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Abstract

Enterprise applications in virtualized data centers are often subject to time-
varying workloads, i.e., the load intensity and request mix change over time,
due to seasonal patterns and trends, or unpredictable bursts in user requests.
Varying workloads result in frequently changing resource demands to the un-
derlying hardware infrastructure. Virtualization technologies enable sharing
and on-demand allocation of hardware resources between multiple applica-
tions. In this context, the resource allocations to virtualized applications should
be continuously adapted in an elastic fashion, so that “at each point in time the
available resources match the current demand as closely as possible” (Herbst
et al., 2013). Autonomic approaches to resource management promise signifi-
cant increases in resource efficiency while avoiding violations of performance
and availability requirements during peak workloads.

Traditional approaches for autonomic resource management use threshold-
based rules (e.g., Amazon EC2) that execute pre-defined reconfiguration actions
when a metric reaches a certain threshold (e.g., high resource utilization or
load imbalance). However, many business-critical applications are subject to
Service-level Objectives (SLOs) defined on an application performance metric
(e.g., response time or throughput). To determine thresholds so that the end-
to-end application SLO is fulfilled poses a major challenge due to the complex
relationship between the resource allocation to an application and the appli-
cation performance. Furthermore, threshold-based approaches are inherently
prone to an oscillating behavior resulting in unnecessary reconfigurations.

In order to overcome the deficiencies of threshold-based approaches and
enable a fully automated approach to dynamically control the resource allo-
cations of virtualized applications, model-based approaches are required that
can predict the impact of a reconfiguration on the application performance in
advance. However, existing model-based approaches are severely limited in
their learning capabilities. They either require complete performance models of
the application as input, or use a pre-identified model structure and only learn
certain model parameters from empirical data at run-time. The former requires
high manual efforts and deep system knowledge to create the performance
models. The latter does not provide the flexibility to capture the specifics of
complex and heterogeneous system architectures.
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This thesis presents a self-aware approach to the resource management in
virtualized data centers. In this context, self-aware means that it automatically
learns performance models of the application and the virtualized infrastruc-
ture and reasons based on these models to autonomically adapt the resource
allocations in accordance with given application SLOs. Learning a performance
model requires the extraction of the model structure representing the system
architecture as well as the estimation of model parameters, such as resource
demands. The estimation of resource demands is a key challenge as they cannot
be observed directly in most systems. The major scientific contributions of this
thesis are:

e A reference architecture for online model learning in virtualized systems. Our
reference architecture is based on a set of model extraction agents. Each
agent focuses on specific tasks to automatically create and update model
skeletons capturing its local knowledge of the system and collaborates
with other agents to extract the structural parts of a global performance
model of the system. We define different agent roles in the reference
architecture and propose a model-based collaboration mechanism for the
agents. The agents may be bundled within virtual appliances and may
be tailored to include knowledge about the software stack deployed in a
specific virtual appliance.

* An online method for the statistical estimation of resource demands. For a
given request processed by an application, the resource time consumed
for a specified resource within the system (e.g., CPU or I/O device),
referred to as resource demand, is the total average time the resource is busy
processing the request. A request could be any unit of work (e.g., web
page request, database transaction, batch job) processed by the system.
We provide a systematization of existing statistical approaches to resource
demand estimation and conduct an extensive experimental comparison
to evaluate the accuracy of these approaches. We propose a novel method
to automatically select estimation approaches and demonstrate that it
increases the robustness and accuracy of the estimated resource demands
significantly.

* Model-based controllers for autonomic vertical scaling of virtualized applications.
We design two controllers based on online model-based reasoning tech-
niques in order to vertically scale applications at run-time in accordance
with application SLOs. The controllers exploit the knowledge from the
automatically extracted performance models when determining neces-
sary reconfigurations. The first controller adds and removes virtual CPUs
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to an application depending on the current demand. It uses a layered
performance model to also consider the physical resource contention
when determining the required resources. The second controller adapts
the resource allocations proactively to ensure the availability of the appli-
cation during workload peaks and avoid reconfiguration during phases
of high workload.

We demonstrate the applicability of our approach in current virtualized envi-
ronments and show its effectiveness leading to significant increases in resource
efficiency and improvements of the application performance and availability
under time-varying workloads. The evaluation of our approach is based on
two case studies representative of widely used enterprise applications in virtu-
alized data centers. In our case studies, we were able to reduce the amount of
required CPU resources by up to 23% and the number of reconfigurations by
up to 95% compared to a rule-based approach while ensuring full compliance
with application SLOs. Furthermore, using workload forecasting techniques we
were able to schedule expensive reconfigurations (e.g., changes to the memory
size) during phases of load load and thus were able to reduce their impact on
application availability by over 80% while significantly improving application
performance compared to a reactive controller. The methods and techniques for
resource demand estimation and vertical application scaling were developed
and evaluated in close collaboration with VMware and Google.






Zusammenfassung

Unternehmensanwendungen in virtualisierten Rechenzentren unterliegen hau-
tig zeitabhdngigen Arbeitslasten, d.h. die Lastintensitit und der Anfragemix
dndern sich mit der Zeit wegen saisonalen Mustern und Trends, sowie unvor-
hergesehenen Lastspitzen bei den Nutzeranfragen. Variierende Arbeitslasten
tithren dazu, dass sich die Ressourcenanforderungen an die darunterliegende
Hardware-Infrastruktur hdufig d4ndern. Virtualisierungstechniken erlauben
die gemeinsame Nutzung und bedarfsgesteuerte Zuteilung von Hardware-
Ressourcen zwischen mehreren Anwendungen. In diesem Zusammenhang
sollte die Zuteilung von Ressourcen an virtualisierte Anwendungen fortwéah-
rend in einer elastischen Art und Weise angepasst werden, um sicherzustellen,
dass ,zu jedem Zeitpunkt die verfiigbaren Ressourcen dem derzeitigen Be-
darf moglichst genau entsprechen” (Herbst u. a., 2013). Autonome Ansétze
zur Ressourcenverwaltung versprechen eine deutliche Steigerung der Ressour-
ceneffizienz wobei Verletzungen der Anforderungen hinsichtlich Performanz
und Verfiigbarkeit bei Lastspitzen vermieden werden.

Herkémmliche Ansétze zur autonomen Ressourcenverwaltung nutzen feste
Regeln (z.B., Amazon EC2), die vordefinierte Rekonfigurationen durchfiihren
sobald eine Metrik einen bestimmten Schwellwert erreicht (z.B., hohe Ressour-
cenauslastung oder ungleichmaéfiige Lastverteilung). Viele geschiftskritische
Anwendungen unterliegen jedoch Zielvorgaben hinsichtlich der Dienstgiite
(SLO, engl. Service Level Objectives), die auf Performanzmetriken der Anwen-
dung definiert sind (z.B., Antwortzeit oder Durchsatz). Die Bestimmung von
Schwellwerten, sodass die Ende-zu-Ende Anwendungs-SLOs erfiillt werden,
stellt aufgrund des komplexen Zusammenspiels zwischen der Ressourcenzutei-
lung und der Performanz einer Anwendung eine bedeutende Herausforderung
dar. Des Weiteren sind Ansétze basierend auf Schwellwerten inhadrent anféllig
tiir Oszillationen, die zu {iberfliissigen Rekonfigurationen fiihren kénnen.

Um die Schwéichen schwellwertbasierter Ansitze zu 16sen und einen vollstan-
dig automatisierten Ansatz zur dynamischen Steuerung von Ressourcenzutei-
lungen virtualisierter Anwendungen zu ermdglichen, bedarf es modellbasierter
Ansitze, die den Einfluss einer Rekonfiguration auf die Performanz einer An-
wendung im Voraus vorhersagen konnen. Bestehende modellbasierte Ansétze
sind jedoch stark eingeschrankt hinsichtlich ihrer Lernfdhigkeiten. Sie erfor-
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dern entweder vollstindige Performanzmodelle der Anwendung als Eingabe
oder nutzen vorbestimmte Modellstrukturen und lernen nur bestimmte Mo-
dellparameter auf Basis von empirischen Daten zur Laufzeit. Erstere erfordern
hohe manuelle Aufwéande und eine tiefe Systemkenntnis um die Performanz-
modelle zu erstellen. Letztere bieten nur eingeschrankte Moglichkeiten um
die Besonderheiten von komplexen und heterogenen Systemarchitekturen zu
erfassen.

Diese Arbeit stellt einen selbstwahrnehmenden (eng)l. self-aware) Ansatz zur
Ressourcenverwaltung in virtualisierten Rechenzentren vor. In diesem Zu-
sammenhang bedeutet Selbstwahrnehmung, dass der Ansatz automatisch
Performanzmodelle der Anwendung und der virtualisierten Infrastruktur lernt
Basierend auf diesen Modellen entscheidet er autonom wie die Ressourcenzutei-
lungen angepasst werden, um die Anwendungs-SLOs zu erfiillen. Das Lernen
von Performanzmodellen erfordert sowohl die Extraktion der Modellstruktur,
die die Systemarchitektur abbildet, als auch die Schatzung von Modellparame-
tern, wie zum Beispiel der Ressourcenverbrduche einzelner Funktionen. Die
Schédtzung der Ressourcenverbrauche stellt hier eine zentrale Herausforderung
dar, da diese in den meisten Systemen nicht direkt gemessen werden kénnen.
Die wissenschaftlichen Hauptbeitrdage dieser Arbeit sind wie folgt:

* Eine Referenzarchitektur, die das Lernen von Modellen in virtualisierten Sys-
temen wihrend des Betriebs ermdglicht. Unsere Referenzarchitektur basiert
auf einer Menge von Modellextraktionsagenten. Jeder Agent fokussiert
sich auf bestimmte Aufgaben um automatisch ein Modellskeleton, das
sein lokales Wissen iiber das System erfasst, zu erstellen und zu aktua-
lisieren. Jeder Agent arbeitet mit anderen Agenten zusammen um die
strukturellen Teile eines globalen Performanzmodells des Systems zu
extrahieren. Die Rereferenzarchitektur definiert unterschiedliche Agen-
tenrollen und beinhaltet einen modellbasierten Mechanismus, der die
Kooperation unterschiedlicher Agenten ermdglicht. Die Agenten kdnnen
als Teil virtuellen Appliances gebiindelt werden und kénnen dabei mafs-
geschneidertes Wissen iiber die Software-Strukturen in dieser virtuellen
Appliance beinhalten.

¢ Eine Methode zur fortwihrenden statistischen Schitzung von Ressourcenver-
briuchen. Der Ressourcenverbrauch (engl. resource demand) einer Anfrage,
die von einer Anwendung verarbeitet wird, entspricht der Zeit, die an
einer spezifischen Ressource im System (z.B., CPU oder I/O-Gerit) ver-
braucht wird. Eine Anfrage kann dabei eine beliebige Arbeitseinheit, die
von einem System verarbeitet wird, darstellen (z.B. eine Webseitenanfra-
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ge, eine Datenbanktransaktion, oder ein Stapelverarbeitungsauftrag). Die
vorliegende Arbeit bietet eine Systematisierung existierender Ansatze
zur statistischen Schiatzung von Ressourcenverbrauchen und fiihrt einen
umfangreichen, auf Experimenten aufbauenden Vergleich zur Bewertung
der Genauigkeit dieser Ansédtze durch. Es wird eine neuartige Metho-
de zur automatischen Auswahl eines Schitzverfahrens vorgeschlagen
und gezeigt, dass diese die Robustheit und Genauigkeit der geschitzten
Ressourcenverbrauche mafigeblich verbessert.

* Modellbasierte Regler fiir das autonome, vertikale Skalieren von virtualisierten
Anwendungen. Es werden zwei Regler entworfen, die auf modellbasier-
ten Entscheidungstechniken basieren, um Anwendungen zur Laufzeit
vertikal in Ubereinstimmung mit Anwendungs-SLOs zu skalieren. Die
Regler nutzen das Wissen aus automatisch extrahierten Performanzmo-
dellen bei der Bestimmung notwendiger Rekonfigurationen. Der erste
Regler fiigt virtuelle CPUs zu Anwendungen hinzu und entfernt sie wie-
der in Abhéngigkeit vom aktuellen Bedarf. Er nutzt ein geschichtetes
Performanzmodell, um bei der Bestimmung der benétigten Ressourcen
die Konkurrenzsituation der physikalischen Ressourcen zu beachten.
Der zweite Regler passt Ressourcenzuteilungen proaktiv an, um die Ver-
fligbarkeit einer Anwendung wahrend Lastspitzen sicherzustellen und
Rekonfigurationen unter grofSer Last zu vermeiden.

Die Arbeit demonstriert die Anwendbarkeit unseres Ansatzes in aktuellen
virtualisierten Umgebungen und zeigt seine Effektivitit bei der Erhchung der
Ressourceneffizienz und der Verbesserung der Anwendungsperformanz und
-verfiigbarkeit unter zeitabhdngigen Arbeitslasten. Die Evaluation des Ansatzes
basiert auf zwei Fallstudien, die reprasentativ fiir gangige Unternehmensan-
wendungen in virtualisierten Rechenzentren sind. In den Fallstudien wurde
eine Reduzierung der benétigten CPU-Ressourcen von bis zu 23% und der
Anzahl der Rekonfigurationen von bis zu 95% im Vergleich zu regel-basierten
Ansétzen erreicht, bei gleichzeitiger Erfiillung der Anwendungs-SLOs. Mit
Hilfe von Vorhersagetechniken fiir die Arbeitslast konnten aufSerdem aufwén-
dige Rekonfigurationen (z.B., Anderungen bei der Menge an zugewiesenem
Arbeitsspeicher) so geplant werden, dass sie in Phasen geringer Last durchge-
fithrt werden. Dadurch konnten deren Auswirkungen auf die Verfiigbarkeit der
Anwendung um mehr als 80% verringert werden bei gleichzeitiger Verbesse-
rung der Anwendungsperformanz verglichen mit einem reaktiven Regler. Die
Methoden und Techniken zur Schitzung von Ressourcenverbrauchen und zur
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vertikalen Skalierung von Anwendungen wurden in enger Zusammenarbeit
mit VMware und Google entwickelt und evaluiert.
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Chapter 1

Introduction

1.1 Motivation

IT services hosted in data centers, such as public internet services (e.g., Net-
flix, Facebook, or Google) as well as intranet services in corporate networks,
are typically subject to time-varying workloads. Depending on the current
number of users and their interactions with a service, the resource demands of
applications providing these services change over time as well. At any point
in time, the amount of resources allocated to an application needs to fulfill its
current demand. Otherwise, its provided services may violate Service-level
Agreements (SLAs) regarding their end-to-end performance! and availability.
In conventional data centers, IT services are typically hosted on dedicated hard-
ware with over-dimensioned capacity to ensure SLA fulfillment under varying
workload conditions and load spikes. As a result, a growing number of under-
utilized servers causes increasing data center operating costs including system
management and power consumption costs. Server virtualization techniques
promise substantial reductions in the Total-Cost-of-Ownership (TCO) for IT
services by enabling the consolidation of multiple servers on the same phys-
ical hardware and the on-demand provisioning of resources to applications.
Server virtualization is a base technology for cloud computing and current
market research (Gartner, Inc., 2015) shows that over 75% of all x86 servers in
data-centers world-wide are virtualized.

However, the consolidation of servers also poses new challenges to the re-
source management of IT services in virtualized data centers. The higher
utilization of physical resources makes IT services much more vulnerable to
violations of SLAs resulting from unforeseen workload variations and load
spikes. Resource management in virtualized data centers requires a high elastic-
ity, i.e., the system must be ”able to adapt to workload changes by provisioning

'In this thesis, the term performance is understood as the degree to which a software system
meets its objectives for timeliness and the efficiency with which it achieves this (Kounev,
2008; Smith and Williams, 2002)
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and deprovisioning resources in an autonomic manner, such that at each point
in time the available resources match the current demand as closely as possible”
(Herbst et al., 2013). Without such continuous adaptations to the resource allo-
cations of applications in a data center, the benefits of virtualization in terms of
improved resource efficiency and lower operating costs are significantly limited
since one would have to continue over-provisioning resources to ensure SLAs.

Modern virtualization platforms offer different knobs supporting the elastic
allocation of resources to applications. For instance, they support horizontal
scaling —i.e., add additional Virtual Machine (VM) instances — as well as ver-
tical scaling —i.e., add resources to an existing VM instance — of applications
without noticeable service interruptions. However, existing tools for resource
management require system administrators to specify fixed, trigger-based rules
in advance that determine when an application should be scaled. Unfortunately,
trigger-based tools lack the ability to proactively determine the effects of chang-
ing resource allocations on the performance of hosted IT services, e.g., response
time and throughput. This significantly limits the possibilities for optimizing
resource allocations while ensuring SLA compliance and is currently a great
hurdle to leverage the full potential of virtualization to significantly reduce
costs for IT.

In order to proactively determine the effects of changing resource allocations,
models are required that describe the relationship between resource alloca-
tion and the observed performance of hosted IT services. While a number
of performance modeling and prediction techniques have been developed in
the performance engineering community, existing techniques are either too
coarse-grained (abstracting systems and applications at a high level), or if being
fine-grained, they are typically designed for capacity planning in an offline
setting. In the former case, important factors influencing the performance (e.g.,
software architecture) are missing, limiting the predictive power of the model.
In the latter case, the high overhead of manual model creation and maintenance
as well as compute-intensive prediction techniques have been a major hurdle
for the adoption of such techniques for autonomic performance and resource
management at system run-time.

1.2 Problem Statement

In the following, we assume a data center consists of a set of physical servers
that are virtualized and that may host any number of VMs. Furthermore, a data
center executes a set of applications that are deployed in one or multiple VMs.
Each application provides services which are subject to certain SLAs. An SLA



1.2 Problem Statement

specifies objectives on the performance and availability of services provided by
an application in terms of service-level metrics, such as end-to-end response
time or throughput. All applications share the hardware resources (e.g., CPU
and memory) in a data center and each one is allocated a certain amount of
these resources. The resource allocations may be changed at any point in time.
A resource management mechanism should continuously adapt the resource
allocations to applications in an autonomic manner in order to minimize the re-
source usage while ensuring that applications can fulfill their SLAs under time-
varying workloads. However, the relationship between the application perfor-
mance and the resource allocation is highly non-linear and multi-dimensional
as it depends on multiple factors including application architecture, system
configuration, and resource demands. Therefore, we require models that allow
us to predict the expected application performance for a given combination
of resource allocation and workload. However, the usage of such models for
resource management in virtualized data centers faces multiple challenges:

* Multi-tier application architectures: An application may comprise several
tiers, each deployed in one or more VMs. The end-to-end application
performance depends on the processing in each tier and the flow of
requests between tiers. The processing of application requests requires
access to different types of resources (e.g., CPU, memory, or I/O). The
extent to which each resource contributes to the end-to-end latency may
vary between different application tiers. Furthermore, asynchronous
communication and limited software resources (e.g., thread pools or
connection pools) also influence the achievable application performance.

* Heterogeneous software stacks: Inside a VM running in a virtualized data
center, any type of software can be deployed. Given that virtualized data
centers may be shared between different applications and also between
different organizations, the software stacks running inside VMs are often
heterogeneous and optimized for the requirements of a given application.
As a result, the virtualization platform should not make any assumptions
on the type of software running inside a VM.

* Shared infrastructure: Due to the shared nature of a virtualized infras-
tructure, the achievable performance of one application can be severely
impacted by possible resource contention or interference from the co-
hosted applications, a problem referred to as noisy neighbors. The data
center owner may over-commit the physical resources resulting in ad-
ditional wait times delaying application processing. A model needs to
capture contention effects in virtualized data centers.
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¢ Frequent reconfigurations: The deployment and configuration of applica-
tions may change frequently due to automatic or manual reconfigurations
(e.g., deployment of new VMs, or migration of existing ones). As a result,
the model needs to be continuously updated to reflect the current system
configuration.

In consequence, we require sufficiently fine-grained models providing ab-
stractions from the heterogeneous software stacks while describing the layered
application architectures with sufficient details, including the performance
influences of the shared infrastructure. As the creation and maintenance of
such models can be time-consuming and requires deep knowledge of the per-
formance behavior of a system, we cannot expect system administrators to
provide them in advance. A model-based resource management mechanism
in a virtualized data center needs to be able to learn models of the system
automatically. Then it can use them for reasoning purposes in order to improve
resource allocation decisions with regards to higher-level goals by proactively
determining the effects of changes on the application performance.

1.3 State-of-the-Art

Current approaches in industry for automated performance and resource man-
agement in virtualized data centers follow a rule-based approach. A system
administrator manually defines custom triggers that fire when a metric reaches
a certain threshold (e.g., high resource utilization or load imbalance) and exe-
cute certain reconfiguration actions. Examples for such rule-based approaches
are the Amazon EC2 Auto Scaling feature or the VMuware Distributed Resource
Scheduler (DRS) (Gulati et al., 2012). However, application-level performance
metrics, such as response time, normally exhibit a highly non-linear behavior
on system load. Therefore, it is not possible to determine general thresholds
of when triggers should be fired, given that the appropriate triggering points
are typically highly dependent on the architecture of the hosted services and
their usage profiles, which can change frequently during operation. Further-
more, in case of contention at the physical resource layer, the performance
of an individual application may be significantly influenced by applications
running in other co-located VMs sharing the physical infrastructure. Thus,
to be effective, triggers must also take into account the interactions between
applications and workloads at the physical resource layer. The complexity of
such interactions and the inability to predict how changes in application usage
profiles propagate through the layers of the system architecture down to the
physical resource layer render conventional rule-based approaches unable to
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reliably enforce SLAs in an efficient and proactive fashion (i.e., allocating only
as many resources as are actually needed and reconfiguring proactively before
any SLA violations have occurred). Furthermore, current approaches used
in industry are limited with respect to the possible reconfiguration actions.
The focus is on the migration of VMs between physical hosts or the starting
and stopping of VM instances. More fine-grained reconfiguration actions (e.g.,
adding or removing CPUs, or assigning additional memory, are typically not
supported).

In order to overcome the limitations of rule-based approaches for resource
management, model-based approaches have been developed in the research
community over the past decade. A number of approaches take the system as a
black box and use machine learning techniques (Tesauro et al., 2007; Yazdanov
and Fetzer, 2013, e.g.), or feedback controllers (Kalyvianaki et al., 2014; Padala
etal., 2009, e.g.) to determine the relationship between the application perfor-
mance and the resource allocation. While machine learning techniques (e.g.,
reinforcement learning) can capture complex functions of arbitrary shapes,
they typically require long training periods to do so. Given that applications in
virtualized data centers are subject to time-varying workloads and dynamic
changes to the system configuration, the time to learn and update a model is
severely constrained. Feedback controllers are good at keeping a system stable
around a target operating point, however, they require sufficiently fine-grained
adaptation mechanisms. Most control knobs in virtualized systems have a
discrete scale and are therefore not well suited for feedback controllers.

Stochastic performance models, such as, Queueing Networks (QNs) pro-
vide a powerful framework enabling a more fine-grained description of the
performance behavior of an application including an explicit modeling of the
workload. Several authors (Gandhi et al., 2011; Jung et al., 2010; Urgaonkar
etal., 2008; Villela et al., 2004) propose resource management approaches based
on Queueing Network (QN) models. These approaches expect pre-built per-
formance models and, at most, update certain model parameters based on
empirical observations. However, system administrators in virtualized data
centers typically do not have the skills and time to manually create stochas-
tic performance models of hosted applications. In this thesis, we built upon
approaches for off-line extraction of performance models for architecture eval-
uation at design-time and integrate them into state-of-the-art virtualization
platforms for continuous online model learning at system run-time. The auto-
matically extracted performance models then serve as a basis for fine-grained
resource management in virtualized data centers.
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1.4 Approach and Contributions

In this thesis, we follow a self-aware approach to resource management in
virtualized data-centers. In this context, self-aware means that the resource
management approach is based on models describing the system with all
its performance-relevant factors. The models are learned automatically and
serve as a basis for advanced reasoning algorithms designed to adapt the
resource allocations of applications in a data center according to higher-level
goals regarding application performance and availability. Model learning and
reasoning activities are performed continuously during system run-time while
applications serve their production workloads.

Our approach is based on descriptive architecture-level performance models
which allow for a fine-grained and explicit representation of the system archi-
tecture and its major performance-influencing factors. These models enable an
integrated and consistent representation of a system, while supporting different
mathematical solution algorithms for reasoning. Recent work (Huber et al.,
2017) shows the benefits of using such models for online resource management
enabling flexible reasoning techniques that automatically balance between pre-
diction accuracy and time to result depending on the type of question to be
answered.

1.4.1 Contributions
A Reference Architecture for Online Model Learning in Virtualized Systems

Many complex performance effects and influences in virtualized data centers
are only observable during system operation when the system is running in
the real production environment under real production workloads, as opposed
to running in a controlled testing environment with artificial workloads or
synthetic benchmarks. Our goal is to defer as much as possible of the model
extraction to system run-time in order to deal with the challenge of capturing
the highly non-linear and multidimensional performance influences and in-
teractions between the system components and layers. We propose a novel
agent-based reference architecture that enables the online model learning in
virtualized data centers. The reference architecture provides a framework for
the integration of different static and dynamic analysis techniques into state-
of-the-art virtualization platforms in order to extract performance models of
application and platform layers at system run-time. We make the following
contributions as part of our reference architecture:
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* We describe an extension to the definition of conventional Virtual Appli-
ances (VAs) defining additional interfaces for the automatic extraction of
models describing the performance behavior of the contained platform
and application layers. The term VA refers to a set of pre-packaged VM
images containing a software stack designed to run on a virtualization
platform. Our extension enables the integration of model extraction logic
into a VA in the form of agents that dynamically create and maintain sub-
models of platform and application layers (so-called model skeletons) at
system run-time. These agents may be specifically tailored to the software
stack in a VA exploiting technology-specific knowledge during model
extraction.

¢ We introduce additional components within virtualization platforms
enabling the collaboration of multiple agents within different VAs in
order to extract end-to-end models of a virtualized data center. We de-
velop a performance model repository in which the model skeletons
created by different model extraction agents are composed to a single,
comprehensive performance model of the complete system covering all its
application, platform and infrastructure layers. We describe an algorithm
for composing multiple, independently created model skeletons into a
single end-to-end architecture-level performance model.

The focus of our reference architecture lies on the integration of existing static
and dynamic analysis techniques into an end-to-end model extraction process.
Existing end-to-end approaches to online performance model extraction (e.g.,
Brosig et al., 2011; Brunnert et al., 2013) assume a specific technology stack, such
as a Java Enterprise Edition (Java EE) server. Our reference architecture enables
the integration of single extraction techniques (e.g., resource demand estima-
tion, or control flow characterization) as well as such end-to-end approaches. It
also supports the composition of sub-models representing applications running
on heterogeneous technology stacks.

We have published the initial idea of a reference architecture for online
performance model extraction in Spinner et al. (2013). In Spinner et al. (2016),
we present a preliminary version of the elaborated specification of our reference
architecture. The work on the reference architecture was partially supported
by the German Research Foundation (DFG) under grant No. KO 3445/11-1.

An Online Method for the Statistical Estimation of Resource Demands

For a given request processed by an application, the resource amount con-
sumed for a specified resource within the system (e.g., CPU or I/O device),
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referred to as resource demand, is the total average time the resource is busy
processing the request. Resource demands are a key parameter of stochastic
performance models (e.g., QNs) as well as architecture-level ones. In order
to extract complete performance models, we need to quantify the resource
demand values in an online manner. However, existing systems usually do not
provide the monitoring capabilities to measure the resource demands directly.
Therefore, statistical techniques are required to estimate the resource demands
from indirect measurements.

Many approaches to resource demand estimation using different statistical
techniques have been proposed in the literature in the last decades. However,
for performance engineers it is difficult to decide which one to use for a given
system. Our goal is to provide guidelines helping to select the optimal approach
and automate the selection process for use in autonomic systems. We make the
following contributions:

¢ We provide a systematization of the state-of-the-art of statistical resource
demand estimation. We categorize existing estimation approaches accord-
ing to their required input parameters, their provided output metrics, and
their measures to improve their robustness to anomalies in the empirical
measurement data.

¢ We compare different approaches to resource demand estimation and
evaluate their sensitivity to different factors (sampling interval, number
of samples, number of workload classes, load level, collinear workload
classes, background jobs, and delayed processing) on the estimation
accuracy.

¢ We propose a method to resource demand estimation based on multi-
ple statistical techniques combined with a feedback loop to improve the
accuracy of the estimation iteratively by selecting suitable statistical tech-
niques to be applied. We use a cross-validation scheme with an error
metric based on the deviation between the observed response times and
utilization, on the one hand, and the respective predicted metrics using
the resource demand estimates, on the other hand.

* We provide the first publicly available library for resource demand estima-
tion, called LibReDE, which can automatically choose between multiple
statistical estimation techniques. It provides ready-to-use implementa-
tions of eight approaches to resource demand estimation and realizes our
proposed method for resource demand estimation.
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The systematization of the state-of-the-art and the experimental comparison
have been published in Spinner et al. (2015a). The tool LibReDE has been
described in Spinner et al. (2014a). Furthermore, we used LibReDE in collabo-
rations together with the Fortiss research institute (Willnecker et al., 2015) and
SAP (Krebs et al., 2014a). The development of LibReDE was partially supported
by a VMware Academic Research Award and a Google Faculty Research Award.

Model-based Controllers for Autonomic Vertical Scaling of Virtualized
Applications

Many existing model-based approaches to resource management in virtualized
data centers are focused on horizontal scaling of applications (i.e., adding or
removing replicated VM instances) to react to workload changes. However,
starting new VM instances is a relatively expensive operation causing addi-
tional overheads and slowing down the reaction to workload changes. As an
alternative, state-of-the-art virtualization platforms also provide mechanisms
to hot-add virtual CPUs or memory to VMs without requiring a reboot of
the guest operating system. These hot-add mechanisms promise a fast and
inexpensive way to implement elasticity based on vertical scaling of virtualized
applications.

Based on our contributions for online performance model extraction and
resource demand estimation, we propose autonomic controllers for vertical
scaling of virtualized applications at runtime to ensure that they meet their
SLO regarding performance and availability:

* We design a model-adaptive controller that automatically determines and
allocates the number of CPUs required by individual VMs of a virtualized
application in order to fulfill the application SLO. The controller adapts
to workload changes on a short-term basis (i.e., seconds to a few minutes).
The controller uses a layered performance model based on queueing theory
that describes the non-trivial relationship between the application per-
formance and its resource allocation. The performance model explicitly
captures scheduling delays in the hypervisor due to noisy neighbors. We
describe a learning-based approach to automatically estimate this model at
runtime based on available monitoring data including aggregate applica-
tion performance and resource usage statistics. Given that the model is
continuously updated in short time intervals (up to every 5 minutes), it
can quickly capture changes in the workload or the configuration of the
application.
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¢ We design a proactive controller based on time series analysis techniques
to automatically schedule costly memory reconfigurations on a mid- and
long-term scale during phases of low load in order to ensure application
SLOs regarding performance and availability. Our controller uses state-
of-the-art time series forecasting techniques to predict seasonal patterns
and trends in the incoming application workload for up to a complete day
in advance. We incorporate additional meta-knowledge (e.g., calendar
information) into the forecast models to better capture the seasonality
patterns in the workloads. Automatic reconfigurations may include steps
to adapt the application configuration (e.g., garbage collection settings)
in order to fully utilize the additional main memory. It allows to schedule
a complete restart of the application, if necessary, to be performed during
a maintenance window.

Our short-term controller for vertical CPU scaling differs from related work
(Dawoud et al., 2012; Shen et al., 2011; Yazdanov and Fetzer, 2012, 2013) in
the following aspects: (a) it uses a layered queueing model to decide when
to hot-add or -remove CPUs to ensure application SLOs, (b) it automatically
estimates per-request resource demands, which are inputs to the performance
model, and (c) it uses low-level scheduling statistics from the hypervisor to
explicitly capture the effects of physical resource contention.

Our mid- and long-term controller for vertical memory scaling differs from
related work (Kumar et al., 2009¢; Lu et al., 2014; Shanmuganathan et al.,
2013; Shen et al., 2011) in the following aspects: (a) it leverages memory hot-
add mechanisms of VMware ESX, (b) it enables application reconfigurations
necessary to exploit the additional memory resources, and (c) it uses mid-
term workload forecasts (e.g., one day horizon) to automatically schedule
reconfigurations during a pre-defined maintenance window.

The short-term controller for vertical CPU scaling has been published in
Spinner et al. (2014b). The mid- and long-term controller for vertical memory
scaling has been first described in Spinner et al. (2015b). The work on the
proposed controllers was supported by a VMware Academic Research Grant.

1.4.2 Evaluation

The contributions are evaluated with regard to (a) their degree of automation,
(b) their applicability to state-of-the-art software systems, (c) their effectiveness
in improving the elasticity of virtualized applications. We provide proof-of-
concept implementations of our approach for widely-used, state-of-the-art prac-
tical software systems, such as the VMware vSphere virtualization platform,
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the Wildfly (former JBoss) Java EE application server and the Zimbra collab-
oration server. We demonstrate the feasibility of integrating model-learning
techniques into these systems to enable the automatic creation and maintenance
of fine-grained performance models. Based on these proof-of concept imple-
mentations we performed two case studies in collaboration with our industrial
partners VMware and Google.

The first case study is based on the Wildfly application server using the
industry-standard SPECjEnterprise2010 full system benchmark as a workload.
We examine the degree of automation achieved for our approach to online
model learning in a complex distributed architecture. We show that by integrat-
ing existing techniques for model extraction into our reference architecture, we
are able to extract over 97% of all model elements automatically at system run-
time. The resulting performance model provides a high prediction accuracy
for a wide range of workload intensities with regards to resource utilization
— absolute errors below 4% — and response time — relative errors below 21%.
Furthermore, we demonstrate that our method to resource demand estimation
scales well to large problem sizes (over 80 resource demands) and it is able to
automatically choose the best estimation approach based on cross-validation
results.

In the second case study, we demonstrate the effectiveness and efficiency of
our proposed autonomic controllers for vertical scaling of virtualized applica-
tions. We consider the vertical scaling of CPU and memory resources under
realistic workloads using the Zimbra collaboration server. We validate our
approach to modeling CPU contention at the hypervisor level. We demonstrate
that our model-adaptive controller can reduce the amount of CPU resources by
up to 23% compared to a rule-based controller while ensuring full compliance
with application SLOs. In the same experiment, it is also able to reduce the
number of reconfigurations by up to 95%. Furthermore, using workload fore-
casting techniques we were able to schedule expensive reconfigurations (e.g.,
changes to the memory size) during phases of load load and thus were able to
reduce their impact on application availability by over 80% while significantly
improving application performance compared to a reactive controller.

1.5 Thesis Outline

The thesis is organized as described in the following.

¢ Chapter 2 introduces the theoretical and technical foundations of our
approach. We define the term self-aware computing as it is used in the

11
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context of our thesis. Then, we introduce different modeling formalisms
for descriptive knowledge representation and for reasoning on the per-
formance of a system. Furthermore, we describe the mathematical back-
ground of different statistical estimation techniques. Finally, we present
the core concepts of server virtualization.

Chapter 3 surveys the related work on autonomic resource management
in virtualized data centers and on the automatic extraction of performance
models.

Chapter 4 presents our agent-based reference architecture for online
model learning in virtualized systems. We propose extensions for state-
of-the-art virtualization platforms to support deep integration of model
extraction capabilities. We describe how agents that take on different
roles collaborate at system run-time in order to extract models of the
system. We propose an algorithm to compose sub-models from different
agents into an end-to-end performance model.

Chapter 5 focuses on the online estimation of resource demands. It sys-
tematizes the state-of-the-art on resource demand estimation and presents
a comparison of different estimation approaches evaluating the influence
of various factors on the estimation accuracy. Furthermore, we introduce
a new method for resource demand estimation based on multiple statisti-
cal techniques in order to improve the robustness of resource demand
estimation.

Chapter 6 describes two autonomic controllers for the vertical scaling
of virtualized applications. The first one is aimed at short-term recon-
figurations of resources that are quickly adaptable (e.g., CPUs) without
overheads. It uses a layered performance model that explicitly captures
contention effects due to co-located applications. The second controller
supports mid- and long-term reconfigurations of resources with high
adaptation costs (e.g., memory) by proactively planning such reconfigu-
rations in advance employing workload forecasting techniques.

Chapter 7 contains the validation of our self-aware approach to resource
management. We integrate our techniques for model extraction into state-
of-the-art platforms and evaluate their accuracy and efficiency in case
studies with real-world applications.

Chapter 8 concludes this thesis and provides an overview of future work.



Part |

Foundations and Related Work






Chapter 2

Foundations of Self-Aware Computing

2.1 Self-Aware Computing

Self-aware computing is a research direction within the broader research field
of autonomic systems. In 2001, IBM introduced the term autonomic computing
envisioning computer systems “that can manage themselves given high-level
objectives from administrators” (Kephart and Chess, 2003). They see auto-
nomic computing systems as the only option to cope with the increasing size
and complexity of today’s computer systems (Kephart and Chess, 2003). An
autonomic system consists of a set of agents with self-management capabilities,
such as self-configuration, self-optimization, self-healing, and self-protection.
Not only the self-management capabilities of the individual agent, but also the
collaboration and interaction between agents are crucial for the fulfillment of
the higher-level goals.

The autonomic computing initiative inspired numerous researchers around
the world over the last 15 years. Kephart (2011) observes that most work uses
machine-learning and feedback control techniques for self-optimization at the
agent-level lacking support for the fulfillment of high-level goals at the system-
level. In order to address these deficiencies of existing autonomic systems,
leading researchers in the field introduced the idea of self-aware computing
systems (Kounev et al., 2015). They define the term self-aware computing as
following:

Definition 2.1 (Self-Aware Computing). “Self-aware computing systems are
computing systems that:

1. learn models capturing knowledge about themselves and their environ-
ment (such as their structure, design, state, possible actions, and run-time
behavior) on an ongoing basis and

2. reason using the models (for example predict, analyze, consider, plan)
enabling them to act based on their knowledge and reasoning (for example
explore, explain, report, suggest, self-adapt, or impact their environment)
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in accordance with higher-level goals, which may also be subject to change.”
(Kounev et al., 2015)

This definition highlights the central role of models in self-aware computer
systems capturing knowledge about the system and its environment. It does
allow for any type of model, requiring only the characteristics Stachowiak (1973)
describes in his general model theory:

Definition 2.2 (Model). Every model fulfills the following three main charac-
teristics:

* Mapping: a model is always a representation of some entity (real-world,
or a model itself).

* Reduction: a model always abstracts from the underlying entity.
* Pragmatism: a model is built for a certain purpose.

Models in self-aware computing systems may fulfill different purposes dur-
ing learning and reasoning. Different types of models may be used to represent
knowledge in a manner that suits its purpose. In general, the following three
main types of models may be distinguished (Kounev et al., 2015):

* Descriptive models describe the actual state of a system at a given point
in time.

* Prescriptive models represent planned states of a system in the future. The
system needs to adapt to reach such a state.

* Predictive models enable the prediction of the impact of changes in the
system or its environment on the system behavior. Predictive models are
required for a system to become proactive, i.e., to react to changes in the
environment in advance before violating high-level goals.

Figure 2.1 shows the conceptual model-based learning, reasoning, and acting
loop (LRA-M) consisting of the main activities in a self-ware computing system
and how they interact with the model-based knowledge. The system gets
the high-level goals from a user and empirical observations from sensors as
input. Based on the empirical observations it continuously learns models on the
system behavior and structure, its environment and its goals. Using previously
learned models and empirical observations, the system also executes reasoning
activities to check the fulfillment of its goals. The reasoning process may
trigger certain act processes in order to adapt the system in accordance with
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Figure 2.1: LRA-M loop for self-aware computing systems (excerpt from
Kounev et al., 2017b).

the system goals. The act process is optional as self-adaptation capabilities are
not a requirement for self-aware computing systems. A self-aware computing
system may also assist a human in adapting a system.

The concept of self-aware computing is independent of a concrete domain. It
may be realized for different types of systems (e.g., data-center performance and
resource management, or cyber-physical systems). In the following sections,
we describe existing techniques which are useful when building self-aware
resource management systems for virtualized data-centers.

2.2 Model-based Knowledge Representation

In Section 2.1, we use the term “model” in a rather generic way ranging from
machine-learning and statistical models (e.g., regression models, or artificial
neural networks) over stochastic models (e.g., Markov or Queueing models) to
domain-specific modeling languages (e.g., meta-models or ontologies). While
the first two types of models provide a well-understood and mathematical
rigorous foundation for analyzing and predicting the behavior of computer
systems, they come with certain limitations:

¢ The models are domain-agnostic and therefore only have very limited de-
scriptive capabilities. Additional semantic information on what a model
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element represents in the actual system (e.g., a CPU, a component, or a
request) cannot be explicitly included in the model.

¢ The models do not support a separation of concerns. The complete model
is typically described in a single model. When changing a certain aspect,
one needs to understand the complete model in order to avoid unwanted
side-effects.

¢ The models support only certain types of analyses well. In order to
support a broad set of analyses, a self-aware computing system may
need to maintain a set of different models with potentially overlapping
parts. This introduces additional complexity to its learning and reasoning
processes.

Kounev et al. (2016) proposes an approach based on the principles of model-
driven engineering (Schmidt, 2006) using a domain-specific language — called
Descartes Modeling Language (DML) - for online performance and resource
management in data centers. They specify a meta-model comprising all aspects
of a data-center relevant for performance and resource management and de-
scribe model-to-model transformations to different types of prediction models
in order to enable reasoning. In this thesis, we use DML as a basis to represent
the knowledge in a system for self-aware resource management. We first give a
short introduction to model-driven engineering in general in Section 2.2.1 and
then provide an overview of DML in Section 2.2.2.

2.2.1 Model-Driven Engineering

Model-Driven Engineering (MDE), or Model-Driven Deveoplment (MDD), is a
software engineering discipline based on domain-specific languages and model
transformations in order to describe domain concepts effectively (Schmidt,
2006). In contrast to general programming languages (e.g., C++ or Java),
domain-specific languages are specifically tailored to describe problems of
a certain domain (e.g., financial services or industrial production systems).
Domain-specific languages are focused on modeling the variable parts of a
domain enabling more concise and abstract descriptions (Voelter et al., 2013).

Meta-models are a formal definition of the abstract syntax of a domain-specific
language (i.e., the model entities and their relationships). Meta-metamodels
are available to describe meta-models in a machine-processable way. The
Object Management Group (OMG) standardization body specified such a meta-
metamodel — called Meta-Object Facility (MOF) — for its Unified Modeling
Language (UML) standard (OMG, 2015). OMG distinguishes between complete
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Figure 2.2: Ecore meta-metamodel.

and essential MOF. Essential MOF provides a simplified meta-metamodel and
is most commonly used in practice.

The Eclipse Modeling Framework (EMF) (Steinberg et al., 2009) provides
the Ecore meta-metamodel, which is aligned with the essential MOF standard.
Figure 2.2 shows the main classes of the Ecore meta-metamodel. Ecore is self-
describing, i.e., the meta-model can be used to describe its own abstract syntax.
The root element EPackage in an EMF meta-model groups a set of EClassifier
objects which belong semantically together. An EClassifier can be either an
EDataType, representing a primitive value type, or a structured EClass.

Any EMF model can be considered as a directed graph. The nodes are objects
conforming to meta-model classes which are instances of EClass. The edges
are settings of EReference features defined in a meta-model class. A subset of
the object graph of an EMF model forms a containment tree (i.e., references
marked with containment or container). Each object has exactly one parent
object (except for the model root).

In addition, each meta-model class may contain a set of EAttribute contain-
ing one or several values of an EDataType. Operations can be used to describe
dynamic behavior within meta-models. Operations are not used in this thesis
as we use meta-models as a basis for structured knowledge representation.
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2.2.2 Descartes Modeling Language (DML)

DML is a modeling language for online performance and resource management
in data centers (Kounev et al., 2016). It is designed as a descriptive meta-
model. A set of model-to-model transformations exist to automatically derive
prediction models (e.g., QNs or Queueing Petri Networks (QPNs)) from a DML
instance. Depending on the type of analysis to be performed, a transformation
can be chosen from this set. DML consists of a set of EMF-based meta-models.
Figure 2.3 gives an overview of these meta-models the DML.

Adaptation Process Meta-Model
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Figure 2.3: DML meta-model overview (excerpt from Kounev et al., 2014).

The Resource Landscape meta-model describes the infrastructure layers within
a data-center (e.g., hypervisor, operating system, or middleware layers). Each
layer may provide certain resources (e.g., physical or virtual CPUs, hard disks,
or software resources). The Application Architecture meta-model provides a
component-based description of the structure and behavior of applications
(interfaces and software components, control flow between components, and
performance-relevant behavior of the component implementation). The De-
ployment meta-model describes the mapping of application components to
the resource landscape. The Usage Profile meta-model describes the external
workload of an application (i.e., the order and intensity of requests arriving
at the application). These four meta-models enable performance predictions
under varying workload and configuration settings.
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DML provides additional meta-models to describe adaptation processes
within a system. The Adaptation Process meta-model is a decorator meta-model
and describes the degrees of freedom of a system (i.e., the parts of the applica-
tion architecture and the infrastructure layers that can be adapted at system
run-time). The Adaptation Process meta-model provides a domain-specific lan-
guage to description adaptation processes. These processes are based on the
adaptation points and describe how the system is adapted at run-time in order
to fulfill high-level goals. The following descriptions are focused on the meta-
models used for performance predictions as they are the foundation of this
thesis. We refer the reader to Huber (2014) for more details on the adaptation
points and adaptation process meta-models.

Resource Landscape. The root element of the resource landscape meta-model
is a DistributedDataCenter, which contains a set of DataCenter elements. A
DataCenter describes the physical infrastructure of a data center containing
sets of ComputeNode and StorageNode elements, which are both subclasses of
Container. A Container represents a logical system entity that can execute
software components of applications. Software infrastructure layers (e.g., hy-
pervisor, operating system, or middleware system) can have a significant impact
on the performance behavior of a system, for instance, see the evaluation of
virtualization overheads in Huber et al. (2011). In order to support the explicit
modeling of layered software infrastructures, DML supports the nesting of
Container elements. For instance in a virtualized data-center, you typically
have a hypervisor that hosts a set of VMs, each running its own guest Oper-
ating System (OS) and additional middleware services. RuntimeEnvironment
elements, which are also a subclass of Container, can be used to describe each
of these software infrastructure layers.

| DistributedDataCenter | | ConfigurationSpecification | | ContainerTemplate |
configSpec | * template /\ 0..1
belongsTo [ 0..1
0..*| compositelnfrastructures ofContainer R
0.1 1 containedin
Compositelnfrastructure IH
parent
parent
A 1 parent A
consistsOf | 1..*
DataCenter storageNodes | 0..* computeNodes | 0..*
0..1,|, networklInfrastructure | StorageNode | | ComputeNode | -
contains

|Network|nfrastructure| | RuntimeEnvironment |

Figure 2.4: DML resource landscape (excerpt from Kounev et al., 2016).
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Each Container references one or several ConfigurationSpecification el-
ements that can be of one of the following subclasses:

® A ProcessingResourceSpecification describes an active resource of-
fered by a container (e.g., physical and virtual CPUs, or hard disks).
An active resource is characterized by a scheduling policy of the active
resource, as well as a processing speed and level of parallism.

* A PassiveResourceSpecification represents software and hardware
resources with limited capacity (e.g., main memory, thread or connection
pools). A passive resource is characterized by its maximum capacity.

* ACustomConfigurationSpecificationallows toinclude additional mod
els describing the impact of the configuration on the performance of a
system. For instance, Huber et al. (2011) describe an overhead model for
the virtualization layer that may be referenced here.

In virtualized data centers, system entities are often replicated multiple
times with the same configuration (e.g., to support load-balancing and fail-
over). In order to reduce modeling efforts and enable reuse, it is possible to use
the ContainerTemplate element to specify ConfigurationSpecification ele-
ments that are shared between multiple Container elements. These templates
are stored in a separate ContainerRepository model.

A separate meta-model exists to describe the network infrastructure in a
data-center, called Descartes Network Infrastructure (DNI) (Rygielski and
Kounev, 2014). A complete DNI model may be referenced from the root
DistributedDataCenter.

Application Architecture. The description of the application architecture is
based on the principles of component-based software engineering. An appli-
cation consists of a set of component definitions stored in a Repository root
element. Figure 2.5 gives an overview of the main classes of the repository meta-
model. We distinguish between different types of components derived from
the abstract InterfaceProvidingRequiringEntity class. Each component may
reference multiple InterfaceProvidingRole and InterfaceRequiringRole el-
ements describing the component services provided or required by a com-
ponent. Each role references an Interface definition in the Repository. An
Interface contains a set of Signature elements representing individual op-
erations. A component service is an implementation of a Signature at an
InterfaceProvidingRole. DML distinguishes between the following three
types of components:
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¢ A BasicComponent is an atomic component containing direct implemen-
tations for each provided component service.

¢ A CompositeComponent may consist of several other components (compos-
ite or basic), which are always deployed together on the same container.

* A SubSystem may also consist of several other components (composite,
basic, or subsystem). In contrast to CompositeComponent, the individual
components may be deployed on separate containers.
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ServiceBehaviorAbstraction l%' Signature |0—0| Interface | 4' AssemblyConnector

1\ M F‘ 0.*
1 ‘ 1 j !
H InterfaceProvidingRole Q | InterfaceRequiringRole |
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| BasicComponent | |CompositeComponent| | SubSystem | | System |

Figure 2.5: DML application architecture (simplified).

The ServiceBehaviorAbstraction element describes the performance be-
havior of a component service. It is possible to describe the service behavior at
the following abstraction levels:

¢ A BlackBoxBehavior contains a ResponseTime element describing the
response time behavior of the service as an arbitrary function.

* A CoarseGrainedBehavior specifies how many resources a component
service consumes in total (ResourceDemand) and which external compo-
nent services are called with what frequency (ExternalCallFrequency).
The sequence of external calls and resource demands is not specified.

* A FineGrainedBehavior defines a sequence of performance-relevant ac-
tions (AbstractAction). Control flow actions (such as BranchAction,
LoopAction, and ForkAction) are provided to describe different sequences
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of external calls (represented by ExternalCallAction) and resource-
demanding internal computations (represented by InternalAction). Fur-
thermore, AcquireAction and ReleaseAction elements cn be used to de-
scribe synchronization behaviors (e.g., critical sections, or semaphores).
Only basic components may contain FineGrainedBehavior descriptions.

It is possible to specify multiple service behaviors for the same component
service. When predicting the performance of a system, one of the service
behaviors is chosen depending on the requirements on prediction accuracy
and solution time.

The AssemblyContext and the AssemblyConnector elements describe the
control flow between components in a system. An AssemblyContext is the
instantiation of a component defined in the Repository in a system. The same
component may be instantiated multiple times, each instantiation is described
by a separate AssemblyContext. The AssemblyConnector element describes
the inter-component control flow connecting an InterfaceRequiringRole of
a component in one AssemblyContext with an InterfaceProvidingRole of a
component in another AssemblyContext.

Deployment. The resource landscape model and the application architecture
are linked by the deployment model. It consists of a list of DeploymentContext
elements, each mapping an AssemblyContext in the application architecture
to a Container element in the resource landscape.

