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ABSTRACT A centralized heterogeneous formation flight position control scheme has been formulated
using an explicit model following design, based on a Linear Quadratic Regulator Proportional Integral
(LQR PI) controller. The leader quadcopter is a stable reference model with desired dynamics whose
output is perfectly tracked by the two wingmen quadcopters. The leader itself is controlled through the
pole placement control method with desired stability characteristics, while the two followers are controlled
through a robust and adaptive LQR PI control method. Selected 3-D formation geometry and static stability
are maintained under a number of possible perturbations. With this control scheme, formation geometry may
also be switched to any arbitrary shape during flight, provided a suitable collision avoidance mechanism
is incorporated. In case of communication loss between the leader and any of the followers, the other
follower provides the data, received from the leader, to the affected follower. The stability of the closed-loop
system has been analyzed using singular values. The proposed approach for the tightly coupled formation
flight of mini unmanned aerial vehicles has been validated with the help of extensive simulations using
MATLAB/Simulink, which provided promising results.

INDEX TERMS Distributed control, formation flight, model following, quadcopter, unmanned aerial

vehicle.

I. INTRODUCTION

Mini Unmanned Aerial Vehicles (MUAVs) are drawing atten-
tion of scientific community from diverse disciplines due to
their versatile applications. Their popularity has increased
exponentially particularly during the last decade. MUAVs
have the advantages over manned platforms with regard to
their much lower cost, risk avoidance for human pilots,
and their remote sensing capabilities. MUAVs have already
replaced manned aircraft in many fields and are even capable
to perform novel assignments which cannot be performed
by manned platforms. These vehicles are becoming more
and more multifaceted as the sensors are miniaturized and
on-board computing power is enhanced. Their applications
range from simple toys found at electronic supermarkets for
entertainment purpose to highly sophisticated commercial
platforms performing unusual assignments like offshore wind
power station inspection and 3D modeling of buildings [1].
Today MUAVs are a popular research platform serving the
humanity in a number of ways like forest fire monitoring,
spraying the insecticides, and flood damage assessment etc.

Some other interesting applications are envisaged that may
not be performed efficiently by a single MUAV and neces-
sitate the use of multiple units. Such valuable applications
include cooperative transportation, fire-fighting, search and
rescue, communication relays, and air refueling etc. A group
of low-cost UAVs designed for cooperative missions provides
redundancy and more effectiveness compared with a sin-
gle high-tech and expensive UAV. However control require-
ments are generally more stringent and performance criteria
are higher for such applications. More innovative applica-
tions are foreseen with advancement in autonomous control
techniques.

In order to ensure stability of the formation, robust
controllers are mostly proposed to provide insensitivity to
possible uncertainties in the motion of other vehicles and
communication delays. Adaptive control schemes are used
to improve performance and reliability of aerial platforms.
These techniques are useful to handle modeling uncertainties
and time varying dynamics. As an aerial vehicle is required to
operate under different environmental conditions and

2169-3536 © 2016 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 4, 2016

Personal use is also permitted, but republication/redistribution requires IEEE permission. 397

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



IEEE Access

Q. Ali, S. Montenegro: Explicit Model Following Distributed Control Scheme

performance requirements are also inflexible in case of for-
mation flight; a robust as well as adaptive control scheme is
highly desired.

A. RELATED WORK

Different control schemes have been successfully employed
for formation flight of aerial vehicles. Some of the
contributions are mentioned here. GRASP laboratory at
University of Pennsylvania has demonstrated many tech-
nological innovations in the domain of autonomous micro
UAVs flying inside the constrained environment and per-
forming fantastic feats like cooperatively grasping and
transportation [2] using decentralized PID control laws.
A solution using Nonlinear Model Predictive
Control (NMPC) was proposed in [3] where formation flight
of multiple UAVs is sustainable, even in case of communica-
tion failure, using relative distance and own motion informa-
tion. Coordination and trajectory tracking control design for
a leader/follower structure of multiple mini rotorcrafts was
simulated in [4] using nonlinear coordinated control design
with state feedback. Ho/¢1 control was exploited at Technical
University of Hamburg-Harburg (TUHH) for formation flight
simulation of multiple quadcopters that guarantees robust
stability [5].

