethylsulpho-
nyl fluoride, in isopropanol). Mitochondria were reisolated and washed with SEM buffer. Sam-
ples were subjected to carbonate extraction (100 mMNa2CO3, pH 11.5) and the pellets
analyzed on SDS-PAGE followed by digital autoradiography (for references see: [23–25].

Analysis of Cell Death in Yeast
Standard genetic techniques were used for growth and manipulation of yeast strains [26].
Mouse Bax was cloned into the tet-off plasmid pCM189 and the mouse Bim-gene was inserted
into the constitutive-expression vector p415-ADH as described earlier [9]. Yeast strains (wild-
type, Tom70 knock-out or Tom40 knock-down (Dharmagon)) containing Bax or Bax/BimEL

were grown to log phase in synthetic medium containing 5 μg/ml tetracycline lacking uracil
and leucin (SD-Ura/-Leu), washed 3 times and diluted in distilled water to an OD600 of 0.5.
Cells were then diluted in 10-fold increments and spotted on SD plates containing 2% glycerol
with and without tetracycline (5 μg/ml) to induce Bax protein expression. After spotting, the
cells were incubated for 4–6 days at 30°C and imaged with a CCD camera.

Results
To test for the requirements of Bim-insertion into mitochondria, we used two approaches, a
screen for Bim-interacting proteins at mammalian mitochondria and an import assay on yeast
mitochondria. The screen was conducted by a co-immunoprecipitation (co-IP) approach.
Mouse embryonic fibroblast (MEF) cell lines from Bax/Bak-double-deficient mice were gener-
ated that stably expressed either full-length murine BimEL or the same protein carrying a tri-
ple-HA-tag at its N-terminus. Bax/Bak-deficient cells were used because otherwise over-
expression of Bim would have caused apoptosis. We used a mutant of BimEL where the splicing
to BimL and BimS is excluded due to a mutation in the splice site, generating exclusively the
predominantly expressed splice form BimEL [17].

For the identification of co-IP-products we used the SILAC (Stable Isotope Labeling with
Amino Acids in cell culture) method. In this approach two cell populations are labeled differ-
ently with either ‘light‘ (Arg0 and Lys0; 3xHA-BimEL-line) or ‘heavy’ (Arg10 and Lys8; BimEL-
line) amino acids-containing culture medium. Heavy membrane fractions (enriched for mito-
chondria) were isolated from both lines, and IPs with antibodies against the HA-tag were per-
formed. This setup was chosen to minimize differences between the cells. All non-specifically
precipitated proteins should be identical between the IPs, and the proteins co-IPed with the
HA-tagged Bim should be only in the IP-product from the cells expressing HA-Bim. After elu-
tion, IP-products were combined and the combined protein extracts were subjected to mass
spectrometry. Due to the light/heavy labeling it is possible to distinguish peptides from either
IP, and quantitative comparison permits an assessment of enrichment [27].

Mass spectrometry identified the expected enrichment of Bim itself as well as the known anti-
apoptotic Bim-interacting proteins, Bcl-2, BclXL and Mcl-1. Additionally we identified the
TOM proteins Tom70 and Tom40 as enriched in the HA-BimEL-fraction (Fig 1A, for details see
S1 Table). In IP-experiments with unlabeled cells we could confirm the co-IP of Tom70 byWest-
ern blot in MEF (Fig 1B) and HeLa cells (not shown). In addition, we could detect a robust inter-
action of BimEL with another TOM component, Tom20 inMEF cells (Fig 1B) and HeLa cells
(not shown)—an interaction that had not been identified by the initial mass-spectrometry after
SILAC-IP (no Tom20 specific peptides had been detected). We can only speculate why this ro-
bust interaction was only detectable byWestern blotting, but it seems plausible that in this case
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the availability of a very sensitive antibody specific for Tom20 allowed for higher sensitivity than
mass-spectrometry. Of note, interaction of BimEL with Tom20 was also detectable in HEK-
293FT cells transiently expressing either 3xHA-BimEL wild-type or a 3xHA-BimEL mutant vari-
ant (3xHA-BimELΔΔ; incapable of binding to any anti-apoptotic Bcl-2 family members) (Fig 1D;
[11]). This indicates that Bim/Tom20 interaction is independent of Bim binding to anti-apopto-
tic proteins like Bcl-XL, Bcl-2 or Mcl-1 (BimEL interaction with Bcl-XL, Bcl-2, Mcl-1 was detected
by SILAC-IP mass-spectrometry, see S1 Table) and is therefore not mediated indirectly via anti-
apoptotic proteins.

