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Introduction
This dissertation is mainly dealing with three different topics, which will turn out to
be related to each other, namely polynomial matrices over finite fields, discrete-time
linear systems and coding theory with focus on convolutional codes. This is reflected
in the structure of this thesis, which has four chapters, where the first one provides
some preliminaries and each of the remaining three chapters is devoted to one of the
three topics mentioned above.

Polynomial Matrices

The mathematical importance of polynomial matrices, especially over finite fields,
could be seen by the fact that they are relevant for many quite diverse mathematical
areas, e.g. number theory, linear algebra, discrete-time linear systems or coding
theory. Consequently, they give rise to draw relations between different mathematical
fields. This is done in this dissertation by relating number theory, systems theory and
coding theory.

In numerous applications of polynomial matrices certain coprimeness properties
are of particular interest. The probably simplest example is a fraction of two scalar
polynomials, where in most cases, it is of advantage to assume that the fraction is
canceled, i.e. that numerator and denominator are coprime. Furthermore, coprime-
ness conditions serve as assumptions for many mathematical theorems, especially in
the field of number theory, e.g. for the Chinese Remainder Theorem, to name just
one of them.

In this thesis, we are mainly concerned with counting polynomial matrices having
special coprimeness properties, i.e. with calculating the probability that a random
polynomial matrix of a prescribed structure fulfills the corresponding coprimeness
condition. The simplest case, namely the case of coprime scalar polynomials, has been
investigated for a long time. It started with the observation that over the binary field,
there are as many pairs of coprime polynomials as pairs of not coprime polynomials,
i.e. the probability of coprimeness is equal to 1/2. According to [15], this was
firstly proven by Knuth in [26]. Generalizing this result, Bennett and Benjamin [4]
computed the probability that finitely many polynomials over an arbitrary finite field
are coprime by using Euclid’s algorithm. An alternative and shorter proof for this
result could be found in [15], where the authors additionally showed that the number
of coprime polynomials is related to the number of Hankel matrices.

A polynomial matrix A ∈ F[z]n×k with n ≥ k is said to be right prime if A(z0) has
full column rank for all z0 from the algebraic closure F. Consequently, coprimeness of
scalar polynomials is equivalent to the right primeness of the column vector having
these polynomials as entries. Hence, right primeness of polynomial matrices could
be viewed as generalization of coprimeness of polynomials. In this thesis, we will
calculate the probability that a polynomial matrix with a special degree structure is
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right prime, whereby we will use the uniform probability distribution. Therefore, we
set t := |F|−1 and investigate the asymptotic behaviour of the probability if t tends to
zero, i.e. the size of the considered field becomes large. To describe the quality of our
asymptotic formula, we will use the Landau symbol O: the negligible term is O(te)
for some e ∈ N if and only if it tends to zero at least as fast as te for t → 0. If one
allows the polynomial entries of the matrix to have arbitrary degrees, one could use
the so-called natural density as probability measure. It was defined by Guo and Yang
in [17], where the authors computed the natural density that a polynomial matrix is
right prime. The proposed degree structure we use is important for the application of
the resulting formula for the probability to linear systems and convolutional codes.
Nevertheless, it turns out to be quite illustrative to compare the achieved formula
with those for the natural density from [17].

Another possibility to generalize the notion of coprime polynomials is to consider
pairwise coprime polynomials. Several authors studied pairwise coprimeness of inte-
gers, resulting in very complicated formulas; see e.g. [39], [30]. To get a formula
for the probability of pairwise coprimeness for finitely many scalar polynomials, we
will transfer the strategy from [30] from integers to polynomials. We will obtain a
quite elaborate formula, which we will simplify by again using Landau O notation to
describe the asymptotic behaviour for large field sizes. We will compare this formula
with the natural density of pairwise coprime polynomials, which was computed in
[18]. Since [18] was not published at the time when the research for the correspond-
ing part of the dissertation was carried out, and not known to us until the research
for the whole dissertation was completed, we also give an own proof for the natural
density of pairwise coprimeness.

In fact, pairwise coprimeness is equivalent to the left primeness of a polynomial
matrix that is constructed out of the involved scalar polynomials in a certain way.
If one does the same construction for square polynomial matrices, i.e. constructs a
bigger matrix out of them and considers its left primeness, one is actually investigating
a property called mutual left coprimeness, which turns out to be a stronger condition
than pairwise coprimeness in the case that the polynomial matrices are not scalar. In
this thesis, we will also asymptotically calculate the probability of this property using
two different probability measures.

Discrete-time Linear Systems

The original motivation for computing the probabilities of all these different coprime-
ness conditions were applications in the theory of discrete-time linear systems, in
particular for the investigation of networks of these systems.
A discrete-time linear system over a field F is given by the equations

x(τ + 1) = Ax(τ) +Bu(τ)

y(τ) = Cx(τ) +Du(τ)

with system matrices A ∈ Fn×n, B ∈ Fn×m, C ∈ Fp×n, D ∈ Fp×m, input u ∈ Fm,
state vector x ∈ Fn, output y ∈ Fp and τ ∈ N0.
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Such systems could be used to describe various phenomena in nature and engineering.
If one looks at the most simplified case, namely B = 0 and A = a ∈ F \ {0} scalar
and initially only considers the first equation, one gets

x(τ + 1) = ax(t).

This equation describes for example the behaviour of a bacterial culture or could be
used to model population growth.

If you have a matrix B 6= 0, it is possible to influence these natural processes via
an (time varying) input u, e.g. by injecting some chemicals into the bacteria or by
affecting population growth through medical developments or political decisions.

The second equation of a linear system characterizes the output y, which is a
variable that is influenced by the internal parameter x as well as by the external
parameter u but itself has no effect on the other parameters. There are plenty of
examples for variables, which are influenced by the population and by political
decisions, e.g. the amount of expended resources, to name just one of them. Surely,
in long term development an increasing consumption of resources might have an
impact on population growth but one has to bear in mind that no model could
completely cover all aspects of reality.

In control theory, one aims to design an input u in such way that the parameter
x attains some desired state. This is only possible if the matrices A and B fulfill a
special property called reachability. There are two famous and frequently used tests
to check reachability of linear system, developed in the middle of the 20th century,
namely the so-called Kalman test and the so called Hautus test. Since the focus of this
dissertation is the calculation of probabilities for certain properties over finite fields,
a very important result for this work is a formula for the probability of reachability
for a linear system over a finite field, provided by Helmke and others in [21].

A second important quality of a linear system is its observability. One defines
a system to be observable if the knowledge of the input and output sequences is
sufficient to determine the sequence of states. In the above example that would
mean that one could infer the population size from the amount of resources and from
political decisions. It turns out that reachability and observability are dual properties
of a linear system. That means there also exist a Kalman test and a Hautus test for
observability and that one could easily conclude a formula for the probability of
observability from the formula for reachability.

Many complex phenomena in nature or engineering could be modelled by a
network of interconnected linear systems. The main contribution of this thesis is
to calculate the probability of reachability for an interconnection of linear systems.
The most important tool for this is a theorem of Fuhrmann and Helmke [14], which
provides criteria for reachability and observability of networks of linear systems. For
the most frequently used coupling structures, namely parallel and series connection
of two systems, this has already been done before by Fuhrmann ([13]), and Callier
and Nahum ([5]), respectively. All these criteria could be expressed as primeness
conditions on specially structured polynomial matrices. For example, to compute the
probability of reachability for a parallel connection of N linear systems, one basically
has to calculate the probability of mutual coprimeness for N polynomial matrices.
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Coding Theory

There exists a strong relationship between discrete-time linear systems and convolu-
tional codes because each convolutional code could be constructed out of a linear
system; see [33], [35]. The basic idea of coding is to add redundancy to a message
you want to send in order to make it possible to reconstruct the original message
even if part of it was received incorrectly or did not arrive at all. An easy example
for this is the use of check digits in various areas of life such as bank cards or ISBN
numbers.

The first approach was to use block codes. In this case, encoding a message,
represented by a vector of elements from a (finite) field, means multiplying it with
a full column rank matrix over this field. This means the codewords are images of
that matrix, which is called generator matrix of the code. One uses the Hamming
distance, which is defined as the number of different components of two codewords,
to measure the error correcting capability of a code. In the sequel of this thesis we
will estimate the probability that a block code has optimal distance properties for
error correction with respect to its parameters. This type of code is called maximum
distance separable (MDS).

In 1955, convolutional codes were introduced by Elias [10]. In a certain sense, he
did this generalizing the notion of block codes by using full column rank polynomial
matrices as generator matrices for the code. Since then, a lot of research has been
done trying to construct convolutional codes with advantageous distance properties;
see e.g. [34], [25], [11]. One section of this thesis is devoted to maximum distance
profile (MDP) convolutional codes, where the probability of this property is estimated.

As mentioned before, it is possible to define a convolutional code in terms of
a linear system. According to [33] and [35], the obtained code is represented by
the corresponding system in a minimal way if and only if the system is reachable.
Moreover, if this is true, the corresponding code is non-catastrophic if and only if
the system is observable. Non-catastrophicity of a code means that finitely many
transmission errors could only cause finitely many decoding errors, what clearly is a
very important quality. Furthermore, non-catastrophicity could be characterized by a
primeness condition on a polynomial matrix. Consequently, it is possible to obtain
the probability of non-catastrophicity for a convolutional code from the probability
of reachability and observability of a linear system as well as by calculating the
probability of the corresponding primeness condition.

Concatenating convolutional codes, i.e. considering networks of such codes, is
a frequently used tool to design codes with certain properties. Again, the standard
interconnections, i.e. parallel and series connection, as well as several variations
and combinations of them, occur most often; see [2], [3], [7], [8], [9], [12]. Using
the relationship between linear systems and convolutional codes, it is possible to
transfer the reachability and observability criteria for networks of linear systems
from [14] to non-catastrophicity criteria for interconnected convolutional codes.
Moreover, the obtained probability results for interconnected linear systems carry
over to concatenated convolutional codes.
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A final type of coding that plays a role for this thesis is random linear network
coding. Network coding is a quite young area of research, which was introduced
by Ahlswede and others [1] in 2000 for use in wireless networks. The basic idea of
linear network coding is to process information from a source via a network to several
sink nodes, where each node of the network forwards a linear combination of the
received symbols. In random linear network coding, one chooses these coefficients
for the linear combinations randomly. The aim is that all sink nodes should finally get
all source information. We will calculate the probability that this is fulfilled, i.e. the
probability that one gets a solution for the network coding problem. In the final part
of this dissertation, we will also look at convolutional network coding, where one
has a delay between receiving and forwarding at the network nodes and consider the
probability of solvability of the network coding problem in this case.
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Chapter 1

Linear Systems and Polynomial Matrices
In this thesis, we want to calculate - amongst others - the probabilities for some
essential properties of linear systems, such as reachability and observability; the
corresponding results can be found in Chapter 3. This first chapter provides some
preliminaries, which we will need for these considerations.

In Section 1.1, we start with some basic definitions and properties about discrete-
time linear systems. Since polynomial matrices over finite fields play an important
role when investigating such systems (see e.g. [31],[13]), we continue defining and
characterizing different notions of coprimeness for polynomial matrices. Finally, this
section is finished by introducing polynomial matrix fraction descriptions for the
transfer function of a linear system.

In Section 1.2, we define networks of linear systems and afterwards, present and
generalize criteria of Fuhrmann and Helmke [14] to characterize their reachability
and observability. We conclude showing some standard examples for such networks.

1.1 Definitions and Basics

Let F be an arbitrary field and A ∈ Fn×n, B ∈ Fn×m, C ∈ Fp×n, D ∈ Fp×m. We
consider discrete-time linear control systems of the form

x(τ + 1) = Ax(τ) +Bu(τ)

y(τ) = Cx(τ) +Du(τ) (1.1)

with input u ∈ Fm, state vector x ∈ Fn, output y ∈ Fp and τ ∈ N0.
In the following, we will frequently identify this system with the matrix-quadruple
(A,B,C,D).

Definition 1.
A linear system (1.1) is called

(a) reachable if for each ξ ∈ Fn there exist τ∗ ∈ N0 and a sequence of inputs
u(0), . . . , u(τ∗) ∈ Fm such that the sequence of states 0 = x(0), x(1), . . . , x(τ∗+1)
generated by (1.1) satisfies x(τ∗ + 1) = ξ.

(b) observable if Cx(τ)+Du(τ) = Cx̃(τ)+Du(τ) for all τ ∈ N0 implies x(τ) = x̃(τ)
for all τ ∈ N0. This means that the knowledge of the input and output sequences
is sufficient to determine the sequence of states.

(c) minimal if it is reachable and observable.
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1 Linear Systems and Polynomial Matrices

The following two theorems provide well-known characterizations both of reacha-
bility as well as of observability, the so-called Kalman test and the so-called Hautus
test.

Theorem 1. (Kalman test)
A linear system (1.1) is reachable if and only if the reachability matrix
R(A,B) := (B,AB, . . . , An−1B) ∈ Fn×nm satisfies rk(R(A,B)) = n and observable

if and only if the observability matrix O(A,C) =

 C
...

CAn−1

 ∈ Fpn×n satiesfies

rk(O(A,B)) = n.

Theorem 2. (Hautus test)
A linear system (1.1) is reachable if and only if rk

[
zI −A B

]
= n for all z ∈ F. It

is observable if and only if rk

[
zI −A
C

]
= n for all z ∈ F.

Since reachability of (1.1) only depends on the matrices A and B, one calls the
pair (A,B) ∈ Fn×n × Fn×m reachable if and only if (1.1) is reachable. Equivalently,
one calls (A,C) ∈ Fn×n × Fp×n observable if and only if (1.1) is observable and
(A,B,C) ∈ Fn×n × Fn×m × Fp×n minimal if and only if (1.1) is minimal.

Remark 1.
The Kalman and the Hautus test show that (A,B,C) is observable if and only if
(A>, C>, B>) is reachable.

It has been proven to be a very useful tool for the investigation of linear systems
to assign a rational matrix, the so-called transfer function, to each system, which is
given by the following definition:

Definition 2.
One calls the rational function T (z) := C(zI − A)−1B + D ∈ F(z)p×m the transfer
function of system (1.1). On the other hand, the matrix-quadruple (A,B,C,D) ∈
Fn×n × Fn×m × Fp×n × Fp×m is called an n-dimensional realization of T (z). It is
called a minimal realization if for any other realization of T (z) with dimension ñ, it
holds ñ ≥ n. In this case, one calls δ(T ) := n the McMillan degree of T .

The following theorem shows that this notion of minimality is actually equivalent
to the notion of minimality from Definiton 1.

Theorem 3.
The matrix-quadruple (A,B,C,D) ∈ Fn×n × Fn×m × Fp×n × Fp×m is a minimal
realization of T (z) = C(zI − A)−1B + D if and only if it is minimal in the sense of
Definition 1, i.e. if and only if it describes a reachable and observable linear system.

It is counted among the fundamental problems of systems theory to find a re-
alization for a given rational function. Hence, there arises the question for which
functions this is even possible. Furthermore, if it is possible, one is interested in

8



1.1 Definitions and Basics

the number of such realizations and especially in the characterization of minimal
realizations. The answers to these questions are contained in the following theorem,
for which we need another definition as a start.

Definition 3.
A rational function T (z) ∈ F(z)p×m is called proper if limz→∞ T (z) exists and strictly
proper if limz→∞ T (z) = 0. Equivalently, it is proper if and only if for the Laurent
series expansion T (z) =

∑∞
i=−N Tiz

−i with N ∈ N0 and Ti ∈ Fp×m holds that
T−N = · · · = T−1 = 0 and strictly proper if and only if T−N = · · · = T0 = 0.

Theorem 4.
Let T (z) ∈ F(z)p×m be a proper rational function. Then, there exists a minimal realiza-
tion (A,B,C,D) ∈ Fn×n × Fn×m × Fp×n × Fp×m of T (z). Moreover, if (Ã, B̃, C̃, D̃)
is another minimal realization, there exists an invertible matrix S ∈ Gln(F) with
A = SÃS−1, B = SB̃, C = C̃S−1, D = D̃.

Remark 2.
Since limz→∞ C(zI−A)−1B+D = D, the transfer function of a linear system is always
proper and strictly proper if and only if D = 0.

Scalar rational functions could be written as a quotient of polynomials, where the
denominator is not allowed to be equal to zero. Moreover, there exists a reduced
representation consisting of coprime polynomials, which is unique up to a constant
factor. All these concepts could be generalized to rational matrices using polynomial
matrix fraction descriptions, what we will do in the following.

Definition 4.
A polynomial matrix Q ∈ F[z]m×m is called nonsingular if det(Q(z)) 6≡ 0. It is called
unimodular if det(Q(z)) 6= 0 for all z ∈ F, i.e. if det(Q(z)) is a nonzero constant. This
is the case if and only if Q is invertible in F[z]m×m, i.e. if there exists R(z) ∈ F[z]m×m

with Q(z)R(z) = Im. Therefore, one denotes the group of unimodular m×m-matrices
over F[z] by Glm(F[z]).

Definition 5.
A polynomial matrix H ∈ F[z]p×m is called a common left divisor of Hi ∈ F[z]p×mi

for i = 1, . . . , N if there exist matrices Xi ∈ F[z]m×mi with Hi(z) = H(z)Xi(z)
for i = 1, . . . , N . It is called a greatest common left divisor, which is denoted by
H = gcld(H1, . . . ,HN ), if for any other common left divisor H̃ ∈ F[z]p×m̃ there exists
S(z) ∈ F[z]m̃×m with H(z) = H̃(z)S(z).
A polynomial matrix E ∈ F[z]p×m is called a common left multiple of Ei ∈ F[z]mi×m

for i = 1, . . . , N if there exist matrices Xi ∈ F[z]p×mi with Xi(z)Ei(z) = E(z) for
i = 1, . . . , N . It is called a least common left multiple, which is denoted by
E = lclm(E1, . . . , EN ), if for any other common left multiple Ẽ ∈ F[z]p̃×m, there exists
R(z) ∈ F[z]p̃×p with R(z)E(z) = Ẽ(z).
One defines a (greatest) common right divisor, which is denoted by gcrd, and a
(least) common right multiple, which is denoted by lcrm, in an analogous manner.
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1 Linear Systems and Polynomial Matrices

Definition 6.
Let m = m1 + · · ·+mN . Polynomial matrices Hi ∈ F[z]p×mi are called left coprime
if there exists X ∈ F[z]m×p such that H = gcld(H1, . . . ,HN ) satisfies HX = Ip. In
particular, one polynomial matrix H ∈ F[z]p×m is called left prime if there exists
X ∈ F[z]m×p with HX = Ip. In an analogous manner, one defines the property to
be right coprime or right prime, respectively. Note that in the case p = m, right
primeness and left primeness are equivalent to the property to be unimodular.

Since it seems not so easy to work directly with these definitions, we will use the
characterizations given by the following theorem.

Theorem 5. [14, Theorem 2.27]
(a) The polynomial matrices Hi ∈ F[z]p×mi are left coprime if and only if

rk(H1(z), . . . ,HN (z)) = p for all z ∈ F.

(b) The polynomial matrices Hi ∈ F[z]pi×m are right coprime if and only if

rk

H1(z)
...

HN (z)

 = m for all z ∈ F.

Remark 3.
(a) Left coprimeness of Hi ∈ F[z]p×mi is equivalent to left primeness of the matrix

(H1, . . . ,HN ) and right coprimeness of Hi ∈ F[z]pi×m is equivalent to right

primeness of

H1

...
HN

.

(b) A rectangular matrix H ∈ F[z]p×m with p ≤ m is left prime if and only if its
p× p-minors are coprime. Analogously, H ∈ F[z]p×m with p ≥ m is right prime
if and only if its m×m-minors are coprime; see e.g. [42].

(c) The Hautus test shows that a pair (A,B) is reachable if and only if zI −A and B
are left coprime and that a pair (A,C) is observable if and only if zI −A and C
are right coprime.

For some of our purposes we will need a stronger notion than just coprimeness
of polynomial matrices, namely mutual coprimeness, which is characterized by the
following definition.

Definition 7.
Nonsingular polynomial matrices D1, . . . , DN ∈ F[z]m×m are called mutually left
coprime if for each i = 1, . . . , N , Di is left coprime with lcrm{Dj}j 6=i.

This criterion for mutual left coprimeness is not very easy to handle. Thus, we
will employ again an equivalent characterization for our later computations.

10



1.1 Definitions and Basics

Theorem 6. [14, Proposition 10.3]
Nonsingular polynomial matrices D1, . . . , DN ∈ F[z]m×m are mutually left coprime if
and only if

DN :=

 D1 D2 0
. . . . . .

0 DN−1 DN


is left prime.

Finally, we will need the following well-known characterization of coprimeness
for two scalar polynomials.

Theorem 7.
Two polynomials p(z) =

∑m
i=0 piz

i and q(z) =
∑n
i=0 qiz

i are coprime if and only if the
Sylvester resultant

Res(p, q) :=



p0 q0

...
. . .

...
. . .

pm p0 qn q0

. . .
...

. . .
...

pm qn

 ∈ F(n+m)×(n+m)

is invertible.

Now, we are ready to consider coprime matrix fraction descriptions of rational
matrices.

Theorem 8. [14, Theorem 2.29]
Let T ∈ F(z)p×m be arbitrary. Then, it holds:

(a) There exist right coprime polynomial matrices P ∈ F[z]p×m and Q ∈ F[z]m×m

nonsingular such that T (z) = P (z)Q(z)−1.
If P̃ ∈ F[z]p×m and Q̃ ∈ F[z]m×m are right coprime with Q̃ nonsingular such that
P̃ (z)Q̃(z)−1 = T (z) = P (z)Q(z)−1, then there exists a (unique) unimodular
matrix U ∈ Glm(F[z]) with P̃ = PU and Q̃ = QU .

(b) There exist left coprime polynomial matrices P̂ ∈ F[z]p×m and Q̂ ∈ F[z]p×p

nonsingular such that T (z) = Q̂(z)−1P̂ (z).
If P̄ ∈ F[z]p×m and Q̄ ∈ F[z]p×p are left coprime with Q̄ nonsingular such that
Q̄(z)−1P̄ (z) = T (z) = Q̂(z)−1P̂ (z), then there exists a (unique) unimodular
matrix U ∈ Glm(F[z]) with P̄ = P̂U and Q̄ = Q̂U .

Among this set of unimodular equivalent coprime factorizations, we focus on two
particular choices, where the denominator matrix has special properties. To this end,
we first need the following definitions.

11



1 Linear Systems and Polynomial Matrices

Definition 8.
The j-th column degree of a polynomial matrix H(z) ∈ F[z]p×m is defined as νj :=
degj H := max1≤i≤p deg(hij). Furthermore, let [hij ] denote the coefficient of zνj in
hij . Then, the highest column degree coefficient matrix [H]hc ∈ Fp×m is defined as
the matrix consisting of the entries [hij ]. For p = m, one calls H column proper if
[H]hc ∈ Glm(F).

Definition 9. [14, Corollary 2.42], [22, Proposition 5.1]
Let Q ∈ F[z]m×m be nonsingular. Then, there exist

(a) a unimodular matrix U1 ∈ Glm(F[z]) such that

QU1 = QH :=


q

(H)
11 0 . . . 0
...

. . . . . .
...

...
. . . 0

q
(H)
m1 . . . . . . q

(H)
mm


with q(H)

ii monic and deg q
(H)
ij < deg q

(H)
ii =: κm+1−i for 1 ≤ j < i ≤ m.

QH is unique and is called Hermite canonical form. Moreover, QH is called of
simple form if κj = 0 for j ≥ 2.

(b) a unimodular matrix U2 ∈ Glm(F[z]) such that

QU2 = QKH :=


q

(KH)
11 . . . q

(KH)
1m

...
...

q
(KH)
m1 . . . q

(KH)
mm


with q(KH)

ii monic, deg q
(KH)
ij < deg q

(KH)
ii for j 6= i, deg q

(KH)
ji < deg q

(KH)
ii for

j < i and deg q
(KH)
ji ≤ deg q

(KH)
ii for j > i.

QKH is unique and is called Kronecker-Hermite canonical form. Note that it
is always column proper.

Theorem 9.
Let T (z) = P (z)Q(z)−1 with P ∈ F[z]p×m, Q ∈ F[z]m×m,det(Q) 6≡ 0 a right coprime
factorization of the transfer function. Then, it holds:

(a) δ(T ) = deg(det(Q)).

(b) For every unimodular matrix U ∈ Glm(F[z]), the pair (PU,QU) is also a right
coprime factorization of the corresponding transfer function. Consequently, one
could either assume that Q = QKH or that Q = QH .

12



1.2 Networks of Linear Systems

Proof.

(a) This equality is one of the statements of Theorem 4.24 of [14].

(b) Since Q is nonsingular, there exist (unique) unimodular matrices U1 und U2,
such that QU1 is in Kronecker-Hermite and QU2 is in Hermite canonical form.
If one takes the pair (PUi, QUi) instead of (P,Q) for i = 1, 2, one still has a
right coprime factorization of the transfer function because (PUi)(QUi)

−1 =
PUiU

−1
i Q−1 = PQ−1 and multiplying with unimodular matrices does not

change coprimeness.

So far, we only focused on the structure of the denominator matrix Q. But if it is in
Kronecker-Hermite from, i.e. especially column proper, one also has some knowledge
about the numerator matrix P .

Lemma 1. [14, Proposition 2.30]
Let (A,B,C,D) ∈ Fn×n×Fn×m×Fp×n×Fp×m and C(zI−A)−1B+D = P (z)Q(z)−1

with P ∈ F[z]p×m, Q ∈ F[z]m×m,det(Q) 6≡ 0 and Q column proper. Then, one has for
j = 1, ....,m:

degj P (z) ≤ degj Q(z) and degj P (z) < degj Q(z) if D = 0.

1.2 Networks of Linear Systems

With the help of polynomial matrix fraction descriptions for linear systems, which we
introduced in the preceding subsection, we are now able to analyze interconnections
of linear systems. Doing this, we consider a network of N linear systems defined by
the following equations

xi(τ + 1) = Aixi(τ) +Bivi(τ) (1.2)

wi(τ) = Cixi(τ) +Divi(τ) (1.3)

vi(τ) =

N∑
j=1

Kijwj(τ) + Liu(τ) (1.4)

y(τ) =

N∑
i=1

Miwi(τ) + Ju(τ) (1.5)

with Ai ∈ Fni×ni , Bi ∈ Fni×mi , Ci ∈ Fpi×ni , Di ∈ Fpi×mi ,Kij ∈ Fmi×pj , Li ∈
Fmi×m,Mi ∈ Fp×pi and J ∈ Fp×m.
Equations (1.2) and (1.3) describe the dynamics at the single systems, which are
called node systems. Equation (1.4) gives information about the interconnection
structure between the node systems and equation (1.5) provides a formula for the
output of the whole network.
In the following, assume that (Ai, Bi, Ci) are minimal for i = 1, . . . , N .

13



1 Linear Systems and Polynomial Matrices

Define K := (Kij)ij , L :=

 L1

...
LN

 and M := [M1, . . . ,MN ] as well as

A :=

 A1 0
. . .

0 AN

, B :=

 B1 0
. . .

0 BN

, C :=

 C1 0
. . .

0 CN

 and

D :=

 D1 0
. . .

0 DN

.

Thus, the global state space representation of the decoupled node systems is

x(τ + 1) = Ax(τ) +Bv(τ)

w(τ) = Cx(τ) +Dv(τ)

and the interconnection is

v(τ) = Kw(τ) + Lu(τ)

y(τ) = Mw(τ) + Ju(τ).

To get the interconnected system into the form

x(τ + 1) = Ax(τ) + Bu(τ)

y(τ) = Cx(τ) +Du(τ),

with (A,B, C,D) ∈ Fn×n × Fn×m × Fp×n × Fp×m where n =
∑N
i=1 ni, one has to

write w(τ) as a linear combination of x(τ) and u(τ). Inserting the expression for v(τ)
into the equation for w(τ), leads to (I −DK)w(t) = Cx(τ) +DLu(τ). Therefore, in
the following, one only considers interconnection structures with det(I −DK) 6= 0.
In this case, one obtains w(τ) = (I −DK)−1Cx(τ) + (I −DK)−1DLu(τ) and

A = A+BK(I −DK)−1C

B = BK(I −DK)−1DL+BL = B(I −KD)−1L

C = M(I −DK)−1C

D = M(I −DK)−1DL+ J.

For the transformation of B, the identity (K(I −DK)−1D + I)(I −KD) = K(I −
DK)−1(I −DK)D + I −KD = I was used.

Finally, for i = 1, . . . , N , consider right and left coprime factorizations

Ci(zI −Ai)−1Bi +Di = Pi(z)Q
−1
i (z) = Q̂i(z)

−1P̂i(z)

and define P (z) :=

 P1(z) 0
. . .

0 PN (z)

, Q(z) :=

 Q1(z) 0
. . .

0 QN (z)

. Q̂

and P̂ are defined analogously.
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1.2 Networks of Linear Systems

Then, C(zI −A)−1B +D = MP (z)(Q(z)−KP (z))−1L+ J =
= M(Q̂(z)− P̂ (z)K)−1P̂ (z)L+ J ; see [14, p. 465].

The following theorem generalizes part of Theorem 9.8 of [14] to the case that
the interconnected systems are just proper and not necessarily strictly proper as
required there.

Theorem 10.
With the same notations as above and with the assumptions that (Ai, Bi, Ci, Di) are
minimal for i = 1, . . . , N and det(I −DK) 6= 0, one has:

1. The following statements are equivalent:

(a) (A,B) is reachable.

(b) Q(z)−KP (z), L are left coprime.

(c) Q̂(z)− P̂ (z)K, P̂ (z)L are left coprime.

2. The following statements are equivalent:

(a) (A, C) is observable.

(b) Q(z)−KP (z),MP (z) are right coprime.

(c) Q̂(z)− P̂ (z)K,M are right coprime.

Proof.
We follow the lines of the proof of Theorem 9.8 in [14] and start with the equivalence
of (a) and (b) in both parts of the theorem to be proven. According to Definition
4.30, Theorem 4.26 and Theorem 4.32 of [14], one has to show that there exist
appropriately sized polynomial matrices E(z), F (z), X(z), Y (z) with E(z), zI −A
left coprime and Q(z)−KP (z), F (z) right coprime such that[

E(z) 0
−X(z) I

]
·
[
Q(z)−KP (z) −L

MP (z) J

]
=

[
zI −A −B
C D

]
·
[
F (z) Y (z)

0 I

]
.

The above equation is equivalent to the following four equations:

E(z)(Q(z)−KP (z)) = (zI −A−BK(I −DK)−1C)F (z) (1.6)

− E(z)L = (zI −A−BK(I −DK)−1C)Y (z)−B(I −KD)−1L (1.7)

−X(z)(Q(z)−KP (z)) +MP (z) = M(I −DK)−1CF (z) (1.8)

X(z)L+ J = M(I −DK)−1CY (z) +M(I −DK)−1DL+ J (1.9)

Define Y (z) := 0, E(z) := B(I −KD)−1 = BK(I −DK)−1D +B,
X(z) := M(I −DK)−1D and F (z) := (zI −A)−1BQ(z).
One immediately sees that these matrices fulfill (1.7) and (1.9). Equation (1.8) gets
the form

−M(I −DK)−1D(Q(z)−KP (z)) +MP (z) = M(I −DK)−1C(zI −A)−1BQ(z),

15
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which is fulfilled if

−D(Q(z)−KP (z)) + (I −DK)P (z) = C(zI −A)−1BQ(z) =

= (P (z)Q(z)−1 −D)Q(z) = P (z)−DQ(z),

which clearly is true. Equation (1.6) is equivalent to

B(I −KD)−1(Q(z)−KP (z)) =

= (zI −A−BK(I −DK)−1C)(zI −A)−1BQ(z)

⇔ BK(I −DK)−1DQ(z)− (BK(I −DK)−1D +B)KP (z)) =

= −BK(I −DK)−1C(zI −A)−1BQ(z).

This is true if

DQ(z)−DKP (z)− (I −DK)P (z) = −C(zI −A)−1BQ(z),

which was already shown considering equation (1.8).
It remains to show that F (z) is a polynomial, which is left coprime with

Q(z)−KP (z), as well as that zI −A, E(z) are right coprime.
Therefore, consider the coprime factorization P̃ (z)Q̃(z)−1 = (zI −A)−1B. With

the definitions Ỹ (z) := 0, Ẽ(z) := B, X̃(z) := D, F̃ (z) := P̃ (z) and
H(z) := CP̃ (z) +DQ̃(z), one has[

Ẽ(z) 0

−X̃(z) I

]
·
[
Q̃(z) −I
H(z) 0

]
=

[
zI −A −B
C D

]
·
[
F̃ (z) Ỹ (z)

0 I

]
,

where Ẽ = B and zI −A are left coprime because the single systems are reachable
and Q̃(z) and F̃ (z) are right coprime per definition. Furthermore, as the node
systems are minimal, zI − A and B are left coprime and zI − A and C are right
coprime. It follows from Definition 4.30, Theorem 4.26 and Theorem 4.32 of [14]
that H(z)Q̃(z)−1 is a right coprime factorization of C(zI −A)−1B +D. Therefore,
there exists a unimodular matrix U(z) with P (z) = H(z)U(z) and Q(z) = Q̃(z)U(z)
and thus, F (z) = (zI − A)−1BQ(z) = P̃ (z)U(z) is a polynomial. Moreover, since
Q(z) and P (z) are right coprime per definition and det(I −DK) 6= 0 per assumption,[

I 0
0 C

]
·
[

Q(z)−KP (z)
(zI −A)−1BQ(z)

]
=

[
Q(z)−KP (z)

(P (z)Q(z)−1 −D)Q(z)

]
=

=

[
I −K
−D I

]
·
[
Q(z)
P (z)

]
.

has full column rank, i.e. the corresponding map is injective, for all z ∈ F. Therefore,

the map defined by
[

Q(z)−KP (z)
(zI −A)−1BQ(z)

]
has to be injective, i.e. of full column

rank, for all z ∈ F, too. Consequently, Q(z)−KP (z), F (z) are right coprime.
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That the other coprimeness condition is fulfilled as well follows from

rk[B(I −KD)−1 zI −A−BK(I −DK)−1C] =

= rk[B(I −KD)−1

zI −A−BK(I −DK)−1C +B(I −KD)−1(I −KD)K(I −DK)−1C] =

= rk[B(I −KD)−1 zI −A] =

= rk

(
[B(I −KD)−1 zI −A] ·

[
I −KD 0

0 I

])
=

= rk[B zI −A]

and the fact that the single systems are reachable per assumption.
Finally, the equivalences between (b) and (c) in both parts of the theorem hold

because Q̂(z)−1P̂ (z) = P (z)Q(z)−1 implies[
P̂ (z) 0

0 I

]
·
[
Q(z)−KP (z) −L

MP (z) J

]
=

=

[
Q̂(z)− P̂ (z)K −P̂ (z)L

M J

]
·
[
P (z) 0

0 I

]
,

where P̂ (z) and Q̂(z)− P̂ (z)K are left coprime since P̂ (z) and Q̂(z) are left coprime
and P (z) and Q(z)−KP (z) are right coprime since P (z) and Q(z) are right coprime.

Remark 4.
In the preceding theorem, it was assumed that the node systems are minimal. But this
assumption is necessary anyway since reachability/observability of the interconnected
system implies that the node systems are reachable/observable.

Proof.
(A,B) is reachable if and only if [zI − A − BK(I −DK)−1C B(I −KD)−1L] =

[zI − A − BK(I −DK)−1C B(I −KD)−1] ·
[
I 0
0 L

]
is surjective for all z ∈ F.

This implies that [zI −A−BK(I −DK)−1C B(I −KD)−1] is surjective, i.e. of full
row rank, for all z ∈ F. As done at the end of the previous proof, one could show that
the rank of this matrix equals the rank of [zI −A B]. Hence, the diagonal structure
of A and B effects that the node systems are reachable.

Analogously, (A, C) is observable if and only if[
zI −A−BK(I −DK)−1C

M(I −DK)−1C

]
=

=

[
I 0
0 M(I −DK)−1

]
·
[
zI −A−BK(I −DK)−1C

C

]
is injective for all z ∈ F. This implies that

[
zI −A−BK(I −DK)−1C

C

]
is injec-

tive, i.e. of full column rank, for all z ∈ F. But the rank of this matrix is equal
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to the rank of
[
zI −A
C

]
. Again, the diagonal structure of A and C effects the

observability of the node systems.

Corollary 1.
An interconnected system (A,B, C,D) is minimal if and only if the node systems are
minimal, Q(z)−KP (z), L are left coprime andQ(z)−KP (z),MP (z) are right coprime
or equivalently, if the node systems are minimal, Q̂(z)− P̂ (z)K, P̂ (z)L are left coprime
and Q̂(z)− P̂ (z)K,M are right coprime.

In the following, the achieved criteria should be applied to some standard inter-
connection structures.

Example 1.
(a) Parallel connection

Here, one has K = 0, L> = [Im . . . Im] and M = [Ip . . . Ip]. Hence, I −DK is
invertible for all values of D. Applying the preceding theorem, one gets that this

interconnection is reachable if and only if

 Q1(z) Im
. . .

...
QN (z) Im

 is left

prime, which is the

case if and only if

 Q1(z) −Q2(z)
. . . . . .

QN−1(z) −QN (z)

 is left prime, i.e. if

and only if Q1, . . . , QN are mutually left coprime. This could be seen by adding the
second block of rows to the first, afterwards the third block of rows to the second,

and so on. Equivalent is the condition that

 Q̂1(z) P̂1(z)
. . .

...
Q̂N (z) P̂N (z)

 is

left prime. The

interconnection is observable if and only if


Q1(z)

. . .
QN (z)

P1(z) . . . PN (z)

 is right prime

or equivalently,


Q̂1(z)

. . .
Q̂N (z)

Ip . . . Ip

 is right prime, which is equivalent to

mutual left coprimeness of Q̂>1 , . . . , Q̂
>
N .
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(b) Series connection

In this case, it holds K =


0 · · · · · · 0

Ip1
. . .

...
. . . . . .

...
0 IpN−1

0

, L =


Im
0
...
0

 and

M = [0 · · · 0 IpN ].
One has det(I −DK) = 1 6= 0 and therefore, Theorem 10 could be applied for all
possible values of D. Doing this, one gets that the interconnection is reachable if
and only if

Q1(z) Im
−P1(z) Q2(z) 0

. . . . . .
...

−PN−1(z) QN (z) 0

 is left prime, which is the case if

and

only if

 −P1(z) Q2(z)
. . . . . .

−PN−1(z) QN (z)

 is left prime. Equivalent is the

condition that


Q̂1(z) P̂1(z)

−P̂2(z) Q̂2(z) 0
. . . . . .

...
−P̂N (z) Q̂N (z) 0

 is left prime. The

interconnection is observable if and only if
Q1(z)
−P1(z) Q2(z)

. . . . . .
−PN−1(z) QN (z)

−PN (z)

 is right prime or equivalently,


Q̂1(z)

−P̂2(z)
. . .
. . . Q̂N−1(z)

−P̂N (z)

 is right prime.

(c) Circular/Feedback interconnection

Here, one hasK =


0 · · · 0 IpN

Ip1
. . . 0
. . . . . .

...
0 IpN−1

0

, L =


Im
0
...
0

 andM = [Ip1 0 · · · 0].
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Thus, Theorem 10 could be applied if

det(I −DK) = det




I · · · 0 −D1

−D2
. . . 0
. . . . . .

...
0 −DN I


 =

= det




I 0 · · · 0

−D3
. . . . . .

...
. . . . . . 0

0 −DN I

−

−D2

0
...
0

 · [0 . . . 0−D1]

 =

= det




I · · · 0 −D2 ·D1

−D3
. . . 0
. . . . . .

...
0 −DN I


 = · · · =

= det

([
I −DN−1 · · ·D1

−DN I

])
= det(I −DN · · ·D1) 6= 0.

For this computation, the formula det

[
I A
B C

]
= det(C−BA) was used several

times.
With the above assumption, the interconnection is reachable if and only if

Q1(z) −PN (z) Im
−P1(z) Q2(z) 0

. . . . . .
...

−PN−1(z) QN (z) 0

 is left prime, which clearly is

equivalent to the reachability criterion for series connection. Moreover, the inter-
connection is observable if and only if

Q1(z) −PN (z)
−P1(z) Q2(z)

. . . . . .
−PN−1(z) QN (z)

PN (z)

 is right prime, which is equivalent

to the criterion for series connection, too. In a similiar way, one can show that the
reachability and observability criteria using Q̂ and P̂ are equivalent for series and
circular interconnection.
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Chapter 2

Counting Problems
To compute the probability that a mathematical object has a special property, it is
necessary to count mathematical objects. Therefore, in the following, we restrict
our considerations to a finite field F, which is endowed with the uniform probability
distribution that assigns to each field element the same probability

t =
1

|F|

and denote the corresponding probability of a set A by Pr(A).
In addition to computing probabilities with the uniform distribution, which is only

defined for finite sets, we will compare these results with the results one gets using
another definition of probability, namly the concept of natural density as defined in
[17] for infinite sets:

Definition 10.
To enumerate F[z], assign the number k =

∑∞
i=0 ai(

1
t )
i to the polynomial fk(z) =∑∞

i=0 aiz
i, where ai = 0 for all but finitely many coefficients and for the computation of

k, the ai are considered as elements of Z. In particular, f0 ≡ 0. Moreover, letMn be the
set of tuples (D1, . . . , DN ) ∈ (F[z]l×m)N for which the entries of Di are elements of the
set {f0, . . . , fn} for i = 1, . . . , N .
The natural density of a setE ⊂ (F[z]l×m)N in (F[z]l×m)N is defined as limn→∞

|E∩Mn|
|Mn|

if this limit exists.

In this chapter, we count polynomial matrices (over finite fields) fulfilling special
coprimeness conditions since there number enables us to calculate the probabilities
of reachability (and observability) for networks of linear systems by using Theorem
10.

In the first section of this chapter, we will present several already known results
concerning general counting strategies and cardinality formulas as well as a few own
extentions of these formulas and some newly developed counting methods.

In Section 2.2, we calculate the probability that a rectangular matrix of a special
form is right prime because this value plays an important role for calculating the
probability of minimality for a single system in Section 3.1.

The remaining and main part of this chapter is devoted to the calculation of the
probability of mutual left coprimeness as this probability is crucial for the probability
that a parallel connection is reachable; see Example 1 (a). In Section 2.3, this is firstly
done for the case of scalar polynomials (where mutual and pairwise coprimeness
coincide), which corresponds to a parallel connection of single-input systems. Finally,
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2 Counting Problems

in Section 2.4, we do the same for the general case of square matrices with arbitrary
sizes.

The results of Sections 2.2, 2.3 and 2.4 are compared with the formulas one gets
using the natural density instead of the uniform probability distribution at the end of
the corresponding paragraphs.

2.1 General Counting Strategies

In this first subsection, we present some general counting results, which we will need
for our purposes. Some of them are well-known and therefore, stated without proof,
while others are newly developed and hence, require a proof.

We start with a fundamental and frequently used principle for the determination
of cardinalities, namly the so-called inclusion-exclusion principle.

Lemma 2. (Inclusion-Exclusion Principle)
Let A1, . . . , An be finite sets and X =

⋃n
i=1Ai. For I ⊂ {1, . . . , n}, define

AI :=
⋂
i∈I Ai. Then, it holds

|X| =
∑

∅6=I⊂{1,...,n}

(−1)|I|−1|AI |.

Another famous result is the Schwartz-Zippel lemma, which makes it possible to
estimate the cardinality of varieties over finite fields.

Lemma 3. (Schwartz-Zippel)[36, Corollary 1]
Let f ∈ F[x1, . . . , xr] be a nonzero polynomial of total degree d. Moreover, let v1, . . . , vr
be selected at random independently and uniformly from F. Then

Pr(f(v1, . . . , vr) = 0) ≤ d · t.

In Section 2.2, we will consider right prime polynomial matrices. For the case that
these are constant, this property simply means being of full rank and there already
exists a formula for the corresponding cardinality as the following lemma shows.

Lemma 4. [27, S. 455]
For 1 ≤ r ≤ min(k, n), denote by N(k, n, r) the number of matrices from Fk×n with
rank r. Then, it holds

N(k, n, r) = t−nr
n∏

j=n−r+1

(1− tj) ·
r−1∏
i=0

ti−k − 1

t−(i+1) − 1
.

In particular, the number of invertible n× n-matrices over F is equal to

|Gln(F)| = t−n
2
n∏
j=1

(1− tj).
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2.1 General Counting Strategies

Next, we consider another special case of polynomial matrices, namly matrices
with only one row or column, i.e. vectors of polynomials. Here, being of full rank is
equivalent to the fact that the polynomial entries are coprime, whose probability has
also already been computed before:

Lemma 5. [15, Theorem 4.1]
The probability that N monic polynomials d1, . . . , dN ∈ F[z] with deg(di) = ni ∈ N for
i = 1, . . . , N are coprime is equal to 1− tN−1.

Remark 5.
In [15], directly before stating the preceding theorem, the authors remarked that one gets
the same probability when considering arbitrary (not necessarily monic) polynomials.
This clearly is true as long as the polynomials have a fixed nonzero degree. However,
at some points, we will need the probability of coprimeness in the case that the degree
of several of the polynomials is only upper bounded, which allows them to be constant.
Therefore, we require the following considerations.

Corollary 2.
For N ∈ N and M ∈ N0, the probability that d1, . . . , dN+M ∈ F[z], where di monic with
deg(di) = ni ∈ N for i = 1, . . . , N and deg(di) ≤ ni ∈ N0 for i = N + 1, . . . , N +M ,
are coprime is equal to 1− tN+M−1.

Proof.
This corollary is shown per induction with respect to M . For M = 0, the statement
follows from Lemma 5. Assume the statement is true for M not necessarily monic
polynomials. If dN+M+1 is the zero polynomial, which occurs with probability
tnN+M+1+1, the N +M + 1 polynomials are coprime if and only if the first N +M
polynomials are coprime, which has a probability of 1 − tN+M−1 per induction. If
dN+M+1 is a nonzero constant, which happens with probability tnN+M+1+1(t−1 − 1),
the polynomials are always coprime. Finally, if dN+M+1 is not constant, which
appears with probability t−(nN+M+1+1)−t−1

t−(nN+M+1+1) , it follows per induction and from Remark
5 that the proability of coprimeness is equal to 1 − tN+M . Summing up all these
cases, one gets that the overall probability is equal to

tnN+M+1+1(1− tN+M−1) + tnN+M+1+1(t−1 − 1) +
t−(nN+M+1+1) − t−1

t−(nN+M+1+1)
(1− tN+M )

= tnN+M+1+1(t−1 − tN+M−1) + (1− tnN+M+1)(1− tN+M ) = 1− tN+M .

Remark 6.
The statement of the preceding corollary is not true if N = 0, i.e. if there is no monic
polynomial involved. To see this, consider for example the case n1 = n2 = 1 over the
binary field, i.e. t = 1/2. Listing all possible pairs of polynomials of degree at most 1
and counting the coprime pairs, one gets that the probability of being coprime is equal
to 9

16 6= 1− 1
2 .