Reference [6] combined the tracking control law with
an eigenstructure assignment and optimization technique to
compute the feedback and feedforward gain matrices, and
applied it for pitch pointing control. An important approach
to control design is model following where it is desired for
the quadcopter to perform like an ideal model with desired
flying qualities. Pitch pointing flight control laws have
been designed in [7] by using the model following control
scheme utilizing an eigenstructure assignment and Command
Generator Tracker (CGT). In [8], CGT based direct model
reference adaptive controller has been exploited to elimi-
nate the adverse effects of bounded uncertainties for Mars
atmospheric entry guidance. A leader-follower formation
strategy was realized in [9] utilizing a robust tracking control
approach; and a Kalman filter based formation command
generator was executed on the follower to keep in formation.
A cluster of UAVs has been used as a phased array antenna
in [10] to show the feasibility of a distributed control strategy.
Here each vehicle has a local controller that is based on the
information of its own states as well as states of a subset of
other vehicles in the formation. A 2D model of quadcopter
is considered in this study. In Ref. [11], each quadcopter
plans its trajectory based on the information of neighboring
quadcopter including its planned trajectory and an estimate
of its states. Formation is described by the shape vectors and
quadcopters can safely change the shape of formation. Graph
theory has been exploited by a number of researchers in the
domain of formation control; e.g. using directed graphs [12]
and UAV swarm modelling [13] etc. Problem is formulated
while converting the graph into Laplacian matrix that gives
an insight into the communication topology, and graph con-
nectivity through its eigenvalues. Problem formulation based
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on graph theory helps to handle communication topology and
formation control matters for a large number of units.
Although a number of sophisticated adaptive and robust
control schemes have been suggested for formation flight of
aerial vehicles, however the algorithms involved are com-
plex from implementation point of view. Each scheme has
its own merits and demerits. For e.g., PID controller is
non-model based, however the optimality and robustness
cannot be guaranteed. Hy, control is a robust and subopti-
mal control scheme; however using this design alone it is
difficult to obtain a controller with a desired structure [14].
There is generally a trade-off between the intricacy of con-
trol technique employed and the level of accuracy achieved
there off. Proposed scheme for tightly coupled formation
flight combines many advantages of various control schemes
including excellent trajectory tracking performance and dis-
turbance rejection, with the additional advantage of simplic-
ity in implementation. Explicit model following design based
on LQR PI control scheme also offers the advantage that
performance criteria are clearly described for the follower
quadcopters to make them behave like the model with desired
dynamics. The approach may be used even for some crit-
ical flight phases, like automatic flare control for smooth
touchdown, where the model dictates the desired trajectory.
Implementation of this scheme for centralized heterogeneous
leader follower architecture is not seen in the literature, as
per the knowledge of authors. Also compared with most of
the earlier contributions, a full-state vector of quadcopter is
considered in this study while tracking only the outputs of
interest (performance output) in the presence of perturbations
and communication delays. Tracking performance is demon-
strated through simulations for a wide range of commands
including step, ramp and other varying commands.

Il. PROBLEM FORMULATION

MUAVs are classified into fixed wing and rotary wing
aircraft (rotorcraft). All rotorcraft have Vertical Take-Off and
Landing (VTOL) capability. Quadcopter is the most pop-
ular VTOL device due to its agility, ease of construction,
and no requirement for a take-off/landing strip. Quadcopter
is the focus of our present study and we have chosen
leader-follower constellation architecture in a V-shaped for-
mation as it is more intuitive and inspired by the nature [1].
With this scheme, trajectory of the leader defines the trajec-
tory of the formation. It is desired for the leader to track
a commanded signal that may be constant or time-varying.
Controller on-board the leader is designed to keep the output
values close to the commanded values. For the formation,
the states of the leader constitute the coordination variable,
since the actions of the other vehicles in the formation are
completely specified once the leader states are known [15].
Each follower’s control is designed to maintain its user-
defined position in formation using the information of its own
states and the leader states. Information of leader may be
received either via inter-vehicle communication or estimated
using the sensors (e.g. radar, laser scanner, PMD camera etc.)
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onboard the followers. We here assume that information of
leader is always available to the followers. It may be through
communication link, or sensors onboard the followers, or
received via the other follower. Communication topology of
leader and two followers for this study is shown in Fig. 1.
In case of communication loss between leader and any of the
followers, the other follower quadcopter provides the leader’s
states to affected follower quadcopter in order to keep the
formation intact.

