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Summary	

RNA-binding	 proteins	 (RBPs)	 have	 been	 extensively	 studied	 in	 eukaryotes,	 where	 they	
post-transcriptionally	regulate	many	cellular	events	including	RNA	transport,	translation,	and	
stability.	 Experimental	 techniques,	 such	 as	 cross-linking	 and	 co-purification	 followed	 by	
either	 mass	 spectrometry	 or	 RNA	 sequencing	 has	 enabled	 the	 identification	 and	
characterization	of	RBPs,	 their	 conserved	RNA-binding	domains	 (RBDs),	 and	 the	 regulatory	
roles	of	these	proteins	on	a	genome-wide	scale.	These	developments	 in	quantitative,	high-
resolution,	 and	 high-throughput	 screening	 techniques	 have	 greatly	 expanded	 our	
understanding	of	RBPs	in	human	and	yeast	cells.	In	contrast,	our	knowledge	of	number	and	
potential	 diversity	 of	 RBPs	 in	 bacteria	 is	 comparatively	 poor,	 in	 part	 due	 to	 the	 technical	
challenges	associated	with	existing	global	screening	approaches	developed	in	eukaryotes.		

Genome-	and	proteome-wide	screening	approaches	performed	 in	silico	may	circumvent	
these	 technical	 issues	 to	 obtain	 a	 broad	 picture	 of	 the	 RNA	 interactome	 of	 bacteria	 and	
identify	strong	RBP	candidates	for	more	detailed	experimental	study.	Here,	I	report	APRICOT	
(“Analyzing	 Protein	 RNA	 Interaction	 by	 Combined	Output	 Technique”),	 a	 computational	pipeline	
for	 the	 sequence-based	 identification	 and	 characterization	 of	 candidate	 RNA-binding	
proteins	encoded	in	the	genomes	of	all	domains	of	life	using	RBDs	known	from	experimental	
studies.	The	pipeline	identifies	functional	motifs	in	protein	sequences	of	an	input	proteome	
using	position-specific	scoring	matrices	and	hidden	Markov	models	of	all	conserved	domains	
available	 in	the	databases	and	then	statistically	score	them	based	on	a	series	of	sequence-
based	 features.	 Subsequently,	 APRICOT	 identifies	 putative	 RBPs	 and	 characterizes	 them	
according	 to	 functionally	 relevant	 structural	 properties.	 APRICOT	 performed	 better	 than	
other	 existing	 tools	 for	 the	 sequence-based	 prediction	 on	 the	 known	 RBP	 data	 sets.	 The	
applications	 and	adaptability	 of	 the	 software	was	demonstrated	on	 several	 large	bacterial	
RBP	data	sets	 including	 the	complete	proteome	of	Salmonella	Typhimurium	strain	SL1344.	
APRICOT	 reported	 1068	 Salmonella	 proteins	 as	 RBP	 candidates,	which	were	 subsequently	
categorized	 using	 the	 RBDs	 that	 have	 been	 reported	 in	 both	 eukaryotic	 and	 bacterial	
proteins.	A	set	of	131	strong	RBP	candidates	was	selected	for	experimental	confirmation	and	
characterization	 of	 RNA-binding	 activity	 using	 RNA	 co-immunoprecipitation	 followed	 by	
high-throughput	 sequencing	 (RIP-Seq)	 experiments.	 Based	 on	 the	 relative	 abundance	 of	
transcripts	 across	 the	RIP-Seq	 libraries,	 a	 catalogue	of	 enriched	 genes	was	 established	 for	
each	 candidate,	 which	 shows	 the	 RNA-binding	 potential	 of	 90%	 of	 these	 proteins.	
Furthermore,	 the	direct	 targets	of	 few	of	 these	putative	RBPs	were	validated	by	means	of	
cross-linking	and	co-immunoprecipitation	(CLIP)	experiments.		

This	 thesis	 presents	 the	 computational	 pipeline	 APRICOT	 for	 the	 global	 screening	 of	
protein	 primary	 sequences	 for	 potential	 RBPs	 in	 bacteria	 using	 RBD	 information	 from	 all	
kingdoms	of	 life.	 Furthermore,	 it	provides	 the	 first	bio-computational	 resource	of	putative	
RBPs	 in	Salmonella,	which	could	now	be	 further	studied	 for	 their	biological	and	regulatory	
roles.	 The	 command	 line	 tool	 and	 its	 documentation	 are	 available	 at	
https://malvikasharan.github.io/APRICOT/.	
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Zusammenfassung	
	

RNA-bindende	Proteine	(RBPs)	wurden	umfangreich	in	Eukaryoten	erforscht,	in	denen	sie	
viele	 Prozesse	 wie	 RNA-Transport,	 -Translation	 und	 -Stabilität	 post-transkriptionell	
regulieren.	 Experimentelle	 Methoden	 wie	 Cross-linking	 and	 Koimmunpräzipitation	 mit	
nachfolgedener	 Massenspektromentrie	 /	 RNA-Sequenzierung	 ermöglichten	 eine	
weitreichende	 Charakterisierung	 von	 RBPs,	 RNA-bindenden	 Domänen	 (RBDs)	 und	 deren	
regulatorischen	 Rollen	 in	 eukaryotischen	 Spezies	 wie	 Mensch	 und	 Hefe.	 Weitere	
Entwicklungen	 im	 Bereich	 der	 hochdurchsatzbasierten	 Screeningverfahren	 konnten	 das	
Verständnis	 von	 RBPs	 in	 Eukaryoten	 enorm	 erweitern.	 Im	 Gegensatz	 dazu	 ist	 das	Wissen	
über	die	Anzahl	und	die	potenzielle	Vielfalt	von	RBPs	in	Bakterien	dürftig. 

In	 der	 vorliegenden	 Arbeit	 präsentiere	 ich	 APRICOT,	 eine	 bioinformatische	 Pipeline	 zur	
sequenzbasierten	 Identifikation	 und	 Charakterisierung	 von	 Proteinen	 aller	 Domänen	 des	
Lebens,	die	auf	RBD-Informationen	aus	experimentellen	Studien	aufbaut.	Die	Pipeline	nutzt	
Position	 Specific	 Scoring	Matrices	 und	Hidden-MarkovModelle	konservierter	Domänen,	 um	
funktionelle	 Motive	 in	 Proteinsequenzen	 zu	 identifizieren	 und	 diese	 anhand	 von	
sequenzbasierter	Eigenschaften	statistisch	zu	bewerten.	Anschließend	identifiziert	APRICOT	
mögliche	 RBPs	 und	 charakterisiert	 auf	 Basis	 ihrer	 biologischeren	 Eigenschaften.	 In	
Vergleichen	 mit	 ähnlichen	 Werkzeugen	 übertraf	 APRICOT	 andere	 Programme	 zur	
sequenzbasierten	Vorhersage	von	RBPs.	Die	Anwendungsöglichkeiten	und	die	Flexibilität	der	
Software	wird	am	Beispiel	einiger	großer	RBP-Kollektionen,	die	auch	das	komplette	Proteom	
von	 Salmonella	 Typhimurium	 SL1344	 beinhalten,	 dargelegt.	 APRICOT	 identifiziert	 1068	
Proteine	 von	 Salmonella	 als	 RBP-Kandidaten,	 die	 anschließend	 unter	 Nutzung	 der	 bereits	
bekannten	 bakteriellen	 und	 eukaryotischen	 RBDs	 klassifiziert	 wurden.	 131	 der	 RBP-
Kandidaten	 wurden	 zur	 Charakterisierung	 durch	 RNA	 co-immunoprecipitation	 followed	 by	
high-throughput	 sequencing	 (RIP-seq)	 ausgewählt.	 Basierend	 auf	 der	 relativen	 Menge	 an	
Transkripten	 in	 den	 RIP-seq-Bibliotheken	 wurde	 ein	 Katalog	 von	 angereicherten	 Genen	
erstellt,	der	auf	eine	potentielle	RNA-bindende	Funktion	 in	90%	dieser	Proteine	hindeutet.	
Weiterhin	wurden	 die	 Bindungstellen	 einiger	 dieser	möglichen	 RBPs	mit	 Cross-linking	 and	
Co-immunoprecipitation	(CLIP)	bestimmt. 

Diese	 Doktorarbeit	 beschreibt	 die	 bioinformatische	 Pipeline	 APRICOT,	 die	 ein	 globales	
Screening	 von	 RBPs	 in	 Bakterien	 anhand	 von	 Informationen	 bekannter	 RBDs	 ermöglicht.	
Zudem	enthält	sie	eine	Zusammenstellung	aller	potentieller	RPS	 in	Salmonella,	die	nun	auf	
ihre	 biologsche	 Funktion	 hin	 untersucht	werden	 können.	 Das	 Kommondozeilen-Programm	
und	seine	Dokumentation	sind	auf	https://malvikasharan.github.io/APRICOT/	verfügbar. 
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Chapter	1	

Introduction	

	
1.1	Overview	

The	 classic	 central	 dogma	 of	 molecular	 biology	 presents	 the	 one-directional	 flow	 of	

genetic	information	from	DNA	to	RNA	via	transcription,	and	from	coding	RNA	to	proteins	via	

translation.	 However,	 it	 is	 apparent	 that	many	 processes	 in	 this	 highly-regulated	 pathway	

also	 involve	 so-called	 non-coding	 RNAs,	 where	 RNA	molecules	 play	 the	 role	 of	 regulators	

rather	 than	 simply	 information	 carriers	 in	 diverse	 biological	 systems.	 Advances	 in	 RNA	

biology	 have	 demonstrated	 that	 RNA	 molecules	 participate	 in	 many	 layers	 of	 gene	

regulation,	 associated	with	 both	 transcription	 and	 translation	 (Moore	&	 Proudfoot,	 2009;	

Wang	et	 al.,	 2015;	 de	Klerk	et	 al.,	 2015).	 These	 layers	of	 riboregulation	often	 involve	 two	

main	 players:	 RNAs	 and	 their	 protein	 accomplices.	 RNA-binding	 proteins	 (RBPs)	 and	

ribonucleoprotein	 complexes	 are	 important	 post-transcriptional	 regulators	 in	 several	

processes	such	as	RNA	splicing,	transport,	localization,	translation,	stabilization,	degradation,	

and	quality	 control	 (Chothia	et	al.,	 1986;	 Lund	et	al.,	 2007;	Castello	&	 Lesk,	 2012;	Burd	&	

Dreyfuss,	1994;	Baltz	et	al.,	2012;	Kwon	et	al.,	2013,	Gerstberger	et	al.,	2014,	Strein	et	al.,	

2014,	 de	 Klerk	&	 ‘t	 Hoon	 2015;	Merchese	 et	 al.,	 2016;	 Anji	 et	 al.,	 2016).	 Such	 regulatory	

mechanisms	 can	 involve	 either	 brief,	 transient	 interactions	or	 stable	binding	of	 regulatory	

RNAs	 with	 RBPs.	 A	 major	 focus	 of	 RNA	 research	 in	 past	 decades	 has	 been	 towards	 the	

characterization	 of	 a	 handful	 of	 well-known	 RBPs	 and	 their	 structural	 and	 functional	

importance	 in	 cellular	 systems.	 However,	 the	 recent	 development	 of	 high-throughput	

system-wide	 approaches	 by	 means	 of	 interactome	 capture	 and	 mass	 spectrometry	 has	

enabled	the	identification	of	a	large	number	of	unexplored	RBPs	in	a	proteome-wide	manner	

(Castello	et	al.,	2012;	Baltz	et	al.,	2012;	Michell	et	al.,	2013).	So	far,	such	studies	have	been	

conducted	 in	 eukaryotes	 by	 capturing	 protein-RNA	 complexes	 by	 means	 of	 in	 vivo	

experiments.	Unfortunately,	these	approaches	cannot	be	applied	to	non-eukaryotic	systems	

due	 to	 technical	 limitations,	 such	as	 the	 lack	of	poly-A	 tails	 in	bacterial	mRNAs.	Hence,	an	

even	more	global	approach	should	be	designed	to	identify	RBP	candidates	in	non-eukaryotes	

that	 could	 be	 subjected	 to	 experimental	 validation.	 This	 issue	 can	 be	 addressed	 by	

computational	techniques	(Puton	et	al.,	2012;	Si	et	al.,	2015;	Gerstberger	et	al.,	2014;	Miao	
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&	Westhof,	2015;	Freeberg	&	Kim,	2016),	which	can	be	specialized	for	RBP	identifications	in	

different	 organisms,	 including	 bacteria,	 by	 using	 the	 existing	 sequence	 and	 domain	

knowledge	from	a	wide	range	of	organisms.	

In	 this	 thesis,	 I	 present	 the	 first	 high-throughput	 identification	 of	 novel	 RBPs	 in	 the	

bacterial	species	Salmonella	Typhimurium	by	means	of	a	bio-computational	approach.	In	the	

first	part,	I	report	a	bioinformatic	software,	APRICOT	(“Analyzing	Protein	RNA	Interaction	by	

Combined	 Output	 Technique”),	 which	 was	 developed	 for	 the	 identification	 and	

characterization	 of	 RBPs	 in	 a	 complete	 proteome	 using	 information	 derived	 from	 known	

RBPs	 across	 all	 kingdoms	 of	 life.	 In	 the	 second	 part,	 I	 provide	 insights	 gained	 from	

subsequent	 experimental	 studies	 of	 the	 computationally-identified	 RBP	 candidates	 in	

bacterial	species,	Salmonella	Typhimurium,	which	were	further	analysed	for	their	regulatory	

roles	by	integrating	knowledge	from	of	high-throughput	sequencing	approaches.	

	

1.2	RNA-binding	proteins	and	RNA-binding	domains	

Proteins	 that	 can	 bind	 to	 one	 or	 several	 RNA	 molecules	 in	 cells	 to	 form	

ribonucleoproteins	(RNPs)	are	known	as	RNA-binding	proteins	(RBPs).	The	term	RBPs	is	often	

used	to	indicate	any	RNA-interacting	protein	that	plays	important	roles	in	cellular	processes	

but	does	not	necessarily	require	stable	binding	to	RNAs.	These	proteins	play	central	roles	in	

both	 the	 nucleus	 and	 cytoplasm	of	 eukaryotes,	 and	 have	 been	 characterized	with	 cellular	

functions	and	structural	roles	across	all	the	kingdoms	of	life	(Peal	et	al.,	2011;	Nishtala	et	al.,	

2016).		

Several	 RBPs	 are	 comprised	 of	 low	 complexity,	 intrinsically	 disordered	 regions	 that	

recognize	 and	 interact	 with	 their	 RNA	 targets	 (Castello	 et	 al.,	 2012;	 2016).	 However,	 the	

majority	 of	 RBPs	 contain	 a	 single	 or	 multiple	 characteristic	 RNA-binding	 domains	 (RBDs),	

which	are	conserved	sequence	motifs	that	facilitate	the	specificity	and	affinity	towards	RNA	

targets	(Cléry	&	Allain,	2011).	The	RBDs	can	be	categorized	 into	two	main	classes:	classical	

and	non-classical.	The	classical	RBDs,	which	include	a	small	number	of	domain	families,	are	

known	 for	 their	 high	 abundance	 in	 eukaryotic	 RBPs	 (Table	 1.1).	 A	 few	 examples	 are	

discussed	later,	along	with	their	biological	context.		
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Table	1.1	List	of	all	the	classical	and	few	non-classical	RBDs	with	their	examples	compiled	from	the	
literature.	

	

Classical	RBDs	 Function	 Examples	from	Human	
proteome	 References	

RRM	 RNA	recognition	motif	that	
binds	to	ssRNA.	

TIA-1,	TIAR,	PTBP1,	ELAV,	
hnRNPs,	snRNPs,	SR,	U2AF,	
Sxl,	La,	PABP,	Hu/HuR		

Maris	et	al.,	2005,	Cléry	et	al.,	
2008;	Cassola	et	al.,	2010;	
Daubner	et	al.,	2013,	
Colombrita	et	al.,	2013	

KH	

K-homology	domains	occur	
in	multiple	copies	and	
recognise	different	RNAs	in	
cooperative	manner.	

KSRP,	FMR1,	ANKHD1,	
EXOSC,	FXR	

Siomi	et	al.,	1993;	Siomi	et	al.,	
1994;	Grishin	et	al.,	2001;	
Velverde	et	al.,	2008	

DEAD	
Contain	DEAD-box	helicase	
and	are	involve	d	in	RNA	
metabolism.	

DDX3X,	HDAC1	

Schmid	&	Linder,	1992;	de	la	
Cruz,	1999;	Rocak	&	Linder,	
2004;	Matsui	et	al.,	2006;	
Linder	&	Jankowsky,	2011;	
Banroques	et	al.,	2008	

CSD	
Supposed	to	help	the	cell	to	
survive	in	higher	then	
optimum	temperatures.	

CSDE1,	CSDC2,	CspA,	ATP-
dependent	RNA	helicase	
DeaD	

Wistow,	1990;	Landsman,	
1992;	Jones	&	Inouye	1994	

La	

Acts	as	RNA-polymerase	III	
transcription	factoes	in	the	
nucleus	and	as	translation	
factor	in	cytoplasm.	

LARP1,	Lupus	La	protein	 Jacks	et	al.,	2003;	Alfano	et	al.,	
2004;	Kotok-Kogan	et	al.,	2008	

zf-CCCH	

Recognizes	different	RNAs	
and	lead	to	functions	such	
as	alternative	splicing,	
degradation	etc.		

ZC3H	(3,	8,	10,	13,	15),	
UNKL,	Roquin-1	

Klug,	1999;	Laity	et	al.,	2001;	
Matthews	&	Sunde,	2002;	
Brown,	2005;	Hall,	2005;	
Gamsjaeger	et	al.,	2007;	
Hamad	et	al.,	2014	

PIWI	

Bind	to	small	interfering	
RNAs	and	micro	RNAs	and	
play	crucial	roles	in	their	
biogenesis	and	function.	

AGO	(2,4),	PRMT5	 Yuan	et	al.,	2005;	Faehnle	et	
al.,	2013	
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PUF	

Play	several	roles	in	
eukaryotes	such	as	
cytoplasmic	de-
adenylation,	translational	
repression.	

PUF	(3,	60),	Pumilio	
homolog	3		

Zamore	et	al.,	1997;	Wang	et	
al.,	2001;	Wang	et	al.,	2002;	
Spassov	&	Jurecic,	2003	

S1	

The	S1	domain	is	an	
essential	in	protein	
translation	as	it	interacts	
with	the	ribosome	and	
messenger	RNA.	

SRBD1,	SPT6H,	RRP5	
homolog		

Boni	et	al.,	1991;	Ringquist	et	
al.,	1995;	Bycroft	et	al.,	1997	

dsrm	 Binds	to	dsRNAs.	 ADAR,	PRKRA,	DHX9,	
Staufen	homolog	1	

Manche	et	al.,	1992;	St	
Johnston	et	al.,	1992;	Kim	et	
al.,	1994;	Bycroft	et	al.,	1995	

PUA	
Binds	to	dsRNAs	and	leads	
to	ribosome	biogenesis	and	
translation	regulation.	

dyskerin,	MCT1,	eIF2D,	and	
NIP7	

Ramamurthy	et	al.,	1999;	
Mizutani	et	al.,	2004;	
Sivaraman	et	al.,	2004;	Pérez-
Arellano	et	al.,	2007	

	

RNA-Recognition	Motif	(RRM)	superfamily	

The	RRM	 fold,	 also	 known	as	 the	 ribonucleoprotein	 (RNP)	domain,	 is	 abundant	 in	both	

bacterial	and	eukaryotic	proteins	and	is	present	in	an	exceptionally	high	number	of	predicted	

RBP	candidates	in	metazoans	(references	in	Table	1.1).	The	RRM	domain	is	a	90-amino	acid	

(aa)	long	sequence	and	comprises	of	two	conserved	sub-domains	of	length	eight	and	six	aa,	

referred	 to	 as	 RNP1	 and	 RNP2	 respectively.	 Though	 also	 known	 for	 its	 DNA-	 and	 protein-

binding	capability,	this	domain	has	been	intensively	studied	for	its	RNA-binding	behaviours.	

RRM	domains	have	been	shown	to	mainly	be	 involved	 in	 interactions	with	single-stranded	

RNA	and	are	found	in	about	2%	of	human	genes	(Maris	et	al.,	2005).	Examples	of	proteins	

encoding	 this	 domain	 are	 the	 human	 nucleolysin	 TIA-1	 and	 TIAR	 proteins	 (Tessier	 et	 al.,	

2014)	that	bind	to	AU-rich	elements	and	lead	to	alternative	pre-RNA	splicing	and	regulation	

of	mRNA	translation.	Another	protein	 is	neuronal	ELAV	protein	that	binds	to	the	3’	UTR	of	

mRNAs	to	confer	stability	or	direct	nuclear	export,	depending	upon	its	target	(Colombrita	et	

al.,	 2013;	 Darnell,	 2013).	 Additional	 examples	 of	 RRM-containing	 RBPs	 include	

heterogeneous	nuclear	ribonucleoproteins	(hnRNP)	(Brunetti	et	al.,	2015)	and	small	nuclear	

ribonucleoproteins	(U1	and	U2	snRNP)	(Fischer	et	al.,	2011),	proteins	involved	in	alternative	

splicing	 (SR,	U2AF,	Sxl)	 (Zhu	&	Krainer,	2000;	Guth	et	al.,	2001;	Penalva	&	Sánchez,	2003),	
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and	proteins	 that	 regulate	RNA	 stability	 and	 translation	 (La,	 PABP,	Hu)	 (Yang	et	 al.,	 2011;	

Casper	et	al.,	2013;	Lu	et	al.,	2014).	To	date,	there	are	more	than	300	tertiary	structures	are	

available	for	the	RRM	domain	in	various	protein	contexts	in	the	protein	structure	databases.	

These	structures	along	with	its	complexes	with	RNAs	display	four	characteristic	β	strands	and	

two	conserved	α	helices	arranged	in	α-β	sandwich.	The	4-stranded	β	sheet	acts	as	its	primary	

RNA-binding	surface.	 In	bacteria,	nearly	100	proteins	have	been	found	with	RRM	domains,	

which	show	certain	differences	 from	the	eukaryotic	RRM	proteins	 (Maris	et	al.,	2005).	For	

example,	bacterial	RRM	proteins	are	short	sequence	of	100	aa	and	have	single	copy	of	RRM	

domain	 whereas	 eukaryotic	 proteins	 are	 generally	 longer	 and	 contain	 multiple	 copies	 of	

RRMs	(Maris	et	al.,	2005).	

K	homology	(KH)	domains		

The	hnRNP	KH	domain	is	present	in	wide	variety	of	RBPs	and	like	RRM,	functions	in	RNA	

recognition	(references	in	the	Table	1.1).	This	70-aa	long	domain	is	often	found	in	proteins	in	

multiple	 copies	 and	 recognizes	 one	 or	 several	 different	 AU-rich	 regions	 in	 target	 RNAs.	

Proteins	 containing	 this	 domain	 are	 involved	 in	diverse	processes,	 including	 splicing,	 post-

transcriptional	regulation,	and	translational	control	(Glisovic	et	al.,	2008).	This	domain	found	

in	both	eukaryotic	and	bacterial	proteins,	and	are	categorized	as	Type	I	and	Type	II,	based	on	

the	differences	in	their	KH	folds	(Grishin,	2001).	The	nucleic	acid	targets	of	KH	domains	are	

typically	 single-stranded	 RNA	 or	 DNA.	 They	 recognise	 4-nucleotide	 regions	 of	 diverse	

patterns	such	as	UCAC,	UAAC,	TCCC,	CCCT,	or	TTTT	 (Cléry	&	Allain,	2013).	Only	a	 few	PDB	

structures	are	available	for	KH-RNA	or	KH-single	stranded	DNA	complexes.	Examples	of	KH	

domain-containing	 proteins	 include	 the	 KSRP	 proteins,	 which	 bind	 to	 G-rich	 targets	 and	

regulate	 Let-7	 microRNA	 biogenesis	 (Lee	 et	 al.,	 2016).	 The	 fourteen	 KH	 repeats	 containg	

protein	 vigilin,	 can	 bind	 to	 tRNAs,	mRNAs,	 and	 rRNAs.	 Another	 example	 of	 KH-containing	

proteins	 is	 fragile	X	mental	 retardation	protein	1	 (FMR1).	This	protein	can	strongly	bind	to	

GU-rich	RNA	targets	and	is	involved	in	transporting	mRNA	from	the	nucleus	to	the	cytoplasm	

(Darnell	&	Richter,	2012).	

Cold	shock	domains	(CSDs)	

Cold	 shock	 proteins	 (CSPs)	 are	 found	 in	 eukaryotes,	 bacteria,	 and	 archaea	 and	 are	

comprised	mostly	of	an	evolutionarily	conserved	domain	called	the	S1-like	CSD	(references	

in	 the	Table	1.1).	 The	eukaryotic	 gene	 regulatory	 factor	 Y-box	protein	 contains	 a	CSD	and	

regulates	 transcription	 and	 translation	 of	 genes	 that	 contain	 the	 pyrimidine-rich	 Y-box	
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sequence	 in	 their	 promoters	 (Lee	 et	 al.,	 1994).	 In	 bacteria,	 the	 CSP	 family	 includes	 cold-

inducible	 proteins	 such	 as	 CspA	 and	 CspB	 of	 Salmonella	 and	 E.	 coli	 (Bae	 et	 al.,	 1997;	

Phadtare	&	 Inouye,	2001),	which	are	highly	expressed	at	 lower	growth	 temperatures,	 and	

non-cold	 inducible	 CSPs	 such	 as	 CspC	 and	 CspE	 (Phadtare	 &	 Inouye,	 1999).	 These	 CSPs	

preferentially	 bind	 poly-pyrimidine	 regions	 of	 single-stranded	 RNA	 and	 DNA	 and	 lead	 to	

increased	 translation	 by	 the	 ribosome,	 mRNA	 degradation,	 or	 transcription	 termination	

(Manival	et	al.,	2001;	Glisovic	et	al.,	2008).	

DEAD-box	helicases	

The	 largest	 family	 of	 RNA	 helicases	 is	 the	 DEAD-box	 proteins,	 which	 includes	 proteins	

found	in	most	eukaryotes	and	prokaryotes	(references	in	the	Table	1.1).	DEAD-box	helicases	

are	 involved	 in	 many	 aspects	 of	 RNA	 metabolism	 (Rocak	 &	 Linder,	 2004).	 Nine	 common	

conserved	sequences	 (the	so-called	Q-motif,	motif	1,	motif	1a,	motif	1b,	motif	 II,	motif	 III,	

motif	 IV,	 motif	 V,	 and	 motif	 VI)	 of	 this	 domain	 are	 involved	 in	 ATP	 binding,	 hydrolysis,	

intramolecular	 rearrangements,	 and	 RNA	 interaction.	 These	 helicases	 modulate	 cellular	

processes	like	pre-mRNA	processing	and	rearrangement	of	RNP	complexes	(Banroques	et	al.,	

2008).	 The	 DEAH	 and	 SKI	 families	 are	 two	 related	 groups	 of	 DEAD-box-domain	 proteins,	

which	together	with	DEAD-box	are	referred	to	as	DExD/H	proteins	(Tanner	&	Linder,	2001).	

Zinc	finger	(ZF)	domains	

ZF	 domains	 were	 originally	 recognized	 as	 DNA-binding	 domains,	 but	 are	 now	 more	

intensively	 studied	 for	 their	RNA-binding	 capacity.	 ZF	domains	are	approximately	 thirty	 aa	

long,	and	interact	with	their	targets	by	means	of	conserved	aa	motifs	such	as	CCHH,	CCCH,	or	

CCCC	(references	in	Table	1.1).	Many	structures	of	ZF-containing	RBPs	are	available	in	PDB,	

which	together	 illustrate	that	 this	domain	 is	comprised	of	a	ββα	protein	 fold	where	a	Zn2+	

ion	holds	a	β-hairpin	and	an	α-helix	together.	ZF	domain-containing	proteins	can	have	one	or	

multiple	of	these	domains.	The	CCHH/C2H2-type	ZF	domains	occur	most	frequently,	in	which	

two	 cysteines	 and	histidines	 co-ordinate	 a	 zinc	 ion	 (Brayer	et	 al.,	 2008).	 C2H2-ZF	proteins	

contain	 ~10	 repeats	 of	 this	 domain.	 These	 are	 functionally	 diverse	 transcription	 factors,	

which	account	for	about	700	human	proteins	(Schmitges	et	al.,	2016).	For	example,	ZN268	

acts	 as	 a	 transcriptional	 repressor,	 whereas	 ZF-containing	 TFs	 like	 KLF4,	 SP1,	 and	 ZNF423	

activate	 or	 repress	 transcription	 in	 response	 to	 physiological	 stimuli.	 The	 CCCH-ZF	 protein	

Tis11d	is	a	member	of	the	tristetrapolin	(TTP)	protein	family	that	is	involved	in	the	control	of	

the	 inflammatory	 response.	 This	 protein	 recognises	 AU-rich	 elements	 in	 the	 3’-end	 of	 its	
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target	mRNA	and	leads	to	degradation	of	the	transcript.	Another	CCCH	ZF	domain-containing	

protein	is	Muscleblind-like	1	(MBNL1),	which	interacts	with	its	target	RNAs	by	means	of	four	

CCCH	ZF	domains,	thereby	regulating	alternative	splicing	to	promote	muscle	differentiation	

(Cho	&	 Tapscott,	 2007).	 Inactivation	 of	MBNL1	 is	 associated	with	myotonic	 dystrophy.	 An	

example	of	CCHC	ZF-containing	RNP	is	the	HIV-1	nucleocapsid	(NC)	protein,	which	recognise	

motifs	other	than	an	AU-rich	element	(Zargarian	et	al.,	2014).	These	examples	show	that	ZF-

containing	proteins	can	specifically	recognize	different	RNA	sequences.	The	ZF	proteins	have	

not	yet	been	reported	in	bacteria.	

Pseudouridine	synthase	and	archaeosine	transglycosylase	(PUA)-domain		

The	PUA	domain	family	 is	highly	conserved	across	all	kingdoms	of	 life	and	catalyses	the	

isomerization	 of	 uridine	 to	 pseudouridine	 in	 its	 RNA	 targets	 (references	 in	 Table	 1.1).	

Domains	 of	 this	 family	 are	 64-96	 aa	 long	 and	 contain	 a	 common	RNA	 recognition	 surface	

with	specific	α/β	architecture	consisting	of	two	α	helices	and	six	β	strands,	and	folds	into	a	

β–sandwich	 structure.	 This	 domain	 has	 been	 identified	 in	 archaeal	 and	 eukaryotic	

pseudouridine	synthases,	archaeal	archaeosine	synthases,	and	a	family	of	predicted	archaeal	

and	bacterial	rRNA	methylases	(Aravind	&	Koonin,	1999;	Coltri	et	al.,	2007).	

Examples	 of	 PUA-containing	 proteins	 in	 eukaryotes	 include	 dyskerin,	MCT1,	 eIF2D,	 and	

NIP7.	Dyskerin	is	a	small	nucleolar	ribonucleoprotein,	which	binds	to	an	ACA	motif	of	H/ACA	

RNA,	 thereby	 allowing	 its	 stable	 anchoring	 to	 tRNAs.	 MCT1	 (multiple	 copies	 T-cell	

malignancies	 1)	 is	 involved	 in	 ribosome	 biogenesis	 and	 translational	 regulation,	 and	

facilitates	m7G	cap	complex	binding.	 It	requires	eIF4E	for	the	 interaction	with	the	m7G	cap	

through	its	PUA	domain	(Cerrudo	et	al.,	2014).	EIF2D	(eukaryotic	translation	initiation	factor	

2D)	 is	 required	 for	 ribosome	 biogenesis	 and	 translation	 regulation,	 and	 acts	 as	 trafficking	

receptor	 for	 phosphoglycoproteins.	 This	 RBP	 binds	 to	 dsRNA	 in	 tRNA	 or	 rRNA	 (Dever	 &	

Green,	2012;	Cerrudo	et	al.,	2014).	NIP7	interacts	with	pre-rRNA	and	leads	to	60S	ribosome	

subunit	 biogenesis	 and	 translation	 regulation	 (Coltri	 et	 al.,	 2007).	 Except	 for	 dyskerin	

protein,	these	proteins	are	absent	in	E.	coli,	Salmonella	enterica	and	Shigella	dysenteriae.	

Non-classical	RBDs	

Unlike	the	above-described	classical	RBDs	(Table	1.1),	non-classical	RBDs	are	much	higher	

in	 number	 in	 sequence	 databases.	 Only	 a	 few	 RBP	 examples	 exist	 for	 different	 classes	 of	

non-classical	RBDs.	A	few	examples	of	non-classical	RBDs	(Table	1.2)	are	GTP-EFTU	(Miller	&	
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Weissbach,	1997),	LSM	(He	&	Parker,	2000;	Kufel	et	al.,	2003;	Yong	et	al.,	2004),	YTH	(Kang	

et	al.;	2014;	Harigaya	et	al.,	2006),	SAM	(Aviv	et	al.,	2003;	Kim	&	Bowie,	2003),	and	Helicase	

C	(Gorbalenya	et	al.,	1989;	Caruthers	et	al.,	2000).	

Table	1.2	Examples	of	classical	and	non-classical	RBDs	with	their	examples	compiled	from	the	
literatures.	

Classical	RBDs	 Examples	from	the	Human	proteome	

RRM	 TIA-1,	TIAR,	PTBP1,	ELAV,	hnRNPs,	snRNPs,	SR,	U2AF,	Sxl,	La,	PABP,	Hu/HuR,		

KH	 KSRP,	FMR1,	ANKHD1,	EXOSC,	FXR	

DEAD	 DDX3X,	HDAC1	

CSD	 CSDE1,	CSDC2,	CspA,	ATP-dependent	RNA	helicase	DeaD	

La	 LARP1,	Lupus	La	protein	

zf-CCCH	 ZC3H	(3,	8,	10,	13,	15),	UNKL,	Roquin-1	

PIWI	 AGO	(2,4),	PRMT5	

PUF	 PUF	(3,	60),	Pumilio	homolog	3		

S1	 SRBD1,	SPT6H,	RRP5	homolog		

dsrm	 ADAR,	PRKRA,	DHX9,	Staufen	homolog	1	

PUA	 dyskerin,	MCT1,	eIF2D,	and	NIP7	

	

Using	RBDs	for	the	prediction	of	RBPs	

RBPs	 are	 often	 classified	 based	 on	 their	 RBDs,	 as	 the	 specificity	 of	 their	 targeting	 is	

achieved	by	 these	motifs	 and	 can	 therefore	 give	 insights	 into	 their	 functional	 implications	

and	regulatory	mechanisms.	Several	studies	have	identified	RNA-binding	motifs	in	RBPs	and	

further	high-resolution	 information	on	the	RNA-binding	residues	has	been	reported,	which	

are	derived	from	the	RNA-protein	structures.	Owing	to	the	amount	of	sequence	information	

available	 for	 RBDs,	 this	 serves	 as	 an	 important	 resource	 for	 the	 development	 of	

computational	techniques	to	identify	new	RBPs,	to	predict	their	RNA	targets,	to	model	RNA-

protein	complexes,	and	 to	 identify	 residues	 important	 for	RNA	binding.	Such	knowledge	 is	

particularly	 helpful	 for	 carrying	 out	 prediction	 and	 exploratory	 studies	 in	 bacteria,	 where	

technical	 issues	currently	 render	global	 screening	approaches	such	as	 interactome	capture	

challenging.	
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1.3	Regulatory	roles	of	RNA-protein	interactions	

RBPs	 affect	 regulation	 of	 gene	 expression	 in	 response	 to	 environmental	 changes	 by	

coordinating	 each	 step	 of	 the	 lifecycle	 of	 an	 RNA	 molecule	 from	 its	 transcription	 to	 its	

degradation.	Upon	transcription,	 specific	RBPs	 interact	with	RNAs	 to	 form	RNP	complexes.	

These	RNPs	are	further	processed,	localized,	translated,	stabilized,	or	degraded,	often	based	

on	 cellular	 conditions	 (Pullman	 et	 al.,	 2014;	 Janga	 et	 al.,	 2011;	 Spitale	 et	 al.,	 2015).	

Malfunction	 in	 RBPs	 or	 their	 RNA	 targets	 can	 lead	 to	 dysregulations	 that	 underlie	 various	

human	 diseases,	 including	 cancers	 (Ling	 et	 al.,	 2013;	Mohan	 et	 al.,	 2014;	 Lu	 et	 al.,	 2014;	

Brinegar	&	Cooper,	2016).	Several	studies	have	been	conducted	in	both	human	and	bacteria	

to	 identify	 the	 regulatory	 roles	 of	 RBPs	 under	 routine	 and	 altered	 conditions	 in	 order	 to	

identify	specific	RNAs	and	biological	pathways	they	regulate	(Michaux	et	al.,	2012;	Wilf	et	al.,	

2013;	Ariyachet	et	al.,	2013;	Liu	et	al.,	2014;	Wang	et	al.,	2015;	Figueroa-Angulo	et	al.,	2015;	

Vembar	et	al.,	2015;	Burke	&	Portnoy,	2016).	

	

	

Figure	1.1	Illustration	of	several	important	regulatory	roles	of	RNA-binding	proteins.	(Adapted	from	
Sutherland	et	al.,	2015)	

The	major	part	of	this	thesis	will	focus	on	exploring	and	cataloguing	bacterial	RBPs.	Since	

the	 development	 and	 design	 of	 the	 studies	 are	 greatly	 based	 on	 the	 landmark	 studies	
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conducted	in	human,	it	is	important	to	give	an	overview	of	few	of	the	important	regulatory	

roles	of	RNAs,	which	is	illustrated	in	Figure	1.1	and	are	briefly	discussed	below.		

	
Polyadenylation	

All	 eukaryotic	 mRNAs,	 except	 those	 encoding	 replication-dependent	 histones,	 are	

processed	and	a	3’	modification	of	about	200	adenylate	residues	referred	to	as	poly(A)	tails	

are	added	post-transcriptionally	(reviewed	in	Jacobson	&	Peltz,	1996;	Wickens	et	al.,	1997;	

Garneau	et	 al.,	 2007).	 The	 process	 of	 polyadenylation	 involves	 the	 cleavage	 of	 transcripts	

between	a	specific	upstream	(AAUAAA)	and	downstream	(U/GU	rich)	sequences,	followed	by	

the	 addition	 of	 a	 poly(A)	 tail	 of	 varying	 lengths	 by	 poly(A)	 polymerase.	 Polyadenylation	

therefore	 leads	 to	 3’	 isoforms	 of	 mRNAs,	 and	 has	 specific	 regulatory	 effects	 on	 various	

processes	that	affect	the	metabolism	and	expression	of	mRNAs,	such	as	nuclear	transport,	

translation	 efficiency,	 and	 stability.	 The	 polyadenylation	 of	 non-coding	 isoforms	 (those	

lacking	the	entire	ORF)	is	decayed	38%	faster	compared	to	the	coding	isoforms	(Gupta	et	al.,	

2014).	For	example,	CPSF	proteins	binds	to	AAUAAA	together	with	nuclear	poly(A)	binding	

protein	(PABPN1)	to	initiate	poly(A)	polymerase	activity	(Mangus	et	al.,	2003;	Kuhn	&	Wahle	

2004).	PABPN1	requires	an	RBD	and	C-terminal	arginine-rich	domain	to	bind	to	the	poly(A)	

tail	 (Liebold	 et	 al.,	 2015).	 Any	 alterations	 to	 its	 coding	 region,	 such	 as	 GCG	 expansion	 in	

human	 leads	 to	 an	 autosomal	 dominant	 late	 onset	 neuromuscular	 disease	called	

oculopharyngeal	muscular	dystrophy	(Garibaldi	et	al.,	2015).	

RNA	stability,	translation,	and	degradation	

RBPs	are	core	regulators	of	messenger	RNA	stability	and	translation	in	mammalian	cells.	

Translational	 regulation	 provides	 a	 rapid	 mechanism	 to	 control	 gene	 expression	 by	

immediately	 modulating	 the	 production	 of	 proteins	 (reviewed	 by	 Di	 Liegro	 et	 al.,	 2014).	

Usually	 RBPs	 in	 eukaryotes	 control	 expression	 by	 interacting	 with	 common	 features	 of	

mRNAs	such	as	the	3’	poly(A)	tail,	5’cap	structure,	or	5’	and	3’	untranslated	regions	(UTRs)	

(Pullmann	et	al.,	2007;	Abdelmohsen,	2012).		

A	 group	 of	 classical	 RBPs,	Hu	 proteins	 binds	 to	AU-rich	 sequences	 in	 3’	UTRs	 of	mRNA	

targets	 and	 influence	 diverse	 post-transcriptional	 aspects	 from	 splicing,	 to	 translation,	 to	

degradation	 of	 their	 RNA	metabolism	 (reviewed	 by	Hinman	&	 Lou,	 2008).	 Besides	 the	Hu	

family	proteins,	additional	factors	that	promote	target	degradation	are	AU-binding	factor-1	

(AUF1)	 (Yoon	 et	 al.,	 2015),	 hnRNP	 (Dreyfuss	 et	 al.	 1993),	 K	 homology	 splicing	 regulatory	
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protein	(KSRP)	(Valverde	et	al.,	2008),	and	tristetraprolin	(TTP)	(Brooksa	&	Blackshear,	2013).	

All	of	these	proteins	are	termed	“turnover	and	translation	regulatory”	(TTR)	RBPs	and	they	

are	 involved	 in	 shuttling	 proteins	 between	 the	nucleus	 and	 cytoplasm.	Other	 examples	 of	

such	RBPs	are	T-cell	 intracellular	antigen	1	(TIA-1)	and	TIA-1-related	(TIAR)	proteins	(Zheng	

et	 al.,	 2005),	 polypyrimidine	 tract-binding	 proteins	 (PTB)	 (Kamath	 et	 al.,	 2001),	 nucleolin	

(Borer	et	al.,	 1989),	 and	heterogeneous	nuclear	 ribonucleoproteins	 (hnRNPs)	 (Samarina	et	

al.,	1968).	The	targets	of	these	proteins	are	involved	in	diverse	cellular	processes	such	as	cell	

growth,	 cell	 cycle,	 stress	 response,	 proliferation,	 senescence,	 and	 carcinogenesis	

(Abdelmohsen,	2012).	

This	family	of	proteins	highlight	a	very	important	feature	of	RBPs,	which	is	their	capability	

to	 bind	 to	 a	 diverse	 range	 of	 targets	 and	 confer	 target-specific	 regulation.	 Furthermore,	

multiple	RBPs	of	different	regulatory	roles	can	act	on	a	same	target	to	infer	cooperative	or	

competitive	effects.	

Alternative	splicing	

Alternative	splicing	is	a	process	of	differential	inclusion	of	exons	from	precursor	mRNAs	to	

generate	mature	isoforms	and	the	production	of	different,	but	related,	proteins	with	specific	

functions	 (Glisovic	 et	 al.,	 2008).	 This	 mechanism	 is	 extensively	 regulated	 by	 RBPs,	 and	

involves	the	exclusion	of	introns	by	recognition	and	joining	of	a	5’	and	3’	splice	site	pair	using	

a	 large	 complex	 of	 small	 nuclear	 RNAs	 and	 proteins	 called	 the	 spliceosome	 (Ideler	&	 Jan,	

2012).	 These	 complexes	 show	 high	 specificity	 for	 their	 target	 mRNAs,	 however	 some	

precursor	 mRNAs	 are	 recognized	 by	 different	 complexes	 in	 different	 cell	 types.	 This	

behaviour	 of	 spliceosomes	 gives	 rise	 to	 an	 altered	 binding	 specificity	 and	 splicing	 effect,	

depending	 on	 the	 specific	 biological	 condition	 or	 experimental	 set-up.	 The	 complex	

regulatory	 roles	 of	 alternative	 splicing	 are	 widespread	 in	 the	 eukaryotic	 cells	 and	 often	

linked	to	developmental	and	disease	processes.		

Bioinformatic	 studies	 have	 revealed	 an	 enrichment	 of	 regulatory	 RNA	 motifs	 near	

alternative	exons	with	different	splice	site	strengths.	For	example,	serine/arginine-rich	(SR)	

proteins	 regulate	 alternative	 splicing	 through	 the	 recruitment	 of	 the	 splicesome-forming	

small	 nuclear	 ribonucleoproteins	 (snRNP)	 U1	 U2AF	 (Lee	 et	 al.,	 2015).	 The	 NOVA	 proteins	

recognize	YCAY	(where	Y	represents	a	pyrimidine	base)	motifs	in	hnRNP	mRNAs	and	lead	to	

alternative	 splicing	 (Dredge	 et	 al.,	 2015).	 Similarly,	 Fox	 protein	 shows	 specificity	 for	 the	

(U)GCAUC	binding	motifs	near	exons,	 leading	 to	brain-	or	muscle-specific	 splicing	patterns	
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(Kuroyanagi,	 2009).	 Enrichment	 of	 this	motif	 near	 exons	with	 breast	 and	 ovarian	 tumour-

specific	patterns	has	been	 linked	 to	 the	 role	of	 Fox	proteins	 in	 these	 cancers	 (Kuroyanagi,	

2009).		

The	genome-wide	splicing	maps	of	several	RBPs	are	comparable	in	terms	of	their	binding	

positions.	For	example,	proteins	like	Nova,	Fox,	hnRNP	L	and	PTB	can	silence	exon	inclusion	

by	 binding	 to	 the	 splice	 sites	 or	 exons,	 however	 binding	 to	 regions	 downstream	of	 exons	

enhances	exon	inclusion	(Witten	et	al.,	2011).		

RNA	editing	and	modification	

Base	modifications	such	as	methylations	in	mRNAs	and	noncoding	RNAs,	referred	as	the	

“epitranscriptome”,	 are	 involved	 in	 post-transcriptional	 events	 such	 as	 insertion,	 deletion,	

and	 substitution	 of	 nucleotides.	 About	 60	 RNA	modifications	 such	 as	 base	 isomerization,	

base	 alteration,	 and	 ribose	 2ʹ-hydroxyl	 group	 methylation	 are	 known	 in	 the	 mRNAs	 and	

tRNAs	(Cantera	et	al.,	2010).		

The	widely-studied	RNA	modification	is	the	conversion	of	the	nucleobase	adenosine	(A)	to	

inosine	 (I)	 in	RNA	molecules	 (Glisovic	et	 al.,	 2008,	 Sakurai	et	 al.,	 2010).	 Such	modification	

activity	 has	 been	 shown	 for	ADAR	 (adenosine	 deaminases	 acting	 on	RNA)	 proteins,	which	

catalyse	 the	 deaminiation	 of	 adenosine	 to	 inosine	 in	 RNAs	 (Sakurai	 et	 al.,	 2010).	 Other	

examples	 of	 RNA-editing	 are	 conversion	 of	 adenosine	 to	 6-methyladenosine	 (m6A)	

(Dominissini	 et	 al.,	 2012;	 Meyer	 et	 al.,	 2012)	 and	 modification	 of	 cytosine	 to5-

methylcytosine	(m5C)	(Squires	et	al.,	2012).	Though	these	modifications	are	widely	studies	in	

eukaryotes,	 they	 are	 reported	 in	 bacterial	 small	 non-coding	 RNAs	 (Cantera	 et	 al.,	 2010;	

reviewed	by	Marbaniang	&	Vogel,	2016).	