Usage Profile. A usage profile consists of one or several UsageScenario ele-
ments. Each UsageScenario contains a WorkloadType and a ScenarioBehavior
element. The former specifies whether the workload is open or closed includ-
ing a specification of the load intensity. The latter describes a sequence of
UserAction elements. A UserAction element can be a SystemCallUserAction
describing a single invocation of a system service, a DelayUserAction to rep-
resent user think times, or composite constructs (e.g., LoopUserAction, or
BranchUserAction).

Model Variables. Service behavior descriptions contain random variables (called
model variable in DML) that need to be characterized before a model can be
solved. Examples are resource demands, response times (in case of black box
behaviors), or control flow variables, such as branching or loop iteration counts.
These parameters are represented by ModelVariable elements. Each model
variable in a DML model may have either an EXPLICIT or an EMPIRICAL char-
acterization. The former means, that the model variable comes with an explicit
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description of its probability distribution function. The latter expresses that
the probability distribution needs to be characterized based on empirical data
observed at system run-time.

Parameter dependencies. The shape of a probability distribution function of a
model variable may depend on the value of input parameters of the system. For
instance, the resource demands in an online shop may depend on the number
of items a user has in its shopping cart. Such parameter dependencies can be
modeled explicitly in DML. A parameter dependency connects one or multiple
input parameters defined in a component interface with one or multiple model
variables.

2.3 Statistical Techniques for Model Parameterization

In this section, we give an overview of statistical techniques that can be used
for the characterization of model parameters (e.g., resource demands) from
empirical observations at a system.

2.3.1 Regression Analysis

Given a set of independent variables z . .. z; and a dependent variable y, linear
regression tries to describe the relationship between the dependent variable
and the independent variables with the linear model

y= 0o+ Pix1 + Poxa+ ...+ Brrr + €. (2.1)

In regression analysis, y is known as response variable and x; with 1 < j < k as
control variables. The goal is to determine the parameters 5; with 0 < j < kin
such a way that the residuals € are minimized regarding a specific measure.
Examples for such measures are the sum of squared residuals used in Least
Squares (LSQ) regression or the sum of absolute differences used for Least
Absolute Differences (LAD) regression. To be able to determine a unique
solution for the parameters ;, at least n sets of known values (y,z ...zy)
are required, where n > k. The above linear model can be written in matrix
notation as (Chatterjee and Price, 1995, p. 96ff)

Y=XB+e (2.2)
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with following matrices

1 w1 xio -0 Tk Y1 €1 Bo

1 mo1 xop -+ Top Y2 €2 B1
X = . . . . 7Y - . b e == . and IB - .

1 In1l Tnpn2 - Tnpk Yn €n B

X is called control matrix and Y is the response vector. We assume that the
vector of error residuals € is independent and identically distributed with
mean E[e] = 0 and a constant variance. Then we can conclude that E[Y] =
X3 (Chatterjee and Price, 1995, p. 97). The parameter vector 3 needs to be
estimated.

LSQ regression estimates the parameter vector 3 by minimizing the sum of
squared residuals. Hence, the following expression needs to be minimized

ele = (Y - XB)T(Y - XP). (2.3)

The value 3 that minimizes the previous expression can be calculated with
following formula (Chatterjee and Price, 1995, p. 97)

B=(XTX)"'xTy. (2.4)

2.3.2 Kalman Filter

Statistical filtering is about the estimation of a hidden state of a dynamic system
from known system inputs and incomplete and noisy measurements (Kumar
et al., 2009a). In this context, the term state is defined as follows:

"The states of a system are those variables that provide a complete
representation of the internal condition or status at a given instant
of time.” (Simon, 2006, p. xxi)

The term dynamic system implies that the state of the system changes over time.
Different statistical filtering methods have been proposed. We describe the
Kalman filter here in more detail because it is often used to estimate resource
demands.

Generally speaking, we can distinguish between discrete-time and continuous-
time systems. Subsequently, we will focus on discrete-time Kalman filters. The
notation used is based on the one used by Kumar et al. (2009a) and Simon
(2006).

The system state x is a vector containing the variables that describe the
internal state of a system. These variables cannot be directly observed at a
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system. The Kalman filter estimates the vector x from a series of measurements
z. The system is described by two equations. The first equation describes how
the system state evolves over time according to (Simon, 2006)

Xp=Fr1xp 1+ Grorup—1 +wWy_1. (2.5)

The time advances in discrete steps, which are denoted by index k. x;, is the
system state at time step k, which is calculated from the previous system state
xk—1 and the control vector uy_; containing the inputs of the system. The
matrices F and G are called state transition model and control-input model.
The process noise wy,_; is assumed to be normally distributed with zero mean
and covariance Qg.

The second equation describes the relationship between the system state x;,
and the measurements z;, at time step k according to (Simon, 2006)

z; = Hipxp + vy,. (26)

The matrix Hy, is the observation model, which maps the state space to the
observation space. vy, is the observation noise, which is assumed to be Gaussian
white noise with zero mean and covariance Ry.

If the relation z = h(x) between system state and measurements is non-linear,
the Extended Kalman filter (EKF) can be used. The EKF approximates a linear
model with the following output sensitivity matrix:

oh
H, = [83:] ) . (2.7)
Th|k—1

The output sensitivity matrix is set to the Jacobian matrix of h(x). The par-
tial derivatives are evaluated with the current estimates of the system state.
The vector %,,,,, represents the estimated system state X at time step n given
measurements zi ... z,,.

The Kalman filter is a recursive estimator. It starts with an initial state and
continuously updates its estimate as new measurements are obtained. At each
time step & the calculations only depend on the previous estimate X;_;_; and
the current measurements vector z;, (Kumar et al., 2009a). The internal state of
the filter is represented by two variables:

* the state estimate Xy,

* and the error covariance matrix Py
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The error covariance matrix is a measure for the estimated accuracy of the state
estimates (Kumar et al., 2009a). At the beginning the filter is initialized with
given values for Xy and Py.

The algorithm that calculates new state estimates consists of two phases (Ku-
mar et al., 2009a): Predict and Update. In the predict phase a new state estimate
Xp|k—1 is calculated with Equation 2.5. In the update phase the prediction error
of Xy x—1 is determined according to the current measurements z;. Then a
corrected estimate Xy, is calculated. These two steps are carried out each time
a new measurement sample vector gets available.

Assuming a linear relationship between the measurements and the system
state, and uncorrelated and normally distributed noise with zero mean, the
Kalman filter is an optimal estimator. Since most systems are inherently nonlin-
ear, the EKF provides a linear approximation for cases with slightly nonlinear
characteristics.

2.3.3 Mathematical Optimization

Generally speaking, an optimization problem is described by a cost (objective)
function f with a domain D C R™ and a constraint set @ C D (Dostl, 2009). The
objective function can be either minimized or maximized. In the following, we
assume that it should be minimized. Then the optimization problem is also
called minimization problem and can be solved by finding a value = € (2, so that

f(@) < flx), z €. (2.8)

Solutions of a minimization problem are called (global) minimizers (Dostl, 2009).
In contrast to global minimizers, there are also local minimizers. A local mini-
mizer Z satisfies the condition

f@) < f(x),zeQ, |lx—z|| <4 (2.9)

for 6 > 0 (Dostl, 2009).

Optimization problems can be classified into different categories. There
are constrained and unconstrained optimization problems. In the case of un-
constrained optimization problems, there are no additional constraints in the
constraint set, i.e.,, @ = D. If additional equality and inequality constraints
are given, we speak of constrained optimization. Depending on the degree of
the objective function and the constraints the following types of optimization
problems exist:

* Linear programming problems have a linear objective function and a set of
linear equality and inequality constraints.
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* Quadratic programming problems are optimization problems with a quadratic
objective function and a set of linear equality and inequality constraints.

* Non-linear programming problems can have any kind of non-linear objec-
tive function and/or non-linear constraints.

Different solution algorithms exist for the different types of optimization prob-
lems. Descriptions of possible solution algorithms can be found in Dostl (2009)
and Nemhauser (1989).

2.3.4 Maximum Likelihood Estimation

Suppose a collection of independent and identically distributed random vari-
ables Y1, Ys, ..., Y, where 0 are the parameters of their probability distribution,
and corresponding sample path y1, y2, ..., yn, then the joint distribution is rep-
resented by the probability density function f(y1, y2, ..., y|6). This function is
also known as the likelihood IL(6) stating the probability of observing a sample
path y1, 42, ..., y, for a given 0. The joint distribution can be replaced by the
product of the conditional probability of individual samples:

L(0) = [ ] f(il0). (2.10)
i=1
An equivalent representation that is often easier to solve is obtained by taking
the logarithm of the likelihood function resulting in a sum of logarithms. This
is known as the log-likelihood function.
The maximum likelihood estimate 6 is then defined as

6= max L(6). (2.11)

In case of complex likelihood functions, optimization algorithms (c.f. Section
2.3.3) are typically used to determine the maximum likelihood estimate.

2.3.5 Bayesian Inference

In the previous section, we described the maximum likelihood estimation
method based on the frequentist interpretation of probability. In contrast,
Bayesian inference introduces the concept of a prior distribution capturing
assumptions and knowledge available before taking observations. Suppose a
vector of parameters 6 and vector y with observations, the posterior distribution
f(0ly)is

1(y10)f(6) o)

f(0ly) = y)
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f(y|0) denotes the likelihood of observing y for a given 6. f(6) is the prior
distribution, and f(y) is the marginal likelihood of the observations. Assuming
fixed values for the observations y, f(y) can be seen as a normalization constant.
The constant can be calculated using the following integral:

f(y) = / F(y16)£(0)db. (2.13)

However, the exact calculation of this integral required to determine the joint
posterior distribution is intractable for most practical problems, especially in
case of multi-variate posterior distributions. The Metropolis-Hastings algo-
rithm (Hastings, 1970), which is a Markov-chain Monte Carlo (MCMC) algo-
rithm for random sampling, allows us to approximate the posterior distribution
without calculating the normalization constant. The algorithm only requires
the availability of a function g that is proportional to a desired probability
distribution. In case of Bayesian inference, the function g is the numerator in
Equation 2.12.

The general idea of MCMC algorithms is to construct a Markov chain with an
equilibrium distribution resembling the desired posterior distribution. Samples
are generated by a random walk on this Markov chain. A sample is then the
state of the Markov chain after a certain number of steps. Gibbs sampling (Ge-
man and Geman, 1984) is a special case of the Metropolis-Hastings algorithm
for highly multi-variate distributions. Suppose we want to obtain a sample
X = (21, ..., ) from the posterior distribution, then Gibbs sampling requires
the availability of all conditional distributions f(z;|x1, ..., i1, Zit1, Zn). The
conditional distributions may either be calculated exactly, or we rely on other
random sampling algorithms for single-dimensional distributions, such as
adaptive rejection sampling. In order to determine the sample in step ¢, a Gibbs
sampler iterates over each component of vector X and determines its value
by sampling from f(azgt) \xgt), - xl(t_)l, xgizl), - x%t*l)). Given a large set of sam-
ples resulting from the Gibbs sampler, we can approximate the expected value
of the posterior distribution by averaging over all samples. It should be noted
that consecutive samples from a Gibbs sampler are typically auto-correlated.
Therefore, only every n-th sample should be included. Furthermore, samples
at the beginning should be discarded as long as the underlying Markov chain
is not in its equilibrium state.

30



2.4 Performance Prediction

2.4 Performance Prediction

In contrast to the descriptive meta-models introduced in Section 2.2, we now
describe model formalisms and algorithms that are used to create prediction
models for a given system. In a self-aware system, prediction models enable to
analyze the impact of adaptations on the system performance in advance. The
prediction models are typically derived from a descriptive model, e.g., using
the model-to-model transformations for DML proposed by Brosig (2014). In
this section, we provide foundations of queueing theory used in Chapters 5
and 6 for resource demand estimation and performance prediction.

2.4.1 Queueing Models

Queueing theory is a discipline of stochastic theory and operations research. It
provides general methods to analyze the queueing behavior at a service station
and has been successfully applied to different domains in the last decades,
e.g. to model manufacturing lines or call center operation. When analyzing
the performance of a computer system, queueing models are used to describe
the scheduling behavior at hardware resources, such as CPUs, hard disks and
network devices (Bolch et al., 2006; Harchol-Balter, 2013; Lazowska et al., 1984).
We will first introduce the single service center case including fundamental
laws to determine performance measures of it. Then, we will describe QN
with multiple service centers and discuss the challenges when analyzing such
models.

2.4.1.1 Single Service Center

In general terms, a service center consists of a queue and one or several identical
servers (see Figure 2.6). Incoming requests (or users, jobs, transactions) are
processed at one of these servers. A server is either busy when serving jobs,
or free otherwise. On arrival, requests are served immediately if at least one
server is currently free. Otherwise, they have to wait in the queue until a server
becomes free. After service completion the requests leave the queue.

A number of terms are commonly used when describing the timing behavior
of a queue. Requests arrive at the queue at arbitrary points in time. The
number of requests per time unit is called arrival rate A\. The average time
between consecutive requests is called interarrival time. Each request requires
a certain amount of processing at a server. The service rate ;1 determines the
number of requests that can be processed per time unit at a single server. The
mean service time is then defined as S = % and specifies the time a server is
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Figure 2.6: Single service center

occupied with processing a request on average. Based on the service time, the
service demand is defined as following (Lazowska et al., 1984; Menascé et al.,
2004):

Definition 2.3 (Service demand or resource demand). The service demand D
is the total average service time of a request over all visits at a queue. It can be
defined as

D=V.5, (2.14)

where V' is the mean number of visits and S the average service time of each
request. The terms resource demand and service demand can be used inter-
changeably. In the following we will use the term resource demand.

When one request is completed, the next is selected from the requests in the
queue according to a scheduling strategy. Typical scheduling strategies are First-
Come-First-Serve (FCFS), where jobs are processed in the order of their arrival,
Processor-Sharing (PS), where jobs are served concurrently each with an equal
share of the total capacity (i.e., round-robin scheduling with infinitesimally
small time slices), or Infinite-Server (IS), which represents queues with constant
delays.

There is a standard notation for describing a queue, which is called Kendall’s
notation (Kendall, 1953), consisting of a six-tuple A/S/m/B/K/SD: A is the arrival
process (i.e., the distribution of the interarrival times), S is the service process
(i.e., the distribution of the service times), m is the number of servers, B is
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the maximum number of jobs in the queue (by default oo), K is the maximum
number of jobs that can arrive at the queue (by default co), and SD is the
scheduling strategy (by default FCFS). The distribution components are charac-
terized using short-hand symbols for the type of distribution. Commonly used
symbols are M for an exponential (Markovian) distribution, D for a determin-
istic distribution, Ej, for an Erlang distribution with parameter £, and G or G1
for general (independent) distributions.

In practice, many systems serve requests with different arrival and service
characteristics (e.g., the service rate of read and write requests to a database may
be different). In theory, it would be possible to use multi-modal distributions
for such cases, however, this can complicate the parameterization and solution
of queueing models (Harchol-Balter, 2013, Chapter 21). Instead, multi-class
queueing models are used, where a workload class represents a set of jobs with
similar characteristics. Each workload class has its own set of arrival rate and
service rate parameters.

For a single queue, we may determine a number of performance measures
for a transient point in time ¢ or for the steady state (i.e., t — 00). In the following,
we are interested in the steady-state solution of a queue. More details on
the transient solution of a queue can be found in (Bolch et al., 2006). The
performance measures of interest are typically the utilization U;, the throughput
X, the queue length @;, and the response time R; .. The utilization is the ratio
of time a queue is busy serving requests. The throughput is the number of
requests leaving the queue in a given time interval. If the maximum number of
requests that arrive at a queue is unlimited, the relation A < y must hold, so
that the queue is stable (i.e., a steady state solution exists). The queue length
specifies the number of requests waiting for service (excluding those currently
in service). The mean response time R; . of queue i and workload class c is
defined in general by the following equation:

Ric=Wie+ Dipc (2.15)

W; . is the mean time a request has to wait in the queue before being served,
and D, . is the mean resource demand of that request. The waiting time W; .
depends on a number of parameters, amongst other the scheduling strategy,
and the arrival and service processes.

2.4.1.2 Queueing Network (QN)

A QN consists of at least two service centers which are connected together
(Bolch et al., 2006, p. 282). The routing of requests between service centers is
specified by a probability matrix. Requests of class ¢ departing from service
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station 7 will move to service station j with probability P, ; ; or leave the QN
with probability Pejou = 1—3_; Fr,; (Harchol-Balter, 2013, p. 297). Requests
of class c can arrive from outside the QN at service station ¢ with a rate ;.
In case of an open QN, requests of all workload classes can enter the network
from outside as well as leave it (Bolch et al., 2006, p. 282). A QN is closed if
the number of requests in the network is constant (i.e., no requests can enter
or leave the network) (Bolch et al., 2006, p. 282). If some workload classes are
open and others are closed, we speak of a mixed QN.

The solution of a QN with K service centers and C workload classes requires
us to determine the steady state probabilities 7(IN1, N2, ..., Nk ) where N; =
(n1,ng, ...,nc) is a vector of the number of requests of each workload class ¢
at service center i. However, calculating the steady state probabilities for a
general QN requires us to construct the complete state space. This is can be
a compute and memory-intensive task and suffers from the problem of state
space explosion with increasing numbers of service centers and requests (Bolch
et al., 2006, p. 2). However, the construction of the complete state space is not
required for product-form QNs. Product-form QNs have a special structure, so
that the steady state probability of the QN can be easily computed from the
ones of the individual service centers (Bolch et al., 2006, p. 281):

(N1, Na, ..., Ni) = é w(N1) - 7(Na) - ... - m(Ng)] (2.16)
G is a normalizing constant. In other words, we can calculate the steady state
probabilities of each service center in a product-form QN independently.
Kelly showed that every QN with quasi-reversible service centers and Marko-
vian routing has a product form (Kelly, 1975, 1976). Quasi-reversibility means
“that the current state, the past departures and the future arrivals are mutually
independent” (Balsamo, 2000). Markovian routing means that the routing of
requests does not depend on the current state of the QN. The BCMP theo-
rem (Baskett et al., 1975) showed that this property holds for the following
types of service centers:

1. M /M /m with FCFS scheduling assuming that the service rate does not
depend on the workload class,

2. M/G/1 with PS scheduling,
3. M /G /oo with IS scheduling, and

4. M/G/1 with Last-Come-First-Serve (LCFS) scheduling with preemption.
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The service rate distribution in cases 2, 3, and 4 are required to have rational
Laplace transforms. This is in practice no limitation since any exponential,
hyperexponential, or hypoexponential distribution fulfills this requirement
and all other types of distribution can be approximated using a combination of
the former (Cox, 1955).

Furthermore, Baskett et al. (1975) showed that the product-form property
holds for these scheduling strategies even with certain forms of state-dependent
service rates. Amongst others, the service rate may depend on the number of
requests at a service center (Baskett et al., 1975). Thus, service centers with
multiple servers are also allowed for PS and LCFS scheduling.

2.4.1.3 Operational Laws

The operational laws of queueing theory provide us a quick and simple way
to determine certain average performance measures of a service center. These
laws are independent of the arrival and service process, or the scheduling
strategy. Therefore, they can be used generally to describe a single service
center or a system of several service centers.
The most fundamental law in queueing theory;, is Little’s Law (Harchol-Balter,
2013, Chapter 6):
Ni,c = )\CRi,c (217)

The number of requests N; . of workload class c at service center ¢ equals to the
product of request arrival rate A\, and the average time in the service center R; .
(i.e., response time).

The Utilization Law is defined as (Menascé et al., 2004, p. 64f):

Ui = D (2.18)

where Uj . is the utilization at resource ¢ due to requests of class ¢, m; is the
number of parallel servers, D; . is the mean service demand and Xj . is the
throughput.

The Service Demand Law is defined as (Menascé et al., 2004, p. 65f):

m; - Ui e
D, = ——>. 2.19
7,C X07c ( )

It relates the service demand D; . of requests of class c at service center i to
the utilization U; . and the total system throughput X . of class c. Additional
operation laws can be found in Menascé et al. (2004).
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2.4.1.4 Response Time

The response time of a single service center is dependent on its parameters.
In the following we show the exact results for different variants with Poisson
arrival and service processes. If we have a M /G /m queue with PS or preemptive
LCFS scheduling, or a M /M /m queue with class-independent service rates
and FCFS scheduling, the response time R; .. is (Bolch et al., 2006, p. 251):

1 PB
Rie=Di (1+—-
?,C 7,C < + ml 1 _ UZ>

(2.20)

P B; is the probability that all m; servers of the service center i are busy, and a
new request has to wait in the queue. PB; can be calculated using the Erlang-C
formula (Bolch et al., 2006, p. 250):

(m;U;)™
PB; = .y
mz'(l - Ul) 7,0
- - (2.21)
. — (mU)F | (mU)™ 1
Wlthﬂ'ip: Z ( il ) + ( TTL") —U
k:O . (N 1

If a service center has IS scheduling, a request never has to wait for service and
the response time simplifies to:

Ri.= D, (2.22)

If the number of servers m; = 1, the busy probability of service center i is
PB; = U;. As aresult, Equation 2.20 can be simplified to:

D.
Ri,c = 1 _178;‘

(2.23)

However, the previous equations are not valid for M/M/m service stations
with FCFS scheduling and service rates depending on the workload class. The
response time of such a service station can only be approximated. Franks (1999)
compared the accuracy of different approximations and proposes the following
one:

PB; &

Ric=Dic+— Qis-Dis (2.24)
mi s=1

Qi.c is the queue-length of requests of workload class c at service center i. This

is only an approximation, since the ordering of requests can also influence their

response times for such service stations.
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2.4.1.5 Solution Techniques

Different solution techniques for QNs have been developed in the last decades.
They can be broadly classified into simulation and analytic techniques. Event-
discrete simulation can be used to analyze arbitrarily complex QNs. However, it
is often necessary to simulate a QN for a long time in order to obtain sufficiently
accurate results.

Analytical techniques can provide exact solutions of a QN avoiding the
overhead of simulation. There are state-space and non-state-space techniques
(Bolch et al., 2006). State-space techniques rely on the generation of the complete
underlying state space of a QN limiting their scalability to increasing numbers
of requests, workload classes and service stations. If certain assumptions are
fulfilled, non-state-space techniques can be used instead. Given a product-
form queueing network with open workloads, we can apply the equations
presented in Section 2.4.1.4 to directly calculate mean performance statistics
for the individual queues. Given a product-form QN with closed workloads,
the calculation of the normalizing constant G in Equation 2.16 is non-trivial.
Mean Value Analysis (MVA) (Bolch et al., 2006) is a recursive algorithm to
calculate the queue lengths in closed, product-form QNs, avoiding the direct
determination of the normalizing constant G.

2.4.2 Layered Queueing Networks (LQNs)

A Layered Queueing Network (LQN) is an extended formalism based on QNs
that enables the combined modeling and analysis of hardware and software
contention in a model.

Formalism. Figure 2.7 shows an example LON model. An LON model consists
of the following elements:

* Processors are the top-level element of an LQN and represent processing
resources in a system (e.g., a CPU). Processors are depicted in Figure 2.7
as circles. Processors have a scheduling discipline and a multiplicity. The
multiplicity specifies the level of parallelism of the processor.

¢ Tasks are executed on exactly one processor and represent logical system
entities (e.g., nodes in a distributed system, or software components).
Tasks are depicted in Figure 2.7 as parallelograms. A task may call other
tasks in a system. Calls between tasks must ensure a strict layering, i.e,
tasks may only call other tasks which are on a lower level. The top-
most task implicitly represents users of a closed workload and are called
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Figure 2.7: Example of an LQN model.

“reference tasks” (Franks et al., 2009). A task has a multiplicity specifying
how many instances can execute in parallel.

* Entries are used to distinguish different types of requests that a task can
accept (i.e., they correspond to workload classes in traditional QNs). En-
tries accept requests from other tasks in FCFS ordering. The multiplicity
(in parentheses) of the call arrow specifies the number of requests sent
per each invocation. In addition, synchronous and asynchronous calls
are distinguished.

* Activities enable the fine-granular description of the behavior within a
task. Activities are depicted as rounded rectangles in Figure 2.7 and
form a graph. Activities can be either resource demands or calls to other
tasks. In addition several predicates are supported such as fork/join or
loops. Fork/join predicates can have either logical-and (&) or logical-or
(+) semantics. Invocation probabilities can be attached to edges in the
activity graph.

Solution Techniques. In order to solve an LQN analytically, a topological sort
is performed on the tasks to derive the correct ordering of layers. Each layer [ is
represented by a closed QN submodel in which each service station corresponds
to a task or processor in layer [ + 1 (Franks et al., 2009). The resource demands
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in layer [ are the response times of the corresponding tasks in layer [ + 1. Using
the method of layers (Rolia and Sevcik, 1995), the submodels are solved using
MVA techniques from queueing theory. The response times and number of
requests in each layer are iteratively updated with the results of the MVA and
propagated across layers. The solution algorithm stops when the the resulting
values of the response times and number of requests stabilize.

2.5 Server Virtualization

Virtualization was first introduced in the 1960s for mainframe systems to enable
time-sharing of physical system resources between multiple logical VMs each
running its own OS (Meyer and Seawright, 1970). Over the years, the concept of
virtualization has been extended to different areas in computer science, such as,
network virtualization (Rygielski and Kounev, 2013), or desktop virtualization
(Miller and Pegah, 2007). In the following, we focus on server virtualization
where different logical VMs share the same the physical server.

The adoption of server virtualization techniques increased significantly in
the 2000s, when cheap commodity computer systems got powerful enough
to run multiple VMs with decent performance. Today’s data centers typically
consist of large clusters of server nodes with relatively cheap hardware. Each
server node is virtualized and application services are running inside VMs,
which can be deployed on any of the server nodes. Through virtualization, the
resources of individual server nodes in a data-center can be combined into one
large logical resource pool and resources can be dynamically allocated from
this pool to VMs depending on their current resource requirements. As a result,
virtualization is a key technology to implement different Cloud Computing
models.

2.5.1 Virtualization Techniques

The piece of software that executes a VM is called hypervisor or Virtual Machine
Monitor (VMM). According to Popek and Goldberg (1974) a hypervisor has
three main characteristics. First, the hypervisor provides an “essentially iden-
tical environment” (Popek and Goldberg, 1974), i.e., programs in a VM show
the same functional behavior as if executed in a non-virtualized environment.
Second, the hypervisor executes the majority of instructions directly without
translation in order to minimize the virtualization overhead. Finally, the hyper-
visor “is in complete control of system resources” (Popek and Goldberg, 1974).
Hardware emulation (Bellard, 2005) is not part of virtualization as it simulates
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a different computer architecture and therefore requires the translation of each
instruction from a guest OS incurring high overheads.

In order to fulfill the characteristics of a hypervisor, an implementation needs
to intercept certain privileged instruction so that the isolation between VMs
can be ensured. There are three major techniques to implement this:

* Hardware virtualization (Seawright and MacKinnon, 1979) means thata VM
is executed directly on the physical hardware without the need to modify
the guest OS. The hypervisor forwards the instructions from a VM to the
physical resource without translation. If certain privileged instructions
are executed by a guest OS, the hypervisor is triggered through a system
trap to handle them. A computer architecture needs to fulfill certain
requirements in order to be virtualizable (Popek and Goldberg, 1974).
The classical x86 architecture does not fulfill these requirements, because
certain privileged instructions do not result in system traps (Barham et al.,
2003).

* Binary translation (Adams and Agesen, 2006) is a software technique
that dynamically analyzes the binary machine code in the memory of a
VM before execution. Privileged instructions are translated on demand
according to certain rules. No modifications are required at the a guest
OS level, as the translation directly works on the binary machine code.
The performance overhead decreases as soon as the working set of a VM
is analyzed and translated.

* Paravirtualization (Barham et al., 2003) requires specifically modified OSs
in the VMs. The hypervisor can execute the majority of instructions
directly without translation. The OS needs to be modified manually to use
hypercalls instead of non-virtualizable instructions (e.g., the privileged
instructions in the x86 architecture). Hypercalls are special instructions
of the hypervisor that provide direct access to the underlying physical
resources in a controlled manner so that the other VMs are not disturbed.
As a result, the virtualization layer is not fully transparent to the OS as in
the other cases. However, the modifications are limited to the OS kernel
and do not influence the applications inside a VM. Paravirtualization
can offer a significant performance improvement in cases where full
virtualization is not an option (Barham et al., 2003).

In modern hypervisors, we can often see a mixture of these techniques for
different resources. CPU virtualization is typically based on hardware vir-
tualization using special extensions to the x86 architecture (e.g., Intel VT-x

40



2.5 Server Virtualization

or AMD-V). Other devices (e.g., network devices or storage controllers) are
often paravirtualized requiring special drivers within the guest OS for optimal
performance.

Typical examples of hypervisors for the x86 architecture are: the commercial
VMware ESX, and Microsoft Hyper-V, as well as, the open-source Xen, and
KVM. All of these hypervisors support hardware virtualization. VMware ESX
also supports binary translation (Adams and Agesen, 2006) and Xen supports
paravirtualization (Barham et al., 2003).

2.5.2 Open Virtualization Format (OVF).

VMs can be distributed as VAs to significantly reduce the effort for deploying
a software application. The industry standard for creating VAs is the Open
Virtualization Format (OVF) (DMTF, 2009) which defines a standard, vendor-
independent format for virtual machine images. A standard-compliant VA can
be deployed without adaptations on any hypervisor that supports OVF. All
major hypervisors (including VMware ESX, Xen and KVM) provide tools to
import OVF images. The OVF standard provides the following definition of a
VA:

Definition 2.4 (Virtual Appliance). A VA is “a service delivered as a complete
software stack installed on one or more virtual machines” (DMTF, 2009, p. 9).

A OVF package consists of the the following parts (DMTF, 2009): a required
descriptor, an optional manifest, an optional certificate, and any number of disk
images and additional resource files. The descriptor is an Extensible Markup
Language (XML ) file containing meta-data of the virtual appliance (such as,
the virtual machines, their hardware configuration, and additional settings).
The manifest and certificate can be used to check the integrity of a VA. A disk
image contains the contents of virtual hard disks in a standardized format.
Additional resource files can be, for example, ISO images (DMTF, 2009).

The OVF standard is focused on the description of the virtual hardware
environment. The actual software stack is contained within the unstructured
disk images delivered as part of a VA. OVF does not provide any meta-data
on the software stack or any introspection mechanisms to access the dynamic
state of a VA.

2.5.3 Run-time Reconfiguration

Today’s hypervisors provide different knobs to control the allocation of re-
sources to VMs. In the following, we describe major knobs that can be adapted
during system run-time without interrupting the applications in a VM.
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Scheduling Priorities A hypervisor is in complete control of the physical system
resources and typically implements a time-sharing of the resources between
VMs. By default, all VMs on a host system can obtain equal shares of a resource
enforced by a resource scheduler within the hypervisor. Most hypervisors
support the setting of scheduling parameters of individual VMs in order to
change its scheduling priority. These settings may be changed separately for
each type of resource. The scheduling parameters that we can change usually
depend on the type of hypervisor. In the following, we describe the scheduling
parameters provided by VMware ESX in an exemplary manner. VMware
ESX uses a preemptive, work-conserving scheduling strategy supporting the
following parameters (Gulati et al., 2012):

¢ The reservation is the guaranteed amount of resources a VM can consume,
even if all resources are demanded by other VMs. The sum of reservations
of all VMs on a host system is required to be less or equal to the available
resources.

¢ The limit is the maximum amount of resources a VM can consume, even if
the resources are not requested by other VMs. The limit is always greater
or equal to the reservation setting.

¢ The share is the priority of a VM with which it can get additional resources
above its reservation from other VMs. The share is an absolute quantity
and the actual priority depends on the share of the other VMs on the
same host system.

The amount of resources is specified using resource-specific metrics. These are
CPU time (in MHz), memory size (in MB), storage throughput (in IOPS) and
network bandwidth (in Mbit/s).

In addition to the scheduling at the level of a host system, VMware vSphere
provides a resource scheduler at the level of a cluster, called VMware Dis-
tributed Resource Scheduler (Gulati et al., 2012). A resource pool is a logical
grouping of resources within a cluster and may contain a set of VMs. Each
resource pool has associated reservation, limit and shares settings which ap-
ply to all containing VMs. The distributed resource scheduler ensures that
the resource pool as a whole gets the demanded resource share, even if the
individual VMs are distributed across different host systems. A distributed
algorithm (Gulati et al., 2012) continuously adapts the scheduling priorities of
the individual VM in a resource pool so that the settings of the whole resource
pool are fulfilled. Resource pools can isolate groups of VMs from each other
(e.g., test and production systems, or applications from different departments).
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Resource Hot-Add and Hot-Remove Inmost recent years, hypervisors added the
capability to add (or remove) virtual resources, such as virtual CPUs (vCPUs),
memory, or I/O devices to running VMs. This is referred to as hot-add (or hot-
remove). This way, for example, one can dynamically reconfigure a VM from a 2-
vCPU, 8 GB memory configuration to an 8-vCPU, 32 GB memory configuration
without restarting it. This is referred to as vertical scaling of a VM. Vertical
scaling provides a running VM immediate access to more resources (bigger
memory, more CPU instances). In order to leverage the additional resources,
the guest operating system needs to support the hot-plug of resources, which
many modern operating systems do.

VM Provisioning, Initial Placement and Admission Control New VM instances
can be provisioned at any time during system operation, for instance, to scale
an application horizontally by adding additional instances. When new VM
instances are started in a virtualized cluster, a suitable host system needs to be
identified with free resources. Virtualization allows over-commitment, i.e., the
sum of all virtual resources may be greater than the available physical resources
on a host system. A data center operator may allow a certain level of over-
commitment in order to increase the resource efficiency in a virtualized cluster
assuming that not all resources are requested at the same time. Admission
control mechanisms are used to control the number of VMs deployed on a
host in order to guarantee a minimum amount of resources in over-committed
scenarios and reject new VMs instances if a host would be overloaded.

Live Migration and Load Balancing VMs can be migrated at run-time between
hosts in a virtualized cluster without restarting the guest OS. When a live mi-
gration is triggered, a new clone of the VM image is created on the destination
host and the current contents of the main memory are transferred through the
network to the designated destination host. The applications in the VM can con-
tinue to execute, while the memory contents are transferred to the destination.
All memory pages that are modified concurrent to the data transfer are marked
and transferred again in a another iteration. This procedure is repeated until no
modified pages are remaining or a maximum number of iterations is reached.
Then the processing within the VM is interrupted, any remaining memory
pages are copied to the destination host, the network connections are rerouted
and the VM resumes processing on the destination host. The application is
only unavailable during this last step. It typically takes less than one second to
complete and is therefore mostly transparent to clients.
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Live migration techniques can be used to balance the load in a virtualized
cluster. If single hosts in a cluster are over-loaded, VMs can be dynamically
moved to hosts with lower utilization until the load of all hosts in a cluster
is balanced again. Furthermore, live migration techniques can be used to
consolidate VMs during phases of low load on a reduced number of hosts.
Then, unused hosts can be put into a stand-by mode in order to save energy.
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State-of-the-Art

3.1 Autonomic Resource Management in Virtualized Data
Centers

In recent years, Galante and Bona (2012), Jennings and Stadler (2015), and
Lorido-Botran et al. (2014) surveyed and classified approaches to autonomic
resource management in virtualized data centers. Jennings and Stadler (2015)
propose a conceptual framework for resource management based on eight
functional areas. We adopt this conceptual framework here and present related
work for five of these areas which are closely related to our approach.

3.1.1 Capacity Planning

Capacity planning subsumes activities to determine the changing resource
requirements of applications on a longer time scale (e.g., the acquisition of
additional physical servers, or deployment of new applications). Capacity
planning can be performed at the application level (i.e., using request arrival
rates) or at the infrastructure level (i.e., using resource usage statistics). Existing
capacity planning tools, such as VMware vRealize Operations, enable the anal-
ysis of historic resource usage data and partly provide forecasting techniques
based on time series analysis. However, the forecasting is usually limited to
simple extrapolation of historic time series.

Academic researchers proposed more powerful forecasting techniques. The
survey by Herbst et al. (2014) covers existing techniques for workload fore-
casting based on time series analysis and the authors propose an approach to
automatically select the optimal technique using a decision tree. While time
series models can capture temporal dependencies well, resource usage observa-
tions in data centers exhibit often also spatial dependencies between VMs. Xue
et al. (2015) show that neural networks are well suited to incorporate spatial
dependencies in forecasts. In Xue et al. (2016), the same authors add clustering
and step-wise regression techniques to extract representative signature time
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series from a large set of observations to reduce the training efforts of the neural
network.

Stochastic performance models, such as QNs, have been widely used for off-
line capacity planning (Lazowska et al., 1984; Menascé et al., 2004). For instance,
QNs with a pre-defined structure are used in Urgaonkar et al. (2007) and Zhang
et al. (2007) to predict the resource requirements of applications for a given
workload. Both works also consider the estimation of model parameters based
on empirical data. However, these models are only used in off-line settings for
manual analysis of resource requirements.

3.1.2 Local Resource Scheduling

A hypervisor controls the allocation of resources to VMs running on the same
physical machine. If resource allocations are dedicated, local resource schedul-
ing needs to ensure performance isolation between VMs. If resources are
over-committed, modern hypervisors offer capabilities to adjust the scheduling
priority of individual VMs (see Section 2.5.3). While local resource scheduling
for CPU and memory is well understood, recent research focuses on the opti-
mization of the local scheduling of network and storage resources (see Jennings
and Stadler, 2015).

Jennings and Stadler (2015) also identify several academic approaches (Padala
etal., 2009; Raoetal., 2011; Xu et al., 2008) proposing autonomic control schemes
to provide Quality of Service (QoS) differentiation for applications by adapt-
ing the scheduling priorities in over-committed scenarios. Padala et al. (2009)
propose a multi-input multi-output, feedback controller based on a time-series
Auto-Regressive-Moving-Average (ARMA) model. Xu et al. (2008) use a model
based on fuzzy logic to capture the relationship between resource allocation
and application performance. The fuzzy rules are learned automatically using
clustering techniques on empirical monitoring data. Rao et al. (2011) describe
a controller based on reinforcement learning techniques to predict the impact
of a reconfiguration. Blagodurov et al. (2013) use a control loop with a lin-
ear model to determine the CPU requirements depending on the number of
SLA violations in previous intervals. The control loop dynamically adjusts the
scheduling priorities of VMs. All these approaches have in common that they
abstract the application behavior as a black-box. Therefore, they depend on the
availability of sufficient empirical data covering the possible reconfiguration
space in order to be able to learn a function between resource allocation and
application performance. An alternative approach based on a queueing model
is proposed by Chandra et al. (2003). They represent the resource under control
as a queueing station with Generalized Processor Sharing (GPS) scheduling
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strategy and propose an optimization algorithm to determine scheduling prior-
ities to minimize response time SLA violations. They automatically determine
the model parameters from empirical data and adapt the system in regular
intervals. However, they represent the application with a single queueing
station, not considering the complex architecture of today’s service-oriented
applications.

3.1.3 Global Resource Scheduling

Global resource scheduling is responsible for the allocation of resources in a
virtualized cluster consisting of multiple physical machines. This comprises
the initial placement and admission control of newly arriving VMs as wells as
the dynamic placement of existing VMs (e.g., using live migration techniques)
to ensure the fulfillment of cluster-wide goals (e.g., load-balancing, locality
of network traffic, or reduction in energy consumption). In general, global
resource scheduling can be formulated as a static or dynamic bin-packing
problem, which is known to be NP-hard. Therefore, research is mainly focused
on finding good heuristics for global resource scheduling.

An industrial solution for global resource scheduling is the VMware Dis-
tributed Resource Scheduler (DRS) (Gulati et al., 2012) product. DRS realizes
admission control and initial placement of VMs in a virtualized cluster in order
to fulfill resource reservations. Furthermore, it autonomically schedules VMs
on physical machines in order to balance the load in a cluster and to reduce
energy consumption by putting physical machines with low utilization into
stand-by mode. If workloads change, VMs are dynamically moved between
physical hosts using live migration techniques. Zhu et al. (2009) propose a
similar approach to global resource scheduling as part of HP’s “1000 islands”
framework.

Academic researchers have proposed numerous utility functions and solu-
tion heuristics (e.g., Gupta et al., 2008; Jung et al., 2008; Li et al., 2009) improving
global resource scheduling (see survey in Jennings and Stadler, 2015). Most
of these approaches do not consider the application SLAs in their scheduling
decisions. Exceptions are Bennani and Menascé (2005), Jung et al. (2008) and
Zhu et al. (2009). Bennani and Menascé (2005) assign servers to application
optimizing the fulfillment of SLAs. A local controller predicts the performance
of an application using QNs models. These models need to be provided be-
forehand. Jung et al. (2008) use an offline LON model to generate adaptation
policies by taking into account the predicted response times. The resulting
tixed set of adaptation policies are then applied at run-time to optimize the
resource allocation. Zhu et al. (2009) describe a multi-level architecture using
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the local resource scheduling controller described in Padala et al. (2009) on
the lowest level and building a global resource scheduler on top of it. Lu et al.
(2014) extend the work of Padala et al. (2009) to also control the priority set-
tings of logical resource pools in a virtualized data-center in accordance with
application SLAs.

The approaches to global resource scheduling described above have in com-
mon that they are all reactive. Given that reconfigurations at the global level can
be expensive in terms of additional overheads, proactive approaches are also
considered in the research community. Shanmuganathan et al. (2013) describe
how proactive resource management might be achieved at the granularity of an
entire cluster of VMs. vManage (Kumar et al., 2009c) uses short range forecasts
(15 minutes into the future) to optimize VM placement on physical hosts and
avoid ping-pong of VM migrations.

3.1.4 Application Workload Management

Application workload management comprises admission control and load-
balancing of requests at the application level. Classic approaches to load-
balancing (Kremien and Kramer, 1992; Wang and Morris, 1985) can be used
here. More recent work incorporates additional aspects (e.g., SLA compliance
or energy consumption) into load-balancing algorithms (e.g., Liu et al., 2012;
Tumanov et al., 2012; Zhang et al., 2011).

3.1.5 Application Scaling

Applications in virtualized data centers can be scaled in two different ways:
horizontal scaling referring to automatically changing the number of servers
(physical or virtual) hosting a multi-tier application, and vertical scaling referring
to adjusting the effective “sizes” of individual servers. The main goal in both
cases is to elastically allocate resources to ensure application SLAs under time-
varying workloads while avoiding over-provisioning of resources.
Lorido-Botran et al. (2014) survey auto-scaling techniques for virtualized
applications and propose the following categorization of approaches: static
threshold-based rules, reinforcement learning, queueing theory, control theory
and time-series analysis. We adopt these categories here and additionally
consider scaling techniques based on meta-models as a separate category.

Threshold-based Rules. Commercial cloud offerings, such as Amazon EC2
or Microsoft Azure, or open-source cloud management solutions, such as
OpenStack or Apache CloudStack, or third-party cloud resource management
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tools, such as RightScale (2016), all follow a reactive approach based on static
threshold-based rules. They are limited to horizontal scaling providing inte-
grated load-balancing capabilities. Optimal values for the thresholds when to
scale up or down are highly dependent on the application workload characteris-
tics, which may change over time. In order to avoid oscillations in the controller,
additional quiet times are required after a reconfiguration. RightScale uses
a democratic voting system (i.e., the majority of the servers need to vote for
scale up) to avoid accidental scaling actions (RightScale, 2016). Kupferman
et al. (2009) show that RightScale is still very sensitive to the chosen threshold
settings. Dawoud et al. (2012) compare vertical and horizontal scaling and use
a simple threshold-based controller for adapting the number of vCPUs.

Reinforcement Learning. To overcome the limitations of static threshold-based
rules, a number of approaches employ reinforcement learning to automati-
cally determine good rules for application scaling without requiring a-priori
knowledge of the application behavior. Lorido-Botran et al. (2014) identifies
several approaches in this category: Barrett et al. (2013), Dutreilh et al. (2011),
and Tesauro et al. (2007) for horizontal scaling and Rao et al. (2009) for vertical
scaling. More recent work in this area are VScaler (Yazdanov and Fetzer, 2013)
for vertical scaling and vScale (Padala et al., 2014) for horizontal scaling.

All these approaches have in common that they assume a state space S
based on the current system configuration (e.g., number of replicated VMs, and
current workload intensity), a set of possible reconfiguration actions A (e.g.,
add, remove, or maintain VM instances) and a reward function R : S x A — R.
The action with the highest reward is always applied in each control interval.
The reward function is learned automatically at system run-time by observing
the impact of reconfigurations on the application performance. The main
challenges of reinforcement learning approaches are long training times and
large state spaces (Lorido-Botran et al., 2014).

Hybrid approaches use additional offline models to speed up the training
of reinforcement learning models. Tesauro et al. (2007) use a simple QN to
perform initial training without the need to reconfigure the real system. They
expect the QN as input and estimate the resource demands based on empirical
data. Furthermore, neural networks have been used to predict the reward of
unobserved states in case of large state spaces (Rao et al., 2009; Tesauro et al.,
2007).

Feedback Control. Classic feedback controllers from control theory, such as,
proportional integral derivative (PID) controllers, assume continuous actuators
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(e.g., resource allocation mechanisms). In virtualized systems, this assumption
is typically only given for the scheduling priorities used for local resource
scheduling. However, application scaling typically relies on discrete adaptation
mechanisms (e.g., add or remove CPUs or VMs). Lim et al. (2010) describe a
proportional thresholding technique that can be used with a fixed-gain feedback
controller in order to implement horizontal scaling of VMs. However, their
approach requires a pre-identified model with manually determined parameter
values.

Adaptive control schemes also learn and adapt parameters of a feedback
controller at run-time. (Xu et al., 2008) propose a controller based on fuzzy-
logic rules to automatically adapt the CPU limits (aka. caps) depending on
the application workload. The fuzzy-logic rules are learned at system run-
time to represent the relationship between the resource allocation and the
application performance. Bodik et al. (2009) use statistical machine learning
techniques based on time series analysis to automatically derive a transfer
function based on smoothing splines for the application performance. They
use the model for horizontal scaling of VMs in order to meet a target SLO for
a multi-tiered web-application. Kalyvianaki et al. (2014) describe a Kalman
filter design for tracking the CPU utilization in multi-tier applications and
setting the CPU limit of VMs accordingly. They do not explicitly consider the
application performance and instead assume a constant factor specifying a
required headroom between the allocation and the actual utilization.

Time-series Analysis. Approaches based on time-series analysis typically use
historic data about the resource usage of VMs to predict their future demands
in order to adapt the resource allocations. PRESS (Gong et al., 2010) uses Fast
Fourier Transforms (FFTs) to identify repeating patterns and fits a discrete-
time Markov Chain for other cases. The predictions are used to adapt the
limits settings of VMs. CloudScale (Shen et al., 2011) uses multiple statistical
techniques, including FFTs to identify repeating patterns, discrete time Markov
Chains to predict short-term demand, online adaptive padding and incremental
(adaptive) over-provisioning to remedy and detect under-provisioning. This
information is used for short-term optimization of CPU and memory limits.
AGILE (Nguyen et al., 2013) uses wavelets and curve fitting to predict re-
source demands and proactively adds additional VM instances if an application
will be overloaded. The authors use resource pressure models to determine
the amount of resources required by an application. Yazdanov and Fetzer
(2012) use an auto-regressive prediction model to predict the resource require-
ments of a VM in order to dynamically hot-plug CPUs in Xen. In summary,
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existing approaches based on time-series analysis support proactive reconfigu-
ration, however, they work on low-level resource usage statistics and take the
application performance into consideration.

Queueing Theory. Villela et al. (2004) use a QN model representing each server
with a M/G/1/PS queue. The model needs to be created and maintained man-
ually. It is used to dynamically adjust the number of servers depending on the
current workload. They perform their evaluation in a simulated environment.

Urgaonkar et al. (2008) combine a proactive (covering hours and days) and
a reactive (for short-term reconfigurations) controller for horizontal scaling
of multi-tier applications. The controllers are based on a queueing model for
multi-tier applications where each server is represented by a G/G/1 queue.
The approach takes an unparameterized model as input and assumes the direct
availability of measurements of service times and interarrival times including
their distribution.

Jung et al. (2010) describe the Mistral controller which optimizes the resource
allocation of VMs with regards to their performance and power consumption.
The authors consider different types or reconfigurations: vertical and horizontal
CPU scaling, VM migration and shutdown of physical hosts. LON models are
used to predict the impact of reconfigurations and workload changes on the
application performance. These models are created and parameterized in an
off-line step performing dedicated experiments with the application.

Gandhi et al. (2011) model a single-tier application with a M/G/1/PS queue
and combine a proactive with a reactive controller to automatically adapt the
number of servers to the incoming workload. The prediction model needs
to be provided in advance and is not updated at run-time. In Gandhi et al.
(2014), the authors use a Kalman filter to estimate the resource demands dy-
namically, however, they assume a fixed system architecture (three tiers and
three workload classes).

Descriptive Meta-Models. Hoorn (2014) and Huber et al. (2014) both use de-
scriptive, architecture-level performance models based on meta-models for
online resource management. Hoorn (2014) uses the SLAstic meta-model to
describe the system architecture at a coarse-grained abstraction level. However,
the authors do not integrate predictive capabilities in their controller and work
with fixed thresholds triggering reconfigurations. Huber et al. (2014) propose
an approach for run-time reconfiguration of virtualized systems using the DML
meta-model. They consider vertical as well as horizontal CPU scaling, and
assume the availability of a complete model of the controlled system. The
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impact of a reconfiguration is determined using a full event-discrete simulation
of the DML model. Due to the overhead of the simulation, this approach is
only feasible for planning reconfigurations on a longer time scale (e.g., hours
or days). Furthermore, the approach expects a complete DML model as input,
that needs to be created manually.

3.1.6 Discussion

While the enforcement of resource-level SLAs on a local and a global level in
data-centers is a well understood topic and autonomic solutions are already
used in practice, the efficient control of application SLAs is an open research
challenge. In general, control theory distinguishes between feed-forward and
feedback control. On the one hand, the use of feed-forward control based on
static threshold-based rules is limited due to the manual effort required to
determine good thresholds for a certain application and due to their inability to
adapt to changing workload characteristics. While reinforcement learning has
been successfully used to mitigate manual efforts when determining thresholds,
it still requires long training times in case of changing workloads.

On the other hand, feedback control provides established techniques to
automatically learn a transfer function between certain control knobs (i.e.,
resource allocation) and the system output (i.e., application performance).
However, in practical systems many control knobs for resource allocation are
discrete variables (e.g., vCPUs) with a strong influence on the system output,
making feedback control hard to implement. As a result, we argue that feed-
forward control with a model explicitly capturing the influence of the workload
characteristics and the application architecture should be used here.