®

FIGURE 1. Communication topology of quadcopters in formation.

A. QUADCOPTER DYNAMIC MODEL

Quadcopter motion dynamics are described in a number of
publications e.g. [16]. However these are described here for
completeness. Quadcopter has four rotors numbered 1 — 4,
as shown in Fig. 2, representing front, left, rear, and right
rotors respectively. Front and rear rotors rotate anti-clockwise
while left and right rotors rotate clockwise. Thus two pairs
of rotors mutually cancel the gyroscopic effects and aerody-
namic torques. Unlike a fixed-wing aircraft with conventional
control surfaces, a quadcopter is controlled through differen-
tial speed of rotors. In hovering mode, speeds of all four rotors
are same. Vertical motion is controlled through aggregate
thrust generated by all rotors. Pitch angle (around y-axis)
is generated through differential speeds of front and rear
rotors causing the forward/backward motion in x-direction.

FIGURE 2. Quadcopter motion dynamics.
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Similarly for lateral motion in y-direction, speeds of left and
right rotors are varied differentially thereby generating the
roll angle and corresponding motion. For yawing motion,
speeds of pair of rotors 1 & 3 are varied compared with 2 & 4
in such a manner that total thrust remains same in order to
maintain the altitude. Torque so generated causes the yaw
motion. Thus all rotors play their role for yaw motion.

Quadcopter dynamics, as described above, are modeled as
per the following equations [17]:

u=fith+f+f
fi=ko?, i=1...4
mx = —usin6
my = ucos @ sin¢g

mZ = ucosf cos¢ —mg D
V=1
0 = Ty
¢ =14

Here u shows the total thrust generated by four rotors,
fi is the force produced due to the rotation of rotor i,
ki > 0 is a constant, w; is the angular speed of motor i
(M;,i = 1...4),m is mass of quadcopter, and g is gravi-
tational constant. Ty, 79 and 74 represent the control inputs
for yawing, pitching, and rolling moments respectively.

Quadcopter system under consideration has four inputs,
twelve states, and six outputs. Our state vector comprises
[x Xyyzzu 00 ¢ q’)] It represents the 3D position of
center of mass of quadcopter in x, y and z-direction relative to
the earth-fixed frame E [17], and Euler angles namely the yaw
angle () around the z-axis, the pitch angle (6) around the
y-axis, and the roll angle (¢) around the x-axis respectively
with their time derivatives denoted with dot (.) overhead.
Output vectoris [x y z ¥ 0 ¢], and performance output vector
is [x yz].

Now we define the following state equations in order to
linearize the system (1) as given in [18]:

¢ = [x1 X2 X3 X4 X5 X6 X7 Xg X9 X10 X11 X12]”
=k iyjziv g o0 ¢l
Our control vector is
U = [u ur u3 u4]T = [u —mg Ty Tg 'L’¢]T

Dynamic equations may be written as

)'Cl X2
X2 —u1Sinxg/m — gsinxo
X3 X4
X4 U1CoSxX9Sinx11/m + gcosxgsinxi
X5 X6
)'66 _ M]COS)CgCOS)CU/m + gCOSX9COSX11 — &
X7 | xg
Xg u
Xo X10
X10 us
X1 X12
L X2 | | us i
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or shortly:

(=10

Now let ¢ = 0 be an equilibrium point with f (0,0) = 0.
The linearization by Taylor series about the origin gives the
following linear system

¢ =A¢ +BU 2)

Where A and B represent the state matrix and input
matrix respectively. For further details, please refer to [18].
Longitudinal and lateral dynamics are decoupled after lin-
earization. Instead of focusing on either lateral or longitudinal
dynamics, we consider them simultaneously. Leader dynamic
model is taken as a reference model thereby defining the ideal
output response to be followed by two wingmen. We further
assume a heterogeneous formation i.e. the leader hardware
(and hence mass) is different from the followers to sim-
ulate a more realistic scenario. This assumption is based
on the fact that in reality a leader is likely to be more
equipped than followers in terms of sensors and hence will
be more massive. Ref. [19] defines micro UAVs that are
between 0.1 — 0.5 kg. For our present study, we have assumed
that the mass of leader is 2 kg and that of followers is 0.64 kg
each, hence new acronym of MUAV has been introduced in
this paper to refer to mini UAVs.