We were unable to confirm the Bim-Tom40-interaction by IP/Western blotting, which may
be due to the relatively low sensitivity and therefore much weaker signal of the anti-Tom40-an-
tibody compared to the anti-Tom70 or -Tom20 antibodies used in our experiments on the
same membrane (the stoichiometry of the Tom complex is not clear but a stoichiometry of
Tom40:Tom70:Tom20 of 8:1.5:2 is discussed). We were further unable to detect the central re-
ceptor Tom22 in MEF cells with our antibody (data not shown) and therefore switched to
HeLa human cells that gave a clear Tom22Western blot signal at endogenous levels (Fig 1C,
input). Nevertheless, we failed to detect a Tom22-Bim interaction in this assay (and also in the
mass-spectrometry analyses). Thus an interaction with Tom70 and Tom20 was very clearly
and reproducibly seen by co-IP while the interaction with Tom40, detected by MS, was not
found by co-IP/Western blotting.

Next we analyzed if these obvious candidates that may aid import of BimEL, the TOM pro-
teins, are necessary for mitochondrial localization and function of Bim.We tested for an effect of
the loss of TOM components for mitochondrial import/localization, first in intact human HeLa
cells and then in isolated yeast mitochondria. To test the role of TOM components in human
HeLa epithelial cells we used RNAi against individual TOM components or combinations of
TOM proteins. First we analyzed previously characterized HeLa cells that carry a doxycycline-
inducible shRNA specific for either Tom40 or Tom70 [16]. After 4 days of shRNA-induction
Tom40 expression was clearly reduced while Tom70 had become undetectable (S1A Fig).
Knock-down of Tom40 or Tom70 had only weak and not entirely consistent effects on the levels
of mitochondrial Bim (Fig 2A). There was a tendency to more mitochondrial Bim in Tom40-KD
and less mitochondrial Bim in Tom70-depleted cells (Fig 2A) but this difference was minor. The
half-life of Bim was surprisingly short in HeLa cells (in the order of 2–4 hours, S1B Fig), suggest-
ing that the mitochondrial Bim detected indeed is Bim that is synthesized and imported into mi-
tochondria in the absence of Tom40 or Tom70.

The Tom40 and Tom70-KD cell lines were then further made transgenic for a system where
murine 3xHA-tagged BimEL can be induced by tamoxifen. When Bim was induced (24h) after
4 days of KD (see experimental design S2B Fig), it accumulated at mitochondria with no differ-
ence detectable between control cells and cells depleted for Tom40 or Tom70 (Fig 2B), despite
robust KD of either TOM component (S1C Fig). Absence of either of these TOM-proteins
therefore does not appear substantially to affect mitochondrial import of Bim.

Receptors of the TOM complex show some redundancy in function and may therefore
compensate for each other in Bim import. Therefore we next analyzed if a combined knock-
down of Tom70, Tom22 and Tom20 would lead to reduced endogenous BimEL protein levels
at mitochondria (Fig 2C, S2C Fig; for knock-down efficiency in the experiment see S1D Fig).
However, the levels of BimEL at mitochondria were not consistently lower in three indepen-
dently performed experiments although some control proteins (CoxIV and NDUFA9) were
reduced (Fig 2C and S1F Fig (right) as another example of BimEL levels at mitochondria).
Again also the amount of de novo synthesized 3xHA-tagged BimEL was unchanged at mito-
chondria (Fig 2D; S1F Fig and S2D Fig) although we saw a slight increase of BimEL in the cy-
tosolic fraction in the triple-KD experiment. The reason for this is unclear but cytosolic
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BimEL is often seen when Bim is overexpressed [9]. Nevertheless, the mitochondria-localized
BimEL is the functional active form of Bim and this form was unchanged in these experi-
ments. The absence of these TOM-proteins therefore does not appear to affect mitochondrial
import of Bim in HeLa cells.

