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Abstract

The spin—orbit (SO) coupled optical lattices have attracted considerable interest. In this paper, we
investigate the phase diagram of the interacting Fermi gas with Rashba-type spin—orbit coupling
(SOC) on a square optical lattice. The phase diagram is investigated in a wide range of atomic
interactions and SOC strength within the framework of the cluster dynamical mean-field theory
(CDMEFT). We show that the interplay between the atomic interactions and SOC results in a rich
phase diagram. In the deep Mott insulator regime, the SOC can induce diverse spin ordered phases.
Whereas near the metal-insulator transition (MIT), the SOC tends to destroy the conventional
antiferromagnetic fluctuations, giving rise to distinctive features of the MIT. Furthermore, the strong
fluctuations arising from SOC may destroy the magnetic orders and trigger an order to disorder
transition in close proximity of the MIT.

1. Introduction

The study of quantum many-body effects and new exotic states of matter are currently amongst the main topics
in condensed-matter physics [1, 2]. During the last few years, the successful manipulation of ultracold atoms in
optical lattices [3—7] and the experimental progress in the spin—orbit coupling (SOC) of degenerate atomic gases
[8—12] have made it possible to explore diverse quantum phases [13—20]. More recently, optical lattices
combined with SOC have attracted enormous interest. It was shown that SOC plays prominent roles in many
fascinating phenomena, such as non-Abelian interferometry [21] and magnetic monopole [22, 23], topological
phase transitions [24—-26], non-Abelian localization [27], or emerging relativistic fermions [28].

When competing with strong atomic interactions, SOC introduces additional degrees of quantum
fluctuation, giving rise to remarkable many-body ground states. For example, the study of the superfluid to Mott
insulator transition in the Bose—Hubbard model with synthetic SOC has demonstrated that, Rashba-type SOC
can induce intriguing magnetism in the deep Mott regime [29-36, 39], as well as an exotic superfluid phase with
magnetic textures near the Mott transition [30, 36]. Despite this, the essential properties of the metal-insulator
transition (MIT) of interacting fermion systems have been demonstrated less often.

The MIT lies at the heart of many-body physics, which has achieved great advances in optical lattices
[40, 41]. In this paper, we investigate the phase diagram of the interacting Fermi gas with Rashba-type SOC on a
square optical lattice. Such a system can be described by the spin—orbit (SO) coupled fermionic Hubbard model,
see equation (1). We show that the SOC has important implications on the properties of MIT and phase diagram
of this system. In the deep Mott insulator regime, the SOC can induce diverse spin ordered phases. Whereas near
the MIT, the SOC tends to destroy the conventional antiferromagnetic fluctuations, resulting in the distinctive
features of the MIT. Further we found that, though the spin configurations in the deep Mott regime can be
captured by an effective spin model, it fails near the MIT. The strong fluctuations arising from SOC may destroy
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Figure 1. (a) Illustration of the SO coupled square lattices, which are mapped onto two sets of sublattices for spin up (red) and down
(blue) respectively. The central shaded box denotes the 2 X 2 cluster, where the dashed lines represent the spin-flipped hoppings. (b)
Single-particle energy spectra for @ = 0.37. (c) Density of states p (E) for non-interacting fermions with the strength of SOC

a € [0, z/2].

the magnetic orders and trigger an order to disorder transition. These issues are investigated within the unified
theoretical framework of cluster dynamical mean-field theory (CDMFT) [42-44].

The paper is organized as follows. In the following section we introduce the definition of the SO coupled
fermionic Hubbard model. Subsequently, in section 3, we present the methodology of the CDMFT in the
presence of the SOC. In section 4, we analyze in detail the MIT and spin configurations in the entire phase
diagram. Finally in section 5, we discuss some experimental related issues and present conclusions.

