
Given points in the plane, connect them using minimum ink.
Though the task seems simple, it turns out to be very time
consuming. In fact, scientists believe that computers cannot
efficiently solve it. So, do we have to resign?

This book examines such NP-hard network-design problems,
from connectivity problems in graphs to polygonal drawing
problems on the plane. First, we observe why it is so hard to
optimally solve these problems. Then, we go over to attack
them anyway. We develop fast algorithms that find approxi-
mate solutions that are very close to the optimal ones. Hence,
connecting points with slightly more ink is not hard.

N
et

w
or

k-
D

es
ig

n
P

ro
b

le
m

s
in

 G
ra

p
h

s
an

d
 o

n
th

e
P

la
ne

K
rz

ys
zt

of
 F

le
sz

ar

Krzysztof Fleszar

Network-Design Problems in
Graphs and on the Plane

Würzburg University Press

ISBN 978-3-95826-076-4

Krzysztof Fleszar

Network-Design Problems in Graphs and on the Plane

Krzysztof Fleszar

Network-Design Problems in
Graphs and on the Plane

Dissertation, Julius-Maximilians-Universität Würzburg
Fakultät für Mathematik und Informatik, 2016
Gutachter: Dr. habil. Joachim Spoerhase, Prof. Dr. Alexander Wolff, Dr. habil. Jarosław Byrka

Impressum

Julius-Maximilians-Universität Würzburg
Würzburg University Press
Universitätsbibliothek Würzburg
Am Hubland
D-97074 Würzburg
www.wup.uni-wuerzburg.de

© 2018 Würzburg University Press
Print on Demand

Coverdesign: Jule Petzold
Coveridee: Krzysztof Fleszar

ISBN 978-3-95826-076-4 (print)
ISBN 978-3-95826-077-1 (online)
URN urn:nbn:de:bvb:20-opus-154904

Except otherwise noted, this document—excluding the cover—is licensed under the
Creative Commons License Attribution-ShareAlike 4.0 International (CC BY-SA 4.0):
https://creativecommons.org/licenses/by-sa/4.0/

The cover page is licensed under the Creative Commons License
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0):
https://creativecommons.org/licenses/by-nc-nd/4.0/

0Acknowledgments

I am very grateful to Joachim Spoerhase who led me into the intriguing field of approximation

algorithms. It is a pleasure to work with him in this exciting area. I profited a lot from his

expertise and his supervision.

I would also like to thank Alexander (Sascha) Wolff for offering me place in his group. He

has always been very encouraging and helpful. His many good and practical advices as well as

the extremely friendly atmosphere at the chair were very supporting when writing this thesis.

I thank my colleagues and my present and former collaborators Antonios Antoniadis,

Sergey Bereg, Benedikt Budig, Jarosław Byrka, Steven Chaplick, Timothy M. Chan, Aparna

Das, Thomas van Dijk, William S. Evans, Martin Fink, Christian Glaßer, Jan-Henrik Haunert,

Ruben Hoeksma, Sigrid Keller, Philipp Kindermann, Stephen Kobourov, Fabian Lipp, Andre

Löffler, Matthias Mnich, Dongliang Peng, Sergey Pupyrev, Alexander Ravsky, Christian

Reitwießner, Bartek Rybicki, Noushin Saeedi, Kevin Schewior, Nadine Schwartges, Chansu

Shin, José Soto, Sankar Veeramoni, Oleg Verbitsky and Maximilian Witek.

I further thank Jarosław Byrka, Kurt Mehlhorn, Chansu Shin and José Soto for my sci-

entific stays in their groups, which gave me a lot of important experiences and opened new

perspectives.

Finally, my thanks go to my family and my friends on whom I could always rely, especially

to my wonderful wife for helping me polishing this book.

Krzysztof Fleszar

0Preface
Networks such as road networks, public transport networks, supply networks, social networks,

or computer networks play an ubiquitous role in our everyday life. Therefore, designing
a network so that it meets the requirements for a specific range of use is a crucial task.

The increasing size of networks call for automation of the design task by means of efficient

algorithms.
In the research communities of algorithms theory and discrete optimization, a network is

usually modeled in a graph-theoretic way by means of nodes that are connected via edges

(links). A network design problem is concerned with finding a substructure in a given graph

that meets certain mathematically defined requirements (such as connectivity) and that

optimizes a certain objective function (such as cost).

In this thesis, Krzysztof Fleszar investigates several fundamental optimization problems

in network design or closely related subjects (such as facility location). He makes progress

or sheds new light on some of the central algorithmic questions related to these problems

that have puzzled researchers in the algorithms and theory communities in the last years.

Exemplarily, let me refer to the new results on the approximability of the capacitated k-
median problem and the edge-disjoint paths problem that he developed in joint work with his

coauthors. Additionally, Krzysztof Fleszar studies several new, interesting problems that arise

in geometric network design or graph drawing where nodes are points on the plane and where

edges are represented by line segments, polygonal chains, or more generally by Jordan curves.

It was a pleasure for me to supervise Krzysztof Fleszar’s doctoral studies and to work

together with him on some of the questions investigated in this thesis. I am convinced that

some of the results or new problems proposed in this thesis will (and in parts they already

have) inspire future researches and lead to new insights in the field of network design or more

generally of discrete algorithms.

Joachim Spoerhase

Chair I – Algorithms, Complexity, and Knowledge-Based Systems

Institute of Computer Science

University of Würzburg

Germany

0Contents
Acknowledgments v

Preface vii

Contents xi

1 Introduction 1
1.1 Outline of the Book . 3

1.1.1 Problems in Graphs . 4
1.1.2 Problems on the Plane . 5

2 Preliminaries 9
2.1 Mathematical Notation . 9
2.2 Complexity . 10

2.2.1 Algorithmic Model and Run Time . 10
2.2.2 Problem Types, Complexity Classes, and Approximation 11
2.2.3 Reducibility and Hardness . 13

2.3 Graphs . 15

I Problems in Graphs 19

3 New Algorithms for MaximumDisjoint Paths Based on Tree-Likeness 21
3.1 Introduction . 21

3.1.1 Motivation and Contribution . 22
3.2 Preliminaries . 26
3.3 Bi-Criteria Approximation for MaxEDP with Low Congestion 28

3.3.1 Algorithm . 28
3.3.2 Analysis . 29

3.4 Refined Approximation Bound for MaxEDP . 33
3.4.1 Irreducible Routings with Low Congestion 33
3.4.2 Approximation Algorithm . 34

3.5 Fixed-Parameter Algorithm for MaxNDP . 36
3.5.1 Dynamic Programming Table . 37
3.5.2 Analysis . 40
3.5.3 Reconstruction of an Optimal Routing 40

3.6 Parameterized Intractability of MaxNDP for the Parameter r 41
3.7 Hardness of Edge-Disjoint Paths in Almost-Forests 44
3.8 Concluding Remarks . 45

4 Approximating Hard-Capacitated k-Facility Location Problems 47
4.1 Introduction . 47
4.2 Star Clusters and Star Instances . 50

4.2.1 The Dependent Rounding Approach 62
4.3 Algorithm for Uniform Hard-Capacitated k-Facility Location 64

4.3.1 Constructing a Star Forest . 64
4.3.2 Solving a Star Forest . 69

4.4 Algorithm for Non-uniform Hard-Capacitated k-Median 79
4.4.1 Obtaining a [1/2, 1]-Solution with Capacity Violations 80
4.4.2 Computing a Weak {1/2, 1}-Solution 84
4.4.3 Rounding a Weak {1/2, 1}-Solution ŷ to an Integral Solution ȳ . . . 85

4.5 Concluding Remarks and Open Questions . 89

II Problems on the Plane 91

5 Stabbing Rectangles by Line Segments 93
5.1 Introduction . 93
5.2 Structural Properties and Applicability of Existing Techniques 96

5.2.1 Greedy Algorithm for Set Cover . 96
5.2.2 Relation to Piercing . 98

5.3 A Constant-Factor Approximation Algorithm for Stabbing 101
5.3.1 Set Cover and Linear Programming 101
5.3.2 Shallow-Cell Complexity . 102
5.3.3 Decomposition Lemma for Set Cover 103
5.3.4 x-Laminar Instances . 104
5.3.5 Decomposing General Instances into Laminar Instances 104

5.4 Further Applications of the Decomposition Lemma 105
5.5 NP-Hardness of Stabbing . 106
5.6 APX-Hardness of Cardinality and Constrained Stabbing 111
5.7 Conclusion . 114

6 Colored Non-Crossing Euclidean Steiner Forest 117
6.1 Introduction . 117
6.2 Algorithms for k-CESF . 120
6.3 PTAS for 2-CESF . 123
6.4 Algorithm for 3-CESF . 128
6.5 Conclusion . 133

7 Minimum Rectilinear Polygons for Given Angle Sequences 135
7.1 Introduction . 135
7.2 NP-Hardness of the General Case . 138

7.2.1 NP-Hardness of FitBoundingBox . 138
7.2.2 Extension to the Optimization Versions 151

7.3 The Monotone Case: Minimum Area . 164

x

7.3.1 The xy-Monotone Case . 165
7.3.2 The x-Monotone Case . 178

7.4 The Monotone Case: Minimum Perimeter . 183
7.4.1 The xy-Monotone Case . 185
7.4.2 The x-Monotone Case . 187

7.5 Conclusion . 188

Open Problems 189

Bibliography 193

xi

1 Introduction

Given a number of points in the plane, connect them using minimum ink. Though the task

is simple to describe and easy to understand, it turns out to be very time consuming in the

presence of many points. If one thinks about the problem for a while, one will come to the

conclusion that any minimum drawing consists only of straight line segments between the

given points and some newly added points. One will even observe that such a drawing has

a simple and beautiful structure. However, the number of candidate drawings having this

structure is so high that it takes impracticably long to go through all of them and pick a

minimum one. As a matter of fact, one would settle the most prominent and important open

problem in computer science, on whether P = NP, if one could describe a procedure to find

such a minimum drawing in reasonable time. In other words, the task of finding such a

minimum drawing is an NP-hard problem. Also better known as Euclidean Steiner Tree,

it is a classic example of a geometric network design problem, carrying all the essence of

this class of problems: luring with its simple and natural formulation and offering relentless

resistance when directly approached. These problems emerge in many areas ranging from

the construction of telecommunication and transportation networks to the design of circuit

layouts of computer chips.

In general, network design problems are not constrained to points lying in the plane, but

consist of abstract nodes with a predefined relationship among them. For instance, consider

social networks where the nodes are persons and two nodes form an edge if they are friends.
Or consider a model of a computer network where clients and routers are represented by

nodes, and two nodes have an edge if there is a direct connection between them. Here, two

nodes are said to be connected if there is a path in the graph connecting them. An often stated

task in this context is: Given a graph where some nodes are marked, select a minimum subset of
the edges that connects all marked nodes. This problem, a special variant of Steiner Tree in

Graphs, does not only resemble Euclidean Steiner Tree but is equivalent to it in terms of

hardness.

Since most network design problems appearing in the real world are NP-hard, there is
little hope to obtain an algorithm that is exact and efficient at the same time. Therefore,

theoreticians usually embark on one of the following three approaches to tackle them.

(i) To consider special constrained variants that allow efficient exact algorithms. For

instance, we could consider the special case of Euclidean Steiner Tree where we

only allow to draw straight line segments between the input points. This variant,

known as Euclidean Minimum Spanning Tree, is solvable in Θ(n log n) time

where n is the number of input points [Kru56]1.

(ii) To consider efficient algorithms that approximate an optimum solution. Such ap-

proximation algorithms look for a “good” solution whose cost is guaranteed to lie

1 Compute a so-called Delaunay triangulation and run Kruskal’s [Kru56] algorithm on the obtained planar graph

by using the Euclidean distance for edge weights.

Chapter 1 Introduction

within a factor of the optimum objective. For example, there is the following triv-

ial α-approximation algorithm for Euclidean Steiner Tree that computes, for

any instance, a solution that uses at most α times more ink than an optimum solu-

tion. The algorithm simply computes an Euclidean minimum spanning tree (MST)

which is always a feasible solution to Euclidean Steiner Tree. Since the ratio

between an MST and a minimum Euclidean Steiner tree is bounded from above

by 1.21 [CG85], we have α = 1.21. We call the factor α the approximation ratio of the
algorithm. Euclidean Steiner Tree even admits a (1 + ε)-approximation algorithm

for any positive constant ε [Aro98].

(iii) To consider exact algorithms with exponential run time thereby either keeping the

exponent in the run time as low as possible or expressing the run time in depen-

dence of the “complexity” of the input. We call the latter algorithms fixed-parameter
tractable (FPT) if their run time is polynomial for constant parameters. For instance,

Steiner Tree inGraphs admits an FPT algorithm running in time 2k ⋅ nO(1) where k
is the number of marked nodes and n the number of all nodes [CFK+15].

In this book, we will consider problems related to network design that belong to one of

the following categories.

SpanningTrees. All three problemsmentioned above, Euclidean Steiner Tree, Steiner

Tree in Graphs, and Euclidean Minimum Spanning Tree, belong to this category. Given

points in a metric space or nodes in a weighted graph, connect them while optimizing some

objective function. The goal is not always to minimize the total length. For instance, when

designing a computer network, one might be interested in keeping the maximum latency

as low as possible while respecting the budget. Translated as a graph problem, one would

like to obtain a spanning subgraph where the maximum distance between any two nodes

is minimized while the weight of the subgraph is below some threshold. Many variants of

spanning tree problems occur in practical settings. For instance, the rectilinear version of

Euclidean Steiner Tree is important for VLSI circuits. In this book, we will consider a

generalization of Euclidean Steiner Tree.

Flow problems. Here, we are given a graph where some nodes are called sources and sinks.

Our goal is to send some flow from the sources to the sinks, where a flow is a set of weighted

paths that connect sources to sinks. Each edge has an orientation and a fixed capacity that

bounds from above the total amount of flow using this edge. In the Minimum Edge-Cost

Flow problem, we are given only one source and sink, but we have to pay an individual fee

for each edge used by any flow path. Our goal is to send a flow of minimum cost such that the

flow value is above some threshold. The NP-hard problem becomes efficiently solvable if the

capacities have value 1. However, the problem gets NP-hard again if we only allow flow paths

of unit weight between prescribed pairs of sources and sinks; even when all edges have cost 0.

In that case, the hardness lies in deciding whether a certain number of disjoint paths between

some given pairs of points exists. In this book, we will examine the optimization versions of

such problems in more detail.

2

Outline of the Book Section 1.1

Facility Location Problems. Problems of this group consist in general of two tasks. First,

one has to open facilities on a subset of given locations. Secondly, one has to assign clients

to open facilities. Facility location problems have a strong motivation in many real world

applications and therefore attract considerable attention. Think for instance of opening a fixed

number of fire departments on strategic locations such that the maximum distance a fire truck

has to travel is minimized. For most facility location problems, the task of assigning the clients

to facilities is easy to accomplish once the open facilities are given. The hardness lies in the right

choice of where to open facilities. For problems of this group, various optimization criteria

have been considered. Themost prominent of these problem is the classic Facility Location

problem. Here, the objective is to minimize the sum of two cost functions that depend on

the outcome of both tasks: the total cost of opening facilities and the total connection cost of

the clients to the facilities they are assigned to. Hence, the first cost urges us to open as few

facilities as possible, whereas the second cost pushes us in the contrary direction. Another

interesting variant is k-Median. Here, only the connection cost of the clients to the facilities

has to be minimized. The facilities are open for free, however we are only allowed to open a

given number of them. In this book, we will study a variant where each facility has a capacity,

that is, an upper bound on the number of clients it can serve.

GraphDrawing. In many applications, from linguistics over cartography to bioinformatics,

information is represented by means of relationships in graphs and networks. To make such

data amenable to humans, graphs must be visualized such that the desired information can be

extracted easily. Think of octilinear plans for metro and bus systems, of diagrams modeling

object relationships in software engineering, or of sociograms visualizing social networks.

Mostly, the graphs are drawn in the Euclidean plane by representing the edges by curves and

the nodes by some geometric objects. Depending on the application, different optimization

criteria are applied, but most of them attach importance to the aspect of comprehension:

Minimizing the number of crossings to reduce the “visual clutter”, maximizing the symmetry

to make the graph easier to grasp, or limiting the number of bends on any edge so that the

eyes can follow them smoothly. In this book, we consider a simple network, a cycle with edge

constraints, that we want to draw as compact as possible; an algorithmically challenging task

as we will see.

There are more problem categories related to network design for example, the category of

routing problems that contains the prominent Traveling Salesman problem.

1.1 Outline of the Book

In this book, we study five problems from different areas of network design that will permit

us to take a wide look on the broad field of network design problems. We can roughly classify

our problems into two categories, problems on graphs and problems in the plane. On one

hand, we will consider well-studied problems for which we obtain new results, on the other

hand, we pose new natural questions that turn out to be difficult and intriguing. In addition,

special variants of the five problems will be considered.

3

Chapter 1 Introduction

In most cases, we will develop approximation algorithms and, for some problems, we

will simultaneously optimize two criteria. We will also obtain an FPT algorithm and we will

exactly solve some special cases of our problems in polynomial time. The techniques applied

will demonstrate various ways to round linear program (LP) relaxations. They will also involve

dynamic programming in the context of exact, FPT and approximation algorithms. For some

problems, we will also discuss their hardness and inapproximability.

The two categories of our problems are reflected in the structure of this book. In the first

part, we consider two classic problems defined on graphs. In the second part, we examine

new or recently-defined problems in the plane. Some essential notation will be explained in

Chapter 2. At the end, in Chapter 7, we give a short summary of the obtained results and pose

open questions.

1.1.1 Problems in Graphs

In Part I of the book, we consider network design problems related to graphs. We will make

use of flow formulations and graph contraction. Our main technical tool will be based on

rounding LP relaxations.

Disjoint Connecting Paths. In Chapter 3, we examine two classical NP-hard flow prob-

lems, Maximum Edge Disjoint Paths (MaxEDP) and Maximum Node Disjoint Paths

(MaxNDP). In both, we are given a graph of n nodes and a pairing of the nodes into k terminal

pairs. For as many pairs as possible, we want to find paths connecting them such that each

path connects only one pair and all paths are pairwise disjoint. Thereby, the definition of

disjointness is the only difference in the formulation of the two problems. In MaxEDP, the

selected paths are not allowed to go through a same edge, but they may share same nodes, in

MaxNDP, the latter is not allowed.

Although being classic problems, their approximability is not well understood and there

is a big gap between the best known approximation ratio and the best known lower bound.

However, if one simplifies the instance and consider graphs that are trees (which are graphs

that do not contain any paths that form cycles), then the problems become efficiently solvable.

We tackle the two problems by considering a parameter that measures how “far” the

input graph is from being a tree. For this, we use the feedback vertex set number, which is

the minimum number of nodes that one needs to remove from a graph until it becomes a

tree. Our focus on the feedback vertex set number allows us to develop new algorithms with

guaranteed bounds related to this parameter. As a consequence, we strengthen best known

fundamental results for MaxEDP. In particular, we obtain two approximation algorithms

where one of them is a bi-criteria algorithm allowing a bounded violation on the disjointness.

Our main technical tools comprise a rounding procedure for multi-commodity flow LP

solutions and the application of edge contractions to redundant edges. For MaxNDP, we

show that, under reasonable complexity-theoretic assumptions, there is no FPT algorithm

parametrized by the feedback vertex set number. However, we succeed in developing an FPT

algorithm by combining the feedback vertex set number and the number of terminal pairs

into one parameter.

The chapter is based on joint work with Matthias Mnich and Joachim Spoerhase [FMS18].

4

Outline of the Book Section 1.1

Capacitated Facility Location. In Chapter 4, we consider capacitated k-Facility Loca-
tion, which is a generalization of the two problems Facility Location and k-Median that

we have briefly mentioned before. We are given a set of facility locations and a set of clients.

Both lie in a single metric space. We are also given an upper bound k on the number of

facilities that we are allowed to open. Furthermore, each facility location has an individual

opening cost and an individual capacity, where the capacity is an upper bound on the number

of clients that the facility can serve. A feasible solution opens at most k facilities and assigns

each client to a facility such that all capacities are respected. The goal is to find a feasible

solution of minimum cost where the cost is the sum of the total opening cost and the total

connection cost.

Facility Location as well as k-Median are well-understood problems, however, the

capacitated variant of k-Median has been resistant to many algorithmic approaches and for a

long time little progress has been made. The only successful approach has been to round linear

program relaxations. However, using the known linear program relaxations, one is forced

to relax some constraints in order to obtain a bounded approximation ratio. The main two

approaches are to open a few facilities more than allowed, or to slightly violate the capacities.

In this book, we choose the latter approach and allow to open at most k facilities. Even more,

we consider the hard-capacitated variant where at most one facility can be build on a location.

Note that this constraint makes the problem even more general, as the input can specify

multiple distinct locations having the same distance values in the metric.

We present the first constant-factor algorithms for hard-capacitated k-Median and hard-

capacitated k-Facility Location where only capacities are violated. For the former problem,

we consider arbitrary capacities and manage to bound the capacity violation by a factor of 3.

For the latter problem, we consider uniform capacities but allow arbitrary opening. We obtain

a bound of 2 on the capacity violation, which is the best-possible value when using the natural

LP relaxation.

Both algorithms begin with the same step of computing a solution to an LP relaxation.

They use the solution to select a subset of the clients as a backbone of a larger network defined

over the facilities and the clients. These networks eventually allow the algorithms to distribute

all clients among all facilities such that the capacity violation and the total cost is low.

This chapter is based on joint work with Jarosław Byrka, Bartosz Rybicki and Joachim

Spoerhase [BFRS15].

1.1.2 Problems on the Plane

In Part II of the book, we consider network design problems related to the Euclidean plane. Be-

sides the usage of LP formulations, we will see various dynamic programs that take advantage

of the underlying geometry.

StabbingRectangleswithLineSegments. InChapter 5, we initiate the study of a natural

geometric optimization problem that we call Stabbing. We are given pairs of vertical line

segments in the plane and we want to connect each pair via a horizontal line segment. The

goal is to minimize the total length of all horizontal line segments. In contrast to MaxNDP

and MaxEDP, we do not require disjointness of the connectors, which would make the

problem trivial, but we allow horizontal line segments to connect multiple pairs. As we will

5

Chapter 1 Introduction

see in Chapter 5, the problem can be motivated by a resource allocation problem. It also has

applications in batch processing [FJQS08] and geometric network design [DFK+18]. In some

sense, Stabbing can be seen as a geometric flow problem where the flow paths correspond to

horizontal line segments. To the best of our knowledge, this natural problem has not been

considered in its generality in setting of line segments so far.

In this book, we will focus on an equivalent definition of Stabbing: We are given axis

aligned rectangles in the plane and we want to stab all rectangles by horizontal line segments

of total minimum length. A rectangle is stabbed by a horizontal line segment if the line

segment connects the vertical edges of the rectangle. We show that the problem is NP-hard,
and evenAPX-hard if the input prescribes a candidate set for the horizontal line segments. We

discuss various techniques and approaches that on first glance seem to fail. But thenwe observe

some structural properties of a special variant of the problem that immediately imply, by some

known results, a constant-factor approximation algorithm. By showing that Stabbing can be

decomposed to this special variant, we obtain a constant-factor approximation algorithm also

for the general case.

This chapter is based on joint work with Timothy Chan, Thomas C. van Dijk, Joachim

Spoerhase and Alexander Wolff [CvDF+18].

Colored Steiner Problem. In Euclidean Steiner Tree, the task is to connect all points

in the plane with a tree of minimum total length. In Chapter 6, we define the following natural

generalization, which, in some sense, is also a geometric version of MaxNDP/MaxEDP.

Given a set of k-colored points in the plane, find k trees such that each tree connects all points
of one color class, no two trees cross, and the total edge length of the trees is minimized. Note

that this problem, which we call k-Colored Non-Crossing Euclidean Steiner Forest, is

equivalent to Euclidean Steiner Tree if k = 1.
We obtain the following results. For k = 2, we present a polynomial-time approximation

scheme (PTAS), meaning that, for any fixed positive ε, there is an (1 + ε)-approximation

algorithm. We achieve our algorithm by substantially modifying Arora’s PTAS for Euclidean

Steiner Tree [Aro98] that is based on dynamic programming. Building upon this result,

we obtain an approximation algorithm with the slightly worse ratio (5/3 + ε) for k = 3. For
general k, we develop two approximation algorithms thatmake use of the geometry in different

ways.

This chapter is based on joint work with Sergey Bereg, Philipp Kindermann, Sergey

Pupyrev, Joachim Spoerhase and Alexander Wolff [BFK+15].

Drawing Rectilinear Polygons for Given Angle Sequences. Eventually, in Chapter 7,

we examine an interesting and natural problem that has been formulated only recently:

Minimum Rectilinear Polygon for Given Angle Sequence. Here, we are given a simple
rectilinear polygon where the edges connecting adjacent points are axis parallel and non-

crossing. The task is to find a better drawing of the polygon such that some natural criterion

is minimized. The only freedom that we have is to vary the edge lengths between the points

under the restriction that all points lie on the integer grid. The angles between consecutive

edges may not change and no crossings are allowed. Therefore, we can interpret the problem

6

Outline of the Book Section 1.1

also as follows: Given a sequence of left and right turns, draw a rectilinear polygon on the

integer grid minimizing the respective objective.

In this book, we will consider the following three objectives that are related to compactness:

Minimizing the perimeter, the area, and the area of the bounding box of the polygon. First, we

show that all three problems are NP-hard. Then we focus on the special cases of x-monotone

and xy-monotone rectilinear polygons. By using their geometric structure, we obtain efficient

algorithms based on dynamic programming.

This chapter is based on joint work with William S. Evans, Philipp Kindermann, Noushin

Saeedi, Chan-Su Shin and Alexander Wolff [EFK+16].

7

2 Preliminaries

Before we begin our study on network design problems, we briefly recall some general notions

that will be used within this book. The goal of this section is not to give a complete overview

on the basics in computer science and graph theory but rather to fix some terminology that

sometimes is defined in different ways or not commonly known.

For more details on the topics covered in this book, we refer to the following textbooks.

Introduction to Algorithms by Cormen et al. [CLRS09] gives an introduction to basics in

computer science and algorithms. For a deeper understanding of approximation algorithms

and the application of linear programming in this field, we refer the reader to Approximation
Algorithms by Vazirani [Vaz10] and toThe Design of Approximation Algorithms by Williamson

and Shmoys [WS11]. Parameterized Complexity Theory by Flum and Grohe [FG06] as well as

the recently published textbook Parameterized Algorithms by Cygan et al. [CFK+15] introduce

to the relatively young field of fixed-parameter algorithms. Fundamentals on computational

complexity can be found in Computational Complexity by Papadimitriou [Pap94] and Compu-
tational Complexity: A Modern Approach by Arora and Barak [AB09]. More details on graph

theory and graph drawing can be found in Introduction to Graph Theory by Trudeau [Tru93]

and in the Handbook of Graph Drawing and Visualization edited by Tamassia [Tam16], respec-

tively.

2.1 Mathematical Notation

Numbers and Vectors. We use Z, Q and R to denote sets of integer, rational and real

numbers, respectively. The superscript ≥ 0 restricts the sets to non-negative numbers; we

define N = Z≥0. If not stated differently, all numerical values throughout this book belong

toQ. For x ∈ R, we define ⌊x⌋ = max{z ∈ Z ∣ z ≤ x} and ⌈x⌉ = min{z ∈ Z ∣ z ≥ x}.
Vectors will be denoted by bold variables and their components will be written, using the

same variable, in italic. For example, x is a vector and x1 is its first component.

Chernoff bound. We will apply the following multiplicative forms of the Chernoff bound.
Let X be the sum of some random variables taking values in {0, 1} and let µ = E [X]. The

Chernoff bound states that

P [X ≥ (1 + δ)µ] < (eδ

(1 + δ)1+δ)
µ

(2.1)

holds for any positive δ ∈ R, and

P [X ≤ (1 − δ)µ] ≤ e−
µδ2
2 (2.2)

holds for 0 < δ < 1.

Chapter 2 Preliminaries

Big-O Notation and Functions. Throughout the book, we will interpret the standard

asymptotic notationsO, o, Ω, ω, and Θ, as sets of functions.

Definition 2.1. For functions f , д∶Q≥0 → R≥0,

(i) f ∈ O(д) if and only if there is a constant c with f (n) ≤ cд(n) for every n with n ≥ c,

(ii) f ∈ Ω(д) if and only if д ∈ O(f),

(iii) f ∈ Θ(д) if and only if f ∈ O(д) and f ∈ Ω(д),

(iv) f ∈ o(д) if and only if f ∈ O(д) and f /∈ Ω(д), and

(v) f ∈ ω(д) if and only if д ∈ o(f).

Following Knuth [Knu76], we use arithmetic operations appropriately in the context of

asymptotic notations. Functions in such expressions will be interpreted as singleton sets and

the arithmetic operations as elementwise operations on the sets. For instance,

log n ⋅ O(n2) +
√
n + 2O(1/n)

is the function set

{log n ⋅ f (n) +
√
n + 2д(n) ∣ f ∈ O(n2), д ∈ O(1/n)} .

Furthermore, we redefine the equality symbol, =, as a one-way relation when used for

expressions in the context of asymptotic notations: Given two such expressions E and F
satisfying E ⊆ F, we say E is F and write E = F. For instance, n2 = O(n3). Note that this
relation is transitive but not symmetric.

We use the following abbreviations. We let polylog denote the set of all polylogarithmic

functions, that is,

polylog = {p ○ log ∣ p is a polynomial} ,
and, for any function f ∶Q≥0 → R≥0, we let Õ(f) denote the set polylog ⋅O(f).

2.2 Complexity
We fix our algorithmic computation model and recall some basics in complexity theory.

2.2.1 Algorithmic Model and Run Time

For our algorithms, we will use the algorithmic model of the random access machine (RAM)

operating on registers attaining rational values and allowing only elementary arithmetic

operations. The input and output consists of a sequence of rational numbers, each number

occupying some well-defined register.

We define the size of a rational number r as the length of its encoding as a bit string and

we let ∣r∣s denote it. More specifically, we set ∣r∣s = 1 + ⌈log(∣p∣ + 1)⌉ + ⌈log q⌉ where r = p/q
for two integers p, q with greatest common divisor 1 and q ≥ 1. Analogously, we define the

10

Complexity Section 2.2

size of the input as the total size of all the numbers it contains, that is, as the sum of their

sizes. Each single operation performed by the RAM consists of a number of steps which

depends on the operation and the sizes of the numbers involved. In the unit-cost RAM, each

operation consists of one step, whereas, in the logarithmic-cost RAM, the number of steps of

an operation is defined as the total size of the numbers involved.

In this book, we consider only algorithms that terminate. We define run time as follows.
The run time of an algorithm is a function that, given an integer n ∈ Z≥0, outputs the smallest

upper bound on the total number of steps after which the algorithm terminates on every

input of size n. In an analogous way, we define the space consumption (for short, space) of
an algorithm as a function that upper bounds the total size of all numbers stored in the

registers at any step over all inputs of the same size. We call a run time function f constant,
linear, polynomial or exponential if f ∈ O(д) where д is a constant or a linear, polynomial

or exponential function, respectively. Further, we call an algorithm efficient if its run time

is polynomial. In our discussions, we will be more interested in the asymptotic behavior of

the run-time and the space consumption than their precise formulations. Therefore, we will

mainly use asymptotic notations.

Recall that a unit-cost RAM runs each operation in one step, independently of the sizes of

the numbers involved. Thus, it is more convenient to analyze the run time on this model than

on models taking the number sizes into account. However, the run time analyzed on a unit-

cost RAMmay be asymptotically smaller than on amore realistic computational model like the

logarithmic-cost RAM. For example, the algorithm repeating n times the operation a = a ⋅ a
has run time Ω(2n) on a logarithmic-cost RAM but needs only O(n) time on a unit-cost

RAM. Therefore, it is preferred to provide run time bounds based on the logarithmic-cost

RAM. In the algorithms we consider, the sizes of all number are always bounded from above

by a polynomial in the input size. Thus, up to logarithmic factors, both RAMmodels yield

asymptotically equivalent run times for these algorithms. On account of this, we will analyze

our algorithms implicitly assuming the unit-cost RAMmodel.

2.2.2 Problem Types, Complexity Classes, and Approximation

In this book, we will develop algorithms or discuss the hardness of finding algorithms for

optimization, decision and fixed-parameter tractable problems. Among other properties, a

problem always defines a countable set of instances and a task. An instance π is encoded as a

sequence over a finite alphabet. Its size ∣π∣s is the length of the sequence.

For example, an instance of Euclidean Steiner Tree is a description of a finite point

set lying in the plane. The description could be a sequence of x and y-coordinates of the
points in binary encoding. Throughout the book, we will not discuss the details of encoding

an instance but rather see an instance as a sequence of rational number or other objects.

An algorithm for a problem is an algorithm that solves the task for every instance of the

problem. For a run time function f , we say that a problem is solvable in time O(f) if there is
an algorithm for the problem with run time O(f).

Optimization Problems. An optimization problems is either a minimization or maxi-

mization problem. Besides a set of instances, an optimization problem also defines, for each

instance, a set of feasible solutions. It also defines an objective function that maps each solution

11

Chapter 2 Preliminaries

to a rational number, called the objective value. An optimum solution is defined as a feasible

solution with the optimum objective value. For minimization problems, the objective value

is optimum if there is no other feasible solution with smaller objective value. Similarly, for

maximization problems, the objective value is optimum if there is no feasible solution with

larger objective value.

The algorithmic task for an optimization problem is to find an optimum solution to a given

instance. For example, Euclidean Steiner Tree asks for a drawing of minimum total length.

Note that any drawing connecting the input points is a feasible solution for this problem.

Decision Problems. For problems in this group, the set of instances is partitioned into

yes-instances and no-instances. The algorithmic task is to decide whether a given instance is

a yes-instance. Hence, there is only one solution to each instance and it consists of the right

answer.

Every optimization problem can be transformed into a decision problem in a straight-way

manner. For example, consider a minimization problem with a set Π of instances. For the

corresponding decision problem, we define {(π, k) ∣ π ∈ Π, k ∈ Q} as the set Π′ of instances.
To this end, we call an instance (π, k) ∈ Π′ a yes-instance if the optimum objective value for π
is bounded from above by k. For example, in the decision version of Euclidean Steiner

Tree, an instance describes a finite number of points in the plane and specifies a value k. The

task is to decide whether there exists a drawing of length at most k connecting all points.

Fixed-Parameter Tractable Problems. A parametrized problem is a decision problem

where each instance contains a parameter, which is a numerical value. A fixed-parameter
tractable problem is solvable in time f (k) ⋅ nO(1) where f is any computable function and k
is the parameter of the instance. We call an algorithm solving a fixed-parametrized problem

in this time bound a fixed-parameter (FPT) algorithm.

For example, we can define the parametrized version of Steiner Tree in Graphs by

defining the parameter as the number k of terminals (marked nodes). As we have seen in the

introduction, the problem is solvable in 2k ⋅ nO(1) time [CFK+15], hence, it is fixed-parameter

tractable.

Complexity Classes. A complexity class is a class of decisions problems that can be solved

using the same resource, for example, run time or space. Of central importance for this

book are the run-time complexity classes P and NP. The class P consists of all decision

problems that are solvable in polynomial time. On the other hand, the class NP consists of all

decision problems for which each yes-instance has an efficiently checkable ‘proof ’ that it is a

yes-instance. More formally, let A be a decision problem and let ΠA denote its instance set. It

holds that A is in NP if and only if there exist a polynomial p and a decision problem B ∈ P
such that its instance set ΠB is a subset of

{(π, k) ∣ π ∈ ΠA, k ∈ Z, ∣k∣s ≤ p(∣π∣s)}

and, for every π ∈ ΠA, there is a k (‘a proof for π’) such that (π, k) ∈ ΠB .

Clearly, P is a subset of NP. The famous question of whether P = NP is one of the most

important open problems in computer science. Since most theoreticians believe that the two

12

Complexity Section 2.2

classes are different [Gas12], many results are based on the assumption that P is a proper

subset of NP. Also the results in this book will mainly build upon this conjecture.

Approximation Algorithms. For most of the optimization problems considered in the

next chapters, efficient algorithms are believed to be unlikely as their existence would im-

ply P = NP. Therefore, we will consider efficient algorithms that do not look for optimum

solutions, though they may find them, but algorithms that compute any feasible solution

whose objective value is close to the optimum one.

We call such an algorithm an approximation algorithm for the respective problem and we

define the closeness by means of an approximation ratiowhich is a function mapping the input

instances to the reals. In most cases of this book, an approximation ratio will be a constant or

a function of the input size and some parameters. Let A be a minimization problem and let α
be an approximation ratio defined on the instances of A. An approximation algorithm for A
has approximation ratio α, if, for any instance π of the problem, the inequality

α(π) ≥ ALG

OPT

holds where ALG is the objective value of the solution to π produced by the algorithm

and OPT is the optimum objective value for π. If A is a maximization problem, we define the

approximation ratio analogously with the inequality

α(π) ≥ OPT

ALG
.

We call the solution computed by an α-approximation algorithm an approximation as well as

an α-approximation. An algorithm with approximation ratio α is also called an α-approxi-
mation algorithm.

A polynomial-time approximation scheme (PTAS) for an optimization problem A is an

efficient algorithm that, given an instance of A and a positive constant ε, returns a (1 + ε)-
approximation for A.

RandomizedAlgorithms. Some of our approximation algorithms will be also randomized.
A randomized algorithm has access to an oracle, that uniformly at random returns 0 or 1 in

constant time. The algorithm can use these values to make choices independent of the input.

The performance of such algorithms, for example its running time or approximation ratio, is

then expressed by a random variable. When analyzing such algorithms, we will determine the

expected values of such variables or provide bounds for the variables that hold with constant

probability.

2.2.3 Reducibility and Hardness

A reduction transforms an instance π of one problem A into an instance π′ of another prob-
lem B in such a way that a solution to π′ can be used to obtain a solution to π. The intuition

behind a reduction is to show that B is at least as “hard” as A. If there is a reduction from A

13

Chapter 2 Preliminaries

to B, we also say that A can be reduced to B. Depending on the types of problems, we define a

reduction as follows.

(1) Let A and B be two decision problems. A reduction from A to B is an efficient

algorithm that, given an instance π of A, computes an instance π′ of B such that π is a

yes-instance of A if and only if π′ is a yes-instance of B.

(2) Let A and B be two parametrized problems. A reduction from A to B is an algorithm

that, given an instance π of Awith parameter k, computes an instance π′ of B with

parameter k′ such that

(i) π is a yes-instance of A if and only if π′ is a yes-instance of B,
(ii) k′ ≤ д(k) for some computable function д, and
(iii) the run time is f (k) ⋅ nO(1) for some computable function f .

Such a reduction is called an FPT-reduction.

(3) Let A and B be two optimization problems. A reduction from A to B consists of two

positive constants α and β and two efficiently computable functions f and д such
that:

(i) If π is an instance of A, then f (π) is an instance of B,
(ii) if s is a solution to f (π), then д(s) is a solution to π,
(iii) for the optimumobjective valuesOPTA(π) andOPTB(f (π)) of the instances π

and f (π), respectively, we have

OPTB(f (π)) ≤ α ⋅OPTA(π) ,

and

(iv) for the objective values cost(s) of s and cost(д(s)) of д(s) we have

∣cost(д(s)) −OPTA(π)∣ ≤ β ⋅ ∣cost(s) −OPTB(f (π))∣ .

Such a reduction is called an L-reduction (linear reduction) [PY91]. A nice property is

that it implies a PTAS for problem A if there is a PTAS for problem B.

We call a problem hard for some complexity class A if it is at least as “hard” as every

problem belonging toA. If there is a complexity class B that is a proper subset ofA, then a

problem that isA-hard does not belong to B. For example, if P ⊊ NP is true, then efficient

algorithms for NP-hard problems do not exist. Below, we define the hardness of several

interesting complexity classes in more detail.

NP-Hardness. A decision problem A is called NP-hard if every problem of NP can be

reduced to it. If A even belongs to NP, then it is called NP-complete. In order to show that a

problem is NP-hard, it suffices to reduce an NP-hard problem to it.

14

Graphs Section 2.3

We call an NP-hard problem strongly NP-hard if either all instances are given in unary

notation or as sequences of numbers whose values are bounded from above by a polynomial of

the length of the sequence. An NP-complete problem is strongly NP-complete if it is strongly
NP-hard.

An optimization problem is called NP-hard if one can reduce an NP-hard (decision)

problem to it. To show NP-hardness of an optimization problem, it suffices to show NP-
hardness of its natural decision version.

FPT and W[1]-hardness. The complexity class FPT consists of all problems that are

fixed-parameter tractable. It equals the first classW[0] of theW-hierarchy, a collection of

complexity classesW[0] ⊆W[1] ⊆ . . . It is unknown whetherW[0] =W[1] (for more details,

see the literature [FG06, CFK+15]). Similar to NP-hardness and NP-completeness, we can

define W[1]-hardness and W[1]-completeness by means of FPT-reductions. Analogously,

we can show W[1]-hardness by an FPT-reduction from a W[1]-hard problem. If we show

that a problem is W[1]-hard, then we can conclude that it is intractable in its parameter

assuming FPT ⊊W[1].

APX-hardness. The complexity class APX contains all optimization problems that admit

a constant-factor approximation algorithm. Similar to NP-hardness, we can define APX-
hardness by means of a so called PTAS reduction [Cre97]. The existence of such a reduction

follows from the existence of an L-reduction. Unless P = NP, there are problems that cannot

be approximated below a constant implying that an APX-hard problem does not admit a

PTAS.

In this book, we will briefly mention several other complexity classes. For their definition,

we refer to the aforementioned textbooks [Pap94, AB09].

2.3 Graphs
Weuse standard graph terminology. A graphG consists of a setV(G) of vertices and a set E(G)
of edges, and it is called non-empty if it contains at least one vertex. We interchangeably refer

to the vertices also as nodes. In some contexts, we will call some nodes terminals in order

to distinguish them from the remaining ones. Every edge e consists of two nodes, called

endpoints of e, that either form a set or a tuple: If the graph is undirected, then

E(G) ⊆ {{u, v} ⊆ V(G) ∣ u ≠ v} .

If the graph is directed, then

E(G) ⊆ {(u, v) ∈ V(G) × V(G) ∣ u ≠ v} .

To simplify the notation, we refer to an edge {u, v} of an undirected graph also by (u, v)
and (v , u). If we don’t specify that a graph is directed, then it is undirected.

An edge is incident to its endpoints, and a node is incident to every edge of which it is

an endpoint. The endpoints of an edge are called adjacent. Similarly, two edges are called

15

Chapter 2 Preliminaries

adjacent if they share an endpoint. Otherwise, they are called disjoint or independent. We say

that an edge is between its endpoints.

A graph with multiple edges contains two nodes with more than one edge between them.

In such graphs the edge set is a multiset. We will also consider graphs where we relax the

definition of the edges a little and allow edges consisting of only one endpoint. We will call

such an edge a loop. A graph is simple if it neither has multiple edges nor loops. If not specified

differently, we always assume graphs to be simple.

A complete graph contains every possible edge.

Degrees and Directed Edges. The degree deg(v) of a node v is the number of edges

incident to v. Let G be a directed graph and (u, v) an edge in E(G). We say that (u, v) goes
from u to v and we say that (u, v) is directed from u to v. We call (u, v) an outgoing edge of u
and an incoming edge of v. The indegree of a node is the number of its incoming edges, and

the outdegree of a node is the number of its outgoing edges.

Subgraphs, Contractions, andMinors. Let G be a graph. A subgraph H of G is a graph

with V(H) ⊆ V(G) and E(H) ⊆ E(G). We call H an induced subgraph of G if H contains

exactly those edges of G that have both endpoints in V(H). Note that for a given subset of

the nodes, there is only one induced subgraph. Let V ′ ⊆ V(G). We denote by G − V ′ the
induced subgraph of G with the node set V(G) ∖ V ′.

Informally, a contraction of an edge merges its two endpoints to a new vertex while

deleting the edge between them. Formally, a contraction of an edge e with endpoints u
and v of a graph G is an operation that creates a new graph H with a new vertex w ∉ V(G)
and new edges that are incident to w. For y ∈ {u, v} and for each edge (x , y) ∈ E(G) ∖ {e},
the operation creates a new edge (x ,w) for E(H). Similarly, for y ∈ {u, v} and for each

edge (y, x) ∈ E(G) ∖ {e}, the edge (w , x) is created for E(H). Thereby, multiple edges might

be created if u and v are adjacent to a common node making E(H) a multiset. The remaining

edges of E(H) are all those edges in E(G) that were not incident to u or v.
Aminor of a graph G is a graph H that is obtained by successively contracting edges from

a subgraph of G and deleting any occurring loops. A class G of graphs isminor-closed if, for
any graph in G, all its minors belong to G. Notable, the Robertson–Seymour theorem [RS04]

states that for every minor-closed class of graphs there exists a finite set of forbidden minors
such that a graph belongs to the class if and only if it does not have any of the forbidden

minors. For example, the class of planar graphs, which are graphs that admit crossing-free

drawings, is fully described by just two forbidden minors: the complete graph with five nodes

(K5) and the complete bipartite graph with six nodes (K3,3).

Paths and Cycles. A walk is a sequence (v1 , . . . , vk) of k nodes, k ≥ 1, where any two

consecutive nodes are adjacent. We say that an edge (u,w) is contained in a walk if we

have (u,w) = (v i , v i+1) for some i with 1 ≤ i ≤ k − 1. In directed graphs, a walk is directed,
if (v i , v i+1) is an edge for every i with 1 ≤ i ≤ k − 1.

A cycle is a walk of at least three nodes where the first node and the last node are the same,

and a cycle is simple if all other nodes appear at most once. A path is a walk where each node

appears at most once. (Note that some authors refer to paths by ‘simple paths’ and to walks

16

Graphs Section 2.3

simply by ‘paths’.) We call the first node and the last node of a path π endpoints of π. Two
paths are edge disjoint if they share no common edge. Similarly, two paths are node disjoint if
they share no common node.

The length of a walk is one less than the length of its node sequence. Thus, for paths and

cycles, thire length is the number of edges they contains.

Connectivity and Connected Components. If u is the first node and v the last node of a
path π, then we say they are connected by π. If π is directed, then we also say that u is connected
to v by π. We say that two nodes are connected in a (directed) graph if the graph contains a

(directed) path connecting both nodes. We call a graph connected if all nodes are pairwise
connected in it.

A connected component of a graph G is a connected non-empty subgraph H of G such that

there is no edge in E(G) connecting a node in V(H) and with a node in V(G) ∖ V(H). For
short, we will often call connected components simply components.

Forests, Trees, and Acyclic Graphs. A forest is a graph without cycles and a tree is a
connected forest. For directed graphs, we call forests also acyclic graphs. A rooted tree is a tree
with a designated node called the root of T . In a tree, all nodes of degree 1 are called leaves
and all other nodes are called inner nodes. In any tree, the number of inner nodes is one less

than the number of leaves. An in-tree is a directed rooted tree where every node is connected

to the root.

For a rooted tree T and a node v ∈ V(T), we let T[v] denote the subtree of T rooted at v
which is the induced subgraph of T containing all nodes that are connected to the root of T
with a path that contains v. Note that T[v] is also a tree, and if T is an in-tree, then T[v] is an
in-tree with the root v.

Weights and Coloring. In some contexts, a graph also defines numerical values for each

edge or node. Typical such values are weights for edges. We call a graph with edge weights a

weighted graph. Also other objects can be associated with such values. For instance, in the

context of flows, we will assign weights to paths.
A node coloring of a graph G with c colors is a function that assigns to each node in V(G)

a color, where a color is a number in {1, . . . , c}. A node coloring is called proper if any two
adjacent nodes have different colors. Similarly, an edge coloring of a graph G with c colors, for
short, a c-edge-coloring, is a function that assigns to each edge in E(G) a color, where again a

color is a number in {1, . . . , c}. An edge coloring is called proper if any two adjacent nodes
have different colors.

We call a graph c-colorable if there exists a proper node coloring with c colors for it, and
we call a graph c-edge-colorable if there exists a proper edge coloring with c colors for it.

Bipartite Graphs andMatchings. A graph G is bipartite if V(G) can be partitioned into

two sets such that no two nodes of the same set are adjacent. We refer to the two sets of the

partition by partite sets. It holds that a graph is bipartite if and only if it is 2-colorable. We

define matching in the context of sets. Let S be a set whose elements are two-element sets

17

Chapter 2 Preliminaries

or tupels. A matching of S is a subset of S where all elements are pairwise disjoint. Thus, a

matching of the edge set of a graph is a subset where all edges are pairwise disjoint.

Vertex Cover and Feedback Vertex Set. We say that an edge e is covered by a subset V ′
of the nodes if V ′ contains an endpoint of e. A vertex cover of a graph is a subset of the nodes

that covers all edges. A feedback vertex set of a graph G is a subset V ′ of the nodes such
that G − V ′ is a forest.

18

Part I

Problems in Graphs

3 New Algorithms for Maximum
Disjoint Paths Based on Tree-Likeness

We study the classical NP-hard problems of finding maximum-size subsets from given sets

of k terminal pairs that can be routed via edge-disjoint paths (MaxEDP) or node-disjoint

paths (MaxNDP) in a given graph. The approximability of MaxEDP/MaxNDP is currently

not well understood. There is a significant gap between the best known lower and upper

bound, and closing this gap is currently one of the big open problems in approximation

algorithms.

In this chapter, we strengthen fundamental results for these problems. We provide new

bounds formulated in terms of the feedback vertex set number r of a graph, which measures

its vertex deletion distance to a forest. In particular, we obtain the following results:

• For MaxEDP, we give anO(
√
r log kr)-approximation algorithm. Up to a logarithmic

factor, our result strengthens the best known ratioO(
√
n) by Cherkuri et al. [CKS06],

as r ≤ n.

• Further, we show how to route Ω(OPT*) pairs with congestionO(log kr/ log log kr),
strengthening the bound obtained by the classic approach of Raghavan and Thompson.

• For MaxNDP, we give an algorithm that gives the optimal answer in (k + r)O(r) ⋅ n
time. This result is a substantial improvement on the run time of 2krO(r) ⋅ n, which can

be obtained via an algorithm by Scheffler [Sch94].

We complement these positive results by various hardness bounds.

3.1 Introduction

In this chapter, we study disjoint paths routing problems. In this setting, we are given an

undirected graphG and a collectionM= {(s1 , t1),⋯, (sk , tk)} of vertex pairs, called terminal
pairs, that can be thought of being source-destination pairs. The goal is to select a maximum-

sized subsetM′ ⊆M of the pairs that can be feasibly routed, where a routing ofM′ is a

collection P of paths such that, for each pair (s i , t i) ∈ M′, there is a path in P connecting s i
to t i . In the Maximum Edge Disjoint Paths (MaxEDP) problem, a routing P is feasible if

its paths are pairwise edge-disjoint, and in the Maximum Node Disjoint Paths (MaxNDP)

problem, a routingP is feasible if its paths are pairwise node-disjoint. Throughout this chapter,

a solution to MaxEDP or MaxNDP is a feasible routing P of a subsetM′ ⊆M.

Disjoint paths problems are fundamental problems with a long history and significant

connections to optimization and structural graph theory. The decision versions EDP of

MaxEDP and NDP of MaxNDP ask whether all of the pairs can be routed. When the number

of pairs is part of the input, EDP and NDP are NP-complete [Kar75, EIS75]. In undirected

graphs, MaxEDP and MaxNDP are solvable in polynomial time when the number of pairs is

Chapter 3 New Algorithms for Maximum Disjoint Paths Based on Tree-Likeness

a fixed constant; this fact is a very deep result of Robertson and Seymour [RS95] that builds

on several fundamental results in structural graph theory from their graph minors project.

In this chapter, we consider the optimization problems MaxEDP and MaxNDP when

the number of pairs is part of the input. In this setting, the best approximation ratio for

MaxEDP is achieved by anO(
√
n)-approximation algorithm [CKS06, KS04], that is, by an

algorithm that routes Ω(OPT /
√
n) pairs, where OPT is the number of pairs in an optimum

routing and n is the number of nodes. However, the best known lower bound for undirected

graphs is only 2Ω(log
1−ε n) for any positive constant ε unlessNP ⊆ RTIME(npolylog n) [CKN18].

Bridging this gap is a fundamental open problem that seems quite challenging.

Most of the results for routing on disjoint paths use a natural multi-commodity flow

relaxation as a starting point. Awell-known integrality gap instance due toGarg et al. [GVY97]

shows that this relaxation has an integrality gap of Ω(
√
n), and this fact is themain obstacle for

improving theO(
√
n)-approximation ratio in general graphs. This ledChekuri et al. [CNS13a]

to study the approximability of MaxEDP with respect to the treewidth of the underlying

graph. In particular, they pose the following conjecture:

Conjecture 1 ([CKS09]). The integrality gap of the standardmulti-commodity flow relaxation

for MaxEDP is Θ(w), where w is the treewidth of the graph.

Recently, Ene et al. [EMPR16] showed that MaxEDP admits anO(w3)-approximation

algorithm on graphs of treewidth at most w. Theirs is the best known approximation ratio in

terms of w, improving on an earlierO(w ⋅ 3w)-approximation algorithm due to Chekuri et

al. [CNS13a]. These results show that the problem seems more amenable on “tree-like” graphs.

However, for w = ω(n1/6), the bound is weaker than the bound ofO(
√
n). In fact, EDP

remains NP-hard even for graphs of constant treewidth, namely treewidth w = 2 [NVZ01].
This further rules out the existence of a fixed-parameter algorithm forMaxEDP parameterized

by treewidth, assuming P /= NP. Therefore, to obtain fixed-parameter tractability results as

well as better approximation guarantees, one needs to resort to parameters stronger than

treewidth.

Another route to bridge the large gap between approximation lower and upper bounds for

MaxEDP is to allow the paths to have congestion c: that is, instead of requiring the routed

paths to be pairwise disjoint, at most c paths can use an edge. We can also think of this problem

that each edge has a capacity c; thus, on unit-capacity graphs we ask for solutions without

congestion. In their groundbreaking work, Raghavan and Thompson [RT87] introduced

the technique of randomized rounding of LPs to obtain polynomial-time approximation

algorithms for combinatorial problems. Their approach allows to route Ω(OPT*) pairs of
paths with congestion O(log n/ log log n), where OPT* denotes the value of an optimum

solution to the multi-commodity flow relaxation. This extensive line of research [And10,

Chu16, KK10] has culminated in a log
O(1) k-approximation algorithm with congestion 2 for

MaxEDP [CL16]. A slightly weaker result also holds for MaxNDP [CE13].

3.1.1 Motivation and Contribution
The goal of this work is to study disjoint paths problems under another natural measure for

how “far” a graph is from being a tree. In particular, we propose to examine MaxEDP and

MaxNDP under the feedback vertex set number. It denotes the smallest size r of a feedback

22

Introduction Section 3.1

vertex set of a graph G, which is a subset R of nodes for which G − R is a forest. Note that the

treewidth of G is at most r + 1. Therefore, given the NP-hardness of EDP for treewidth w = 2
and the current gap between the best known upper boundO(w3) and the linear upper bound
suggested by Conjecture 1, it is interesting to study the stronger restriction of bounding the

feedback vertex set number r of the input graph. Our approach is further motivated by the fact

that MaxEDP is efficiently solvable on trees by means of the algorithm of Garg, Vazirani and

Yannakakis [GVY97]. Similarly, MaxNDP is easy on trees (see Theorem 3.3). Throughout

this work, the parameter r will denote the feedback vertex set number of a graph.

Our main insight is that one can in fact obtain bounds in terms of r that either strengthen
the best known bounds or are almost tight (see Table 3.1). It therefore seems that the parame-

ter r correlates quite well with the “difficulty” of disjoint paths problems.

