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Abstract

The topic of this thesis is the theoretical and numerical analysis of optimal control
problems, whose differential constraints are given by Fokker-Planck models related
to jump-diffusion processes. We tackle the issue of controlling a stochastic process
by formulating a deterministic optimization problem. The key idea of our approach
is to focus on the probability density function of the process, whose time evolution
is modeled by the Fokker-Planck equation. Our control framework is advantageous
since it allows to model the action of the control over the entire range of the process,
whose statistics are characterized by the shape of its probability density function.
We first investigate jump-diffusion processes, illustrating their main properties.

We define stochastic initial-value problems and present results on the existence and
uniqueness of their solutions. We then discuss how numerical solutions of stochastic
problems are computed, focusing on the Euler-Maruyama method.
We put our attention to jump-diffusion models with time- and space-dependent

coefficients and jumps given by a compound Poisson process. We derive the re-
lated Fokker-Planck equations, which take the form of partial integro-differential
equations. Their differential term is governed by a parabolic operator, while the
nonlocal integral operator is due to the presence of the jumps. The derivation is
carried out in two cases. On the one hand, we consider a process with unbounded
range. On the other hand, we confine the dynamic of the sample paths to a bounded
domain, and thus the behavior of the process in proximity of the boundaries has
to be specified. Throughout this thesis, we set the barriers of the domain to be
reflecting.
The Fokker-Planck equation, endowed with initial and boundary conditions, gives

rise to Fokker-Planck problems. Their solvability is discussed in suitable functional
spaces. The properties of their solutions are examined, namely their regularity,
positivity and probability mass conservation. Since closed-form solutions to Fokker-
Planck problems are usually not available, one has to resort to numerical methods.

i



The first main achievement of this thesis is the definition and analysis of conser-
vative and positive-preserving numerical methods for Fokker-Planck problems. Our
SIMEX1 and SIMEX2 (Splitting-Implicit-Explicit) schemes are defined within the
framework given by the method of lines. The differential operator is discretized
by a finite volume scheme given by the Chang-Cooper method, while the integral
operator is approximated by a mid-point rule. This leads to a large system of ordi-
nary differential equations, that we approximate with the Strang-Marchuk splitting
method. This technique decomposes the original problem in a sequence of different
subproblems with simpler structure, which are separately solved and linked to each
other through initial conditions and final solutions. After performing the splitting
step, we carry out the time integration with first- and second-order time-differencing
methods. These steps give rise to the SIMEX1 and SIMEX2 methods, respectively.
A full convergence and stability analysis of our schemes is included. Moreover, we

are able to prove that the positivity and the mass conservation of the solution to
Fokker-Planck problems are satisfied at the discrete level by the numerical solutions
computed with the SIMEX schemes.

The second main achievement of this thesis is the theoretical analysis and the
numerical solution of optimal control problems governed by Fokker-Planck models.
The field of optimal control deals with finding control functions in such a way that
given cost functionals are minimized. Our framework aims at the minimization of
the difference between a known sequence of values and the first moment of a jump-
diffusion process; therefore, this formulation can also be considered as a parameter
estimation problem for stochastic processes. Two cases are discussed, in which the
form of the cost functional is continuous-in-time and discrete-in-time, respectively.
The control variable enters the state equation as a coefficient of the Fokker-Planck

partial integro-differential operator. We also include in the cost functional a L1-
penalization term, which enhances the sparsity of the solution. Therefore, the re-
sulting optimization problem is nonconvex and nonsmooth. We derive the first-
order optimality systems satisfied by the optimal solution. The computation of
the optimal solution is carried out by means of proximal iterative schemes in an
infinite-dimensional framework.
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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der theoretischen und numerischen
Analyse von Optimalsteuerungsproblemen, deren Nebenbedingungen die Fokker-
Planck-Gleichungen von Sprung-Diffusions-Prozessen sind. Unsere Strategie baut
auf der Formulierung eines deterministischen Problems auf, um einen stochastischen
Prozess zu steuern. Der Ausgangspunkt ist, die Wahrscheinlichkeitsdichtefunktion
des Prozesses zu betrachten, deren zeitliche Entwicklung durch die Fokker-Planck-
Gleichung modelliert wird. Dieser Ansatz ist vorteilhaft, da er es ermöglicht, den
gesamten Bereich des Prozesses durch die Wirkung der Steuerung zu beeinflussen.
Zuerst beschäftigen wir uns mit Sprung-Diffusions-Prozessen. Wir definieren Aus-

gangswertprobleme, die durch stochastische Differentialgleichungen beschrieben wer-
den, und präsentieren Ergebnisse zur Existenz und Eindeutigkeit ihrer Lösungen.
Danach diskutieren wir, wie numerische Lösungen stochastischer Probleme berech-
net werden, wobei wir uns auf die Euler-Maruyama-Methode konzentrieren.
Wir wenden unsere Aufmerksamkeit auf Sprung-Diffusions-Modelle mit zeit- und

raumabhängigen Koeffizienten und Sprüngen, die durch einen zusammengesetzten
Poisson-Prozess modelliert sind. Wir leiten die zugehörigen Fokker-Planck-Glei-
chungen her, die die Form von partiellen Integro-Differentialgleichungen haben. Ihr
Differentialterm wird durch einen parabolischen Operator beschrieben, während der
nichtlokale Integraloperator Sprünge modelliert. Die Ableitung wird auf zwei unter-
schiedlichen Arten ausgeführt, je nachdem, ob wir einen Prozess mit unbegrenztem
oder beschränktem Bereich betrachten. In dem zweiten Fall muss das Verhalten des
Prozesses in der Nähe der Grenzen spezifiziert werden; in dieser Arbeit setzen wir
reflektierende Grenzen.
Die Fokker-Planck-Gleichung, zusammen mit einem Anfangswert und geeigneten

Randbedingungen, erzeugt das Fokker-Planck-Problem. Die Lösbarkeit dieses Pro-
blems in geeigneten Funktionenräumen und die Eigenschaften dessen Lösung werden
diskutiert, nämlich die Positivität und die Wahrscheinlichkeitsmassenerhaltung. Da
analytische Lösungen von Fokker-Planck-Problemen oft nicht verfügbar sind, müssen
numerische Methoden verwendet werden.
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Die erste bemerkenswerte Leistung dieser Arbeit ist die Definition und Analyse
von konservativen numerischen Verfahren, die Fokker-Planck-Probleme lösen. Un-
sere SIMEX1 und SIMEX2 (Splitting-Implizit-Explizit) Schemen basieren auf der
Linienmethode. Der Differentialoperator wird durch das Finite-Volumen-Schema
von Chang und Cooper diskretisiert, während der Integraloperator durch eine Mit-
telpunktregel angenähert wird. Dies führt zu einem großen System von gewöhnlichen
Differentialgleichungen, das mit der Strang-Marchuk-Splitting-Methode gelöst wird.
Diese Technik teilt das ursprüngliche Problem in eine Folge verschiedener Teilprob-
leme mit einer einfachen Struktur, die getrennt gelöst werden und danach durch
deren Anfangswerte miteinander verbunden werden. Dank der Splitting-Methode
kann jedes Teilproblem implizit oder explizit gelöst werden. Schließlich wird die
numerische Integration des Anfangswertsproblems mit zwei Verfahren durchgeführt,
nämlich dem Euler-Verfahren und dem Predictor-Corrector-Verfahren.
Eine umfassende Konvergenz- und Stabilitätsanalyse unserer Systeme ist enthal-

ten. Darüber hinaus können wir beweisen, dass die Positivität und die Massener-
haltung der Lösung von Fokker-Planck-Problemen auf diskreter Ebene durch die
numerischen Lösungen erfüllt werden, die mit den SIMEX-Schemen berechnet wur-
den.

Die zweite bemerkenswerte Leistung dieser Arbeit ist die theoretische Analyse
und die numerische Behandlung von Optimalsteuerungsproblemen, deren Nebenbe-
dingungen die Fokker-Planck-Probleme von Sprung-Diffusions-Prozessen sind. Der
Bereich der optimalen Steuerung befasst sich mit der Suche nach einer optimalen
Funktion, die eine gegebene Zielfunktion minimiert. Wir zielen auf die Minimierung
des Unterschieds zwischen einer bekannten Folge von Werten und dem ersten Mo-
ment eines Sprung-Diffusions-Prozesses. Auf diese Weise kann unsere Formulierung
auch als ein Parameterschätzungsproblem für stochastische Prozesse angesehen wer-
den. Zwei Fälle sind erläutert, in denen die Zielfunktion zeitstetig beziehungsweise
zeitdiskret ist.
Da die Steuerung ein Koeffizient des Integro-Differentialoperators der Zustandsglei-

chung ist und die Zielfunktion einen L1-Term beinhaltet, der die dünne Besetzung
der Lösung erhöht, ist das Optimierungsproblem nichtkonvex und nichtglatt. Die
von der optimalen Lösung erfüllten notwendigen Bedingungen werden hergeleitet,
die man mit einem System beschreiben kann. Die Berechnung optimaler Lösun-
gen wird mithilfe von Proximal-Methoden durchgeführt, die entsprechend um den
unendlichdimensionalen Fall erweitert wurden.

iv



Contents

1 Introduction 3
1.1 Motivation and review . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Formulation and simulation of jump-diffusion processes 11
2.1 Lévy processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Lévy processes as Markov processes . . . . . . . . . . . . . . . 18
2.1.3 Examples of Lévy processes . . . . . . . . . . . . . . . . . . . 21

2.2 Stochastic differential equations . . . . . . . . . . . . . . . . . . . . . 25
2.3 Numerical solution of stochastic differential equations . . . . . . . . . 29
2.4 The empirical probability density function . . . . . . . . . . . . . . . 37
2.5 Summary and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Analysis of Fokker-Planck problems related to jump-diffusion pro-
cesses 41
3.1 A Fokker-Planck model in an unbounded domain . . . . . . . . . . . 44
3.2 A Fokker-Planck model in a bounded domain . . . . . . . . . . . . . 48
3.3 A priori estimates for the Fokker-Planck problem . . . . . . . . . . . 50
3.4 Summary and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Optimal control of Fokker-Planck equations for jump-diffusion pro-
cesses 55
4.1 Formulation of Fokker-Planck control problems . . . . . . . . . . . . 56
4.2 First-order optimality systems . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Summary and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Numerical solution of Fokker-Planck problems for jump-diffusion
processes 65
5.1 The SIMEX schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Accuracy analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3 Positivity and conservativeness of the SIMEX schemes . . . . . . . . 81
5.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 86



5.4.1 The accuracy of the SIMEX schemes . . . . . . . . . . . . . . 86
5.4.2 The range of an Ornstein-Uhlenbeck process with jumps . . . 87

5.5 Summary and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Numerical solution of Fokker-Planck control problems 91
6.1 The proximal method . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.4 Summary and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Conclusion 107

Appendices 109

A matlab code 109

Bibliography 125



Chapter 1

Introduction

1.1 Motivation and review

This thesis is motivated by the need of developing effective and robust numerical
schemes for solving problems in quantitative finance. With this spirit, the initial
training network STRIKE (January 2013 - December 2016) has been established.
Our research project was supported by the European Union in the FP7-PEOPLE-
2012-ITN Program under Grant Agreement Number 304617 (FP7 Marie Curie Ac-
tion, Project Multi-ITN STRIKE - Novel Methods in Computational Finance).
Beyond the Black-Scholes framework, the market behavior can be modeled by

stochastic processes with jumps. In fact, empirical data suggest that Lévy processes
could be most appropriate for describing the dynamics of stock prices, rathen than
an Itô diffusion [2, 3, 7, 23, 24, 25, 47, 55, 57, 67]. The increasing popularity of
Lévy processes stems also from the fact that they are Markov jump processes and
they include models such as Brownian motions, Poisson processes and subordinators
[6, 11, 31, 55, 59, 83]. However, processes with jumps find application in other areas
than finance, such as physics and image reconstruction [6, 11, 18, 23, 87, 77, 83].
The research effort in quantitative finance regarding jump processes also considers

optimization problems such as option pricing in incomplete markets, portfolio opti-
mization and model calibration. A number of publications aiming at the numerical
solution of this class of problems is available, see [16, 24, 25, 52] and references
therein. The mathematical modeling of such issues consists of setting stochastic
control problems In these references, the expected value of a given cost functional is
considered. This averaging step is needed since the random variable is inserted into
a deterministic cost functional. The Hamilton-Jacobi-Bellman equation, whose form
depends on the chosen cost functional, is derived and then solved with a suitable
method [8, 10, 27, 35, 36, 46, 60, 75, 93].
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The purpose of this work is to provide an alternative approach for solving optimiza-
tion problems subject to random perturbations. We consider stochastic processes
with jumps. The key observation is to investigate the probability density function
(PDF) of the considered process, whose evolution is governed by the Fokker-Planck
(FP) equation; this allows one to formulate a deterministic optimal control problem.
Up to our knowledge, the literature on FP-based control problems is very recent,
and processes containing jumps have been less investigated than Itô diffusion pro-
cesses. Existing works deal indeed with processes with continuous sample paths, see
[4, 5, 54, 82].
In this thesis, we consider a jump-diffusion (JD) Markov process X = {Xt}t∈I

with range in Rd, evolving in the time interval I := [0, T ] ⊂ R+. The process X
solves the following stochastic initial value problem

dXt = b(Xt− , t)dt+ σ(Xt− , t)dWt + dPt,

X{t=0} = X0,

(1.1)

where X0 ∈ Rd is a given initial random data. This stochastic differential equation
(SDE) relates the infinitesimal increments of the stochastic process X to both de-
terministic and random increments, given by the multidimensional Wiener process
W ∈ Rm and the compound Poisson process P ∈ Rd. We denote with λ ∈ R+ the
rate of the time events of the compound Poisson process and with g the distribution
of the jump size. The density g is nonnegative and normalized,

∫
Rd g(y)dy = 1. The

deterministic functions b : Rd × R+ → Rd and σ : Rd × R+ → Rd×m represent the
drift and the diffusion coefficients, respectively. It is always assumed that the matrix
σ is full-rank. Due to the compound Poisson process P , the sample paths of X are
discontinuous; the notation Xt− stands for the left limit of Xt, Xt− := lims↑tXs.
The solvability of (1.1) follows under growth and regularity conditions on b and

σ. Classical references dealing with initial value problems such as (1.1) are, e.g., [6,
53, 56, 73]. A number of existing works provides the rate of convergence on existing
numerical methods for solving (1.1); see [8, 19, 48, 55, 56, 64, 68, 79] and references
therein. However, all these schemes require the simulation of the sample paths of
the driving noise; existing algorithms can be found in, e.g., [8, 20, 23, 46, 48, 55, 56].
In contrast to the simulation of (1.1) based on Monte Carlo (MC) techniques

[58], we examine the stochastic problem (1.1) by considering its PDF f(x, t). The
PDF characterizes the statistics of X over its entire space-time range and its time
evolution is modeled by the FP equation, which plays a fundamental role in many
problems involving random quantities. This equation has been first applied to prob-
lems with randomness given by Brownian motion, i.e. not containing jumps; in this
case, this equation is governed by a partial differential equation of parabolic type as
follows

∂tf(x, t) = Lf(x, t). (1.2)
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The differential operator L is defined as follows

Lf(x, t) := −
d∑
i=1

∂i (bi(x, t)f(x, t)) +
d∑

i,j=1

∂2
ij (Cij(x, t)f(x, t)) , (1.3)

where Cij(x) := 1
2

∑m
k=1 σik(x, t)σjk(x, t). Since the diffusion coefficient σ is full

rank, the matrix C is positive definite. The derivation of the FP equation, some
methods of solution and its application to diffusion models can be found in [26, 32,
38, 62, 63, 77, 80, 87].
In case of a process X solving (1.1), therefore containing jumps, the corresponding

FP equation is defined in Rd× I and it is governed by the following partial integro-
differential equation

∂tf(x, t) = Lf(x, t) + If(x, t), (1.4)

where L is defined as in (1.3). The integral operator in (1.4) depends on the jump
rate λ and on the distribution g defining the compound Poisson process in (1.1).
For example, in case of an unbounded domain, we have

If(x, t) = λ

∫
Rd
f(x− y, t)g(y)dy − λf(x, t). (1.5)

Equation (1.4), endowed with initial and possibly boundary conditions, gives rise
to the FP problem, whose solution represents the PDF of X. The initial condition
is chosen to be the PDF f0 of the initial data X0 in (1.1).
In this work, we show how the FP problem of a JD process governed by (1.1) can

be derived. We focus on two cases. In the first case we consider a process with
range in the whole space Rd. The second case limits the dynamic of a process to a
bounded domain Ω ⊂ Rd and sets reflecting barriers; the behavior at the boundaries
is translated into suitable boundary conditions in the FP problem. In recent works
[15] a similar derivation is carried out in case of a discrete random process with
bounded jumps, while in [30] and [61] diffusion models with reflecting barriers are
investigated.
Since the solution f of a FP problem is a PDF, it must be nonnegative and its

integral over the space domain of the process must be equal to 1. In this thesis, we
show that these two structural properties are valid when the initial and boundary
conditions are suitably chosen.
Classical solutions of initial-boundary value problems containing partial integro-

differential equations have been examined in the context of Hölder spaces and
uniformly parabolic operators [39, 40, 41]. Numerical schemes for problems gov-
erned by partial integro-differential equations are implemented and investigated in
[2, 3, 16, 17, 18, 24, 25, 50, 66]. These schemes are mainly motivated by financial
applications and a rigorous numerical analysis is often not available.
With the aim of solving a FP equation as (1.2), Chang and Cooper [21] proposed

a conservative scheme that computes the density of a diffusion process. A complete
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numerical analysis of this method has been carried out in [69]. However, numeri-
cal schemes for the FP problem for a JD process have been less investigated; this
problem is addressed in this thesis. We discretize (1.4) within the framework of
the method of lines [84]. The differential operator L is discretized with the Chang-
Cooper (CC) scheme, and the integral operator I is approximated by the mid-point
rule. This leads to a large system of ordinary differential equations, which we ap-
proximate with the Strang-Marchuk (SM) splitting method [34, 45, 50, 65, 90]. This
method decomposes the original problem in a sequence of different subproblems with
simpler structure, which are separately solved and linked to each other through ini-
tial conditions and final solutions. After performing the SM splitting, we carry out
the time integration with a first- and a second-order time-differencing method. Our
discretization procedure with the two different time-discretization schemes leads to
the SIMEX1 and SIMEX2 (Splitting-Implicit-Explicit) schemes, respectively. For
clarity, our discretization workflow is summarized in Figure 1.1.

Initial-boundary value problem in Ω× I with Ω ⊆ Rd

Initial value problem (ODE) in I

Splitting initial value problem (ODE) in I

Numerical solution Numerical solution

Space discretization and quadrature formula

Strang-Marchuk splitting

First-order time discretization Second-order time discretization

Figure 1.1: Discretization workflow of the SIMEX1 and SIMEX2 schemes.

We remark that splitting methods and finite differences are frequently used by
practitioners [31, 51, 52]. However, in many works less attention has been put
on positivity and conservation properties, and the numerical analysis has mainly
focused on time-approximation properties. In this thesis, we prove that both the
SIMEX1 and SIMEX2 schemes guarantees conservativeness of the total probability
and nonnegativity of the solutions.
Our stable, convergent and probability-preserving numerical methods allow to nu-

merically address optimal control problems with constraints given by FP problems.
In this thesis, we set and investigate optimal control problems to steer the JD pro-
cess of interest by defining suitable cost functionals. These problems belong to a
very active research field, motivated by a broad range of applications ranging from,
e.g., fluid flow, space technology, heat phenomena, image reconstruction and finance
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[14, 60, 91]. The main focus of this research has been on problems with smooth cost
functionals governed by partial differential equations with linear or bilinear control
mechanism [4, 12, 37, 60, 85, 86, 91]. In these references, the purpose is often to
compute optimal controls such that an appropriate norm of the difference between
a given target and the resulting state is minimized.
Very recently, PDE-based optimal control problems with sparsity promoting L1-

cost functionals have been investigated starting with [85, 86, 89]. Such formulation
considers nonsmooth cost functionals that give rise to a sparse optimal control;
in order to solve such problems, we consider proximal iterative schemes that have
been introduced in [70] and [81] and further developed in the framework of finite-
dimensional optimization [9, 22, 72]. Recent works extended this framework with
the aim of solving infinite-dimensional PDE optimization problems [85, 86].
In this thesis, we set an infinite-dimensional optimal control problem with a non-

smooth cost functional. Denote with f the PDF of the process modeled by (1.1)
and with u the control variable, which is part of the drift coefficient of the partial
integro-differential operator of (1.4). Our optimal control problem reads as follows

min
f,u
J (f, u)

s.t. K(f, u) = 0,

(1.6)

where the differential constraint K embodies the FP equation (1.4) with initial and
boundary conditions. The cost functional J is defined as follows

J (f, u) := D(f) +
ν

2
‖u‖2

2 + γ‖u‖1. (1.7)

The set of admissible controls Uad is usually a closed and convex set of a Hilbert
space where the minimum has to be computed. The L2-term in (1.7) represents a
regularization term that prevents the norm of u from going to infinity. The L1-term
in (1.7) enhances the sparsity of the optimal solution u. The tracking objective
D(f) in (1.7) aims at the minimization of the difference between a known sequence
of values or a function and the first moment of the JD process (1.1). For this
reason, our formulation can also be considered as a parameter estimation problem
for stochastic processes. In the discrete-in-time case, the form of the cost functional
gives rise to a finite number of discontinuities in time of the adjoint variable and
hence of the control. A similar situation has already been considered in [13].
We numerically address the problem (1.6) by applying a method that exploits the

additive structure of J and relies on the subgradient of a nondifferentiable function
[33]. The chosen proximal method combines a gradient method [71] and a proximal
algorithm proposed in finite-dimension in [72] and extended to infinite-dimensional
control problems in [86].
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1.2 Outline of the thesis

This thesis is organized as follows.
In Chapter 2, we introduce JD processes, investigate SDEs driven by such pro-

cesses and discuss how they can be solved numerically. In Section 2.1, we define Lévy
processes, which constitute a broad class of jump processes, and outline their char-
acterizing properties. A literature review of results stating existence and uniqueness
of solutions to SDEs driven by jump processes is included in Section 2.2. The last
part of this chapter, from Section 2.3 on, deals with the numerical solution of SDEs.
After outlying the Euler-Maruyama (EM) method, we prove its rate of convergence.
We conclude with an application of the EM method for estimating the PDF of a JD
process.

Chapter 3 deals with the FP equation related to a JD process, which is the focus
of this thesis. We carry out its explicit derivation in two cases, in an unbounded
domain and in a bounded domain, respectively. The former is outlined in Section
3.1 and relies on the application of the Itô’s formula. The latter is illustrated with a
constructive approach in Section 3.2 and takes into account the presence of reflecting
barriers. When the dynamics of a stochastic process is restricted to a bounded range,
the behavior of the process at the boundaries is of fundamental importance for the
definition of appropriate boundary conditions. The reflecting barriers translate into
zero-flux boundary conditions in the FP problem. We provide a priori estimates as
well as existing results on existence and uniqueness of solutions to our FP problems.

Chapter 4 provides the foundation for the theoretical investigation of optimal
control problems, whose constraints are given by JD FP models. In Section 4.1, we
define the cost functionals of our optimization problems. We consider two different
tracking objectives, discrete-in-time and continuous-in-time, respectively. Both have
the purpose to steer the mean value of the stochastic process towards a sequence
of given values. The existence of at least an optimal solution is proven. In Section
4.2, we derive the necessary conditions satisfied by local optimal solutions. These
conditions take the form of first-order optimality systems, which are outlined in both
cases of discrete-in-time and continuous-in-time cost functionals.

In Chapter 5, we address the issue of numerically solving the FP problems. Our
SIMEX methods are outlined in the case of a one-dimensional setting in Section 5.1.
After discretizing the differential and integral operators with the Chang-Cooper
method and the mid-point rule, respectively, the time integration of the resulting
large system of ordinary differential equations is carried out. We compute the numer-
ical solution by applying first- and second-order Euler time-discretization schemes.
The convergence and stability analysis of the SIMEX scheme is carried out in Sec-
tion 5.2. We show in Section 5.3 that the chosen discretization approach preserves
the two properties of the solution to the FP problem, namely the positivity and the
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mass conservation over the space range. Section 5.4 illustrates results of numerical
experiments that validate the theoretical statements of the previous sections.

Chapter 6 discusses the numerical solution of our FP-based optimal control prob-
lems. Section 6.1 investigates the chosen optimization algorithm. Our approach
relies on the definition of a proximity operator of a convex and possibly nonsmooth
function. We combine a fixed-point iteration with a gradient method. The con-
vergence analysis of our proximal method is outlined in Section 6.2. In order to
investigate the effectiveness of the algorithm, results of numerical experiments are
presented in Section 6.3.

Each chapter of this thesis ends with a section of conclusion and some remarks.
A final section of conclusions completes this work.

The results presented in this thesis are partly based on the following publications:

• B. Gaviraghi, M. Annunziato and A. Borzì,

– Splitting methods for Fokker-Planck equations related to jump-diffusion
processes (Chapter 23)

– A Fokker-Planck based approach to control jump processes (Chapter 24)

in M. Ehrhardt, Michael Günther and E. J.W. ter Maten (eds.), STRIKE –
Novel Methods in Computational Finance, Springer, 2017.

• B. Gaviraghi, M. Annunziato and A. Borzì, Analysis of splitting methods for
solving a partial integro-differential Fokker-Planck equation. Applied Mathe-
matics and Computation (2017) 294, 1–17.

• B. Gaviraghi, A. Schindele, M. Annunziato and A. Borzì, On optimal sparse-
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Chapter 2

Formulation and simulation of

jump-diffusion processes

The aim of this chapter is to introduce JD processes, investigate SDEs driven
by such processes and present how they can be numerically solved. In Section 2.1
we define Lévy processes and outline their main properties. Section 2.2 includes
a literature review on the results stating existence and uniqueness of solutions to
initial value stochastic models. Section 2.3 deals with the numerical solution of
SDEs. We first outline the EM method and we prove its strong rate of convergence.
We conclude with an application of this method, which aims at the estimation of
the PDF of a JD process.

2.1 Lévy processes

In this section, we introduce the theoretical setting needed in the remainder of the
chapter. Additional results and discussion of the material presented in this chapter
can be found, for example, in [6, 26, 38, 88].
Throughout this chapter we consider a probability space (Ω,F,P), where Ω is the

set of the possible outcomes, F is a σ-algebra and P is a probability measure. Let
us equip Rd with the Borel σ-algebra, i.e. the σ-algebra generated by the open sets,
denoted by B(Rd). A mapping Z from Ω into Rd is measurable if Z−1(B) ∈ F

whenever B ∈ B(Rd). A measurable mapping Z is called a random variable. Its as-
sociated probability law or distribution is the probability measure pZ on (Rd,B(Rd))
defined for each B ∈ B(Rd) by

pZ(B) := P(Z−1(B)).
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The expected value of Z is defined as follows

E[Z] :=

∫
Rd
x pZ(dx).

If pZ is absolutely continuous with respect to Lebesgue measure, the random vari-
able Z admits a density fZ and the expected value can be written as E[Z] =∫
Rd x fZ(x)dx. The cumulative distribution function FZ of a real-valued random
variable is defined as FZ(x) := P(Z ≤ x) and it can be written in terms of the
density fZ as follows, FZ(x) =

∫ x
−∞ fZ(y)dy.

Given the probability space (Ω,F,P), a random variable Z with E[Z] < ∞ and
a σ-algebra G ⊆ F, the conditional expectation of Z given G is the almost surely
unique random variable K such that

• K is G-measurable.