Several authors (Gandhi et al., 2011; Jung et al., 2010; Urgaonkar et al., 2008;
Villela et al., 2004) proposed to use queueing theory models to predict the
required resource allocation of an application under a given workload. Other
authors (Hoorn, 2014; Huber et al., 2014) use descriptive meta-models to im-
prove the model expressiveness. However, these approaches have in common
that they expect the model (i.e., model structure and often also the model
parameter values) as input, requiring deep performance modeling expertise
from a user. A few of these approaches also consider the adaptive estimation
of resource demands, however, only under strong assumptions on the model
structure (e.g., number of queues, or scheduling strategies).
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3.2 Performance Model Extraction

In the previous section, we described different approaches to autonomic re-
source management in virtualized data centers. While model-based approaches
promise benefits for autonomic resource management with regards to the state-
of-the-art, their limited model learning capabilities are an obstacle for a wider
adoption. In this section, we review the state-of-the-art on performance model
extraction in the software performance engineering community. In the past,
this community proposed a number of meta-models for building architecture-
level performance models of software systems have been proposed to support
the performance analysis of software architectures at design time. Such models
provide modeling constructs to capture the performance-relevant behavior
of a system’s software architecture as well as some aspects of its execution
environment (Koziolek, 2010). The most prominent meta-models are the UML
SPT and MARTE profiles (OMG, 2006), both of which are extensions of UML
as the de-facto standard modeling language for software architectures. Further
proposed meta-models include SPE-MM (Smith et al., 2005), CSM (Petriu and
Woodside, 2007), KLAPER (Grassi et al., 2007) and PCM (Becker et al., 2009).
Architecture-level performance models are built during system development
and are used at design and deployment time to evaluate alternative system
designs or predict the system performance for capacity planning. Over the
past decade, with the increasing adoption of component-based software en-
gineering (Crnkovic et al., 2005), the performance engineering community
has focused on extending modeling approaches to support component-based
systems.

3.2.1 Monitoring, Instrumentation and Measurement-Based Analysis

In industry, system management solutions (such as IBM Tivoli, HP OpenView,
CA Unicenter, BMC Patrol) have been used since decades to manage the hard-
ware and software inventory of enterprise IT infrastructures. These solutions
typically include monitoring components that collect performance metrics
of the infrastructure and the applications. There are also many open-source
alternatives for systems monitoring (e.g., Hyperic or Zenoss) with similar func-
tionality. The monitoring data is obtained using standard system interfaces or
special agents deployed on each monitored system. Traditionally, the monitored
metrics collected by these monitoring components are rather coarse-grained
(e.g., average system response time, throughput, or resource utilization) and
limited to standard applications.
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In recent years, Application Performance Management (APM) tools, such
as Dynatrace (Rometsch and Sauer, 2008), or AppDynamics, were developed
providing fine-grained instrumentation and monitoring capabilities at the
application level. APM tools can typically trace individual transactions in a pro-
duction system through multiple application tiers and may provide application
performance metrics on a per-function basis. This requires instrumentation
probes at application run-time, although most tools come with transparent
support for commonly used technologies (e.g., bytecode instrumentation in
Java) so that no changes to the application source code are required. APM
tools help to manually identify root causes of performance problems. However,
they cannot provide models supporting analysis and reasoning on the system
architecture.

In the research community, Carrera et al. (2003) and Rohr et al. (2008a) pro-
pose instrumentation platforms for the measurement-based performance anal-
ysis of Java applications. Carrera et al. (2003) supports fine-grained instru-
mentation at different levels (application, Java VM and operating system) in
order to determine the resource accessing behavior of an application. Different
visualizations are available supporting performance engineers to detect bottle-
necks. Rohr et al. (2008a) developed Kieker, a monitoring framework for tracing
individual requests in a system and observing their response time distributions.
However, both instrumentation platforms are limited to the monitoring and
the visualization of collected data.

Several researchers applied non-parametric regression techniques to inter-
polate measurements taking into account the influence of multiple system
parameters. Courtois and Woodside (2000) uses Multivariate Adaptive Regres-
sion Splines (MARS) to fit resource functions to measurements. The authors
are able to derive resource functions for the computational overhead of TCP/IP
communications depending on given workload parameters. Westermann et al.
(2012) describe a systematic approach to derive performance prediction func-
tions describing the functional relationship between system performance and
certain system parameters from empirical data. They propose techniques to
optimize the experimental exploration of the parameter space based on given
prediction goals. They support different types of statistical inference models
(MARS, classification and regression trees, genetic programming, Kriging) to
learn performance prediction functions. Noorshams et al. (2013) propose a
black-box performance prediction approach for virtualized storage systems.
They derive performance prediction functions for storage systems using au-
tomated experiments to obtain measurement data. The approach supports
different regression techniques and uses cross-validation to automatically select
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and optimize a regression technique for the best accuracy. While the exper-
iment automation is specific to storage systems, the black-box performance
prediction approach can be generalized to other systems.

An alternative approach to measurement-based analysis is based on clus-
tering techniques. Zhang et al. (2013) use a density-based spatial clustering
technique to predict the performance of services from historic observations. The
authors introduce “service invocation patterns” describing the performance-
influencing parameters of services and then build clusters based on these
patterns. These clusters can then be used to predict the service performance by
classifying new service invocation patterns. However, all measurement-based
analysis techniques suffer from their limited extrapolation capabilities. While
they do not require insight into the system architecture, they typically require
large amounts of empirical measurements covering all possible system states
in order to extract representative and accurate models. Measurement-based
analysis techniques are therefore mainly applicable to the off-line analysis of
systems running in a controlled experiment environment.

3.2.2 Static Structure and Dynamic Behavior

In order to create the structure of a performance model, it is necessary to
derive the system architecture. We assume a component-based architecture,
hence, the following aspects need to be covered: static component structure,
dynamic control flow between and inside components, as well as the execution
environment.

Static Component Structure. Existing work on reverse-engineering of compo-
nent architectures mostly focuses on the extraction of design models. Ding
and Medvidovic (2001) propose a reverse-engineering approach called “Focus”
which derives a UML architecture model using static code analysis. ROMAN-
TIC (Chardigny and Seriai, 2010) also uses static code analysis techniques and
existing system documentation as input to reverse engineering. Kebir et al.
(2012) propose two different approaches for component identification: explo-
rative and requirement-driven. The former uses clustering techniques based on
class definitions in the source code. The latter requires a software architecture
to mark key classes or interfaces. Chouambe et al. (2008) describe the “ArchiRec”
approach for component identification in order to reverse-engineer component
models from existing source code. Components are identified using a set of
heuristics defined on code metric. These code metrics are obtained through
static analysis techniques.
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While static code analysis techniques may also be applied at system run-
time, they often produce suboptimal results since design-time and run-time
architectures may be different. The approaches in Brosig et al. (2011), Brunnert
et al. (2013), and Hoorn (2014) for performance model extraction at system run-
time instead propose technology-specific mapping rules from implementation
component models (e.g., Java EE).

Dynamic Control Flow. Due to well-known limitations of static code analysis
techniques (e.g., with regards to polymorphic method invocations), the extrac-
tion of the control flow usually requires dynamic analysis techniques. The
monitoring and instrumentation techniques described in Section 3.2.1 may be
used to collect the required empirical data.

Reverse-engineering approaches for UML models have been proposed in the
past. For instance, Briand et al. (2006) propose a reverse-engineering approach
for UML sequence diagrams based on a dynamic analysis of distributed Java
applications. The sequence of messages is extracted from traces obtained
using a custom application instrumentation. However, when using models for
performance prediction, it is important to find a suitable level of abstraction in
order to limit the overhead for analysis such models. In the following, we focus
on approaches specifically targeted at the extraction of performance models.

In Hrischuk et al. (1999), LON models are generated automatically from
traces recording the distributed message flow between operations in an appli-
cation. The ordering of messages is based on the timestamps contained in the
traces. Requests can be traced across several nodes in a distributed system. In
order to correlate events from independent nodes in a distributed system, the
approach assumes the availability of a so-called “angio dye id” request param-
eter (Hrischuk et al., 1999), which is appended to each request at the system
boundary and propagated through the system. In order to mitigate the need
for appending additional fields to requests, Israr et al. (2007) propose message
correlation techniques based on a generic message-information field in the
traces derived automatically from existing request parameters. Hrischuk et al.
(1999) and Israr et al. (2007) first build up an interaction graph and then derive
an LON model using a set of rules. Both approaches are focused on extracting
the dynamic control flow of the application and expect model parameters (e.g.,
resource demands) as an input.

Several researchers considered the extraction of architecture-level Palladio
Component Model (PCM) models, which are typically used for performance
predictions at design time. Krogmann et al. (2010) use genetic search tech-
niques to determine parameterized behavioral models of individual compo-
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nents. These models describe the performance-relevant control flow in a com-
ponent, including control flow and data flow dependencies on input parameter.
In order to determine dependencies on input parameter, it relies on dynamic
analysis of the code using a bytecode instruction counting technique. The
bytecode instruction counting introduces hight overheads of up to 250% (Krog-
mann et al., 2010) making it only applicable in test environments. Brosig et al.
(2011) rely on proprietary instrumentation techniques provided by the Oracle
WebLogic middleware platform to collect the required information on the re-
quest flow within an application. They automatically determine the control
flow between and inside components. Brunnert et al. (2013) use traces collected
by standard Java EE instrumentation techniques instead, and describe a tool,
called PMW, that automatically generates a PCM instance from these traces. In
Hoorn (2014), the author describes the SLAstic approach which supports the
extraction of the dynamic software architecture based on traces collected by the
Kieker framework (Rohr et al., 2008a). The author proposes an own meta-model
to describe system architecture and extract the control flow between distributed
software components including call frequencies. Furthermore, they describe
an automatic transformation from their meta-model to PCM.

3.2.3 Workload Characterization

User Behavior. Menascé et al. (1999) introduce a model called Customer Behav-
ior Model Graph (CBMG) for describing “the behavior of groups of customers
who exhibit similar navigational patterns” (Menascé et al., 1999). They employ
a K-means clustering algorithm to derive CBMGs automatically from session
logs. Hoorn et al. (2015) introduces a domain-specific language, called WESS-
BAS, for describing workload models and use X-means clustering generate
these models from session logs. Vogele et al. (2015) propose an automatic
transformation from the WESSBAS domain-specific language to PCM usage
profile models.

In (Kistowski et al., 2015), a meta-model-based language is introduced to
describe the temporal course of the workload intensity of a system. The authors
also propose an algorithm to extract these models from a time-series of arrival
rates. The extraction method uses statistical methods to split the time-series
into seasonal, trend, burst and noise components.

Resource Demands. Profiling tools (Graham et al., 1982; Hall, 1992), typically
used during development to track down performance issues, provide informa-
tion on call paths and execution times of individual functions. These profiling
tools rely on either fine-grained code instrumentation or statistical sampling.
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However, these tools typically incur high measurement overheads, severely
limiting their usage during production, and leading to inaccurate or biased
results. In order to avoid distorted measurements due to overheads, Kuperberg
et al. (2008a,b) propose a two-step approach. In the first step, dynamic program
analysis is used to determine the number and types of bytecode instructions
executed by a function. In a second step, the individual bytecode instructions
are benchmarked to determine their computational overhead. However, this
approach is not applicable during system operatios and fails to capture interac-
tions between individual bytecode instructions. APM tools, such as Dynatrace
(Rometsch and Sauer, 2008) or AppDynamics, enable fine-grained monitoring
of the control flow of an application, including timings of individual operations.
These tools are optimized to be also applicable to production systems, however,
they do not create models abstracting from the raw measurement data.

Modern operating systems provide facilities to track the consumed CPU time
of individual threads. This information is, for example, also exposed by the Java
runtime environment. This information can be exploited to measure the CPU
resource consumption of processing individual requests as demonstrated for
Java by Brunnert et al. (2013) and at the operating system level by Barham et al.
(2004). This requires application instrumentation to track which threads are
involved in the processing of a request. This can be difficult in heterogeneous
environments using different middleware systems, database systems, and
application frameworks. The accuracy of such an approach heavily depends
on the accuracy of the CPU time accounting by the operating system and the
extent to which request processing can be captured through instrumentation.

Over the years, a number of approaches to estimate the resource demands
using statistical methods have been proposed. These approaches are typi-
cally based on a combination of aggregate resource usage statistics (e.g., CPU
utilization) and coarse-grained application statistics (e.g., end-to-end applica-
tion response times or throughput). These approaches do not depend on a
fine-grained instrumentation of the application and are therefore widely appli-
cable to different types of systems and applications incurring only insignificant
overheads. Different approaches from queuing theory and statistical methods
have been proposed, e.g., response time approximation (Brosig et al., 2009;
Urgaonkar et al., 2007), least-squares regression (Bard and Shatzoff, 1978; Paci-
fici et al., 2008; Rolia and Vetland, 1995), robust regression techniques (Casale
et al., 2008; Casale et al., 2007), cluster-wise regression (Cremonesi et al., 2010),
Kalman Filter (Kumar et al., 2009a; Wang et al., 2012; Zheng et al., 2008), opti-
mization techniques (Kumar et al., 2009b; Liu et al., 2006; Menascé, 2008; Zhang
et al., 2002), Support Vector Machines (Kalbasi et al., 2011), Independent Com-
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ponent Analysis (Sharma et al., 2008), Maximum Likelihood Estimation (Kraft et
al., 2009; Pérez et al., 2013; Wang and Casale, 2013), and Gibbs Sampling (Pérez
et al., 2013; Sutton and Jordan, 2011). These approaches differ in their required
input measurement data, their underlying modeling assumptions, their output
metrics, their robustness to anomalies in the input data, and their computational
overhead.

3.2.4 Discussion

While monitoring tools in industry provide numerous statistics about the sys-
tem state and fine-grained instrumentation capabilities are increasingly em-
ployed also in production system (e.g., in APM tools), techniques to automati-
cally build abstract models from the raw monitoring data, e.g., for performance
predictions, are not widely used in industry. In the last decade, a number of
approaches have been proposed that show that it is feasible to automatically
extract complete architecture-level performance models using a set of static and
dynamic analyses. However, these approaches are typically designed for of-
fline analysis: First, dynamic monitoring data is collected either in a controlled
experiment or in a production system. Afterwards a user manually triggers
the performance model extraction.

When using model extraction techniques to learn models for autonomic re-
source management in data centers, a model needs to be updated continuously
to reflect changes in the workloads and system configuration. This requires a
deep integration of the model extraction logic into the system itself in order
to be able to react to changes in the system configuration. Furthermore, ap-
proaches need to continuously estimate and update the model parameters. A
crucial parameter for resource management are the resource demands of appli-
cation workloads. Robust and accurate techniques to determine these resource
demands are a prerequisite to use fine-grained models for autonomic resource
management ind data centers. While many for estimating resource demands
from monitoring data have been proposed in the past, a systematization and
an experimental comparison are missing providing guidelines when to use a
certain technique to ensure highly accurate resource demand estimates.
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Chapter 4

Online Model Learning in Virtualized Data
Centers

The definition of “Self-Aware Computing” (see Section 2.1) highlights the need
to automatically learn models of a system and its environment at run-time in
order to enable autonomic reasoning and adaptation according to higher-level
goals (Kounev et al., 2015). When mapping this idea to the resource manage-
ment in virtualized data centers, models help us to determine required system
adaptations to fulfill goals regarding performance, availability, and resource
efficiency. It is important to note here, that models covering the application
architecture (including its static structure as well as dynamic behavior) are
crucial given that the higher-level goals are usually specified on the applica-
tion level (e.g., response time or throughput goals). Resource management
techniques need to consider these application-level performance goals when
changing the resource allocation to an application. As a consequence, they
depend on the availability of performance models enabling the prediction of
the expected impact of changes to the resource allocation on the application
performance. These models need to capture the influence of different platform
and application layers (e.g., hypervisor, middleware systems and application
components) in order to provide reliable predictions.

Existing approaches to online resource management in virtualized environ-
ments are typically based on black-box or coarse-grained performance models
abstracting systems at a high level severely limiting their prediction capabil-
ities (see Section 3.1). Individual effects and complex interactions between
the application workloads and the system layers are considered as static and
viewed as a black box. This hinders fine-grained performance predictions that
are necessary for efficient resource management (e.g., predicting the effect on
the response time, if a virtual machine of an application tier is replicated or
migrated). Recent approaches explore the usage of descriptive architecture-level
performance models for online resource management. For instance, Brosig
(2014) and Huber (2014) propose a meta-model for online resource management
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called DML (see Section 2.2.2). It supports the explicit modeling of layered
system architectures and provides abstractions for the fine-grained description
of the performance-relevant behavior of a system. While Brosig (2014) and Hu-
ber (2014) show that architecture-level performance models provide significant
benefits for online resource management in terms of more fine-grained and
more flexible reasoning and prediction capabilities, the creation of such models
is still a challenge. The goal of this chapter is the integration of model learning
capabilities into virtualization platforms enabling the automated creation and
maintenance of architecture-level performance models at system run-time.

Challenges An approach to automatic model learning needs to address a num-
ber of challenges to be applicable in virtualized data centers. We describe these
challenges in the following.

¢ Given that model learning is performed during system operation, the
system workload and configuration cannot be controlled. We rely on em-
pirical observations while applications are serving production workloads.
In order to avoid significant overheads on the performance of services in
a data center, existing monitoring infrastructures and platform interfaces
should be used to obtain the empirical information required for model
learning.

¢ The integration of model learning capabilities into systems requires a
pro-found understanding of the system architecture — including the appli-
cation and any platform layers — and at the same time a deep knowledge
of performance modeling techniques. However, system administrators
often do not have sufficient skills to perform such tasks. Furthermore,
it can be time-consuming and costly to design and implement model
learning capabilities for a given system. Therefore, ways to enable the
reuse and sharing of model learning capabilities between systems are
necessary.

¢ Multiple applications with diverse technology stacks typically share the
same underlying infrastructure in virtualized environments influenc-
ing each other. A performance model needs to represent the complete
virtualized system (including the different applications) integrating in-
formation from heterogeneous data sources. However, the deployment
of applications and their software stacks are often not known before
system run-time (especially with the advancement of on-demand pro-
visioning of VMs in cloud environments). As a result, the end-to-end
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performance model of the system can only be dynamically composed a
system run-time.

¢ The deployment and configuration of applications may change frequently
due to automatic or manual reconfigurations (e.g., deployment of new
VMs, or migration of existing ones). As a result, the overall performance
model of the system needs to be continuously updated to always reflect
the current system architecture and configuration.

A major field of research is the automatic extraction of performance models
based on static and dynamic analysis of the system implementation and config-
uration (see Section 3.2). Existing work either describes holistic approaches to
extract complete performance models, but assume a very specific technology
stack (Brosig et al., 2011; Brunnert et al., 2013), or focuses on improving certain
aspects of it, such as, resource demand estimation. However, these approaches
do not provide solutions for the described challenges.

Research Questions In this chapter, we describe a novel agent-based reference
architecture for online model learning in virtualized data center addressing
the challenges described previously. In particular, we consider the following
research questions.

* How to integrate automatic model learning capabilities into existing
virtualization platforms? We propose to extend the notion of VAs to
include model learning capabilities and introduce additional auxiliary
components into virtualization platforms.

* What capabilities are required to learn an end-to-end performance model
of a system? What are the dependencies between these model learning
capabilities? Each agent in our reference architecture is responsible for
maintaining a certain sub-model of the end-to-end performance model.
We identify different roles an agent may take over during model learning
and describe the required communication between agents in different
roles.

* How to compose sub-models representing knowledge about the system ar-
chitecture into a single end-to-end performance model? Which structural
constraints do these sub-models have to fulfill in order to be composable?
The sub-models created by each agent are dynamically composed in a cen-
tral model repository. We describe a merging algorithm for sub-models
and determine the rules they need to fulfill to avoid conflicts.
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Chapter Outline  Section 4.1 introduces our proposed reference architecture for
integrating model learning capabilities into virtualization platforms. Section 4.2
provides an overview of the different types of agents and describes how the
individual agents collaborate with each other. Section 4.3 contains a formal
description of our merging algorithm for sub-models as implemented in the
central model repository. Section 4.4 concludes this chapter.

4.1 Reference Architecture for Online Model Learning

Modern hypervisors (e.g., VMware ESX or Xen) and virtualization management
software (e.g., VMware vCenter) - in the following we call the combination of
both the virtualization platform - rely on standardized formats for VM images to
support the deployment of new VMs. However, this image format is focused on
the specification of the virtual hardware resources including their configuration
and lacks meta-data describing the platform and application layers inside a
VM. The program code of the platform and application layers as well as any
additional data is contained in an unstructured binary image of the virtual
hard disk.

Therefore, a virtualization platform is generally not aware what is contained
inside a VM. Although, the virtualization platform may access all data in the
main memory and hard disks of a VM, the data is hard to interpret given
that no general assumptions can be made on their structure. An approach
to model learning solely based on information available in the virtualization
platform inevitably leads to performance models abstracting application and
platform layers as a black-box. In contrast, an approach based on model learning
inside a VM may provide detailed performance models of the platform and
application layers running in the same VM. However, in the latter case access
to the underlying infrastructure layers or co-located applications is prohibited.

In the following, we describe our reference architecture for model learning
that bridges this gap. First, we give an overview of the components of the
proposed reference architecture in Section 4.1.1. Section 4.1.2 describes the
communication primitives for agent collaboration. Section 4.1.3 introduces the
concept of extraction scopes. This section is based in parts on our publications
in Spinner et al. (2013) and Spinner et al. (2016).

4.1.1 Conceptual Overview

We argue that model learning capabilities should be integrated deeply in both
the virtualization platform and the hosted VMs enabling the extraction of end-
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to-end performance models covering the virtual infrastructure, as well as any
platform and application layers within VMs. We assume a virtualization plat-
form that hosts a set of Virtual Appliances (VAs). A VA is a set of pre-packaged
VM images each containing a complete software stack ready to run on a virtu-
alization platform (see also Definition 2.4 on page 41). VAs can significantly
reduce the effort and knowledge required for deploying software systems. VAs
are either provided directly by software companies or by individuals. For in-
stance, there are VAs available providing a pre-configured Tomcat application
server or a Zimbra collaboration server. These VAs are built by experts of the
respective system and can then be shared with others (e.g., through online
marketplaces, such as VMware Solution Exchange!). When deploying such a
VA, only certain pre-defined settings may need to be customized (e.g., through
a web interface provided by the VA) in order to adapt it to a target virtual
environment (e.g., IP address settings, or passwords).

Our reference architecture is based on an extension of conventional VAs to
include additional logic for learning performance models of the application
as well as any contained platform layers (e.g., middleware systems or Java
VMs) during system run-time. The model learning logic is encapsulated in
specialized agents distributed as part of a VA. On instantiation of such a VA
in a virtualized environment, the contained agent will start to monitor the
application serving real production workloads and will automatically build
a sub-model (so-called model skeleton) describing the observed performance
behavior of the application and platform layers inside the VA. The agent contin-
uously updates the model skeleton to reflect dynamic changes, for instance, in
the configuration or the workload of an application. A virtualization platform
may access the model skeletons extracted by the agents of a VA using a defined
interface in order to obtain fine-grained performance models of an application.

However, model skeletons created within a VA do not contain information
about the underlying infrastructure layers, or co-located VAs as such informa-
tion is not visible inside guest VMs. Therefore, the virtualization platform itself
needs to contain agents that extract model skeletons of the data center and
the virtualization platform. The virtualization platform then composes the
model skeletons from different VAs and underlying infrastructure layers into
an end-to-end performance model.

A VA may contain a complete application (e.g., an SAP ERP system, or a
Zimbra Collaboration server), or provide only certain platform layers (e.g., a
Java EE application server) on which custom applications can be deployed
after VA instantiation. In the former case, the deployment of the VA typically
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involves only certain customizations of the configuration and the creator of
the VA may be able to determine large parts of the model skeleton in advance.
In the latter case, no prior knowledge about the static structure and dynamic
behavior of applications running on the platform layers can be assumed and the
extraction logic needs to create the model skeleton dynamically by analyzing
the executed application.

With our reference architecture, it is possible to specifically design agents
for a given software stack contained in a VA. Thus it is possible to incorporate
technology-specific prior knowledge into the model learning logic. The model
skeletons may be partially or completely created at run-time based on dynamic
system information obtained through sensor or reflection interfaces. Sensors
provide empirical observations of the dynamic behavior of a system. Reflection
describes the ability of a software system to determine its own structure and
state (e.g., based on configuration files, byte-code, etc.). Both sensors and
mechanisms for reflection on the application level are typically very technology-
specific, and therefore are part of the VA.

System administrators, who deploy a VA in a virtualized data center, do
not need to be an expert in performance modeling. The model learning runs
transparently in the background without disturbing the system operation.
The resulting end-to-end performance model of the virtualized system can be
used for online resource management in conjunction with advanced reasoning
techniques exploiting knowledge of the system architecture (e.g., see Chapter 6).
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Figure 4.1: Conceptual overview of the reference architecture.

Components Figure 4.1 gives an overview of the main components of our
reference architecture. Our reference architecture relies on specialized agents
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focusing on learning models of certain aspects of a system. We see the following
major roles for agents:

¢ Each VA contains one or several application model extraction agents creating
models of the application architecture. This covers the components of an
application including their behavior, their assembly and their deployment,
as well as any platform layers running inside a VM. These agents only
determine the model structure. They do not determine values for model
variables (e.g., resource demands).

* The usage model extraction agent focuses on the behavior of external users
of an application. It determines usage behaviors for different types of
users and characterizes their load intensity. The agent needs to be able to
observe incoming requests at the interface roles accessible from outside
an application.

* The agents for data center model extraction are part of the virtualization
platform, so that they have access to the virtual and physical infrastruc-
ture layers in a data center. The agents are specifically designed for the
infrastructure technologies in a data center, and must not make any as-
sumptions on the software stack within VAs.

* Agents for model variable characterization implement generic dynamic anal-
ysis techniques to determine the current value of model variables based
on empirical data. The empirical data may be provided by the VAs (e.g.,
throughput or response time measurements) or the virtualization plat-
form (e.g., resource utilization statistics). Model variable characterization
agents may not make any assumptions on the software stack running in
a VA. These agents need to derive the information they require from the
model skeletons and monitoring data provided by the model extraction
agents in the VAs and the virtualization platform.

For communication purposes, we assume that all agents have access to a
shared network. The network connects them with the following central compo-
nents:

¢ The message bus connects all components in our reference architecture
and provides asynchronous messaging for communication purposes. We
rely on publish/subscribe communication patterns in order to decouple
the different agents from each other.

¢ The performance model repository contains the end-to-end performance
model of the system. It is responsible of merging the model skeletons
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coming from different agents in VAs and the virtualization platform into
a consistent end-to-end model.

* The time series databases are used to collect and store historic monitoring
data. Time series databases are optional, and only necessary if historic
data needs to be persisted for longer periods of time.

Resource management tools may access the current model version for reason-
ing purposes. The resource management tools are not part of our reference
architecture.

Meta-model The model skeletons and the end-to-end performance model
share a common meta-model providing a formal definition of an abstract syntax.
The meta-model enables us to create technology-independent descriptions of
the system architecture. Furthermore, a common meta-model helps to enforce
consistent syntactic and semantic constraints between model skeletons and
simplifies their composition into an end-to-end performance model avoiding
the need for model transformations.

Our reference architecture is based on an existing meta-model for online
resource management, called Descartes Modeling Language (DML) (Kounev
et al., 2016). Section 2.2.2 provides an overview of its meta-model. Compared
to low-level prediction models (e.g., QNs), a descriptive meta-model provides
the advantage of greater expressiveness to include additional information on
the static architecture and dynamic behavior of a system. Compared to other
descriptive architecture-level performance models, such as PCM (Becker et al.,
2009) and SLAstic (Hoorn, 2014), DML provides a number of benefits:

* DML provides explicit modeling elements to describe the layering and
configuration of the system environment. This is important to capture
the structure of the underlying virtualized infrastructure.

* DML supports different levels of granularity to describe the behavior of
services (i.e., black-box, coarse-grained, and fine-grained). The different
granularity levels increase the flexibility when solving a model to trade-off
between prediction time and accuracy (Huber et al., 2017, see).

* Model variables (e.g., resource demands or branching probabilities) and
parameter dependencies can be marked as explicit or empirical in DML.
Explicit model variables are assumed to have a fixed value (or a stochastic
expression calculating a value based on input parameters). The value of
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empirical model variables are determined at run-time based on moni-
toring data from the system. We exploit this modeling construct for our
model skeletons.

Degrees of Freedom The design of model extraction agents for VAs allows for
several degrees of freedom. In the following paragraph, we discuss the design
decisions that need to be taken into account.

Functionality: In the simplest case, an agent just delivers a prepackaged
model skeleton when the agent is started (e.g., capturing prior knowledge
about an application). However, in many cases the model skeleton depends
on the configuration of the operating system, middleware system (e.g., which
components are deployed in a runtime container) or application (e.g., cus-
tomizations in the application settings). An agent may use different static and
dynamic analysis techniques to construct such a model skeleton at runtime.

Granularity: An agent may take on more than one role in the model ex-
traction (see Section 4.2). While this increases the implementation complexity
of the agent, it may be beneficial when integrating existing model extraction
approaches (e.g., Brosig et al., 2011; Brunnert et al., 2013) into the reference
architecture. The existing tool may be reused as a whole only requiring a
transformation from its output format to a model skeleton (based on DML).

Genericity: It is the agent designer’s decision how generic an agent is de-
signed (i.e., how much technology-specific knowledge is included in it). Model
extraction agents may often be specifically designed for a certain technology
(e.g., certain JEE application server product) in order to be able to fully exploit
proprietary instrumentation and reflection capabilities. Furthermore, a deeper
understanding of the underlying technology also may be required for mapping
them to concepts in DML (e.g., what is a component, or what is a container?).
On the other hand, model variable characterization agents will typically be
generic as they directly work on the DML model and empirical observations.

Distribution: The distribution of the agents in Figure 4.1 is just exemplary,
and not prescribed by the reference architecture. For instance, model extraction
agents may not be required for each VM of an application, if an existing system
or application monitoring solution is used, such as Dynatrace (Rometsch and
Sauer, 2008) or Kieker (Rohr et al., 2008b), that provides all required information
for creating the model skeleton in a central place.

Deployment: The agents may be deployed in the same VM as the application
itself or in dedicated VMs. For application model extraction agents, a deploy-
ment directly alongside the monitoring tool or the application itself may be
beneficial (e.g., easier access to reflection interfaces or log files). Model variable
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characterization agents may depend on computationally expensive algorithms
(e.g., for resource demand estimation) and a deployment in a dedicated VM
avoids negative impacts on the application performance.

Notification: Reconfigurations in the environment or changes in the workload
may require updates to the performance model. The agents may either work in
push or pull mode. In push mode, the agent exploits special notification mech-
anisms of the infrastructure or application software in order to be informed of
changes. In pull mode, the agents check for changes in regular intervals.

4.1.2 Agent Collaboration

Agents in a VA may interact with the message bus and the model repository in
the virtualization platform. Figure 4.2 gives an overview of the different types
of interactions.
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Figure 4.2: Communication diagram of agent interactions.

1. A newly started agent first registers itself with the model repository
(messages la and 1b), which maintains a list of all active agents. Each
agent starts independently and no order is prescribed.
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. Each agent may register for certain model notifications at the message
bus (messages 2a and 2b). The registrations may be changed dynamically
over the life-time of an agent.

. An agent may send a model skeleton to the model repository at any
time after its registration (message 3). The model repository updates
the performance model with the model skeleton. It sends out model
notifications for new, changed, or removed model objects informing all
agents that have registered for notifications of that type (messages 3.2a
and 3.2b). Section 4.2 describes the different types of model notifications.

. Agents send out monitoring data in regular intervals (message 4). The
monitoring data is distributed through the message bus. Model variable
characterization agents may listen for new monitoring data (message
4.1a). Additionally, a timeseries database may store the monitoring data to
provide historic data to model variable characterization agents (message
4.1b).

. A user may request the current performance model at any time (message
5). The returned performance model does not contain explicit characteri-
zations of its model variables.

. A user may request the current characterization of a model variable. The
model repository should implement the interface introduced by Brosig
(2014, p. 65), so that DML solvers can directly lookup the characterization
of model variables (message 6). The performance model repository may
then ask each model variable characterization agent for the current values
of model variables (message 6.1). If the model parameterization agent
does not have a recent value in cache, it needs to determine it. It may ask
the timeseries database for historic data, if required (message 6.1.1).

The following paragraphs describe the types of messages that are exchanged
between agents and model repository in greater details. The messages are
defined on a logical level. An implementation of our reference architecture
needs to define how these messages are mapped to a technical protocol.

Agent Registration On start up, an agent registers itself at the model reposi-
tory. An agent always needs to specify its extraction scope on registration (see
Section 4.1.3). The scope then determines which parts of the model repository
are accessible to an agent. System administrators define these scopes in the
model repository in advance, before any agents can register with it. When
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defining a new scope, the system administrator may also specify a token that
agents need to provide during registration for authorization purposes.

Model skeletons A model skeleton represents the local view of an agent on
the virtualized system. Different agents may be responsible for different parts
of the system. For instance, an agent at the virtualization layer can determine
the physical hosts and the VMs running on each host, but cannot see what is
running inside a VM. This information needs to be provided by other agents
that have access to the applications inside a VM.

Definition 4.1 (Model skeleton). A model skeleton is a valid, self-contained and
unparameterized model instance of DML. Valid means that a model skeleton
needs to conform to all constraints specified by the DML meta-model. Self-
contained means that it does not contain external references to objects outside
of the model skeleton. Unparameterized means that all model variables in the
model skeleton are marked empirical, i.e., their values are determined later
based on monitoring data.

While a single model skeleton describing the complete system may be pos-
sible, we expect that in practice the end-to-end performance model of the
complete system is the result of composing a set of model skeletons coming
from different agents. We include the validity and self-containedness properties
in the definition in order to facilitate the composition of model skeletons.

Model skeletons are assumed to be subject to discrete changes at irregular
intervals (e.g., due to system reconfigurations). In contrast model variables
(e.g., resource demands or branching probabilities) may change continuously
over time. Therefore, we treat model variables separately in our reference
architecture. In the model skeletons, model variables are always marked as
empirical. The actual value of a model variable is determined on-demand, i.e.,
we determine the current value of a model variable, when the current model is
requested, for instance, for performance predictions.

A model skeleton is described by a Meta Object Facility (MOF) compliant
meta-model. Figure 4.3 gives an overview of this meta-model. A ModelSkeleton
references six sub-models of the DML meta-model (see Kounev et al., 2016):
Repository,UsageProfile, System, ContainerRepository,DistributedData-
Center, Deployment, and AdaptationPointDescriptions. These sub-models
however contain only elements which are part of the local view of the agent,
i.e., they are not a complete representation of the system. Therefore, all ele-
ments of a model skeleton are optional. The Container elements describes
the resource layers within one or several VMs (e.g., middleware resources).
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Figure 4.3: Model skeleton meta-model.

The SensorRepository contains information about the sensors in the system.
Each agent needs to provide a description of the sensors for which it collects
monitoring data. Figure 4.4 shows the corresponding meta-model (not part of
DML).
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Figure 4.4: Sensor meta-model.

The SensorRepository contains a list of Sensor defintions. Each Sensor
represents one instrumentation point in the real system, where monitoring
data is collected. In general, a Sensor references a Metric (e.g., response time,
throughput, or utilization), a Unit (e.g., seconds), and an Aggregation (e.g.,
mean, minimum, or sum). Sensor, Metric and Unit are generic classes param-
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eterized with a sub-class of Dimension (e.g., Time). The sub-classes are not de-
picted for reasons of conciseness. MetricRepository and UnitRepository are
not part of the model skeleton. These are global registries for standard metrics
and units. Furthermore, the subclasses ResourceSensor and ComponentSensor
specify where in the system architecture the data is collected (referencing
corresponding model entities in the DML model).

Change Notification Change notifications are sent out if certain model elements
are created, updated or deleted. In this section, we describe the general message
structure of change notifications. See Section 4.2 for details on the different
types of change notifications intended by our reference architecture. A change
notification is an asynchronous message containing key-value data. We de-
fine the following two required keys: TYPE and ENTITY_ID. TYPE specifies the
change operation that triggered the notification (CREATE, UPDATE, or DELETE).
ENTITY_ID contains the identifier to a model element in the model repository
that triggered the change notification. Additional keys may be added by an
implementation of our reference architecture.

Sensor Data Agents send asynchronous messages to transmit current moni-
toring data to other agents or to a time-series database. A sensor data message
contains key-value data. We define three required keys: SENSOR_ID contains
the identifier of the sensor that produced the monitoring data. TIMESTAMPS con-
tains a comma-separated list of floating-point values representing timestamps
in milliseconds. VALUES contains a comma-separated list of floating-point val-
ues containing the observed values. The number of timestamp values must
match the number of observed values.

4.1.3 Extraction Scopes

A single agent for model extraction typically does not have a global overview
and insight of the services running inside a data center as well as the underlying
infrastructure. The part of the system that is visible to a model extraction agent
is defined by its extraction scope.

Definition 4.2 (Extraction Scope). An extraction scope is defined by a tuple
scope = (ms, A). ms C msgopa is the set of model elements contained in
the scope (a subset of the end-to-end model msg,141) and A is a set of model
extraction agents. Each agent belongs to exactly one extraction scope. Agents
can access all model elements in their scope. Access to model entities outside
the agent scope is restricted.
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The extraction scopes in this thesis are a generalization of the model variable
scopes proposed for DML by Brosig (2014). These scopes are used to specify
the validity of empirical characterizations of a model variable (e.g., resource
demands, or branching probabilities). We extend the notion of scopes in this
thesis to also apply to structural model entities (e.g., components, or containers)
as well. For instance, a component that is extracted in one application may
not match with another component with the same name and interface roles in
another application, because the two applications use different implementations
of a component.

Types of Extraction Scopes Extraction scopes are typically prescribed by the
system architecture. Certain aspects define the local view of model extraction
agents and limit the validity of extracted model skeletons. We see the following
aspects that typically define the extraction scope of agents:

* Layered architectures are used to abstract certain low-level layers from
higher layers in order to hide complexity and increase portability. Com-
munication between layers is only allowed through well-defined inter-
faces. Model extraction agents need to be aligned according to the existing
layering and may not breach the layering. For instance, an agent that
can access and obtain information from the hypervisor should not make
any assumptions on the applications running inside the VMs so that it
can be used for any type of VM. At the same time, an agent extracting
the application architecture, should not depend on the underlying hy-
pervisor technology. Agents at different layers in the system should only
communicate through well-defined and technology-neutral interfaces.

* Shared infrastructures may host different applications from separate or-
ganizations or organizational units on the same hardware system. In
such a setting, the isolation between these applications needs to be en-
sured, i.e., no information flow is allowed between these applications
except through their public interfaces. As a result, agents from separate
applications should be isolated as well. If an agent could access the ar-
chitectural performance model of another application, this would violate
the isolation between applications.

* Heterogeneous infrastructures limit the generality of certain parts of the ar-
chitecture performance model. For instance, empirical resource demands
are only representative in systems with the same hardware and software
configuration. In case of significantly different configurations, resource
demands need to be estimated separately for each configuration.
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In order to cover these aspects, we distinguish between the following general
types of extraction scopes:

¢ The data center scope represents the global view on a data center. It is
concerned with the extraction of the hardware infrastructure level as well
as the high-level topology of applications running in a data center. There
is typically only one data center scope per data center.

* A platform scope comprises a platform layer (e.g., virtualization, operating
system or middleware layers) on top of the hardware infrastructure level.
We explicitly support the layering of platform scopes. This scope is
responsible with the extraction of the configuration of the platform layer,
its impact on the performance of applications, as well as the identification
of directly contained platform layers. A platform scope may be either
part of the virtualization platform or of a VA.

* A usage scope covers the extraction of the behavior of external clients of
an application. External clients of the same application may be separated
into different usage scopes.

¢ An application scope covers the extraction of the architecture of a single
application. Each application scope corresponds to a SubSystem element
in the global model.

* A model variable scope is responsible for the empirical characterization
of model variables in the application architecture. Each model variable
scope is bound to an application scope. Model variable scopes are sepa-
rated as they are part of the virtualization platform and may have access
to platform scopes (e.g., to obtain platform monitoring statistics).

Scope Delegation Given two agent scopes scopes and scope;, where the former
is called source scope and the latter target scope. The intersection msg N ms; is
called the set of delegated model elements. These model elements are accessible
by agents in both scopes. Changes to delegated model elements are subject to
the following restrictions.

An agent in source scope scopes; may explicitly delegate a model element
m € ms, to a target scope scope; so that ms;, = ms;UCy,. Cy, is a set containing
all model elements which are descendants of m in the containment tree. Now
agents in scope; may access and update elements in C,,, however, they are not
allowed to delete them. The same applies to agents in scope,. If an agent in
scopes wants to delete any of the model elements in C,, it must explicitly cancel
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the delegation to scope; first. Agents in scope; must listen for cancellations of
delegated model objects and acknowledge it, before an agent in scopes can
delete the delegated model object. If an agent in scope, wants to change a
model element in C,,,, it must send a model notification to scope;.

The source scope does not know the target scope. The message bus is respon-
sible for routing a delegated model element to a target scope. The routing rules
are either statically provided by a system administrator, or the virtualization
platform may dynamically derive them based on the current configuration.

Access Restrictions By default, an agent can only access model elements within
its own scope. However, depending on the type of extraction scope, we may
relax this rule to allow for read-only access to neighboring scopes:

¢ If a platform scope is part of the virtualization platform, it may access the
data center scope, as well as any platform layer below itself. For instance,
a platform scope covering the hypervisor layer, may obtain information
on the hardware infrastructure.

¢ A model variable scope has access to the associated application scope,
the data center scope, and any platform scopes the application depends
on. For instance, the characterization of resource demands requires in-
formation on the physical and logical resources the application depends
on.

4.2 Model Extraction Agents

In our reference architecture, model extraction agents may take on different
roles. An agent role defines the aspects of the performance model an agent
takes care of. In order to extract a complete model, all required roles need to
be implemented by agents. However, there are certain dependencies between
agent roles requiring coordination between agents. In this section, we define a
set of standard agent roles and the communication channels between them.

We analyzed the DML meta-model identifying clusters of classes in the meta-
model with a high cohesion. Such clusters should be covered by a single agent
role in order to reduce the required communication between agent roles. In
the following, we describe each agent role and its interfaces to other roles. The
agent roles are grouped by extraction scopes. Furthermore, we also discuss
how existing dynamic and static analysis techniques can be used to implement
the agent roles.
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Scope [ <<Stereotype>> gl
Role

Q Event Topic <{— EventSource »]— EventSink

Figure 4.5: Notation.

Notation The communication between agents in our reference architecture
is based on asynchronous, event-based communication. In the following, we
adopt the UML component diagram notation with the profile for event-based
communication used by Rathfelder (2013). Figure 4.5 gives an overview of
the notation. Each agent role is represented by a component. Composite
components are used to group them into extraction scopes. A component
may have any number of event sources and event sinks specifying the types
of events it may send and receive. Event topics connect event sources with
event sinks and allow for publish/subscribe communication. Events are either
change notifications (as described in Section 4.1.2), or scope delegations, if
the event source is marked with the stereotype «delegates» (as described in
Section 4.1.3).

4.2.1 Data Center Scope

Agents in the data center scope create and maintain a resource landscape
model of the physical hardware infrastructure as well as a high-level system
model of the applications running in a data center. The agents in this scope
treat the physical hardware nodes and applications as black-boxes without any
knowledge of their internal structure.

Agent Roles Figure 4.6 gives an overview of the agent roles in the data center
scope. We distinguish six agent roles:

* D1 (Data Center Structure). The agent discovers the global structure of
the data center. It identifies compute and storage nodes representing
physical computers and storage systems in a data center. This agent role
is focused on the static structure.

¢ D2 (Compute Node Configuration) The agent enriches compute nodes with
information on their configuration (e.g., number of CPUs and their speed).
Furthermore, it determines the directly contained runtime environment
(e.g., a hypervisor, or a native operating system). We assume that each
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physical compute node contains only one direct child container. This is a
safe assumption for real systems, given that only a single hypervisor or
operating system can run natively on a compute node.

* D3 (Storage Node Configuration, optional) The agent extracts the configu-
ration of storage nodes. The current version of DML does not provide
meta-models to describe storage nodes (Huber, 2014). The preliminary
work of Noorshams (2015) for storage performance modeling may be
integrated as part of future work.

® D4 (Network Infrastructure, optional) The agent extracts the physical net-
work infrastructure connecting compute and storage nodes in a data
center. The current version of DML does not provide meta-models to
describe network infrastructures (Huber, 2014). The work of Rygielski
and Kounev (2014) for network performance modeling and extraction
may be integrated here as part of future work.

* D5 (System Interface Providing Roles) Applications may provide services to
users outside the data center. An agent with this role is responsible to
identify these interface roles including their operations and their input
and output parameters.

* D6 (Application Assembly). The agent determines the different applications
running inside a data center including their interface providing and re-
quiring roles. The interface providing roles of an application describe the
services which are publicly visible to other applications in the same data
center or to external users. The interface requiring roles of an application
may be connected to services provided by other applications in the same
data center. Interface providing roles of applications may be delegated to
the system level if they are visible from outside the data center.

Scope Delegations Figure 4.6 shows the delegation interfaces to other agent
scopes. We define the following three delegation interfaces in the data center
scope:

¢ The role D2 determines the direct child runtime environment (e.g., a
hypervisor, or an operating system) of a compute node. However, the
extraction of the internal structure and behavior requires deeper insights
into the runtime environment. Therefore, the runtime environment may
be delegated to a platform scope. The target platform scope may be de-
termined dynamically (e.g., depending on the type of hypervisor). If
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Figure 4.6: Overview of the data center scope.

applications run natively on the operating system, the runtime environ-
ment may be also delegated directly to an application scope. Each runtime
environment requires a name that uniquely identifies it within a data
center. For instance, a unique IP address or host name may be used as
name.

¢ Interface providing roles identified by role D5 can be delegated to usage
scopes. Agents in the usage scope then determine how external users are
accessing the interface providing role. We suggest the use of protocol-
specific addresses, such as Uniform Resource Locators (URLs), as unique
names for interface providing roles.

¢ The applications discovered by role D6 are represented as subsystems.
These subsystems are delegated to application scopes for further extrac-
tion of the application architecture. The name of the subsystem deter-
mines the target application scope.

Change Notifications  Figure 4.6 shows the flow of notifications within the data
center scope. D1 notifies D2, D3, and D4 when new compute nodes or storage
nodes are discovered, or old ones are deleted. D5 informs D6 if a new interface
providing role is created or if the set of operations provided by an existing one
changes.

Existing Approaches Traditional system or network management software,
such as IBM Tivoli or Hyperic, and virtualization management software, such
as VMware vCenter, are commonly used to manage data centers. Such software
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typically maintains an inventory of the systems and applications as well as
their topology in a data center. Proprietary or standardized management
interfaces, such as Simple Network Management Protocol (SNMP), or Common
Information Model (CIM), are available to access that information.

4.2.2 Usage Scope

The usage model captures the external requests of an application. In our
context, external requests come from outside the data center. Load from other
applications in the same data center is covered by agent role D6. Compared to
the workload characterization step in classic performance modeling, we only
cover the arrival process in the usage model and do no consider the mapping
to resources as part of the usage scope.

In order to extract usage models we require empirical information on the type
and frequency of requests. In case of session-based workloads, we also need
a session identifier for correlating requests in the same session. Furthermore,
if call parameters are considered for parameter dependencies, the monitoring
needs to log the values of input parameters of individual requests. We assume
that agents in the usage scope have access to session logs containing the required
information.

Usage Scope .t

UsageScenario —
InterfaceProvidingRole <<Characterization>> £
p U2: Load
<<Extraction>> ] SystemCallUserAction
i&

U1: Usage Scenario AH%E{ <<Characterization>> & |

U3: Call Parameters

Figure 4.7: Overview of the usage scope.

Agent Roles Figure 4.7 gives an overview of the agent roles in the usage scope.
We distinguish three agent roles:

® U1 (Usage Scenario). Users of a system may differ in their usage behavior
(i.e., number and types of system calls) and the load they cause on the
system (i.e., load intensity and open vs. closed workloads). Usage sce-
narios group users with similar behavior and load characteristics. The
agents categorizes observed user sessions into different usage scenarios
and determines the usage behavior (i.e., the sequence of requests) for
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each usage scenario. The agent also determines probabilities for each
request.

¢ U2 (Load). Performance models distinguish between open and closed
workloads. Open workloads are characterized by the arrival rate, while
closed ones are defined by the number of concurrent users and an optional
think time. The load intensity of a system is often time-dependent with
seasonal patterns, trends and bursts. The agent needs to characterize the
workload type as well as the load intensity over time.

* U3 (Call Parameters, optional). The performance behavior of an application
may depend on the value of input parameters. In order to extract such
parameter dependencies, we need to characterize the values of such
parameters for individual requests. Given that parameters may have
many different values, techniques to determine groups of parameter
values with similar performance impact are required.

Scope Delegations U1 agents should listen for incoming interface providing
role events (see Figure 4.7). These events are delegated from a data center scope
when new services are deployed in a data center.

Change Notifications Figure 4.7 shows the flow of notifications in a usage scope.
When U1 identifies a new usage scenario, it informs U2 of it. U2 agents then
can start observing the load intensity of that scenario. If the behavior definition
of a usage scenario changes, U1 triggers corresponding update notifications
for U2 agents. Each new or removed system call user action identified by a U1
agent triggers a notification for U3 agents. U1 should also trigger an update
notification if the call parameters of an operation associated with a system call
action changes.

Existing Approaches Table 4.1 gives an overview of existing approaches to us-
age model extraction. Session logs can be collected either on the server or on the
client. On the server side, access logs (e.g., on a web server) are often available
containing the required information. In recent years, user monitoring on the
client side becomes increasingly popular (e.g., using javascript instrumentation
of web pages, such as Google Analytics). Numerous approaches to web mining
(see Liu and Keselj, 2007) have been proposed in the literature. However, such
techniques are focused on the general analysis of user behavior.

Sharma et al. (2008) uses Independent Component Analysis (ICA) to classify
user requests according to their resource needs. However, the approach does
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Approach Ul U2 U3
Web mining techniques (e.g. Liu and Keselj, 2007) X

Sharma et al. (2008) (x)

CBMG (Menascé et al., 1999) X

WESSBAS (Hoorn et al., 2015) X

LIMBO (Kistowski et al., 2015) X
Brosig et al. (2011) X

Table 4.1: Existing approaches to usage model extraction.

not consider sessions consisting of several requests. Thus it only covers agent
role U1 partially. Hoorn et al. (2014) and Menascé et al. (1999) consider the
extraction of usage models for performance prediction. Menascé et al. (1999)
proposes a modeling formalism called CBMG to describe user behaviors. They
employ clustering techniques to determine different types of user sessions and
reconstruct the usage behavior (see UI) by analyzing the the sequence and
timings of observed sessions in a session log. Hoorn et al. (2014) published a
tool, called WESSBAS, based on similar techniques to extract usage behaviors
for load testing.

Kistowski et al. (2015) proposes an approach, called LIMBO, to extract models
describing the temporal development of load intensities. The approach employs
signal processing techniques (e.g., Fourier transformations) to identify seasonal
patterns, trends, bursts and noise. Brosig (2014) considers supervised learning
techniques to group values of input parameters according to their performance
impact.

4.2.3 Platform Scope

On top of the physical hardware layer (represented by a data center scope),
data centers typically have one or several platform layers representing the
hypervisor and optional middleware layers required by applications. Each
platform layer may host agents that extract models describing its structure and
behavior.