Alterations in either Bim-levels or Bim-activity at mitochondria caused by the loss of TOM-
proteins would be expected to alter the pro-apoptotic activity of Bim. It is conceivable that al-
terations in import upon loss of TOM proteins may be detected with greater sensitivity by test-
ing this biological function of Bim. We therefore monitored apoptosis (caspase-3-activation) in

Fig 2. Analyses of BimEL levels at mitochondria after knock-down of TOM components.Western blots showing the levels of endogenous BimEL (A, C)
or overexpressed 3xHA-BimEL (B, D) in mitochondrial enriched fractions (mito) and cytosolic fractions isolated from HeLa cells. (A, B) Western blots of BimEL

with or without doxycycline-induced single shRNA knock-down (KD) of Tom40- or Tom70 (+Dox, 1μg/ml, for 4d). (C, D) Western blots of BimEL after triple
TOM receptor KD (shRNA Tom70, siRNA Tom22 and Tom20). shRNA directed against Tom70 was induced (+Dox, 1μg/ml) and one day later siRNA for
Tom20 and Tom22 was added for additional 3 days before fractionation. Where 3xHA-BimEL was induced 10μM of QVD was added to inhibit cell death.
Fractionation was done as described under Material and Methods. Solubilisation was done with 1% Triton X-100. Western blots of tubulin and mitochondrial
Hsp60 serve as fractionation and loading controls (A-D) and CoxIV and NDUFA9 (subunits of the respiratory chain) are examples of proteins that depend on
the TOM complex for mitochondrial import (C, D). The detailed experimental design for each experiment can be found in S2 Fig For A, C, D (n = 3), for B
(n = 2). Compare also another experiment S1F Fig to Fig 2C and 2D.

doi:10.1371/journal.pone.0123341.g002
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Tom40-KD and in Tom70-KD HeLa cells carrying the inducible 3xHA-BimEL-construct.
Tom40 or Tom70 were knocked down by expression of the shRNA for 4 days. Then Bim-expres-
sion was induced, and caspase-3-activation was measured after 24 h. There was no difference in
apoptosis induction between control cells and cells with reduced expression of either TOM-pro-
tein (Fig 3A; knock-down efficiency for one of the experiments is shown in S1E Fig). Staining for
induced 3xHA-Bim indicated very similar levels in all situations (S3A Fig, S3B Fig). In experi-
ments where we combined shTom70 with siRNA against Tom20 plus Tom22 we again saw no
difference in apoptosis induction between control and triple-KD of Tom70/22/20 (Fig 3B).
These results argue against a universally essential role of Tom40, Tom70, Tom20 or Tom22 in
the regulation of Bim-activity.

The mitochondrial import machineries are conserved between yeast and mammals, and
yeast mitochondria have extensively been used to investigate mitochondrial protein import. We
have shown previously that Bim is imported into the OMM of yeast (Saccharomyces cerevisiae)

Fig 3. BimEL-induced cell death in the absence of TOM complex components. (A) Apoptosis induction measured by the percentage of active caspase-3
positive HeLa cells. Expression of 3xHA-BimEL was induced (+tamoxifen (4HT), 100nM) 24h before measurement. Where indicated Tom40 or
Tom70-specific shRNA was induced (+doxycycline, 1μg/ml) 4 days ahead of 3xHA-BimEL induction, and QVD (10μM) was added to some samples to inhibit
apoptosis. Data showmeans/SEM of 4 independent experiments. The experimental design is shown on the right. (B) Apoptosis measured as the percentage
of active caspase-3 positive HeLa cells. Expression of 3xHA-BimEL was induced (+tamoxifen (4HT), 100nM) 24h before measurement. Where indicated
shRNA directed against Tom70 was induced (+doxycycline, 1μg/ml) 3 days ahead of 3xHA-BimEL induction and siRNA KD of Tom20 and Tom22 was
performed 2 days ahead of 3xHA-BimEL induction. To inhibit apoptosis QVD (10μM) was also added to some samples. Data showmeans/SEM of 5
independent experiments. The experimental design is shown on the right.

