
Julius-Maximilians-Universität Würzburg

Reducing the complexity of OMICS data
analysis

Dissertation zur Erlangung des

naturwissenschaftlichen Doktorgrades

der Julius-Maximilians-Universität Würzburg

Vorgelegt von
Beat Wolf

aus Fribourg, CH, 2017



Eingereicht am: 5 April 2017
bei der Fakultät für Mathematik und Informatik

1. Gutachter: Prof. Dr. Thomas Dandekar
2. Gutachter: Prof. Dr. Pierre Kuonen

Tag der mündlichen Prüfung: 31 August 2017



Summary
The field of genetics faces a lot of challenges and opportunities in both research and diag-
nostics due to the rise of next generation sequencing (NGS), a technology that allows to
sequence DNA increasingly fast and cheap. NGS is not only used to analyze DNA, but also
RNA, which is a very similar molecule also present in the cell, in both cases producing large
amounts of data. The big amount of data raises both infrastructure and usability problems,
as powerful computing infrastructures are required and there are many manual steps in
the data analysis which are complicated to execute. Both of those problems limit the use
of NGS in the clinic and research, by producing a bottleneck both computationally and
in terms of manpower, as for many analyses geneticists lack the required computing skills.
Over the course of this thesis we investigated how computer science can help to improve
this situation to reduce the complexity of this type of analysis. We looked at how to make
the analysis more accessible to increase the number of people that can perform OMICS
data analysis (OMICS groups various genomics data-sources). To approach this problem,
we developed a graphical NGS data analysis pipeline aimed at a diagnostics environment
while still being useful in research in close collaboration with the Human Genetics Depart-
ment at the University of Würzburg. The pipeline has been used in various research papers
on covering subjects, including works with direct author participation in genomics, tran-
scriptomics as well as epigenomics. To further validate the graphical pipeline, a user survey
was carried out which confirmed that it lowers the complexity of OMICS data analysis.
We also studied how the data analysis can be improved in terms of computing infrastruc-

ture by improving the performance of certain analysis steps. We did this both in terms of
speed improvements on a single computer (with notably variant calling being faster by up
to 18 times), as well as with distributed computing to better use an existing infrastructure.
The improvements were integrated into the previously described graphical pipeline, which
itself also was focused on low resource usage.
As a major contribution and to help with future development of parallel and distributed

applications, for the usage in genetics or otherwise, we also looked at how to make it easier
to develop such applications. Based on the parallel object programming model (POP), we
created a Java language extension called POP-Java, which allows for easy and transpar-
ent distribution of objects. Through this development, we brought the POP model to the
cloud, Hadoop clusters and present a new collaborative distributed computing model called
FriendComputing.
The advances made in the different domains of this thesis have been published in various

works specified in this document.

i



Zusammenfassung
Das Gebiet der Genetik steht vor vielen Herausforderungen, sowohl in der Forschung als
auch Diagnostik, aufgrund des "next generation sequencing" (NGS), eine Technologie die
DNA immer schneller und billiger sequenziert. NGS wird nicht nur verwendet um DNA
zu analysieren sondern auch RNA, ein der DNA sehr ähnliches Molekül, wobei in beiden
Fällen große Datenmengen zu erzeugt werden. Durch die große Menge an Daten entstehen
Infrastruktur und Benutzbarkeitsprobleme, da leistungsstarke Computerinfrastrukturen er-
forderlich sind, und es viele manuelle Schritte in der Datenanalyse gibt die kompliziert
auszuführen sind. Diese beiden Probleme begrenzen die Verwendung von NGS in der Klinik
und Forschung, da es einen Engpass sowohl im Bereich der Rechnerleistung als auch beim
Personal gibt, da für viele Analysen Genetikern die erforderlichen Computerkenntnisse
fehlen.
In dieser Arbeit haben wir untersucht wie die Informatik helfen kann diese Situation

zu verbessern indem die Komplexität dieser Art von Analyse reduziert wird. Wir haben
angeschaut, wie die Analyse zugänglicher gemacht werden kann um die Anzahl Personen
zu erhöhen, die OMICS (OMICS gruppiert verschiedene Genetische Datenquellen) Daten-
analysen durchführen können. In enger Zusammenarbeit mit dem Institut für Humangenetik
der Universität Würzburg wurde eine graphische NGS Datenanalysen Pipeline erstellt um
diese Frage zu erläutern. Die graphische Pipeline wurde für den Diagnostikbereich entwickelt
ohne aber die Forschung aus dem Auge zu lassen. Darum warum die Pipeline in verschiede-
nen Forschungsgebieten verwendet, darunter mit direkter Autorenteilname Publikationen
in der Genomik, Transkriptomik und Epigenomik, Die Pipeline wurde auch durch eine Be-
nutzerumfrage validiert, welche bestätigt, dass unsere graphische Pipeline die Komplexität
der OMICS Datenanalyse reduziert.
Wir haben auch untersucht wie die Leistung der Datenanalyse verbessert werden kann,

damit die nötige Infrastruktur zugänglicher wird. Das wurde sowohl durch das optimieren
der verfügbaren Methoden (wo z.B. die Variantenanalyse bis zu 18 mal schneller wurde)
als auch mit verteiltem Rechnen angegangen, um eine bestehende Infrastruktur besser zu
verwenden. Die Verbesserungen wurden in der zuvor beschriebenen graphischen Pipeline
integriert, wobei generell die geringe Ressourcenverbrauch ein Fokus war.
Um die künftige Entwicklung von parallelen und verteilten Anwendung zu unterstützen,

ob in der Genetik oder anderswo, haben wir geschaut, wie man es einfacher machen könnte
solche Applikationen zu entwickeln.
Dies führte zu einem wichtigen informatischen Result, in dem wir, basierend auf dem

Model von „parallel object programming“ (POP), eine Erweiterung der Java-Sprache na-
mens POP-Java entwickelt haben, die eine einfache und transparente Verteilung von Ob-
jekten ermöglicht. Durch diese Entwicklung brachten wir das POP-Modell in die Cloud,
Hadoop-Cluster und präsentieren ein neues Model für ein verteiltes kollaboratives rechnen,
FriendComputing genannt.
Die verschiedenen veröffentlichten Teile dieser Dissertation werden speziel aufgelistet und

diskutiert.

ii



Acknowledgment
For this thesis to happen and finish I have to thank numerous people and institutions.
First and foremost I would like to thank Prof. Pierre Kuonen for not only giving me the
opportunity to make this dissertation, but encouraging me to do so and giving me the best
environment possible. I would also like to thank Prof. Thomas Dandekar for supervising
my thesis, giving me precious advice and guidance in the field of bioinformatics. A big
thanks goes also to Dr. David Atlan, that gave me the opportunity to perform this thesis
with a very practical oriented approach, making it possible for much of my work being
used in real laboratories across Europe. Having my work being used on a daily basis in a
diagnostics environment was a major motivational force throughout the thesis. I would also
like to thank Prof. Clemens Müller Reible and Prof. Simone Rost of the Institute of Human
Genetics in Würzburg, for following my thesis with so much interest, giving me advice and
most importantly for their trust in my work, introducing it in their laboratory to be used
for the regular data analysis.
I would like to thank the co-authors with which I had the opportunity to write various

papers, through which I could learn a lot and get familiarized with many topics. Without
them, much of my work would be theoretical with no practical implications.
Having me supported me throughout the thesis, I also want to thank especially my

girlfriend Gaëlle Kolly. A special thanks also goes to my parents, which made it possible to
follow a research career.
Last but not least I would also like to thank the University of Würzburg and the Univer-

sity of Applied Sciences and Arts Western Switzerland for accepting me for my PhD. I’m
grateful for having had the opportunity to make my PhD through a collaboration of two
Universities, one more focused on the academic side and the other on the practical side.

iii



Contents
1. Introduction 1

1.1. Motivation and scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

I. Foundations 5

2. Genetics 6
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1. Genetic code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2. Next generation sequencing . . . . . . . . . . . . . . . . . . . . . . . 12

2.2. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3. OMICs data analysis 18
3.1. Genomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1. State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2. Transcriptomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1. State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3. Epigenomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1. State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4. File-formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4. Diagnostics 39
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2. Genetic disorders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3. Software requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5. Parallel & distributed computing 46
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2. History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3. State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.1. CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.2. GPGPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.3. Distributed computing . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

iv



Contents CONTENTS

II. Methods 54

6. Graphical pipeline 55
6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2. Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.4. User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.5. Project management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.6. Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.7. Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.7.1. Quality control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.7.2. Sequence alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.7.3. Coverage analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.7.4. Variant analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.7.5. Variant comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.7.6. Copy number variations . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.7.7. Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.8. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7. Data analysis 73
7.1. Sequence alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.1.2. State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.1.3. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.1.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.1.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2. Meta-Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.2.2. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3. Variant calling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.3.2. State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.3.3. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.3.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.3.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.4. RNA-seq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.4.2. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.4.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.5. Epigenetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.5.2. State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.5.3. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.5.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.6. Genome browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

v



Contents CONTENTS

7.6.2. State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.6.3. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.6.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.6.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.7. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8. POP-Java 127
8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.2. State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.2.1. Parallel computing in Java . . . . . . . . . . . . . . . . . . . . . . . . 128
8.2.2. Distributed computing . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.2.3. Language extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.3. POP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.4. POP Java prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.4.1. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.5. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.5.1. Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.5.2. Additional changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.6. Usage examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.6.1. Distributed matrix multiplications . . . . . . . . . . . . . . . . . . . . 137
8.6.2. Distributed mandelbrot . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.7. Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.7.1. Cloud integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.7.2. Hadoop cluster integration . . . . . . . . . . . . . . . . . . . . . . . . 142
8.7.3. TrustedFriendComputing . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.8. Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.8.1. Distributed sequence alignment . . . . . . . . . . . . . . . . . . . . . 146

8.9. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.10. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

III. Applications 151

9. Graphical pipeline applications 152
9.1. Author participation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.1.1. Deep intronic variants in the factor VIII gene . . . . . . . . . . . . . 152
9.1.2. Myofibrillar myopathies . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.1.3. Transcriptomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
9.1.4. Epigenetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

9.2. Indirect participation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.3. User survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
9.3.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.3.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

9.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

10.Conclusion & Future works 165

vi



Contents CONTENTS

11.Publications 168
11.1. Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

11.1.1. Journal papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
11.1.2. Conference proceedings . . . . . . . . . . . . . . . . . . . . . . . . . . 168
11.1.3. Misc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

11.2. Posters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Appendices 194

A. Artistic data visualization 195

B. Meta-alignment 200

C. Custom file formats 201

D. Polling 205

E. Downloads 210

F. Declaration of Authorship 211

vii



1. Introduction

1.1. Motivation and scope
The field of genetics received a huge boost with the development of next generation se-
quencing (NGS) techniques which allow sequencing DNA (deoxyribonucleic acid) at speeds
never seen before. A distinct research field, called bioinformatics, is dedicated to support
geneticists to cope with the analysis of this data. While the domain of bioinformatics has
been a part of biology and genetics in particular for a long time, it became an integral and
indispensable part once the new sequencing started to create increasingly big amounts of
data. Bioinformatics combines multiple fields, such as computer science, mathematics and
statistics to solve the issues faced in biology. In the case of NGS data analysis, bioinformat-
ics tools allow to automate a lot of analysis steps and to extract information from the data
that would be impossible to do manually. This can happen in various domains using NGS
data such as Genomics, Transcriptomics and Epigenomics, all grouped under the name of
OMICS (alongside other -omics). While many tools exist to do various types of analysis for
OMICS data analysis, their usage remains complicated and thus restricted to resourceful
institutions. More often than not, the analysis of OMICS data requires the collaboration
of bioinformaticians and geneticists, as both depend on the skill set of the other to analyze
the data. This requirement for collaboration restricts the number of people that can work
with NGS data and thus slows down the scientific progress of the field and keeps the costs
high. Developing tools which allow geneticists to work independently from bioinformati-
cians becomes increasingly important as this dependency is a serious bottleneck in today’s
data analysis. While the acquiring of data continues to get cheaper (see Figure 1.1) and
faster, the interpretation of the data did not yet follow at the same pace. This increase in
time and cost to analyze the data comes not only from the complexity of the analysis itself,
but also from the fact that the amount of data created increases faster than the comput-
ing capacities are predicted to improve. In 1965, Gordon Moore predicted the doubling of
computing power in a single computer every 18 months. This is also known as Moore’s Law
and has been remarkably accurate (although arguably a self-fulfilling prophecy) ever since
then. The evolution of Moore’s Law and the reduction in sequencing cost is also shown in
Figure 1.1, highlighting the problem of data analysis faced today.
To solve the computing power challenges associated with this evolution, a big focus in

research is put on speeding up existing methods. When this is not possible, increasingly
parallel and distributed computing is used to handle the large amounts of data produced.
With the arrival of cloud computing this type of approach has been democratized by not
limiting it to big organizations with access to grid environments or clusters. But the setup
and usage of said tools is often complicated and requires a considerable amount of expertise
in the domain. This again limits the number of people able to analyze genetic data and
creates delays for the analysis.
The problem of accessibility is accentuated with genetic data analysis becoming increas-

ingly common and affordable. Today, even private individuals can get their genetic data

1



1.1. Motivation and scope 1. INTRODUCTION

Fig. 1.1.: Graph of the radically dropping cost per genome, from
http://genome.gov/sequencingcosts, 4 apr. 2017

through services like 23andMe 1 and sequencing technologies are being miniaturized, both
to be cheaper and usable in remote locations [Hay15]. This leads to a possible future where
many people have easy access to their own genome. This future also raises privacy issues
with many of the available genetics analysis tools offloading the analysis to a cloud where
the data security cannot be guaranteed. While private clouds, such as the one planned at
the University of Würzburg, can mitigate those problems, they are not available to smaller
laboratories or individuals.
This democratization and the possibility to analyze genetic data at home has various

social implications. This thesis does not have as its goal to analyze this impact, but focuses
on the field of clinical diagnostics, even if the improvements required in that field also enable
easier research as well as genome analysis outside of laboratories.
The described problematics of the increasing data analysis complexity, the need for more

accessible data analysis software and the computational infrastructure requirements, lead
us to explore the following questions:

• How can NGS data analysis be made more accessible?

• Can the performance problems be solved by optimizing existing methods?

• Can distributed programming be made more accessible to facilitate distributed data
analysis?

To approach those problems, we decided to develop a graphical NGS data analysis
pipeline which aims at reducing the complexity of the data analysis. This graphical pipeline
serves as an interface to the underlying tools, which can be either existing standard tools
or re-implementations of existing methods in cases where for performance or other reasons
it makes sense to re-implement them. We also use this graphical pipeline as the target for
a distributed programming approach which aims at reducing the complexity of developing
distributed applications.

1https://www.23andme.com

2



1.2. Contributions 1. INTRODUCTION

We hope that the work being done in this thesis increases the number of people that are
able to perform NGS data analysis and ultimately move the field forward. As with many
fields, such as computer-science, the big advances were made once a larger public got access
to the technology. Ideally, this work helps us to get one step close to this goal. The same is
true for our work on POP-Java and the FriendComputing paradigm, which should enable
for easier development of distributed applications and the usage of the cloud and other
distributed environments. Be it for NGS data analysis or otherwise, we hope that the easier
access to the technology will bring it to a larger community and thus ultimately move the
field forward.

1.2. Contributions
During this thesis, multiple works have been published in journals and conferences. This
section gives an overview of those contributions. A complete list of the published works in
the context of this thesis can be found in Chapter 11, and every part of the thesis specifies
the publications which have been made about the subject. We group the contributions
according to the three research questions discussed in the previous section.

To explore how to make NGS data analysis more accessible, we published:

Beat Wolf, Pierre Kuonen, Thomas Dandekar, David Atlan, DNAseq workflow in a diagnos-
tic context, and an example of a user-friendly implementation, BioMed Research International,
Volume 2015 (2015), Article ID 403497, 11 pages

J. Elisa Bach, Beat Wolf, Johannes Oldenburg, Clemens R. Müller, Simone Rost, Identifica-
tion of deep intronic variants in 15 haemophilia A patients by Next Generation Sequencing of the
whole factor VIII gene, Thrombosis and Haemostasis, 2015: 114/4 (Oct) pp. 657-867

Meik Kunz, Beat Wolf, Harald Schulze, David Atlan, Thorsten Walles, Heike Walles and Thomas
Dandekar, Non-Coding RNAs in Lung Cancer: Contribution of Bioinformatics Analysis to the De-
velopment of Non-Invasive Diagnostic Tools, Genes, Dec. 2016

Related to the performance optimizations of existing methods we published:

Beat Wolf, Pierre Kuonen, Thomas Dandekar, GNATY: Optimized NGS variant calling and
coverage analysis, 4th International Work-Conference on Bioinformatics and Biomedical Engi-
neering (IWBBIO 2016)

Beat Wolf, Pierre Kuonen, Thomas Dandekar, Multilevel parallelism in sequence alignment us-
ing a streaming approach, Second International Workshop on Sustainable Ultrascale Computing
Systems (NESUS 2015)

Beat Wolf, Pierre Kuonen, A novel approach for heuristic pairwise DNA sequence alignment,
BIOCOMP’13 - The 2013 International Conference on Bioinformatics & Computational Biology

And in regards to a more accessible distributed programming approach we pub-
lished:

3



1.3. Thesis outline 1. INTRODUCTION

Beat Wolf, Pierre Kuonen, Thomas Dandekar, POP-Java : Parallélisme et distribution orienté
objet, Compas2014, Conférence d’informatique en Parallélisme, Architecture et Système

Beat Wolf, Pierre Kuonen, Thomas Dandekar, Comment reproduire les résultats de l’article:
"POP-Java: Parallélisme et distribution orienté objet", Realis 2014: Reproductibilité expérimen-
tale pour l’informatique en parallélisme, architecture et système

Beat Wolf, Monney Loïc, Pierre Kuonen FriendComputing: Organic application centric dis-
tributed computing, Second International Workshop on Sustainable Ultrascale Computing Systems
(NESUS 2015)

This list does not include various other works, such as posters that have been published
and can be found in Chapter 11.

1.3. Thesis outline
After the general introduction and overview given in this chapter, the rest of the document
is organized into three main parts, Foundations, Methods and Applications.
In the first part, Foundations, the foundations of the thesis are laid down, giving the

reader the required knowledge to understand the later chapters. As this document is written
for readers with a computer science background, Chapter 2 explains the basics of genetics.
This is followed by Chapter 3 about the different types of data analyses possible when ana-
lyzing NGS data. Those two general introduction chapters lead to Chapter 4, Diagnostics,
which takes a look at how the data analysis is done in a diagnostic context. The founda-
tions are closed with a Chapter 5 about parallel and distributed computing, a technology
allowing us to analyze the big amount generated with NGS.
The second part, Methods, discusses the different applications and algorithms that were

developed during this thesis. This part is split into three chapters, the graphical pipeline
Chapter 6, the data analysis Chapter 7 as well as the POP-Java Chapter 8. While the
first talks about graphical data analysis pipeline which was developed to make the analysis
of NGS data more accessible, the second discusses specific NGS data analysis algorithms.
The graphical data analysis pipeline integrates the various algorithms discussed in Chapter
7 in a comprehensive application targeting geneticists. In Chapter 8, the Java language
extensions for easier distributed and parallel programming POP-Java is presented.
The third part of the thesis, Applications, discusses the practical use of the works pre-

sented in Methods. The focus is on the use of the graphical data analysis pipeline for various
research projects and other contexts. Chapter 9 presents those works, as well as an evalua-
tion of the impact of the graphical data analysis pipeline on both research and diagnostics
work with NGS data.

4



Part I.

Foundations

5



2. Genetics
In this chapter we look at the basics of genetics required to understand later parts of this
work. We look at how the genetic code is structured and how DNA works inside our cells.
We then look at the current technologies that allow to bring the biological genetic code
present in a cell into the digital world, which allows us then to perform data analysis. This
technology, called next generation sequencing (NGS), is a central aspect of this thesis, as
it is the source of most if not all data that we analyse. With this being an introductory
chapter to genetics with no pretention to be complete, we encourage the reader to read
specialized genetics books on the subject. We can highly recommend books like Molecular
Biology of the Cell [AJL+14] which is updated constantly, Molecular Biology by Campbell,
or Essential Cell Biology by Alberts B. et. al. Those books contain definitions and examples
for all genetic terms, processes and methods discussed in this chapter.

2.1. Introduction
The study of genetics has a long history, but its modern form is a comparatively young
science. Without the intention to discuss the full history of how genetics evolved over time,
this chapter will start by giving a brief overview of how genetics started and where they
are today. It will mainly focus on the aspects of human genetics, the evolution of our
understanding of the human genome and sequencing technologies.

The word “genetics” comes from genetikos, an Ancient Greek word meaning “genitive” /
“generative” which itself comes from the word genesis having the meaning “origin” 1. While
an old word, it was William Bateson that mainly introduced the term genetics the way we
use it today at the beginning of the 20th century (according to [Hay98]). He pushed the
use of the term genetics to describe this newly evolving branch of science. Initially it was
mainly used for the study of heredity and the mechanisms behind it, but over time also
included the study of how the genetic material in cells actually works. But even if genetics
only became a modern science in the early 20th century, parts of it are much older, such as
the study of heredity, something that humans have been doing for a very long time.
It initially started with the selective breeding of animals and plants and later became a

science in the modern meaning of the word. The first person to really approach the fields of
genetics from a scientific point of view is Gregor Mendel, which many regard as the founder
of modern genetics. While his initial work published in 1865 was not widely recognized in
the scientific community, his work was rediscovered and recognized at the beginning of the
20th century. Over time, scientists discovered more and more about the inner working of
cells and how they pass on their information to their offspring. DNA and the molecules
which carry it, the chromosomes, have been discovered in the 19th century, but it was
only in 1953 that James Watson and Francis Crick discovered the double helix structure of

1https://en.wikipedia.org/wiki/Genetics

6



2.1. Introduction 2. GENETICS

DNA. This finally revealed the nature of the molecule which holds the blueprint of all life.
The DNA has a double helix structure and is a sequence of 4 different nucleotides adenine,
cytosine, thymine and guanine also called A, C, T and G. A more detailed explanation of
how the DNA is structured and how it works can be found in Section 2.1.1.

Fig. 2.1.: Visualization of the DNA double helix by Michael Ströck 2

While the structure and composition of the DNA were discovered at that time, its con-
tent was unknown and not yet readable. It was 1977 that Frederick Sanger invented chain-
termination DNA sequencing, the first method to determine the actual sequence of nu-
cleotides present in DNA and in turn the genes. This invention was key for the arrival of
modern genetics as we known them today and which are also the focus of this thesis. The
so called Sanger sequencing evolved from a research tool to a technology widely used in
diagnostics. Other, similar methods to sequence DNA appeared at the same time, such as
the Maxam-Gilbert sequencing.
Sequencing became increasingly better, but there was still one big obstacle when sequenc-

ing DNA and especially human DNA. It was unknown what the “average” human DNA
looked like. This is a very important information to understand if a sequenced individual is
“normal” or if it has a genetic difference that might explain its condition. While that infor-
mation was known for small parts of the human genome, the sequence of the vast majority
of the human genome was unknown. For this reason, the Human Genome Project[LLB+01]
was started in 1990, with the goal to create a map of the human genome which would serve
as a reference for further studies. The project officially achieved its goal in 2001 by providing
the first human reference genome, a highly valuable resource for DNA sequence analysis.
But even with the first official human genome having been released in 2001, the work on the
project did not stop and continually releases new versions of the human genome. The new
versions improve the completeness of the genome, as several big regions of the genome are
currently not completely identified. Those regions often consist of highly repetitive regions
which need a lot of effort to be put together. The last release of the human genome, HG38
(also called GRCH38) was released in December 2013. Even though the new human genome
has been released for some time, it is not yet widely adopted, with most of the NGS data
analysis tools still using HG19 (also called GRCH37).

2https://commons.wikimedia.org/wiki/File:DNA_Overview_landscape_orientation.png, Michael Ströck
CC-BY-SA-3.0

7



2.1. Introduction 2. GENETICS

While the Human Genome Project worked to map the complete human genome, new
sequencing technologies have been developed which greatly increased the speed at which
the human genome could be sequenced. Those new technologies were regrouped under the
term Next Generation Sequencing or in short NGS. We will look at those technologies in
more detail in Section 2.1.2.
The arrival of next generation sequencing as well as the availability of a human reference

genome lead to a new era of human genetics. While Sanger sequencing could be used to
sequence complete genomes, as the Human Genome Project proved, this was a costly and
time consuming process. In practice, Sanger sequencing was only used to sequence single
exons or genes, but NGS greatly expanded those sequencing capabilities. NGS allows to
sequence a genome at various levels, something that previous technologies could not do.
The broadest level is called full genome sequencing, where all the regions of the genome
are sequenced equally. This produces a very large amount of data, ranging into hundreds of
gigabytes of data for a human sample. As most of the genome does not have any currently
understood function, it is common practice to only sequence the parts of the genome which
encode genes. This is called full exome sequencing, which amounts to over 10 times less data
per sample as full genome sample. The lowest level is called targeted sequencing, where
specific gene panels are sequenced. Those genes usually are specifically targeted because of
their relevance to the data analysis question for the sample to be analysed.
Not only did NGS make all those different ways of sequencing possible, it also made it

much faster than previous technologies. It became possible, in a matter of hours, to sequence
complete gene panels, exomes or even full genomes. This development lead to many new
discoveries, but also to new challenges. During the Sanger sequencing era, a lot of the
data analysis could be done by hand. With the arrival of NGS this is no longer possible
and requires new tools which can handle the big amounts of data produced by those new
technologies.
While it is hard to determine what the future in sequencing will bring, there are still clear

trends in the field. The trend of faster and cheaper sequencing technologies is set to continue.
Additionally, there is also a trend in making the sequencing technology more accessible,
making its use possible outside of genetic laboratories. Over the years, the commonly used
sequencers became smaller and more efficient, with many now commonly used sequencers
being barely larger than a desktop computer. Recently the improvements in that area took
another big step with the MinION sequencer from Oxford Nanopore Technologies (See
Section 2.1.2). This new kind of sequencer not only allows for impressing read lengths of
10’000 nucleotides or longer, but perhaps even more importantly, comes in the form of a
device about the size of an external USB hard disk. While the quality of the technology
may not yet be on the same level as commonly used sequencers [LHO+15], it already opens
new opportunities to use the sequencing technology.
One such example is the analysis of the Ebola virus during the 2014 outbreak in Africa.

By using the Oxford Nanopore MinION it was possible to sequence the Ebola virus directly
on the field and to observe its evolution over time [Hay15]. This highly interesting use of
DNA sequence technology is just one example of what might yet come. By miniaturizing
the sequencing technologies as well as making them more accessible, one can easily imagine
a future in which individuals can easily sequence their own genome at home. The issue of
data analysis as well as data privacy will then become of even greater importance. And even
without imagining a world in which people sequence their genome at home, the increased
accessibility of the sequencing technologies already increases the potential users of this

8



2.1. Introduction 2. GENETICS

technology. Smaller laboratories, private or public, increasingly use DNA sequencing to
diagnose patients. While most of them are located in private institutions or hospitals, the
mobile Ebola sequencing is a more extreme example of the new and upcoming possibilities
of those new technologies.
As described by the Ebola sequencing efforts project, the MinION sequencing could

indeed solve a big part of the hardware restrictions current approaches have. The smaller
hardware used to sequence the Ebola virus, compared to a traditional sequencer, allows its
usage directly on the field, without having to send samples to a laboratory. But the sequence
analysis itself still remains a hurdle to overcome. Indeed, sequencing DNA is only part of
the problem of creating a meaningful analysis of a sample. As mentioned previously, NGS
produces a big amount of data per sample, with newer versions of sequencing technologies
creating even more data. While the problem of sequencing DNA might be “solved” to
some extent, or will be in the foreseeable future, this only moves the issue for genetic
laboratories from sequencing to data analysis. Both in terms of the required computing
infrastructure and the data analysis skills, new challenges need to be overcome to allow
genetic laboratories, which might have done Sanger sequencing in the past, to analyze NGS
data. Some of the data analysis infrastructure requirements can be outsourced using cloud
computing or similar approaches. But this reliance on remote computing infrastructure
not only causes problems when the internet connection is slow or unreliable, like in the
Ebola example. Sending DNA data over the internet, especially from human samples, raises
privacy concerns. As shown by Erlich and Narayanan [EN14], the identity of a person can
at least be partially discovered, even with anonymized genetic data. Developing flexible and
simple to use data analysis tools which can optimally use the existing infrastructure of a
small laboratory as well as preserve the privacy of the patients is crucial for the adoption
of NGS. Several of those approaches are discussed in Section 3.1.1.
The following Section 2.1.1 goes into more details on how DNA actually works inside

the cell. This is then followed by Section 2.1.2 with a more detailed analysis of the current
sequencing technologies which form the main source of biological information in this thesis.

2.1.1. Genetic code
This section gives a brief overview of how DNA works, from the current scientific point of
view, especially in regard to human diagnostics. As Watson and Crick discovered, DNA is
a molecule made out of four nucleotides, organized in a double stranded helix (see Figure
2.1). Both strands contain the same sequence but complementary. Complementary in the
context of DNA means, that at if at a certain position in one strand the nucleotide A can
be found, the other will always feature the nucleotide T. Same is true for C and G, making
both strands copies of each other, but with the same information coded in different ways.
The DNA of a cell is organized in multiple chromosomes, in the case of humans those are

23 pairs of chromosomes. The number of chromosomes and the amount of copies varies from
species to species, going from only 1 to several hundred chromosomes, with one to many
copies of each. Humans have two copies of all chromosomes (except the Y chromosome).
While one copy of those chromosomes comes from the mother and one from the father, they
are not inherited exactly the way they are found in the parents. Instead, the chromosomes
coming from both parents are combined through a process called chromosomal recombi-
nation, creating two distinct chromosomes with both a unique sequence. Both can contain
unique genetic changes, an important fact for diagnostics which will be discussed in Section

9



2.1. Introduction 2. GENETICS

4.2. Species with two copies of every chromosome, such as humans, are also called diploid
and species with a single copy of each chromosome are called haploid.
Even if DNA is made out of only four basic building blocks, it is a highly complicated

and poorly understood molecule. The one part of the genome which is currently best under-
stood and studied is the functional part, called genes. Every chromosome contains a set of
genes, which are special regions inside the chromosome. Those genes are responsible for the
synthesis of RNA, a crucial molecule for the function of the cell. RNA (ribonucleic acid) is
a molecule similar to DNA, so much that it can actually be described as a single stranded
version of the DNA molecule. While ultimately this is not an accurate description, it does
help to understand their relationship. RNA is, like DNA, built from four nucleotides: ade-
nine, cytosine, uracil and guanine (A, C, U, G). We can see that those are in fact identical
to the ones found in DNA, except for uracil (U) which in RNA is the equivalent of thymine
(T) in DNA. Due to its chemical makeup, RNA is a less stable molecule than DNA. This
means it has a much shorter lifespan, an important property for its role inside a cell.
RNA is a very flexible and versatile molecule. It is used for a variety of tasks, ranging

from the creation of proteins to gene regulation (activating or deactivating individual genes).
Compared to DNA, RNA is a very small molecule which can easily circulate inside the cell.
This is why RNA and not DNA is used to make the cellular machinery work, the DNA
contains the complete genetic information while the RNA is a copy of parts of DNA which
does the actual work inside the cell.
There are different types of RNA, each with its specific role inside a cell. The most

important type of RNA which we will encounter during this thesis, is the messenger RNA
or also called mRNA. The mRNA is synthesized from a gene and is then translated into
a protein. It contains the encoded protein sequence from which a protein will be built.
Proteins play a key role in the cell, as pretty much everything inside a cell is made out of
proteins, including the cell wall, the most visible part of a cell. Those proteins are what
ultimately determine large parts of the phenotype of a person. The phenotype of the person
is the sum of its observable aspects, be it physical or behavioral (including psychological).
More about phenotypes and genetic disorders can be read in Chapter 4.
The process during which RNA is created from DNA is called transcription. During this

process of transcription, parts of the region of DNA which contain the gene are used as a
template to create a RNA molecule. The parts of DNA which are transcribed into RNA do
not have to be uninterrupted. Certain parts of the gene are in fact not transcribed, the so
called introns. The parts of the genes which are translated are called exons. Those exons
contain coding sequences, which are translated to proteins, and untranslated regions, which
are transcribed to RNA, but not the resulting protein. Those untranslated regions of the
gene, also called UTR, have regulatory functions which control the frequency at which the
gene is transcribed. Those UTR regions are located at the beginning and the end of the
gene. During the transcription, a complementary copy of the DNA in the exons is created,
creating the RNA. Figure 2.2 gives an overview of this process.
Most genes consist of more than one exon and can be transcribed in multiple ways.

The different transcriptions will use a different set of exons (although always in the same
order), to create different types of RNA. One possible combination of the exons is called a
transcript, and every gene can have multiple transcripts, each having a different role in the
cell. Most of the time a gene is expressed through one main transcript, but certain genes
express more than one transcript or express specific transcripts in certain cell types (such as
the liver, the brain etc.) Exactly how genes are activated and the individual transcripts are

10



2.1. Introduction 2. GENETICS

Intron 1Exon 1 Exon 2 Intron 2 Exon 35'UTR 3'UTR

Transcription

Exon 15'UTR Exon 2 Exon 3 3'UTR

Translation

DNA

Gene

RNA

Protein

}
Fig. 2.2.: Going from DNA to proteins through the transcription of a gene to RNA which is then

translated into a protein

selected is still an active topic of research. Without going into too much detail, genes have
promoter sequences located near their start, in their untranslated region. Certain proteins
interact with those promoter sequences to initiate the transcript event. An interesting new
field of genetics, called epigenetics, studies the way the genes can be activated, or deactivated
through a process called methylation. Chapter 3.3 discusses methylation in more detail.
This organization of DNA into chromosomes made up by genes, transcripts and exons

can be seen as a way to organize data in a data-structure. With this thesis being done in
computer science and thus undoubtedly being read by computer scientists, it can only be
recommended to read the excellent document written by Bert Huber “DNA seen through
the eyes of a coder” 3. Some very intriguing comparisons are made between the way DNA
and computer-code works.
One such example is how DNA stores the sequence of a protein to be transcribed. As

discussed earlier, DNA is made out of 4 nucleotides, which can be compared to binary code,
but using base 4 instead of base 2. Encoded using those 4 nucleotides is the information
of how to construct a particular protein from a gene. As we have seen, the DNA is first
translated to RNA, which in turn is used as the blueprint of the protein to be built. The
way DNA encodes the protein is relatively intuitive from a computer science point of view.
Just as ASCII code encodes one text character in binary as 8 bits (1 byte), DNA works
with triplets of nucleotides called codons. One codon, which consists of 3 nucleotides, codes
for one amino acid, the building block of a protein. A gene with a coding sequence of
300 nucleotides will for example create a protein with the of length 100 amino acids. An
overview of all codons and what they code for can be seen in Table 2.1.

3http://ds9a.nl/amazing-dna/

11



2.1. Introduction 2. GENETICS

TTT Phenylalanine TCT

Serine

TAT Tyrosine TGT CysteineTTC TCC TAC TGC
TTA

Leucine

TCA TAA Ochre (Stop) TGA Opal (Stop)
TTG TCG TAG Amber (Stop) TGG Tryptophan
CTT CCT Proline CAT Histidine CGT

ArginineCTC CCC CAC CGC
CTA CCA CAA Glutamine CGA
CTG CCG CAG CGG
ATT

Isoleucine
ACT

Threonine

AAT Asparagine AGT SerineATC ACC AAC AGC
ATA ACA AAA Lysine AGA ArginineATG Methionine ACG AAG AGG
GTT

Valine

GCT

Alanine

GAT Aspartic acid GGT

GlycineGTC GCC GAC GGC
GTA GCA GAA Glutamic acid GGA
GTG GCG GAG GGG

Tab. 2.1.: Codon table (DNA to Protein), taken from wikipedia 4

The codon table shows all possible combinations that can be made with 3 nucleotides. This
amounts to 64 different codes that encode 25 different amino acids which form the protein.
This shows an important aspect of the encoding scheme, which is the redundancy built
into the encoding. A single change in coding DNA does not necessarily lead to a change
in the protein coded by the gene. This allows the genetic code to have a certain degree of
resistance to mutation, an event that can happen at every cell division.
Understanding how DNA works is key to understand biology, as it contains the blueprint

of every cell. The best way to study it is of course to know the exact sequence of DNA
which is in the cells of an organism. The following Section explores the technologies available
today which are able to extract the DNA sequence from a cell and transform it into digital
information that can be analysed.

2.1.2. Next generation sequencing
NGS is the big buzzword of recent years in genetics. When it came out in 2005, it allowed
to move from the very limited Sanger sequencing, also called first generation sequencing,
to a massive scale sequencing effort. This allowed to sequence complete genomes instead
of just small parts of it, like with Sanger sequencing. Now the term NGS is not exactly
new anymore, as the first references to it can be found as early as 2005 [Jar05]. In fact,
there are multiple generations of sequencing technologies which have been released, and
all sequencing technologies from the second one forward are regrouped under the NGS
umbrella.
What all those newer generations of sequencing hold in common is their basic operating

principle. Figure 2.3 gives an overview of this process.
The first step in NGS is the fragmentation of the DNA. During this step the DNA is

cut into small pieces which are the source material which will be sequenced. The DNA is
originally contained in chromosomes. But as chromosomes are too large to be read at once

4https://en.wikipedia.org/wiki/Genetic_code , status 6 sept. 2016

12



2.1. Introduction 2. GENETICS

Fig. 2.3.: General NGS workflow

(they are between 50 and 250 million base pairs long for human chromosomes), they need to
be split into smaller pieces which can be sequenced. There are different ways to split DNA
into smaller pieces. For example through a physical process, like using ultrasound. Another
way is to use specialized enzymes or chemical methods to split a large DNA molecule into
smaller pieces. Before sequencing those fragments they go through a library preparation
step, where the individual sequences are augmented by adapter sequences, also called tags.
Those tags are used later for example to identify the sample from which the sequences
comes when multiple samples are mixed during sequenced. After this step, all but the most
recent NGS generations go through a process called PCR amplification (Polymerase Chain
Reaction). This step allows to create clones of the individual sequences to be sequenced.
After the PCR amplification step, the actual sequencing is performed.
Second generation sequencing, starting with the Illumina sequencers, sequenced reads

of about 30 base pairs (bp). This value improved over time and current commonly used
sequencing technologies sequence between 150 to 200 bp long reads, but latest developments
push this limit up to 20’000 bp. The most important part to understand in NGS regarding
sequence analysis is that the sequenced reads represent randomly chosen small parts of
the original genome. This is also why this type of sequencing is sometimes called shotgun
sequencing, as it recovers random sequences from all over the genome. While those regions
can be restricted in targeted sequencing, the general principle of sequencing randomly
selected regions of a genome stays the same even in that case. This collection of millions of
randomly selected short reads from the genome are the main data source for current genetic
analyses and form the basis of the data to be analyzed during this thesis.

13



2.1. Introduction 2. GENETICS

As previously mentioned, NGS is not one single technology. The different sequencing
technologies currently in use can be grouped into approximately two generations of NGS,
generations two and three, as well as new and upcoming generations. We will also look at
a third group, the future generations, which contains some experimental and exploratory
technologies. Every sequencing method has its own particularities on how this process
works, and we will briefly look into all of them in the following sections. For a more in-
depth analysis of the different sequencing technologies it is highly recommended to read
the excellent article written by Goodwin et. al. [GMM16].

Second generation

The first generation of next generation sequencers is also called the second generation
of sequencers, with the first generation being the Sanger sequencers. The first sequencer
machines in this generation came from Solexa/Illumina and Roche/454. 454 released their
first sequencer in 2005, in collaboration with Roche. Roche acquired 454 2 years later in
2007 and continues to develop the 454 sequencing technology. Nearly in parallel, the first
sequencer from Solexa, which was later acquired by Illumina, launched in 2006. Also in
2006, the ABI/SOLiD sequencing platform was launched, adding a third technology to the
initial NGS generation. Figure 2.4 shows an example of a second generation sequencer, in
this case an Illumina MiSeq sequencer.

Fig. 2.4.: Illumina MiSeq sequencer, image taken by Konrad Foerstner 5

All three technologies use similar, yet distinct approaches to sequence DNA. An excellent
overview of the three technologies can be found in [Mar08]. They all sequence millions of
sequences in parallel by putting them on so called flow cells. The sequences are analyzed
by adding fluorescent chemicals that bind in the DNA nucleotides. After the addition of a
specific chemical, a picture is taken to determine for every sequence what the current nu-
cleotide is. The three sequencing platforms approach this problem slightly different, leading
to platform specific error models. For example, the 454 sequencer has trouble determining
the length of homopolymers (stretches of DNA in which the same nucleotide is repeated),
as the light intensity measured at every cycle determines the amount of nucleotides of a
particular type. SOLiD sequencing has a unique approach, where, at every step, 2 bases

14



2.1. Introduction 2. GENETICS

are sequenced at once. The main problem with this approach is that it requires specially
adapted analysis tools, as only very few analysis tools support this type of encoding.
The sequencers started with very low sequence lengths. Illumina and SOLiD started

with read lengths around 30 bp long. Only the 454 sequencers had longer read lengths in
their first generation, reaching on average 250 bp. Over time those sequencing technologies
evolved leading to much longer sequences than where they were initially. The currently most
used sequencing technology, which comes from Illumina, commonly sequences reads of 250
bp. Both SOLiD and 454 evolved as well, however they are much less relevant today. The
improvements to the second generation of sequencers really allows to drive down the costs
of sequencing. One example of this is the Illumina HiSeq X Ten platform, which promises
a 1000$ genome. Illumina themselves announced an even cheaper way to sequence, called
Illumina NovaSeq, with a 100$ target price for a genome.

Third generation

After the big success of the second generation of sequencers, the third generation started
to be developed. Even with many improvements, the second generation had some major
problems. One of them is the PCR step needed before sequencing the DNA. PCR not only
adds a costly preprocessing step, but also introduces PCR related issues. One of the most
important ones is the reduced capacity of sequencing regions of DNA with a high amount
of G and C bases.

Fig. 2.5.: Oxford Nanopore Minion, image taken by Andrew Kilianski6

A common theme of the third generation sequencers like the Oxford Nanopore MinION
(Figure 2.5) or the Pacific Biosciences (PacBio) SMRT (Single Molecule Real Time) is not
to perform this PCR step. Instead, they directly sequence the original molecule found in the
sample. While the DNA still has to be fragmented, any errors and limitations introduced
by the PCR step can be avoided. They also both have in common that they provide much
longer read lengths than the second generation of sequencers. But solving the problems of
systematic errors introduced by PCR as well as the increased read lengths did not come

5https://en.wikipedia.org/wiki/File:Illumina_MiSeq_sequencer.jpg
6http://blogs.biomedcentral.com/gigablog/2015/03/27/a-firsthand-perspective-of-trialling-new-mobile-
dna-sequencing/

15



2.2. Summary 2. GENETICS

without other problems. The error rates of both the PacBio and MinION sequencer are
considerably higher than those of the previous generation. In the case of PacBio, those
errors are random, which somewhat lessens the problem as they can be eliminated by
increased sequencing depth, which increases the amount of times a certain position in the
genome is sequenced. The error rates for PacBio are between 11% and 15% [RA15], with
read lengths up to 60 kbp. The MinION sequencer is at the time of this not officially
released, but has reported error rates around 15% [JFM+15] and read lengths over 100kbp
for the longest reads.
In addition to the high error rates, the new generation of sequencer also does not yet

achieve the throughput of the second generation, which means less DNA can be sequenced
in the same amount of time. But the long reads allow to solve certain problems, like the
analysis of repetitive regions in a genome, which is not possible with shorter read lengths.
Another problem worth mentioning is the current lack of support for those new sequencing
technologies by existing bio-informatics applications. This increases the complexity of the
data analysis task compared to the second generation sequencers.

Future generations

In this chapter we take a brief look at what sequencing technologies might bring in the
following years and how this will impact the way the data is analysed. Looking at the
evolution of the sequencing technologies up to today and watching the announcements of
the different sequencing technology manufacturers, some trends can be identified. One of
the main trends is the simplification and cost reduction of sequencing. Even with the goal
of a 1000$ genome [Mar06] having now been more or less reached, sequencing will probably
continue to become cheaper and less complex. This will not only allow more individuals
to benefit from this new technology, but also increases the amounts of laboratories able to
perform such analyses.
The other clear trend is more and improving data. As discussed earlier, sequencing length

evolved from the initial very short reads to longer and longer reads. This trend to very long
reads (over 100’000 bases) will likely lead to the ability to sequence entire chromosomes
somewhere down the road. This would be a major change in the way the data analysis
is approached. While today sequence alignment is a major part of OMICs data analysis,
the increased read lengths will open up the possibility to use the more accurate method of
sequence assembly. This would probably be a change of paradigm, requiring the complete
replacement of most bio-informatics tools in place today. This will allow for a much more
precise analysis of the genome of an individual. This includes a better understanding of
structural variations, as well as phasing information. When a gene has multiple heterozygous
variants it is currently very hard or even impossible to determine if the variants are on the
same or different chromosomes. The only way to currently determine this information is
through RNA sequencing as well as trio-analysis, where the child and both parents are
sequenced. This information is very important to determine the actual protein encoded by
a gene. With longer read lengths, this problem will be much easier to solve.

2.2. Summary
This chapter presented a general introduction into genetics, in particular in regards to how
DNA works, how it is transcribed into proteins by going through RNA and how genetic

16



2.2. Summary 2. GENETICS

variations can alter this behavior. By presenting this process we also discussed how limited
the current understanding of DNA is, a fact not surprising considering how young the
science of modern genetics is and for how little time DNA can be sequenced. This lead us
to the presentation of the various sequencing technologies available today, and most notably
the NGS ones which are going to be our data-source going forward. The various sequencing
technologies have different characteristics, like read lengths, error rates and throughput,
making them more or less suitable for specific types of analyses. While most of them have
a specific use-case, it has to be noted that most of the current sequencing is done using
Illumina sequencers. Especially the latest iterations of the Illumina sequencing technology,
like the HiSeq X and NovaSeq sequencers, which push the price point close to 1000$ (or
even 100$) for one genome.
But there is also a different direction of research, equally interesting for the field, which is

less focused on massive sequencing throughput but more on making it more accessible and
deployable. This direction is mostly lead by the new MinION sequencers, which are able to
sequence DNA in a much smaller form factor than existing sequencers, making their usage
on the field or even at home possible. While the technological problems associated with
this type of sequencing are not yet solved, it shows a possible future in which sequencing
is much more accessible and common.
After having seen how DNA and RNA work and how they can be sequenced to be

available in a digital form, the next chapter will look into more detail how that data can
be analyzed.

17



3. OMICs data analysis
Once DNA has been transformed into digital data through the use of NGS technologies, it
has to be analyzed. We look at three categories of data analysis which are possible with
data generated through NGS.
The first is the sequencing and analysis of DNA with its four bases: A, C, T and G. This

type of study is also called genomics and will be looked at in Section 3.1. Not only DNA
can be sequenced with this type of technology, but also RNA, a molecule similar to DNA.
Sequencing RNA is the basic data-source for the study of transcriptomics, the science of
understanding what genes are transcribed in what quantity inside a cell. Transcriptomics
are described in more detail in Section 3.2.
Last but not least, when studying epigenomics (Section 3.3), subtle changes in the DNA

which are relevant to gene expression are analysed. All those different types of analyses can
be grouped under the term OMICs, referring to their names which all end with -omic.
Other OMICs sciences exist but will not be covered in during this thesis. Examples of

those field are lipidomics and proteomics. In lipidomics molecules called lipids are studied,
for which an overview can be found in [AMZ+15]. Proteomics studies proteins and their
role inside the cells. The interested reader is encouraged to read [BNK+14].

The following sections will look at the three different categories of OMICS data analysis.
The types of analyses, how they are important and their current state of the art in terms of
bio-informatics tools that support them are discussed. We also describe for all three OMICS
data-sources a general workflow, which is put in a diagnostics context in Chapter 4.

3.1. Genomics
Genomics is the science that analyses the DNA of all living organisms. Today, the field of
genetics in general is closely related to the sequencing technologies, which allow to study the
actual DNA sequence found in any organism. Genomics includes the sequencing, assembly
and study of genomes for different purposes. They can be scientific in nature, to further
understand the structure and function of DNA, or medical, to perform risk assessment or
diagnostic for genetic diseases (Chapter 4). Other uses, such as DNA profiling which is used
to identify people, are also possible, but are not covered in this thesis.
Analysing genomics data can be done in various ways with different goals in mind. While

recreating the sequence of the organism being studied is very often the main goal, the
features of interest which are being looked at can determine how the analysis is done. One of
the core disciplines of genomics is the reconstruction of an entire genome based on NGS data.
The first complete genome of an organism was reconstructed in 1976, Bacteriophage MS2,
through a tedious amount of manual work, way before any NGS technologies. While this was
still feasible with a genome with the size of 3569 nucleotides, reconstructing more complex
organisms like humans which have about 3 billion nucleotides requires more automated
and effective approaches. The additional complexity not only comes from the length of the

18



3.1. Genomics 3. OMICS DATA ANALYSIS

genome, but also because humans have a diploid genome (2 copies of every chromosome)
opposed to the haploid genome of Bacteriophage MS2.
To reconstruct a genome like the one of Bacteriophage MS2 or the human genome,

nowadays a technique called sequence assembly is used. Sequence assembly combines the
individual reads coming from NGS to reconstruct the original genome. Different techniques
have been proposed over the years to approach the problem of sequence assembly. How-
ever, the techniques have a common underlying strategy to assemble a genome based on
many millions of short reads with only a couple of hundreds bases. When sequencing a
genome, many copies of the same chromosome are sequenced. Because of the randomness
of the process, not all chromosomes are split up at the same locations when creating the
sequence library which is sequenced. Because of this, the resulting reads will originate
from different positions on the chromosome and overlap each other. The basic strategy
to resolve this multi-million piece puzzle is to search for those overlaps and recreate the
original genome by assembling the individual small reads to longer sequences. For a long
time the overlap–layout–consensus approach was used to assemble sequencing data, like in
GAP (Genome Assembly Program) [BSS95] to just name one representative of the early
assemblers. The increasing amount of DNA sequences produced through NGS data and
the downsides of the initial overlap–layout–consensus approach used for assembly, lead to
the introduction of De Bruijn graphs. De Bruijn graphs were not a new concept when in-
troduced by Pevzner et al. [PTW01] in 2001. In fact the De Bruijn graphs were initially
discovered in 1946, and over half a century later their usefulness for sequence assembly was
discovered. The De Bruijn graph based approach uses a special type of graph to solve the
sequence assembly problem. The graph is constructed by splitting the sequenced reads into
k-mers of a fixed size. A k-mer is a sequence of nucleotides of exactly length k. During this
thesis, sequence assembly will not be used directly, but it is still important to understand
how genomes are assembled. A more detailed overview about the different techniques and
their limitations can be found in [HTN14]
What all those sequence assembly techniques hold in common is the high computational

complexity of the task as well as the high amount of data that needs to be sequenced.
Luckily, many other types of analyses do not require to assembly a complete genome from
scratch, but their work is based on previous efforts. One goal of sequence assembly is
the creation of a reference sequence for a species. One example is the Human Genome
Project[LLB+01] which created the initial version of the human genome reference sequence.
The reference sequence of a species does not actually represent the genome of one particular
individual, but is a combination of multiple individuals. But as the difference between
multiple individuals of the same species is relatively small (99.5% similarity between two
humans [LSN+07]), such a reference sequence can be used to speed up the reconstruction
of the DNA sequence considerably.
Instead of solving a problem in which millions of small sequences have to be compared

between each other to find overlaps and reconstruct the original genome, every sequence has
to be compared only with the reference sequence. This approach, which is called sequence
alignment, or also mapping, consists in finding the position on the reference sequence which
matches the sequence to align most. Searching for the best fitting position for a couple of
hundreds nucleotides long sequence on a reference sequence of multiple billion nucleotides
is not an easy operation, however it is still orders of magnitudes faster than performing a
full assembly. During this process, the similarity of the sequence to align is determined with
the reference sequence. The differences can be simple replacements of individual nucleotides

19



3.1. Genomics 3. OMICS DATA ANALYSIS

or deletions or insertions (indels) of parts of the sequence. The initial sequence aligner
called BLAST which gained wide spread adoption was proposed in 1990 by Altschuhl et
al. [AGM+90]. BLAST based its search on the assumption that any similarity of the search
sequence and the reference sequence will contain small segments of perfect matches. Based
on this assumption BLAST was able to quickly align sequences to large genomes, making
the analysis of large quantities of DATA possible. BLAST received several updates over
the years. While the initial version did not allow for gapped alignment (aligning sequences
with insertions or deletions), later releases [AMS+97] addressed this issue. A multitude of
sequence alignment tools were developed over the years each with its specialties and slightly
different approaches. An excellent overview of those approaches can be found in [LH10].
With the development of many new tool (Section 3.1)s, BLAST (and its adaptations)
remains one of the commonly used tool. But it is to note that around 2008, some new
sequence aligners emerged that are now predominantly used. Most of those sequence aligners
used a new technique based on a new type of index to quickly find potentially matching
sequences between the query sequence and the reference. The technique for that new type
of index was proposed in 1994 by Burrows and Wheeler [BW94] and was proposed to be
used as a lossless data compression algorithm. As so often with algorithms adopted by the
bioinformatics community, this new algorithm was not initially intended to be used with
DNA, but generic data streams. The algorithm was called Burrows-Wheeler-Transform
(BWT). This technique was used in 2008 by Lam et al. in an aligner called BWT-SW
[LST+08], showing great results when used as the reference index. It was in 2009 that the
aligners BWA [LD09] and Bowtie [LTPS09] appeared and pushed this technique further to
accelerate sequence alignment. Both aligners are now widely in use, especially with their
later improvements BWA-MEM [Li13] and Bowtie 2 [LS12a].
Sequence assembly and alignment are two of the main approaches to look at the data

produced by NGS. Another approach is k-mer analysis, often used in metagenomics, a
domain of research we are not presenting in this document. For the rest of the thesis, we
will focus on sequence alignment as the method to analyze NGS data.
When doing NGS data analysis, typically a sequence of analysis steps extracts the relevant

information from the raw sequencing data to produce the desired analysis result. In the
context of diagnostics, the typical goal is to extract the variants present in a patient to
create a final report which includes the probably pathogenic variants. Figure 3.1 shows an
example of such a workflow as an UML activity diagram which goes from the raw sequencing
data through a series of steps to produce a final variant report.
As depicted in Figure 3.1, the series of steps needed to extract the relevant information (in

this particular use-case) is rather complex. Not only are there a series of analysis steps which
depend on the output of the previous ones, but there are also often multiple alternative tools
to perform the individual analysis steps. This process is not something the average user
without special training in informatics can perform. The different tools required to perform
the analysis steps are described in the next Section 3.1.1. A common approach to reduce
the complexity and manual labor required to perform such an analysis is to use so called
pipelines. NGS data analysis pipelines automate the process of data analysis, combining
the different command line tools described in the following sections.

20



3.1. Genomics 3. OMICS DATA ANALYSIS

Sequencing data Data preparation

Quality control

Alignment

Validation & Reporting

Sanger validation

Report generation

Data analysis

Quality control

Variant calling

Annotation

Variant filtering

Visualization

FASTQC
FASTX

BWA
Bowtie 2
CUSHAW2

samtools
bedtools

GATK
SAmtools
Varscan 2

VEP
Exomizer
Annovar

Samtools
VCFtools
TrioCalller

IGV
UCSC
JBrowse

Fig. 3.1.: UML diagram of a NGS diagnostics workflow separated into different steps. A col-
lection of the available tools for every step are indicated, based on the author paper
[WKDA15a]

3.1.1. State of the art
The field of genomics produced a variety of tools and methods to analyze genetic data.
Giving a complete overview of the tools used in the domain of genomics is an almost
impossible task. There is a variety of tools with various specializations, with a constant
stream of new methods being released. The following sections give an overview of the most
important tools used in the field of genomics, in the context of this thesis. The structure of
this section roughly follows the content of Figure 3.1, which describes the main workflow
on which we base our work.

Raw data quality control

The first step of data analysis when doing NGS data analysis usually consists of a first step
of quality control. Sequencing DNA is an error prone process where many things can go
wrong. Making sure that the sequenced data corresponds to a certain quality standard is
an important first step to not negatively affect downstream analysis. Several tools exist to
perform quality checks of the raw sequencing data. This includes information like: Read
count, read lengths, sequencing quality, duplicated read counts and more. A very commonly
used application to perform this initial quality control is FASTQC 1. FASTQC can be used
either as a command line tool or with a graphical user interface. Based on the quality
control information gathered, the raw data is often filtered, for example to remove low
quality reads or reads that are too short. This can be done for example with the FASTX
toolkit [PWZM97], which not only allows to remove reads not fitting a minimum quality
criteria, but also remove barcodes from reads. Barcodes are small pieces of DNA which are
added to the DNA sequences before sequencing. Barcodes are also often called tags and are
discussed more in Chapter 2.1.2.

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

21



3.1. Genomics 3. OMICS DATA ANALYSIS

Alignment

Sequence aligning is one of the key parts of NGS data analysis, at least in the context of this
thesis. When aligning sequences against a reference sequence, millions of small sequences
need to be compared with a one big reference. At the end of the process an alignment file
is produced, usually in the BAM file-format (described in Section 3.4).
Different approaches exist to perform this task, this section provides an overview of the

different tools and methods that exist. This section does not intend to be exhaustive, a
more detailed analysis of existing aligners can be found in [LH10].
Sequence aligners require a reference sequence of the organism that is sequenced. Their

job is to align the millions of the sequences that were sequenced against this reference.
This essentially consists of finding the most probable place from which the sequence orig-
inates from, with the assumption that the reference sequence closely matches the actual
sequence in the referenced sample. Finding the most probable place consists of finding the
location on the reference at which the distance between the sequence and the reference is
as small as possible. This distance is essentially the edit distance, counting the number of
mismatches, insertions and deletions required to match the reference at a given position.
Several algorithms exist to solve this problem with most notably Smith-Waterman [SW81],
Needleman-Wunsch [NW70] and Gotoh [Got82] being used today. All of those algorithms
are now relatively old (they were developed in the 1970-80) and are well understood. All
three algorithms are dynamic programming algorithm, which divide the problem in smaller
sub problems which can be solved faster by using the information of previously solved
problems.
What those edit distance algorithms all have in common is that they are computationally

expensive, too costly to be applied on the full reference genome for the millions of sequences
to be aligned for every sample. This is why a series of heuristic is applied to reduce the
search space. The usage of those heuristics is the main difference between the different
aligners that exist today. To reduce the search space in the reference sequence, aligners use
so called indexes. A reference index can be compared to an index in a book, which allows
to quickly look up the positions of interest in the reference sequence. An example of such
an index is a so called hash index, where all the positions of a k-mer of a certain distance
are saved. For example, with a k-mer length of 3 to build the index, it would be possible
to quickly find all positions in the reference at which the sequence ATC can be found. This
information is then used to for example only test certain parts of the reference for a match
with a specific sequence, using the previously described dynamic programming algorithms.
The most known aligner, BLAST [AGM+90], uses this method with a default k-mer size

of 11 nucleotides.
Another more recent method for reference indexes is the use of the Burrows-Wheeler-

Transformation (BWT), which was initially developed as an algorithm to be used in the
context of data compression [BW94]. This method was adapted to sequence alignment
to both efficiently store the reference sequence in memory, as well as to query it to find
matching regions between the reference and the sequence to be aligned. Most notably the
Burrows-Wheeler aligner [LD09] (BWA) uses this technique to accelerate sequence align-
ment. But other aligners, such as Bowtie 1[LTPS09] and 2 [LS12a], as well as CUSHAW2
[LS12b] use this approach.
Sequence alignment, even with the use of many methods that help to accelerate it, is still

the most time consuming process of NGS data analysis. This is why over time, different
additional approaches have been developed to accelerate sequence alignment, notably by

22



3.1. Genomics 3. OMICS DATA ANALYSIS

using parallel and distributed computing architectures.
NVIDIA, the leading manufacturer of high end graphics cards (also called GPUs), devel-

oped the NVBIO 2 framework, making it easier for programmers to use the power of GPUs
when developing bioinformatics applications. One example of this effort is the nvBowtie
aligner, which is a reimplementation of the popular Bowtie 2 aligner, but using the GPU
trough the usage of CUDA (Compute Unified Device Architecture) to accelerate the align-
ment. Not only nvBowtie integrates the usage of GPUs, but to give another example of the
previously mentioned aligners, CUSHAW2 has a GPU counterpart called CUSHAW2-GPU
[LS14].
To lower the time to align a particular sample, it is only natural to turn to parallel dis-

tributed computing. Several methods to distributed sequence aligners over multiple com-
puters have been developed over time. While often the “manual” distribution method is
used, where the raw data input is split equally over multiple computers and the resulting
alignment file is merged at the end. But more advanced distribution methods have been de-
veloped, with notably Hadoop[Whi12] being a popular platform for the distribution. Both
CloudBurst [Sch09a], which distributes a sequence aligner based on RMAP [SCH+09b] and
BigBWA [APPA15], which distributes the BWA aligner, use Hadoop as their distribution
platform. Other approaches exist, such as ScalaBlast [OB13], which distributes the Blast
aligner using the Scala [Oa04] programming language. Setting up and maintaining an in-
frastructure which can run such a distributed aligner remains a complicated task, especially
if cloud solutions need to be avoided for privacy reasons.
Last but not least, there is a special category of aligners, so called realigners, which

intend to solve a particular problem in sequence alignment. Aligning sequences with indels
is an error prone process. As every sequence is aligned independently against the reference
sequence, this can lead to incoherent results around indels, depending on where the indel
is located inside a particular sequence. Indel realigners try to solve this issue by making
a second pass at alignment, after the initial alignment is done. During this process, all
sequences around a potential indel are aligned against each other to provide a more coherent
result. This makes it easier for downstream tools, like the variant callers discussed in the
next Section 3.1.1 to detect those indels. GATK [MHB+10], which stands for Genome
Analysis Toolkit, is a collection of tools, which among other tools, contains a tool to perform
realignment.
As one can imagine, the aligner and settings used during the sequence alignment have

an impact on the rest of the analysis, such as the variant calling discussed in Section 3.1.1.