Agent Roles  Figure 4.8 gives an overview of the agent roles in a platform scope.
We distinguish three agent roles:

* P1 (Platform Configuration). The agent analyzes a run-time environment
(e.g., a hypervisor, or a middleware system) and determines its logical
software resources (e.g, logical CPUs, thread and connection pools, or
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Figure 4.8: Overview of the platform scope.

asynchronous message queues), as well as any contained run-time en-
vironments (e.g., VMs). The agent extracts the current configuration of
software resources of the run-time environment (e.g., the resource capac-
ity, or scheduling priorities). This role is focused on structural aspects.

P2 (Overhead Model, optional). The agent determines the dynamic behavior
of a run-time environment, i.e., its performance impact on higher layers in
a system. For instance, hypervisors introduce certain overheads slowing
down the processing within a VM (Huber et al., 2011). In heterogeneous
data centers with different types of physical nodes or varying hypervisor
configurations, we need models describing the overhead if we want to
predict the expected performance after a horizontal scale-out or a VM
migration to another physical node. Furthermore, resource-intensive
reconfigurations may impact the performance of VMs in a data-center.
We also consider that as a type of overhead of which explicit models may
be extracted.

P3 (Platform Monitoring, optional). Platform layers often provide numerous
monitoring statistics at system run-time covering the state of physical and
logical resources (e.g., the current resource usage). The agent exposes
this information in a technology-independent way.

Scope Delegations P1, P2, and P3 agents react to incoming runtime environ-
ments which are delegated either by a data center scope or an underlying
platform scope. We support an arbitrary layering of platform scopes to reflect
the layered architecture of many data centers (e.g., different virtualization,
operating system, and middleware layers). If a D1 discovers a child runtime
environment for which it cannot determine its internal structure, it delegates
it to the next platform scope. For instance, a platform scope covering the hy-
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pervisor may delegate run-time environments representing VMs for further
processing to a platform scope knowing the middleware layers inside a VM.
The highest platform scope delegates runtime environments to an application
scope.

Existing Approaches The extraction of platform layers is highly technology-
specific. We limit our discussion to hypervisors. Virtualization management
software (e.g., VMware vCenter) provide access to the hypervisor configuration
to well-documented interfaces. These interfaces are useful to implement P1
agents. In addition, they typically also provide comprehensive monitoring
capabilities supporting P3 agents. However, they contain purely descriptive
models without support for predictive analyses.

The extraction of hypervisor overheads (see role P2) is an active research field.
Huber et al. (2011) uses micro-benchmarks to determine the performance im-
pact of certain hypervisor configurations. Lu et al. (2011) employ directed factor
graphs with regression analysis techniques in order to map the resource usage
statistics observed within a VM to corresponding statistics at the hypervisor
level including hypervisor overheads.

4.2 4 Application Scope

The application model extraction covers the static structure and dynamic be-
havior of an application. We assume a component-based software architecture.
The agents in these roles focus on determining all possible control flow paths
in a component and do not determine the value of control flow variables (e.g.,
branching probabilities, or external call frequencies) and resource demands.
These model variables are characterized by downstream agents in model vari-
able scopes using empirical observations.

Agent Roles Figure 4.9 gives an overview of the agent roles in the application
scope. We distinguish eight agent roles:

* Al (Component Boundary). The agent discovers the software components
an application consists of. This includes the interface providing and
requiring roles of the components as well as interface definitions (i.e.,
signatures and parameters). The components are on a type level, they
may be used in different assembly contexts within an application. Only
one component definition is created even if it is used in different assem-
bly contexts. By default, the agent creates a black-box service behavior
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description for each component service. In addition, A4 or A5 agents may
add more detailed descriptions of the service behavior later.

A2 (Component Assembly). The component assembly describes the compo-
sition of components in an application. The agent discovers all component
instances in an application and determines the control flow between them.

A3 (Component Deployment). The agent determines the deployment of
component instances on runtime environments.

A4 (Fine-Grained Behavior, optional). The agent determines individual
actions the component-internal control flow consists of (e.g., internal ac-
tions, forks, loops, and branches). It also determines their exact execution
order.

Ab (Coarse-Grained Behavior, optional). The agent determines which re-
sources are accessed and which other components are called within a
component service irrespective of the order.

A6 (Parameter Dependencies, optional). Certain model variables (e.g., re-
source demands or branching probabilities) may depend on the value
of an input parameter. The agent identifies possible parameter depen-
dencies within a single component (e.g., which input parameters have an
influence on the resource demand of a component).

A7 (Parameter Propagation, optional). The agent determines the data flow
of input parameters across components in an application.

A8 (Application Monitoring). The agent collects performance statistics (e.g.,
response times and throughput of services) using application instrumen-
tation techniques. The availability and access to this monitoring data
usually depends heavily on the application and the employed implemen-
tation technologies.

Scope Delegations The application scope has two incoming event ports for
composed providing requiring entities and runtime environments. Composed
providing requiring entities may be either a subsystem or composite compo-
nent. A source of subsystems is the agent role D6 in a data center scope. Then
a subsystem represents an application in the data center. If required, it is possi-
ble to nest application scopes (e.g., to encapsulate tiers into own application
scopes). Then the outer application scope may delegate subsystems or compos-
ite components to inner application scopes (see the corresponding outgoing
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port), so that the inner one extracts the internal structure of them. Runtime
environments may come from data center or platform scopes and are required
by role A3 to determine the deployment target of components.

Each new model variable (i.e., resource demand, control flow variable, re-
sponse time, relationship, or influencing parameter) created by an agent in
the application scope is passed to a model variable scope. The model vari-
able scope is then responsible to provide an empirical characterization of this
model variable at run-time. The application scope also publishes sensor data.
Model variable scopes may exploit this data for the characterization of a model
variable.

Change Notifications A1 agents notify A2, A4, A5, and A6 agents of new basic
components as well as any changes to component services of existing compo-
nents (i.e., new or removed interface roles, signatures, and call parameters).
If available, A4 and A5 then start to extract service behaviors for the new or
updated component services. If A4 or A5 agents create new resource demands
or control flow variables in a service behavior, they also inform A6 agents of
the new model variables. Furthermore, A1 agents by default create a black-
box behavior for each new component service and notify A6 agents of the
corresponding response time variable.

A6 agents uses the information on new or updated components, and on new
model variables to keep track of potential influencing parameters and their
influence. If the A6 discovers a new influencing parameter, it informs the A7
agents, so that they are aware of any new candidate targets for a propagation
dependency. If an A1 agent detect a new, updated or removed composite com-
ponent or subsystem, it notifies A2 and A5 agents, so that they can extract the
inner component assembly or the coarse-grained service behavior description.
If an A2 agent finds a new, updated or removed assembly contexts, it notifies
A3, A7 and A8 agents. A8 needs to be aware of new component instances as it
might need to adapt the application instrumentation accordingly.

Existing Approaches A broad set of static or dynamic analysis techniques are
available for application model extraction. Table 4.2 gives an overview of
existing approaches to application model extraction. Awad and Menascé (2014)
and Israr et al. (2007) extract QNs and respectively, LONs models. These models
are not component-based, therefore they do not fulfill roles A1, A2, and A3.
Awad and Menascé (2014) only determine call frequencies, whereas Israr et al.
(2007) use traces of individual transactions to determine more fine-grained
control flows.
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Approach Al A2 A3 A4 A5 A6 A7

Awad and Menascé (2014) X
Israr et al. (2007)

SoMoX (Krogmann, 2010)
Brosig et al. (2011)

PMW (Brunnert et al., 2013)
SLAstic (Hoorn, 2014)

PMX (Walter, 2015)

> X X X X
X X X X X
x X X X

> X X X

X

Table 4.2: Existing approaches to application model extraction

SoMoX (Krogmann, 2010) uses a combination of static and dynamic analysis
techniques to extract PCM instances. It requires access to the source code of an
application, and uses clustering techniques on code metrics to identify com-
ponents as well as the component assembly. In order to determine parameter
dependencies, the application is executed in a dedicated test environment and
genetic search techniques are employed. Given that the approach is targeted at
model extraction at design time, it lacks the information where the application
will be deployed at run-time.

Brosig et al. (2011), PMW (Brunnert et al., 2013), SLAstic (Hoorn, 2014) and
PMX (Walter, 2015) are exclusively based on dynamic analysis techniques of
applications. Brosig et al. (2011), PMW and PMX are focused on the extraction
of PCM instances, while SLAstic uses its own meta-model (although a transfor-
mation to PCM exists). The main difference between the four approaches is the
monitoring tools used for obtaining the input for the dynamic analysis. Brosig
etal. (2011) is based on the proprietary instrumentation techniques provided by
the Oracle WebLogic middleware platform. PMW uses standardized Java EE
filters to intercept incoming requests or alternatively can exploit session data
from the Dynatrace APM tool?>. SLAstic and PMX are based on the Kieker
application monitoring framework (Rohr et al., 2008a).

4.2.5 Model Variable Scopes

The techniques to characterize model variables are typically generic, however,
they may require access to information in the data center scope and the plat-
form scopes. Therefore, agents for the characterization of model variables run
in scopes separate to the application scope. Such agents may also use statis-
tical techniques based on empirical monitoring with higher computational
complexity and may be deployed on isolated machines.

Zhttp://www.dynatrace.com/de/index.html
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Figure 4.10: Overview of the model variable scope.

Agent Roles Figure 4.10 gives an overview of the model variable scope. The
scope definition is a generic template where the ModelVariable parameter
determines the actual variable type: ResponseTime, ControlFlowVariable,
ResourceDemand, InfluencingParameter, or Relationship. We distinguish
between five agent roles accordingly:
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M1 (Response Time). Black-box service behaviors contain a function de-
scribing the response time of a component service depending on input
parameters. The agent derives a function describing the response time
depending on the values of input parameters.

M2 (Resource Demand). Resource demands are required for coarse-grained
and fine-grained service behaviors. The agent determines a value for
resource demands (including their stochastic distribution). Optionally,
a resource demand may have a dependency on the value of an input
parameter.

M3 (Control Flow Variable). The agent determines values for control flow
variables, such as loop iteration counts or branching probabilities in fine-
grained service behaviors and external call frequencies in coarse-grained
ones. The value of control flow variables may depend on values of input
parameters.

M4 (Parameter Characterization). In order to enable the characterization of
parameter dependencies, the distribution of values of input parameters
to a component service needs to be determined.

MBb (Relationship) The agent determines the data flow of input parameter
values between components in an application and provides empirical
distributions of these relationships.
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Scope Delegations The incoming model variable port may be connected to any
model variable port of an application scope. The incoming sensor data port
may be connected to any application scope and any platform scope. This port
may connected to multiple scopes.

Approach M1 M2 M3 M4 M5
Courtois and Woodside (2000) X

Westermann et al. (2012) X

LibReDE E

Wang et al. (2015) E

Israr et al. (2007) X

SoMoX (Krogmann, 2010) X X X
ByCounter (Kuperberg et al., 2008a) M

Brosig et al. (2011) E X X X
PMW + LibReDE (Brunnert et al., 2013) M/E X

SLAstic (Hoorn, 2014) X

PMX + LibReDE (Walter, 2015) E X

Table 4.3: Existing approaches to model parameterization (E stands for estima-
tion and M for measurement).

Existing Approaches Table 4.3 shows major existing approaches to model pa-
rameterization that may be used to implement such agents. Courtois and
Woodside (2000) and Westermann et al. (2012) propose regression techniques
to determine functions on the observed response time. LibReDE is our tool
for resource demand estimation presented in Section 5.3, which has also been
integrated with the PMW (Brunnert et al., 2013) and the PMX (Walter, 2015)
tools. Brunnert et al. (2013) also implement a measurement-based approach
for resource demands using application instrumentation. Further approaches
using resource demand estimation techniques are Wang et al. (2015) and Brosig
et al. (2011). The ByCounter (Kuperberg et al., 2008a) approach uses fine-
grained instrumentation to count bytecode instructions and micro-benchmarks
to measure the resource demand of individual instructions.

Israr et al. (2007), Brosig et al. (2011), PMW (Brunnert et al., 2013), PMX (Wal-
ter, 2015) and SLAstic (Hoorn, 2014) are all using dynamic analysis techniques
to determine the control flow of applications, including a characterization of
control flow variables. In contrast, SoMoX (Krogmann, 2010) uses static analy-
sis techniques to reach that goal. Combined with dynamic analysis techniques,
SoMoX can also characterize parameter dependencies using explicit stochastic
expressions. Brosig et al. (2011) characterizes parameter dependencies using
empirical distributions.
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4.3 Performance Model Repository

The model repository is the central place where the extracted DML model in-
stance of the complete system is maintained and persisted. The model instance
is the result of merging all model skeletons coming from different agents into a
single model instance. Model skeletons from different agents may overlap, i.e.,
they may contain model objects referring to the same physical entity. To avoid
duplication of model objects, a merging of the model skeletons is required
resolving duplicate model elements to a single element in the performance
model repository.

Q Model Object —> Containment -->> Cross-Reference _ Model Skeleton

Figure 4.11: Example of overlapping model skeletons.

Figure 4.11 gives a schematic example how a complete DML model may be
distributed across different model skeletons. In general, an EMF model may
be seen as a forest of containment trees. Each model object has exactly one
parent object (or zero in case of root objects). Cross-references may connect
objects in different positions in the same containment tree or between trees.
Model skeletons always start at root objects of DML and contain a subset of
their descendant model objects. Given the self-containment property of model
skeleton, all ancestors of a model object need to be contained in the same model
skeleton. Furthermore, all targets of cross-references are part of the same model
skeleton.

Given that model skeletons are created independently from each other, con-
flicts and inconsistencies need to be detected and resolved when merging them
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into a single model instance in the performance model repository. In the follow-
ing sections, we describe how model skeletons can be merged to an end-to-end
performance model.

4.3.1 Model Skeleton Composition

Existing work on merging EMF models is focused on use cases where different
users work concurrently on the same model instance. Fortsch and Westfechtel
(2007) provide an overview on the state-of-the-art in this area. Westfechtel
(2014) distinguishes three types of merge algorithms for EMF models: raw,
two-way, or three-way. Given two versions of a model changed independently,
raw merging takes one of the two versions discarding the changes in the other
one. Two-way merging compares the different versions to detect differences
between them. The merge algorithm itself cannot handle these differences
automatically and typically requires manual intervention by a user. Three-way
merge also takes a common base version into consideration. A base version
is a common ancestor version from which the different model versions were
derived. By exploiting the additional knowledge of the base version, three-way
merging can automate the resolution of certain types of conflicts. However,
there exists no domain-independent merging algorithm for models that can
resolve all types of conflicts automatically (Fortsch and Westfechtel, 2007).

In our use case, we want to merge a model skeleton into the global model
instance in our model repository. Given that the model skeleton is created
and maintained independently from the global model, we cannot assume a
common base version. Therefore, we have to resort to a two-way merging
algorithm.

Formal Definitions  For the following descriptions, we adopt the formalization
of EMF models used in Westfechtel (2014). We give a short repetition of this
formalization here. We refer the reader to Section 2.2.1 for an introduction to
EMF.

Definition 4.3 (Meta-model). A meta-model “is a tuple em = (C, D, F, P). The
components of which are sets of classes, data types, features and properties,
respectively. F is partitioned into sets of attributes A and references R (F' = AU
R, AN R = ()"(Westfechtel, 2014). P consists of attribute functions describing
the properties of classes, data types and features (such as superTypes, domain,
range, many, ordered, unique, containment, and opposite).

A model consists of a set of objects which are instantiations of classes in a
meta-model. Each object contains values for the features defined in its class.
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Attributes have literal values defined by their data type. References link to
other objects in the model.

Definition 4.4 (Model). “Letem = (C, D, F, P) denote a meta-model. A model
instantiated from em is a tuple m = (O, class, F'V'). O is a set of objects. class :
O — C assigns to each object the class from which it was instantiated. For

each feature f € F there is one and only one feature value function fv €
FV.”(Westfechtel, 2014)

Algorithm Overview Suppose a model skeleton m, and the global model m,, in
our model repository, the goal is to merge the contents of m; into the existing
structure of m,. We use a state-based, two-way merging algorithm. State-based
means that it does not require a complete change history; the merging is done
solely based on the current state of m, and m,. We start with an empty m,,.
Each new or updated model skeleton sent by an agent to the model repository
is then merged into the current state of m,, in an atomic transaction. The merge
algorithm needs to address the following two steps:

¢ Differencing: Find the model objects that are contained in both models.
Given that the model skeletons are created independently by different
agents, we need to consider strategies for matching the same objects in m
and m,.

* Merging: If a model object is only contained in m it can be simply copied
to m,,. Otherwise, we need to merge the two objects to integrate any
changes of m, into m,,.

Compared to other merging algorithms (Westfechtel, 2014, e.g.) that assume the
two model versions come from a common base version, our algorithm differs
as the model skeleton m, only represents a subset of m,,. As a result, it is not
possible to determine model elements deleted from m solely on the current
state of ms and m,. We need to be able to reconstruct the last version of m
merged into m,. Therefore, the model repository maintains for each model
object in m,, a list of model skeletons that contain m,,.

Object Matching DML defines the abstract base class Identifier with a string
attribute id. The id is used to uniquely identify a model object on a global
level in a DML model instance. This class is implemented by many classes in
the meta-model. DML does not apply any restrictions on the format of the id
attribute, and it is typically generated automatically. However, the id attribute
is not suitable for matching model objects due to the following reasons:
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¢ Traceability: Model objects referring to the same physical entity may have
different values for the id attribute if created by different model extraction
agents. Often, the id attibute is just a randomly generated Universally
Unique Identifier (UUID).

¢ Coverage: Not all classes in DML are subclasses of Identifier. Only
model objects that are destinations of cross-references are subclasses of
Identifier.

Instead of the id attribute, we use matching rules specific to the DML meta-
model. These rules specify a set of identifying features (i.e., attributes or
references) for each class in the DML meta-model. The values of these features
need to be unique only on a local level (i.e, between siblings in the containment
tree). The values of the id attribute in a model skeleton are always ignored
when merging them into the model repository.

Conflict Prevention ~Conflicts may occur if two different model skeletons con-
tain the same elements. Two models e’ and em” are conflicting, if they contain
a model object 0 € (O’ N O") with a feature f for which the feature value func-
tions f v} and f v}’ assign different values. The feature may be an attribute, a
containment or a cross-reference. The equality of feature values depends on
the feature attributes. For single-value features, the two values are compared
directly. For unordered many-value features, we check for set equality. For
ordered multi-value features, we also compare the sequence of values.

Given two versions of a model, which were changed independently of each
other, there exists no domain-independent merging algorithm for models that
can resolve all types of conflicts automatically (Fértsch and Westfechtel, 2007).
Therefore, we need to introduce additional constraints to prevent conflicts.
The basic idea is to allow sharing of model objects between different model
skeletons only if we can be sure that any conflicting changes to these objects
can be resolved automatically. To enforce this constraint, we rely on the agent
roles introduced in Section 4.2. In Section 4.3.2, we describe the conditions that
need to be fulfilled to allow automatic merging of model objects.

4.3.2 Merge Algorithm

We now derive a formal description of the state of the model repository and
the model skeletons. These descriptions are focused on model merging and
are not complete formalizations. They assume the availability of a common
meta-model em = (C, D, F, P), which is DML in our case.
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Definition 4.5 (Model Skeleton). A model skeleton mg = (s, b, id, owns) con-
tains a model s = (O, class, FV) conforming to the meta-model em. The
element b € B specifies the agent that created the model skeleton. In addi-
tion, it provides a function id : C' — SET(F’) that returns a set of identity
features used for matching elements. The function owns : O; — boolean speci-
ties whether an object is owned (true) or only referenced (false) in the model
skeleton.

Several model skeletons are merged into a central model repository. The
state of a model repository is defined as:

Definition 4.6 (Model Repository). The state of a model repository is de-
fined by a tuple m, = (p, B, shared, refs, owner) containing a model instance
p = (Op, class, F'V') conforming to the meta-model em. The set B contains
all currently connected agents. The function shared : O, — boolean specifies
whether multiple owners are allowed for an object. The function refs : O, —
SET(B) returns a set of agents that reference a model object. The function
owners : O, — B determines the set of agents that own a model object.

The merging is based on a two-ways merging algorithm: the model versions
are s and p. It is important to note that compared to traditional merging
algorithms, s is only a subset of p.

Differencing. The first step, is the differencing to determine the set of changes
in the model skeleton m that need to be merged into the model repository
my. We define a helper function matches : Os x O, — boolean. The function
evaluates to true if the following condition for two objects 0; € O, and 03 € O,
with ¢ = classs(01) = classy(o2) is fulfilled: Vi € id(c) : fvi(o1) = fvi(o2). The
results of the differencing step are the following three sets (b is the agent that
created model skeleton my):

¢ The new objects set contains all objects in the model skeleton which have
no matching counterparts in the repository.

Apew = {0s € Os | Yo, € Oy, : ~matches(os,0p)}

¢ The existing objects set contains all objects newly added to a model skele-
ton which already have matching counterparts in the repository. This
may be the case if another agent has already created the same object in
the repository.

Aczists = {0s € Os | Jop, € O, : (matches(os,0p) Nb & refs(op))}
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¢ The removed objects set contains all objects which were contained in a
previous version of a model skeleton and now have been removed by
the agent. We perform reference counting to ensure that no objects are
deleted in the model repository which are still referenced in any of the
model skeletons.

Aremove = {op € Op | b e refs(op) A (Yos € O : mmatches(os,0p))}

Merging. The merging step uses the sets Aj,cy, Acgists, and Aremove from the
differencing step and merges the model skeleton m, into the model repository
my. The result is a new version m;, of the model repository. The merging uses
the following four primitives:

* create(os): Creates a new object o, in the model repository m;, that
matches the object o, in the input model skeleton. The post-condition of
this function is:

Jop € O), : (matches(os,0,) Nb € refs'(o,)
A (owns(os) = b € owners'(op)))

b is the agent which created the model skeleton. We update the refs and
owner attribute functions of the model repository accordingly.

¢ link(os,0p): Similar to the create function, except that a matching coun-
terpart o, of the object o, in the model skeleton already exists in the model
repository. The pre-condition of this function is:

(owns(os) A (owners(op) \ {b} #0)) = shared(op)

The pre-condition ensures that objects which cannot be shared between
mutiple agents can only be owned by a single agent. If the pre-condition
is not fulfilled, the merging aborts with a conflict state. The link function
updates the refs’ and owner’ in the model repository m;, accordingly.
This is enforced by the following post-condition:

berefs'(op) A (owns(os) < b € owners' (o))

* remove(op): This function removes the agent b from the list of referencing
agents and removes the object from the model repository if the number
of references is zero. Its post-condition is:

b & owners'(op) Nb & refs'(op) A (refs'(0p) =0 0, ¢ O))
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* merge(os,0p): This function synchronizes the contents of the object o5 in

the model skeleton and its counterpart o, in the model repository. We de-
fine Q,, = {f € F' | domain(F) € (class(op) U superTypes(class(op)))}
that contains all features of the class of 0, as well as all its super classes.
Then the pre-condition of this function is:

Vf €y, : (shared(op) A f ¢ id(class(op))) = (many(f) A —ordered(f))

Single-valued or ordered multi-valued features are not permitted for
objects which are shared between agents, as we may overwrite changes of
other agents. Identifier features used for matching are excluded given that
they are ensured to always have the same value in o5 and o,,. The function
has two post-conditions depending on whether it is a single-valued or
multi-valued feature:

Joj, € O,V f € Qo, : many(f) = fvs(o,) = fvg(op) U fug(os)

3o, € O,V f € Qo, : ~many(f) V ordered(f) = fvs(o),) = fus(os)

In case of multi-valued, unordered features, we create the union of all
its values in o, and o,. In case of single-value or an ordered multi-value
features, we overwrite the value of the feature in the model repository
with the one in the model skeleton.

The merging step calls the functions in the following order: a) create for each
object in set Ay, b) link for each object in set Acyists, €) Temove for each
object in set Ayemove, and d) merge for the set of objects Ayyneqa = {05 € Os |
owns(os)}.

Conflicts.  If any of the pre-conditions of the merging primitives above were
violated, the merging would fail in a conflict state. Given that we do not assume
that a user may manually help to resolve the conflicts, we need to ensure that
conflicts may not happen in a correctly set up system. The following invariants
need to hold to ensure a conflict-free model repository:
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¢ Each non-shared model object may be only owned by a single agent:

Vo, € Oy, : ~shared(op,) = |owners(op)| <1

The first invariant can be enforced through a deliberate formulation of the
shared and id functions. The second invariant needs to be checked at system
run-time. Our idea to avoid conflicts at run-time is to utilize the agent roles
introduced in Section 4.2. We require each agent to specify on start up, which
roles it fulfills. The agent is only permitted access to the model repository if in
the same extraction scope no other agent with any of these roles is registered
or if a role explicitly allows multiple agents.

We now discuss, which agent roles may allow multiple agents of the same
role in the same extraction scope. Given agent role ¢, the subset C; C C of
meta-model classes specifies which objects an agent in ¢ may own in its model
skeleton. It is important to note, that the agent still may reference objects from
the full set C. If for all classes in C; holds that all non-identifying features are
non-ordered and multi-valued, multiple agents of role ¢ may be allowed in the
same extraction scope.

We determined the functions shared and id for the DML meta-model and
identified the following agent roles that allow for sharing of model objects: D1
(Data Center Structure), D5 (System Interface Providing Roles), D6 (Applica-
tion Assembly), A10 (Component Boundary), A2 (Component Assembly), A3
(Component Deployment), and A5 (Coarse-Grained Behavior).

4.4 Concluding Remarks

In this chapter, we presented a reference architecture for online model learn-
ing in virtualized environments. The reference architecture is based on agents
which are responsible of extracting model skeletons of certain aspects of a
system. Agents may employ different static and dynamic analysis techniques to
create model skeletons at run-time. We expect a deep integration of agents into
existing technologies and platforms in order to exploit domain-specific knowl-
edge for model learning. The model skeletons are dynamically composed into
a comprehensive performance model of a system. Our reference architecture
is based on a common meta-model in order to ease the composition of model
skeletons from different agents.

In order to implement our reference architecture, virtualization platforms
need to be extended with additional components supporting the online model
learning. However, these components are supplementary and do not require
changes in the existing parts of a virtualization platform, as we will demonstrate
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later in Section 7.2.1 for the VMware vSphere platform. We provide a reference
implementation of the core components (i.e., model repository and message
bus) of our architecture employing state-of-the-art MDD technologies.

Leveraging our reference architecture, future work may provide VAs con-
taining model extraction agents focused on specific aspects of model learning.
A performance engineer, who has expertise in performance modeling, can
specifically design the extraction logic to exploit a-priori knowledge about a
technology and leverage proprietary interfaces. For a given technology, this
needs to be done only once and the resulting VA can be reused in different
deployments. We describe exemplary implementations for the WildFly Java EE
application server in Section 7.2.3 and the Zimbra collaboration server in Sec-
tion 7.2.2. Furthermore, we describe the LibReDE tool in Section 5.3, which can
be used as a generic agent for characterizing resource demand variables.

102



Chapter 5

Online Statistical Estimation of Resource
Demands

The reference architecture in Chapter 4 enables the deep integration of model
learning capabilities into virtualization platforms. It is able to provide us an
overall DML model representing the current architecture of a system at any
given point in time. However, before using this model for reasoning purposes,
concrete values for various model variables (e.g., branching probabilities and
resource demands) in this model need to be characterized. We rely on empirical
data to determine values for model variables. Whereas most model variables
can be directly observed at a system, the accurate quantification of resource
demands poses a major challenge. In this chapter, we survey, systematize, and
evaluate different approaches to the statistical estimation of resource demands
and propose a novel method relying on multiple statistical techniques for
increased robustness and accuracy.

Our understanding of resource demands is based on the one used with
stochastic performance models, such as QNs. A resource demand is the average
time a unit of work (e.g., request or transaction) spends obtaining service from
a resource (e.g., CPU or hard disk) in a system over all visits excluding any
waiting times (Lazowska et al., 1984; Menascé et al., 2004). The resource demand
for processing a request is influenced by different factors, for example, the
application logic specifies the sequence of instructions to process a request, the
hardware platform determines how fast individual instructions are executed,
and platform layers (e.g., hypervisor, operating system, or middleware systems)
may introduce additional processing overhead.

While the direct measurement of resource demands is feasible in some sys-
tems, it requires an extensive instrumentation of the application and typically
introduces significant overheads that may distort measurements. For instance,
standard profiling tools for performance debugging (Graham et al., 1982; Hall,
1992) can be used to obtain execution times of individual application functions
when processing an individual request. However, the resulting execution times

103



Chapter 5: Online Statistical Estimation of Resource Demands

are not broken down to the processing times at individual resources and pro-
filing tools typically introduce high overheads significantly influencing the
performance of a system. Furthermore, advanced instrumentation techniques
have been proposed in the literature to measure resource demands on the
operating system layer (Barham et al., 2004), or the application layer (Brunnert
et al., 2013; Kuperberg et al., 2008a, 2009). These techniques build upon specific
capabilities of the underlying platform and are not generally applicable.

Challenges In this chapter, we strive for a generic method to determine resource
demands at system run-time without relying on a dedicated instrumentation of
the application. Therefore, the goal is to estimate the resource demands based
on indirect measurements of commonly available metrics (e.g., end-to-end
response time, and resource utilization). However, such a generic approach
needs to address the following challenges:

* The value of a resource demand is platform-specific (i.e., only valid for a
specific combination of application, operating system, hardware platform,
etc.). The hardware platform determines how fast a piece of code executes
in general. Furthermore, each platform layer on top (e.g., hypervisor, op-
erating system, and middleware systems) may add additional overheads
influencing the resource demands of an application.

¢ Applications often serve a mix of different types of requests (e.g., read
or write transactions), which also differ in their resource demands. For
resource management purposes it is beneficial to be able to distinguish
between different types of requests. Therefore, we want to quantify
the resource demands separately for each type of request (also called
workload classes).

* Modern operating systems can only provide aggregate resource usage
statistics on a per-process level. Many applications, especially the ones
running in data centers, serve different requests with one or more operat-
ing system processes (e.g., HTTP web servers). The operating system is
unaware of the requests served by an application and therefore cannot
attribute the resource usage to individual requests.

* Many applications only allow the collection of time-aggregated request
statistics (e.g., throughput or response time), while they are serving pro-
duction workloads. A tracing of individual requests is often considered
too expensive for a production system, as it may influence the application
performance negatively.
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* Resource demands may change over time due to platform reconfigura-
tions (e.g., operating system updates) or dynamic changes in the applica-
tion state (e.g., increasing database size). Therefore, resource demands
need to be continuously updated at system run-time based on current
measurement data.

Research Questions In the last decades, many different approaches to resource
demand estimation have been proposed in the literature. These approaches
differ in their modeling assumptions and the underlying statistical techniques.
In this chapter, we address the following research questions:

¢ Which approaches to resource demand estimation exist in the literature?
What are their assumptions with regards to the system structure and the
measurement data? We provide the first systematization and survey of
the state-of-the-art on resource demand estimation.

* Which approach provides the highest estimation accuracy? Which fac-
tors influence the estimation accuracy of the approaches? We evaluate
seven different approaches to resource demand estimation and compare
their accuracy in a series of experiments with varying settings. Existing
evaluations of estimation approaches are limited to a single or a small
subset of approaches.

¢ How to automatically decide which set of estimation approaches to apply
in a given scenario? How to derive the structural information required for
resource demand estimation from DML models? We describe a method
to resource demand estimation that automatically selects an estimation
approach based on a cross-validation of the results.

Chapter Outline  We first survey existing approaches to resource demand es-
timation and provide a systematization of them in Section 5.1. Section 5.2
presents the results of comparing different estimation approaches in a series
of experiments and discusses the results. We describe our method to resource
demand estimation employing multiple estimation techniques in Section 5.3.
Section 5.4 concludes this chapter.

5.1 Systematization of Approaches

In this section, we survey the state-of-the-art in resource demand estimation
and and provide a systematization of existing estimation approaches. The goal

105



Chapter 5: Online Statistical Estimation of Resource Demands

of the systemization is to help performance engineers to select an estimation
approach that best fits their specific requirements. We first survey existing
estimation approaches and describe their modeling assumptions and their
underlying statistical techniques. Then, we introduce three dimensions for
systemization: input parameters, output metrics and robustness to anomalies
in the input data. For each dimension, we first describe its features and then
categorize the estimation approaches accordingly. This section is based on our
article in Spinner et al. (2015a).

Methodology In order to obtain the estimation approaches listed in Table 5.2,
we started the literature search by reading the titles and abstract of articles in the
proceedings of 12 established conferences and workshops in the performance
engineering community in the last 10 years. Relevant articles were analyzed
further regarding references to other articles on resource demand estimation.
Based on the found articles found we compiled a list of keywords to use for
a broader search in common scientific search engines (scholar.google.com,
portal.acm.org and citeseerx.ist.psu.edu). The keywords used for search were
resource demand (estimation), including synonyms service demand, service time,
service requirement. Furthermore, we also considered the more general terms
workload characterization, parameter estimation and model calibration. The list of
articles resulting from this search was then filtered based on the titles and
abstracts. After filtering, we got the list of 37 papers on resource demand
estimation shown in Table 5.2.

Notation and Assumptions In the following, we use a consistent notation for
the description of the different approaches to resource demand estimation. We
denote resources with the index i = 1. .. I and workload classes with the index
¢ =1...C. The variables used in the description are listed in Table 5.1. We
assume the Flow Equilibrium Assumption (Menascé and Gomaa, 2000) to hold,
i.e., that over a sufficiently long period of time the number of completions is
approximately equal to the number of arrivals. As a result, the arrival rate
Ac is assumed to be equal to the throughput X.. Furthermore, we use the
term resource demand as a synonym for service demand and for simplicity
of exposition we assume V; . = 1, i.e., no distinction is made between service
demand and service time.

5.1.1 Estimation Approaches

In this section, we describe the different approaches to resource demand esti-
mation that exist in the literature. Table 5.2 gives an overview of all approaches.
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D;,. average resource demand of requests of workload class c at resource ¢

Ui average utilization of resource i due to requests of workload class c

Ui average total utilization of resource ¢

Ai,e  average arrival rate of workload class c at resource ¢

Xi.. average throughput of workload class c at resource i

R;.. average residence time of workload class c at resource i

R. average end-to-end response time of workload class ¢

Ai. average queue length of requests of workload class c seen on arrival
at resource ¢, excluding the arriving job

Vi,e  average number of visits of a request of workload class c at resource %

I total number of resources

C total number of workload classes

Table 5.1: Explanation of variables.

5.1.1.1 Approximation with Response Times

Assuming a single queue and insignificantly small queueing delays compared
to the resource demands, we can approximate the resource demand with the
observed response times. However, this trivial approximation only works
with systems under light load where a single resource dominates the observed
response time. This approximation is used in (Brosig et al., 2009; Nou et al.,
2009; Urgaonkar et al., 2007).

5.1.1.2 Service Demand Law

The Service Demand Law (see Equation 2.19 on page 35) is an operational law
that can be used to directly calculate the the demand D; ., given the utilization
Ui . and the throughput X; . (Menascé et al., 2004). However, modern operating
systems can only report the utilization on a per-process level. Therefore, we
usually cannot observe the per-class utilization U; . directly given that single
processes may serve requests of different workload classes. Given a system
serving requests of multiple workload classes, Lazowska et al. (1984) and
Menascé et al. (2004) recommend to use additional per-class metrics if available
(e.g., in the operating system) to apportion the aggregate utilization U; of a
resource between workload classes. Brosig et al. (2009) use an approximate
apportioning scheme based on the assumption that the observed response
times are proportional to the resource demands.
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Technique Variant References
Approximation with Urgaonkar et al., 2007
response times Nou et al., 2009
Brosig et al., 2009
Service Demand Lazowska et al., 1984
Law Brosig et al., 2009

Linear regression

Least squares

Bard and Shatzoff, 1978

Rolia and Vetland, 1995, 1998
Pacifici et al., 2008

Kraftetal., 2009; Pérez et al., 2013

Least absolute differences

Kelly and Zhang, 2006; Stewart
et al., 2007; Zhang et al., 2007

Least trimmed squares

Casale et al., 2008; Casale et al.,
2007

Kalman filter Zheng et al., 2008, 2005
Kumar et al., 2009a
Wang et al., 2012, 2011
Optimization Non-linear constrained Zhang et al., 2002
optimization Menascé, 2008

Quadratic programming

Liu et al., 2006, 2003; Wynter et
al., 2004
Kumar et al., 2009b

Machine learning

Clusterwise linear regression

Cremonesi et al., 2010

Independent component analy- Sharma et al., 2008
sis
Support vector machine Kalbasi et al., 2011

Pattern matching

Cremonesi and Sansottera, 2012,
2014

Maximum likelihood Kraft et al., 2009

estimation Pérez et al., 2013

Gibbs sampling Sutton and Jordan, 2011
Wang and Casale, 2013

Demand Estimation with Confidence (DEC)

Kalbasi et al., 2012; Rolia et al.,
2010

Table 5.2: Overview of estimation approaches categorized according to statisti-

cal techniques.
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5.1.1.3 Linear Regression

Given a linear model Y = X3 + € where 3 (see also Section 2.3.1) is a vector of
resource demands D; , and Y, X contain observations of performance metrics
of a system, we can use linear regression techniques to estimate the resource
demands. Two alternative formulations of a such a linear model for resource
demand estimation have been proposed in the literature:

¢ The Utilization Law (see Equation 2.18 on page 35) requires observations
of the aggregate utilization U; and the throughputs A; .. This is a classical
model used by different authors (Bard and Shatzoff, 1978; Casale et al.,
2007; Kelly and Zhang, 2006; Kraft et al., 2009; Pacifici et al., 2008; Rolia
and Vetland, 1995; Stewart et al., 2007, Zhang et al., 2007). Some of
the authors include a constant term U; o in the model to estimate the
utilization caused by background work that cannot be directly attributed
to the requests.

e Kraft et al. (2009) and Pérez et al. (2013) propose a linear model based
on a multi-class version of the response time equation R; = D;(1 + A;)
requiring observations of the queue length A; seen by a newly arriving
job, and its response time R;. In their initial work (Kraft et al., 2009), they
assume a FCFS scheduling strategy and Pérez et al. (2013) generalizes the
model to PS queueing stations.

Bard and Shatzoff (1978), Kraft et al. (2009), Pacifici et al. (2008), and Rolia and
Vetland (1995, 1998) use non-negative least squares regression for solving the
linear model. Other regression techniques, such as least absolute differences
regression (Kelly and Zhang, 2006; Stewart et al., 2007; Zhang et al., 2007) or
least trimmed squares (Casale et al., 2008; Casale et al., 2007) were proposed
to increase the robustness of regression-based estimation techniques to multi-
collinearities, outliers, or abrupt changes in the demand values.

5.1.1.4 Kalman Filter

Resource demands of a system may vary over time, e.g., due to changing
system states, or changing user behavior. These variations may be abrupt or
continuous. In order to track time-varying resource demands, Kumar et al.
(2009a), Wang et al. (2012), and Zheng et al. (2008) use a Kalman filter (see
Section 2.3.2). The authors assume a dynamic system where the state vector x
consists of the hidden resource demands D; , that need to be estimated. Given
no prior knowledge about the dynamic behavior of the system state exists,
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they assume a constant state model, i.e., Equation 2.5 on page 27 is reduced to
Xk = Xgp—1 + Wg.

The observation model z = h(x) requires a functional description of the
relationship between the observations z and the system state x. Wang et al.
(2012) use the observed utilization U; as vector z and h(x) is based on the
Utilization Law (see Equation 2.18 on page 35). Given the linear model, a
conventional Kalman filter is sufficient. Kumar et al. (2009a) and Zheng et al.
(2008) use an observation vector consisting of the observed response time R; .
of each workload class and the utilization U; of each resource. The function
h(x) is based on the solution of a M/M/1 queue (see Equation 2.23 on page 36),
as well as the Utilization Law. Due to the non-linear nature, it requires an
extended Kalman filter design (see Equation 2.7 on page 27).

5.1.1.5 Optimization

Given a general QN, we can formulate an optimization problem to search for
values of the resource demands so that the differences between performance
metrics observed at a real system and the ones calculated using the QN are
minimized. The main challenge is the solution of the QN. Depending on the
structure of the QN, its solution may be computationally expensive and the
optimization algorithm may need to evaluate the QN with many different
resource demand values to find an optimal solution. Existing approaches
(Kumar et al., 2009b; Liu et al., 2006, 2003; Menascé, 2008; Wynter et al., 2004)
assume a product-form QN with an open workload. Then, the equations in
Section 2.4.1.4 can be used to calculate the end-to-end response times.

Suppose N observations of the end-to-end response time R, and the utiliza-
tion U, Liu et al. (2006) propose the following objective function:

N /C I
, D) — 22 (D) — ™2 :
3 (czlpcuzc( )~ BRSO - 00R).
The function R.(D) is based on the solution of a M/M/1 queue (see Equa-
tion 2.23 on page 36) and U;(D) on the Utilization Law. The factor p. introduces
aweighting according to the arrival rates of workload classes: p. = —= - The
d=1"d
resulting optimization problem can be solved using quadratic programming
techniques. Kumar et al. (2009b) extend this optimization approach to estimate
load-dependent resource demands. Their approach requires prior knowledge
of the type of function, e.g., polynomial, exponential or logarithmic, that best

describes the relation between arriving workloads and resource demands.
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Menascé (2008) formulates an alternative optimization problem that depends
only on response time and arrival rate measurements:

1

mln Z 2 with R( Z (5.2)

— Zd 1 dezd

C
subject to D; . > 0 Vi, cand Z NieDic <1 Vi

c=1

In contrast to Liu et al. (2006), this formulation is based on a single sample of the
observed response times. Menascé (2008) proposes to repeat the optimization
for each new sample using the previous resource demand estimate as the
initial point. To solve this optimization problem we depend on a non-linear
constrained optimization algorithm.

5.1.1.6 Machine Learning

Cremonesi et al. (2010) use cluster-wise regression techniques to improve the
robustness to discontinuities in the resource demands due to system configura-
tion changes. The observations are clustered into groups where the resource
demands can be assumed constant, and the demands are then estimated for
each cluster separately. Cremonesi and Sansottera (2012, 2014) propose a novel
algorithm based on a combination of change-point regression methods and
pattern matching to address the same challenge.

Independent Component Analysis (ICA) is a method to solve the blind source
separation problem, i.e., to estimate the individual signals from a number of
aggregate measurements. Sharma et al. (2008) describes a way to use ICA for
resource demand estimation, using a linear model based on the Utilization
Law. ICA can provide estimates solely based on utilization measurements,
when the following constraints hold (Sharma et al., 2008): i) the number of
workload classes is limited by the number of observed resources; ii) the arrival
rate measurements are statistically independent; iii) the inter-arrival times have
a non-Gaussian distribution while the measurement noise is assumed zero-
mean Gaussian. ICA not only provides estimates of resource demands, but
also automatically categorizes requests into workload classes.

Kalbasi etal. (2011) consider the use of Support Vector Machines (SVM) (Smola
and Scholkopf, 2004) for estimating resource demands. They compare it with
results from LSQ and LAD regression and show that it can provide better
resource demand estimates depending on the characteristics of the workload.
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5.1.1.7 Maximum Likelihood Estimation (MLE)

Kraft et al. (2009) and Pérez et al. (2013) use Maximum Likelihood Estimation
(MLE) (see Section 2.3.4) to estimate resource demands based on observed
response times and queue lengths seen upon arrival of requests. Suppose N
response time measurements R}, ..., RN of individual requests, the estimated
resource demands D; 1, ..., D; ¢ are the values that maximize the likelihood
function L(D; 1, ..., D; ¢). They use the following likelihood function:

N
maxL(D;1,...,Dic) =Y log f(R | Dis,...,Dic). (5.3)
k=1

The density function f is obtained by constructing a phase-type distribution.
The phase-type distribution describes the time to absorption in a Markov chain
representing the current state of the system. Observations of the queues length
are necessary to be able to construct the corresponding phase-type distribution.
Kraft et al. (2009) describe the likelihood function for queueing stations with
FCFS scheduling. Pérez et al. (2013) generalize this approach to PS scheduling.

5.1.1.8 Gibbs sampling

Sutton and Jordan (2011) and Wang and Casale (2013) both propose approaches
to resource demand estimation based on Bayesian inference techniques (see
Section 2.3.5). Sutton and Jordan (2011) assume an open, single-class QN.
They develop a deterministic mathematical model that allows the calculation
of service times and waiting times of individual requests given the arrival
times, departure times and the path of queues of all requests in a QN. They
assume that this information can only be observed for a subset of requests.
Therefore, they propose a Gibbs sampler to sample the missing departure
times of requests that were not observed. Given the posterior distribution of
the departures times of all requests, they then derive the expected resource
demands at the individual queues.

Wang and Casale (2013) assume a multi-class, closed QN that fulfills the
BCMP theorem. Under this assumptions, the probability distribution of the
queue lengths for given resource demands is well-known (see Equation 2.16
on page 34). They assume the availability of queue-length samples from a real
system and construct a Gibbs sampler for the posterior distribution f(D|A),
where D is a vector of resource demands D; . and A is a vector of observed
queue lengths A; .. They propose an approximation for the conditionals of the
posterior distribution as required by the Gibbs sampling algorithm. A main
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challenge is the calculation of the normalization constant G for the steady-state
probabilities (see Equation 2.16 on page 34), which is non-trivial for closed
QNs. Wang and Casale (2013) propose a Taylor expansion of G and apply a
MVA algorithm to determine its value.

5.1.1.9 Other Approaches

Rolia et al. (2010) and Kalbasi et al. (2012) propose a technique for estimating the
aggregate resource demand of a given workload mix, called Demand Estimation
with Confidence (DEC). This technique assumes that a set of benchmarks is
available for a system under study. Each benchmark utilizes a subset of the
different functions of an application. DEC expects the measured demands of
the individual benchmarks as input and then derives the aggregate resource
demand of a given workload mix as a linear combination of the demands of
the individual benchmarks. DEC is able to provide confidence intervals of the
aggregate resource demand (Kalbasi et al., 2012; Rolia et al., 2010).

5.1.2 Input Parameters

Approaches to resource demand estimation often differ in terms of the set
of input data they require. We do no consider parameters of the underlying
statistical techniques (e.g., parameters controlling the optimization algorithm)
because these are specific to the concrete implementation of an estimation
approach.

Input Parameters

Model Parameters Measurements

Workload

(0]
e ‘ Utilization | -

Scheduling | | Number ‘ Response Time
Strategy of Servers

Figure 5.1: Types of input parameters.

Aggregate

Per-request

0]
Think
times

(o]
Known Resource
Demands

‘Workload
Classes

Figure 5.1 depicts the main types of input parameters for demand estimation
algorithms. The parameters are categorized into model parameters and measure-
ments. In general, parameters of both types are required. Model parameters
capture information about the performance model for which we estimate re-
source demands. Measurements consist of samples of relevant performance
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metrics obtained from a running system, either a live production system or a
test system.

Before estimating resource demands, it is necessary to decide on certain
modeling assumptions. As a first step, resources and workload classes need to
be identified. This is typically done as part of the workload characterization
activity when modeling a system. It is important to note, that the observability
of performance metrics may influence the selection of resources and workload
classes for a system under study. In order to be able to distinguish between
individual resources or workload classes, observations of certain per-resource
or per-class performance metrics are necessary. At a minimum, information
about the number of workload classes and the resources for which the demands
should be determined is required as input to the estimation. Depending on the
estimation approach, more detailed information on resources and workload
classes may be expected as an input (e.g., scheduling strategies, number of servers,
or think times).

Measurements can be further grouped into per-request or aggregate. Com-
mon per-request measurements used in the literature include response times,
arrival rates, visit counts, and queue length seen upon arrival. Aggregate mea-
surements can be further distinguished in class-aggregate and time-aggregate
measurements. Class-aggregate measurements are collected as totals over all
workload classes processed at a resource. For instance, utilization is usually
reported as an aggregate value because the operating system is agnostic of
the application internal logic and is not aware of different request types in the
application. Time-aggregate measurements, e.g., average response times or
average throughput, are aggregated over a sampling period. The sampling
period can be evenly or unevenly spaced.

Categorization of Existing Approaches

We considered the approaches to resource demand estimation listed in Ta-
ble 5.2 and examined their input parameters. Table 5.3 contains an overview
of the input parameters of each estimation approach. Parameters common to
all estimation approaches, such as the number of workload classes and the
number of resources, are not included in this table. The required input pa-
rameters vary widely between different estimation approaches. Depending
on the system under study and the available performance metrics, one can
choose a suitable estimation approach from Table 5.3. Furthermore, approaches
based on optimization can be adapted by incorporating additional constraints
into the mathematical model capturing the knowledge about the system under
study. For example, the optimization approach by Menascé (2008) allows one to
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Table 5.3: Input parameters of estimation approaches (utilization U;, response
time R., throughput X, arrival rate )., queue length A; ., visit counts V.,
demands D, ., think time Z, scheduling policy P).

Estimation approach Measurements Parameters
Ui Rc Xc/>\c Ai,c ‘/i,c Di,c Z P

Approximation with response times

Urgaonkar et al., 2007 X! X
Nou et al., 2009 X X
Brosig et al., 2009 X
Service Demand Law
Lazowska et al., 1984 X X2
Brosig et al., 2009 X X X
Linear regression
Bard and Shatzoff, 1978,
Rolia and Vetland, 1995, 1998,
Pacifici et al., 2008 X X
Kelly and Zhang, 2006; Zhang et al., 2007,
Stewart et al., 2007 X X
Kraft et al., 2009; Pérez et al., 2015, 2013 X X X
Casale et al., 2008; Casale et al., 2007 X X
Kalman filter
Zheng et al., 2008, 2005 X X X
Kumar et al., 2009a X X X
Wang et al., 2012, 2011 X X
Optimization
Zhang et al., 2002 X X X *y X
Liu et al., 2006, 2003; Wynter et al., 2004 X X X X X
Menascé, 2008 X X X
Kumar et al., 2009b X X X X
Machine learning
Cremonesi et al., 2010 X X
Sharma et al., 2008 X
Kalbasi et al., 2011 X X
Cremonesi and Sansottera, 2012, 2014 X X
Maximum likelihood estimation
Kraft et al., 2009 Xt xt X X
Pérez et al., 2015, 2013 X Xt X X
Gibbs sampling
Sutton and Jordan, 2011 x! x! X
Wang and Casale, 2013 xt X
Kalbasi et al., 2012; Rolia et al., 2010 X X

! Response time per resource.

2 Measured with accounting monitor. System overhead is not included.

3 A selected set of resource demands is known a priori.

4 Non-aggregated measurements of individual requests.

5 Requires coefficient of variation of resource demands in case of FCFS scheduling.
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specify additional known resource demand values as input parameters. These
a-priori resource demands may be obtained from the results of other estimation
approaches or from direct measurements.

Another approach that requires resource demand data is described by La-
zowska et al. (1984, Chapter 12). Lazowska assumes that the resource demands
are approximated based on measurements provided by an accounting monitor.
Such an accounting monitor, however, does not include the system overhead
caused by each workload class. The system overhead is defined as the work
done by the operating system for processing a request. Lazowska et al. (1984,
Chapter 12) describes a way to distribute unattributed computing time among
the different workload classes providing more realistic estimates of the actual
resource demands.