23



2 Counting Problems

To be able to estimate the probability for different coprimeness conditions in
further parts of this work, we need to estimate the number of polynomials whose value
at a given point z0 is fixed. Since this implies considering the minimal polynomial of
z0 over F and the minimal polynomials of elements of F are exactly the irreducible
polynomials over F, we will need the following well-known result counting irreducible
polynomials of a certain degree.

Lemma 6.
The number of monic irreducible polynomials in F[z] of degree j is equal to

ϕj =
1

j

∑
d|j

µ(d)t−j/d =
1

j
t−j +O(t−(j−1))

where for n ∈ N, µ(n) :=

{
(−1)|{p∈P | p|n}|, n square-free
0, otherwise

.

Remark 7.
For z0 ∈ F, denote by fz0 its minimal polynomial over F and set gz0 := deg(fz0). Then,
for g ∈ N, the number of z0 ∈ F with gz0 = g is at most ϕg · g = O(tg). In particular,
for g = 1, it is equal to t.

Proof.
The statement follows directly from the fact that there are ϕg possible minimal
polynomials for z0 and each of them has at most g different zeros.

Lemma 7.
Let z0, z1 ∈ F with z0 6= z1 as well as n ∈ N be fixed. Then, it holds:

(a) The number of d ∈ F[z] monic with deg(d) = n such that d(z0) = 0 is equal to
t−n+gz0 if n ≥ gz0 and zero if n < gz0 . Moreover, the number of d ∈ F[z] monic
with deg(d) = n such that d(z0) = d(z1) = 0 is equal to t−n+deg(lcm(fz0 ,fz1 )) if
n ≥ deg(lcm(fz0 , fz1)) and zero otherwise. In particular, for z0, z1 ∈ F, it is equal
to t−n+2 if n ≥ 2 and zero if n = 1.

(b) Let w, w̃ ∈ F(z0)[z] with w̃(z0) 6= 0 be fixed. Then, the number of d ∈ F[z] monic
with deg(d) = n such that w(z0) = w̃(z0) · d(z0) is at most t−n+1. Moreover, the
number of d ∈ F[z] with deg(d) < n such that w(z0) = w̃(z0) · d(z0) is at most
t−n+1. In particular, for z0 ∈ F, it is equal to t−n+1 in both cases.

(c) Let w, w̃ ∈ F(z0, z1)[z] with w̃(z0) 6= 0 6= w̃(z1) be fixed. Then, for n ≥ 2,
the number of d ∈ F[z] with deg(d) < n such that w(z0) = w̃(z0) · d(z0) and
w(z1) = w̃(z1) · d(z1) is at most t−n+2. In particular, for z0, z1 ∈ F, it is equal to
t−n+2.
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2.1 General Counting Strategies

Proof.

(a) It holds d(z0) = 0 if and only if fz0 divides d. Thus, one has to count the number
of degree n monic multiples of fz0 , which coincides with the number of monic
polynomials in F[z] of degree n − gz0 if the last expression is non-negative;
otherwise fz0 cannot divide d. Therefore, one has t−(n−gz0 ) possibilities for d if
n ≥ gz0 and if n < gz0 , the number of possibilities is equal to zero.
For the second part of the statement, one gets the condition that lcm(fz0 , fz1)
has to divide d, which could be treated with a similar argumentation as above.
Note that there are only the two possibilities lcm(fz0 , fz1) = fz0 = fz1 and
lcm(fz0 , fz1) = fz0 · fz1 because fz0 and fz1 are irreducible. Since z0 6= z1, for
z0, z1 ∈ F, one has lcm(fz0 , fz1) = (z−z0)(z−z1). Thus, for n = 1, the number
of possibilities is equal to zero and for n ≥ 2, there are t−(n−2) possibilities for
d.

(b) If d is fixed to w(z0)/w̃(z0) ∈ F at z0, one could choose all coefficients of d
but the constant one randomly and then, solve the corresponding equation
with respect to this constant coefficient. Therefore, it is fixed by the other
coefficients, which leads to a factor of at most t for the number of possibilities.
Note that if z0 /∈ F, for some random choices, one gets a value for the constant
coefficient that is not in F and thus, not all choices for the other coefficients are
possible. But this only decreases the number of possibilities. Thus, one has at
most t−n+1 possibilities for d. If z0 ∈ F, all choices for the other coefficients are
possible and hence, one has t−n+1 possibilities.

(c) Denote by a0, . . . , an−1 the coefficients of d. If one chooses a2, . . . , an−1 arbi-
trarily, one gets a system of two linear equations of the form[

z0 1
z1 1

]
·
(
a1

a0

)
=

(
y1

y2

)
where y1 and y2 depend on w, w̃, z0, z1 and a2, . . . , an. Since

det

[
z0 1
z1 1

]
= z0 − z1 6= 0, there exists a unique solution for a0 and a1.

Hence, these two coefficients are fixed by the others which gives a factor of t2

for the number of possibilities. As in part (b), it is not clear that one gets values
for a0 and a1 that are elements of F. Therefore, the number of possibilities is
at most t−n+2. For z0, z1 ∈ F, one gets a0, a1 ∈ F, and hence, one has t−n+2

possibilities.

Corollary 3.
Let z0, z1 ∈ F and n ∈ N. The number of d ∈ F[z] with deg(d) < n such that
d(z0) = d(z1) = 0 is equal to t−n+deg(lcm(fz0 ,fz1 )) if n ≥ deg(lcm(fz0 , fz1)) and 1
otherwise. In particular, for z0, z1 ∈ F, it is equal to t−n+2 if n ≥ 2 and 1 if n = 1.
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Proof.
One has to compute the number of polynomials d which are divided by lcm(fz0 , fz1)
with g := deg(lcm(fz0 , fz1)). Since there are t−1 − 1 possibilities for the leading
coefficient of the polynomial, for deg(d) = k, one gets (t−1 − 1)t−k+g for k ≥ g and
zero otherwise (see Lemma 7 (a)). Moreover, one has to add one possibility for the
zero polynomial, which is divided by every (monic) polynomial. In summary, one
gets (t−1 − 1)

∑n−1
k=g t

−k+g + 1 = (t−1 − 1) t
−n+g−1
(t−1−1) + 1 = t−n+g. For n ≤ g, the zero

polynomial is the only possibility.

In Section 2.4, we will give an asymptotic expression for the probability of
mutual left coprimeness for polynomial matrices in Hermite form. We will derive
it by dividing the set of matrices in Hermite form into different subsets according
to their degree structure and showing that only one of these structures, which is
named simple form by the following definition, is relevant for the leading term of this
asymptotic expansion. Therefore, we will need the following lemma, which computes
the cardinalities of the different subsets.

Definition 11.
For n1, . . . , nN ∈ N, let X(n1, . . . , nN ) be the set of all N -tuples of matrices Di ∈
F[z]m×m in Hermite form with deg(Di) = ni for i = 1, . . . , N . Moreover, denote by
κ

(i)
m , . . . , κ

(i)
1 the row degrees of Di, i.e. the (j, j)-entry of Di has degree κ(i)

m−j+1 and

κ
(i)
m + · · · + κ

(i)
1 = ni. Furthermore, for κ = (κ

(1)
m , . . . , κ

(1)
1 , . . . , κ

(N)
m , . . . , κ

(N)
1 ), let

Xκ(n1, . . . , nN ) be the subset of
X(n1, . . . , nN ) for which the row degrees are equal to κ. Finally, one calls

DN =

 D1 D2 0 0

0
. . . . . . 0

0 0 DN−1 DN

 of simple form

if κ(i)
j = 0 for j ≥ 2 and i = 1, . . . , N .

Lemma 8.
The cardinality of Xκ(n1, . . . , nN ) is equal to

|Xκ(n1, . . . , nN )| =
N∏
i=1

m∏
j=1

t−(m−j+1)·κ(i)
j .

and the cardinality of X(n1, . . . , nN ) is equal to

|X(n1, . . . , nN )| =
N∏
i=1

∑
κ
(i)
1 +···+κ(i)

m =ni

m∏
j=1

t−(m−j+1)·κ(i)
j = t−m(n1+···+nN )(1−O(t)).

Consequently, it holds

|Xκ(n1, . . . , nN )|
|X(n1, . . . , nN )|

= tcκ · (1−O(t)) with cκ =

N∑
i=1

m∑
j=1

(j − 1)κ
(i)
j . (2.1)

In particular, one has cκ = 0 if DN is of simple form.
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Proof.
The j − 1 polynomials beyond the diagonal of Di in row j are of degree less than
κ

(i)
m−j+1, which means that one has t−κ

(i)
m−j+1 possibilities for each of them. For the

monic polynomial on the diagonal of row j one has t−κ
(i)
m−j+1 possibilities, too. Thus,

the set Xκ(n1, . . . , nN ) has cardinality

N∏
i=1

m∏
j=1

t−j·κ
(i)
m−j+1 =

N∏
i=1

m∏
j=1

t−(m−j+1)·κ(i)
j .

The formula for |X(n1, . . . , nN )| follows by summing up all possible values for κ. For
the asymptotic result, one employs that the subset of X(n1, . . . , nN ) that consists of
those matrices DN which are of simple form, has larger cardinality then all other
subsets Xκ(n1, . . . , nN ). Using the above formulas as well as ni =

∑m
j=1 κ

(i)
j , one

gets (2.1).

We conclude this section by introducing a method, which will be used several
times in this dissertation to reduce coprimeness conditions on polynomial matrices to
a system of equations for their entries.

Lemma 9. (Method of Iterated Column/Row Operations)
Let G ∈ F[z]n×m and z0 ∈ F with rk(G(z0)) < min(n,m).

(a) If m < n, there exist k ∈ {0, . . . ,m − 1}, a set of row indices {i1, . . . , ik} ⊂
{1, . . . , n} and values λr ∈ F(z0), which (only) depend on entries gij of G with
i ∈ {i1, . . . , ik} and on z0, such that

gi,m−k(z0) =

m∑
r=m−k+1

gir(z0) · λr for i ∈ {1, . . . , n} \ {i1, . . . , ik}. (2.2)

(b) If n < m, there exist k ∈ {1, . . . , n}, a set of column indices
{j1, . . . , jk−1} ⊂ {1, . . . ,m} and values λr ∈ F(z0), which (only) depend on
entries gij of G with j ∈ {j1, . . . , jk−1} and on z0, such that

gkj(z0) =

k−1∑
r=1

grj(z0) · λr for j ∈ {1, . . . ,m} \ {j1, . . . , jk−1}. (2.3)

Proof.

(a) Set p := n−m. If

rk

 g11 . . . g1m

...
...

gm+p,1 . . . gm+p,m

 (z0) < m,

then either g1m(z0) = · · · = gm+p,m(z0) = 0, which implies that equations (2.2)
are fulfilled for k = 0 and one is done, or one could choose a nonzero entry
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from the set {g1m(z0), . . . , gm+p,m(z0)}. In this case, one chooses the nonzero
entry with the least row index, which should be denoted by i1. One subtracts
the last column times gi1,j(z0)

gi1,m(z0) from the j-th column for j = 1, . . . ,m−1, which
nullifies the i1-th row but its last entry. Afterwards, this changed i1-th row
is used to nullify the other entries of the last column by adding appropriate
multiplies of it to the other rows. Note that this final step only changes the last
column of G. Define G(1) ∈ F[z](m+p)×m by

g
(1)
ij =

{
gij for i = i1, j = m

gij − gim ·
gi1j
gi1m

otherwise
.

Then, it holds m > rk(G(z0)) = rk(G(1)(z0)) One iterates this procedure, i.e. if
column m−1 of G(1)(z0) contains an entry that is unequal to zero, one uses it to
nullify its row, whose index should be denoted by i2, and afterwards its column.
Setting G(0) := G, this leads to a sequence of matrices G(k) ∈ F[z](m+p)×m

with rk(G(k))(z0) < m for 0 ≤ k ≤ m− 1, which is obtained by the recursion
formula

g
(k)
ij =

g
(k−1)
ij for i = ik, j = m− k + 1

g
(k−1)
ij − g(k−1)

i,m−k+1 ·
g
(k−1)
ik,j

g
(k−1)
ik,m−k+1

otherwise
.

One stops this iteration when all entries of column m− k of G(k) are zero at
z0. Note that the last k columns of G(k)(z0) are linearly independent since
for j = 0, . . . , k − 1, it holds g(k)

ij+1,m−j(z0) 6= 0 and g
(k)
i,m−j ≡ 0 for i 6= ij+1,

as well as is 6= ir for r 6= s, per construction. If the iteration does not stop
in between, one ends up with the matrix G(m−1), whose entries g(m−1)

i,1 for
i ∈ {1, . . . , n} \ {i1, . . . , im−1} are not zero per construction but have to be
equal to zero at z0 because of rk(G(m−1))(z0) < m. Generally, if one stops with
G(k), one has the conditions g(k)

i,m−k(z0) = 0 for i ∈ {1, . . . , n} \ {i1, . . . , ik}.
Using the recursion formula, this leads to

g
(k−1)
i,m−k(z0)−g(k−1)

i,m−k+1(z0) ·
g

(k−1)
ik,m−k(z0)

g
(k−1)
ik,m−k+1(z0)

= 0 for i ∈ {1, . . . , n}\{i1, . . . , ik}.

Based on this formula, we will show per (reversed) induction with respect to s
that for 0 ≤ s ≤ k, there exist λ(s)

r ∈ F(z0), which only depend on entries of G
with row index contained in the set {i1, . . . , ik} as well as on z0, such that

g
(s)
i,m−k(z0) =

m∑
r=m−k+1

g
(s)
ir (z0) · λ(s)

r for i ∈ {1, . . . , n} \ {i1, . . . , ik}. (2.4)

The base clause s = k is trivial since one already knows g(k)
i,m−k(z0) = 0 for

i ∈ {1, . . . , n} \ {i1, . . . , ik}. Now, one assumes that the statement is valid for s
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2.2 Counting Right Prime Polynomial Matrices

and considers the case s− 1. One obtains,

g
(s−1)
i,m−k(z0) = g

(s)
i,m−k(z0) + g

(s−1)
i,m−s+1(z0) ·

g
(s−1)
is,m−k(z0)

g
(s−1)
is,m−s+1(z0)

=

=

m∑
r=m−k+1

g
(s)
ir (z0) · λ(s)

r + g
(s−1)
i,m−s+1(z0) ·

g
(s−1)
is,m−k(z0)

g
(s−1)
is,m−s+1(z0)

=

=

m∑
r=m−k+1

(
g

(s−1)
ir (z0)− g(s−1)

i,m−s+1(z0) ·
g

(s−1)
is,r

(z0)

g
(s−1)
is,m−s+1(z0)

)
· λ(s)

r +

+ g
(s−1)
i,m−s+1(z0) ·

g
(s−1)
is,m−k(z0)

g
(s−1)
is,m−s+1(z0)

=

=

m∑
r=m−k+1

g
(s−1)
ir (z0) · λ(s−1)

r

with λ(s−1)
r := λ

(s)
r for r 6= m− s+ 1 and

λ
(s−1)
m−s+1 :=

g
(s−1)
is,m−k(z0)

g
(s−1)
is,m−s+1(z0)

−
∑

m−s+16=r≥m−k+1

g
(s−1)
is,r

(z0)

g
(s−1)
is,m−s+1(z0)

· λ(s)
r .

Setting s = 0 in (3.6), completes the proof of part (a).

(b) One could prove statement (b) analogous to statement (a). Instead of starting
with the last column, one starts considering the first row of G(z0). If it is not
identically zero, one chooses the nonzero entry with the largest column index.
Then, one nullifies its row and column with a iteration procedure similar to
part (a) but employing row operations instead of column operations.
Alternatively, one could apply part (a) to the matrix GT with inverse numbering
of the rows.

2.2 Counting Right Prime Polynomial Matrices

In this section, we want to count the number of right coprime matrix pairs (P,Q) as
in Theorem 9, where we assume that Q is in Kronecker-Hermite form to ensure that
the factorization of the corresponding transfer function is unique. To this end, we
make the following definition.

Definition 12.

Let M(p, n,m) be the set of all polynomial matrices G =

(
Q
P

)
∈ F[z](m+p)×m

with P ∈ F[z]p×m and Q ∈ F[z]m×m, where Q is in Kronecker-Hermite form with
deg(det(Q)) = n and degj P (z) ≤ degj Q(z) for j = 1, ....,m. Moreover, define
P rcp,n,m(t) to be the probability that G ∈M(p, n,m) is right prime.
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Since it seems very complicated to achieve an exact formula for this probability,
we start with some quite easily obtained bounds and afterwards, investigate the
asymptotic behaviour, when 1/t - the size of the field - tends to infinity.

Theorem 11.

(i) P rcp,n,m(t) ≤ 1− tp+m−1

(ii) For p ≥ m, it holds P rcp,n,m(t) ≥ 1− 2mn · t.

Proof.

(i) For right primeness it is necessary that the polynomials of each column of G
are coprime. Furthermore, there is at least one column with degree not equal
to zero. This column does not contain an entry, which has to be 1 due to degree
restrictions caused by the structure of G. It might contain fixed zero entries but
this only decreases the probability of being coprime. Because each column has
p+m entries, the probability is upper bounded by 1− tp+m−1 (see Corollary
2).

(ii) Since p ≥ m, it is possible to consider the two disjunct full size minors of
G formed by rows 1 to m and by rows m + 1 to 2m, respectively. For right
primeness of G it is sufficient that they are coprime. If we view these minors
as polynomials in z, their coefficients are polynomials in the coefficients of
the entries of G of degree at most m. Thus, the resultant of these two minors,
which is equal to zero if and only if the minors are not coprime, is a polynomial
in the coefficients of the entries of G of degree at most m(n+ n). Hence, the
bound follows from the Schwartz-Zippel Lemma (see Lemma 3) if one could
show that the resultant is not the zero polynomial. However, this follows from
the facts that none of the considered minors is equal to zero for all values of
the coefficients and that they are independent from each other since we have
chosen disjunct rows to form them.

In the following, we will show that these bounds are not very sharp by computing
the asymptotic behaviour for the case that the size of the field F becomes large.

Theorem 12.
The probability that G ∈ M(p, n,m) is right prime, i.e. the probability that P ∈
F[z]p×m is right coprime with Q ∈ F[z]m×m, where Q is in Kronecker-Hermite form
with deg(det(Q)) = n and degj P (z) ≤ degj Q(z) for j = 1, ....,m is

P rcp,n,m(t) = 1− tp +O(tp+1).

Proof.
We prove this theorem by computing the probability of the complementary set,
i.e. the probability that there exists z0 ∈ F such that rk(G(z0)) < m. If qii ≡ 1
for some i = 1, . . . ,m, all other elements in row i are equal to zero. Hence,
rk(G(z0)) = 1 + rk(Gi(z0)), where the index i denotes the fact that the i-th row
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2.2 Counting Right Prime Polynomial Matrices

and column of G are deleted. Consequently, one has to prove the statement for m− 1
in this case. Thus, one could assume without restriction that all column degrees of Q
are unequal to zero, i.e. Q has no constant diagonal elements. Hence, the matrix G
contains no fixed zeros, i.e. entries that have to be zero because of degree restrictions
due to the Kronecker-Hermite form of Q. Moreover, no entries of P are forced to be
constant by those degree restrictions.

First, one considers GH :=

(
QH

PH

)
:=

(
QU
PU

)
= GU , where U is the uni-

modular matrix such that QH is in Hermite form. Then, one applies the method
of iterated column operations to GH (see Lemma 9 (a)). Since QH is lower tri-
angular, the diagonal entries of it are not changed by this iteration process and
the entries above the diagonal are identically zero, anyway. Thus, if the iteration
stops after step k, one has qHm−k,m−k(z0) = 0 as first condition. The method of
iterated column operations implies that if qH

m−k̃,m−k̃(z0) 6= 0 for k̃ < k, one chooses

ik̃+1 = m− k̃. Therefore, if a row that belongs to PH , i.e. with index greater than
m, is nullified, one knows qH

m−k̃,m−k̃(z0) = 0. Define I := {i1, . . . , ik} ∩ {i > m}.
Then, one has the conditions qHm−j+1,m−j+1(z0) = 0 for ij ∈ I and pHi−m,m−k(z0) =∑m

r=m−k+1 p
H
i−m,r(z0) · λr for i ∈ {m+ 1, . . . ,m+ p} \ I by Lemma 9 (a).

For P , Q and QH , one knows from Lemma 7 that fixing several of the polynomial
entries (that are not identically zero due to degree restrictions) at z0 reduces the
number of possible matrices at least by a factor of the form th for some h ∈ N. But
unfortunately, one has no information about the affect of fixing polynomials of PH

because one does not know anything about the possible degrees of the entries of
this matrix. Thus, one has to switch back from PH to P . Since PH = PU , one has
pHij =

∑m
l=1 pilulj . Inserting this into the above formula, leads to

m∑
l=1

pi−m,l(z0)ul,m−k(z0) =

m∑
r=m−k+1

m∑
l=1

pi−m,l(z0)ulr(z0) · λr,

which is equivalent to

m∑
l=1

pi−m,l(z0)

(
ul,m−k(z0)−

m∑
r=m−k+1

ulr(z0) · λr

)
= 0. (2.5)

If ul,m−k(z0)−
∑m
r=m−k+1 ulr(z0) ·λr = 0 for l = 1, . . . ,m, the columns m−k, . . . ,m

of U were linearly dependent at z0, which is a contradiction to the fact that U is
unimodular. Hence, there exists l0 ∈ {1, . . . ,m} such that one could solve equation
(2.5) with respect to pi−m,l0 . Consequently, the p − |I| polynomials pi−m,l0 with
i ∈ {m+ 1, . . . ,m+ p} \ I are fixed at z0 by QH (which determines Q and U) and
the other entries of P . Note that λr only depends on entries of GH whose row index
is contained in the set {i1, . . . , ik} and hence, only on entries of G whose row index
belongs to {i1, . . . , ik} and on U .
Let n1, . . . , n|I| denote the degrees of the monic polynomials qHm−j+1,m−j+1 with
ij ∈ I and n|I|+1 the degree of qHm−k,m−k. Moreover, n|I|+2, . . . , np+1 should denote
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the maximal degrees of the p− |I| fixed polynomials from P that are not necessarily
monic. Fix g and z0 with g := gz0 ≤ min(n1, . . . , n|I|+1) := nmin as well as QH such
that qHm−k,m−k(z0) = 0 and qHm−j+1,m−j+1(z0) = 0 for ij ∈ I. Then, Q and U are
determined. Next, choose the polynomials pi−m,j with i ∈ I, arbitrarily, and define
wi := −

∑
l 6=l0 pi−m,l

(
ul,m−k −

∑m
r=m−k+1 ulr · λr

)
for i ∈ {m+ 1, . . . ,m+ p} \ I as

well as w̃ := ul0,m−k −
∑m
r=m−k+1 ul0,r · λr. Applying Lemma 7 (a) and (b) as well

as Remark 7, one gets that the (opposite) probability is at most

nmin∑
g=1

g · ϕg ·
∏|I|+1
i=1 t−ni+g

∏p+1
i=|I|+2 t

−ni−1+1

t−(n1+n2+···+np+1+p−|I|) = O

(
nmin∑
g=1

tp

)
= O(tp).

Furthermore, if one has the additional condition that QH is not of simple form, the
probability is even O(tp+1). This is true since the probability that G is not of simple
form is O(t) (see (2.1)) and the considerations we made so far are valid for all values
of κ, which is defined as in Definition 11. Thus, it remains to consider the case that
QH is of simple form. Here, one has the condition:

rk


Im−1 0
qHm1 . . . qHmm
pH11 . . . pH1m
...

...
pHp1 . . . pHpm

 (z0) < m⇔ qHmm(z0) = pH1m(z0) = · · · = pHpm(z0) = 0.

Again, one has to switch back from PH to P . Doing this, one obtains the condition

qHmm(z0) =

m∑
l=1

p1lulm(z0) = · · · =
m∑
l=1

pplulm(z0) = 0. (2.6)

There are at most g · ϕg · t−n+g = O(t−n) possibilities for z0 with gz0 = g and
qHmm monic with deg(qHmm) = n and qHmm(z0) = 0. One fixes z0 and QH with these
properties, which determines U and Q as well. Since U is unimodular, there is a l0
with ul0,m(z0) 6= 0. Fix all entries of P but those in column l0 and set u := ul0,m,
p(j) := pj,l0 and s(j) :=

∑
l 6=l0 pjlulm for j = 1, . . . , p. Moreover, denote by f := fz0

the minimal polynomial of z0. Then, one has the conditions p(j) · u+ s(j) = f · h(j)

for some h(j) ∈ F[z] and j = 1, . . . , p. Note that here, u, f and s(j) are already fixed.
If one writes the involved polynomials as sums of monomials, one gets

( νl0∑
i=0

p
(j)
i zi

)
·

(
γ∑
i=0

uiz
i

)
+

 βj∑
i=0

s
(j)
i zi

 =

(
g∑
i=0

fiz
i

)
·

(
αj∑
i=0

h
(j)
i zi

)
,

where the degrees γ and βj are already fixed and αj = max(νl0 +γ, βj)−g. Equating
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2.2 Counting Right Prime Polynomial Matrices

coefficients, leads to

−u0 f0

...
. . .

...
. . .

−uγ −u0

... f0

. . .
... fg

...

−uγ
. . .

...
fg


︸ ︷︷ ︸

:=F∈F(αj+g+1)×(νl0
+αj+2)



p
(j)
0
...

p
(j)
νl0

h
(j)
0
...

h
(j)
αj


=



s0

...
sβj
0
...
0


,

where fg = 1 because minimal polynomials are monic per definition. The number
of possibilities for h(j) and p(j) to fulfill this equation is at most t−(νl0+αj+2−rk(F )).
Therefore, one has to determine rk(F ). In the following, it is shown that F is of full
rank, i.e. rk(F ) = min(αj + g + 1, νl0 + αj + 2).

Case 1: g ≤ νl0 + 1
In this case, one has to show the surjectivity of F . Since f has been defined as the mini-
mal polynomial of z0 and u(z0) 6= 0, one knows that−u and f are coprime. According
to Lemma 7, this implies that the Sylvester resultant Res(−u, f), which is the subma-
trix of F consisting of columns 1, . . . , g, νl0 + 2, . . . , νl0 + γ + 1 and rows 1, . . . , γ + g,
is invertible. This is well-defined because νl0 +αj +2 ≥ νl0 +(νl0 +γ−g)+2 ≥ γ+g.
Denote by F̃ the matrix for which in F the columns g + 1, . . . , νl0 + 1 are replaced by
columns containing only zeros. Obviously, rk(F̃ ) ≤ rk(F ) and thus, it is sufficient to
show the surjectivity of F̃ . The span of the first γ + g rows of F̃ is equal to the span
of the vectors e>1 , . . . , e

>
g , e
>
νl0+2, . . . , e

>
νl0+γ+1 ∈ F1×(νl0+αj+2), where ej denotes the

j-th unit vector in Fνl0+αj+2. The matrix consisting of the remaining rows of F̃

has the form

 0 . . . 0 1 ∗
...

...
. . .

0 . . . 0 0 1

 ∈ F(αj+1−γ)×(νl0+αj+2), i.e. its row span is

equal to the span of e>νl0+γ+2, . . . , e
>
νl0+αj+2. Consequently, the row span of F̃ is equal

to the span of e>1 , . . . , e
>
g , e
>
νl0+2, . . . , e

>
νl0+αj+2 and hence F̃ and F are surjective.

Case 2: g > νl0 + 1
Here, one has to show the injectivity of F . Therefore, choose
(p

(j)
0 , . . . , p

(j)
νl0
, h

(j)
0 , . . . , h

(j)
αj )> with F · (p(j)

0 , . . . , p
(j)
νl0
, h

(j)
0 , . . . , h

(j)
αj )> = (0, . . . , 0)>,

i.e. −u(z)p(j)(z) + f(z)h(j)(z) = 0. Since f and u are coprime, it follows that f
divides p(j). But because of deg(f) = g > νl0 + 1 > deg(p(j)) this implies p(j) ≡ 0
and hence h(j) ≡ 0, too. This shows the injectivity of F .
In summary, the probability that (2.6) is fulfilled is at most

g · ϕg · tg ·
p∏
j=1

t−(αj+1)+min(αj+g+1,νl0+αj+2) = g · ϕg · tg ·
p∏
j=1

tmin(g,νl0+1).
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For g ≥ 2, this probability is O(t2p) = O(tp+1) since we assumed νi ≥ 1 for i =
1, . . . ,m at the beginning of this proof.
For g = 1, write F = {z1, . . . , zt−1} and let Ai be the set of matrices G ∈M(p, n,m)
for which (2.6) is fulfilled for zi. Then, it follows from the preceding computations
that P rcp,n,m(t) = 1−Pr

(⋃t−1

i=1Ai

)
+O(tp+1). Using the inclusion-exclusion principle

(see Lemma 2), one gets

P rcp,n,m(t) = 1−
∑

∅6=I⊂{1,...,t−1}

(−1)|I|−1 Pr(AI) +O(tp+1).

Since Pr(AI) := Pr(
⋂
i∈I Ai) only depends on |I|, it follows:

P rcp,n,m(t) = 1 +

t−1∑
k=1

(−1)k
(
t−1

k

)
Pr(Ãk) +O(tp+1),

where Pr(Ãk) is the probability for the intersection of k pairwisely different sets Ai.
Furthermore, according to Lemma 7 (a) and (b) with w̃ := u and wj := −s(j), it
holds Pr(Ai) = tp+1 for i = 1, . . . , t−1 and therefore,

P rcp,n,m(t) = 1− tp +

t−1∑
k=2

(−1)k
(
t−1

k

)
Pr(Ãk) +O(tp+1).

Define ak(t) :=
(
t−1

k

)
Pr(Ãk) ≥ 0. It holds Pr(Ãk+1) ≤ t ·Pr(Ãk) since the number of

possibilities for qHmm decreases by (at least) the factor t if one requires an additional
zero for this polynomial (for k + 1 > n, there is even no possibility for qHmm), and
surely, the number of possibilities for the polynomials from P can only decrease if
one has additional conditions. Consequently, the sequence ak(t) is decreasing and
one obtains

t−1∑
k=2

(−1)k
(
t−1

k

)
Pr(Ãk) =

t−1∑
k=2

(−1)kak(t) ≤ a2(t).

Hence, it remains to show that a2(t) = O(tp+1). Therefore, one has to consider
equations (2.6) for z0, z1 ∈ F with z0 6= z1 and ul0,m(z0) 6= 0 6= ul1,m(z1). The
number of possibilities for qHmm is at most t−n+2. Moreover, one chooses l1 = l0 if
possible. Then, the polynomials p1,l0 , . . . , pp,l0 are fixed at z0 and z1 by the values of
the other polynomials from G. According to Lemma 7 (c), which could be applied
since νl0 ≥ 1, this decreases the number of possibilities by the factor t2p. Hence,
one has a2(t) ≤

(
t−1

2

)
t2+2p ≤ t2p ≤ tp+1, in the case l1 = l0. If it is not possible

to choose l1 = l0, one knows ul0,m(z1) = 0. Thus, the values of the polynomials
pi,l1 for i = 1, . . . , p at z1 are independent of the polynomials pi,l0 for i = 1, . . . , p.
Hence, one first chooses the entries of P but those of columns l0 and l1 randomly,
which fixes column l1 at z1. This decreases the number of possibilities by the factor
tp. Afterwards, one chooses the polynomials of column l1 in such way that they
fulfill the mentioned condition at z1, which finally, fixes the polynomials of column
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2.2 Counting Right Prime Polynomial Matrices

l0 at z0. This contributes again the factor tp to the probability. In summary, one has
a2(t) ≤

(
t−1

2

)
t2+p+p ≤ tp+1, which completes the proof of the whole theorem.

Remark 8.
If one requires degj P (z) < degj Q(z) for j = 1, ....,m, i.e. strict properness of
P (z)Q(z)−1, one gets the same probability for right primeness as in the preceding
theorem.

Proof.
The number of right coprime pairs (P,Q) with the above properties and PQ−1

strictly proper is equal to the number of strictly proper functions T ∈ F(z)p×m with
δ(T ) = n, while the number of (P,Q) with the above properties and PQ−1 proper
is equal to the number of proper functions T ∈ F(z)p×m with δ(T ) = n. Since
there are t−pm possibilities for the constant coefficients of the entries of T if one
only requires properness, the number of right coprime pairs decreases by the factor
tpm if one switches from properness to strict properness. But the total number of
pairs (P,Q) is by the factor tpm less, too, because the total number of matrices P is
equal to t−p(n+m) in the proper case and t−pn in the strictly proper case. Hence, the
probability of right primeness remains unchanged if one switches from properness to
strict properness.

A direct relation between the right coprime factorizations in the proper and strictly
proper case could be seen by looking at the corresponding transfer functions of the
formC(zI−A)−1B+D = P (z)Q(z)−1 andC(zI−A)−1B = P0(z)Q0(z)−1 in the case
of strict properness. Here, Q0 in Kronecker-Hermite form with degj(P0) < degj(Q0)

implies C(zI−A)−1B+D = (P0+DQ0)Q−1
0 with gcrd(P0+DQ0, Q0) = gcrd(P0, Q0)

and degj(P0 +DQ0) ≤ degj(Q0).

In the remaining part of this section, we will compare the achieved result with a
formula for the natural density of right prime matrices from [17]:

Theorem 13. [17]
The natural density of right prime matrices from F[z](m+p)×m is equal to

p+m−1∏
j=p

(1− tj).

This exact formula coincides asymptotically with the formula of Theorem 12,
where we considered the right primeness of matrices with a special degree structure.
Although, the asymptotic expansion from Theorem 12 is independent of the degree
bounds for the polynomial entries, the following examples show that the exact
uniform probability of right primeness depends on the degree structure of the matrix
and whether it coincides exactly with the above formula for the natural density also
depends on this degree structure.
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Example 2.
(1) First, consider the case n = 1, m = 2 and p = 1. There are two possible structures
for G, namely  z + a1 0

0 1
c1z + c0 c2

 and

 1 0
a2 z + a3

b0 b2z + b1


with a1, a2, a3, c0, c1, c2, b0, b1, b2 ∈ F. In the first case, the matrix is right prime if and
only if gcd(z+a1, c1z+c0) = 1, in the second case, if and only if gcd(z+a3, b2z+b1) = 1.
Thus, the overall probability for right primeness is equal to 1 − t 6= (1 − t)(1 − t2).
One reason for this is that the rows and columns of fixed ones could be deleted without
changing the probability (see the proof of Theorem 12), and one actually computes the
probability of right primeness of a smaller matrix. One could generalize this argumenta-
tion to the case that m and p are arbitrary while still n = 1. Then, one gets that the
probability of right primeness is equal to 1− tp.
(2) Next, consider the case that degj(P ) < degj(Q) = 1 for j = 1, . . . ,m, i.e.

a matrix of the form
[
zI −A
B

]
, where A ∈ Fm×m and B ∈ Fp×m. One has

rk

[
zI −A
B

]
= rk

[
zI −A
B

]>
= rk

[
zI −A> B>

]
and therefore, the prob-

ability of right primeness is equal to the probability that (A>, B>) is reachable, which
is
∏p+m−1
j=p (1− tj) (see Theorem 1 of [21]). Hence, for these matrices, one obtains the

same formula as for the natural density.

The preceding examples suggest that the reason why the probability of right
primeness for matrices of a fixed degree structure could differ from the natural
density for arbitrary polynomial matrices is that there are fixed ones and zeros in
some of the possible Kronecker-Hermite forms. For a matrix with a fixed degree
structure, the probability of right primeness is equal to the right primeness of the
submatrix in which all columns with column degree zero and the rows with the same
indices are deleted. Hence, if there is at least one column with degree zero, the
probability is different to the formula for the natural density from [17] since this
formula depends on the size of the matrix.

In Example 2 (2), one has the structure with lowest degrees but no fixed zeros
and ones. And we saw that in this case, the probability of right primeness coincides
with the formula for the natural density for arbitrary polynomial matrices from [17].

This leads to the conjecture that the probability of right primeness for a matrix
with the structure of Theorem 12 is equal to

∏p+m̃−1
j=p (1 − tj), where m̃ = m − r

and r is the number of column degrees that are equal to zero. This conjecture is
strengthened by the following example.

Example 3.
We consider the easiest example with m ≥ 2 and where matrix pairs (P,Q) without
fixed zeros and ones occur, i. e. the case m = n = 2 and p = 1. Moreover, we simplify
the computation by restricting the considerations to a base field with two elements. As
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2.2 Counting Right Prime Polynomial Matrices

possible structures, one has z + a1 a2

a3 z + a4

b1z + b2 b3z + b4

 ,
 z2 + a1z + a2 0

0 1
b0z

2 + b1z + b2 b3

 ,
 1 0
a3 z2 + a1z + a2

b3 b0z
2 + b1z + b2


with ai, bi ∈ F2. For the second and third structure, it is easy to see that the probability
of right-primeness is equal to 1− t = 1

2 .
Let M1,M2,M3 be the three full size minors of the first matrix. The probability of right
primeness is equal to the condition g := gcd(M1,M2,M3) = 1. For reasons of degree,
possible irreducible divisors of g are only z, z + 1 and z2 + z + 1. We use that the
probability that both z and z + 1 do not divide g is equal to the probability that the
matrix has full rank for z = 0 and for z = 1. That enables us to compute this probability
with the help of matlab and we get 104

256 . Direct counting shows that the probability that
z2 + z + 1 divides g is equal to 8

256 . Since z2 + z + 1 divides the minor formed by the
first and second row of the matrix if and only if this minor is equal to z2 + z + 1, g
cannot be divided by z or z + 1 if it is divided by z2 + z + 1 and the other way round.
Thus, one gets 96

256 = 3
8 = (1− 1

2 )(1− 1
4 ) for the overall probability. All three structures

considered together, the probability of right primeness is equal to 28· 38 +(27+26)· 12
28+27+26 = 3

7 .

Conjecture 1.
The exact probability that a matrix pair (P,Q) with the properties of Theorem 12 is
right prime is equal to

m−1∑
r=0

Wr

p+m−r−1∏
j=p

(1− tj)

where Wr is the probability that r column degrees of Q are equal to zero.

But even if this formula is true, it remains to compute Wr, which does not seem to
be easy in general. However, for small values of m, it is possible to count the number
of free parameters for each matrix structure with a given number of column degrees
equal to zero.

Example 4.
For m = n = 3, one has W2 = t−3+t−4+t−5

W , where W is the number of all possibilities

for Q, since one has t−3 possibilities for the structure z3 + a1z
2 + a2z + a3 0 0

0 1 0
0 0 1

, t−4 for

 1 0 0
a4 z3 + a1z

2 + a2z + a3 0
0 0 1

 and t−5

for

 1 0 0
0 1 0
a4 a5 z3 + a1z

2 + a2z + a3

. Similarly, one computes

W1 = t−5+2t−6+2t−7+t−8

W and W0 = t−9

W . Finally, summing up leads to

W = t−3 + t−4 + 2t−5 + 2t−6 + 2t−7 + t−8 + t−9.
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2.3 Counting Pairwise Coprime Polynomials

The aim of this section is to compute the probability that N randomly chosen poly-
nomials (with fixed degrees) are pairwisely coprime. While it will turn out to be
rather complicated to achieve an exact formula for the case N > 2 (the case N = 2 is
covered by Lemma 5), it is quite easy to get an estimation for the case that the size of
the field tends to infinity.

First, a more general setup will be considered and therefore, some notation should
be introduced. Let n := (n1, . . . , nN ) ∈ NN and Γ be an undirected graph with set of
vertices V = {1, . . . , N} and set of edges E , having cardinality E := |E|. The edges of
Γ are denoted as ij, for suitable i, j ∈ V with i < j. For every vertex l ∈ V let

El := {ij ∈ E | i = l or j = l}

denote the set of edges terminating at l.
Moreover, gcd and lcm should denote the monic greatest common divisor and

least common multiple of several polynomials, respectively.
Let X(n) := {(d1, . . . , dN ) | di ∈ F[z] monic with deg(di) = ni} and

Γ(n) := {(d1, . . . , dN ) ∈ X(n) | gcd(di, dj) = 1 for ij ∈ E}. Clearly,
|X(n)| = t−(n1+...+nN ). The following theorem estimates the asymptotic behaviour
of |Γ(n)| when 1/t tends to infinity.

Theorem 14.
|Γ(n)| = t−(n1+...+nN )

(
1− E · t+O(t2)

)
.

Proof.
For ij ∈ E , let Aij := {(d1, . . . , dN ) ∈ F[z]N | gcd(di, dj) 6= 1}. Then

Γ(n) = X(n) \
⋃
ij∈E

Aij .

By the inclusion-exclusion principle (see Lemma 2), one obtains

|Γ(n)| =
∑
F⊂E

(−1)|F||AF |

where A∅ = X(n) and AF :=
⋂
ij∈F Aij for F 6= ∅.

From Lemma 5, one knows that the probability that two polynomials are coprime is
equal to 1− t and therefore, |AF | · |X(n)|−1 = t for all E subsets F ⊂ E with |F| = 1.
It remains to show that |AF | · |X(n)|−1 = O(t2) for |F| ≥ 2. Since |AF | could
only decrease when |F| increases, it is sufficient to consider the case |F| = 2. Let
AF = Aij ∩ Auv for two different edges ij, uv ∈ E . If {i, j} ∩ {u, v} = ∅, it is clear
that |AF | = |Aij | · |Auv| · |X(n)|−1 = t2 · |X(n)|. Without restriction, let j = u. It
holds (d1, . . . , dN ) ∈ AF if and only if there exist z0, z1 ∈ F with di(z0) = dj(z0) = 0
and dj(z1) = dv(z1) = 0. If z0 = z1, one could apply Lemma 5 and gets a cardinality
of |X(n)| · t2 for the corresponding subset of AF . Thus, let z0 6= z1.
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2.3 Counting Pairwise Coprime Polynomials

Furthermore, one could assume z0, z1 ∈ F. To see that, let without restriction 2 ≤
gz0 ≤ min(ni, nj). It follows from Lemma 7 (a) that the corresponding subset of Aij
has a cardinality of at most |X(n)|·

∑min(ni,nj)
g=2 g·ϕg ·t2g = |X(n)|·

∑min(ni,nj)
g=2 O(tg) =

|X(n)| · O(t2). Consequently, the cardinality of the corresponding subset of AF is
also at most |X(n)| ·O(t2).
For the case z0, z1 ∈ F, one again applies Lemma 7 (a) and gets a probability of at
least ϕ2

1 · t4 = t2. In summary, one has |AF | · |X(n)|−1 = O(t2) for |F| ≥ 2 and the
proof is finished.

Now, we come to the situation of pairwise coprimeness. Recall that here all pairs
of vertices of Γ(n) are connected by an edge, i.e. it holds E = N(N−1)

2 . The following
result is an easy consequence of Theorem 14:

Corollary 4.
For n := (n1, . . . , nN ) ∈ NN , the set G(n) of N-tuples (d1, . . . , dN ) of monic pairwise
coprime polynomials di ∈ F[z] with deg(di) = ni for i = 1, . . . , N has the following
cardinality:

|G(n)| = t−(n1+...+nN )

(
1− N(N − 1)

2
· t+O(t2)

)
.

Therefore, the probability that d1, . . . , dN are pairwise coprime is equal to

1− N(N − 1)

2
· t+O(t2).

In the following, we turn to the general graph setup again and proceed as
in [20] to firstly achieve an exact formula for |Γ(n)| and then, deduce a (better)
approximation for it. The following theorem extends a result by [30] from the ring
of integers to the ring of polynomials.

With each edge ij of Γ we associate a monic, square-free polynomial kij(z) ∈ F[z].
We refer to this as a polynomial labeling of the graph and denote it by k. For each
polynomial labeling and vertices l ∈ V, let

Kl := lcm{kij | ij ∈ El}.

Then

M(n) := {k ∈ F[z]E | kij monic, square-free for ij ∈ E , deg(Kl) ≤ nl, l ∈ V}

is the set of all polynomial labelings k of Γ satisfying the degree bounds deg(Kl) ≤ nl
for all vertices l. For each monic square-free polynomial p, let ω(p) denote the number
of irreducible factors of p.

Theorem 15.
The cardinality of Γ(n) is

|Γ(n)| = t−(n1+...+nN )
∑

k∈M(n)

∏
ij∈E

(−1)ω(kij)
N∏
l=1

tdeg(Kl). (2.7)
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Proof.
The sets

P := {p ∈ F[z] | monic, irreducible, deg(p) ≤ max
1≤i≤N

ni}

and R := P × E are finite. For r = (p, ij) ∈ R, define

Dr := {(d1, ..., dN ) | p | di and p | dj}.

Thus, Γ(n) = X(n) \
⋃
r∈R Dr. From the inclusion-exclusion principle (see Lemma

2), one obtains
|Γ(n)| =

∑
S⊂R

(−1)|S||DS |, (2.8)

where D∅ = X(n) and DS :=
⋂
r∈S Dr for S 6= ∅.

It remains to determine |S| and |DS |. For each edge ij, define the monic and
square-free polynomial

kSij :=
∏

(p,ij)∈S

p, (2.9)

while for each vertex l ∈ V, we consider the monic and square-free polynomials

KS
l := lcm{kSij | ij ∈ El}. (2.10)

From the definition of DS , one obtains (d1, . . . , dN ) ∈ DS if and only if
p | gcd(di, dj) is satisfied for all (p, ij) ∈ S. This implies the equivalence:

(d1, ..., dN ) ∈ DS ⇔ kSij | di and kSij | dj for ij ∈ E .

Note that kSij | gcd{di, dj} holds for all ij ∈ E if and only if kSij | dl for all ij ∈ El and
l ∈ V. Since kSij are square-free, this in turn yields the characterization

(d1, ..., dN ) ∈ DS ⇔ KS
l | dl for l ∈ V.

Thus, one has to count the number of degree nl monic multiples of a monic polyno-
mial KS

l , which leads to

|DS | =
N∏
l=1

tdeg(KS
l )−nl (2.11)

if deg(KS
l ) ≤ nl holds for all l ∈ V and |DS | = 0 otherwise. To compute |S|, note

that ω(kSij) coincides with the number of elements p ∈ P such that (p, ij) ∈ S. Thus

|S| =
∑
ij∈E

ω(kSij). (2.12)

Finally, for each non-empty subset S ⊂ R, equation (2.9) defines a unique polynomial
labeling kS ∈ M(n). Conversely, for each k ∈ M(n) there exists S ⊂ R with
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2.3 Counting Pairwise Coprime Polynomials

k = kS . In fact, each polynomial labeling k = (kij |ij ∈ E) ∈M(n) admits a unique
factorization into primes

kij =
∏

pij∈Pij

pij

for subsets Pij ⊂ P . Defining S =
⋃
ij∈E Pij × {ij} then yields kSij = kij for all edges

ij ∈ E . Thus, in (2.8) one can sum over polynomial labelings k instead of summing
over S. Moreover, the restriction k ∈ M(n) in the sum of (2.7) allows us to use
formula (2.11), i.e. we avoid summing up zeros. This completes the proof.

