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Abstract

The Gram-positive actinomycete Williamsia sp. ARP1 was originally isolated from the Arabidopsis thaliana phyllosphere.
Here we describe the general physiological features of this microorganism together with the draft genome sequence
and annotation. The 4,745,080 bp long genome contains 4434 protein-coding genes and 70 RNA genes. To our
knowledge, this is only the second reported genome from the genus Williamsia and the first sequenced strain
from the phyllosphere. The presented genomic information is interpreted in the context of an adaptation to the

phyllosphere habitat.
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Introduction

The genus Williamsia was originally proposed by Kampfer
et al. in 1999 [1] to accommodate an unusual mycolic-
acid containing actinomycete. Members of the genus
Williamsia are Gram-positive, non-spore forming, and
form round, orange colonies. Their cell shape is coc-
coid- or rod-like [2]. The genus Williamsia forms a
distinct group within actinomycetes of the suborder
Corynebacterineae [3], which also comprises the genera
Corynebacterium, Dietzia, Gordonia, Mpycobacterium,
Nocardia, Rhodococcus, Skermania, Tsukamurella and
Turicella. Based on the mycolic-acid profile with car-
bon chain lengths ranging from 50 to 56, the genus
Williamsia is likely to be placed between the genera
Gordonia and Rhodococcus [1]. At the time of writing,
only one other draft genome of Williamsia sp. D3 was
publicly available [4] and nine species of this taxon
were recognized with valid scientific names: Williamsia
deligens (5], Williamsia faeni [6], Williamsia limnetica
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(71, Williamsia marianensis [8], Williamsia maris [9],
Williamsia muralis [1], Williamsia phyllosphaerae [10],
Williamsia serinedens [11] and Williamsia sterculiae
[12]. Further this genus has been linked with the
degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine in
soils as a sole nitrogen source [13], the degradation of
carbonyl sulfide in soils [14] and polychlorinated biphe-
nyls in tree habitats [15]. Williamsia was isolated from
various sources, including indoor building material [1],
human blood [5] and following pulmonary infections
[16], oil-contaminated and Antarctic soils [4, 11], ex-
treme environments as glacier ice [17], deep sea sedi-
ments of the Mariana Trench [8], hay meadows [6], and
the rare soil biosphere [18]. Besides, Williamsia was
also reported as an endophyte of grey box eucalyptus
tree roots [19] and as an epiphytic bacterium residing
in the phyllosphere of white clover [20].

The phyllosphere, known as the aerial surface of plant
leaves, is a short-lived environment [21] to diverse micro-
organisms of various taxonomic groups comprising bac-
teria, filamentous fungi, yeasts, viruses and protists. The
phyllosphere presents a challenging environment for mi-
crobial colonizers with respect to climatic conditions, UV
radiation, desiccation, water availability, reactive oxygen
species, and in terms of antimicrobial compounds pro-
duced by the plant or possibly also microbes [21-25].
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Additionally, the wax composition of the cuticle, surface
characteristics such as stomata and veins affect nutrient
availability and leaching, as they are likely to retain more
water [23, 26].

Here, we present a summary, classification and general
physiological features of the strain Williamsia sp. ARP1
together with the genomic sequencing, assembly, anno-
tation, and its putative adaptions to the phyllosphere.

Organism information

Classification and features

The genus Williamsia belongs to the suborder Corynebac-
terineae [3] of actinomycetes owing to the presence of
mycolic acid in the cell wall [2]. Since 2009, it was assigned
to the family Nocardiaceae [27, 28]. Williamsia and other
genera of this family form a distinct clade in a 16S rRNA
phylogenetic tree as well as by using a combination of
phenotypic markers [29]. In order to resolve the taxonomic
position of Williamsia sp. ARP1, a 16S rRNA sequence
(length of 1504 bp) derived from the assembled genome
was compared with the NCBI non-redundant and 16S