Approaches based on response time measurements, such as those proposed
by Zhang et al. (2002), Liu et al. (2006, 2003), Wynter et al. (2004) and Kumar et
al. (2009b), require information about the scheduling strategies of the involved
resources abstracted as queueing stations. This information is used to construct
the correct problem definition for the optimization technique. The estimation
approaches proposed by Kraft et al. (2009), Pérez et al. (2013), and Wang and
Casale (2013) assume a closed queueing network. Therefore, they also require
the average think time and the number of users as input.

In addition to requiring a set of specific input parameters, some approaches
also provide a rule of thumb regarding the number of required measurement
samples. Approaches based on linear regression (Kraft et al., 2009; Pacifici
et al., 2008; Rolia and Vetland, 1995) need at least K + 1 linear independent
equations to estimate K resource demands. When using robust regression
methods, significantly more measurements might be necessary (Casale et al.,
2007). Kumar et al. (2009b) provide a formula to calculate the number of
measurements required by their optimization-based approach. The formula
only provides a minimum bound on the number of measurements and more
measurements are normally required to obtain good estimates (Stewart et al.,
2007).

5.1.3 Output Metrics

Approaches to resource demand estimation are typically used to determine
the mean resource demand of requests of a given workload class at a given
resource. However, in many situations the estimated mean value may not be
sufficient. Often, more information about the confidence of estimates and the
distribution of the resource demands is required. The set of output metrics an
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estimation approach provides can influence the decision to adopt a specific
method.

Generally, resource demands cannot be assumed to be deterministic (Rolia
et al., 2010); for example, they might depend on the data processed by an
application or on the current state of the system (Rolia and Vetland, 1995).
Therefore, resource demands are described as random variables. Estimates of
the mean resource demand should be provided by every estimation approach.
If the distribution of the resource demands is not known beforehand, estimates
of higher moments of the resource demands may be useful to determine the
shape of their distribution.

We distinguish between point and interval estimators of the real resource
demands. Confidence intervals would be generally preferable, however, it
is often a challenge to ensure that the statistical assumptions underlying a
confidence interval calculation hold for a system under study (e.g., distribution
of the regression errors).

In certain scenarios, e.g., if Dynamic Voltage and Frequency Scaling (DVES)
or hyperthreading techniques are used (Kumar et al., 2009b), the resource
demands are load-dependent. In such cases, the resource demands are not
constant, but a function that may depend, e.g., on the arrival rates of the
workload classes (Kumar et al., 2009b).

Categorization of Existing Approaches

Table 5.4 provides an overview of the output metrics of the considered estima-
tion approaches. Point estimates of the mean resource demand are provided by
all approaches. Confidence intervals can be determined for linear regression
using standard statistical techniques, as mentioned by Kraft et al. (2009) and
Rolia and Vetland (1995). These techniques are based on the central limit theo-
rem assuming an error term with a normal distribution. Resource demands
are typically not deterministic violating the assumptions underlying linear
regression. The influence of the distribution of the resource demands on the
accuracy of the confidence intervals is not evaluated for any of the approaches
based based on linear regression. DEC (Kalbasi et al., 2012; Rolia et al., 2010) is
the only approach for which the confidence intervals have been evaluated in
the literature (Kalbasi et al., 2012; Rolia et al., 2010). The MLE approach (Kraft
et al., 2009) and the optimization approach described by Zhang et al. (2002) are
capable of providing estimates of higher moments. This additional information
comes at the cost of a higher amount of required measurements.

All of the estimation approaches in Table 5.2 can estimate load-independent
mean resource demands. Additionally, the Enhanced Inferencing approach (Ku-
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Table 5.4: Output metrics of estimation approaches.

Estimation approach

Point
estimates

Resource demands

Confidence
interval

Higher
moments

Load-
dependent

Response time approximation
Urgaonkar et al., 2007
Nou et al., 2009

Brosig et al., 2009

*x X X

Service Demand Law
Lazowska et al., 1984
Brosig et al., 2009

Linear regression
Bard and Shatzoff, 1978
Rolia and Vetland, 1995, 1998,
Pacifici et al., 2008
Zhang et al., 2007
Kraft et al., 2009; Pérez et al., 2015, 2013
Casale et al., 2008; Casale et al., 2007

x X X X

Kalman filter

Zheng et al., 2008, 2005
Kumar et al., 2009a
Wang et al., 2012, 2011

> X X

Optimization

Zhang et al., 2002

Liu et al., 2006, 2003; Wynter et al., 2004
Menascé, 2008

Kumar et al., 2009b

> X X X

Machine learning

Cremonesi et al., 2010

Sharma et al., 2008

Kalbasi et al., 2011

Cremonesi and Sansottera, 2012, 2014

*x X X X

Maximum likelihood estimation
Kraft et al., 2009
Pérez et al., 2015, 2013

*x X

Gibbs sampling
Sutton and Jordan, 2011
Wang and Casale, 2013

X
X

Kalbasi et al., 2012; Rolia et al., 2010 (DEC)

X

X

1 Only feasible if a-priori knowledge of the resource demand variance is available.
2 The accuracy of the confidence intervals is not evaluated.
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mar et al., 2009b) also supports the estimation of load-dependent resource
demands, assuming a given type of function.

5.1.4 Robustness

It is usually not possible to control every aspect of a system while collecting
measurements. This can lead to anomalous behavior in the measurements.
Casale et al. (2008), Casale et al. (2007), and Pacifici et al. (2008) identified the
following issues with real measurement data:

* presence of outliers,

* background noise,

* non-stationary resource demands,
e collinear workload,

¢ and insignificant flows.

Background activities can have two effects on measurements: the presence
of outliers and background noise (Casale et al., 2007). Background noise is
created by secondary activities that utilize a resource only lightly over a long
period of time. Outliers result from secondary activities that stress a resource at
high utilization levels for a short period of time. Outliers can have a significant
impact on the parameter estimation resulting in biased estimates (Casale et al.,
2007). Different strategies are possible to cope with outliers. It is possible to use
special filtering techniques in an upstream processing step or to use parameter
estimation techniques that are inherently robust to outliers. However, tails in
measurement data from real systems might belong to bursts, e.g., resulting
from rare, but computationally complex requests. The trade-off decision as
to when an observation is to be considered as an outlier has to made on a
case-by-case basis taking into account the characteristics of the specific scenario
and application.

The resource demands of a system may be non-stationary over time (i.e.,
not only the arrival process changes over time, but also the resource demands,
which for example can be described by a M;/M;/1 queue). Different types of
changes are observed in production systems. Discontinuous changes in the
resource demands can be caused by software and hardware reconfigurations,
e.g., the installation of an operating system update (Casale et al., 2007). Contin-
uous changes in the resource demands may happen over different time scales.
Short-term variations can often be observed in cloud computing environments
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where different workloads experience mutual influences due to the underlying
shared infrastructure. Changes in the application state (e.g., database size)
or the user behavior (e.g., increased number of items in a shopping cart in
an online shop during Christmas season) may result in long-term (over days,
weeks, and months) trends and seasonal patterns. When using the estimated
resource demands to forecast the required resources of an application over a
longer time period, these non-stationary effects need to be considered in order
to obtain accurate predictions. In order to detect such trends and seasonal
patterns, it is possible to apply forecasting techniques on a time series resulting
from the repeated execution of one the considered estimation approach over
a certain time period. An overview of such forecasting approaches based on
time series analysis can be found in Box et al. (2008a).

Another challenge for estimation approaches is the existence of collineari-
ties in the arrival rates of different workload classes. There are two possible
reasons for collinearities in the workload: low variation in the throughput of a
workload class or dependencies between workload classes (Pacifici et al., 2008).
For example, if we model login and logout requests each with a separate work-
load class, the resulting classes would normally be correlated (Pacifici et al.,
2008). The number of logins usually approximately matches the number of
logouts (Pacifici et al., 2008). Collinearities in the workload may have negative
effects on resource demand estimates. A way to avoid these problems is to
detect and combine workload classes that are correlated (Pacifici et al., 2008).

Insignificant flows are caused by workload classes with very small arrival
rates in relation to the arrival rates of the other classes. Pacifici et al. (2008)
experience numerical stability problems with their linear regression approach
when insignificant flows exist. However, it is noteworthy, that there might be a
dependency between insignificant flows and the length of the sampling time
intervals. If the sampling time interval is too short, the variance in arrival rates
might be high.

Categorization of Existing Approaches

Ordinary least-squares regression is often sensitive to outliers. Stewart et al.
(2007) come to the conclusion that least-absolute-differences regression is more
robust to outliers. Robust regression techniques as described by Casale et al.
(2008) and Casale et al. (2007) try to detect outliers and ignore measurement
samples that cannot be explained by the regression model. Liu et al. (2006) also
include an outlier detection mechanism in their estimation approach based on
optimization.
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In general, sliding window or data aging techniques can be applied to the in-
put data to improve the robustness to non-stationary resource demands (Pacifici
et al., 2008). In order to detect software and hardware configuration disconti-
nuities, robust and cluster-wise regression approaches are proposed in Casale
et al. (2008), Casale et al. (2007), and Cremonesi et al. (2010). If such discontinu-
ities are detected, the resource demands are estimated separately before and
after the configuration change. Approaches based on Kalman filters (Kumar
et al., 2009a; Zheng et al., 2008, 2005) are designed to estimate time-varying
parameters. Therefore, they automatically adapt to changes in the resource
demands after a software or hardware discontinuity. None of the considered
estimation approaches are able to learn long-term trends or seasonal patterns
(over days, weeks, or months).

Collinearities are one of the major issues when using linear regression (Chat-
terjee and Price, 1995). A common method to cope with this issue is to check the
workload classes for collinear dependencies before applying linear regression.
If collinearities are detected, the involved workload classes are merged into
one class. This is proposed in Casale et al. (2007) and Pacifici et al. (2008). The
DEC approach (Rolia et al., 2010) mitigates collinear dependencies, since it only
estimates the resource demands for mixes of workload classes.

Pacifici et al. (2008) also consider insignificant flows. They call a workload
class insignificant if the ratio between the throughput of the workload class
and the throughput of all workload classes is below a given threshold. They
completely exclude insignificant workload classes from the regression in order
to avoid numerical instabilities (Pacifici et al., 2008).

5.2 Experimental Comparison

The goal of the experiments presented in this section is to compare the accuracy
of different estimation approaches. A set of experiments was conducted to
evaluate the impact of the following factors on the estimation accuracy of the
considered estimation approaches: (RQ1) length of sampling interval, (RQ2)
number of samples, (RQ3) number of workload classes, (RQ4) load level, (RQ5)
collinear workload classes, (RQ6) missing jobs in workload model, and (RQ7)
delays during processing. (RQS8) analyses the execution time of the considered
estimation approaches. We describe the conducted experiments in detail and
discuss the results. Section 5.2.1 describes the experiment setup used to obtain
the measurement traces. The results of our experimental comparison have been
published in our article in Spinner et al. (2015a).
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5.2.1 Experiment Setup

In the experimental evaluation, we used two different sources to obtain the
measurement traces for the comparison: a queueing simulator and a set of
micro-benchmarks executed on a real system. The simulator and the micro-
benchmarks each produce traces of observations of the performance metrics
required for resource demand estimation. These traces are provided as input
to the estimation approaches and the resulting resource demands are used to
evaluate the estimation accuracy.

5.2.1.1 Dataset D1: Queueing Simulator

Dataset D1 consists of traces of arrival times and response times of individ-
ual requests from experiments with different number of workload classes
C = {1,2,5} and different load levels U = {10%, 50%, 90%}. Each experiment
was repeated 100 times resulting in a total of 900 different traces. We used a
queueing simulator based on a M/M/1 queue with FCFS scheduling and an
open workload that logs detailed statistics of each simulated request. Each
experiment run simulated 3600 requests with exponential inter-arrival times.
This corresponds to one hour of simulated time. Inter-arrival times and re-
source demands are both generated from exponential distributions. For each
experiment run, the mean resource demand of each workload class is randomly
drawn from a uniform distribution between 0 and 1 seconds, and scaled to
yield the expected load level.

5.2.1.2 Dataset D2: Micro-Benchmarks

In order to obtain dataset D2, we performed a series of experiments running
micro-benchmarks with a known CPU resource demand on a real system. The
micro-benchmarks generate a closed workload with exponentially distributed
think times and resource demands. As mean values for the resource demands,
we selected 14 different subsets of the base set [0.02s, 0.25s, 0.5s,0.125s,0.13s]
with number of workload classes C' = {1, 2, 3}. The subsets were arbitrarily
chosen from the base set so that the resource demands are not linearly growing
across workload classes. The subsets intentionally also contained cases where
two or three workload classes had the same mean value as resource demand.
The mean think times were determined according to the desired load level of
an experiment. We again varied the number of workload classes C' = {1,2, 3}
the load level U = {20%, 50%), 80% } between experiments.

Each experiment run has a length of approximately one hour. Dataset D2
contains measurement traces from a total of 210 experiment runs. The mean
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think time was calculated according to the required load level. We also used the
micro-benchmarks to generate specialized traces for the scenarios evaluating a
high number of workload classes (up to 20 classes) in Section 5.2.2.3, collinear
workload classes in Section 5.2.2.5, background jobs in Section 5.2.2.6, and
delayed processing in Section 5.2.2.7.

The micro-benchmarks were implemented with the Ginpex experiment
framework (Hauck et al., 2014). The CPU load of the micro-benchmarks consists
of the calculation of Fibonacci numbers, the number of iterations is calibrated
by Ginpex before an experiment run to match the desired resource demand.
We used a pool of machines with similar hardware configurations for the ex-
periments. Each machine had an Intel Core 2 Quad Q6600 4 x 2.4 GHz CPU, 8
GB RAM, and 2 x 500 GB SATA?2 disks, running a Ubuntu 10.04 64-bit oper-
ating system. We deactivated CPU cores in the operating system to prevent
the parallel execution of the resource demands and to simulate a single-core
machine.

During each experiment run we collected observations of the arrival times
and execution times of individual requests, and the average CPU utilization.
The execution times were measured by Ginpex (using the System.nanoTime ()
method provided by Java). The utilization was measured with the sar tool from
the sysstat package (Godard, 2014), which is part of most Linux distributions.
Average statistics for the throughput and response times were derived from
the measurements afterwards.

5.2.2 Comparison of Estimation Approaches

Table 5.5 lists the approaches considered in the experimental evaluation. For
reasons of conciseness, we use the abbreviations listed in the table to refer to
estimation approaches in the following description. All estimation approaches
were considered in the experimental evaluation with exception of response
time approximation, Independent Component Analysis (ICA) (Sharma et al.,
2008) and Maximum Likelihood Estimation (MLE) (Kraft et al., 2009; Wang and
Casale, 2013). Response time approximation is a rather trivial approach where
the assumptions are well-known, i.e., the observed response time must be close
to the considered resource demand. In most practical scenarios this assumption
does not hold, resulting in high estimation errors. ICA automatically groups the
requests into workload classes besides estimating resource demands. However,
the interpretation of the resulting classes is difficult and the resulting resource
demands cannot be directly compared to other approaches. MLE has high
computational requirements (both with respect to CPU and memory) and can
take a long time to provide estimates compared to the other approaches (factor
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10 to 100). The computational overhead made an application of MLE to our
extensive datasets infeasible.

We used the following configuration for the experimental comparison: SDL
uses the average utilization and throughput of the complete experiment length
as input and apportions the aggregate utilization between workload classes us-
ing the observed average response time as described in Brosig et al. (2009). UR
uses a standard non-negative least-squares regression algorithm (see 1sqnoneg).
The parameterization of KF follows the guidelines suggested by Zheng et
al. (2008) (D1: state covariance Q=0.0025, observation covariance R=0.1; D2:
Q=0.0001 R=0.0001). We also applied a moving average filter to the resulting de-
mands with a window size of 10 minutes. MO uses the recursive optimization
algorithm proposed by Menascé (2008). In contrast, LO executes the optimiza-
tion algorithm once with the complete observation traces as input. RR comes in
two different versions: one for FCFS (Kraft et al., 2009) and one for PS schedul-
ing (Pérez et al., 2013). We used the FCFS variant for dataset D1 and the PS
variant for dataset D2.

Abbreviation Estimation Approach

SDL Service Demand Law (Brosig et al. (Brosig et al., 2009))

UR Utilization regression (Rolia et al. (Rolia and Vetland, 1995))
KF Kalman filter (Kumar et al. (Kumar et al., 2009a))

MO Menascé optimization (Menascé, 2008)

LO Liu optimization (Liu et al. (Liu et al., 2006))

RR Response time regression (Kraft et al. (Kraft et al., 2009))
GS Gibbs Sampling (Wang et al. (Wang et al., 2012))

Table 5.5: Estimation approaches considered in the experimental evaluation.

To assess the accuracy of the estimation approaches, we rely on the mean
relative demand error Ej as error metric. Equation 5.4 shows the definition of
E,. C is the number workload classes, Dg“ the estimated resource demand of
class c and D% the actual resource demand of class c.

(5.4)

act
Dc

In some of the experiments we also use the relative utilization error FE,
and relative response time error E, to show the effect of incorrect demand
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estimates on the predicted utilization and response time. Equation 5.5 shows
the definition of the utilization error

E, = (5.5)

|ZC Ak DEt—U

C is the number workload classes, \. the observed throughput of class ¢, D¢
the estimated resource demand of class ¢ and U is the observed utilization.
Equation 5.6 shows the definition of the response time error

ET _ l Rgal _ Rgct
C Ract

c=1

(5.6)

C is the number of workload classes, R?“ is the average observed response time
of class ¢, and R is the predicted average response time of class c obtained
with Mean Value Analysis (MVA) (Bolch et al., 2006).

5.2.2.1 RQ1: Length of Sampling Interval

The sampling interval defines the time period for which average statistics, e.g.,
of utilization or response times, are calculated. The total experiment length
is divided into fixed-length sampling intervals. In this experiment, we used
observation traces from datasets D1 and D2 with medium load (U = 50%) and
one workload class. The average statistics are calculated for different sampling
intervals, varying between one second and and two minutes. A sampling
interval of one second is usually the lowest resolution for operating system
monitoring tools (e.g., the sar utility for obtaining resource usage statistics).
The maximum sampling interval of two minutes is chosen so that there are at
least 30 samples per experiment run.

From the considered estimation approaches, only UR, KF, MO, and LO rely
on average statistics. To be concise, we leave out the results for RR and GS,
which are based non-aggregated measurements of individual requests, and
SDL, which always takes the average over the complete observation period. As
expected, the latter estimation approaches are not influenced by the length of
the sampling interval.

Figure 5.2 shows the relative demand errors E, for dataset D1 under medium
load (U = 50%) and one workload class. All four estimation approaches are
negatively influenced by small sampling intervals. Under small sampling
intervals with one second, estimation accuracy of LO suffers the most and
the error decreases only slowly with longer sampling intervals. However, the
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Figure 5.2: Boxplot of demand estimation error Ey for different sampling inter-
vals (dataset D1, load level U = 50%, number of workload classes C' = 1).

relative error is comparable to the other approaches in case of 60 and 120
seconds sampling intervals (below 5%).

In addition to dataset D1, Table 5.6 shows the results for dataset D2. This
table includes an additional column containing the mean number of requests
N observed during each sampling interval. The average resource demands in
dataset D2 were by a magnitude smaller than in dataset D1. Therefore, more
requests are observed during each sampling interval and the peaks at the one
second sampling interval are smaller in D2. However, we can again observe
that LO shows the highest relative error for the one second sampling interval.

The influence of the length of the sampling interval can be explained by
end-effects due to requests which are fully attributed to one sampling period,
although they start and end in different intervals. For linear regression this
has been identified before by Rolia and Lin (1994) and Rolia and Vetland (1995)
as one source of inaccuracy. Zhang et al. (2007) come to the conclusion that
longer sampling intervals improve the accuracy of regression-based approaches.
However, in practice, the maximum length of the sampling interval is usually
limited because it increases the required experiment length and may hinder the
ability of the estimator to adapt to changes in the resource demands. Given that
a good choice for the sampling interval always depends on the length of the
resource demands, one should ensure that sufficient requests are observed in
each sampling interval. The results in Table 5.6 suggest that a sampling interval
length where on average N > 60 requests are observed yields acceptable
estimates for all approaches.
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mean|[Eq] (std[Ea])
N UR KF MO LO

1s 1.00 3454 (0.74) 24.35(4.89) 58.67(0.79) 95.82 (4.80)
5s 499  543(0.66) 844 (5.03) 14.91(1.16) 77.20(17.35)
10s 999  1.74(0.55) 7.00(4.01) 11.03(1.18) 46.55 (17.11)

DL 305 2097 0310200 480(3.17)  637(1.06) 1042 (4.38)
60s 5995 023(0.17) 420(291)  4.04(1.26) 431 (2.31)
120s 11990 0.19(0.17) 3.61(2.38)  257(1.23)  2.68(1.82)

55 5789  059(0.32) 5.66(4.05)  979(1.19) 3.42(3.31)

Do 10s 11579 060(059) 3512100  878(0.82) 201 (L72

)
30s 34736 0.77(0.66) 141(0.74)  8.03(0.79)  1.41(1.13)
60s 69440  0.80(0.56) 1.73(1.24)  7.82(0.83)  1.38(1.09)

)

(
(
(
(
(
(
(
(
(
E
120s 138779  091(0.81) 1.38(1.50)  7.87(0.79)  1.30(1.04

(
(
(
(
(
(
1s 1158 860(697) 1341(15.89) 15.04(3.36) 27.31(26.32)
(
(
(
(
(

Table 5.6: Mean and standard deviation of demand estimation error E; for
different sampling intervals (dataset D1 and D2, load level U = 50%, number of
workload classes C' = 1). NV denotes the average number of requests observed
in one sampling interval.

5.2.2.2 RQ2: Number of Samples

In this experiment, we employed dataset D1 and reduced the number of samples
used for resource demand estimation from 3600 to 600. This corresponds to
an experiment length of ten minutes. Dynamic, self-adaptive systems require
an estimator to keep up with frequent changes. Therefore, we argue that an
estimator should also be able to converge to a stable value in shorter time
frames.

N SDL UR KF MO 1O RR  GS
(4] 600 0.13 0.79 73 41 6.6 25 49
meantidl - se00  0.023 0.23 42 4 43 14 48
stat. sig. (95%) v v v v v
p-value 12e-24 42¢-15 4.8e-129 081 13e-05 53e-05 0.75

Table 5.7: Mean demand estimation error Ey for different number of samples
N (dataset D1, load level U = 50%, number of workload classes C' = 1).

Table 5.7 shows the results for dataset D1. Differences in the mean relative
resource demand errors from the experiment runs are tested for statistical
significance using a non-paired T-test with a 95% confidence level. The es-
timation approaches SDL, UR, KF and LO exhibit a significant dependency
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on the number of available samples. With N' = 600 they show a decreased
accuracy compared to N = 3600. However, all approaches still yield results
with acceptable accuracy (below 10%).

5.2.2.3 RQ3: Number of Workload Classes

A higher number of workload classes makes the estimation problem more
complex since more variables need to be estimated. In RQ3, we analyze the
sensitivity of the considered estimation approaches to the number of workload
classes. The analysis is structured into three subquestions: RQ3.1 compares
the relative demand errors of experiments with different number of workload
classes, RQ3.2 explores properties of the dataset that influence the estimation
accuracy in case of several classes, and RQ3.3 tests the behavior of the estimation
approaches if the number of classes is scaled out.

RQ3.1: Comparison of relative demand errors We now compare the relative
demand errors from runs with three different number of workload classes. We
used a subset of dataset D1 containing samples for 1, 2 and 5 classes at a load
level of 50% (in total 300 repetitions) and D2 for 1, 2, and 3 also at 50% (in total
70 repetitions).

C SDL UR KF MO LO RR GS
1 0023 0231 42 404 431 144 476
mean[Eq) 2 127 277 88.3 83.4 98.8 8.56 93.4
5 153 59.8 110 97.2 120 18.2 111
stat. sig. (95%) v v v v v v v
p-value 252e-04 653e-17 7.59e-04 1.12e-03 8.62¢-04 1.34e-04 1.61e-03

(a) Dataset D1

C ‘ SDL UR KF MO LO RR GS

1 0.833 08 173 782 138 111 287
mean[Eq] 2 1.02 128  3.84 523 4.33 185 3.56
3 2.07 241  4.01 556 4.94 3.44 4.9
stat. sig. (95%) v v v v v v v
p-value 5.96e-06 1.02e-05 0.0368 5.05e-05 0.033 5.56e-05 0.0081

(b) Dataset D2

Table 5.8: Mean relative demand error E,; for number of workload classes
C =1{1,2,5} (load level U = 50%).
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Table 5.8 shows the results for datasets D1 and D2. We used a single fac-
tor Analysis of Variance (ANOVA) with a confidence level of 95% to test for
significant differences in E; with different number of workload classes. The
hypothesis that £, is influenced by the number of workload classes cannot
be rejected for any of the considered approaches. However, there are clear
differences in the quantitative effect on £; between both datasets. While most
estimation approaches yield relatively accurate results for dataset D2 (£, mostly
below 10% except for UR), we consider the results for dataset D1 insufficient for
most use cases. With 2 or 5 workload classes, the estimated resource demand
largely deviates from the actual one by more than 50% in most cases on dataset
D1. We analyze the reasons for these high deviations in RQ3.2.

UR shows a degraded accuracy for multiple workload classes on both datasets.
A deeper analysis of the resulting estimates show that the estimates converge
very slowly compared to the other estimation approaches. The linear regression
is done based on measurements from approximately 60 measurement intervals,
which is assumed to be sufficient for the considered number of workload classes.
However, the performance of UR heavily depends on the workload (Stewart
et al., 2007). We explain the poor accuracy of UR in our experiments with too
few variations in the workload. Given that the utilization is kept at a fixed level
during the experiments, UR can only explore a limited region of the complete
space.

RQ3.2: Correlation Analysis The comparison in RQ3.1 shows a largely de-
graded accuracy of most estimation approaches on D1 with multiple workload
classes. Given that high variances in E; were observed between experiment
runs, we performed a correlation analysis testing the influence of different
properties of a sample set on Ej.

The property mean|Q] stands for the mean queue length @) observed during
an experiment run. min[X * D] takes the minimum of the mean throughput
X and the average resource demand D over all workload classes. A low value
of min[X = D] is an indicator that the workload includes classes with a small
contribution in relation to the other classes. These are also called insignificant
flows. std[D] is the standard variance of the service demands. If this value is
high, the mean service demands of workload classes are very diverse.

Table 5.9 shows the results of the correlation analysis. We used the Spear-
man’s rank correlation coefficient (denoted with p) in order to be able to identify
non-linear correlations. Table 5.9 summarizes the correlations of three proper-
ties of the sample set which were identified to influence Ej.
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c SDL UR KF MO LO RR GS

1P -0.042 -0.14 0.065 -0.42 -0.5 0.27 0.65

p-value  0.68 0.16 052  1.3e-05 21e-07  0.0062 0

mean[Q] 2 p 0.71 0.27 0.67 0.68 0.73 0.46 0.75
p-value 0  0.0073 0 0 0 1.8e-06 0

5 P 0.52 0.25 0.65 0.63 0.66 0.39 0.63

p-value 5.6e-08 0.013 0 0 0  5.8e-05 0

1 P ) . ) . ) . )

p-value - - - - - - -

min[X * D] 2 p -0.46 -0.54 -0.55 -0.56 -0.44 -0.52 -0.45
p-value 2.2e-06  1.2e-08 52e-09 2.6e-09 7.7e-06 6.9e-08 4.5e-06

5 P -0.45 -0.44 -0.48 -0.47 -0.49 -0.61 -0.5

p-value 4e-06 69e-06 57e-07 14e-06 3.6e-07 0 1.9e-07

1 ? ) . ) . ) . )

p-value - - - - - - -

P 0.91 0.35 0.88 0.89 0.88 0.52 0.9

std[D] 2 p-value 0 0.0004 0 0 0 5.1e-08 0
5 P 0.72 0.37 0.78 0.8 0.8 0.44 0.79

p-value 0 0.0002 0 0 0 4.8e-06 0

Table 5.9: Correlation analysis results (dataset D1, load level U = 50%). Entries
with p > 0.7 are in bold letters.

We identified the highest correlations (p > 0.7) for SDL, KE, MO, LO, RR, GS
with std[D], i.e., if the differences between the resource demand of workload
classes is higher, the relative demand error Ej is also higher. In these cases,
the underlying model is based on the response time equation R = D/(1 — U).
Assuming an open workload, this equation is only applicable to multi-class
queues with FCFS scheduling if the service time of each workload class is
equal (Harchol-Balter, 2013). This requirement does not hold for dataset D1.
The higher the variation of the resource demands between workload classes is
the more it lessens the estimation accuracy of the estimation approaches. The
impact of this violated assumption increases if the mean queue length mean|[Q)]
in an experiment run is higher. The high correlations show that when using
response times for resource demand estimation, it is important to ensure that
the estimator is based on the correct scheduling strategy assumptions.

Furthermore, we could observe moderate negative correlations for min[X « D]
for all estimation approaches. That mean if in an experiment run, there exists a
workload class with a low the total resource demand X * D compared to the
other workload classes, the relative demand error increases. We conclude that
all considered estimation approaches are sensitive to workload classes with a
low total resource demand (sometimes also called insignificant flows (Pacifici
et al., 2008).
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RQ3.3: High number of workload classes In Section 5.2.2.3, the results indicate
an influence of the number of workload classes on the accuracy of certain
estimation approaches. In the following experiment we consider scenarios
with a higher number of workload classes than before. We employed the micro-
benchmarks used to obtain dataset D2 and varied the number of workload
classes between 5 and 20. In total, we performed 40 experiment runs.

C  SDL UR KF MO 1O RR GS
5 1.24 205 289 351 244 1.78 5.17
g 10 2.53 36.2 399 336  2.39 3 8.55
meanitdl - 5 2.86 56.9 432 344 311 3.52 125
20 2.99 57.8 533 404 328 3.58 13.6
stat. sig. (95%) v v v v v v
p-value 6.59e-09 3.58¢-09 5.02e-05 0.303 0.00151 6.61e-06 9.76e-10

Table 5.10: Mean relative demand error E; for high numbers of workload
classes C = {5,10, 15,20} (dataset D2, load level U = 50%).

Table 5.10 shows the results from this experiment. We used a single factor
ANOVA with a confidence level of 95% to test for significant differences in £,
with a different number of workload classes. Several estimation approaches
(SDL, KF, MO, LO, RRPS) do not show a clear dependence on the number
of workload classes in the considered range. In these cases, we could not
observe a statistically significant difference in the estimation errors regarding
the utilization and response times. The results for UR support the findings
with multiple workload classes in Section 5.2.2.3.

5.2.2.4 RQ4: Load Level

We now explore the sensitivity of the estimation approaches under different
system load levels using measurement traces with low, middle and high load.
Dataset D1 contains data of runs with an average utilization of 10%, 50% and
90% (in total 300 repetitions), dataset D2 has runs with an average utilization
of 20%, 50% and 80% (in total 30 repetitions). Only the workload intensity
changed between the experiments runs, other factors were kept fixed.

Table 5.11 shows the mean relative demand error F,; for dataset D1 and D2
with sample sets from low, middle and high load. We used a single factor Anal-
ysis of Variance (ANOVA) with a confidence level of 95% to test for statistically
significant differences in F; between the load levels.

The results for dataset D1 suggest an influence of the load level on all esti-
mation approaches except SDL. Apart from SDL, all approaches have a higher
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U SDL UR KF MO LO RR GS

10% 0.0232 0.219 2.36 0.81 0.427 0.434 3.39
mean[Eq] 50%  0.023 0.231 4.2 4.04 431 1.44 4.76

90% 0.0279 0.843 33.1 5.33 90.5 1.75 242
stat. sig. (95%) v v v v v v
p-value 0.167 6.86e-67 1.41e-22 3.53e-95 5e-273 3.13e-16 1.93e-13

(a) Dataset D1

U SDL UR KF MO LO RR GS
20% 2.85 271 237 2.98 1.8 1.05 3.17

mean[Eq) 50% 0.833 0.8 1.73 7.82 1.38 1.11 2.87

80% 0.461 0.515 4.55 12.4 5.39 0.825 7.12
stat. sig. (95%) v v v v v
p-value 9.38e-08 2.55e-07 0.0606 5.49¢-19 0.0146 0.505 0.000554

(b) Dataset D2

Table 5.11: Mean demand estimation error E; for different load levels U and
number of workload classes C' = 1).

mean E; at 90% utilization compared to 50% and 10%. Most conspicuous
are the high relative errors (above 20%) for KF, LO and GS at high load. We
explain these inaccuracies with underlying model assumptions of these esti-
mation approaches, which are violated at high load levels. GS is based on a
closed queueing model while the queueing simulator used to obtain dataset
D1 executed an open workload. KF and LO use the response time equation
R = D/(1 — U) which is highly non-linear above 90% CPU utilization. We
explain the observed inaccuracies of KF and LO with deficiencies of the under-
lying estimation algorithms which results in a reduced estimation accuracy in
highly non-linear regions. While MO is similar to LO regarding the underlying
model, MO uses an iterative optimization algorithm which seems to be more
stable in high load scenarios.

On dataset D2 the differences between the estimation approaches at high
loads are smaller in comparison to D1. KF, MO, LO and GS are again negatively
influenced by the high utilization. However, with 80% the utilization is further
away from the critical region close to 100% utilization. In summary, we conclude
that it may be beneficial to avoid high-load situations (above 80%) during
resource demand estimation, or best use one of the SDL, UR or RR approaches.
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5.2.2.5 RQ5: Collinear Workload Classes

In the following experiments, the influence of collinear workload classes is eval-
uated. For determining the level of collinearity, we use the Variance Inflation

Factor (VIF) which is defined as VIF; = 1711%?' R? is the coefficient of deter-

mination if we calculate the regression of X; = E?Ei\/ J7 fX;. Based on the
rule of thumb proposed by Kutner et al. (2003), we assume a strong collinearity
between workload classes if VIF; > 10 for the observed throughput.

The traces in datasets D1 and D2 both do not contain clearly collinear work-
load classes. The maximum V I I observed are 1.1772 and 3.1602. Therefore, we
adapted the workload used for generating D2 so that one job of one workload
class is followed by a job from another workload class with a certain probability
pe (including a certain think time between the two workload classes). The
experiment is executed with p. = 0.33) and p. = 1.0. The observed VIF is
on average 1.1624 and 26.2972, respectively. So for the case of p. = 1.0 we can
safely assume a strong collinearity between workload classes.

Collinearity SDL UR KF MO LO RR GS
Low 2.68 39.7 3.86 5.63 539 326 4.81

mean[Ea] High 275 111 364 683 521 343 547
stat. sig. (95%) v v
p-value 0.854 0.00234 0.675 0.00447 0.787 0.627 0.54
mean[E,] O 00045 00457 194 472 0735 0.704 2.12
“ High 0.00123 00534 176 515 0792 1.02 23
Low 463 433 742 4 895 27 462
mean[Er]

High 547 120 7.33 399 99 322 4.66

Table 5.12: Sensitivity to collinearity in throughput observations.

Table 5.12 shows the results from experiments with low and high levels of
multicollinearity. We used a non-paired T-test with a confidence level of 95% to
test for statistically significant differences in E;. The only estimation approach
that is clearly influenced by high levels of multicollinearity in the workload
is the UR approach. This issue has also been discussed in Pacifici et al. (2008)
proposing different approaches to improve the robustness of UR in case of
collinear workload classes.

5.2.2.6 RQ6: Missing Jobs in Workload Model

On real systems, it can be difficult to capture all tasks executed by the appli-
cation, middleware system, or operating system in a workload model. Per-
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formance engineers are often not aware of background processes that cannot
be directly attributed to the processing of user requests and that may happen
at points in time difficult to foresee. In order to evaluate the sensitivity of
estimation approaches to missing workload classes, we adapted the micro-
benchmarks used to obtain dataset D2. We implemented a workload consisting
of 3 workload classes representing the user requests and one class representing
the background process. The user requests incurred an average CPU utiliza-
tion of U = 50%. The intensity of the background job was varied between
U = 5%,10%, 20%, 30%. We executed a total of 40 experiment runs. The esti-
mation approaches were only provided observations from the three workload
classes processing user requests as input.

U, SDL UR KF MO LO RR GS

5% 9.32 34.5 933 228 16.7 461 482

10% 18.2 40 158  3.03 29.3 634 657

meanlBal o0 34.4 64.5 276 915 49.4 13.5 12
30% 496 88.3 359 153 61.3 201  17.7

stat. sig. (95%) v v v v v v v
p-value 8.16e-50 6.17e-08 2.23e-21 7.6e-32 1.57e-48 6.15e-33 1.1e-15
5% 0.00104 0.0517 525 923 1.83 528 811

10% 0.00369  0.0685 775 131 3.24 91 102
mean[Bu] o000 000404 00898 129 188 7.12 147 167
30% 0.00413  0.123 171 229 13,5 188 211

5% 15.1 38 11 414 21.6 277 546
mean(Ey] 10% 26.6 50.1 154  4.08 35.3 3.34 3.9
th 20% 48.7 87 217 4.82 54 379 413

30% 72.5 124 22.8 5.3 56.3 4.33 4.64

Table 5.13: Demand error Ey, utilization error £, and response time error E,
when system executes background job with intensity Uy,

Table 5.13 contains the results for this experiment. We used a single factor
ANOVA with a confidence level of 95% to test for significant differences in I,
when the intensity of the background job is varied. All estimation approaches
are significantly influenced by the hidden workload class. However, the influ-
ence seems to be stronger on approaches based on the CPU utilization (SDL,
UR, KF, LO) compared to the other methods using response times. The direct
influence on the utilization measurements seem to have a stronger influence on
the estimation accuracy than the indirect effects of the background job on the
observed response times. Table 5.13 also contains the relative errors £, and
E,: to show the influence on predictions when using the estimated resource
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demands.

5.2.2.7 RQT: Delays during Processing

Experiment RQ7 simulates the situation when the processing of one request
may consist of several visits to the CPU resource with a certain delay between
the visits. The delay may be caused, e.g., by waiting for software resources (e.g.,
thread or connection pool), or for data from other hardware resources (e.g.,
hard disk or network). We adapted the micro-benchmarks used to generate
dataset D2, by splitting up the Fibonacci calculation into two parts with equal
length and inserting a delay period. We varied the delay period between 25ms,
75ms, and 125ms. In total we have 30 experiment runs.

Delay SDL UR KF MO LO RR GS

25ms 5.82 19.5 5.27 6.19 3.56 6.52 6.28
mean[Eq) 75ms 14.8 19.8 18.2 14.2 21.2 14.8 154
125ms 22.3 12 29.6 21.3 38.9 224 21.9
stat. sig. (95%) v v v v v v
p-value 8.7e-30 0.0771 1.31e-23 9.35e-29 1.06e-31 2.95e-27 5.19e-13

25ms  0.00374 0.0283 1.35 1.55 0.252 224 1.44
mean[E,] 75ms 0.00156 0.0227 2.07 4.12 0.669 8.14 6.12

125ms 0.00214 0.0254 4.88 9.17 1.59 13.7 12
25ms 133 217 3.93 3.9 3.65 2.07 4.04
mean|Er] 75ms 111 26.1 10.6 43 15.1 1.81 6.02

125ms 191 255 18.2 4.66 30.3 1.99 4.28

Table 5.14: Demand error Ey, utilization error E,,, and response time error E,
when the jobs are interrupted by wait periods.

Table 5.14 shows the result for the experiment. We used a single factor
ANOVA with a confidence level of 95% to test for significant differences in £y
when varying the length of the delays. The relative error E; of all estimation
approaches except UR is negatively influenced by the additional delay. UR is the
only considered approach that is not relying on response time measurements.
While in the case of SDL, KF, and LO E,; are mainly impacted, it is £,, for MO,
RR, and GS.

5.2.2.8 RQ8: Execution Time

We measured the execution times of the estimation approaches on dataset D1
to compare the computational effort associated with each approach. Dataset
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D1 consists of 900 measurement traces each containing observations of 3600
individual requests observed over a simulation time of one hour.

C U SDL UR KF MO LO RR GS

10% 1.1 1.0 0.3 671.6 209 771 19413.7

1 50% 05 04 02 8731 229 759 19619.7

90% 05 04 0.2 2288.0 21.5 78.8 20266.9

10% 0.6 0.6 0.4 10288 23.1 80.0 42910.0

mean[T] 2 50% 0.6 0.5 0.2 12215 30.0 80.5 42685.1
90% 0.6 05 0.2 34182 38.8 83.7 459214

10% 0.8 0.7 0.6 2073.5 419 89.4 2516754

5 50% 0.8 0.7 05 2213.8 42.3 925 138163.4

90% 0.8 0.7 0.5 6389.0 88.0 96.9 138735.7

Table 5.15: Mean execution time 7" (in milliseconds) partitioned by number of
workload classes C' and load level U.

Table 5.15 contains the average execution times 71" for each estimation ap-
proach. SDL, UR, and KF have a low computational effort, the execution times
for a single measurement trace is on average below 1 millisecond. LO and
RR have a moderate computational effort, on average between 20 and 100 mil-
liseconds. The higher effort of RR compared to UR can be explained with the
lack of measurement traces for the queue length seen on arrival in dataset
D1. RR first needs to calculate this metric based on response times and arrival
times. MO and GS show a significantly higher computational effort, on average
between 0.5 seconds and 4 minutes. Although based on the same optimization
algorithm, MO is slower compared to LO because it executes the optimization
recursively for each new sample, while LO runs the optimization once for the
complete measurement trace. GS has a high execution time compared to the
other approaches because it needs to approximate the normalizing constant of
state probabilities, which is very costly operation (Wang and Casale, 2013).

5.2.3 Results Summary

In this section, we summarize the results of our experiments. We identified the
following sensitivities:

RQ1 When using estimation approaches based on time-aggregated observa-
tions (e.g., UR, KF, MO, LO), the length of the sampling interval is an
important parameter that needs to be adjusted to the system under study.
A good sampling interval length depends on the response times of re-
quests and the number of requests observed in one interval. The sampling
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interval should be significantly larger than the response times of requests
to avoid end-effects and it should be long enough to be able to calculate
the aggregate value based on the observations of a significant number
of requests (more than 60 requests per sampling interval provided good
results in our experiments).

RQ2 Most estimation approaches (except MO and LO) were negatively in-

fluenced when reducing the experiment length to 10 minutes (i.e., 10
samples). However, they still yielded results with acceptable accuracy
(relative demand error below 8%).

RQ3 All estimation approaches are sensitive to the number of workload classes.

The linear regression method UR that only uses utilization and through-
put observations generally yielded a degraded accuracy in our experi-
ments with several workload classes. Observations of the response times
of requests can help to improve the estimation accuracy significantly
(RQ3.1) even in situations with a very high number of workload classes
(RQ3.3). However, it is crucial to ensure that the modeling assumptions of
the estimation approaches using response times are fulfilled as they are
highly sensitive to violated assumptions, e.g. wrong scheduling strategies
(RQ3.2). Furthermore, insignificant flows can impair resource demand
estimation (RQ3.2). Workload classes with a small contribution to the
total resource demand of a system should therefore be excluded from
resource demand estimation.

RQ4 When a system operates at a high utilization level (80% or higher), the

RQ5

RQ6

RQ7

estimation approaches KF, MO, LO and GS may yield inaccurate results.

Collinearities in throughput observations of different workload classes im-
pairs the estimation accuracy of UR. While it correctly estimates the total
resource demand, the apportioning between workload classes is wrong.
The other evaluated estimation approaches did not show a sensitivity to
collinearities in throughput observations.

Estimation approaches relying on response time observations (e.g., MO,
RR and GS) are more robust to missing workload classes than approaches
using utilization observations.

Delays due to non-captured software or hardware resources has a strong
influence on the estimation accuracy of estimation approaches based
on observed response times. While some estimation approaches —e.g.,
Liu et al. (2006), Menascé (2008), and Zhang et al. (2002) — consider the
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scenarios where multiple resources contribute to the observed end-to-end
response time, only Pérez et al. (2013) have considered contention due to
software resources in their estimation approach.

RQ8 There are significant differences in the computational complexity of the
different estimation approaches. On our datasets, the estimation took
between under 1 millisecond and up to 20 seconds depending on the
estimation approach. When using resource demand estimation tech-
niques on a production system (e.g., for online performance and resource
management), the computational effort needs to be taken into account
(especially in data centers with a large number of systems).

In summary, our evaluation shows that using response times can improve
the accuracy of the estimated resource demands significantly compared to
the traditional approach based on the Utilization Law using linear regression,
especially in cases with multiple workload classes (see Section 5.2.2.3). How-
ever, approaches employing response time measurements are very sensitive if
assumptions of the underlying mathematical model are violated (e.g., wrong
scheduling strategy in Section 5.2.2.3, or delayed processing in Section 5.2.2.7).

5.3 Library for Resource Demand Estimation (LibReDE)

Section 5.1 provides an overview of the approaches to resource demand estima-
tion that have been proposed in the last decades. While these approaches offer
a great variety of different options for performance engineers, their practical
use in industry is still limited, especially in autonomic systems. We see two
major factors hindering the adoption of such estimation approaches:

¢ While the estimation approaches are documented in the literature, to the
best of our knowledge, ready-to-use implementations are not generally
available. Potential users need to develop their own implementations of
each estimation approach.

¢ Choosing the right approach for a given system under study, requires
a deep expertise of its underlying statistical techniques and its assump-
tions. While the systematization in Section 5.1 and the experimental
comparison in Section 5.2 helps with this decision by documenting the
different assumptions and factors impacting the accuracy of estimation
approaches, it is not always possible to determine an approach in ad-
vance. For instance in a self-aware system, the actual performance model
is learned at run-time. In consequence, we need to delay the decision on
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which approach to use to the system run-time. Furthermore, the system
may change over time requiring a dynamic switch-over to a different
estimation approach.

In this section, we present a library for resource demand estimation we
have developed called LibReDE. It provides ready-to-use implementations of
eight common estimation approaches (see Section 5.3.3) and is available as
open-source software under the Eclipse Public License (EPL). Furthermore,
LibReDE realizes a complete estimation method automating the decision which
estimation approach to use. The description in this section focuses on this
estimation method.

The main idea of LibReDE is to base the resource demand estimation on
multiple statistical techniques combined with a feedback loop to improve the ac-
curacy of the estimation by iteratively: i) adapting the estimation problem,
ii) selecting suitable statistical methods to be applied, and iii) optimizing the
configuration parameters of each method. We use cross-validation techniques
with an error metric based on the deviation between the observed response
times and utilization, on the one hand, and the respective predicted metrics
using the resource demand estimates, on the other hand. To the best of our
knowledge, our proposed approach is the first to apply multiple statistical tech-
niques at run-time automatically combining, weighting and iteratively refining
their results in a feedback loop, to produce as accurate estimates as possible.

LibReDE can be used as a model variable characterization agent in our refer-
ence architecture for online model learning (see Section 4.2.5). For this purpose,
it needs to be able to derive all information required for resource demand esti-
mation solely from the models contained in the performance model repository
and empirical monitoring data. In Section 5.3.2 we describe a model-to-model
transformation for DML in order to automatically derive the input information
required by LibReDE.

The LibReDE tool has been first published in Spinner et al. (2014a). In this sec-
tion, we extend this description with a complete estimation method supporting
the automatic selection of estimation approaches.

5.3.1 Method Overview

Figure 5.3 provides an overview of our end-to-end estimation method. The
estimation method consists of the following steps:

1. Given a performance model for which resource demands need to be
quantified, we first derive a workload description which is independent
of the actual performance modeling formalism. Model transformation
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Figure 5.3: Overview of estimation method.

techniques from MDD (see Section 2.2.1) can be used to automate this
step. LibReDE comes with a model-to-model transformation for the DML
meta-model (as described in Section 5.3.2). This step is optional. A user
may also provide the workload description directly with the meta-model
described in Section 5.3.2.

. In the next step, LibReDE derives possible mathematical formulations of

the estimation problem based on the workload description and the input
monitoring data. Different strategies to derive estimation problems are
described in Section 5.3.3. This step also provides potential for further
adaptations to the structure of the estimation problem. For instance,
services with an insignificant overall resource demand may be merged
with other services in order to improve the statistical stability of the
estimation.

LibReDE selects suitable statistical estimation techniques to be applied
based on checking the pre-conditions and feedback on the accuracy from
previous iterations. This step may select multiple methods. In addition,
auto-tuning strategies may be employed to improve certain configuration
parameters of estimation methods.

The estimation techniques selected in the previous step are all called with
the current monitoring data. The techniques should support iterative
execution, so that they keep their estimation state between invocations.
LibReDE calls each estimation technique k-times on different subsets of
the monitoring data to allow for k-fold cross-validation.
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5. LibReDE evaluates the accuracy of the estimated resource demand using
a k-fold cross-validation scheme. The estimates of the technique with the
lowest estimation error are selected.

6. The resource demands in the performance model are updated with the
latest estimates.

The method is designed to be applied iteratively to support online estimation
scenarios. Step 1 needs to be repeated only if the structure of the performance
model changes. In this case, the statistical estimation techniques need to start
from scratch as well. Step 2, 3 and 5 should be repeated in regular intervals to
adapt the estimation problems, update the selected approaches, or auto-tune
configuration parameters. Step 4 is repeated in short intervals as soon as new
monitoring data gets available.

Workload Description  All approaches to resource demand estimation require
a description of the resources and services (also called workload classes) of a
system under study. Furthermore, estimation approaches whose formulations
are based on QNs with multiple service stations additionally require infor-
mation on the flow of requests in a system (i.e., the visit counts of requests at
individual resources). LibReDE expects an EMF-based model of the workload
description as input. A user may manually specify this model, or it may be
derived automatically from an existing performance model. Our meta-model
is independent of a concrete performance modeling formalisms and model-to-
model transformations from other metamodels may be supported in the future
as well —e.g., QNs or QPNs.

Figure 5.4 shows the classes of our workload description meta-model. The
abstract base class ModelEntity defines an attribute name that may contain a
user-defined string for easier readability of the workload description and the
result output of LibReDE. The root element WorkloadDescription contains
a list of services and resources. A Resource may represent any hardware or
software resource in a system. The number of servers and a scheduling strategy
may be specified for a resource. A Service (or workload class) represents
types of requests with similar resource demanding behavior. A service may
be marked as a background service subsuming all resource demanding activ-
ities on a system not directly related to the processing of requests. Only one
service accessing a resource may be marked as a background service. LibReDE
currently assumes a Poison arrival process for services. This limitation may be
relaxed as part of future work.

A service may contain multiple tasks. A Task can be either a ResourceDemand
or an ExternalCall. A resource demand references the resource from which it

141



Chapter 5: Online Statistical Estimation of Resource Demands
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Figure 5.4: Workload description meta-model.

requires service. An external call references another service in the workload
description that is called one or several times for each incoming request. The
actual number of calls needs to be provided as part of the observation data. The
ordering of tasks in a service is irrelevant for the resource demand estimation.

Observation Data The observation data needs to be provided as time series
data. LibReDE expects the following additional meta-data for each time series:

¢ The metric of the observation (e.g., response time or utilization).

The measurement unit of the observations.

A reference to a model entity in the workload description.

The type of aggregation if the observation data is sampled over time (e.g.,
summation or average).

The sampling interval length (optional).