Quality control

Before analyzing the aligned data, another round of quality control is common when doing
NGS data analysis. It is only at this step, that it can be determined how well the sample was
sequenced and if there were any contaminations or sequencing problems in particular regions
of the genome. Two main tools allow to determine the quality of an alignment, samtools
[LHW+09] and bedtools [QH10]. One of the easier metrics to obtain is the number of aligned
reads, which is a first good measure of the alignment quality. Another important measure
is the coverage, also called sequencing depth, of the different regions that were sequenced.
This allows to determine if all regions of interest have been sequenced and aligned correctly.
The result of this quality control will determine if the sample needs to be resequenced

2http://nvlabs.github.io/nvbio/

23



3.1. Genomics 3. OMICS DATA ANALYSIS

or not, and if there are restrictions in terms of the data analysis, for example for badly
sequenced genes.

Variant calling

Variant callers are the main tools after sequence aligners when analyzing NGS data in
genomics. After a sequence aligner aligned millions of reads to the most probable location
on the genome, the most interesting question to ask is where there are differences between
the aligned data and the reference sequence. As the human genome is about 3 billion
basespairs long, and there is an approximate 99.5% similarity between the DNA of two
humans [LSN+07], this amounts to about 15 million differences which can be expected
to be found. Searching the aligned genome by hand for those differences is of course not
feasible, especially as there are a number of differences which come from sequencing artifacts
as well as alignment errors. In this section we only consider variant calling for small changes
in the genome, like SNPs (single-nucleotide polymorphism) or indels (insertions/deletions),
but not for structural variations (SVs). The analysis of copy number variations (CNVs)
which are one type of SVs, is discussed in Section 6.7.6.
To automate the process of finding true variations in a sample genome, variant callers are

used. Various approaches exist to determine if the sequenced genome contains a variant at a
specific position. The two main approaches are to either use heuristic/statistical approaches
or probabilistic methods.
Two of the main tools used today are in the probabilistic category. GATK [DBP+11]

and samtools [LHW+09] both use the Bayes theorem to determine if there is a variant at a
certain position on the genome.
The most used variant caller in the heuristic/statistical category is Varscan 2 [KZL+12].

Through a user set list of filters, such as a minimum observation frequency or coverage,
variants are called.
You can find a more detailed look at variant callers in Section 7.3 which also presents a

variant caller developer during this thesis.

Variant analysis

Once variants have been called, they need to be annotated to put them into their biological
context to be more easily interpreted. This makes it easier to find the variants of interest for
a specific sample as well as their effect on it. Annotating variants augments every variant
with the information relevant to the question asked about the dataset. On the most basic
level, the information of what genes are affected by a specific variant is determined. This
can be further expanded by adding information like the effect the variant has on the protein
which is transcribed by that particular gene. An example of this would be the addition or
removal of a stop codon as well as the change of an amino acid in the protein.
There are two other types of annotation which are commonly added during the annotation

phase. The first one is the information about a variant in public databases. This includes
information like how frequently a variant has been observed in the general population
as well as documented consequences of those variants, for example in human diagnostics.
The second type of information added is based on predictions of how a variant affects the
transcribed protein, but on a level which can be less easily determined, as for example the
addition of a stop codon. Those predictions are often based on information if there might be

24



3.1. Genomics 3. OMICS DATA ANALYSIS

a disturbance in the way the exons are transcribed or based on conservation scores, which
indicate how preserved a certain amino acid is across various species.
Different tools exist to annotate variants with one or more of the listed information. Just

to name a few, the Ensembl variant effect predictor (VEP) [MPR+10], which is a webservice
which adds all sorts of annotations to variants, based on the information available in the
ensembl database. A similar approach is used by exomizer [RKO+14], a Java application
developed by the Sanger institute, which can be run locally and annotates and prioritizes
variants on various annotations. This list would not be complete without annovar [WLH10],
which features a similar feature set to exomizer.
After having annotated the variants, the most common thing to do is to filter them

according to some criteria, for example their effects on the organism or their frequency in
the general population. The variants are usually stored in VCF file (see Section 3.4), which
can be filtered using the VCFTools [DAA+11] program. This application allows to filter
and manipulate VCF files to extract the variants of interest.
For more advanced, like identifying de novo mutations in a child for which both parents

have been sequenced (also called trio analysis), tools like TrioCaller [CLZ+13] are used.

Visualization

Visualizing genomics data is an integral part of the data analysis, both to better understand
the data as well as to verify the results of automated data analysis. Various ways exist to
visualize the data, with some being more or less practical (see Appendix A for an original
articist approach we developed). But the most common way to visualize genomic data is
through so called genome browsers, which as their name suggest, are used to visualize and
browse a genome. This includes most commonly the sequence alignment of one or multiple
samples as well as the integration of additional information.
Various browsers exist nowadays, specializing in different domains. The two large groups

of genome browsers are web based genome browsers and those that run as desktop applica-
tions. Both groups have different use cases and are able to display a variety of information.
Two of the most used web based genome browsers are the UCSC (University of Santa

Cruz) genome browser [KSF+02] and the Ensembl genome browser [CAB+15]. Both of those
tools are highly popular to browse a genome with a variety of additional genome annotations
and customizable annotation tracks. Also interesting to mention are more specialized tools,
like JBrowse [BYD+16], which provide a genome browser that can easily be integrated into
an existing website.
In the other group, the Integrative Genomics Viewer (IGV) [TRM13] is one of the most

used desktop applications. Another one is Tablet [MSB+13], which is more focused on
sequence assemblies of NGS data.
More details about genome browsers can be found in Section 7.6 where the genome

browser developed during this thesis is presented.

Analysis pipelines

A more streamlined approach to genetics data analysis can be achieved through the use
of so called analysis pipelines. When doing NGS data analysis, most of the used tools are
used on the command line, just like most of the tools described in the previous sections.
Those tools are then combined, by using the output of one tool and using it with another,
to perform the desired data analysis. This is a complicated process which requires a lot

25



3.1. Genomics 3. OMICS DATA ANALYSIS

of experience with command line tools in general, and the tools used for the analysis in
particular. The often incompatible data-formats which need to be converted add to the
complexity of the task. As a consequence, the amount of people that are able to directly
work with the data is heavily reduced.
To render the process more approachable and efficient, automated and semi-automated

analysis pipelines have been created. The main task of those tools is to abstract the under-
lying complexity of the analysis from the user. Through nice user interfaces or automation,
the user does not have to manually perform the different analysis steps. We present here a
short overview of some of the key pipelines used today, with their characteristics. We group
the presented pipelines into three categories. Desktop based solutions which are locally in-
stalled on the computer running the analysis. Web based solutions which either run on the
cloud or on a centralized server inside or outside the laboratory which use them. And we
finish the list with frameworks which allow to create custom data analysis pipelines, usually
without graphical user interfaces, an option still largely used by many laboratories.

The following pipelines listed are desktop based.

CLCBio : CLCBio 3 is a big and popular OMICs analysis toolsuite. It covers most
aspects of modern OMICs analysis, including genomics. The main feature of CLCBio is the
ability to not only use a predefined analysis pipeline, but the ability to create a customized
pipelines based on custom designs. The design principle of CLCBio is based on the ability
to “draw” an analysis pipeline to build a pipeline specifically for the experiment to be
conducted. This is done by providing a multitude of independent analysis modules with
standardized inputs and outputs. The user can then connect those modules, as well as
configure them, to create an automated analysis that can be reused multiple times.

NextGENe : NextGENe 4 is another full-fledged OMICs analysis toolsuite. It is devel-
oped by Softgenetics and is locally installed on the user’s computer. NextGENe is part of
a larger collection of specialized genetic data analysis software and uses custom algorithms
for the different analysis steps.

The pipelines listed next are web based.

Cartagenia Bench Lab: Cartagenia, which is part of Agilent Technologies, developed
a commercial software aimed at clinical genetics 5. The pipeline is mainly focused on the
annotation and interpretation of variants found in a sample. Cartagenia Bench Lab is a
cloud based software which integrates into existing workflows for clinical diagnostics. To
address privacy issues, the software can either run on a public or a private cloud, so that
no sensible data leaves the laboratory.

Galaxy : Galaxy [GRH05] is a web based analysis framework. In contrast to the previ-
ously described tools, Galaxy runs on a webserver. Users upload their data to the server
and also analyze the data on that same server. Similarly to CLCBio, Galaxy is composed
of many independent data analysis modules. Users can combine those modules to create an
automated pipeline, which they can reuse at a later point. Galaxy is an open source project

3http://www.clcbio.com/
4http://www.softgenetics.com/NextGENe.php
5https://cartagenia.com/cartagenia-bench-lab

26



3.2. Transcriptomics 3. OMICS DATA ANALYSIS

that can be used freely. It focuses mostly on the analysis part, and does not visualize the
data for the users. To visualize the data, external tools like the UCSC genome browser
[KSF+02] are integrated.

DNAnexus : DNAnexus 6 is another web based analaysis framework. But in contrast
to Galaxy, DNAnexus specializes on the cloud, offering laboratories to offload all the data
analysis to a decentralized scalable cloud environment. Like Galaxy, the users upload their
data to DNAnexus, and analyze it on a remote server.

Sophia-DDM : Sophia DDM 7 is an online application developed by Sophia Genetics. It
provides a software as a service approach to do NGS data analysis in diagnostics, providing
an integrated solution for hospitals.

Some other new web based NGS analysis tools are Geneious 8 and Opal Clinical 9, which
are developed by startups for the NGS diagnostics market.
We complete the list with frameworks which allow to create custom pipelines, chaining

together multiple data analysis steps to automate the process of NGS data analysis.
While any command line tools on a Unix like system can be automated and chained

together using shell scripts, some more sophisticated approaches exist to create a typical
NGS data analysis pipeline. One of the more popular, python based, tools to manage
the workflow of a pipeline is Snakemake [KR12]. It allows the user with a simple syntax to
define different data analysis steps and chain them together. Through its flexibility it allows
experienced bio-informaticians to develop and maintain an automated NGS data analysis
pipeline.
Another example of a python based framework to automate custom pipelines would be

Ruffus [Goo10]. Ruffus was developed, like Snakemake, with the bio-informatics community
in mind.

3.2. Transcriptomics
After Genomics, Transcriptomics is another popular field for both research and diagnostics
that uses NGS technology. This section intends to give an overview of what transcriptomics
is as well as what techniques are used, especially in regards to data analysis. The presented
methods and use-cases are focused on what is relevant for the rest of this thesis. For a
more in-depth look into the field, the excellent survey article by Conesa et. al. [CMT+16]
as well as the books RNA-seq Data analysis, A practical approach by Korpelainen et. al.
and Transcriptomics, Expression pattern analysis by Gomase, V et. al. are recommended
to the reader.
The term “transcriptomics” comes from the word transcription, which is the process

during which DNA is transcribed into RNA. As we have seen in Section 2.1.1, the DNA
in every cell is used as the blue print for RNA. This RNA can have different purposes,
with the most important one for this thesis being the creation of proteins. The transcribed
RNA represents actual biological events inside the cell, as opposed to the DNA where the
biological consequences of many modifications are unknown.

6https://www.dnanexus.com/
7http://www.sophiagenetics.com/hospitals/sophia-ddm/sophia-ddmtm-details.html
8http://www.geneious.com/
9http://www.omicia.com/products/opal-clinical/

27



3.2. Transcriptomics 3. OMICS DATA ANALYSIS

RNA and DNA, when in the single stranded form, are very similar molecules. So similar
in fact, that the NGS technologies can sequence both of them. The sequenced RNA consists
of sequences from many thousands of different RNA sequences in a cell.
Analysing sequenced RNA data can have different purposes, with two main types of

analyses being common.
The first is to analyze activity of the various transcripts in a sample, focusing on known

transcripts. The determination of how much every transcript/gene is expressed in the sample
to analyse, also called quantification. In this step, the individual NGS sequences are linked
to the various known transcripts, which makes it possible to rank them in order of activity.
In a second step, those values are often compared between samples, which is also called
expression analysis, where the expression of genes, as determined by the quantification
step, is compared between samples. This makes it possible to determine the gene activity
across different cell types or scenarios, to analyze how the transcriptome inside a cell behaves
depending on the situation.
Figure 3.2 shows the general workflow for this type of analysis. We can see that the basic

steps are very similar to the genomics workflow, even with many of the tools being used in
both approaches.

Sequencing data Data preparation

Quality control

Alignment

Validation & Reporting

Report generation

Data analysis

Quality control

Quantification

Expression analysis

Visualization

FASTQC
FASTX

Topthat
STAR
Bowtie

samtools
bedtools

DESeq
edgeR

IGV
UCSC
JBrowse
RNASeqViewer

HTSeq-count
Cufflinks

Fig. 3.2.: Transcriptomics workflow separated into different steps. A collection of the available
tools for every step are mentioned, based on author paper [WKDA15a]

This workflow does of course not cover all aspects of RNA-seq data analysis, including
the second type of analysis being done with this type of data. The second type of RNA-seq
data analysis is the discovery of new transcripts or even genes. This is done by discovering
RNA sequences which do not originate from any known gene or show alternative splicing of
existing genes. This type of analysis is not going to be looked at in detail in this document.
It is important to note that genes do not work in isolation, but that they influence

each other, increasing or decreasing the activity of other genes. Those interactions can
be described as a complex network, called interactome, which is often used when doing
RNA-seq analysis. Figure 3.3 shows an extract of the human interactome of various genes
interacting.
The same figure also shows the complexity and high interconnectivity of the human

interactome. When analysing gene interactions it is common to work only with a subset
of the complete interactome, for example by starting from previously identified genes of
interest and their neighbours.

28



3.2. Transcriptomics 3. OMICS DATA ANALYSIS

Fig. 3.3.: Extract of the human interactome provided by BioGrid [TBS+06] and visualized
through Cytoscape

By studying gene expression levels across those networks, it is possible to study the effect
a change in expression level of one gene on another gene. This allows for example to connect
a gene not directly associated with a disease with a gene that is. Once the expression levels
of a sample or the changes in expression levels between various samples are determined,
those interactomes form a vital part of the data analysis process.
The interactions between the different genes can be based on various properties, all with

a distinct use-case. Most commonly used and studied are interactomes based on protein to
protein interactions (PPI), but other interactions exist, for example for regulatory effects
between genes. Groups like BioGrid [TBS+06] or CCSB [RTC+14] provide interactomes of
all known genes, whereas others, like KEGG [KSK+16] specialize on specific parts of those
networks, called pathways.
Section 3.2.1 takes a look at the state of the art of the discussed use cases for RNA-seq.

3.2.1. State of the art
Many of the Transcriptomics data analysis steps when working with NGS data are very
similar to the ones for genomics, as discussed in Section 3.1. This section will mainly
discuss the data analysis steps which differ from genomics NGS data analysis. As discussed
previously, during this thesis we focus on the quantification and gene expression analysis
in the context of Transcriptomics. This is why the state of the art focuses on those aspects
of the analysis.
As with genomics, the first step in the data analysis is the retrieval of the sequencing data.

This sequencing data goes through a quality control and filtering step, which is essentially
equal to the one discussed in Section 3.1.1. This step is followed by a sequence alignment
step, which due to the nature of RNA-seq data slightly differs from DNA-seq, as discussed in
Section 3.2.1. The proceeding quality control step of the aligned data is again mostly equal
to the one seen in Section 3.1.1. This is followed by a quantification step which determines
the expression levels of the different genes in the sample. The result of the quantification step
is then used for expression analysis, comparing multiple samples and their gene expression

29



3.2. Transcriptomics 3. OMICS DATA ANALYSIS

levels. Once the data analysis is done, it is common to visualize the data for verification or
better understanding, a step which has some unique tools for transcriptomics.
The following sections will discuss the currently available tools and methods to perform

those data analysis steps.

Alignment

To determine the source of the individual RNA sequences coming out of a sequencer the
main method currently used is to align the sequences against a reference. While alingment-
free solutions exist, such as Sailfish [PMK14], which use k-mer counting to identify the
expressed transcripts, we focus on alignment based approaches.
There are two main approaches when aligning RNA-seq data against a reference, which

differ in the choice of the reference that is used. RNA is encoded by DNA, for which in the
case of the human genome we have a reference sequence. Most if not all expressed RNA
can be found on the human reference sequence, which means, it can be aligned against the
human reference sequence. Once mapped against the reference, the standard gene models
(such as Gencode [HFG+12] or RefSeq [OWB+16]) make it possible to link the individual
RNA sequences to the different genes. This allows for both the expression analysis of known
genes, as well as the identification of novel genes.
The second approach is not to use the full genome reference, but the transcriptome,

which is the sum of all known transcripts encoded by a particular genome, in our case the
human genome. This second approach can be faster than aligning against the full reference
genome, and avoids the problem of spliced alignment, which occurs when a sequence crosses
the boundary between two exons. The downside of this approach is that the transcriptome
reference limits the information that can be found, and it is harder to make a direct link
between the DNA-seq and RNA-seq data.
To align the RNA-seq data, most if not all standard alignment algorithms can be used.

In fact, bowtie [LTPS09] is commonly used to align RNA-seq data against a reference. Even
though it does ungapped alignment, this does not cause a problem when aligning against
a transcriptome reference.
But other more specialized aligners exist to map RNA-seq data against a full genome

reference. Two of the most popular aligners are TopHat2 [KPT+13] and STAR [DDS+13],
which both focus on spliced alignment of RNA-seq data. TopHat2 used Bowtie 2 as its
backend for the actual alignment, splicing reads manually if required to get good alignment
results. STAR on the other hand is a more integrated approach which does the alignment
itself, resulting in a slightly better alignment quality and speed, but requires about 30 GB
of RAM, more than most computers have today.

Quantification

Quantifying the sequences which align to a certain gene is important in RNA-seq data
analysis to determine the activity of a gene a certain sample. Several tools exist to perform
this task. One of the more commonly stand alone tools used for this task is HTSEQ [APH15],
developed in python and made to work with all sorts of NGS data, including RNA-seq
data. Cufflinks [TRGP12] is another popular tools, which is meant to be used alongside the
Tophat 2 aligner. They form a toolsuite for RNA-seq gene expression analysis.
The last one is DEXseq [ARH12], which is an R [R D08] script which can be integrated

into an R based RNA-seq data analysis workflow.

30



3.3. Epigenomics 3. OMICS DATA ANALYSIS

Expression analysis

After quantifying the gene expressions, this information is used for further analysis. The
most common type of analysis is to compare the gene expression between multiple samples,
also called differential gene expression analysis. This type of analysis allows to determine if
any genes changed in expression level between multiple samples. There are many tools for
this task, many of them custom made only used by a few. We are only going to present the
most important ones.
Most tools to perform this analysis are R scripts which provide a set of tools inside R

to facilitate the analysis. EdgeR [ZLR14] is one such example which is commonly used and
constantly updated. The other example is DESeq 2 [LHA14], which has a similar goal to
EdgeR and is widely used.
Once the differentially expressed genes are identified, the analysis is often continued with

additional analysis of the results. Determining what genes are active or inactive is interesting
in itself, but what is more often the question is if the genes identified are connected to a
specific biological function.
An often used approach is to annotate the genes with the GO ontology and determine

over or underrepresented biological functions. GoSeq [YWSO10] as well GoMiner [ZFW+03]
are tools which can be used for that purpose.
For the prostate cancer data set, a P-value for differential expression between the treated

and untreated cells was obtained for each gene using a Poisson exact test, equivalent to
Fisher’s exact test [15-17]. These P-values were then corrected for multiple testing [18] and
the false discovery rate was set at 10-4.

Visualization

While RNA-seq data can be visualized with standard NGS genome browsers like IGV
[TRM13], more specialized visualization exists.
Aside from using R based visualization (as many of the RNA-seq data analysis tools

run inside the R environment), tools like RNASeqViewer [RZ14] exist. This RNA-seq visu-
alization tool concentrates on the visualization of gene expression levels across genes and
samples.
No RNA-seq data analysis visualization overview would be complete without Cytoscape

[Chr05]. This locally installed Java applications has become the de facto standard for gene
interaction graph visualization. Being constantly updated it is an essential tool to visualize
the interactome which can be generated through RNA-seq analysis.

3.3. Epigenomics
Epigenomics, also called epigenetics, is an increasingly popular field in genetics promising
to give new insights into gene regulation as well as how genetic information is inherited.
In Epigenomics, the DNA is seen as more than a simple sequence of 4 nucleotides. There
are different factors, outside of DNA, that influence the way the genome works and genes
are expressed. We will focus on a process called methylation when looking at the field of
epigenomics.
DNAmethylation is a process in which a cytosine (C) nucleotide in the genome is modified

through the addition of a small molecule from the methyl group. Figure 3.4 displays a

31



3.3. Epigenomics 3. OMICS DATA ANALYSIS

stretch of DNA with some methylated and some unmethylated cytosine nucleotides. The
difference between the two forms is also shown on a chemical level. This modification does
not alter the DNA sequence, the C remains a C and will also show up as such when using
traditional DNA sequencing techniques. But it does alter how the DNA works, in particular
gene regulation is influenced by the methylation of the promoter regions of a gene. To give
an example how methylation influences an organism, we can look at ants and how the
different roles inside an ant colony are handled. Inside an ant colony all ants descend from
the same parents, the ant queen and the male ant that fertilized her. But even though all
ants should be have the same genetic makeup, they can develop in wildly different types
of ants. As demonstrated by Chittka et al. [CWC12], ants specialize into different roles
through methylation of certain genes, activating or deactivating them according to their
role.

Cytostine

C
N

NH2

N

C

C
C

O
C

N

NH2

N

C

C
C

O

CH2

Methylated C

ACGCTGCCG
M M

Fig. 3.4.: Methylation of the C nucleotide

Methylation is of course not only happening in ants, but also for cell differentiation as
show by Michalowsky and Jones [LP83]. Cell differentiation is the process used to specialize
different cells inside the body into specific cell types, even though they all have the same
DNA in them.
An important and not yet fully studied property of methylation is that it can be in

part inherited and have an effect on the health of an individual. Heijmans et al. [HTS+08]
studied the effect of the famine during the Dutch Hunger Winter of 1944-1945 on children
that were exposed to this event prenatally. It could be demonstrated that the environment,
especially during the crucial time of early development, has an influence on the epigenetics
of an individual. Not only can the environment influence the epigenetics of an individual
during its early development, but as shown by Ni et al. [NKC+16] those changes can be
inherited over multiple generations.
While not all of those effects have been fully studied and understood, it adds a layer of

complexity to the hereditary of genetic traits.
In humans (and other vertebrates) the location at which the methylation can occur is not

completely random. In most cases, so called CpG locations can potentially be methylated.
Those are locations in which a C nucleotide is directly followed by a G nucleotide. While
the C nucleotide can be methylated at other locations, it is much less common.

32



3.3. Epigenomics 3. OMICS DATA ANALYSIS

The methylation can come in different forms, with 5-mC(5-methylcytosine) and 5-hmC(5-
hydroxymethylcytosine) being two examples. Those different forms can have different roles
in the functioning of the DNA as well as different sources of the methylation. The difference
in effect and source of the different methylation types is still an open research question.
As seen in Section 3.2, studying the transcriptome and how genes are expressed is key to

understanding the underlying mechanisms of genetic diseases. While genomics (Section 3.1)
studies the modification of DNA to explain what is seen in the transcriptome, methylation
analysis offers a different explanation for certain observations made in transcriptomics.
This shows how interconnected the different OMICs fields are, and how a single one of

them does not allow to fully understand the complex mechanics working inside a cell.
As mentioned earlier, when using traditional DNA sequencing the methylated C is se-

quenced as a normal C and shows up with no modification. This is why when doing genomics
analysis using sequencing data, methylation can be ignored. But there are techniques which
make it possible to use next generation sequencing to perform methylation analysis. Methy-
lated C nucleotides have a natural tendency to degenerate to the nucleotide T over time.
With a chemical treatment of the DNA to be sequenced, this process can artificially be
induced. During the so called bisulfite sequencing, the DNA is first threated with a bisulfite
treatment to convert all methylated Cs to Ts. This conversion is valid for multiple types
of methylation, including the mentioned 5-hmC [HPS+10]. Afterwards standard sequencing
technologies are used, but with different downstream analysis tools.
Like in genomics, the sequenced bisulfite data can be aligned against a reference sequence.

But bisulfite sequencing aware aligners have to be used for this task, as normal aligners will
have trouble because of the Cs that have been converted to Ts.
The workflow for going from the raw sequencing data to a final analysis result has much

in common with both genomics and transcriptomics. Figure 3.5 shows an overview of this
process, which similarly is also described by Krueger et. al [KKFA12].

Sequencing data Data preparation

Quality control

Alignment

Validation & Reporting

Report generation

Data analysis

Quality control

Data analysis

Visualization

FASTQC
FASTX

Bismark
BSMap
RMAPBS

samtools
bedtools

IGV
SeqMonk

methVisual
BiQ Analyzer

Fig. 3.5.: Epigenetics workflow separated into different steps. A collection of the available tools
for every step are mentioned, based on author paper [WKDA15a]

In Section 3.3.1 we look at this process in more detail and specifically what tools exist
to do it.

3.3.1. State of the art
Doing epigenomics data analysis, especially when looking at bisulfite sequencing data, has
many things in common with genomics and transcriptomics data analysis. As seen in Figure
3.5, the general workflow has many similar steps as the two previously discussed NGS data

33



3.3. Epigenomics 3. OMICS DATA ANALYSIS

analysis types. While the treatment of the sample is different, in the end the original data-
source for the data analysis is the output of an NGS sequencer. The first step of the data
analysis starts again with the quality control, very similar to the one discussed in Section
3.1.1. This is followed by a sequence alignment step, which is particular in the case of
bisulfite sequencing data due to the nature of the data, discussed in Section 3.3.1. After
the alignment, the quality of the alignment is tested like with the alignments of the other
data-sources (Section 3.1.1). The data is then analyzed to determine methylation levels
of various genes, either inside of one sample or across multiple samples. This is discussed
in Section 3.3.1. The results of the analysis is often visualized, just like with the other
data-sources, to better understand as well as to validate the analysis results. This is done
through genome browsers and similar applications, discussed in Section 3.3.1.
The following Sections discuss the tools and methods used to perform this type of data

analysis. A more in-depth discussion of current methods can be found in [Boc12].

Alignment

Multiple sequence aligners exist which specialize in bisulfite sequencing data. Bisulfite se-
quencing data has the particularity that all non methylated C nucleotides are sequenced
as T. This increases the difficulty to align them against the reference sequence, as normal
NGS data aligners will threat those differences as variants.
An interesting comparison of different aligners which can handle bisulfite sequencing data

can be found at [CSRM12]. Bismark [KA11] and BSMAP [XL09] are two of the most used
aligners in the field.
Bismark is based on Bowtie[LTPS09] and aligns every read against 4 reference sequences.

The normal forward and backward strands, as well as the modified strands where the C’s
are converted to Ts. This is done automatically through a python script, producing an
alignment file as well as overall statistics of the aligned sample.
BSMAP is based on SOAP [LLKW08] and uses a slightly different strategy. Instead of

being a wrapper around an existing aligner, it directly modifies the SOAP aligner to support
bisulfite sequencing data.

Data analysis

Just like with RNA-seq data analysis, a lot of the data analysis of bisulfite sequencing data
is done using the R environment. The first example is methVisual [ZS10], which provides a
set of tools to analyze this type of data. But there are also standalone solutions, like BiQ
Analyzer [BRM+05], which offer more complete approaches to analyze the data.

Visualization

Visualizing bisulfite sequencing data is in many ways similar to visualizing normal genomic
NGS data. Because of this, most of the genome browsers mentioned in Section 3.1.1 can be
used for this purpose. But because of the transformation of non-methylated C nucleotides
to T nucleotides, many of the genome browsers will show a high amount of SNPs in the
data. Very few genome browsers include the possibility to visualize bisulfite sequencing data
correctly, notably IGV [TRM13] has a special bisulfite sequencing mode.
As an alternative, the tools presented in Section 3.3.1 provide also ways to visualize the

data or at least the results of the data analysis.

34



3.4. File-formats 3. OMICS DATA ANALYSIS

3.4. File-formats
In this section we discuss the most important data-formats being used in NGS data analysis.
The way biological data is stored is crucial for its analysis. It not only determines how the

data is accessed, but also how much disk space is used. Many different approaches exist to
save specific data sets, but the domain bioinformatics has always favored the use of standard
file-formats. Even if many custom solutions exist to solve various bioinformatics problems,
certain file-formats became de facto standards. The following sections give an overview of
those formats, organized by usage domains. Where possible, the described file-formats are
also the ones used throughout this thesis.

Raw sequencing data
In NGS data analysis, the first step of data acquisition is usually to recover the data which
comes out of a sequencer. The sequencing machines, presented in 2.1.2, output a list of
sequences of different lengths which are stored in a digital file. Every sequence is composed
out of the 4 basic nucleotides A,C,T and G. Commonly, every sequence is also attributed
a quality score by the sequencer, indicating its degree of confidence in the particular nu-
cleotide.
While there are multiple sequencers available, produced by different companies, there is a

de facto standard in the domain of raw sequencing data. The FASTQ [CFG+09] file-format
has become very popular and is supported by most bioinformatics tools which work with
raw sequencing data. FASTQ is a text based file-format which stores for every sequence
a name, the sequence of nucleotides and a quality information. The quality information is
stored using a special value, called a phred score, which is a number between 0 and 60. A
phred quality score can be converted into a probability (P) with the formula P = 10−Q/10,
where Q is the phred quality score and P the probability represented by it. For example a
phred score of 10 represents a probability of 90% that a given nucleotide is the correct one.
Other file-formats for raw sequencing data exist, but are less commonly used. A multitude

of tools exist to convert those file-formats into FASTQ files, which is often required to
perform data analysis. One example of a different file-format is the combination of FASTA
files with a separate quality file, both encoding the data as text files. The FASTA file-format
was the original file-format to store sequencing data and it is highly similar to the FASTQ
format, but lacking the quality information per nucleotide. Because of its lack of quality
information it has been replaced by the FASTQ format, but it is still used to store reference
sequence as seen in Section 3.4.
One other file-format worth mentioning is the standard flowgram format, in short SFF.

This file-format encodes the sequencing data in a binary file, thus being more space efficient.
It is mainly used by the Roche 454 sequencers.

Sequence alignment data
Sequence alignment data is a very important in many domains of NGS data analysis. This
lead to a lot of standardization for this type of data, probably more than for any other file-
format in bioinformatics. After aligning the raw sequencing data, sequence aligners output
an alignment file. This alignment file is commonly saved as a BAM [LHW+09] file, or its
textfile equivalent SAM. BAM files are the most used files to store alignment data. BAM
and SAM files both contain the same information and follow the same format, but BAM

35



3.4. File-formats 3. OMICS DATA ANALYSIS

files are binary files using compression. This makes them much more space efficient than
SAM files.
Recently another variation of the BAM/SAM file-format has emerged and slowly begins

to be more important. The CRAM 10 file-format is a compressed version of the BAM file-
format, reducing its filesize notably by only storing the difference between the reference
and the stored sequences.
Reading and writing all three file-formats is supported by the samtools [LHW+09] project,

providing C and Java libraries.

Variants
Another important domain of storing NGS related data in files is the storing of variant in-
formation. While several dataformats exist, from custom text files to CSV files, one datafor-
mat has become dominant in terms of storing variant information: the Variant Call Format
(VCF).
The VCF file-format 11 has been developed among others by the 1000 genomes project.

This very flexible dataformat allows to store all sorts of variant information, including the
possibility to add custom annotations. There is a binary equivalent to VCF, which is a text
file, called BCF, short for Binary VCF.
To also mention a new type of VCF, gVCF (which stands for genomic VCF), has been

recently introduced. A gVCF file follows the VCF file-format, but instead of only including
variants, it also includes the information about positions where no variant has been found.
This can be useful for documentation purposes when the absence of a variant needs to be
documented.

Annotations
When looking at NGS data, it is often important to have more information than just
the sequence of DNA found in a certain sample. Other information, like the position of the
genes, what parts of the genome are conserved between species or which parts of the genome
are associated with certain diseases, is crucial when looking at the data. This additional
information is generally grouped under the term, annotations.
Multiple dataformats have been developed over the years, all specialized in certain types

of data to be displayed. Most of the file-formats are text files, such as the popular BED 12

and WIG 13 files.
The BED file-format is a textual file-format used to store genomic regions. In the text

file a series of regions, which are identified by their chromosome, start and end position, is
described. They can have names and additional values (like color) associated with them.
The WIG file-format is more specialized in saving graph like data. It stores values for spe-

cific positions of the chromosome, allowing graphs to be drawn based on the data contained
in a WIG file.
Both of those annotation files have multiple usages and are not only used when visualizing

genomic data. They can be used to annotate genomic features, such as variants, or in the
case of BED files, also to filter specific regions of a genome.
10http://www.ebi.ac.uk/ena/software/cram-toolkit
11https://vcftools.github.io/specs.html
12https://genome.ucsc.edu/FAQ/FAQformat.html#format1
13https://genome.ucsc.edu/goldenPath/help/wiggle.html

36



3.5. Summary 3. OMICS DATA ANALYSIS

Others
Many other data-formats related to NGS data analysis exist, but one of the most important,
in the context of this thesis, is the FASTA file-format. FASTA, which stands for Fast-All, is
a text file-format which is used to store biological sequences. Often they are DNA sequences,
but can also be RNA, Proteins or others.
FASTA is today mainly used as the file-format to store reference sequences. The reference

sequence, as explained in 3.1, contains the reference sequence of a certain species.
For completeness, it is to be mentioned that many custom file-formats exist in the world

of bio-informatics data analysis. As most of the data that is analyzed, can often be described
in a spread sheet like structure, it is no surprise that file-formats suited for this are often
used. Both comma separated value (CSV) files as well as custom text files using tabs to
separate the values are very commonly used, often lacking detailed documentation.

Data storage and compression
The size of NGS data keeps growing, because of faster sequencing technology and because
sequencing becomes cheaper and thus can be performed more often. As many of the datafor-
mats used in bioinformatics are text based, this quickly leads to problems in storing and
accessing the data efficiently.
Different strategies exist to address this issue. One of the most common ones is to store

the raw data files as gzip compressed files and to work directly with those files. This is
notably used for raw sequencing data in the FASTQ format as well as Variants stored
in the VCF file-format. Most bioinformatic tools support the use of gzip compressed files
instead of the raw data files.
A different strategy is to use more specialized dataformat, which exploits the specificities

of the data to be stored. One example of this is the CRAM file-format, mentioned in Section
3.4. Not only does it use compression to store the data, but it also reduces the filesize by
only saving the difference between the aligned sequences and the reference sequence. As
most sequences will have only a small differences with the reference, this leads to savings
in file size. In the case of the CRAM file-format this can amount to about 30% filesize
reduction compared to a standard compressed BAM file.
Similar strategies are used to compress raw data files commonly saved in FASTQ or

gziped FASTQ files. They either approach the problem by using specialized compression
algorithms, fine tuned for DNA data, like MFCompress [PP13] and LFQC [NPR15]. Both
of those approaches beat the standard compression used in bio-informatics, which is gzip.
Other approaches go further, by doing an initial alignments against a reference sequence

to minimize the data to store, by only storing the difference to the reference for every
sequence. This approach is used by LW-FQZip [ZLY+15], which achieves compression ratios
of up to 0.15 for the raw data.
Even though there is a lot of research going in that area, no standard has been found

which hinders the adoption of those methods of data compression.

3.5. Summary
In this chapter we discussed the different methods used for OMICS data analysis. The term
OMICS regroups a large amount of different types of data-sources. We focused on three

37



3.5. Summary 3. OMICS DATA ANALYSIS

OMICS data-sources, all three of which are using NGS technology for their analysis and are
used in a diagnostics context. DNAseq, RNAseq and bisulfite sequencing, which all three
offer a different but complementary view on the inner workings of a cell. For all three types
of analysises we described a general workflow on how the data is analyzed and described
the different methods used for the steps described in the workflows. Those methods are
largely helped by a multitude of bioinformatics tools which automate the analysis of the
RAW data.
Many of the mentioned methods are command line tools or lack the possibility to easily

exchange their data with others, requiring an indepth technical knowledge from its users.
This limits the amount of people that are able to autonomously perform NGS data analysis,
which in turn limits progress in the field as well as how NGS data can be used in a diagnostics
environment.
It is in the next Chapter 4 that we explore which of those tools are required in a diagnostic

context, which is the main context in which the tools developed during this thesis are used.
We also look at the three workflows described for the different OMICS data-sources and
put them in a more abstract diagnostics context.

38



4. Diagnostics
This chapter relates the needs of diagnostics, in particular human diagnostics, to what mod-
ern genetics and especially NGS data analysis offer. It also shows the challenges faced today
in diagnostics when working with NGS data and the solutions informatics and distributed
processing can bring. The chapter starts with an introduction to what diagnostics is. This
is followed by a description of what genetic disorders are and how they can be detected.
In Section 4.3 we look at what software solutions need to improve the current situation in
diagnostics, followed by a discussion of the chapter in Section 4.4.

4.1. Introduction
The word diagnostics comes from the word diagnosis which is defined as “the process of
determining by examination the nature and circumstances of a diseased condition” 1. For
the purpose of this thesis, the process of “examination” relates to the analysis of the DNA
of the subject for which the condition needs to be determined.
When analyzing NGS data, it is common to search for either the reason why a patient

has a certain illness or the risk that the patient or his offspring will develop such an illness.
In diagnostics, the correct term used for illness is phenotype, as it is a more generic term
than illness. A phenotype is an observable trait of an individual, which can be visual (like
hair color), a behavior or a disease (like cancer), and thus applicable to more conditions
than the term illness. Not all phenotypes are bad, as the example of hair color shows, and
not all of them are caused by genetic variation. Linking the genetic information to those
phenotypes is a major focus of research today in human genetics.
The challenge of linking phenotypes and genotypes on a given subject already starts with

accurately describing the phenotype exhibited by the subject. While certain phenotypes may
be easy to determine, like a missing limb, others, like the previously mentioned hair color,
are much more complicated to classify. The near infinite amount of possible hair colors
makes exact classification complicated. This is why projects like the Human Phenotype
Ontology (HPO)[KDM+14] and the Online Mendelian Inheritance in Man (OMIM) 2 work
on standard nomenclatures for phenotypes. This work helps to associate genetic changes
with phenotypes systematically, making it easier to query them with automated tools.
OMIM is an online database describing a vast amount of phenotypes and their relationship
to genes, based on the original MIM (Mendelian Inheritance in Man) works started over
50 years ago. It is still widely used today and highly useful because of its use in many
publications overs the years. Due to its age, OMIM has various shortcomings, notably in
regards to automatic data analysis using informatics tools. The HPO project tries to propose
a solution for some of those shortcomings by developing an ontology which organizes the
phenotypes in a tree structure, providing a hierarchy which can be used for advanced

1http://www.dictionary.com/browse/diagnosis , status 6 sept. 2016
2http://omim.org/

39



4.1. Introduction 4. DIAGNOSTICS

analysis.
With the field of modern genetics being so young, the line between diagnostics and

research is blurry at times. The vast amount of possible changes in the DNA for every
individual makes it challenging to clearly determine if a patient has or doesn’t have a specific
condition. With the human genome being about three billion nucleotides long, most of the
observed changes in an individual will be unique and thus have undocumented consequences.
Different projects document variations already present in the general population, as well as
their association with certain phenotypes and the frequency at which they are observed. The
best known collection of variants comes from the dbSNP project, first published by Sherry
et al. in 2001 [SWK+01] and which is actively updated regularly. As of the end of 2016,
the version 147 dbSNP contains more than 153 million variants for the human genome 3.
Another important source for diagnostics is the ClinVar [LLB+16] database, which focuses
on a subset of variations in the human genome which are associated with certain phenotypes
of clinical significance. Two other databases which are also often used in this context are
the 1000 Genomes project [AAA+15] and Exac [Lek15] database. Both of databases offer
the valuable information of the frequency at which various variants have been observed in
the general population. This information can be used to identify variants common in the
population and thus less likely to be causing the observed phenotype.
Much of diagnostics in genetics focuses on the identification of known variants associated

with a certain disease. This is the easiest way to determine if an individual is affected by a
certain genotype, because the particular change has already been observed and described in
one or more other individuals. While this is the most optimal approach, often the changes
found in an individual are unique. This is why in diagnostics it is studied if a gene which is
associated with the phenotype in question contains any variants which have a prediction to
impact the function of the gene in a negative way. The genes which are looked at for a specific
genotype are often standardized to some extent in the form of gene panels. If no specific
gene panel is specified for a given phenotype, resources like HPO and OMIM can help to
determine the genes to analyze. This exact process shows the blurry line between clinical
diagnostics and research. Once the initial clinical tests for known causes of a phenotype do
not turn up any result, a clinical case can quickly become a research case. The implications
of this are discussed by [Hul14] in a very interesting article.
Determining the impact of a variant on a gene can be more or less complicated depending

on the nature of the change. A first relatively quick way to determine the approximate
consequence of a variant is to determine where exactly the variant falls on a gene. Based
on this information, tools like VEP (Variant effect predictor from Ensembl [CAB+15] can
determine if the protein encoded by the gene is potentially changed. This allows to categorize
the variants into various groups like:

• Synonymous, no change in the encoded protein

• Missense, the encoded protein is changed

• Stop codon addition/removal, the encoded protein is shortened or extended

• Intronic, the variation falls inside an intron

• And many more

3http://www.ncbi.nlm.nih.gov/projects/SNP/snp_summary.cgi

40



4.2. Genetic disorders 4. DIAGNOSTICS

As mentioned earlier, the line between diagnostics and research is often blurry, as very
often the observed variations in a patient are unique and thus not yet documented. Looking
only at the DNA gives a limited picture of what is happening inside the cells and the patient
in general. This can lead to too many or too few potentially causative variants to be found
in a sample. While this problem can be partially solved by also analyzing other family
members of the patient, to filter out variants of not affected family members, not all cases
can be solved with that approach.
This is why more and more, multiple OMICs data sources (see Chapter 3) are combined

to better understand the consequences of the detected mutations. Having a tool which
allows the geneticist to analyze and compare multiple OMICs data sources is important
and a concept we presented at the European Human Genetics Conference during a poster
presentation called Towards integrative family analysis on OMICs data for individual patient
diagnostics [WKD14d].
While in the poster we focused on the combination of DNAseq, RNAseq and proteomics,

this thesis focuses on DNAseq, RNAseq and Epigenetics as the OMICS sources. Variants
detected in DNAseq can for example be validated through RNAseq which can show a
modified splicing behavior of the gene in question. This allows geneticists to have a bigger
picture than by just looking at one data source.
The study of bisulfite sequencing data in addition of RNAseq and DNAseq for a sample

can help to identify the cause for certain phenotypes in cases where neither DNAseq nor
RNAseq can reveal it. One example are tumor suppressor genes which can behave differently
depending on their methylation, a line of study also discussed in this thesis (Section 9.1.4).
Combining those different OMICS data sources to fully understand the biological pro-

cesses is increasingly important. While, which is why an integrated and standardized ap-
proach for their analysis is important to reduce the hurdles of analysis this type of data.
Making the analysis of OMICS data easier than what is currently possible is also impor-
tant in regards to personalized medicine and the increasing availability of NGS data. It is
possible to imagine a world in which every person has been sequenced, and even the family
doctor needs to access and interpret this data. This would allow them to propose individual
treatment plans according to the genetic dispositions of their patients, without having to
go through a geneticists, which could quickly become a bottleneck for the data analysis.
An extreme case of this vision is that even the individual people can look and analyze their
genome at home, if the usability and computational complexity of the data analysis can be
fixed.
The next Section 4.2 looks into more detail what the actual genetic disorders are that

can be diagnosed.

4.2. Genetic disorders
Genetic disorders are changes in the DNA that cause a certain phenotype which is not
desired. Those genetic disorders can either be inherited by the parents, which may or may
not be affected themselves, or the disorder is the result of a de-novo mutation in the subject.
De-novo mutations are mutations which neither parent has, and can only be found in the
offspring. On average, around 80 de-novo mutations can be found in every person [KFM+12],
which they in turn pass down to their own offspring. Most of those changes are harmless
and do not cause any significant change in the offspring. Yet some do have a significant
effect and account for as much as 2/3 of the diagnoses made in genetics [YMR+13].

41



4.2. Genetic disorders 4. DIAGNOSTICS

The exact location at which a mutation occurs determines its consequence. Most muta-
tions fall outside the regions of any gene and have no consequence. But when a mutation
falls inside a gene, it can modify the correct functioning of that gene. There are many ways
a mutation inside a gene can alter its function. If the mutation falls inside the coding regions
of a gene, the protein which is created by the gene can be altered. The coding regions of a
gene are the regions that are translated into RNA which in turn is translated into a protein.
As seen in Section 2.1.1, the protein created by the gene depends on the DNA sequence
which is encoded through the codon table. Certain changes in the coding sequence will alter
the function of the gene, which in the worst case can cause a complete loss of function of
the protein. This can happen, if a stop codon is introduced inside the coding region, thus
resulting in a much shorter and likely non functioning protein.
As explained previously, humans have 2 copies of every chromosome (except for males, a

subject we will discuss later). Most mutations are only present in one of the chromosomes.
Those mutations only present in one copy of the gene, are called heterozygous. The ones
present in both copies of the gene are called homozygous. If a heterozygous variant has an
effect on the gene function depends on the variant being recessive or dominant. If a variant
is recessive, the affected copy of the gene does not impact the function of the gene, as the
second copy still continues to work. A dominant variant on the other hand will cause the
gene to cease working correctly even with just one copy being affected.
This plays a big role in hereditary diseases, where some mutations can have terrible

consequences when homozygous, but none if heterozygous. As long as only one parent has
the genetic defect, the child is unlikely to be affected as well, as a de-novo mutation in the
child would be required for it to have a homozygous copy of that variation.
But this is not true for phenotypes caused by genes on the X and Y chromosomes, also

called X-linked and Y-linked phenotypes. In humans, the X and Y chromosome are special
cases as they do not always come in two copies like all other chromosomes. Individuals
with two X chromosomes are females, and individuals with one copy of the X and one of
the Y chromosome are males. This fact has consequences on the way variants on those
two chromosomes are inherited. Recessive genes with a variant behave like genes on other
chromosomes in females. In males on the other hand, as they only carry one copy of the X
chromosome, variants on those genes are automatically “dominant”. This can lead to the
well-known issue of color blindness, which affects men at about 6% and women at 0.4% of
the general population[CGT14], but also other phenotypes such as hearing loss, a subject
for which this thesis helped to find new knowledge [RBN+14], further discussed in Section
9.2.
Similar things apply to Y-linked phenotypes, which can only be inherited through the

paternal line. Any phenotype linked to the Y chromosome cannot be inherited by a female
offspring, but will be inherited by all male offspring. While very rare, a common Y-linked
phenotype is male infertility (which of course is difficult to be inherited).
Last but not least we want to mention another type of genetic disorder, not directly linked

to individual variants, but to much larger modifications of the genome. During cell division,
many errors can happen that affect the copied genome, including the mentioned SNPs or
small indels which change a small amount of nucleotides in the sequence. Another type of
error that can happen are so called structural variations (SVs), which change the structure
of the copied DNA. This means, large portions of a chromosome can be duplicated, inverted,
deleted or even moved to another chromosome. Many of those events are very hard to detect
using NGS, because of the limitation of the read lengths produced by those technologies. A

42



4.3. Software requirements 4. DIAGNOSTICS

sequence originating from a inverted portion of the genome will for example align perfectly
fine to a reference genome. Only sequences covering the borders of the inverted region will
show unusual alignment behavior, usually resulting in their dismissal, an event that is hard
to distinguish from the normal background noise in the data. Even though NGS data is
not ideally suited for this type of analysis, it is increasingly used to detect copy number
variations (CNVs), which are essentially duplications and deletions of part of the genome.
Using techniques discussed in Section 6.7.6, CNVs are basically detected by comparing the
coverage of certain regions in a sample, with one or more reference samples. Using statistical
approaches, one can estimate the probability that a duplication or deletion event happened
in this particular region.
An extreme case of those duplication events is the duplication of an entire chromosome.

This leads to various problems for the individual, also known as trisomy, for which the
duplication of the chromosome 21, also called down-syndrome, is the most well-known
example.
After having looked at how different genetic disorders are caused, we will now look in

the next Section 4.3 how computer science can make the work of detecting and analyzing
those genetic disorders easier for the geneticist.

4.3. Software requirements
Computer science has introduced new tools and solutions in all possible domains of our
daily lives. Medicine is no exception, with applications ranging from patient management,
laboratory automation to assisted surgery and just to mention one of the author’s works,
A WoT approach to eHealth: case study of a hospital laboratory alert escalation system
[RPW+12], the handling and dispatching of medical urgencies. Genetics and biology in
general is no exception, with even a special research domain, bio-informatics, which has
been named after it. The exact needs of diagnostics or to be specific, a genetic diagnostics
lab, in terms of data analysis software are hard to define and highly subjective. This is why
many of the described requirements are based on the needs of the laboratory of human
genetics of the University of Würzburg, for which the development during this thesis has
been mostly done.
The general workflow, for any of the three technologies (genomics, transcriptomics and

epigenomics) looked at during this thesis, is shown in Figure 4.1.

Sequencing data Data preparation

Quality control

Alignment

Validation & Reporting

Report generation

Data analysis

Quality control

Data analysis

Visualization

Validation

Fig. 4.1.: Generic UML activity diagram for NGS data analysis in the clinic.

The process of using and analyzing NGS data in the diagnostics, starts with the ac-

43



4.3. Software requirements 4. DIAGNOSTICS

quisition of sequencing data coming from a next generation sequencer. Once this data is
acquired, a quality control step ensures that the acquired data has sufficient quality for
further analysis. Usually, during that quality control step, the data is also filtered to re-
move low quality sequences from the raw data. After verifying and correcting the quality
of the raw data, the next data analysis step is, at least for the use-cases we try to cover in
this thesis, sequence alignment. The sequence alignment step connects the raw data with
the reference sequence, usually the human reference sequence, and provides the basic data
source which is used during the actual data analysis.
After the sequence alignment step, another quality control step is common, to determine

if the sequenced data aligned correctly and sufficiently to the reference. The most important
quality control measure is the coverage analysis, which determines if the regions of interest
in the sample to analyze are sufficiently covered.
It is after this second quality control step that the exact steps in the workflow can vary,

depending on the technology used and the question asked. This is why we regroup this
step under a general data analysis step. After the data analysis step, the results are often
visualized to verify the validity of the data analysis. This is often done by opening the
sequence alignment in a genome browser around the regions in which the data analysis
identified a feature of interest.
Once the data analysis is done, it is common to verify the results using a second tech-

nology. One such example would be the usage of Sanger sequencing to validate the results
of an NGS data analysis. Once the results have been finalized and verified, they are saved
into a report which is handed of to a clinician, as well as archived.
The main requirements a diagnostics laboratory has for the software they use is that it

facilitates the described workflow, mainly for genomics, but also for transcriptomics and
epigenomics. The software should give the geneticists a certain independence from bio-
informaticians for at least the most common data analysis use-cases. This is important, as
most small laboratories do only have a limited amount of bio-informatics resources, making
it important for the geneticists to be able to be independent for standard analyses. To en-
able this, the software should have an intuitive user interface, which integrates the various
analysis tools and does not require command line tools to be executed manually by the user.
The standard workflows should require little manual work by the user and still be flexible
enough to allow exploratory analyses for more complex datasets. Existing infrastructures
and workflows should also be able to be integrated into such a software. Examples of this are
already existing sequencer installations which not only sequence but also align the data us-
ing sequencer optimized settings. Another example is the use of the existing infrastructure,
which should optimally be used to reduce the need for infrastructure updates and expan-
sions to a minimum. Last but not least, in the context of diagnostics the software should
follow diagnostics software guidelines. This includes guidelines like the ACMG guidelines
[RAB+15] which cover topics like how to classify variants and the HGVS nomenclature
[DA00] which standardizes the naming of variants. Various local guidelines exist for various
different countries as well as organizations inside those countries, all of which cannot be
covered during this thesis. This is why we focus on traceability and reproducibility, two
elements which are common in many guidelines.

44



4.4. Summary 4. DIAGNOSTICS

4.4. Summary
In this chapter we discussed diagnostics in general and molecular diagnostics in particular.
We introduced the different types of genetic disorders and how NGS data analysis can help
to diagnose them. We also looked at the different initiatives which document known genetic
changes to more easily analyze samples which have them, as well as to better understand
samples with new ones. The fact that so much about DNA and how it affects an individual
is still unknown, showed us the difficulty of clearly separating diagnostics and research. To
better define the scope of the work of this thesis, we defined a general diagnostics workflow,
based on the individual OMICS workflows presented in Chapter 3. We used this workflow
to analyze the software needs of diagnosticians to follow that workflow in the most efficient
way. The graphical NGS data analysis pipeline which was developed based on those needs
is discussed in Chapter 6.

45



5. Parallel & distributed computing
In this chapter we give an overview of the field of parallel and distributed computing. We
want to give the reader an understanding of the field and introduce the concepts used
during works presented later. We also include an analysis of the state of the art, which is
elaborated in further detail during later chapters where appropriate. To get a more in-depth
understanding of the field, the reader is encouraged to read books like Parallel Program
Design: A Foundation by M. Chandy [Cha88], Introduction to Parallel Computing: Design
and Analysis of Algorithms by V. Kumar et. al [KGGK94], Distributed Systems: Principles
and Paradigms by A. Tanenbaum et. al [TS06] or for a more recent one Programming
Distributed Computing Systems: A Foundational Approach by C. Varela [Var13].

5.1. Introduction
Improving performance of computer algorithms is a constant concern of researchers and
companies. One of the main techniques, especially today, is the use of parallel and dis-
tributed computing. Parallel and distributed computing are closely related concepts, both
linked to concurrent computing. When a program can be split into different parts which can
be executed at the same time, those parts are called concurrent. The different concurrent
parts can be executed in any order, be it sequentially or in parallel, for example using mul-
tiple processors. What is important, is that the final result of the calculation is the same,
no matter if the concurrent parts have been executed sequentially or in parallel.
The term parallel computing is used as soon as those concurrent parts are executed in

parallel, meaning, at the same time. This can happen by using multiple processors on the
same machine, or using multiple machines, in which case we speak of distributed computing.
Of course local and distributed parallelization use very different approaches to handle the

parallelization. When parallelizing the concurrent parts on the same computer, traditionally
shared memory is used for the communication between the different parts. For distributed
computing, a different approach called message passing is used, in which messages are sent
between the concurrent parts, but they can’t directly access a shared memory.
Parallel computing, both local and/or distributed, can be used to significantly speed up

the concurrent parts of an application, but does not help for the sequential parts of an
application. This fact is also famously known as Amdahl’s law [Amd67], which states that
the speedup of an application using parallel computing is limited by its sequential parts.
This law puts a limit to the performance increases which are possible through parallelization.
If for example an algorithm has a sequential setup phase and concurrent calculation phase,
even with the best speedup, the algorithm will never run faster than the sequential part.
While both local and distributed parallelization follow Amdahl’s law that limits the maxi-

mum speedup, they both have unique sets of restrictions that limit their effectiveness. Local
parallelization has both its strength and weakness in the shared memory that is used to
communicate between the concurrent parts of the application. While the shared memory

46



5.2. History 5. PARALLEL & DISTRIBUTED COMPUTING

allows for low latency and high bandwidth sharing of data, it is also limited through its
bandwidth, which can lead to memory congestion if too many processors access the memory
simultaneously. This problem is not present in the same way in distributed computing, as
every machine handles its own local memory. On the other hand the communication over-
head between the concurrent parts is much higher, both in terms of latency and bandwidth.
It is also important to note that parallelization, especially distributed computing, is not

only used to speed up applications. Fault tolerance is an important aspect in today’s com-
puting world. Using distributed computing, it is possible to create fault tolerant applications
where one more computer participating in the calculation can fail, but the application con-
tinues to work correctly.
We can see that parallel computing is a vast and complex topic, with the different ap-

proaches having their unique challenges and opportunities. This is why many different
parallel computing models have been proposed over time to perform parallel computing.
In the next Section we will describes those different approaches and how they evolved over
time.

5.2. History
Here we describe how the field of computer science and especially parallel and distributed
computing evolved over time. The focus is put on the parts of the development which are
relevant to our works, as well as the time-line overlap with the development of genetics
during the same time.

The concept of automating calculations for data analysis is not new. As early as in
1613 the word computer was used the first time to describe a person which performed
calculations. For a long time people invented and used tools to reduce the complexity
of this task, to only name the abacus (1100 BC) as one example of such a tool. It was
in the early 19th century that the real practical proposals for computer like machines
were developed. Notably Charles Babbage, helped by the famous Ada Lovelace, proposed
two concepts to build an automated computing machine, sadly both were never finished
because of monetary constraints. It was almost one century later, in 1936, that the first
programmable computer named Z1 was developed. At the same time Alan Turing proposed
the Turing machine, a now fundamental theoretical model of modern computers. During
the next years and mainly motivated by the Second World War, computers were further
developed and expanded their use cases. But they remained hard to use and required
the space of entire rooms for a computing power that is magnitudes smaller than today’s
smartphones.
It was in 1953 that IBM released their first commercial computer, selling over 19k units

even though it was only targeting the scientific community. During the same year, Watson
and Crick discovered the double helix structure of the DNA. The development of computers
rapidly progressed and they were used increasingly often in all sorts of domains. It was at
this time, in 1965, that Gordon Moore made a prediction about the rate at which the
computing power will evolve over time. While the so called Moore’s Law was adapted a few
times over the years, the current interpretation of a doubling of transistors on computing
chips every 18 months remained remarkably precise.
Another interesting development in terms of distributed computing happened in 1968,

only one year before the first manned moon landing. In that year, the ARPANET was

47



5.2. History 5. PARALLEL & DISTRIBUTED COMPUTING

proposed, a network connecting multiple universities in the United States. The connection
was made over phone lines, with a connection speed of 56Kb/s for the network backbone.
After the initial adoption of computers by the military, universities and the industry,

the introduction of home computers started. It was during the mid to late 70s that the
market of home computers started. With the Apple 1 in 1976, the Atari 400 in 1977 and
the commodore VC 20 in 1981, the usage of computers became accessible to a large part of
the population about at the same time as DNA sequencing started. Also important to note
is the release of the IBM Personal Computer Model 5150 in the same year, 1981, which
also debuted the DOS operating System by Microsoft, which later evolved in the famous
Windows operating system.
During this time, starting in the 70s, there was a divide in terms of processor technolo-

gies used in computers. While home computers used scalar processors which executed one
operation on a data item at a time, scientific super computers used vector processors which
were able to apply the same operation on multiple data items at a time. This type of par-
allization to speed up computing was most famously used by the Cray super computers
which stayed popular until the 90s.
Also in the early 70’s, just after the introduction of ARPANET one famous distributed

computing programming model was proposed. Carl Hewitt proposed the actor model, at a
conference for artificial intelligence [HBS73]. One of the most influential implementations
of the actor model was developed in 1986 at Ericsson through the programming language
Erlang [CT09], which even today is source of inspiration for many actor model implemen-
tations.
Other models were introduced over time, such as the famous peer-to-peer (P2P) approach.

