
20
COMPUTING SCIENCE AND TECHNOLOGY INTERNATIONAL JOURNAL, VOL. 1, NO. 2, DECEMBER 2011

I.
Abstract—The design and implementation of a satellite mission

is divided into several different phases. Parallel to these phases
an evolution of requirements will take place. Because so many
people in different locations and from different background have
to work in different subsystems concurrently the ideas and
concepts of different subsystems and different locations will
diverge. We have to bring them together again. To do this we
introduce synchronization points. We bring representatives from
all subsystems and all location in a Concurrent Engineering
Facility (CEF) room together. Between CEF sessions the
different subsystems will diverge again, but each time the
diversion will be smaller. Our subjective experience from test
projects says this CEF sessions are most effective in the first
phases of the development, from Requirements engineering until
first coarse design. After Design and the concepts are fix, the
developers are going to implementation and the concept
divergences will be much smaller, therefore the CEF sessions are
not a very big help any more.

Index Terms—CEF, Concurrent Design Facility,
Requirements management, Space Missions phases.

II. INTRODUCTION

hE design and implementation of a satellite mission is
divided into several different phases, normally ranging

from phase A (feasibility) to phase E (utilization). Parallel to
these phases an evolution of requirements will take place
starting with the user requirements, going to the system
requirements (whole satellite) and deriving the sub system
requirements from the system requirements. The whole
development process has to be traceable back to requirements
until the system engineers can achieve the final state, which
resides in the actual specification of the system. Therefore, the
implementation of a satellite can be defined as a continuous
process with the requirements at its center.

 At one point in the development the system requirements
will be decomposed in requirements for the different
subsystems, like for example Payload requirements, Software
requirements (which are decomposed in requirements for
about 10 different applications), hardware requirements,

 Manuscript received December 2, 2011. This publication was funded by

the German Research Foundation (DFG) and the University of Wuerzburg in
the funding programme Open Access Publishing.

 S. Montenegro is Professor for aerospace informatics at the university
of Würzburg, Germany. Email: sergio.montenegro@uni-wuerzburg.de

 F. Dannemman is Team leader at the DLR (German aerospace Center)
in Bremen, Germany. Email: frank.dannemann@dlr.de

power, communications (downlink and uplink), thermal,
structural, accommodation, commanding, telemetry, FDIR
(Fault detection Isolation and Recovery) and ground segment.
Then each subsystem will manage its requirements almost
independently from each other. To ensure all subsystems will
be compatible with each other, like the subsystem
requirements and subsystems with system we have to add
synchronization points in the development in order to
converge requirements. Between this synchronization points,
the subsystems will begin to diverge from each other. In the
first steps of design this diversion may be very big (experience
value), but in the development process it shall become smaller
and smaller until no synchronization points are required any
more (theoretical, in reality we need them until the end of the
development).

 Another problems faced is the handling of the requirements,
which are edited mainly with WYSIWYG word processors
(such as MS Word or OpenOffice). During the process of
manually copying the actual requirements (or references to
them) between documents (e.g. from the functional to the
technical specification) a lot of errors may arise while
attempting to achieve backwards traceability, if not in the
initial stages of requirement creation or tracing, then certainly
in the later project phases when the possibility exists of and
increase in the number of inconsistencies. Such critical points
in time can occur after a review process like a
detailed/critical/design review, or after major changes in one
of the subsystems of the satellite.

 In this paper we present the approach which we are using for
both the TET [1] and AsteroidFinder [2] missions, where the
design of the satellite missions is driven by a tool-based
requirements management process. Using DOORS [3] as the
tool of choice, all requirements will be stored in a central
database which is accessible by all project partners regardless
of their location. Using features such as baseline management
and change requests the software supports the typical
development phases of a satellite in an ideal way, also making
the time-consuming process of requirements reviewing and
RID-processing a lot easier. The usage of the web interface
and e-mail notification completes the projects' goal of
allowing internal and external users to stay informed of all
changes in the satellite's database.

III. REQUIREMENTS NETWORK

T

Experiences and Best Practice Requirements
Engineering for Small Satellites

Sergio Montenegro, Frank Dannemann

21
COMPUTING SCIENCE AND TECHNOLOGY INTERNATIONAL JOURNAL, VOL. 1, NO. 2, DECEMBER 2011

 The requirements are structured and linked into a network
and are intended to be more than just a list of to-do items. This
structure clarifies any decisions taken and can be considered
as a part of the design justification folder. Following the links
the reader can get answers to the hows and whys (e.g. why X-
band? How to transmit 80 gigabits per day?), so increasing the
understand ability of the requirements and providing a mean
for traceability beginning with the most abstract requirements
through to the implementation requirements and down to the
implementation itself. The technical requirements are linked
from goals/abstract/concern requirements, going through some
intermediate steps, finishing with the implementation
requirements (what the system designer has to consider), like
it is shown in the following Figure 1:

Fig. 1. Network arrangement of requirements (hypothetical example)

The abstract requirements are mainly functional
requirements (what to do) and the implementation
requirements are mainly structural ones (how to do it). This
produces a graphical network of goals and sub-goals.
Following the arrows (mostly from left to right) in the
network we answer the question how? The opposite direction
(right to left) answers the question why?