doi:10.1371/journal.pone.0123341.g003
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mitochondria [9]. We re-analyzed if mitochondrial receptors are required for Bim insertion into
isolated yeast mitochondria. Of note, in vitro import experiments with untreated or protease
treated yeast mitochondria (therefore deficient for mitochondrial receptor proteins facing the
cytosol) gave a clear reduction (~40%) of imported full length in vitro transcribed/translated
BimEL. Nevertheless stable BimEL import was still substantial on digested mitochondria. BimEL

was imported within minutes into the mitochondrial outer membrane (Fig 4A–4C). The effec-
tiveness of the digestion procedure is shown in Fig 4D. Bim insertion into the yeast OMMmay
therefore be guided by receptors on mitochondria facing the cytosol.

To test for the requirement of individual TOM proteins we used mitochondria isolated
from yeast strains with genomic deletions in Tom20, Tom70 or Tom22 (loss of Tom40 is lethal
to yeast; for knock-down see below). Individual loss of Tom20 (Fig 5A and 5B) or other Tom-
receptors (Tom70 or Tom22, data not shown) failed to affect the import/insertion of BimEL in
time course experiments (the import of BimEL was again rapid and was complete after 5 min-
utes; Fig 5A and 5B). Bim insertion into the yeast OMMmay therefore be achieved in the ab-
sence of at least individual TOM receptors.

Bax-expression can kill yeast cells [28], and we have demonstrated previously that the consti-
tutive expression of Bim sensitizes yeast cells to the (induced) expression of Bax [9]. We used
this assay to test for effects of Tom40 and Tom70 on the Bax-activating activity of Bim. Yeast
cells that carried reduced levels of Tom40 or a genomic deletion of Tom70 were transformed

Fig 4. In vitro import of BimEL into the yeast OMM after trypsin digestion. (A, B) Import of radiolabelled murine BimEL precursor protein into isolated wild-
type yeast mitochondria after trypsin digestion of outer membrane receptors. Import was performed for 5min (A) or varyingly over the indicated period of
times (B). Samples were subjected to carbonate extraction and analyzed via SDS-PAGE and digital autoradiography. (C) Quantification of import data for Fig
4B. Data showmeans/SEM of 3 independent experiments (see S1 dataset) (D) Western blots showing the efficiency of trypsin digestion of receptors of the
OMM (OMM = outer mitochondrial membrane, IMS = inner membrane space). The OMM is still intact after the procedure, because Tom22, an OMM protein,
is degraded and control proteins (Mcr1, an IMS marker protein and Aco1, a matrix marker protein) are protected from protease treatment.

doi:10.1371/journal.pone.0123341.g004
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to express mouse Bim protein. Bim-expression alone does not detectably affect growth of S.
cerevisiae [9]. Cells were then transformed with a construct that permits induction of Bax off a
tetracycline-responsive promoter (tet-off: Bax is induced when cells are cultured on plates not
containing tetracycline). The effect of these constructs on yeast growth was tested on plates con-
taining glycerol as a non-fermentable carbon source (Fig 5C). Yeast cells were spotted on the
plates at varying dilutions. Induction of Bax caused no reduction in yeast growth (-tet, right
panels), but in yeast cells also expressing Bim there was a clear reduction in cell growth. Reduced
or abrogated expression of Tom40 or Tom70 however failed to alter this Bim-effect (Fig 5C).

Fig 5. Dependency of BimEL import into yeast OMM and yeast cell death/growth on individual TOM components. (A) Radiolabelled 35S-BimEL was
imported over various time periods into mitochondria isolated from wild-type (WT) or tom20Δ yeast cells. Samples were subjected to carbonate extraction
and the pellet fractions (containing membrane inserted proteins) were analyzed by SDS-PAGE and digital autoradiography. (B)Quantification of the
35S-BimEL import data from Fig 5A. Data showmeans/SEM of 3 independent experiments. (C) Yeast cell death/growth under Bax and Bim expression in WT,
Tom40 KD or Tom70 KO strains on glycerol plates (serial dilution of yeast cells). Bim is constitutively expressed, Bax is expressed after removal
of tetracycline.

doi:10.1371/journal.pone.0123341.g005
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Discussion
This study demonstrates a clear interaction of Bim with mammalian Tom70, Tom20 and a
probably weaker interaction with Tom40. All of these proteins are inserted in the OMM, and
this association suggests that there may be a regulation of Bim-localization and/or activity
through TOM-proteins. Trypsin-digested yeast mitochondria showed delayed Bim insertion
into the OMM. However, our experiments found no clear effects on Bim-localization or pro-
apoptotic activity in human or yeast cells with absent or reduced expression of TOM-proteins.