This model became popular more for its use in file-sharing than to distribute calculation,
notably with tools like Napster (1999) or BitTorrent (2001).
Around the same time, in 1999, the seti@home project introduced a new concept of dis-

tributed computing, by using the idle time of the computers of volunteers. The project
analyzed telescope data in search of extraterrestrial life, a very time intensive task consid-
ering the amount of data to process. Later the project evolved into a more general project
called BOINC, supporting researchers from all sorts of domains with their time intensive
calculations.
That project is an example of the larger tendency that started around that time, which is

now known as Big Data. Big Data science explores how to analyse very big, often unstruc-
tured data to extract knowledge. Many methods have been created to perform this type
of analysis, which brings us to one of today’s “hottest” distributed programming models
which was introduced by Google in 2004. The MapReduce model [DG08] was developed to
handle the challenges of big data and to easily scale over a large amount of computers with
integrated fault tolerance.
But parallel computing is not limited to big clusters only accessibly by a small amount of

people. During all that time, home computers continued to evolve but were mostly restricted
to a single processor. It was around 2005 when CPU manufacturers like Intel and AMD
released multi-core processors for the home market. Since then, multi-core systems started
to dominate the computing landscape, to the point that today it is very rare to work with
a system having only a single processing core. Even miniature open source computers like
the raspberry pi zero 1 now have at least two processor cores.
Slightly delayed but in parallel, a second type of parallel computing infrastructure was

1https://www.raspberrypi.org/products/pi-zero/

48



5.2. History 5. PARALLEL & DISTRIBUTED COMPUTING

deployed in most computers available today. Graphic cards, initially designed to accelerate
the graphical calculations required for video games, evolved into multipurpose computing
platforms, able to perform much more than only graphical calculations. Graphic card pro-
cessors are made up of many small processing cores. While individually much less complex
than a traditional processor, they are smaller and less complex which makes it possible to
pack a great number of them on the same processor. NVIDIA released their programming
language CUDA [NBGS08] in 2007, making it possible for programmers to offload certain
calculations from the main processor to the GPU (Graphical processing unit). Because
CUDA only runs on NVIDIA GPUs, in 2009 an open standard for calculations on GPUs
was released, called OpenCL [SGS10]. Nowadays GPUs like the NVIDIA Tesla K80 contain
4992 cores, making it possible to perform massively parallel calculations.
The evolution of GPUs not only lead to much better looking computer games, but ex-

panded their use to all sorts of domains. Be it for physics calculations, neural networks,
weather forecasts or medical imaging, the use of those highly parallel co-processors has
become very common.
This move from a single processor core to not only multi-core systems, but multi-core sys-

tems that are combined with GPUs, lead to heterogeneous parallel systems that are vastly
different to program than the traditional computers. Combined with the ever increasing
speed of networks connections, this lead to the development to a variety frameworks and
tools being developed to allow programmers to program concurrent and distributed appli-
cations.
Another big computing model which has seen a big adoption over the last 10 years is

cloud computing. While the concept was known for some time and in many aspects it is
a way to commercialize existing grid infrastructures, it has seen a large adoption since its
introduction around 2006 2. While software as a service (SaaS) was already a common
business model, the cloud brought the concept of infrastructure as a service (IaaS) to the
mainstream. In cloud computing the client can launch virtual machines that run the desired
OS and code on a machine which corresponds to the specifications given by the client (with
the upper limits set by the cloud provider). The cloud-provider transparently launches
and manages those instances, with the client being able to launch or remove instances on
the fly. The introduction of virtualization was a key component for the success of cloud
computing, as it abstracts the underlying hardware from its users and at the same time
allows for detailed control of the resources used. This computing model allowed researchers,
companies and individuals to access relatively easily and cheaply the computing power they
need, without having to worry about the infrastructure maintenance.
But this move to cloud computing brought its own set of challenges, notably in terms

of data security. Especially when working with human DNA, which is a common use-case
in this thesis, sending information over the internet, especially over country boundaries
becomes a security risk. Some approaches exist to reduce this problem, such as private
clouds, that reproduce the infrastructure of public clouds on the inside of an institution.
One such private cloud is currently in planning at the University of Würzburg. Other
ways are to completely anonymize all data sent over the network, but as shown [EN14],
this is not sufficient to completely anonymize human DNA samples. Another, yet much
more theoretical approach is the use of so called homomorphic encryption to secure data
analysis in the cloud [MKA14]. This approach uses special encryption methods which make
it possible to perform data analysis operations on encrypted data, without having to decrypt

2http://www.google.com/press/podium/ses2006.html

49



5.3. State of the art 5. PARALLEL & DISTRIBUTED COMPUTING

it in the process. The downsides are that currently the operations possible on encrypted
data are still very limited and they are much more costly that the same operations on non-
encrypted data, making the use of the cloud resources questionable. But even with those
downsides, this approach is expected to greatly help genetics in the future [Tin15].
In the next Section 5.3 we present the various frameworks, tools or programming lan-

guages that enable programmers to use different techniques for distributed and parallel
programming.

5.3. State of the art
This section gives an overview of the commonly used methods for parallel and distributed
computing. The discussed concepts are not intended to be complete, but are meant to give
an overview of the available models and techniques relevant to this thesis. The different
approaches as well as their current state of the art are discussed.
We present three ways to develop parallel and distributed applications. In Section 5.3.1

present methods which allow parallelizing applications using one or multiple CPUs. Section
5.3.2 describes another local parallelization method, which uses GPUs to speed up calcula-
tions. Lastly, in Section 5.3.3 we describe the methods available to distribute calculations
over multiple computers, be it in a grid, cloud or otherwise.
It is to note that the three domains can be combined, where a distributed application can

use the multiple CPUs and GPUs of every machine which participates in the calculations.
Some of the techniques presented, especially in the distributed category can as well be used
to parallelize an application on CPU or even GPU, but is presented there as they are more
commonly used there.

5.3.1. CPU
While not exhaustive, the following methods exist to parallelize applications on one machine
using the CPU.
The first method is the use of threads, which are provided by most programming lan-

guages nowadays. Through the use of threads the programmers can split the normal ap-
plication execution flow into multiple parallel execution flows. This method is heavily used
but also arguably one of the toughest to master, as it puts a lot of responsibility onto
the programmer. Splitting up an application in multiple threads and guarantee that the
communication between them can easily result in race conditions and deadlocks which are
hard to diagnose. On the other hand, for many applications the most efficient way to par-
allelize them is to use threads, which is not unlike the argument to use assembler code over
compiled code for performance reasons.
A more automatic way to parallelize applications locally without having to manually

split the execution into multiple threads has come under the form of OpenMP [DM98].
OpenMP allows the programmer to define certain parts of the application as parallel, and
the compiler will figure out how to most efficiently parallelize it using threads. OpenMP
has the advantage of coming as annotations to existing source code, which requires only
minimal modification of existing applications to take advantage of it. It also allows the
compilation of the application in either a multithreaded or sequential way, which helps
development as well as understanding. The downside is that the use-cases in which it can

50



5.3. State of the art 5. PARALLEL & DISTRIBUTED COMPUTING

be used are rather limited, with OpenMP being mostly used to parallelize loops and not
more complex parallel systems.
Also worth mentioning are the capabilities of modern CPUs for vector instructions. While

earlier vector processors and scalar processors were separate concepts, today’s CPUs inte-
grate concepts from different models. This includes the ability to use vectorization instruc-
tors to apply the same operate in parallel on a vector of data. Different processor extension
now coexist in modern processors, such as MMX, SSE and AVX. Examples of such opera-
tions would be the addition or multiplication of all numbers between two arrays. Instead of
doing this for every number separately, the vectorization instructions can do this for mul-
tiple numbers in parallel and thus significantly speed up the computation for this type of
operation. The programmer has a certain amount of control over the vectorization option,
but can also leave it to the compiler to automatically vectorize the code where it is benefi-
cent. Thanks to the lower complexity of vectorization operations compared to threads, the
automatic vectorization found in modern compilers works very well.
The next Section 5.3.2 presents the methods to not only use locally available CPUs, but

also GPUs which today contain a substantial amount of processing power.

5.3.2. GPGPU
GPGPU, short for “General Purpose Computation on Graphics Processing Unit”, uses
GPUs to perform computation. GPUs have a high amount of computing cores, which allows
them to perform many concurrent calculations in parallel. While the individual processing
core on a GPU is nowhere near as powerful as a CPU core, the immense number of them
packet into a single chip makes them interesting to speed up calculations.
To program GPUs the most direct way is to use one of the GPU specific programming

languages. The most known programming language for GPUs is CUDA [NBGS08] which
was developed by NVIDIA and runs exclusively on NVIDIA GPUs. This proprietary pro-
gramming language uses a C like syntax, allowing the programmer to define small kernels
which are run on the individual GPU cores. CUDA is, despite its proprietary nature, widely
used in the scientific community to speed up calculations of all sorts.
An open source alternative to CUDA also exists, OpenCL [SGS10], with the main advan-

tage of running on the GPUs of all manufacturers and even on CPUs. At its core OpenCL
is very similar to CUDA, although it often struggles to achieve the same performance due
to missing optimizations by the compilers [KSA+10].
Using both CUDA and OpenCL requires a lot of knowledge from the programmer how

to efficiently parallelize an application, not only generally speaking, but also to exploit the
full potential of a particular GPU. In a similar fashion to OpenMP [DM98], OpenACC 3

allows the programmer to define parallel regions (such as loops) in the code. Those are then
automatically compiled into code that is able to run on GPUs, without the programmer
having to program specifically for a CPU or GPU. Currently the OpenACC compilers are
proprietary, which slows the adoption of the standard. But in recent version, the Gnu Com-
piler Collection (GCC) started to add basic support for OpenACC, potentially accelerating
adoption once fully supported.
As an open source alternative to OpenACC, PPCG [VJC+13] has a similar approach,

but is much more limited than OpenACC. As of late its development also slowed down,
making it unlikely to catch up with its competition soon.

3http://www.openacc.org/

51



5.3. State of the art 5. PARALLEL & DISTRIBUTED COMPUTING

As we have briefly discussed, there are multiple ways to parallelize applications on one
computer. The next Section 5.3.3 describes at the methods used when all the power of a
single computer is not sufficient and the workload needs to be distributed over multiple
machines.

5.3.3. Distributed computing
Various distributed computing models have been developed over the years. Nowadays most
distributed computing models are based on the private memory approach instead of a
distributed shared memory approach. To communicate, the different distributed instances
use some sort of message passing, which can come in various forms. Especially in the high
performance computing (HPC) world, MPI (Message passing interface) [For94] is currently
the defacto standard approach to distribute calculations. MPI is a low level message passing
API that enables developers to use message passing in C, C++ and Fortran applications,
with Unofficial version existing for other languages like Java as well. Part of the reason of
its success comes from the fact that the API is low level, which allows for a lot of manual
optimizations to ideally utilize the available resources. Especially in an HPC environment
this is important, but complicates the development of applications as it puts a lot of burden
on the developer.
Before MPI existed, a similar model has been proposed under the form of the Actor

model [HBS73]. In the actor model, algorithms are described as individual actors that are
executed in parallel. Those actors communicate through messages, which prompt them to
perform a certain task, which may again produce new messages. Most prominently Erlang
[CT09] implements the actor model, but newer approaches like Akka 4 are now widely used.
A different take for distributed computing has been taken by the remote procedure

call (RPC) approach. In RPC, function calls can be executed remotely, usually both syn-
chronously or asynchronously. Calling methods, remotely or locally, is a well understood
process that programmers are able to use. But simply being able to call remote function is
not enough to create parallel distributed applications, which require additional tools, like
threads and synchronization mechanisms. Examples of RPC implementations are CORBA
and RMI, as well as the POP-Model, described at the end of this Section.
A more recent approach which gained a lot of traction is the MapReduce [DG08] com-

puting model, most prominently implemented by Hadoop [Whi12]. The fundamental idea
of MapReduce is to split an algorithm into two main parts, map and reduce. The first part,
the mapping part, transforms a specific element into a different one, by mapping it to that
new value. This new set of values is then sent to the reduce function, which collects all
those values to reduce them to a single result. The idea behind this is that the individual
parts can be programmed relatively easily, and more importantly, they can be distributed
easily over many computers. Of course this approach also has downsides, like the restriction
on which types of algorithms can be efficiently implemented using this type of abstraction.
But the appeal of this new method is to easily scale up to a large amount of computers to
perform the calculation, as well as having robust fault tolerance.
In this context it is also important to mention the POP model, which stands for Parallel

Object Programming, was first proposed in 2002 [NK02] by Nguyen and Kuonen. The POP
model has been implemented as an extension of the C++ programming language, called
POP-C++ [NK07]. It has notably been used for projects like Alpine3D [KBL16], which

4http://akka.io/

52



5.4. Summary 5. PARALLEL & DISTRIBUTED COMPUTING

is used to determine the risk of avalanches. Before the start of our works, a prototype of
POP-Java [CS10] had been developed by Valentin Clement. This prototype will serve as
the basis of further work and is described in more detail in Section 8.4.
The core idea of the POP model is that objects are ideal elements to distribute calcula-

tions: they can hold both data and methods and can communicate between each other. The
concept of objects and how they interact is well understood by most programmers, which
makes it an approach which can be easily understood by programmers. This goal is achieved
by an RPC approach, not unlike CORBA, but with a more performance in mind, using a
low overhead protocol. What distinguishes the POP model from other RPC approaches like
CORBA and RMI, is the ability to easily create new objects remotely and the fact that it
can also be used in a local environment to parallelize an algorithm over multiple processors.
Thus, a major focus of the POP model is to allow for easy parallelization in a distributed
as well as local system, abstracting most of the complexity from the programmer.

5.4. Summary
In this chapter we discussed distributed and parallel computing and how they evolved
over the years. The different parallel and distributed programming models were presented
and how they fit into the general history of the field. The different approaches to parallel
computing on both CPUs and GPUs as well as distributed computing were discussed. A
very diverse amount of methods exist to solve those problems, with sometimes very different
concepts, making it hard for programmers to understand.
This is why we also presented the POP model, a distributed programming model in-

tended to be more accessible to programmers than existing methods, due to its similarity
to standard object oriented programming.
This is the end of the Foundations par and in the next part, Methods, we discuss the

different contributions made during this thesis.

53



Part II.

Methods

54



6. Graphical pipeline
In this chapter we present our graphical NGS data analysis pipeline which intends to create
an intuitive work environment for geneticists, especially in a diagnostic environment. The
primary goal was to create a more accessible way to analyze NGS data, as well as to integrate
the different methods described in Chapter 7. This chapter is partially based on the journal
publication DNAseq workflow in a diagnostic context, and an example of a user friendly
implementation [WKDA15a]. Real life examples of the usage of the work described in this
chapter can be found in Chapter 9. The evaluation, done by a user survey, of the impact of
the graphical data analysis pipeline is also presented in that chapter. Every aspect of the
work presented in this chapter has been designed and implemented by the author, under
the guidance of his supervisors.

6.1. Introduction
Analysing NGS data is a complex operation with many different tools that focus on one
particular aspect or type of analysis. For many types of analyses, multiple alternative tools
and methods exist to achieve the same or similar goal. We also explored the creation of
NGS data analysis tools in a later chapter (Chapter 7), trying to address various issues
in terms of the complexity of OMICs data analysis. While those works mainly focused on
optimizing existing methods and data visualization, they did not address the complexity of
handling those tools and doing the actually performing OMICs data analysis. Considering
the multitude of tools, data formats and types of analysies that can be done, this is a
critical aspect of NGS data analysis. Having an intuitive user interface which abstracts the
underlying complexity of the task from the user, while still giving him enough flexibility to
perform the work he wants to do, is crucial.
Various graphical or automatic OMICS data analysis tools exist, approaching this prob-

lem from different angles. An overview of those tools can be found in Section 3.1.1.
To understand the choices made that lead to the development of the graphical pipeline

created during this thesis, the target audience of the application needs to be described in
more detail. In the year 2011, NGS data analysis was still very new if not to say absent in the
domain of diagnostics. The human genetics department of Würzburg started with NGS data
analysis, mostly related to BRCA1 and BRCA2 cancer screening. But the solutions available
at that time were lacking and too complex for geneticists not trained in bioinformatics to
handle. This is why during the authors master thesis in computer science, a prototype of a
more accessible friendly user interface for this type of analysis was created [Wol11]. Section
6.2 takes a closer look at this prototype that preceded this PhD thesis.
In Section 6.3 we look at the needs the human geneticists have and how those evolved

since the initial prototype, as well as the implementation details and methods used to
implement the graphical pipeline. The discussion of the chapter can be found in Section
6.8. Due to the nature of this chapter, the results are discussed in the Applications part of

55



6.2. Prototype 6. GRAPHICAL PIPELINE

the thesis, in Section 9 where the usage of developed pipeline in different research projects
is detailed.

6.2. Prototype
The graphical pipeline presented in this chapter, GensearchNGS, initially started as a
semester project during the master thesis of the author. The author developed a proto-
type of a genome browser during a semester project, under the supervision of the company
Phenosystems SA. After this initial semester project, the genome browser was extended to
create the first prototype of the graphical pipeline, called GensearchNGS. The goal was to
create a graphical user interface to go from raw sequencing data to the final variant report
that can be sent to the clinician. The previously developed genome browser was integrated
for the data visualization part. This section gives a brief overview of the state of the project
when this thesis started, more details can be found in [Wol11].
The basic motivation of the initial project was the lack of suitable tools for end users to

perform NGS data analysis, especially in a diagnostic environment. The main use-case for
the application was the Human genetics department at the University of Würzburg, which
recently started to get NGS data, but lacked the tools to properly analyze the data. The
focus of the initial prototype was rather narrow, focusing only on targeted gene sequencing
(with the target being 1-2 genes per patient) and mostly Roche 454 sequencing data. Only
the main workflow was implemented to show the viability of this approach. Even though
the user had very little options, the main features already worked to support the initial
needs of the Human genetics department in Würzburg. The raw sequencing data could be
imported and managed for different patients. The data could also be aligned using either
external aligners or a custom aligner developed during the project. Varscan 2 was used to
scan the alignments for variants. While the variants could be visualized inside the genome
browser, no filtering or annotation was available yet. But still, the user could go from
the raw sequencing data to the visualization and report generation of manually validated
variants. This already allowed the geneticists to work with their data, which at the time
was limited in size, even if much manual work was required. Figure 6.1 shows the main
window of the prototype application. As we will see later, the overall structure of the main
window (as well as the genome browser) stayed similar. Figure 6.2 shows the prototype of
the genome browser.
The prototype developed during the master thesis contained many of the core elements

of the graphical pipeline developed later, but was lacking in terms of features and stability.
On the other hand, the prototype could show that this type of approach is useful for the
users and is as a good starting point. Over time, the lack of genome wide NGS analysis
became apparent in all parts of the software. Much had to be rewritten and optimized to go
from single gene datasets to full genome datasets. Indeed, scaling the prototype from single
gene analysis to full genome analysis as well as greatly diversifying its features have been a
big focus of the work done since the first prototype. At the same time, as the application
became more and more popular and was no longer a pure prototype but actually used by
geneticists for their daily work, a lot of focus has been put on polishing the user experience.

56



6.3. Methods 6. GRAPHICAL PIPELINE

Fig. 6.1.: Prototype of the graphical pipeline
[Wol11]

Fig. 6.2.: Prototype of the genome browser
[Wol11]

6.3. Methods
To develop a user friendly graphical NGS data analysis pipeline, we used the prototype
described in the previous Section 6.2 as a starting point. The development of the various
features was guided by the needs of the Human genetics department at the University of
Würzburg or other laboratories using the software. Through the different research projects
which were performed in collaboration with the Human geneticists, many of which are
described in more detail in Chapter 9, the feature set expanded.
The goal for the graphical pipeline can be stated as follows:

• User friendly NGS data analysis targeted at users with no bio-informatics skills

• Support data analysis tools required for human diagnostics, as well as basic research

• Integrate DNAseq, RNAseq and bisulfite sequencing analysis in the same application

• Run on standard hardware without the need for expensive computers

• Follow the guidelines required in a diagnostic setting

Those goals are modeled after the diagnostic software requirements described in Section
4.3 and especially the workflow described in Figure 4.1. Based on the described software
requirements and the requirements of the human genetics department to perform both their
clinical diagnostics and research tasks, we came up with the following list of features that
are required. They closely follow the previously described workflows for DNA-seq (Section
3.1), RNA-seq(Section 3.2) and bisulfite sequencing (Section 3.3).
The core feature of the software, which was already prototyped in the first prototype,

is the ability to manage different data analysis projects with their associated patients and
data. This is described in more detail in Section 6.5. The different data analysis steps,
such as quality control, sequence alignment and variant calling are described in Section
6.7. The analysis of the detected variants is discussed in Section 6.7.4, with more advanced
variant analyses, like trio-analyses, described in Section 6.7.5. The detected and analysis of
CNVs is described in Section 6.7.6, allowing to detect genomic features bigger than variants.

57



6.4. User interface 6. GRAPHICAL PIPELINE

The way how the data analysis is parallelized and distributed over multiple computers is
described in Section 6.7.7. Other features that are also part of the graphical pipeline, like
the genome browser (Section 7.6), RNA-seq data analysis (Section 7.4) and methylation
analysis (Section 7.5) are described in the data analysis Chapter 7. Those features are
presented separately so that we can focus on the graphical pipeline itself in this chapter.
The graphical NGS data analysis pipeline containing the discussed feature has been

developed in Java 6+ which allows it to run as a cross platform application on Windows,
Linux and OSX. As will be detailed in the following chapters, we are able to work with
various standard bioinformatics file formats (also described in Section 3.4). The support for
those file formats for either read and/or write support has be done through both custom
code and external libraries. The GUI was entirely developed using the Swing framework,
which is part of Java, allowing to have a consistent user interface across all platforms.
The following external libraries have been used to develop various features in the pipeline:

HTSJDK 1 is used for all access, read or write, for BAM files, which store the alignment
data. The library JTar 1.1 2 is used to access TAR archives, which are used for example
to store to read archives including multiple VCF files. The GSon 2.2.4 3 library is used
when communicating with REST servers, such as the Ensembl REST API. For distribution
purposes, both DIRMI 4 and POP-Java (Chapter 8) are used in the pipeline, especially
for the aligner. We also include the bzip2, which comes from the Apache project, as well
as Apache common-lang 3.3.2 and Apache commons-math 3.3, which are used for various
purposes throughout the application.
For cloud computing support, we include JClouds 2.0 5, which is also an Apache project.

6.4. User interface
The user interface has been designed to be as intuitive as possible. This was achieved
through an iterative approach based on prototypes of features and user feedback. The
feedback used to improve the interface came from multiple laboratories, with the major
contributor being the laboratory of human genetics in the University of Würzburg.

Fig. 6.3.: Main interface of the graphical pipeline

1http://samtools.github.io/htsjdk/
2https://github.com/kamranzafar/jtar
3https://github.com/google/gson
4https://github.com/cojen/Dirmi
5https://jclouds.apache.org/

58



6.5. Project management 6. GRAPHICAL PIPELINE

Figure 6.3 shows the main user interface of the graphical pipeline. On the left side, the
user is presented with the various patients in the project, which have data files associated
with them. The data is organized in a hierarchical fashion, meant to represent the general
workflow of the sequencing data, going from raw data over an alignment to the final analysis
report.
The context sensitive user interface displays only what is required by the user. This

includes for example to only show RNA-seq specific options and tools when a user selects
an RNA-seq dataset, to not overwhelm him with too many options that he often doesn’t
need.
In addition to this, as the application is used by different types of users in both diagnostics

and research environments, we added the option to show or hide advanced options as well
as experimental features. This includes options for the sequence aligners, variant caller as
well as data analysis features which are under development but can be tested that way by
a larger audience.
The various tools required for NGS data analysis are accessible either through the ap-

propriate data entry in the data tree, or through the Tools menu.

6.5. Project management
When analyzing a lot of NGS data with many samples and various projects, it is important
to have a comprehensive way to organize the data. Due to our focus on diagnostics and
thus on patients, we opted for an approach in which projects and patients are the central
units in which the data is organized.
The user can create independent projects which are self-contained. The project is saved

as an entry point file, an associated folder and multiple configuration files which contain the
configuration of the patients, references and regions of interest, all of which are explained
later. The XML file format is used to store this data.
Inside a project, various patients can be created which have multiple attributes that can

be modified by the user. Those include the name, the ID, gender and phenotype associated
with this patient. Those attributes are used to identify the patient in the reports which are
generated and also to influence data analysis as well as making it possible to use the search
feature which finds a particular patient across multiple projects.
A project is not only defined by its patients. The user can also set various project specific

settings, or the references to be used, which can vary from project to project. While in most
cases the complete human reference genome is used, this is not always the case, and even if
it is, the exact version which is used can vary (for example hg19 vs hg38). Figure 6.4 shows
the interface provided to the user to manage the references for the current project.
This dialog includes the possibility to automatically download the human reference of a

specific version, as well as individual gene references or import the already existing refer-
ences from another project. This is done to decrease the manual work required by to user
to a minimum, so that he does not have to download the reference manually from a website
and also to make it easier for a laboratory to use a consistent set of references.
Another project specific setting the user can configure in shown in Figure 6.5. This dialog

allows the user to configure the Regions of Interest, which are genomic regions which can
be used as filters for the various data analysis steps, most notably, to filter variants. Those
genomic regions are defined using the BED (see Section 3.4) file format. The BED file
can either be directly provided by the user, or generated from a particular gene (or list

59



6.6. Annotations 6. GRAPHICAL PIPELINE

Fig. 6.4.: Reference management Fig. 6.5.: Regions of interest management

of genes) by using the gene information provided by Ensembl [CAB+15]. This feature has
several use-cases, with most notably the ability for the user to specify the exact genes that
he wants to analyze in this particular project. This comes in handy when analyzing a gene
panel, using exome sequencing. Specifying the exact genes to analyze reduces the risk of
incidental findings, something many laboratories are required to do when analyzing patient
data.
Inside the project, the data is organized in a hierarchical fashion. This is also directly

shown to the user, as seen in Figure 6.3, where we can see patients, which have associated
raw data which in turn has an alignment. The way the data is organized is modeled after
the general workflow for NGS data analysis described in Section 4.3 (see Figure 4.1) and
intends to guide the user naturally through the data analysis.
A project has also project specific data analysis settings, which are updated and used

automatically during the data analysis described in Section 6.7. Those settings include the
default aligner used as well as its parameters, the filter settings for the variant lists and
more. Like the other settings, they can be imported at any time from another project as
well as being reused when creating a new project.

6.6. Annotations
Annotating genomic features, especially variants, is the core of much of the data analysis
and interpretation that is done in NGS data analysis. We separate two types of annotations
for the purpose of this section.
The first annotation type is the gene. Genes have a name and a specific position on a

chromosome. They can in turn have multiple transcripts, each with a different function
(such as protein coding, non-coding etc.). The human genome has an estimated 20’000-
25’000 genes, with many not completely documented or not even discovered. Different
organizations try to classify and name the known genes, to make it easier for researchers
to work with them by providing them with a gene model. Two of the most used gene
models are Gencode [HFG+12] and RefSeq [OWB+16], which in many parts are equal,
but do have certain differences which can influence the data analysis results [FUR+15].
Knowing where the genes are is essential when annotating genomic data, as the genes are
the currently understood functional units of the genome. Various types of information are
associated with genes, beyond their basic type as stated earlier. While not provided by the

60



6.6. Annotations 6. GRAPHICAL PIPELINE

original gene model, additional data sources can be used to associate genes with relevant
information. This can for example be the association of a gene with a specific phenotype,
certain biological processes or its association with a pathway. Having a complete gene list,
augmented with those additional information, allows any genomic feature with a known
position on the genome to be associated with one multiple gene and thus connected with
all information related to that gene.
The second type of annotation is feature specific, or as in our case, directly associated

with certain variants. While a variant can be directly linked to genes and annotated that
way, for many variants their effect has been studied in more detail. Projects like the 1000
Genomes project [AAA+15] and Exac [Lek15] provide information about the frequency at
which a particular variant has been observed in the general population. Other projects
like ClinVar [LLB+16] provide information about the pathogenicity of a variant, which is
determined through previous studies that directly link a variant in an individual with its
phenotype. But those annotations not only contain manually observed annotations, but also
predictions about the effect of a particular variant. Various algorithms exist to that effect,
such as Polyphen 2 [ASP+10], SIFT [KHN09] or the Human Splicing Finder [DHL+09].
Accessing and handling those different types of annotations, which come from various

sources in different formats, can be challenging. This is why we designed a data structure
for both genes and variants that can accommodate those different annotations and once
loaded can be easily accessed by the application. The data structure has been designed in
a way that multiple backends can be supported to retrieve the data. For our purposes, the
main datasource is the Ensembl project [CAB+15] which provides a public API to access
their gene model. The Ensembl gene model is based on the Gencode gene model. A separate
proof of concept backend for the UCSC [KSF+02] was also developed, but is not actively
used yet.
The Ensembl database is accessed both through its biomart webservice, as well as its

REST webservice. The results of the webservice queries are cached locally, to allow faster
access whenever the data is loaded a second time. The Ensembl webservice is used to get
the general gene model, which contains all genes with their transcripts and exon locations.
Those genes are then annotated using HPO [KDM+14] with phenotypes, Gene Ontology
[BCD+15] for functional annotation and KEGG [KSK+16] to associate the genes with
pathways. In addition, phenotypes are also loaded from Orphanet 6 and OMIM 7. For all
those additional datasets, custom loaders have been developed to download and parse the
annotation information which is then integrated into the internal gene data model used
throughout the application. Both HPO and Gene Ontology use a standardized fileformat
to describe their ontology, called the OBO file format, which not only contains the different
annotations for the genes, but contains the connections between those different annotations
in a tree like structure. This hierarchy allows of annotations allows for specialized or generic
queries on the annotations. For example the GO term GO:0005102 (receptor binding) is a
child of GO:0005515 (protein binding). When for example a gene is searched with a certain
annotation and the query has no result, one can expand the search by moving one up in
the hierarchy of annotations, launching a more generic search.
As for gene annotations, Ensembl regroups various data sources directly into its database,

notably dbSNP [SWK+01], Exac, SIFT, Polyphen 2 and the 1000 genomes project. This
allows us to query the Ensembl database about a particular variant and then annotate it

6http://www.orpha.net/
7http://omim.org/

61



6.7. Data analysis 6. GRAPHICAL PIPELINE

with the information from various data sources, without having to access them one by one.
The internal data structure containing the annotations is used not only to annotate ge-

nomic features like variants, but also during visualization, to display exact gene information
when viewing NGS data with the genome browser. How the annotations are used and in
what context is discussed more in the next section about data analysis.

6.7. Data analysis
This section details the different types of data analyses that have been implemented inside
the graphical pipeline. Some of the data analyses are described in more detail in Chapter 7,
this is why this section concentrates on the user interface parts as well as the implementation
on a non algorithmic level.

6.7.1. Quality control
Quality control is an important part of the NGS data analysis workflow. When importing
raw data into the pipeline, the user is guided through a quality control and data conversion
step. The standard raw data format which is supported inside the pipeline is the FASTQ
format. This is mostly because most external tools, like aligners, expect FASTQ files as their
input. As not all sequencers export their sequences in the FASTQ format, as a first step if the
user inputs a different file format, it is converted to the FASTQ file-format This is directly
integrated into the pipeline, to not make it necessary for the user to use command line
tools to convert the files. The following file-formats are supported and converted to FASTQ:
standard flow format (SFF), FASTA and the 454 sequencers FASTA file accompanied by a
quality file. Due to the modular nature of the code, other file-formats can easily be added.
After the conversion process finished, the resulting (or original) FASTQ file is analysed

to determine the quality control values of the sample. At the same time, in the case of
paired end sequencing, it is also verified that both supplied files match (as in, they have
the same amount of sequences). The following metrics are calculated: Sequence length
distribution, sequence quality distribution, sequence GC content distribution, the ACTG
base distribution inside the reads, the quality per base, the amount of uncalled bases and
the over-representation of k-mers of length 5 at the start and end of the reads. Figure 6.6
shows some of the generated statistics that are produced during this process.
The graphs shown in Figure 6.6 can be exported as images or a PDF file for archiving

purposes as a quality control report.
Following the quality control step, the data can be filtered according to some given

criteria. This includes the removal of barcodes, which can also be used to split the data
into multiple samples. The user can also specify values to trim the data (for example to
remove the last X bases of every sequence) or filter reads which are longer (or shorter) than
a certain length.
The resulting raw data file can be saved for a given patient in the software, in order to

align the data and to further analyze it.

6.7.2. Sequence alignment
Sequence alignment is one the most important tasks of the data analysis when analyzing
NGS data. This important task is directly integrated into our graphical pipeline. As de-

62



6.7. Data analysis 6. GRAPHICAL PIPELINE

Fig. 6.6.: Overview of quality control measures for raw data

scribed earlier in Section 3.1.1, many sequence aligners currently exist and for reasons of
cross platform compatibility, we also developed our own which is described in Section 7.1.
Each aligner has different advantages and disadvantages depending on the datasets used,

and many laboratories have requirements for specific aligners. This is why we decided to
integrate the sequence alignment in the form of plugins, allowing for multiple sequence
aligners to be integrated. The main goal was to integrate them transparently to the user,
without the user having to learn different workflows for each of them.
We identified the following general workflow that every aligner follows, and which can be

abstracted to the user.

• Using one or two (paired end sequencing) FASTQ files as input.

• One more multiple FASTA files as the reference sequence input.

• Creation of a reusable reference index before the first alignment, stored alongside the
reference sequence.

• Ability to set options that influence the alignment process.

• They create a non-sorted SAM file, which contains the alignment details of every
sequence that was aligned.

• The conversion of that file to a sorted BAM file, in our case using the HTSJDK library

63



6.7. Data analysis 6. GRAPHICAL PIPELINE

This last step is required as most NGS data analysis tools require sorted BAM files to
perform their analysis. BAM files are a more space efficient version of SAM files, which can
also be read faster.
We implemented plugins for all major aligners used by the laboratories with which we

collaborate. Those are BWA [LD09] (and BWA-MEM [Li13]), Bowtie [LTPS09], Bowtie
2[LS12a], Stampy [LG11], CUSHAW2 [LS12b] as well as our own aligner (Section 7.1).
The user can either configure the location of the executable of those aligners himself in
the configuration of the software, or if it is placed in the local path, they will be detected
automatically and made available.
With sequence alignment being the most time consuming task in terms of data analysis,

we implemented a way for the user to distribute the alignment over multiple computers.
More about the distribution features implemented can be found in the aligner Section 7.1
and the general distribution Section 6.7.7 for the graphical pipeline.
With the sequence alignment being so costly in terms of computing time, it is more and

more common for the sequencing machines to include an aligner which is custom fit for the
specific data they produce. In that case, the generated alignment files, usually in the BAM
format, can be directly imported into our graphical pipeline without having to perform the
sequence alignment. The import of the alignment files is made as easy as possible for the
user, through several means. If necessary, the imported data is converted into the right
format. This is most commonly the case if an unsorted SAM file is provided instead of a
position sorted BAM file.
The BAM file is also automatically associated with the correct references, using the

references configured for the project, while still giving the user the choice of the sequence
to use.
Additionally, the type of the imported data is automatically determined based on the

aligner used to create the alignment file. By default the imported data is set to be DNA-seq
data, but if an aligner specific to RNA-seq or bisulfite sequencing is detected, the data
type is changed. The currently supported aligners are: Bismark [KA11] and BSMap [XL09]
bisulfite sequencing data and STAR [DDS+13] for RNA-seq data.
After either importing a BAM file or aligning raw data, the quality of the alignment is

determined, similar to the quality of the raw data discussed in Section 6.7. The next Section
6.7.3 looks at the tools which allow the user to perform this quality control.

6.7.3. Coverage analysis
In this section we look at the second round of quality control, which determines the quality
of the aligned data. This is an additional quality control step, after the one described in
Section 6.7.1 that looked at the raw data, which takes an alignment as its input. It is just as
important as the first quality control, as having good quality raw data does not guarantee
that the targeted areas of the genome have been sequenced correctly. Some parts might be
missing or badly covered, something which will be detected during this phase.
To determine if all relevant parts of the genome have been sequenced correctly, we in-

tegrated our custom developed coverage analysis tool. While the overall coverage of the
alignment is displayed to the user, this information is often of very little importance when
analyzing gene panels or exome datasets. Using the regions of interest defined by the user,
we determine the coverage of the regions that are of interest for the analysis that is being
performed. Figure 6.7 shows the user interface for coverage analysis.

64



6.7. Data analysis 6. GRAPHICAL PIPELINE

Fig. 6.7.: Detailed region of interest coverage statistics

The user can indicate the minimum coverage that is required for every region, highlight
the regions which do not meet this requirement. The resulting analysis can be exported as
a report to document the data analysis.
Once the coverage has been analyzed and all regions have sufficient coverage, the actual

data analysis can start, which in the case of DNA-seq is variant analysis, presented in the
next Section 6.7.4.

6.7.4. Variant analysis
Variant analysis is the main data analysis for which the pipeline has been originally devel-
oped. It starts with the detection of variants, which is done through GNATY (Section 7.3
), the variant caller developed during this thesis. The user can scan for variants and set
the variant calling parameters from inside the pipeline, with the last settings being applied
by default to make the analysis easier. Alternatively, an external variant calling file (for
example a VCF file) can be imported, thus allowing the integration into an existing data
analysis infrastructure.
Once the variants have been detected, the main part of the data analysis is to determine

the relevant variants for a particular sample. Figure 6.8 shows the window displaying all
the variants of a particular sample.
As can be seen in the variant list, a lot more information is present than what is present

in the underlying variant file (See Appendix C.1). The variants are annotated with various
information to make their analysis easier and allow the user to make a better judgement
about their importance.
The first annotation is the link between the variants and their affected genes. The anno-

tations are applied using our annotation framework described in Section 6.6. The variants
are associated with the genes that they affect (determined by their position) and thus ben-
efit from the annotations of the genes. Additionally, the effect of every variant is prediction
on the genes it affects, in a similar fashion to the variant effect predictor from Ensembl
[MPR+10]. We developed our own variant effect predictor, as relying on an online service
is too slow when dealing with thousands of variants. The user is always shown the worst

65



6.7. Data analysis 6. GRAPHICAL PIPELINE

Fig. 6.8.: Variant list with three active filters

consequence of the variant across all genes and transcripts that it affects. Using regions of
interest (Section 6.5), the user can specify the particular transcripts and genes he wants
to use for the effect prediction. Other than the gene and effect prediction, which can be
done mostly using locally cached data, there are also variant specific annotations which
are added. Those come automatically through the Ensembl biomart webservice, adding in-
formation like if a variant is already known in a public database and at what frequency.
Additional information like the predicted consequence, using SIFT [KHN09] and Polyphen
2 [ASP+10] scores, as well as the clinical consequence as described by ClinVar[LLB+16],
are recovered. Those are regrouped in the prediction column, always showing the worst
prediction of the three data sources. Alternatively to the Ensembl biomart webservice, the
user can also annotate the variants using a local variant file. This can for example be the
VCF file from dbSNP [SWK+01] or the output file of the Alamut batch analysis. Thanks
to this, the annotation of big datasets can be speed up and the user also controls the exact
version of the annotations applied to his data.
Once the annotation process is complete, the user can search for the relevant variants in

his sample. Being able to search and filter variants is important, as most of the thousands
of variants in a sample are not relevant to the analysis. The common tools to perform this
task are not interactive, they apply a certain set of filters on a list of variants to produce a
new variants list. We opted for a more user-friendly approach, with filters that update the
variant list on the fly, allowing the user to better understand their impact on the result.
The resulting interactive variant filtering interface was presented at the 13th International
Symposium on Mutation in the Genome: detection, genome sequencing & interpretation as
a poster presentation [WKDA15b].
The user is presented with the choice of various filters, allowing to filter the different

aspects of a variant to reduce the amount of variants in the list. The following filters have
been implemented:

66



6.7. Data analysis 6. GRAPHICAL PIPELINE

Base filters
There are seven base filters that apply to the basic properties of the variants. Position filters
the variants based on their position. Frequency uses the frequency at which the variant has
been observed. With the coverage filter, the variants can be filtered based on their coverage,
for example to filter out low coverage regions. The quality filter is used to filter variants
based on their quality, which is determined by the variant caller. The supporting reads
filter looks as the amount of times the variant has actually been seen in the alignment. To
filter variants based on their balance, be it the balance of the variant itself or the general
positional balance, the position balance and variant balance filters are provided.

Gene filters
The gene filters apply to the gene that is affected by the variant, five of them have been
implemented. The first filter, genes count allows to filter the variants according to the
amount of genes they affect. This is notably useful to filter out variants which affect no
gene. The second is the gene names filter, which filters variants according to the names of
the affected genes. The third filter, called exon distance filters variants according to their
distance to the closest exon, allowing the user to look at exonic or intronic variants. The
fourth filter, called phenotype, filters variants on the phenotypes that are associated with
the genes they affect. The last filter, function, is similar to the phenotype filter, but filters
on both pathways and gene ontology annotations. This is particularly useful for exome or
genome wide analyses, that do not have a definitive gene panel for the analysis.

Annotation filters
The annotation filters apply to the annotations specific to every variant. Five such filters
have been implemented. The first and most used filter is the type filter, which filters the
variants based on their consequence (such as missense). The minor allele frequency MAF
filter allows the filtering on the information of how frequently the variant has been found
in the general population. With the known filter, the known status of the variants can be
filtered, removing known or unknown variants. The prediction filter filters on the worst
prediction the variant has. The last filter local classification looks if the variant has been
previously seen in the local variant database and if yes with which type.

Other filters
The two last filters are a little special, as they do not fit into any of the other categories.
The file based filter takes either a variant file or a bed file, and determines if the variant
is present in the given file. If a variant file is given, the same variant needs to be present
(or not present) in the given file. If a bed file is used, the variant needs to fall inside (or
outside) a region of the bed file. The second filter is very similar, but uses the regions of
interest set for the current project to do the filtering (which works the same way as the bed
file filter).

All of those filters can be combined, as well as used multiple times. This is for example
useful to search only for heterozygous variants, where the minimal frequency could be set
to 25% and the maximal frequency to 75%.
The interactive filtering, which also runs on slower computers with even full genome

datasets, greatly helps the data analysis. While for clinical diagnostics the filters are usually
fixed to certain values (which are remembered), it gives the user enough flexibility to do
more broad types of analyses.

67



6.7. Data analysis 6. GRAPHICAL PIPELINE

The presented variant analysis is used to analyze one sample at a time. For more advanced
types of analyses, such as a trio analysis, Section 6.7.5 presents the tools implemented in
the visual pipeline for that purpose.

6.7.5. Variant comparator
The variant analysis described in Section 6.7.4 works great when looking at single samples.
But for clinical analysis (as well as research), it is often required to compare multiple
samples between each other to determine the relevant variants. A common example of this
is the trio analysis, which compares the variants from both parents of an individual as well
as the individual. One possible use-case for this type of analysis is to find the so called
de-novo variants which are only present in the offspring and not in the parents. It has been
shown [VB12], those variants have a significant contribution to genetic disorders.
Two solutions to perform this type of analysis have been implemented, both with a

different focus in terms of flexibility and performance. Comparing potentially millions of
variants over multiple patients is a memory and computing power intensive operation.
Especially if filters are applied to the variants which require online annotation, the overall
time of the data analysis can quickly become problematic.
For this reason, the first method to analyze multiple samples at the same time by com-

paring them, called “Variant comparator” was implemented. The user defines during a first
step multiple groups of samples (which are picked directly from the available samples inside
the currently open project) to compare them. A sample group can have multiple variant
filters applied, to reduce the amount of variants inside the group. It is also possible to define
if a variant group is negative or not, making it possible for example to subtract all variants
from one group to the variants in the samples of the other group. The mentioned de-novo
analysis can thus be achieved by using two groups, one with the offspring, and one negative
group with the samples of both parents.
The comparison has been optimized to keep the number of variants stored simultaneously

in memory as low as possible, while, at the same time, prioritizing less costly filters. If for
example a sample group requires its variants to have at least a coverage of 30 bp, as well as
being known in a public database, the variants are first filtered according to their coverage
as this information is easily obtainable. In Figure 6.9 we can see the setup dialog of the
variant comparator tool, which lets the user create multiple groups as well as define their
content. Figure 6.10 shows the end result of that comparison, with a variant list that is
filtered according to the user settings.
While the users of the variant comparator tool, and in particular the University of

Würzburg, greatly appreciated this tool for both clinical diagnostics and research (See
[RBN+14], also discussed in Section 9.2), it lacked the flexibility and ease of use of the
other tools of our graphical pipeline. As most datasets analyzed are not full genome or even
full exome datasets, a more interactive tool was designed and implemented. The successful
user interface of the sample variant list described in Section 6.7.4 has been used as the
inspiration for this new tool.
Displaying and filtering a list of variants to determine the variants of interest in a single

sample has been intuitive for the users of the application. We extended this notion by allow-
ing the user to open the variant lists of multiple samples at the same time, automatically
grouping the variants over multiple samples. Without having to indicate the exact com-
parison and relationship between the samples beforehand, the user can have an immediate

68



6.7. Data analysis 6. GRAPHICAL PIPELINE

Fig. 6.9.: Variant comparator setup
screen with group configura-
tion Fig. 6.10.: Result of the variant comparator tool

overview of the variants in multiple samples. We can see the merged variants window in
Figure 6.11, with the patient specific filter dialog open.

Fig. 6.11.: Merged variant list of multiple samples

In addition to allow for an easy and interactive way to find de-novo mutations in a sample
(or many other more complicated tests), the tool can also be used to search for compound
heterozygous mutations. Compound heterozygous variants are usually two variants coming
as a pair on the same gene. The variants are both present in the parents, but only one
in each parent. By inheriting both variants on the same gene, the combination can cause
phenotypes not observed in either parent. Through the interactive filters provided to the
users, finding those variants is straightforward. Especially compared to other tools which
often require to use command line tools, our approach greatly reduces the complexity of

69



6.7. Data analysis 6. GRAPHICAL PIPELINE

this task.
Although several tools exist to analyze the variants in a sample to find the phenotype

causing variant, sometimes the observed phenotype does not come from a variant in the
classical sense. So called copy number variations (CNV) which delete or duplicate complete
regions in the genome can be at the source of those problems. To study them, we integrated
a tool for CNV analysis, discussed in the next section 6.7.6.

6.7.6. Copy number variations
A big part of NGS data analysis is related to variants, also called SNVs, which stands for
single nucleotide variations. But there are changes in a genome that can be larger than
single nucleotide variations and they have a large impact on the function of the genome.
Such changes, which are typically larger than 50 bp, are called structural variations. They
can come in several forms, but we are mainly interested in copy number variations (CNVs),
which represent a change in the amount of copies a certain region has.
To take an example, every exon of a gene is present two times, once on both chromosomes.

If this exon is duplicated in the genome, it will be present 3 times in the genome, which
can be seen as a 50% increase (on average) in coverage for that region. The same is true
for deletions, where one or both copies of a specific region can be missing.
Traditionally, CNV analysis has been done using MLPA (Multiplex Ligation-dependent

Probe Amplification) [SMW+02], which is a method which does not use NGS technologies.
But recently, the usage of NGS data to perform CNV analysis has become increasingly
popular. Various tools exist to perform this task, but most of them require command line
tool experience and manual configuration of these tools. A great overview of the available
tools is given by [ZWW+13].
To reduce the complexity of this type of analysis, we directly integrated into the graphical

pipeline a tool to detect CNVs. The first use-case was to detect CNVs in a single gene, which
lead to the publication of [BWO+15b], also discussed in Section 9.1.1. The user can select
both the reference samples and the test sample to compare against the references, as well
as set different analysis options. The results of the analysis can be seen in Figure 6.12.
The CNV analysis can run in two modes, the genome wide mode as well as a restricted

mode. The initial development of the CNV tool only used the genome wide (or in that
case gene wide) mode, which searched the complete alignment for CNVs. The user can
set a minimal coverage, length as well as difference between the sample and the reference
for a CNV to be detected. While this mode works well for small samples, as shown in
[BWO+15b], it produces a lot of false positives when looking at large datasets.
This is why the second mode restricts the detection of CNVs to the regions of interest

defined by the user. This is especially interesting for the case of exome sequencing, where the
individual regions sequenced are exons. Using a BED file, usually provided by the sequencing
kit, the CNV analysis is focused on the individual exons that have been sequenced. For every
exon, the coverage for the reference and test samples are determined and compared using
a t-test.
For normalization, we use the library size (amount of sequences in the aligned BAM file)

of every sample. Alternatively, the mean and average coverage can be used, but they are
prone to more false positives and are thus hidden by default. To calculate the fold change,
by default the average of the reference and test samples is used, but alternatively the best
fitting sample can be used.

70



6.7. Data analysis 6. GRAPHICAL PIPELINE

Fig. 6.12.: CNV analysis results

6.7.7. Distribution
The stated goals of the development of our graphical NGS data analysis pipeline is the
optimal usage of existing infrastructure to reduce the need to invest in costly computing
equipment. One of the most costly data analysis operations is the sequence alignment
against a reference genome, which is part of the graphical pipeline and is discussed in
Section 6.7.2. In Section 7.1.3 we describe how we distributed our own sequence aligner
over multiple standard computers as well as on the cloud.
This functionality has been integrated directly in the pipeline, requiring little effort from

the user to use it. The user has the choice of offering the resources of his local computer
to other installations in the same network, as well as the possibility to use the resources
of the other computers. This makes it possible to use the more powerful computers in a
network during sequence alignment, while using the slower ones only as clients. During the
start of the alignment process, the user can choose to use, or not, the other computers in
the network. Additionally, he can choose not to align any data locally, but only on remote
computers. Once the alignment process is started, an aligner job is automatically created
on the remote computers without any additional actions needed from the user. The jobs are
then finished and cleaned up as soon as the alignment is finished, but can also be manually
canceled on the remote computer through the user interface. If any, or all, remote aligners
are terminated, either willingly or through a malfunction, the alignment process continues
as long as computer that started the alignment is still running. Any sequences sent to a
remote computer which was shut down during the alignment are recovered. This type of
fault tolerance assures that all sequences are aligned under any circumstance.
To detect the different computers on the same network we implemented a custom network

discovery service. Every instance of the graphical pipeline that is setup to participate in
network based alignment broadcasts its information through over the network using the

71



6.8. Discussion 6. GRAPHICAL PIPELINE

UDP protocol. Transparently without any user interaction the different installations of the
graphical pipeline know about each other, making it possible to use them for distributed
alignment.
If the locally available resources are not enough, we also integrated the possibility to

use cloud resources from Amazon through the use of the JClouds library. To use the cloud
service, the user only has to configure a user-name, password and user group specific to the
amazon cloud to be able to use it. Once this is information is set in the general configuration
of the application, the usage of the cloud is transparent. Just like with the distribution over
the computers available in the local network, the user can set the amount of cloud instances
to be used at the start of the alignment. Starting up and destroying the virtual machine
instances in the cloud is handled transparently.
Both approaches can also be combined, with both multiple computers in the same network

as well as the cloud working together to align the data. Section 7.1.3 describes this process
in more details.

6.8. Discussion
In this chapter we presented the development of a graphical NGS data analysis pipeline,
aimed at supporting the analysis of OMICS data in a diagnostics and research environ-
ment. The feature set implemented has been strongly based on the requirement of the
human genetics department at the University of Würzburg. The developed pipeline allows
to perform the different NGS data analysis steps described in Chapter 4. By providing a
locally installed graphical pipeline which creates a local cache of online resource which are
used, we provide a stand-alone solution that can be used in an online or offline environment.
This flexibility makes it possible to adapt to future requirements for NGS analysis, such as
decentralized analysis or even analyzing NGS data at home.
The graphical pipeline presented is used by multiple laboratories and has supported

research published in multiple works. The details of how the graphical pipeline has been
used are presented in chapter 9, a chapter which also serves as a results chapter for the
presented graphical pipeline.
The next chapter 7 presents the different analysis tools developed in the graphical pipeline

in more detail.

72



7. Data analysis
This chapter presents the work that has been done during this thesis related to OMICS
data analysis. This work is mostly centered around the creation of more efficient as well
as more user-friendly implementations of OMICS data analysis tools. We look at different
stand alone tools and methods developed during this thesis. Most of the tools discussed are
integrated in a user-friendly graphical NGS data analysis pipeline, called GensearchNGS
[WKDA15a], discussed in Chapter 6.
The chapter starts out by discussing sequence alignment (Section 7.1), the fundamental

data analysis step for NGS data. The distribution of the workload over multiple computers
and the cloud are discussed in Section 7.1.3. In Section 7.2 a new method called meta-
alignment is presented. The method combines multiple sequence aligners to improve the
alignment quality and makes the choice of the right aligner and alignment options easier.
In Section 7.3 we look at a new tool developed for variant calling, which offers consider-
able speed improvements over current tools, making it possible to run the same analysis
on cheaper computers. Next we look at RNAseq data analysis in Section 7.4, as well as
methylation analysis in particular bisulfite sequencing data analysis in Section 7.5. To con-
clude this chapter, Section 7.6 discusses the genome browser we developed, which combines
the visualization of DNAseq, RNAseq and bisulfite sequencing data. Finally, the results
presented in this chapter are discussed in Section 7.7.
Unless specified, all the work in this chapter is the original work of the author.

7.1. Sequence alignment
In this section we discuss DNA sequence alignment, also called sequence mapping, a process
crucial for NGS data analysis in diagnostics. We developed a sequence aligner to serve as the
basis of other works, like the distribution of the alignment process over multiple computers
or the cloud. We discuss the implementation of this sequence aligner and especially the
distribution of its workload. The work presented in this chapter has been published in
several papers, such as: “Distributed DNA alignment, a stream based approach” [Bea12], “A
novel approach for heuristic pairwise DNA sequence alignment” [WK13a] and “Multilevel
parallelism in sequence alignment using a streaming approach” [WMK15].

7.1.1. Introduction
Aligning sequences generated through NGS is one key aspect of DNA data analysis, es-
pecially in the domain of diagnostics. The other major method to analyze NGS data is
sequence assembly, discussed in Chapter 3.1, a technique not used in our works. Sequence
alignment can come in various forms, be it multiple sequence alignment or pairwise se-
quence alignment. In pairwise sequence alignment, two pieces of DNA are aligned against
each other, to find the best way to combine them. Multiple sequence alignment on the other
hand compares multiple sequences at the same time, for example from multiple species, to

73



7.1. Sequence alignment 7. DATA ANALYSIS

align them against each other. This is for example useful to crate phylogenetic trees, a
type of analysis not used during this thesis. In this work we focused on pairwise sequence
alignment, used to align the sequence data of one individual against a reference sequence.
Several generic and specialized sequence aligners exist today to align NGS data to a

reference genome. We present some of the most used ones in Section 7.1.2. Even with the
quality and variety of aligners already existing, we still required our own aligner given our
requirements. The aligner, like the other methods described in the Methods chapter, is
meant to serve a bigger picture and integrate into a graphical pipeline described in Chapter
6.

7.1.2. State of the art
This section gives an overview of the field of sequence alignment, especially on what al-
gorithms are currently used. To find a list of commonly used aligners, refer to Section
3.1.1

Edit distance

The core part of sequence alignment against a reference, is to find the position on the
reference at which the edit distance (see Section 3.1.1) between the sequence and the ref-
erence is the lowest. Various algorithms have been developed over the years to approach
this problem. One of the first algorithms, which was used to align protein and nucleotide
sequences, is the Needleman-Wunsch algorithm, published in 1970 [NW70]. This algorithm
uses dynamic programming, a technique to optimize complex problems by dividing them
into smaller, less complex problems. The results of those smaller problems are stored, so
that whenever they are needed, they can quickly be retrieved. For example. the Needleman-
Wunsch algorithm, works with one matrix of the size M ∗N , where M is the length of the
sequence to align and N the length of the reference. After this matrix is filled (for the details
we refer to the original paper), through a process called backtracking the optimal alignment
is determined. This method used by the Needleman-Wunsch algorithm is able to align two
sequences including gaps. The algorithm does so using a global alignment approach, which
means, all characters in both sequences are aligned against each other as best as possible.
This requires for both sequences to be ideally at a similar length, which is often the case
when for example proteins are aligned.
Another popular alignment algorithm was proposed in 1981, called Smith-Waterman

[SW81]. This local alignment algorithm searches for the best alignment between two se-
quences, but also considers subsequences, which is useful when the two sequences do not
have the same length. Other than that, both algorithms (Needleman-Wunsch and Smith-
Waterman) are actually very similar, with both being dynamic programming algorithms
and very similar approaches to solve the problem. The main difference is, that in the
Smith-Waterman algorithm, the matrix cannot contain negative scores, which allows for
local alignments.
Both of the previously algorithms are widely used, but have one disadvantage in a biolog-

ical context. Even though both of them support gapped alignment, (insertion and deletions
are allowed), they have fixed costs for every gap, as well as gap extension. To give an ex-
ample, an insertion of two nucleotides “costs” the same as two insertions of one nucleotide.
In a biological context, this is not correct, as it is much more likely to have one longer
insertion than multiple small ones. Algorithms which respect this property support the so

74



7.1. Sequence alignment 7. DATA ANALYSIS

called affine gaps. Affine gaps define two different costs, one to open a gap, and one to
extend a gap. One algorithm supporting this type of alignment is the Gotoh algorithm
[Got82], which was published in 1982. The main difference of the Gotoh algorithm to the
two previous algorithms is that three score matrixes instead of one are used, to track the
scores of insertion and deletion separately.
All three of the mentioned algorithms, and variations of them, are commonly used in

alignment algorithms. They are all rather slow algorithms, with execution time and memory
complexities for all three of O(mn), where m and n are the lengths of the two sequences to
be aligned.

Reference indexes

Sequence alignment is a costly operation, especially because the search space is large. Mil-
lions of small sequences have to be aligned against a reference which is very long, in the
case of the human genome 3 billion base pairs. The naive approach to align the sequences
would be to test every sequence against every position on the reference. Considering the
huge size of the reference, this is not doable in a reasonable time, which is why approaches
to reduce the search space are required.
Because of this, sequence aligner use so called indexes, which are comparable to a book

index. The goal of an index is to be able to quickly look up the potential places on the
reference at which a sequence can be found.
The simplest index is the hash table indexing, which creates an index of all location of

the k-mers in the reference sequence. A k-mer is a sequence of a fixed length. The index can
quickly give the location of all occurrences for a given k-mer in the reference, comparable
to an index in a book.
Another very popular index is the Burrows–Wheeler Transform (BWT), which is most

notably used by the aligner BWA (Burrows–Wheeler Aligner) [LD09]. Originally, the Bur-
rows–Wheeler Transform algorithm was invented for data compression (and is used by
algorithms like bzip2 1). Later its usefulness as an index in sequence alignment has been
discovered. Through backward search, the BWT reference index allows to perform a fast
and memory efficient alignment against the reference sequence.

7.1.3. Methods
We developed a sequence aligner using the Java programming language which runs on all
platforms supported by Java. As input files, FASTQ as well as gzipped FASTQ files are
supported, for both paired end and single sequences. The reference sequence needs to be
provided in the FASTA file format, either with all references in the same file, or one file per
reference. The output format for the alignment is either a SAM or BAM file. You can find
a description of the file formats in Section 3.4.
We used a stream based approach to implement the aligner, to split I/O operations from

computationally intensive ones and make multithreading as well as distribution easier.
Figure 7.1 shows the overall architecture of the algorithm.
We can see the main components of the aligner, which are the Reader, Aligner and

Writer. The Reader is responsible to read the data to be aligned from the raw data files.
Depending on the sequencing mode (paired end or not), one or two input files are read at

1http://bzip.org/

75



7.1. Sequence alignment 7. DATA ANALYSIS

Reader

Raw data

Input queue
Raw data

Writer

Aligner

Outputfile

Output queue

Fig. 7.1.: Sequence alignment algorithm architecture, modified from author paper [WMK15]

this stage of the alignment. To communicate, the different components of the algorithm
are connected through queues (in our case an ArrayBlockingQueue). This allows every
component to run in its own thread as well as to have the possibility to have multiple
instances of the same components, notably the aligner component, run in parallel. Thus,
the Reader component sends the data to align to the data Input queue. The Aligner
component reads the raw data from that queue and aligns it against the reference. Once
the alignment is done, the Aligner component puts the aligned sequences on the Output
queue, which is read by the Writer component. This component saves the aligned sequences
in an alignment file.
This stream based approach gives us a lot of flexibility in terms of scaling to more

processors or even multiple machines. Section 7.1.3 will expand on how this architecture is
used to distribute the workload over multiple computers and the cloud.
We will now look in more detail at the sequence alignment algorithm itself, which is the

algorithm that runs in the Aligner component. The sequence alignment algorithm can be
roughly divided into 4 steps that bring a raw sequence to its alignment. We can see in
Figure 7.2 those different steps.

Seeds
retrieval

Seeds
prioritization

Seeds
evaluation

Alignment
cleanup

Clustering
Sorting

Heuristic alignment
Split Gotoh

Complete Gotoh
Left most indels

Hashindex

Fig. 7.2.: Sequence alignment algorithm overview, splitting the alignment process into four prin-
cipal steps

In the first alignment step, the potential positions on the reference, called seeds, at which
the sequence can be aligned are determined. We use a hash table index to perform this
step. By default, the k-mer size used for the hash table index is 12, which provides a good
compromise between memory size (1GB for the index) and uniqueness for every k-mer. At
this stage, the sequence to align is split into all possible k-mers it contains, as well as their
reverse complement (see Figure 7.3).
Looking up the k-mers in the reference index is a time critical step, which requires to

76



7.1. Sequence alignment 7. DATA ANALYSIS

ACGTTC
ACG

CGT
GTT

TTC

k-mer 3
GAA

AAC
ACG

CGT
+

Reverse
complement

Fig. 7.3.: A sequence is split into its k-mers (size 3 in this example) and their reverse complement.
Those k-mers are the seeds that are used to search the refernce index for possible
alignment positions.

create a hash for every k-mer (the same which is used to create the hash table index). We
transform the ASCII value of the 4 nucleotides (1000001 ), C (1000011 ), T (1010100 ) and
G (1000111 ) to values between 0 and 3 using the following formula 7.1:

V = (A ∧ 6)� 1 (7.1)
V is the ID of every nucleotide and A is the ASCII value for every nucleotide. This

formula uses the bits at position 2 and 3 from the right to create the unique ID for every
nucleotide, something which can be done very fast.
Using the hash for the individual k-mers, the hash table index returns all their positions

reference, split into the different sub references (usually by chromosome). This operation
can result in a big amount seeds at which a sequence could be aligned against.
During the second step, we prioritize the seeds, to first align against the most promising

ones, hopefully reducing the search space. To do this, the following metrics are determined
to give a score to every seed:

• Number of directly adjacent seeds (which expand the seed with no break)

• Number of neighbors (amount of seeds at most 2*sequence length away)

• Uniqueness (how many times was this seed seen on the reference)

To determine the amount of neighbors and number of adjacent seeds in an optimal way,
the seeds are first sorted according to their position on the reference. We use a custom
version of the Timsort algorithm, which was developed by Tim Peters in 2002, to sort the
seeds in O(n ∗ log(n)) for the worst and average case and O(n) in the best case. This step
of the sequence alignment is performance critical, as every one of the millions of reads can
have hundreds or thousands of seeds to sort. Once the seeds are sorted according to their
position, we can cheaply determine their close and adjacent neighbors.
After having sorted the seeds according to their score, we evaluate them to determine if

they point to a valid alignment. The evaluation of every seed is performed in two stages.
At first, a quick heuristic is used to calculate an approximate alignment for the sequence
at a given seed position. The dynamic programming algorithms described in Section 7.1.2
are very costly and are not practical to be applied to every candidate seed. Therefore we
use a custom heuristic algorithm, described and published in [WK13a], which allows us to
quickly determine if a position contains a possible alignment. This algorithm is between 6
to 24 times faster, depending on the length of the sequence to be aligned, than standard
dynamic programming algorithms.
Once the viability of the seed has been evaluated, we use a custom version of the Gotoh

[Got82] algorithm, to create an alignment for this position. In this phase, we use a split

77



7.1. Sequence alignment 7. DATA ANALYSIS

Gotoh approach, where the left part and the right part of the sequence (split at the seed),
are aligned separately. This greatly reduces the time required to perform the alignment.
For every alignment, a score can be calculated, which is based on the amount of matches,
mismatches and indels. Given this score, the best alignment for a given sequence can be
determined when evaluating multiple seeds.
The last phase, which is a cleanup phase. This last phase cleans up the alignment of a

sequence, to assure that multiple sequences aligned at the same place, are aligned the same
way. First, all sequences are aligned using the complete Gotoh algorithm. This removes
differences in alignment that could arise when two sequences are split at different places
when performing the prior split Gotoh alignment. After this the CIGAR string, which
determines at which location of the sequence indels are present as well as matches or
mismatches, is improved and normalized. This normalization includes merging of indels (if
possible), moving indels to the left most position (Figure 7.4) in the alignment as well as
skipping faulty ends of the sequence (Figure 7.5).