Page 2 of 11

microbial database using BLASTn [30]. The five nearest
sequences with the highest identity (all <100 %), the nine
validly described Williamsia species, as well as representa-
tive sequences of the suborder Corynebacterineae — Gordo-
nia, Rhodococcus, Dietzia, Mycobacterium, Tsukamurella
and Turicella - were used for phylogenetic analysis. A strain
of the family Frankineae was chosen as the outgroup. All
16S rRNA sequences were aligned using the SINA web
aligner (variability profile: Bacteria) [31] and the phylogen-
etic tree was assessed using PhyML [32] with a generalised
time reversible (GTR) substitution model, gamma distribu-
tion and 1000 bootstrap replications. All genera formed dis-
tinct clades (except Rhodococcus) and were well supported
by bootstrap values >50 %. Williamsia formed two well
supported distinct clades consisting of five and nine se-
quences, respectively. Within these clades, however, boot-
strap values were weaker, due to low variation between 16S
sequences. Closest sequences to Williamsia sp. ARP1 were
Williamsia sp. 7B-582, A2-614 and A2-437 (all three
originating from sediment), and phylogeny in this subclade
could not be resolved better due to a multifurcation (Fig. 1).
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Fig. 1 165 rRNA gene based maximum likelihood phylogenetic tree highlighting the position of Williamsia sp. ARP1 within the suborder

Williamsia deligens strain IMMIB RIV-956 [AJ920290.1]
- Williamsia phyllosphaerae C7" [FR691321.1]

- Williamsia maris DSM 43672 [AB010909.2]

Williamsia sp. ARP1
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Corynebacterineae. The tree is based on 16 s rRNA sequences comprising the genera Williamsia, Gordonia, Mycobacterium, Dietzia, Tsukamurella,
Rhodococcus and Frankia as an outgroup. The Williamsia sp. ARP1 is highlighted in bold text to show its position. The maximum-likelihood
phylogenetic tree was generated using PhyML with the GTR substitution model. Numbers at the nodes are percentages of 1000 bootstrap
replicates. Genbank accession numbers are indicated in parentheses; type strains are tagged with a superscripted T. The scale bar represents
0.06 substitutions per nucleotide position
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All three 16S rRNA gene sequences showed a sequence
identity of 99.93 % for strain 7B-582, 99.93 % for strain A2-
614, 99.64 % for strain A2-437 to Williamsia ARP1. Mini-
mum information about the genome sequence of William-
sia sp. ARP1 (MIGS) is provided in Table 1.

The colonies of Williamsia sp. ARP1 were orange to red
in color on LB agar medium (Fig. 2a). Strain ARP1 was
shown to be Gram-positive by Gram staining (data not
shown). The cells of the strain were coccoid to rod-like
with a diameter of about 1.0-1.5 um (Fig. 2b). Further, the
strain showed positive oxidase and catalase reaction and
an aerobic respiratory metabolism. Cells were growing at
a temperature range between 4 and 36 °C. Optimal growth
was observed between 25 and 30 °C after 3 days on tryptic
soy agar, Reasoner’s 2A agar, and nutrient agar (all Oxoid).
NaCl tolerance was investigated at different concentra-
tions of NaCl (0.5-8.0 (w/v) %) in tryptic soy broth (TSB,
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Oxoid) with the cells growing in the presence of 1.0-6.0 %
NaCl. The strain lacked motility after 3 days of growth in
TSB at 30 °C, as observed under the light microscope. In
agreement with this observation, a flagellum was not ob-
served which is further backed up by the lack of flagellar
genes (ie., fliX, flgX and motX genes) on its genome.
These findings were consistent with previous descriptions
for this genus.

Genome sequencing information

Genome project history

The organism was selected for sequencing as part of on-
going Arabidopsis phyllosphere microbiology studies [33].
The sequencing project was completed in July 2014 and
sequencing data was deposited as a Whole Genome Shot-
gun (WGS) project in Genbank under the BioProject
PRJNA272726 and the accession number JXYP00000000

Table 1 Classification and general features of Williamsia sp. ARP1 [34]

MIGS ID Property Term Evidence code®
Classification Domain Bacteria TAS [73]
Phylum Actinobacteria TAS [74]
Class Actinobacteria TAS [3]
Order Actinomycetales TAS [3, 28, 75, 76]
Family Nocardiaceae TAS [3, 28, 75, 76]
Genus Williamsia TAS [1]
Species Williamsia sp. IDA
(Type) strain: ARP1 IDA
Gram stain Positive IDA
Cell shape Coccoid to rod-like IDA
Motility Non-motile IDA
Sporulation Non-sporulating IDA
Temperature range 4-36 °C IDA
Optimum temperature 25-30 °C IDA
pH range; Optimum Not reported NAS
Carbon source organic carbon IDA
MIGS-6 Habitat Phyllosphere IDA
MIGS-6.3 Salinity 1.0-6.0 % IDA
MIGS-22 Oxygen requirement Aerobic IDA
MIGS-15 Biotic relationship Commensal IDA
MIGS-14 Pathogenicity Non-pathogenic NAS
MIGS-4 Geographic location Wirzburg, Germany IDA
MIGS-5 Sample collection 2012 IDA
MIGS-4.1 Latitude 49.766556 IDA
MIGS-4.2 Longitude 9.931768 IDA
MIGS-4.3 Depth Plant surface IDA
MIGS-4.4 Altitude 198 m above sea level IDA