B. FORMATION DYNAMIC MODEL

Desired dynamics of the leader, referred to as reference
model, are defined as a Linear Time-Invariant (LTT) system
in the form:

X, =AL X, +Brr (1)

Y, =CL X )
L =CLXL+Dpr()

Suffix L represents the leader and F will represent
follower. For the system (3), X7 eR"™ are states of the leader
quadcopter, r(¢) is the external bounded command value, and
Y, eRPL is the performance output vector of leader. Leader
state space matrices (A, By, Cr, D) have their conventional
meaning. For the leader to exhibit stable dynamics, the state
matrix A; of the leader needs to be Hurwitz i.e. all its
eigenvalues should have strictly negative real part.

Follower quadcopter dynamics are described as follows:

Xr = ArXr +Br U

Yr=CrX @
r = CrXp+Drl

Here XpeR' are states of the follower quadcopter,
UeR™F is the control vector, and YreRPF is the performance
output vector of follower with pr < mp [20]. pr and mp
refer to number of outputs Yr and number of control
inputs U respectively. The matrices (Ar, Br, Cr, D) are of
corresponding dimensions. Quadcopter is an under-actuated
system (four inputs and 6DOF motion) and Linear Quadratic
Regulator Proportional Integral (LQR PI) approach is not
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applicable for under-actuated systems [14] to track all out-
puts. However this control scheme may be applied with suit-
able formulation of problem while tracking only the outputs
of interest (performance output). With this scheme, maxi-
mum number of trackable outputs may not exceed number
of control inputs (four in case of quadcopter). It is assumed
that the matrix pair (Ar, Br) is stabilizable and state vectors
X, and Xr are available as these are to be used for formulation
of control signal U for follower.

Before implementing the controller, we first do the con-
trollability check for the followers using the controllability
matrix P = [Br Ar Br A% Bp...A} 'Br] and find it
to be full ranked. All the closed-loop poles of the leader
may be assigned to desired locations through pole placement
method. Though leader in our study is controlled through
pole placement method, however same may be controlled
though some other scheme as well e.g. LQR. Leader receives
a known bounded command r(¢) that may or may not vary
with time. It is emphasized that the proposed control scheme
is meant for the followers to maintain the desired separa-
tions from the leader. For centralized leader-follower archi-
tecture, we are primarily interested to determine U for the
follower such that the desired 3D formation geometry, given
by the relative distance vector r = [ry 7y rz]T, 1S main-
tained. For this an LQR controller with PI feedback con-
nection [20] is implemented for the follower. We assume
that all the states of quadcopters are available through suit-
able sensors. The control signal is computed with LQR
scheme while suitably augmenting the states of follower
with that of leader. Design objectives in LQR scheme are
defined through Q and R matrices. Q matrix, a positive
semi-definite matrix, shows the weightage (or importance) to
states. R being a positive definite matrix indicates weightage
of control efforts corresponding to control inputs. The con-
troller can be tuned by changing the elements in the Q and R
matrices to achieve a desirable response. An efficient
LQR control scheme is based on finding the right weighting
factors. Q and R matrices used for this study are given in the
Appendix.

Model following LQR PI control scheme given in [20]
has been exploited for our present study and tailored for
leader-follower tightly coupled formation flight. Open-loop
dynamics of follower and leader may be formulated as:

):(F — AF Onpan XF
XL OnLXnF AL XL
BF OanmF

t 5
+[0me]u+[ . ]r() )

Tracking error represented as AY may be written as:
AY =Yr—Y, =CrXr+DrU—CrX;, —Dpr(t) (6)

Writing (6) in matrix form:
X
aY=[Cr —C1] [Xﬂ FDRU+ (D) (D)
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Now the open-loop dynamics given by (5) and (7) may be
written concisely as:

X =AX +BU+B,r()