ACGTTGCA
  GT-G
  G-TG

Reference

Alignment

Cleanup

Fig. 7.4.: Left most indel cleanup

ACGTTGCA
  ATTG
  ATTG

Reference

Alignment

Cleanup

Fig. 7.5.: Faulty end skipping cleanup

Several parameters can be set to influence the alignment process. Here is the list of
parameters that are implemented in the algorithm:

• Allowed error rate (%) : The amount of errors in the alignment for it to stay valid
(default 6%)

• Maximum indel length : The maximum length of indels (default 12)

• Tolerate more/longer indels : Less strict enforcement of the maximum indel length
rule

• Try out all possible alignments: Evaluate every seed, greatly slows down alignment

• Sequences to align : Amount of sequences to align, mostly used for debugging

The next Section 7.1.3 discusses how this aligner has been distributed over multiple
computers using different technologies.

Distributed alignment

Sequence alignment is a time critical process, it represents one of, if not the biggest task
when doing NGS data analysis. With one of the goals being to run NGS data analysis on off
the shelf desktop hardware, we expanded the presented aligner to not only use multi-core
systems, but also run on multiple computers as well as on the cloud.
Figure 7.1 shows the general architecture of the aligner. We can see the Aligner compo-

nent, which can be instantiated multiple times, in separate threads, to allow multi-threaded
alignment. The interface between the Aligner component and the rest of the system is rela-
tively simple, thanks to our stream processing based approach. The Alignment object takes
unaligned sequences (or sequence pairs in the case of paired end sequencing) from the input

78



7.1. Sequence alignment 7. DATA ANALYSIS

queue, and outputs the aligned sequences to the output queue. This can be used to run
different implementations of the Aligner component, for example to offload the alignment
to a remote computer. The distributed Aligner component can run alongside the local
Aligner component, allowing for both distributed and local alignment at the same time.
This is the base idea we used to implement distributed alignment on top of the existing

multi-core aligner. Figure 7.6 shows the modified aspect of the general architecture.

Aligner

Network

Distributed
client

Distributed
server

Input queue

Output queue

Input queue

Output queue

Fig. 7.6.: Distributed architecture, modified from author paper [WMK15]

We can see that two new components have been introduced. The Distributed client
component is integrated into the system at the place of the Aligner component. It is
responsible to send raw sequences to the Distributed server component, which runs
on a remote machine, as well as receiving the aligned sequences from the remote aligner.
No other component had to be modified to integrate those two new components, which is
thanks to our stream based approach, where the different components communicate through
queues.
The Distributed server component is responsible to recreate the environment in which

the Aligner component is able to run. This is done by recreating the raw sequence input
queue, as well as the aligned output queue.
Recreating the same environment on the remote computer as a local Aligner component

would expect, opens up the possibilities for complex setups to distribute the workload. It
is, for example, possible for a remote aligner to redistribute the alignment workload further
to another remote aligner. This can be useful when dealing with a restricted access to an
internal grid, where only one computer is accessible from the outside (front end).
The distributed alignment component was implemented three times using different tech-

nologies, with two of them being closely related. We used RMI, which is included in the
Java standard library, DIRMI 2, which is an improved version of RMI (mainly supporting
bidirectional connections to traverse NAT devices) and POP-Java (Chapter 8). All three
technologies can be used alongside each other, in addition to local aligner threads. Never-
theless we use a single technology at a time to distribute the workload. It is also possible
to completely offload the alignment task from the computer starting the alignment, which
can be useful if for example a laptop computer starts the alignment process, but does not
have the resources required to perform it locally.
The stream based approach used in this architecture has also other advantages. Every

distributed Alignment component keeps track (and a copy) of all sequences that were sent
to the remote machine, and only discards those copies once the alignment has been sent
back. If a remote machine crashes or becomes otherwise unavailable, the local connection
to the remote aligner can put the sequences to align back on the input queue, so that they

2https://github.com/cojen/Dirmi

79



7.1. Sequence alignment 7. DATA ANALYSIS

can be aligned by other, still running aligner components. This allows for an easy was to
be fault tolerant.
The other advantage the stream based approach has is load balancing. Every Aligner

component will take the amount of sequences he is able to process, faster Aligner com-
ponents will take more, slower less. By using queues to communicate, the load balancing
happens naturally, as the workers get more work when they need it and not the other way
around. The size of the queues is adapted dynamically, based on how full they are. This
allows us to adapt to different computer speeds as well as network speeds.
When sending the raw sequences to the remote machines, we try to reduce the bandwidth

usage of this transfer. This is done through mainly two approaches, efficient encoding, as
well as only sending the required information. A raw read is composed of three components,
its name, a DNA sequence as well as quality information associated with every sequence.
The sequence name is not required for the aligner, so it is not transferred to the remote
computer, the same goes with the quality information, which our aligner does not use. Both
those information are later restored, when the alignment for the sequence is retrieved. The
last part of the read, the actual DNA sequence to be aligned, is encoded using a one byte
for every 3 nucleotides. This greatly reduces the amount of data to be transferred, making
the distribution also viable over the internet.
This is especially useful when using the aligner in combination with a public cloud service.

We implemented support for the Amazon AWS cloud service 3 directly in the aligner,
allowing the user to specify the amount and types of virtual machines to be instantiated
in the cloud to support the alignment process. Those virtual machines are dynamically
created and destroyed at the beginning and end of the alignment process. The support
for the Amazon AWS cloud was implemented through the use of the JClouds 4 library,
a multi-cloud library developed by Apache. The support for this allows the users of the
aligner which do not have the required infrastructure for alignment available locally, to
benefit from the available cloud infrastructures.
But using cloud services comes at the price of privacy, something many laboratories

cannot accept when handling human data. Even with cloud services having become more
secure over the years, the moment the DNA is sent over the internet it has to be viewed as
compromised. This is especially true when the cloud provider resides in another country.
Our sequence aligner does not take any additional steps outside of anonymizing the data.
But some approaches exist to lessen the privacy risks when sending human DNA data over
the internet, such as mixing multiple samples during the alignment.

7.1.4. Results
The GensearchNGS aligner presented in this chapter has been used in hundreds if not
thousands of real samples in various laboratories. In this section we analyse its performance
in a more controlled environment, using simulated datasets for which the correct solution
is known.
We evaluated our stream processing based aligner using multiple simulated datasets to

determine both the quality of the alignments as well as the performance compared to three
aligners. Namely, BWA-MEM (0.7.12-r1039), Bowtie 2 (2.1.0) and CUSHAW2 (2.4.3), which
are three well established aligners in the research community.

3https://aws.amazon.com/
4https://jclouds.apache.org/

80



7.1. Sequence alignment 7. DATA ANALYSIS

Aligner Time Aligned Correct Incorrect Precision Alignment rate
BWA-MEM 1188s 7880061 7780078 99983 98.73% 98.95%
Bowtie 2 1615s 7878771 7604671 274100 96.52% 98.94%
Cushaw2 799s 7868183 7650416 217767 97.23% 98.80%
GensearchNGS 1845s 7772837 7655461 117376 98.49% 97.61%

Tab. 7.1.: Test results for the 150bp-se-large-indel dataset

We analyzed multiple datasets for our tests. The first datasets come from the genome
comparison & analytic testing project (GCAT) [HWK+15], which is a project that provides
sample datasets. Those datasets have known “solutions” and can be used to compare the
performance of multiple aligners. The projects allows the user to download the datasets
as raw data and upload the resulting alignment back to the website. The statistics of the
amount of correctly and incorrectly aligned sequences is then provided through a convenient
web interface.
We choose three datasets from GCAT to test the alignment quality as well as the per-

formance of the aligners.
The first dataset is a single end dataset called 150bp-se-large-indel, with 7’963’498 se-

quences of length 150 bp, that includes large indels. The two other datasets from GCAT
are both paired end datasets. The first one being 150bp-pe-small-indel, which has 3’981’750
paired end sequences of length 150 bp with small indels. The second one is 250bp-pe-large-
indel, which has 2’389’050 paired end sequences with a length of 250 bp and large indels.
The two main measures we make is the time required to align the dataset, as well as the

precision and alignment rate of the aligner. We define the precision as: P = c
c+w

where P
is the precision, c is the amount of correctly aligned reads and w is the amount of reads
aligned incorrectly. The alignment rate is defined as: A = c+w

r
, where r is the total amount

of reads in the dataset.
All tests have been performed on a quad-core Intel(R) Xeon(R) CPU E5-1620 v3 @

3.50GHz with Ubuntu 16.04 as the operating system and 16 GB of available RAM.

The tables 7.1, 7.2 and 7.3 contain the results for the described GCAT datasets.
The first Table 7.1 shows the results of the 150bp-se-large-indel dataset. We can see

the different aligners having very different performance results, with CUSHAW2 being the
fastest. Our own aligner is the slowest, but not by much and has comparable performance
to Bowtie 2, but still about twice as slow as CUSHAW2.
In regards to the quality of the alignment, BWA-MEM has the highest alignment rate and

our aligner the lowest. Interestingly, our aligner does quite well in terms of the alignment
precision, with very few incorrectly aligned sequences. With both precision and alignment
rate high for this dataset, the BWA-MEM aligner can be considered the best.
The second dataset 150bp-pe-small-indel looks at a similar dataset as the previous one,

but this time using paired end sequences and smaller indels. Table 7.2 shows the result of
those tests. Sadly, CUSHAW2 was not able to correctly finish this test, as the alignment
file it produced did not maintain the correct names of the aligned sequences, making the
analysis impossible. It is it to note however, that CUSHAW2 aligned the dataset fastest, in
827s. As for the performance of the 3 other aligners, they are more or less equivalent, with
BWA-MEM having a slight advantage. The quality of the alignments is very interesting, as
Bowtie 2 seems to have trouble aligning the data correctly (seen by a low precision rate).

81



7.1. Sequence alignment 7. DATA ANALYSIS

Aligner Time Aligned Correct Incorrect Precision Alignment rate
BWA-MEM 986s 7879143 7837812 41331 99.48% 98.94%
Bowtie 2 1001s 7769798 7253123 516675 93.35% 97.57%
GensearchNGS 1002s 7832371 7728547 103824 98.67% 98.35%

Tab. 7.2.: Test results for the 150bp-pe-small-indel dataset

Aligner Time Aligned Correct Incorrect Precision Alignment rate
BWA-MEM 1105s 4727769 4706284 21485 99.55% 98.95%
Bowtie 2 1158s 4660702 4505942 154760 96.68% 97.54%
GensearchNGS 1083s 4719481 4688331 31150 99.34% 98.77%

Tab. 7.3.: Test results for the 250bp-pe-large-indel dataset

Our aligner and BWA-MEM have similar alignment and precision rates. The difference to
the previous dataset can be explained by the usage of paired end sequences. When aligning
paired end sequences, a sequence that is hard to align can be “saved” by its pair which may
be more easily alignable. Depending on how an aligner exploits this fact, it will improve
the quality of the alignment.
The last dataset 250bp-pe-large-indel shows similar results as the previous one. We can

see that the longer sequence lengths affect the alignment speed of our aligner the least, but
all three aligners remain similar in performance. The same pattern in terms of alignment
quality can be seen again, with both BWA-MEM and our aligner being better than Bowtie
2.
We can see from the performed tests that our aligner gives similar results as the other

aligners with comparable performance, at least in the case of paired end sequences.

Distributed alignment

To test the performance of the aligner in a distributed environment we decided to use a
testcase which is typical for a small laboratory which only have limited computing power
at its disposal. The results of this section are similar, but more detailed, to our publications
[WMK15] on the subject.
In a small laboratory, it is common to find computers with different configurations as

well as the need to include external computing resources to align large NGS datasets in
a timely manner. To test this we decided to create 4 different configurations to test not
only their performance, but most importantly the flexibility of the distributed alignment
approach we implemented.
For the tests we used a Laptop (dual core Intel Core i7-3520M 3.6 Ghz, 8GB RAM) as the

main computer to launch the alignment, in conjunction with a desktop computer (Quad core
Intel Core I7 870 3.6 GHz, 8GB RAM) and Amazon AWS EC2 cloud instances (c3.xlarge,
Quad core Intel Xeon E5-2680, 7.5 GB RAM). The local machines were connected with a 1
Gb/s switch, which in turn was connected with the internet through a 100 Mb/s up/down
connection. We defined four possible configurations to run the alignment:

• Config 1: Laptop

• Config 2: Laptop and desktop computer

82



7.1. Sequence alignment 7. DATA ANALYSIS

• Config 3: Laptop, desktop computer and one Amazon AWS EC2 instance

• Config 4: Laptop as client, two instances on Amazon AWS EC2

In the last configuration, the laptop does not actively participate in the alignment process
(other than reading the raw data and saving the resulting alignment file). This configuration
is useful if the client machine, like the laptop, is underpowered and does not have the
required 5 GB of RAM available. In this case the user can still work with his normal
machine, but offloads the complete alignment process to a different machine, or in this case
the Amazon cloud.
The connection between the different computers can be seen in Figure 7.7.

XX X X X X X X X X X X X
XX X X X X X X X X X X X

XX X X X X X X X X X X X
XX X X X X X X X X X X X

XX X X X X X X X X X X X

Internet

Desktop Laptop

Amazon AWS EC21Gb/s

100 Mb/s

Fig. 7.7.: Benchmark setup

We also decided to test the configuration 4 in more detail. For this we repeated the tests
with 1 to 10 Amazon AWS EC2 instances with the laptop as the client (but he does not
perform alignment himself). This lets us better evaluate how well the distributed alignment
scales over multiple computers.
For all configurations we only measure the time required for the actual alignment, ex-

cluding all the setup time required to start the different installations. This was mainly done
because of the variable speed of the Amazon cloud, which can require between 5 to 20
minutes to launch an instance of the aligner and load the required data into memory. Also
for every launch of the aligner, if an Amazon instance is used, it is started for that specific
alignment. This makes the use of the cloud less interesting for small alignments, due to the
setup times that become important.
The aligned dataset is from the GCAT project [HWK+15], called illumina-100bp-pe-

exome-150x, consisting of 45’038’905 paired end reads of length 100 bp. To speed up the
benchmarks, only the first 5 million reads were aligned against the human reference genome
hg19. Table 7.8 shows the raw computation times, with Figure 7.9 presenting the same
numbers graphically.
We can see that our aligner works well over the different tested configurations. We can

also see, that for a small laboratory it can be interesting to use the cloud to replace one
strong desktop machine, as the performance can be similar.
This raises the question of how well the alignment scales over multiple computers in the

cloud, and up to how many can be used to efficiently align the data. The results of those
tests can be seen in Table 7.10 and Figure 7.11.
The aligner does indeed scale well over 10 nodes, with near optimal speedup up to 5-6

nodes. This shows that our approach to how the distribution is handled is well adapted.

83



7.1. Sequence alignment 7. DATA ANALYSIS

Configuration Time
1 (Laptop) 1’465 s
2 (Laptop + Desktop) 427 s
3 (Conf. 2 + 1 AWS) 267 s
4 (2 AWS) 353 s

Fig. 7.8.: GensearchNGS raw distributed align-
ment times

Config 1 Config 2 Config 3 Config 4
0

200

400

600

800

1000

1200

1400

1600

T
im

e 
(s

ec
on

ds
)

Fig. 7.9.: Alignment times

Configuration Time Speedup
AWS 1 instance 673 s 1
AWS 2 instances 353 s 1.9
AWS 3 instances 241 s 2.79
AWS 4 instances 181 s 3.71
AWS 5 instances 144 s 4.67
AWS 6 instances 120 s 5.6
AWS 7 instances 104 s 6.47
AWS 8 instances 98 s 6.86
AWS 9 instances 95 s 7.08
AWS 10 instances 94 s 7.15

Fig. 7.10.: Amazon AWS scaling over 10 nodes

AW
S

 1
AW

S
 2

AW
S

 3
AW

S
 4

AW
S

 5
AW

S
 6

AW
S

 7
AW

S
 8

AW
S

 9
AW

S
 1

0

0

100

200

300

400

500

600

700

800

T
im

e 
(s

ec
on

ds
)

Fig. 7.11.: Amazon AWS EC2 alignment times
over 10 nodes

84



7.1. Sequence alignment 7. DATA ANALYSIS

We can also see that while the speedup remains interesting, after 6-7 nodes the benefit
of adding more nodes is very small.
This shows that our aligner adapts to the different proposed configurations, showing

its flexibility to adapt to various real life scenarios. The way the distributed alignment is
approached, load balancing is done automatically and multiple machines can fail during
the process. As long as the client machine (the one starting the alignment process), as
well as at least one machine that does the alignment are still running, the alignment will
finish correctly. This was tested by forcibly killing GensearchNGS on a remote machines
and comparing the result with the results of a normal operation. The results were indeed
equal in the various tests where the fault tolerance was tested.

7.1.5. Summary
In this chapter we discussed the creation of an aligner using the Java programming language,
focusing mostly on paired-end sequencing data for humans. The goals was to develop a
multi-platform aligner which can be used on platforms on which traditional aligners do not
run (such as windows). While the goal was not to create a better aligner than the existing
ones, but to create a solid base for further work, we could show that our aligner achieves
similar performance and alignment quality as well established existing aligners.
We also showed how to distribute the workload of the aligner efficiently over a variety of

resources. We could combine multiple local machines, as well as cloud resources, showing
the ability to use the aligner in a variety of situations and to adapt to the needs of the
individual users. As will be discussed later in Chapter 6, the aligner was integrated into the
graphical NGS data analysis pipeline that we developed, to give the user the possibility to
align NGS data on computers which do not have traditional aligners available.

85



7.2. Meta-Alignment 7. DATA ANALYSIS

7.2. Meta-Alignment
As discussed in the previous chapter 7.1, sequence alignment is a critical task when doing
NGS data analysis. With the multitude of existing aligners today and the large variety of
available options they have, it is very difficult to determine the best choice for a particular
dataset. This is why we developed a new method to reduce the complexity of this task,
by combining the output of multiple sequence aligners and choosing the best alignment for
every sequence. This work has been presented at the European Human Genetics Conference
2016 Meta-alignment: Combining multiple sequence aligners to improve alignment quality
as a poster presentation.

7.2.1. Introduction
Sequence alignment at its core is a simple process. For every sequence produced by the
sequencer, the position on the reference sequence with the lowest edit distance is searched.
As discussed in Section 3.1.1, the algorithms to calculate the edit distance are well known.
In order to reduce the time required to test all positions on the reference sequence to
find the one with the lowest edit distance, heuristics are used to reduce the search space.
Different aligners and different options use different heuristics, leading to different results
depending on the aligner. The differences between aligners are not only present between
different datasets, but also inside the same datasets, where one aligner or setting works
better for a certain part of the data than another. This makes sequence alignment and the
choice of the right tools a non trivial task. This is why we propose a new approach to reduce
this complexity. Our novel approach, called meta-alignment, combines the strengths of the
different aligners to produce an unified alignment out of multiple separate alignments.
Sequence aligners output for every aligned sequence a location on the reference at which

the sequence has been placed, as well as a so called CIGAR string. The CIGAR string
indicates how exactly the sequence has been mapped against the reference at the indicated
position, with most notably the information if and where indels have been detected. Aligners
use a score matrix to determine what the best alignment for a sequence is. This score matrix
indicates the score for a matching nucleotide, as well as the penalty for mismatches, indels
and skipping parts of the sequence. Given a certain alignment of a sequence, the score
can be calculated and thus compared between different aligners. This means that, given
a certain score matrix, it is possible to rank the alignments given by different aligners to
determine the most optimal alignment. It does not matter the specific method used by
the different aligners, in the context of a (predefined or user specified) score matrix, the
different alignments can be compared.
This is the core idea of our meta-alignment method. The output of multiple sequence

alignments is taken and then the best alignment, based on a given score matrix, is stored
in a new alignment file. The hypothesis is that using this approach, the quality of the
alignment, as well as the number of aligned sequences can be improved.
In Section 7.2.2 we discuss implementation details as well as the test setup used to

evaluate the validity of this approach. The results of those tests are presented in Section
7.2.3 with a discussion of the method in Section 7.2.4.

86



7.2. Meta-Alignment 7. DATA ANALYSIS

7.2.2. Method
To test the meta-alignment method, a stand-alone tool has been developed using the Java
language based on the GensearchNGS pipeline (Chapter 6). In terms of external depen-
dencies, the same libraries and technologies as in GensearchNGS are used. The tool does
not use parallel or distributed computing, but focuses on the improvement of the alignment
quality only.
Figure 7.12 displays an overview of the proposed method to combine the output of mul-

tiple aligners through meta-alignment.

FASTQAligner 1 Aligner N

BAM 1 BAM N

Name sorting Name sorting

Sorted BAM 1 Sorted BAM N

Alignment merger

Merged BAM
Meta alignment

Fig. 7.12.: Activity diagram of the proposed meta-alignment method

As shown in the figure, the process starts by aligning the raw FASTQ data with multiple
sequence aligners. The sequences in the alignment files are then sorted by their name, instead
of sorting them by their reference position as is done usually. Those name sorted BAM files
are used as the input for the Alignment merger, the heart of the meta-alignment method,
creating a merged BAM files with the best alignment for every sequence. The following
paragraphs look at this process in more detail.
The application is able to take multiple alignment files as an input and create a merged

alignment file, using the best alignment for every sequence. The user is able to define
multiple options on how the merging is done. Not only can he specify as many alignments
(which have to originate from the same source file) as he wishes, but also the way that the

87



7.2. Meta-Alignment 7. DATA ANALYSIS

selection of the best alignment is done can be influenced. In the standard mode, for every
sequence the best scoring alignment is used for the final alignment. The goal is to improve
the overall quality of the alignment, and at the same time increase the total amount of
aligned sequences. A sequence has only to be aligned by any of the input aligners to be
used in the final alignment. The consequence is that although the total number of aligned
sequences is expected to higher than any individual aligner, the number of low quality
alignments might also increase. This is because for certain reasons, a certain aligner might
have rejected the alignment of a sequence for a good reason, where as another one still
aligned it, even with its low quality.
This is why the user has the option to require a minimal number of aligners to agree on

an alignment for it to be used. This is expected to decrease the amount of overall aligned
sequences, but at the same time, to improve the quality of the alignment.
As specified, the input files are BAM files, usually coming directly out of the aligners.

Those BAM files contain the alignments of all sequences. They usually are, by default, are
either not sorted or sorted by position. To quickly find all the alignments of a particular
sequence in the various alignment files provided by the user, the first step of meta-alignment
is to sort the input files by sequence name. This step requires the sequences to have unique
names and those names need to be the same in the different input files. If all alignments
used as input come from the same source raw data file, this requirement usually holds true.
After the creation of the name sorted alignment files, all of them are opened in parallel

and read sequence by sequence. As they are all sorted by name, finding all alignments for
a specific sequence is very time effective.
Once all the alignments of a particular sequence have been recovered, the best scor-

ing alignment needs to be determined. This is done using a score matrix, which for each
nucleotide in the aligned sequence assigns a score based on its relation to the reference.
Different approaches exist for score matrices, but in the context of meta-alignment we use
score matrices with affine gap, just like the Gotoh [Got82] algorithm. This means, gap ex-
tensions have a different impact on the score than gap starts. This is because the addition
of a new gap (either an insertion or a deletion) is less likely than the extension of an existing
one.
To build the score matrix, we need the following scores:

• Match = α (When the sequence and the reference match)

• Mismatch = β (When the sequence and the reference mismatch)

• Gap start = γ (start of an deletion or an insertion)

• Gap extension = δ (start of an deletion or an insertion)

• Skip = ε (part of the read discarded by the aligner)

In our tests we used the following values for the score matrix: match = 2, mismatch =
-3, gap start = -6, gap extension = -1, skip = -1.
To calculate the score of a specific sequence, we need to know how exactly it was mapped

against the reference (and where). As mentioned earlier, every aligned sequence indicates
its mapping against the reference through the use of a CIGAR string. This CIGAR string
indicates where the sequence aligns to the reference and where it contains insertions and
deletions. One important information is missing from the CIGAR string, which is if a

88



7.2. Meta-Alignment 7. DATA ANALYSIS

particular nucleotide matches the reference sequence or not. For this reason, every sequence
needs to be mapped back (which means deletions have to be added and insertions cut out) to
determine the exact score of every alignment. To determine this score, we need to determine
the amount of matches (M), mismatches (MS), gaps starts (GS), gap extensions (GE) and
skips (S) for that sequence. Once determine we can calculate the score as:

Score = α ∗M + β ∗MS + γ ∗GS + δ ∗GE + ε ∗ S (7.2)

Once the score of every sequence is determined, the best scoring alignment is chosen and
output to the final alignment file. If the user specified that multiple aligners have to agree
on the position of a sequence, then after determining the best alignment, we count how
many other alignments positioned the sequence at the same position.
To test the impact of meta-alignment on the results of sequence alignment we applied

it to multiple datasets using three different aligners. The three aligners used were BWA-
MEM 0.7.12-r1039 [LD09], Bowtie 2.2.6 [LS12a] and CUSHAW2 2.4.3. [LS12b]. Those are
the same three aligners as were used to test our custom GensearchNGS aligner (Chapter
7.1). BWA-MEM and CUSHAW2 used the default alignment settings, Bowtie 2 was run
with the option –local. We do not use our own aligner, as the goal of this chapter is to
evaluate the meta-alignment approach and we considered it to be better to do so using well
established aligners.
The first dataset used was a collection of simulated datasets, created specifically to study

the effect of meta-alignment over various degrees of data quality. For this purpose we
simulated 11 datasets with increasing degrees of errors in them. Each dataset consisted of
600’000 reads simulated using the human chromosome 19. The errors ranged from no errors
to 20% errors with 50% of those errors being indels of length 1-3. The advantage of using
simulated reads over real data is that the solution, which means the correct alignment for
every sequence, is known. The results of this test are presented in Section 7.2.3.
The second dataset used comes from the genome comparison & analytic testing project

(GCAT) [HWK+15] which provides standardizes test datasets. We used the 150bp-se-large-
indel dataset to compare the 3 aligners individually against the result of our meta-alignment
approach. This is the same dataset which was used to test our aligner in Section 7.1. Section
7.2.3 discusses the results of this test.
For all datasets, we tested the effect of meta-alignment in 3 modes. The first mode is

the default mode, which takes the best alignment for a sequence from all input alignments.
The two other modes required at least 2, respectively 3, input alignments to agree on the
position of a sequence for it to be used in the output alignment.
The next Section 7.2.3 presents the results of this tests and Section 7.2.4 gives a broader

perspective on meta-alignment and its use-cases.

7.2.3. Results
This section presents the results obtained by applying our meta-alignment approach against
the previously described datasets. The section is split in two parts, the first discussing the
custom datasets with variable error rates and the second part using the datasets provided
by GCAT.

89



7.2. Meta-Alignment 7. DATA ANALYSIS

Variable errors dataset

Using the first datasets, which consists of 11 datasets with gradually increasing error rates,
we compared the precision and alignment rate of the three aligners as well as the meta-
alignment approach used on the output of those same three aligners. All 11 datasets consist
of 600’000 sequences originating from the human chromosome 19 (hg19). The error rates
started with no errors and increased up to 20%. By default, those errors are SNPs (Single
nucleotide polymorphism), but a certain percentage of them is instead created as indels of
length 1-3 bases. The indel rate ranges from 0% to 50%, resulting in 10% indels (50% of
the SNPs are converted into indels) in the worst dataset.
All 11 datasets have been aligned against the full human genome (hg19) by all three

aligners. Afterwards the meta-alignment algorithm was applied to the output of all three
aligners for every dataset, once with the default setting and also with a minimum of 2
respective 3 aligners needing to agree for the resulting alignment.
We calculated the precision as well as the alignment rate for all aligners and the meta-

alignment approaches. The precision is defined as: P = c
c+w

where P is the precision, c is
the amount of correctly aligned reads and w is the amount of reads aligned at the wrong
place. The alignment rate is defined as: a = c+w

600′000 where a is the alignment rate.
Those two values give us an understanding of how much of the raw input data is used to

create the resulting alignment, and to which degree the resulting alignment is correct.
We first look at the alignment rate of the different aligners and meta-alignment settings.

Figure 7.13 we can see the alignment rate and how it evolves over various degrees of errors
in the datasets.

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Bowtie2

BWA

Cushaw2

Meta 1

Meta 2

Meta 3

Error rate

A
lig

n
m

en
t r

at
e

Fig. 7.13.: Alignment rate of the alignments ranging from no errors (Dataset 1) to 20% errors
with 50% indels (Dataset 11)

We can immediately observe that the meta-alignment in its default mode (Meta 1 ) has
consistently higher alignment rates than any other aligner. As the default setting of meta-
alignment is to take the best alignment for every sequence out of all input alignments, this
is the expected result. Any sequence only aligned by a single aligner will be found in the
final alignment and thus the total count of aligned sequence will always be higher than
any of the single aligners. Requiring two (Meta 2 ) or three (Meta 3 ) aligners to agree on
the best alignment significantly reduces the amount of aligned sequences. This again is a

90



7.2. Meta-Alignment 7. DATA ANALYSIS

result that is expected, as in those two modes the goal is not to increase the total amount
of aligned sequences, but improve the quality of the aligned sequences.
To analyze the quality of the aligned reads we look at the precision of the alignments. As

already mentioned, the precision is defined by the percentage of correctly aligned sequences
when only looking at the aligned sequences (not aligned sequences are not counted). Figure
7.14 shows the precision of the alignments over the same 11 datasets.

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%
40%

50%

60%

70%

80%

90%

100%

Bowtie2

BWA

Cushaw2

Meta 1

Meta 2
Meta 3

Error rate

P
re

ci
si

on

Fig. 7.14.: Precision of the alignments ranging from no errors (Dataset 1) to 20% errors with
50% indels (Dataset 11)

The meta-alignment approaches that require two or even three alignment to agree are
consistently the ones with the highest precision. Even with the dataset which have the
highest error rates, those two approaches reach 88.3% and 91.1%. In terms of precision,
the default meta-alignment reaches 61.5% and is beaten by CUSHAW2 with 70.6%. But it
has to be noted that the alignment rate of CUSHAW2 is only at 21.7%, which is very low
compared to the other aligners.
What is interesting to see is that Meta 2, greatly improves the precision. The difference

between requiring Meta 2 and Meta 3 is much lower, but comes with a big drop in the
alignment rate as seen in the previous analysis.
Those measurements show the tradeoff between the amount of sequences aligned, and

their quality. A hypothetical aligner that aligns every sequence at a random position would
reach an amazing 100% alignment rate, no matter the quality of the input data. But the
precision would be close to 0%. The output of meta-alignment cannot be better than the
best aligner for the individual sequences, which limits the precision and alignment rates that
can be reached. If for example no aligner aligns a certain sequence correctly, our method
cannot correct this. With that in mind, the results of meta-alignment seem interesting,
especially when considering the datasets with high error rates.

GCAT alignment

The genome comparison & analytic testing project (GCAT) [HWK+15] is a project which
provides free datasets and a website to test different aligners. To test the accuracy of
alignments, the GCAT project generated a set of datasets for which the correct alignment
is known for every sequence. To test an aligner, the website provides the raw FASTQ files
of every dataset. The raw data can then be aligned locally against the human reference

91



7.2. Meta-Alignment 7. DATA ANALYSIS

genome HG19 with any aligner, as long as a BAM file is generated. This BAM file can then
be uploaded to the website which will automatically create the statistics of the correctly
and wrongly aligned reads. We decided to test the meta-alignment method on one of the
provided datasets, which is called 150bp-se-large-indel. This dataset contains single ended
sequences with a length of 150bp and a large amount of indels, even though the GCAT
project does not specify how high the amount of added indels is. We used the same testing
procedure as for our simulated data with the same aligners (BWA-MEM, Bowtie 2 and
CUSHAW2) and also tested our meta-alignment approach with 1, 2 or 3 alignments that
had to agree for an alignment to be used. Table 7.4 contains the details of the performed
tests.

Total Correct Wrong Not aligned Precision Alignment rate
BWA-MEM 7’878’949 7’779’572 99’477 84’549 98.74% 97.69%
Bowtie 2 7’878’771 7’604’671 274’064 84’727 96.52% 95.49%

CUSHAW2 7’868’183 7’650’416 217’767 95’315 97.23% 96.07%
Meta 1 7’878’987 7’781’337 97’614 84’511 98.76% 97.71%
Meta 2 7’787’802 7’737’157 50’645 175’696 99.35% 97.16%
Meta 3 7’507’014 7’487’040 19’974 456’484 99.73% 94.02%

Tab. 7.4.: Meta-alignment comparison table for the 150bp-se-large-indel dataset

We can again see the BWA aligner getting very good results, having the highest precision
and alignment rate when used alone. Similar to our previous test, we can see how the
meta-aligment is able to improve the quality of the alignment. The first meta-alignment
configuration, Meta 1, is able to improve both the precision and the alignment rate compared
to all other aligners. But the improvement, especially in terms of alignment rate, is rather
minor, which indicates that all three source aligners had trouble with a similar set of
sequences. Meta 2 and Meta 3 on the other hand greatly increase the precision of the
alignments compared to single aligner. Especially the Meta 2 configuration, which requires
2 out of the 3 single aligners to agree, shows a great compromise between a decreased
alignment rate and the improved precision.
When looking at the time required to perform the meta-alignment on this dataset, we get

the following values using a quad core Intel(R) Xeon(R) CPU E5-1620 v3 @ 3.50GHz: BWA-
MEM, 13 minutes 13 seconds. Bowtie 2, 29 minutes, 54 seconds. CUSHAW2, 15 minutes,
25 seconds. The times for all 3 meta-alignment approaches are the same, 32 minutes 53
seconds.
We can observe that the time required to perform meta-alignment is significant compared

to the benefits of the method. As no focus was put on optimizing the method, there is still
a lot of room for improvements in that regard. The way the algorithm works, it lends
itself ideally to be distributed. This is a possibility we explored through a student project
[BKW16] by Christophe Blanquet. The explored idea was to use POP-Java (Chapter 8)
to distribute the different aligners used in the meta-alignment process, to execute them in
parallel on multiple machines. The project was able to create an initial prototype which
validated the idea and will be explored more in the future.

7.2.4. Summary
As shown through our tests, the meta-alignment approach shows great potential in certain
use-cases, especially when working with high error rates in the data to align. The current

92



7.2. Meta-Alignment 7. DATA ANALYSIS

prototype has been published as free software as part of the GNATY project suite on
http://gnaty.phenosystems.com. While several limitations still need to be addressed, like
the lack of paired end support, the feedback from the community (which was gathered
during the conference of the European society of human genetics (ESHG) 2016), was very
positive.
Other than the lack of paired end support, the performance of the approach is a major

obstacle. But as described, the algorithm used lends itself perfectly to be parallelized and
distributed, an approach that has already been explored through a student project.

93



7.3. Variant calling 7. DATA ANALYSIS

7.3. Variant calling
Variant calling (see Section 3.1.1) is a central aspect of NGS data analysis when doing
DNAseq and diagnostics. Having a precise and fast method to call variants in a sample
is a key aspect of efficient data analysis. In this section we present GNATY, a variant
caller developed with speed in mind. GNATY was first presented in a poster GNATY: A
tools library for faster variant calling and coverage analysis [WKD15] at the GCB 2015.
It was later fully released and presented during a conference paper GNATY: Optimized
NGS variant calling and coverage analysis [WKD16a] at the IWBBIO 2016. This chapter
is based on the content of those two works and thus also discusses the subject of coverage
analysis, which is used as an second use-case to validate the proposed architecture for high
performance variant calling.

7.3.1. Introduction
As discussed earlier (See Chapter 2), the amount of data NGS technologies produce is
growing increasingly fast. Being able to analyze them in a timely fashion, without requiring
a huge infrastructure is key for the adoption of this technology. Analysing NGS data has
many elements: Filtering the raw data, aligning it against a reference, calling variants etc.
Many of those analysis steps received a lot of attention in recent years to optimize them.
In particular sequence aligners received many improvements, resulting in a multitude of
competing sequence aligners. But not all aspects of NGS data analysis received the same
focus, and we believe that there is still room for improvement in those areas. This is why
in this chapter we are looking at variant calling, as well as coverage analysis as targets for
speed improvements.
The goal is to improve the performance of those domains, without impacting the quality

of the analysis. The resulting tools have been released as a free tool called GNATY (short for
GensearchNGS Analysis Tools librarY) 5. GensearchNGS is the graphical pipeline developed
during this thesis and discussed in Chapter 6. The way we try to approach this goal is to
use modern development techniques, such as stream processing and multithreading, to
optimally use the resources available on a computer. Our goal is to use existing computing
infrastructure to analyze more data as well as to use infrastructure currently not suitable
(such as laptops) to perform this type of analysis.
The target of our optimization is variant calling, which is performed on an alignment

file, usually in the BAM file format [LHW+09]. This file contains all the aligned sequence,
separated into groups based on the reference (usually a chromosome) on which they have
been aligned. The goal of variant calling is to find the positions in the alignment which
differ from the used reference sequence. Those differences, which can come in the form of
SNPs or indels, are called variants. A variant caller, based on its settings, will produce
a list of variants described by their position on the reference and the difference observed
between the reference and the alignment at that position. We describe a generic stream
based architecture to speed up this type of analysis. To show that our approach is valid
also for other types of analyses, we also apply it to coverage analysis, which is a similar
problem in many ways.
The rest of the chapter is structured as follows. We look at the different existing variant

callers and methods in Section 7.3.2. Section 7.3.3 discusses the implementation and meth-

5http://gnaty.phenosystems.com

94



7.3. Variant calling 7. DATA ANALYSIS

ods used to create our more optimized variant calling tool. In Section 7.3.4 the performance
of the tool is analyzed followed by a discussion of this chapter in Section 7.3.5.

7.3.2. State of the art
Like for most of the NGS data analysis steps, many tools exist to perform variant calling.
While they all have the same goal, namely detecting the differences between the aligned
sequences of a sample and the reference, they approach this problem with different strate-
gies. Two main groups of tools can be identified, the ones using probabilistic methods,
mainly based on the Bayes theorem [BP63], and the ones using heuristic and statistical ap-
proaches. GATK [DBP+11] and samtools [LHW+09] are two popular variant calling tools,
both members of the first group of tools using probabilistic methods. In the second group,
using heuristic and statistical methods, the main tool used is Varscan 2 [KZL+12], which is
also the tool we based our approach on, as it is the preferred tool of the human geneticists
laboratory at the University of Würzburg. It has also been shown recently [WANW14] that
both approaches create similar results when using the correct parameters. The cited paper
compares Varscan 2 with other approaches, in particular GATK. As we try to reproduce
the exact analysis results of Varscan 2, the comparisons of the cited paper between Varscan
2 and the other variant callers also applies for GNATY.
The generic architecture we propose not only applies to variant calling but for other

types of NGS data analyses. For this purpose we also look briefly at coverage analysis of an
alignment file, a process in many ways similar to variant calling. For this work, we consider
coverage analysis to be the creation of an annotation file in the BED format, containing
the coverage information for every position of the alignment. A couple of tools exist for this
task, but the best known one is BEDtools [QH10]. BEDtools is a collection of tools which
either work with BED files or produce BED files. Those BED files can be used for other
data analysis tools as well as for visualization in genome browsers. The coverage analysis
we implemented is based on the method used in BEDtools.

7.3.3. Methods
Variant calling is a mainly I/O (Input/Output) bound analysis. Determining if at a certain
position in the alignment there is a variant is not costly in terms of calculations, but the files
which contain this information can be very large and become a bottleneck. This is why when
designing the architecture of GNATY, we focused on splitting the data analysis in various
modules. They can work independently and most importantly separate the calculation
heavy and I/O heavy operations. This way, during the time data is loaded from storage (or
written), the processor can continue to analyze the already loaded data, without having to
wait for the I/O operation to finish. This overlap between communications and computation
is an important aspect when writing high performance applications.
This is why we decided to use a stream based approach, where I/O and calculation tasks

run in parallel. The application has been developed as a Java application using Java 7 or
newer.
Figures 7.15 and 7.16 show the proposed algorithm, once for the variant caller and once

for the coverage analysis.
Thanks to the modular streaming approach, a lot of code can be shared between the two

analysis tools. Indeed, the two modules which amount for most of the code complexity are

95



7.3. Variant calling 7. DATA ANALYSIS

BAM reader Collector FASTA reader Caller VCF writer

FASTABAM VCF

Fig. 7.15.: UML (Unified modeling language) activity diagram for the variant calling part, based
on the author paper [WKD16a]

BAM reader Collector

BAM

Coverage BED writer

BED

Fig. 7.16.: UML (Unified modeling language) activity diagram for the coverage analysis part,
based on the author paper [WKD16a]

shared, the BAM reader and the Collector modules. The BAM reader is responsible to
read the alignment file and outputs a stream of aligned sequences. To read the alignment
files the Java library Htsjdk 6 is used, which is part of the samtools project [LHW+09].
After the BAM reader, the Collector receives a stream of sorted sequences. Based on

the sequences, the Collector constructs a data structure which contains the coverage
information for the current region of the alignment. This information is stored in a circular
buffer, which is expanded when needed. The length of this circular buffer is the length
of the longest sequence in the dataset. As the incoming reads are sorted by their start
position, every time a new sequence arrives the region before the start of that sequence can
be analyzed (as no new information about it will arrive). At this moment, the information
of the completed region is sent to the next module, which depending on the type of analysis
is either the Coverage or FASTA reader module. For coverage analysis, the rest of the
process is simple. Based on the information received from the Collector, the Coverage
module calculates the coverage for every position. This coverage information, is sent to the
BED writer which saves the information into a BED file.
For variant calling, the FASTA reader intercepts the stream of information coming out of

the Collector. It is at this point that the reference information is added to the alignment
information produced by the Collector. To call variants, unlike coverage analysis, it is
necessary to not only know the aligned sequences at a certain position, but also the reference
(as we search for differences between the alignment and the reference). This task is done
by the FASTA reader which annotates the stream data with the reference. This means it
can read only the required parts of the reference FASTA file, and that in sequential order
(which at least for traditional hard disk is a speed advantage). This annotated alignment
information is then streamed to the Caller which does the actual variant calling.
The variant calling is done using various user configurable options, such as minimum fre-

quency, minimum coverage or minimal p-value. The p-value (probability-value) determines
the probability that a variant is an artifact. It is calculated the same way as Varscan 2

6http://samtools.github.io/htsjdk/

96



7.3. Variant calling 7. DATA ANALYSIS

does it, with Fishers exact test and a prior of 0.02. To calculate the Fishers exact test to
determine the probability that an observed variant is different from a random sequencing
error we need: The coverage x of the position at which the variant has been observed. The
amount or reads r that support the variant. And the prior P which stands for the proba-
bility of having a sequencing error. We use Fishers exact test with the values a = x ∗ P ,
b = x− a, c = x and d = x− r. Thus, using Fishers exact test formula 7.3:

p =

(
a+b

a

)(
c+d

c

)
(

a+b+c+d
a+c

) (7.3)

We get the following formula 7.4 to calculate the probability:

p =

(
x∗P +x−x∗P

x∗P

)(
x+x−r

x

)
(

x∗P +x−x∗P +x+x−r
x∗P +x

) (7.4)

Only r and x are needed to calculate the probability, P is given by the algorithm (0.02
by default). For high coverage regions, the computational complexity of this method is
too heavy and thus replaced by the Chi-square test. The Chi-square test gives very similar
results at higher coverage values, but is much less computationally expensive. We use Fishers
exact test when a+ b+ c+ d < 200, and above that value the Chi-square test. This allows
us to determine variants accurately even at high coverage locations in an alignment, where
as other variant callers down-sample the alignment information for high coverage regions.
The result of the variant calling module is then sent to the VCF writer which outputs a

VCF file of the variants found.
Worth mentioning are some special options integrated into our variant calling algorithm

in relation to the reference Varscan 2 implementation. In contrast to the coverage analysis
which reproduces the BEDtools output, the variant caller required more effort to reproduce
the exact same results.
Varscan 2 has a few particularities when calling variants, if not to say bugs, which had to

be reproduced to get the same results and thus a fair comparison. Those adaptations which
replicate the exact results from Varscan 2 have been put behind two special configuration
parameters the user can activate. The first option, -one, is used to only call one variant at
a certain position. Varscan 2 will always only report variant at a position. This can cause
problems when a sample contains two heterozygous variants at the same position. Only the
one with a higher frequency will be reported. We reimplemented this optional behavior to
match the Varscan 2 method.
The second option, -var2 is a broader collection of small changes that had to be made

to reproduce the exact Varscan 2 behavior. The most important one being the way indels
are handled. When calculating the coverage for deletions, Varscan 2 uses the coverage of
the position just before the deletion, not like one would expect the coverage at the first
position of the deletion. Figure 7.17 shows this difference in an example.
Varscan 2 considers the position marked in blue for the coverage of the one base deletion.

GNATY on the other hand by default considers the red position for the coverage of the
deletion. This can lead to differences between the two tools, like in this example if there is
a minimal coverage of 3 for variants to be called.
Also, in certain situations, Varscan 2 calls variants at positions at which the reference is

N, a letter that is used as a wildcard for all other nucleotides. This should not happen, as the
nucleotide N is a placeholder for every possible nucleotide, thus making it impossible to find

97



7.3. Variant calling 7. DATA ANALYSIS

ACGTTGCA
  GT-G

Reference

   T-GCA
ACGT

3Coverage 1 1 2 2 2 1 1

Varscan 2 GNATY

Fig. 7.17.: Difference between GNATY and Varscan 2 on default settings for indel coverage

any SNPs at those positions. We reimplemented this behavior and the user can activate it
using the optional argument -var2, an option we also used during our tests. Those findings
have been reported to the developers of Varscan 2, but as of today no change has been
made in Varscan 2 to address those issues. For this reason those 2 options are available
to the user in case they want to migrate from Varscan 2 to GNATY, without having to
reevaluate the whole pipeline.
In the next chapter we look at how our implementation performs for both variant calling

and coverage analysis.

7.3.4. Results
To test the performance of the variant calling as well as the coverage analysis, we used
two datasets. The source of both datasets is the genome comparison & analytic testing
project (GCAT) [HWK+15], a project which aims to provide standardized datasets for
testing and comparing of different methods. The GCAT project provides a website with
datasets as well as the ability to compare the results of different types of data analysis
on those datasets between multiple methods. For the purpose of our tests, in which we
compare the variant calling tool with Varscan 2 as well as the coverage analysis tool with
BEDtools, the same datasets have been used for both use-cases. We picked two rather
typical datasets originating from two different sequencing technologies. The first dataset
comes from an ion torrent sequencer, called ion-torrent-215bp-se-exome-123x, which is a
single end exome dataset with a coverage of 123x. It consists of 39’624’388 sequences of
length 215 bp distributed over all chromosomes. The second dataset consists of 44’903’506
paired end sequences coming from an illumina sequencer. The individual reads have a length
of 100 bp and the dataset is called illumina-100bp-pe-exome-150x. This dataset was also
used to test the distributed sequence alignment in Section 7.1.4.
The alignment time for both datasets took 64 minutes (23 minutes for dataset 1, 41

minutes for dataset 2). To perform variant calling as well as coverage analysis, sorted BAM
files are required. The unsorted SAM files produced by the aligner have been converted to
sorted (by coordinates) BAM files with the use of samtools 1.0. This conversion process
took 100 minutes in total, 37 minutes for the first dataset and 63 minutes dataset two. This
produced the BAM files used for the benchmarks, with a size of 5.2 GB (dataset 1) and 6.8
GB (dataset 2).
The benchmarks have been performed on a computer equipped with two quad core CPUs

of the type Intel Xeon E5-2609 clocked at 2.5 GHz. The computer was equipped with 32

98



7.3. Variant calling 7. DATA ANALYSIS

GB RAM and a hard disk with a read speed of 128 MB/s and a write speed of 94 MB/s.

Variant calling

The results of variant calling is the time required to perform variant calling with both
GNATY and Varscan 2 on both datasets. Varscan 2 as well as GNATY use the variant call-
ing options recommended by [WANW14]. Those options are a minimum of 20% frequency, a
minimum coverage of 10 and at least 4 supporting reads for a variant. In addition, Varscan
2 used used the -B option which disables the probabilistic realignment feature (Varscan 2
recommends disabling this feature). Also the -x option has been enabled, which disables
the feature to reduce the quality of overlapping read pairs, a feature not yet supported by
GNATY. To create comparable results, GNATY uses the option -one (which only outputs
one variant per location) and -vs2 (which enables a mode that reproduces the way Varscan
2 calls variants). This options are used to guarantee that both tools output a list of variants
as similar as possible, allowing for a fair comparison between them. Varscan 2 uses as its
input the output of samtools, which comes in a special format called mpileup. The output
of samtools has been sent directly to Varscan 2 using a standard Unix pipe, to avoid un-
necessary hard disk access. The output of both tools is a VCF file containing the variants
present in the datasets.
The tests have been repeated 3 times for every dataset. The output files of those tests

have been compared to assure the same results of the analysis. Indeed both tools produced
the same set of variants, with the exception of one variant. Both tools called 425’866 variants
over both datasets, with one variant being the exception, as it was only called by GNATY.
In practice, that particular variant does not make a difference in the data analysis. The
particular variant in question is a SNP at a position where the reference is N, which means
any nucleotide is accepted. GNATY only calls variants at those positions when in the
Varscan 2 compatibility mode, to reproduce a bug in Varscan 2. Any downstream variant
analysis tool will ignore variants at those positions, which means this difference does not
change the results of the data analysis.
Figure 7.18 shows the variant calling times for both tools on both datasets.

GNATY
Varscan 2

Se
co

nd
s 

(s
)

0

1000

2000

3000

4000

5000

6000

7000

Dataset 1 Dataset 2

σ = 5.2s 

σ = 6.9s σ = 1.7s 

σ = 103s 

Fig. 7.18.: Comparison of variant calling times for GNATY and Varscan 2 on the two tested
datasets. Source [WKD16a]

99



7.3. Variant calling 7. DATA ANALYSIS

We can observe a massively faster analysis time for GNATY than for Varscan 2. Both
datasets combined were analyzed in 9 minutes 49 seconds (589s) with GNATY, with 283s
(σ 6.9s) for the first dataset and 306s (σ 1.7s) for the second dataset. Varscan 2 needed
much longer, in fact 2 hours and 55 minutes (10’559s) to analyze those two dataset. This
amounts to 1 hour 4 minutes (3’876s, σ 5.2s) for dataset 1 and 1 hour 51 minutes (6’683s
σ 103s) for the second dataset. This gives an overall speedup of 18 times for our algorithm
implemented in GNATY, for the same analysis results.
To put this numbers into context, Varscan 2 took about the same time it took to align the

raw data and convert it into a sorted BAM file. GNATY on the other hand only required
about 6% of the time to create the BAM file to analyse, which makes it highly interesting
as a replacement tool for Varscan 2.
We also evaluated the impact the stream based approach has on our algorithm, to deter-

mine how much of the speed gain comes from the improved sequential code, and how much
by runnign the different components in parallel. We did this by approximating a sequential
version of the algorithm by reducing the size of the queues that connect the different mod-
ules. By reducing the size of all queues to 1, we approximate the performance of a sequential
version. With this version, the Dataset 1 was analysed in 380 s, which is 34% slower than
the normal version. For Dataset 2, the results were similar, with a 49% slower execution,
bringing the time to 457s. Both of those version were still significantly faster than Varscan
2, which shows that a big part of the gain comes from a more efficient sequential algorithm.

Coverage analysis

The same two datasets were tested with the coverage analysis of GNATY, to show the
flexibility and validity of the proposed architecture to other types of analyses than variant
calling. GNATY is compared to BEDtools 2, reproducing its exact results. The results of
the coverage analysis, which for both tools is a BED file, is identical, which makes it possible
to replace one tool by the other without having to modify an existing analysis pipeline. The
linux tool md5sum was used to calculate the MD5 hashes of the result files, and they are
indeed equal between both tools. Both tools were ran 3 times on every dataset, just like for
variant calling.
Figure 7.3.5 shows the overview of the benchmark results of both tools.
GNATY required 599s (with a σ 0.6s) to perform the coverage analysis for both datasets.

For the same datasets, BEDtools 2 required 1260s (σ 12s), which is about twice the time
that GNATY required to produce the same files. We can observe that the times required
with our algorithm per dataset (291s for dataset 1 and 309s for dataset 2) are very similar
to the time required to perform variant calling on the same datasets. This shows that
we are mostly I/O limited, and not computationally limited. Calculating the coverage of
an alignment file is much less complicated than calculating the variants present in the
alignment. What really changes in the data analysis is the amount of data that needs to
be written to the disk for the result files. For variant calling, the resulting VCF amount to
about 32MB. But for coverage analysis, the BED files are 2.6 GB big, which results in a
much bigger strain for the hard disk.
Figure 7.20 shows the total time required to go from the raw sequencing data of both

datasets to the variant list and coverage analysis.
We can observe that using our tool, the overall time of the analysis is reduced by almost

50%, going from 360 minutes down to 183 minutes. This is mostly due to the faster variant
calling, and in part because of the faster coverage analysis. Both the alignment phase and

100



7.3. Variant calling 7. DATA ANALYSIS

GNATY
Bedtools 2

Se
co

nd
s 

(s
)

0

200

400

600

800

Dataset 1 Dataset 2

σ = 1s 

σ = 3s 

σ = 0.5s 

σ = 11s 

Fig. 7.19.: Comparison of coverage analysis times for GNATY and Bedtools 2 on the two tested
datasets. Source [WKD16a]

Varscan2 + Bedtools 2 GNATY
0

100

200

300

400

64 64

100 100

176

10

21

10

Coverage analysis

Variant calling

SAM2BAM

Alignment

T
im

e 
(m

in
ut

es
)

Fig. 7.20.: Total time required to go from raw sequencing data to a variant list and coverage
analysis

101



7.3. Variant calling 7. DATA ANALYSIS

the conversion from unsorted alignment files sorted alignment files where not optimized in
this work.

7.3.5. Summary
We demonstrated that even well-established tools in today’s NGS data analysis pipelines
have still room for improvement without sacrificing the quality of the analysis results. We
did this by implementing more efficient tools which replicate the results of existing tools.
The speed improvements we achieved came both from more efficient sequential code, as
well as the use of a modern software architecture which fully exploits the parallelism of
modern computers. The proposed stream based architecture has been tested on two types
of analyses, variant calling and coverage analysis. We could show that the separation of I/O
tasks from computational tasks is able to give massive speedups in terms of analysis speeds.
Variant calling with our implementation, while giving the same analysis results, resulted
in a speedup of about 18 times over 2 datasets compared to a standard tool, Varscan 2.
A similar but less pronounced effect can be seen when doing coverage analysis, which has
a speedup of 50%. For coverage analysis, the algorithm was compared to BEDtools 2, and
produces a binary equal results file, making it easy to replace BEDtools 2 in an existing
pipeline. This shows that for some NGS data analysis steps, there is still a big potential
for speed increases even without inventing new methods that change the analysis results.
This is important in the context of the ever increasing amounts of NGS data, where many
solutions are searched by increasing computing power or expanding to grids or clouds to
cope with new data. Our work helps to make NGS data analysis more manageable on
existing hardware, and also make it possible to perform the analysis on smaller computers,
such as laptops.
We intend to apply our approach to other variant calling methods, especially probabilistic

variant calling like GATK and samtools use it, is a priority. Preliminary measures, even
if not exactly comparable as the results differ between both methods, show a speedup
of 5 when using GNATY compared to GATK or samtools for variant calling. While this
speedup might change when implementing a probabilistic variant calling method, it shows
an important potential for improvements.
We also would like to explore the possibility to apply our proposed architecture on other

types of analyses. We are also interested in improving the underlying libraries used, espe-
cially HTSjdk, which is used to read and write BAM files. While we already provided some
patches to improve the performance of HTSjdk for some of our use-cases, more could be
done, especially for faster decompression of BAM files, which is a major bottleneck when
reading alignment files.

102



7.4. RNA-seq 7. DATA ANALYSIS

7.4. RNA-seq
This section describes the work that has been done to integrate RNA-seq data analysis
into the graphical pipeline presented in Chapter 6. The work presented here also helped to
publish a journal publication, Non-Coding RNAs in Lung Cancer: Contribution of Bioin-
formatics Analysis to the Development of Non-Invasive Diagnostic Tools [KWS+17] with
the author as co-author.

7.4.1. Introduction
Understanding which genes are expressed inside a cell as well as the exact RNAs they
produce is important to understand the biological functions going on in that particular
cell and in the sample in general. While DNA-seq can give a general understanding of
what might happen in the cell given its DNA, looking at its RNA gives us a much better
understanding of the actual processes happening. More about how RNA works and its role
inside our cells can be found in Section 2.1.1 and Section 3.2.
There are many ways to look at RNA-seq data and to answer biological questions by

analyzing it. What we want to focus on in our work is the differential expression of genes
between multiple samples. While detecting novel transcripts and genes is a highly interesting
research question, it does move away from our main goal to lower OMICs data analysis
complexity, targeting diagnostics.
To detect differentially expressed genes, we can use a large portion of the general DNA-

seq pipeline described in Section 3.1 and Chapter 6. We can reuse the initial quality control
step of the DNAseq pipeline, as RNAseq and DNAseq both use NGS data using the file
formats.
At the sequence alignment step there are differences between both analyses. As the RNA-

seq data does not originate from all over the genome (like DNA-seq data), but only from
the transcript regions, the mapping process is slightly different. As discussed in Section
3.3.1, there are two approaches when aligning RNA-seq data against a reference. Either a
full genome reference can be used, or a specialized transcriptome reference is used, which
only contains the references of the RNA coding proteins in the genome. Both approaches
have their merits, but to be more consistent with the rest of the supported data analysis,
we focused on using a full genome reference, without creating any obstacles for the use of
a transcriptome reference. To align RNA-seq data against a genome reference, specialized
aligners are commonly used. Those specialized aligners take into account the fact that reads
are not mapped continuously to the reference, but that large gaps exist where the introns
of the transcripts can be found. This type of alignment is called spliced alignment.
Once the data is mapped, in many regards the same types of analyses can be performed

with RNA-seq data as with DNA-seq data. For example variants can be called and com-
pared to a DNA-seq dataset of the same sample. The alignments can as well be visualized
in a genome viewer, which is why we adapted our genome viewer to support RNA-seq data
(more about this in Section 7.6.4). In this thesis we limit ourselves to the visualization of
RNAseq data through a genome browser. Other visualization approaches, mainly regard-
ing the interactome, have been explored during a project [Sis16], but did not yet lead to
significant results.

103



7.4. RNA-seq 7. DATA ANALYSIS

7.4.2. Methods
In this section we look at the different features that were implemented to support RNA-seq
data analysis in the graphical pipeline developed for this thesis. As with the rest of the
pipeline, the Java programming language was used. We focus on the handling of the align-
ment of the data in Section 7.4.2. This is followed by a per sample gene expression analysis
in Section 7.4.2. The individual samples are then compared in terms of gene expression to
detect differentially expressed genes, as described in Section 7.4.2. Once the differentially
expressed genes are determined, we have implemented a set of tools to analyze their fea-
tures to better understand their relationship with the biological process happening in the
cell (Section 7.4.2).

Spliced alignment

RNA-seq data commonly uses spliced alignment when aligning against a full genome.
While many researchers use aligners like Bowtie [LTPS09], more specialized aligners such
as TopHat 2 [KPT+13] and STAR [DDS+13] exist. Even though we developed a custom
aligner for DNA-seq (see Section 7.1), this aligner was only experimentally extended with
spliced alignment capabilities.
As the complexity of the task to create a full-fledged spliced aligner was out of the scope

of this thesis, we decided to integrate aligners that support this type of alignment into
the graphical pipeline we developed. While Bowtie was already integrated for the purpose
of DNA-seq and could be used without modification for RNA-seq data analysis, we also
integrated TopHat 2 into the graphical pipeline. This allows the user to use both of those
aligners transparently without having to learn their usage on the command line and having
to worry about handling the data directly.
While we don’t directly support other aligners through the user-interface, we integrated

an automatic detection for the STAR aligner when importing aligned datasets. This allows
the user to transparently import externally aligned RNA-seq datasets, setting their datatype
automatically to RNA-seq, which is important as some features are only displayed when
looking at certain datatypes.