The monitoring data must be available as time series data with associated
timestamps for each sample. The library can work on time series with individual
events (e.g., arrival times and response times of individual requests) or on
equidistant sampled time-aggregated data (e.g., average response times or
average throughput).
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5.3.2 Derivation of Workload Description

In this section, we describe our model-to-model transformation from a DML
instance to a workload description as expected by LibReDE. The input DML
contains no concrete parameter values for the resource demand distributions.
In the following, we assume that the type of distribution is determined in a
separate step and the goal is to estimate the average resource demand based
on the observation data.

Prerequisites We first define a number of sets and functions helping us to de-
scribe the transformation rules. Given the set of component types C' defined
in a DML model, the function instances : C — SET(A) returns the set of
all component instances A of a component ¢ € C. A DML model describes
a containment tree of nested component instances (i.e., assembly contexts).
For instance, a system contains one or several subsystems; each subsystem
contains one or several composite components, and so on. A component in-
stance is uniquely identified in a system by a sequence A = (ay,...,a,) of
assembly contexts representing a path in the containment tree, where a; is a
top-level assembly context in the system (Brosig, 2014, p. 48). The function
services : C' — SET(S) returns a set of provided component services S of
component C. A component service in DML, is a single signature of an in-
terface of a component’s role (see Figure 2.5 in Section 2.2.2). We use the set
Is = {z | 3¢ € Cpasic : © € instances(c) x services(c)} to refer to all provided
component services of all instances of basic components (the set Cy,;c contains
all basic components in a DML model).

Given a graph of G = (V, E) where V is the set of all containers in the re-
source landscape of a DML model, and E = {(v,v') € V x V | contains(v,v')}.
The function contains : V- x V' — boolean returns true if the first container di-
rectly contains the second container. Furthermore, we define a helper function
resource : V. x R — P, where R is the set of processing resource types defined
in a DML model (e.g., CPU or HDD) and P is the set of all processing resource
specifications (see Figure 2.4 in Section 2.2.2). This functions searches the tree
G in upwards direction starting from the specified container v € V for a pro-
cessing resource specification p € P that has the specified type r € R. It returns
the first match. The function deployment : A — V returns the deployment of a
component instance a € A on a container v € V.

Transformation Rules Our transformation takes a DML model as input. The
output is a workload description conforming to the meta-model depicted in
Figure 5.4. Furthermore, the user may specify a configuration parameter that
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determines whether the fined-grained or coarse-grained service behaviors in
the DML model are used. The transformation rules are:

¢ T1: Each service instance i € I is mapped to a service in the workload
description. To be unique, the name of this service is a concatenation of
the names of all assembly contexts on the path of the corresponding com-
ponent instance, the name of the interface providing role and the name
of the signature itself. We represent instances of the same component
by different services, since components in different assembly contexts
may exhibit a different resource demanding behavior: The resource de-
mands of a component may also depend on the workload, besides the
component implementation and the system configuration. For instance,
the component services may be called with different parameter values
influencing the required amount of resources for servicing a request. For
each service instance i, transformation rules T3 and T4 are called.

e T2: Given the set Apysic = {a € A | ¢ € Chysic : a € instances(c)} con-
taining all instances of basic components, we define the set of of con-
tainers Viusic = {v € V' | Ja € Apgsic : v = deployment(a)} which are de-
ployment targets of basic components. Then each processing resource
in{p e P|3v € VigsicIr € R: p=resource(v,r)} maps to a resource in
the workload description. The scheduling strategy and number of servers
parameters are copied directly from the processing resource specification.

¢ T3: For a given service instance i, we determine all resource demands
in the service behavior defined in the corresponding component type.
For each resource demand, we determine the type » € R of the re-
source accessed and look up the processing resource specification p =
resource(deployment(a),r). We then determine the mapping for p in
transformation rule T2, where a € A is the component instance of service
instance .

* T4: For a given service instance i, we determine all external calls in the
service behavior defined in the corresponding component type. For each
external call, we determine the target service instance 7’ € I; following
the assembly connections defined in the DML model. We then determine
the mapping for ¢’ in transformation rule T1.

Limitations In the following we describe limitations that apply to fine-grained
service behaviors regarding the use of internal actions and fork actions. Internal

144



5.3 Library for Resource Demand Estimation (LibReDE)

actions in a fine-grained service behavior represent any type of work that re-
quires a certain time at a resource. DML allows a very fine-grained specification
of these internal actions (e.g., a sequence of several internal actions accessing
the same resources). In order to be able to distinguish between multiple internal
actions accessing the same resources, a very fine-grained instrumentation of
the application would be required providing visit counts for the individual
resources. However, in practice such a fine-grained instrumentation is usually
prohibitive and if possible, the direct measurement of resource demands would
be feasible as well — e.g., using the techniques by Barham et al. (2004) and Brun-
nert et al. (2013). Therefore, we assume that all accesses to the same resource
are combined in a single internal action at the top level of a fine-grained service
behavior.

Fork actions in DML are used to model parallel processing (with or with-
out synchronization). Service behavior below a fork without synchronization
are modeled as an independent request as the behavior below the fork does
not influence the response time behavior of the current request directly. As a
result, we model this part as an additional workload class whose arrival rate
depends on the arrival rate of the component service. Forks with synchroniza-
tion and acquire/release actions (used to model software synchronization) are
left for future work as they cannot be modeled with standard QNs. This could
be accomplished using Layered Queueing Networks (Neilson et al., 1995) or
Queueing Petri-nets (Kounev et al., 2012a).

Architecture-level performance models, such as DML and PCM, allow the
modeling of dependencies on input parameters of the system. We assume that
these parameter dependencies have been resolved before resource demand
estimation.

5.3.3 Derivation of Estimation Problems

In the context of LibReDE, an estimation approach is defined as the combina-
tion of a strategy to derive estimation problems from a workload description
and a technique (e.g., least-squares regression, or Kalman filter) to solve the
estimation problems. In this section, we describe strategies to derive estimation
problems. Each estimation problem is defined as a triple E = (D, f, h):

¢ The set D defines the estimation state, i.e., the possible range of demand
values. It may be any subset of R". The number n is less or equal to the
number of resource demands defined in the input workload description.
Different partitioning schemes are possible to split a workload description
into several estimation problems.
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¢ The function f : D — D calculates the next demand vector d; based

on the current vector dj. In most cases, this is the identity function, i.e.,
we assume the resource demand does not change between iterations. If
knowledge about the temporal changes of resource demands is available,
this can be encoded into the function f. Currently, only Kalman filter
techniques can exploit this information.

The function h : D — R™ calculates the output vector z;, based on the
current demand vector dj. The derivation strategy determines which
observations are included and how they are calculated.

Partitioning Schemes In order to reduce the estimation complexity, it may be
helpful to partition the set of all resource demands in a workload descrip-
tion into disjoint subsets. Each subset then forms its own estimation problem
that can be solved independently. In the following, we describe three differ-
ent schemes to automatically derive estimation problems from a workload
description.
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 Per-system: The complete system is covered by a single estimation problem.

Underlying statistical techniques may benefit as it allows to minimize
the overall estimation error. However, the complexity of solving the
estimation problem may quickly increase with increasing system size.

Per-tier: In distributed systems we can often partition the resources into
system tiers. We can then derive separate estimation problems for each
tier. However, a partitioning into tiers may no always be possible. A
workload description containing a set of resources R and a set of services
S must fulfill the following condition: It exists a partition 7" of the set
of resources R, so thatif A, B € T'and A # B, then accessedBy(A) N
accessedBy(B) = (). The function accessedBy : R — SET(S) returns
for a given resource r € R the subset of services S that have a resource
demand at resource r. We typically strive for a partition 7" where the
number of resources in each part is minimized. Thus, it is possible to
reduce the complexity of solving an estimation problem. However, in
case of estimation approaches based on end-to-end response times, we
are now relying on the availability of residence time measurements for
the individual services in the workload description in order to be able to
attribute the delays to individual tiers.

Per-resource: We derive separate estimation problems for each individual
resource in a system. This strategy is typically used by estimation ap-
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proaches that are based on the Utilization Law or the Service Demand
Law. However, we usually cannot exploit the additional information
provided by response time or residence time observations, as this in-
formation is not available on the level of individual resources in most
practical systems.

Estimation Approaches Table 5.16 shows the estimation approaches currently
covered by LibReDE. These estimation approaches are based on the existing
ones described in Section 5.1.1. The table also shows the underlying statistical
technique of each approach and the partitioning scheme employed. The output
functions we are using are compliant to those described in the literature. The
optimization approach in Liu et al. (2006) is included in two variants differ-
ing the partitioning scheme. ”Direct” as statistical technique means that the
resource demands can be directly calculated.

Estimation Approach Statistical Technique Partitioning
Approximation with Response Times Direct T
(Brosig et al., 2009)

Service Demand Law (Brosig et al., 2009) Direct R
Rolia and Vetland (1995) Non-negative least squares R
Kraft et al. (2009) Non-negative least squares S
Wang et al. (2012) Kalman filter S
Zheng et al. (2008) Kalman filter S
Menascé (2008) Non-linear, constrained optimization T

Liu et al. (2006) Non-linear, constrained optimization S/T

Table 5.16: List of estimation approaches including the underlying statistical
techniques and the partitioning scheme (R: per-resource, T: per-tier, S: system).

Adaptations In this step, the estimation problems may also be adapted. Pos-
sible adaptations that may be employed in this step are, for instance, the pre-
processing steps described by Pacifici et al. (2008) in order to merge services
with high collinearities, are combine services with low contribution to the total
resource demand.

5.3.4 Cross-Validation and Approach Selection

Approach Selection  As a first step, LibReDE checks all estimation problems that
resulted from the derivation described in Section 5.3.3 and filters the ones for
which required observation data is missing. The check comprises the different
metrics of observation data required for calculating the output function (e.g.,
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response time or utilization), as well as, any requirements on the amount of
observation data (e.g., the linear model of least-squares regression requires a
certain number of observation samples to be identifiable).

LibReDE comes with a set of rules to automatically derive time series of
additional metrics from the input observations. For instance, if time series of ar-
rivals and departures of individual requests are provided, it will automatically
derive time series of the response times, the throughput and the arrival rate.
Furthermore, it provides automatic conversions of the sampling interval length
if the estimation requires longer sampling intervals than the input data. These
derivations and conversions of the input observation data avoid additional
pre-processing of the observation data before invoking LibReDE.

The results from the cross-validation is the main factor used to rank the
estimation approaches according to their cross-validation result. We currently
choose the approach with the highest ranking and return its estimates as result
of the estimation method. Future work may extend this selection and implement
ensemble estimation through dynamic weighting of the results of the different
estimation approaches.

Auto-tuning The estimation approaches exhibit different parameters that con-
trol their behavior and that can have influence on the accuracy of the results.
These parameters currently need to be configured manually by a user when
calling LibReDE. However, it can be challenging to determine good values for
these parameters. While some guidelines for parameterization are available
in the literature, e.g., for Kalman filters in Zheng et al. (2008), they typically
also depend on the characteristics of the system under study and the obser-
vations. Using our cross-validation scheme, an auto-tuning mechanism can
be integrated to automatically search for parameter settings that provide a
good accuracy for the resulting estimates. For instance, the search algorithm
proposed by Noorshams et al. (2013) can be integrated here. The integration
of auto-tuning mechanisms is part of ongoing work. Preliminary results are
presented in Grohmann (2016a) and Grohmann et al. (2017).

Cross-Validation For a given system under test and given observation data,
more than one estimation approach may be applicable after checking the pre-
conditions. While we identified a number of factors influencing the estimation
accuracy in Section 5.2, it is still unclear whether the set of influencing factors
is complete. Furthermore, the identification of static decision rules on the
input observation data including the quantification of threshold values would
require extensive experiments on a large set of different systems. Given the
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lack of sufficient experiment data, we decided to use a cross-validation scheme
to automatically evaluate the accuracy of the resource demands resulting from
an estimation approach.

The input observation data is split randomly into /V disjoint, balanced subsets.
The estimation is repeated NV times, each time using a different subset for
validation and the remaining subsets for training. We use the following fitness
function (D) to determine the quality of the estimated resource demands:

1K
HD%:?E:Q-WDm%H1—®-MDmD (5.7)
n=1

D is a vector containing the resource demand estimated using the training
set. K is the number of samples in the validation set. (D, n) is the average
response time error for sample n and the resource demands D. ®(D, n) denotes
the average utilization error respectively. « (default is o = 0.5) is a weighting
factor to control the weight of response time errors with regards to utilization
errors.
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C*¥ is the set of system-entry services. 7™ is the observed response time of
service cand R, (D) is the calculated one using the estimated resource demands.
Furthermore, we introduce a weighting factor w. for the response time error so
that errors for services that a higher throughput X, are weighted stronger.
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I is the set of all resources in the system. Ui(") is the observed utilization
of resource i and U;(D) is the calculated one using the estimated resource
demands.

The workload description is required to be a product-form queueing network
where the global delays can be broken down to local delays. This is the case for
all BCMP networks (Baskett et al., 1975).

5.4 Concluding Remarks

In this chapter, we provided a systematization and experimental comparison
of existing approaches to resource demand estimation and proposed a new
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estimation method based on multiple statistical techniques. The systemati-
zation helps performance engineers to choose an estimation approach for a
given system under study. It categorizes existing approaches according to their
required input parameters, their provided output metrics, and their measures
to improve their robustness to anomalies in the measurement data.

We evaluated the influence of different factors (sampling interval, number of
samples, number of workload classes, load level, collinear workload classes,
background jobs, and delayed processing) on the estimation accuracy of differ-
ent estimation approaches. The results show, that response times measurements
can improve the accuracy of the estimated resource demands significantly com-
pared to a linear regression based on the Utilization Law, especially in cases
with multiple workload classes. However, approaches employing response
time measurements are very sensitive if assumptions of the underlying mathe-
matical model are violated (e.g., wrong scheduling strategy, or delays due to
other resources). In order to fully leverage the benefits of using response time
measurements, it is therefore necessary to include knowledge on the system
architecture into the resource demand estimation. This allows to derive the
correct mathematical model for resource demand estimation.

We proposed a novel method to resource demand estimation that automat-
ically derives the required information from an architecture-level model. It
relies on multiple statistical techniques for improved robustness and uses a
cross-validation scheme to dynamically select an estimation approach reliev-
ing a user from this decision. This simplifies the usage of resource demand
estimation techniques for performance engineers. Furthermore, it is a crucial
building block for our self-aware approach to resource management improv-
ing the model learning capabilities by allowing to delay the decision which
estimation approach to use until system run-time.
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Chapter 6

Model-based Vertical Scaling of Virtualized
Applications

In this chapter, we describe two model-based controllers for vertical scaling of
virtualized applications where resources are dynamically added to or removed
from individual VMs at runtime. These controllers reason on the knowledge
captured in performance models in order to improve on resource allocation
decisions with regards to efficiency and SLA fulfillment compared to rule-
based approaches. The performance models can be automatically created and
updated using the techniques described in the previous two chapters.

Although in virtualized data centers, horizontal scaling would also be feasible
by cloning and starting additional VM instances for an application, it typically
takes at least minutes for the new instances to be ready. Moreover, it requires
the application’s capability to detect and use new instances automatically,
which adds additional complexity to the application architecture (e.g., load
balancers and session replication mechanisms) and may not be supported by
all applications (e.g., database servers).

In most recent years, hypervisors added the capability to add (or remove)
virtual resources, such as virtual CPUs, memory, or I/O devices to running
VMs. This is referred to as hot-add (or hot-remove) of resources. This way, for
example, one can reconfigure a VM from a 2-CPU, 8 GB memory configuration
to an 8-CPU, 32 GB memory configuration without restarting it. This is referred
to as vertical scaling of a VM. As a result, the vertical scaling of individual VMs
is a viable alternative for virtualized applications as the configured CPU and
memory capacity of a VM can be changed quickly and frequently in a hypervisor
via its hot-add/-remove capability.

Challenges Many business-critical applications are subject to SLOs defined
on application performance metrics (e.g., response time or throughput). To
determine thresholds so that the end-to-end application SLO is fulfilled poses
a major challenge due to the non-trivial relationship between the resource
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allocation and the application performance. An application administrator has to
take into account the following factors influencing the application performance:

o Complex application architectures: An application may comprise several

tiers, each deployed in one or more VMs. The application latency depends
on the processing in each tier and the flow of requests between tiers. Fur-
thermore, asynchronous communication and limited software resources
(e.g., thread pools or connection pools) also influence the achievable
application performance.

Heterogeneous resource access: The processing of application requests re-
quires access to different types of resources (e.g., CPU, memory, or I10).
The extent to which each resource contributes to the end-to-end latency
may vary between different application tiers.

Resource contention: Due to the shared nature of a virtualized infrastruc-
ture, the achievable performance of one application can be severely im-
pacted by possible resource contention or interference from the co-hosted
applications, a problem referred to as noisy neighbors.

Furthermore, too many or badly timed reconfigurations can cause degradations
in the application performance. Rule-based often suffer from the following
short-comings leading to significant overheads:

¢ Oscillations: Rule-based approaches are inherently prone to an oscillating
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behavior resulting in unnecessary reconfigurations. A system administra-
tor needs to manually find optimal values for various parameters (e.g., fre-
quency of checks, quiet times after reconfigurations) to reduce oscillations.
However, the optimal values for these parameters are application-specific
and no general guidelines can be determined.

Limited application elasticity: Many applications (especially legacy ones)
are unable to immediately start consuming the newly available resources
(e.g., memory); in some cases, the guest OS or the application itself needs
to be restarted. On the other hand, we cannot just allocate the maximum
amount of resources to a VM that it may require at peak times, as this
would create huge overheads in terms of scheduling overheads and larger
page tables or it may lead to serious resource over-provisioning. As a
result, it is important for the resource allocation system to determine the
required resources of a VMs in advance, and to adapt the allocations prior
to the incoming demand peaks.



In order to overcome the deficiencies of threshold-based approaches and to
enable a fully automated approach to dynamically control the resource alloca-
tion of virtualized applications, performance models capturing the relationship
between the resource allocation to an application and the application perfor-
mance as well as demand forecasting techniques are required. The former
enables predictive analyses to determine the impact of reconfigurations on
the application performance, while the latter enables proactive planning of
reconfigurations.

Research Questions This chapter addresses the following research questions:

¢ How to use performance models for short-term reasoning when adding or
removing virtual CPUs to applications? We describe a layered queueing
model that enables the prediction of the impact of changing the number
of virtual CPUs on the application performance. We design a model-
adaptive, feed-forward controller based on this model that adjusts the
number of CPUs according to application-level SLOs.

¢ Which types of contention need to be considered when estimating re-
source demands in a virtualized environment? We distinguish between
three types of resource demands in our layered queueing network ex-
plicitly taking contention at different layers into account. We present an
approach to resource demand estimation exploiting observed scheduling
statistics of the hypervisor to estimate the hypervisor contention.

* How to schedule mid- and long-term reconfigurations proactively in an
autonomic manner? We present a proactive, feed-forward controller to
automatically schedule expensive reconfigurations (e.g., changing the
memory size of a VM) during phases of low load.

* Are time-series forecasting techniques appropriate to predict the applica-
tion demand on longer time frames (e.g., complete days)? We develop a
demand forecasting method that relies on multiple time series analysis
techniques and incorporates additional meta-knowledge (e.g., calendar
information) in the models to better capture the seasonality patterns in the
workloads. We evaluate its accuracy on three real-world workload traces
and compare it to other state-of-the-art time-series forecasting techniques.

Chapter Outline The remainder of the chapter is organized as follows. Sec-
tion 6.1 describes the short-term controller for adapting virtual CPUs of a
virtualized application in response to changes in the application workload.
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Section 6.2 presents the proactive controller for mid- to long-term changes to
resource allocations of applications. Section 6.3 concludes this chapter.

6.1 Short-term Vertical CPU Scaling

In this section, we propose a model-adaptive, feed-forward controller for verti-
cal CPU scaling. The goal of the controller is to improve SLA compliance while
ensuring resource efficiency. It is model-adaptive as it continuously estimates
the resource demand parameters of a performance model during run-time. In
Section 6.1.1, we introduce our end-to-end control loop. Section 6.1.2 contains a
description of the underlying modeling approach used for reasoning on the ap-
plication performance. In Section 6.1.3, we discuss how the resource demands
are estimated also capturing contention effects at the physical hardware layer.
Finally, Section 6.1.4 presents the resource control algorithm for vertical CPU
scaling. This section if based on our paper in Spinner et al. (2014b).

6.1.1 Model-Adaptive Control Loop

A virtualized application may comprise multiple VMs running on one or more
physical hosts. Each VM may host different parts of an application (e.g., ap-
plication server or database). We assume that the application owner is able
to provide a tuple (metric, target) for each application specifying the SLO,
where metric (denoted as p) defines the application performance metric to be
managed (e.g., end-to-end response time, or throughput), and target (denoted
as pres) contains the desired value of the corresponding metric. We assume that
the user-specified performance metric can be monitored at runtime without
significant overheads.

Our approach is based on a prediction model p = f(\,a) describing the
relationship between the application performance p and the current workload
A and resource allocation vector a. The structure and parameterization of the
performance model depends on the application architecture. We rely on the
reference architecture for model learning described in Chapter 4 to provide
us with the DML instance reflecting the current system architecture. Our
prediction model p = f(\, a) is automatically derived from the DML instance.
A coarse-grained description of the application behavior is sufficient as we
only require the explicit representation of quickly changing factors (e.g., arrival
rates, or scheduling delays at the hypervisor) in our model. Other factors are
assumed to only change slowly around the current operating point over time
(over hours and days) and are implicitly integrated in the model parameters.
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Figure 6.1: Overview of the model-adaptive control loop

In order to capture changes in these factors, we frequently update the model
parameters based on real-time monitoring data.

Figure 6.1 gives an overview of the model-adaptive control loop. Our control
loop consists of two major steps — the model builder and the resource predictor. The
model builder derives a layered prediction model from the input DML model
and determines its current resource demands using LibReDE (see Section 5.3).
It receives the current application performance statistics (average response time,
throughput, and if available the queue length of application requests) from
the application sensors and resource usage statistics of all VMs of a virtualized
application from the system sensor. We expect the system sensors to also provide
detailed scheduling statistics for individual VMs. Most modern hypervisors
keep track of scheduling statistics, such as wait times due to contention. For
instance, the VMware ESX hypervisor collects fine-grained scheduling statistics
in the vCenter PerformanceManager component (VMware, Inc., 2013).

The resource predictor uses the model to predict the VM-level resource
allocation vector a;; that will be required in the next control interval to fulfill
the user-specified performance target p,. at the application level. The scaling
mechanism translates the desired allocation to hypervisor resource settings and
uses hot-add of virtual CPUs to dynamically applied the new settings to the
appropriate VMs. The model-adaptive control loop is executed at regular time
intervals — the control interval — which typically lies in the range of seconds to
a few minutes, so that the controller can react quickly to system or workload
changes.

Our approach considers both, the scale up of VMs in response to an increasing
workload intensity as well as the scale down during phases of low usage.
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Figure 6.2: Overview of layered queueing model.

While the hypervisor is able to reschedule resources not used by one VM
to another, a large VM (i.e., with a lot of configured resources) still causes
additional overheads resulting in inefficient usage of physical resources. For
instance, the VMware vSphere hypervisor implements a co-scheduling (a.k.a.
gang-scheduling) policy for all CPUs of one VM. This can result in additional
scheduling delays if a VM is assigned several CPUs. The resource predictor
also determines when the number of virtual CPUs can be reduced for a VM.

In the following, we assume that the total available physical resources of a
host are sufficient to fulfill the SLOs of all hosted applications. We consider
the problem of performance isolation between applications co-hosted on an
over-committed host (i.e., more virtual resources are configured for VMs than
there are physical ones available) orthogonal to our problem. Approaches to the
global scheduling or resources in a virtualized data center (see Chapter 3.1.3)
may be combined with our approach in future work in order to balance the
load on a global level in a data center.

6.1.2 Modeling Approach

Given a DML model that describes the system architecture, we automatically
derive a layered prediction model p = f(\, a). The prediction model is used to
determine a) whether the performance target can be fulfilled under the current
workload A and the current resource allocation a, and b) which resource is
currently the performance bottleneck. In order to answer these questions
we represent the system with a queueing model. Due to the complexity of
virtualized environments, we adopt a layered modeling approach for describing
the application performance, where a virtualized system consists of a layered
architecture, with each layer contributing to the externally visible application
performance. We distinguish between the following three layers, as shown in
Figure 6.2:
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* The physical resource layer consists of the hardware resources (CPUs, main
memory;, etc.) of one or more physical hosts.

* The virtual resource layer consists of the virtual resources (number of CPUs,
size of main memory) which are configured for each VM. The hypervisor
dynamically schedules the virtual resources on the physical ones allowing
for sharing of physical resources between VMs.

* The application layer captures the performance behavior of the application,
including software resources (e.g., caches or thread pools) and the control
flow between different VMs.

Each layer introduces additional sources of contention, which may slow
down the processing of application requests. In today’s hypervisors, the phys-
ical resources are not dedicated, i.e. the hypervisor dynamically schedules
resources to a VM depending on its current demand. In order to increase con-
solidation ratios and improve resource efficiency, it is possible to over-commit
the physical resources of a host. That means, the sum of the configured vir-
tual resources for all the VMs can exceed the capacity of a physical resource
of the host. In over-committed scenarios, the different VMs may contend for
the same resources at the physical resource layer forcing the hypervisor to
time-division scheduling. At the virtual resource layer, different processes may
request processing time at resources resulting in delays due to guest operating
system scheduling. At the application level, software resources (e.g., thread or
connection pools) can lead to software contention limiting the possible applica-
tion throughput. These different levels contribute to the complex relationship
between resource allocation and application performance.

In order to address the complexity of the layered architecture of virtualized
systems, we adopted a modeling approach based on LQNs (see Section 2.4.2)
and the Method of Layers (MOL) (Menascé, 2002; Rolia and Sevcik, 1995). MOL
is an extension to traditional queueing networks enabling hierarchical model-
ing. The service time of a queue at level [ is equal to the response time of an
underlying closed queueing network atlevel [ —1, i.e., the service times at higher
layers include delays due to contention in the lower layers. In the following,
we describe the modeling of CPU resources in a virtualized environment.

Application Layer Each software resource limits the number of requests which
can be processed concurrently in a subpart of an application. LQNs support
multiple layers of software resources. For reasons of simplicity, we limit the
following description to one layer of software resources, however, it can be
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generalized to multiple layers. The end-to-end response time 7. of workload
class c at the system is:

L
I = Z Rl,c (61)
l

The residence time R; . of workload class c at software resource | consists
of the waiting time W ., if a request needs to wait for a free server and the
service demand D" for processing the request. In the following, this service
demand is called upplzcatzon demand in order to distinguish it from the service
demands on the virtual and physical resource layers. The scheduling at software
resource [ depends on the application implementation. Typical scheduling
strategies on the application level are IS (i.e., no contention due to software
resources), and FCFS. Assuming a M /M /m; queue with m; corresponding to
the maximum concurrency level of software resource [, the residence time R; .
can be calculated analytically using the following equations:

oo if 1S s
he = Dapp(l + & o PBy)  if FCFS (assuming [C| = 1) (62)

Q1 is the mean queue length seen on arrival of a new request at software resource
[ (excluding the requests currently being processed). PB; is the probability that
a newly arriving request will find all servers busy. PB; can be computed using
the Erlang C formula (see Equation 2.21 on page 36). It is important to note that
Equation 6.2 is valid for FCFS only in cases with a single workload class. See
Equation 2.24 on page 36 for an approximation for multiple classes. Additional
scheduling strategies may be included here, for instance, as described by Rolia
and Sevcik (1995).

Virtual Resource Layer The processing at this layer is described by a closed
QN where each virtual resource (e.g., CPU or I/O resource) is represented by
a queueing station. The utilization U, of software resource | determines the
think times in the closed QN. In general, the closed QN could describe the
fine-grained application control flow including accesses to different virtual
resources (CPU, hard disk, network). In order to avoid the intrinsic complexity
of explicitly modeling all virtual resources (including the control flow between
them), we choose a coarse-grained modeling approach, focusing on the CPU
behavior. The performance influence of other resources is captured by a generic
delay resource with IS scheduling. Then the application demand D;"}” is

A
D = (W5, + Dyit) + Dyter. (6.3)
v
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A; is the set of virtual CPUs accessed by software resource [. D”“"t is the service
demand of requests of workload class c arriving through software resource
[ at the virtual CPU v, ie., the CPU time at operating system-level required
to process one request. In the following we call it the virtual resource demand.

1. is the waiting time of a request due to OS scheduling when accessing
a CPU. The OS scheduling of processes to CPUs can be typically described
using a PS strategy, for which well-known analytical solutions for the waiting
time W75  exist. D"th” is the time a request spends at other resources in the
system. As descrlbed in Section 6.1.3, we continuously update this value based
on monitoring data to reflect changes in Dofche’".

Physical Resource Layer The hypervisor schedules virtual CPUs on physical
ones introducing additional waiting times if no physical resources are available.
Each physical CPU is represented by a closed QN consisting of a single queueing
station. The think times depend on the utilizations U, of each virtual CPU.
Therefore, the virtual resource demand fo{ 2 is defined as:

DUt = WP 4 DY = C, - DR, (6.4)
DY hys is the service demand of requests of workload class c arriving through
software resource [ at the physical CPU excluding any contention effects due
to hypervisor or operating system scheduling. We call this service demand the
physical resource demand. Whyp is the waiting time of requests due to hypervisor
scheduling.

Given that the hypervisor is not aware of different workload classes when
scheduling virtual CPUs on physical ones, we argue that the processing of
requests of a VM is equally slowed down across workload classes. Therefore,
we introduce the contention factor C,, describing the relative slow-down of VM
v due to hypervisor scheduling if several VMs are contending for the same
CPU. The contention factor is defined as:

hzi/p

v,l,c

Cv:Dp’}strl Vee C,l e L. (6.5)
v,l,c

However, the contention factor may differ between VMs running on the same
host. For instance in the VMware ESX hypervisor, there are two main reasons
for scheduling delays at the physical resource layer:

* QOver-commitment: When several VMs require CPU resources at the same
time in an over-committed scenario, the hypervisor may be forced to
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put some of the VMs in a ready state where they wait until a physical
CPU becomes available. Assuming that all VMs have exactly one virtual
CPU and equal scheduling priorities, a PS scheduling strategy is able to
describe the hypervisor scheduling. In cases where VMs have different
priorities, support for a GPS scheduling strategy (Parekh and Gallager,
1994) is required. Current solvers for LQNs (Franks et al., 2009; Pérez
and Casale, 2013a; Waizmann and Tribastone, 2016) lack support for this
type of scheduling.

¢ Co-scheduling: Furthermore, if a VM has two or more virtual CPUs, the
hypervisor will try to schedule them at roughly the same time in order to
ensure that the CPU time of each virtual CPU of the same VM progresses
simultaneously. If there are not sufficient free physical CPUs to schedule
all virtual CPUs, the hypervisor may put the VM in a costop state until
enough physical resources are available at the same time. This behavior
is known as co-scheduling (Ousterhout, 1982).

While a VM is in the ready or costop state the application processing is delayed.
The delays due to scheduling at the hypervisor layer result in a variable ser-
vice rate of the virtual CPU that not only depends on the current application
workload of this VM, but the workloads of all other VMs on the same host.

6.1.3 Model Estimation

The parameters of the layered performance model are estimated based on
monitoring data provided by the application and the hypervisor. The following
parameters are tracked continuously: the application demand, the virtual resource
demand, and the physical resource demand. In the following, we describe our
approach to estimate these parameters.

The estimation of the different demands is based on existing techniques for
resource demand estimation (see Chaper 5.1 for an overview of such techniques).
However, these techniques do not take the different layers of a virtualized
system into account. For instance, the techniques described in (Kraft et al.,
2009; Liu et al., 2006; Menascé, 2008; Zheng et al., 2005) are using end-to-end
application response time observations. However, as the response time also
includes delays due to contention effects at the hypervisor level, the dynamically
changing workload at the hypervisor layer may result in time-varying resource
demands.

The demand estimates are updated in a regular interval, called the estima-
tion interval. At the end of each estimation interval, new readings from the
application and system sensors are obtained, and the demand estimates are
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updated accordingly. For demand estimation only the last // measurements
are considered, so that the model estimator can adapt to changes in the sys-
tem configuration and application behavior. The time period consisting of M
measurements is called the estimation window. For instance, in our experiments
in Section 7.5 we use an estimation interval of five minutes and an estimation
window of one hour.

Application Demand The application demand is estimated based on observa-
tions of the system response time 7, and the average queue length @; seen
by a request on arrival at software resource I. (); can either be observed di-
rectly if the application provides these statistics or derived using queueing
theory (Menascé et al., 2004) (e.g., from the observed utilization of the software
resource). In the latter case, it is important to ensure that the system is stable
during one estimation interval, i.e., A = X. This assumption holds for many
interactive systems (e.g., Web servers), if the response times are small compared
to the estimation interval and a large number of requests are processed in each
estimation interval. If the system is not stable (e.g., in case of batch processing),
we rely on direct observations of @);. Using Equations 6.1 and 6.2, we can
estimate the application demand D;”” based on the queue-length and response
time observations using non—negatﬁ/e least squares regression (as described in
Section 5.1.1.3).

Virtual Resource Demand In order to estimate the virtual resource demand, we
rely on scheduling statistics reported by the hypervisor. VMware ESX provides
the ;¥ and ¢**'” performance counters for each VM, reporting the total
time VM v is in a wait state due to CPU contention from other VMs or due to
co-scheduling. This allows us to estimate C,, the slow down due to the VM
being in a wait state:

read costop

_l’_

Cv: N

(6.6)
N is the length of the estimation interval. By estimating the contention factor
C, for each estimation interval and combining it with the physical resource

h . . :
demand DP}%’, we obtain the virtual resource demand D?%*.

Physical Resource Demand  Given the estimates of the application demand Dap P

and the contention factor C,,, we can estimate the physical resource demand
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D" based on Equation 6.3 and — assuming PS scheduling — Equation 2.20:

v,l,c

1 PB
app _ Dphys . v Dother 7
Z C v,l,c ( M 1— U’U> + (6 )

In the above equation, m,, is the number of virtual CPUs and P B, is the proba-
bility of a request having to wait at the virtual CPU v. PB, can be calculated
using the Erlang-C equation (see Equation 2.21 on page 36). The utilization U,
is determined using the scheduling statistics from the hypervisor as following;:
Uy =—=— - (Cyp + =~ ) where "™ is the total CPU execution time """ of a VM
v as reported by the hypervisor, and N is the length of the estimation interval.
Equation 6.7 can then be solved using a Kalman filter or a generic optimization
algorithm to determine D7 hys In the special case of a single workload class,

the physical resource demand DY hys . may be estimated directly based on obser-
vations of the average apphcatlon throughput X, and the total CPU execution
time " of a VM v using the Service Demand Law.

Demand Variations Changing the number of virtual CPUs can have a profound
impact on the application performance behavior. Therefore, we expect the
application demand D, p P to change depending on the number of CPUs m;. For
instance, when addmg CPUs to a VM, application thread pools might become a
limiting factor due to the increased parallelism resulting in an additional slow-
down of the application. Therefore, the application demand D;?” (and also
DO“W“) is learned in relation to the number of CPUs m;. After a reconfiguration,
it is therefore important that the estimation of D;*” quickly adapts to the
new values. In our prototype for the case study in Section 7. 5, we discard
all previous observations in case of a reconfiguration and start from scratch
with the resource demand estimation. Future work may improve this behavior
and investigate whether the usage of a Kalman filter may help to shorten the
transition periods.

6.1.4 Resource Control

In this section, we show how the prediction model described in Section 6.1.2
is used to dynamically scale the number of CPUs of a virtualized application.
We first describe the resource control algorithm used for reasoning. Then we
discuss how the model can help to detect bottlenecks in different system layers.
Finally, we show how the reconfiguration can be implemented in a hypervisor.
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6.1.4.1 Reasoning Algorithm

At the beginning of each control interval, the resource controller analyses our
layered performance model along with the measured application performance
to determine whether VMs need to be scaled up or down, either to mitigate
SLO violations or to improve resource efficiency. The current approach is
focused on adding and removing virtual CPUs from individual VMs during
system runtime. Changing the number of CPUs of a VM is a relatively cheap
reconfiguration given that modern operating systems support hot-plugging of
CPU resources without the need to reboot the guest operating system. Thus
applications can directly benefit from the additional computing power.

Algorithm Overview Our resource control algorithm is a hill-climbing optimiza-
tion algorithm executed for each virtualized application at the beginning of
a control interval. Algorithm 6.1 shows the steps of the algorithm. The algo-
rithm expects a fully-parameterized performance model of the application as
input. Additionally, it requires the target response time 7, “f for each workload
class c as provided by the system administrator, the current arrival rate ). of
requests of workload class c at the application level, the current queue length ¢
at software resource /, and an allocation vector a = (a1, ..., a,) containing the
current number of virtual CPUs for each VM of an application. It returns the
desired CPU allocation vector a™“*! for the next control interval, which is then
applied to the system.

The algorithm answers (a) whether a reconfiguration is needed to ensure
the application performance target or improve the resource efficiency, and (b)
which VM should be reconfigured. The first part of the algorithm evaluates if
the application can still fulfill its performance targets if a CPU is removed from
any of the member VMs and chooses the VM which has the least impact on
the application performance (lines 3-11). The second part of the algorithm is
executed if the application performance targets are or will soon be violated, and
determines which VM is best scaled up to improve the application performance
(lines 12-19).

Model Analysis The algorithm uses the AnalyseModel helper function to pre-
dict the expected application performance for a given number of CPUs assigned
to a VM. Existing model solution techniques for LQNs may be used here, such
as the Method of Layers (MOL) (Rolia and Sevcik, 1995) or the fluid limits solver
LINE (Pérez and Casale, 2013b). In Miiller et al. (2016), we evaluate different
solution techniques for LQNs with regards to their accuracy and speed. Both
LINE and MOL can provide sufficiently fast solutions within clearly under a
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Algorithm 6.1: Resource control algorithm
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second for models of similar complexity. Simulation techniques are typically
not appropriate given that the resource control algorithm is typically executed
in relatively short intervals (e.g., every 20 seconds).

In the case study described in Section 7.5, we used an approximation instead
of a full model solution. Given the FCFS scheduling at the application level, we
can assume in the case study that the number of requests in service is equal to or
below the number of CPUs and hence the waiting time W] . in Equation 6.3 is
always zero. Furthermore, we assume that the contention factor C, will always
be the same in the next control interval. Evidently, this is only an approximation
as the reconfiguration of CPUs can have significant impacts on the co-stop time
cSOS1P ' With this approximation, we can calculate the end-to-end response time
directly without performing a full MVA.

Besides the current arrival rate A and the resource allocation a, the function
AnalyseModel also requires the current queue length in the system q. With
short control intervals in the range of seconds or minutes, subsequent control
intervals may be correlated as queue lengths build up over several intervals.
Therefore, the model analysis needs to include the current state of the system
into the analysis of the model. However, we only consider the state of the
queues in the application layer here assuming the processing of request in the
virtual and physical resource layers finish within a single control interval.

Scale Down In order to determine possible candidate VMs for scale down,
the algorithm calculates the expected end-to-end response time Tg;’}”” if one
CPU is removed from VM v (line 4). e, is the unit vector of dimension v. If the
predicted Tc‘fzw” is less than § - T, ¢/ for all workload classes ¢ € C (line 6), we
calculate the distance between the predicted response time and its target (line
7). The result is stored in variable u,. The factor § is a configurable parameter
that controls the aggressiveness with which the controller scales down VMs.
In our experiments, we typically used a value of 6 = 0.75%.

The VM for which removing one CPU maximizes the distance u, is selected
for scale down (lines 8 and 9). Before scale down, an additional check is
performed to ensure that the system as a whole is still stable afterwards (lines
10 and 11). The stability check avoids unnecessary oscillations, because the
queue size would increase again after scale down. This check is required for
non-interactive, job-based systems, where it is often acceptable queue up work
for a short time as long as the SLOs are not violated.

Scale Up If there is no potential for a scale-down identified, the controller
checks whether a scale-up is required. It compares the expected end-to-end
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response time T¢*" with the target application latency T+ (line 13). If any
SLOs are violated for any of the workload classes, we search for the VM v that
provides the maximum overall speedup s., when adding one CPU (lines 14 -
17). The speedup s, is the ratio between the predicted throughput X:% with
one additional CPU and the current throughput X% If the expected speedup
is above a minimum value s,,;,, a CPU is added. The value s, is configurable
and controls when to stop adding CPUs if the expected speedup is minimal.

In each control interval, the algorithm adds or removes only one CPU at a
time. This helps the model estimator to learn the application demands D;*”
gradually by exploring the reconfiguration space. In our experiments, the
control interval length was set to 20 seconds. With such a short control period,
the controller can also react to fast workload changes adequately over several
control periods.

6.1.4.2 Bottleneck Analysis

While the performance model and the resource control algorithm described
previously are focused on capturing the impact of changing the number of
virtual CPUs on the application performance, its layered structure can also be
useful to detect non-CPU bottlenecks during runtime and trigger additional
reconfigurations. This is especially important if the resource control reaches a
point where adding virtual CPUs will not improve the application performance
further. There are different reasons why an application may not benefit from
additional CPUs. In the following, we will discuss possible situations and
describe when additional reconfigurations may be necessary.

The VMware ESX hypervisor implements a co-scheduling scheme for virtual
CPUgs, i.e., all CPUs of the same VM are scheduled roughly at the same time.
With increasing number of CPUs, the probability increases that a VM has to
wait because there are less idle physical resources than the VM has CPUs. Given
the current physical demand DP"¥* and the virtual demand DV, we have an
estimate of the time a request is delayed due to hypervisor CPU scheduling.
The proportion wyir¢ = % can be used as an indicator for excessive CPU
contention on a host. If this value reaches a certain threshold (e.g., 30% of the
application processing time is due to scheduling delays at the hypervisor level),
mitigation actions to reduce the contention on the host should be taken. See (Lu
et al., 2014) on an orthogonal approach optimizing scheduler settings enabling
SLO differentiation of virtualized applications. If the physical resources of a
host are insufficient to serve the needs of all VMs, it is possible to relocate the
VM to a less-utilized host using VM live-migration facilities of the hypervisor
(see Gulati et al., 2012).
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. other . . .
The proportion wey,, = 255 can be used as an indicator for bottlenecks in

other hardware or software resources (e.g., main memory or I/0) not explicitly
captured in the performance model. In order to pinpoint the bottleneck more
precisely, more monitoring data about the current state of the application or
hardware might be required. Such metrics may be available as the Zimbra case
study in Section 7.5 shows. However, the capabilities to solve these bottlenecks
during system runtime without service interruption may be limited.

6.1.4.3 Reconfiguration

We have implemented the resource control algorithm for the VMware ESX
hypervisor. This hypervisor currently supports CPU hot-plug, i.e., adding more
virtual CPUs to a VM without service interruptions. However, hot-remove
of CPUs is currently not supported by most guest operating systems. It is
necessary to reboot a VM to reduce the number of virtual CPUs. In order
to avoid this limitation, we use CPU hot-plug mechanisms included in some
guest operating systems (e.g., the sysfs kernel interface in Linux). We use these
mechanisms to deactivate individual cores in the operating system to simulate
the influence on the application performance. Given that the hypervisor is not
aware of the deactivated cores, these cores may cause additional scheduling
overheads in the hypervisor.

After a reconfiguration takes place, the model estimator is suspended for a
short period of time, because some requests observed directly after the recon-
figuration may be enqueued or currently in service during the scale-up/-down.
The response times of these requests are only insufficiently represented in Equa-
tion 6.3 as those requests experience two different service rates. In order to
prevent these observations from influencing the model estimator negatively, we
skip all control intervals where the observed average reponse time 7" indicates
that the requests arrived in the system before the reconfiguration at time #;,;
(i'e-/ teur =T < 75la,st)~

6.2 Mid- and Long-term Vertical Scaling

The reconfiguration of resource allocations is not always instantaneous limiting
the elasticity of applications. In such situations, reconfigurations need to be
planned proactively on a mid- to long-term scale (i.e., hours or days) in order to
be able to react in time before a workload peak. Otherwise, application SLOs re-
garding performance and availability may be violated. In this section, we show
how time-series forecasting techniques can be integrated into an autonomic
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controller to proactively plan the vertical scaling of virtualized applications. In
the following, we use memory as an example for a resource where reconfig-
urations can be costly. However, the approach is independent of the type of
resource. Section 6.2.1 discusses factors limiting the application elasticity using
memory as an example. In Section 6.2.2, we describe our proactive control loop
and propose an improved forecaster to address workloads with multiple over-
lapping seasonal patterns. In Section 6.2.3, we evaluate whether our forecaster
is able to provide long-term forecasts with sufficient accuracy for our resource
controller. This section is based on our paper in Spinner et al. (2015b).

6.2.1 Factors Limiting Application Elasticity

Modern hypervisors (e.g., VMware ESX) support two different approaches to
dynamically adapt the actual amount of memory available to a virtualized ap-
plication: memory hot-add (and hot-remove), or memory ballooning. Memory
ballooning techniques (Waldspurger, 2002) allow to reclaim memory from the
guest OS at run-time. This mechanism is used to reallocate the physical mem-
ory between VMs in over-commited scenarios. However, memory-ballooning
only works within the bounds of the initially configured memory size. While it
would be possible to set this size to the maximum physical memory size, it is
not recommended as it usually results in memory overheads. Furthermore, it
can also severely limit the possibilities to migrate such a VM between physical
hosts in a heterogeneous data-center. In the following, we describe the chal-
lenges of memory scaling caused by deficiencies of many modern operating
systems and applications.

Most current versions of the Linux and Windows OS can dynamically activate
additional memory without a restart. However, memory reconfigurations can
fail at the OS level. For instance, Linux requires a contiguous physical memory
space for its internal memory management tables. If there is a high memory
pressure by the application, we observed frequent failures when activating
the additional memory as the OS is unable to find enough space to enlarge its
memory management tables.

Many enterprise applications, including their underlying middleware and
database systems, implement their custom memory management mechanisms.
Examples include database systems, such as the MySQL server, which main-
tains a buffer cache to keep frequently used pages in memory, and process
VMs, such as the Java VM, with their garbage collected heap space. These
applications also need to be made aware of any additional memory added
at runtime so that they can adapt their behavior accordingly. However, the
parameters controlling the application’s memory management mechanisms

168



6.2 Mid- and Long-term Vertical Scaling

often cannot be changed without restarting the application (e.g., the MySQL
buffer pool size, or the maximum heap size of a Java application).

Salomie et al. (2013) propose an extension to MySQL and Open]DK to inte-
grate memory ballooning techniques in the application memory management.
However, this approach works only within certain bounds configured initially
and it requires profound changes in the OS and application source code (Sa-
lomie et al., 2013). As long as the application does not allow to dynamically
change its memory management configuration, the only option is to restart the
application although it is an expensive operation, both in terms of availability
and performance. In particular, data-intensive applications need to reload their
working set data back into memory after a restart. The Zimbra Collaboration
Server!, which is an example for such a data-intensive application, becomes un-
available for up to 10 minutes due to the restart and shows a severely degraded
application performance (a slowdown factor of 10) for over half an hour while
reloading its internal caches (see Section 7.5.5).

In summary, the major challenges when reconfiguring memory of virtual-
ized applications are the following: a) the settings of the memory management
mechanisms of applications must be adjusted to reflect the additional capacity,
b) many practical applications need to be restarted to update the memory man-
agement configuration, and c) the reconfiguration is unreliable when memory
demand is high and may cause additional overheads.

6.2.2 Proactive Control Loop

Our approach is based on a control loop which proactively adds or removes
memory resources to VMs to match their future workload demand and to
improve application availability and performance. We use a proactive approach,
as it enables us to plan the reconfiguration in advance and schedule it to be
executed during a phase of low application load (e.g., at night). This has the
following benefits: a) reconfiguration failures at the OS level are avoided, and
b) if an application restart is required, the impact on the performance and
availability can be significantly reduced (see Section 7.5.5).

We assume that the application is subject to a dynamic, time-varying work-
load with different seasonal patterns, such as daily and weekly patterns, as well
as different long-term trends (increasing or decreasing). If an application restart
is required, the memory reconfiguration may take place during pre-defined
maintenance windows when a short application outage is acceptable (e.g., be-
tween 3:00 and 3:15 AM). This results in significantly longer control periods

"http://www.zimbra. com
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compared to many other runtime management systems. While the long control
period limits the elasticity of the system, it helps to avoid counter-productive
reconfigurations at peak workload.

App-level SLO p,¢  Prediction model p=f(A,a)

4 .
Virtualized Application { \I
H Resource | !
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Figure 6.3: Overview of proactive control loop.

The control loop consists of the components shown in Figure 6.3. For each
virtualized application, our approach periodically adjusts the memory alloca-
tions to the VMs using a closed-loop controller. As described in Section 6.2.1, a
memory reconfiguration may also require changing the memory settings of
the application, including a possible restart of the application. Our approach
therefore needs to determine a memory allocation a;; sufficient to serve the
peak workload during the next control interval ¢ + 1 (e.g., next 24 hours) and
then it reconfigures the system in advance during a maintenance window. The
App Sensor continuously monitors the arriving workload and stores the aggre-
gate observations in a time series A\; = {\}...\!"}. The parameter m controls
the smoothing of the input data and also the computational overhead of the
approach. Assuming a control interval of one day, we usually use m = 48 or
m = 24 corresponding to a sampling interval of 30 to 60 minutes.

In order to predict the workload for the next interval, the time series A, is fed
as input to the Workload Forecaster component. This component builds a statisti-
cal model based on the historical data A\1...\;. Our workload forecaster relies
on multiple time series analysis techniques and exploits additional calendar
information to distinguish between different types of seasonal patterns (e.g.,
work days vs. non-working days). We refer to this approach as splitTs in the
rest of this section. The result of the workload forecaster is the expected peak
workload A1 of the control interval ¢ + 1.

The Resource Predictor component determines the required memory alloca-
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tion a;11 to a VM to be sufficient for the peak workload A;41. To this end, it
requires a function p = f(\, a) that maps a given workload A and a memory
requirement a to the expected application performance p. In our case study in
Section 7.5.5, we used a fixed step function that we determined in an offline set-
ting using experiments with a discrete set of memory sizes (e.g., in 2 GB steps)
by determining the corresponding sustainable application workload. However,
more generic functions can be used depending on the application. The function
may be either provided to the resource predictor as input knowledge or learned
over time by analyzing historic application performance data.

Based on the required memory allocation a1, the Scaling Mechanism com-
ponent determines the new VM memory settings for the application. This
includes the configured memory size s;11 and the memory limit /;11 of the
VM. The limit setting is used to reduce the memory consumption of a VM
using memory-ballooning techniques. This is because hot-removal of memory
is currently not supported by guest operating systems without a restart of the
VM. Therefore, the scaling mechanism uses the limit setting to scale down the
memory of a VM if it does not require all configured memory. The freed mem-
ory can then be used by other co-located VMs enabling a higher consolidation
ratio on the physical host.

6.2.2.1 Workload Forecaster

Based on the observed arrival rates A; the workload forecaster predicts the
expected arriving workload during the next control interval. After observing
several days (typically three complete days), it is possible to forecast the arriving
workload for a complete day using time series analysis methods as described
in (Hyndman and Khandakar, 2008). To avoid under-/over-provisioning of
memory resources, it is crucial to predict the peak workload of the next day
accurately.