In the case that all pairs of vertices of Γ are connected by an edge, one obtains
the probability that N monic polynomials are pairwise coprime.

The following remark contains a number theoretical result, which could be con-
cluded from the preceding theorem. It is not relevant for our further considerations
but seems to be interesting on its own.

Remark 9.
For N = 2 and E = 1, formula (2.7) has the following form:

t−n1−n2

min(n1,n2)∑
g=0

 ∑
k monic, square-free

deg(k)=g

(−1)ω(k)

 t2g =

= t−n1−n2

1− t+

min(n1,n2)∑
g=2

 ∑
k monic, square-free

deg(k)=g

(−1)ω(k)

 t2g

 .

Recall that the number of coprime pairs of monic polynomials is t−n1−n2(1 − t); see
Lemma 5. Thus, one obtains the combinatorical identity:

min(n1,n2)∑
g=2

∑
k monic, square-free

deg(k)=g

(−1)ω(k)t2g =

min(n1,n2)∑
g=2

(|E(g)| − |U(g)|)t2g = 0,

where

|E(g)| := {(p1, . . . , p2r) | r ∈ N, pi 6= pj monic, irreducible,
2r∑
i=1

deg(pi) = g}

|U(g)| := {(p1, . . . , p2r−1) | r ∈ N, pi 6= pj monic, irreducible,
2r−1∑
i=1

deg(pi) = g}

are the numbers of monic, square-free polynomials with an even or odd number of
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irreducible factors, respectively. For n ≥ 2, it follows:

(|E(n)| − |U(n)|)t2n =

n∑
g=2

(|E(g)| − |U(g)|)t2g −
n−1∑
g=2

(|E(g)| − |U(g)|)t2g =

= 0− 0 = 0,

i.e. |E(n)| = |U(n)| for every n ≥ 2.

In words, for n ≥ 2, there are as many monic polynomials of degree n with an
even number of distinct prime factors as with an odd number of distinct prime factors.
This result was firstly proven by Carlitz [6] in 1932. This means that it is quite old
but we provided a new proof for it along the way.

Returning to our actual goal, there is the problem that for N > 2, the formula
of Theorem 15 is very difficult to evaluate. However, if the degree of one of the
polynomials is at least as large as the sum of the other degrees, the computation
could be reduced to a computation with lower degrees. This fact is explicitly stated
in the following corollary:

Corollary 5.
Let n1, ..., nN , h ∈ N. Then:

|Γ(n1, ..., nN )| = t−h|Γ(n1 − h, n2, ..., nN )| if n1 = h+ n2 + ...+ nN .

Proof.
For k ∈M(n) it holds:

deg(K1) ≤
∑
ij∈E1

deg(kij) ≤
N∑
l=2

deg(k1l) ≤
N∑
l=2

deg(Kl) ≤
N∑
l=2

nl ≤ n1. (2.13)

The first and the third inequality follow because Kl is the least common multiple of
the corresponding kij . The fourth inequality holds since k ∈M(n). Finally, the last
inequality holds because of the assumption n1 = h+ n2 + ...+ nN .
From (2.13) it follows that in the given situation increasing n1 does not increase the
number of elements in M(n) because deg(Kl) are stronger restricted by n2, ..., nN
than by n1. Thus, the only expression in (2.7) that changes when increasing n1 is
t−n1 , which causes the factor t−h.

Next, Theorem 15 is used to give an alternative proof for the asymptotic formula
from Theorem 14.

Proof.
To prove this result, first sort the elements of M(n) with respect to the degrees of the
entries of the vector k = (k1, ..., kE).
To this end, for each vector of non-negative integers g := (g1, ..., gE), define
M(n,g) := {k ∈ M(n) | deg(km) = gm for 1 ≤ m ≤ E}. Let A be the set of all g
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with M(n,g) 6= ∅. Note that the degree bounds for M(n) ensure that A is finite. One
achieves:

|Γ(n)| = t−(n1+...+nN )
∑
g∈A

∑
k∈M(n,g)

∏
ij∈E

(−1)ω(kij)
N∏
l=1

tdeg(Kl).

Starting with small values for the entries of g the first summands are computed.
For g = (0, ..., 0), i.e. k = (1, ..., 1), one gets the summand 1 because of ω(1) = 0
and Kl = 1 for l = 1, . . . , N . If gm0 = 1 for exactly one 1 ≤ m0 ≤ E and gm = 0
for m 6= m0, there are |F| = 1/t possibilities for the linear polynomial km0

and E
possibilities for the choice of m0. Moreover, ω(km0

) = 1, so that these summands
have negative sign. As km0

is relevant for exactly those Kl for which its associated
edge is terminating at l, there are exactly two Kl which are of degree 1. Hence, the
resulting sum of these terms is equal to −E · 1

t · t
2 = −E · t.

Thus, one only has to show that each of the remaining summands behaves asymptoti-
cally as O(t2), which is done by showing

R(g) :=
∑

k∈M(n,g)

N∏
l=1

tdeg(Kl) = O(t2)

for every fixed g for which the sum of the entries of g is at least two.
This will be done by induction with respect to E.
For E = 1, note that g and k = k12 are scalar. Moreover, K1 = K2 = k12. Therefore,
R(g) = 0 if g > min(n1, n2) and otherwise,

R(g) ≤
∑

k monic, deg(k)=g

t2 deg(k) =

(
1

t

)g

· t2g = tg = O(t2) for g ≥ 2.

This computation starts with an inequality since the condition that k has to be square-
free is dropped. The first equality follows from the fact that there are (1/t)g monic
polynomials of degree g.
Next, we take the step from E − 1 to E.
To this end, choose one of the smallest entries of g and denote it without loss of
generality by gE . Then, the edge with which kE is associated – in the following
denoted by ij – is taken away form the original graph and thus, a graph with E − 1
edges is achieved. In the following, the index (E − 1) above an expression means
that it belongs to a graph with E − 1 edges; in the same way, we use the index (E).
Similarly, k(E−1) and g(E−1) should denote the vectors consisting of the first E − 1
entries of k and g, respectively.
The degrees of the Kl can never increase, when taking an edge away. Therefore,
k ∈M(n,g) implies k(E−1) ∈M (E−1)(n,g(E−1)). Next, we set

Wi := gcd(K
(E−1)
i , kE) and Wj := gcd(K

(E−1)
j , kE).
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Moreover, let

B(E−1)
vi,vj := {k(E−1) ∈M (E−1)(n,g(E−1)) | deg(K

(E−1)
i ) = vi, deg(K

(E−1)
j ) = vj},

B(E)
vi,vj ,wi,wj := {k ∈M (E)(n,g) | k(E−1) ∈ B(E−1)

vi,vj ,deg(Wi) = wi,deg(Wj) = wj}.

It follows

R(g) ≤
∑

vi,vj ,wi,wj≤max(ni,nj)

∑
k∈B(E)

vi,vj,wi,wj

N∏
l=1

tdeg(K
(E)
l ).

The number of summands in the first sum is finite and thus one only has to show that
for any fixed vi, vj , wi, wj the following is true:

∑
k∈B(E)

vi,vj,wi,wj

N∏
l=1

tdeg(K
(E)
l ) = O(t2).

To do this one computes

K
(E)
i = lcm(K

(E−1)
i , kE) =

K
(E−1)
i · kE
Wi

.

Consequently, one has deg(K
(E)
i ) = deg(K

(E−1)
i ) + gE − wi and deg(K

(E)
j ) =

deg(K
(E−1)
j ) + gE − wj , analogously. For l /∈ {i, j}, it holds K(E)

l = K
(E−1)
l be-

cause nothing changes at the associated vertices. It follows:

∑
k∈B(E)

vi,vj,wi,wj

N∏
l=1

tdeg(K
(E)
l ) =

∑
k∈B(E)

vi,vj,wi,wj

N∏
l=1

tdeg(K
(E−1)
l ) · t2gE−wi−wj . (2.14)

Here, the product
∏N
l=1 t

deg(K
(E−1)
l ) is independent of kE and t2gE−wi−wj is indepen-

dent of k ∈ B(E)
vi,vj ,wi,wj .

Next, for k(E−1) ∈ B(E−1)
vi,vj , an upper bound for the number of polynomials kE such

that k ∈ B(E)
vi,vj ,wi,wj should be determined. k(E−1) uniquely determines K(E−1)

i and
since Wi is a divisor of K(E−1)

i of degree wi, there are only finitely many possibilities
for Wi. Define C as this number of possibilities for Wi. One knows that kE has
to be a multiple of Wi of degree gE . Thus, for every Wi, there are at most twi−gE
possibilities for kE .
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Using this and the fact that the product in (2.14) is independent of kE , it follows for
the expression in (2.14):

∑
k∈B(E)

vi,vj,wi,wj

N∏
l=1

tdeg(K
(E)
l ) ≤ t2gE−wi−wj · C · twi−gE

∑
k(E−1)∈B(E−1)

vi,vj

N∏
l=1

tdeg(K
(E−1)
l )

= CtgE−wj
∑

k(E−1)∈B(E−1)
vi,vj

N∏
l=1

tdeg(K
(E−1)
l )

≤ C ·R(g(E−1))

because wj ≤ gE since Wj | kE . Now, we distinguish three cases:

Case 1: The sum of the entries of g(E−1) is at least two.
Then, R(g(E−1)) is O(t2) per induction and we are done.

Case 2: g(E−1) has a component that is equal to zero.
Here, gE must be zero since it was choosen to be one of the smallest entries. But
then the sum of the entries of g(E−1) is equal to the sum of the entries of g(E) and
thus, in particular, at least two. Consequently, we are done, too.

Case 3: E = 2 and g(E−1) = g1 = 1.
Then gE = g2 ≤ 1. If g2 = 0, we argue as before. If g2 = 1 and the two edges of the
graph meet at a vertex, one gets

R(g) = R(1, 1) ≤
∑

k1, k2 monic
deg(km)=1

t2+deg(lcm(k1,k2)) =

=
∑

k1 = k2 monic
deg(km)=1

t3 +
∑

k1 6= k2 monic
deg(km)=1

t4 =

=
1

t
· t3 +

1

t
·
(

1

t
− 1

)
· t4 = O(t2).

If g2 = 1 and the two edges of the graph are isolated, one gets

R(g) = R(1, 1) ≤
∑

k1, k2 monic
deg(km)=1

t4 = t2

since there are two Kl that coincide with k1 and k2, respectively. Moreover, there are
t−2 pairs of monic polynomials of degree one.
Thus, this case is done as well and our proof is complete.

Although this proof is far more involved than that following Theorem 14, it has
the advantage that in principle, it is possible to compute the coefficients of tj for j ≥ 2
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with the same method. But with increasing j the computational effort becomes very
large because too many different cases of graph structures have to be distinguished.
Moreover, the possible subgraphs that have to be considered depend on the original
graph Γ. In the preceding proof, the only subgraph that needed exact computation
was that with only one edge, which is contained in every nonempty graph. However,
for the computation of higher coefficients, one has to look at subgraphs with more
than one edge and so not every graph with E edges contains the same set of these
subgraphs, which leads to a very complicated case distinction. Therefore, in the
following, we only focuse on the complete graph, where N vertices are connected
pairwisely, i.e. the case of pairwise coprimeness, and compute the coefficient of t2 for
this case.

Theorem 16.
Let n1, ..., nN ∈ N and N1 := |l ∈ {1, . . . , N} | nl = 1|. Then, the probability that N
monic polynomials over F of degrees n1, . . . , nN are pairwise coprime is equal to

1− N(N − 1)

2
· t+

1

24
(N − 1)(N − 2)(3N2 + 11N − 12N1) · t2 +O(t3).

Proof.
Let G be a graph with N vertices, which are pairwisely connected by an edge and let
|G(n)| be the number of N -tuples of monic pairwisely coprime polynomials over F
of degrees n1, . . . , nN . Moreover, Γ should be any subgraph of G, whose number of
edges is equal to E. To prove the result, we first consider the general graph Γ. As in
the proof of the preceding theorem and with the same notation as there, one gets

|Γ(n)| = t−(n1+...+nN )
∑
g∈A

∑
k∈M(n,g)

∏
ij∈E

(−1)ω(kij)
N∏
l=1

tdeg(Kl).

Now consider G, i.e. the case E = N(N−1)
2 . Starting with small values for the entries

of g, the first summands are computed.
As before, the sum of the terms with g = (0, . . . , 0) or gm0

= 1 for exactly one
1 ≤ m0 ≤ E and gm = 0 for m 6= m0 is equal to 1− E · 1

t · t
2 = 1− E · t.

Note that for all summands computed so far, every k lies in M(n,g) since deg(Kl) ≤ 1
in all considered cases. Next, look at the summands whose sum of the entries of
g is equal to 2. All summands for which gm0

= 2 for exactly one 1 ≤ m0 ≤ E and
gm = 0 for m 6= m0 have modulus t4. Since they have negative sign if km0

∈ U(2)
and positive sign if km0

∈ E(2), it follows from |E(2)| = |U(2)| that these summands
add up to zero. Hence, in this case, it does not matter whether k lies in M(n,g) or
not since this depends only on m0 and not on km0 itself.
Now consider the summands for which two entries of g are equal to one, and the
other entries are equal to zero. If the corresponding edges of the nonzero entries
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have a vertex l in common, the summand has the value∑
k1, k2 monic
deg(km)=1

t2+deg(lcm(k1,k2)) =
∑

k1 = k2 monic
deg(km)=1

t3 +
∑

k1 6= k2 monic
deg(km)=1

t4 = (2.15)

=
1

t
· t3 +

1

t
·
(

1

t
− 1

)
· t4 = 2t2 − t3 (2.16)

if nl ≥ 2 and t2 if nl = 1 since the summands of the second sum lie not in M(n,g) if
deg(Kl) = 2 > nl. For such an "angle", there are N ·

(
N−1

2

)
possibilities, N for the

apex and
(
N−1

2

)
for the two sides of the angle.

If those two edges are isolated, the summand has the value∑
k1, k2 monic
deg(km)=1

t4 = t2.

For this case, there are
(
N
4

)
possibilities to choose the four involved vertices and 3

possibilities to connect two of them, pairwisely.
In summary, all summands whose sum of the entries of g is equal to two contribute
the value((

N − 1

2

)
(2(N −N1) +N1) + 3 ·

(
N

4

))
· t2 +O(t3) =(

(N − 1)(N − 2)

2
(2N −N1) +

N(N − 1)(N − 2)(N − 3)

8

)
· t2 +O(t3) =

(N − 1)(N − 2)

8
(N2 + 5N − 4N1) · t2 +O(t3). (2.17)

If g contains three ones where the corresponding edges form a triangle and zeros in
the other entries, one gets

−1

t
· t3 − 3

t
·
(

1

t
− 1

)
· t5 − 1

t
·
(

1

t
− 1

)
·
(

1

t
− 2

)
· t6 = −t2 +O(t3).

Here, the first summand of the left side of the equation covers the case that three, the
second summand that two and the third summand that none of the three entries of k
that contain a linear polynomial are identical. Moreover, there are

(
N
3

)
possibilities

for such a triangle.
Adding these summands to (19), one gets

(N − 1)(N − 2)

8
(N2 + 5N − 4N1 − 4N/3) · t2 +O(t3) =

(N − 1)(N − 2)

24
(3N2 + 11N − 12N1) · t2 +O(t3).
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Now we turn to the general graph Γ again and show that

R(g) :=
∑

k∈M(n,g)

N∏
l=1

tdeg(Kl) = O(t3)

for every fixed g for which the sum of the entries of g is at least three and Γ is no
triangle.
Analogously to the proof of the preceding theorem, one gets R(g) ≤ tg for E = 1
and R(g(E)) ≤ C ·R(g(E−1)) with C ∈ N for E ≥ 2.
However, the number of cases that have to be distingushed is larger:

Case 1: The sum of the entries of g(E−1) is at least three and no triangle.
Then, R(g(E−1)) is O(t3) per induction and we are done.

Case 2: g(E−1) = (1, 1, 1) and Γ(E−1) is a triangle.
This case can be avoided: It holds g(E) = (1, 1, 1, 1) since g(E) = (1, 1, 1, 0) would
mean that Γ(E) is a triangle, too, because an edge ij with labelling kij = 1 could be
treated like it would not exist. Therefore, one of the vertices of the triangle has an
third edge which connects it with the additional vertex. Since all entries of g(E) are
identical, one can take away an arbitrary edge in our process of induction. If one
takes away one of the edges which form the triangle, the resulting Γ(E−1) is not a
triangle any more.

It remains to consider all possible cases for which the sum of the entries of g(E−1) is
smaller than three but the sum of the entries of g(E) is at least three and Γ(E) is no
triangle. First, one excludes zero entries in these vectors (case 3) and then, considers
g(E−1) = (1, 1) (case 4) and g(E−1) = 2 (cases 5 and 6).

Case 3: g(E−1) has a component that is equal to zero.
Note that this case corresponds to case 2 of the preceding proof.
Here, gE must be zero since it was choosen to be one of the smallest entries. Thus,
Γ(E−1) and Γ(E) could be treated as being identical and hence, Γ(E−1) fulfills the
conditions of case 1. Consequently, we are done, too.

Case 4: g(E) = (1, 1, 1) and Γ(E) is no triangle.
Case 4a: Γ(E) consists of three isolated edges:

R(g) ≤
(

1

t

)3

· t6 = t3 = O(t3).

Case 4b: Γ(E) consists of an isolated edge and an angle (see (2.15)):

R(g) ≤ 1

t
· t2 · (2t2 − t3) = O(t3).
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2.3 Counting Pairwise Coprime Polynomials

Case 4c: Γ(E) consists of three edges forming one line:

R(g) ≤ 1

t
· t4 +

2

t

(
1

t
− 1

)
· t5 +

1

t

(
1

t
− 1

)2

· t6 = O(t3).

The first summand covers the case that all linear polynomials in k are identical, the
second summand the case that the polynomial of the edge in the middle coincides
with one of the others and the third polynomial is different and the third summand
the case that the polynomial in the middle is different from the other two polynomi-
als.
Case 4d: Γ(E) consists of three edges that meet at one vertex:

R(g) ≤ 1

t
· t4 +

3

t

(
1

t
− 1

)
· t5 +

1

t

(
1

t
− 1

)(
1

t
− 2

)
· t6 = O(t3).

The first summand covers the case that all linear polynomials in k are identical,
the second summand the case that exactly two of them are identical and the third
summand the case that all polynomials are different.

Case 5: g(E) = (2, 1).
Since we are considering upper bounds for R(g) in the following, we can drop the
condition that the quadratic polynomials have to be square-free.
Case 5a: Γ(E) consists of two isolated edges:

R(g) ≤
(

1

t

)3

· t6 = O(t3).

Case 5b: Γ(E) consists of an angle:

R(g) ≤ 1

t

(
1

t
− 1

)
· t5 +

1

t3
· t6 = O(t3).

The first summand covers the case that the linear polynomial divides the quadratic
polynomial, the second summand the other case.

Case 6: g(E) = (2, 2).
Case 6a: G consists of two isolated edges:

R(g) ≤
(

1

t

)4

· t8 = O(t3).

Case 6b: G consists of an angle:

R(g) ≤ 1

t2
· t6 +

1

t4
· t7 = O(t3).

The first summand covers the case that the two quadratic polynomials are identical,
the second summand the other case.
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It follows that R(g) = O(t3) for every fixed g for which the sum of the entries of g is
at least three and Γ is no triangle. Consequently,

|G(n)| = tn1+...+nN ·(
1− N(N − 1)

2
· t+

1

24
(N − 1)(N − 2)(3N2 + 11N − 12N1) · t2 +O(t3)

)
.

So far, we used the uniform probability distribution and fixed the degrees of the
considered polynomials. In the following, this result should be compared with the
natural density of pairwise coprime polynomials with arbitrary degrees. To this end,
we follow the lines of the proof of Theorem 1 from [17]. The following Theorem was
also proven in [18, Corollary 1].

Theorem 17.
The natural density of pairwise coprimeness for N arbitrary polynomials
d1, . . . , dN ∈ F[z] is equal to

∞∏
j=1

(
(1− tj)N−1(1 + (N − 1)tj)

)ϕj
.

Proof.
From Theorem 6, one knows that d1, . . . , dN are pairwise coprime if and only if the
matrix

DN :=


d1 d2 0 · · · 0

0 d2 d3
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 dN−1 dN


is left prime. According to Remark 3 (b), this holds if and only if the size N − 1
minors of DN are coprime.

In the following, the notation of Definition 10 is used. Let Mn be the set of all
tuples (d1, . . . , dN ) ∈ F[z]N for which di ∈ {f0, . . . , fn} for i = 1, . . . , N . Further-
more, let P̂ be the set of all (monic) irreducible polynomials in F[z] and P a finite
subset of P̂ . Moreover, EP should denote the set of all tuples (d1, . . . , dN ) ∈ F[z]N

for which the gcd of all size N − 1 minors of DN is coprime with all elements in P .
Consequently, we are interested in the probability that (d1, . . . , dN ) ∈ F[z]N lies in
E :=

⋂
P EP ; i.e., to obtain the natural density one has to determine limn→∞

|E∩Mn|
|Mn| .

In a first step, one computes the probability that (d1, . . . , dN ) ∈Mn lies in EP . To
this end, one defines fP :=

∏
f∈P f and dP := deg(fP ). Next, consider the projection

Mn →Mn/(fP ) =
∏
f∈P

Mn/(f) :

(d1, . . . , dN ) 7→ (d1, . . . , dN )/(fP ) =
∏
f∈P

(d1, . . . , dN )/(f),
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2.3 Counting Pairwise Coprime Polynomials

which applies the canonical projection modulo fP (F[z]→ F[z]/(fP )) to each entry
of (d1, . . . , dN ). For (d1, . . . , dN ) ∈Mn holds:

(d1, . . . , dN ) ∈ EP ⇔ ∀f ∈ P ∃ fullsize minor of DN that is not divided by f

⇔ ∀f ∈ P ∃ fullsize minor of DN that is nonzero in (F[z]/(f))N−1×N

⇔ ∀f ∈ P : DN/(f) has full rank in (F[z]/(f))N−1×N ' (Fdeg f )N−1×N ,

where Fdeg f denotes the field with t− deg(f) elements. Note that the matrix

DN/(f) =


a1 a2 0 · · · 0

0 a2 a3
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 aN−1 aN

 ∈ (Fdeg f )N−1×N

has full rank if and only if ai = 0 for at most one i ∈ {1, . . . , N}. The probability for
that is equal to (1− tdeg(f))N +Ntdeg(f)(1− tdeg(f))N−1.
First, suppose that t−dP divides |{f0, . . . , fn}| = n+ 1, i.e. n = mt−dP − 1 for some
m ∈ N. Then, one could write {f0, . . . , fn} = {fs(z)zdP + fr(z) | 0 ≤ s ≤ m− 1, 0 ≤
r ≤ t−dP − 1}. One has {fr | 0 ≤ r ≤ t−dP − 1} ' F[z]/(fP ) and fs(z)z

dP + fr(z)

mod fP (z) = fs(z)z
dP mod fP (z) + fr(z) = f̂s(z) + fr(z) where f̂s(z) := fs(z)z

dP

mod fP (z) ∈ F[z]/(fP ). Hence, for every fixed s the canonical projection is bijective
and on {f0, . . . , fn} it is m-to-one. In summary, one obtains

|EP ∩Mn| = mN ·
∏
f∈P

t−N deg(f)((1− tdeg(f))N +Ntdeg(f)(1− tdeg(f))N−1) =

= (mt−dP )N ·
∏
f∈P

(1− tdeg(f))N +Ntdeg(f)(1− tdeg(f))N−1.

Since mt−dP = n+ 1, i.e. (mt−dP )N = |Mn|, it follows

|EP ∩Mn|
|Mn|

=
∏
f∈P

(1− tdeg(f))N +Ntdeg(f)(1− tdeg(f))N−1.

Now, suppose n ∈ N arbitrary. By division with remainder, we get n+ 1 = mt−dP + r
with 0 ≤ r < t−dP . One defindes n̂ := n− r = mt−dP − 1. Since

lim
n→∞

|EP ∩ (Mn \Mn̂)|
|Mn|

≤ lim
n→∞

|Mn| − |Mn̂|
|Mn|

=

= lim
n→∞

(n+ 1)N − (n+ 1− r)N

(n+ 1)N
= 0,
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one has

lim
n→∞

|EP ∩Mn|
|Mn|

= lim
n→∞

|EP ∩Mn̂|+ |EP ∩ (Mn \Mn̂)|
|Mn|

= lim
n→∞

|EP ∩Mn̂|
|Mn|

= lim
n→∞

(n− r + 1)N
∏
f∈P (1− tdeg(f))N +Ntdeg(f)(1− tdeg(f))N−1

(n+ 1)N
=

=
∏
f∈P

(1− tdeg(f))N +Ntdeg(f)(1− tdeg(f))N−1.

Easy computation leads to

(1− tdeg(f))N +Ntdeg(f)(1− tdeg(f))N−1 = (1− tdeg(f))N−1(1 + (N − 1)tdeg(f))

=

(
1− (N − 1)tdeg(f) +

(
N − 1

2

)
t2 deg(f) +

N∑
k=3

α̃kt
k·deg(f)

)
(1 + (N − 1)tdeg(f))

= 1 +
(N − 1)(N − 2)− 2(N − 1)2

2
t2 deg(f) +

N∑
k=3

αkt
k·deg(f)

= 1−
(
N

2

)
t2 deg(f) +

N∑
k=3

αkt
k·deg(f),

with α̃k, αk ∈ N, which are independent of deg(f). Define Hf = F[z]N \ Ef . Then

lim
n→∞

|Hf ∩Mn|
|Mn|

= 1− lim
n→∞

|Ef ∩Mn|
|Mn|

=

(
N

2

)
t2 deg(f) +

N∑
k=3

αkt
k·deg(f).

Set α := max(α3, . . . , αN ) and let Pg be the set of all irreducible polynomials with
degree at most g. Then EPg \ E ⊂

⋃
f∈P̂\Pg Hf and consequently,

lim sup
n→∞

|(EPg \ E) ∩Mn|
|Mn|

≤ lim sup
n→∞

|(
⋃
f∈P̂\Pg Hf ) ∩Mn|

|Mn|

≤ lim sup
n→∞

∑
f∈P̂\Pg |Hf ∩Mn|

|Mn|

≤
∑

f∈P̂\Pg

lim sup
n→∞

|Hf ∩Mn|
|Mn|

=
∑

f∈P̂\Pg

((
N

2

)
t2 deg(f) +

N∑
k=3

αkt
k·deg(f)

)
=

=

∞∑
j=g+1

ϕj

((
N

2

)
t2j +

N∑
k=3

αkt
k·j

)
≤

∞∑
j=g+1

t−j

((
N

2

)
t2j +

N∑
k=3

αkt
k·j

)

≤
∞∑

j=g+1

(
N

2

)
tj +

N∑
k=3

αkt
(k−1)·j ≤

(
N

2

)
tg+1

1− t
+ α(N − 2)

∞∑
j=g+1

t2j
g→∞→ 0.
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2.3 Counting Pairwise Coprime Polynomials

Since E ∩Mn = EPg ∩Mn \ ((EPg \ E) ∩Mn), one obtains

lim inf
n→∞

|E ∩Mn|
|Mn|

≥ lim inf
n→∞

|EPg ∩Mn|
|Mn|

− lim sup
n→∞

|(EPg \ E) ∩Mn|
|Mn|

≥ lim
n→∞

|EPg ∩Mn|
|Mn|

−
(
N

2

)
tg+1

1− t
+ α(N − 2)

t2(g+1)

1− t2

as well as

lim sup
n→∞

|E ∩Mn|
|Mn|

≤ lim sup
n→∞

|EPg ∩Mn|
|Mn|

− lim inf
n→∞

|(EPg \ E) ∩Mn|
|Mn|

≤ lim
n→∞

|EPg ∩Mn|
|Mn|

.

It follows

lim
n→∞

|E ∩Mn|
|Mn|

= lim
g→∞

lim
n→∞

|EPg ∩Mn|
|Mn|

=

= lim
g→∞

∏
f∈Pg

((1− tdeg(f))N +Ntdeg(f)(1− tdeg(f))N−1) =

= lim
g→∞

g∏
j=1

((1− tj)N +Ntj(1− tj)N−1)ϕj =

∞∏
j=1

((1− tj)N−1(1 + (N − 1)tj))ϕj .

Computing the asymptotic expansion of this formula leads to the following corol-
lary:

Corollary 6.
The natural density of pairwise coprimeness for N arbitrary polynomials is

1−
(
N

2

)
t+

1

24
(N − 1)(N − 2)(3N2 + 11N)t2 +O(t3).

Proof.
One has to show

∞∏
j=1

((1− tj)N−1(1 + (N − 1)tj))ϕj

= 1−
(
N

2

)
t+

1

24
(N − 1)(N − 2)(3N2 + 11N)t2 +O(t3).
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One uses the estimations ϕj = 1
j t
−j +O(t−(j−1)) as well as

Fj := (1− tj)N−1(1 + (N − 1)tj) =

= 1 +

((
N − 1

2

)
− (N − 1)2

)
t2j+

+

((
N − 1

2

)
(N − 1)−

(
N − 1

3

))
t3j +O(t4j) =

= 1 +
N − 1

2
· (N − 2− 2(N − 1))t2j+

+ (N − 1)(N − 2)

(
N − 1

2
− N − 3

6

)
t3j +O(t4j)

= 1−
(
N

2

)
t2j +

1

3
N(N − 1)(N − 2)t3j +O(t4j).

If one chooses x times the term with exponent −kj (for k ≥ 2) expanding
∏∞
j=1 F

ϕj
j ,

one gets a term of the form C(N)
(
ϕj
x

)
txkj = O(t(k−1)xj) with C(N) only depending

on N . Thus, one is only interested in the case that k − 1 = x = j = 1 and in the case
that one number from the set {k − 1, x, j} is equal to 2 and the others are equal to 1.
In particular, the considered probability is equal to(

1−
(
N

2

)
t2 +

1

3
N(N − 1)(N − 2)t3

)t−1

︸ ︷︷ ︸
j=1, k≤3

(
1−

(
N

2

)
t4
) 1

2 (t−2−t−1)

︸ ︷︷ ︸
j=2, k≤2

+O(t3)

=

1−
(
N

2

)
t︸ ︷︷ ︸

k=2, x=1

+
1

3
N(N − 1)(N − 2)t2︸ ︷︷ ︸

k=3, x=1

+

(
t−1

2

)(
N

2

)2

t4︸ ︷︷ ︸
k=2, x=2

+O(t3)

 ·
·
(

1−
(
N

2

)
t4 · 1

2
t−2 +O(t3)

)
+O(t3)

= 1−
(
N

2

)
t+

(
1

3
N(N − 1)(N − 2) +

N2(N − 1)2

8
− N(N − 1)

4

)
t2 +O(t3)

= 1−
(
N

2

)
t+

(
1

3
N(N − 1)(N − 2) +

N(N − 1)

8
(N(N − 1)− 2)

)
t2 +O(t3)

= 1−
(
N

2

)
t+

(
1

3
N(N − 1)(N − 2) +

(N − 1)(N − 2)(N + 1)N

8

)
t2 +O(t3)

= 1−
(
N

2

)
t+

1

24
(N − 1)(N − 2)(3N2 + 11N)t2 +O(t3),

which completes the proof of the corollary.

Corollary 6 leads to the same result as Theorem 16 with setting N1 = 0, although
different concepts of probability were used. This concordance could be explained in
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the following way: First, computing the natural density of pairwise coprimeness, those
tuples of polynomials which contain a linear polynomial could be neglected. Moreover,
the case that di ≡ 0 for some i ∈ {1, · · · , n} could be neglected and hence, considering
monic polynomials does not change the probability because two polynomials are
coprime if and only if the corresponding monic polynomials are coprime. Thus, all
degree dependencies of the considered coefficients in the asymptotic expansion could
be neglected. Therefore, choosing the polynomials randomly with deg(di) ≤ ni, the
probability could be regarded as identical for all values ni ∈ N since the set of
polynomials with deg(di) ≤ ni is a disjunct union of the sets of polynomials whose
degree is a fixed value less or equal to ni. But the sets defined by the condition
deg(di) ≤ ni form a subsequence ofMn. Consequently, if one knows that the limit
defining the natural density exists, one could conclude that it is equal to the constant
value for this subsequence.

2.4 Counting Mutually Coprime Polynomial Matrices

The aim of this section is to compute the probability that N nonsingular polynomial
matrices from F[z]m×m are mutually left coprime, which we denote by Pm(N). At
first, we consider the probability that two nonsingular polynomial matrices D1 and

D2 are left coprime. Since [D1 D2] ·
[
U1 0
0 U2

]
= [D1U1 D2U2], one could assume

that both D1 and D2 are in Hermite form. Again, we begin with some easily proven
bounds before we calculate the asymtotic behaviour.

Theorem 18.
Let Pm(2) be the probability that two nonsingular matrices D1, D2 ∈ F[z]m×m (in
Hermite form) with deg(Di) = ni for i = 1, 2 are left coprime. Then,

1−m(n1 + n2)t ≤ Pm(2) ≤ 1− t2m−1.

Proof.
The proof could be done completely analogue to the proof of Theorem 11 since D1

and D2 are left coprime if and only if
(
D>1
D>2

)
is right prime. For the lower bound,

the only difference is that here the minors D>1 and D2> are of degrees n1 and n2,
respectively.

Again, this bound is not very sharp, as we will see in the following.

Theorem 19.
The probability that two matrices D1, D2 ∈ F[z]m×m in Hermite form with deg(Di) =
ni for i = 1, 2 are left coprime is equal to 1− tm +O(tm+1).

Proof.
Since the statement is already known for m = 1 (see Lemma 5), in the following,
it is assumed that m ≥ 2. At first, it should be shown that the cardinality of
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S ⊂ X := X(n1, n2) of matrices for which D2 is not left prime is O(|X| · tm) and that
the cardinality of the subset of S for which D2 is not of simple form is O(|X| · tm+1).
Denote the entries of D2 by dij for i = 1, . . . ,m and j = 1, . . . , 2m and choose z∗ ∈ F
such that D2(z∗) is not of full row rank. As in the method of iterated row operations
(see Lemma 9 (b)), start considering the first row of this matrix. Either it is identically
zero, which means d(1)

11 (z∗) = d
(2)
11 (z∗) = 0, or one could assume without restriction

that d(2)
11 (z∗) 6= 0. For the first case, one has a cardinality of |X| · t due to the fact

that the two polynomials have a common zero. Moreover, they cannot be constant,
i.e. κ

(i)
m ≥ 1 for i = 1, 2. Thus, it follows from (2.1) that one has an additional

factor for the cardinality of at most t2(m−1), which in summary, leads to a cardinality
of O(|X| · t2m−1) = O(|X| · tm+1) for m ≥ 2 and one is finished. If d(2)

11 (z∗) 6= 0,
one proceeds as in the method of iterated row operations, i.e. in the first step, one
subtracts multiples of the first row to the rows further down in such way that all
entries in column m+ 1 but d(2)

11 (z∗) are nullified. From Lemma 9 (b), one knows that
there exist k ∈ {1, . . . ,m}, a set of column indices {j1, . . . , jk−1} ⊂ {1, . . . , 2m} and
values λr ∈ F(z∗), which (only) depend on entries dij of D2 with j ∈ {j1, . . . , jk−1}
and on z∗, such that

dkj(z∗) =

k−1∑
r=1

drj(z∗) · λr for j ∈ {1, . . . , 2m} \ {j1, . . . , jk−1}. (2.18)

Moreover, since D1 and D2 are lower triangular, it holds dij ≡ 0 for i < j ≤ m or
i+m < j ≤ 2m. Therefore, (2.18) is equivalent to

dkj(z∗) =

k−1∑
r=1

drj(z∗) · λr for j ∈ {1, . . . , k,m+ 1, . . . ,m+ k} \ {j1, . . . , jk−1}.

(2.19)

Note that {j1, . . . , jk−1} is a subset of {1, . . . , k − 1,m + 1, . . . ,m + k − 1} because
di,ji(z∗) 6= 0 for 1 ≤ i ≤ k − 1 per construction and hence, ji ≤ i ≤ k − 1 or
m + k − 1 ≥ m + i ≥ ji > m. Furthermore, it follows that d(1)

kk (z∗) = dkk(z∗) =∑k−1
r=1 drk(z∗) · λr = 0 and d

(2)
kk (z∗) = dk,m+k(z∗) =

∑k−1
r=1 dr,m+k(z∗) · λr = 0. This

could also be seen directly by observing that the iteration process only changes entries
beyond the diagonals of the matrices D1 and D2.
Thus, one has the conditions d(1)

kk (z∗) = d
(2)
kk (z∗) = 0, which moreover, ensure

κ
(i)
m−k+1 ≥ 1 for i = 1, 2. In particular, this implies that the polynomials d(i)

kj for j < k

and i = 1, 2 are not fixed to zero by degree restrictions. But since d(1)
kj = dkj and

d
(2)
kj = dk,j+m for j = 1, . . . , k−1, one knows from (3.8) that 2(k−1)−(k−1) = k−1

of these polynomials are fixed at z∗ by the remaing polynomials of D2. We fix
g := gz∗ and apply Lemma 7 (a) and (b) with w̃ ≡ 1 and wj :=

∑k−1
r=1 drj · λr for

j ∈ {1, . . . , k − 1,m + 1, . . . ,m + k − 1} \ {j1, . . . , jk−1}. One obtains a cardinality
that is O(|X| · ϕg · t2g+k−1) = O(|X| · tg+k−1) for the above conditions. Additionally,
one gets the factor t2(m−k) from (2.1) since κ(i)

m−k+1 ≥ 1. In summary, the cardinality
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is O(|X| · t2m−k+g−1) = O(|X| · tm+1) for k ≤ m − 1. For k = m, one has a factor
of O(|X| · tm). If there is no simple form, it follows from (2.1) that this cardinaliy
is decreased by a factor of at most t. Hence, the overall cardinality is O(|X| · tm+1).
This shows the claim of the first paragraph of this proof for the case that g is
fixed. But since g is bounded above by min(n1, n2), it is also valid for summing
up over all possible values for g. Moreover, note that the considered cardinality is
O(|X| · tm+g−1) = O(|X| · tm+1) for g ≥ 2, even for simple form.
It remains to compute the coefficient of tm. It follows from the previous paragraph
that for this computation it is sufficient to consider only matrices of the form

Dj =

[
Im−1 0

d
(j)
1 · · · d

(j)
m−1 d

(j)
m

]
for j = 1, 2 for which there exists z∗ ∈ F such that

[
D1(z∗) D2(z∗)

]
is singular,

which is the case if and only if d(1)
m (z∗) = d

(2)
m (z∗) = 0 and d

(1)
k (z∗) = d

(2)
k (z∗) for

1 ≤ k ≤ m − 1. According to Lemma 7 (a) and (b) with w̃ ≡ 1, wj = d
(2)
j for

j = 1, . . .m−1 and g = 1, the probability for this is equal to ϕ1 · t2+m−1 = tm. Hence,
the proof of the theorem is complete.

Comparison of the preceding result with the formula for the natural density from
[17], leads to similar observations as in Section 2.2. The natural density of left
primeness for D ∈ F[z]m×2m is equal to

∏2m−1
j=m (1 − tj). This coincides with our

asymptotic result for the uniform probability. Moreover, the asymptotic formula
does not depend on any degrees. But actually, the exact probability depends on the
degrees of the determinants of the constituent matrices.

Example 5.
The probability that [D1 D2] ∈ F[z]2×4 with deg(det(Di)) = 1 for i = 1, 2 is left prime
is equal to 1− 1

t−2+t−1 = 1− t2
∑∞
k=0(−t)k > (1− t2)(1− t3).

Proof.
Again we can assume that both D1 and D2 are in Hermite form. Thus, possible
structures are

Di =

[
z − ai 0

0 1

]
and Di =

[
1 0
bi z − ci

]
with ai, bi, ci ∈ F for i = 1, 2.

If D1 and D2 have different structures, it is obvious that [D1 D2] is left prime. If both
matrices are of the first structure, they are left coprime if and only if a1 6= a2. And
finally, if both matrices are of the second structure, they are not left coprime if and
only if b1 = b2 and c1 = c2. In summary, the two matrices are left coprime if and only
if they are not identical. Since there are t−2 + t−1 posibilities for each matrix, the
probability of left coprimeness is 1− t−2+t−1

(t−2+t−1)2 = 1− 1
t−2+t−1 .

The series expansion of this term is obtained by the formula for the geometric series.
But we do not employ the series expansion to show the lower bound. It is derived by
the simple computation
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(1− t2)(1− t3) = 1− (t2 + t3 − t6)(t−2 + t−1)

t−2 + t−1
= 1− 1 + 2t+ t2 − t4 − t5

t−2 + t−1

since 2t+ t2 > t4 + t5.

Analogous to the considerations of Section 2.2, one reason why the probability of
the preceding example differs from the natural density is that some of the entries are
fixed ones. Since these entries could never be zero, they lead to a higher probability
for left primeness. The following example considers Hermite forms with no fixed
ones.

Example 6.
For m ≥ 2, the probability that [D1 D2] ∈ F[z]m×2m, where D1 and D2 are in Hermite
form and have no diagonal entries equal to one, is left prime is upper bounded by

m∏
j=1

1− t2j−1 <

2m−1∏
j=m

1− tj .

Proof.
For the left primeness of the matrix it is necessary that the polynomials of each row
are coprime. The formula follows from the fact that row j contains 2j polynomials
which are not fixed zeros by using Corollary 2.

One reason why the probability of the preceding example differs from the formula
for the natural density is that some of the entries are fixed zeros due to the lower
triangular form of the two constituent matrices. They lead to a lower probability
for left primeness. Since matrices in Hermite form always contain fixed zeros, the
following example considers the easiest possible Kronecker-Hermite form which has
no fixed ones and therefore no fixed zeros, too.

Example 7.

For t = 1
2 , the probability that

[
z + a1 a3 z + b1 b3
a4 z + a2 b4 z + b2

]
with ai, bi ∈ F is

left prime is equal to (1− 2−2)(1− 2−3) = 168
256 .

Proof.
With the help of matlab, one gets 170

256 for the probability that the matrix has full rank
for z = 0 and z = 1. It remains to count the cases for which z2 + z + 1 divides the six
full size minors:

z2 + (a1 + a2)z + a1a2 + a3a4 = z2 + z + 1 ⇔ a2 6= a1, a3 = a4 = 1

z2 + (a1 + b2)z + a1b2 + a4b3 = z2 + z + 1 ⇔ b2 6= a1, a4 = b3 = 1

z2 + (a2 + b1)z + a2b1 + a3b4 = z2 + z + 1 ⇔ a2 6= b1, a3 = b4 = 1

z2 + (b1 + b2)z + b1b2 + b4b3 = z2 + z + 1 ⇔ b2 6= b1, b4 = b3 = 1

(b4 + a4)z + a1b4 + a4b1

(b3 + a3)z + a2b3 + a3b2
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To be divided by z2+z+1, the minors in lines one to four have to be equal to z2+z+1.
This is the case if and only if a1 = b1 6= a2 = b2 and a3 = a4 = b3 = b4 = 1. One
easiliy verifies that the minors in the last two lines are equal to the zero polynomial
in these cases and hence, are divided by z2 + z + 1, too. Consequently, there are two
possibilities for the choice of the parameters and one gets 170

256 −
2

256 = 168
256 for the

overall probability.

As in Section 2.2, the preceding observations lead to the conjecture that the
natural density computed in [17] coincides with the probability for matrices in
Kronecker-Hermite from with fixed column degrees unequal to zero.

In the following, we want to extend the previous results to N ≥ 3 matrices.
But before we approach our actual goal, which is to compute the probability that
N matrices are mutually left coprime, we first consider the case of pairwise left
coprimeness, which could be deduced from the case N = 2, where pairwise left and
mutual left coprimeness coincide.

Theorem 20.
For m ≥ 1, the probability of N matrices Di ∈ F[z]m×m in Hermite form with
deg(det(Di)) = ni for i = 1, . . . , N to be pairwise left coprime is equal to 1 −
N(N−1)

2 tm +O(tm+1).

Proof.
Let S be the subset of X := X(n1, . . . , nN ) (see Definition 11) for which the
tuples consist of pairwise left coprime matrices and E := {ij | 1 ≤ i < j ≤
N}. Thus, S = X \

⋃
r∈R Sr with R = F × E and S(z∗,ij) = {(D1, . . . , DN ) ⊂

X |
[
Di(z∗) Dj(z∗)

]
is singular}. By the inclusion-exclusion-principle, one ob-

tains:
|S| =

∑
T⊂R

(−1)|T ||ST | with ST =
⋂
r∈T

Sr and S∅ = X.

From Theorem 19, it follows that the probability |S||X| is equal to 1 +O(tm). Moreover,
from the proof of Theorem 19, it follows that for the computation of the coefficient
of tm, it is sufficient to consider only matrices of the form

Dj =

[
Im−1 0

d
(j)
1 · · · d

(j)
m−1 d

(j)
m

]
for j = 1, . . . , N for which there exist z∗ ∈ F and 1 ≤ i < j ≤ N such that[
Di(z∗) Dj(z∗)

]
is singular. Recall that

[
Di(z∗) Dj(z∗)

]
is singular if and

only if d(i)
m (z∗) = d

(j)
m (z∗) = 0 and d(i)

k (z∗) = d
(j)
k (z∗) for 1 ≤ k ≤ m− 1.

For the case that there exist z̃∗ ∈ F and 1 ≤ u < v ≤ N with (u, v) 6= (i, j)
such that

[
Du(z̃∗) Dv(z̃∗)

]
is singular, too, it is obvious that the probability is

O(t2m) = O(tm+1) if {i, j} ∩ {u, v} = ∅. If {i, j} ∩ {u, v} 6= ∅, assume without
restriction that j = u. Then, one could choose d(j)

1 , . . . , d
(j)
m−1 as well as z∗, z̃∗ ∈ F

arbitrarily, which affects that d(i)
1 , . . . , d

(i)
m−1 are fixed at z∗ and d

(v)
1 , . . . , d

(v)
m−1 are

fixed at z̃∗. If z̃∗ = z∗, it follows from Lemma 7 (a) and (b) that the probability is
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t−1+3+2(m−1) = O(tm+1). If z̃∗ 6= z∗, for which there are O(t−2) possibilities, Lemma
7 (a) and (b) lead to a probability of O(t−2+2+2+2(m−1)) = O(tm+1).
Thus, in all these cases, the probability is O(tm+1), which means that they do not
contribute anything to the coefficient of tm. Consequently, only T ⊂ R of the form
T = {(z∗, ij)} with z∗ ∈ F give a contribution to the coefficient of tm, namely
|ST | = |X| · tm (see end of proof of Theorem 19). This leads to

|S|
|X|

= 1−
∑

z∗∈F,ij∈E

|S(z∗,ij)|
|X|

+O(tm+1) = 1−
∑
ij∈E

tm +O(tm+1) =

= 1− N(N − 1)

2
tm +O(tm+1).

Remark 10.
For m ≥ 2, N ≥ 3 mutual left coprimeness is a stronger condition than pairwise left
coprimeness, as the following example shows.