2. The model

We consider a system of two-component Fermi gas moving in an optical square lattice. In the tight binding
approximation, the Hamiltonian reads

FI= _tZZ(EiLRijéj”,_FH' C.) + UzﬁiTﬁil-i_”Zﬁi’ (1)
(ij) oo’ i i

where tis the overall tunneling matrix element and c;, (c,-‘;) denotes fermionic annihilation (creation) operator

for afermion of spin ¢ = 1, | on thelattice site i. The first term describes the nearest-neighboring hoppings

with the hopping matrices given by R;; = exp[iA - (r; — r;)], where A = (o), aoy, 0) denotes a non-Abelian

gauge field which can be generated by the laser-induced spin-flipped tunneling [21, 22]. In this paper we set

B = —a, which implies that the SOC is of Rashba type [29-39]. In this case, the spin-conserved hopping term is

proportional to t cos @, and the spin-flipped term is in proportion to t sin a. The value Uis the on-site atomic

repulsion and y is the chemical potential. The particle number operator is #i; = #;; + 11;) with 7i;, = Ei:r, Ci-

3. Calculation method

We study the physical properties of Hamiltonian equation (1) with the CDMFT, using the Hirsch—Fye Quantum
Monte Carlo algorithm as the impurity solver [45, 46]. The CDMFT incorporates spatial correlations and has
been shown to be successful in the study of MIT and magnetic orders. Below we describe briefly how to
determine the energy gap and magnetization in the framework of CDMFT.

In the presence of SOC, we can map the square lattice onto two sets of sublattices for spin up (down)
respectively, as shown in figure 1(a). The 2 X 2 clusters are embedded in a self-consistent medium with the Weiss
& 8
& &u
corresponding to spin conserved and spin-flipped Weiss functions. Due to the presence of the spin-flipping

function of the cluster represented by g (iw) = ( ), where g__and g __are the 4 x 4 matrix
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term in equation (1), g, and g, are generally nonzero. Here, the Weiss function is determined by the cluster
self-energy X (iw) via the coarse-grained Dyson equation [42, 43]

-1
L 1 .
§ (lw)_[zk:iw+ﬂ—t(k)—2(iw)] + o) @

where t (k) is the Fourier-transformed hopping matrix with wave vector k in the cluster reduced Brillouin zone
Zp 24
21 2

of the superlattice, and X (iw) = ( ] is the self-energy of the cluster. Then, we introduce two-
component Nambu spinor operator - [éﬂ, E,»Tl] and ¥ = (&1, ¢, 17, and define the cluster Green’s function
as

(3)

Go‘o" (T) = (’{/(T) Yj-{- (0)> — [GTT (T) GTl(T)]

G (r) Gy (r)

Once g (iw) is determined, the impurity solver can be used to compute the cluster Green’s function G (iw).
Eventually, by using the Dyson equation X (iw) = ¢7!(iw) — G™! (iw), the self-consistent iterative G (iw) is
obtained.

The energy gap A can be derived from the local density of states (LDOS). By implementing the analytic
extension of the imaginary time cluster Green’s function G (iw) via the maximum entropy method [47], we have

1
plw) = §A (k, ) ~ —— Im[Gii (a))]. (4)

Then in the spectrum of LDOS, we can obtain the energy gap A by the energy width of zero density of states.

The spin phases in the Mott insulating regime can be characterized by the spin structure factor
Sq =1 Zl_ S,ei9%| with q the 2D wave vector. Here, S; = (S;) denotes local magnetic order parameter on site i of
the cluster, with three components given by

Six — %(C;TCU + CiTlCiT> =% Re[Gi,N(O'F) + Gi,lT(0+):|, (5)
§7 = _;_.<CiTTCil —clein) = _% Im[G"’“<O+) - G’?“(OJF)]’ (©)
§f = %@Trcn - ciey) = %Re[Gi’TT(O+) - G"’“<0+)]' @)

To define the magnetization of spin ordered phases, we can rotate the local magnetic order parameter S; on each
cluster site to a global coordinate system: S; = U (¢,)S;, with ¢, the angle between the local and global

. 1 N o, . . . 2 2
coordinates. Then we can definem = = Zi:l S; with the magnetization given by m* = zazm,z m, . For
example, in the xy-AFM shown in figure 1, there are two sublattices (¢;c, = 0, ¢;c5 = 7), we have
m = % Zi=1 €;S;, where ¢; = +1 s for sites belonging to sublattice A(B) respectively. This general definition of

magnetization is also applied to other spin phases throughout this paper. In what follows, we shall investigate the
phase diagram on the half-filled square lattice for a wide range of atomic interactions and SOC strength.