Our first result allows the paths to have small congestion: in this setting, we strengthen the

result, obtained by the classic randomized LP-rounding approach of Raghavan and Thomp-

son [RT87], that with constant probability one can always route Ω(OPT*) pairs with conges-

tionO(log n/ log log n).

Theorem 3.1. There is a polynomial-time algorithm for MaxEDP that produces—with constant
probability—a routing of Ω(OPT*) paths with congestionO(log kr/ log log kr) where OPT* is
the value of an optimum solution to the multi-commodity flow relaxation, k is the number of
terminal pairs and r is the feedback vertex set number.

In other words, we show that there is an O(1)-approximation algorithm for MaxEDP

with congestionO(log kr/ log log kr).
Our secondmain result builds upon Theorem 3.1 and uses it as a subroutine. We show how

to use a routing for MaxEDP with low congestion to obtain a polynomial-time approximation

algorithm for MaxEDP without congestion that performs well in terms of r.

Theorem 3.2. There is a polynomial-time algorithm for MaxEDP that produces—with constant
probability—a routing ofOPT*/O(

√
r log kr) paths with no congestion whereOPT* is the value

of an optimum solution to the multi-commodity flow relaxation, k is the number of terminal
pairs and r is the feedback vertex set number.

In particular, our algorithm strengthens the best known approximation algorithm for

MaxEDP on general graphs [CKS06] as always r ≤ n, and indeed it matches that algorithm’s

performance up to a logarithmic factor. Substantially improving upon our bounds would

also improve the current state of the art of MaxEDP. Conversely, the result implies that it

suffices to study graphs with close to linear feedback vertex set number in order to improve

the currently best upper bound ofO(
√
n) on the approximation ratio [CKS06].

Our algorithmic approaches harness the forest structure of G − R for any feedback ver-

tex set R. However, the technical challenge comes from the fact that the edge set running

between G − R and R is unrestricted. Therefore, the “interaction” between R and G − R is

non-trivial, and flow paths may run between the two parts in an arbitrary manner and mul-

tiple times. In fact, we show that MaxEDP is already NP-hard if R consists of a single node
(Theorem 3.5); this result contrasts the efficient solvability on forests [GVY97].

In order to overcome the technical hurdles, we propose several new concepts, which we

believe could be of interest in future studies of disjoint paths or routing problems.

23

Chapter 3 New Algorithms for Maximum Disjoint Paths Based on Tree-Likeness

In the randomized rounding approach of Raghavan and Thompson [RT87], it is shown

that the probability that the congestion on any fixed edge is larger than c log n/ log log n for

some constant c is at most 1/nO(1). Combining this with the fact that there are at most n2

edges, yields that every edge has bounded congestion with high probability. The number of

edges in the graph may, however, be unbounded in terms of r and k. Hence, in order to prove

Theorem 3.1, we propose a non-trivial preprocessing step of the optimum LP solution that

is applied prior to the randomized rounding. In this step, we aggregate the flow paths by a

careful rerouting so that the flow “concentrates” inO(kr2) nodes (so-called hot spots) in the

sense that if all edges incident on hot spots have low congestion, then so have all edges in the

graph. Unfortunately, for any such hot spot the number of incident edges carrying flow may

still be unbounded in terms of k and r. We are, however, able to give a refined probabilistic

analysis that suitably relates the probability of exceeding the congestion bound to the amount

of flow on the respective edge. Since the total amount of flow traversing any given hot spot

is at most k, the probability that there is an edge incident on this hot spot that violates the

congestion bound is inverse polynomial in r and k.
The known O(

√
n)-approximation algorithm for MaxEDP by Chekuri et al. [CKS06]

employs a clever LP-rounding approach. If there are many long flow paths in the LP solution,

then there must be a single node carrying a significant fraction of the total flow and a good

fraction of this flow can be realized by integral paths by solving a single-source flow problem.

If the LP solution contains many short flow paths, then greedily routing these short paths

yields the bound. Essentially, this fact follows from the observation that routing a short path

blocks only a small amount of flow. In order to prove Theorem 3.2, we also distinguish two

cases. We are interested, however, in the number of nodes in R that a flow path is visiting

rather than in its length. In the first case, there are many paths, each of which is visiting a

large number of nodes in R. Here, we reduce to a single-source flow problem in a similar way

to the approach of Chekuri et al. The second case where a majority of the flow paths visit

only a few nodes in R turns out to be more challenging, since any such path may still visit an

unbounded number of edges in terms of k and r. We use two main ingredients to overcome

these difficulties. First, we apply our Theorem 3.1 as a building block to obtain a solution

with logarithmic congestion while losing only a constant factor in the approximation ratio.

Secondly, we introduce the concept of irreducible routings with low congestion which allows

us to exploit the structural properties of the graph and the congestion property to identify a

sufficiently large number of flow paths blocking only a small amount of flow.

Note that the natural greedy approach of always routing the shortest conflict-free path

gives only an approximation ratio ofO(
√
m) for MaxEDP, where m is the number of edges.

We believe that it is non-trivial to obtain our bounds via a more direct or purely combinatorial

approach.

Our third result is a fixed-parameter algorithm for MaxNDP in k + r.

Theorem 3.3. MaxNDP can be solved in time (k + r)O(r) ⋅ n on graphs with k terminal pairs,
feedback vertex set number r, and n vertices. When a minimum feedback vertex set is given, it
can be even solved in time (8k + 8r)2r+3 ⋅ O(n).

This run time is polynomial for constant r. We also note that, for small r, our algo-
rithm is asymptotically significantly faster than the fastest known algorithm for NDP, by

Kawarabayashi and Wollan [KW10], which requires time at least quadruple-exponential

24

Introduction Section 3.1

in k [AKK+11]. Namely, if r is asymptotically less than triple-exponential in k, our algorithm is

asymptotically faster than theirs. We achieve this result by the idea of so-called essential pairs
and realizations, which characterizes the “interaction” between the feedback vertex set R and

the paths in an optimum solution. Note that in our algorithm of Theorem 3.3 the parameter k
does not appear in the exponent of the run time at all. Hence, whenever r = o(k/ log k), our
algorithm is asymptotically faster than reducing MaxNDP to NDP by guessing the subset of

pairs to be routed (at an expense of 2k in the run time) and using Scheffler’s [Sch94] algorithm

for NDP with run time 2O(r log r) ⋅ n; for r = Ω(k/ log k), our algorithm is asymptotically not

slower.

Once a fixed-parameter algorithm for a problem has been obtained, the existence of a

polynomial-size kernel comes up. Here we note that MaxNDP does not admit a polynomial

kernel for the combined parameter k + r, unless NP ⊆ coNP/poly [BTY11].
Another natural question is whether the run time f (k, r) ⋅ n in Theorem 3.3 can be im-

proved to f (r) ⋅ nO(1). We answer this question in the negative, ruling out the existence of a

fixed-parameter algorithm for MaxNDP parameterized by r (assuming FPT /=W[1]):

Theorem3.4. MaxNDP in unit-capacity graphs isW[1]-hard parameterized by feedback vertex
set number.

This theorem contrasts the known result that NDP is fixed-parameter tractable in feedback

vertex set number [Sch94]—which further stresses the relevance of understanding this

parameter.

For MaxEDP, we prove that the situation is, in a sense, even worse:

Theorem 3.5. MaxEDP is NP-hard for unit-capacity graphs with feedback vertex set num-
ber r = 1 and EDP is NP-hard for unit-capacity graphs with feedback vertex set number r = 2.

This theorem also shows that our algorithms are relevant for small values of r, and that

they nicely complement the NP-hardness for MaxEDP in capacitated trees [GVY97].

Our results are summarized in Table 3.1.

Table 3.1: Summary of results obtained in this chapter.

EDP MaxEDP NDP MaxNDP

const.

r = 0 poly [GVY97] poly [GVY97] poly [Sch94] poly (Thm. 3.3)

r = 1 poly [GOS17] NP-hard (Thm. 3.5) poly [Sch94] poly (Thm. 3.3)

r ≥ 2 NP-hard (Thm. 3.5) NP-hard (Thm. 3.5) poly [Sch94] poly (Thm. 3.3)

param. para-NP-hard (Thm. 3.5) FPT [Sch94] W[1]-hard (Thm. 3.4)

in r O(
√
r log kr)-approx (Thm. 3.2) exact (k + r)O(r)n (Thm. 3.3)

O(1)-approx. w. cg.O(log kr
log log kr) (Thm. 3.1)

RelatedWork. Our study of the parameter feedback vertex set number is in line with the

general attempt to obtain bounds for MaxEDP (or related problems) that are independent

of the input size. Besides the above-mentioned works that provide bounds in terms of the

25

Chapter 3 New Algorithms for Maximum Disjoint Paths Based on Tree-Likeness

s

(a) A terminal s. Assume that
it appears in three terminal
pairs (s, t1), (s, t2), (s, t3).

s

s1 s2 s3
(b) Three copies s1 , s2 , and s3 of the terminal s attached as leaves

to it. We replace the terminal pairs of s by (s1 , t1), (s2 , t2),
and (s3 , t3) and define s as a normal vertex.

Figure 3.1:We can assume that M forms a matching and all terminals are leaves.

treewidth of the input graph, Günlük [Gün07] and Chekuri et al. [CSW13] give bounds on

the flow-cut gap for the closely related integer multi-commodity flow problem; their bounds

are logarithmic with respect to the vertex cover number of a graph. This improved upon

earlier bounds of O(log n) [LR99] and O(log k) [AR98, LLR95]. As every vertex cover is
in particular a feedback vertex set of a graph, our results for disjoint path problems address

a generalization of graphs with bounded vertex cover number. Bodlaender et al. [BTY11]

showed that NDP does not admit a polynomial kernel parameterized by vertex cover number

and the number k of terminal pairs, unless NP ⊆ coNP/poly; therefore, NDP is unlikely

to admit a polynomial kernel in k + r either. Ene et al. [EMPR16] showed that MaxNDP

isW[1]-hard parameterized by tree-depth, which is another restriction of treewidth that is

incomparable to feedback vertex set number.

The basic gap in understanding the approximability of MaxEDP has led to several im-

proved results for special graph classes, and also our results can be seen in this light. For

example, polylogarithmic approximation algorithms are known for graphs whose global

minimum cut value is Ω(log5 n) [RZ10], for bounded-degree expanders [BFSU99, BFU94,
Fri01, KR96, LR99], and for Eulerian planar or 4-connected planar graphs [KK10]. Constant

factor approximation algorithms are known for capacitated trees [CMS07, GVY97], grids and

grid-like graphs [AR95, AGLR94, KT95, KT98]. For planar graphs, there is a constant-factor

approximation algorithm with congestion 2 [SCS11]. Recently, Chuzhoy et al. [CKL16] gave

a Õ(n9/19)-approximation algorithm for MaxNDP on planar graphs. However, improving

theO(
√
n)-approximation algorithm for MaxEDP remains elusive even for planar graphs.

Very recently, Ganian et al. [GOS17] positively confirmed a conjecture posed in our

extended abstract [FMS18]. They showed that EDP can be solved in polynomial time if r = 1.

3.2 Preliminaries
For an instance (G ,M) of MaxEDP/MaxNDP, we refer to the vertices participating in the

pairsM as terminals. It is convenient to assume thatM forms a matching on the terminals;

this can be ensured by making several copies of the terminals and attaching them as leaves as

depicted in Fig. 3.1. Hence, we can also assume that all terminals are leaves.

Multi-commodityflow relaxation. Weuse the following standardmulti-commodity flow

relaxation for MaxEDP that we will call MaxEDP LP (there is an analogous relaxation for

MaxNDP). We use P(u, v) to denote the set of all paths in G from u to v, for each pair (u, v)
of nodes. Since the pairs inM form a matching, the sets in {P(s i , t i) ∣ (s i , t i) ∈ M} are

26

Preliminaries Section 3.2

s1

s2

sk

t1 t2 tk

Figure 3.2: An instance with an integrality gap of Ω(
√

n) for MaxEDP [GVY97]: Any integral routing routes at
most one pair, whereas a fractional multi-commodity flow can send 1/2 unit of flow for each pair (s i , t i) along
the canonical path from s i to t i in the grid.

pairwise disjoint. Let P = ⋃k
i=1 P(s i , t i). The LP has a variable f (P) for each path P ∈ P

representing the amount of flow on P. For each pair (s i , t i) ∈ M, the LP has a variable x i
denoting the total amount of flow routed for the pair (in the corresponding integer program, x i
denotes whether the pair is routed or not). The LP imposes the constraint that there is a flow

from s i to t i of value x i . Additionally, the LP has constraints that ensure that the total amount

of flow on paths using a given edge (respectively node for MaxNDP) is at most 1.

maximize
k
∑
i=1

x i

subject to ∑
P∈P(s i ,t i)

f (P) = x i ≤ 1 for each i = 1,⋯, k;

∑
P∈P∶ e∈P

f (P) ≤ 1 for each e ∈ E(G);

f (P) ≥ 0 for each P ∈ P .

It is well-known that the relaxation MaxEDP LP can be solved in polynomial time, since

there is an efficient separation oracle for the dual LP (alternatively, one can write a compact

relaxation). We use (f , x) to denote a feasible solution toMaxEDP LP for an instance (G ,M)
of MaxEDP.

As noted in the introduction, MaxEDP LP has an integrality gap of Ω(
√
n) as shown by

Garg et al. [GVY97]. The integrality instance on an n × n grid (of treewidth Θ(
√
n)) exploits

a topological obstruction in the plane that prevents a large integral routing; see Fig. 3.2.

Wewill use the following result by Chekuri et al. [CKS06, Sect. 3.1]; see also Proposition 3.3

of Chekuri et al. [CNS13b].

Proposition 3.1 (Chekuri et al. [CKS06]). Let (f , x) be a fractional solution to the LP relax-
ation of a MaxEDP instance (G ,M). If some node v is contained in all flow paths of f , then
we can find an integral routing of size at least∑i x i/12 in polynomial time.

As a corollary of Theorem 3.2, we immediately obtain the following proposition about the

integrality gap of MaxEDP LP.

27

Chapter 3 New Algorithms for Maximum Disjoint Paths Based on Tree-Likeness

Corollary 3.1. The integrality gap of the multi-commodity flow relaxation for MaxEDP with k
terminal pairs isO(

√
r log kr) for graphs with feedback vertex set number r.

Let f be a multi-commodity flow assigning to each path P ∈ P a non-negative flow

value f (P). The flow f is said to have congestion c if it satisfies a modification of MaxEDP

LP where we replace, for each edge e ∈ E(G), the constraint∑P∈P∶ e∈P f (P) ≤ 1 by the con-
straint∑P∈P∶ e∈P f (P) ≤ c. In the particular casewhere f is integral we also speak of a routing f
with congestion c.

3.3 Bi-Criteria Approximation forMaxEDPwith LowCon-
gestion

We present a randomized rounding algorithm that will lead to the proof of Theorem 3.1. First

we will modify a fractional solution to the multi-commodity flow relaxation and then run a

randomized rounding procedure.

3.3.1 Algorithm
Consider an instance (G ,M) of MaxEDP. Let k denote the number of terminal pairs inM,

and let R be a feedback vertex set of G that we construct by taking the union of the terminals

inM and any 2-approximate minimum feedback vertex set; note that such an approximation

can be obtained in polynomial time [BBF99]. Thus, ∣R∣ ≤ 2r + 2k.
First, solve the corresponding MaxEDP LP. We obtain an optimal extreme point solu-

tion (f , x). For each (s i , t i) ∈ M, this gives us a set P ′(s i , t i) of positive weighted paths that

satisfy the LP constraints. Formally,

P ′(s i , t i) = {P ∈ P(s i , t i) ∣ f (P) > 0} .

Since we have an extreme point solution, the number of tight constraints is not smaller than

the number of variables. Hence, given the numbers of constraints and variables, the number

of constraints that are not tight is polynomially bounded in the input size. Consequently,

the same bound holds for the cardinality of the set P ′ = ⋃k
i=1 P ′(s i , t i). In what follows, we

will modify P ′ and then select an (unweighted) subset P ′Sol of P ′ that will form our integral

solution.

Each P ∈ P ′ has the form (r1 , . . . , r2 , . . . , rℓ) where r1 , . . . , rℓ are the nodes in R that are

traversed by P in this order. For every j with 1 ≤ j ≤ ℓ − 1, we call the path (r j , . . . , r j+1) a
subpath of P. For every subpath P′ of P, we set f (P′) = f (P). Let S be the multi-set of all

subpaths of all paths in P ′. Let F = G − R be the forest obtained by removing R.
We now modify some paths in P ′, one by one, and at the same time, we incrementally

construct a subset HAlg ⊆ V(F) in several steps. We will refer to the nodes in HAlg as hot
spots. When the construction of HAlg is complete, every subpath in S will contain at least one

hot spot, that is, a node in HAlg.

Initially, let HAlg = ∅. Consider any tree T in F and fix any of its nodes as a root. Then

let ST be the multi-set of all subpaths in S that, excluding the endpoints, are contained in T .
For each subpath P ∈ ST , define its highest node h(P) as the node on P closest to the root.

28

Bi-Criteria Approximation for MaxEDP with Low Congestion Section 3.3

h(P)

R
u v

P

P′

root

(a)

R
u v

P′

(b)

Figure 3.3: Example of the flow aggregation step: (a) A subpath P (highlighted in dashed gray) enters a tree
(solid black edges) where h(P) (white node) is its closest node to the root. A path P′ (highlighted in solid gray)
contains a different subpath with the same endpoints u, v ∈ R as P. (b) We reroute P′ by replacing its subpath
between u and v with a copy of P.

Note that P ∩ T equals P ∩ F and that P ∩ T is a path. Now, pick a subpath P ∈ ST that does

not contain any node in HAlg and whose highest node h(P) is farthest away from the root.

Consider the multi-set S[P] of all subpaths in ST that are identical to P (but may be subpaths

of different flow paths in P ′). Note that the weight f (S[P]) of S[P] defined as∑P∈S[P] f (P)
is at most 1 by the constraints of the LP. Let u, v ∈ R be the endpoints of P. We define Suv
as the set of all subpaths in S ∖ S[P] that have u and v as their endpoints and that do not

contain any node in HAlg.

Intuitively speaking, we now aggregate flow on P by rerouting as much flow as pos-

sible from Suv to P. To this end, we repeatedly perform the following operation as long

as f (S[P]) < 1 and Suv /= ∅. We pick a path P′ in S that contains a subpath in Suv ; see Fig. 3.3.
We reroute flow from P′ by creating a new path P′′ that arises from P′ by replacing its subpath
between u and v with a new path identical to P, and assign it the weight

f (P′′) = min{ f (P′), 1 − f (S[P])} .

Then we set the weight of (the original path) P′ to max{0, f (P′) + f (S[P]) − 1}. We update

the sets P ′, P ′(s i , t i), S , ST , S[P] and Suv accordingly.
As soon as f (S[P]) = 1 or Suv = ∅, we mark h(P) as a hot spot and add it to HAlg. Then,

we proceed with the next P ∈ ST that does not contain a hot spot and whose highest node h(P)
is farthest away from the root. If no such P is left, we consider the next tree T in F.

At the end, we create our solution P ′Sol by randomized rounding: We route every ter-

minal pair (s i , t i) with probability x i . In case (s i , t i) is routed, we randomly select a path

from P ′(s i , t i) and add it to P ′Sol where the probability that the path P is taken is f (P)/x i .

3.3.2 Analysis

First, observe that x did not change during our modifications of the paths, as the total flow

between any terminal pair did not change. Thus, the expected number of pairs routed in our

solution P ′Sol is∑
k
i=1 x i ≥ OPT*. Using the Chernoff bound, the probability that we route less

than OPT*/2 pairs is at most e−1/8 OPT
< 1/2, assuming OPT > 8.

29

Chapter 3 New Algorithms for Maximum Disjoint Paths Based on Tree-Likeness

In the above algorithm, we guarantee that when we aggregate flow on a path P, then the

total amount of all flow paths containing P as a subpath has increased to atmost 1. Nevertheless,

the flow f may have congestion greater than 1 after this modification. This is because P may

intersect flow paths that contain only a proper subset of the edges of P. For instance, consider
the situationwhere we increase f (S[P′]) for a subpath P′ that initially contained a tight edge e
(that is, an edge e with∑P∈P∶ e∈P f (P) = 1). After increasing f (S[P′]), the total amount of

flow paths going through e is greater than 1. However, the congestion of the modified flow f
is always at most 2 as shown by the following lemma.

Lemma 3.1. The congestion of the flow f is at most 2.

Proof. In our algorithm, we increase the flow only along flow subpaths that are pairwise edge-

disjoint. To see this, consider two distinct flow subpaths P and P′ on which we increase the

flow. If there were an edge e lying on P and P′, then both subpaths traverse the same tree in the

forest F. Assume, without loss of generality, that P was considered before P′ by the algorithm.

Then the path from e to the root would first visit h(P) and then h(P′). Hence, h(P) would be
an internal node of P′. This membership yields a contradiction, as h(P) was already marked

as a hot spot when P′ was considered. This argument shows that we increased the flow along

any edge by at most one unit. Hence, f has congestion at most 2.

We now bound the congestion of the integral solution obtained by randomized rounding.

In the algorithm, we constructed a set HAlg of hot spots. As a part of the analysis, we will

now extend this set to a set H as follows. Initially, H = HAlg. We build a sub-forest F′ of F
consisting of all edges of F that lie on a path connecting two hot spots. Then we add to H all

nodes that have degree at least 3 in F′. Since the number of nodes of degree 3 in any forest is

at most its number of leaves and since every leaf of F′ is a hot spot, it follows that this can at

most double the size of H to 2∣HAlg∣. Finally, we add all nodes of the feedback vertex set R
to H and mark all nodes in H as hot spots.

Lemma 3.2. The number ∣H∣ of hot spots is at most 2k∣R∣2 + ∣R∣.

Proof. To this end, fix two nodes u, v ∈ R and consider the set of flow subpaths with end-

points u and v for which we added their hot spots to HAlg. Due to the aggregation of flows in

our algorithm, all except possibly one of the subpaths are saturated, that is, they carry precisely

one unit of flow. Since no two of these subpaths are contained in a same flow path of f and
since the flow value of f is bounded from above by k, we added at most k hot spots for the
pair u, v. Since there are at most ∣R∣2 pairs in R, the claim follows.

Definition 3.1. A hot spot u ∈ H is good if the congestion on any edge incident on u is

bounded by 12 log k∣R∣/ log log k∣R∣; otherwise, u is bad.

Lemma 3.3. Let u ∈ H be a hot spot. The probability that u is bad is bounded from above
by 1/(k2∣R∣3).

Proof. Let e1 = uv1 , . . . , eℓ = uvℓ be the edges incident on u and, for each i with 1 ≤ i ≤ ℓ, let f i
be the total flow on the edge uv i . Since any flow path visits at most two of the edges incident

on u, the total flow∑ℓ
i=1 f i on the edges incident on u is at most 2k.

30

Bi-Criteria Approximation for MaxEDP with Low Congestion Section 3.3

For any i with 1 ≤ i ≤ ℓ, we have f i = ∑P∶P∋e i f (P), where P runs over the set of all paths

connecting some terminal pair and containing e i . For 1 ≤ j ≤ k, we define

f i j = ∑
P∈P(s j ,t j)∶P∋e i

f (P)

as the total amount of flow sent across e i by the terminal pair (s j , t j). Recall that x j is the total

flow sent for tdp/main-edp.the terminal pair (s j , t j). The probability that the randomized

rounding procedure picks a certain path P ∈ P(s j , t j) is precisely x j ⋅ (f (P)/x j) = f (P).
Given the disjointness of the respective events, the probability that the pair (s j , t j) routes a
path across e i is precisely f i j . Let X i j be the binary random variable indicating whether the

pair (s j , t j) routes a path across e i . Then P [X i j = 1] = f i j . Let X i = ∑k
j=1 X i j be the number

of paths routed across e i by the algorithm. By linearity of expectation,

E [X i] =
k
∑
j = 1

E [X i j] =
k
∑
j = 1

f i j = f i .

In the following, we assume that k is sufficiently big (k ≥ e e e). Note that this assumption is

feasible as MaxEDP can be efficiently solved when k is constant [RS95]. Fix any edge e i . Set

δ = 6 ⋅ log k∣R∣
log log k∣R∣

and δ′ = 2δ/ f i − 1. Note that, for fixed i, the variables in {X i j ∣ 1 ≤ j ≤ k} are independent.
Hence, by the Chernoff bound (see Equation 2.1 in Chapter 2.1) , we have

P [X i ≥ 2δ] ≤ P [X i ≥ (1 + δ′) f i]

< (eδ
′

(1 + δ′)1+δ′)
f i

≤ (f i
2
)
2δ
⋅ (e

δ
)
2δ

≤ f i
2
⋅ (f i

2
)
2δ−1
⋅ δ−δ

≤ f i
2
⋅ e−δ log δ

≤ f i
2
⋅ e−6⋅

log k∣R∣
log log k∣R∣ log(6⋅

log k∣R∣
log log k∣R∣)

≤ f i
2
⋅ e−6⋅

log k∣R∣
log log k∣R∣ log(

log k∣R∣
log log k∣R∣) (3.1)

≤ f i
2k3∣R∣3 . (3.2)

31

Chapter 3 New Algorithms for Maximum Disjoint Paths Based on Tree-Likeness

e

z
ez

z′ ez′

P

(a)

e

z
ez

P

z′ ez′

(b)

Figure 3.4: Two examples of an edge e with two hot spots z and z′ (white nodes) being direct to e. Note that
there is no hot spot in between z and z′ . Any path routed by our algorithm that visits e must visit ez or ez′ . Such
a path P is highlighted in gray.

For Equation 3.1, we use f i ≤ 2 (see Lemma 3.1) and e/δ ≤ δ−1/2. For Equation 3.2, we use

log log log k∣R∣
log log k∣R∣ ≤ 1

e
< 1

2
.

Now, applying the union bound, we can infer that the probability that any of the edges

incident on u carries more than 2δ paths, that is, more than 12 log k∣R∣/ log log k∣R∣ paths, is
at most

∑
i

f i
2k3∣R∣3 ≤

2k
2k3∣R∣3 =

1

k2∣R∣3 .

Lemma 3.4. If every hot spot is good, then the congestion on every edge is bounded from above
by 24 log k∣R∣/ log log k∣R∣.

Proof. Consider an arbitrary edge e = uv that is not incident on any hot spot. In particular,

this means that e lies in the forest F = G − R. A hot spot z in F is called direct to e if the path
in F from z to e excluding e does not contain any hot spot other than z.

We claim that there can be at most two distinct hot spots z, z′ direct to e. If there were a
third hot spot z′′ direct to e, then consider the unique node z0 ∈ V(F) such that no two of

the hot spots z, z′, z′′ are connected in F − z0. Such a node z0 exists, since z, z′, z′′ cannot lie
on a common path in F as they are all direct to e. The node z0, however, would be added as a

hot spot at the latest when H was built. Now this is a contradiction, because then one of the

paths connecting z, z′ or z′′ to e would contain z0 and thus one of these hot spots would not

be direct to e.
Now we show the lemma assuming that there are two distinct hot spots z, z′ direct to e. If

there were only one or no hot spot direct to e, then we can apply a similar argument as the

following one.

Now, let P be an arbitrary path that is routed by our algorithm and that traverses e, and
let P′ ∈ S be the subpath of P visiting e; see Fig. 3.4. Consider the two paths in F connecting z
to e and z′ to e. Let ez and ez′ be the edges on these paths incident on z and z′, respectively.
By our construction, P′ must visit a hot spot in F. If P′ visited neither z nor z′, then P′ would
contain a hot spot direct to u or to v that is distinct from z and z′—a contradiction. Hence P′
and thus also P visit ez or ez′ . The claim now follows from the facts that, first, this holds

32

Refined Approximation Bound for MaxEDP Section 3.4

for any path traversing e, and that, secondly, z and z′ are good, and that, thirdly, therefore

altogether at most 2 ⋅ (12 log k∣R∣/ log log k∣R∣) paths visit ez or e′z .

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. We show that the algorithm presented in Sect. 3.3.1 produces—with

constant probability—a routing with Ω(OPT*) paths with congestionO(log kr/ log log kr).
As argued above, the probability that we route less than OPT*/2 paths is at most 1/2. By
Lemma 3.2, the number of hot spots is at most 2k∣R∣2 + ∣R∣ ≤ 3k∣R∣2. Thus, Lemma 3.3 implies

an upper bound of 3k∣R∣2/(k2∣R∣3) = 3/(k∣R∣) on the probability that at least one of these hot

spots is bad. Hence, by Lemma 3.4, we route with probability

1 − 1/2 − 3/(k∣R∣)

at least OPT*/2 pairs with congestion at most 24 log k∣R∣/ log log k∣R∣. Since the probability is
bounded from below by a positive constant for sufficiently big k, the statement of the theorem

follows by using ∣R∣ ≤ 2r + 2k and ∣R∣ ≥ r.

3.4 Refined Approximation Bound for MaxEDP
In this section, we provide an improved approximation guarantee for MaxEDP without
congestion, thereby proving Theorem 3.2.

3.4.1 Irreducible Routings with Low Congestion
We first develop the concept of irreducible routings with low congestion, which is (besides

Theorem 3.1) a key ingredient of our strengthened bound on the approximability of MaxEDP

based on feedback vertex set number.

Consider any multigraph G and any set P of (not necessarily simple) paths in G with

congestion c. We say that an edge e is redundant in P if there is an edge e′ ≠ e such that the

set of paths in P covering (containing) e is a subset of the set of paths in P covering e′. For
instance, if G contains at least two edges, then any edge that is not covered by any path in P is

redundant in P .

Definition 3.2. The setP is called an irreducible routing with congestion c if each edge belongs
to at most c paths of P and there is no edge redundant in P .

In contrast to a feasible routing of a MaxEDP instance, we do not require an irreducible

routing to connect a set of terminal pairs. If there is an edge e redundant in P , we can apply

the following reduction rule: We contract e in G and we contract e in every path of P that

covers e. By this, we obtain a minor G′ of G and a set P ′ of paths that consists of all the
contracted paths and of all paths in P that were not contracted. Thus, there is a one-to-one

correspondence between the paths in P and P ′.
We make the following observation about P and P ′.

Observation 3.1. A subset of paths in P ′ is edge-disjoint in G′ if and only if the corresponding
subset of paths in P is edge-disjoint in G.

33

Chapter 3 New Algorithms for Maximum Disjoint Paths Based on Tree-Likeness

As applying the reduction rule strictly decreases the number of redundant edges, an

iterative application of this rule yields an irreducible routing on a minor of the original graph.

Theorem 3.6. Let G be a minor-closed class of multigraphs and let pG be a positive integer. If for
each graph G ∈ G and every non-empty irreducible routingP on G with congestion c there exists
a path in P of length at most pG , then the average length of the paths in P is at most c ⋅ pG .

Proof. Take a path P0 of length at most pG . Contract all edges of P0 in G and obtain a

minor G′ ∈ G of G. For each path in P contract all edges shared with P0 to obtain a set P ′ of
paths. Remove P0 along with all degenerated paths fromP ′, thus ∣P ′∣ < ∣P∣. Note thatP ′ is an
irreducible routing on G′ with congestion c. We repeat this reduction procedure recursively

on G′ and P ′ until P ′ is empty; this happens after at most ∣P∣ steps. At each step, we decrease

the total path length by atmost c ⋅ pG . Hence, the total length of paths inP is atmost ∣P∣ ⋅ c ⋅ pG .

As a consequence of Theorem 3.6, we get the following result for forests.

Lemma3.5. Let F be a forest and letP be a non-empty irreducible routing on F with congestion c.
The average path length in P is at most 2c.

Proof. We show that P contains a path of length at most 2. Then the lemma follows immedi-

ately by applying Theorem 3.6 and using the fact that (simple) forests are minor-closed.

Take any tree in F, root it with any node and consider a leaf v of maximum depth. If v
is adjacent to the root, then the tree is a star and every path in the tree has length at most 2.

Otherwise, let e1 and e2 be the first two edges on the path from v to the root. By the definition
of irreducible routing, the set of all paths covering e1 is not a subset of the paths covering e2;
hence, e1 is covered by a path which does not cover e2. Since all other edges incident to e1
end in a leaf, this path has length at most 2.

Note that the bound provided in Lemma 3.5 is actually tight up to a constant. Let c be
an arbitrary integer greater than one. Consider a graph that is a path of length c − 1 with a

star of c − 1 leaves attached to one of its endpoints. The c − 1 paths of length c together with
the 2c − 2 paths of length 1 form an irreducible routing with congestion c. The average path

length is

(c − 1)c + (2c − 2)
3c − 3 = c + 2

3
.

3.4.2 Approximation Algorithm

Consider an instance (G ,M) of MaxEDP with k terminal pairs. Let R be a 2-approximate

minimum feedback vertex set in G; recall that we can obtain R in polynomial time [BBF99].

Furthermore, let c = O(log kr/ log log kr) be the bound on the congestion of our algorithm

in Theorem 3.1.

We solve the corresponding MaxEDP LP and obtain an optimal extreme point solu-

tion (f , x) of total flow ∣ f ∣ = OPT*. By the same argument as in Sect. 3.3, the number of all

paths with a positive flow value is polynomially bounded in the input size. Let ρ =
√
∣R∣/c

and let P be the set of all paths with a positive flow value that visit at most ρ nodes of R.

34

Refined Approximation Bound for MaxEDP Section 3.4

Belowwe argue how to useR,P and f to obtain a feasible routing of Ω (∣ f ∣/(c
√
∣R∣)) paths,

which yields an overall approximation ratio ofO(
√
r log kr); that will prove Theorem 3.2.

We distinguish the following two cases.

Case 1: The total flow of P is at least ∣ f ∣/2. We compute a new flow (f ′ , x′), where we
set f ′(P) = f (P) for every path P in P , and f ′(P) = 0 for any other path P. Thus, we

have ∣ f ′∣ ≥ ∣ f ∣/2. By applying our algorithm of Sect. 3.3 on (f ′ , x′), we efficiently compute

with constant probability a routing P with congestion c containing Ω(∣ f ′∣) = Ω(∣ f ∣) paths.
Note that all paths in P visit at most ρ nodes of R. Initialize P ′ with P . As long as there is an
edge e not adjacent to R that is redundant in P ′, we iteratively apply the reduction rule (see

Sect. 3.4.1) on e by contracting e in the graph as well as in every path that covers it. Let G′ be
the obtained minor of G with forest F′ = G′ − R. Note that F′ is simple (in contrast to G′ that
might contain multiple edges) as we contracted edges only in the (simple) forest G − R. The

obtained set P ′ is a set of (not necessarily simple) paths in G′ corresponding to P . In order to

obtain a feasible routing for (G ,M) of size Ω (∣ f ∣/(cρ)), it suffices by iterated application of

Observation 3.1 toP andP ′ that we efficiently find a subsetP ′Sol ⊆ P ′ of pairwise edge-disjoint
paths of size ∣P ′Sol∣ = Ω (∣P∣/(cρ)).

To obtain P ′Sol, we first bound the total path length in P ′. Removing R from G′ “decom-

poses” the set P ′ into a set S of subpaths lying in F′, that is,

S = {S is a connected component of P ∩ F′ ∣ P ∈ P ′ } .

Observe that S is an irreducible set of F′ with congestion c, as the reduction rule is not

applicable anymore. (Note that a single path in P ′ may lead to many paths in the cover S
which are considered distinct.) Thus, by Lemma 3.5, the average path length in S is at most 2c.

Let P be an arbitrary path inP ′. Each edge on P that is not in a subpath in S is incident on

a node in R, and each node in R is incident on at most two edges in P. Together with the fact

that P visits less than ρ nodes in R, there are less than 2ρ edges of P outside S . By the same

fact, P contributes at most ρ subpaths to S . Given that the average length of the subpaths in S
is at most 2c, we can upper bound the total path length∑P∈P ′ ∣P∣ by ∣P ′∣ρ(2c + 2). Let P ′′ be
the set of the ∣P ′∣/2 shortest paths in P ′. Hence, each path in P ′′ has length at most 4ρ(c + 1).

We greedily construct a feasible solution P ′Sol by iteratively picking an arbitrary path P
from P ′′, adding it to P ′Sol and removing all paths from P ′′ that share some edge with P
(including P itself). We stop when P ′′ is empty. As P ′′ has congestion c, we remove at

most 4ρc(c + 1) paths from P ′′ per iteration. Thus,

∣P ′Sol∣ ≥ ∣P ′′∣/(4ρc(c + 1)) = Ω (∣P∣/(c
√
∣R∣)) .

Case 2: The flow of P is less than ∣ f ∣/2. Then, the flow of all paths visiting at least ρ nodes
of R is at least ∣ f ∣/2. Let P ′ be the subset of these paths and let f ′ be the sum of all these flows.

Note that f ′ provides a feasible solution to relaxation MaxEDP LP for (G ,M) of value at
least ∣ f ∣/2. Since every flowpath in f ′ has length at least ρ, the total inflow of the nodes in R is at

least ∣ f ′∣ρ. By averaging, there must be a node v ∈ R of inflow at least ρ∣ f ′∣/∣R∣ = ∣ f ′∣/(c
√
∣R∣).

Let f ′′ be the subflow of f ′ consisting of all flow paths visiting v. This subflow corresponds to

35

Chapter 3 New Algorithms for Maximum Disjoint Paths Based on Tree-Likeness

a feasible solution (f ′′ , x′′) of the LP relaxation of value at least ∣ f ′∣/(c
√
∣R∣) ≥ ∣ f ∣/(2c

√
∣R∣).

Using Proposition 3.1, we can recover an integral feasible routing of size at least

∑
i
x′′i /12 ≥ ∣ f ∣/(24c

√
∣R∣) = Ω (∣ f ∣/(c

√
∣R∣) .

This case completes the proof of Theorem 3.2.

3.5 Fixed-Parameter Algorithm for MaxNDP

In this section, we give a fixed-parameter algorithm for MaxNDP that solves any in-

stance (G ,M) in time (k + r)O(r) ⋅ n, where r denotes the feedback vertex set number

of G, k = ∣M∣ and n = ∣V(G)∣. We note that a feedback vertex set R of size r can be computed

in time rO(r) ⋅ n [LRS18].

By the matching assumption (see Sect. 3.2), each terminal inM is a leaf. We can thus

assume that none of the terminals is contained in R.
Consider an optimal routing P of the given MaxNDP instance and the setMR ⊆M of

terminal pairs that are connected via P by a path that visits at least one node in R. Let P ∈ P
be a path connecting a terminal pair (s i , t i) ∈ MR . This path has the form

(s i , . . . , r1 , . . . , r2 , . . . , rℓ , . . . , t i) ,

where r1 , . . . , rℓ are the nodes in R that are traversed by P in this order. The pairs (s i , r1)
and (rℓ , t i) as well as (r j , r j+1) for j = 1, . . . , ℓ − 1 are called essential pairs for P. A node pair

is called essential if it is essential for some path in P . LetMe be the set of essential pairs.

Let F be the forest that arises when deleting R from the input graph G. Let (u, v) be any
pair of nodes in G. A path P in G with endpoints u and v is said to realize (u, v) if all internal
nodes of P lie in F. A set P ′ of paths is said to realize a set of node pairs if every pair in this

set is realized by some path in P ′ and if two paths in P ′ can only intersect at their endpoints.

Note that the optimal routing P induces a realization ofMe in a natural way: The realization

consists of all maximal subpaths of paths in P whose internal nodes all lie in F. Conversely,
for any realization P ′ ofMe , we can concatenate paths in P ′ to obtain a feasible routing that

connects all terminal pairs inMR . Therefore, we consider P ′ (slightly abusing notation) also
as a feasible routing forMR .

In our algorithm, we first guess the setMe of essential pairs, which implies the setMR as

well as the setMR that we define asMR =M∖MR . Then, by dynamic programming, we

construct two sets of paths, Pe and PF , where Pe realizesMe and PF routes in F a subset

ofMR . In our algorithm, the set Pe ∪ PF forms a feasible routing that maximizes ∣PF ∣ and
routes all pairs inMR . Recall that we consider the realization Pe ofMe as a feasible routing

forMR .

Now assume that we correctly guessedMe . Below, we will describe an algorithm that

uses a dynamic programming table to compute an optimum routing in 2O(r)(k + r)O(1) ⋅ n
time. For the sake of easier presentation, first we describe how to compute the cardinality of

such a routing. Then we argue how to find such a routing without a significant increase in the

run time.

36

Fixed-Parameter Algorithm for MaxNDP Section 3.5

Fv1 Fv2 Fv i Fvcv

v1 v2 v i vcv

v

F i
v

Figure 3.5: Subtree F i
v consists of v and subtrees Fv1 , . . . , Fv i . Recall that only leaf nodes can be terminals or

neighbors of R.

3.5.1 Dynamic Programming Table

Before we describe the dynamic programming table, we make several technical assumptions

that help to simplify the presentation. First, we modify the input instance as follows. We

subdivide every edge incident on a node in R by introducing a single new node on this

edge. Note that this modification yields an instance equivalent to the input instance. As a

result, every neighbor of a node in R that lies in F, that is, every node in NG(R), is a leaf
in F. Moreover, the set R is an independent set in G. Also recall that we assumed that every

terminal is a leaf and that therefore R does not contain any terminal. We also assume that

the forest F is a rooted tree by introducing a dummy node (which plays the role of the root)

and arbitrarily connecting this node to every connected component of F by an edge. In our

dynamic programming table, we will take care that no path visits this root node. We also

assume that F is an ordered tree by introducing an arbitrary order among the children of

every node.

For any node v, let Fv be the subtree of F rooted at v. Let cv be the number degF(v) − 1
of children of v and let v1 , . . . vcv be the (ordered) children of v. Then, for i = 1, . . . , cv , let F i

v
denote the subtree of Fv induced by the union of v with the subtrees Fv1 , . . . , Fv i ; see Fig. 3.5.
If v is a leaf, we have Fv = v and we define F0

v as Fv .
We introduce a dynamic programming table T . It contains an entry for every F i

v and

every subsetM′

e ofMe . Roughly speaking, the value of such an entry is the solution to the

subproblem, where we restrict the forest to F i
v , and the set of essential pairs toM′

e . More

precisely, table T contains five parameters: Parameters v and i describing F i
v , a parameterM′

e
describing the set of essential pairs, and two more parameters u and b. The parameter u is

either a terminal or a node in R, and b is in one of the three states: free, to-be-used, or blocked.
The value T[v , i ,M′

e , u, b] is the maximum cardinality of a setPF of paths with the following

properties:

1. The set PF is a feasible routing of some subset ofMR .

37

Chapter 3 New Algorithms for Maximum Disjoint Paths Based on Tree-Likeness

2. The set PF is completely contained in F i
v .

3. There is an additional set Pe of paths with the following properties:

(a) The set Pe is a realization ofM′

e ∪ {(u, v)} if b = to-be-used. Else, it is a realiza-
tion ofM′

e .

(b) The set Pe is completely contained in F i
v ∪ R and node-disjoint from the paths

in PF .

4. If b = free, there is no path in Pe ∪ PF visiting v.

If no such set PF exists, then T[v , i ,M′

e , u, b] is −∞.

Note that the parameter u is only relevant when b = to-be-used (otherwise, it can just

be ignored). One can think of the three states of b as follows: If b = free, then there is no

path in Pe ∪ PF visiting v, hence, in the future we might consider to add a path through v.
If b = to-be-used, then v is visited by some path in Pe (connecting u to v) and we cannot add

a new path through v. Eventually, if b = blocked, we may add a path to Pe ∪ PF that goes

through v. Hence, v is “blocked” for the future because of the possibility of having been

already visited. Thus, we have

T[v , i ,M′

e , u, blocked] ≥ T[v , i ,M′

e , u, free] ≥ T[v , i ,M′

e , u, to-be-used] .

Below, we describe how to compute the entries of T in a bottom-up manner. Having com-

puted T , we obtain the cardinality of the optimum routing P by ∣MR ∣ + T[v , cv ,Me , u, free],
where v is the dummy root node and u is an arbitrary terminal.

Base case. In the base case, the node v is a leaf and we havePF = ∅. Thus, every entry for v
has value either 0 or −∞, depending on whetherMe can be routed. When b = free, no path
can visit v and, hence, also Pe = ∅. Thus we set

T[v , 0,∅, u, free] = 0 .

Then we set

T[v , 0,M′

e , u, blocked] = 0
ifM′

e is either empty, or consists of a single pair of nodes in R ∩ NG(v), or consists of a single
pair where one node is v and the other one is in R ∩ NG(v). Finally, we set

T[v , 0,∅, u, to-be-used] = 0

if u = v or u is in R ∩ NG(v). For all the other cases where v is a leaf, we set

T[v , i ,M′

e , u, b] = −∞ .

Induction step. For the inductive step, we first consider i = 1. We have

T[v , 1,M′

e , u, to-be-used] = T[v1 , cv ,M′

e , u, to-be-used] ,

38

Fixed-Parameter Algorithm for MaxNDP Section 3.5

since the path in Pe realizing (u, v) has to start at a leaf node of Fv1 . For the other states of b,
recall that every path in Pe ∪ PF connects two leaves in F 1

v . Since v has degree 1 in F 1
v , there is

no path in Pe ∪ PF visiting v, and we have

T[v , 1,M′

e , u, blocked] = T[v , 1,M′

e , u, free] = T[v1 , cv ,M′

e , u, blocked] .

Now, let i be greater than 1. In a high level view, we guess which part ofM′

e is re-

alized in F i−1
v ∪ R and which part is realized in Fv i ∪ R. For this, we consider every par-

titionM′

e1 ⊎M′

e2 ofM′

e . By our dynamic programming table, we find a partition that

maximizes our objective. In the following, we assume that we guessedM′

e1 ⊎M′

e2 correctly.

Let us consider the different states of b in more detail.

1. When b = free, node v is not allowed to be visited by any path, especially by any path

in F i−1
v ∪ R. Hence, T[v , i ,M′

e , u, free] is equal to

T[v , i − 1,M′

e1 , u, free] + T[v i , cv i ,M′

e2 , u, blocked] .

2. When b = to-be-used, we have to realize (u, v) in F i
v ∪ R. For this, there are two possi-

bilities: Either (u, v) is realized by a path in F i−1
v ∪ R, or there is a realizing path that

first goes through Fv i ∪ R and then reaches v via the edge (v i , v). Hence, for the first
possibility, we consider

T[v , i − 1,M′

e1 , u, to-be-used] + T[v i , cv i ,M′

e2 , u, blocked] ,

for the second possibility, we consider

T[v , i − 1,M′

e1 , u, free] + T[v i , cv i ,M′

e2 , u, to-be-used] .

Maximizing over both, we obtain T[v , i ,M′

e , u, to-be-used].

3. When b = blocked, we will also consider two cases. In the first one, there is no path

in Pe ∪ PF going through edge (v i , v), hence, we get the term

T[v , i − 1,M′

e1 , u, blocked] + T[v i , cv i ,M′

e2 , u, blocked] .

In the second case, there is a path P in Pe ∪ PF going through edge (v i , v). Since P is

connecting two leaves in F i
v , a part of P is in F i−1

v ∪ R and the other part is in Fv i ∪ R.
If P ∈ Pe , then it is realizing a pair ofM′

e . Hence, for every pair (u1 , u2) ∈ M′

e , we

have to consider the term

T[v , i − 1,M′

e1 − (u1 , u2), u1 , to-be-used]
+ T[v i , cv i ,M′

e2 − (u1 , u2), u2 , to-be-used]

and the symmetric term where we swap u1 and u2. If P ∈ PF , then it is realizing a

terminal pair ofMR . Hence, for every pair (u1 , u2) ∈ MR we get the term

1 + T[v , i − 1,M′

e1 , u1 , to-be-used] + T[v i , cv i ,M′

e2 , u2 , to-be-used]

39

Chapter 3 New Algorithms for Maximum Disjoint Paths Based on Tree-Likeness

and the symmetric term where we swap u1 and u2. Note that we count the path re-

alizing (u1 , u2) in our objective. Maximizing over all the terms of the two cases, we

obtain T[v , i ,M′

e , u, to-be-used].

3.5.2 Analysis

Let us analyze the run time of the algorithm described above. Given R, the forest F can be

computed in timeO(r ⋅ n). In order to guessMe , we enumerate all potential sets of essential

pairs. To bound the number of potential sets of essential pairs, first recall that each pair

contains at least one node in R. On the other hand, each node in R appears in at most two

pairs and, consequently, ∣Me ∣ ≤ 2r. Thus, an upper bound on the number of potential sets

forMe is the number of ways to choose up to two pairs for each node in R. As each node in R
is paired with a terminal node or another node in R, there are at most (2k + r − 1) candidate
pairs for it. Hence, there are at most (2k + r)2r candidate sets to consider. For each particular

guess forMe , we run the dynamic program above. The number of entries in T—as specified

by the five parameters v, i,M′

e , u and b—for each fixed guess forMe is at most

⎛
⎝ ∑v∈V(F)

degF(v)
⎞
⎠
⋅ 22r ⋅ (2k + r) ⋅ 3 = 22r ⋅ (2k + r) ⋅ O(n) .

Among the different entries, those with b = blocked and i > 1 have the highest run time in the

worst case. There, we do not only consider all partitions ofM′

e , but for every partition we

also consider every possible node pair that is either an essential pair inM′

e or a terminal pair

inMR . As there are at most 22r partitions ofM′

e , at most 2r essential pairs inM′

e and at

most k terminal pairs inMR , we consider at most

2
2r + 2 ⋅ 22r ⋅ (k + 2r) ≤ 2

2r+1 ⋅ (2k + 2r)

different terms, including the symmetric terms, for computing an entry. For each term, we

need constant time for look-up. Hence, altogether, this gives a run time of

r ⋅ (2k + r)2r ⋅ 22r ⋅ (2k + r) ⋅ 22r+1 ⋅ (2k + 2r) ⋅ O(n) = (8k + 8r)2r+3 ⋅ O(n)

assuming that R is given. By computing R in time rO(r) ⋅ n, we can bound the total run time

by (k + r)O(r) ⋅ n.

3.5.3 Reconstruction of an Optimal Routing

Above, we computed only the cardinality of the routingP . Now we discuss how to compute an

optimal routing of size ∣P∣without asymptotically increasing the total run time. For every non-

leaf entry of T , we take a term that maximized its value and define the (at most two) entries

appearing in the term as its children. We can do this while computing T without increasing

the asymptotic run time. By considering all the children that (recursively) contributed to the

entry with the optimum value of the root node, we obtain a computation tree. Going over
the computation tree from bottom to top, we compute for each entry of the tree its set of

40

Parameterized Intractability of MaxNDP for the Parameter r Section 3.6

paths Pe ∪ PF . We store the set as a linked list with pointers to the paths which themselves

are stored as linked lists of their nodes. Whenever we concatenate two lists, we will not

create a new copy but reuse one of them. This will give us constant time for concatenation.

Note that for almost all entries we obtain Pe ∪ PF by just taking the union of the paths of

its children. Hence, we just concatenate the lists of its children (at most two) in constant

time. The only exception are entries where b = blocked and a path P is going through the

node given by the first parameter v of the entry. Here, we obtain P by concatenating two

paths, where each one belongs to a different child of the entry. Then we add the concatenated

path to the union of the remaining paths of the children. The operation to find the two paths

that we want to concatenate takes O(∣Pe ∪ PF ∣) = O(k + r) time. The remaining steps to

compute Pe ∪ PF also take constant time. Thus, for each entry of the tree, we can bound

the run time by O(k + r). Note that in the computation tree there is exactly one entry for

each subtree F i
v , hence, in total there areO(n) entries. Thus, our approach takes additional

time of (k + r) ⋅ O(n) to compute the paths Pe ∪ PF . Finally, the time needed to accordingly

concatenate the paths in Pe to get a routing forMR takes at most O(∣Pe ∣2) = O(r2) time.

Hence, in time (8k + 8r)2r+3 ⋅ O(n), we can compute an optimal routing, asymptotically

matching the time needed to compute its cardinality .

This discussion finishes the proof of Theorem 3.3.

3.6 Parameterized Intractability of MaxNDP for the Pa-
rameter r

In this section, we prove Theorem 3.4, that is, we show that MaxNDP isW[1]-hard parameter-

ized by feedback vertex set number. This reduction was originally devised for the parameter

tree-depth by Ene et al. [EMPR16]; we notice that the same reduction also works for the

parameter r. (Both tree-depth and feedback vertex set number are restrictions of treewidth,

but they are incomparable to each other.)

For sake of completeness, we include the reduction here, and argue about the feedback

vertex set number of the reduced graph. The reduction is from theW[1]-hardMulticolored

Clique problem [FHRV09], where given a graph G and a partition of V(G) into q indepen-
dent sets V 1 ,⋯,V q , we are to check if there exists a q-clique in G with exactly one vertex

in every set V i . By adding dummy vertices, we can assume q ≥ 2 and ∣V i ∣ = n for some n
with n ≥ 2 and every i with 1 ≤ i ≤ q.

Construction. Given an instance (G , (V i)qi=1) of Multicolored Clique, we aim at con-

structing an equivalent instance (H,M, ℓ) of MaxNDP consisting of a graphH with feedback

vertex set number bounded by a function of q, a setM of terminal pairs, and an integer ℓ. The

graph H will contain ℓ node-disjoint paths, each one routing a distinct terminal pair in M, if

and only if (G , (V i)qi=1) is a “yes”-instance.
We start by constructing for every set V i a gadgetW i as follows. First, for every v ∈ V i ,

we construct a path X i
v of length q − 2 on the vertex set

{x i
v , j ∣ j ∈ {1,⋯, q} ∖ {i}} ,

41

Chapter 3 New Algorithms for Maximum Disjoint Paths Based on Tree-Likeness

x i
u i , j x i

v , j

s iv

t iv

first(X i
u i)

last(X i
u i)

first(X i
v)

last(X i
v)

x j
u j , i

x j
w , i

s jw

t jw

first(X j
u j)

last(X j
u j)

first(X j
w)

last(X j
w)

p i , j

Figure 3.6: Part of the construction of the graphH: The gadgetsW i andW j connected via p i , j . On the left side,
the path X i

u i is highlighted.

where the vertices are connected in any order. Let first(X i
v) denote any one of the two

endpoints of X i
v , and let last(X i

v) denote the other endpoint of X i
v . Secondly, we select an

arbitrary vertex u i ∈ V i . Thirdly, for every v ∈ V i ∖ {u i}, we add a vertex s iv and a vertex t iv .
We make s iv adjacent to first(X i

v) and to first(X i
u i). Similarly, we make t iv adjacent to last(X i

v)
and to last(X i

u i); see Fig. 3.6. We set (s iv , t iv) as a terminal pair. This concludes the description

of the gadgetW i . LetMst denote the set of terminal pairs constructed in this step.

To encode adjacencies in G, we proceed as follows. For every i and j with 1 ≤ i < j ≤ q, we
add a vertex p i , j adjacent to all vertices in {x i

v , j ∣ v ∈ V i} and in {x j
w , i ∣ w ∈ V j}; see Fig. 3.6.

For every edge vw ∈ E(G)with v ∈ V i andw ∈ V j , we add a terminal pair (x i
v , j , x

j
w , i). LetMx

be the set of terminal pairs constructed in this step; we haveM=Mst ∪Mx .

Finally, we set the required number ℓ of paths to q(n − 1) + (q
2
). This concludes the

description of the instance (H,M, ℓ).

From a clique to disjoint paths. Assume that the given instance of Multicolored

Clique is a “yes”-instance, and let {v i ∣ i ∈ {1,⋯, q}} be a clique in G such that v i belongs
to V i for each i ∈ {1,⋯, q}. We construct a family of ℓ node-disjoint paths as follows. First, for
every i ∈ {1,⋯, q} and every v ∈ V i ∖ {u i}, we route a path from s iv to t iv through the path X i

v
if v ≠ v i , and through the path X i

u i if v = v i . Note that in this step we have created q(n − 1)
node-disjoint paths connecting terminal pairs, and in every gadgetW i the only unused ver-

tices are vertices on the path X i
v i . To construct the remaining (q

2
) paths, for every i and j

with 1 ≤ i < j ≤ q, we take the 3-vertex path from x i
v i , j to x j

v j , i through p i , j ; note that the
assumption v iv j ∈ E(G) ensures that (x i

v i , j , x
j
v j , i) is indeed a terminal pair inM.