Gene expression

To implement gene expression analysis we based our method on the htseq tool [APH15].
Using our gene model, described in Section 6.6, we determine all genes, transcripts and exons
that code for RNA in the genome that is being analysed. Going through all aligned reads,
the sequences of every one of those regions are counted. For a sequence to be counted for a
particular region, it has to overlap that region. For transcripts, we additionally determine if
the sequence is likely to come from a different transcript from the same gene. To determine
this, the start and end position of the sequence are looked at to determine if they map to a
different transcript. In the case of paired end data, we also look at the mate pair position
to determine if it maps to a different transcript. A sequence can map to multiple regions.
The data is stored either in a custom fileformat (see Appendix C.3) or the htseq fileformat,

with both being supported for read and write purposes. This allows a user to use htseq
generated gene expression counts for the analysis.
The expression values of the individual samples can be visualized in a sortable and

filterable table, making it easy to find the interesting regions.

104



7.4. RNA-seq 7. DATA ANALYSIS

Various information is provided, including the raw sequence count that maps to a partic-
ular region as well as the standardized values RPKM [MWM+08] and CPM. RPKM stands
for Reads Per Kilobase of transcript per Million mapped reads and is a way to normalize
the read count across various genes.
The formula to calculate the RPKM of a particular region is:

RPKM = 109 ∗ C
N ∗ L

(7.5)

Where C is the amount of sequences that map to that region, N is the total amount
of sequences for this sample and L the length of the region. As shown in [DRA+13], the
RPKM value should not be used to compare values between samples, but only to compare
the expression of genes inside the same sample. The other normalized value is CPM (Count
Per Million) is similar to RPKM but does not consider the length of the region. The formula
for CPM can be seen in equation 7.6, where C and N are the same values as for the RPKM
formula.

CPM = 106 ∗ C
N

(7.6)

The CPM value can be used to compare expression levels across samples, but not between
regions on in the same sample.
To analyze the data on a sample level, the user can use several filters, such as a name

filter, regions of interest filter or a minimal RPKM filter. The data can also be analyzed on
a gene, transcript or exon level.
At any moment, additional information about the individual regions can be found through

the context menu as well as the possibility to visualize the region in the genome browser.
Once the expression analysis for the individual samples has been done, the differential

expression of the genes present in the samples can be determined. We present the tools we
implemented for this in the next Section 7.4.2.

Differential expression

Based on the gene expression quantification we implemented a flexible tool that can compare
an arbitrary amount of reference and test case samples to determine differentially expressed
genes. First the user selects the different samples to be used as a reference as well as test
samples. Figure 7.21 shows the setup dialog which also shows configuration options for the
comparison.
The first step of the comparison is to normalize the expression values of the different

regions across all samples. This normalization step is important, as the amount of sequences
counted for a specific region in a sample heavily depends on the total amount of sequences
that have been sequenced. To give a sample example, if two sample A and B had the exact
same expression of all the genes in them, but sample B would have been sequenced at twice
the depth, all genes would show up as differentially expressed. To compensate for this, the
counts of all value in sample A need to be double before the comparison.
Various approaches exist to address the problem of normalization and no clear standard

has been defined yet. Research papers comparing the different methods are a common
occurrence [LGC+16, SD13], with no clear best practice yet. Because of this we based our
normalization method on the one used in DeSeq [LHA14], which is among the best methods

105



7.4. RNA-seq 7. DATA ANALYSIS

Fig. 7.21.: Setup of reference and test cases for a differential expression analysis

to be used, according to the previously cited publications. We refer to the original paper of
DeSeq for the detailed explanation of the normalization method.
Once the normalization of the different samples is done, they can be compared. When

comparing the samples on a specific region to determine if it is differentially expressed, we
calculate two values. The first is the fold change, which determines how much the expression
changed between the two test cases. A fold change of 1 means that there is no difference
between the two test cases and a fold change of 2 that the expression of that region has
doubled. To calculate the fold change we compare the median values of the reference samples
with the median values of the test case samples for this particular region.
The fold change alone, while useful, does not take into account the variance inside the

samples and is thus not a reliable indicator if the region is actually differentially expressed.
To determine if this is the case, we use a standard t-test to determine the probability that
the reference and the test cases are differentially expressed. When looking at thousands of
regions in the samples, given for example a 5% requirement for the p-value will always give
a good amount of false positives. For this reason we also calculate q-value, which is a false
discovery rate (FDR) adjusted value, with the goal to reduce the number of false positives.
The FDR adjustment is done using the Benjamini-Hochberg procedure [BH95] with a user
configurable FDR level.
The resulting list of all analyzed regions is presented in a dialog show in Figure 7.22.
The dialog lets the user filter the results based on his needs, for example to look at a

specific gene or only show regions with a given maximum p-value.
Once the list of differentially expressed genes is generated, the user can perform more

advanced types of analysis based on the identified differentially expressed genes. Those are
presented in the next Section 7.4.2.

106



7.4. RNA-seq 7. DATA ANALYSIS

Fig. 7.22.: Result screen of the differential expression analysis

Feature analysis

After successfully identifying differentially expressed genes, a common research question is
to determine which biological functions are associated with those genes. Considering all
analyzed genes in a sample that are associated with a certain phenotype, it is possible to
determine the probability that a certain biological function is affected by the differentially
expressed genes.
Various methods exist for this, such as using statistics tests like Fishers exact test or Chi

square. We implemented a prototype of a correlation analysis tool, inspired by the method
used by GOseq [YWSO10]. Figure 7.23 shows the interface for the correlation analysis.

Fig. 7.23.: Correlation analysis interface, showing the relation

107



7.4. RNA-seq 7. DATA ANALYSIS

The user is presented with the probabilities that a certain gene ontology, pathway or
phenotype is differentially expressed.

7.4.3. Summary
In this section we presented a new graphical user interface which allows users to perform
RNAseq data analysis based on existing methods. We implemented the tools to perform gene
expression analysis as well as differential expression analysis. While existing tools already
provide such features, the main goal of this work was to provide an intuitive interface for
the user. This interface not only allows to easily perform said analysis, but also integrates
transparently with external databases and resource. This helps the user to more easily
analyze the results and put them into a biological context.
The resulting tool has been integrated into the graphical NGS data analysis pipeline

presented in Chapter 6.

108



7.5. Epigenetics 7. DATA ANALYSIS

7.5. Epigenetics
This section discusses the NGS data analysis tools that have been implemented to sup-
port bisulfite sequencing analysis inside the graphical pipeline discussed in Section 6. Even
though the bisulfite sequencing tools have not been released as a stand-alone tool, we choose
to dedicate a full section to document them.

7.5.1. Introduction
Bisulfite sequencing is a technique to analysis the methylation of the cytosine (C) nucleotide
in the genome. As described in Section 3.3, the methylation of cytosine has regulatory effects
on genes, especially related to the methylation (or lack thereof) of the promoter sequence
of a gene. While DNA-seq is able to show the genotype of an individual at the DNA level,
it cannot describe all biological processes inside a cell. For example, why two genetically
identical cells (or individuals) show different gene expression levels. While analyzing the
methylation of those genomes might not give an answer to all of those questions, it becomes
increasingly clear how important the effect of methylation is on the cell functions.
We used the general DNA-seq workflow developed in the graphical pipeline used for this

thesis as the basis for the bisulfite sequencing data analysis. Because of this we focused
only on methylation analysis which uses NGS data as its source. As described in Section
3.3.1, the general workflow for methylation analysis and general DNA-seq analysis is very
similar. Because of this we decided to add the methylation data analysis as context sensitive
additions to the general NGS workflow.
The work integrated into the graphical pipeline regarding methylation analysis is the

context sensitive handling of methylation data, both inside the pipeline as well as in the
genome browser. In terms of data analysis, the quantification of both CpG and non CpG
methylation has been integrated. The quantification is done reference wide as well as in
user defined regions, such as the promoter regions of genes. A graphical user interface has
been implemented which not only allows for a quick visualization of the methylation of
one sample, but also to graphically compare multiple samples. In addition, as described in
Section 7.6.4, the genome browser has been enhanced to allow both for easy visualization
as well as manual data analysis on the data.
Section 7.5.2 looks at the state of the art of methylation analysis, followed by a more

detailed description of what has been implemented in our graphical pipeline (Section 7.5.3).

7.5.2. State of the art
A lot of the bisulfite sequencing data analysis is done using custom R scripts or spread
sheet applications. While some stand-alone tools exist like QDMR [ZLL+11], wich allows to
identify differentially methylated genes and regions, very few DNA-seq pipelines include this
type of analysis. The only examples of pipelines integrating it are CLCBio 7 and Galaxy
[GRH05], with CLCBio providing the most comprehensive data analysis toolset. Stand-
alone bisulfite sequence analysis pipelines exists as well, which specialize in only this type
of data. Recent examples of such pipelines are MethyQA [SNY13] and SMAP [GZM+15],
which are automated command line pipelines to analyze the data.

7http://www.clcbio.com/

109



7.5. Epigenetics 7. DATA ANALYSIS

Those pipelines generally speaking work through the workflow we laid out in Section 3.3.
The different tools used to perform those analysis steps are described in Section 3.3.1.

7.5.3. Methods
We implemented a quantification tool that determines the methylated reads inside a specific
region of an alignment. The results of this analysis are stored in a custom file-format
(described in Appendix C.2) to speed up the display for future use. The user can visualize
this information for a whole alignment or a specific reference used to create this alignment.
It is also possible to visualize more than one sample at the time, to quickly compare the
methylation of various samples. Figure 7.24 shows multiple samples which are visualized at
the same time.
In addition of the overview information which can be compared between multiple samples,

the user can also visualize a more detailed table for the analyzed regions. This is shown in
Figure 7.25. The analyzed data as well as its display has been heavily inspired by the needs
of the department of human genetics at the University of Würzburg.

Fig. 7.24.: Multiple samples compared Fig. 7.25.: Methylation details for one sample

For every sample we collect the amount of detected CpG locations on every region that
was analyzed. For our implementation we concentrate on CpG locations, as for humans the
CpG methylation is the most important one. We also store the amount of non methylated
and methylated CpGs in those regions. Non CpG methylations are also detected and are
stored separately, so that during the visualization the CpG and non CpG methylation can be
displayed separately. Additionally we detect the average methylation of the reads covering
the analyzed section. We also create 4 bins of methylation frequencies between 0 and 100%
methylation, to count the amount of sequences that have that amount of methylation.
Every sample which is analyzed can also be easily visualized in the genome browser at

the specific location that is indicated in the analysis table. The specific features which have
been implemented to both visualize and analyze the data inside the genome browser are
described in Section 7.6.4.

7.5.4. Summary
In this section we discussed the integration of basic methylation analysis tools for bisulfite
sequencing data into a DNA-seq pipeline. While still in early stages, we built the groundwork

110



7.5. Epigenetics 7. DATA ANALYSIS

for future methylation analysis improvements in the pipeline. This work on basic epigenetic
tools has served as preliminary work for the start of a bigger project in epigenetics in
financed by the Swiss Commission for Technology and Innovation (CTI). The project which
aims to expand the work done in regards to epigenetics during this thesis started at the
end of 2016. While the impact of this work is currently limited, it did already allow various
samples to be analyzed and work to be published, as detailed in Section 9.1.4.

111



7.6. Genome browser 7. DATA ANALYSIS

7.6. Genome browser
The genome browser is a central tool to analyze NGS data. It allows to visualize and
understand the sequenced data as well as to verify the results of an automated analysis.
In fact, the first project on which this thesis was started was a genome browser [Wol11],
the same which served as the basis for the genome browser presented in this chapter.
This chapter is based on published works such as the journal paper DNAseq Workflow
in a Diagnostic Context and an Example of a User Friendly Implementation [WKDA15a]
and the two posters GensearchNGS-Viewer: A complete NGS data visualization experience
[WKD14b] and GensearchNGS : Integrating OMICs analysis and visualization [WKD16c].

7.6.1. Introduction
Genome browsers are a set of tools that allow to visualize information about a genome.
They come in various forms, but can be grouped in mainly two groups. Locally installed
and web based genome browsers. An overview of various existing genome browsers is given
in Section 7.6.2.
For geneticists, genome browsers are an essential tool when analyzing NGS data. It is

used for various tasks, but most notably to better understand the sequenced data as well
as to verify the results of the data analysis.
Being able to look at the data visually is important to understand it, which is especially

important when working with new and unfamiliar datasets, as well as less experienced
geneticists. Over the course of this thesis, we observed that once a user doing data analysis
gets more familiar with the data, visualizing it becomes less important during the analysis.
The visualization is then mostly used to verify the results of the analysis, for example to
determine if an identified variant is a genuine variant or a sequencing artifact.
Generally speaking, genome browsers allow to display the alignment of sequenced data,

as well as a list of annotations that enrich the aligned data. Sequencing data is stored
as a list of sequences with their corresponding positions on the reference sequence. They
also contain the alignment information, which indicates how the sequence mapped to the
reference at that particular position, especially in regards to indels present in the sequence.
The annotations that enrich the visualization of the alignment data can come in different

forms. They can be the locations of the genes on the genome, what protein is encoded by a
certain transcript, the location of known variations or many more. Those annotations are
critical to understand the data to be analysed, as it puts the aligned data into the biological
context.
Genome browsers are not limed to DNAseq data, but depending on the genome browser,

different types of NGS data can be displayed. For the genome browser developed during this
thesis we mostly focus on DNAseq data, but also include the display of RNAseq and data
coming from bisulfite sequencing. While those 3 data-types are similar in many aspects,
the display of them is done with different goals in mind, which mostly changes the types of
annotations to be displayed when visualizing them. But they also have their specificities,
such as the spliced reads of RNAseq, or the nucleotides changes by bisulfite sequencing.
To develop a genome browser which supports those 3 data-types, we based our code on a

prototype developed during the master thesis of the author [Wol11]. The genome browser
prototype is also discussed in Section 6.2. Before discussing our implementation of a genome
browser in Section 7.6.3 we look at the existing genome browsers in the next Section 7.6.2.

112



7.6. Genome browser 7. DATA ANALYSIS

7.6.2. State of the art
This section gives an overview at the current state of the art of genome browsers. A more
general introduction of the field can be found in section 3.1.1.
Genome browsers can currently be divided into mainly two categories. The locally in-

stalled genome browsers which display the content of local data files and the web based
genome browsers which work with online data. Both of them have their uses cases and ad-
vantages depending on what they are used for. Locally running genome browsers generally
provide a much better performance and do not require to go through the slow process of
uploaded large datasets to an online server. They also do not pose a data privacy issue
when looking at the data, as all the data stays local.
The web based genome browsers on the other hand make it easy to access publicly avail-

able datasets and often integrate a variety of data sources which give additional information
about the visualized data. The downside is the decreased performance and interactivity, due
to the nature of the data to be displayed.
The list of genome browsers discussed in the next two sections is far from complete.

Many genome browsers exists, not all of them are being actively developed. This is why
we focus on the most used and updated genome browsers for both categories (desktop and
web based).

Desktop applications

In this section we take a look at some of the available genome browsers.
IGV: The Integrative Genomics Viewer [TRM13] is arguably the most used locally in-

stalled genome browser. Figure 7.26 shows the main window of the genome browser with
several tracks.

Fig. 7.26.: Example display of the IGV genome browser

The IGV genome browser can work with either locally installed or remote data files, for
both the alignment files as well as the annotation files used for the various displayed tracks.
One of its main advantages is the big range of supported data formats as well as the ability
to stream local and remote content in the most effective way possible. IGV is coded in Java
and runs on all major platforms.

113



7.6. Genome browser 7. DATA ANALYSIS

Tablet: Another genome browser for NGS data is Tablet [MSB+13], which is written in
Java just like IGV. Figure 7.27 shows the Tablet genome browser displaying an alignment
file.

Fig. 7.27.: Example display of the Tablet genome browser

Tablet is a much more lightweight genome browser than IGV, offering less annotation
tracks and integration with external services. For annotation of the sequencing data, Tablet
mostly relies on the manual import of GFF files by the user (for example for the gene model
to be displayed). On top of standard alignment files, such as BAM files, Tablet has also
been developed to visualize de-novo sequence assemblies.

Web applications

Several web based genome browsers exist. They are very popular and widely used, among
other reasons because of their integration of annotations which are also available online.
Indeed, two of the most used genome browsers, the UCSC genome browser as well as the
Ensembl genome browser, are produced by communities which offer a wide range of genome
annotations.
We now take a look at some of the available web based genome browsers.

UCSC genome browser: This web based genome browser allows the user to display a
variety of genome annotations, as well as alignment files, made available by the University
of California, Santa Cruz. Figure 7.28 shows a screenshot of the UCSC genome browser
[KSF+02].
Through a very complete set of configuration options, this genome browser allows to

integrate a variety of annotation files and display them at the same time using several
tracks. Those annotation files are either provided by the UCSC project, or can be provided
by the user. fact

Ensembl genome browser: Very similar to the UCSC browser, the Ensembl browser
[CAB+15] is also based on a genome annotation service which provides a variety of annota-
tions. Indeed, we use the Ensembl service as our main data source for genome annotations.
Figure 7.29 shows a typical screenshot of the Ensembl genome browser.
Similarly to the UCSC genome browser, the Ensembl genome browser allows the display

of various annotations in several track, with a lot of configuration options on how to display

114



7.6. Genome browser 7. DATA ANALYSIS

Fig. 7.28.: Example display of the UCSC genome browser

Fig. 7.29.: Example display of the Ensembl genome browser

them. The main difference with the UCSC browser is the direct integration with the Ensembl
annotation database, which removes the need for many annotation features to be loaded
from files.

JBrowse This genome browser takes a slightly different approach to the two previously
mentioned web based genome browser. This genome browser is based on HTML5 and
JavaScript to create a flexible and extensible experience for its users. But instead of being
directly integrated into a larger platform, JBrowse [BYD+16] is an independent genome
browser, which is intended to be integrated in various websites.
Figure 7.30 shows the JBrowse genome browser with multiple active annotation tracks.
Compared to other previously presented genome browsers, JBrowse focuses on being in-

tegrated into existing websites and being extensible. Unlike the UCSC and Ensembl genome
browser, the JBrowse website does not provide an usable genome browser installation out of
the box. The JBrowse software has to be integrated into an existing website and extended
by plugins to match the websites needs.

115



7.6. Genome browser 7. DATA ANALYSIS

Fig. 7.30.: Example display of the JBrowse genome browser

7.6.3. Methods
Based on the specific needs in diagnostics for a well integrated genome browser, we decided
to create our own. This allows us to have a maximum flexibility on how it operates and to
better adapt it to the needs of the geneticists.
The genome browser we developed uses the previously developed prototype of a genome

browser, which was written in Java. It can be either executed as a stand-alone environment
using local or remote data, or as an integrated part of the visual pipeline developed during
this thesis (see Chapter 6).
The genome browser can read data from various data sources. For the alignment data,

BAM files are supported through the Htsjdk 8 library, which is part of the samtools project
[LHW+09]. The BAM files organize the aligned sequences by their alignment position, which
makes it possible to quickly extract the information of a specific region to be visualized.
The reference sequence is read from a FASTA file using a custom data reader. The

FASTA file can either contain only one reference (for example for one chromosome), or
multiple references (for example all chromosomes in the same file). To quickly access the
correct reference in the files, FASTA index files are used. If not already present, the genome
browser is able to create a new index file automatically.
The annotations displayed in the genome browser can come from a multitude of sources.

They are grouped into two groups, the integrated and the external annotations.
Both of those annotation categories are very similar, as they add additional information

to the alignment to give the user a biological (or other) context when looking at the data.
But with internal annotations, we know what they represent and can thus be displayed in
a more integrated manner. External annotations are displayed “just” as graphs, which can
contain arbitrary data for which we do now know the meaning.
The integrated annotations are mostly used for the gene information provided by the En-

sembl [YAA+16] project. The way annotation data is recovered and managed from Ensembl
is shared between the genome browser and the graphical pipeline, and described in more
detail in Section 6.6. The annotations from Ensembl provide the user with the information
about the location of the genes, as well as the different transcripts of the gene. Based on
this information, an interactive display of the protein encoded by the gene as well as the
consequences of the variants on that protein can be displayed. This information is crucial
when doing diagnostics and the impact of a variant on a particular gene has to be identified.

8http://samtools.github.io/htsjdk/

116



7.6. Genome browser 7. DATA ANALYSIS

Other annotations come from external files, where multiple types of data-formats are
supported. Those include BED, WIG and GFF, which are used to display different types of
annotations. All three of those file formats are text files which contain information based on
the position on the genome. BED (Browser Extensible Data) 9 files are commonly used to
mark certain regions of the genome, be it genes or repetitive regions. WIG 10 files are used
to store graphs associated with the genome. GFF (General Feature Format) are mostly used
to store gene information (their positions and exons). The support for those data-formats
is based on custom code written during this thesis.
As far as annotations go, we mention variation data separately. The variation data can

come in the form of VCF [DAA+11] files as well our custom format (initially inspired by
the Varscan 2 file format) described in Appendix C.1. The support for those file formats is
based on custom code which was created according to the needs of the application, which
is to say, fast access and easy integration in the existing codebase.
Other annotations, like the GC content of the reference, are calculated dynamically while

displaying the data.
The different data-sources have been programmed in a way that abstracts the actual

data-format from the underlying data. This makes it possible to replace a file format with
another for almost any source, making the application future proof if the standard file
formats change.
To optimize the genome browser, VisualVM 11, the official Java profiler was used.
The following Section 7.6.4 shows the different features which were integrated into the

genome browser to support NGS data analysis.

7.6.4. Results
This section presents the features implemented in the genome browser for the different
data types to be visualized. Based on the needs of the users, which have been determined
through various use cases (see Chapter 9 for examples), many features for the visualization
of alignment data have been integrated.
First we look at Figure 7.31 which gives an overview of the genome browser with various

features.
We can see several tracks displayed in that figure, showing different features of the data.

Starting from the top, the first track gives an overview of the currently displayed gene. We
can see the different exons (blue) as well as the currently displayed portion of the gene
(gray). The user can freely click around this overview track to quickly navigate to different
parts of the genome, or in this case, the selected gene.
Just under the overview track we can see the gene track which shows the location of all

genes. In this case, as we are zoomed in to a specific gene, only one gene is displayed, but
if the user zooms out further, all genes of the currently visible region are displayed.
A very useful track is displayed just under the genes track, which is the protein track.

The protein track displays the protein encoded by the currently selected transcript. The top
display in the protein track shows the protein encoded by the reference, and the protein
displayed just under it is the one encoded by the consensus sequence of the currently
displayed alignment. The user can also at any moment select a particular base in an aligned

9https://genome.ucsc.edu/FAQ/FAQformat.html#format1
10https://genome.ucsc.edu/goldenPath/help/wiggle.html
11https://visualvm.java.net/

117



7.6. Genome browser 7. DATA ANALYSIS

Fig. 7.31.: Main view of our genome browser, showing multiple annotation tracks

sequence, to see its consequence on the encoded protein. This allows the user to quickly
evaluate the changes made by the variants found in the data on the currently displayed
gene/transcript.
The next track shows the currently selected transcript in more detail. This track also

shows other transcripts for the gene, if available, and lets the user switch between the
currently selected transcripts.
Next up are the reference and the consensus sequence track. Both of those tracks show a

DNA sequence, with one being the reference sequence and the other the consensus sequence
of the current alignment.
Right clicking on a variant (as shown in the screenshot), will open a contextual popup

menu displaying various actions to the user. This includes the possibility to open the variant
on external websites, like the UCSC genome browser.
Just under the reference and consensus sequence the actual sequence alignment is shown.

Different visualization methods for the display of the reads have been implemented, with
the default one being shown in the screenshot. By default, all forward and backward reads
all displayed in the same area, with only the nucleotides displayed that differ from the
reference. The displayed nucleotides are colored by their quality information (as given by
the sequencer) and the sequence backgrounds are colored by their alignment quality (as
determined by the aligner).
On the right side, various information about the currently displayed data as well as the

selected gene is displayed. We can also see the histogram displayed on the right, making it
easy for the user to quickly see the nucleotides present at a given position.
The following sections will look in more detail at the various features in the genome

browser.

118



7.6. Genome browser 7. DATA ANALYSIS

Annotation tracks

As shown in Figure 7.31, our genome browser contains various annotation tracks. Those
tracks can either come from traditional annotation files, like BED, WIG and GFF files, but
also from the internal data-structures which are used to display the data. Those internal
data-structures are for example the alignment data, information derived from the alignment
data (like coverage) as well as gene and transcript data coming from Ensembl.
Here is a list of the various tracks available in our genome browser:

Overview: The Overview graph, also shown in Figure 7.31, gives the user the ability
to quickly see what portion of the selected gene he is visualizing. Not only does it show
the displayed parts and where the various exons are, but it also serves as a way to quickly
navigate the alignment data. By clicking on any region on the gene on the overview view,
the user can jump to that particular position.

Coverage: The coverage track shows the coverage of the alignment data at any given
position. The coverage is shown with color colored bars, based on the standard colors of the
different nucleotides, which are, green for, black for C, red for T and blue for G. Those colors
are also user configurable in the genome browser configuration. When zoomed in, this allows
the user not only to quickly evaluate the coverage of the alignment, but also see if there are
many positions with heterozygous variants. The coverage information is directly calculated
from the visualized alignment data when zoomed in close enough. When the user zooms out
more, for example to the level of the full genome, a precomputed coverage information is
shown. The reason why the coverage needs to be precomputed when visualizing large parts
of the alignment is for performance reasons. To do this, we developed a custom binary
data-format that allows for a quick retrieval of the coverage data for visualization purposes.

Quality: Using the quality track, the user can get a graph which shows for every position
in the alignment its quality, which is defined by the average quality of all aligned nucleotides
at this position. This allows the user to quickly evaluate the sequencing quality of various
positions in the alignment, in particular around variants.

Reference GC content: The information on the GC content in the reference is an
important information for the user, as the GC content can influence the quality of the
sequencing. The effect the GC content can have on sequencing is well known [BS12] and
can cause problems when analyzing certain parts of the genome with a particularly high
GC content. The GC content of the reference refers to the amount of G and C nucleotides
in a specific region of the reference. The GC content is the percentage of those bases found
in relation to the other two bases, A and T. The exact formula to calculate this can be
found in 7.7, where r is the GC content in percentage.

r = G+ C

A+ C +G+ T
(7.7)

By default, the genome browser calculates the GC content using a sliding window, with
a window size of 21. This value is configurable by the user.

Genes: The genes track allows the user to see all known genes (as they were retrieved
from Ensembl) and their location on the genome. This makes it possible to see if a certain
region of the alignment is on a gene or not.

119



7.6. Genome browser 7. DATA ANALYSIS

Transcript: The transcript track shows by default the 5 biggest, known, protein coding
transcripts. This definition of what a known transcript is comes from Ensembl, novel and
experimental transcripts are two other states a transcript can have. In the transcript track,
the user can select the currently active transcript, which will be used for all information
that needs an active transcript, like the protein track discussed next. The transcripts show
the individual exons, as well as the UTR regions, in distinct colors. This makes it possible
to quickly see what part of the transcript is touched by a certain feature, like a variant.

Protein: The protein track shows the encoded protein by both the reference sequence,
as well as the alignment data. For the alignment data, by default the consensus sequence
is used. If the user wants to see the effect of a particular variant on the encoded protein,
he can select the variant and the protein will be updated, making it possible to visually
compare the reference and encoded protein.

View modes

When looking at sequence alignment data, not all users need the exact same information.
Depending on the analysis being done, different information is important.
By default, all aligned sequences are shown side by side, positioned at their aligned posi-

tion. Paired end reads are drawn on the same level, connected through a line, highlighting
their relationship. The reads are colored based on their sequence alignment quality, with
lighter colors indicating a low quality alignment and darker colors higher quality align-
ments. This allows the user to quickly see if a certain region contains mostly high or low
quality alignments, which might indicate duplicate regions like pseudo-genes. The individ-
ual nucleotides which make up a read are hidden by default, and only shown if they differ
from the reference sequence. The displayed nucleotides are colored by their quality, which
is determined by the sequencer, indicating how sure the sequencer is that the nucleotide is
indeed correct. The color green is used for high quality nucleotides and the color red for
low quality nucleotides. Both of those colors can be changed by the user.
The behavior of the alignment display can be changed by the user. The biggest change

the user can make is to separate the forward and backward reads. This will duplicate the
sequence display area, and only show reads aligned on the forward strand in one, and only
reads on the reverse strand on the other. This allows the user to see if there is a mismatch
in aligned sequences in both direction, which could indicate sequencing problems of the
particular region.
Alternatively to quickly see in what direction the aligned sequences are in a particular

region, the user can change the coloring of their background. Instead of using the quality
information for the background, the direction of the sequence is used. Reads on the forward
strand are then displayed in blue and reads on the reverse strand in orange.
When displaying paired end data, it is also important to know how the distance between

both read pairs, as well as the information if a read is paired at all. To quickly see this
information, the user can choose to color the background of the aligned sequences based on
their distance to their pair. The higher the distance, the lighter the color, with darker colors
indicating closer distances to the sequence pair. Reads that are not paired, are displayed
with an orange background.

To help the user look at the data he is interested in, various filters have also been imple-
mented. Two types of filters have been implemented specifically for DNAseq data. Align-

120



7.6. Genome browser 7. DATA ANALYSIS

ment quality and read pairing filters. The first filter, alignment quality, allows to filter reads
based on both minimum and maximum alignment quality. As sequence aligner assign an
alignment quality based on the probability that a sequence is aligned at the correct posi-
tion. This is especially useful to filter out sequences with an alignment quality of 0, which is
commonly used to indicate that a particular sequence can be aligned at multiple positions
equally well.
The other filter that was implemented is the read pair filter, which allows the filtering

of sequences which are either paired or not paired. Often unpaired reads are discarded as
they may indicate a quality issue of the particular read, leading to artifacts in the data.
The architecture to implement those filters is very flexible and can easily be extended

based on user needs. Having interactive filters integrated in a genome browser is from our
knowledge a feature only found in our genome browser.

Different data-types require different visualization and filters. This is why a special view
mode as well as filters have been added when integrating bisulfite sequencing data. More
details about that can be found in Section 7.6.4.

Data reports

While the main purpose of the genome browser is the exploration of sequence alignment
data, an important part is to create reports for the findings made using the genome browser.
Directly integrated into the genome browser we added the ability to create various reports
based on the data currently being visualized. Those reports include the ability to create a
report based on the variants identified as well as the coverage of the visualized region.
Figure 7.32 shows an overview of the average coverage per exon of the currently selected

gene that the user can display. In Figure 7.33 we see the minimum percentage of bases
covered at certain depths.
The coverage information displayed is based on the currently selected gene and active

transcript. This allows the user to easily create statistics of the transcript of interest and
visualize them. As in both figures, the user can also change a variety of settings to adapt
the statistics to his needs. This includes the possibility to include or ignore the untranslated
regions (UTR) of the gene as well as set a margin before and after every exon to be taken
into account. This information is crucial for quality control of the sequenced data, for
example to identify low coverage exons in which variant calls might be unreliable.
The other main information displayed by the genome browser for which the user needs to

create reports are the variants. The user can annotate, filter and visualize variants coming
from either a VCF file or our custom variant file format. Once a variant has been analyzed
by the user, he can mark the variant using various labels which follow the ACMG guidelines
[RAB+15] to later save them in a report. The handling of the variants is shared between
the genome browser and the graphical pipeline presented in Chapter 6. The details of how
variants are handled (including annotation, filtering etc.) is discussed in Section 6.7.4.
Once the user marked one or more variants as being interesting, he can create a report

that can be exported to either an HTML file or a PDF document. The PDF document is
created by converting the created HTML document to a PDF file using cutycapt 12. The
usage of cutycapt is optional and only proposed to the user if the software is installed.

12http://cutycapt.sourceforge.net/

121



7.6. Genome browser 7. DATA ANALYSIS

Fig. 7.32.: Average coverage of all exons of a
transcript

Fig. 7.33.: Minimum coverage of all exons of a
transcript

RNA-seq

Visualizing RNA-seq data is very similar to DNA-seq data. Both have very similar under-
lying data, with sequences that are aligned against a reference. The main difference is that
RNA-seq aligners often perform so called spliced alignment. Spliced alignment can intro-
duce large gaps in an aligned sequence, which behave similarly to deletions, but do not
count as such (and are usually much longer). Those splices are introduced to map RNA
sequences, which follow the exons of a transcripts, onto a DNA reference sequence, which
also contains the introns not present in the RNA. Figure 7.34 shows an example of spliced
reads, while at the same time showing the possibility of displaying NGS data from a mouse
genome.
Introducing support for RNA-seq reads mostly consisted in allowing for those spliced

reads. Special handling of splices inside of the sequences had to be introduced, to make
it possible to visualize the alignment without increasing memory requirements as well as
having good performance.
As for the rest of the features needed for RNA-seq, they were mostly already supported

by the needs of DNA-seq visualization. This includes the possibility to easily see the exact
position of a particular (or multiple) transcript as well as their exons. This allows the user
to visualize the relationship of the aligned RNA sequences the corresponding transcripts.

Methylation

To support methylation analysis and in particular bisulfite sequencing data, several features
have been integrated to support the use-cases of researchers using this feature. The features
introduced were mostly based on the requirements of the human genetics department at
the University of Würzburg, which lead to several works discussed in Section 9.1.4.

122



7.6. Genome browser 7. DATA ANALYSIS

Fig. 7.34.: Spliced RNAseq reads displayed in the genome browser

Methylation analysis, which is part of epigenetics, studies the differentially methylated C
(cytosine) nucleotides. Methylated C nucleotides are chemically modified cytosine molecules
which influence various biological processes in the DNA, notably gene expression. To detect
those methylation events in the DNA, through a chemical process called bisulfite sequenc-
ing, the non-methylated C nucleotides are transformed to T (thymine) nucleotides. When
sequencing this threated DNA, the remaining C nucleotides in the sequenced reads are the
methylated C nucleotides.
Sequencing data like this can be done directly with no modification of the genome browser,

but with the downside that the visualized data is very noisy. Indeed, all non-methylated C
nucleotides will be shown as T nucleotides, which look like variants when visualized.
We extended the features in the genome browser to display bisulfite sequencing data

in a more comprehensible way. If bisulfite sequencing data is threated as normal NGS
data, the genome browser will display all non-methylated Cs (which have been transformed
into Ts), as variations. Because of this, we changed the color of all non CpG related C
to T conversions, making it easier to visually identify the relevant C to T conversions.
Additionally, all occurrences of the C nucleotide in aligned reads, which indicate either a
methylated C or a problem in the bisulfite conversion process, are highlighted in yellow.
The CpG positions in the reference are also highlighted, to make it easy for the user to
have a quick overview of where the potentially methylated positions are.
To have a quick overview of the methylation status of a certain position, a new graph

was introduced which shows the methylation percentage of the reads covering the currently
selected position. The same information is also available on a read level, when selecting a
specific read. Using those features, the user can identify the methylation level of a specific
region through the genome browser.
We also added additional filters, making it possible for the user to filter reads with a

maximal or minimal amount of methylation. Using the flexible filter backend, we also added

123



7.6. Genome browser 7. DATA ANALYSIS

filters to specifically filter reads based on their non CpG methylation amount, as well as
requiring a certain minimal amount of CpG places on the read. Using those filters, the users
are able to manually explore the methylation level of specific regions in the alignment.
To solve a different use case, which is the separate methylation analysis of paternal and

maternal DNA in the same sample, we added a novel filter to the genome browser. In cases
where a variant is specific to either the paternal or maternal side, the user can create a
filter to only show reads which either contain or do not contain a specific variant.

Miscellaneous

The list of features is much larger than this document could hold, this section has a short
overview of features that were not mentioned in the previous sections but are still interesting
to note.
One of the most important features of a genome browser is the ability to navigate the

genome. In our browser, this is done through various means. To visualize bigger or smaller
regions of the genome, the ability to zoom has been integrated. This can be done either
through a slider or a numerical input, as seen in Figure 7.31.
When wanting to change the current region to be displayed, various options exist. The

user can navigate using the scrollbar at the bottom, which also gives him an overview of
where in the genome he is located. This is directly linked to an input field where the exact
position to jump to can be specified. To navigate only with the keyboard, the arrow keys
can be used, with the CTRL key modifier allowing to move faster through the data.
But the user also has the possibility to navigate using the various annotations, notably

the overview track and the transcript track. Using the overview track clicking on any region
of the overview jumps to that particular region. With the transcript track, one can jump
to a specific exon number through a right click menu.
Another way is to jump directly to a specific variant using the variant browser, which is

discussed in more detail in Section 6.7.4.
Last but not least, a searchable list integrated in the genome browser make it possible

to select any of the genes present on the reference and visualize them. When selecting a
gene, the area to be displayed is restricted to the extents of the gene, making it easier to
concentrate on the gene currently being visualized. The different ways to navigate corre-
spond to the different use-cases the users of the software have, making it possible for them
to navigate optimally for their use-case.
The ability to select a gene, as well as an active transcript, brings us to another important

aspect of the genome browser, which is context sensitive information. To not overwhelm the
user, whenever possible only the information relevant to the current context is displayed.
An example would be the transcript track, which is only visible when a gene is selected,
and similarly the protein track which is only useful when a transcript is selected. Selecting
a gene also switches all data displayed to the direction of the gene. For genes which are on
the reverse strand, this allows the user to view them just like any other gene. This behavior
can be changed by the user.
The contextual information also relates to variants and the information that is associated

with them. The right click menu shown in Figure 7.31 shows the ability to open that
particular variant on various external websites. Again, only the relevant websites are shown
for a particular variant. In the case of the variant in the Figure, because there is no ID
associated with the variant, only generic websites are displayed. Other plugins which are
integrated allow the user to open the variant in Ensembl [CAB+15], Clinvar [LLB+16],

124



7.7. Discussion 7. DATA ANALYSIS

Cosmic [FBG+15], Exac [Lek15] in addition to the UCSC genome Browser[KSF+02] and
CafeVariome[LBA+15]. A special plugin is the Alamut 13 plugin, which opens a variant in
the variant analysis software Alamut, developed by interactive software. Alamut offers the
user various metrics and annotations to evaluate the impact of a variant.
This integration of external websites also applies to genes and transcripts, allowing the

user to open the relevant information on Ensembl and other websites.
The information shown and linked has been based on user feedback and continual adap-

tation to their workflows.

7.6.5. Summary
We presented a genome browser which visualizes DNAseq, RNAseq and bisulfite sequencing
data. The focus has been put on ease of use and the integration of external resources, to
give proper context to the visualized features. This allows the user to easily navigate and
understand the genomic features he is visualizing. It was crucial, that the genome browser
properly integrates with the workflow of both diagnostics and research environments. This
was not possible using existing genome browser, as they are designed to work as stand-alone
applications. Having a complete control over the genome browser, allowed us to implement
the specific visualizations and features needed to efficiently analyze NGS data in a diagnos-
tics or research environment. It also helped to tightly integrate the genome browser into
the graphical pipeline developed in Chapter 6.

7.7. Discussion
This chapter presented several works done to improve NGS data analysis.
We explored distributed sequence alignment and the possibilities it offers to better use

existing infrastructure. This with the goal to lower the complexity of maintaining a com-
plex computing infrastructure to handle NGS data. We could show that using a flexible
distribution architecture, it is possible to adapt to a variety of infrastructures. This allows
to combine multiple local machines, as well as grids and private or public clouds to acceler-
ate the data analysis, depending on the specific needs and restrictions (e.g. privacy issues).
Future developments should expand this approach to allow existing aligners, such as BWA
etc. to use this approach and not be limited to our own implementation of an aligner.
The new method of meta-alignment presented in this chapter approached the problem

of the complexity of choosing the right aligner for the right situation and dataset. By
combining the output of multiple aligners, we are able to compensate for the weak points in
the various aligners, while at the same time benefiting from their strong points. We showed
that the meta-alignment approach is especially interesting for complicated datasets, e.g.
datasets with a high amount of errors. We also showed that the approach can be used to
either improve the alignment rate or the precision of the resulting alignment file. After the
promising initial results of this approach, future developments need to address the current
shortcomings of the method, such as the lack of support for paired end sequencing data.
After the sequence alignment, for which we presented two works, the resulting alignment

files are often scanned for variants. Upon noticing that this analysis step could take a similar
amount of time as the alignment itself, we proposed an optimized variant calling method,

13http://www.interactive-biosoftware.com/alamut-visual/

125



7.7. Discussion 7. DATA ANALYSIS

reproducing the same results as an already existing variant caller. By speeding up the variant
calling processes by up to 18, we were able to reduce the total analysis time significantly, as
well as to give the user the possibility to quickly rerun the analysis using different analysis
settings. The proposed architecture for the optimized variant calling was flexible enough
the also be used for other use-cases, such as coverage analysis. Due to the modular and
flexible nature of the variant calling we developed, we intend to improve the variant calling
by integrating other variant calling methods that work in parallel, improving variant calling
in a similar approach to how our meta-alignment approach improved sequence alignment.
For RNAseq analysis we developed a new intuitive user interface that integrates into

the graphical pipeline discussed in Chapter 6. We based our approach on existing methods
while integrating external databases to make it easier to analyze the complex datasets. We
had a similar approach for bisulfite sequencing data, where we developed a user interface
for the most important types of analysis. Both of those approaches were validated and used
through their usage on real projects, discussed in Chapter 7.6. For future development, the
features implemented need to be expanded to more precisely respond to the needs of both
research and diagnostics.
Visualizing complex data such as NGS data is very important, as it helps to more eas-

ily understand the data as well as to visually verify the results of automated analyses.
This is why we implemented a custom genome browser that is adapted specifically to the
needs of diagnostics and research. Various features were implemented based on user feed-
back and tightly integrated into our graphical pipeline. While already a large amount of
external databases are integrated to supplement the visualization with relevant biological
information, this is also the point where in the future most progress can be made to help
users to analyze NGS data. Information like conservation scores across multiple species or
the display of multiple alignments simultaneously could help to more easily determine the
biological impact of a given genomic feature.

126



8. POP-Java
In this chapter we present the development of the POP-Java (Parallel Object Program-
ming) language, a Java extension which makes it easier for programmers to write parallel
distributed applications. We present the state of the art of the field, the state of POP
ecosystem when the project started as well as the improvements implemented to get it
to its current state. We also present new ways in which the POP model is used, such as
the cloud, Hadoop clusters and the distribution of calculations over a network of friends.
We evaluated the POP-Java approach in Section 8.8. Parts of this chapter have been pub-
lished in different publications, such as POP-Java : Parallélisme et distribution orienté
objet [WKD14c] (POP-Java : Object oriented parallelism and distribution) and Distributed
programming using POP-Java [WK13b]. The first sections of this chapter describe the ex-
isting work that was already done on the POP model and the POP-Java language. The
author’s contributions are discussed from section 8.5 onward.

8.1. Introduction
Developing distributed and parallel applications has a long history (see Chapter 5), but up
to this day it remains a difficult concept to grasp and implement. With the general theme
of our research being to explore how the complexity of OMICS analysis can be lowered,
this includes research on how to lower the required computing infrastructure. We showed
earlier (Chapter 7.1), that parallel and distributed computing can help to accelerate NGS
data analysis and achieve this goal.
It is very common that a laboratory has multiplay available computers. Most of the time,

those computers are idle, while other computers are pushed to their limit. Combining their
resources by distributing the computing workload more evenly among them seems like an
obvious solution, but it is rarely used due to its complexity.
To make the development of such distributed applications easier for programmers, some-

thing which still greatly hinders the development of distributed applications, a new dis-
tributed programming approach was needed. We wanted to both make it easier to develop
and maintain such applications, as well as to setup and maintain the required infrastructure
to run it.
A natural starting point was the POP (Parallel Object Programming) paradigm, which

was initially developed as a PhD thesis by Tuan Anh Nguyen [NGU04]. One of the thesis
supervisers was Pierre Kuonen, which also supervises this thesis. While the POP model
does indeed make it easier to develop parallel and distributed applications, its initial imple-
mentation POP-C++ [NK07] is not suited for this thesis, which is done in Java. Because
of this, an initial POP-Java prototype, developed by Valentin Clement [CS10], based on
POP-C++ [NK07], was used as a starting-point.
In the rest of this chapter we present at the state of the art of parallel computing,

distributed computing and language extensions. While not exclusive to the Java world, we
will mainly concentrate on methods related to Java.

127



8.2. State of the art 8. POP-JAVA

In this chapter we then discuss the improvements brought to the initial prototype, lead-
ing to a publicly released open-source tool. We will also discuss new concepts brought to
distributed computing, like friend-computing as discussed in Section 8.7.3.

8.2. State of the art
This section discusses the state of the art of distributed computing in Java and other pro-
gramming languages in general. It also addresses the subject of existing Java programming
language extensions, what they do and how they integrate into the existing Java language.
This section is puts the author’s work described in later sections into context.

8.2.1. Parallel computing in Java
Parallel and distributed computing have a long history in Java. Traditionally, programmers
used Threads to perform concurrent computing in Java. The synchronization was done us-
ing manual locks and semaphores which could lead to easily missed errors. This problem
lead to the development of the JSR-166 (Java Specification Request 166) 1 which included
a list of improvements of the Java standard library in terms of parallel computing. Without
being complete, the introduced changes included atomic variables, improved parallel col-
lections and thread handling. Those improvements where included in Java 5, reducing the
complexity of writing parallel applications for the programmer.
The latest improvement to Java are the introduction of lambdas and parallel streams

which allow the user to more easily write map and reduce like algorithms which are executed
in parallel. Those changes were introduced in Java 8.
As discussed in Section 5.3.2, over the course of recent years, GPGPU had a great influ-

ence on parallel programming. Being able to access thousands of computing cores on a local
machine, even if individually less powerful than a CPU, allows for great speedups in many
applications. Of course the Java world did not ignore this movement, and also integrates
the power of GPUs through various approaches.
To integrate GPU computations into the Java programming languages, there are basically

2 approaches. One being the integration directly into the Java Virtual machine, the other
being library based or wrappers around CUDA or OpenCL. We will briefly present the
different available approaches in the rest of this section.

Project Sumatra 2 is a project which intends to bring the power of GPUs directly inside
the Java virtual machine. Through the use of Java 8 Lambdas, parts of the Java application
will be transparently offloaded to a GPU, without the programmer having to write specific
code. This project is still in an early development phase, but has a high potential. It is
also worth mentioning that IBM is working in parallel on a different implementation of the
same concept 3, which further shows the potential of this approach.

Aparapi 4 is a library based approach to the integration of GPU offloading in the Java
language. Aparapi generates CUDA code at runtime for parts of the application where the

1https://jcp.org/en/jsr/detail?id=166
2http://openjdk.java.net/projects/sumatra/
3http://blogs.nvidia.com/blog/2013/09/22/gpu-coming-to-java/
4https://github.com/aparapi/aparapi

128



8.2. State of the art 8. POP-JAVA

programmer used the Aparapi library. An OpenCL backend is also supported, but even
more experimental than the CUDA implementation. A very similar library to Aparapi
exists, called Rootbeer 5, but it is at the time of the writing of this document no longer
actively developed.

JCuda 6 uses a different approach and is essentially a wrapper around native CUDA
code. The programmer writes the code to be executed on the GPU using standard CUDA
code in a C file. A very similar library, JavaCL 7, exists, but using OpenCL instead of
CUDA. Just as JCuda, JavaCL lets the programmer code in “native” OpenCL instead
of relying on a compiler to translate Java bytecode into a code executable on the GPU.
For both projects, this allows the programmer to reuse existing code written in CUDA or
OpenCL to integrate them into a Java application.
Often simply using all the available processing power on a single machine is not enough.

In that case, multiple machines are connected, using a distributed computing approach as
presented in the next section.

8.2.2. Distributed computing
Many libraries support development of distributed applications in Java. One of the more
commonly used ones is even integrated into the standard library of Java, called RMI (Re-
mote Method Invocation) 8. RMI allows the programmer to publish locally running objects
on the network, and other instances of Java applications can connect to those objects to use
them. RMI does not handle concurrent access to the exposed objects, any access is handled
the same way as multiple local threads access any Java object, with the programmer having
to assure thread safety of the methods. To use RMI objects on a remote computer, the ob-
jects need to be created first by that computer through an already running Java application.
The programmer cannot directly instantiate a new object on a remote computer.
A similar approach to RMI has been taken by DIRMI 9, which is a mostly source code

compatible replacement for RMI. It promises a better performance as RMI as well as
bidirectional connections, which allow objects to be accessed through a NAT, which is
not possible with RMI. It also introduces the concept of asynchronous methods for remote
objects, which is not present in RMI.
Concepts like the actor model [HBS73] for distributed computing are also present in Java.

A multitude of libraries implement that model using different approaches. One example,
out of many is Kilim [Sri10], which implements a high performance implementation of
actors for distributed computing. The Akka 10 project should also be mentioned, which
is probably the most famous Java and Scala actor model framework. Both of those actor
model frameworks draw heavy inspiration from the Erlang [CT09] programming language.
One of the more commonly used distributed programming models in the Java world, at

least for large scale problems, is Hadoop [Whi12], which implements the MapReduce [DG08]
model. Developed by the Apache foundation, a rich ecosystem developed around Hadoop,
which lately became very popular for large scale problem solving and big data applications.

5https://github.com/pcpratts/rootbeer1
6http://www.jcuda.org/
7https://github.com/nativelibs4java/JavaCL
8http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138781.html
9https://github.com/cojen/Dirmi/wiki

10http://akka.io/

129



8.2. State of the art 8. POP-JAVA

The distributed computing frameworks mentioned in this section largely integrate into
the Java programming language as libraries. The next section discusses how the Java pro-
gramming language can integrate features not initially intended, through extensions of the
programming language.
Last but not least, ProActive [CHS04], a Java middleware which distributes objects over

multiple computers using a special job scheduler. ProActive uses the concept of active
objects to allow for distributed and parallel programming within Java. In contrast to POP-
C++ and the original POP-Java, it is not a language extension, but a middleware which
provides the programmer with a set of tools and libraries to achieve it’s goals.

8.2.3. Language extensions
This section presents the different ways to extend the Java programming language to inte-
grate new features. This does not include simple libraries, but more advanced techniques to
achieve things not possible through normal means or changes to the programming language
itself.
One of the first examples to extend the Java programming language is as well the most

extreme one. Java source code is compiled to Java byte code. The Java byte code is machine
independent code and is executed through the Java virtual machine, in short JVM. This
assures the ability to run the same code on multiple platforms, as long as there is a JVM
available on the platform that can run the Java byte code.
The Java byte code is independent to the Java programming language, it is in many

ways comparable to assembler. This means, it is possible to create different programing
languages than Java, which compile to Java byte code and benefit from the JVM running
on various platforms. There are several well known examples of this type of approach, with
the most famous one being Scala [Oa04], a functional programming language developed for
the JVM. Groovy11 and Clojure 12, are two other examples of this approach. Groovy is a
JVM language that intends to combine the Java syntax with the Ruby syntax, and can
be used both as a compiled programming language like Java and a script language, which
is compiled only at runtime. Clojure on the other hand is a LISP dialect developed for
the JVM, which through its syntax and functional programming approach best shows how
flexible the JVM is to accommodate different programming language concepts.
A very different approach to the previously mentioned, but which has a similar end result,

is to create a pre-compiler, which takes source code and transforms it into Java source code.
This can be used to integrate small additions to the Java programming language, like the
initial POP-Java prototype did [CS10], or even create completely new languages. But in
that latter case, the approach to directly compile to Java byte code is more common, as
one is not limited by the features of the Java language, but only the Java byte code.
The third approach, which is used by projects like Lombok 13 is to use internal APIs of

the Java compiler to integrate new features into the Java programming language. While this
approach is technically risky, as undocumented internal APIs can break with every minor
release of Java, it offers many possibilities. The Lombok project for example adds new key
keywords to the Java programming language, like val, which is a generic type converted to
the actual type only at compile time.

11http://www.groovy-lang.org/
12https://clojure.org/
13https://projectlombok.org/

130



8.3. POP Model 8. POP-JAVA

The last example of Java language extensions comes through the use of Javaagents. In
Java, a Javaagent is loaded before all other classes and is able to modify the byte code of
classes to be loaded through the use of libraries like Javassist 14. This can be used to create
wrappers around methods, for example to write a profiler that measures the time it takes to
call a method, or more advanced changes to the language. One example is the detection of
integer overflows at runtime, which is done by the project COJAC 15 using this technique.

8.3. POP Model
The core principle of the POP model [NK02] is that objects are ideal candidates to distribute
data and computation over the network. The author did not extend the POP model, but
used it to implement the Java language extension POP-Java.
In object oriented programming, objects encapsulate data as well as functions. The POP

model makes it possible to distribute the execution and storage of those objects over multi-
ple computers and lets them interact between each other. This creates an intuitive approach
for programmers already familiar with object oriented programming to develop distribution
applications. The POP model transparently distributes the objects, letting the programmer
interact with them almost as if they were “normal”, not distributed objects. The program-
mer can for example instantiate an object which calculates the number π, which is then
automatically created on a remote computer. When calling the method of the object which
does the calculation, it is transparently executed on the remote computer.
One key problem to solve when distributing objects in a distributed and parallel context,

is the order of execution. While in a local, sequential environment, the order of execution of
multiple method calls on an object is well defined, this is no longer the case in a distributed
environment. In a purely local but parallel environment, programmers need to handle those
problems with locks, semaphores and other concurrent programming tools. With one of the
main goals of the POP model being the reduction of complexity of programmers to program
distributed systems, the programming model itself integrates the tools required to handle
parallel access to an object.
POP objects define a set of public or private methods as well as private attributes. Due

to the distributed nature of the objects, public attributes are not possible in the model.
A public method in a POP object contains in it’s definition how it is accessed in a parallel

environment. Two attributes are defined for every public method. The first is to define if
a method is synchronous or asynchronous. In most programming languages methods are
synchronous, meaning that the caller waits for the method call to end before continuing its
own execution. With asynchronous methods, the caller immediately continues to execute
his code. The ability to use asynchronous methods allows the programmer to transform a
sequential application into a parallel application.
The second attribute every public method possesses, handles the execution order in the

case of multiple parallel method invocations on the same object. In the POP programming
model, methods can follow one of three possible execution orders. The most basic one
is called concurrent, which indicates that the method can be called in parallel with no
restrictions (it could also be called thread save). The second one is called sequential, which
assures that all calls to methods of an object with the attribute sequential will be executed

14http://jboss-javassist.github.io/javassist/
15https://github.com/Cojac/Cojac

131



8.4. POP Java prototype 8. POP-JAVA

in order of arrival, but not in parallel. It has to be noted that a sequential method can be
executed in parallel with a concurrent methods.
The last option is called mutex, which indicates that a method must run exclusively, with

not other method of any type running at the same time. This means that once a method
call on a mutex method arrives, it has to wait for all current calls finish, and all calls which
come in during the mutex call have to wait for it to finish before execution.
Through the use of those attributes, which create six possible method configurations,

the programmer can program parallel and distributed applications through a much simpler
approach than the commonly used threads and other tools. It is also from a programming
stand point the same if an object is run in parallel on a second CPU on the local computer,
or on a remote computer.

Fig. 8.1.: Method call ordering, taken from the official POP-Java manual

Another interesting property of POP objects, even if implicitly assumed, is that they can
be passed around by reference. Just like in a traditional programming language, objects
can be parameters for method, and thus be passed around. Whenever a POP object is sent
as a parameter to a method of a POP object, the reference to the original object is passed
around, allowing the receiver to transparently connect to the original object.
One important thing to note is that the POP model does not have shared memory

between multiple POP objects. All communication between POP objects is done through
their public methods, which is why as previously stated, public attributes are not allowed
on POP objects.

8.4. POP Java prototype
In 2010, an initial prototype of POP-Java was developed by Valentin Clement [CS10]. It was
based on POP-C++ version 1.3.1 beta J1 [NK07], to the point that both implementations
are compatible and are able to share objects between each other. The prototype demon-
strated the feasibility of bringing the POP model to the Java programming language, but
had its limitations which are discussed in Section 8.4.1.
In the initial prototype the POP-Java programming language, several keywords were

added to the Java language, similar in style to the POP-C++ language. Those keywords
were integrated into normal Java source code, with the files using it having a new file
extension .pjava instead of the traditional .java.
Listing 8.1 shows an example of how POP-Java code looked like in the prototype.

132



8.4. POP Java prototype 8. POP-JAVA

Listing 8.1: Example POP-Java code from the prototype
public parclass Example {

public Example ( String url) @{od.url(url); } {
}

public sync conc int getValue (){
return 42;

}
}

We can observe that essentially three changes had been made to the Java language. At
first, the addition of the keyword parclass, which marks a particular class as being a POP-
Java class. This is required, because POP-Java objects can exist in the same application
as normal Java objects, and thus need to be marked as such. The second change is the
addition of the object descriptors, used in the constructor. The object descriptors allowed
the programmer to configure certain aspects of the object to be created, such as the IP
of the machine on which the object should be created (as seen in the example). The last
addition was were the keywords sync, async, conc, seq and mutex. They were placed in
the method signature of all public methods of a POP-Java object, and thus defining the
access policy to the method.
As seen in Section 8.2.3, there were three ways to integrate those keywords into the Java

language. For the initial prototype, the approach with a pre-processor was used, which
transformed the POP-Java code into regular Java code which could then be compiled by
the Java compiler. For this, JavaCC 16 was used, which allows to define a syntax grammar,
and based on an input file, create a corresponding output file. The parser was based on
Java 6 with the addition of the POP-Java keywords.
The next Section 8.4.1 discusses the limitations of this initial prototype, followed by

Section 8.5 which addresses those shortcomings.

8.4.1. Limitations
The initial prototype had a list of problems which did not make it suitable for wider usage.
The first problem was the way the POP model was integrated into the Java programming
language. As discussed earlier, the prototype added several keywords to the Java language.
Those keywords made the source code of POP-Java applications incompatible with normal
Java tools, especially the Java compiler and IDEs. Not being able to use the modern tools
which assist programmers when developing POP-Java applications, severely lowered its
usefulness.
The second problem was the requirement to go through a custom parser, which translated

the POP-Java annotated source code into standard Java. POP-Java was limited to the
functionality of Java 6, as the parser was specifically written for that version of the Java
language. Every new feature added in the Java language required updating the custom

16https://javacc.java.net/

133



8.5. Implementation 8. POP-JAVA

parser, a non trivial task, especially when thinking about features like lambda functions
added in Java 8.
The third problem of the prototype was that it was in fact a prototype, with many big and

small issues bugs and design problems. Various core features did not work correctly, such as
the keywords like sync and conc, which made the usage of the language impossible in real
life scenarios. On top of the various issues in the core functionalities, there were also various
performance problems which limited its usefulness in performance critical applications.
While those problems appeared rather serious, with some fundamental design choices

being questioned, the core of the POP-Java language was nevertheless a solid base to build
future versions upon. The next section presents at what the improvements were that have
been brought to the POP-Java programming language and how the described downsides
were addressed.

8.5. Implementation
Based on the initial prototype described in Section 8.4, a new version of POP-Java has
been developed, which not only improved the existing concept to make it usable in real life
projects, but also introduced new concepts. This section presents the author contributions
to the POP-Java language.
Section 8.5.1 discusses how the POP-Java language was transformed from a keyword

based Java language extension, to an annotation based language that is compatible with
existing Java tools. In Section 8.5.2 the additional changes to the POP-Java code are
discussed.

8.5.1. Annotations
The major downside of the initial POP-Java prototype was the usage of a custom pre-
processor which not only made maintenance complicated to adapt to new Java versions,
but also made it impossible to use standard Java tools, like IDEs.
To move away from hard coded keywords which are not part of the Java programming

language, to a pure Java based approach, it was decided to use Java annotations. The
design and implementation of the move to an annotation based system has been done by
the author.
Listing 8.5.1 shows how POP-Java code looks like after this changes have been imple-

mented.

Listing 8.2: Example POP-Java code implementing an Integer class, source [WKD14c]
@POPClass
public class Integer {

private int value;

@POPObjectDescription (url = " localhost ")
public Integer (){}
public Integer ( @POPConfig (Type.URL) String url){}

134



8.5. Implementation 8. POP-JAVA

@POPSyncConc
public int get (){ return value; }

@POPAsyncSeq
public void set( Integer i){ value = i.get (); }

@POPAsyncMutex
public void add( Integer i){ value += i.get (); }

}

We can see the new code compared to Listing 8.1, providing the programmer with a more
familiar Java approach to program in POP-Java.
In Java, annotations can be added to classes, constructors, methods and even parameters.

They allow programmers to add additional information to the source code, information
which can be used by the compiler or other tools. All POP-Java keywords from the initial
prototype were converted in a first step to annotations. Table 8.1 gives an overview of the
different annotations and how they related to the keywords of the prototype.