4, Results

Our main results are summarized in figure 2. First, we examine the case with « = 0 in Hamiltonian

equation (1), which recovers the Hubbard model on a conventional square lattice. In figure 3(a), we plot the
scaling analysis of the critical interaction strength U./t for the MIT. We show that, for larger clusters, the
interaction strength U_/t at zero temperature would approach to much smaller values. This is because half-filled
square lattice has a perfect nesting Fermi surface, which strongly enhances the antiferromagnetic (AF)
fluctuations and essentially drives system into an insulator with infinitesimal atomic interaction [48]. On the
other hand, we can restrict the COMFT calculations to be in the paramagnetic phase, a much larger U,/t ~ 6.05
will then be obtained, agreeing well with the result from G. Kotliar’(s) group [49]. Below we can see, once the
SOCisaway from @ = 0, the perfect nesting Fermi surface is destroyed and the critical value of U,/t for the MIT
becomes finite.

Now, we turn to the effects of the SOC on the MIT. We concentrate on the region of @ € [0, 7/2], and the
relevant physical results are not affected in other regions. First, the single-particle spectrum is split into two
bands (see figure 1(b)), with the zero energy Fermi surface possessing a particle and hole Fermi-pocket around
the center and corner of the Brillouin zone. The corresponding density of states (DOS) for non-interacting

3
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Figure 2. Phase diagram of the half-filled Fermi Hubbard model with Rashba-type SOC obtained by the cluster dynamical mean-field
theorywitha2 X 2 cluster at T = 0.05¢. The solid line with dots is the phase boundary of the MIT. The purple-colored regions denote
the diverse spin ordered phases of xy-antiferromagnet (xy-AFM), spiral (the green and red arrows indicate the spins have up or down
z-components), stripe, and spin vortex (SV) in the Mott insulating regime. For @ > a,, there exhibits a nonmagnetic insulating
(NMI) phase in the vicinity of the MIT.
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Figure 3. (a) Temperature scaling of the interaction strength U./t of the MIT for a = 0, with 2 x 2 and 4 x 4 cluster respectively.
(b) Evolution of DOS at different interaction strength U/t for & = 1.0.

fermions is shown in figure 1(c), where the zero energy DOS is suppressed and the bandwidth shrinks gradually
with increasing a. The suppressed zero energy DOS reduces the correlation effects on Fermi surface and hence
enhances U./t of the MIT, whereas the shrinking bandwidth tends to stabilize the Mott insulator at a smaller
U./t. The two effects compete with each other, leading to the drastic changes of the MIT boundary in the phase
diagram. In figure 2 we show that, away from a = 0, the value of U./t rapidly increases due to the suppression of
the conventional AF fluctuations on the square lattices. Subsequently, the MIT exhibits a nonmonotonic
behavior as a function of @ Specially at @ = /2, where relativistic Dirac fermions emerge in the metallic phase
[28], the MIT occurs at a finite atomic interaction with U,/t = 4.1.

In order to feature the MIT in the presence of SOC, in figure 3(b) we plot the evolution of DOS at different
atomic interactions for @ = 1.0. We show that, compared to the @ = 0 case, the zero-energy spectral peak in the
metallic phase (red line) is largely suppressed by the SOC. Simultaneously, two satellite peaks appear
corresponding to the Van Hove singularity shown in figure 1(c). Then, the zero energy peaks are gradually
reduced and a gap opens with the increase of atomic interactions.

