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1. Zusammenfassung 

 Die vorliegende Dissertation beschäftigt sich mit der Analyse technologieunterstützter 

Lernprozesse unter Verwendung von sogenannten Process Mining Methoden. Dabei werden 

kodierte Protokolle des lauten Denkens der Lerner als Prozessmaß genutzt, um eine 

Bewertung des Potentials dieses Analyseansatzes für die Evaluation der Effekte 

instruktionaler Hilfe vornehmen zu können. 

 Die zunehmende Verbreitung digitaler Medien in der Hochschulbildung und weiteren 

Ausbildungssektoren schafft neue Potentiale, allerdings auch neue Anforderungen an den 

Lerner, insbesondere an die Regulation seines Lernprozesses. Um den Lerner dabei zu 

unterstützen seinen Lernfortschritt optimal zu gestalten, wird ihm während des Lernens 

instruktionale Hilfe angeboten. Neben der Evaluation mittels Fragebögen und Testverfahren 

wird die Wirksamkeit der angebotenen Unterstützung zunehmend durch Prozessdaten 

bewertet. Die Analyse von beobachteten Verhaltensspuren während des Lernens (z.B. 

Logfiles, Blickbewegungen, Verbalprotokolle) ermöglicht einen detaillierten Einblick in die 

Lernhandlungen und die Folgen von Unterstützungsmaßnahmen auf den Lernprozess. 

Allerdings stellen sich auch eine Reihe von neuen analytischen Herausforderungen, wie der 

Umgang mit zeitlichen Dynamiken und Sequenzen von Lernhandlungen, insbesondere wenn 

man über Häufigkeitsanalysen der beobachteten Ereignisse hinausgehen möchte. Vor 

diesem Hintergrund beschäftigt sich die vorliegende Arbeit mit der Anwendung von Process 

Mining Methoden zur detaillierten Betrachtung von Lernprozessen. Insbesondere der 

Mehrwert dieses Ansatzes gegenüber einer reinen Häufigkeitsanalyse und somit die 

Potentiale von Process Mining für die Evaluation von Fördermaßen sollen herausgestellt 

werden. 

 Als Grundlage für die Bearbeitung der Fragestellung diente eine umfangreiche 

Laborstudie mit 70 Universitätsstudierenden, die durchgeführt wurde um die Effekte einer 

instruktionalen Fördermaßnahme zu prüfen. Die Probanden der Experimentalgruppe (n = 

35) erhielten in einer 40-minütigen Hypermedia-Lernsitzung eine Förderung durch 

metakognitive Prompts, während die Kontrollgruppe (n = 35) ohne Hilfe lernte. In einer 

weiteren Lernsitzung drei Wochen später bearbeiteten alle Teilnehmer eine weitere 

Lerneinheit, diesmal ohne Unterstützung für alle Probanden. Während des Lernens wurden 

alle Teilnehmer instruiert, ihre Lernhandlungen kontinuierlich zu verbalisieren. Die 

kodierten Verbalprotokolle wurden in den folgenden drei Analysen dieser Dissertation 

detailliert mit Häufigkeits- und Process Mining Analysen untersucht. 
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 Die erste Analyse konzentrierte sich auf den Vergleich der Lernhandlungen der 

Experimental- und Kontrollgruppe während der ersten Lernsitzung. Es wurde den Fragen 

nachgegangen, ob metakognitive Prompts die Lerner dazu anregen mehr metakognitive 

Lernhandlungen auszuführen, ob eine höhere Anzahl dieser Lernhandlungen mit dem 

Lernerfolg zusammenhängt (Mediation) und welche Unterschiede sich in den Abfolgen der 

Lernhandlungen finden lassen. In der zweiten Analyse wurden die Effekte der einzelnen 

Prompts sowie die Bedingungen für ihre Wirksamkeit auf einer sehr detaillierten Ebene 

betrachtet. Zusätzlich zu Process Mining wurde auch eine Data Mining Methode eingesetzt, 

um deren Befunde zu vergleichen. Im Detail fanden eine Klassifikation der Prompts anhand 

ihrer Effektivität und eine Untersuchung der kodierten Lernaktivitäten vor und nach der 

Präsentation instruktionaler Hilfe statt. Schließlich untersuchte die dritte Analyse die 

langfristigen Effekte metakognitiver Prompts auf den Lernprozess in einer weiteren 

Lernsitzung ohne Unterstützung. Hier stand die Frage im Mittelpunkt, welche geförderten 

Lernaktivitäten und Prozessmuster während der zweiten Lernsitzung stabil blieben. Wieder 

wurde sowohl eine Analyse anhand der Häufigkeiten der Lernaktivitäten als auch eine 

Process Mining Analyse eingesetzt, um deren Befunde vergleichen zu können. 

 Insgesamt belegen die Ergebnisse aller drei durchgeführten Analysen den Mehrwert 

von Process Mining im Vergleich zu reinen häufigkeitsbasierten Analysemethoden. 

Insbesondere unter Betrachtung des Lernprozesses als dynamische Abfolge von mehreren 

Lernhandlungen, ermöglicht Process Mining die Identifikation von Regulationsschleifen 

und zentralen Verzweigungen des Prozesses. Diese Befunde könnten zur Optimierung von 

Interventionsstrategien verwendet werden. Bevor aus den aufgedeckten Prozessmustern 

Schlussfolgerungen für die Gestaltung instruktionaler Hilfe gezogen werden können, 

müssen allerdings weitere Analysen erst noch die Generalisierbarkeit der Befunde 

untersuchen. Darüber hinaus bleibt die Anwendung von Process Mining herausfordernd, da 

derzeit keine Richtlinien für analytische Entscheidungen und Parametereinstellungen für 

technologieunterstützte Lernkontexte vorhanden sind. Darum müssen in Zukunft weitere 

Studien das Potential von Process Mining und verwandten Analysemethoden betrachten, um 

Forschern konkrete Anwendungsempfehlungen zur Verfügung stellen zu können. Generell 

kann Process Mining aber bereits jetzt dazu beitragen, das Verständnis der Auswirkungen 

instruktionaler Hilfe auf der Prozessebene voran zu treiben. 

 

Schlüsselwörter: Selbstreguliertes Lernen, Metakognitives Prompting, Process Mining, 

Prozessanalyse, Lautes Denken  
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2. Summary 

The current dissertation addresses the analysis of technology-enhanced learning 

processes by using so-called Process Mining techniques. For this purpose, students’ coded 

think-aloud data served as the measurement of the learning process, in order to assess the 

potential of this analysis method for evaluating the impact of instructional support. 

The increasing use of digital media in higher education and further educational 

sectors enables new potentials. However, it also poses new challenges to students, especially 

regarding the self-regulation of their learning process. To help students with optimally 

making progress towards their learning goals, instructional support is provided during 

learning. Besides the use of questionnaires and tests for the assessment of learning, 

researchers make use increasingly of process data to evaluate the effects of provided support. 

The analysis of observed behavioral traces while learning (e.g., log files, eye movements, 

verbal reports) allows detailed insights into the student’s activities as well as the impact of 

interventions on the learning process. However, new analytical challenges emerge, 

especially when going beyond the analysis of pure frequencies of observed events. For 

example, the question how to deal with temporal dynamics and sequences of learning 

activities arises. Against this background, the current dissertation concentrates on the 

application of Process Mining techniques for the detailed analysis of learning processes. In 

particular, the focus is on the additional value of this approach in comparison to a frequency-

based analysis, and therefore on the potential of Process Mining for the evaluation of 

instructional support. 

An extensive laboratory study with 70 university students, which was conducted to 

investigate the impact of a support measure, served as the basis for pursuing the research 

agenda of this dissertation. Metacognitive prompts supported students in the experimental 

group (n = 35) during a 40-minute hypermedia learning session; whereas the control group 

(n = 35) received no support. Approximately three weeks later, all students participated in 

another learning session; however, this time all students learned without any help. The 

participants were instructed to verbalize their learning activities concurrently while learning. 

In the following three analyses of this dissertation, the coded think aloud data were examined 

in detail by using frequency-based methods as well as Process Mining techniques. 

The first analysis addressed the comparison of the learning activities between the 

experimental and control groups during the first learning session. This study concentrated 

on the research questions whether metacognitive prompting increases the number of 
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metacognitive learning activities, whether a higher number of these learning activities 

corresponds with learning outcome (mediation), and which differences regarding the 

sequential structure of learning activities can be revealed. The second analysis investigated 

the impact of the individual prompts as well as the conditions of their effectiveness on the 

micro level. In addition to Process Mining, we used a data mining approach to compare the 

findings of both analysis methods. More specifically, we classified the prompts by their 

effectiveness, and we examined the learning activities preceding and following the 

presentation of instructional support. Finally, the third analysis considered the long-term 

effects of metacognitive prompting on the learning process during another learning session 

without support. It was the key objective of this study to examine which fostered learning 

activities and process patterns remained stable during the second learning session. Again, 

we conducted a frequency-based analysis as well as Process Mining to compare the results 

of both approaches. 

Overall, all three analyses indicated the additional value of Process Mining in 

comparison to a frequency-based analysis. Especially when conceptualizing the learning 

process as a dynamic sequence of multiple activities, Process Mining allows identifying 

regulatory loops and crucial routing points of the process. These findings might contribute 

to optimizing intervention strategies. However, before drawing conclusions for the design 

of instructional support based on the revealed process patterns, additional analyses need to 

investigate the generalizability of results. Moreover, the application of Process Mining 

remains challenging because guidelines for analytical decisions and parameter settings in 

technology-enhanced learning context are currently missing. Therefore, future studies need 

to examine further the potential of Process Mining as well as related analysis methods to 

provide researchers with concrete recommendations for use. Nevertheless, the application of 

Process Mining techniques can already contribute to advance the understanding of the 

impact of instructional support through the use of fine-grained process data. 

  

Keywords: Self-Regulated Learning, Metacognitive Prompting, Process Mining, Process 

Analysis, Think-Aloud Data 
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3. Research Agenda: In Search of Hidden Treasures 

Technology-enhanced learning (TEL) increasingly gains in importance for education 

in the 21st century (Johnson et al., 2016). For example, digital learning environments which 

are based on intelligent tutor systems, hypermedia learning systems, or computer-supported 

cooperative learning scenarios characterize learning and instruction in schools and 

universities. In comparison to traditional learning settings (e.g., teacher-centered classroom 

instruction), TEL enables new opportunities and potentials from a constructivist approach 

(Chi & Wylie, 2014; Lawless & Brown, 1997). In particular, these potentials comprise a 

greater extent of students’ autonomy, that is, learning becomes more independent from time 

and place, and a student has a higher personal responsibility for his or her learning pathways. 

However, new demands on the individual student come along with the evolving TEL 

settings. Therefore, researchers and practitioners aim to design, apply, and evaluate various 

types of instructional support that help students to use the available potentials better. 

Especially the promotion of self-regulatory competencies and the application of 

metacognitive knowledge plays a crucial role in the enhancement of TEL processes (e.g., 

Azevedo, Guthrie, & Seibert, 2004; Bannert, 2007). Metacognition can be defined 

recursively as cognition about cognition; comprising the function to regulate one’s cognition 

(Flavell, 1979). To better design instructional support and to strive for personalized and 

adaptive interventions (e.g., Azevedo, Cromley, Moos, Greene, & Winters, 2011; Walker, 

Rummel, & Koedinger, 2009), the recent research is interested in investigating the student’s 

learning process on a very detailed level. One major issue here is the consideration of how 

learning unfolds over time and the analysis of the sequential and temporal structure of 

learning processes (e.g., Molenaar & Järvelä, 2014), as well as the impact of instructional 

support on these phenomena. 

The increasing significance of analyzing TEL processes, particularly the deployment 

of self-regulatory activities during learning, is evidenced by several recent special issues in 

the journals of various educational research communities; namely, Learning Science (Martin 

& Sherin, 2013), Educational Data Mining (Winne & Baker, 2013), Metacognition and 

Learning (Ben-Eliyahu & Bernacki, 2015; Molenaar & Järvelä, 2014), and Learning 

Analytics (Roll & Winne, 2015). Many contributions of these special issues conceptualize 

learning as a dynamic interplay of multiple learning activities, and highlight the importance 

of assessing and analyzing fine-grained traces of students’ behavior to understand the impact 

of instructional support. TEL facilitates the measurement of learning behavior, which can be 
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recorded in real time on different data channels nowadays (e.g., Azevedo et al., 2013). 

Nevertheless, new analytical challenges arise when dealing with these fine-grained and large 

volumes of data. Therefore, current studies in the mentioned special issues address the 

development, application, and evaluation of innovative analysis approaches, which might 

help researchers to gain deeper insights into the learning process and its dynamics. 

The following analogy, which describes a problem-solving scenario, illustrates the 

current research efforts to analyze TEL processes. Let us imagine a suspected treasure that 

lies at the very bottom of the ocean. Adventurers attempt to retrieve this treasure; however, 

they have a major lack of equipment, which impedes their progress. Moreover, there is no 

guarantee whether the expensive and time-consuming retrieval is worth the effort, because 

they only have a blurred picture of the hidden treasure and it might be valueless. 

Consequently, the adventurers’ main concern is to investigate which method is most suited 

for their endeavor. Of course, there might be several approaches that will result in their goal 

attainment, the retrieval of the hidden treasure. Dependent on the treasure’s characteristics 

and its location, it might be useful to search for the most effective techniques. Additionally, 

they first might be interested in using methods that help to visualize the treasure better to 

decide if it is worth the retrieval and which retrieval approach might be appropriate. Finally, 

the adventurers have to assess if their individual efforts are sufficient, or if it might be better 

to start a joint venture with others. 

Following this analogy of searching for hidden treasures, the current dissertation 

contributes to the existing literature by examining the value of an analytical approach called 

Process Mining (PM) for the evaluation of instructional support in TEL settings. PM 

techniques were applied in the context of an empirical study that was conducted to 

investigate the effects of so-called metacognitive prompts on self-regulated hypermedia 

learning (Bannert, Sonnenberg, Mengelkamp, & Pieger, 2015). Although we used a specific 

setting and a specific type of instructional support, the findings on the contribution of PM 

might be generalizable to additional TEL contexts. The potential of PM for discovering and 

testing process patterns as well as the impact of instructional support on these patterns is 

demonstrated and discussed by three analyses. The findings are compared to traditional 

frequency-based analyses of learning activities, which still represent the standard in many 

studies. 

 The current synopsis is structured as follows. Chapters 4 to 6 summarize the relevant 

theoretical background for this dissertation. These sections comprise literature on (i) process 

models of self-regulated learning and instructional support through metacognitive 
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prompting, (ii) the fine-grained measurement of learning activities, and (iii) the PM 

approach. Then, Chapter 7 reports the research objectives and findings of each PM analysis. 

Finally, Chapter 8 concludes this synopsis with a general discussion about the significance 

of PM for the evaluation of instructional support and draws implications for future 

directions. 

4. Fostering Technology-Enhanced Learning Through Instructional Support 

 The present dissertation examines the application of PM techniques in the context of 

TEL and instructional support. Therefore, this chapter presents the theoretical background 

on these phenomena. First, the challenges of TEL, which students have to face, are presented 

in Chapter 4.1. Then, the Chapters 4.2 and 4.3 refer to the key assumptions of self-regulated 

learning (SRL) models and the current perspective of researchers on regulatory processes as 

a dynamic sequence of events. Finally, one type of instructional support, namely 

metacognitive prompting, is introduced in Chapter 4.4, whose impact on learning processes 

was investigated in the analyses of this dissertation.  

4.1 The Challenges of Technology-Enhanced Learning 

 Technology enables new opportunities and potentials for teaching and learning, such 

as the facilitated distribution of material through online systems, the use of multiple 

representations and multimedia, and adaptive learning environments (Johnson et al., 2016; 

Mayer, 2009). However, TEL also confronts students with new challenges, especially in 

comparison to traditional learning scenarios (e.g., classroom teaching with a high external 

regulation). Let us imagine a typical learning situation in which students work with topic-

specific, computer-presented hypermedia material for a specified period with a particular 

learning task (e.g., Bannert & Reimann, 2012). Such a scenario is representative of a broad 

class of interactive information activities (Reimann, Markauskaite, & Bannert, 2014). To 

successfully master this scenario, students constantly have to make decisions on what to do, 

where to go next, and to evaluate the retrieved information on their current learning goals 

(Schnotz, 1998). Moreover, the awareness and control of their manner of learning, or in 

broader terms the deployment of metacognitive skills and the attempt to regulate their 

learning actively, plays a key role in TEL and open-ended learning tasks (Azevedo, 2005; 

Lin, 2001; Lin & Lehman, 1999). 

Empirical evidence indicates that the deployment of self-regulatory skills represents 

an essential prerequisite for successful learning (e.g., Winne & Hadwin, 2008; Zimmerman, 
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2008). However, studies also demonstrate that learners often show no spontaneous use of 

metacognitive competencies during learning, which leads to poorer learning outcomes 

(Azevedo, 2009; Bannert & Mengelkamp, 2013; Greene, Dellinger, Tüysüzoglu, & Costa, 

2013). Therefore, it is one major challenge in TEL for educators to train or to activate the 

students’ repertoire of self-regulatory skills. The components and phases of successful 

regulation are described in SRL models, which are summarized in the following section. 

4.2 Self-Regulated Learning Models and Theoretical Process Assumptions 

A variety of research that investigates learning in traditional but also in TEL settings 

builds upon SRL models. As argued above, the regulation of one’s learning plays a 

fundamental role to meet the challenges of the learning task, particularly while being 

engaged with TEL. SRL models describe the characteristics of successful learning; often in 

terms of an ideal-typical learning process. In general, these models emphasize an active 

performance of cognitive, metacognitive, and motivational learning activities, as well as a 

dynamic interplay of these activities to achieve one’s learning goals (Boekaerts, 1997; 

Schmitz & Wiese, 2006; Winne & Hadwin, 2008; Zimmerman, 2008). The assumptions in 

SRL models anticipate a time-ordered sequence of activities, whereby no strict order is pre-

determined (Azevedo, 2009). Often, three cyclical phases of forethought, performance, and 

reflection are considered (e.g., Zimmerman, 2008). The COPES model (Winne & Hadwin, 

2008) represents the most elaborate description in terms of an information-processing model, 

which comprises the four phases task definition, goal setting and planning, studying tactics, 

and adaptations to metacognition. Additionally, it considers monitoring and control as key 

elements of regulated learning. Moreover, SRL models also comprise assumptions 

concerning the transfer of learning experiences to additional tasks in the future. For example, 

the successful use of a learning strategy should affect the learning process in similar contexts. 

Furthermore, this assumption kindles the interest in examining the sustainability and transfer 

of strategies, which were fostered through instructional support (see analysis 3; Sonnenberg 

& Bannert, submitted). Empirical findings confirmed that successful learning corresponds 

with the active deployment of the activities described in SRL models (e.g., Azevedo et al., 

2004; Bannert, 2009; Johnson, Azevedo, & D’Mello, 2011; Moos & Azevedo, 2009), but 

few studies have addressed the stability of SRL between several learning tasks and contexts 

(e.g., Moos & Miller, 2015). 
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 Bannert (2007) proposed a theoretical framework that describes the learning process 

during hypermedia learning and that refers to the learning activities in SRL models. In the 

analyses of this dissertation, this framework represents the basis for the measurement of 

learning activities and characterizes the coding scheme for analyzing the think-aloud data. 

Figure 1 shows the determinants and learning activities that affect the learning process and 

performance during hypermedia learning, according to Bannert’s framework. It comprises 

an ideal sequence of orientation, planning, goal specification, information search and 

relevance judgment, information processing, and evaluation of goal attainment, which is 

constantly monitored and controlled. However, considering the challenges of a given task, 

the performance of these activities might be more dynamic. Moreover, the determinants of 

the assumed learning process are learner characteristics (e.g., prior knowledge) and 

conditions of the learning environment (e.g., task characteristics). 

Figure 1. Bannert’s proposed framework for self-regulated hypermedia learning (adapted 

from Bannert, 2007, p. 72). 

 Recent research also highlights the significance of motivational and emotional 

processes as well as their measurement during TEL (e.g., Azevedo, 2015; Ben-Eliyahu & 

Linnenbrink-Garcia, 2015), but the present dissertation focuses on the interplay of cognitive 

and metacognitive learning activities. For instance, Azevedo and colleagues (2013) 

introduced the conceptualization of Cognitive, Affective, Motivational, and Metacognitive 

Processes (CAMM) for measuring and assessing learning processes. 

4.3 Sequential and Temporal Patterns – Self-Regulated Learning as Dynamic Event 

Over the past years, the researchers’ perspective has shifted from SRL being an 

aptitude to a process-orientated view that explains differences among learners with respect 

to regularities and patterns in the performed learning events (Winne & Perry, 2005). SRL 
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models such as Zimmerman’s phase model (Zimmerman, 2008) and the COPES model 

(Winne & Hadwin, 2008) already incorporate the process-orientated view by describing SRL 

as a dynamic interplay of events during learning. Based on this theoretical assumption, 

researchers increasingly investigate regulatory activities as dynamically unfolding over time 

during a learning task, particularly focusing on the discovery of sequential and temporal 

patterns that affect learning performance (Azevedo, 2009; Winne, 2014). Consequently, the 

measurement of SRL also shifted from questionnaire methods to the recording of directly 

observable traces of students’ behavior (see Chapter 5). For example, according to the 

COPES model, the learner passes specific states, which correspond to behavior that can be 

observed as his or her actions or utterances during learning (Reimann et al., 2014). Because 

the learning process is in general strongly affected by situational cues and demands, the 

perspective of SRL as an aptitude, which is measured by questionnaires, represents a too 

static construct. 

Moreover, Reimann (2009) compared the variable-centered with the event-centered 

approach for considering a learning process and drew a conclusion for the investigation of 

time factors. Although his article concentrates on computer-supported collaborative learning 

(CSCL) research, the conceptualization is also applicable to other contexts, such as SRL 

(Bannert, Reimann, & Sonnenberg, 2014). Within the variable-centered perspective, a 

process represents a set of concepts that mediate between independent and dependent 

variables. For instance, these concepts could be frequencies of performed learning activities. 

In this case, the procedure for process analysis would be a coding and counting of the 

students’ activities and the application of a statistical method for the analysis of variance 

(e.g., see the mediation approach in analysis 1; Sonnenberg & Bannert, 2015). However, the 

variable-centered approach assumes that the independent variables act continuously on the 

dependent variables, and it cannot accommodate qualitative changes in the system of 

variables. Because this perspective does not sufficiently reflect the theoretical concept of a 

dynamic learning process that unfolds over time, Reimann proposed the event-centered 

approach as well as a combination of both approaches. Figure 2 illustrates the essence of 

these approaches. The event-centered approach assumes a discrete event system that 

describes the course of a learning process from an initial state to a resulting state. This system 

itself might change over time (e.g., during a semester) or through an intervention (e.g., the 

presentation of a scaffold). Referring to the framework for self-regulated hypermedia 

learning described above, the factors displayed in Figure 2 could be internal or external 

determinants such as prior knowledge, task characteristics, or instructional support, which 
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affect the system of events during learning. Furthermore, the interplay of cognitive and 

metacognitive events affects outcome variables such as learning performance. 

 

Figure 2. Variable- versus event-based approach (from Reimann, 2009, p. 243). a = 

variable perspective, b = event perspective, and c = combination of both approaches. 

In summary, the process-orientated and event-centered perspective presented above 

increased the researchers’ interest in investigating how the learning process unfolds over 

time and how scaffolds influence the dynamic nature of regulatory activities. However, the 

traditional canon of methods from the social science is not sufficient for issues that come 

from the event-based perspective. Therefore, recent special issues present methodological 

contributions to the analysis of time and order in learning activities (Martin & Sherin, 2013; 

Molenaar & Järvelä, 2014). For example, the effects of instructional support on learning 

activities and their sequential structure could be analyzed on the micro level to enable a 

precise evaluation and to optimize supporting strategies (e.g., Jeong et al., 2008; Johnson et 

al., 2011). 

4.4 Instructional Support Through Metacognitive Prompting 

In general, instructional support attempts to counteract the students‘ learning 

difficulties by fostering strategic learning processes. For this purpose, educators make use 

of different types of scaffolding techniques in traditional as well as TEL settings. The 

concept of scaffolding (Puntambekar & Hübscher, 2005; Wood, Bruner, & Ross, 1976) 

comprises the support of desired behavior until a student advances to the scaffolded 
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activities. Then, a teacher or an educational technology withdrawals the support. Ideally, a 

student also transfers the fostered behavior into new contexts. Detailed information about 

the students’ learning process is needed to diagnose when to reduce support. 

One type of instructional support are prompts, which can be defined as scaffolds that 

induce and stimulate students’ cognitive, metacognitive, and motivational activities during 

learning (Bannert, 2009). They are based on the assumption of a production deficit, that is, 

students show no spontaneous recall or execution of already acquired processes (e.g., Winne, 

1996; Wirth, 2009). Because metacognition represents a key role in SRL models, especially 

monitoring and controlling one’s learning, especially interventions that focus on 

metacognitive support, such as metacognitive prompts, have the potential to foster students’ 

successful learning (Bannert & Reimann, 2012; Künsting, Kempf, & Wirth, 2013). 

Metacognitive prompts attempt to activate the students’ repertoire of metacognitive 

knowledge and learning strategies by requesting them to reflect, monitor, and control their 

learning process (Bannert, 2007, 2009; Veenman, 1993). They focus students’ attention on 

their thoughts and on understanding the activities in which they are engaged in during 

learning. Ideally, the prompted requests induce SRL activities such as orientation, goal 

specification, planning, monitoring and control, and evaluation strategies. It is expected that 

prompting increases the quantity of these regulatory activities, but they might also affect the 

sequential order of events during a learning task. 

A robust body of research indicates that metacognitive support has beneficial effects 

on TEL (Devolder, van Braak, & Tondeur, 2012; Zheng, 2016). With respect to 

metacognitive prompting, empirical findings showed positive effects on learning in different 

domains and settings, such as hypermedia learning (Azevedo et al., 2011; Bannert & 

Mengelkamp, 2013; Bannert et al., 2015), writing learning journals (Hübner, Nückles, & 

Renkl, 2010; Nückles, Hübner, Dümer, & Renkl, 2010), and additional settings (Künsting et 

al., 2013; Thillmann, Künsting, Wirth, & Leutner, 2009). In general, research has 

investigated and evidenced the quantitative increase of regulatory processes during learning, 

but there is also initial evidence that prompting affects temporal dependencies among SRL 

activities (Johnson et al., 2011). 

Despite these promising results of prompting effects, the design and implementation 

of prompts during learning in open-ended environments remains challenging (Azevedo & 

Hadwin, 2005). More research is necessary to address the issues of how to determine the 

presentation times of support optimally, how to calibrate support for the appropriate phase 

of SRL, and how to gradually withdrawal support. For instance, several studies indicated 
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that some students still show a poor compliance with provided support, and consequently, 

they do not benefit as intended by educators (Bannert & Mengelkamp, 2013; Clarebout & 

Elen, 2006). Therefore, instructional support would benefit from detailed analyses that take 

into account the learning activities on the micro level, and that provide implications for 

optimizing a supporting strategy. Moreover, because TEL research strives for adaptive 

support and real-time interventions, process analyses are needed as the fundament for 

developing and refining student models and production rules that control the presentation of 

support in digital learning environments (e.g., Baker & Corbett, 2014; Bouchet, Harley, 

Trevors, & Azevedo, 2013; Molenaar & Roda, 2008). In conclusion, analysis methods that 

are capable of evaluating the specific effect of scaffolds by taking into account a process-

orientated view, allow to optimize instructional support (e.g., Jeong et al., 2008; Johnson et 

al., 2011; Molenaar & Chiu, 2014), and they might provide valuable information for the 

development of SRL theories on the micro level (Molenaar & Järvelä, 2014). 

5. The Measurement of Learning Activities on the Micro Level 

 The investigation of TEL processes with respect to the temporal dynamics of 

sequences of events requires the measurement of learning activities on a very detailed level. 

First, Chapter 5.1 provides an overview of SRL measurement and the available data 

channels. Then, Chapter 5.2 presents the assessment method used in this dissertation, namely 

concurrent think-aloud protocols. Additionally, Chapter 5.3 discusses the challenges that 

arise from the analysis of fine-grained process data. 

5.1 Overview: Assessment of Self-Regulated Learning and Data Channels 

 Dependent on the theoretical understanding of a learning process, researchers who 

investigate SRL make use of measures of aptitudes (e.g., questionnaires) or behavioral 

process data (Azevedo, 2009, 2015; Bannert, 2009; Veenman, Van Hout-Wolters, & 

Afflerbach, 2006). This difference resulted in a general classification into offline and online 

measures (Veenman, 2005; Wirth & Leutner, 2008). Because the current dissertation focuses 

on SRL process models, the measurement of observable behavioral traces plays a key role, 

rather than students’ solid abilities. Based on the conceptualization of SRL as being a 

dynamic sequence of events, researchers need to measure the students’ activities online 

during learning and use a granularity that is appropriate for the research objectives. 

Moreover, they have to identify observable indicators for specific SRL processes as well as 

what might determine successful learning. Furthermore, technological advances kindled the 
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proliferation of fine-grained process data because digital learning environments allow a very 

detailed and largely unobtrusive recording of learning-related behavior (Azevedo et al., 

2013; Winne & Nesbit, 2009). SRL behavior is often measured using online trace methods 

such as concurrent think-aloud protocols or computer log files (Greene & Azevedo, 2010), 

but recently, the research experiences a vivid extension of data channels such as eye-tracking 

(e.g., Trevors, Feyzi-Behnagh, Azevedo, & Bouchet, 2016), physiological parameters (e.g., 

Azevedo et al., 2013), and neuronal correlates (e.g., De Smedt, 2014).  

 Another possible classification of assessment methods refers to the level of data 

granularity. In general, this classification considers the number of individual data points, that 

is, the measurement unit, as well as the time scale of observation. For instance, researchers 

might investigate learning by considering macro-level units (e.g., the aggregated number of 

all learning strategies that were used) or more detailed micro-level units (e.g., a sequence of 

multiple events that represents various cognitive, metacognitive, and motivational learning 

activities) (Azevedo, 2015; Dent & Hoyle, 2015).  Furthermore, with respect to the time 

scale, learning might be observed during a short learning episode (e.g., 30 minutes) or a 

longer period (e.g., during a semester). Additionally, events that reflect human thought might 

occur over seconds, minutes to hours, or weeks to months (Ben-Eliyahu & Bernacki, 2015).  

In general, using fine-grained process data on different data channels allows 

researchers to analyze learning on the micro level, and to test assumptions regarding the 

temporal dynamics of TEL. The analyses of this dissertation make use of concurrent think-

aloud protocols, which were collected during two 40-minute learning episodes. The 

following section addresses the online measurement of SRL activities through verbal reports 

in more detail. 

5.2 Online Measurement Using Think-Aloud Protocols 

Concurrent think-aloud protocols, also known as verbal reports, represent an online 

trace method that is frequently used in SRL settings, mainly because it allows a valuable 

access to the learning events performed during learning (Azevedo, Moos, Johnson, & 

Chauncey, 2010). The think-aloud technique is based on the work of Ericsson and Simon 

(1993). According to them, the conscious thoughts stored in the short-term memory can be 

verbalized, and therefore they are observable for researchers. In this dissertation, students 

were instructed to verbalize every thought that comes to their minds, without any 

interpretation or justification. These instructions to think aloud represent level 2 

verbalizations; consequently, the technique should not affect the processes of human thought 
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(i.e., reactivity). For example, Bannert and Mengelkamp (2008) found evidence that 

thinking-aloud during hypermedia learning did not affect the learning performance. 

Additionally, a meta-analysis from Fox, Ericsson, and Best (2011) indicated that the think-

aloud procedure is nonreactive, but that times to complete a task were increased for 

participants who had to verbalize their thoughts. 

Although think-aloud protocols are not unobtrusive for the learner, such as other 

online trace methods (e.g., computer log files), they provide a detailed trace of learning 

activities that is appropriate for investigating the dynamics of TEL and the impact of 

instructional support on these processes (Azevedo et al., 2010; Schraw, 2010; Veenman, 

Bavelaar, De Wolf, & Van Haaren, 2014). Moreover, the technique is helpful for the 

identification of indicators of successful learning as well as theory-building. Dependent on 

the coding of the think-aloud data, the granularity of events might correspond more directly 

to the level of theory formulation than other data channels. However, for practical purposes 

such as real-time interventions in digital learning environments other data channels like 

interaction logs are needed. Nevertheless, computer log files imply a more difficult 

interpretation of awareness and intent regarding the students’ actions than verbalizations. 

In general, the coding of verbal data is a necessary, but time-consuming preparation 

step before data analysis. For the current dissertation, we followed the procedure that was 

recommended by Chi (1997). The coding was based on an original scheme from Bannert 

(2007), which distinguishes between four main categories (i.e., metacognitive, cognitive, 

motivational, and residual) and several subcategories. The coding scheme builds upon the 

framework presented above (see Figure 1). Please see Appendix 1 for all categories and 

descriptions of the original coding scheme. With respect to the research questions and 

analysis methods of this dissertation, we used aggregated versions of the original coding 

scheme and we did not consider the valence of events (e.g., the successful or unsuccessful 

result of monitoring). Reasons for the aggregation of codes were the low frequencies of some 

categories, the orientation along the granularity in SRL models, and the properties of a PM 

technique as explained in analysis 1 (Sonnenberg & Bannert, 2015). 