• E[ZY ] = E[KY ] for all random variables Y bounded and G-measurable.

In literature, K is denoted with E[Z|G]. When, in particular, G is the smallest σ-
algebra on Ω that contains all preimages of a random variable J , defined as follows

G := σ{J−1(E) |E ∈ B(Rd)},

then K is also denoted with E[Z|J ] and is called conditional expectation of Z given
the random variable J .
Let µ1 and µ2 be two probability measures on (Rd,B(Rd)). For each set E ∈ B(Rd),

the convolution of µ1 and µ2 is the probability measure on (Rd,B(Rd)) defined as
follows

(µ1 ∗ µ2)(E) =

∫
Rd
µ1(E − x)µ2(dx).

Two random variables Z1 and Z2 are said to be independent if for any couple
E1, E2 ⊆ B(Rd), we have P({Z1 ∈ E1} ∩ {Z2 ∈ E2}) = P({Z1 ∈ E1})P({Z2 ∈ E2}).
If two random variables Z1 and Z2 have the same probability law, they are said to
be identically distributed, and we write the following equality

Z1
d
= Z2.

The characteristic function φZ : Rd → C of a random variable Z with law pZ is
defined for each u ∈ Rd as follows

φZ(u) := E[eiu·Z ] =

∫
Rd
eiu·ypZ(dy),

where the scalar product is intended in Rd.
Given the class of random variables, the concept of limit naturally arises. Consider

the sequence of random variables {Zn}n∈N. We say that Zn converges to Z in mean-
square sense if

lim
n→∞

E[(Zn − Z)2] = 0 (2.1)
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and we write m.s. limn→∞ Zn = Z. We say that Zn converges to Z in probability if
for each ε > 0 we have that

lim
n→∞

P({|Zn − Z| > ε}) = 0, (2.2)

and we write limn→∞ Zn
P
= Z.

The following definition plays a pivotal role in the investigation of Lévy processes.

Definition 1 (Infinite divisibility). A random variable Z is infinitely divisible if for
all m ∈ N there exist m i.i.d. (independent identically distributed) random variables
{Zj}mj=1 such that

Z
d
=

m∑
j=1

Zj.

Equivalently, we can say that a random variable Z with law pZ is infinitely divisible
if for all m ∈ N there exists another law pZm of another random variable Zm such
that pZm is the m-th convolution root of pZ . We have

pZ = pZm ∗ · · · ∗ pZm .︸ ︷︷ ︸
m times

Alternatively, it is possible to define an infinitely divisible random variable with
its characteristic function. In fact, a random variable is infinitely divisible if and
only if for all m ∈ N there exists a random variable Zm such that

φZ(u) = [φZm(u)]m.

Definition 2. (Lévy measure) A measure ν defined on Rd\{0} is a Lévy measure if∫
Rd\{0}

min{||y||2, 1} ν(dy) <∞,

where ||y||2 :=
∑d

k=1 y
2
k.

The following theorem gives a necessary and sufficient condition fulfilled by the
characteristic function of an infinitely divisible random variable.

Theorem 1. (Lévy-Khintchine formula) A random variable Z in Rd is infinitely
divisible if and only if there exists a triplet (b, A, ν) with b ∈ Rd, A ∈ Rd×d a positive
definite symmetric matrix, and a Lévy measure ν such that

φZ(u) = E[eiu·Z ] =

∫
Rd
eiu·spZ(ds) = exp{ψ(u)} =

= exp

{
ib · u− 1

2
(u,Au) +

∫
Rd\{0}

[eiu·s − 1− iu · s1{||s||<1}(s)]ν(ds)

}
,

for each u ∈ Rd.
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The measure ν (and thus the integral) can be extended to the whole set Rd by
defining ν({0}) := 0. The mapping ψ : Rd → C is called the Lévy or characteristic
exponent.
A stochastic process X is a parametrized collection of random variables {Xt}t∈I

defined on a probability space (Ω,F,P). For each t ∈ I, the random variable Xt has
range in Rd. The parameter t ∈ I often models the evolution of X over time; in this
case, we have that I ⊆ R+.
Given Ω and F, a filtration is a sequence of σ-algebras {Ft}t∈I such that if t1 ≤

t2 then Ft1 ⊆ Ft2 ⊆ F. A filtration represents the time evolution in the set of
events that can be measured, according to the growth of the time index t. We
always consider the case in which the filtration {Ft}t∈I satisfies the so-called usual
conditions :

• completeness, which means that F0 contains all P-null sets;

• right-continuity, which means that Ft = Ft+ :=
⋂
s>tFs for all times t.

A stochastic process X is said to be adapted to a filtration {Ft}t∈I if the random
variable Xt is Ft-measurable for each t ∈ I. Given a stochastic process, we can
define its natural filtration {FXt }t∈I as follows

FXt := σ{X−1
s (E) | 0 ≤ s ≤ t, E ∈ B(Rd)}, (2.3)

which is the smallest σ-algebra on Ω that contains all preimages of measurable
subsets of Rd for all the times up to t.
The Brownian motion, observed first by Robert Brown in the 1820s and estensively

investigated by Albert Einstein in [32], is the most studied example of Lévy process.

Definition 3 (Brownian motion). A stochastic process W = {Wt}t∈I defined on
a probability space (Ω,F,P) is a Brownian motion if the following conditions are
fulfilled.

• W0 = 0 almost surely, i.e. P({ω ∈ Ω such that W0(ω) 6= 0}) = 0.

• The mapping t 7→ Wt is almost surely continuous, in the sense that
P({ω such that Wt(ω) is continuous w.r.t. t}) = 1.

• {Wt}t∈I has independent increments, which means that the increments corre-
sponding to two nonoverlapping time intervals are independent, as follows

t1 ≤ t2 ≤ t3 ≤ t4 ⇒ Wt2 −Wt1 and Wt4 −Wt3 are independent.

• For each t and s with 0 ≤ s ≤ t, the increment Wt − Ws is distributed as
N (0, (t− s)2I), the normal distribution with expected value 0 and covariance
matrix (t− s)2I, where I is the d-dimensional identity matrix.

In one dimension, W is also called Wiener process, since Norbert Wiener in the
1920s provided its first rigorous mathematical construction [6].
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2.1.1 Definition and properties

In this section, we present the class of Lévy processes, named after the French math-
ematician Paul Lévy. Roughly speaking, Lévy processes are stochastic processes
whose increments in nonoverlapping time intervals are independent and stationary
in time.

Definition 4. (Lévy process) A stochastic process X = {Xt}t∈I defined on (Ω,F,P)
is called a Lévy process if the following properties hold.

1. X is right-continuous with left limits (càdlàg, from the French continue à
droite, limite à gauche). For each t, we have the following.

• The left limit lims↑tXs exists and is denoted with Xt− .

• The right limit lims↓tXs exists and is equal to Xt.

2. P({X0 = 0}) = 1.

3. X is continuous in probability:

lim
t→s

Xt
P
= Xs,

for each t, s > 0, in the sense of (2.2).

4. X has stationary increments:

for 0 ≤ s ≤ t, Xt −Xs
d
= Xt−s.

This means that the distribution of Xt − Xs is invariant under time shifts
(s, t)→ (s+ h, t+ h).

5. X has independent increments:

for 0 ≤ s ≤ t, Xt −Xs is independent of {Xu : u ≤ s}.

As a consequence, for any finite ordered sequence of times 0 ≤ t1 < ... < tn
the random variables Xt1 −X0, ..., Xtn−1 −Xtn are mutually independent.

While the first three properties are usual technical assumptions, the latter ones
define the key features of a Lévy process X. For each t ∈ R and m ∈ N, we can
write the following equality

Xt = Y 1
t + . . .+ Y m

t ,

where each Y k
t is an increment defined as follows

Y k
t = X kt

m
−X (k−1)t

m

, k = 1, . . . ,m.
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Thanks to the properties of a Lévy process as in Definition 4, for each m ∈ N the
random variables {Y k

t }mk=1 are independent and identical distributed. Therefore, for
each arbitrary t ∈ R, Xt is infinitely divisible and Theorem 1 holds.
In order to introduce the decomposition that characterizes a Lévy process, we

focus on the discontinuous component of such process. To this end, it is useful to
introduce the general notion of random measure.

Definition 5 (Random measure). Given a σ-algebra S on a set Σ and a probability
space (Ω,F,P), a random measure on (Σ,S) is a collection of random variables
Π = {Π(S)}S∈S on (Ω,F,P) such that

1. Π(∅) = 0;

2. (σ-additivity property) if {Sn}n∈N is a collection of mutually disjoint subsets,
then Π(∪nSn) =

∑
n Π(Sn) almost surely;

3. if S1, ..., Sn are mutually disjoint, the random variables Π(S1), ...,Π(Sn) are
independent.

Definition 6 (Poisson random measure). A Poisson random measure is a ran-
dom measure Π on (Σ,S) such that each Π(S) has a Poisson distribution whenever
Π(S) < ∞. The intensity of a Poisson random measure Π is the measure defined
on (S,S) defined by E[Π(S)], for each S ∈ S.

We show that given a Lévy process X, we can construct a Poisson random measure
on (Rd\{0},B(Rd\{0}). The jump process ∆X = {∆Xt}t∈I associated to a Lévy
process X is defined as follows

∆Xt := Xt −Xt− , whenever Xt− 6= Xt,

for each time t ∈ I. Therefore, given a Lévy process X, we can formally write the
following

Xt = Xc
t +

∑
s≤t

∆Xs.

The process Xc
t has continuous sample paths, while the second term is discontinuous

and gives all the jumps occurred up to time t. In fact, a path of X can be seen as
a continuous random walk interspersed by jumps of random size.
Given a time t ∈ I and a set E ∈ B(Rd\{0}), the random measure of the jumps

of X is defined as follows

µ(t, E) :=
∑
s≤t

1E(∆Xs) = card{s ∈ [0, t] such that ∆Xs ∈ E}. (2.4)

In other words, µ counts the jumps of size belonging to E occurred up to time t.
If we fix t and E, then µ(t, E) is a random variable. If we fix ω ∈ Ω and t ≥ 0,
then µ(t, ·) is a set function E 7→ µ(t, E) that defines a σ-finite measure on R\{0}.
If we fix E, we note that µ(·, E) has stationary and independent increments, thus
it is a Poisson random measure. These premises allow us to state the Lévy-Itô
decomposition theorem, which completely describes a Lévy process.
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Theorem 2 (Lévy-Itô decomposition). If X is a Lévy process on a probability space
(Ω,F,P), then there exist b ∈ Rd, a Brownian motion WA(t) with covariance matrix
A ∈ Rd×d, and an independent Poisson random measure µ on (R+,Rd\{0}) as in
(2.4) with intensity ν such that, for each t ≥ 0, we have

Xt = bt+WA(t) +

∫
||x||<1

xµ̃(t, dx) +

∫
||x||≥1

xµ(t, dx),

where µ̃ is the compensated Poisson random measure defined as follows

µ̃(t, E) := µ(t, E)− tν(E). (2.5)

The Brownian motion WA(t) ∈ Rd is defined as follows

W i
A(t) :=

m∑
j=1

σijW
j(t),

where W 1, ...,Wm are standard one-dimensional Wiener processes and σ ∈ Rd×m

satisfies σ σT = A.

By merging Theorem 2 with the Lévy-Khinthine formula valid for any infinitely
divisible random variable, we can state that if X is a Lévy process, then for each
u ∈ Rd and each t ≥ 0, the characteristic function of Xt has the following form

φXt(u) = E[eiu·Xt ] =

= exp

{
t

(
ib · u− 1

2
(u,Au) +

∫
Rd\{0}

[eiu·y − 1− iu · y1||y||≤1(y)]ν(dy)

)}
,

where ν is the intensity measure of the Poisson random measure µ. Therefore, the
Lévy triplet (b, A, ν) completely describes a Lévy process X.

Proposition 1. Let X be a Lévy process with triplet (b, A, ν). We have the following
properties.

1. If ν(Rd) <∞, Xt is said to have a finite activity: almost all paths of X have
a finite number of jumps on every compact interval.

2. If ν(Rd) = ∞, Xt is said to have an infinite activity: almost all paths of X
have an infinite number of jumps on every compact interval.

Processes with infinite activity constitute a very rich class of jump processes;
however, in this thesis, we consider processes with finite activity, as they are more
easily tractable and find many applications.
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2.1.2 Lévy processes as Markov processes

In this section, we investigate Lévy processes in the framework of Markov pro-
cesses. A complete analysis about the link between Lévy processes and Markov
processes can be found in, e.g., [6].
Let Bb(Rd) be the set of all functions f : Rd → R bounded and measurable, which

is a Banach space with the ∞-norm. In what follows, we denote with C∞c (Rd) all
the infinitely differentiable functions with compact support. The Schwartz space of
rapidly decreasing functions on Rd is defined as follows

S(Rd) := {f ∈ C∞(Rd) | ‖f‖α,β <∞, ∀α, β}, (2.6)

where α, β are multi-indices and

‖f‖α,β := sup
x∈Rd

∣∣xα∂βf(x)
∣∣ .

Notice that the Fourier transform is a linear isomorphism of S(Rd) [6].
We say that a stochastic process M = {Mt}t∈I has the Markov property (or M

is a Markov process) if for all f ∈ Bb(Rd) and each s ∈ [0, t] the following equality
holds:

E[f(Mt) | Fs] = E[f(Mt) |Ms] almost surely.

The transition probability ps,t(x, ·) of an arbitrary Markov process M = {Mt}t≥0

is defined for each s, t with 0 ≤ s ≤ t, x ∈ R and E ∈ B(R) as follows

ps,t(x,E) := P(Mt ∈ E |Ms = x).

For each Markov process M , we can define on Bb(Rd) a family of evolution oper-
ators {Ts,t}0≤s≤t as follows

(Ts,tf)(x) := E[f(Mt) |Ms = x], (2.7)

for each x ∈ Rd. If Ts,t(Bb(Rd)) ⊆ Bb(Rd), the Markov process X is said to be
normal. If M is a normal Markov process, then its transitional probabilities are
connected by the well-known Chapman-Kolmogorov equation, as follows. For each
0 ≤ r ≤ s ≤ t <∞, x ∈ Rd and E ∈ B(Rd), we have

pr,t(x,E) =

∫
Rd
ps,t(y, E)pr,s(x, dy). (2.8)

If Ts,t = T0,t−s, the Markov process M is said to be (time-)homogeneous. In this
case, the operator T0,t is written as Tt and it constitutes a semigroup on Bb(Rd).
The transition probability of a homogeneous Markov process at time t is written as
pt, since

ps,t(x,E) = p0,t−s(x,E) =: pt−s(x,E),
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for each E ∈ B(Rd), and the following relation holds

(Ttf)(x) =

∫
Rd
f(y)pt(x, dy), (2.9)

for each t ≥ 0, E ∈ B(Rd), x ∈ Rd and f ∈ Bb(Rd).
In general, when an arbitary semigroup {Tt}t∈I of operators is defined within a

Banach space B with norm ‖·‖B, it is possible to define the following linear set

DA :=

{
ψ ∈ B such that ∃φψ ∈ B that satisfies lim

t→0

∥∥∥∥Ttψ − ψt
− φψ

∥∥∥∥
B

= 0

}
.

If such an element φψ exists, then it is unique, and thus it is possible to define a
linear operator A : DA → B as follows

Aψ := φψ = lim
t→0

Ttψ − ψ
t

. (2.10)

The operator A is called the infinitesimal generator of the semigroup {Tt}t∈I .
In the context of homogeneous Markov processes and bounded and measurable

functions belonging to the Banach space Bb(Rd), the family of operators {Tt}t∈I
associated to the process M allows us to define the operator A as in (2.10), which
is called the generator of M . Moreover, for each f ∈ D(A), x ∈ Rd, t ≥ 0, we define
the following mapping

u : Rd × R+ → R

(x, t) 7→ u(x, t) := (Ttf)(x).

From (2.10), it is possible to state the following initial-value problem on Rd × R+
∂u(x,t)
∂t

= Au(x, t)

u(x, 0) = f(x).

(2.11)

Assuming that for each y ∈ R the mapping t 7→ pt(x, y) is differentiable and
its derivative is uniformly bounded with respect to y, we obtain an equation that
governs the time evolution of the transition probability of a homogeneous Markov
process, as we show next.
Consider the right-hand side of the equation (2.11). On the one hand, for all

f ∈ C∞c (Rd), by using (2.9), we have

∂u(x, t)

∂t
=

∂

∂t
(Ttf)(x) =

∂

∂t

∫
Rd
f(y)pt(x, y)dy =

∫
Rd
f(y)

∂pt(x, y)

∂t
dy. (2.12)
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On the other hand, the left-hand side of the equation (2.11) can be recast as
follows

Au(t, x) = (TtAf)(x) =

∫
Rd

(Af)(y)pt(x, y)dy =

∫
Rd
f(y)Āpt(x, y)dy, (2.13)

where Ā acts on the variable y and denotes the adjoint of the operator A.
Since (2.12) and (2.13) must coincide for each f ∈ C∞c (Rd), we conclude that

∂pt(x, y)

∂t
= Āpt(x, y), (2.14)

which is called the forward Kolmogorov equation or Fokker-Planck (FP) equation.
Note that it operates on the “forward variables” t and y. An alternative equation
is the so-called Kolmogorov backward equation, since it operates on the “backward
variables” s and x as follows

∂pt−s(x, y)

∂s
= −Apt−s(x, y).

In [6] it is proven that each Lévy process X is a Markov process with respect to its
natural filtration defined in (2.3). Moreover, X is both normal and homogeneous.
Using the notion of generators of semigroups outlined above, we obtain a key tool
for analyzing X. Its generator is completely determined by the Lévy-Khintchine
formula. We have an explicit and compact form, which can be expressed as a pseudo-
differential operator in terms of the Lévy triplet, as stated in the next theorem.

Theorem 3. Let X be a Lévy process with Lévy triplet (b, A, ν), characteristic ex-
ponent ψ and evolution operator Tt. Recall the definition (2.6). We denote with f̂
the Fourier transform of a function f ∈ S(Rd).

1. For each t ∈ I, for each f ∈ S(Rd) and for each x ∈ Rd, the evolution operator
Tt of X is given by

(Ttf)(x) = (2π)−d/2
∫
Rd
eiu·x etψ(u)f̂(u)du.

2. For each f ∈ S(Rd) and for each x ∈ Rd, the generator of X defined by
Equation (2.10) is given by

(Af)(x) =
1√
2π

∫
Rd
eiux ψ(u)f̂(u)du = b · ∇f(x) +

1

2

∑
i,j

Aij
∂2f(x)

∂xi∂xj
+

+

∫
Rd

[f(x+ y)− f(x)− y · ∇f(x)1{||y||≤1}(y)]ν(dy).
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The form of the generator is completely determined by the Lévy triplet, with the
following three correspondences:

drift component ↔ first-order differential operator

diffusion component ↔ second-order differential operator

jump component ↔ integral operator.

2.1.3 Examples of Lévy processes

In this section, we present of the most investigated Lévy processes. For each one,
we summarize the properties introduced in the previous sections.

Standard Brownian motion
As introduced above, a Brownian motionW = {Wt}t≥0 is a Lévy process, since
it satisfies the properties in Definition (4). Moreover, a Brownian motion is
continuous in probability, since it is locally Hölder continuous with exponent
γ for every γ ∈ (0, 1

2
). This means that for every s, t <∞ and for every ω ∈ Ω,

there exists K = K(ω, s, t) such that

|Wt(ω)−Ws(ω)| ≤ K|t− s|γ.

The process W = {Wt}t≥0 has the Lévy triplet (0, I, 0), where I is the d × d
identity matrix, and characteristic exponent given by

ψ(u) = −1

2
|u|2.

Its generator A takes the form

A =
1

2
∆,

where ∆ is the Laplacian operator, ∆ :=
∑d

j=1 ∂
2
j .

Brownian motion with drift
Let b ∈ Rd and σ ∈ Rd×m be a square root of A, which means that A = σσT ∈
Rd×d is symmetric and positive definite. If W is a standard Wiener process,
the process that satisfies

dXt := bdt+ σdWt

is a Lévy process where each Xt is distributed as N (tb, tA). The process X
has the Lévy triplet (b, A, 0) and characteristic function and generator given
by

φXt(u) = exp

{
t

[
ib · u− 1

2
(u,Au)

]}
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and
A = b · ∇+

1

2

∑
i,j

Ai,j
∂2

∂xi∂xj
,

respectively.

Poisson process
The Poisson process is an N-valued continuous-time counting process {Pt}t∈I
which is characterized by a rate parameter λ, also known as intensity, and
possesses the following properties:

• P0 = 0.

• (Independent increments) the numbers of occurrences counted in disjoint
intervals are independent of each other.

• (Stationary increments) the probability distribution of the number of
occurrences counted in any time interval only depends on the length of
the interval.

• The probability distribution of the waiting time until the next occurrence
is an exponential distribution.

• No counted occurrences are simultaneous.

The number of events in the time interval (t, t+τ ] follows a Poisson distribution
with associated parameter λτ :

P[(Pt+τ − Pt) = k] =
e−λτ (λτ)k

k!
, k = 0, 1, . . . . (2.15)

The Poisson process is a Lévy process since it satisfies the properties in Def-
inition 4. It has the Lévy triplet (0, 0, λδ1), where δ1 denotes the Dirac delta
centered in x = 1.

The characteristic exponent of a Poisson process with intensity λ reads as
follows

ψ(u) = exp
{
λ(eiu − 1)

}
.

and its generator is a difference operator as follows

(Af)(x) = λ[f(x+ 1)− f(x)], (2.16)

for each f ∈ S(Rd).

Compound Poisson process
Let {Fn}n∈N be a sequence of independent identically distributed (i.i.d.) ran-
dom variables with common law F and let P be an independent Poisson process
with rate λ. The compound Poisson process Z defined as follows

Zt :=
Pt∑
j=1

Fj (2.17)
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is a Lévy process. The process Z has triplet (0, 0, λF ) and characteristic
exponent

ψ(u) = λ

∫
Rd

(eiuy − 1)F (dy).

Its generator takes the form

(Af)(x) = λ

∫
Rd

[f(x+ y)− f(x)]F (dy). (2.18)

Note that the Poisson process itself can be seen as a compound Poisson process
such that Yj = 1 for all j ∈ N.

Alpha stable process
A real-valued random variable is called stable if it arises as a limit. Given
a sequence {Yn}n∈N of random variables, a sequence of real numbers {ζn}n∈N
and one of positive real numbers {θn}n∈N, it is of interest the case where there
exists a random variable Y such that

lim
n→∞

P
(
Y1 + ...+ Yn − ζn

θn
≤ x

)
d
= P(Y ≤ x).

It can be shown that the only possible choice for θn is θn := σn1/α, with σ > 0
and α ∈ (0, 2]. The parameter α is called index of stability and it can be shown
that it always belongs to the interval (0, 2]. If each ζn = 0, Y is called strictly
stable.

A stable random variable Y is infinitely divisible. Therefore, given Y with
index of stability α, thanks to Theorem 1 we can find a Lévy triplet (b, A, ν),
which has one of the following forms

1. α = 2⇒ ν = 0⇒ Y ∼ N (b, A);

2. α 6= 2⇒ A = 0 and

ν(x) =
k1

x1+α
1{x>0}(x) +

k2

|x|1+α
1{x<0}(x)

for some constants k1, k2 ≥ 0 such that k1 + k2 > 0.

For each real-valued α-stable random variable there exist σ > 0, β ∈ [−1, 1],
µ ∈ R such that the characteristic function of Y is given by

ΦY (u) =



exp{iµu− σα|u|α(1− iβ(sgnu) tan πα
2

)} if α 6= 1, 2

exp{iµu− σ|u|(1 + iβ 2
π
(sgnu) log |u|)} if α = 1,

exp{iµu− σ2

2
u2} if α = 2,
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where σ ≥ 0 is the scale parameter, β ∈ [−1, 1] is the skewness parameter, µ ∈
R is the shift parameter. A stable random variable with this parametrization
is denoted by Sα(σ, β, µ).

While algorithms for simulating an α-stable random variable exist for all values
of the parameters, the probability density function f(x) of an α-stable random
variable is not known in closed form except for the following three cases:

1. Normal distribution S2(σ, 0, µ) ∼ N (µ, σ2);

2. Cauchy distribution S1(σ, 0, µ), with density

f(x) =
σ

π[(x− µ)2 + σ2]
;

3. Lévy distribution S1/2(σ, 1, µ), with density

f(x) =
( σ

2π

)1/2 1

(x− µ)3/2
exp

{
− σ

2(x− µ)

}
for x > µ.

Given an α-stable random variable Y, it is possible to construct a Lévy process
X = {Xt}t∈I such that X{t=1}

d
= Y .

Subordinators
A subordinator is a one-dimensional Lévy process S = {St}t∈I that is almost
surely nondecreasing. S can be thought as a random model for time evolution.
In fact, given an arbitrary Lévy process X and an independent subordinator
S, the process Z defined as follows

Zt := XSt for each t ∈ I

is also a Lévy process.

The Lévy symbol of a subordinator S takes the following form

ψ(u) = ibu+

∫
R+

(eiuy − 1)ν(dy),

where b is nonnegative and the Lévy measure ν satisfies

ν(−∞, 0) = 0 and
∫ ∞

0

min(y, 1)ν(dy) <∞.

An example of subordinator is a compound Poisson process with nonnegative
jump distribution. It can be shown [6] that for each α ∈ (0, 1), there exists an
alpha-stable subordinator.
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2.2 Stochastic differential equations

In this section, we introduce SDEs. We consider examples driven by Brownian
motion and an independent Poisson random process. These processes represent
generalizations of Lévy processes, since the drift b and the diffusion σ may depend
on the process itself and may explicitely depend on time. The presence of the term
governed by the Poisson process makes the sample paths of the solution of the
considered initial-value problem discontinuous.

Definition 7 (Itô integral). Given a Wiener process W and an F -adapted process
H = {Ht}t∈I such that

∫ t
0
E[H2

s ]ds <∞, the Itô integral of H with respect to W is
the random variable defined as follows∫ t

0

H(s, ω)dW (s, ω) := m.s. lim
n→∞

n−1∑
i=1

H(si, ω)(W (si+1, ω)−W (si, ω)), (2.19)

where the limit is intended as in (2.1).

An alternative definition of the integral with respect to a Brownian motion is the
Stratonovich integral. A complete discussion about stochastic integration can be
found in, e.g., [6].
Consider the time interval I = [0, T ]. The focus of this section is the following

stochastic initial-value problem

dXt = b(Xt− , t)dt+ σ(Xt− , t)dWt +
∫
||q||<c F (Xt− , t, q)P̃(dt, dq)+

+
∫
||q||≥cG(Xt− , t, q)P(dt, dq),

X{t=0} = X0.

(2.20)

The functions b : Rd×R+ → Rd, σ : Rd×R+×Rd → Rd×m, F : Rd×R+×Rd → Rd,
G : Rd × R+ × Rd → Rd are assumed to be measurable. W = {Wt}t∈I is an m-
dimensional Wiener process and P is a Poisson random measure on R+ × Rd with
intensity ν and the process P̃ is the compensator associated to P . The parameter
c ∈ [0,∞] is used to specify what is meant by "small" or "big" jumps.
It is natural to ask whether or not (2.20), given a known initial random variable

X0, has a solution, if this solution is unique and which are its properties. When the
processesW and P are given in advance, and therefore used to construct the solution
X, then X is called strong solution. On the other hand, if only the deterministic
functions in (2.20) are given and one is asked to provide ({Xt}t∈I , {Wt}t∈I ,P) such
that (2.20) is satisfied, then the process X is called weak solution. A strong solution
is also a weak solution, but the converse is not true in general [6, 73].
A strong solution {Xt}t∈I is said to be pathwise unique if for any other stochastic

process {X̄t}t∈I satisfying (2.20), we have that

P({ω ∈ Ω |Xt(ω) = X̄t(ω) for all t}) = 1.