A shortcoming of all forecasting methods based on time series analysis is
their limited capability to identify and cope with multiple overlapping seasonal
patterns at the same time. The effects of days, weeks and months are exam-
ples of such overlapping patterns as commonly found in real-world workload
traces. Many workload traces from public webservers (e.g., in (Arlitt, 2000;
Urdaneta et al., 2009)), or enterprise systems (e.g.,in (Herbst et al., 2014)) show
regular differences in the workload intensities between different week days
(e.g., working vs. non-working days).

In order to cope with these types of overlapping seasonal patterns, splitTs
classifies the observed, historic data A;...A; into subsets Sy = {\; : f(A;) =
d,1 <i<t}withd € D. The classificator f is based on calendar information
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provided as static meta-knowledge. When predicting the arrival rate A, first
d = f(At+1) is determined, and then only subset Sy is used for the forecast. In
our evaluation, we use a fixed D = {workingday, nonworkingday}. More com-
plex classifications are possible, however, it comes at the cost of an increased
number of days required to learn the forecast model. As shown in Section 6.2.3,
this classification significantly improves the forecasting accuracy on the consid-
ered real-world traces. Future work may extend splitTs to automatically cluster
the different days based on historic data.

In order to obtain a forecast from a subset S;, we use the WCF method
described in (Herbst et al., 2014). WCF dynamically selects between different
underlying statistical methods based on time series analysis depending on the
forecasting objectives and incorporates direct feedback on the forecast accuracy.

6.2.2.2 Scaling Mechanism

The scaling mechanism expects the required memory allocation a;4 for the
next control interval as input. It first determines the new memory size (s¢41)
and memory limit (/;+1) of the VM considering the current memory size and
technical constraints from the hypervisor (e.g., VMware ESX expects the mem-
ory size to be a multiple of 128 MB). If a;4 is larger than the VM’s current
memory size, the hot-add functionality of the hypervisor is used to add addi-
tional memory to the VM without restarting it. Furthermore, the memory limit
is also set to the required memory size. If instead, a;+1 is less than its current
memory size, only the memory limit is adjusted accordingly.

The individual steps to adjust the memory settings of a VM also include the
necessary adjustments to the OS and application configurations. The following
steps are executed in the given order:

1. The application is stopped in order to adjust static configuration settings
(e.g., Java maximum heap space, or the database buffer pool size).

2. The new memory settings of the VM are fed to the hypervisor using the
supported reconfiguration API.

3. Any additional memory is activated in the OS to become available to the
memory scheduler. Depending on the OS, and its version this step is
either triggered automatically by the OS or needs to be executed manually.

4. Any application-specific, memory-related configuration settings are up-
dated to reflect the new memory size. The required automation scripts
need to be provided by a system administrator and included in the VM.
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5. The application is started with the new settings and it resumes serving
user requests.

Two observations are worth noting. First, if memory usage is high, step 3) may
fail if the OS cannot find enough free, contiguous physical memory to extend
its memory management tables. This is why step 1) is executed before step 3)
to reduce the memory usage in the VM and prevent reconfiguration failures.
Second, steps 1) and 5) are not needed if the application is able to dynamically
adapt its memory management to the new memory size of the VM.

6.2.3 Evaluation of Forecast Accuracy

In this section, we evaluate the splitTs forecaster with regards to the improve-
ment in accuracy through exploiting calender meta-knowledge compared to
state-of-the-art time-series forecasters.

6.2.3.1 Workload Traces

In order to evaluate the forecast accuracy, request arrival traces are needed that
tulfill the following requirements: (a) they should contain request arrivals from
a real-world application, (b) they should include daily patterns, as this is an
assumption of our approach, (c) they should cover a period of several weeks (at
least four weeks) in order to learn a forecast model that also captures weekly
patterns. We found three request arrival traces fulfilling our requirements:
FIFA’98 World Cup, Wikipedia, and CICS transactions. The FIFA'98 traces (Arlitt,
2000) were taken from the web servers of the official FIFA’98 world cup web
site. We used the first five weeks of the traces for our evaluation. The wikipedia
traces (Urdaneta et al., 2009) contain every 10th request to the official wikipedia
site. For our evaluation, we used four weeks of trace data from the English
language site (September 19th to October 21st, 2007). The CICS transaction time
series reports the number of started transactions at a real-world deployment of
an IBM z10 mainframe server. The trace data was taken from the case study
described in (Herbst et al., 2014). We used a total of four weeks of this trace
(January 31st to February 27th, 2011).

6.2.3.2 Error Metrics

We use the Mean Absolute Scaled Error (MASE) to evaluate the accuracy of
the forecast values. Given a time series Y7...Y;, of actual observations from the
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system and a time series of forecasts Fj...F,, the forecast error e; is generally
defined as e; = F; — Y; for t = 1...n. Then the MASE is defined as:

et
MASE = mean - (6.8)
(nll >io [Yi = Yid]

MASE scales the error with the error from a one step naive forecaster, which
takes the last observation as the forecast. The MASE error is scale-independent
and can be used for comparisons across multiple time series (Hyndman and
Koehler, 2006). In contrast to the mean relative error, it is not influenced by
skewed error distributions and thus ensures unbiased comparisons (Hyndman
and Koehler, 2006). Assuming a forecast horizon of one interval, a MASE
< lindicates that on average the considered forecast method yields smaller
errors than the one step naive approach. In our experiments, we forecast
the workload for a complete day resulting in a forecast horizon of 24 or 48
depending on the sampling interval. Therefore, MASE is expected to be larger
than one (Hyndman and Koehler, 2006).

6.2.3.3 Results
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Figure 6.4: Forecasts using splitTs on the FIFA'98 traces (first day is Friday).

Figure 6.4 shows the resulting forecasts by the splitTs method on the FIFA'98
traces. The splitTs is able to capture the daily and weekly patterns (i.e., the
differences between weekdays and weekends) in its model and to reflect them
in the forecasts. The forecasting method is executed at 3AM each night when
the workload is low. More information on the shape of the Wikipedia and CICS
transaction traces can be found in (Urdaneta et al., 2009) and (Herbst et al.,
2014).

In order to assess the improvement achieved in our splitTs approach, we
compare its forecast accuracy to three state-of-the-art approaches, WCF (Herbst
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et al., 2014), ARIMA (Box et al., 2008b) and tBATS (De Livera et al., 2011)
(using their implementations from the R package forecast?). The first days
required to learn the seasonal patterns are excluded from the comparison (in
total 6 complete days as the splitTs approach requires three workdays and three
non-workdays to learn the seasonal patterns).

splitTs ~ WCF ARIMA  tBATS

MASE 142 2.18 2.65 2.33
FIFA’98 Infs 0 0 0 24
C.Iwidth 840 1075 852 954
MASE 1.14 1.28 1.68 2.21
Wikipedia Infs 0 0 0 0
C.Iwidth 39878 50820 58683 43323
MASE 1.23 3.01 4.97 3.28
CICS Infs 0 0 0 0

transactions Clwidth 9584 24774 15322 24536

Table 6.1: Forecast accuracy.

Table 6.1 shows the summarized forecast errors of the splitTs compared with
the WCF, ARIMA and tBATS methods. The splitTs approach can reduce the
MASE errors by between 11% (Wikipedia traces) and 59% (CICS transaction
traces). The differences can be explained by the different weekly patterns
present in these two traces. The CICS transaction traces stem from an enterprise
application and the differences between the weekend and weekday workloads
are higher. In contrast, the Wikipedia traces have less distinctive weekend
patterns and therefore, the improvements through the splitTs approach are
smaller. Figure 6.5 shows the distribution of the absolute scaled errors.

In Table 6.1, we also included the number of infinite values forecast by the
methods and the mean width of the 80% confidence interval. On the FIFA'98
traces, the tBATS approach fails to fit a forecast model in one interval resulting in
24 infinite values. The mean confidence interval length is significantly reduced
by the splitTs on all three traces indicating a better fit of the forecast model to
the observations.

In summary, the results show that by classifying different types of days
and executing the time series analysis only on subsets with similar seasonal
patterns, splitTs improves forecast accuracy significantly compared to existing
state-of-the-art techniques based on time-series analysis. On the considered
data sets, existing time-series analysis techniques were not able to forecast

Zhttp://cran.r-project.org/web/packages/forecast
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Figure 6.5: Cumulative distribution function of absolute scaled errors.

the overlapping weekly seasonal patterns (workingdays vs. nonworkingdays)
correctly.

6.3 Concluding Remarks

In this chapter, we proposed two autonomic controllers for vertical scaling
of virtualized applications. Whereas the potential of horizontal scaling has
been extensively evaluated in the literature before, vertical scaling based on
hot-adding resources to a running VM is a relatively new way to dynamically
adapt the resource allocations of virtualized applications. It can enable high
elasticity through quick reconfiguration times if all platform layers support
vertical scaling. This is typically the case for CPU resources, for which we
propose a model-adaptive control loop with a short control interval. The
short interval enables quick reactions even in case of unpredictable workload
changes and the model allows us to predict the impact of a reconfiguration on
the application performance in advance. Furthermore, we specifically designed
our controller to be aware of physical resource contention effects in order to
include this information during reasoning.

Our second autonomic controller leverages time-series forecasting techniques
to proactively adapt resource allocations on a mid- to long-term scale. If ap-
plications are limited in their elasticity, reconfigurations need to be planned
accordingly in advance to prepare the system for workload changes. In certain
cases the reconfiguration may even cause service interruptions. Our controller is
able to proactively schedule such reconfigurations (e.g., increasing the memory
size) in a pre-defined maintenance window (e.g., during phases of low usage).
We also propose a forecasting method incorporating calendar information and

176



6.3 Concluding Remarks

evaluate it on three different request traces from real-world applications. The
results show that incorporating calendar information in the forecast model sig-
nificantly improves its accuracy compared to state-of-the-art statistical forecast
methods. The MASE error metric is improved between 11% and 59% for all
three traces.
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Chapter 7
Validation

In this section, we provide an end-to-end validation of our approach to self-
aware resource management in virtualized data centers. In the following, we
first describe the goals of our evaluation, before we discuss our validation
results.

7.1 Evaluation Goals

The main goal of this thesis is the development of a self-aware approach to
resource management to improve the elasticity of virtualized applications. For
our evaluation, we break this down into the following three evaluation goals:

* Goal 1 (Applicability): Our approach depends on a deep integration into
state-of-the-art software systems in order to provide model learning ca-
pabilities transparently for a system administrator. Given that today a
wide range of different applications are hosted in virtualized data cen-
ters, we focus on three example software systems that are often used in
such a context. We consider the VMware vSphere virtualization plat-
form, the Wildfly middleware platform and the Zimbra collaboration
server. VMware vSphere is the market leader in the area of x86 server
virtualization according to Gartner (Bittman et al., 2016). Wildfly is an
open-source Java EE-compliant application server provided by Red Hat
providing a middleware platform for custom Java enterprise applica-
tions. Zimbra is a collaboration server used by more than 500 service
providers world-wide with over 400 million users according to the ven-
dor’s website!. We provide proof-of-concept implementations of VAs for
these systems including integrated model learning capabilities for our
reference architecture described in Chapter 4. In Section 7.2, we discuss
these proof-of-concept implementations focusing on the interfaces these

Lyww . zimbra. com
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systems provide to obtain the information required for model learning at
system run-time.

Goal 2 (Automation): Our approach aims at a high degree of automation
for the resource management of applications in a virtualized data cen-
ter. Given the complexity of modern systems, the manual creation and
maintenance of detailed performance models of an application is infeasi-
ble. We evaluate the degree of automation achieved with our reference
architecture for online model learning (see Chapter 4), as well as the
accuracy of the resulting performance models. The latter is always a
combined evaluation also considering the accuracy of the estimated re-
source demands using the method described in Chapter 5. In Section 7.4,
we present a case study based on the SPECjEnterprise2010 full system
benchmark using our Wildfly and VMware vSphere VAs developed as
part of Goal 1. We determine the number of model elements that agents
in the VAs can determine automatically and analyze the type of context
information a user still needs to provide to obtain a complete model. In ex-
periments with different workload intensities, we evaluate the prediction
accuracy of the performance models resulting from online model learning
by comparing its predictions to measurements from a real system. We
perform additional case studies in Section 7.3 to validate our method for
resource demand estimation comparing the estimated resource demands
to directly measured ones and assessing the accuracy of resource demand
estimation in multi-tenant environments.

Goal 3 (Elasticity): Our approach should be able to adapt the resource
allocations so that they match the demand of the application as closely
as possible. If resources are under-provisioned, the application cannot
fulfill its application SLOs. If they are over-provisioned, the resource
efficiency is reduced. Furthermore, our approach should also avoid
unnecessary reconfigurations which may incur additional overheads on a
system. In a case study based on the Zimbra collaboration server with real-
world workloads, we compare the two autonomic controllers proposed
in Section 6 to a static allocation and to rule-based approaches under
time-varying workloads. We focus on the virtual resources allocated to
the individual VMs of a virtualized application. We assume that the
virtualization platform is able to optimize the overall usage of physical
resources in a data center if we can determine the required resource
allocations to virtualized applications as closely as possible depending
on their current workloads.



7.2 Integration into Existing Software Systems

In the following, we describe the integration of our approach into existing
software systems in Section 7.2. Furthermore, we present two use cases of
our method to resource demand estimation as part of joint work with other
researchers in Section 7.3. Then we show the results of our SPECjEnterprise2010
case study in Section 7.4 and of the Zimbra case study in Section 7.5.

7.2 Integration into Existing Software Systems

We describe our implementation of three VAs with integrated model learning
capabilities. In Section 7.2.1, we analyze interfaces the VMware vSphere virtu-
alization platform provides to obtain the current structure and configuration
of the virtualized platform. Section 7.2.3 contains a description of the mecha-
nisms we exploit in the Wildfly application server to discover the application
architecture at system run-time and to automatically insert instrument points
to collect empirical observation data. In Section 7.2.3, we describe an extension
for the existing Zimbra VA to collect the monitoring data required for model
learning.

7.2.1 VMware vSphere

In the following, we describe the prototype implementation of an model ex-
traction agent for the data center scope and platform scope integrated with the
VMware vSphere virtualization platform. We chose the VMware vSphere due
to its wide-spread use in industry (Bittman et al., 2016). The agent itself runs
in a system VM with access to the management network of VMware vSphere.

The VMware vSphere platform consists of the ESX hypervisor and the vCen-
ter server for hypervisor management in a cluster of virtualized hosts. A
vCenter server manages an inventory of the physical hardware, the hypervisor
configuration and the VMs deployed in a cluster. System administrators can
perform cluster-wide reconfigurations at a central place (e.g., deploy, migrate,
or change resource allocations to VMs). Furthermore, the vCenter server col-
lects and stores detailed monitoring statistics from all hypervisor instances. We
access this information through a set of Simple Object Access Protocol (SOAP)
web services provided by the vCenter server. The documentation of the web
service interface is publicly available at the vendor’s website (VMware, Inc.,
2013).

The inventory is based on an object model representing all entities managed
by a vCenter server. Figure 7.1 gives a simplified overview of the main classes
in the object model. For easier representation, we excluded classes offered by
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Servicelnstance

datacenter| *

Datacenter

*

computeResource network | * datastore |* virtualMachine | *
| ClusterComputeResource | | Network | | Datastore | | VirtualMachine
*| owner *lvm *vm
host | * resourcePool |1 config | 1
| HostSystem | | ResourcePool | VirtualMachineConfiginfo |

resourcePool

hardware | 1

*
hardware VirtualHardware
HostHardwarelnfo

Figure 7.1: Excerpt of the vCenter object model (VMware, Inc., 2013).

vCenter to structure the inventory using folder hierarchies. When comparing
the object model to the resource landscape model of DML (see Figure 2.4 on
page 21), we can come up with a direct mapping between elements of the two
models:

¢ EachServiceInstance mapstoaDistributedDataCenter and each child
Datacenter object maps to the identical element in DML.

* A ClusterComputeResource is a logical grouping of host systems. Their
hardware resources (e.g., CPUs and memory) are combined into one large
resource pool from which they can be allocated to VM. Each cluster maps
to a CompositeHardwareInfrastructure element in DML.

* A HostSystem maps to a ComputeNode in DML. The contained object
HostHardwareInfo provides the information about hardware resources.
They map to ProcessingResourceSpecification elements.

¢ Each VirtualMachine maps to a RuntimeEnvironment of type 0S_VM. The
virtual resources of a VM described in the VirtualHardware object are
transformed to corresponding ProcessingResourceSpecification ele-
ments in DML. Furthermore, we check the current state of a VM in vCen-
ter. If the VM is running, we determine its host system, and add the
RuntimeEnvironment as a child to the corresponding ComputeNode. If not,
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we treat it as a template and add the RuntimeEnvironment to the container
repository model of DML.

* The Network and DataStore objects may be mapped to corresponding
NetworkInfrastructure and StorageNode elements in DML. This is not
implemented in the current prototype.

* A ResourcePool represents an aribtrary subset of all physical resources
in a cluster. A resource pool limits the maximum amount of resources a
group of VMs may consume in total across multiple host systems. Arbi-
trary hierarchies of resource pools are allowed for fine-grained control
of resource consumption. Each ResourcePool object may be mapped to
a specialized ConfigurationSpecification element in DML. However,
current solvers for DML (Huber et al., 2017) do not support the concept
of resource pools when predicting the performance of a system. This is a
limitation of DML that needs to be addressed as part of future work.

This mapping shows that the extraction of a DML resource landscape model
describing the data center and the virtualization platform is a straightforward
mapping given the information in the vCenter inventory.

Clients can register at a vCenter server to be automatically notified of changes
in the inventory — see the PropertyCollector managed object (VMware, Inc.,
2013). This notification mechanism covers manual reconfigurations of a system
administrator as well as any inventory changes from the system itself. Our
agent registers for any changes that need to be reflected in the DML resource
landscape model. Each notification contains a pointer to the changed objects,
so that only the corresponding subset of the DML model needs to be updated.

7.2.2 Zimbra Collaboration Server

The Zimbra Collaboration Server (in the following we refer to it as Zimbra) is
a groupware server based on common open-source components. It provides
mail, calendar and address book functionality to users. According to vendor
information on their website?, Zimbra is used by over 500 service providers
world-wide with more than 400 million users.

Application Architecture The architecture of Zimbra is divided into three main
components: mailbox server, Mail Transfer Agent (MTA) and LDAP server. Each
user of Zimbra has a mailbox on one mailbox server. The mailbox contains the

*http:/ /www.zimbra.com
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user’s mails, calendars, address books, etc. The user can access the mailbox
either using a Web interface provided by the mailbox server through HTTP(S)
or using different desktop clients (SOAP, IMAP, or POP3). The mailbox server
stores the mailbox data in different locations: a MySQL database contains all
meta-data, whereas the content of mails, is stored directly in the file system. In
addition, a Lucene search index is maintained to speed up full-text searches.
When a user sends a mail, the mailbox server passes it to the MTA that delivers
it to the recipient’s server. The MTA may also receive mails from external
internet servers. The MTA runs a number of checks on each mail it receives.
Most noteworthy are the spam and virus checks. The LDAP server manages
the central configuration for multiple Zimbra instances and handles the user
authentication.

Virtual Appliance The developers of Zimbra offer a stock VA to quickly deploy
a server instance in a virtualized data center. The VA conforms to the OVF
standard and comes with an integrated installer program that is started on
its first boot. The installer asks for a couple of configuration options from a
deployer and initializes the Zimbra instance accordingly.

Zimbra supports different deployment alternatives of its components. When
deploying a VA, one can choose between the following alternatives:

1. All servers in the same VM.
2. Mailbox and LDAP server in one VM and the MTA in a separate VM.
3. Mailbox, LDAP and MTA server each in a separate VM.

In the following explanations and case studies, we assume the second deploy-
ment option.

The stock VA does not come with integrated model learning capabilities.
We have extended this VA with an additional operating system service that
provides these capabilities. It runs in a separate process and accesses the Zimbra
server through publicly documented interfaces as described in the following
paragraphs. The deployer of our extended VA needs to provide the location
and the user credentials of a model repository as parameters when booting it
for the first time.

Static Analysis Our extended VA includes a pre-determined model skeleton
thatis loaded into the central model repository during start. The model skeleton
abstracts the application at a high level. Components are the mailbox server and
the MTA. Only the control flow between these two components is considered.
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The reason for this coarse-grained modeling is the complexity of the underlying
application and the lack of documentation of its internal structure and behavior.
However, as we will see later in the case studies on vertical scaling this model
is already sufficient to help with resource allocation decisions.

Before loading the model skeleton into the model repository, we determine
the hostname of mailbox and MTA servers using the zmprov administration
tool of Zimbra. The names of model elements are renamed accordingly to make
them unique and discoverable.

Instrumentation We reuse the instrumentation already included in the stock
VA to determine the throughput and response times of requests. On the mailbox
server the access and response time statistics are logged to the file /opt/zimbra/
zmstat/soap.csv with a resolution of one minute. These statistics are directly
forwarded to the model repository. In the case of the MTA, the individual steps
when processing mails are reported in detail to the log file /var/log/maillog.

Dynamic Analysis On the MTA, it is necessary to determine the control flow
of mails and calculate the end-to-end response of mails. For this purpose, we
continuously parse the log file /var/log/maillog. The log file contains entries
for each individual mail after it passes a certain step in the processing pipeline
(e.g., spam or virus check). The log entry contains the queueing and processing
times of a mail in each step. In addition, it contains a unique message identifier
that stays the same until a mail is completely processed in the MTA. We correlate
the log entries using the message identifier in order to calculate the end-to-end
response time.

7.2.3 Wildfly Application Server

Wildfly (formerly known as JBoss) is an open-source application server® fully
compliant with the Java EE standard. It is written in Java and runs on any
standard Java VM. We built a virtual applicance based on a CentOS 6 Linux
operation system, an OpenJDK 7 Java VM and the Wildfy 8.2 application server.
Several Wildfly instances can form a cluster to fulfill high-availability goals
using replication and load-balancing techniques. Our virtual appliance is
configured to support clustering and runs in a domain mode for easier cluster
management. There are two types of Wildfly server instances:

¢ The Wildfly domain controller provides centralized configuration manage-
ment for a cluster of Wildfly server instances. The domain controller acts

*http:/ /wildfly.org/

187


/opt/zimbra/zmstat/soap.csv
/opt/zimbra/zmstat/soap.csv
/var/log/maillog
/var/log/maillog

Chapter 7: Validation

as a master node in the cluster to which all slave nodes connect on start
up to obtain their initial configuration. When the configuration on the
domain controller changes at run-time, the slave nodes are notified and
update their local configuration. The Wildfly domain controller typically
does not serve any production workloads.

* A Wildfly slave node runs the actual applications. A cluster typically con-
sists of several slave nodes, which are potentially replicated for better
availability. Replicated instances always synchronize their session state
between each other, so that one node can take over the processing of a
failed node without service interruption.

Virtual Appliances We created separate VAs for these two types of servers.
The domain controller VA needs to be started before any slave nodes. On
instantiation of a slave VA, a user needs to provide values for the following
parameters:

* A node name that uniquely identifies the slave node within a cluster.
e The IP address of the domain controller.
e A secret used to authenticate at the domain controller.

* A server group identifier that is used to lookup the actual configuration
on the domain controller. The configuration of slave nodes may differ
between server groups.

After the user has provided this information, the slave node can retrieve its
configuration from the domain controller. The configuration also determines
which applications will be deployed on a slave node.

Oninitialization of a slave VA, it is not yet clear which application components
will be deployed on this instance. Furthermore, the deployment of components
may change dynamically during system run-time. We need to determine at
run-time which components are deployed on a server, as well as the control flow
between these components. The latter requires the insertion of instrumentation
points at providing and requiring interface roles to observe the inwards and
outwards flow of requests. We developed a custom module for the Wildfly
server that is loaded directly into the server process and that has full access to
the current server state. The module automatically intercepts all deployments of
components and inserts the required instrumentation points. In the following,
we describe the static analysis steps that are performed by our module when
new components are deployed, and then we give an overview of the employed
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instrumentation techniques. Finally, we describe the dynamic analysis steps
implemented in our module.

Static Analysis Applications need to comply to the Java EE 7 standard (Oracle
America, 2013). The standard distinguishes between four different component
types (Oracle America, 2013) :

o Web Components "typically execute in a web container and may respond
to HTTP requests from web clients” (Oracle America, 2013, p. 8). Web
components are either Servlets, Java Server Pages (JSP) pages, Java Server
Faces (JSF) applications, filters, or web event listeners.

* Enterprise Java Beans (E]Bs) are transactional components for executing
the application business logic. Clients may invoke E]Bs either using local
calls if executed in the same container, using remote method invocations
—e.g., Remote Method Invocation (RMI) or Internet Inter-ORB Protocol
(IIOP) —, or using web service protocols —e.g., SOAP.

» Application Client Components are “Java [...] programs that are typically
GUI programs that execute on a desktop computer” (Oracle America,
2013, p. 8).

* Applets are Java GUI components that can be embedded into HTML pages
and are executed by an internet browser.

The model extraction focuses on components running inside the data center
and does not include client components (i.e., application client components
and applets).

When the component deployment on a Wildfly slave node changes, our
model extraction logic needs to be informed of these changes. Wildfly offers
an extension point to provide custom deployment unit processors that are in-
voked when application modules are added or removed. Custom deployment
unit processors need to implement the org. jboss.as.server.deployment.
DeploymenUnitProcessor interface. We provide an implementation that does
the following steps for each application module:

e Static analysis of component structure: It determines the components con-
tained in an application module as well as their type (i.e., web or E]JB
components). For each component, it identifies the interface providing
ports.
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¢ Instrumentation setup: It adds instrumentation points to observe incoming
and outgoing invocations of a component. This information is required
for the dynamic analysis.

Interface requiring roles are difficult to determine statically. Java EE provides
two different ways to obtain references to required components: dependency
injection and Java Naming and Directory Interface (INDI) lookup. In the former case,
the container already knows all required components at deploy time. However,
in the latter case, an analysis of the complete bytecode of a component would
be required to find all JNDI lookups of required components. To avoid a full
bytecode analysis, we resort to dynamic analysis techniques to determine the
interface requiring ports of components.

Instrumentation In order to observe the control flow of the application, we
instrument its components at different locations. The focus lies on the inter-
component control flow, i.e., we want to observe external calls of one component
to another one. We abstract the intra-component control flow, i.e., we extract
coarse-grained service behaviors in DML.

Table 7.1 lists the types of instrumentation points used by our module in-
cluding the interception techniques we are using.

® HTTP handlers are classes that implement the interface io.undertow.
server .HttpHandler. These classes can be integrated into the HTTP
request pipeline of a Wildfly server and are called before any servlets,
JSPs, JSF pages, or filters are executed. HTTP handlers have access to
the HTTP request and the response data. We preferred the proprietary
HTTP handlers to the standard Java EE filters, as they can be configured
once for a complete server. Furthermore, they also have access to the
arrival timestamp of each request enabling more accurate response time
measurements.

* View interceptors need to implement the interface org. jboss. invocation.
Interceptor. These interceptors are invoked on the server side before a
request is passed to an EJB or web service. Our deployment unit processor
automatically registers an interceptor at each interface providing port of
a newly deployed component.

e Client interceptors are called on the client side for each outgoing invocation
to a EJB component. They need to extend the interface org. jboss.ejb.
client.EJBClientInterceptor. These interceptors need to be registered
only once for each application module. Our deployment unit processor
automatically registers an interceptor for each application module.
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Web Components
Servlets HTTP HTTP handler
SOAP View interceptor
JSP HTTP HTTP handler
JSF HTTP HTTP handler
Filter HTTP HTTP handler
Web event listener Java -
EJBs
Session bean Java View interceptor
RMI/IIOP View interceptor
SOAP View interceptor
Message-driven bean JMS View interceptor
Entity bean Java -
Backend services
EJBs Java Client interceptor
RMI/IIOP  Client interceptor
Web services SOAP SOAP handler
Data source JDBC Statement interceptor
Messaging JMS JNDI delegator
Mail session SMTP -
JCA Custom -

Table 7.1: Instrumentation points.

® SOAP handlers are integrated into the request pipeline of outgoing web
service invocations. They need to extend the org. jboss.ws.api.handler.
GenericSOAPHandler interface and are configured server-wide.

 Statement interceptor are a mechanism provided by the Java Database Con-
nectivity (JDBC) driver of MySQL to intercept all SQL statements sent to
a database server. The com.mysql. jdbc.StatementInterceptorV2 inter-
face needs to be implemented by such interceptors.

¢ In the case of a JNDI delegator, we replace the actual resource (e.g., a
JMS queue) in the JNDI context with a delegator intercepting all calls
before forwarding them to the original resource. This is transparent to the
application as long as the resource can be accessed through a standardized
interface.
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We do not observe calls to web event listeners, entity beans, mail sessions
and Java EE Connector Architecture (JCA). Web event listeners are not directly
related to individual requests and therefore not included in the extracted model.
Entity beans are simple Java objects since Java EE version 5. We do not model
them as explicit components in the model, the overhead induced by them is
included in the enclosing component that uses an entity bean. The lack of
support for mail sessions is currently a limitation of our model extraction. JCA
does not support generic intercepting of requests. A solution can only be found
for concrete connector implementations.

Dynamic Analysis The interceptors count each incoming or outgoing invoca-
tion and measure its execution time. We do not maintain statistics for each
individual invocation in order to keep the volume of monitoring data low. In-
stead, we accumulate the values for each component service and each external
call within a component. In regular intervals (e.g., every minute), we send the
aggregated statistics to the performance model repository. If we detect a com-
ponent service or an external call that has not been observed before, we trigger
an update of the model skeleton. The update is performed asynchronously to
avoid delaying the application processing.

Each new component service or external call is added to the model skeleton
initially created when performing the static analysis of the component structure
during deployment. In case of external calls, we automatically add assembly
connectors between source and target component instances if required. We
use technical identifiers (e.g., URLs) as used by the Wildfly server internally to
identify components in a unique way. The assumption is that we can always
determine the target component instance on the client-side. Updates to the
model skeleton are sent in batches to the performance model repository in
order to reduce communication overhead.

7.2.4 Discussion

The presented proof-of-concept implementations of VAs with integrated model-
learning capabilities demonstrate the applicability of our approach in practical
software systems. We considered the integration of model learning capabilities
into a state-of-the-art virtualization platform (VMware vSphere), an open-
source Java EE middleware platform (Wildfly) and a widely used standard
enterprise application (Zimbra collaboration server). The experience with
these VAs shows that static and dynamic analysis techniques can be integrated
deeply into the corresponding software systems relying on structural and
monitoring data routinely collected at system run-time. However, it also shows
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that the design and implementation of such model learning capabilities can be
a complex and time-consuming task requiring a profound understanding of
the system architecture and of — potentially proprietary — interfaces to obtain
its current state. Therefore, we expect that such VAs will typically be built
by the vendor of a software system, or an independent system expert. A
system administrator would only need to set up the platform components of
our reference architecture (i.e., performance model repository, and message
bus), and deploy the third-party VAs.

7.3 Use Cases of LibReDE

LibReDE is designed as a library for usage in different tools for performance
model extraction and resource management. In the following, we describe
collaborations with other researchers where we have used LibReDE in the
context of their work.

7.3.1 Resource Usage Control in SAP HANA Cloud

Multi-tenant Software-as-a-Service (SaaS) cloud environments require a mecha-
nism for performance isolation between different tenants. Multi-tenancy refers
to an architecture where groups of users from different customers share the
same instance of a software application. Performance isolation is a quality
attribute of a multi-tenant system and describes the degree to which “for cus-
tomers working within their quotas the performance is not affected when other
customers exceed their quotas” (Krebs et al., 2014b).

Operating systems are not aware of different tenants in application layers and
can only provide performance isolation at the level of system processes. As a
result, the design of multi-tenant applications requires additional architectural
concerns to ensure performance isolation. Admission control mechanisms are
commonly used to throttle requests from customers exceeding their quotas.
However, state-of-the-art admission controllers typically work with fixed limits
on the number of requests and do not consider the actual resource usage of a
tenant.

Krebs (2015) proposes different autonomic controllers in his PhD thesis to en-
sure performance isolation in multi-tenant Cloud environments. We developed
one of these controller as part of joint work published in Krebs et al. (2014a).
Our controller is utilizing resource demands of individual requests to control
the resource usage of tenants. In the context of this thesis, we contributed
estimation approaches based on LibReDE required to obtain the resource de-
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mands to this work. In the following, we provide a short description of the
controller for performance isolation including the integration of our estimation
approaches. Finally, we give an overview of the results of our joint work.

The resource usage controller distinguishes between tenants ¢ € T and
request types ¢ € C. At system run-time, we observe the average throughput
Xt and the end-to-end response time R; . for each tenant ¢ and request type C.
Furthermore, we observe the aggregate CPU utilization U as reported by the
operation system. Given these observations, we estimate the resource demands
D, . for each tenant and request type. We distinguish between tenants as their
resource demands may differ significantly (e.g., due to different database sizes).
However, this can quickly result in a high number of different resource demands
to be estimated — in total |T'| x |C| values.
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Figure 7.2: Accuracy of resource demands with different numbers of tenants
and requests.

Figure 7.2 shows the total mean relative error of the estimated resource
demands for different numbers of request types. For this experiment, we
used a queueing simulator with a closed QN. Each tenant (in total 5 tenants)
is represented by a separate queue with infinite server scheduling and an
exponentially distributed think time with a mean value of 6 seconds. The
application is modeled as a single queue with FCFS scheduling. The resource
demands follow a Gaussian distribution with randomly chosen parameters.
An analysis of the requirements for our resource usage controller yielded three
candidate estimation approaches: Service Demand Law (SDL) (Brosig et al.,
2011), Kalman Filter based on Utilization Law (KF) (Wang et al., 2012), and
least-square regression based on Utilization Law (UR) (Rolia and Vetland, 1995).
In all cases, UR shows only a slow convergence resulting in an error at the end
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of the experiment of almost double the value of the other approaches. KF and
SDL yield similar accuracy. However, KF required a longer convergence period,
therefore, SDL was chosen as the most appropriate estimation approach.

To evaluate the effectiveness of our resource usage controller based on the
SDL estimation approach, we performed a case study in the SAP HANA cloud
environment. The multi-tenancy application benchmark MT-TPC-W (Krebs
et al., 2013) serves as the application and an admission controller exploits
the resource demands estimated for individual requests to determine the total
resource usage of each tenant. If a tenant exceeds its resource quota, its requests
are queued for a certain time in order to avoid negative effects on other tenants
in the system. The results published in (Krebs et al., 2014a) show that our
controller can effectively enforce performance isolation between tenants sharing
the same application instance. It is able to quickly adapt to changes in the
workload and adjust the priorities between tenants in the admission control
accordingly.

7.3.2 Offline Generation of Palladio Component Models

In joint work with researchers from the Fortiss research institute, we integrated
LibReDE into their Performance Management Works (PMW) tool (Brunnert
et al., 2013). PMW supports the automatic generation of PCM instances based
on traces of requests collected at a real system. PCM is a domain-specific mod-
eling language for analyzing the quality properties of system architectures at
design time. Resource demands are required parameters to enable performance
predictions. So far, PMW depends on direct measurements of the resource
demands. In Willnecker et al. (2015), we integrated LibReDE with PMW and
compared the resulting resource demands with directly measured values.

Compuware Dynatrace is a leading provider of APM tools. Dynatrace sup-
ports the tracing of individual transactions in an application across multiple
tiers. It uses high-resolution timers to measure the CPU time consumed by
individual threads in an application. Through fine-grained instrumentation of
the application, it can determine which requests a thread is currently processing
and thus it can attribute the measured per-thread CPU time to individual re-
quests. PMW uses the traces collected by Dynatrace to generate PCM instances
capturing the observed control flows.

Our experiment environment consists of a JBoss 7.0 application server and a
Derby database both deployed in the same VM. We use the SPECjEnterprise2010
benchmark in a non-distributed setup with disabled manufacturing and sup-
plier domains. In an experiment with 600 concurrent users, we generated two
different PCM instances: the first with the resource demands measured by Dy-
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natrace, and the second with the ones estimated by LibReDE. We let LibReDE
automatically decide which estimation approach to use as described in Sec-
tion 5.3. We then compared the predictions of these models with measurements
at the real system.

Dynatrace LibReDE

CPU utilization 1.53% 1.01%
Browse 8.86% 14.61%
Response time = Manage 4.55% 2.74%

Purchase 14.27% 5.19%

Table 7.2: Comparison of Dynatrace and LibReDE (the values are the mean
relative errors between the predicted and measured values).

Table 7.2 shows the resulting mean relative errors between the predicted
and the measured utilization and response times. LibReDE is able to provide
resource demands of similar accuracy compared to Dynatrace. In contrast to
Dynatrace, it however only uses measurements of the end-to-end response
time at the system entry points. In contrast, Dynatrace requires a fine-grained
instrumentation of the application which is limited to certain platforms and
may introduce additional overheads. We performed additional experiments
with varying workloads and configurations which sustain the hypothesis that
LibReDE is able to provide similar accuracy compared to direct measurements.
We refer the interested reader to Willnecker et al. (2015).

7.3.3 Discussion

In this section, we presented two collaborations with external researchers
using LibReDE in combination with their approaches. LibReDE is a generic
library that can also help to solve problems outside the scope of this thesis
as demonstrated by these use cases. The experiences of these collaborations
influenced the design of LibReDE as a library simplifying the integration into
other tools. Furthermore, the results show that LibReDE can provide accurate
resource demand estimates that can compete with state-of-the-art methods for
their direct measurement.
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7.4 Case Study: Distributed SPECjEnterprise2010

SPECjEnterprise2010 is an industry-standard full system benchmark for Java EE
application servers?. The goal of the benchmark is to enable the comparison
of different Java EE application servers with regards to their scalability and
their efficiency under real-world applications. It covers the full system stack
and uses an application workload representative of many real-world enterprise
systems. The benchmark is designed to exploit a large set of different Java EE
5 technologies covering dynamic web pages (Servlets and Java Server Pages),
web services, (distributed) transactional E]JBs, asynchronous messaging (Java
Messaging Service) and object persistence (Java Persistence API).

In this case study, we evaluate the degree of automation and the prediction
accuracy of the models obtained using our reference architecture for online
performance model extraction (see Chapter 4). We especially consider the esti-
mation of resource demands validating our method described in Section 5.3.
We chose the SPECjEnterprise2010 benchmark as it provides a complex work-
load representative of many real-world enterprise applications and exploits a
broad set of technologies of the Java EE standard. These properties make the
benchmark also an ideal candidate to evaluate the capabilities of approaches for
performance model learning. As a result, it has become a de-facto benchmark
in this research area (e.g., Brosig et al., 2011; Brunnert et al., 2013).

Workload = The benchmark workload consists of Customer Relationship Man-
agement (CRM), manufacturing and supply-chain management applications.
The business scenario of the benchmark is modeled after an automotive manu-
facturer with car dealerships, manufacturing sites and suppliers interacting
with the system. Car dealerships use an interactive web applications to access
the order domain where they can browse, purchase and sell cars. The man-
ufacturing sites use remote EJB and web service calls to start and complete
manufacturing processes in the manufacturing domain. Suppliers are trig-
gered through a web service interface by the supplier domain if parts need to
be purchased for manufacturing.

SPECjEnterprise2010 comes with two workload drivers: one for generating
workloads from car dealerships (DealerDriver) and the other for the manufac-
turing sites (MfgDriver). The generated workloads are based on transactions;

*SPECjEnterprise2010 is a trademark of the Standard Performance Evaluation Corp. (SPEC).
The SPECjEnterprise2010 results or findings in this publication have not been reviewed
or accepted by SPEC, therefore no comparison nor performance inference can be made
against any published SPEC result. The official web site for SPECjEnterprise2010 is located
at http:/ /www.spec.org/jEnterprise2010.
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each transaction sending a sequence of different requests to the system. Car
dealerships interact with the order domain using either Browse, Purchase or
Manage transactions. The Browse transaction is dominated by read requests,
whereas the latter two transactions are a mixture of read and write requests.
The manufacturing sites communicate either through a SOAP-based web ser-
vice or through binary RMI-based protocols. We distinguish between Mfg WS
and Mfg EJB transactions accordingly. The sequence of requests in a transaction
is defined by a first-order Markov chain. We use the standard workloads as
defined in the standard (Standard Performance Evaluation Corporation, 2010).
The workload drivers can be configured with a transaction rate which deter-
mines the number of concurrent threads in the load driver sending requests to
the system. The transaction rate scales the interarrival times of the different
types of transactions accordingly.

The external suppliers are represented by one or multiple emulators, which
wait for requests from the supplier domain. It simulates the processing of
purchase orders for components required to manufacture a car in the man-
ufacturing domain. After receiving a purchase order, it sleeps for a certain
time defined by the lead time of the requested component. Then it signals the
shipment of the component to the supplier domain.

Deployment The benchmark is originally designed for a three-tier deployment,
consisting of a web, an application and a database server. In addition, the
three domains may be deployed on separate servers. However, modern en-
terprise applications often follow a service-oriented paradigm implementing
the functionality as multiple independent services that can be deployed sepa-
rately. In order to better reflect the architecture of a service-oriented, distributed
system, we adapted the SPECjEnterprise2010 benchmark, so that the E]Bs in
the business logic tier can be deployed individually as services. Figure 7.3
shows the resulting deployment. The benchmark is deployed on a cluster of
Wildfly 8.2 application servers. The order domain is distributed over several
fine-granular services each deployed in a separate virtual machine. The ser-
vices of the manufacturing and supplier domains are all deployed in the same
VM. The data tier is shared by all business services and hosted by a MySQL
5.6.25 relational database. The communication between business services is
based on the RMI protocol as provided by the application server. The relational
database is accessed using the standard JDBC drivers provided by MySQL.
The physical resource environment consists of 4 servers, each equipped with
1 Intel Xeon E3-1230 CPU with 4 cores, 16 GB main memory, 500 GB HDD and 1
Gbit network connection. VMware vSphere 5.5 is used as hypervisor. All VMs
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Figure 7.3: Distributed deployment of SPECjEnterprise2010.

are equipped 1 virtual CPU and 4 GB memory, except for VM 7 (2 vCPUs and
8 GB memory) and VM 9 (2 vCPUs and 4 GB memory) which have a higher
resource requirement. The VMs are distributed evenly between hosts so that
resources are not over-committed (Host 1: VM 1, VM 8; Host 2: VM 3, VM 5,
VM 6; Host 3: VM 2, VM 7; Host 4: VM 9, VM 4). Each VM runs a CentOS 6.6
Linux 64-bit operating system.

Experiment Runs We collected the observations of throughput, response and
residence times, as well as the CPU utilization of the different VMs used for
model learning during an eight hour benchmark run at a transaction rate of
60. Our evaluation is based on the DML model extracted automatically by our
Wildfly agents (see Section 7.2.3) as the basis for our evaluation. For validation
purposes, we performed five more benchmark runs each with a duration of one
hour varying the transaction rates between 20 (corresponds to a lightly utilized
system) and 100 (which is close to the maximum sustainable load at VM 3).
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7.4.1 Degree of Automation

We rely on the VAs for the Wildfly application server and the VSphere virtu-
alization platform (see Section 7.2) to extract a DML model at run-time. In
addition, we created a VA for the MySQL database server, which delivers a
static, pre-determined model skeleton on start up. The following agent roles
(see Section 4.2) are automated in this case study:

* VSphere platform: Data Center Structure (D1), Compute Node Configuration,
Platform Configuration (P1), Platform Monitoring (P3).

» Wildfly VA: Component Boundary (A1), Fine-Grained Behavior (A4), Compo-
nent Assembly (A2), Application Monitoring (A8), and Component Deploy-
ment (A3).

¢ MySQL VA: Component Boundary (A1) and Component Deployment (A3).
The database server is represented by a single component. The agent only
delivers the interface providing roles of this component. The services
including their behavior description is created by the Wildfly agent when
it detects JDBC calls to the database.

In order to obtain a complete DML model, we performed additional manual
steps in this case study. The agent roles System Interface Providing Roles (D5),
Application Assembly (D6), and all agent roles in the usage scope were not
covered by automated agents.

Table 7.3 depicts the statistics for the degree of automation achieved for
the DML model of the SPECjEnterprise2010 benchmark extracted during our
experiments. The "Others" category subsumes model entities with no own
identity. The resulting model consists of six submodels containing a total of
1739 model entities. Out of these model entities 253 were created manually,
resulting in an overall degree of automation of 85.5%. In the following, we
discuss how the current limitations can be relieved to reach the goal of full
automation:

* The manual effort for creating the usage profile makes up for 11.9% of
the model entities. In Section 4.2.2, we list several techniques that can
be used here. For instance, Hoorn et al. (2014) propose an technique to
automatically extract usage profiles that they have already successfully
validated with the SPECjEnterprise2010 workload (Hoorn et al., 2015).
We leave the integration of such techniques into our reference architecture
as future work.
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Model Entity All  Manual
Interfaces 16 -
Operations 79 -
Basic Components 18 1
Actions 250 6
Resource Demands 80 -
Composite Components 9 -
Subsystems 2 2
Interface Roles 114 7
Assembly Contexts 33 3
Assembly Connectors 31 2
Delegation Connectors 44 5
Deployment Contexts 14 -
Compute Nodes 3 -
Runtinme Environments 17 -
Usage Scenarios 5 5
User Actions 57 57
Others 967 165
Total 1739 253

Table 7.3: List of extracted model entities.

¢ The emulator is not part of the extraction as it represents an external com-
ponent, which may be hosted outside of the data center. For performance
prediction purposes, we manually added a component representing the
emulator in our model. 1.9% of the model entities account for the em-
ulator. Future work should consider the automatic extraction of more
appropriate models for external services.

¢ The overall application assembly, i.e., the applications in a data center
and the communication paths between applications need to be defined
manually. The monitoring of the control flow across different applications
in a data center is an open challenge. Today’s monitoring tools for ap-
plications are mostly focused on single applications. However, a system
administrators typically needs to know the high-level control flow of an
application (i.e., the externally provided and required services) anyways
to configure the system correctly. Therefore, we think that it would be
an acceptable manual effort. In our case study, the manual effort for the
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application assembly only makes up 0.7% of all model entities.

Manual parts can be easily integrated into the end-to-end performance model
by creating model skeletons by hand. As model skeletons are valid instances of
DML, the existing Eclipse tooling for the graphical and textual editing of DML
models (Brosig, 2014) can be used to create them. They can be uploaded to
our model repository through the same interface used by the model extraction
agents.

7.4.2 Accuracy of Estimated Resource Demands

LibReDE automatically selects an estimation approach using the cross-validation
scheme described in Section 5.3.4. The approach selection relies on a sufficiently
accurate and fast way to predict the utilization and response time based on the
estimated resource demands to perform the cross-validation. First we compare
the response times and utilization predicted by LibReDE to a state-of-the-art
simulation solver of DML. Then we show the results of the cross-validation; fi-
nally we evaluate the overhead required by the different approaches to resource
demand estimation.

We consider five estimation approaches here (see Chapter 5 for a description):

® LO: Recursive optimization using response times and utilization observa-
tions (Liu et al., 2006)

RR: Least-squares regression using response time and queue lengths
(Kraft et al., 2009)

UR: Least-squares regression using utilization (Rolia and Vetland, 1995)

SDL: Service Demand Law (Brosig et al., 2009)

KF: Kalman filter using response time and utilization (Zheng et al., 2008)

We do not consider any estimation approaches based on observed residence
times here, due to the reasons discussed later. The observations are averages
over 15 minutes and we used a sliding window of 60 samples. The observation
data is split into 5 equally sized sample sets for cross-validation.

Accuracy of Fitness Function The cross-validation of LibReDE depends on an
accurate and fast calculation of response times and utilization in order to obtain
reliable results for approach selection. Given that the cross-validation of the
estimated resource demands should be performed continuously, simulation
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techniques are typically too expensive. A DML model may contain fine-grained
service behavior description, for which no general exact analytical solution
exists. However, our model-to-model transformation (see Section 5.3.2) to the
workload description which is input to LibReDE abstracts from certain details
enabling the mapping to a product-form QN.

We compare response times and the utilization predicted by LibReDE for
cross-validation purposes with the results of a full simulation of the resulting
DML model. The DML model contained the same resource demand values.
We use the QPN solver of DML (see Huber et al., 2017) which is based on the
SimQPN simulator (Kounev and Buchmann, 2006).

LO RR UR SDL KF

VM2  072% 0.86% 0.80%  0.79%  0.80%
VM3  091% 0.59%  0.84% 1.05% 1.19%
VM4  0.14% 0.05% 0.18%  0.29%  0.19%
VM5  0.07% 020% 021% 021%  0.19%
VM6 -0.00% 0.00%  0.05% 0.05% 0.05%
VM7 -0.19% -015% -0.30% -0.23% -0.11%
VM9 -0.03% 034% 013% 0.13% 0.21%

Table 7.4: Absolute errors between the calculated utilization and the simulation
results.

LO RR UR SDL KF

Purchase Calc. 43.8 514 49.1 56.8 489

Sim. 46.0+/-6.1 488+/-5.0 511 +/-68 587+/-58 50.8+/-6.7
Manage  Calc. 32.8 48.3 242 32.1 36.4

Sim. 338+/-3.8 429+/-5.7 25.0 +/-25 334+/-44 385+/-51
Browse Calc. 73.0 78.9 82.6 76.5 85.1

Sim. 754+/-9.6 735+/-55 849+/-101 773+/-68 86.0+/-9.7
MfgEJB  Calc. 19.1 324 324 13.8 22.1

Sim. 19.0+/-13 27.0+/-25 31.0 +/-12 136+/-05 21.2+/-0.8
MfgWS  Cale. 19.3 32.5 6.0 13.8 22.3

Sim. 193+/-13 271+/-24 62 +/-02 137+/-05 213+/-07

Table 7.5: Calculated (Calc.) and simulated (Sim.) response times including
95% c.i. Calculated values outside of the c.i. are bold.

Table 7.4 and 7.5 compare the results calculated by LibReDE for cross-validation
with the results obtained by the simulation. Table 7.4 shows the utilization of
each VM in our application. Table 7.5 shows the response time of the different
types of transactions. For the simulation results, we also list the 95% confidence
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interval of the response time. The results show that both the utilization and the
response times calculated by LibReDE are close to the ones obtained using sim-
ulation of the complete DML model. The mean response times from LibReDE
are mostly within the confidence interval of the simulation results. Significant
deviations are visible for the response times of the Mfg EJB and Mfg WS trans-
actions. We explain these differences with the insufficient representation of the
asynchronuous message-based communication between the manufacturing
domain and the other domains. LibReDE does not capture this when solving
the QN. It represents each asynchronous flow as an external entry point of
requests and uses the observed throughput of requests as the arrival rate of
these requests. Therefore, the causal relationship between the processing on
the side of the sender of a message and its impact on the arrival process at the
receiver side is lost.

KF RR LO UR SDL

Cross-Validation Error [%] 7.3 31.1 1.7 299 172
Execution Time per Iteration [s] 0.010 0.094 9.644 0.001 0.002

Table 7.6: Cross-validation errors and execution time.