Tab. 8.1.: Relation between the old prototype keywords and the new annotations
Keyword Annotation Description
parclass @POPClass Marks a class as being distributed
@{} @POPObjectDescription Defines various static parameters when calling constructor
@{} @POPConfig Annotates constructor parameters for dynamic object configuration
IN/OUT @POPParameter Defines serialization settings for method parameters
sync conc @POPSyncConc Defines method as synchronous concurrent
sync seq @POPSyncSeq Defines method as synchronous sequential
sync mutex @POPSyncMutex Defines method as synchronous mutex
async conc @POPAsyncConc Defines method as asynchronous concurrent
async seq @POPAsyncSeq Defines method as asynchronous sequential
async mutex @POPAsyncMutex Defines method as asynchronous mutex

Most keywords can be recognized from the POP model description. The IN/OUT keyword
is a special keyword that is used to optimize POP applications. By default all parameters
to a method are synchronized when calling the method, and again sent back to the caller
after the method finished. This is done to keep the behavior of local method calls even
in a distributed environment. When for example a Java method has an integer array as a
parameter, and this array is modified inside the method call, it will also be modified for
the caller. This behavior is not always desired in a distributed environment, especially if
the method parameters are large (such as a matrix). For this reason, the programmer can
decide if a parameter is IN (it is only sent the called method, and not sent back), OUT (it is
not set to the called method, but sent back) or by default IN/OUT.
The annotations replace, as discussed earlier, the pre-processor which converted POP-

Java code into real Java code. To achieve this, a javaagent was implemented which intercepts
all class loading events in the JVM, and changes the bytecode of the loaded class if it is a
POP-Java class. The bytecode manipulation is done using Javassist 17, which has two main
functions. The first is to let all POP-Java classes be extend the POPObject class. In contrary

17http://jboss-javassist.github.io/javassist/

135



8.6. Usage examples 8. POP-JAVA

to the Java programming language, the JVM does actually allow for multiple inheritance
on a byte code level, allowing for this type of byte code manipulation. The second function
is to replace all object instantiations of a POP-Java object by the corresponding call to the
POP-Java utility function which correctly instantiates a remote object.
Thanks to those changes, POP-Java code is regular Java code that can be edited with

any Java IDE, as well as used with traditional Java tools for development. It also made
POP-Java independent of the Java version used by the programmer.

8.5.2. Additional changes
The initial POP-Java prototype had several problems, discussed in Section 8.4.1. Fixing
the underlying problems, such as the bugs that made proper usage impossible was the first
priority. In addition to extensive bugfixing, the build system was overhauled and moved to
Ant, away from make, as it is more appropriate for Java based projects.
In addition of the integrated testsuite, which tests a variety of features that POP-Java

offers using real applications, a unit test suite was integrated. Using JUnit, more lightweight
tests were added, allowing for automated testing during development.
The whole documentation system was also overhauled, moving from a latex based doc-

umentation to one based on Read the docs 18. This move allowed to generated not only
a printable PDF for the manual, but also an interactive web based manual that could be
integrated into the POP-Java website. The online manual is automatically kept up to date
by tracking the commits on the public POP-Java git repository, thus reducing the manual
work required to keep the documentation up to date. The manual can be found on the
official POP-Java website 19.
Another architectural change made to POP-Java was to make it possible to integrate

POP-Java functionalities into an existing Java application. Using the old system, which was
similar to how POP-C++ works, the main class of the application needed to be a POP-
Java class. This was required to assure that all functionalities of POP-Java were initialized
correctly. This was changed, so that an existing Java application can instantiate a POP-Java
object in any part of the code, without having to convert the complete application first.
This was achieved by introducing a system where the POP-Java environment is initialized as
soon as the first POP-Java object is created. Through this, the POP-Java functionalities are
only be started if required and do not require a complete rewrite of the original application.
Various other changes have been made, which range from bug fixing, optimizations to

the compatibility with the latest POP-C++ version 3.0.

8.6. Usage examples
In this section we discuss two examples of how the POP-Java language can be used to help
distributing applications over multiple machines. We discuss how POP-Java makes the
development of the example applications easier and look at their performance where appro-
priate. All the examples presented are contributions made by the author. The first section
8.6.1 looks at a more theoretical use-case, the multiplication of matrixes in a distributed
environment to evaluate the performances of POP-Java. The second section 8.6.2 discusses

18https://readthedocs.org/
19http://gridgroup.hefr.ch/popjava/

136



8.6. Usage examples 8. POP-JAVA

the usage of POP-Java in an example that performs parallel and distributed calculation of
the mandelbrot set.

8.6.1. Distributed matrix multiplications
Multiplying big non sparse matrices is a common task in many scientific fields. While the
goal of this thesis is not to create an efficient matrix multiplication implementation (many
projects exists for that matter), it does lend itself for a good example to show how POP-Java
behaves in a distributed environment.
In this section we discuss how POP-Java scales over multiple machines and how it helped

to implement this type of calculation. In 8.6.1 we discuss the implemented algorithms and
improvements made to POP-Java to be efficient at this task. We also show code examples
on how POP-Java was used to implement the algorithm. The results of the benchmarks are
discussed in Section 8.6.1.

Methods

To test the performance of POP-Java in a different context than sequence alignment, we
choose to implement a matrix multiplication algorithm of two square non sparse matrices.
The goal of this test is to test the object creation speed, the data transfer speed as well as
the speedup over multiple computers. It also served as a test-case to improve POP-Java for
this type of calculations.
We implemented the standard matrix multiplication algorithm with a complexity of

O(N3), where every cell of the resulting matrix is calculated by 8.1.

Rij =
n∑

k=1
AikBkj (8.1)

This algorithm was implemented in a Matrix class, handling the storage of the matrix. To
allow for optimal data access, two versions of the class have been implemented, Matrix2DCL
and Matrix2DLC.
The actual calculations are implemented in a class called MatrixWorker, which can be

distributed. Listing 8.3 contains a simplified version of that class, showing off the different
features of POP-Java used to implement that class.

Listing 8.3: Code example used to implement the matrix multiplication with POP-Java
@POPClass
public class MatrixWorker {

...
public MatrixWorker ( @POPConfig (Type.URL) String url , int

cores , int minStrassen ) { ... }

@POPAsyncSeq
public void solve( @POPParameter ( Direction .IN) Matrix2DLC a,

@POPParameter ( Direction .IN) Matrix2DCL b) {
MatrixWorker me = PopJava . getThis (this);

137



8.6. Usage examples 8. POP-JAVA

for (int i = 0; i < cores; i++) {
me. solveCore (i);

}

for (int i = 0; i < cores; i++) {
calcSemaphore . acquire ();

}
}

@POPAsyncConc
public void solveCore (int core) {

for (int j = core; j < a. getLines (); j = j + cores) {
for (int k = 0; k < b. getCols (); k++) {

double r = 0;

for (int l = 0; l < a. getCols (); l++) {
r += a.get(j, l) * b.get(l, k);

}

result .set(j, k, r);
}

}

calcSemaphore . release ();
}

@POPSyncMutex
public Matrix2DCL getResult () { ... }

}

While most features have been described earlier, we can observe one particularity of that
class. In order to achieve both distributed and local parallelism, the class has two methods
related to the matrix multiplication, solve and solveCore. The first one, solve, is the main
function, which is called by remote objects. It would be possible to perform the complete
matrix multiplication inside this method, only one core of the machine would be used.
In order to use multiple cores, the solve method calls solveCore, which calculates one
specific part of the matrix multiplication. As the solveCore method is asynchronous and
concurrent, it can be called multiple times in parallel, thus resulting in parallel execution
on multiple cores of the machine. To achieve this, the solve method first retrieves a POP-
Java reference on itself (the me variable), which allows the object to call its own methods,
while following the POP method call conventions. By default method calls inside the same
POP-Java object follow the standard Java method call conventions. After having executed
the multiple asynchronous method calls on solveCore, the solve method waits for them
to end. This is done by using a standard semaphore, which is unlocked once the individual
solveCore calls are finished.
This allows the programmer to program an algorithm that behaves similarly to multi-

threaded algorithm, without having to manually create and manage the different threads.

138



8.6. Usage examples 8. POP-JAVA

This approach also shows that we can use POP-Java easily for both local and distributed
parallelization.
Once the matrix multiplication was implemented, we tested its performance (in particular

in regards to scaling). The test environment used is the same as for the sequence alignment
8.8.1, which consists of 10 quad-core machines with 8 GB of RAM.

Results

We tested the matrix multiplication with varying (square) matrix sizes, using 1-10 com-
puters to perform the multiplications. The tested matrix sizes are 840, 1680, 2520, 3360,
4200, 5040, 5880 and 6720. To test the speedup, we only measured the time for the actual
calculation, not the time required to transfer the matrices over the network.

4 8 12 16 20 24 28 32 36 40
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

840

1680

2520

3360

4200
5040
5880
6720

Linear

Cores

S
pe

ed
up

Fig. 8.2.: Matrix multiplication speedup

We can observe that the speedup of the multiplication is very dependent on the matrix
size. The speedup results are good, which shows that we can handle parallel computations
efficiently when using POP-Java.
We deliberately did not show the overall speedup that includes the data transfer times.

This is because the ratio between data transfer times and calculation times is quite bad in
the case of matrix multiplications. This is why in the next section, we looked at an algorithm
where much less data is transferred compared to the time required for the calculations.

8.6.2. Distributed mandelbrot
As shown in the previous example of matrix multiplication (Section 8.6.1), the performance
of distributed algorithms is very dependent on the ratio of transferred data to computation.
To show an example of a distributed algorithm which requires less data to be sent around
compared to the computation that needs to be done, we implemented a mandelbrot set
visualization algorithm in POP-Java. An example of this visualization (which was created
using our test-code) can be seen in Figure 8.4.
The mandelbrot set is a fractal which is constructed using the formula 8.2:

139



8.6. Usage examples 8. POP-JAVA

zn+1 = z2
n + c (8.2)

This computationally intensive fractal can be used to produce beautiful images, but has
also inspired mathematicians to study it extensively, namely in the context of the chaos
theory. Section 8.6.2 gives an overview of how the mandelbrot visualizer was implemented
and Section 8.6.2 discusses the benchmark results.

Methods

We implemented a simple mandelbrot visualizer which can output a visualization of the
mandelbrot set both to a GUI or a file. The workload was split by dividing the image to
be produced into horizontal strips, with every computer calculating the content of one of
the strips. The different computers in the grid received each one POP-Java object, which
also handled the multi-core computing of the part of the image they received. In the same
way the original image is split among the computers, the image every computer calculates
is split into multiple sub-images for every core to handle. Without the programmer having
to use threads, we distributed the workload over multiple computer and their cores.

+setDimensions(int width, int height)
+setCoordinates(double x, double y, double radius)
+calculateRegion(int col, int row, int widthRegion, int heightRegion)
+getRegion()
-calculateStrip(int col, int row, int regionWidth, int heightRegion, int colOffset)

<<POPJava>>
MandelCalculator

+paintComponent()
-createImage()

<<Java>>
MandelDrawer

<<Java>>
MandelWindow

+main(String [])

<<Java>>
Main

<<JavaCore>>
JPanel

<<JavaCore>>
JFrame

Fig. 8.3.: UML diagram of the Mandelbrot calculator

Figure 8.3 shows the UML diagram of the Mandelbrot test application. The only POP-
Java object in the application, is marked with a gray color. This diagram also shows, how
POP-Java and normal Java objects can easily interact with each other.
To test the efficiency of calculation we distributed the calculation over 1-10 computers

using the same setup as the distributed sequence alignment 8.8.1 and the matrix multipli-
cation 8.6.1.

Results

Figure 8.5 shows the speedup of the calculations over 4-40 cores (1-10 computers) using
different image sizes.
We can observe how the speedup is dependent on the image size, reaching much better

speedup values than the previous example of matrix multiplication (Section 8.6.1). The

140



8.7. Extensions 8. POP-JAVA

Fig. 8.4.: Visualization of the mandelbrot set
with our application

4 8 12 16 20 24 28 32 36 40
0

5

10

15

20

25

30

35

40

45
Linear

2000
3000
4000
5000
6000
7000

Cores

S
pe

ed
up

Fig. 8.5.: Speedup of mandelbrot calculations
over 10 computers

provided graph shows the speedup of the complete calculation, which includes data trans-
mission times. Compared to the matrix multiplication example, almost no data had to be
transmitted to the remote objects to start the calculations. The only data which had to be
transmitted was the resulting image which had to be retrieved from the individual remote
objects. Again, like the distributed matrix multiplication, the additional code needed to dis-
tributed (and/or multithread) the calculation, is minimal coming from the initial sequential
code.

8.7. Extensions
This section discusses the different extensions that have been made to the POP-Java pro-
gramming language to introduce new features. The work presented in this section comes
from different projects that extend POP-Java and have been at least supervised by the
author.
We start by discussing how to bring POP-Java to new distributed platforms such as

the cloud (see 8.7.1) and YARN based infrastructures (8.7.2). We then finish the section
with the concept of TrustedFriendComputing (8.7.3), a way to share computing resources
through a network of “friends”.

8.7.1. Cloud integration
For the work describe in this section, the author had a supervisor role and did not create
the described prototypes himself.
The POP model as well as POP-C++ and POP-Java have initially been developed with

grid like infrastructures in mind. Yet over recent years, those types of environments have
been largely replaced with cloud based approaches, either through private clouds or public
ones like Amazon EC2. While bigger organizations still have grid like environments, most
programmers do not have access to such infrastructure. With the introduction of the cloud,
it became much easier for anybody to access large infrastructures.
As the reduction of complexity of distributed programming is the core goal of POP-Java,

it makes sense to explore the possibilities to use the cloud to enable programmers to write
distributed applications.

141



8.7. Extensions 8. POP-JAVA

While fundamentally POP-Java works in a cloud based environment; after all they are
virtual machines with IPs and the ability to run Java; we explored the possibility to make it
easier for the programmer to exploit those infrastructures. Over the course of two Projects,
by Xavier Barrelet [BKBW14] and Andrea Marcacci[MKW+13], we explored the require-
ments a cloud environment has and how POP-Java or the POP model in general need to
be expanded to accommodate them. The cloud used to perform this exploration was the
OpenStack 20 cloud, which is a cloud environment often used for private clouds. To access
the OpenStack cloud, the JClouds library was used, which also gives access to other cloud
types and is thus ideal for future expansions of the concept.
The main goal of the integration of OpenStack and cloud technology in general was

to abstract the instantiation and destruction of cloud instances from the programmer. It
is already possible to manually instantiate a number of cloud instances, configure them
correctly to use POP-Java and run a POP-Java application. Through the integration we
can create and destroy cloud instances when required to run new object, without having to
worry to set up the required cloud instances beforehand.
Various additional configuration options have been added to the @POPObjectDescription

annotation, allowing the programmer to specify the access parameters required to access
the cloud environment. The creation and destruction of the virtual machines required to
run the objects is abstracted from the programmer.
The prototypes were successfully finished and were able to run POP-Java applications on

a private cloud installation. Nevertheless the code still has certain technical shortcomings
which make further work necessary before merging the Cloud support into the main POP-
Java version.

8.7.2. Hadoop cluster integration
Here we describe the work done to bring POP-Java onto Hadoop clusters. The author
supervised to work and adapted the POP-Java languages in some aspects to make the
project possible. The bulk of work was done by Mazzoleni Davide [MKPW16] during his
Bachelor thesis.
Hadoop [Whi12] has become a hugely popular method to distribute various algorithms

over a vast amount of computers. To use a Hadoop infrastructure, algorithms have to be
transformed into a MapReduce [DG08] approach. While this is possible for some algorithm,
others are more difficult to adapt to this computational paradigm.
With Hadoop becoming increasingly popular and thus Hadoop clusters becoming more

available to programmers and researchers, we decided to explore the possibilities to run
POP-Java applications on a Hadoop infrastructure. Details of this effort are documented in
the Bachelor thesis POP-DNA II, Parallel Object Programming in a Hadoop environment
by Mazzoleni Davide et. al [MKPW16]. As the main work environment we used the Hadoop
cluster provided by DAPLAB 21, which is a dedicated server infrastructure.
To achieve the goal of running POP-Java applications on a Hadoop cluster we did not

use Hadoop directly, but YARN, which is a service that handles the resource allocation
on a Hadoop cluster. Through YARN, resources can be reserved on a Hadoop cluster,
which can be seen as similar to the way POP-Java and POP-C++ search for available
machines to launch a certain object. Once a resource has been reserved, a container, which

20http://www.openstack.org/
21http://daplab.ch/

142



8.7. Extensions 8. POP-JAVA

is basically a lightweight sandbox environment on a Linux machine, is started and a user
specified command is executed. We decided to run every new POP-Java object in one of
the containers YARN provides.
By default POP-Java uses the POP-C++ JobManager, written in C++, to find and

instantiate new objects on a POP cluster. For the integration of YARN, we decided to
create an alternative JobManager, which performs this task by accessing the YARN API
to reserve resources on the Hadoop cluster.
The JobManager was implemented in two versions. The first is a static version which

allocates a user defined amount of YARN containers at the startup of the application.
Those containers are then used during the lifetime of the application to instantiate new
objects, just like on a traditional POP-Java cluster which is set up manually.
The second implementation uses a dynamic approach, only reserving as many YARN

containers at a time as necessary. As the application is running, new containers are allocated
on demand when new objects are created. Once the object in a container is no longer used,
the whole container is destroyed to free the resources on the Hadoop cluster. Thanks to
this functionality, effortless usage of a Hadoop infrastructure is possible for a developer,
without having to worry about the details of how to handle the deployment of the different
objects over the cluster.
On top of the integration of YARN as a resource allocator, new concepts have been

introduced into POP-Java. Most notably the notion of object counters, which count the
amount of active objects on a machine, or in this case a YARN container. This information is
required to be able to destroy containers once they are no longer used, freeing the resources
for other applications running on the same network. But this concept is also interesting
outside of the YARN integration, as the JobManager can use it to determine on which
machine to instantiate new objects on to more optimally distribute the workload over
multiple machines.
The creation of the YARN prototype lead to various improvements of the POP-Java

language, some of which have been integrated in the main branch which is available online.
The integration of the complete YARN functionality into the official POP-Java version will
require some more work, notably regarding the API which interacts with YARN. Currently
the YARN API is directly accessed, which is not ideal due to its unstable nature and com-
plexity. Projects like Twill 22 provide an abstracted API over the YARN service, providing
a stable as well as easier API. The integration of YARN also noticeably increases the size
of the POP-Java library, making it necessary to implement this feature in an optional way.

8.7.3. TrustedFriendComputing
The content of this chapter is partially based on the publication FriendComputing : Organic
application centric distributed computing [WMK15] as well as the Bachelor thesis by Loïc
Monney Sharing computing power through a network of friends [Mon14] which the author
co-supervised. Further work on this concept has also been done through a bachelor semester
project FriendComputing-II by Valentin Gazzola and a research project financed by the
CTI (Swiss Commission for Technology and Innovation) for which the author is the project
lead. The initial concept of TrustedFriendComputing was called FriendComputing, which
was changed after more focus was put on the security aspects of the model. The author
helped in an initial step to define the TrustedFriendComputing concept and its compatibility

22http://twill.apache.org/

143



8.7. Extensions 8. POP-JAVA

with the POP-Java vision. While for the two prototypes by Loïc Monney and Valentin
Gazzola the author did not participate in the programming aspects, he does so for the
CTI project during which the actual TrustedFriendComputing code is being created that
is integrated into the publically released POP-Java version. The author also wrote the
mentioned published paper [WMK15].

Introduction

POP-Java allows developers to easily create distributed parallel applications without having
to worry about the details of distribution and interactions over the network. While making
it easier to develop distributed applications, it is not sufficient for a wider adoption of dis-
tributed computing. Most organizations or individuals do not have access to a distributed
environment such as a grid or a cluster. Yet, both scientific and commercial applications
require increasing amounts of computational resources as well as storage space. Bioinfor-
matics and NGS data analysis is certainly one example of such a field where this is the
case, but others such as weather forecasting, multimedia processing or material simulations
face similar challenges. Especially with the constantly decreasing sequencing costs in the
NGS field as well as new developments with the miniaturizing of sequencers, the problem
of computing resources has become an increasing issue. What before could only be done
by big laboratories, which often already had the required computing infrastructure, is now
increasingly done by smaller laboratories which do not have the same infrastructure.
This is not a new problem and over the years many technical approaches have been

developed to assist in such situations. The recent arrival of cloud computing is the most
important technology assisting smaller organizations which require larger computing in-
frastructures than they commonly have. Cloud computing enables them to quickly and
relatively easily access an almost infinite amount of computing power, provided they are
willing to pay the cloud providers for their services. In many domains, the usage of cloud
computing is an acceptable solution which helps to decrease cost and allows for a quick
adaptation to new computing infrastructure requirements. But not in all use-cases cloud
computing is the ideal, or even acceptable, solution. When using cloud computing, all data
and computation is offloaded to an outside location, not only outside the organization which
initiates the cloud usage, but often even outside the country. When working with sensitive
data, such as medical data, this is often not an option as many countries have laws which
prohibit sending medical data over the internet or to another country.
But cloud computing is not the only solution when dealing with a limited computing

infrastructure in a smaller organization. Over the years many grids have been created where
multiple organizations pooled their resources together to create one common computing
infrastructure. Compared to cloud computing, the organizations using that infrastructure
can more easily control the data privacy and laws involved. Indeed, over the years many
different grids, in a commercial and academic context, have been created. Some of the bigger
and known examples are the Open Science Grid (OSG) [PPK+07] and the Worldwide LHC
Computing Grid (WLCG) [BF07], which are traditional grids with multiple users being able
to run a variety of applications on the grid. A different type of grid has also been created,
with examples like Folding@Home [LSSP09] and BOINC [And04], which are application
centric grids, generally only used by a single user for a specific analysis task.
While both of those approaches, cloud computing as well as grid computing, provide pos-

sible solutions to the problem of increasing amounts of data to be analyzed by increasingly
small organizations, they both have drawbacks in terms of data privacy (mainly for the

144



8.7. Extensions 8. POP-JAVA

cloud) and software development complexity (mainly when working with a grid). For ex-
ample a small genetic laboratory, even if collaborating with other small genetic laboratories,
often does not have the technical know how to setup such an infrastructure.
A common use-case is when multiple smaller organizations use the same software and

that work on similar data and lack computing power during their peak resource usage. This
is why we propose the TrustedFriendComputing model as an extension to POP-Java, with
the goal to make it possible for application developers to develop distributed applications
without the need for a dedicated distributed environment.
The notion of "Trusted Friend Computing" (TFC) has been coined at the Institute of

Complex Systems (iCoSys) of HEIA-FR (HES-SO) in 2014. The main objective is to enable
a community of users (called "friends") to securely share their IT resources without requiring
that a central organization collects and stores all information. The community is built
around the usage of a specific professional software application, in our case the graphical
NGS data analysis pipeline.
To build such a community, the TFC model uses the notion of "confidence link", which is

heavily inspired by the ViSaG security model [KCB14]. A confidence link is a bidirectional
channel that allows two friends to communicate safely at any time. How the confidence links
are established is not part of the definition of the model but is an hypothesis which defines
the concept of community of friends. However, we can give as a possible implementation
of a confidence link, a SSH channel between two computers whose friends have manually
exchanged their public keys. The set of all friends together with all the confidence links
form a connected graph, we can call a "trusted friend community", whose nodes are the
friends and arcs are the confidence links. None of the friends in the community has a view
of the overall infrastructure. Each friend only knows his direct friends, i.e. users with whom
he has established a confidence link. Using this "trusted friends community", friends can
securely share their IT resources for specific purposes related to the software application
around which the community has been built. As an example of such a community, several
Swiss hospitals located in different cantons, but offering molecular diagnostics on same dis-
eases could easily safely and privately exchange genetic variant information and computing
resources to reduce the delay and improve the quality of the diagnostics they offer. This
project concerns the building of a system that allows to share IT resources in industrial
environment.
In the next Section 8.7.3 we present different functionalities which have been implemented

to test the concept of TrustedFriendComputing.

Results

To implement TrustedFriendComputing in POP-Java, a prototype has been developed
which integrates the features needed to create an application which takes advantage of the
TrustedFriendComputing model using POP-Java. Both POP-Java and POP-C++ were
modified to achieve this. POP-C++ was modified to both remain compatible with the
changes, but also because POP-Java does not currently have a JobManager but relies on
the JobManager provided by POP-C++. In the POP model, the JobManager is responsible
to find available resources in the network when creating new remote objects. To achieve the
functionality of TrustedFriendComputing to automatically discover available computers in
a network of friends, the JobManager is needed, which is why this prototype required both
POP-Java and POP-C++.

145



8.8. Usage 8. POP-JAVA

The prototype successfully integrated the functionality to manage (create, delete) a net-
work of friends as well as to invite to and join a network of friends. The programmer ac-
cesses this functionality through a new API integrated into the POP-Java language, which
is optional to the usage of POP-Java and can be ignored if no TrustedFriendComputing
functionality is used.
To connect to objects in a network of friends the programmer received two new annota-

tions as well as a new way to choose the machine on which an object is executed. Using
the already existing annotations, the programmer can specify the requirements of the ma-
chine he has, such as the amount of CPUs or RAM. With the new Interest annotation,
the ID of the TrustedFriendComputing network can be specified. The second annotation,
Connect_to, allows connect to an already existing object/application in the friend network.
When creating an object on a network of friends, there are more choices to be made

than in a normal POP-Java network. In a normal POP-Java network, the object is on
the first available machine which fits the criteria. But in a network of friends, there is a
cost restriction (different host machines have different associated costs) as well as other
potential restrictions, such as the geographic location of the remote host. Because of this,
the programmer can implement a method (called popChooseRemote), in which he receives
a list of potential candidates and can implement a custom choice of which remote object to
use.
A prototype application was created that uses all those features and allows the user to

perform multiple operations on a network of friend through a graphical user interface. For
more details about this work, consult the previously referenced publication [WMK15] as
well as the detailed report [Mon14].
After having proven the viability of the approach, the code of the prototype is now being

adapted and integrated into the official version of POP-Java. Specifically for this purpose,
a research project financed by the Swiss Commission for Technology and Innovation (CTI)
was started at the end of 2016. The goal of the research project is to improve the concept
of TrustedFriendComputing to make it possible to integrate it in a commercial application,
making it possible to share resources between organizations in a secure way.

8.8. Usage
This section discusses how POP-Java was used during this thesis, in particular in the
graphical NGS data analysis pipeline. Its main usage was in the distribution of sequence
alignment. Future usage may come from TrustedFriendComputing, which will allow the
creation of a distributed variant database (among other uses).

8.8.1. Distributed sequence alignment
In this section POP-Java is discussed in the context of distributed sequence alignment. The
content of this section is based on the conference publication POP-Java : Parallélisme et
distribution orienté objet [WKD14c] (POP-Java : Object oriented parallelism and distri-
bution) published at the COMPAS 2014 conference. A special companion paper Comment
reproduire les résultats de l’article: "POP-Java: Parallélisme et distribution orienté objet"
[WKD+14e] was submitted to the REALIS 2014 satellite conference, which was dedicated
to the reproduction of publications of the main conference. Through this paper, the results
of the main paper [WKD14c] were independently reproduced by another research group.

146



8.8. Usage 8. POP-JAVA

While POP-Java is has not been developed specifically for NGS data analysis, it helps
programmers to develop distributed applications more easily. As NGS data analysis and
sequence alignment in particular uses a lot of computing resources, it makes sense to speed
up the calculations using POP-Java, which also helps to validate and improve POP-Java in
the process. Indeed, doing distributed sequence alignment is a common approach, as seen
in Section 7.1.3, but note that the method and code used for this chapter is different than
the one described in Section 7.1.3. Both aligners are different, because the work presented
and published in this section was done in 2014, were as the previously presented aligner
continued to evolve until the end of the thesis. In Section 8.8.1 we discuss the test setup
used to test the sequence alignment distribution using POP-Java. The results of those tests
are then presented in Section 8.8.1.

Methods

We developed a stand-alone sequence aligner based on the aligner presented in Section 7.1.
Like the original aligner, this standalone aligner was developed using Java, targeting both
single end and paired end sequences to be aligned. The resulting aligner was published as
part of [WKD14c].
The algorithm is based on a streaming based approach, suited to both use multiple

machines as well as multiple CPUs on every machine. Figure 8.6 shows the general ar-
chitecture of the sequence aligner and how it is split into individual modules connected
through streams.

Workers

Reader

Writer Network

Data

Result

Fig. 8.6.: General architecture of the sequence alignment algorithm (adapted from [WKD14c])

The architecture of the aligner is ideal for distribution with POP-Java. Every module,
the Reader, the Writer as well as the Workers are independent objects which can run in
independent threads as well as on different machines. The interfaces between each of those
objects have been clearly defined and can easily be distributed. For our implementation,
every module represents a POP-Java object which can be run either locally or remotely. The
amount of workers as well as their location is not limited, which allows the user to adapt
the aligner to its needs and the currently available infrastructure. This also means that the
Reader and Writer object do not have to be located on the same machine. This gives the
user a big amount of flexibility. One example of this flexibility is to put the Reader object in
one laboratory, the Worker objects in a dedicated grid and the Writer object on a machine
in a second laboratory. This could be useful if for example one laboratory is responsible
for the sequencing of a sample and a different laboratory performs the data analysis. This
example is just one example of many which are made possible with an approach using
stream based alignment as well as POP-Java to distribute sequence alignment.

147



8.8. Usage 8. POP-JAVA

To compare POP-Java with other implementations, we also used RMI (which is part of
the standard Java library) to distribute the aligner.
The performance of the POP-Java implementation of the sequence aligner was tested on

a grid with 6 machines, each having a quad core processor clocked at 3.4 GHz and 8 GB
of RAM. The machines were connected with a 1Gb/s LAN network and for benchmark
purposes hyperthreading has been deactivated. The dataset used consisted of 16 million
DNA sequences which were artificially generated from the human chromosome 7. The 16
millions DNA were aligned only against the human chromosome 7.
In this setup, the Reader and Writer object were created on the same machine, with the

up to 6 Worker objects being created on different machines. The Workers are programmed
to use all cores of the local machine, which means that in our benchmarks we use between 4
and 24 CPU cores to align the sequencing data. The next Section 8.8.1 presents the results
obtained during the tests on those machines.

Results

To evaluate the distributed sequence alignment using POP-Java we looked at two aspects.
Code complexity as well as performance.
First is the code complexity required to create the distributed aligner, comparing the

POP-Java and RMI implementation. The RMI as well as POP-Java implementation were
done using 50 different classes. Out of those 50 classes, POP-Java required 3 of them to be
POP-Java specific, and RMI 5 of them. The combined amount of source code lines of those
implementation specific classes were 1200 lines of code for the RMI implementation and
300 lines for the POP-Java implementation. It is also to note that those 300 lines consisted
of standard Java with only a few POP-Java specific annotations.
The next aspect we looked at was the performance when comparing both implemen-

tations. Figure 8.7 shows the total time required to align the data on 1 to 6 machines.
Figure 8.8 shows the speedup calculated for both implementations compared to the opti-
mal speedup.

1 2 3 4 5 6

POP−Java

RMI

Machines

T
e
m

p
s
 d

’a
lig

n
e
m

e
n
t 
(s

)

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

Fig. 8.7.: Alignment execution time on the ma-
chines, source [WKD14c]

1 2 3 4 5 6

1
2

3
4

5
6

Machines

S
p
e
e
d
u
p

Optimal

POP−Java

RMI

Fig. 8.8.: Alignment speedup over six machines,
source [WKD14c]

The results show a nice speedup for the alignment using both technologies, RMI and
POP-Java. Achieving the same performance with POP-Java as with a traditional Java

148



8.9. Limitations 8. POP-JAVA

distribution technology was key. Those results show that distributing Java code using POP-
Java achieves similar results as with other technologies, while at the same time greatly
reducing the code complexity to achieve this task.

8.9. Limitations
POP-Java contains some limitations compared to pure Java which are looked at in this
Section. While most limitations of POP-C++ also apply (see Section 3.5 in the POP-C++
manual), we discuss the major limitations which are specific to POP-Java and the Java
language.

Parameter types
In Java, it is possible to send any type of object as a parameter to a method. In POP-Java,
those parameters need to be serialized (and deserialized) as they have to be sent over the
network. Thus, several restrictions apply to the types of parameters that can be used as
method parameters of POP-Java methods. Those include that the objects need to either
implement the interface IPOPBase, or be POP-Java objects themselves. While there are
some exceptions, like the String object as well as all Number types (like Double or Integer),
normal Java objects cannot be used as parameters for POP-Java methods. This also includes
null objects, even if they are originally of a type that is supported by POP-Java.
Those limitations could partially be solved by writing custom serializers and deserializers

for common types like List, as well as handling null parameters. But this approach could
never handle all possible Java objects and there would be the problem of maintaining
compatibility with POP-C++.

Parameter size
In Java, arrays have a certain maximum size which is defined by the size of a signed integer
(2147483647), defining the amount of indexes which are possible in a given array. This
results in different maximum sizes in terms of memory consumption depending on the type
of array. A byte array for example would be at maximum 2.147 GB big, and an array of
longs (which uses 8 bytes per value) would be at maximum 17.18 GB big. In pure Java,
arrays with those maximum sizes can be passed as parameters to a method without a
problem. In POP-Java however, those parameters are serialized into a ByteBuffer before
they are sent to the remote method. With the serialization being done through a ByteBuffer,
which follows the same rules as a byte array in terms of maximum size, the combined size
of all parameters to a method cannot exceed 2.147 GB. This particular problem arrived
when testing the matrix multiplication example in Section 8.6.1. To solve this problem, the
serialization code of POP-Java needs to be rewritten to either use multiple ByteBuffers when
serializing, or moving to a no copy approach. The later approach is much more interesting
in terms of performance as well as memory usage, but requires a massive rewrite of not
only POP-Java, but likely application developer for it as well. This is why currently this
limitation is still present.

8.10. Discussion
We presented in this chapter a Java language extensions which implements the POP
model, compatible with POP-C++. POP-Java allows developers to easily distribute ob-

149



8.10. Discussion 8. POP-JAVA

jects over multiple machines to achieve distributed as well as parallel computing. Developers
can download the open-source implementation of POP-Java from https://github.com/pop-
team/pop-java and read more about it on the main website http://gridgroup.hefr.ch/popjava/.
We could show the viability of this approach of distributing calculations over a distributed

system. This lead to the usage of POP-Java in multiple classes to teach students the concept
of distributed computing.
Having laid a good groundwork, multiple projects are planned to make POP-Java more

independent of POP-C++ (while staying compatible), introduce more features, like Trust-
edFriendComputing, and become even more user-friendly by adopting modern Java features.

150



Part III.

Applications

151



9. Graphical pipeline applications
In this chapter we discuss research that has been done with the help or in relation to the
graphical pipeline presented in Chapter 6. The first section discusses research which has
been done with direct author participation, which means that the author was listed as
an author of the published work. This is followed by research which was done using the
graphical pipeline, but where the author was not officially involved in the publications. The
chapter is continued with an evaluation of GensearchNGS, through a survey made among
users of the software. The goal of this survey was to study the impact of the graphical
pipeline on the way research and diagnostics is done, especially regarding the complexity
of the task.

9.1. Author participation
This section discusses different research in which the work of this thesis was used and the
author was directly involved. Together with the following Section 9.2, it gives an overview
of the real usages the software. The goal is to show that it has a practical impact on the
genetic research community.

9.1.1. Deep intronic variants in the factor VIII gene
GensearchNGS has been used to analyze deep intronic variants in the factor VIII gene. The
author actively participated in the research through the development of features needed to
analyze the data in this study. The initial results were published as a poster presentation
Deep intronic variants in the factor VIII gene at the "GfH Tagung" (Deutsche Gesellschaft
für Humangenetik) 2015 [BWO+15a]. A more detailed and expanded analysis of those
results was then published as a journal paper Identification of deep intronic variants in
15 haemophilia A patients by next generation sequencing of the whole factor VIII gene in
Thrombosis and Haemostasis (2015) [BWO+15b]. This section is based on the content of
both of those contributions.

Haemophilia is a hereditary bleeding disorder that affects the blood clotting. In affected
individuals, the blood does not clot correctly and they continue bleeding. This can cause
issues in various situations, for example when being cut. Haemophilia is linked to a gene
defect in one of two genes, the factor VIII and factor IX genes. Haemophilia A (HA), the
more common cause for haemophilia is caused by a defect of the factor VIII gene (F8). One
in 5000 males [GBO+05] is affected by this disorder. Haemophilia B (HB) is less common
and caused by a defect of the factor IX gene (F9). The rest of this section will discuss the
more common haemophilia A variant, which was the focus of [BWO+15a] and [BWO+15b].
Correctly diagnosing an individual with a defect in one of the genes linked to HA is

crucial to determine if its offspring is at risk of being affected by this particular disease.
The methods currently used to diagnose haemophilia A work in a vast majority of cases.

152



9.1. Author participation 9. GRAPHICAL PIPELINE APPLICATIONS

Those methods screen the F8 gene mostly for casual mutations in and around the coding
regions. But in about 2% of cases, the current methods fails and do not diagnose an existing
haemophilia A disorder.
The haemophilia genes are located on the X chromosome and are recessive. As women

carry 2 copies of the gene, they can be carrier or affected, whereas men with a defect gene are
always affected. The gene, which has a total length of 187 kb, consists of 26 exons. Current
methods search for various potentially causative sources in this gene. They currently search
for inversions of intron 22 and intron 1, missense mutations and nonsense mutations in
exons as well as deletions and insertions inside the exons or at splice sites. The detailed
numbers about the different conditions can be found in [BWO+15b]. In about 2% of the
cases, those standard sources of mutations do not reveal any defect. It is those 2% that
have been investigated in more detail during this work.
In the study, 15 haemophilia A patients with a mild to moderate phenotype have been

analyzed. The goal was to extend the current method of analyzing mainly the coding
sequence of the gene and the inversions of intron 22 and 1, with the analysis of all intronic
sequences. The intronic sequences were analyzed for SNPs and indels to see if the cause of
the patient’s haemophilia A could be identified in those additional targets not part of the
standard methods.
GensearchNGS was already used in the laboratory of human genetics in Würzburg before

this study. The detection and annotation of variants in the intronic regions of the factor VIII
gene was already possible. But what was not yet possible was an automated and accessible
way to analyze copy number variations (CNVs) in the NGS data, a crucial part of the
analysis of those 15 patients. The CNV tool developed for GensearchNGS (see Section 6.7.6)
was used to perform this analysis on top of the already existing tools in GensearchNGS
to align the raw data (see Chapter 7.1), call variants (see Chapter 7.3) and analyze the
variants. The detailed method to analyze the patients can be found in [BWO+15b], as well
as the genetic discussion of the performed analysis.

Fig. 9.1.: CNV analysis tool for patient 8 with a 9.2kb deletion in intron in. Figure taken from
[BWO+15b]

In total, 23 deep intronic variants could be identified in the 15 analyzed patients. Every
patient analyzed had at least one deep intronic variant that was identified as affecting
the splicing of the factor VIII gene. One patient in particular showed a deletion of 9.2kb

153



9.1. Author participation 9. GRAPHICAL PIPELINE APPLICATIONS

in intron 1, as shown in figure 9.1, which shows the figure used in the published paper,
showing the CNV analysis tool developed for that paper.
The success rate for the identification of deep intronic variations reached almost 100%,

which is a very promising result for further studies trying to diagnose HA using NGS data.
The paper lead to new understandings about the nature of the causative variants leading
to HA, allowing to diagnose even rare, previously non diagnosable causes of the disease.

9.1.2. Myofibrillar myopathies
This section gives an overview of some work that has been done with GensearchNGS re-
lated to myofibrillar myopathies (MFMs). The author participated in the poster NGS
panel for diagnostics of myofibrillar myopathies [BRS+14]. The other articles discussed
in this Chapter are Novel recessive myotilin mutation causes severe myofibrillar myopa-
thy [SBR+14], Unusual multisystemic involvement and a novel BAG3 mutation revealed
by NGS screening in a large cohort of myofibrillar myopathies [SSB+14] and the disser-
tation Proteomische Einzelfaser-Analysen Myofibrillärer Myopathien mit Hilfe der Laser
Dissektions-Mikroskopie [Fel13]. They all used GensearchNGS in their research on myofib-
rillar myopathies.

Myofibrillar myopathies are disorders of the muscles which can cause weakness and muscle
dysfunctions. Mainly skeletal muscles which affect body movement are affected, but also
muscles in the hearth can be affected 1. Multiple genes are known to be associated with
myofibrillar myopathies. Notably DES, CRYAB, MYOT, LDB3 (ZASP), FLNC, BAG3,
FHL1, DNAJB6 and TTN [BRS+14] are associated with the disorder. The creation and
analysis of a gene panel based on this genes for the use in diagnostics was proposed in
[BRS+14], based on a data analysis with GensearchNGS. The previously mentioned works
are now presented in chronological order in which they were published.

The published usage of GensearchNGS in relation to myofibrillar myopathies started in
2013 with a doctoral thesis by Sarah Feldkirchner. In her thesis she studied myofibrillar my-
opathies under the title Proteomische Einzelfaser-Analysen Myofibrillärer Myopathien mit
Hilfe der Laser Dissektions-Mikroskopie [Fel13]. The focus of the thesis was not the analysis
of NGS data, but data generated through laser capture microdissection (LSM) [EbBS+96]
to further understand myofibrillar myopathies. Yet, certain parts of the validation was done
using NGS data. This NGS data analysis was done at the University of Würzburg by the
Department of Human Genetics, using GensearchNGS as the analysis software. One exam-
ple of a result found through the analysis of the NGS data is a novel homozygous variant
on the myotilin gene (MYOT).

During March 2014 the previously mentioned poster NGS panel for diagnostics of my-
ofibrillar myopathies [BRS+14] was presented at the GfH (Deutsche Gesellschaft für Hu-
mangenetik) 2014. In the research presented in this poster, a new NGS panel for diagnostic
screening of MFM patients was developed and evaluated. The panel consists of eight genes:
DES, CRYAB, MYOT, LDB3 (ZASP), FLNC, BAG3, FHL1, DNAJB6 and TTN. 36 pa-
tients were sequenced and analyzed on all eight genes. 12 additional patients, for which
preliminary Sanger studies showed no causative variants on seven of the eight genes, were
sequenced on only the FLNC gene. The data analysis was done using GensearchNGS, which

1 http://ghr.nlm.nih.gov/condition/myofibrillar-myopathy, 27.10.2015

154



9.1. Author participation 9. GRAPHICAL PIPELINE APPLICATIONS

included custom development of functionalities to enable the study. Five of the patients did
show a causative variant on one of the sequenced genes. Two of those variants (in the genes
BAG3 and TTN) were novel and not yet described in the literature. An additional nine
variants with uncertain effects have been identified as well during this study. The results
were deemed a success as a fast and practical way to perform diagnostic screening of MFM
patients.

The two initial works were followed by two journal publications authored by (but not
exclusively) the authors of the poster [BRS+14] as well as the doctoral thesis [Fel13]. Both
publications were released at the same time and discussed the novel variants found in the
previously discussed works in further detail.

The publication Novel recessive myotilin mutation causes severe myofibrillar myopathy
[SBR+14] appeared in august 2014 in the journal Neurogenetics. It discusses in detail the ho-
mozygous variant found in the MYOT gene, previously described during the doctoral thesis
of Sarah Feldkirchner [Fel13]. The NGS data analysis was again done using GensearchNGS.

The final publication in this series on myofibrillar myopathies that used GensearchNGS
for the data analysis, was published in august of 2014 as well. This paper with the name
Unusual multisystemic involvement and a novel BAG3 mutation revealed by NGS screening
in a large cohort of myofibrillar myopathies [SSB+14] was published in the Orphanet Journal
of Rare Diseases. In it, the authors go into further detail on the novel variant discovered on
BAG3, previously presented in [BRS+14], as well as additional variants identified during
the study. The publication lead to new recommendations regarding diagnostics of MFM
patients using NGS. As with the initial poster [BRS+14], GensearchNGS was used for the
data analysis.

The usage of GensearchNGS in multiple publications discussing myofibrillar myopathies
lead to a continuous improvement of the software, based on the feedback of its users.

9.1.3. Transcriptomics
Adding RNAseq data analysis capabilities into the graphical pipeline allowed to participate
in research in the domain of transcriptomics. Here we present the works done in the context
of transcriptomics during this thesis. This section is based on the content published in Non-
coding RNAs in lung cancer: Potential as non-invasive diagnostic tools and bioinformatics
analysis approaches Submitted Oct. 2016 [KWS+ss].
We studied the role of non-coding RNAs in cancer and in particular lung cancer, is the

most common cause of cancer related deaths. This is caused by the late diagnosis which
limited the number of treatments available for this type of cancer. This is why a better
understanding of lung cancer as well as new biomarkers which can be used for earlier
detection are crucial. As described in recent studies, micro RNAs and long non-coding
RNAs play an important role in the development of lung cancers. This makes them ideal
study targets for both diagnostics as well as treatment
In the published paper we explore the current state of the art of the field and the possibil-

ities on how to analyze lung cancer through RNA sequencing. A particular focus is put on
the fact that in contrast to DNAseq, which often analyses particular genes and the proteins
they produce, the function and interaction of micro RNAs and long non-coding RNAs is

155



9.1. Author participation 9. GRAPHICAL PIPELINE APPLICATIONS

not well documented. This is why a variety of databases as well as prediction tools are pre-
sented that help researchers to better understand their samples. We also explored how the
process of RNAseq data in this context can be automated to make it more accessible and
ultimately usable in the clinic. Many of the features implemented in the graphical pipeline
came as a direct result of this paper, putting into practice some of the recommendations
made in the publication. The graphical pipeline also served as a model to show what is
possible in terms of integrated graphical NGS analysis pipelines.

9.1.4. Epigenetics
The addition of methylation analysis support in GensearchNGS made it possible for ge-
neticists to analyze bi-sulfite sequencing data. This work lead to two works in the field of
epigenetics with author participation. A workshop presentation The unmethylated allele of
oppositely imprinted (i.e. MEST and MEG3) genes is highly susceptible to epimutations
during early development and may contribute an additional layer of complexity to pheno-
typic variation as well as a poster Deep bisulfite sequencing for quantification of constitutive
epimutations in tumor suppressor genes [BAW+16] were presented during the “Jahresta-
gung der Deutschen Gesellschaft für Humangenetik” 2016. The amount of user-friendly
tools to analyze bisulfite methylated NGS data is still very limited as of today. This is
one of the major roadblocks for a broader adoption of this method in the case of the hu-
man genetics department of Würzburg. On the basis of the DNAseq analysis capabilities,
GensearchNGS has been extended to analyze and visualize bisulfite sequencing data. Those
enhancements, detailed in Chapters 7.6.4 and 7.5, made it possible to perform the analysis
needed for those two works.

Differentially methylated genes coming from the paternal or maternal side have an impor-
tant role in early growth and metabolism. Being able to analyze and visualize this data is
important to understand the differences in methylation for the paternal and maternal copy
of a gene. As with all NGS technologies, it is not possible to know from which chromosome
(paternal or maternal) an individual sequence originates from. To solve this problem, for
this particular study, heterozygous individuals have been selected, all having a particular
variant only present in one of the parents on the genes being analysed. Visualizing as well as
analyzing the methylation of a specific region of bisulfite NGS data, based on the presence
or absence of a certain variant was one of the major points to solve for this analysis. This
made it possible to separate the data of the paternal and maternal copy of the gene in a
user-friendly manner, making it possible to look at the data.

The work done to allow the data analysis for the analysis of differentially methylated
genes in maternal and paternal genes was also used to develop a new method which aims
for screening the methylation of tumor suppressor genes to determine cancer risk. The
underlying motivation for this new method is the fact that the most commonly used test to
determine hereditary breast and ovarian cancer risk, which is based on the two genes BRCA1
and BRCA2, detect less than 25% of those two types of cancer. It has been shown [HPL+12]
that epigenic mutations in tumor suppressor genes like BRCA1 or RAD51C can explain a
certain percentage of the previously undetected cancers. To be able to rapidly determine the
cancer risk associated with epimutations in tumor suppressor genes, an analysis protocol
based on deep bisulfite sequencing has been implemented and tested. In a first pilot study
96 female patients have been analyzed on 10 tumor suppressor genes (BRCA1, BRCA2,

156



9.2. Indirect participation 9. GRAPHICAL PIPELINE APPLICATIONS

ATM, PTEN, RAD51C, MLH1, TP53, MLH1, ESR1, and RB1). The patients came from
two different groups. The first consists of 48 samples which have been taken from patients
with early onset breast cancer. The second group served as a control group with 48 healthy
female patients in the same age category. Based on those two groups the goal was to develop
biomarkers for cancer risk prediction. GensearchNGS had to be adapted, in a similar way
as for the analysis of differentially methylated maternal and paternal genes, to allow that
kind of analysis. Especially important was the integration of the ability to visualize and
compare the methylation between many samples for specific genes. This initial study did not
yet lead to the discovery of new biomarkers which can be used in the clinic. But interesting
epimutation patterns in certain individuals have been observed and give hope that the
analysis of a larger cohort could lead to the desired results.

9.2. Indirect participation
This section gives an overview of the research made using our graphical pipeline. We don
not intend to make a detailed analysis of every publication, but to give an overview of what
has been made possible through the usage of our graphical pipeline, GensearchNGS.

In the publication A Novel de novo Mutation in CEACAM16 Associated with Postlin-
gual Hearing Impairment by Hofrichter et al. [HNG+15], GensearchNGS has been used to
detect the variants present in a trio, sequenced with the TruSight One NGS panel. The
variants have also been annotated, visualized and filtered through GensearchNGS. In the
results, which have been published in the journal Molecular Syndromology during the au-
gust 2015, the authors showed a de novo mutation in the CEACAM16 gene. This de novo
mutation could be linked to hearing impairment, which further expands the knowledge
about the CEACAM16 gene and enables new research directions when diagnosing hearing
impairments.

The publication Diagnostic approach for FSHD revisited: SMCHD1 mutations cause
FSHD2 and act as modifiers of disease severity in FSHD1 by Larsen et al. [LRE+15] was
published in the European Journal of Human Genetics during November 2014. In it, the
diagnostics approach to Facioscapulohumeral muscular dystrophy (FSHD) is revisited, as
the study shows the implication of the SMCHD1 gene in FSHD. 55 FSHD type 1 nega-
tive and 40 FSHD type 1 positive patients have been sequenced using the 454 GS Junior
platform. GensearchNGS was used to perform the complete data analysis. This includes
sequence alignment, variant calling/analysis and visualization.

Also discussing musclular distrophies, the publication Identification of variants in MBNL1
in patients with a myotonic dystrophy-like phenotype by Larsen et al. [LKS+16], published
in the European Journal of Human Genetics during mai 2016, focused on myotonic dys-
trophies. 138 patients were sequenced using a 454 GS Junior sequencer by Roche, on the
MBNL1 and CELF1 genes. Additionally, for 90 of those patients the DMPK and CNBP
genes were sequenced. The work done mainly helped to further support the important role
the MBNL1 gene has in myotonic dystrophies. The analysis including alignment and variant
calling was done using GensearchNGS.

The previous two publications were part of the thesis Zur genetischen Heterogenität der
Muskeldystrophien : alternative genetische Ursachen der Myotonen Dystrophie und FSHD

157



9.2. Indirect participation 9. GRAPHICAL PIPELINE APPLICATIONS

by Mirjam Larsen [Lar15]. The thesis was published during the December of 2015. The first
part of the thesis focused on the work published in a previous publication where FSHD was
studied. The second part of the thesis focused on muscular dystrophy (MD) type 1 and 2.
Both parts of the thesis used GensarchNGS as one of the tools for NGS data analysis.

In April 2015, the publication Nail-Patella Syndrome: clinical and molecular data in 55
families raising the hypothesis of a genetic heterogeneity by Ghoumid et al. [GPHE+15] was
published in the European Journal of Human Genetics. In this publication, the Nail–Patella
Syndrome was studied, a rare autosomal dominant genetic disorder which leads to poorly
developed nails and skeletal anomalies. The study consisted of 55 patients and 39 of their
relatives. The samples where analyzed with both MLPA and Array-based comparative ge-
nomic hybridization (CGH). Both of those techniques are used to detect large copy number
variations. If both of those tests were negative, the samples were sequenced with the 454
GS Junior platform and analyzed with GensearchNGS. This has been done for 5 out of 55
patients, as the other techniques did not reveal any relevant findings.

In the publication Novel form of X-linked nonsyndromic hearing loss with cochlear malfor-
mation caused by a mutation in the type IV collagen gene COL4A6 by Rost et al. [RBN+14],
COL4A6 has been identified as the fourth gene linked to X-linked nonsyndromic hearing
loss. The publication was published in May 2013 in the European Journal of Human Genet-
ics. Two affected males and one carrier female subject were sequenced using the HiSeq2000
sequencer from Illumina. Another 94 male and two female patients have been sequenced
using the Genome Sequencer 454 FLX System by Roche. The samples from both sources
were analyzed with GensearchNGS, with the alignment having been done using the BWA
aligner.

Another usage of GensearchNGS can be found in Next-generation DNA sequencing of a
Swedish malignant hyperthermia cohort by Broman et al. [BKB+15]. This publication was
published in Clinical Genetics in October 2014 and explored the usage of next generation
sequencing in diagnostics for malignant hyperthermia. Malignant hyperthermia is a rare
disorder which can lead to the death of a patient when undergoing a narcosis. Multiple
causes for the disorder exist, one of which is a genetic defect. The study analyses a panel
of 64 genes, with 5 patients being sequenced using the Illumina HiSeq2000 sequencer. The
data was analyzed with GensearchNGS, including the sequence alignment, variant calling
and visualization.

In a different research direction, although still in human diagnostics, GensearchNGS was
used in ALS and MMN mimics in patients with BSCL2 mutations: the expanding clini-
cal spectrum of SPG17 hereditary spastic paraplegia by Musacchio et al. [MZÜ+16]. Here,
GensearchNGS was used to analyse NGS data coming from a TruSight Exome sequencing
to detect de novo mutations in a patient in a trio analysis. The publication lead to new
insights into the hereditary spastic paraplegia disease.

GensearchNGS was also used for research on male infertility. The human RHOX gene
cluster: target genes and functional analysis of gene variants in infertile men by Borgmann
et al. [BTD+16] looks at the role of RHOX gene cluster on male infertility. GensearchNGS
was used for the data analysis of the NGS data used in this research project.

One of the first uses of GensearchNGS was the analysis of hereditary breast and ovarian
cancer (HBOC). Multiple laboratories perform this type of analysis using GensearchNGS

158



9.3. User survey 9. GRAPHICAL PIPELINE APPLICATIONS

nowadays, with the laboratory of human genetics at the University of Würzburg being
the one we collaborate most closely. Initially only the two most known genes BRCA1 and
BRCA2 were analysed, a list which was expanded upon later to include also a larger list of
genes associated with HBOC.
This lead to an initial poster which analyzed 300 patients using GensearchNGS, Hered-

itary Breast/Ovarian Cancer: A systematic screening of DNA repair genes in 300 consec-
utive patients [AG15] at the GfH Jahrestagung, 2015. This work was later expanded to an
even larger gene panel and 500 patients, presented in the poster Hereditary breast/ovar-
ian cancer: a systematic screening of 94 cancer associated genes in 500 consecutive index
cases [AG16] at the ESHG 2016. Detailed statistics of the distribution of variants related
to HBOC over the different genes of the gene panel could be presented. In a similar light,
the poster Analysis of 37 / 65 muscle genes in 300 patients with neuromuscular diseases
by Pluta et al. [NP16] presented at the ESHG 2016 analyzed 300 patients. The integrated
variant database in the graphical pipeline was used to create overview statistics to increase
the understanding of neuromuscular diseases. Those works are also important as they serve
as a validation of the methods used in GensearchNGS.

9.3. User survey
This section analyses a user survey which was created to better understand the impact our
graphical NGS data analysis pipeline has on the life of researchers and geneticists in general.
The survey was filled out by various users of the different genetic laboratories that use the
software during summer 2016. The focus of the survey was to determine if the software
does indeed help geneticists to more easily work with their data, as well as make them
more independent from bio-informaticians for day to day tasks. We look more in-depth at
the demographic as well as the goals of the survey before discussing its results, which also
included feedback about the software coming from outside this particular survey.

9.3.1. Introduction
Determining the impact of a software on the daily life of its users and especially determining
if it meets the goals that were defined when it was initially created is difficult to test. This
is why we decided to make a user survey. As the graphical pipeline developed during this
thesis is actively used in several European genetic laboratories, we asked them to fill out
the survey.
Thus we can define the target demographic users of our graphical pipeline, which used it

at least once but ideally regularly. Most of them are geneticists or bio-informaticians.
The survey questions had four major goals. The first was to better understand the back-

ground of the users which use the software. This includes their scientific background and
if they use the software for research or diagnostics. The second goal was to determine how
often and for what purpose the users use the software. This allows us to determine if the
software is actually used on a regular basis. The third, and probably most important goal,
was to determine if the software meets its initial goals, which is to lower the complexity of
the data analysis so that geneticists can work more independently in many situations. The
last goal was to have a general feedback about the software and how it could be improved
in the future.

159



9.3. User survey 9. GRAPHICAL PIPELINE APPLICATIONS

The next section presents the results of the survey.

9.3.2. Results
We surveyed 16 users of the graphical pipeline during the summer of 2016 to better under-
stand the user-base as well as the impact of the software. The laboratories that participated
in the survey are: The laboratory of human genetics at the University of Würzburg, the
institute of human genetics at the Universitätsklinikum Münster, the University of Lille and
others we don’t name due to the anonymous nature of the survey. The users were presented
with 24 questions from four categories, organized according to the four goals presented in
the previous section.

• User background - Questions about the background of the user

• Software usage - Determine how often and for what purpose the software is used

• Usability - How good is the usability of the software and does it help the users

• Feedback - General feedback on how to improve the software in the future

We analyse the results in the following sections. The detailed results can be found in
Appendix D.1.

User background

Out of the 16 users, 9 self identified as geneticists, 3 as biologists and the rest with one
genetic counselor, one technical assistant and one PhD student. On a scale of 1 (beginner)
to 6 (expert), the majority (10) evaluated their computer skill as slightly above average at
4. When asked to describe the type of work they are doing, the most common keywords
were cancer related (8 times) and concerning rare diseases (4 times). The details of this
questions can be found in Appendix D.12.

Software usage

Most users, 62.5%, have been using GensearchNGS for 2 or more years and 18.8% used it
for one year. The rest, 6.3%, used it for 6 months and 12.5% for one month (Figure 9.2).
Not only have most users been using GensearchNGS for a considerable amount of time, but
they also use it regularly as seen in Figure 9.3. 43.8% use it daily, 31.1% weekly and the
rest use it either once a month or do not use it regularly.
The users not only used it for some time, but also analyze a considerable amount of

samples using the pipeline. On average they analyze about 230 samples per year, with the
highest reported number being 1000 and the lowest 12 (see Appendix D.5 for details).
This is done mostly in a research and diagnostics context. The users could give multiple

answers to the question of the context usage, with 81.3% using it in research and 75% in
diagnostics.
The type of data being analysed is mostly DNAseq data (87.5%), with only 12.5% doing

bisulfite sequencing analysis.
As seen in Figure 9.4, the amount of people analyzing somatic (37.5%), germline (37.5%)

or somatic and germline (25%) variants is balanced.

160



9.3. User survey 9. GRAPHICAL PIPELINE APPLICATIONS

10
3

2
1

2+ Years

1 Year

6 month

1 month

Fig. 9.2.: How long have you been us-
ing GensearchNGS?

7

5

2

2

Daily

Once a week

Once a 
month

I don't use it 
regularly

Fig. 9.3.: How often do use
GensearchNGS?

In Figure 9.5 we can observe that most users (62.5%) import aligned data (BAM files)
directly into the software. An additional 37.5% even went one step further and imported the
variant files (VCF) in addition to the aligned data into the software. Only 25% of the users
actually go through the full graphical pipeline, going from raw data to the final variant
report. The users had the possibility to choose multiple options, which is why the total is
higher than 100% (see Appendix D.9).

6

6

4

Germline

Somatic

Both

Fig. 9.4.: Do you analyze germline or
somatic mutations?

4

10

6
Raw sequenc-
ing data

Aligned data

Aligned data 
and variants

Fig. 9.5.: What format do you use
when importing raw data?

To complement the data analysis, the users use several other software tools, like Exomiser[RKO+14],
the torrent suite variant caller and MiSeq reporter. The complete list can be found in Ap-
pendix D.11.

161



9.3. User survey 9. GRAPHICAL PIPELINE APPLICATIONS

Usability

Several questions about the usability of the software were asked. The users were asked to
rate several statements with a value going from 1 to 6, with 1 being totally disagreeing and
6 totally agreeing. The questions were optional, so that users could only answer the ones
that directly concerned them.
The intent of the questions was to determine if the goal of reducing the complexity of

OMICs data analysis could be reduced by using the software we developed.
The first question aimed to determine if the overall goal, which was to lower the complex-

ity of OMICs data analysis, was achieved. Figure 9.6 shows that a big majority agreed that
the developed software achieved this goal. In Figure 9.7 we see the answers to the question
of the software allows to save time compared to its alternatives. Again a majority of agreed
that the software saves them time, although 4 people did not agree with that statement.
Those four people cited NextSeq, Amplikyzer, SnpEff and custom solutions as the other
software they are using, an information which we can use to determine future features to
prioritize.

1 2 3 4 5 6 N/A
0
1
2
3
4
5
6
7
8
9

1 = totally disagree, 6= totally agree

A
ns

w
er

s

Fig. 9.6.: It facilitates the analy-
sis of complex data sets
(DNAseq, RNAseq, DNA
methylation)

1 2 3 4 5 6 N/A
0

1

2

3

4

5

6

1 = totally disagree, 6= totally agree

A
ns

w
er

s

Fig. 9.7.: It allows to save time com-
pared to other software

Again most users agreed that the software is easier to use than its alternatives (Fig-
ure 9.8), and that it also reduces the dependency of biologists and scientists on bio-
informaticians (Figure 9.9).