AY =CX+DU+D,r(t) ®
We aim to find such a U that the tracking error
(or system output) asymptotically tends to zero in the pres-
ence of any known, bounded, and possibly time varying
command r(¢). Formulation of above problem suggests that
the tracking problem has been converted into a regulation
problem [21], referred to as CGT. Now an Integral Control
is applied to track a step input command with zero errors. For
this scenario a practical tracker like CGT is chosen. Integrated
tracking error ¢y may be written as:

&y = AY )

Introducing (9) into system dynamics (8), it gives

el _ Oprxpr C] [ey] [Di|
|:X i| [O("F+"L)XPF A X * B u
+ [g::| r(t) (10)

Tracking error AY may be defined as:
AY =[Oppxpr  C] [?} +DU+D, r(r) (1)

Equations (10) and (11) may now be written as:

X =AX+BU+B,r(t)
SO - (12)
AY =CX+DU+D,r(t)
Care is to be exercised while formulating the A matrix
for proper dimensions. Also note that for above system (12),

total number of states is equal to the sum of vector length of
AY +Xr + XL

C. CONTROL STRATEGY

Now assuming that external command is step-input command
with zero errors then differentiating state dynamics equation
of system (12) w.r.t. time and introducing new variables
w = ¢ X ]T and v = (J, we may write:

tr = Aw + Bv (13)

Open-loop dynamics of (13) may be controlled through
LQR control scheme. LQR is a very attractive control
approach as it is capable to handle multiple actuators
and complex system dynamics. Furthermore, it offers very
large stability margins to errors in the loop gain. However,
LQR assumes access to the states.

In order to minimize the LQR cost, control input v is used.
Cost function J may be defined as:

szooo (mTQm+vTRv)dt (14)
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Q and R are LQR weight matrices defined as before. Now
solving the Algebraic Riccati Equation (ARE):

ATP+PA+Q-PBR'B"P=0 (15)

gives the solution P = PT > 0, that is used to compute the
control signal. LQR gain matrix K is given as under:

K=R'B'P (16)
LQR control signal may be written as:
v=U=—-Ku (17)

LQR PI controller for a MIMO system corresponds to a
gain matrix with order equal to the number of elements in
U x (AY + XF + X1). Our gain matrix is of the following
form:

K = [Kf K)F K)'] (18)

Here subscript indicates the type of gain (proportional or
integral) and superscript shows the variable to whom this gain
matrix is applied. Now

U=—[K§ KX KX [;] (19)
or
: &y
U=—[K; K K)*1| Xp (20)
XL

Integrating (20) and ignoring constants of integration, LQR
PI control solution for the follower is given as:

U=K;f - K" Xp — KXy (1)

We note that structure of LQR PI gain matrix comprises

three parts; a state feedback K;( . a feed-forward compen-
sator K;( L and an additional feed-forward filter K f in the
error channel that guarantees perfect tracking. Although our
derivation is based on step reference command, the resulting
control system gives good time response for any arbitrary ref-
erence command signal r(¢) [14], as will be demonstrated in
simulation section. Fig. 3 shows the interconnection diagram
for LQR PI control scheme implemented for leader-follower
architecture. For the sake of brevity, only one follower is
shown here. Dynamics of leader and follower plants are
defined by (3) and (4) respectively.

1 Follower

1 Xp

Command r(t)
B —

i

Leader Plant

L

FIGURE 3. LQR PI control scheme for leader-follower architecture.
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It is established in [22] that for perfect tracking it is
necessary to have as many control inputs in vector U(z) as
there are in command signals r(¢) for tracking. However
we slightly modify it to state that the number of control
inputs should be equal to or more than the command
signals, as demonstrated in this paper while using three
command signals (for 3D position control) and four control
signals. We now give some propositions/definitions to deter-
mine the stability of a leader-follower architecture based on
LQR PI control scheme.

Proposition 1: All signals for a leader-follower forma-
tion, based on LQR PI control scheme, are bounded if
IGLlloo < T and ||K|lco < & where G is the leader state
space model, K is LQR PI gain matrix, and I" and § are
bounded numbers. Infinity norm of gain matrix K gives an
indication of maximum control effort.