Such	modifications	expand	 the	diversity	of	 gene	products	by	producing	RNA	 sequences	

that	are	different	from	those	originally	encoded	by	the	genome.	The	majority	of	examples	of	

RNA	 editing	 have	 been	 identified	 in	 the	 non-coding	 regions	 of	 RNAs.	 Several	 examples	 of	

editing	have	also	been	described	 in	protein-coding	regions	 that	give	rise	 to	changes	 in	 the	

amino	 acid	 sequences	 of	 their	 encoded	 proteins.	 For	 example,	 editing	 of	 an	 A	 to	 I	 in	 the	

glutamate	 receptor	 GluR-B	 mRNA	 results	 in	 incorporation	 of	 a	 glutamine	 rather	 than	

arginine,	 which	 leads	 to	 altered	 protein	 function	 (Glisovic	 et	 al.,	 2010).	 Mutations	 in	 the	

ADAR	gene	of	Drosophila	lead	to	neuronal	dysfunction,	whereas	in	in	mice	it	has	been	linked	

to	embryonic	lethality	(Keegan	et	al.,	2005).	
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mRNA	export	and	localization	

In	 eukaryotes,	mature	 RNAs	 are	 exported	 from	 the	 nucleus	 to	 the	 cytoplasm	 after	 the	

events	of	transcription,	splicing,	and	3’-polyadenylation.	This	export	involves	the	assembly	of	

a	cargo-carrier	complex	of	RNAs	and	RBPs	in	the	nucleus,	which	is	then	translocated	through	

the	 nuclear	 pore	 complex	 and	 released	 into	 cytoplasm	 (reviewed	 by	 Steward,	 2007).	 The	

RNA	annealing	protein	Yra1	and	the	mRNA	export	factor	Mex67	are	examples	of	RBPs	that	

associate	 with	 mRNA	 to	 facilitate	 its	 export	 to	 the	 cytoplasm	 (Cole,	 2000;	 Oeffinger	 &	

Zenklusen,	2012).	Other	examples	of	RNA-binding	export	 factors	 include	 recyclable	hnRNP	

shuttling	 proteins	 such	 as	 nuclear	 polyadenylated	 RBPs	 and	 Nab4	 (HRP1),	 as	 well	 as	 the	

nucleolar	 protein	Npl3,	which	 are	 involved	 in	 transcription,	 intermediate	metabolism,	 and	

ribosomal	biogenesis,	 respectively	 (Guisbert	et	al.,	2005).	 Further	 localization	of	mRNAs	 in	

the	 cytoplasm	 following	 nuclear	 export	 is	 important	 for	 gene	 expression	 as	 it	 allows	 the	

spatial	regulation	of	protein	production	to	a	specific	target	site	of	the	cell.		

The	 different	 splice	 variants	 of	 mRNAs	 due	 to	 rapid	 cleavages	 in	 different	 cells	 can	

determine	their	localization	in	the	cells	facilitated	by	RBPs.	One	example	is	the	multiple	KH	

domain-containing	 zipcode-binding	 protein	 ZBP1,	 which	 binds	 to	 β-actin	 mRNA	 at	 a	 54-

nucleotide	 localization	 element	 (“zipcode”)	 located	 in	 its	 3’	 UTR	 (Ross	 et	 al.,	 1997).	 ZBP1	

further	 localizes	mRNAs	within	the	cytoplasm	in	several	asymmetric	cell	 types	so	that	they	

can	 then	 be	 translated	 at	 the	 site	 where	 they	 are	 required.	 Fragile	 X	mental	 retardation	

protein	 (FMRP)	 is	 another	RBP	 involved	 in	 several	 processes	of	RNA	metabolism	 including	

the	stimulus-induced	localization	of	several	dendritic	mRNAs,	such	as	that	encoding	β-actin	

in	neuronal	dendrites	(Dictenberg	et	al.,	2008).	

	

1.4	Biological	features	of	RBPs	in	eukaryotes	and	bacteria	

Given	 the	 important	 regulatory	 roles	 of	 RBPs,	 several	 techniques	have	been	developed	

for	the	high-throughput	analysis	of	their	targets	and	their	functions,	which	often	utilize	co-

immunoprecipitation/co-purification,	protein	mass	spectrometry,	and	RNA	deep	sequencing.	

These	 experimental	 approaches	 have	 contributed	 to	 our	 understanding	 of	 RBPs	 and	 their	

roles	 in	 different	 organisms.	 Notably,	 due	 to	 developments	 in	 high-throughput	 mass-

spectrometry	 and	 sequencing	 approaches,	 it	 is,	 in	 principle,	 possible	 to	 perform	 global	

analyses	to	comprehensively	catalogue	all	RBPs	in	an	organism.		
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1.4.1	Overview	of	eukaryotic	RBPs	
	

Several	 studies	 have	 been	 conducted	 to	 identify	 and	 characterize	 RBPs	 as	 post-

transcriptional	 regulators	 in	 human,	 mouse,	 and	 yeast	 (Castello	 et	 al.,	 2012;	 Baltz	 et	 al.,	

2012;	Mitchell	et	al.,	2012;	Kwon	et	al.,	2013;	Gerstberger	et	al.,	2014;	Conrad	et	al.,	2015).	

Landmark	 studies	 for	 genome-wide	 screening	 of	 RBPs	 in	 human	 used	 RNA	 interactome	

capture	techniques,	which	 involve	UV-induced	covalent	crosslinking	of	bound	proteins	and	

RNAs	for	the	purification	of	RNP	complexes.	Such	interactome	capture	primarily	depend	on	

the	poly(A)	tails	of	coding	transcripts,	which	is	important	for	the	control	of	their	expression,	

export,	stability,	and	translation	in	eukaryotic	and	several	archaeal	species	(Shi,	2012;	Derti	

et	 al.,	 2012;	 Régnier	 &	Marujo,	 2013).	 In	 this	 approach,	 proteins	 that	 covalently	 bind	 to	

polyadenylated	 RNAs	 following	 UV	 crosslinking	 are	 characterized	 as	 RBPs	 (Castello	 et	 al.	

2012;	 Baltz	 et	 al.,	 2012).	 These	 studies	 facilitated	 the	 in	 vivo	 identification	 of	 over	 1500	

human	RBPs	 including	hundreds	of	previously	unexplored	candidates.	The	various	 features	

of	 eukaryotic	 RBPs	 and	 their	 classification	 give	 us	 an	 insight	 into	 the	 fundamental	

requirement	of	RBPs	in	varieties	of	biological	processes	and	provides	a	consistent	resource	

to	guide	future	research	in	this	regard.	A	few	major	features	of	RBPs	listed	below.	

RNA-Binding	domains	and	motifs	

Due	to	an	increasing	amount	of	experimental	and	structural	data,	it	has	been	possible	to	

carry	out	multiple	sequence	alignments	and	computational	predictions	of	the	structures	of	

these	candidates	to	identify	their	functional	components.	These	components	include	highly	

conserved	protein	domains	and	short	motifs,	which	are	the	functional	and	structural	units	of	

proteins	of	diverse	functionalities.	Castello	et	al.	(2012)	classified	the	RBPs	based	on	the	two	

classes	of	domains	called	classical	RBDs	that	are	characterized	in	a	large	number	of	RBPs	and	

non-classical	 RBDs	 that	 are	 characterized	 in	 several	 RBPs	 as	well.	A	 few	 classical	 RBPs	 are	

listed	in	the	Table	1.1	and	the	non-classical	RBDs	are	listed	in	the	Table	1.3	along	with	their	

distribution	 across	 archaeal,	 bacterial	 and	 eukaryotic	 protein	 sequences	 including	 RBPs	 as	

computationally	mapped	by	the	InterPro	domain	database.	Ray	et	al.	(2013)	classified	RNA	

binding	motifs	of	RBPs	that	are	highly	conserved	across	different	species.	These	components	

are	essential	for	the	recognition	of	specific	RNA	targets	and	hence,	confer	binding	specificity	

to	RBPs.		

A	resource	of	1,542	manually-curated	human	RBPs	have	been	compiled	that	interact	with	

specific	 RNA	 targets	 (Castello	 et	 al.,	 2012;	 Baltz	 et	 al.,	 2012;	 Gerstberger	 et	 al.,	 2014).	 In	



	 15 

these	 studies,	 proteins	 have	 been	 catalogued	 along	 with	 their	 structural	 and	 functional	

features	according	to	their	RBDs	and	interacting	RNA	partners.	RBP	classification	was	carried	

out	 based	 on	 their	 RBDs,	 as	 well	 as	 their	 co-occurrences	 with	 other	 RBDs	 or	 different	

functional	 domains.	 For	 example,	 ssRBDs	 like	 RRMs,	 KH,	 ZF,	 and	 cold-shock	 domains	 that	

recognize	 small	 4-6	 nucleotide	 segments	 frequently	 co-occur	 in	 multiple	 repeats	 or	 in	

combinations,	 which	 increases	 the	 RNA	 binding	 affinity	 of	 RBPs	 and	 also	 provide	 an	

evolutionary	basis	for	protein	functions.	

Table	1.3	Examples	of	non-classical	RBDs	that	have	been	identified	in	experimental	studies	of	
specific	RBPs.	

RBDs	are	indicated,	along	with	the	number	of	archaeal	(A),	bacterial	(B)	and	eukaryotic	(E)	protein	
sequences	computationally	mapped	by	the	InterPro	domain	database.	
	

Non-classical	RBDs	
Total	proteins	(A:	Archaea,	B:	Bacteria,	E:	Eukaryotes)	

(Source:	InterProScan)	

Alba	 A:	447	

APOBEC_N	 B:	16,	E:	1042	

Brix	 A:	255,	B:	148,	E:	6345	

Btz	 E:	1160	

eRF1_3	 A:	1051,	B:	50,	E:	2881	

Fibrillarin	 A:	529,	B:	5,	E:	1578	

FtsJ	 A:	457,	B:	13992,	E:	5323	

Gar1	 B:	10,	E:	1638	

GTP_EFTU	 A:	2,	B:	12226,	E:	1076	

Helicase_C	 A:	5401,	B:	167636,	E:	104874	

LSM	 A:	2822,	B:	45059,	23194	

PseudoU_synth_1	 A:	366,	B:	13100,	E:	3533	

RNase_PH	 A:	18,	B:	7655,	E:	2	

SAM	 B:	342,	E:	24701	

SAP	 A:	96,	B:	2874,	E:	10958	

SpoU	 A:	383,	B:	5669,	E:	7	

THUMP	 A:	1507,	B:	12316,	E:	1566	

TRM	 A:	516,	B:	98,	E:	1767	

TROVE	 A:	7,	B:	760,	E:	571	

TrpBP	 B:	569	

YTH	 A:	4,	B:	40,	E:	3528	

zf-C2H2	 A:	1097,	B:	1571,	E:	197826	

zf-CCHC	 A:	2,	B:	95,	E:	43951	

	

Disordered	regions	in	RBPs	
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In	 interactome	 capture	 studies	 (Castello	 et	 al.,	 2012),	 several	 candidate	 RBPs	 were	

identified	 without	 any	 canonical	 RBD.	 These	 proteins	 presumably	 rely	 on	 low	 complexity	

disordered	regions	for	interaction	with	their	targets	and	have	roles	in	both	RNA	metabolism	

and	 regulation.	 RBPs	 with	 disordered	 sequences,	 referred	 to	 as	 intrinsically	 disordered	

proteins	(IDPs),	have	common	structural	characteristics	such	as	low	hydrophobicity,	high	net	

charge,	and	low	amounts	of	ordered	secondary	structure	(Calabretta	et	al.,	2015).	A	subclass	

of	 IDPs	possesses	 low	complexity	 regions	of	1-10	amino	acids,	which	serve	 to	 identify	and	

bind	their	targets.	This	relatively	disordered	secondary	structure	confers	flexible	structures	

to	 IDPs	 that	 are	 stabilised	 to	 adapt	 a	 rigid	 structure	 upon	 binding	 with	 their	 ligands.	 For	

example,	 RGG/RG	 and	 the	 related	 RGG/YGG	 motifs	 are	 widely	 present	 in	 IDPs	 such	 as	

nucleolin	 and	 the	 FMR	 protein.	 FMR	 binds	 with	 G4-quadruplex	 secondary	 structure	 to	

specific	target	RNAs,	which	induces	a	stable	structure	of	an	RGG/RG	motif	in	the	protein	that	

facilitates	strong	interactions	between	the	arginine	and	the	G4	sequences.	This	suggests	that	

RGG/RG	 disordered	 regions	 are	 essential	 for	 the	 RNA	 recognition	 by	 providing	 a	 more	

accessible	 conformation	 to	 allow	 interaction	with	 their	 target	 RNAs.	 The	 IDRs	 in	 RBPs	 are	

also	linked	with	formation	of	RNP	ultrastructures,	termed	as	‘assemblages’	(Calabretta	et	al.,	

2015).	 These	 dynamic	 RNP	 granules	 regulate	 RNA-processing,	 bioavailability,	 degradation,	

and	 transport	 and	 carry	 out	 RNA	 metabolism.	 For	 example,	 stress	 granule	 and	 p-body	

assembly	depends	on	the	presence	of	untranslated	mRNAs	(Ayache	et	al.,	2015).		

Although	there	are	many	proteins	that	rely	on	disordered	regions	for	their	RNA	binding	

ability	(Castello	et	al.,	2016),	based	on	the	available	data,	RBDs	serve	as	a	primary	resource	

for	carrying	out	computational	prediction	of	RBPs.		

Tissue	specific	expression	of	RBPs	

98%	of	paralogous	RBPs	did	not	have	any	tissue	specificity	for	their	expression	as	they	are	

ubiquitously	transcribed	in	tissues	such	as	germline,	brain,	muscle,	liver,	and	bone	marrow.	

For	example,	many	other	RBPs	such	as	ribosomal	proteins,	components	of	the	spliceosome,	

and	 those	 involved	 in	 RNA	 transport	 and	 turnover,	 are	 expressed	 ubiquitously.	

Approximately	 5%	 of	 RBP	 families	 and	 their	 isoforms	 have	 one	 or	 more	 members	 that	

showed	tissue	specificities.	For	example,	the	ELAV-like	family	is	neuronal	(Colombrita	et	al.,	

2013),	whereas	the	PIWI	and	DDX4	helicase	proteins	such	as	DDX3X	and	DDX3Y	are	highly	

germline-specific	(Girard	et	al.,	2006).		
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The	 RBP	 classes	 that	 are	 ubiquitously	 expressed,	 show	 differential	 levels	 of	 expression	

across	 tissues,	 hence,	 their	 loss	 affects	 only	 the	 tissues	 where	 they	 have	 the	 highest	

expression.	 For	 example,	 some	 members	 of	 the	 fragile	 X	 mental	 retardation	 syndrome	

related	 protein	 family	 (FMR1,	 FXR1	 and	 FXR2)	 (Agulhon	 et	 al.,	 1999)	 do	 not	 have	 target	

specificity;	however,	FMR1	shows	the	highest	expression	levels	in	brain,	thyroid,	and	gonads.	

Loss	of	these	proteins	leads	to	mental	retardation,	pre-mature	ovarian	insufficiency	in	fragile	

X	 syndromes	 like	 ataxia,	 as	 well	 as	 skeletal	 defects.	 Hence,	 these	 RBPs	 can	 be	 linked	 to	

important	human	genetic	diseases	(Wang	et	al.,	2016).		

Target	specificities	of	RBPs	

The	classification	of	RBPs	has	been	carried	out	based	on	 their	predominant	 target	RNA	

classes	 like	 mRNA-binding,	 non-coding	 (nc)	 RNA-binding,	 tRNA-binding,	 pre-rRNA-binding,	

and	small	nuclear	(sn)	RNA-binding,	and	small	nucleolar	(sno)	RNA-binding.	Several	proteins	

have	 been	 reported	 for	 their	 involvements	 in	mRNA	binding	 (692	 proteins)	 and	 ribosome	

binding	 (169	 proteins).	Whereas	 few	 other	 RBPs	 are	 involved	 in	 the	 biogenesis	 of	 rRNAs	

(122),	snoRNAs	(41),	and	of	charged	tRNAs	(130).	A	total	of	122	RBPs	are	characterized	for	

their	 roles	 in	 RNA	 degradation,	 transcriptional	 silencing,	 or	 activation	 or	 repression	 of	

indirect	 targets	 through	 interaction	with	other	ncRNAs	(microRNAs,	PIWI-interacting	RNAs,	

and	long	ncRNAs).	Such	binding	specificities	of	RBPs	toward	their	RNA	targets	could	facilitate	

the	identification	of	members	of	specific	pathways	associated	with	post-transcriptional	gene	

regulation,	 independent	of	 their	 functions.	The	relative	sizes	of	several	classes	of	RBPs	are	

constant	 across	 phylogenies,	 for	 instance,	 38%,	 12%,	 and	 14%	 mRNA-,	 tRNA-	 and	 rRNA-

binding	proteins,	respectively	but	they	show	varying	levels	of	evolutionary	conservation.	The	

primary	sequences	of	RBPs	that	bind	to	rRNA	are	most	stable	across	species,	with	an	average	

similarity	 of	 51%,	whereas	 other	 classes	 show	 30%	 or	 less	 similarity	 between	 human	 and	

yeast,	showing	the	divergence	in	their	biogenesis.	Across	different	tissue	samples,	transcript	

abundance	 of	 RBP	 encoding	 genes	 was	 recorded	 to	 be	 ~6	 times	 higher	 than	 that	 of	

transcription	 factor	 encoding	 genes,	 even	 though	 they	 both	 are	 important	 regulatory	

elements	and	account	for	almost	an	equal	number	of	genes	(Gerstberger	et	al.,	2014).	

RBPs	 with	 binding	 affinity	 to	 similar	 RNA	 classes	 affect	 the	 same	 tissues	 and	 lead	 to	

similar	pathologies.	For	example,	defects	in	ribosomal	proteins	and	rRNA	biogenesis	factors	

cause	 bone	marrow	and	 skin	 related	diseases,	while	 defects	 in	 genes	 that	 encode	mRNA-
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binding	 RBPs	 are	 liked	 to	 neurodegenerative	 and	 neuromuscular	 diseases	 like	 amyotropic	

lateral	sclerosis	(ALS)	(Vanderweyde	et	al.,	2013).		

Expression	dynamics	of	RBPs	

In	 addition	 to	 classifications	 based	 on	 corresponding	 domains	 and	 target	 specificities,	

expression	 dynamics	 such	 as	 co-expressions	 can	 also	 be	 used	 to	 define	 roles	 for	 RBPs	 in	

important	 biological	 events	 such	 as	 ovarian	 and	 brain	 developments	 (Gerstberger	 et	 al.,	

2014).	RBPs	function	as	direct	binders	and/or	transient	interacting	partners	like	chaperones	

in	RNP	complexes	to	perform	maturation,	processing,	regulation	and	transportation	of	RNAs.	

The	relative	abundance	of	RBPs	and	other	proteins	that	act	co-operatively	or	competitively,	

affect	 the	 overall	 regulatory	 response	 under	 different	 conditions.	 Examples	 of	 RBPs	 with	

cooperative	behaviours	are	splicing	factors,	which	can	lead	to	different	splicing	patterns	of	

the	same	precursor	mRNA,	and	U1	snRNPs,	which	control	alternative	polyadenylation	sites.	

Examples	of	RBPs	with	competitive	behaviours	are	ELAVL1,	which	is	involved	in	mRNA	target	

regulation	 by	miRNAs,	 and	 Pumilio	 homologs,	 which	 act	 synergistically	 with	miR-221	 and	

miR-222	to	destabilise	cyclin	dependent	kinase	inhibitor	1B	(Gerstberger	et	al.,	2014).	

1.4.2	Overview	of	bacterial	RBPs	
	

Most	bacterial	mRNAs	lack	poly(A)	tails;	therefore,	experimental	techniques	that	rely	on	

mRNA	 polyadenylation	 cannot	 be	 directly	 applied	 to	 bacterial	 systems.	 Hence,	 no	 global	

studies	have	so	far	been	conducted	on	bacterial	systems	(Barquist	&	Vogel,	2015).	Most	of	

the	 knowledge	 of	 bacterial	 RBPs	 comes	 from	 independent	 characterization	 of	 single	

candidates	 in	model	bacteria	 such	as	E.	coli.	Only	a	 few	RBPs	 (besides	 ribosomal	proteins)	

have	 been	 characterized	 in	 detail,	 such	 as	 Hfq,	 CsrA,	 ProQ,	 CspA,	 CspB,	 and	 SmpB	 (Table	

1.4).	Some	of	these	RBPs	have	also	been	well	characterized	in	other	model	organisms,	such	

as	the	model	pathogen	Salmonella	Typhimurium,	which	like	E.	coli,	 is	also	a	Gram-negative	

enterobacterium.		

Bacterial	 pathogens	 use	 several	 strategies	 to	 survive	 in	 challenging	 environmental	

conditions.	 Traditionally,	 the	 expression	 of	 virulence	 factors	 has	 been	 viewed	 as	 being	

controlled	 by	 transcription	 factors.	 However,	 in	 recent	 years	 it	 has	 become	 clear	 that	

bacterial	pathogens	also	express	many	non-coding	RNAs	and	RBPs,	contributing	to	the	post-

transcriptional	 regulation	by	the	modulation	of	RNA	decay,	 translation	 initiation	efficiency,	

or	transcript	elongation.	
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Two	well	 characterized	 RBPs,	 Hfq	 and	 CsrA	 are	widely	 conserved	 in	 different	 bacterial	

species,	 including	many	pathogens,	which	 together	with	 their	 targets	 comprise	 large	post-

transcriptional	regulons	(Romeo,	1998;	Chao	&	Vogel,	2010;	Storz	et	al.,	2011;	Westermann	

et	al.,	2016;	Holmqvist	et	al.,	2016).	Hfq	protein	acts	as	a	chaperone	that	stabilizes	bound	

sRNAs	 and	 helps	 them	 regulate	 their	 mRNA	 targets	 in	 enteric	 model	 bacteria	 such	

as	Escherichia	 coli	(Tree	et	 al.,	 2014)	 and	Salmonella	 enterica	(Chao	et	 al.,	 2010).	 Like	Hfq,	

CsrA/RsmA	family	act	as	a	global	 regulator	by	binding	with	 their	 targets	via	GGA	motifs	 in	

E.coli,	Salmonella	(Romeo	et	al.	1993;	Holmqvist	et	al.,	2016).	

Table	1.4	Different	RBPs	reported	in	enterobacterial	species.	

RBPs	 RBDs	 References	 Functions	as	RBPs	

AmiR	 ANTAR	 Galperin,	2006	 Transcription	antitermination	

Bgl/Sac	family	 CAT	(Co-
AntiTerminator	RNA-
binding	domain)	

Declerck	et	al.,	1999	 Protein-mediated	
antitermination,	control	the	
expression	of	carbohydrates	
untilizing	genes	
	

Csp	(A-B)	 Cold	shock	domains	 Phadtare	et	al.,	1999	 transcription	antiterminators,	
prevent	RNA	degradation	

CsrA	 CsrA	 Romeo	et	al.,	1993	 Global	regulator,	compete	with	
the	ribosome	for	binding	to	the	
mRNAs	and	regulate	their	
expression	post-transcriptionally	
	

Hfq	 LSM	 Chao	et	al.,	2010	 Global	regulator,	post-
transcriptional	expression	
regulation	of	interacting	sRNAs	
and	mRNAs	
	

ProQ	 ProQ,	ProQ/FinO	
domain	

Chault	et	al.,	2011;	
Smirnov	et	al.,	2016	

RNA	chaperone,	regulation	of	
ProP	activity	
	

RNaseE	 DSRM	 Mian	et	al.,	1997	 ssRNA-specific	
endoribonucleases,	RNA	
stabilization	and	decay	
	

YhbY	 RapZ-like	family	 Ostheimer	et	al.,	2002	 Found	in	bacteria	and	archaea,	
involve	in	ribosome	assembly	
	

SmpB	 Small	protein	B	 Wower	et	al.,	2002;	
Giudice	et	al.,	2014	

Degrades	proteins	synthesized	
from	damaged	RNAs	in	hybrid	
with	transfer-messenger	RNA	
	

	

In	contrast	to	the	limited	number	of	RBPs,	several	hundreds	of	non-coding	RNAs	(ncRNAs)	

have	 been	 discovered	 in	 bacteria	 that	 are	 linked	 to	 various	 regulatory	 processes.	 These	

ncRNAs	 interact	with	either	mRNAs	or	proteins	and	 lead	to	the	expression	of	transcription	

factors	 or	 specific	 regulons	 such	 as	 riboswitches	 that	 are	 considered	 global	 regulators	 of	
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virulence	(Walters	&	Storz,	2009;	Storz	et	al.,	2011).	Functional	studies	of	a	small	number	of	

these	 RNA	 targets	 have	 revealed	 that,	 in	 association	with	 their	 corresponding	 RBPs,	 they	

regulate	 several	 diverse	 physiological	 functions	 including	 virulence,	 translation,	 and	 stress	

responses.	Despite	 the	 identification	of	 hundreds	 of	 non-coding	RNA	 targets,	 only	 a	 small	

number	 of	 them	 have	 been	 validated	 to	 have	 important	 roles	 in	 RNA-mediated	 gene	

regulations	(Table	1.4).		

These	 bacterial	 RBPs	 have	 been	 thoroughly	 studies	 in	 only	 a	 few	 bacteria	 and	 are	 not	

present	in	all	bacterial	species.	For	example,	only	approximately	50%	of	sequenced	bacterial	

genomes	encode	an	Hfq	homologue	(Chao	&	Vogel,	2012).	Furthermore,	several	pathogens	

with	 well-established	 repertoire	 of	 small	 RNA	 (sRNA)	 transcripts	 that	 likely	 participate	 in	

post-transcriptional	 gene	 regulation	 do	 not	 always	 depend	 on	 these	 regulators	 for	 their	

functionalities.	 Therefore,	 the	 identification	 of	 novel	 RNA-binding	 proteins	 in	 pathogenic	

bacteria	is	an	important	next	step,	which	will	facilitate	the	understanding	of	the	regulatory	

networks	 that	 regulate	 their	 lifestyle.	 In	 order	 to	 understand	 the	mechanisms	 involved	 in	

such	RNA-regulated	events	in	bacteria,	it	is	crucial	to	identify	and	characterize	the	proteins	

that	interact	with	these	regulatory	RNAs.	

	

1.5	Bioinformatic	approaches	for	RBP	prediction	

Due	 to	 the	 central	 roles	 of	 RBPs	 in	 diverse	 biological	 processes,	 it	 is	 crucial	 to	 identify	

them	and	understand	their	regulatory	mechanisms.	Several	RBPs	have	been	experimentally	

characterized	 and	 studied	 for	 their	 biological	 properties	 in	 numerous	 organisms.	

Additionally,	several	structures	of	protein-RNA	complexes	have	been	solved	experimentally,	

providing	biophysical	information	on	the	nature	of	the	interaction	between	nucleic	acids	and	

domains,	as	well	as	specific	amino	acid	residues,	of	RBPs.		

As	 discussed	 earlier,	 experimental	 techniques	 for	 the	 high-throughput	 identification	 of	

RBPs	 are	 not	 only	 labour-intensive	 and	 costly,	 but	 also	 not	 convenient	 for	 all	 biological	

systems	such	as	bacteria.	Therefore,	 computational	methods	are	being	established	 for	 the	

identification	 of	 candidate	 RBPs	 in	 the	 genomes	 of	 diverse	 organisms.	 Specifically,	

information	obtained	from	global	screening	studies	of	several	human	RBPs	has	contributed	

to	 the	development	and	 refinement	of	 computational	 tools	 for	 identification	of	 additional	

eukaryotic	 RBPs	 and	 their	 corresponding	RNA-binding	domains.	A	 considerable	number	of	
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protein-RNA	 complex	 crystal	 structures	 also	 constitute	 an	 important	 resource	 for	 the	

development	of	bio-computational	tools.	

1.5.1	Prediction	of	RNA-binding	residues	in	proteins	
	

More	than	fifteen	computational	methods	have	been	developed	to	characterize	RBPs	by	

predicting	 RNA-binding	 residues	 derived	 from	 the	 known	 protein-RNA	 structures.	Most	 of	

these	methods	rely	upon	a	curated	set	of	structures	of	RNA-protein	complexes	to	generate	

classifiers	or	 features	 for	 the	development	of	machine	 learning-based	models	 like	Support	

Vector	Machine	(SVM:	see	Materials	and	Methods	section).	Other	non-SVM	computational	

techniques	are	also	built	upon	structural	and	physico-chemical	models	derived	from	subsets	

of	RBP	sequences.		

In	a	comprehensive	assessment	analysis	called	Nucleic	Acid	Binding	Prediction	Benchmark	

(NBench),	Miao	and	Westhof	(2015	&	2016)	demonstrated	the	strengths	and	weaknesses	of	

such	 computational	 methods	 on	 data	 sets	 of	 different	 compositions	 to	 avoid	 the	 bias	

introduced	by	curated	data	sets	used	for	their	development.	All	of	these	SVM	and	non-SVM	

tools	 for	 the	prediction	of	RNA-binding	residues	are	 listed	with	their	 important	 features	 in	

the	Table	1.5.		

Table	1.5	The	important	features	of	the	tools	for	the	identification	of	RNA-binding	residues.	
(Reference:	Miao	&	Westhof	et	al.,	2015)	

Name	of	the	

software	
Sequence/structure	features	

Main	predictive	

feature	
Reference	

DR_bind1	 Structure	 ASA,	EC,	Q	 Chen	et	al.,	2007	

KYG	 Structure	 PSSM,	RP	 Kim	et	al.,	2006	

RBRDetector	 Structure	 PSSM	 Yang	et	al.,	2014	

BindN	 Sequence	 HP,	Q	 Wang	et	al.,	2006	

BindN+	 Sequence	 PSSM,	HP,	Q	 Wang	et	al.,	2010	

PPRInt	 Sequence	 PSSM,	RP	 Kumar	et	al.,	2008	

PRBR	 Sequence	 PSSM,	RP	 Ma	et	al.,	2011	

Predict_RBP	 Sequence	 PSSM,	RP,	ASA	 Wang	et	al.,	2011	

RBRIdent	 Sequence	 PSSM,	SS,	Q	 Xiong	et	al.,	2015	

RNABindR	 Sequence	 PSSM	 Terribilini	et	al.,	2011	

RNABindRPlus	 Sequence	 PSSM	 Walia	et	al.,	2014	

aaRNA	 Sequence	and	Structure	 PSSM,	ASA,	SS,	EC	 Li	et	al.,	2014	

RNAProSite	 Sequence	and	Structure	 Other	parameters	 Sun	et	al.,	2016	

PRNA	 Sequence	and	Structure	 PSSM,	RP,	ASA,	HP	 Liu	et	al.,	2010	

RBscore	 Sequence	and	Structure	 RP,	ASA,	Q,	SA	 Miao	&	Westhof,	2015	
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(Abbreviations	used	in	the	3rd	column	-	PSSM:	position	specific	scoring	matrix	derived	from	sequence	
alignment,	 RP:	 residue	 propensity,	 ASA:	 accessible	 surface	 area,	 HP:	 hydrophobicity,	 SS:	 secondary	
structure,	EC:	conservation	entropy,	Q:	electrostatic/pKa,	SA:	structural	alignment)	

A	successful	model	 for	RBP	RNA-binding	residue	prediction	should	perform	equally	well	

across	 different	 data	 sets	with	 stable	 predictive	 ability	 reflected	 in	 terms	 of	 performance	

measures	 such	 as	 true	 positive	 rate,	 false	 positive	 rate,	 and	 accuracy.	 Based	 on	 these	

criteria,	 BindN+	 (Wang	 et	 al.,	 2010),	 RNABindRPlus	 (Walia	 et	 al.,	 2014),	 aaRNA	 (Li	 et	 al.,	

2014),	 RNAProSite	 (Sun	 et	 al.,	 2016)	 and	 RBscore	 (Miao	 &	 Westhof,	 2015)	 show	 a	 good	

overall	 performance,	 however	 they	 still	 demonstrated	 data	 set	 bias.	 Some	 RBP-related	

methods	such	as	RNABindR	(Terribilini	et	al.,	2007),	KYG	(Oanh	et	al.,	2006),	aaRNA	(Li	et	al.,	

2014),	 RNAProSite	 (Sun	 et	 al.,	 2016),	 and	 RBscore	 (Miao	 &	 Westhof,	 2015),	 though	 not	

trained	 on	 DNA-binding	 proteins,	 could	 predict	 DNA-binding	 residues	 as	 well.	 It	 was	

observed	 in	 the	NBench	 study	 that	 machine-learning	 methods	 have	 better	 discriminative	

ability	 for	 RNA-binding	 residues	 compared	 to	 other	 methods.	 Several	 examples	 of	 these	

machine-learning	 tools	 are	 PRNA,	 Predict_RBP,	 RNABindRPlus	 (Walia	 et	 al.,	 2014),	 and	

RBscore_SVM	(Miao	&	Westhof,	2015).	However,	this	does	not	qualify	them	as	overall	good	

predictive	approaches,	as	they	did	not	perform	equally	well	on	all	the	data	sets.	This	poses	

the	challenge	of	dealing	with	 the	non-discriminative	performance	of	 such	predictive	 tools,	

which	may	 lead	 to	 false-positive	 predictions	 of	 a	 non-RBP	 as	 an	RBP.	 The	 structure-based	

tools	performed	better	than	sequence-based	tools,	indicating	that	the	structural	information	

captures	information	on	RNA-binding	residues	with	better	specificity.	

1.5.2	Prediction	of	RNA-binding	proteins	
	

In	principle,	 tools	 for	RNA-binding	residue	prediction	should	 identify	RBPs	based	on	the	

assumption	that	RNA-binding	residues	will	be	recognized	only	in	RBPs.	However,	the	above	

tools	 were	 not	 designed	 for	 this	 purpose.	 In	 the	 absence	 of	 a	 pre-defined	 set	 of	

experimentally	 confirmed	 RBPs,	 such	 tools	may	 lead	 to	 the	 false	 characterization	 of	 non-

RBPs	 as	 having	 RNA-binding	 residues.	 Only	 a	 few	 computational	 tools,	 such	 as	 RNApred	

(Kumar	et	al.,	2008),	SPOT-Seq-RNA	 (Yang	et	al.,	2014),	and	catRAPID	signature	 (Livi	et	al.,	

2016)	 have	 been	 specifically	 developed	 for	 the	 identification	 of	 RBPs.	 These	 programs	

characterize	RBPs	using	sequence-based	features,	such	as	biochemical	properties,	structural	

properties,	and	their	evolutionary	relationship	(Zhao	et	al.,	2011;	Puton	et	al.,	2012;	Si	et	al.,	

2015).	 RNApred	 is	 a	 web-based	 application	 for	 the	 prediction	 of	 RBPs	 from	 protein	

sequences	 based	 on	 amino	 acid	 composition	 and	 position-specific	 scoring	 matrix	 (PSSM)	

based	 evolutionary	 information.	 A	 large	 number	 of	 proteins	 can	 be	 analyzed	 using	 the	
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composition-based	method;	however,	PSSM-based	approaches	can	process	only	one	protein	

at	 a	 time.	 The	 underlying	 software	 is	 trained	 on	 positive	 and	 negative	 sets	 of	 proteins	 to	

build	a	SVM-based	method	for	 the	classification	of	RBPs	and	non-RBPs.	SPOT-Seq-RNA	 is	a	

template-based	 method,	 which	 uses	 the	 information	 derived	 from	 RBP	 structures.	 The	

software	is	implemented	as	a	web-server	and	command-line	tool	and	can	process	only	one	

query	protein	at	a	time.	The	software	has	been	coupled	with	SPARKS	X	(Zhou	&	Zhou,	2005)	

and	DRNA	 (Zhao	et	al.,	 2011)	 for	 the	prediction	of	 template-based	 structures	 and	binding	

affinity,	respectively.		

The	tool	catRAPID	signature	is	relatively	new	software	that	uses	sequence-based	physico-

chemical	features	for	the	identification	of	RBPs.	The	cut-off	for	the	identification	of	RBPs	has	

been	derived	from	an	SVM,	which	has	been	trained	on	human	proteins.	 In	addition	to	RBP	

recognition,	this	software	also	predicts	RNA-binding	regions	in	the	query	proteins.	Like	other	

tools,	it	requires	an	amino	acid	sequence	as	a	query,	but	can	process	100	proteins	at	a	time.	

In	 past	 decade,	 a	 significantly	 higher	 number	 of	 tools	 for	 RNA-binding	 residue	predictions	

within	 RBPs	 have	 been	 developed,	 compared	 to	 the	 tools	 developed	 for	 identification	 of	

RBPs	 themselves.	 While	 an	 improvement	 in	 accuracy	 can	 be	 observed	 for	 both	 types	 of	

tools,	an	obvious	data	set	bias	in	the	underlying	training	and	test	sets	of	lower	diversity	and	

smaller	 size	 exists,	 as	 they	 are	 curated	 specifically	 for	 the	 method	 in	 question.	 Other	

limitations	include	the	number	of	query	proteins	that	can	be	processed	by	the	tools,	which	is	

often	only	one	query	at	a	time;	hence,	these	tools	are	not	conveniently	applicable	on	large	

data	sets.	

Most	of	 these	computational	methods,	 specifically	 for	 the	 identification	of	RNA-binding	

residues,	 are	 computationally	 expensive	 and	are	 limited	 in	 their	 functionalities	due	 to	 the	

restricted	nature	of	 their	 training	data	 sets.	Moreover,	due	 to	 the	 limitation	of	number	of	

query	proteins	 the	 tools	are	designed	 to	process,	makes	 them	unsuitable	 for	a	 large-scale	

data	analysis	(Miao	&	Westhof,	2015).	

	

1.6	Aim	of	the	study	

The	 main	 aim	 of	 this	 study	 is	 to	 establish	 a	 bio-computational	 approach	 for	 the	

identification	and	characterization	of	novel	RBPs	in	bacterial	proteomes	using	the	pathogen	

Salmonella	 Typhimurium	 as	 a	 model	 organism.	 The	 first	 part	 of	 the	 thesis	 describes	 a	
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computational	pipeline	that	I	developed	for	the	large-scale	analysis	of	protein	sequences	to	

identify	 putative	 RBPs	 based	 on	 RBD	 classes.	 The	 second	 section	 of	 the	 thesis	 gives	 an	

overview	 of	 high-throughput	 sequencing-based	 experimental	 characterization	 of	 the	

resulting	computationally	identified	RBPs.	

Salmonella	 species	 (Gram-negative	 enterobacteria)	 are	 intracellular	 pathogens	 of	

eukaryotic	 hosts	 such	 as	 humans,	 and	 are	 transmitted	 via	 contaminated	 water	 and	 food	

(Santos	et	al.,	2001).	Salmonella	is	well	characterized	and	has	been	studied	intensively	for	its	

regulation	 of	 virulence	 and	 survival	 factors,	 including	 post-transcriptional	 regulation	 by	

riboregulators.	Therefore,	 it	was	used	as	a	model	to	expand	our	search	for	novel	RBPs	in	a	

systematic	manner.	A	proteome-wide	computational-based	identification	of	RBPs,	followed	

by	 RNA	 co-immunoprecipitation	 and	 high-throughput	 sequencing	 (RIP-Seq)	 (Selth	 et	 al.,	

2009;	Zhao	et	al.,	 2010)	of	 candidate	proteins	was	carried	out	 in	Salmonella	Typhimurium	

SL1344.	These	proteins	were	further	characterized	using	publicly	available	infection-relevant	

transcriptomes	 and	 genetic	 data	 sets,	 which	 collectively	 present	 a	 resource	 of	 RBPs	 in	

Salmonella	that	will	aid	in	designing	further	exploratory	and	validation	studies	in	bacteria.	
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Chapter	2	

Computational	 identification	 and	 characterization	 of	 RBPs	 using	

APRICOT	

The	 important	 discoveries	 on	 the	 regulatory	 roles	 of	 RBPs	 in	 eukaryotes	 have	 stirred	

interest	 in	 the	 scientific	 community	 to	move	on	 from	 the	 characterization	of	 a	 handful	 of	

RBPs	to	the	identification	of	RBPs	on	a	large-scale.	Many	RBPs	within	a	complex	with	other	

proteins	 function	 in	 a	 cooperative	 or	 competitive	 manner,	 which	 control	 the	 levels	 or	

behaviour	 of	 RNAs	 depending	 on	 biological	 conditions	 (Ciafre	 &	 Galardi,	 2013).	 Although	

these	 experimental	 studies	 revealed	 considerable	 details	 about	 the	 mechanisms	 and	

biological	 roles	 of	 eukaryotic	 RBPs,	 it	 has	 been	 speculated	 that	 there	 are	 many	 more	

unidentified	 and	 uncharacterized	 RBPs	 that	might	 play	 central	 roles	 in	 different	 biological	

pathways.	 It	 is	 technically	 possible	 to	 capture	 RBPs	 in	 vivo	 that	 are	 still	 prone	 to	 biases.	

Furthermore,	 the	 existing	 approaches	 require	 a	 specific	 biochemical	 characteristic	 such	 as	

mRNA	 poly(A)	 tails	 in	 the	 case	 of	 eukaryotic	 mRNAs	 and	 relatively	 sophisticated	

experimental	 set-ups	 for	 other	 organisms	 restricting	 our	 understanding	 of	 RBPs	 in	 other	

domains	 of	 life.	 Nonetheless,	 the	 catalogue	 of	 information	 now	 available	 from	 studies	 of	

RBPs	in	eukaryotes	may	now	be	applied	to	identify	and	characterize	the	important	players	of	

RNA-protein	 interactions	 in	 bacteria	 via	 the	development	of	 computational	 approaches	 to	

identify	RBPs	and	their	RNA-binding	residues.		

In	 this	 endeavour,	 I	 intended	 to	 develop	 a	 bioinformatic	 pipeline	 called	 APRICOT	

(Analyzing	Protein	RNA	Interaction	using	Combined	Output	Technique).	This	software	carries	

out	sequence-based	analysis	of	entire	proteomes	to	 identify	conserved	functional	domains	

associated	with	 experimentally	 validated	 RBPs,	 such	 as	 RBDs,	 and	 provide	 an	 overview	 of	

their	 physico-chemical	 properties.	 One	 of	 the	 main	 emphases	 of	 the	 pipeline	 is	 to	

computationally	 identify	 RBP	 candidates	 in	 large	 sets	 of	 query	 proteins.	 The	 challenging	

aspect	of	processing	large-scale	data	is	taken	into	consideration	in	order	to	ultimately	apply	

this	method	 to	 the	 bacterial	 proteome	 sets.	 In	 this	 chapter,	 an	 integrated	 computational	

pipeline	 has	 been	 designed	 with	 state-of-the-art	 sequence-based	 algorithms	 and	 tools	 to	

infer	the	statistical	significance	of	computational	predictions	of	protein	functions.	
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2.1	Overview	of	APRICOT	pipeline	for	RBP	identification	

APRICOT	incorporates	several	distinct	modules	for	the	identification	and	characterization	

of	proteins,	which	are	assembled	into	a	command-line	tool.	A	human	RBP	PTBP1	(Sawicka	et	

al.,	2008)	is	used	as	an	example	to	describe	representative	modules	of	the	pipeline.	PTBP1	is	

an	mRNA	 regulator	 that	 contains	 several	 repeated	 RBDs,	 specifically	 the	 highly	 abundant	

eukaryotic	RRM	domain	(Dye	&	Patton,	2001).	

The	pipeline	 can	be	 explained	 in	 three	parts:	 program	 input,	 intermediate	 analysis	 and	

program	 output	 (Figure	 2.1A).	 The	 input	 requires	 two	 set	 of	 information,	 which	 are	 the	

query	 proteins	 and	 functional	 classes	 of	 interest.	 The	query	 proteins	 are	 subjected	 to	 the	

intermediate	 analysis,	 which	 included	 processes	 such	 as	 domain	 prediction,	 selection	 of	

domains	of	interest,	and	scoring	and	ranking	of	the	predicted	domains.	Upon	analysis	by	the	

pipeline,	 the	 program	 output	 is	 generated	 that	 include	 the	 selected	 proteins	 with	 the	

functional	 domains	 of	 interest	 and	 their	 annotation	 by	 different	 biological	 functions.	 The	

pipeline	and	its	components	have	been	described	below	in	detail	and	shown	in	Figure	2.1B.	

2.1.1	Program	input	

APRICOT	requires	two	inputs	for	its	execution:	query	proteins	and	the	functional	class	of	

interest	(Figure	2.1B).	

1.	Query	proteins:		

The	query	proteins	can	be	provided	either	as	a	list	of	gene	IDs,	protein	IDs,	or	amino	acid	

sequences	 (subcommand	 query).	 When	 protein	 IDs	 (for	 example,	 P26599	 for	 PTBP1)	 are	

supplied	to	APRICOT,	queries	are	directly	searched	against	the	UniProt	database	to	retrieve	

their	 amino	 acid	 sequences	 and	 available	 annotations.	 The	 retrieved	 sequences	 are	 then	

used	as	 input	 for	domain	prediction.	 If	 the	users	are	 interested	 in	a	particular	species,	 the	

search	for	query-associated	information	can	be	limited	to	that	specific	organism	by	providing	

a	 corresponding	 taxonomic	 identifier	 (for	 example,	 9606	 for	 human).	 Since	 APRICOT	 has	

been	designed	to	process	multiple	queries,	the	motif	prediction	can	be	dynamically	carried	

out	 for	 the	 functional	 characterization	 of	 an	 entire	 proteome	 set	 corresponding	 to	 a	

taxonomy	 ID	 (subcommand	 taxid).	 When	 amino	 acid	 sequences	 are	 supplied	 as	 queries,	

APRICOT	skips	the	sequence	and	their	annotation	retrieval	step	and	directly	proceeds	to	the	

domain	predictions.	
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2.	Functional	class	of	interest:	

Depending	of	the	functional	class(s)	of	interest,	users	must	provide	an	appropriate	list	of	

terms	or	keywords	(subcommand	keywords)	such	as	names	of	domain	families,	Pfam	IDs,	GO	

or	MeSH	terms,	which	are	referred	herein	as	domain	selection	keywords.	APRICOT	employs	

a	 string-based	search	algorithm	using	 these	 terms	 to	 select	 relevant	domains	or	 reference	

domain	 sets	 from	 the	 relevant	 resources,	 which	 are	 then	 subsequently	 used	 to	 identify	

proteins	 of	 functional	 relevance	 that	 contain	 these	 domains.	 Multi-word	 terms	 like	 ‘RNA	

binding’	 can	 also	be	provided	 as	 ‘RNA-binding’	 by	 using	 a	 hyphen	 as	 a	 connector.	 In	 such	

cases,	 APRICOT	 looks	 for	 co-occurrences	 of	 these	 terms	 in	 the	 same	 context	 in	 an	

annotation.	There	is	no	strict	convention	on	the	nature	of	keywords	that	can	be	provided	as	

domain	selection	keywords.	However,	due	to	the	domain	selection	method,	any	general	or	

ambiguous	 terms	 should	 be	 avoided	 to	 exclude	 irrelevant	 domains	 from	 the	 analysis.	 For	

example,	 use	 of	 the	 term	 ‘RNA’	 alone	 does	 not	 unambiguously	 refer	 to	 RBDs.	 Therefore,	

users	 should	use	definite	 terms	 such	as	 ‘RNA-binding’	or	domain	 families	 like	 the	 classical	

RBDs	 RRM	 (RNA	 recognition	 motif)	 or	 KH	 (K	 Homology)	 to	 indicate	 groups	 of	 RBDs.	