1 2 3 4 5 6 N/A
0

1

2

3

4

5

6

7

1 = totally disagree, 6= totally agree

A
ns

w
er

s

Fig. 9.8.: It is more user-friendly than
its alternatives

1 2 3 4 5 6 N/A
0

1

2

3

4

5

6

7

1 = totally disagree, 6= totally agree

A
ns

w
er

s

Fig. 9.9.: It reduces biologists/scien-
tists dependence on bio-
informaticians

Also interesting to note is that most respondents use GensearchNGS as their main NGS

162



9.3. User survey 9. GRAPHICAL PIPELINE APPLICATIONS

data analysis software (Figure 9.10). The question about performance on older slow com-
puters was only answered by 11 out of 16 respondents (presumably because the others
do not have slow computers). Among those 11 respondents, they rated the performance
positively on slow computers (Figure 9.11).

1 2 3 4 5 6 N/A
0

1

2

3

4

5

6

7
8

1 = totally disagree, 6= totally agree

A
ns

w
er

s

Fig. 9.10.: GensearchNGS is my main
NGS data analysis soft-
ware

1 2 3 4 5 6 N/A
0

1

2

3

4

5

6

1 = totally disagree, 6= totally agree

A
ns

w
er

s

Fig. 9.11.: It works reasonably fast on
older/slower computers

For the two last questions, the users were asked if they feel that they can perform diag-
nostics (Figure 9.12) as well as research (Figure 9.13) more efficiently. Both were answered
with a clear yes.

1 2 3 4 5 6 N/A
0

2

4

6

8

10

1 = totally disagree, 6= totally agree

A
ns

w
er

s

Fig. 9.12.: It helps me to do diagnos-
tics more efficiently

1 2 3 4 5 6 N/A
0

1

2

3

4

5

6

7

1 = totally disagree, 6= totally agree

A
ns

w
er

s

Fig. 9.13.: It helps me to answer re-
search questions more effi-
ciently

Feedback

The last questions of the survey were general feedback questions in which the user could
give free text feedback.
The answers for the “most useful functionality” shows the diverse use-cases of the users.

As expected, most use the software to analyse variants, which is why features around
variant analysis are the ones to be mentioned most. But features from other domains, like
CNV analysis and the genome browser are also mentioned. This shows that the users are
happy with many different aspects of the graphical pipeline and don’t use it for a single
functionality. A complete list of the mentioned features can be found in Appendix D.21.
The next question asked about missing and incomplete functionality. Again the answers

were quite diverse, but with the CNV analysis being highlighted more than once. Again the
complete list can be found in Appendix D.22.

163



9.4. Discussion 9. GRAPHICAL PIPELINE APPLICATIONS

The last question was a general feedback form, which was mostly used by the respondents
to praise the software and how useful it is for them. One positive quote from the feedback
is “best NGS analysis software I ever used”, which is encouraging and shows how much the
users appreciate the pipeline. The complete feedback list can be found in Appendix D.23.

9.3.3. Summary
Through the survey we could evaluate the type of users the graphical pipeline attracts.
Unsurprisingly, the users pretty much fall into the target audience of geneticists doing
DNAseq in a diagnostics and research environment. Not very surprising but still notable is
the low amounts of users of both RNAseq and bisulfite sequencing. We attribute this to the
fact that RNAseq and especially the bisulfite sequencing, while being hot research topics,
are not yet common in diagnostics laboratories as DNAseq.
Another interesting fact we learned through is that only one quarter of the users actually

go from raw data to the final analysis results. We don’t know if this is because the labora-
tories already have a dedicated infrastructure to align the data or if the computers used to
run the graphical pipeline are not well equipped enough to perform the analysis.
An encouraging fact is that the users that responded use the pipeline regularly and

analyze on average 230 samples per year, which is a significant amount of data. In terms of
the goals we were set to achieve, which were to render NGS data analysis more accessible, the
users seem to agree that this is the case. They also answered positively that the underlying
goals of this point, which is to make biologists more independent of bio-informaticians and
to make both diagnostics and research more efficient.
For the second goal, which was to resolve the performance problems which accompany

NGS data analysis we asked the question about GensearchNGS being reasonably fast on
older and slower computers. While only 11 out of the 16 users answered this question, the
overall feedback was positive on this account as well. Considering that most users do not
align the data inside the graphical pipeline (which is the most time consuming analysis
step), efforts like the improved variant calling and fast variant filtering may contribute to
this result.

9.4. Discussion
The stated main goal of this thesis is to create a more accessible NGS data analysis approach
as well as to reduce the performance problems associated with the data analysis. The
graphical NGS data analysis pipeline created in that process has been used in various
research projects, as discussed in Sections 9.1 and 9.2. The variety of works published using
the graphical pipeline show how the chosen approach adapts to different types of analyses.
The various usages in published works also serve as further validation for the validity of
the analysis results given by the graphical pipeline.
Going further than only looking at the actual usages of the graphical pipeline, we wanted

to evaluate if the goals set out to achieve were actually met. As assessing questions like
the accessibility is hard to do, we decided to perform a user survey to see the impact the
software has on its users.
As discussed in Section 9.3.3, the survey shows that we did indeed achieve those goals,

which together with the list of published results using the pipeline, are encouraging results.

164



10. Conclusion & Future works
Over the course of our research, we tackled the problem of OMICS data analysis complexity
through three approaches. Those three approaches address the issues of the reduction of
the technical skill requirements, the computing infrastructure requirements and to ease the
development of distributed applications in order to speed up the data analysis. We will now
discuss what has been done to address those three issues, our findings and what should be
done in the future to further improve them.

Reducing the technical skill requirements to perform OMICS data analysis brings us to
one of the major contributions of this thesis. Serving as a center piece, we developed a
fully featured graphical NGS data analysis pipeline which is actively used in the research
and diagnostics community (Chapter 6). The main goal of this graphical pipeline was to
reduce the complexity of OMICS data analysis, which is caused by the existing multitude
of nonintuitive data analysis tools, that are often not compatible with each other. This was
achieved by creating a user-friendly interface, integrating the common tools required in a
diagnostics environment as well as the direct or indirect integration of external resources and
databases. The graphical pipeline has been used extensively in a diagnostics environment
and allows biologists to more easily perform their routine work, especially at the human
genetics department of the University of Würzburg. This lead to several published works
by other authors which have been realized thanks to our graphical pipeline (Chapter 9).
They cover various domains of genetics, sometimes leading to new methods. The usage of
our tool in research, which in large parts came from its usage in daily diagnostics, is a
good indication that we achieved our goal. Nevertheless, to better assess the impact of our
graphical pipeline we made a user survey (Chapter 9.3). It showed that the users agreed with
the assessment that the graphical pipeline lowered the complexity of OMICS data analysis,
both in a diagnostics and research environment. Through our work we saw the importance
of easy to use interfaces which guide the users through the analysis, while at the same time
not putting too many restrictions on the type of analysis that can be performed. Even if it
might not be possible to create an intuitive solution for every type of OMICS analysis task,
we showed that a specialized software solution for this problem of data analysis can help
people to work more efficiently. This work focused on making the data analysis easier for
diagnostics labs. We think that at medium-term, through the combination of more user-
friendly analysis tools and cheaper sequencing, it will become possible for everybody to
analyse their genome at home.

On top of having an intuitive interface which allows more people to perform OMICS
data analysis it is crucial to make the required infrastructure accessible. To achieve this,
we explored the possibilities to lower the complexity of OMICS analysis by reducing the
required computing infrastructure. We tackled this issue by first optimizing existing meth-
ods and secondly by using parallel and distributed computing. We published the results of
our optimized variant calling, which produces the same results as an existing method but
up to 18 times faster, shows how much potential there is in existing methods (Chapter 7.3).

165



10. Conclusion & Future works 10. CONCLUSION & FUTURE WORKS

This success, also outside of the variant calling analysis, is also confirmed by the results of
the user survey.
We not only investigated improvements to existing methods by writing more optimized

code, but also how to use distributed computing to speed up the data analysis, in particular
sequence alignment (Chapter 7.1 ). While for this task, performance was not our main
goal (as existing sequence aligners are already well optimized), we focused on allowing the
distributed algorithm to optimally use the available resources. We showed that it is possible
to use distributed alignment in various types of environments, making it possible to adapt
to the specific needs and restrictions of specific users. This is in contrast with many existing
methods which rely on either pre-configured clusters or clouds. Our approach is not only
able to use those infrastructures, but also dynamically scale over multiple computers in the
same network, and combine the different types of infrastructure.

To lower the complexity of distributed application development, we designed a Java
language extension, called POP-Java (Chapter 8). We brought the POP model to the Java
programming language, allowing programmers to transparently distribute the workload
over multiple computers by distributing objects. We showed that the performance of the
approach is similar to existing methods, while reducing the amount of code needed to
develop the same application. Due to its properties, the programming language has also
been used in distributed programming classes at the master level.
The concept of FriendComputing, which was introduced in the thesis, resulted in the

financing of an ongoing research project on the subject. This research project leads the
way to the future of the POP-Java language and hopefully distributed programming in
general. Its goal is to provide programmers as well as end users with simpler tools to dis-
tribute calculations on decentralized and dynamic networks, all while providing the best
possible security. The security aspect is especially important in the context of clinical diag-
nostics, where sensible human DNA is handled. As shown in [GMG+13], individuals can be
identified by their anonymized sequencing data, raising concerns over the usage of remote
computing resources like the cloud for NGS data analysis. This problematic will remain a
major research in terms of clinical diagnostics in the future, as distributed computing is
one of the ways to handle the ever increasing amount of data in that domain. Being able to
handle them securely in a distributed environment will become critical. Even if approaches
like homomorphic encryption [Gen09] exist, which perform calculations on encrypted data,
the performance of those systems is still far away from being practical.

The mentioned improvements are part of the future work, which are various. They include
better data visualization, support for more types of data analyses and improvements of
the existing tools that perform those analyses. Due to the rapidly changing technological
landscape of genetic data analysis, there is indeed no shortage of improvements which
can be explored. To name one example, the increasingly popular long read sequencing
technologies of the latest sequencing generation, like the MinION, create new challenges
and opportunities for bio-informatics analysis tools, like the ones we developed in this work.
The long read size and high error rates of those new technologies, require new approaches
to handle that type of data and to extract the relevant information.
An even bigger change will come from the adoption of graph based reference genomes

[NHG+17], which represents the reference not as a one dimensional string, but as a graph
which can represent the vast variety of genomes found in a population. But such a change
will be incompatible with most existing tools, requiring major, but useful changes. Due to

166



10. Conclusion & Future works 10. CONCLUSION & FUTURE WORKS

the increased complexity of the data analysis that comes from graph based references, it
will be even more important that graphical pipelines like the one presented in this thesis,
guide the user through the analysis process.
On a higher level, increasing the synergies between the different OMICs sources, to im-

prove the analysis quality, is also a focus for future works. While NGS data analysis tools,
like ours, already start to support multiple OMICs data types, they do not yet allow the
user to combine them in an intuitive way to gain more insight into a sample. To analyse a
sample using multiple OMICs data-sources is a costly and complex task, for which intuitive
user interfaces will be required to extract the relevant information from a sample.
All those future works have the potential to increase the computing infrastructure re-

quirements, which makes our work on distributed computing even more important. Being
able to use distributed computing to lower the infrastructure requirements is also helpful in
regards to the ability to analyse genomes at home. Offloading the computation heavy calcu-
lations to the cloud, privacy issues aside, will help to overcome the computing infrastructure
limitations found at home.
The leitmotif of this thesis was to make people’s lives easier, allowing them to work

more efficiently. We showed that the presented work achieves this goal in the fields of
bioinformatics and distributed computing.

167



11. Publications
This chapter lists the works published during this thesis. Section 11.1 contains the list
of publications both in journals, at conferences and workshops. In Section 11.2 all poster
presentations are listed.

11.1. Publications
We separated the publications in three groups. In the first group we have the publications
released in peer-reviewed journals. They are followed by peer-reviewed conference publica-
tions. Lastly we have publications released during conferences and workshops with a less
strict peer reviewing process (on invite etc.).

11.1.1. Journal papers
Meik Kunz, Beat Wolf, Harald Schulze, David Atlan, Thorsten Walles, Heike Walles and
Thomas Dandekar, Non-Coding RNAs in Lung Cancer: Contribution of Bioinformatics
Analysis to the Development of Non-Invasive Diagnostic Tools [Review], Genes, Dec. 2016,
24 pages

Beat Wolf, Pierre Kuonen, Thomas Dandekar, David Atlan, DNAseq workflow in a diag-
nostic context, and an example of a user friendly implementation, BioMed Research Inter-
national, Volume 2015 (2015), Article ID 403497, 11 pages

J. Elisa Bach, Beat Wolf, Johannes Oldenburg, Clemens R. Müller, Simone Rost, Identifi-
cation of deep intronic variants in 15 haemophilia A patients by Next Generation Sequencing
of the whole factor VIII gene, Thrombosis and Haemostasis, 2015: 114/4 (Oct) pp. 657-867

11.1.2. Conference proceedings
Beat Wolf, Pierre Kuonen, Thomas Dandekar, GNATY: Optimized NGS variant calling
and coverage analysis, 4th International Work-Conference on Bioinformatics and Biomedi-
cal Engineering (IWBBIO 2016)

Beat Wolf, Pierre Kuonen, Thomas Dandekar, POP-Java : Parallélisme et distribution
orienté objet, Compas2014, Conférence d’informatique en Parallélisme, Architecture et Sys-
tème

Beat Wolf, Pierre Kuonen, Thomas Dandekar, Comment reproduire les résultats de
l’article: "POP-Java: Parallélisme et distribution orienté objet", Realis 2014: Reproductibil-
ité expérimentale pour l’informatique en parallélisme, architecture et système

168



11.2. Posters 11. PUBLICATIONS

Beat Wolf, Pierre Kuonen, A novel approach for heuristic pairwise DNA sequence align-
ment, BIOCOMP’13 - The 2013 International Conference on Bioinformatics & Computa-
tional Biology

11.1.3. Misc.
Beat Wolf, Pierre Kuonen, Thomas Dandekar, Multilevel parallelism in sequence align-
ment using a streaming approach, Second International Workshop on Sustainable Ultrascale
Computing Systems (NESUS 2015)

Beat Wolf, Monney Loïc, Pierre Kuonen FriendComputing: Organic application centric
distributed computing, Second International Workshop on Sustainable Ultrascale Comput-
ing Systems (NESUS 2015)

Beat Wolf, Pierre Kuonen, Distributed programming using POP-Java, Doctoral Work-
shop on Distributed Systems, 2013

Beat Wolf, Pierre Kuonen, David Atlan, General purpose distributed DNA aligner, Doc-
toral Workshop on Distributed Systems, 2012

11.2. Posters
Beat Wolf, Pierre Kuonen, David Atlan, Jonathan Stoppani, Davide Mazzoleni, Thomas
Dandekar, Safe variant annotation sharing across laboratories , Variant Detection 2017

Beat Wolf, Pierre Kuonen, David Atlan, Marco Lourenço, Jonathan Stoppani, Thomas
Dandekar, Trusted Friend Computing: data mining federated OMICS knowledge source ,
European Human Genetics Conference 2017

Juliane Lippert, S. Appenzeller, S. Steinhauer, Simone Rost, Beat Wolf, Anrea Gehrig,
C.R. Müller, M. Fassnacht, C.L. Ronchi , Identification of a molecular signature for prog-
nostic classification and individualized cancer therapy in adrenocortical carcinoma, GfH
Jahrestagung, 2017

Michaela Hofrichter, Barbara Vona, R. Maroofian , Linda Schnapp, Julia Doll, Tabea Röder,
I. Nanda, Barry Chioza, Beat Wolf, Wafaa Shehata-Dieler, Erdmute Kunstmann, Jörg-
Gunther Schröder, Tobias Müller, Ulrich Zechner, Oliver Bartsch, Marcus Dittrich, Andrew
Crosby, Thomas Haaf, Genotype-Phenotype correlation-The many facets of heterogeneous
hearing loss in the context of molecular, GfH Jahrestagung, 2017

Beat Wolf, Pierre Kuonen, Thomas Dandekar, Meta-alignment: Combining multiple se-
quence aligners to improve alignment quality, European Human Genetics Conference 2016

BeatWolf, Pierre Kuonen, Thomas Dandekar,GensearchNGS : Integrating OMICs analysing
and visualization, Visualizing Biological Data, VIZBI 2016

Böck Julia, Haertle Lara, Appenzeller S, Beat Wolf, Schneider T., Sutter C, Haaf T.,

169



11.2. Posters 11. PUBLICATIONS

Deep bisulfite sequencing for quantification of constitutive epimutations in tumor suppres-
sor genes, GfH Jahrestagung, 2016

Ann-Kathrin Zaum, Wolfram Kreß, Beat Wolf, Simone Rost, Novel dominant case of
de-novo mutation in Ullrich congenital muscular dystrophy , GfH Jahrestagung, 2016

Pluta Nathalie, Kress Wolfram, Clemens R. Müller, Beat Wolf, Rost Simone Recessive
truncating mutations in the TTN gene of two patients with muscular dystrophies , GfH
Jahrestagung, 2016

Beat Wolf, Pierre Kuonen, Thomas Dandekar, Building blocks, Visualizing Biological
Data, VIZBI 2014

Beat Wolf, Pierre Kuonen, Thomas Dandekar, GNATY: A tools library for faster variant
calling and coverage analysis , German Conference on Bioinformatics 2015

Beat Wolf, Pierre Kuonen, Thomas Dandekar, David Atlan, Speeding up NGS analy-
sis through local and remote computing resources, European Human Genetics Conference
2015

Beat Wolf, Pierre Kuonen, Thomas Dandekar, David Atlan, GensearchNGS: Interactive
variant analysis, 13th International Symposium on Mutation in the Genome: detection,
genome sequencing & interpretation, 2015

Ann-Kathrin Zaum, Simone Rost, Beat Wolf, Clemens R. Müller, Thomas Musacchio,
Erdmute Kunstmann, Stephan Klebe, Distal hereditary motor neuropathy due to BSCL2
mutation in a two generation family, GfH Jahrestagung, 2015

J Elisa Bach, Beat Wolf, Johannes Oldenburg, Clemens R Müller, Simone Rost, Deep
intronic variants in the factor VIII gene, GfH Jahrestagung, 2015

Beat Wolf, Pierre Kuonen, Thomas Dandekar, Towards integrative family analysis on
OMICs data for individual patient diagnostics, European Human Genetics Conference 2014

Beat Wolf, Pierre Kuonen, Thomas Dandekar, GensearchNGS-Viewer: A complete NGS
data visualization experience, Visualizing Biological Data, VIZBI 2014

Beat Wolf, Pierre Kuonen, Thomas Dandekar, Everybody’s uniqueness, Visualizing Bi-
ological Data, VIZBI 2014

J Elisa Bach, Simone Rost, Anna-Lena Semmler, Kristl G Claeys, Beat Wolf, Wol-
fram Kress, Clemens R Müller, NGS panel for diagnostics of myofibrillar myopathies, GfH
Jahrestagung, 2014

David Atlan, Tim Beck, J.Brookes, Raymond Dalgleish, Owen Lancaster, Beat Wolf,
Connecting diagnostic labs: Cafe Variome and DNA sequencing software, Joint meeting of
EURenOmics, NeurOmics and RDConnect in Heidelberg, 2014

170



11.2. Posters 11. PUBLICATIONS

Beat Wolf, Pierre Kuonen, David Atlan, Thomas Dandekar, Johan T. den Dunnen Store,
align and explore your genome outside the Cloud, at home, on your PC, European Human
Genetics Conference 2013

Beat Wolf, Pierre Kuonen, Thomas Dandekar, Next generation sequencing from raw data
to mutation report, European Human Genetics Conference 2011

171



Bibliography
[AAA+15] Adam Auton, Gonçalo R. Abecasis, David M. Altshuler, Richard M. Durbin,

David R. Bentley, Aravinda Chakravarti, Andrew G. Clark, and Donnelly: A
global reference for human genetic variation. Nature, 526(7571):68–74, 2015,
ISSN 0028-0836.

[AG15] Clemens R. Müller Andrea Gehrig: Hereditary breast/ovarian cancer: A sys-
tematic screening of dna repair genes in 300 consecutive patients. Poster
presentation, 2015.

[AG16] Clemens R. Müller Andrea Gehrig, Ines Schmitt: Hereditary breast/ovarian
cancer: a systematic screening of 94 cancer associated genes in 500 consecutive
index cases. Poster presentation, 2016.

[AGM+90] S F Altschul, W Gish, W Miller, E W Myers, and D J Lipman: Basic local
alignment search tool. Journal of molecular biology, 215(3):403–10, oct 1990,
ISSN 0022-2836. http://www.ncbi.nlm.nih.gov/pubmed/2231712.

[AJL+14] Bruce Alberts, Alexander Johnson, Julian Lewis, David Morgan, Martin Raff,
Keith Roberts, and Peter Walter: Molecular Biology of the Cell. Taylor &
Francis Ltd., 6st edition, 2014, ISBN 0815344643, 9780815344643.

[Amd67] Gene M. Amdahl: Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference, AFIPS ’67 (Spring), pages 483–485, New York,
NY, USA, 1967. ACM. http://doi.acm.org/10.1145/1465482.1465560.

[AMS+97] S F Altschul, T L Madden, a a Schäffer, J Zhang, Z Zhang, W Miller, and
D J Lipman: Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic acids research, 25(17):3389–402, sep 1997,
ISSN 0305-1048.

[AMZ+15] Zeeshan Ahmed, Michel Mayr, Saman Zeeshan, Thomas Dandekar, Martin
J. Mueller, and Agnes Fekete: Lipid-Pro: a computational lipid identification
solution for untargeted lipidomics on data-independent acquisition tandem
mass spectrometry platforms., volume 31. Apr 2015. http://www.ncbi.nlm.
nih.gov/pubmed/25433698.

[And04] David P. Anderson: 3. BOINC: A system for public-resource computing and
storage. Proceedings - IEEE/ACM International Workshop on Grid Comput-
ing, pages 4–10, 2004, ISSN 15505510.

[APH15] Simon Anders, Paul Theodor Pyl, and Wolfgang Huber: HTSeq-A Python
framework to work with high-throughput sequencing data. Bioinformatics,
31(2):166–169, 2015, ISSN 14602059.

172

http://www.ncbi.nlm.nih.gov/pubmed/2231712
http://doi.acm.org/10.1145/1465482.1465560
http://www.ncbi.nlm.nih.gov/pubmed/25433698
http://www.ncbi.nlm.nih.gov/pubmed/25433698


Bibliography BIBLIOGRAPHY

[APPA15] José M. Abuín, Juan C. Pichel, Tomás F. Pena, and Jorge Amigo: BigBWA:
Approaching the Burrows-Wheeler aligner to Big Data technologies. Bioin-
formatics, 31(24):4003–4005, 2015, ISSN 14602059.

[ARH12] Simon Anders, Alejandro Reyes, and Wolfgang Huber: Detecting differential
usage of exons from RNA-seq data. Genome Research, 22(10):2008–2017,
2012, ISSN 10889051.

[ASP+10] Ivan a Adzhubei, Steffen Schmidt, Leonid Peshkin, Vasily E Ramensky, Anna
Gerasimova, Peer Bork, Alexey S Kondrashov, and Shamil R Sunyaev: A
method and server for predicting damaging missense mutations. Nature meth-
ods, 7(4):248–9, apr 2010, ISSN 1548-7105.

[BAW+16] Julia Böck, S. Appenzeller, Beat Wolf, T. Schneier, C. Sutter, and T. Haaf:
Deep bisulfite sequencing for quantification of constitutive epimutations in
tumor suppressor genes. Poster presentation, 2016.

[BCD+15] J. A. Blake, K. R. Christie, M. E. Dolan, H. J. Drabkin, D. P. Hill, L. Ni,
D. Sitnikov, S. Burgess, T. Buza, C. Gresham, F. McCarthy, L. Pillai, H.
Wang, S. Carbon, H. Dietze, S. E. Lewis, C. J. Mungall, M. C. Munoz-Torres,
M. Feuermann, P. Gaudet, S. Basu, R. L. Chisholm, R. J. Dodson, P. Fey,
H. Mi, P. D. Thomas, A. Muruganujan, S. Poudel, J. C. Hu, S. A. Alek-
sander, B. K. McIntosh, D. P. Renfro, D. A. Siegele, H. Attrill, N. H. Brown,
S. Tweedie, J. Lomax, D. Osumi-Sutherland, H. Parkinson, P. Roncaglia, R.
C. Lovering, P. J. Talmud, S. E. Humphries, P. Denny, N. H. Campbell, R.
E. Foulger, M. C. Chibucos, M. Gwinn Giglio, H. Y. Chang, R. Finn, M.
Fraser, A. Mitchell, G. Nuka, S. Pesseat, A. Sangrador, M. Scheremetjew, S.
Y. Young, R. Stephan, M. A. Harris, S. G. Oliver, K. Rutherford, V. Wood,
J. Bahler, A. Lock, P. J. Kersey, M. D. McDowall, D. M. Staines, M. Dwinell,
M. Shimoyama, S. Laulederkind, G. T. Hayman, S. J. Wang, V. Petri, P.
D’Eustachio, L. Matthews, R. Balakrishnan, G. Binkley, J. M. Cherry, M.
C. Costanzo, J. Demeter, S. S. Dwight, S. R. Engel, B. C. Hitz, D. O. In-
glis, P. Lloyd, S. R. Miyasato, K. Paskov, G. Roe, M. Simison, R. S. Nash,
M. S. Skrzypek, S. Weng, E. D. Wong, T. Z. Berardini, D. Li, E. Huala, J.
Argasinska, C. Arighi, A. Auchincloss, K. Axelsen, G. Argoud-Puy, A. Bate-
man, B. Bely, M. C. Blatter, C. Bonilla, L. Bougueleret, E. Boutet, L. Breuza,
A. Bridge, R. Britto, C. Casals, E. Cibrian-Uhalte, E. Coudert, I. Cusin, P.
Duek-Roggli, A. Estreicher, L. Famiglietti, P. Gane, P. Garmiri, A. Gos, N.
Gruaz-Gumowski, E. Hatton-Ellis, U. Hinz, C. Hulo, R. Huntley, F. Jungo, G.
Keller, K. Laiho, P. Lemercier, D. Lieberherr, A. Macdougall, M. Magrane,
M. Martin, P. Masson, P. Mutowo, C. O’Donovan, I. Pedruzzi, K. Pichler,
D. Poggioli, S. Poux, C. Rivoire, B. Roechert, T. Sawford, M. Schneider, A.
Shypitsyna, A. Stutz, S. Sundaram, M. Tognolli, C. Wu, I. Xenarios, J. Chan,
R. Kishore, P. W. Sternberg, K. Van Auken, H. M. Muller, J. Done, Y. Li, D.
Howe, and M. Westerfeld: Gene ontology consortium: Going forward. Nucleic
Acids Research, 43(D1):D1049–D1056, 2015, ISSN 13624962.

[Bea12] Wolf Beat: Distributed DNA alignment , a stream based approach. In Doctoral
Workshop on Distributed Systems, 2012, pages 6–8, 2012.

173



Bibliography BIBLIOGRAPHY

[BF07] Daniele Bonacorsi and Tiziana Ferrari: WLCG Service Challenges and Tiered
architecture in the LHC era. Incontri di Fisica delle Alte Energie, pages 365–
368, 2007. http://www.springerlink.com/index/n06508035wx05p00.pdf.

[BH95] Yoav Benjamini and Yosef Hochberg: Controlling the False Discovery Rate:
A Practical and Powerful Approach to Multiple Testing. Journal of the Royal
Statistical Society. Series B (Methodological), 57(1):289–300, 1995.

[BKB+15] M Broman, I Kleinschnitz, J E Bach, S Rost, G Islander, and C R Müller:
Next-generation DNA sequencing of a Swedish malignant hyperthermia co-
hort. Clinical Genetics, 88:1–5, 2015, ISSN 00099163.

[BKBW14] Xavier Barrelet, Pierre Kuonen, Frédéric Bapst, and Beat Wolf: CloudADN-
II. Technical report, 2014.

[BKW16] Christophe Blanquet, Pierre Kuonen, and Beat Wolf: POP – DNA I, Dis-
tributed Object Programming for high performance DNA analysis. Technical
report, 2016.

[BNK+14] Desislava Boyanova, Santosh Nilla, Gunnar W. Klau, Thomas Dandekar, To-
bias Müller, and Marcus Dittrich: Functional module search in protein net-
works based on semantic similarity improves the analysis of proteomics data.,
volume 13. Jul 2014. http://www.ncbi.nlm.nih.gov/pubmed/24807868.

[Boc12] Christoph Bock: Analysing and interpreting DNA methylation data. Nature
Reviews Genetics, 13(10):705–719, 2012, ISSN 1471-0056. http://dx.doi.
org/10.1038/nrg3273.

[BP63] Thomas Bayes and Price Phil: An Essay towards Solving a Problem in the
Doctrine of Chances. By the Late Rev. Mr. Bayes, F. R. S. Communicated
by Mr. Price, in a Letter to John Canton, A. M. F. R. S. Philosophical
Transactions of the Royal Society of London, 53:370–418, 1763.

[BRM+05] Christoph Bock, Sabine Reither, Thomas Mikeska, Martina Paulsen, Jörn
Walter, and Thomas Lengauer: BiQ Analyzer: Visualization and quality con-
trol for DNA methylation data from bisulfite sequencing. Bioinformatics,
21(21):4067–4068, 2005, ISSN 13674803.

[BRS+14] J Elisa Bach, Simone Rost, Anna Lena Semmler, G Kristl Claeys, Beat Wolf,
Wolfram Kress, and Clemens R Müller: Ngs panel for diagnostics of myofib-
rillar myopathies. Poster presentation, 2014.

[BS12] Yuval Benjamini and Terence P. Speed: Summarizing and correcting the GC
content bias in high-throughput sequencing. Nucleic Acids Research, 40(10):1–
14, 2012, ISSN 03051048.

[BSS95] J K Bonfield, K f Smith, and R Staden: A new DNA sequence assembly
program. Nucleic acids research, 23(24):4992–4999, 1995, ISSN 0305-1048.

[BTD+16] J. Borgmann, F. Tuttelmann, B. Dworniczak, A. Ropke, H. W. Song, S. Kli-
esch, M. F. Wilkinson, S. Laurentino, and J. Gromoll: The human RHOX

174

http://www.springerlink.com/index/n06508035wx05p00.pdf
http://www.ncbi.nlm.nih.gov/pubmed/24807868
http://dx.doi.org/10.1038/nrg3273
http://dx.doi.org/10.1038/nrg3273


Bibliography BIBLIOGRAPHY

gene cluster: target genes and functional analysis of gene variants in infertile
men. Hum. Mol. Genet., Sep 2016.

[BW94] M Burrows and D.J. Wheeler: A block-sorting lossless data compression algo-
rithm. 1994. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.
1.1.141.5254.

[BWO+15a] J Elisa Bach, Beat Wolf, Johannes Oldenburg, Clemens R Müller, and Simone
Rost: Deep intronic variants in the factor viii gene. Poster presentation, 2015.

[BWO+15b] J Elisa Bach, Beat Wolf, Johannes Oldenburg, Clemens R Müller, and Simone
Rost: Identification of deep intronic variants in 15 haemophilia A patients by
next generation sequencing of the whole factor VIII gene. Thrombosis and
Haemostasis, pages 1–11, 2015.

[BYD+16] Robert Buels, Eric Yao, Colin M Diesh, Richard D Hayes, Monica Munoz-
Torres, Gregg Helt, David M Goodstein, Christine G Elsik, Suzanna E
Lewis, Lincoln Stein, and Ian H Holmes: JBrowse: a dynamic web platform
for genome visualization and analysis. Genome Biology, 17(1):1–12, 2016,
ISSN 1474-760X. http://dx.doi.org/10.1186/s13059-016-0924-1.

[CAB+15] Fiona Cunningham, M. Ridwan Amode, Daniel Barrell, Kathryn Beal, Kon-
stantinos Billis, Simon Brent, Denise Carvalho-Silva, Peter Clapham, Guy
Coates, Stephen Fitzgerald, Laurent Gil, Carlos García Girón, Leo Gor-
don, Thibaut Hourlier, Sarah E. Hunt, Sophie H. Janacek, Nathan Johnson,
Thomas Juettemann, Andreas K. Kähäri, Stephen Keenan, Fergal J. Martin,
Thomas Maurel, William McLaren, Daniel N. Murphy, Rishi Nag, Bert Over-
duin, Anne Parker, Mateus Patricio, Emily Perry, Miguel Pignatelli, Harpreet
Singh Riat, Daniel Sheppard, Kieron Taylor, Anja Thormann, Alessandro
Vullo, Steven P. Wilder, Amonida Zadissa, Bronwen L. Aken, Ewan Bir-
ney, Jennifer Harrow, Rhoda Kinsella, Matthieu Muffato, Magali Ruffier,
Stephen M J Searle, Giulietta Spudich, Stephen J. Trevanion, Andy Yates,
Daniel R. Zerbino, and Paul Flicek: Ensembl 2015. Nucleic Acids Research,
43(D1):D662–D669, 2015, ISSN 13624962.

[CFG+09] Peter J A Cock, Christopher J. Fields, Naohisa Goto, Michael L. Heuer, and
Peter M. Rice: The Sanger FASTQ file format for sequences with quality
scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Research,
38(6):1767–1771, 2009, ISSN 03051048.

[CGT14] Xin Bei V. Chan, Shi Min S. Goh, and Ngiap Chuan Tan: Subjects with colour
vision deficiency in the community: what do primary care physicians need
to know? Asia Pacific Family Medicine, 13(1):1–10, 2014, ISSN 1447-056X.
http://dx.doi.org/10.1186/s12930-014-0010-3.

[Cha88] K. Mani Chandy: Parallel Program Design: A Foundation. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1988, ISBN 0-201-05866-9.

[Chr05] Chris Christmas, Rowan; Avila-Campillo, Iliana; Bolouri, Hamid;
Schwikowski, Benno; Anderson, Mark; Kelley, Ryan; Landys, Nerius;

175

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.141.5254
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.141.5254
http://dx.doi.org/10.1186/s13059-016-0924-1
http://dx.doi.org/10.1186/s12930-014-0010-3


Bibliography BIBLIOGRAPHY

Workman, Chris; Ideker, Trey; Cerami, Ethan; Sheridan, Rob; Bader,
Gary D.; Sander: Cytoscape: a software environment for integrated models
of biomolecular interaction networks. American Association for Cancer
Research Education Book, (Karp 2001):12–16, 2005, ISSN 1088-9051.

[CHS04] Denis Caromel, Ludovic Henrio, and Bernard Paul Serpette: Asynchronous
and deterministic objects. SIGPLAN Not., 39(1):123–134, January 2004,
ISSN 0362-1340. http://doi.acm.org/10.1145/982962.964012.

[CLZ+13] Wei Chen, Bingshan Li, Zhen Zeng, Serena Sanna, Carlo Sidore, Fabio Bu-
sonero, Hyun Min Kang, Yun Li, R Abecasis, North Carolina, Chapel Hill, and
North Carolina: Genotype calling and haplotyping in parent-offspring trios.
pages 1–11, 2013.

[CMT+16] Ana Conesa, Pedro Madrigal, Sonia Tarazona, David Gomez-cabrero, Alejan-
dra Cervera, Andrew Mcpherson, Wojciech Szcze, Daniel J Gaffney, Laura
L Elo, and Xuegong Zhang: A survey of best practices for RNA-seq data
analysis. pages 1–19, 2016.

[CS10] Valentin Clément and Christian Senn: Bachelor Thesis 2010 Technical Report.
2010.

[CSRM12] Aniruddha Chatterjee, Peter a. Stockwell, Euan J. Rodger, and Ian M. Mori-
son: Comparison of alignment software for genome-wide bisulphite sequence
data. Nucleic Acids Research, 40(10):1–8, 2012, ISSN 03051048.

[CT09] Francesco Cesarini and Simon Thompson: ERLANG Programming. O’Reilly
Media, Inc., 1st edition, 2009, ISBN 0596518188, 9780596518189.

[CWC12] Alexandra Chittka, Yannick Wurm, and Lars Chittka: Epigenetics: The mak-
ing of ant castes. Current Biology, 22(19):R835–R838, 2012, ISSN 09609822.
http://dx.doi.org/10.1016/j.cub.2012.07.045.

[DA00] Johan T Den Dunnen and Stylianos E Antonarakis: Mutation Nomenclature
Extensions and Suggestions to Describe Complex Mutations : A Discussion.
12:7–12, 2000.

[DAA+11] Petr Danecek, Adam Auton, Goncalo Abecasis, Cornelis A. Albers, Eric
Banks, Mark A. DePristo, Robert E. Handsaker, Gerton Lunter, Gabor
T. Marth, Stephen T. Sherry, Gilean McVean, and Richard Durbin: The
variant call format and VCFtools. Bioinformatics, 27(15):2156–2158, 2011,
ISSN 13674803.

[DBP+11] Mark A DePristo, Eric Banks, Ryan Poplin, Kiran V Garimella, Jared R
Maguire, Christopher Hartl, Anthony A Philippakis, Guillermo del Angel,
Manuel A Rivas, Matt Hanna, Aaron McKenna, Tim J Fennell, Andrew M
Kernytsky, Andrey Y Sivachenko, Kristian Cibulskis, Stacey B Gabriel, David
Altshuler, and Mark J Daly: A framework for variation discovery and genotyp-
ing using next-generation DNA sequencing data. Nature genetics, 43(5):491–
498, 2011.

176

http://doi.acm.org/10.1145/982962.964012
http://dx.doi.org/10.1016/j.cub.2012.07.045


Bibliography BIBLIOGRAPHY

[DDS+13] Alexander Dobin, Carrie a. Davis, Felix Schlesinger, Jorg Drenkow, Chris
Zaleski, Sonali Jha, Philippe Batut, Mark Chaisson, and Thomas R. Gin-
geras: STAR: Ultrafast universal RNA-seq aligner. Bioinformatics, 29(1):15–
21, 2013, ISSN 13674803.

[DG08] Jeffrey Dean and Sanjay Ghemawat: MapReduce: simplified data process-
ing on large clusters. Commun. ACM, 51(1):107–113, 2008, ISSN 0001-0782.
http://doi.acm.org/10.1145/1327452.1327492.

[DHL+09] François Olivier Desmet, Dalil Hamroun, Marine Lalande, Gwenaëlle Collod-
Bëroud, Mireille Claustres, and Christophe Béroud: Human Splicing Finder:
An online bioinformatics tool to predict splicing signals. Nucleic Acids Re-
search, 37(9):1–14, 2009, ISSN 03051048.

[DM98] Leonardo Dagum and Ramesh Menon: Openmp: an industry standard api for
shared-memory programming. Computational Science & Engineering, IEEE,
5(1):46–55, 1998.

[DRA+13] Marie Agnès Dillies, Andrea Rau, Julie Aubert, Christelle Hennequet-Antier,
Marine Jeanmougin, Nicolas Servant, Céline Keime, Nicolas Servant Marot,
David Castel, Jordi Estelle, Gregory Guernec, Bernd Jagla, Luc Jouneau, De-
nis Laloë, Caroline Le Gall, Brigitte Schaëffer, Stéphane Le Crom, Mickaël
Guedj, and Florence Jaffrézic: A comprehensive evaluation of normalization
methods for Illumina high-throughput RNA sequencing data analysis. Brief-
ings in Bioinformatics, 14(6):671–683, 2013, ISSN 14675463.

[EbBS+96] Michael R Emmert-buck, Robert F Bonner, Paul D Smith, Rodrigo F
Chuaqui, Zhengping Zhuang, Seth R Goldstein, Rhonda A Weiss, and Lance
A Liotta: Laser Capture Microdissection. 274(November):998–1001, 1996.

[EN14] Yaniv Erlich and Arvind Narayanan: Routes for breaching and protecting ge-
netic privacy. Nature Reviews Genetics, 15(6):409–421, 2014, ISSN 1471-0056.

[FBG+15] Simon A. Forbes, David Beare, Prasad Gunasekaran, Kenric Leung, Nidhi
Bindal, Harry Boutselakis, Minjie Ding, Sally Bamford, Charlotte Cole, Sari
Ward, Chai Yin Kok, Mingming Jia, Tisham De, Jon W. Teague, Michael
R. Stratton, Ultan McDermott, and Peter J. Campbell: COSMIC: Exploring
the world’s knowledge of somatic mutations in human cancer. Nucleic Acids
Research, 43(D1):D805–D811, 2015, ISSN 13624962.

[Fel13] Sarah Feldkirchner: Proteomische Einzelfaser-Analysen Myofibrillärer My-
opathien mit Hilfe der Laser Dissektions- Mikroskopie. 2013.

[For94] Message P Forum: Mpi: A message-passing interface standard. Technical
report, Knoxville, TN, USA, 1994.

[FUR+15] Adam Frankish, Barbara Uszczynska, Graham R S Ritchie, Jose M Gonzalez,
Dmitri Pervouchine, Robert Petryszak, Jonathan M Mudge, Nuno Fonseca,
Alvis Brazma, Roderic Guigo, and Jennifer Harrow: Comparison of GEN-
CODE and RefSeq gene annotation and the impact of reference geneset on

177

http://doi.acm.org/10.1145/1327452.1327492


Bibliography BIBLIOGRAPHY

variant effect prediction. BMC genomics, 16 Suppl 8(Suppl 8):S2, 2015,
ISSN 1471-2164. http://www.ncbi.nlm.nih.gov/pubmed/26110515.

[GBO+05] Jochen Graw, Hans Hermann Brackmann, Johannes Oldenburg, Reinhard
Schneppenheim, Michael Spannagl, and Rainer Schwaab: Haemophilia A: from
mutation analysis to new therapies. Nature reviews. Genetics, 6(6):488–501,
2005, ISSN 1471-0056.

[Gen09] Craig Gentry: Fully homomorphic encryption using ideal lattices. Proceedings
of the 41st annual ACM symposium on Symposium on theory of computing
STOC 09, 19(September):169, 2009, ISSN 07378017. http://portal.acm.
org/citation.cfm?doid=1536414.1536440.

[GMG+13] Melissa Gymrek, Amy L. McGuire, David Golan, Eran Halperin, and
Yaniv Erlich: Identifying personal genomes by surname inference. Sci-
ence, 339(6117):321–324, 2013. http://www.sciencemag.org/content/339/
6117/321.abstract.

[GMM16] Sara Goodwin, John D. McPherson, and W. Richard McCombie: Coming of
age: ten years of next-generation sequencing technologies. Nature Reviews
Genetics, 17(6):333–351, 2016, ISSN 1471-0056. http://www.nature.com/
doifinder/10.1038/nrg.2016.49.

[Goo10] Leo Goodstadt: Ruffus: A lightweight python library for computational
pipelines. Bioinformatics, 26(21):2778–2779, 2010, ISSN 13674803.

[Got82] Osamu Gotoh: An improved algorithm for matching biological sequences.
Journal of Molecular Biology, 162(3):705–708, 1982, ISSN 00222836.

[GPHE+15] Jamal Ghoumid, Florence Petit, Muriel Holder-Espinasse, Anne Sophie Jour-
dain, José Guerra, Anne Dieux-Coeslier, Martin Figeac, Nicole Porchet,
Sylvie Manouvrier-Hanu, and Fabienne Escande: Nail–Patella Syndrome: clin-
ical and molecular data in 55 families raising the hypothesis of a genetic
heterogeneity. European Journal of Human Genetics, (October 2014):1–
7, 2015, ISSN 1018-4813. http://www.nature.com/doifinder/10.1038/
ejhg.2015.77.

[GRH05] Belinda Giardine, Cathy Riemer, and RC Hardison: Galaxy: a platform for in-
teractive large-scale genome analysis. Genome Research, 15:1451–1455, 2005.
http://genome.cshlp.org/content/15/10/1451.short.

[GZM+15] Shengjie Gao, Dan Zou, Likai Mao, Quan Zhou, Wenlong Jia, Yi Huang,
Shancen Zhao, Gang Chen, Song Wu, Dongdong Li, Fei Xia, Huafeng
Chen, Maoshan Chen, Torben F Ørntoft, Lars Bolund, and Karina D
Sørensen: SMAP: a streamlined methylation analysis pipeline for bisulfite
sequencing. GigaScience, 4(1):29, 2015, ISSN 2047-217X. http://www.
gigasciencejournal.com/content/4/1/29.

[Hay98] R. H. Haynes: Heritable variation and mutagenesis at early international
congresses of genetics, 1998. ISSN 00166731. http://www.genetics.org/
content/148/4/1419.full.pdf.

178

http://www.ncbi.nlm.nih.gov/pubmed/26110515
http://portal.acm.org/citation.cfm?doid=1536414.1536440
http://portal.acm.org/citation.cfm?doid=1536414.1536440
http://www.sciencemag.org/content/339/6117/321.abstract
http://www.sciencemag.org/content/339/6117/321.abstract
http://www.nature.com/doifinder/10.1038/nrg.2016.49
http://www.nature.com/doifinder/10.1038/nrg.2016.49
http://www.nature.com/doifinder/10.1038/ejhg.2015.77
http://www.nature.com/doifinder/10.1038/ejhg.2015.77
http://genome.cshlp.org/content/15/10/1451.short
http://www.gigasciencejournal.com/content/4/1/29
http://www.gigasciencejournal.com/content/4/1/29
http://www.genetics.org/content/148/4/1419.full.pdf
http://www.genetics.org/content/148/4/1419.full.pdf


Bibliography BIBLIOGRAPHY

[Hay15] Ertica Check Hayden: Pint-sized DNA sequencer impresses first users
Reality check for fossil-fuel divestment. Nature, 521(May):15–16, 2015,
ISSN 0028-0836.

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger: A universal modular ac-
tor formalism for artificial intelligence. In Proceedings of the 3rd Inter-
national Joint Conference on Artificial Intelligence, IJCAI’73, pages 235–
245, San Francisco, CA, USA, 1973. Morgan Kaufmann Publishers Inc.
http://dl.acm.org/citation.cfm?id=1624775.1624804.

[HFG+12] Jennifer Harrow, Adam Frankish, Jose M. Gonzalez, Electra Tapanari, Mark
Diekhans, Felix Kokocinski, Bronwen L. Aken, Daniel Barrell, Amonida
Zadissa, Stephen Searle, If Barnes, Alexandra Bignell, Veronika Boychenko,
Toby Hunt, Mike Kay, Gaurab Mukherjee, Jeena Rajan, Gloria Despacio-
Reyes, Gary Saunders, Charles Steward, Rachel Harte, Michael Lin, Cédric
Howald, Andrea Tanzer, Thomas Derrien, Jacqueline Chrast, Nathalie Wal-
ters, Suganthi Balasubramanian, Baikang Pei, Michael Tress, Jose Manuel
Rodriguez, Iakes Ezkurdia, Jeltje Van Baren, Michael Brent, David Haus-
sler, Manolis Kellis, Alfonso Valencia, Alexandre Reymond, Mark Gerstein,
Roderic Guigó, and Tim J. Hubbard: GENCODE: The reference human
genome annotation for the ENCODE project. Genome Research, 22(9):1760–
1774, 2012, ISSN 10889051.

[HNG+15] Michaela A.H. Hofrichter, Indrajit Nanda, Jens Gräf, Jörg Schröder, Wafaa
Shehata-Dieler, Barbara Vona, and Thomas Haaf: A Novel de novo Mutation
in CEACAM16 Associated with Postlingual Hearing Impairment. Molecu-
lar Syndromology, 6(4):156–163, 2015, ISSN 1661-8769. http://www.karger.
com/?doi=10.1159/000439576.

[HPL+12] Tamara Hansmann, Galyna Pliushch, Monika Leubner, Patricia Kroll,
Daniela Endt, Andrea Gehrig, Sabine Preisler-Adams, Peter Wieacker, and
Thomas Haaf: Constitutive promoter methylation of BRCA1 and RAD51C in
patients with familial ovarian cancer and early-onset sporadic breast cancer.
Human Molecular Genetics, 21(21):4669–4679, 2012, ISSN 09646906.

[HPS+10] Yun Huang, William A. Pastor, Yinghua Shen, Mamta Tahiliani, David R.
Liu, and Anjana Rao: The behaviour of 5-hydroxymethylcytosine in bisulfite
sequencing. PLoS ONE, 5(1):1–9, January 2010. http://dx.doi.org/10.
1371%2Fjournal.pone.0008888.

[HTN14] Joseph Henson, German Tischler, and Zemin Ning: Europe PMC Funders
Group Next-generation sequencing and large genome assemblies. 13(8):901–
915, 2014.

[HTS+08] Bastiaan T Heijmans, Elmar W Tobi, Aryeh D Stein, Hein Putter, Gerard J
Blauw, Ezra S Susser, P Eline Slagboom, and L H Lumey: Persistent epige-
netic differences associated with prenatal exposure to famine in humans. Pro-
ceedings of the National Academy of Sciences of the United States of America,
105(44):17046–9, 2008, ISSN 1091-6490.

179

http://dl.acm.org/citation.cfm?id=1624775.1624804
http://www.karger.com/?doi=10.1159/000439576
http://www.karger.com/?doi=10.1159/000439576
http://dx.doi.org/10.1371%2Fjournal.pone.0008888
http://dx.doi.org/10.1371%2Fjournal.pone.0008888


Bibliography BIBLIOGRAPHY

[Hul14] Sara Chandros Hull: The unintended implications of blurring the line between
research and clinical care in a genomic age. 11:285–295, 2014.

[HWK+15] Gareth Highnam, Jason J Wang, Dean Kusler, Justin Zook, Vinaya Vijayan,
Nir Leibovich, and David Mittelman: ARTICLE An analytical framework for
optimizing variant discovery from personal genomes. Nature Communications,
6:1–6, 2015. http://dx.doi.org/10.1038/ncomms7275.

[Jar05] Thomas Jarvie: Next generation sequencing technologies. Drug Discovery
Today: Technologies, 2(3):255 – 260, 2005, ISSN 1740-6749. http://www.
sciencedirect.com/science/article/pii/S1740674905000466.

[JFM+15] Miten Jain, Ian T Fiddes, Karen H Miga, Hugh E Olsen, Benedict Paten, and
Mark Akeson: Improved data analysis for the MinION nanopore sequencer.
12(4), 2015.

[JHZ+92] T Jordan, I Hanson, D Zaletayev, S Hodgson, J Prosser, A Seawright, N
Hastie, and V van Heyningen: The human PAX6 gene is mutated in two
patients with aniridia. Nature genetics, 1(5):328–32, 1992, ISSN 1061-4036.
http://www.ncbi.nlm.nih.gov/pubmed/1302030.

[KA11] Felix Krueger and Simon R. Andrews: Bismark: A flexible aligner and methy-
lation caller for Bisulfite-Seq applications. Bioinformatics, 27(11):1571–1572,
2011, ISSN 13674803.

[KBL16] Pierre Kuonen, Mathias Bavay, and Michael Lehning: POP-C++ and
Alpine3D: Petition for a New HPC Approach. 2016.

[KCB14] Pierre Kuonen, Valentin Clément, and Frédéric Bapst: Securing the Grid using
Virtualization The ViSaG Model. (c):49–54, 2014.

[KDM+14] Sebastian Köhler, Sandra C. Doelken, Christopher J. Mungall, Sebastian
Bauer, Helen V. Firth, Isabelle Bailleul-Forestier, Graeme C M Black, Danielle
L. Brown, Michael Brudno, Jennifer Campbell, David R. Fitzpatrick, Janan
T. Eppig, Andrew P. Jackson, Kathleen Freson, Marta Girdea, Ingo Helbig,
Jane A. Hurst, Johanna Jähn, Laird G. Jackson, Anne M. Kelly, David H.
Ledbetter, Sahar Mansour, Christa L. Martin, Celia Moss, Andrew Mumford,
Willem H. Ouwehand, Soo Mi Park, Erin Rooney Riggs, Richard H. Scott,
Sanjay Sisodiya, Steven Van Vooren, Ronald J. Wapner, Andrew O M Wilkie,
Caroline F. Wright, Anneke T. Vulto-Van Silfhout, Nicole De Leeuw, Bert B A
De Vries, Nicole L. Washingthon, Cynthia L. Smith, Monte Westerfield, Paul
Schofield, Barbara J. Ruef, Georgios V. Gkoutos, Melissa Haendel, Damian
Smedley, Suzanna E. Lewis, and Peter N. Robinson: The Human Phenotype
Ontology project: Linking molecular biology and disease through phenotype
data. Nucleic Acids Research, 42(D1):966–974, 2014, ISSN 03051048.

[KFM+12] Augustine Kong, Michael L. Frigge, Gisli Masson, Soren Besenbacher, Patrick
Sulem, Gisli Magnusson, Sigurjon a. Gudjonsson, Asgeir Sigurdsson, Adalb-
jorg Aslaug Jonasdottir, Adalbjorg Aslaug Jonasdottir, Wendy S. W. Wong,
Gunnar Sigurdsson, G. Bragi Walters, Stacy Steinberg, Hannes Helgason,

180

http://dx.doi.org/10.1038/ncomms7275
http://www.sciencedirect.com/science/article/pii/S1740674905000466
http://www.sciencedirect.com/science/article/pii/S1740674905000466
http://www.ncbi.nlm.nih.gov/pubmed/1302030


Bibliography BIBLIOGRAPHY

Gudmar Thorleifsson, Daniel F. Gudbjartsson, Agnar Helgason, Olafur Th.
Magnusson, Unnur Thorsteinsdottir, and Kari Stefansson: Rate of de novo
mutations and the importance of father’s age to disease risk. Nature,
488(7412):471–475, 2012, ISSN 0028-0836. http://dx.doi.org/10.1038/
nature11396.

[KGGK94] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis: In-
troduction to Parallel Computing: Design and Analysis of Algorithms.
Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA, 1994,
ISBN 0-8053-3170-0.

[KHN09] Prateek Kumar, Steven Henikoff, and Pauline C Ng: Predicting the effects
of coding non-synonymous variants on protein function using the SIFT al-
gorithm. Nature protocols, 4(7):1073–81, jan 2009, ISSN 1750-2799. http:
//www.ncbi.nlm.nih.gov/pubmed/19561590.

[KKFA12] Felix Krueger, Benjamin Kreck, Andre Franke, and Simon R Andrews: DNA
methylome analysis using short bisulfite sequencing data. Bioinformat-
ics, 9(2):145–51, 2012, ISSN 1548-7105. http://www.ncbi.nlm.nih.gov/
pubmed/22290186.

[KPT+13] Daehwan Kim, Geo Pertea, Cole Trapnell, Harold Pimentel, Ryan Kelley, and
Steven L Salzberg: TopHat2: accurate alignment of transcriptomes in the pres-
ence of insertions, deletions and gene fusions. Genome biology, 14(4):R36, apr
2013, ISSN 1465-6914. http://www.ncbi.nlm.nih.gov/pubmed/23618408.

[KR12] Johannes Köster and Sven Rahmann: Snakemake-a scalable bioinformatics
workflow engine. Bioinformatics, 28(19):2520–2522, 2012, ISSN 13674803.

[KSA+10] Kazuhiko Komatsu, Katsuto Sato, Yusuke Arai, Kentaro Koyama,
Hiroyuki Takizawa, and Hiroaki Kobayashi: Evaluating Perfor-
mance and Portability of OpenCL Programs. Science And Technol-
ogy, 2:52, 2010. http://vecpar.fe.up.pt/2010/workshops-iWAPT/
Komatsu-Sato-Arai-Koyama-Takizawa-Kobayashi.pdf.

[KSF+02] W James Kent, Charles W Sugnet, Terrence S Furey, Krishna M Roskin, Tom
H Pringle, Alan M Zahler, and David Haussler: The Human Genome Browser
at UCSC The Human Genome Browser at UCSC. Genome Research, 12:996–
1006, 2002.

[KSK+16] Minoru Kanehisa, Yoko Sato, Masayuki Kawashima, Miho Furumichi, and
Mao Tanabe: KEGG as a reference resource for gene and protein annotation.
Nucleic Acids Research, 44(D1):D457–D462, 2016, ISSN 0305-1048. http:
//nar.oxfordjournals.org/lookup/doi/10.1093/nar/gkv1070.

[KWS+17] Meik Kunz, Beat Wolf, Harald Schulze, David Atlan, Thorsten Walles, Heike
Walles, and Thomas Dandekar: Non-coding rnas in lung cancer: Contribution
of bioinformatics analysis to the development of non-invasive diagnostic tools.
Genes, 8(1):8, 2017, ISSN 2073-4425. http://www.mdpi.com/2073-4425/8/
1/8.

181

http://dx.doi.org/10.1038/nature11396
http://dx.doi.org/10.1038/nature11396
http://www.ncbi.nlm.nih.gov/pubmed/19561590
http://www.ncbi.nlm.nih.gov/pubmed/19561590
http://www.ncbi.nlm.nih.gov/pubmed/22290186
http://www.ncbi.nlm.nih.gov/pubmed/22290186
http://www.ncbi.nlm.nih.gov/pubmed/23618408
http://vecpar.fe.up.pt/2010/workshops-iWAPT/Komatsu-Sato-Arai-Koyama-Takizawa-Kobayashi.pdf
http://vecpar.fe.up.pt/2010/workshops-iWAPT/Komatsu-Sato-Arai-Koyama-Takizawa-Kobayashi.pdf
http://nar.oxfordjournals.org/lookup/doi/10.1093/nar/gkv1070
http://nar.oxfordjournals.org/lookup/doi/10.1093/nar/gkv1070
http://www.mdpi.com/2073-4425/8/1/8
http://www.mdpi.com/2073-4425/8/1/8


Bibliography BIBLIOGRAPHY

[KWS+ss] Meik Kunz, Beat Wolf, Harald Schulze, David Atlan, Thorsten Walles, Heike
Walles, and Thomas Dandekar: Non-coding RNAs in lung cancer: Potential as
non-invasive diagnostic tools and bioinformatics analysis approaches. Genes,
in press.

[KZL+12] Daniel C. Koboldt, Qunyuan Zhang, David E. Larson, Dong Shen, Michael
D. McLellan, Ling Lin, Christopher A. Miller, Elaine R. Mardis, Li Ding, and
Richard K. Wilson: VarScan 2: Somatic mutation and copy number alteration
discovery in cancer by exome sequencing. Genome Research, 22(3):568–576,
2012.

[Lar15] Mirjam Larsen: Zur genetischen Heterogenität der Muskeldystrophien : al-
ternative genetische Ursachen der Myotonen Dystrophie und FSHD. PhD
thesis, 2015. https://opus.bibliothek.uni-wuerzburg.de/frontdoor/
index/index/docId/12343.

[LBA+15] Owen Lancaster, Tim Beck, David Atlan, Morris Swertz, Dhiwagaran
Thangavelu, Colin Veal, Raymond Dalgleish, and Anthony J. Brookes: Cafe
Variome: General-Purpose Software for Making Genotype-Phenotype Data
Discoverable in Restricted or Open Access Contexts. Human Mutation,
36(10):957–964, 2015, ISSN 10981004.

[LD09] Heng Li and Richard Durbin: Fast and accurate short read alignment with
Burrows–Wheeler transform. Bioinformatics (Oxford, England), 25(14):1754–
60, jul 2009, ISSN 1367-4811.

[Lek15] Monkol Lek: Analysis of protein-coding genetic variation in 60,706 humans.
pages 1–26, 2015, ISSN 1098-6596.

[LFH+01] Cecilia S. L. Lai, Simon E. Fisher, Jane A. Hurst, Faraneh Vargha-
Khadem, and Anthony P. Monaco: A forkhead-domain gene is mutated in
a severe speech and language disorder. Nature, 413(6855):519–523, 2001,
ISSN 0028-0836.

[LG11] Gerton Lunter and Martin Goodson: Stampy: A statistical algorithm for
sensitive and fast mapping of Illumina sequence reads. Genome Research,
21(6):936–939, 2011, ISSN 10889051.

[LGC+16] Yanzhu Lin, Kseniya Golovnina, Zhen Xia Chen, Hang Noh Lee, Yazmin L
Serrano Negron, Hina Sultana, Brian Oliver, and Susan T Harbison: Compar-
ison of normalization and differential expression analyses using RNA-Seq data
from 726 individual Drosophila melanogaster. BMC genomics, 17(1):28, 2016,
ISSN 1471-2164. http://bmcgenomics.biomedcentral.com/articles/10.
1186/s12864-015-2353-z.

[LH10] Heng Li and Nils Homer: A survey of sequence alignment algorithms for next-
generation sequencing. Briefings in bioinformatics, 11(5):473–83, sep 2010,
ISSN 1477-4054.

182

https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/12343
https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/12343
http://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-015-2353-z
http://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-015-2353-z


Bibliography BIBLIOGRAPHY

[LHA14] Michael I Love, Wolfgang Huber, and Simon Anders: Moderated estimation
of fold change and dispersion for RNA-Seq data with DESeq2 Moderated
estimation of fold change and dispersion for RNA-Seq data with DESeq2.
2014.

[LHO+15] T. Laver, J. Harrison, P.A. O’Neill, K. Moore, A. Farbos, K. Paszkiewicz,
and D.J. Studholme: Assessing the performance of the Oxford Nanopore
Technologies MinION. Biomolecular Detection and Quantification, 3:1–8,
2015, ISSN 22147535. http://linkinghub.elsevier.com/retrieve/pii/
S2214753515000224.