25



Let us define
a(x, y, t) := σ(x, t)σ(y, t)T ∈ Rd×d (2.21)

and define the matrix seminorm as follows

‖a‖d :=
n∑
i=1

|aii|.

Under specific assumptions on the coefficients b, σ, F and G, the existence and
the pathwise uniqueness of a strong solution to (2.20) are ensured. For the details
regarding the proof, see [6, 56, 73].

Theorem 4. Let (Ω,F, {Ft}t∈I ,P) be a filtered probability space. Let b, a, F,G be
measurable functions satisfying the following conditions.

1. (Lipschitz condition) There exists K1(t) > 0 such that, for all x1, x2 ∈ Rd and
t ∈ I, we have that

||b(x1, t)− b(x2, t)||2 + ‖a(x1, x1, t)− 2a(x1, x2, t) + a(x2, x2, t)‖d+ (2.22)∫
||q||<c

||F (x1, t, q)− F (x2, t, q)||2ν(dq) ≤ K1(t)||x1 − x2||2. (2.23)

2. (Growth condition) There exists K2(t) > 0 such that, for all x ∈ Rd and t ∈ I,

||b(x, t)||2 + ‖a(x, x, t)‖d +

∫
||q||<c

||F (x, t, q)||2ν(dq) ≤ K2(t)(1 + ||x||2).

3. The mapping q → G(x, t, q) is continuous.

Let X0 be a random variable known up to a P-null set and let W and P be a
Brownian motion and a Poisson random measure with intensity ν, respectively. Let
us assume that W and P are independent of F0. Then the initial-value problem
(2.20) unique right-continuous with left limit F-adapted solution.
Moreover, if E[||X0||2] <∞, there exists a time-dependent quantity D(t) > 0 such

that
E[||Xt||2] ≤ D(t)(1 + E[||X0||2]).

Definition 8 (Itô diffusion). A stochastic process X = {Xt}t∈I is an Itô diffusion
or diffusion process if it satisfies the following initial-value problem

dXt = b(Xt, t)dt+ σ(Xt, t)dWt

X{t=0} = X0,

(2.24)

where b and σ are known measurable functions, W = {Wt}t∈I is a Wiener process
defined on (Ω,F,P) and X0 ∈ Rd is a known random variable.
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Definition 9 (Jump-diffusion process). A stochastic process X = {Xt}t∈I is a
jump-diffusion process if it satisfies the following initial-value problem

dXt = b(Xt− , t)dt+ σ(Xt− , t)dWt +
∫
Rd\{0}G(Xt− , t, q)P(dt, dq),

X{t=0} = X0,

(2.25)

where the intensity measure ν of the Poisson random measure P is finite.

We remark that Itô included jumps in his discussion [53], but the process (2.24)
named after him does not include any jump. Moreover, there is no universal agree-
ment about the use of the name jump-diffusion process. For (2.25), we refer to the
definition given by [6], while in literature the same name denotes a process solving
the more general model (2.20).
The FP equation, already introduced in (2.14) for models with constant drift and

diffusion coefficients, also holds for diffusion processes solving (2.24). In this case,
we have the following definition for the infinitesimal generator A formally defined
in (2.10). Set X0 = x ∈ Rd in (2.24). The operator A takes the following form, see,
e.g., [73]

Aφ(x) =
d∑
i=1

bi(x, t)
∂φ(x)

∂xi
+

1

2

d∑
i=1

d∑
j=1

(σσT )i,j(x, t)
∂2φ(x)

∂xi∂xj
, (2.26)

for each φ ∈ C2
0(Rd). Denote with 〈·, ·〉 the L2 inner product. The adjoint operator

Ā of (2.26) is defined as follows

〈Aφ, ψ〉 = 〈φ, Āψ〉,

for each φ ∈ C2
0(Rd), ψ ∈ C2(Rd). After integrating by parts, we find the following

form for Ā

Āψ(x) = −
d∑
i=1

∂

∂xi
(bi(x, t)ψ(x)) +

1

2

d∑
i=1

d∑
j=1

∂2

∂xi∂xj
((σσT )i,j(x, t)ψ(x)), (2.27)

for each ψ ∈ C2(Rd). As discussed in Section 2.1.2, the transitional probability
pt(x, y) of (2.24) solves the FP equation

∂tpt(x, y) = Āpt(x, y), (2.28)

where Ā is defined in (2.27) and acts on the variable y. The fundamental solution
of the FP equation is obtained by solving (2.28) with the following initial condition

p{t=0}(x, x0) = δ(x− x0),
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where δ stands for the Dirac delta. However, in order to investigate a stochastic pro-
cess, we consider the PDF f(x, t), which is obtained from the transitional probability
pt by averaging over the initial conditions as follows

f(x, t) =

∫
Rd
p{t=0}(x, x0)pt(x, x0)dx0 =

∫
Rd
δ(x− x0)pt(x, x0)dx0. (2.29)

By taking the time derivative of (2.29), we have the following

∂tf(x, t) =

∫
Rd
pt=0(x, x0)∂tpt(x, x0)dx0.

Moreover, by using (2.28) we get

∂tf(x, t) =

∫
Rd
δ(x− x0)Āpt(x, x0)dx0 = Āf(x, t), (2.30)

where Ā acts on the variable x. Therefore, the time evolution of the PDF of (2.24)
is governed by the following FP equation

∂tf(x, t) = Āf(x, t). (2.31)

Next, we consider a process doing jumps. We show how the integral term of the
FP equation related to (2.25) arises. We take b = 0, σ = 0, G(x, t, q) = q in (2.25).
Therefore, the last addend in (2.25) can be rewritten as follows

dPt =

∫
Rd\{0}

qP(dt, dq),

where P is a compound Poisson process (2.17) with rate of jumps λ ∈ R+ and jump
PDF g. We first investigate the case g(x) := δ(x − 1), which corresponds to the
Poisson process (2.15). Consider the interval (t, t+ τ ]. The cumulative distribution
function (CDF) F at time t is given, while F (x, t + τ) can assume the following
values

F (x, t+ τ) =


λτF (x− 1, t)

(1− λτ)F (x, t),

depending on whether or not a jump occurs in the interval (t, t + τ ], respectively.
Therefore, we have

F (x, t+ τ) = λτF (x− 1, t) + (1− λτ)F (x, t).

By computing the time derivative of the CDF, we obtain

∂tF (x, t) = lim
τ→0

F (x, t+ τ)− F (x, t)

τ
= λF (x− 1, t)− λF (x, t),
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and therefore the PDF f(x, t) satisfies the following equation

∂tf(x, t) = λf(x− 1, t)− λf(x, t). (2.32)

An analogous computation can be carried out in case of a compound Poisson
process (2.17) with rate λ ∈ R+ and arbitrary jump distribution with PDF g. We
have the following

F (x, t+ τ) = λτ

∫
R
F (x− y, t)g(y)dy + (1− λτ)F (x, t).

Proceeding as before, we obtain the following relation

∂tF (x, t) = λ

∫
R
F (x− y, t)g(y)dy − λF (x, t).

Therefore, the time evolution of the PDF f(x, t) is governed by the following
equation

∂tf(x, t) = λ

∫
R
f(x− y, t)g(y)dy − λf(x, t). (2.33)

We remark the fact that the left-hand sides in (2.32) and (2.33) correspond to the
adjoint operators of (2.16) and (2.18), respectively.

2.3 Numerical solution of stochastic differential equa-

tions

Stochastic models in the general form (2.20) govern the evolution of a state in
presence of random noise and arise in a multitude of application areas. Under
specific assumptions, the solution of a SDE is unique, as discussed in Section 2.2.
However, a closed form of the solution is available only in a limited number of cases,
whose list can be found in, e.g., [56]. For this reason, one has to rely on numerical
methods that approximate the solution. We focus on the Euler-Maruyama (EM)
method and we provide an existing result stating its strong order of accuracy in the
spirit of [49, 64].
We consider (2.25) and choose G(x, t, q) = q. Assume that the hypotheses of

Theorem 4 are fulfilled. Given an initial data X0, we have the following initial-value
problem in I 

dXt = b(Xt− , t)dt+ σ(Xt− , t)dWt + dPt

X{t=0} = X0,

(2.34)
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where P is a compound Poisson process with rate λ ∈ R+ and jump PDF g. Our
aim is to simulate sample paths of the solution to (2.34) on a time discrete grid. For
N ∈ N, define the mesh size h := T/N and the following time discretization

Ih := {tk = hk, k = 0, ..., N} ⊂ I.

The values of a sample path of (2.34) are specified at the points of the time grid Ih.
Let X(tk) and X̄(tk) be the values of the analytic solution to (2.34) and the value

of the numerical solution corresponding to the time tk, respectively. We say that
the strong mean-square rate of convergence or strong mean-square order of accuracy
of the numerical method is p if the following holds

(E[(X(tk)− X̄(tk))
2])1/2 ≤ Chp,

where C is a constant not depending on h.
However, in many problems it is only required to evaluate an expectation such

as E[ζ(X(tk))], for a sufficiently large class of functions ζ. Hence, the following
definition of weak rate of convergence or weak order of accuracy is also useful. We
say that the weak rate of convergence of a numerical method is p if the following
inequality holds

|E[ζ(X(tk))]− E[ζ(X̄(tk))]| ≤ Chp.

where C is a constant not depending on h.
In this thesis, we focus on the strong mean-square rate of convergence of the EM

method to the initial-value problem (2.34). However, a number of results on the
weak convergence of numerical schemes solving (2.20) is available; see, e.g., [56, 76].
The EM method is the generalization to SDEs of the Euler method for deterministic
ordinary differential equations. In fact, when a SDE does not contain any random-
ness, the EM method corresponds to the explicit Euler method for deterministic
equations.
Given the uniform stepsize h := T/N , the EM method is recursively defined for

each k = 0, ..., N − 1 as follows

X̄(tk+1) = X̄(tk) + b(X̄(tk), tk)h+ σ(X̄(tk), tk)∆Wk+1 + ∆Pk+1, (2.35)

where ∆Wk+1 and ∆Pk+1 denote the increments of the Wiener and Poisson processes
over (tk, tk+1].
Next, we present how to simulate the random increments in (2.35) over the time

grid t0, ..., tN . We also show how an α-stable process introduced in Section 2.1.3 can
be simulated.

Discretized Brownian motion
Exploiting the properties of the Brownian motion W , we have that for each
time tk, Wtk = Wtk−1

+ ∆Wtk , where the increment ∆Wtk over the interval
[tk−1, tk] is distributed as N (0, (tk − tk−1)2).

30



We set W0 = 0 and generate the increments ∆Wtk for each k. The value of W
in tk is given by the cumulative sum of the increments up to time tk as follows

Wtk =
k∑
j=1

∆Wj.

Figure 2.1: Sample path of a standard Brownian motion in the time interval [0, 1]

with N = 500 time steps.

Discretized compound Poisson process
Recall (2.17). A compound Poisson process X in the time interval [0, T ] is
defined as follows

Xt =
Pt∑
j=1

Fj,

where P is a Poisson process with rate λ and {Fj}j∈N is a sequence of i.i.d.
random variables with common distribution F .

Unlike the Brownian motion, it is possible to sample an exact trajectory of X
in any closed interval, assuming that it is possible to sample the jump sizes
from the distribution F . In fact, the path is piecewise constant between two
consecutive jump times and it contains a finite number of jumps distributed
as F .

A discretized trajectory of X in [0, T ] can be obtained with the following steps:
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1. generation of the total number of jumps in [0, T ], which is a Poisson
random variable P with parameter λT ;

2. generation of the P jump times τ1 < ... < τP uniformly distributed in
[0, T ];

3. generation of P jump sizes F1, ..., FP , which all have common law F .

The discretized trajectory X is computed as follows

Xtk =
P∑
j=1

1{τj<tk}Fj.

Figure 2.2: Sample path of a compound Poisson process in the time interval [0, 1]

with λ = 5 and F ∼ N (0, 0.22).

Discretized α-stable process
We write Z ∼ Sα(σ, β, µ) whenX is an α-stable random variable with skewness
parameter β, scale parameter σ and shift parameter µ. We recall some results
[8, 20, 23].

• If Z ∼ Sα(σ, β, µ) and a ∈ R, then Z + a ∼ Sα(σ, β, µ + a) and aZ ∼
Sα(|a|σ, sgn(a)β, µ).
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• If Z1, Z2 ∼ Sα(1, 0, 0) and independent, then

Z := µ+ σ

(
1 + β

2

)1/α

Z1 − σ
(

1− β
2

)1/α

Z2

has an Sα(σ, β, µ) distribution.
• If Z ∼ Sα(1, β, 0), then

σZ + µ ∼ Sα(σ, β, µ) if α 6= 1

σZ + µ+
2

π
βσ lnσ ∼ Sα(σ, β, µ) if α = 1

has an Sα(σ, β, µ) distribution.
• In general, if Zi ∼ Sα(σi, βi, µi) for i = 1, ..., n, then

∑n
i=1 Zi ∼ Sα(σ, β, µ),

with

σ =

(
n∑
i=1

σαi

)1/α

, β =

∑n
i=1 βiσ

α
i∑n

i=1 σ
α
i

and µ =
n∑
i=1

µi.

Figure 2.3: Sample path of an α-stable process in the time interval [0, 1] with 500

time steps, with α = 0.5, β = 1, σ = 0 and µ = 0.

An algorithm for simulating a stable process X such that X1 ∼ Sα(0, 1, 0) is
available in [20, 23]. First, we simulate U1, ..., UN independent random vari-
ables, uniformly distributed in [−π/2, π/2] and E1, ..., EN independent stan-
dard exponential random variables. Each increment ∆Xk for k = 1, ..., N , is
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given by

∆Xk = (tk − tk−1)1/α sin(αUk)

(cosUk)1/α

(
cos[(1− α)Uk]

Ek

)(1−α)/α

.

The value of X at time tk is given by the cumulative sum up the i-th increment
as follows

Xtk =
k∑
i=1

∆Xi.

Next, we state the strong convergence rate of (2.35). We define the step function
Z as follows

Z(t) :=
N−1∑
k=0

X̄k 1[kh,(k+1)h)(t), (2.36)

so that Z(tk) = X̄k for each k = 0, ..., N . We then define the function Y , which
extends the numerical solution to the whole interval I as follows

Y (t) := X0 +

∫ t

0

b(Z(s), s)ds+

∫ t

0

σ(Z(s), s)dWs+

∫ t

0

dPs. (2.37)

Theorem 5. Let the SDE (2.34) have Lipschitz coefficients b and σ, as in (2.22).
Then, the EM method defined by (2.35) has strong mean-square rate of convergence
equal to 1

2
. There exists C > 0 such that the following holds

E
[
sup
t∈I
||X(t)− Y (t)||2

]
≤ C

(
1 + E[||X0||2]

)
h,

where X is the solution to (2.34) and Y is defined in (2.37).

Proof. We first prove that

E

[
sup
t∈[0,T ]

||Y (t)− Z(t)||2
]
≤ C(1 + E[||X0||2])h. (2.38)

Consider t ∈ [kh, (k + 1)h] ⊂ I. We have

Y (t)− Z(t) = Y (t)− Yk =

∫ t

kh

b(Z(s), s)ds+

∫ t

kh

σ(Z(s), s)dWs +

∫ t

kh

dPs.

Therefore,

E

[
sup
t∈[0,T ]

||Y (t)− Z(t)||2
]
≤

max
k

sup
τ∈[kh,(k+1)h]

E

[
C

(∥∥∥∥∫ τ

kh

b(Z(s), s)ds

∥∥∥∥2

+

∥∥∥∥∫ τ

kh

σ(Z(s), s)dWs

∥∥∥∥2

+

∥∥∥∥∫ τ

kh

dPs

∥∥∥∥2
)]

.

(2.39)
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We apply the Cauchy-Schwarz inequality to the first term in (2.39) and the Itô
isometry [6] to the second term in (2.39), respectively. Since τ ∈ [kh, (k + 1)h], we
get

E
∥∥∥∥∫ τ

kh

b(Z(s), s)ds

∥∥∥∥2

≤ hE

[∫ (k+1)h

kh

||b(s, Z(s))||2ds

]
and

E
∥∥∥∥∫ τ

kh

σ(Z(s), s)dWs

∥∥∥∥2

≤
∫ (k+1)h

kh

E
[
||σ(s, Z(s))||2

]
ds.

Note that the Lipschitz condition (2.22) implies

||b(x, t)||2 ≤ L(1 + ||x||2)

||σ(x, t)||2 ≤ L(1 + ||x||2).

Therefore,

E
∥∥∥∥∫ τ

kh

b(Z(s), s)ds

∥∥∥∥2

≤ hE

[∫ (k+1)h

kh

L(1 + ||Z(s)||2)ds

]
= h

∫ (k+1)h

kh

L(1+E||Z(s)||2)ds

and

E
∥∥∥∥∫ τ

kh

σ(Z(s), s)dWs

∥∥∥∥2

≤
∫ (k+1)h

kh

E
[
L(1 + ||Z(s)||2)

]
ds =

∫ (k+1)h

kh

L(1+E||Z(s)||2)ds,

thanks to Fubini’s theorem. Moreover, we decompose P as the sum of its compen-
sator P̃t and a deterministic term. We have∥∥∥∥∫ τ

kh

dPs

∥∥∥∥2

≤ C

(∥∥∥∥∫ τ

kh

dP̃s

∥∥∥∥2

+

∥∥∥∥∫ τ

kh

λds

∥∥∥∥2
)
.

Taking the expectation, we obtain

E

[∥∥∥∥∫ t

kh

dPs

∥∥∥∥2
]
≤ C

(
λh+ λ2h2

)
.

Therefore, we recast (2.39) as follows

E

[
sup
t∈[0,T ]

||Y (t)− Z(t)||2
]
≤

max
k

sup
τ∈[kh,(k+1)h]

C

{
hL

∫ (k+1)h

kh

(1 + E[||Z(s)||2])ds+ λh(1 + λh)

}
.
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Note that Z(s) = X̄k on [kh, (k + 1)h)], thus

E

[
sup
t∈[0,T ]

||Y (t)− Z(t)||2
]
≤

max
k

sup
τ∈[kh,(k+1)h]

C

{
hL

∫ (k+1)h

kh

(1 + E||X̄k||2)ds+ λh(1 + λh)

}
.

The claim (2.38) follows after noting that

E||X̄k||2 ≤ C(1 + E||X0||2)

for each k, which follows from arguments similar to the discussion above.
Next, we consider the term E [supt∈I ||X(t)− Y (t)||2]. By the definition (2.37), we

have

Y (t)−X(t) =

∫ t

0

[b(Z(s), s)− b(X(s), s)]ds+

∫ t

0

[σ(Z(s), s)− σ(X(s), s)]dWs.

Therefore, we have

E
[
sup
t∈I
||X(t)− Y (t)||2

]
≤C

(
E
[
sup
t∈I
||
∫ t

0

[b(Z(s), s)− b(X(s), s)]ds||2
]

+ E
[
sup
t∈I
||
∫ t

0

[σ(Z(s), s)− σ(X(s), s)]ds||2
])

.

By applying the Cauchy-Schwarz inequality and Fubini’s theorem to the first term
and the Itô isometry to the second term, respectively, we have

E
[
sup
t∈I
||X(t)− Y (t)||2

]
≤C

(
T

∫ t1

0

E||b(Z(s), s)− b(X(s−), s)||2ds

+

∫ t1

0

E
[
||σ(Z(s), s)− σ(X(s−), s)||2

]
ds

)
.

After applying the Lipschitz condition (2.22), up to a redefinition of the constant
C, we have

E
[
sup
t∈I
||X(t)− Y (t)||2

]
≤C

(
T

∫ t1

0

E||Z(s)−X(s−)||2ds

+

∫ t1

0

E
[
||Z(s)−X(s−)||2

]
ds

)
.

After redefining the constant C, we have

E
[
sup
t∈I
||X(t)− Y (t)||2

]
≤C

∫ t1

0

E||Z(s)− Y (s)||2ds ≤

≤C
∫ t1

0

(E||Z(s)−X(s−)||2 + E||X(s−)− Y (s)||2) ds.
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We use (2.38) and we get

E

[
sup
t∈[0,t1]

||X(t)− Y (t)||2
]
≤C1h(1 + E[||Y (0)||2])+

+ C2

∫ t1

0

E sup
t∈[0,s]

||Y (t)−X(t−)||2ds.

The claim follows from the Gronwall inequality.

Figure 2.4: Plot of 8 sample paths of (2.34) with X0 = 0, b(x, t) = 1
1+x2 − 4x,

σ(x, t) = 1, λ = 5 and g ∼ N (0, 32) by applying the EM method in the interval

[0, 1] with N = 500.

2.4 The empirical probability density function

In the last section, we computed sample paths of a JD process by applying the
EM method. In this subsection, we illustrate a method that computes the empirical
PDF of a one-dimensional JD process as in (2.34) with range in D ⊂ R, D := (r, s)
by making use of the EM method.
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The empirical PDF f̂(x, t) approximates the continuous PDF f(x, t) of the solution
to our SDE (2.34), as we illustrate next. First, the time t has to be set. Then the
number of sample paths R ∈ N has to be chosen, with R >> 1. By means of a
numerical method, e.g. the EM scheme, R samples of Xt, X1

t , ..., X
R
t are obtained,

in the sense that Xj
t ∼ Xt for each j = 1, ..., R.

Choose K < R. The domain D is divided in K uniform intervals such that
K |Ik| = |D|. On each interval Ik, k = 1, ..., K the empirical PDF f̂(x, t) is defined
as

f̂(x, t) := {#j such that Xj
t ∈ Ik}/(R|Ik|), x ∈ Ik.

Existing results of convergence of f̂ to f in probability as well as in distribution
can be found in, e.g., [10, 58]. The following holds

lim
R→∞

|f(x, t)− f̂(x, t)| = 0

almost everywhere in D, for each t ≥ 0.
We consider in R the following particular case of (2.34), where u, σ ∈ R+

dXt = −uXtdt+ σdWt + dPt

X{t=0} = X0.

(2.40)

The problem (2.40) models the Ornstein-Uhlenbeck process with jumps. The case
without jumps is named after the pioneering work of Ornstein and Uhlenbeck [92],
which overcame the limits of the Brownian motion when fitting physical data for
small value of time t. Their aim was to model the velocity of a Brownian particle
under the influence of friction, moving under the random impacts of neighboring
particles. However, the process (2.40) has several application in finance; see [78]
and references therein.
In our numerical experiments, we choose X0 ∼ N (0, 42), u = 1, σ = 4, λ = 15 and

g ∼ N (0, 42). We apply the EM method in the time interval [0, T ] with N = 200,
T = 1 and h = T/N . We take R = 105 sample paths. Figure 2.5 depicts the PDF
of XT solving (2.40) at time T = 1.
Monte Carlo (MC) methods constitute a well-established class of numerical meth-

ods; however, their accuracy relies on the choice of the number of sample paths R.
The central limit theorem ensures that the convergence rate of the MC method to
compute the empirical PDF is O(1/

√
R). Since this convergence speed is consid-

ered to be rather slow, it is natural to ask whether the PDF of a JD process can be
computed with an alternative method. In Chapter 5, we illustrate and analyze an
alternative approach for computing the PDF of a JD process.
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Figure 2.5: The emprirical PDF of the Ornstein-Uhlenbeck process with jumps

(2.34) at time T = 1 with 105 sample paths and 150 histograms.

2.5 Summary and remarks

The aim of this chapter was to discuss initial value problems governed by SDEs
with jumps. In Section 2.1 we illustrated the class of Lévy processes. We provided
a review of known results stating the existence and uniqueness of solutions to SDEs
driven by JD processes in Section 2.2. In Section 2.3 some existing algorithms sim-
ulating sample paths of the driving noise of a SDE are illustrated; we also presented
the EM method, that generalizes the Euler method for ordinary differential equa-
tions, and we proved its strong rate of convergence. We concluded in Section 2.4
with an application of the EM method that computed the empirical PDF of a JD
process.
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Chapter 3

Analysis of Fokker-Planck problems

related to jump-diffusion processes

The FP equation equation plays a fundamental role in modeling systems subject to
randomness, since it governs the time evolution of the PDF of Markov processes. Its
derivation can be carried out within a multitude of approaches that can be found,
among others, in [26, 38, 80, 87]. In Chapter 2, we discussed the case of Lévy
processes, which have constant drift and diffusion coefficient. In this chapter, we
investigate the FP equation related to JD processes with time- and space-dependent
drift and diffusion coefficients. The jump part is taken to be a compound Poisson
process introduced in (2.17).
Define the time interval I := [0, T ] ⊂ R+ and the space range Ω ⊆ Rd. The

boundedness of Ω will be specified later in the chapter. In what follows, we consider
the following JD model

dXt = b(Xt− , t)dt+ σ(Xt− , t)dWt + dPt

X{t=0} = X0.

(3.1)

The functions b : Ω × R+ → Rd and σ : Ω × R+ → Rd×m are assumed to be
measurable. W = {Wt}t≥0 is an m-dimensional Wiener process and P = {Pt}t≥0 is
a compound Poisson process with rate λ. The jump distribution will be specified
later. We assume that the coefficients b and σ satisfy the Lipschitz and growth
conditions of Theorem 4 in Chapter 2, so that the initial-value problem (3.1) admits
a unique solution.
We carry out the explicit derivation of the FP equation related to (3.1) in two cases,

where the space domain Ω is unbounded or bounded, respectively. The former case

41



is outlined in Section 3.1 and relies on the application of the Itô’s formula. The
latter case is illustrated in Section 3.2; due to the boundedness of the domain Ω,
we take into account the presence of reflecting barriers. When the dynamics of a
stochastic process is restricted to a bounded range, the behavior of the process at the
boundaries is of fundamental importance for the definition of appropriate boundary
conditions. Existing results on existence, uniqueness and continuous dependence on
data in suitable functional spaces are presented. In Section 3.3, we provide useful a
priori estimates for the FP problem, which models the constraint in our optimization
problems.
Next, we present the function spaces that are essential to the investigation of the

FP problem considered in this chapter. Let α ∈ (0, 1). In the following definitions,
i, j ∈ Nd denote multi-indeces.

• The space C0(Ω) refers to the functions φ that are continuous in Ω and it is
endowed with the supremum norm

‖φ‖C0(Ω) := sup
x∈Ω
|φ(x)|.

• The space Ck(Ω) refers to the functions φ that are continuous in Ω and whose
derivatives up to order k belong to C0(Ω). It is endowed with the following
norm

‖φ‖Ck(Ω) :=
k∑
i=1

∑
|s|=i

‖∂iφ(x)‖C0(Ω).

• The space C2,α(Ω) refers to the functions φ that are C2 and Hölder continuous
on Ω, with Hölder exponent α. Define the following seminorm

〈φ〉αΩ := inf{C ≥ 0 : |φ(x)− φ(y)| ≤ C|x− y|α, ∀x, y ∈ Ω}. (3.2)

The space C2,α(Ω) is endowed with the following norm

‖φ‖C2,α(Ω) = ‖φ‖C2(Ω) + 〈φ〉αΩ.

• The space Cα;α
2 (Ω× I) refers to the functions φ that are Hölder continuous on

Ω × I, with Hölder exponents α and α/2 with respect to the space and time
variables, respectively. Define the following seminorm

〈φ〉αΩ×I := 〈φ〉αx,Ω + 〈φ〉
α
2
t,I , (3.3)

where the last due terms are intended in the sense of (3.2) and the subscript
stand for variable related to the Hölder exponent.