Alternatively,	use	of	MeSH	terms	(Liu	et	al.,	2009)	can	also	provide	more	specific	information	

for	 the	domain	 selection.	 For	 instance,	 a	 total	 of	 198	descriptors	have	been	 listed	 for	 the	

MeSH	term	 ‘RNA	binding’	 in	 the	NCBI	database,	which	can	be	directly	used	as	 the	domain	

selection	keywords	for	the	collection	of	specific	RNA	binding	protein-related	domains.	

In	order	to	maintain	stringent	selection	of	truly	functional	domains,	APRICOT	by	default	

does	not	allow	the	selection	of	a	domain	entry	if	the	annotated	domain	selection	term	has	

either	a	prefix	or	a	suffix.	This	opens	the	possibility	of	omitting	some	relevant	entries	from	

the	 domain	 selection	 keywords,	 but	 it	 also	 ensures	 exclusion	 of	 several	 non-relevant	

domains	that	might	be	included	by	chance.	Nonetheless,	users	can	allow	a	prefix	or	suffix	by	

including	a	hash	symbol	(#)	at	the	beginning	or	end	of	a	term,	respectively.	For	example,	by	

inputting	'#RNA-binding'	one	can	allow	the	inclusion	of	'tRNA-binding',	'mtRNA-binding',	etc.,	

while	use	of	'RNA-bind#'	would	allow	varying	verb	forms	for	bind	such	as	binder,	binding	etc.	

Furthermore,	one	can	allow	both	prefixes	and	suffixes	(for	example,	#RNA-bind#).	

Optionally,	 for	 the	classification	of	predicted	domains,	a	second	set	of	keywords	can	be	

provided	(result	classification	keywords).	This	list	can	be	comprised	of	terms	associated	with	

biological	 functions,	enzymatic	activities,	or	 specific	biochemical	or	 structural	 features.	For	

example,	the	predicted	RNA-related	domain	data	could	be	divided	into	the	classification	tags	
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of	 RRM,	 ribosome,	 synthetase,	 helicases,	 etc.	 Such	 classifications	 can	 help	 users	

tremendously	 in	navigating	through	 large	data	sets	or	 for	the	selection	of	a	representative	

protein	for	a	certain	function	conferred	by	the	domains.	When	users	do	not	provide	result	

classification	terms,	APRICOT	uses	the	domain	selection	terms	for	this	purpose	as	well.	

2.1.2	Modules	for	domain	prediction	and	annotations	

The	 core	 functionality	 of	 APRICOT	 involves	 a	 multi-step	 process	 for	 the	 selection	 of	

proteins	by	identifying	functional	sites	or	domains	of	interest	in	their	sequences,	followed	by	

their	 annotation	 with	 various	 biological	 features.	 These	 steps	 are	 described	 below	 and	

illustrated	in	Figure	2.2.		

1.	Reference	databases	and	associated	tools	

APRICOT	requires	a	set	of	query	proteins	as	input	for	which	the	presence	of	RBDs	is	to	be	

determined.	Basic	information,	e.g.	amino	acid	sequences	and	taxonomy	data,	are	retrieved	

from	 the	 UniProt	 Knowledgebase	 (Magrane	 &	 UniProt	 Consortium,	 2011).	 In	 addition,	 a	

reference	 domain	 set	 is	 collected	 from	 domain	 databases	 based	 on	 functional	 classes	

specified	by	the	user.		

The	 domain	 resources	 used	 in	 this	 study	 are	 Conserved	 Domain	 Database	 (CDD)	

(Marcher-Bauer	et	al.,	2015)	and	InterPro	(Mitchell	et	al.,	2015),	which	consist	of	predictive	

models	 and	 signatures	 representing	 protein	 domains,	 families,	 and	 functional	 sites	 from	

multiple	publicly-available	databases.	CDD	includes	domain	entries	as	Position-Specific	Score	

Matrices	 (PSSMs)	 that	 are	 generated	 from	 multiple	 sequence	 alignments	 (MSA)	 of	

representative	 amino	 acid	 sequences	 obtained	 from	 several	 domain	 databases,	 including	

Pfam	(Finn	et	al.,	2016),	TIGRFAM	(Haft	et	al.,	2003),	SMART	(Schultz	et	al.,	1998;	Letunic	et	

al.,	2014),	COGs	(Tatusov	et	al.,	1997;	Galperin	et	al.,	2015),	several	NCBI	curated	domains	

like	PRK	or	Protein	Clusters	(ONeill	et	al.,	2010),	and	multi-model	superfamilies	of	proteins	

(Gough	et	al.,	2001).	For	the	identification	of	domains	in	a	given	protein	sequence,	the	PSSM	

entries	in	CDD	are	queried	via	Reverse	Position-Specific	BLAST	(RPS-BLAST),	a	variant	of	the	

popular	Position-Specific	Iterative	BLAST	(PSI-BLAST)	(Altschul	et	al.,	1990;	Altschul	&	Koonin,	

1997).	 CDD	 (v3.14)	 contains	 annotations	 for	 50,648	 domains.	 Entries	 from	 every	 domain	

resource	 are	 assigned	 an	 individual	 PSSM	 identifier	 that	 allows	 redundant	 entries	 of	

domains.		
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InterPro	is	a	similar	consortium	that	consists	of	domain	entries	as	predictive	models	and	

signatures	obtained	from	different	databases,	such	as	Pfam	(28,	29),	TIGRFAMs	(Haft	et	al.,	

2003),	 SMART	 (Schultz	 et	 al.,	 1998;	 Letunic	 et	 al.,	 2014),	 PROSITE	 patterns	 and	 profiles	

(Sigrist	et	al.,	2013),	HAMAP	(Pedruzzi	et	al.,	2015),	PRINTS	(Attwodd	et	al.,	2012),	PIRSF	(Wu	

et	 al.,	 2004),	 ProDom	 (Bru	 et	 al.,	 2005),	 PANTHER	 (Mi	 et	 al.,	 2010),	 GENE3D	 (Lam	 et	 al.,	

2016),	 and	 SUPERFAMILY	 (Gough	 et	 al.,	 2001).	 Most	 of	 these	 databases	 contain	 domain	

entries	as	Hidden	Markov	Models	(HMM)	(Krogh	et	al.,	1994),	probabilistic	models	derived	

from	 sequence	 alignments,	 which	 capture	 information	 on	 both	 substitution	 and	 indel	

frequencies.	 A	 query	 protein	 can	 be	 queries	 against	 these	 domain	 entries	 using	 HMMER	

based	tools	 (Mistry	et	al.,	2013).	Several	member	databases	contain	PSSM	domain	models	

built	 from	the	multiple	sequence	alignments	of	 representative	amino	acid	sequences	 from	

the	UniProt	 protein	 database,	which	 can	 be	 queried	 by	 BLAST-based	methods	 or	 a	 single	

model	search	algorithm,	which	have	been	integrated	into	InterProScan	5	(Jones	et	al.,	2014).	

As	 of	 May	 2016,	 InterPro	 (v.57)	 contained	 29,175	 domain	 models	 of	 which	 several	 are	

annotated	with	Gene	Ontology	(GO)	terms	(Ashburner	et	al.,	2000).	

InterPro	and	CDD	consortia	have	only	three	databases	in	common	(Pfam,	TIGRFAM,	and	

SMART)	that	account	for	approximately	20,000	domains.		

2.	Selection	of	reference	domain	set	

A	string-based	selection	of	domain	families	and	functional	motifs	is	carried	out	using	the	

domain	selection	keywords	to	create	a	reference	domain	set.	Domains	are	selected	from	the	

collections	of	domain	entries	from	the	domain	databases	collected	by	the	CDD	and	InterPro	

consortiums	when	they	match	at	least	one	of	the	provided	terms	in	their	annotations.	In	this	

analysis,	 I	 considered	 recent	human	 interactome	studies	 (Castello	et	al.,	 2012;	Baltz	et	al.,	

2012;	Kwon	et	al.,	2013;	Gerstberger	et	al.,	2014)	as	comprehensive	resources	for	building	a	

reference	 RBD	 set.	 To	 report	 only	 high-confidence	 RBPs	 by	 avoiding	 the	 selection	 of	

ambiguous	 and	 functionally	 irrelevant	 domains,	 all	 the	 classical	 RBDs	 were	 included	 in	

domain	 selection	 keywords	 (Figure	 2.2A).	 In	 order	 to	 account	 for	 ribosomal	 proteins,	 109	

terms	 related	 to	 RNA-binding	 ribosomal	 domains	 (Gerstberger	 et	 al.,	 2014)	 were	 also	

included	in	domain	selection	keywords.	An	additional	term	‘#RNA-bind#’	was	introduced	to	

include	any	additional	RBDs	in	the	reference	set	that	are	well	described	as	RBDs	in	databases	

but	are	not	classified	as	classical	RBDs	(Figure	2.2B).	Using	these	domain	selection	keywords,	

a	 total	 of	 4,951	 RBD	 entries	 were	 curated	 from	 CDD	 (1,951	 entries)	 and	 InterPro	 (3,000	
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entries),	referred	as	reference	domain	set,	which	was	used	for	filtering	domain	predictions	in	

the	downstream	analysis.	

	

Figure	2.2	Different	components	of	APRICOT	for	the	characterization	of	RBPs	 illustrated	using	the	
human	RBP	PTBP1.	

(2.2A)	Bar	chart	showing	the	distribution	of	the	known	RNA	binding	domains	collected	from	the	CDD	

and	 the	 InterPro	 consortium.	 Several	 of	 these	 domains	 were	 selected	 by	 more	 than	 one	 domain	

selection	term.	(2.2B)	Additional	domains	selected	by	RNA-binding	ribosomal	domains	and	the	term	

‘RNA-bind’.	(2.2C)	Domain	entries	from	CDD	and	InterPro	database,	which	were	identified	by	APRICOT	

in	 PTBP1.	 (2.2D)	 A	 schematic	 workflow	 illustrating	 different	 processes	 involved	 in	 feature-based	

scoring	resulted	from	a	comparative	analysis	of	RRM-1	domain	(RRM1_PTBP1)	and	the	corresponding	

domain	identified	in	PTBP1.	As	shown	in	the	scheme,	the	features	involved	in	this	analysis	have	been	

classified	 into	 four	 categories,	 each	 comprising	 of	 specific	 set	 of	 sequence-based	 features.	 The	



	 32 

features	are	scored	by	Bayesian	probabilities	in	a	range	of	0	to	1,	where	1	signifies	a	complete	match	

between	 the	 reference	 and	 the	 domain	 identified	 in	 the	 query.	 (2.2E)	 The	 four	 RRM	 sites	 in	 PTBP1	

corresponding	 to	 different	 RRM	 entries	 from	 CDD	 and	 InterPro.	 (2.2F)	 Visualization	 of	 additional	

annotations	 of	 PTBP1	 protein	 by	 secondary	 structure	 and	 probability	 of	 subcellular	 localizations	

generated	by	APRICOT.	

3.	Domain	prediction	

In	this	step,	query	amino	acid	sequences	are	screened	for	all	the	possible	domains	from	

the	databases	without	filtering	a	certain	functional	class.	The	sequences	are	then	subjected	

to	 domain	 prediction	 using	 RPS-BLAST	 and	 InterProScan	 to	 query	 their	 corresponding	

databases	CDD	and	InterPro,	respectively	(Figure	2.2C).	By	default,	APRICOT	uses	both	CDD	

and	InterPro	for	the	domain	predictions.	However,	users	can	choose	one	of	the	databases	to	

reduce	 the	 run-time.	 Since	 the	 primary	 requirement	 of	 this	 module	 is	 the	 amino	 acid	

sequences	 of	 the	 query	 proteins	 in	 FASTA	 format,	 users	 can	 analyze	 novel	 or	 partial	

sequences	even	when	the	gene/protein	IDs	are	unknown	or	absent.	

4.	Selection	of	proteins	by	functional	domains	of	interest	

This	module	allows	the	selection	of	 relevant	proteins	 from	the	query	sets	based	on	the	

predicted	domains	obtained	in	the	previous	step.	The	proteins	are	considered	as	candidates	

if	 they	 contain	 one	 of	 the	 domains	 of	 interest.	 Cut-offs	 for	 various	 statistical	 parameters	

(discussed	below)	can	be	defined	for	the	selection	of	the	predicted	domains	to	identify	such	

candidates.	

5.	Feature-based	scoring	

Divergent	 domains	 can	 be	 predicted	 in	 a	 protein,	 which	 might	 correspond	 to	 partial	

sequence	 of	 a	 functional	 domain.	 This	 module	 ranks	 the	 domain	 predictions	 by	 their	

functional	relevance	by	accounting	for	such	partial	conservation	of	domains.	A	comparative	

analysis	 is	 carried	out	between	 the	protein	 sequences	 that	 are	predicted	 in	 the	 candidate	

proteins	 as	 a	 specific	 region	 of	 a	 domain	 of	 interest	 and	 the	 corresponding	 fragments	 of	

their	 reference	 consensus	 sequence.	 This	 comparison	 is	 done	 for	 a	 number	 of	 sequence-

based	features,	which	are	discussed	below	in	detail.	

5.1.	Global	alignment	scores	(primary	sequence	and	secondary	structure)	
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A	global	alignment	refers	to	an	alignment	between	two	sequences	from	the	beginning	till	

the	end	based	on	its	similarity	in	order	to	find	out	the	best	possible	alignment.	To	calculate	

the	 extent	 of	 similarity	 between	 the	 predicted	 domain	 region	 in	 the	 query	 and	 its	

corresponding	 reference	 sequence,	 APRICOT	 carries	 out	 their	 global	 alignments	 using	 the	

Needleman-Wunsch	 algorithm	 (Needleman	 &	 Wunsch,	 1970)	 implemented	 in	 Biopython	

(Chapman	 et	 al.,	 2000;	 Cock	 et	 al.,	 2009).	 This	 algorithm	 uses	 dynamic	 programming	 to	

compare	 biological	 sequences	 and	 uses	 match	 scores	 and	 gap	 penalties,	 although	 in	

APRICOT	no	gap	penalty	was	 introduced.	The	similarity	scores	are	calculated	for	the	global	

alignments	 of	 two	 sequence	 features:	 primary	 amino	 acid	 sequence	 and	 secondary	

structure.	The	similarity	scores	between	the	query	and	reference	sequences	range	from	0	to	

1,	where	1	is	a	complete	match.	

5.2.	Chemical	properties	(average	mass,	pKa,	and	pI)	

The	chemical	properties	of	a	protein	can	help	in	determining	their	biological	activities	in	

living	cells,	their	involvement	in	cellular	processes,	their	three-dimensional	folding,	and	their	

structural	 stability.	 Therefore,	 APRICOT	 analysis	 also	 computes	 the	 similarity	 between	 the	

region	of	predicted	domains	 in	 the	query	proteins	 and	 its	 corresponding	 fragments	 in	 the	

references	 for	 several	 chemical	 properties	 (average	 mass,	 pKa,	 and	 isoelectric	 point	 (pI))	

(Zamyatin,	 1972;	 Chothia,	 1976;	 Tanford,	 1968;	 P.J.	 Linstrom	 and	W.G.	Mallard,	 Nahway,	

N.J.,	 11(1989)).	 The	 values	 for	 each	 feature	 in	 the	 predicted	 domains	 are	 divided	 by	 the	

values	of	the	corresponding	feature	in	the	reference	domains,	and	a	score	in	the	range	of	0	

to	1	is	obtained	which	suggests	the	extent	of	functional	similarity	in	the	predicted	domains.	

This	analysis	 is	based	on	the	assumption	 that	a	 relative	domain	conservation	 in	query	and	

reference	sequence	will	result	to	similar	chemical	properties.	

5.3.	Euclidean	distances	of	protein	compositions	(di-peptides,	tri-peptides,	and	physico-

chemical	properties)	

The	composition	of	a	protein	refers	to	the	fraction	of	each	amino	acid	group	(di-peptides	

and	 tri-peptides,	 which	 refers	 to	 the	 occurrences	 of	 2	 and	 3	 amino	 acids	 in	 an	 ordered	

sequence)	 or	 properties	 (physico-chemical	 or	 secondary	 structure)	 in	 the	 amino	 acid	

sequence.	 It	 has	 been	 shown	 that	 function-specific	 information	 (for	 example,	 subcellular	

localization,	 secondary	 structure,	 enzyme	 families,	 and	 membrane	 protein	 types)	 can	 be	

specified	by	such	compositions	(Eisenhaber	et	al.,	1996;	Reczko	&	Hatzigerrorgiou,	2004;	Cai	

&	Chou,	2006;	Shen	&	Chou	et	al.,	2008;	Habib	et	al.,	2008;	Otaki	et	al.,	2010;	Yu	et	al.,	2010;	
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Källberg	 et	 al.,	 2012).	 Therefore,	 the	 similarity	 in	 composition	 between	 the	 predicted	

domains	 and	 their	 corresponding	 references	 can	 reflect	 the	 functional	 significance	 of	 the	

predictions	and	 therefore	 inform	 the	user	of	 the	putative	biological	 function	 conferred	by	

the	identified	domain.	These	similarities	are	calculated	by	Euclidean	distance	of	di-	and	tri-

peptide	composition	and	composition	of	physico-chemical	properties	between	the	reference	

and	the	predicted	domains	in	the	query	protein.	The	similarity	score	(1-Euclidean	distance)	is	

represented	in	a	range	of	0	to	1,	where	1	stands	for	an	absolute	match.		

5.4.	 Similarity	 between	 predicted	 sites	 and	 reference	 domains	 (domain	 similarity,	

identity,	gaps	and	coverage)	

The	last	set	of	properties	considered	for	feature-based	scoring	is	the	sequence	similarity	

by	means	of	identity,	physico-chemical	similarity	and	gaps,	as	well	as	coverage	obtained	for	

the	predicted	domain	sites	in	the	query,	with	respect	to	the	sites	in	their	reference	domains.	

The	domain	coverage	 is	calculated	by	dividing	 the	 residue	counts	of	 the	predicted	domain	

site	 in	 the	 query	 protein	 by	 the	 original	 length	 of	 the	 reference	 domain.	 The	 similarity,	

identity,	 and	 gaps	 are	 calculated	 by	 dividing	 the	 corresponding	 residue	 counts	 in	 the	

predicted	 domain	 by	 the	 calculated	 domain	 coverage	 (rather	 than	 the	 full	 length	 of	 the	

domain).	Each	of	these	parameters	is	reported	in	a	value	range	of	0	to	1.	The	coverage	value	

of	1	indicates	an	identification	of	a	complete	domain	in	the	query.	The	similarity	and	identity	

value	of	1	indicates	an	absolute	match	in	the	fraction	of	domain	identified	in	the	query.	The	

gap	value	of	0	means	no	gap	in	the	sequence,	which	is	represented	as	the	measure	of	1-	gap	

so	that	a	score	closer	to	1	represents	a	favourable	scenario.	

5.5.	Scoring	and	ranking	of	predicted	domains	in	a	protein	set	

The	 relative	 similarity	 between	 the	 predicted	 functional	 site	 and	 the	 reference	 domain	

consensus	for	these	sets	of	features	are	calculated.	The	feature-based	scoring	is	carried	out	

for	 each	 predicted	 domain	 in	 each	 query	 protein	 in	 a	 range	 of	 0	 to	 1	 as	 described	 in	 the	

previous	 sections	 (5.1-5.4).	 These	 scorings	 represent	 the	 Bayesian	 probabilistic	 score	

functional	potential	of	the	predicted	motifs,	where	1	indicates	the	highest	probability	(Figure	

2.2D).	Ultimately,	 these	features	are	combined	and	ranked	with	other	putative	proteins	of	

interest	 to	 determine	 high	 confidence	 RBP	 predictions.	 This	 combined	 output	 of	 relative	

similarity	score	denotes	the	‘combined	output’	(the	CO	in	the	acronym	of	APRICOT).	

6.	Additional	annotations	of	the	selected	proteins	
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Upon	selection	of	proteins	of	functional	relevance,	users	can	choose	to	further	annotate	

these	 proteins	 by	 information	 like	 sub-cellular	 localization	 by	 PSORTb	 (Yu	et	 al.,	 2010),	 8-

state	secondary	structure	by	RaptorX	(Källberg	et	al.,	2012),	additional	GO	annotation,	and	

structural	homologs,	which	are	discussed	below	in	detail.	

6.1.	Identification	sub-cellular	localization	of	the	proteins	

Information	regarding	the	subcellular	localization	of	a	protein	provides	further	insight	into	

the	potential	 function	of	a	protein	by	giving	an	 idea	of	 their	 roles	 in	protein	complexes	or	

biological	 pathways.	 Several	 tools	 have	 been	 trained	 on	 large	 data	 sets	 to	 capture	 such	

information	 in	 bacterial	 proteins,	 such	 as	 the	 SVM-based	 CELLO2GO	 (Yu	et	 al.,	 2014)	 and	

PSLDoc	(Chang	et	al.,	2008),	amino	acid	composition-based	SLP-Local	(Matsuda	et	al.,	2005),	

composition	 and	 structural	 features-based	 PSL101	 (Su	 et	 al.,	 2007),	 composition	 and	 GO	

clustering-based	Gneg-PLoc	(Chou	&	Shen,	2006),	Gpos-PLoc	(Shen	&	Chou,	2007),	Cell-PLoc	

(Chou	 &	 Shen,	 2008),	 Gneg-mPLoc	 2010),	 combined	 method-based	 SubcellPredict	

(Bulashevska	&	Eils,	2006),	and	HensBC	(Niu	et	al.,	2008).	Software	has	also	been	developed	

to	predict	such	information	for	eukaryotic	proteins,	such	as	neural-network	and	HMM-based	

PredSL	 (Petsalaki	 et	 al.,	 2006),	 domain-based	 PSCL	 (Wang	 et	 al.,	 2011),	 those	 based	 on	

PseAA	 (pseudo	 amino	 acid	 composition)	 such	 as	 PseAAC	 (Shen	&	 Chou,	 2008),	 as	well	 as	

SVM-based	 SecretomeP	 (Bendtsen	et	 al.,	 2004).	 A	more	 complete	 list	 of	 such	 localization	

tools	is	available	online	at	http://www.psort.org/.	One	of	the	most	recently	developed	tools	

that	incorporates	knowledge	obtained	from	the	data	sets	associated	with	all	kingdoms	of	life	

is	 PSORTb.	 PSORTb	 provides	 a	 list	 of	 five	 localization	 sites	 (cytoplasmic,	 cytoplasmic	

membrane,	cell	wall,	extracellular,	and	secondary	localization)	and	an	associated	probability	

score	(0-10	 indicating	 low	to	high	probability).	A	standalone	version	of	PSORTb	(v.3.315)	 is	

integrated	 into	 the	 APRICOT	 pipeline	 for	 computational	 prediction	 of	 the	 subcellular	

localization	of	selected	proteins.		

6.2.	Secondary	structure	calculation	by	RaptorX	

In	 principle,	 an	 amino	 acid	 sequence	 that	 aligns	well	with	 annotated	proteins	 could	 be	

considered	 as	 a	 functional	 homolog.	 However,	 amino	 acid	 conservation	 at	 the	 sequence	

level	is	not	always	obvious	when	dealing	with	the	sequences	where	only	functional	domains	

are	conserved	whereas	rest	of	the	sequence	shares	only	secondary	structure	homology.	 In	

such	 cases,	 the	 selection	 of	 true	 homologs	 based	 on	 primary	 sequences	 is	 difficult.	 To	

address	this	problem,	the	candidate	proteins	can	also	be	compared	to	known	proteins	at	the	
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structural	level	in	APRICOT.	The	structure	prediction	tool	RaptorX	(Källberg	et	al.,	2012)	has	

been	integrated	in	the	pipeline	for	the	prediction	of	protein	secondary	structures.	

6.3.	Tertiary	structure	homologs	from	Protein	Data	Bank	(PDB)	

Tertiary	 structures	 are	 critical	 to	 identify	 the	 ligand	 partners	 of	 proteins	 and	 achieve	 a	

high-resolution	 annotation.	 Out	 of	 several	 millions	 of	 proteins	 available	 in	 the	 non-

redundant	 (nr)	 database	 of	 NCBI	 (Pruitt	 et	 al.,	 2009),	 only	 105,417	 proteins	 and	 5,198	

protein/nucleic-acid	 complexes	 (November	 2015)	 have	 been	 crystalized.	 There	 are	

numerous	computational	tools	available	for	the	estimation	of	tertiary	structures	of	proteins,	

such	as	Phyre2	 (Kelley	et	al.,	2015),	CPHModels	 (Nielsen	et	al.,	2010),	and	 I-TASSER	online	

(Roy	et	al.,	2010).	These	methods	are	computationally	demanding	and	are	available	only	as	

web-servers,	making	their	integration	difficult	into	automated	workflows.	Hence,	in	order	to	

provide	a	quick	insight	into	the	potential	binding	mechanisms	of	selected	proteins,	APRICOT	

extracts	the	structure	homologs	and	the	available	annotation	from	the	PDB	database.	

6.4.	Gene	Ontology	

The	Gene	Ontology	or	GO	Consortium	(Reference	Genome	Group	of	the	Gene	Ontology	

Consortium,	 2009)	 is	 a	 bioinformatics	 initiative	 for	 unifying	 annotation	 by	 means	 of	 a	

controlled	 vocabulary.	 GO	 terms	 are	widely	 used	 for	 standard	 annotation	 of	 a	 gene	with	

various	 information,	 including	 cellular	 localization,	 biological	 processes,	 and	 molecular	

function.	GO	is	determined	by	extracting	all	GO	terms	available	for	a	protein	in	the	UniProt	

database	 (Magrane	M	&	UniProt	Consortium,	2011)	and	 for	 its	domains	 from	the	 InterPro	

and	CDD	databases.	In	order	to	achieve	a	broader	GO-catalogue	for	each	candidate	protein,	

Blast2GO	 (Conesa	 &	 Götz,	 2008)	 can	 also	 be	 executed	 from	 APRICOT	 (subcommand	

blast2go)	when	already	installed	by	users.	

2.1.3	Program	output	

A	comprehensive	result	is	returned	by	APRICOT	at	each	step	of	the	analysis	and	is	stored	

with	 relevant	 information	 that	 serves	as	 the	 input	 for	 subsequent	 steps.	 For	example,	 the	

data	 for	 predicted	 domains	 can	 be	 repeatedly	 used	 for	 extracting	 proteins	 of	 different	

functional	classes.	The	selected	proteins	are	provided	in	a	tabular	format	with	the	statistics	

on	 domain	 prediction	 and	 corresponding	 annotations	 obtained	 from	 UniProt	 and	 the	

comparative	analysis	(Figure	2.3).	To	allow	easy	navigation	through	the	 large-scale	analysis	

data,	the	results	can	be	classified	using	result	classification	keywords	into	smaller	subsets	of	
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proteins	with	 similar	 enzymatic	 activities	 or	 other	 functional	 aspects.	 Additionally,	 graphs	

and	charts	are	provided	to	aid	the	visualization	of	the	resulting	data.	

	

Figure	2.3	Screenshot	of	an	HTML	output	of	APRICOT	analysis	comprising	of	information	on	domain	
prediction	and	corresponding	annotations.		

The	 columns	 in	 the	 table	 have	 been	 explained	 in	 three	 parts:	 (2.3A)	 annotation	 of	 the	 protein	

retrieved	from	the	UniProt	knowledgebase,	(2.3B)	annotation	of	the	domains	in	the	protein	selected	

by	APRICOT,	and	(2.3C)	statistical	output	for	each	parameter	associated	with	the	domain	predictions.	

A

	
B	

	
C	

	
D	

	
E	
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2.2	Data	sets	used	in	this	study	

2.2.1	Training	sets	

For	the	identification	of	the	most	suitable	parameters	and	their	corresponding	cut-offs	for	

domain	 selection,	 training	 sets	 were	 collected	 from	 the	 manually-curated	 and	 reviewed	

subset	of	the	UniProt	Consortium	–	SwissProt	(UniProt	Consortium,	2015).	A	positive	set	of	

proteins	 was	 selected	 by	 using	 the	 keyword	 ‘RNA-binding’.	 A	 second	 set	 of	 proteins	 was	

selected	by	using	all	the	terms	indicating	functional	association	of	proteins	with	nucleic	acid.	

A	third	set	comprising	all	the	uncharacterized	and	hypothetical	proteins	from	the	database	

also	was	selected.	These	three	sets	of	proteins	were	subtracted	from	the	SwissProt	data,	and	

the	 remaining	data	 (consisting	of	271,219	proteins)	were	considered	as	 the	 resource	 for	a	

negative	 set.	 All	 redundant	 protein	 sequences	 from	 both	 positive	 and	 negative	 sets	were	

removed	 by	 clustering	 the	 sequences	 using	 BLASTclust	 (Altschul	 et	 al,	 1999)	 with	 a	 90%	

sequence	 identity	 cut-off.	 Following	 these	 steps,	 a	 total	 of	 4,779	 non-redundant	 proteins	

were	compiled	into	the	positive	set	and	a	set	of	5,834	proteins	was	selected	for	the	negative	

set,	referred	to	henceforth	as	‘SwissProt-positive’	and	‘SwissProt-negative’,	respectively.	

2.2.2	Test	sets	

To	 consistently	 evaluate	 the	 sensitivity,	 specificity,	 and	 accuracy	 of	 APRICOT,	 a	 pair	 of	

positive	 and	 negative	 set	 was	 obtained	 from	 NCBI	 Reference	 Sequence	 (RefSeq),	 a	 non-

redundant	 (nr)	database	 (Pruitt	et	al.,	2012),	using	the	terms	 ‘RNA-bind’	and	 ‘periplasmic’,	

respectively.	The	former	term	retrieved	4,470	RBPs	from	various	organisms	in	all	kingdoms.	

The	term	‘periplasmic’,	which	retrieved	5,836	bacterial	periplasmic	proteins,	was	considered	

as	 a	 resource	 for	non-RNA-binding	proteins	based	on	 the	assumption	 that	 the	majority	of	

periplasmic	proteins	lack	RBDs.	Using	BLASTclust	from	the	NCBI-BLAST	package	(Altschul	et	

al,	1999),	the	proteins	in	each	set	were	clustered	by	75%	sequence	similarity,	which	resulted	

into	687	proteins	 in	the	positive	set	and	 leaving	1,199	proteins	 in	negative	set,	henceforth	

referred	 as	 ‘nr-positive’	 and	 ‘nr-negative’,	 respectively.	 An	 additional	 pair	 of	 positive	 and	

negative	 sets	 was	 obtained	 from	 the	 RNApred	 webserver	 (Si	 et	 al.,	 2015),	 which	 will	 be	

referred	as	‘RNApred-positive’	(377	proteins)	and	‘RNApred-negative’	(355	proteins).		

The	sensitivity	of	the	pipeline	was	also	tested	on	other	positive	data	sets	collected	from	

various	resources,	such	as	RBPDB	(Cook	et	al.,	2011),	RNAcompete	(Ray	et	al.,	2009),	rbp86,	

rbp109,	rbp107	(Cheng	et	al.,	2008),	and	RBRIdent	(Xiong	et	al.,	2015),	consisting	of	1,101,	
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205,	86,	109,	107	and	281	proteins,	respectively.	These	negative	and	positive	RBP	data	sets	

are	listed	in	the	Table	2.1.		

Table	2.1	List	of	all	the	positive	and	negative	RBP	data	sets	used	in	the	development	and	
benchmarking	of	APRICOT.	

Data	set	
Number	of	

proteins	
Comments	 Reference	 Link	

SwissProt-

positive	

4557	 Non-redundant	protein	sets	selected	

from	SwissProt	database	using	the	

keyword	'RNA-bind'.	

Magrane	et	

al.,	2010	

http://www.uniprot.org/	

SwissProt-

negative	

5864	 Non-redundant	protein	sets	selected	

from	SwissProt	database	from	the	set	of	

potential	non-nucleic	acid	binding	

proteins.	

Magrane	et	

al.,	2010	

http://www.uniprot.org/	

RBPDB	 1101	 RBPs	obtained	from	RBPDB,	a	database	

of	eukaryotic	RNA-binding	protein	

specificities.	

Cook	et	al.,	

2010	

http://rbpdb.ccbr.utoronto.c

a/	

RNAcomp

ete	

205	 RBPs	obtained	from	the	RNAcompete	

study	conducted	for	the	systematic	

analysis	of	RNA	binding	specificities	in	

eukaryotes.	

Ray	et	al.,	

2009	

http://hugheslab.ccbr.utoron

to.ca/supplementary-

data/RNAcompete	

rbp86	 86	 RBPs	compiled	from	the	Protein	Data	

Bank	(PDB)	using	a	maximum	resolution	

of	3	Å	and	sequence	identity	less	than	

70%.	

Cheng	et	al.,	

2008	

http://doi.org/10.1186/1471-

2105-9-S12-S6	

rbp109	 109	 RBPs	compiled	from	the	Protein	Data	

Bank	using	a	maximum	resolution	of	3.5	

Å	and	sequence	identity	less	than	30%.	

Cheng	et	al.,	

2008	

http://doi.org/10.1186/1471-

2105-9-S12-S6	

rbp107	 107	 RBPs	compiled	from	the	Protein	Data	

Bank	using	a	maximum	resolution	of	3.5	

Å	and	sequence	identity	less	than	25%.	

Cheng	et	al.,	

2008	

http://doi.org/10.1186/1471-

2105-9-S12-S6	

RBRIdent	 281	 RBPs	used	for	the	development	of	an	

improved	classifier	named	RBRIdent	to	

identify	the	RNA-binding	residues.	

Xiong	et	al.,	

2015	

http://166.111.152.91/RBRId

ent	

nr-positive	 687	 RBPs	selected	from	NCBI	RefSeq,	non-

redundant	databases	using	the	keyword	

'RNA-bind'.	

Pruitt	et	al.,	

2005	

http://www.ncbi.nlm.nih.gov

/	

nr-

negative	

1199	 Potential	non-RNA-binding	proteins	

selected	from	NCBI	RefSeq,	non-

redundant	databases	using	the	keyword	

'periplasmic'.	

Pruitt	et	al.,	

2005	

http://www.ncbi.nlm.nih.gov

/	
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In	order	to	show	the	practical	applications	of	APRICOT	as	a	tool	for	large-scale	analysis	of	

data	 like	 complete	 proteome	 sets,	 two	model	 organisms	were	 evaluated.	 The	 E.	 coli	 K12	

genome	 (taxonomy	 ID:	 83333)	was	 used	 as	 an	 example	 for	 bacterial	 species,	while	Homo	

sapiens	(taxonomy	ID:	9606)	was	used	as	an	example	for	eukaryotic	species.	These	genomes	

consist	of	4,479	and	70,076	protein	entries	 in	the	UniProt	database,	respectively.	APRICOT	

was	used	to	select	positive	RBP	sets	from	both	proteomes	in	order	to	quantify	the	accuracy	

with	 which	 the	 pipeline	 identifies	 RBPs	 in	 these	 relatively	 well-characterized	 genomes.	 I	

considered	1,535	non-redundant	human	proteins	as	a	positive	set,	which	have	either	been	

proposed	 as	 RBPs	 in	 the	 global	 experiment-based	 studies	 or	 have	 been	 reported	 in	

independent	 publications	 (Castello	 et	 al.,	 2012,	 Baltz	 et	 al.,	 2012;	 Kwon	 et	 al.,	 2013;	

Gerstberger	et	al.,	2014).		

In	contrast,	due	to	lack	of	such	global	studies	in	bacteria,	beside	ribosomal	proteins,	only	

a	few	proteins	such	as	Hfq	(Storz	et	al.,	2011),	CsrA	(Chao	&	Vogel,	2010),	YhbY	(Ostheimer	

et	 al.,	 2002),	 SmpB	 (Wower	 et	 al.,	 2002),	 ProQ	 (Chaulk	 et	 al.,	 2011),	 CspA	 (Phadtare	 &	

Inouye,	1999),	and	CspB	 (Phadtare	&	 Inouye,	1999)	have	been	 reported	as	RBPs	 in	E.	 coli.	

Hence,	a	larger	RBP	reference	of	E.	coli	K12	was	retrieved	from	UniProt	database	using	the	

GO	 term	 GO:0003723	 for	 RNA-Binding,	 and	 was	 comprised	 of	 160	 proteins	 including	 the	

above-mentioned	known	RBPs.	

	

2.3	Parameter	optimization	for	domain	predictions	

2.3.1	Assessment	criteria	

The	 statistical	 parameters	 for	 domain	 predictions	 in	 the	 training	 set,	 as	 well	 as	 the	

performance	of	the	tool	on	the	test	sets,	were	evaluated	by	using	standard	binary	criteria	of	

sensitivity	(SN),	specificity	(SP),	accuracy	(ACC),	Matthews	Correlation	Coefficient	(MCC),	and	

F-measure,	using	the	following	equations	(where	TP,	FN,	TN	and	FP	are	true	positive,	 false	

negative,	true	negative	and	false	positive	respectively):		

𝑆𝑁 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁	

𝑆𝑃 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃	

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁	
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𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁 − 𝐹𝑁×𝐹𝑃

𝑇𝑃 + 𝐹𝑁 × 𝑇𝑃 + 𝐹𝑃 × 𝑇𝑁 + 𝐹𝑃 × 𝑇𝑁 + 𝐹𝑁
	

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑆𝑁×𝑆𝑃
𝑆𝑁 + 𝑆𝑃 	

Receiver	operating	characteristic	 (ROC)	curve	and	their	area	under	the	curve	 (AUC)	was	

used	as	a	criterion	for	accuracy,	which	was	plotted	using	false	positive	rate	(FPR	or	1-SP)	and	

true	positive	rate	(TPR	or	SN).	

2.3.2	Parameter	optimization	for	the	selection	of	predicted	domains	

The	 training	 sets	 SwissProt-positive	 (4,779	 proteins)	 and	 SwissProt-negative	 (5,834	

proteins)	 were	 analyzed	 with	 APRICOT	 in	 order	 to	 evaluate	 the	 ability	 of	 the	 pipeline	 to	

accurately	 differentiate	 RBPs	 from	non-RBPs.	 For	 this	 evaluation,	 statistical	 parameters	 of	

sequence	similarity,	residue	identity,	residue	gap,	and	E-value	of	the	domain	prediction	was	

used	 to	 describe	 the	 similarity	 between	 a	 query	 and	 its	 corresponding	 reference.	 Unlike	

residue	 identity,	 sequence	 similarity	 accounts	 for	 edit	 operations	 such	 as	 positive	

substitutions,	thereby	capturing	the	secondary	structure	information	at	a	better	resolution.	

An	 E-value	 for	 searches	 of	 homologs	 against	 a	 database	 represents	 the	 likelihood	 that	 a	

given	match	in	a	sequence	is	purely	by	chance,	meaning	that	a	lower	E-value	reflects	a	more	

significant	match.	I	describe	an	additional	parameter	namely	the	domain	coverage,	which	is	

the	 percentage	 of	 the	 length	 predicted	 as	 domain	 in	 the	 query	 compared	 to	 the	 original	

length	of	reference	domain.	Generally,	lower	domain	coverage	suggests	a	random	similarity	

of	 the	predicted	domain,	whereas	higher	domain	 coverage	 reflects	a	higher	potential	of	 a	

domain	to	be	functionally	relevant.		

Initially,	 the	analysis	of	 the	 training	 sets	with	a	naïve	approach	was	 investigated,	which	

involved	 InterProScan	 and	 CDD	 based	 batch-search	 methods	 with	 their	 default	 settings.	

Analysis	 by	 InterProScan	 achieved	a	 TPR	of	 0.77	 and	CDD	achieved	a	 TPR	of	 0.79.	 Several	

proteins	in	the	CDD-based	method	were	annotated	as	RBDs	with	coverage	lower	than	10%	

and	sequence	similarity	lower	than	5%,	which	indicated	poor	conservation	of	the	functional	

domains.	 Similarly,	 InterProScan	 failed	 to	 characterize	 several	 RBPs	 due	 to	 its	 stringent	

filtering	 criteria.	 Interestingly,	 several	 RBPs	 were	 reported	 by	 only	 one	 of	 the	 methods.	

Hence,	when	the	results	 from	both	the	analyses	were	combined,	an	 increased	TPR	of	0.82	

was	achieved.	This	clearly	shows	the	potential	to	achieve	higher	sensitivity	by	the	combined	

approach	that	 is	 implemented	in	APRICOT.	The	training	data	sets	were	further	analyzed	by	
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APRICOT,	which	predicted	 thousands	of	RBD	entries	 in	both	 the	positive	and	 the	negative	

sets	that	were	evaluated	using	systematically	varying	cut-offs	of	each	parameter	to	optimize	

the	identification	of	RBPs.	The	corresponding	ROC	curves	were	generated	and	optimal	cut-

off	 ranges	were	defined	by	 identifying	 the	values	of	 the	parameters	 that	 show	an	optimal	

TPR	(closer	to	1)	and	FPR	(closer	to	0)	with	high	ACC	(closer	to	1),	resulting	into	statistically	

significant	AUC,	MCC,	and	F-measures.	

	

Figure	2.4	Assessment	of	the	marginal	contributions	of	all	the	domain	prediction	parameters	to	the	
overall	accuracy	of	APRICOT	with	which	it	identifies	RBPs.		

The	Receiver	Operating	Characteristic	 (ROC)	curves	and	their	Area	Under	 the	Curves	 (AUC)	 for	each	

parameter	 and	 combinations	 of	 parameters	 to	 assess	 their	 marginal	 contributions	 to	 the	 overall	

accuracy	of	APRICOT	with	which	it	identifies	RBPs.	The	highest	AUC	value	of	0.91	was	achieved	by	the	

combination	of	three	parameters:	sequence	similarity	and	domain	coverage	(highlighted	in	the	third	

row).	Using	the	combination	of	any	three	parameters	(last	row),	the	AUC	value	of	0.90	was	achieved.		
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For	the	coverage	of	predicted	domains,	the	minimum	cut-off	was	recorded	to	be	39%	that	

attained	an	accuracy,	TPR,	FPR,	MCC	value,	and	F-measure	of	0.81,	0.87,	0.24,	0.63	and	0.81,	

respectively.	Using	a	higher	cut-off	of	60%,	a	lower	TPR	0.81,	but	a	better	FPR	of	0.16,	was	

obtained.	 This	 consequently	 shows	 a	 better	 ACC	 and	 F-measure.	 Similarly,	 the	 optimal	

threshold	 for	 the	minimum	 cut-off	 of	 sequence	 similarity	was	 recorded	 to	 be	 24%,	which	

attains	accuracy,	TPR,	FPR,	MCC	value	of	and	F-measure	of	0.81,	0.83,	0.20,	0.63	and	0.81,	

respectively.	Similarly,	as	shown	in	the	ROC	curve,	by	using	a	minimum	cut-off	of	15%	for	the	

residue	 identity	and	at	a	maximum	E-value	cut-off	of	0.01,	the	high	accuracies	of	0.81	and	

0.82	were	achieved.	The	decision	values	of	the	parameters	were	further	ranked,	individually	

and	 in	combinations,	 for	all	 the	predicted	RBD	entries	 in	the	training	sets,	and	ROC	curves	

and	 AUCs	 were	 generated	 to	 identify	 their	 marginal	 contributions	 on	 overall	 accuracy	 in	

detecting	RBDs	(Figure	2.4).	

	

Figure	 2.5	 Selection	 of	 parameter	 cut-offs	 for	 RBP	 selection	 and	 the	 performance	 assessment	 of	
APRICOT	on	different	data	sets.		

(2.5A)	 The	 ROC	 curves	 were	 generated	 for	 the	 domain	 prediction	 parameters	 of	 domain	 E-value	

(magenta),	 coverage	 (blue),	 residue	 gap	 (yellow),	 residue	 identity	 (green)	 and	 similarity	 (red).	 The	

optimal	 ranges	 for	 the	 parameters	 were	 defined	 for	 the	 selection	 of	 predicted	 domains	 at	 a	

considerably	high	accuracy	 (>	0.8	as	 indicated	by	 the	dashed	 lines)	on	 the	 training	 sets	 (SwissProt-

positive	and	SwissProt-negative).	The	minimum	cut-off	for	most	contributing	parameters,	percentage	

domain	 coverage	 and	 percentage	 similarity	were	 recorded	 to	 be	 39%	 and	 24%	 respectively,	which	

together	attained	an	accuracy	of	0.82.	(2.5B)	The	bar	chart	illustrates	the	performance	of	APRICOT	on	

different	data	 sets	by	means	of	 sensitivity	 (shown	 in	black)	and	 specificity	 (shown	 in	 red).	APRICOT	
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was	evaluated	on	8	positive	data	sets	and	2	negative	data	sets,	which	showed	an	average	sensitivity	

of	0.90	and	an	average	specificity	of	0.91.	

This	 evaluation	 led	 to	 the	 selection	of	 domain	 coverage	 and	 sequence	 similarity	 as	 the	

default	parameters	for	the	APRICOT	analysis	with	their	minimum	cut-offs	of	39%	and	24%,	

respectively.	The	analysis	by	APRICOT	using	the	selected	parameters	with	their	defined	cut-

offs	 achieves	 a	 TPR	 of	 0.85,	 which	 is	 higher	 than	 the	 naïve	 approach.	 The	 MCC	 and	 F-

measure	 achieved	 for	 the	 APRICOT	 analysis	 of	 the	 training	 sets	 are	 0.64	 and	 0.82,	

respectively.	This	demonstrates	the	efficiency	of	the	selected	parameters	and	their	cut-offs	

in	identifying	RBPs	with	a	high	accuracy	of	0.82.	

	

2.4	Assessment	of	pipeline	performance	for	the	identification	of	RBPs	

A	variety	of	positive	data	sets	were	analyzed	by	APRICOT,	on	which	the	pipeline	achieved	

sensitivity	in	a	range	of	0.81	to	1	(Figure	2.5B),	demonstrating	its	high	efficiency	in	domain-

based	characterization	of	RBPs.	A	more	detailed	evaluation	of	the	pipeline	performance	was	

carried	out	on	the	paired	data	set	of	nr-positive	and	nr-negative,	and	RNApred-positive	and	

RNApred-negative	(Table	2.2).		