Proposition 2: A leader-follower formation based on
LQR PI control scheme is stable if || Gy [loo < 1 where
G represents the state space system comprising leader-
follower, controlled though LQR PI control scheme, and is
given by the matrices (Acl, B, C, D) where Acl =A-BxK.

Definition 1: A leader-follower formation based on
LQR PI control scheme is stable if all poles of the matrix Au
are strictly in open left-half plane.

Ill. SIMULATION RESULTS AND ANALYSIS
From safety point of view, most of the proposed algorithms
require to be simulated before actual flights may be under-
taken. It also helps to authenticate the efficacy of the algo-
rithm. Above defined model of leader-follower scheme was
implemented in MATLAB/Simulink. For this study, possible
perturbations on outputs of leader, on control inputs and
outputs of followers have been considered and implemented.
Wind gust was simulated as a step function on quadcopters
outputs. Communication delays between all three agents were
also implemented in our simulation model to mimic the
real scenarios. System was also tested for step, ramp and
sinusoidal commanded values. This command generator is
capable of handling a wide range of motion trajectories,
including position unit step commands, unit ramp commands,
oscillatory commands, and more [23]. Table 1 shows some
of the metadata under which the system was simulated while
taking a combination of different entries from the table.
Simulation results are depicted in Fig. 4 and Fig. 5 that
show the positions of all three units in three-axes and the
3D view of the whole formation respectively in presence
of perturbations. Initial and final positions of units are also
marked in Fig. 5 to indicate the direction of movement. From
the plots, it is evident that output of leader is tracked quite
smoothly by the followers while maintaining the desired
separations. Another remarkable feature of this scheme is that
when some disturbance is encountered on the output of leader
(for example a wind gust) and there is some deviation from
the intended trajectory, the followers also make the similar
movement in order to maintain the formation geometry.
Simulations in Fig. 4 and Fig. 5 under different perturbations
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TABLE 1. Metadata for simulation.

Leader Follower | Follower Activation
1 2 Time (s)
Initial
Position (10,10,10] [0,2,3] [4,1,2] [0,0,0]
=-10° —_15b
Commanded | [40,y_des?,40] & | X 10b X 15b
Position [100,y_des?,100] =-15> | y=-10 [0,0,0]
T z=-5 | z=-10°
New x=-20° x =-30b
Formation [40,y_des?,40] | y=-30° | y=-20° | [3030,30]
Geometry z7=-10P 2=-20P
Input [20,20,20,20]
Di:turbance Nil [1,1,1,1] | [2,2,2,2] &
[50,50,50,50]
Output
Disturbance [0,0,0] [5,10,12] | [10,5,15] [50,60,70] &
i [40,50,60]
(wing gust)
Comm. . . ]
Delay (L1 [1,1] [2,2]
Comm. Loss - 357

?y_des is a ramp command with slope 1 for changing position in y-direction.
bSeparation between leader and follower.

For states & outputs between leader and follower 1.

dFor states & outputs between leader and follower 2.

For states & outputs between followerl and follower 2.

fCommunication loss between leader and follower 1.

X-Position {cm)

o =

Time (seconds)

100

¥-Position (em)

i
40
Time {seconds)

Fallowert ]
| e Follower2 []
T

Z-Position (crm)

1
40
Time (seconds)

70 80

FIGURE 4. Three-axes position of whole formation under disturbances.

at different time instants show excellent tracking
performance for commanded values in the form of step inputs
(x-axis and z-axis) and ramp command (y-axis).

For a formation having a single leader, the equilibrium
point is the desired relative position of the vehicles [24] that
is shown to be maintained under a number of perturbations as
depicted in Fig. 4 and Fig. 5. Results may also be interpreted
as follower quadcopters exhibiting the static stability. This
was verified by observing their immediate response following
a disturbance from a trimmed flight condition [14], where
follower quadcopters returned to their equilibrium points.

Contrary to the Proportional Differential (PD) approach
used in [18], no oscillation behavior is observed in steady
state with the use of LQR PI control scheme that shows
its strength. One PID controller gives one control signal
at a time. However for controllers like LQR, all the states are
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9 Leader
Follower1
@  Follower2

140 .-

120 .--

100.--

Z-Pasition (em)

0.~
120

120

60

~ 40
20

Y-Position {cm) 0 20 ¥-Postion {cm)

FIGURE 5. Trajectory for leader and followers under disturbances.

taken care of simultaneously with the use of controller in the
form of matrix K that facilitates to provide multiple appropri-
ate control signals at the same time. Solving matrix equations
allows all the control gains to be computed simultaneously so
that all loops are closed at the same time [14].