The space Cα;α
2 (Ω× I) is endowed with the following norm

‖φ‖
Cα;α2 (Ω×I) := ‖φ‖C0(Ω×I) + 〈φ〉αΩ×I .
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• The space C2,α;1,α
2 (Ω× I) refers to the C2,1(Ω× I) functions φ that are Hölder

continuous on Ω × I, with Hölder exponents α and α/2 with respect to the
space and time variables, respectively. Define the following seminorm

〈φ〉2,αΩ := 〈∂tφ〉αΩ×I +
d∑

i,j=1

〈∂ijφ〉αΩ×I +
d∑
i=1

〈∂iφ〉
α
2
t,I .

It is endowed with the following norm

‖φ‖C2,α;1, α2 (Ω×I) :=
2∑

2j+i=0

‖∂jt ∂ixφ‖C0(Ω×I) + 〈φ〉2,αΩ×I

• The space L∞(Ω× I) denotes all the functions v that are essentially bounded
on Ω× I. The L∞-norm is defined as follows

||v||L∞(Ω×I) := inf
C>0
{|v(x, t)| ≤ C, a.e. in Ω× I} .

• The spaces H1(Ω) is defined as follows

H1(Ω) := {v ∈ L2(Ω) | ∂iv ∈ L2(Ω), i = 1, ..., d},

and is endowed with the following norm

‖v‖H1(Ω) :=
1∑
|i|=0

‖∂iv‖L2(Ω).

• The space H2,1(Ω× I) is defined as follows

H2,1(Ω× I) := {v ∈ L2(Ω× I) | ∂tv, ∂iv, ∂2
ijv ∈ L2(Ω× I), i, j = 1, ..., d}

and it is endowed with the following norm

‖v‖H2,1(Ω×I) :=
2∑

2j+|i|=0

‖∂jt ∂ixv‖L2(Ω×I).

In this chapter, we always assume that the PDF g of the jump component in (3.1)
satisfies the following condition∫

Rd

‖y‖2

(1 + ‖y‖)
g(y)dy = C0 <∞, (3.4)

with C0 > 0 and ‖y‖ := (
∑d

j=1 y
2
j )

1/2 for y ∈ Rd.
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3.1 A Fokker-Planck model in an unbounded do-

main

In this section, we consider the model (3.1) with range in the whole space Rd. In
what follows, we make use of the Itô’s formula [6, 23], which plays a fundamental
role in stochastic analysis.

Definition 10. (Itô’s formula with jumps) Consider (3.1) and denote with g the
PDF of the jump distribution of P . For each twice-differentiable function h :
Rd × R+ → R with gradient ∇h and Hessian matrix H(h) ∈ Rd×d defined by
[H(h)(x, t)]ij := ∂2

ijh(x, t), the following formula holds

h(Xt, t)− h(X0, 0) =∫ t

0

[
∂h(Xs, s)

∂t
+∇h(Xs, s)

T · b(Xs, s) +
1

2
Tr
(
σ(Xs, s)

T H(h)(Xs, s)σ(Xs, s)
)]
ds+

+

∫ t

0

∇h(Xs, s)
Tσ(Xs, s)dWs +

∫ t

0

λds

∫
Rd

[h(Xs− + y, s)− h(Xs−), s] g(y)dy+

+

∫ t

0

∫
Rd

[h(Xs− + y, s)− h(Xs− , s)]P̃(dy, ds),

(3.5)

where P is the Poisson random measure introduced in Chapter 2 and P̃ is the
compensated Poisson random measure associated to P defined in (2.5).

In what follows, we denote with f(x, t) the PDF of the processX solving (3.1). Our
goal is to write a deterministic initial-value problem governed by the FP equation
associated to (3.1), whose solution is f(x, t). The derivation outlined in this section
extends the approach followed in [38].
The starting point of our discussion is the following expected value

d

dt
E[h(Xt)], (3.6)

where h ∈ C2(Rd) is an arbitrary function and Xt is governed by (3.1).
One one hand, we switch the integration and differentiation steps in (3.6) as follows

d

dt
E[h(Xt)] =

d

dt

∫
Rd
h(x)f(x, t)dx =

∫
Rd
h(x)

∂f(x, t)

∂t
dx, (3.7)

assuming that the involved functions are smooth enough in order to allow the oper-
ator exchange.

44



On the other hand, we recast (3.6) by making use of the formula in (3.5). After
taking the expectation in (3.5), we have

E[h(Xt)]− E[h(X0)] =

E
[∫ t

0

(
∇h(Xs)

T · b(Xs, s) +
1

2
Tr
(
σ(Xs, s)

T H(h)(Xs)σ(Xs, s)
))

ds+

+

∫ t

0

λds

∫
Rd

[h(Xs− + y)− h(Xs−)] g(y)dy

]
=∫

Rd
f(x, t)

[∫ t

0

(
∇h(x)T · b(x, s) +

1

2
Tr
(
σ(x, s)T H(h)(x)σ(x, s)

))
ds+

+

∫ t

0

λ

∫
Rd

[h(x+ y)− h(x)] g(y)dy ds

]
dx,

where we exploited the fact that the expected values with respect to a Brownian
motion and to a compensated Poisson random measure are zero; see, e.g., [23]. After
differentiating with respect to time, we have

d

dt
E[h(Xt)] =∫

Rd
f(x, t)

(
∇h(x)T · b(x, t) +

1

2
Tr
(
σ(x, t)T H(h)(x)σ(x, t)

)
+

+λ

∫
Rd

[h(x+ y)− h(x)] g(y)dy

)
dx.

(3.8)

Note that the dynamics of (3.1) has range in the unbounded domain Rd, and
therefore the PDF f is defined on the whole space Rd. We assume that the following
decay conditions hold

lim
‖x‖→∞

f(x, t) = 0, lim
‖x‖→∞

∂if(x, t) = 0 for each i = 1, ..., d, (3.9)

which are called natural boundary conditions [38]. We integrate by parts the right-
hand side in (3.8) and obtain the following

d

dt
E[h(Xt)] =∫

Rd
f(x, t)

(
∇h(x)T · b(x, t) +

1

2

m∑
k=1

d∑
i=1

d∑
j=1

σik(x, t) [H(h)(x)]ij σjk(x, t)+

+λ

∫
Rd

[h(x+ y)− h(x)] g(y)dy

)
dx =

45



∫
Rd
h(x)

(
−∇(f(x, t)b(x, t)) +

1

2

d∑
i=1

d∑
j=1

∂2

∂i∂j

(
f(x, t)

m∑
k=1

σik(x, t)σjk(x, t)

)

+λ

∫
Rd

[f(y, t)− f(x, t)] g(x− y)dy

)
dx.

(3.10)

We define the differential operator L as follows

Lf(x, t) := ∇ · F (x, t), (3.11)

where

Fi(x, t) := Bi(x, t)f(x, t) +
d∑
j=1

Cij(x, t)∇f(x, t)j,

Bi(x, t) :=
d∑
i=1

∂jCij(x, t)− bi(x, t),

Cij(x, t) :=
1

2

m∑
k=1

σik(x, t)σjk(x, t).

(3.12)

We define the integral operator I as follows

If(x, t) := λ

∫
Rd
f(y, t)g(x− y)dy − λf(x, t), (3.13)

since g is a PDF and therefore it satisfies
∫
Rd g(x)dx = 1.

With this notation, (3.10) can be recast into the following equation

d

dt
E[h(Xt)] =

∫
Rd
h(x) (Lf(x, t) + If(x, t)) dx. (3.14)

Recall that the function h was arbitrarily chosen. By equating (3.7) to (3.14), we
obtain the following equation on Rd × I

∂tf(x, t) = Lf(x, t) + If(x, t), (3.15)

which is the PIDE FP equation governing the time evolution of the PDF f of the
process (3.1).

Remark 1. It holds that L = Ā, where Ā is defined in (2.27) and corresponds to
the adjoint operator of the Itô diffusion (2.24), i.e. the process (3.1) with no jumps.

We discuss the following FP PIDE initial value problem
∂tf(x, t) = Lf(x, t) + If(x, t) + ψ(x, t) (x, t) ∈ Rd × I

f(x, 0) = f0(x) x ∈ Rd,

(3.16)
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where f0 is a known initial data. The operators L and I are defined in (3.11) and
(3.13), respectively, while the source term ψ is included, as this is needed later in
this thesis, see Chapter 5.
Next, we present a theorem that ensures existence and uniqueness of classical

solutions to (3.16).

Theorem 6. Let the coefficients b and σ in (3.1) belong to the space of Hölder
continuous function Cα,α2 (Rd × I). Let g satisfy (3.4). Then for any f0 ∈ C2,α(Rd)
and for any source term ψ ∈ Cα;α

2 (Rd × I), the initial-value problem (3.16) admits
a unique solution f ∈ C2,α;1,α

2 (Rd × I) satisfying

‖f‖C2,α;1, α2 (Rd×I) ≤ K
(
‖f0‖C2,α(Rd) + ‖ψ‖Cα;α2 (Rd×I)

)
,

where the constant K does not depend on ψ and f0.

Proof. The proof relies on the construction of a sequence {fn}n∈N in C2,α;1,α
2 (Rd×I),

which admits a limit in the C2,α;1,α
2 -norm. A complete proof can be found in [39,

Theorem 3.1].

The solution f to (3.16) with ψ = 0 is the PDF of the process governed by (3.1),
provided that f0 is the PDF of the initial random variable X0 in (3.1); therefore, f
must satisfy the following conditions.

1) f(x, t) ≥ 0 for each (x, t) ∈ Rd × I,

2)

∫
Rd
f(x, t)dx = 1 for each time t ∈ I.

(3.17)

While the positivity follows from standard arguments for PIDEs [39], the conser-
vation of the total probability is proved in the next theorem.

Theorem 7. Consider the FP problem (3.16) with ψ = 0. Let us assume the
following condition on F defined in (3.12)

lim
‖x‖→∞

F (x, t) = 0 ∀t ∈ I.

Then ∫
Rd
f(x, t) =

∫
Rd
f0(x)dx ∀t ∈ I.

Proof. Recall that
∫
Rd g(x) = 1 since g is the PDF of the jump distribution in (3.1).

Applying Fubini’s theorem, we have that∫
Rd
If(x, t)dx = λ

[∫
Rd
f(y, t)

(∫
Rd
g(x− y)dx

)
dy −

∫
Rd
f(x, t)dx

]
= 0.

Hence, we have

d

dt

∫
Rd
f(x, t)dx =

∫
Rd
∂tf(x, t)dx =

∫
Rd

[∇ · F (x, t) + If(x, t)] dx = 0,

that proves conservation of the total probability.
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Note that the condition on F in Theorem 7 is feasible, thanks to the hypotheses
on b and σ of Theorem 6 together with the so-called natural boundary conditions
(3.9) employed in the above derivation of the FP equation.

3.2 A Fokker-Planck model in a bounded domain

In this section, we derive the FP problem related to the one-dimensional process
(3.1) with range in a bounded domain Ω := (r, s) ⊂ R. The dynamics of (3.1)
in proximity of the barrier ∂Ω has to be specified and suitable modeled in the FP
problem. The term L in the FP equation is given by (3.11). The boundary conditions
are specified below. The presence of jumps gives rise to a nonlocal operator. The
definition of I in (3.13) does not take into account the reflecting barriers in x = r
and x = s. Next, we show how the integral operator has to be defined. We consider
a specific model for the jump part of the process.
In this section, we denote with ĝ the PDF of the jump amplitude of the compound

process P in (3.1). We assume that ĝ has support in (r − s, s − r). This means
that the size of a jump is smaller than |Ω| and thus multiple reflections are avoided.
Since ĝ is a PDF, the following holds∫ s−r

r−s
ĝ(z)dz = 1, (3.18)

since ĝ must be a PDF over its range of definition.
The integral operator is defined as follows

If(x, t) := λ

[∫
Ω

f(y, t)g(x, y)dy − f(x, t)

]
, (3.19)

where the kernel g of is given by the sum of three components as follows

g(x, y) := ĝ(x− y) + ĝ(2r − x− y) + ĝ(2s− x− y).

The definition of the kernel g is motivated as follows. Assume that the process is in
y at time t− δt; in order to reach the new position in x, the following scenarios are
possible.

1. The boundaries are not encountered and therefore the density ĝ is evaluated
in x− y.

2. A jump with size z < 0 in the negative direction occurs, with z + y < r. The
left boundary point is therefore hit and the PDF ĝ is evaluated in 2r− x− y.

3. A jump with size z > 0 in the negative direction occurs, with z + y > s. The
right boundary point is therefore hit and the PDF ĝ is evaluated in 2s−x−y.
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Define Q := Ω × I and Σ := ∂Ω × I. We consider the following initial-boundary
value problem

∂tf(x, t) = ∇ · F (x, t) + If(x, t) + ψ(x, t) for (x, t) ∈ Q

f(x, 0) = f0(x) for x ∈ Ω

F (x, t) = 0 for (x, t) ∈ Σ,

(3.20)

where F and I are defined in (3.12) and (3.19), respectively. The zero-flux boundary
conditions F = 0 are motivated below. The right-hand side term ψ has been added
for the purpose of the analysis in Chapter 5. However, the PDF of (3.1) on a
bounded domain with reflecting barriers solves (3.20) with ψ = 0.
Next, we present a theorem that ensures existence and uniqueness of solutions

to (3.20). We focus on the framework given by weak solutions, since it becomes
essential in the analysis of FP optimal control problems discussed in Chapter 4.

Theorem 8. Let the coefficients b and C in (3.12) satisfy the following conditions

b ∈ L∞(Q) ∩ Cα;α
2 (Σ), ∂xb ∈ L∞(Q), (3.21)

C ∈ C0(Q̄) ∩ Cα;α
2 (Σ), ∂xC ∈ L∞(Q) ∩ Cα;α

2 (Σ), ∂2
xC ∈ L∞(Q).

Then, for given f0 ∈ H1(Ω) and ψ ∈ L2(Q), the initial-boundary value problem
(3.20) admits a unique solution f ∈ H2,1(Q), and the following holds

‖f‖H2,1(Q) ≤ K
(
‖f0‖H1(Ω) + ‖ψ‖L2(Q)

)
,

where the constant K does not depend on ψ and f0.

Proof. The proof relies on the construction of a map Λ within the complete metric
space H2,1(Q). After proving that Λ is a contraction, thanks to a priori estimates,
the claim follows. A complete proof can be found in [39, Theorem 3.6].

Note that b and C must be defined on the closure Ω̄ due to their role in the
boundary conditions in (3.20).
The properties in (3.17) most hold for the solution to (3.20). The positivity follows

from standard arguments for PIDEs [39]. The next theorem proves the conservation
of the total probability.

Theorem 9. Consider the FP problem as in (3.20) with ψ = 0.
Then ∫

Ω

f(x, t)dx =

∫
Ω

f0(x)dx ∀t ∈ I.
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Proof. We first prove that ∫
Ω

g(x, y)dx = 1 (3.22)

for each y ∈ Ω. After performing a change of variable, we have∫
Ω

g(x, y)dx =∫ s

r

[ĝ(x− y) + ĝ(2r − x− y) + ĝ(2s− x− y)] dx =∫ s−y

r−y
ĝ(z)dz +

∫ r−y

2r−s−y
ĝ(z)dz +

∫ 2s−r−y

s−y
ĝ(z)dz =

∫ 2s−r−y

2r−s−y
ĝ(z)dz.

Note that y ∈ (r, s) implies 2r−s−y < r−s and 2s− r−y > s− r, and therefore∫
Ω

g(x, y)dx =

∫ s−r

r−s
ĝ(z)dz = 1,

independently from y. Applying Fubini’s theorem, we have that∫
Ω

If(x, t)dx = λ

∫
Ω

[∫
Ω

f(y, t)g(x, y)dy − f(x, t)

]
dx =

= λ

[∫
Ω

f(y, t)

(∫
Ω

g(x, y)dx

)
dy −

∫
Ω

f(x, t)dx

]
= 0.

Next, we consider
∫

Ω
f(x, t)dx. After integrating by parts and after exploiting the

zero-flux boundary conditions in (3.20), we have

d

dt

∫
Ω

f(x, t)dx =

∫
Ω

∂tf(x, t)dx =

∫
Ω

[∇ · F (x, t) + If(x, t)] dx = 0,

that proves conservation of the total probability.

3.3 A priori estimates for the Fokker-Planck prob-

lem

In this section, we provide a priori estimates satisfied by the solution to FP prob-
lems. In order to do so, we need some definitions. A complete discussion on the
topics covered in this section can be found in standard references, e.g. [60, 91].
As discussed in Section 3.1, σ is full rank and therefore C in (3.12) is positive

definite. In other words, there exists kC > 0 such that

vT C(x, t) v ≥ kC‖v‖2
Rd for each v ∈ Rd, a.e. in Ω× I. (3.23)
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We consider (3.20) in Rd. We assume that g in (3.19) is essentially bounded and
therefore belongs to L∞(Ω× Ω) and we define

kg := inf
α≥0
{|g(x, y)| ≤ α for almost every (x, y) ∈ Ω× Ω}. (3.24)

Consider the following spaces V := H1(Ω), H := L2(Ω). We denote with V ∗ the
dual space of V and with 〈·, ·〉V ∗V their canonical pairing. We consider the following
Gelfand triple V ⊂ H ⊂ V ∗, that exploits the natural isomorphism H ' H∗ between
a Hilbert space with his dual. Each embedding is dense and continuous.
Given the interval I and an arbitrary Banach space Z, we define the following

Bochner spaces

L2(I;Z) = {y : I → Z such that
∫
I

‖y(t)‖2
Zdt <∞} (3.25)

C(I;Z) = {y : I → Z such that lim
τ→t
‖y(τ)− y(t)‖Z = 0 ∀t ∈ I}, (3.26)

which are also Banach spaces equipped with the following norms

‖y‖L2(I;Z) :=

(∫
I

‖y(t)‖2
Zdt

) 1
2

and ‖y‖C(I;Z) := max
t∈I
‖y(t)‖Z ,

respectively. We consider the following space

W := {y ∈ L2(I;V ) with ∂ty ∈ L2(I;V ∗)}, (3.27)

which is a Hilbert space with respect to the scalar product defined as follows

(f, g)W :=

∫
I

(f, g)V +

∫
I

(∂tf, ∂tg)V ∗ .

With this preparation, we can recall the following theorem [91].

Theorem 10. The embedding W ↪→ C(I;H) is continuous. Therefore, every y ∈ W
coincides with an element of C(I;H), up to a set of null measure.

The following proposition provides a useful a priori estimate of the solution to
(3.20).

Proposition 2. Let f0 ∈ H1(Ω), f0 ≥ 0. Assume that the cofficients b and σ satisfy
the conditions in Theorem 8. Therefore, each Bi in (3.12) is essentially bounded.
Then if f is a solution to (3.20), the following inequality holds

‖f‖L2(I;V ) + ‖∂tf‖L2(I;V ∗) ≤ c‖f0‖L2(Ω). (3.28)
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Proof. Consider the H inner product of the equation in (3.20) with f . Exploiting
the properties of the Gelfand triple, we have

〈∂tf, f〉V ∗V =

∫
Ω

(∇ · F )f +

∫
Ω

I(f)f. (3.29)

We make use of the following fact, 〈∂tf, f〉V ∗V = 1
2
d
dt
‖f(t)‖2

L2(Ω). The terms on the
right-hand side in (3.29) are recast as follows.
First, we exploit the zero-flux boundary conditions in (3.20) and the coercivity of

C as given in (3.23). Moreover, we make use of the following Cauchy inequality

αβ ≤ α2

2ε2
+
β2ε2

2
,

which holds for each α, β ∈ R and ε > 0. Integrating by parts and recalling the
definition of F in (3.12), we have∫

Ω

(∇ · F )f =

∫
∂Ω

fF · ∂ν −
∫

Ω

F · ∇f =

=

∫
Ω

−fB · ∇f −
∫

Ω

∇fTC∇f ≤
∫

Ω

BTBf 2

2ε2
+

∫
Ω

∇fT∇fε2

2
− kC‖∇f‖2

L2(Ω).

We choose ε :=
√

2kC , where kC is defined in (3.23), and define

kB :=
n∑
i=1

‖Bi‖2
∞ =

n∑
i=1

‖
n∑
j=1

∂jCij(x, t)− bi(x, t)‖2
∞

We have kB < ∞ thanks to hypotheses on the boundedness of the coefficients in
(3.12). Therefore we have ∫

Ω

(∇ · F )f ≤ kB
4kC
‖f(t)‖2

L2(Ω). (3.30)

Recalling the definition of I in (3.19) and the definition of kg in (3.24)∣∣∣∣∫
Ω

I(f)f

∣∣∣∣ ≤ λkg‖f(t)‖2
L1(Ω) − λ‖f(t)‖2

L2(Ω).

Since Ω is bounded, we have

‖f(t)‖L1(Ω)≤
√
|Ω|‖f(t)‖L2(Ω).

Therefore, ∣∣∣∣∫
Ω

I(f)f

∣∣∣∣ ≤ λ|Ω||kg − 1|‖f(t)‖2
L2(Ω). (3.31)

Define c := kB
2kC

+2λ|Ω||kg−1|. Note that c is a bounded time-dependent function.
The estimates in (3.30) and (3.31) allow us to write (3.29) as follows

d

dt
‖f(t)‖2

L2(Ω) ≤ c‖f(t)‖2
L2(Ω).
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By applying the Gronwall inequality, we have

‖f(t)‖L2(Ω) ≤ ‖f0‖L2(Ω) exp

{
1

2

∫ t

t0

c ds

}
. (3.32)

Next, we outline how to obtain an upper bound of ‖∇f(t)‖L2(Ω). We integrate
(3.23) over Ω and then recall the definition of F in (3.12). We have

kC‖∇f(t)‖2
L2(Ω) ≤

∫
Ω

(∇f)TC∇f =

∫
Ω

(∇f)T (F −Bf)

≤
∫
∂Ω

fF · ∂n−
∫

Ω

f(∇ · F )−
∫

Ω

f(∇f)TB

≤
∫

Ω

f(∂tf − I(f))−
∫

Ω

f(∇f)TB.

Proceeding as above, we obtain

‖∇f(t)‖L2(Ω) ≤ c̄‖f0‖L2(Ω),

with c̄ > 0. This last estimate, together with (3.32), proves that

‖f‖L2(I;V ) ≤ c‖f0‖L2(Ω),

up to a redefinition of the constant c > 0.
The bound for ‖∂tf‖L2(I;V ∗) follows by similar arguments by considering the 〈·, ·〉V ∗V

product of the equation in (3.20) and the integrating the result over the entire time
interval [0, T ].

Proposition 3. Let f0 ∈ H1(Ω), f0 ≥ 0. Assume that the cofficients b and σ satisfy
the conditions in Theorem 8. Then the unique solution to (3.20) belongs to L2(I;V ),
with ∂tf ∈ L2(I;V ∗). Moreover, f ∈ C(I;H).

Proof. The statement follows from the a priori estimates of Proposition 2 and The-
orem 10 in Chapter 3.

With these premises, we define the space where the solution to the FP problem is
sought as follows

F := {f ∈ W | f(0) = f0}. (3.33)

3.4 Summary and remarks

In this chapter, we investigated the FP problem associated to a JD process. In
Section 3.1 we derive the FP equation of process with range in the whole space
Rd by means of the Itô’s formula. When considering a bounded domain Ω ⊂ Rd,
the dynamics of the stochastic process when encountering the barrier ∂Ω must be

53



suitable modeled in the FP problem. In Section 3.2 we derived the FP problem of
a one-dimensional JD process on a bounded domain with reflecting barriers. The
range of the jumps was taken to be a compact set of R, so that multiple reflections
were avoided. In Section 3.3 we derived a priori estimates for the FP problem on a
bounded domain.

54



Chapter 4

Optimal control of Fokker-Planck

equations for jump-diffusion

processes

In this chapter, we set optimal control problems whose constraints are modeled by
FP problems. Our purpose is to solve control problems governed by JD processes
by following an approach that is alternative with respect to the field of stochastic
optimal control. The key observation in our discussion is to investigate the PDF of
the considered process, in the same spirit as [4, 5, 14, 54, 82].
Within the theory of optimal control, the aim is to find a control variable for a

given system in such a way that an optimality criterion is achieved. This issue is
often modeled by means of a cost functional that has to be minimized with respect
two variables, the state and the control; together they satisfy a differential constraint
[37, 60, 91]. In our work, the control acts as a part of the coefficient defining the
JD process, while the state variable is the PDF of the JD process. The constraint
is modeled by the FP problem.
We proceed as follows. In Section 4.1, we define the cost functionals that have

to be minimized. We consider two different tracking objectives, discrete-in-time
and continuous-in-time. Both have the purpose to steer the average state of a
JD process towards a sequence of given values in time. The existence of at least
an optimal solution is proven. In Section 4.2, we derive the first-order necessary
conditions within the Lagrangian approach; in doing so, we take into account the
subdifferential of the nonsmooth part of the cost functional.
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4.1 Formulation of Fokker-Planck control problems

Consider the JD process in I = [0, T ] ⊂ R+ solving (3.1) with range in Ω := (r, s)
and reflecting barriers. Define Q := Ω × I. In Section 3.2 we derived the related
FP problem (3.20) on Q. The FP problems models the constraints of our optimal
control problems.
We assume the presence of control constraints given by ua, ub ∈ R, with ua < 0 <

ub. We consider the following control space

U := L2(I) (4.1)

Uad := {u ∈ U : ua ≤ u ≤ ub} ⊂ U . (4.2)

Note that the admissible set of controls Uad is nonempty, closed, and convex.
We remark that a time-dependent control function is a natural choice considering

that it originates from the stochastic differential model such as (3.1), where the time
is the only independent variable.
Our control mechanism acts on the drift function b = b(x, u) in (3.1). We assume

that b is Lipschitz in x and smooth, such that b′(u) exists for each u ∈ U and the
following first-order expansion holds

b(u+ h) = b(u) + b′(u)h+O(‖h‖2
L2(I)). (4.3)

for each increment h ∈ U .
The next step consists in defining the cost functionals that have to be minimized.

Denote with f the solution to (3.20). Let ν and γ be positive constants. The cost
functional J to be minimized is defined as follows

J (f, u) := D(f) +
ν

2
‖u‖2

2 + γ‖u‖1, (4.4)

with D(f) denotes the tracking term defined below. The norms in (4.4) are defined
as follows

‖u‖2 :=

(∫
I

|u(t)|2dt
)1/2

and ‖u‖1 :=

∫
I

|u(t)|dt.

Note that the choice of a bounded time interval I ensures that the L1-norm is
finite whenever u ∈ U . On the one hand, the L2-term is a standard choice in
optimal control theory. On the other hand, the L1-term enhances the sparsity of
the optimal solution [29, 89].
The term D(f) in (4.4) represents a tracking objective that involves the expecta-

tion value of Xt, E[Xt] :=
∫

Ω
xf(x, t)dx, and a desired trajectory or a discrete set of

values (e.g. measurements). We investigate the following two cases.
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1. Discrete-in-time tracking term. Given a set of values {ξk}Kk=1 at different times
tk ∈ (t0, tf ), ∀k =, 1, ..., K, we have

D(f) :=
1

K

K∑
k=1

(
ξk −

∫
Ω

xf(x, tk)dx

)2

. (4.5)

2. Continuous-in-time tracking term. Given a square-integrable function ξ : I →
Rd, we have

D(f) :=

∫ T

0

(
ξ(t)−

∫
Ω

xf(x, t)dx

)2

dt. (4.6)

With these premises, we define the FP optimal control problem investigated in
this chapter. We have

min
u,f
J (f, u)

such that K(f, u) = 0,

(4.7)

with J is defined in (4.4) and K(f, u) embodies the FP problem (3.20) with the
setting given by Theorem 8.
In order to discuss the existence and uniqueness of solutions to (4.7), we consider

the control-to-state operator S : U → F , that maps a given u ∈ U into S(u) := f ,
where (f, u) satisfies K(f, u) = 0. Thanks to Theorem 8, we have that S is well
defined.
The constrained optimization problem (4.7) can be transformed into an uncon-

strained one as follows
min
u∈Uad

Ĵ (u), (4.8)

where Ĵ : u 7→ Ĵ (u) := J (S(u), u) is the so-called reduced cost functional.
The solvability of (4.8) is ensured by the next theorem, whose proof employs

standard techniques in optimal control problems [1, 37, 91] and the a priori estimates
in Chapter 3.