5.3 Analytical Challenges 

Besides the benefits of the detailed multichannel measurement of learning, new 

analytical challenges accompany the availability of rich behavioral traces. Especially while 

examining more than frequency distributions of learning activities, researchers have to 

address emerging analytical as well as conceptual challenges, such as the questions how to 
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analyze the temporal dynamics of learning and how to assess quantitative and qualitative 

effects of instructional support on the structure of learning processes. To address the 

dynamic sequence of self-regulatory activities during learning and its relationship to learning 

outcome, advanced analysis approaches are needed, which are appropriate for the 

conceptualization of SRL as a sequence of multiple events and which can handle the 

collected large volumes of data (e.g., data mining approaches). Recent special issues 

comprise contributions that rise to these challenges by presenting exploratory approaches to 

identify process patterns from SRL data (Ben-Eliyahu & Bernacki, 2015; Molenaar & 

Järvelä, 2014). Because these analyses assess and model learning in a specific setting or for 

a specific sample of students, a shift towards the application of confirmatory testing and the 

validation of resulting process patterns is also necessary in future research (Roll & Winne, 

2015; Winne, 2014). 

Researchers should consider the following key challenges while measuring and 

examining fine-grained traces of learning behavior. Winne and Baker (2013) indicated the 

importance of taking into account how reliable a measurement instrument is for the 

collection of robust data (i.e., minimal variation when there is no change of state) and the 

purity of the measured data (i.e., the ratio of signal to noise). Similarly, Ben-Eliyahu and 

Bernacki (2015) emphasized the challenge of measuring data that are sufficiently precise, 

but also comprehensive to allow complex statistical analyses. However, instead of just 

focusing on so-called big data, researchers must assess if the collected data basis is 

meaningful for their objectives. Otherwise, the statement from computer science “garbage 

in – garbage out” might become true, when applying a data mining method. Although the 

application of data mining and machine learning techniques is also dependent on data 

quality, these methods mainly rely on the availability of large samples. However, educational 

research often deals with small sample sizes (Dent & Hoyle, 2015). 

Moreover, the measurement of authentic learning behavior results in the presence of 

noisy data because the real world is subjected to stochastic principles (Roll & Winne, 2015). 

Consequently, analysis methods must deal with indeterminacy and probabilities. 

Furthermore, data mining approaches that are applied to educational data must account for 

the multi-level hierarchy and non-independence of measurement units (Baker, 2010). When 

addressing characteristics of temporality, another important conceptual issue is to consider 

quantitative terms (e.g., durations, or rates of change) as well as the qualitative structure of 

behavior (e.g., the relative positioning of actions) (Reimann et al., 2014). Moreover, the 

consistency of patterns between participants must be addressed when analyzing the learning 
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activities of a sample. Assuming that a sample of students shows a great extent of variability 

in their course of learning, the aggregation of all learning processes into a common model 

might not be appropriate (e.g., Bannert et al., 2014), and a pre-selection of cases or a 

clustering method might be useful in advance. Finally, in the case of multichannel data, the 

challenge of the temporal alignment of different channels arise (Azevedo, 2014), along with 

the issue how SRL constructs appear on the various behavioral levels (e.g., what is an 

indicator of a monitoring activity in verbal reports versus in computer log files).  

In summary, researchers need to identify the markers of successful SRL within their 

measured data with respect to their research objectives. Furthermore, they must decide which 

analysis method might be appropriate by taking into account the data quality and analytical 

challenges of fine-grained data traces. The current dissertation cannot address all the 

mentioned challenges, but it investigates an analysis method from the field of educational 

data mining, which might contribute to advance the analysis of fine-grained SRL data. The 

following chapter presents the approach of PM and discusses how PM techniques address 

some of the presented key challenges. 

6. Process Mining: Foundations and Application on Educational Data  

The analysis techniques presented in this dissertation were used in the context of 

Educational Data Mining (EDM) and Learning Analytics (LA). First, Chapter 6.1 gives a 

short overview of these fields and their potential for evaluating instructional support. 

Second, Chapter 6.2 summarizes the foundations of PM, particularly the main concepts and 

functions for analyzing sequences of events. Third, Chapter 6.3 presents how PM techniques 

can be applied to the process data that was introduced in the previous chapter. Finally, the 

potential of using PM to investigate research questions in SRL settings is discussed in 

Chapter 6.4. 

6.1 Educational Data Mining and Learning Analytics 

EDM and LA are two emerging disciplines that are fueled by the increasing 

availability of learners’ digital traces through the use of TEL environments. Both disciplines 

pursue the main objective of improving and personalizing education by using data-intensive 

approaches (Baker & Inventado, 2014). EDM has a greater focus on the development and 

application of computational techniques that are suited to work with large-scale educational 

data sets (Romero, Ventura, Pechenizkiy, & Baker, 2010); whereas LA highlights the 

significance of visualization and human interpretation of data (Baker & Inventado, 2014), 
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and considers a wider range of stakeholders as well as the application in instructional systems 

(Larusson & White, 2014; Martin & Sherin, 2013). However, despite these differences in 

their point of view, both disciplines use a very similar range of analysis methods. In the past 

years, the impact of the EDM and LA methods on educational research and practice has 

steadily grown (Baker & Yacef, 2009; Papamitsiou & Economides, 2014; Romero & 

Ventura, 2010). 

In general, the range of methods comprises statistical, machine-learning, and data-

mining algorithms, which are applied to different types of educational data to understand 

learners and the settings in which they study better (Romero & Ventura, 2010). Referring to 

a classification of methods proposed by Baker (2010), the key functions of EDM techniques 

are (i) prediction (e.g., regression and classification), (ii) clustering, (iii) relationship mining 

(e.g., sequential pattern mining), and (iv) discovery with models (e.g., Bayesian networks). 

The last function comprises the automated discovery of a student model that can be validated 

and used in additional analyses, and it has become increasingly popular for the investigation 

of more complex learning behavior (e.g., Baker & Corbett, 2014; Jeong et al., 2008). The 

approach of PM, described below, falls into this category of EDM techniques. Discovery 

with models allows to operationalize and identify specific behaviors, for example, learning 

activities described in SRL theories, and to analyze learning as it unfolds over time (Winne 

& Baker, 2013). Through these features, EDM techniques have the potential to advance the 

discovery of event patterns in SRL. Furthermore, they allow the precise modeling of robust 

learning and the impact of scaffolds in technology-enhanced settings (Baker & Corbett, 

2014). For example, researchers can evaluate the impact of pedagogical support on the 

improvement of models that represent information about student’s knowledge, motivation, 

metacognition, and attitudes (Baker & Yacef, 2009). Moreover, EDM techniques applied on 

fine-grained data from SRL settings might advance the understanding of the sequential and 

temporal characteristics (Martin & Sherin, 2013; Molenaar & Järvelä, 2014) and the 

dynamic relationship between SRL processes (Ben-Eliyahu & Bernacki, 2015). 

Despite the high potential of the analysis methods used in the fields of EDM and LA 

for gaining deeper insights into TEL, the general challenges of data mining and machine 

learning during data analysis and interpretation of results need to be considered (Aggarwal, 

2015). For example, because of an inductive approach that identifies patterns based on 

present instances, an overfitting of the resulting model might occur. Consequently, multi-

level cross-validation is necessary to determine the extent of model generalizability; at least 

if it is the researcher’s goal to predict the behavior of additional students (Winne & Baker, 
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2013). In the second analysis of this dissertation (Sonnenberg & Bannert, 2016), we use a 

cross-validation on the prompt-level as well as on the student-level to measure the 

generalizability of a learned linear regression model. Although EDM and LA techniques 

allow researchers to take into account large volumes of educational data, Martin and Sherin 

(2013) point out that there should be no restriction to data that can easily be collected using 

online systems (e.g., key press and mouse click data), but the analysis methods are also 

applicable to more traditional educational data. The selection of data channels and time 

windows for observed behavior represents another challenge for data mining methods. The 

research objectives must be considered for those decisions, but not vice versa, that is, data is 

taken into account just because they are available. Therefore, the analyses presented in the 

following chapter make use of a data channel whose granularity matches the assumptions in 

SRL models, namely concurrent think-aloud protocols, rather than taking into account 

computer log files. In the following, an approach is introduced that can be used in the field 

of EDM and LA to model sequences of learning events. PM techniques are applied and 

evaluated in the present dissertation because of the advantages described in the following 

sections. 

6.2 Process Mining Foundations 

The origin of PM lies in computer science and business IT, and it is an approach that 

uses temporally ordered event data to model the underlying process (Bannert et al., 2014; 

van der Aalst, 2011). Referring to the event-based view of SRL presented above, PM is 

compatible with the conceptualization of learning as a dynamic sequence of activities. 

Therefore, a process model that is derived from the student’s behavioral traces while using 

a TEL environment can describe his or her learning process. PM builds on the concept of 

Petri nets (Reisig, 1985), which represent a discrete event system that comprises places and 

transitions. Petri nets are formal models with an explicit modeling language and executable 

semantics, and therefore they are deterministic. To extend these properties to stochastic 

aspects (e.g., transition probabilities), PM uses variants with weaker semantics and 

heuristics. 

Regarding the scope of functions, PM allows researchers to discover process models 

inductively from event-based learning activities, to test models by conformance checking 

with additional data, and to extend existing models (Trčka, Pechenizkiy, & van der Aalst, 

2010; van der Aalst, 2011). These functions, as well as the general concept of PM in 

educational settings, are illustrated in Figure 3. Observed behavioral traces are stored in an 
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event log. In general, learning activities can be recorded through an electronic system, but 

in our case, we used the think-aloud procedure to measure and code events. The event log 

comprises sequences of activities, which represent the instances of the process. Based on 

these instances, it is possible to discover a process model, which indicates the relationship, 

more precisely the workflow, between the observed events. 

 

 

 

 

 

 

 

 

 

Figure 3. The general concept of using Process Mining in educational settings (from Trčka 

et al., 2010, p. 124). 

Just like other analysis techniques, the application of PM is accompanied by several 

assumptions. First, PM assumes the presence of a hidden underlying process that produced 

the observed sequence of events, and that can be discovered from the instances stored in the 

event log. In the case of SRL, such a process could be a learning strategy or advice from 

instructional support that directs the student’s mental processes (Bannert et al., 2014). 

Therefore, the regulatory behavior can be seen as driven by a holistic model of a process. 

Second, the data stored in the event log must be temporally ordered activities of several 

process instances. Third, the event log must contain a representative sample for the process 

under investigation. That does not necessarily imply that a large volume of data is better in 

any case, but that behavioral traces are needed that are meaningful for the research 

objectives. Finally, the purity of data, that is, the ratio of signal to noise, as well as the 

heterogeneity of behavior between cases have to be considered. PM algorithms can deal with 

noise in the data and low-frequency behavior, but a significant amount of noise makes 

process discovery more difficult. Moreover, because of the attempt to discover a common 

underlying process, the instances must represent a homogeneous sample. Otherwise, a pre-
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selection of cases or a clustering technique might be needed in advance. For example, in the 

first analysis (Sonnenberg & Bannert, 2015), we used a trace clustering technique to verify 

this assumption. In general, researchers have to ask themselves critically if it is appropriate 

to use PM for analyzing their process data by taking into account these assumptions. 

We use PM techniques to investigate the impact of instructional support on learning 

processes because of the following specific characteristics and strengths in comparison to 

other analysis methods for event sequences. First, we argued that PM is appropriate when 

conceptualizing SRL from a process-orientated view, which means, the observed behavioral 

traces are generated by a self-regulation process (Bannert et al., 2014; Reimann, 2009). This 

theoretical point of view determines the required analysis method. For instance, Reimann 

(2009) discussed that a holistic view of a process is necessary, not a process-as-sequence 

perspective. The assumption of an underlying process distinguishes PM from other 

techniques such as sequence mining, sequential pattern analysis, and stochastic methods. All 

recorded events are taken into account to generate an end-to-end process model, not only 

reoccurring sequences of events as in Sequential Pattern Mining (Zhou, Xu, Nesbit, & 

Winne, 2010). Hidden Markov models (e.g., Jeong et al., 2008) also incorporate a holistic 

process perspective, but they are time-consuming iterative procedures, and the output model 

is hard to interpret (van der Aalst, 2011). Moreover, hidden Markov models, as well as 

transitions graphs, represent a lower level of abstraction compared to the PM modeling 

language. 

Second, it is one distinct feature of PM that the discovery of process models can be 

designed adaptively because the level of detail of output models can be controlled by 

parameter settings. That means the granularity of process data does not necessarily be pre-

determined, but the model representation can be influenced dynamically by the researcher. 

For example, by increasing a cut-off value, it is possible to generate a more abstract model 

with fewer details. In general, the output models are similar to transition graphs (Hadwin, 

Nesbit, Jamieson-Noel, Code, & Winne, 2007; Siadaty, Gašević, & Hatala, 2016), but PM 

offers more options to control the level of detail adaptively. 

Third, the output models allow the parsing of an activity sequence and the prediction 

of new behavior. Therefore, models can be compared through formal parameters, and the 

validity of a model can be tested using additional data (Rozinat & van der Aalst, 2008). The 

implemented conformance checking allows a relatively simple comparison of a model and 

a sequence of events, as illustrated in the third analysis of this dissertation (Sonnenberg & 

Bannert, submitted). 
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Fourth, PM explicitly deals with noise in the data and helps researchers to concentrate 

on the main relations among learning activities. When examining complex real-life event 

logs, analysis methods are needed that are robust to noise in the data. For example, the coded 

think-aloud data used in our analyses represent no perfect trace of behavior because the 

participants might not have uttered all learning activities or because of an erroneous code 

assignment. 

Fifth, PM possesses the practical strengths of identifying process models 

automatically from event logs, even if large volumes of data are stored (Reimann et al., 

2014). Finally, a unified framework for data import supports the application of PM, and a 

variety of algorithms that can be assigned to one of the three main functions described above 

and that are designed to meet specific requirements, such as dealing with noise, are available 

to the process analyst. The application of PM is addressed in more detail in the next section. 

6.3 The Application of Process Mining 

Romero and Ventura (2010) recommended that EDM tools should be designed user-

friendly (e.g., comprising wizard tools and intuitive interfaces) because educators are usually 

non-experts in using data-mining frameworks. PM meets this requirement by providing a 

comprehensive software framework and a growing community that offers user support (see 

http://processmining.org/). We used the ProM Framework Version 5.2 (2008) for conducting 

our analyses. It comprises a variety of PM algorithms that can be assigned to the functions 

of model discovery, conformance checking, and model extension. For data preparation from 

our coded think-aloud protocols in a spreadsheet format, we used an additional software tool, 

Fluxicon Disco Version 1.7.2 (2014). 

To illustrate the application of PM using coded learning activities from verbal 

reports, Figure 4 shows a simplified representation of the data input and output, as well as 

the functions of discovery of models and conformance checking. The starting point is the 

event log that contains the students’ learning activities; more specifically, an ID, time 

stamps, and activity labels for each case. The learning activities are based on the coding 

scheme that was described above. The information stored in the event log allows computing 

the frequency of events, the relative arrangement of multiple events, and the event duration. 

The latter was not relevant for our purpose because it was only necessary to determine the 

temporal order of events. Using a PM algorithm for process discovery, the ProM framework 

allows to generate a process model inductively, for example as displayed on the right side in 

Figure 4. This output model describes the underlying process based on the event log, and it 
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is a visual representation of the dependencies of the event classes. The metrics such as 

transition dependencies that are normally also displayed in the output model are left out in 

Figure 4. Dependent on the used algorithm, the output is a specific variant of a Petri net. To 

set the level of abstraction from noise and low-frequency behavior, the researcher can adjust 

the output model by parameter settings (e.g., thresholds). It is a strength of PM that the output 

model can be stored and used in additional analyses, all in a unified software framework. 

For instance, additional data of the same students or another sample of learners can be used 

to measure the conformance between model and event log.  

 

Figure 4. The Process Mining functionality. 

In our analyses, we applied two algorithms for discovery and a conformance 

checking technique. We selected the discovery algorithms based on a comparison of seven 

state-of-the-art PM techniques on the dimensions accuracy and comprehensibility, which 

used real-life event logs (De Weerdt, De Backer, Vanthienen, & Baesens, 2012). In our first 
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analysis (Sonnenberg & Bannert, 2015), we used the HeuristicsMiner algorithm (Weijters, 

van der Aalst, & de Medeiros, 2006) because the output model, a so-called heuristic net, can 

be automatically converted into a Petri net and used in further analyses. Additionally, the 

algorithm can be combined with a trace clustering procedure (DWS; de Medeiros et al., 

2008) to avoid underfitting, that is, a resulting model is too general. However, this algorithm 

is reaching its limits when dealing with too many event classes (i.e., categories); therefore, 

we had to simply the coding scheme. In contrast, the Fuzzy Miner algorithm (Günther & van 

der Aalst, 2007), which was used in the second analysis (Sonnenberg & Bannert, 2016), can 

deal better with less structured data in appearance and allows a flexible simplification of 

output models. For example, it abstracts from less significant event classes and displays the 

main features of a process. However, a direct conversion into a Petri net is not possible. In 

general, both algorithms are robust to noise in the data, and they require the setting of 

parameters that guide the model discovery. To test the discovered process models from the 

first analysis with additional data, we applied the conformance checker (Rozinat & van der 

Aalst, 2008) in our third analysis (Sonnenberg & Bannert, submitted). It allows measuring 

the conformance of a complete process model, represented as a Petri net, and an event log. 

Within the ProM framework, other conformance checking techniques are available, but they 

do not test complete models. For example, in Bannert et al. (2014) we illustrated the use of 

the LTL Checker (De Beer & van den Brand, 2007) by testing specific sequential patterns 

that can be derived from SRL models. Finally, PM also offers data visualization techniques, 

which become more important when dealing with large volumes of data and which can 

support the selection of measurement units. For instance, in our second analysis, we first 

visualized the sequences of events using a Dotted chart (Song & van der Aalst, 2007; van 

der Aalst, 2011) to determine the time window following a prompt in which an impact on 

metacognition had occurred. The functionality of these PM techniques are explained in more 

detail in the manuscripts (Sonnenberg & Bannert, 2015, 2016, submitted). 

6.4 The Benefits of Process Mining for Technology-Enhanced Learning Issues 

 As indicated by recent studies that investigate TEL with a focus on self- and co-

regulatory learning processes, PM techniques might have the potential to advance the field 

by allowing researchers to explore and to test process patterns on a micro level. For instance, 

Bannert et al. (2014) compared the process models of students with high versus low learning 

performance and revealed differences in the sequential patterns of regulatory processes. 

Moreover, studies from the CSCL context showed that PM contributes to a deeper 
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understanding of learning (Malmberg, Järvelä, Järvenoja, & Panadero, 2015; Reimann, 

Frerejean, & Thompson, 2009; Schoor & Bannert, 2012). In comparison to other analysis 

techniques, PM allows a comparison of extracted process patterns and assumptions in SRL 

models, for example, the concept of a time-ordered sequence of activities or dynamic and 

cyclical patterns. As described above, PM seems to be appropriate for the event-based view 

of SRL and it has specific characteristics that distinguish PM from other techniques for 

sequential analysis. Therefore, PM is a promising method in SRL research that has benefits 

compared to a traditional analysis of frequency distributions by using variance analysis and 

other EDM and LA approaches (Bannert et al., 2014; Reimann, 2009). 

 Despite the initial evidence of the benefits of PM for analyzing TEL processes, more 

research is necessary to gain a deeper understanding of the contribution that these techniques 

might make. The available rich behavioral traces of learners on various data channels offer 

new opportunities to advance a supporting strategy and to work towards adaptive 

interventions. However, that will only be possible by using appropriate analysis techniques 

for the evaluation of instructional support on the micro level; for instance, to conduct an in-

depth investigation of scaffolding effects on learning activities. Therefore, the objective of 

the present dissertation is to explore the potential of PM techniques for analyzing the impact 

of instructional support on micro-level processes and gathering more information on the 

strengths as well as possible weaknesses of this approach in SRL settings. From a 

methodological point of view, the focus will be especially on the additional value of PM in 

comparison to a traditional analysis of frequencies. The type of support that is under 

investigation are metacognitive prompts that were provided during hypermedia learning 

(e.g., Bannert & Mengelkamp, 2013). The data channel are concurrent think-aloud protocols, 

which were coded to performed learning activities. In the following, the research objectives 

and findings of the three PM analyses are reported. 

7. Summary of Findings: Process Mining Analyses  

This chapter presents the research objectives and results of three analyses that were 

conducted to investigate the potential of PM for the evaluation of instructional support. Each 

analysis refers to think-aloud data from an extensive study that aimed at examining the 

impact of metacognitive prompting during hypermedia learning (Bannert et al., 2015).1  

Figure 5 displays the research design of this study. Overall, the study comprised three 

                                                           
1 This research was supported by funds from the German Research Foundation (DFG: BA 2044/7‐1). 
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sessions, and process as well as product data. During the first session, we assessed learner 

characteristics using tests and questionnaires. In the second and third session, students 

worked through a hypermedia learning environment for 40 minutes while thinking aloud 

concurrently. During the second session, metacognitive prompts supported participants that 

were assigned to the experimental group. The prompts were requests to give reasons for node 

selections. Immediately after working on the learning environment, the performance was 

measured using three learning tests (see Appendix 2 to 4 for a screenshot of the learning 

environment with a prompt and the learning tasks). 

 

Figure 5. Research design. EG = experimental group, CG = control group. 

The analyses make use of the coded think-aloud data as follows. The first analysis 

uses the data of the second session and compares the learning activities between the 

experimental and control groups. The second analysis only considers the data of the 

experimental group during learning when prompted (i.e., session 2), but on a very detailed 

level, in order to investigate conditions for effective prompts. Finally, the third analysis uses 

the data of the two learning sessions (i.e., session 2 and session 3) to examine the long-term 

effects of metacognitive prompting on the students’ self-regulatory behavior. Although 

student characteristics, such as measured in session 1, might affect the learning process, they 

are not in the scope of this dissertation. The individual research questions and a summary of 

findings for each analysis are reported in the following sections. 

7.1 Analysis 1: Research Questions and Results 

 The first analysis (Sonnenberg & Bannert, 2015) addressed the impact of 

metacognitive prompting on the students’ self-regulatory behavior during hypermedia 

learning, particularly on the sequential structure of learning activities. Therefore, we 

compared the metacognitive, cognitive, and motivational utterances of a prompted 

experimental group and a control group by using a frequency analysis, a mediation analysis 
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that also considered learning outcome, and a PM technique. In detail, we investigated (i) 

whether metacognitive prompting during learning influences SRL processes by engaging 

students in more metacognitive learning activities, (ii) whether the number of metacognitive 

events mediates the beneficial effect on learning outcome, and (iii) which sequential patterns 

are induced through prompting. Our results showed that participants that were supported by 

metacognitive prompts articulated significantly more metacognitive learning activities, and 

additionally they achieved better performance in a learning test that measured the application 

of knowledge. Moreover, the findings of a mediation analysis indicated that prompting 

increased the number of metacognitive events, especially monitoring activities, which in turn 

positively affected the learning outcome. We expected these findings based on 

metacognitive prompting research (e.g., Azevedo et al., 2004; Bannert, 2009) as well as the 

assumed key mechanism of this type of instructional support (e.g., Bannert & Mengelkamp, 

2013). Both analyses were based on the frequencies of coded learning activities. To illustrate 

the additional value of taking into account the relative arrangement of learning events using 

PM, we applied an algorithm that inductively discovered specific sequential patterns in the 

learning process. A comparison of the process models of students in the experimental and 

the control group revealed two noticeable differences. First, students supported through 

prompting showed a much better integration of preparing activities (i.e., orientation, 

planning, and goal specification), whereas these activities were quite isolated in the model 

of the control group. Second, the process model of the experimental group showed a higher 

number of loops between cognitive and metacognitive learning activities, which indicates a 

more active regulation of learning compared to the control group. Again, these results are in 

line with theoretical assumptions (e.g., Winne & Hadwin, 2008; Zimmerman, 2008), which 

emphasize the significance of orientation phases and an active regulation for successful 

learning. Finally, with respect to the potential of PM, the first analysis indicated that the 

displayed sequential patterns in the students’ process models reveal additional information 

on the effects of metacognitive prompting that could not be shown by a traditional frequency 

analysis of occurring learning activities.  

7.2 Analysis 2: Research Questions and Results 

The main focus of the second analysis (Sonnenberg & Bannert, 2016) was on the 

impact of a single metacognitive prompt on a student’s learning process, in order to explore 

the conditions for its effectiveness. Therefore, time intervals preceding and following each 

prompt presentation represent the measurement unit of this analysis. In detail, we 
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investigated (i) whether it is possible to classify the metacognitive prompts in terms of the 

activation of regulatory activities using the coded think-aloud data, (ii) whether the 

classification of effectiveness corresponds with learning outcome, and (iii) which conditions 

affect the induction of metacognitive learning activities through prompting. Based on the 

classification of prompts, we used a data-mining (DM) approach that considered the 

frequencies of various learning activities preceding a prompt, as well as a PM algorithm that 

additionally took into account the sequential patterns of events, to determine learning 

behavior that affects the effectiveness of a prompt. Our results showed that it is possible to 

distinguish between effective and non-effective prompts by considering the coded think-

aloud data. Moreover, although we observed no significant correlation between the number 

of induced metacognitive activities and learning performance, we found a positive 

correspondence between monitoring and transfer performance, which is in line with previous 

research (e.g., Sonnenberg & Bannert, 2015). Furthermore, the findings of a DM analysis 

revealed that a high occurrence of orientation and monitoring activities fostered the desired 

prompting effects. A PM analysis that also took into account the relative arrangement of 

learning activities preceding a prompt supported and extended these results. We compared 

two inductively generated process models that represent the learning process preceding the 

appearance of an effective and a non-effective prompt. In the case of a non-effective prompt, 

the sequence of learning activities already resembled the performance of successful 

regulation patterns as described in SRL models (e.g., Winne & Hadwin, 2008; Zimmerman, 

2008), which means that an intervention through prompting might not have been necessary. 

In contrast, the process model of effective prompts resembled a poor regulation of learning, 

and it comprised metacognitive activities that were not yet well embedded in the course of 

learning. In general, the second analysis showed how to use process data to evaluate the 

effectiveness of instructional support on the micro level by applying DM and PM techniques. 

As in the first analysis, we contrasted the findings of an analysis technique that only 

considers the frequency of coded activities with a PM techniques that also addresses the 

sequence of events. Again, it was possible to demonstrate the additional value of PM for the 

evaluation of metacognitive prompting effects on a very detailed level. 

7.3 Analysis 3: Research Questions and Results 

The third analysis (Sonnenberg & Bannert, submitted) investigated the long-term 

effects of metacognitive prompting on students’ self-regulatory behavior. Therefore, we 

made use of the mined process models of the first analysis and applied a PM technique called 
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Conformance Checking to assess the stability of effects during a further learning task without 

instructional support. The research questions of this analysis concentrated on (i) the impact 

of metacognitive prompts on the learning process in a follow-up task three weeks after the 

intervention and (ii) the discovery of sequential patterns that were transferred to the future 

task using a PM technique. In contrast to the previous analyses that concentrated on the 

inductive discovery of process models, this analysis demonstrates an approach to model 

testing. Again, we first conducted an analysis based on frequencies. This time, we applied a 

mixed MANOVA that used the treatment (experimental vs. control group) as the 

independent variable, and the coded learning activities of two learning sessions as repeated-

measures variable. The findings showed that the prompted experimental group demonstrated 

more metacognitive learning activities in both sessions, but also that there was a general 

downward trend of uttered metacognitive activities. In a second step, we compared the 

sequence of learning activities between two learning tasks using Conformance Checking. 

The results of this analysis also indicated that prompting effects remained stable over time 

by showing high fitness values between the process models of the first learning session and 

the data of the second session. Moreover, the PM analysis provided a more detailed view on 

the conformance between model and event log by showing the points of mismatches. 

However, the metrics that measure the precision of the process models also indicated that 

they might be too general (i.e., allowing for more behavior than observed). In conclusion, 

this analysis demonstrated the potential of PM for confirmatory model testing by taking into 

account the relative arrangement of learning activities in addition to their frequency 

distribution. Additionally, the findings provide initial evidence for sustainable long-term 

effects of metacognitive prompting on hypermedia learning. 

8. General Discussion of Findings 

The research agenda of the present dissertation addressed the potential of PM 

techniques for the evaluation of instructional support. Three analyses were conducted in the 

context of supporting hypermedia learning through metacognitive prompting to investigate 

the additional value of PM. This chapter discusses what could be achieved as well as 

limitations of PM for educational settings. Furthermore, some recommendations how to use 

PM for SRL research objectives are presented. Finally, this chapter points out important 

directions for future work. 
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8.1 The Revealed Potential of Process Mining 

All three analyses indicated the additional value of PM in comparison to a traditional 

frequency-based analysis. When conceptualizing learning as a dynamic sequence of multiple 

events, PM contributes to the detection of important routing points and regulatory loops. 

This can only be achieved by using an analysis method that takes into account the sequential 

structure of learning activities. Moreover, regarding the assessment of metacognitive 

prompting effects on hypermedia learning, the findings showed that this type of instructional 

support affected not only the frequency of regulatory activities but also the deployment of 

the sequence of events. 

In general, PM has the potential to optimize instructional support by discovering 

process patterns. For instance, the comparison of process models in analysis 1 (Sonnenberg 

& Bannert, 2015) indicated that the sequential deployment of evaluating activities should be 

scaffolded in more detail. In particular for the design of adaptive support and adaptive 

hypermedia systems that tailor support to the student’s requirements (e.g., Bouchet et al., 

2013; Brusilovsky, 2007; Molenaar & Roda, 2008), a detailed understanding of the learning 

process is a crucial prerequisite. Therefore, PM might help to increase the diagnosis of the 

proper timing of scaffolds, the calibration of support to SRL phases, and the gradual 

reduction of support (Azevedo & Hadwin, 2005). Analysis 2 (Sonnenberg & Bannert, in 

press) demonstrated how researchers might use PM techniques to examine the conditions for 

effective prompts. The temporal positioning of a scaffold within the learning process can 

significantly influence compliance and thereby the effectiveness of prompting (Azevedo et 

al., 2011; Sitzmann, Bell, Kraiger, & Kanar, 2009; Thillmann et al., 2009). PM findings on 

the learning process preceding the presentation of instructional support and how these 

learning activities affect its effectiveness can help to design production rules that trigger a 

support device adaptively. Additionally, PM techniques do not only allow to discover 

process patterns but also to test process models using additional data. As illustrated in 

analysis 3 (Sonnenberg & Bannert, submitted), researchers can compare the conformance 

between a process model and an event log to investigate the stability of supporting effects 

on the process level. 

Moreover, the representation of the sequential characteristics of a learning process as 

a visual model that allows a comprehensive understanding of the course of events, is another 

benefit of PM, especially in comparison to other analysis techniques for sequential data. 

Possibly, these models might also be used as process feedback for students (Reimann et al., 

2009; Sedrakyan, De Weerdt, & Snoeck, 2016), because they represent displays of traces 
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students can interpret (Winne, 2014). Furthermore, the findings of PM might support the 

refinement of current theoretical models by providing new insight into micro-level 

processes. Finally, PM algorithms are robust to noise and low-frequent behavior, which are 

inevitably present in data from authentic learning settings. 

8.2 Limitations of Process Mining  

Despite the potential of PM for the evaluation of instructional support, there are also 

several limitations that have to be considered. First, because PM represents an inductive 

approach, the validity of mined process patterns depends on the data quality and the 

representativity of the behavioral traces stored in the event log (Reimann et al., 2009). 

Second, the discovered process models are descriptive models. Although these models can 

be tested using additional data, conformance checking differs from inferential statistics. PM 

was originally developed for the practical purpose of optimizing business processes, not for 

the significance testing of model assumptions. Still, the process models might inform the 

development and refinement of theories (Bannert et al., 2014). Third, the findings presented 

in this dissertation are dependent on the learning setting, the sample of students, and the 

coding scheme for the think-aloud data. Therefore, the PM results are task-specific, and they 

probably do not represent general patterns. Before drawing conclusions for the design of 

instructional support, generalizations for other contexts and other samples still have to be 

verified in future research. For example, another measurement unit or process data from 

other channels might result in different findings. Fourth, we found indications that the 

precision of the process models might be improvable (see analyses 3), that means, the 

sequence of events among the students might comprise a high variance in learning behavior. 

Consequently, a common process model for all students might not be appropriate. Fifth, the 

selection of the time window in which instructional support affects the learning process 

remains challenging. In analyses 1 und 3, we considered the entire learning episode; whereas 

in analyses 2, we focused on time intervals around the presentation of prompts. We did not 

take into account the student’s current learning goal explicitly when determining the 

boundaries of a SRL process, as for example demanded by Winne (2014). Possibly, it might 

be necessary to explore in more detail when the sequential structure of a learning process 

changes, because then a new process model would be needed. A qualitative analysis of the 

think-aloud data might provide more insights into the qualitative changes of the learning 

process during the 40-minute episode. Finally, it is a key feature of PM algorithms to abstract 

from less frequent behavior and to focus on the main relations of a process. However, if the 



SYNOPSIS  32 

object of investigation is such a behavior (e.g., an anomaly), then PM might not be the 

appropriate analysis method. 

8.3 Lessons Learned - Recommendations How to Use Process Mining  

 Based on the previous experience with the application of PM on educational data, 

there are some recommendations for researchers. First, it is possible to generate process 

models in a relatively simple way by using the PM framework; however, before interpreting 

the visual output, researchers need to familiarize themselves with the PM literature (see van 

der Aalst, 2011 for an excellent introduction). An understanding of the main assumptions of 

PM (e.g., the existence of an underlying process) and how parameter settings influence the 

mining procedure represent essential basics. 

 Second, the analyses of this dissertation followed the scheme (i) theoretical 

derivation of research objectives, (ii) data inspection and visualization, (iii) selection of 

measurement units, and (iv) data analysis as well as interpretation of results. In general, these 

are common steps for empirical work. However, it is important to emphasize that researchers 

should not build on purely data-driven results, but embed their procedure in conceptual and 

theoretical work. For instance, theory and the research objectives determine the required 

granularity of process data. Moreover, when dealing with large volumes of data, the 

relevance of pre-selection, pre-analysis, and data visualizations increases. Research 

considers the selection of measurement units a general challenge (Johnson et al., 2011; 

Winne, 2014). As shown in analysis 2 (Sonnenberg & Bannert, 2016), data visualization and 

verification checks can support researchers with this challenge. 