In figure 4(a), we plot the corresponding single-particle gap A and magnetization m as functions of U/t for
a = 1.0. The insulating phase characterized by a non-zero A is accompanied by a finite m simultaneously,
indicating that a magnetic order arises. In figure 2, we determine the specific magnetic phases by identifying the
spin configurations on 2 X 2 cluster. We show that as a increases the system transits from the xy-antiferromagnet
(xy-AFM) to the spiral, the stripe, and the spin vortex (SV) phases. The structure factor of the xy-AFM has a peak
at q = (x, ), the stripe phaseat q = (0, x), and the SV phaseat q = (x, 0) and q = (0, 7). Between the xy-
AFM and the stripe phases, spiral phases where the spins spiral in the z-q plane with q = (g, #) the in-plane
wave vector may appear. However, the spiral phase is hard to be explicitly identified on 2 X 2 cluster. To

4
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Figure 4. Single-particle gap A and magnetization m as functions of the interaction strength U/t for (a) @ = 1.0 and (b) @ = 1.5,
respectively.
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Figure 5. Spin phase diagram in the Mott insulating regime with U/t = 7.5 on the 4 X 4 cluster. The intervals of the xy-AFM, SV and
stripe phases agree well with those on the 2 X 2 cluster. Specifically, a spiral-4 phase with spatial period of 4 X 2 lattice sites (the green

and red arrows indicate the spins have up or down z-components) is explicitly identified between the xy-AFM and stripe phases. The
shaded area indicates other commensurate or non-commensurate spiral phases.

overcome this difficulty, we explore on a larger 4 x 4 cluster, and a spiral-4 phase with spatial period of 4 x 2
lattice sites is clearly identified in figure 5.

Qualitatively, the magnetic phase transitions can be understood from an effective spin model. For U/t > 1,
we can apply the second order perturbation theory to the system and obtain

Her = Z Z JE8 8% + Dy - (Si X §i+5) , (8)
i,6=x,y| a=x,y,z
with J# = J}* = 412 cos (Za)/U, H=J= 4t2/U, D; = 412 sin(2a))5/U, and D; = 4¢° sin(2a)fc/U.
Here, the first term is the conventional Heisenberg coupling and the second term denotes the so-called
Dzyaloshinskii-Moriya (DM)-type super-exchange [50, 51]. The induced DM-type term favors spiral type order
and competes with the Heisenberg coupling, tending to form diverse spin phases.

Note that, the above effective spin model (8) works only for the deep Mott regime with the atomic kinetic
energies being treated perturbatively. In close proximity to the more interested Mott transition, such a
perturbative description breaks down and the strong fluctuations arising from the SOC may destroy the
magnetic orders and trigger an order to disorder transition. To address this issue, one needs to implement a non-
perturbative method such as the CDMFT to explore in detail the phase diagram as in figure 2. We find that,
despite the robustness of the diverse spin phases in the Mott insulating regime with up to modest values of the
SOC, a quantum nonmagnetic insulating (NMI) phase can emerge in the vicinity of the MIT for a > a,

(@, =~ 1.43). The NMI phase is characterized in figure 4(b), where the single-particle gap A and magnetization m
occur for different atomic interactions U, and U,,. Specifically in the intermediate region U, < U < U,,, the
system enters into an insulating state but with no long-range magnetic order within the current COMFT
methodology. This suggests a tricritical point, where by increasing @ depending on U/t, one can enter either SV
phase in Mott insulating regime or NMI phase from the metal phase. We note that for @ being close to 7/2, the
SOC can induce relativistic Dirac cones in the metallic phase with the DOS being almost suppressed at zero
energy, which may destroy the spin ordered phases near the boundary of MIT. Whereas for @ < a, the metal
phase transits directly into the SV phase.
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Figure 6. Phase diagram in the vicinity of MIT for a being close to #/2 and T = 0.05¢, obtained with 2 x 2 and 4 x 4 cluster
respectively. The stars mark the parameters employed in figure 7. Inset: temperature dependence of the phase diagram for @ = 7/2.

The emergence of the NMI phase is further confirmed on a 4 X 4 cluster. The larger size of cluster
incorporate more spin correlations and thus, a better description of the atomic correlations and SOC induced
fluctuations can be expected. Figure 6 plots the phase diagram for a being close to 7/2. We found that, in the
4 x 4 cluster, the regime of the NMI phase is slightly expanded, which seems to indicate that the NMI is robust in
this system. We further show, in the inset of figure 6, the temperature dependence of the NMI phase. The
interval between the metallic and SV phases enlarge with decreasing temperature. This demonstrates that the
NMI phase is more stable at low temperatures by the suppression of thermal fluctuations.