Example 8.
Consider the pairwise left coprime matrices in Hermite form

D1(z) =

[
1 0
1 z

]
, D2(z) =

[
1 0
0 z

]
and D3(z) =

[
z 0
0 1

]
. We show in two

different ways that they are, however, not mutually left coprime. One way to see that is
to consider

[
D1(z) D2(z) 0

0 D2(z) D3(z)

]
=


1 0 1 0 0 0
1 z 0 z 0 0
0 0 1 0 z 0
0 0 0 z 0 1

 .
Since this matrix is singular for z = 0, D1, D2 and D3 are not mutually left coprime.
A second way to show this is to compute a least common right multiple of e.g. D2 and

D3, denoted by D23. It is easy to see that one can choose D23(z) =

[
z 0
0 z

]
, which

clearly is not left coprime with D1(z). The following remark shows in particular, that
for N = 3 only matrices whose determinants have a common zero (here z = 0) could be
pairwise but not mutually left coprime.

To calculate the probability of mutual left coprimeness, we will firstly prove a
recursion formula for it. Therefore, we have to investigate what happens if N − 1 of
the considered matrices are mutually left coprime but all N matrices together do not
have this property. This is done by the following remark.

Remark 11.
Let D1, . . . , DN be not mutually left coprime with ξDN (z∗) = 0 for some z∗ ∈ F and
ξ ∈ F(z∗)

m(N−1). Moreover, every set consisting of N − 1 of these matrices should be
mutually left coprime. Then, it holds ξ ∈ (F(z∗) \ {0})m(N−1) and det(Di(z∗)) = 0 for
i = 1, . . . , N .
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Proof.
According to Theorem 6, D1, . . . , DN are mutually left coprime if and only if

DN :=

 D1 D2 0 0

0
. . .

. . . 0
0 0 DN−1 DN

 is left prime.

Since this is not true, there exist z∗ ∈ F and ξ := (ξ1, . . . , ξN−1) 6= 0 with ξi ∈
F(z∗)

1×m for i = 1, . . . , N − 1 such that ξDN (z∗) = 0, i.e.
ξ1D1(z∗) = 0, (ξi−1 + ξi)Di(z∗) = 0 for i = 2, . . . , N − 1 and ξN−1DN (z∗) = 0.
Consequently, one has to show
ξ1 6= 0, ξi−1 + ξi 6= 0 for i = 2, . . . , N − 1 and ξN−1 6= 0
if every proper subset of {D1, . . . , DN} consists of mutually left coprime matrices.
This is shown per contradiction.
If ξN−1 = 0, i.e. ξ̃ := (ξ1, . . . , ξN−2) 6= 0, it follows ξ̃DN−1(z∗) = 0, i.e. D1, . . . , DN−1

would not be mutually left coprime. Similarly, if ξ1 = 0,
D2, . . . , DN would not be mutually left coprime. To show ξi−1 + ξi 6= 0 for i =
2, . . . , N−1, one needs ξi 6= 0 for i = 2, . . . , N−2. If ξk = 0 for some k = 2, . . . , N−2,
it follows (ξ1, . . . , ξk−1) 6= 0 or (ξk+1, . . . , ξN−1) 6= 0. In the first case, D1, . . . , Dk

would not be mutually left coprime, in the second case, Dk+1, . . . , DN would not
be mutually left coprime. Now, assume ξk−1 + ξk = 0 for some k = 2, . . . , N − 1.
Define ξ̂ := (ξ̂1, . . . , ξ̂N−2) with ξ̂i = ξi for i ≤ k − 1 and ξ̂i = −ξi+1 for i ≥ k. Then
holds ξ̂ 6= 0 and ξ̂1D1(z∗) = 0, (ξ̂i−1 + ξ̂i)Di(z∗) = 0 for i = 2, . . . , k − 1, (ξ̂i−1 +

ξ̂i)(−Di+1(z∗)) = (ξi+ξi+1)Di+1(z∗) = 0 for i = k, . . . , N−2 and ξ̂N−2(−DN (z∗)) =
ξN−1DN (z∗) = 0. This means that D1, . . . , Dk−1,−Dk+1, . . . ,−DN are not mutually
left coprime. But then D1, . . . , Dk−1, Dk+1, . . . , DN are not mutually left coprime,
too. To see that let D−N\k be constructed out of D1, . . . , Dk−1,−Dk+1, . . . ,−DN and
DN\k out of D1, . . . , Dk−1, Dk+1, . . . , DN . Because of

DN\k = D−N\k

[
Im(k−1) 0

0 −Im(N−k)

]
, left primeness of D−N\k is equivalent to left

primeness of DN\k. Consequently, the proof is complete.

With a similar reasoning, one could show a sufficient criterion for mutual left
coprimeness, as done in the following.

Remark 12.
If det(D1), . . . ,det(DN ) are pairwise coprime, D1, . . . , DN are mutually left coprime.

Proof.
We assume that D1, . . . , DN are not mutually left coprime and show per induction
with respect to N that then det(D1), . . . ,det(DN ) are not pairwise coprime. For
N = 2, D1 and D2 are not left coprime if and only if there exists z∗ ∈ F such
that [D1(z∗) D2(z∗)] has no full row rank. Clearly, this implies that det(D1(z∗)) =
det(D2(z∗)) = 0 and therefore, det(D1) and det(D2) are not coprime.
Now let D1, . . . , DN with N ≥ 3 be not mutually left coprime. As in the preceding
proof, one knows that there exist z∗ ∈ F and ξ := (ξ1, . . . , ξN−1) 6= 0 with ξi ∈ F1×m

for i = 1, . . . , N−1 such that ξ1D1(z∗) = 0, (ξi−1 +ξi)Di(z∗) = 0 for i = 2, . . . , N−1
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and ξN−1DN (z∗) = 0. If ξ1 = 0, D2, . . . , DN would be not mutually left coprime. But
then, one knows that det(D2), . . . ,det(DN ) are not pairwise coprime per induction
and hence, det(D1), . . . ,det(DN ) are not pairwise coprime, too. Similiarly, if ξN−1 =
0, D1, . . . , DN−1 are not mutually left coprime and thus, det(D1), . . . ,det(DN−1)
not pairwise coprime. Consequently, one could assume ξ1 6= 0 and ξN−1 6= 0. But
since ξ1D1(z∗) = 0 = ξN−1DN (z∗), this implies that det(D1(z∗)) = det(DN (z∗)) = 0,
which means that det(D1), . . . ,det(DN ) are not pairwise coprime.

However, this criterion for mutual left coprimeness is far away from being nec-

essary. Consider for example the matrices
[

1 0
0 z

]
,
[
z 0
0 1

]
and

[
1 0
0 1

]
, which

are clearly mutually left coprime but the determinants of the first two matrices have
the common zero 0 and are thus not coprime.

The following theorem represents the crucial step in computing the probability of
mutual left coprimeness by providing a recursion formula for it.

Theorem 21.
For N ≥ 2, the probability that N matrices Di ∈ F[z]m×m in Hermite form with
deg(det(Di)) = ni for i = 1, . . . , N are mutually left coprime is equal to

Pm(N) = 1 +

N−2∑
k=1

(−1)k
(
N

k

)
(1− Pm(N − k))−

min(m,N−1)∑
i=N−1

tm +O(tm+1),

where Pm(N − k) denotes the probability that N − k such matrices are mutually left
coprime.

Proof.
For N = 2, the formula has already been proven in Theorem 19. Therefore, one
could assume N ≥ 3. Let mut(N) be the subset of X(N) := X(n1, . . . , nN ) for
which the tuples consist of mutually left coprime matrices. Moreover, for i =
1, . . . , N , Ai(N) should denote the subset of X(N) for which the matrices in the
set {D1, . . . , DN} \ {Di} are not mutually left coprime. Finally, define AN+1(N) :=

(X(N) \mut(N))∩ (X(N) \
⋃N
i=1Ai(N)), i.e. AN+1(N) consists of those tuples that

are not mutually left coprime but all subsets of N − 1 matrices are mutually left
coprime.
Thus, mut(N) = X(N) \

⋃N+1
i=1 Ai(N). By the inclusion-exclusion-principle, one

obtains:

|mut(N)| =
∑

I⊂{1,...,N+1}

(−1)|I||AI(N)|

with AI(N) =
⋂
i∈I

Ai(N) and A∅(N) = X(N).

From the definition of the Ai(N), it follows AN+1(N) ∩Ai(N) = ∅ for i = 1, . . . , N
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and consequently,

|mut(N)| = |X(N)| − |AN+1(N)|+
∑

∅6=I⊂{1,...,N}

(−1)|I||AI(N)|. (2.20)

In the following, it is used that D1, . . . , DN are mutually left coprime if and only if

DN :=

 D1 D2 0 0

0
. . .

. . . 0
0 0 DN−1 DN

 is left prime; see Theorem 6.

At first, it is shown that the cardinality of X(N) \ mut(N) is O(|X(N)| · tm) and
that the cardinality of the subset of X(N) \mut(N) which contains only tuples of
matrices such that DN is not of simple form is O(|X(N)| · tm+1). Doing this, one uses
the following claim.

Claim 1:

If Di =

[
vi 0

wi D
(m−1)
i

]
with vi ∈ F[z] and vi(z∗) 6= 0 for i = 1, . . . , N and some

z∗ ∈ F, it holds

rk(DN (z∗)) =

= rk




w1 − v1
v2
w2 D

(m−1)
1 D

(m−1)
2

(w3

v3
− w2

v2
)v1 D

(m−1)
2 D

(m−1)
3

...
. . .

. . .

(−1)N (wN−1

vN−1
− wN

vN
)v1 D

(m−1)
N−1 D

(m−1)
N

 (z∗)

+

+N − 1.

Proof of claim 1:
This proof uses a method that is similar to the method of iterated row operations
introduced in Lemma 9 (b). However, one applies only one iteration step to special
subblocks of DN (z∗).
One starts adding row (N−2)m+1 ofDN (z∗) times −wN,rvN

(z∗) to row (N−2)m+1+r
for r = 1, . . . ,m − 1. Here, wN,r denotes the r-th component of the vector wN .
Afterwards, deleting row (N−2)m+1 and column (N−1)m+1 decreases the rank of
DN (z∗) by 1. This affects only the block [DN−1 DN ](z∗), whose first row and (m+ 1)-
th column are deleted and whose first column is changed to (wN−1 − vN−1

vN
wN )(z∗).

Moreover, some zeros of the zero blocks are deleted. Now, one continues adding
multiples of row (N − 3)m+ 1 to all rows further down in such way that the entries
in these rows which are in column (N − 2)m + 1 are nullified. This additionally
changes the entries of these rows that are in column (N−3)m+1 but no other entries.
Afterwards, row (N − 3)m+ 1 and column (N − 2)m+ 1 are deleted decreasing the
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rank by 1. Hence, per induction with respect to N , one could assume

rk(DN (z∗)) =

rk





v1 0 v2 0

w1 D
(m−1)
1 w2 D

(m−1)
2

w2 − v2
v3
w3 D

(m−1)
2 D

(m−1)
3

...
. . .

. . .

(−1)N−1(wN−1

vN−1
− wN

vN
)v2 D

(m−1)
N−1 D

(m−1)
N

 (z∗)


+N − 2.

Now, one adds the first row to all rows beyond in such way that column m + 1 is
nullified and afterwards, deletes the first row and (m+ 1)-th column. Doing this, one
gets

rk(DN (z∗)) =

rk




w1 − v1
v2
w2 D

(m−1)
1 D

(m−1)
2

(w3

v3
− w2

v2
)v1 D

(m−1)
2 D

(m−1)
3

...
. . .

. . .

(−1)N (wN−1

vN−1
− wN

vN
)v1 D

(m−1)
N−1 D

(m−1)
N

 (z∗)


+N − 1

and claim 1 is proven.
Denote by D(m̃)

N the matrix formed by blocks which consist of the last m̃ columns and
rows of the matrices Di for i = 1, . . . , N and define the sets

A(m̃, k) := {DN with rk(D(m̃)
N )(z∗) ≤ (N − 1)m̃− k for some z∗ ∈ F} and

Af (m̃, k) := A(m̃, k) ∩ {DN with no simple form}.

Claim 2:
For m̃, k ∈ N with m̃+ k ≤ m+ 1, the cardinality of A(m̃, k) is O(|X(N)| · tm̃+k−1)
and the cardinality of Af (m̃, k) is O(|X(N)| · tm̃+k).

Proof of claim 2:
The proof is done per induction with respect to m̃ and starts with the base clause
m̃ = 1. For k > N − 1, it holds A(1, k) = Af (1, k) = ∅, which has cardinality
O(|(X(N)| · tm(n1+···+nN )) = O(|X(N)| · tm̃+k+1) since m(n1 + · · · + nN ) ≥ mN ≥
(m̃+ k − 1) · 2 = 2k ≥ k + 2 = m̃+ k + 1 because k ≥ N ≥ 2. Thus, it is sufficient to
consider the case k ≤ N−1. The blocks that form D(1)

N are just the scalar polynomials
d(i) := d

(i)
m,m for i = 1, . . . , N . In A(1, k), there exists z∗ ∈ F such that all the matrices

consisting of a subset of N − k rows of D(1)
N are not of full rank at z∗. Especially, the

first N − k rows are linearly dependent at z∗, which is equivalent to the fact that
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at least two of the polynomials d(1), . . . , d(N−k+1) are zero at z∗. Since permutating
the set {d(1), . . . , d(N)} does not change the rank of D(1)

N , every subset of N − k + 1
polynomials contains two polynomials that are zero at z∗.
Now, one proceeds in the following way: First, choose the polynomials
d(1), . . . , d(N−k+1) and denote the polynomials that are zero at z∗ by d1,1 and d1,2.
Then, consider the set of polynomials {d(1), . . . , d(N−k+2)} \ {d1,1} and iterate this
procedure until ending up with the set {d(1), . . . , d(N)} \ {d1,1, . . . , dk−1,1}. In sum-
mary, at least the k + 1 different polynomials d1,1, . . . , dk−1,1, dk,1, dk,2 are zero at z∗.
Hence, the cardinality of A(1, k) is O(|X(N)| · t1+k−1) (see Lemma 5). Moreover, the
cardinality of Af (1, k) is O(|X(N)| · tk+1) since the not simple form decreases the
cardinality by at least the factor t; see (2.1).
For the step from m̃ to m̃+ 1, three cases are distinguished.

Case 1: k > (N − 1)(m̃+ 1)
Here, A(m̃ + 1, k) = Af (m̃ + 1, k) = ∅, which has a cardinality that is O(|X(N)| ·
tm(n1+···+nN )) = O(|X(N)|·tm̃+k+1) sincem(n1+· · ·+nN ) ≥ 2m ≥ m+1 ≥ m̃+k+1.

Case 2: k = (N − 1)(m̃+ 1)

This means rk(D(m̃+1)
N (z∗)) = 0, i.e. D(m̃+1)

N (z∗) ≡ 0. Consequently κ(i)
j ≥ 1 for

j = 1, . . . , m̃+1 and i = 1, . . . N and thus, all N · (m̃+1)(m̃+2)
2 ≥ N(m̃+2) polynomial

entries are no fixed zeros but have the common zero z∗, which leads, according to
Corollary 2, to a cardinality of O(|X(N)| · tN(m̃+2)−1) = O(|X(N)| · tk+m̃+1) since
N(m̃+ 2)− 1 = (N − 1)(m̃+ 2) + m̃+ 1 > k + m̃+ 1.

Case 3: k ≤ (N − 1)(m̃+ 1)− 1⇔ m̃(N − 1) ≥ k + 2−N
Case 3 is divided into three subcases.
Case 3.1: d(1)

m−m̃,m−m̃(z∗) = · · · = d
(N)
m−m̃,m−m̃(z∗) = 0

That these polynomials have a common zero contributes a factor of O(tN−1) to the
cardinality. Additionally, these polynomials cannot be identically 1, which means
1 ≤ κ

(i)
m−(m−m̃)+1 = κ

(i)
m̃+1 (in particular, there is no simple form) and contributes

a factor of O(tNm̃) to the cardinality; see (2.1). In summary, the cardinality is
O(|X(N)| · tm̃+1+k) since N − 1 +Nm̃ ≥ N − 1 + m̃+ k + 2−N = m̃+ 1 + k.
Case 3.2: d

(1)
m−m̃,m−m̃(z∗), . . . , d

(l−1)
m−m̃,m−m̃(z∗) 6= 0 and d

(l)
m−m̃,m−m̃(z∗) = · · · =

d
(N)
m−m̃,m−m̃(z∗) = 0 for some l ∈ {2, . . . , N}

All entries of row (l− 2)(m̃+ 1) + 1 of D(m̃+1)
N (z∗) but d(l−1)

m−m̃,m−m̃(z∗) 6= 0 are equal
to zero. Hence, deleting the row and column of this entry decreases the rank by 1.
After that, for l ≥ 3, row (l − 3)(m̃ + 1) + 1 of the remaining matrix consists only
of zeros but d(l−2)

m−m̃,m−m̃(z∗) 6= 0 and the procedure could be iterated until all rows

and columns of the entries d(1)
m−m̃,m−m̃(z∗), . . . , d

(l−1)
m−m̃,m−m̃(z∗) are deleted and the

rank is decreased by l − 1. Moreover, the entries of the rows (l − 1 + j)(m̃+ 1) + 1

for j = 0, . . . , N − l − 1 of D(m̃+1)
N that are no fixed zeros are contained in the set

{d(l)
m−m̃,m−m̃, . . . , d

(N)
m−m̃,m−m̃}. Thus, these rows consist only of zeros at z∗ and could
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be deleted without changing the rank. Deleting also the columns of these entries,
could only decrease the rank and one ends up with D(m̃)

N (z∗), which, consequently,
has rank at most (N − 1)(m̃+ 1)− k− l+ 1 = (N − 1)m̃− (k+ l−N). Per induction,
this leads to a cardinality of O(|X(N)| · tm̃+k+l−N−1).
Since each z∗ such that D(m̃)

N (z∗) is not of full row rank is a common zero of all full
size subminors of D(m̃)

N , it is, in particular, a zero of
∏N
i=1 det(D

(m̃)
i ). Therefore, for

each D(m̃)
N , there exist only finitely many such z∗ ∈ F. Consequently, one could regard

z∗ as already fixed when considering the further conditions d(l)
m−m̃,m−m̃(z∗) = · · · =

d
(N)
m−m̃,m−m̃(z∗) = 0. Thus, these conditions contribute the factor tN−l+1+m̃(N−l+1) to

the cardinality. Here, the summand m̃(N−l+1) is due to the fact that d(i)
m−m̃,m−m̃ 6≡ 1

for i = l, . . . , N ; see (2.1). In summary, the cardinality isO(|X(N)|·tm̃+k+m̃(N−l+1)) =
O(|X(N)| · tm̃+k+1).
Case 3.3: d(i)

m̃−m,m̃−m(z∗) 6= 0 for i = 1, . . . , N

From claim 1 with D(m̃+1)
i =

[
vi 0

wi D
(m̃)
i

]
and vi = d

(i)
m̃−m,m̃−m for i = 1, . . . , N ,

one knows rk(D(m̃+1)
N (z∗)) = rk(r(z∗) D(m̃)

N (z∗)) +N − 1, where

r =

 w1 − v1
v2
w2

. . .
(−1)N (wN−1

vN−1
− wN

vN
)v1

 ∈ F(N−1)m̃[z].

It follows rk(r(z∗) D(m̃)
N (z∗)) ≤ (N − 1)m̃− k. If rk(D(m̃)

N (z∗)) ≤ (N − 1)m̃− k − 1,
one knows per induction that the cardinality is O(|X(N)| · tm̃+k). If DN is not of
simple form, one has an additional factor of at most t, no matter if D(m̃)

N is of simple
form or not.
If rk(D(m̃)

N (z∗)) = (N −1)m̃−k, one knows that the cardinality is O(|X(N)| · tm̃+k−1)

and additionally, that r(z∗) lies in the column span of D(m̃)
N (z∗). Hence, one has to

show that this second condition leads to an additional factor for the probability that
is O(t). As seen above, for each D(m̃)

N , there exist only finitely many z∗ ∈ F with
rk(D(m̃)

N (z∗)) = (N − 1)m̃− k. Consequently, one has to consider just the case that
z∗ and D(m̃)

N are fixed and the vector r(z∗) lies in the column span of D(m̃)
N (z∗). If

(N − 1)m̃− k < 0, the cardinality is O(|X(N)| · tm̃+k+1), anyway (see case 1).
If (N − 1)m̃ − k = 0, one has D(m̃)

N (z∗) ≡ 0 and r(z∗) ≡ 0. Hence, κ(i)
j ≥ 1 for

i = 1, . . . , N and j = 1, . . . , m̃, and thus, the vectors w1, . . . , wN contain no entries
that are fixed (to zero) by degree conditions. Furthermore, one has, amongst others,
w1(z∗) = v1

v2
w2(z∗), which means, in particular, that the first component of w1 is fixed

by the other polynomials, which contributes a factor that is O(t) to the cardinality;
see Lemma 7 (b)).
If (N − 1)m̃− k > 0, one could choose (N − 1)m̃− k linearly independent rows in
D(m̃)
N (z∗). If there exist i ∈ {1, . . . , N − 1} and j ∈ {1, . . . , m̃} such that the j-th com-

ponents of wi and wi+1 are fixed to zero by degree conditions, which is the case if and
only if κ(i)

m̃+1−j = κ
(i+1)
m̃+1−j = 0, row m̃(i−1) + j has ones in the positions m̃(i−1) + j
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and m̃i+ j and zeros, elsewhere. Thus, all these rows are linearly independent and
one could assume without restriction that they are contained in the choosen set of
linearly independent rows. Permute the rows of [r D(m̃)

N ] in such way that the entries
of the choosen rows of D(m̃)

N are contained in the rows 1, . . . , (N − 1)m̃− k, which
we call the upper part, while the other rows of D(m̃)

N should be called the lower part.
Clearly, interchanging rows does not change the rank of the whole matrix. In the
following, [r D(m̃)

N ] should denote the matrix with the already interchanged rows.
Note that by this interchanging process the Hermite form is lost but this does not
matter for the following considerations.
Next, delete m̃ + k columns of D(m̃)

N (z∗) such that the remaining entries of the
upper part form an invertible matrix, denoted by D. The matrix consisting of the
remaining entries of the lower part should be denoted by D. Analogously, denote
the corresponding parts of r by r ∈ F[z](N−1)m̃−k and r ∈ F[z]k, respectively. Since

the column rank of
(
D(z∗)
D(z∗)

)
is still (N − 1)m̃ − k, its column span is equal to the

column span of D(m̃)
N (z∗) and therefore, r(z∗) is contained in it. Hence, there exists

λ ∈ F(N−1)m̃−k
with

(
D(z∗)λ
D(z∗)λ

)
=

(
r(z∗)
r(z∗)

)
, i.e. r(z∗) = D(z∗)D

−1
(z∗)r(z∗). De-

note the last row of DD
−1

by d1, . . . d(N−1)m̃−k. Then rk(z∗) =
∑(N−1)m̃−k
l=1 dlrl(z∗).

Moreover, wi,j should denote the j-th component of the vector wi ∈ F[z]m̃. Thus,

rk = (−1)i
(
wi,j
vi
− wi+1,j

vi+1

)
v1 for some i ∈ {1, . . . , N − 1} and j ∈ {1, . . . , m̃}. The

polynomials wi,j and wi,j+1 could not both be fixed to zero due to degree conditions

since otherwise (−1)i
(
wi,j
vi
− wi+1,j

vi+1

)
v1 would belong to r per construction of upper

and lower part. Assume without restriction that wi,j is no fixed zero.

First, consider the case that (−1)i
(
wi,j
vi
− wi−1,j

vi−1

)
v1 is not contained in r and hence,

wi,j is not contained in the term for any entry of r. Then, one could choose all
polynomial entries of D(m̃+1)

N but wi,j arbitrarily, which effects that wi,j(z∗) is fixed.
However, this contributes a factor of O(t) to the cardinality; see Lemma 7 (b). If

(−1)i
(
wi,j
vi
− wi−1,j

vi−1

)
v1 is contained in r, assume without restriction that it equals

r1. Then, one has

wi,j
vi

(1− d1)v1(z∗) =
wi+1,j

vi+1
v1(z∗)−

wi−1,j

vi−1
d1v1(z∗) + (−1)i

(N−1)m̃−k∑
l=2

dlrl(z∗).

(2.21)

Consider d1(z∗) =
∑(N−1)m̃−k
l=1 Dk,lD

−1

l,1 (z∗).
Case 3.3.1: The entries of κ are so that d1 ≡ 0 (by degree conditions).
Here, one has, in particular, d1(z∗) 6= 1 and could, therefore, solve equation (2.21)
with respect to wi,j(z∗). Hence, one has a factor that is O(t) for the cardinality and is
done.
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Case 3.3.2: The entries of κ are not so that they imply d1 ≡ 0.
If d1(z∗) = 0, which also implies that one could solve equation (2.21) with re-
spect to wi,j(z∗) and consequently, is done as well, there exists l∗ such that neither
Dk.l∗

≡ 0 nor D
−1

l∗,1 ≡ 0 due to degree restrictions (caused by the values of κ). Thus,

either D
−1

l∗,1(z∗) = 0, which leads to a factor which is O(t) for the cardinality, or
one could solve the equation d1(z∗) = 0 with respect to Dk,l∗

(z∗) (that is no fixed
1 per construction of upper and lower part), which provides the factor O(t), too.
Therefore, the probability that d1(z∗) = 0 if not d1 ≡ 0 due to degree conditions,
is O(t). Hence, it only remains to investigate what happens if d1(z∗) 6= 0, which
is true with a probability of 1 − O(t) in the considered case. This implies that the
probability that rk(D(m̃)

N (z∗)) = (N − 1)m̃ − k under the condition d1(z∗) 6= 0 is
O(tm̃+k−1)

1−O(t) = O(tm̃+k−1).

Per construction of D and D, it does not influence the condition rk(D(m̃)
N (z∗)) =

(N − 1)m̃ − k, which nonzero value is taken by d1(z∗). This is true since D(z∗) is
invertible and therefore, the rows of D(z∗) are linearly dependent on the rows of
D(z∗), anyway. Moreover, multiplying a row by a nonzero factor, does not influence
linear dependence, i.e. does not influence the number of possibilities for the entries
of D(m̃)

N which are not contained in D or D. If d1(z∗) 6= 1, one could solve equation
(2.21) with respect to wi,j(z∗) and is done.
If 1 = d1(z∗) =

∑(N−1)m̃−k
l=1 Dk,lD

−1

l,1 (z∗), there exists l0 ∈ {1, . . . , (N−1)m̃−k} such

that D
−1

l0,1(z∗) 6= 0 and Dk,l0
is no fixed zero (it cannot be a fixed 1 per construction

of upper and lower part). Consequently, one could solve the above equation with
respect to Dk,l0

(z∗). Because it follows from the preceding considerations that the

condition d1(z∗) = 1 is independent from the condition rk(D(m̃)
N (z∗)) = (N−1)m̃−k,

one gets an additional factor that is O(t) for the cardinality. As in previous cases, the
cardinality is decreased by a factor of at most t if one has no simple form and thus,
all cases are finished.
Note that it is sufficient to consider these three cases since the order of
D1, . . . , DN is not relevant for the property to be mutually left coprime. Therefore,
the proof of claim 2 is complete.
Using claim 2 with m̃ = m and k = 1, completes the first part of this proof.
Next, one needs to compute the probability for the case that DN ⊂ AN+1(N) is of

simple form, i.e. the case that Di =

[
Im−1 0

d
(i)
1 · · · d

(i)
m−1 d

(i)
m

]
for i = 1, . . . , N .

Claim 3:
For D :=

d
(1)
1 − d

(2)
1 . . . d

(1)
m−1 − d

(2)
m−1 d

(1)
m d

(2)
m

d
(3)
1 − d

(2)
1 . . . d

(3)
m−1 − d

(2)
m−1 d

(2)
m d

(3)
m

...
...

. . .
. . .

(−1)N (d
(N−1)
1 − d(N)

1 ) . . . (−1)N (d
(N−1)
m−1 − d

(N)
m−1) d

(N−1)
m d

(N−1)
m


it holds rk(DN ) = rk(D) + (m− 1)(N − 1).
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Proof of claim 3:
One proceeds as in the proof of claim 1 (with vi = 1) and achieves:

rk(DN ) =

rk


w1 − w2 D

(m−1)
1 D

(m−1)
2

w3 − w2 D
(m−1)
2 D

(m−1)
3

...
. . .

. . .

(−1)N (wN−1 − wN ) D
(m−1)
N−1 D

(m−1)
N

+N − 1,

where wi = (0, . . . , 0, d
(i)
1 )> ∈ F[z]m−1 and D

(m−1)
i ∈ F[z](m−1)×(m−1) is in simple

form for i = 1, . . . , N . One iterates this procedure m− 1 times and since one always
adds the first row of a block to rows further down, the first column of the whole
matrix is not affected. Deleting the corresponding row only deletes one zero in each
of the vectors wi. After m− 1 iterations, one ends up with the statement of claim 3
and thus, claim 3 is proven.
Consequently, for simple form, D1, . . . , DN are not mutually left coprime if and only
if there exist z∗ ∈ F and ξ ∈ F1×(N−1) \{0} such that ξD(z∗) = 0, which is equivalent
to

ξ1d
(1)
i (z∗)− (ξ1 + ξ2)d

(2)
i (z∗) + · · ·+ (−1)N (ξN−2 + ξN−1)d

(N−1)
i (z∗)+

+(−1)N+1ξN−1d
(N)
i (z∗) = 0 for i = 1, . . .m− 1

ξ1d
(1)
m (z∗) = 0

(ξi−1 + ξi)d
(i)
m (z∗) = 0 for i = 2, . . . , N − 1

ξN−1d
(N)
m (z∗) = 0. (2.22)

Next, define ÃN+1(N) as the subset of X(N) for which there exists z∗ ∈ F such that
DN (z∗) is singular and det(Di(z∗)) = 0 for i = 1, . . . , N . From Remark 11 it follows
AN+1(N) ⊂ ÃN+1(N). In the following, we compute the probability of ÃN+1(N) for
simple form, i.e. the probability that there exist z∗ ∈ F and ξ ∈ F(z∗)

1×(N−1) \ {0}
with d(i)

m (z∗) = 0 for i = 1, . . . , N , such that the first m − 1 equations of (2.22) are
fulfilled. Firstly, that these N polynomials have a common zero gives a factor to the
cardinality of O(tN−1).
If m < N − 1, this leads to a cardinality that is O(|X(N)| · tm+1).
To consider the case m ≥ N−1, one sorts the possible values for z∗ with respect to the
degree of their minimal polynomial und sets g := gz∗ . Then, ξ ∈ (Fg)1×(N−1) \ {0},
where Fg denotes the extension field with t−g elements. Hence, there are t−g(N−1)−1
possibilities for the choice of ξ. Since there exists i ∈ {1, . . . , N − 1} with ξi 6= 0, at
least one element of {ξ1, ξ1 + ξ2, . . . , ξN−2 + ξN−1, ξN−1} is unequal to zero and thus,
there exists j0 ∈ {1, . . . , N} such that one could solve equations 1 to m− 1 of (2.22)
with respect to d(j0)

i (z∗) for i = 1, . . . ,m− 1. Assume without restriction that j0 = 1.
If the other entries of DN as well as z∗ are fixed, for ξ, ξ̂ ∈ (Fg)1×(N−1) \ {0}, this
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leads to the same values for ξ1d
(1)
i (z∗) if and only if

(ξ1 + ξ2)d
(2)
i (z∗) + · · ·+ (−1)N+1ξN−1d

(N)
i (z∗) =

(ξ̂1 + ξ̂2)d
(2)
i (z∗) + · · ·+ (−1)N+1ξ̂N−1d

(N)
i (z∗)

for i = 1, . . . ,m− 1. But these equations hold if and only if the vector ξ1 + ξ2
...

(−1)N−1ξN−1

−
 ξ̂1 + ξ̂2

...
(−1)N−1ξ̂N−1

 is contained in the kernel of

D(z∗) :=


d

(2)
1 . . . d

(N)
1

...
...

d
(2)
m−1 . . . d

(N)
m−1

 (z∗).

The probability that the column rank of D(z∗) is min(N − 1,m − 1) is equal to
1 − O(t). This is true because the probability that a full size minor of this matrix
is zero at a fixed value z∗ is equal to O(t) if one chooses d(i)

j with deg(d
(i)
j ) < ni

for j = 1, . . .m− 1 and i = 1, . . . , N randomly; this follows from Lemma 7 (a) and
(b) because that a minor is zero implies that either one of the involved polynomial
entries is zero or one of the entries is fixed by the others. Consequently, for m ≥ N ,
i.e. min(N − 1,m − 1) = N − 1, the probability that the kernel of D(z∗) is zero is
equal to 1−O(t). Therefore, the probability that ξ = ξ̂ is equal to 1−O(t), too.
For m = N − 1, one has min(N − 1,m− 1) = N − 2 and thus, the probability that
the kernel has dimension one is equal to 1−O(t). This means that only ξ that differ
by a nonzero scalar factor lead to the same solution. But if one multiplies ξ by a
factor from Fg \ {0}, the set of possible values for the Di which fulfill (2.22) does
not change, anyway.
In summary, with probability 1−O(t), one has t−g(N−1)−1

t−g−1 =
∑N−2
k=0 (t−g)k =

= t−g(N−2)(1− O(t)) possibilities for ξ and according to Lemma 7 (a) and (b), for
each ξ, there are O(|X(N)| ·tg(N−1)+m−1) possibilities for DN . Hence, the probability
is O(tg+m−1) = O(tm+1) for g ≥ 2. Since one already knows that fz∗ divides d(i)

m

for i = 1, . . . , N , one has g ≤ min(n1, . . . , nN ), i.e. there are only finitely many
possibilities for g. Consequently, only the case g = 1 is relevant for the computation
of the coefficient of tm. Here, one has t−(N−2)(1 − O(t)) possibilities for ξ and
according to Lemma 7 (a) and (b), tN+m−2 possibilities for z∗ and DN . Hence, the
probability of ÃN+1(N) is tm +O(tm+1).
Next, we show that for simple form, it holds |AN+1(N)| = |ÃN+1(N)|+O(|X(N)| ·
tm+1), which imples |AN+1(N)| = |X(N)| ·O(tm+1) if m < N − 1 and |AN+1(N)| =
|X(N)| · (tm +O(tm+1)) if m ≥ N − 1, i.e.

|AN+1(N)| = |X(N)| ·

min(m,N−1)∑
i=N−1

tm +O(tm+1)

 .
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We prove this by showing that for simple form, MC(N) := X(N) \ mut(N) and
A := (MC(N) \ AN+1(N)) ∩ ÃN+1(N), one has |A| = O(|X(N)| · tm+1). It holds
that (D1, . . . , DN ) ∈ A if and only if there exist z∗, z̃∗ ∈ F such that d(i)

m (z∗) = 0
for i = 1, . . . , N and the first m − 1 equations of (2.22) are fulfilled for z∗ and
there exists a subset of N − 1 matrices which fulfil equations (2.22) at z̃∗. Since
the number of choices for this subset is equal to N and therefore finite, it follows
from preceding computations that the probability of MC(N) \AN+1(N) (i.e. of the
condition concerning z̃∗) is O(tm). Without restriction, let the mentioned subset
be {D1, . . . , DN−1}. If z∗ = z̃∗, one has, amongst others, the additional condition
d

(N)
m (z̃∗) = 0, which gives a factor that is O(t) for the probability, according to Lemma

7 (a). If z∗ 6= z̃∗, one has the additional conditions that d(i)
m (z∗) = 0 for i = 1, . . . , N ,

which contributes a factor that is O(tN−1) = O(t). Consequently, in summary, one
has that the probability of A is O(tm+1), which is what we wanted to show.
It remains to compute |AI(N)|. From claim 2, one already knows |AI(N)| = |X(N)| ·
O(tm). First consider Ai(N) ∩ Aj(N), i.e. I = {i, j} with i 6= j, and assume
without restriction i = 1 and j = N . It holds (D1, . . . , DN ) ∈ A1(N) ∩ AN (N) if
and only if {D2, . . . , DN} and {D1, . . . , DN−1} are not mutually left coprime. Since
the condition that {D2, . . . , DN} are not mutually left coprime causes already a
factor for the probability that is O(tm+1) if DN is not of simple form, it is only
necessary to consider simple form. Denote by Â1,N (N) the subset of X(N) for
which {D2, . . . , DN−1} are not mutually left coprime and write |A1(N) ∩AN (N)| =
|A1(N)∩AN (N)∩ Â1,N (N)|+ |A1(N)∩AN (N)∩ ÂC1,N (N)|, where ÂC1,N (N) denotes

the complementary set X(N) \ Â1,N (N). Moreover, denote by D(1)
N the matrix that is

achieved if the first m rows and columns of DN are deleted. Analogously, denote by
D(N)
N the matrix that is achieved if the last m rows and columns of DN are deleted. If
DN ∈ A1(N)∩AN (N) is of simple form, one knows that equations (2.22) are valid for
D(1)
N as well as for D(N)

N . Denote the corresponding ξ, z∗ and gz∗ by ξ(1), z
(1)
∗ , g(1) and

ξ(N), z
(N)
∗ , g(N), respectively. If DN ∈ A1(N)∩AN (N)∩ ÂC1,N (N), one has ξ(1)

N−2 6= 0

as well as ξ(N)
1 6= 0 and therefore, d(N)

m (z
(1)
∗ ) = d

(1)
m (z

(N)
∗ ) = 0 (see proof of Remark

11). For fixed z(1)
∗ and z(N)

∗ (where without restriction deg(d
(N)
m ) = nm ≥ g(1) and

deg(d
(1)
m ) = n1 ≥ g(N) since otherwise, A1(N)∩AN (N)∩ÂC1,N (N) = ∅, anyway), this

contributes a factor of tg
(1)

for the probability that D2, . . . , DN are not mutually left
coprime and a factor of tg

(N)

for the probability that D1, . . . , DN−1 are not mutually
left coprime, respectively. Thus, the other equations of (2.22) for D(1)

N contribute
a factor that is O(tm−g

(1)

) and the other equations of (2.22) for D(N)
N contribute a

factor that is O(tm−g
(N)

). Assume without restriction g(1) ≥ g(N). Then, one has
a contribution to the probability that is O(tm−g

(1)

) by the equations for D(1)
N and

D(N)
N but d(N)

m (z
(1)
∗ ) = d

(1)
m (z

(N)
∗ ) = 0 and the additional factor tg

(1)+g(N)

for these
equations. Hence, in summary,
|A1(N) ∩AN (N) ∩ ÂC1,N (N)| = O(|X(N)| · tm+g(N)

) = O(|X(N)| · tm+1).
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Consequently, |A1(N)∩AN (N)| = |A1(N)∩AN (N)∩Â1,N (N)|+O(|X(N)| ·tm+1) =

|Â1,N (N)|+O(|X(N)| · tm+1). Therefore,

|Ai(N) ∩Aj(N)| = |X(N)| · (1− Pm(N − 2) +O(tm+1))

for i, j ∈ {1, . . . , N} with i 6= j.
Next, it is shown per induction with respect to |I| that |AI(N)| = |ÂI(N)|+O(|X(N)|·
tm+1) for 2 ≤ |I| ≤ N − 2, where ÂI(N) denotes the subset of X(N) for which the
N − |I| matrices from the set {Di}i∈{1,...,N}\I are not mutually left coprime. The
proof of the corresponding base clause has already been done in the preceding
paragraph. For |I| = k with 3 ≤ k ≤ N − 2, assume without restriction that
I = {N − k + 1, . . . , N}. Since ÂI(N) ⊂ AI(N), one has

AI(N) = AN−k+2,...,N (N) ∩AN−k+1,N−k+3,...,N (N) =

= ÂN−k+2,...,N (N) ∩ ÂN−k+1,N−k+3,...,N (N)+

+ (AN−k+2,...,N (N) ∩AN−k+1,N−k+3,...,N (N))\
(ÂN−k+2,...,N (N) ∩ ÂN−k+1,N−k+3,...,N (N)).

Furthermore,

|(AN−k+2,...,N (N) ∩AN−k+1,N−k+3,...,N (N))\
(ÂN−k+2,...,N (N) ∩ ÂN−k+1,N−k+3,...,N (N))| ≤
≤ |(AN−k+2,...,N (N) ∩AN−k+1,N−k+3,...,N (N)) \ ÂN−k+2,...,N (N)|+
+ |(AN−k+2,...,N (N) ∩AN−k+1,N−k+3,...,N (N)) \ ÂN−k+1,N−k+3,...,N (N)| ≤
≤ |AN−k+2,...,N (N) \ ÂN−k+2,...,N (N)|+
+ |AN−k+1,N−k+3,...,N (N) \ ÂN−k+1,N−k+3,...,N (N)| = O(|X(N)| · tm+1)

per induction since |{N − k+ 2, . . . , N}| = |{N − k+ 1, N − k+ 3, . . . , N}| = k− 1.
Moreover, it holds ÂN−k+2,...,N (N) = ÂN−k+2(N −k+2) = AN−k+2(N −k+2) and
ÂN−k+1,N−k+3,...,N (N) = ÂN−k+1(N − k+ 2) = AN−k+1(N − k+ 2). Consequently,

|AI(N)| = |AN−k+2(N − k + 2) ∩AN−k+1(N − k + 2)|+O(|X(N)| · tm+1) =

= |AN−k+1,N−k+2(N − k + 2)|+O(|X(N)| · tm+1) =

= |ÂN−k+1,N−k+2(N − k + 2)|+O(|X(N)| · tm+1) =

= |ÂI(N)|+O(|X(N)| · tm+1). (2.23)

Here, the third equation follows from the base clause.
For |I| = N − 1, assume without loss of generality that I = {2, . . . , N}. Analogous to
the first line of (2.23) (with k = N − 1), one gets |AI(N)| = |S12 ∩S13|+O(|X(N)| ·
tm+1), where S12 and S13 are the subsets of X(N) for which D1, D2 and D1, D3 are
not left coprime, respectively. In the proof of Theorem 20, it has been shown that
|S12 ∩ S13| = O(|X(N)| · tm+1). Therefore, |AI | = O(|X(N)| · tm+1) for |I| = N − 1
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and consequently, |AI | = O(|X(N)| · tm+1) for |I| = N , too.
In summary, one has |AI | = |X(N)| · (1 − Pm(N − |I|) + O(tm+1)) for |I| ≤ N − 2
and |AI | = |X(N)| ·O(tm+1) for |I| ∈ {N − 1, N}.
Inserting all results into (2.20), using that there are

(
N
|I|
)

subset of {1, . . . , N} with
cardinality |I| and dividing by |X(N)| completes the proof of the whole theorem.

The preceding theorem makes it possible to compute Pm(N), which is firstly done
for N = 3, 4, 5 in the following example.

Example 9.
For N = 2, 3, 4, one has the following probabilities for mutual left coprimeness:

Pm(3) = 1− (3 +

min(m,2)∑
i=2

1)tm +O(tm+1),

Pm(4) = 1− (6 + 4

min(m,2)∑
i=2

1 +

min(m,3)∑
i=3

1)tm +O(tm+1),

Pm(5) = 1− (10 + 10

min(m,2)∑
i=2

1 + 5

min(m,3)∑
i=3

1 +

min(m,4)∑
i=4

1)tm +O(tm+1).

Next, an explicit formula for the coefficient of tm in Pm(N) should be developed.
Therefore, we write

Pm(N) = 1 +

∑
y≥1

cy(N)

min(m,y)∑
i=y

1

 tm +O(tm+1)

with coefficients cy(N) ∈ N, which remain to be computed.
Note that

∑min(m,1)
i=1 1 = 1 for all m ∈ N. Moreover, one will see in the following

that the sum over j is finite, i.e. there exists y0 ∈ N with cy(N) = 0 for y ≥ y0.
We proceed by computing a recursion formula for cy(N) and solving it to derive an
explicit formula for these coefficients. It could be seen easiliy that c1(N) = −

(
N
2

)
:

setting m = 1, leads to P1(N) = 1 + c1(N)t+ O(t2) since
∑min(1,y)
i=y 1 = 1 for y = 1

and
∑min(1,y)
i=y 1 = 0 for y > 1. But for m = 1, mutual left coprimeness is equivalent

to pairwise coprimeness. Hence, the statement follows from Theorem 20.

Lemma 10.
Let cy(N) be the coefficient of

∑min(m,y)
i=y tm in Pm(N). Then it holds:

cy(N) =

N−y−1∑
k=1

(−1)k+1

(
N

k

)
cy(N − k) for 1 ≤ y ≤ N − 2

cN−1(N) = −1

cy(N) = 0 for y ≥ N.
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Proof.
From the recursion formula for Pm(N) follows

cy(N) =

N−2∑
k=1

(−1)k+1

(
N

k

)
cy(N − k)− 1 for y = N − 1

cy(N) =

N−2∑
k=1

(−1)k+1

(
N

k

)
cy(N − k) otherwise.

Using these formulas, the lemma is shown per induction with respect to N . It is
already known that c1(2) = −1 and cy(2) = 0 for y ≥ 2. Hence, per induction,
one knows cy(N − k) = 0 for y ≥ N − k, i.e. k ≥ N − y. Consequently, one can
choose N − y − 1 as upper limit for the sum and the lemma is proven for y ≤ N − 2.
Furthermore, for y ≥ N − 1, the sum vanishes and it remains −1 if y = N − 1 and 0
if y ≥ N .

Now, we are ready to solve the recursion formula of Theorem 21 and achieve an
explicite formula for the probability of mutual left coprimeness.

Theorem 22.
For m,N ≥ 2, it holds:

Pm(N) = 1−
m+1∑
y=2

(
N

y

)
tm +O(tm+1).

Proof.
At first, it is shown that cy(N) = −

(
N

N−y−1

)
. This is done per induction with respect

to N . It holds cN−1(N) = −1 = −
(
N
0

)
and cy(N) = 0 = −

(
N

N−y−1

)
for y ≥ N .

Moreover, these identities are sufficient to prove the claim for N = 2. Per induction
one obtains for 1 ≤ y ≤ N − 2,

cy(N) =

N−y−1∑
k=1

(−1)k+1

(
N

k

)
cy(N − k) =

N−y−1∑
k=1

(−1)k
(
N

k

)(
N − k

N − k − y − 1

)
=

=

N−y−1∑
k=1

(−1)k
N !

k!(N − k − y − 1)!(y + 1)!
=

=
N !

(y + 1)!

N−y−1∑
k=1

(−1)k
1

k!(N − k − y − 1)!
. (2.24)

For the computation of the last sum substitute M = N − y − 1 and achieve:
M∑
k=1

(−1)k
1

k!(M − k)!
=

M∑
k=0

(−1)k
1

k!(M − k)!
− 1

M !
=

=
1

M !

(
M∑
k=0

(−1)k
(
M

k

)
− 1

)
= − 1

M !
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since applying the binomial theorem shows
∑M
k=0(−1)k

(
M
k

)
= 0. Resubstitution and

inserting into (2.24) leads to

Pm(N) = 1−

N−1∑
y=1

(
N

N − y − 1

)min(m,y)∑
i=y

1

 tm +O(tm+1).