“Evidence codes - IDA Inferred from Direct Assay, TAS Traceable Author Statement (i.e, a direct report exists in the literature), NAS Non-traceable Author Statement
(i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence

codes are from the Gene Ontology project [77]
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of Williamsia sp. ARP1 using scanning electron microscopy

Fig. 2 General characteristics of Williamsia sp. ARP1. a The morphology of the colonies after three days of growth on LB-agar at 30 °C. b Image

consisting of 50 contigs (>1000 bp). The genome sequen-
cing was carried out with a MiSeq (Illumina Inc.) located
in-house at our University. A summary of the project in-
formation according to the MIGS version 2.0 is shown in
Table 2 [34].

Growth conditions and genomic DNA preparation

Several plants were collected from a Landsberg erecta
(Ler) population of Arabidopsis thaliana from the Bo-
tanical Garden (University of Wiirzburg, June 2012).
Leaf washings [35] were used for inoculation of min-
imal media with C;¢ alkane (Sigma-Aldrich) as the
sole carbon source in order to enrich for bacteria
with the ability to degrade long-chain hydrocarbons.
Aliquots were streaked (in duplicate) on agar plates
prepared with minimal media and supplemented with
C,, alkane (Sigma-Aldrich). This procedure provided a
total of 17 isolates, of which most belonged to the

Williamsia sp. ARP1 was grown in 10 ml Luria-
Bertani broth medium (10 g peptone, 5 g yeast extract,
5 g NaCl in 1000 ml demineralized water) for 24 h at
30 °C and rotary shaking at 180 rpm. For genomic
DNA isolation, 2 ml of overnight culture were centri-
fuged at 8000 rpm for 5 min at room temperature. The
pellet was rinsed in 1 ml TNE (1 ml 1 M Tris pH 8,
0.2 ml 5 M NaCl, 2 ml 0.5 M EDTA pHS, and 100 ml
demineralized water) and resuspended in 270 pl TNEx
(TNE, 1 %v/v TritonX-100) and 25 pl lysozyme
(10 mg/ml). After a 30 min incubation at 37 °C, 50 pl
of proteinase K (20 mg/ml) were added. After an incu-
bation of 2 h and 55 °C, 15 ul of 5 M NaCl and 500 pl
of 100 % EtOH were added. The mixture was then cen-
trifuged at 13,000 rpm for 15 min at room temperature,
rinsed with 70 % EtOH, air dried and resuspended in
150 pl TE buffer. The quality and quantity of the ex-
tracted DNA was evaluated by 0.8 % (w/v) agarose gel
electrophoresis, by measuring absorption ratios 260/

genus Rhodococcus and two to genus Williamsia [33]. 280 and 260/230 with a Nanodrop 2000c
Table 2 Project information
MIGS ID Property Term
MIGS 31 Finishing quality Draft genome
MIGS-28 Libraries used One lllumina paired-end library (400 bp insert size)
MIGS 29 Sequencing platforms lllumina MiSeq
MIGS 31.2 Fold coverage 65X
MIGS 30 Assemblers SPAdes 3.0, SSPACE 3.0
MIGS 32 Gene calling method Prodigal 2.6.1
Genbank 1D JXYPO0O000000
Locus Tag TU34
GenBank Date of Release July 1, 2015
GOLD ID Gp0118481
BIOPROJECT PRINA272726
MIGS 13 Source Material Identifier DSM 46827

Project relevance

Phyllosphere, Environmental
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Spectrophotometer (Thermo Fisher Scientific) and an
additional Qubit dsDNA HS assay (Life Technologies).