The NMI phase breaks neither spin nor lattice symmetry, suggesting a potential spin—liquid (SL) ground
state. Such a fundamental state was first proposed by Anderson [52] and has long been sought in the frustrated
spin systems [53]. Recently, interacting fermion models have attracted wide attentions [54—57], and it was
reported that a SL state can be identified on honeycomb lattice between the semimetal and the AF insulator with
3.5t < U < 4.3t [54]. Despite this, its presence has been challenged since the interval of the SL phase is small,
and may vanish under the finite-size scaling [58—60]. The latest results using large-scale quantum Monte Carlo
(QMC) showed that, if the SL state exists, the possible regime reduces substantially to a small interval
3.8t < U < 3.9¢ [58]. Similar situations have been encountered for the staggered-flux model on a square lattice
[61, 62]. Here, the essential feature characterizing the present system is the considerably large space of
parameters, where the NMI phase emerges. This is in sharp contrast to the limited phase space
(3.4t < U < 3.9t) obtained in the interacting fermions on honeycomb lattices [63]. In particular, the predicted
NMI phase occurs until @ > a,, showing that it is a strong field effect of the SOC.

The absence of magnetic orders in the NMI phase implies strong short-range spin correlation. However, it
may decay as a power-law or exponentially. To explore this issue, we calculate the staggered spin—spin
correlation function

C(r) = (=1)"(SsS; + S5y + S55¢) ©)

as shown in figure 7, where the spin correlation functions are fitted to a power-law as C (r) ~ 1/r".In the NMI
phase, we find that the exponent ais less than 2 with @ ~ 1.6 in our simulations. Whereas in the deep Mottt
insulating regime where spin is ordered, @ becomes much smaller. Therefore, the NMI phase seems to suggest a
candidate of algebraic SL.

Here we should mention that, although we present strong evidence that a NMI phase occurs in a
considerably large regime of parameters, a further systematic investigation of the charge gap and the
magnetization as a function of the cluster size is certainly needed before a definite conclusion can be drawn. A
large-scale QMC calculation with the SOC would be implemented in future studies.

5. Discussion and conclusions

Finally, we discuss the experiment related issues. The above phenomena of the intriguing MIT and matter states
can be investigated in experiments. In optical lattices, the Mott insulating phase can be detected by site-resolved
imaging of single atoms [64—68], and the spin textures occurring in the Mott phase can be observed via it situ
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Figure 7. Staggered spin—spin correlation function for @ = 1.52 and 1.54 with different interaction strength U/t marked by the stars
in figure 6. The dashed lines are representative power-law fits to the data.

microscopy [69] or through spin-resolved time-of-flight measurements [70]. On the other hand, the spin
correlation can be measured by the spin structure factors in optical Bragg scattering [71, 72], which may present
the signatures of the spin ordered phases and the power-law scaling of the NMI phase. In addition, an extremely
low temperature has been recently realized to approach the superexchange energy scales [73, 74].

In summary, we have investigated the half-filled Fermi gas with Rashba-type SOC on a square lattice. We
show that this system displays a rich phase diagram. The interplay between the atomic interactions and the SOC
results in distinctive features of the MIT. In the deep Mott regime, the SOC can induce diverse spin ordered
phases. Near the Mott transition, we find the strong field effect of the SOC can drive an order to disorder
transition, and a quantum NMI phase emerges. These properties can be explored in experiments.

Acknowledgments

We would like to thank G Juzelitinas, X C Xie, N H Tong, X S Yang, and X F Zhang for many helpful discussions.
This work is supported by NCET, NSFC under grant nos. 11474205, 11404225. We acknowledge the
supercomputing center of CAS for the computational resources.