[LHW+09] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils
Homer, Gabor Marth, Goncalo Abecasis, and Richard Durbin: The Sequence
Alignment/Map format and SAMtools. Bioinformatics (Oxford, England),
25(16):2078–2079, aug 2009, ISSN 1367-4811.

[Li13] Heng Li: Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. arXiv preprint arXiv, 00(00):3, 2013, ISSN 2169-8287. http:
//arxiv.org/abs/1303.3997.

[LKS+16] Mirjam Larsen, Wolfram Kress, Benedikt Schoser, Ute Hehr, Clemens R
Müller, and Simone Rost: Identification of variants in MBNL1 in patients
with a myotonic dystrophy-like phenotype. Eur J Hum Genet, may 2016.
http://dx.doi.org/10.1038/ejhg.2016.41.

[LLB+01] E S Lander, L M Linton, B Birren, C Nusbaum, M C Zody, J Baldwin, K
Devon, K Dewar, and M Doyle: Initial sequencing and analysis of the human
genome. Nature, 409(6822):860–921, 2001, ISSN 0028-0836. http://www.
ncbi.nlm.nih.gov/pubmed/11237011.

[LLB+16] Melissa J Landrum, Jennifer M Lee, Mark Benson, Garth Brown, Chen
Chao, Shanmuga Chitipiralla, Baoshan Gu, Jennifer Hart, Douglas Hoffman,
Jeffrey Hoover, Wonhee Jang, Kenneth Katz, Michael Ovetsky, George Ri-
ley, Amanjeev Sethi, Ray Tully, Ricardo Villamarin-Salomon, Wendy Ru-
binstein, and Donna R Maglott: ClinVar: public archive of interpretations
of clinically relevant variants. Nucleic acids research, 44(D1):D862–8, 2016,
ISSN 1362-4962 (ELECTRONIC).

[LLKW08] Ruiqiang Li, Yingrui Li, Karsten Kristiansen, and Jun Wang: SOAP:
short oligonucleotide alignment program. Bioinformatics (Oxford, England),
24(5):713–4, mar 2008, ISSN 1367-4811. http://www.ncbi.nlm.nih.gov/
pubmed/18227114.

[LP83] Michalowsky Lesley A and Jones Peter A: Dna Methylation and Differentia-
tion. Environmental Health Perspectives, 80:189–197, 1983.

[LRE+15] Mirjam Larsen, Simone Rost, Nady El Hajj, Andreas Ferbert, Marcus De-
schauer, Maggie C Walter, Benedikt Schoser, Pawel Tacik, Wolfram Kress,
and Clemens R Müller: Diagnostic approach for FSHD revisited: SMCHD1
mutations cause FSHD2 and act as modifiers of disease severity in FSHD1.

183

http://linkinghub.elsevier.com/retrieve/pii/S2214753515000224
http://linkinghub.elsevier.com/retrieve/pii/S2214753515000224
http://arxiv.org/abs/1303.3997
http://arxiv.org/abs/1303.3997
http://dx.doi.org/10.1038/ejhg.2016.41
http://www.ncbi.nlm.nih.gov/pubmed/11237011
http://www.ncbi.nlm.nih.gov/pubmed/11237011
http://www.ncbi.nlm.nih.gov/pubmed/18227114
http://www.ncbi.nlm.nih.gov/pubmed/18227114


Bibliography BIBLIOGRAPHY

European Journal of Human Genetics, 23(6):808–816, 2015, ISSN 1018-4813.
http://www.nature.com/doifinder/10.1038/ejhg.2014.191.

[LS12a] Ben Langmead and Steven L Salzberg: Fast gapped-read alignment with
Bowtie 2. Nature methods, 9(4):357–9, apr 2012, ISSN 1548-7105. http:
//www.ncbi.nlm.nih.gov/pubmed/22388286.

[LS12b] Y. Liu and B. Schmidt: Long read alignment based on maxi-
mal exact match seeds. Bioinformatics, 28(18):i318–i324, sep 2012,
ISSN 1367-4803. http://bioinformatics.oxfordjournals.org/cgi/doi/
10.1093/bioinformatics/bts414.

[LS14] Yongchao Liu and Bertil Schmidt: CUSHAW2-GPU: Empowering faster
gapped short-read alignment using GPU computing. IEEE Design and Test,
31(1):31–39, 2014, ISSN 21682356.

[LSN+07] Samuel Levy, Granger Sutton, Pauline C. Ng, Lars Feuk, Aaron L. Halpern,
Brian P. Walenz, Nelson Axelrod, Jiaqi Huang, Ewen F. Kirkness, Gennady
Denisov, Yuan Lin, Jeffrey R. MacDonald, Andy Wing Chun Pang, Mary
Shago, Timothy B. Stockwell, Alexia Tsiamouri, Vineet Bafna, Vikas Bansal,
Saul A. Kravitz, Dana A. Busam, Karen Y. Beeson, Tina C. McIntosh, Karin
A. Remington, Josep F. Abril, John Gill, Jon Borman, Yu Hui Rogers, Mar-
vin E. Frazier, Stephen W. Scherer, Robert L. Strausberg, and J. Craig Ven-
ter: The diploid genome sequence of an individual human. PLoS Biology,
5(10):2113–2144, 2007, ISSN 15449173.

[LSSP09] Stefan M. Larson, Christopher D. Snow, Michael Shirts, and Vijay S. Pande:
Folding@Home and Genome@Home: Using distributed computing to tackle
previously intractable problems in computational biology. page 31, 2009.
http://arxiv.org/abs/0901.0866.

[LST+08] T. W. Lam, W. K. Sung, S. L. Tam, C. K. Wong, and S. M. Yiu: Compressed
indexing and local alignment of DNA. Bioinformatics, 24(6):791–797, 2008,
ISSN 1367-4803. http://bioinformatics.oxfordjournals.org/cgi/doi/
10.1093/bioinformatics/btn032.

[LTPS09] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg: Ultra-
fast and memory-efficient alignment of short DNA sequences to the human
genome. Genome biology, 10(3):R25, jan 2009, ISSN 1465-6914.

[Mar06] Elaine R Mardis: Anticipating the 1,000 dollar genome. Genome biology,
7:112, 2006, ISSN 1465-6914.

[Mar08] Elaine R. Mardis: Next-Generation DNA Sequencing Methods. Annual Re-
view of Genomics and Human Genetics, 9(1):387–402, 2008, ISSN 1527-8204.
http://www.annualreviews.org/doi/abs/10.1146/annurev.genom.9.
081307.164359.

[MHB+10] Aaron McKenna, Matthew Hanna, Eric Banks, Andrey Sivachenko, Kris-
tian Cibulskis, Andrew Kernytsky, Kiran Garimella, David Altshuler, Stacey
Gabriel, Mark Daly, and Mark A. DePristo: The genome analysis toolkit:

184

http://www.nature.com/doifinder/10.1038/ejhg.2014.191
http://www.ncbi.nlm.nih.gov/pubmed/22388286
http://www.ncbi.nlm.nih.gov/pubmed/22388286
http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/bts414
http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/bts414
http://arxiv.org/abs/0901.0866
http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/btn032
http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/btn032
http://www.annualreviews.org/doi/abs/10.1146/annurev.genom.9.081307.164359
http://www.annualreviews.org/doi/abs/10.1146/annurev.genom.9.081307.164359


Bibliography BIBLIOGRAPHY

A mapreduce framework for analyzing next-generation dna sequencing data.
Genome Research, 20(9):1297–1303, 2010.

[MKA14] Deepti Mittal, Damandeep Kaur, and Ashish Aggarwal: Secure Data Min-
ing in Cloud Using Homomorphic Encryption. 2014 IEEE International
Conference on Cloud Computing in Emerging Markets (CCEM), pages
1–7, 2014. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=7015496.

[MKPW16] Davide Mazzoleni, Pierre Kuonen, Benoit Perroud, and Beat Wolf: POP-DNA
II, Parallel Object Programming in a Hadoop environment. Technical report,
2016.

[MKW+13] Andrea Marcacci, Pierre Kuonen, Beat Wolf, David Atlan, and Pierre alain
Mettraux: Cloud computing pour l ’ analyse de séquences d ’ ADN humain.
Technical report, 2013.

[Mon14] Loic Monney: Sharing computing power through a network of friends. Tech-
nical Report August, 2014.

[MPR+10] William McLaren, Bethan Pritchard, Daniel Rios, Yuan Chen, Paul Flicek,
and Fiona Cunningham: Deriving the consequences of genomic variants with
the Ensembl API and SNP Effect Predictor. Bioinformatics, 26(16):2069–
2070, 2010, ISSN 13674803.

[MSB+13] Iain Milne, Gordon Stephen, Micha Bayer, Peter J A Cock, Leighton
Pritchard, Linda Cardle, Paul D. Shawand, and David Marshall: Using tablet
for visual exploration of second-generation sequencing data. Briefings in
Bioinformatics, 14(2):193–202, 2013, ISSN 14675463.

[MWM+08] A. Mortazavi, B. A. Williams, K. McCue, L. Schaeffer, and B. Wold: Map-
ping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods,
5(7):621–628, Jul 2008.

[MZÜ+16] Thomas Musacchio, Ann Kathrin Zaum, Nurcan Üçeyler, Claudia Sommer,
Nora Pfeifroth, Karlheinz Reiners, Erdmute Kunstmann, Jens Volkmann,
Simone Rost, and Stephan Klebe: Als and mmn mimics in patients with
bscl2 mutations: the expanding clinical spectrum of spg17 hereditary spas-
tic paraplegia. Journal of Neurology, pages 1–10, 2016, ISSN 1432-1459.
http://dx.doi.org/10.1007/s00415-016-8301-2.

[NBGS08] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron: Scalable paral-
lel programming with cuda. Queue, 6(2):40–53, March 2008, ISSN 1542-7730.
http://doi.acm.org/10.1145/1365490.1365500.

[NGU04] Tuan Anh NGUYEN: An object-oriented model for adaptive high-
performance computing on the computational grid. 3079, 2004.

[NHG+17] Adam M Novak, Glenn Hickey, Erik Garrison, Sean Blum, Abram Con-
nelly, Alexander Dilthey, Jordan Eizenga, M. A. Saleh Elmohamed, Sally
Guthrie, André Kahles, Stephen Keenan, Jerome Kelleher, Deniz Kural,

185

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7015496
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7015496
http://dx.doi.org/10.1007/s00415-016-8301-2
http://doi.acm.org/10.1145/1365490.1365500


Bibliography BIBLIOGRAPHY

Heng Li, Michael F Lin, Karen Miga, Nancy Ouyang, Goran Rakocevic, Ma-
ciek Smuga-Otto, Alexander Wait Zaranek, Richard Durbin, Gil McVean,
David Haussler, and Benedict Paten: Genome graphs. bioRxiv, 2017. http:
//biorxiv.org/content/early/2017/01/18/101378.

[NK02] T A Nguyen and Pierre Kuonen: A Model of Dynamic Parallel Objects for
Metacomputing. In The 2002 International Conference on Parallel and Dis-
tributed Processing Techniques and Applications, BIOCOMP’13, 2002.

[NK07] Tuan Anh Nguyen and Pierre Kuonen: Programming the grid with pop-c++.
Future Gener. Comput. Syst., 23(1):23–30, January 2007, ISSN 0167-739X.
http://dx.doi.org/10.1016/j.future.2006.04.012.

[NKC+16] Julie Zhouli Ni, Natallia Kalinava, Esteban Chen, Alex Huang, Thi Trinh,
and Sam Guoping Gu: A transgenerational role of the germline nuclear rnai
pathway in repressing heat stress-induced transcriptional activation in c. el-
egans. Epigenetics & Chromatin, 9(1):1–15, 2016. http://dx.doi.org/10.
1186/s13072-016-0052-x.

[NP16] Wolfram Kress Clemens R. Müller Simone Rost Natalie Pluta, Gitta Emmert:
Analysis of 37 / 65 muscle genes in 300 patients with neuromuscular diseases.
Poster presentation, 2016.

[NPR15] Marius Nicolae, Sudipta Pathak, and Sanguthevar Rajasekaran: LFQC: A
lossless compression algorithm for FASTQ files. Bioinformatics, 31(20):3276–
3281, 2015, ISSN 14602059.

[NW70] Saul B Needleman and Christian D Wunsch: A general method applicable
to the search for similarities in the amino acid sequence of two proteins.
Journal of Molecular Biology, 48(3):443–453, 1970, ISSN 0022-2836. http:
//www.sciencedirect.com/science/article/pii/0022283670900574.

[Oa04] Martin Odersky and al.: An Overview of the Scala Programming Language.
Technical Report IC/2004/64, EPFL, Lausanne, Switzerland, 2004.

[OB13] C. S. Oehmen and D. J. Baxter: ScalaBLAST 2.0: Rapid and robust BLAST
calculations on multiprocessor systems. Bioinformatics, pages 1–2, jan 2013,
ISSN 1367-4803. http://bioinformatics.oxfordjournals.org/cgi/doi/
10.1093/bioinformatics/btt013.

[OWB+16] Nuala A O’Leary, Mathew W Wright, J Rodney Brister, Stacy Ciufo, Diana
Haddad, Rich McVeigh, Bhanu Rajput, Barbara Robbertse, Brian Smith-
White, Danso Ako-Adjei, Alexander Astashyn, Azat Badretdin, Yiming Bao,
Olga Blinkova, Vyacheslav Brover, Vyacheslav Chetvernin, Jinna Choi, Eric
Cox, Olga Ermolaeva, Catherine M Farrell, Tamara Goldfarb, Tripti Gupta,
Daniel Haft, Eneida Hatcher, Wratko Hlavina, Vinita S Joardar, Vamsi K
Kodali, Wenjun Li, Donna Maglott, Patrick Masterson, Kelly M McGarvey,
Michael R Murphy, Kathleen O’Neill, Shashikant Pujar, Sanjida H Rangwala,
Daniel Rausch, Lillian D Riddick, Conrad Schoch, Andrei Shkeda, Susan S
Storz, Hanzhen Sun, Francoise Thibaud-Nissen, Igor Tolstoy, Raymond E

186

http://biorxiv.org/content/early/2017/01/18/101378
http://biorxiv.org/content/early/2017/01/18/101378
http://dx.doi.org/10.1016/j.future.2006.04.012
http://dx.doi.org/10.1186/s13072-016-0052-x
http://dx.doi.org/10.1186/s13072-016-0052-x
http://www.sciencedirect.com/science/article/pii/0022283670900574
http://www.sciencedirect.com/science/article/pii/0022283670900574
http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/btt013
http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/btt013


Bibliography BIBLIOGRAPHY

Tully, Anjana R Vatsan, Craig Wallin, David Webb, Wendy Wu, Melissa
J Landrum, Avi Kimchi, Tatiana Tatusova, Michael DiCuccio, Paul Kitts,
Terence D Murphy, and Kim D Pruitt: Reference sequence (RefSeq) database
at NCBI: current status, taxonomic expansion, and functional annotation.
Nucleic Acids Research, 44(D1):D733–D745, 2016, ISSN 0305-1048. http:
//nar.oxfordjournals.org/lookup/doi/10.1093/nar/gkv1189.

[PMK14] Rob Patro, Stephen M Mount, and Carl Kingsford: Sailfish enables alignment-
free isoform quantification from RNA-seq reads using lightweight algorithms.
Nature biotechnology, 32(5):462–464, 2014, ISSN 1546-1696. http://www.
ncbi.nlm.nih.gov/pubmed/24752080.

[PP13] Armando J Pinho and Diogo Pratas: MFCompress: a compression tool for
FASTA and multi-FASTA data. Bioinformatics (Oxford, England), pages
1–2, nov 2013, ISSN 1367-4811. http://www.ncbi.nlm.nih.gov/pubmed/
24132931.

[PPK+07] Ruth Pordes, Don Petravick, Bill Kramer, Doug Olson, Miron Livny, Alain
Roy, Paul Avery, Kent Blackburn, Torre Wenaus, Frank Würthwein, Ian Fos-
ter, Rob Gardner, Mike Wilde, Alan Blatecky, John McGee, and Rob Quick:
The open science grid. Journal of Physics: Conference Series, 78:012057, 2007,
ISSN 1742-6588.

[PTW01] P a Pevzner, H Tang, and M S Waterman: An Eulerian path approach to
DNA fragment assembly. Proceedings of the National Academy of Sciences of
the United States of America, 98(17):9748–9753, 2001, ISSN 00278424.

[PWZM97] William R Pearson, Todd Wood, Zheng Zhang, and Webb Miller: Comparison
of DNA sequences with protein sequences. Genomics, 46(1):24–36., 1997,
ISSN 0888-7543.

[QH10] Aaron R. Quinlan and Ira M. Hall: BEDTools: A flexible suite of utilities for
comparing genomic features. Bioinformatics, 26(6):841–842, 2010.

[R D08] R Development Core Team: R: A language and environment for statis-
tical computing. Technical report, Vienna, Austria, 2008. http://www.
R-project.org, ISBN 3-900051-07-0.

[RA15] Anthony Rhoads and Kin Fai Au: PacBio Sequencing and Its Applica-
tions. Genomics, Proteomics and Bioinformatics, 13(5):278–289, 2015,
ISSN 22103244. http://dx.doi.org/10.1016/j.gpb.2015.08.002.

[RAB+15] Sue Richards, Nazneen Aziz, Sherri Bale, David Bick, Soma Das, Julie Gastier-
Foster, Wayne W. Grody, Madhuri Hegde, Elaine Lyon, Elaine Spector, Karl
Voelkerding, and Heidi L. Rehm: Standards and guidelines for the interpreta-
tion of sequence variants: a joint consensus recommendation of the American
College of Medical Genetics and Genomics and the Association for Molecu-
lar Pathology. Genetics in Medicine, 17(5):405–423, 2015, ISSN 1098-3600.
http://dx.doi.org/10.1038/gim.2015.30.

187

http://nar.oxfordjournals.org/lookup/doi/10.1093/nar/gkv1189
http://nar.oxfordjournals.org/lookup/doi/10.1093/nar/gkv1189
http://www.ncbi.nlm.nih.gov/pubmed/24752080
http://www.ncbi.nlm.nih.gov/pubmed/24752080
http://www.ncbi.nlm.nih.gov/pubmed/24132931
http://www.ncbi.nlm.nih.gov/pubmed/24132931
http://www.R-project.org
http://www.R-project.org
http://dx.doi.org/10.1016/j.gpb.2015.08.002
http://dx.doi.org/10.1038/gim.2015.30


Bibliography BIBLIOGRAPHY

[RBN+14] Simone Rost, Elisa Bach, Cordula Neuner, Indrajit Nanda, Sandra Dysek,
Reginald E Bittner, Alexander Keller, Oliver Bartsch, Robert Mlynski,
Thomas Haaf, Clemens R Müller, and Erdmute Kunstmann: Novel form of
X-linked nonsyndromic hearing loss with cochlear malformation caused by a
mutation in the type IV collagen gene COL4A6. European Journal of Human
Genetics, 22(2):208–215, 2014, ISSN 1018-4813. http://www.nature.com/
doifinder/10.1038/ejhg.2013.108.

[RKO+14] Peter N Robinson, Sebastian Köhler, Anika Oellrich, Sanger Mouse Genetics
Project, Kai Wang, Christopher J Mungall, Suzanna E Lewis, Nicole Wash-
ington, Sebastian Bauer, Dominik Seelow, Peter Krawitz, Christian Gilissen,
Melissa Haendel, and Damian Smedley: Improved exome prioritization of dis-
ease genes through cross-species phenotype comparison. Genome research,
24(2):340–348, 2014, ISSN 1088-9051. http://europepmc.org/articles/
PMC3912424.

[RPW+12] Andreas Ruppen, Jacques Pasquier, Jean Frédéric Wagen, Beat Wolf, and
Raphael Guye: A WoT approach to eHealth: case study of a hospital labora-
tory alert escalation system. Proceedings of the Third International Workshop
on the Web of Things, page 6, 2012.

[RTC+14] Thomas Rolland, Murat Taşan, Benoit Charloteaux, Samuel J. Pevzner, Quan
Zhong, Nidhi Sahni, Song Yi, Irma Lemmens, Celia Fontanillo, Roberto
Mosca, Atanas Kamburov, Susan D. Ghiassian, Xinping Yang, Lila Gham-
sari, Dawit Balcha, Bridget E. Begg, Pascal Braun, Marc Brehme, Martin
P. Broly, Anne Ruxandra Carvunis, Dan Convery-Zupan, Roser Corominas,
Jasmin Coulombe-Huntington, Elizabeth Dann, Matija Dreze, Amélie Dricot,
Changyu Fan, Eric Franzosa, Fana Gebreab, Bryan J. Gutierrez, Madeleine F.
Hardy, Mike Jin, Shuli Kang, Ruth Kiros, Guan Ning Lin, Katja Luck, Andrew
Macwilliams, Jörg Menche, Ryan R. Murray, Alexandre Palagi, Matthew M.
Poulin, Xavier Rambout, John Rasla, Patrick Reichert, Viviana Romero, Elien
Ruyssinck, Julie M. Sahalie, Annemarie Scholz, Akash A. Shah, Amitabh
Sharma, Yun Shen, Kerstin Spirohn, Stanley Tam, Alexander O. Tejeda,
Shelly A. Trigg, Jean Claude Twizere, Kerwin Vega, Jennifer Walsh, Michael
E. Cusick, Yu Xia, Albert László Barabási, Lilia M. Iakoucheva, Patrick Aloy,
Javier De Las Rivas, Jan Tavernier, Michael A. Calderwood, David E. Hill,
Tong Hao, Frederick P. Roth, and Marc Vidal: A proteome-scale map of the
human interactome network. Cell, 159(5):1212–1226, 2014, ISSN 10974172.

[RZ14] Xavier Rogé and Xuegong Zhang: RNAseqViewer: Visualization tool for RNA-
Seq data. Bioinformatics, 30(6):891–892, 2014, ISSN 13674803.

[SB14] Markus D Siegelin and Alain C Borczuk: Epidermal growth factor receptor
mutations in lung adenocarcinoma. Laboratory investigation; a journal of
technical methods and pathology, 94(2):129–37, 2014, ISSN 1530-0307. http:
//www.ncbi.nlm.nih.gov/pubmed/24378644.

[SBR+14] Joachim Schessl, Elisa Bach, Simone Rost, Sarah Feldkirchner, Christiana
Kubny, Stefan Müller, Franz Georg Hanisch, Wolfram Kress, and Benedikt

188

http://www.nature.com/doifinder/10.1038/ejhg.2013.108
http://www.nature.com/doifinder/10.1038/ejhg.2013.108
http://europepmc.org/articles/PMC3912424
http://europepmc.org/articles/PMC3912424
http://www.ncbi.nlm.nih.gov/pubmed/24378644
http://www.ncbi.nlm.nih.gov/pubmed/24378644


Bibliography BIBLIOGRAPHY

Schoser: Novel recessive myotilin mutation causes severe myofibrillar myopa-
thy. Neurogenetics, 15(3):151–6, 2014, ISSN 1364-6753. http://www.ncbi.
nlm.nih.gov/pubmed/24928145.

[Sch09a] Michael C Schatz: CloudBurst: highly sensitive read mapping with
MapReduce. Bioinformatics (Oxford, England), 25(11):1363–9, jun 2009,
ISSN 1367-4811.

[SCH+09b] Andrew D. Smith, Wen Yu Chung, Emily Hodges, Jude Kendall, Greg Han-
non, James Hicks, Zhenyu Xuan, and Michael Q. Zhang: Updates to the
RMAP short-read mapping software. Bioinformatics, 25(21):2841–2842, 2009,
ISSN 13674803.

[SD13] C Soneson and M Delorenzi: A comparison of methods for differ-
ential expression analysis of RNA-seq data. BMC Bioinformatics,
14:91, 2013, ISSN BMC BIOINFORMATICS. http://www.ncbi.nlm.
nih.gov/entrez/query.fcgi?cmd=Retrieve{&}db=PubMed{&}dopt=
Citation{&}list{_}uids=23497356.

[SGS10] John E. Stone, David Gohara, and Guochun Shi: Opencl: A parallel pro-
gramming standard for heterogeneous computing systems. IEEE Des. Test,
12(3):66–73, May 2010, ISSN 0740-7475. http://dx.doi.org/10.1109/
MCSE.2010.69.

[Sis16] Mario Sisto: VisuDNA. Technical report, 2016.

[SMW+02] J. P. Schouten, C. J. McElgunn, R. Waaijer, D. Zwijnenburg, F. Diepvens,
and G. Pals: Relative quantification of 40 nucleic acid sequences by multiplex
ligation-dependent probe amplification. Nucleic Acids Res., 30(12):e57, Jun
2002.

[SNY13] Shuying Sun, Aaron Noviski, and Xiaoqing Yu: MethyQA: a
pipeline for bisulfite-treated methylation sequencing quality as-
sessment. BMC bioinformatics, 14(1):259, 2013, ISSN 1471-2105.
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=
3765750{&}tool=pmcentrez{&}rendertype=abstract.

[SR96] S. Schiaffino and C. Reggiani: Molecular diversity of myofibrillar proteins:
gene regulation and functional significance. Physiological Reviews, 76(2):371–
423, 1996, ISSN 0031-9333. http://physrev.physiology.org/content/76/
2/371.

[Sri10] Sriram Srinivasan: Kilim: A server framework with lightweight actors, iso-
lation types and zero-copy messaging. Technical Report UCAM-CL-TR-
769, University of Cambridge, Computer Laboratory, February 2010. http:
//www.cl.cam.ac.uk/techreports/UCAM-CL-TR-769.pdf.

[SSB+14] Anna Lena Semmler, Sabrina Sacconi, J Bach, Claus Liebe, Jan Bürmann,
Rudolf a Kley, Andreas Ferbert, Roland Anderheiden, Peter Van den Bergh,
Jean Jacques Martin, Peter De Jonghe, Eva Neuen-Jacob, Oliver Müller, Mar-
cus Deschauer, Markus Bergmann, J Schröder, Matthias Vorgerd, Jörg B

189

http://www.ncbi.nlm.nih.gov/pubmed/24928145
http://www.ncbi.nlm.nih.gov/pubmed/24928145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve{&}db=PubMed{&}dopt=Citation{&}list{_}uids=23497356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve{&}db=PubMed{&}dopt=Citation{&}list{_}uids=23497356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve{&}db=PubMed{&}dopt=Citation{&}list{_}uids=23497356
http://dx.doi.org/10.1109/MCSE.2010.69
http://dx.doi.org/10.1109/MCSE.2010.69
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3765750{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3765750{&}tool=pmcentrez{&}rendertype=abstract
http://physrev.physiology.org/content/76/2/371
http://physrev.physiology.org/content/76/2/371
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-769.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-769.pdf


Bibliography BIBLIOGRAPHY

Schulz, Joachim Weis, Wolfram Kress, and Kristl G Claeys: Unusual mul-
tisystemic involvement and a novel BAG3 mutation revealed by NGS screen-
ing in a large cohort of myofibrillar myopathies. Orphanet journal of rare
diseases, 9(1):121, 2014, ISSN 1750-1172. http://www.ncbi.nlm.nih.gov/
pubmed/25208129.

[SW81] T.F. Smith; and M S Waterman: Identification of Common Molecular Subse-
quences. J. Mol. Biol., 147:195–197, 1981, ISSN 00222836.

[SWK+01] S T Sherry, M H Ward, M Kholodov, J Baker, L Phan, E M Smigielski, and
K Sirotkin: dbSNP: the NCBI database of genetic variation. Nucleic acids
research, 29(1):308–11, 2001, ISSN 1362-4962.

[TBS+06] Mike Tyers, Ashton Breitkreutz, Chris Stark, Teresa Reguly, Lorrie Boucher,
and Bobby Joe Breitkreutz: BioGRID: a general repository for interaction
datasets. Nucl. Acids Res., 34(suppl_1):D535–539, 2006, ISSN 1362-4962.

[Tin15] Comp U Ting: Cloud cover protects gene data. Nature, 519:400–401, 2015,
ISSN 1476-4687.

[TRGP12] C Trapnell, A Roberts, L Goff, and G Pertea: Differential gene and tran-
script expression analysis of RNA-seq experiments with TopHat and Cuf-
flinks. Nature protocols, 7(3):562–578, 2012. http://www.nature.com/
nprot/journal/v7/n3/abs/nprot.2012.016.html.

[TRM13] Helga Thorvaldsdóttir, James T Robinson, and Jill P Mesirov: Integra-
tive Genomics Viewer (IGV): high-performance genomics data visualiza-
tion and exploration. Briefings in bioinformatics, 14(2):178–92, mar 2013,
ISSN 1477-4054.

[TS06] Andrew S. Tanenbaum and Maarten van Steen: Distributed Systems: Princi-
ples and Paradigms (2Nd Edition). Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 2006, ISBN 0132392275.

[Var13] Carlos A. Varela: Programming Distributed Computing Systems: A Founda-
tional Approach. The MIT Press, 2013, ISBN 0262018985, 9780262018982.

[VB12] Joris a Veltman and Han G Brunner: De novo mutations in human genetic
disease. Nature reviews. Genetics, 13(8):565–75, 2012, ISSN 1471-0064. http:
//www.ncbi.nlm.nih.gov/pubmed/22805709.

[VJC+13] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez,
Christian Tenllado, and Francky Catthoor: Polyhedral parallel code genera-
tion for cuda. ACM Trans. Archit. Code Optim., 9(4):54:1–54:23, January
2013, ISSN 1544-3566.

[WANW14] Charles D Warden, Aaron W Adamson, Susan L Neuhausen, and Xiwei Wu:
Detailed comparison of two popular variant calling packages for exome and
targeted exon studies. PeerJ, 2:e600, 2014, ISSN 2167-8359. http://dx.doi.
org/10.7717/peerj.600.

190

http://www.ncbi.nlm.nih.gov/pubmed/25208129
http://www.ncbi.nlm.nih.gov/pubmed/25208129
http://www.nature.com/nprot/journal/v7/n3/abs/nprot.2012.016.html
http://www.nature.com/nprot/journal/v7/n3/abs/nprot.2012.016.html
http://www.ncbi.nlm.nih.gov/pubmed/22805709
http://www.ncbi.nlm.nih.gov/pubmed/22805709
http://dx.doi.org/10.7717/peerj.600
http://dx.doi.org/10.7717/peerj.600


Bibliography BIBLIOGRAPHY

[Whi12] Tom White: Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2012,
ISBN 1449311520, 9781449311520.

[WK13a] Beat Wolf and Pierre Kuonen: A novel approach for heuristic pairwise DNA
sequence alignment. In Proceedings of the 2013 International Conference on
Bioinformatics & Computational Biology, BIOCOMP’13, 2013.

[WK13b] Beat Wolf and Pierre Kuonen: Distributed programming using POP-Java. In
Doctoral Workshop on Distributed Systems, pages 1–3, 2013.

[WKD14a] Beat Wolf, Pierre Kuonen, and Thomas Dandekar: Everybodys uniqueness.
Poster presentation, 2014.

[WKD14b] Beat Wolf, Pierre Kuonen, and Thomas Dandekar: Gensearchngs-viewer: A
complete ngs data visualization experience. Poster presentation, 2014.

[WKD14c] Beat Wolf, Pierre Kuonen, and Thomas Dandekar: POP-Java: Parall{é}lisme
et distribution orient{é} objet. In Etienne Riviere Arnaud Tisserand Pascal
Felber Laurent Philippe (editor): ComPAS 2014 : conférence en parallélisme,
architecture et systèmes, Neuch{â}tel, Suisse, apr 2014. http://hal.inria.
fr/hal-00988568.

[WKD14d] Beat Wolf, Pierre Kuonen, and Thomas Dandekar: Towards integrative family
analysis on omics data for individual patient diagnostics. Poster presentation,
2014.

[WKD+14e] Beat Wolf, Pierre Kuonen, Thomas Dandekar, Haute École, and Spécialisée
De Suisse: Comment reproduire les résultats de l ’ article : POP-Java : Paral-
lélisme et distribution orienté objet. In Realis 2014 : Reproductibilité expéri-
mentale pour l’informatique en parallélisme, architecture et système – 2éme
édition, 2014.

[WKD15] Beat Wolf, Pierre Kuonen, and Thomas Dandekar: Gnaty: A tools library for
faster variant calling and coverage analysis. Poster presentation, 2015.

[WKD16a] Beat Wolf, Pierre Kuonen, and Thomas Dandekar: Bioinformatics and
Biomedical Engineering: 4th International Conference, IWBBIO 2016,
Granada, Spain, April 20-22, 2016, Proceedings, chapter GNATY: Optimized
NGS Variant Calling and Coverage Analysis, pages 446–454. Springer Inter-
national Publishing, Cham, 2016, ISBN 978-3-319-31744-1. http://dx.doi.
org/10.1007/978-3-319-31744-1_40.

[WKD16b] Beat Wolf, Pierre Kuonen, and Thomas Dandekar: Building blocks. Poster
presentation, 2016.

[WKD16c] Beat Wolf, Pierre Kuonen, and Thomas Dandekar: Gensearchngs : Integrating
omics analysis and visualization. Poster presentation, 2016.

[WKDA15a] Beat Wolf, Pierre Kuonen, Thomas Dandekar, and David Atlan: DNAseq
Workflow in a Diagnostic Context and an Example of a User Friendly
Implementation. BioMed research international, 2015:403497, 2015,
ISSN 2314-6141.

191

http://hal.inria.fr/hal-00988568
http://hal.inria.fr/hal-00988568
http://dx.doi.org/10.1007/978-3-319-31744-1_40
http://dx.doi.org/10.1007/978-3-319-31744-1_40


Bibliography BIBLIOGRAPHY

[WKDA15b] Beat Wolf, Pierre Kuonen, Thomas Dandekar, and David Atlan: Gensearch-
ngs: Interactive variant analysis. Poster presentation, 2015.

[WLH10] Kai Wang, Mingyao Li, and Hakon Hakonarson: ANNOVAR: functional an-
notation of genetic variants from high-throughput sequencing data. Nucleic
acids research, 38(16):e164, 2010, ISSN 13624962.

[WMK15] Beat Wolf, Loïc Money, and Pierre Kuonen: FriendComputing : Organic ap-
plication centric distributed computing. In Nesus 2015, volume I, pages 1–3,
2015.

[Wol11] Beat Wolf: Analysis and visualization of DNA sequences using cloud com-
puting. Master’s thesis, University of Applied Sciences Western Switzerland,
2011.

[XL09] Yuanxin Xi and Wei Li: BSMAP: whole genome bisulfite sequence MAPping
program. BMC bioinformatics, 10:232, 2009, ISSN 1471-2105.

[YAA+16] Andrew Yates, Wasiu Akanni, M. Ridwan Amode, Daniel Barrell, Konstanti-
nos Billis, Denise Carvalho-Silva, Carla Cummins, Peter Clapham, Stephen
Fitzgerald, Laurent Gil, Carlos García Girón, Leo Gordon, Thibaut Hourlier,
Sarah E. Hunt, Sophie H. Janacek, Nathan Johnson, Thomas Juettemann,
Stephen Keenan, Ilias Lavidas, Fergal J. Martin, Thomas Maurel, William
McLaren, Daniel N. Murphy, Rishi Nag, Michael Nuhn, Anne Parker, Ma-
teus Patricio, Miguel Pignatelli, Matthew Rahtz, Harpreet Singh Riat, Daniel
Sheppard, Kieron Taylor, Anja Thormann, Alessandro Vullo, Steven P.
Wilder, Amonida Zadissa, Ewan Birney, Jennifer Harrow, Matthieu Muffato,
Emily Perry, Magali Ruffier, Giulietta Spudich, Stephen J. Trevanion, Fiona
Cunningham, Bronwen L. Aken, Daniel R. Zerbino, and Paul Flicek: Ensembl
2016. Nucleic acids research, 44(D1):D710–D716, 2016, ISSN 1362-4962.
http://nar.oxfordjournals.org/lookup/doi/10.1093/nar/gkv1157.

[YMR+13] Yaping Yang, Donna M Muzny, Jeffrey G Reid, Matthew N Bainbridge, Ale-
cia Willis, Patricia a Ward, Alicia Braxton, Joke Beuten, Fan Xia, Zhiyv Niu,
Matthew Hardison, Richard Person, Mir Reza Bekheirnia, Magalie S Leduc,
Amelia Kirby, Peter Pham, Jennifer Scull, Min Wang, Yan Ding, Sharon
E Plon, James R Lupski, Arthur L Beaudet, Richard a Gibbs, and Chris-
tine M Eng: Clinical whole-exome sequencing for the diagnosis of mendelian
disorders. The New England journal of medicine, 369(16):1502–11, 2013,
ISSN 1533-4406. http://www.ncbi.nlm.nih.gov/pubmed/24088041.

[YWSO10] Matthew D Young, Matthew J Wakefield, Gordon K Smyth, and Alicia
Oshlack: Gene ontology analysis for RNA-seq: accounting for selection bias.
Genome biology, 11(2):R14, 2010, ISSN 1465-6906.

[ZFW+03] Barry R Zeeberg, Weimin Feng, Geoffrey Wang, May D Wang, Anthony T
Fojo, Margot Sunshine, Sudarshan Narasimhan, David W Kane, William C
Reinhold, Samir Lababidi, Kimberly J Bussey, Joseph Riss, J Carl Barrett,
and John N Weinstein: GoMiner: a resource for biological interpretation of ge-
nomic and proteomic data. Genome biology, 4(4):R28, 2003, ISSN 1474-760X.

192

http://nar.oxfordjournals.org/lookup/doi/10.1093/nar/gkv1157
http://www.ncbi.nlm.nih.gov/pubmed/24088041


Bibliography BIBLIOGRAPHY

[ZLL+11] Yan Zhang, Hongbo Liu, Jie Lv, Xue Xiao, Jiang Zhu, Xiaojuan Liu,
Jianzhong Su, Xia Li, Qiong Wu, Fang Wang, and Ying Cui: QDMR: A
quantitative method for identification of differentially methylated regions by
entropy. Nucleic Acids Research, 39(9), 2011, ISSN 03051048.

[ZLR14] Xiaobei Zhou, Helen Lindsay, and Mark D. Robinson: Robustly detecting
differential expression in RNA sequencing data using observation weights.
Nucleic Acids Research, 42(11), 2014, ISSN 13624962.

[ZLY+15] Yongpeng Zhang, Linsen Li, Yanli Yang, Xiao Yang, Shan He, and Zexuan
Zhu: Light-weight reference-based compression of FASTQ data. BMC bioin-
formatics, 16(1):188, 2015, ISSN 1471-2105.

[ZS10] Arie Zackay and Christine Steinhoff: MethVisual - visualization and ex-
ploratory statistical analysis of DNA methylation profiles from bisulfite se-
quencing. BMC research notes, 3(1):337, 2010, ISSN 1756-0500.

[ZWW+13] Min Zhao, Qingguo Wang, Quan Wang, Peilin Jia, and Zhong-
ming Zhao: art%3A10.1186%2F1471-2105-14-S11-S1. 14(Suppl 11), 2013,
ISSN 1471-2105.

193



Appendices

194



A. Artistic data visualization
This chapter presents artistic approaches to visualize genetic data which were created over
the course of this thesis. Science is constantly seeking for answers to push the boundaries
of human knowledge. To do this, science requires people interested in the subject and also
public support for the science being done. An excellent to do this is art, as it can attract
the interest of people normally not interested in a particular subject.
Over the course of this thesis the opportunity presented itself multiple times at the VIZBI

conference (Visualizing Biological Data) to create an artistic visualization of genetic data.
With one of the central points of the thesis being to lower the complexity of OMICs analysis
this opportunity was fit perfectly into the theme.
And indeed, the two posters created for the VIZBI conference, Everybody’s uniqueness

[WKD14a] as well as Building blocks [WKD16b], were the works created during this thesis
that generated most feedback and discussion. As the VIZBI conference format did not allow
for a more indepth explanation of the submitted art, the rest of this chapter takes a closer
look at those two posters.

A.0.1. Variant visualization
The human DNA is made out of 3 billion basepairs, organized in 23 chromosomes (not
counting the mitochondrial DNA). Any two individuals differ on average in one out of
1000 bases, which amount to 3 million differences between any two people. Those are big,
abstract numbers and not intuitive to understand. This is why the possibility was explored
to represent this information in a more accessible way, without the pretension to be a useful
tool in diagnostics.
The core concept of the idea was to create an artistic picture which is unique for every

individual. It should also allow any individual, even without deep understanding of genetics,
to learn something. This should be true in particular when comparing the picture of multiple
individuals.
The idea to represent the genome of an individual as the sum of its variants came quite

early in the process. Using the variants of an individual has the advantage of being a stable
source of information and in theory no dependent on how the information was acquired. If
an individual is sequenced multiple times during its lifetime using different technologies, it
should, considering no sequencing artifacts, always result in the same set of variants.
Initially several ideas were explored, but representing the individual variant as a col-

ored dot on the picture seemed to be the most promising approach. A variant has several
properties, some describing the actual change in the genome, and some the functional con-
sequences of said change. Base on the idea that a variant can be represented as a point on
a picture, the question was which properties of the variant determine which property of the
point.
A point can have several properties and for this project the following have been chosen:

• The x/y coordinates on the picture

195



A. Artistic data visualization A. ARTISTIC DATA VISUALIZATION

• The radius which determines the size

• The color, which includes the alpha channel used for transparency

After initial trials, the position of the variant on the genome was chosen as the source of
the x/y coordinates. The initial problem to solve was the layout of the picture. The first
test used the genomic position of every variant as the seed for a random number generator.
Every variant received a random, but reproducible position on the picture (meaning, two
individuals with the same variant have a point at the same location). The change of the
variant, for example A>G, determined the color of the point. This initial test did indeed
produce unique pictures for every individual. But it was neither aesthetically pleasing to
look at nor was it possible to get a better understanding of genetics out of it.
The second idea was to base the picture on a popular movie, “The Matrix”. With DNA

being the source code of all life, it seemed rather fitting to use the emblematic picture used
during the movie to represent the code of the matrix. But there were a couple of problems
with that approach. The idea was to separate the variants, based on which chromosome
they come from, into separate groups drawn as vertical strips on the picture. Probably
the biggest issue is that not all chromosomes have the same size and thus also a different
amount of variants. This lead to a unbalanced picture which did not satisfy the criteria of
being visually pleasing to look at.
While this particular layout was not successful, the idea of separating the variants based

on their chromosomes was kept. The following idea, which turned out to be the one that
worked best, was to position the variants on a more complex geometric shape than a line,
the circle. The idea was to position all variants on circles, one circle for every chromosome,
and the position on the circle would be determined by the position of the variant on the
chromosome. This layout did indeed stay in the final version, of which a modified version
can be found in figure A.1. The standard circle equation was used to position the variants
where x = cos(p) ∗ r and y = sin(p) ∗ r. p is defined as p = (Vp ∗ 2π)/Cl where Vp is
the position of the variant on the chromosome and Cl the length of the chromosome. r is
defined as r = l ∗ Vc where Vc is the chromosome number of the variant and l is defined as
l = R/23 with R being the radius of the biggest circle.
The other question to solve was on how to color the individual points on the picture.

Basing the color, as it was done initially, on the genomic change was one way to do it.
But as the changes in the genome are more or less random, the colors used throughout
the picture did not show any meaningful structure. By using not the genomic change, but
the predicted consequence of the variant (one of the major annotations used during variant
analysis), the structure of the genome and its changes became more apparent. In figure A.1
variants on splice sites are marked in red, stop codon additions or removals are orange and
frameshifts are black. The other types of variants have various colors attributed to them,
with blue being used for intragenetic variants. The size of the individual points is linked to
the severeness of the prediction, with splice size variants being the biggest and intragenetic
variants the smallest.
This coloring scheme immediately allows to appreciate the structure of the genome and

its changes. The picture created for figure A.1 as well as the original poster is based on the
variants found in the individual NA12882, from the Illumina Platinum trio. The data was
aligned against the human reference version HG19. The variants are drawn in a counter
clock wise based on the position of chromosome.

196



A. Artistic data visualization A. ARTISTIC DATA VISUALIZATION

Fig. A.1.: Variant of the original poster [WKD14a], with a white background.

One of the first things that can be noticed are the large amount of blue points. This
shows two things: The amount of variants which are outside of genes and also the amount
of variants that fall into the least understood portions of the genome. The white stretches
in the circles can also be easily seen. They show the parts of the human reference genome
for which, at the moment of the creation of the HG19 reference genome, no information was
known. NA12882 is a healthy individual, yet a surprising amount of potentially bad variants
can be seen (red, orange and black). Those maybe benign observations for a geneticist can
help people from outside the field to understand more about what DNA is and what makes
everybody unique.
When combining the pictures created from multiple related people, other interesting

observations can be made. While for space reasons only one example of such a picture
is shown in this thesis, one can easily imagine the observations that can be made when
looking at a trio of individuals (mother, father and child). Just by looking at the 3 images

197



A. Artistic data visualization A. ARTISTIC DATA VISUALIZATION

it is possible to determine who the males and females are (because of the missing variants
on the Y chromosome for females). By closer inspection it can then also be deduced who
the parents are and who the child. One example is the mitochondrial DNA which is always
inherited from the mother. If the child is male, it is easy to differentiate between the father
and the son, just by comparing the variants on the mitochondrial DNA (at the center of
the picture) with the mother. The picture that has the same variants as the mother is the
child.
Those examples are just a few of the things that can be discovered when looking closely

at those pictures. While those pictures are not intended to be perfectly accurate or a tool for
serious scientific studies, they nonetheless render science and genetics more approachable
for the general public. Being able to create a personalized work of art that is unique for
every person was a highly rewarding and interesting experience. To facilitate the usage of
this tool, it has been integrated into GensearchNGS to easily create an image of this type
from any analysis that is done with the software.

A.0.2. Building blocks
The human genome consists of about 25’000 genes. All those genes collaborate in a com-
plicated manner and specialize in a particular task. But what exactly a gene is and how
it influences our body is hard to understand and it remains a very abstract notion for
many. The poster Building blocks [WKD16b] is an attempt to make genes a little bit more
approachable by giving them a “face”.
The underlying idea of the poster is to show how different genes are responsible for

different organs in the body. The idea is also to show how the human body, and live in
general, is made out of four basic nucleotides. This is where the idea was born to use the
genetic sequence of different genes to draw organs with which they are associated. The four
basic nucleotides were decided to be displayed using their standard colors, which is to say
green for A (adenine), black for C (cytosine), red for T (thymine) and blue for G (guanine).
As there are four nucleotides, four organs were chosen to be displayed. While ultimately

the choice of what organs to display was arbitrary, we believe that they represent four
organs to which people can related and also recognize. The organs were first drawn as black
and white pictures, which were then colored using a custom computer program using the
coding sequence of four different genes.
The genes, were chosen for being important for everyone of those organs.
As genes, including their intronic DNA, can be very long, only the start of the coding

sequence of the different genes were used. The genes which were chosen are the following:

PAX6 : PAX6 is a critical gene for eye development. Variations on this gene have been
linked to aniridia [JHZ+92], which is a disorder which causes the absence of the iris for an
individual.

FOXP2 : FOXP2 is a gene associated with the development of speak and language.
Severe disorders in development of speech and language have been associated with this
gene [LFH+01].

EGFR : EGFR, which stands for epidermal growth factor receptor, is a gene associ-
ated with lung cancer. 15-20% of certain types of lung cancers have been associated with
modifications to this gene [SB14].

198



A. Artistic data visualization A. ARTISTIC DATA VISUALIZATION

MYH6 : MYH6 is a gene which is important for cardiac muscles. It has been identified
as one of the most transcribed genes inside the cardiac muscles [SR96].

The final result which has been presented at VIZBI 2016 can be seen in Figure A.2.

Fig. A.2.: Artistic poster submitted at VIZBI 2016 [WKD16b]

199



B. Meta-alignment
This appendix chapter contains the raw data from Section 7.2.

B.1. Simulated dataset

Tab. B.1.: Raw alignment values used for Figure 7.13
Recall 1 2 3 4 5 6 7 8 9 10 11
Bowtie2 100.00% 100.00% 99.93% 98.96% 95.99% 90.59% 83.30% 75.07% 66.54% 58.85% 52.19%
BWA 100.00% 100.00% 100.00% 99.86% 98.87% 95.96% 88.80% 75.41% 58.77% 43.26% 31.63%
Cushaw2 100.00% 99.94% 98.43% 92.87% 83.19% 70.63% 57.68% 45.46% 35.04% 27.17% 21.74%
Meta 100.00% 100.00% 100.00% 99.91% 99.28% 97.37% 93.03% 85.21% 75.03% 64.69% 55.74%
Meta 2 98.85% 98.17% 96.60% 93.16% 86.82% 77.55% 65.51% 51.63% 37.96% 26.88% 18.81%
Meta 3 96.84% 93.73% 88.21% 79.07% 67.06% 53.21% 39.33% 26.97% 17.22% 10.59% 6.37%

Tab. B.2.: Raw precision values used for Figure 7.14
Precision 1 2 3 4 5 6 7 8 9 10 11
Bowtie2 98.49% 96.07% 92.78% 89.11% 84.84% 79.83% 74.32% 68.93% 63.51% 58.33% 53.06%
BWA 98.49% 98.14% 97.40% 95.81% 93.42% 90.33% 85.55% 78.65% 70.17% 59.97% 48.24%
Cushaw2 97.20% 95.63% 92.96% 89.27% 84.99% 80.52% 76.14% 72.75% 70.09% 69.44% 70.63%
Meta 98.47% 98.19% 97.46% 95.89% 93.26% 89.72% 84.99% 79.24% 72.90% 66.71% 61.58%
Meta 2 99.38% 99.18% 98.89% 98.36% 97.53% 96.55% 95.46% 94.03% 92.38% 90.64% 88.34%
Meta 3 99.84% 99.76% 99.68% 99.52% 99.20% 98.75% 98.14% 97.07% 95.64% 93.93% 91.13%

200



C. Custom file formats
This chapter describes the various custom file formats used during this thesis.

C.1. Variants
This section describes the custom variant file format used in GensearchNGS to store vari-
ants. The default filename extension used is .var, which is an uncompressed text file.

Header
The header contains the general information of the file and consists of two lines. In C.1 an
example of the header section is shown.

Listing C.1: Variant file header section
1 ## version =6
2 Chrom Position Ref Var Coverage +

Coverage - Reads+ Reads - Quality ID Pato SIFT
Poly2 MAF

The first line contains the version number of the file format, which allows for backward
compatibility when reading older files. The second line contains the name of all columns
present that will contain data for the stored variants.

Body
After the header section, the individual variants are stored, with one variant per line. Every
variant has a list of attributes, which are separated by tabs. Table C.1 has a list of all those
attributes.

201



C.2. Epigenetics C. CUSTOM FILE FORMATS

Tab. C.1.: List of all attributes saved for a variant
Chrom The name of the chromosome, ex: 12 String
Position The position of the variant on the chromosome Integer
Ref The reference sequence at that position String
Var The sequence of the variant String
Coverage+ Coverage at the position of the variant on the forward strand Integer
Coverage- Coverage at the position of the variant on the reverse strand Integer
Reads+ Amount of reads supporting the variant on the forward strand Integer
Reads- Amount of reads supporting the variant on the reverse strand Integer
Quality Quality information based as reported by the variant caller Double
ID ID of the variant if present in a database, ex: rs1234 String
Pato Patogenicity information, based on clinvar String
SIFT SIFT score of the variant Double
Poly2 Polyphen 2 score of the variant Double
MAF Minor allele frequency of the variant Double

C.2. Epigenetics
The information generated during methylation analysis of bisulfite sequencing data is stored
in a custom fileformat. The file is a text file with the following structure, a header followed
by the body.

Header
The header only contains the information about the file version information, on a line
starting with the character #.

Body
The body of the file contains one entry per line. Every entry represents a genomic region,
which can be an entire chromosome as well as a promoter region of a gene. The individual
values are separated by tabs with a newline indicating the start of a new entry. Table C.2
shows the content of every line.

202



C.3. Expression C. CUSTOM FILE FORMATS

Tab. C.2.: List of all attributes saved for a variant
Name The name of the genomic region String
Gene The name of gene associated with the region (can be empty) String
Start The start position of the genomic region Integer
End The end position of the genomic region Integer
CpG Amount of CpGs identified in the region Long
Meth Amount methylated CpGs identified in the region Long
Normal Amount non methylated CpGs identified in the region Long
Other Amount methylated non CpG Cs identified in the region Long
Average Average methylation of the sequences in that region Double
0-25 Number of reads with a methylation of 0-25% Long
25-50 Number of reads with a methylation of 25-50% Long
50-75 Number of reads with a methylation of 50-75% Long
75-100 Number of reads with a methylation of 75-100% Long

C.3. Expression
While GensearchNGS supports the HTseq fileformat for expression analysis, we created a
custom fileformat to store additional information not present in the HTseq fileformat.
By default, the fileformat is compressed using gzip. The fileformat is a binary fileformat,

which speeds up the parsing.

Header
The header is structured as follows (Table C.3):

Tab. C.3.: Description of the fields found in the header
Version The version of the files data format Integer
Species The name of the species String
Reference Version of the reference that was used Integer
Chromosome The name of the chromosome String

Body
The body contains the individual regions that were analysed. Those can be on the gene,
transcript or exon level.

203



C.3. Expression C. CUSTOM FILE FORMATS

Tab. C.4.: List of fields for every expressed region
Type The type of the feature (G, T or E) Char
Name The name of the feature String
ID The ID of the feature String
Start First position of the feature (0 based) Integer
Stop Last position of the feature (0 based) Integer
SubRegionLength Length of all subregions (like exons) Integer
Sequences Number of sequences that map to this feature Integer
Mismatches Sequences that partially map to other features Integer
Exlusive Sequences where the start and endpoint map to this feature Integer

204



D. Polling

D.1. User polling results
This Section contains the raw answers for the poll discussed in 9.3.

What is your profession?

Tab. D.1.: What is your profession?
Profession Count
Geneticist 9
Biologist 3
Genetic counselor 1
Technical Assistant 1
Bio-informatician 1
PhD student 1

Tab. D.2.: How would you rate your general computer skills?
Skill 1 2 3 4 5 6

0 1 2 10 2 1

Tab. D.3.: How long have you been using GensearchNGS?
Time 1 month 6 months 1 year 2+years

2 1 3 10

Tab. D.4.: How often do use GensearchNGS?
Frequency Once a month Once a week Daily I don’t use it regularly

2 5 7 2

205



D.1. User polling results D. POLLING

Tab. D.5.: How many samples do you analyse with GensearchNGS per year?
Samples
200
300
300
200
200
> 200
150
50
12
1000
80
36
350
200
17
400

Tab. D.6.: In what context to you use GensearchNGS?
Context Count
Research 13
Diagnostics 12
Commercial 0
Education 1
Other 0

Tab. D.7.: What datasources do you analyse with GensearchNGS?
Source Count
DNAseq 14
RNAseq 0
Bisulfite sequencing 2
Other 0

Tab. D.8.: What type of data to you analyse?
Type Count
Gene panels 12
Clinical exomes 4
Whole exomes 2
Whole genomes 0
Other 1

206



D.1. User polling results D. POLLING

Tab. D.9.: What format do you use when importing raw data?
Format Count
Raw sequencing data (FASTQ, FASTA, etc) 4
Aligned data (BAM, SAM) 10
Aligned data and variant files (BAM + VCF) 6

Tab. D.10.: Do you analyze germline or somatic mutations?
Format Count
Germline 6
Somatic 6
Both 4
Other 0

Tab. D.11.: What other NGS data analysis software do you use?
Software
none
No
Exomiser, PhenIX
Exomiser, Alamut
NextSeq
NextGENe (Softgenetics)
Oncobench
Amplikyzer, selbst entwickelte Bioinformatikpipeline
Torent suite Variant caller and MiSeq reporter
torrent suite variant caller, MiSeq reporter
SnpEff, custom solutions
JSI sequence pilot

Tab. D.12.: What keywords would describe your work?
Keywords
rare diseases research, muscular dystrophy diagnostics
Rare disease, neuromuscular disorders, metal retardations, cancers, epilepsy, etc.
rare diseases research
rare disease research
cancer screening
cancer screening
cancer screening
Cancer screening, therapy prediction
Cancer diagnostic
Screening of tumor-suppressor gene in breast cancer patients
cancer target
hearing loss research
skeletal diseases research
epigenetics, bisulfite sequencing, imprinting, separation of parental alleles
Muscular dystrophy diagnosis

207



D.1. User polling results D. POLLING

Tab. D.13.: It facilitates the analysis of complex data sets (DNAseq, RNAseq, DNA methyla-
tion), 14 answers

Disagree 1 2 3 4 5 6 Agree
0 1 0 1 5 8

Tab. D.14.: It allows to save time compared to other software, 12 answers
Disagree 1 2 3 4 5 6 Agree

0 1 3 0 4 5

Tab. D.15.: It is more user-friendly than its alternatives, 12 answers
Disagree 1 2 3 4 5 6 Agree

0 1 1 1 4 6

Tab. D.16.: It reduces biologists/scientists dependence on bioinformaticians, 15 answers
Disagree 1 2 3 4 5 6 Agree

0 0 0 4 6 5

Tab. D.17.: GensearchNGS is my main NGS data analysis software, 15 answers
Disagree 1 2 3 4 5 6 Agree

1 0 2 2 4 7

Tab. D.18.: It works reasonably fast on older/slower computers, 10 answers
Disagree 1 2 3 4 5 6 Agree

0 0 3 3 2 3

Tab. D.19.: It helps me to do diagnostics more efficiently, 13 answers
Disagree 1 2 3 4 5 6 Agree

0 0 0 0 9 5

Tab. D.20.: It helps me to answer research questions more efficiently, 9 answers
Disagree 1 2 3 4 5 6 Agree

0 0 0 2 5 3

Tab. D.21.: Most useful functionality in GensearchNGS
Feature
visualization of variants (not only tables)
Compare Variants Tool
Comparison of different patients (de-novo analysis, compound heterozygote, homozygote....) Filters (especially Phenotype)
Combined lists of several patients, patients filter, quick-links to other useful databases like ExAC, the possibility to colour mark variants
filtering for reads with x % methylation
Anomaly Scanner
possibility of local library of already analysed variants
listing of variants in accordance of our parameters , visualization and identification of region of interest, coverage
Die Unterscheidung der elterlichen Allele basierend auf einem heterozygoten SNP
annotation and safeguard of annotated mutations
split view for reads and AA sequences
It helps me to solve ambiguous cases
Alignment viewer
Die Angabe vieler Informationen über eine Variante auf einen Blick: zb maf, Qualität, coverage f/r, Verknüpfung mit alamut und anderen datenbanken - » erleichtert die Interpretation von varianten

208



D.1. User polling results D. POLLING

Tab. D.22.: Missing or incomplete functionality
Feature
possible improvement of handling of the CNV tool
more detailed manual
The possibility to leave notes for specific variants.
CNV-Analysis
perhaps a more complete solution from the creation of a library (with clinical information, tumor content %, expected genes in accordance with pathology ) to the report. each
Anomaly Scanner
search function to quickly find other samples with the same mutations
annotation for multiple consecutive nucleotide deletions
To be linked to more databases
Verknüpfung von Sanger Daten mit ngs Daten eines patienten, cnv detection, Datenbank aller bereits bekannten Varianten (das hat es aber schon, oder?)

Tab. D.23.: Feedback
Feedback
best NGS analysis software I ever used; biggest advantage: quick help and very fast implementation of improvements in case of problems
Every Update makes GensearchNGS more powerful. Continue the development of Gensearch!!!
more detailed handbook of ALL functions
GensearchNGS hat mir sehr geholfen meine Daten zum ersten Mal anschauen zu können als wir noch keine anderen bioinformatischen Optionen entwickelt hatten,
aber mittlerweile haben wir für unsere Anwendung und Fragestellung bessere Lösungen gefunden
very useful to determine variants and edit reports
So far I am satisfied. If I have troubles or I need something new, it is immediately done.
Ich arbeite seit 3 Monaten mit JSI seq Pilot und vermisse immernoch manchmal die Funktionen von GensearchNGS :)

209



E. Downloads
Here we list the different locations at which the software developed as part of this thesis
can be downloaded.

GensearchNGS 6 : http://www.phenosystems.com/www/index.php/products/gensearchngs

GNATY 7.3, 7.2: https://gnaty.phenosystems.com

POP-Java 8: https://github.com/pop-team/pop-java

210



F. Declaration of Authorship

Ehrenwörtliche Erklärung
Hiermit erkläre ich an Eides statt, die DissertationReducing the complexity of OMICS
data analysis eigenständig, d.h. insbesondere selbständig und ohne Hilfe eines kommerziellen
Promotionsberaters, angefertigt und keine anderen als die von mir angegebenen Quellen und
Hilfsmittel verwendet zu haben.
Ich erkläre außerdem, dass die Dissertation weder in gleicher noch in ähnlicher Form

bereits in einem anderen Prüfungsverfahren vorgelegen hat.

Affidavit
I hereby confirm that my thesis entitled Reducing the complexity of OMICS data
analysis is the result of my own work. I did not receive any help or support from commercial
consultants. All sources and / or materials applied are listed and specified in the thesis.
Furthermore, I confirm that this thesis has not yet been submitted as part of another

examination process neither in identical nor in similar form.

Fribourg, den Beat Wolf

211


	1 Introduction
	I Foundations
	2 Genetics
	3 OMICs data analysis
	4 Diagnostics
	5 Parallel & distributed computing

	II Methods
	6 Graphical pipeline
	7 Data analysis
	8 POP-Java

	III Applications
	9 Graphical pipeline applications
	10 Conclusion & Future works
	11 Publications
	Appendices
	A Artistic data visualization
	B Meta-alignment
	C Custom file formats
	D Polling
	E Downloads
	F Declaration of Authorship