Fromdisjoint paths to a clique. In the other direction, letP be a family of ℓ node-disjoint
paths connecting terminal pairs in H. Let Pst ⊆ P be the set of paths connecting terminal

pairs fromMst , and, in an analogous way, let Px ⊆ P be the set of paths connecting terminal

pairs fromMx . Eventually, let P = {p i , j ∣ 1 ≤ i < j ≤ q}. First, observe that P separates every

42

Parameterized Intractability of MaxNDP for the Parameter r Section 3.6

terminal pair fromMx . Hence, every path from Px contains at least one vertex from P.
Since ∣P∣ = (q

2
), we have ∣Px ∣ ≤ (q2), and, consequently,

∣Pst ∣ ≥ ℓ − (q
2
) = q(n − 1) = ∣Mst ∣ .

Thus, Pst routes all terminal pairs inMst and Px routes (q2) pairs fromMx . Since ∣Px ∣ = ∣P∣,
every vertex in P is contained in a path from Px . Consequently, the paths in Pst cannot use

any vertex in P. Therefore, every path in Pst lies inside one gadgetW i .

Observe that a shortest path between terminals s iv and t iv insideW i is either X i
u i or X i

v
prolonged with the terminals at endpoints, and thus contains q + 1 vertices. Furthermore, a

shortest path between two terminals inMx contains three vertices. We infer that the total

number of vertices on paths in P is at least

∣Pst ∣ ⋅ (q + 1) + ∣Px ∣ ⋅ 3 = q(n − 1)(q + 1) + 3(
q
2
)

= q ((n − 1)(q + 1) + (q − 1)) + (q
2
) = ∣V(H)∣ .

We infer that every path in Pst consists of q + 1 vertices, and every path in Px consists of

three vertices. In particular, for every i ∈ {1,⋯, q} and every v ∈ V i ∖ {u i}, the path in Pst
that connects s iv and t iv goes either through X i

v or X i
u i . Consequently, for each i ∈ {1,⋯, q}

there exists a vertex v i ∈ V i such that the path X i
v i is not contained in any path fromPst . Even

more, X i
v i contains all the vertices ofW

i that do not lie on any path from Pst .

We claim that {v i ∣ i = 1,⋯, q} is a clique inG. To this end, consider any p i , j ∈ P. Since we
have ∣Px ∣ = ∣P∣, there exists a path inPx that goes through p i , j . Moreover, this path has exactly

three vertices. Since the only neighbors of p i , j that are not used by paths from Pst are x i
v i , j

and x j
v j , i , we infer that (x

i
v i , j , x

j
v j , i) is a terminal pair inM and, consequently, v iv j ∈ E(G).

This fact concludes the proof of the correctness of the construction.

Bounding the feedbackvertex set number. We are left with a proof thatH has bounded

feedback vertex set number in q.
First, observe that H − P consists of q components, where each component is a gadgetW i ,

for some i ∈ {1,⋯, q}. Secondly, consider the endpoints of the path X i
u i from the gadgetW i .

Observe that the deletion of both vertices breaksW i into n components where each compo-

nent is a path. Consequently, H has the feedback vertex set

P ∪ {first(X i
u i), last(X i

u i) ∣ i = 1,⋯, q}

of sizeO(q2).
This observation finishes the proof of Theorem 3.4.

43

Chapter 3 New Algorithms for Maximum Disjoint Paths Based on Tree-Likeness

a b

cd
(a) Graph H; it is 3-

edge-colorable.

v1

v2

v3

a

b

c

d
(b) Graph G obtained from H

with r = 2.

v1

v2

a

b

c

d
(c) Graph G obtained from H

with r = 1.

Figure 3.7: The reduction from an Edge 3-Coloring-instance H to an EDP/MaxEDP-instance (G ,M). Dotted
curves depict which terminals form a pair inM. The path highlighted in gray connects the terminal pair {a, d}.

3.7 Hardness of Edge-Disjoint Paths in Almost-Forests

In this section, we show that EDP is NP-hard already in graphs that become forests after

deleting two nodes. Though this immediately implies NP-hardness for MaxEDP in such

graphs, we show that MaxEDP is NP-hard even in graphs that become forests after deleting

just one node. Thus, we prove Theorem 3.5.

Proof of Theorem 3.5. We first show NP-hardness of EDP for r = 2. We reduce from the

problemEdge 3-Coloring in cubic graphs, which isNP-hard [Hol81]. Given a cubic graphH,

we construct a complete bipartite graph G, where one of the two partite sets of V(G) consists
of three nodes {v1 , v2 , v3}, and the other partite set consists of V(H); see Figs. 3.7a and 3.7b.

As for the setM of terminal pairs, letM= {(s, t) ∣ {s, t} ∈ E(H)}; in words, we want to

connect a pair of nodes by a path in G if and only if they are connected by an edge in H. This

completes the construction of the instance (G ,M) of MaxEDP. Note that G has feedback

vertex set number r = 2; removing from G any two vertices of {v1 , v2 , v3} yields a forest.
Regarding correctness of the reduction, we show that H is 3-edge-colorable if and only if

all pairs inM can be routed in G.
In the forward direction, suppose that there is a proper 3-edge-coloring φ∶ E(H)→{1, 2, 3}.

For every c ∈ {1, 2, 3}, let Ec ⊆ E(H) be the set of edges that receive color c under φ. There is

a routing in G that, for every c ∈ {1, 2, 3}, routes all terminal pairs {(s, t) ∈ M ∣ {s, t} ∈ Ec}
exclusively via the node vc (and thus via paths of length 2). Note that this routing indeed

yields edge-disjoint paths. Otherwise there were an edge {s, vc} in E(H) contained in at least

two paths that route two terminal pairs {s, t1} and {s, t2}. Hence, the two edges in E(H)
corresponding to {s, t1} and {s, t2} would receive the same color c in φ; a contradiction to

the proper edge-coloring φ as both edges are incident on s.
In the backward direction, suppose that all terminal pairs inM can be routed inG. SinceH

is cubic, any node s ∈ V(H) is contained in three terminal pairs. Therefore, no path of the

routing can have a node in V(H) as an internal node and thus all paths in the routing have

length 2. Then this routing naturally corresponds to a proper 3-edge-coloring φ of H, where

any terminal pair {s, t} routed via vc ∈ {v1 , v2 , v3}means that we color the edge {s, t} ∈ E(H)
with color c under φ.

44

Concluding Remarks Section 3.8

In order to show NP-hardness of MaxEDP for r = 1, we also reduce from Edge 3-

Coloring in cubic graphs and perform a similar construction as described above: This

time, we construct a bipartite graph G with one subset of the partition being {v1 , v2}, the
other being V(H), and the setM of terminal pairs being again specified by the edges of H;

see Figs. 3.7a and 3.7c. This completes the reduction. The resulting graph G has feedback

vertex set number r = 1.
We claim that H is 3-colorable if and only if we can route n = ∣V(H)∣ pairs in G.
In the forward direction, suppose that there is a proper 3-edge-coloring φ∶ E(H)→{1, 2, 3}.

For c ∈ {1, 2, 3}, let Ec ⊆ E(H) be the set of edges that receive color c under φ. There is a

routing inG that, for every c ∈ {1, 2}, routes all terminal pairs {(s, t) ∈ M ∣ {s, t} ∈ Ec} exclu-
sively via the node vc (and thus via paths of length 2). Note that the terminals corresponding

to edges receiving color 3 remain unrouted. The reasoning that the resulting routing is feasible

is analogous to the case of r = 2. To see that precisely n terminal pairs are routed overall,

observe that, for each of the n terminals, exactly two of the three terminal pairs are routed.

In the backward direction, suppose that n terminal pairs inM can be routed in G. Since
every terminal v in G has degree two, at most two paths can be routed for v. As n terminal

pairs are realized, this also means that exactly two paths are routed for each terminal. Hence,

none of the paths in the routing has length more than two. Otherwise, it would contain

an internal node in V(H), which then could not be part of two other paths in the routing.

Then this routing naturally corresponds to a partial edge-coloring of H, where any terminal

pair {s, t} routed via vc ∈ {v1 , v2} implies that we color the edge {s, t} ∈ E(H) with color c.
Since each terminal v in V(H) is involved in exactly two paths in the routing, exactly one

terminal pair for v remains unrouted. Hence, exactly one edge incident on v in H remains

uncolored in the partial coloring. We color all uncolored edges in H by color 3 to obtain a

proper 3-edge-coloring.

Thus, we almost close the complexity gap for EDP with respect to the size of a minimum

feedback vertex set, only leaving the complexity of the case r = 1 open.

3.8 Concluding Remarks
In this chapter, we examined the problems of routing terminal pairs by edge- and node-disjoint

paths in graphs of bounded feedback vertex set number r. We observed that our obtained

approximability bounds, expressed in terms of r, either strengthen best known bounds or

they are almost tight. This fact leads us to the conclusion that the parameter r in fact captures

the “difficulty” of disjoint paths problems.

In particular, for MaxEDP, we obtained a constant-factor approximation algorithm with

congestion logarithmic in k + r, where k is the number of terminal pairs. This result strength-

ens the bound obtained by directly applying the randomized rounding technique for LPs

introduced by Raghavan and Thompson [RT87]. Though also we applied this technique,

beforehand we appropriately modified the fractional LP solution by making use of the for-

est that one obtains when removing the feedback vertex set from the graph. For our next

result, we used the solution above to extract OPT* /O(
√
r log kr) edge-disjoint paths out of it,

where OPT* denotes the value of an optimum fractional solution. This approach strengthens,

up to a logarithmic factor, the best known bound of OPT* /O(
√
n) [CKS06]. We achieved

45

Chapter 3 New Algorithms for Maximum Disjoint Paths Based on Tree-Likeness

our result by contracting “redundant” edges in the input graph and in the routing which lead

to an “irreducible” routing from which we could greedily pick up our solution. The result

shows that in order to improve the best known bound it suffices to focus only on graphs with

feedback vertex set number close to n.
We also complemented the upper bounds with hardness results. We observed that the

complexities of both problems, routing node-disjoint paths and edge-disjoint-paths, differ

when r is constant. Whereas NDP [Sch94] and MaxNDP are efficiently solvable for any

constant r, EDP and MaxEDP are NP-hard even for r = 2 and r = 1, respectively. When

considering r as part of the input, we can separate NDP and MaxNDP (if FPT ≠W[1]).
We showed W[1]-hardness of MaxNDP when parameterized by r, whereas NDP is fixed-

parameterized tractable in r [Sch94]. However, we were able to provide a fixed-parameter

algorithm for the combined parameter k + r.

46

4 Approximating Hard-Capacitated
k-Facility Location Problems

The k-Facility Location problem is a generalization of the classical problems k-Median

and Facility Location. The goal is to select a subset of at most k facilities that minimizes

the total cost of opened facilities and established connections between clients and opened

facilities. In this chapter, we present the first constant-factor approximation algorithms for

the hard-capacitated variants of the problem. In this setting, a single facility may only serve a

limited number of clients and creating multiple copies of a facility is not allowed.

For uniform capacities, we obtain a (2 + ε)-capacity violating algorithm with approxima-

tion ratioO(1/ε2); our result has not yet been improved. Then, for non-uniform capacities,

we consider the case of k-Median, which is equivalent to k-Facility Location with uniform

opening cost of the facilities. Here, we obtain a (3 + ε)-capacity violating algorithm with

approximation ratioO(1/ε).
Our algorithms are based on rounding a fractional solution to the standard LP.We first use

the clustering of Charikar et al. [CGTS99] to partition the facilities into sets where the total

fractional opening in each set is at least 1 − 1/ℓ for some fixed ℓ. Then we exploit the technique

of Levi, Shmoys, and Swamy [LSS12] developed for the capacitated Facility Location

problem, which is to locally group the demand from clients to obtain a system of single-

demand-node instances. Next, depending on the setting, we either use a dedicated routing

tree on the demand nodes (for non-uniform opening cost), or we work with stars of facilities

(for non-uniform capacities), to redistribute the demand that cannot be satisfied locally within

the clusters.

4.1 Introduction
In metric location problems, the input consists of a set C of clients, a set F of facilities and a

metric distance function d on C ∪ F . The goal is to select a subset F ′ ⊆ F of facilities, and

an assignment of clients to the selected facilities, that together minimize a certain problem-

specific cost function. One can think ofF being a set of potential facility locations, whereasF ′
contains locations where we decided to open (build) facilities.

In the k-Median setting, we search for a subset F ′ ⊆ F of cardinality at most k and want

tominimize the total cost of assigning clients in C to facilities inF ′, where the cost of assigning
a client s ∈ C to a facility i ∈ F ′ equals their metric distance d(s, i). The k-Median problem

is a classical NP-hard problem appearing in a number of realistic optimization scenarios.

Consider, for example, the location of actual facilities such as voting points during elections,

or power plants in an electrical grid. It also appears in the context of clustering data, where

one wishes to partition objects into a fixed number of groups containing similar items.

Similar to k-Median is the k-Center problem, where a subset of k facilities is selected
but the objective is to minimize the maximum distance between a client and its assigned

facility. Another related setting is the Facility Location problem, where instead of the strict

Chapter 4 Approximating Hard-Capacitated k-Facility Location Problems

constraint of opening at most k facilities, we pay a certain cost f i for opening a facility in
location i ∈ F . A common generalization of k-Median and Facility Location is k-Facility
Location, where there are both, the location specific facility opening cost and the upper

bound of k on the number of open facilities. Note that k-Median is equivalent to k-Facility
Location with uniform opening costs1.

In this chapter, we consider the capacitated versions of k-Median and k-Facility Loca-
tion. In this generalization, each facility i ∈ F has a capacity u i that constrains us to assign at

most u i clients to i. If all capacities are the same, we call such a location problem uniform, and,

if there are no restrictions on the capacities, we call such problems general or non-uniform.

We focus on the versions with hard capacities, where each facility may be opened at most once,

and with splittable demand, where a single client may be served from more than one facility.

In the simple case of unit demand clients and integral capacity of facilities, the splittability

of demands is not important as we discuss in Section 4.2. The case of unit demand clients

carries the essence of capacitated location problems with splittable demand, and, hence, for the

simplicity of the argument, we will only consider unit demands. The case of hard capacities is

a generalization of the case of soft capacities, where one may open multiple copies of the same

facility. We will call such location problems hard-capacitated and soft-capacitated, respectively.
In the setting of uniform capacities, the soft- and hard-capacitated versions of k-Median are

equivalent up to a constant factor in the approximation ratio [Li17].

All these mathematical formulations of location problems, although modeling essentially

the same clustering task, behave very differently in the context of approximation.

Best understood is the k-Center problem, for which Hochbaum and Shmoys [HS85] gave

a simple and best possible 2-approximation algorithm. In recent past, Cygan et al. [CHK12]

gave a constant-factor approximation algorithm for the capacitated version of the k-Center
problem. The approximation ratio was subsequently improved to 9 by an algorithm of An et

al. [ABC+15] that is based on a natural LP relaxation of capacitated k-Center. This result

narrows down the integrality gap of the natural LP relaxation to either one of the three

integers2 7, 8, or 9. The best-known lower bound on the approximation factor is 3 [CHK12].

After a long line of research, the approximability of the uncapacitated Facility Location

problem has been nearly resolved. The 1.488-approximation algorithm of Li [Li13] almost

closed the gap with the approximability lower bound of 1.463 by Guha and Khuller [GK99].

The approximability of the capacitated variant is much less clear. We know that the soft-

capacitated problem admits a 2-approximation by Jain et al. [JMM+03], which matches the

integrality gap of the standard LP. However, the integrality gap of the standard LP for hard-

capacitated Facility Location is unbounded and, for a while, the only successful approach

has been local search, which yields a 3-approximation for uniform capacities [ALB+13] and

a 5-approximation for general capacities [BGG12]. Recently, An, Singh and Svensson [ASS17]

were successful in obtaining an LP relaxation that yielded a constant-factor approximation

algorithm. By this, they answered one of the ten open questions posed in a textbook of

Wiliamson and Shmoys [WS11]. Of interest for our results is an LP-based 5-approximation

algorithm for the case with uniform opening costs that was given by Levi et al. [LSS12]. We

1 To reduce k-Facility Location to k-Median, guess the number of opened facilities in the optimal solution

and use this number as k. In the other direction, set all opening costs to 0.
2 Cygan et al. [CHK12] give a simple argument that it suffices to consider tree-metrics on unweighted graphs

where the optimum solution has length 1. Then any solution has an integral value.

48

Introduction Section 4.1

will partly build on their techniques in the construction of our algorithm for capacitated k-
Median.

Despite the simple formulation, k-Median appears to be the most difficult to handle

of the problems above. The first constant-factor approximation algorithm for the uncapaci-

tated k-Median was achieved by Charikar et al. [CGTS99] and had an approximation ratio

of 6 2

3
. For a long time, the best approximation ratio was 3 + ε for any positive ε, which was

obtained by a local-search method [AGK+01]. Then, not long ago, Charikar and Li [CL12]

gave a 3.25-approximation algorithm by directly rounding the fractional solution to the

standard LP. Next, Li and Svensson gave an LP-based algorithm [LS16] with approximation

ratio (1 +
√
3 + ε) ≈ 2.73 + ε, in which they turn a pseudo-approximation algorithm opening

a few too many facilities into an algorithm opening at most k facilities. Eventually, two ingredi-
ents of this algorithmwere optimized by Byrka et al. [BPR+17] to obtain a 2.675-approximation

algorithm for k-Median.

Until recently, all constant-factor approximation algorithms for capacitated k-Median

were based on the standard LP. Since the standard LP has an unbounded integrality gap, it

forces to relax some of the constraints. A natural relaxation is to either allow a violation of the

capacities by a small factor (we call the factor capacity violation), or to allow opening slightly

more than k facilities. Note that in the well-known integrality gap example [DL16], an integral

solution must either violate the capacities by at least a factor of 2 − ε or open at least (2 − ε)k
facilities in order to have the connection cost within a constant of the optimal solution cost to

the standard LP, even for uniform soft capacities.

The relaxation led to constant-factor approximation algorithms where the factor violating

the relaxed constraint is bounded by a constant. Charikar et al. [CGTS99] obtained such a

bi-factor approximation algorithm for the setting of uniform soft capacities. They presented

a 16-approximation algorithm by violating the capacities by a factor of 3. Later, Chuzhoy and

Rabani [CR05] gave the first constant-factor approximation algorithm for the non-uniform

soft-capacitated case, bounding the capacity violation and the approximation ratio by two-

digit constants. Only recently further progress was made. Aardal et al. [AvdBGL15] designed

a (7 + ε)-approximation algorithm for the case of general hard capacities using at most 2k + 1
facilities and respecting all capacity constraints.

Our results. We present two algorithms for hard-capacitated k-Facility Location that

are based on the standard LP, one with general opening costs, and one with general capacities.

Our aim is to not violate the number of open facilities and, simultaneously, to keep the capacity

violation as low as possible.

First, in Section 4.3, we present an algorithm for uniform k-Facility Location that

is still the best known one in its setting. Its capacity violation of at most 2 + ε, for any
positive ε, meets the lower bound enforced by the integrality gap example. We note that

the presentation in our extended abstract [BFRS15] had some inaccuracies, as pointed out

by Grover et al. [GGP17b, GGP17a]. In parallel to our preparation of this chapter, Grover

et al. were able to achieve a slightly higher violation factor of 3 avoiding the issues in our

extended abstract [BFRS15]. Independently of them, we fixed the issue bymaking a distinction

between strict and relaxed solutions of stars instances in Section 4.2. We could also improve

the approximation factor by a constant in comparison to the extended abstract. In particular,

we obtain the following result:

49

Chapter 4 Approximating Hard-Capacitated k-Facility Location Problems

Theorem 4.1. For any ℓ with ℓ ≥ 2, there is an approximation algorithm for uniform hard-
capacitated k-Facility Location that computes a solution of cost 8(ℓ + 1)2 ⋅OPT∗ which
violates the capacities by a factor at most 2 + 3/(ℓ − 1), where OPT∗ is the cost of an optimum
solution to the standard LP relaxation.

Next, we examine the non-uniform k-Facility Location problem with uniform opening

costs. Recall that this problem is equivalent to non-uniform k-Median. In Section 4.4, we

describe the first constant-factor approximation algorithm for the hard-capacitated variant of

this problem, and achieve a capacity violation at most 3 + ε for any sufficiently small positive ε.
More specifically, we prove the following.

Theorem 4.2. For any ε with 0 < ε ≤ 1, there is an approximation algorithm for non-uniform
hard-capacitated k-Median that computes a solution of cost 540/εOPT∗+144OPT∗which
violates the capacities by a factor at most 3 + ε, where OPT∗ is the cost of an optimum solution
to the standard LP relaxation.

Both our results for k-Facility Location are built on the idea of Levi et al. [LSS12] to

decompose the instance into single-demand-node instances. We exploit this in Section 4.2

where we present the tools used by our algorithms.

SubsequentWork. Since the publication of our extended abstract [BFRS15], new results

were announced. Li [Li17] introduces a novel LP relaxation for uniform hard-capacitated k-
Median. This allows him to open only k(1 + ε) facilities while respecting all capacity con-
straints. He further develops the LP relaxation and generalizes the result to the case of

non-uniform soft capacities [Li16]. Byrka et al. [BRU16] use the LP relaxation for uniform

hard capacities to open at most k facilities and to violate the capacities only by 1 + ε. The same

outcome is achieved by Demirci and Li [DL16] for the non-uniform hard-capacitated case.

We believe that our results are still of interest as they are based on the substantially simpler

standard LP relaxation. Besides that analyzing this relaxation is an interesting question in its

own right, the resulting algorithms might also be advantageous in practical applications. Also

our approximation ratio has a better asymptotic dependence on 1/ε, which may lead to better

solutions for medium violation factors.

4.2 Star Clusters and Star Instances
Given a capacitated k-Facility Location instance (C ,F , k, d , u), we will partition the

facilities of F into star clusters (similar to Charikar and Li [CL12]). For this, we first solve

the following natural LP relaxation denoted by Ck-FL LP, where the variable y i encodes the
opening value (opening) of the facility i, and the variable x i t encodes the assignment of the

client t to the facility i. The variable x i t can also be viewed as the LP demand of the client t
that is send to the facility i. Recall that we consider unit demands, that is, the total LP demand

of the client t is∑i∈F x i t = 1. Throughout this chapter, we fix an integral parameter ℓ ≥ 2 and
an optimal fractional solution (x∗ , y∗) to Ck-FL LP and denote its objective value by OPT

∗
.

50

Star Clusters and Star Instances Section 4.2

minimize ∑
i∈F ,t∈C

d(i , t)x i t + ∑
i∈F

y i f i

subject to ∑
i∈F

y i ≤ k; (LP-1)

∑
i∈F

x i t = 1 for each t ∈ C; (LP-2)

x i t ≤ y i for each i ∈ F , t ∈ C; (LP-3)

∑
t∈C

x i t ≤ u i y i for each i ∈ F ; (LP-4)

x i t , y i ≥ 0 for each i ∈ F , t ∈ C .

A solutionwith capacity violations to Ck-FL LP is a solution that satisfies the weaker version

of Ck-FL LP where we drop Constraint (LP-4). In such a solution, the capacity violation of a
facility i ∈ F is

∑t∈C x i t
u i y i

.

We call such a solution also a solution with capacity violation γ if γ ≥ maxi∈F γ i .
As noted in Section 4.1, in order to find a solution, it suffices to compute a feasible integral

opening vector for the facilities and a possibly fractional assignment of the clients to the open

facilities.

Lemma 4.1. Given a subset F ′ ⊆ F of open facilities for which an assignment of the clients
exists, we can efficiently compute such an assignment with minimum cost and splittable demands.
Moreover, if the capacities are integral, we can obtain a minimum-cost assignment where no
demand is split.

Proof. Given F ′, we fix the corresponding facility openings in Ck-FL LP and solve the LP to

obtain a minimum-cost assignment that possibly is fractional. If the capacities are integral

and we wish to obtain an integral assignment, we model our problem as a minimum-cost

flow problem. For this, we take the complete bi-partite graph with the partite sets C and F ′,
orient all edges from C toF ′ and set their capacities to 1 (or any larger integer value) and their
costs corresponding to their length in the metric d. Then we introduce a source node that we

connect to every client in C via an edge of cost 0 and capacity 1, and, similarly, we introduce a

sink node to which we connect every facility i ∈ F ′ via an edge of cost 0 and capacity u i . We

set the required flow to the number of clients.

Since all capacities and the flow are integral, there is a minimum-cost flow that is integral

and we find it efficiently [Tar85]. Hence, each client is “assigned” by the flow to exactly one

facility.

In order to upper bound the connection cost of assignments returned by Lemma 4.1, we

will provide possibly suboptimal, fractional assignments of the clients to the open facilities. By

upper bounding these, we obtain an upper bound for the assignment obtained by the lemma.

51

Chapter 4 Approximating Hard-Capacitated k-Facility Location Problems

Preliminaries. Before obtaining an integral opening value for every facility, our algorithms

will operate on smaller subsets of facilities with possibly fractional openings. To ease the

description of these procedures, we introduce some helpful notation.

Definition 4.1. An opening vector z for a subset F ′ ⊆ F of facilities contains an opening

value z i ∈ [0, 1] for each facility i ∈ F ′ and it contains not other values. We say, a facility i ∈ F ′
is

• closed in z if z i = 0,

• supporting in z if z i ∈ (0, 1],

• fractional in z if z i ∈ (0, 1),

• and open in z if z i = 1.

We define the volume vol(z) of z as ∑i∈F ′ z i , and, for any F ′′ ⊆ F ′, we use volz(F ′′) to
denote∑i∈F ′′ z i . We call z almost integral if at most one i ∈ F ′ is fractional in z.
LetF ′ ,F ′′ ⊆ F be two disjoint sets and z′ an opening vector forF ′ and z′′ an opening vector

for F ′′. The union of z′ and z′′ is an opening vector z for F ′ ∪F ′′ with z i = z′i for each i ∈ F ′,
and z i = z′′i for each i ∈ F ′′.

Definition 4.2. For any set F ′ ⊆ F of facilities, we define its volume as voly∗(F ′).

In the metric d, a node can have the same distance to multiple nodes. To avoid ambiguity,

we could arbitrarily define one of the multiple nodes to be its closest node. However, our
algorithms will need a stronger property: We will have to avoid cycles of length more than

two where, for each node of the cycle, its closest node is its neighbor in a fixed orientation. We

can achieve this by assigning to every edge {s, t} ⊆ C ∪ F a distinct priority pd({s, t}). Now,
informally speaking, the closest node t to a node s is the node with the smallest distance to s
and, among all the nodes with the smallest distance to s, it is the node whose edge connecting
to s has the smallest value in pd . Suppose there is a cycle as described above, then all its edges

have the same distance and exactly one of the edges has the smallest priority value. Both its

endpoints are thus closest to each other, implying that the cycle is of length 2; a contradiction.

We define the notion of closenessmore precisely.

Definition 4.3. Let A ⊆ C ∪ F be a non-empty set and let s ∈ C ∪ F . If s ∈ A, then the closest
node in A to s is s. Otherwise, let

Amin
s = {t ∈ A ∣ ∄t′ ∈ A ∶ d(s, t′) < d(s, t)} .

The closest node in A to s is argmint∈Amin
s

pd({s, t}). If t is the closest node in A to s, we also
say: t ∈ A is closest to s.

Graphs on Clients and Facilities. To simplify the description of our algorithms, we will

build directed acyclic graphs based on either the clients or the facilities. First, we fix some

notations and then present a procedure that we will use to construct forests of rooted in-trees.

52

Star Clusters and Star Instances Section 4.2

Definition 4.4. Let (s, t) be an edge of a directed acyclic graph G. We call s a son of t, and t
a father of s. Sons of the same father are called brothers. Any node in G with outdegree 0 is

called a root.

Below, we present a procedure that, given two disjoint subsets A, B ⊆ F ∪ C, constructs a
directed forest, where each node in A has either a directed edge to its closest distinct node

in A∪ B, or is a root (recall Definition 4.3). We will show that its components are in-trees.

The procedure assumes that A is not empty and A∪ B contains at least two elements.

Procedure Short-Trees(A, B)
Create G with initially V(G) = A and E(G) = ∅
foreach s ∈ A do

select s′ ∈ A∪ B ∖ {s} closest to s
add s′ to V(G) if not already contained
add the directed edge (s, s′) to E(G)

foreach (s, s′), (s′ , s) ∈ E(G) do
remove the edge (s, s′) from G

return G

Let G be the output of Procedure Short-Trees(A, B) on any disjoint subsets A, B ⊆ F ∪ C.
We establish the following properties of G.

Lemma 4.2. Let s, s′ , s′′ ∈ V(G). If (s, s′), (s′ , s′′) ∈ E(G), then d(s, s′) ≥ d(s′ , s′′).

Proof. We have s ≠ s′′ because the algorithm removes one edge from each cycle of length 2.

By the construction of the edge set, s′′ is the closest node in V(G) to s′. Therefore, we

have d(s′ , s′′) ≤ d(s, s′).

Lemma 4.3. The graph G is a forest of in-trees and A ⊆ V(G).

Proof. By construction, A ⊆ V(G). Furthermore, every node in the graph has outdegree

at most 1. Suppose there is a cycle. Then, by Lemma 4.2, all edges have the same length.

Recall Definition 4.3 and consider the edge (s, s′) on the cycle that yields the smallest priority

value pd({s, s′}). By the definition of closeness, both endpoints s and s′ are the closest nodes
to each other. By the construction of the edge set, the cycle must contain (s, s′) and (s′ , s); a
contradiction as cycles of length 2 have been removed by the procedure.

Lemma 4.4. Every root in G has at least one son, and one of its sons is the closest node in A∪ B
to the root. Furthermore, all nodes in B ∩ V(G) are roots.

Proof. During the construction of G, every node receives an outgoing edge to its closest node.

Since the root of an in-tree does not contain any outgoing edge in the returned graph, its

outgoing edge is removed at the end of the construction. Given the condition on which an

edge is deleted, the node closest to the root is one of its sons.

The second claim follows from the fact that A and B are disjoint and that we therefore

never add an outgoing edge to a node in B.

53

Chapter 4 Approximating Hard-Capacitated k-Facility Location Problems

Star Clusters. Central for our algorithms is the following quantity. For every client t ∈ C,
we define dav(t) = ∑i∈F x∗i td(i , t) as its connection cost in (x∗ , y∗). In general, connection

cost refers to the cost w ⋅ l of sending w units of demand along a distance l .
We select a subset Csc ⊆ C of clients that are far away from each other with respect to

their connection cost. Beginning with Csc = ∅ and C′ = C, we select a client s ∈ C′ with min-

imum dav(s) (ties are broken arbitrarily) and remove it from C′ along with every client t
with d(s, t) ≤ 2ℓdav(t), and add s to Csc. We repeat this procedure until C′ is empty. We call

the clients in Csc star centers.

Lemma 4.5. The following holds:

1. For any s, s′ ∈ Csc, s /= s′, the inequality d(s, s′) > 2ℓmax{dav(s), dav(s′)} holds.

2. For any t ∈ C ∖ Csc, there is a client s ∈ Csc with d(s, t) ≤ 2ℓdav(t).

3. For any s ∈ Csc and any t ∈ C, the inequality dav(s) ≤ 2dav(t) holds if either ∣Csc∣ = 1
or d(s, t) ≤ min{d(s, s′) ∣ s′ ∈ Csc , s′ ≠ s}/2.

Proof. Let s, s′ ∈ Csc. Without loss of generality, s was added before s′ into Csc and thus we

have dav(s) ≤ dav(s′). Since s′ was not removed from C′ when s was added to Csc, we also
have 2ℓdav(s′) < d(s, s′), and Claim 1 follows.

Next, let t ∈ C ∖ Csc. As t /∈ Csc, it was removed from C′ when a client s was added to Csc.
Thus, we have d(s, t) ≤ 2ℓdav(t) and Claim 2 follows.

Now, let s ∈ Csc and t ∈ C. If ∣Csc∣ = 1, then s is the only star center in Csc. Then we know

that t was removed from C′ when s was added to Csc (and possibly s = t). Hence, our greedy
construction of Csc implies dav(s) ≤ dav(t), and the claim follows. Otherwise, ∣Csc∣ ≥ 2 and
let R = min{d(s, s′) ∣ s′ ∈ Csc , s′ ≠ s}/2. By assumption, d(s, t) ≤ R. As a consequence of

Claim 1, R > 0. Thus, d(s, t) < 2R, and either t = s or t ∈ C ∖ Csc. In the first case, the claim fol-

lows immediately. In the second case, Claim 2 gives us a client s′ ∈ Csc with d(s′ , t) ≤ 2ℓdav(t).
If s = s′ and s is the only such client for t, then t was removed from C′ when s was added to Csc.
As discussed above, this event implies the claim. Otherwise, there is a star center s′ ∈ Csc
with d(s′ , t) ≤ 2ℓdav(t) and s′ ≠ s. By the minimality of R and the triangle inequality, we have

2R ≤ d(s′ , s) ≤ d(s′ , t) + d(t, s) ≤ 2ℓdav(t) + R .

Consequently, R ≤ 2ℓdav(t). Claim 1 implies ℓdav(s) < R. Thus, altogether, ℓdav(s) < 2ℓdav(t)
and Claim 3 follows.

Definition 4.5. For each star center s ∈ Csc, we define the star cluster Fs ⊆ F as the set of all

facilities that are closest to s, that is,

Fs = {i ∈ F ∣ s is the closest node in Csc to i} .

Recall that by our definition of closeness (Definition 4.3), each facility has a unique closest

star center. Therefore, the star clusters partition all facilities in F .

54

Star Clusters and Star Instances Section 4.2

ts

i s′

d(s′ , t) ≤ 2ℓdav(t)d(i , s) ≤ d(i , s′)

d(i , s′) ≤ d(i , t) + d(t, s′)Fs

Figure 4.1: Let s ∈ Csc , t ∈ C, i ∈ Fs , and s′ ∈ Csc be the closest star center to i. The distance d(i , s) (bold edge) is
bounded by the distance d(i , s′) (solid edge), which in turn is bounded by the detour over t (dashed path).

Lemma 4.6. For any s ∈ Csc, t ∈ C and i ∈ Fs , the following holds:

1. d(i , s) ≤ d(i , t) + 2ℓdav(t).

2. d(s, t) ≤ 2d(i , t) + 2ℓdav(t).

Proof. Let s′ ∈ Csc be the star center closest to t (possibly s′ ∈ {s, t}). If t /∈ Csc, then, by
Lemma 4.5.2, d(s′ , t) ≤ 2ℓdav(t). Otherwise, s′ = t, and the same inequality holds. Consider

Fig. 4.1. Since i belongs to Fs , we have

d(i , s) ≤ d(i , s′) ≤ d(i , t) + d(t, s′) ≤ d(i , t) + 2ℓdav(t)

and

d(s, t) ≤ d(s, i) + d(i , t) ≤ 2d(i , t) + 2ℓdav(t) .

Next, we bound the volume of facilities that are close to their star centers.

Lemma 4.7. For any positive R and any s ∈ Csc, let F R
s = {i ∈ Fs ∣ d(i , s) ≤ R}. The volume

satisfies voly∗(F R
s) ≥ 1 − dav(s)/R.

Proof. Note that at most a portion dav(s)/R of the LP demand∑i∈F x∗i s of s can be served by

the facilities in F ∖F R
s . Otherwise,

dav(s) = ∑
i∈F

x∗i sd(i , s) ≥ R ⋅ ∑
i∈F∖F R

s

x∗i s > R ⋅ dav(s)/R = dav(s) ;

a contradiction. Hence at least a portion 1 − dav(s)/R of the LP demand of s is served by the

facilities in F R
s . Hence, by Constraint (LP-3),

voly∗(F R
s) = ∑

i∈F R
s

y∗i ≥ ∑
i∈F R

s

x∗i s ≥ 1 − dav(s)/R .

Our last result implies the following bound on the volume of star clusters, which has also

been shown by Charikar et al. [CGTS99].

55

Chapter 4 Approximating Hard-Capacitated k-Facility Location Problems

Corollary 4.1 ([CGTS99]). The volume of every star cluster is at least 1 − 1/ℓ.

Proof. By Lemma 1, any facility i ∈ F lying within the radius ℓdav(s) around a star cen-

ter s ∈ Csc belongs to Fs . If dav(s) = 0, then, by the definition of dav(s), all facilities serving s
must have distance 0 to s. Thus, voly∗(F R

s) ≥ 1. If dav(s) > 0, then we set R = ℓdav(s) and
apply Lemma 4.7.

In our algorithms and in their analyses, we will charge portions of OPT
∗
to the star centers.

These portions are described by the following quantities.

Definition 4.6. For every star center s ∈ Csc, we define the budgets

• bfs = ∑i∈Fs y
∗

i f i as the opening cost budget,

• bds = ∑i∈Fs ∑t∈C x∗i td(i , t) as the direct connection cost budget, and

• brs = ∑i∈Fs ∑t∈C x∗i tdav(t) as the relative connection cost budget.

The idea for these quantities is to distribute the total opening and connection cost among

the star centers. Then these cost portions can be used by each star center to upper bound

some local solutions. Consequently, the total cost of all these solutions will be bounded from

above by a function of OPT
∗
. For the first two budgets, we split the total cost evenly between

the facilities. For a star center s ∈ Csc, the budget bfs is the total opening cost of the facilities
in Fs , and brs is the total connection cost of transporting demand to facilities in Fs . For the

third budget, we split the total connection cost proportional to the amount of demand that

is served by the facilities of the star clusters. To see this, consider the contribution of any

client t ∈ C to brs . It is dav(t)∑i∈Fs x
∗

i t . This quantity corresponds to the connection cost dav(t)
of t weighted by the LP demand that t sent to Fs . Our observations about the quantities are

confirmed by the following lemma.

Lemma 4.8. The following holds:

1. ∑s∈Csc b
f
s + bds = OPT∗.

2. ∑s∈Csc b
r
s ≤ OPT∗.

Proof. Both statements follow directly from the definitions of the budgets and the fact that

the star clusters partition F :

1. ∑
s∈Csc

bfs + bds = ∑
s∈Csc
∑
i∈Fs

(y∗i f i +∑
t∈C

x∗i td(i , t))

= ∑
i∈F

y∗i f i +∑
t∈C
∑
i∈F

x∗i td(i , t)

= OPT
∗
.

56

Star Clusters and Star Instances Section 4.2

2. ∑
s∈Csc

brs = ∑
s∈Csc
∑
i∈Fs

∑
t∈C

x∗i tdav(t)

= ∑
t∈C
∑
i∈F

x∗i tdav(t)

= ∑
t∈C

dav(t) ∑
i∈F

x∗i t
²
=1

= ∑
t∈C
∑
i∈F

x∗i td(i , t)

≤ OPT
∗
.

Star instances. We will now introduce a notion that will help us to locally modify facility

openings. Following the approach of Levi et al. [LSS12], we “move” the total demand served

by facilities of a star cluster Fs to its center s. We call the so-obtained single-demand-node

instances star instances. We will see that extreme point solutions to such star instances have

a particular nice structure. This will enable us later to round these solutions to integral

solutions with small constant capacity violation at the expense of only a constant factor in the

connection and opening cost. On the other hand, we will show that we can decompose the

original instance into a collection of star instances and that we pay only a constant factor in

approximation when applying this reduction.

Definition 4.7. Every star center s ∈ Csc defines one star instance Ss . It consists of

• the set Fs that we obtained when computing the star centers,

• the demand ws = ∑i∈Fs ∑t∈C x∗i t ,

• the strict budget bIs = bfs + bds + 2ℓbrs ,

• and the relaxed budget bIIs = 2bfs + 2bds + 2ℓbrs .

A star instance asks for a solution, which is either a strict solution or a relaxed solution.
A strict solution to the star instance Ss is an opening vector z for the facilities inFs that satisfies

the following constraints:

∑
i∈Fs

u iz i ≥ ws (4.1)

∑
i∈Fs

(f i + d(i , s)u i)z i ≤ bIs . (4.2)

A relaxed solution to the star instance Ss is an opening vector z for the facilities in Fs that

contains exactly one supporting facility î ∈ Fs and satisfies Constraint (4.1) as well as the

following constraint:

f îz î + d(î , s)ws ≤ bIIs . (4.3)

57

Chapter 4 Approximating Hard-Capacitated k-Facility Location Problems

In a strict sense, the problem of finding a relaxed solution is not always a “relaxation” of

finding a strict solution, in contrast to what the name might suggest. However, we will use

relaxed solutions in the context of almost integral opening vectors of volume at most 1. In

such cases, any restricted solution is also a relaxed solution.

We defined star instances only on star centers. Therefore, when referring to a star in-

stance Ss , or to one of its quantities ws , bIs , or bIIs , we will implicitly assume that s ∈ Csc. We

will also call ws the demand of the star center s, opposed to the LP demand of s that refers to
the unit demand of s in the context of Ck-FL LP.

Throughout the chapter, Constraints (4.1)–(4.3) will refer to the constraints defined by a

star instance, whereas Constraints (LP-1)–(LP-4) refer to the constraints defined by Ck-FL LP.

As a corollary of Lemma 4.8, we immediately get the following bounds on the total budgets

of all star centers.

Corollary 4.2. The following holds:

1. ∑s∈Csc b
I
s ≤ (1 + 2ℓ)OPT∗.

2. ∑s∈Csc b
II
s ≤ (2 + 2ℓ)OPT∗.

In the following central lemma, we show how to compute a strict solution to a star instance

of bounded volume.

Lemma 4.9. For any star instance Ss , we can efficiently construct a strict solution z to Ss such
that the volume satisfies vol(z) ≤ voly∗(Fs).
Proof. The demand ws is given by ws = ∑i∈Fs ∑t∈C x∗i t . For i ∈ Fs , we charge∑t∈C x∗i t units
of ws to the facility i by opening it by an amount of z i = (∑t∈C x∗i t)/u i . Then we have z i ≤ y∗i
by Constraint (LP-4). Thus z is an opening vector satisfying Constraint (4.1) and the inequal-

ity vol(z) ≤ voly∗(Fs).
Now we prove that also Constraint (4.2) is satisfied. By Lemma 4.6.1, for every client t ∈ C

and every facility i ∈ Fs , the inequality d(i , s) ≤ d(i , t) + 2ℓdav(t) holds. So we have

∑
i∈Fs

(f i + d(i , s)u i)z i

= ∑
i∈Fs

z i f i + ∑
i∈Fs

∑
t∈C

d(i , s)x∗i t

≤ ∑
i∈Fs

y∗i f i + ∑
i∈Fs

∑
t∈C
(d(i , t) + 2ℓdav(t))x∗i t

= bIs .

Note that the strict solution provided by Lemma 4.9 may have volume strictly smaller than

that of the underlying star cluster and consequently also smaller than 1 − 1/ℓ (see Corollary 4.1).
However, in our algorithm for k-Facility Location with uniform capacities, we will be

interested in solutions of volume at least 1 − 1/ℓ. Therefore, we prove the following lemma.

Lemma 4.10. For any a star instance Ss with uniform capacities that admits a strict solu-
tion z with vol(z) ≤ min{1, voly∗(Fs)}, we can efficiently construct a relaxed solution z′ to Ss
with vol(z′) = min{1, voly∗(Fs)} where the only supporting facility î ∈ Fs satisfies the distance
bound d(î , s) ≤ ℓdav(s).

58

Star Clusters and Star Instances Section 4.2

Proof. We first construct an opening vector z′ with the required volume and distance proper-

ties and then show that it is a relaxed solution to Ss .
Let R = ℓdav(s). Let F R

s be the set {i ∈ F ∣ d(i , s) ≤ R} of facilities lying within the ra-

dius R around s. First, we show thatF R
s is not empty by observing voly∗(F R

s) > 0. If dav(s) = 0,
then voly∗(F R

s) ≥ 1 as discussed before. Otherwise, R > 0 and Lemma 4.7 assures

voly∗(F R
s) ≥ 1 − dav(s)/R = 1 − 1/ℓ ≥ 1/2 ;

the last inequality follows from ℓ ≥ 2. Consequently F R
s is not empty.

Among the facilities in F R
s , pick a facility î that minimizes the opening cost f î . We define

the following opening vector z′ for Fs . We set z′î = min{1, voly∗(Fs)} and, for every other
facility i ∈ Fs , we set z′i = 0. Thus, we have the two properties vol(z′) = min{1, voly∗(Fs)}
and d(î , s) ≤ ℓdav(s).

To this end, we show that z′ is a relaxed solution. Since the solution z fulfills Constraint (4.1),
we have

u vol(z) = ∑
i∈Fs

uz i ≥ ws .

Thus, also z′ fulfills Constraint (4.1), as

vol(z′) = min{1, voly∗(Fs)} ≥ vol(z) .

To show Constraint (4.3), we first show z′î ⋅ f î ≤ b
f
s and then d(î , s)ws ≤ 2bds + 2ℓbrs .

Recall that bfs = ∑i∈F f i y∗i . By using the minimality of î, we infer

bfs ≥ ∑
i∈F R

s

f i y∗i ≥ f î ∑
i∈F R

s

y∗i = f î ⋅ voly∗(F R
s) .

Above we have shown voly∗(F R
s) ≥ 1/2. Thus, bfs ≥ f î/2 and our bound on z′î ⋅ f î holds

as f î ≥ z′î ⋅ f î .
Next, we show d(î , s)ws ≤ 2bds + 2ℓbrs . In fact, we will prove the stronger inequality

Rws ≤ 2bds + 2ℓbrs ,

which implies the first one as d(î , s) ≤ R. Let P denote the set Fs × C of pairs. By our defini-
tions,

Rws = ∑
(i ,t)∈P

x∗i tR

and

2bds + 2ℓbrs = ∑
(i ,t)∈P

x∗i t(2d(i , t) + 2ℓdav(t)) .

Observe that each pair (i , t) ∈ P contributes an amount x∗i tR to the left side of the inequality

and an amount x∗i t(2d(i , t) + 2ℓdav(t)) to the right side of the inequality. Therefore, to show

the inequality, it suffices to show

R ≤ 2d(i , t) + 2ℓdav(t)

for each (i , t) ∈ P. Consider any (i , t) ∈ P. We distinguish two cases.

59

Chapter 4 Approximating Hard-Capacitated k-Facility Location Problems

In the first case, d(s, t) < R. If ∣Csc∣ ≥ 2, then, by Lemma 4.5.1, we have R ≤ d(s′ , s)/2 for
any s′ ∈ Csc with s′ ≠ s. Hence,

d(s, t) < 1

2
⋅min{d(s, s′) ∣ s′ ∈ Csc , s′ ≠ s} .

Thus, independently of the size of ∣Csc∣, Lemma 4.5.3 implies dav(s) ≤ 2dav(t). Consequently,

R = ℓdav(s) ≤ 2ℓdav(t) .

In the second case, R ≤ d(s, t). By Lemma 4.6.2, d(s, t) ≤ 2d(i , t) + 2ℓdav(t) and the

claim follows.

The next lemma shows that we can always assume that a strict solution to a star instance

has at most two fractional facilities.

Lemma 4.11. For any strict solution z to a star instance Ss , we can efficiently construct a strict
solution z′ to Ss which has at most two fractional facilities and satisfies vol(z′) ≤ vol(z).

Proof. Let Ss be any star instance with a strict solution z. Consider the LP for the star instance

with Constraints (4.1), (4.2) and the additional constraints

0 ≤ z i and z i ≤ 1 for each i ∈ Fs

(which implicitly hold for opening vectors), and the objective

minimize ∑
i∈Fs

z i .

Clearly z is a feasible solution to this LP with objective vol(z). Now consider an optimal

extreme point solution z′ to this LP. Of course, vol(z′) ≤ vol(z) is satisfied. The number of

variables in the LP is ∣Fs ∣. Since z′ is an extreme point solution, at least ∣Fs ∣many of the LP

constraints are tight. This means that at least ∣Fs ∣ − 2 of the additional constraints are tight.
As for each i ∈ Fs , at most one of its two additional constraints are tight (z i = 0 and z i = 1
are mutually exclusive events), there are at most two facilities in Fs whose both additional

constraints are not tight.

For the case of uniform capacities, we can even assume that a strict solution contains at

most one fractional facility.

Lemma 4.12. For any strict solution z to a star instance Ss with uniform capacities, we can
efficiently construct an almost integral strict solution z′ to Ss with vol(z′) = vol(z).

Proof. Let Ss be any star instance with a strict solution z. The idea is to take the volume of z
and transfer it greedily to the facility i ∈ Fs that minimizes d(i , s)u + f i among all facilities

that are not yet open.

In more detail, we compute an opening vector z′ for Fs of volume equal to vol(z) that
minimizes ∑i∈Fs(f i + d(i , s)u i)z′i . For this, we define for each facility i ∈ Fs its weight
as d(i , s)u + f i and order the facilities non-decreasingly by their weights. Then we create an

opening vector z′ for Fs , where we set the first ⌊vol(z)⌋ facilities to 1, the (⌊vol(z)⌋ + 1)-th

60

Star Clusters and Star Instances Section 4.2

facility (if it exists) to vol(z) − ⌊vol(z)⌋, and all remaining facilities to 0. Thus, we have an

almost integral opening vector with vol(z′) = vol(z) and

∑
i∈Fs

(f i + d(i , s)u i)z′i ≤ ∑
i∈Fs

(f i + d(i , s)u i)z i ≤ bIs .

Thus, Constraints (4.1) and (4.2) are fulfilled and z′ is a strict solution to Ss .

For technical reasons, we prove the following two lemmas which are crucial for our later

analysis. The statement of the first lemma is a little surprising. For any star instance with a

relaxed solution z, we can take a fraction 1 − vol(z) of its demand and send it to its closest

star center. Independently of the distance, we can bound the connection cost with the budget

of the star instance. We show this claim by observing that, in the Ck-FL LP solution, at least a

fraction 1 − vol(z) of the LP demand of the corresponding star center was sent to facilities

that were very far away. The corresponding connection cost sufficiently sized the budget of

the star instance. The proof follows the ideas of the proof of Lemma 4.10.

Lemma 4.13. Assume ∣Csc∣ ≥ 2. Consider any star instance Ss with uniform capacities and any
relaxed solution z to Ss with vol(z) = voly∗(Fs). Let î be the single supporting facility in z and
let s′ ∈ Csc ∖ {s} be the distinct star center closest to s. We have

(1 − z î)wsd(s, s′) ≤ 4(bds + ℓbrs) .

Proof. Let P = Fs × C. Then

(1 − z î)wsd(s, s′) = ∑
(i ,t)∈P

x∗i t(1 − z î)d(s, s′)

and

4(bds + ℓbrs) = ∑
(i ,t)∈P

x∗i t4(d(i , t) + ℓdav(t)) .

To show the inequality, it suffices to show (1 − z î)d(s, s′) ≤ 4(d(i , t) + ℓdav(t)) for each
pair (i , t) ∈ P. Consider any (i , t) ∈ P. Similarly, as in the proof of Lemma 4.10, we dis-

tinguish the two cases where d(s, t) is smaller or larger than a value R, respectively. We

set R = d(s, s′)/2, thus R > 0.
First, assume d(s, t) ≤ R. Then, by Lemma 4.5.3, dav(s) ≤ 2dav(t). Note that every facility

within radius R around s belongs to Fs . Applying Lemma 4.7, we obtain that the volume

of Fs is at least 1 − dav(s)/R. Given z î = vol(z) and our assumption vol(z) = voly∗(Fs), we
have 1 − z î ≤ dav(s)/R. Hence, (1 − z î)d(s, s′) is bounded from above by

dav(s)/R ⋅ 2R = 2dav(s) ≤ 4dav(t) .

Secondly, suppose R ≤ d(s, t). By Lemma 4.6.2, d(s, t) ≤ 2d(î , t)+2ℓdav(t). We therefore

have

(1 − z î)d(s, s′) ≤ 2R ≤ 2d(s, t)
≤ 4(d(î , t) + ℓdav(t)) .

61

Chapter 4 Approximating Hard-Capacitated k-Facility Location Problems

The next lemma is essential to our decomposition of the problem to star instances. It will

justify our assumption that all the demand of the clients is accumulated in the star centers.

Lemma 4.14. We can distribute the LP demand of the clients among the star centers such that
each star center s receives precisely ws units of demand and such that the total connection cost is
at most (2ℓ + 2)OPT∗.

Proof. Let t ∈ C be an arbitrary client and i be a facility lying in a star instance Ss for any s ∈ Csc.
We ship precisely x∗i t units of flow from t to s. By Lemma 4.6.2, we upper bound the

distance d(s, t) by 2d(i , t) + 2ℓdav(t). Performing this operation for any client-facility

pair t ∈ C, i ∈ Fs , we ensure that the star center s collects ∑t∈C∑i∈Fs x
∗

i t units of demand,

which is precisely ws .

The total cost of transporting ws to the star center s is at most

∑
t∈C
∑
i∈Fs

x∗i t(2d(i , t) + 2ℓdav(t))

= 2bds + 2ℓbrs .

Thus, the total cost of this flow over all star instances is bounded from above by

2 ∑
s∈Csc

bds + 2ℓ ∑
s∈Csc

brs

which is upper bounded by (2ℓ + 2)OPT∗according to Lemma 4.8.

4.2.1 The Dependent Rounding Approach

In our algorithm for hard-capacitated k-Facility Location, we will apply the dependent
rounding approach of Gandhi et al. [GKPS06] that is based on pipage rounding [AS04]. For

the sake of completeness, we give now an overview of this approach and state some properties

that we will use.

The dependent rounding procedure iteratively rounds a given vector y ∈ [0, 1]N, for any
number N of components, until all components are in {0, 1}. It works as follows. Suppose the
current version of the rounded vector is v ∈ [0, 1]N ; initially, v is set to y. When we describe

the random choice made in a step below, this choice is made independently of all such choices

made thus far. If every component of v lies in {0, 1}, we are done, so let us assume that

there is at least one component v i ∈ (0, 1). The first (simple) case is that there is exactly one

fractional component v i ; we round v i in the natural way—to 1 with probability v i , and to 0

with complementary probability 1 − v i ; letting Vi denote the rounded version of v i , we note
that

E [Vi] = v i
holds. This simple step is called a Type I iteration, and it completes the rounding process. The

remaining case is that of a Type II iteration: there are at least two components of v that lie
in (0, 1). In this case, we choose two such components, v i and v j , in an arbitrary manner.

Let ε and δ be the positive constants such that: (a) v i + ε and v j − ε lie in [0, 1], with at least

one of these two quantities lying in {0, 1}, and (b) v i − δ and v j + δ lie in [0, 1], with at least

62

Star Clusters and Star Instances Section 4.2

one of these two quantities lying in {0, 1}. Such strictly-positive ε and δ exist and are trivial

to compute. We then update (v i , v j) to a random pair (Vi ,Vj) as follows:

• with probability δ/(ε + δ), set (Vi ,Vj) = (v i + ε, v j − ε);

• with the complementary probability ε/(ε + δ), set (Vi ,Vj) = (v i − δ, v j + δ).

The main properties of Type II iteration that we need are:

(i) P [Vi + Vj = v i + v j] = 1;

(ii) E [Vi] = v i and E [Vj] = v j .

We iterate the iteration above until we obtain a rounded vector with atmost one component

in (0, 1). Since each iteration rounds at least one additional variable, we need at most N
iterations.

Note that the description above does not specify the order in which the elements are

rounded. Observe that we may use a predefined laminar family of subsets to guide the

rounding procedure. That is, we may first apply Type II iterations to elements of the smallest

subsets, then continue applying Type II iterations for smallest subsets among those still

containing more than one fractional entry, and eventually round the at most one remaining

fractional entry with a Type I iteration. The following lemma shows that by executing the

dependent rounding procedure in this manner, we almost preserve the sum of entries within

each of the subsets of our laminar family.