Theorem 11. There exists at least one optimal pair (f̄ , ū) that solves (4.7), such
that ū solves (4.8) and f̄ = S(ū) in C(I,H).

Proof. The functional Ĵ in (4.8) is bounded from below and therefore we can de-
fine i := infu∈Uad Ĵ (u). Let {un}n∈N ⊂ Uad be a minimizing sequence, such that
limn→∞ Ĵ (un) = i. We have that Uad is a convex, closed, and bounded subset of the
reflexive Banach space U . Hence, Uad is weakly sequentially compact and we can
extract a subsequence {uk}k∈N ⊂ {un}n∈N such that uk ⇀ ū ∈ Uad.
The weakly convergent sequence {uk}k∈N gives rise to the sequence {fk}k∈N ⊂
F ⊂ W , defined by fk := S(uk). Since the embedding W ↪→ L2(I;H) is compact,
there exists a subsequence {fj}j∈N ⊂ {fk}k∈N and f̄ ∈ L2(I;H) such that {fj}j∈N
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converges strongly to f̄ . Note that each couple (fj, uj) satisfies K(fj, uj) = 0 by
definition. Next, we want to pass to the limit in K(fj, uj) = 0.
Thanks to the estimate (3.28) in Proposition 2, the sequence {∂tfj}j∈N is bounded

in L2(I, V ∗) and therefore weakly convergent to ∂tf̄ . Define B̄ := b(ū). The bound-
edness of B and the smoothness of b with respect to u together with (3.28), ensures
that {f(∇·B)j}j∈N and {(B ·∇f)j}j∈N converge weakly to f̄(∇·B̄) and (B̄ ·∇f̄), re-
spectively, where the norm in L2(I,H) has been considered. The weak convergence
of {Ifj}j∈N to I f̄ follows from the estimates in Proposition 2. These observations
lead to the conclusion that the limit f̄ solves the FP problem and it holds f̄ = S(ū).
Therefore, the constraint K(f̄ , ū) = 0 is satisfied. Since J is weakly sequentially
lower semicontinuous, we have

i = lim inf
j
J (fj, uj) ≥ J (f̄ , ū)

and therefore the pair (f̄ , ū) is a minimizer for the problem (4.7).

We remark that the uniqueness of the control ū can not be stated a priori since
Ĵ is nonconvex.

4.2 First-order optimality systems

In this section, we derive the necessary conditions satisfied by a local optimal so-
lution. We obtain two first-order optimality systems, related to the discrete-in-time
and to the continuous-in-time cost functionals, respectively. We follow a standard
approach [33, 89, 91]. For preparation, we discuss the Frechét differentiability of the
control-to-state operator S.

Proposition 4. The mapping S : U → C(I;H), u 7→ f = S(u) solution to (3.20)
is Fréchet differentiable. For each h ∈ U , the directional derivative e := S ′(u) · h
satisfies the following initial-boundary problem

∂te = ∂xF (e, u) + I(e)− h ∂x(fb′(u)) for (x, t) ∈ Q,

F (e, u) = fb′(u)h for (x, t) ∈ Σ,

e(x, 0) = 0 for x ∈ Ω,

(4.9)

where b is the drift of the JD process solving (3.1) and F is defined in (3.12).

Proof. Recall that S(u+τh) and S(u) satisfy (3.20) with u+τh and u, respectively.
By computing the limit

lim
τ→0

S(u+ τh)− S(u)

τ
,
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we obtain (4.9). The results of Theorem 8, together with the assumption on b

defining F in (3.12), allow us to state that the right-hand side in (4.9) is in L2(Ω).
Therefore, Theorem 8 holds and (4.9) has a unique solution in H2,1(Q).
In order to prove the Fréchet differentiability of S, we consider the difference

ζh := S(u+h)−S(u)−S ′(u)·h. Recall thatK(S(u+h), u+h) = 0 andK(S(u), u) = 0.
Therefore, ζ solves the following initial-boundary value problem

∂tζ = ∂xF (ζ, u) + I(ζ) + ∂xη for (x, t) ∈ Q

F (ζ, u) = −η for (x, t) ∈ Σ

ζ(x, 0) = 0 for x ∈ Ω,

(4.10)

where
η(x, t) := S(u+ h)(b(u+ h)− b(u))− S(u)b′(u)h.

By applying Theorem 8, we have that

‖ζ‖H2,1(Q) ≤ K1‖∂xη‖L2(Q), (4.11)

with K1 > 0. Note that S(u+ h)− S(u) solves the FP problem (3.20) with f0 = 0
and ψ(x, t) = −∂x(S(u + h)(b(u + h) − b(u)), and therefore, thanks to Theorem 8,
we have

‖S(u+ h)− S(u)‖H2,1(Q) ≤ K‖∂x(S(u+ h)(b(u+ h)− b(u))‖L2(Q), (4.12)

with K2 > 0. Next, we compute the following limit

lim
‖h‖L2(I)→0

‖ζ‖L2(Q)

‖h‖L2(I)

.

The embedding H1,2(Q) ⊂ L2(Q) together with (4.3), (4.11) and (4.12) yields

lim
‖h‖L2(I)→0

‖ζ‖L2(Q)

‖h‖L2(I)

= lim
‖h‖L2(I)→0

(K‖h‖L2(I) +O(‖h‖L2(I)),

where K > 0 does not depends on h. This concludes the proof of the differentiability
of S.

Consider the reduced problem (4.8) and write the reduced functional Ĵ as Ĵ :=
J1 + J2, Ji : U → R+, i = 1, 2, where

J1(u) := D(S(u)) +
ν

2
‖u‖2

2,

J2(u) := γ‖u‖1.

(4.13)
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Note that the functional J1 is smooth, thanks to Proposition 4, and to the smooth-
ness of (4.5) and (4.6) with respect to f . The gradient ∇J1 plays a key role in the
definition of the optimality system that follows. On the other hand, the addend J2

is convex and nonsmooth. With the aim of deriving the optimality conditions, we
need the following definitions. We refer to [1, 9, 33, 91].
In the remainder of this chapter, U∗ is the dual space of U = L2(I), while 〈·, ·〉

stands for the scalar product between U∗ and U . If Ĵ is finite at a point u, the
Fréchet subdifferential of Ĵ at u is defined as follows [33]

∂Ĵ (u) :=

{
ϕ ∈ U∗ : lim inf

v→u

Ĵ (v)− Ĵ (u)− 〈ϕ, v − u〉
‖v − u‖2

≥ 0

}
. (4.14)

Any element ϕ ∈ ∂Ĵ (u) is called a subgradient. In our framework, we have

∂Ĵ (u) = ∇J1(u) + ∂J2(u),

since J1 is Fréchet differentiable at u. Moreover, for each α > 0, it holds that
∂(αĴ ) = α∂Ĵ .
The following proposition gives a necessary condition for a local minimum of Ĵ .

Proposition 5. If Ĵ = J1 + J2, with J1 and J2 given by (4.13), attains a local
minimum in ū ∈ Uad, then

0 ∈ ∂Ĵ (ū),

or equivalently
−∇J1(ū) ∈ ∂J2(ū).

Proof. Since Uad is convex, ū+ θ(v− ū) ∈ Uad, for each v ∈ Uad and θ ∈ (0, 1]. Since
ū is a local minimum, we have

Ĵ (ū) ≤ Ĵ (ū+ θ(v − ū)),

for v sufficiently close to ū. Exploiting the convexity of J2, we have

J1(ū+ θ(v − ū))− J1(ū) + θ(J2(v)− J2(ū)) ≥ 0.

Dividing by θ and considering the limit θ → 0, we obtain

J2(v)− J2(ū) + 〈∇J1(ū), v − ū〉 ≥ 0. (4.15)

Dividing by ‖v − ū‖2 and considering the following limit

lim inf
v→ū

J2(v)− J2(ū) + 〈∇J1(ū), v − ū〉
‖v − ū‖2

≥ 0,

we conclude that −∇J1(ū) ∈ ∂J2(ū), according to the definiton in (4.14).
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The variational inequality (4.15) implies that each λ ∈ ∂J2(ū), with ū a local
minimum, satisfies the following inequality

〈∇J1(ū) + λ, v − ū〉 ≥ 0 for each v ∈ Uad. (4.16)

Moreover, recalling the definition of J2 in (4.13) and exploiting the isomorphism
U∗ ' U , the inclusion λ ∈ ∂J2(ū) gives the following

λ ∈ Λγ := {l ∈ L2(I) : |l| ≤ γ a.e. on I}. (4.17)

A pointwise analysis of (4.16), which takes into account the definition (4.2) of the
admissible controls, ensures the existence of two nonnegative functions λ̄a, λ̄b ∈ U∗
that play the role of Lagrange multipliers. The previous considerations lead to the
following proposition, that states the optimality system for the reduced problem
(4.8).

Proposition 6. A local optimal solution ū of the minimization problem (4.8) with
Ĵ = J1 + J2 defined in (4.13), is characterized by the existence of (λ̄, λ̄a, λ̄b) ∈
Λγ × U∗ × U∗ such that

∇J1(ū) + λ̄− λ̄a + λ̄b = 0

λ̄b ≥ 0, ub − ū ≥ 0, 〈λ̄b, ub − ū〉 = 0

λ̄a ≥ 0, ū− ua ≥ 0, 〈λ̄a, ū− ua〉 = 0

λ̄ = γ a.e. on {t ∈ I : ū(t) > 0}

|λ̄| ≤ γ a.e. on {t ∈ I : ū(t) = 0}

λ̄ = −γ a.e. on {t ∈ I : ū(t) < 0}

(4.18)

We refer to the last three conditions in (4.18) for the pair (ū, λ̄) as the comple-
mentarity conditions.

Next, we compute ∇J1(u) in (4.18) within the adjoint approach. Recall the defi-
nition of J1(u) in (4.13). For each u ∈ U , we have

∇J1(u) = νu+ (S ′(u))∗D′(S(u)).

Note that K is smooth in both arguments. By considering the total derivative of
K(S(u), u) = 0, we have

Kf (S(u), u)S ′(u) +Ku(S(u), u) = 0.
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Therefore, we obtain

∇J1(u) = νu−Ku(S(u), u)∗(Kf (S(u), u)∗)−1D′(S(u)).

Defining the adjoint variable p as the solution to the following adjoint problem

Kf (S(u), u)∗p = −D′(S(u)), (4.19)

we obtain the following reduced gradient

∇J1(u) = νu+Ku(S(u), u)∗p. (4.20)

Define the operator Ĩ as follows

Ĩp(x, t) := λ

[∫
Ω

p(y, t)g(y, x)dy − p(x, t)
]

for each (x, t) ∈ Q.

After some calculation, we have that (4.19) can be rewritten in terms of the following
adjoint system

−∂tp(x, t) = b(x;u)∂xp(x, t) + C(x, t)∂2
xxp(x, t)+

+ Ĩp(x, t) + α(x, t) on Q

p(x, tf ) = 0 on Ω

∂xp(x, t) = 0 on ∂Ω× I

p(x, t−k ) = p(x, t+k ) + β(x, k) on Ω, ∀k = 1, ..., K,

(4.21)

where α and β depend on the choice of D in (4.5) and (4.6). When D is given by
(4.5), α(x, t) = 0 and β(x, k) = −2x(ξk −

∫
Ω
sf(s, tk)ds), for each k = 1, ..., K. On

the other hand, when D is given by (4.6), α(x, t) = 2x(ξ(t) −
∫

Ω
sf(s, t)ds) and

β(x, k) = 0.
The terminal boundary-value problem (4.21) in case of D as in (4.6) admits a

unique solution p ∈ H2,1(Q), following the same arguments as in Theorem 8 in
Chapter 3. In case of D as in (4.5), we have that p ∈ H2,1(Ω× (tk, tk+1)).
The reduced gradient (4.20), for given u, f = S(f), and p, takes the following

form
∇Ĵ1(u) = νu+

∫
Ω

f ∂xp b
′(u). (4.22)

The complementarity conditions in (4.18) can be recast in a more compact form,
as follows. We define µ̄ := λ̄ − λ̄a + λ̄b. For each k ∈ R+, we define the following
quantity

E(ū, µ̄) :=ū−max{0, ū+ k(µ̄− γ)} −min{0, ū+ k(µ̄+ γ)}+

max{0, ū− ub + k(µ̄− γ)}+ min{0, ū− ua + k(µ̄+ γ)}.
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The complementarity conditions in (4.18) and the inequalities related to the La-
grange multipliers λ̄a and λ̄b, together with the requirement λ̄ ∈ Λγ, are equivalent
to E(ū, µ̄) = 0.
The previous considerations can be summarized in the following propositions.

Proposition 7. (Optimality system for the discrete-in-time tracking functional)
A local solution (f, u) ∈ F × Uad of (4.7) with D given by (4.5) is characterized by
the existence of (p, µ) ∈ H2,1(Q)× U∗, such that the following system is satisfied

νu+
∫

Ω
f ∂xp b

′(u) + µ = 0 a.e. in I

∂tf(x, t) = ∂xF (x, t) + If(x, t) for (x, t) ∈ Q

f(x, 0) = f0(x) for x ∈ Ω

F (x, t) = 0 for (x, t) ∈ Σ

−∂tp(x, t) = b(x;u)∂xp(x, t) + C(x, t)∂2
xxp(x, t) + Ĩp(x, t) for (x, t) ∈ Q

p(x, T ) = 0 for x ∈ Ω

∂xp(x, t) = 0 for (x, t) ∈ Σ

p(x, t−k ) = p(x, t+k )− 2x(ξk −
∫

Ω
sf(s, tk)ds) for x ∈ Ω, ∀k = 1, ..., K

E(u, µ) = 0 a.e. in I.

(4.23)

Proposition 8. (Optimality system for the continuous-in-time tracking functional)
A local solution (f, u) ∈ F × Uad of (4.7) with D given by (4.6) is characterized by
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the existence of (p, µ) ∈ H2,1(Q)× U∗, such that the following system is satisfied

νu+
∫

Ω
f ∂xp b

′(u) + µ = 0 a.e. in I

∂tf(x, t) = ∂xF (x, t) + If(x, t) for (x, t) ∈ Q

f(x, 0) = f0(x) for x ∈ Ω

F (x, t) = 0 for (x, t) ∈ Σ

−∂tp(x, t) = b(x;u)∂xp(x, t) + C(x, t)∂2
xxp(x, t) + Ĩp(x, t)+

+ 2x(ξ(t)−
∫

Ω
sf(s, t)ds) for (x, t) ∈ Q

p(x, T ) = 0 for x ∈ Ω

∂xp(x, t) = 0 for (x, t) ∈ Σ

E(u, µ) = 0 a.e. in I.

(4.24)

4.3 Summary and remarks

In this chapter, we presented theoretical results regarding optimal control problems
governed by PIDEs of FP type. The issue of controlling a JD process is addressed by
means of the action of a control variable in the drift coefficient of the FP equation.
In Section 4.1, we defined the cost functionals, considering two different tracking
objectives, discrete-in-time and continuous-in-time. The existence of at least an
optimal solution was proven. In Section 4.2, we determined the first-order optimality
systems within the Lagrangian approach; this derivation was carried out by taking
into account the subdifferential of the nondifferentiable part of the cost functional.
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Chapter 5

Numerical solution of Fokker-Planck

problems for jump-diffusion processes

In this chapter, we discuss the numerical solution of FP problems related to JD
processes. For this purpose, we investigate the SIMEX schemes in Section 5.1. After
discretizing in space the differential and integral operators with the CC method and
the mid-point rule, respectively, the time integration of the resulting ODE system
is carried out. We apply a first-order scheme and a predictor-corrector method.
The full convergence and stability analysis of the SIMEX scheme is presented in
Section 5.2. We show in Section 5.3 that the chosen discretization preserves the two
properties of the solution to the FP problem, i.e. the positivity and the probability
conservation. Section 5.4 illustrates the numerical experiments that validate the
theoretical results of the previous section.

5.1 The SIMEX schemes

In this section, we formulate our SIMEX schemes. We consider a one-dimensional
jump-diffusion process modeled by

dXt = b(Xt−)dt+ σ(Xt−)dWt + dPt,

X{t=0} = X0,

(5.1)

with range in Ω := (r, s) and t ∈ I := [0, T ].

65



The random data X0 is given. Define C(x) := 1
2
σ2(x) and B(x) := ∂xC(x)− b(x).

Recall that we have two operators L and I defined for each (x, t) ∈ Ω× I as follows

Lf(x, t) := ∂xF (x, t), (5.2)

where
F (x, t) := B(x)f(x, t) + C(x)∂xf(x, t) (5.3)

and
If(x, t) := λ

∫
R
f(y, t)g(x− y)dy − λf(x, t). (5.4)

We consider the following initial-boundary value problem

∂tf(x, t) = Lf(x, t) + If(x, t) + ψ(x, t) for (x, t) ∈ Ω× I

f(x, 0) = f0(x) for x ∈ Ω

F (x, t) = 0 for (x, t) ∈ ∂Ω× I.

(5.5)

The source term ψ has been added with the purpose of the numerical analysis of
Section 5.2, whose theoretical results are tested in Section 5.4.
Our purpose is to numerically solve (5.5). We first set the mesh sizes h and δt as

follows
h :=

s− r
N − 1

and δt :=
T

M
, with N,M ∈ N.

We consider uniform meshes in space and time. We have

Ωh := {xj = r + (j − 1)h, j = 1, ..., N}

Iδt := {tn = nδt, n = 0, ...,M} ⊂ I.

(5.6)

Note that Ωh contains the boundaries r, s of Ω. In order to numerically solve (5.5),
we first consider the spatial discretization of L and I, defined in (5.2) and (5.4),
respectively. This leads to a large system of ODEs. Exploiting the form (5.2)
of the differential operator L, we discretize the spatial derivative of the flux F
defined by (5.3) using the CC scheme. This is a cell-centered finite-volume scheme
that computes the flux at the j-cell’s boundaries, xj± 1

2
, for j = 1, ..., N , where

xj± 1
2

:=
xj+xj±1

2
. The unknown variables are computed on the cell-centers xj, for

each cell j = 1, ..., N . In what follows, given a generic continuous function Φ(x, t),
we denote with Φj(t) and Φj± 1

2
(t) the time-continuous restrictions of Φ to xj and

xj± 1
2
, respectively.

For each j = 1, ..., N , we have the following discretization formula

∂xF (xj, t) ≈
Fj+ 1

2
(t)− Fj− 1

2
(t)

h
, (5.7)
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where for example

Fj+ 1
2
(t) = Bj+ 1

2
[(1− δj+ 1

2
)fj+1(t) + δj+ 1

2
fj(t)] + Cj+ 1

2

fj+1(t)− fj(t)
h

. (5.8)

The linear combination of the values of the unknown f on two consecutive grid
points xj and xj+1 (or xj−1 and xj) by means of the weight δ is the distinguishing
feature of the CC method and is motivated as follows. The key observation is that
the equilibrium solution of the equation in (5.5) with no integral term and no source
term is given by

f(x) = k exp

{
−
∫ x

r

B(y)

C(y)
dy

}
,

with k integration factor. Define the following quantity

w(x) := h
B(x)

C(x)
. (5.9)

The ratio between the equilibrium solution at two adjacent points is approximated
by the midpoint rule [28] as follows

f(xj+1)

f(xj)
= exp

{
−
∫ xj+1

xj

B(y)

C(y)
dy

}
≈ exp

{
−wj+ 1

2

}
. (5.10)

Using (5.8), we impose that the discrete flux F has to vanish in xj+ 1
2
, where we

use fj+ 1
2

= δj+ 1
2
fj + (1− δj+ 1

2
)fj+1. We obtain

fj+1

fj
=

Cj+ 1
2
− hBj+ 1

2
δj+ 1

2

Cj+ 1
2

+ hBj+ 1
2
(1− δj+ 1

2
)
. (5.11)

By equating (5.10) and (5.11), we find that the space-dependent parameter δ is
defined as follows

δ(x) :=
1

w(x)
+

1

1− ew(x)
. (5.12)

From (5.12), it follows that δ(x) ∈ [0, 1], and thus the linear combinations of the
unknown in (5.8) are convex. Notice that δ → 1

2
as w → 0; δ → 0+ as w → −∞;

δ → 1− as w →∞.
The integral in (5.4) is approximated with the midpoint rule [28] on each cell

(xi− 1
2
, xi+ 1

2
), for i = 1, ..., N , as follows∫

R
f(y, t)g(x− y)dy =

N∑
i=1

∫ x
i+ 1

2

x
i− 1

2

f(y, t)g(x− y)dy ≈
N∑
i=1

hf(xi, t)g(x− xi).

Hence, for each j = 1, ..., N , the discretization of the integral operator (5.4) on
the line (xj, t) takes the following form

If(xj, t) ≈ λ

(
h

N∑
i=1

f(xi, t)g(xj − xi)− f(xj, t)

)
. (5.13)
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The discretization steps (5.7) and (5.13) give the following MOL approximation
f ′SD(t) = (A+ G)fSD(t) + Ψ(t)

fSD(0) = f(0),

(5.14)

where A and G are defined below. Notice that (5.14) is a system of ordinary differ-
ential equations parametrized by the space mesh size h in A and G. In other words,
fSD(t) = {fSD,1(t), . . . , fSD,N(t)} ∈ RN can be viewed as a grid function, where each
component describes the time evolution of fSD on the correspondent grid point of
Ωh. The initial value f(0) and the source term Ψ represent the restriction on the
grid Ωh of the sufficiently smooth initial data f0 and of the source term ψ in (5.5),
respectively.
The matrix A in (5.14) follows from the CC method and it takes into account

the zero-flux boundary condition of (5.5), which are implemented at the boundary
points x 1

2
and xN+ 1

2
. By setting

α(x) :=
C(x)

h
+ (1− δ(x))B(x), x ∈ Ω (5.15)

β(x) :=
C(x)

h
− δ(x)B(x), x ∈ Ω (5.16)

the tridiagonal matrix A is given by

Aij =
1

h



αi+ 1
2

1 ≤ i ≤ N − 1, j = i+ 1,

−αi− 1
2
− βi+ 1

2
1 ≤ i ≤ N, j = i,

βi− 1
2

2 ≤ i ≤ N, j = i− 1,

0 otherwise.

(5.17)

We set α 1
2

= 0 and βN+ 1
2

= 0, which correspond to the boundary conditions in
(5.5) as follows

F (x 1
2
) = 0 ⇔ α 1

2
= 0

F (xN+ 1
2
) = 0 ⇔ βN+ 1

2
= 0.

(5.18)

The matrix G in (5.14) is defined as follows

G := λ(G− I),
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where I denotes the N−dimensional identity matrix and G is the matrix with nor-
malized columns as follows

Gij :=
h g(xi − xj)∑N
k=1 h g(xk − xj)

. (5.19)

The choice of the normalization in (5.19) is discussed in Section 5.3.
The step leading to the full discretization of our FP problem consists of applying

a time-discretization method to (5.14). We choose an operator splitting method,
exploiting the fact that the semidiscretized system (5.14) is naturally decoupled
into two linear operators. The idea behind a splitting method is to divide the
evolution problem into simpler sequential sub-problems that are separately solved
with different methods. Setting δt also as the splitting time step, we apply the
Strang-Marchuk (SM) splitting scheme [45, 50, 65, 90]. In the following, we refer to
the time-continuous solution of the splitting scheme as fSP(t). The initial data is
set as follows, fSP(t0) := fSD(t0), where fSP is the splitting solution and fSD is the
solution of the semi-discretized system (5.14) without splitting.
In each time interval [tn, tn+1], given the splitting solution fSP(tn), the following

subproblems, connected via the initial conditions, are solved

1.


φ′1(t) = Aφ1(t)

φ1(tn) = fSP(tn)

t ∈ [tn, tn+ 1
2
]

2.


φ′2(t) = Gφ2(t) + Ψ(t)

φ2(tn) = φ1(tn+ 1
2
)

t ∈ [tn, tn+1] (5.20)

3.


φ′3(t) = Aφ3(t)

φ3(tn+ 1
2
) = φ2(tn+1)

t ∈ [tn+ 1
2
, tn+1].

4. fSP(tn+1) := φ3(tn+1)

This system of continuous-time equations is approximated by time discretization.
The fully discrete numerical solution will be referred to as f̂ = (fnj ), j = 1, ..., N , n =
0, ...,M . We propose to use two different time discretization methods that together
with the space discretization give the schemes named SIMEX1 and SIMEX2.
In SIMEX1, the solution of the first and third step of (5.20) is carried out with

the implicit Euler method, while the second step is explicit, in order to avoid the
drawback of inverting the dense matrix G. Given fn at time tn, the three initial
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value problems in (5.20) read as follows

1.
fn+ 1

2 − fn

δt/2
= Afn+ 1

2

2.
f (n+ 1

2
)∗ − fn+ 1

2

δt
= Gfn+ 1

2 + Ψ(tn) (5.21)

3.
fn+1 − f (n+ 1

2
)∗

δt/2
= Afn+1,

where the unknown are sequentially solved: fn → fn+ 1
2 → f (n+ 1

2
)∗ → fn+1.

The time discretization of (5.20) in SIMEX2 is carried out with the predictor
corrector method. Given fn at time tn, the discretization of the three initial value
problems in (5.20) take the following form

1.


f̄n+ 1

2 = fn + δt
2
Afn

fn+ 1
2 = fn + δt

4

[
Afn +Af̄n+ 1

2

]

2.


f̄n+ 1

2

∗
= fn+ 1

2 + δt[Gfn+ 1
2 + Ψ(tn)]

fn+ 1
2

∗
= fn+ 1

2 + δt
2

[
Gfn+ 1

2 + Ψ(tn) + Gf̄n+ 1
2

∗
+ Ψ(tn+1)

] (5.22)

3.


f̄n+1 = fn+ 1

2

∗
+ δt

2
Afn+ 1

2

∗

fn+1 = fn+ 1
2

∗
+ δt

4

[
Afn+ 1

2

∗
+Af̄n+1

]
.