Fitting Accuracy Table 7.6 shows the results from the cross-validation. The
error is calculated using Equation 5.7 on page 149. The error covers the complete
experiment duration and is the average of all five folds of the cross-validation.
Furthermore, we also measured the execution time of the estimation approach
per iteration. We updated the resource demands estimates iteratively every 15
minutes.

The results show that LO yields the lowest overall cross-validation errors at
the cost of significantly higher execution times. However, given an iteration
length of 15 minutes, LO is still sufficiently fast to provide updates in time
for online estimation. Furthermore, it may be sped up at the cost of accuracy
by lowering the maximum number of iterations the underlying optimization
algorithm searches for a solution. As an alternative, KF may provide estimates
with reasonable cross-validation errors at a significantly lower computational
cost.

Residence Time Measurements In distributed systems, the residence time is the
time a request is processed at a node in the system, whereas the end-to-end
response time describes the total processing time of this request in the system.
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When estimating resource demands using response-time based techniques
(e.g., Liu et al., 2006; Zheng et al., 2008), there are two alternatives: repeatedly
apply the technique for each node separately using the observed residence
times, or apply the technique on a system level using the observed end-to-end
response times. Assuming that both metrics can be observed at a system, the
advantage of a per-node approach is the reduced complexity of the estimation
problem: the control flow between nodes does not need to be considered for
resource demand estimation and the number of resource demands that need
to be estimated for each individual node is lower than the total number for the
complete system. However, a system-wide approach promises to be able to
reduce estimation error across all nodes.

We also applied the LO approach using residence time measurements on a
per-node level. We observed significantly higher cross-validation errors (53.5%
compared to 7.3% with end-to-end response times). A further analysis using
tracing tools to measure CPU times showed that a significant amount of CPU
time is consumed by request processing before our instrumentation points for
residence time measurement in the Wildfly application server are executed.
Therefore, the measured residence times are not accurate enough for resource
demand estimation.

7.4.3 Model Prediction Accuracy

In this section, we evaluate the prediction accuracy of the DML model extracted
in our case study under different transaction rates. To evaluate the prediction
accuracy for scaling decisions, we now use our extracted model and compare
the predicted utilization and end-to-end response times at the transaction levels
20, 40, 60, 80, and 100 with measurements from corresponding benchmark runs
at the real system. The transaction levels are chosen to cover a wide range
of resource utilizations. A transaction level of 100 is close to the maximum
load sustainable with the given configuration. Higher transaction rates require
additional resources to ensure system stability.

In the previous section, we compared the fitting accuracy of different ap-
proaches to resource demand estimation for a transaction rate of 60. However,
as a result of overfitting the ranking of estimation approaches may change with
regards to their prediction accuracy for different transaction rates. Figure 7.4
shows the mean relative error of the predictions when using the estimated
resource demands resulting from the considered estimation approaches. The
mean relative error is calculated corresponding to the cross-validation error
(using Equation 5.7 on page 149). However, we use the results obtained through
a full simulation of the DML model as calculated values. We again used the
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Figure 7.4: Mean relative error for different transaction rates.

model transformation to QPN (Brosig, 2014) and the SimQPN even-discrete
simulator (Kounev and Buchmann, 2006) to solve the DML model.

The results show that the ranking between estimation approaches with re-
gards to their prediction accuracy changes with the transaction rate. At lower
rates KF provides slightly better results than LO. However, the error of KF
increases rapidly with a rate of 60 and above. At the highest rate, KF yields
the second-worst results. The ranking of the other estimation approaches is
consistent across the complete range. We conclude, that LO provides the best
overall prediction accuracy over all transaction rates. This matches with the
recommendation of the automatic approach selection of LibReDE.

The complete results are listed in Table 7.7 for the CPU utilization and in
Table 7.8 for the end-to-end response time. The response times are shown for
complete transactions consisting of multiple individual requests to the sys-
tem. In summary, the extracted DML model yields a high prediction accuracy.
When using LO approach to resource demand estimation as recommended by
LibReDE, the absolute errors of the utilization are all below 4% and the relative
errors of the end-to-end response times are less than 21%.

Impact of Interrupt Coalescing Modern operating systems and hypervisor im-
plement different optimizations with the goal of reducing the number of hard-
ware interrupts caused by network communication. In the most simple case,
each incoming network packet triggers a hardware interrupt in the operating
system or hypervisor in order to analyze the network packet and forward it to
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Entity Meas. LO RR UR SDL KF

VM 2 202 173 (29%) 180 (22%) 17.6 26%) 177 25%) 17.7 (2.5%)
VM 3 226 195 (31%) 132 (94%) 198 (2.8%) 19.9 (2.7 %) 21 3 (1.3 %)
VM 4 84 72 (12%) 24 (60%) 72 (12%) 7.2 (1.2%) 2 (1.2 %)
VM 5 74 59 (15%) 58 (1.6%) 59 (15%) 6.0 (1.4 %) 1 (1.3 %)
VM 6 12 07 (05%) 03 (09%) 06 (06%) 0.6 (0.6%) 7 (0.5 %)
VM7 89 80 (09%) 66 (23%) 81 (08%) 80 (0.9%) 6 (0.7 %)
VM 9 119 111 (08%) 211 (92%) 112 (0.7%) 11.1 (0.8%) 12 6 (0.7 %)

(a) Transaction rate 20.
Entity Meas. LO RR UR SDL KF

VM 2 373 347 (26%) 358 (15%) 353 20%) 353 (20%) 353 (2.0%)
VM 3 429 392 (37%) 262 (167 %) 397 (32%) 397 32%) 42.2 (0.7 %)
VM 4 156 143 (13%) 4.8 (108%) 144 (12%) 144 (12%) 144 (1.2 %)

VM 5 122 119 (03%) 115 ( 0.7%) 120 (02%) 11.9 (0.3%) 12.2 (0.0%)
VM 6 17 13 (04%) 05 (12%) 12 (05%) 13 (04%) 1.3 (0.4 %)
VM 7 166 160 (0.6%) 132 (34%) 161 (05%) 163 (0.3%) 18.9 (2.3%)
VM 9 227 221 (06%) 422 (195%) 223 (04%) 224 (03%) 249 (2.2 %)

(b) Transaction rate 40.

Entity  Meas. LO RR UR SDL KF

VM 2 534 520 (14%) 53.6 (02%) 529 (05%) 529 (05%) 52.9 (0.5 %)
VM 3 602 586 (1.6%) 393 (209%) 595 (07%) 593 (09%) 63.1 (2.9 %)
VM 4 218 215 (03%) 7.2 (14.6%) 216 (02%) 215 (03%) 21.6 (0.2%)
VM 5 180 180 (0.0%) 172 (08%) 179 (0.1%) 17.9 (0.1%) 18.3 (0.3 %)
VM 6 22 20 (02%) 08 (14%) 19 (03%) 19 (03%) 19 (0.3%)
VM 7 244 241 (03%) 196 ( 4.8%) 244 (0.0%) 244 (0.0%) 28.3 (3.9 %)
VM 9 334 332 (02%) 63.1 (29.7%) 335 (0.1%) 335 (0.1%) 374 (4.0%)

(c) Transaction rate 60.

Entity = Meas. LO RR UR SDL KF
VM2 69.2  69.1 (01%) 714 (22%) 702 (1.0%) 704 (1.2%) 70.2 (1.0 %)
VM 3 761  78.0 (1.9%) 522 (239%) 789 (28%) 79.0 (29 %) 83.8 (7.7 %)

VM 4 289 285 (04%) 95 (194%) 287 (02%) 287 (02%) 28.8 (0.1 %)
VM 5 244 238 (0.6%) 229 (1.5%) 237 (0.7%) 238 (0.6%) 243 (0.1%)
VM 6 27 26 (01%) 11 (16%) 25 (02%) 26 (01%) 2.6 (0.1%)
VM 7 325 321 (04%) 261 ( 64%) 323 (02%) 327 (02%) 38.1 (5.6 %)
VM 9 444 442 (02%) 839 (395%) 447 (03%) 446 (02%) 50.0 (5.6 %)

(d) Transaction rate 80.

Entity  Meas. LO RR UR SDL KF

VM 2 812 849 (37%) 857 (45%) 859 (47%) 864 (52%) 844 (32%)
VM 3 909 955 (4.6%) 627 (282%) 962 (5.3%) 962 (53%) 99.3 (8.4 %)
VM 4 342 353 (1.1%) 114 (228%) 355 (13%) 355 (13%) 353 (1.1%)
VM 5 293 296 (03%) 275 ( 1.8%) 295 (02%) 295 (02%) 29.9 (0.6 %)
VM 6 32 32(00%) 13 (19%) 31(0.1% 32(00%) 3.1 (0.1%)
VM7 400 402 (02%) 31.0 (9.0%) 403 (0.3%) 408 (0.8%) 47.1 (7.1%)
VM9 542 551 (09%) 99.7 (455%) 551 (0.9%) 552 (1.0%) 61.2 (7.0 %)

(e) Transaction rate 100.

Table 7.7: Utilization predictions (absolute error in brackets).
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Entity Meas. LO RR UR SDL KF
Purchase 36.7 29.1 (20.7%) 317 (13.6%) 311 (153%) 39.6 ( 7.9%) 31.2 (15.0%)
Manage 30.0 26.6 (11.3%) 279 ( 7.0%) 20.8 (30.7%) 24.6 (18.0%) 27.6 ( 8.0%)
Browse 493 42,0 (14.8%) 452 ( 83%) 47.8 ( 3.0%) 443 (101%) 465 ( 5.7%)
Mfg EJB 173 166 ( 40%) 173 ( 0.0%) 27.5 (59.0%) 12.0 (30.6%) 18.1 ( 4.6%)
Mfg WS 172 168 ( 2.3%) 174 ( 12%) 55 (68.0%) 12.1 (29.7%) 18.3 ( 6.4%)
(a) Transaction rate 20.
Entity Meas. LO RR UR SDL KF
Purchase 383 362 (5.5%) 37.6 (1.8%) 39.4 ( 2.9%) 469 (22.5%) 38.6 (0.8%)
Manage 310 296 (45%) 32.6 (52%) 23.0 (25.8%) 283 ( 8.7%) 324 (4.5%)
Browse 576 541 (6.1%) 550 (45%) 625 ( 85%) 565 ( 1.9%) 60.0 (4.2%)
Mfg EJB 186 175 (59%) 20.1 (8.1%) 29.0 (55.9%) 12.6 (32.3%) 19.3 (3.8%)
Mfg WS 187 17.8 (4.8%) 203 (8.6%) 5.8 (69.0%) 127 (321%) 195 (4.3%)
(b) Transaction rate 40.
Entity Meas. LO RR UR SDL KF
Purchase 443 460 (3.8%) 4838 (102%) 511 (153%) 58.7 (32.5%) 50.8 (14.7%)
Manage 340 33.8 (0.6%) 429 (26.2%) 25.0 (26.5%) 33.4 ( 1.8%) 38.5 (13.2%)
Browse 732 754 (3.0%) 735 ( 04%) 849 (16.0%) 77.3 ( 5.6%) 86.0 (17.5%)
Mfg EJB 193  19.0 (1.6%) 27.0 (39.9%) 310 (60.6%) 13.6 (29.5%) 21.2 ( 9.8%)
Mfg WS 195 193 (1.0%) 27.1 (39.0%) 6.2 (682%) 13.7 (29.7%) 21.3 ( 9.2%)
(c) Transaction rate 60.
Entity Meas. LO RR UR SDL KF
Purchase 595  68.0(14.3%)  82.0( 37.8%)  78.0(31.1%)  83.6 (40.5%) 818 (37.5%)
Manage 38.5 39.8 ( 3.4%) 78.5 (103.9%) 27.7 (28.1%) 429 (11.4%) 49.5 (28.6%)
Browse 1122 1263 (12.6%) 1258 ( 121%) 1402 (25.0%) 130.7 (16.5%)  162.1 (44.5%)
Mfg EJB 208  21.0( 1.0%)  532(155.8%)  34.3(64.9%)  15.1(27.4%)  24.3 (16.8%)
Mfg WS 210  213( 14%)  53.2(153.3%) 6.7 (68.1%)  152(27.6%)  24.4(16.2%)
(d) Transaction rate 80.
Entity Meas. LO RR UR SDL KF
Purchase 1449 157.1 (84%) 420.2( 190.0%) 192.6 (32.9%) 194.3 (34.1%)  285.8 ( 97.2%)
Manage 570  53.8(5.6%) 561.0( 884.2%)  30.8 (46.0%) 689 (20.9%)  73.6( 29.1%)
Browse 342.3 364.4(6.5%) 609.0( 77.9%) 4245 (24.0%) 410.8 (20.0%) 771.2 (125.3%)
Mfg EJB 23.5 24.5 (4.3%)  446.0 (1797.9%) 38.5 (63.8%) 17.5 (25.5%) 29.1 ( 23.8%)
Mfg WS 236 24.6(42%) 4435 (1779.2%) 74(68.6%)  17.6(254%)  29.2( 23.7%)

(e) Transaction rate 100.

Table 7.8: Response time predictions (relative error in brackets).
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Figure 7.5: Impact of interrupt coalescing.

the receiving process or VM. High network traffic therefore can cause a high
interrupt load on a machine resulting in additional overheads due to context
switches.

Interrupt coalescing is an optimization that aims at processing multiple
network packets with a single hardware interrupt. Incoming network packets
are enqueued and a hardware interrupt is triggered if either the queue is full
or after a certain timeout. For instance, the VMware ESXi 5.5 hypervisor by
default queues up to 64 network packets and has a timeout of 4 milliseconds
(VMware, Inc., 2014). In addition, VMware states that “other events, such as the
virtual machine being idle, can also trigger virtual machine interrupts or packet
transmission, so packets are rarely delayed the full 4 milliseconds” (VMware,
Inc., 2014, page 38).

Interrupt coalescing can be turned off in the VMware ESXi hypervisor by
setting the ethernetX.coalescingScheme parameter to disabled. In our dis-
tributed setup of SPECjEnterprise2010, we ran experiments with or without
interrupt coalescing and at different transaction rates. We then compared the
CPU utilization of each VM to analyze the impact of interrupt coalescing.

Figure 7.5 shows the CPU utilization of the VM 2 (see Figure 7.5a) and VM 3
(see Figure 7.5b). These are the VMs with the highest CPU utilization in the
experiments. While the transaction rate increases linearly, the CPU utilization
exhibits a non-linear curve, especially when interrupt coalescing is activated
in VMware ESXi hypervisor. The results show that the impact of interrupt
coalescing increases with higher CPU utilizations While the CPU utilization
is almost equal at a transaction rate tx = 20, there are significant differences
when tz = 100: The CPU utilization of VM 2 is 11.78%, and the one of VM 3 is
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7.93% higher when interrupt coalescing is deactivated.

We explain this distinct load-dependent impact of interrupt coalescing with
its timeout setting. At lower transaction rates the timeout triggers more often
before the queue of network packets is filled up resulting in less network packets
being processed per hardware interrupt. In consequence, the relative overhead
due to interrupt handling is higher at lower utilizations.

The current version of DML does not provide means to describe and solve
models with load-dependent resource demands. Kumar et al. (2009b) describe
a technique to estimate such load-dependent resource demands assuming the
functional form of the dependency as an input. LibReDE can be extended for
such scenarios by applying transformations to the state model (e.g., logarithm
or square root transformations) as it is often done with regression techniques.
This is left for future work as it requires also corresponding modeling and
solution support in DML which is out of scope of this thesis.

7.4.4 Discussion

In this case study, we evaluated the degree of automation achieved for the model
learning step as well as the fitting and prediction accuracy of the resulting
performance models. For the SPECjEnterprise2010 application, we achieved a
degree of automation of 85.5%. By integrating existing techniques for usage
profile extraction, this number could be increased to 97.4%. As aresult, asystem
administrator only needs to provide high-level information on the control flow
between applications to obtain a complete model. The internal architecture of
the application could be completely extracted including all platform layers. It is
noteworthy, that the model learning capabilities in the Wildfly VAs only assume
that the application adheres to the Java EE standard and does not include any
prior knowledge of the SPECjEnterprise2010 application. Therefore, it can be
reused to create performance models of other Java EE applications. For instance,
Bauer (2016) has already used our Wildfly VA with a different application.
We compared the fitting accuracy achieved with different approaches to
resource demand estimation. LibReDE recommends the optimization-based
approach using end-to-end response times (see Liu et al., 2006) that can provide
the best results with a total cross-validation error of 1.7%. We then use the fully
parameterized model to predict the performance for scaling scenarios. When
using the resource demand estimation approach as recommended by LibReDE,
we obtained model predictions with an absolute error of less than 4% for the
CPU utilization and a relative error of less than 21% for the end-to-end response
time. Given the SPECjEnterprise2010 deployment with seven different VMs
and 80 different resource demands to be estimated, it poses a considerable
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problem size. LibReDE is able to solve the problem in less than 10 seconds
demonstrating the feasibility to continuously update the resource demands in
an online manner.

7.5 Case Study: Zimbra Collaboration Server

This case study is based on the Zimbra VA described in Section 7.2.2. The goal
of this case study is to evaluate the effectiveness and the resource efficiency
of the controllers proposed in Chapter 6. We consider the vertical scaling of
virtual CPUs and memory of VMs.

7.5.1 Experiment Setup

We use a two server setup of Zimbra, where the mailbox server (including the
LDAP server) is deployed in one VM and the MTA in another one. Users directly
interact with the mailbox server having stringent requirements regarding the
response times. The mailbox server and the MTA only communicate with each
other asynchronously, i.e., the processing time at the MTA is excluded in the
end-to-end response time experienced by a user. However, in order to ensure
reliable and fast delivery of mails to a recipient, the MTA is also subject to goals
with regards to the throughput and the maximum time for delivery. In the
following, we assume a maximum acceptable response time for requests to the
mailbox server of one second and a maximum delivery time for mails of two
minutes.

Workload We use an adapted version of a load driver used by the Zimbra
developers to generate our workloads. The driver simulates a session-based,
closed workload for a configured number of users. A session consists of several
tasks sending requests to the server. Tasks represent atomic user actions (e.g.,
reading, writing, moving, and deleting mails). The sleep times between the
tasks of a session are exponentially distributed. We modified the driver to
support dynamic workloads so that it can vary the number of concurrent
sessions of users over time according to a given time series. Each session
randomly chooses a mailbox on the server from a uniform distribution.

The mailbox server contained 2500 mailboxes, each with 10MB mail content.
Each mailbox contains approximately 5000 messages with content and different
types of attachments from a dump of a set of mailboxes from a production
mail server. The number of concurrent sessions is dynamically varied over
the duration of an experiment. Given that we could not obtain suitable arrival
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traces from a production instance, we extracted the load intensities from the
FIFA'98 traces (Arlitt, 2000) as a time series and scaled it to match the capacity
of our system.

Deployment Our experiment setup consists of three physical hosts: ESX1,
ESX2, and ESX3. The physical hosts are connected by a 1 Gbit/s network. ESX1
runs a vCenter Server instance, the Zimbra load generator, and our controller.
ESX2 runs a VM with the mailbox server and ESX3 runs one with the MTA. We
used two different resource environments for our experiments:

¢ Setup 1: Each physical host has two 2.6 GHz Intel Xeon E5430 processors
with 4 cores, 32 GB RAM, and a 150 GB HDD. The hosts run a VSphere 5.1
hypervisor; the VMs are allocated 4 GB RAM and initially 1 CPU. They
run Linux CentOS 6.4 as operating system with a Zimbra 8.0.5 server.

* Setup 2: Each physical host is equipped with a 3.2 GHz Intel Xeon E3-
1230 CPU with 4 cores, 16 GB RAM and a 500 GB HDD. The hosts run a
VSphere 5.5 hypervisor; the VMs are configured with 2 CPUs and 4 GB
RAM. Inside is running a CentOS 7.0 64-bit OS and a Zimbra 8.5 server.

The MTA is not connected to the Internet so that only mails from the local
mailbox server are processed. In Setup 2, we adapted the Zimbra database
configuration to store and reload the MySQL buffer pool when restarting in
order to reduce cache warm up times. We use Setup 2 only in Section 7.5.5, and
Setup 1 otherwise.

7.5.2 Application Scalability

First experiments with Zimbra showed that in our experiment setup the scal-
ability of the mailbox server is I/O-bound whereas the MTA is CPU-bound.
Each incoming mail at the mailbox server needs to be persisted to the hard disk.
Furthermore, each user request may trigger queries in the MySQL database
running on the mailbox server potentially leading to even more hard drive
accesses. The MTA is on the other hand CPU-bound as the anti-virus and spam
checks performed for each mail requires considerable CPU time.

Limits on the Scaling of virtual CPUs In this experiment, we evaluate the scala-
bility of the application with an increasing workload and number of virtual
CPUs. The workload consists of a fixed number of 500 active users. The session
intensity is step-wise increased every hour starting from 2.5 up to 10 sessions
per user and per hour. The complete experiment ran over 9 hours. The mailbox
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server is initially configured with 2 CPUs and the utilization of both cores is
below 30%. The bottleneck is the MTA server which is automatically scaled
from 1 to 6 CPUs by our model-based controller in response to the increasing
workload.
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Figure 7.6: Model estimates with increasing workload.
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Figure 7.7: Hypervisor scheduling statics during increasing workload.

Fig. 7.6 shows the estimated physical resource demand DP", the virtual
resource demand D", and the application demand Dg"” depending on the
number of CPUs a. DP"¥* is relatively constant and shows only a slight load-
dependency with 5 and 6 CPUs (rising from approximately 2 to 2.3 seconds).
This load-dependency is not explicitly captured in the model. We rely on the
model estimator to adapt to these changes in the physical resource demand.

The virtual resource demand D" approximately matches the physical re-
source demand for one and two CPUs, however, it increases significantly for
higher numbers of CPUs. This increase can be explained with the CPU schedul-
ing by the ESX hypervisor Fig. 7.7 shows the scheduling statistics as reported
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by ESX for the MTA VM. The statistics are reported every 20 seconds and show
total CPU time during which the VM was in a certain scheduling state. The in-
crease of D”'* is caused by delays at the hypervisor due to co-scheduling effects.
Although there are no additional VMs contending for the physical resources
with the MTA server, its co-stop time increases. With increasing workload the
I/0O wait time as reported by the hypervisor also increases. We explain the
co-stop time with the observed I/O wait: due to individual virtual CPUs which
are delayed by I/O, other CPUs are slowed down by the hypervisor such that
the CPU time of the different CPUs of a VM do not diverge.

However, the hypervisor co-scheduling overhead is not the only reason for
the limited scalability of the MTA. Figure 7.7 also shows that, the used CPU
time (reported by the ¢, statistic) stagnates with the increasing number of
CPUs. With 6 virtual CPUs the application could get 120 seconds CPU time
in each 20 second interval. However, it is only able to use about 60 seconds of
that. To mitigate the bottleneck, a reconfiguration of the application would be
required (e.g., changing the number of processing threads in the MTA).

Influence of Memory Size In this experiment, we evaluate the potential for
the scaling of the memory size during system operation. In the previous
experiment, we focused on the cpu-bound MTA server. When varying different
workload parameters, the MTA yielded a constant memory allocation.

In contrast, the mailbox server is I/ O-bound and uses different application
caches to reduce the number of hard disk accesses. The following three major
caches were identified: (a) the mailbox cache keeping the meta data of the
mails, contacts, calenders, etc., of a user in memory, (b) the message blob cache
retaining the content of last read mails in memory, and (c) the buffer pool of the
underlying MySQL database. Table 7.9 shows the application performance of
the mailbox server with 4 GB and 8 GB of main memory when the number of
actively used mailboxes is increased to from 500 to 2000. We conclude that the
buffer pool hit rate has a significant influence on the application performance.

Mean latency (in ms) Std latency Buffer pool hit rate

4GB 106 55 95.6%
8GB 50 26 99%

Table 7.9: Impact of mailbox server memory configuration.

However, when adding main memory dynamically to the VM, it turned out
that the mailbox server cannot benefit from the additional memory directly. The
reason is that the buffer pool of the MySQL database is allocated statically and
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cannot be changed at runtime. The same applies to the Jetty application server
of the mailbox server which is a Java-based application with a maximum heap
size. While the buffer pool size and the Java heap size can be over-provisioned
at application startup to accommodate a future memory scale-up, this is not an
option in practice, because if these sizes are larger than the physical memory
size, it can result in heavy swapping at the operating system layer. In order to
leverage dynamic changes to the memory configuration of a VM, additional
application support would be required.

7.5.3 Physical Resource Contention

In order to evaluate the impact of physical resource contention on the model
estimation, we added additional load VMs to the host where the MTA VM
(configured with 2 CPUs) is running. We used 8 load VMs with one CPU each
running a micro-benchmark calculating Fibonacci numbers. These load VMs
demand all the physical CPU resources of the host. As a result, the VM running
the MTA server is constantly competing for the physical CPU resources and
the processing of mails is therefore slowed down in the MTA.
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Figure 7.8: Demand estimates under physical resource contention.

Fig. 7.8 shows the estimated physical demand DP"* and the application
demand D" depending on the number of vCPUs «a estimated using two dif-
ferent approaches. The indirect approach is based on a least-squares regression
using the following equation to estimate the application demand based on the
virtual resource demand determined using the observed hypervisor scheduling
statistics:

Qu,a

Rs,c o Dm’rt (1 +
a

V,cpu

Bya) = DIr(1+

Qua By.a)- (7.1)
a

For comparison, we also estimated application demand directly based on the
residence time equation (see Equation 6.2 on page 158) performing a linear
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regression on the observed mean latency and the average queue length on
arrival.

In the first part of the experiment, the micro-benchmarks in all load VMs are
not running, i.e., the VM running the MTA receives all requested resources.
When the CPU-heavy computation begins in the load VMs after approximately
100 minutes, the VM running the MTA experiences physical resource con-
tention. The application processing rate is slowed down, and the application
demand increases as one would expect. In contrast, the physical resource de-
mand (i.e., the CPU time on the physical CPU to process one request) is not
influenced by the physical resource contention. The comparison between the
directly and indirectly estimated application demands show that the difference
between both is negligible. See Table 7.10 for the exact values. This experiments
shows that the scheduling statistics reported by the ESX hypervisor can be used
to estimate the requests in the application are delayed to the contention effects
at the virtual resource layer.

Direct Indirect Relative Error

No contention 2.16 2.11 1.96%
Contention 3.65 3.65 <1%

Table 7.10: Comparison of direct to indirect estimation of D™ for a given
vCPU configuration.

7.5.4 Short-term CPU Scaling

To evaluate the behavior of the resource controller under a dynamic workload,
we ran a workload with a typical pattern for an application in the course of a
week. We used the access logs from the FIFA'98 world cup web servers (Ar-
litt, 2000) and extracted the session intensities of a complete week (06/01-
06/06/1998). We scaled the session intensities down to adjust the workload
to the computing capacity of our system. Fig. 7.9 shows the workload at the
Mailbox server and at the MTA. Only a fraction of the requests to the Mailbox
server result in a mail being sent through the MTA. We can observe a workload
pattern typical for many real-world applications, where the demand during the
day is significantly higher than in the night. Additionally, there are differences
in the workload between weekdays and weekends. This results in varying
resource requirements of the application in the course of a week.

We refer to the model-based controller described in Section 6.1.4 as the
demand controller, and compare it with a threshold-based utilization controller
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Figure 7.9: Dynamic workload used for the experiment.

and a static allocation of one vCPU. We used two variations of the utilization
controller with different control intervals. The utilization controller checks
the CPU utilization of the MTA VM every minute (or every 5 minutes). If the
average utilization of the control interval is above 90%), it adds an additional
vCPU to the VM, if the current CPU usage is below 40%, it removes one CPU.
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Figure 7.10: Comparison of the MTA latency between the demand controller
and the utilization controller.

Fig. 7.10 shows the observed latency of the MTA with the demand controller
and the utilization controller (1 minute control interval). The latency of the
MTA is the time from receiving a mail until it is delivered to the recipient’s
mailbox server. For the MTA we chose a target latency of two minutes. When
statically allocating a single CPU, the server gets overloaded during load spikes,
so the mails queue up and we observe maximum latencies of over 45 minutes
(see Table 7.11). Both controllers can avoid the overload situation by adding
additional CPUs during phases of high workloads. We conclude that both
controllers can effectively maintain the mail delivery latency below the target
value, therefore fulfilling the application SLO.

On the other hand, Fig. 7.11 shows that the demand controller is significantly
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Figure 7.11: Number of reconfigurations with the demand and the utilization
controller (1 minute control interval).

more stable than the tested variants of the utilization controller. The utilization
controller exhibits an oscillating behavior with 273 (or 72) reconfigurations with
the one (or five) minute control interval compared to the 13 reconfigurations
of the demand controller. At the same time the total CPU allocation of the
demand controller is lower compared to those of the utilization controllers.
Even though additional optimizations of the control interval and the thresholds
of the utilization controller may improve its efficiency and stability further, the
optimal setting for the utilization controller heavily depends on the application
and its workload, and it may change as the application state and the execution
environment evolve. In contrast, our demand controller only requires the target
application latency, which is usually available for a business critical application.

Latency [s] = Reconfigurations CPUs

mean max mean max

Demand controller 20.48 95.99 13 14 2
Util. controller (1 min) 10.82 67.86 273 1.83 3
Util. controller (5 min) 25.97  92.1 72 1.46 3
Static allocation 1385 2842 0 1 1

Table 7.11: Comparison of controller performance.
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7.5.5 Mid- to Long-term Memory Scaling

In this section, we evaluate how our proactive controller (see Section 6.2) can
help to reduce the impact of the reconfiguration on the application availability
and performance by comparing it with a reactive approach. The results of the
following experiments were published in Spinner et al. (2015b).

Proactive vs. Reactive Controllers We compare our proactive controller to a
threshold-based, reactive controller. In addition, we performed one baseline
experiment without vertical memory scaling.

As the application does not directly support the observation of the incoming
load, we use the monitored throughput as an approximation for the number of
arriving requests, and learn the forecasting model based on the throughput.
Given that we aggregate the collected statistics over a complete hour, we argue
that this is a safe approximation. The proactive controller is configured to do a
forecast every night at 3 AM when a minimum load on the system is expected.
It predicts the number of requests for the next day resulting in 24 hourly arrival
rates of which it takes the maximum. As thresholds, we use the maximum
sustainable throughput of the system for a given memory size. We determined
these thresholds in an offline profiling experiment. The controller reconfigures
the memory in 4096 MB steps.

The reactive controller monitors the availability and response time of the
mailbox server. It is triggered if the server is unavailable or if the observed
average response times are above one second for over a period of three minutes.
The controller has a quiet time of one hour, i.e., after a memory reconfiguration
the trigger will not fire again in this period.

Impact of reconfiguration In this experiment, we evaluate the impact of memory
scaling on the availability and performance of the application. We used Setup 2
described in Section 7.5.1 for the experiments. The FIFA'98 trace covers a period
of 92 days making it infeasible to run an experiment over the complete length.
Therefore, we extracted a subset of four days from the trace, scaled its length to
an experiment length of 16 hours, and used it as an input to our load generator.
The subset covers the period from Saturday, June 30th 3:00 AM to Wednesday,
July 4th, 3:00 AM. Figure 7.12 shows the resulting number of active users over
the experiment length. It is expected that the initially configured memory size
of 4 GB is insufficient to serve the workload on Monday and Tuesday.

In order to reduce the experiment duration, we used four weeks of historic
data from the FIFA'98 trace to learn the forecast model. As the experiment be-
gins, the proactive controller automatically switches to the live monitoring data
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Figure 7.12: Number of active users in a four-day workload trace.

from the Zimbra server. The live data is continuously appended to the historic
data and the forecast model is updated according to the new observations.

In the following, we define the term “availability" as the number successful
requests divided by the total number of requests during a time interval. If the
availability is below 100%, we consider it reduced availability. Here the success
of each request is measured from the client perspective, i.e., as observed by
the load generator. If a request times out due to an overloaded application, we
consider the request unsuccessful.

No control Reactive Proactive
Mean response time 7,567 ms 1,211 ms 52 ms
Maximum response time 349,830 ms 1,023,100ms 1,077 ms
Timeouts 84 285 0
Errors 8493 1485 337
Time of reduced availability 176 min 33 min 4 min

Table 7.12: Comparison of controllers.

Figure 7.13 shows the observed average response time for three different
experiments including the time of reduced availability during which not all
requests can be successfully served. In the first experiment in Figure 7.13a,
no additional memory is added to the VM. On the third and forth day, the
application is overloaded as the memory becomes a bottleneck resulting in high
read load on the hard disk. The response times of the application therefore
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Figure 7.13: Observed response times of the mailbox server.

increase significantly (see also Table 7.12). During peak periods the application
is not able to serve all requests. In total, the availability is below 100% for a
period of 176 minutes due to timeouts and connection errors (see Table 7.12).

The reactive controller in Figure 7.13b is triggered by the unavailability of
the application as the response times increase too abruptly for the controller to
react. As the application is overloaded, the steps described in Section 6.2.2.2
take a long time to complete and afterwards the application also needs to
reload its caches under a high workload causing additional overhead. In total,
the application is only partially available over a period of 33 minutes due
to the overload situation and the reconfiguration (see Table 7.12). After that
period, the reconfiguration effectively mitigated the memory bottleneck and
the application is able to serve the workload with an acceptable performance
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again.

The results from the proactive controller are shown in Figure 7.13c. The
proactive controller correctly detects the future memory bottleneck in the night
between the second and third day and proactively triggers the reconfiguration
during a phase of low load. This results in a much lower impact of the recon-
figuration on the availability and performance of the application. Given that
the application needs to be restarted, it is unavailable for a period of 4 minutes
(see Table 7.12). After this period, it reloads its caches and serves user requests
in parallel without overloading the VM. Compared to the reactive controller,
our approach reduces both the time of lower availability and the number of
errors during the reconfiguration by more than 80%. We conclude that using a
proactive control approach to memory scaling can effectively reduce the impact
of the required reconfigurations on the application.

Memory usage Figure 7.14 shows the observed memory usage of the applica-
tion as reported by the guest operating system in the VM. The free counter
reports the unallocated memory and corresponds to the memory usage as seen
by the hypervisor. The available counter does not include the memory reserved
for the operating system buffer caches. As the Linux operating system greedily
allocates memory for its buffer caches, the free counter does not reflect the
actual memory demand of the VM. The available counter is a better indicator
of the memory pressure within the VM. However, it does not show a clear
correlation to the workload intensity. Therefore, it is necessary in our approach
to benchmark the application in advance to determine the maximum number
of session that can be served with a given memory size.

7.5.5.1 Allocation decisions

Using the same thresholds as in the reconfiguration experiments, we also
analyzed the allocation decisions of the proactive controller for the complete
tirst 5 weeks of the FIFA'98 trace. Excluding the training phase of the forecaster,
this results in 30 days for which the proactive controller can predict the required
memory size. We compare the memory allocation resulting from the forecast
arrival rate to the memory allocation that would be required for the actual
arrival rate. As the memory allocation can only be a multiple of a certain step
size in our approach, we calculated the over- and under-provisioning ratios
using step sizes of 1024 MB, 2048 MB, and 4096 MB. The results are shown in
Table 7.13.

In summary, the proactive controller using our splitTs method (see Sec-
tion 6.2) results in a lower chance of over- and under-provisioning (< 11%)

222



7.5 Case Study: Zimbra Collaboration Server

8 8r
Total Total
""""" Available s Available
Free Free
6r 6
o o
o o 3
= =
a4t >4 £,
g g -
£ £ .,
[0} [0} o,
= = e
2k 2 3 -
0 ‘ e e 0 . =i, ]
0 200 400 600 800 0 200 400 600 800
Time mins Time mins
(a) No control (b) Reactive control
8 -
Total
""""" Available
Free
6 L
o
o 3
£ .
K
o
1S
[}
=
2k -
0 1 LT e . \
0 200 400 600 800
Time mins

(c) Proactive control

Figure 7.14: Observed memory usage of the mailbox server VM.

compared to the WCF method (Herbst et al., 2014). However, both methods
tend to underestimate the resource allocation on the FIFA'98 trace. This is
also visible in Figure 6.4. Although splitTs correctly captures the long-term
increasing trend of the trace, more sophisticated methods to extract overlapping
trends and seasonal patterns may improve the results. This will be part of our
future work on combining splitTs with the load intensity modeling framework
DLIM (Kistowski et al., 2015). In order to obtain more conservative forecasts
and reduce under-provisioning, we recommend to use the upper confidence
level of the forecast. Compared to a constant factor as proposed in (Shen et al.,
2011), the confidence interval has the advantage that its width also depends on
the fitting quality of the forecast model.
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Step size Overprovisioned Underprovisioned
Days Amount Days Amount

1024 MB 3 1.08% 14 10.79%

splitTs 2048 MB 0 0% 9 10.07%
4096 MB 0 0% 6 8.54%
1024 MB 6 3.6% 18 14.03%

WCF 2048 MB 4 3.36% 14 13.42%
4096 MB 2 2.44% 8 10.98%

Table 7.13: Allocation decisions of the proactive controller using splitTs and
the WCF forecasters.

7.5.6 Discussion

The short-term model-adaptive controller for vertical CPU scaling reduced the
number of allocated virtual CPUs by up to 23% compared to two variants of a
trigger-based controller. The latter requires the manual specification of scaling
rules including thresholds. These rules typically depend on the architecture
and current state of the application. In contrast, our controller can directly use
the performance model learned automatically at system run-time to adapt the
number of virtual CPUs in accordance with application-level SLOs with re-
gards to response time and throughput. The performance model also provides
deeper insights into the performance behavior of an application for a more
fine-grained detection of bottlenecks (e.g., also considering contention effects).
In our scenario, trigger-based approaches did not consider the current state
of the application resulting in many short-term reconfigurations. Our model-
adaptive controller was able to incorporate the current application state (i.e.,
the work queued at the mail transfer agent) into its scaling decisions, resulting
in a reduction of reconfigurations by up to 95%.

Our proactive controller could reduce the impact of memory reconfigurations
on the application availability and performance of the application by more than
80% compared to a reactive controller. Using our splitTs forecaster, we were
also able to reduce the over- and under-provisioning of memory compared to
other state-of-the-art forecasting techniques to under 11%.
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Chapter 8
Conclusions

This chapter concludes the thesis and provides a summary of its contributions.
We discuss the benefits of our work and give an overview of potential future
work.

8.1 Summary

In this thesis, we proposed an approach to self-aware resource management in
virtualized data centers. Self-aware means that it is based on models that are
learned automatically at system run-time and that are used to reason about the
system in order to fulfill high-level goals. In the context of virtualized data cen-
ters, the high-level goals are the fulfillment of application SLAs with regards to
performance and availability objectives while continuously improving resource
efficiency. Our approach is based on an existing meta-model — called DML
(Huber et al., 2017) — to represent the knowledge about the system performance
behavior. We made contributions in the following two areas: model learning
(covering model structure and parameterization), and model reasoning (using
models for vertical scaling of applications).

Reference Architecture for Online Model Learning in Virtualized Systems

The reference architecture lays the foundation to integrate different model
learning techniques into virtualization platforms in order to obtain end-to-end
performance models of the complete system. We proposed to bundle the logic
for online model learning into VAs that can be then be shared with others
(e.g., through online marketplaces) increasing reuse of model learning logic.
When such a VA is deployed in a virtualized environment, the model learning
logic will start to monitor the system under real production workloads and
will automatically built a performance model of the system. A performance
engineer, who has expertise in performance modeling, can specifically design
the model learning logic in a VA for a given software stack. Ideally, vendors of
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hypervisors, middleware platforms, or standardized enterprise applications
directly design and integrate model learning capabilities into their systems and
provide ready-to-use VAs.

Given the layered nature of software systems in virtualized data centers, the
complete software stack is typically only known at system run-time. Therefore,
our reference architecture is agent-based where each agent is responsible for
creating and maintaining a certain subset — called model skeleton — of the com-
plete performance model. We chose the DML meta-model as the performance
model formalism for our reference architecture. Based on an analysis of the
meta-model and a literature review of existing techniques for model learning,
we derived different roles an agent may fulfill in our reference architecture and
specified the collaborations between these agent roles. Furthermore, we pro-
posed an algorithm for merging the different model skeletons into a complete
performance model in a central repository. We discussed the constraints that
model skeletons need to fulfill in order to allow for conflict-free merging.

We developed proof-of-concept implementations of our reference architec-
ture and model extraction agents for representative systems. The reference
implementation of our architecture is based on state-of-the-art technologies
from MDE for maintaining the performance model in a central model repository.
We built agents for the VMware vSphere virtualization platform — the market
leader for x86 hypervisors —, for the WildFly application server —a widely used
Java EE-compliant middleware platform —, and for Zimbra collaboration server
— a standard enterprise collaboration application —. The idea of our reference
architecture was first published in Spinner et al. (2013) and was later refined in
Spinner et al. (2016). Furthermore, our work laid the foundation for a research
project funded by the German Research Foundation (DFG) under grant No.
KO 3445/11-1.

Online Method for the Statistical Estimation of Resource Demands

We provided the first systematization of of the state-of-the-art on resource
demand estimation. Existing estimation approaches are categorized according
to their required input parameters, their provided output metrics, and their
measures to improve their robustness to anomalies in the measurement data.
Furthermore, we evaluated the influence of different factors (sampling interval,
number of samples, number of workload classes, load level, collinear workload
classes, background jobs, and delayed processing) on the estimation accuracy
of different estimation approaches. The results show, that using response times
can improve the accuracy of the estimated resource demands significantly
compared to a approaches solely based on utilization measurements, espe-
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cially in cases with multiple workload classes. The systematization and the
experimental comparison were published in Spinner et al. (2015a).

However, approaches employing response time measurements are very sen-
sitive if assumptions of the underlying mathematical model are violated (e.g.,
wrong scheduling strategy, or delays due to other resources). To address this
limitation, we described an online method for the statistical estimation of re-
source demands — called LibReDE — which is the first to apply multiple statistical
techniques at run-time (in total eight) automatically combining their results.
LibReDE checks the applicability of a statistical technique according to its the
pre-conditions and executes only the applicable ones. We proposed a cross-
validation scheme to automatically select the statistical technique providing
the best results for a system under study. We implemented LibReDE as a Java
library and published it under an open-source license to be available to other
performance engineers. The tool is described in Spinner et al. (2014a). Further-
more, we integrated LibReDE into our reference architecture for online model
learning to fully automate the estimation of resource demands.

LibReDE has been successfully used in a number of case studies. In a case
study together with our industrial partner Google, we used LibReDE to estimate
the resource demands of the SPECjEnterprise2010 full system benchmark, de-
signed by the SPEC consortium to be representative of many Java EE workloads.
We demonstrated the scalability of LibReDE which is able to estimate 80 differ-
ent resource demand values with a total cross-validation error of 1.7% in less
than 10 seconds. In a collaboration with the Fortiss research institute (see joint
our publication Willnecker et al., 2015), we compared the results from LibReDE
with the ones from the state-of-the-art Dynatrace APM tool. LibReDE was
able to achieve a similar level of accuracy compared to the directly measured
resource demands. In a case study in collaboration with SAP Research, we im-
plemented a resource usage control mechanism for the SAP HANA cloud based
on LibReDE successfully providing performance isolation in a multi-tenant
environment (see our joint publication Krebs et al., 2014a). Finally, LibReDE
also served as the basis for our model-based controllers described in this thesis.

Model-based Controllers for Autonomic Vertical Scaling of Virtualized
Applications

We described two autonomic controllers for vertical scaling of virtualized appli-
cations using resource hot-plug mechanisms provided by modern hypervisors.
The first controller is based on a model-adaptive control loop for short-term
scaling — in the range of seconds to minutes — of virtual CPUs. We proposed a
layered performance model based on queuing-theory reasoning on the impact
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of changes to the resource allocation on the application performance. Further-
more, we showed how to estimate the resource demands explicitly capturing
any scheduling delays in the hypervisor. We used the layered performance
model to adapt the number of configured virtual CPUs of a VM in accordance
with the application SLAs.

The second controller is based on a proactive control loop for vertical scaling
of applications with limited elasticity on a mid- to long-term scale (i.e., hours
or days). We proposed a method to workload forecasting based on multiple
time series analysis methods incorporating meta-knowledge about the expected
workloads. In our evaluation based on real-world traces, we showed that splitTs
can improve the forecast accuracy quantified with the MASE error metric by 11
to 59%. We integrated splitTs in our proactive controller to schedule application
reconfigurations, which potentially impact the user experience, during phases
of low load in order to improve application availability and performance.

We evaluated both controllers in the context of case study together with our
industrial partner VMware using the Zimbra collaboration server. We showed
that the short-term controller can reduce the required number of virtual CPUs
by up to 23% while reducing the number of reconfigurations by up to 95%
when compared to a trigger-based controller. In the same case study, our
proactive controller could reduce the impact of memory reconfigurations on
the application availability and performance of the application by more than
80% compared to a reactive controller. Using splitTs, we were also able to
reduce the over- and under-provisioning of memory compared to other state-
of-the-art forecasting techniques to under 11%. The short-term controller was
published in Spinner et al. (2014b) and the mid- to long-term controller in
Spinner et al. (2015b).

8.2 Benefits

We see the following benefits of our self-aware approach to resource manage-
ment in virtualized data centers:

* Our approach provides a high degree of automation through deep inte-
gration into the virtualization platform. System administrators do not
need to create and maintain performance models of applications man-
ually. Experts can tailor the model learning logic to a given platform
technology or application and share it in the form of VA with a broader
audience. System administrators can easily deploy such VAs and benefit
from the automatically generated performance models without requiring
the manual effort and the expertise typically involved with performance
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modeling. Furthermore, the deep integration enables a tighter coupling
of the models to the actual system in order to ensure that the models
always reflect the current system architecture.

* Data center operators can optimize their resource allocations for greater
efficiency and elasticity without negative impacts on the performance and
availability services hosted in a data center. Performance models provide
the missing link between low-level resource allocations and application-
level SLAs regarding response time and throughput. Our autonomous
controllers can exploit these models in order to determine the minimal
amount of resources necessary to meet the application SLAs. This helps
to significantly increase elasticity of applications and thus helps to reduce
the over-provisioning of resources.

¢ Horizontal scaling requires additional architectural components in appli-
cations (e.g., load balancers) to work. Furthermore, the provisioning of
additional VM instances can take significant time. Our controllers to ver-
tical scaling also make it possible to provide the elasticity for applications
not well suited for horizontal scaling (e.g., relational databases).

8.3 Future Work

The results of this thesis provide a basis for several topics of future work. In
the following, we provide an overview of research topics extending our work.

* Model learning capabilities for storage and network infrastructure. In Sec-
tion 4.2.1 we do not elaborate the roles for extracting the storage and
network infrastructure in a data center in detail. The current version of
DML does not include meta-models for these aspects so far, however,
extensions are planned for future versions. When these extensions are
available, the agent roles in Section 4.2.1 need to be updated accordingly.
Descriptions of the structure and behavior (e.g., to determine network
delays) need to be learned. Initial work in this direction can be found
in Noorshams (2015) for storage resources and in Rygielski and Kounev
(2014) for the network infrastructure.

* Load-dependent resource demands. The resource demands in a system may
change with its load level. For instance, in Section 7.4.3 we show that in-
terrupt coalescing — a common optimization for network communication
— causes a resource demands to vary with the load level. Given that micro-
service architectures become increasingly popular resulting in highly
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distributed setups, we need to be able to reflect the load dependencies
in our performance models. DML currently does not provide modeling
elements and analysis techniques that support load-dependent resource
demands. The modeling formalism needs to be extended accordingly in
the future. At the same time, we also need to be able to include the load-
dependency during resource demand estimation. Kumar et al. (2009b) are
the only authors addressing this challenge so far. However, they assume
a fixed functional shape that needs to be provided in advance. Future
work may use our feedback loop proposed as part of LibReDE to also
learn the functional shape of a load dependency.

Meta-learning techniques for selecting estimation approaches. LibReDE cur-
rently selects the approach to resource demand estimation based on fixed
pre-conditions and the results of the cross-validation. However, running
many estimation approaches in parallel may be too expensive in an on-
line setting. An alternative is the use of meta-learning approaches to
derive decision rules based on historic data. These decision rules select
estimation approaches based on certain features of the input data, such
as, number of workload classes, load level, auto-correlation. Machine
learning techniques (e.g., neuronal networks) may be used to determine
the decision rules. The opportunities of meta-learning techniques is cur-
rently investigated as part of a research project funded by a Google faculty
research award. Initial results are available in Grohmann (2016b).

Auto-tuning of estimation approaches. The accuracy of many approaches to
resource demand estimation is influenced by parameters (e.g., sampling
interval length, or size of sliding window) that a user needs to provide.
However, good values for these parameters depend on the system under
study. Auto-tuning techniques to automatically find good values for these
parameters during resource demand estimation promise to relieve the
user from having to provide these values. The opportunities of meta-
learning techniques is currently investigated as part of a research project
funded by a Google faculty research award. Initial results are available in
Grohmann (2016b).

Declarative performance engineering. Self-aware computing systems explic-
itly consider the possibility for user interaction in order to reach high-level
goals. It is not always reasonable to fully automate the act step in the
LRA-M loop described in Section 2.1. For instance, the knowledge cap-
tured in automatically learnt performance models may support system
administrators when performing manual one-time reconfigurations in a
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data center. Walter et al. (2016) envision a declarative approach to per-
formance engineering for automatically answering performance-related
what-if questions (e.g., which is the bottleneck resource if the application
workload doubles?). Approaches to declarative performance engineering
may be integrated with our performance model repository in order to
support system administrators with no or little experience in system per-
formance analysis techniques to exploit the knowledge of automatically
learnt models. Approaches to declarative performance engineering are
currently investigated in the DFG Priority Programme "DFG-SPP 1593:
Design For Future—Managed Software Evolution” as part of project grant
KO 3445/15-1.

Multi-dimensional reconfiguration spaces. In this thesis, we focus on vertical
scaling of virtualized applications as a new mechanism for on-demand
application scaling at run-time. However, vertical scaling is subject to lim-
its prescribed by the application architecture and the physical hardware.
A combination with horizontal scaling mechanisms as well as global
and local resource scheduling techniques is necessary for optimal results.
While our techniques for model learning result in performance models
that help to answer different performance-related questions, future work
may consider combined algorithms to multi-dimensional optimization
based on these models.

Memory resource demands. Main memory is a limiting resource for many
enterprise applications. However, the quantification of memory resource
demands is an open research question. While fine-grained instrumenta-
tion of applications is feasible (e.g., intercepting each allocation of mem-
ory), it is typically too expensive to be applied to production systems.
Statistical estimation techniques described in Section 5.1 are designed for
processing resources where the processing time can be directly associated
to individual requests. Memory allocations are however often state-based
and survive individual requests (e.g., in a session state). We require new
estimation approaches to cope with such state-based, passive memory
resources.

Identification of parameter dependencies. The value of model variables (e.g.,
resource demands, or branching probabilities) may depend on the value
of input parameters of requests to the system. In order to be able to
predict the impact of variations in the input parameters on the application
performance, these dependencies need to be captured explicitly. While
Krogmann (2010) and Brosig (2014) propose abstractions to model these
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parameter dependencies in architecture-level performance models, they
require a user to specify them manually. Techniques to automatically
identify these dependencies in an online manner could help to further
improve the prediction power and accuracy of the extracted performance
models.
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