The identities

N−1∑
y=1

(
N

y + 1

)min(m,y)∑
i=y

1 =

min(N−1,m)∑
y=1

(
N

y + 1

)
=

min(N,m+1)∑
y=2

(
N

y

)
=

m+1∑
y=2

(
N

y

)
complete the proof.

Remark 13.
One can prove the preceding theorem using only the recursion formula for Pm(N) and
without considering the coefficients cy(N). From the recursion formula of Pm(N), one
can deduce a recursion formula for the coefficient C(N) of tm in Pm(N) as well, which
has the following form:

C(N) =

N−2∑
k=1

(−1)k+1

(
N

k

)
C(N − k)−

min(m,N−1)∑
i=N−1

1.

With the help of this formula, one can prove C(N) = −
∑m+1
y=2

(
N
y

)
per induction with

respect to N . This way seems to be more straightforward than considering cy(N) but it
is harder to see the solution of the recursion formula for C(N) than to see the solution
of the recursion formula for cy(N). Moreover, the proof per induction is harder, too.

Proof.
For N = 2, one has −

∑m+1
y=2

(
2
y

)
= −1, which coincides with the result of Theorem 5.

Moreover, per induction, one knows

C(N) =

N−2∑
k=1

(−1)k
(
N

k

)m+1∑
y=2

(
N − k
y

)
−

min(m,N−1)∑
i=N−1

1 =

=

N−2∑
k=1

min(m+1,N−k)∑
y=2

(−1)k
N !

k! · y! · (N − k − y)!
−

min(m,N−1)∑
i=N−1

1 =

=

min(m+1,N−1)∑
y=2

N−y∑
k=1

(−1)k
N !

k! · y! · (N − k − y)!
−

min(m,N−1)∑
i=N−1

1 =

= −
min(m+1,N−1)∑

y=2

(
N

y

)
−

min(m,N−1)∑
i=N−1

1.

75



2 Counting Problems

The computation of the last step was done analogous to the transformation of
(2.24). If m ≤ N − 2, the second sum vanishes and min(m + 1, N − 1) = m + 1.
Thus, C(N) = −

∑m+1
y=2

(
N
y

)
. If m ≥ N − 1, the second sum is equal to 1 and

min(m + 1, N − 1) = N − 1. Hence, one obtains C(N) = −
∑N−1
y=2

(
N
y

)
− 1 =

−
∑N
y=2

(
N
y

)
= −

∑m+1
y=2

(
N
y

)
since

(
N
y

)
= 0 for y > N .

Again, we want to compare the preceding result with the formula one gets for
the natural density of mutual left coprimeness, which should be computed in the
following. It will turn out that, as in the previous section, the problem of computing
the natural density could be reduced to the calculation of the (uniform) probability
that N constant matrices are mutually left coprime. Therefore, we start with the
following definition:

Definition 13.

For j ∈ N, denote by Wj(N) the probability that KN :=

 K1 K2 0 0

0
. . . . . . 0

0 0 KN−1 KN


with Ki ∈ (Fj)m×m for i = 1, . . . , N is of full row rank.

Theorem 23.
The natural density of N matrices Di ∈ F[z]m×m for i = 1, . . . , N to be mutually left
coprime is equal to

∏∞
j=1Wj(N)ϕj .

Proof.
Similar to the proof of Theorem 17, one obtains that the N matrices are mutually
left coprime if and only if DN/(f) := KN ∈ (Fdeg(f))(N−1)m×Nm has full row rank
for every (monic) irreducible polynomial f ∈ F[z]. Denote the probability for this
fact by Wf . As in the proof of Theorem 17 and with the notation from there,
one gets limn→∞

|EP∩Mn|
|Mn| =

∏
f∈P Wf . According to that proof, one needs Wf =

1+O(t2 deg(f)) to conclude limn→∞
|E∩Mn|
|Mn| =

∏∞
j=1Wj(N)ϕj . To this end, one shows

that at least 2 of the matrices Ki have zero determinant if these matrices are not
mutually left coprime. If N = 2, this clearly is true because the matrices are left
coprime if not both of them have zero determinant. For N ≥ 3, assume without
restriction that det(KN ) 6= 0 (otherwise permutate the matrices Ki). Consequently,
the columns of this matrix form a basis of (Fdeg(f))m and adding appropriate linear
combinations of the last m columns to the m preceding columns of KN brings this

matrix to the form


K1 K2 0 . . . 0

0
. . .

. . .
. . . 0

0 0 KN−2 KN−1 0
0 0 0 0 KN

, which is not left prime if

and only if the submatrix consisting of the first (N − 2)m rows is not left prime.
Per induction, it follows that at least two of the matrices K1, . . . ,KN−1 have zero
determinant, which gives us the desired result. Furthermore, the probability that the
determinant of Ki is equal to zero is 1− tm2 deg(f)|GLm(Fdeg(f))| = O(tdeg(f)). Thus,
the proof is complete.
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It remains to compute Wj(N). To this end, we will firstly prove a recursion
formula for it.

Lemma 11.
Let Â be the set of matrices Ki for which KN has full row rank and det(Ki) = 0 for i =
1, . . . , N . Moreover, denote by Ŵj(N) the probability of Â. With Wj(0) = Wj(1) = 1,
it holds for N ≥ 2:

Wj(N) =

N∑
i=1

(−1)i−1

(
N

i

)(
tjm

2

|GLm(Fj)|
)i
Wj(N − i) + Ŵj(N).

Proof.
If det(Ki) 6= 0 for some i ∈ {1, . . . , N}, one sees as in the preceding proof that KN
has full row rank if and only if the matrix K(i)

N−1 formed by the matrices from the
set {K1, . . . ,KN} \ {Ki} has full row rank. Using the inclusion-exclusion-principle
with Ai := {det(Ki) 6= 0 and K(i)

N−1 is of full row rank} and Â, where Â ∩ Ai = ∅,
Pi := Pr(Ai) for i = 1, . . . , N and PI := Pr

(⋂
i∈I Ai(N)

)
, one gets

Wj(N) =
∑

I⊂{1,...,N}

(−1)|I|−1PI + Ŵj(N).

With the same arguments as in the preceding proof, one obtains⋂
i∈I Ai(N) = {det(Ki) 6= 0 for i ∈ I and K(I)

N−|I| has full row rank} and therefore,

PI =
(
tjm

2 |GLm(Fj)|
)i
Wj(N − i) for every I with |I| = i. Since there are

(
N
i

)
subsets with cardinality i, the formula follows.

Corollary 7.
For m ≤ N − 1, it holds

Wj(N) =

N∑
i=1

(−1)i−1

(
N

i

)(
tjm

2

|GLm(Fj)|
)i
Wj(N − i).

Proof.
If det(Ki) = 0 for i = 1, . . . , N , the column rank of KN is at most Nm − N <
Nm−m = (N − 1)m and therefore, one has no full row rank. Consequently, Ŵj = 0
and the statement follows from the preceding theorem.

To compute Wj(N) with the help of one of the preceding recursion formulas, one
either needs a formula for Ŵj(N) or one has to know Wj(N) for N ≤ m. In the
following, we will take the first option and calculate Ŵj(N). Combining some known
results, it is possible to get a conjecture for a formula for Ŵj(N), which we will prove
in the following theorem. The stated formula could be motivated in the following
way: One could observe that the probability that a vector of length j from F has no
full rank, i.e. is equal to zero, is equal to 1− tj , while for a vector of j polynomials
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from F[z], the probability that there exists z0 ∈ F such that this vector has no full rank
at z0 ∈ F, i.e. the polynomials are not coprime, is equal to 1− tj−1. This additional
factor t−1 for the subtrahend is somehow due to the possibilities for the choice of z0.
An analogous observation could be made if one compares the probability of pairwise
coprimeness for polynomials with the probability for a vector from F to contain
at most one zero entry (see also the matrix DN/(f) in the proof of Theorem 17).
However, in this case, one only knows that the coefficients of the leading terms in the
asymptotic expansion coincide. Therefore, it seems likely that the leading terms of
the asymptotic expressions for the probabilities of {det(Ki) = 0 for i = 1, . . . , N} \ Â
and ÃN+1(N) defined as in the proof of Theorem 21 differ by the factor t−1 as well.
Note that in the following formula, one has tj instead of t because one is dealing
with the field Fj .

Lemma 12.
For j ∈ N and N ≥ 2, it holds:

Ŵj(N) =
(

1− tjm
2

|GLm(Fj)|
)N
−

min(m,N−1)∑
i=N−1

tj(m+1) +O(t(m+2)j).

Proof.
Denote by W̃ the probability that det(Ki) = 0 for i = 1, . . . , N and KN is not of full
row rank. We will show

W̃ =

min(m,N−1)∑
i=N−1

t(m+1)j +O(t(m+2)j).

The result follows since the sum of W̃ and Ŵj(N) is equal to the probability that
det(Ki) = 0 for i = 1, . . . , N .
If m < N − 1, the probability that det(Ki) = 0 for i = 1, . . . , N is equal to(

1− tjm2 |GLm(Fj)|
)N

= (1− (1− tj +O(tj+1))N = O(tjN ) = O(tj(m+2)), which is

conform with
∑min(m,N−1)
i=N−1 tj(m+1) = 0 in this case.

Next, consider the case m ≥ N − 1. We have to compute the probability that there
exists ξ ∈ (Fj)1×m(N−1) \ {0} with ξKN = 0, i.e. that there exist ξi ∈ (Fj)1×m for
i = 1, . . . , N − 1 which are not all identically zero such that ξ1K1 = (ξ1 + ξ2)K2 =
· · · = (ξN−2 + ξN−1)KN−1 = ξN−1KN = 0.
As in the proof for Remark 11, one could show that either ξi 6= 0 for i = 1, . . . , N − 1

and ξi + ξi+1 6= 0 for i = 1, . . . , N − 2 or there exists i ∈ {1, . . . , N} such that K(i)
N−1

formed by the matrices from the set {K1, . . . ,KN} \ {Ki} is not of full row rank. Per
induction with respect to N , one knows that the probability for this is O(tj(m+1)).
Multiplication with the probability that det(Ki) = 0, which is O(tj), leads to a term
for the probability that is O(tj(m+2)). Note that one could use induction since for
N = 2, Ŵ is just equal to 1−tj·2m2

N(2m,m,m) = 1−
∏2m
l=m+1(1−tjl) (see Lemma 4)

because that [K1 K2] is not of full row rank already implies det(K1) = det(K2) = 0.
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2.4 Counting Mutually Coprime Polynomial Matrices

Thus, one could assume ξi 6= 0 and ξi + ξi+1 6= 0.
According to Lemma 4, the probability that dim(ker(Ki)) = ri is equal to

tjm
2

·N(m,m,m− ri) = tjmri ·
m∏

l=ri+1

(1− tjl)
m−(ri+1)∏

l=0

tj(l−m) − 1

t−j(l+1) − 1
=

= tjmri(1 +O(tj)) ·
∏m
l=ri+1(t−jl − 1)∏m−ri
l=1 (t−jl − 1)

=

= tjmri(1 +O(tj)) · t−
j
2 (m(m+1)−ri(ri+1)−(m−ri)(m−ri+1)) =

= tjr
2
i (1 +O(tj)).

Fix 1 ≤ ri ≤ m for i = 1, . . . , N . Then, the probability that dim(ker(K1)) = r1 is
tjr

2
1 · (1 + O(tj)). For each such matrix K1, there are t−jr1 possibilities for ξ1 ∈

(Fj)1×m with ξ1K1 = 0. Furthermore, the probability that dim(ker(K2)) = r2 is
tjr

2
2 · (1+O(tj)) and for fixed ξ1 and K2, there are t−jr2 possibilities for ξ2 ∈ (Fj)1×m

such that (ξ1 + ξ2)K2 = 0. This procedure is continued until Ki and ξi are fixed
for i = 1, . . . , N − 1. As we assumed ξN−1 6= 0, the probability for KN to fulfil
ξN−1KN = 0 is equal to tjm.
Finally, one has to consider, which values for ξ1, . . . , ξN−1 lead to the same solutions
for K1, . . . ,KN . One clearly gets the same solutions if one multiplies ξi for i =
1, . . . , N − 1 by the same scalar value, which effects a factor that is O(tj) for the

probability. In summary, the overall probability is O
(
tj(

∑N−1
i=1 (r2i−ri)+m+1)

)
(1 +

O(tj)). Hence, all cases in which ri ≥ 2 for some i ∈ {1, . . . , N − 1} could be
neglected.
It remains to show that for r1 = · · · = rN = 1, only ξ1, . . . , ξN−1 which differ
all by the same scalar factor lead to the same solutions for K1, . . . ,KN . Then,
one knows that the factor for the probability caused by this effect is exactly tj

and one gets a overall probability of t(m+1)j + O(t(m+2)j), which is conform with∑min(m,N−1)
i=N−1 tj(m+1) = tj(m+1) in the considered case m ≥ N − 1.

To do this, we firstly show that the case that ξ1, . . . , ξN−1 are linearly dependent could
be neglected. For the choice of such vectors ξi with the property that rk[ξ>1 · · · ξ>N−1] <
N − 1, one has
O
(∑N−2

r=1 N(m,N − 1, r)
)

= O
(∑N−2

r=1 t−jr(m+N−1−r)
)

= O(t−j(N−2)(m+1))

possibilities and for each of these possibilities the probability that ξ1K1 = (ξ1 +
ξ2)K2 = · · · = (ξN−2 + ξN−1)KN−1 = ξN−1KN = 0 is equal to tjNm as ξi 6= 0 and
ξi + ξi+1 6= 0. Additionally, one has again a factor of O(tj) because of the values for
the vectors ξi that lead to the same solutions for K1, . . . ,KN . In summary, one gets a
probability that is O(tj(Nm+1−(N−2)(m+1))) = O(tj(m+2)) since −N ≥ −m− 1.
Hence, in the following, one could assume that ξ1, . . . , ξN−1 are linearly independent.
If ξ1K1 = ξ̃1K1 = 0, (ξ1 + ξ2)K2 = (ξ̃1 + ξ̃2)K2 = 0, . . . , ξN−1KN = ξ̃N−1KN = 0, it
results from r1 = · · · = rN = 1 that there exist λi ∈ Fj with ξ̃1 = λ1ξ1, ξ̃i + ξ̃i+1 =
λi+1(ξi + ξi+1) for i = 1, . . . , N − 2 and ξ̃N−1 = λNξN−1. Since ξ̃1− (ξ̃1 + ξ̃2) + · · · ±
(ξ̃N−2 + ξ̃N−1)∓ ξ̃N−1 = 0, it follows
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2 Counting Problems

(λ1 − λ2)ξ1 + (λ3 − λ2)ξ2 + · · · ± (λN−1 − λN )ξN−1 = 0. As ξ1, . . . , ξN−1 are linearly
independent, this implies λ1 = · · · = λN , which completes the proof of the whole
theorem.

With this result, we are able to solve the recursion formula from Lemma 11 and
obtain an explicit expression for Wj(N).

Theorem 24.
For j ∈ N and N ≥ 2, the probability that N matrices from (Fj)m×m are mutually left
coprime is equal to

Wj(N) = 1−
m+1∑
y=2

(
N

y

)
tj(m+1) +O(tj(m+2)).

Proof.
This is shown per induction with respect to N .
For N = 2, one just has to compute the probability that a rectangular matrix is of full
rank. According to Lemma 4 with n = 2m and k = r = m, this probability is equal to∏2m
i=m+1(1− (tj)i) = 1− tj(m+1) +O(tj(m+2)).

Inserting the assumption of the induction into the first part of the recursion formula
from Lemma 11, leads to

N∑
i=1

(−1)i−1

(
N

i

)(
tjm

2

|GLm(Fj)|
)i
Wj(N − i) =

=

N∑
i=1

(−1)i−1

(
N

i

)(
tjm

2

|GLm(Fj)|
)i(

1−
m+1∑
y=2

(
N − i
y

)
tj(m+1) +O(tj(m+2))

)

=

N∑
i=1

(−1)

(
N

i

)(
(−1)tjm

2

|GLm(Fj)|
)i

+

+

N∑
i=1

(−1)i
(
N

i

)m+1∑
y=2

(
N − i
y

)
tj(m+1) +O(tj(m+2)) =

= −
(

1− tjm
2

|GLm(Fj)|
)N

+ 1+

+

N−2∑
i=1

(−1)i
(
N

i

)m+1∑
y=2

(
N − i
y

)
tj(m+1) +O(tj(m+2)) =

= −
(

1− tjm
2

|GLm(Fj)|
)N

+ 1−
min(m+1,N−1)∑

y=2

(
N

y

)
tj(m+1) +O(tj(m+2)).
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2.5 Conclusion

The final step of the preceding computation was done analogous to the proof of
Remark 13. Using the formula for Ŵj(N) from the preceding theorem, one obtains

Wj(N) = −
(

1− tjm
2

|GLm(Fj)|
)N

+ 1−
min(m+1,N−1)∑

y=2

(
N

y

)
tj(m+1) + Ŵj(N)

= 1−

min(m,N−1)∑
i=N−1

1 +

min(m+1,N−1)∑
y=2

(
N

y

) tj(m+1) +O(tj(m+2)) =

= 1−
m+1∑
y=2

(
N

y

)
tj(m+1) +O(tj(m+2)).

For the last equality, see end of the proof for Remark 13.

Finally, connecting the preceding results, one gets the following formula for the
natural density of mutual left coprimeness.

Theorem 25.
The natural density of N matrices Di ∈ F[z]m×m for i = 1, . . . , N to be mutually left
coprime is equal to

∞∏
j=1

(
1−

m+1∑
y=2

(
N

y

)
tj(m+1) +O(tj(m+2))

)ϕj
= 1−

m+1∑
y=2

(
N

y

)
tm +O(tm+1).

2.5 Conclusion

In the preceding chapter, we firstly computed the probabilities for several coprimeness
properties using the uniform probability distribution, i.e. bounding the degrees of the
polynomial entries of the involved matrices. Afterwards, we compared these results
with the formula one gets using the natural density, i.e. allowing the degrees of the
corresponding polynomials to grow arbitrarily large. It is remarkable that uniform
probability and natural density have asymptotically the same values in all computed
cases, while one could observe differences in some of the calculated exact formulas.
In the following section, we will apply the achieved results to the calculation of
the probabilities that networks of linear systems are reachable and/or observable,
respectively. Since the degrees of the entries of the corresponding polynomial matrix
fraction descriptions are bounded by the parameters of the linear systems, this could
only be done using the uniform probability distribution. Consequently, we will not
employ the natural density for our further considerations.
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Chapter 3

Probabilities of Reachability and Observ-
ability for Interconnected Linear Systems

In this chapter, we will use the results of the preceding chapters to compute or
estimate, the probabilities that certain networks of linear systems are reachable,
observable or minimal.

We start in Section 3.1 with the simplest "network", namely just one system. For
this, the probability of reachability and therefore, also the probability of observability
are already known. We recall these results and moreover, compute the probability
that a linear system is minimal.

Section 3.2 deals with parallel connection of linear systems. To obtain a formula
for the probability of reachability and observability, one mainly needs the probability
of mutual left coprimeness from the preceding chapter.

In Section 3.3, we consider series connections of linear systems, firstly for single-
input single-output node systems and secondly, for two systems with arbitrary pa-
rameters. Finally, we investigate how the corresponding probabilities of reachability
are changed if one requires the transfer functions of the node systems to be strictly
proper.

Section 3.4 is similarly structured as Section 3.3 but deals with circular intercon-
nection. Since series and circular interconnection are quite similar, several computa-
tions carry over. However, some adjustments are necessary.

In Section 3.5, we consider again series connections and investigate their so-called
(1, 3)-reachability, i.e. for some special values for the parameters of the involved sys-
tems, we examine criteria for the possibility to control only the first and the third
system of the series.

In contrast to the preceding sections, Section 3.6 considers no special typ of
interconnection but is devoted to the question what general statements about the
corresponding probability are possible without knowing the exact interconnection
structure of a network.

Finally, in Section 3.7, we consider so-called homogeneous networks and calculate
the probability that these are reachable or/and observable if the matrices defining
the interconnection structure are chosen randomly.
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3 Probabilities of Reachability and Observability for Interconnected Linear Systems

3.1 Probabilities for a Single System

3.1.1 Reachability and Observability

The probability of reachability for a single system has already been computed in [21].
We will need it for computing the probability of minimality for a single system as
well as for the calculation of probabilities for interconnections of N ≥ 2 systems
since reachability and observability of the node systems are part of the criteria for
reachability and observability of the whole network; see Corollary 1.

Theorem 26. [21, Theorem 1]
Let Σcrn,m(F) denote the set of all reachable pairs. The probability that a pair (A,B) ∈
Fn×n × Fn×m is reachable is equal to

Pn,m(t) :=
|Σcrn,m(F)|

|Fn×n × Fn×m|
=

n+m−1∏
j=m

(1− tj) = 1− tm +O(tm+1). (3.1)

In particular, one obtains for n ≥ 2:

(1− tm)(1− (n− 1)tm+1) ≤ Pn,m(t) ≤ (1− tm)(1− tm+1). (3.2)

Using Remark 1, one could easily deduce the probability of observability:

Corollary 8.
The probability that a pair (A,C) ∈ Fn×n × Fp×n is observable is equal to

n+p−1∏
j=p

(1− tj) = 1− tp +O(tp+1).

Since the number of reachable pairs is strongly connected with the number of
matrices in Hermite form, Theorem 26 leads to the following corollary as well:

Corollary 9.
The number of nonsingular polynomial matrices Q ∈ F[z]m×m in Hermite form whose
determinant is a (monic) polynomial of degree n is equal to

Hn,m(F) =
∑

κ1+···+κm=n

t−
∑m
i=1(m−i+1)·κi =

|Σcrn,m(F)|
|GLn(F)|

= t−mn
n∏
j=1

1− t(m+j−1)

1− tj
.

(3.3)

Proof.
The statement of the first equation is already contained in Lemma 2.1 and the second
equation of (3.3) follows from the proof of Theorem 1 of [21]. Finally, the third
equation is a consequence of this theorem itself, i.e. of Theorem 26 of this paper, and
of Theorem 4.

Remark 14.
Since both Hermite form as well as Kronecker-Hermite form are unique, the number of
Kronecker-Hermite forms is equal to Hn,m(F), as well.
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3.1 Probabilities for a Single System

3.1.2 Minimality

The aim of this section is to compute the probability that a linear system is both
reachable as well as observable. Since these two properties are not independent of
each other (see Remark 17), it is not possible to simply multiply the probability of
reachability with the probability of observability. However, the following lemma states
that the probability of minimality could be obtained by multiplying the probability of
reachability with the probability of right primeness.

Lemma 13.
The probability that a linear discrete-time system described by (A,B,C,D) ∈ Fn×n ×
Fn×m × Fp×n × Fp×m is minimal is equal to P rcp,n,m(t) · Pn,m(t).

Proof.
For each (A,B,C,D) ∈ Fn×n × Fn×m × Fp×n × Fp×m describing a minimal system,
there exists exactly one right coprime pair (P,Q) ∈ F[z]p×m × F[z]m×m where Q is
in Kronecker-Hermite form and C(zI − A)−1B + D = P (z)Q(z)−1. According to
Theorem 9 (a), it holds deg(det(Q)) = n and according to Lemma 1, degj P (z) ≤
degj Q(z) for j = 1, ....,m. On the other hand, for every such pair (P,Q), there exist
exactly |GLn(F)| minimal realizations (A,B,C,D); see Theorem 4. Consequently,
the number of minimal systems is equal to the number of pairs (P,Q) times |GLn(F)|.
According to Remark 14, the number of Kronecker-Hermite forms is equal to

|Σcrn,m(F)|
|GLn(F)| .

Moreover, for each of them, there are
∏m
i=1 t

−p(κi+1) = t−p
∑m
i=1(κi+1) = t−p(n+m)

polynomial matrices P ∈ F[z]p×m which fulfill degj P (z) ≤ degj Q(z) for j = 1, ....,m.
Consequently, the corresponding probability is equal to

P rcp,n,m(t) · t−(np+mp) · |Σ
cr
n,m(F)|
|GLn(F)| · |GLn(F)|

|Fn×n × Fn×m × Fp×n × Fp×m|
=
P rcp,n,m(t) · |Σcrn,m(F)|
|Fn×n × Fn×m|

=

= P rcp,n,m(t) · Pn,m(t).

Remark 15.
This formula is also valid if one considers strictly proper transfer functions, i. e. if
one sets D = 0. In this case, there are t−pm possibilities less for P , which equals the
possibilities for D. Since minimality of a system does not depend on D, one could
conclude that the probability of right primeness is independent of D as well (see also
Remark 8).

Remark 16.
Since a linear system is minimal if and only if it is reachable and observable, it follows
from the preceding lemma that the probability that a system is observable under the
condition that it is reachable is equal to P rcp,n,m(t) = 1− tp +O(tp+1). This means that
the ratio of observable systems among all systems is approximately the same as the ratio
of observable systems among reachable systems. However, the following remark will
show that this is, in general, only asymptotically true but not for the exact probability
values.
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3 Probabilities of Reachability and Observability for Interconnected Linear Systems

With the help of Theorem 13 it is easy to compute the exact probability of
minimality for the case of single-input single-output systems:

Corollary 10. [21]
The probability that a single-input single-output system (A,B,C,D) ∈ Fn×n × Fn×1 ×
F1×n × F is minimal is equal to

n∏
j=1

(1− tj)(1− t).

Proof.
Since p = m = 1, one has the exact probability 1− t for the scalar polynomials P and
Q to be coprime.

Remark 17.
The case p = m = 1 shows that, in general, reachability and observability are not
independent properties of a linear system. If this would be true, the probability of
minimality had to be equal to the product of the probabilities for reachability and
observability, which is

∏n
j=1(1 − tj) ·

∏n
j=1(1 − tj) for the case of single input. But

this is only true for n = 1. However, in this case, it is clear that the two properties
are independent because then, reachability is equivalent to B 6= 0 and observability is
equivalent to C 6= 0; note that in this case B and C are scalar.

To achieve an asymptotic result for the probability of minimality of a linear system
with arbitrary parameters, one has to use the asymptotic formula for right primeness
from Theorem 12 and insert it into the expression from Theorem 13.

Theorem 27.
The probability that a linear discrete-time system described by (A,B,C,D) ∈ Fn×n ×
Fn×m × Fp×n × Fp×m is minimal is equal to

1− tm − tp +O(tmin(p,m)+1).

3.2 Parallel Connection

The aim of this section is to compute the probability that the parallel connected
system

x1(τ + 1) =A1x1(τ) +B1u(τ)

... (3.4)

xN (τ + 1) =ANxN (τ) +BNu(τ)

with state vectors xi ∈ Fni for i = 1, . . . , N and input u ∈ Fm is reachable.
System (3.4) contains no outputs and therefore, could be interpreted as a special

case of parallel connection (as defined in Example 1 (a)) with C = I and D = 0,
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3.2 Parallel Connection

which implies the observability of the node systems. Thus, reachability of the node
systems, which is necessary for the reachability of the interconnected system accord-
ing to Remark 4, is equivalent to the minimality of the node systems, which is the
condition for applying Theorem 10. Consequently, reachability of the interconnection
is equivalent to the reachability of the node systems together with the corresponding
coprimeness condition of Example 1 (a). Our aim is to count the number of reachable
interconnections by counting possible coprime factorizations of the transfer functions
of the node systems. Therefore, we need the following statement.

Lemma 14.
Let Q ∈ F[z]m×m nonsingular be in Hermite form with deg(det(Q(z))) = n. Then,
there are exactly |GLn(F)| reachable pairs (A,B) ∈ Fn×n×Fn×m with (zI−A)−1B =
P (z)Q(z)−1 for some P ∈ F[z]n×m such that P and Q are right coprime. In other
words, there are exactly |GLn(F)| polynomial matrices P ∈ F[z]n×m such that P and Q
are right coprime and PQ−1 could be written in the form P (z)Q(z)−1 = (zI −A)−1B,
where (A,B) ∈ Fn×n × Fn×m is reachable.

Proof.
According to Proposition 2.3 of [43], there exist a reachable pair (A,B) and a
polynomial matrix P that is right coprime to Q, such that (zI−A)−1B = P (z)Q(z)−1.
Now, one considers the orbit of this pair (A,B) under the similarity action on the
state space, i.e. the set {(TAT−1, TB) | T ∈ GLn(F)}, which clearly consists only of
reachable pairs. If (zI−TAT−1)−1TB = P̃ (z)Q̃(z)−1 is a right coprime factorization
of the transfer function with Q̃ in Hermite form, it follows from Theorem 2.4 a,
of [43] that Q = Q̃U with a unimodular matrix U ∈ GLn(F[z]). But since the
Hermite form of a matrix is unique and Q̃ and Q are both in Hermite form, one
knows Q̃ = Q. Thus, Q leads to at least |GLn(F)| reachable realizations (A,B).
On the other hand, the reverse direction of the statement of Theorem 2.4 a, of
[43] shows that the right coprime factorizations (zI −A1)−1B1 = P1(z)Q(z)−1 and
(zI−A2)−1B2 = P2(z)Q(z)−1 together with the reachability of (A1, B1) and (A2, B2)
imply (A2, B2) = (TA1T

−1, TB1) for some T ∈ GLn(F). Therefore, Q leads to at
most |GLn(F)| reachable realizations (A,B).

The following lemma shows that the two conditions, which have to be considered
for parallel connection, i.e. the reachability of the node systems and the mutual left
coprimeness of the matrices Q1, . . . , QN , are in fact independent.

Lemma 15.
Let (A,B) ∈ Fn×n×Fn×m and G(z) = (zI−A)−1B = P (z)Q(z)−1 be the correspond-
ing transfer function with P ∈ F[z]n×m, Q ∈ F[z]m×m, where det(Q) 6≡ 0. Then, the
reachability of (A,B) only depends on P .

Proof.
By the Kalman test (see Theorem 1), system (A,B) is reachable if and only if c = 0 is
the only solution of cAiB = 0 for 0 ≤ i ≤ n− 1 with c> ∈ Fn. Note that cAiB = 0
for 0 ≤ i ≤ n − 1 implies cAiB = 0 for i ≥ 0 by the theorem of Cayley-Hamilton.
Since (zI −A)−1 =

∑∞
i=0

Ai

zi+1 , reachability is equivalent to the fact that c = 0 is the
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3 Probabilities of Reachability and Observability for Interconnected Linear Systems

only solution of c(zI−A)−1B ≡ 0 with c> ∈ Fn. This means that cP ≡ 0 for cT ∈ Fn
implies c = 0, which is a criterion that only depends on P .

As a consequence of this result, one could just multiply the probabilities of the
two conditions mentioned before and thus, we are ready to prove the main theorem
of this section, providing a formula for the probability of reachability for a parallel
connected system.

Theorem 28.
The probability that the parallel connected system given by (3.4) is reachable is

N∏
i=1

ni+m−1∏
j=m

(1− tj) · Pm(N),

where Pm(N) is the probability that N polynomial matrices from F[z]m×m in Hermite
form are mutually left coprime.

Proof.
Consider the right coprime factorizations (zI − Ai)

−1Bi = Pi(z)Qi(z)
−1 for i =

1, . . . , N . From Theorem 9 (a) one knows that deg(det(Qi)) = ni for i = 1, . . . , N and
from Theorem 9 (b) that one could assume that the polynomial matrices Q1, . . . , QN
are in Hermite form. According to Lemma 14, for each such Qi, there exists the
same number of reachable pairs (Ai, Bi), namely exactly |GLni(F)|. Therefore,
the probability that the coprimeness condition of Example 1 (a) for reachability is
fulfilled is equal to the probability that arbitrary polynomial matrices Qi (in Hermite
form) with deg(det(Qi)) = ni for i = 1, . . . , N are mutually left coprime. Since
this condition only depends on the matrices Qi and according to Lemma 15, the
reachability of the node systems only depends on Pi, one could just multiply the
probability of mutual left coprimeness with the probabilities that the node systems
are reachable (see Theorem 26 for the corresponding formula).

Remark 18.
Since for parallel connection it holds K = 0 and hence, A and B are independent of
(Ci, Di) for i = 1, . . . , N , the formula of the preceding theorem is also valid if (Ci, Di)
are chosen randomly for i = 1, . . . , N (and are not fixed to (I, 0) as done there).

For m = 1, i.e. in the case of single-input, one could combine Theorem 28
with Theorem 15 to get a formula for the probability of reachability for a parallel
connection.

Theorem 29.
The probability that a parallel connection of N single-input systems is reachable is equal
to

N∏
l=1

 nl∏
j=1

(1− tj)

 ∑
k∈M(n)

∏
ij∈E

(−1)ω(kij)
N∏
l=1

tdeg(Kl),

where E = {ij | i, j ∈ {1, . . . , N}, i < j}.
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3.2 Parallel Connection

To get an estimation for this quite complicated formula, we will we calculate its
asymptotic behaviour by using Theorem 16.

Theorem 30.
The probability that a parallel connection of N single input systems is reachable is equal
to

1− N(N + 1)

2
· t+

+

(
1

24
(N − 1)(N − 2)(3N2 + 11N − 12N1) +

N3 − 3N

2

)
· t2 +O(t3),

where N1 is the number of systems whose state vectors are scalar.

Proof.
Since the probability that the single systems are reachable is equal to∏N
j=1

∏nj
i=1(1− ti) = 1−N · t+

(
N(N−1)

2 −N
)
· t2 +O(t3), one obtains(

1− N(N − 1)

2
· t+

1

24
(N − 1)(N − 2)(3N2 + 11N − 12N1) · t2 +O(t3)

)
·

·
(

1−N · t+

(
N(N − 1)

2
−N

)
· t2 +O(t3)

)
for the probability that the parallel connection is reachable. Computing the coefficient
of t2, results in

1

24
(N − 1)(N − 2)(3N2 + 11N − 12N1) +

N(N − 1)

2
·N +

N(N − 1)

2
−N =

=
1

24
(N − 1)(N − 2)(3N2 + 11N − 12N1) +

N3 − 3N

2
.

Furthermore, it is possible to obtain an asymptotic formula for general m ∈ N,
including the coefficients of 1, . . . , tm by using Theorem 22.

Theorem 31.
The probability that the parallel connection of N linear systems with m inputs is
reachable is equal to

1−
m+1∑
y=1

(
N

y

)
tm +O(tm+1).
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Proof.
Combining the already achieved results, leads to

N∏
i=1

ni+m−1∏
j=m

(1− tj) · Pm(N) =

= (1−N · tm +O(tm+1)) ·

(
1−

m+1∑
y=2

(
N

y

)
tm +O(tm+1)

)
=

= 1−
m+1∑
y=1

(
N

y

)
tm +O(tm+1).

If one considers the formula of the preceding theorem, one could observe that
the modulus of the coefficient of tm is increasing with N as well as with m. Thus,
the probability decreases with N and increases with t−1. No general statement is
possible how increasing m influences the term

∑m+1
y=1

(
N
y

)
tm. However, one could see

that it decreases with m (and hence, the probability increases) if m ≥ N or if t tends
to zero, which could be assumed since the above formula is only valid for t−1 →∞.
Using the duality between reachability and observability, one gets the folllowing
corollary:

Corollary 11.
For B = I and D = 0 (with the notation of Theorem 10), the probability that the
parallel connection ofN systems with p outputs is observable is equal to 1−

∑p+1
y=1

(
N
y

)
tp+

O(tp+1).

Proof.
The proof is analogue to that for the reachability of a parallel connection but the
roles of m and p are interchanged. One applies Theorem 10 (2.) and uses the
criterion on Q̂ and P̂ from Example 1 (a), i.e. one has to calculate the probability

that


Q̂1 0

Q̂2 Q̂2

. . .
. . .

0 Q̂N Q̂N

 is right prime, which is equivalent to the fact that


Q̂1 0

Q̂2 Q̂2

. . .
. . .

0 Q̂N Q̂N


>

=

 Q̂>1 Q̂>2 0
. . .

. . .
0 Q̂>N−1 Q̂>N


is left prime. This in turn is equivalent to the mutual left coprimness of Q̂>1 , . . . , Q̂

>
N ∈

F[z]p×p. Note that Q̂−1
i P̂i is a left coprime factorization of the transfer function Gi
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if and only if P̂>i (Q̂>i )−1 is a right coprime factorization of GTi . Moreover, since
B = I, the node systems are reachable and similiar to the considerations concerning
reachability, one could show that the observability of the node systems only depends
on P̂ . Consequently, one has to multiply the probabilities of observability for the
single systems with the probability of mutual left coprimeness, which gives the stated
result.

The preceding corollary could also be proven by using directly the duality between
observability and reachability. According to Remark 1, (A,B, C) is observable if and
only if (A>, C>,B>) is reachable. Since for parallel connection, it holds A = A, B =
(B>1 , . . . , B

>
N )> and C = (C1, . . . , CN ), the observability of the parallel connection

from the preceding corollary is equivalent to the reachability of the parallel connection
from (3.4) with (A>i , C

>
i ) for i = 1, . . . , N as node systems. Therefore, the formula

is also valid if B and D are chosen randomly and one gets the following corollary.

Corollary 12.
The probability that a parallel connection of N systems with p outputs is observable is
equal to 1−

∑p+1
y=1

(
N
y

)
tp +O(tp+1).

3.3 Series Connection

In this section, we consider series connections as in Example 1 (b). According to this
example and to Theorem 10, one has to compute the probability that

RN :=


P1 Q2 0 · · · 0

0 P2 Q3
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 PN−1 QN


is left prime under the condition that the node systems are minimal to get the probabil-
ity of reachability for the whole interconnection. In contrast to the preceding section,
where we studied parallel connections, the above coprimeness condition also depends
on the matrices Pi and not only on the matrices Qi. This means that one has to deal
with conditional probability. To this end, define Ai := {(Pi, Qi) not right coprime}
for i = 1, . . . , N . Moreover, set AN+1 := {RN not left prime} and Aij := Ai ∩ Aj .
Then, according to the proof of Lemma 13, the probability that the series connection
of N minimal systems is reachable is equal to

1− Pr(∪N+1
i=1 Ai)

1− Pr(∪Ni=1Ai)
=

1−
∑
∅6=I⊂{1,...,N+1}(−1)|I|−1 Pr(AI)

1−
∑
∅6=I⊂{1,...,N}(−1)|I|−1 Pr(AI)

=

= 1−
Pr(AN+1) +O(

∑N
i=1 Pr(Ai,N+1))

1−
∑
∅6=I⊂{1,...,N}(−1)|I|−1 Pr(AI)

. (3.5)
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For the first equality, the inclusion-exclusion principle was used. Moreover, note that
for 1 ≤ i < j ≤ N , Pr(Aij) = Pr(Ai) · Pr(Aj) because Ai and Aj are independent
sets for 1 ≤ i < j ≤ N .

3.3.1 SISO-Systems

We start considering a series connection of single-input single-output (SISO) systems,
that means mi = pi = 1 and the coprime factors Pi and Qi of the transfer functions
are scalar for i = 1, . . . , N . Therefore, one has to compute the probability that there
exists no z0 ∈ F such that

rk


P1 Q2 0 · · · 0

0 P2 Q3
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 PN−1 QN

 (z0) < N − 1.

Doing this, one achieves the following theorem:

Theorem 32.
The probability that the series connection of N minimal single-input single-output
systems is reachable is equal to

1− N(N − 1)

2
t+O(t2).

Proof.
One starts computing AN+1 and shows per induction with respect to N that RN (z0)
is singular if and only if there exist i ∈ {2, . . . , N} and j ∈ {1, . . . , i − 1} such that
Qi(z0) = Pj(z0) = 0. The base clause N = 2 is trivial.
Now, assume that RN+1(z0) is singular and distinguish the cases QN+1(z0) = 0 and
QN+1(z0) 6= 0. If QN+1(z0) = 0,RN+1(z0) is singular if and only if at least one of the
polynomials Pi for i = 1, . . . , N has a zero at z0 and we are done. If QN+1(z0) 6= 0,

RN+1(z0) is singular if and only if the matrix

 P1 Q2 0
. . .

. . .
0 PN−1 QN

 (z0) is sin-

gular and the statement follows from the induction hypothesis.
As done at the beginning of Section 2.3, regard the polynomialsQ1, . . . , QN , P1, . . . , PN
as vertices of a graph Γ. Pi and Qj are connected by an edge if and only if j > i (there
are no edges between two polynomials Qk and Ql or Pk and Pl for k, l ∈ {1, . . . , N},
respectively). Thus, Γ has

∑N−1
i=1 (N − i) =

∑N−1
i=1 i = N(N−1)

2 edges. Using Corollary
3 instead of Lemma 7 (a), one could argue as in the proof of Theorem 14 and gets
Pr(AN+1) = N(N−1)

2 t+O(t2).
We already know Pr(Ai) = t+O(t2) and therefore, Pr(Aij) = Pr(Ai)·Pr(Aj) = O(t2)
for i, j ≤ N . It remains to show Pr(Ai,N+1) = O(t2) for 1 ≤ i ≤ N . But this is equal
to the probability that Pi and Qi are not coprime and that there exist j < k such that
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Qk and Pj are not coprime. For i /∈ {k, j}, it is clear that this probability is O(t2). If
i = k, one additionally needs Lemma 7 (a), and if i = j, Corollary 3 to get that this
probability is O(t2). Inserting all achieved results into (3.5), leads to a probability

for reachability of 1−
N(N−1)

2 t+O(t2)

1+O(t) = 1− N(N−1)
2 t+O(t2).

Remark 19.
If Pi = Qi for i = 1, . . . , N , the preceding primality criterion would correspond to
pairwise coprimeness of Q1, . . . , QN .

Using again the duality between reachability and observability, one could deduce
the probability of observability.

Corollary 13.
The probability that the series connection of N minimal single-input single-output
systems is observable is equal to

1− N(N − 1)

2
t+O(t2).

In contrast to parallel connection, for series connection, the probability of reacha-
bility changes if one requires the transfer functions of the node systems to be strictly
proper.

Theorem 33.
The probability that the series connection of N minimal single-input single-output
systems with strictly proper transfer functions is reachable is equal to

1−
∑

1≤i<N, ni 6=1

(N − i) · t+O(t2) =

= 1−

N(N − 1)

2
−

∑
1≤i<N, ni=1

(N − i)

 · t+O(t2).

Proof.
Since the transfer functions of the systems are strictly proper, one has deg(Pi) <
deg(Qi) = ni for i = 1, . . . , N . This effects that if ni = 1, Pi and Qj are not coprime if
and only if Pi ≡ 0, which is a criterion that is independent of Qj and has probability t.
Therefore, if one proceeds as in the proof of Theorem 32, one could remove all N − i
edges terminating at Pi from the graph Γ, which we considered when determining
AN+1, and in return add Ñ1 · t to the hereby obtained probability where Ñ1 := |l ∈
{1, . . . , N −1} | nl = 1|. Hence, Pr(AN+1) =

∑
1≤i<N, ni 6=1(N − i) · t+ Ñ1 · t+O(t2).

Moreover, in comparison with Theorem 32 and its proof, the asymptotic expressions
for Ai,N+1 with i ≤ N and ni = 1 are changed. It holds Ai,N+1 = {Pi ≡ 0} and
hence, Pr(Ai,N+1) = t. Because the number of sets Ai,N+1 with this property is equal
to Ñ1, one gets

∑
1≤i<N, ni 6=1(N−i)·t+O(t2) for the complementary probability.
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Remark 20.
The plausibility of the preceeding formula could be seen as follows: If ni = 1, the
coprimeness of Pi and Qi implies that Pi is a nonzero constant. Therefore, it is not
possible that Pi and Qj with j > i are not coprime and one has the corresponding
number of possibilities less for RN+1 to be not left prime.

3.3.2 Series Connection of two Systems

In this subsection, a series connection of two arbitrary systems should be considered,
which is given by the following equations:

x1(τ + 1) = A1x1(τ) +B1u(τ)

x2(τ + 1) = A2x2(τ) +B2C1x1(τ) +B2D1u(τ) (3.6)

The following theorem provides an asymptotic estimation for the probability of
reachability for such an interconnection.

Theorem 34.
The probability that the series connection of two minimal systems (Ai, Bi, Ci, Di) ∈
Fni×ni × Fni×mi × Fpi×ni × Fpi×mi for i = 1, 2 with p1 = m2 is reachable is

1− tm1 +O(tm1+1).

Proof.
Using (3.5), one has to compute

1− Pr(A3)− Pr(A13)− Pr(A23) + Pr(A123)

1− Pr(A1)− Pr(A2) + Pr(A12)
.

From Theorem 12, one knows that Pr(Ai) = tpi + O(tpi+1) = O(t) for i = 1, 2.

To compute Pr(A3), one considers G := [P1 Q2]

[
I 0
0 U

]
= [P1 Q2U ] = [P1 Q

H
2 ],

where U is the unimodular matrix such that QH2 is in Hermite form. This transforma-

tion does not change left primeness because
[
I 0
0 U

]
is unimodular, too. Let z0 ∈ F

such that G(z0) is singular. Applying the method of iterated row operations (see
Lemma 9 (b)), one achieves that there exist k ∈ {1, . . . , p1}, a set of column indices
{j1, . . . , jk−1} ⊂ {1, . . . ,m1 + p1} and values λr ∈ F(z0), which (only) depend on
entries gij of G with j ∈ {j1, . . . , jk−1} and on z0, such that

gkj(z0) =

k−1∑
r=1

grj(z0) · λr for j ∈ {1, . . . ,m1 + p1} \ {j1, . . . , jk−1}. (3.7)

Similiar to the proof of Theorem 19, one could conclude gij ≡ 0 for i + m1 < j ≤
m1 + p1 as QH2 is lower triangular, and {j1, . . . , jk−1} ⊂ {1, . . . ,m1 + k − 1}. Hence,
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one has the conditions (QH2 )kk(z0) = 0, which implies κ(2)
m2−k+1 ≥ 1, and

gkj(z0) =

k−1∑
r=1

grj(z0) · λr for j ∈ {1, . . . ,m1 + k − 1} \ {j1, . . . , jk−1}. (3.8)

Thus, the m1 polynomials gkj with j ∈ {1, . . . ,m1 + k − 1} \ {j1, . . . , jk−1} are
not fixed to zero due to degree restrictions but are fixed at z0 by the remaining
polynomials of G. We fix g := gz0 and apply Lemma 7 (a) and (b) with w̃j ≡ 1

and wj :=
∑k−1
r=1 grj · λr for j ∈ {1, . . . ,m1 + k − 1} \ {j1, . . . , jk−1}. One obtains a

probability that is O(ϕg · tg+m1) = O(tm1) for the above conditions. Consequently,
the probability is O(tm1+1) if one has no simple form. If QH2 is in simple form, one
gets the condition

m1 > rk


p

(1)
11 . . . p

(1)
1,m1

Ip1−1 0
...