References

1] Wen X G 2004 Quantum Field Theory of Many-Body Ssytems (Oxford: Oxford University Press)
2] Sachdev S2011 Quantum Phase Transitions (Cambridge: Cambridge University Press)
3] Jaksch D, Bruder C, CiracJ I, Gardiner C and Zoller P 1998 Phys. Rev. Lett. 81 3108
4] Greiner M, Mandel M, Esslinger T, Hansch T and Bloch 12002 Nature 415 39
5] K6hl M, Moritz H, Stoferle T, Giinter K and Esslinger T 2005 Phys. Rev. Lett. 94 080403
6] SpielmanI B, Phillips W D and Porto ] V 2007 Phys. Rev. Lett. 98 080404
[7] Esslinger T 2010 Annu. Rev. Condens. Matter Phys. 1129
[8] LinYJ, Jiménez-Garcia K and Spielman I B 2011 Nature 471 83
[9] Zhang]Y etal2012 Phys. Rev. Lett. 109 115301
[10] WangP]J,YuZQ,FuZK, Miao J, Huang L H, Chai S J, Zhai H and ZhangJ 2012 Phys. Rev. Lett. 109 095301
[11] Cheuk LW, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S and Zwierlein M W 2012 Phys. Rev. Lett. 109 095302
[12] QuC,Hamner C, GongM, Zhang CW and Engels P 2013 Phys. Rev. A 88 021604(R)
[13] Jaksch D and Zoller P 2005 Ann. Phys. 315 52
[14] Lewenstein M, Sanpera A, Ahufinger V, Damski B, DeSen A and Sen U 2007 Adv. Phys. 56 243
[15] BlochI, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[16] Goldman N, Juzelitinas G, Ohberg P and Spielman I B 2014 Rep. Prog. Phys. 77 126401
[17] ZhaiH 2013 Int. J. Mod. Phys. B 26 1230001
[18] Galitski V and Spielman I B 2013 Nature 494 49
[19] ZhouXF,LiY, CaiZand Wu CJ 2013 J. Phys. B: At. Mol. Opt. Phys46 134001
[20] ZhaiH 2015 Rep. Prog. Phys. 78 026001
[21] Osterloh K, Baig M, Santos L, Zoller P and Lewenstein M 2005 Phys. Rev. Lett. 95010403
[22] RuseckasJ, Juzeliunas G, Ohberg P and Fleischhauer M 2005 Phys. Rev. Lett. 95010404
[23] Pietild V and Mottonen M 2009 Phys. Rev. Lett. 102 080403
[24] Bermudez A, Goldman N, Kubasiak A, Lewenstein M and Martin-Delgado M A 2010 New J. Phys. 12 033041

[
[
[
[
[
[

7


http://dx.doi.org/10.1103/PhysRevLett.81.3108
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1103/PhysRevLett.94.080403
http://dx.doi.org/10.1103/PhysRevLett.98.080404
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104059
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1103/PhysRevLett.109.115301
http://dx.doi.org/10.1103/PhysRevLett.109.095301
http://dx.doi.org/10.1103/PhysRevLett.109.095302
http://dx.doi.org/10.1103/PhysRevA.88.021604
http://dx.doi.org/10.1016/j.aop.2004.09.010
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1088/0034-4885/77/12/126401
http://dx.doi.org/10.1142/S0217979212300010
http://dx.doi.org/10.1038/nature11841
http://dx.doi.org/10.1088/0953-4075/46/13/134001
http://dx.doi.org/10.1088/0034-4885/78/2/026001
http://dx.doi.org/10.1103/PhysRevLett.95.010403
http://dx.doi.org/10.1103/PhysRevLett.95.010404
http://dx.doi.org/10.1103/PhysRevLett.102.080403
http://dx.doi.org/10.1088/1367-2630/12/3/033041