Mitochondrial import is regulated by complexes in the outer and inner mitochondrial mem-
branes, and these import complexes are required for the transport of proteins across either
membrane. It has been assumed that proteins that insert into the OMM also require TOM-
proteins at least as receptors but this may not universally be the case [15].

In vitro data with protease ‘shaved’mitochondria indicate that, at least in yeast, Bim integra-
tion into the OMM is more rapid in unshaved mitochondria and is reduced in the absence of
receptors exposed to the cytosol. If the difference in BimEL import-kinetics is of physiological
relevance in vivo is unclear. Nevertheless, BimEL levels on digested mitochondria were still sub-
stantial after 5 min.

Indeed, no clear difference in Bim-mitochondrial localization was found in mammalian
cells (when either single TOM proteins were knocked-down or when we combined triple
knock-down of the major TOM receptors Tom70, Tom20, Tom22). Bim may potentially still
directly integrate into the OMM without the involvement of TOM receptors as described for
the tail-anchored protein Fis1. Fis1 is inserted into mitochondria in a way where the unique
lipid composition of the mitochondrial outer membrane contributes to the selectivity of the
import process [29].

Redundancy in function of the TOM components may account for the lack of significant re-
duction in Bim levels in the absence of single TOM proteins (observed in mammals and yeast).
Therefore, we performed triple-KD experiments of TOM receptors in HeLa cells and could ob-
serve clear reduction (even though still incomplete) of Tom70, Tom20 and Tom22, but no sig-
nificant and consistent changes in BimEL levels at mitochondria. In this situation levels of the
tested mitochondrial proteins (CoxIV, NDVFA9) were reduced, arguing that the triple-KD
should be sufficient for significant reduction of proteins imported into mitochondria. The prin-
cipal ability of Bim to insert into the OMM without support from these TOM-proteins howev-
er appears plausible and is supported by earlier in vitro experiments with protease-treated
mammalian mitochondria showing no difference in Bax-mediated cytochrome c-release when
BimEL was added [9].

Tom70 is reported to act as a receptor for chaperones carrying nascent polypeptides destined
for mitochondrial import [12]. This could also be the function with respect to Bim. However, it
is remarkable that we also detected other TOM-proteins (namely Tom20) in our co-IP with
Bim, but did not detect Tom22 when we used conditions where the TOM-complex should re-
main intact. Tom20 and Tom70 are more weakly associated with the general import pore (GIP,
composed e.g. of Tom40, Tom22) and therefore the portion of Tom70/Tom20 that co-purifies
with Bimmay not itself be organized in the TOM-complex but serve other functions [30].

The regulation of Bim-activity is not well understood. It is assumed that Bim is active unless
bound by anti-apoptotic Bcl-2 proteins but other ways of regulation are also not unlikely. One
example is the known phosphorylation of Bim by the MAP kinases. ERK has been reported to
have an anti-apoptotic effect through the phosphorylation of Bim; this phosphorylation has
been reported to enhance Bim turnover [31, 32] but this could also be linked to binding to
TOM proteins. Jun-N-terminal kinase (JNK)-dependent phosphorylation of Bim has been
found to be pro-apoptotic [33]. Again, it is unknown how such modification could be linked to
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Tom-proteins but before we know more about potential Bim-regulation it is difficult to assess a
potential link to other mitochondrial proteins such as Tom70/Tom20.