Genome sequencing and assembly

High molecular weight DNA was cleaned with the
DNA Clean & Concentrator kit (Zymo Research). The
genomic DNA library for the Illumina platform was
generated using Nextera XT (Illumina Inc.) according
to the manufacturer’s instructions. After tagmentation,
size-selection was performed using NucleoMag NGS
Clean-up and Size Select (Macherey-Nagel) to obtain
a library with median insert-size around 400 bp. After
PCR enrichment, the library was validated with a
high-sensitivity DNA chip and Bioanalyzer 2100 (both
Agilent Technologies, Inc.) and additionally quantified
using the Qubit dsDNA HS assay (Life Technologies).
Sequencing was performed on a MiSeq device using
v2 2 x 250 bp chemistry, and the genome was multi-
plexed together with ten other bacterial genomes from
other sources. Multiplexing was done via dual index-
ing, with the official Nextera indices N706 and S503
for Williamsia sp. ARP1.

In total, 1,304,294 (mean length 237.86 bp) raw paired-
end sequences were subjected to the Trimmomatic soft-
ware [36] for adapter and quality trimming (mean
Phred quality score >30), filtering of sequences contain-
ing ambiguous bases and a minimum length of 200 bp.
Subsequently, human and viral decontamination was
excluded using DeconSeq [37]. The 1,287,247 (mean
length 236.95 bp) remaining paired-end sequences were
assembled with five different tools: a5-miseq [38], IDBA-
UD [39], MaSuRCA [40], SPAdes [41] and Velvet [42]. In
order to obtain the most reliable contigs, all assemblies
were evaluated with QUAST [43], REAPR [44], ALE [45]
and Feature Response Curves [46]. According to those
evaluations, we have selected SPAdes assembler with en-
abled pre-correction and k-mer sizes ranging from 15 to
125 (step size of 10) as the best assembly. Obtained contigs
were extended with remaining reads where possible.
This led to 50 large contigs (1000 bp, N5q: 140,970 bp,
longest contig: 428,355 bp) and an overall genome size
of 4,745,080 bp (GC content: 68.63 %). As a final step,
the contigs were ordered according to the nearest re-
lated complete genome by functional content using
Mauve in 12 iterations [47]. As Williamsia sp. D3 was
only available as a draft genome, Gordonia bronchialis
was used for this step.

Genome annotation

Open reading frames were identified using Prodigal [48]
followed by manual correction. The predicted coding se-
quences were translated into amino acid sequences and
searched against COG position-specific scoring matrices
obtained from the Conserved Domains Database [49]
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using RPS-BLAST [30]. Comparisons with TIGRFAM,
Pfam, and PANTHER databases were performed with
the InterProScan pipeline [50]. Only matches with an e-
value <1 1072, 25 % identity and a minimum of 70 %
alignment length to the target sequence were maintained.
During this run, matches were also mapped to Gene
Ontology terms. Additional gene prediction and functional
annotation was performed with the Integrated Microbial-
Genomes Expert Review [51] and the Rapid Annotation
using Subsystem Technology webserver [52, 53]. Features
as tRNA, rRNA, ncRNA, transmembrane helices, signal
peptides, CRISPR elements and secondary metabolite gene
clusters were predicted using tRNAscan-SE [54], RNAm-
mer [55], INFERNAL [56] and Prokka’s prokaryotic RNA
covariance models [57], TMHMM [58], SignalP [59]
PILER-CR [60] and antiSMASH [61]. Searching for essen-
tial genes [62] was performed using HMMER3 [63]. Ortho-
log detection between Williamsia sp. ARP1 and three other
genomes were carried out with InParanoid [64] whereas
the mean percentage of nucleotide identity among the
found orthologous genes was calculated using BLASTn.
Average nucleotide identities between Williamsia sp. ARP1
and reference genomes were calculated with JSpecies [65].

Genome properties

The Williamsia sp. ARP1 draft genome sequence con-
tained a total of 4,745,080 bp distributed over 50 large con-
tigs (21000 bp) with an average GC content of 68.63 %. Of

Table 3 Genome statistics

Attribute Value % of total
Genome size (bp) 4,745,080 100.00
DNA coding (bp) 4347123 9161
DNA G+C (bp) 3,256,678 68.63
DNA scaffolds 50

Total genes 4509 100.00
Protein coding genes 4438 9842
RNA genes 71 157
tRNA genes 45 1.00
rRNA genes 5 0.01
rRNA operons 1°