 Third, learning is a complex and heterogeneous phenomenon (Martin & Sherin, 

2013; Reimann et al., 2014), and research indicates a high variance among students’ 

regulatory behavior (Hadwin et al., 2007; Winne, 2014). The complexity and heterogeneity 

of learning pose a great challenge for process analysis. The PM framework allows to use 

trace clustering techniques (De Weerdt, Vanden Broucke, Vanthienen, & Baesens, 2013; 

Greco, Guzzo, Pontieri, & Saccà, 2006), which should be considered before computing a 

process model. For example, in analysis 1 (Sonnenberg & Bannert, 2015), we checked if it 

is possible to split the event log into more homogeneous subsamples. Alternatively, variable-

based clustering that uses the frequency of events (Biswas, Jeong, Kinnebrew, Sulcer, & 

Roscoe, 2010; Bouchet et al., 2013), and a selection based on learner characteristics or 

learning outcome (e.g., Bannert et al., 2014) might help to identify similar groups of learners. 

However, when taking into account an event-based perspective, trace clustering is more 
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appropriate, and those techniques might become increasingly important in future (e.g., De 

Weerdt et al., 2013). 

Fourth, as illustrated in analysis 2 (Sonnenberg & Bannert, in press), it might be 

useful to combine the results of DM and PM techniques. For instance, researchers can check 

if the findings of both approaches indicate similar patterns. Recently, the application of PM 

within a prominent DM framework was facilitated through the development of the 

RapidProM plugin2. 

Fifth, PM depends on the representativeness of an event log for the observed 

behavior. Consequently, the availability of meaningful data is more important than their 

volume (e.g., Reimann et al., 2014). The think-aloud data that was used in the presented 

analyses comprised a detailed trace of learning behavior, whose granularity was appropriate 

for the research objectives. Therefore, a larger number of data points but on another data 

channel and granularity (e.g., computer log files) would not have been more useful 

necessarily. 

Finally, especially for the selection of measurement units, researchers need to also 

consider the expected stability of behavior as well as the expected sustainability of 

instructional support on the learning process. For example, in analysis 3 (Sonnenberg & 

Bannert, submitted), we selected two learning episodes to investigate the long-term effects 

of metacognitive prompts on regulatory behavior. PM allows the comparison of a process 

model and additional event data, but researchers must determine the time window for 

observation, again with respect to theoretical assumptions. 

8.4 Future Directions: A Quest for Standards and Guidelines 

Despite the first promising results using PM to discover sequential patterns, the 

parameter setting as well as further analytical decisions can be challenging due to missing 

standards and guidelines for this approach in educational settings. Moreover, more 

information is needed on the validity of identified process patterns and their significance for 

educational interventions (e.g., for instructional support). Therefore, more research on the 

development of standards and guidelines for using PM, and for other new analytical 

approaches taking into account fine-grained process data, is needed. These standards should 

address analytical and methodical issues like a recommended scheme for process analysis, a 

unified terminology and framework, and a decision support for selecting measurement units 

and techniques. 

                                                           
2 See http://www.promtools.org/doku.php?id=rapidprom:home for more information on RapidProM. 



SYNOPSIS  34 

The following two concrete proposals might be a starting point for pursuing the quest 

for standards and guidelines. First, it is necessary to replicate findings on process patterns 

using additional data, especially since most of the current analyses are exploratory. Shifting 

from exploratory to confirmatory analyses that test patterns (Winne, 2014), we might obtain 

more certainty about the validity of applied analytical approaches. Moreover, the alignment 

of SRL data on different data channels (Azevedo, 2014), the combination of process and 

product data, and the integration of findings across several SRL studies (Dent & Hoyle, 

2015) might also provide additional information on the validity of analysis methods and their 

results. Hence, researchers could gain a deeper understanding of new methodological 

approaches for analyzing process data and the impact of taken analytical decisions.  

Second, we should aim at a recommendation catalog for analysis techniques 

addressing the dynamics of SRL data. This catalog could inform researchers about the 

appropriateness of a particular technique considering the features of the present data and 

their research objectives. For example, given a certain level of granularity, or a certain data 

channel, it is recommended to use technique X to analyze the temporal dynamics of 

regulation behavior. The working plan for such a catalog could be the application of various 

analytical approaches to the same data sets, and thereby attempting to observe advantages 

and disadvantages of specific techniques for these data sets. More precisely, a comparison 

of different methods for sequential and temporal analyses presented in recent special issues 

in the journal Metacognition and Learning (Ben-Eliyahu & Bernacki, 2015; Molenaar & 

Järvelä, 2014) could be a starting point. 

In addition to these two proposals, future research needs to concentrate on conceptual 

work and the refinement of theoretical process models of learning. PM allows to test 

empirically mined or theory-based models (Bannert et al., 2014), but more elaborated 

process assumptions would be needed that correspond with the granularity of measured 

event data. The analysis of fine-grained behavioral traces requires a fine-grained theory, 

which is currently missing in the SRL field (Molenaar & Järvelä, 2014). The 

conceptualization of learning as a dynamic sequence of events kindled the growing interest 

in process data and advanced analysis methods, which, in turn, now stimulates the need for 

theoretical refinements (Ben-Eliyahu & Bernacki, 2015). With respect to the impact of 

instructional support on TEL processes, there is currently no theoretical model that explains 

causal effects on the micro level. Furthermore, Reimann et al. (2014) argued that data-

intensive approaches such as EDM techniques are not sufficient for theory development 

because inductive process patterns are only conceptually interesting if they are combined 
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with theoretical explanations. Therefore, research needs to develop and test causal models 

and mechanisms that help to understand and predict sequences of learning activities on 

various data channels as well as granularity levels. 

8.5 Conclusions: The Final Chapter?! 

In conclusion, PM techniques have the potential to contribute to the advancement of 

visualizing and understanding the impact of instructional support using fine-grained process 

data. Detailed process analyses, such as demonstrated in the three contributions of this 

dissertation, are necessary for the design and evaluation of effective support. PM can 

contribute not only to the discovery of dynamic learning behavior but also to the 

implementation of confirmatory analysis that allows examining sustainable long-term 

effects of scaffolds on the process level. Such analyses provide insights into the robustness 

of pedagogical interventions and the transfer of competencies to new situations. However, 

validity issues and comparisons with related techniques need to be addressed for PM, as well 

as for additional analytical techniques currently used to investigate process patterns. 

Returning to the search for hidden treasures, the current dissertation has 

demonstrated how PM techniques might help to discover one type of treasure, namely the 

impact of metacognitive prompting on learning activities during hypermedia learning. 

Although this is the last chapter of my dissertation, research on the dynamics of TEL 

processes and advanced analysis techniques will have to face many more challenges in future 

work. Moreover, PM has a vivid community that constantly advances its approach and 

algorithms. Therefore, the development of analytical approaches is still evolving. 

In general, I agree with the statement of Baker and Inventado (2014, p. 71) that “[…] 

the question is not which methods are best, but which methods are useful for which 

applications, in order to improve the support for any person who is learning, whenever they 

are learning”. Additionally, researchers should consider well which approach might be 

appropriate and to always remain critical towards a chosen analysis method. Finally, more 

researchers should be encouraged to use PM and related techniques to analyze their process 

data with respect to the sequential and temporal aspects of learning events. Because only in 

this way, the field can make progress towards the establishment of advances analysis 

techniques. 
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10. Appendix 
 

Appendix 1. Original scheme for coding the students’ think-aloud data based on Bannert’s 
(2007) framework for self-regulated hypermedia learning (in German) 

Oberkategorie: Metakognition (Regulatorischer Prozess) 

Name der 
Subkategorie  

Beschreibung der Subkategorie und Beispiele 

Orientierung 

 

 

Sammeln von Informationen (Aufgabe, Situation, Person), die für die Ausführung von 
strategischem Verhalten relevant sind 
(„Wo bin ich?“, „Was muss ich tun?“) 
 

- Liest Instruktion oder Teile daraus  

- Erneutes Lesen der Instruktion oder Teile (Wiederholung) 

- Vergegenwärtigt sich Aufgabenstellung und spezifische Vorgaben der schriftlichen Instruktion (“Kommentiert 

Instruktion, Aufgabe“) 
- Verschafft sich Überblick mit Seite Gliederung (“Ich schau mir jetzt erst mal die Gliederung genauer an“) 
- Verschafft sich Überblick mit Seite Lernziele (“Ich lese mal die Lernziele, um zu sehen, um was es geht“) 
- Verschafft sich auf andere Art Überblick (mit Überfliegen aller Webseiten) 

- Verschafft sich Überblick über Webseite (Überfliegen einer Webseite) 

- Beachtet Länge der Information (“Das ist aber so viel“) 

- Betrachtet Art der Information (“Das ist ja hauptsächlich Text“,  “Abbildungen sind auch dabei“) 
- Schaut nach bekanntem bzw. äußert bekanntes Wissen; Wissensaktualisierung (“Das habe ich in der Vorlesung 

schon gehört“, “Das kommt mir bekannt vor“,  “Ich überlege mir, was ich zu diesem Gebiet schon weiß“, 
“Bandura, das ist mit den Lernexperimenten“) 

- Schaut nach unbekanntem bzw. äußert unbekanntes Wissen; Wissensaktualisierung (“Das ist völlig neu für 

mich“, “Ich überlege mir, was ich zu diesem Gebiet noch nicht weiß“, “Löschen.....hm, habe nie was davon 

gehört) 

- Äußert sich über eigene stabile Eigenschaften (“Solche Aufgaben liegen mir nicht“ - nur in Orientierungsphase, 

wenn im weiteren Lernverlauf wieder solche Äußerungen gemacht werden, dann mit einer Motivationskategorie 

codieren) 

- Äußert sich über eigene situative Eigenschaften (“Heute kann ich mich schlecht konzentrieren“) -  nur in 

Orientierungsphase, wenn im weiteren Lernverlauf wieder solche Äußerungen gemacht werden, dann mit einer 

Motivationskategorie codieren 

Planung Strategische Handlungsvorbereitung (beinhaltet Zieldefinition, Spezifikation 
bestimmter Lernstrategien, deren Eigenschaften und Konsequenzen, zieladaptive 
Strategieauswahl, Zeitplanung) 
(“Wie gehe ich vor?“, “Was ist zu beachten?“) 
 
- Plant Vorgehen (“Ich überfliege erst mal alle Seiten, danach vertiefe ich“, “Ich überlege erst mal, welche Seiten 

(evtl. in welcher Reihenfolge) ich lernen muss“, “Jetzt werde ich erst mal schauen, was alles noch dazu gehört 

und dann schaue ich noch mal, was meine Aufgabe ist“) 
- Überlegt Kontrollmaßnahmen (“Am Ende nehme ich mir noch Zeit, um das Wichtigste zu wiederholen“) 
- Teilt Zeit auf; berücksichtigt Zeit (“Insgesamt habe ich 30 Minuten, davon werde ich in den ersten 5 Minuten“, 

“Da die Zeit knapp bemessen wird, gehe ich direkt auf Punkt 3: ich schaue erst mal, ob ich mich hier orientieren 

kann und versuche dann zum Verstärkerplan zu kommen“) 

Ziel-
spezifikation 

Formulierung und Spezifikation eines Lernziels, wobei zwischen globalen, allgemeinen 
Zielen und Teilzielen unterschieden wird. Das Ziel muss nicht (gleich) verfolgt werden 
(“Was will ich?“) 
 

- Formuliert/spezifiziert neue globale Ziele (“Ich muss die Grundlagen zum operanten Konditionieren lernen“, 
Person stellt sich allgemeine Lernfragen) 

- Formuliert/spezifiziert neue Subziele (“Ich muss wissen, was Kontingenz bedeutet“, Person stellt sich detaillierte 

Lernfragen) 

- Früher formulierte/spezifizierte globale Ziele werden erneut spezifiziert (“Jetzt muss ich noch mal schauen, was 

Kognitivismus bedeutet“) 
- Früher formulierte/spezifizierte Subziele werden erneut spezifiziert (“Jetzt muss ich doch mal schauen, was 

Kontingenz bedeutet“) 
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Suche der 
Information 

 

 

 

 

Informationen werden gesucht  
(“Wo finde ich die nötige Information?“, “Wie komme ich dahin?“) 
 

- Sucht Information (“Jetzt suche ich mal die Seite mit den Verstärkerplänen“, “Ich suche so lange durch, bis ich 

das finde, ah hier“)  
- Findet gesuchte Informationen (“Da ist es ja“, “Endlich“, “Da hab ich‘s ja“, “Wo ist hier Skinnerbox, ach hier“) 
- Weiß nicht was genau suchen (“Was suche ich eigentlich?“) 
- Weiß nicht wo/wie suchen (“Wo steht das denn?“, “Wie komme ich dahin?“) 

- Klicken ohne genaue Suche geäußert zu haben 

Bewertung 
der 

Information 

 

 

 

Auf- bzw. vorgefundene Informationen werden mit Blick auf ein Ziel bewertet 
(“Ist die Information für Zielerreichung relevant“) 
 

- Bewertet Information als zielrelevant (“Das ist auch wichtig“) 
- Bewertet Information als zielirrelevant (“Die Personenbeschreibung von Skinner ist für die Aufgabenstellung 

nicht weiter wichtig“) 
- Bewertet Information als irrelevant wegen der “grauen Seiten“ (“Ah, das ist eine dunkle Seite, das ist nicht 

wichtig“, “Obwohl das eine graue Seite ist, lese ich da mal rein“)  
- Weiß nicht, ob Information relevant ist 

Evaluation Kontrolle des Lernfortschritts während des Lernens und Lernerfolg am Ende 
(“Habe ich mein Teil-/Ziel erreicht?“) 
 

- Überprüft Verständnis/Lernerfolg (“Jetzt schau ich mir mal die Beispiele an, ob ich das verstanden habe“) 
- Rekapituliert Inhalte ohne Unterlagen (Webseiten) zur Hilfe zu nehmen (überwiegend am Ende des 

Lernprozesses) 

- Überprüft, ob Lernziele (auf Webseite 1) erreicht sind /Aufgabe erfolgreich ausgeführt wurde (“Habe ich alle 

Punkte erarbeitet?“, “Fehlt noch was?“) 
- Gleicht mit Aufgabenstellung ab (checkt Lernpunkte der Instruktion)  

- Checkt Mitschrift  

- Gleicht Mitschrift mit Instruktion ab 

Monitoring 
und 

Regulation 

 

Überwachen und Steuern des Lernprozesses, betrifft alle Stufen des Lernvorgangs 
(Orientierung, Planung, Zielspezifikation, Suche und Bewertung, Evaluation und 
Verarbeitung). Kontrollmaßnahmen. Positive und negative Äußerungen 
 
- Beachtet Zeit/-druck (“Dafür bleibt keine Zeit“, “Dafür nehme ich mir ein paar Minuten Zeit“) 
- Lernpunkt/Verarbeitung erfolgreich (“Reizgeneralisierung – das habe ich jetzt“) 
- “Jetzt schaue ich noch mal die Liste durch, das habe ich, das habe ich und das habe ich noch nicht gelernt“ 

- Äußert Erfolge bei Orientierung  

- Äußert Erfolge bei Planung  

- Äußert Erfolge bei Zielspezifikation (“Ach ja, ich lerne also, was operante Konditionierung bedeutet und dabei 

auch die positive Verstärkung“) 
- Äußert sich positiv zur Suche (“Das werde ich schnell wiederfinden“)  
- Äußert sich positiv zur Bewertung (“Ich schau mal da rein und werde schnell sehn, ob das wichtig ist“)  
- Äußert Schwierigkeiten, Probleme bei Orientierung (findet sich nicht mehr zurecht (“Wo bin ich eigentlich?“, 

“Was muss ich noch/eigentlich tun?“ “Ist das umfassend genug“) 
- Äußert Probleme bei Planung (“Weiß nicht, wie ich vorgehen/weitermachen soll“)  
- Äußert Probleme bei Zielspezifikation (“Weiß nicht, was ich lernen soll“) 
- Äußert Suchprobleme (“Das finde ich nie“) 
- Äußert Bewertungsprobleme (“Ist das überhaupt relevant?“) 
- Äußert Behaltensprobleme (“Das behalte ich nicht“, “Es ist alles so schwer zu merken“) 
- “Das kann ich mir merken“ 

- Äußert Elaborationsprobleme (“Ich bringe das nicht zusammen“)  
- “Das hängt damit zusammen“ 

- Verstehensprobleme (“Das verstehe ich nicht“, “Das ist irgendwie nicht so einleuchtend“) 
- “Das verstehe ich“, “Jetzt verstehe ich es“ 

- Organisationsprobleme (“Die Struktur des Lernstoffs ist mir unklar“) 
- “Die Struktur des Lernstoffs ist mir klar“  
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Oberkategorie: Kognition (Semantische Verarbeitung) 

Informationsaufnahme und Verarbeitung 

Strategische Aktivitäten: Dabei handelt es sich um jene Lernaktivitäten, die vom Probanden gezielt zur 

Aufnahme und Verarbeitung der Informationen (z.B. Webseiten, Tabellen, Bilder) eingesetzt werden.  

Erstmaliges 
Lesen 

Beinhaltet das erstmalige Lesen von Webseiten, Tabellen und der Gliederung 

Ober-
flächliches 

Wiederholen 

Wiederholen im Sinne von Memorieren, Auswendiglernen 
 

- Wörtliches Wiederholen, einprägen von Fachbegriffen; Lernt Stoff oder Regeln, Fachbegriffe, Formeln 

auswendig  

- Wiederholtes Lesen der Ausschnitte im Sinne von Auswendiglernen 

Oberfläch-
liches 

Aufschreiben 

Wortwörtliches Aufschreiben der Information 

 

"Tiefe" 
Elaboration 

und Verstehen 

Wiedergabe in eigenen Worten (Paraphrasieren) 
 
- Stellt Verknüpfungen her (auch mit eigenen Erfahrungen/Wissen), bildet Analogien, stellt Beziehungen zu 

anderen Aspekten her; versucht Ähnlichkeiten und Unterschiede zwischen Themen herzustellen; formuliert die 

wichtigsten Ideen 

- Erklärt sich selbst den Sachverhalt 

- Formuliert Beispiele (auch aus dem Alltagsleben) 

- Formuliert praktische Anwendungen 

- Stellt und beantwortet Fragen an das Lernmaterial 

- Kommentiert/hinterfrägt kritisch den Lerninhalt (d.h. nicht abschätzig!), z.B. überlegt alternative 

Behauptungen, Schlussfolgerungen, formuliert eigene Ideen dazu, wägt Vor- und Nachteile ab, überprüft 

Schlüssigkeit der Behauptungen 

- Aktualisierung des Vorwissens und Verknüpfung des Vorwissens mit dem Lerninhalt 

"Tiefe" 
Organisation 

- Fertigt Schaubild, Map, Gliederung an 

- Schreibt wichtige Inhalte heraus 

- Fasst Inhalt schriftlich zusammen; Erstellt Zusammenfassung der Hauptideen 

- Stellt Fachausdrücke und Definitionen in eigener Liste zusammen 

- Erweitert Mitschrift 

Oberkategorie: Motivation 

Motivationale-affektive Ausrichtung der Selbstregulation, die eine förderliche oder hemmende affektiv-

motivationale Einbettung der kognitiven Aktivität erkennen lassen 

Motivation 

 

 

 

 

 

 

 

Person äußert positive oder negative Bemerkungen bzgl. der Aufgabe 
 

- “Aufgabe ist zu leicht“ 

- “Aufgabe ist spannend/interessant“, “Ich bin gespannt, was noch kommt“ 

- “Aufgabe ist relevant fürs Studium“ 

- “Aufgabe ist zu schwierig“ 

- “Aufgabe ist langweilig“ 

- “Aufgabe ist irrelevant fürs Studium“ 

Person äußert sich positiv oder negativ über eigene Fähigkeiten, Erfolgszuversicht 
und Selbstvertrauen 
 

- Selbstvertrauen, erfolgszuversichtlich, erfolgsmotiviert (“Das kann ich gut“) 
- “Ich muss mich mehr anstrengen, konzentrieren“ 

- Mangelnde eigene Fähigkeit für solche Aufgaben, geringes Selbstvertrauen, misserfolgsmotiviert  

- “Das kann ich sowieso nicht“ 

- „Ich kann mich nicht mehr konzentrieren“ 

- „Ich schweife ab, das lenkt mich ab“ 
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Person macht positive oder negative Äußerungen über gegenwärtige Lernsituation, 
Auswirkungen des lauten Denkens und/oder Gestaltung der Webseiten 
 

- “Lernen/ Lernsituation ist authentisch“ 

- “Lautes Denken erleichtert“  
- “Webseiten sind gut gestaltet/strukturiert“ 

- “Lernen/ Lernsituation ist artifiziell“ 

- “Lautes Denken behindert“ 
- “Webseiten sind schlecht gestaltet/strukturiert“, “Gliederung ist unübersichtlich“ 

Oberkategorie: Restkategorie 

Interaktion 
mit 

Versuchsleiter 

 

Person stellt Fragen bezüglich der Durchführung oder Versuchsleiter erinnert an 
lautes Denken und Zeitlimitierung  
 

- Proband fragt nach; “Ist das richtig“, “Darf ich Notizen machen“; Versuchsleiter antwortet 
- Versuchsleiter erinnert an lautes Denken; Proband antwortet 

- Versuchsleiter erinnert an Zeitvorgabe; “Noch 5 Minuten“, “Noch 1 Minute“; Proband antwortet 

Verbesserungs
-vorschläge 

für Webseiten 

Person äußert Verbesserungsmöglichkeiten in Bezug auf den Aufbau und die 
Organisation der Webseiten 
 
- „Eine Suchfunktion wäre gut“ 

- „Mehr Farbe wäre besser“ 

Handhabung 
des 

Programms 

Person bewertet allgemein den Umgang mit dem Lernprogramm 

Kommentar 
zur Navigation 

Kommentar zur Navigation ohne inhaltlichen Bezug und gleichzeitige Ausführung des 
Gesagten 
 
- „Ich klicke jetzt darauf“, „Ich fahre mal runter“ 

- „Ich klick das jetzt an“ 

Sprechpause Sprechpause die länger als 5 Sekunden dauert 

Note. English translations of the modified coding schemes are displayed in the journal articles. 
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Appendix 2. Screenshot of the learning environment including a metacognitive prompt 

 

Note. The main elements are labeled here for a better understanding of the environment, however it was not 

labeled in the learning sessions. Participants were asked to select at least one reason for node selection by 

choosing among a list of strategic reasons presented in the prompt window. The list comprised orientation, 

goal-setting, planning, checking of understanding, monitoring of learning, control of learning, and evaluation 

of goal attainment. 
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Appendix 3. Learning task and instructions of the first learning session (in German) 

Lernen in netzbasierten Lernumgebungen  
 
Jetzt beginnt der eigentliche Lernteil. Bitte betrachten Sie hierzu folgenden Fall: 

Ein Lehrer klagt über massive Disziplinprobleme seiner Klasse. Die 

Kinder rufen durcheinander, fallen sich gegenseitig ins Wort, bleiben 

nicht auf ihren Plätzen sitzen, arbeiten im Unterricht nicht mit und 

vernachlässigen ihre Hausarbeiten. Seine Kollegin hat mit ihrer 

Klasse keine Probleme, zumindest nicht mehr. Sie hat vor ein paar 

Wochen einen Kurs zur pädagogischen Verhaltensmodifikation be-

sucht und dabei gelernt, wie auf der Grundlage der behavioristischen 

Lerntheorien solche Disziplinprobleme reduziert werden können. 

Über solche Themen handelt unser web-basiertes Lernmaterial. Es behandelt die behaviori-

stischen Lerntheorien und deren Anwendung in pädagogischen Situationen. 

 

WICHTIG:  

Die Zeit ist knapp bemessen. Sie reicht aus, um die genannten Konzepte zu lernen und zu 

verstehen. Sie reicht allerdings nicht aus, um die gesamte Lektion erschöpfend durch-

zuarbeiten. Hierzu benötigt man mindestens 2 Stunden. Aus Zeitgründen konzentrieren Sie 

sich also bitte hauptsächlich auf die Seiten, welche die theoretischen Grundlagen der 

operanten Konditionierung behandeln. 

Wenn Sie wollen, können Sie sich während des Lernens Notizen machen, die Sie jedoch 

später nicht mehr verwenden dürfen. 

Bitte sprechen Sie nun alles laut aus, was Ihnen durch den Kopf geht. Wenn Sie 
Textstellen lesen, lesen Sie sie bitte laut vor. Sollten Sie eine Weile schweigen, werden 
wir Sie auffordern, Ihre Gedanken wieder laut zu äußern. 

Ihre Aufgabe ist es nun, das web-basierte Lernmaterial sorgfältig durchzuarbeiten, 

so dass Sie in der Lage sind, einem Studienkollegen oder -kollegin die 

grundlegenden Konzepte der operanten Konditionierung zu beschreiben und zu 

erklären, wie beispielsweise: 

 Verstärkerplan 

 Premack-Prinzip 

 Verstärkung und Bestrafung 

 Experimente mit der Skinnerbox 

 Das Prinzip der operanten Konditionierung  

 Reizgeneralisierung und -diskrimination 

 Kontingenz  

Sie haben hierfür insgesamt 40 Minuten Zeit. 
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Appendix 4. Learning task and instructions of the second learning session (in German) 

Lernen in netzbasierten Lernumgebungen  
 
Jetzt beginnt der eigentliche Lernteil. Bitte betrachten Sie hierzu folgenden Fall: 

Ein Lehrer klagt über massive Motivationsprobleme seiner Klasse. Die 

Kinder arbeiten im Unterricht nicht mit und vernachlässigen ihre 

Hausarbeiten. Seine Kollegin hat mit ihrer Klasse keine Probleme, 

zumindest nicht mehr. Sie hat vor ein paar Wochen einen Kurs zu 

pädagogischen Motivationsförderprogrammen besucht und dabei 

gelernt, wie auf der Grundlage der klassischen Motivationspsychologie 

solche Motivationsprobleme reduziert werden können. 

Über solche Themen handelt unser web-basiertes Lernmaterial. Es behandelt die behaviori-

stischen Lerntheorien und deren Anwendung in pädagogischen Situationen. 

 

WICHTIG:  

Die Zeit ist knapp bemessen. Sie reicht aus, um die genannten Konzepte zu lernen und zu 

verstehen. Sie reicht allerdings nicht aus, um die gesamte Lektion erschöpfend durch-

zuarbeiten. Hierzu benötigt man mindestens 2 Stunden. Aus Zeitgründen konzentrieren Sie 

sich also bitte hauptsächlich auf die Seiten, welche die theoretischen Grundlagen der 

Motivationspsychologie behandeln. 

Wenn Sie wollen, können Sie sich während des Lernens Notizen machen, die Sie jedoch 

später nicht mehr verwenden dürfen. 

Bitte sprechen Sie nun alles laut aus, was Ihnen durch den Kopf geht. Wenn Sie 
Textstellen lesen, lesen Sie sie bitte laut vor. Sollten Sie eine Weile schweigen, werden 
wir Sie auffordern, Ihre Gedanken wieder laut zu äußern.  

Ihre Aufgabe ist es nun, das web-basierte Lernmaterial sorgfältig durchzuarbeiten, 

so dass Sie in der Lage sind, einem Studienkollegen oder -kollegin die 

grundlegenden Konzepte der Motivationspsychologie  zu beschreiben und zu erklären, 

wie beispielsweise: 

 Risikowahlmodell 

 Leistungsmotiv 

 Motive und Motivation 

 Anschlussmotiv 

 Bedürfnispyramide 

 Extrinsische und intrinsische Motivation 

Sie haben hierfür insgesamt 40 Minuten Zeit. 
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Discovering the Effects of Metacognitive Prompts on the Sequential 
Structure of SRL-Processes Using Process Mining Techniques 

Christoph Sonnenberg and Maria Bannert
University of Wuerzburg, Instructional Media, Germany

christoph.sonnenberg@uni wuerzburg.de

ABSTRACT: According to research examining self regulated learning (SRL), we regard individual
regulation as a specific sequence of regulatory activities. Ideally, students perform various
learning activities, such as analyzing, monitoring, and evaluating cognitive and motivational
aspects during learning. Metacognitive prompts can foster SRL by inducing regulatory activities,
which, in turn, improve the learning outcome. However, the specific effects of metacognitive
support on the dynamic characteristics of SRL are not understood. Therefore, the aim of our
study was to analyze the effects of metacognitive prompts on learning processes and outcomes
during a computer based learning task. Participants of the experimental group (EG, n=35) were
supported by metacognitive prompts, whereas participants of the control group (CG, n=35)
received no support. Data regarding learning processes were obtained by concurrent think aloud
protocols. The EG exhibited significantly more metacognitive learning events than did the CG.
Furthermore, these regulatory activities correspond positively with learning outcomes. Process
mining techniques were used to analyze sequential patterns. Our findings indicate differences in
the process models of the EG and CG and demonstrate the added value of taking the order of
learning activities into account by discovering regulatory patterns.

KEYWORDS: self regulated learning, metacognitive prompting, process analysis, process mining,
think aloud data, HeuristicsMiner algorithm

1 INTRODUCTION 

Recent research in the field of self regulated learning (SRL) has moved to a process orientated or event
based view to investigate how learning processes unfold over time and how scaffolds influence the
dynamic nature of regulatory activities. Two recent special issues indicate the importance of
investigating sequential and temporal patterns in learning processes and present new methodological
contributions for the analysis of time and order in learning activities (Martin & Sherin, 2013; Molenaar &
Järvelä, 2014). Technical advances allow the recording of learning related behaviour on a very detailed
level and largely unobtrusively for learners (e.g., Azevedo et al., 2013; Winne & Nesbit, 2009). As such,
researchers have focused more on behavioural process data and less on measures of aptitude (Azevedo,
2009; Bannert, 2009; Veenman, van Hout Wolters, & Afflerbach, 2006). When focusing on process data,
differences among learners are explained on the event level with respect to regularities and patterns
(Winne & Perry, 2000), allowing researchers to gain new insights into the process of learning.
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Process analysis methods beyond the variable centred coding and counting approach (Kapur, 2011) can
provide valuable information on the specific effects of scaffolds (e.g., metacognitive prompts) and are
able to inform researchers about how to optimize an applied supporting strategy further (e.g., Jeong et
al., 2008; Johnson, Azevedo, & D’Mello, 2011; Molenaar & Chiu, 2014). Moreover, findings on the
sequential and temporal structure of SRL processes can provide knowledge for the development of SRL
theories on the micro level (Molenaar & Järvelä, 2014).

Our approach applies the techniques of process mining (Tr ka, Pechenizkiy, & van der Aalst, 2010) on
process data obtained by concurrent think aloud protocols (Ericsson & Simon, 1993). For example, we
have compared process patterns of students with high versus low learning performance in a recent
study (Bannert, Reimann, & Sonnenberg, 2014) and demonstrated that process mining techniques can
reveal differences in the sequential patterns of regulatory processes. Now, we are investigating the
effects of metacognitive prompts (Bannert, 2009) by means of an in depth analysis using process mining
techniques. An analysis of differences in the process models between students supported by
metacognitive prompts and students without prompts can provide information on how to promote
beneficial regulatory patterns and thereby improve learning.

The paper is structured as follows: First, we introduce research focusing on the support of SRL through
metacognitive prompts. Second, we describe SRL models that emphasize the importance of different
learning events and event patterns. Third, some of the foundations of analyzing learning processes with
process mining are introduced. Fourth, we analyze process data from coded think aloud protocols of an
experimental study. In addition to the traditional frequency based approach, the relative arrangement
of learning activities is taken into account using process mining techniques. Finally, the results of these
analyses are compared, and the effects of metacognitive support on the sequential structure of SRL
processes are discussed.

2 THEORETICAL BACKGROUND 

2.1 Metacognitive Support through Prompts 

Current research in metacognition and SRL shows that learners often do not spontaneously use
metacognitive skills during learning, which in turn leads to poorer learning outcomes (e.g., Azevedo,
2009; Bannert & Mengelkamp, 2013; Greene, Dellinger, Tüysüzoglu, & Costa, 2013; Winne & Hadwin,
2008; Zimmerman, 2008). The students’ awareness and control of their own manner of learning is
important, especially in technology enhanced and open ended learning settings (Azevedo, 2005; Lin,
2001; Lin, Hmelo, Kinzer, & Secules, 1999). In most open ended learning environments, it is constantly
necessary to make decisions on what to do and where to go next and to evaluate the retrieved
information with respect to current learning goals (Schnotz, 1998). Therefore, the general purpose of
our research is to provide metacognitive support for hypermedia learning through metacognitive
prompts.
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Instructional prompts are scaffolds that induce and stimulate students’ cognitive, metacognitive, and
motivational activities during learning (Bannert, 2009). The underlying assumption is that students have
already acquired these processes, but they do not recall or execute them spontaneously in a specific
learning situation (production deficit; Veenman et al., 2006; Veenman, 2007). Metacognitive prompts
aim at inducing regulatory activities such as orientation, goal specification, planning, monitoring and
control, and evaluation strategies (Bannert, 2007; Veenman, 1993) by asking students to reflect upon,
monitor, and control their own learning process.

Previous research has demonstrated beneficial effects from metacognitive prompting (e.g., Azevedo,
Cromley, Moos, Greene, & Winters, 2011; Ge, 2013; Johnson et al., 2011; Lin & Lehman, 1999;
Veenman, 1993; Winne & Hadwin, 2013). For example, Lin and Lehman (1999) prompted students to
give reasons for their actions to increase the awareness of their own strategies by utilizing a pop up
window at certain times in a computer based simulation environment (e.g., “What is your plan for
solving the problem?”). Their findings showed significantly higher performance on contextually
dissimilar problems (i.e., far transfer performance) for the students supported by prompts. Based on an
analysis of think aloud data, Johnson et al. (2011) showed that prompts given by a human tutor during
learning in a hypermedia learning environment influenced the deployment of regulatory processes and
temporal dependencies. Compared to a control group, the externally assisted condition also achieved a
better learning outcome.