Table	2.2	Performance	of	APRICOT	on	positive	and	negative	pair	of	data	sets	obtained	from	NCBI	
database	and	RNApred	method.	

Data	sets		 RNApred	 NCBI	(nr)	

Data	set	types	 	 	

Positive	set		 376	proteins	 687	proteins	

Negative	set	 355	proteins	 1,199	proteins	

Measures	of	performance	assessment	 		 		

TP	proteins	 344	proteins	 657	proteins	

FP	proteins	 47	proteins	 119	proteins	

TPR	(SN)	 0.96	 0.97	

FPR	(1-SP)	 0.1	 0.13	

Accuracy	 0.93	 0.92	

MCC	 0.86	 0.85	

F	measure	 0.93	 0.92	
	

The	 complete	 proteomes	 of	H.	 sapiens	 containing	 70,076	 UniProt	 protein	 entries	 was	

subjected	 to	domain	prediction.	A	known	set	of	1,540	non-redundant	RBPs	was	used	as	a	
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positive	reference	set,	of	which	25	RBPs	have	not	been	defined	with	any	globular	domains.	

The	 reference	 domain	 set	 was	 considered	 for	 the	 initial	 identification	 of	 RBPs	 using	 pre-

defined	 cut-offs	 for	 the	 aforementioned	 default	 parameters.	Upon	 filtering	 of	 proteins	 by	

predicted	domains,	1,091	from	the	reference	RBP	set	were	reported	with	at	 least	one	RBD	

from	the	reference	domain	set,	showing	a	sensitivity	of	0.71.	By	including	the	non-classical	

RBDs	 in	 the	 reference	 domain	 set,	 68	more	 proteins	 could	 be	 recognized	 by	 APRICOT	 as	

RBPs.	Moreover,	201	additional	RBPs	could	be	recognized	by	further	including	domains	listed	

as	RBDs	unknown.	The	remaining	180	proteins	that	are	not	identified	as	RBPs	by	APRICOT	do	

not	contain	RBDs	and	are	listed	as	RNA-related	proteins	(Gerstberger	et	al.,	2014).	

	

Figure	 2.6	 Analysis	 of	 the	 complete	 proteome	 of	 E.	 coli	 K-12	 by	 APRICOT	 using	 the	 default	
parameters	for	the	identification	of	RBPs.		

(2.6A)	The	pie	chart	illustrating	the	distribution	of	proteins	into	positive	RBP	controls,	and	GO	defined	

RBPs	 identified	or	not	 identified	as	such	by	APRICOT.	 (2.6B)	Distribution	of	APRICOT	 identified	RBPs	

based	on	the	number	of	RBDs	identified	in	its	sequences	by	any	one	of	the	CDD	or	InterPro	databases	

or	commonly	by	both	the	databases.	(2.6C)	Distribution	of	RBPs	that	are	identified	as	such	by	both	the	

databases	into	different	classes	of	RBPs.	
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A	similar	analysis	of	the	complete	proteome	of	E.	coli	K-12	was	carried	out	using	APRICOT	

with	 default	 parameters	 and	 the	 reference	 domain	 set	 (Figure	 2.6).	 In	 the	 initial	

characterization	of	RBPs,	673	sequences	were	selected	as	RBP	candidates	by	RPS-BLAST	and	

502	sequences	by	InterProScan	analysis.	These	proteins	account	for	806	RBP	candidates,	of	

which	 369	 proteins	 were	 identified	 as	 putative	 RBPs	 by	 both	 the	methods.	 From	 the	 full	

proteome	set,	APRICOT	could	successfully	identify	the	known	RBPs:	Hfq,	CsrA,	YhbY,	SmpB,	

ProQ,	CspA	and	CspB,	likely	due	to	highly	conserved	RBDs	in	their	sequences	that	have	been	

previously	characterized	for	their	regulatory	roles	(Table	2.3).		

Table	2.3	List	of	known	RBPs	in	Escherichia	coli	with	their	conserved	RBDs	and	their	corresponding	
regulatory	roles.	

Protein	name	 Domains	 Domain	 Residue	 Residue	

Coverage	(%)	 Similarity	(%)	 Identity	(%)	

Hfq	 RRM_RBM7	 41.33	 25.33	 17.33	

CsrA	 CsrA	 84.06	 72.46	 49.28	

ProQ	 ProQ/FINO	family	 100	 66.67	 55.26	

YhbY	 RNA_bind_YhbY	 97.89	 89.47	 80	

SmpB	 SsrA-binding	

domain	

99.31	 67.36	 46.53	

CspA	 Cold	shock	domain	 98.51	 77.61	 67.16	

CspB	 Cold	shock	domain	 97.01	 73.13	 67.16	

	

Furthermore,	from	the	GO	term-derived	160	RBPs	from	E.	coli	K-12,	129	were	identified	

correctly	by	APRICOT,	which	demonstrated	a	 sensitivity	of	0.80.	APRICOT	 failed	 to	 identify	

the	 remaining	 24	 proteins	 as	 RBPs	 because	 either	 the	 predicted	 RBDs	 did	 not	 pass	 the	

parameter	 filters	 or	 the	 reference	domain	 set	 lack	 specific	 domains	 associated	with	 these	

proteins.	These	unidentified	RBPs	included	CRISPR	system	Cascade	subunits,	toxic	proteins,	

and	 several	 enzymatic	 proteins	 like	 ribonucleases,	 tRNA-dihydrouridylases,	 and	 mRNA	

interferases.		

The	 feature-based	 scores	were	 calculated	 for	each	domain	 selected	 from	 the	predicted	

data,	 which	 facilitates	 the	 differentiation	 of	 highly	 reliable	 RBD	 predictions	 from	 the	 low	

confidence	 RBD	 predictions.	 Query	 proteins	 that	 consist	 of	 high	 confidence	 RBDs	 were	

further	 annotated	 with	 additional	 information,	 namely	 subcellular	 localization,	 secondary	

structures,	GO	terms,	and	tertiary	structures.	
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These	 proteome-wide	 analyzes	 clearly	 demonstrate	 a	 high	 sensitivity	 of	 the	 pipeline	 in	

identifying	 RBPs	 based	 on	 functional	 domains.	 However,	 it	 also	 shows	 a	 limitation:	 the	

characterization	of	the	queries	depends	on	the	functional	domains	and	motifs	selected	from	

the	databases	based	on	the	user-provided	terms.	

	

2.5	Comparative	assessment	of	RBP	prediction	tools	

Several	 computational	 approaches	 are	 developed	 for	 the	 prediction	 of	 nucleic	 acid	

binding	sites.	Only	four	tools	-	namely	SVMprot	(Cai	&	Chou,	2005),	RNApred	(Kumar	et	al.,	

2011),	 SPOT-Seq-RNA	 (Yang	et	 al.,	 2014)	 and	 catRAPID	 signature	 (Livi	et	 al.,	 2015)	 –	 have	

been	originally	described	as	RBP	predictors.	SVMprot	was	designed	to	predict	RBPs	by	 the	

SVM-based	 classification	 of	 protein	 primary	 sequences	 into	 functional	 families	 (54	 Pfam	

families)	and	 it	was	made	available	as	a	webserver.	Since	the	tool	 is	no	 longer	available,	 it	

was	not	included	in	this	analysis.	RNApred	uses	SVM	models	that	are	developed	with	amino	

acid	 compositions	 and	 PSSMs	 and	 is	 available	 as	 a	webserver.	 SPOT-Seq-RNA,	which	 uses	

structural	 similarity	 based	 predictions	 of	 the	 RBPs.	 It	 also	 allows	 the	 identification	 of	 the	

binding	residues	and	binding	affinities	using	SPARKSX	(Zhou	&	Zhou,	2005)	and	DRNA	tools	

(Yang	et	al.,	2014),	 respectively,	and	 is	available	as	both	the	webserver	and	command-line	

tool.	 The	 fourth	 program,	 catRAPID	 signature,	 is	 an	 SVM-based	 method	 to	 identify	 RNA-

binding	 proteins	 and	 their	 binding	 regions	 based	 on	 physico-chemical	 properties.	 An	

assessment	of	the	APRICOT	in	comparison	with	the	aforementioned	tools	was	conducted	to	

evaluate	their	methods	and	potential	to	predict	RBPs	correctly	(Table	2.4A).	

Unlike	 other	 tools	 that	 have	 been	 trained	 or	 constructed	 on	 a	 certain	 reference	 set,	

APRICOT	is	not	established	on	any	fixed	set	of	references	as	it	selects	reference	domains	for	

each	analysis	based	on	the	user	provided	keywords.	Therefore,	it	is	capable	of	using	any	new	

RNA-binding	 domains	 that	 might	 be	 added	 in	 the	 integrated	 domain	 sources	 in	 future.	

APRICOT	 selects	 proteins	 that	 are	 predicted	 with	 statistically	 significant	 RBDs	 and	 scores	

them	 in	 comparison	 with	 their	 reference	 consensus	 sequence	 for	 various	 features	 using	

Needleman-Wunsch	 alignment	 scores,	 Euclidean	 distance,	 and	 similarity-based	 scores.	 At	

the	 end	 of	 the	 analysis,	 the	 scores	 for	 each	 property	 are	 combined	 to	 obtain	 a	 Bayesian	

probabilistic	score	in	a	range	of	0	to	1,	where	1	indicates	the	best	hits.	The	results	from	all	

the	intermediate	steps	are	provided	to	allow	users	to	evaluate	different	statistical	aspects	of	

their	study.	
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For	an	unbiased	evaluation	of	the	relative	performances	of	APRICOT	with	RNApred,	SPOT-

Seq-RNA,	 and	 catRAPID	 signature,	 the	 two	 data	 sets	 RBscore_R130	 (130	 RBPs)	 and	

RBscore_R116	 (116	 RBPs)	were	 used.	 These	 are	 the	 training	 and	 test	 sets	 created	 for	 the	

RBscore_SVM	 approach	 in	 NBench.	 On	 RBscore_R130,	 APRICOT	 achieved	 a	 TPR	 of	 0.88,	

whereas	 RNApred,	 SPOT-Seq-RNA,	 and	 catRAPID	 signature	 attained	 much	 lower	 TPRs	 of	

0.79,	0.82,	and	0.55,	respectively.	On	the	RBscore_R116,	which	is	indicated	as	a	challenging	

set	 in	NBench,	APRICOT	achieved	a	 comparatively	 low	TPR	of	0.67.	However,	 this	was	 still	

higher	 than	 the	 TPRs	 achieved	 by	 RNApred	 (0.66),	 SPOT-Seq-RNA	 (0.51),	 and	 catRAPID	

signature	(0.47).	The	performances	of	naïve	RPS-BLAST	were	also	checked,	which	is	used	for	

the	batch-search	of	domain	in	CDD,	and	InterProScan,	which	is	used	for	motif	prediction	in	

InterPro	consortium.	On	both	the	data	sets	the	naïve	approaches	for	domain	 identification	

showed	 lower	performances	compared	to	their	combined	performance.	Both	the	methods	

in	their	default	setting	achieved	a	TPR	of	0.82	on	the	RBscore_R130	by	identifying	107	RBPs.	

On	the	RBscore_R116,	RPS-BLAST	and	InterProScan	showed	performances	higher	than	SPOT-

Seq-RNA	 but	 lower	 than	 APRICOT	 and	 RNApred	 by	 achieving	 TPR	 of	 0.55	 and	 0.57,	

respectively.		

APRICOT	 performed	 better	 than	 other	 tools	 in	 all	 the	 assessment	metrics	 used	 for	 the	

evaluation	 of	RBscore_R246	 (RBPs	 from	 both	 the	 data	 sets)	 as	 positive	 set	 and	 RNApred-

negative	(355	proteins)	by	achieving	highest	accuracy,	MCC	and	F-measure	of	0.88,	0.75	and	

0.86	respectively	(Table	2.4B).		

Table	2.4	A	comparative	assessment	of	APRICOT	and	existing	tools	for	RBP	prediction.	

(2.4A)	Important	features	have	been	evaluated	as	a	measure	of	their	predictive	ability.	(2.4B)	A	set	of	

246	RBP	(RBscore_R246)	and	a	negative	set	of	355	non-RBPs	(RNApred-negative)	were	tested	using	

different	assessment	metrics,	where	APRICOT	achieved	highest	accuracy,	MCC	and	F-measure.	

RBP	prediction	tools	 APRICOT	 catRAPID	signature	 SPOT-Seq-RNA	 RNApred	

(2.4A)	Main	features	of	the	tools	

Main	criteria	for	RBP	

characterization	

RNA-binding	motifs	

and	domain	families	

Physico-chemical	

properties	

RBP	structure	

homologs	

SVM	classification	

by	composition	

features	of	proteins	

Additional	analysis	 Sequence-based	

scoring	of	domain	

(includes	physico-

chemical	properties)	

Prediction	of	RNA-

binding	regions	

RNA-binding	residue	

prediction	and	

binding	affinity	

PSSM-based	

evolutionary	

information	

Availability	 Command-line	and	 Webserver	 Webserver	and	 Webserver	
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Docker	image	 command-line	

Query	types		 Amino	acid	

sequences	/	gene	

names	/	UniProt	

protein	/	taxonomy	

ids	

Amino	acid	

sequences	

Amino	acid	sequence	 Amino	acid	

sequences	

Allowed	number	of	

query	proteins	

Unlimited	 100	proteins	or	

total	number	of	

submitted	

characters	=	100000	

One	query	at	a	time	 Unlimited	for	

composition	or	one	

query	at	a	time	for	

the	PSSM	based	

analysis	

Probability	scores	for	

RBPs	

Bayesian	score	(0-1),	

1	=	best	score	

SVM	score	

(Threshold	-0.2)	

Z-score	 SVM	score	

(Threshold	-0.2)	

Main	criteria	for	RBP	

characterization	

RNA-binding	motifs	

and	domain	families	

Physico-chemical	

properties	

RBP	structure	

homologs	

SVM	classification	

by	composition	

features	of	proteins	

(2.4B)	Performance	

assessment	

		 		 		 		

TP	(proteins)	 193	 125	 166	 180	

FP	(proteins)	 44	 150	 6	 102	

TPR	(SN)	 0.79	 0.51	 0.67	 0.73	

FPR	(1-SP)	 0.12	 0.42	 0.02	 0.29	

ACC	 0.83	 0.54	 0.83	 0.72	

MCC	 0.66	 0.1	 0.69	 0.44	

F-measure	 0.83	 0.54	 0.8	 0.72	

	
	
2.6	Prediction	of	RNA-binding	sites	

A	comparative	assessment	of	the	programs	developed	for	the	prediction	of	nucleic	acid	

binding	 sites	was	 next	 carried	 out	 in	NA	Binding	 Prediction	 Benchmark	 (Miao	&	Westhof,	

2015).	 A	 total	 of	 16	 tools	 for	 the	 prediction	 of	 RNA-binding	 residues,	 5	 tools	 for	 the	

prediction	 of	 DNA-binding	 residues,	 along	 with	 several	 data	 sets	 obtained	 from	 the	

structures	 of	 protein-nucleic	 acid	 complexes	 were	 included	 in	 this	 study	 (available	 at	

http://ahsoka.u-strasbg.fr/nbench/index.html).	 APRICOT	 identifies	 RBPs	 among	 large-scale	

query	 sets	and	 further	 characterizes	 them	by	biological	 functions,	whereas	 the	16	 tools	 in	

NBench	predict	RNA-binding	residues	in	the	pre-defined	RBPs.	Hence,	the	motivation	behind	

developing	APRICOT	is	fundamentally	different	from	the	tools	involved	in	NBench.	However,	

APRICOT	 and	 these	 tools	 can	 complement	 each	 other	 by	 first	 identifying	 RBPs	 and	 their	

corresponding	 RBDs	 with	 APRICOT	 and	 further	 obtaining	 a	 high-resolution	 annotation	 by	
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identifying	RNA-binding	residues	using	the	best	performing	tools	from	NBench.	To	evaluate	

the	potential	of	this	 idea,	3,657	PDB	entries	were	acquired,	consisting	of	24	different	RNA-

related	 data	 sets	 in	NBench,	 selected	 at	 a	 resolution	 cut-off	 of	 3.5	 Å.	 This	 data	 set	 was	

subjected	 to	analysis	by	APRICOT	and	a	comparative	assessment	was	carried	out	between	

the	identified	RBD	sites	and	the	nucleic	acid	binding	residues	at	the	distance	cut-off	of	3.5	Å	

in	each	PDB	entry	(Figure	2.7).		

	

Figure	2.7	A	comparative	assessment	between	the	identified	RBD	sites	by	APRICOT	and	the	nucleic	
acid	binding	residues	identified	the	tools	discussed	in	NBench.		

(2.7A)	The	bar	chart	showing	the	specificities	achieved	by	APRICOT	on	different	data	sets,	 including	

the	 entire	 set	 of	 3,657	 RBPs	 (NBench_3657	 shown	 in	 green).	 (2.7B)	 Distribution	 of	 RNA-binding	

proteins	 based	on	 the	percentage	of	 overlapping	RNA-binding	 residues	 defined	 in	NBench	with	 the	

RNA-binding	 sites	 identified	 by	 APRICOT.	 The	 RNA-binding	 sites	 were	 identified	 in	 3,445	 of	

NBench_3657,	 of	 which	 3,304	 proteins	 have	 more	 than	 70%	 of	 their	 RNA-binding	 residues	
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overlapping	with	the	RNA-binding	sites.	(2.7C)	Boxplots	showing	the	sensitivities	achieved	by	APRICOT	

in	identifying	RNA-binding	sites	(in	red)	and	other	RNA-binding	residue	prediction	tools	in	identifying	

RNA-binding	 residues	 (in	 black)	 on	 NBench	 data	 sets.	 On	 all	 the	 data	 sets,	 APRICOT	 achieved	

sensitivities	higher	than	or	as	good	as	high	performing	tools.	

The	RNA-binding	residues	of	3,340	(91%)	PDB	entries	overlap	with	the	APRICOT	predicted	

RBD	sites	was	observed	that	showing	an	overall	sensitivity	of	0.91	(Figure	2.7A,	Figure	2.7B).	

The	 NBench	 tools	 were	 ranked	 by	 their	 sensitivities	 to	 identify	 RNA-binding	 residues	

together	with	APRICOT	for	its	ability	to	identify	RNA-binding	sites	on	24	data	sets.	As	shown	

in	Figure	2.7C,	APRICOT	was	among	the	best	performing	tools	compared	to	the	other	tools	in	

NBench	 across	 the	21	diverse	data	sets.	 In	agreement	with	 the	observations	made	 for	 the	

tools	 in	 NBench,	 APRICOT	 showed	 the	 lower	 sensitivity	 on	 the	 New_R15	 set	 (15	 new	

structures)	 and	 RBscore_R116	 (116	 proteins,	 mentioned	 as	 a	 difficult	 set).	 Furthermore,	

unlike	most	of	the	tools	that	do	not	show	discriminative	potential	for	RNA	and	DNA	binding	

residues,	 APRICOT	 showed	 a	 high	 specificity	 (0.7)	when	 1,374	DNA	 binding	 proteins	were	

included	 in	 this	 analysis.	 This	 evaluation	 demonstrates	 that	 APRICOT’s	 domain	 prediction-

based	analysis	 is	an	extremely	efficient	approach	 to	 identify	RBPs	and	 their	 corresponding	

potential	RNA-binding	region	 in	the	query	sequences.	Furthermore,	 it	also	 implies	that	the	

resolution	of	 the	RBP	 studies	 could	 be	 enhanced	 significantly	 by	 first	 identifying	 the	RBPs	

using	APRICOT,	followed	by	the	analysis	with	the	tools	for	the	identification	of	RNA-binding	

residues	in	the	predicted	RBD	sites.	

	

2.7	Identification	of	other	functional	classes	by	APRICOT	

APRICOT	modules	 are	 applicable	 for	 the	 functional	 identification	 of	 not	 only	 RBPs,	 but	

they	 can	 be	 easily	 adapted	 for	 one	 or	multiple	 other	 functional	 classes.	 As	 a	 part	 of	 the	

Critical	 Assessment	 of	 Function	 Annotation	 (CAFA),	 a	 project	 to	 assess	 the	 methods	 for	

computational	 annotation	 of	 protein	 functions	 (Radivojac	 et	 al.,	 2013),	 APRICOT	 was	

successfully	used	to	annotate	a	bacterial	data	set	comprising	of	more	than	1	million	proteins	

by	 a	 wide	 number	 of	 biological	 functions	 (Jiang	 et	 al.,	 2016).	 In	 order	 to	 emphasize	 the	

aspect	of	APRICOT	as	a	tool	for	the	characterization	of	other	functional	classes	of	proteins,	

kinase	proteins	 from	E.	 coli	 strain	K-12	as	 the	 reference	set	were	chosen.	Kinases	catalyse	

the	transfer	of	phosphate	groups	to	a	substrate	molecule	using	ATP	as	a	phosphate	donor.	In	

the	 UniProt	 database,	 110	 proteins	 from	 E.	 coli	 K-12	 are	 annotated	 with	 various	 kinase	
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activities	 (for	 example,	 Serine/threonine-protein	 kinase,	 Signal	 histidine	 kinase,	 Shikimate	

kinase	etc.)	and	are	tagged	by	the	GO	term	(GO:0016301)	for	kinase	activity.		

The	APRICOT	pipeline	was	supplied	with	the	term	‘kinase’	for	the	selection	of	reference	

domain	 set	 and	 the	 pipeline	 was	 applied	 to	 the	 kinase	 proteins.	 Out	 of	 110,	 106	 kinase	

proteins	 were	 identified	 correctly	 by	 APRICOT,	 achieving	 a	 sensitivity	 of	 0.96.	 The	 set	 of	

proteins	 that	was	discarded	by	APRICOT	 contain	 kinase-associated	domains	 that	were	not	

present	 in	 the	 reference	domain	 set	 due	 to	 the	 domain	 selection	 constraints	 of	APRICOT.	

This	analysis	suggests	that	APRICOT	is	also	efficient	in	the	characterization	of	proteins	based	

on	pre-defined	sets	of	domains	associated	with	functional	classes	other	than	RBPs.	However,	

it	should	be	noted	that	the	accuracy	of	the	results	depends	on	the	choice	of	terms	for	the	

domain	selection.	

	

2.8	Concluding	remarks	

APRICOT	is	an	integrated	pipeline	for	the	sequence-based	identification	and	annotation	of	

the	query	proteins	based	on	the	functional	motifs	and	domains	of	interest	known	from	the	

experimental	 data.	 Notably,	 here	 I	 report	 APRICOT	 primarily	 as	 a	 tool	 for	 the	 sequence-

based	 identification	of	RBPs,	which	uses	a	consistent	 set	of	 reference	RBDs	 from	CDD	and	

InterPro	 domain	 databases.	 Technically,	 the	 PSSM-based	 approach	 of	 CDD	 is	 built	 upon	

ungapped	motifs,	whereas	the	HMM	probabilistic	models	of	InterPro	can	handle	motifs	with	

insertions	 and	 deletions.	 By	 combining	 the	 predictive	 abilities	 of	 the	 CDD	 and	 InterPro	

consortia,	APRICOT	provides	a	broader	scope	for	domain	characterization.	

By	applying	the	pipeline	to	a	variety	of	test	sets,	it	was	also	ensured	that	the	efficiency	of	

APRICOT	does	not	depend	on	the	underlying	data	sets,	unlike	the	tools	that	are	trained	and	

tested	 on	 a	 small	 and	 often	 curated	 data	 set.	 In	 addition,	 APRICOT	 has	 been	 extensively	

trained	 and	 optimized	 for	 the	 identification	 of	 diverse	 RBP	 sets	 from	 all	 domains	 of	 life.	

Hence,	 it	can	be	used	to	extend	our	knowledge	of	RBPs	 in	systems	other	than	eukaryotes.	

One	 of	 such	 example	 is	 presented	 in	 the	 next	 chapter,	 where	 the	 tool	 is	 applied	 for	 the	

identification	and	characterization	of	RBPs	in	bacterial	pathogen	Salmonella	Typhimurium.		

Other	existing	 tools	 for	RBP	 identification	can	process	very	 few	queries	at	a	 time	 (most	

often	only	one)	via	their	webserver.	Therefore,	the	capacity	of	APRICOT	to	deal	with	a	large-

scale	data	set	is	one	of	its	important	features,	which	allows	it	to	process	data	sets	as	large	as	
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the	complete	human	proteome.	For	instance,	APRICOT	could	successfully	 identify	RBPs	like	

CsrA,	ProQ,	YhbY,	and	SmpB	in	E.coli	with	their	respective	RBD	motifs	with	domain	coverage	

of	 higher	 than	 80%	 and	 residue	 similarity	 close	 to	 70%.	 In	 addition,	 APRICOT	 suggested	 a	

number	 of	 proteins	 in	 E.coli	 that	 can	 potentially	 interact	 with	 RNAs	 via	 RBDs	 and	 hence,	

could	be	experimentally	studied.		

Due	to	the	automated	framework	and	accessibility	of	different	modules	of	the	pipeline,	

APRICOT	 can	be	 conveniently	 adapted	 for	 the	 characterization	of	other	 functional	 classes.	

Additionally,	 by	 applying	 the	 tool	 for	 the	 identification	 of	 the	 kinases	 in	 E.	 coli,	 I	

demonstrated	that	the	tool	is	not	built	on	a	fixed	set	of	domain	information;	instead	it	allows	

users	to	characterize	proteins	based	on	the	functional	classes	of	their	interest.	 	
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Chapter	3		

High-throughput	 screening	 of	 putative	 RBPs	 in	 Salmonella	

Typhimurium	

Bacterial	 RBPs	 have	 been	 shown	 to	 bind	 to	 specific	 sRNAs	 or	 mRNAs	 for	 the	 post-

transcriptional	 regulation	 of	 gene	 expression,	 and	 have	 been	 studied	 intensively	 in	

enterobacteria	 such	 as	 Salmonella.	 The	 gram-negative	 flagellated	 bacterial	 species	

Salmonella	enterica	subsp.	enterica	is	of	an	immense	interest	of	scientific	community	due	to	

its	 intracellular	 eukaryotic	 pathogenicity.	 A	 relative	 small	 number	 of	 proteins	 have	 been	

reported	 as	 RBP	 in	 Salmonella	 and	 other	 bacterial	 proteomes	 (Chapter	 1).	 However,	 the	

total	number	of	known	human	RBPs	(>1500)	corresponding	to	>5%	of	the	entire	proteome,	

indicates	 that	 a	 much	 higher	 number	 of	 proteins	 in	 other	 proteomes,	 including	 those	 of	

bacteria,	could	potentially	have	RNA-binding	abilities.	

Using	the	APRICOT	software	(described	 in	the	previous	chapter),	a	primary	screening	of	

RBPs	 was	 carried	 out	 in	 the	 proteome,	 which	 was	 followed	 by	 an	 RNA-Sequencing	 and	

Immunoprecipitation-based	 experimental	 validation	 of	 several	 of	 the	 potential	 RBP	

candidates	 carried	 out	 in	 the	 lab	 of	 Prof.	 Jörg	 Vogel.	 Various	 technical	 methods	 were	

implemented	 for	 the	 validation	 of	 these	 RBP	 candidates	 and	 for	 the	 identification	 of	 the	

genes	 enriched.	 Furthermore,	 other	 publicly	 available	 data	 sets	 of	 dual	 RNA-Seq	

(Westermann	et	al.,	2016),	Salmonella	Compendium	(Kröger	et	al.,	2013),	and	transposon-

directed	 insertion	 site	 sequencing	 (TraDIS)	 (Langridge	 et	 al.,	 2009;	 Chaudhuri	et	 al.,	 2013;	

van	Opijnen	&	Camilli,	 2014),	were	 included	 in	 this	 study	 in	order	 to	derive	 the	biological	

functionality	of	the	proteins	in	terms	of	their	relevance	as	regulatory	components.		

Due	to	the	two	main	functional	aspects	(computational	and	wet	lab	experiments)	of	this	

study,	this	chapter	can	be	divided	into	two	sections.	The	first	part	includes	the	methods	for	

RBP	identification	and	their	selection	for	the	CoIP-based	experimental	study	and	sequencing	

in	 the	Chapters	3.1-3.3.	The	second	part	discusses	 the	high-throughput	sequencing	and	 its	

downstream	analysis	in	the	Chapters	3.4-3.8.	
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3.1	Identification	of	RBPs	in	Salmonella	Typhimurium	SL1344	

Using	the	APRICOT	software,	a	comprehensive	set	of	reference-RBDs	was	selected	from	

the	domain	databases	and	the	proteome	of	Salmonella	Typhimurium	SL1344	was	subjected	

to	the	analysis	in	order	to	identify	proteins	with	the	reference	domains.	RBP	candidates	that	

were	 identified	 with	 one	 of	 the	 functional	 domains	 of	 interest	 were	 scored	 by	means	 of	

sequence-based	 features,	 which	 include	 information	 like	 chemical	 properties,	 amino	 acid	

composition,	structural	properties,	alignment	scores,	and	measures	of	similarity	with	respect	

to	the	reference	domains.	The	feature-based	scoring	facilitated	the	ranking	of	the	candidate	

proteins	 and	 allowed	 the	 selection	 of	 high-confidence	 candidates	 that	 possess	 highly	

conserved	 RBP	 motifs.	 Additionally,	 APRICOT	 annotated	 the	 selected	 putative	 RBPs	 by	

information	 such	 as	 secondary	 structure,	 subcellular	 localization,	 and	Gene	Ontology.	 The	

results	obtained	from	these	analyses	in	SL1344	are	discussed	below	in	detail.	

3.1.1	Selection	of	RNA-binding	domains	

In	addition	to	the	various	bacterial	RBDs	reported	in	literature	(Table	3.2),	a	reference	for	

RNA-binding	 domains	 was	 retrieved	 using	 a	 range	 of	 terms	 comprising	 classical	 and	 non-

classical	 domains	 (Castello	 et	 al.,	 2012),	 which	 are	 characterized	 as	 such	 due	 to	 their	

presence	in	the	well-characterized	mRNA	binding	proteins	(mRNPs).	In	addition,	to	account	

for	 other	 well-defined	 non-mRNPs	 and	 ribosome-related	 RBDs,	 the	 term	 ‘RNA-bind’	 and	

terms	associated	with	 the	RNA-binding	 ribosomal	domains	 (Gerstberger	et	al.,	2014)	were	

used.	

Table	3.1	The	classification	of	prokaryotic	RBDs	based	on	the	literature.	

RBDs	in	bacteria	 References	

PIWI	 Kumar	et	al.,	2012	

KH	 Matus-Ortega	et	al.,	2007	

S1	(studied	with	KH	domain)	 Wong	et	al.,	2013	

SAM	(homolog	rimO	in	bacteria)	 Fontecava	et	al.,	2004	

CRM	 Ostheimer	et	al.,	2002	&	2003	

ANTAR	 Shu	&	Zhulin,	2002	

PNPase:	Polyribonucleotide	nucleotidyltransferase	 Symmons	et	al.,	2002	

CAT	(Co-AntiTerminator	RNA-binding	domain)	 Declerck	et	al.,	1999	

TRAP	 Yakhnin	et	al.,	2006	

Cold	shock	domains	 Sachs	et	al.,	2012	

DSRM	(found	in	E.	coli	RNases	III,	H1)	 Mian	et	al.,	1997	

PUA	(bacterial	RsmF)	 Demirici	et	al.,	2010	
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S4	(EF-Tu,	EF-G)	(e.g.	RpsD)	 Björkman	et	al.,	1999		

RRM	 Maryuyama	et	al.,	1999	

ZnF-CCCH	 Deng	et	al.,	2012	

TROVE	(can	co-occur	with	WD40)	 Bateman	&	Kickhoefer,	2003	

THUMP	(e.g.	thiI-like	4-thiouridine	synthases)	 Waterman	et	al.,	2006	

SRP54	(P48	and	FtsY)	 Montoya	et	al.,	1997	

CheY	(bacterial	two-component	signalling	systems)	(e.g.	AmiR)	 Galperin,	2006	

Pseudouridine	synthetase	(TruB,	RsuA,	TruD,	Pus4)	 Koonin,	1996	

LSM	(Hfq)	 Lease	&	Woodson,	2004	

CRISPR-associated	protein	Cse3	 Makarova	et	al.,	2006	

Aconitase	B-	Eukaryotic	mAcn	(IRE)	 Walden	et	al.,	2006	

OST-HTH	(DUF88)	 Anantharaman	et	al.,	2010	

	

APRICOT	 retrieved	 655	 domain	 entries	 from	 CDD	 and	 593	 diverse	 entries	 from	 the	

InterPro	database	using	16	domain	identifiers	that	are	well-defined	in	the	databases	or	listed	

as	 classical	 RBDs,	 which	 are:	 RRM,	 Nudix,	 DEAD,	 KH,	 RNase	 H,	 S1-domain,	 cold-shock	

domain,	 La-domain,	 PIWI,	 pumilio,	 DSRM,	 zf-CCCH,	 SAP-domain,	 and	 PUF-domain.	 In	

addition,	5,816	additional	domains	were	 included	 in	 the	 reference	sets,	which	account	 for	

1,952	non-classical	RBDs,	1,715	RNA-binding	ribosomal	domains,	and	2,149	other	non-mRNP	

related	 RBDs.	 In	 addition	 to	 the	 important	 classical	 and	 non-classical	 RBDs	 (Figure	 2.2A-

2.2B),	the	detailed	statistics	of	domain	entries	selected	by	the	specific	terms	denoting	non-

classical	 RBDs	 and	 RBD-unknown	 have	 been	 shown	 in	 the	 Figure	 3.1A	 and	 Figure	 3.1B,	

respectively.	
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Figure	3.1	The	numbers	of	domain	entries	selected	by	specific	terms	indicating	different	classes	of	
domains.	

Domain	entries	from	CDD	and	InterPro	database	that	were	retrieved	using	the	terms	associated	with	

the	selected	classes	of	non-classical	RBDs	(3.1A)	and	RBD-unknown	(3.1B).	

3.1.2	Identification	of	RNA-binding	proteins	

APRICOT	 has	 been	 trained	 on	 a	 large	 set	 of	 positive	 and	 negative	 RBPs	 to	 rank	 the	

parameters	and	their	respective	cut-offs	for	the	identification	of	RBPs	that	contain	classical	

RBDs	 with	 an	 optimal	 accuracy	 (~0.8).	 The	 training	 sets	 indicated	 that	 two	 parameters	

contribute	the	most	in	the	identification	of	RBPs,	which	are	domain	coverage	and	sequence	

similarity.	The	domain	coverage	denotes	the	fraction	of	reference	consensus	identified	in	the	

query	 proteins	 and	 the	 sequence	 similarity	 indicates	 the	 extent	 of	 similarity	 between	 the	

reference	and	identified	domain	region	for	which	the	minimum	cut-offs	were	set	as	39%	and	
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24%	respectively.	It	should	be	noted	that	the	similarity	threshold	used	by	APRICOT	does	not	

necessarily	 takes	 the	 structural	 conformation	 that	 plays	 an	 important	 role	 in	 RNA	binding	

into	account.	

	

Figure	 3.2	 The	 classification	 of	 1068	 proteins	 that	 were	 computationally	 identified	 as	 RBPs	 by	
APRICOT	in	Salmonella	Typhimurium	SL1344.		

(3.2A)	Pie	chart	illustrating	the	distribution	of	putative	RBPs	across	different	RBD	types.	155	

proteins	 were	 identified	 as	 RBPs	 based	 on	 the	 occurrences	 of	 classical	 RBDs	 in	 their	

sequences.	(3.2B)	Pie	chart	showing	the	number	of	RBDs	predicted	in	the	putative	RBPs.	The	

majority	of	them	were	predicted	to	harbour	only	1	RBD,	whereas	323	proteins	were	identified	

with	2	or	more	RBDs.	

APRICOT	identified	1,068	proteins	as	putative	RBPs,	which	constitutes	about	20%	of	the	

entire	proteome	of	SL1344,	using	the	pre-defined	parameters	and	their	cut-offs	(Figure	3.2).	

Among	 these	 putative	 RBPs,	 155	 proteins	 were	 predicted	 to	 have	 classical	 RBDs,	 265	

proteins	were	 predicted	 to	 have	 non-classical	 RBDs,	 143	 proteins	were	 predicted	 to	 have	

RNA-binding	ribosomal	domains,	96	proteins	are	annotated	as	transcription	factors,	and	the	

remaining	 500	proteins	were	predicted	 to	 have	potentially	 non-mRNP-related	RBDs.	 From	

the	 set	 of	 known	 bacterial	 RBPs	 identified	 in	 the	 literature	 (Van	 Assche	 et	 al.,	 2015),	 in	

Salmonella	 Typhimurium	 the	 few	 proteins	 that	 have	 been	 characterized	 as	 such	 are	 Hfq,	

CsrA,	ProQ,	SmpB,	CspA,	CspB,	and	YhbJ	(RapZ).	These	proteins	were	successfully	identified	

with	high	confidence	as	RBPs	by	APRICOT	with	their	respective	RBDs	(Table	3.3).	

A B
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Table	3.2	Positive	RBPs	used	as	control	libraries	in	the	RIP-Seq	based	screening	of	RBPs	in	
Salmonella	Typhimurium.	

These	proteins	were	successfully	identified	as	RBPs	by	APRICOT,	and	the	identified	RBDs	and	

their	corresponding	statistics	are	indicated.	

Gene	name	Synonym/	

Locus_tag	

Domain	id	 Short	name	 Domain	

length	

E	value	 Coverage	

percent	

Identity	

percent	

Similarity	

percent	

yhbJ	 SL1344_3295	 PF03668	 RapZ-like	

family	

284	 1.00E-175	 98.94	 64.43	 75	

smpB	 SL1344_2660	 PF01668,	

TIGR00086	

SsrA-binding	

protein	

68	 7.00E-36	 95.58	 58.82	 73.52	

proQ	 SL1344_1775	 PF04352,	

SM00945	

ProQ,	

ProQ/FinO	

domain	

114	 2.00E-46	 100.00	 55.26	 67.54	

csrA	 SL1344_2806	 PF02599	 CsrA	 54	 3.00E-27	 98.14	 70.37	 90.74	

cspB	 cspJ	cspG	

SL1344_1924	

PRK09890	 Cold-shock	

protein	

70	 4.00E-34	 98.57	 80.00	 91.42	

cspA	 SL1344_3615	 PRK09890,	

PF00313	

Cold-shock	

protein,	DNA-

binding	

70	 1.00E-34	 98.48	 74.24	 84	

hfq	 SL1344_4295	 PRK00395,	

PF01423		

Hfq,	LSM	 79,	66	 4.00E-07	 94.93,	

81.81	

77.21,	25.75	 87.34,	48.48	

	

To	 infer	 functionalities	 and	 possible	 regulatory	 roles,	 the	 putative	 RBPs	 were	 further	

classified	based	on	the	type	of	their	identified	RBDs,	their	co-occurrences	with	other	RBDs	or	

non-RBDs,	and	known	functions	(Figure	3.3).	Among	the	classical	RBDs,	cold-shock	domains	

were	predicted	 in	87	proteins,	which	was	 the	domain	 class	with	 the	maximum	number	of	

putative	RBPs.	Other	domain	classes	 that	accounted	 for	an	average	of	36	proteins	are	KH,	

DEAD,	 and	 S1-domains.	 Meanwhile,	 a	 KOW	 and	 La-domain	 were	 identified	 in	 9	 and	 8	

proteins,	respectively,	and	DSRM	and	PIWI	domains	were	identified	in	only	one	protein	each.	

RNA-binding	 ribosomal	 protein	 domains	 were	 identified	 in	 255	 proteins	 and	 non-mRNP-

related	RBDs	were	 identified	 in	 479	 proteins.	 Among	 the	 non-classical	 RBDs,	 various	 SAM	

domains,	 S4-domain,	 Helicase_C,	 and	 tRNA-anti	 were	 identified	 in	 a	 several	 proteins.	

However,	most	of	the	non-classical	domains	were	identified	in	one	putative	RBP	only,	which	

is	 similar	 to	 the	 distribution	 of	 these	 RBDs	 reported	 in	 the	 human	 candidate	 RBP	

complement	(Castello	et	al.,	2012;	Gerstberger	et	al.,	2014).	Among	the	proteins	identified	

with	RNA-binding	ribosomal	domains,	68	were	originally	annotated	as	ribosomal	proteins	in	

the	 databases,	 53	 of	 them	 were	 annotated	 as	 hypothetical	 or	 uncharacterized	 proteins,	

whereas	the	rest	accounted	for	proteins	with	other	functions.	
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Figure	3.3	The	classification	of	predicted	RBPs	by	the	domain	types.		

Bar	 charts	 showing	 the	 classification	 of	 the	 proteins	 into	 classical	 domains	 (3.3A),	 non-classical	

domains	 (3.3B)	 and	 other	 RBDs:	 domains	 that	 are	 annotated	 as	 RNA-binding	 based	 on	 literature	

(further	 separated	 in	 3.3D).	 (3.3C)	 Pie	 chart	 illustrating	 the	 classification	 ribosomal	 domains	

containing	proteins	into	the	groups	based	on	their	known	functions	in	the	UniProt	database.	
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3.2	 Transcript	 abundance	 of	 computationally-identified	 RBP-encoding	 genes	

in	transcriptomic	data	

The	human	RBPs,	in	general,	are	expressed	at	a	higher	level	compared	to	the	rest	of	the	

proteome	and	have	been	reported	to	contribute	significantly	to	the	total	expressed	protein-

coding	transcriptome	(Gerstberger	et	al.,	2014).	This	pattern	of	expression	has	been	linked	

to	important	roles	of	RBPs	in	RNA	processing	and	post-translational	gene	regulation.	In	order	

to	determine	if	such	expression	patterns	are	also	present	for	the	putative	RBPs	identified	by	

APRICOT	 in	SL1344,	 the	expression	 levels	of	putative	RBPs	 in	 two	 transcriptomic	data	 sets	

was	measured.	 The	 first	 data	 set	was	 taken	 from	 SalCom,	which	 comprises	 RNA-Seq	 data	

generated	under	infection-relevant	conditions	(Kröger	et	al.,	2013).	The	second	data	set	was	

obtained	from	the	dual	RNA-Seq	based	study	of	Salmonella-infected	HeLa	cells	(Westermann	

et	al.,	2016),	which	quantifies	the	expression	of	transcripts	from	both	host	and	pathogen.		

In	addition	 to	 the	RBPs,	 the	expression	patterns	of	 transcription	 factors	 (TFs)	were	also	

retrieved.	The	total	number	of	genes	encoding	RBPs	and	TFs	are	almost	similar	in	the	human	

genome	 (~1,500).	 In	 contrast,	 in	 SL1344,	 only	 216	 proteins	 (25%	 of	 the	 putative	 RBP-

encoding	genes)	are	annotated	as	TFs.	

In	 human,	 TFs	 represent	 3%	 of	 the	 transcript	 abundance	 in	 data	 sets	 obtained	 from	

different	 tissues	 and	 cancers,	 whereas	 RBP-encoding	 genes	 contribute	 up	 to	 20%	 of	 the	

transcript	 abundance	 (Gerstberger	 et	 al.,	 2014).	 To	 determine	 the	 existence	 of	 such	

expression	pattern	in	SL1344,	the	relative	abundance	of	TFs	and	RBPs	in	the	aforementioned	

SL1344	transcriptomic	data	sets	was	calculated.	

3.2.1	SalCom	data	sets	

SalCom	 is	 a	 transcriptomic	 compendium	 for	 Salmonella	 enterica	 serovar	 Typhimurium	

comprised	of	RNA-Seq	samples	generated	under	20	 infection-related	conditions	 (Kröger	et	

al.,	2013).	A	total	3,790	genes	(85%)	out	of	4,456	coding	genes	were	recorded	as	expressed	

(read	count	>	5)	in	at	least	one	environmental	condition.	SalCom	included	expression	profiles	

for	1,040	out	of	1,068	APRICOT-selected	candidate	RBP-encoding	genes,	and	213	out	of	216	

transcription	factors.	A	total	of	96	TF	encoding	genes	which	were	annotated	as	such	by	Go	

terms,	were	identified	also	as	genes	encoding	RBPs	based	on	APRICOT	analysis.	These	genes	

were	 considered	only	 as	 TFs	 for	 the	purpose	of	quantification;	hence,	 I	 used	944	putative	

RBPs	in	the	subsequent	analysis.	In	the	SalCom	data	set,	841	out	of	944	RBPs	(89%)	and	204	
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out	 of	 213	 TFs	 (96%)	were	 sufficiently	 expressed	 in	 at	 least	 one	 of	 the	 conditions	 (Figure	

3.4).	

	

Figure	 3.4	 Annotation	 of	 the	 putative	 RBP	 encoding	 genes	 and	 their	 comparison	 with	 the	
transcription	factors	(TFs)	using	the	transcriptomic	data	sets	in	SalCom.		

(3.4A)	 Numbers	 RBP	 encoding	 genes	 and	 the	 TFs	 in	 the	 complete	 gene	 set	 in	 SalCom.	 (3.4B)	 The	

relative	 transcript	 abundance	 of	 the	 RBP	 encoding	 genes	 and	 the	 TFs	 in	 the	 complete	 SalCom	

transcriptomic	data	sets.	(3.4C)	Distribution	of	the	3114	differentially	expressed	genes	(expression	cut	

off	=	>5	reads)	into	different	classes	of	putative	RBPs,	TFs,	RBPs+TFs	(when	the	TFs	are	also	predicted	

as	RBPs)	and	other	genes.	(3.4D)	Relative	transcript	abundance	of	the	differentially	expressed	genes	

in	the	different	gene	classes	(as	described	in	the	Figure	3.4C).	
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Similar	 to	 the	 transcript	 abundance	 of	 TFs	 in	 human	 transcriptome	 data	 sets,	 the	 TF-

encoding	genes	of	SL1344	contribute	an	average	of	3%	to	the	transcriptome	in	the	SalCom	

data	set,	while	a	high	transcript	abundance	of	41%	was	recorded	for	all	the	putative	RBPs	of	

which	 ~50%	 of	 transcripts	 correspond	 to	 the	 RNA-binding	 ribosomal	 proteins.	 The	 highly-

expressed	set	of	genes	that	are	mapped	with	read	counts	of	more	than	100	in	at	least	one	

RNA-Seq	 data	 set	 in	 SalCom	 consisted	 of	 1,993	 genes	 (45%	 of	 the	 total)	 that	 include	 488	

candidate	 RBP-encoding	 genes	 (51%	 of	 total	 RBPs)	 and	 82	 TFs	 (38%	 of	 the	 total	 TFs),	

representing	41%	and	3%	of	the	total	transcriptome,	respectively	(Figure	3.5).	

	

Figure	3.5	Total	transcript	contributions	of	the	highly	expressed	candidate	RBP	encoding	genes	and	
TFs	to	the	complete	transcriptome	data	set	of	Salcom.		