For any subset L ⊆ {1, . . . ,N} of component indices and any vector v ∈ [0, 1]N, let volv(L)
denote the total volume∑ j∈L v j of the components of v whose indices are in L.

Lemma 4.15. Let y ∈ [0, 1]N, and let L1 ⊂ ⋅ ⋅ ⋅ ⊂ L l be any laminar sequence of subsets of the
component indices {1, . . . ,N} of y. In the order i = 1, . . . , l , we repeatedly run the Type II
iteration on the components of y that are given by L i until at most one element of L i points to a
fractional component. Let ȳ ∈ [0, 1]N be the resulting rounded vector.
The following holds: For each i with 1 ≤ i ≤ l , there are at least ⌊voly(L i)⌋ elements of L i that
have value 1 in ȳ.

Proof. Consider any i ∈ {1, . . . , l} and themoment when the Type II iteration has just finished

rounding elements in L i . Let v ∈ [0, 1]N be the current version of the rounded vector. Until

this moment, only elements of L i had been considered, given the laminar property L j ⊆ L i
for every j and i with 1 ≤ j ≤ i. Thus, by the main properties of Type II iteration, the vol-

ume of L i preserved completely and we have volv(L i) = voly(L i). Recall that at most one

element j in L i has value v j ∈ (0, 1). Thus there are exactly ⌊voly(L i)⌋ elements of L i that have

value 1 in v. Since the dependent rounding procedure never changes integral values, at least a
portion ⌊voly(L i)⌋ of the volume of L j remains until the end.

63

Chapter 4 Approximating Hard-Capacitated k-Facility Location Problems

4.3 Algorithm for Uniform Hard-Capacitated k-Facility
Location

In this section, we prove Theorem 4.1. For any positive ε, we show that we can efficiently

compute a solution to the hard-capacitated k-Facility Location problem with capacity

violation 2 + ε and cost bounded by a factorO(1/ε2) of the cost of an optimum LP solution.

In what follows, we fix the parameter ℓ to any value at least 2 (see Section 4.2) and let u
denote the uniform capacity of the facilities. Given ℓ and the optimum solution (x∗ , y∗)
to Ck-FL LP, we obtain the set Csc of star centers and, for each star center s ∈ Csc, its corre-
sponding star instance Ss , as described in Section 4.2. By the following lemma, we will assume

that there are at least two star centers.

Lemma 4.16. If Csc contains only one star center s, we can efficiently compute an approximation
with capacity violation 2 and connection cost (4ℓ + 6)OPT∗ to the underlying k-Facility
Location instance.

Proof. By Lemmas 4.9 and 4.12, we compute an almost integral strict solution z to Ss . If its
volume is at least 1, we round any fractional facility down and take the rounded vector as our

solution. Otherwise, by Lemma 4.10, we compute a relaxed solution z′ and claim that the

single supporting facility is open. We take it as our solution. Lemma 4.1 gives us an assignment

of the clients to the open facilities.

We show that our solution is feasible and satisfies the bound on the connection cost. First,

we assume vol(z) ≥ 1. Then our solution contains ⌊vol(z)⌋ open facilities and ⌊vol(z)⌋ ≥ 1
holds. If we scale the capacities up by 2, the total capacity of our solution will be 2u ⋅ ⌊z⌋.
This is enough to serve the total demand, which is at most u vol(z); see Constraint (4.1).
Next, we assume vol(z) < 1. By Lemma 4.10, the volume of our relaxed solution z′ satis-
fies vol(z′) = min{1, voly∗(Fs)}. Since s is the only star center, we have Fs = F . By Con-
straints (LP-2) and (LP-3), voly∗(Fs) ≥ 1. Thus, we obtain

vol(z′) = min{1, voly∗(Fs)} = 1 .

Hence, there is a single open facility and it can serve the total demand without capacity

violation. In the latter case, the cost of distributing ws and opening the facilities is at most bIIs
by Constraint (4.3). In the former case, it is at most 2bIs given the capacity blow-up of 2 and

Constraint (4.2). Hence, observing bIIs ≤ 2bIs and using Corollary (4.2), the distribution and

opening cost is bounded by (2ℓ + 4)OPT∗. The cost to move all the demand of the clients

to s is at most (2ℓ + 2)OPT∗by Lemma 4.14. The claim follows.

4.3.1 Constructing a Star Forest
In the first step of our algorithm for the uniform capacitated k-Facility Location problem,

we decomposed the instance into a set of star instances. Subsequently, we introduce the

concept of a star tree which imposes a suitable structure on the star instances and facilitates

our description of the algorithm as the demand will be routed only along edges of the star

tree. We show that in order to obtain a bi-factor approximation algorithm for capacitated k-
Facility Location it suffices to appropriately “round” a star tree.

64

Algorithm for Uniform Hard-Capacitated k-Facility Location Section 4.3

A star tree is build up of so called stars, which are star instances with solutions. We will

distinguish between stars whose solutions have small or big volume and consider only those

that have a lower bound on their volume.

Definition 4.8. A star (Ss , z) consists of a star instance Ss and an almost integral solution z
to Ss . The demand of a star (Ss , z) is the demand ws of Ss , and the volume of a star (Ss , z) is
the volume of z. A star is small if it has volume at most 1 and at least 1 − 1/ℓ, and z is a relaxed
solution. A star is big if it is has volume greater than 1 and z is a strict solution.

Note that any small star has exactly one supporting facility. Also note that each star

contains at most one fractional facility.

Definition 4.9. A star tree is any rooted in-tree T whose node set CT is a subset of Csc and that
is associated with following components satisfying the following properties. The components

are the set FT defined as ⋃s∈CT Fs , and a metric dT on CT ∪FT where s ∈ CT and i ∈ Fs
imply dT(i , s) = d(i , s). The properties are:

(i) Each s ∈ CT is associated with a small or a big star (Ss , z).

(ii) Each s ∈ CT has indegree at least 2 and the root r has indegree exactly 1.

(iii) For any consecutive edges (s, s′), (s′ , s′′), we have dT(s, s′) ≥ dT(s′ , s′′).

(iv) Consider any s, s′ ∈ CT , s ≠ s′, where s is associated with a small star. Let î be the
single supporting facility of s. We have dT(î , s) ≤ dT(s, s′)/2.

(v) Consider any s ∈ CT associated with a small star (Ss , z). Let î be the single supporting
facility of s. If s is the root of T , let s′ be the single son of s, otherwise, let s′ be the
father of s. We have

(1 − z î)wsdT(s, s′) ≤ 8(bds + ℓbrs) .

The budget b(T) of the star tree T is∑s∈CT b
II
s . The volume vol(T) of the star tree is given by

the sum of the volumes of its stars.

A solution to T with capacity violation γ is a set F ′ ⊆ FT and an assignment (a i s)i∈F ′ ,s∈CT
satisfying the following constraints:

∑
i∈F ′

a i s ≥ ws for each s ∈ CT

∑
s∈CT

a i s ≤ γu for each i ∈ F ′

a i s ≥ 0 for each i ∈ F ′ , s ∈ CT .

The cost of the solution is

∑
i∈F ′

f i + ∑
i∈F ′
∑
s∈CT

a i sdT(i , s) .

Summarized, a star tree is a binary tree whose nodes are associated with small or big stars.

The edge lengths are non-increasing towards the root which has degree 1. Furthermore, every

65

Chapter 4 Approximating Hard-Capacitated k-Facility Location Problems

small star (Ss , z) has its single supporting facility î relatively close to its center. Moreover, we

can afford sending a fraction 1 − z î of the demand of s to its closest neighbor. We can interpret

the last property also as follows: If the probability is 1 − z î that s sends all its demand to its

closest neighbor, and otherwise it does not send any demand, then we can bound the expected

connection cost by a constant multiple of its budget. A star tree also defines a set of facilities

which is the set of all facilities of its stars. By the construction of the star clusters, each facility

of a star tree appears in exactly one of stars of the tree.

Definition 4.10. A star forest H is a collection of disjoint star trees. The budget b(H) and the
volume vol(H) of a star forest H are given by the sum of budgets and the sum volumes of its

star trees, respectively. A solution to a star forest provides a solution to each of its star trees

and additionally satisfies the constraint that the total number of open facilities is no more

than ⌈vol(H)⌉. The cost of a solution to a star forest H is the total cost of the solutions that it

provides to each star tree of H.

Creating Star Trees. Themotivation for considering star trees is given by the following

theorem. It states that in order to get a constant-factor approximation algorithm for uniform

capacitated k-Facility Location, it is sufficient to appropriately “round” a star forest.

Theorem 4.3. If there is an efficient algorithm that computes for a given star forest H a solu-
tion of cost at most c ⋅ b(H) for some constant c > 0 with capacity violation γ, then there is
a (2ℓ + 2)(c + 1)-approximation algorithm for capacitated k-Facility Location with capacity
violation γ.

Before we prove the theorem, we first describe how to build a star forest H from a solution

to Ck-FL LPwhere the total volume vol(H) is bounded from above by k. We begin by defining

the node set and proving Property (i).

As the node set of the forest, we take the set Csc of all star centers. Since the star clusters
defined by the star centers partition the setF of all facilities, our forest will contain all facilities

of F . Recall that each s ∈ Csc defines the star instance Ss . By Lemma 4.9, we compute a strict

solution z to Ss with vol(z) ≤ voly∗(Fs). If vol(z) > 1, we apply Lemma 4.12 to obtain an

almost integral strict solution z′ with vol(z′) = vol(z). Thus, (Ss , z′) is a big star and we

associate it with s. Otherwise, if vol(z) ≤ 1, then we have vol(z) ≤ min{1, voly∗(Fs)}. We

apply Lemma 4.10 to obtain a relaxed solution z′ with vol(z′) = min{1, voly∗(Fs)} where the
only supporting facility î ∈ Fs satisfies d(î , s) ≤ ℓdav(s). By Corollary 4.1, voly∗(Fs) ≥ 1 − 1/ℓ
and so vol(z′) ≥ 1 − 1/ℓ. Consequently (Ss , z′) is a small star. We associate it with s and
conclude that Property (i) holds.

Note that every star (Ss , z) constructed above has a volume at most voly∗(Fs). Thus, the

total volume in the star forest that we are constructing is at most k, in particular, ⌈vol(H)⌉ ≤ k.
In the following, we describe how to connect the nodes together and how to compute a metric

in each obtained star tree so that the remaining properties are satisfied.

As a first step, we build a directed forestG on the node set Csc by running Procedure Short-
Trees(Csc, ∅) (see Section 4.2). By Lemma 4.3, its components are all in-trees, which we will

call short center trees. We cannot take the short center trees as our star trees, as the indegrees of

their nodes may be unbounded. Therefore, we change the structure of each short center tree to

obtain a binary center tree, in which the indegree of each node is at most 2. Figure 4.2 depicts

66

Algorithm for Uniform Hard-Capacitated k-Facility Location Section 4.3

t′

t s

t′

t s

Figure 4.2:Making a tree binary: The left side shows one of the trees returned by Procedure Short-Trees(Csc ,∅);
the right side shows the corresponding tree after modification by Procedure Binary-Trees(G). Observe that the
father t′ of s has been replaced by the left brother t of s.

this process that we describe below. By showing that all remaining properties of Definition 4.9

are fulfilled, we will prove that the constructed binary center tree is a star tree.

Consider the Procedure Binary-Trees(G) that takes as input the forest G of short center

trees returned by Short-Trees(Csc, ∅). Each short center tree T in G is separately modified

as follows. For each node t ∈ V(T), we sort all incoming edges of t from left to right by

non-decreasing length. In the case that t is the root of T , the leftmost edge is set to be the

incoming edge from its closest son. (Note that there might exist multiple incoming edges with

the same smallest length, therefore, we use the uniqueness of closeness; see Definition 4.3.)

Having defined the order, we remove all incoming edges of t except the leftmost one. In the

next step, the procedure adds for each son s of t an edge from s to its left brother (if there

exists one). Note that no edge is added to the leftmost son of t. The resulting forest of binary

center trees is denoted by H.

Procedure Binary-Trees(G)
H = ∅
foreach short tree T in G do

foreach node t ∈ V(T) do
sort all sons of t from left to right by non-decreasing distance to t
if t is the root of T then

place the son of t closest to t on the leftmost position in the ordering

remove all incoming edges of t from T except the leftmost one

add a directed edge from each son of t to its left brother (if there exists one)

add T to H
return H

Every binary center tree satisfies the following useful property.

Lemma 4.17. The root of a binary center tree has exactly one son and its son is its closest star
center.

Proof. By Lemma 4.4, the node closest to the root is one of its sons in the short center tree.

During the construction of the binary center tree, this node becomes the only son of the

root.

67

Chapter 4 Approximating Hard-Capacitated k-Facility Location Problems

Consider any binary center tree T ′. Let CT′ be its node set and let FT′ be the set⋃s∈CT′ Fs
of all facilities in T ′. Let T be the short center tree from which T ′ was derived. We show

that T ′ is a star tree. For technical reasons, we first define a new metric dT′ on FT′ ∪ CT′
for T ′, before we consider the remaining properties.

The metric dT′ will be a tree metric where the underlying tree is the binary center tree T ′
(for this purpose considered undirected) with an additional edge for each facility that connects

it to its star center. Recall that, in a tree metric, the distance between any two nodes is the

weight of the path connecting the two nodes. For each additional edge between a facility i
and its star center s, we set its weight to d(i , s); hence dT′(i , s) = d(i , s) and we fulfill the

requirement imposed by Definition 4.9 on dT′ . For each edge (s, t) of the binary center tree T ′,
we set its weight to 2d(s, t′), where t′ is the closest node in Csc ∖ {s} to s, or stated equivalently,
where t′ is the father of s in the short center T ; see Fig. 4.2. Hence, dT′(s, t) = 2d(s, t′). The

new metric dT′ is never smaller than the underlying metric d, as the next lemma shows.

Lemma 4.18. The metric dT′ satisfies dT′(s, t) ≥ d(s, t) for every s, t ∈ CT′ ∪FT′ .

Proof. It suffices to show the claim for each edge of the tree that underlies the metric. For

each edge between a facility and its star center, the claim directly holds by definition. Thus,

consider any edge (s, t) ∈ E(T ′). By definition of dT′ , we have dT′(s, t) = 2d(s, t′), where t′
is the father of s in the short center tree T . To prove the claim, we show d(s, t) ≤ 2d(s, t′).
There are two cases: Either t is the father of s in T , or it is the left brother of s in T . The first

case is trivial as d(s, t) ≤ 2 ⋅ d(s, t). In the second case, the node t′ is the common father

of s and t in T ; see Fig. 4.2. Since t is the left brother of s in T , we have d(t, t′) ≤ d(s, t′).
Hence d(s, t) ≤ d(s, t′) + d(t′ , t) ≤ 2 ⋅ d(s, t′).

Now that the metric dT′ is defined, we prove that T ′ satisfies all properties of a star tree.

Lemma 4.19. The binary center tree T ′ with the metric dT′ is a star tree.

Proof. Recall that our construction of the node set and their associated stars already implies

Property (i) for T ′.
The next two properties are related to the tree structure of a binary center tree. We

provide bounds on the degree of the nodes and show that edge lengths towards the root are

non-increasing.

We show Property (ii). Any node s in T ′ has at most two incoming edges: One from its

closest son in T and one from its right brother in T . By Lemma 4.17, the root has exactly one

son in T ′.
Next, we show Property (iii). Let (s, s′) and (s′ , s′′) be any consecutive edges in T ′.

We have to prove dT′(s, s′) ≥ dT′(s′ , s′′). In the tree T , let t be the father of s, and let t′
be the father of s′. Recall that, by the definition of dT′ , the equations dT′(s, s′) = 2d(s, t)
and dT′(s′ , s′′) = 2d(s′ , t′) hold. Therefore, it suffices to show d(s, t) ≥ d(s′ , t′). If s′ is the
father of s in T , then s′ = t and the claim holds by Lemma 4.2. If s′ is the left brother of s in T ,
then t′ = t and the claim holds by the construction of binary center trees.

The remaining two properties are related to small stars. We show how to bound the

distance of a node to its only supporting facility and how to bound the cost of transporting its

demand to the next node.

68

Algorithm for Uniform Hard-Capacitated k-Facility Location Section 4.3

Consider any small star (Ss , z) with s ∈ CT′ . Let î be the only supporting facility in (Ss , z).
We show Property (iv). Let s′ ∈ CT′ ∖ {s} be any node distinct to s. By the definition of dT′ ,
we have dT′(î , s) = d(î , s). Recall that our construction of small stars guarantees that î
satisfies d(î , s) ≤ ℓdav(s). By Lemmas 4.5.1 and 4.18, we obtain

ℓdav(s) < d(s′ , s)/2 ≤ dT′(s′ , s)/2 .

Next, we show Property (v). If vol(z) = 1, we are done. Therefore, we assume vol(z) < 1
which implies vol(z) = voly∗(Fs) by our construction of small stars. Let s′ ∈ Csc ∖ {s} be the
star center distinct from s that is closest to s. If s is the root of T ′, then, by Lemma 4.17, s′
is the son of s. Thus, by the definition of dT′ , dT′(s′ , s) = 2d(s′ , s) and Lemma 4.13 implies

the claim. If s is not the root, let t be the father of s. Then, by the definition of dT′ , we
have dT′(s, t) = 2d(s, s′). Therefore, it suffices to show the inequality

(1 − z î)wsd(s, s′) ≤ 4(bds + ℓbrs)

to prove the claim. The inequality holds by Lemma 4.13.

We have now shown that all properties of star trees as required in Definition 4.9 are

actually satisfied by the binary center tree T ′. This fact implies that all our binary center trees

are star trees, and, hence, that our constructed forest H is in fact a star forest. Thus, we are

ready to prove Theorem 4.3.

Proof of Theorem 4.3. Given a capacitated k-Facility Location instance, we compute the

corresponding star forest H and use the black box algorithm to obtain a solution to H of

cost c ⋅ b(H) and capacity violation γ. Note that the solution opened at most ⌈vol(H)⌉ ≤ k
facilities. Then, by solving a minimum-cost flow problem (see Lemma 4.1), we efficiently

compute an optimal assignment of the clients to facilities opened by the solution.

To bound the cost of the solution, we give a suboptimal fractional flow of demand that uses

the edges in the star forest and that satisfies the claimed cost bound. The flow is constructed

in two steps. First the demand of the clients is transported to the star centers so that each

node s ∈ Csc collects precisely ws units of demand. By Lemma 4.14, this can be accomplished

at cost at most (2 + 2ℓ) ⋅OPT∗. To transport the demand collected at the star centers to the

actual facilities, we use the assignment provided by the solution to the star forest. By definition,

this assignment transports for each s ∈ Csc preciselyws units of demand to the facilities opened

by the solution. The cost of this assignment, together with the costs for opening the facilities,

is

c ⋅ b(H) = c ⋅ ∑
s∈Csc

bIIs ≤ c ⋅ (2ℓ + 2)OPT∗

by Corollary 4.2. Altogether, we obtain (c + 1) ⋅ (2ℓ + 2)OPT∗ as an upper bound of the

solution cost.

4.3.2 Solving a Star Forest

We now show how to solve any given star forest H. We describe a deterministic rounding

procedure which is tuned to minimize the capacity violation while allowing a large connection

69

Chapter 4 Approximating Hard-Capacitated k-Facility Location Problems

and opening cost that is still bounded by a constant multiple of the budget b(H). Together
with Theorem 4.3, this will imply, for any positive ε, anO(1/ε2)-approximation algorithm for

the uniform hard-capacitated k-Facility Location problem with capacity violation 2 + ε.
In the first step, the algorithm forms groups of ℓ ≥ 2 nodes in each star tree. In the next

step, at the cost of loosing some accuracy with distances, we simplify the graph structure

within each of the groups. Eventually, we use a dependent rounding routine to decide the

actual openings of facilities, and argue that there is sufficient capacity open up every tree to

serve all demand coming from below, and, hence, on every star tree there exists a feasible

routing of its total demand.

To the end of this section, let z denote the union of the solutions of all stars in the star forest.
For the sake of easier presentation, we will refer to each star (Ss , z′) just by its instance Ss and
use z when referring to the opening values of its facilities. Also to the end of this section, we

fix any star tree T of our forest with a root r. Let CT be the set of its nodes, FT the set of its

facilities, and dT its metric on CT ∪FT .

Building groups. The nodes of the star tree T will be grouped by a top-down greedy

procedure starting from the root r; see Fig. 4.3a. When forming a new group, a single node s
(having all its descendants yet not grouped) will be selected as a root of the new group. Then

new nodes will be added to the group in a greedy fashion until either the group has reached the

size of ℓ nodes, or all descendants of s are already included. The greedy choice of the next node

to include will be to take one which is connected to the already included nodes by a cheapest

tree edge. When a group is complete, we exclude the selected nodes from participating in the

later formed groups. As long as not all nodes of the tree are grouped, we select a top-most

one s and build a group Gs rooted at s.

Definition 4.11. A group Gs is a child of a group Gt and Gt is a parent of Gs if there is a

directed edge in T from s to a node in Gt . The group Gr is the root group and every other

group is a non-root group.

Observation 4.1. If Gt has at least one child, then it contains exactly ℓ nodes, otherwise (if it
has no children) Gt may have less nodes. Moreover, each group has at most ℓ + 1 children.

The next lemma is implied by Property (iii) and the way in which the algorithm selects

nodes to a group.

Lemma 4.20. Consider any group Gt that has a child group Gs . Let es ∈ E(T) be the edge
from s (the root of Gs) to its father in Gt . For any edge e in Gt and any edge e′ in Gs , we
have dT(e) ≤ dT(es) ≤ dT(e′).

Group modification. To facilitate rounding of facility openings within groups, we will

modify the tree structure within groups to obtain a new in-tree T ′ from the initial star tree T .
The partition of nodes into groups will stay unchanged and the parent-child relation between

groups will also be preserved. The modification within a single group is as follows.

Consider a group of nodesGs and the order in which the nodes were added to the group by

the greedy procedure. In the modified tree T ′, the group Gs will form a chain graph directed

70

Algorithm for Uniform Hard-Capacitated k-Facility Location Section 4.3

r

s t

1

2

3

4

5

6

(a) Building groups: Edges highlighted in gray form a
new group Gr with the root node r; nodes s and t
are roots of groups Gs and Gt , respectively. Gr is
parent group ofGs andGt . The numbers indicate a
possible order inwhich thenodes havebeen added
to Gr .

r
1

2

3

4

5

6

(b) The group Gr after the modification step:
The group is now a chain and nodes are or-
dered from top to bottom in the order they
were added to the group, that is, with non-
decreasing distances to their fathers in the
star tree.

Figure 4.3: Building groups and the modification step.

towards its root s, with the nodes closer to s being those selected earlier by the group forming

algorithm; see Fig. 4.3b. Finally, for any group Gs which is a child of a group Gt , let the edge

outgoing from s point to the lowest vertex in Gt in T ′.
Clearly, such modification of the tree structure may interfere with routing demand along

edges of the used tree. Nevertheless, we will argue that we may bound this influence to only a

constant multiplicative growth in the routing distance.

Recall that the lengths of edges of T were monotone non-increasing on any directed path

towards the root node r. We will no longer have this property in T ′, but we will now exploit

the monotonicity of dT on edges of directed paths in T to bound distances on T ′.

Lemma 4.21. Let s and t be any nodes of the same group such that t lies above s in T ′. Let t′ be
the father of s in T. It holds dT(s, t) ≤ (ℓ − 1) ⋅ dT(s, t′).

Proof. Since t lies above s in the same group as s in T ′, we have that s was added later to

this group than t. Hence every edge on the path (ignoring edge directions) from s to t in T
has length at most dT(s, t′); see Fig. 4.3 and consider s = 5, t = 2 and t′ = 3. Since no more

than ℓ − 1 edges lie on this path and since dT is a metric, the claim follows.

Lemma 4.22. Let s be the root of any non-root group, let t′ be its father in T, and let t be any
node in the parent group of s. It holds dT(s, t) ≤ ℓ ⋅ dT(s, t′).

Proof. By triangle inequality,

dT(s, t) ≤ dT(s, t′) + dT(t′ , t) .

If t′ = t, we are done. Otherwise, there is an edge (t′ , s′) in T . By Lemma 4.21,

dT(t′ , t) ≤ (ℓ − 1) ⋅ dT(t′ , s′)

and, by Lemma 4.20, dT(t′ , s′) ≤ dT(s, t′).

71

Chapter 4 Approximating Hard-Capacitated k-Facility Location Problems

Lemma 4.23. Let (s, s′) and (t, t′) be any two edges in T. If t lies above s in T ′, then we
have dT(s, s′) ≥ dT(t, t′).

Proof. If s and t do not belong to the same group in T , then the claim follows by Lemma 4.20.

Otherwise, our greedy choice in the construction of the group implies the claim.

Rounding the facilityopenings. In the previous step of our algorithm, we have computed,

for T as well as every other star tree of our star forest H, a new in-tree with modified groups.

Now, to decide the eventual openings of facilities, we use the dependent rounding procedure

described in Section 4.2.1 that we apply on all facilities of the star forest together. We will

refer to the randomized rounding algorithm by rounding procedure. Later, we show how to

derandomize it.

The rounding procedure starts with the opening vector z. In each step, it computes a new

opening vector that is used as the input for the next step. In the first iterative phase (Type II

iteration), the procedure considers, step by step, pairs of still fractional facilities. In such a pair

of facilities, the procedure pumps one of the openings up and the other one down randomly

choosing the one to increase. As a result of this step, at least one of the two facilities becomes

either closed or open. The Type II iteration phase ends when at most one fractional facility is

left in H. Based on its current opening value, we randomly decide whether to close or to open

it (Type I iteration).

In the first phase, the procedure preserves the sum of facility openings (hence, their

volume). Therefore, we will open either ⌊vol(H)⌋ or ⌈vol(H)⌉ facilities at the end. Moreover,

the probability of eventually opening the facility i equals the opening value that it had at the

beginning of the random procedure, that is, it equals z i .
On top of these standard properties, we will also exploit that we may guarantee to almost

preserve the volume in a number of chosen subsets of facilities, provided that the subsets

form a laminar family (see Lemma 4.15). Here, rather than explicitly defining the family of

subsets, we will directly say in which order the pairs of fractional facilities should be chosen.

The rounding will proceed first within the groups until at most one fractional facility

is left in each of the groups. Within each group, the rounding procedure will always select

the top-most pair of currently fractional facilities. Please note that modifying the shape of

the tree inside the groups into chain graphs we have made the choice of the top-most pair

unambiguous. When there is at most one fractional facility left in each group, the rounding

may be continued in an arbitrary order. At the end, there is at most one fractional facility left

in the whole star forest. We open it with probability equal to its current opening.

In more detail, consider any group Gs . In each step, we select among all the facilities

of Gs the two top-most fractional ones. Here, we say a facility lies above another one, if the

node it belongs to lies above the node of the other facility in the chain graph of Gs . Then we

round this pair as described in the Type II iteration (see Section 4.2.1). As a result, one of both

facilities gets either open or closed and their total volume remains the same. Eventually, we

are left with at most one fractional facility in Gs .

During the next discussions, the (unchanged) opening vector on which the rounding

procedure started is still denoted by z. Also the volume of a star remains defined by z. However,
when referring to the opening value of a facility without specifying the opening vector, we

will refer to its opening in the opening vector returned by the rounding procedure.

72

Algorithm for Uniform Hard-Capacitated k-Facility Location Section 4.3

⋯

(ℓ + 1) × u

1 2 ℓ + 1

Gt

t

u

u u

Figure4.4: Aparent groupGt with ℓ + 1 children groups. The groups are depicted as ovalswith edges connecting
them. Each child group sends at most u units of demand to its parent group (dashed arrows). Thus, Gt receives
at most (ℓ + 1)u units of demand from its children. Inside Gt , the root t is a small star whose supporting facility
has been closed. The demand of t, which is at most u, gets routed to the parent of Gt (assuming that it exists).
Any other demand of Gt and all demand coming from its children is served within Gt .

The following lemma shows that, independently of the outcome of the rounding procedure,

the distribution of the volume has a nice property: For any node, the total volume of the stars

above the node is almost entirely preserved. Later, this will ensure that enough facilities are

open above every node without open facilities to serve its demand.

Lemma 4.24. Consider any group and let l be the number of it nodes. For 1 ≤ m ≤ l , let Fm
denote the set of all facilities of the first m nodes from the top, and let vm denote the volume
of Fm in z.
The following is true: For each m with 1 ≤ m ≤ l , the rounding procedure opens at least ⌊vm⌋
facilities in Fm .

Proof. By our greedy choice of always selecting the top-most pair of fractional facilities, we

exhaustingly applied Type II iteration on each set Fm ∈ F1 , . . . , Fl in this order until at most

one fractional facility remained in Fm . Note that F1 ⊂ ⋅ ⋅ ⋅ ⊂ Fl forms a laminar sequence.

Thus, the claim follows directly by the sum preservation shown in Lemma 4.15 and the fact

that once opened facilities will not be closed at any step later by the rounding procedure.

Routing and analysis. Once the facilities are opened, a minimum-cost assignment of

clients to facilities can be found, for example, by a minimum-cost flow computation in the

original graph. Nevertheless, for the purpose of the analysis, we will consider a suboptimal

assignment where the demand is routed along the edges of the in-tree T ′.

73

Chapter 4 Approximating Hard-Capacitated k-Facility Location Problems

We will make sure that the demand of any node s ∈ CT will be satisfied not farther than at

the root of the group of the parent of s, which is not too far by Lemmas 4.20 and 4.21. We

will show that after scaling up the capacity of each facility by a factor of 2 + 3/(ℓ − 1), each
non-root group will send up at most u units of demand to its parent group; see Fig. 4.4. Then

we will argue that the excess capacity of at least (ℓ + 1)u in a group is sufficient to serve the

demand sent up from its child groups. The tricky part is to control the demand transportation

within groups. Note that once we let a unit of demand travel along an edge of T ′, then, by
paying only ℓ times more, we may let it travel further as long as it stays within the same group.

Therefore, it is essential to make sure that inside each group sufficient capacity is provided by

the open facilities above a node to collect its demand.

Lemma 4.25. For any group Gs , we can assign its total demand such that each open facility
receives at most 2u units of demand, the demand of each big star gets completely assigned to its
own open facilities and the following holds for every small star Ss′ :

(i) If Ss′ has an open facility, its demand gets completely assigned to its open facility.

(ii) Otherwise, if s′ is the root of T ′, its demand gets completely assigned to open facilities
that belong to its son. (Note that the son exists.)

(iii) Otherwise, if s′ is the root of Gs , its demand remains completely unassigned.

(iv) Otherwise, the demand of Ss′ gets completely assigned to open facilities that belong to
nodes lying above s′ in Gs .

Proof. In the following, we call a small star closed if it contains no open facility in the opening

vector returned by the rounding procedure.

We set the capacity of each open facility to 2u, hence, each open facility can serve a demand

up to 2u. Consider any big star. By definition, it has some volume v larger than 1 and an

almost integral solution. Thus, it contains ⌊v⌋ open facilities in z and at least the same number

in the output of the rounding procedure. By Constraint (4.1), its demand is at most vu. Using
the fact 2u ⋅ ⌊v⌋ ≥ uv, we assign the demand of every big star to its own open facilities such

that each facility receives at most 2u units of demand. Next, consider any small star. It has

some volume v and a demand of size at most uv ≤ u. Hence, if a small star is not closed, then

we assign its demand to its own open facility.

We now show how we assign the demand of closed small stars. Let s1 , . . . , s l be the nodes
as they are ordered in the group Gs from top to bottom. First assume that at least one of the

two statements is true: (a) Ss1 is not a small star, or (b) s1 is not the root of T ′. We prove the

claim of the lemma by induction for every subgroup s1 , . . . , sm where m = 1, . . . , l .
Consider first the base case m = 1. If Ss1 is a closed small star, then, by assumption, Ss1 is

not the root of T ′. We don’t route its demand and the claim holds. Otherwise the star serves

its own demand as shown above and the claim also holds.

Next, consider the inductive step with m ≥ 2. By induction hypothesis, we compute an

assignment σ that satisfies the claim for the subgroup s1 , . . . , sm−1. We will extend this as-

signment to Ssm . Let v be the total volume of the stars Ss1 , . . . , Ssm . By Lemma 4.24, the

number of open facilities in the stars Ss1 , . . . , Ssm is at least ⌊v⌋, and, hence, their total ca-
pacity is at least 2u ⋅ ⌊v⌋. By Constraint (4.1), the total demand located at these stars is at

74

Algorithm for Uniform Hard-Capacitated k-Facility Location Section 4.3

most uv. Since m ≥ 2 and since each star has volume at least 1 − 1/ℓ ≥ 1/2 (Definition 4.8),

we have v ≥ 1. Consequently, 2u ⋅ ⌊v⌋ ≥ uv. Let v′ be the volume in the stars Ss1 , . . . , Ssm−1 .
Since the assignment σ distributes at most uv′ units of demand, the leftover capacity in the

stars Ss1 , . . . , Ssm is at least 2u ⋅ ⌊v⌋ − uv′. This amount is larger than the demand of Ssm , which
is at most u(v − v′) = uv − uv′. Therefore, if Ssm is a small star whose fractional facility has

been closed, we assign the demand of Ssm in an arbitrary manner to the leftover capacity. In all

other cases, the star serves its demand itself as argued above. Thus, we get a new assignment

for the subgroup s1 , . . . , sm satisfying the claim.

Now, consider the case that Ss1 is a small star and s1 is the root of T ′. By Property (ii), the
root of T ′ has a son and thus l ≥ 2. Again, we prove the claim of the lemma by induction for

every subgroup s1 , . . . , sm where m = 2, . . . , l .
For the base casem = 2, the claim immediately holds if neither Ss1 nor Ss2 is a closed small

star as then the stars serve their demands by themselves. Otherwise, at least one of the stars is

a closed small star. Let v be the total volume of Ss1 and Ss2 in z. Recall, by Lemma 4.24, that

there are at least ⌊v⌋ open facilities in the two stars. Thus, the open facilities in the stars provide

a capacity of at least 2u ⋅ ⌊v⌋. As every star has volume at least 1 − 1/ℓ ≥ 1/2, we have ⌊v⌋ ≥ 1.
This fact implies two observations. First, at least one facility is open. Hence, exactly one of the

two stars is a closed small star. Secondly, the capacity provided by the open facilities is enough

to serve their total demand, which is at most vu. Thus, we obtain a feasible assignment by

assigning the demand of the closed small star in an arbitrary manner to the leftover capacity

of the other star.

For the inductive step with m ≥ 3, we apply the same arguments as in the inductive step

described above. Hence, we obtain an assignment for the whole group Gs that satisfies the

claim.

The lemma above shows that, within each group, we can satisfy the demand of all its nodes,

except perhaps the root node of the group. If the demand of the root of a group Gs is not

satisfied, then, by Lemma 4.25, the root s is associated with a small star and s is not the root
of T ′. Consequently, the unsatisfied demand is at most u and there exists a parent group

for Gs . To satisfy the demand of s, we will forward it to the parent group. Thus, we have to

show that the parent group Gt has enough capacity left to serve the demand sent from Gs
and from every other of its children. As Gt is a non-leaf group, it contains ℓ stars. Since each
star has volume at least 1 − 1/ℓ (see Definition 4.8), the volume v of Gt is at least ℓ − 1. By
Lemma 4.24, there are ⌊v⌋ open facilities inGt . After scaling the capacities with (2 + 3/(ℓ − 1))
and using ⌊v⌋ ≥ ℓ − 1, we can lower bound the total capacity in Gt by

(2 + 3/(ℓ − 1)) ⌊v⌋u
= ⌊v⌋u + (1 + 3/(ℓ − 1)) ⌊v⌋u
≥ (v − 1)u + (1 + 3/(ℓ − 1))(ℓ − 1)u
≥ vu + (ℓ + 1)u .

From this capacity, at most vu is used for the demand fromGs . Consequently, at least (ℓ + 1)u
capacity remains to be potentially used by demand forwarded from the child groups. Since

there are at most ℓ + 1 child groups and each of them forwards at most u units of demand,

75

Chapter 4 Approximating Hard-Capacitated k-Facility Location Problems

the remaining capacity is sufficient. Thus, we assign the demand coming from the children

arbitrarily on the facilities in Gt that still have some capacity left; see Fig. 4.4.

We summarize the properties of our assignment as follows.

Lemma 4.26. We can assign the total demand in T ′ such that each open facility receives at
most 2 + 3/(ℓ − 1)u units of demand, the demand of each big star gets completely assigned to its
own open facilities and the following holds for every small star Ss :

(i) If Ss has an open facility, its demand gets completely assigned to its open facility.

(ii) Otherwise, if s is the root of T ′, its demand gets completely assigned to open facilities
that belong to its son.

(iii) Otherwise, if s is the root of a group, its demand gets completely assigned to open facilities
that belong to nodes lying in the parent group of s.

(iv) Otherwise, the demand of Ss gets completely assigned to open facilities that belong to
nodes lying above s in the same group as s.

Expected Cost. Now, we examine the expected cost of the assignment above, that is, the

cost of placing facilities in T ′ and routing demand within T ′.
Consider any outcome of the rounding procedure together with our assignment given by

Lemma 4.26. We will split the cost over all facilities such that each facility is charged with

some cost portion: Every facility pays its own opening cost as well as the connection cost of

the demand that it receives directly from its star center. If the single facility i of a small star

is closed, it pays the connection cost of distributing the demand of its star Ss on other star

centers. If a receiving star center t belongs to a small star St , then i even pays for forwarding

the demand to the single open facility in St . If St is big, then each facility i′ receiving a demand

portion from s pays for the last stretch of moving the demand from t to i′. Note that by this
charging schema, we have completely split the cost over all facilities.

In what follows, we upper bound the cost contribution of each facility i depending on
whether i is open or closed in the outcome of the rounding procedure. For the case that i is
open, we use c1i to denote its upper bound, otherwise, we use c

0
i . Thus, for any opening vector z̄

returned by the rounding procedure, the total cost of the solution to T will be bounded from

above by the gross cost of T that we define as follows.

Definition 4.12. The gross cost of T is∑i∈FT z̄ i c
1
i +(1 − z̄ i) c0i .

Consider any facility i and assume that it belongs to a big star Ss . For the case that i
is closed, i is not charged and we set c0i = 0. For the case that i is open, it has to pay

for its opening cost f i as well as for moving from its star center all the demand that it

receives. By Lemma 4.26, i receives at most (2 + 3/(ℓ − 1))u units of demand. Thus, we

set c1i = f i + (2 + 3/(ℓ − 1))udT(i , s).
Now, assume that i belongs to a small star Ss . If i is not the single supporting facility î

of Ss in z, it will remain closed and therefore not charged. We set c1i = c0i = 0. Otherwise,

consider i = î. For the case that î is open, it has to pay for its opening cost as well as for moving

the demand that it receives directly from its star center. Since a small star has at most one

76

Algorithm for Uniform Hard-Capacitated k-Facility Location Section 4.3

open facility, î has to pay for the full demand ws of s. Recall that it is not charged for receiving
demand originating from other stars. Thus, we set c1î = f î +wsdT(î , s).

For the case that î is closed, it has to pay for distributing the demand ws on other stars.

We distinguish two cases.

First, assume that s is the root of T and let s′ be its single son in T (see Property (ii)),

which is the same in T ′. By Lemma 4.26, all the demand of Ss gets assigned to facilities in Ss′ .
Thus, we move the demand to s′ over the distance dT(s, s′). If Ss′ is a small star, we further

route the demand to the single open facility in Ss′ . By Property (iv), we traversed in total a

distance at most (1 + 1/2)dT(s, s′). Generously, we set c0î = ws(ℓ + 1/2)dT(s, s′).
Next, assume that s is not the root of T . Let s′ be the father of s in T . Fix a portion ŵs of

the demand that is routed to some star St . By Lemma 4.26, t has to lie above s in T ′. If s is the
root of its group, then t belongs to the parent group of Gs . Otherwise, if s is not the root of
its group, then t belongs to the same group as s. By Lemmas 4.21 and 4.22, we know that the

distance between s and t is at most ℓdT(s, s′). If St is a big star, we just route ŵs to t. If St is a
small star, we further route ŵs to its single open facility î′.

Assume that t is not the root of T . Let t′ be the father of t in T . Since t lies above s in T ′,
we have dT(t, t′) ≤ dT(s, s′) by Lemma 4.23. Thus, by Property (iv), the distance from t to î′

is at most

dT(t, t′)/2 ≤ dT(s, s′)/2 .

Now, if t is the root of T , then let t′ be the single son of t in T and T ′. If t′ lies above s in T ′,
then Lemma 4.23 implies dT(t, t′) ≤ dT(s, s′). Otherwise, t′ = s, and thus (t′ , t) = (s, s′).
Again, by Property (iv), we have

dT(î , t) ≤ dT(t, t′)/2 ≤ dT(s, s′)/2 .

Hence, the total distance for ŵs is at most (ℓ + 1/2)dT(s, s′). Since this bound holds for

any portion of the demand ws , we set c
0

î = ws(ℓ + 1/2)dT(s, s′).
We summarize our bounds:

Definition 4.13. Let CbT denote the set of all star centers of big stars in CT , and let CsT denote

the set of all star centers of small stars in CT .

• For every s ∈ CbT and i ∈ Fs , we set

c
1
i = f i + (2 + 3/(ℓ − 1))udT(i , s) and c

0
i = 0 .

• For every s ∈ CsT and the only supporting facility î of Ss in z, we set

c
1

î = f î +wsdT(î , s) and c
0

î = ws(ℓ + 1/2)dT(s, s′) ,

where s′ is the son of s if s is the root, and the father of s in T ′ otherwise.

• For every other facility i ∈ FT , we set

c
1
i = 0 and c

0
i = 0 .

77

Chapter 4 Approximating Hard-Capacitated k-Facility Location Problems

Now we are ready to bound the expected gross cost.

Lemma 4.27. The expected gross cost of our solution to T is at most (4ℓ + 3)b(T).

Proof. For every s ∈ CsT , we define î(s) as the single supporting facility of Ss in z. Recall that
every facility i ∈ FT is opened with probability equal to z i by the rounding procedure. Using
our definitions, the expected gross cost is

∑
i∈FT

z i c1i +(1 − z i) c0i

= ∑
s∈CbT

∑
i∈Fs

z i c1i + ∑
s∈CsT

z î(s) c
1

î(s) +(1 − z î(s)) c
0

î(s) .

Next, we separately bound the cost contribution of facilities belonging to big and small

stars. Thereby, we will use d(i , s) = dT(i , s) for every s ∈ CT and i ∈ Fs , which holds by the

definition of dT .
For each s ∈ CbT , we have

∑
i∈Fs

z i c1i

= ∑
i∈Fs

z i f i + (2 + 3/(ℓ − 1))u ∑
i∈Fs

z idT(i , s)

≤ (2 + 3/(ℓ − 1))bIs
≤ 5bIs ,

where the first inequality follows from Constraint (4.2) for solutions to star instances, and the

second one follows from ℓ ≥ 2.
For each s ∈ CsT with the single supporting facility î in z, we have

z î c
1

î

= z î f î + z îwsdT(î , s)
≤ z î f î +wsdT(î , s)
≤ bIIs ,

where the last inequality follows from Constraint (4.3). If s is the root of T ′, then let s′ be the
son of s, otherwise, let s′ be the father of s. We have

(1 − z î) c0î
= (1 − z î)ws(ℓ + 1/2)dT(s, s′)

≤ 8(ℓ + 1

2
)(bds + ℓbrs)

≤ (4ℓ + 2)(2bds + 2ℓbrs)
≤ (4ℓ + 2)bIIs ,

78

Algorithm for Non-uniform Hard-Capacitated k-Median Section 4.4

where the first inequality follows from Property (v). Thus,

z î c
1

î +(1 − z î) c
0

î ≤ (4ℓ + 3)b
II
s .

Given (4ℓ + 3)bIIs ≥ 5bIs for each s ∈ CT , we infer the following upper bound on the ex-

pected cost:

∑
i∈FT

z i c1i +(1 − z i) c0i

≤ ∑
i∈FT

(4ℓ + 3)bIIs

= (4ℓ + 3)b(T) .

The result on the trees directly extends to the forest H, as no demand is routed between

any two star trees. Here, we define the gross cost of H as the sum of the gross costs of its star

trees.

Corollary 4.3. The expected gross cost of our solution to the star forest H is bounded from above
by (4ℓ+3)b(H).

Note that the same upper bound also applies on the expected cost of our solution since

the gross cost is always an upper bound on the actual cost.

Derandomization. Let FH denote the set of all facilities in H. Consider any step of the

rounding procedure and let z̄ be the current opening vector at the beginning of the step.

From this step on, the rounding procedure guarantees that each facility i ∈ FH will be opened

with probability z̄ i . Hence, from this step on, the expected value of the gross cost is ex-

actly ∑i∈FH z̄ i c
1
i +(1 − z̄ i) c0i . This value is an upper bound for the expected gross cost of

at least one of the choices in the current step. This fact leads us directly to the following

derandomization algorithm: At each step of the rounding procedure, compute the expected

value of the gross cost for each of the two choices of rounding. Greedily make the choice with

the smaller expected value, or make an arbitrary choice if both values are equal. At the end,

we deterministically obtain a solution to H whose gross cost is at most the expected gross

cost of our rounding procedure.

Using Corollary 4.3, we summarize our discussion in the following theorem.

Theorem 4.4. For any value at least 2 for the parameter ℓ, there is an efficient algorithm that
computes for a given star forest H a solution with capacity violation at most 2 + 3/(1 − ℓ) and
cost at most (4ℓ + 3) ⋅ b(H).

Combining this result with Theorem 4.3, we obtain Theorem 4.1.

4.4 Algorithm for Non-uniform Hard-Capacitated
k-Median

In this section, we describe a bi-factor approximation algorithm for the k-Median problem

with non-uniform hard capacities that will prove Theorem 4.2. Note that this problem is

79

Chapter 4 Approximating Hard-Capacitated k-Facility Location Problems

equivalent to k-Facility Location with uniform opening costs. Moreover, its standard

LP relaxation, denoted by Ck-MED LP, is a special case of Ck-FL LP where all opening

costs (f i)i∈F are set to 0.

During our algorithm, we will obtain, step by step, a series of solutions where the initially

fractional openings are more and more restricted until we finally arrive at an integral solution

to Ck-MED LP with bounded capacity violation. We will consider the following two types of

solutions.

Definition4.14. Asolution (x̃, ỹ) toCk-MED LP is called a [1/2, 1]-solution if, for every i ∈ F ,
we have ỹ i ∈ {0} ∪ [1/2, 1]. Similarly, a solution (x̃, ỹ) to Ck-MED LP is called a {1/2, 1}-
solution if, for every i ∈ F , we have ỹ i ∈ {0, 1/2, 1}.

Recall that a solution with capacity violations has to satisfy all constraints of Ck-MED LP

with the exception of Constraint (LP-4). In this section, we will consider an even weaker type

of solutions.

Definition 4.15. A solution (x̃, ỹ) to the weaker version of Ck-MED LP where we drop

Constraints (LP-3) and (LP-4) is called a weak solution to Ck-MED LP.

Let (x∗ , y∗) be the optimum solution to Ck-MED LP that we fixed in Section 4.2. Similarly

to the algorithm of the previous section, we partition all facilities into star clusters and, for each

corresponding star instance, we compute a strict solution of volume bounded by a function

of ℓ. In doing so, we set the parameter ℓ = 2. Note that we do not consider relaxed solutions.

We then proceed as follows.

In Section 4.4.1, we modify the solution to each star instance by moving openings between

facilities such that all supporting facilities are open or all but one of the facilities are closed.

The union of these solutions will help us to obtain a [1/2, 1]-solution (x′ , y′) where fractional
facilities have capacity violation at most 1 + ε and open facilities have capacity violation at

most 2 + ε, for any sufficiently small constant ε.
Then, in Section 4.4.2, we construct a weak {1/2, 1}-solution (x̂, ŷ): By some greedy

rule, we either round each opening in y′ down to 1/2 or up to 1. Thereby, we might violate

Constraint (LP-3) and therefore obtain only a weak solution. Also the capacity violation might

increase slightly, but not more than up to 2 + 2ε. The connection cost of (x̂, ŷ) remains the

same as in (x′ , y′).
Eventually, in Section 4.4.3, we round (x̂, ŷ) into an integral solution. We do this by

building so called facility trees and cutting them to smaller instances which are easier to

round. By this procedure, we obtain an integral solution (x̄, ȳ) to Ck-MED LP with capacity

violation 3 + 3ε.

4.4.1 Obtaining a [1/2, 1]-Solution with Capacity Violations
In this section, we describe how to obtain a solution (x′ , y′) with capacity violations such

that the opening of every supporting facility is in [1/2, 1]. Let ε be an arbitrary constant

with 0 < ε ≤ 1.
In the following, we consider a star instance Ss . By Lemmas 4.9 and 4.11, we compute a

strict solution z to Ss with at most two fractional facilities and the bound vol(z) ≤ voly∗(Fs).
Since z satisfies Constraint (4.1), we can completely distribute the demand ws on the facilities

80

Algorithm for Non-uniform Hard-Capacitated k-Median Section 4.4

inFs such that each facility i serves a demand d i of size at most z iu i . We fix such a distribution

of ws and define d i as the demand that the facility i has to serve; thus ∑i∈Fs d i = ws . Note

that there is no capacity violation in our distribution and that the cost of moving d i to the

facility i is at most d(i , s)d i ≤ d(i , s)z iu i . Hence, by Constraint (4.2), the connection cost of

our distribution, that is, the cost of sending ws from the star center s to the facilities, is upper
bounded by the strict budget bIs .

Next, we compute a new opening vector z′ for the facilities inFs where either all supporting

facilities are open, or there is one fractional facility and all other facilities are closed. In parallel,

we assign each facility a demand d′i such that the new distribution of ws has costO(bIs) and
capacity violation O(1 + ε). Depending on the size of vol(z), we compute z′ in one of two

different ways.

Small Volume. First, we consider the case when vol(z) ≤ 1, which is always true for star

instances whose star clusters have volume at most 1, and might sometimes also hold star

instances with star clusters of volume greater than 1. If there is only one fractional facility î,
we just set z′î = min{1, voly∗(Fs)} and d′î = d î . Then z′î ≥ vol(z) = z î and we have no capacity
violation. If there are exactly two fractional facilities î1 and î2, then we close one of them and

move its demand and opening to the other one. In fact, we can do so without any increase of

capacity violation as the next lemma shows.

Lemma 4.28. Let i , i′ ∈ Fs satisfy z i + z i′ ≤ 1. For at least one i′′ ∈ {i , i′}, there is no capacity
violation if we set the opening of i′′ to z i + z i′ and its demand to d i + d i′ .

Proof. Take i′′ ∈ {i , i′} with u i′′ = max{u i , u i′} and observe (z i + z i′)u i′′ ≥ d i + d i′ .

Unfortunately, the connection cost might be unbounded in the lemma above. However, if

we allow a slight capacity violation, we can control the cost.

Lemma 4.29. Let ε′ satisfy 0 < ε′ ≤ 1 and let i , i′ ∈ Fs satisfy z i + z i′ ≤ 1. The following is true
for at least one i′′ ∈ {i , i′}: If we set the opening of i′′ to z i + z i′ and its demand to d i + d i′ , then
its capacity violation is at most 1 + ε′ and we get d i + d i′ ≤ (1 + ε′)/ε′ ⋅ d i′′ .

Proof. If for both choices of i′′ the resulting capacity violation is at most 1 + ε′, we choose
a facility i′′ ∈ {i , i′} with maximum d i′′ . Then (d i + d i′)/d i′′ ≤ 2 ≤ (1 + ε′)/ε′ and the claim

holds.

Now, assume that for one of the choices, say i′, we have capacity violation γ greater

than 1 + ε′. Then, by Lemma 4.28, the other choice for i′′ has no capacity violation at all. Thus,

we choose i′′ = i. Note that γ satisfies γu i′(z i + z i′) = (d i + d i′). Given u i′z i′ ≥ d i′ , we obtain

z i′
z i + z i′

⋅ d i + d i′

d i′
≥ γ > 1 + ε′ .

The inequality leads to (d i + d i′)/d i′ > 1 + ε′. Together with 1 − d i′/(d i + d i′) = d i/(d i + d i′),
we obtain (d i + d i′)/d i < (1 + ε′)/ε′ for the demand increase of i.

81

Chapter 4 Approximating Hard-Capacitated k-Facility Location Problems

By Lemma 4.29 and choosing ε′ = ε, we select an appropriate facility î ∈ {î1 , î2}, set its
opening z′î = min{1, voly∗(Fs)}, its demand d′î = ws and close the other facility. Thus, we

have z′î ≥ vol(z) and the capacity bound still holds. Given d′î ≤ (1 + ε)/ε ⋅ d î and given

d îd(î , s) ≤ z îu îd(î , s) ≤ bIs

by Constraint (4.2), the connection cost is at most (1 + ε)/ε ⋅ bIs .

Big Volume. Next, we consider the case when vol(z) > 1, which is only true for star in-

stances whose star clusters have volume greater than 1. If there are no fractional facilities, then

we just set z′ = z and d′i = d i for each i ∈ Fs .

Otherwise, consider two supporting facilities î1 and î2 with smallest openings. Since we

have at most two fractional facilities, the remaining supporting ones are open.

Lemma 4.30. Let i , i′ ∈ Fs satisfy z i + z i′ ≥ 1. For at least one of the two facilities the following
is true: If we open the facility and set its demand to d i + d i′ , then its capacity violation and
demand increase by a factor at most 2.

Proof. Choose a facility i′′ in {i , i′}with the demandmax{d i , d i′} and observe that the capac-
ity violation is at most z i′′/(z i + z i′) ⋅ (d i + d i′)/d i′′ ≤ (d i + d i′)/d i′′ ≤ 2 and the connection

cost is (d i + d i′)d(i′′ , s) ≤ 2d i′′d(i′′ , s).

If z î 1 + z î2 ≥ 1, we choose one of them by Lemma 4.30 to be open in z′ and close the other

one. Otherwise, if z î 1 + z î2 < 1, then there is an open facility î in the star instance.

Lemma 4.31. Let i , i′ , i′′ ∈ Fs satisfy z i = 1 and z i′ + z i′′ < 1. For at least one of the three
facilities the following is true: If we open the facility and set its demand to d i + d i′ + d i′′ , then
its capacity violation increases by a factor at most 2 + ε and its demand increases by a factor of
a most 2 + 4/ε.

Proof. By Lemma 4.29 and choosing ε′ = ε/2, we select one of {i′ , i′′}, say i′, such that its

capacity violation is at most 1 + ε′ and its demand is at most (1 + ε′)/ε′ ⋅ d i′

Then we apply Lemma 4.30 on i and i′ using as the opening and demand of i′ the quan-
tities z i′ + z i′′ and d i′ + d i′′ , respectively. In the worst case, we choose to open i′ and get

capacity violation at most 2(1 + ε′) = 2 + ε and a total increase of demand by a factor at

most 2(1 + ε′)/ε′ = 2 + 4/ε.

By Lemma 4.31, we choose one of the three facilities in {î , î1 , î2} to be open in z′ and
close the other two. In both cases, we route the demand of the closed facilities to the chosen

one. The resulting capacity violation is at most 2 + ε. Since we do not change the openings
and demands of any other facilities of the star instance, and only increase the demand of one

facility by a factor at most 2 + 4/ε, the total connection cost is at most∑i∈Fs d(i , s)(2 + 4/ε)d i .

By Constraint (4.2), this cost is at most (2 + 4/ε)bIs . Note that vol(z′) ≤ vol(z) ≤ voly∗(Fs)
is satisfied.

The discussion of the two cases of vol(z) can be summarized as follows.