In previous experiments, we investigated the effects of different types of metacognitive prompts during
hypermedia learning (Bannert & Mengelkamp, 2013; Bannert & Reimann, 2012). The prompts
stimulated or even suggested appropriate metacognitive learning activities for university students
during a hypermedia learning session lasting approximately 40 minutes. For example, in one of our
experiments, students were prompted after each navigational step in a learning environment to
verbalize the reasons why they had chosen the next step (so called reflection prompts; Bannert, 2006).
Overall, the findings confirm the positive effects of all investigated types of metacognitive prompts on
transfer performance and the use of learning strategies during learning.

Our most recent work (Bannert, Sonnenberg, Mengelkamp, & Pieger, 2015) investigates the effects of a
new type of metacognitive prompt (so called self directed metacognitive prompts) on navigation
behaviour and learning outcomes. In summary, the findings show that such prompts enhance strategic
navigation behaviour (i.e., students visited relevant webpages significantly more often and spent more
time on them) and transfer performance (i.e., students performed better at applying knowledge of basic
concepts to solve prototypical problems compared with a control group). In addition, learner
characteristics (e.g., prior domain knowledge or verbal abilities) were obtained by questionnaires, but
they had no effects as covariates in our analyses. The present study extends this contribution by
focusing on the sequential analysis of coded think aloud data obtained during learning.
Despite the findings about the general effectiveness of metacognitive prompts, the specific effects of
prompts on learning processes remain unexplained. More precisely, a closer look at the effects of
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prompts on the sequential and temporal structure of SRL processes is necessary (e.g., Jeong et al., 2008;
Johnson et al., 2011). Understanding this process at the micro level would allow researchers to better
design metacognitive support. For example, regulatory patterns associated with successful learning but
that could not be fostered by metacognitive prompts could be identified. Subsequently, the
metacognitive support could be adapted by taking information about these patterns into consideration.
Therefore, we focus on analyzing the sequential order of learning activities obtained by concurrent
think aloud protocols during learning.

2.2 Regulatory Patterns in SRL 

Boekaerts (1997) describes SRL as a complex interaction of cognitive, metacognitive, and motivational
regulatory components. With respect to assumptions in SRL models (e.g., Winne & Hadwin, 2008;
Zimmerman, 2008), successful studying corresponds with an active performance of different regulatory
activities during learning. These regulatory activities include employing orientation to obtain an
overview of the learning task and resources, planning the course of learning, monitoring and controlling
all learning steps, and evaluating the learning product. Research in SRL has confirmed that successful
learning is associated with the active deployment of these regulatory activities (e.g., Azevedo, Guthrie, &
Seibert, 2004; Bannert, 2009; Johnson et al., 2011; Moos & Azevedo, 2009).

Most SRL models share the common assumption of a time ordered sequence of regulatory activities,
although they do not imply a strict order (Azevedo, 2009). Usually, three cyclic phases of forethought,
performance, and reflection (Zimmerman, 2000) are distinguished. The forethought phase comprises
task analysis, goal setting, and strategic planning. During the performance phase, self observations for
adaptations (monitoring) and control strategies (self instruction or time management) are deployed.
Finally, the reflection phase includes self judgments and self reactions, which, in turn, can inform the
next forethought phase. The COPES model (Winne & Hadwin, 2008) represents a more elaborate
description of regulatory processes in terms of an information processing model. Here, learning occurs
in three phases, namely, task definition, goal setting and planning, and studying tactics, and a fourth
optional phase, adaptations to metacognition. In addition, monitoring and control are crucial elements
in the COPES model. Monitoring is used to detect differences between current conditions (e.g., learning
progress) and standards (e.g., predefined learning goals), which, in turn, activates control processes to
reduce discrepancies (e.g., engaging more intensively in a certain topic).

2.3 Microanalysis Using Process Mining Techniques 

In a recent study (Bannert et al., 2014), we suggested process mining (PM) as a promising method in SRL
research. PM allows researchers to describe and test process models of learning that incorporate an
event based view and that are at the high end of process granularity. These process models are able to
represent the workflow of activities (van der Aalst, Weijters, & Maruster, 2004). Therefore, we argue
that PM is adequate for investigating regulatory patterns based on process assumptions conceptualized
in SRL research, as described in the previous section. For example, PM or data mining techniques can
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extract patterns by analyzing process data (e.g., think aloud protocols or log files), and the resulting
patterns can be compared to assumptions of SRL models (e.g., the assumption of a time ordered
sequence of regulatory activities in successful learning or the concept of dynamic and cyclic patterns).
Therefore, the observed behaviour in process data could be aligned with SRL models.

PM is an approach that can be used in the context of Educational Data Mining (Romero, Ventura,
Pechenizkiy, & Baker, 2010). In this context, PM represents student activities as a process model derived
from their log traces while using a computer based learning environment. In general, PM methods allow
researchers to discover process models inductively from activity sequences stored in an event log, test
process models through conformance checking with additional event data, or the extension of existing
models (Tr ka et al., 2010). Especially in the context of computer supported learning research, PM
techniques are increasingly used to study learning from a process oriented perspective (Reimann &
Yacef, 2013; Schoor & Bannert, 2012). For example, PM techniques can be applied to modelling
sequences of learning activities that have been recorded in log files or coded think aloud data.

By using PM techniques to discover process patterns in SRL activities, we assume that the present
process data — comprising temporally ordered event sequences — is directed by one or more mental
processes, with each set of processes corresponding to a process model. Hence, a process model
represents a system of states and transitions that produced the sequence of learning events. Usually,
the performance of this system is driven by a plan for action. In the context of SRL, this plan can be a
learning strategy or an external resource provided to the learner (e.g., prompts). A process model is able
to express a holistic view of a process by modelling a system comprising states and transitions rather
than a process as sequence perspective (Reimann, 2009).

With respect to related approaches, hidden Markov models (e.g., Jeong et al., 2008) also allow for
expressing the holistic nature of a process by taking into account the entire sample of behaviour.
However, this approach uses time consuming iterative procedures; generally, the researcher has to pre
define the appropriate number of states, and the interpretation of the output model is often difficult
(van der Aalst, 2011). There are, however, approaches for automatically selecting the appropriate
number of states using the Bayesian Information Criterion (e.g., Li & Biswas, 2002). Additionally, hidden
Markov models, as well as simple transition graphs and other low level models, represent a lower
abstraction level than the PM notation language (e.g., inability to represent concurrency, which typically
results in more complex models). Finally, PM techniques have the advantage of explicitly dealing with
noise (i.e., exceptional or infrequent behaviour), which is necessary when analyzing real life event
traces. For these reasons, we recommend PM techniques for analyzing sequences of learning activities
(see Bannert et al., 2014 for more information regarding the comparison to other process analysis
methods).

2.4 Research Questions and Hypotheses  

Metacognitive prompts ask students explicitly to reflect, monitor, and control their own learning
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process. They focus students’ attention on their own thoughts and on understanding the activities in
which they are engaged during learning (e.g., Bannert, 2006; Hoffman & Spatariu, 2011). Hence, it is
assumed that prompting students to monitor and evaluate their own manner of learning will allow them
to activate their repertoire of metacognitive knowledge and learning strategies, which will consequently
enhance their learning process and learning outcome. However, according to previous work and
research on metacognitive prompting, the use of metacognitive prompts has to be explained and
practiced in advance to guarantee an adequate application during learning (e.g., Bannert, 2007;
Veenman, 2007). Based on the findings of studies investigating the effects of metacognitive prompts
(e.g., Azevedo et al., 2004; Bannert, 2009), we expect that students supported by metacognitive
prompts will engage in more regulatory activities, as obtained by coded think aloud protocols.
Moreover, scaffolded SRL processes should result in better learning performance; that is, a positive
effect on learning outcomes mediated by improved regulatory behaviour. Whereas these two
hypotheses are based on a variable centred view of learning processes, we assume that an event
centred analysis that takes into account the relative arrangements of multiple learning activities can
provide additional information about the sequential structure of the regulatory behaviour induced by
the prompts (e.g., a sequence of orientation activities, searching for relevant information, cognitive
processing, and evaluation of progress are typically executed). Therefore, the effectiveness of
metacognitive prompts can be analyzed on a micro level, and the results can be used to derive
implications for the improvement of metacognitive support. In detail, the following research questions
are addressed in the present study:

1. Does metacognitive prompting during learning influence SRL processes by engaging students in
more metacognitive learning events?

2. Does the number of metacognitive learning events mediate the effect of metacognitive prompting
on learning outcomes?

3. Which sequential patterns of SRL activities are induced by metacognitive prompting compared to a
control group without support?

2.5 Process Mining Using the HeuristicsMiner Algorithm 

To analyze the relative arrangement of learning activities, we employed the PM approach (Tr ka et al.,
2010). The basic idea of PM is to use an event log to generate a process model describing this log
inductively (process discovery). Furthermore, theoretical models or empirically mined models can be
compared to event logs (conformance checking), and existing models can be extended (model
extension). Fluxicon Disco Version 1.7.2 (2014) software was used for data preparation. Next, the event
log was imported into the ProM framework Version 5.2 (2008), and PM was conducted. The ProM
framework comprises a variety of PM algorithms that can be assigned to the functions of discovery,
model checking, or model extension. For our analysis, we used the HeuristicsMiner algorithm (Weijters,
van der Aalst, & de Medeiros, 2006) for process discovery.
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We selected the HeuristicsMiner algorithm based on a comparison of seven state of the art process
discovery algorithms on the dimensions of accuracy and comprehensibility, provided by de Weerdt, de
Backer, Vanthienen, and Baesens (2012). Accuracy is defined as the capability of a sound capturing of
behaviour in an event log, omitting over and underfitting (i.e., a process model should balance between
generality and precision). Comprehensibility comprises simplicity and structuredness of the resulting
process models, and thereby determines the complexity and ease of interpretation of the output. For
the first time, real life event logs containing log data from different information systems were used for
benchmarking PM algorithms. Among the seven algorithms, the HeuristicsMiner was the best technique
for the real life logs used and the authors conclude that “HeuristicsMiner seems the most appropriate
and robust technique in a real life context in terms of accuracy, comprehensibility, and scalability” (De
Weerdt et al., 2012, p. 671). In the following, we explain the general principle and functionality of this
algorithm in more detail.

2.6 General Principle of the HeuristicsMiner  

The general principle of the HeuristicsMiner algorithm is to take into account the sequential order of
events for mining a process model that represents the control flow of an event log (Weijters et al.,
2006). The event log containing case IDs, time stamps, and activities represents the data input. Based on
this input, the algorithm searches for causal dependencies between activities by computing a
dependency graph that indicates the certainty of a relation between two activities (e.g., event a is
followed by event b with a certainty of 0.90). Finally, a so called heuristic net is generated as an output
model that constitutes a visual representation of the dependencies among all activity classes in the
event log. The resulting process model can be adjusted by setting thresholds for the inclusion of
relations in the heuristic net (for more details on parameter settings, see below).

In addition, the HeuristicsMiner is based on two main assumptions. First, each non initial activity has at
least one other activity that triggers its performance, and each non final activity is followed by at least
one dependent activity. This assumption is used in the so called all activities connected heuristic
(Weijters et al., 2006). Second, the event log contains a representative sample of the observed
behaviour, which usually contains a certain amount of noise, especially if traces of human behaviour are
stored in the event log. For example, in our study, a perfect trace of verbal utterances for all performed
learning steps is unlikely. Therefore, the event log contains noise caused, for example, by a missing
learning step that was not uttered or by disagreement among the raters during the coding procedure. It
must be noted that there is also noise in other types of data (e.g., log file data). Consequently, an
analysis method is needed that can abstract from noise and that can concentrate on the main relations
among learning activities. It is a specific feature of the HeuristicsMiner to be robust to noise in the data.
This is the main reason for the appropriateness of applying this PM algorithm to our event log.

An additional advantage of the HeuristicsMiner algorithm is that the mined model (heuristic net) can be
converted into a formal petri net. A petri net can be described as a bipartite directed graph with a finite
set of places, a finite set of transitions, and two sets of directed arcs, from places to transitions and from
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transitions to places (Reisig, 1985). Thus, the resulting process model can be used as input for other PM
algorithms, and it can be utilized in subsequent analyses (e.g., conformance checking between the
model and a new event log). In contrast, the output model of another promising process discovery
algorithm within the ProM framework that we used in previous process analyses (Bannert et al., 2014;
Schoor & Bannert, 2012), called the Fuzzy Miner (Günther & van der Aalst, 2007), cannot be converted
into a petri net (De Weerdt et al., 2012). Therefore, the HeuristicsMiner was the first choice for our
present analysis.

2.7 Functionality and Application of the HeuristicsMiner

Considering its functionality, the HeuristicsMiner algorithm uses several parameters that guide the
creation of a process model and that can be adjusted to set the level of abstraction from noise and low
frequency behaviour. First, a frequency based metric is used to determine the degree of certainty of a
relation between two events, A and B, based on an event log. The dependency values, ranging between
–1 and 1, between all possible combinations of events are computed using the following formula
(Weijters et al., 2006, p. 7):

Based on an event log W, the certainty of a dependency relation between two events, , is
computed using the number of times event a is followed by event b, subtracted from the number of
times event b is followed by event a, and divided by the number of occurrences of these two relations,
plus 1. The number of correct (a follows b) and incorrect (b follows a) event sequences influences the
dependency value by the +1 in the denominator. For example, an event log containing only correct
sequences (a is always followed by b, but never vice versa), but with a low frequency of five
observations, results in a certainty of 5/6 = 0.83, whereas in the case of a high frequency of 50
observations, the certainty of a dependency relation between a and b would be 50/51 = 0.98.

Moreover, the computed dependency values are used to construct a heuristic net (i.e., the output
model). However, not all dependency relations are kept in the process model. Instead, the
HeuristicsMiner algorithm concentrates on the main causal dependencies and abstracts from noise and
low frequency behaviour. At first, the all activities connected heuristic is applied. Therefore, only the
best candidates (with the highest values) regarding the dependency values are kept in the
output model. Second, three threshold parameters are used for the selection of further dependency
relations. The dependency threshold determines the cut off value for the inclusion of dependency
relations in the output model. Furthermore, the positive observation threshold defines the minimum
number of necessary observed sequences. Finally, the relative to best threshold determines that only
additional dependency relations with a lower difference to the best candidate are included in the output
model. We refer to Weijters et al. (2006) for more information about these threshold parameters.
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In our analysis, the threshold parameters were kept at their default values of dependency threshold =
0.9, positive observation behaviour = 10, and relative to best threshold = 0.05. As explained above,
these threshold parameters can be used to adjust the level of abstraction of the output model. For
example, reducing the cutoff values would result in additional dependency relations in the model and
thus increase the complexity. However, there were no reasons for changing the default values in our
case.

Furthermore, the HeuristicsMiner algorithm can also address short loops of lengths one (e.g., ACCB) and
two (e.g., ACDCDB) as well as long distance dependencies; that is, a dependency based on choices made
in other parts of the process model. Moreover, the algorithm considers AND relations (two events are
executed concurrently) and OR Relations (e.g., either event b or event c can be executed after event a)
to construct the heuristic net.

In general, searching for an optimal process model based on a present event log can be challenging,
especially if there is a certain amount of noise and less frequent behaviour in the data. Therefore, it is
possible to compare the resulting process model with the event log using a fitness value (Rozinat & van
der Aalst, 2008). The fitness indicates the gap between the observed behaviour, that is, the set of event
sequences in the log, and the mined process model.

By applying the HeuristicsMiner algorithm to our event log, we assume that the present set of
sequences of learning events is caused by one or multiple underlying processes. However, it might be
possible that there is a high variety in SRL activities within the sample. In this case, using very robust
algorithms such as the HeuristicsMiner can result in over generalization (underfitting); that is, the mined
model allows for much more behaviour than what is actually observed (De Medeiros et al., 2008).
Therefore, the event log could be modelled more precisely by generating different process models for
subsets of participants instead of a single model for all cases. This approach is called trace clustering,
which can improve the discovery of process models (De Weerdt, vanden Broucke, Vanthienen, &
Baesens, 2013; Greco, Guzzo, Pontieri, & Saccà, 2006). A plug in has been implemented in the ProM
framework that combines the HeuristicsMiner algorithm with a trace clustering procedure, namely, DWS
mining (Disjunctive Workflow Schema; De Medeiros et al., 2008). The basic idea of DWS mining is to split
the log into clusters iteratively until the mined process model for each cluster reaches high precision. A
process model has a high precision if it only allows for behaviour that was observed in the event log.
Consequently, a cluster is further partitioned if the mined model allows for more behaviour than is
expressed by the cases within this cluster. For more information on the DWS mining plugin, refer to De
Medeiros et al. (2008). In our analysis, we kept the default parameter settings for clustering the log
traces.

3 METHOD 

The present study extends a previous contribution (Bannert et al., 2015) that investigates the effects of
metacognitive prompting on navigation behaviour and learning outcome referring to the same
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participants, but to different research questions and to mostly different data.

3.1 Sample and Research Design 

A total of n=70 undergraduate students from a German university participated in the study (mean age =
20.07, SD = 1.88, 82.9% female). All participants were either majoring in media communications or in
human–computer systems. Participants were recruited via an online recruitment system administered
by our institute, and each student received 40 Euros (approximately $47 USD) for participating.

Altogether, the experimental study was based on a between subject design and comprised two sessions.
In the first session, learner characteristics were obtained as potential covariates (e.g., prior domain
knowledge), especially in the case of an unbalanced distribution of characteristics among the groups by
randomization (which is possible for the relatively small sample size). Approximately one week later, the
participants were randomly assigned to either the experimental group (n=35) or the control group
(n=35) and individually participated in hypermedia learning. The experimental group learned with
metacognitive prompts, whereas the control group learned without prompts. Figure 1 presents an
overview of the research design.

Figure 1. Research design

3.2 Learning Material and Performance Measurement 

3.2.1 Learning Environment and Metacognitive Prompts
The learning material comprised a chapter on the topic of learning theories (classical conditioning,
operant conditioning, and observational learning) presented in a hypermedia learning environment. For
example, the content of one node included a description of the Skinner box with reference to the
concept of operant conditioning, and illustrated with a picture. In total, the material comprised 50
nodes with 13,000 words, 20 pictures and tables, and 300 hyperlinks. Within this chapter, the material
relevant for the learning task comprised 10 nodes with 2,300 words, 5 pictures and tables, and 60
hyperlinks. The remaining pages were not relevant for the learning task. These pages included
overviews, summaries, and pages with information on concepts not relevant for the learning goals. The
Flesch Kincaid grade level score of the complete learning material was 19.01.
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Navigation in the learning environment was possible in four different ways: 1) a hierarchical navigation
menu, 2) a next page and previous page button on top of each page, 3) the backward and forward
button of the browser, and 4) hyperlinks embedded in the text.

Figure 2: Learning environment with metacognitive prompt. Students are asked to select one or more
reasons for node selection in a hypermedia learning environment by choosing among a list of strategic

reasons (e.g., orientation, goal specification, planning) eight times during learning

Support via metacognitive prompts was implemented in the learning environment. A prompt appeared
in the form of a pop up window placed in the middle of the screen eight times during learning. Each
prompt contained a list of strategic reasons for node selection. At least one reason had to be selected
before continuing with learning. Figure 2 shows the hypermedia learning environment with a
metacognitive prompt.

3.2.2 Knowledge Tests
Learning performance was measured with three knowledge tests on different levels based on Bloom’s
taxonomy of cognitive learning (Bloom, 1956). The measurement comprised a free recall test, a
comprehension test, and a transfer test. In the free recall test, students were instructed to write down
all basic concepts they could remember. The comprehension test, which assessed knowledge of facts,
comprised 22 multiple choice items, each with one correct and three incorrect answers. Transfer was
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measured by asking students to apply basic concepts and knowledge of facts to solve eight prototypical
problems in educational settings that were not explicitly addressed in the learning material (maximum
score: 40 points). For example, students were asked to explain how a teacher should behave in response
to a described classroom discipline problem based on the principles of operant conditioning. The
answers of the participants were rated on a researcher developed rating scale by two research
assistants (Cohen’s Kappa = .84). In case of disagreement among the raters, one of the authors
determined the final score. More information on the learning material and knowledge tests used in our
prompting studies is provided by Bannert and Reimann (2012) and by Bannert and Mengelkamp (2013).

3.3 Procedure 

Approximately one week before the learning session, the learner characteristics verbal intelligence, prior
domain knowledge, metacognitive strategy knowledge, epistemological beliefs, and reading competency
were measured by questionnaires. More information on the instruments is provided in Bannert et al.
(2015).

The learning session started with an introduction phase. First, the navigation in the hypermedia learning
environment was explained by the experimenter. Then, the participant was asked to practice all possible
ways of navigating the learning environment by using a practice lesson. After that, a series of exercises
had to be performed in the practice lesson using concurrent thinking aloud during the task. The
experimenter provided feedback and, if necessary, additional exercises until the participant firmly
mastered the think aloud technique.

Subsequently, the students in the experimental group received an introduction (approximately 10
minutes) to the use of metacognitive prompts, which included a description of the importance of
reflecting on one’s own learning steps, an explanation of the reasons for strategic node selection listed
in the prompts, and the correct use of the prompts. It is necessary to explain the use of metacognitive
prompts to the students to guarantee adequate application during learning (e.g., Veenman, 2007). After
that, they were instructed to configure the prompts by arranging the list with reasons for node selection
and by defining eight time stamps when the prompts should be presented during learning. To keep the
workload for both groups equivalent, participants in the control group received an introduction to
workplace design, which is not relevant for the stimulation of metacognitive learning activities. Instead
of prompt configuration, they were asked to arrange their workplace before learning. Both introductions
were realized by the experimenter using a sheet of instructions and advice visible to the participant.

Following this, the learning phase started. All participants received a sheet with their learning task,
which instructed them to learn the basic concepts of operant conditioning within 40 minutes. Moreover,
they were provided with a list of seven example concepts that had to be learned (e.g., Skinner Box,
Positive Reinforcement). Students in the experimental group received metacognitive support by
prompts, whereas the control group learned without prompts. All participants were completely free to
navigate in the learning environment and to use their learning strategies. During learning, notes could
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be taken on a blank sheet of paper (e.g., for summarizing or structuring information), but the
participants were not allowed to use their notes to work on the knowledge tests. The participants were
instructed to read and think aloud during the whole learning phase as practiced before, and these
activities were videotaped. If a participant stopped thinking aloud for more than five seconds, the
experimenter reminded her or him by saying, “Please think aloud.”

Directly after learning, the students worked on the three knowledge tests described above. Overall, the
duration of the session was approximately two hours.

3.4 Coding Scheme 

A coding scheme based on our theoretical framework of self regulated hypermedia learning (Bannert,
2007) was used for segmenting and coding the students’ verbal protocols. Our theoretical framework
characterizes hypermedia learning into the major categories Metacognition, Cognition, and Motivation.
In addition, it distinguishes several sub categories within the categories Metacognition and Cognition, as
further described below.

Table 1 presents the coding categories and provides descriptions and examples. The coding scheme
comprises the main categories Metacognition, Cognition, Motivation, and Other. Metacognition
includes the sub categories Orientation, Goal specification, Planning, Searching for information,
Judgment of its relevance, Evaluating goal attainment, and finally Monitoring and regulation. Cognition
contains Reading, Repeating information, and deeper processing, that is, Elaboration and Organization
of information. The main category of Motivation includes all positive and negative utterances on the
task, the situation, or oneself. Finally, all task irrelevant utterances, non classifiable utterances, and the
handling of the prompts for the experimental group were assigned to the category Other.

The coding was conducted based on the procedure presented by Chi (1997). Segmentation of the verbal
protocols was based on meaning. A segment was assigned for every definable learning activity. Multiple
or nested codes were not allowed. Four trained research assistants coded the verbal protocols of all 70
participants. A random sample of three participants from each of the experimental group and the
control group was selected to compute the interrater’s reliability. The reliability, based on 1,385
segments, showed substantial agreement: Cohen’s Kappa = .78, which is seen as sufficient for the
following analysis.

3.5 Analysis 

An example of the coded data used for the process analysis is presented in Table 2. The data comprise
three types of information: 1) a Case ID that clearly distinguishes the participants, 2) a time stamp that
indicates the beginning of an event, and 3) a learning activity — that is, the assigned category of the
coding scheme (CODE). Using this information, it is possible to compute not only the frequency of events
but also to determine the relative arrangement of multiple events. For example, in the short section of
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Table 2, MONITOR is the most frequent activity (3 occurrences). Furthermore, MONITOR is directly
followed by READ twice and directly followed by ORGANIZATION once.

Table 1. Coding scheme for analyzing students’ learning activities

Code Coding Category Description and Examples

Metacognition
ORIENT Orientation Task clarification, overview of material.

I will sketch the menu first.
SETGOAL Goal specification Goal setting and sub goaling

I have to learn the basic concepts of operant conditioning.
PLAN Planning Planning how to proceed

First I will decide in which sequence I have to learn and which
pages to read.

SEARCH Search Searching for information
Where is the page with the information about plans of
reinforcement?

EVALUATE Judgment Judgments about the relevance of information
Skinner’s Vita is not relevant for my learning task.

EVAL Evaluation Checking and evaluating
Did I process all the topics?

MONITOR Monitoring Monitoring one’s own learning
Ah, now I understand the principle.

Cognition
READ Reading Reading out loud
REPEAT Repeating Repeating
ELABORATE Elaboration Deeper processing,

paraphrasing, connecting, inferring
ORGANIZATION Organization Organization

drawing a map, writing down major concepts

Motivation
MOT Motivation Positive, negative, neutral motivational utterances regarding a

task, person, or situation
The task is very interesting.

Other
REST Other Off topic statements, comments on technique, not

interpretable statements, pauses
May I make notes? The mouse doesn’t work well.
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Table 2. Section of an event log

Case ID Timestamp Learning Activity (CODE)

…

Case 1 04:14 ORIENT 

Case 1 04:19 MONITOR 

Case 1 04:24 READ 

Case 1 04:37 REPEAT 

Case 1 04:43 ORIENT 

Case 1 05:01 MONITOR 

Case 1 05:03 READ 

Case 1 06:51 MONITOR 

Case 1 06:56 ORGANIZATION 

Case 1 07:30 REPEAT 

…

In the first step of our analysis, we took the frequencies of coded learning activities into account
(frequency analysis) and used the frequency of metacognitive events to examine the expected
mediation effect on transfer performance (mediation analysis). Subsequently, the sequential order of
the coded learning activities is analyzed using a PM algorithm to discover differences in the process
models of the experimental and control groups (process mining). Therefore, our view on temporality
corresponds to the relative arrangement of multiple events.

4 RESULTS 

A preliminary analysis showed that the randomized assignment of participants resulted in two
subsamples with similar learner characteristics. With the exception of one subscale of reading
competency — namely, text comprehension (measured by ELVES; Richter & van Holt, 2005) — no
significant differences were found. In the case of the subscale text comprehension, students in the
control group scored significantly better than those in the experimental group (t(69) = 2.97, p = .004, d =
0.72; two tailed testing). In conclusion, this analysis indicates that the following results are not caused
by unbalanced subsamples.

4.1 Frequency Analysis 

Table 3 presents the descriptive and test statistics of all coded events for the experimental group and
the control group. In addition to the minimum and maximum occurrence of each category, absolute
frequencies, means, and standard deviations are listed. A total of 8,743 events were coded for the
students in the experimental group, and a total of 8,087 events were coded for the students in the
control group. For the experimental group, there were, on average, approximately 250 events coded in
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40 minutes of learning time, with 116 metacognitive, 107 cognitive, 2 motivational, and 25 other
utterances. Participants in the control group showed a mean of approximately 231 events, with 98
metacognitive, 106 cognitive, 3 motivational, and 24 other utterances.

A one tailed t test for independent samples showed that the experimental and control groups
significantly differ in the number of metacognitive utterances (t(69) = 1.80, p = .038, d = 0.44). As
expected, students in the experimental group who had been supported through metacognitive prompts
showed a higher number of metacognitive learning activities (M = 116.43, SD = 45.97) than students in
the control group without prompts (M = 98.49, SD = 36.72). Moreover, both groups showed a similar
number of utterances in the remaining main categories Cognition (MEG = 107.43, SDEG = 36.01; MCG =
106.31, SDCG = 44.65), Motivation (MEG = 2.06, SDEG = 4.14; MCG = 2.54, SDCG = 4.40), and Other (MEG =
25.34, SDEG = 15.08; MCG = 23.71, SDCG = 12.19). For these three categories, the t tests for independent
samples were not significant.

Concerning the descriptive statistics of the subcategories of Metacognition, the experimental group
showed more Monitoring (MEG = 71.17, SDEG = 37.62; MCG = 58.00, SDCG = 27.46), Orientation (MEG =
14.31, SDEG = 7.23; MCG = 11.14, SDCG = 5.80), Evaluation (MEG = 3.63, SDEG = 3.08; MCG = 2.49, SDCG = 3.03),
and Planning (MEG = 1.74, SDEG = 1.65; MCG = 0.74, SDCG = 1.09) compared to the control group. In both
groups, the highest frequency occurred for Monitoring, followed by Orientation, Searching, and
Judgment, whereas Planning and Goal specification were rarely executed by students. As reported in
Table 3, on the right side, differences between the experimental and control groups are significant for
Orientation, Planning, and Monitoring.

Within the main category Cognition, participants of the control group showed more reading activities
(MEG = 40.66, SDEG = 15.75; MCG = 44.49, SDCG = 18.19) but less Elaboration (MEG = 21.91, SDEG= 12.92; MCG

= 18.40, SDCG = 17.54) and less Organization (MEG = 26.37, SDEG = 13.87; MCG = 24.60, SDCG = 12.51) than
participants of the experimental group. However, all differences regarding these categories are non
significant. Finally, motivational events seldom occurred in both groups and with non significant
differences.

4.2 Mediation Analysis 

A mediation analysis was conducted to investigate whether the observed relationship between the
treatment group and learning performance (outcome variable) is mediated by the number of
metacognitive events during learning. Regarding measurements of learning outcome, only transfer
performance (i.e., a post test score) differed significantly between the experimental and control groups
(MEG = 20.61, SDEG = 3.97; MKG = 18.79, SDKG = 4.30; t(69) = 1.85, p = .035, d = 0.45; for more details on
learning outcomes, see Bannert et al., 2015). Furthermore, both the number of metacognitive events
and its sub category Monitoring significantly correlate with transfer performance (Metacognitive
events: r = .22, p = .033; Monitoring: r = .32, p = .003). Therefore, these two variables are regarded as
possible mediators, and only transfer performance is included as an outcome variable.
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Table 3: Absolute frequencies, means, and test statistics of all coded learning events for the experimental group and the control group

Experimental Group (n=35) Control Group (n=35) 

Min Max Absolute
Frequency M SD Min Max Absolute

Frequency M SD t p d

Metacognition 34 242 4075 116.43 45.97 34 173 3447 98.49 36.72 1.804 .038 0.44

Orientation 5 30 501 14.31 7.23  2 28 390 11.14 5.80  2.025 .024 0.49 

Planning 0 5 61 1.74 1.65  0 4 26 0.74 1.09  2.987 .002 0.73 

Goal specification 0 10 72 2.06 2.36  0 8 67 1.91 1.84  0.282 .309 0.07 

Search 1 32 414 11.83 7.54  1 57 453 12.94 10.64  -0.506 .308 -0.12 

Judgment 2 23 409 11.69 5.70  0 33 394 11.26 7.35  0.273 .393 0.07 

Evaluation 0 15 127 3.63 3.08  0 15 87 2.49 3.03  1.565 .061 0.38 

Monitoring 11 203 2491 71.17 37.62  9 124 2030 58.00 27.46  1.673 .049 0.41 

Cognition 47 201 3760 107.43 36.01 30 193 3721 106.31 44.65 0.115 .909 0.03

Reading 20 84 1423 40.66 15.75  19 89 1557 44.49 18.19  -0.941 .350 -0.03 

Repeating 2 45 647 18.49 11.04  2 59 659 18.83 12.25  -0.123 .902 -0.03 

Elaboration 3 55 767 21.91 12.92  0 56 644 18.40 17.54  0.955 .343 0.23 

Organization 3 61 923 26.37 13.87  0 58 861 24.60 12.51  0.561 .576 0.14 

Motivation 0 18 72 2.06 4.14  0 22 89 2.54 4.40  -0.476 .636 0.11 

Other 8 69 887 25.34 15.08  6 58 830 23.71 12.19  0.497 .621 0.12 

Sum of all coded 
events 126 473 8743 249.80 76.64  112 390 8087 231.06 76.27  1.023 .310 0.25 

Note: Since we expected metacognitive prompting to increase the number of metacognitive utterances, we conducted one-tailed testing for metacognitive categories; elsewhere 
we conducted two-tailed testing; p < .05. 
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We used the PROCESS custom dialog box for SPSS based on the regression based approach of Hayes
(2013) to run the mediation analysis, which calculates bootstrapped confidence intervals (BCa CI) for the
indirect effect and the measurement of effect size. There was a significant indirect effect of the
treatment on transfer performance through the number of metacognitive events, b = 0.33, BCa CI [–
0.01, 1.09]. Kappa squared (Preacher & Kelley, 2011) was used to measure the effect size. The detected
effect is relatively small, ² = .039, 95% BCa CI [.004, .127]. Furthermore, there was a significant indirect
effect through the number of Monitoring events, b = 0.48, BCa CI [0.01, 1.24]. Again, this represents a
small effect, ² = .058, 95% BCa CI [.006, .142].