Pseudo genes 0 0.00
Genes in internal clusters NA

Genes with function prediction 3505 77.73
Genes assigned to COGs 2207 4895
Genes with Pfam domains 1330 29.50
Genes with TIGRFAM domains 793 17.59
Genes with signal peptides 334 741
Genes with transmembrane helices 1140 2528
CRISPR repeats 2 0.04

20Only one RNA operon appears to be complete
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the 4509 predicted genes, 4438 (98.42 %) were protein-
coding, and 3505 (77.73 %) annotated with putative func-
tion. Pseudogenes were not detected. Genes not linked to a
function were annotated as hypothetical or unknown func-
tion. Of these, 45 belonged to tRNA genes, 21 to ncRNA
genes and five to rRNA genes (Table 3). One operon com-
prising a 16S rRNA, a 5S rRNA and a 23S rRNA gene was
found. However two additional 5S rRNA genes suggest the
presence of at least three rRNA operons. Functional as-
signments using COGs, a total of 2204 (59.59 %) of the
coding sequences were classified into 23 different classes
(Table 4, Fig. 3). Using TIGRFAM or Pfam, 793 (17.59 %)
and 1330 (29.50 %) of the sequences could be classified
(Table 3). For testing the genome completeness, a set of
111 essential gene markers was searched and 106
(=95.50 %) of them were present in Williamsia sp. ARP1.
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Except two marker genes (ribosomal proteins bS18 and
bl28), all of them were found only once (Additional file 1).
Within the RAST annotation, 1625 sequences were
assigned to 402 metabolic subsystems. The highest ranking
among the metabolic subsystems are linked to amino acids
and derivatives (8.41 %), cofactors, vitamins and pigments
(6.25 %), carbohydrates (5.77 %), protein metabolism
(5.61 %), fatty acids, and lipids and isoprenoids (4.32 %)
followed by stress response (2.86 %), (Fig. 4).

Insights from the genome sequence

The genome of Williamsia sp. ARP1 was smaller but
displayed a higher CG content (68.63 %) than its nearest
relative genomes (Table 5), thus rendering this genome
more similar to the G. bronchialis and G. polysoprenivor-
ans VH2 (67.00 and 66.96 %) than to Williamsia sp. D3
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Table 4 Number of genes associated with general COG functional categories

Code Value % age Description
J 143 3.17 Translation, ribosomal structure, and biogenesis
A 1 0.02 RNA processing and modification
K 183 4.06 Transcription
L 85 1.89 Replication, recombination, and repair
B 1 0.02 Chromatin structure and dynamics
D 0 0.00 Cell cycle control, Cell division, chromosome partitioning
V 31 0.69 Defense mechanisms
T 74 1.64 Signal transduction mechanisms
M 102 2.26 Cell wall/membrane biogenesis
N 11 0.24 Cell motility
U 18 040 Intracellular trafficking and secretion
O 79 1.75 Posttranslational modification, protein turnover, chaperones
C 184 408 Energy production and conversion
G 125 277 Carbohydrate transport and metabolism
E 226 501 Amino acid transport and metabolism
F 66 146 Nucleotide transport and metabolism
H 118 262 Coenzyme transport and metabolism
I 194 430 Lipid transport and metabolism
P 154 342 Inorganic ion transport and metabolism
Q 141 313 Secondary metabolites biosynthesis, transport and catabolism
R 346 767 General function prediction only
S 184 4.08 Function unknown
2231 4948 Not in COGs

The total is based on the total number of protein coding genes in the genome
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Fig. 4 Metabolic subsystems of Williamsia sp. ARP1 annotated through the RAST webserver
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Table 5 Used actinomycete reference genomes in this study
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Species Strain Accession number Genome Size [Mbp] G+C content
Williamsia sp. D3 NZ_AYTEO00000000.1 562 64.60
Gordonia bronchialis CP001802.1 5.21 67.00
G. polysoprenivorans VH2 NC_016906.1 567 66.96

(64.60 %) (Table 5). Considering the similarity between
16S rRNA sequences and its placement in the phylogen-
etic tree, strain ARP1 was however clearly assigned to
the genus Williamsia (Fig. 1). With respect to ortholo-
gous genes, Williamsia sp. D3 was found to be the most
similar strain to Williamsia sp. ARP1 with an average
nucleotide identity of these orthologs of 75.53 %. Not-
ably, the differences between Williamsia sp. ARP1 and
the Gordonia strains and VH2 (75.17 and 74.84 % iden-
tity, respectively) is similar to the difference between the
two Williamsia strains (75.53 %), (Additional file 2).
Neither the clustering of COG classes nor the average
nucleotide identities (ANI) were discriminative between
the two genera (Fig. 5, Additional file 3). The ANI values
are noticeably lower than the calculated cut-off values
for species level identification (95) [66].