82

Algorithm for Non-uniform Hard-Capacitated k-Median Section 4.4

Lemma 4.32. We can compute an opening vector z′ for Fs with vol(z′) ≤ voly∗(Fs) where

• there is only one supporting facility i ∈ Fs and z′i = voly∗(Fs), or

• all supporting facilities are open.

Furthermore, we can distribute the demand ws on the facilities supporting in z′ such that

• each fractional facility i ∈ Fs has capacity violation at most 1 + ε, and

• each open facility i ∈ Fs has capacity violation at most 2 + ε.

The connection cost of the distribution is at most (2 + 4/ε)bIs .

Corollary 4.4. For any ε with 0 < ε ≤ 1, we can efficiently compute a [1/2, 1]-solution (x′ , y′)
with capacity violations such that vol(y′) ≤ k holds, fractional facilities have capacity violation
at most 1 + ε, open facilities have capacity violation at most 2 + ε, and the total connection cost
is at most 20/εOPT∗+16OPT∗.

Proof. To construct a feasible solution (x′ , y′) to Ck-MED LP with the claimed capacity

violation bounds, we first apply the procedure of Lemma 4.32 to compute an opening vector

for each star instance. Let y′ be the union of all these opening vectors. We have the inequality

vol(y′) ≤ ∑
s∈Csc

voly∗(Fs) ≤ ∑
i∈F

y∗i ≤ k ,

where the second last inequality follows from the fact that each facility belongs to exactly one

star instance. Thus, Constraint (LP-1) is fulfilled.

Next, we construct a feasible assignment x′ suitable for y′. For every facility i ∈ F , let d′i
be its demand given by Lemma 4.32. For every star instance Ss and every client t ∈ C, we
define x st as the total LP demand∑i′∈Fs x

∗

i′ t of t that is served by the facilities of Ss in x∗. Then

we send the fraction d′i/ws of x st to every facility i ∈ Fs , that is, we set x′i t = d′i/ws ⋅ x st .
Hence, Constraint (LP-2) holds, as each client t ∈ C is fully served:

∑
i∈F

x′i t = ∑
s∈Csc

x st ∑
i∈Fs

d i/ws = ∑
s∈Csc

x st = 1 .

The assignment also implies the satisfaction of Constraint (LP-3). To see this, consider any

client t ∈ C, star instance s ∈ Csc and facility i ∈ Fs . If y′i = 1, then the constraint immediately

holds. Otherwise, by Lemma 4.32, we have

y′i = voly∗(Fs) = ∑
i′∈Fs

y∗i′ ≥ ∑
i′∈Fs

x∗i′ t = x st ≥ x′i t .

Observe that the facility i serves a total amount of

∑
t∈C

x′i t = d′i/ws∑
t∈C

x st = d′i .

Hence, the bounds on capacity violation of Lemma 4.32 still hold.

83

Chapter 4 Approximating Hard-Capacitated k-Facility Location Problems

Consequently, (x′ , y′) is a feasible solution with capacity violations. Let us recall that

Lemma 4.32 restricts the openings of the facilities. For each facility i ∈ F , we have ei-

ther y′i ∈ {0, 1} or y′i = voly∗(Fs), where Fs is the star cluster containing i. Furthermore,

by Corollary 4.1 and ℓ = 2, we know that every star cluster Fs has volume voly∗(Fs) at
least 1 − 1/ℓ = 1/2. Thus, (x′ , y′) is even a [1/2, 1]-solution.

Regarding the connection cost of x′, we can assume that we first move the demands of the

clients to the star centers and then move them from there to the supporting facilities. The cost

of the first step is at most (2 + 2ℓ)OPT∗as Lemma 4.14 implies. The cost of the second step,

for each star center s, is at most (2 + 4/ε)bIs by Lemma 4.32. Since we know that the total strict

budget over all star instances is upper bounded by∑s∈Csc b
I
s ≤ (1 + 2ℓ)OPT∗ (Corollary 4.2),

the total cost is at most

(2 + 4/ε)(1 + 2ℓ)OPT∗+(2 + 2ℓ)OPT∗

= 20/εOPT∗+16OPT∗ .

4.4.2 Computing aWeak {1/2, 1}-Solution
Let (x′ , y′) be a [1/2, 1]-solution with capacity violations obtained by Corollary 4.4. We will

now transform it into a weak {1/2, 1}-solution (x̂, ŷ).

Definition 4.16. We define

• N1 = {i ∈ F ∣ y′i = 1}, and

• N2 = {i ∈ F ∣ 1/2 ≤ y′i < 1}.

For each facility i ∈ N2, let d′i = ∑t∈C x′i t be the demand served by i and let s(i) be its closest
facility in N1 ∪ N2 ∖ {i} (recall Definition 4.3).

Lemma 4.33. We can efficiently compute a weak {1/2, 1}-solution (x̂, ŷ) of volume vol(ŷ) ≤ k
and connection cost of at most 20/εOPT∗+16OPT∗where the capacity violation of every facility
is at most 2 + 2ε. Moreover, the following inequality holds:

∑
i∈N2

d′i(1 − ŷ i)d(s(i), i) ≤ ∑
i∈N2

d′i(1 − y′i)d(s(i), i) .

Proof. For each facility i ∈ N1, set ŷ i = 1. If k ≥ ∣N1∣ + ∣N2∣, then also set ŷ i = 1 for each facil-

ity i ∈ N2. Thus, the volume vol(ŷ) is bounded from above by k, and the claimed inequality

holds, as the left side adds up to 0.

If k < ∣N1∣ + ∣N2∣, then ∣N2∣ > 2k − 2∣N1∣ − ∣N2∣. For each facility i ∈ N2, we define the

weight of the facility i as d′id(s(i), i). Sort all facilities in N2 non-increasingly by their weights.

Then set the openings of the first 2k − 2∣N1∣ − ∣N2∣ facilities of N2 to 1, and the openings of

the remaining facilities to 1/2. By this assignment of openings, the volume of ŷ is exactly

vol(ŷ) = ∣N1∣ + (2k − 2∣N1∣ − ∣N2∣) +
1

2
(∣N2∣ − (2k − 2∣N1∣ − ∣N2∣)) = k .

84

Algorithm for Non-uniform Hard-Capacitated k-Median Section 4.4

Observe that among all opening vectors v for F satisfying the two conditions,

(i) volv(N2) ≤ k − ∣N1∣, and

(ii) v i ≥ 1/2

for every i ∈ N2, vector ŷ attains the maximum value for the objective∑i∈N2
d′i ŷ id(s(i), i).

Also observe that y′ fulfills the two conditions (i) and (ii). Thus, we have

∑
i∈N2

d′i y′id(s(i), i) ≤ ∑
i∈N2

d′i ŷ id(s(i), i) ,

which is equivalent to the inequality claimed in the lemma statement.

Next, we set x̂ = x′ and thus have the same cost as x′. Consider the facility openings that
decreased. Since these openings changed by a factor not smaller than 1/2, we can bound the

capacity violation of their facilities by 2(1 + ε). The capacity violation of other facilities did

not increase. Now, open facilities have in worst case capacity violation

max{1 + ε, 2 + ε} ≤ 2 + 2ε .

Definition 4.17. We define

• N̂1 = {i ∈ F ∣ ŷ i = 1}, and

• N̂2 = {i ∈ F ∣ ŷ i = 1/2}.

We have N̂1 ∪ N̂2 = N1 ∪ N2, and in particular N̂2 ⊆ N2. Thus, s(i) is well defined for

every i ∈ N̂2 and we have s(i) ∈ N̂1 ∪ N̂2.

4.4.3 Rounding aWeak {1/2, 1}-Solution ŷ to an Integral Solution ȳ
In the last section, we obtained a weak {1/2, 1}-solution (x̂, ŷ) by Lemma 4.33. In this section,

we describe how to round this solution to an integral solution (x̄, ȳ). For the sake of easier
presentation, we assume that the demands of the clients have been moved to the facilities via

the solution (x̂, ŷ) so that every facility i ∈ N̂1 ∪ N̂2 carries the demand d′i . We will describe

how to obtain an integral opening vector ȳ and how to further reroute the demand to facilities

that are open in ȳ. We will give an upper bound of 3 + 3ε on the capacity violation and analyze

the cost of the rerouting.

Combining the rerouting with the assignment x̂, we obtain x̄. Altogether, this leads to the
solution (x̄, ȳ) to the original instance (where the demand resides in the clients) with capacity

violation 3 + 3ε. The cost of this solution is the total cost of (x̂, ŷ) and the rerouting.

Building facility trees. In a similar way as in related works [CGTS99, Li14], we construct

a directed forest of in-trees spanning the facilities in N̂2. For this, we run Procedure Short-

Trees(N̂2, N̂1) as described in Section 4.2. By the construction, nodes in N̂1 may appear only

as roots (Lemma 4.4), and each node i ∈ N̂2 has either a directed edge to its closest node s(i)
in N̂1 ∪ N̂2 ∖ {i}, or is a root of an in-tree. In the following, we will call the in-trees facility

trees.

85

Chapter 4 Approximating Hard-Capacitated k-Facility Location Problems

i
i′

(a) A facility tree T . Shaded in gray are the facility
stars that have been found in the while-loop of
Procedure Facility-Stars(T). Note that the root i
has not been assigned to any star during the
while-loop. If its opening ŷ i is less than 1, it will
be added to the son i′ that satisfies i′ = s(i).

(b) A facility star. Shaded ingray is a partitionof
the fractional facilities into pairs and triples.
Here, also the root is a fractional facility. In
each tuple, only one facility with the high-
est demand will be opened. It serves the
demand of its closed partners.

Figure 4.5: A facility star decomposed into facility stars, and a facility star partitioned into tuples.

Decomposing facility trees to rooted facility stars. We cut each facility tree T into

facility stars consisting of a root and a group of leaves. To this end, we greedily choose the

leaf node i that has the largest number of edges on the path to the root of its tree. Then we

remove the subtree rooted at s(i). We call the removed subtree a facility star and use Qs(i) to

denote it. See Procedure Facility-Stars(T) and Fig. 4.5a.

Procedure Facility-Stars(T)
while there are at least two nodes in T do

choose a leaf node i with the largest number of edges on the path from i to the
root

consider the subtree rooted at s(i) as a rooted facility star Qs(i), and remove this

subtree

if only one node i is left and ŷ i < 1 then
add i to the star rooted at s(i) as a child of s(i)

There is a special case, when only one facility i is left in T . If ŷ i = 1, we just ignore this
node, otherwise ŷ i < 1 and we have i ∈ N̂2. Note that i can only be the root of T . Then, by

Lemma 4.4, s(i) was a son of i. Since s(i) was removed from T but its father i was not, s(i)
must be the root of a facility star. Hence, we just add i to Qs(i).

Rounding facility stars. Using the facility stars, we will round ŷ and reroute the demand

to obtain our integral solution (x̄, ȳ). First, we open all facilities in N̂1 that do not belong

to any facility star. Each of them is serving its own demand. Then we apply the following

procedure on each facility star Qr to open at most ⌊∑i∈Qr ŷ i⌋ facilities in each of them:

86

Algorithm for Non-uniform Hard-Capacitated k-Median Section 4.4

If Qr contains at least two fractional facilities, we partition all fractional facilities into

pairs and triples; see Fig.. 4.5b. In each pair and triple, we open a facility i that has the biggest
demand d′i , close all other facilities in its tuple and route the demand of the closed facilities

to i. If Qr also contains a facility i in N̂1, we open it and let it serve its own demand.

If Qr contains exactly one fractional facility i, then Qr contains also an open facility i′
of N̂1. If d′i′ < 2d′i , we open the facility i, close i′ and move the demand of i′ to i. Otherwise,

if d′i′/2 ≥ d′i , we open the facility i′, close i and move the demand of i to i′.
Next, we show that our solution (x̄, ȳ) has at most k open facilities and small capacity

violation.

Lemma 4.34. In the integral solution ȳ, at most k facilities are open and every facility has
capacity violation at most 3 + 3ε.

Proof. Observe that every facility star Qr contains at most ⌊∑i∈Qr ŷ i⌋ open facilities in ȳ.
Among the facilities that do not belong to any facility star, we open only those that already

had opening 1 in ŷ. So we have∑i∈F ȳ i ≤ ∑i∈F ŷ i ≤ k which implies the first claim.

In the solution (x̂, ŷ), the capacity violation of each facility i ∈ N̂1 ∪ N̂2 is at most 2 + 2ε.
To bound the capacity violation in (x̄, ȳ) by 3 + 3ε, it suffices to bound the increase of capacity

violation by the factor 3/2.
Consider any facility i ∈ N̂2 that we opened in ȳ. By our choice to open it, we sent at

most 2d′i units of demand to it, either from closed facilities in its tuple, or from the root r
of its facility star. Thus, the demand of i increased by a factor at most 3. Given that we

simultaneously increased its opening by the sfactor 2, the capacity violation of i increased by

a factor at most 3/2.
Next, consider any facility in i ∈ N̂1 that we opened. If i serves only its own demand,

its capacity violation did not increase. Otherwise, i is also serving the demand of some

facility i′ ∈ N̂2 and we have d′i/2 ≥ d′i′ . Thus, the demand of i increased by a factor at most 3/2,
and so its capacity violation.

To this end, we bound the cost of our solution (x̄, ȳ). For this, we need to bound the

rerouting cost. We will do it in two steps. First we provide an upper bound that depends on

the facility demands and the distances within facility stars. In the second step, we relate this

upper bound to OPT
∗
.

Lemma 4.35. The cost of rerouting the demand from the facilities that are supporting in ŷ to
the facilities that are open in ȳ is at most 2∑i∈N̂2

d′id(s(i), i).

Proof. Consider any facility star Qr . To bound the rerouting cost, we assume, by triangle

inequality, that demand is rerouted only along the edges of Qr . For each such edge (i , r), we
have r = s(i) and i ∈ N̂2. We don’t have i ∈ N̂1 as nodes of N̂1 can appear only as a roots. Thus,

it suffices to show that each edge (i , r) carries at most 2d′i units of demand. Consider any

such edge (i , r). If i is closed, it sends its demand d′i along (i , r) to r (from where the demand

might be further routed) and no other demand is routed along (i , r). If i is opened, it receives
at most 2d′i units of demand as discussed in the proof of Lemma 4.34, and no other demand

is routed along (i , r).

87

Chapter 4 Approximating Hard-Capacitated k-Facility Location Problems

Before we further bound the term∑i∈N̂2
d′id(s(i), i), we first show the following helpful

inequality.

Lemma 4.36. For every t ∈ C, we have

∑
i∈N2

x′i t(1 − y′i)d(s(i), i) ≤ 2 ∑
i∈N1∪N2

x′i td(i , t) .

Proof. Fix any t ∈ C. By Constraint (LP-3), we have

1 − y′i ≤ 1 − x′i t = ∑
i′∈N1∪N2∖{i}

x′i′ t

for every i ∈ N2, and thus

∑
i∈N2

x′i t(1 − y′i)d(s(i), i)

≤ ∑
i∈N2

x′i t ∑
i′∈N1∪N2∖{i}

x′i′ td(s(i), i) .

By the definition of s(i), d(s(i), i) ≤ d(i′ , i) for every i′ ∈ N1 ∪ N2 ∖ {i}. Using this, we can
further upper bound the expression above by

∑
i∈N2

x′i t ∑
i′∈N1∪N2∖{i}

x′i′ td(i′ , i)

≤ ∑
i∈N2

x′i t ∑
i′∈N1∪N2∖{i}

x′i′ t(d(i′ , t) + d(i , t)) (Triangle inequality)

= ∑
i∈N2

x′i t ∑
i′∈N1∪N2∖{i}

x′i′ td(i′ , t) + ∑
i∈N2

x′i t ∑
i′∈N1∪N2∖{i}

x′i′ td(i , t)

≤ ∑
i′∈N1∪N2

x′i′ td(i′ , t) ∑
i∈N2

x′i t + ∑
i∈N2

x′i td(i , t) ∑
i′∈N1∪N2∖{i}

x′i′ t

≤ ∑
i′∈N1∪N2

x′i′ td(i′ , t) + ∑
i∈N2

x′i td(i , t)

≤ 2 ∑
i∈N1∪N2

x′i td(i , t) ,

where the second last inequality follows from∑i∈N1∪N2
x′i t = 1 for each t ∈ C, given by Con-

straint (LP-2).

We are ready to relate the rerouting cost to OPT
∗
.

Lemma 4.37. The sum∑i∈N̂2
d′id(s(i), i) is at most 80/εOPT∗+64OPT∗.

Proof. For each i ∈ N̂2, we have ŷ i = 1/2, so

d′id(s(i), i) = 2d′i(1 − ŷ i) vols(i)(i) .

88

Concluding Remarks and Open Questions Section 4.5

Thus,

∑
i∈N̂2

d′id(s(i), i)

= 2 ∑
i∈N̂2

d′i(1 − ŷ i)d(s(i), i)

≤ 2 ∑
i∈N2

d′i(1 − ŷ i)d(s(i), i) (N̂2 ⊆ N2)

≤ 2 ∑
i∈N2

d′i(1 − y′i)d(s(i), i) (Lemma 4.33)

= 2∑
t∈C
∑
i∈N2

x′i t(1 − y′i)d(s(i), i) (Definition of (d′i)i∈F)

≤ 4∑
t∈C

∑
i∈N1∪N2

x′i td(i , t) (Lemma 4.36)

≤ 4 (20/εOPT∗ + 16OPT∗) (Corollary 4.4)

= 80/εOPT∗ +64OPT∗ .

Nowwe have all the ingredients to bound the cost of our solution and to proveTheorem 4.2.

Proof of Theorem 4.2. From Lemma 4.33, we know that the cost of solution (x̂, ŷ) is bounded
from above by 20/εOPT∗+ 16OPT∗. This corresponds also to the cost of sending the demand

from the clients to the facilities supporting in ŷ. Using Lemmas 4.35 and 4.37, we bound the

cost of rerouting the demand to the facilities open in ȳ by

2(80/εOPT∗+64OPT∗) .

Summing this up, we obtain

180/εOPT∗ + 144OPT∗

as an upper bound for the cost of our solution (x̄, ȳ) with capacity violation 3 + 3ε.

4.5 Concluding Remarks and Open Questions

In this chapter, we gave the first approximation algorithms for hard-capacitated k-Facility
Location problems, where we considered either non-uniform capacities or non-uniform

opening costs. Both algorithms are based on the standard LP relaxation, a reduction to

single-demand-node instances, and a tree structure to guide the distribution of demand.

Our results imply two insights on the integrality gap of the standard LP: For uniform

capacities, the 2 barrier on capacity violation is tight up to an arbitrarily small constant. For

non-uniform capacities, the barrier is located between 2 and 3; it would be interesting to

pinpoint it tighter.

It also remains open to construct an algorithm for the generalization of the two settings

above, that is, for hard-capacitated k-Facility Location where both, the capacities and

openings, are non-uniform. For such an algorithm, it would be appealing to base it on a new

LP relaxation like the one introduced by Li [Li16].

89

Chapter 4 Approximating Hard-Capacitated k-Facility Location Problems

Finally, the big open question is whether capacitated k-Median admits a constant-factor

approximation algorithm without any violations.

90

Part II

Problems on the Plane

5 Stabbing Rectangles
by Line Segments

Consider the following natural problem: Given a set of axis-aligned rectangles in the plane,
find a set of horizontal line segments of minimum total length so that every rectangle is stabbed
by some line segment. Here, a line segment stabs a rectangle if it intersects its left and its right

edge. In this chapter, we initiate the study of this geometric optimization problem, which we

call Stabbing.

We interpret Stabbing as a weighted geometric set cover problem and examine structural

relations to existing geometric set cover problems. We show that our problem is strongly

NP-hard. A constrained variant of Stabbing turns out to be APX-hard. These negative

results suggest investigating the approximability of Stabbing, and in particular, its shallow-
cell complexity. Chan et al. [SODA’12] showed that weighted geometric set cover instances of

low shallow-cell complexity admit constant-factor approximation algorithms. However, as we

observe, the shallow-cell complexity of Stabbing instances can be high. We still achieve a

constant-factor approximation by decomposing general instances into what we call laminar
instances that have low enough complexity.

5.1 Introduction

In this chapter, we study the following geometric optimization problem, which we call Stab-

bing. The input is a set R of n axis-aligned rectangles in the plane. The objective is to find a

set S of horizontal line segments of minimum total length ∥S∥, where ∥S∥ = ∑s∈S ∥s∥, such
that each rectangle r ∈ R is stabbed by some line segment s ∈ S. Here, we say that s stabs r if s
intersects the left and the right edge of r (see Fig. 5.1). The length of a line segment s is denoted
by ∥s∥. Throughout this chapter, rectangles are assumed to be axis-aligned and segments are

horizontal line segments (unless explicitly stated otherwise).

f

t

Figure 5.1: An instance of Stabbing (rectangles) with an optimal solution (gray line segments).

Chapter 5 Stabbing Rectangles by Line Segments

Our problem can be viewed as a resource allocation problem. Consider a server that

receives a number of communication requests. Each request r is specified by a time win-

dow [t1 , t2] and a frequency band [f1 , f2]. In order to satisfy the request r, the server has to
open a communication channel that is available in the time interval [t1 , t2] and operates at a

fixed frequency within the frequency band [f1 , f2]. Therefore, the server has to open several

channels over time so that each request can be fulfilled. Requests may share the same channel

if their frequency bands and time windows overlap. Each open channel incurs a fixed cost

per time unit and the goal is to minimize the total cost. Consider a t– f coordinate system. A

request r can be identified with a rectangle [t1 , t2] × [f1 , f2]. An open channel corresponds

to horizontal line segments and the operation cost equals its length. Satisfying a request is

equivalent to stabbing the corresponding rectangle.

To the best of our knowledge, general Stabbing has not been studied, although it is a

natural problem. Finke et al. [FJQS08] consider the special case of the problem where the

left sides of all input rectangles lie on the y-axis. They derive the problem from a practical

application in the area of batch processing and give a polynomial time algorithm that solves

this special case of Stabbing to optimality. Das et al. [DFK+18] describe an application of

Stabbing in geometric network design. They obtain a constant-factor approximation for a

slight generalization of the special case of Finke et al. in which rectangles are only constrained

to intersect the y-axis. This result constitutes the key step for an O(log n)-approximation

algorithm to the Generalized MinimumManhattan Network problem.

We also consider the following variant of our problem, which we call Constrained

Stabbing. Here, the input additionally consists of a set F of horizontal line segments of which

any solution S must be a subset.

Related Work. Stabbing can be interpreted as a weighted geometric set cover problem

where the rectangles play the role of the elements, the potential line segments correspond to

the sets and a segment s “contains” a rectangle r if s stabs r. The weight of a segment s equals
its length ∥s∥. Set Cover is one of the classical NP-hard problems. The greedy algorithm

yields a ln n-approximation (where n is the number of elements) and this is known to be

the best possible approximation ratio for the problem unless P = NP [Fei98, DS14]. It is

an important research direction of computational geometry to surpass the lower bound

known for general Set Cover in geometric settings. In their seminal work, Brönniman

and Goodrich [BG95] gave an O(logOPT)-approximation algorithm for unweighted Set

Cover, where OPT is the size of an optimum solution, for the case when the underlying

VC-dimension1 is constant. This property holds in many geometric settings. Numerous

subsequent works have improved upon this result in specific geometric settings. For example,

Aronov et al. [AES10] obtained anO(log logOPT)-approximation algorithm for the problem

of piercing a set of axis-aligned rectangles with the minimum number of points (Hitting Set

for axis-aligned rectangles) by means of so-called ε-nets. Mustafa and Ray [MR10] obtained a

PTAS for the case of piercing pseudo-disks by points. A limitation of these algorithms is that

they only apply to unweighted geometric Set Cover; hence, we cannot apply them directly

to our problem. In a break-through, Varadarajan [Var10] developed a new technique, called

1 Informally, the VC-dimension of a set cover instance (U ,F) is the size of a largest subset X ⊆ U such that X
induces inF the set cover instance (X , 2X).

94

Introduction Section 5.1

quasi-uniform sampling, that gives sub-logarithmic approximation algorithms for a number

of weighted geometric set cover problems (such as covering points with weighted fat triangles

or weighted disks). Subsequently, Chan et al. [CGKS12] generalized Varadarajan’s idea. They

showed that quasi-uniform sampling yields a sub-logarithmic performance if the underlying

instances have low shallow-cell complexity. Bansal and Pruhs [BP14] presented an interesting

application of Varadarajan’s technique. They reduced a large class of scheduling problems to a

particular geometric set cover problem for anchored rectangles and obtained a constant-factor

approximation via quasi-uniform sampling. Recently, Chan and Grant [CG14] and Mustafa

et al. [MRR15] settled the APX-hardness status of all natural weighted geometric Set Cover

problems where the elements to be covered are points in the plane or space.

Gaur et al. [GIK02] considered the problem of stabbing a set of axis-aligned rectangles by a

minimum number of axis-aligned lines. They obtain an elegant 2-approximation algorithm for

thisNP-hard problemby rounding the standard LP-relaxation. Kovaleva and Spieksma [KS06]

considered a generalization of this problem involving weights and demands. They obtained a

constant-factor approximation for the problem. Even et al. [ELR+08] considered a capacitated
variant of the problem in arbitrary dimension. They obtained approximation ratios that

depend linearly on the dimension and extended these results to approximate certain lot-

sizing inventory problems. Giannopoulos et al. [GKRW13] investigated the fixed-parameter

tractability of the problem where given translated copies of an object are to be stabbed by a

minimum number of lines (which is also the parameter). Among others, they showed that

the problem isW[1]-hard for unit-squares but becomes FPT if the squares are disjoint.

Our Contribution. We are the first to investigate Stabbing in this general form: horizontal

line segments stabbing axis-aligned rectangles without further restrictions. We examine the

complexity and the approximability of this problem.

We rule out the possibility of efficient exact algorithms by showing that Stabbing is

NP-hard; see Section 5.5. Constrained Stabbing and Cardinality Stabbing turn out to

be even APX-hard; see Section 5.6. Another negative result is that Stabbing instances can

have high shallow-cell complexity so that a direct application of the quasi-uniform sampling

method yields only the same logarithmic bound as for arbitrary set cover instances; see

Section 5.3.2.

Ourmain result is a constant-factor approximation algorithm for Stabbing; see Section 5.3.

Our algorithm is based on the following three ideas. First, we show a simple decomposition

lemma that implies a constant-factor approximation for (general) set cover instances whose

set family can be decomposed into two disjoint sub-families each of which admits a constant-

factor approximation. Second, we show that Stabbing instances whose segments have a

special laminar structure have low enough shallow-cell complexity so that they admit a

constant-factor approximation by quasi-uniform sampling. Third, we show that an arbitrary

instance can be transformed in such a way that it can be decomposed into two disjoint

laminar families. Together with the decomposition lemma, this transformation establishes

the constant-factor approximation.

Another (this time more obvious) application of the decomposition lemma gives also a

constant-factor approximation for the variant of Stabbing where we allow horizontal and

vertical stabbing segments. Also in this case, a direct application of quasi-uniform sampling

gives only a logarithmic bound as there are laminar families of horizontal and vertical segments

95

Chapter 5 Stabbing Rectangles by Line Segments

that have high shallow-cell complexity. This and two further applications of the decomposition

lemma are sketched in Section 5.4.

The above results provide two natural examples for the fact that the property of having

low shallow-cell complexity is not closed under the union of the set families. In spite of this,

constant-factor approximations are still possible. Our results also show that the representation

as a union of low-complexity families may not be obvious at first glance. We therefore hope

that our approach helps to extend the reach of quasi-uniform sampling beyond the concept of

low shallow-cell complexity also in other settings. Our results for Stabbing may also lead

to new insights for other related geometric problems such as the Generalized Minimum

Manhattan Network problem [DFK+18].

As a side remark, we explore the relationship of Stabbing to well-studied geometric

set cover (or equivalently hitting set) problems; see Section 5.2. We show that Stabbing

can be seen as (weighted) Hitting Set for axis-aligned boxes in three dimensions. This

immediately implies anO(log log n)-approximation algorithm for Cardinality Stabbing,

the unweighted variant. The embedding does not yield a sub-logarithmic performance for

Stabbing, however. A similar embedding is not possible in two dimensions: There are

set cover instances that can be realized as instances of our problem but not as instances of

Hitting Set for axis-aligned rectangles. We also show that natural greedy approaches for

Stabbing fail to beat the logarithmic bound.

5.2 Structural Properties and Applicability of Existing
Techniques

Since our problem is—at least in its general form in the setting of line segments—new, we

investigate the applicability of existing techniques for (geometric) Set Cover. We provide

instances of Stabbing where the greedy algorithm (and natural variants of it) have perfor-

mance Ω(log n); see Section 5.2.1. Then we explore the structural relation of Stabbing to

existing geometric set cover (or, equivalently, hitting set) problems; see Section 5.2.2.

5.2.1 Greedy Algorithm for Set Cover

The greedy algorithm has approximation ratio ln n for Set Cover on n elements. It is known

that this result is the best possible unless P = NP [Fei98].

The greedy algorithm—translated to Stabbing—works as follows. Start with an empty

set S of segments. Pick a segment s that minimizes the cost efficiency ∥s∥ /ns where ns is

the number of rectangles that are stabbed by s. Add s to S and remove the rectangles that

are stabbed by s from R. Repeat these steps until R becomes empty. Eventually, output the

resulting set S. This algorithm certainly has approximation ratioO(log n) for Stabbing.
While the boundO(log n) is tight for general Set Cover, this fact does not immediately

imply tightness for Stabbing as well. Unfortunately, there are instances of Stabbing where

the greedy algorithm (and natural variants of it) have ratio Ω(log n).
Consider the instance shown in Fig. 5.2. We introduce two segments t and b of length 1.

Then we construct a set B of nested rectangles that are all stabbed by b. The set B is subdivided

into levels 0, 1, . . . , ℓ according to the nesting hierarchy (see the figure). At level i, there

96

Structural Properties and Applicability of Existing Techniques Section 5.2

t

b

Figure 5.2: Instance where the greedy algorithm has performance Ω(log n). The black segments belong to the
optimum solution and the gray segments belong to the output of the greedy algorithm. To make the drawing
easier to read, we moved the rectangles of T (those stabbed by t) slightly to the right and to the bottom. In our
instance, the bottom edges of the rectangles in T coincide with the top edges of their counterparts in B (which
are stabbed by b), and there are no two top edges with the same vertical projection.

are 2i pairwise disjoint rectangles of width (1 − iε)/2i for a sufficiently small positive ε. We

slightly perturb the top edges of the rectangles in B so that the top edges of the rectangles

in B have pairwise different y-coordinates. Next, we construct a set T of rectangles. For each

rectangle r ∈ B we create a corresponding rectangle r′ in T of the same width such that the

bottom edge of r′ coincides with the top edge of r and r′ is stabbed by t.
We now analyze how the greedy algorithm performs on this instance. First, we verify

that the first segment s picked by the algorithm contains the top edge of some rectangle r ∈ B
and has endpoints that lie on the left and right edge of some rectangle r′ ∈ B. If s were not
containing the top edge of any rectangle in B, then we could vertically move it until it contains

such a top edge and simultaneously stabs one rectangle more than before; a contradiction

to the greedy choice. On the other hand, if the endpoints of s were not lying on a left and

right edge of the same rectangle, then, by our construction, there would be a small positive

interval on s which is not contained in the rectangles stabbed by s. We could cut the interval

out of s and obtain one or two new line segments, where at least one of them has a better cost

efficiency than s; a contradiction.
Now, consider a segment s that is lying on the top edge of some rectangle r ∈ B and is

containing the vertical boundaries of some rectangle r′ ∈ B. Let i ∈ {0, . . . , ℓ} be the level
of r′. Observe that s has length (1 − iε)/2i and stabs ∑ℓ−i

j=0 2
j + 1 = 2ℓ−i+1 many rectangles.

(Note that s also stabs the rectangle corresponding to r in T .) Therefore, s has cost effi-

ciency (1 − iε)/2ℓ+1, which is minimized for the biggest-possible value of i. From this we can

conclude that the algorithms picks s such that r′ belongs to the highest level i, which implies

that r′ and r coincide. Thus, s is the top edge of some rectangle in B with the highest level i.
In subsequent iterations, the algorithm continues selecting the top edge of a rectangle in B
that has the highest level among the remaining rectangles. Overall the algorithm produces

a solution that consists of all top edges of rectangles in B which has cost Ω(log n) since the
highest level ℓ is in Ω(log n). The solution {t, b}, however, has only cost 2, which completes

our claim.

The example above suggests the following natural variation of the greedy algorithm. In

each step, pick the segment that minimizes the ratio of its length to the total width of the

97

Chapter 5 Stabbing Rectangles by Line Segments

(previously unstabbed) rectangles it stabs. We can easily modify the instance so that also

this algorithms performs bad. In the first step, we remove all rectangles of odd levels and

do not change the level enumeration. Thus, all levels are now even. In the second step, we

create copies of each rectangle so that a rectangle at level i has multiplicity ⌈2i/(1 − iε)⌉. This

multiplicity will ensure that the total weight of equivalent rectangles is roughly 1 and not

smaller than 1. Note that the number of levels is still in Ω(log n) although we increased the

number n of rectangles.

To this end, we show that the modified greedy algorithm picks again all top edges of the

rectangles in B, always greedily picking one from the currently highest level. Suppose this

were not the case and consider the first segment s not picked in this manner. By the same

discussion as in the unweighted case, the segment s lies on a top edge of a rectangle r ∈ B and

is touching the horizontal boundaries of a rectangle r′ ∈ B. Let i be the level of r′. By our
assumption, i is not the highest level, hence, the highest level is at least i + 2 (as all levels are
even). Thus, we can find a segment s′ that lies on a top edge of some rectangle r′′ ∈ B and, at

the same time, touches the horizontal boundaries of some rectangle of level i + 2.
Let w be the total width of the rectangles stabbed by s′ excluding the rectangles of T

corresponding to r′′. Note that the total width of those excluded rectangles is at least 1. Hence,

the cost efficiency of s′ is at most

1 − (i + 2)ε
2i+2(w + 1) .

Next, consider s. The total width of r′ and its copies is at most

⌈ 2i

1 − iε⌉ ⋅
1 − iε
2i

< 1 + 1 − iε
2i

.

The same bound holds for the total width of the rectangles of T corresponding to r as the level
of r is not smaller than i. Thus, the total width of the rectangles stabbed by s is at most

4w + 2(1 + 1 − iε
2i
) < 4w + 4 .

Hence, the cost efficiency of s′ is greater than

1 − iε
2i (4w + 4) =

1 − iε
2i+2 (w + 1)

and thus bigger than the cost efficiency of s′; a contradiction to the greedy choice.

Note that none of the segments returned by the algorithm is redundant so that a post-

processing that removes unnecessary segment parts does not help.

5.2.2 Relation to Piercing

In this section, we consider how our stabbing problems relate to the well-studied hitting set

problem for axis-aligned rectangles (or boxes in higher dimensions), which we call Piercing.

In this problem, we are given a set R of axis-aligned rectangles (or boxes) and a set P of points.

We want to hit all rectangles using a minimum number of points from P. We also consider

98

Structural Properties and Applicability of Existing Techniques Section 5.2

the weighted version where each point has a positive weight and we want to minimize the

total weight of the points selected. Similarly to Stabbing, also this problem can be expressed

naturally in terms of Set Cover: The rectangles are the elements to be covered, and the

piercing points are the sets. This correspondence allows us to compare stabbing and piercing

by asking whether a given set cover instance has a realization as either of them. We will

show that every stabbing instance corresponds directly in this way to a piercing instance in

dimension three. Just in dimension two, however, not every stabbing instance can be realized

as a piercing instance. This shows that Stabbing is structurally different from two-dimensional

Piercing.

Theorem 5.1. Any set cover instance (U ,F) arising from Stabbing can be realized as an
instance of weighted Piercing in dimension 3.

Proof. Starting with a (2-dimensional) stabbing instance, we will translate it to a 3-dimen-

sional piercing instance: Every rectangle becomes an axis-aligned box and every stabbing

line segment becomes a piercing point. Note that a stabbing line segment is defined by an

interval [x1 , x2] and a height y. We lift it to the 3-dimensional point (x1 , x2 , y) and assign it

the weight x2 − x1. Consider a rectangle [xmin , xmax] × [ymin , ymax]. The line segment stabs

this rectangle if and only if

x1 ≤ xmin , xmax ≤ x2 , and y ∈ [ymin , ymax] . (5.1)

These inequalities describe an axis-aligned box that is unbounded on one side of x1 on the

first coordinate axis and on one side of x2 on the second coordinate axis. We can observe that

an optimal solution does not need to use any line segments with endpoints to the left of all

rectangles or to the right of all rectangles. This fact limits the relevant values of x1 and x2 and
we can bound the box on all sides.

Aronov et al. [AES10] describe anO(log logOPT)-approximation algorithm for unweight-

ed Piercing in dimension 3, where OPT is the size of an optimum solution. This algorithm

immediately gives us the same bound for Cardinality Stabbing. Their result does not carry

over to weighted Piercing, so we cannot use it to solve Stabbing.

Corollary 5.1. There is anO(log logOPT)-approximation algorithm for Cardinality Stab-
bing, where OPT is the size of an optimum solution.

Now, we show that such a correspondence does not exist in dimension 2: There exist

stabbing instances that have no corresponding piercing instance. A set S ∈ F in a set cover

instance (U ,F) is called universal if S = U . Note that the universal set (if there exists any) is

not necessarily an optimum solution since we are dealing with weighted Set Cover.

Lemma 5.1. Let (U ,F) be a Set Cover instance on n elements that arises from a Piercing
instance and contains the universal set. For any k,F containsO(n) distinct sets of cardinality k.

Proof. Consider the faces of the arrangement on the plane induced by the set R of n rectangles

of the Piercing instance. Any points in the same face pierce exactly the same set of rectangles

and are therefore the same set in terms of F . Call the number of rectangles pierced by points

in a face the depth of the face. Since it is given that C contains the universal set, there must be

99

Chapter 5 Stabbing Rectangles by Line Segments

(a) APiercing instancewith a uni-
versal point.

0

1

0 0 0 00

0 0 00

1 1
1

1
2

222 3

2
1

1

1

(b) Slabs with depth values. (c) A Stabbing instance with many lines
of equal cardinality.

Figure 5.3: Some structural properties of Piercing and Stabbing.

a face of depth n. This face contains a point pu ∈ P and this point pierces all rectangles. See

Fig. 5.3a for an example, where indicates pu.
Now, we consider a vertical line at every left and right edge of a rectangle. These lines cut

the plane intoO(n) vertical slabs and within each slab, all faces are rectangles (see Fig. 5.3b).

In each slab, the topmost face has depth zero. Traversing downward until the height of pu,
every next face increases the depth by at least one. Traversing further downward decreases the
depth by at least one for each face. Hence, for any k, there are at most two faces with depth k
in a slab. The number of faces of a certain depth bounds the number of distinct sets of that

size, and the claimed bound follows.

Lemma 5.2. For every odd n, there exist Set Cover instances on n elements arising from
Stabbing instances that contain the universal set and Ω(n2) distinct sets of equal cardinality.

Proof. Let ℓ be arbitrarily large and even. For each i ∈ {−ℓ, .., ℓ}, we introduce a rectangle r i .
Thus, we have n = 2ℓ + 1 rectangles, and we will place them in a double staircase as follows;

see Fig. 5.3c. All rectangles have width 1 and touch the x-axis with their bottom edges. For

each i ∈ {−ℓ, .., ℓ}, the left edge of rectangle r i has x-coordinate i and height ∣i∣ + 1. Call the
rectangles with negative index left and the ones with positive index right. A stabbing line is

said to have level i if its y-coordinate is in (i , i + 1). At level 0, we add a stabbing line that

stabs every rectangle.

Let k = ℓ/2. Now, we construct k stabbing lines on each of the levels 1 through k + 1, each
stabbing k + 1 rectangles. Consider level i. For every j with 1 ≤ j ≤ k, the stabbing line s i , j
stabs jmany left rectangles and k + 1 − jmany right rectangles. This construction is uniquely

defined, enough rectangles exist on these levels, and all of these line segments stab distinct

sets of k + 1 rectangles. Thus, the lemma holds: by construction, we have a universal set,

and k ⋅ (k + 1) = Ω(n2).

Theorem 5.2. There exist Set Cover instances that are realizable as 2-dimensional Stabbing
but not as 2-dimensional Piercing.

Proof. Consider an arbitrarily large Set Cover instance on n elements from Lemma 5.2.

It is realizable as a Stabbing instance, has the universal set, and contains Ω(n2) distinct

100

A Constant-Factor Approximation Algorithm for Stabbing Section 5.3

sets of equal size. If it is large enough, then, by Lemma 5.1, it does not have a realization as

Piercing.

5.3 A Constant-Factor Approximation Algorithm for
Stabbing

In this section, we present a constant-factor approximation algorithm for Stabbing. First,

we model Stabbing as a set cover problem, and we revisit the standard linear programming

relaxation for set cover and the concept of shallow-cell complexity; see Sections 5.3.1 and 5.3.2.

Then, we observe that there are Stabbing instances with high shallow-cell complexity. This

limiting fact prevents us from obtaining any constant approximation factor if applying the

generalization of Chan et al. [CGKS12] in a direct way; see Section 5.3.2. In order to bypass

this limitation, we decompose any Stabbing instance into two disjoint families of low shallow-

cell complexity. Before describing the decomposition in Section 5.3.5, we show how to

merge solutions to these two disjoint families in an approximation-factor preserving way; see

Section 5.3.3. Then, in Section 5.3.4, we observe that these families have sufficiently small

shallow-cell complexity to admit a constant-factor approximation.

5.3.1 Set Cover and Linear Programming

An instance (U ,F , c) of weighted Set Cover is given by a finite universe U of n elements, a

family F of subsets of U that covers U , and a cost function c∶ F → Q+. The objective is to

find a sub-family S of F that also covers U and minimizes the total cost c(S) = ∑S∈S c(S).
An instance (R, F) of Constrained Stabbing, given by a set R of rectangles and a set F

of line segments, can be seen as a special case of weighted Set Cover where the rectangles

in R are the universe U , the line segments in F form the sets in F , and a line segment s ∈ F
“covers” a rectangle r if and only if s stabs r. Unconstrained Stabbing can be modeled by Set

Cover as follows. We can, without loss of generality, consider only feasible solutions where

the end points of any line segment lie on the left or right boundaries of rectangles and where

each line segment touches the top boundary of some rectangle. Thus, we can restrict ourselves

to feasible solutions that are subsets of a set F ofO(n3) candidate line segments. This shows

that Stabbing is a special case of Constrained Stabbing and, hence, of Set Cover.

The standard LP relaxation LP(U ,F , c) for a Set Cover instance (U ,F , c) is as follows:

Minimize ∑
S∈F

c(S)zS

subject to ∑
S∈F ,S∋e

zS ≥ 1 for all e ∈ U ,

zS ≥ 0 for all S ∈ F .

The optimum solution to this LP provides a lower bound on OPT. An algorithm is called

LP-relative α-approximation algorithm for a class Π of set cover instances if it rounds any

feasible solution z = (zS)S∈F to the above standard LP relaxation for some instance (U ,S , c)
in this class to a feasible integral solution S ⊆ F of cost c(S) ≤ α∑S∈F c(S)zs .

101

Chapter 5 Stabbing Rectangles by Line Segments

⋮

⋮

p1

p2

pm

p i

. . .r i j

p j

(a) for Stabbing

p1

p2

pm

r i j

p j

p i

. . .

⋮ . . .

(b) for Horizontal–Vertical Stabbing

Figure 5.4: Instances with high shallow-cell complexity.

5.3.2 Shallow-Cell Complexity

We define the shallow-cell complexity for classes that consist of instances of weighted Set

Cover. Informally, the shallow-cell complexity is a bound on the number of equivalent classes

of elements that are contained in a small number of sets. Here is the formal definition.

Definition 5.1 (Chan et al. [CGKS12]). Let f (m, k) be a function non-decreasing inm and k.
An instance (U ,F , c) of weighted Set Cover has shallow-cell complexity f if the following
holds for every k and m with 1 ≤ k ≤ m ≤ ∣F∣, and every sub-family S ⊆ F of m sets: All

elements that are contained in at most k sets of S form at most f (m, k) equivalence classes
(called cells), where two elements are equivalent if they are contained in precisely the same

sets of S . A class of instances of weighted Set Cover has shallow-cell complexity f if all its
instances have shallow-cell complexity f .

Chan et al. proved that if a set cover problem has low shallow-cell complexity then quasi-

uniform sampling yields an LP-relative approximation algorithm with good performance.

Theorem 5.3 (Chan et al. [CGKS12]). Let φ(m) be a non-decreasing function, and let Π be
a class of instances of weighted Set Cover. If Π has shallow-cell complexity mφ(m)kO(1),
then Π admits an LP-relative approximation algorithm (based on quasi-uniform sampling) with
approximation ratioO(max{1, logφ(m)}).

Unfortunately, there are instances of Stabbing (and its constrained variants) that have

high shallow-cell complexity, so we cannot directly obtain a sub-logarithmic performance

via Theorem 5.3. These instances can be constructed as follows; see Fig. 5.4a. Let m be

an even positive integer. For i = 1, . . . ,m, define the point p i = (i , i). For each pair i , j
with 1 ≤ i ≤ m/2 < j ≤ m, let r i j be the rectangle with corners p i and p j . Now, consider the

following set S of m line segments. For i = 1, . . . ,m/2, the set S contains the segment s i
with endpoints p i and (m, i). For i = m/2 + 1, . . . ,m, the set S contains the segment s i with
endpoints (1, i) and p i . We want to count the number of rectangles that are stabbed by at most

102

A Constant-Factor Approximation Algorithm for Stabbing Section 5.3

two segments in S . Consider any i and j satisfying 1 ≤ i ≤ m/2 < j ≤ m. Observe that the rect-

angle r i j is stabbed precisely by the segments s i and s j in S . Hence, according to Definition 5.1,
our instance consists of at least m2/4 equivalence classes for k = 2. Thus, if our instance has

shallow cell-complexity f for some suitable function f , we have f (m, 2) = Ω(m2). Since f is
non-decreasing, we also have f (m, k) = Ω(m2) for k ≥ 2. Hence, Theorem 5.3 implies only

anO(log n)-approximation algorithm for Stabbing (and its constrained variants) where we

use the above-mentioned fact (see Section 5.3.1) that we can restrict ourselves to m = O(n3)
many candidate segments.

5.3.3 Decomposition Lemma for Set Cover
Our trick is to decompose general instances of Stabbing (which may have high shallow-cell

complexity) into partial instances of low complexity with a special, laminar structure. We use

the following simple decomposition lemma, which holds for arbitrary set cover instances.

Lemma 5.3. Let Π, Π1, Π2 be classes of Set Cover where Π1 and Π2 admit LP-relative α1-
and α2-approximation algorithms, respectively. The class Π admits an LP-relative (α1 + α2)-
approximation algorithm if, for every instance (U ,F , c) ∈ Π, the family F can be partitioned
intoF1 ,F2 such that, for any partition of U into U1 ,U2 where U1 is covered byF1 and U2 byF2,
the instances (U1 ,F1 , c) and (U2 ,F2 , c) are instances of Π1 and Π2, respectively.

Proof. Let z = (zS)S∈F be a feasible solution to LP(U ,F , c). LetU1 ,U2 = ∅ initially. Consider

an element e ∈ U . Because of the constraint∑S∈F ,S∋e zS ≥ 1 in the LP relaxation and because

of F = F1 ∪F2, at least one of the two cases

∑
S∈F1 ,S∋e

zS ≥ α1/(α1 + α2) and ∑
S∈F2 ,S∋e

zS ≥ α2/(α1 + α2)

occurs. If the first case holds, then we add e to U1. Otherwise, the second case holds and we

add e to U2. We execute this step for each element e ∈ U .

Now, consider the instance (U1 ,F1 , c). For each S ∈ F1, set z1S ∶= min{zS(α1 + α2)/α1 , 1}.
Since ∑S∈F1 ,S∋e zS ≥ α1/(α1 + α2) for all e ∈ U1, we have that z1 = (z1S)S∈F1

forms a feasible

solution to LP(U1 ,F1 , c). Next, we apply the LP-relative α1-approximation algorithm to this

instance to obtain a solution S1 ⊆ F1 that covers U1 and whose cost is at most

α1 ∑
S∈F1

c(S)z1S ≤ (α1 + α2) ∑
S∈F1

c(S)zS .

Analogously, we can compute a solution S2 ⊆ F2 to (U2 ,F2 , c) of cost at most

(α1 + α2) ∑
S∈F2

c(S)zS .

To complete the proof, note that S1 ∪ S2 is a feasible solution to (U ,F , c) of cost at most

(α1 + α2) ∑
S∈F1∪F2

c(S)zS .

Hence, our algorithm is an LP-relative (α1 + α2)-approximation algorithm.

103

Chapter 5 Stabbing Rectangles by Line Segments

5.3.4 x-Laminar Instances

Definition 5.2. An instance of Constrained Stabbing is called x-laminar if the projection
of the segments in this instance onto the x-axis forms a laminar family of intervals. That is,

any two of these intervals are either interior-disjoint or one is contained in the other.

We remark that for an x-laminar instance of Constrained Stabbing the corresponding

instance (U ,F , c) of Set Cover does not necessarily have a laminar set family F .

Lemma 5.4. The shallow-cell complexity of an x-laminar instance of Constrained Stabbing
can be upper bounded by f (m, k) = mk2. Hence, such instances admit a constant-factor LP-
relative approximation algorithm.

Proof. To prove the bound on the shallow-cell complexity, consider a set S of m segments.

Let 1 ≤ k ≤ m be an integer. Consider an arbitrary rectangle r that is stabbed by at most k
segments in S . Let Sr be the set of these segments. Consider a shortest segment s ∈ Sr . By
laminarity, the projection of any segment inSr onto the x-axis contains the projection of s onto
the x-axis. LetCs = (s1 , . . . , sℓ) be the sequence of all segments inS whose projection contains
the projection of s, ordered from top to bottom. The crucial point is that the set Sr forms a

contiguous sub-sequence s i , . . . , s i+∣Sr ∣−1 of Cs that contains s = s j for some i ≤ j ≤ i + ∣Sr ∣ − 1.
Hence, Sr is uniquely determined by the choice of s ∈ S (for which there are m possibilities),

the choice of s i with i ∈ { j − k, . . . , j} within the sequence Cs (for which there are at most k
possibilities), and the cardinality of Sr (for which there are at most k possibilities). This fact

implies that Sr is one of mk2 many sets that define a cell. This observation completes our

proof since r was picked arbitrarily.

5.3.5 Decomposing General Instances into Laminar Instances

Lemma 5.5. Given an instance I of (unconstrained) Stabbing with rectangle set R, we can
compute an instance I′ = (R, F) of Constrained Stabbing with the following properties. The
set F of segments in I′ has cardinalityO(n3), it can be decomposed into two disjoint x-laminar
sets F1 and F2, and OPTI′ ≤ 6 ⋅OPTI .

Proof. Let F′ be the set of O(n3) candidate segments as defined in Sec. 5.3.1: For every

segment s of F′, the left endpoint of s lies on the left boundary of some rectangle, the right

endpoint of s lies on the right boundary of some rectangle, and s contains the top boundary

of some rectangle. Recall that F′ contains the optimum solution.

Below, we stretch each of the segments in F′ by a factor of at most 6 to arrive at a set F
of segments having the claimed properties. By scaling the instance we may assume that the

longest segment in F′ has length 1/3.
For any i , j ∈ Z with i ≥ 0, let I i j be the interval [j/2i , (j + 1)/2i]. Let I1 be the family

of all such intervals I i j . We say that I i j has level i. Note that I1 is an x-laminar family of

intervals (segments). Let I2 be the family of intervals that arises if each interval in I1 is
shifted to the right by the amount of 1/3. That is, I2 is the family of all intervals of the

form I i j + 1/3 ∶= [j/2i + 1/3, (j + 1)/2i + 1/3] (for any i , j ∈ Z with i ≥ 0). Clearly, I2 is x-
laminar, too.

104

Further Applications of the Decomposition Lemma Section 5.4

We claim that any arbitrary interval J = [a, b] of length at most 1/3 is contained in an

interval I that is at most 6 times longer than J and that is contained in I1 or in I2. The claim

completes the proof of the lemma since then any segment in F′ can be stretched by a factor of

at most 6 so that its projection on the x-axis lies in I1 (giving rise to the segment set F1) or
in I2 (giving rise to the segment set F2). Setting F = F1 ∪ F2 completes the construction of

the instance I′ = (R, F).
To show the claim above, let s be the largest non-negative integer with b − a ≤ 1/(3 ⋅ 2s). If J

is contained in the interval Is j for some integer j, then we are done because of b − a > 1/(6 ⋅ 2s)
by the choice of s. If J is not contained in any interval Is j , then there exists some integer j such
that j/2s ∈ J = [a, b] and thus a ∈ Is , j−1. Since b − a ≤ 1/(3 ⋅ 2s), we have that J is completely

contained in the interval I′ ∶= Is , j−1 + 1/(3 ⋅ 2s) and in the interval I′′ ∶= Is , j − 1/(3 ⋅ 2s).
We complete the proof by showing that one of the intervals I′ , I′′ is actually contained

in I2. To this end, note that 1/3 = ∑∞ℓ=1(−1)ℓ−1/2ℓ. Hence, if s is even, the interval I′ − 1/3 lies
in I1, and if s is odd, the interval I′′ − 1/3 lies in I1.

Applying the decomposition lemma to Lemmas 5.4 and 5.5 yields our main result. We

do not give an explicit approximation factor due to our reliance on the result by Chan et

al. [CGKS12]. We also cannot apply a decomposition technique similar to Constrained

Stabbing since Lemma 5.5 requires a free choice of the set F of stabbing line segments.

Theorem 5.4. Stabbing admits a constant-factor LP-relative approximation algorithm.

Complementing Lemmas 5.4 and 5.5, Fig. 5.4a shows that the union of two x-laminar

families of segments may have shallow-cell complexity with quadratic dependence on m.

Hence, the property of having low shallow-cell complexity is not closed under taking unions.

5.4 Further Applications of the Decomposition Lemma

Here we show that our decomposition technique can be applied in other settings, too.

Horizontal–Vertical Stabbing. In this new variant of Stabbing, a rectangle may be

stabbed by a horizontal or by a vertical line segment (or by both). Using the results of

Section 5.3.5 and the decomposition lemma where we decompose into horizontal and vertical

segments, we immediately obtain the following result.

Corollary 5.2. Horizontal–Vertical Stabbing admits an LP-relative constant-factor ap-
proximation algorithm.

Figure 5.4b shows that a laminar family of horizontal segments and vertical segments

may have a shallow-cell complexity with quadratic dependence on m. Thus, Corollary 5.2

is another natural example where low shallow-cell complexity is not closed under union

and where the decomposition lemma gives a constant-factor approximation although the

shallow-cell complexity is high.

105

Chapter 5 Stabbing Rectangles by Line Segments

a

c

b

(a) a Planar Vertex Cover instance

a c

b

(b) a visibility representation

a c
b

(c) no coinciding edges

Figure 5.5: Obtaining a visibility representation from a Planar Vertex Cover instance.

Stabbing 3D-Boxes by Squares. In the 3D-variant of Stabbing, we want to stab 3D-

boxes with axis-aligned squares, minimizing the sum of the areas or the sum of the perimeters

of the squares. Here, “stabbing” means “completely cutting across”. By combining the same

idea with shifted quadtrees—the 2D-equivalent of laminar families of intervals—we obtain a

constant-factor approximation for this problem. It is an interesting question if our approach

can be extended to handle also arbitrary rectangles but this seems to require further ideas.

Covering Points by Anchored Squares. Given a set P of points that need to be covered

and a set A of anchor points, we want to find a set of axis-aligned squares such that each

square contains at least one anchor point, the union of the squares covers P, and the total

area or the total perimeter of the squares is minimized. Again, with the help of shifted

quadtrees, we can apply the decomposition lemma. In this case, we do not even need to apply

the machinery of quasi-uniform sampling; instead, we can use dynamic programming on

the decomposed instances. This approach yields a deterministic algorithm with a concrete

constant approximation ratio (4 ⋅ 62, without polishing).