A	threshold	of	the	mapped	read	count	>100	was	used	for	the	selection	of	the	highly-expressed	genes.	

As	 shown	 in	 the	 boxplots,	 the	 RBP	 encoding	 genes	 account	 for	 an	 average	 of	 40%	 of	 the	 entire	

transcriptome,	 half	 of	 which	 correspond	 to	 the	 ribosomal	 RBP	 encoding	 genes.	 In	 contrast	 <3%	

transcripts	correspond	to	the	TFs	in	different	conditions.	

In	the	set	of	putative	RBP-encoding	genes,	68	genes	are	annotated	as	ribosomal	proteins	

and	 represent	 24%	 of	 the	 total	 transcriptome.	 These	 RNA-binding	 ribosomal	 proteins	

account	 for	 only	 6%	 of	 the	 total	 putative	 RBP	 genes	 but	 they	 represent	 55%	 of	 the	

transcripts	corresponding	to	RBP-encoding	genes.	In	summary,	this	evaluation	indicates	that	

in	 the	 complete	 transcriptome,	 18.5%	of	 transcripts	 represent	 non-ribosomal	 RBPs,	 22.5%	
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transcripts	represent	RNA-binding	ribosomal	proteins,	and	3%	of	transcripts	account	for	TFs	

(Table	3.4).	These	proteins	were	further	inspected	in	a	different	dataset,	which	is	discussed	

in	detail	later	in	this	chapter.	

Figure	3.6	Gene	expression	profiles	of	genes	in	SalCom	data	set.	

(Images	below)	
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Figure	 3.6A-3.6B	 Heatmaps	 in	 3.6A	 and	 3.6B	 illustrate	 the	 expression	 profiles	 in	 terms	 of	 the	

transcript	abundance	of	the	candidate	RBP	encoding	genes	(3.6A)	and	TFs	(3.6A)	in	the	y-axis,	where	

the	x-axis	corresponds	to	the	biological	conditions	of	the	samples.	

	

	

Figure	 3.6C-3.6D	 Heatmaps	 in	 3.6C	 and	 3.6D	 illustrate	 the	 expression	 profiles	 in	 terms	 of	 the	

differential	 expressions	 of	 the	 candidate	 RBP	 encoding	 genes	 (3.6C)	 and	 TFs	 (3.6D)	 in	 the	 y-axis,	

where	the	x-axis	corresponds	to	the	biological	conditions	of	the	samples.	
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Table	3.3	The	abundance	of	candidate	RBPs	(ribosomal	and	non-ribosomal)	in	contrast	to	the	GO	
derived	transcription	factors	across	the	transcriptomic	data	sets	of	SalCom.	

Gene	type	 Total	genes	 Genes	in	SalCom	

Complete	 4657	 4456	

Transcription	factor		 216	 213	

RBPs	

(putative+known)	

1068	 1040	

	

Furthermore,	using	a	minimum	fold-change	cut-off	of	1.5,	3,114	expressed	genes	showed	

differential	expression	in	at	least	one	of	the	infection	relevant-conditions	in	the	SalCom	data	

set.	A	total	of	860	genes	encoding	putative	RBPs	(75%	of	the	total	RBPs)	and	163	TFs	(76%	of	

the	 total	 TFs)	were	 recorded	 as	 differentially	 expressed	 in	 at	 least	 one	 of	 the	 conditions,	

which	 represent	 28%	 and	 5%	 of	 the	 total	 number	 differentially	 expressed	 genes,	

respectively.	 In	 the	 set	 of	 1,993	 highly	 expressed	 genes,	 1,809	 genes	 were	 differentially	

expressed,	which	included	439	candidate	RBP-encoding	genes	(46%	of	the	total	RBPs)	and	77	

TFs	(4%	of	the	total	TFs),	accounting	for	26%	and	4%	of	the	total	highly	expressed	gene	sets,	

respectively.	 The	detail	 of	 the	expression	patterns	 in	 terms	of	 the	 transcript	 abundance	 is	

shown	 in	 Figure	 3.6.	 The	 transcript	 levels	 of	 the	 candidate	 RBP-encoding	 genes	 in	 the	

expression	profiles	of	SL1344	suggest	that	RBP-	and	ribosome-related	transcripts	may	have	

important	roles	in	the	translation-related	processes	due	to	their	high	abundance.	

3.2.2	Dual	RNA-Seq	data	sets	

To	further	understand	the	expression	of	the	putative	RBPs	identified	in	this	study	in	the	

context	of	 infection,	 the	expression	patterns	of	 the	candidates	 in	a	dual	RNA-Seq	data	 set	

(Westermann	et	al.,	2016)	were	also	retrieved.	Dual	RNA-Seq	 is	a	technique	that	has	been	

developed	 to	 understand	 the	 gene	 expression	 patterns	 of	 both	 the	 host	 and	 bacterial	

pathogen	simultaneously	during	infection.	High-resolution	RNA-Seq	libraries	were	generated	

for	HeLa	cells	both	before	(0	hour)	and	after	infection	by	SL1344	at	different	time	points	of	

2,	4,	8,	16	and	24	hours	post-infection	(hpi)	(Westermann	et	al.,	2016).	These	data	sets	were	

analyzed	to	capture	the	cumulative	abundance	of	transcripts	corresponding	to	the	RBPs	and	

TFs	of	both	human	and	Salmonella.	A	large	proportion	of	the	transcripts	in	the	RNA-Seq	data	

sets	 represent	 the	human	 transcriptome,	whereas	 transcripts	corresponding	 to	Salmonella	

range	from	1%	in	the	libraries	generated	for	the	early	time-points	for	infection	to	16%	in	the	

libraries	generated	from	samples	isolated	24	hours	post-infection.	



	 67 

The	relative	expression	 levels	of	RBPs	and	TFs	from	HeLa	and	SL1344	are	reported	here	

with	 respect	 to	 their	 reference	organism.	 In	agreement	with	 the	previous	observations	by	

Gerstberger	et	al.	(2014),	the	transcripts	related	to	the	human	TFs	represent	an	average	of	

3%	 of	 the	 transcriptomes	 in	 both	 infected	 and	 non-infected	 libraries.	 The	 fraction	 of	

transcriptome	corresponding	to	SL1344	in	the	infected	libraries	represented	a	similar	level	of	

expression	 (~3%)	 for	 the	 216	 bacterial	 TFs.	 The	 expression	 level	 of	 human	 RBP	 encoding	

genes,	 which	 were	 reported	 to	 represent	 20%	 of	 the	 transcriptome	 (Gerstberger	 et	 al.,	

2015),	represented	~9%	of	the	total	transcriptome	in	non-infected	data	sets,	increasing	only	

slightly	 in	 the	 infected	 data	 set.	 Interestingly,	 higher	 expression	 of	 the	 putative	 RBP-

encoding	genes	of	SL1344	was	observed,	which	contributed	more	than	10%	to	the	fraction	

of	SL1344	transcriptome	of	infected	libraries	in	the	early	stages	of	infection	(2,	4,	and	8	hpi),	

reaching	up	to	16%	and	23%	in	the	 libraries	generated	for	the	 later	stages	of	 infection	(16	

and	24	hours,	respectively)	(Figure	3.7).	This	steady	increase	in	the	transcript	contributions	

between	 2	 –	 24	 hpi	 suggests	 that	 the	 putative	 Salmonella	 RBP-encoding	 genes	 are	more	

highly	expressed	in	the	later	stages	of	infection.	In	the	samples	infected	at	2,	4,	8,	16	and	14	

hpi,	the	number	of	expressed	RBP	encoding	genes	are	313	(30%),	553	(51%),	805	(75%),	861	

(80%)	and	1062	(99%),	respectively.	These	observations	suggested	that	there	are	important	

regulatory	roles	of	the	putative	RBPs	during	Salmonella	infection	of	host-cells,	as	only	a	30%	

of	 RBPs	 are	 expressed	 in	 the	 early	 stage	 of	 infection	 but	 all	 are	 expressed	 at	 the	 late	

infection	stage,	and	at	higher	levels.	
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Figure	 3.7	Quantification	 of	 transcript	 abundance	 of	 RBP	 and	 TF	 encoding	 genes	 in	 Salmonella	
infected	libraries	of	the	dual	RNA-Seq	data	set.		

(3.7A)	Human	RBP	and	TF	encoding	genes	represent	an	average	of	9%	and	3%	of	the	total	dual	RNA-

Seq	 transcriptome	 respectively	 in	 all	 Salmonella-infected	 libraries.	 The	 contribution	 of	 Salmonella	

transcripts	 to	 the	 total	 transcriptome	 of	 the	 dual	 RNA-Seq	 data	 set	 (human+Salmonella)	 is	

considerably	smaller	due	to	its	smaller	genome	size.	(3.7B)	Bar	chart	represents	the	relative	transcript	

abundance	 of	 human	 and	Salmonella	 RBP	 and	 TF	 encoding	 genes	 to	 their	 own	 transcriptome.	 The	

contribution	of	genes	that	encode	human	RBPs,	human	TFs	and	Salmonella	TFs	are	consistent	 in	all	

the	 samples.	 However,	 the	 Salmonella	 candidate	 RBP	 encoding	 genes	 of	 contributed	 >10%	 to	 the	

fraction	of	SL1344	transcriptome	of	infected	libraries	in	the	early	stages	of	infections	(2,	4	and	8	hpi)	

reaching	up	to	16%	and	23%	in	the	 libraries	generated	for	the	 later	stage	of	 infection	at	16	and	24	

hpi,	respectively.	

To	further	distinguish	genes	that	play	important	roles	in	late	stages	of	infection	compared	

to	 that	 important	 in	 the	 early	 stage	 of	 infection,	 a	 differential	 expression	 analysis	 (for	

example,	 in	 DESeq2	 the	 adjusted	P	 value	 (Padj)	 <	 0.1	 and	 differential	 expression	 log2fold	

change	<	-1/>	+1	was	taken	as	threshold)	was	carried	out	using	libraries	created	at	2	hpi	as	

control	 samples.	At	4	hpi,	only	31	human	genes	and	2	Salmonella	 genes	were	 reported	as	

differentially	 expressed,	 indicating	 only	 slight	 changes	 in	 gene	 expression	 during	 the	 early	

hours	of	infection.	However,	a	consistent	increase	in	the	number	of	differentially	expressed	

genes	was	observed	in	the	dual	RNA-Seq	samples	generated	at	the	later	time	points	for	both	

the	organisms.	At	8	hpi,	112	human	genes	(3	RBPs	and	11	TFs	encoding),	and	86	Salmonella	
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genes	 (8	 predicted	 RBPs	 encoding,	 for	 example,	 sigD,	 invC,prgK,	 and	 siiC)	 and	 3	 TFs	were	

differentially	expressed.	At	16	hpi,	747	human	genes,	which	included	14	RBP-encoding	genes	

and	 50	 TFs,	 as	well	 as	 120	 Salmonella	 genes,	which	 included	 21	 RBP-encoding	 genes	 (for	

example,	genes	observed	at	8	hpi,	nikA,	fimZ,	tlpA,	and	2	plasmid-encoded	genes)	and	3	TFs	

were	differentially	 expressed.	At	 24	 hpi,	 the	 differentially	 expressed	 genes	 in	 the	 samples	

from	all	 the	discussed	 functional	groups	differed	only	slightly	 from	the	samples	associated	

with	16	hpi.	

	

3.3	Selection	of	RBP	candidates	for	the	experimental	validation	

From	the	set	of	putative	RBPs	identified	by	APRICOT	in	the	SL1344	proteome	in	this	study,	

we	 selected	 a	 subset	 of	 131	 candidate	 proteins,	 as	well	 as	 6	 positive	 controls	 (Hfq,	 CsrA,	

CspA,	 CspB,	 SmpB,	 and	 YhbJ)	 that	 are	 characterized	with	 RBDs	 known	 in	 both	 eukaryotes	

and	prokaryotes	from	the	set	of	classical	RBDs	(RRM,	DEAD,	KH,	S1,	S4,	cold-shock,	PUA,	and	

LSM).	 Several	 less	 studied	 domains	 like	 SAM,	 KOW,	 THUMP	 (Aravind	et	 al.,	 2001),	WD40,	

and	 Nudix	 (Yang	 et	 al.,	 2010)	 were	 also	 selected.	 Additionally,	 it	 was	 taken	 under	

consideration	whether	the	genes	encoding	these	putative	RBPs	are	expressed	in	at	least	one	

of	the	conditions	in	SalCom	data	set,	or	are	expressed	in	the	dual	RNA-Seq	infection	data	set.	

In	 the	dual	RNA-Seq	data	 set,	 all	 positive	 controls	were	differentially	 expressed	 (DESeq	

analysis	 using	 non-infected	 sample	 as	 control)	 at	 both	 early	 and	 later	 stages	 of	 infections	

with	an	exception	of	smpB,	which	was	not	differentially	expressed	at	2	hpi.	From	the	set	131	

selected	 candidate	 genes	 (excluding	 the	 positive	 controls),	 43,	 78,	 104,	 110	 and	 131	 are	

differentially	expressed	at	2,	4,	8,	16	and	24	hpi,	respectively,	which	is	representative	of	the	

proportion	of	all	differentially-expressed	APRICOT-selected	RBPs	that	encode	genes	at	these	

time	points	 (Figure	 3.8).	Of	 the	 43	 genes	 that	were	 differentially	 expressed	 2	 hours	 post-

infection,	39	were	also	found	to	have	altered	expression	at	later	infection	time	points	(Table	

3.5).	

Table	3.4	A	set	of	39	genes	is	differentially	expressed	across	the	dual	RNA-Seq	data	sets	
corresponding	to	the	different	time	points	of	infection.		

These	 genes	 are	 selected	 using	 the	 log2	 fold-change	 (log2FC)	 >	 2	 compared	 to	 the	 non-

infected	control	and	a	p-adjusted	value	<	0.1.	All	these	genes	were	later	subjected	to	RIP-Seq	

based	experimental	studies.	
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Gene	name	(locus	tag)	 2	hpi	-	Log2FC	 4	hpi	-	Log2FC	 8	hpi	-	Log2FC	 16	hpi	-	

Log2FC	
24	hpi	-	
Log2FC	

aceF	(SL1344_0153)	 2.25	 6.98	 7.74	 6.75	 10.62	

acnA	(SL1344_1644)	 3.91	 6.15	 8.09	 7.27	 10.14	

acnB	(SL1344_0159)	 2.71	 6.64	 6.40	 6.93	 10.50	

cysN	(SL1344_2913)	 4.58	 5.08	 7.13	 7.53	 10.07	

deoB	(SL1344_4496)	 2.61	 6.18	 6.28	 7.85	 11.69	

dnaG	(SL1344_3184)	 4.64	 6.64	 5.48	 6.04	 12.68	

dnaK	(SL1344_0012)	 3.59	 6.78	 6.34	 5.73	 10.46	

engA	(SL1344_2481)	 3.78	 6.37	 6.67	 6.57	 9.22	

engB	(SL1344_3948)	 3.42	 4.84	 4.62	 6.47	 9.93	

ffh	(SL1344_2650)	 3.54	 6.38	 7.30	 6.02	 11.73	

glk	(SL1344_2371)	 4.32	 5.18	 6.52	 5.73	 8.21	

gltD	(SL1344_3303)	 2.82	 6.29	 6.73	 6.37	 3.96	

grxB	(SL1344_1102)	 3.86	 5.52	 6.50	 6.38	 8.47	

hflX	(SL1344_4296)	 3.18	 7.31	 5.54	 6.03	 11.04	

infB	(SL1344_3259)	 1.97	 4.77	 3.31	 5.22	 9.55	

lepA	(SL1344_2545)	 4.03	 5.84	 5.85	 6.88	 9.95	

ligA	(SL1344_2390)	 3.96	 5.48	 7.27	 6.94	 10.14	

lysC	(SL1344_4156)	 4.40	 5.80	 6.67	 5.24	 8.33	

mreB	(SL1344_3346)	 3.78	 6.49	 6.12	 5.65	 10.96	

nusA	(SL1344_3260)	 4.08	 7.11	 5.15	 6.85	 11.01	

nusB	(SL1344_0412)	 4.45	 6.80	 7.12	 5.92	 11.00	

obgE	(SL1344_3273)	 2.93	 6.23	 4.56	 6.06	 12.38	

pheT	(SL1344_1272)	 5.13	 9.25	 9.77	 7.52	 8.61	

pnp	(SL1344_3255)	 3.42	 8.16	 6.64	 6.43	 10.11	

ppiB	(SL1344_0529)	 5.11	 5.80	 7.71	 7.04	 9.47	

prfA	(SL1344_1704)	 4.26	 5.45	 6.83	 6.25	 9.25	

rho	(SL1344_3876)	 4.05	 7.55	 8.34	 6.89	 9.56	

rluD	(SL1344_2622)	 4.31	 8.47	 8.00	 7.06	 10.56	

rplW	(SL1344_3405)	 2.81	 7.91	 4.16	 5.45	 10.90	

rpmA	(SL1344_3275)	 2.82	 7.02	 5.04	 7.34	 11.65	

rpsB	(SL1344_0217)	 3.79	 7.09	 5.40	 5.97	 10.59	

rpsC	(SL1344_3401)	 3.35	 7.68	 4.64	 5.73	 11.21	

rpsD	(SL1344_3383)	 4.01	 7.47	 6.40	 6.70	 11.00	

sdhB	(SL1344_0717)	 3.71	 6.07	 8.36	 7.32	 8.75	

secA	(SL1344_0136)	 2.68	 6.14	 6.17	 5.98	 8.84	

selB	(SL1344_3647)	 4.11	 4.48	 6.57	 6.64	 9.44	

tolB	(SL1344_0730)	 3.99	 6.79	 6.63	 6.01	 11.22	

tyrS	(SL1344_1381)	 3.89	 5.76	 6.12	 5.96	 10.45	

uvrB	(SL1344_0775)	 3.08	 5.81	 6.33	 7.00	 11.23	

	

Classification	of	RBP	candidates	by	their	RBDs	

The	 selected	 131	 putative	 RBPs	 were	 next	 classified	 based	 on	 their	 RBD	 architecture	

identified	by	APRICOT	(Appendix	Table	1).	The	categorization	was	carried	out	based	on	the	
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class	 of	 domains	 identified	 in	 the	 selected	 proteins.	 The	 sub-categories	 were	 defined	 to	

indicate	 if	 the	proteins	 contained	RBDs	 from	single	 class	or	 several	 classes	and	 if	 the	RBD	

occurred	in	one	location	or	multiple	locations.		

	

Figure	3.8	Differential	expression	of	131	selected	RBP	encoding	genes	in	the	dual	RNA-Seq	data	of	
Salmonella-infected	HeLa	samples.		

The	 differential	 expression	 (shown	 in	 log2	 fold-change	 values)	 are	 obtained	 from	DESeq2	 analysis,	

where	the	triplicated	mock	treated	HeLa	samples	were	used	as	controls	and	salmonella	infected	HeLa	

samples	were	used	as	 treated	 libraries.	A	set	of	39	genes	was	consistently	observed	at	all	 the	 time	

point	of	Salmonella	infections	as	differentially	expressed	(Table	3.5).	

Several	 proteins	 were	 classified	 to	 have	 only	 a	 single	 RBD	 class,	 such	 as	 ribosomal	

domains,	 DEAD,	 LSM,	 cold-shock	 RRM,	 SAM,	 or	 several	 non-mRNP	 domains.	 Other	 RBD	

classes	 contained	 less	 than	 3	 proteins	 each.	 Some	 proteins	 were	 identified	 with	multiple	

RBDs	that	occurred	single	or	multiple	times	in	their	sequences.	For	example,	many	ribosomal	

domains,	cold-shock	domains,	and	KH	domains	were	observed	together	with	other	RBDs	in	

the	 same	 proteins.	 In	 contrast,	 LSM,	WD40,	 KOW,	 and	Nudix	 domains	 did	 not	 occur	with	

other	 RBD	 classes.	 A	 set	 of	 38	 proteins	 were	 classified	 into	 a	 separate	 group	 as	 they	

contained	repeated	RNA-binding	sites,	most	of	which	were	annotated	with	domain	entries	

from	 several	 RBD	 types	 from	 different	 databases	 (Figure	 3.9A).	 Several	 proteins	 were	

identified	that	had	several	non-RNA-binding	domains	in	addition	to	a	single	or	multiple	RBDs	

(Figure	3.9B).	



	 72 

	

Figure	3.9	Domain	architecture	of	RBP	candidates.		

Total	number	of	proteins	(Y	axis)	identified	with	(3.9A)	repeated	RNA-binding	sites	that	correspond	to	

the	domain	entries	from	different	databases	and	(3.9B)	non-RNA-binding	domains	in	addition	to	one	

or	multiple	RBDs.	

	

3.4	 RNA	 co-immunoprecipitation	 combined	 with	 sequencing	 (RIP-Seq)	 of	

candidate	BPs	analysis	

The	 method	 of	 co-immunoprecipitation	 (CoIP)	 followed	 by	 high-throughput	 RNA	

sequencing	 is	 called	 RIP-Seq.	 The	 coding	 region	 of	 the	 protein	 of	 interest	 is	 cloned	 into	 a	

plasmid	with	a	C-terminal	3xFLAG	tag,	introduced	into	the	organism	of	interest.	In	this	study,	

Salmonella	 Typhimurium	 SL1344	was	 subjected	 to	 CoIP	with	 an	 anti-FLAG	 antibody.	 RNAs	

that	are	co-purified	with	the	RBP	of	 interest	are	then	identified	by	RNA-sequencing.	 In	this	

study,	 each	 of	 the	 selected	 candidate	 FLAG-tagged	 RBPs,	 as	 well	 as	 the	 tagged	 positive	

controls	Hfq,	CsrA,	YhbJ,	SmpB,	CspA,	and	CspB	and	strains	carrying	empty	plasmids	as	the	

non-target	controls	(NT),	was	subjected	to	RIP-Seq	(see	Materials	and	Methods).		

A B
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3.4.1	RIP-Seq-based	experimental	validation	of	RBP	candidates		

CoIP	 combined	 with	 sequencing	 is	 an	 extremely	 useful	 approach	 to	 identify	 the	 RNA	

targets	that	either	directly	bind	or	transiently	interact	with	the	RBPs	of	interest.	Hence,	RIP-

Seq	serves	as	a	suitable	technique	to	generate	a	genome-wide	quantitative	snapshot	of	RNA-

binding	 capacity	 of	 a	 protein.	 The	 131	 candidate	 proteins,	 together	with	 the	 known	RBPs	

positive	controls	(Hfq,	CsrA,	SmpB,	CspA,	CspB,	and	YhbJ),	were	subjected	to	RIP-Seq	analysis	

(see	Materials	 and	Methods).	 An	 additional	 set	 of	 samples	 called	NT	 are	 generated	 using	

empty	vectors	 (containing	only	a	3xFLAG	 tag	but	no	candidate	RBP),	which	 in	principle	do	

not	 have	 any	 RNA	 binding	 partner.	 Hence,	 NT	 samples	 were	 used	 as	 neutral	 controls	 to	

capture	any	background	noise	such	as	highly	abundant	RNAs	that	might	be	non-specifically	

purified	 during	 immunoprecipitation	 and	 appear	 as	 targets	 in	 all	 the	 RIP-Seq	 libraries.	 In	

total,	10	replicates	of	 two	control	samples,	Hfq	and	NT,	were	also	 included	to	validate	the	

reproducibility	of	 the	CoIP	experiments.	Details	of	 sequencing	outcomes	 from	each	of	 the	

positive	 controls	 are	 listed	 in	 Table	 3.6	 and	 the	 data	 associated	 to	 the	 RIP-Seq	 libraries	

(Appendix	Table	1)	will	be	deposited	at	GEO.	

Table	3.5	The	total	number	of	enriched	targets	from	the	different	classes	of	RNAs	in	the	RIP-Seq	
samples	corresponding	to	the	known	RBP	controls.	

Samples	 sRNAs	 mRNAs	 tRNAs	 rRNAs	 Plasmid	
genes	

Total	
targets	

CspA	 22	 321	 0	 0	 4	 347	

CspB	 29	 277	 1	 0	 2	 309	

CsrA	 19	 135	 2	 7	 4	 167	

Hfq	 83	 501	 0	 0	 15	 599	

SmpB	 16	 160	 15	 3	 9	 203	

YhbJ	 4	 77	 6	 0	 0	 87	

	

The	data	for	each	RIP-Seq	library	was	processed	by	removing	adapter	sequences	from	the	

reads	using	cutadapt	 (Version	1.8)	 (Martin,	2011),	and	subjected	to	quality	 trimming	using	

the	 fastq_quality_trimmer	 tool	 from	 FastX	 suite	 (Version	 0.0.13)	

(http://hannonlab.cshl.edu/fastx_toolkit/)	 with	 a	 phred-score	 cut-off	 of	 20.	 READemption	

version	 0.3.7	 (Förstner	 et	 al.,	 2014),	which	 uses	 Segemehl-version	 0.1.3	 (Hoffmann	 et	 al.,	

2009)	for	the	read	alignment,	was	used	for	mapping	of	the	reads	(minimum	length	cut-off	12	

nt)	 to	 the	reference	genome	of	Salmonella	Typhimurium	SL1344	 (NC_016810,	NC_017718,	

NC_017719	 and	 NC_017720)	 obtained	 from	 NCBI	 and	 annotated	 for	 the	 different	 RNA	

classes	(mRNAs,	rRNAs,	tRNAs	and	sRNAs).	
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3.4.2	Quantification	and	normalization	of	quantified	reads	in	RIP-Seq		

In	general,	the	gene	expression	in	RNA-Seq	samples	is	captured	in	terms	of	read	counts.	

Gene-wise	quantification	of	 read	counts	was	carried	out	 for	each	 library	 to	determine	 the	

expression	profiles	of	each	RNA	class	in	their	respective	samples.	The	global	changes	in	the	

expression	of	a	gene	between	two	samples	can	be	determined	by	calculating	the	difference	

in	the	fold	change	of	its	read	counts.	In	order	to	accurately	estimate	such	a	difference	or	the	

relative	 expression	 levels	 of	 the	 genes	 between	 the	 samples,	 various	 gene	 expression	

normalization	strategies	have	been	developed.	Most	of	these	strategies	use	the	assumption	

that	the	majority	of	the	genes	are	not	differentially	expressed.	One	such	method	is	Trimmed	

Mean	of	M-values	or	TMM	(Robinson	et	al.,	2010),	which	 is	a	widely-used	method	for	 the	

calculation	 of	 size	 factors	 of	 RNA-Seq	 data	 for	 the	 further	 statistical	 identification	 of	

differentially	expressed	genes.	

For	comparison	of	transcript	levels	in	the	RIP-Seq	libraries	in	this	study,	a	modified	TMM	

normalization	 method	 was	 introduced	 that	 uses	 a	 reference-free	 approach	 for	 the	

normalization	 of	 the	 quantified	 RIP-Seq	 data	 (personal	 discussion	 with	 Dr.	 Lars	 Barquist).	

Unlike	the	standard	TMM	approach	that	requires	a	reference	sample,	here	a	reference	gene	

set	was	derived	that	comprised	the	genes	with	a	minimum	of	10	transcripts	in	each	sample.	

The	 normalization	 factor	 was	 further	 determined	 for	 each	 sample	 using	 the	

‘calcNormFactors’	function	of	edgeR	(empirical	analysis	of	digital	gene	expression	data	in	R),	

an	R-package	for	differential	expression	analysis	of	RNA-Seq	expression	profiles	(Robinson	et	

al.,	2010).	The	‘calcNormFactors	function’	finds	scaling	factors	to	normalize	the	libraries	by	

relative	RNA	composition.	The	normalized	value	for	each	gene	in	a	sample	is	determined	by	

dividing	 the	 raw	 transcript	 counts	 by	 the	 size	 factor	 of	 the	 respective	 sample	 derived	 by	

scaling	 the	 corresponding	 normalization	 factor	 value	 by	 the	 maximum	 value	 of	 the	

normalization	factor	obtained	in	the	data	set.	

3.4.3	Selection	of	the	enriched	genes	

The	 enrichment	 of	 particular	 transcripts	 in	 the	 CoIP	 sample	 of	 a	 candidate	 RBP	 may	

indicate	a	particular	class	of	binding	partners	of	the	protein	in	study	(Faoro	&	Ataide,	2014).	

In	 our	 study,	 RIP-Seq	 libraries	 of	 empty	 plasmid	 (NT)	 samples	 were	 used	 as	 a	 negative	

control,	 which	 theoretically	 should	 not	 show	 enrichment	 of	 transcripts	 corresponding	 to	

specific	genes.	However,	transcripts	from	some	genes	were	in	fact	enriched	in	NT	samples	as	

well,	which	may	represent	transcripts	that	are	non-specifically	co-purified,	independently	of	

any	specific	RNA-binding	activity.		
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Such	unspecific	enrichment	of	 transcripts	could	 result	 from	heir	abundance	 in	 the	cells,	

which	might	lead	to	non-specific	co-purification	with	the	experimental	reagents	(König	et	al.,	

2012).	This	poses	one	of	the	crucial	challenges	of	RIP-Seq	data	analysis,	which	is	to	separate	

transcripts	that	are	enriched	in	specific	CoIP	samples	from	the	transcripts	that	are	enriched	

non-specifically	 in	several	CoIP	samples.	 In	order	to	 identify	the	set	of	genes	that	are	truly	

enriched	in	each	RIP-Seq	library,	the	statistical	dispersions	of	normalized	read	counts	were	

first	measured	by	determining	quartiles	of	the	read	distribution	of	each	gene	across	our	RIP-

Seq	samples.	The	NT	replicates	were	used	to	measure	the	abundance	of	each	transcript	that	

resulted	from	unspecific	binding	of	RNAs	to	the	antibody-Sepharose,	and	Hfq	libraries	were	

used	to	represent	the	enrichment	profile	of	a	representative	global	RBP.		

Quartiles	(Q)	of	a	ranked	set	of	values	are	points	that	divide	the	data	set	into	four	equal	

quarters	(Hyndman	&	Fan,	1996).	For	example,	the	first	quartile	(Q1)	divides	the	lowest	25%	

of	 the	 data	 set	 from	 the	 rest,	 second	 quartile	 (Q2)	 divides	 the	 data	 set	 in	 half,	 and	 third	

quartile	(Q3)	divides	upper	25%	of	the	data	set	from	the	rest.	The	interquartile	range	(IQR)	is	

the	difference	between	the	Q3	and	Q1.	A	term	‘fence’	 is	used	to	indicate	upper	and	lower	

limit	of	the	data.	Any	data	lying	outside	the	fence	can	be	considered	to	be	extreme	value	or	

outlier.	 Based	on	 this	 principle,	 the	upper	 fence	 for	 each	 gene	was	 recorded	as	minimum	

threshold	for	the	enrichment	of	a	gene	by	calculating	Q3+1.5*(IQR)	of	the	normalized	read	

count	distribution	across	the	RIP-Seq	libraries	(Figure	3.10).	In	order	to	avoid	the	genes	that	

are	 found	 in	 all	 the	 samples	 and	 potentially	 include	 unspecific	 binding	 transcripts,	 an	

additional	 cut-off	 of	 a	 minimum	 of	 50	 reads	 in	 was	 applied	 during	 the	 selection	 of	 the	

enriched	genes.	
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Figure	3.10	Overview	of	variance	based	 threshold	used	 for	 the	 selection	of	enriched	genes	 in	 the	
RIP-Seq	data	sets.		

(3.10A)	The	quartile	based	variance	analysis	can	be	explained	by	means	of	a	boxplot.	In	this	study,	the	

variance	analysis	was	carried	out	on	the	modified	TMM	normalized	read	counts	for	every	gene	across	

each	 library.	 Subsequently,	 the	 upper	 fences	 (Q3+1.5*(IQR))	 of	 the	 quartile	 distributions	 were	

recorded	as	minimum	thresholds	 for	 the	enrichment	of	 the	corresponding	genes.	 (3.10B	and	3.10C)	

Boxplots	 showing	 the	variance	analysis	on	 the	normalized	 reads	across	 the	RIP-Seq	 libraries	 for	 the	

positive	controls	Hfq	(3.10B)	and	CsrA	(3.10C).	hfq	and	csrA	genes	are	enriched	in	their	own	RIP-Seq	

libraries,	 which	 positively	 validates	 the	 threshold	 selection	 criteria	 for	 the	 gene	 enrichment.	

Furthermore,	 additional	 RIP-Seq	 libraries	 where	 these	 genes	 are	 enriched	 suggest	 more	 binding	

partners	of	these	RNAs.	(3.10D)	The	bar	chart	shows	the	distribution	of	upper	fence	values	(in	x-axis)	

versus	the	number	of	genes	(y-axis).	This	shows	the	expression	patterns	of	the	genes,	which	could	be	

classified	into	lowly	expressed	genes	(read	count	<10	reads),	highly	expressed	genes	(read	count	>100	

reads)	and	moderately	expressed	genes	(read	count	between	>10	and	<100).	

The	 transcripts	 from	 the	 RIP-Seq	 libraries	 were	 assigned	 to	 the	 different	 RNA	 classes	

(mRNAs,	 tRNAs,	 rRNAs,	 and	 sRNAs)	 of	 the	 SL1344	 reference	 genome	 and	 the	 gene-wise	

quantification	 and	 its	 normalization	 was	 carried	 out.	 A	 modified	 TMM-normalization	

approach	 was	 applied	 to	 further	 identify	 enriched	 genes	 in	 the	 RIP-Seq	 libraries	 (see	

Materials	and	Methods).	

A B C

D
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Figure	3.11	Distribution	of	3746	genes	expressed	across	the	RIP-Seq	libraries.		

Only	28	genes	were	enriched	in	more	than	20	libraries,	whereas	543	genes	were	recorded	as	enriched	

in	only	one	of	the	RIP-Seq	 libraries.	This	enrichment	patterns	 indicate	differential	target	affinities	of	

the	RBPs.	

For	 the	 computation	 of	 normalization	 factors	 independent	 of	 any	 reference	 or	 control	

library,	genes	that	were	found	to	have	a	minimum	of	10	reads	in	each	RNA-Seq	library	were	

selected,	 which	 consisted	 of	 a	 total	 of	 799	 genes.	 Subsequently,	 the	 size-factors	 were	

estimated,	 which	 were	 used	 for	 the	 normalization	 of	 the	 gene-wise	 quantification	 data.	

Further,	 the	 statistical	 dispersions	 of	 normalized	 read	 counts	 of	 each	 gene	 across	 RIP-Seq	

samples	were	calculated	by	the	quartile	approach	and	the	upper	fences	(Q3+1.5*IQR)	of	the	

gene	expressions	were	derived.	The	selection	of	enriched	genes	in	our	study	uses	a	two-fold	

selection	 strategy:	 1)	 the	 expression	 level	 of	 the	 genes	 must	 be	 higher	 than	 their	

corresponding	upper-fence	cut-off	calculated	from	the	quartile	approach,	and	2)	there	must	

be	a	minimum	of	50	transcripts	corresponding	to	the	genes	that	satisfy	the	upper-fence	cut-

off	criteria	to	avoid	weakly-expressed	genes.	Upon	selection	of	enriched	RNAs,	or	candidate	

targets	of	each	protein,	a	set	1,246	coding	or	sRNAs	genes	was	identified	that	did	not	show	

enrichment	in	any	RIP-Seq	library,	which	were	removed	from	further	analysis.	Hence,	3,746	

genes	that	were	enriched	in	at	least	one	RIP-Seq	sample	were	used	for	further	analysis.	

Only	28	genes	were	enriched	in	more	than	20	samples,	whereas	543	genes	were	detected	

as	 enriched	 in	 only	 one	 of	 the	 samples	 (Figure	 3.11).	 These	 observations	 indicated	 that	
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according	to	the	aforementioned	gene	selection	criteria,	most	of	the	potential	non-specific	

binders	 were	 excluded	 from	 appearing	 as	 enriched	 genes.	 Our	 selection	 strategy	 might	

exclude	 a	 few	 potentially	 enriched	 genes	 that	 are	 weakly	 expressed,	 but	 it	 avoids	 the	

inclusion	 of	 false	 positives.	 This	 was	 verified	 by	 recording	 the	 enrichment	 levels	 of	 the	

known	RBP	binders	in	our	positive	controls	(discussed	later).	

	

3.5	Classification	of	RIP-Seq	libraries	by	interacting	RNA	classes	

The	 RBP	 candidates	 were	 next	 classified	 based	 on	 the	 genes	 enriched	 in	 their	

corresponding	libraries,	as	this	can	explain	the	similar	or	contrasting	functionalities	of	these	

proteins	 based	 on	 their	 interacting	 partners.	 As	 reported	 in	 the	 literature,	 Hfq	 is	 a	 global	

RNA-binding	protein	that	has	several	mRNA	and	sRNA	binding	partners	(Chao	&	Vogel,	2010;	

Holmqvist	et	al.,	 2016).	 Consistent	with	 such	 studies,	Hfq	was	determined	 in	our	 study	 to	

have	80	sRNA	targets	(the	mean	of	10	replicates)	analysis,	which	was	the	highest	number	of	

sRNA	 targets	 for	 any	of	 the	RBPs	we	 tested.	 These	enriched	 sRNAs	 included	many	 known	

sRNA	 targets,	 such	as	ArcZ,	ChiX,	CyaR,	DapZ,	DsrA,	GcvB,	GlmZ,	 InvR,	MicF,	OmrA,	OmrB,	

PinT,	RprA,	RybB,	RydC,	and	SgrS	(Chao	et	al.,	2012).		

In	addition,	~500	mRNA	targets	were	also	found	to	be	enriched	in	the	Hfq	tagged	libraries	

compared	to	the	NT	control,	which	was	a	higher	number	than	for	most	of	the	RBPs	(Figure	

3.12A).	 A	 few	 transcripts	 encoded	 on	 the	 SL1344	 plasmids	 were	 also	 enriched	 in	 Hfq	

libraries.	 However,	 no	 enrichment	 of	 tRNAs	 or	 rRNAs	 was	 recorded.	 The	 list	 of	 enriched	

genes	in	the	CoIP	sample	of	second	positive	control,	CsrA	(Figure	3.12B),	was	comprised	of	

19	 sRNAs,	 including	 the	known	CsrA-binding	antagonizing	 sRNAs	CsrB	and	CsrC,	 as	well	 as	

PinT	 (Holmqvist	 et	 al.,	 2016).	 Additionally,	 135	 mRNAs,	 2	 tRNAs	 and	 7	 rRNAs	 were	 also	

enriched	in	the	CsrA	tagged	library,	which	demonstrated	a	relatively	global	binding	pattern	

like	 that	 of	 Hfq,	 but	 to	more	 diverse	 classes	 of	 RNA	 targets.	More	 than	 300	 genes	 were	

enriched	 in	 the	FLAG-tagged	CoIP	 samples	of	CspA	and	CspB	 (Figure	3.12C),	 including	140	

shared	 targets	 and	 indicating	 similarity	 in	 their	 specificities	 as	 RBPs.	 YhbJ,	 also	 known	 as	

RapZ	 (Göpel,	 2014),	 was	 included	 in	 this	 study	 as	 a	 control	 for	 RBPs	 that	 have	 specific	

binding	partners.	 It	has	been	reported	that	RapZ	binds	two	specific	sRNAs,	GlmY	and	GlmZ	

(Göpel,	2014),	which	were	also	enriched	in	our	study.		Together,	these	outcomes	of	the	RIP-

Seq	 experiments	 with	 previously	 characterized	 RBPs	 shows	 the	 effectiveness	 of	 our	 CoIP	
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approach	 for	 identifying	 targets	 of	 RBPs	 analysis	 further	 classify	 them	 based	 on	 their	

preference	for	specific	RNA	classes.	

	

Figure	3.12	Gene	enrichment	profiles	of	the	positive	control	libraries	of	Hfq,	CsrA,	YhbJ,	CspA,	CspB	
and	SmpB.		

As	shown	in	the	pie	charts,	an	average	of	500	mRNA	targets	and	83	sRNA	targets	were	recorded	in	

the	Hfq	 libraries.	Hfq	has	a	higher	number	sRNA	targets	compared	to	other	 libraries,	which	 include	

known	 targets	 namely,	 ArcZ,	 ChiX,	 CyaR,	 DapZ,	 DsrA,	 GcvB,	 GlmZ,	 InvR,	MicF,	 OmrA,	 OmrB,	 PinT,	

RprA,	RybB,	RydC,	and	SgrS.	Similarly,	among	the	enriched	targets	 for	CsrA,	19	sRNAs	 including	the	

known	 targets	 CsrB,	 CsrC,	 and	 PinT	 were	 recorded.	 In	 the	 library	 of	 YhbJ,	 its	 2	 known	 sRNA	

targets/glmY	 and	 glmZ)	 were	 enriched.	 More	 than	 300	 genes	 were	 enriched	 in	 CspA	 and	 CspB	

libraries	 that	 shared	 140	 common	 targets	 indicating	 similar	 and/or	 cooperative	 activities.	 SmpB	

library	enriched	targets	from	all	the	4	classes	of	RNAs	(mRNA,	tRNA,	rRNA,	and	sRNA),	which	was	also	

the	case	for	CsrA	libraries.	

In	our	empty	plasmid	sample,	as	non-target	(NT)	controls,	only	a	few	genes	were	enriched	

(ranging	from	4	to	12	targets	across	the	10	NT	libraries).	There	are	an	additional	15	proteins	

in	our	set	of	candidates	that	showed	less	than	12	targets	from	different	RNAs	classes,	which	

can	 be	 considered	 as	 low	 confidence	 RBPs	 or	 false	 positives	 based	 on	 their	 enrichment	

patterns	similar	to	the	NT	libraries	(Table	3.7).	
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Table	3.6	The	RIP-Seq	libraries	of	the	candidate	RBPs	that	showed	an	enrichment	profiles	similar	to	
the	background	controls	(NT	samples).		

These	15	out	of	131	proteins	enriched	less	than	12	targets	from	different	classes	of	RNA.	

Samples	 sRNAs	 mRNAs	 tRNAs	 rRNAs	 Total	targets	

NT-1	 2	 2	 0	 0	 4	

NT-2	 1	 3	 0	 0	 4	

NT-3	 1	 3	 0	 0	 5	

NT-4	 1	 4	 0	 0	 5	

NT-5	 2	 5	 0	 0	 7	

NT-6	 1	 5	 3	 0	 9	

NT-7	 1	 9	 0	 0	 10	

NT-8	 2	 6	 0	 0	 11	

NT-9	 0	 7	 5	 0	 12	

NT-10	 0	 7	 5	 0	 12	

citC	(SL1344_0612)	 0	 7	 0	 0	 7	

deoB	(SL1344_4496)	 6	 5	 0	 0	 12	

dnaK	(SL1344_0012)	 0	 13	 0	 0	 13	

glk	(SL1344_2371)	 0	 8	 0	 0	 8	

glnK	(SL1344_0456)	 0	 5	 0	 0	 5	

lysC	(SL1344_4156)	 1	 6	 0	 0	 7	

rluA	(SL1344_0096)	 0	 8	 1	 0	 9	

rph	(SL1344_3700)	 1	 9	 0	 0	 10	

rpsC	(SL1344_3401)	 0	 5	 0	 0	 5	

rrmA	(SL1344_1764)	 2	 5	 0	 0	 7	

sgaB	(SL1344_4317)	 6	 6	 0	 0	 13	

SL1344_1712	 0	 13	 0	 0	 13	

SL1344_2929	 0	 2	 1	 0	 3	

SL1344_3369	 2	 8	 1	 0	 11	

SL1344_3587	 0	 7	 0	 0	 7	

SL1344_3646	 0	 9	 0	 0	 9	

yffB	(SL1344_2445)	 0	 4	 0	 0	 4	

yqcB	(SL1344_2945)	 0	 9	 3	 0	 12	
	

Besides	 the	 positive	 controls,	 the	 CoIP	 libraries	 of	 43	 proteins	 showed	 enrichment	 of	

more	than	10	sRNAs,	including	that	of	RpsD,	TolA,	Res,	Rho,	TufB,	TolB,	GatB,	AcnA,	YdiL.	and	

AefA,	which	al	have	more	than	30	enriched	candidate	sRNAs	targets.	Besides	Hfq,	the	CoIP	

libraries	 that	 showed	 about	 500	 enriched	mRNAs	were	 SL1344_3412	 (TufB),	 SL1344_3876	

(Rho),	 SL1344_3260	 (NusA),	 SL1344_2200	 (YejH),	 SL1344_1196,	 SL1344_1766	 (CspC),	 and	

SL1344_0617	 (CspE).	 Several	 proteins,	 including	 Hfq,	 were	 found	 to	 have	 several	 plasmid	

genes	as	their	targets.	More	than	20	plasmid	genes	were	enriched	in	the	CoIP	libraries	of	the	

RBP	 candidates	 Rho,	 NusA,	 RluC,	 Pnp,	 and	 TufB.	 A	 few	 proteins,	 namely	 TolB,	 Res,	 NusB,	

GatB,	YbdG,	and	SL1344_3432	had	>30	tRNA	targets	enriched	 in	their	CoIP	 libraries.	These	
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proteins	 show	 an	 exceptionally	 high	 preference	 for	 tRNA	 targets	 compared	 to	 100	 other	

libraries	in	our	data	set,	most	of	which	did	not	have	any	tRNA	targets.		

Similarly,	more	than	100	 libraries	 in	our	data	set	did	not	show	any	preference	for	rRNA	

targets.	However,	 several	 proteins,	 including	AcnA,	 AceA,	 RluC,	 Res,	 RpsD,	 CaiD	 and	 TraR,	

had	more	than	14	rRNA	targets.	Interestingly,	several	proteins	showed	specificity	for	certain	

RNA	 classes,	 whereas	 a	 few	 other	 enriched	 large	 proportions	 of	 genes	 from	 all	 the	 RNA	

classes.	 Two	examples	of	 the	RBPs	enriching	different	proportions	of	RNA	 targets	 from	all	

the	RNA	classes	are	Res	and	TolB.	The	putative	RNA	targets	of	the	Res	protein	included	44	

sRNAs,	73	mRNAs,	81	 tRNAs,	15	rRNAs,	and	7	plasmid-encoded	genes.	The	targets	of	TolB	

showed	its	higher	binding	preference	for	sRNAs	(35	targets),	mRNAs	(83	targets),	tRNAs	(82	

targets)	and	a	lower	preference	for	rRNAs	(4	targets)	and	plasmid	genes	(3	targets).	

Table	3.7	The	classification	of	the	candidate	RBPs	based	on	the	total	number	of	RNA	targets	
enriched	in	their	RIP-Seq	data.		

(Please	refer	to	Appendix-1	for	details).	