Some missions may require to change the formation geom-
etry during flight to cope with changing situations and envi-
ronment, like collision avoidance. In order to simulate such
scenario, we changed the formation geometry at + = 30s
while doubling the separations between leader and followers.
Corresponding simulation is shown in Fig. 6 that reveals
excellent performance to maintain new desired formation
geometry even under perturbations at different time instants.
For this particular maneuver and formation geometry, sep-
arations are increased among all the units so collisions are
not imagined. However for a different scenario, a suitable
collision avoidance scheme is required to be adopted.

X-axis [cm)

Time (seconds)

Y-axis (cm)

10 20 30 40 50 60 70 80
Time (seconds)

Leader
Followerl
Follower2

Z-axis (em)

80

Time (seconds)

FIGURE 6. Three axes position of MUAVs under switching formation
geometry.

We now incorporate all the possible perturbations with
their numerical values depicted in Table 1 and plot the relative
distances between all the three units while also changing the

VOLUME 4, 2016

formation geometry at ¢ = 30s. Corresponding plot is shown
in Fig. 7 which demonstrates that required 3D formation
geometry is maintained under a number of disturbances.

Separation (em)

Separation (cm)

Separation (cm)

Follower1-Follower2

0 10 20 30 40 50 60 70 80
Time (seconds)

FIGURE 7. Inter-unit separations in the formation.

Now we show the response of whole formation for a sinu-
soidal command to the leader on X-axis with a frequency
of 0.3 rad/sec and a bias of 40cm. Plot to this effect, in the
presence of disturbances, is shown in Fig. 8. However for such
commands, desired tracking (of same frequency) is achieved
if rate of change of command signal is within the closed-loop
system bandwidth [20]. Though we get the sinusoidal output
but with a different amplitude and phase determined by the
magnitude of the system transfer function. Desired amplitude
may be achieved using a suitable pre-compensator. Thus the
control scheme is capable of tracking varying set-points as
well.

X-axis (em)

Leader
Follower!
Follower2

10 20 30 40 50 60 70 80
Time (seconds)

FIGURE 8. Response of formation under a sinusoidal command.

Quadcopters trajectories in all the foregone plots are shown
for about one meter only to clearly show the effects of per-
turbations and their rejection. We now show the formation
trajectory under time-varying command for a distance of
20m, Im and 12m in X-, Y- and Z-direction respectively
in Fig. 9.

In order to further verify the health of simulation results,
we now introduce a perturbation of magnitude [10,5,15] on
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FIGURE 9. Trajectory of formation for an extended distance.

follower2 on X-, Y-, and Z-axis individually at t+ = 40, 50,
and 60 seconds respectively. Required throttle input and con-
trol inputs for the yawing, pitching and rolling moments [17]
to bring the quadcopter back to desired equilibrium condition
are shown in Fig. 10 that gives the expected results. This plot
is just to realize how the control inputs are exercised to cater
for the perturbations on the desired position.

Control voltages of four motors (under the same perturba-
tions and time instants) to bring the quadcopter back to its
desired position are plotted in Fig. 11 that are commensurate
with the expected results.
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FIGURE 11. Control voltages of four motors of quadrocopter.
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FIGURE 10. Control input for throttle and moments to regain equilibrium.

Pulse Width Modulation (PWM) output values of four

motors speed are as following, as defined in [18]:

PWMuy = u+ 19 + 1y
PWMM2 =U—Tp — Ty
PWMuy3 =u—19 + 1y (22)
PWMyy = u+19 — 1y

404

1|:|'E 10" 1|:|: 10° 1 I:IE
Frequency (rad/s)

FIGURE 12. Sigma plot for leader-follower scheme in open-loop and
closed-loop.