5.2 Accuracy analysis

In this section, we investigate stability and accuracy properties of the SIMEX1 and
SIMEX2 schemes, given by (5.21) and (5.22), respectively. After determining the
order of convergence of the spatial discretization, we focus on the rate of convergence
in time.
The discrete L2-scalar product of two grid functions u and v on Ωh× Iδt is defined

as follows

(u, v)L2
h,δt

:= hδt

N∑
j=1

M∑
n=0

unj v
n
j ,

with associated norm ‖u‖L2
h,δt

:=
√

(u, u)L2
h,δt

. In a similar fashion, the discrete L2
h

inner product and norm are defined for functions w, z on the spatial grid Ωh as
follows

(w, z)L2
h

:= h

N∑
j=1

wjzj and ‖w‖L2
h

:=
√

(w,w)L2
h
. (5.23)
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We aim at comparing the continuous PIDE solution f of (5.5) and the numerical
solution f̂ , which is defined on the grid points of Ωh × Iδt. We have the following
inequality

‖f − f̂‖L2
h,δt
≤ ‖fh − fSD‖L2

h,δt
+ ‖fSD − fSP‖L2

h,δt
+ ‖fSP − f̂‖L2

h,δt
, (5.24)

where fh(t) ∈ RN is the PIDE solution restricted to x̄ ∈ Ωh, with fh(t)j := f(xj, t),
fSD solves (5.14) and fSP is obtained as in (5.20). In (5.24), the L2

h,δt norms are
computed after evaluating the continuous functions at the points of the meshes Ωh

and Iδt defined in (5.6).
In the following, we provide bounds for each of the three norms of (5.24). Specif-

ically, we prove in Proposition 10 that ‖fh − fSD‖L2
h,δt

= O(h2). In Proposition 11,
we obtain ‖fSD − fSP‖L2

h,δt
= O(δt2). Further, for the SIMEX1 scheme, we prove

in Proposition 13 that ‖fSP − f̂‖L2
h,δt

= O(δt), while in Proposition 15 we obtain

‖fSP − f̂‖L2
h,δt

= O(δt2) for the SIMEX2 scheme.
For our analysis, we assume the following conditions.

• The PIDE solution f of (5.5) is 4 times continuously differentiable with respect
to the space variable.

• The function B that defines the flux F in (5.3) is C1(Ω). Therefore, B is
Lipschitz continuous, with Lipschitz constant L.

• The function C defining the flux in (5.3) belongs to C3(Ω).

• The PDF g of the integral operator I in (5.4) is two times differentiable.

• The source term ψ in (5.5) has continuous first-time derivative.

Next, we aim at a bound for the first addend in (5.24). For each j = 1, ..., N , we
define the following time-continuous quantities

εj(t) := fh(t)j − fSDj(t),

αj(t) := ∂tf(xj, t)− ([A+ G]fh(t))j −Ψj(t),

(5.25)

called spatial discretization error and spatial truncation error, respectively. The
spatial truncation error α is the residual obtained by inserting the exact solution f
in the semidiscretized equation (5.14).
Notice that f satisfies both the PIDE in (5.5) restricted to the line (xj, t) and the

following equation

∂tfh(t)j = ([A+ G]fh(t))j + Ψj(t) + αj(t),

where the spatial truncation error α is

αj(t) = [Lf(xj, t)− (Afh(t))j] + [If(xj, t)− (Gfh(t))j]. (5.26)
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Proposition 9. Assume B ∈ C1(Ω), C ∈ C3(Ω), g ∈ C2(R). If the solution f of
(5.5) has continuous space derivatives up to the 4th order, the spatial truncation
error α in (5.26) is consistent of order 2 as follows

‖α(t)‖L2
h

= O(h2).

Proof. We first consider the first addend in (5.26). Recalling the definitions of L
and A in (5.2) and (5.17), respectively, we have

Lf(xj, t)− (Afh(t))j =

= ∂x(Bfh)(xj)−
1

h

(
Bj+ 1

2
[(1− δj+ 1

2
)fj+1 + δj+ 1

2
fj]−Bj− 1

2
[(1− δj− 1

2
)fj + δj− 1

2
fj−1]

)
+ ∂x(C∂xfh)(xj)−

1

h2

(
Cj+ 1

2
(fj+1 − fj)− Cj− 1

2
(fj − fj−1)

)
.

We consider the following Taylor expansions, holding for h,w → 0

fh(xj±1) = fh(xj)± h∂xfh(xj) +
h2

2
∂2
xxfh(xj)±

h3

3!
∂3
xxxfh(xj) +

h4

4!
∂4
xxxxfh(xj)+

+O(h5)

B(xj± 1
2
) = B(xj)±

h

2
∂xB(xj) +O(h2)

C(xj± 1
2
) = C(xj)±

h

2
∂xC(xj) +

h2

8
∂2
xxC(xj)±

h3

48
∂3
xxxC(xj) +O(h4)

ew =
∞∑
k=0

wk

k!
.

Exploiting the Taylor expansion, we have

∂x(Bfh)(xj)−
1

h

(
Bj+ 1

2
[(1− δj+ 1

2
)fj+1 + δj+ 1

2
fj]−Bj− 1

2
[(1− δj− 1

2
)fj + δj− 1

2
fj−1]

)
=

= ∂xfh(xj, t)B(xj)(δj+ 1
2
− δj− 1

2
) +

h

2
∂x(∂xfhB)(xj)(1− δj+ 1

2
− δj− 1

2
) +O(h2).

We also have

∂x(C∂xfh)(xj)−
1

h2

(
Cj+ 1

2
(fj+1 − fj)− Cj− 1

2
(fj − fj−1)

)
=

=
h2

2

(
1

12
∂3
xxxC(xj)∂xfh(xj) +

1

4
∂2
xxC(xj)∂

2
xxfh(xj) +

1

6
∂xC(xj)∂

3
xxxfh(xj)+

+
1

6
C(xj)∂

4
xxxxfh(xj)

)
+O(h4).

Moreover, exploiting the definition of δ in (5.12) and the Taylor expansion of the
exponential function, we obtain the following relations

δj− 1
2
− δj+ 1

2
= O(h2) and 1− δj+ 1

2
− δj− 1

2
= O(h),
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which lead us to the conclusion

Lf(xj, t)− (Afh(t))j = O(h2).

Further, we consider the second addend in (5.26). We have

If(xj, t)− (Gfh(t))j = λ

(∫
Ω

f(y, t)g(xj − y)dy − (Gfh(t))j

)
= λ

(∫
Ω

f(y, t)g(xj − y)dy −
N∑
i=1

h g(xj − xi)∑N
k=1 h g(xk − xi)

f(xi, t)

)

= λ

(∫
Ω

f(y, t)g(xj − y)dy −
N∑
i=1

h g(xj − xi)f(xi, t)

)

+ λ

(
N∑
i=1

h g(xj − xi)f(xi, t)−
N∑
i=1

h g(xj − xi)∑N
k=1 h g(xk − xi)

f(xi, t)

)

= O(h2) + λ
N∑
i=1

h g(xj − xi)f(xi, t)∑N
k=1 h g(xk − xi)

(
N∑
k=1

h g(xk − xi)− 1

)
= O(h2)

We notice that the last term consists of the midpoint rule to calculate the integrals
over Ω of the following two functions

ϕ1(y) := f(y, t)g(xj − y) and ϕ2(y) := g(y − xi), for each j = 1, ..., N.

The error associated to the midpoint rule is given by∫
Ω

ϕl(y)dy −
N∑
k=1

hϕl(xk) = O(h2) for l = 1, 2.

In particular, we have |
∑N

k=1 h g(xk − xi)− 1| = O(h2), hence

αj(t) = O(h2) for each j = 1, ..., N.

Since ‖α(t)‖2
L2
h

=
∑N

j=1 h|αj(t)|2, we can conclude that ‖α(t)‖L2
h

= O(h2).

Proposition 10. Let f be the solution to (5.5) and fSD be the solution to (5.14).
Then the following holds ‖fh − fSD‖L2

h,δt
= O(h2).

Proof. By definition of spatial truncation error in (5.25), we have that ε(t) satisfies
the following initial value problem

ε′(t) = [A+ G]ε(t) + α(t)

ε(0) = 0.

(5.27)
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We carry out the proof within the framework given by logarithmic norms [50].
Recall that, given an arbitrary matrix norm ||| · |||, the logarithmic norm µ is defined
for a square matrix M as follows

µ(M) := lim
τ→0

|||I + τM ||| − 1

τ
.

If the norm ||| · ||| stems from an inner product (·, ·), the logarithmic norm µ of M
satisfies the following relation

µ(M) := sup
v 6=0

(Mv, v)

(v, v)
.

We exploit the following equivalence, holding for any matrix M with associated
norm ||| · ||| and logarithmic norm µ, for ω ∈ R. We have

µ(M) ≤ ω ⇔ |||eδtM ||| ≤ eδtω. (5.28)

In this proof, we consider the scalar product in L2
h and its related norm (5.23).

We first provide an estimate for the logarithmic norm µ2(A+G) induced by (·, ·)L2
h
.

We consider the scalar product (Aε(t), ε(t))L2
h
, showing that it is nonpositive for all

ε(t) ∈ L2
h. Thanks to the definition of A in (5.17), we note that there exist two

matrices L and U defined as follows

Lij =



−1 i = 2, ..., N, j = i− 1

1 i = 1, ...N, j = i

0 otherwise,

Uij =



αi+ 1
2

i = 1, ..., N − 1, j = i+ 1

βi+ 1
2

i = 1, ..., N − 1, j = i

0 otherwise,

such that −hA = LU . Notice that UNN = 0. Therefore the determinant of U ,
and thus of A, is zero, which means that A has a zero eigenvalue. Furthermore, by
inspection, we see that all other leading principal minors of U are positive. Then,
we conclude that the matrix A has N−1 negative eigenvalues and a zero eigenvalue.
Therefore, (Aε(t), ε(t))L2

h
≤ 0 for each ε(t) ∈ RN , which implies that µ2(A) = 0.
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For the matrix G we have the following

(Gε(t), ε(t))L2
h

= λ(Gε(t), ε(t))L2
h
− λ(ε(t), ε(t))L2

h

= λh
N∑
i=1

N∑
j=1

Gijεi(t)εj(t)− λh
N∑
j=1

ε2
j(t)

≤ λ
h

2

N∑
i=1

(
N∑
j=1

Gij

)
ε2
i (t) + λ

h

2

N∑
j=1

(
N∑
i=1

Gij

)
ε2
j(t)− λ‖ε(t)‖2

L2
h

≤ cλh2‖ε(t)‖2
L2
h
,

(5.29)

hence µ2(G) ≤ cλh2. Therefore, µ2(A+G) ≤ µ2(A)+µ2(G) ≤ cλh2. This inequality,
together with (5.28), allows us to state the following results

‖eAδt‖L2
h
≤ 1, (5.30)

‖eGδt‖L2
h
≤ ecλ h

2δt, (5.31)

‖e(A+G)δt‖L2
h
≤ ecλ h

2δt. (5.32)

By integrating (5.27) and exploiting the inequality (5.32), we conclude that

‖ε(t)‖L2
h
≤ ecλ h

2t‖ε(0)‖L2
h

+
ecλ h

2t − 1

cλ h2
max
0≤s≤t

‖α(s)‖L2
h
,

and therefore ‖fh − fSD‖L2
h,δt

= O(h2).

We now aim at proving a bound for the second addend in (5.24) related to the
splitting method. Consider the matricesA and G as in (5.17) and (5.19), respectively,
and define the operator S as follows

S := e
δt
2
AeδtGe

δt
2
A. (5.33)

Consider the time interval [tn, tn+1]. We apply four times the variation of constants
formula for ODEs to integrate the ODE systems (5.20). Therefore, the splitting
solution can be formally written as follows

fSP(tn+1) =SfSP(tn) + e
δt
2
Ae

δt
2
G
∫ δt

2

0

e( δt
2
−s)GΨ(tn + s)ds+

+ e
δt
2
A
∫ δt

2

0

e( δt
2
−s)GΨ(tn+ 1

2
+ s)ds.

(5.34)

75



We define with dn the local truncation splitting error for each n = 0, ...,M − 1,
which is the residual obtained at time tn by inserting the exact solution of the
semidiscretized system (5.14) in the formal expression of the splitting solution (5.34)
as follows

dn :=fSD(tn+1)− SfSD(tn)− e
δt
2
Ae

δt
2
G
∫ δt

2

0

e( δt
2
−s)GΨ(tn + s)ds

− e
δt
2
A
∫ δt

2

0

e( δt
2
−s)GΨ(tn+ 1

2
+ s)ds. (5.35)

Define the global splitting error at time tn as En := fSD(tn) − fSP(tn). Subtract-
ing (5.34) from (5.35), we obtain the following relation

En+1 = SEn + dn. (5.36)

Exploiting the linearity of the solution operator S and the fact that E0 = 0, we
recursively apply (5.36), and obtain

En =
n∑
k=0

Sn−kdk. (5.37)

In the remainder of this section, we make use of the following two facts. Given z ∈
R and a matrix M ∈ RN×N , we have the following two properties. The exponential
of the matrix zM is defined by the convergent power series

ezM =
+∞∑
k=0

(zM)k

k!
. (5.38)

For z → 0,
(I − zM)−1 = I + zM + z2M2 +O(z3). (5.39)

Proposition 11. Let Ψ in (5.14) be of class C1([0, T ]). Then ‖fSD − fSP‖L2
h,δt

=

O(δt2).

Proof. We first determine the order of the splitting error dn. By applying twice
to (5.14) the variation of constant formula, we have that the exact solution fSD of
(5.14) can be written as follows

fSD(tn+1) =eδt(A+G)fSD(tn) + e
δt
2

(A+G)

∫ δt
2

0

e( δt
2
−s)(A+G)Ψ(tn + s)ds

+

∫ δt
2

0

e( δt
2
−s)(A+G)Ψ(tn+ 1

2
+ s)ds. (5.40)
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By using of the matrix series (5.38) and exploiting that Ψ ∈ C1([0, T ]), we rewrite
(5.34) and (5.40) as follows

fSP(tn+1) =SfSP(tn) + δt

(
I +

δt

2
(A+ G) +

δt2

8

(
A2 + 2AG + G2

))
(Ψ(tn) +O(δt))

+O(δt4) (5.41)

and

fSD(tn+1) =eδt(A+G)fSD(tn) + δt

(
I +

δt

2
(A+ G) +

δt2

8
(A+ G)2

)
(Ψ(tn) +O(δt))+

+O(δt4). (5.42)

Therefore, by using (5.35) the local splitting error can be rewritten as follows

dn = (eδt(A+G) − S)fSD(tn) +
δt3

8
(GA −AG) Ψ(tn) +O(δt4).

By applying (5.38) to e
δt
2
A and eδtG, we have that

S =I + δt(A+ G) +
δt2

2
(A+ G)2+

+
δt3

6

(
A3 + G3 +

3

4
A2G +

3

2
AGA+

3

2
AG2 +

3

4
GA2 +

3

2
G2A

)
+O(δt4).

(5.43)

Furthermore, we have

eδt(A+G) = I + δt(A+ G) +
δt2

2
(A+ G)2 +

δt3

6
(A+ G)3 +O(δt4),

it is clear that eδt(A+G) −S = O(δt3). Hence, dn = O(δt3) for each n = 0, ...,M − 1.
Next, we consider the L2

h norm of (5.37), hence

‖En‖L2
h
≤

n∑
k=0

ecλ h
2δt(n−k)‖dk‖L2

h
≤ c1 δt

2,

where we used (5.31). Therefore, ‖En‖L2
h

= O(δt2) and

‖fSD − fSP‖L2
h,δt

=

√√√√ M∑
n=0

δt‖En‖2
L2
h
≤ c2 δt

2,

that completes the proof.
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In the remainder of this section, we aim to prove a bound for the third term in
(5.24), where the full numerical solution f̂ = fnj , j = 1, ..., N , n = 0, ...,M , is
given by either the Euler discretization or by the predictor corrector scheme. By the
definition of the operator S in (5.33), we write the solution of (5.20) in a convenient
form as follows

fSP(tn+1) =SfSP(tn) + e
δt
2
A
∫ δt

0

e(δt−s)GΨ(tn + s)ds, (5.44)

where we applied three times the variation of constants formula [50] to (5.20).
Next, we write (5.21) in a compact form. Note that the nonsingularity of the

matrix I − δt
2
A is guaranteed also under the condition δt ≤ 2/L, where L is the

Lipschitz constant of B. Given fn, the computation of fn+1 is carried out as follows

fn+1 =

(
I − δt

2
A
)−1(

(I + δtG)(I − δt

2
A)−1fn + δtΨ(tn)

)
= R1(A,G, δt)fn + δt

(
I − δt

2
A
)−1

Ψ(tn), (5.45)

where

R1(A,G, δt) :=

(
I − δt

2
A
)−1

(I + δtG)

(
I − δt

2
A
)−1

is the amplification factor.
For each time window [tn, tn+1], we define the respective time truncation error

Tn, obtained by inserting the formal splitting solution fSP defined in (5.44) in the
numerical approximation given by (5.45). We have

Tn := fSP(tn+1)−R1(A,G, δt)fSP(tn)− δt
(
I − δt

2
A
)−1

Ψ(tn). (5.46)

Proposition 12. (Consistency of SIMEX1) Let δt ≤ 2/L. The truncation error
(5.46) is of order O(δt2).

Proof. Recall the definitions of the splitting solution and truncation error, in (5.44)
and in (5.46), respectively. Exploiting the fact that Ψ ∈ C1(I) and making use of
(5.38), we have that

Tn = (S −R1(A,G, δt))fSP(tn) + δt2
(
G
2

+O(δt)

)
Ψ(tn) +O(δt3). (5.47)

We consider the Taylor expansion of (I − δt
2
A)−1 as in (5.39), which exists since

δt ≤ 2/L, and note that the amplification factor R1 can be rewritten as follows

R1(A,G, δt) = I + δt(A+ G) +
δt2

2

(
3

2
A2 +AG + GA

)
+O(δt3).

Recalling the expansion of S in (5.43), we can state that S −R1(A,G, δt) = O(δt2).
These observations lead to the conclusion that Tn = O(δt2), hence the proof is

completed.
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We define, for each n = 1, ...,M , the time discretization error en as follows

en := fSP(tn)− fn,

such that by subtracting (5.46) from (5.45), we obtain the following relation

en+1 = R1(A,G, δt)en + Tn. (5.48)

Proposition 13. (Accuracy of SIMEX1) If δt is chosen such that ‖R1(A,G, δt)‖L2
h
≤

1 + cλh2δt, then ‖fSP − f̂‖L2
h,δt

= O(δt).

Proof. First, we notice that the bound for ‖R1‖L2
h
in the hypothesis results from the

definition of R1 and from the fact that (5.30) implies

‖(I − δtA)−1‖L2
h
≤ 1. (5.49)

We consider the L2
h norm of (5.48), obtaining

‖en+1‖L2
h
≤‖R1(A,G, δt)‖L2

h
‖en‖L2

h
+ ‖Tn‖L2

h
≤ (1 + cλh2δt)‖en‖L2

h
+ ‖Tn‖L2

h
,

This recursive relation gives the following

‖en‖L2
h
≤ ecλh

2T

(
‖e0‖L2

h
+

n−1∑
k=0

‖Tk‖L2
h

)
,

that is the stability of the discrete operator R1. Thus, ‖en‖L2
h

= O(δt). By noting
that ‖fSP − f̂‖2

L2
h,δt

=
∑M

n=1 δt‖en‖2
L2
h
, the proof is completed.

Next, we write (5.22) in a compact form. Given fn, the computation of fn+1 is
carried out as follows

fn+1 = R

(
δt

2
A
)
R(δtG)R

(
δt

2
A
)
fn +R

(
δt

2
A
)

Ψ̄n, (5.50)

where
Ψ̄n :=

δt

2
[(I + δtG)Ψ(tn) + Ψ(tn+1)]

and the function R is the amplification factor; given a matrix M and z ∈ R, R is
defined as

R(zM) := I + zM +
z2

2
M2.

For each time window [tn, tn+1] we define the respective time truncation error
Tn, obtained by inserting the formal splitting solution fSP defined in (5.44) in the
numerical approximation given by (5.50)

Tn := fSP(tn+1)−R
(
δt

2
A
)
R(δtG)R

(
δt

2
A
)
fSP(tn)−R

(
δt

2
A
)

Ψ̄n. (5.51)
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Proposition 14. (Consistency of SIMEX2) The truncation error (5.51) is of order
O(δt3).

Proof. Recall the definitions of the splitting solution and of the truncation error, in
(5.44) and in (5.51), respectively. Exploiting the fact that Ψ ∈ C1(I) and making
use of (5.38), we have

Tn = (S −R2(A,G, δt))fSP(tn) + δt3
G3

6
Ψ(tn) +O(δt4), (5.52)

where
R2(A,G, δt) := R

(
δt

2
A
)
R(δtG)R

(
δt

2
A
)
.

By considering the Taylor expansion of e
δt
2
A and eδtG as in (5.38) up to the 4-th

order and (5.43), we note that the solution operator S can be written as follows

S = R2(A,G, δt) +
δt3

6

(
A3

2
+ G3

)
+O(δt4),

and therefore S −R2(A,G, δt) = O(δt3). These observations lead to the conclusion
that Tn = O(δt3), hence the proof is completed.

We define for each n = 1, ...,M the time discretization error en as follows

en := fSP(tn)− fn,

such that by subtracting (5.51) from (5.50), we obtain the following relation

en+1 = R2(A,G, δt)en + Tn. (5.53)

Proposition 15. (Accuracy of SIMEX2) If δt is chosen such that ‖R2(A,G, δt)‖L2
h
≤

ecλh
2δt, then ‖fSP − f̂‖L2

h,δt
= O(δt2).

Proof. First, we notice that the bound for ‖R2‖ in the hypothesis results from the
definition of R2 and from the inequalities (5.30) and (5.31). We apply the L2

h norm
to (5.53), obtaining

‖en+1‖L2
h
≤‖R2(A,G, δt)‖L2

h
‖en‖L2

h
+ ‖Tn‖L2

h
≤ ecλh

2δt‖en‖L2
h

+ ‖Tn‖L2
h
,

This recursive relation gives the following

‖en‖L2
h
≤ ecλh

2T

(
‖e0‖L2

h
+

n−1∑
k=0

‖Tk‖L2
h

)
,

that is the stability of the discrete operator R2. Thus, ‖en‖L2
h

= O(δt2). By noting
that ‖fSP − f̂‖2

L2
h,δt

=
∑M

n=1 δt‖en‖2
L2
h
, the proof is completed.
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5.3 Positivity and conservativeness of the SIMEX

schemes

In this section, we prove that the SIMEX1 and SIMEX2 schemes are conservative
and positive preserving, in the sense that the numerical solution of (5.5) preserves
the properties of the continuous PDF of (5.1). In particular, we apply the midpoint
rule with the aim to show that the following integral is conserved∫

Ω

f(x, tn)dx =
N∑
i=1

∫ x
i+ 1

2

x
i− 1

2

f(x, tn)dx ≈ h
N∑
i=1

fni ,

for each n = 1, ...,M .
First, we focus on the SIMEX1 scheme, where the time discretization is given by

the Euler scheme. Given the numerical solution fn at time tn, we compute fn+1 as
follows

1.
fn+ 1

2 − fn
δt
2

= Afn+ 1
2

2.
fn+ 1

2

∗
− fn+ 1

2

δt
= Gfn+ 1

2 (5.54)

3.
fn+1 − fn+ 1

2

∗

δt
2

= Afn+1.

We have the following result concerning the positivity preserving property of the
SIMEX1 scheme.

Proposition 16. Consider (5.54) and assume that δt ≤ min{ 1
λ
, 2
L
}, with λ rate of

jumps of the compound Poisson process P in (5.1). Define with L the the Lipschitz
constant of the function B that defines F in (5.3). If fnj ≥ 0 for each j = 1, ...N ,
then fn+1

j ≥ 0 for each j = 1, ..., N .

Proof. Let us consider each step of (5.54).

1. Given fnj ≥ 0 for each j = 1, ..., N , then fn+1/2
j ≥ 0 for each j = 1, ..., N . In

fact, the evolution matrix of Step 1. is given by I− δt
2
A and it is a nonsingular

M -matrix provided that it is diagonal dominant. According to the definition
of A given in (5.17), this property is satisfied when

δt

2h
< |αi+ 1

2
− βi+ 1

2
− (αi− 1

2
− βi− 1

2
)|−1

for each i = 1, ..., N , that is true for δt ≤ 2/L. Since for nonsingularM -matrix
it is M−1 ≥ 0, the assertion is proved.
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2. The Step 2 in (5.54) can be recast, for each j = 1, ..., N , as follows

f
(n+ 1

2
)∗

j = λδt(Gfn+ 1
2 )j + (1− λδt)fn+ 1

2
j ,

where fn+ 1
2

j ≥ 0 by hypothesis. Since G has nonnegative components and δt

is such that both λδt and (1−λδt) are nonnegative, then f (n+ 1
2

)∗

j ≥ 0 for each
j = 1, ..., N .

3. In Step 3. in (5.54), given f (n+ 1
2

)∗

j ≥ 0 for each j = 1, ..., N , then fn+1
j ≥ 0,

according to the argument used for analyzing Step 1.

Proposition 17. Consider (5.54). The total probability is conserved, in the sense
that

N∑
j=1

fnj =
N∑
j=1

fn+1
j .

Proof. Let us separately consider each step of (5.54).

1. The definition of A in (5.17) and (5.18) leads to the following

N∑
j=1

Ajk = 0,

which implies

N∑
j=1

(Av)j =
N∑
k=1

(
N∑
j=1

Ajk

)
vk = 0 for each v ∈ RN . (5.55)

By summing over j = 1, ..., N both sides of the first equation in (5.54), we
have that

N∑
j=1

f
n+ 1

2
j =

N∑
j=1

fn+1
j .

2. Let us consider
f

(n+ 1
2

)∗

j − fn+ 1
2

j

δt
= (Gfn+ 1

2 )j.

Summing over j, we have that

N∑
j=1

f
(n+ 1

2
)∗

j =
N∑
j=1

f
n+ 1

2
j + δt

N∑
j=1

(Gfn+ 1
2 )j,
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thus it is sufficient to show that
∑N

j=1(Gfn+ 1
2 )j = 0. This follows from the

construction of the matrix G, in fact

N∑
j=1

(Gfn+ 1
2 )j =

N∑
j=1

λ

[
N∑
k=1

(
Gjkf

n+ 1
2

k

)]
− λ

N∑
j=1

f
n+ 1

2
j =

= λ

[
N∑
k=1

f
n+ 1

2
k

(
N∑
j=1

Gjk

)
−

N∑
j=1

f
n+ 1

2
j

]
= 0,

since
∑N

j=1Gjk = 1 holds independently of k, as defined in (5.19).

3. In the same fashion as in the first step, we use (5.55) and obtain

N∑
j=1

fn+1
j =

N∑
j=1

f
(n+ 1

2
)∗

j .

Next, we focus on the SIMEX2 scheme, where the time discretization is given
by the predictor-corrector scheme and discuss its positivity-preserving. Given the
numerical solution fn at time tn, the three steps required to compute fn+1 are as
follows

1.


f̄n+ 1

2 = fn + δt
2
Afn

fn+ 1
2 = fn + δt

4

[
Afn +Af̄n+ 1

2

]

2.


f̄n+ 1

2

∗
= fn+ 1

2 + δtGfn+ 1
2

fn+ 1
2

∗
= fn+ 1

2 + δt
2

[
Gfn+ 1

2 + Gf̄n+ 1
2

] (5.56)

3.


f̄n+1 = fn+ 1

2

∗
+ δt

2
Afn+ 1

2

∗

fn+1 = fn+ 1
2

∗
+ δt

4

[
Afn+ 1

2

∗
+Af̄n+1

]
.

Proposition 18. Consider (5.56) and suppose that δt ≤ min{ 1
λ
, 2

maxj |Ajj |}, where
λ is the rate of the compound Poisson process P in (5.1), and Ajj are the diagonal
elements of A as defined in (5.17). If fnj ≥ 0 for each j = 1, ..., N , then fn+1

j ≥ 0
for each j = 1, ..., N .

Proof. Let use separately consider each step of (5.56).
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1. This step can be rewritten as

fn+ 1
2 = Āfn,

where

Ā :=I +
δt

2
A+

δt2

8
A2 =

1

8

[
4I + (2I + δtA)2

]
and I is the N -dimensional identity matrix.