The regulation of Bim is likely to be different in different cell types and situations. For in-
stance, ERK-dependent phosphorylation appears to play no role in hematopoietic cells [34]
but has a profound role on Bim-turnover in other cell types such as HEK293T cells [32]. Fur-
ther, Bim-dependent apoptosis can be regulated by subtle alterations of Bim-expression in
some cells [35]. Lastly, Bim-dependent apoptosis can in some cells be regulated by unknown
mechanisms other than transcriptional induction [36]. However, at this stage it is impossible
to know whether binding to TOM-proteins may also affect the regulation of Bim activity. Even
though we have not found an effect in the systems we have used here it remains a possibility
that TOM-dependent regulation of Bim—probably not through regulation of Bim-import but
perhaps through binding in the OMM—may be a mechanism that should be considered when
the activity of Bim is tested in other physiological or pathophysiological situations.

Supporting Information
S1 Fig. Refers to Fig 2 and Fig 3. (A) Western blots showing the KD efficiency of Tom40 and
Tom70 after 4d of shRNA induction (+doxycycline (Dox), 1μg/ml) in HeLa cells (corre-
sponding control for Fig 2A). (B) Western blots showing BimEL turnover in HeLa cells after
translation was blocked by cycloheximide treatment for the indicated times and concentra-
tions. (C) Western blots showing the KD efficiency of Tom40 and Tom70 after 4d of shRNA
induction (+doxycycline (Dox), 1μg/ml) in HeLa cells (corresponding control for Fig 2B).
(D) Western blots showing the KD efficiency for the three TOM receptors (Tom70, Tom22
and Tom20) in HeLa cells after 4d of shRNA induction (+doxycycline (Dox), 1μg/ml) against
Tom70 and 3d of siRNA against Tom22 and Tom20 (corresponding control for Fig 2C, 2D
and Fig 3B). (E) Western blots showing the KD efficiency of Tom40 and Tom70 after 4d of
shRNA induction (+doxycycline (Dox), 1μg/ml) in HeLa cells (corresponding control for
Fig 3A). (F) Western blots showing the levels of endogenous BimEL (left) or overexpressed
3xHA-BimEL (right) in mitochondrial enriched fractions (mito) and cytosolic fractions iso-
lated from HeLa cells from a second experiment (compare to Fig 2C and 2D). Western blots
of BimEL after triple TOM receptor KD (shRNA Tom70, siRNA Tom22 and Tom20). The de-
tailed experimental design is described in S2C and S2D Fig Where 3xHA-BimEL was induced
10μM of QVD was added to inhibit cell death. Fractionation was done as described under
Material and Methods. Solubilisation was done with 1% Triton X-100. Western blots of mito-
chondrial Hsp60 serve as fractionation control.
(TIF)

S2 Fig. Refers to Fig 2. (A) Experimental design for the analysis of endogenous BimEL levels
on mitochondria after Tom40 or Tom70 KD shown in Fig 2A. (B) Experimental design for the
analysis of the levels of overexpressed 3xHA-BimEL on mitochondria after Tom40 or Tom70
KD shown in Fig 2B. (C) Experimental design for the analysis of endogenous BimEL levels on
mitochondria after triple TOM receptors KD shown in Fig 2C. (D) Experimental design for the
analysis of the levels of overexpressed 3xHA-BimEL on mitochondria after triple TOM recep-
tors KD shown in Fig 2D.
(TIF)

S3 Fig. Refers to Fig 3. (A) Percentage of HA-positive cells (cells in which 3xHA-BimEL is ex-
pressed) in the indicated samples, as assessed by flow cytometry. Bars show the means of the 4
experiments summarized in Fig 3A. Error bars represent the SEM. Expression of 3xHA-BimEL

was induced (+tamoxifen (4HT), 100nM) 24h before measurement. Where indicated Tom40
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or Tom70-specific shRNA was induced (+doxycycline, 1μg/ml) 4 days ahead of 3xHA-BimEL

induction, and QVD (10μM) was added to some samples to inhibit apoptosis. (B) Histogram
shows the fluorescent intensity of HA staining (cells in which 3xHA-BimEL is expressed) in the
indicated samples. Data represent 1 of the 4 experiments summarized in Fig 3A and S3A Fig.
(TIF)

S1 Table. Proteins identified as enriched in HA-BIM purifications from isolated mitochon-
dria.
(XLSX)

S1 Dataset. Yeast import quantification data for Fig 4C.
(XLSX)
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