Target	number	 Total	samples	 Controls	

>	200	 35	 Hfq,	CspA,	CspB,	SmpB	

>	100,	<	200	 23	 CsrA	

>	50,	<	100	 32	 YhbJ	

<	50,	>	NT	targets	 32	 None	

<=	NT	targets	 15	 NT	(control	not	counted	as	sample)	

	

For	 the	 purpose	 of	 classification,	 the	 candidate	 RBPs	 were	 ordered	 by	 the	 number	 of	

targets	and	their	enrichment	of	the	different	RNA	classes	 (Table	3.8).	The	positive	control,	

Hfq	was	established	as	the	top-ranking	protein	in	our	data	set	due	to	its	overall	high	number	

of	targets,	as	well	as	having	the	highest	number	of	sRNA	and	mRNA	targets.	The	other	three	

proteins	 with	 large	 number	 of	 targets,	 Rho,	 TufB	 and	 NusA,	 were	 ranked	 high	 in	 our	 list	

demonstrating	 a	 similar	 enrichment	 pattern	 as	 Hfq.	 These	 proteins	 also	 showed	 a	 high	

preference	for	plasmid	genes.	By	only	considering	the	overall	number	of	enriched	genes,	35	

proteins	were	categorized	together	on	the	basis	of	having	a	total	number	of	enriched	genes	

higher	than	200	(global).		

Besides	the	positive	controls	Hfq	(500	targets	on	average),	CspA	(346	targets),	CspB	(309	

targets),	and	SmpB	(202	targets),	this	group	of	proteins	 included	other	cold-shock	proteins	

such	as	CspC	(461	targets),	CspE	(447	targets),	and	CspD	(213	targets),	which	were	recorded	
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to	have	unique	enriched	targets	from	sRNA	and	mRNA	classes.	A	total	of	23	proteins	were	

grouped	together	that	had	a	number	of	enriched	targets	in	a	range	of	100	to	200	(similar	to	

the	global	binders).	This	group	of	proteins	 included	 the	positive	control	CsrA	 (165	 targets)	

and	another	cold	shock	protein,	CspH	(100	targets).	In	addition,	64	proteins	that	had	13-99	

enriched	 genes	 (relatively	 specific	 binding	 partners),	 were	 grouped	 together.	 This	 group	

included	 YhbJ	 (87	 targets),	 which	 showed	 enrichment	 of	 its	 previously	 described	 specific	

sRNA	 binding	 partners.	 The	 remaining	 proteins	 that	 enriched	 less	 than	 12	 targets	 were	

placed	 in	 the	 bottom	 of	 our	 ranked	 list,	 together	 with	 the	 NT	 controls	 (potentially	 non-

binders).		

We	 next	 explored	 the	 RNA-binding	 activity	 of	 one	 class	 of	 proteins	 in	more	 detail:	 the	

pseudouridine	 synthases	 (TruD,	 RluB,	 RluC,	 RluD,	 YciL,	 YjbC,	 YqcB,	 and	 RluA),	 which	were	

subjected	to	RIP-Seq	based	analysis	in	our	study.	Posttranscriptional	modifications	of	cellular	

RNAs	 are	 carried	 out	 by	 pseudouridine	 synthases,	 hence	 it	 is	 not	 surprising	 that	 these	

proteins	 were	 computationally	 identified	 to	 bind	 to	 RNAs.	 Upon	 RIP-Seq	 analysis,	 four	

members	of	this	family	(TruD,	RluB,	RluC,	and	RluD)	were	identified	to	enrich	more	than	100	

targets.	YciL	and	YjbC	 libraries	enriched	96	and	30	targets	 respectively.	The	two	remaining	

proteins:	 YqcB	 and	 RluA,	 were	 placed	 with	 the	 NT	 controls	 as	 non-binders.	 The	

pseudouridine	synthases	were	highlighted	as	an	important	group	of	RNA-binding	proteins.	

	

3.6	Hierarchical	clustering	of	RIP-Seq	samples		

Next,	an	unsupervised	hierarchical	clustering	(Eisen	et	al.,	1998)	and	principle	component	

analysis	(PCA)	(Hotelling,	1933;	Alter	et	al.,	2000;	Jolliffe,	2002;	Ringner,	2008)	of	the	RIP-Seq	

libraries	were	 carried	 out	 to	 statistically	 derive	 their	 relatedness	 based	 on	 their	 enriched,	

potentially	 target	 genes.	 This	 analysis	was	 carried	 out	 on	 the	 normalized	 gene	 expression	

profiles	corresponding	to	each	library.	The	clustering	approach	was	used	in	order	to	further	

group	 the	 RBPs	 based	 on	 the	 similarity	 of	 their	 RIP-Seq	 enrichment	 profiles	 based	 on	 the	

calculation	of	 the	distances	 between	 their	 expression	profiles	 (See	Material	 and	Method).	

This	led	to	the	clustering	of	genes	with	similar	expression	profiles	and	samples	with	similar	

enrichment	profiles.	

The	expression	profile	for	each	gene	per	library	was	recorded	as	a	table	in	such	a	manner	

that	the	rows	correspond	to	genes	and	columns	correspond	to	the	samples.	Genes	that	were	
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not	enriched	in	any	RIP-Seq	samples	were	removed	from	the	table.	The	expression	table	was	

then	subjected	to	unsupervised	hierarchical	clustering	(see	Materials	and	Methods)	in	order	

to	cluster	the	samples	in	the	x-axis	and	genes	in	y-axis	based	on	their	expression	patterns.	In	

x-	and	y-axis,	the	samples	with	similar	enrichment	profile	and	genes	with	similar	expression	

levels	 should	occur	 together	 in	 the	 same	cluster,	which	has	been	shown	 in	 the	heat-maps	

generated	for	normalized	read	counts	(Figure	3.13).	

As	 observed	 in	 the	 heat-map,	 several	 clusters	 comprising	 of	 only	 RBPs	 with	 a	 high	

specificity	for	only	tRNAs,	only	rRNAs,	or	only	several	highly	expressed	sRNAs	were	observed	

on	the	y-axis.	On	the	x-axis,	 this	approach	efficiently	clustered	the	10	Hfq	RIP-Seq	 libraries	

together.	 The	 NT	 libraries	 were	 grouped	 separately	 in	 different	 clusters,	 which	 were	

distantly	 located	from	the	Hfq	showing	an	apparent	difference	 in	their	expression	profiles.	

Similarly,	 other	 positive	 controls	 (CsrA,	 CspA,	 and	 CspB)	 that	 bind	 to	 several	 targets	

appeared	together	in	another	cluster	that	was	closely	located	to	the	Hfqs.	YhbJ	occurred	in	a	

cluster	 located	 away	 from	 the	 Hfq	 and	 CsrA	 libraries	 highlighting	 a	 markedly	 different	

expression	profile	from	the	global	RBPs.	Upon	observing	the	expected	clustering	patterns	of	

the	positive	and	neutral	background	controls,	I	used	this	approach	of	hierarchical	clustering	

for	the	classification	of	the	RBP-candidates	in	our	RIP-Seq	libraries	based	on	the	expression	

and	enrichment	profiles.	

The	cluster	analysis	was	next	repeated	on	the	expression	profiles	while	retaining	only	one	

out	of	10	Hfq	libraries	in	the	expression	table	in	order	to	identify	candidate	RBPs	that	have	

RIP-Seq	 profiles	 similar	 to	 that	 of	 Hfq	 (Figure	 3.14).	 As	 discussed	 previously,	 proteins	 like	

Rho,	 CspC,	 CspE,	 TufB,	 and	 NusA	 had	 more	 than	 100	 candidate	 RNA	 targets,	 like	 Hfq,	

suggesting	they	could	be	more	global	RNA-binding	proteins.	These	6	libraries,	along	with	15	

other	 libraries,	 clustered	 together,	 underscoring	 their	 similar	 in	 expression	 patterns.	 The	

next	cluster	was	comprised	of	13	libraries,	including	three	positive	controls	(CspA,	CspB	and	

SmpB).	CsrA	clustered	with	13	other	libraries	that	included	2	cold	shock	proteins	(CspD	and	

CspH).	These	three	clusters	together	accounted	for	43	of	the	candidate	RBP	RIP-Seq	libraries	

(excluding	the	controls	for	global	RBPs),	which	appear	to	exhibit	a	more	global	RNA	binding	

profile.	
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Figure	3.13	Hierarchical	clustering	of	the	RIP-Seq	libraries	based	on	their	normalized	read	counts.		

As	shown	in	the	heatmap,	samples	with	similar	enrichment	profiles	were	grouped	together	in	the	x-

axis	 and	 genes	 with	 similar	 expression	 levels	 were	 grouped	 together	 in	 the	 y-axis.	 Three	 positive	

controls	 (Hfq,	CsrA	and	SmpB)	and	the	not-targets	as	neutral	non-target	samples	are	annotated	on	

the	heatmap.	Additionally,	few	clusters	have	been	pointed	for	the	interesting	enrichment	profiles	and	

clustering	patterns	of	the	RBP	candidates.	
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Figure	 3.14	Hierarchical	 clustering	 of	 the	 RIP-Seq	 libraries	 based	 on	 their	 enrichment	 profiles	 by	
using	one	representative	Hfq	library	out	of	10	as	a	positive	control.		

This	 analysis	 was	 performed	 to	 avoid	 any	 clustering	 bias	 that	 could	 have	 been	 introduced	 by	 the	

significant	enrichment	profiles	of	Hfq	replicates.	
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The	NT-containing	clusters	included	an	additional	22	libraries	with	a	low	number	of	RNA-

targets	(3-23	targets)	and	may	therefore	represent	false	positives	from	the	APRICOT	analysis.	

The	 clusters	 located	 in	 between	 the	 more	 global	 RBPs	 and	 the	 NT-containing	 clusters	

accounted	 for	 the	 remaining	 67	 RBP	 candidates,	 as	well	 as	 the	 YhbJ	 control	 for	 a	 specific	

RBP.	 Based	on	 these	observations,	 the	RIP-Seq	data	 could	 be	 classified	 into	 three	 classes,	

global	RBPs	(43	proteins),	specific	RBPs	(66	proteins),	and	low-target	proteins	(22	proteins).	

The	 above	 clustering	 analysis	 provides	 an	 effective	 method	 to	 separate	 libraries	 with	

different	number	of	targets.	However,	the	wide	range	of	expression	of	transcripts	(ranging	

from	0	to	several	thousand	across	the	genes)	does	not	allow	their	clustering	based	on	gene	

enrichment.	Hence,	in	order	to	conduct	enrichment-based	clustering,	the	expression	profiles	

were	 transformed	 into	binary	values.	The	set	of	genes	 that	are	not	enriched	were	given	a	

value	 of	 0	 each,	 while	 the	 enriched	 genes	 were	 given	 a	 value	 of	 1	 each.	 The	 positive	

enrichment	was	determined	when	the	total	number	of	transcripts	was	higher	than	50	reads	

and	also	above	the	quartile	based	cut-off	for	each	gene.	

When	 the	 clustering	 was	 performed	 on	 the	 resulting	 binary	 enrichment	 table	 (Figure	

3.15),	all	the	Hfq	libraries	again	clustered	together,	while	similar	pattern	was	seen	for	8	of	10	

NT	 libraries,	 which	 clustered	 separately.	 CsrA	 clustered	 with	 19	 other	 libraries	 and	 YhbJ	

occurred	 in	 separate	 cluster	 with	 6	 other	 libraries.	 The	 positive	 controls	 CspA	 and	 CspB	

occurred	together	with	the	cluster	of	14	libraries	that	included	SmpB	and	the	two	cold-shock	

proteins	 CspC	 and	 CspE.	 When	 the	 RIP-Seq	 libraries	 of	 the	 candidate	 RBPs	 cluster	 with	

positive	 controls	 (such	 as	 Hfq	 and	 CsrA),	 it	 signified	 a	 certain	 level	 of	 similarities	 in	 their	

enrichment	patterns,	 for	example	 their	binding	 specificity	 to	 common	 targets.	 In	 contrast,	

the	clustering	of	RIP-Seq	libraries	with	NT	libraries	showed	the	low	RNA-binding	potential	of	

those	 proteins,	 for	 example,	 the	 potential	 non-RBP	 SL1344_3369	 clustered	 with	 8	 NT	

libraries.	The	remaining	2	NT	libraries	were	present	in	a	separate	cluster	highlighting	the	low	

binding	 potential	 of	 these	 candidate	 RBPs.	 This	 cluster	 comprises	 of	 14	 non-NT	 libraries:	

YffB,	 Glk,	 RpsC,	 GlnK,	 RrmA,	 CitC,	 SL1344_2929,	 YqcB,	 YhjS,	 RluA,	 SL1344_3646,	 Rph,	

SL1344_3369,	DeoB,	and	LysC.	Based	on	the	enrichment	based	clustering,	the	RIP-Seq	data	

can	be	divided	in	the	four	groups:	global	RBPs	(51	proteins),	specific	RBPs	(52	proteins)	and	

low-target	proteins	 (28	proteins).	 The	maximum	number	of	 targets	 for	 the	NT	 library	was	

recorded	as	12,	which	allowed	the	distribution	of	the	low-target	proteins	into	2	groups.	The	

first	 group	 comprised	 of	 15	 proteins	 that	 have	 total	 targets	 <12,	 therefore	 they	 could	 be	
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classified	 as	 NT-like	 non-RNA-binding	 proteins.	 The	 second	 group	 that	 comprised	 of	 13	

proteins	could	be	labelled	as	possible	RBPs	due	to	target	number	>	12.	

	

Figure	3.15	Cluster	analysis	of	the	binary	transformed	values	of	enrichment	table.		

For	 each	 RIP-Seq	 library,	 the	 enriched	 and	 non-enriched	 genes	 were	 denoted	 with	 1	 and	 0	

respectively.	Upon	unsupervised	clustering,	 the	Hfq	 libraries	were	grouped	 together	and	 the	similar	

pattern	 was	 seen	 for	 8	 of	 10	 non-target	 (empty	 plasmid)	 libraries,	 which	 indicated	 a	 successful	

clustering	of	the	libraries	with	similar	enrichment.		
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3.7	Functional	characterization	of	putative	RBPs	

3.7.1	TraDIS-based	characterization	of	the	RBPs	
	

Genetic	 elements	 called	 transposons	 can	 randomly	 integrate	 in	 genomes,	 in	 a	 process	

that	is	mediated	by	transposase	enzymes.	The	enzyme	can	recognize	inverted	repeats	in	the	

flanking	 region	 of	 a	 transposon,	which	 is	 inserted	 into	 its	 target	 sequence	 by	 introducing	

double	 strand	 breaks.	 Such	 transposons	 have	 been	 adapted	 for	 random	 insertional	

mutagenesis	 of	 bacterial	 strains,	 allowing	 forward	 genetic	 screens,	 which	 directly	 link	 a	

phenotype	with	genotype.	Recently,	 several	deep-sequencing-based	 techniques	have	been	

developed	to	allow	genome-wide	identification	of	transposon	insertion	sites	in	high-density	

mutant	pools	before	and	after	selection.	One	such	study	was	carried	out	in	Salmonella	Typhi	

by	 introducing	 insertion	 every	 13	 bp	 in	 the	 genome,	 followed	 by	 transposon-directed	

insertion	site	sequencing	(TraDIS)	(Langridge	et	al.,	2009;	Chaudhuri	et	al.,	2013;	van	Opijnen	

&	Camilli,	 2014),	which	determined	 the	essentialities	of	genes	under	different	growth	and	

infection-related	conditions.		

In	 one	of	 these	 studies	 (Chaudhuri	 et	 al.,	 2013),	 a	 library	of	 around	10,000	 transposon	

mutants	 was	 generated	 using	 Tn5	 and	 Mu	 transposons,	 and	 this	 mutant	 pool	 was	 then	

subjected	 to	 selection	 in	 different	 hosts.	 This	was	 followed	by	 TraDIS	 to	 identify	 insertion	

sites	 in	 the	 input	 and	 output	 pools	 and	 estimate	 the	 contribution	 of	 each	 non-essential	

Salmonella	 gene	 to	 fitness.	 TraDIS	 assigned	 insertion	 sites	 and	 fitness	 scores	 (log2	 fold-

change)	values	obtained	from	the	DESeq	analysis	of	the	input	versus	output	reads,	where	a	

negative	fitness	score	signifies	an	attenuated	mutant	and	a	positive	score	signifies	a	mutant	

that	are	abundant	in	the	output	pool	than	in	the	input.	Genes	were	categorized	as	important	

in	colonization	if	they	were	disrupted	in	one	or	multiple	mutant	in	any	of	the	host	species.	I	

used	 this	 data	 set	 in	 order	 to	 characterize	 genes	 that	 encode	 computationally	 identified	

RBPs	 in	 Salmonella	 Typhimurium	 and	 are	 important	 under	 infection-relevant	 conditions	

annotated	by	TraDIS.	

From	 the	 set	 of	 1,068	 putative	 RBP-encoding	 genes	 identified	 by	APRICOT	 (Chapter	 2),	

750	genes	were	available	in	the	TraDIS	data	set,	of	which	501	genes	were	reported	to	have	a	

statistically	significant	score	(Chaudhuri	et	al.,	2013).	By	further	including	a	maximum	P	value	

threshold	 of	 0.05,	 a	 total	 of	 110	 genes	 were	 identified	 that	 were	 suggested	 to	 have	 a	

potential	 role	 in	 colonization.	 This	 included	 three	 of	 the	 RBP	 positive	 control	 genes	 (hfq,	
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yhbJ,	 and	 smpB).	 The	 high-significance	 set	 of	 110	 genes	 includes	 several	 genes	 that	 are	

annotated	 as	 enzymes	 such	 as	 helicases	 (recG,	 recQ,	 srmB,	 uvrD,	 and	 SL1344_3253),	

nucleases	(ams,	recD,	recJ,	rnG,	rnhB),	synthases	(carB,	ssaN,	truB,	atpD,	and	SL1344_1651),	

and	synthetases	(purA,	purD,	and	yjeA).		

It	also	included	the	sseC	and	ssaN	genes	that	are	related	to	the	type	III	secretion	systems.	

Other	examples	include,	genes	encoding	a	global	response	regulator	(arcA),	two-component	

response	 regulators	 (dcuR,	 ssrB)	 and	 transcriptional	 regulatory	 proteins	 (hilA,	 phoP,	 slyA,	

yihW,	SL1344_4350,	SL1344_3095,	SL1344_2314).	The	RIP-Seq	libraries	involved	in	this	study	

included	19	proteins	including	Hfq,	YhbJ	and	SmpB	that	are	encoded	by	the	genes	that	are	

reported	 in	 the	 TraDIS	 investigation	 as	relevant	 to	 colonization	 of	 animal	 reservoirs	 and	

hence	zoonosis	 (Table	3.7).	 These	 genes	 can	be	 further	 investigated	 and	 characterized	 for	

their	exact	roles	during	infection.	

Table	3.8	The	functional	characterization	of	the	RIP-Seq	libraries	of	the	RBP	candidates	using	
TraDIS	data	sets.		

The	 table	 contains	 a	 set	 of	 19	 candidate	 RBP	 encoding	 genes	 that	 includes	 the	 positive	

controls	 hfq,	 yhbJ	 and	 smpB,	 were	 highlighted	 in	 this	 analysis	 that	 are	 reported	 to	 be	

relevant	for	zoonosis	in	TraDIS	investigation.	(reference:	Choudhury	et	al.,	2013)	

Chromosome/	

plasmid	

Location	 Transposon	 Gene	name	 Product	 Fitness	

Score	

P	value	

Chromosome	 187898	 Mu	 acnB	 aconitate	hydratase	2	

(citrate	hydro-lyase	2)	

-15.00	 0.018	

Chromosome	 161170	 Mu	 secA	 preprotein	translocase	

SecA	subunit	

-15.00	 1.02E-40	

Chromosome	 161180	 Mu	 secA	 preprotein	translocase	

SecA	subunit	

-15.00	 1.03E-42	

Chromosome	 3468322	 Mu	 deaD	 ATP-dependent	RNA	

helicase	(dead-box)	

-15.00	 0.015	

Chromosome	 815168	 Mu	 tolA	 tolA	protein	 -15.00	 2.53E-39	

Chromosome	 815202	 Mu	 tolA	 tolA	protein	 -15.00	 1.62E-38	

Chromosome	 815461	 Mu	 tolB	 tolB	protein	precursor	 -15.00	 1.53E-34	

Chromosome	 814537	 Mu	 tolA	 tolA	protein	 -7.31	 1.16E-06	

Chromosome	 4069900	 Mu	 thdF	 thiophene	and	furan	

oxidation	protein	

-6.20	 1.44E-19	

Chromosome	 4070152	 Mu	 thdF	 thiophene	and	furan	

oxidation	protein	

-5.54	 7.87E-17	

Chromosome	 3488855	 Tn5	 SL1344_3270	 Intergenic:	ftsJ-yhbY,	

overlap	SL1344_3270	

-5.45	 1.88E-19	
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Chromosome	 3959574	 Mu	 recG	 ATP-dependent	DNA	

helicase	

-5.29	 9.08E-20	

Chromosome	 800596	 Mu	 sdhB	 succinate	dehydrogenase	

iron-sulfur	protein	

-5.06	 4.68E-19	

Chromosome	 3959603	 Mu	 recG	 ATP-dependent	DNA	

helicase	

-5.01	 6.79E-16	

Chromosome	 3958654	 Mu	 recG	 ATP-dependent	DNA	

helicase	

-4.89	 2.17E-13	

Chromosome	 3468339	 Mu	 deaD	 ATP-dependent	RNA	

helicase	(dead-box	

protein)	

-3.96	 5.82E-12	

Chromosome	 3468785	 Mu	 yrbN	 conserved	sORF	 -3.71	 2.05E-12	

Chromosome	 2837910	 Tn5	 smpB	 SsrA	(tmRNA)-binding	

protein	

-3.56	 2.41E-11	

Chromosome	 4204949	 Mu	 rfaH	 transcriptional	activator	 -3.50	 6.84E-10	

Chromosome	 188099	 Mu	 acnB	 aconitate	hydratase	2	

(citrate	hydro-lyase	2)	

-3.41	 2.60E-08	

Chromosome	 2725260	 Mu	 lepA	 GTP-binding	protein	LepA	 -3.25	 1.87E-08	

Chromosome	 1838770	 Mu	 ychF	 hypothetical	ATP/GTP-

binding	protein	

-3.18	 2.90E-08	

Chromosome	 1839467	 Tn5	 ychF	 hypothetical	ATP/GTP-

binding	protein	

-3.10	 1.07E-07	

Chromosome	 1839351	 Mu	 ychF	 hypothetical	ATP/GTP-

binding	protein	

-2.99	 6.69E-07	

Chromosome	 1838804	 Mu	 ychF	 hypothetical	ATP/GTP-

binding	protein	

-2.94	 9.91E-07	

Chromosome	 187272	 Mu	 acnB	 aconitate	hydratase	2	

(citrate	hydro-lyase	2)	

-2.82	 1.23E-06	

Chromosome	 187038	 Mu	 acnB	 aconitate	hydratase	2	

(citrate	hydro-lyase	2)	

-2.78	 6.38E-06	

Chromosome	 187828	 Tn5	 acnB	 aconitate	hydratase	2	

(citrate	hydro-lyase	2)	

-2.76	 5.01E-06	

Chromosome	 3468515	 Mu	 deaD	 ATP-dependent	RNA	

helicase	(dead-box	

protein)	

-2.69	 3.74E-05	

Chromosome	 1773061	 Mu	 yciL	 hypothetical	

pseudouridine	synthase	

-2.53	 6.47E-05	

Chromosome	 186784	 Mu	 acnB	 aconitate	hydratase	2	

(citrate	hydro-lyase	2)	

-2.46	 2.49E-05	

Chromosome	 3892359	 Tn5	 selB	 selenocysteine-specific	

elongation	factor	

-2.26	 0	

Chromosome	 2806154	 Mu	 rluD	 FtsH	suppressor	protein	

SfhB	

-2.19	 0	

Chromosome	 3948421	 Mu	 rph	 RNase	PH	 -1.76	 0.006	
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3.7.2	KEGG	pathway	and	Gene	Ontology	enrichment	analysis	
	

To	 further	 characterize	 the	 potential	 biological	 functions	 of	 each	 candidate	 RBP,	 the	

enriched	 genes	 set	 of	 each	 RIP-Seq	 sample	 were	 subjected	 to	 Gene	 Ontology	 (GO)	

(Ashburner	 et	 al.,	 2000)	 and	 KEGG	 pathway	 (Kanehisa	 et	 al.,	 2000	 &	 2012)	 enrichment	

analysis.	 The	GO	 enrichment	 analysis	was	 carried	 out	 for	 each	 of	 the	 ontology	 categories	

(biological	processes,	 cellular	 components	and	molecular	 functions)	and	Fisher's	exact	 test	

(Fisher	et	al.,	1922)	P	values	were	calculated	using	a	background	of	the	complete	GO	profile	

of	 Salmonella	 Typhimurium	 obtained	 from	 the	 UniProt	 database	 (Margrane	 &	 UniProt	

Consortium,	2011).	Furthermore,	enrichment	scores	were	calculated	by	dividing	the	ratio	of	

genes	for	each	GO	term	in	the	enriched	set	by	the	ratio	of	the	genes	for	the	corresponding	

term	 in	 the	 background	 gene	 set.	 A	 maximum	 P	 value	 cut-off	 of	 0.05	 and	 minimum	

enrichment	 score	 cut-off	 of	 2	 was	 used	 for	 selecting	 the	 enriched	 GO	 terms.	 A	 similar	

enrichment	 analysis	 for	 KEGG	 pathways	 was	 carried	 out.	 Vornoi	 diagrams	 using	 Voronto	

(Santamaria	 &	 Pierre,	 2012)	 were	 generated	 where	 the	 genes	 are	 mapped	 to	 the	 KEGG	

pathways	according	to	their	RIP-Seq	enrichment	level.	The	functional	annotations	obtained	

from	these	two	approaches	were	used	for	hypothesizing	the	functional	 importance	of	RBP	

candidates	and	their	potential	regulatory	roles	in	biological	system.	

The	 functional	 analysis	 of	 the	 target	 enrichment	 revealed	 several	 important	 regulatory	

pathways	functionally	associated	with	Salmonella	 infection	and	virulence	for	several	of	the	

candidate	 RBPs.	 A	 heatmap	 was	 generated	 to	 visualize	 the	 range	 of	 pathways	 that	 were	

enriched	in	the	RIP-Seq	samples	(Figure	16).	As	shown,	genes	encoding	the	two	well-known	

RBPs:	 Hfq	 and	 CsrA,	 enrich	 for	 genes	 such	 as	 SL1344_1030	 and	 SL1344_1784	 that	 are	

functionally	 associated	 with	 the	 Salmonella	 infection-related	 KEGG	 pathways.	 Two	 more	

genes	 from	 the	 same	 pathway,	 SL1344_2845	 and	 SL1344_4300,	 showed	 high	 enrichment	

exclusively	 in	Hfq	 libraries.	These	two	genes	were	enriched	 in	several	RBP	candidate	CoIPs	

namely	Rho,	SL1344_1651,	SL1344_2639,	and	several	cold	shock	proteins	 (CspC,	CspE,	and	

CspH).	These	candidate	RBPs,	as	well	as	CsrA,	had	enrichment	of	several	other	genes	related	

to	 the	 infection	 related	 KEGG	 pathways,	 which	 are	 SL1344_1030,	 SL1344_1784,	

SL1344_2858,	 SL1344_2861,	 SL1344_2862,	 SL1344_2674,	 SL1344_2863	 and	 SL1344_2864.	

Two	pseudouridine	synthetases,	RluC	and	YjeQ	also	enriched	the	mRNAs	encoded	by	these	

genes,	whereas	the	CoIP	of	the	pseudouridine	synthase	RluB	showed	instead	enrichment	of	

SL1344_1030,	SL1344_2861,	and	SL1344_2674.	Another	RBP	candidate,	CaiD,	exhibited	high	

enrichment	 of	 SL1344_2863,	 SL1344_2864	 and	 SL1344_1888	 genes,	 which	 are	 also	
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functionally	 associated	 with	 Salmonella	 infection.	 One	 plasmid-encoded	 candidate	 RBP,	

SL1344_P1_0024	 (TraR),	 shows	 an	 enrichment	 of	 the	 mRNA	 targets	 (SL1344_4213,	

SL1344_1784,	 SL1344_2863,	 SL1344_2864	 and	 SL1344_2756	mRNAs)	 that	 are	 functionally	

associated	with	the	infection	related	KEGG	pathways.	

A	 set	 of	 RBP	 candidates	 (CsrA,	 Rho,	 CspC,	 CspE,	 CspH,	 YjeQ,	 SL1344_1651,	 and	

SL1344_2639)	 enriched	 several	 genes	 (SL1344_2674,	 SL1344_1030,	 SL1344_1784,	

SL1344_2858,	SL1344_2861,	SL1344_2862,	SL1344_2863,	and	SL1344_2864)	are	functionally	

associated	 to	 the	 bacterial	 invasion	 of	 epithelial	 cells.	 Several	 of	 those	 genes	 were	 also	

enriched	 in	 the	 Hfq	 libraries	 (SL1344_2845,	 SL1344_1030,	 SL1344_1784),	 the	 RluC	 library	

(SL1344_2674,	 SL1344_1030,	 SL1344_1784,	 SL1344_2858),	 the	 RluB	 library	 (SL1344_1030,	

SL1344_2861,	SL1344_2674),	the	YjbC	library	(SL1344_2674,	SL1344_1030),	the	CaiD	library	

(SL1344_2863,	SL1344_2864),	and	the	TraR	library	(SL1344_2863,	SL1344_2864).	

Figure	3.16	Visualization	of	two	pathways:	bacterial	infections	and	bacterial	secretion	system	that	
are	enriched	in	the	RIP-Seq	samples.		

The	Figures	3.16A	and	3.16B	(shown	below)	are	heatmaps	generated	by	Voronto	tool	to	highlight	the	

high	(red	spectrum)	and	low	(blue	spectrum)	enrichment	of	the	pathways	in	different	RIP-Seq	libraries	

(x-axis)	based	on	the	genes	involved	in	these	pathways	(y-axis).		

	

Color legend

Enrichment
decreasing increasing

A. KEGG pathway: bacterial infections



	 93 

Figure	3.16A	Heatmaps	showing	enrichment	of	KEGG	pathways	associated	with	bacterial	infections	

corresponding	to	14	genes	(x-axis).	The	y-axis	corresponds	to	the	various	RIP-Seq	libraries,	where	the	

last	columns	correspond	to	NT	samples	(denoted	by	EV)	that	does	not	enrich	these	pathways.	

	

Figure	3.16B	Heatmaps	showing	enrichment	of	KEGG	pathways	associated	with	bacterial	secretion	

systems	corresponding	to	38	genes	(x-axis).	The	y-axis	corresponds	to	the	various	RIP-Seq	libraries,	

where	the	last	columns	in	the	lower	heatmap	correspond	to	NT.	

Several	 genes	 related	 to	 flagellar	 assembly	 were	 also	 enriched	 in	 the	 RIP-Seq	 data	 of	

several	 candidate	RBP	candidates	 (Appendix	Table	2).	RBPs	 (controls	and	candidates)	 that	

enriched	3-10	of	these	genes	are	Hfq,	YhbJ,	CspB,	Rpsd,	Sdhb,	Nuc,	DinG,	Pnp,	SL1344_3273,	

SelB,	SL1344_4430,	TolB,	UvrB,	and	SL1344_0471.	Another	group	of	proteins	comprised	of	

Color legend

Enrichment
decreasing increasing

B. KEGG pathway: bacterial secretion system



	 94 

CspA,	 AceA,	 AceF,	 AcnB,	 Tuf,	 SL1344_2722,	 RhlE,	 TruD,	 and	 RluB,	 enriched	more	 than	 10	

genes	from	this	pathway.	

Chemotaxis	 is	also	closely	 related	with	Salmonella	 interactions	with	the	host,	and	some	

candidate	RBPs	enriched	mRNAs	related	to	this	pathway	(Appendix	Table	3).	More	than	2	of	

those	 genes	 were	 enriched	 as	 targets	 in	 the	 RIP-Seq	 libraries	 of	 CspA,	 CspB,	 CspC,	 AcnB,	

SdhB,	RluB,	YejH,	SL1344_1136,	Tuf,	EngA,	and	SL1344_3273.	RBP	candidates	that	enriched	

several	genes	from	this	pathway	are	SL1344_1196,	SL1344_3948,	SL1344_2722,	RhlE,	SelB,	

SL1344_4430,	and	SL1344_1001.	

A	more	 descriptive	 functional	 analysis	 of	 RBPs	 by	means	 of	 GO	 and	 KEGG	 enrichment	

analysis	will	be	discussed	in	the	next	section	for	the	two	cold	shock	proteins.		

3.7.2	Functional	characterization	of	CSPs	as	RBP	candidates	
	

Two	cold-inducible	proteins:	CspA	and	CspB	are	characterized	as	RBPs	 in	gram-negative	

bacteria	 including	Salmonella	 (Phadtare	et	al,	1999).	These	CSPs	bind	 to	RNA	by	means	of	

conserved	RNP1	and	RNP2	motifs,	which	are	prevalent	in	eukaryotic	Y-box	proteins.	Due	to	

these	 conserved	 domains,	 CspA	 and	 CspB	 were	 used	 as	 positive	 controls	 in	 this	 RBP	

screening	study	whereas	the	remaining	CSPs:	CspC,	CspD,	CspE	and	CspH,	were	subjected	to	

the	 RIP-Seq	 analysis.	 An	 analysis	 of	 these	 CSP	 RIP-Seq	 libraries	 highlighted	 the	 sample	

specific	and	common	enrichment	patterns	among	them.	For	example,	PCA	analysis	of	these	

libraries	successfully	clustered	CspA	and	CspB	together	in	one	group,	and	CspC	and	CspE	in	

another	group	(Figure	3.17A).	In	contrast,	CspH	clustered	away	from	either	of	these	clusters	

showing	an	enrichment	pattern,	which	is	specific	for	this	particular	CSP.	CspC	and	CspE	were	

were	grouped	with	 the	positive	RBP	controls	based	on	 their	expression	profiles	with	~400	

putative	RNA	targets,	strongly	suggesting	that	they	have	bona	fide	RNA-binding	activity.	
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Figure	 3.17	 Overview	 of	 samples	 involved	 in	 RIP-Seq	 analysis	 of	 Cold	 Shock	 Proteins	 and	 full	
transcriptome	analysis	of	∆cspCE.		

(3.17	 A)	 PCA	 analysis	 of	 the	 RIP-Seq	 libraries	 demonstrates	 the	 similar	 and	 dissimilar	 enrichment	

profiles	of	different	CSPs.	As	shown,	CspA	and	CspB	cluster	with	CspH.	Similarly,	CspC	and	CspE	cluster	

together.	CspH	shows	different	enrichment	profile	compared	to	other	CSPs.	 In	contrast,	Hfq	and	the	

non-target	 samples	 do	 not	 cluster	 with	 any	 CSPs.	 (3.17B)	 Scatter	 plot	 showing	 various	 classes	 of	

differentially	expressed	(DE)	genes	in	the	∆cspCE	transcriptomics	samples.		

The	next	 approach	 to	 functionally	 annotate	 these	 proteins	 included	 the	 analysis	 of	 the	

global	 transcriptome	 changes	by	 sequencing	 a	Salmonella	 strain	deleted	of	 both	cspC	 and	

cspE	 (∆cspCE)	 compared	with	 the	wild-type	 parental	 strain.	 This	 study	was	 conducted	 on	

three	 biological	 replicates	 for	 each	 strain	 and	 the	 sequence	 data	 was	 computationally	

analyzed	 using	 the	 READemption	 RNA-Seq	 analysis	 pipeline	 (Förstner	 et	 al.,	 2014).	 The	

differential	expression	(DE)	analysis	was	carried	out	by	DESeq2	(Anders	&	Huber,	2010;	Love	

et	al.,	2014),	which	revealed	590	downregulated	(log2	fold-change	<-1)	and	536	upregulated	

(log2	fold-change	>1)	genes	in	the	∆cspCE	strain	compared	to	WT.	The	set	of	regulated	genes	

included	primarily	mRNAs	and	sRNAs	(Figure	3.17B).	

Figure	 3.18	 Functional	 analysis	 of	 RIP-Seq	 libraries	 of	 CSPs	 and	 ∆cspCE	 (knockdown	 samples)	

transcriptomics	data	sets.	

(Figures	3.18	A-D	are	shown	below)	
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Figure	3.18A-B	Functional	enrichment	analysis	carried	out	on	the	enriched	genes	 in	the	different	

CSP	 libraries,	 which	 highlights	 the	 enrichment	 of	 GO	 terms	 (3.18A)	 and	 KEGG	 pathways	 (3.1BB)	

associated	with	infections	in	the	CspC	and	CspE	RIP-Seq	libraries.	
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Figure	 3.18C	 Top	 GO	 terms	 obtained	 from	 the	 GO	 enrichment	 analysis	 of	 the	 genes	 that	 are	

differentially	expressed	(DE)	in	the	∆cspCE	libraries.	The	red	bar	represents	the	number	of	genes	and	

the	blue	bars	represent	their	corresponding	enrichment	score	(see	materials	and	methods).	

C. GO enrichment in the ∆cspCE CSP libraries
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	Figure	3.18D	Representation	of	enriched	KEGG	pathways	among	the	DE	genes.	
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3.8	Concluding	remarks	

This	 study	was	designed	 to	obtain	a	preliminary	 indication	of	 the	number	proteins	 that	

can	 potentially	 bind	 to	 RNAs	 in	 Salmonella	Typhimurium	 SL1344,	 and	 further	 characterize	

them	 for	 their	 biological	 roles.	 The	 primary	 screening	 conducted	 by	 APRICOT	 protein	

characterization	 pipeline	 indicated	 that	 about	 10%	 proteins	 in	 the	 complete	 proteome	

contain	 functional	domains	 that	 could	potentially	have	binding	affinity	 towards	RNAs.	 The	

experimental	 set-up	 for	 the	 validation	 of	 several	 of	 these	 candidates	 was	 carried	 out	 by	

means	 of	 RIP-Seq-based	 high-throughput	 sequencing	 approach	 to	 account	 for	 the	 RNA	

binding	partners	of	RBPs.	The	analysis	of	these	sequencing	data	showed	that	many	of	these	

candidates	could	interact	with	one	or	multiple	RNA	classes.	

RIP-Seq	 is	 labour	 intensive	and	costly	procedure	when	performed	on	a	 large	number	of	

proteins.	 The	 problem	 of	 dealing	 with	 a	 large	 sample	 set	 was	 addressed	 by	 limiting	 the	

number	 of	 RBP	 candidates	 for	 the	 validation	 study	 by	 only	 selecting	 predicted	 RBPs	 that	

have	 important	 regulatory	 or	 infection	 relevant	 roles	 as	 per	 the	 existing	 literature	 based	

annotations.	Hence,	for	the	RIP-Seq	based	validation	study,	a	set	of	131	RBPs	was	selected	

by	exploring	their	biological	characteristics	available	in	publicly-available	experimental	data	

sets	 for	 Salmonella,	 including	 SalCom,	 a	 Salmonella-HeLa	 cell	 dual	 RNA-Seq	 data	 set,	 and	

TraDIS	infection	data	set	(Appendix	Table	1).		

Another	technical	issue	with	this	approach	is	the	differentiation	between	primary	targets	

and	 unspecific	 secondary	 binders.	 This	 could	 be	 addressed	 partially	 by	 using	 sample	

replicates	 to	 account	 for	 only	 those	 RNAs	 that	 consistently	 bind	 with	 RBPs.	 However,	 a	

replicated	 study	 on	 131	 proteins	 could	 still	 be	 cost-intensive,	 and	 abundantly	 expressed	

secondary	binders	might	still	be	falsely	counted	as	RBP	targets.	In	order	to	address	this,	we	

carried	 out	 a	 pooled	 exploratory	 analysis	 of	 the	 entire	 RIP-Seq	 data	 set	 generated	 in	 this	

study	by	introducing	a	suitable	normalization	approach.	The	normalization	in	this	study	uses	

a	modified	TMM,	which	was	very	effective	at	excluding	transcripts	that	are	abundant	in	all	

the	 samples	 and	 appear	 as	 false	 positive	 RBP	 binders.	 Furthermore,	 a	 stringent	 target	

selection	criterion	was	established	by	using	a	cut-off	derived	from	quartile	approach	applied	

on	the	entire	RIP-Seq	samples.	Based	on	an	intensive	analysis	of	the	131	test	samples,	only	

13	RBP	candidates	were	indicated	as	non-RBPs	as	they	exhibit	enrichment	patterns	similar	to	

the	 NT	 controls	 that	 do	 not	 bind	 to	 RNAs.	 Furthermore,	 by	 integrating	 knowledge	 from	

different	resources	such	as	GO,	KEGG,	and	TraDIS	data	set,	initial	biological	characterization	
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of	 some	 candidate	RBPs	was	 carried	 out,	which	 could	 be	 further	 classified	 based	on	 their	

functional	relevance.	

In	the	related	studies	for	the	target	validation	and	functional	characterization	of	CspC	and	

CspE	CLIP-Seq	experiment	was	carried	out	in	our	lab	(Dr.	Charlotte	Michaux)	that	showed	a	

high	overlap	with	their	RIP-Seq	expression	profiles.	These	enriched	RNAs,	from	both	RIP-Seq	

and	 CLIP-Seq,	were	 subjected	 to	 GO	 and	 KEGG	 enrichment	 analysis,	 which	 revealed	 their	

potential	roles	 in	pleiotropic	stress	response-related	biological	processes	(data	not	shown).	

Furthermore,	 by	 means	 of	 complete	 transcriptome	 analysis	 of	 a	 double	 deletion	 strain	

(∆cspCE)	compared	to	WT,	it	was	suggested	that	these	proteins	might	have	complementary	

roles	in	these	phenotypes.	Additional	phenotypic	experimental	studies	further	characterized	

these	 proteins	 for	 their	 regulatory	 roles	 in	 virulence	 of	Salmonella	 (data	 not	 shown).	 This	

provided	a	proof-of-principle	that	RIP-Seq	based	screening	of	candidate	RBPs	in	Salmonella	

could	participate	in	important	regulatory	roles.	

As	one	of	the	first	exploratory	bio-computational	analysis	for	the	identification	of	RBPs	in	

model	 bacterial	 pathogen,	 this	 study	 can	 serve	 as	 a	 valuable	 resource	 for	 the	 scientific	

community.	 In	 addition	 to	 providing	 a	 resource	 of	 RBP	 candidates	 in	 Salmonella,	 but	 also	

specifies	a	step-wise	framework	for	the	characterization	of	their	biological	function.	
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Chapter	4	
	
Discussion	

4.1	The	APRICOT	computational	pipeline:	potential	applications	and	scope	

It	 has	been	well	 established	 that	RBPs	play	 several	 important	 roles	 in	 global	 regulatory	

networks	(Moore	&	Proudfoor,	2009;	Wang	et	al.,	2015;	de	Klerk	et	al.,	2015).	Several	RBPs	

have	 been	 documented	 and	 characterized	 in	 eukaryotes,	 using	 cross-linking	 and	 mass-

spectrometry	 based	methods	 (Castello	et	 al.,	 2012;	 Baltz	et	 al.,	 2012;	 Kwon	 et	 al.,	 2014).	

Furthermore,	by	using	co-immunoprecipitation	experiments,	the	binding	partners	of	several	

of	these	RBPs	have	been	identified,	which	provide	insights	into	the	functional	roles	of	these	

proteins	(König	et	al.,	2012).	Such	global	studies	by	means	of	wet-lab	experiments	have	been	

developed	 and	 reproduced	 in	 eukaryotic	 model	 organisms	 like	 human,	 mouse	 and	 yeast	

(Castello	et	al.,	2012;	Baltz	et	al.,	2012;	Mitchell	et	al.,	2013).	Though	these	approaches	are	

efficient,	 they	 are	 extremely	 tedious,	 time	 consuming	 and	 costly.	Moreover,	 they	 are	 not	

readily	 applicable	 to	 other	 systems	without	 extensive	modification	 of	 the	 techniques.	 For	

example,	 the	 cross-linking	 based	 interactome	 capture	 depends	 on	 the	 pull-down	 of	

eukaryotic	mRNAs	via	the	poly(A)	tails,	which	are	absent	from	most	bacterial	mRNAs.	Other	

deep-sequencing	methods	like	CLIP	and	CoIP	followed	by	high-throughput	sequencing	(RIP-

seq)	can	be	conducted	on	a	single	protein	at	a	time,	in	order	to	capture	their	genome-wide	

binding	partners	and	characterize	their	binding	specificity.	It	has	been	proposed	from	studies	

of	the	human	genome	that	about	10%	of	the	entire	proteome	has	the	potential	to	bind	RNAs	

(Gerstberger	et	al.,	2014);	hence	carrying	out	such	experiments	on	the	complete	proteome	

of	 other	 organisms	 might	 be	 unfeasible	 and/or	 inefficient.	 As	 listed	 already	 (Chapter	 1),	

bioinformatic	tools	provide	an	important	alternative	to	reduce	the	list	of	candidate	RBPs	and	

decrease	the	number	of	 false	positive	results.	Most	bio-computational	approaches	for	RBP	

identification	are	established	on	the	information	obtained	from	experimentally	determined	

structural	 information	 of	 RNA-protein	 complexes.	 Several	 tools	 have	 been	 developed	

independently	 of	 such	 RNA-protein	 structures	 by	 instead	 involving	 bio-computationally	

derived	information	from	all	eukaryotic	RBP	sequences	and	identifying	proteins	comprising	

similar	physico-chemical	 properties	 to	 those	of	 known	RBPs.	However,	 these	methods	are	

limited	 in	 their	 application	 to	 specific	 data	 types	 due	 to	 manually	 curated	 training	 sets.	
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Hence,	 these	 tools	 are	 prone	 to	 miss	 out	 RBPs	 that	 do	 not	 qualify	 as	 such	 due	 to	 the	

underlying	reference	data	used	in	their	development	(Miao	&	Wetshoff,	2015).		

I	 set	 out	 to	 develop	 an	 approach	 that	 is	 established	 independent	 of	 a	 specific	 set	 of	

proteins	 to	avoid	any	bias	 caused	by	 such	underlying	data	 set.	 Furthermore,	 I	 applied	 this	

approach	to	present	an	exploratory	analysis	of	RBPs	in	bacterial	proteomes	in	a	large-scale	

manner.	A	generic	 software	pipeline	 (APRICOT)	was	designed	 that	 could	be	customised	 to	

analyse	 the	proteome	of	 an	organism	 to	 identify	proteins	with	biological	 roles	of	 interest,	

based	 on	 a	 given	 set	 of	 functional	 domains.	 To	 specifically	 identify	 RBPs	 in	 bacterial	

proteome,	a	set	of	RBDs	was	used,	which	are	annotated	in	domain	databases	for	their	RNA	

relevant	structural	and	regulatory	roles.		