Given fnj ≥ 0 for each j = 1, ..., N , then f
n+1/2
j ≥ 0 for each j = 1, ..., N ,

provided that Ā has positive entries. This condition holds if 2I + δtA has
positive entries.

From the definition of A in (5.17), we have that Aii ≤ 0, while Aij ≥ 0 for
i 6= j. Therefore, it is sufficient to choose (2 + δtAjj) ≥ 0 for each j, which is
satisfied since δt ≤ 2

maxj |Ajj | by hypothesis.

2. The intermediate step in (5.56) can be rewritten as follows

f (n+ 1
2

)∗ =
1

2

(
I + (I + δtG)2

)
fn+ 1

2 ,

where I is the N -dimensional identity matrix. The time step δt ≥ 0 is chosen
such that (1 − λδt) ≥ 0 and thus I + δtG = (1 − λδt)I + λδtG has positive
entries. Hence we have that f (n+ 1

2
)∗

j ≥ 0 for each j = 1, ..., N .

3. Given f (n+ 1
2

)∗

j ≥ 0 for each j = 1, ..., N , then fn+1
j ≥ 0 for each j = 1, ..., N ,

by the same reasoning of the first step.

Recall that w in (5.12) is defined as follows

w(x) := h
B(x)

C(x)
,

we have the following estimate for maxj |Ajj|

max
j
|Ajj| ≤

maxx{C(x)}
h2

[max{1, 1− w(x)}+ max{1, 1 + w(x)}] ≤

≤ maxx{C(x)}
h2

(2 + max
x
{|w(x)|}).

Hence, the bound to δt for guaranteeing positivity in the previous theorem becomes

δt ≤ min

{
1

λ
,

2h2

maxx{C(x)}(2 + hmaxx{|B(x)|/C(x)}

}
.
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We observe that for vanishing space step size h, the time step size must vanishes
with order 2. In small diffusion regime, i.e. C(x) ' 0, it scales linearly as δt <
2h/maxx{B(x)}.
We conclude this analysis proving the conservation of the total probability of the

SIMEX2 scheme.

Proposition 19. Consider (5.56). The total probability is conserved, in the sense
that

N∑
j=1

fnj =
N∑
j=1

fn+1
j .

Proof. Let use separately consider each step of (5.56).

1. Let us consider the second equation. Summing over j, we obtain

n∑
j=1

f
n+ 1

2
j =

n∑
j=1

fnj +
δt

4

[
n∑
j=1

(Afn)j +
n∑
j=1

(Af̄n+ 1
2 )j

]
.

We use (5.55) and obtain

N∑
j=1

fnj =
N∑
j=1

f
n+ 1

2
j .

2. Let us consider the second equation. Summing over j and reshaping, we have
that

N∑
j=1

f
(n+ 1

2
)∗

j =
N∑
j=1

f
n+ 1

2
j +

δt

2

[
N∑
j=1

(Gfn+ 1
2 )j +

N∑
j=1

(Gf̄n+ 1
2

∗
)j

]
,

With same arguments as in Proposition 16, we claim that
∑N

j=1(Gfn+ 1
2 )j = 0

and that
∑N

j=1(Gf̄n+ 1
2

∗
)j = 0 and hence

N∑
j=1

f
(n+ 1

2
)∗

j =
N∑
j=1

f
n+ 1

2
j .

3. By the same reasoning for the first step, we use (5.55) and obtain

N∑
j=1

fn+1
j =

N∑
j=1

f
(n+ 1

2
)∗

j .
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5.4 Numerical experiments

In this section, we present results of numerical experiments for the numerical
solution of the FP problem. We first consider the solution of FP problem with source
term as in (5.5) and validate the space and time convergence rates theoretically
proven in Section 5.2. Next, we aim at computing the PDF of the OU process
with jumps, introduced in Section 2.4. To this end, we first numerically apply the
SIMEX2 scheme to (5.5) with no source term (i.e. ψ = 0) and compare the obtained
result with the empirical PDF obtained with the method outlined in Section 2.4.

5.4.1 The accuracy of the SIMEX schemes

In order to test the performance of the SIMEX schemes, we set the solution to
(5.5) as the following moving Gaussian

f(x, t) =
1√
2πσ̃

exp

{
−(x− µt)2

2σ̃2

}
,

with µ = 10 and σ̃ = 3. With this choice, the corresponding source term ψ(x, t) in
(5.5) can be analytically computed by exploiting the closed form of the product of
two Gaussian densities.
We consider a sufficiently large domain Ω := (−15, 30) and I := [0, 1]. We set in

(5.1) b(x) = −x, σ =
√

2, i.e. C(x) = 1. The parameters of the compound Poisson
process are chosen to be λ = 5, g ∼ N (3, 0.22).
In Table 5.1, we report the norm of the SIMEX1 solution error as a function of the

mesh size. We see that the scheme is first-order accurate in time and second-order
accurate in space, as proved in Section 5.2.

N M ‖f − f̂‖h,δt

100 100 5.39 · 10−3

200 400 1.09 · 10−3

400 800 2.90 · 10−4

800 1600 7.37 · 10−5

Table 5.1: L2
h,δt-error of the scheme SIMEX1.

In Table 5.2, we present results for the same test case, obtained with the SIMEX2
method. We have second-order convergence in time and space, as theoretically
proven in Section 5.2.
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N M ‖f − f̂‖h,δt

200 200 1.10 · 10−3

400 400 2.93 · 10−4

800 800 7.45 · 10−5

1600 1600 1.87 · 10−5

Table 5.2: L2
h,δt-error of the scheme SIMEX2.

5.4.2 The range of an Ornstein-Uhlenbeck process with jumps

In this section, we consider the OU process with jumps given by a compound
Poisson process [78], whose empirical PDF has already been computed in Section
2.4. In one dimension, the dynamic of this process evolves according to the following
stochastic differential equation

dXt = −γXtdt+ σdWt + dPt,

X{t=0} = X0,

(5.57)

where γ, σ ∈ R+, W is Brownian motion and P has rate of jumps λ and jump
PDF g. Define with f the probability density function of (5.57) and the convolution
(f ∗ g)(x, t) as follows

(f ∗ g)(x, t) :=

∫
R
f(y, t)g(x− y)dy,

for each t ∈ I. The FP problem related to the Ornstein-Uhlenbeck process (5.57)
on an unbounded domain takes the form
∂tf(x, t) = γ∂x(xf(x, t)) + σ2

2
∂2
xf(x, t) + λ(f ∗ g)(x, t)− λf(x, t) (x, t) ∈ R× I

f(x, 0) = f0(x) x ∈ R.

(5.58)

Our aim is to apply our SIMEX2 scheme (5.56) to numerically solve (5.58) on a
bounded domain (r, s) with zero-flux boundary conditions as in (5.5) with ψ = 0.
We present a methodology to estimate the size of the computational domain (r, s),
such that the dynamics of (5.57) is negligible in R\(r, s) in some sense that will
be investigated below. Using the Fourier transforms of f(x, t) and g(x), given by
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h(ω, t) =
∫∞
−∞ e

iωxf(x, t)dx and W (ω) =
∫∞
−∞ e

iωxg(x)dx, respectively, we have that
h(ω, t) satisfies the following initial-value problem

∂th(ω, t) = −γω∂ωh(ω, t)− P (ω)h(ω, t), (ω, t) ∈ R× I

h(ω, 0) = h0(ω), ω ∈ R,
(5.59)

where P (ω) := σ2

2
ω2 +λ(1−W (ω)) and h0(ω) is the Fourier transform of the initial

data f0(x).
After performing a change of variable for ω > 0, and noting that the following

calculations can be carried out also for the case ω < 0 by defining h̄(ω, t) := h(−ω, t),
we have that

h(ω, t) = h0(e−γtω) exp

{
−1

γ

∫ ω

ωe−γt

P (ω′)

ω′
dω′
}

solves (5.59).
Defining with Mk[g] =

∫∞
−∞ x

kg(x)dx the k-th moment of g, the Taylor expansion
of P on ω = 0 reads as follows

P (ω) =
σ2

2
ω2 − λ

∞∑
k=1

ikMkg

k!
ωk,

since

W (ω) =
∞∑
k=0

W (k)(0)

k!
ωk =

∞∑
k=0

ikMk[g]

k!
ωk.

Hence, the solution of (5.59) can be written as follows

h(ω, t) = h0(e−γtω) exp{z(ω, t)},

where

z(ω, t) := i
λ

γ
(M1[g])ω(1−e−γt)−σ

2 + λM2[g]

4γ
ω2(1−e−2γt)+

λ

γ

∞∑
k=3

ikMk[g]

k(k!)
ωk(1−e−kγt).

This form for h(ω, t) allows us to calculate M1
t [f ] and M2

t [f ], that is, the first-
and second-time dependent moments of f(x, t).
We are interested in these two quantities at a time near to equilibrium, i.e. T >>

1/γ. Therefore we suppose that the support of the PDF is vanishing outside the
interval of size [M1

T [f ] − 5
√
M2

T [f ], M1
T [f ] + 5

√
M2

T [f ]]. We exploit the fact that
h(0, t) = 1 for each t to state the following

lim
t→∞

M1
t f = lim

t→∞
−ih′(0, t) =

λ

γ
(M1[g])

and that

lim
t→∞

M2
t f = − lim

t→∞
h′′(0, t) =

λ2

γ2

(
M1[g]

)2
+
σ2 + λM2[g]

2γ
.
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Notice that the moments of the density g of the jump amplitude play a key role in
the width of the relevant range of the dynamics of the considered process.
Therefore, the choices γ = 1 and σ = 1 in (5.57) allow to set the domain Ω =

(−20, 50). We consider the time interval I := [0, 1] and the initial random variable
in (5.57) X0 ∼ N (15, 3). we choose λ = 5 and g ∼ N (3, 0.22).
Figure 5.1 depicts the PDF of the process X at time T = 1. We compare the

results obtained with the SIMEX2 scheme with N = 400 and M = 400 and the
empirical PDF with the algorithm illustrated in Section 2.4. To this end, we solved
the initial-value problem (5.57) by applying the EM method in the time interval
[0, 1] with M intervals, as outlined in Section 2.4.

Figure 5.1: The PDF of an Ornstein-Uhlenbeck process with jumps.

Comparison between the solution of the SIMEX2 scheme withN = 400 andM = 400

(solid line) and the empirical PDF with 150 histogram midpoints with 106 sample

paths (stars).
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5.5 Summary and remarks

In this chapter, we outlined our numerical methods SIMEX1 and SIMEX2 that
compute the solution of a FP problem related to a JD process. Our discretization
is achieved by applying the method of lines, which consists of performing a spacial
discretization of the differential and integral operators and subsequently integrating
with respect to time the resulting system of ordinary differential equations. The
differential part of the FP equation is discretized through the finite volume scheme
given by the CC method, while the integral is approximated with the mid-point
rule. The time integration step combines an operator splitting method with the
Euler scheme in case of SIMEX1 and with a predictor-corrector scheme in case of
SIMEX2. The discretization procedure was outlined in Section 5.1. We carried out
the complete convergence and stability analysis in Section 5.2 and showed in Section
5.3 that our methods preserve the two properties of a PDF, namely its positivity
and the conservation of the total probability. A section of numerical experiments
that validated the theoretical estimates concluded the chapter.
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Chapter 6

Numerical solution of Fokker-Planck

control problems

In this chapter, we address the numerical solution of the FP control problems
defined and investigated in Chapter 4. Some references on optimization problems
governed by PDEs are, e.g., [12, 14, 71]. As outlined in Chapter 4, the L1-term in our
cost functional makes the problem nonsmooth and therefore appropriate optimiza-
tion algorithm are needed. We implement a proximal iterative scheme, introduced in
[70] and [81] and first developed in the framework of finite-dimensional optimization
[9, 22, 72]. Recent works have adapted the structure of these algorithms for solving
infinite-dimensional PDE optimization problems [85, 86, 89]. In this chapter, we ap-
ply the results of Chapter 5 and of the recent works [44, 86]. We proceed as follows.
Section 6.1 investigates the proposed optimization algorithm. We first introduce
the definition of proximity operator of a convex semi-continuous function, which is
needed for definition of our method. The chosen algorithm combines a fixed-point
iteration with a gradient method.
Section 6.2 is devoted to the convergence of the proximal scheme. In order to

investigate the effectiveness of the algorithm, results of numerical experiments are
presented in Section 6.3.

6.1 The proximal method

In this section, we discuss a proximal optimization scheme for solving (4.8). This
scheme and the related theoretical discussion follow the work in [22, 72, 86]. Prox-
imal methods conveniently exploit the additive structure of the reduced objective;
in our framework, we have that the reduced functional Ĵ is given by the sum of a
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nonconvex smooth function J1 and a convex nonsmooth function J2 as in (4.13).
For our discussion, we need the following definitions and properties.

Definition 11. Let Z be a Hilbert space and l a convex lower semi continuous
function, l : Z → R. The proximity operator proxl : Z → Z of l is defined as follows

proxl(z) := arg min
w∈Z

{
l(w) +

1

2
‖z − w‖2

Z

}
, z ∈ Z.

The following proposition, whose proof can be found in [22], is of fundamental
importance in the remainder of the section.

Proposition 20. Let Z be a Hilbert space and l a convex lower semi continuous
function, l : Z → R, with proximity operator proxl. The following relation holds

p = proxl(z)⇔ z − p ∈ ∂l(p), (6.1)

where ∂l is the subdifferential of l.

Proposition 21. For each lower semicontinuous function l defined on a Hilbert
space Z, the following holds

l(z) ≥ l(w) + 〈s, z − w〉, (6.2)

for each z, w ∈ Z and each s ∈ ∂l(w).

Proposition 22. The solution ū of (4.8), i.e. minu∈Uad Ĵ (u), satisfies

ū = proxαJ2(ū− α∇J1(ū)). (6.3)

for each α > 0.

Proof. From Proposition 5 in Chapter 4 and by using (6.1), we have

ū solves (4.8)⇒ −∇J1(ū) ∈ ∂J2(ū)

⇔ (ū− α∇J1(ū))− ū ∈ α∂J2(ū)

⇔ ū = proxαJ2(ū− α∇J1(ū)).

The relation (6.3) suggests that a solution procedure based on a fixed point iter-
ation should be pursued. We discuss how such algorithm can be implemented.
In the following, we assume that J1(u) in (4.13) has a locally Lipschitz-continuous

gradient ∇J1 as follows

‖∇J1(u)−∇J1(v)‖ ≤ L‖u− v‖, (6.4)
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for each v ∈ V , V ⊂ Uad neighborhood of u, with L a Lipschitz continuity constant.
The condition (6.4) implies the following inequality

J1(u) ≤ J1(v) + 〈∇J1(v), u− v〉+
L

2
‖u− v‖2, (6.5)

for each v ∈ V . This can easily be seen by expanding J1 as follows

J1(u) = J1(v) + 〈∇J1(v), u− v〉+

∫ 1

0

〈∇J1(v + t(u− v))−∇J1(v), u− v〉dt,

and the by applying the Cauchy-Schwarz inequality to the scalar product in the last
addend. Therefore, we have

min
u∈Uad

{J1(u) + J2(u)} ≤

min
u∈Uad

{
J1(v) + J2(u) + 〈∇J1(v), u− v〉+

L

2
‖u− v‖2

}
. (6.6)

Inequality (6.6) is the starting point for the formulation of a proximal scheme, whose
strategy consists of minimizing the right-hand side in (6.6). The following equality
holds

arg min
u∈Uad

{
J1(v) + J2(u) + 〈∇J1(v), u− v〉+

L

2
‖u− v‖2

}
=

arg min
u∈Uad

{
J2(u) +

L

2

∥∥∥∥u− (v − 1

L
∇J1(v)

)∥∥∥∥2
}

(6.7)

and it can be easily proven by exploiting the definition of scalar product. Recall the
definition of J2 in (4.13). The following lemma, whose proof can be found in [85],
gives an explicit expression for the right-hand side in (6.7).

Lemma 1. Let Uad be as in (4.2). Then

arg min
u∈Uad

{
τ‖u‖1 +

1

2
‖u− w‖2

}
= SUadτ (w) for each w ∈ U , for each τ > 0,

where the projected soft thresholding function SUadτ is defined as follows

SUadτ (w) :=



min{w − τ, ub} on {t ∈ I : w(t) > τ}

0 on {t ∈ I : |w(t)| ≤ τ}

max{w + τ, ua} on {t ∈ I : w(t) < −τ}.
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Based on this lemma, we conclude the following

arg min
u∈Uad

{
J2(u) +

L

2

∥∥∥∥u− (v − 1

L
∇J1(v)

)∥∥∥∥2
}

= SUadγ
L

(
v − 1

L
∇J1(v)

)
,

which can be taken as starting point for a fixed-point algorithm as follows

uk+1 = SUadγαk
(uk − αk∇J1(uk)) , (6.8)

where αk depends on Lk, the local Lipschitz continuity constant defined in (6.4), as
we discuss below. Such method has been investigated in [22, 85, 81]. In this work,
we apply an extension of (6.8), which takes for each iteration k the following form

uk+1 = SUadγαk
(uk − αk∇J1(uk) + θk(uk − uk−1)) , (6.9)

with θk ∈ (0, 1). This method has been proposed in [72] and investigated in [86].
Our inertial proximal method is summarized in the Algorithm 1.
The nonincreasing condition on {δk}k∈N is equivalently reformulated as follows

αk ≥
1− θk

2

δk−1 + Lk
2

.

The backtracking scheme in Algorithm 1 provides an estimation of the upper
bound of the Lipschitz constant in (6.4), since it is not known a priori. The initial
guess for L is chosen as follows. Given a small variation ε of u, we have

L = max

{
‖∇J1(u)−∇J1(u+ ε)‖2

‖ε‖2

,
‖∇J1(u)−∇J1(u− ε)‖2

‖ε‖2

}
.

The computation of the gradient requires the discretization of the optimality sys-
tems given in (4.23) and (4.24). The space and time grids are defined in (5.6).
The discretization of the forward equation solved by f has been carried out in

Chapter 5. Next, we outline how the discretization of the system satisfied by the
adjoint variable p in (4.23) and (4.24) is carried out. If we follow the optimize-before-
discretize (OBD) approach, the optimality system has already been computed on a
continuous level in the systems in (4.23) and (4.24). As a consequence, the OBD
approach allows one to discretize the forward and adjoint FP problems according
to different numerical schemes. However, the OBD procedure might introduce an
inconsistency between the discretized objective and the reduced gradient. For this
reason, the DBO (discretize-before-optimize) approach could be preferred and we
pursue it in this work. In our framework, for each grid point xj, j = 1, ..., N , the
DBO approach results in the following approximations

∂xp(xj, t) ≈ (1− δj−1/2)
pi−1(t)− pi(t)

h
+ δj+1/2

pi(t)− pi+1(t)

h
,

∂2
xxp(xj, t) ≈

pj+1(t)− 2pj(t) + pj−1(t)

h2
,
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Algorithm 1 (Inertial proximal method).

Input: initial guess u0, k = 0, kmax, θk ∈ (0, 1), tolerance tol, c1, c2 > 0, η > 1.

1. While k ≤ kmax, do:

(a) Evaluate ∇J1(uk) according to Algorithm 2.

(b) Update Lk = ηLk until

J1(ũ) ≤ J1(uk) + 〈∇uJ1(uk), ũ− uk〉+
Lk
2
‖ũ− uk‖2

where

ũ = SUadγαk
(uk − αk∇J1(uk) + θk(uk − uk−1))

θk ≥ 0 for each k

δk :=
1

αk
− Lk

2
− θk

2αk
is monotonically decreasing.

δk ≥ c2 for each k

(6.10)

(c) Set uk+1 = ũ.

(d) Compute E according to (4.23) or (4.24).

(e) If E < tol, break.

(f) k = k + 1.

together with the midpoint formula applied to Ĩ. We have the following semi-
discretized system

−p′(t) = (AT + GT )p(t), p(t) ∈ RN . (6.11)

The time integration of (6.11) is carried out with the combination of the SM splitting
with a predictor corrector scheme, as in Chapter 5. We remark that the advantages
of the DBO approach are manifold. With this choice, the boundary conditions of
the backward equation in (4.23) and (4.24) are automatically implemented.

95



Algorithm 2 (Evaluation of the gradient).

Input: uk, initial value f0, terminal value pT at time T .

1. Compute fk, given f0 and uk.

2. Compute pk.

3. Evaluate ∇J1(uk) according to (4.22).

6.2 Convergence analysis

In this section, we discuss the convergence of the proximal algorithm and report
here some results presented in [44, 72, 86].

Definition 12. The proximal residual r is defined as follows

r(u) := u− SUadγ (u−∇J1(u)) . (6.12)

Proposition 22 tells us that r(u) = 0 in L2(I) whenever u solves (4.8). In what
follows, we establish a connection between the condition r(u) = 0 and the sequence
{uk}k∈N generated by Algorithm 1. Define the following sequence

∆k := ||uk − uk−1||2 (6.13)

for k ∈ N.

Proposition 23. The sequence {∆k}k∈N satisfies the following

lim
k→∞

∆k = 0.

Proof. For δ ∈ R+, we define the following quantity

Hδ(u, v) := Ĵ (u) + δ||u− v||22 (6.14)

for each u, v ∈ Uad. The following inequality holds

Hδk+1
(uk+1, uk) ≤ Hδk(uk, uk−1)− ζk∆2

k, (6.15)

where
ζk :=

1

αk
− Lk

2
− θk
αk
.

Note that αk and θk in Algorithm 1 can be chosen such that ζk ≥ c2 for each k. In
fact, from the definition of uk in algorithm 1, it holds that

uk − uk+1

αk
−∇J1(uk) +

θk
αk

(uk − uk−1) ∈ ∂(βJ2)(uk+1).
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From (6.2) and (6.5) it follows that

Ĵ (uk+1) ≤ Ĵ (uk)−
(

1

αk
− Lk

2

)
∆2
k+1 +

θk
αk
〈uk+1 − uk, uk − uk−1〉

≤ Ĵ (uk)−
(

1

αk
− Lk

2
− θk

2αk

)
∆2
k+1 +

θk
2αk

∆2
k.

Therefore, we have

Ĵ (uk+1) + δk∆
2
k+1 ≤ Ĵ (uk) + δk∆

2
k − ζk∆2

k,

which implies (6.15) since δk is monotonically decreasing. Moreover, the condition
ζk ≥ c2 ≥ 0 implies that {Hδk(uk, uk−1)}k∈N is monotonically decreasing, and thus
converging, since Ĵ (u) ≥ 0 for each u ∈ U .
Summing (6.15) from k = 0, ..., k̄ yields

k̄∑
k=0

ζk∆
2
k ≤

k̄∑
k=0

(Hδk(uk, uk−1)−Hδk+1
(uk+1, uk)) = Ĵ (u0)−Hδk̄+1

(uk̄+1, uk̄)

≤ Ĵ (u0) <∞.

The claim follows by letting k̄ →∞ and remembering that ζk ≥ c2 > 0 for each k.

Next, we can state the desired convergence results. The complete discussion can
be found in [86].

Proposition 24. The following holds.

• The sequence {Ĵ (uk)}k∈N converges.

• There exists a weakly convergent subsequence {ukj}j∈N.

• If, in addition, J1 is strictly convex in Uad, then any weak limit u∗ of {ukj}j∈N
is a critical point of (4.8) and Ĵ (u∗) ≤ lim infj Ĵ (ukj).

Proposition 25. Let {uk}k∈N be the sequence generated by Algorithm 1, then the
following holds

min
0≤k≤K

‖r(uk)‖2 ≤ (c1c2)−1 2Ĵ (u0)

K + 2
,

where r is defined in (6.12).
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6.3 Numerical experiments

In this section, we present results of numerical experiments to validate the per-
formance of our optimal control framework. The purpose is to determine a sparse
control u = u(t) such that the expected value of a jump-diffusion process minimizes
the quantity defined by (4.5) and (4.6).
We implement the discretization scheme and the algorithm described in Section

6.1. We take Ω = (−20, 20) and [0, T ] = [0, 1], and assume that the initial PDF f0

is given, f0 ∼ N (0, 10). The compound Poisson process corresponds to the choice
λ = 5 and g ∼ N (0, 1). We take b(x, u) := u(t) − x/10 and C = 0.5. In case
of (4.5), we consider ξ = [−0.5, 2, 0, 1,−1, 0,−0.5, 2]. In the case of (4.6), we take
ξ(t) = 2 sin(10t). We choose N = 200 and M = 200. We choose c1 = c2 = 10−3 in
Algorithm 1.
In the first series of experiments, we consider the setting with ν = 10−8 and γ = 0

in (4.13). Further, we consider constraints on the control. Corresponding to this
choice and to the discrete-in-time tracking functional (4.5), we report in the Figures
6.1 and 6.2 the solution for the state and the adjoint variables, respectively. On the
other hand, using the continuous-in-time tracking functional (4.6), we obtain the
state and the adjoint variables depicted in the Figures 6.4 and 6.5, respectively.
Also for the case γ = 0 and both tracking functionals, we report in the Tables

6.1 and 6.2 the values of the tracking error for different values of the weight ν. As
expected, the tracking improves as the value of this optimization parameter becomes
smaller. In the Figures 6.1 and 6.4, we can see that the optimal control u drives
the expected mean value of the PDF towards the mean values given by ξk and ξ(t),
respectively; moreover, Figures 6.3 and 6.6 depict the given values of ξ and the
expected value of the PDF with respect to time.
Next, we investigate the behavior of the optimal solution considering the full op-

timization setting, that is, the case when the L1-cost actively enters in the op-
timization process, i.e. γ > 0, and the control is constrained by the bounds
ua = −10, ub = 10 defining the set of admissible controls. For simplicity, we discuss
only the case with ν = 10−8.
In the Figures 6.7, 6.8, 6.9, we depict the optimal controls for three different

choices of values of γ and considering the discrete-in-time tracking functional given
by (4.5). In the Figures 6.10, 6.11 and 6.12, we show the optimal controls for
three different choices of values of γ and considering the continuous-in-time tracking
functional given by (4.6). In both cases, we can clearly see that when the value of
the parameter γ is increased, the sparsity of the solution is significantly enhanced,
as expected.
Figures 6.13 and 6.14 depicts 10 sample paths of the JD process with respect

to time. We choose γ = 0.1. The MC simulations are computed with the opti-
mal control ū in case of (4.5) and (4.6), together with the given {ξk}k̄k=1 and ξ(t),
respectively.
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In the Tables 6.1 and 6.2, we also report values of the tracking error when both
the L2- and L1-costs are considered. For a direct comparison with the first series
of experiments, we consider an unconstrained control. We find that already with
a small value of γ, the tracking ability of the optimization scheme worsen for both
choices the tracking functional.

6.4 Summary and remarks

In this chapter we addressed the numerical resolution of the optimization prob-
lems defined and investigated on a continuous level in Chapter 4. We focused on
the optimize-before-discretized approach, showing its advantages in the considered
problem. In Section 6.1 we introduced some theoretical results needed for the defi-
nition of our proximal optimization scheme. A convergence result was included. In
the last section 6.3 we tested the proposed method. In the first series of experiments,
we considered a smooth functional (i.e. no L1-term was added). As expected, the
tracking error improved as the value of the L2-weight parameter became smaller. In
the second series of experiments, we considered the case when the L1-cost actively
enters in the optimization process. By numerical inspection we clearly saw that the
sparsity of the solution was enhanced.
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Figure 6.1: State variable in the case of the discrete-in-time tracking functional

defined in (4.5), with γ = 0.

Figure 6.2: Adjoint variable in case of the discrete-in-time tracking functional defined

in (4.5), with γ = 0.
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Figure 6.3: Expected value of the state equation (solid line) and given values for

ξ (stars) with respect to time t ∈ [0, T ] of the discrete-in-time tracking functional

defined in (4.5), with γ = 0.