5.5 NP-Hardness of Stabbing
To show that Stabbing is NP-hard, we reduce from Planar Vertex Cover: Given a planar

graph G and an integer k, decide whether G has a vertex cover of size at most k. This problem

is NP-hard [GJS74].

Theorem 5.5. Stabbing is NP-hard, even for interior-disjoint rectangles.

Let G = (V , E) be a planar graph with n vertices, and let k be a positive integer. Our

reduction will map G to a set R of rectangles and k to another integer k⋆ such that (G , k) is a
yes-instance of Planar Vertex Cover if and only if (R, k⋆) is a yes-instance of Stabbing.
Consider a visibility representation ofG, which represents the vertices ofG by non-overlapping

vertical line segments (called vertex segments), and each edge ofG by a horizontal line segment

(called edge segment) that touches the vertex segments of its endpoints; see Figs. 5.5a and 5.5b.

Any planar graph admits a visibility representation on a grid of size O(n) ×O(n), which
can be found in polynomial time [LLS04]. We compute such a visibility representation for G.
Then we stretch the vertex segments and vertically shift the edge segments so that no two

edge segments coincide (on a vertex segment); see Fig. 5.5c. The height of the visibility

representation remains linear in n.
In the next step, we create a Stabbing instance based on this visibility representation,

using the edge segments and vertex segments as indication for where to put our rectangles.

106

NP-Hardness of Stabbing Section 5.5

²

¬
rtop

rbot

¬

1

2

n + 3±

(a) all rectangles of Rv are intersected by
the (dashed) vertex segment of v

(b) Rv stabbed by Svact (c) Rv stabbed by Sv
ina

Figure 5.6: The vertex gadget Rv of vertex v.

All rectangles will be interior-disjoint, have positive area and lie on an integer grid that we

obtain by scaling the visibility representation by a sufficiently large factor (linear in n). A
vertex segment will intersectO(n) rectangles (lying above each other since they are disjoint),

and each rectangle will have widthO(n). The precise number of rectangles and their sizes

will depend on the constraints formulated below. Our construction will be polynomial in n.
For each edge e in G, we introduce an edge gadget re , which is a rectangle that we place

such that it is stabbed by the edge segment of e in the visibility representation.

For each vertex v in G, we introduce a vertex gadget Rv as shown in Fig. 5.6a. It consists of

an odd number of rectangles that are (vertically) stabbed by the vertex segment of v in the

visibility representation. Any two neighboring rectangles share a horizontal line segment. Its

length is exactly n + 3 if neither of the rectangles is the top-most rectangle rtop or the bottom-

most rectangle rbot. Otherwise, the intersection length equals the width of the respective

rectangle rtop or rbot. We set the widths of rtop and rbot to 1 and 2, respectively. A vertex

gadget Rv is called incident to an edge gadget re if v is incident to e.
Before we describe the gadgets and their relation to each other in more detail, we construct,

in two steps, a set Sv of line segments for each vertex gadget Rv . First, let Sv be the set of line
segments that correspond to the top and bottom edges of the rectangles in Rv . Second, replace

each pair of overlapping line segments in Sv by its union. Then number the line segments in Sv
from top to bottom starting with 1. Let Svina be the set of the odd-numbered line segments, and

let Svact be the set of the even-numbered ones; see Figs. 5.6b and 5.6c. By construction, Svact
and Svina are feasible stabbings for Rv . Furthermore, ∣Svina∣ = ∣Svact∣ as ∣Rv ∣ is odd and, hence, ∣Sv ∣
is even. Given the difference in the widths of rtop and rbot, we have that ∥Svact∥ = ∥Svina∥ + 1.
Note that this equation holds regardless of the widths of the rectangles in Rv ∖ {rtop , rbot}.

The rectangles of all gadgets together form a Stabbing instance R. They meet two further

constraints: First, no two rectangles of different vertex gadgets intersect. We can achieve this

by scaling the visibility representation by an appropriate factor linear in n. Second, each edge

gadget re intersects exactly two rectangles, one of its incident left vertex gadgets, Rv , and one

of its incident right vertex gadgets, Ru . The top edge of re touches a segment of Svact and the

bottom edge of re touches a segment of Suact. The length of each of the two intersections is

exactly n + 3; see Fig. 5.7. Thus, we have ∣Rv ∣ = O(deg(v)) = O(n).

107

Chapter 5 Stabbing Rectangles by Line Segments

°
n + 3

Figure 5.7: The Stabbing instance that encodes the Planar Vertex Cover instance of Fig. 5.5; edge gadgets are
shaded gray.

Let S be a feasible solution to the instance R. We call a vertex gadget Rv active in S
if {s ∩⋃Rv ∣ s ∈ S} = Svact, and inactive in S if {s ∩⋃Rv ∣ s ∈ S} = Svina. We will see that in

any optimum solution each vertex gadget is either active or inactive. Furthermore, we will

establish a direct correspondence between the Planar Vertex Cover instance G and the

Stabbing instance R: Every optimum solution to R covers each edge gadget by an active

vertex gadget while minimizing the number of active vertex gadgets.

Let OPTG denote the size of a minimum vertex cover for G, let OPTR denote the length

of an optimum solution to R, let width(r) denote the width of a rectangle r, and finally

let c = ∑e∈E (width(re) − n − 3) +∑v∈V ∥Svina∥. To showNP-hardness of Stabbing, we prove
that OPTG ≤ k if and only if OPTR ≤ c + k. We show the two directions separately.

Lemma 5.6. OPTG ≤ k implies OPTR ≤ c + k.

Proof. Given a vertex cover of size k′ ≤ k, we set all vertex gadgets that correspond to vertices
in the vertex cover to active and all the other ones to inactive. Then for each edge gadget re ,
at least one incident vertex gadget is active, say Rv . By our construction of R, there is a line
segment s in Svact with ∥s ∩ re∥ = n + 3. We increase the length of s by width(re) − n − 3 so
that re is stabbed. Hence, we obtained a feasible solution to R. Recall that there are k′ active
vertex gadgets and that, for each vertex v, we have ∥Svact∥ = ∥Svina∥ + 1. Thus, the total length

of our solution is

∑
v∈V
∥Svina∥ + k′ + ∑

e∈E
(width(re) − n − 3) ≤ c + k′ ≤ c + k

and the lemma follows.

Next we show the other, more challenging direction. Consider an optimum solution SOPT

to R and choose k ≤ n such that OPTR ≤ c + k is satisfied. Let Rv be any vertex gadget, let rtop
and rbot be its top- and bottom-most rectangles, respectively, and let

SvOPT = {s ∩⋃Rv ∣ s ∈ SOPT} .

We transform SOPT as follows without increasing its total length. Let s ∈ SOPT be a line

segment stabbing rtop. If s stabs only rtop, then we move s to the top edge of rtop. If s also stabs

108

NP-Hardness of Stabbing Section 5.5

other rectangles, then one of these rectangles must touch rtop (otherwise we could split s and
shrink its subsegments, contradicting optimality). Note that the only rectangle touching rtop
lies below it and belongs to Rv . A similar argument holds for rbot.

Observation 5.1. Without loss of generality, it holds that:

(i) Any segment in SOPT stabbing rtop either stabs rtop through its top edge, or also stabs
another rectangle in Rv .

(ii) The same holds for the rectangle rbot and its bottom edge.

Observation 5.2. Every line segment in SvOPT that does not stab a rectangle in {rtop , rbot} has
length at least n + 3.

Note that Observation 5.2 also holds for line segments that stab only rectangles belonging

to edge gadgets as those rectangles have length at least n + 3. In the following, we prove

that SvOPT equals either Svina or Svact.

Lemma 5.7. If Svina /⊆ SvOPT and Svact /⊆ SvOPT, then ∥SvOPT∥ > ∥Svact∥ + n.

Proof. We say that a pair of rectangles is stabbed by a line segment if the line segment stabs

both rectangles. Let P be a maximum-cardinality set of rectangle pairs of Rv where each pair

is stabbed by a line segment in SvOPT and each rectangle appears in at most one pair. For Svina
and Svact, such a maximum-cardinality set of pairs is unique and excludes exactly one rectangle,

namely rtop or rbot, respectively.
Now, as Rv contains an odd number of rectangles, the number of rectangles not in P

is odd and at least one. If there is exactly one rectangle not in P, this rectangle is different
from rtop and rbot, as otherwise Observation 5.1 would yield Svina ⊆ SvOPT or Svact ⊆ SvOPT; a

contradiction since Svina /⊆ SvOPT and Svact /⊆ SvOPT. If there are at least three rectangles not in P,
then one among them is different from rtop and rbot. Hence, in both cases, there is at least

one rectangle r′ not in P that is different from rtop and rbot.
Thus, SvOPT contains a line segment that stabs r′ and that does not stab any other rect-

angle pair in P. The line segment is not shorter than width(r′). Furthermore, for each

pair (r1 , r2) ∈ P, SvOPT contains a line segment of length

width(r1) +width(r2) −width(r1 ∩ r2)

that stabs r1 and r2. Putting things together, we bound ∥SvOPT∥ from below by

∑
r∈Rv

width(r) − ∑
(r1 ,r2)∈P

width(r1 ∩ r2) . (5.2)

The first sum is independent of SvOPT. Thus, bound (5.2) is minimized by maximizing the

second sum. Let’s examine the value of width(r1 ∩ r2) for various pairs (r1 , r2). For the unique
pair containing rtop, the value is 1, for the unique pair containing rbot, it is 2. For all the other
pairs, by construction it is n + 3. Thus, the second sum is maximized when rtop is the only
rectangle not in P. This is exactly the case for Svina. As Svina contains one line segment for each

pair and one line segment for rtop, and each line segment is only as long as necessary, ∥Svina∥
reaches bound (5.2) and is consequently optimal.

109

Chapter 5 Stabbing Rectangles by Line Segments

Due to the assumption of the lemma, there is a rectangle r′ that is not in P. Note that the
second sum ismaximized if r′ is the only rectangle not in P. Compared to the optimal situation

when SvOPT = Svina, the value of the sum changes by 1 − (n + 3): replace the pair with r′ in Svina
by the pair with rtop. Consequently, under the assumption of the lemma, bound (5.2) for SvOPT

is at least ∥Svina∥ + n + 2 = ∥Svact∥ + n + 1, and the claim follows.

Lemma 5.8. Exactly one of the following three statements holds:

(i) SvOPT = Svina, or

(ii) SvOPT = Svact, or

(iii) ∥SvOPT∥ > ∥Svina∥ + n.

Proof. Suppose that Svina is a proper subset of SvOPT for some vertex v, and let s ∈ SvOPT ∖ Svina.
Consider the segment s′ ∈ SOPT that “induces” s, that is, s = s′ ∩⋃Rv . If s stabs only a rectangle
in {rtop , rbot}, then, by Observation 5.1, s′ stabs no other rectangle in R. Hence, we can
safely remove s′ from SOPT, as rtop and rbot are already stabbed in Svina; a contradiction

to the optimality of SOPT. Consequently, s must stab a rectangle in Rv ∖ {rtop , rbot}. By

Observation 5.2, we get

∥SvOPT∥ ≥ ∥Svina∥ + n + 3 > ∥Svina∥ + n .

The same holds for Svact ⊊ SvOPT. Together with Lemma 5.7, these observations yield the

claim.

Now, we show that SOPT forces each vertex gadget to be either active or inactive.

Lemma 5.9. In SOPT, each vertex gadget is either active or inactive.

Proof. Suppose that there is a vertex gadget Ru that is neither active nor inactive in SOPT. This

implies OPTR > c + n and contradicts our previous assumption OPTR ≤ c + k ≤ c + n.
To this end, we give a lower bound on OPTR . Since Ru is neither active nor inactive, we

have SuOPT > ∥Suina∥ + n by Lemma 5.8. Thus,∑v∈V ∥SvOPT∥ > ∑v∈V ∥Svina∥ + n . Let SoutOPT be the

set of all segment fragments of SOPT lying outside of⋃v∈V SvOPT. Each edge gadget rv contains
a segment fragment from SoutOPT of length at least width(rv) − n − 3 since, by construction, it
can share a line segment with only one of its incident vertex gadgets. Since all edge gadgets

are interior-disjoint, we have ∥SoutOPT∥ ≥ ∑e∈E width(rv) − n − 3. Hence,

OPTR ≥ ∥SoutOPT∥ + ∑
v∈V
∥SvOPT∥ > ∑

e∈E
(width(re) − n − 3) + ∑

v∈V
∥Svina∥ + n = c + n .

Lemma 5.10. For each edge gadget, one of its incident vertex gadgets is active in SOPT.

Proof. Suppose that for an edge gadget re both vertex gadgets are not active in SOPT. By

Lemma 5.9, they are inactive. Without loss of generality, the line segment s stabbing re lies on
the top or bottom edge of re . Then s intersects a vertex gadget to the left or right, say Rv , and

hence SvOPT /= Svina and SvOPT /= Svact. A contradiction to Lemma 5.9.

110

APX-Hardness of Cardinality and Constrained Stabbing Section 5.6

Lemma 5.11. OPTR = c + k′, where k′ is the number of active vertex gadgets in SOPT.

Proof. Consider any edge gadget re . It is stabbed by only one line segment s, and, without
loss of generality, the line segment s lies on the top or bottom edge of re . Thus, it intersects a

vertex gadget Rv on a rectangle r. Then Rv ≠ Svina and Rv is active according to Lemma 5.9. By

our construction of R, there is exactly one segment in Svact intersecting re , which also stabs r.
Hence, this segment is a subsegment of s and we have

∥s∥ = width(r) +width(re) −width(r ∩ re) = width(r) +width(re) − n − 3 .

Thus, by Lemma 5.9 and ∥Svact∥ = ∥Svina∥ + 1,

OPTR = ∑
e∈E
(width(re) − n − 3) + ∑

v∈V
∥Svina∥ + k′ = c + k′

where k′ is the number of active vertex gadgets in SOPT.

Given SOPT, we put exactly those vertices in the vertex cover whose vertex gadgets are

active. By Lemma 5.10, this yields a vertex cover of G. By Lemma 5.11, the size of the vertex

cover is exactly OPTR − c, which is bounded from above by k given that OPTR ≤ c + k.

Lemma 5.12. OPTR ≤ c + k implies that OPTG ≤ k.

By our construction, we represent R on a grid of size polynomial in n, hence, all numerical

values are upperbounded by a polynomial in n. Our construction is polynomial. With

Lemmas 5.6 and 5.12, we conclude that Stabbing is NP-hard.

5.6 APX-Hardness of Cardinality and Constrained Stab-
bing

In this section, we consider Cardinality Stabbing and Constrained Stabbing. The latter

is the variant of Stabbing, where the solution is constrained to be some subset of a given set

of line segments. By reducing a restricted APX-hard variant of Set Cover to these problems,

we show that neither Cardinality Stabbing nor Constrained Stabbing admits a PTAS

unless P = NP. The following lemma follows directly from Definition 1.2 and Lemma 1.3 by

Grant and Chan [CG14].

Lemma 5.13 (Grant and Chan [CG14]). Special-3sc is APX-hard, where Special-3sc is
defined as unweighted Set Cover with the following properties: The input is a family S of
subsets of a universe U = A∪W ∪ X ∪ Y ∪ Z that comprises the disjoint sets (which are part of
the input)

A = {a1 , . . . , an},W = {w1 , . . . ,wm}, X = {x1 , . . . , xm},Y = {y1 , . . . , ym}, Z = {z1 , . . . , zm}
where 2n = 3m. The family S consists of 5m sets and satisfies the following two conditions:

• For every t with 1 ≤ t ≤ m, there are integers i and j with 1 ≤ i < j < k ≤ n such that S
contains the sets {a i ,wt}, {wt , xt}, {a j , xt , yt}, {yt , zt}, and {ak , zt}. (See Fig. 5.8a.)

• For every i with 1 ≤ i ≤ n, the element a i is in exactly two sets in S .

111

Chapter 5 Stabbing Rectangles by Line Segments

wt xt yt zt
a i a j ak

(a) For 1 ≤ t ≤ m, there are five sets. Each element
appears in exactly two sets.

a1 an. . .

I

area 1

aream

. . .

a2

(b) Distinct rectangles a1 , . . . , an (a1 is bold) have
intersection I (shaded) which is subdivided
into areas 1, . . . ,m.

a i a j ak

wt

xt
yt

zt

(c) For 1 ≤ t ≤ m, there are five line segments
(thick gray horizontal line segments).
Every line segment stabs exactly one
of {a i ,wt}, {wt , xt}, {a j , xt , yt}, {yt , zt},
and {ak , zt}.

Figure 5.8: Encoding of Special-3sc via Stabbing.

We begin with Cardinality Stabbing.

Theorem 5.6. Cardinality Stabbing is APX-hard.

Proof. Given a Special-3sc instance (U ,S) with U = A∪W ∪ X ∪ Y ∪ Z, we efficiently en-

code it as a Stabbing instance by creating a rectangle for each element of the universe U
and adding a line segment for each set of S . We will achieve the property that a line segment

corresponding to a set s stabs exactly those rectangles that correspond to the elements of s.
Let n = ∣A∣ and m = ∣W ∣ (recall 2n = 3m). To encode (U ,S), we place n rectangles of

equal size on one spot and then shift them one by one to the right such that all rectangles are

distinct and their total intersection I is not empty. For 1 ≤ i ≤ n, the i-th rectangle from the

left corresponds to element a i ; see Fig. 5.8b.
Next, we horizontally subdivide the intersection I into m areas. For 1 ≤ t ≤ m, we place

four thin rectangles inside the t-th area from the top such that the vertical projections of the

rectangles intersect sequentially and only pairwise as in Fig. 5.8c. From top to bottom they

correspond to wt , xt , yt , and zt .
Now, we show that our rectangle configuration allows a feasible set of line segments that

corresponds to S . Recall the definition of Special-3sc. For 1 ≤ t ≤ m, the input contains

the sets {a i ,wt}, {wt , xt}, {a j , xt , yt}, {yt , zt} and {ak , zt}. Consider the first set. As the
rectangle wt is inside the rectangle a i , we can stab both with one line segment. We can even

stab them exclusively if we place the line segment above the rectangle xt and do not leave the

rectangle a i (note that no rectangle of A is contained in another one). Hence, the line segment

corresponds to the set {a i ,wt}. With a similar discussion, we can find line segments that

correspond to the sets {wt , xt}, {a j , xt , yt}, {yt , zt} and {ak , zt}, respectively; see Fig. 5.8c.

112

APX-Hardness of Cardinality and Constrained Stabbing Section 5.6

Since the objective is tominimize the cardinality of line segments, there is a cost-preserving

correspondence between solutions to the Special-3sc instance and the generated Stabbing

instance. Hence, Cardinality Stabbing is APX-hard.

Next, we show that there is an L-reduction [PY91] from Special-3sc onto Constrained

Stabbing (where we minimize the total segment length). This reduction implies APX-
hardness [PY91].

Theorem 5.7. Constrained Stabbing is APX-hard.

Proof. For an L-reduction, it suffices to find two constants α and β such that for every Special-
3sc instance I3SC it holds:

(1) We can efficiently construct a Constrained Stabbing instance Istab with

OPT(Istab) ≤ α ⋅OPT(I3SC)

where OPT(Istab) is the total length of an optimum solution to Istab and OPT(I3SC)
is the cardinality of a minimum set cover to I3SC.

(2) For every feasible solution Sstab to Istab, we can efficiently construct a feasible solu-

tion S3SC to I3SC with

cost(S3SC) −OPT(I3SC) ≤ β ⋅ (cost(Sstab) −OPT(Istab)) ,

where cost(S3SC) denotes the cardinality of S3SC, and cost(Sstab) denotes the total
length of Sstab.

Given a Special-3sc instance I3SC with 5m subsets we construct a Stabbing instance Istab
as in the proof ofTheorem 5.6 with the following specifications: Every rectangle corresponding

to elements in A has width equal to 1 + δ for δ = 1/10m and the intersection I of all these
rectangles has width equal to 1. For 1 ≤ t ≤ m, we choose the lengths of the line segments

corresponding to {wt , xt} and {yt , zt} to be equal 1. Thus, every line segment has length

either 1 or 1 + δ.
Consequently, any optimum solution to I3SC implies a feasible solution to Istab with cost

at most (1 + δ) ⋅OPT(I3SC). Hence, we can bound OPT(Istab) from above by

(1 + δ) ⋅OPT(I3SC) < 2 ⋅OPT(I3SC) .

This bound shows Property (1) of L-reduction with α = 2.
Now, given a feasible solution Sstab, we will first observe that it cannot consist of less

line segments than an optimum solution. Let x be the cardinality of any optimum solution

113

Chapter 5 Stabbing Rectangles by Line Segments

to Istab. Recall that every line segment has length 1 or 1 + δ and that any feasible solution has

at most 5m line segments. Thus, x ≤ OPT(Istab) and, consequently,

x ≤ cost(Sstab)
≤ ∣Sstab∣(1 + δ)
≤ ∣Sstab∣ + 5mδ

= ∣Sstab∣ +
1

2
.

Hence, the inequality holds only if Sstab contains at least x lines segments.

Next, let S3SC consist of all sets corresponding to the line segments in Sstab. Observe

that S3SC is feasible. To show Property (2), we consider two cases. In the first case, Sstab has
the same number of line segments as the optimum solution. We immediately get

cost(S3SC) −OPT(I3SC) = 0

and the inequality of Property (2) holds. In the second case, Sstab has more line segments than

the optimum solution. Thus, x < ∣Sstab∣ ≤ 5m. With the definition of δ we, obtain

cost(Sstab) −OPT(Istab) > ∣Sstab∣ − x(1 + δ)
≥ 1 − xδ
≥ 1 − 5mδ

= 1

2
.

Furthermore, we have

OPT(Istab) ≤ (1 + δ) ⋅OPT(I3SC)
≤ OPT(I3SC) + δ5m

≤ OPT(I3SC) +
1

2
.

On the other hand, cost(S3SC) ≤ cost(Sstab). Putting things together, we get

cost(S3SC) −OPT(I3SC) ≤ cost(Sstab) −OPT(Istab) +
1

2

≤ 2 ⋅ (cost(Sstab) −OPT(Istab))

and Property (2) holds for β = 2.

5.7 Conclusion

We have seen that Stabbing is NP-hard and that it admits anO(1)-approximation algorithm.

Since our positive results relies on a general result regarding the shallow-cell complexity of the

114

Conclusion Section 5.7

problem, it would be interesting to design a direct, combinatorial c-approximation algorithm

with a concrete constant c that makes use of the geometry underlying the problem.

On the negative side, it remains open whether Stabbing is APX-hard, which is the

case for Constrained Stabbing and Cardinality Stabbing (see Theorems 5.6 and 5.7 in

Section 5.6). Do the latter two problems admit constant-factor approximation algorithms? So

far, we have only anO(log logOPT)-approximation algorithm for Cardinality Stabbing

via an existing approximation algorithm for piercing 3D-boxes [AES10], see Corollary 5.1 in

Section 5.2.2. (Here, OPT denotes the size of an optimum solution.)

Finally, it would be interesting to examine natural problems of high shallow-cell complex-

ity of unsettled approximability and try to partition them (possibly by our decomposition

technique) into instances of low-shallow cell complexity, as in Section 5.4.

115

6 Colored Non-Crossing
Euclidean Steiner Forest

Given a set of k-colored points in the plane, we consider the problem of finding k trees such
that each tree connects all points of one color class, no two trees cross, and the total edge

length of the trees is minimized. For k = 1, this task is the well-known Euclidean Steiner

Tree problem. For general k, only a (1.21k)-approximation algorithm is known [EHKP15].

We present a PTAS for k = 2, a (5/3 + ε)-approximation algorithm for k = 3, and two

approximation algorithms for general k, with ratios O(
√
n log k) and k + ε. The first two

algorithms are substantial modifications of Arora’s [Aro98] PTAS for Euclidean Steiner

Tree. For the third algorithm, the underlying idea is to compute a path connecting all

terminals such that terminals of the same color have small distance along the path. In the

forth algorithm, we successively compute a tree for each color, thereby creating “shells” around

present trees in order to bypass them without crossings.

6.1 Introduction
Steiner Tree in Graphs is a fundamental problem in combinatorial optimization. Given

an edge-weighted graph and a set of vertices called terminals, the task is to find a minimum-

weight subgraph that connects the terminals. In its generalization Steiner Forest in Graphs,

the terminals are colored, and the desired subgraphmust connect, for each color, the terminals

of that color.

The most famous problem variant is the Euclidean Steiner Tree (EST) problem. In its

generalization Euclidean Steiner Forest, the input consists of n colored points in the plane,

which we also call terminals, and the output is a drawing of minimum length connecting all

terminals of the same color. Throughout this chapter, we call a cycle-free drawing connecting

a set of terminals an (Euclidean Steiner) tree. If a tree is of minimum length, then we also call

it aminimum Euclidean Steiner tree. Hence, a solution to Euclidean Steiner Forest either

consists of one minimum Euclidean Steiner tree or of two or more Euclidean Steiner trees.

In this chapter, we consider a new and natural variant of Euclidean Steiner Forest

where we add the constraint of planarity and require that terminals with distinct colors lie in

distinct (connected) components. More precisely, we consider the problem of computing, for

a k-colored set of terminals in the plane, k pairwise non-crossing planar Euclidean Steiner

trees, one for each color. Such trees exist for every given set of points. We call the problem of

minimizing the total length of these trees k-Colored Non-Crossing Euclidean Steiner

Forest (k-CESF). Figure 6.1 shows some interesting instances. Note that for k = 1, our
problem is the same as EST.

The problem is motivated by a method that Efrat et al. [EHKP15] suggested recently for

visualizing embedded and clustered graphs. They visualize clusters by regions in the plane that

enclose related graph vertices. Their method attempts to reduce visual clutter and optimize

“convexity” of the resulting regions by reducing the amount of “ink” necessary to connect

Chapter 6 Colored Non-Crossing Euclidean Steiner Forest

(a) The optimum contains
no straight-line edge.

a

b

(b) Segment ab is used
twice by the black curve.

(c) In the optimum, the black curve can be
made arbitrarily longer than the correspond-
ing straight-line segment (if every gray seg-
ment represents a different color).

Figure 6.1: Difficult examples for k-CESF.

all elements of a cluster. Efrat et al. [EHKP15] proposed the problem k-CESF and provided

a simple kρ-approximation algorithm, where ρ is the Steiner ratio. The Steiner ratio is the

supremum, over all finite point sets in the plane, of the ratio of the total edge length of a

minimum spanning tree to the total edge length of a Euclidean Steiner tree. Chung and

Graham [CG85] showed ρ ≤ 1.21.

Our contribution. The middle column of Table 6.1 shows our results. For k-CESF, we
present a deterministic (k + ε)- and a randomizedO(

√
n log k)-approximation algorithm;

see Section 6.2. Our main result states that 2-CESF admits a PTAS; see Section 6.3. By a

non-trivial modification of the PTAS, we prove that 3-CESF admits a (5/3 + ε)-approximation

algorithm; see Section 6.4.

Our PTAS for 2-CESF uses some ideas of Arora’s algorithm [Aro98] for EST, which is

equivalent to 1-CESF. Since, in a solution to 2-CESF, the two trees are not allowed to cross,

our approach differs from Arora’s algorithm in several respects. Informally speaking, Arora’s

algorithm lays a quadtree grid over the instance, snaps the instance to the grid, and searches,

by dynamic programming, for a solution that crosses the quatree edges only in a specific way.

At the end, the solution is snapped to the origin vertices. For our case, we have to modify the

first and the last step carefully to avoid crossings of trees. We also use different constraints on

how a solution may cross a quadtree edge. This difference forces us to change the dynamic

programming and to prove the existence of a near-optimum solution that satisfies these new

constraints. In the beginning of Section 6.3, we explain the differences between our and

Arora’s algorithm in more detail.

RelatedWork. Apart from the result of Efrat et al. [EHKP15], so far the only two variants

of k-CESF that have been studied are those with extreme values of k. As mentioned above, 1-

CESF is the same as EST, which is NP-hard [GJ79]. Arora [Aro98] and Mitchell [Mit99]

showed independently that EST admits a PTAS. The other extreme value of k, for which k-
CESF has been considered, is k = n/2. This case is the problem of joining specified pairs

of points via non-crossing curves of minimum total length. Liebling et al. [LMM+95] gave

118

Introduction Section 6.1

some heuristics for this problem. Bastert and Fekete [BF98] claimed that (n/2)-CESF is

NP-hard, but their proof has not been formally published. Recently, Chan et al. [CHKL13]

considered (n/2)-CESF in the context of drawing planar graphs at fixed vertex locations. They

gave anO(
√
n log n)-approximation algorithm based on an idea of Liebling et al. [LMM+95]

for computing a short non-crossing tour of all given points.

Several set visualization techniques assume also the setting where the input is a multi-

colored point set [ARRC11, HKvK+18, CPC09, RBvK+08]. These techniques allow regions to

cross, while the regions that correspond to (the geodesic hulls of) the trees in our approach are

non-crossing. Reinbacher et al. [RBvK+08] consider the problem of computing a minimum-

perimeter polygon that connects a specific set of uncolored points while separating all red

from all blue points.

There is substantial work on the case where there are obstacles in the plane. Note that,

in contrast to k-CESF, a valid solution may not exist in that setting. For a single color (that

is, 1-CESF with obstacles), Müller-Hannemann and Tazari [MHT10] give a PTAS. The same

variant is considered by Razaghpour [Raz08]. Papadopoulou [Pap99] gave an algorithm for

finding minimum-length non-crossing paths joining pairs of points (that is, n/2-CESF) on
the boundary of a single polygon. Erickson and Nayyeri [EN11] generalize the problem to the

case of points on the boundaries of h polygonal obstacles; their algorithm is exponential in h.
A practical aspect of the problem—computing non-crossing paths of specified thickness—was

studied by Polishchuk andMitchell [PM07]. Their algorithm computes a representation of the

thick paths inside a simple polygon; they also show how to find shortest thick disjoint paths

joining endpoints on the boundaries of polygonal obstacles (with exponential dependence

on the number of obstacles). They also prove that the problem is hard to approximate. The

main difficulty with multiple obstacles is deciding which homotopy class of the paths gives

the minimum length. If the homotopy class of the paths is specified, then the problem is

significantly easier [Bes03, EKL06, Ver13].

The graph version of k-CESF has been studied in the context of VLSI design. Given an edge-
weighted plane graph G and a family of k vertex sets (called nets), the goal is to find a set of k
non-crossing subgraphs interconnecting the nets such that the total weight is minimized. The

problem is clearlyNP-hard, as the special case k = 1 is SteinerTree in PlanarGraphs (STP),
a problem known to be NP-hard [GJ79]. STP admits a PTAS [BKM09]. For k terminal pairs

(that is, size-2 nets) where all terminals lie on h faces of the given n-vertex plane graph, k-
CESF can be solved in O(2O(h2

)n log k) time [EN11]. If we allow k constant-size nets and
restrict h to 2, then the problem is solvable even inO(n log n) time [KMN01]. We list these

results in Table 6.1; many entries are still open.

In the Group Steiner Tree problem, one is given a k-colored point set and the task is to

find a minimum-length tree that connects at least one point of each color. The problem is

discussed in a survey by Mitchell [Mit00]. Recently, Bateni et al. [BDHM16] gave a PTAS for

the planar case. They also showAPX-hardness of the planar Group Steiner Forest problem,

where only specified pairs of colors need to fulfill the connectivity requirement. Another

related problem is that of constructing a minimum-length non-crossing path through a given

sequence of points in the plane. Its complexity status remains open [PM05, Löf11].

119

Chapter 6 Colored Non-Crossing Euclidean Steiner Forest

Table 6.1: Known and new results for k-CESF (hardness and approximation ratios).

k k-CESF in Euclidean space k-CESF in planar graphs

1 EST: NP-hard [GJ79], STP: NP-hard [GJ79],

1 + ε [Aro98, Mit99] 1 + ε [BKM09]

2 1 + ε (Theorem 6.4)

3 5/3 + ε (Theorem 6.5)

general k k + ε (Theorem 6.1), k const.-size nets on 2 faces, exact [KMN01]

O(
√
n log k) (Theorem 6.3)

n/2 NP-hard [BF98], k size-2 nets on const. many faces, exact [EN11]

O(
√
n log n) [CHKL13]

6.2 Algorithms for k-CESF
Despite its simple formulation, the k-CESF problem seems to be rather difficult. There are

instances where the optimum contains no straight-line edges or contains paths with repeated

line segments; see Fig. 6.1a and 6.1b. This fact shows that obvious greedy algorithms fail to find

an optimal solution, as Liebling et al. [LMM+95] observed. They also provided an instance

of the problem in a unit square for k = n/2 in which the length of an optimal solution is

in Ω(n
√
n), whereas the trivial lower bound (the sum of lengths of straight-line segments

connecting the pairs of terminals) is only O(n). The example is based on the existence of

expander graphs with a quadratic number of edge crossings. In Fig. 6.1c, we provide an

example in which the length of one of the curves in the optimal solution can be arbitrarily

bigger than the trivial lower bound for the corresponding color.

In some cases, cycles will arise in our drawings. We will cut them by removing a longest

segment from each cycle such that all terminals that were on a cycle remain connected. For

any geometric graph G, we let ∥G∥ denote its total edge length.
Efrat et al. [EHKP15] suggested an approximation algorithm for k-CESF. The key ingredi-

ent of their algorithm is the following observation, which shows how to make a pair of given

trees non-crossing: reroute one of the trees using a “shell” around the other tree.

Lemma 6.1 (Efrat et al. [EHKP15]). Let R and B be two trees in the plane spanning red and
blue terminals, respectively. There exists a tree R′ spanning the red terminals such that

(i) R′ and B are non-crossing and

(ii) ∥R′∥ ≤ ∥R∥ + 2 ∥B∥.

Efrat et al. [EHKP15] start with k (possibly intersecting) minimum spanning trees, one

for each color. Then, they iteratively go through these trees in order of non-decreasing length.

In every step, they reroute the next tree by laying a shell around the current solution as in

Lemma 6.1. Their algorithm has approximation factor kρ. We now show that the algorithm

even yields approximation factor k + ε if we use a PTAS for EST for the initial solution to each

color.

120

Algorithms for k-CESF Section 6.2

Theorem 6.1. For every positive ε, there is a (k + ε)-approximation algorithm for k-CESF.

Proof. Fix an optimal solution T . For i = 1, . . . , k, let Ti be the length of the Steiner tree

spanning color i in T . Hence, OPT = ∑k
i=1 Ti . For each color i = 1, . . . , k, use a PTAS to

compute a Steiner tree of length Pi ≤ (1 + ε)Ti . Now, consider the trees one by one in non-

decreasing order of their lengths. Without loss of generality, we have P1 ≤ . . . ≤ Pk .
Let S i denote the length of the Steiner tree spanning color i ∈ {1, . . . , k} in our solution S .

Lemma 6.1 yields S1 = P1 and S2 ≤ P2 + 2P1. For the i-th tree with 2 ≤ i ≤ k, we add a shell

around every tree j with j < i. Observe that the tree and the shell give us a Steiner tree (after

cutting any cycles) for i that does not intersect any tree built in a step j with j < i. Thus,

we get S i ≤ Pi +∑i−1
j=1 2Pj and ∥S∥ = ∑k

i=1 (Pi +∑i−1
j=1 2Pj). Let P = (∑k

i=1 Pi)/k be the average
length of the Steiner trees. Since the Steiner trees Pi are ordered by non-decreasing lengths,

we have∑i
j=1 Pj ≤ i ⋅ P for every i ∈ {1, . . . , k}. This inequality yields

S i = Pi +
i−1
∑
j = 1

2Pj =
i−1
∑
j = 1

Pj +
i
∑
j = 1

Pj ≤ (2i − 1)P ,

which sums up to

∥S∥ ≤
k
∑
i = 1

(2i − 1)P = k2 ⋅ P .

Since k ⋅ P = ∑i Pi ≤ (1 + ε)OPT, we have P ≤ (1 + ε)OPT /k. Hence, the total length of

our solution is

∥S∥ ≤ k2 ⋅ P ≤ (1 + ε)kOPT .

For even k, we can slightly improve on this by using our PTAS for 2-CESF (Theorem 6.4).

Theorem 6.2. For every positive ε, there is a (k − 1 + ε)-approximation algorithm for k-CESF
if k is even.

Proof. Fix an optimal solution T . For 1 ≤ i ≤ k, let Pi be the set of terminals of color i.
Let Q1 = ⋃k/2

i=1 Pi and Q2 = ⋃k
j=1+k/2 Pj . Call the terminals in Q1 red and those in Q2 blue.

Further, let T ∗ be an optimal solution to the resulting 2-CESF instance I∗. Obviously, we

have ∥T ∗∥ ≤ ∥T ∥.
Let ε′ = ε/(k − 1). We use the PTAS for 2-CESF of Theorem 6.4 to compute a solution S∗

to I∗ with ∥S∗∥ ≤ (1 + ε′) ∥T ∗∥. In general, S∗ is not a valid solution to I. Let S1 and S2 be
the Steiner trees connecting Q1 and Q2 in S∗, respectively. We now create, for 1 ≤ i ≤ k/2, a
Steiner tree R i connecting the terminals in Pi , as follows. Let R1 be the smallest subtree of S1
spanning the terminals in P1. Thus, ∥R1∥ ≤ ∥S1∥. We create R2 by laying a shell around R1

that goes through all terminals in P2. Note that, at this point, R2 still contains a cycle that

has R1 in its interior. For 3 ≤ i ≤ k/2, we iteratively create R i by laying a shell around the outer

boundary of R i−1 that goes through all terminals in Pi . Finally, we cut the cycles of R2 , . . . , Rk/2
at some point to create trees. Since each of these Steiner trees consists of a shell around S1,
the inequality ∥R i∥ ≤ 2 ∥S1∥ holds for 2 ≤ i ≤ k/2. Analogously, we compute R1+k/2 , . . . , Rk
with ∥R1+k/2∥ ≤ ∥S2∥ and ∥R j∥ ≤ 2 ∥S2∥ for 2 + k/2 ≤ j ≤ k.

121

Chapter 6 Colored Non-Crossing Euclidean Steiner Forest

Our solutionR to I consists of R1 , . . . , Rk ; its total length is

∥R∥ = ∥R1∥ +
k/2

∑
i=2
∥R i∥ + ∥R1+k/2∥ +

k
∑

j=2+k/2
∥R j∥

≤ ∥S1∥ + (
k
2
− 1) ⋅ 2 ∥S1∥ + ∥S2∥ + (

k
2
− 1) ⋅ 2 ∥S2∥

= (k − 1) ∥S1∥ + (k − 1) ∥S2∥
= (k − 1) ∥S∗∥
≤ (k − 1)(1 + ε′) ∥T ∗∥
≤ (k − 1 + (k − 1)ε′) ∥T ∥
= (k − 1 + ε) ∥T ∥ .

Next, we present an approximation algorithm for k-CESF whose ratio depends only log-

arithmically on k but also depends on
√
n. The algorithm employs a space-filling curve

through a set of given points. The curve was utilized in a heuristic for (n/2)-CESF by

Liebling et al. [LMM+95]. Recently, Chan et al. [CHKL13] showed that the approach yields

anO(
√
n log n)-approximation for (n/2)-CESF. We show that similar arguments yield an

approximation ratioO(
√
n log k) for general k.

Theorem 6.3. k-CESF admits a (randomized)O(
√
n log k)-approximation algorithm.

Proof. Chan et al. [CHKL13] gave a randomized algorithm to construct a curve C through the

given set P of n points. Their curve has small stretch, that is, the ratio between the Euclidean

distance d(p, q) of two points p, q ∈ P and their distance dC(p, q) along the curve is small.

Assuming that the points are scaled to lie in a unit square, Chan et al. showed, for a fixed pair

of points p, q ∈ P,

E [dC(p, q)] = O(
√
n log(1

d(p, q))) ⋅ d(p, q) .

Using C, we construct a solution to k-CESF so that, for every color, the terminals are visited

in the order given by the curve; and thus, the solution to every color is a path. All paths can

be wrapped around the curve without intersecting each other; see Fig. 6.2.

If the order of the points along the curve for a specific color i is pi1 , . . . , pin i
, then the length

of the corresponding path is

n i−1

∑
j = 1

dC(pij , pij+1) = dC(pi1 , pin i
) .

122

PTAS for 2-CESF Section 6.3

(a) A low-stretch curve C through the terminals. (b) A 3-CESF solution to the instance created bywrap-
ping paths around C.

Figure 6.2: Obtaining a solution to k-CESF by using a low-stretch curve. Depicted is the case k = 3.

Let d = ∑k
i=1 d(pi1 , pin i

)/k. The total (expected) length of the solution is

ALG =
k
∑
i=1

E [dC(pi1 , pin i
)] =

k
∑
i=1
O(
√
n log(1/d(pi1 , pin i

))) ⋅ d(pi1 , pin i
)

=
k
∑
i=1
O(
√
n log(1/d)) ⋅ d .

Since the optimal solution to P connects all pairs of terminals of the same color (possibly

using non-straight-line curves),

OPT ≥
k
∑
i = 1

d(pi1 , pin i
) = kd .

Hence,

ALG =
k
∑
i = 1

O(
√
n log(k

OPT
)) ⋅ OPT

k
= O(

√
n log k)OPT .

6.3 PTAS for 2-CESF

In this section, we show that 2-CESF admits a PTAS.We followArora’s approach for computing

EST [Aro98], which consists of the following steps. First, Arora performs a recursive geometric

partitioning of the plane using a quadtree and snaps the input points to the corners of the

tree. Next, he defines an r-light solution, which is allowed to cross an edge of a square in

the quadtree at most r times and only at so-called portals. Then he builds an optimal portal-
respecting solution using dynamic programming, and finally trims the edges of the solution

to get the result. To get an algorithm for 2-CESF, we modify these steps as follows:

(i) The perturbation step, which snaps the terminal to a grid, is modified to avoid cross-

ings between trees. Similarly, the reverse step transforming a perturbed instance

solution into one to the original instance is different; see Lemmas 6.2 and 6.3.

123

Chapter 6 Colored Non-Crossing Euclidean Steiner Forest

(ii) We use a different notion of an r-light solution in which every portal is crossed
at most r times. We devise a portal-crossing reduction that reduces the number of

crossings to r = 3; see Lemma 6.5.

(iii) The base case of dynamic programming needs a special modification; it computes a

set of crossing-free Steiner trees of minimum total length (see Lemma 6.6).

We assume that the bounding rectangles of the two sets of input terminals overlap; otherwise,

we can use a PTAS to obtain a Steiner tree for each input set individually. We first snap the

instance to an (L × L)-grid with L = O(n). We proceed as follows. Let L0 be the diameter of

the smallest bounding box of the given 2-CESF instance. We place an (L × L)-grid of granu-

larity (grid cell size) д = L0/L inside the bounding box. By scaling the instance appropriately,

we can assume that the granularity д = 1. We move each terminal of one color to the closest

grid point in an even row and column (without loss of generality, we assume there is only

one such closest grid point), and each terminal of the other color to the closest grid point in

an odd row and column. Thus, the grid point for each terminal is uniquely defined, and no

terminals of different color end up at the same location. If there are more terminals of the

same color on a grid point, we remove all but one of them. We call the resulting instance a

perturbed instance.
In what follows, let ε denote an arbitrarily small positive constant. We will fix its value at

the end.

Lemma6.2. LetOPTI be the length of an optimal solution to a 2-CESF instance I of n terminals.
There is an (L × L)-grid with L = O(n/ε) such thatOPTI∗ ≤ (1 + ε)OPTI holds, whereOPTI∗

is the length of an optimal solution to the perturbed instance I∗.

Proof. Choose L to be a power of 2 within the interval [3
√
2n/ε, 6

√
2n/ε] and perturb the

instance as described above. Consider an optimal solution to I. Iteratively, we connect every
terminal in I∗ to the optimum solution as follows: Connect the terminal to the closest point

of the tree in the optimum solution that has the same color. If this line segment crosses the

tree of the other color, then reroute this tree around the line segment by using two copies of

the line segment. Two copies suffice even if the other tree is crossed more than once since

all crossing edges can be connected to the two new line segments. The distance between the

terminal and the tree is at most the distance between the terminal and the corresponding

terminal in I, which is bounded by
√
2 as we are assuming the unit grid. Hence, we pay at

most 3
√
2 for connecting the terminal. Since the bounding rectangles of the input terminals

overlap, OPTI ≥ L. Thus, the additional length of an optimal solution to I∗ is

OPTI∗ −OPTI ≤ 3
√
2n ≤ εOPTI .

The next lemma, proven analogously to Lemma 6.2, shows that a solution to the perturbed

instance can be transformed into one to the original instance.

Lemma 6.3. Given a solution T to the perturbed instance as defined in Lemma 6.2, we can
transform T into a solution to the original instance, increasing its length by at most εOPTI .

In the following, we assume that the instance is perturbed. We place a quadtree in depen-

dence of two integers a, b ∈ [0, . . . , L − 1] that we choose independently uniformly at random.

124

PTAS for 2-CESF Section 6.3

We place the origin of the coordinate system on the bottom left corner of the bounding box

of our instance. Then we take a box B whose width and height is twice the width and height

of the bounding box. We place it such that its bottom left corner has coordinates (−a,−b).
Note that the bounding box is inside B. We extend the (L × L)-grid to cover B. Thus, we have

an (L′ × L′)-grid with L′ = 2L.
Next, we partition B with a quadtree along the (L′ × L′)-grid. The partition is stopped

when the current quadtree box coincides with a grid cell. We define the level of a quadtree
square to be its depth in the quadtree. Thus, B has level 0, whereas the level of a leaf is bounded

by log L′ = log(2L) = O(log n). Then, for each grid line ℓ, we define its level as the highest
(that is, of minimum value) level of all the quadtree squares that touch ℓ (but which are not

crossed by it).

Let m = ⌈4 log L′/ε⌉. On each grid line ℓ of level i, we place 2im equally spaced points.

We call these points portals. Thus, each square contains at most m portals on each of its edges.

A solution that crosses the grid lines only at portals is called portal-respecting. We show that

there is a close-to-optimal portal-respecting solution. Note that, in contrast to Arora, we first

make the solution portal-respecting before reducing the number of crossings on each grid

line. The proof of the following lemma is similar to the Arora’s prove.

Lemma 6.4. LetOPTI be the length of an optimal solution to a 2-CESF instance I. There exists
a position of the quadtree and a portal-respecting solution to I of length at most (1 + ε)OPTI .

Proof. Fix an optimal solution T . Move all crossings on the grid lines to the closest portals

by adding a line segment on each side of the grid. Note that the modified solution remains

crossing-free.

Consider a grid line ℓ that has a non-empty intersection with the bounding box B. Let t(ℓ)
be the number of crossing points between ℓ and T . If i is the level of ℓ, then the inter-portal

distance on ℓ is L′/(2im). Since the position of the quadtree has been chosen uniformly at

random, the probability that the level of ℓ is i is at most 2i/L′. Thus, the expected length

increase of T due to moving the crossings to the portals of ℓ is at most

log L′

∑
i = 1

2i

L′
⋅ t(ℓ) ⋅ L′

2im
≤ t(ℓ) log L′

m
≤ ε

4
⋅ t(ℓ) ,

where the last inequality follows from m ≥ 4 log L′/ε. Thus, the expected total increase in

length is at most ε/4∑gridline ℓ t(ℓ).
Next, we show

∑
gridline ℓ

t(ℓ) ≤ 4OPT .

Consider any line segment of the solution. Let l be the length of the line segment. Given the

granularity д = 1 of the grid, the line segment crosses at most l + 1 horizontal grid lines and at

most l + 1 vertical grid lines; hence, its contribution to the left-hand side of the equation is at

most 4l .
Thus, we have shown that the expected length increase is at most εOPT. But then, there

exists a position of the quadtree for which the total length increase is bounded by εOPT.
We can try out all positions of the quadtree which increases the total run time by a factor

ofO(n2).

125

Chapter 6 Colored Non-Crossing Euclidean Steiner Forest

a b c d

(a) (b) (c) (d)

Figure 6.3: A portal modification for four passes.

The last ingredient for our dynamic programming is to reduce the number of crossings in

every portal. We call a solution r-light if each portal is crossed at most r times. (Note that

we use a different definition than Arora. He defined a solution to be r-light if a grid line is

crossed at most r times.)

In the following, we explain an operation which we call a portal-crossing reduction. We are

given a portal-respecting solution consisting of two Steiner trees R and B (red and blue) and

we want to reduce (that is, modify without increasing its length) it such that R and B pass

through each portal at most three times in total.

Lemma 6.5. Every portal-respecting solution of 2-CESF can be transformed into a 3-light
portal-respecting solution without increasing its length.

Proof. Consider a sequence of passes through a portal. We assume that there are no terminals

in the portals. If two adjacent passes belong to the same tree, then we can eliminate one of

them by snapping it to the other one. If this operation creates cycles, we cut them. Therefore,

we can assume that the passes form an alternating sequence. It suffices to show that any

alternating sequence of four passes can be reduced to two passes by shortening the trees.

Let a, b, c, and d be such a sequence as shown in Fig. 6.3a, where the passes a and c belong
to B and b and d to R. We cut the passes b and c. This cut results in two components in

each tree. Without loss of generality, the pass a and the upper part of c belong to the same

component; see Fig. 6.3b. Otherwise, we can change the colors because (i) a and the lower

part of c are connected, and (ii) the upper part of b and d are connected.

Since R and B are disjoint, d and the lower part of b are in the same component; see

Fig. 6.3c. We connect the component as shown in Fig. 6.3d and shorten the trees (for instance,

the lower part of b can be reduced to a terminal of R). Note that the passes a and d remain

in the solution, while the passes b and c are eliminated. We repeat the procedure for the

remaining passes, until there are at most three passes left. The length of the solution does not

increase because the portal has width 0.

With the next Lemma 6.6, we show how to find a close-to-optimal 3-light portal-respecting

solution to the perturbed instance. We assume that an appropriate quadtree (as defined in

Lemma 6.4) is given.

Lemma 6.6. Given a perturbed instance I∗ of an n-terminal 2-CESF instance, we can com-
pute, in O(nO(1/ε)) time and O(nO(1/ε)) space, a solution of length at most (1 + ε)OPTI∗ ,
where OPTI∗ is the length of an optimal 3-light portal-respecting solution to I∗.

126

PTAS for 2-CESF Section 6.3

Proof. We use dynamic programming where a subproblem consists of

(a) a square A of the quadtree,

(b) a set B of point sequences, one on each portal on the border of the square, where

each sequence consists of up to three red and blue points, and

(c) a non-crossing partition C of these points into sets of the same color.

A partition of the points yielded by B is non-crossing if for no four points a, b, c, d, occurring
in that order on the boundary of the square, it holds that a and c belong to one set of the

partition, and b and d to another one. The goal is to find an optimal collection of crossing-free

red and blue Steiner trees, such that each set of the partition and each terminal inside the

square is contained in a tree of the same color.

The base case of dynamic programming is a unit square, which is either empty or contains

terminals only at corners of the square. If the square is empty, we consider each set of the

partition as an instance of 1-CESF and solve it by the PTAS for EST [Aro98]. For each point

set, we force its Steiner tree to lie inside its convex hull by projecting any part of the solution

outside the convex hull to its border. Since the partition is non-crossing, the convex hulls

of its point sets are pairwise disjoint. Therefore, the Steiner trees and their union is also a

close-to-optimal solution to the base case. If the square contains (up to four) terminals at the

corners, these terminals are treated in a similar way as portals.

For composite squares in the quadtree, we proceed as follows. For the four squares

that subdivide the composite square, we consider all combinations of all possible sequences

for B and partitions for C that match together and match the subproblem. In the dynamic

programming, we have already computed a close-to-optimal solution to every choice of the

sequences for B and partition for C of each of the four squares; taking the best combination

gives a close-to-optimal solution.

The size of the dynamic programming table is proportional to the number “(a)×(b)×(c)” of
subproblems. There areO(n2) possibilities for A as there areO(n2) squares in the quadtree

in total. Each square containsO(log n/ε) portals. For each portal, there is a constant number

of possible sequences of up to three colored points. Thus, there are 2O(log n/ε) = nO(1/ε)
possibilities for the set B of sequences. Since the number of non-crossing partitions of a set

of k elements is the k-th Catalan number Ck , we have

CO(log n/ε) = 2O(log n/ε) = nO(1/ε)

possibilities for the partition C. In total, we consider nO(1/ε) subproblems in the dynamic

programming.

The run time to solve an instance of the base case is polynomial inO(log n/ε). The run

time to handle a composite square is polynomial in (nO(1/ε))4, which is nO(1/ε). Thus, the

total run time is bounded by nO(1/ε).

Now, we prove the main result of this section.

127

Chapter 6 Colored Non-Crossing Euclidean Steiner Forest

Figure 6.4: A difficult portal crossing of a 3-CESF instance.

Theorem 6.4. 2-CESF admits a PTAS.

Proof. Consider a 2-CESF instance I. Let OPT be the length of an optimum solution. For any

positive ε, by Lemmas 6.2, 6.4 and 6.5, the length OPT
′
of an optimal 3-light portal-respecting

solution to the perturbed version of I is a most (1 + ε)OPT. Using Lemma 6.6, we find

a 3-light portal-respecting solution to the perturbed instance of length at most

(1 + ε)OPT′ ≤ (1 + ε)(1 + ε)OPT .

By Lemma 6.3, we transform the solution into a solution to I by increasing its length by at

most εOPT. Therefore, for every positive ε′, we can construct a solution to I of length

(1 + ε)(1 + ε)OPT+ εOPT ≤ (1 + ε′)OPT

by choosing an appropriate value for ε.

6.4 Algorithm for 3-CESF
The approach for 2-CESF described in Section 6.3 cannot be directly applied to 3-CESF since

optimal trees may need to pass portals many times. For example, the three paths crossing the

portal in Fig. 6.4 are difficult because we cannot locally reroute them to make themO(1)-light
as in Lemma 6.5.

Instead, we now improve the approximation ratio of 3 + ε (from Theorem 6.1) to 5/3 + ε.
We re-use some ideas of the approach for 2-CESF.

To this end, take an optimal solution T for 3-CESF. The terminals are red, green, and blue;

we call the corresponding trees R,G, and B. We assume that B is the cheapest among the three

trees. In the beginning, we construct a quadtree partitioning the plane and choose the portals,

for a given ε, as described in Section 6.3. We then make the solution portal-respecting, which

results in a solution T∗ consisting of trees R∗, G∗, and B∗. In expectation, this operation

increases the length of each of the trees (and hence, of T) by a factor at most 1 + ε.
First, we show that we have few portal passes if the blue and the green tree do notmeet at

any portal, that is, no blue and green passes are adjacent.

Lemma 6.7. Consider a portal-respecting solution T∗ to 3-CESF consisting of trees R∗, G∗, B∗.
If B∗ and G∗ do not meet at any portal, then T∗ can be transformed into a 7-light portal-
respecting solution.

128

Algorithm for 3-CESF Section 6.4

Figure 6.5: Constructing a 7-light solution to an instance without adjacent blue-green passes (one of several
possible cases).

Proof. Apply the portal-crossing reduction from Lemma 6.5 and consider a portal. Recall

that, after this operation, there are no rbrb and rдrд subsequences in the passes of the portal.

Here, r, b, and д correspond to the passes of the trees R∗, B∗, andG∗, respectively. If the portal
has only one blue or one green pass, then the solution is already 7-light at the portal (with the

longest possible sequences rдrbrдr and rbrдrbr, respectively). Otherwise, it contains at least

two blue and at least two green passes. Notice that the sequence of passes must be r-alternate,
that is, of the form . . . r △ r △ r . . ., where △ ∈ {д, b}, since blue and green do not meet. Thus,

a sequence of more than seven passes must contain a subsequence дrbrдrb (or a symmetric

one, brдrbrд). These subsequences are reducible. See Fig. 6.5 for one of the possible cases,

the other cases are analogous.