In summary, the number of metacognitive events and of its sub category Monitoring could be identified
as mediator variables. Metacognitive prompting increased the occurrence of metacognitive events,
especially of Monitoring, which in turn enhanced the transfer performance. Due to the mediation effect
of the sub category Monitoring being even slightly larger than the effect of all metacognitive events, we
conclude that the mediation is mainly driven by Monitoring. Figure 3 presents the mediation model,
including Monitoring as mediator variable.

Figure 3: Mediation through the number of monitoring events

4.3 Process Analysis Using the HeuristicsMiner Algorithm 

To apply the HeuristicsMiner, we had to simplify the categories of the coding scheme (see Table 1) for
three reasons. First, the event classes Planning, Goal specification, and Motivation showed a very low
frequency in our event log. Second, the HeuristicsMiner algorithm should preferably be used on data
without too many different event classes (Rozinat, 2010). Finally, theoretical SRL models describe
regulation processes mainly with the three phases of forethought, performance, and reflection (e.g.,
Zimmerman, 2000). The simplification was conducted as follows: We aggregated the metacognitive
events Orientation, Planning, and Goal specification into a new event class called Analyze. Furthermore,
the event class Judgment was added to Monitoring. In addition, the cognitive events Elaboration and
Organization were combined to form a new event class called Process, that is, deeper processing. Finally,
the event classes Motivation and Other were excluded from the process analysis. Altogether, seven
event classes, listed in Table 4, were used for the analysis with PM techniques. With respect to the mean
number of events, there was only a significant difference between both groups for the category Analyze
(t(69) = 2.36, p = .011, d = 0.57).

Treatment Transfer 
Performance 

Monitoring 

Direct effect, b = 1.35, p = .085 

Indirect effect, b = 0.48, 95% CI [0.01, 1.24] 

b = 13.17, p = .049  b = 0.04, p = .008  
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Table 4: Absolute frequencies, means, and test statistics of aggregated categories for the experimental group and the control group

Experimental Group (n=35) Control Group (n=35) 

Min Max Absolute
Frequency M SD Min Max Absolute

Frequency M SD t p d

Analyze 5 37 634 18.11 8.58 3 33 483 13.80 6.61 2.356 .011 0.57

Search 1 32 414 11.83 7.54  1 57 453 12.94 10.64  -0.506 .310 -0.12 

Evaluation 0 15 127 3.63 3.08  0 15 87 2.49 3.03  1.565 .061 0.38 

Monitoring 20 211 2900 82.86 39.37  12 131 2424 69.26 30.71  1.612 .056 0.39 

Reading 20 84 1423 40.66 15.75  19 89 1557 44.49 18.19  -0.941 .350 -0.03 

Repeating 2 45 647 18.49 11.04  2 59 659 18.83 12.25  -0.123 .902 -0.03 

Process 9 93 1690 48.29 21.54  3 84 1505 43.00 20.73  1.046 .299 0.25 

Note: Since we expected metacognitive prompting to increase the number of metacognitive utterances, we conducted one-tailed testing for metacognitive categories; elsewhere 
we conducted two-tailed testing; p < .05. 
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The relative arrangement of learning activities was analyzed by applying the HeuristicsMiner algorithm
in combination with the DWS mining plugin. The trace clustering did not split the cases into clusters for
the participants of the experimental group (n=35) or the control group (n=35). This means a single
process model can already express the event log with sufficient precision for both groups.

group group
Figure 4. Process models for the experimental group (n=35) and for the control group (n=35)

represented as a heuristic net. Metacognitive Activities: ANALYZE = Orientation, Planning, and Goal
specification; EVAL = Evaluation; MONITOR = Monitoring and Judgment. Cognitive Activities: READ =

Reading; REPEAT = Repeating; PROCESS = Elaborate and Organization
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The resulting process models are displayed in Figure 4, where they are represented as heuristic nets for
the experimental and control groups. These visual representations of the process models comprise
square boxes that represent the event classes and arcs between these boxes that indicate the
dependency between two event classes. The number in the event box represents the occurrence of an
event class in the log. The arcs are labelled with two types of information. The upper number displays
the dependency measure, which indicates the certainty of a dependency relation between two
activities. A value close to 1.0 indicates a high certainty that a dependency relation exists. The lower
number shows the number of times this transition is used, that is, how often event a is followed by
event b. An arc pointing back at the same box indicates a self loop, meaning that an event class often
occurred multiple times in a row in loops of length one or length two (e.g., ACCB, ACDCDB).

The fitness between the mined model and the event log used for generating this model was measured
using the so called Improved Continuous Semantic Fitness (De Medeiros, 2006; range: – to 1.0). This
fitness measure indicates the number of correct parsed event sequences, whereas a punishment for
allowed extra behaviour in the model is subtracted from this number. The idea of this measure is to
favour a process model that allows for less extra behaviour if several models can correctly parse the
same number of event sequences. Both process models show a substantial fitness value: the
experimental group model = 0.53, and the control group model = 0.62.

4.3.1 Process model of the experimental group
For the experimental group, a common pattern — that is, a path of transitions with high certainty — is
ANALYZE PROCESS SEARCH REPEAT EVAL READ MONITOR ANALYZE. Moreover, the
process model comprises a number of loops with high certainty between two activities. Participants
circle between ANALYZE and PROCESS, EVAL and REPEAT, SEARCH and PROCESS, EVAL and READING,
and SEARCH and REPEAT. Apparently, these loops always occur between metacognitive and cognitive
learning activities but never between two cognitive or two metacognitive events. Furthermore, it is
interesting that EVAL is connected with several other learning events, meaning it takes an important
position in the structure of the process, although this event class has a relatively low frequency.
MONITOR only shows a weak connection in the process model. This event class follows READ and is
followed by ANALYZE. Finally, the model shows self loops for all event classes, indicating that an activity
can be performed multiple times in a row.

4.3.2 Process model of the control group
The model of the control group shows the most common path of transitions for SEARCH PROCESS
EVAL REPEAT READ MONITOR SEARCH. In contrast to the model of the students in the
experimental group, ANALYZE is only weakly connected with SEARCH, and therefore, it is quite isolated.
Similar to the experimental group, the low frequency event class EVAL is also connected with several
other learning activities. MONITOR is only weakly connected, whereas this event class follows READ, as
in the model of the experimental group, but is followed by SEARCH instead of ANALYZE. In comparison
with the experimental group, this process model shows fewer loops with high certainty between two
activities (only between SEARCH and PROCESS, SEARCH and REPEAT, and EVAL and REPEAT), but again
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these loops only occur between metacognitive and cognitive events. Again, all event classes show self
loops.

Overall, the process models of the experimental and control groups especially differ in two points. First,
ANALYZE (including the activities Orientation, Planning, and Goal specification) is hardly connected in
the model of the control group, but this event class is well embedded in the process of the experimental
group. Second, students in the experimental group show more loops between metacognitive and
cognitive events, which can be interpreted as “regulation circles.” For example, they circle with high
certainty between ANALYZE and PROCESS and between EVAL and READ. Despite these differences, both
models have in common that EVAL takes an important position in the described process. The frequency
analysis could not reveal the importance of this event class, even showing that EVAL is one of the least
frequent categories. Here, the analysis of the sequential order provides additional information.
Moreover, in both models, MONITOR, the metacognitive category with the highest frequency, is hardly
connected with other learning activities. Based on recent SRL models, we argue that MONITOR does not
have a clear position but can follow each learning activity (e.g., A MONITORING B MONITORING

C MONITORING). The HeuristicMiner algorithm could have failed to position this activity in the
process model because its modelling notation does not allow for so called duplicate tasks (i.e., an
activity that has more than one label in the process model).

5 DISCUSSION AND IMPLICATIONS FOR FUTURE RESEARCH 

In this study, we analyzed think aloud data from an experimental study to investigate the effects of
metacognitive prompts during learning on SRL processes. In addition to an analysis of frequencies of
learning events, we focused on exploring the sequential structure of regulation activities using PM
techniques.

As expected, the analysis of coded think aloud data provides deeper insights into the effects of
metacognitive prompts on students’ regulatory processes during hypermedia learning. The findings of a
frequency analysis indicate differences in the number of metacognitive utterances between students in
the experimental group, who were prompted by metacognitive prompts, and those in the control group,
who learned without prompts. Participants supported by metacognitive prompts articulated significantly
more metacognitive activities and achieved better transfer performance. In addition, a mediation
analysis revealed that prompting increased the number of metacognitive activities, especially
Monitoring, which, in turn, increased the transfer performance. Both results are in line with findings of
research on metacognitive prompting (e.g., Azevedo et al., 2004; Bannert, 2009) and the assumed effect
mechanism of this type of metacognitive support (e.g., Bannert & Mengelkamp, 2013).

A microanalysis of the relative arrangement of learning activities was conducted by means of PM
techniques to discover specific sequential patterns in the learning process of the experimental group
versus the control group. This process analysis provided additional information on the effects of
metacognitive prompts that could not be revealed by a simple analysis of frequencies of occurring
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learning events. A comparison of the process models of students in the experimental and the control
group showed two striking differences. First, activities of orientation, planning, and goal specification
(aggregated as ANALYZE) are much better integrated in the process model of the experimental group,
whereas this event class was quite isolated in the process model of the control group. Second, more
loops between cognitive and metacognitive learning activities were identified in the process model of
the experimental group, indicating that more regulation steps occurred. In conclusion, these differences
indicate that the use of metacognitive prompts resulted in a better integration of ANALYZE events and a
higher number of regulation loops. SRL models (e.g., Winne & Hadwin, 2008; Zimmerman, 2008)
emphasize both the importance of orientation phases and an active regulation for successful learning.
Following this, the fostered process patterns in the model of the experimental group are in line with
current theoretical assumptions. We conclude that these process patterns could be successfully
scaffolded through the application of metacognitive prompts. However, the evaluation of learning
progress (EVAL) is similarly integrated in both process models, meaning no different effect on this event
category could be detected. The findings of the process patterns could be used to optimize our
metacognitive prompts further. For example, the design of prompts could be optimized by aiming at
scaffolding the sequential deployment of evaluating activities in more detail. SRL models suggest that
evaluation activities are followed by an update of the orientation phase. This transition was not
represented in the process model of the experimental group. Here, an optimization process could be
used.

With respect to the metacognitive support used in this study — that is, an introduction about what
metacognitive prompts are, why they are important, and how to use them in combination with
metacognitive prompts during learning — it is necessary to discuss which components of support have
contributed to the findings. Based on our experience with metacognitive prompts and research on
metacognitive prompting, at least a brief training or an introduction to the concept of metacognitive
prompts is necessary in advance to guarantee an adequate application of prompts during learning (e.g.,
Bannert & Mengelkamp, 2013; Bannert & Reimann, 2012). Therefore, it is challenging to determine the
individual effect of both the introduction and prompting components. To our knowledge, there is no
empirical study that systematically compares the impact of training of prompt use, metacognitive
prompting, and their combination. Consequently, this research question should be addressed in future
work.

As an inductive approach, the validity of PM depends on the representativity and quality of the data
stored in the event log (Reimann, Frerejean, & Thompson, 2009). It is possible that SRL processes, for
example, those obtained by think aloud protocols or log files, comprise a high variety of regulatory
behaviour (Hadwin, Nesbit, Jamieson Noel, Code, & Winne, 2007; Winne, 2014). Therefore, we applied a
technique for trace clustering in combination with a PM algorithm to check whether a single process
model for the whole event log is appropriate. The applied trace clustering did not split the cases into
subsets of participants. However, new approaches of trace clustering are currently rising in the PM
domain (e.g., de Weerdt et al., 2013). These approaches could possibly improve the detection of
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homogenous subsamples, which in turn could enhance the quality of the mined process models. There
are approaches to clustering students according to their interactions and activities in computer based
learning environments based on a set of variables (e.g., Biswas, Jeong, Kinnebrew, Sulcer, & Roscoe,
2010; Bouchet, Harley, Trevors, & Azevedo, 2013). However, these approaches do not explicitly include
an event centred perspective and a timing aspect, but are based on frequencies of interactions with the
learning environment. Furthermore, a subset of participants can also be selected for process analysis
based on learner characteristics (e.g., high vs. low prior knowledge) or learning outcomes (e.g., high vs.
low achieving students; see Bannert et al., 2014 for an example).

Regarding further limitations of our analysis, it has to be noted that the resulting process models are
dependent on the learning setting (learning environment, learning material, and instructions on the
learning task). In addition, they are descriptive models. Moreover, findings depend on the underlying
coding scheme and its level of granularity. In general, more research on PM techniques in the field of
SRL and metacognition is needed; for example, for deriving guidelines for parameter settings aiming to
improve the quality of a mined process model. Therefore, we encourage other researchers to use PM
techniques to analyze their process data with respect to the sequential and temporal characteristics of
learning events. In addition, a comparison of different methods for sequential and temporal analyses on
the same data would be beneficial for discovering the advantages and disadvantages of recent process
analysis methods. For example, a comparison could be made of different approaches presented in a
special issue on the sequential and temporal characteristics of self and socially regulated learning
(Molenaar & Järvelä, 2014).

The resulting process models of our analysis represent a description of the underlying learning processes
in our sample of students. In future studies, the validity of the discovered process patterns should be
investigated by checking the conformance of these models to new data sets. For this purpose, the mined
process models of the HeuristicsMiner algorithm can be converted into petri nets, and then methods for
conformance checking can be applied within the ProM framework (Rozinat & van der Aalst, 2008). In
this way, the conformance — that is, the differences between a discovered process model and a new
event log — can be determined. Another possible scenario for the application of conformance checking
would be the derivation of a system of event sequences on the micro level based on the theoretical
assumptions of SRL models. An illustration of this approach is presented in Bannert et al. (2014).
However, more micro level theories would be needed for this approach. At the moment, only the COPES
model (Winne & Hadwin, 2008) provides a detailed level of granularity regarding information
processing, but even this model is far from the level of elaboration needed to correspond directly to the
granularity of our event data.

Finally, an advantage of PM techniques is the representation of sequential characteristics as visual
process models. Primarily, this helps the researcher to grasp easily the course of learning activities and
regulatory patterns. However, this type of visual representation can also be used to give process
feedback to the students and, thereby, be a resource for learners as well (Reimann et al., 2009). Winne
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(2014) recommends supporting students with information on their past learning processes through
displays of traces they can interpret. Following this direction in future research on SRL, process models
generated by PM techniques could make a substantial contribution in providing feedback to learners.
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In computer-supported learning environments, the deployment of self-regulatory skills represents an es-

sential prerequisite for successful learning. Metacognitive prompts are a promising type of instructional

support to activate students’ strategic learning activities. However, despite positive effects in previous

studies, there are still a large number of students who do not benefit from provided support. Therefore, it

may be necessary to consider explicitly the conditions under which a prompt is beneficial for a student,

i.e., so-called adaptive scaffolding. The current study aims to (i) classify the effectiveness of prompts

on regulatory behavior, (ii) investigate the correspondence of the classification with learning outcome,

and (iii) discover the conditions under which prompts induce regulatory activities (i.e., the proper tem-

poral positioning of prompts). The think-aloud data of an experiment in which metacognitive prompts

supported the experimental group (n = 35) was used to distinguish between effective and non-effective

prompts. Students’ activities preceding the prompt presentation were analyzed using data mining and

process mining techniques. The results indicate that approximately half of the presented prompts induced

metacognitive learning activities as expected. Moreover, the number of induced monitoring activities

correlates positively with transfer performance. Finally, the occurrence of orientation and monitoring ac-

tivities, which are not well-embedded in the course of learning, increases the effectiveness of a presented

prompt. In general, our findings demonstrate the benefits of investigating metacognitive support using

process data, which can provide implications for the design of effective instructional support.

Keywords: self-regulated learning, instructional support, micro-level analysis, metacognitive prompt-

ing, think-aloud data, process mining

1. INTRODUCTION

The research in self-regulated learning (SRL) indicates that many learners have difficulties in

spontaneously deploying regulatory activities, which results in lower learning performance (e.g.,

Azevedo, 2009; Bannert & Mengelkamp, 2013; Greene, Dellinger, Tüysüzoglu, & Costa, 2013;
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Winne & Hadwin, 2008; Zimmerman, 2008). Therefore, our main objective is to provide effec-

tive instructional support for hypermedia learning. In this context, metacognitive prompting is

a promising approach that affects the learning process by inducing regulatory activities as well

as learning performance (e.g., Bannert & Mengelkamp, 2013; Bannert & Reimann, 2012). The

purpose of these prompts is to foster SRL activities such as orientation, planning, monitoring,

and evaluation strategies by asking students to monitor and to control their learning process

(Bannert, 2009; Veenman, 1993). However, post-hoc analyses of students’ prompt use revealed

that approximately half of the sample demonstrated poor compliance with the provided sup-

port (Bannert & Mengelkamp, 2013). Thus the students did not benefit from the metacognitive

prompting as intended. To improve the provided instructional support, it is our aim to investigate

the conditions that influence the effectiveness of metacognitive prompts by taking into account

fine-grained process data.

Referring to an event-based view of SRL that describes regulatory activities as dynamically

unfolding over time during a learning task (e.g., Azevedo, 2009; Winne, 2014), the current re-

search is increasingly interested in analyzing sequences of learning activities that are measured

online during learning (e.g., measured by log files or think-aloud data). Moreover, the devel-

opment and application of new methods that can take into account the sequential and temporal

order of learning events (Martin & Sherin, 2013; Molenaar & Järvelä, 2014), as well as the

dynamic relationship between SRL processes (Ben-Eliyahu & Bernacki, 2015), accompany the

increasing importance of analyzing process data. In particular, the techniques in the field of edu-

cational data mining (EDM) have the potential to support the discovery of event patterns in SRL

(Winne & Baker, 2013), for example, by modeling events that are crucial for an understanding of

learning through the use of process mining (Reimann & Yacef, 2013; Trčka, Pechenizkiy, & van

der Aalst, 2010). As a consequence, these recent developments provide new opportunities for

the evaluation of instructional support on the micro level. More precisely, an in-depth process

analysis contributes to the investigation of scaffolding effects (e.g., metacognitive prompting) on

learning activities, and the evaluation results can inform researchers about how to develop their

supporting strategies (e.g., Jeong et al., 2008; Johnson, Azevedo, & D’Mello, 2011; Molenaar &

Chiu, 2014; Sonnenberg & Bannert, 2015). In general, we argue that the analysis of fine-grained

process data is necessary for the development and the design of effective instructional support

(e.g., Bannert & Mengelkamp, 2013; Sonnenberg & Bannert, 2015).

Hence, the aim of the current contribution is to demonstrate the potential of evaluating

metacognitive prompting by analyzing process data (i.e., concurrent think-aloud protocols) by

using data mining and process mining techniques. Because metacognitive prompts do not al-

ways optimally support students (e.g., Bannert & Mengelkamp, 2013; Bannert, Sonnenberg,

Mengelkamp, & Pieger, 2015), we investigate the conditions of effectiveness to derive im-

plications for an improved prompt design. According to the concept of adaptive hypermedia

systems and adaptive scaffolding (Bouchet, Harley, Trevors, & Azevedo, 2013; Brusilovsky,

2001, 2007; Molenaar & Roda, 2008), the system and the provided support should be tailored

to the student’s requirements, for example, to prior knowledge and to performed SRL activi-

ties (Azevedo, Cromley, & Seibert, 2004; Azevedo, Cromley, Winters, Moos, & Greene, 2005).

Moreover, Molenaar and Roda (2008) note that the evaluation of scaffolds needs to be contin-

gent on the learner’s current activities and his or her goals. Therefore, it is crucial to examine

the conditions that contribute to the effectiveness of a scaffold when its presentation successfully

supports a student.

The present paper is organized as follows. First, we outline the effects of scaffolding hyper-
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media learning through metacognitive prompts. We focus on the challenges regarding prompt

design and the concept of adaptive scaffolding, including the results of the related research.

Second, we introduce the analysis of fine-grained process data for the evaluation of instructional

support. Third, we investigate the effects of prompting using the coded think-aloud data of an

experimental study. To that end, we first classify the prompts by considering the increase of

metacognitive utterances following the prompt presentation. Then we explore the conditions of

effectiveness applying data mining and process mining techniques to the learning activities that

precede each prompt. Finally, the significance of the findings for the design of the prompts and

the development of a micro-level theory of SRL processes are discussed.

2. SCAFFOLDING HYPERMEDIA LEARNING THROUGH INSTRUCTIONAL

SUPPORT

Especially in open-ended learning settings, the use of self-regulatory skills represents a predic-

tor of learning success (e.g., Azevedo, 2005; Lin, Hmelo, Kinzer, & Secules, 1999). However,

students often do not perform regulatory activities spontaneously, which in general results in

lower learning outcomes (e.g., Azevedo, 2009; Bannert & Mengelkamp, 2013). Consequently,

instructional support aims to counteract this deficiency by promoting the activation of strategic

learning processes. For example, the research on metacognitive prompting has provided evi-

dence for its beneficial effects on learning process and outcome (e.g., Azevedo, Cromley, Moos,

Greene, & Winters, 2011; Bannert, 2009; Bannert et al., 2015). In a series of experiments com-

paring students supported by different types of metacognitive prompts to a control group without

support, we found medium effects on metacognitive processes and transfer performance (Ban-

nert & Mengelkamp, 2013). This magnitude is in line with meta-analyses on metacognitive

instruction (d = 0.59; Hattie, 2009). The research on metacognitive prompting is presented in

more detail below.

2.1. EFFECTS OF METACOGNITIVE PROMPTING

Metacognitive prompts have the purpose of inducing regulatory activities, for example, orien-

tation, planning, monitoring, and evaluation strategies (Bannert, 2007, 2009; Veenman, 1993).

According to theories of SRL (e.g., Winne & Hadwin, 2008; Zimmerman, 2008), the recurring

deployment of these activities during a learning task is crucial for the successful regulation of

one’s learning process. For example, Zimmerman (2008) describes SRL as a cyclical model that

comprises three phases, namely forethought (i.e., task analysis, goal setting, and planning), per-

formance (i.e., strategy use, monitoring, and control), and reflection (i.e., self-evaluation). The

current study refers to a framework for successful hypermedia learning (Bannert, 2007), which

comprises the learning activities orientation, goal specification, planning, information search

and relevance judgment, information processing, monitoring, and evaluation of goal attainment.

Although these activities may imply a typical sequence, their performance can vary dynamically,

considering the challenges of a given learning task. Additionally, the framework also consid-

ers the motivational aspects such as achievement motivation, action control, and self-efficacy,

which are supposed to influence the strategy use in the process of learning. Especially students’

motivational states with respect to the perception of their current task (e.g., the value or level

of difficulty), their competencies (e.g., the ability to successfully use a specific strategy), and

the learning situation (e.g., the authenticity of the situation) might affect their learning behavior.
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For example, Zimmerman (2008) highlights the importance of motivational variables such as

self-efficacy, task interest, value, and goal orientation, which influence the student’s proactive

pursuit towards his or her learning goals.

According to the expected effect mechanism, the presentation of metacognitive prompts

fosters the activation of one’s repertoire of metacognitive skills (e.g., Bannert & Mengelkamp,

2013). Metacognitive prompting thereby attempts to remedy the phenomenon of production

deficit (e.g., Winne, 1996; Wirth, 2009). That is, students possess knowledge about regulatory

capacities, but they do not use such skills spontaneously. Consequently, metacognitive prompts

can foster the performance of learning activities that are described in the framework above and

even the sequential order of their implementation during a learning task.

Several studies on metacognitive prompting have confirmed its positive effect on learning

activities and learning outcome (e.g., Azevedo et al., 2011; Ge, 2013; Johnson et al., 2011;

Kramarski & Gutman, 2006). However, the research also indicates that its effectiveness may

depend on learner characteristics or the features of the prompt design (e.g., Bannert, 2009). For

instance, the use of prompts requires additional cognitive capacities, which makes it necessary

to have sufficient prior domain knowledge or to offer training in advance on how to use the

prompts during learning (Bannert & Reimann, 2012; Veenman, 1993). Moreover, Thillmann,

Künsting, Wirth, and Leutner (2009) found that strategy instruction must be embedded in the

ongoing course of learning. Similarly, findings from cognitive support strengthen the necessity

to integrate strategy instruction into ongoing cognitive learning activities (e.g., Wittwer & Renkl,

1998). However, a study on metacognitive feedback for help-seeking skills using an intelligent

tutoring system showed that real-time feedback may be not beneficial to learning gains for all

students (Aleven, Roll, McLaren, & Koedinger, 2016; Roll, Aleven, McLaren, & Koedinger,

2011). Possible explanations that were discussed by the authors are a cognitive overload that

is caused by the real-time interventions or a lack of awareness of the value of the provided

feedback (i.e., a motivational issue). As a result, more research is needed that investigates the

conditions under which metacognitive support is beneficial.

In our previous experiments, we investigated the effects of different types of metacognitive

prompts during hypermedia learning (Bannert & Mengelkamp, 2013; Bannert et al., 2015). The

presentation of prompts took place during a 40-minute learning session, and the prompts stim-

ulated or even suggested appropriate regulatory activities to university students. Overall, the

results showed positive effects on learning processes, measured by coded think-aloud protocols

(0.35 < d < 1.17) as well as on navigation behavior (0.42 < d < 0.59), and finally on transfer

performance (0.42 < d < 0.59). With regard to the learning process, the students that were sup-

ported by prompts showed significantly more metacognitive learning activities and significantly

better navigation behavior in comparison to the students in a control group who received no sup-

port. In addition, a detailed analysis that used process mining revealed differences among the

process models of the students who learned with prompts and the students who learned without

support (Sonnenberg & Bannert, 2015). These findings indicate that metacognitive prompting

affects not only the frequency of regulatory activities but also the deployment of the sequences

of learning activities.

In our most recent work (Bannert et al., 2015), students were asked to provide the reasons

for their navigational decisions several times during learning (i.e., prompts to reflect on one’s

behavior). We found beneficial effects on navigation behavior (frequency of relevant pages

visited: p = .004, d = 0.65; time spent on relevant pages: p = .009, d = 0.58) and on transfer

performance (p = .035, d = 0.44) compared with those of a control group. The current study

54 Journal of Educational Data Mining, Volume 8, No 2, 2016



extends this work by analyzing think-aloud data to gain a deeper insight into the effectiveness

of the presented prompts and to address the challenges of prompt design better.

2.2. CHALLENGES OF PROMPT DESIGN

Despite the reported beneficial effects in the previous section, an optimal prompt design in open-

ended learning environments remains challenging (Azevedo & Hadwin, 2005). In our studies, a

post-hoc analysis based on videos and verbal protocols showed that in general only half of the

sample used the provided prompts in the intended manner (Bannert & Mengelkamp, 2013). For

example, students started to read the contents of the learning environment immediately instead

of first planning their learning steps as requested by prompts, or they even ignored the prompts

by not considering the requests at all. Moreover, some students reported that they felt restricted

in their course of learning by the prompts. Consequently, the important question arises as to

why many students do not comply with a provided support device (Clarebout & Elen, 2006;

Clarebout, Elen, Collazo, Lust, & Jiang, 2013). The recent research has noted that the temporal

positioning of a prompt within the learning process can significantly influence compliance and

thereby the effectivness of prompting (Azevedo et al., 2011; Sitzmann, Bell, Kraiger, & Kanar,

2009; Thillmann et al., 2009). As a consequence, more research that concerns the temporal

characteristics of SRL is needed to inform the timing of scaffolds (Molenaar & Järvelä, 2014;

Sonnenberg & Bannert, 2015).

In general, there are two possible approaches to improve the timing of a scaffold during

hypermedia learning. First, researchers can try to involve students in designing their scaffolds.

Because students should be the experts in their course of learning, it may be best to provide them

with the opportunity to adapt the support to their needs (e.g., Bannert et al., 2015). Second,

one can attempt to develop an adaptive hypermedia system that can diagnose the demands of

a student and that can present a scaffold when it is needed based on specific embedded rules

(e.g., Bouchet et al., 2013). Both are promising approaches for optimizing the positioning of

metacognitive prompts during hypermedia learning, but they also present certain challenges,

which are described below.

In a recent study (Bannert et al., 2015), we investigated the first approach, that is, the effects

of so-called self-directed metacognitive prompts. The idea behind these prompts is to involve

students in the configuration or even the creation of their prompts before learning, for example,

by determining the time when a prompt should appear in their course of learning (e.g., after 5

minutes, after 12 minutes, and so on). Contrary to our expectations, despite the beneficial effects

compared to a control group, there was no significant improvement of prompt use. Although the

students had been familiarized with the hypermedia learning environment by performing some

training tasks, it may be possible that they were overcharged with adapting the scaffolds to their

needs. It is possible that they could not correctly determine when they should best be supported

by a prompt.

Considering the second approach, the learning environment needs to diagnose the require-

ments of the learner simultaneously during learning, and it must determine when to position

a scaffold, provided, for example, by a pedagogical agent (Bouchet et al., 2013; see the next

section on adaptive support). This approach has the advantage of taking into account the cur-

rent learning progress for presenting adaptive support, but both diagnosis and intervention can

be difficult to develop and implement into a learning environment (Azevedo & Hadwin, 2005).

Therefore, more research is needed that analyses the data of students’ learning activities and
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how scaffolds affect these activities to derive the conditions under which a scaffold can opti-

mally support a learner. Moreover, these analyses can contribute to the development of more

specific models that describe how to support self-regulated behavior and to develop rules for the

implementation of adaptive scaffolds into learning environments. For example, which learning

activities should trigger a support device or the appropriate timing to present a scaffold. As de-

scribed in the following, related studies have already addressed the impact of adaptive support

on the enhancement of computer-supported learning.

2.3. EFFECTS OF ADAPTIVE SUPPORT

In general, the research that has investigated adaptive scaffolding has confirmed the beneficial ef-

fects of individualized support on the regulation of learning processes and on learning outcome

(e.g., Azevedo et al., 2004, 2005, 2011; Lehmann, Hähnlein, & Ifenthaler, 2014; Schwonke,

Hauser, Nückles, & Renkl, 2006; Yeh, Chen, Hung, & Hwang, 2010). For example, Azevedo

et al. (2005) compared the effects of adaptive scaffolding, fixed scaffolding, and no scaffolding

during hypermedia learning. The results showed that adaptive scaffolding, which was provided

by a human tutor, facilitated the shift in students’ mental models significantly compared to

the other two groups, and, further, it improved the deployment of regulatory strategies. More-

over, Lehmann et al. (2014) investigated the effectiveness of so-called preflective and reflective

prompts. They found benefits in the preflective prompts, which stimulate to reflect on future

events, but only for novice learners. Hence, they concluded that the adaptation of prompting in

online research is crucial for future research.

Moreover, computerized settings such as adaptive hypermedia systems (Brusilovsky, 2001,

2007) provide new possibilities for the realization of adaptive support (e.g., Molenaar & Roda,

2008; Walker, Rummel, & Koedinger, 2011). Students’ interactions with the system can be

analyzed automatically and in real-time, thus informing the intervention type and presentation

time of support devices. The current research investigating SRL and metacognitive behaviors

uses some intelligent tutoring systems and learning environments such as BioWorld (Lajoie et

al., 2013), the Geometry Cognitive Tutor (Aleven, 2013), and Crystal Island (Lester, Mott, Ro-

bison, Rowe, & Shores, 2013). These systems incorporate approaches to assess and scaffold

SRL-behavior dynamically. A specific example of an existing adaptive hypermedia learning

environment is MetaTutor, a system that provides scaffolds and feedback through several ped-

agogical agents (e.g., Azevedo et al., 2012; Bouchet et al., 2013). Its adaptive presentation

is based on a set of system-generated rules that refer to the students’ interaction with the sys-

tem. For example, when a learner begins with a new sub-goal, a pedagogical agent prompts the

learner to activate any prior knowledge that may be relevant to the sub-goal before starting to

work on the content. Furthermore, a pedagogical agent asks the learners if they have adequately

completed the current subgoal after they have spent more than 20 minutes working on it. In

summary, MetaTutor uses the students’ interactions with the hypermedia system as conditions

for triggering the specific actions of pedagogical agents. Based on the analyses of learning ac-

tivities with MetaTutor and the impact of pedagogical agents on learning processes and learning

outcome, the system rules are constantly refined to optimize the provided support. Another ex-

ample for an adaptive scaffolding environment is the AtgentSchool system (Molenaar & Roda,

2008), which was designed to provide dynamic and adaptive support to school children. In gen-

eral, AtgentSchool is an attention management system that can diagnose a learner’s focus using

his or her activities within the system and provide appropriate interventions. The system works
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adaptively and dynamically by calibrating the scaffolds to the student’s progress and his or her

characteristics.

Despite the beneficial impact of adaptive scaffolds and the possible implementation of adap-

tive rules in hypermedia systems, there are still many issues for future research. For example,

Yeh et al. (2010) noted the missing theoretical understanding of prompt formats that are tailored

to students’ different levels of expertise. Moreover, the questions of how to diagnose the proper

time to scaffold, how to calibrate the support for the appropriate phase of SRL, and how to

gradually reduce support as students progress in self-regulating their learning (e.g., Azevedo &

Hadwin, 2005) still need to be addressed in future studies. In the current contribution, we con-

centrate on the investigation of the appropriate temporal positioning of scaffolds by exploring

the conditions of effective scaffolds using process data.

3. EVALUATION OF INSTRUCTIONAL SUPPORT USING PROCESS DATA

The recent research in SRL that emphasizes the investigation of learning as patterns of events

(e.g., Azevedo, 2014; Bannert, Reimann, & Sonnenberg, 2014; Winne, 2014) has begun to con-

centrate on the microanalysis of process data, which is comprised of different traces of students’

behavior during learning (e.g., log files, think-aloud data, or eye movements). The develop-

ment and application of innovative analysis techniques that are appropriate for this type of data

accompany the increasing interest in fine-grained process data. For example, the techniques

that address the temporal characteristics and the dynamic relations of regulation activities (Ben-

Eliyahu & Bernacki, 2015; Molenaar & Järvelä, 2014) or that support the discovery of event

patterns in SRL activities (Winne & Baker, 2013). These approaches provide new potential for

the evaluation of the effectiveness of scaffolds on the micro level. Furthermore, evaluation re-

sults can contribute to the advancement of a supporting strategy (e.g., Jeong et al., 2008; Johnson

et al., 2011; Molenaar & Chiu, 2014; Sonnenberg & Bannert, 2015).