10P Publishing

NewJ. Phys. 17 (2015) 073036 X Zhanget al

[25] Bermudez A, Mazza L, Rizzi M, Goldman N, Lewenstein M and Martin-Delgado M A 2010 Phys. Rev. Lett. 105 190404
[26] Goldman N, Satija I, Nikolic P, Bermudez A, Martin-Delgado M A, Lewenstein M and Spielman I B 2010 Phys. Rev. Lett. 105 255302
[27] Satijall, Dakin D Cand Clark CW 2006 Phys. Rev. Lett. 97 216401
[28] Goldman N, Kubasiak A, Bermudez A, Gaspard P, Lewenstein M and Martin-Delgado M A 2009 Phys. Rev. Lett. 103 035301
[29] Grafl T, SahaK, Sengupta K and Lewenstein M 2011 Phys. Rev. A 84 053632
[30] Cole WS, Zhang S Z, Paramekanti A and Trivedi N 2012 Phys. Rev. Lett. 109 085302
[31] Radi¢], DiCiolo A, Sun K and Galitski V 2012 Phys. Rev. Lett. 109 085303
[32] CaiZ,ZhouXand Wu C 2012 Phys. Rev. A85061605(R)
[33] GongM, QianY'Y, Scarola VW and Zhang CW 2015 Sci. Rep. 5 10050
[34] ZhangD W, Chen] P, Shan CJ, WangZ D and Zhu SL2013 Phys. Rev. A88 013612
[35] QianY, GongM, Scarola VW and Zhang CW 2013 (arXiv:1312.4011)
[36] HeL,Ji A Cand Hofstetter W (arXiv:1404.0970)
[37] ZhuGB, SunQ, ZhangYY, Chan K S, Liu W M and Ji A C2013 Phys. Rev. A 88 023608
[38] SunQ,ZhuG B, LiuWMandJiA C2013 Phys. Rev. A88 063637
[39] Hickey C and Paramekanti A 2014 Phys. Rev. Lett. 113 265302
[40] Jordens R, Strohmaier N, Giinter K, Moritz H and Esslinger T 2008 Nature 455 204
[41] Schneider U, Hackermiiller L, Will S, Th Best, Bloch I, Costi T A, Helmes R W, Rasch D and Rosch A 2008 Science 322 1520
[42] Maier T, Jarrell M, Pruschke T and Hettler M H 2005 Rev. Mod. Phys. 77 1027
[43] Kotliar G, Savrasov SY, Haule K, Oudovenko V'S, Parcollet O and Marianetti C A 2006 Rev. Mod. Phys. 78 865
[44] Kotliar G, Savrasov S Y, Palsson G and Biroli G 2001 Phys. Rev. Lett. 87 186401
[45] HirschJ E and Fye R M 1986 Phys. Rev. Lett. 56 2521
[46] Georges A, Kotliar G, Krauth W and Rozenberg M ] 1996 Rev. Mod. Phys. 68 13
[47] Jarrell M and Gubernatis ] E 1996 Phys. Rep. 269 133
[48] Hirsch] E 1985 Phys. Rev. B 314403
[49] Park H, Haule K and Kotliar G 2008 Phys. Rev. Lett. 101 186403
[50] Dzyaloshinsky I 1958 J. Phys. and Chem. Solids 4 241
[51] Moriya T 1960 Phys. Rev. 12091
[52] Anderson P W 1973 Mater. Res. Bull. 8 153
[53] Seereferences Yan S, Huse D and White S2011 Science332 1173
Jiang H C, Yao H and Balents L 2012 Phys. Rev. B 86 024424
[54] MengZY, Lang T C, Wessel S, Assaad F F and Muramatsu A 2010 Nature 464 847
[55] LuYMandRanY 2011 Phys. Rev. B 84 024420
[56] Clark BK, Abanin D A and Sondhi SL2011 Phys. Rev. Lett. 107 087204
[57] Yang HY and Schmidt K P 2011 Europhys. Lett. 94 17004
[58] SorellaS, OtsukaY and Yunoki S 2012 Sci. Rep. 2992
[59] Hassan SR and Senechal D 2013 Phys. Rev. Lett. 110 096402
[60] Assaad FFand HerbutIF2013 Phys. Rev. X3 031010
[61] ChangC Cand Scalettar R T 2012 Phys. Rev. Lett. 109 026404
[62] OtsukaY, Yunoki S and Sorella S 2014 JPS Conf. Proc. 3013021
[63] WuW, Rachel S, Liu W M and le Hur K 2012 Phys. Rev. B 85205102
[64] Bakr WS, Gillen] I, Peng A, Félling S and Greiner M 2009 Nature 462 74
[65] Gemelke N, Zhang X, Hung C L and Chin C 2009 Nature 460 995
[66] Bakr W S, Peng A, Tai M E, MaR, Simon J, Gillen J I, Félling S, Pollet L and Greiner M 2010 Science 329 547
[67] Sherson] F, Weitenberg C, Endres M, Cheneau M, Bloch I and Kuhr S 2010 Nature 467 68
[68] BlochI, Dalibard J and Nascimbene S 2012 Nat. Phys. 8 267
[69] Weitenberg C, Endres M, Sherson J F, Cheneau M, Schausz P, Fukuhara T, Bloch I and Kuhr S 2011 Nature 471 319
[70] LinYJ, Jiménez-Garcia K and Spielman 1B 2011 Nature471 83
[71] Mathy CJM, Huse D A and Hulet R G 2012 Phys. Rev. A 86 023606
[72] Duarte PM, HartR A, Yang T L, Liu X X, Paiva T, Khatami E, Scalettar R T, Trivedi N and Hulet R G 2015 Phys. Rev. Lett. 114 070403
[73] HartR A, Duarte PM, Yang T L, Liu X X, Paiva T, Khatami E, Scalettar R T, Trivedi N, Huse D A and Hulet R G 2015 Nature 519 211
[74] Murmann S, Bergschneider A, Klinkhamer V M, Ziirn G, Lompe T and Jochim S 2015 Phys. Rev. Lett. 114 080402