Extended insights

UV radiation UV radiation may impose stress on bac-
teria inhabiting plant leaves. In this context, a cluster of
genes synthesizing mycosporins was found. These sec-
ondary metabolites are known to protect cells by ab-
sorbing UV light without generating reactive oxygen
species (ROS) [67, 68]. Additionally, genes involved in
the repair of UV-damaged DNA were found, which
comprise DNA photolyases, the UvrABC endonuclease
enzyme complex, and the DNA helicase II UvrD of the

UvrABC system. The red color of Williamsia sp. ARP1
might protect it against photo-oxidative stress as pig-
mentation is known to be a common feature of phyllo-
sphere colonizers [69]. All genes of the carotenoid
biosynthetic pathway were found, consisting of a gera-
nylgeranyl diphosphate synthase, a phytoene synthase, a
phytoene desaturase, a carotene desaturase and a lycopene-
B-cyclase. The products of this pathway are lycopene and
[-carotene, both producing orange to red pigments.

Oxidative stress Further adaptions to an epiphytic life-
style are encoded on genes responding to reactive oxygen
species (ROS; e.g. hydrogen peroxide, superoxide, hydro-
peroxil radical), which are products of the plant defense
[70, 71]. Here, two genes encoding for glutathione peroxi-
dases, two superoxide dismutases with copper/zinc or
manganese as active site, two glutaredoxins, three thiore-
doxins, and one catalase were found.

Temperature shifts Regarding temperature shifts, the
heatshock chaperones DnaK, DnaJ and GrpE and the cold
shock protein CspC were identified.

Uptake ABC transporters for the uptake of carbohydrates
such as ribose, glycerol or maltose, amino acids such as
methionine, known plant photosynthates such as fructose,
and enzymes for fructose utilization were identified. Also,
genes mediating the uptake of choline and subsequent

Gordonia bronchialis
DSM43247

Williamsia sp.
ARP1

Williamsia sp.
D3

Gordonia
polysoprenivorans VH2

JAKLBDVTMNUOCGEFHIPQRS

I D B
I D
I I

Color Key

0 5

per genome. The dendrogram is based on correlation analysis

Fig. 5 Comparison of COG classes between strain ARP1 and reference genomes. The color keys provide the relative percentage of each COG class

10 15



http://dx.doi.org/10.1601/nm.6514
http://dx.doi.org/10.1601/nm.6287
http://dx.doi.org/10.1601/nm.6514

Horn et al. Standards in Genomic Sciences (2016) 11:8

biosynthesis (choline dehydrogenase, betaine-aldehyde de-
hydrogenase) of the osmoprotectant betaine were found.

Desiccation Trehalose is a compatible solute and
known to prevent cells from desiccation and water loss
[72]. Eight genes encoding for the biosynthesis pathway
(Malto-oligosyltrehalose synthase, 1,4-alpha-glucan (gly
cogen) branching enzyme, GH-13-type trehalose-6-
phosphate phosphatase, putative glucanase glgE, malto-
oligosyltrehalose trehalohydrolase, glycogen debranching
enzyme alpha, alpha-trehalose-phosphate synthase, glu-
coamylase) were identified.

Conclusions

The isolate ARP1 was isolated from the Arabidopsis
thaliana phyllosphere. Phylogenetic analysis based on
the 16S rRNA gene confirmed its affiliation to the genus
Williamsia. However genomic properties also showed
close similarities to Gordonia, as derived from GC con-
tent, COGs, and average nucleotide identities. Thus, an
unequivocal delinearization based on the functional
genomics level was not possible, which may be due to
the underrepresentation of genomes from this genus.
The genomic features of strain ARP1 would be consist-
ent with a lifestyle within the phyllosphere, including pu-
tative adaptions to UV radiation, heat and cold shock,
desiccation and oxidative stress. With this study, we pro-
vide novel genomic insights into the rarely sequenced
genus Williamsia and discuss its putative adaptations to
the phyllosphere habitat.
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