Now, we show that T∗ can be transformed into a 10-light portal-respecting solution T ′ of
length at most ∥R∗∥ + ∥G∗∥ + 3 ∥B∗∥.

Lemma 6.8. A portal-respecting solution T∗ to 3-CESF, consisting of trees B∗, R∗, and G∗, can
be transformed into a portal-respecting solution T ′ such that

(i) T ′ passes at most ten times through each portal, and

(ii) ∥T ′∥ ≤ ∥R∗∥ + ∥G∗∥ + 3 ∥B∗∥.

Proof. We define a BG-solution; informally, this is a solution in which we are allowed to

connect green branches to the blue tree (if they never meet, we can apply Lemma 6.7).

Formally, a BG-solution is a set of crossing-free trees consisting of a blue tree, a red tree

and a forest of green trees. Every terminal is contained in a tree of its color and every green

tree is attached to the blue tree. Note that, in general, a BG-solution is not a valid 3-CESF

solution. We prove the lemma in two steps. First, we show that T can be transformed to a

portal-respecting BG-solution TBG with at most six passes per portal having the same (or

smaller) length. Then, we show how TBG can be further modified to get a portal-respecting

solution T∗ with at most 10 passes per portal and the desired length.

In order to construct TBG from T∗, we first replace, as in Lemma 6.5, all uni-colored

sequences of passes (that is, consisting of passes of the same color) in a portal by a single pass,

and all bi-colored sequences of passes by at most three passes. We call this procedure the

initial reduction. Consequently, uni-colored and bi-colored portals have at most three passes;

hence, we focus on the portals containing passes of all three colors.

We can assume that there is a portal inwhich a blue and a green pass are adjacent (otherwise,

we already have a 7-light instance by Lemma 6.7.). We eliminate the green pass by connecting

it to its neighboring blue pass; see Fig. 6.6b. We thus may consider the blue and the green tree

129

Chapter 6 Colored Non-Crossing Euclidean Steiner Forest

p1 p i pm

s l sr
(a) A tri-colored portal after the

initial reduction.

p1 p i pm

s l sr
(b) Eliminating the green passes

that meet a blue pass.

p1 p i pm

(c) Applying the portal reduction
to s l and sr .

Figure 6.6: Construction of a BG-solution to a portal.

to be connected and together to form a blue-green tree. Its length is ∥B∗∥ + ∥G∗∥. After this
step, the sequence of passes is r-alternate.

Consider now a tri-colored portal in T after the initial reduction. Let (p1 , . . . , pm) be
a sequence of passes through the portal and suppose that pass p i (for 1 ≤ i ≤ m) is the left-

most blue pass; see Fig. 6.6a. Split the sequence into two subsequences s l = (p1 , . . . , p i−1)
and sr = (p i , . . . , pm). Since p i is the leftmost blue pass, it holds that s l is bi-colored and,

by the initial reduction, satisfies ∥s l∥ ≤ 3. Regarding sr , we apply the portal-crossing reduc-
tion according to Lemma 6.5 by viewing the blue and the green passes as passes of a single

blue-green tree; see Fig. 6.6c. As a result, we get a new instance s′r with ∥s′r∥ ≤ 3. Recall that,
before this step, the blue and the green tree are connected; thus, every blue and green pass

is connected to the leftmost pass p i . Furthermore, after disconnecting a blue pass in the

proof of Lemma 6.5, one part remains connected to p i by a blue path, and the other part gets

connected to p i by a blue segment. For the green passes, one part remains connected to p i ,
while the other part gets connected to p i by a green segment. Since the blue segments where

connected before this step, the blue tree remains connected after the portal-crossing reduction.

The green tree is split into subtrees that are connected to the blue tree. Therefore, the new

instance is a BG-solution. The sequence of passes in the portal for TBG is a concatenation

of s l and s′r and, hence, has at most six passes per portal.

Note that the constructed solution TBG has at most two blue passes per portal. We add a

green shell to B to connect green branches. This operation increases the number of passes per

portal by at most 4. The resulting solution T∗ has length bounded by ∥R∗∥ + ∥G∗∥ + 3 ∥B∗∥
and at most ten passes per portal.

Before we describe our approximation algorithm, we first need to discuss the perturbation

step. The perturbation itself is the same as in Section 6.3: Wemove each terminal to a uniquely

defined grid point (we assign the grid points of even row and odd column to the third color)

andmerge terminals of the same color to one terminal. However, we need a different technique

to transform a solution to the original instance into a solution to the perturbed instance and

vice versa.

Lemma 6.9. Let I be a 3-CESF instance with n terminals, let OPTI be the length of an optimal
solution to I. For every positive ε, we can place an (L × L)-grid with L = O(n/ε) such that, for
the perturbed instance I∗ of I, OPTI∗ ≤ (1 + ε)OPTI .

130

Algorithm for 3-CESF Section 6.4

Proof. We proceed similar as in the proof of Lemma 6.2 by connecting each terminal of I∗ to
the closest point of its corresponding tree. Since this connection can cross segments of two

colors, we have to be more careful with the rerouting. We choose L as a power of 2 within the

interval [7
√
2n/ε, 14

√
2n/ε].

Fix an optimal solution to I. Consider a terminal v of I∗ of, say, green color. Connect it to

the closest point of the green tree by a straight-line segment s. Note that the length ∥s∥ of this
segment is bounded from above by the distance of v to its corresponding terminal in I, which
is at most

√
2 as we have a unit grid.

Assume that s intersects red or blue segments. Their intersection points with s impose a

unique ordering of the segments where the segment with the intersection point closest to v is
defined as the last segment; see Fig. 6.7 for an example. We reroute the first three segments

along s going around v. This operation yields a 3-layer shell around v. Consider the next
segment according to the ordering and reroute it along s and around v. We can view the

crossing point of this segment with the shell as a portal on one side of s. This portal contains

four bi-colored passes. Using Lemma 6.5, we reduce the number of passes to at most three.

Now, we stretch this portal around v along s until it reaches the crossing point on the other

side of s. Since the portal has at most three passes, the shell around v still consists of three
layers. We repeat this procedure until all segments are rerouted around v.

By using this rerouting for every terminal in I∗, the total length of the solution increases

by at most (
√
2 + 6 ⋅

√
2)n = 7

√
2n. Since OPTI ≥ L, the length of an optimal solution to I∗

is at most

OPTI +7
√
2n ≤ (1 + ε)OPTI .

Analogously to the proof of Lemma 6.9, we transform a solution to a perturbed instance

back into one to the original instance by not increasing the length toomuch. Then, we combine

the lemmas to prove the main result of this section.

Lemma 6.10. We can transform a solution T to the perturbed instance I∗ into a solution to the
original instance I, increasing the length by at most εOPTI .

Proof. Iteratively connect each terminal of the original instance to the solution T analogously

to the proof of Lemma 6.9. Again, we pay at most 14 units per terminal, which yields the

claim.

Using Lemmas 6.8, 6.9 and 6.10, we are ready to prove the main result of this section.

Theorem 6.5. For every positive ε, 3-CESF admits a (5/3 + ε)-approximation algorithm.

Proof. Let ε′ = 3
√
1 + 3ε/5 − 1. Let T be an optimal solution to a 3-CESF instance I with

trees R, G and B. Without loss of generality, assume ∥B∥ ≤ ∥R∥ and ∥B∥ ≤ ∥G∥. Let OPTI
denote the length ∥R∥ + ∥G∥ + ∥B∥ of T . We first construct a portal-respecting solution T∗
of length

∥T∗∥ = ∥R∗∥ + ∥G∗∥ + ∥B∗∥ ≤ (1 + ε′)(∥R∥ + ∥G∥ + ∥B∥) .

131

Chapter 6 Colored Non-Crossing Euclidean Steiner Forest

s
v

(a) Segment s intersects four red/blue seg-
ments.

(b) Adding the shell for the first three segments.

(c) Adding the shell and portal for the fourth
segment.

(d) Resolving the portal.

(e) Extending the portal to the other side. (f) Resulting solution.

Figure 6.7: An example for the rerouting in the proof of Lemma 6.9.

132

Conclusion Section 6.5

Then we obtain by Lemma 6.8 an optimal 10-light portal-respecting solution T ′ of length

∥T ′∥ ≤ ∥R∗∥ + ∥G∗∥ + 3 ∥B∗∥

≤ 5

3
∥T∗∥

≤ 5

3
(1 + ε′) ⋅ (∥R∥ + ∥G∥ + ∥B∥)

= 5

3
(1 + ε′) ⋅OPTI .

Using a dynamic program similar to the one described in Section 6.3 and Lemma 6.9, we

find a 10-light portal-respecting solution of length (1 + ε′) ∥T ′∥ to the perturbed instance I∗
of I. By Lemma 6.10, we can transform our solution to I∗ into a solution to I whose total
length is bounded by

(1 + ε′)2 ∥T ′∥ ≤ 5

3
(1 + ε′)3OPTI < (

5

3
+ ε)OPTI .

6.5 Conclusion
We have presented approximation algorithms for k-CESF. For k = 2, we achieved a PTAS,

for k = 3, a ratio of 5/3 + ε, and for general k, ratios k + ε andO(
√
n log k).

We leave a number of interesting questions open. Is k-CESF APX-hard for some k ≥ 3?
Can we improve the run time of the PTAS for 2-CESF fromO(nO(1/ε)) toO(n(log n)O(1/ε))
as Arora [Aro98] did for EST? Can we obtain better approximation ratios for k-CESF when k
greater than 2?

Another inviting direction is to study an “anchored” version of k-CESF where we are

only allowed to draw straight line segments between input points of any colors. Any α-
approximation algorithm for k-CESF yields an α(1 +

√
3)/2- approximation algorithm for

the anchored version.

133

7 Minimum Rectilinear Polygons
for Given Angle Sequences

A rectilinear polygon is a polygon whose edges are axis-aligned. Walking counterclockwise

on the boundary of such a polygon yields a sequence of left turns and right turns, The number

of left turns always equals the number of right turns plus 4. It is known that every sequence

of r + 4 left and r right turns can be realized by a rectilinear polygon. In this chapter, we

consider the problem of finding realizations that minimize the perimeter, or the area of the

polygon, or the area of the bounding box of the polygon. We show that all three problems

are NP-hard in general and we consider the special cases of x-monotone and xy-monotone

rectilinear polygons. For these, we can optimize the three objectives efficiently.

7.1 Introduction
In this chapter, we consider the problem of computing, for a given rectilinear angle sequence,
a “small” rectilinear polygon that realizes the sequence. A rectilinear angle sequence S is

a sequence of left (+90○) turns, denoted by L, and right (−90○) turns, denoted by R. We

write S = (s1 , . . . , sn) ∈ {L, R}n , where n is the length of S. Aswe consider only rectilinear angle
sequences, we usually drop the term “rectilinear.” A polygon P realizes an angle sequence S
if there is a counterclockwise (ccw) walk along the boundary of P such that the turns at the

vertices of P, encountered during the walk, form the sequence S. The turn at a vertex v of P
is a left or right turn if the interior angle at v is 90○ (v is convex) or, respectively, 270○ (v is
reflex). We call the problem Minimum Rectilinear Polygon for Given Angle Sequence.

In order to measure the size of a polygon, we only consider polygons that lie on the integer

grid. In this context, the area of a polygon P corresponds to the number of grid cells that lie

in the interior of P. The bounding box of P is the smallest axis-parallel enclosing rectangle

of P. The perimeter of P is the sum of the lengths of the edges of P. The task is, for a given

angle sequence S, to find a simple1 polygon that realizes S and minimizes

(a) its bounding box,

(b) its area, or

(c) its perimeter.

Thereby,minimizing the bounding box is short forminimizing the area of the bounding box.
Figure 7.1 shows that, in general, the three criteria cannot be minimized simultaneously.

Obviously, the angle sequence of a polygon is unique (up to rotation), but the number of

polygons that realize a given angle sequence is unbounded. The formula for the angle sum of a

1 We use the following strong notion of simplicity: A polyline is simple if it visits every grid point at most once.

Thus, neither crossings nor revisits of a same point are allowed. Similarly, a polygon is simple if the (closed)

polyline realizing its boundary is simple.

Chapter 7 Minimum Rectilinear Polygons for Given Angle Sequences

L

L

L

L L

L

L

L

LLLL

R

R

R R

R

RR R

(a) Area 11, perimeter 20.

L

L

L

L L

L

L

L

LLLL

R

R

R R

R

R

R R

(b) Area 10, perimeter 22.

Figure 7.1: Two polygons realizing the same angle sequence. The bounding box of both polygons has area 20,
but (a) shows a polygon of minimum perimeter and (b) one of minimum area.

polygon implies that, in any angle sequence, n = 2r + 4, where n is the length of the sequence

and r is the number of right turns. In other words, the number of right turns is exactly four

less than the number of left turns.

Related Work. Bae et al. [BOS12] considered, for a given angle sequence S, the poly-

gon P(S) that realizes S and minimizes its area. They studied the following question: Given

a number n, find an angle sequence S of length n such that the area of P(S) is minimized,

or maximized. Let δ(n) denote the minimum area and let ∆(n) denote the maximum area

for n. They showed

(i) δ(n) = n/2 − 1 if n ≡ 4 mod 8, δ(n) = n/2 otherwise, and

(ii) ∆(n) = (n − 2)(n + 4)/8 for any n with n ≥ 4.

The result for ∆(n) tells us that any angle sequence S of length n can be realized by a polygon

with area at most (n − 2)(n + 4)/8.
Several authors have explored the problem of realizing a turn sequence. Culberson and

Rawlins [CR85] and Hartley [Har89] described algorithms that, given a sequence of exterior

angles summing up to 2π, construct a simple polygon realizing that angle sequence. Culberson

and Rawlins’ algorithm, when constrained to ±90○ angles, produces polygons with no colinear
edges, implying that any n-vertex polygon can be drawn with area approximately (n/2 − 1)2.
However, as Bae et al. [BOS12] showed, the bound is not tight.

In his PhD thesis, Sack [Sac84] introduced label sequences (which are equivalent to turn

sequences) and, among others, developed a grammar for label sequences that can be realized

as simple rectilinear polygons.

Vijayan and Wigderson [VW85] considered the problem of efficiently drawing rectilinear
graphs, of which rectilinear polygons are a special case, using an edge labeling that is equivalent
to a turn sequence in the case of paths and cycles.

In graph drawing, the standard approach to drawing a graph of maximum degree 4

orthogonally (that is, with rectilinear edges) is the topology–shape–metrics approach of

Tamassia [Tam87]:

(1) Compute a planar(ized) embedding, that is, a circular order of edges around each

vertex that admits a crossing-free drawing;

136

Introduction Section 7.1

Table 7.1: Summary of our results.

Type of sequences Minimum area Min. bounding box Minimum perimeter

general NP-hard NP-hard NP-hard
x-monotone O(n4) O(n3) O(n2)
xy-monotone O(n) O(n) O(n)

(2) compute an orthogonal representation, that is, an angle sequence for each edge and an

angle for each vertex;

(3) compact the graph, that is, draw it inside a bounding box of minimum area.

Unless P = NP, Step (3) does not admit a PTAS for planar graphs, as shown by Patrig-

nani [Pat01], and it is inapproximable within a polynomial factor for non-planar graphs,

as shown by Bannister et al. [BES12]. Note that an orthogonal representation computed in

step (2) is essentially an angle sequence for each face of the planarized embedding, so our

problem corresponds to step (3) in the special case that the input graph is a simple cycle.

Another related work contains the reconstruction of a simple (non-rectilinear) polygon

from partial geometric information. Disser et al. [DMW11] constructed a simple polygon

inO(n3 log n) time from an ordered sequence of angles measured at the vertices visible from

each vertex. The run time was improved toO(n2), which is optimal in the worst-case [CW12].

Biedl et al. [BDS11] considered polygon reconstruction frompoints (instead of angles) captured

by laser scanning devices. Very recently, Asaeedi et al. [ADA18] encloses a given set of points

by a simple polygon whose vertices are a subset of the points and that optimizes some criteria

(minimum area, maximum perimeter or maximum number of vertices). The vertex angles

are constrained to lie below a threshold.

Our Contribution. First, we show that finding a minimum polygon that realizes a given

angle sequence isNP-hard for any of the threemeasures: bounding box area, polygon area, and

polygon perimeter; see Section 7.2. This hardness result extends the one of Patrignani [Pat01]

and settles an open question that he posed. We note that in a previous abstract [EFK+16], on

which this chapter is based, there were some inaccuracies in our proof that now have been

addressed.

In this chapter, we also give efficient algorithms for special types of angle sequences,

namely xy- and x-monotone sequences, which are realized by xy-monotone and x-monotone

polygons, respectively. For example, Figure 7.1 depicts an x-monotone polygon realizing the x-
monotone sequence LLRRLLRLLRLRLLRLRLLR. Our algorithms for these angle sequences

minimize the bounding box and the area (Section 7.3) and the perimeter (Section 7.4). For

an overview of our results, see Table 7.1. Throughout this chapter, a segment is always an
axis-aligned line segment.

137

Chapter 7 Minimum Rectilinear Polygons for Given Angle Sequences

7.2 NP-Hardness of the General Case

NP

P

In contrast to the special cases that we efficiently solve in later sections, the general case

of our problem turns out to be NP-hard. In two steps, we show NP-hardness for all three
objectives: minimizing the perimeter of the polygon, the area occupied by the polygon, and

the area of the bounding box. First, in Section 7.2.1, we consider the base problem defined

below (Definition 7.1) from whose NP-hardness we then derive the three desired results in

Section 7.2.1.

The setting of the base problem is a little different from the general case. Given an angle

sequence S, we do not look for a polygon that realizes it while minimizing one of the three

objectives, but for a polyline that lies within some given rectangle. We say that a (simple

rectilinear) polyline P realizes S if we can walk along P from one of its endpoints to the other

one and observe exactly the same angle sequence as S. Note that the endpoints of P do not

have angles, hence, a polyline that realizes S has ∣S∣ + 2 vertices (including its endpoints)
and ∣S∣ + 1 edges. Furthermore, if all edges of P have unit length, then peri(P) = ∣S∣ + 1. For
polylines in this section, we define ∣P∣ as the number of inner vertices of P, that is, ∣P∣ = ∣S∣.
Throughout the section, we will interchangeably use the names of angle sequences to refer to

fixed polylines realizing them. For example, peri(S) would denote the perimeter of a polyline

realizing S that we fixed before.

Definition 7.1 (FitBoundingBox). An instance ⟨S ,W ,H⟩ of FitBoundingBox consists of

an angle sequence S and positive even integersW andH. A feasible drawing of S (with respect
toW and H) is a simple rectilinear polyline P realizing S within an axis-parallel rectangle of

widthW + 10 and height H + 10 such that the first and last edge of P are horizontal and such

that P can be extended to a simple polygon (not necessarily within the rectangle) by connecting

its endpoints with a simple rectilinear polyline. An instance is called a no-instance if there
is no feasible drawing of S. An instance is called a yes-instance if there is a feasible drawing
of S within an (even smaller) axis-parallel rectangle R of widthW and height H such that the

first vertex of P lies in the upper-left corner of R and the last vertex of P lies in the lower-right

corner of R. An instance is valid if it is a yes- or a no-instance (note that not every instance is

valid). The problem is to decide whether a given valid instance of FitBoundingBox is a yes-

or a no-instance.

The “gap” between yes- and no-instances will help us to differentiate among them in our

hardness proof: To classify a valid instance as a yes-instance, it suffices to show that it admits

a feasible drawing, and, similarly, to classify it as a no-instance, it suffices to show that it does

not admit a feasible drawing in the smaller (W ×H)-rectangle.

7.2.1 NP-Hardness of FitBoundingBox

To show the NP-hardness of FitBoundingBox, we reduce from 3-Partition: Given a

multiset A of 3m integers a1 , . . . , a3m with ∑3m
i=1 a i = Bm, is there a partition of A into m

subsets such that, for each subset A′,∑a∈A′ a = B? It is known that 3-Partition is NP-hard
even if B is polynomially bounded in m and, for every a ∈ A, we have B/4 < a < B/2, which
implies that every subset must contain exactly three numbers [GJ79].

138

NP-Hardness of the General Case Section 7.2

W ≈ m ⋅ 2ρ

H ≈ (B + 6)ρ

≈ 2ρ
≈ 2ρ

≈ (a i + 2)ρ
?

b i

Figure 7.2: Overview of our reduction form = 3. The boxes are shaded.

Equivalently, we can ask the question whether we can pack 3m boxes, where the i-th box

has width 1 and height a i , into a rectangle of width m and height B. The problem remains the

same if, for some ρ, we scale the boxes and the rectangle horizontally by 2ρ and vertically by ρ.
Assuming B/4 < a i , the vertical space allows at most three boxes above each other. Hence, the

problem remains equivalent even if we further add 2ρ to the height of each box and 3 ⋅ 2ρ to the
height of the rectangle. Thus, the question is, can we pack 3m boxes b1 , . . . , b3m , where b i has
width 2ρ and height a iρ + 2ρ, into a rectangle of widthW ≈ m ⋅ 2ρ and height H ≈ (B + 6)ρ?
See Fig. 7.2 for an overview of our reduction. We create an angle sequence S that contains,
for each b i , a subsequence called a snail whose minimum bounding box is b i . By ensuring
that the snails are “more or less” disjoint, 3-Partition reduces to FitBoundingBox via the

following question: Can we draw S inside a (W ×H)-rectangle?
Theorem 7.1. FitBoundingBox is NP-hard.

Wenow prove Theorem 7.1. Let cW and cH be sufficiently big even constants that we discuss

at the end of the proof. Given an instance for 3-Partition as defined above, we set ρ = 4B3m7

and assume that m is larger than a sufficiently big constant depending on cW and cH . We set

W ′ = 2mρ + cWm2

and

H′ = (B + 6)ρ + cHm
and chooseW =W ′ − 10 and H = H′ − 10 for our (W ×H)-rectangle R (note thatW and H
are even as desired). In the following, we create step by step an angle sequence S for Fit-

BoundingBox consisting of 3m subsequences, called snails, each corresponding to an (inte-

ger) number a i in A. We will show that ⟨S ,W ,H⟩ is a valid instance with the property that it

is a yes-instance of FitBoundingBox if and only if the 3-Partition instance is a yes-instance.

The number of angles in S (as well as the time to construct S) will be polynomially bounded

in m.

Before we define S, let us consider the snails. For a i ∈ A, a snail has the property that
if we draw it with minimum perimeter, then its bounding box has roughly width 2ρ and

height (a i + 2)ρ. Observe thatW provides enough width to draw m snails next to each other

along a horizontal line, but not more than that (for sufficiently big values of m). Further-

more, H provides enough height to draw three snails above each other (along a vertical line)

if and only if the corresponding numbers in A add up to at most B, provided m is sufficiently

139

Chapter 7 Minimum Rectilinear Polygons for Given Angle Sequences

a iρ + 2(a i + 2)ρ

2ρ

outerLadderini

outerLadderoutiinnerDoubleLadderi

spiralouti

spiralini

Figure 7.3: A compact drawing of snaili , i ∈ {1, . . . , 3m}. Here, ρ = 4. The shaded area depicts the exterior of the
polygon that one obtains by interconnecting the endpoints of S. Note that innerDoubleLadderi consists of two
overlapping inner ladders (bold gray and bold dashed) that we define later.

big; see Fig. 7.2. By forcing that, in any feasible drawing of S, each snail is drawn with roughly

minimum perimeter, we will get the property that all the bounding boxes of the snails are

basically disjoint and drawn in one of m “columns” with three boxes per column. Hence,

given the heights of the boxes, this will allow us to directly “read” a solution to the underlying

3-Partition-instance.

We now describe a snail in more detail. Let a i be the corresponding number in A. The

“heart” of a snail is its inner double ladder. This is a y-monotone sequence built by alternating

two left and two right turns, and it has minimum width 1 and minimum height a iρ + 2. It
consists of two overlapping inner ladders that we define later. The inner double ladder is placed

in the center of two spirals that wind around it approximately ρ times (later we’ll give a precise

definition of winding that depends on the number of horizontal spiral edges); see Fig. 7.3.

The bounding box of the spirals will have width at least 2ρ and height at least (a i + 2)ρ. In
order to ensure that a spiral is winding around the inner double ladder, each spiral will end

with a so called outer ladder, a combination of a y- and an x-monotone sequence of some

large minimum length. A spiral winding around its outer ladder is thus much longer than

when winding around its inner ladder. Hence, it consumes many more grid points than in

the other case. By ensuring that the number of grid points in a (W ×H)-rectangle (and even

in a (W ′ ×H′)-rectangle) is just big enough for every spiral being drawn with its minimum

perimeter (that is, winding around its inner double ladder), there won’t be enough free grid

points for any spiral to be drawn in a “bad way” (several times around the outer ladder). We

140

NP-Hardness of the General Case Section 7.2

will use the following upper bound on the number of grid points in a (W ′ ×H′)-rectangle
(that also bounds its areaW ′ ⋅H′):

(W ′ + 1) ⋅ (H′ + 1) = (2mρ + cWm2) ⋅ ((B + 6)ρ + cHm) +W ′ +H′

≤ 2(B + 6)mρ2 + cWHBm2ρ (7.1)

where cWH is some sufficiently large constant.

Formally, we define the angle sequence snaili . The superscript “in” denotes that the re-

spective angle sequence comes in S before the inner double ladder, whereas the superscript
“out” denotes that the sequence comes after the ladder. (Recall that the first and last vertex of

a polyline have no angles and are omitted in the angle sequence.) Note that snaili has exactly

two more right turns than left ones.

snaili = (outerLadderini) R (spiralini)
R (innerDoubleLadderi) L
(spiralouti) L (outerLadder

out
i) ,

where

outerLadder
in
i = LR(RLLR)ρR(LRRL)(a i+2)ρ/2+3R ,

spiral
in

i = R2ρ ,

innerDoubleLadderi = (RRLL)a i ρ/2+1 ,

spiral
out

i = L2ρ−2 ,

outerLadder
out
i = L(LRRL)(a i+2)ρ/2+1L(RLLR)ρ .

Independently of how we complete our definition of the whole angle sequence S, as long
as all spiral drawings are rotated such that the inner double ladders start (and end) with

horizontal edges oriented to the right (as in Fig. 7.3), we can prove the following, using a

number of intermediate lemmas.

Proposition 7.1. Given a feasible drawing of S, we can efficiently decode a solution to the
underlying 3-Partition instance. In other words, if ⟨S ,W ,H⟩ is a yes-instance, then the
underlying 3-Partition instance is a yes-instance.

Fix some feasible drawing of S inside an axis-aligned (W ′ ×H′)-rectangle R′. (Recall that
we haveW ′ =W + 10 and H′ = H + 10). Let κ = 1/(Bm2), and let ι = (1 − 3κ). Note that for
increasing m, κ gets arbitrarily close to 0 and ι arbitrarily close to 1. Let the center of an inner

double ladder denote the center point of its bounding box. For 1 ≤ i ≤ 3m, let R i be the box of

width 2ιρ and height 2ιρ + a iρ centered at the center of innerDoubleLadderi . LetR denote

the set of all these boxes.

Observe that, by definition of ι, a box R i has width slightly smaller than 2ρ and height

slightly smaller than (a i + 2)ρ. Later we use this fact to prove that these boxes are pairwise
disjoint if the drawing is feasible. If the boxes were slightly bigger, they possibly might overlap.

141

Chapter 7 Minimum Rectilinear Polygons for Given Angle Sequences

We now show a special case of Proposition 7.1. Later we will see that we can always assume

this “special case”, which will prove Proposition 7.1.

Lemma 7.1. If all boxes in R are pairwise disjoint and lie completely inside R′, then we can
efficiently decode a solution to the underlying 3-Partition instance.

Proof. We place the origin in the upper-left corner of R′ and, for 1 ≤ j ≤ m, we place a vertical

line at x-coordinate (2 j − 1)ρ.
First, suppose that there is a box R i ∈ R not intersected by any of these vertical lines.

Then R i lies between two vertical lines as it is too wide (2ιρ) to fit before the leftmost or after

the rightmost vertical line (which offer only ρ and ρ + cWm2 horizontal space, respectively).

Recall that the distance between two vertical lines is 2ρ. Let j be the number of vertical lines

to the left of R i . Observe that the distance between the left edge of R i and the j-th vertical

line from the left is at most 2ρ − 2ιρ = 2(1 − ι)ρ = 6κρ. Hence, the distance between the left

edge of R i and the left edge of R′ is at most (2 j − 1 + 6κ)ρ. Consider any horizontal line that
intersects R i . The number of boxes to the left of R i intersected by this line is at most j − 1
since j boxes have total width

j ⋅ 2ιρ = 2 j(1 − 3κ)ρ = (2 j − 6 jκ)ρ > (2 j − 1 + 6κ)ρ .

By repeating the same argument for the right side of R i , we observe that any horizontal

line intersecting R i intersects at most m − 1 boxes including R i . Consider the parts of such

a line not covered by the boxes. Their total length inside R′ is at leastW ′ − (m − 1)2ιρ ≥ 2ρ.
Given that R i has height 2ιρ + a iρ ≥ 2ρ, taking the integral over the uncovered parts of all

horizontal lines intersecting R i gives us 2ρ ⋅ 2ρ = 4ρ2 as a lower bound on the total area to

the left and to the right of R i (inside R′) that is not covered by the boxes. However, this is a

contradiction as the total area of R′ is

2(B + 6)mρ2 + cWHBm2ρ

by Inequality 7.1, and the total area occupied by all the boxes is at least

3m
∑
i=1

2ιρ ⋅ (2ιρ + a iρ)

=
3m
∑
i=1

4ι2ρ2 + 2ιρ2
3m
∑
i=1

a i

= 12m(1 − 6κ + 9κ2)ρ2 + 2Bm(1 − 3κ)ρ2

≥ 2(B + 6)mρ2 − 72mκρ2 − 6Bmκρ2

≥ 2(B + 6)mρ2 − 78ρ2/m

implying an upper bound of cWHBm2ρ + 78ρ2/m ≤ 79ρ2/m (if ρ is sufficiently large) on the

total area not covered by the boxes. This, however, is less than the area of 4ρ2 that we lose to
the left and to the right of R i if R i is not intersected by a vertical line. Consequently, each box

inR is intersected by one of the m vertical lines.

142

NP-Hardness of the General Case Section 7.2

1

Figure 7.4: Twoparallel edgeswith the same orientationmust have distance at least 2. The interior of the polygon
is shaded.

Next, assume that each vertical line intersects exactly three boxes of R. These three

boxes correspond to three numbers in A, so each vertical line corresponds to a subset of A of

cardinality 3. Since there are 3m boxes and m vertical lines, and since each box is intersected

by at least one vertical line, these subsets form a partition of the numbers in A. We claim that in

each such subset A′, the numbers sum up to at most B. This holds as otherwise∑a∈A′ a ≥ B + 1
and, thus, the total height of the three corresponding boxes would be at least

∑
a∈A′
(2ιρ + aρ) ≥ 6ιρ + (B + 1)ρ > (B + 6)ρ + cHm = H′ (7.2)

(by using ι > 5/6 + 1/7 and 6/7ρ > cHm), which would be strictly greater than the height of R′;
a contradiction. Hence, given the total sum Bm of all numbers in A, the numbers of each

subset sum up to exactly B. Our partition is therefore a feasible solution to the underlying

3-Partition instance.

Finally, suppose that a vertical line intersects four boxes. Recall that for any a i in Awe

have B/4 < a i < B/2. Hence, the numbers corresponding to these four boxes sum up to a

value strictly larger than B. By a similar calculation as in Inequality (7.2), we can show that

the total height of the four boxes is strictly greater than the height of R′; a contradiction.

We will now show that the boxes inR are indeed pairwise disjoint and lie inside R′. We

begin with a simple observation about feasible drawings of S.

Observation 7.1. In a feasible drawing of S, if two edges are oriented in the same way and their
projections on a line parallel to both edges overlap, then their distance is at least 2.

Proof. By assumption, the endpoints of S can be appropriately connected to obtain a drawing

of a simple polygon. The orientation of an edge determines on which side the interior of the

polygon lies. Now consider two edges that are oriented in the same way and whose projections

on a line parallel to both edges overlap; see Fig. 7.4. If the distance of the two edges was 1

then, for one of the two edges, the interior of the polygon would lie on both of its sides; a

contradiction.

To facilitate the arguments in the following proofs, we introduce several notions. An inner

double ladder consists of two overlapping inner ladders that we obtain by either removing

the first two or last two vertices from it; see Fig. 7.3. Thus, each inner ladder is incident to

one spiral and its minimum height is a iρ + 1 where a i is the corresponding number in A. In
the context of a fixed spiral, the inner ladder refers always to the inner ladder incident to the

143

Chapter 7 Minimum Rectilinear Polygons for Given Angle Sequences

exi−1

exi

exi+1

e′ e
≥ 2

(a) exi−1 is closer to exi than exi+1 to exi .

exi−1

e′

exi+1

e≥ 2

exi
(b) exi−1 and exi+1 have the same distance to exi .

Figure 7.5: At least one of both, exi−1 and exi+1 , is shorter than exi . The edges e and e′ (highlighted) are parallel
and have the same orientation. Therefore, their distance is at least 2.

spiral. Furthermore, we use the following notation concerning the edges of the (fixed) spiral.

Let ρ′x and ρ′y denote the number of its horizontal and vertical edges, respectively (ρ′x = ρ′y − 1
and ρ′y ∈ {ρ, ρ + 1}). Let z ∈ {x , y} and consider all edges of the spiral parallel to the z-axis.
We define two orders on the edges along the spiral. In the inner order, the first edge is incident
to the inner ladder, in the outer order, the first edge is incident to the outer ladder. For a given
order, let ez1 , . . . , ezρ′z denote the z-axis-parallel spiral edges in this order and let defLadder

denote the ladder defining the order. For an edge ezi , we call i its level with respect to the order,
and denote its length by ∥ezi ∥.

Throughout the proof, we fix a spiral and a z ∈ {x , y}. Note that all claims shown hold for

any spiral and coordinate axis.

Lemma 7.2. Let 1 < i < ρ′z . We have ∥ezi ∥ ≥ ∥ezi−1∥ + 2 or ∥ezi ∥ ≥ ∥ezi+1∥ + 2.

Proof. Assume that ezi−1 has the smallest distance to ezi among {ezi−1 , ezi+1}; see Fig. 7.5. We

have ∥ezi−1∥ < ∥ezi ∥, as otherwise ezi−1 would intersect the edge e connecting ezi with ezi+1; a
contradiction to the drawing being simple. Furthermore, consider the edge e′ that is incident
to ezi−1 and not incident to ezi . The edges e and e′ are parallel and oriented in the same way.

Since ezi−1 has the smallest distance to ezi among {ezi−1 , ezi+1}, the projection of e′ on the line

through e is contained in e. Thus, by Observation 7.1, the distance between e and e′ is at least 2;
hence, ∥ezi ∥ ≥ ∥ezi−1∥ + 2. By repeating the same argument for the case that ezi+1 is closer to ezi
than ezi−1, the claim follows.

Note that both inequalities of Lemma 7.2 can be fulfilled for at most one edge since, in

a cascading manner, it forces all other edges to satisfy exactly one of the two inequalities.

Consequently, one of the following three cases holds (see Fig. 7.6).

Corollary 7.1. One of the following three cases holds:

1. ∥ez1 ∥ < ⋅ ⋅ ⋅ < ∥ezρ′z−1∥, or

2. ∥ez2∥ > ⋅ ⋅ ⋅ > ∥ezρ′z∥, or

144

NP-Hardness of the General Case Section 7.2

3.2.1.

Figure 7.6: The three cases of Corollary 7.1 (gray: ex
1
, e y

1
; bold: exi , e

y
i of case (3)).

3. there is an i with 1 < i < ρ′z − 1 such that

∥ez1 ∥ < ⋅ ⋅ ⋅ < ∥ezi ∥ and ∥ezi+1∥ > ⋅ ⋅ ⋅ > ∥ezρ′z∥ holds.

If ∥exi ∥ > ∥exi−1∥, then we say that the spiral winds i times around defLadder. Although we

use this definition only for horizontal edges, note that ∥exi ∥ > ∥exi−1∥ implies ∥e yi ∥ > ∥e
y
i−1∥.

Observation 7.2. Let bx and by denote the width and height of the bounding box of defLadder,
respectively. Let 1 < i ≤ ρ′z . If ∥ezi ∥ ≥ ∥ezi−1∥ + 2, then ∥ezi ∥ ≥ 2i + bz .

Proof. By Corollary 7.1 and Lemma 7.2, we have ∥ezj ∥ ≥ ∥ezj−1∥ + 2 for 1 < j ≤ i. Hence, we
have ∥ezi ∥ ≥ ∥ez1 ∥ + 2(i − 1). We now show ∥ez1 ∥ ≥ bz + 2 and the claim will follow.

Let e1 , e2 , e3 , e4 denote the first four edges of the spiral in the order defined by defLadder;
see Fig. 7.7a. Note that e1 is vertical, so e y1 = e1 and ex1 = e2. Recall ∥e3∥ = ∥e

y
2
∥ > ∥e y1 ∥ = ∥e1∥.

Thus, by monotonicity, defLadder lies completely inside the bounding box of e1 and e2. Con-
sider any horizontal edge of defLadder with smallest distance to e2. Observe that in the case

of the outer ladder as well as in the case of the inner ladder, this edge lies on the border of

the bounding box of defLadder and has the same orientation as e2. Furthermore, observe

that the same holds for e3: Any vertical edge of defLadder with smallest distance to e3 lies on
the border of the bounding box of defLadder and has the same orientation as e3. Hence, by
Observation 7.1, the bounding box of defLadder has distance at least 2 to e2 and to e3. Now,
observe that the height by of this bounding box and its distance to e2 sum up to exactly ∥e1∥.
Thus, ∥e1∥ ≥ by + 2 and, similarly, ∥e2∥ ≥ bx + 2.

Definition 7.2. For 1 ≤ i ≤ 3m, we define for every spiral edge e belonging to snaili its lower
value as

• low(e) = 2 j if e is horizontal and

• low(e) = 2 j + a iρ otherwise

where j is the level of e with respect to the inner order. We denote by lowSpirals the sum of

the lower values over all edges of all spirals.

Now we show that the lower values of the edges are proper lower bounds on their lengths.

145

Chapter 7 Minimum Rectilinear Polygons for Given Angle Sequences

Lemma 7.3. In any feasible drawing, every spiral edge e has length at least low(e) and the total
perimeter of all spirals is at least lowSpirals ≥ 2(B + 6)mρ2.
Proof. Consider any spiral edge e and its spiral belonging to snaili . For a moment, consider

any order of the spiral edges and let bx and by denote the width and height, respectively, of

the bounding box of the ladder defining the order. In case of the inner order, we have

bx ≥ 1 and by ≥ a iρ ,

and in case of the outer order, we have

bx ≥ 2ρ′x and by ≥ 2ρ′y + a iρ .

To see the latter case, observe that the x-monotone parts of outerLadder
in
i and outerLadder

out
i

consist of at least 2ρ horizontal edges, and the y-monotone parts consist of at least

(a i + 2)ρ + 2 = 2(ρ + 1) + a iρ

vertical edges.

Thus, in any case, we have

bz ≥ low(e) − 2 j
where j is the level of e in the respective order and z is the axis to which e is parallel. If,
for one of the two orders, we have ∥ezj ∥ ≥ ∥ezj−1∥ + 2 where ezj = e, then Observation 7.2

implies ∥ezj ∥ ≥ 2 j + bz ≥ low(e). Otherwise, Lemma 7.2 implies that e is the first edge in one

of the two orders and we have ∥ez1 ∥ < ∥ez2∥ + 2 in that order (where ez1 = e). Fix this order
and let e1 , . . . , e4 denote the first four edges of the spiral in the order when starting at e
(e1 = e = ez1 , e3 = ez2 , and, by assumption, ∥e1∥ < ∥e3∥ + 2); see Fig. 7.7b. Let e0 be the edge
before e1 (either belonging to defLadder or being adjacent to defLadder). Observe that e0
has to stop before e3 as otherwise it would either intersect e3 (if ∥e3∥ ≥ ∥e1∥) or lie opposite
to e4 with distance 1 (if ∥e3∥ = ∥e1∥ − 1) and thus contradict Observation 7.1. Therefore, by

monotonicity, defLadder lies completely in the bounding box of e1 and e2. As in the proof of

Observation 7.2, this containment implies ∥e1∥ ≥ bz + 2 ≥ low(e).
We are ready to show the second claim. The perimeter of the spiral is at least

ρ′x
∑
j=1

low(exj) +
ρ′y
∑
j=1

low(e yj) ≥
ρ−1

∑
j=1

2 j +
ρ

∑
j=1
(2 j + a iρ)

= 2

ρ−1

∑
j=1

2 j + 2ρ + a iρ2 = (2 + a i)ρ2 .

Recall that∑3m
i=1 a i = Bm holds and that, for each a i ∈ A, there are two spirals (namely spiral

in

i
and spiral

out

i). Thus, summing up over all spirals, we obtain

lowSpirals ≥
3m
∑
i=1

2 ⋅ (2 + a i)ρ2 = 2(B + 6)mρ2 .

146

NP-Hardness of the General Case Section 7.2

e2

e4

e3
e1

= bx

= by

≥2

(a) The spiral edges e2 and e3 are longer by 2 than the respec-
tive bounding box edges of the ladder (lengths bx and by).

e2

e4

e3e1

e0 ≤ 1

(b) The edge e0 has to make a turn before
reaching e4 .

Figure 7.7: The spiral winds around the ladder (highlighted). By monotonicity, the ladder cannot leave the
bounding box of e1 and e2 .

Definition 7.3. For 1 ≤ i ≤ ρ′x and the inner order, we define the spiral boxBBi as the bounding

box of exi and e yi+1. For i ≥ 3, the entrance of BBi is defined as the area between exi−1 and exi+1
(that is, as the bounding box of exi−1 and its vertical projection onto exi+1); see Fig. 7.8a. The

height of the entrance is the distance between exi−1 and exi+1. We call BBi closed if and only if

its entrance has height 2. If BBi is closed, we say that the spiral is closed at level i.

By Observation 7.1, the height of an entrance cannot be smaller than 2. Also observe that a

spiral entering a spiral box of another spiral has to do so through the entrance. We formulate

this observation as follows.

Observation 7.3. Consider a spiral box BBi of a spiral. If there is a polyline distinct to the spiral
containing a point inside and outside BBi , then it contains a horizontal line segment intersecting
the entrance of BBi ; see Fig. 7.8a.

Recall that we set κ = 1/(Bm2); ι = 1 − 3κ; and ρ = 4B3m7.

Lemma 7.4. For every spiral, there is a j with ιρ + 2 ≤ j ≤ ιρ + κρ such that the spiral is closed
at level j and winds at least j + κρ times around the inner ladder.

Proof. Consider any spiral. We first show the second claim: If the spiral winds fewer than

ιρ + 2κρ = ρ − κρ

times around the inner ladder, then it winds at least κρ times around the outer ladder. Recall

that the width of the bounding box of the outer ladder is at least 2ρ′x . Thus, by Lemma 7.2 and

Observation 7.2, for any spiral edge exi with 1 < i < κρ in the outer order, we have

∥exi ∥ ≥ 2ρ′x + 2i ≥ 2(ρ′x − i + 1) + i = low(exi) + i .

147

Chapter 7 Minimum Rectilinear Polygons for Given Angle Sequences

entrance

exi−1

exi+1

e yi+1

exi

(a) The dashed polyline contains a point outside and in-
side BBi , therefore it has to go through the entrance.

exi+1

L

L

exi

≥ 2

exi−1
e yi+1

(b) The vertical dashed segment forces the
entrance to have height at least 3.

Figure 7.8: The shaded area depicts the entrance of the spiral box BBi .

Hence, the perimeter of the drawing is at least

lowSpirals +
κρ−1

∑
i=2

i ≥ 2(B + 6)mρ2 + (κρ − 2)2/2

= 2(B + 6)mρ2 + (κ2ρ2 − 4κρ + 4)/2
= 2(B + 6)mρ2 + κ2ρ2/4 + (κ2ρ2/2 − 4κρ + 4)/2
≥ 2(B + 6)mρ2 + (κ2ρ)ρ/4
= 2(B + 6)mρ2 + Bm3ρ .

However, this is strictly greater than 2(B + 6)mρ2 + cWHBm2ρ (recall that cWH is a con-

stant), which again, for a sufficiently big constant value of cWH , is greater than the total

number (W ′ + 1) ⋅ (H′ + 1) of grid points offered by R′ (see Inequality 7.1); a contradiction.
Next, we show the first claim. Consider the inner order. If the spiral were not closed at

any level between ιρ + 2 and ιρ + κρ, then, for 1 ≤ i ≤ κρ − 2, we have

∥e yιρ+i+2∥ ≥ ∥e
y
ιρ+i+1∥ + 3

≥ ∥e yιρ+2∥ + 3i

≥ low(e yιρ+2) + 3i
= low(e yιρ+i+2) + i .

Again, the perimeter of the drawing is larger than (W ′ + 1) ⋅ (H′ + 1); a contradiction.

Let j be as in Lemma 7.4. We call BB j the closing box of the respective spiral.

Corollary 7.2. For 1 ≤ i ≤ 3m, the box R i is contained in each of the closing boxes of spiralini
and spiralouti .

148

NP-Hardness of the General Case Section 7.2

Proof. Recall that the closing box of any of the two spirals is closed at some level j ≥ ιρ + 2.
Thus, it contains at least ιρ + 2 vertical and ιρ + 2 horizontal edges of the spiral in its interior,

where at least ιρ/2 + 1 many of them are lying on each side (left and right, above and below)

of the inner double ladder. Recall that, at each of the four sides, the distance between any two

neighboring parallel edges is at least 2 as they have the same orientation (Observation 7.1).

Hence, the center of the inner double ladder lies at a distance of at least ιρ to the left and to

the right edge of the closing box, and at a distance of at least ιρ + a iρ/2 to the top and to the

bottom edge of the closing box. Recall that R i has width 2ιρ and height 2ιρ + a iρ. Thus, R i
fits into the closing box when centered at the center of the inner double ladder.

Lemma 7.5. The boxes inR are pairwise disjoint and lie inside R′.

Proof. The second statement follows from the fact that, by Corollary 7.2, all boxes lie inside

spirals and that all spirals lie inside R′. To show the first statement, suppose for a contradiction

that two boxes R i and R j intersect. Thus, by Corollary 7.2, the closing boxes b i and b j
of spiral

out

i and spiral
out

j , respectively, intersect each other. This intersection implies that

one of the closing boxes, say b i , contains a point of the spiral corresponding to the other

closing box, here b j , in its interior. Consider the entrance of b i . Suppose that a horizontal
line segment s of spiraloutj intersects the entrance. By Observation 7.1, s can be oriented only

towards the entrance. But then s ends with a left turn inside b i , forcing the entrance to be
higher than 2 (see Fig. 7.8b). This contradicts that the entrance is closed.

By Observation 7.3, spiral
out

j cannot contain any point outside b i . Consequently, spiraloutj
lies completely inside b i . Hence, the horizontal edge e of spiralouti spanning b i is longer than
the longest horizontal edge of spiral

out

j whose length is at least 2ρ′x by Lemma 7.3. Since, by

Lemma 7.4, the level of e is at most ιρ + κρ ≤ ρ′x − κρ, e is longer by at least 2κρ than its lower

value. Also by Lemma 7.4, spiral
out

i winds at least κρ times around b i . Thus, for at least κρ
edges, it holds that their length is larger by at least 2κρ than their lower values. Thus, the

perimeter of the drawing is at least

lowSpirals + 2(κρ)2 ≥ 2(B + 6)mρ2 + 8Bm3ρ .

However, this is strictly greater than the total number of grid points in R′ (see Inequality 7.1);
a contradiction.

Proposition 7.1 follows immediately from Lemmas 7.1 and 7.5. We will now show the other

direction of our reduction.

Proposition 7.2. If the 3-Partition instance is a yes-instance, then there is a feasible drawing
of S within an axis-parallel rectangle R of width W and height H such that, for the polyline P
realizing S, the first vertex of P lies on the upper-left corner of R and the last vertex of P lies in
the lower-right corner of R, that is, ⟨S ,W ,H⟩ is a yes-instance.

Proof. Before we complete our definition of S, let us take another look at the snails. As long
as we neglect on how the snails are embedded in S, we can observe that every snaili can be

drawn inside a bounding box of width 2ρ +O(1) and height (a i + 2)ρ +O(1) such that the

first segment of the inner double ladder is horizontal and oriented to the right; see Figs. 7.3

and 7.9. The idea is now as follows. We subdivide R intom columns of width 2ρ +Θ(m) each.

149

Chapter 7 Minimum Rectilinear Polygons for Given Angle Sequences

1

2
3
4
5

6
7

8

9

connectors
start snail

2ρ + O(1)1

5

3

7

4

9

2

8

6

O(m)

(a1 + 2)ρ + O(1)

end

O(m)

Figure 7.9: The polyline realizing S connects the upper-left corner (start) of the (W × H)-rectangle R with the
lower-right one (end). It consists of nine snails enumerated from 1 to 9. For readability, we shaded one part of
the rectangle separated by the polyline in light gray, the other part in dark gray. The widths of all spirals, when
tightly wound around their inner ladders, are the same. Their heights depend on the corresponding numbers in
the 3-Partition instance. Here,m = 3. All snails are packed into three columns, each one accommodates three
snails.

In each column, we will draw three snails as described above, one above another. The way we

choose which snail to draw in which column depends on our solution to the 3-Partition

instance. Let (A j)mj=1 be our partition of Awhere∑a∈A j a = B for every A j . In the j-th column

from the left, we draw the three snails corresponding to the three numbers in A j . We draw

them such that their right border is aligned to the right border of the column. Hence, the

left part of the column of width Θ(m) is unused. As the vertical order of the three snails, we
choose the order of the corresponding numbers in the input. That is, for two snails snaili
and snailk belonging to the same column, snaili is drawn above snailk if and only if i < k.
Note that such a drawing fits into R: The total height of the three spirals in each column is

only (B + 6)ρ +Θ(1). Hence, the total height of the unused space in the columns is Θ(m).
We will use the unused space to the left and between the snails to interconnect them.

This will give us the complete angle sequence S. We will do it by modifying our drawings

of the snails by redrawing their outer ladders to connect the snails to the left edge of R; see
the snail in Fig. 7.9. More precisely, only the x-monotone part of the outer ladders leaves the

current bounding box of the snails. We call this part connector. At the left edge of R, these
connector pairs will be ordered from top to bottom relative to the order of the corresponding

numbers in A. For any connector pair, the connector oriented towards the snail will be drawn

above the other one. Consecutive pairs will be connected by a vertical edge. The bottommost

connector is connected to a vertical and then a horizontal line segment allowing us to reach

the lower-right corner of R. Observe that a connector consists of at least ρ up-and-down

curves, hence, of enough curves to bypass all the snails encountered in the at most m − 1
columns between the left edge of R and the spiral it is connected to. We are ready to complete

the definition of S.

S = RL (snail1LL) . . . (snail3mLL) .

150

NP-Hardness of the General Case Section 7.2

Finally, observe that we can draw the connectors such that the total height of all connectors

going through a column below or above the snails isO(m). Since a connector does not need
to change its y-position more than once in each column (in order to bypass or to connect

to a snail), a total extra width of O(m) per column is sufficient to allow the connectors to

change their y-positions (which happens in each column to the left of the snails). Hence,

we choose the constants cW and cH inW = 2mρ + cWm2 − 10 and H = (B + 6)ρ + cHm − 10
big enough such that R gives enough space to draw S in the way described above. Also note

that our drawing is feasible as it can be easily extended to a simple polygon by appropriately

connecting its endpoints around R. We conclude that ⟨S ,W ,H⟩ is a yes-instance.

7.2.2 Extension to the Optimization Versions

In this section, we show for each of the three objectives (minimum perimeter, area, and

bounding box) that it is NP-hard to draw a rectilinear polygon of minimum cost that real-

izes a given angle sequence. Our proof is a reduction from FitBoundingBox. Given an

instance ⟨S ,W ,H⟩ of FitBoundingBox, we define an angle sequence T (with ∣T ∣ polynomial

in ∣S∣) and, for each objective, a threshold value Υ such that T can be drawn with cost at

most Υ (with respect to the objective) if and only if S is a yes-instance. We consider only

drawings that are feasible in the general case (without the restrictions of Section 7.2.1), that is,

a simple rectilinear polygon or polyline on the grid realizing a given angle sequence.

At first glance, one might think that FitBoundingBox directly implies NP-hardness for
the objective of minimizing the area of the bounding box. However, the question of whether

an angle sequence S can be drawn within a rectangle of width W and height H does not

directly translate to the question of whether S can be drawn in a rectangle of area W ⋅H.

For instance, suppose that S is a no-instance that we obtained by our reduction from 3-

Partition. Draw the snails of S as tight as possible below each other in the order of their

indices and connect them on the left side. Observe that such a drawing fits into a rectangle of

width 2ρ +O(1) and height (∑3m
i=1(a i + 2)ρ +O(1)) = (B + 6)mρ +O(m) (the variables are

defined as in Section 7.2.1). Hence, S fits into a rectangle of area even smaller thanW ⋅H.

Outline of the proof. We define T by simultaneously constructing a “reference drawing”

for the case that S is a yes-instance. It, roughly speaking, consists of two snail subsequences
with S in between, where each snail is formed by ladder and spiral subsequences similar to

Section 7.2.1. The notions spirals, snails and ladders throughout this section refer only to the

subsequences of T excluding S, unless otherwise mentioned. After defining the thresholds, we

use the reference drawing as a certificate in the first direction of the proof that a cheap drawing

exists if S is a yes-instance. In the second direction of the proof, we show, for each objective,

that if a drawing does not surpass the respective threshold Υ, then S is a yes-instance. For this,
we first observe that, in any drawing of T , certain subsequences (for instance, spirals) have

certain lower bounds on the cost of drawing them. We use these lower bounds to show that a

drawing respecting the threshold Υ has some special structure: If it doesn’t, then some part of

it is very expensive and, together with the lower bounds on the other parts, the total cost is

above the threshold; a contradiction. Generally speaking, T consists of two long spirals. Step

by step, we show that spiral edges are not much longer than certain lower bounds and that

spirals wind sufficiently enough in the “right” direction. This again will help us to observe

151

Chapter 7 Minimum Rectilinear Polygons for Given Angle Sequences

H

W 2

H+4

W + 5

R

3

(a) The ladder innerLadderout

(bold) starts at the lower-right
corner of R. Its first and last
edge (highlighted) have
lengths 2 and H + 4, respec-
tively. All other edges have unit
length. Its bounding box has
widthW + 5 and height H + 5.

H+7

W+7

R

2
(b) The spiral spiralout (bold)

starts at the endpoint
of innerLadderout and winds
around it with edge lengths
increasing in steps of 2.
The first two edges (high-
lighted) have lengthsW + 7
and H + 7, respectively.

h
R

w

h−4

w − 4

(c) The last two spiral edges (dashed)
have lengths w − 4 and h − 4, re-
spectively. outerLadderout (bold)
starts at the endpoint of the spiral,
and its bounding box has widthw
and height h. All but its first edge
(highlighted) have unit length.

Figure 7.10: The construction of snailout .

that the spirals interleave until the inner-most level. Together with the upper bounds on the

spiral edges, we will see that S cannot leave the center of the spirals and is closed in a box of

relatively small size, which implies that S is a yes-instance.

Definition of the instance T. Recall thatW and H are even. Without loss of generality,

we assume min{W ,H} > 5. Let

maxCenterCost = 2(W + 7)(H + 7)

and let

ρ = (maxCenterCost + 12)2 .
Finally, set

w =W + 2ρ + 11 and h = H + 2ρ + 11 .