The analysis of process data using EDM techniques can stimulate the development and de-

sign of effective instructional support that is based on discovered process patterns. For example,

Bouchet et al. (2013) investigated how adaptive versions of their learning environment respond

differently to students, clustered by their SRL behavior. The authors drew implications for

the implementation of increasingly adaptive, individualized support based on learners’ profiles.

Moreover, Kinnebrew, Segedy, and Biswas (2014) were able to track students’ cognitive skills

as well as their use of metacognitive skills in learning environments using log files and sequence

mining methods. Additionally, the evaluation of scaffolds using process data can support the de-

velopment of SRL micro-level models that comprise assumptions on the conditions of effective

scaffolding (e.g., positioning, students’ level of expertise, type of scaffold).

In our approach, we apply process mining techniques (PM; Reimann & Yacef, 2013; Trčka et

al., 2010) to model the sequences of events that are crucial for understanding learning processes

as well as the impact of the provided scaffolds on these processes. Those learning activities

are measured by concurrent think-aloud protocols (Ericsson & Simon, 1993). In general, PM

enables the discovery of process models from event sequences that are stored in an event log,

the testing of models through conformance checking with additional data, and the extension of

existing models (Trčka et al., 2010). We recommend PM as a promising method in SRL research

(Bannert et al., 2014; Sonnenberg & Bannert, 2015) because it allows researchers to describe

and to test learning models that incorporate a process-oriented view, and that can represent the

workflow of activities (Van der Aalst, Weijters, & Maruster, 2004). Theses process models build
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on the concept of Petri nets, which represent an executable system of places and transitions

(Bannert et al., 2014). Using PM algorithms for discovery, a model can be generated based on

event data. The functionality of a discovery algorithm is described in more detail in the section

titled ‘Analysis techniques’. In the context of computer-supported learning research in particular,

PM techniques are increasingly used to study learning from an event-based perspective (e.g.,

Malmberg, Järvelä, Järvenoja, & Panadero, 2015; Reimann, Markauskaite, & Bannert, 2014;

Reimann & Yacef, 2013; Schoor & Bannert, 2012).

In previous analyses that have used PM, we compared the process models of students with

high versus low learning performance and demonstrated that PM techniques can reveal differ-

ences in the sequential patterns of regulatory activities (Bannert et al., 2014). Furthermore, we

investigated the effects of metacognitive prompts on the sequential structure of SRL activities

by comparing the process models of students supported by prompts and of students in a control

group without support (Sonnenberg & Bannert, 2015). Compared to the traditional frequency-

based analysis of learning events, which is not able to take into account the sequential order

of activities, additional findings on prompting effects were revealed. Now, we aim to obtain

more detailed information on the learning process that precedes the presentation of a prompt to

derive the conditions for its effectiveness. For example, discovered patterns could indicate that

the performance of certain events or sequences of events is beneficial, or detrimental, for the

effectiveness of a subsequent prompt presentation. Again, it is expected that PM can contribute

to deeper insights into the sequence of learning activities.

4. RESEARCH QUESTIONS

Metacognitive prompts can stimulate the activation of one’s repertoire of strategic learning ac-

tivities. Despite the beneficial effects of prompting on learning process and learning outcome,

students often do not comply with the provided support optimally (Bannert & Mengelkamp,

2013). Poor compliance is most probably caused by a lack of tailoring of instructional support,

that is, the conditions under which a scaffold is needed are often not considered. For instance,

the presentation of a prompt may not be necessary, and it can even be disruptive at certain times

in the learning process. Therefore, we argue that it is necessary to consider students’ current

learning process to provide adequate instructional support. The conditions of the learner and

his or her learning progress (e.g., learner characteristics, learning material, or current learning

activity) need to be analyzed by process analysis to inform the decisions of when and how of-

ten a prompt should be presented, that is, the amount of scaffolding, the timing, and the fading

out of support. In the present analysis, we aim to classify the effectiveness of metacognitive

prompts by considering their impact on subsequent learning activities. Additionally, we focus

on the conditions of effectiveness by analyzing the learning activities that precede each prompt.

We address the following research questions in detail:

1. Is it possible to distinguish between metacognitive prompts with high and low effective-

ness in terms of the activation of regulatory learning activities using process data?

2. Does the effectiveness of prompts correspond with learning outcome; that is, does a

student who activates a higher number of metacognitive learning activities following a

prompt presentation show a higher learning performance?
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3. What are the conditions under which metacognitive prompts effectively induce regulatory

activities?

With respect to the effect mechanism of metacognitive prompts, we expect that the pre-

sentation of an effective prompt enhances the deployment of metacognitive learning activities.

Moreover, the number of induced metacognitive activities should be associated with the learning

outcome. Finally, it should be possible to discover the conditions, that is, the learning activities

that precede the prompt presentation that influence its effectiveness.

5. METHOD

The present analysis relates to the data of an experimental study that was reported in Bannert

et al. (2015), which examined the general effects of metacognitive prompts on navigation pa-

rameters and learning performance. In the following analysis, we proceed by concentrating on a

microanalysis using think-aloud data. Both contributions refer to the same participants, but they

investigate different research questions and mainly consider different data sources.

5.1. SAMPLE AND RESEARCH DESIGN

The participants were N = 70 undergraduate students from a German university (mean age =

20.07, SD = 1.88, 82.9% female). The students were randomly assigned to the experimental

group (n = 35, mean age = 20.29, SD = 1.89, 88.6% female), or to the control group (n =

35, mean age = 19.86, SD = 1.87, 77.1% female). All of the participants majored either in

media communication or human-computer interaction, and their recruitment was accomplished

through an online system that was administered by our institute. Each student received an in-

centive of 40 Euros (approximately $47 USD) for their participation.

All of the students participated in a hypermedia learning session. The students who were as-

signed to the experimental group received support through metacognitive prompts, whereas the

control group received no support during learning. Due to the research questions of the current

study, we will only focus on the data of the experimental group. More detailed information about

the procedure and the findings of the group comparison is reported in Bannert et al. (2015).

5.2. LEARNING ENVIRONMENT AND PERFORMANCE MEASUREMENT

Both the learning material and metacognitive prompts were presented in a hypermedia learning

environment. The learning content comprised a chapter on learning theories (i.e., classical con-

ditioning, operant conditioning, and observational learning). Altogether, this chapter included

50 nodes with approximately 13,000 words, 20 pictures and tables, and 300 hyperlinks. The

pages that were relevant to the learning goals were limited to 10 nodes with approximately 2,300

words, five pictures and tables, and 60 hyperlinks. Thus, each node comprised approximately

230 words, and there was a figure on approximately every second page. All of the remaining

nodes comprised overviews, summaries, and pages with content that were not relevant to the

learning task.

It was possible to navigate within the learning environment using one of the following el-

ements: (i) a hierarchical navigation menu, (ii) a next-page and previous-page button, (iii) the

backward- and forward-button of the browser, and (iv) hyperlinks that were embedded in the

content. Support through metacognitive prompts appeared as a pop-up window on the screen
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Figure 1: Screenshot of the learning environment including a metacognitive prompt. The main el-

ements are labeled here for a better understanding of the environment, however it was not labeled

in the learning sessions. Participants were asked to select at least one reason for node selection

by choosing among a list of strategic reasons presented in the prompt window. The list comprised

orientation, goal-setting, planning, checking of understanding, monitoring of learning, control

of learning, and evaluation of goal attainment.

several times during learning. Each pop-up window comprised the same list of strategic reasons

for node selection. Examples of these reasons are orientation, goal-specification, or evaluation

of goal attainment. The participants had to select at least one reason for node selection before

continuing with learning. Figure 1 presents a metacognitive prompt in the form of a pop-up

window that was implemented in the learning environment.

Three knowledge tests on different levels based on Bloom’s taxonomy of cognitive learning

(Bloom, 1956) were used for performance measurement: (i) a free recall test, (ii) a comprehen-

sion test, and (iii) a transfer test. During the free recall test, the participants had to write down

all of the basic concepts of operant conditioning that they could remember. The comprehension

test assessed factual knowledge and comprised 22 multiple-choice items, each with one correct

and three incorrect answers (Cronbach’s α = .69). For example, the students were asked which

of the following terms describes a primary reinforcer: money, praising words, food, or any stim-

ulus directly following the behavior. Finally, transfer performance was measured by instructing

the participants to apply their knowledge of the basic concepts and facts to eight prototypical
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situations in educational settings, which were not explicitly addressed in the learning material.

For example, in one task they had to apply the principles of operant conditioning to solve a

classroom situation in which a teacher experiences discipline problems. Two research assistants

rated the answers to these situations on a researcher-developed rating scale (maximum score =

40 points; Cohen’s κ = .84). In the case of disagreement among the raters, one of the authors

determined the final score. More examples of the knowledge tests that were used in our studies

are available in Bannert and Reimann (2012).

5.3. PROCEDURE

The hypermedia learning session began with an introductory section. First, the experimenter

explained the navigation elements of the learning environment. Then, the participant was in-

structed to perform a series of exercises using a practice lesson while thinking aloud concur-

rently during the task. More specifically, he or she was asked to verbalize every thought that

came to his or her mind, without any interpretation or justification. These instructions refer

to level 2 verbalizations, as specified by Ericsson and Simon (1993). If necessary, the experi-

menter provided feedback to the participant. Additionally, further exercises could be used until

the participant firmly mastered the think-aloud technique.

Next, the participants received a short tutorial regarding the use of metacognitive prompts

(approximately 10 minutes). This tutorial comprised information on the importance of reflecting

on one’s learning activities, an explanation of the reasons for strategic node selection that is listed

in the prompts, and the desired usage of the prompts. Such a tutorial is necessary to guarantee

the adequate application of metacognitive strategies during learning (e.g., Veenman, 2007). We

derived the list of reasons for node selection from categories that had been developed in previous

work (Bannert, 2006), in which students were asked to name their reasons freely. Following the

tutorial, the participants were instructed to configure the prompts by the following arrangements.

First, they could change the order of the items in the list of reasons for node selection. The initial

order was randomized. Second, they were asked to define eight time stamps when the prompts

should appear during learning.

As the next step, the participants engaged in 40 minutes of learning in our hypermedia learn-

ing environment. In the beginning, they were instructed about their learning task, that is, to

learn the basic concepts of operant conditioning. During learning, the students were supported

by metacognitive prompts. All of the participants were completely free to use the navigation

elements of the learning environment and to use their learning strategies. During the whole

learning phase, the participants had to read and to think aloud as practiced in advance, and their

utterances were recorded using a microphone. If a participant stopped his or her verbalizations

for more than five seconds, the experimenter prompted him or her to continue by saying “Please

think aloud”. Following the learning task, the participants worked on the three knowledge tests

that are described above. The total duration of the session was approximately two hours.

5.4. CODING SCHEME

Concurrent think-aloud protocols were used for the online measurement of the learning activi-

ties. The participants’ recorded verbal protocols were segmented and coded post-hoc according

to a coding scheme that was based on our theoretical framework of self-regulated hypermedia

learning (Bannert, 2007). This conceptual framework organizes the student’s activities into the

three major categories Metacognition, Cognition, and Motivation. Additionally, it comprises
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several sub-categories, as further described in Table 1. Motivation refers to statements that

reflect a beneficial or an obstructive embedding of a metacognitive or cognitive learning activ-

ity, particularly according to the concepts of achievement motivation, action control, and self-

efficacy. More specifically, we assigned a motivational code when a student made an evaluative

statement with respect to the task (e.g., “The task is quite difficult”), to his or her competencies

(e.g., “I’m good at finding the relevant information”), and to the situation (e.g., “Thinking aloud

isn’t as troublesome as I expected”). These utterances reflect motivational states that might af-

fect the self-regulatory behavior, for example, the use of strategies. According to Zimmerman

(2008) especially self-motivation beliefs, such as self-efficacy, task interest, and value, might

impact the student’s engagement during learning.

In general, the coding process followed the procedure that was presented by Chi (1997). We

segmented the verbal protocols by units of meaning. Thus, we assigned a segment for every

definable learning activity. Furthermore, we did not use multiple nor nested codes. Four trained

research assistants coded the verbalizations of all of the participants. We selected a random

sample of six participants to compute the inter-rater reliability for our coding scheme. Based

on 1,385 segments, the reliability showed substantial agreement (Cohen’s κ = 0.78), which is

considered to be sufficient for the following analysis.

5.5. DATA PREPARATION

For the purpose of our analysis, we needed to prepare our data as described below. The starting

point for the data preparation was the coded verbal protocols of 35 participants during 40 min-

utes of hypermedia learning. Each one of the students was supported by metacognitive prompts

five to eight times during learning. The absolute frequencies and means of all of the coded

learning activities, as well as the mean duration times of the events, are presented in Table 2.

The basic idea of our analysis was to use the coded learning activities, which represent

the metacognitive, cognitive, and motivational utterances as described in the previous section,

to classify each metacognitive prompt as “effective” or “non-effective” in inducing regulatory

activities. We consider an increase in metacognitive utterances following a prompt, in relation

to a student’s individual baseline of metacognitive activities, to be an indicator of effectiveness.

Therefore, we started our investigation by using a Dotted Chart Analysis (Song & van der Aalst,

2007; Van der Aalst, 2011), which is applicable with the ProM framework Version 5.2 (2008),

to obtain an overview of the present process data. A dotted chart illustrates a sequence of

events by arranging them as dots in a two-dimensional plane. The horizontal axis represents

the occurrence of an event in time, and the vertical axis accounts for a case (i.e., the data of

one participant). Figure 2 shows the visualization of the coded learning activities during the

first ten minutes of four sample cases (i.e., participants CHRO10, KAHA17, KOGE04, and

VAIV20). An inspection of the events following a prompt (i.e., the events following the yellow

sections) showed that some prompts are followed by a high number of metacognitive events,

whereas other prompts are not. Furthermore, the increase in metacognitive events that follow a

prompt—if present—usually takes up to two minutes.
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Table 1: Coding scheme for analyzing student’s learning activities

Code Category Description and Examples

Metacognition

ORIENT Orientation Task clarification, overviewing the material to prepare

strategic learning behavior

At first I read my learning goals to get an overview of my

task.

SETGOAL Goal Specification Goal setting and sub-goaling

I have to learn the basic concepts on operant

conditioning.

PLAN Planning Planning of proceeding

First I will read the introductory text, then I will decide

in which sequence I will proceed.

SEARCH Search Searching information

Now I’m looking for information on reinforcement

plans.

JUDGE Judgement Judgements of relevance of information

Skinner’s Vita is not relevant for my learning task.

EVAL Evaluation Evaluating the attainment of goals or sub-goals

Did I process all topics according to my learning goals?

MONITOR Monitoring Monitoring and controlling of one’s learning

Ah now I understand the principle and I can proceed to

my next learning goal.

Cognition

READ Reading Reading out loud

REPEAT Repeating Repeating in terms of memorizing

Re-reading a paragraph or notes

ELABORATE Elaboration Deeper processing: paraphrasing, connecting, inferring

I already know the Skinner Box from my biology class.

ORGANIZATION Organization Organization of information

Drawing a map, writing down major concepts

Motivation

MOT Motivation Evaluative statements regarding the task, the student’s

competencies, or the situation

The task is very interesting and relevant for my studies.

I’m good at memorizing this subchapter.

This section distracts me from my original goal.

Residual Category

OTHER Others Off-topic statements, comments on technique, not

interpretable statements, pauses

May I make notes? The mouse doesn’t work well.
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Table 2: Absolute frequencies and means of all coded learning events, and mean duration times

of events during 40 minutes of hypermedia learning (N = 35)

Absolute Frequency Duration

Min Max Frequency M SD M Dur SD Dur

Metacognition 34 242 4075 116.43 45.97 4.54 7.16

Orientation 5 30 501 14.31 7.23 6.10 5.19

Planning 0 5 61 1.74 1.65 5.76 3.21

Goal Specification 0 10 72 2.06 2.36 6.14 3.09

Search 1 32 414 11.83 7.54 8.53 9.18

Judgment 2 23 409 11.69 5.70 4.48 2.61

Evaluation 0 15 127 3.63 3.08 13.41 29.46

Monitoring 11 203 2491 71.17 37.62 3.07 2.74

Cognition 47 201 3760 107.43 36.01 14.72 14.93

Reading 20 84 1423 40.66 15.75 17.56 18.20

Repeating 2 45 647 18.49 11.04 10.82 10.47

Elaborating 3 55 767 21.91 12.92 10.35 11.18

Organizing 3 61 923 26.37 13.87 16.62 13.12

Motivation 0 18 72 2.06 4.14 4.07 2.46

Others 9 76 1124 32.11 14.71 3.25 4.01

Sum of all coded events 127 482 9031 258.03 78.36 8.87 12.08

Note. M(Dur) = mean duration time, SD(Dur) = standard deviation of duration time; duration

times in seconds.
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Figure 2: Visualization of four cases using a Dotted Chart Analysis of coded verbal protocols.

The horizontal axis represents the first ten minutes of learning with each segment representing

one minute. Each dot represents the occurrence of an activity or a prompt presentation. The

activities are color-coded and explained at the bottom. The line between two dots represents the

duration of an event.
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Based on this observation, we decided to use a two-minute time interval following each

prompt to determine the successful induction of metacognitive activities. There are additional

reasons that support the selection of this measurement unit. A shorter time interval would reduce

the sample size to investigate the learning process, that is, the number of investigated events.

Here, one must consider that the duration time of learning activities varies from a few seconds

(e.g., monitoring one’s learning progress) to longer time periods (e.g., reading a paragraph).

Table 2 presents the means and standard deviations for the duration times of all of the coded

categories. On the other hand, the selection of a longer time interval would be accompanied by

a possible overlap of prompt presentations. The participants were instructed to determine eight

time stamps for the presentation of prompts, considering a distance of at least two minutes be-

tween two presentation times. Each selected time interval comprised all of the coded utterances

within this timeframe, including overlapping events, that is, events that started and respectively

ended beyond the two-minute interval. Because the duration of events varied from seconds to

minutes, the number of events that are included in a time interval also varied (M = 14.16, SD =

5.86, Min = 1, Max = 31).

In addition to selecting the two minutes following each prompt, we also computed an in-

dividual baseline of metacognitive utterances for each participant. This baseline is necessary

to determine if an increase of metacognitive events following a prompt occurred. It represents

the amount of spontaneous metacognitive utterances within an interval of two minutes. For the

computation of this baseline, we excluded the two-minute time interval following each prompt

because this time span is supposed to be affected by the prompted requests. The remaining time

span of the total learning time was used to compute a baseline for each participant. For exam-

ple, one participant showed a total of 127 metacognitive utterances within the total learning time

of 40 minutes. He or she received eight prompts with 64 metacognitive utterances within the

two-minute time intervals following each prompt. For the individual baseline, we considered

the number of remaining metacognitive events (i.e., 127 - 64 = 63) and the remaining time span

(i.e., 40 - 16 = 24 minutes). In this case, the computation yields a baseline of 5.25 metacognitive

utterances within a time span of two minutes. Overall, the individual baselines for all of the

students ranged from 1.47 to 12.68 metacognitive utterances (M = 5.32, SD = 2.29).

Although the observed learning time of 40 minutes was quite short, and, therefore, we did

not expect the number of metacognitive utterances to vary significantly by time, we conducted

additional analyses to account for a possible influence of time or the number of prompts that

were received. First, we checked if the number of prompts that are received predicts the number

of metacognitive utterances following a prompt (i.e., a possible additivity of prompting effects).

The results of a linear regression showed no significant correlation between prompt number and

metacognitive utterances, F(1, 239) = 3.16, p = .077, R2 = .013, R2

adjusted = .009. Figure 3

presents the mean numbers of metacognitive utterances for all of the students (N = 35) in each

two-minute time interval following a prompt. Second, we considered whether there was a gen-

eral upward drift of metacognitive utterances during the total learning time. Again, a linear

regression using the time interval as the predictor and the number of metacognitive utterances

as the independent variable revealed no significant influence of time, F(1, 698) = 2.36, p = .125,

R2 = .003, R2

adjusted = .002. Additionally, Figure 4 shows that no upward trend is present. The

high number of metacognitive events during the first time interval can be explained by neces-

sary orientation activities at the beginning of the learning phase. To summarize, the number of

metacognitive utterances is not significantly affected by time or by the number of prompts that

are received. Therefore, the computation of the baseline as described above does not need to be
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Figure 3: The mean number of metacognitive utterances for all students (N = 35) in each two-

minute time interval following a prompt. Error bars represent standard errors.

adjusted for these factors.

By comparing the individual baseline with the number of metacognitive utterances in the

two-minute time interval following a prompt, it is possible to determine whether there was an

increase of metacognitive activities. If the number of metacognitive utterances exceeds the

individual baseline, we regard the prompt as effective. Because it may be possible that both

values are equal or very close to one another, we decided to set a cutoff value to solve those cases.

We selected an absolute value of one metacognitive event because it represents the smallest

possible threshold. For example, if the individual baseline of a participant is 5.30, then the

number of metacognitive utterances in the time interval following a prompt must be greater than

6.30 to indicate an increase, that is, a successful induction of metacognitive activities based on

our criteria.

Finally, we selected two-minute time intervals preceding the presentation of prompts for

the purpose of our third research question, that is, an analysis of the conditions of effectiveness.

Again, we decided that this time span represents a suitable sample for our analysis. The selection

of time intervals that precede and follow a prompt presentation is illustrated in Table 3, using

two prompting times of an example case.

5.6. ANALYSIS TECHNIQUES

In the first step of our analysis, we determined the number of metacognitive activities within each

two-minute time interval following a prompt. Then, we verified the chosen type of classification

by comparing the students’ mean baseline of metacognitive utterances with the mean number

in the time intervals that follow each prompt: If the prompts induced metacognitive activities
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Table 3: The selection of two-minute time intervals preceding and following the presentation of

the first two prompts for the case EDMI18

Case ID Activity (Code) Timestamp Case ID Activity (Code) Timestamp

. . . . . .

EDMI18 READ 00:04:46 EDMI18 MONITOR 00:11:13

EDMI18 PLAN 00:06:08 EDMI18 ORGANIZATION 00:11:19

EDMI18 MONITOR 00:06:09 EDMI18 OTHER 00:11:53

EDMI18 READ 00:06:14 EDMI18 ELABORATE 00:11:56

EDMI18 MONITOR 00:06:48 EDMI18 ELABORATE 00:12:38

EDMI18 PROMPT1 00:06:56 EDMI18 OTHER 00:12:50

EDMI18 OTHER 00:07:19 EDMI18 ELABORATE 00:12:52

EDMI18 READ 00:07:44 EDMI18 PLAN 00:12:56

EDMI18 MONITOR 00:07:46 EDMI18 MONITOR 00:13:00

EDMI18 ORGANIZATION 00:08:10 EDMI18 EVAL 00:13:02

EDMI18 OTHER 00:08:13 EDMI18 MONITOR 00:13:10

EDMI18 MONITOR 00:08:19 EDMI18 PROMPT2 00:13:13

EDMI18 ELABORATE 00:08:25 EDMI18 OTHER 00:13:24

EDMI18 MONITOR 00:08:27 EDMI18 SETGOAL 00:13:26

EDMI18 ORGANIZATION 00:08:52 EDMI18 ORGANIZATION 00:13:27

EDMI18 MONITOR 00:08:53 EDMI18 READ 00:13:35

EDMI18 READ 00:09:04 EDMI18 ORGANIZATION 00:13:59

EDMI18 MONITOR 00:09:04 EDMI18 READ 00:14:25

EDMI18 ORGANIZATION 00:09:10 EDMI18 MONITOR 00:14:31

. . . EDMI18 ORGANIZATION 00:14:32

EDMI18 READ 00:14:38

EDMI18 MONITOR 00:15:09

EDMI18 ORGANIZATION 00:15:11

EDMI18 OTHER 00:15:24

. . .

Note. For an explanation of the codes please see the coding scheme presented in Table 1. The

timestamp indicates the starting time of an activity, using the format hh:mm:ss.
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Figure 4: The mean number of metacognitive utterances for all students (N = 35) in each two-

minute time interval. The total learning time was 40 minutes, resulting in 20 two-minute time

intervals. Error bars represent standard errors.

within the determined time interval successfully, the mean number of metacognitive utterances

in these intervals should be higher than the mean baseline. Additionally, we examined the

correlation between the number of induced metacognitive activities and learning performance.

According to our theoretical framework, we assumed that students who show a higher number

of induced metacognitive activities should perform better than students who show less induced

regulatory activities.

The second step of our analysis considered the conditions of effectiveness. For this purpose,

we first used the RapidMiner Studio Version 6.3 (2015) and a linear regression learner to explore

the learning activities that occurred before a prompt appeared. A linear regression can be used

as a classification method in the case of exclusive numeric attributes, and it has the advantages

of working well on small data sets and of generating simple models to enable a natural inter-

pretation (Hämäläinen & Vinni, 2010). As described above, we decided to use two-minute time

intervals for our analysis. The coded learning activities that occurred before each prompt were

used as the predictors, and the number of metacognitive events that followed each prompt as the

outcome variable. We applied cross-validations to avoid over-fitting of the learning algorithm.

By using this data mining (DM) approach, we expected to find conditions, that is, states of the

learning process, that indicate when a prompt is more likely to be effective and non-effective,

respectively, in inducing regulatory activities.

Finally, we applied PM to gain more detailed insights into the learning process preceding

the effective versus non-effective prompts by taking into account the sequential order of the

learning activities. For this analysis, it was necessary to classify the prompts into the discrete

categories of “effective” and “non-effective” in inducing metacognitive activities, as described

in the section titled “Data Preparation”. We used the ProM Framework Version 5.2 (2009) and
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the Fuzzy Miner algorithm (Günther & van der Aalst, 2007) to generate inductively a process

model for the learning events that preceded all of the prompts that were classified as effective

and a process model for the activities that preceded all of the prompts that were classified as

non-effective. A comparison of these process models provides more detailed information on the

conditions that may influence the effectiveness of prompts. In the following section, we provide

a short introduction to the principle of the Fuzzy Miner algorithm.

Fuzzy Mining (Günther & van der Aalst, 2007) is an approach that was designed to find

underlying processes in data that are less structured in appearance, such as our coded learning

activities. The algorithm allows a flexible simplification of output models by distinguishing

between the important and the less important details of an input event sequence. Thus, it is

possible to generate a model that emphasizes the main features of a process and that is easily

understandable. More precisely, the Fuzzy Miner transforms an event sequence into a process

model that consists of nodes (event classes or categories) and edges (relations between two event

classes). The data input comprises several cases with every case including an event sequence,

which is ordered by a timestamp. First, the Fuzzy Miner algorithm uses these data to generate

a complete model that comprises all of the observed nodes and edges by taking into account

the relative importance and the sequential order of all of the events. Then, the algorithm uses

two fundamental metrics, which are referred to as significance and correlation, to compute a

simplified model for the given data set. Significance measures the relative importance of the

occurrence of event classes and relationships between events. For instance, events that occur

more frequently are assessed as being more significant. Correlation is calculated for edges. It

indicates the closeness of two events, measured by their temporal proximity. The basic con-

cepts of significance and correlation are embedded in a metrics framework that calculates three

primary types of metrics: unary significance (event classes), binary significance (relationships

between event classes), and binary correlation (relationships between event classes). Günther

and van der Aalst (2007) describe these metrics in more detail. As a final step, the model is

simplified by making decisions regarding the inclusion of nodes and edges in the final model

using the following rules: Events that are highly significant are preserved, events that are less

significant, but highly correlated, are aggregated, and events that are less significant and lowly

correlated are removed. It is possible to influence the model simplification by parameter set-

ting, for example, by specifying cutoff values. To bring structure to the model, the algorithm

uses edge filtering and thereby tries to focus only on the most important relationships between

event classes. The utility of edges, which is the weighted sum of significance and correlation of

an edge, is calculated, and this weighting is then configured by the utility ratio. Moreover, by

setting an edge cutoff, an absolute threshold value for filtering edges can be determined. The

higher the value at which the edge cutoff is set, the more likely the Fuzzy Miner is to remove

an edge. Finally, there is another important mean to simplify the model: node aggregation and

abstraction. Nodes are removed based on a parameter referred to as the node cutoff. If the unary

significance of a node is below this cutoff, it will be excluded from the resulting model, or it will

be aggregated. The latter happens if it is possible to preserve less significant nodes by merging

them into a cluster of highly correlated nodes.

6. RESULTS

This section presents the results of our analyses as follows. First, we report the classifica-

tion results using the learning activities following each prompt and an individual baseline of
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metacognitive utterances. Additionally, we refer to the correlation between our classification

and learning performance. Second, the findings of the investigation of conditions for the effec-

tiveness of prompts are reported. We further present the results of a linear regression learner as

well as those of a process mining algorithm.

6.1. CLASSIFICATION OF PROMPTS

In the first step of our analysis, we took into account the number of metacognitive utterances in

a two-minute time interval following each prompt as well as an individual baseline to determine

each prompt’s effectiveness in inducing regulatory activities. To verify our classification criteria,

we used a Wilcoxon signed-rank test to compare the participants’ mean baseline and the mean

number of metacognitive utterances following each prompt presentation. The number following

the prompts was significantly higher (Mdn = 6.80) than the individual baseline (Mdn = 5.05),

z = -4.18, p < .001, d = 2.00. Thus, in general, the participants showed significantly more

metacognitive activities within the two-minute time intervals following each prompt compared

to their individual baseline (i.e., the mean number of metacognitive utterances within any two

minutes). The results support the selection of a two-minute time span following a prompt to

evaluate the successful induction of metacognitive activities.

Next, we analyzed the correlation between the induced number of metacognitive utterances

through prompts and learning outcome. The alpha level was adjusted according to the pro-

cedure of Benjamini and Hochberg (1995) because we conducted multiple tests of statistical

significance. The results showed no significant correlation for any of the performance measure-

ments (recall: r = -.23, comprehension: r = .08, transfer: r = .12). Because the total number

of metacognitive activities within 40-minutes learning time also showed no significant correla-

tion with learning outcome, we checked the correlations with the sub-categories. The findings

revealed that the sub-category Monitoring shows the highest positive correlation with two mea-

surements of learning performance (recall: r = -.17, n.s., comprehension: r = .25, n.s., transfer: r

= .27, n.s.). Therefore, we additionally analyzed the correlation between the number of monitor-

ing activities within the two-minute intervals following the prompts and learning performance.

The number of monitoring activities corresponds positively with transfer performance (r = .26,

n.s.) and comprehension performance (r = .22, n.s.), but not with recall performance (recall: r

= -.18, n.s.). Possibly due to the small sample size, all of the correlations are non-significant.

A regression equation to predict transfer performance (y = 18.95 + 0.068 x) shows that a low

number of induced monitoring activities through prompting (M = 24.54, SD = 15.89; M – SD

= 8.65) results in a performance score of y = 19.54 points and that a high number (M + SD =

40.43) results in a score of y = 21.70 points. These observations are in line with previous work

(Bannert & Mengelkamp, 2013), which indicated that prompting primarily enhances transfer

performance. Additionally, a process analysis showed that the positive effect on transfer per-

formance is mainly mediated by inducing monitoring activities (Sonnenberg & Bannert, 2015).

In conclusion, the positive correlation between the number of monitoring activities and transfer

performance indicates the usefulness of our classification based on a two-minute time interval

following each prompt. The students who showed a higher number of induced monitoring ac-

tivities through prompting performed better at transfer tasks than the students who showed less

monitoring events.

Moreover, the classification of prompts into two discrete classes (effective and non-effective,

respectively, in inducing metacognitive activities), based on a comparison of the individual base-
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line and the number of metacognitive utterances following a prompt, resulted in a total of n =

113 effective prompts and n = 127 non-effective prompts for our learner sample (N = 35). Fur-

thermore, the classification shows that each student received a mean of M = 3.23 (SD = 1.46,

Min = 1, Max = 6) effective prompts. Except for one student whose prompts were all classified

as being effective, each student received both effective and non-effective prompts.

The selection of two-minute time intervals following the presentation of a prompt and the

classification of prompts represents the starting point for the following analyses, which aim at

exploring conditions for effectiveness. Please note that for the purposes of these analyses, each

prompt was regarded as a separate case labeled either as “effective” or “non-effective” (N = 240,

neffective = 113, nnon-effective = 127).

6.2. CONDITIONS FOR THE EFFECTIVENESS OF PROMPTS

We analyzed the coded events that preceded effective and non-effective prompts by using two

approaches. First, we applied a linear regression learner taking into account the absolute fre-

quency of coded events as predictors and the number of metacognitive events following a prompt

as the outcome variable. Then, we considered the sequential order of coded learning activities by

generating process models for the time interval before a prompt appeared using a PM algorithm.

LINEAR REGRESSION LEARNER. We applied a linear regression learner to our data set us-

ing the RapidMiner Studio Version 6.3 (2015). Because we used the same data set for training

and for measuring the performance of the linear regression model, we used two cross-validation

techniques to avoid over-fitting. First, a ten-fold cross-validation was conducted, randomly split-

ting the data into a training and a test set at the prompt-level (N = 240 prompts). Second, we

conducted a student-level cross-validation by defining a subset for each student (in RapidMiner:

Batch-X-Validation) to account for the possible influence of student factors. In this procedure,

complete cases are removed iteratively before training the algorithm and are then used to esti-

mate the goodness of the model. Moreover, we activated the automatic feature selection using

the M5 prime method. The input predictors were all learning activities that occurred in a two-

minute time interval preceding each prompt, whereas the outcome variable was the number of

metacognitive utterances that followed each prompt. We used the VIF and tolerance statistics

to assess potential multicollinearity within our data. Because VIF values were well below 10

(average VIF = 1.182) and tolerance statistics were well below 0.2, there was no cause for con-

cern. The feature selection method selected the categories Orientation, Search, and Monitoring

as relevant predictors for the regression model.