Figure 6.4: State variable in the case of the continuous-in-time tracking functional

defined in (4.6), with γ = 0.
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Figure 6.5: Adjoint variable in case of the continuous-in-time tracking functional

defined in (4.6), with γ = 0.

Figure 6.6: Expected value of the state equation (solid line) and given values for ξ

(stars) with respect to time t ∈ [0, T ] of the continuous-in-time tracking functional

defined in (4.6), with γ = 0.
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Figure 6.7: Optimal control with γ = 0.1 and tracking objective given by (4.5).

Figure 6.8: Optimal control with γ = 0.2 and tracking objective given by (4.5).

Figure 6.9: Optimal control with γ = 0.4 and tracking objective given by (4.5).
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Figure 6.10: Optimal control with γ = 0.1 and tracking objective given by (4.6).

Figure 6.11: Optimal control with γ = 0.2 and tracking objective given by (4.6).

Figure 6.12: Optimal control with γ = 0.4 and tracking objective given by (4.6).
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Figure 6.13: Monte Carlo paths (line) of the JD process (3.1) with the optimal

control ū in case of cost functional given by (4.5) and given ξ1, ...ξK (black points).

Figure 6.14: Monte Carlo paths (line) of the JD process (3.1) with the optimal

control ū in case of cost functional given by (4.6) and given ξ(t) (black stars).

105



Table 6.1: Tracking error of the discrete-in-time functional D(f) given by (4.5).

D(f) ν γ

8.13 · 10−7 10−10 0

1.17 · 10−4 10−6 0

1.50 · 10−4 10−4 0

2.47 · 10−6 10−10 10−4

8.51 · 10−5 10−6 10−4

1.68 · 10−4 10−4 10−4

Table 6.2: Tracking error of the continuous-in-time functional D(f) given by (4.6).

D(f) ν γ

7.00 · 10−4 10−10 0

7.00 · 10−4 10−6 0

8.52 · 10−4 10−4 0

1.30 · 10−3 10−10 10−4

1.31 · 10−3 10−6 10−4

1.48 · 10−3 10−4 10−4
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Chapter 7

Conclusion

In this thesis, infinite-dimensional optimal control problems with constraints given
by PIDE FP problems related to JD processes were investigated.
At the beginning of this thesis, we introduced the class of jump processes given

by Lévy processes and we investigated stochastic initial value problems governed by
such processes. Existing theorems on existence and uniqueness of solutions, as well
as numerical methods for SDEs, were presented. We focused on the EM method,
which allowed us to compute a MC empirical PDF of a JD process. However, since
the rate of convergence of MC methods is quite slow, we computed the PDF of a
JD process by analytically deriving the FP equation. This equation takes the form
of a PIDE and it governs the time evolution of the PDF of a stochastic process. In
this thesis, we derived the FP equation in two cases, where a process has range in
the whole space Rd and where its dynamics is limited to a bounded domain with
reflecting barriers, respectively.
The FP equation, endowed with initial and boundary conditions, gives rise to FP

problems. The solvability of these problems was discussed in suitable functional
spaces. Moreover, we provided a priori estimates for their solutions.
Since closed-form solutions of FP problems are often not available, one has to

resort to numerical methods. We addressed this issue by constructing two schemes,
namely SIMEX1 and SIMEX2. Our schemes combined the CC method for spatial
discretization with the SM splitting and first- and second- order time discretization
methods. We chose the Euler method and a predictor-corrector scheme. A full
numerical and stability analysis was carried out. Moreover, it was shown that the
SIMEX schemes are also conservative, in the sense that the numerical solution to
the FP problem satisfies the properties of the PDF of a JD process, namely the
positivity and the mass conservation.
Our stable and convergent numerical SIMEX methods allowed us to numerically

address optimal control problems with a differential constraint given by the FP
problem. First, we defined and investigated the infinite-dimensional optimal control

107



problems of interest. We considered tracking objectives with the aim of steering
the mean value of JD processes towards a known sequence of values. Two different
cost functionals were investigated, continuous-in-time and discrete-in-time, respec-
tively. In our formulation, the control variable entered the state equation in the
drift coefficient of the FP PIDE, making the optimization problem nonconvex. An
L1-penalization term was added to the cost functionals, with the aim of enhancing
the sparsity of the optimal solution; this term made the problem nonsmooth. We
were able to prove the existence of at least an optimal solution. By exploiting the
additive structure of the cost functionals and considering on the subgradient of the
nonsmooth term, we derived the first order-optimality system in the Lagrangian
framework. We numerically addressed the nonconvex and nonsmooth FP problem
by applying a proximal method.
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Appendix A

matlab code

This work is completed with a CD-ROM containing the MATLAB codes used
throughout the present doctoral thesis.
Listing A.1 contains the code for numerically solving the JD process (2.34) with

the EM method defined in (2.35) and computing the empirical PDF of (2.34). The
SDE, the space and time range and the time grid are given. The output consists
of a sample path of (2.34), whose values are specified in the time grid points. This
allows to compute the empirical PDF of (2.34), as outlined in Section 2.4.

Listing A.1: Numerical solution of a SDE with the EM method and computation of

the empirical PDF

1 c l o s e a l l , c l e a r vars , c l c , format long , c l f

2

3 LB = −50; % lower bound o f the space domain

4 UB = 50 ; % upper bound o f the space domain

5 T = 1 ; % f i n a l time

6 NT = 500 ; % # i n t e r v a l s in the time gr id

7 lambda = 5 ; % jump ra t e

8 mu_jumps = 0 ; % jump mean

9 sigma_jumps = 3 ; % jump var iance

10 dt = T / NT; % mesh s i z e

11 time_array = 0 : dt :T−dt ;

12 n_MCruns = 1e5 ; % # Monte Carlo runs
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13

14 %% Monte Carlo runs

15 waitbar_MC = waitbar (0 , ’Monte Carlo runs ’ ) ;

16 f o r k = 1 :n_MCruns % f o r each run , W and P are s imulated

17 timeArray = dt : dt : T;

18 Xiniz = 0 ; Xtemp = Xiniz ; Xvalues = ze ro s (1 ,NT) ;

19 waitbar ( k / n_MCruns)

20 % 1 s imu la t ing the Brownian and Poisson increments

21 dW = sqr t ( dt ) ∗ randn (1 , NT) ;

22 nJumps = po i s s rnd ( lambda ∗(T) ) ; % number o f jumps in the i n t e r v a l

[ 0 , T]

23

24

25 nJumps = po i s s rnd ( lambda ∗(T) ) % number o f jumps in the i n t e r v a l [ 0 ,

T]

26 i f nJumps>0

27 jumpTimes = so r t ( un i f rnd (0 , T, 1 , nJumps) ) % sor t ed array

conta in ing the jump times

28 jumpAmplitudes = normrnd (mu_jumps , sigma_jumps , 1 , nJumps)

29 f o r cont_jumps = 1 : nJumps

30 B( cont_jumps , : ) = jumpAmplitudes ( cont_jumps ) ∗ s tep fun (

timeArray , jumpTimes ( cont_jumps ) ) ;

31 end

32 B = cumsum(B, 1 ) ;

33 PoisProc = B(nJumps , : ) ;

34 e l s e

35 PoisProc = ze ro s (1 ,NT) ;

36 end

37 % 2 Euler−Maruyama method

38 Pinc = PoisProc (1 ) ;

39 f o r j = 1 :NT

40 i f j >1
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41 Pinc = PoisProc ( j ) − PoisProc ( j−1) ; break ;

42 end

43 Xtemp = Xtemp + b_dri f t (Xtemp) ∗ dt + sigma_di f f (Xtemp) ∗ dW( j )

+ Pinc ;

44 % Re f l e c t i n g boundary cond i t i on

45 whi le (Xtemp < LB | | Xtemp > UB)

46 Xtemp = (2∗UB − Xtemp) ∗ (Xtemp > UB) + . . .

47 (2∗LB − Xtemp) ∗ (Xtemp < LB) ;

48 end

49 Xvalues ( j ) = Xtemp ;

50 end

51

52 timeArray = [ 0 , timeArray ] ;

53 Xvalues = [ Xiniz , Xvalues ] ;

54

55 f i g u r e (1 )

56 p lo t ( timeArray , Xvalues , ’ LineWidth ’ , 1 . 6 )

57 %ax i s ( [ 0 T −10 10 ] )

58 hold on

59

60 end

61 c l o s e (waitbar_MC)

62

63 %% Empir ica l PDF

64 de l ta_h i s t = (UB−LB) /nHist ; % = width o f the " histograms " o f the x−ax i s

65 % The x−va lue s o f the Monte Carlo pdf are cente red in the nHist

i n t e r v a l s

66 % between LB and UB:

67 x_mc_pdf = LB + de l ta_h i s t /2 : de l ta_h i s t : UB − de l ta_h i s t /2 ; % length

( x_pdf ) = nHist

68 % Cycle over the number o f i n t e r v a l s

69 % ( the number o f va lue s o f x f a l l i n g in the cur rent i n t e r v a l i s s to r ed
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in

70 % y_pdf , which conta in s the he ight o f the " histograms ")

71 y_mc_pdf = ze ro s (1 , nHist ) ; % length ( y_pdf ) = length ( x_pdf )

72 Xvalues = so r t ( Xvalues ) ;

73 x_cont = 1 ;

74 waitbar_hist = waitbar (0 , ’ Cycle over the number o f h istograms ’ ) ;

75 f o r y_cont = 1 : nHist % y_pdf has to be f i l l e d

76 waitbar ( y_cont / nHist )

77 whi le x_cont<=n_MCruns && ( Xvalues ( x_cont ) <= (x_mc_pdf( y_cont ) +

de l ta_h i s t /2) )

78 y_mc_pdf( y_cont ) = y_mc_pdf( y_cont ) + 1 ;

79 x_cont = x_cont+1;

80 end

81 end

82 c l o s e ( waitbar_hist )

83 % Normal izat ion ( the i n t e g r a l o f the MC PDF over the domain has to be

1) :

84 y_mc_pdf = y_mc_pdf . / ( sum(y_mc_pdf) . ∗ de l ta_h i s t ) ;

85 % Now, x_pdf and y_pdf contain , r e s p e c t i v e l y , the midpoints and the

he i gh t s

86 % of the " histograms " needed f o r the Monte Carlo PDF

87

88 %% Truncated normal

89 f unc t i on [ y ] = trunc_norm (mu, sigma , a , b )

90 pb = normcdf ( (b − mu) / sigma ) ;

91 pa = normcdf ( ( a − mu) / sigma ) ;

92 d i f f_va l = pb − pa ;

93 y = mu + sigma ∗ norminv ( d i f f_va l ∗ rand + pa ) ;

94 end

95

96 %% Dr i f t c o e f f i c i e n t

97 f unc t i on y = b_dr i f t ( x )
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98 y = − 4 .∗ x ;

99 end

100

101 %% Di f f u s i on c o e f f i c i e n t

102 f unc t i on y = sigma_di f f ( x )

103 y = 1 + x . ∗ 0 ;

104 end

113



Listing A.2 contains the code for numerically solving the FP problem (5.5) related
to (5.1), according to the SIMEX2 scheme outlined in (5.22).

Listing A.2: Numerical solution of the FP equation with the SIMEX2 scheme

1 %% I n i t i a l data

2 LB = −20; % lower bound o f the space domain

3 UB = 50 ; % upper bound o f the space domain

4 NX = 20 ; % #i n t e r v a l s in the space g r id

5 T = 1 ; % f i n a l time

6 NT = 400 ; % #of i n t e r v a l s in the time gr id

7 % Rate and parameter d i s t r i b u t i o n o f the jumps

8 lambda = 5 ;

9 mu_jumps = 3 ;

10 sigma_jumps = 10 ;

11 % Parameters o f the Cauchy data

12 mu_f0 = 15 ;

13 sigma_f0 = 3 ;

14 % Spa t i a l mesh

15 dx = (UB−LB) / NX;

16 x = LB : dx : UB; % NX + 1

17 % Temporal mesh

18 dt = T / NT;

19 % Numerical s o l u t i o n

20 f_num = ze ro s (NX + 1 , NT + 1) ;

21 % I n i t i a l c ond i t i on

22 f_num( : , 1 ) = f0 (x , mu_f0 , sigma_f0 ) ;

23

24 %% Numerical s o l u t i o n o f the PDF

25 M_ode = matrix_cc (dx , x ) ;

26 % G = matrix needed f o r the i n t e g r a l in FP equat ion

27 G = zero s (NX+1,NX+1) ;

28 f o r j =1:NX+1
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29 f o r k=1:NX+1

30 G( j , k ) = normpdf (x ( j )−x (k ) , mu_jumps , sigma_jumps ) + . . .

31 normpdf (2∗LB −x ( j )−x (k ) , mu_jumps , sigma_jumps ) + . . .

32 normpdf (2∗UB −x ( j )−x (k ) , mu_jumps , sigma_jumps ) ;

33 end

34 end

35 f o r cont_col = 1 : NX+1

36 G( : , cont_col ) = G( : , cont_col ) . / (sum(G( : , cont_col ) ) ) ;

37 end

38 G = lambda ∗ ( G − eye (NX+1) ) ;

39 % Cycle over the time s t ep s

40 f o r n = 1 : NT

41 waitbar (n / NT)

42 % 1 s t s tep : dt = dt_scheme/2

43 f_mid = solve_ode_pc ( dt ∗0 . 5 , f_num ( : , n ) , M_ode) ;

44 % 2nd step : i n t e g r a l part ( t r ap e z o i d a l r u l e )

45 f_star = solve_ode_pc ( dt , f_mid , G) ;

46 % 3rd step : Chang Cooper with dt = dt_scheme/2

47 f_new = solve_ode_pc ( dt ∗0 . 5 , f_star , M_ode) ;

48 % The numerica l s o l u t i o n at time (n+1) i s s to r ed

49 f_num ( : , n+1) = f_new ’ ;

50 end

51

52 %% Function B(x , t )

53 f unc t i on y = B(x )

54 y = 1+1.∗x ;

55 end

56

57 %% Function C(x , t )

58 f unc t i on y = C(x )

59 y = 3 + x . ∗ 0 ;

60 end
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61

62 %% Function f0 (x ) ( i n i t i a l c ond i t i on )

63 f unc t i on y = f0 (x ,mu_f , sigma_f )

64 y = normpdf (x ,mu_f , sigma_f ) ;

65 end

66

67 %% Chang−Cooper matrix

68 % Calcu la te the matrix o f the Chang−Cooper d i s c r e t i z a t i o n o f the

69 % d i f f e r e n t i a l operator

70 f unc t i on [M] = matrix_cc (dx , x )

71 w = dx . ∗ B(x ) . / C(x ) ;

72 delta_cc = w .∗ 0 ; % i n i t i a l i z a t i o n de l t a chang chooper

73 exp_w = 0 .∗ w; % i n i t i a l i z a t i o n exponent i a l o f w

74 id_w_big = ( w > 700 ) ; % indexes where w i s very big , and i t s exp

would explode

75 exp_w( id_w_big ) = exp (700) ; % where w i s too big , we s e t w=exp (700)

76 id_w_small = ~ ( id_w_big ) ; % w i s "ok" where i t ’ s not too big

77 exp_w( id_w_small ) = exp (w( id_w_small ) ) ; % where w i s "ok " , i t s exp can

be computed

78

79 id_w_0 = ( abs (w) < 1e−10) ; % indexes where w i s c l o s e to zero

80 id_w_non_null = ~ ( id_w_0 ) ; % where w i s not too c l o s e to zero

81 delta_cc (id_w_0) = 0 . 5 ; % where w i s nu l l , d e l t a = 1/2

82 delta_cc ( id_w_non_null ) = 1 . / w( id_w_non_null ) − 1 . / (exp_w(

id_w_non_null ) − 1) ;

83 % where w i s f a r from zero , d e l t a can be computed

84 % Mian diag

85 bound_cond_left = − C( x (1 )+dx/2 ) / (dx^2) + . . .

86 B( x (1)+dx/2 ) ∗ delta_cc (1 ) / dx ; % paper

87 bound_cond_right = (−1/dx ) ∗ B( x ( end )−dx/2 ) / (1−1/exp_w( end−1) ) ;

88 Bt i lda = − ( ( C( x ( 2 : end−1)+dx/2 ) + C( x ( 2 : end−1)−dx/2) ) /dx + . . .

89 delta_cc ( 2 : end−1) . ∗ B(x ( 2 : end−1)+dx/2) . . .
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90 − ( 1 − delta_cc ( 1 : end−2) ) . ∗ B(x ( 2 : end−1)−dx/2) . . .

91 ) / dx ;

92 Bt i lda = [ bound_cond_left , Bt i lda , bound_cond_right ] ;

93 Ati lda = ( C( x ( 1 : end−1) + dx/2 ) / dx + . . .

94 B( x ( 1 : end−1) + dx/2 ) . ∗ ( 1− delta_cc ( 1 : end−1) ) ) /dx ;

95 Ct i lda = ( B( x ( 2 : end ) − dx/2 ) . ∗ delta_cc ( 2 : end ) − . . .

96 C( x ( 2 : end ) − dx/2 ) / dx ) / dx ;

97 M = diag ( Bt i lda ) + diag ( Ati lda , +1) + diag ( Cti lda ,−1) ;

98 end

99

100 %% ODE

101 % Pred i c to r c o r r e c t o r scheme to s o l v e the ODE conta in ing the

approximation

102 f unc t i on [ f_succ ] = solve_ode_pc ( de l ta t , f_prec , M_ode)

103 f_succ = ( eye ( l ength ( f_prec ) ) + de l t a t ∗ M_ode + ( d e l t a t )^2 ∗ (

M_ode^2) ) ∗ f_prec ;

104 end
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Listing A.3 shows the proximal algorithm for solving (4.8), which provides the
optimal control ū. The inputs are the FP parameters of (5.5), the time and space
parameters, the initial guess u0, and the tolerance tol.

Listing A.3: Proximal algorithm

1 f unc t i on [ u ] = . . .

2 calc_min_proximal ( jmax , dx , x , NX, NT, dt , t , f_in iz , G, u , Nxi , xi ,

time_index_jumps , to l , T)

3 g l oba l low

4 g l oba l up

5 g l oba l beta_L1

6 g l oba l nu

7 p_f ina l = 0 . ∗ x ; % termina l va lue o f the ad j o i n t equat ion

8 uold = u ;

9 j = 1 ;

10 J_current = ze ro s (1 , jmax ) ; % s to rage o f the va lue s o f the reduced

f un c t i o n a l

11 norm_grad_J = ze ro s (1 , jmax ) ; % s to rage o f the va lue s o f the norm o f the

reduced grad i ent

12 %%Parameters o f the opt imiza t i on a lgor i thm

13 eta = 1 . 5 ; % mu l t i p l i c a t i o n f a c t o r f o r the constant L

14 par2 = 0 . 2 ; % i n e r t i a l f a c t o r

15 c2 = 1e−3;

16 L = calc_L (dx , x , NX, NT, dt , t , f_in iz , G, u , xi , Nxi ,

time_index_jumps , T) ;

17 whi le j <= jmax

18 di sp ( [ ’ Current i t e r a t i o n : ’ , num2str ( j ) ] )

19 % Compute the g rad i ent in u_j (NB: f and p depend on u ! )

20 % 2.1 : Compute the s t a t e f_j ( Fokker−Planck equat ion )

21 f_current = solve_FP (dx , x , NX, NT, dt , t , f_in iz , G, u) ;

22 % 2.2 : Compute the ad j o i n t p_j ( ad j o i n t equat ion )

23 jumps_p = calc_jumps_p (Nxi , x , f_current , time_index_jumps , dx , x i )

;
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24 [ p_current ] = so lve_adjo in t ( t , dx , x , NX, NT, dt , p_final , G, u ,

jumps_p , time_index_jumps , Nxi ) ;

25 % 2.3 : Compute the reduced grad i ent

26 grad_J_current = calc_grad_J (x , t , dx , dt , f_current , p_current , u ,

nu , time_index_jumps , Nxi , jumps_p) ;

27 norm_grad_J( j ) = sq r t ( dt ∗ sum( grad_J_current .^2) ) ; % needed

only f o r the p l o t

28 J_current ( j ) = calc_J (x , f_current , xi , dx , u , nu ,

time_index_jumps , Nxi , dt ) ; % needed f o r the update o f u

29 di sp ( ’ Value o f the f un c t i o n a l ’ )

30 di sp ( J_current ( j ) )

31 % Compute o f the f i r s t u_ti lde ( out o f the cy c l e f o r computing L)

32 % 1 ( out o f 2) : Compute u_ti lde

33 u_ti lde = u − 1/L ∗ grad_J_current + par2 ∗ (u − uold ) ;

34 u_ti lde = prox ( u_ti lde , L) ; % proximal s tep

35 u_ti lde = max( u_ti lde , low ) ; % 1 s t box con s t r a i n t

36 u_ti lde = min ( u_ti lde , up ) ; % 2nd box con s t r a i n t

37 f_ t i l d e = solve_FP (dx , x , NX, NT, dt , t , f_in iz , G, u_ti lde ) ; %

needed f o r J_t i lde

38 % 2 ( out o f 2) : Compute J_t i lde ( u_ti lde and f_t i l d e are needed ! )

39 J_t i lde = calc_J (x , f_t i lde , xi , dx , u_ti lde , nu , time_index_jumps

, Nxi , dt ) ;

40 right_hand_side = J_current + . . .

41 dot ( grad_J_current , u_ti lde − u ) ∗ dt + . . .

42 0 .5 ∗ L ∗ calc_int_f ( ( u_ti lde − u) .^2 , dt ) ;

43 whi le ( J_t i lde − right_hand_side ) > 1e−4

44 L = eta ∗ L ;

45 % Compute the new u_ti lde

46 u_ti lde = u − 1 ./L ∗ grad_J_current + par2 ∗(u − uold ) ;

47 u_ti lde = prox ( u_ti lde , L) ;

48 u_ti lde = max( u_ti lde , low ) ;

49 u_ti lde = min ( u_ti lde , up ) ;

119



50 f_ t i l d e = solve_FP (dx , x , NX, NT, dt , t , f_in iz , G, u_ti lde ) ; %

needed f o r J_t i lde

51 % Compute J_t i lde ( u_ti lde and f_t i l d e are needed ! )

52 J_t i lde = calc_J (x , f_t i lde , xi , dx , u_ti lde , nu ,

time_index_jumps , Nxi , dt ) ;

53 right_hand_side = J_current + . . .

54 dot ( grad_J_current , u_ti lde − u ) ∗ dt + . . .

55 0 .5 ∗ L ∗ calc_int_f ( ( u_ti lde − u) .^2 , dt ) ;

56 end

57 Lt = ( L + 2∗ c2 ) / ( 1 − par2 ) ; % update o f the constant

58 uoldtemp = u ; % s to rage o f the o ld u ( needed f o r the update )

59 % Update o f u : 1 s t s tep ( g rad i ent s tep + i n e r t i a l s tep )

60 u = u − 1 ./ Lt ∗ grad_J_current + par2 ∗ (u − uold ) ;

61 uold = uoldtemp ;

62 % Update o f u : 2nd step ( proximal map + box c on s t r a i n t s )

63 u = prox (u , Lt ) ;

64 u = max(u , low ) ;

65 u = min (u , up ) ;

66 [ f_check ] = solve_FP (dx , x , NX, NT, dt , t , f_in iz , G, u) ;

67 [ jumps_p_check ] = calc_jumps_p (Nxi , x , f_check , time_index_jumps ,

dx , x i ) ;

68 [ p_check ] = so lve_adjo in t ( t , dx , x , NX, NT, dt , p_final , G, u ,

jumps_p_check , time_index_jumps , Nxi ) ;

69 grad_check = calc_grad_J (x , t , dx , dt , f_check , p_check , u , nu ,

time_index_jumps , Nxi , jumps_p_check ) ;

70 mu_optsyst = − grad_check ;

71 s t opp ing_c r i t e r i a = u − max( 0 , u + mu_optsyst − beta_L1 ) . . .

72 − min( 0 , u + mu_optsyst + beta_L1 ) . . .

73 + max( 0 , u − beta_L1 + mu_optsyst − up ) . . .

74 + min( 0 , u + beta_L1 + mu_optsyst − low ) ;

75 norm_stopping_criter ia = sq r t ( dt ∗ sum( s t opp ing_c r i t e r i a .^2) ;

76 i f norm_stopping_criter ia < t o l

120



77 break

78 end

79 j = j + 1 ;

80 end

81 end
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Listing A.4 shows the initial guess of the Lipschitz constant of ∇J1(u) defined in
(6.4) and used in Listing A.3.

Listing A.4: Initial guess of the Lipschitz constant of the gradient ∇J1(u)

1 f unc t i on [L ] = calc_L (dx , x , NX, NT, dt , t , f_in iz , G, u , xi , Nxi ,

time_index_jumps , T)

2

3 g l oba l nu

4

5 f_mid = solve_FP (dx , x , NX, NT, dt , t , f_in iz , G, u) ;

6 J_mid = calc_J (x , f_mid , xi , dx , u , nu , time_index_jumps , Nxi , dt ) ;

7

8 epsL = 10 ;

9 norm_epsL = epsL ∗ sq r t (T) ;

10

11 u_plus = u + epsL ;

12 f_plus = solve_FP (dx , x , NX, NT, dt , t , f_in iz , G, u_plus ) ;

13 J_plus = calc_J (x , f_plus , xi , dx , u , nu , time_index_jumps , Nxi , dt ) ;

14

15 u_minus = u − epsL ;

16 f_minus = solve_FP (dx , x , NX, NT, dt , t , f_in iz , G, u_minus ) ;

17 J_minus = calc_J (x , f_minus , xi , dx , u_minus , nu , time_index_jumps , Nxi

, dt ) ;

18

19 norm_plus = sq r t ( dt ∗ sum( ( J_mid − J_plus ) .^2 ) ) ;

20 norm_minus = sq r t ( dt ∗ sum( ( J_mid − J_minus ) .^2 ) ) ;

21

22 L = min( norm_plus , norm_minus ) / norm_epsL ;

23

24 end
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Listing A.5 shows how the proximal step in Listing A.3 is performed.

Listing A.5: Proximal step in Listing A.3

1 f unc t i on [L ] = calc_L (dx , x , NX, NT, dt , t , f_in iz , G, u , xi , Nxi ,

time_index_jumps , T)

2

3 g l oba l nu

4

5 f_mid = solve_FP (dx , x , NX, NT, dt , t , f_in iz , G, u) ;

6 J_mid = calc_J (x , f_mid , xi , dx , u , nu , time_index_jumps , Nxi , dt ) ;

7

8 epsL = 10 ;

9 norm_epsL = epsL ∗ sq r t (T) ;

10

11 u_plus = u + epsL ;

12 f_plus = solve_FP (dx , x , NX, NT, dt , t , f_in iz , G, u_plus ) ;

13 J_plus = calc_J (x , f_plus , xi , dx , u , nu , time_index_jumps , Nxi , dt ) ;

14

15 u_minus = u − epsL ;

16 f_minus = solve_FP (dx , x , NX, NT, dt , t , f_in iz , G, u_minus ) ;

17 J_minus = calc_J (x , f_minus , xi , dx , u_minus , nu , time_index_jumps , Nxi

, dt ) ;

18

19 norm_plus = sq r t ( dt ∗ sum( ( J_mid − J_plus ) .^2 ) ) ;

20 norm_minus = sq r t ( dt ∗ sum( ( J_mid − J_minus ) .^2 ) ) ;

21

22 L = min( norm_plus , norm_minus ) / norm_epsL ;

23

24 end
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