The overall network of requirements does not have a

graphical representation. The picture above is solely to clarify
the concept. Nevertheless DOORS provides the possibility to
visualize all links between two formal requirements modules.
The picture below gives an example of such link graph,
showing some of the connections between functional and
technical requirements for the AsteroidFinder satellite:

Fig. 2. Link graph between two requirement modules.

A requirement without an output arrow implies that it has

no further consequence and it can be considered as a final
requirement. Many output arrows mean this requirement has
many implications to the system. Many input arrows mean this
requirement is a solution for many other implications. Only
one input arrow would be enough to justify this decision.

A similar linkage of requirements can be done using public

domain tools, like (tables from) OpenOffice to. From
OpenOffice we cannot get this graphical structure, but in the
practice it is not required because the navigation is done
following the (hyper-)links.

IV. REQUIREMENT TYPES

Not all requirements are the same. They are classified into

different groups which are interconnected into a network as
shown in the following figure:

Fig. 3. Types of Requirements

As shown in Figure 3, we can see that not only requirement

modules influence the requirement graph. Modules containing
constraints also have an important impact, like for example:
“Space is cool” or “Reuse TET”. These constraints are facts
we cannot change and have to accept. Constraints are grouped
into environment constraints (e.g. “Space is cool”) and
programmatic constraints (e.g. “Reuse TET”). Constraints
influence directly the functional requirements (e.g. “Find at

22
COMPUTING SCIENCE AND TECHNOLOGY INTERNATIONAL JOURNAL, VOL. 1, NO. 2, DECEMBER 2011

least 10 asteroids!”) and the technical requirements (e.g. how
to survive in space).

There is one additional requirement module which has no
input, but a lot of output connections: the Function Tree is
based on the experiences of past satellite missions and
contains a list of typical functionality which has to be
implemented in order to operate the satellite and to use the
payload. This Functional Tree has implications on technical
requirements which describe how to implement this
functionality.

V. SYNCHRONIZATION POINTS

Because so many people in different locations and from
different background (computer scientists, electronic
engineers, mechanical engineers, space engineers, power,
thermal, communication, operations and many other people
and even a manager) have to work in different subsystems
concurrently it is a natural process that the ideas and concepts
of different subsystems and different locations will diverge.
We have to bring them together again. To do this we
introduce synchronization points like in following figure:

Fig. 4: Synchronization points

For the synchronization points we bring representatives

from all subsystems and all location in a Concurrent
Engineering Facility (CEF) room together like in the
following figure.

Fig. 5: Concurrent Engineering Facility at DLR - Bremen

The CEF infrastructure allows and efficient and simple data
interchange between different workstations which are
occupied by representatives from different subsystems. For
example when working out the power dimensioning of the
system, each subsystem distributes its power requirements.
Adding these values we can get an image of the system and all
together search for better solutions and compromises in a very
short time and effective way.

Between CEF sessions the different subsystems will diverge

again, but each time the diversion will be smaller, as seen in
figure 4. Our subjective experience from test projects says this
CEF sessions are most effective in the first phases of the
development, from Requirements engineering until first coarse
design. After Design, going to implementation they are not a
very big help any more. Therefore we recommend to have
more meetings at the begin of the conception phase (every 4
weeks). In the same mass as the concept is being fixed, the
distance between sessions (meetings) may be extended. After
the concept is fix, the developers will “just” implement them
and we expect only minor changes. CEF sessions will not be a
big help any more.

REFERENCES
[1] TET

 http://www.dlr.de/rd/desktopdefault.aspx/tabid-2274//3396_read-5085/

[2] 2. Mottola, S., Börner, A., Grundmann, J.T. , Hahn, G., Kazeminejad B.,

Kührt, E., Michaelis, H., Montenegro, S., Schmitz, N., Spietz P.:
AsteroidFinder: Unveiling the Population of Inner Earth Objects, 59th
International aeronautical congress, 29th September to 3th October
2008, Glasgow, Scotland.

[3] Doors: http://www.telelogic.com/products/doors

[4] Bärwald W. and Montenegro S., BIRD-Spacecraft bus controller, Small

Satellites for Earth Observation, Vol. 3, 371-373, 2001

[5] Sergio Montenegro, Jan-Thimo Grundmann, Bobby Kazeminejad, Peter

Spietz, The new DLR Standard Satellite Bus series (SSB), Small
Satellites Systems and Services - The 4S Symposium, German
Aerospace Center, 2008

[6] BIRD (Bispectral InfraRed-Detector

http://www.dlr.de/rb/en/desktopdefault.aspx/tabid-2731/6724_read-6311