...
p

(1)
p1,1

. . . p
(1)
p1,m1 qH2

p1,1
. . . qH2

p1,p1

 (z0) =

= p1 − 1 + rk

[
p

(1)
p1,1
−
p1−1∑
i=1

p
(1)
i1 q

H2
p1,i

. . . p(1)
p1,m1

−
p1−1∑
i=1

p
(1)
i,m1

qH2
p1,i

qH2
p1,p1

]
(z0),

which is equivalent to

p
(1)
p1,1

(z0)−
p1−1∑
i=1

p
(1)
i1 q

H2
p1,i

(z0) = . . . = p(1)
p1,m1

(z0)−
p1−1∑
i=1

p
(1)
i,m1

qH2
p1,i

(z0) = qH2
p1,p1(z0) = 0.

Now, one proceeds as in the part of the proof for Theorem 12 concerning simple
form, with u ≡ 1 and s(j) =

∑p1−1
i=1 p

(1)
i,j q

H2
p1,i

for j = 1, . . . ,m1. Doing this, one gets
that the probability that G(z0) is singular is upper bounded by

g · ϕg · tg ·
∏m1

j=1 t
min(g,ν

(1)
j +1). As

∑m1

j=1 ν
(1)
j = n1 ≥ 1, there exists j ∈ {1, . . . ,m1}

with ν(1)
j ≥ 1 and therefore, the probability is O(tm1+1) for g ≥ 2. Again as in the

proof of Theorem 12, one gets that this probability is tm1 +O(tm1+1) for g = 1 and
hence, Pr(A3) = tm1 +O(tm1+1).
It remains to show that Pr(A13) = O(tm1+1) = Pr(A23). For this, one has to consider
only simple form of QH1 and QH2 since one knows that the probability of being not in
simple from and lying in A3 is already O(tm1+1).
For A13, this leads to the condition that there exist z0, z̃0 ∈ F such that

qH1
m1,m1

(z0) =

m1∑
l=1

p
(1)
1l u

(1)
l,m1

(z0) = · · · =
m1∑
l=1

p
(1)
p1,l

u
(1)
l,m1

(z0) = 0 (3.9)

p
(1)
p1,1

(z̃0)−
p1−1∑
i=1

p
(1)
i1 q

H2
p1,i

(z̃0) = . . . = p(1)
p1,m1

(z̃0)−
p1−1∑
i=1

p
(1)
i,m1

qH2
p1,i

(z̃0) =

= qH2
p1,p1(z̃0) = 0. (3.10)
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One could assume z0, z̃0 ∈ F. This is possible since if z̃0 6∈ F, one has a probability
of O(tm1+1) by only using the conditions containing z̃0 and if z0 6∈ F, one has a
factor that is O(tp1+1) = O(t2) from the conditions containing z0 and a factor that is
O(tm1−1) from the conditions containing z̃0 without the condition on p(1)

p1,l0
, where l0

is chosen such that u(1)
l0,m1

(z0) 6= 0.
For z0 = z̃0, one has a probability of O(tm1) for (3.10) and (amongst others) the
additional factor t because of qH1

m1,m1
(z0) = 0. Thus, one obtains a probability that is

O(tm1+1).
For z0 6= z̃0, p(1)

p1,l0
is fixed at two different values. If ν(1)

l0
≥ 1, i.e. q(1)

l0,l0
6≡ 1, one could

apply Lemma 7 (c) and gets the factor t2 for the number of possibilities of p(1)
p1,l0

. This

is possible since if q(1)
l0,l0
≡ 1, all other entries of Q1 in row l0 would be zero, due

to the Kronecker-Hermite form of Q1. Thus, the l0-th row of QH1 = Q1U1 would be
equal to the l0-th row of U1. But (3.9) implies that the last column of QH1 (z0) is equal
to zero, which leads to u(1)

l0,m1
(z0) = 0. However, this is a contradiction to the choice

of l0. In summary, there are t−1(t−1 − 1) possibilities for the choice of z0, z̃0 ∈ F, the
factor t2 for fixing p(1)

p1,l0
and the factor tm1+p1 for fixing the other polynomials, which

leads a probability that is O(tm1+p1) = O(tm1+1).
For A23, one has the condition that there exist z0, z̃0 ∈ F such that

qH2
p1,p1(z0) =

p1∑
l=1

p
(2)
1l u

(2)
l,p1

(z0) = · · · =
p1∑
l=1

p
(2)
p2,l

u
(2)
l,p1

(z0) = 0

p
(1)
p1,1

(z̃0)−
p1−1∑
i=1

p
(1)
i1 q

H2
p1,i

(z̃0) = . . . = p(1)
p1,m1

(z̃0)−
p1−1∑
i=1

p
(1)
i,m1

qH2
p1,i

(z̃0) =

= qH2
p1,p1(z̃0) = 0.

One could argue analogous to the consideration of A13. The only difference is that
now, the polynomial qH2

p1,p1 is fixed to zero at two values. For z0 = z̃0, one has
p1 + 1 +m1 fixed polynomials and hence, a probability that is O(tm1+1). If z0 6= z̃0

and deg(qH2
p1,p1) = 1, one has a contradiction because a linear polynomial cannot have

two distinct zeros; thus, this case cannot occur and therefore, its probability is equal
to zero. If z0 6= z̃0 and deg(qH2

p1,p1) ≥ 2, one could argue as for the calculation of
Pr(A13) and gets that Pr(A23) is O(tm1+p2) = O(tm1+1).
Putting all achieved results together, one obtains that the overall probability is equal
to

1− tm1 +O(tm1+1)

1−O(t)
= 1− tm1 +O(tm1+1).

Corollary 14.
The probability that a series connection of two minimal systems is observable is equal to
1− tp2 +O(tp2+1).
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Proof.
Using the criterion on Q̂ and P̂ from Example 1 (b), one needs to compute the
probability that Q̂1 and P̂2 are right coprime if Q̂i and P̂i are left coprime for i = 1, 2.
One could assume that Q̂>i is in Kronecker-Hermite form and that the column degrees
of P̂>i are less or equal to the column degrees of Q̂>i for i = 1, 2. Moreover, two
matrices are right/left coprime if and only if the transposed matrices are left/right
coprime. Thus, to compute the probability of observability with the help of the
criterion on Q̂ and P̂ is equivalent to computing the probability of reachability with
the help of the criterion on Q and P with Qi = Q̂>j and Pi = P̂>j for 1 ≤ i 6= j ≤ 2.
Hence, one has to replace m1 by p2 in the formula for reachability of the series
connection.

As in the preceding subsection, which dealt with series connections of SISO
systems, the series connection of two minimal systems with strictly proper transfer
functions, i.e. with D1 = D2 = 0, has a different probability of reachability than in
the proper case. In the following theorems, we will investigate the strictly proper
case, where it will turn out that the asymptotic probability does not only depend on
m1 but also on the sizes of the other involved system matrices.

Theorem 35.
For m1 = n1 = 1, the probability that a series connection of two minimal systems
with strictly proper transfer functions is reachable is equal to 1 if p1 = 1 and equal to
1− t+O(t2) if p1 ≥ 2.

Proof.
Here, Q1 is scalar and P1 a vector consisting of p1 constants. Thus, if p1 = 1, i.e.
P1 and Q2 are scalar, too, P1 and Q2 are left coprime if and only if P1 and Q1 are
right coprime, namely if and only if P1 6= 0. Consequently, the minimality of the
node systems implies the reachability of the series connected system and hence, the
considered probability is equal to 1.
Now, examine the case p1 ≥ 2. Since Q1 is a linear polynomial, no entry of P1 is fixed
to zero due to degree conditions. Therefore, Pr(A3) = tm1 +O(qm1+1) = t+O(t2)
as in the proper case. Since P1 is a vector consisting of p1 constants, Q1 and P1 are
right coprime if and only if P1 is not the zero vector. But if P1 is the zero vector, it
is not left prime with Q2. Consequently, Pr(A13) = Pr(A1) = tp1 (considering the
proof of Theorem 34 this means that (3.9) implies (3.10) since fixing a constant
to zero at one point effects that it is zero at every point). Thus, the equation
Pr(A13) = O(tm1+1) = O(t2), which one had in the proper case, is only valid for
p1 ≥ 2. From Remark 8, one knows Pr(A2) = tp2 and with the same argumentation
as in the proper case, one has Pr(A23) = O(t2). In summary, the overall probability
is equal to

1− t+O(t2)

1 +O(t)
= 1− t+O(t2).
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Theorem 36.
For m1 = 1, n1 ≥ 2, the probability for a series connection of two minimal systems with
strictly proper transfer functions to be reachable is equal to
1− t+O(t2).

Proof.
This theorem could be proven analogous to Theorem 34 since none of the entries of
P1 has to be a constant due to degree conditions.

Theorem 37.
With the same notations as above but D1 = D2 = 0, one has for m1 ≥ 2:

Pr(A3) = tm1 + tn1 +O(tmin(m1,n1)+1)

Pr(Ai) = tpi +O(t(pi+1) for i = 1, 2

Pr(A23) = O(tmin(m1,n1)+1).

Proof.
The second statement of the theorem follows from Remark 8.
Now, consider Pr(A3). Since P1Q

−1
1 is strictly proper, every column i of P1, for

which q(1)
ii ≡ 1, consists only of fixed zeros. Hence, these columns could be deleted

considering the right primeness of [P1 Q2]. With the remaining matrix, one could
proceed as in the proper case. Thus, if N1 is the number of deleted columns, one gets
Pr(A3) = tm1−N1 +O(tm1−N1+1).
Consequently, one has to count or at least to estimate the number of Kronecker-
Hermite forms with fixed column degrees ν1, . . . , νm1

, of which N1 are equal to zero.
If these parameters are fixed, the number of Kronecker-Hermite forms is a power of
t−1. We call the corresponding exponent the dimension of the set of matrices with
these column degrees. Since we are only interested in the leading term of Pr(A3)
and the order of the values for the column degrees does not change the number
of column degress that are equal to zero, one could assume ν1 ≤ . . . ≤ νm1

. This
is possible because in column i the entries above the diagonal have strictly lower
degree then νi but the polynomials beyond the diagonal could have degree equal or
less to νi (see the definition of the Kronecker-Hermite form). This effects that the
dimension is largest for ν1 ≤ . . . ≤ νm1 among all permutations of the values for
the column degrees. Moreover, for every other order of ν1, . . . , νm1

, the dimension
is as much smaller as the number of permutations of degrees of adjacent columns
that is needed to achieve increasing order. To see this, assume νi > νi+1. If one
exchanges these two indices, the number of total possibilities for all entries but
q

(1)
i,i+1 and q

(1)
i+1,i is not effected (there are just entries in this set which exchange

their number of possibilities with other entries from that set). Futhermore, one has
deg(q

(1)
i,i+1) ≤ min(νi − 1, νi+1 − 1) = νi+1 − 1 and deg(q

(1)
i+1,i) ≤ min(νi+1 − 1, νi) =

νi+1 − 1 before the exchange and deg(q
(1)
i,i+1) ≤ min(νi+1 − 1, νi − 1) = νi+1 − 1

and deg(q
(1)
i+1,i) ≤ min(νi − 1, νi+1) = νi+1 afterwards. Hence, the dimension has

increased by one.
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3.3 Series Connection

To count the number of Kronecker-Hermite forms with increasing column degrees
of which N1 are zero and whose sum is equal to n1, one starts with ν1 = . . . =
νm1−1 = 0, νm1

= 1 and successively increases one of the values for the νi until their
sum reaches n1 and where in each step, the values for the column degrees remain
increasing, i.e. if one value for the column degrees occurs several times, one could
only increase the last one of them. Doing this, we want to determine the effect on
the dimension of increasing νi from w to w + 1. First, consider what happens in
row i. For j > i, i.e. νj ≥ w + 1, the upper bound for the degree of the (i, j)-entry
increases from w − 1 to w. For j < i, i.e. νj ≤ w, this increasing is only possible if
νj = w. Now, look at column i. For j > i, a increasing of the degree of the (j, i)-entry
from w to w + 1 is possible if and only if νj > w + 1. For j < i, an increase from
w − 1 to w is not possible since it would require νj > w, a contradiction to the
increasing order of the column degrees. In summary, the dimension is increased
by m1 − 1− |j ∈ {1, . . . ,m1} | νj < w|︸ ︷︷ ︸

effect in row i

+ |j ∈ {1, . . . ,m1} | νj > w + 1|︸ ︷︷ ︸
effect in column i

. It could be

seen easily that this term decreases with w and therefore, is largest for w = 0, namely
m1 − 1 + |j ∈ {1, . . . ,m1} | νj > 1|. But in this case, after the increasing of a column
degree from 0 to 1, one has a column of fixed zeros (due to degree restrictions) less in
[P1 Q2]. This decreases the asymptotic probability Pr(A3) = tm1−N1 +O(tm1−N1+1)
by the factor t. For w 6= 0, this probability remains unchanged.
If we start at ν1 = . . . = νm1−1 = 0, νm1 = 1, it is only possible to choose w = 1
and increase νm1 or to choose w = 0 and increase νm1−1. In both cases, the term for
the effect on the column is equal to zero. As long as there are at least two column
degrees equal to 0, choosing w = 1 increases the dimension by at least 2 less than
choosing w = 0. Hence, since the difference in the probability Pr(A3) is only of
dimension one, it is sufficient to consider the case that the column degree with the
largest index among those that are equal to zero is increased as long as there is still a
column degree equal to zero after this increasing.
Consequently, for n1 < m1, the only relevant Kronecker-Hermite forms are those
with ν1 = . . . = νm1−n1

= 0 and νm1−n1+1 = . . . = νm1
= 1. In this case, one has

N1 = m1 − n1 and therefore, Pr(A3) = tn1 +O(tn1+1).
For n1 = m1, one could choose ν1 = 0, ν2 = . . . = νm1

= 1, as starting point for
increasing column degrees. Doing this, choosing w = 0 increases the dimension by
m1 − 1, while choosing w = 1 increases the dimension by m1 − 2. This difference
compensates the difference in the estimation for Pr(A3). Hence, one has to consider
both ν1 = . . . = νm1

= 1 and ν1 = 0, ν2 = . . . = νm1−1 = 1, νm1
= 2. In the first

case, Pr(A3) = tm1 +O(tm1+1), in the second case, Pr(A3) = tm1−1 +O(tm1). Since
one has a factor t in the second case, due to the fact that the dimension is 1 less, the
overall probability is equal to Pr(A3) = 2tm1 +O(tm1+1).
For n1 > m1, one has to consider forms obtained by increasing degrees starting with
ν1 = . . . = νm1

= 1 or starting with ν1 = 0, ν2 = . . . = νm1−1 = 1, νm1
= 2. In the

first case, one only has the possibility w = 1. In the second case, one has a increase of
the dimension by m1 for w = 0, by m1− 2 for w = 1 and no increase for w = 2. Thus,
the cases but w = 0 have a dimension that is at least by 2 smaller than the dimension
for w = 0 and since the difference in Pr(A3) is only of dimension one, they could be
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3 Probabilities of Reachability and Observability for Interconnected Linear Systems

neglected. Hence, in either case, one gets ν1 = . . . = νm1−1 = 1, νm1 = 2. No matter
in which way one continues, only Kronecker-Hermite forms with no fixed ones on
the diagonal matter. Consequently, Pr(A3) = tm1 +O(tm1+1) as in the proper case.
The identity Pr(A23) = O(t · Pr(A3)) is valid with the same argumentation as in the
proper case.

The difficulty with the determination of the probability of reachability for a series
connection of strictly proper systems lies in the determination of Pr(A13). What we
have computed so far, shows that it does not matter if D2 is equal to zero or not.
But this is obvious since reachability of a system does not depend on the output. D1

matters because it influences the input of the second system.

Theorem 38.
For m1, p1 ≥ 2, the probability that a series connection of two minimal systems with
strictly proper transfer functions is reachable is equal to

1− tm1 − t−n1 +O(tmin(m1,n1)+1).

Proof.
For p1 ≥ 2, it is easy to compute Pr(A13). One deletes the zero columns of P1 and
then proceeds as in the proof of Theorem 34. From equation (3.9) one knows that
p1 + 1 polynomials are fixed at z0. According to (3.10), m1 − N1 + 1 polynomials
are fixed at z̃0, from which m1 − N1 do not belong to the fixed polynomials from
(3.9). Thus, it follows from previous computations that for fixed column degrees,
Pr(A13) = O(tp1+m1−N1−1) = O(tm1−N1+1) = O(t · Pr(A3)) for p1 ≥ 2; see end of
the first paragraph of the previous proof. Hence, the statement follows from the
results of the preceding theorem.

Theorem 39.
For m1 ≥ 2, p1 = 1, the probability that the series connection of two minimal systems
with strictly proper transfer functions is reachable is equal to

1 for n1 = 1

1− tm1 +O(tm1+1) for n1 ≥ 2.

Proof.
It remains to compute Pr(A13) in this case.
Here, P1 is a row vector of length m1 and Q2 is scalar. If Q1 is in Kronecker-Hermite
form with νi ∈ {0, 1} for i ∈ {1, . . . ,m1}, P1 only consists of constants. For Q1

and P1 to be right coprime, it is necessary that P1 6≡ 0. This condition, however, is
sufficient for P1 and Q2 to be left coprime. Hence, the probability of reachability for
the interconnected system is equal to 1; in particular, this probability is equal to 1 if
n1 = 1 because in this case, it always holds νi ∈ {0, 1} for i ∈ {1, . . . ,m1}.
Now consider the case that there exists i ∈ {1, . . . ,m1} with νi ≥ 2. For A3, one has
the condition that there exists z̃0 ∈ F with p

(1)
1 (z̃0) = · · · = p

(1)
m1(z̃0) = Q2(z̃0) = 0.

We already know that this probability is O(tm1) for z̃0 ∈ F and O(tm1+1), otherwise.
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3.3 Series Connection

Therefore, it is sufficient to consider z̃0 ∈ F and the case that QH1 is of simple form.
For A1, without restriction, assume that Q1 has no column degree equal to zero; see
beginning of the proof of Theorem 12. Moreover, one could assume ν1 ≤ . . . ≤ νm1

;
see proof of Theorem 37. Proceeding as in the proof of Theorem 12, one gets the
condition that there exists z0 ∈ F with qHm1,m1

(z0) =
∑m1

l=1 p
(1)
l u

(1)
l,m1

(z0) = 0. Clearly,
the subset of A13 with z0 = z̃0 has a probability that is O(tm1+1). Thus, it remains to
consider z0 6= z̃0. Let d ≤ m1− 1 be the number of i ∈ {1, . . . ,m1} with νi < 2. Then,
A3 implies p1 ≡ . . . ≡ pd ≡ 0. If p(1)

d+1(z0) = · · · = p
(1)
m1(z0) = 0, the polynomial p(1)

m1 ,
which degree bound is equal to νm1

≥ 2 per assumption, is fixed at two values and
therefore, Pr(A13) = O(t · Pr(A3)) = O(tm1+1). If there exists i ∈ {d + 1, . . . ,m1}

such that p(1)
i (z0) 6= 0, consider the matrix G :=

(
Q1

P1

)
and nullify column i of G(z0)

by adding appropriate multiples of the last row to the other rows of this matrix.
Afterwards delete the last row and i-th column of this matrix and denote the resulting
matrix by G̃(z0). Obviously, G̃(z0) is singular if and only if G(z0) is singular. Now, one
applies the method of iterated column operations (see Lemma 9 (a)) to the matrix
G̃(z0) and gets that at least k ≥ 2 polynomials from G̃(z0) are fixed by the values
of the other entries of this matrix. Since we deleted the last row of G(z0) and P1

consists only of one row, these conditions have the form q
(1)
j (z0) · hj(z0)− fj(z0) = 0

for j = 1, . . . , k where the polynomials q(1)
j are entries of Q1 (that are not fixed

constants due to degree conditions because we assumed that no column degree is
equal to zero) and hj and fj are products of the other entries of G with hj(z0) 6= 0.
Hence, either q(1)

j · hj − fj ≡ 0 or there exists an upper bound for gz0 determined

by the column degrees of Q1. In the first case, the polynomials q(1)
j for j = 1, . . . , k

are completely determined by the other entries of G and therefore, one even has
Pr(A13) = O(t2 · Pr(A3)) because Pr(A3) is independent of Q1. In the second case,
for each value of gz0 (for which there are only finitely many possibilities), one applies
Lemma 7 (b) to the conditions q(1)

j (z0) · hj(z0)− fj(z0) = 0 for j = 1, . . . , k, which
gives a factor for the possibilities for Q1 that is O(tk−1) = O(t). Again since entries
of Q1 do not matter for Pr(A3), one has Pr(A13) = O(t · Pr(A3)) = O(tm1+1).
For n1 > m1, there always exists i ∈ {1, . . . ,m1} with νi ≥ 2 and therefore, one could
conclude that the probability of reachability for the interconnected system is equal to
1− tm1 − tn1 +O(t(min(m1,n1)+1)) = 1− tm1 +O(tm1+1) if one uses the results from
Theorem 37 .
If 1 < n1 ≤ m1 and νi ∈ {0, 1} for i = 1, . . . ,m1, A3 is equivalent to P1 ≡ 0,
which implies A1. Hence, Pr(A13) = Pr(A3) and Pr(A23) = Pr(A123). Thus, the
probability that the interconnected system is not reachable is zero; see also beginning
of the whole proof. If there exists i ∈ {1, . . . ,m1} with νi ≥ 2, we saw in the
preceding paragraph that the leading coefficient of this probability is equal to the
leading coefficient of Pr(A3). Therefore, considering different structures of Kronecker-
Hermite forms, one proceeds similarly to the proof of Theorem 37 but starts with
ν1 = . . . = νm1−1 = 0, νm1 = 2. With the same argumentation as in that proof,
one could show that the only structure that matters for the leading term of the
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3 Probabilities of Reachability and Observability for Interconnected Linear Systems

probability that the interconnected system is not reachable is ν1 = . . . = νm1−n1+1 =
0, νm1−n1+2 = . . . = νm1−1 = 1, νm1

= 2. However, the structure with largest
dimension amongst all Kronecker-Hermite forms with these parameters n1 and m1

has ν1 = . . . = νm1−n1
= 0, νm1−n1+1 = . . . = νm1

= 1 as values for its column
degrees. Hence, computing the loss in the dimension, one has to look at the effect
of choosing w = 1 instead of w = 0 (see proof of Theorem 37), when increasing a
column degree starting from ν1 = . . . = νm1−n1+1 = 0, νm1−n1+2 = . . . = νm1 = 1.
Using the formula from the proof of Theorem 37, one gets that this difference in the
dimension is equal to |j ∈ {1, . . . ,m1} | νj < 1| = m1 − n1 + 1. Now, distinguish two
subcases.

For n1 = m1, we already saw in the proof of Theorem 37 that this loss of 1 in
the dimension is compensated by a higher value for Pr(A3) due to an additional
column of zeros in P1 (which is here just an additional zero entry because of p1 = 1).
But since one has Pr(A13) = Pr(A3) and Pr(A23) = Pr(A123) for the structure
ν1 = . . . = νm1

= 1, the leading term of the probabiliy that the interconnection is not
reachable is tm1 (and not 2tm1 , which is the leading term of Pr(A3)). Thus, using
the results of Theorem 37, one gets an overall probability of 1− tm1 +O(tm1+1).

For n1 < m1, one has to multiply the term for Pr(A3) from Theorem 37 by the
factor tm1−n1+1 for the decreased dimension and afterwards, by the factor t−1 due
to the additional zero entry in P1 compared with the structure of largest dimension.
Consequently, one gets tn1+m1−n1+1−1 for the leading term of the probability that
the interconnected system is not reachable and therefore, 1− tm1 +O(tm1+1) for the
probability of reachability.

Summarizing the results of the preceding theorems, on gets the following theorem:

Theorem 40.
The probability that the series connection of two minimal systems with strictly proper
transfer functions is reachable is equal to

1 for p1 = n1 = 1,

1− tm1 +O(tm1+1) for p1 = 1, n1 > 1 or p1 ≥ 2, n1 > m1

or p1 ≥ 2, m1 = 1,

1− 2tm1 +O(tm1+1) for p1 ≥ 2, n1 = m1 6= 1,

1− tn1 +O(tn1+1) for p1 ≥ 2, n1 < m1.

3.4 Circular Interconnection
As we saw in Example 1 (c), for circular interconnection, one has the same coprime-
ness condition as for series connection, namely that

RN :=


P1 Q2 0 · · · 0

0 P2 Q3
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 PN−1 QN


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has to be left prime. However, one has to assume det(I −DN · · ·D1) 6= 0 to be able
to apply Theorem 10. Therefore, one has to investigate if this condition influences
the probability of reachability. Doing this, we will obtain that the probability stays
asymptotically the same. As in the previous section, for i = 1, . . . , N , define Ai :=
{(Pi, Qi) not right coprime}, AN+1 := {RN not left prime} and Aij := Ai ∩Aj . But
here, one additionally needs A0 := {det(I−DN · · ·D1) = 0}. Consequently, one gets
that the probability of reachability is equal to

1− Pr(∪N+1
i=0 Ai)

1− Pr(∪Ni=0Ai)
=

1−
∑
∅6=I⊂{0,...,N+1}(−1)|I|−1 Pr(AI)

1−
∑
∅6=I⊂{0,...,N}(−1)|I|−1 Pr(AI)

=

= 1−
Pr(AN+1) +O(

∑N
i=0 Pr(Ai,N+1))

1− Pr(A0) +O(t)
(3.11)

since one already knows from the previous section that Pr(Ai) = O(t) for i =
1, . . . , N .

3.4.1 Circular Interconnection of SISO Systems

As done for series connection, we start considering a circular interconnection of SISO
systems, i.e. Pi and Qi are scalar for i = 1, . . . , N . Since for this case, we know from
the proof for a series connection of SISO systems that Pr(AN+1) = N(N−1)

2 t+O(t2)
as well as Pr(Ai,N+1) = O(t2) for i = 1, . . . , N , it only remains to estimate Pr(A0)
and Pr(A0,N+1). Doing this, one gets the following result:

Theorem 41.
The probability that a circular interconnection of N minimal SISO systems is reachable
is equal to

1− N(N − 1)

2
· t+O(t2).

Proof.
It follows from (3.11) and the preceding observations that the considered probability
is equal to

1−
N(N−1)

2 t+O(t2)− Pr(A0,N−1)

1− Pr(A0) +O(t)
.

For the computation of Pr(A0), one performs the transformation

det(I − DN · · ·D1) = limz→∞

(
1− P1···PN

Q1···QN (z)
)

= 1 − pn1 · · · pnN , where pni ∈ F
denotes the coefficient of zni in Pi ∈ F[z]. Hence, in the set A0, pnN is fixed by the
other involved polynomials, which implies Pr(A0) = O(t). Moreover, pnN does not
influence Pr(AN+1) and thus, Pr(A0,N+1) = Pr(AN+1) · Pr(A0) = O(t2).

Corollary 15.
The probability that a circular interconnection of N minimal SISO systems is observable
is equal to

1− N(N − 1)

2
· t+O(t2).
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3.4.2 Feedback Interconnection

In this subsection, we consider a circular interconnection of two systems with arbi-
trarily many inputs, i.e. a feedback interconnection.

Theorem 42.
The probability that a feedback interconnection of two minimal systems is reachable is
equal to

1− tm +O(tm+1)

where m := m1 = p2 is the number of inputs of the first as well as the number of outputs
of the second system. Moreover, set p := p1 = m2.

Proof.
According to (3.11), the probability of reachability is equal to

1− Pr(A1 ∪A2 ∪A3 ∪A0)

1− Pr(A1 ∪A2 ∪A0)
= 1− Pr(A3)− Pr(A03) +O(t · Pr(A3))

1− Pr(A0) +O(t)

since one already knows from the section concerning series connection that Pr(A13) =
Pr(A23) = O(t · Pr(A3)). Therefore, it only remains to estimate Pr(A0) and Pr(A03).
Using Di = limz→∞ PiQ

−1
i (z) for i = 1, 2 as well as the formula

det

[
Q2 P1

P2 Q1

]
= det(Q2) ·det(I −P2Q

−1
2 P1Q

−1
1 ) ·det(Q1), one gets that condition

A0 is equivalent to the condition

lim
z→∞

det

[
Q2(z) P1(z)
P2(z) Q1(z)

]
det(Q2(z)) · det(Q1(z))

= 0.

Because Q1 and Q2 are in Kronecker-Hermite form with degj(Pi) ≤ degj(Qi) for
j = 1, . . . ,mi and i = 1, 2, this is equivalent to the condition that the highest column

degree coefficient matrix
[
Q2 P1

P2 Q1

]
hc

=

 Qc2 Pc1 pc1
Pc2 Qc1 0
pc2 qc1 1

 with Qc2 ∈ Fp×p,

Pc1 ∈ Fp×(m−1), Pc2 ∈ F(m−1)×p, Qc1 ∈ F(m−1)×(m−1), pc1 ∈ Fp×1, pc2 ∈ F1×p and
qc1 ∈ F1×(m−1) is not invertible. Note that the Kronecker-Hermite form of Qi implies
that Qci is lower triangular with all diagonal elements equal to 1 for i = 1, 2.
In the following, it should be shown per induction with respect to m + p that
Pr(A0) = O(t) and Pr(A03) = O(t · Pr(A3)).
The proof for the base clause m = p = 1 was already done in the previous subsection.
Now, consider the step from m+ p− 1 to m+ p.
Assume without restriction that m ≥ 2. One expands

det

[
Q2 P1

P2 Q1

]
hc

=

 Qc2 Pc1 pc1
Pc2 Qc1 0
pc2 qc1 1

 along the last row and gets pc2,1M1−· · ·±

qc1,m−1Mp+m−1 ∓Mp+m, where Mi denotes the minor that is formed by all rows
but the last and all columns but the i-th. Hence, one could distinguish two cases
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for A0. If Mp+m = 0, one has A0 = O(t) per induction. If Mp+m 6= 0, the set
{(pc2,i,Mi), i = 1, . . . , p} ∪ {(qc1,i,Mp+i), i = 1, . . . ,m − 1} contains an element
from (F \ {0})2. Hence, there either exists i ∈ {1, . . . , p} such that pc2,i is fixed by
the other values of the matrix or there exists i ∈ {1, . . . ,m − 1} such that qc1,i is
unequal to zero (and hence, in particular, not fixed to zero by degree restrictions)
and fixed by the other values of the matrix. Consequently, A0 = O(t). For Pr(A03),
consider the same two cases. For the second case, there is nothing left to do since
A3 is not influenced by the values of the last row of the above matrix and the
value that is fixed by condition A0 is an element of this last row. Thus, A3 and
A0 are independent and the statement follows. For the first case, i.e Mp+m = 0,
write P1 = [P̃1 p1] with P̃1 ∈ F[z]p×(m−1) and p1 ∈ F[z]p×1. Furthermore, set
Ã3 := {(P̃1, Q2) not left coprime}. From previous computations (see Theorem 12),
one knows Pr(A3) = O(t · Pr(Ã3)) as well as Pr(Ã3) = t−1 · Pr(A3) +O(Pr(A3)). It
follows

PrMp+m=0(A03) = O (Pr(A3 ∩ {Mp+m = 0})) = O(t · Pr(Ã3 ∩ {Mp+m = 0})) =

= O(t2 · Pr(Ã3)) = O(t · Pr(A3)).

Here, for the second equation, one uses that the elements of pc1 are not contained
in Mp+m (and hence, a condition on Mp+m could not influence p1) and that the
additional condition one has considering A3 instead of Ã3 only consists of a restriction
for p1. The third equation follows per induction.
In summary, the probability of reachability is equal to

1− Pr(A3) +O(t · Pr(A3))

1 +O(t)
= 1− tm +O(tm+1)

1 +O(t)
= 1− tm +O(tm+1).

Corollary 16.
The probability that a feedback interconnection of two minimal systems is observable is
equal to 1− tm +O(tm+1).

Proof.
Similar to the computation of observability for a series connection of two systems,
the statement follows from the computation of the probability for reachability. Even
with the condition det(I −D2D1) 6= 0 could be dealt in a similar way. Finally, note
that the number of outputs of the second system p2 equals the number of inputs for
the first system m.

Remark 21.
If one considers a circular interconnection of N minimal systems with strictly proper
transfer functions, the probability of reachability is equal to the probability that a series
connection of N minimal systems with strictly proper transfer functions is reachable.
This is due to the fact that in the strictly proper case, I −DN · · ·D1 = I since D1 =
· · · = DN = 0 and therefore, A0 = ∅.
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3.5 Partial State Reachability of a Series Connection of
three Systems

In [40], criteria for so-called partial state reachability of a series connection of
reachable strictly proper systems were provided. The notion of partial state reacha-
bility means that one is only interested in controling a subset of the node systems.
In this section, we focus on a special case also considered in [40], namely a se-
ries connection of three strictly proper single-input single-output (SISO) systems
(Ai, Bi, Ci) ∈ Fni×ni ×Fni×mi ×Fpi×ni for i = 1, 2, 3 and so called (1, 3)-reachability,
i.e. it should be possible to steer the first and third system to arbitrary states while
the state of the second system is of no importance. To be able to use the theorems
provided in [40], we firstly, have to introduce and adopt some notation from there.

Definition 14.
A series connection of three systems is called (1,3)-reachable if for each ξ1 ∈ Fn1 and
each ξ3 ∈ Fn3 , there exist τ∗ ∈ N0 and a sequence of inputs u(0), . . . , u(τ∗) ∈ Fm such
that xi(τ∗ + 1) = ξi for i = 1, 3.

Definition 15.
For nf ∈ N and fj ∈ F for j = −∞, . . . , nf , f(z) =

∑nf
j=−∞ fjz

j is called trun-
cated Laurent series and the vector space of all truncated Laurent series is denoted
by F((z−1)). Moreover, we call π : F((z−1))→ F[z], f(z) 7→

∑nf
j=0 fjz

j the projection
onto the polynomial part.

With these notations, we are now able to state the corresponding theorem from
[40] for the special case of single-input single-output.

Theorem 43. [40, Theorem 8]
The series connection of three reachable strictly proper SISO systems with transfer
functions Ci(zI − Ai)−1Bi = pi(z)

qi(z)
∈ F(z) and gcd(pi, qi) = 1 for i = 1, 2, 3 is (1, 3)-

reachable if and only if F[z] = δ(z)F[z] + π(d(z)F[z]), where δ := gcd(q3, p1p2) and
d := p1p2

q2
.

To make the criterion from the preceding theorem easier to handle, we want to
transform this criterion into a criterion on the coefficients of d and δ.

Theorem 44.
Write δ(z) =

∑nδ
j=0 δjz

j and d(z) =
∑nd
j=−∞ djz

j with nδ ∈ N0, nd ∈ Z and δj , dj ∈ F,
where δnδ = 1 and dnd 6= 0. Moreover, set δj = 0 for j > nδ and dj = 0 for j > nd.
The series connection of three reachable strictly proper SISO systems is (1, 3)-reachable
if and only if either nδ = 0 or nd ≤ 0 or nδ, nd ≥ 1 and for each n ∈ N0, there exist
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n1, n2 ∈ N0 such that the matrix

M :=



d0 . . . d−n2 δ0 0
...

. . .
...

...
. . .

dn−n2
d0 δn−n1

δ0
...

. . .
...

...
. . .

...
dn . . . dn−n2

δn . . . δn−n1

 ∈ F(n+1)×(n1+n2+2)

has full row rank.

Proof.
According to the preceding theorem, the considered interconnection is (1, 3)-reachable
if and only if for each h ∈ F[z] there exist f, g ∈ F[z] with h = δf + π(dg). If nδ = 0,
i.e. δ ≡ 1, this clearly is possible; simply choose f ≡ h and g ≡ 0. If nd ≤ 0,
i.e. d is a proper rational function, it holds π(d F[z]) = F[z] (see beginning of the
proof of Corollary 9 in [40]) and the claim follows by choosing f ≡ 0. Hence, it
only remains to consider the case nδ, nd ≥ 1. Therefore, write h(z) =

∑n
j=0 hjz

j ,
f(z) =

∑n1

j=0 fjz
j and g(z) =

∑n2

j=0 gjz
j with n, n1, n2 ∈ N0 and hj , fj , gj ∈ F,

where hn, fn1
, gn2

6= 0. Then, (1, 3)-reachability is equivalent to the fact that for each
n ∈ N0 and each h ∈ F[z] with deg(h) = n, there exist n1, n2 ∈ N0 and f, g ∈ F[z]
with deg(f) = n1 and deg(g) = n2 such that

hi =

i∑
j=0

δjfi−j +

i∑
j=−∞

djgi−j for 0 = 1, . . . , n,

which is equivalent to

h0

...
hn

 =



d0 . . . d−n2
δ0 0

...
. . .

...
...

. . .
dn−n2 d0 δn−n1 δ0

...
. . .

...
...

. . .
...

dn . . . dn−n2
δn . . . δn−n1





g0

...
gn2

f0

...
fn1


.

Thus, (1, 3)-reachability is equivalent to the fact that for each n ∈ N0, there exist
n1, n2 ∈ N0 such that the linear map defined by M is surjective and the proof is
complete.

With the help of the preceding theorem, we could investigate what happens in
the special case that the second and third node system are scalar and the first node
system is of dimension less than three.

Theorem 45.
If n2 = n3 = 1 and n1 ≤ 2, the series connection of three reachable strictly proper SISO
systems is always (1, 3)-reachable.
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Proof.
It holds nδ = deg(δ) ≤ deg(q3) = n3 = 1. If nδ = 0, the statement follows directly
from the preceding theorem. Therefore, one only has to consider the case deg(δ) =
1 = deg(q3) and hence, δ ≡ q3. Since p1p2

q2
− π(d) is strictly proper, one has p1p2 =

q2 · π(d) + r(d) with deg(r(d)) < deg(q2) = n2 = 1, i.e. r(d) is constant.
Assume that the interconnection is not (1, 3)-reachable, i.e. nd ≥ 1 and there exists
n ∈ N0 such that for each n1, n2 ∈ N0, the matrix M (defined as in the preceding

theorem) has no full row rank. Especially, for n1 = n2 = 0, if n ≥ 1,M =



d0 δ0
1

... 0
...

dn 0


has no full row rank and if n = 0, M = [d0 δ0] has no full row rank. For n ≥ 1,
this implies d2 = . . . = dn = 0, i.e. nd = 1, as well as d0 − d1δ0 = 0, i.e. −δ0 is
a zero of π(d). For n = 0, it follows d0 = δ0 = 0 and hence, −δ0 = 0 is a zero of
π(d), too. Since δ(z) = z + δ0 is the minimal polynomial of −δ0, one has in either
case that δ | π(d). Because δ | p1p2 per definition, it follows δ | r(d), which implies
r(d) = 0 since we already saw that r(d) is constant. But then, π(d) = d = p1p2

q2
is a

polynomial of degree at least one since it is divisible by δ. Since p2/q2 is strictly proper,
this implies that p1 is of degree at least two, a contradiction to deg(p1) < n1 ≤ 2.
Consequently, such an interconnection has always to be (1, 3)-reachable.

3.6 General Networks

In this section, we want to investigate what general statements are possible if one does
not know the interconnection matrices K, L (and M), defined as at the beginning of
Section 1.2. As first result one has that the probability of reachability either is zero or
tends to one if the size of the field tends to infinity.

Theorem 46.
Let K, L be arbitrary but fixed matrices. The probability that (A,B) is reachable if
(Ai, Bi, Ci, Di) are chosen randomly for i = 1, . . . , N , is either equal to zero or 1 +O(t)
for t→ 0.

Proof.
One has to show that if there is a choice of (Ai, Bi, Ci, Di) for i = 1, . . . , N such that
(A,B) is reachable, than (A,B) is reachable with probability 1 + O(t) for random
choice of (Ai, Bi, Ci, Di). Let (Ai, Bi, Ci, Di) for i = 1, . . . , N such that (A,B) is
reachable. Then, there is a subminor of R(A,B) that is nonzero. Consequently, if
you view this subminor as rational function in the entries of (Ai, Bi, Ci, Di) with
coefficients depending on the entries of K and L, the numerator of this rational
function is not the zero polynomial. Hence, according to Lemma 3, the probability
that this subminor is equal to zero is O(t). Hence, the probability that R(A,B) is not
of full row rank is O(t) as well, and we are done.
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In order to describe for which matrices K and L the probability of reachability is
equal to zero and in which cases it tends to one, we need the following definition.

Definition 16.
In the following, we view the N node systems of a network of linear systems as vertices
of a graph. Moreover, we add a N + 1-th vertex, called input node. We denote by ΓKL
the directed graph where for i, j ∈ {1, . . . , N}, there is an edge from vertex j to vertex
i if and only if Kij ∈ Fpj×mi is not the zero matrix and for i = 1, . . . , N , there is an
edge from the input node to vertex i if and only if Li ∈ Fmi×m is not the zero matrix.
In particular, the input node has no ingoing edges. Furthermore, we assume that ΓKL
contains no self-loops, i.e. Kii ≡ 0 for i = 1, . . . , N . A vertex of ΓKL is called accessible
if the graph contains a path from the input node to this vertex. Otherwise, it is called
nonaccessible.

For the proof of the following theorem, we will additionally need the following
definition.

Definition 17.
For an arbitrary field F, a matrix A ∈ Fn×n is called structured if its entries aij are
either fixed zeros or free variables from F.
One defines the corresponding graph ΓA = (V,EA), such that V = {1, . . . , N} and
EA = {(i, j) ∈ V × V | aji is a free variable}.
One can extend this definition to matrix pairs (A,B) ∈ Fn×n × Fn×m by setting
Γ(A,B) = Γ[A B]. In this case, the last m vertices can only have outgoing edges, which is
consistent with regarding them as inputs of the system (A,B).
One calls the pair (A,B) structural controllable if there exists a choice for the free
parameters such that one has reachability.

Theorem 47.

(a) If ΓKL contains a nonaccessible vertex, (A,B) is not reachable, i.e. the probability
of reachability is equal to zero.

(b) If all vertices of ΓKL are accessible, there exists s ∈ N such that (A,B) is reachable
over the extension field Fr of F with probability 1 + O(tr) if r ≥ s and with
probability zero if r < s.

Proof.

(a) Follows obviously from the definition of K, L and ΓKL.

(b) For this part of the proof, we need some theory of structural controllability over
the field R, which could be found in [28], [29], [37] or [16]. It follows from
these papers that there is no choice for the free parameters in A and B such
that the pair (A,B) ∈ Rn×n × Rn×m is reachable if and only if Γ(A,B) has a
nonaccessible node or [A B] has no full row rank for every choice of the free
parameters in A and B. Moreover, if one considers the proofs for this statement,
one could observe that they are also valid for a finite field F if its size is large
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enough (essentially it has to be possible to choose the free parameters in such
way that the eigenvalues of certain matrices are distinct). Hence, we could
apply this statement to the pair (A,B), which is structured by fixing K and
L and viewing the entries of (A,B,C,D) as free variables. Furthermore the
case that [A B] has no full row rank for every choice of (A,B,C,D) could be
excluded since the choice of A = I and B = D = 0 leads to [A B] = [I 0],
which clearly has full row rank independently of K and L. It remains to show
that if Γ[A B] contains a nonaccessible node, then ΓKL contains a nonaccessible
node. In the papers concerning structural controllability over R mentioned
above, it is stated that Γ[A B] contains a nonaccessible node if and only if it

is of the form A =

[
A11 0k×(n−k)

A21 A22

]
, B =

(
0k×m
B22

)
for some 1 ≤ k < n.

Since the entries of (A,B,C,D) are free variables, one could assume D = 0.

In this case, one has [A B] =

 A1 B1K1NCN B1L1

. . .
...

BNKN1C1 AN BNLN

. That

K and L are such that this matrix is of the nonaccessible form for all choices
of A and B, implies L1 = · · · = Lr = 0 for some integer 1 ≤ r ≤ N as well as
K1j = · · · = Krj = 0 for j ≥ r + 1. Hence, for i ≤ r, there is no path in ΓKL
from the input node to vertex i and thus, ΓKL contains a nonaccessible vertex.

Remark 22.
Structural controllability over a finite field F has already been studied in [38]. But there,
it was assumed that B is fixed (consisting of pairwise different unit vectors) and only A
is structured. Under these assumption, for several structures of A, lower bounds for the
required field size to achieve structural controllabiliy were given.

3.7 Homogeneous Networks

In this section, we somehow reverse the question under investigation. So far, we fixed
the interconnection matrices K, L and M and chose the node systems randomly. Now,
we want to choose the interconnection matrices randomly. This is easily possible
for so-called homogeneuos networks since - as we will see - the choice of the node
systems does not influence the reachability of such a network.

Definition 18.
A network is called homogeneous if the node systems are identical minimal strictly
proper single-input single-output (SISO) systems, i.e. (Ai, bi, ci) = (A, b, c) ∈ Fn×n ×
Fn × F1×n for i = 1, . . . , N with (A, b, c) reachable and observable.

Theorem 48. [14], [19]
For homogeneous networks, (A,B, C) is reachable/observable if and only if (K,L,M)
is reachable/observable. In particular, reachability/observability only depends on the
interconnection structure and not on (A, b, c).
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3.8 Conclusion

Since all node systems of a homogeneuos network are SISO, one has pi = mi = 1
and consequently, Kij ∈ F and Li ∈ F1×m for i, j ∈ {1, . . . , N}.

Combining the previous theorem with the probability estimations of the pre-
ceding sections, one could compute the probabilities of reachability, observability
and minimality for a homogenous network with randomly chosen interconnection
structure.

Corollary 17.
For random (K,L,M) ∈ FN×N × FN×m × Fp×N , the probability that a homogeneous
network (consisting of N SISO systems) is

(i) reachable is equal to
∏N+m−1
j=m (1− tj) = 1− tm +O(tm+1),

(ii) observable is equal to
∏N+p−1
j=p (1− tj) = 1− tp +O(tp+1),

(iii) minimal is equal to 1− tp − tm +O(tmin(m,p)+1).

Next, structured matrix pairs (K,L) should be considered. For the case that one
could partition the node systems into blocks which cannot influence each other (i.e.
a system could only influence other systems that are in the same block), one gets
structured matrices K and L as in the following corollary:

Corollary 18.
Let (Ki, Li) ∈ Fni×ni × Fni×mi for i = 1, . . . , r with N = n1 + · · · + nr and
m = m1 + · · · + mr be randomly. Then, the probability that the homogeneus net-
work with

K =

 K1 0
. . .

0 Kr

 , L =

 L1

...
Lr


is reachable is equal to

1−
m+1∑
k=1

(
r

k

)
tm +O

(
tm+1

)
.

Proof.
The theorem follows from the fact that the sought-after probability is equal to the
probability that the parallel connection of random matrix pairs (Ki, Li) ∈ Fni×ni ×
Fni×mi for i = 1, . . . , r is reachable.

3.8 Conclusion

In this chapter, we used probability estimations for coprimeness conditions on polyno-
mial matrices to calculate the probabilities of reachability, observability and minimal-
ity for different kinds of networks of linear systems. For many of the computations,
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we could resort to results from the preceding chapter or could at least adapt counting
methods from there.