Table 4 presents the weight table of the linear regression model that was trained with our

data. The results show the influence of the regression coefficients. Based on these coefficients,

the findings indicate that a high occurrence of orientation and monitoring activities preceding

the prompt presentation are significant predictors for the successful induction of metacognitive

events. The occurrence of all other learning activities has no significant influence on prompt

effectiveness in the resulting linear model. The performance measurement of the linear regres-

sion model using a ten-fold cross-validation showed a root-mean-squared error of 3.64 +/- 0.55

and a correlation of .46 +/- .19. In case of the student-level cross-validation, the model goodness

was slightly lower (RMSE = 3.60 +/- 1.23, R = .22 +/- .26).
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Table 4: Weight table of the learned linear regression model

B SE B β p

Constant 3.40 0.44 < .001

Orientation 0.78 0.20 .24 < .001

Search 0.13 0.22 .01 .550

Monitoring 0.61 0.08 .05 < .001

Note. Prediction of the metacognitive activities following a prompt by considering all activities

in a two-minute time interval preceding the prompt presentation. N = 240 prompts. All codes

were included, but only three codes were selected by feature selection. Estimation of model

goodness using cross-validation: prompt-level, RMSE = 3.64, R2 = .24; student-level: RMSE =

3.60, R2 = .12.

PROCESS MINING USING THE FUZZY MINER ALGORITHM. In a further analysis, we used

the approach of PM and an algorithm for process discovery. This algorithm inductively gen-

erated process models for the time interval before an effective prompt appeared and before a

non-effective prompt appeared. Our analysis was conducted by using the following parameter

settings: edge filtering was set with the edge cutoff = 0.20 and the utility ratio = 0.75 (both are

default values); the significance cutoff of the node filter was set to 0.20.

Figure 5 shows the resulting models with the event classes and their process relationships.

Event classes are represented by the rectangular nodes that include the label and its significance

(a value between 0 and 1). The arcs between categories indicate successive events (the upper

number displays significance, that is, their relative importance, and the lower number shows

correlation, that is, a measure which indicates how closely related two events are). The arcs that

point towards a category indicate a repeated occurrence of that category. Less significant and

lowly correlated events were discarded from the process model. Thus, the nodes and arcs that

fall into this category were not included in the graph.

In Figure 5, the model of the learning process preceding non-effective prompts (left part)

comprises nine event classes, and the model of effective prompts (right part) comprises seven

categories with two clusters. The model of non-effective prompts does not include the categories

SETGOAL and PLAN, whereas in the model of effective prompts, the categories PLAN and

SEARCH as well as JUDGE and EVAL were combined into a cluster. This means that these

event classes did not reach the significance cutoff value. Here, the main idea of the Fuzzy Miner

is realized by abstracting from information that is perceived as being too fuzzy, that is, it does

not play a significant role in the process as a whole.
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Figure 5: Process models for the time interval preceding non-effective prompts (n = 127, left)

and effective prompts (n = 113, right). For an explanation of the codes please see the coding

scheme presented in Table 1.
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The process model of non-effective prompts comprises five metacognitive event classes.

Furthermore, the most important event classes are MONITOR, READ, ORGANIZATION, and

ELABORATION. Referring to the edges in the process model, the most important connections

among event classes are between READ and MONITOR, between ELABORATE and MONI-

TOR, between ORIENT and EVAL, as well as between ORGANIZATION and ELABORATE.

Moreover, the classes MONITOR and ORIENT show several connections to other events, thus

representing significant routing points for the process. Finally, there is a triple loop between

READ, MONITOR, ELABORATE, and ORGANIZATION, which indicates a very active pro-

cessing of information which is constantly monitored. In general, the integration of metacogni-

tive event classes in the model of non-effective prompts can be interpreted as a successful reg-

ulation of learning activities with respect to SRL assumptions. According to SRL models (e.g.,

Winne & Hadwin, 2008; Zimmerman, 2008), students ideally perform various metacognitive ac-

tivities and run through different regulation phases (forethought, performance, and evaluation).

In contrast, the process model of effective prompts only shows the three metacognitive cate-

gories, MONITOR, ORIENT, and SETGOAL, but all of the four cognitive event classes previ-

ously described. The most important event classes are MONITOR, READ, ELABORATE, and

REPEAT. Furthermore, important edges are between MONITOR and ORGANIZATION, be-

tween ELABORATE and MONITOR, as well as between ORGANIZATION and READ. There

is a cycle that connects READ, ELABORATE, MONITOR, and ORGANIZATION. This cycle

can be interpreted as the processing of information that is monitored. However, compared to the

model of non-effective prompts, there is a less active interconnection between these four event

classes. Finally, the event classes REPEAT, SETGOAL, and ORIENT represent a second cycle,

which shows a weak structure between these events. In general, the performance of cognitive

activities, which is connected with MONITOR, represents the only clear structure in this process

model. Furthermore, there is poor regulation of learning activities in comparison to the model

of non-effective prompts.

In summary, the process model of non-effective prompts represents a highly regulated learn-

ing process, including various metacognitive categories, and a very active cycle of information

processing. In contrast, the model of effective prompts shows a learning process that comprises

few metacognitive event classes, and a cycle of monitored information processing. However,

this cycle shows a weaker interconnectedness than the active cycle in the model of non-effective

prompts. As a result, in the case of the model of non-effective prompts, an intervention through

a metacognitive prompt may not be necessary, or it may even be disturbing considering the al-

ready high state of regulation. Moreover, interventions in a process that comprises very active

information processing may not be the right context to foster metacognition because the learner

has to interrupt his or her cognitive activities to interact with the prompt and follow its request.

Consequently, this can lead to ignoring the prompts and to a continuation of one’s information

processing activities. On the other hand, the presentation of a metacognitive prompt can be

more effective if the learning process comprises a weak regulatory behavior and a less intensive

cycle of cognitive activities. With respect to the findings of the linear regression, the precursor

states that are likely to make a prompt effective may be orientation and monitoring events that

are, however, not well embedded in the course of learning, as displayed in the structure of the

process model of the effective prompts. Moreover, an effective prompt may foster the learning

process by supporting the interconnectedness between the two cycles, especially by stimulating

the connections that lead back from the regulatory behavior to the information processing cy-

cle. As is shown above, particularly induced monitoring activities seem to cause better learning.
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This may be due to the fact that effective prompts helped to cycle back to monitoring and the

cognitive loop.

7. DISCUSSION

In this contribution, we evaluated the effectiveness of metacognitive prompts on the micro level

to investigate the conditions for effective scaffolding during hypermedia learning. Because the

research on SRL and scaffolding hypermedia learning has noted the importance of tailoring

support to the needs of the learner (e.g., Azevedo & Hadwin, 2005), and learning systems offer

the possibility of implementing adaptive features (e.g., Brusilovsky, 2001; Molenaar & Roda,

2008), we attempted to explore the reasons why a provided metacognitive prompt is sometimes

effective in stimulating regulatory activities and why sometimes it is not. In general, this type

of research is important for the improvement of scaffold design because information on the

conditions for effectiveness can inform the positioning of support in the course of learning (e.g.,

Thillmann et al., 2009). For our purpose, we analyzed fine-grained process data, which was

measured by coded think-aloud protocols, using DM and PM. With this approach, we sought

to classify the effectiveness of prompts, to investigate the correspondence of the classification

with learning outcome, and to discover the conditions under which prompts induce regulatory

activities (i.e., the proper temporal positioning).

Our findings indicate that it is possible to distinguish between effective and non-effective

prompts by considering the increase of metacognitive utterances following the prompt presen-

tation. Overall, approximately half of the prompts that were provided to the students were

classified as effective according to our chosen classification criteria. Because we had to make

a decision about how to determine the time intervals to investigate the increase of metacogni-

tive utterances, it is possible that a different selection of measurement units would result in a

different prompt classification. The determination of measurement units is a general challenge

in analyzing fine-grained process data (Johnson et al., 2011; Winne, 2014). Therefore, we val-

idated our decision by showing that the mean number of metacognitive events following the

prompts is significantly higher than the baseline of metacognitive utterances. Moreover, we re-

lated the selection of time intervals to learning performance. Ideally, the students who showed

a higher number of induced metacognitive activities in the two-minute time intervals following

a prompt would also show a better learning performance. The results revealed that there is no

significant correlation between the total number of induced metacognitive activities and learning

performance. A closer look at the sub-categories of metacognition showed that the highest cor-

relation was between monitoring and transfer performance. However, this small effect was not

significant, possibly because of the small sample size. Nevertheless, the positive correspondence

between monitoring and transfer performance is in line with the previous research (Sonnenberg

& Bannert, 2015).

Based on the classification of effective and non-effective prompts, it was our next aim to

compare these two types by considering the students’ current learning process preceding a

prompt. Depending on the learning activities that were performed by the students (e.g., read-

ing, the processing of information, or monitoring and controlling their learning progress), it is

possible that the presentation of a scaffold affects the learning process differently. For example,

one reason for the non-effectiveness of a provided prompt in our study may be a suboptimal

positioning within the student’s learning process. By applying DM and PM techniques to the

coded learning activities, we tried to discover indicators of the effectiveness of a prompt (i.e.,
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the conditions under which it might be more likely to be effective and non-effective, respec-

tively) to improve the positioning of metacognitive support in future scaffold design. First, we

analyzed the frequency of learning activities in the time intervals that preceded each prompt by

applying a linear regression learner. The findings indicate that a high occurrence of orientation

and monitoring activities fosters the desired prompting effects (i.e., the activation of regulatory

activities).

These findings were supported by applying a PM algorithm that not only takes into account

the frequency of coded learning activities but also their relative positioning (i.e., their sequential

order). We compared two process models, both inductively generated by the Fuzzy Miner algo-

rithm, that represent the learning processes (more precisely, the workflow of learning activities)

that precede the appearance of an effective and a non-effective prompt. The sequence of learning

activities in the process model of non-effective prompts resembles the performance of success-

ful regulation patterns as described in SRL models (e.g., Winne & Hadwin, 2008; Zimmerman,

2008). Additionally, this process model shows a very active sequence of monitored information

processing. In contrast, the process model of effective prompts comprises the execution of cog-

nitive activities, which are only connected with one metacognitive activity, namely monitoring.

This could be interpreted as a poor regulation of the learning process.

In summary, the findings of the learned linear regression function and the process models

indicate that the occurrence of orientation and monitoring activities, if they are not yet well em-

bedded in the course of learning, increase the likelihood of effectiveness. In this case, metacog-

nitive prompting may be successful in fostering further regulatory activities and in structuring

the regulating of the learning process. If students already show a highly regulated process and

an intense sequence of cognitive processing, the intervention of a metacognitive scaffold may

not be necessary, and it may even be disruptive. These results relate to the implications for the

design of adaptive systems based on attention management of Molenaar and Roda (2008). The

authors note that one has to evaluate the cost of switching attentional focus and that learners

should be able to predict interruption times.

Our results can be considered for future scaffold design, for example, for adapting the pre-

sentation of a metacognitive prompt to the current learning process. In general, our analysis

shows how to use process data to evaluate the effectiveness of provided support on the micro

level by applying DM and PM techniques. Furthermore, the findings strengthen the importance

of using process data in the investigation of the effectiveness of instructional support, which in

turn provides implications for improving its design (e.g., by providing conditions for adaptive

scaffolds).

With regard to the limitations of our study, it should be noted that the results depend on

our learning setting (e.g., learning material and learning environment) and on our participants.

Therefore, our findings may be task-specific, and they probably do not represent general pat-

terns. For different learning settings, metacognitive regulatory processes may look entirely dif-

ferent. Additionally, because the sample group of this study was predominately female, the

results may be influenced by gender differences. The question of possible differences between

male and female students could be addressed in future studies.

Moreover, our coding scheme, which comprises several metacognitive, cognitive, and mo-

tivational activities, determines the level of granularity for the present analysis. Even more

importantly, the applied DM and PM techniques are inductive approaches, and thereby the find-

ings rely on the representativeness and quality of the underlying data sources (e.g., Bannert et

al., 2014). Therefore, the resulting patterns need to be validated in future research. Furthermore,
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the process data were measured by concurrent think-aloud protocols. The results should also be

replicated using process data on different levels (e.g., log files or eye tracking), ideally advanc-

ing towards a temporal alignment of different data channels (Azevedo, 2014), and towards an

integration of findings across several SRL studies (Dent & Hoyle, 2015). However, approaches

that use log files to track students’ cognitive and metacognitive strategies in learning environ-

ments imply a more difficult interpretation of awareness and intent regarding students’ actions

and behaviors than coded think-aloud protocols (e.g., Kinnebrew et al., 2014). Finally, we did

not consider the impact of previously presented prompts in detail, but there seems to be no ad-

ditive effect in our data. Additivity means that it might be possible that the success of a scaffold

depends on the effectiveness of previous scaffolds. For example, Molenaar and Roda (2008) rec-

ommend considering the history of a learner’s interactions with previously provided scaffolds

to calibrate the presentation of support. Moreover, without this type of history, the challenge of

fading support when the learner’s regulative behavior progresses cannot be addressed.

Future directions should address the following issues. In our study, we investigated the

learning process that precedes a prompt by analyzing coded learning activities to discover the

conditions for effectiveness. However, there may be further conditions that influence the effec-

tiveness of metacognitive prompts that were not considered in the present analysis. For example,

the students’ level of expertise could be another important factor that affects scaffolding effects

(e.g., Yeh et al., 2010). Moreover, questions with regard to the role of the presentation time

(e.g., is a prompt that appears during the first minutes of the learning session more effective than

a prompt that appears in the middle of the learning time?) and of the number of prompts (e.g.,

is the first prompt already effective or are two or more prompts needed to affect the regulatory

behavior?) still have to be investigated in future research. Furthermore, the findings on possible

conditions for the effectiveness of scaffolds should be related to models of SRL and metacogni-

tion. For example, the COPES model (Winne & Hadwin, 2008) could be specified by including

positions for intervening the SRL cycle. These findings could contribute to a micro-level theory

of SRL and to the impact of scaffolds on learning processes that is needed to implement opti-

mally adaptive support in learning environments, and that is currently missing in the field of SRL

(Molenaar & Järvelä, 2014). Additionally, more research on the automatic detection of learn-

ing processes (e.g., Cocea & Weibelzahl, 2009) is needed to improve the diagnosis of adaptive

learning systems. The next step in our future research will be the validation of findings on the

effectiveness of metacognitive prompts by analyzing think-aloud data from another prompting

experiment. Additionally, we will aim to derive standards and guidelines for the application of

DM and PM techniques in SRL settings.
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USING PROCESS MINING TO EXAMINE THE SUSTAINABILITY OF INSTRUCTIONAL SUPPORT 1 

 

  Abstract 

The current study investigates the sustainability of metacognitive prompting on self-regulatory 

behavior using a Process Mining approach. Previous studies confirmed beneficial short-term 

effects of metacognitive prompts on the learning process and on learning outcomes. However, 

the question of how stable these effects are for similar tasks in the future so far remains 

unanswered. Also, the use of online trace methods and the emergence of new analytical 

approaches allow deeper insights into the sequential structure of learning activities. Therefore, 

we examined long-term effects of instructional support on the micro level using Process Mining. 

Data gathered through the think-aloud method from 69 university students was measured during 

two learning sessions. Metacognitive prompts supported the experimental group (n = 35) only 

during the first session. Based on a process model generated by using the data of the first 

learning session, we analyzed the sustainability of effects during the second learning session. 

Results showed significant differences between the experimental and control group regarding 

the frequency of metacognitive learning activities, which remain stable over time. Additionally, 

the application of Process Mining indicated which sequences of learning activities were 

transferred to the second learning session. Our findings demonstrate the benefits of evaluating 

instructional support using analysis techniques that take into account the sequential structure of 

learning activities. Moreover, while the results provide initial evidence for sustainable long-

term effects on self-regulatory behavior, they have to be replicated in future research. 

    

Keywords: metacognitive prompting, long-term effects, think-aloud protocols, process 

analysis, process mining, conformance checking 
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 The research in self-regulated learning (SRL) shows that students have difficulties in 

spontaneously performing regulatory activities, especially in technology-enhanced and open-

ended learning environments (e.g., Azevedo, 2009; Bannert & Mengelkamp, 2013; Greene, 

Dellinger, Tüysüzoglu, & Costa, 2013). To counter this production deficit, instructional support 

aims to activate strategic learning processes. Therefore, our objective is to investigate the effects 

of metacognitive prompts (Bannert, 2009) provided during hypermedia learning, in order to 

design helpful support. Previous studies confirmed beneficial short-term effects on the learning 

process and on learning outcome (e.g., Azevedo, Cromley, Moos, Greene, & Winters, 2011; 

Bannert & Mengelkamp, 2013; Lehmann, Hähnlein, & Ifenthaler, 2014). However, few studies 

have addressed the stability and transfer of strategies, which have been fostered previously, 

during follow-up learning tasks (e.g., Bannert, Sonnenberg, Mengelkamp, & Pieger, 2015; 

Nückles, Hübner, Dümer, & Renkl, 2010; Roll, Aleven, McLaren, & Koedinger, 2011). 

Considering the high relevance of sustainable effects in practice, research needs to examine the 

long-term impact of metacognitive prompting as well as further scaffolding techniques. 

 Moreover, current research that considers SRL a dynamic interplay of various learning 

events highlights the importance of assessing and analyzing fine-grained traces of learners’ 

behavior to understand the impact of instructional support (e.g., Azevedo, 2014; Azevedo et al., 

2013; Sonnenberg & Bannert, 2015, in press). The emergence of innovative analytical 

approaches, such as techniques that take into account the sequential and temporal structure of 

learning activities (Molenaar & Järvelä, 2014), has accompanied the growing interest in 

analyzing process data. In previous analyses, we applied Process Mining techniques (PM; 

Bannert, Reimann, & Sonnenberg, 2014; Trčka, Pechenizkiy, & van der Aalst, 2010) to 

investigate the effect of metacognitive prompts on micro-level processes. PM has the potential 

to contribute not only to the discovery of dynamic regulatory behavior, but also to the 

implementation of confirmatory analysis that would validate present models of learning.  

 The current study contributes to the existing literature by examining long-term effects 

of metacognitive prompting on SRL in a follow-up learning task without instructional support. 

The students’ activities were measured using concurrent think-aloud protocols. In addition to a 

frequency analysis of coded learning events, we applied a PM approach, namely Conformance 

Checking (Rozinat & van der Aalst, 2008), to compare the sequential structure of the learning 
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process between two learning tasks. Through this approach, we attempted to determine if the 

fostered self-regulatory behavior is stable, and which activities are transferred to a future task. 

 The paper is structured as follows. First, we present research on metacognitive support, 

especially focusing on findings regarding the short- and long-term effects of metacognitive 

prompts. Second, we introduce the assessment of learning activities using PM. Third, a 

hypermedia learning experiment, comprising a prompted experimental group and a control 

group, is described. Fourth, we report the findings of a frequency analysis, as well as of PM 

which compared the students’ activities between two learning sessions. Finally, we discuss the 

significance of our results for the sustainability of metacognitive prompting, as well as the 

benefits of analyzing learning activities on a micro level using PM. 

 
Metacognitive Support for Scaffolding Technology-Enhanced Learning 

According to SRL models (Winne & Hadwin, 2008; Zimmerman, 2008), successful 

learning corresponds with the active deployment of cognitive and metacognitive learning 

activities, such as goal setting, activation of prior knowledge, and monitoring of one’s learning 

progress. Moreover, these models describe SRL as a dynamic interplay of various learning 

activities to achieve one’s learning goals. To counter students’ deficiency in actively regulating 

their learning, instructional support is necessary, for example, to stimulate the use of 

metacognitive learning activities when studying with a non-linear hypermedia system. Because 

metacognition represents a key role in SRL models, especially monitoring and controlling one’s 

learning, interventions that focus on metacognitive support have the potential to foster students’ 

successful learning (e.g., Bannert & Reimann, 2012; Künsting, Kempf, & Wirth, 2013). A 

robust body of research has confirmed the beneficial effects of metacognitive support on 

learning in computer-based learning environments (CBLE; Devolder, van Braak, & Tondeur, 

2012; Zheng, 2016).  

Moreover, SRL models also comprise the transfer of learning experiences to further 

tasks in the future, at least if self-evaluation or external feedback has taken place. For example, 

the COPES model (Winne & Hadwin, 2008) assumes that evaluations influence task and 

cognitive conditions in future learning tasks (e.g., knowledge of task, study tactics, and 

strategies). Consequently, successful learning strategies should be transferred to further tasks, 

especially if the requirements are similar. Furthermore, that means metacognitive support during 
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a learning phase possibly has beneficial effects not only on the current task but also on similar 

subsequent tasks without support. 

In the following, we report previous findings of one type of instructional support, 

namely metacognitive prompting, as a scaffolding technique used with hypermedia learning. 

Also, we discuss related work on the sustainability and transfer of SRL activities to subsequent 

learning tasks. 

  
Supporting Hypermedia Learning Through Metacognitive Prompts 

Metacognitive prompts attempt to activate the students’ repertoire of regulation 

strategies in educational settings. Usually, stimulating questions or advice on execution is used 

to scaffold the deployment of desired behavior (Bannert, 2009). For instance, metacognitive 

prompts can ask students to reflect on their navigational decisions while learning with 

hypermedia (Bannert, 2006; Stark & Krause, 2009). 

According to their key mechanism, metacognitive prompts support students’ active 

regulation of learning by stimulating their strategic knowledge (Bannert & Mengelkamp, 2013). 

The presentation of prompted requests aims to counter the so-called production deficit (e.g., 

Winne, 1996; Wirth, 2009). Consequently, the students’ regulation of learning should shift to a 

better use of metacognitive activities as described in SRL models (Winne & Hadwin, 2008; 

Zimmerman, 2008). 

With respect to the additional cognitive load caused by prompted requests (Berthold, 

Röder, Knörzer, Kessler, & Renkl, 2011) and the threat of expertise-reversal effects (Nückles et 

al., 2010), it is desirable to reduce and eventually omit instructional support. This also 

corresponds with the original concept of scaffolding (Puntambekar & Hübscher, 2005; Wood, 

Bruner, & Ross, 1976), in which the support of a teacher or educational technology is withdrawn 

when a student advances to the scaffolded behavior. Ideally, the student will spontaneously use 

the fostered behavior in the following, even in further contexts. To know when to reduce 

support, research on the stability of metacognitive prompting effects is needed. 

  
Short- and Long-Term Effects of Metacognitive Prompting 

 A robust body of research indicates the effective short-term impact of metacognitive 

prompts on learning processes and outcomes in different domains and educational settings. The 

investigation of short-term effects refers to the immediate prompting effects for a supported 
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learning task. In general, the findings show beneficial effects for hypermedia learning (e.g., 

Azevedo et al., 2011; Bannert & Mengelkamp, 2013), writing learning journals (e.g., Hübner, 

Nückles, & Renkl, 2010; Nückles et al., 2010), and additional settings (e.g., Künsting et al., 

2013; Thillmann, Künsting, Wirth, & Leutner, 2009). Prompting results in an improvement of 

self-regulatory behavior, often measured using online trace methods such as think-aloud 

protocols or computer log files (e.g., Greene & Azevedo, 2010). Moreover, several studies—

but not all—also report a beneficial impact on learning outcomes, usually measured using 

performance tests immediately after the learning phase (e.g., Azevedo et al., 2011; Stark & 

Krause, 2009). 

 A previous series of experiments (Bannert & Mengelkamp, 2013) that investigated the 

impact of different types of metacognitive prompts indicates beneficial effects on hypermedia 

learning. Analyses of concurrent think-aloud protocols demonstrated a quantitative increase of 

metacognitive learning activities, and also showed that prompting positively affected the 

sequential structure of regulatory behavior (Sonnenberg & Bannert, 2015). Moreover, 

prompting also had a beneficial effect on learning outcome, but mainly on transfer performance 

(i.e., application of knowledge). Overall, related work and our studies support the expected 

beneficial short-term effect of metacognitive prompting.  

 Although theoretical assumptions in SRL models (e.g., Winne & Hadwin, 2008; 

Zimmerman, 2008) explicitly comprise the transfer of learning experiences to future tasks, 

relatively few studies have examined the long-term effects of metacognitive prompts. Stark and 

Krause (2009) investigated the sustainability of reflection prompts in a CBLE for statistics 

education. In a learning test repeated four weeks after the intervention, they found stable effects 

of prompting on domain knowledge, whereas the test scores of all groups decreased in general. 

Moreover, Roll et al. (2011) examined the sustainable use of help-seeking behavior in 

subsequent learning tasks without support. Students learning with the Geometry Cognitive Tutor 

and initially supported by metacognitive feedback showed a transfer of fostered help-seeking 

skills to a new task, but showed no improvement in learning outcome. Similarly, the findings of 

Roll, Yeh, and Briseno (2014) indicate that a scaffolded learning activity can be transferred to 

a subsequent task within the same learning environment. In contrast to these positive findings, 

Hilbert et al. (2008) found no beneficial impact of cognitive and metacognitive prompts in a 

follow-up session one week after the intervention. The authors investigated the short- and long-
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term effects of prompts on writing a concept map. They argued that a one-time intervention 

might not be sufficient to internalize the prompted strategies; therefore, students might not 

spontaneously use these strategies in a following task without support. Finally, Nückles et al. 

(2010) provided cognitive and metacognitive prompts to support students’ writing of learning 

journals during a semester. Their results show that constant prompting can lead to an expertise-

reversal effect, and that fading out of support is necessary when students have internalized 

prompted strategies. Furthermore, the use of metacognitive strategies decreased during the 

semester, even when supported by prompts. In summary, there is initial evidence of beneficial 

long-term effects of metacognitive prompting; however, research needs to extend the existing 

small body of literature. 

 In a recent study (Bannert et al., 2015), we investigated the short- and long-term effects 

of self-directed metacognitive prompts during hypermedia learning. Students were asked to 

reflect on their navigational decisions during a learning task; then they learned without support 

during a second learning session three weeks later. When compared to a control group with no 

support at all, we found beneficial effects on systematic navigation behavior and transfer 

performance in both learning sessions. These findings support the assumption that prompted 

strategies are also transferred to subsequent learning tasks. The current study extends the 

previous contribution through an in-depth analysis of concurrent think-aloud protocols. 

 To advance the understanding of sustainability and transfer of SRL processes, 

researchers agree that more microanalyses using fine-grained process data are necessary (Hilbert 

et al., 2008; Moos & Miller, 2015; Schunk & Ertmer, 2005; Severiens, Ten Dam, & Van Hout-

Wolters, 2001). Online trace methods for SRL assessment (e.g., think-aloud protocols, or log 

files) combined with the application of techniques from Educational Data Mining (EDM; Winne 

& Baker, 2013) have the potential to contribute to these issues. For example, EDM allows 

precise modeling of robust learning and the impact of scaffolds in computer-supported settings 

(Baker & Corbett, 2014; Sonnenberg & Bannert, 2015). Therefore, models describing the 

learning activities of a specific learning session or learner sample can be tested and validated 

with data from future sessions or students. One promising approach used in EDM to analyze the 

learning process on the micro level is presented as follows. 
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Using Process Mining to Analyze Students’ Learning Activities 

Research in metacognition and SRL has started to emphasize the increasing 

significance of fine-grained process data for analyzing technology-enhanced learning activities. 

Recent studies use rich data from various online trace methods, for example from verbal reports, 

eye-tracking, physiological measurement, or computer log files (Azevedo et al., 2013; Trevors, 

Feyzi-Behnagh, Azevedo, & Bouchet, 2016) to address the complex interplay of SRL processes, 

including their sequential and temporal dynamics. 

 
Measuring and Analyzing SRL as Patterns of Events 

The researchers’ perspective on SRL has shifted from SRL being an aptitude to being 

a dynamic interplay of events during learning (Reimann, 2009; Winne & Perry, 2005). 

Following the event-based approach, it is possible to analyze the sequential structure of learning 

activities. For example, a student starts with reading the learning task, then tries to obtain an 

overview of the learning material, and next, reads the goals again to select the relevant sections. 

Such analyses require the online measurement of learning events using a granularity that is 

appropriate for the research question. One measurement approach often used in SRL settings is 

concurrent think-aloud protocols (Ericsson & Simon, 1993). Although the think-aloud technique 

is not unobtrusive for the learner, as some other online trace methods are (e.g., log files or eye-

tracking), it provides a valuable access to the SRL events performed during learning (Azevedo, 

Moos, Johnson, & Chauncey, 2010). Overall, coded think-aloud data comprises a detailed trace 

of learning that is appropriate for examining the dynamics of SRL as well as the impact of 

instructional support on these processes. 

 While examining fine-grained trace data for SRL issues is potentially very valuable, 

researchers will have to face new analytical challenges. For example, advanced analysis 

approaches might be necessary to address the dynamic sequence of SRL activities as well as 

their relationship to learning performance. Recent advances in the field of metacognition, 

learning analytics, and EDM present contributions that rise to these challenges (Ben-Eliyahu & 

Bernacki, 2015; Molenaar & Järvelä, 2014; Roll & Winne, 2015; Winne & Baker, 2013). 

However, current analyses are exploratory, usually using process data to assess and model the 

learning activities in a specific setting or for a specific sample of students. Future research needs 

to shift toward the validation of resulting process patterns (Winne, 2014). Moreover, analysis 
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techniques that allow model testing can be applied to investigate the stability of learning 

activities. Therefore, we made use of an EDM technique, namely PM, which fulfills these 

requirements. Below, we present the approach of PM in more detail. 

 
PM Techniques for Evaluating Instructional Support on the Micro Level 

EDM techniques applied on SRL process data allow assessment and modeling 

sequences of learning activities (Baker & Corbett, 2014; Jeong et al., 2008; Roll & Winne, 

2015). For instance, Baker and Corbett (2014) used Bayesian Knowledge Tracing to determine 

the probability of a student mastering a skill in a lesson. Moreover, model predictions can be 

used to evaluate whether a student deploys the skills in other contexts. As a further example, 

Jeong et al. (2008) applied hidden Markov models to investigate the effect of metacognitive 

prompting in a learning-by-teaching environment. PM has also shown potential as an approach 

for evaluating instructional support on the micro level (Sonnenberg & Bannert, 2015, 2016). 

Compared to hidden Markov models, PM also analyses the sequence of learning activities as a 

whole, but several functions are applicable in a unified framework (as described in the next 

paragraph), and a variety of algorithms are designed to meet specific requirements (e.g., dealing 

with noise in the data). 

Within the field of EDM, PM represents an approach that uses event data to model the 

underlying process (Bannert et al., 2014; Reimann, Markauskaite, & Bannert, 2014, Trčka et 

al., 2010). In general, PM models build on the concept of Petri nets (Van der Aalst, 2011). These 

models comprise states (i.e., event classes or activities) and transitions between states. 

Moreover, the Petri net notation can be used to model achievable behavior and its workflow; 

that is, a model representing a learning process predicts the potential activities of a student or a 

sample of students.  

Furthermore, PM comprises three main functions: (i) discovery of a process model 

using an event log, (ii) testing of conformance between a model and new data, and (iii) the 

extension of a present model. For these functions, several algorithms are implemented within a 

unified PM framework (ProM Version 5.2, 2008). PM considers the process as a whole by taking 

into account all recorded events to generate an underlying model. In other words, PM refers to 

end-to-end processes, and not only to certain reoccurring sequences as, for example, in 

Sequential Pattern Mining (Zhou, Xu, Nesbit, & Winne, 2010).  
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PM is increasingly used to model and understand learning activities as well as the 

impact of instructional support on these activities (Reimann & Yacef, 2013). One advantage of 

this approach is that it allows analysis of the relative arrangement of activities, and not only the 

frequencies of certain events. For example, it is possible to evaluate the impact of metacognitive 

prompting on the sequential structure of a learning process (Sonnenberg & Bannert, 2015). 

Since the quality of a learning process also predicts learning outcome, and not only the quantity 

of regulatory activities (e.g., Moos & Azevedo, 2009), it is also crucial to assess the sequence 

of events. Moreover, these analyses can also advance SRL theories on the micro level (Molenaar 

& Järvelä, 2014). Several studies in the field of SRL (Bannert et al., 2014; Sonnenberg & 

Bannert, 2015, 2016), Computer-Supported Collaborative Learning (Malmberg, Järvelä, 

Järvenoja, & Panadero, 2015; Reimann, Frerejean, & Thompson, 2009; Schoor & Bannert, 

2012), and workplace learning (Siadaty, Gašević, & Hatala, 2016a, 2016b) have indicated the 

added value of applying PM techniques as well as related microanalytic approaches in 

educational settings. 

As described above, PM explicitly comprises the function “testing conformance 

between a process model and an event log”. Compared to other analysis techniques, 

implementing Conformance Checking (Rozinat & van der Aalst, 2008) allows researchers to 

validate process models using future data in a relatively simple way. For instance, as a first step, 

a PM algorithm discovers the sequential structure of the learners’ traces and generates a process 

model. Then, as a second step, the conformance between this model and another set of learner 

traces can be measured. Therefore, Conformance Checking allows comparing the learning 

process between two or more learning tasks. In conclusion, PM supports the examination of 

sustainable long-term effects of instructional support on the micro level among several learning 

sessions. 