A. STABILITY ANALYSIS

For a MIMO system, individual gain and phase margins
between different pairs of inputs and outputs mean little from
the point of view of overall robustness [14]. This is due to the
coupling that generally exists between different inputs and
outputs of a MIMO system. Singular values are useful for
robustness analysis of a MIMO system. Singular values can
provide a better indication of the overall response, stability,
and conditioning of a MIMO system than a channel-by-
channel Bode plot. Sigma plot also gives indication of cross-
over frequency. At this frequency we get the same output
frequency as commanded value, though output amplitude will
be different determined by transfer function of the system.
In MATLAB, we can get it through the command getGain-
Crossover (sys, gain). Hso norm of a MIMO system is the
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largest singular value across frequencies and hence is an indi-
cator of stability of a MIMO system. Sigma plot of G and G;
representing leader-follower system in open-loop and closed-
loop respectively are shown in Fig. 12 which demonstrates
that LQR PI control scheme has efficiently controlled the
system. The maximum singular value (—18.4 dB) for the
closed-loop system is below an upper limit (0 dB) that guar-
antees stability despite parameter variations in the linearized
model. This maximum singular value corresponds to Heo
norm of 0.12 thereby providing sufficient gain margin. At low
frequencies also, singular values of closed-loop system are
below 0 dB, unlike open-loop system where these are much
higher than the threshold value.

IV. CONCLUSION AND FUTURE WORK

For centralized formation flying we are interested for follow-
ers to track varying output of leader in order to smoothly
maintain relative 3D distances. For presented algorithm,
extensive simulations were realized under a number and types
of disturbances including input disturbance on control values,
output disturbances (e.g. a wind gust) and communication
delays. It revealed the follower systems to be quite robust
in terms of maintaining the desired formation geometry.
This technique has promising results in terms of stability
and leader output tracking even in the presence of signifi-
cant perturbations and under arbitrary switching formation
geometries during flight. The approach is appropriate for the
scenarios where tightly coupled formation flight is desired
like cooperative grasping, joint load transportation etc.

Proposed approach for followers in the formation, is simple
from implementation point of view. However it necessitates
to know the exact dynamic model of aerial vehicles. It also
assumes that states of leader and followers are available.
In case of non-availability of states, a suitable observer
may be designed for estimation of states. Although this
scheme is suitable for small formations, however appropriate
arrangements may be made to extend it to medium sized
formations.

As it is quite laborious to model all the dynamics of rotor-
craft flying in close formation, adaptive and robust control
techniques, like LQR PI, may be explored to their full poten-
tial to cater for such scenarios. For future work, presented
scheme may be implemented in real-time using the formation
flying test setup developed at Institute of Aerospace Infor-
mation Technology, Wiirzburg University [25]. A suitable
collision avoidance mechanism may also be implemented for
safe operations.

APPENDIX
Desired poles for leader
= [-1.9054 + 1.6368i, —1.9054 — 1.6368i, —0.2350
+ 0.0835i, —0.2350 — 0.0835i, —0.1737 4 0.0720i,
—0.1737 — 0.0720i, —1.9054 + 1.6368i, —1.9054
— 1.6368i, —0.2350 + 0.0835i, —0.2350 — 0.0835i,
— 3.1214 + 0.0000i, —0.5065 + 0.0000:];
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Gain matrix for leader using pole placement

= [0.0557,0.1602, 0.1641, 0.4351, 0.5483, 2.5271,
0.3093, 1.9635, 0.6765, —0.2422, —0.2322, 0.1653;
—0.0172,0.4065, 0.1405, 0.3571, 0.3443, 1.1077,
0.4117,2.4180, —1.3149, —0.4698, —0.2773, 0.1314;
—0.0381, —0.3742, —0.0096, —0.0279, —0.0248,
—0.0458, —0.0387, —0.1789, 8.4567, 4.4017,
—0.1616, —0.1089; 0.0008, 0.0591, 0.0559, 0.3689,
0.0445, 0.1450, 0.0472, 0.2508, —0.3756, —0.1682,

8.4043, 4.4536]
Q matrix (for LQR PI)

= diag([4000, 4000, 5000, 4000, 1, 4000, 1, 5000, 20,
0.25, 1, 1000, 50, 1000, 50, 4000, 1, 4000, 1,
5000, 20, 0.25, 1, 1000, 50, 1000, 50]);

R matrix (for LQR PI) = diag([100, 0.1, 25, 25]);
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