However, linear systems theory is not the only field, where polynomial matrices
are of interest. For example, especially polynomial matrices over finite fields play an
important role in coding theory, in particular for the investigation of convolutional
codes. However, since convolutional codes are closely related to linear systems, in
most of the applications contained in the following chapter, we do not need to go back
to polynomial matrices but could transfer the results on networks of linear systems
quite directly to interconnected convolutional codes. This fact, was important for the
choice of the interconnection structures which we considered throughout this chapter.
The networks, we focused on are not only some standard examples of networks but
could also be found in the coding literature used to concatenated convolutional codes,
see e.g. [2], [3], [7], [9], [12], [24].
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Chapter 4

Applications to Coding Theory

The results concerning polynomial matrices from Chapter 2 as well as those con-
cerning reachability and observability of linear systems from Chapter 3 could be
transferred to probability calculations in the area of coding theory.

Referring to linear systems the most obvious connection could be drawn to convo-
lutional codes since one could define these codes in terms of a linear system. When
considering block codes, no polynomial matrices occur but only constant matrices.
Although this implicates that it is not possible to transfer results from the preceding
chapters directly, one could use similar counting methods to calculate probabilities of
important properties in this field.

In the first section of this chapter, we introduce the basic notions and statements
relating to the theory of block and convolutional codes.

In Section 4.2, it is explained how one could construct a convolutional code out
of a linear system and what are the implications of this linear system representation
of the corresponding code.

In Section 4.3, we consider one convolutional code and calculate the probability
that it is non-catastrophic, which is a crucial property of such a code.

In Section 4.4, we look at interconnections of several convolutional codes. We do
this with the help of Theorem 10, which we transfer to the situation of convolutional
codes. In the various subsections, we consider different examples of interconnected
convolutional codes occurring in the coding literature. We calculate their probabil-
ities of being represented by a linear system in a minimal way and moreover, the
probability of being non-catastrophic.

In Section 4.5, we investigate another type of interconnected convolutional code
but now, with one of the two constituent codes being a block code and the other
being a convolutional code. After considering the non-catastrophicity of such a code,
we estimate the probability that it is of maximum distance profile.

In the following Section 4.6, we continue this examination by computing a lower
and an upper bound for the probability that a general convolutional code is of maxi-
mum distance profile.

In Section 4.7, we do the analogous consideration for block codes, i.e. derive
bounds for the probability that a block code is MDS.

Finally, in Section 4.8. we take a look at random linear network coding and
calculate the probability of finding a solution for a network coding problem, at first
for the case of delay-free acyclic network coding and then for the case of memory-free
convolutional network coding.
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4.1 Definitions and Basics about Block and Convolutional
Codes

This section gives a short overview about the definitions and properties concerning
block and convolutional codes to lay the foundations for the calculations of the
following sections. Because—as we will see later—block codes could be viewed as
a special type of convolutional codes, we will start with defining and investigating
block codes.

Definition 19.
A [n,k]-block code B is a k-dimensional subspace of Fn, i.e. there exists G ∈ Fn×k of
full column rank such that

B = {v ∈ Fn | v = Gu for some u ∈ Fk}.

G is called generator matrix of the code and is unique up to right multiplication with
an invertible matrix U ∈ Glk(F). Furthermore, u ∈ Fk is called message vector and
the elements v ∈ B are called codewords.

That G is of full column rank implies n ≥ k, i.e. a codeword contains redundancy
and thus, more information than the original message to enable error detection and
correction. Important for the performance of a code in terms of error-free decoding
is the minimum distance between two codewords. Since we consider linear codes,
this value could be expressed by the Hamming weight of the codewords.

Definition 20.
The Hamming weight wt(v) of v ∈ Fn is defined as the number of its nonzero compo-
nents.

Definition 21.
The minimum distance of a block code B is defined as

dmin(B) = min
v∈B
{wt(v) | v 6= 0}.

It is desirable to achieve a minimum distance that is as large as possible. However,
this means that one also needs a large number of codewords and/or sufficiently long
codewords. This fact is implied in the following theorem.

Theorem 49. (Singleton bound)
For every [n, k]-block code B, it holds dmin(B) ≤ n− k + 1.

Surely, a code will in some sense have optimal parameters if it attains the Singleton
bound, which draws particular interest to this kind of codes.

Definition 22.
A [n, k]-block code B is called maximum distance separable (MDS) if dmin(B) =
n− k + 1.
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For our probability estimations in later parts of this chapter, we will use the
following characterization of MDS codes in terms of the corresponding generator
matrix.

Theorem 50. [8, Theorem 1]

Let G =

(
Ik
P

)
∈ Fn×k be a generator matrix for the block code B. Then, B is a MDS

block code if and only if every square submatrix of P is nonsingular.

Next, we want to consider so-called convolutional codes, which are obtained if
one works over the ring of polynomials F[z] instead of working over F, as done for
block codes.

Definition 23.
A convolutional code C of rate k/n is a free F[z]-submodule of F[z]n of rank k. Hence,
there exists G ∈ F[z]n×k of full column rank such that

C = {v ∈ F[z]n | v(z) = G(z)m(z) for some m ∈ F[z]k}.

G is called generator matrix of the code and is unique up to right multiplication with
a unimodular matrix U ∈ Glk(F[z]).

In contrast to block codes, one has a third parameter characterizing a convolu-
tional code, namely the so-called degree of the code.

Definition 24.
Let ν1, . . . , νk be the column degrees of G ∈ F[z]n×k. Then, ν := ν1 + · · ·+ νk is called
the order of G. The degree δ of a convolutional code C is defined as the minimal order
of its generator matrices. Equivalently, one could define the degree of C as the maximal
degree of the k × k-minors of one and hence, each generator matrix of C.

Theorem 51.
It holds ν = δ, i.e. G is a minimal basis of C, if and only if G is column proper.

Next, we define a very important property of a convolutional code, namely the
so-called non-catastrophicity. This quality of a code will be crucial for our later
considerations since its probability could be deduced from former calculations of this
dissertation.

Definition 25.
A convolutional code C is called non-catastrophic if one and therefore, each of its
generator matrices is right prime.

As for block codes it is important to consider distance properties of convolutional
codes.
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Definition 26.
For v ∈ F[z]n with deg(v) = γ, write v(z) = v0z

γ + · · · + vγ with vτ ∈ Fn for
τ = 0, . . . , γ and set vτ = 0 ∈ Fn for τ ≥ γ + 1. Then, for j ∈ N0, the j-th column
distance of a convolutional code C is defined as

dCj (C) := min
v∈C

{
j∑
t=0

wt(vt) | v 6≡ 0

}
.

Moreover, dfree(C) := limj→∞ dCj (C) is called the free distance of C.

There exists an analogue to the Singleton bound for convolutional codes as stated
in the following theorem.

Theorem 52. [34] (Generalized Singleton bound)
For a convolutional code C of rate k/n and degree δ, it holds

dfree(C) ≤ (n− k)

(⌊
δ

k

⌋
+ 1

)
+ δ + 1.

Again, we are interested in codes with good distance properties but now not only
in those reaching the generalized Singleton bound but also in those whose column
distances are optimal.

Definition 27. [25]
A convolutional code C of rate k/n and degree δ is called

(i) maximum distance separable (MDS) if

dfree(C) = (n− k)

(⌊
δ

k

⌋
+ 1

)
+ δ + 1,

(ii) of maximum distance profile (MDP) if

dCj (C) = (n− k)(j + 1) + 1 for j = 0, . . . , L with L =

⌊
δ

k

⌋
+

⌊
δ

n− k

⌋
,

(iii) strongly MDS if

dCM (C) = (n− k)

(⌊
δ

k

⌋
+ 1

)
+ δ + 1 with M =

⌊
δ

k

⌋
+

⌈
δ

n− k

⌉
.

We conclude this section with possibilities to check the distances properties of a
convolutional code.

Theorem 53. [11, Theorem 1.3]
Let G(z) =

∑µ
i=1Giz

i ∈ F[z]n×k be the generator matrix of a convolutional code

with degree δ and define G =

 G0 0
...

. . .
GL . . . G0

 where Gi ≡ 0 for i > µ. Then, the

corresponding convolutional code is of maximum distance profile if and only if every
full size minor of G that is not trivially zero, i.e. zero for all choices of G1, . . . , GL, is
nonzero.
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Remark 23. [8]

(i) Every strongly MDS code is a MDS code.

(ii) If n − k divides δ, a convolutional code C has maximum distance profile if and
only if C is strongly MDS.

4.2 Correspondence between Linear Systems and Convo-
lutional Codes

The aim of this section is to explain how one could construct a convolutional code
based on a linear system (see [35]). To this end, we start with a linear system
(A,B,C,D) ∈ Fs×s × Fs×k × F(n−k)×s × F(n−k)×k and define

H(z) :=

[
zI −A 0s×(n−k) −B
−C In−k −D

]
.

The set of
(
y
u

)
∈ F[z]n with y ∈ F[z]n−k and u ∈ F[z]k for which there exists

x ∈ F[z]s with H(z) · [x(z) y(z) u(z)]> = 0 forms a submodule of F[z]n of rank k and
thus, a convolutional code of rate k/n, which is denoted by C(A,B,C,D).

Moreover, if one writes x(z) = x0z
γ + · · · + xγ , y(z) = y0z

γ + · · · + yγ and
u(z) = u0z

γ + · · ·+ uγ with γ = max(deg(x),deg(y),deg(u)), it holds

xτ+1 = Axτ +Buτ

yτ = Cxτ +Duτ

(xτ , yτ , uτ ) = 0 for τ > γ.

Furthermore, there exist X ∈ F[z]s×k, Y ∈ F[z](n−k)×k, U ∈ F[z]k×k such that

ker(H(z)) = im[X(z)> Y (z)> U(z)>]> and G(z) =

(
Y (z)
U(z)

)
is a generator ma-

trix for C with C(zI −A)−1B +D = Y (z)U(z)−1.
Conversely, for each convolutional code C of rate k/n and degree δ, there exists
(A,B,C,D) ∈ Fs×s × Fs×k × F(n−k)×s × F(n−k)×k with s ≥ δ such that C =
C(A,B,C,D). Moreover, it is always possible to choose s = δ. In this case, one calls
(A,B,C,D) a minimal representation of C.

The following two theorems from [35] are of special interest for us since they
show how reachability and observability of linear systems, which we investigated in
the preceding chapter, are related to properties of the corresponding convolutional
code.

Theorem 54. [35]
(A,B,C,D) is a minimal representation of C(A,B,C,D) if and only if it is reachable.

Theorem 55. [35]
Assume that (A,B,C,D) is reachable. Then C(A,B,C,D) is non-catastrophic if and
only if (A,B,C,D) is observable.
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4 Applications to Coding Theory

Since a convolutional code might have different realizations, partly minimal and
partly not, we will need the following theorem to be able to compute the probability
of non-catastrophicity for a convolutional code.

Theorem 56.
If (A,B,C,D) is a minimal representation of a convolutional code C, the set of all
minimal representations of C is given by {(SAS−1, SB,CS−1, D) | S ∈ Glδ(F)}.

Proof.
Clearly, (SAS−1, SB,CS−1, D) is a minimal representation of C. On the other hand,

let (A,B,C,D) and (Ã, B̃, C̃, D̃) be minimal representations of C. Set K :=

(
−I
0

)
,

L :=

(
A
C

)
and M :=

[
0 B
−I D

]
and define K̃, L̃ and M̃ analogously. It follows

from Theorem 3.4 of [33] (or from Theorem 6.7 of [32]) that there exist (unique)
invertible matrices S and T such that (K̃, L̃, M̃) = (TKS−1, TLS−1, TM). Write

T =

[
T1 T2

T3 T4

]
. Thus, the first of the preceding equations, implies T1 = S and

T3 = 0. Inserting this into the second equation, leads to Ã = SAS−1 + T2CS
−1

and C̃ = T4CS
−1. Finally, the third equation yields T2 = 0, T4 = I and using this

B̃ = SB as well as D̃ = D.

In Theorem 53, we characterized the MDP property of a convolutional code in
terms of its generator matrix. But it is also possible to describe this property using a
linear system representing the code.

Theorem 57. [11, Corollary 1.1]
The matrices (A,B,C,D) generate a MDP convolutional code if and only if the matrix

FL :=


D 0 . . . 0

CB
. . . . . .

...
...

. . . . . . 0
CAL−1B . . . CB D

 has the property that every minor which is not

trivially zero is nonzero.

Remark 24.

(i) It is also possible to make the considerations of this section for the case δ = 0.
In this case, a minimal representation consists only of the matrix D because the
matrices A, B and C have zero rows or columns, respectively, and hence, these
matrices do not exist. If one uses the convention that non-existing matrices have
every property, one has that the corresponding linear system is always minimal.
This corresponds to the fact that a representation with s = 0 is always a minimal
representation as well as to the fact that a generator matrix of a convolutional
code with degree δ = 0 is constant and of full column rank and therefore, always
right prime. Moreover, one has H = [I − D], and for every U ∈ Glk(F) and
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4.3 Probability of Non-Catastrophicity for a Convolutional Code

Y := DU , it holds that
(
Y
U

)
is a generator matrix for the code with D = Y U−1.

The corresponding linear system only consists of the equation yt = Dut.

(ii) Actually, the set of generator matrices for convolutional codes of degree 0 and rate
k
n coincides with the set of generator matrices for [n, k]-block codes. The first one is
a submodule of F[z]n and the second a subspace of Fn but the two are isomorphic.
This fact will be of interest in Section 4.5.

4.3 Probability of Non-Catastrophicity for a Convolutional
Code

With the help of the theorems from the previous section, it is possible to transfer
the probability results for linear systems to probability results for convolutional
codes. As in the preceding chapter, we firstly consider just one convolutional code.
Since we have to avoid system matrices with zero rows or columns, in this and the
following section, all occuring convolutional codes are assumed to have positive
degree. Convolutional codes of degree 0, which are basically the same as block codes
(see Remark 24 (ii)), are treated in Section 4.5.

Theorem 58.
The probability that a convolutional code C(A,B,C,D) of rate k/n and degree δ ≥ 1 is
non-catastrophic is equal to

P rcn−k,δ,k =
Pr((A,B,C,D) reachable and observable)

Pr((A,B,C,D) reachable)
= (4.1)

= 1− tn−k +O(tn−k+1). (4.2)

Proof.
Equations (4.1) and (4.2) are simply the statements from Lemma 13 and Theorem
12. Hence, it remains to show that the probability of
non-catastrophicity is equal to one of the expressions from (4.1). Consequently, there
are two possibilities to prove this theorem.
The first way is to show that the probability of non-catastrophicity is equal to P rcn−k,δ,k.
From the previous subsection, one knows that there exists
(A,B,C,D) ∈ Fδ×δ×Fδ×k×F(n−k)×δ×F(n−k)×k such that C = C(A,B,C,D) and a

generator matrix of C of the form G =

(
Y
U

)
with C(zI −A)−1B +D = Y (z)U(z)−1.

Since G is of full column rank and unimodular equivalent generator matrices define
the same convolutional code, one could assume that U is in Kronecker-Hermite form.
In particular, it is column proper and because Y U−1 is proper, it follows from Lemma
1 that degj(Y ) ≤ degj(U) for j = 1, . . . k. Finally, one knows from Theorem 51 that
deg(det(U)) = δ. Consequently, G ∈ M(n − k, δ, k) (see Definition 12) and since
non-catastrophicity of C is equivalent to right primeness of G, the statement follows.
A second way to prove this theorem is to use Theorem 55 and Theorem 56. These
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4 Applications to Coding Theory

theorems imply that the probability of non-catastrophicity is equal to the right hand
side of equation (4.1).

Remark 25.
(i) Combining ways one and two of the proof for the preceding theorem, leads to an

alternative proof for Lemma 13.
(ii) The probability that a convolutional code of rate 1/n and degree δ ≥ 1 is non-

catastrophic is (exactly) 1− tn−1.
(iii) With the same argumention as in Example 2 (i), one gets that the probability

that a convolutional code of degree 1 and rate k
n is non-catastrophic is (exactly)

1− tn−k.
(iv) Since each matrix from Fn×k of full column rank is right prime, every convolutional

code of degree 0 is non-catastrophic (see Remark 24 (i)).

If one only fixes the rate of a convolutional code and chooses the degree randomly,
i.e. there are no degree bounds for the polynomial entries of the generator matrix, the
corresponding probability of non-catastrophicity could be expressed by the natural
density.

Remark 26.
The natural density of a convolutional code of rate k

n to be non-catastrophic is equal to∏n−1
j=n−k(1− tj).

Proof.
The statement follows from Proposition 6 of [17], which states that the natural
density that a square matrix has a constant nonzero determinant is equal to zero.
Therefore, the natural density that all square submatrices of an arbitrary polynomial
rectangular matrix have a determinant equal to zero is zero, too. Thus, the natural
density that a generator matrix of a code, i.e. a matrix containing a square submatrix
with determinant unequal to the zero polynomial, is right prime is equal to the
natural density that an arbitrary polynomial matrix is right prime.

4.4 Interconnected Convolutional Codes

In this section, we want to consider interconnected convolutional codes. To this end,
we start with transferring Theorem 10 to the situation of convolutional codes. Doing
this, one achieves the following theorem:

Theorem 59.
Let Ci = C(Ai, Bi, Ci, Di) be non-catastrophic with (Ai, Bi, Ci, Di) minimal for i =
1, . . . , N . With the same notation as in Theorem 10, set

A = A+BK(I −DK)−1C

B = B(I −KD)−1L

C = M(I −DK)−1C

D = M(I −DK)−1DL+ J
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4.4 Interconnected Convolutional Codes

and consider coprime factorizations Ci(zI −Ai)−1Bi +Di = Pi(z)Qi(z)
−1.

If det(I −DK) 6= 0, one has:

1. (A,B, C,D) is a minimal representation of C(A,B, C,D) if and only if (Q(z) −
KP (z), L) are left coprime

2. (A,B, C,D) is a minimal representation of C = C(A,B, C,D) and C is non-
catastrophic if and only if (Q(z) − KP (z), L) are left coprime and (Q(z) −
KP (z),MP (z)) are right coprime.

In the following, this theorem should be applied to some interconnection struc-
tures used to connect convolutional codes. The first two interconnection models draw
our interest since they were used in [7], where sufficient criteria for (A,B, C,D) to
be a minimal representation of C(A,B, C,D) were provided.

4.4.1 Series Connection of two Convolutional Codes

In this model, the interconnection matrices are

K =

[
0 0
Ik2 0

]
, L =

[
Ik1
0

]
, M = In2

,

where k2 = n1−k1 because the output of the first input serves as input for the second
system. Since the matrices K and L are the same as in Example 1 (b), and M is not
relevant for the reachability of the interconnection, the corresponding probability is
the same as in Theorem 34. Hence, one gets:

Theorem 60.
Let (Ai, Bi, Ci, Di) ∈ Fδi×δi ×Fδi×ki ×F(ni−ki)×δi ×F(ni−ki)×ki be minimal represen-
tations of the non-catastrophic convolutional codes C(Ai, Bi, Ci, Di) for i = 1, 2. Then,
the probability that (A,B, C,D) is a minimal representation for the series connected
code C(A,B, C,D) is equal to

1− tk1 +O
(
tk1+1

)
.

Since M = I, the observability of (Ai, Bi, Ci, Di) obviously implies the observ-

ability of (A,B, C,D). This could also be seen using Theorem 10:
[
Q−KP
MP

]
=

Q1 0
−P1 Q2

P1 0
0 P2

 is right prime if and only if


Q1 0
P1 0
0 Q2

0 P2

 is right prime, which is true

since
[
Qi
Pi

]
are right prime. Thus, one has:

Theorem 61.
Let (Ai, Bi, Ci, Di) ∈ Fδi×δi ×Fδi×ki ×F(ni−ki)×δi ×F(ni−ki)×ki be minimal represen-
tations of the non-catastrophic convolutional codes C(Ai, Bi, Ci, Di) for i = 1, 2. Then,
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4 Applications to Coding Theory

the probability that (A,B, C,D) is a minimal representation for the series connected
code C(A,B, C,D) and that C(A,B, C,D) is non-catastrophic is equal to

1− tk1 +O
(
tk1+1

)
.

Furthermore, the probability that this interconnection is minimal is equal to the
probability that the single systems are minimal and P1 and Q2 are left coprime.
According to Theorem 27 and Theorem 34, this probability is

2∏
i=1

(1− tki − tni−ki +O(tmin(ki,ni−ki)+1)) · (1− tk1 +O(tk1+1)) =

= 1− 2tk1 − 2tk2 − tn2−k2 +O(tmin(k1,k2,n2−k2)+1)

since n1 − k1 = k2. Hence, one has the following theorem:

Theorem 62.
Let (Ai, Bi, Ci, Di) ∈ Fδi×δi × Fδi×ki × F(ni−ki)×δi × F(ni−ki)×ki be randomly for
i = 1, 2. Then, the probability that (A,B, C,D) is a minimal representation for the
series connected code C(A,B, C,D) and that C(A,B, C,D) is non-catastrophic is equal
to

1− 2tk1 − 2tk2 − tn1−k1 +O(tmin(k1,k2,n2−k2)+1).

Remark 27.
In [7], where this interconnection structure was introduced, it is shown that rk(D1) = k1

is a sufficient condition to lower bound the free distance of the concatenated code by the
free distance of the second code.
According to Lemma 4, the probability that this condition is fulfilled is equal to∏n1−k1
j=n1−2k1+1(1 − tj) = 1 − tn1−2k1+1 + O(tn1−2k1+2) for n1 − k1 ≥ k1 and zero

otherwise. If n1 − 2k1 + 1 > k1, i.e. k1 <
n1+1

3 , the probability that the interconnection
of minimal systems is reachable and the condition rk(D1) = k1 is fulfilled is still equal
to 1 − tk1 + O(tk1+1). The same holds for the probability that an interconnection of
minimal systems with rk(D1) = k1 is reachable. But to compute these probabilities for
n1+1

3 ≤ k1 ≤ n1

2 , it would be necessary to investigate how the condition rk(D1) = k1

influences the condition that P1 and Q2 have to be left coprime, which seems to be quite
difficult.

4.4.2 Parallel-Series Connection of two Convolutional Codes

In a parallel-series connection the input for the second system consists not only of
the output but also of the input of the first system. Hence, one has k2 = n1 and the
interconnection matrices are

K =

 0 0
Ik2−k1 0

0 0

 , L =

 Ik1
0
Ik1

 , M = In2−k1 .
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As det(I − DK) = 1 6= 0, Theorem 59 could be applied. With Q2 =

[
Q21

Q22

]
where Q21 ∈ F[z](n1−k1)×k2 and Q22 ∈ F[z]k1×k2 , the criterion for reachability of the
interconnection is that

[Q−KP L] =

 Q1 0
0 Q21

0 Q22

−
 0 0
P1 0
0 0

 I
0
I

 =

 Q1 0 I
−P1 Q21 0

0 Q22 I


has to be left prime, which is true if and only if

[
−P1 Q21

−Q1 Q22

]
is left prime.

Theorem 63.
Let (Ai, Bi, Ci, Di) ∈ Fδi×δi × Fδi×ki × F(ni−ki)×δi × F(ni−ki)×ki be minimal repre-
sentations of the non-catastrophic convolutional codes C(Ai, Bi, Ci, Di) for i = 1, 2.
Then, the probability that (A,B, C,D) is a minimal representation for the parallel-series
connected code C(A,B, C,D) is equal to

1− tk1 +O
(
tk1+1

)
.

Proof.
According to the proof of Lemma 13, one has to show that the probability that[
−P1 Q21

−Q1 Q22

]
is left prime under the condition that

[
Qi
Pi

]
are right prime for

i = 1, 2, is equal to 1− tk1 +O(tk1+1).
One proceeds as in the proof for a series interconnection of linear systems and
therefore, defines Ai := {(Pi, Qi) not right coprime} for i = 1, 2,

A3 := {
[
−P1 Q21

−Q1 Q22

]
not left prime} and Aij := Ai ∩ Aj . Then, the sought-after

probability is equal to

1− Pr(A3)− Pr(A13)− Pr(A23) + Pr(A123)

1− Pr(A1)− Pr(A2) + Pr(A12)
.

At first, Pr(A3) should be computed, which is equal to the probability that
[
Q1 Q22

P1 Q21

]
is not left prime since changing the sign of columns and interchanging rows does not
affect the property to be left prime.

One defines Q̃2 :=

[
Q22

Q21

]
and considers

G :=

[
Q1

P1
Q̃H2

]
:=

[
Q1

P1
Q̃2

] [
I 0
0 U2

]
,

where Q̃H2 is in Hermite form and U :=

[
I 0
0 U2

]
is unimodular. Furthermore, one

defines QH1 := Q1U1 to be the Hermite form of Q1.

123
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Choose z∗ ∈ F such that G(z∗) is not of full row rank. At first, one wants to eliminate
the entries of Q1 that are fixed (zeros or ones) due to degree constraints. Therefore,
consider the rows whose diagonal elements are constant equal to 1; denote the
indices of these rows by i1, . . . , is with 0 ≤ s ≤ k1 − 1 (since deg(det(Q1)) = δ1 ≥ 1).
It follows that the other elements of Q1 that are in one of these rows are identically
zero. The same holds for the entries of the columns i1, . . . , is that are above the
diagonal. By adding appropriate multiples of rows i1, . . . , is of G(z∗) to rows further
down, one could achieve that all entries in the columns i1, . . . , is but the ones on the
diagonal are nullified. Thus, one could delete the rows and columns with indices
i1, . . . , is without changing the property that the matrix has no full row rank at z∗.
Denote the matrix that is achieved by this row operations and deletion process by Ĝ.
The remaining entries of Q1 and P1 in Ĝ are unchanged as well as the entries of Q̃H2
that are on the diagonal or above. Moreover, in Q̃H2 , only rows have been deleted
(while in P1, only columns have been deleted), which affects that the remaining part
of it is no longer lower triangular but has a echelon form. Hence, the number of fixed
zeros at the end of a row of Ĝ is strictly decreasing with the index of the row and the
last entry of each row that is no fixed zero is a (unchanged) diagonal element of the
matrix Q̃H2 . Furthermore, the difference of a entry of Q̃H2 (below the diagonal) in G
and the corresponding entry in Ĝ is a sum of products of entries that were deleted
when constructing Ĝ out of G. Consequently, if we fix the deleted entries, a entry of
Ĝ is fixed at z∗ if and only the corresponding entry of G is fixed at z∗.
Therefore, it is possible to treat Ĝ(z∗) with the same iteration procedure as the
matrix [P1 Q

H
2 ] in the proof for a series interconnection of linear systems. Here, the

remaining parts of Q1 and P1 play the role of P1 there, which is possible since all
fixed zeros or ones (due to degree conditions) in Q1 have been deleted, and the
remaining part of Q̃H2 plays the role of QH2 there. Hereby, the echelon form ensures
that adding multiples of a row to rows further down does not change the last entry
of a row that is no fixed zero, i.e. the diagonal entries of Q̃H2 that are contained in
Ĝ remain unchanged. Assume that the iteration stops in the row which had index
i in the original matrix G and index î in Ĝ. Then, one has k1 + i − 1 − s − (̂i − 1)
polynomials (from Q1 or Q̃H2 for i ≤ k1 and from P1 or Q̃H2 for i > k1) that are fixed
at z∗ by the other entries of G. Moreover, the ii-entry of Q̃H2 is fixed to zero, which
additionally, leads to the factor tn1−i according to (2.1) (see also proof of Theorem
19). Consequently, the probability is O(tk1−s+i−î+n1−i) = O(tk1+1) if n1 − s− î ≥ 1.
Ĝ has n1 − s rows. Hence, if the iteration stops before the last row of Ĝ, one has
î < n1 − s and therefore, the probability is O(tk1+1). If î = n1 − s, i.e. the iteration
continues till the last row, one has k1 + n1 − s− (̂i− 1) = k1 + 1 polynomials that
are fixed at z∗, which gives a factor for the probability of at least tk1 . Hence, if QH1 or
Q̃H2 have no simple form, which contributes a factor that is O(t), the probability is
O(tk1+1).

If QH1 and Q̃H2 are of simple form, G is of the form
[
Q1

P1

Ik2−1 0
q̃k2,1 . . . q̃k2,k2

]
. As

above, we eliminate the fixed zeros and ones (due to degree restrictions) in Q1 by
constructing the matrix Ĝ. Again, denote the indices of the deleted rows in G by
i1, . . . , is. Furthermore, set mj := j+ |{il ≤ j, l = 1, . . . , s}| for j = 1, . . . , k1 +k2−s
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to achieve ĝij = gmi,mj for i = 1, . . . , k2 − s and j = 1, . . . , k1 + k2 − s. One gets
that G(z∗) is not of full row rank if and only if Ĝ(z∗) is not of full row rank. This
is true if and only if p(1)

n1−k1,mi(z∗) = ĝk2−s,i(z∗) =
∑k2−1−s
j=1 ĝjiq̃k2,mj (z∗) for i ∈

{1, . . . , k1 − s}, ĝk2−s,i+k1−s(z∗) =
∑k2−1−s
j=1 ĝj,i+k1−sq̃k2,mj (z∗) for i ∈ {i1, . . . , is}

and q̃k2,k2(z∗) = 0. Since the difference of ĝk2−s,i+k1−s(z∗) and q̃k2,i(z∗) is a sum
of products of the values at z∗ of entries that were deleted when constructing Ĝ

out of G, the k1 + 1 polynomials p(1)
n1−k1,i for i ∈ {1, . . . , k1} \ {i1, . . . , is}, q̃k2,i for

i ∈ {i1, . . . , is} and q̃k2,k2 are fixed at z∗ by the values of the other entries of G(z∗).
Proceeding as in the part of the proof for Theorem 12 concerning simple form (see
also proof for series connection of two systems), one gets that the probability for
these conditions is equal to tk1 +O(tk1+1) and hence, Pr(A3) = tk1 +O(tk1+1), too. It
is already known that Pr(A2) = O(tk2) = O(tk1+1). Thus, it only remains to compute
Pr(A13). As in the case of series connection, one has only to consider simple form.
Moreover, it is known that the corresponding matrices lie in A1 if and only if there
exists z̃∗ ∈ F with qH1

k1,k1
(z̃∗) =

∑k1
l=1 p

(1)
1l u

(1)
l,k1

(z̃∗) = · · · =
∑m1

l=1 p
(1)
n1−k1,lu

(1)
l,k1

(z̃∗) = 0.
Again, as in the proof for series connection, there exists l0 such that ul0,k1(z̃∗) 6= 0

and ql0,l0 6≡ 1. Therefore, l0 /∈ {i1, . . . , is} and the doubly fixed polynomial p(1)
n1−k1,l0

has an upper bound for its degree of at least 1, which ensures that Lemma 7 (c) could
be applied to it. Still following the lines of the proof for series connection, one gets
Pr(A13) = O(tk1+1) and finally, 1− tk1 +O(tk1+1)) for the desired probability.

As in the previous subsection, one has M = I and therefore, the observability of
(Ai, Bi, Ci, Di) for i = 1, 2 implies the observability of (A,B, C,D). If one wants to
show this with the help of Theorem 10, one needs the right primeness of

[
Q−KP
MP

]
=


Q1 0
−P1 Q21

0 Q22

P1 0
0 P2

, which is given since


Q1 0
P1 0
0 Q2

0 P2

 is right prime.

Thus, one has:

Theorem 64.
Let (Ai, Bi, Ci, Di) ∈ Fδi×δi × Fδi×ki × F(ni−ki)×δi × F(ni−ki)×ki be minimal repre-
sentations of the non-catastrophic convolutional codes C(Ai, Bi, Ci, Di) for i = 1, 2.
Then, the probability that (A,B, C,D) is a minimal representation for the parallel-series
connected code C(A,B, C,D) and that C(A,B, C,D) is non-catastrophic is equal to

1− tk1 +O
(
tk1+1

)
.

Furthermore, the probability that this interconnection is minimal is equal to the

probability that the single systems are minimal and
[
−P1 Q21

−Q1 Q22

]
is left prime.

Hence, analogous to the previous subsection, one has the following theorem.
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Theorem 65.
Let (Ai, Bi, Ci, Di) ∈ Fδi×δi × Fδi×ki × F(ni−ki)×δi × F(ni−ki)×ki be randomly for
i = 1, 2. Then, the probability that (A,B, C,D) is a minimal representation for the
parallel-series connected code C(A,B, C,D) and that C(A,B, C,D) is non-catastrophic
is equal to

2∏
i=1

(1− tki − tni−ki +O(tmin(ki,ni−ki)+1)) · (1− tk1 +O(tk1+1)) =

= 1− 2tk1 − tk2 − tn1−k1 − tn2−k2 +O(tmin(k1,k2,n1−k1,n2−k2)+1).

4.4.3 Interleaved Parallel-Series Connection

The most frequently occuring type of series connection in the coding literature (see
e.g., [3], [12]) is given by interconnection matrices of the following form:

K =

 0 0
π1 0
0 0

 , L =

 Ik1
0
π2

 , M = [0 In2−k2 ]

with permutation matrices π1 ∈ Sk2−k1 and π2 ∈ Sk1 . We call this a interleaved
parallel-series connection. The difference to a parallel-series connection is that the
second part of the input vector for the second system is not necessarily identical
with the input vector for the first system but its entries are a permutation of the
entries of the input vector for the first system. Again, it holds det(I −DK) = 1 6= 0
and Theorem 10 could be applied. One gets the criterion that the interconnection

is reachable if and only if
[
π1P1

π2Q1
Q2

]
is left prime. If P1 and Q1 are randomly, the

probability for that is not affected by the values for π1 and π2 and hence, one has:

Theorem 66.
Let (Ai, Bi, Ci, Di) ∈ Fδi×δi × Fδi×ki × F(ni−ki)×δi × F(ni−ki)×ki be minimal repre-
sentations of the non-catastrophic convolutional codes C(Ai, Bi, Ci, Di) for i = 1, 2.
Then, the probability that (A,B, C,D) is a minimal representation for the interleaved
parallel-series connected code C(A,B, C,D) is equal to

1− tk1 +O
(
tk1+1

)
.

The most frequently occuring type of parallel connection is also an interleaved
one (see e.g., [2], [41]). In the coding literatur, such interleaved parallel connected
codes are called turbo codes and will be considered in the following subsection.

4.4.4 Turbo Codes

For this type of network of convolutional codes, the interconnection matrices are

K = 0, L =

 π1

...
πN

 , M = I
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4.4 Interconnected Convolutional Codes

with πi ∈ Sk for i = 1, . . . , N . Again det(I −DK) = 1 6= 0 and Theorem 10 implies
that this interconnection is reachable if and only if

[Q(z)−KP (z) L] =

 Q1(z) π1

. . .
...

QN (z) πN


is left prime. Subtracting πi · π−1

1 times the first block of rows from the i-th block for

i = 2, . . . , N , transforms this matrix to


Q1 π1

−π2π
−1
1 Q1 Q2 0
...

. . .
...

−πNπ−1
1 Q1 QN 0

 , which

is left prime if and only if the following chain of matrices is left prime:

 −π2π
−1
1 Q1 Q2 0
...

. . .
−πNπ−1

1 Q1 QN

 

−π2π

−1
1 Q1 Q2 0
0 −π3π

−1
2 Q2

...
...

. . .
0 −πNπ−1

2 Q2 QN



 

 −π2π
−1
1 Q1 Q2 0

. . .
. . .

0 −πNπ−1
N−1QN−1 QN



 

 −π−1
1 Q1 π−1

2 Q2 0
. . .

. . .
0 −π−1

N−1QN−1 π−1
N QN

 .
This is true if and only if π−1

1 Q1, . . . , π
−1
N QN are mutually left coprime.

Remark 28.
(i) Very often turbo codes are used which consist of an interconnection of identical

codes, i.e. one has Q1 = · · · = QN . In this case, it is necessary that the matrices
πi are pairwise different, which is not possible for k! < N , i.e. in particular, in the
case of single-input, where k = 1.

(ii) If the polynomial matrices Qi are arbitrary, the probability that
π−1

1 Q1, . . . π
−1
N QN are mutually left coprime is equal to the probability that

Q1, . . . , QN are mutually left coprime.

If one wants to compute the probability that a interconnected system representing
a turbo code is reachable, it is easier not to apply Theorem 10 with K and L
as defined at the beginning of this subsection but to trace this problem back to
the computation of the probability of reachability for a parallel connection with
K = 0 and L = [I · · · I]>. Doing this, it does not matter that M is different for
turbo codes and parallel connected systems because this matrix has no affect on
the reachability. Therefore, neglecting the output of the interconnected system,
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4 Applications to Coding Theory

a turbo code where the constituent codes are represented by (Ai, Bi, Ci, Di) for
i = 1, . . . , N could be regarded as identical with the code represented by the parallel
connection of (Ai, Biπi, Ci, Diπi). Since for fixed matrices πi and randomly chosen
(Ai, Bi, Ci, Di), the matrix-quadruple (Ai, Biπi, Ci, Diπi) reaches every element of
Fδi×δi ×Fδi×ki ×F(ni−ki)×δi ×F(ni−ki)×ki the same number of times, the probability
that the parallel connection of (Ai, Biπi, Ci, Diπi) for i = 1, . . . , N is reachable is
equal to the probability that the parallel connection of (Ai, Bi, Ci, Di) for i = 1, . . . , N
is reachable. Therefore, using Theorem 31, one gets the following theorem:

Theorem 67.
Let (Ai, Bi, Ci, Di) ∈ Fδi×δi × Fδi×k × F(ni−k)×δi × F(ni−k)×k be randomly for i =
1, . . . , N . Then, the probability that (A,B, C,D) is a minimal representation for the
turbo code C(A,B, C,D) is equal to

1−
k+1∑
y=1

(
N

y

)
tk +O(tk+1).

Remark 29.
Viewing a turbo code as a code represented by the parallel connection of the lin-
ear systems (Ai, Biπi, Ci, Diπi) = (A,Bπi, C,Dπi) for i = 1, . . . , N also makes
it possible to improve the statement of Remark 28 (i). By the Hautus test (see
Theorem 2), the parallel connected system is reachable if and only if the matrix zI −A 0 Bπ1

. . .
...

0 zI −A BπN

 has full row rank for each z ∈ F. If z is an eigen-

value of A, the column rank of the first Nδ columns of this matrix is at most N(δ − 1).

Therefore, for left primeness of the whole matrix it is necessary that

 Bπ1

...
BπN

 has (at

least) N linearly independent columns, which is only possible if k ≥ N . This clearly is a
stronger condition that k! ≥ N from Remark 28 (i).

Next, we consider what happens if the node system are not chosen completely
randomly but only amongst minimal systems, i.e. we require the constituent codes
to be non-catastrophic. One gets that the probability for the interconnection to be a
minimal representation of the corresponding convolutional code is asymptotically
equal to the probability of mutual left coprimeness.

Theorem 68.
Let (Ai, Bi, Ci, Di) ∈ Fδi×δi ×Fδi×ki ×F(ni−ki)×δi ×F(ni−ki)×ki be minimal represen-
tations of the non-catastrophic convolutional codes C(Ai, Bi, Ci, Di) for i = 1, . . . , N .
Then, the probability that (A,B, C,D) is a minimal representation for the turbo code
C(A,B, C,D) is equal to

1−
k+1∑
y=2

(
N

y

)
tk +O(tk+1).
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4.4 Interconnected Convolutional Codes

Proof.
One has to compute the probability that π−1

1 Q1, . . . π
−1
N QN are mutually left coprime

under the condition that (Ai, Bi, Ci, Di) are minimal for i = 1, . . . , N . To do this, one
proceeds as in the beginning of Section 3.3 and definesEi := {(Pi, Qi) not right coprime}.
Moreover, set
EN+1 := {π−1

1 Q1, . . . π
−1
N QN not mutually left coprime} and Eij := Ei ∩ Ej . Analo-

gous to (3.5), one gets that the sought-after probability is equal to

1− Pr(∪N+1
i=1 Ei)

1− Pr(∪Ni=1Ei)
=

1−
∑
∅6=I⊂{1,...,N+1}(−1)|I|−1 Pr(EI)

1−
∑
∅6=I⊂{1,...,N}(−1)|I|−1 Pr(EI)

=

= 1−
Pr(EN+1) +O(

∑N
i=1 Pr(Ei,N+1))

1−
∑
∅6=I⊂{1,...,N}(−1)|I|−1 Pr(EI)

. (4.3)

It remains to show that Pr(Ei,N+1) = t · O(Pr(EN+1)) for i = 1, . . . , N . Then, the
theorem follows from Theorem 22 because −π−1

1 Q1 π−1
2 Q2 0

. . .
. . .

0 −π−1
N−1QN−1 π−1

N QN

 ·
 U1 0

. . .
0 UN

 =

=

 −π−1
1 Q1U1 π−1

2 Q2U2 0
. . .

. . .
0 −π−1

N−1QN−1UN−1 π−1
N QNUN


and hence, for the computation of Pr(EN+1), one could assume that π−1

i Qi are in
Hermite form for i = 1, . . . , N , which implies Pr(EN+1) = Pm(N).
Since Pi and Qi are right coprime if and only if π−1

i Pi and π−1
i Qi are right coprime

and degj(Pi) ≤ degj(Qi) for j = 1, . . . , k if and only if degj(π
−1
i Pi) ≤ degj(π

−1
i Qi)

for j = 1, . . . , k, one could define Q̃i := π−1
i Qi and P̃i := π−1

i Pi for i = 1, . . . , N and
compute the probability that Q̃1, . . . , Q̃N are not mutually left coprime and Q̃i and
P̃i are not right coprime. Moreover, as frequently done before, one could assume
Q̃1, . . . , Q̃N to be in simple form (see proof of Theorem 21). According to the proof
of Theorem 12, in this case, Q̃i and P̃i are not right prime if and only if there exists
z0 ∈ F such that

q̃Hikk (z0) =

k∑
l=1

p̃
(i)
1l ulk(z0) = · · · =

k∑
l=1

p̃
(i)
ni−k,lulk(z0) = 0. (4.4)

If one fixes Q̃1, . . . , Q̃N not mutually left coprime (which fixes U , too), one has only
finitely many possibilities for z0 to be a zero of q̃Hikk . For each of these possibilities,
it was shown in the proof of Theorem 12 that there exists l0 ∈ {1, . . . , k} such that
ul0,k(z0) 6= 0. Hence, it follows from Lemma 7 (b) that the probability that Pi fulfils
(4.4) is at most tni−k ≤ t. Consequently, Pr(Ei,N+1) = t · O(Pr(EN+1)) and one is
done.
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4 Applications to Coding Theory

Since M = I for turbo codes, one could employ the same reasoning as for series
connections of convolutional codes and additionally, gets the following two theorems:

Theorem 69.
Let (Ai, Bi, Ci, Di) ∈ Fδi×δi × Fδi×k × F(ni−k)×δi × F(ni−k)×k be minimal represen-
tations of the non-catastrophic convolutional codes C(Ai, Bi, Ci, Di) for i = 1, . . . , N .
Then, the probability that (A,B, C,D) is a minimal representation for the turbo code
C(A,B, C,D) and that C(A,B, C,D) is non-catastrophic is

1−
k+1∑
y=2

(
N

y

)
tk +O(tk+1).

Theorem 70.
Let (Ai, Bi, Ci, Di) ∈ Fδi×δi × Fδi×k × F(ni−k)×δi × F(ni−k)×k be randomly for i =
1, . . . , N . Then, the probability that (A,B, C,D) is a minimal representation for the
turbo code C(A,B, C,D) and that C(A,B, C,D) is non-catastrophic is(

1−
k+1∑
y=2

(
N

y

)
tk +O(tk+1)

)
N∏
i=1

(1− tk − tni−k +O(tmin(k,ni−k))).

Proof.
This theorem follows from the preceding theorem, Remark 4 and Theorem 27.

Remark 30.
In [9], it is shown that for a turbo code with two constituent codes, rk(D1) = rk(D2) = k
is a sufficient condition to lower bound the free distance of the concatenated code
by the maximum of the free distances of the constituent codes plus 1. According to
Lemma 4, the probability that this condition is fulfilled is equal to

∏n1−k
j=n1−2k+1(1− tj) ·∏n2−k

j=n2−2k+1(1 − tj) = 1 − tn1−2k+1 − tn2−2k+1 + O(tmin(n1,n2)−2k+2) if ni − k ≥ k
for i = 1, 2 and zero otherwise.
In contrast to Remark 27, where we made similar considerations for series interconnec-
tion, the matrices D1 and D2 have no influence on the reachability and observability
of the single systems and the interconnected system here. Consequently, if one wants
to calculate a lower bound for the probability that the interconnected code is non-
catastrophic and its free distance can be lower bounded as above, one could just multiply
the probabilities for these two properties.

4.5 Interconnection of Convolutional and Block Codes

In this section, we consider two types of interconnected codes, which were introduced
in [8]. Both are variations of a series connection, where the first code is a block code
and the second code is a convolutional code. We will call the first model a series
connection and the second model a truncated series connection.
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4.5 Interconnection of Convolutional and Block Codes

4.5.1 Series Connection

Here, a sequence of codewords of a block code with generator matrix G ∈ Fm×k of
full column rank and where m > k serves as input for a linear system (A,B,C,D) ∈
Fδ×δ × Fδ×m × F(n−k)×δ × F(n−k)×m defining a convolutional code of rate m

n−k+m
and degree δ. The final codeword consists of the output of (A,B,C,D) and the
input sequence for the block code. Hence, (A,BG,C,DG) is a representation of the
interconnected code, which is a convolutional code of rate k

n and degree δ. If one
fixes G with full column rank and chooses B randomly, BG reaches every element of
Fδ×k exactly t−δ(m−k) times. Since every element occurs the same number of times,
it follows that the probability that (A,BG) is reachable coincides with the probability
that (A, B̃) with B̃ ∈ Fδ×k is reachable. Analogously, the probability that (A,BG,C)
is minimal coincides with the probability that (A, B̃, C) is minimal. Because these
probabilities are independent of G, they stay the same if one also chooses G randomly
and does not fix it any more. Therefore, one has the following theorem:

Theorem 71.
Let G ∈ Fm×k of full column rank and (A,B,C,D) ∈ Fδ×δ × Fδ×m × F(n−k)×δ ×
F(n−k)×m be randomly. Then, it holds:

(i) The probability that (A,BG,C,DG) is a minimal representation of the series
connected code C(A,BG,C,DG) is equal to

δ+k−1∏
j=k

(1− tj).

(ii) The probability that (A,BG,C,DG) is a minimal representation of the series
connected code C = C(A,BG,C,DG) and that C is non-catastrophic is

1− tk − tn−k +O(tmin(k,n−k)+1).

Proof.
(i) The statement follows from the preceding considerations and Theorem 26.

(ii) See the preceding considerations and Theorem 27.

Next, we want to consider what happens if (A,B,C,D) is not chosen completely
randomly but one has the restriction that this matrix quadruple is a minimal repre-
sentation of the second code of the series connection.