http://dx.doi.org/10.1103/PhysRevLett.105.190404
http://dx.doi.org/10.1103/PhysRevLett.105.255302
http://dx.doi.org/10.1103/PhysRevLett.97.216401
http://dx.doi.org/10.1103/PhysRevLett.103.035301
http://dx.doi.org/10.1103/PhysRevA.84.053632
http://dx.doi.org/10.1103/PhysRevLett.109.085302
http://dx.doi.org/10.1103/PhysRevLett.109.085303
http://dx.doi.org/10.1103/PhysRevA.85.061605
http://dx.doi.org/10.1038/srep10050
http://dx.doi.org/10.1103/PhysRevA.88.013612
http://arXiv.org/abs/1312.4011
http://arXiv.org/abs/1404.0970
http://dx.doi.org/10.1103/PhysRevA.88.023608
http://dx.doi.org/10.1103/PhysRevA.88.063637
http://dx.doi.org/10.1103/PhysRevLett.113.265302
http://dx.doi.org/10.1038/nature07244
http://dx.doi.org/10.1126/science.1165449
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/PhysRevLett.87.186401
http://dx.doi.org/10.1103/PhysRevLett.56.2521
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1016/0370-1573(95)00074-7
http://dx.doi.org/10.1103/PhysRevB.31.4403
http://dx.doi.org/10.1103/PhysRevLett.101.186403
http://dx.doi.org/10.1016/0022-3697(58)90076-3
http://dx.doi.org/10.1103/PhysRev.120.91
http://dx.doi.org/10.1016/0025-5408(73)90167-0
http://dx.doi.org/10.1126/science.1201080
http://dx.doi.org/10.1103/PhysRevB.86.024424
http://dx.doi.org/10.1038/nature08942
http://dx.doi.org/10.1103/PhysRevB.84.024420
http://dx.doi.org/10.1103/PhysRevLett.107.087204
http://dx.doi.org/10.1209/0295-5075/94/17004
http://dx.doi.org/10.1038/srep00992
http://dx.doi.org/10.1103/PhysRevLett.110.096402
http://dx.doi.org/10.1103/PhysRevX.3.031010
http://dx.doi.org/10.1103/PhysRevLett.109.026404
http://dx.doi.org/10.1103/PhysRevB.85.205102
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature08244
http://dx.doi.org/10.1126/science.1192368
http://dx.doi.org/10.1038/nature09378
http://dx.doi.org/10.1038/nphys2259
http://dx.doi.org/10.1038/nature09827
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1103/PhysRevA.86.023606
http://dx.doi.org/10.1103/PhysRevLett.114.070403
http://dx.doi.org/10.1038/nature14223
http://dx.doi.org/10.1103/PhysRevLett.114.080402

	1. Introduction
	2. The model
	3. Calculation method
	4. Results
	5. Discussion and conclusions
	Acknowledgments
	References