Since	 bacterial	 proteomes	 differ	 from	 eukaryotic	 proteomes	 due	 to	 phylogenetic	

divergence,	 there	 are	 obvious	 challenges	 when	 applying	 knowledge	 obtained	 from	

eukaryotic	data	sets	 for	the	RBP	predictions	 in	bacteria.	To	account	 for	such	differences,	a	

wide	variety	of	reference	features	were	selected	to	capture	both	the	structural	information	

and	 physico-chemical	 properties.	 One	 such	 feature	 is	 the	 information	 of	 subcellular	

localization	 of	 proteins	 that	 can	 help	 tremendously	 in	 annotating	 newly	 sequenced	

genomes,	designing	experimental	studies,	and	identifying	drug	targets	and	biomarkers.	The	

eukaryotic	 experimental	 set-up	 for	 RBP	 characterization	 by	 interactome	 capture	 lacks	

subcellular	 spatial	 information,	 which	 has	 been	 partially	 addressed	 by	 the	 SerIC	

experimental	approach	(Conrad	et	al.,	2015).	However,	it	is	not	feasible	to	derive	localization	

information	 for	 every	 protein	 in	 a	 cellular	 system	 in	 a	 single	 experiment.	 Computational	

approaches	 provide	 a	 faster	 option	 to	 predict	 localization	 signals	 coded	 in	 the	 protein	

sequences	to	give	insight	into	their	subcellular	location.	Several	tools	have	been	trained	on	

large	data	sets	 to	capture	such	 information	 in	bacterial	proteins.	To	allow	users	 to	classify	

their	set	of	query	proteins	or	putative	RBPs,	a	highly	effective	tool	-		PSORTb	(Yu	et	al.,	2010)	

has	 been	 integrated	 in	 the	 APRICOT	 pipeline.	 PSORTb	 software	 have	 been	 trained	 on	

bacterial	 and	 eukaryotic	 data	 sets	 to	 predict	 subcellular	 localization	 signals	 in	 the	 protein	

sequence.	This	added	feature	of	APRICOT	provides	users	not	only	the	possibility	to	identify	

proteins	 with	 domains	 of	 interest,	 but	 further	 identify	 their	 possible	 roles	 in	 biological	

network	 by	 placing	 them	 into	 the	 cellular	 context.	 The	 feature	 of	 secondary	 structure	 by	

searching	homology	for	tertiary	structures	provide	further	insight	into	the	possible	substrate	

specificity	of	proteins.	Such	information,	in	the	context	of	putative	RBPs,	further	allows	the	

modelling	 of	 a	 protein-RNA	 complex	 computationally,	 which	 can	 then	 be	 experimentally	
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verified.	 In	 order	 to	 proceed	 further	with	 the	 biological	 understanding	 of	 predicted	 RBPs,	

APRICOT	has	also	been	provided	with	a	 tool	 for	 the	prediction	of	 secondary	 structures	by	

means	of	RaptorX	(Källberg	et	al.,	2012),	and	tertiary	structure	homology	search	against	the	

PDB	 database	 (Kouranov	 et	 al.,	 2006).	 Furthermore,	 using	 Gene	 Ontology	 terms,	 which	

associate	gene-products	to	specific	biological	processes,	cellular	components,	and	molecular	

functions,	 proteins	 of	 interest	 can	 be	 clustered	 to	 derive	 their	 relatedness	 in	 biological	

systems	(GO	consortium	2009).	To	enable	this	feature	for	putative	RBPs,	APRICOT	provides	

comprehensive	 Gene	 Ontology	 information,	 which	 is	 compiled	 from	 the	 UniProt	

knowledgebase	 (Magrane	 M	 &	 UniProt	 Consortium,	 2011),	 InterPro	 domain	 resources	

(Mitchell	 et	 al.,	 2015),	 and	 additional	 calculation	 by	 blast2go	 (Conesa	 &	 Götz,	 2008).	 An	

analysis	 step	was	 included	 in	 the	 pipeline	 to	 calculate	 the	 distance	 between	 the	 domains	

identified	in	the	query	proteins	and	their	corresponding	reference	domain	in	terms	of	these	

functional	properties.		

The	 number	 and	 functional	 understanding	 of	 proteins	 in	 the	 databases	 is	 increasing	

exponentially	due	to	the	availability	of	genome	sequences,	as	well	as	the	technical	advances	

in	 experimental	 studies	 brought	 about	 by	 high-throughput	 techniques	 like	 mass-

spectrometry	 and	 RNA-sequencing.	 One	 of	 the	 major	 concerns	 resulted	 by	 this	 rapid	

increase	in	newly	identified	proteins	is	how	these	new	ORF	candidates	will	be	accurately	and	

descriptively	 annotated.	 Community-driven	 projects	 like	 Critical	 Assessment	 of	 Structure	

Prediction	(CASP)	(Moult	et	al.,	2014)	and	Critical	Assessment	of	Function	Annotation	(CAFA)	

(Radivojac	 et	 al.,	 2013)	 are	 intended	 to	 annotate	 these	 proteins	 with	 structural	 and	

functional	 information	and	 further	 improve	 the	quality	of	 annotation	with	 the	help	of	 the	

experimental	scientific	community.	In	this	endeavour,	our	pipeline	was	included	in	the	CAFA	

project	(Jiang	et	al.,	2016),	where	it	performed	a	complete	annotation	of	more	than	1	million	

bacterial	 proteins	with	 gene	 ontology	 terms.	 This	 inspired	 the	modularity	 of	 the	 pipeline,	

which	 makes	 it	 adaptable	 for	 the	 annotation	 of	 different	 data	 sets	 with	 practically	 any	

functional	 class.	 This	modularity	allows	users	 to	 introduce	modifications	 required	 for	 their	

analysis,	 like	 the	 type	of	query	 input	 (protein	name,	 synonymous	 IDs,	 FASTA	 sequence,	or	

taxonomy	IDs),	choice	of	reference	domains	(terms	for	domain	selection),	and	reusability	of	

intermediate	 data.	 Several	 options	 are	 available	 for	 defining	 filtering	 criteria	 such	 as	

selection	 of	 reference	 domains	 (one	 or	 several	 domain	 families),	 extent	 of	 similarity	

between	 the	 reference	 and	 predicted	 domains,	 similarity	 of	 their	 physico-chemical	
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properties,	 and	 additional	 structural	 similarities.	 The	 tool	 has	 been	 extensively	 tested	 on	

different	sets,	and	improved	for	its	ability	to	annotate	proteins.		

The	applicability	of	this	approach	for	RBP	identification	was	demonstrated	in	several	data	

sets	 composed	 of	 proteomes	 of	 varying	 sizes	 and	 phylogenetic	 source.	 The	 pipeline	

successfully	 processed	 these	 data	 sets,	 showing	 high	 specificity	 and	 sensitivity	 for	 known	

RBPs.	A	high	accuracy	was	 further	observed	 for	APRICOT	predicted	 functional	 sites,	which	

coincide	with	the	binding	residues	known	from	the	PDB	structures.	These	observations	could	

be	reproduced	when	the	complete	E.	coli	and	human	proteomes	were	analysed.	The	pipeline	

could	identify	all	known	RBPs	and	suggested	many	additional	putative	RBPs.	This	capability	

of	the	pipeline	successfully	addresses	the	issue	of	dealing	with	large	data	sets,	especially	for	

the	computational	processing	of	complete	proteome	sets	from	different	organisms.	

Since	most	of	the	bioinformatics	tools	depend	on	a	number	of	other	software	packages,	

one	 of	 the	 common	 concerns	 is	 to	 maintain	 their	 consistency	 and	 reproducibility.	 I	

developed	 APRICOT	 as	 a	 command-line	 tool,	 which	 is	 publicly	 available	 on	 PyPI	 (Python	

Package	Index)	and	GitHub.	To	make	it	feasible	for	the	users	to	use	the	command-line	tool	

efficiently,	I	have	generated	and	intensively	tested	a	Docker	image,	which	is	available	on	the	

Docker	hub.	Users	 can	carry	out	a	 frictionless	 installation	and	usage	of	 the	program	along	

with	 the	 associated	 software	 and	 data	 dependencies,	 allowing	 users	 to	 conveniently	 use	

APRICOT	on	 different	 platforms.	 A	 comprehensive	 documentation	 has	 been	 provided	 that	

includes	installation	requirements,	 instructions,	and	example	data	sets	to	test	the	software	

effortlessly.	Extensive	resources,	including	video	tutorials,	have	been	developed	in	order	to	

present	the	concepts	behind	APRICOT,	as	well	as	guide	the	beginner	users	through	hands-on	

sessions.	In	near	future,	the	software	will	be	extended	with	a	functional	and	sustainable	web	

server	for	its	public	accessibility.	

As	apparent	from	the	rich	collection	of	data	sets	and	integration	of	various	computational	

approaches	in	the	pipeline,	APRICOT	provides	an	ideal	scenario	for	the	analysis	of	large	sets	

of	 query	 proteins	 in	 an	 automated	 manner.	 Using	 statistically	 derived	 high	 importance	

parameters	 and	 their	 respective	 cut-offs,	 a	 clear	 distinction	 is	 provided	 between	 high	

confidence	domain	prediction	and	the	domains	that	are	predicted	by	chance.	The	Bayesian	

scoring	 offers	 an	 easy	 solution	 to	 the	 users	 to	 rank	 their	 sets	 of	 proteins	 predicted	 with	

domains	of	interest	by	their	biological	relevance.	
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4.2	Resource	for	bio-computationally	characterized	RBPs	in	bacteria	

One	of	the	main	focuses	of	biological	research	has	been	on	the	development	of	methods	

for	 the	 identification	 and	 characterization	 of	 human	 proteins,	 including	 RBPs.	 Among	

bacteria,	 many	 model	 organisms	 have	 been	 completely	 sequenced	 but	 a	 much	 lower	

amount	 of	 proteins	 have	 been	 intensively	 characterized,	 which	 includes	 ~10	 RBPs	 in	 the	

model	enterobacteria	Salmonella	and	E.	coli.	

One	major	highlight	of	 this	 thesis	 is	 the	exploratory	analysis	of	 the	complete	proteome	

set	 of	 Salmonella	 Typhimurium	 SL1344	 in	 order	 to	 identify	 RBPs.	 Using	 the	 APRICOT	

computational	pipeline,	1068	RBPs	were	predicted,	of	which	372	proteins	were	annotated	as	

such	 by	 both	 the	 main	 components	 of	 the	 tools,	 CDD	 (Marcher-Bauer	 et	 al.,	 2015)	 and	

InterPro	(Mitchell	et	al.,	2015).	By	further	introducing	the	criteria	of	filtering	by	domains	that	

are	 annotated	 in	 both	 eukaryotes	 and	 bacteria,	 a	 set	 of	 131	 proteins	 was	 selected	 for	

analysis	by	RIP-Seq	experiments	(Appendix	Table	1).	The	experimental	set-up	chosen	for	the	

validation	 study,	 RIP-Seq,	 is	 a	 widely-used	 technique	 in	 RNA	 biology	 research	 for	 the	 co-

purification	 followed	 by	 high-throughput	 sequencing	 identification	 of	 RNA	 targets	 of	

proteins	of	interest	(Ule	et	al.,	2003;	Selth	et	al.,	2009;	Zhao	et	al.,	2010;	König	et	al.,	2012).		

One	major	challenge	of	this	approach	is	to	differentiate	primary	binding	partners	of	RBPs	

from	the	secondary	or	indirect	targets	(Selth	et	al.,	2009).	In	an	initial	setup,	the	analysis	of	

the	 RIP-Seq	 sample	 of	 each	 protein	was	 carried	 out	 against	 a	 control	 of	 RIP-Seq	 data	 set	

generated	 for	bacterial	 samples	 transformed	with	an	empty	plasmid,	named	non-targeting	

(NT)	samples.	Interestingly,	the	10	different	NT	samples	had	different	expression	profiles.	It	

was	 intuitively	 expected	 that	 if	 no	 protein	 is	 overexpressed	 there	 should	 not	 be	 an	

enrichment	 of	 targets.	 However,	 the	 NT	 samples	 showed	 low	 enrichment	 of	 a	 few	 (<15	

targets)	RNA	targets	when	compared	with	other	NT	control	samples.	We	used	samples	with	

the	overexpression	of	Hfq	as	the	positive	controls,	which	as	expected	showed	enrichment	of	

several	 RNA	 targets.	 The	 10	 Hfq	 samples,	 which	 were	 sequenced	 in	 different	 sequencing	

pools,	 had	 several	 common	 targets	 including	 various	 known	 mRNA	 and	 sRNA	 genes.	

However,	they	did	not	show	a	completely	 identical	enrichment	profile,	possibly	 introduced	

by	the	library	preparation	or	the	sequencing	process.	Therefore,	it	was	crucial	to	introduce	a	

normalization	method	that	could	exclude	targets	that	appear	in	each	sample	non-specifically	

or	 low	confidence	targets	that	could	occur	due	to	low	number	of	transcripts.	Based	on	the	

modified-TMM	 normalization	 analysis,	 the	 targets	 that	 are	 enriched	 in	 NT	 samples	 and	
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consistently	 appear	 in	 all	 the	 samples	 were	 excluded.	 	 In	 addition,	 a	minimum	 transcript	

count	of	50	 reads	 to	 select	a	 target	was	applied.	Upon	analysis,	118	of	 the	131	candidate	

proteins	were	identified	as	putative	RBPs	as	they	enriched	sample	specific	targets,	whereas	

15	samples	had	low	number	of	targets	and	exhibited	an	enrichment	profile	similar	to	the	NT	

samples.		

The	more	target	specific	technique	CLIP-Seq	helps	in	identifying	the	direct	binders	and	the	

binding	motifs	that	are	specific	to	the	majority	of	RNA	targets,	hence	other	targets	that	do	

not	bind	to	such	specific	sites	on	proteins	can	be	regarded	as	secondary	or	low	confidence	

binders.	 In	 the	 related	 studies	 in	 our	 lab,	Dr.	 Charlotte	Michaux	 carried	out	more	 specific	

experimental	 studies	 for	 the	 target	 validation	 and	 functional	 characterization	 of	 positive	

RBPs:	CspC	and	CspE	using	CLIP-Seq.	RNA	targets	of	the	individual	proteins	were	enriched	in	

CLIP-Seq	 data	 sets,	 which	 showed	 a	 high	 overlap	 with	 their	 RIP-Seq	 expression	 profiles.	

These	 enriched	 RNAs,	 from	 both	 RIP-Seq	 and	 CLIP-Seq	 were	 subjected	 to	 GO	 and	 KEGG	

enrichment	analysis	that	revealed	their	potential	roles	in	pleiotropic	stress	response-related	

biological	processes.	Furthermore,	by	means	of	complete	transcriptome	analysis	of	a	double	

deletion	strain	(∆cspCE)	compared	to	WT,	 it	was	suggested	that	these	proteins	might	have	

complimentary	 roles	 in	 these	 phenotypes.	 Additional	 phenotypic	 experimental	 studies	

further	characterized	these	proteins	for	their	regulatory	roles	in	virulence	of	Salmonella.	This	

provided	a	proof-of-principle	that	RIP-Seq	based	screening	of	candidate	RBPs	in	Salmonella	

could	predict	important	regulatory	roles.		

The	 large	 amount	 of	 sequencing	 data	 generated	 in	 this	 work	 serves	 as	 a	 substantial	

resource	to	begin	to	understand	the	biological	roles	of	these	candidate	proteins.	In	addition	

to	 provide	 a	 computational	 pipeline,	 this	 study	 also	 explores	 the	 success	 rate	 of	 its	

prediction	by	means	of	experimental	validation	studies,	as	well	as	an	experimental	data	set	

of	 potential	 RNA	 binding	 partners	 for	multiple	 candidate	 RBPs.	 However,	 this	 exploratory	

study	 of	 RBPs	 also	 highlighted	 technical	 challenges	 associated	 with	 large	 scale	 bio-

computational	screening	of	protein	sets,	which	 is	discussed	 in	detail	 in	the	next	section.	 In	

summary,	this	study	is	the	first	step	in	the	direction	of	comprehensive	analysis	of	regulatory	

RBPs	 in	 bacteria	 and	 constitutes	 an	 important	 resource	 to	 guide	 high-resolution	

characterization	studies.	
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4.3	Limitations	

The	 analyses	 described	 above	 clearly	 demonstrate	 the	 efficiency	 of	 APRICOT	 for	

prediction	 of	 RBPs	 in	 bacteria,	 nevertheless,	 there	 are	 limitations	 to	 this	 pipeline.	 One	

obvious	 shortcoming	 is	 that	 since	 the	 pipeline	 has	 not	 been	 designed	 to	 identify	 new	

domains	 in	 the	 protein	 sequences,	 the	 software	 largely	 depends	 on	 the	 availability	 of	

domains	 in	the	databases.	A	second	 limitation	relates	to	the	correct	selection	of	reference	

domain	sets,	which	is	influenced	by	the	user-provided	terms	for	the	compilation	of	domains	

from	 databases.	 The	 MeSH	 terms,	 Pfam	 domain	 identifiers,	 protein	 family	 names,	 and	

generic	 biological	 terms	 like	 gene	 ontology	 can	 be	 used	 to	 denote	 a	 functional	 class	 and	

select	domains	accordingly.	Since	the	domain	selection	takes	place	by	searching	a	string	 in	

the	annotation	of	domain	entries,	any	use	of	ambiguous	terms	may	lead	to	the	selection	of	

functionally	 irrelevant	 domains.	 Similarly,	 by	 using	 an	 extremely	 specific	 term,	 one	 can	

influence	the	accuracy	of	the	reference	set	by	limiting	the	domain	search	space	to	only	few	

domains	that	are	overtly	annotated	with	the	specified	terms.	For	example,	a	large	number	of	

ribosomal	proteins	and	domains	are	defined	in	human	proteomes.	However,	not	all	of	them	

are	RNA-binding.	Hence,	instead	of	using	‘ribosomal’	as	the	term	to	indicate	these	domains,	

the	 specific	 RNA-binding	 ribosomal	 domains	 (Gerstberger	 et	 al.,	 2015)	 were	 defined	 to	

exclude	undesirable	non-RNA-binding	domains.	Similarly,	only	71%	of	the	human	RBPs	could	

be	 identified	 using	well-annotated	 domains	 like	 classical	 RBDs	 and	RNA-binding	 ribosomal	

domains.	However,	the	remaining	RBPs	could	be	identified	by	further	including	non-classical	

RBDs.	

The	 current	 version	 of	 APRICOT	 tool	 is	 not	 designed	 to	 find	 new	 domains,	 hence	 the	

limitation	of	the	software	in	dealing	with	only	the	known	domains	is	unavoidable.	However,	

by	establishing	a	verified	 set	of	 keywords	 for	 the	 important	 functional	 classes,	 the	 second	

limitation	of	term	selection	can	be	resolved.	Scientific	community	involved	in	different	fields	

of	 protein	 research	 can	 contribute	 to	 the	 development	 and	 improvement	 of	 this	 kind	 of	

consistent	sets	of	terms	or	domain	families	related	to	the	specific	protein	classes.	

Other	 limitation	 relates	 to	 the	 validation	 study	 by	 RIP-Seq	 experiments.	 The	 main	

challenge	is	to	identify	and	deal	with	the	biases,	such	as	batch	effect	introduced	by	technical	

handling	 of	 the	 data	 sets.	 The	 RIP-Seq	 samples	 used	 in	 this	 study	were	 generated	 by	 the	

overexpression	of	a	protein	of	 interest	by	means	of	plasmids	(see	materials	and	methods).	

This	experimental	setup	could	have	non-desirable	biological	effect	on	the	sample	conditions	
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(Selth	et	al.,	2009).	For	example,	it	was	observed	that	NT	samples,	which	was	sequenced	in	

10	 different	 sequencing	 pools,	 showed	 enrichment	 of	 a	 few	 genes	 (<15	 targets	 with	 low	

transcript	 abundance)	 even	 though	 it	 was	 expected	 to	 show	 no	 target	 enrichment	 in	 the	

absence	 of	 protein	 overexpression.	 Additionally,	 Hfq	 samples	 were	 also	 sequenced	 in	 10	

sequencing	pools	as	positive	controls,	which	showed	enrichment	of	much	higher	number	of	

targets	 than	 previously	 reported	 (Chao	 et	 al.,	 2010;	 Holmqvist	 et	 al.,	 2016).	 These	

observations	highlighted	the	enrichment	of	non-specific	targets	in	the	samples,	which	could	

not	be	avoided	even	by	using	replicated	sample	sets.	Beside	these	two	sets	of	samples	(Hfq	

and	NT),	other	samples	were	not	produced	in	replicates	due	the	associated	cost-	and	labour-

intensive	 experiments.	 Hence,	 for	 these	 samples	 it	 could	 not	 be	 directly	 verified	 if	 the	

targets	 are	 enriched	 as	 a	 result	 of	 expressed	 proteins	 or	 due	 to	 unspecific	 secondary	

bindings	 to	 the	 primary	 targets.	 Furthermore,	 based	on	 their	 transcript	 abundance,	 a	 few	

genes	were	found	enriched	consistently	across	each	sample.		

Such	 unspecific	 secondary	 binders	 can	 introduce	 inconsistency	 in	 the	 quantification	 of	

target	 enrichment	 across	 different	 samples	 including	 replicated	 samples	 of	 Hfq	 and	 NT	

samples.	An	experimental	setup	where	a	background	sample	is	generated	for	each	RIP-Seq	

sample	could	have	solved	this	issue	by	allowing	a	direct	comparison	of	both	the	samples	and	

identify	the	primary	targets	even	in	the	absence	of	replicates.	However,	for	the	available	set	

of	samples	that	lack	such	background	controls,	the	quality	of	target	selection	was	optimized	

by	 integrating	 a	 normalization	 process	 by	 TMM	 method	 (Robinson	 et	 al.,	 2010).	 The	

standard	TMM	requires	a	reference	or	control	sample	for	the	selection	of	reference	gene	set	

to	 calculate	 size	 factors	 for	 each	 sample,	 which	 is	 further	 used	 for	 normalizing	 them.	

However,	due	 to	a	 lack	of	an	appropriate	 reference,	a	modification	was	 introduced	 in	 this	

method	(suggested	by	Dr.	Lars	Barqist)	that	globally	compared	the	enrichment	profiles	of	the	

samples	and	selected	reference	gene	set	for	the	size	factor	calculation	that	have	more	than	

10	 reads	 in	 each	 sample.	 Upon	 normalization	 of	 the	 samples,	 the	 target	 genes	 were	

recorded	for	each	sample.	This	modified	TMM	not	only	 in	excluded	the	genes	that	 initially	

appeared	 as	 targets	 due	 to	 their	 enrichment	 in	 each	 sample	 non-specifically,	 but	 also	

highlight	 the	 sample	 specific	 targets	 efficiently,	 which	 could	 be	 verified	 for	 the	 positive	

controls.	
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4.4	Future	applications	

4.4.1	Characterization	of	other	functional	classes	

The	APRICOT	pipeline	has	been	designed	in	such	a	way	that	it	can	be	easily	adapted	for	

the	 characterization	 of	 functional	 protein	 classes	 other	 than	 RNA-binding.	 For	 each	 query	

protein,	 all	 possible	 domains	 are	 predicted.	 By	 further	 defining	 a	 comprehensive	 non-

ambiguous	 set	 of	 terms	 that	 indicates	 certain	 functional	 properties	 of	 a	 protein	 class,	

domain	entries	are	collected	from	the	data	sets.	This	reference	set	of	domains	is	used	for	the	

selection	 of	 proteins	 in	 which	 these	 domains	 are	 predicted.	 Users	 can	 choose	 different	

properties	to	identify	proteins	of	interest	without	re-running	the	domain	prediction	analysis.	

The	default	parameters	have	been	defined	based	on	the	data	sets	related	to	RBPs	and	non-

RBPs.	These	parameters	worked	equally	well	 for	 the	characterization	of	kinases.	However,	

for	 different	 functional	 classes	 SVM	 based	 parameter	 ranking	 followed	 by	 optimal	 cut-off	

range	 can	 be	 calculated	 in	 a	 similar	 manner	 as	 done	 for	 RBPs.	 In	 this	 regard,	 it	 is	 also	

important	to	establish	the	domain	sets	or	the	search	term	that	selects	only	relevant	domains	

of	interest.	

4.4.2	Identification	of	dual-specificity	DNA-RNA	binders	

Most	of	 the	proteins	are	multifunctional,	 as	 they	may	participate	 in	different	biological	

processes.	Using	serial	interactome	capture	(SerIC)	technique,	Conrad	et	al.	(2015)	identified	

a	group	of	proteins	with	dual	binding	specificity	 to	RNA	and	DNA	 in	 their	 study	of	nuclear	

interactome.	A	standard	IC	approach	involves	UV	induced	cross-linking	of	proteins	with	their	

RNA	targets,	which	are	isolated	by	poly(A)-RNA	to	oligo	d(T)	magnetic	beads	and	stringently	

washed	before	subjecting	them	to	LC-MS/MS	detection.	A	considerably	high	amount	of	DNA	

was	observed	in	the	IC	purification	of	nuclear	fraction,	hence	they	included	another	round	of	

chemical	 and	 enzymatic	 treatment,	 oligo	 d(T)	 capture,	 stringent	 washes	 followed	 by	 LC-

MS/MS	 detection.	 Even	 with	 these	 extreme	 measures	 to	 avoid	 DNA-binding	 protein	

recovery,	80	proteins	were	recovered	as	DNA-RNA-binding	proteins	 (DRBPs)	 in	 the	nuclear	

transcriptome	 that	 were	 previously	 annotated	 as	 DNA-binding	 proteins.	 Sixty	 of	 these	

proteins	 have	 RBDs	 or	 experimentally	 verified	 RNA	 targets.	 The	 remaining	 proteins	 were	

recognized	 as	 novel	DRBPs,	 a	 few	of	which	 are	 transcription	 factors	 or	with	 roles	 in	RNA-

splicing,	processing,	stability	and	DNA	damage	response.	The	examples	of	these	novel	DRBPs	

are,	 BCLAF	 and	 THRAP3,	 components	 of	 SNARP	 complex,	 which	 regulates	 the	 stability	 of	

cyclinD1	and	also	couples	DDR	and	alternative	splicing	(Conrad	et	al.,	2015).	Several	DRBPs	



	 110 

couple	 transcription	 and	 RNA	 splicing,	 for	 example	 PHF5A,	which	 activates	 CX43	 and	 as	 a	

part	of	splicing	factor	3b	protein	complex,	it	couples	splicing	factor	and	DNA	helicase.	These	

examples	 including	a	 few	other	DRBPs	such	as	kinases,	ZF	domain	containing	proteins	and	

replication-dependent	 linker	 histones,	 which	 give	 a	 new	 insight	 into	 the	 multifunctional	

proteins.	

These	 observations	 indicate	 that	 this	 dual	 specificity	 can	 allow	 proteins	 to	 have	

multifunctional	ability	 to	act	as	 regulators	 in	 related	or	unrelated	cellular	events.	This	 less	

understood	 set	 of	 interesting	 proteins,	 can	 be	 explored	 by	 means	 of	 computational	

characterization	 techniques	 in	 more	 systematic	 manner.	 APRICOT	 could	 be	 extended	 to	

allow	users	to	identify	proteins	with	dual-functionality	as	abovementioned	DRBPs.	

4.4.3	Identification	of	domain	co-occurrence	

Systems	biology	aims	to	capture	the	interaction	of	individual	components	like	DNA,	RNA,	

proteins	and	small	molecules,	in	a	biological	environment	like	cellular	system.	This	approach	

is	different	from	a	reductionist	way	of	studying	one	target	at	a	time,	where	the	main	focus	is	

to	 build	 a	 biological	 network	 to	 understand	 the	 structural	 and	 functional	 dynamics	 of	 the	

whole	system.	As	mentioned	earlier,	most	of	the	proteins	are	multifunctional	in	nature	and	

respond	differently	according	to	the	environmental	conditions.	Since	most	of	the	functional	

aspects	 of	 a	 protein	 can	 be	 captured	 by	 its	 domain	 architecture,	 it	 is	 possible	 to	

computationally	 identify	 the	 co-occurrence	 of	 two	 or	 more	 domains	 and	 derive	 their	

possible	 functions	 (Wang	 et	 al.,	 2011).	 APRICOT	 in	 its	 primary	 analysis	 identifies	 all	 the	

possible	domains	in	a	query;	hence,	it	could	be	programmed	to	capture	the	co-occurrences	

of	 domains	 defined	 by	 users.	 This	 feature	 can	 allow	 users	 to	 go	 away	 from	 reductionist	

model	of	identifying	one-to-one	interaction	and	identify	protein	interaction	networks,	which	

can	 give	 insights	 into	 the	 possible	 functions	 and	 interactions	 of	 proteins	 of	 interest	 in	

proteome	level.	

4.4.4	Subcellular	spatial	resolution	of	RBPs	

The	nuclear	and	cytoplasmic	interactome	study	by	SerIC	(Conrad	et	al.,	2015)	highlighted	

the	 different	 repertoire	 of	 RBPs,	 which	 could	 be	 annotated	 by	 their	 subcellular	 spatial	

resolution.	 In	APRICOT,	we	use	PSORTb	 (Yu	et	al.,	2010)	 to	allow	users	 to	classify	putative	

RBPs	 based	 on	 their	 putative	 subcellular	 localization	 in	 the	 downstream	 analysis.	 This	

feature	of	the	pipeline	could	be	further	developed	by	analysing	a	large	protein	set	to	derive	
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a	 possible	 functional	 correlation	 of	 known	 RBPs	 with	 the	 computationally	 predicted	

subcellular	 localization.	 Such	 correlation	 can	 be	 used	 as	 reference	 to	 characterize	 the	

localization	information	of	novel	or	non-annotated	RBPs	in	future.		

4.4.5	Using	intrinsically	disordered	regions	of	RBPs	

Interactome	capture	of	eukaryotic	RBPs	has	revealed	that	while	most	RBPs	have	RBDs,	a	

large	 number	 of	 proteins	 with	 RNA-binding	 activity	 do	 not	 possess	 a	 canonical	 RBD	 but	

instead	acquire	their	ability	to	bind	to	RNAs	by	evolution	of	low	complexity	and	disordered	

amino	acid	sequences.	As	discussed	earlier,	these	proteins,	known	as	intrinsically	disordered	

proteins	 (IDPs),	 have	 equally	 important	 regulatory	 functions	 as	 RBPs	 and	 are	 also	 likely	

underrepresented	in	our	catalogue	of	putative	RBPs	(Castello	et	al.,	2012;	2016).	A	subclass	

of	IDPs	comprise	a	low	complexity	region	of	1-10	amino	acids	long,	which	provides	structural	

profiles	 to	 the	 IDPs.	 In	 order	 to	 identify	 such	 IDPs	 computationally,	 it	 is	 important	 to	 use	

compositional	 information	 of	 amino	 acid	 sequences	 that	 could	 be	 connected	 to	 the	 low	

complexity	region,	structural	properties	and	physico-chemical	features.	So	far,	APRICOT	uses	

canonical	domains	as	a	basis	for	the	identification	of	RBPs,	however	sequence	composition	

of	the	known	IDPs	could	be	generated	and	used	as	reference	for	the	characterization	query	

proteins	that	lack	RBDs.	

4.4.6	High-throughput	sequencing-analysis	based	characterization	of	RBPs	

The	 processing	 and	 analysis	 of	 RIP-Seq	 libraries	 was	 carried	 out	 by	 a	 standardized	

computational	approach.	Users	can	take	the	analysis	framework	discussed	in	this	study	for	

Salmonella	Typhimurium	as	a	reference	and	use	the	computational	method	established	for	

this	study.	This	high-throughput	sequencing-based	characterization	would	involve	the	initial	

mapping	of	the	transcripts	to	the	reference	genome,	gene-wise	quantification	of	the	reads	

for	 each	 library	 followed	 by	 a	 reference-free	 normalization	 of	 quantified	 reads	 by	

abovementioned	modified	TMM	normalization	approach.	This	normalization	further	allows	

identifying	 sets	 of	 libraries	 that	 show	 relatively	 higher	 enrichment	 of	 certain	 targets	 and	

avoids	 the	 inclusion	 ambiguous	 transcripts	 as	 targets	 that	 appear	 in	 several	 libraries.	 The	

efficiency	of	this	approach	is	evident	in	the	data	sets	used	in	this	study;	hence,	by	extending	

APRICOT	 pipeline,	 a	 streamlined	 analysis	 of	 RIP-Seq	 based	 characterization	 of	 candidate	

RBPs	 can	 be	 allowed.	 This	 will	 give	 a	 standard	 platform	 for	 the	 identification	 and	

experimental	characterization	of	proteins	of	interest.	
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Furthermore,	as	described	for	the	two	positive	RBPs	CspC	and	CspE,	more	specific	studies	

such	 as	 CLIP-Seq-based	 target	 validation	 and	 experimentally	 based	 phenotypic	

characterization	can	be	further	used	to	understand	the	regulatory	roles.	

	

4.5	Conclusions	and	perspective	

Current	 research	 in	biological	 science	 is	 inseparable	 from	bioinformatic	approaches	and	

computational	 analysis.	 Developments	 in	 the	 techniques	 for	 high-throughput	 sequencing	

have	accelerated	the	growth	of	bio-computational	methods	allowing	both	the	fields	to	grow	

in	a	symbiotic	manner.	Applying	this	principle	to	the	discovery	of	RBPs	is	not	a	new	concept.	

Several	 tools	 have	 been	 developed	 using	 the	 existing	 knowledge	 of	 RBP	 sequences	 and	

structures.	Advances	 in	 the	proteome-wide	discovery	of	RBPs	 in	 the	human	genome	have	

encouraged	the	expansion	of	such	research	to	bacterial	organisms,	 in	order	 to	understand	

the	 underlying	 regulatory	 roles	 that	 drive	 their	 adaptation	 and	 survival	 under	 adverse	

conditions.	 With	 the	 increasing	 number	 of	 newly	 sequenced	 genomes,	 it	 is	 feasible	 to	

multiply-align	 genomic	 locations	 followed	by	 identification	of	 functionally	 conserved	motif	

sequences.	Integration	of	such	motif	 information	of	proteins	with	structural	and	sequence-

based	properties	allows	a	better	discovery	of	protein	functional	classes.		

The	 computational	 pipeline	 of	 APRICOT	 has	 been	 developed	 for	 high-throughput	

screening	of	RBPs.	This	 software	pipeline	provides	a	convenient	approach	 to	process	 large	

number	 of	 queries	 and	 annotate	 them	 by	 highly	 conserved	 RNA-binding	motifs	 and	 their	

physico-chemical	properties.	Though	optimized	largely	on	RBP	data	sets,	the	tool	has	been	

tested	 on	 other	 functional	 groups	 of	 proteins	 to	 verify	 the	 multifunctional	 annotation	

capacity	of	the	pipeline.	

As	shown	for	human,	E.coli	and	Salmonella	proteomes,	the	framework	of	this	study	can	

be	used	as	a	template	to	carry	out	similar	studies	in	other	proteomes.	An	informed	selection	

of	 candidates	was	 carried	 out	 for	 their	 experiments	 validation	 as	 it	was	more	practical	 to	

narrow	down	 the	 long	 list	of	 computationally	 identified	RBPs	 to	a	 smaller	 subset	by	using	

different	 biological	 factors	 such	 as	 conservation	 of	 sequence	 and	 physico-chemical	

properties.	The	regulatory	elements	of	RBPs	 taken	 in	 this	study	are	 functionally	conserved	

domains;	however	 further	new	classes	of	 regulatory	elements	could	be	 included	 in	 future.	

For	example,	the	intrinsically	disordered	regions,	which	are	much	smaller	 in	size	compared	
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to	 RBDs,	 could	 form	 another	 layer	 of	 information.	 Studies	 are	 being	 carried	 out	 to	

understand	 and	 characterize	 these	 linear	 motifs	 in	 RNA	 binding	 context	 and	 further	

discovery	 of	 these	 underlying	 patterns	 across	 larger	 data	 sets	 can	 be	 carried	 out	 using	

advanced	 machine	 learning	 approaches.	 Such	 information	 will	 boost	 RBP	 discovery	 by	

revealing	new	unexplored	classes	of	protein-RNA	 interactions.	Furthermore,	developments	

in	new	experimental	technology	by	cross-linking	and	more	efficient	sequencing	methods	can	

improve	the	accuracy	of	the	pipeline	by	providing	a	complete	picture	of	RBP	catalogue	in	a	

proteome	of	interest.	 	
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Chapter	5	

Materials	and	Methods	

	

Programming	languages	

APRICOT	 software	 has	 been	 mainly	 developed	 using	 the	 object-oriented	 Python	

programming	language.	I	have	used	Linux	to	automate	the	software	installation	and	analysis.	

To	execute	specific	statistical	anaysis	and	visualization	of	RNA-Seq	data,	different	packages	

of	R	programming	language	were	also	used.	

Git	was	used	for	version	control,	storage,	and	sharing	of	the	codes	via	GitHub.	Dockerfile	

has	been	developed	to	generate	image	for	the	containerization	of	the	software.	The	Docker	

images	 (malvikasharan/apricot	 and	malvikasharan/apricot_with_dependencies)	 are	 hosted	

on	the	Docker	hub	(https://hub.docker.com/malvikasharan).		

	

Availability	of	APRICOT	software	

The	APRICOT	software,	its	documentations,	and	links	to	various	data	sets	and	tutorials	are	

available	 on	 the	 home	 page	 of	 the	 software:	 https://malvikasharan.github.io/APRICOT/.	

Additionally,	 the	 software	 package	 has	 been	 submitted	 to	 Python	 Package	 Index	 (PyPI),	

which	can	be	downloaded	from	https://pypi.python.org/pypi/bio-apricot.		

To	make	the	analysis	using	the	software	easy	for	both	computer	experts	and	non-experts	

and	improve	reproducibility	of	results,	the	Docker	images	have	been	created	and	intensively	

tested,	 and	 are	 hosted	 on	 the	 Docker	 hub	

(https://hub.docker.com/r/malvikasharan/apricot/).	 Docker	 is	 a	 software	 containerization	

platform,	 which	 allows	 packaging	 of	 complete	 file	 system	 of	 software:	 codes,	 package	

dependencies,	system	tools,	system	libraries,	applications	etc.,	which	runs	independently	of	

environment.	

I	 have	 created	 video	 tutorials	 that	 give	 an	 overview	 of	 the	 software	 and	 demonstrate	

various	 ways	 to	 install	 software	 and	 execute	 analysis.	 The	 videos	 are	 available	 online	 for	

which	the	links	are	provided	in	the	home	page	of	the	software.	
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Installation	of	APRICOT	software	

The	software	can	be	installed	in	a	local	system	via	pip,	git,	or	Docker,	which	is	discussed	

below	in	detail.	

1)	Installation	via	pip:	The	software	package	can	be	installed	from	the	Python	Package	Index	

using	a	requirement	specified	using	the	command	`pip	install	bio-apricot`.	

This	will	 not	 only	 install	 the	 software	but	 also	 other	 Python	packages,	matplotlib,	 numpy,	

scipy,	 openpyxl	 and	 requests,	which	 are	 required	 to	 use	 APRICOT.	 This	 installation	 allows	

user	 to	 test	 the	 functionality	 of	 the	 software.	 However,	 to	 carry	 out	 a	 functional	 analysis	

other	dependencies	such	as	tools	and	databases	are	required,	which	are	listed	online	in	the	

following	 document:	

https://github.com/malvikasharan/APRICOT/blob/master/software_dependencies.md.	

2)	Installation	via	git:	The	current	version	of	software	is	submitted	to	the	GitHub	repository	

that	 can	 be	 downloaded	 using	 the	 command	 `git	 clone	

https://github.com/malvikasharan/APRICOT`.	 Additionally,	 all	 the	 aforementioned	 Python	

libraries	and	dependencies	should	be	installed	in	order	execute	the	software.	

3)	 Docker	 image:	 Docker	 image	 of	 the	 APRICOT	 software	 allows	 the	 packaging	 of	 the	

software	 along	with	 all	 its	 dependencies,	which	 ensures	 the	 execution	 of	 the	 tool	 on	 any	

platform	 reproducibly	 and	 without	 any	 error.	 The	 Docker	 should	 be	 installed	 locally	

whereupon	 the	 docker	 image	 of	 APRICOT	 can	 be	 fetched	 from	 the	 Docker	 hub	 using	 the	

command	`docker	pull	malvikasharan/apricot`.	

The	tutorials	(documents	and	video)	are	available,	which	can	guide	novice	users	through	the	

installation,	 example	 analysis	 and	 real	 case	 analysis.	 The	 links	 to	 all	 the	 materials	 are	

available	of	the	GitHub	website:	http://malvikasharan.github.io/APRICOT/.	

	

Domain	databases	

APRICOT	 uses	 an	 extensive	 set	 of	 protein	 domain	 databases	 to	 ensure	 a	 larger	 search	

space	 for	 reference	 signature	 motifs.	 The	 two	 main	 resources	 are	 Conserved	 Domain	

Database	(CDD)	and	InterPro,	which	provide	a	comprehensive	collection	of	conserved	motifs	

curated	from	a	large	set	of	protein	sequences	and	their	respective	search	interfaces.	Each	of	

these	 domain	 resources	 or	 consortium	 comprises	 of	 a	 large	 number	 of	 domain	 entries	
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derived	 from	 classic	 multiple	 sequence	 alignment	 (MSA)	 of	 representative	 sequences	 of	

proteins.	These	MSAs	of	domains	are	available	in	the	form	of	position	weight	matrix	(PWM)	

or	profile	hidden	Markov	models	(HMM),	which	correspond	to	an	average	of	10	databases	

each.	Each	database	has	been	discussed	separately	with	a	total	number	of	entries	that	were	

available	at	the	time	of	writing	this	thesis	(July	2016).	

CDD	
	

CDD	 v3.15	 contains	 52,411	 domain	 entries	 of	 which	 large	 numbers	 of	 domain	 entries	

correspond	 to	 NCBI	 CDD	 curation	 effort	 (11,474	 domains),	 Pfam	 (16,230	 domains)	 and	

TIGRFAMs	(4,488	domains).	Other	major	resources	are	SMART	(1,013	domains),	Clusters	of	

Orthologous	Groups	of	proteins	(COGs)	(4,873	domains)	and	Protein	Clusters	(PRK)	(10,885	

domains).	The	NCBI	CDD	curation	project	curates	a	sequence/structure/function	relationship	

of	 domain	 families,	 taking	 the	 correlation	 of	 residue	 conservation	 patterns	 and	 functional	

properties	 into	 account.	 These	 domains	 are	 present	 in	 the	 database	 as	 Position	 Specific	

Scoring	Matrices,	which	has	been	discussed	in	detail	in	the	section	algorithms	and	tools.	The	

important	members	of	CDD	have	been	briefly	described	below.	

Pfam	is	one	of	the	biggest	protein	family	databases	that	contain	manually	curated	domain	

entries	defined	by	probabilistic	profile	hidden	Markov	models	(HMM).	Pfam	classifies	these	

entries	 into	 protein	 domain	 families,	 created	 from	 highly	 representative	 sequences	 from	

UniProt	 knowledgebase.	 TIGRFAM	 is	 a	 domain	 family	 database	 that	 comprises	 of	 domain	

entries	as	HMM,	built	 from	sequence	alignments	and	are	annotated	accordingly.	 For	each	

domain	 family	 in	 both	 Pfam	 and	 TIGRFAMs	 a	 curated	 cut-off	 is	 assigned	 for	 the	

corresponding	HMM	that	 serves	as	a	criterion	 for	 the	selection	and	annotation	of	a	query	

protein.	 Like	 the	 previously	 described	 databases,	 the	 SMART	database	 comprises	 of	more	

than	 1,200	 domains	 as	 a	 profile	 HMM	 built	 from	 multiple	 sequence	 alignments	 of	

representative	sequences.	These	domains	constitute	about	500	domain	families	linked	with	

signalling,	 extracellular	 and	 chromatin	 associated	 proteins.	 COG	 is	 a	 phylogenetic	

classification	of	proteins	or	group	of	paralogs	 from	all	domains	of	 life.	COG	uses	complete	

microbial	 genomes	 for	 the	 orthology	 based	 functional	 characterization	 of	 26	 functional	

categories	in	5	COGs	including	10,000	proteins	each.	PRK	is	an	NCBI	database	that	contains	

protein	 sequences	 derived	 from	 complete	 genomes	 of	 archaea,	 bacteria,	 plants,	 fungi,	

protozoans	and	viruses.	

InterPro	
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InterPro	 database	 contains	 protein	 signatures	 such	 as	 domains,	 families	 and	 functional	

sites	from	various	databases.	These	signatures	are	present	as	predictive	models	in	the	form	

of	 PWM	or	 HMM.	 The	 curators	 assign	matching	 signatures	 from	 different	 databases	 to	 a	

single	 InterPro	 identifier	 in	 order	 to	 maintain	 consistency	 by	 providing	 non-redundant	

annotations.	 At	 the	 time	 of	 writing	 this	 thesis,	 InterPro	 database	 comprises	 of	 29,415	

predictive	models	from	its	associated	database,	which	are:	Pfam	(16,295	entries),	TIGRFAM	

(4,488	entries),	 SMART	 (1,312	entries),	Gene3D	 (2,626	entries),	PANTHER	 (95,118	entries),	

PIRSF	 (3,285	 entries),	 PRINTS	 (2,106	 entries),	 ProDom	 (1,894	 entries),	 PROSITE	 (2,445	

entries),	 and	 SUPERFAMILY	 (2,019	 entries).	 The	 first	 three	 databases,	 which	 are	 also	 the	

members	of	CDD,	have	already	been	discussed	earlier.	The	remaining	databases	are	briefly	

described	below.	

The	Gene3D	database	provides	sequence	annotations	for	the	protein	databases	Ensembl,	

UniProt,	and	RefSeq.	It	uses	HMM,	graph-theory	based	method,	and	CATH	domain	families	

for	 domain	 identification.	As	 a	part	 of	 the	Gene	Ontology	Reference	Genome	Project,	 the	

PANTHER	database	includes	HMM	of	domain	families,	categorized	into	subfamilies	that	are	

used	 for	 classification	 and	 identification	 of	 protein	 function.	 PIRSF	 stands	 for	 Protein	

Informatics	 Resources	 SuperFamily,	 and	 represents	 a	 protein	 classification	 and	 annotation	

resource	 generated	 from	 the	 evolutionary	 relationships	 between	 protein	 sequences.	 The	

PRINTS	 database	 is	 a	 collection	 of	 protein	 family	 fingerprints.	 These	 families	 of	 groups	 of	

motifs	 provide	 biological	 context	 compiled	 from	 matching	 motif	 neighbors.	 The	 ProDom	

database	catalogues	protein	domain	families	generated	from	the	comparison	of	all	protein	

sequences.	 In	 integrates	 structural	 information	 from	 SCOP	 database.	 At	 PROSITE,	 a	 set	 of	

documentation	entries	 of	 protein	domains,	 domain	 families	 and	profiles	 that	 are	used	 for	

the	 annotation	 of	 UniprotKB	 entries	 is	 curated.	 Finally,	 SUPERFAMILY	 is	 a	 resource	 for	

structural	 classification	 of	 proteins	 (SCOP)	 at	 superfamily	 levels	 for	 complete	 genomes.	 It	

also	comprises	of	domain	specific	Gene	Ontology	for	functional	assignments	of	proteins.	