Theorem 72.
Let G ∈ Fm×k of full column rank and (A,B,C,D) ∈ Fδ×δ × Fδ×m × F(n−k)×δ ×
F(n−k)×m be randomly. Then, it holds:

(i) The probability that (A,BG,C,DG) is a minimal representation of the series
connected code C(A,BG,C,DG) if (A,B,C,D) is a minimal representation of
C(A,B,C,D) is equal to

δ+k−1∏
j=k

(1− tj) ·

δ+m−1∏
j=m

(1− tj)

−1

=
1− tk +O(tk+1)

1− tm +O(tm+1)
= 1− tk +O(tk+1).
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(ii) The probability that (A,BG,C,DG) is a minimal representation of the series con-
nected code C = C(A,BG,C,DG) and that C is non-catastrophic if (A,B,C,D)
is a minimal representation of the non-catastrophic code C(A,B,C,D) is

1− tk − tn−k +O(tmin(k,n−k)+1)

1− tm − tn−k +O(tmin(m,n−k)+1)
=

{
1− tk +O(tk+1) for n− k ≥ k
1 +O(tn−k+1) for n− k < k

.

Proof.

Since the surjectivity ofR(A,BG) = R(A,B) ·

 G 0
. . .

0 G

 implies the surjectiv-

ity of R(A,B), the probability that (A,BG) and (A,B) are reachable is equal to the
probability that (A,BG) is reachable. Analogously, the probability that (A,BG,C)
and (A,B,C) are minimal is equal to the probability that (A,BG,C) is minimal.
Using the formula for conditional probability as well as the preceding results, one
gets the statements of the theorem.

Remark 31.
If one interprets the input sequence for the block code as coefficients of a polynomial, one
could regard this interconnection as the series connection of two convolutional codes,
where the first one has degree 0.

The main reason why we got interested in this type of interconnected code is
that in [8] the authors provide a sufficient condition for such a concatenation to be
of maximum distance profile if the corresponding parameters fulfill certain criteria.
Therefore, in the following, let k ≥ 2, n = k + 1 and δ = 1, i.e. (A,B,C,D) ∈
F× F1×m × F× F1×m. For this case, one has the following theorem:

Theorem 73. [8, Theorem 25]

If k ≥ 2 and the matrix

 Ik
DG
CBG

 ∈ F(k+2)×k is the generator matrix of a MDS block

code, then the series connected code C(A,BG,C,DG) has rate k
k+1 , degree 1 and is a

maximum distance profile convolutional code.

Therefore, we want to compute the probability that a [k+ 2, k]-block code is MDS.

Theorem 74.
The probability that a [k + 2, k]-block code is MDS is equal to

(1− t)k+1
k∏
i=2

(1− it) = 1−
k+1∑
i=2

i · t+O(t2) = 1− (k + 3)k

2
· t+O(t2).

Proof.
According to Theorem 50, the needed probability is equal to the probability that every
square submatrix of a random matrix P ∈ F2×k is nonsingular. The formula for this
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probability should be shown per induction with respect to k. For k = 1, the two entries
of P have to be unequal to zero, i.e. the probability is equal to (1− t)2. Now, consider

P =

[
p11 . . . p1k

p21 . . . p2k

]
. Per induction, the probability that every square submatrix

of
[
p11 . . . p1,k−1

p21 . . . p2,k−1

]
is nonsingular is equal to (1− t)k

∏k−1
i=2 (1− it). Additionally,

one has the conditions p1k 6= 0, p2k 6= 0 and p1ip2k − p2ip1k 6= 0 for i = 1, . . . , k − 1.
Hence, if all entries of P but p2k are fixed (unequal to zero), one has to exclude
(besides zero) the values p2ip1k

p1i
for i = 1, . . . , k − 1 for p2k. These values are pairwise

different since otherwise, there would exist 1 ≤ i 6= j ≤ k−1 with p2i
p1i

=
p2j
p1j

. But this
would imply that the square submatrix consisting of the i-th and j-th column was
singular. Thus, one has 1− t possibilities for p1k and 1− kt possibilities for p2k. The
statement follows since (1− t)k

∏k−1
i=2 (1− it)(1− t)(1− kt) = (1− t)k+1

∏k
i=2(1− it).

Note that this probability is equal to zero if t−1 ≤ k, which corresponds to the fact
that you cannot exclude k values for an entry in this case.

Remark 32.
(i) The condition of Theorem 73 implies that BG 6= 01×k, i.e. that (A,BG) is

reachable, as well as that C 6= 0, i.e. that (A,C) is observable and therefore, the
concatenated convolutional code is of degree 1 and non-catastrophic.

(ii) Since Theorem 73 only considers matrices P of a special form, the preceding
theorem is not sufficient to get a formula for the probability that the series con-
nected code is of maximum distance profile but some additional investigations are
necessary.

(iii) Since Theorem 73 only provides a sufficient condition for the interconnected code
to be of maximum distance profile, one only could achieve a lower bound for the
probability that it has this property.

Theorem 75.
For randomly chosen matrices B ∈ F1×m, C ∈ F, D ∈ F1×m and G ∈ Fm×k such that

G has full column rank, the probability that every square submatrix of
[

DG
CBG

]
is

nonsingular is equal to (1− t)k+2
∏k
i=2(1− it).

Consequently, the probability that the series connection of a randomly chosen [m, k]-
block code with k ≥ 2 and a convolutional code C(A,B,C,D) with randomly chosen
(A,B,C,D) ∈ F× F1×m × F× F1×m is of maximum distance profile is at least

(1− t)k+2
k∏
i=2

(1− it) = 1−
k+1∑
i=1

i · t+O(t2) = 1− (k + 2)(k + 1)

2
· t+O(t2).

Proof.

ForC = 0,
[

DG
CBG

]
has a entry equal to zero and hence, a singular square submatrix.

Since G is of full column rank, the matrix
[
DG
BG

]
reaches every element of F2×k
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exactly t−2(m−k) times, if D,B ∈ F1×m are chosen arbitrarily. Thus, for C 6= 0, the

matrix
[

DG
CBG

]
reaches every element of F2×k exactly (1− t)t−2(m−k) times if D,

C and B are chosen randomly. In particular, every element of F2×k is obtained with
the same probability if (A,B,C,D) is chosen randomly with C 6= 0. Consequently,
the result follows from the preceding theorem, where the additional factor 1− t arises
from the condition C 6= 0.

Combining the preceding theorem with Remark 23, leads to the following result:

Corollary 19.
The probability that the series connection of a randomly chosen [m, k]-block code with
k ≥ 2 and a convolutional code C(A,B,C,D) with randomly chosen (A,B,C,D) ∈
F× F1×m × F× F1×m is strongly MDS is at least

(1− t)k+2
k∏
i=2

(1− it).

For the case k = 1 (and n = 2, δ = 1), one could use the following theorem:

Theorem 76. [8, Theorem 31]
If for each v ∈ {D,CB,CAB,CBGCB − CABGD}, it holds vG 6= 0, then the series
connected code C(A,BG,C,DG), has rate 1

2 , degree 1 and is a maximum distance
profile convolutional code.

Computing the probability that the conditions of this theorem are fulfilled, one
gets a lower bound for the probability that the interconnection is of maximum
distance profile in the case k = 1:

Theorem 77.
The probability that the series connection of a randomly chosen [m, 1]-block code and
a convolutional code C(A,B,C,D) with randomly chosen (A,B,C,D) ∈ F× F1×m ×
F× F1×m is of maximum distance profile is at least

(1− t)3(1− 2t).

Proof.
Let G ∈ Fm \ {0} be the generator matrix of the block code. It holds vG 6= 0
for each v ∈ {D,CB,CAB} if and only if A 6= 0, C 6= 0, BG 6= 0 and DG 6=
0. Assuming these conditions, (CBGCB − CABGD)G = 0 if and only if (B −
A
CD)G 6= 0. Thus, one has (t−1 − 1)2 possibilities for the choice of A and C,
and for fixed G, t−m − t−(m−1) possibilities for D. If A, C and D are fixed with
these conditions, one additionally has BG 6∈ {0, ACDG}. Since A

CDG 6= 0, this
leads to t−m − 2t−(m−1) possibilities for B. Hence, the total probability is equal to
(t−1−1)2·(t−m−t−(m−1))·(t−m−2t−(m−1))

t−2−2m = (1− t)3(1− 2t).
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As above, combining the previous result with Remark 23 provides another state-
ment:

Corollary 20.
The probability that the series connection of a randomly chosen [m, 1]-block code and a
convolutional code C(A,B,C,D) with randomly chosen
(A,B,C,D) ∈ F× F1×m × F× F1×m is strongly MDS is at least

(1− t)3(1− 2t).

4.5.2 Truncated Series Connection

Here, one chooses for the first code a generator matrix of the form G =

(
Ik
P

)
∈ Fm×k.

For each u ∈ Fk which is encoded by this block code, only Pu ∈ Fm−k is transmitted
to the second code, which is a convolutional code of rate m−k

n−2k+m and degree δ defined
by a linear system (A,B,C,D) ∈ Fδ×δ × Fδ×(m−k) × F(n−k)×δ × F(n−k)×(m−k). The
final codeword consists of the output of (A,B,C,D) and the input sequence for
the block code. Hence, (A,BP,C,DP ) is a representation for the interconnected
code, which is a convolutional code of rate k

n and degree δ. To consider if this
representation is a minimal one, set B̃ = BP and r = rk(P ) ≤ min(m− k, k). If P ∈
F(m−k)×k is fixed and B ∈ Fδ×(m−k) is chosen randomly, it holds ker(P ) ⊂ ker(B̃)
and each element of Fδ×k with this property is reached by B̃ exactly t−δ(k−r) times.
Since for T ∈ Glk(F), R(A, B̃) · T is of full row rank if and only if R(A, B̃) is of
full row rank, one could assume that B̃ = (b̃1, . . . , b̃r, 0, . . . , 0), where b̃i ∈ Fδ for
i = 1, . . . , k and (b̃1, . . . , b̃r) reaches every element of Fδ×r exactly t−δ(k−r) times. It
follows rk(R(A, B̃)) = rk(R(A, (b̃1, . . . , b̃r))) and hence, according to Theorem 26,
the probability that (A, B̃) is reachable is equal to

∏δ+r−1
j=r (1− tj). This formula does

not depend on the concrete choice of P as long as rk(P ) = r. Finally, one gets the
following theorem:

Theorem 78.
Let P ∈ F(m−k)×k and (A,B,C,D) ∈ Fδ×δ × Fδ×(m−k) × F(n−k)×δ × F(n−k)×(m−k)

be chosen randomly. Then, it holds:

(i) The probability that (A,BP,C,DP ) is a minimal representation of the truncated
series connected code C(A,BP,C,DP ) is equal to

min(m−k,k)∑
r=1

t(m−k)k ·N(m− k, k, r) ·
δ+r−1∏
j=r

(1− tj).

(ii) The probability that (A,BP,C,DP ) is a minimal representation of the truncated
series connected code C = C(A,BP,C,DP ) and that C is non-catastrophic is

min(m−k,k)∑
r=1

t(m−k)k ·N(m− k, k, r) · (1− tr − tn−k +O(tmin(r,n−k)+1)).
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Moreover, analogously to Theorem 72, one has:

Theorem 79.
Let P ∈ F(m−k)×k and (A,B,C,D) ∈ Fδ×δ × Fδ×(m−k) × F(n−k)×δ × F(n−k)×(m−k)

be chosen randomly. Then, it holds:

(i) The probability that (A,BP,C,DP ) is a minimal representation of the truncated
series connected code C(A,BP,C,DP ) if (A,B,C,D) is a minimal representation
of C(A,B,C,D) is equal to

min(m−k,k)∑
r=1

t(m−k)k ·N(m− k, k, r)
δ+r−1∏
j=r

(1− tj) ·

δ+m−k−1∏
j=m−k

(1− tj)

−1

.

(ii) The probability that (A,BP,C,DP ) is a minimal representation of the truncated
series connected code C = C(A,BP,C,DP ) and that C is non-catastrophic if
(A,B,C,D) is a minimal representation of the non-catastrophic code C(A,B,C,D)
is ∑min(m−k,k)

r=1 t(m−k)k ·N(m− k, k, r) · (1− tr − tn−k +O(tmin(r,n−k)+1))

1− tm−k − tn−k +O(tmin(m−k,n−k)+1)
.

Again, we proceed considering the case k ≥ 2, n = k + 1 and δ = 1 since for
truncated series connection, one has the following analogon to Theorem 73:

Theorem 80. [8, Theorem 29]

If k ≥ 2 and the matrix

 Ik
DP
CBP

 ∈ F(k+2)×k is the generator matrix of a MDS block

code, then the truncated series connected code C(A,BP,C,DP ), which has degree 1 and
rate k

k+1 , is a maximum distance profile convolutional code.

Computing the probability that the condition of the previous theorem is fulfilled,
leads to:

Theorem 81.
For k ≥ 2 and randomly chosen matrices B ∈ F1×(m−k), C ∈ F, D ∈ F1×(m−k) and

P ∈ F(m−k)×k, the probability that every square submatrix of
[

DP
CBP

]
is nonsingular

is equal to

(1− t)3 · (1− tm−k) · (1− tm−k−1) ·
k∏
j=2

(
1− (j + 1) · t+ j · t2

)
.

Consequently, the probability that the truncated series connection of a block code with

generator matrix G =

(
Ik
P

)
∈ Fm×k, where P is chosen randomly, and a convolutional
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code C(A,B,C,D) with randomly chosen (A,B,C,D) ∈ F×F1×(m−k)×F×F1×(m−k)

is of maximum distance profile is at least

(1− t)3 · (1− tm−k) · (1− tm−k−1) ·
k∏
j=2

(
1− (j + 1) · t+ j · t2

)
.

Proof.

For C = 0,
[

DP
CBP

]
has a entry equal to zero and hence, a singular square sub-

matrix. Moreover, it does not influence the probability which nonzero value is
taken by C. Therefore, the overall probability is equal to 1− t times the probability

that every square submatrix of
[
DP
BP

]
is nonsingular. To compute this proba-

bility, set l := m − k and write P = (p1 . . . pk) with pi ∈ Fl for i = 1, . . . , k,

i.e.
[
DP
BP

]
=

[
Dp1 . . . Dpk
Bp1 . . . Dpk

]
. Since, in particular, it is necessary that

(Dp1) · (Bp2) − (Bp1)(Dp2) 6= 0, it follows that B and D have to be linearly in-
dependent. Otherwise, there would exist λ ∈ F with D = λB, which implies
(Dp1) · (Bp2)− (Bp1)(Dp2) = λ(Bp1) · (Bp2)− λ(Bp1)(Bp2) = 0.
Using these notations and considerations, in the following, we will prove the stated
formula per induction with respect to k and start with k = 2. In this case, one has

to look at
[
Dp1 Dp2

Bp1 Dp2

]
∈ F2×2. As shown above for D and B, p1 and p2 have

to be linearly independent, too. But if p1 and p2 are linearly independent, one is
in the situation of Theorem 75. Consequently, one has to multiply the probability
that two elements from Fl are linearly independent with the formula from Theo-
rem 75 for the case k = 2, in which the factor 1 − t for the condition C 6= 0 is
already included. In summary, one gets (1 − tl) · (1 − tl−1) · (1 − t)4 · (1 − 2t) =
(1− t)3 · (1− tm−2) · (1− tm−3) · (1− 3t+ 2t2).

For the step from k − 1 to k, one uses that every square summatrix of
[
DP
BP

]
=[

Dp1 . . . Dpk
Bp1 . . . Dpk

]
is nonsingular if and only if every square submatrix of M :=[

Dp1 . . . Dpk−1

Bp1 . . . Dpk−1

]
is nonsingular andDpk 6= 0,Bpk 6= 0 and (BpiD−DpiB)pk 6=

0 for i = 1, . . . , k − 1. Per induction, one knows that the probability that every
square submatrix of M is nonsingular is equal to (1 − t)3 · (1 − tl) · (1 − tl−1) ·∏k−1
j=2

(
1− (j + 1) · t+ j · t2

)
. We fix D, B and p1, . . . , pk−1 with this property.

To determine the additional factor for the overall probability due to the conditions
on pk, define

Ai := {(BpiD −DpiB)pk = 0} for i = 1, . . . , k − 1

Ak := {Dpk = 0}, Ak+1 := {Bpk = 0}.

Then, according to the inclusion-exclusion principle (see Lemma 2), the sought-after
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additional factor is equal to

1−
∑

∅6=I⊂{1,...,k+1}

(−1)|I|−1 Pr(AI) with AI =
⋂
i∈I

Ai.

Next, we show AI = Ak ∩ Ak+1 for every I ⊂ {1, . . . , k + 1} with |I| = 2, which
implies AI = Ak ∩Ak+1 for |I| ≥ 2. First consider Ak ∩Ai with i ∈ {1, . . . , k− 1}. In
this case, one has Dpk = 0 as well as (BpiD−DpiB)pk = 0, i.e. DpiBpk = 0, which
implies Bpk = 0 since Dpi 6= 0 because it is a (one-dimensional) square submatrix of
M . Hence, Ak ∩ Ai ⊂ Ak ∩ Ak+1. But the other implication Ak ∩ Ak+1 ⊂ Ak ∩ Ai
is obviously true and therefore, Ak ∩ Ai = Ak ∩ Ak+1. The proof of Ak+1 ∩ Ai =
Ak ∩ Ak+1 for i = 1, . . . , k − 1 could be done completely analogue. It remains
to show Ai ∩ Aj ⊂ Ak ∩ Ak+1 for i, j ∈ {1, . . . , k − 1} with i 6= j. To this end,
one firstly shows Ai ∩ Aj ∩ ACk = ∅, where ACk denotes the complementary set
of Ak. In ACk it holds Dpk 6= 0 and thus, (BpiD − DpiB)pk = 0 is equivalent to
Bpi = DpiBpk

Dpk
. Analogously, (BpjD −DpjB)pk = 0 is equivalent to Bpj =

DpjBpk
Dpk

.

But then, BpiDpj −DpiBpj = DpiBpk
Dpk

Dpj −Dpi DpjBpkDpk
= 0, a contradiction to the

fact that the square submatrix of M formed by the i-th and j-th column is nonsingular.
Consequently, Ai∩Aj∩ACk = ∅. In the same way, one could proof Ai∩Aj∩ACk+1 = ∅,
which shows Ai ∩Aj ⊂ Ak ∩Ak+1.
Thus, the additional factor for the probability due to the conditions on pk simplifies
to

1−
k+1∑
i=1

Pr(Ai) +

k+1∑
j=2

(
k + 1

j

)
(−1)j Pr(Ak ∩Ak+1) =

= 1−
k+1∑
i=1

Pr(Ai) + k · Pr(Ak ∩Ak+1).

Here, for the last step, the identity
∑k+1
j=0 (−1)j

(
k+1
j

)
= 0 was used. To compute

Pr(Ai) note that BpiD −DpiB 6= 0 ∈ F1×l since otherwise BpiDpj −DpiBpj = 0
for j = 1, . . . , k − 1 with j 6= i, which is in contradiction to the assumptions on
M (as we already saw). Similarly, B and D have a nonzero entry. Therefore,
Pr(Ai) = t for i = 1, . . . , k + 1. Since we saw at the beginning of the proof that the
condition on M implies that D and B are linearly independent, one additionally gets
Pr(Ak ∩Ak+1) = t2, i.e.

1−
k+1∑
i=1

Pr(Ai) + k · Pr(Ak ∩Ak+1) = 1− (k + 1) · t+ k · t2.

Multiplying this factor with the probability that every square submatrix of M is
nonsingular, completes the proof of the whole theorem.
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Again, using Remark 23 enables us to get a further result.

Corollary 21.
The probability that the truncated series connection of a randomly chosen [m, k]-
block code with k ≥ 2 and a convolutional code C(A,B,C,D) with randomly chosen
(A,B,C,D) ∈ F× F1×m × F× F1×m is strongly MDS is at least

(1− t)3 · (1− tm−k) · (1− tm−k−1) ·
k∏
j=2

(
1− (j + 1) · t+ j · t2

)
.

As in the previous subsection, we finalize with considering the case k = 1 (and
n = 2, δ = 1), where one could use the following theorem, which is analogue to
Theorem 76:

Theorem 82. [8, Theorem 33]
If for each v ∈ {D,CB,CAB,CBPCB − CABPD}, it holds vP 6= 0, then the
truncated series connected code C(A,BP,C,DP ), which has degree 1 and rate 1

2 , is a
maximum distance profile convolutional code.

Using this, one gets the following theorem:

Theorem 83.
The probability that the truncated series connection of a randomly chosen [m, 1]-block
code and a convolutional code C(A,B,C,D) with randomly chosen (A,B,C,D) ∈
F× F1×m × F× F1×m is of maximum distance profile is at least

(1− t)4(1− 2t).

Proof.
The criterion provided by the preceding theorem could only be fulfilled if P is not
the zero vector. However, this implies that P is of full (column) rank and one is in
the situation of Theorem 77. Therefore, one just has to multiply the formula from
there with the probability that P is unequal to the zero vector, which is 1− t.

Finally, Remark 23 leads to another corollary:

Corollary 22.
The probability that the truncated series connection of a randomly chosen [m, 1]-block
code and a convolutional code C(A,B,C,D) with randomly chosen (A,B,C,D) ∈
F× F1×m × F× F1×m is strongly MDS is at least

(1− t)4(1− 2t).
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4.6 Probability of MDP Convolutional Codes

In the preceding section, we computed, in particular, the probability that special types
of series connection of convolutional code and block code have the MDP property. In
this section, we will look on general convolutional codes and compute the probabiliy
that such a code is of maximum distance profile. In the first subsection, this is done
for the case that the rate is 1/n and the degree δ is 1, while the second subsection
deals with the general case, effecting that no exact probability but a upper and a
lower bound are obtained.

4.6.1 Probability of MDP Codes with Rate 1/n and Degree 1

Since the generator matrix consists only of one column, one could write it as G(z) =∑δ
i=0 giz

i = g0 + g1z with g0, g1 ∈ Fn. Moreover, L = b δk c + b δ
n−k c = 1 + b 1

n−1c.
Hence, L = 1 for n ≥ 3 and L = 2 for n = 2.
We will start with the case n = 2, i.e. n = k + 1 as at the end of the two preceding
subsections.

Theorem 84.
The probability that a randomly chosen convolutional code with parameters k = 1,
n = 2 and δ = 1 is of maximum distance profile is (1−t)2(1−2t)

1+t = 1− 5t+O(t2).
In particular, there exists no binary MDP convolutional code with these parameters.

Proof.
According to Theorem 53, one has to compute the probability that each full size minor

of G2 =


g0,1 0 0
g0,2 0 0
g1,1 g0,1 0
g1,2 g0,2 0
0 g1,1 g0,1

0 g1,2 g0,2

 that is not trivially zero is nonzero, under the condition

that g1 6= 0 to ensure that δ = 1. This is true if and only if 0 /∈ {g0,1, g0,2, g1,1, g1,2}
and g1,1g0,2 − g1,2g0,1 6= 0. The probability that these conditions are fulfilled is equal
to (1 − t)3(1 − 2t). Dividing by the probability for the condition g1 6= 0, which is
1− t2, one gets the stated result.

Remark 33.
Without the condition g1 6= 0, one gets the same probability as the lower bound of
Theorem 77. The constraint g1 6= 0, which ensures that the degree is 1, corresponds
to the property of (A,BG) from Theorem 77 being reachable, which was not taken
as a condition there. Thus, for comparison, we should take the probability value
(1 − t)3(1 − 2t). Since it coincides with the lower bound from Theorem 77, a series
concatenation of a block and a convolutional code has at least the probability of being
MDP than a general convolutional code with the same parameters.

140



4.6 Probability of MDP Convolutional Codes

Finally, the case n ≥ 3 should be considered.

Theorem 85.
The probability that a randomly chosen convolutional code with parameters k = 1,
n ≥ 3 and δ = 1 is of maximum distance profile is

(1− tn)−1(1− t)n+1
n−1∏
i=2

(1− it) = 1− n(n+ 1)

2
· t+O(t2).

Proof.

In this case, one has to consider the fullsize minors of G1 =

[
g0 0
g1 g0

]
under the

condition g1 6= 0. All not trivially zero fullsize minors of G1 are nonzero if and only if
g0,i 6= 0 for i = 1. . . . , n and g1,j 6= g1,i·g0,j

g0,i
for i < j and j = 2, . . . , n. This is fulfilled

with probability (1− t)n
∏n
j=2(1− (j − 1)t) = (1− t)n+1

∏n−1
j=2 (1− jt). Finally, one

has to divide by 1− tn, which is the probability that g1 6= 0.

4.6.2 Probability Bounds for General MDP Convolutional Codes

In [25], it has been shown that the property of a convolutional code to be of maximum
distance profile is generic. In other words, for each choice for the parameters of
a convolutional code, there exists an extension field of F such that the probability
that a convolutional code over this extension field and with these parameters is of
maximum distance profile is unequal to zero. In the following, a lower and an upper
bound for this probability should be obtained.

Theorem 86.
The probability that a convolutional code with fixed parameters n, k and δ has maximum
distance profile is upper bounded by

(1− t)(n−k)k = 1− (n− k)k · t+O(t2).

Proof.
For each convolutional code C, choose an arbitrary representation (A,B,C,D) with
C = C(A,B,C,D). For being MDP it is necessary that all entries of D are nonzero,
see Theorem 57. Hence, the statement follows from the fact that D ∈ F(n−k)×k.

Theorem 87.
Let F be finite with cardinality |F| = t−1. There exists d ∈ N such that the probability
that a convolutional code over the extension field Fd has maximum distance profile is
lower bounded by

1− C(n, k, δ) · td∏δ+k−1
j=δ (1− tjd)

= 1− C(n, k, δ) · td +O(t2d)

141



4 Applications to Coding Theory

with

C(n, k, δ) =

(L+1) min(k,n−k)∑
s=1

s(L+ 1)
∑

{i1,...,is}⊂{1,...,(L+1)(n−k)}

s∏
x=1

max(0, d ix
n− k

e · k − (x− 1))

≤
(L+1) min(k,n−k)∑

s=1

s(L+ 1)

(
(L+ 1)(n− k)

s

)(
(L+ 1)k

s

)
.

Proof.
For each convolutional code C, choose (A,B,C,D) ∈ Fδ×δ × Fδ×k × F(n−k)×δ ×
F(n−k)×k with C = C(A,B,C,D). In particular, (A,B) is reachable. Since all minimal
representations of a convolutional code are conjugated (see Theorem 56), they lead to
the same matrix TL. Moreover, each convolutional code with the same parameters has
the same number of minimal representations, namely |Glδ(F)|. Thus, the probability
that a convolutional code is not MDP is equal to the probability that there exists a not
trivially zero minor of TL that is zero, under the condition that (A,B) is reachable.
This probability is upper bounded by the quotient of the probability of such a zero
minor divided by the probability of reachability.
Each minor of TL is a polynomial in the entries of A, B, C and D, whose degree is
upper bounded by L+1. The corresponding code is not MDP if and only if the product
f of all polynomials corresponding to not trivially zero minors is zero. According
to [25], there exists an extension field Fd over which there exists a convolutional
code with the given parameters n, k, δ and therefore, f is not the zero polynomial
over this extension field. Hence, one could apply the Schwartz-Zippel Lemma (see
Lemma 3) and gets that the probability that f is zero is upper bounded by deg(f) · t.
Consequently, it remains to show that C(n, k, δ) is an upper bound for the degree of
f .
According to Definition 1.3 of [11], the not trivially zero minors could be described
in the following way: For a s × s-minor, choose a set of rows {i1, . . . , is} and a
corresponding set {j1, . . . , js} of columns fulfilling jx ≤ d ix

n−k e · k for x = 1, . . . s.
Thus, if the rows {i1, . . . , is} are fixed, one has d i1

n−k e · k possibilities for the first
column. Since all s columns have to be chosen differently, one has d ix

n−k e · k− (x− 1)
possibilities for the x-th column. Because this number might be negative, one has
to take the maximum of this number and 0 in the above formula. Finally, the factor
s(L+ 1) arises from the fact that the degree of each s× s-minor is upper bounded by
(L+ 1)s as the degree of each entry is upper bounded by L+ 1.
If one considers the product of all minors of TL (not only those which are not trivially
zero), one gets the weaker bound stated in the last line of the theorem.

Corollary 23.
The probability that a convolutional code with fixed parameters is of maximum distance
profile is 1 +O(t) for t→ 0.
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4.7 Probability of MDS Block Codes

In Theorem 74, we computed the probability that a [k + 2, k]-block code is MDS to
be able to obtain probability bounds for interconnections of block and convolutional
codes. But the probability that a block code is MDS is of interest on its own and
therefore, we want to consider it for arbitrary parameters now. To this end, we will
use Theorem 50, i.e. we have to compute the probability that every minor of the
non-systematic part of the generator matrix, which is an element of F(n−k)×k, is
nonzero. However, we will only achieve bounds for this probability.

Theorem 88.
The probability that a random [n, k]-block code is MDS is upper bounded by (1−t)(n−k)k.

Proof.
It clearly is necessary that all entries of the non-systematic part of the generator
matrix are non-zero and (1− t)(n−k)k is the probability that this is fulfilled.

Theorem 89.
If 1/t ≥ n, the probability that a [n, k]-block code is MDS is lower bounded by 1 −∑min(k,n−k)
j=1

(
k
j

)(
n−k
j

)
· t.

Proof.
It is known that if 1/t ≥ n, there exists a [n, k] MDS block code over F. Therefore, one
could apply the Schwartz-Zippel Lemma (Lemma 3) to the product of all the minors
of the non-systematic part of the generator matrix of the code since it is not the zero
polynomial when we view it as a polynomial with the entries of the non-systematic
part as variables. The bound follows because the degree of this polynomial is equal
to
∑min(k,n−k)
j=1

(
k
j

)(
n−k
j

)
.

Corollary 24.
The probability that a [n, k]-block code is MDS is 1 +O(t) for t→ 0.

4.8 Random Linear Network Coding

We start this section with a short summary about network codes; see [23] for more
details. One considers a network represented by a graph Γ = (V, E) with set of
vertices V and set of directed edges E . The set of vertices is partitioned into three
disjunct subsets V1,V2 and V3, where the elements of V1 have no ingoing edges and
are called source nodes and the elements of V3 have no outgoing edges and are called
sink nodes. Moreover, we assume that there are no edges originating at a source
node and terminating at a sink node. Additionally, set r := |V1|, l := |V2|, d := |V3|
and associate with the corresponding vertices the values u1, . . . , ur, x1, . . . , xl ∈ F,
y1, . . . , yd ∈ Fr with t−1 = |F| = 2m for some m ∈ N. The values of the source nodes
represent the coding message. Furthermore, the value of a vertex is formed as a linear
combination of the values of the origins of its ingoing edges. The graph Γ defines
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a so-called network coding problem, which is said to be solvable if the coefficients
for these linear combinations could be chosen in such way that yi = (u1, . . . , ur)

>

for i = 1, . . . , d. This corresponds to the fact that the original message could be
reproduced at each sink node. In the following, we consider two different types of
network codes.

4.8.1 Delay-free Acyclic Network Coding

In this subsection, we assume that the network contains no cycles - in other words it
is acyclic. This additionally allows us to assume that transmission happens instan-
taneously and simultaneously, i.e. delay-free. Under these conditions, one gets the
following coding equations:

xi =

l∑
j=1

aijxj +

r∑
j=1

bijuj for i = 1, . . . , l (4.5)

with A ∈ Fl×l and B ∈ Fl×r, where aij = 0 if Γ contains no edge from vertex j of
V2 to vertex i of V2 and bij = 0 if Γ contains no edge from vertex j of V1 to vertex i
of V2. Since Γ is acyclic, we could number the vertices in such way that A is lower
triangular with zeros on the diagonal. Moreover, the decoding equations are given by

yi,k =

l∑
j=1

c
(i)
kj xj for i = 1, . . . , d and k = 1, . . . , r (4.6)

with C(i) ∈ Fr×l for i = 1, . . . , d. As above, C(i) contains fixed zero entries if the
corresponding edge is missing in Γ. Combining (4.5) and (4.6), leads to

yi = Miu for i = 1, . . . , d

with transfer matrices Mi := C(i)(I −A)−1B ∈ Fr×r and u := (u1, . . . , ur)
>. Accord-

ing to the proof of Theorem 2.2. in [23], a network coding problem is solvable if and
only if there exist A,B and C(i) for i = 1, . . . , d with entries from a sufficiently large
finite field such that det(Mi) is nonzero for i = 1, . . . , d.

In the approach of random linear network coding, one chooses the entries of the
matrices A and B that are no fixed zeros due to the structure of Γ randomly from
the finite field F and asks for the probability that there exist C(i) for i = 1, . . . , d that
lead to a solution for the network coding problem. Theorem 2.6 of [23] in particular
states that this probability is lower bounded by (1− dt)l if t−1 > d and all entries of
A below the diagonal and all entries of B could be chosen randomly, i.e. Γ is the
complete graph. Especially, it follows that the probability tends to 1 if t−1 - the size
of the field F - tends to infinity. In the following, we set r = 1. At first, we give an
exact formula for the above probability in this case. Afterwards, we consider the
probability that random choice of A, B and C(i) for i = 1, . . . , d leads to a solution
for the network coding problem. For both computations, we will need the following
lemma:

144



4.8 Random Linear Network Coding

Lemma 16. [23, Lemma 2.3]
For an acyclic delay-free network, it holds

|det(Mi)| =
∣∣∣∣det

([
C(i) O
I −A B

])∣∣∣∣ for i = 1, . . . , d.

Since we need the probabilty that det(Mi) 6= 0 for i = 1, . . . , d in some special
situations, this lemma will help to prove the following two theorems:

Theorem 90.
Let Γ be acyclic and r = 1. If the coding coefficients, i.e. the entries of B ∈ Fl as well as
the entries below the diagonal of A ∈ Fl×l, are chosen randomly, the probability that
there exist decoding coefficients, i.e. matrices C(i) ∈ F1×l for i = 1, . . . , d, which lead to
a solution of the network coding problem is equal to

1− tl > (1− dt)l.

Proof.
We have to compute the probability that there exist C(i) ∈ F1×l such that

det

([
C(i) O
I −A B

])
=


c
(i)
1 · · · · · · c

(i)
l 0

1 0 · · · 0 b1

−a21
. . .

. . .
...

...
...

. . .
. . . 0

...
−all · · · −al,l−1 1 bl

 6= 0 for i = 1, . . . , d if

B ∈ Fl and the entries below the diagonal of A ∈ Fl×l are chosen randomly. Recall
that the other entries of A are fixed zeros.
In the following, we will show per induction with respect to l that the only case in
which every choice of c(i) leads to zero determinant is when b1 = · · · = bl = 0, which
proves the stated formula for the probability.

For l = 1, the matrices Mi are of the form
[
c(i) 0
−a b

]
∈ F2×2 for i = 1, . . . , d. Thus,

the only case in which every choice of c(i) leads to zero determinant is when b = 0.
For l ≥ 2, expanding det(Mi) along the 2-th row yields

det(Mi) = det(M
(l−1)
i )± b1 · det


c
(i)
1 · · · · · · c

(i)
l

−a21 1 0
...

. . .
. . .

−all · · · −al,l−1 1

 (4.7)

where M (l−1)
i is defined to have the same structure as Mi but for a network with

|V2| = l − 1. If b1 6= 0, expanding the last determinant in (4.7) along the first row
yields that one could solve the equation det(Mi) = 0 with respect to c

(i)
1 . Hence,

there always is a possibility to choose the matrices C(i) in such way that the matrices
Mi are nonsingular. Consequently, it only remains to consider the case b1 = 0. Here,
det(Mi) = 0 if and only if det(M

(l−1)
i ) = 0 and the claim follows per induction.
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Theorem 91.
If Γ is acyclic, r = 1 and the entries of B ∈ Fl and C(i) ∈ F1×l for i = 1, . . . , d as well
as the entries below the diagonal of A are chosen randomly, the probability that one
gets a solution for the network coding problem is

(1− t)d(1− tl).

Proof.
As in the previous proof (and with the notation from there), one uses (4.7) to show
the stated formula per induction with respect to l. For l = 1, one gets a solution if and
only if b 6= 0 and c(i) 6= 0 for i = 1, . . . , d, i.e. the probability is equal to (1 − t)d+1.
For l ≥ 2, one again distinguishes the cases b1 6= 0 and b1 = 0. If b1 6= 0, it follows
from (4.7) that for each choice of A, B and c(i)2 , . . . , c

(i)
l , there is exactly one value

for c(i)1 that yields det(Mi) = 0 and therefore has to be excluded. For b1 = 0, one gets
a solution if and only if det(M

(l−1)
i ) 6= 0, which has a probability of (1− t)d(1− tl−1)

per induction. Consequently, the overall probability is equal to

(1− t)d+1 + t · (1− t)d(1− tl−1) = (1− t)d · (1− t+ t− tl) = (1− t)d(1− tl).

Remark 34.
The fact that is possible to achieve a solution for the network coding problem if and
only if B ∈ Fl 6= 0, which was stated in the proof of Theorem 90, could also be seen
without considering the matrices Mi. It is obvious that there is no solution if B = 0. If
B 6= 0, assume without restriction that b1 6= 0 and choose c(i)2 = · · · = c

(i)
l = 0 as well

as c(i)1 6= 0 to get a solution. Combing Theorems 90 and Theorem 91, makes it possible
to achieve a formula for the number of possible solutions, namely t−ld · (1− t)d. The
first factor of this expression gives the total number of matrices C(i) for i = 1, . . . , d
and the second factor is the probability that random choice of these matrices leads to
a solution, provided that A and B are chosen in such way that it is possible to solve
the network coding problem. This probability is obtained by taking the quotient of the
formulas from Theorem 91 and Theorem 90.

Remark 35.
For r ≥ 2, it clearly is necessary for a solution of the network coding problem that
B is of full column rank. This in particular, implies r ≤ l, which corresponds to the
fact that r parts of information cannot be forwarded by less than r network nodes.
Thus, the probability te get a solution is upper bounded by the probability that B is
of full column rank, which is equal to

∏l
j=l−r+1(1 − tj). In the case r = l, one has

det(Mi) = det(C(i)) · det(B) for i = 1, . . . , d, and therefore, the probability that it
is possible to get a solution is equal to tr

2 · |Glr(F)| =
∏r
j=1(1 − tj). Moreover, the

probability that one gets a solution if the matrices C(i) are chosen randomly, too, is upper

bounded by
(∏l

j=l−r+1(1− tj)
)d+1

and for r = l, it is equal to
(∏r

j=1(1− tj)
)d+1

.
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4.8.2 Memory-free Convolutional Network Coding

So far, we only considered acyclic networks. One possibility to deal with networks
containing cycles is to use convolutional network coding; see [23, p. 36]. Doing this,
each edge has a fixed unit delay and the coding equations (4.5) get the form

xi(τ + 1) =

l∑
j=1

aijxj(τ) +

r∑
j=1

bijuj(τ) for i = 1, . . . , l (4.8)

where τ is the time variable. Since we want to consider memory-free coding, a node
only receives linear combinations of the values of other nodes from the preceding
time step. As now a sink node could additionally receive its own value from the
preceding time step, the decoding equations are given by

yi,k(τ + 1) =

l∑
j=1

c
(i)
kj xj(τ) + c̃

(i)
k yi,k(τ) for i = 1, . . . , d and k = 1, . . . , r.

(4.9)

For i = 1, . . . , d, define C̃(i) ∈ Fr×r as the diagonal matrix with diagonal elements
c̃
(i)
1 , . . . , c̃

(i)
r . Setting x = (x1, . . . , xl), u = (u1, . . . , ur) and yi = (yi,1, . . . , yi,r) as

well as Xi = (x> y>i )> for i = 1, . . . , d, one obtains the following linear system
equations

Xi(τ + 1) =

[
A 0

C(i) C̃(i)

]
·Xi(τ) +

[
B
0

]
· u(τ)

yi(τ) = [0 I] ·Xi(τ). (4.10)

Defining Ai :=

[
A 0

C(i) C̃(i)

]
, B :=

[
B
0

]
and C := [0 I], the corresponding

transfer functions are

Gi(z) = C(zI −Ai)−1B = (zI − C̃(i))−1C(i)(zI −A)−1B ∈ Fr×r(z).

According to the proof for Theorem 2.7. of [23], one has a solution for this
network coding problem if and only if det(Gi) 6≡ 0 for i = 1, . . . , d. Since obviously
(zI − C̃(i))−1 is invertible, this is true if and only if det(C(i)(zI − A)−1B) 6≡ 0 for
i = 1, . . . , d. To achieve some necessary criteria that this condition is fulfilled, we
need the following lemma, which transfers Lemma 16 to the case of convolutional
network coding.

Lemma 17.
For i = 1, . . . , d, the transfer function Gi of a convolutional network coding problem is

not identically zero if and only if det

([
C(i) O
zI −A B

])
6≡ 0.
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Proof.
Analogously to the proof for Lemma 2.3 of [23], it holds∣∣∣∣det

([
C(i) O
zI −A B

])∣∣∣∣ =
∣∣∣det

(
C(i)(zI −A)−1B

)∣∣∣ · |det(zI −A)| .

Since det(zI −A) is monic polynomial of degree l and therefore, not identically zero,
the statement follows.

Theorem 92.
For a solution of the network coding problem given by (4.8) and (4.9), it holds:

(a) B is of full column rank,

(b) C(i) are of full row rank for i = 1, . . . , d,

(c) (A,B) is reachable,

(d) (A,C(i)) are observable for i = 1, . . . , d.

Proof.
Clearly, statements (a) and (b) are true if det(C(i)(zI −A)−1B) 6≡ 0 for i = 1, . . . , d.
Moreover, using the preceding lemma, statements (c) and (d) follow from the Hautus-
test.

The preceding theorem makes it possible to achieve upper bounds for the proba-
bility to get a solution for the considered network coding problem.

Corollary 25.
The probability that random choice of the matrices A ∈ Fl×l, B ∈ Fl×r and C(i) ∈ Fr×l
for i = 1, . . . , d leads to a solution for the network coding problem given by (4.8) and
(4.9) is upper bounded by

(a)
(∏l

j=l−r+1(1− tj)
)d
·
(∏l+r−1

j=r (1− tj)
)

(b)
(∏l

j=l−r+1(1− tj)
)d+1

Proof.
For (a) one employs that C(i) have to be of full row rank for i = 1, . . . , d and (A,B)
has to be reachable and for (b) that B has to be of full column rank and C(i) have to
be of full row rank for i = 1, . . . , d.

Remark 36.
It depends on the values for r and l which of the preceding bounds is best, i.e. has the
smallest value. Bound (b) is better than (a) if and only if

∏l
j=l−r+1(1− tj) is smaller

than
∏l+r−1
j=r (1− tj). Moreover, it is easy to see that for r ≤ l+1

2 , bound (a) is strongest
and for r = l, bound (b) is strongest.
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Finally, we want to investigate the observability and reachability of the linear
system given by (4.10).

Theorem 93.

(a) For i = 1, . . . , d, (Ai, C) is observable if and only if (A,C(i)) is observable.

(b) If (Ai,B) is reachable, then (A,B) and (C̃(i), C(i)) are reachable. The converse,
however, is not true.

Proof.

(a) The matrix
(
zI −Ai
C

)
=

 zI −A 0

−C(i) zI − C̃(i)

0 I

 is of full column rank if and

only if
(
zI −A
C(i)

)
is of full column rank. Thus, the statement follows from the

Hautus-test.

(b) If the matrix [zI −Ai B] =

[
zI −A 0 B

−C(i) zI − C̃(i) 0

]
is of full row rank, then

[zI −A B] and [zI − C̃(i) C(i)] have to be of full row rank, too. Furthermore,

a counterexample for the converse is given by A =

[
0 0
1 0

]
, B =

[
1 1
0 0

]
,

C̃(i) = 0 and C(i) = I2.

Corollary 26.

(a) For i = 1, . . . , d, the probability that (Ai, C) is observable if the matrices A ∈
Fl×l, B ∈ Fl×r, C(i) ∈ Fr×l and C̃(i) ∈ Fr×r are chosen randomly is equal to∏l+r−1
j=r (1− tj).

(b) For i = 1, . . . , d, the probability that (Ai,B) is reachable if the matrices A ∈ Fl×l,
B ∈ Fl×r, C(i) ∈ Fr×l and C̃(i) ∈ Fr×r for i = 1, . . . , d are chosen randomly is
upper bounded by (1− tl)r ·

∏r−1
j=1(1− jt)

∏l+r−1
j=r (1− tj).

Proof.

(a) This statement follows directly from Corollary 8.

(b) The probability of reachability for (A,B) is given by Theorem 26 to be equal to∏l+r−1
j=r (1− tj). Since C̃(i) is a diagonal matrix, the reachability of (C̃(i), C(i))

is equivalent to the reachability of the parallel connection of the scalar systems(
c̃
(i)
j , (c

(i)
j1 · · · c

(i)
jl )
)

for j = 1, . . . , r. The corresponding transfer functions are

given by (z − c̃(i)j )−1(c
(i)
j1 · · · c

(i)
jl ) = (c

(i)
j1 · · · c

(i)
jl ) · diag(z − c̃(i)j , . . . , z − c̃(i)j )−1.

According to Theorem 28, one needs the probability that the node systems
are reachable as well as the probability of mutual left coprimeness. The
node systems are reachable if and only if (c

(i)
j1 · · · c

(i)
jl ) 6= 0 and the matrices

diag(z − c̃(i)j , . . . , z − c̃(i)j ) are mutually left coprime if and only if the values
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c̃
(i)
j for j = 1, . . . , r are pairwise different. Consequently, the probability of

reachability for (C̃(i), C(i)) is equal to (1 − tl)r ·
∏r−1
j=1(1 − jt). Note that this

probability is equal to zero if |F| = t−1 ≤ r − 1.

For a network coding problem it might be of more interest to investigate the joint
reachabiliy of the systems defined by (4.10) for i = 1, . . . , d, than just considering
one of these systems since one wants to control all these systems with the same input.
This is done in the following theorem.

Theorem 94.
For

Â :=


A 0

C(1) C̃(1)

...
. . .

C(d) 0 C̃(d)

 and B̂ :=


B
0
...
0

 ,
the probability that (Â, B̂) is reachable is upper bounded by

(1− tl)rd ·
rd−1∏
j=1

(1− jt)
l+r−1∏
j=r

(1− tj).

Proof.
This proof could be done analogously to the preceding one. The only difference is
that one has to consider the reachability of a parallel connection of rd scalar systems
for the first part of the formula.

4.9 Conclusion

In this chapter, we considered various applications of the results of the preceding
chapters in the area of convolutional codes. Furthermore, we did some new cal-
culations dealing with such codes as well as with block codes, where we had to
investigate constant matrices instead of polynomial matrices. Since the interconnec-
tion structures which are standard in the theory of linear systems are nearly the same
as those used in the coding literature to concatenate convolutional codes, we could
use the relationship between systems and codes to transfer probability results quite
directly. If one considers linear network coding in the usual sense, the connection
to linear systems is very weak. Both objects, a linear system as well as a network
code, have a similarly defined transfer function but it is just a constant matrix in the
case of network coding. However, if one considers convolutional network coding,
one could formulate solvability criteria in terms of reachability and observability of
certain linear systems, which again enables direct transfer of some results.

We chose several examples to show various applications but their number seems to
be unlimited. For further research, one might consider more complicated interconnec-
tion structures such as woven convolutional codes (see [24]), look at generalizations
of provided results or try to improve obtained bounds.
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