 
Research Questions 

A robust body of research has demonstrated the beneficial short-term effects of 

metacognitive prompting on learning processes and outcomes (e.g., Azevedo et al., 2011; 

Bannert & Mengelkamp, 2013; Hübner et al., 2010). However, only a few studies have 

investigated the sustainability of previously fostered strategies during learning in follow-up 

tasks (e.g., Roll et al., 2011). Especially from a practical perspective, it is crucial to know if 
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pedagogical interventions foster robust learning and the transfer of competencies to new 

situations (Baker & Corbett, 2014). Moreover, the analysis of fine-grained trace data (e.g., 

think-aloud protocols) contributes to a deeper understanding of learning activities as well as 

the impact of instructional support on these activities. Using process data allows researchers 

to analyze learning on the micro level, and to test assumptions regarding the temporal 

dynamics of SRL. Furthermore, analysis techniques, such as PM, that take into account the 

sequential structure of learning activities support a detailed examination of SRL among several 

tasks, and provide more value than a traditional frequency analysis. Therefore, the current 

study uses coded think-aloud data from two learning sessions and Conformance Checking to 

investigate the long-term impact of metacognitive prompts during hypermedia learning. In 

detail, we address the following research questions: 

1. Do metacognitive prompts affect the learning process in a follow-up task by showing 

sustainable long-term effects on self-regulatory behavior? 

2. Is it possible to identify the sequential patterns that are transferred to a follow-up 

learning task using Conformance Checking? 

 Referring to the key mechanism of metacognitive prompting, we expected the 

following results. Providing metacognitive prompts during learning should activate the students’ 

repertoire of regulatory strategies. The activation should lead to an increase of metacognitive 

activities as well as a better sequence of activities according to SRL models (Winne & Hadwin, 

2008; Zimmerman, 2008). In addition to beneficial short-term effects, we also expected a 

sustainable impact on the self-regulatory behavior in a future similar task without prompting. 

Again, this meant that students should show a better use of metacognitive activities. Finally, we 

need to mention that the learning process might also change between two tasks because of 

learning within the same environment and a task adaptation (Pieschl, Stahl, Murray, & Bromme, 

2012). However, there are no previous findings for our learning material that would have helped 

us to predict expectations regarding an adaptation. 

 
Method 

The present study refers to a hypermedia learning experiment already reported in 

Bannert et al. (2015). However, the previous contribution does not include any analyses using 

think-aloud data, and it addresses different research questions. To avoid redundancy, we report 
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only the most important information for understanding the following analyses as well as the 

interpretation of results. Furthermore, we consider the reporting standards recommended by 

Dent and Hoyle (2015) to facilitate the evaluation and alignment of SRL research. 

 
Sample and Research Design 

A total of 69 undergraduate university students majoring in Media Communication or 

Human-Computer Systems (mean age = 20.00, SD = 1.79, 84.1% female) participated in a 

hypermedia learning experiment. The experiment comprised two 40-minute learning sessions. 

In both sessions, we used concurrent think-aloud protocols for the measurement of students’ 

learning activities, and we obtained learning outcomes directly after learning. During the first 

learning session, metacognitive prompts supported students randomly assigned to the 

experimental group (EG; n = 35). Students in the control group (CG; n = 34) learned without 

instructional support. Approximately three weeks later, all students participated in a second 

learning session without support, but they had a similar learning task. 

 
Learning Material 

For both sessions, the learning material was provided in the same hypermedia learning 

environment. Navigation within this environment was possible through using a navigation 

menu, a next page and previous page button, the browser buttons (forward and backward), or 

hyperlinks. The topic of the first learning session was a chapter on learning theories (e.g., 

classical and operant conditioning), and the topic of the second learning session was a chapter 

on motivational psychology (e.g., Maslow's pyramid and achievement motivation). Both 

chapters represented educational psychology content, and they comprised a comparable amount 

of pages. One chapter included approximately 50 pages with 13,000 words, 20 pictures and 

tables, and 300 hyperlinks. We analyzed the text readability of both chapters using the koRpus 

R package (Michalke, 2015) to compare their level of difficulty. The Flesch-Kincaid Reading 

Ease score (Amstad for German texts) of the first chapter, learning theories, was 20.03. The 

reading ease score for the second chapter, motivational psychology, was 18.98. These scores 

indicated that both chapters had a similar difficulty level and were approppriate for university 

students (i.e., a score between 0 and 30).  

Metacognitive support for students assigned to the EG was implemented within the 

learning environment through the use of a pop-up window that appeared several times during 
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the first learning session. The pop-up window comprised a list of strategic reasons for a selection 

of a particular node, for example, orientation or evaluation of goal attainment. 

 
Procedure  

We conducted both learning sessions as individual lab sessions. The first learning 

session started with an introduction to navigation within the learning environment and the think-

aloud technique. The student was asked to verbalize every thought that came to his or her mind, 

without any justification or interpretation. As specified by Ericsson and Simon (1993), these 

instructions referred to level 2 verbalizations. A researcher provided exercises until a participant 

firmly mastered both navigation and concurrent thinking aloud. Next, participants randomly 

assigned to the EG received an introduction into the use of metacognitive prompts during 

learning, and they practiced the handling of prompts. To keep the workload equivalent for both 

groups, students in the CG received an introduction to workplace design. Then, all participants 

were given a sheet of paper comprising their learning task (i.e., learning the basic concepts and 

principles of operant conditioning), and they worked through the learning material for 40 

minutes. Metacognitive prompts supported students in the EG eight times during learning. After 

a navigational step (e.g., clicking on a hyperlink), a pop-up window appeared in the middle of 

the screen, and students were asked to give reasons for their node selection by choosing from a 

list of strategic reasons. Except for these prompted requests, all participants were completely 

free in the execution of their learning activities. Additionally, they were allowed to take notes 

on a blank sheet of paper, but they were not authorized to use their notes during the learning 

test. During learning, a researcher stayed nearby and reminded the participant to think aloud if 

he or she remained silent for more than five seconds. All verbal statements were recorded using 

a microphone. Directly after learning, the participants worked on a learning test comprising 

different levels of knowledge (i.e., recall, comprehension, and transfer performance). 

Approximately three weeks later, the second learning session was conducted. First, a 

researcher reminded the participants how to navigate within the learning environment and think-

aloud during learning. Then, the learning task was given, and the students had to work through 

the chapter “motivational psychology” for 40 minutes. This time, no participant received any 

support. As in the first learning session, note-taking was allowed, and all participants were 

instructed to think aloud while learning. Again, the learning phase was directly followed by a 
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test comprising three levels of knowledge. More information about the learning tests is provided 

in Bannert et al. (2015). 

 
Coding Scheme 

For both learning sessions, the think-aloud data of all participants were coded posthoc 

using a scheme based on a framework for self-regulated hypermedia learning (Bannert, 2007). 

This framework describes hypermedia learning as an interplay of metacognitive, cognitive, and 

motivational activities. In the current study, we used a modified version of the original coding 

scheme; that is, we aggregated categories showing a rare occurrence. Additionally, we excluded 

the motivation category because motivational statements occurred very seldom in our data. 

Finally, the coding scheme comprised the main categories metacognition and cognition, and a 

total of seven sub-categories. Table 1 displays all categories, including descriptions and 

examples for each category. 

Four trained research assistants coded the think-aloud data based on the procedure 

recommended by Chi (1997). We categorized the students’ utterances by meaning, and we 

assigned a category for every definable learning activity. A total of 26,772 segments were 

labeled with a code. Furthermore, we selected a random sample of participants to compute the 

interrater reliability. Based on 2520 segments, this reliability showed a substantial agreement 

(Cohen’s κ = .78). 

 
Analysis Techniques 

 To address our research questions, we conducted the following two analysis steps using 

the coded think-aloud data. Table 2 summarizes the strategy for analyzing the students’ learning 

activities. First, we considered only the frequencies of coded learning activities of both learning 

sessions. A mixed MANOVA was run using the treatment as an independent variable (between 

factor) and the coded learning activities as repeated-measures variables (within factor). This 

analysis compares the means of the learning activities of the first and second learning sessions 

within each group (main effect of time), between the two groups (main effect of group), and the 

interaction between these factors. 
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Table 1. Description of the categories for coding the students’ think-aloud data  

Code                   Category Description and Examples 
 
 Metacognition 

 

ANALYSE Task Analysis Task clarification, overviewing the material, goal setting, sub-
goaling, and planning of proceeding  
At first I read my learning goals to get an overview of my task. 
I have to learn the basic concepts of operant conditioning. 
First I will read the introductory text, then I will decide in which 
sequence I will proceed. 

SEARCH Search  Searching for information 

Now I’m looking for information on reinforcement plans. 

EVAL Evaluation  Evaluating the attainment of goals or sub-goals 
Did I process all topics according to my learning goals? 

MONITOR Monitoring  Monitoring and controlling of one’s learning, judgements of 
relevance of information 

Ah, now I understand the principle. 
Skinner’s Vita is not relevant for my learning task. 

 
 Cognition 

 

READ Reading Reading text passages out loud 

REPEAT Repeating Repeating in terms of memorizing 
Re-reading a paragraph or notes 

PROCESS Deep Processing Elaborating and organizing: paraphrasing, connecting, and 
inferring  

I already know the Skinner Box from my biology class.  
Drawing a map, writing down major concepts 

 

 Second, we applied a PM technique called Conformance Checking (Rozinat & van 

der Aalst, 2008) to compare the sequential structure of coded learning activities between the 

first and the second learning sessions. This technique considers not only the frequencies of 

events, but also their relative arrangement (e.g., task analysis is followed by monitoring, which 

is followed by reading). For the first learning session, process models for the EG and the CG 

were already available and reported in a previous contribution (Sonnenberg & Bannert, 2015; 

see Appendix). Based on these models, we analyzed the sustainability of regulatory patterns 

during the second session using Conformance Checking. The analysis was conducted using the 

ProM framework Version 5.2 (2008). 
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Table 2. Overview of the strategy for analyzing the coded learning activities 

 1st Learning Session 2nd Learning Session Analysis Technique 

Data of EG 
(n = 35) and 
CG (n = 34)   

Frequencies of coded 
activities (means of seven 
categories) 

Frequencies of coded 
activities (means of seven 
categories) 

Mixed MANOVA 

Process models based on 
the sequence of coded 
activities 

Sequence of learning 
activities: comparison with 
models of the 1st session  

Process Mining: 
Conformance Checking 

Note. EG = experimental group, CG = control group. The seven categories are described in Table 1. 
 

In the following, we summarize the basic concepts and output measures of 

Conformance Checking, based on the work of Rozinat and van der Aalst (2008). More detailed 

information is provided in their work. The basic idea is to compare the conformance between a 

process model and a sequence of observed activities, and to quantify the degree of conformance 

using metrics (e.g., fitness). To apply Conformance Checking, one has to consider two 

requirements. First, the process model has to be represented as a Petri net. The Petri net 

representation comprises transitions (i.e., executable tasks or activities), places which can hold 

tokens, and directed arcs between these elements. If all input places of a transition hold at least 

one token, it is enabled and it can be executed. Moreover, the execution of a transition produces 

tokens in all output places of this transition. In a Petri net, the state of a process is defined by 

the distribution of tokens. The second requirement refers to the observed behavior. It has to be 

stored in an event log which comprises chronologically ordered activities. Furthermore, a 

mapping of these activities to the transitions in the Petri net is needed. 

Two orthogonal dimensions are the basis of conformance measurement: fitness and 

appropriateness. Fitness expresses the compliance of the observed sequence of activities and 

the control flow specified by the model (“Is it possible to produce the observed behavior by 

using the paths represented in the Petri net?”).  It is computed by replaying the observed 

activities in the model while mismatches are recorded (e.g., if more tokens are needed or tokens 

are remaining). The token-based fitness f represents the extent of conformance, which ranges 

from 0 to 1. Additionally, the output provides more detailed diagnostic information. Places of 

observed mismatches, the path coverage (used or unused paths), and the number of passed edges 

(frequency of used paths) are reported. 

The second dimension of conformance, appropriateness, refers to the question of 

whether the model describes the observed process in a suitable way. A process representation 
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might be too generic or too specific (i.e., allowing too much or, too little behavior), or it might 

include unnecessary elements (e.g., redundant transitions). Therefore, Conformance Checking 

also measures appropriateness on two sub-dimensions: behavioral appropriateness and 

structural appropriateness. 

Behavioral appropriateness refers to the proportion of behavior allowed by the model 

and the behavior observed in the event log. It is measured by two metrics, simple and advanced 

behavioral appropriateness, both ranging from 0 to 1. Simple behavioral appropriateness is 

determined by considering the mean number of enabled transitions while replaying the observed 

activities. In addition to this procedure, the metric advanced behavioral appropriateness is 

computed by comparing follows and precedes relations specified by the model and by the event 

log. Since the first metric is dependent on the model flexibility, the second metric is needed to 

make comparisons among several models. 

Furthermore, structural appropriateness covers the syntactical representation of 

behavior within the model. Again, two sub-dimensions are specified: simple and advanced 

structural appropriateness. The simple structural appropriateness compares the number of event 

classes and the graph size of the model. The second metric, advanced structural appropriateness, 

is independent of graph size and checks compliance with design principles (e.g., the avoidance 

of redundant elements). Again, both metrics range from 0 to 1. 

 
Results 

 The findings of our analyses are reported as follows. First, we present the results of a 

frequency-based analysis using the coded learning activities of the first and second learning 

sessions. Second, we report the findings of applying a PM technique, namely Conformance 

Checking, which additionally takes into account the relative arrangement of learning activities. 

It is the aim of both analyses to examine the stability of fostered regulatory patterns in a follow-

up learning task without metacognitive support. The Type I error rate was set to .05 for all 

statistical analyses. 

 
Analysis Based on Frequencies 

 The descriptive statistics for the coded learning activities during the first and second 

learning sessions, separated by group, are reported in Table 3. As described above, the coding 
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scheme comprised seven sub-categories. Monitoring, Reading, and Deep Processing were the 

most frequent learning activities in both sessions. The categories Repeating, Task Analysis, 

Search, and Evaluation followed in decreasing order. Although the ranking of categories 

remained stable, there was a decreasing trend for all categories from the first to the second 

session, except for Reading. Considering the absolute difference of means, the decline was 

highest for the categories Monitoring (-18) and Deep Processing (-8), and lowest for Search  

(-3.5) and Evaluation (-1). In both sessions, the EG showed a higher mean value for the 

metacognitive categories Task Analysis, Evaluation, and Monitoring, as well as for the cognitive 

category Deep Processing, compared to the CG. 

 
Table 3. Means and standard deviations for the number of coded learning activities during the 
first and second learning session 

 1st Session  2nd Session 
Category     EG (n = 35)    CG (n = 34)     EG (n = 35)    CG (n = 34) 
Task Analysis      

M (SD) 18.11 (8.58) 13.24 (5.79)  11.51 (5.18) 9.65  (5.96) 
Search          

M (SD) 11.83 (7.54) 13.24 (10.66)  11.06 (5.42) 9.09 (4.56) 
Evaluation          

M (SD)  3.63 (3.08) 2.47 (3.08)  2.80 (2.91) 1.65 (1.52) 
Monitoring          

M (SD) 82.86 (39.37) 67.44 (29.20)  59.80 (28.05) 53.50 (29.37) 
Reading          

M (SD) 40.66 (15.75) 44.29 (18.43)  44.91 (16.54) 44.38 (15.89) 
Repeating          

M (SD) 18.49 (11.04) 18.50 (12.28)  14.54 (11.28) 14.12 (10.29) 
Deep Processing          

M (SD) 48.29 (21.54) 42.06 (20.27)  37.80 (18.99) 35.56 (19.30) 

Note. Students in the experimental group (EG) received metacognitive prompts during the first 
learning session, but not during the second session. Students in the control group (CG) received 
no support. 
 

We conducted a mixed MANOVA to examine the significance of metacognitive 

prompting effects on the learning activities deployed during the first and second learning 

sessions. The treatment (EG vs. CG) was used as an independent variable (between factor), and 

the coded learning activities of both sessions were used as repeated-measures variables (within 

factor).  
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Using Pillai’s trace, there was a significant multivariate main effect of session on the 

seven learning activities, V = 0.570, F(7, 61) = 11.571, p < .001, �p2 = .570. Univariate ANOVAs 

revealed a significant change of the frequency of coded activities for all categories except 

Reading (see Table 4 for the statistics of the separate univariate comparisons). 

 
Table 4. Test statistics of univariate follow-up comparisons of the mixed MANOVA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. MS = Means squared, MSerror = Means squared of residual, �p2 = partial eta squared; Group = 
independent variable (EG vs. CG); Session = repeated-measures variable (first and second learning 
session); Session x Group = interaction effect. 
 

Moreover, Pillai’s trace for the main effect of group indicated no multivariate effect 

on the seven categories, V = 0.144, F(7, 61) = 1.464, p = .197, �p2 = .144. However, because of 

      MS      MSerror      F(1, 67)      p      �p2 
 between subjects 
Group      

Task Analysis 196.23 32.61 6.017 .017 .082 
Search 1.36 32.85 0.041 .839 .001 
Evaluation 23.03 5.14 4.478 .038 .063 
Monitoring 2033.28 842.16 2.414 .125 .035 
Reading 41.57 235.24 0.177 .676 .003 
Repeating 0.73 102.83 0.007 .933 .000 
Deep Processing 309.18 331.02 0.934 .337 .014 
      MS      MSerror     F(1, 67)      p      �p2 
 within subjects 

Session      
Task Analysis 895.088 19.796 45.216 < .001 .403 
Search 208.608 44.138 4.726 .033 .066 
Evaluation 23.536 4.611 5.104 .027 .071 
Monitoring 11804.072 345.983 34.117 < .001 .337 
Reading 162.826 85.876 1.896 .173 .028 
Repeating 597.666 47.134 12.680 .001 .159 
Deep Processing 2487.915 142.397 17.472 < .001 .207 

Session x Group      
Task Analysis 78.219 19.796 3.951 .051 .056 
Search 98.260 44.138 2.226 .140 .032 
Evaluation 0.000 4.611 0.000 .995 .000 
Monitoring 716.594 345.983 2.071 .155 .030 
Reading 149.869 85.876 1.745 .191 .025 
Repeating 1.666 47.134 0.035 .851 .001 
Deep Processing 136.987 142.397 0.962 .330 .014 
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the large effect size we decided to consider the univariate follow-up ANOVAs as well. There 

was a significant effect for the categories Task Analysis, F(1, 67) = 6.017, p = .017, �p2 = .082, 

and Evaluation, F(1, 67) = 4.478, p = .038, �p2 = .063. In both cases, students in the EG 

demonstrated a greater number of learning activities compared to students in the CG. The upper 

part of Table 4 shows the statistics of all univariate comparisons among subjects. 

Finally, there was no significant multivariate interaction effect (session x group) on 

the seven categories, V = 0.188, F(7, 61) = 2.020, p = .067, �p2 = .188. Again, because of the 

large effect size, we also calculated univariate ANOVAs. As shown in Table 4, all univariate 

comparisons were non-significant. 

 

Figure 1. Course of all seven categories from the first to the second learning session. Left part: 
data of experimental group (EG), right part: data of control group (CG). The y-axis represents 
the mean absolute frequency of coded learning activities. 
 

To illustrate our findings, Figure 1 presents the course of all seven categories, from 

the first to the second learning session, separately for the EG and the CG. In summary, our 

findings indicate that metacognitive prompting had beneficial effects on the quantity of 

regulatory learning activities, especially on the categories Task Analysis and Evaluation. 
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Despite a general downward trend of the mean number of coded utterances, the positive effects 

remained stable over time. Considering the descriptive statistics presented in Table 3, 

participants in the EG showed a higher decline in Task Analysis, Monitoring, and Deep 

Processing, but the means still remained above the values of the CG. 

 
Process Mining – Conformance Checking 

The second part of our analysis concentrated on the application of a PM technique 

called Conformance Checking. In general, PM allows the researcher to take into account the 

sequential structure of learning activities, in addition to their frequency distribution. We 

examined whether the learning process during the first session corresponded with the learning 

activities during the second session three weeks later. Specifically, we used process models 

describing learning during the first session to measure the conformance with the sequence of 

activities in the second learning session. The process models for the EG and the CG have already 

been presented in a previous contribution (Sonnenberg & Bannert, 2015), and they are portrayed 

in the Appendix, Figure A.1. In short, a comparison of the process models showed that Task 

Analysis was much better integrated in the learning process of the EG, and more loops between 

cognitive and metacognitive activities were observed for this group. Moreover, evaluation 

activities were similarly integrated, and monitoring activities were hardly connected with other 

learning activities in both models. 

The following analysis tests the validity of these process models using the data of the 

second learning session. If metacognitive prompting effects were stable over time, we would 

expect a high conformance between the process models and the learning sequence during the 

second session. Furthermore, Conformance Checking indicates which patterns are transferred, 

and which deviations between models and event logs occurred, respectively. 

 Table 5 reports the conformance metrics using the dimensions fitness and 

appropriateness. These metrics were described in detail in the methods section. The high fitness 

value f for both groups indicates that the process models of the first learning session and the 

event logs of the second session corresponded very well. That means, the modeled patterns for 

both the EG and the CG allowed for the description of the observed learning events during the 

second learning session, which in general points to the stability of patterns. Regarding the 

precision of the process models, the simple behavioral appropriateness reached a medium value, 
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whereas the advanced behavioral appropriateness reached only a very low score. Consequently, 

these findings indicate a moderate precision, that is, the process models allowed for more 

behavior than actually observed in the event logs of the second learning session. Finally, the 

metric simple structural appropriateness reached a low value for both groups, which points to a 

suboptimal proportion of the number of categories and the graph size of the model. However, 

the advanced structural appropriateness was very high for both groups, which shows that design 

guidelines for process models were not violated (e.g., avoidance of redundant tasks). 

 
Table 5. Measurement of conformance between process models and event logs using the 
dimensions fitness and appropriateness (precision and structure) 

Metric EG (n = 35)  CG (n = 34) 
Fitness      

f .96   .94  
Precision      

saB .43   .49  
aaB 0.00   0.00  

Structure      
saS .14   .16  
aaS 1.00   1.00  

Note. f = token-based fitness metric, saB = simple behavioral appropriateness, aaB = advanced 
behavioral appropriateness, saS = simple structural appropriateness, aaS = advanced behavioral 
appropriateness. All metrics range from 0 to 1, with 1 being the highest extent of fitness or 
appropriateness, respectively. 
 

Furthermore, the output of Conformance Checking allowed a more detailed view on 

the mismatches of the model-log comparison. Each trace of a participant (i.e., his or her 

sequence of learning activities) was replayed using the process model. Observed activities that 

could not be executed according to the model are highlighted as failed log events. Figure 2 

shows the traces of five sample cases in which the failed events are colored. For instance, 

referring to the first case a transition from ANALYSE to PROCESS was observed in the event 

log, but according to the model this transition was not enabled. As described above, the model 

fitness was very high, but it still might be useful to consider the most common mismatches. In 

Table 6, we report the seven most frequent failed log events, separately for the EG and the CG. 

The findings for the EG show that transitions originating from MONITOR, in particular, failed 

during the model-log replay. Moreover, the transition from ANALYSE to SEARCH, and from 
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PROCESS to EVAL failed several times. Regarding the CG, transitions originating from 

MONITOR were also among the most common failed events. Furthermore, transitions directing 

to SEARCH failed especially frequently. 

Figure 2. Log perspective of failed log events illustrated using five sample cases. Each line 
represents the first seven events of a case. Failed events measured by the log replay are colored. 
Codes are explained by the coding scheme presented in Table 1. 

 
Table 6. Frequency of the seven most common failed log events 

 EG (n = 35)  CG (n = 34) 

Number 
Failed Log 

Event 
Absolute 

Frequency 
Relative 

Frequency 
 Failed Log 

Event 
Absolute 

Frequency 
Relative 

Frequency 

1 MONITOR > 
EVAL 38 .18  MONITOR > 

SEARCH 59 .21 

2 MONITOR > 
PROCESS 23 .11  ANALYSE > 

SEARCH 47 .17 

3 MONITOR > 
READ 22 .10  MONITOR > 

EVAL 19 .07 

4 ANALYSE > 
SEARCH 16 .08  READ > 

SEARCH 18 .06 

5 PROCESS > 
EVAL 16 .08  MONITOR > 

READ 17 .06 

6 MONITOR > 
SEARCH 14 .07  PROCESS > 

SEARCH 17 .06 

7 PROCESS > 
REPEAT 13 .06  MONITOR > 

PROCESS 14 .05 

Note. Total number of failed log events: experimental group (EG) = 212, control group (CG) = 280. 
Eventa > eventb means that the transition from eventa to eventb was not enabled in the process model, 
although observed in the event log.  
 

In summary, the results of the mixed MANOVA using the frequencies of coded 

learning activities and Conformance Checking, which additionally takes into account the 

sequential structure of learning activities, indicated that fostered regulatory behavior through 

metacognitive prompting during the first session remained stable over time and was transferred 
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to a subsequent similar learning task. Despite a general downward trend of uttered learning 

activities in both groups, participants in the EG showed more metacognitive events during both 

sessions compared to the CG. Additionally, beneficial process patterns seemed to be transferred 

to the second learning task. Please note that a decrease in the frequency of learning activities 

from the first to the second session does not automatically result in a low conformance between 

the process model and the event log, because Conformance Checking primarily considers the 

sequential structure of activities. For example, an observed sequence of learning activities might 

be executed 10 times or 20 times, with each case resulting in a high conformance. Additionally, 

findings of short- and long-term effects on learning outcomes showed that metacognitive 

prompting does not affect only the learning process positively and sustainably as reported here, 

but also affects the performance in a learning test with transfer items (Bannert et al., 2015). 

 
Discussion 

 The current study investigated the sustainability of learning activities stimulated by 

metacognitive prompting. Specifically, we addressed the question of whether fostered strategies 

are transferred to a similar subsequent task within the same learning environment three weeks 

later. The measurement of SRL processes using concurrent think-aloud protocols during two 

hypermedia learning sessions allowed us to observe learning behavior on a very detailed level. 

In addition to our analysis of the frequencies of learning activities, a PM analysis has allowed 

us to consider the sequential structure of observed events. The findings of a comparison between 

two learning sessions on the micro level provided new insights into the long-term impact of 

metacognitive prompting. 

Our first research question addressed the stability of beneficial prompting effects in a 

follow-up learning task. The results of a mixed MANOVA using the frequencies of coded 

activities showed that the prompted EG demonstrated more metacognitive learning activities in 

both sessions. That means, metacognitive prompting also had beneficial effects in a follow-up 

task three weeks later without support. However, the findings also showed a general downward 

trend of metacognitive activities in both groups. The high fitness values using Conformance 

Checking support the assumption of stable effects between the first and second learning 

sessions. During the second session, a similar learning task within the same environment seemed 

to be sufficient to activate fostered strategies spontaneously. This finding is in line with Roll et 
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al. (2011), who found a transfer of fostered help-seeking skills to a subsequent task without 

support. Referring to SRL models (Winne & Hadwin, 2008; Zimmerman, 2008), the stability of 

effects indicates that our students perceived the usefulness of metacognitive strategies, because 

transfer requires the self-evaluation of one’s learning process. Pressley et al. (1990) state three 

requirements for successful transfer of self-regulation skills: (i) the knowledge of strategies, (ii) 

the awareness that self-regulation is beneficial, and (iii) the competencies to adapt one’s 

regulatory skills to new contexts. Since metacognitive prompting assumes the availability of 

strategic knowledge and our second task was designed similarly, the second precondition seems 

crucial for explaining our results. Hilbert et al. (2008) found no sustainable effect of cognitive 

and metacognitive prompting; however, more intensive prompting or more cues during the 

follow-up task would have been needed, especially because their participants were younger and 

probably not experienced with self-evaluation. Still, this shows that the question of how much 

support is needed, and for how long, until students internalize the fostered strategies is crucial 

to achieving stable effects. 

Furthermore, the observed decrease in the frequency of metacognitive learning 

activities from the first to the second session, which was also observed for the CG, needs to be 

addressed. An explanation could be a growing automation of regulatory processes, particularly 

of monitoring activities, that resulted in a lower awareness of internal processes and therefore a 

lower frequency of uttered metacognitive events. Moreover, a related reason might be the 

adaptation to the demands of the task in the second session. Students could have adapted their 

regulatory behavior through repeated learning in the same learning environment. For example, 

Eitel (2016) showed that repeated testing affects multimedia learning through adaptation to the 

task. Similarly, the participants might have perceived the second task as easier because of a 

carryover effect through repeated learning. Further explanations for the decrease of 

metacognitive activities might be motivational issues, such as a change in self-efficacy that 

possibly affects the active regulation of learning (Moos & Miller, 2015), or the avoidance of 

repeatedly questioning one’s learning behavior (Nückles et al., 2010). Other studies also report 

a decrease of metacognition over time (DiBenedetto & Bembenutty, 2013; Labuhn, Bögelholz, 

& Hasselhorn, 2008; Nückles et al., 2010), but they consider different time frames (e.g., changes 

during a semester). Possibly this might also be a cause of repeatedly measuring metacognition 

using the same instrument. 
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Taking into account the findings of a previous contribution that investigates the long-

term impact on learning outcome (Bannert et al., 2015), sustainable effects of metacognitive 

prompting both positively affected the learning process as well as the performance in a transfer 

test that requires the application of knowledge. The beneficial impact on learning outcomes is 

not self-evident, even if fostered strategies are transferred to a follow-up task, as observed in a 

study of Roll et al. (2011). 

In our second research question, we aimed to identify sequential patterns that were 

transferred to the second learning session using Conformance Checking. PM techniques that 

take into account the relative arrangement of learning activities contributed to a microanalysis 

of learning, and they allowed conducting confirmatory model testing. Considering the 

mismatches between the first and second learning sessions, transitions originating from 

Monitoring frequently failed during the model-log replay. That means monitoring activities 

were embedded differently between the sessions. However, this might also be a deficiency of 

the Petri net notation as already discussed in Sonnenberg and Bannert (2015). Moreover, for the 

EG, transitions from Task Analysis to Search, and from Deep Processing to Evaluation failed 

several times. Compared to the first learning session with prompts, these patterns were observed 

less frequent. As discussed above, an explanation might be automation of regulation or 

adaptation to task demands. For the CG, transitions directing to Search failed frequently. 

Especially the transitions from Task Analysis to Search and the transitions from Monitoring to 

Search, which were executed during the second session, but not specified by the process model. 

An explanation could be that the students improved their systematic search for relevant 

information, possibly because they adapted to the demands of the task. Therefore, task analysis 

and monitoring activities are followed more frequently by search activities. 

Although Conformance Checking resulted in high fitness values for both the models 

of the EG and CG, the low behavioral appropriateness indicated that the process models might 

not have been sufficiently precise. That means the models allowed for more behavior than 

actually observed during the replay with the data of the second session. Since both fitness and 

appropriateness represent the main criteria of models that adequately describe an event log, a 

better precision would have been desirable. The reason for the low precision is probably a high 

variability of learning sequences between subjects. The higher the variability in the event log, 

the more challenging is it for a PM algorithm to generate a single model describing the observed 
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behavior. A possible solution to improve precision could be the application of trace-based 

clustering (De Weerdt, Vanden Broucke, Vanthienen, & Baesens, 2013) to select more 

homogeneous subgroups and to describe their behavior in separate models. However, the 

present sample might have been too small for this procedure. 

Regarding the limitations of the current study, the findings are dependent on our 

learning setting (i.e., learning material, tasks, and hypermedia environment) and our sample. 

Consequently, the resulting patterns might be specific for the setting and the participants, and 

generalizations for other contexts and other samples still have to be verified in future research. 

For example, it is possible that a transfer of strategies works for university students, as in our 

sample, but not for younger school students, because they are not experienced in self-evaluating 

their learning. Furthermore, the coding scheme used to categorize the students’ utterances 

determines the level of granularity for the observation of learning behavior. Another 

measurement unit or process data from other channels (e.g., log files or eye-tracking) might 

result in different findings. Moreover, a pre-determined time frame of three weeks was used to 

evaluate the sustainability of metacognitive prompting. Therefore, it is not possible to determine 

for how long the beneficial effects lasted, whether it was for weeks or even months. More 

specific information would be needed to better control the fading out of support when a student 

progresses in spontaneously performing the desired activities. In addition, the concept of booster 

sessions (e.g., Souvignier & Trenk-Hinterberger, 2010) might be useful to refresh the fostered 

strategies and to guarantee the stability of beneficial effects over a longer period. Finally, we 

did not assess motivational constructs like self-efficacy before learning, which might affect the 

regulation behavior (e.g., Bernacki, Nokes-Malach, & Aleven, 2015; Moos & Miller, 2015). 

Therefore, it is not possible to determine if a change in motivation caused the decrease of 

metacognitive activities from the first to the second session. 

Future research needs to replicate findings on the sustainability of metacognitive 

prompting. In general, more studies addressing the stability of SRL processes and the transfer 

of strategies into subsequent similar tasks and other domains are needed. Using process data 

like think-aloud protocols provides deeper insights into the learning behavior; but replications 

using different data channels, as well as a triangulation of channels, could advance the validity 

of findings (Azevedo, 2014). With respect to the discovery and testing of process models, future 

analyses should investigate the benefits of trace-based clustering to improve their precision (De 
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Medeiros et al., 2008; De Weerdt et al., 2013). Moreover, Conformance Checking also allows 

for the comparison of a theoretical-build model and an event log. Therefore, it would be possible 

to test theoretical assumptions of SRL models with observed behavior from various learning 

sessions. 

In conclusion, the current study provides initial evidence for sustainable long-term 

effects of metacognitive prompts on hypermedia learning. From an analytical point of view, our 

analysis indicates the benefits of evaluating instructional support on the micro level using PM 

techniques, which take into account the sequential structure of learning activities. SRL process 

data and analysis techniques that consider the dynamics of SRL contribute to the advanced 

understanding of regulatory processes and the impact of support for them. In addition, our 

findings can support the refinement of current SRL models by providing new insight into micro-

level processes. 
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Figure A.1. Process models represented as a heuristic net based on the sequence of coded activities of 
the first learning session, from Sonnenberg and Bannert (2015, p. 91). For a description of the codes 
please see the coding scheme presented in Table 1. 
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