	

Domain	prediction	tools	

APRICOT	uses	domain	prediction	tools	for	the	primary	analysis	of	query	proteins	for	the	

collection	of	their	functional	units.	As	discussed	earlier,	APRICOT	uses	the	two	major	domain	

consortia	 CDD	 and	 InterPro,	 which	 are	 two	 comprehensive	 collections	 of	 domains	 from	
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diverse	domain	databases.	Both	 these	 resources	use	 specialized	 tools	 for	querying	protein	

sequences	of	interest	against	its	domain	entries.		

CDD	 uses	 Reversed	 PSI-BLAST	 (RPS-BLAST)	 to	 search	 a	 query	 protein	 against	 its	 PSSM	

entries.	 Basic	 Local	 Alignment	 Search	 Tool	 (BLAST)	 is	 a	 method	 to	 search	 for	 similar	

sequences	 in	 a	 database	 by	 identifying	 regions	 of	 local	 alignment.	 PSI-BLAST	 stands	 for	

Position-Specific	 Iterative	 BLAST,	 which	 uses	 protein	 BLAST	 (BLASTp)	 to	 query	 protein	

sequences	against	a	database	and	derives	PSSM	profiles	from	multiple	sequence	alignments	

(MSA)	of	matching	 sequences.	The	consensus	created	 from	the	PSSM	 is	used	 for	querying	

more	 matching	 sequences,	 which	 are	 merged	 with	 previously	 discovered	 sequences	 to	

create	 a	 new	 corresponding	 consensus.	 This	 search	 for	 the	 matching	 sequences	 can	 be	

carried	out	in	several	iterations,	which	can	be	set	by	the	users.	This	iterative	way	to	look	for	

matching	profiles	is	very	efficient	for	the	identification	of	remote	conservation;	however,	its	

run	 time	depends	on	 the	number	of	 iterations.	RPS-BLAST	provides	a	 faster	alternative	by	

reducing	the	run	time	by	allowing	users	to	search	their	query	against	a	pre-compiled	PSSM	in	

CDD	by	directly	searching	for	the	matching	profiles	in	the	query	sequences	in	one	pass.	

InterPro	 uses	 InterProScan	 software	 for	 the	 annotation	 of	 protein	 sequences	 with	

domains	 from	 different	 members	 of	 the	 consortium.	 Most	 of	 the	 applications	 linked	 to	

InterPro,	such	as	Pfam,	TIGRFAM,	SMART,	PIRSF,	and	PRINTS,	use	a	variety	of	methods	based	

on	HMMER	and	BLAST	algorithms	to	query	PWM	and	HMM	entries	from	the	databases.	The	

Java-based	 architecture	 of	 InterProScan	 provides	 a	 platform	 to	 execute	 database	 specific	

search	applications	in	a	parallelized	manner,	which	provides	a	combined	output.	

	

Algorithms	used	in	this	study	(short	descriptions	with	important	references)	

1. Position-Specific	Scoring	Matrices	(PSSM)	

One	 of	 the	methods	 to	 capture	 conservation	 patterns	 in	matching	 sequences	 is	 PSSM.	

PSSM	 searches	 for	 profiles	 by	multiply	 aligning	 the	matching	 sequences	 and	 producing	 a	

matrix	of	scores	for	each	position	in	the	alignment	where	the	highly-conserved	positions	are	

scored	 higher	 than	 the	 weakly	 conserved	 regions	 (zero	 for	 no	 conservation).	 This	 score	

matrix	is	used	to	generate	a	consensus,	which	is	subsequently	used	for	the	identification	of	

additional	matching	sequences.	The	high-scoring	matches	from	next	rounds	are	added	to	the	

multiple	alignments,	the	position-based	scoring	is	carried	out,	and	profiles	are	refined.	The	
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new	profile	can	be	further	used	as	query	for	subsequent	searches	or	until	convergence.	This	

iterative	method	 for	 the	 search	of	 similar	 sequences	allows	 the	 identification	of	divergent	

sequences.	 Therefore,	 PSSM	 is	 an	efficient	probabilistic	method	of	 scoring	a	 residue	 in	 an	

alignment	 at	 the	 particular	 column	 (a	 position	 in	 the	 aligned	 sequence)	 as	 a	 part	 of	 a	

meaningful	 alignment.	 The	 probability	 of	 a	 residue	 type	a	occurring	 in	 a	 column	 u	of	 the	

PSSM	 qu,a	and	 the	probability	of	 this	 residue	 to	occur	at	any	other	 sequence	 including	 the	

backgrounds	as	pa	that	are	not	related	to	the	alignment	(Zvelebil	&	Marketa,	2008).	The	log	

odd	form	for	a	PSSM	element	can	be	estimated	by:	

𝑚4,6 = 𝑙𝑜𝑔
𝑞4,6
𝑝6

	

In	 this	 thesis,	 I	have	 implemented	PSSM	by	 the	 integration	of	 the	RPS-BLAST	approach,	

which	 queries	 PSSM	 containing	 CDD	 database	 for	 the	 identification	 of	 pre-computed	

matching	profiles	in	one	pass	without	requiring	the	iterative	searches.	

2. Hidden	Markov	model	(HMM)	

A	Markov	model	 is	an	approach	for	probabilistic	modelling	of	sequence	conservation	by	

predicting	the	sequence	of	state	changes	based	on	sequence	of	observation.	In	other	words,	

it	predicts	the	 likelihood	of	a	sequence	to	have	descended	from	a	particular	sequence	and	

hence	 helps	 in	 building	 a	 model	 of	 the	 most	 probable	 consensus	 from	 a	 set	 of	 related	

sequences	in	the	form	of	a	set	of	rules	or	scores.	The	hidden	Markov	model	generates	two	

states	of	information:	an	underlying	state	path	that	occurs	while	transitioning	from	one	state	

to	another,	and	observed	sequences	where	residues	are	emitted	from	one	state	in	the	state	

path.	 In	a	 state	path	or	hidden	Markov	 chain,	only	 the	observed	 sequence	 is	 given	as	 the	

next	 position	 in	 the	 sequence	 or	 state	 depends	 only	 on	 the	 current	 state.	 Since	 only	 the	

observed	 sequence	 is	 given,	 the	 underlying	 state	 path	 (which	 state	 to	 go	 next)	 is	 hidden,	

which	 is	modelled	 by	 HMM	 using	 emission	 transition	 (emitting	 a	 residue	when	 a	 state	 is	

visited)	and	transition	(moving	from	one	state	to	other)	probabilities	(Krogh	et	al.,	1994).	The	

probability	of	an	amino	acid	a	occurring	in	a	sequence	of	length	L	(x1,…,xL)	is	the	sum	over	all	

possible	paths	(sequence	of	states	q1	to	qN,	where	q	is	state	in	HMM	and	N	is	the	number	of	

states	in	a	path)	that	could	produce	that	sequence,	which	is	written	as	follows:	

𝑃𝑟𝑜𝑏 𝑥> …𝑥@ 𝑚𝑜𝑑𝑒𝑙 = 	 𝑃𝑟𝑜𝑏(𝑥> …𝑥@, 𝑞> …𝑞DE>|𝑚𝑜𝑑𝑒𝑙)
H6IJK	LM…LNOP
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In	several	domain	databases	like	Pfam,	TIGRFAM,	and	PRINTS	comprise	of	domain	entries	

as	HMM	which	can	be	queried	using	database	specific	software	such	as	HMMER	(Eddy,	2009	

&	2011)	assembled	in	the	previously	mentioned	InterProScan	software.		

3. Euclidean	distance	

Euclidean	distance	is	a	distance	between	two	points	in	Euclidean	space,	which	is	used	in	

the	context	of	protein	bioinformatics	 for	 the	distance	calculation	between	two	amino	acid	

sequences	for	certain	features.	For	two	sequences	x	and	y,	the	distance	between	a	feature	a	

in	 sequence	 x	 and	 its	 corresponding	 feature	b	 in	 sequence	 y	 can	 be	 calculated	 as	 follows	

(Alaxander	Bogomoly,	The	distance	formula):	

𝑑𝑖𝑠𝑡 𝑥, 𝑦 , 𝑎, 𝑏 = 	 (𝑥 − 𝑎)T +	(𝑦 − 𝑏)T	

In	 this	 thesis,	Euclidean	distance	has	been	used	 in	 the	context	of	annotation	scoring	by	

calculating	 the	 distance	 of	 protein	 compositions	 (di-peptides,	 tri-peptides,	 and	 physico-

chemical	properties)	between	reference	and	predicted	domains.	These	distances	are	used	in	

scoring	 the	annotation	of	predicted	domains	by	1-Euclidean	distance	 (0	 to	1,	1	=	absolute	

match).	 The	 second	 usage	 of	 this	 algorithm	 is	 in	 the	 clustering	 of	 CoIP	 libraries	 based	 on	

their	 enrichment	 profiles,	 which	 places	 the	 CoIP	 sample	 with	 similar	 enrichment	 profiles	

together	in	a	cluster	compared	to	the	CoIP	samples	with	different	enrichment	profiles.	

4. Needleman-Wunsch	Algorithm	

The	 Needleman-Wunsch	 algorithm	 (Needleman	 &	 Wunsch,	 1970)	 is	 a	 dynamic	

programming	algorithm	for	the	alignment	of	sequences	where	higher	scores	are	assigned	for	

a	match	and	lower	scores	for	a	mismatch.	Dynamic	programming	solves	smaller	independent	

problems	and	creates	a	scoring	matrix	 for	different	possible	alignments.	Thereafter,	a	high	

scoring	 alignment	 in	 the	 matrix	 is	 identified	 that	 indicates	 an	 optimal	 alignment	 of	 two	

sequences.	In	APRICOT,	the	Needleman-Wunsch	algorithm	calculates	the	extent	of	similarity	

between	 the	 predicted	 domain	 region	 in	 the	 query	 and	 its	 corresponding	 reference	

sequence	 for	 the	 annotation	 based	 scoring.	 In	 their	 original	 publication,	 the	 matches	 or	

mismatches	were	used	 for	 the	scoring	of	 the	alignment	of	 two	proteins	without	using	any	

penalty	 for	 the	 gaps.	 The	 scoring	 of	 two	 sequences	 (S(A)	 and	 S(B))	 requires	 a	 two	

dimensional	array	(matrix	Fi,j	for	the	entry	in	row	i	and	column	j)	which	is	denoted	as	follows:	

𝐹U,V = max(𝐹U,VZ> + 𝑆 𝐴U, 𝐵U , 𝐹UZ>,V + 𝑆 𝐴U, 𝐵U )	
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5. Support	Vector	Machine	(SVM)		

SVMs	 are	 supervised	 learning	 models	 used	 analysis	 for	 classification	 and	 regression	

analysis.	The	SVM	training	algorithm	builds	a	model	from	a	set	of	objects	by	assigning	them	

to	 different	 categories,	 making	 it	 a	 non-probabilistic	 binary	 linear	 classifier.	When	 a	 new	

object	is	introduced,	the	SVM	model	maps	it	to	a	category	based	on	which	side	of	the	gap	it	

falls	on,	predicted	by	the	classifiers.	In	addition	to	performing	linear	classification,	SVMs	can	

efficiently	perform	a	non-linear	classification	using	what	 is	called	the	kernel	trick,	 implicitly	

mapping	their	inputs	into	high-dimensional	feature	spaces.	

6. Calculation	of	accuracy	

The	Receiver	Operating	Characteristic	(ROC)	curve	is	a	plotting	system	used	to	show	the	

performance	 by	 a	 binary	 classifier	 system	 in	 various	 thresholds	 for	 its	 discriminatory	

parameters.	The	true	positive	rates,	sensitivity	versus	the	false	positive	rates,	or	1-specificity	

are	plotted	at	different	parameter	thresholds.	Area	Under	Curve	(AUC)	stands	for	area	under	

the	ROC	curve,	 and	 tests	 if	 a	positive	 instance	 ranks	higher	 than	a	negative	 instance.	 This	

analysis	 allows	 the	 selection	 of	 suboptimal	 parameter	 threshold	 in	 terms	 of	 class	

distribution.	 In	 this	 thesis,	 ROC	 and	 AUC	 analyses	 were	 used	 for	 each	 parameter	 and	

combinations	 of	 parameters	 used	 for	 domain	 prediction	 to	 assess	 their	 marginal	

contributions	 to	 the	 overall	 accuracy	 of	 APRICOT	 with	 which	 it	 identifies	 RNA-binding	

proteins.	The	decision	values	of	 the	parameters	were	evaluated	 for	all	 the	predicted	RNA-

binding	domain	entries	in	the	training	sets.	Subsequently,	the	ROC	and	AUC	were	generated	

for	the	ranking	of	the	parameters	using	the	module	“ROC	Curve	for	Binary	SVM”	(authors:	

Tingfan	Wu,	Chien-Chih	Wang,	and	Hsiang-Fu	Yu)	from	the	LIBSVM	Version	3.21,	a	package	

for	support	vector	machines	(Chang	&	Lin,	2015).	

7. Trimmed	Mean	of	M-values	(TMM)	for	normalization	

TMM	normalization	is	used	for	estimating	relative	RNA	production	levels	in	different	RNA-

Seq	libraries	(Robinson	et	al.,	2010).	TMM	allows	the	calculation	of	scaling	factors	between	

samples	 that	 can	 be	 used	 for	 the	 analysis	 of	 differentially	 expressed	 genes	 that	 uses	 a	

weighted	 trimmed	 mean	 of	 the	 log	 expression	 ratios.	 By	 defining	 one	 sample	 as	 the	

reference,	 a	 reference	 gene	 set	 is	 selected	 that	 has	 non-zero	 read	 counts.	 Based	 on	 this	

selected	set	of	genes,	the	effective	library	sizes	for	the	non-reference	samples	are	estimated,	

which	 are	 further	 used	 for	 calculating	 the	 TMM	 normalization	 factors	 followed	 by	 the	
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normalization	of	read	counts	 in	each	sample.	 In	this	study,	a	modified	approach	was	used,	

where	 rather	 than	using	gene	set	 selected	 from	one	reference	sample,	genes	are	selected	

that	are	expressed	across	all	the	samples.	The	size	factors	are	calculated	for	each	sample	by	

taking	only	these	genes	into	account,	which	are	further	used	for	the	normalization	of	exact	

gene	expression	values	of	the	samples.	

A	weighted	TMM	of	the	log	expression	ratio	(fold-change	in	terms	of	relative	production)	

of	 a	 gene	 in	 two	 samples	 can	 be	 determined	 by	 an	 empirical	 strategy.	 TMM	equates	 the	

overall	expression	levels	of	genes	between	the	samples	assuming	that	the	majority	of	them	

are	not	differentially	expressed	(Robinson	et	al.,	2010).	

8. Principle	Component	Analysis	(PCA)	

PCA	 is	 a	 statistical	 procedure	 often	 used	 for	 exploratory	 data	 analysis	 that	 uses	 linear	

combinations	of	the	data	to	define	a	new	set	of	unrelated	variables	or	principal	components	

(Alter	 et	 al.,	 2000;	 Jolliffe,	 2002;	 Ringner,	 2008).	 PCA	 is	 used	 for	 identifying	 the	 reduced	

dimensionalities	of	a	data	set	to	account	for	the	variation	in	the	data	set.	The	dimensions	are	

identified	in	terms	of	principal	components,	along	which	the	variation	in	the	data	is	maximal.	

The	data	sets	can	be	represented	by	plotting	the	few	principle	components,	which	allows	a	

visual	 assessment	 of	 the	 similarities	 and	 differences	 between	 different	 data	 sets.	 In	 this	

study	PCA	has	been	used	to	represent	RIP-Seq	samples	with	a	smaller	number	of	variables	

(shown	for	the	CSPs	in	the	Figure	3.16A),	and	detect	dominant	patterns	of	gene	expression.	

Since	similarities	between	data	sets	are	correlated	to	the	distances	in	the	projection	of	the	

space	 defined	 by	 the	 principal	 components,	 PCA	was	 used	 to	 highlight	 the	 similarity	 and	

difference	between	the	gene	expression	data	with	respect	to	the	principal	components.	

9. Cluster	analysis	of	expression	data	

Cluster	 analysis	 is	 an	exploratory	approach	 for	 the	 classification	of	objects	 in	 a	manner	

such	that	the	similar	objects	are	placed	in	the	same	group/cluster,	and	objects	of	a	different	

nature	are	clustered	with	the	objects	of	its	kind.	Analysis	by	allowing	unsupervised	learning	

allows	the	identification	of	the	subset	of	objects	of	a	similar	pattern	(Eisen	et	al.,	2000).	 In	

this	study,	I	used	this	approach	to	cluster	RIP-Seq	samples	by	their	enrichment	patterns.	The	

clustering	was	 computed	by	using	 the	heatmap.2	 command	within	 the	ggplots	package	of	

the	R	programming	language	(Gregory	et	al.,	2016)	by	using	Ward’s	clustering	method	and	

the	 Euclidean	 distance	 measure.	 The	 Ward's	 minimum	 variance	 method	 aims	 to	 find	
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compact	 spherical	 clusters	 and	 the	 Euclidean	 distance	was	 used	 to	 compute	 the	 distance	

between	 the	 clusters.	 The	 clustering	 analysis	 of	 RIP-Seq	 data	 set	 led	 to	 the	 grouping	 of	

samples	 with	 similar	 enrichment	 profiles	 and	 gene	 sets	 with	 similar	 enrichment	 profiles	

across	the	samples.	

10. 	GO	and	KEGG	Pathway	enrichment	analysis	

An	enrichment	analysis	 is	a	statistical	approach	to	identify	a	set	of	genes	expressed	in	a	

certain	condition	if	they	belong	to	same	GO	term	(biological	processes,	cellular	components	

and	molecular	functions)	(Ashburner	et	al.,	2000)	and	KEGG	pathway	(Kanehisa	et	al.,	2000	

&	 2012).	 The	 enrichment	 analysis	 is	 carried	 out	 on	 a	 set	 of	 genes	 with	 respect	 to	 a	

background	set	of	genes	for	the	calculation	of	the	statistical	significance	of	the	analysis.	 In	

this	 study,	 for	 the	 identification	 of	 enriched	 GO	 terms	 and	 pathways,	 this	 information	 of	

enriched	 genes	 is	 used	 against	 entire	 genome	 as	 background	 by	 including	 the	 level	 of	

enrichment	of	these	genes	into	account.	Fisher's	exact	test	P	values	(Fisher	et	al.,	1922)	were	

calculated	 as	 a	 measure	 of	 statistical	 significance,	 which,	 unlike	 approximate	 values,	

calculates	the	deviation	from	a	null	hypothesis	closer	to	the	exact	values.	

	

CoIP	library	preparation	

(conducted	by	Drs.	Charlotte	Michaux,	Nora	C.	Marbaniang,	and	Erik	Holmqvist)	

The	coding	regions	of	all	the	selected	candidate	RBPs	and	positive	controls	were	cloned	

into	 a	pBAD24-derived	plasmid	with	 and	additional	 C-terminal	 3xFLAG	 tag	 and	 introduced	

into	Salmonella	Typhimurium	SL1344.		The	tagged	strains,	together	with	a	empty	plasmid	as	

non-target	(NT)	controls	were	grown	in	LB	supplemented	with	ampicillin	overnight	(220	rpm,	

37	 °C).	 Five	 hundred	 microliters	 of	 overnight	 culture	 was	 then	 diluted	 1into	 50ml	 fresh	

medium.	 At	 an	OD600	 of	 0.2,	 L-arabinose	 at	 the	 final	 concentration	 of	 0.2%	was	 added	 in	

order	 to	 induce	 overexpression	 of	 the	 proteins	 of	 interest.	 At	 an	 OD600	 of	 2,	 100	 OD	 of	

culture	 was	 collected	 by	 centrifugation	 (4700	 rpm,	 40	 min,	 4	 °C)	 and	 subjected	 to	 CoIP	

according	to	the	protocol	of	(Chao	et	al.,	2012).	Briefly,	bacteria	were	re-suspended	in	800	µl	

of	ice-cold	lysis	buffer	(20	mM	Tris,	pH	8.0,	150	mM	KCl,	1	mM	MgCl2,	1	mM	dithiothreitol),	

and	disrupted	with	1	ml	glass	beads	(BioSpec	Products,	0.1	mm	diameter)	by	shaking	at	30	

Hz	for	10	min.	The	cleared	lysate	obtained	after	centrifugation	(16000	rcf,	15	min,	4	°C)	was	

incubated	with	0.5µl/OD	anti-FLAG	antibody	(Sigma,	F1804)	at	4	°C	for	30	min	and	incubated	
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with	64	µl	pre-washed	Protein-A	Sepharose	(Sigma,	P6649)	for	an	additional	30	min.	After	5	

washes	 in	 ice-cold	 lysis	 buffer,	 the	 sepharose	 was	 subjected	 to	 RNA	 extraction	 using	

phenol:chloroform:isoamyl	 alcohol	 (PCI	 25:24:1,	 pH	 4.5;	 Roth,	 X985.3).	 After	 DNase	 I	

digestion	 (Life	 Technologies),	 the	 RNA	 was	 used	 to	 construct	 cDNA	 libraries	 by	 Vertis	

Biotechnologie	 AG	 (Freising,	 Germany),	 and	 sequenced	 on	 the	 in-house	MiSeq	 apparatus	

(Illumina)	with	 100	 cycles	 in	 a	 strand-specific	manner.	 All	 the	RIP-Seq	 libraries	 involved	 in	

this	study	will	be	deposited	at	GEO.	

	

Software	and	packages	for	data	visualization	

APRICOT	 uses	 matplotlib	 and	 ggplot	 packages	 from	 Python	 programming	 language	 to	

visualize	the	analysis	output	of	the	software.		

I	used	R	packages	for	creating	scatter	plot,	box-plot,	clustering,	and	heatmap	images	for	

Chapter	 2	 and	 Chapter	 3	 of	 this	 thesis.	 Other	 software	 used	 to	 generate	 images	 in	 the	

projects	 described	 in	 this	 thesis	 are	 as	 follows:	 circos	 for	 circular	 visualization	of	 RNA-Seq	

genome	expression,	Adobe	Illustrator,	graphical	features	of	Microsoft	PowerPoint/Excel,	and	

Voronto	mapper	for	expression	of	ontology.	
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Appendix	

Appendix	Table	1	

Proteins	 analyzed	 for	 the	 CoIP	 based	 screening	 of	 RBPs	 in	 Salmonella	 (discussed	 in	 the	

Chapter	3)	

Gene	names	 Locus	tag	 UniProt	ID	 Protein	names	

cspA	(control)	 SL1344_3615	 A0A0H3NMU5	 Cold	shock	protein	

cspB	(control)	 SL1344_1924	 E1WGN1	 Cold	shock-like	protein	CspJ	

csrA	(control)	 SL1344_2806	 A0A0H3NF42	 Carbon	storage	regulator	

Hfq	(control)	 SL1344_4295	 A0A0H3NIR6	 RNA-binding	protein	Hfq	

smpB	(control)	 SL1344_2660	 A0A0H3NER3	 SsrA-binding	protein	(Small	protein	B)	

yhbJ	(control)	 SL1344_3295	 A0A0H3NGG1	 RNase	adapter	protein	RapZ	

aceA	 SL1344_4119	 A0A0H3NIN9	 Isocitrate	lyase	

aceF	 SL1344_0153	 A0A0H3N7M4	 Acetyltransferase	 component	 of	 pyruvate	
dehydrogenase	complex	(EC	2.3.1.12)	

acnA	 SL1344_1644	 A0A0H3NC48	 Aconitate	hydratase	(Aconitase)	(EC	4.2.1.3)	

acnB	 SL1344_0159	 A0A0H3N962	 Aconitate	 hydratase	 B	 (EC	 4.2.1.3)	 (EC	 4.2.1.99)	 (2-
methylisocitrate	dehydratase)	

aefA	 SL1344_0471	 A0A0H3N8H3	 Integral	membrane	protein	AefA	

caiD	 SL1344_0071	 A0A0H3NH35	 Carnitinyl-CoA	 dehydratase	 (EC	 4.2.1.149)	
(Crotonobetainyl-CoA	hydratase)	

citC	 SL1344_0612	 A0A0H3N9D7	 [Citrate	[pro-3S]-lyase]	ligase	(EC	6.2.1.22)	

comA	 SL1344_3459	 A0A0H3NMJ9	 Competence	gene-DNA	binding	and	transport	

cspC	 SL1344_1766	 A0A0H3NHM6	 Cold	shock-like	protein	CspC	

cspD	 SL1344_0882	 A0A0H3NA23	 Cold	shock-like	protein	CspD	

cspE	 SL1344_0617	 A0A0H3N9E2	 Cold	shock-like	protein	cspE	

cspH	 SL1344_1182	 A0A0H3NFR3	 Cold	shock	protein	(CspH)	

cysN	 SL1344_2913	 A0A0H3NR47	 Sulfate	adenylyltransferase	subunit	1	(EC	2.7.7.4)		

dbpA	 SL1344_1586	 A0A0H3NBN6	 ATP-dependent	RNA	helicase	DbpA	(EC	3.6.4.13)	

deaD	 SL1344_3253	 A0A0H3NI69	 ATP-dependent	RNA	helicase	DeaD	(EC	3.6.4.13)	(Cold-
shock	DEAD	box	protein	A)	

deoB	 SL1344_4496	 A0A0H3NQ37	 Phosphopentomutase	 (EC	 5.4.2.7)	
(Phosphodeoxyribomutase)	

dinG	 SL1344_0797	 A0A0H3NEL5	 Probable	ATP-dependent	helicase	DinG	

dnaG	 SL1344_3184	 A0A0H3NG55	 DNA	primase	(EC	2.7.7.-)	
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dnaJ	 SL1344_0013	 A0A0H3N7I0	 Chaperone	protein	DnaJ	

dnaK	 SL1344_0012	 A0A0H3NCG3	 Chaperone	 protein	 DnaK	 (HSP70)	 (Heat	 shock	 70	 kDa	
protein)	(Heat	shock	protein	70)	

efp	 SL1344_4271	 A0A0H3NPH5	 Elongation	factor	P	(EF-P)	

engA	 SL1344_2481	 A0A0H3NEC5	 GTPase	Der	(GTP-binding	protein	EngA)	

engB	 SL1344_3948	 A0A0H3NNK6	 Probable	GTP-binding	protein	EngB	

ffh	 SL1344_2650	 A0A0H3NEQ4	 Signal	recognition	particle	protein	(Fifty-four	homolog)	

ftsY	 SL1344_3536	 A0A0H3NH43	 Signal	recognition	particle	receptor	FtsY	(SRP	receptor)	

gatB	 SL1344_3232	 A0A0H3NS78	 PTS	system,	galactitol-specific	IIB	component	

glk	 SL1344_2371	 A0A0H3NDY0	 Glucokinase	(EC	2.7.1.2)	(Glucose	kinase)	

glnK	 SL1344_0456	 A0A0H3N8F4	 Nitrogen	regulatory	protein	P-II	

gltD	 SL1344_3303	 A0A0H3NSF0	 Glutamate	synthase	(NADPH)	small	chain	

grxB	 SL1344_1102	 A0A0H3NAK6	 Glutaredoxin	2	

hflX	 SL1344_4296	 A0A0H3NPK0	 GTPase	HflX	(GTP-binding	protein	HflX)	

hscC	 SL1344_0648	 A0A0H3NE72	 Chaperone	heat	shock	protein	

hydA	 SL1344_2822	 A0A0H3NQW9	 Hydrogenase	maturation	protein	

infB	 SL1344_3259	 A0A0H3NGC8	 Translation	initiation	factor	IF-2	

lepA	 SL1344_2545	 A0A0H3NEE6	 Elongation	 factor	 4	 (EF-4)	 (EC	 3.6.5.n1)	 (Ribosomal	
back-translocase	LepA)	

leuC	 SL1344_0111	 A0A0H3NCP8	 3-isopropylmalate	 dehydratase	 large	 subunit	 (EC	
4.2.1.33)		

lig	 SL1344_2390	 A0A0H3NFL2	 DNA	 ligase	 (EC	 6.5.1.2)	 (Polydeoxyribonucleotide	
synthase	[NAD(+)])	

lysC	 SL1344_4156	 A0A0H3NVC6	 Aspartokinase	(EC	2.7.2.4)	

mreB	 SL1344_3346	 A0A0H3NMB9	 Rod	shape-determining	protein	

mutM	 SL1344_3692	 A0A0H3NTS0	 Formamidopyrimidine-DNA	 glycosylase	 (Fapy-DNA	
glycosylase)	(EC	3.2.2.23)		

nagC	 SL1344_0664	 A0A0H3N9I6	 N-acetylglucosamine	repressor	

nuc	 SL1344_P2_0072	 A0A0H3NXU0	 Nuclease	

nusA	 SL1344_3260	 A0A0H3NM77	 Transcription	 termination/antitermination	 protein	
NusA	

nusB	 SL1344_0412	 A0A0H3NDL2	 N	 utilization	 substance	 protein	 B	 homolog	 (Protein	
NusB)	

obgE	 SL1344_3273	 A0A0H3NSC0	 GTPase	Obg	(EC	3.6.5.-)	(GTP-binding	protein	Obg)	

pheT	 SL1344_1272	 A0A0H3NB12	 Phenylalanine--tRNA	ligase	beta	subunit	(EC	6.1.1.20)		

pnp	 SL1344_3255	 A0A0H3NM73	 Polyribonucleotide	 nucleotidyltransferase	 (EC	 2.7.7.8)	
(Polynucleotide	phosphorylase)	

ppiA	 SL1344_3439	 A0A0H3NGU9	 Peptidyl-prolyl	cis-trans	isomerase	(PPIase)	(EC	5.2.1.8)	
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ppiB	 SL1344_0529	 A0A0H3NDV8	 Peptidyl-prolyl	cis-trans	isomerase	(PPIase)	(EC	5.2.1.8)	

prfA	 SL1344_1704	 A0A0H3NCA7	 Peptide	chain	release	factor	1	(RF-1)	

prfC	 SL1344_4488	 A0A0H3NWG0	 Peptide	chain	release	factor	3	(RF-3)	

prfH	 SL1344_0311	 A0A0H3NHU7	 Hypothetical	peptide	chain	release	factor	

rbfA	 SL1344_3258	 A0A0H3NI71	 Ribosome-binding	factor	A	

rbsC	 SL1344_3850	 A0A0H3NHS2	 High	affinity	ribose	transport	protein	

recG	 SL1344_3710	 A0A0H3NN06	 ATP-dependent	DNA	helicase	RecG	(EC	3.6.4.12)	

res	 SL1344_0353	 A0A0H3NHZ1	 Type	III	restriction-modification	system	enzyme	(StyLTI)	
(Ec	3.1.21.5)	

rfaH	 SL1344_3931	 A0A0H3NJR3	 Transcription	antitermination	protein	RfaH	

rhlE	 SL1344_0796	 A0A0H3N9C8	 ATP-dependent	RNA	helicase	RhlE	(EC	3.6.4.13)	

rho	 SL1344_3876	 A0A0H3NJK0	 Transcription	 termination	 factor	 Rho	 (EC	 3.6.4.-)	 (ATP-
dependent	helicase	Rho)	

rlmL	 SL1344_1001	 A0A0H3NFA4	 Ribosomal	RNA	large	subunit	methyltransferase	K/L	

rluA	 SL1344_0096	 A0A0H3NCN6	 Pseudouridine	synthase	(EC	5.4.99.-)	

rluB	 SL1344_1175	 A0A0H3NAE6	 Pseudouridine	synthase	(EC	5.4.99.-)	

rluC	 SL1344_1123	 A0A0H3NK80	 Pseudouridine	synthase	(EC	5.4.99.-)	

rluD	 SL1344_2622	 A0A0H3NEN7	 Pseudouridine	synthase	(EC	5.4.99.-)	

rph	 SL1344_3700	 A0A0H3NMZ6	 Ribonuclease	 PH	 (RNase	 PH)	 (EC	 2.7.7.56)	 (tRNA	
nucleotidyltransferase)	

rplW	 SL1344_3405	 A0A0H3NIE5	 50S	ribosomal	protein	L23	

rpmA	 SL1344_3275	 A0A0H3NGE3	 50S	ribosomal	protein	L27	

rpsB	 SL1344_0217	 A0A0H3NCZ1	 30S	ribosomal	protein	S2	

rpsC	 SL1344_3401	 A0A0H3NGS0	 30S	ribosomal	protein	S3	

rpsD	 SL1344_3383	 A0A0H3NGP6	 30S	ribosomal	protein	S4	

rrmA	 SL1344_1764	 A0A0H3NDQ7	 rRNA	guanine-N1-methyltransferase	

sdhB	 SL1344_0717	 A0A0H3N9N1	 Succinate	 dehydrogenase	 iron-sulfur	 subunit	 (EC	
1.3.5.1)	

secA	 SL1344_0136	 A0A0H3NCR8	 Protein	translocase	subunit	SecA	

selB	 SL1344_3647	 A0A0H3NTL9	 Selenocysteine-specific	elongation	factor	

sgaB	 SL1344_4317	 A0A0H3NPM4	 Hypothetical	PTS	system	IIB	protein	

thdF	 SL1344_3810	 A0A0H3NU44	 tRNA	modification	GTPase	MnmE	(EC	3.6.-.-)	

thiI	 SL1344_0419	 A0A0H3NI88	 tRNA	sulfurtransferase	(EC	2.8.1.4)	

tolA	 SL1344_0729	 A0A0H3NAV1	 TolA	protein	

tolB	 SL1344_0730	 A0A0H3N961	 Protein	TolB	

traR	 SL1344_P1_0024	 A0A0H3NYC6	 Conjugative	transfer	protein	
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truA	 SL1344_2337	 A0A0H3NJT6	 tRNA	pseudouridine	synthase	A	(EC	5.4.99.12)		

truD	 SL1344_2907	 A0A0H3NFD6	 tRNA	pseudouridine	synthase	D	(EC	5.4.99.27)		

tufB	 SL1344_3412	 A0A0G2PMS1	 Elongation	factor	Tu	(EF-Tu)	

tyrS	 SL1344_1381	 A0A0H3NCU4	 Tyrosine--tRNA	 ligase	 (EC	 6.1.1.1)	 (Tyrosyl-tRNA	
synthetase)	

ubiE	 SL1344_3924	 A0A0H3NHZ8	 Ubiquinone/menaquinone	 biosynthesis	 C-
methyltransferase	UbiE	(EC	2.1.1.163)		

ubiG	 SL1344_2245	 A0A0H3NF69	 Ubiquinone	biosynthesis	O-methyltransferase		

uvrB	 SL1344_0775	 A0A0H3NB00	 UvrABC	 system	 protein	 B	 (Protein	 UvrB)	 (Excinuclease	
ABC	subunit	B)	

ybcJ	 SL1344_0534	 A0A0H3NDW2	 Uncharacterized	protein	

ybdG	 SL1344_0557	 A0A0H3N990	 Hypothetical	membrane	protein	

ybhO	 SL1344_0788	 A0A0H3N9U5	 Cardiolipin	synthase	B	(CL	synthase)	(EC	2.7.8.-)	

ybiO	 SL1344_0802	 A0A0H3NEM1	 Hypothetical	membrane	protein	

yceG	 SL1344_1136	 A0A0H3NFM2	 Hypothetical	secreted	protein	

ychF	 SL1344_1712	 A0A0H3NC19	 Ribosome-binding	ATPase	YchF	

yciL	 SL1344_1651	 A0A0H3NDH0	 Pseudouridine	synthase	(EC	5.4.99.-)	

yciM	 SL1344_1640	 A0A0H3NLQ9	 Lipopolysaccharide	assembly	protein	B	

ydiL	 SL1344_1297	 A0A0H3NAV0	 Uncharacterized	protein	

ydiS	 SL1344_1286	 A0A0H3NG36	 Hypothetical	 electron	 transfer	 flavoprotein-quinone	
oxidoreductase	

yegD	 SL1344_2102	 A0A0H3ND59	 Uncharacterized	protein	

yejH	 SL1344_2200	 A0A0H3NDL4	 Hypothetical	helicase	

yffB	 SL1344_2445	 A0A0H3NPH2	 Uncharacterized	protein	

ygfZ	 SL1344_3024	 A0A0H3NRH2	 tRNA-modifying	protein	YgfZ	

yggB	 SL1344_3043	 A0A0H3NFT9	 Hypothetical	membrane	protein	

yggJ	 SL1344_3069	 A0A0H3NRQ8	 Ribosomal	 RNA	 small	 subunit	methyltransferase	 E	 (EC	
2.1.1.193)	

yhbY	 SL1344_3270	 A0A0H3NGD7	 Uncharacterized	protein	

yhfA	 SL1344_3432	 A0A0H3NGV2	 Uncharacterized	protein	

yhjS	 SL1344_3587	 A0A0H3NMT2	 Uncharacterized	protein	

yigI	 SL1344_3910	 A0A0H3NUH7	 Uncharacterized	protein	

yigZ	 SL1344_3938	 A0A0H3NNJ6	 Uncharacterized	protein	

yjbC	 SL1344_4128	 A0A0H3NID0	 Pseudouridine	synthase	(EC	5.4.99.-)	

yjeQ	 SL1344_4286	 A0A0H3NPJ0	 Putative	ribosome	biogenesis	GTPase	RsgA	(EC	3.6.1.-)	

yjhP	 SL1344_4430	 A0A0H3NJ47	 Uncharacterized	protein	



	 145 

ymdC	 SL1344_1085	 A0A0H3NA63	 Cardiolipin	synthase	C	(CL	synthase)	(EC	2.7.8.-)	

ynaI	 SL1344_1594	 A0A0H3NLL2	 Hypothetical	membrane	protein	

yqcB	 SL1344_2945	 A0A0H3NFH6	 Hypothetical	RNA	pseudouridylate	synthase	

yrdC	 SL1344_3369	 A0A0H3NSP6	 Threonylcarbamoyl-AMP	 synthase	 (TC-AMP	 synthase)	
(EC	2.7.7.87)	

SL1344_0081	 SL1344_0081	 A0A0H3N7S7	 Hypothetical	lipoprotein	

SL1344_0961	 SL1344_0961	 A0A0H3NBP0	 Antitermination	Protein	q	

SL1344_1196	 SL1344_1196	 A0A0H3NAH7	 Hypothetical	membrane	protein	

SL1344_1516	 SL1344_1516	 A0A0H3NBH3	 Hypothetical	lipoprotein	

SL1344_1949	 SL1344_1949	 A0A0H3NEF1	 Hypothetical	portal	protein	

SL1344_2163	 SL1344_2163	 A0A0H3NDB3	 Hypothetical	oxidoreductase	

SL1344_2552A	 SL1344_2552A	 A0A0H3NPX7	 Predicted	bacteriophage	protein	

SL1344_2639	 SL1344_2639	 A0A0H3NGF0	 Predicted	bacteriophage	protein	

SL1344_2697	 SL1344_2697	 A0A0H3NEV8	 Predicted	bacteriophage	protein	

SL1344_2703	 SL1344_2703	 A0A0H3NQC8	 Hypothetical	bacteriophage	protein	

SL1344_2722	 SL1344_2722	 A0A0H3NKV8	 Bacteriophage	P4	DNA	primase	

SL1344_2929	 SL1344_2929	 A0A0H3NH71	 Uncharacterized	protein	

SL1344_3646	 SL1344_3646	 A0A0H3NHD3	 Hypothetical	sugar	kinase	

SL1344_4015	 SL1344_4015	 A0A0H3NNS8	 Hypothetical	carbohydrate	kinase	

SL1344_4121	 SL1344_4121	 A0A0H3NKA5	 Uncharacterized	protein	

SL1344_4127	 SL1344_4127	 A0A0H3NKA8	 Uncharacterized	protein	
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Appendix	Table	2	

Salmonella	genes	involved	in	flagellar	assembly	that	are	enriched	in	one	of	the	CoIP	samples	

in	this	study	(discussed	in	the	Chapter	3):		

Gene	names	 Locus	tag	 UniProt	id	 Protein	names	

flgA	 SL1344_1110	 A0A0H3NA79	 Flagella	basal	body	P-ring	formation	protein	

flgB	 SL1344_1111	 A0A0H3NFK4	 Flagellar	basal	body	rod	protein	FlgB	

flgC	 SL1344_1112	 A0A0H3NAL6	 Flagellar	basal-body	rod	protein	FlgC	

flgD	 SL1344_1113	 A0A0H3NK70	 Basal-body	rod	modification	protein	FlgD	

flgE	 SL1344_1114	 A0A0H3NC32	 Flagellar	hook	protein	FlgE	

flgF	 SL1344_1115	 A0A0H3NA83	 Flagellar	basal	body	protein	

flgG	 SL1344_1116	 A0A0H3NFK8	 Flagellar	basal-body	rod	protein	FlgG	(Distal)	

flgH	 SL1344_1117	 A0A0H3NAM2	 Flagellar	L-ring	protein	(Basal	body	L-ring)	

flgI	 SL1344_1118	 A0A0H3NK77	 Flagellar	P-ring	protein	(Basal	body	P-ring)	

flgK	 SL1344_1120	 A0A0H3NA87	 Flagellar	hook-associated	protein	1	(HAP1)	

flgL	 SL1344_1121	 A0A0H3NFL1	 Flagellar	hook-associated	protein	3	

flgM	 SL1344_1109	 A0A0H3NC27	 Negative	regulator	of	flagellin	synthesis	

flgN	 SL1344_1108	 A0A0H3NK64	 Flagella	synthesis	protein	FlgN	

flhAa	 SL1344_1848	 A0A0H3NHV9	 Flagellar	biosynthesis	protein	FlhA	

flhB	 SL1344_1849	 A0A0H3NCQ1	 Flagellar	biosynthetic	protein	FlhB	

flhC	 SL1344_1859	 A0A0H3NCR1	 Flagellar	transcriptional	regulator	FlhC	

flhD	 SL1344_1860	 A0A0H3NMG3	 Flagellar	transcriptional	regulator	FlhD	

fliC	 SL1344_1888	 A0A0H3NMJ6	 Flagellin	

fliD	 SL1344_1889	 A0A0H3NE27	 Flagellar	hook-associated	protein	2	(HAP2)	

fliE	 SL1344_1897	 A0A0H3NCU5	 Flagellar	hook-basal	body	complex	protein	FliE	

fliF	 SL1344_1898	 A0A0H3NML0	 Flagellar	M-ring	protein	

fliG	 SL1344_1899	 A0A0H3NE38	 Flagellar	motor	switch	protein	FliG	

fliH	 SL1344_1900	 A0A0H3NCJ5	 Flagellar	assembly	protein	FliH	

fliI	 SL1344_1901	 A0A0H3NI18	 Flagellum-specific	ATP	synthase	

fliJ	 SL1344_1902	 A0A0H3NCU9	 Flagellar	FliJ	protein	

fliK	 SL1344_1903	 A0A0H3NML6	 Flagellar	hook-length	control	protein	

fliM	 SL1344_1905	 A0A0H3NCK0	 Flagellar	motor	switch	protein	FliM	

fliN	 SL1344_1906	 A0A0H3NI23	 Flagellar	motor	switch	protein	FliN	
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fliO	 SL1344_1907	 A0A0H3NCV8	 Flagellar	protein	

fliP	 SL1344_1908	 A0A0H3NMM0	 Flagellar	biosynthetic	protein	FliP	

fliQ	 SL1344_1909	 A0A0H3NE46	 Flagellar	biosynthetic	protein	FliQ	

fliR	 SL1344_1910	 A0A0H3NCK7	 Flagellar	biosynthetic	protein	FliR	

fliS	 SL1344_1890	 A0A0H3NCI3	 Flagellar	protein	FliS	

fliT	 SL1344_1891	 A0A0H3NI05	 Flagellar	protein	FliT	

fljB	 SL1344_2756	 A0A0H3NEZ8	 Flagellin	

motA	 SL1344_1858	 A0A0H3NHX2	 Motility	protein	A	

motB	 SL1344_1857	 A0A0H3NCF1	 Motility	protein	B	
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Appendix	Table	3	

Salmonella	 genes	 involved	 in	 bacterial	 chemotaxis	 that	 are	 enriched	 in	 one	 of	 the	 CoIP	

samples	in	this	study	(discussed	in	the	chapter-3):		

Gene	names	 Locus	tag	 UniProt	id	 Protein	names	

cheA	 SL1344_1856	 A0A0H3NDZ5	 Chemotaxis	protein	CheA	

cheB	 SL1344_1852	 A0A0H3NCE6	 Chemotaxis	 response	 regulator	 protein-glutamate	
methylesterase	(EC	3.1.1.61)	

cheM	 SL1344_1854	 A0A0H3NCQ6	 Methyl-accepting	chemotaxis	protein	II	

cheR	 SL1344_1853	 A0A0H3NHW6	 Chemotaxis	protein	methyltransferase	(EC	2.1.1.80)	

cheW	 SL1344_1855	 A0A0H3NMF8	 Purine	binding	chemotaxis	protein	

cheY	 SL1344_1851	 A0A0H3NDY8	 Chemotaxis	protein	CheY	

cheZ	 SL1344_1850	 A0A0H3NMF2	 Protein	phosphatase	CheZ	(EC	3.1.3.-)	(Chemotaxis)	

dppA	 SL1344_3596	 A0A0H3NIX1	 Periplasmic	dipeptide	transport	protein	

fliG	 SL1344_1899	 A0A0H3NE38	 Flagellar	motor	switch	protein	FliG	

fliM	 SL1344_1905	 A0A0H3NCK0	 Flagellar	motor	switch	protein	FliM	

fliN	 SL1344_1906	 A0A0H3NI23	 Flagellar	motor	switch	protein	FliN	

malE	 SL1344_4166	 A0A0H3NIS1	 Periplasmic	maltose-binding	protein	

mglB	 SL1344_2167	 A0A0H3NEZ1	 D-galactose-binding	periplasmic	protein	

motA	 SL1344_1858	 A0A0H3NHX2	 Motility	protein	A	

motB	 SL1344_1857	 A0A0H3NCF1	 Motility	protein	B	

rbsB	 SL1344_3851	 A0A0H3NU95	 D-ribose-binding	periplasmic	protein	

SL1344_2283	 SL1344_2283	 A0A0H3NDU3	 Hypothetical	receptor/regulator	protein	

SL1344_3126	 SL1344_3126	 A0A0H3NFZ7	 Methyl-accepting	chemotaxis	protein	

tcp	 SL1344_3542	 A0A0H3NMQ9	 Methyl-accepting	chemotaxis	citrate	transducer	

trg	 SL1344_1556	 A0A0H3NGY0	 Methyl-accepting	 chemotaxis	 protein	 III	 (Mcp-iii)	 (Ribose	
and	galactose	chemoreceptor	protein)	

tsr	 SL1344_4464	 A0A0H3NL96	 Methyl-accepting	chemotaxis	protein	
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