We define T constructively by giving a drawing of two polylines, called snails, whose angle
sequences together with S form T .

We begin with the first snail that we call snail
out

. Place an axis-aligned rectangle R of

widthW and height H in the grid. Starting at its lower-right corner, draw a ladder around it,

as in Fig. 7.10a, such that the first edge (horizontal) has length 2, the last edge (vertical) has

length H + 4, and all the other edges have unit length, and the bounding box of the ladder

has widthW + 5 and height H + 5. We call the ladder innerLadder
out

. Formally,

innerLadder
out = L(LRRL) H

2 L(RLLR)W+4
2 L .

We continue the sequence by a left turn followed by a spiral, called spiral
out

, of 2ρ + 1 left
turns winding around the rectangle (and innerLadder

out
) in such a way that the first edge has

152

NP-Hardness of the General Case Section 7.2

lengthW + 7, the second edge has length H + 7, and the (i + 2)-th edge is longer by exactly 2

than the i-th edge; see Fig. 7.10b. Note that the spiral consists of ρ + 1 horizontal and ρ + 1
vertical edges. Thus, in our drawing, the last horizontal and vertical edges of spiral

out
have

the lengthsW + 7 + 2ρ = w − 4 and H + 7 + 2ρ = h − 4, respectively. Formally,

spiral
out = L2ρ+1 .

We finish the snail by a left turn and a following ladder, called outerLadder
out

. We draw the

ladder around the spiral such that all edges but the first one have unit length and the bounding

box of the ladder has width w and height h. The length of the first edge is w − 1; see Fig. 7.10c.
Formally,

outerLadder
out = L(RLLR) h−1

2 L(LRRL) w−3
2 LRL .

Summarized,

snail
out = innerLadder

out
L spiral

out
L outerLadder

out
.

In a similar way, we define the second snail snail
in
; see Fig. 7.11. The biggest difference is

that snail
in
winds in the other direction and ends at the upper-left corner of the rectangle R.

In detail, the polyline of innerLadder
in
is a copy of innerLadder

out
turned by 180○ with

reversed orientation. Another difference is that the spiral spiral
in
contains only 2ρ − 1 right

turns (instead of 2ρ + 1 turns). Thus, it consists of ρ horizontal and ρ vertical edges which
also increase in lengths by steps of 2. Therefore, in our drawing, the last horizontal and

vertical edges of spiral
in
have lengthsW + 7 + 2(ρ − 1) = w − 6 and H + 7 + 2(ρ − 1) = h − 6,

respectively. Regarding outerLadder
in
, it has width w − 2, height h − 3, and it starts and ends

with a horizontal edge. Formally,

snail
in = outerLadder

in
R spiral

in
R innerLadder

in
,

outerLadder
in = (LRRL) w−3

2 R(RLLR) h−5
2 R ,

spiral
in = R2ρ−1 ,

innerLadder
in = R(LRRL)W+4

2 R(RLLR) H
2 R .

Finally, we complete our definition of T as follows:

T = snail
in S snailout L .

Note that, if S is a yes-instance, then there exists the following drawing ofT : Wedraw snail
in

and snail
out

as above and place S inside R such that the first vertex of S touches the last vertex
of snail

in
and the last vertex of S touches the first vertex of snailout (in other words, the first

and last edge of S—which are horizontal—extend the first and last edge of snail
in
and snail

out
,

respectively). Finally, we connect both snails on the outside by prolonging the last (vertical)

edge of snail
out

one unit to the bottom such that it touches the first vertex of snail
in
; see

Fig. 7.11. We call this drawing the reference drawing.
Throughout this section, we say inner ladder to refer to innerLadderin or innerLadderout

(the ladders incident to S) and outer ladder to refer to outerLadderin or outerLadderout.

153

Chapter 7 Minimum Rectilinear Polygons for Given Angle Sequences

h

w

H+6 S

W + 6

eout
ein

Figure 7.11: The reference drawing of T (when S is a yes-instance). The snails snailout (gray) and snailin (black)
wind around R (shaded rectangle in the center). The endpoints of the ladders and spirals are depicted as nodes;
the common endpoint of the snails is white. The other two endpoints are connected via S (dashed curve)
within R. The bounding box containing both inner ladders has size (W + 6) × (H + 6). The edges of the outer
ladders that are incident to the spirals (edges with white filling) are longer by 3 than ein and eout , respectively. To
ease the estimation of the area, the grid cells of the polygon are highlighted as follows: (i) All grid cells within the
bounding box of the first vertical edge of spiralout and both inner ladders (size (W + 7) × (H + 7)) are hatched.
(ii) Almost all remaining grid cells surrounded by exactly two edges of the drawing are shaded in gray. (iii) with
the exception of one grid cell (dashed white box), all other remaining grid cells are grouped into pairs that are
hatched in one of two patterns (the pairs around the white box are indicated with arrows).

Lower Bounds and Thresholds. Next, we provide lower bounds and thresholds on the

cost of any feasible drawing of T that depend only onW andH. The thresholds will be defined

on each of the three objectives. They will be essential for our reduction: There exists a drawing

of T (in particular our reference drawing) that does not surpass the threshold of the respective

objective if and only if S is a yes-instance. In the reduction, we prove by contradiction that any

drawing having the threshold as an upper bound has some specific properties. Our proof will

use that any drawing of T has a lower bound on the perimeter (that influences also the other

objectives) that is very close to the threshold. We will see that if a drawing lacks a desired

property, then it has to be much more expensive than its lower bound, and thus above the

respective threshold.

We begin by providing lower bounds on the perimeter of any drawing of T . We will

first consider spiral edges, then whole spirals, and finally the ladders. We will see that, in

the reference drawing, the respective parts meet the lower bound or are very close to them.

(Generously, we will use the lower bound of 0 for the remaining part of T , which is S.) We

will also give a lower bound on the area of the bounding box.

154

NP-Hardness of the General Case Section 7.2

e

ex1

≥ 2

≥ H + 2

(a) ex
1
(bold) leaves the bounding box

ex1

e y1
e y2 ≥ Y

(b) ex
1
(bold) stays completely inside

Figure7.12: In eachof the two cases, theboundingbox b (shaded) of innerLadderout has height at leastY = H + 4.

In the following, we use the same notation as in Section 7.2.1 for the spirals and ladders

of snail
in
and snail

out
. Consider a spiral. Note that, in contrast to Section 7.2.1, ∥e yi ∥ > ∥e

y
i−1∥

implies ∥exi ∥ > ∥exi−1∥ in the inner order. Therefore, in this section, we redefine winding and

say that a spiral winds i times around the ladder defining the order if ∥e yi ∥ > ∥e
y
i−1∥. Note

that Observation 7.1, Lemma 7.2, Observation 7.2, and Corollary 7.1 hold also for the spirals

of snail
in
and snail

out
.

We begin with a definition similar to Definition 7.2.

Definition 7.4. We define for every spiral edge e its lower value as

• low(e) = 2 j + X if e is horizontal and

• low(e) = 2 j + Y otherwise

where j is the level of e with respect to the inner order, X =W + 5, and Y = H + 4.

• Let lowSpirals denote the sum of the lower values over all edges of both spirals.

• Let lowLadders = ∣outerLadderout∣ + ∣outerLadderin∣ + low(ein) + low(eout), where ein
and eout denote the first horizontal edge of spiralin and spiral

out
, respectively, in the

outer order.

• Let lowBBArea = w ⋅ h.

In the following, we observe that the lower values defined in Definition 7.4 are proper

lower bounds for any feasible drawing. First, we observe that X and Y correspond to the

minimum width and height of the bounding box of the inner ladders, respectively. We also

examine the width and height of the outer ladders.

Lemma 7.6. In any feasible drawing, outerLadderout has width at least w and height at least h,
outerLadder

in has width at least w − 2 and height at least h − 3, and the bounding box of an
inner ladder has minimum width X and minimum height Y.

155

Chapter 7 Minimum Rectilinear Polygons for Given Angle Sequences

Proof. A ladder consists of an x-monotone and a y-monotone part (that overlap). The width

of an x-monotone polyline is at least the number of its horizontal edges, the height of a y-
monotone polyline is at least the number of its vertical edges. Hence, by the definition of the

ladders, the first claim follows.

The second claim follows only partially by this observation: The bounding box of an inner

ladder has minimum widthW + 5 = X and minimum height H + 2 = Y − 2. We now show

that the height is at least Y . Without loss of generality, consider innerLadder
out

, its bounding

box b, and its incident spiral in the inner order. The ladder starts with a right-oriented edge e
and ends with a vertical edge that is incident to the right-oriented spiral edge ex1 ; see Fig. 7.12a.
We have two cases: In the first case, ex1 leaves b. Since the left endpoint of ex1 lies on the left

edge of b, its right endpoint has to be to the right of b. Furthermore, the bottom edge of b
is contained in ex1 since ex1 lies below the vertical ladder edge it is incident to. Thus, ex1 goes
below e. By Observation 7.1, the vertical distance between e and ex1 is at least 2. Note that

the y-monotone part of innerLadder
out

starts at e and goes upward for at least H + 2 units.
Hence, the height of the bounding box of innerLadder

out
is at least H + 4 = Y .

In the second case, ex1 ∈ b; see Fig. 7.12b. Then, also e y1 ∈ b and, by monotonicity of the

ladder, ∥e y1 ∥ > ∥e
y
2
∥. Recall that the level of e y1 is at least ρ in the outer order and that the outer

ladder has height at least h − 3. Thus, Lemma 7.2 and Observation 7.2 imply

∥e y1 ∥ ≥ 2ρ + (h − 3) ≥ Y .

Hence, the height of b is at least Y .

The following lemma is a consequence of the lemma above.

Lemma 7.7. For any feasible drawing, the area of its bounding box is at least lowBBArea.

Proof. By Lemma 7.6, the bounding box b of outerLadderout has width and height at least w
and h, respectively. Thus, b has area at least w ⋅ h = lowBBArea. Since b is contained in the

bounding box of the whole drawing, the claim follows.

By using the same arguments as in the proof of Lemma 7.3, we obtain the following lemma.

Lemma 7.8. In any feasible drawing, every spiral edge e has length at least low(e) and the total
perimeter of the spirals is at least lowSpirals.

Lemma 7.9. In any feasible drawing, the total perimeter of the two outer ladders is at
least lowLadders.

Proof. Given a feasible drawing, consider a spiral and its incident outer ladder L. A nat-

ural lower bound on peri(L) is ∣L∣ + 1 (as L consists of ∣L∣ + 1 edges). However, this is not
enough. Therefore we show that some of the edges are longer than 1. We define the remainder
of an edge e to be ∥e∥ − 1 and we let r denote the total remainder of the edges of L, that
is, r = peri(L) − ∣L∣ − 1. In the following, we bound r from below.

Let v1 and v2 denote the first two vertices (including the endpoint) of the spiral in the outer
order, and let e denote the first horizontal spiral edge. Furthermore, let w denote a right-most

vertex of L and let d denote the horizontal distance between w and v1 (and v2); see Fig. 7.13.

156

NP-Hardness of the General Case Section 7.2

v1

v2 w
e

d

Figure 7.13: The distance d between the spiral endpoint v1 (white node) and the right-most vertex w (white
square) of the incident outer ladder (here outerLadderout) is d ≥ low(e). The polyline v1 −w has at most two
more right-oriented edges (highlighted) than left-oriented ones (bold).

Suppose d ≤ ∥e∥. Then, by monotonicity of L, L lies completely inside the bounding box

of v1, v2, andw. However, thewidth of this bounding box is d ≤ low(e) ≤ 2(ρ + 1) + X = w − 4
and the minimum width of L is at least w − 2; a contradiction. Hence, we have d ≥ low(e) + 1.

Consider the part of L between v1 and w, and orient the edges of this polyline such that it

is directed from v1 to w. Observe that the polyline is y-monotone and that it has at most two

right-oriented edges more than left-oriented edges. Since its width is d, the total length of

its right-oriented edges is bigger by d than the total length of its left-oriented edges. Hence,

the total remainder of the right-oriented edges is at least d − 2. Thus, r ≥ d − 2 ≥ low(e) − 1,
and peri(L) = r + ∣L∣ + 1 ≥ ∣L∣ + low(e). We repeat the proof above for the other spiral and its

outer ladder and the claim follows.

Definition 7.5. We define the following thresholds for each objective:

• Υp = lowLadders + lowSpirals +maxCenterCost + 2ρ + 12 for minimizing the perime-

ter of the drawing,

• Υa = Υp/2 − 1 for minimizing the area of the drawing, and

• Υb = lowBBArea for minimizing the area of the bounding box of the drawing.

We use the thresholds for our reduction.

Theorem 7.2. For each of the three objectives it holds: There is a drawing of T that does not
surpass the threshold (as defined in Definition 7.5) of the given objective if and only if S is a
yes-instance.

We first show that if S is a yes-instance, then there is a drawing of T that does not surpass

the threshold of the respective objective. Consider the reference drawing and recall that we

drew S inside the empty (W ×H)-rectangle R and connected it to the two snails accordingly.

We now show that the reference drawing respects all three thresholds.

Perimeter. First, consider S and the inner ladders. Given that S and the inner ladders lie in
a ((W + 6) × (H + 6))-rectangle (see Fig. 7.11), the total perimeter of S and the inner ladders

is bounded from above by

2(W + 7)(H + 7) = maxCenterCost .

157

Chapter 7 Minimum Rectilinear Polygons for Given Angle Sequences

Next, consider the spirals. Observe that in the reference drawing, each horizontal spiral edge e
has length low(e), and each vertical spiral edge e has length low(e) + 1. Recall that spiralin
has ρ vertical edges and spiral

out
has ρ + 1 vertical edges. Thus, the total perimeter of the

spirals is lowSpirals + 2ρ + 1. Finally, consider the outer ladders. with the exception of the

edges incident to the spirals and the last edge of outerLadder
out

(which has length 2), all edges

of the outer ladders have unit length. The two edges incident to the spirals are exactly 3 units

longer than the first horizontal edge of the respective incident spiral in the outer order. Hence,

using the notation of Definition 7.4, the two edges have total length low(ein) + low(eout) + 6.
Thus, the total perimeter of the outer ladders is

∣outerLadderin∣ + ∣outerLadderout∣ + low(ein) + low(eout) + 6 + 1 ≤ lowLadders + 7 .

Summing up, the total perimeter of the reference drawing is at most

lowLadders + lowSpirals +maxCenterCost + 2ρ + 8 < Υp .

Area. Regarding the area, we subdivide the grid cells of the reference drawing into three

parts: The first part is the intersection of our polygon with the ((W + 7) × (H + 7))-rectangle
containing S, the inner ladders, and the first vertical edge of spiralout in the inner order. Hence,
the intersection contains at most

(W + 7) ⋅ (H + 7) = maxCenterCost/2

grid cells. The second part consists of almost all grid cells outside this rectangle touch-

ing exactly two edges of the polyline P that realizes the spirals and the outer ladders. The

third part consists of all the remaining grid cells. with the exception of one grid cell, we

can group the grid cells of the third part into pairs that touch four or five edges of P; see
Fig. 7.11. Hence, with the exception of one grid cell, each grid cell of the second and third

part touches at least two edges of P on average. Since each unit-line segment of P is touched

by exactly one grid cell, the number of grid cells belonging to the second and third part is

at most 1 + peri(P)/2 ≤ (lowLadders + lowSpirals + 2ρ + 10)/2. Hence, the total area of the
reference drawing is at most

lowLadders + lowSpirals +maxCenterCost + 2ρ + 10
2

≤
Υp − 2

2
= Υa .

Bounding Box. Regarding the bounding box of the reference drawing, note that it is

identical to the bounding box of outerLadder
out

. Following the proof of Lemma 7.7, the area

of the bounding box of the drawing is lowBBArea = Υb .

Now, to prove the other direction of Theorem 7.2, assume that T can be drawn such that

(at least) one of the three thresholds of Definition 7.5 is not surpassed. We show that this fact

implies that T is a yes-instance. Until the remainder of this section, we fix such a drawing that

respects a threshold and refer to it as our drawing. We begin by making a helpful observation

that will allow us to focus only on the perimeter and the bounding box of our drawing:

158

NP-Hardness of the General Case Section 7.2

д

(a) If outerLadderin visits the grid
line д (dashed), then Γ consists
of two disconnected polylines;
a contradiction as the whole
drawing is a polygon.

д

1 2

(b)Within BB(Γ), the outer ladders oc-
cupy at least two grid points from
every horizontal (dashed) and verti-
cal (not depicted) grid line with the
exception of д (bold dashed).

≥ 2
e1

e2
e3

e4

(c) Given the orientation
of the edges, the spi-
ral edges e2 , e3 , and e4
have distance at least 2
to the outer ladder.

Figure 7.14: If the bounding box of the drawing has height h and width w, then every grid point (gray nodes) at
distance at most 1 to the top or right border of the bounding box is visited only by outerLadderout (gray). This
forces the remaining part Γ of the drawing to lie in the box (shaded) of width w − 2 and height h − 2, which
has several implications on outerLadderin (black) and the spirals, for instance, forcing outerLadderin to have its
minimum height h − 3.

Lemma 7.10. If the area of our drawing is at most Υa , then the perimeter is at most Υp .

Proof. The claim follows from Υa = Υp/2 − 1 and the following observation that we prove

below: For any simple rectilinear polygon P on the grid,

area(P) ≥ peri(P)/2 − 1 .

We scale P by a factor of 2 and obtain a new polygon P′. In P′, there are #L grid cells

touching exactly two edge segments (which happens only at L vertices), peri(P′) − 2#L grid
cells touching exactly one edge segment, and at least #R grid cells touching no edges (ev-

ery R vertex is exclusively incident to one such grid cell due to the simplicity and upscaling

of P). Thus, area(P′) ≥ #L + peri(P′) − 2#L + #R = peri(P′) − 4 using #L = #R + 4. The claim

follows by substituting area(P′) = 4 ⋅ area(P) and peri(P′) = 2 ⋅ peri(P).

Our assumption that at least one of the three thresholds of Definition 7.5 is not surpassed

has a number of implications that we consider one by one.

Lemma 7.11. If the bounding box of the drawing has area at most Υb , then the spirals wind at
least ρ times around their inner ladders and for every spiral edge e, ∥e∥ ≤ low(e) + 1.

Proof. Consider outerLadderout. By Lemma 7.6, the area of its bounding box is at least

w ⋅ h = lowBBArea = Υb .

Thus, the bounding box of outerLadder
out

is exactly the bounding box of the whole drawing

(see Lemma 7.7). Let Γ denote the part of the drawing that excludes the edges of outerLadder
out

.

Recall that outerLadder
out

consists of an x-monotone and a y-monotone part of minimum

159

Chapter 7 Minimum Rectilinear Polygons for Given Angle Sequences

width w and height h, respectively. Given the orientation of the first and the last edge

of outerLadder
out

, Γ has to lie entirely to the bottom of the x-monotone part and to the

left of the y-monotone part. Observe that all horizontal edges of the x-monotone part as well

as the vertical edges of the y-monotone part have unit length. Thus, every grid point with

distance at most 1 to the top or right border of the bounding box of the drawing either belongs

to outerLadder
out

, or is not visited by the drawing; see Fig. 7.14b. Consequently, the bounding

box of Γ, which includes spiral
out

as well as spiral
in
and outerLadder

in
, has width and height

at most w − 2 and h − 2.
Consider outerLadder

in
. It cannot visit any grid point on the bottom-most grid line д,

as otherwise it would separate spiral
in
from spiral

out
(see Fig. 7.14a); a contradiction as Γ

is a (connected) polyline. Thus, outerLadder
in
lies in a bounding box of width w − 2 and

height h − 3. Given that its x-monotone part has width at least w − 2 and its y-monotone

part has height at least h − 3, all horizontal line segments of the x-monotone part and all

vertical line segments of the y-monotone part are of unit length. Therefore, every (vertical and

horizontal) grid line that goes through BB(Γ)—with the exception of д—contains at least two

grid points within BB(Γ) that are covered by the outer ladders2. Consequently, every vertical

and horizontal grid line —with the exception of д—contains within BB(Γ) at most h − 4
and w − 4 free grid points, respectively; see Fig. 7.14b.

For the remainder of the proof, consider any of the two spirals. Let e1 , . . . , e4 denote the
first four spiral edges in the outer order. Recall that the spiral is contained in BB(Γ) and
observe that e2 lies above д. Consequently, given the number of free grid points, ∥e1∥ ≤ h − 4
and ∥e2∥ ≤ w − 4. For spiralin, we even have sharper upper bounds. Observe that e1 starts
on a grid point above д. Given the orientation of e2 and Observation 7.1, e1 ends two units
below the x-monotone part of outerLadder

in
; see Fig. 7.14c. Thus, ∥e1∥ ≤ h − 6. By a similar

argument, ∥e2∥ ≤ w − 5.
Now, we show that ∥e i∥ ≥ ∥e i+2∥ + 2 holds for i ∈ {1, 2}. By our previous observations and

by the winding direction of the spiral, the spiral is contained in the bounding box of its outer

ladder. Since the outer ladder is connected to e1, its y-monotone part contains a left-oriented

line segment below e4. Thus, by monotonicity and by Observation 7.1, e4 has to lie at least two
units above the bottom endpoint of e1; see Fig. 7.14c. Given that the top endpoints of e1 and e3
have the same y-coordinate, the claim holds for i = 1, and, by a similar argument, for i = 2.
Given Corollary 7.1, the first claim of the lemma follows.

Regarding the second claim, suppose that, for a spiral edge e, ∥e∥ ≥ low(e) + 2. Then, by

Corollary 7.1, Lemma 7.2 and Definition 7.4, we have in a cascading manner ∥e1∥ ≥ low(e1) + 2
if e1 is parallel to e, and ∥e2∥ ≥ low(e2) + 2 otherwise. Thus, if our spiral is spiral

out
, then we

have ∥e1∥ ≥ h − 3 or ∥e2∥ ≥ w − 2. If our spiral is spiralin, then ∥e1∥ ≥ h − 5 or ∥e2∥ ≥ w − 4.
In either case, we have a contradiction to our upper bounds on the spiral edges.

Lemma 7.12. The spirals wind at least ρ −√ρ times around their inner ladders.

Proof. By Lemma 7.10 and Lemma 7.11, we have to consider only the case that the total perime-

ter is at most Υp . Consider any of the two spirals. If the spiral winds only around the inner

ladder, then we are done. Otherwise, the spiral winds α ≥ 1 times around its outer ladder (see

2 We consider both outer ladders as outerLadderin possibly visits only one grid point of the left-most vertical line;

see Fig. 7.14b.

160

NP-Hardness of the General Case Section 7.2

Corollary 7.1). Consider any vertical spiral edge e of a level i with 1 ≤ i ≤ α in the outer order.

Note that its level is at most ρ − i + 2 in the inner order, hence, low(e) ≤ 2(ρ − i + 2) + Y by

Definition 7.4. Recall that the bounding box of the outer ladder has height at least

h − 3 = 2ρ + Y + 4

(see Lemma 7.6). Thus, by Observation 7.2, we have

∥e∥ ≥ 2i + (2ρ + Y + 4) ≥ 2(ρ − i + 2) + Y + 4i ≥ low(e) + 4i .

Consequently, the perimeter of the drawing is at least

lowLadders + lowSpirals +
α
∑
i=1

4i

≥ lowLadders + lowSpirals + 2α(α + 1) .

Thus, α ≤ √ρ, as otherwise 2α(α + 1) > maxCenterCost + 2ρ + 12 (here, recall that we have
set ρ = (maxCenterCost + 12)2) and the perimeter is greater than Υp ; a contradiction. We

conclude by Corollary 7.1 that the spiral winds at least

ρ − α ≥ ρ −√ρ

times around the inner ladder.

Lemma 7.13. For every spiral edge e of level at most √ρ with respect to the inner order, we
have ∥e∥ ≤ low(e) + 2.

Proof. By Lemma 7.10 and Lemma 7.11, we have to consider only the case that the total

perimeter is at most Υp . Suppose that there is a horizontal edge e of a level j ≤ √ρ for

which ∥e∥ ≥ low(e) + 3 holds. Then, by Lemma 7.12, Definition 7.4, and Lemma 7.2, we also

have ∥д∥ ≥ low(д) + 3 for every horizontal edge д of the same spiral of a level between j
and ρ −√ρ. Hence, the total perimeter of the drawing is at least

lowLadders + lowSpirals + 3(ρ − 2√ρ)
> lowLadders + lowSpirals +maxCenterCost + 2ρ + 12
= Υp ;

a contradiction to the upper bound Υp . In a similar way, we get a contradiction if e is

vertical.

Now we will see that the spirals interleave until the first level (with respect to the inner

ladders). Let v1 , . . . , v2ρ+1 be the vertices (including the endpoints) and let e1 , . . . , e2ρ be the
edges of spiral

in
in the inner order. Similarly, let w1 , . . . ,w2ρ+3 be the vertices (including the

endpoints) and let f1 , . . . , f2ρ+2 be the edges of spiralout in the inner order. For 1 ≤ i < 2
√ρ, we

define BBin
i as the bounding box of e i and e i+1, and BBout

i as the bounding box of f i and f i+1.

161

Chapter 7 Minimum Rectilinear Polygons for Given Angle Sequences

Lemma 7.14. For 1 ≤ i < 2√ρ, v i lies in the interior of BBout
i and w i lies in the interior of BBin

i .

Proof. We show the lemma by induction in two steps. First, we prove the claim for i = 2√ρ − 1,
and then, by induction, for 1 ≤ i < 2√ρ − 1.

Let i = 2√ρ − 1. We begin by proving the following observation that will lead us to the first

claim: The interiors of BBin
i and BBout

i intersect. Recall that both spirals are connected to each

other by the polyline realizing S and the inner ladders. If BBin
i and BBout

i were interior-disjoint,

then the polyline, starting inside BBin
1 , had to leave BB

in
i before entering BBout

i . However, such

a polyline requires3 i vertices just for leaving BBin
i , which is more than the number of vertices

provided by S and the two inner ladders4; a contradiction.

Now, suppose that the claim is violated by v i not being in the interior of BBout
i . To ease

the description, we temporarily rotate the drawing (if needed) such that e i is a right oriented
edge. Since the interiors of the two bounding boxes intersect and given our assumption, v i
lies above w i+3 and to the right of w i and, consequently, also to the right of w i+3 (note that

we have ∥ f i+2∥ > ∥ f i∥ by Lemma 7.12); see Fig. 7.15a. In particular, w i+3 lies in BBin
i . Observe

that the edge f i+3 starting at w i+3 cannot leave BB
in
i and has distance at least 1 to the border

of BBin
i . Also note that the levels of e i+3 and e i+1 differ by one. Thus, the border edge e i+1

of BBin
i has length

∥e i+1∥ ≥ ∥ f i+3∥ + 2
≥ low(f i+3) + 2
= low(e i+3) + 2
= low(e i+1) + 4 .

Since the level of e i+1 is ⌈(i + 1)/2⌉ =
√ρ, the inequality contradicts Lemma 7.13. In a sim-

ilar way, we show the case for v i not being in the interior of BBin
i . Thus, our claim holds

for i = 2√ρ − 1; see Fig. 7.15b.
Now, assume that our claim holds for an i with 2 ≤ i ≤ 2√ρ − 1. Temporarily rotate

the drawing (if needed) such that e i−1 and f i−1 are vertical edges facing downwards; see

Fig. 7.15b. Consider the bounding boxes BBout
i−1 and BBin

i−1. The vertex w i−1 lies in the interior

of BBin
i−1 if and only if v i−1 lies below the horizontal line through w i−1. Hence, if the induction

hypothesis does not hold for i − 1, then v i−1 does not lie below w i−1 and, thus, the heights

of both BBin
i and BBout

i are at least ∥e i−1∥ + ∥ f i−1∥. Hence, ∥e i+1∥ ≥ ∥e i−1∥ + ∥ f i−1∥. Therefore,

using low(f i+1) ≥ 5 (which holds as every spiral edge is longer thanmin{W ,H} ≥ 5), we have

∥e i+1∥ ≥ ∥e i−1∥ + ∥ f i−1∥
≥ low(e i−1) + 5
= low(e i+1) + 3 .

But this inequality contradicts Lemma 7.13.

3 Proof sketch: The polyline goes through interior-disjoint regions of type BBini ∖ BB
in
i−1 and in order to visit three

consecutive such regions, it needs a separate vertex inside the interior of each of the three regions.
4 Without loss of generality, S has at most (W + 1)(H + 1) vertices and the inner ladders have at most 4X + 4Y

vertices in total. Since i ≥ √ρ > maxCenterCost > (W + 1)(H + 1) + 4X + 4Y , i is greater than the number of

vertices.

162

NP-Hardness of the General Case Section 7.2

e i+1 f i+3
w i

w i+3≥ 1

≥ 1

e i v i

f i+2

f i

(a) If v i /∈ BBouti , then w i+3 ∈ BB
in
i .

e i+1

v i

w i

e i−1
f i−1

w i−1

v i−1

(b) The claim: v i ∈ BBouti and w i ∈ BB
in
i .

Figure 7.15: The bounding boxes BBini (shaded) and BBouti intersect (for i = 2√ρ − 1).

Corollary 7.3. For every spiral edge e of level at most√ρ with respect to the inner order, we
have ∥e∥ ≤ low(e) + 1.

Proof. By Lemmas 7.10 and 7.11, we have to consider only the case that the total perimeter

is at most Υp . Suppose that the claim is violated by an edge e j of spiralin (the argument is

similar for spiral
out

). Thus, ∥e j∥ ≥ low(e j) + 2. Recall that e j = (v j , v j+1). By Lemma 7.14, v j
lies in the interior of BBout

j and v j+1 lies in the interior of BBout
j+1. Since BB

out
j ⊂ BBout

j+1 (as, by

Lemma 7.12, we have ∥ f j+2∥ > ∥ f j∥), e j lies in the interior of BBout
j+1 and both its endpoints have

distance at least 1 to the border of BBout
j+1. Note that the border edge f j+2 of BBout

j+1 and e j are
parallel and the level of f j+2 is one more than that of e j . Consequently,

∥ f j+2∥ ≥ ∥e j∥ + 2 ≥ low(e j) + 4 = low(f j+2) + 2 .

Recall that the level of e j is at most
√ρ. Hence, as in the proof of Lemma 7.13, consider any

edge д (of any of the two spirals) that is parallel to e j and of a level between
√ρ + 1 and ρ −√ρ.

For such an edge д, we have ∥д∥ ≥ low(д) + 2. Then, however, the total perimeter of the

drawing is at least

lowLadders + lowSpirals + 2 ⋅ 2(ρ − 2√ρ)
> lowLadders + lowSpirals +maxCenterCost + 2ρ + 13
= Υp ;

a contradiction to the upper bound Υp .

Lemma 7.15. The polyline realizing S lies completely inside a rectangle of width W + 10 and
height H + 7.

Proof. Let e0 and f0 be the vertical edges incident to v1 and w1, respectively. We claim that

the polyline P connecting v1 to w1 (it realizes the inner ladders and S) lies completely in the

bounding box of v2 and w2; see Fig. 7.16. Note that as a consequence of Lemma 7.14, e1 lies
in the bounding box of f2 and f3, and f1 lies in the bounding box of e2 and e3. Hence, the

163

Chapter 7 Minimum Rectilinear Polygons for Given Angle Sequences

v1v2

w1 w2

e2

e0

f0

f2

f3

d

P

e1

f1

Figure 7.16: The inner-most levels of the spirals. Their endpoints v1 and w1 are connected by a highlighted
polyline P realizing S and the inner ladders. The polyline has to lie in the bounding box of v2 and w2 (hashed
area).

relative positions of the elements are as depicted in Fig. 7.16: v2 lies to the top-left of w2, f2 lies
to the right of e0, and e2 lies to the left of f0.

First, observe that P can leave the box only between e0 and f2 and between e2 and f0.
Suppose that it leaves the box between e0 and f2; the other case is similar. Thus, P contains

a vertical line segment between e0 and f2 oriented in the same direction as f2 (to the top).

Hence, by Observation 7.1, the distance between the vertical line segment and f2 is at least 2.
Consequently, the distance d between e0 and f2 is at least 3. However, given that v2 is contained
in the interior of the bounding box of f2 and f3 (Lemma 7.14), we have

∥ f3∥ ≥ ∥e1∥ + d + 1 ≥ low(e1) + 4 = low(f1) + 4 = low(f3) + 2 .

This contradicts Corollary 7.3.

Thus, S lies completely in the bounding box of v2 and w2, which itself is contained in the

bounding box of f2 and f3. By Corollary 7.3, the width of the box is at most

low(f3) + 1 = X + 5 = W + 10

and the height is at most

low(f2) + 1 = Y + 3 = H + 7 .

Hence, S can be drawn within a ((W + 10) × (H + 10))-rectangle such that the first and

last edge of S are horizontal and such that S can be extended to a simple polygon (given its

embedding in T). Hence, ⟨S ,W ,H⟩ is a yes-instance. This conclusion finishes the second

direction of our proof of Theorem 7.2.

7.3 TheMonotone Case: MinimumArea

In this section, we show how to compute, for a monotone angle sequence, a polygon of

minimum bounding box and of minimum area. We start with the simple xy-monotone case

and then consider the more general x-monotone case.

164

The Monotone Case: Minimum Area Section 7.3

TL
TR

BL BR

L

T

B

R

(a)

TL

TR

BL
BR

(b)

TL

TR

BL

BR

(c)

Figure 7.17: Extreme edges are bold. Stair BL is highlighted. (a) The four stairs TL, TR, BR, and BL of an xy-
monotone polygon. The sequences T , R, B, and L are unions of neighboring stairs. (b) & (c) Two possibly
optimum configurations of the polygon.

7.3.1 The xy-Monotone Case

An xy-monotone polygon has four extreme edges; its leftmost and rightmost vertical edge, and

its topmost and bottommost horizontal edge. Two consecutive extreme edges are connected

by a (possible empty) xy-monotone chain that we will call a stair. Starting at the top extreme

edge, we let TL, BL, BR, and TR denote the four stairs in ccw order; see Fig. 7.17a. We say

that an angle sequence consists of k nonempty stair sequences if any xy-monotone polygon

that realizes it consists of k nonempty stairs; we also call it a k-stair sequence. The extreme

edges correspond to the exactly four LL-sequences in an xy-monotone angle sequence and

are unique up to rotation. Any xy-monotone angle sequence is of the form [L(LR)∗]4, where
the single L describes the turn before an extreme edge and (LR)∗ describes a stair sequence.
Without loss of generality, we assume that an xy-monotone sequence always begins with LL

and that we always draw the first LL as the topmost edge (the top extreme edge). Therefore,

we can also use TL, BL, BR, and TR to denote the corresponding stair sequences, namely the

first, second, third and fourth (LR)∗ subsequence after the first LL in cyclic order. Let T be

the concatenation of TL, the top extreme edge, and TR; let L, B, and R be defined analogously

following Fig. 7.17a. For a chain C, let the R-length r(C) be the number of reflex vertices on C.
If C ∈ {TR,TL,BL,BR}, then r(C) corresponds to the number of horizontal line segments

and the number of vertical line segments in C. When we say that a line segment lies above or

below another one, we also require implicitly that both line segments share a grid column.

In this section, we obtain the following two results.

Theorem 7.3. Given an xy-monotone angle sequence S of length n, we can find a polygon P
that realizes S and minimizes its (i) bounding box or (ii) area inO(n) time, and in constant
time we can find the optimum objective value if the R-lengths of the stair sequences are given.

Part (i) of Theorem 7.3 follows from the following observation: The bounding box of every

polygon that realizes S has width at least

max{r(T), r(B)} + 1

165

Chapter 7 Minimum Rectilinear Polygons for Given Angle Sequences

TR

(a) The stair TR (bold) with two delimiters
(white nodes). There are only two good
steps (highlighted) that belong to TR
and its delimiters.

2

2

(b) The (only) two optimumpolygons realizing the 2-stair
instance with r(BL) = r(TR) = 4. The nodes depict
skew convex vertices. The extreme edges are bold.

Figure 7.18: A stair with good and bad steps (a), and two optimum polygons realizing a 2-stair instance (b).

and height at least

max{r(L), r(R)} + 1 .
Since we can always draw three stairs with edges of unit length, we can meet these lower

bounds.

For part (ii), we first consider angle sequences with at most two nonempty stairs. Here,

the only non-trivial case is when the angle sequence consists of two opposite stair sequences,

that is, TL and BR, or BL and TR. Without loss of generality, consider the second case.

A stair has two delimiters which are the two vertices outside the stair that are adjacent to

the endpoints of the stair; see Figure 7.18a. Note that a delimiter is a convex vertex (L vertex).

For each convex vertex of a stair and its delimiters, a step is the polyline consisting of its two
adjacent edges. For a convex vertex of a stair, its step is good if both edges have the same

length. For a delimiter, its step is good if the edge adjacent to the stair is shorter by 1 than the

other edge. A step that is not good is bad. The size of a step is the minimum of the lengths of

its two edges.

Lemma 7.16. Let S be an xy-monotone angle sequence of length n consisting of exactly two
nonempty opposite stair sequences BL andTR. If r(BL) = r(TR), thenwe can choose any extreme
edge and, in O(n) time, we can compute a minimum-area polygon realizing S such that the
chosen extreme edge has length 1.

Proof. Fix a minimum-area polygon P∗ that realizes S. Let a = r(TR) and b = r(BL). If a = b,
then any two parallel extreme edges have length 2 and all other edges have length 1; see

Fig. 7.18b. To see this, we use a charging argument. Call a convex vertex skew if it is the top

right corner or the bottom left corner of the bounding box of its two adjacent edges. Observe

that a grid cell lying in the interior of a polygon can touch at most one skew convex vertex of

the polygon, assuming that the polygon has more than four vertices. As each convex vertex is

touched by exactly one grid cell from the interior, the number of skew convex vertices is a

lower bound on the area. Thus, the two polygons of our construction are optimum as every

grid cell is touching a skew convex vertex. Hence, if a = b, the minimum area is

area(P∗) = 2(b + 1) .

166

The Monotone Case: Minimum Area Section 7.3

e e
(a) If two segments share two

grid columns (hatched and
shaded), contract both by
one unit.

ee
(b) If a segments shares two

grid columns (hatched and
shaded) adjacent to a re-
flex vertex of a long seg-
ment, contract both seg-
ments by one unit.

f

2

v f

2

v
3

(c) If there is a vertex (white
node) one unit left and to
the bottom of v, then its in-
cident horizontal segment
has length at least 2.

f fv v
1

(d) If the vertical segment ad-
jacent to v has length
only 1, then decrease the
area.

f fv

(e) If the vertical segment ad-
jacent to v has length at
least 2, then decrease the
area by introducing a new
reflex vertex (black node).

e e
(f) Then remove one reflex ver-

tex (black node) by remov-
ing one unit of the right
end of the polygon.

Figure 7.19: Forbidden configurations for P∗ as they allow to decrease the area. In (c)–(f), we assume that the
only segment in B̂L of length greater than 1 is the bottom extreme edge.

Also note that these two polygons are the only optimum ones as any other polygon contains

at least one grid cell not adjacent to any skew convex vertex.

Lemma 7.17. Let S be an xy-monotone angle sequence of length n consisting of exactly two
nonempty opposite stair sequences BL and TR. If r(BL) ≠ r(TR), let X ∈ {BL,TR} be the stair
with the smaller number of reflex vertices. Given any priorities on the steps belonging to X and its
delimiters, inO(n) time, we can compute a minimum-area polygon realizing S that minimizes
the sizes of the steps according to the priorities.

Proof. Fix a minimum-area polygon P∗ that realizes S. Let a = r(TR) and b = r(BL). As-
sume a < b (by rotation if necessary). Let B̂L denote the polyline consisting of BL and the

bottom and left extreme edge, and let T̂R denote the polyline consisting of TR and the top

and right extreme edge.

First, we show that all segments of B̂L are of unit length. Suppose that the claim were false

and that there is, without loss of generality, a horizontal line segment in B̂L longer than 1.

Consider the leftmost such segment e and let l(e) and r(e) denote its left and right endpoint,

respectively. If there were a horizontal segment in T̂R sharing at least two grid columns with e,
we could contract both segments by one unit and decrease the area of P∗ without causing B̂L
and T̂R to intersect; a contradiction to the optimality of P∗; see Fig. 7.19a. There is also no

horizontal segment in T̂R passing through the two grid columns left and right of r(e), as,
again, we could contract and obtain a contradiction; see Fig. 7.19b.

We will now show that e is not the bottom extreme edge. If it were, we could modify P∗ as
follows to decrease its area. First, we will observe that there is a convex vertex v of T̂R whose

both incident edges have length at least 2 and that there is no vertex of B̂L one unit to the

left and to the bottom of it. Given a < b, there is a horizontal line segment in T̂R of length at

167

Chapter 7 Minimum Rectilinear Polygons for Given Angle Sequences

д д

h

(a) The sweepline (dotted) stabbed a long
segment д of T̂R. Contract д and the
horizontal segment of B̂L left to the
sweepline by one unit. The vertical seg-
ment h gets longer and we loose one
reflex vertex (black node).

e′ e′′

h

≥ 2

(b)Move all segments that were
stabbed by the sweepline up
by one unit, including e′.
There are not intersections as
they have vertical distance at
least 2 to T̂R.

e′
e′′

h

(c) The resulting polygon
is simple, has less area
and contains one new
reflex vertex (black
node).

Figure 7.20: If there is a line segment in B̂L of length greater than 1, then we can decrease the area of P∗ in
several steps.

least 2. Consider the rightmost such segment f and let v denote the right endpoint of f . If f
is the top extreme edge, then all horizontal edges, with the exception of e and f , have length 1.

Given a < b, that fact implies ∥ f ∥ > ∥e∥. Hence, ∥ f ∥ ≥ 3. In both cases of whether f is the top
extreme edge or not, if there were a vertex of B̂L lying one unit to the left and to the bottom

of v, then there is an incident horizontal edge of length at least 2; see Fig. 7.19c. This, however

is a contradiction as the only edge in B̂L of length bigger than 1 is e and its right endpoint

is the rightmost vertex in B̂L. Suppose that the vertical edge incident to v had length only 1.

Then we could move the vertical edge by one unit to the left without causing any intersections;

see Fig. 7.19d. This, however, is a contradiction to the optimality of P∗. Consider the grid
cell inside P∗ that has v as an endpoint. As argued above, it intersects no vertices of B̂L and,

consequently, no line segments of B̂L. Rotate the grid cell, together with the line drawings on

its boundary, by 180○; see Fig. 7.19e. The resulting polygon P∗′ has less area than P∗, but one
reflex vertex more. To remove one reflex vertex from P∗′, we contract one unit of e and we

contract the rightmost edge of T̂R, which has length 1; see Fig. 7.19f. Hence, the area decreases

again, and we obtain a contradiction to the optimality of P∗, as our resulting polygon realizes

the same angle sequence. We conclude that e is not the bottom extreme edge.

Next, using the fact that e is not the bottom extreme edge, we will decrease the area of the

polygon by removing a carefully chosen reflex vertex from B̂L. Later, we will restore the angle
sequence of B̂L without increasing the area and thus obtain a contradiction. We cut e one unit
right to l(e) into two segments, e′ and e′′, where e′ denotes the left part. All the facts above

imply that the vertical distance between e′ and T̂R is at least ∥e∥, hence, at least 2. Place a
vertical line through e′, that we call a sweepline, and move the line to the left until, for the first

time, one of the two events occurs: (a) The horizontal line segment of T̂R stabbed by the line

has length greater than 1, or (b) the horizontal line segment of B̂L stabbed by the line has an

(left) incident vertical segment of length greater than 1. Note that one of the two events will

occur since, in our case, the left and top extreme edge cannot simultaneously attend length 1.

Let h denote the left vertical line segment incident to the last horizontal line segment of B̂L
stabbed by the sweepline; see Fig. 7.20a. If the sweep process terminates with event (a), take

the horizontal line segment д in T̂R of length at least 2 that has been stabbed by the sweep line.

168

The Monotone Case: Minimum Area Section 7.3

Contract one unit of this segment and contract the rightmost horizontal line segment of B̂L
left to e′ that has not been stabbed. The latter segment has to be a unit-length segment. By

this operation, we decrease the area of P∗, we increase the length of h, and we loose one reflex
vertex in BL. We proceed similarly if the sweep process does not terminate with event (a). We

take any horizontal line segment д in T̂R of length at least 2, which exists given a < b, and
which lies left to the sweep line or right to e. Then we contract one unit of д and we contract

the leftmost horizontal line segment lying below д. As a result, we decrease the area and loose
one reflex vertex.

In both cases, the vertical edge h has length at least 2. Now, in order to reintroduce the

missing reflex vertex, we take the subsequence of all segments of B̂L that where stabbed by

the line at some moment, and shift all these segments up by one unit. In the same time, we

shrink h by one unit and connect the right endpoint of e′ via a vertical segment to e′′; see
Fig. 7.20b and 7.20c. To see that we do not cause any intersections, recall that the distance

between e′ and T̂R is at least 2. Also, recall that all line segments of our subsequence have

unit length, the horizontal ones as well as the vertical ones. Together with the fact that all

horizontal line segments of T̂R lying above the subsequence, with possible exception of the last

segment, also have unit length, we conclude that every line segment of our subsequence had

distance at least 2 to T̂R before the up-shifting. Hence, we have obtained a feasible polygon

for the same angle sequence as P∗ but with smaller area; a contradiction.

Next, we express the area of P∗ as a function of the edge lengths of T̂R. We will use the

function to find out which values for the edge lengths minimize the area. For 1 ≤ i ≤ a + 1,
let τ i denote the i-th horizontal segment in T̂R from the left. Given our assumption that

all horizontal segments of B̂L are of unit-length, we can express the length ∥τ i∥ of τ i as
the number of horizontal segments of B̂L lying below τ i . Thus, we have ∑a+1

i=1 ∥τ i∥ = b + 1.
Let area(i) denote the area below τ i in P∗, that is, the number of grid cells in P∗ sharing a
grid column with τ i . Since the left extreme edge in P∗ has length 1, the area in P∗ under τ1 is

area(1) =
∥τ1∥

∑
j = 1

j = ∥τ1∥ (∥τ1∥ + 1)
2

.

For 2 ≤ i ≤ a + 1, the distance between τ i and any horizontal segment below it is 2; it cannot

be less, and if it were more, we could feasibly shift τ i to the bottom by at least one unit,

contradicting the optimality of P∗. Thus, we have

area(i) =
∥τ i∥

∑
j = 1

(j + 1) = (∥τ i∥ + 1)(∥τ i∥ + 2)
2

− 1 .

We can overcome the difference between i = 1 and i ≥ 2 by splitting τ1 into τ′0 and τ′1, such
that ∥τ′0∥ = 1 and ∥τ′1∥ = ∥τ1∥ − 1 holds. Note that ∥τ′1∥ can be 0. For 2 ≤ i ≤ a + 1, let τ′i = τ i .
Observe that now we have

a+1
∑
i=1
∥τ′i∥ = b .

169

Chapter 7 Minimum Rectilinear Polygons for Given Angle Sequences

Thus,

area(P∗) = 1 +
a+1
∑
i=1
((∥τ

′

i∥ + 1)(∥τ′i∥ + 2)
2

− 1)

= 1 +
a+1
∑
i=1
(1
2
∥τ′i∥

2 + 3

2
∥τ′i∥)

= 1 + 3

2
b + 1

2

a+1
∑
i=1
∥τ′i∥

2
,

which is minimized if∑a+1
i=1 ∥τ′i∥

2
is minimal. By Cauchy-Schwarz, we know that this is the

case if, for every i ∈ {1, . . . , a + 1}, the length ∥τ′i∥ is equal to the arithmetic mean; since we

have to use integers, the convexity of the function tells us that, for every i ∈ {1, . . . , a + 1}, the
length ∥τ′i∥ has to be as close to the arithmetic mean as possible, that is,

∥τ′i∥ ∈ {⌊b/(a + 1)⌋, ⌈b/(a + 1)⌉} .

Let q bet the quotient and r the remainder when b is divided by a + 1. Hence,

area(P∗) = (a + 1)(q + 1)(q + 2)
2

− a + r(q + 2) .

Repeating the same discussion for the vertical segment, we obtain the fact that every line

segments of TR is of length ⌊b/(a + 1)⌋ or ⌈b/(a + 1)⌉, and the top and right extreme edge is of

length ⌊b/(a + 1)⌋ + 1 or ⌈b/(a + 1)⌉ + 1 (the latter fact follows from ∥τ1∥ = ∥τ′1∥ + 1). Observe
that, in P∗, all steps belonging to TL and its delimiters are good steps. Otherwise, we could

take one of the two edges belonging to a bad step and move it towards the interior of the

polygon and thus contradict the optimality of P∗. Further, observe that, for 1 ≤ i ≤ a + 1, the
size of the i-th step from the left corresponds to ∥τ′1∥. Hence, all steps are of size ⌊b/(a + 1)⌋
or ⌈b/(a + 1)⌉. We conclude that we can arbitrarily assign the values ⌊b/(a + 1)⌋ or ⌈b/(a + 1)⌉
to the steps sizes as long as they sum up to b and in this way obtain a feasible, and, hence,

minimum polygon realizing S. Thereby, we can take into account any priority on the steps

given by the input. Thus, we can construct a minimum-area polygon realizing S in O(n)
time.

Note that the proofs of Lemma 7.16 and 7.17 also allow us to obtain, inO(1) time, the exact

area of a minimum polygon without having to construct it. We summarize our results in the

following corollary.

Corollary 7.4. Let S be an xy-monotone angle sequence of length n consisting of exactly two
nonempty opposite stair sequences BL and TR. We can find a minimum-area polygon that
realizes S in O(n) time. If r(BL) and r(TR) are given, we can compute the area of such a
polygon inO(1) time.

The proofs of Lemmas 7.16 and 7.17 also lead to the following observation.

170

The Monotone Case: Minimum Area Section 7.3

BTL

BBR

BTL

BBR

(a) Two half-canonical polygons that are not canonical.

BTL

BBR

(b) A canonical polygon.

Figure 7.21: Examples of half-canonical and canonical polygons. The nodes depict the interior corners of the
bounding boxes (hatched).

Observation 7.4. Let P be any polygon realizing an angle sequence S consisting of exactly two
nonempty opposite stairs TR and BL with a = r(TR) and b = r(BL). The polygon P is a polygon
of minimum area realizing S if and only if the following holds: If a < b, then

(i) the steps of TR and its delimiters are good and have size ⌊b/(a + 1)⌋ or ⌈b/(a + 1)⌉.

(ii) the bottom and right extreme edge and all edges of BL have length 1.

If a = b, then

(iii) two parallel extreme edges have length 2, and

(iv) all other edges have length 1.

We now consider the case of four nonempty stairs. (The case of three nonempty stairs can

be solved analogously.) We begin by defining a special class of four-stairs polygons that fulfil

certain properties.

Definition 7.6. Let P be any xy-monotone polygon P with four nonempty stairs TL, TR, BL,
and BR. For X ∈ {TL,TR,BL,BR}, let BX denote the bounding box of X and its adjacent

extreme edges. An interior corner of BX is the corner of BX that lies inside P and not on the

extension of any extreme edge adjacent to X. We call P half-canonical if P has two non-adjacent

nonempty stairs (X ,Y) ∈ {(TL,BR), (TR,BL)} such that

(C1) BX and BY do not intersect in more than one point,

and we call it canonical if even

(C2) each of the two interior corners of BX and BY lies on a line segment of P that also

contains an endpoint of one the two stairs in {TL,BR,TR,BL} ∖ X ∪ Y .

Figure 7.21 depicts some examples for the case that X = BTL and Y = BBR holds. In Prop-

erty (C2), the interior corner of the bounding box may coincide with the endpoint of the

respective stair; see BTL in Fig. 7.21b. Also note that Property (C1) is a necessary condition for

Property (C2).

Now we show that an optimum polygon realizing S can be assumed to be canonical. This

fact will help us to argue that an optimumpolygon can be partitioned into simpler subinstances.

171

Chapter 7 Minimum Rectilinear Polygons for Given Angle Sequences

BTL

BBRu

v

(a) Shifting the ccw path be-
tween u and v down by
two units.

u

z

BTL

v

w
BBR

(b) Shifting the ccw path be-
tween w and z left by
three units.

u

v

w

z
e2

e1

ρ

(c) The resulting polygon.

Figure 7.22: Transforming an xy-monotone polygon to a polygon that satisfies (C1) and has less area.

Hence, it will suffice to enumerate all compatible subinstances, to solve them and to put them

together in order to obtain an optimum polygon.

Lemma 7.18. For every four-stair sequence S with ∣S∣ > 36, there exists a polygon of minimum
area realizing S that is canonical.

Proof. Consider an optimum polygon P∗ realizing the angle sequence S. Suppose it is not
canonical. Observe that all four extreme edges are of length 1, otherwise the polygon is not

optimum.

First, suppose that Property (C1) does not hold. Then, for any pair of two opposite stairs,

the bounding boxes of their adjacent extreme edges intersect in more than one point. Hence,

the (closed) x-ranges of the horizontal extreme edges intersect and the (closed) y-ranges of
the vertical extreme edges intersect. Since the extreme edges have length 1, and the bounding

boxes intersect in more than one point, we even have that the (closed) x-ranges of the top
and bottom extreme edges are the same, or the (closed) y-ranges of the left and right extreme

edges are the same. Suppose (by rotation if necessary) it is the latter and also suppose (by

temporary vertical or horizontal reflection and, afterwards, backward reflection) that the

stair TR has R-length greater than 4 (since ∣S∣ > 36, this is possible). Let u be the left endpoint

of the bottom extreme edge and let v be the reflex vertex that precedes, in ccw order, the top

extreme edge; see Fig. 7.22a.

We shift the boundary of P∗ that lies on the ccw walk from u to v down by two units,

stretching the vertical edges adjacent to u and v. The new polygon P′ still realizes the angle
sequence and its area is larger by two units than the area of P. However, now BTL and BBR are

intersection-free. Let w be the reflex vertex that follows, in ccw order, the right extreme edge

and let z be the bottom endpoint of the left extreme edge; see Fig. 7.22b. We shift the boundary

of P′ that lies on the ccw walk from w to z to the left by three units, stretching the horizontal

edges adjacent tow and z. The new polygon still realizes the angle sequence and is still simple:

The only crossings that can occur by this operation are between TR and BL. The left extreme

edge lies at most three rows above the right extreme edge ρ; hence, any crossing must involve

the vertical edge e1 of TR in the row above ρ or the vertical edge e2 of TR two rows above ρ;

172

The Monotone Case: Minimum Area Section 7.3

д v

BTL

BBR

(a) Shifting a horizontal edge
onto д.

д

BTL

BBR

(b) Shifting the part above д to
the left.

д

BTL

BBR

BL✓

(c) The resulting polygon satisfies (C2)
for BTL (not for BBR).

Figure 7.23: Transforming an xy-monotone polygon to a polygon that satisfies (C2) and has the same area.

see Fig. 7.22. Let the x-axis go from left to right and let x(v) denote the x-coordinate of v
where v is a vertex or a vertical segment. Since r(TR) > 4, we have after the shift

x(e1) ≥ x(e2) ≥ x(v) + r(TR) − 2 ≥ x(v) + 3 = x(u) + 1 .

Since each vertical edge of BL has x-coordinate at most x(u), there can be no crossing.

However, now the area of the polygon decreased by three units; a contradiction to the fact

that P∗ is optimum. Hence, Property (C1) has to hold for P∗.
Now, assume that there is a bounding box pair having at most one point in common,

without loss of generality, BTL and BBR. Since the optimum polygon P∗ is not canonical,
Property (C2) has to be violated by at least one of the two bounding boxes, say BTL. Then the

interior corner (bottom right corner) of BTL does not lie on a line segment that also contains

an endpoint of TR or BL. Hence, the endpoints of TR or BL have to lie on the boundary of BTL
“behind” the interior corner, that is, they lie on two different edges of BTL and, for each one of

them, its distance to the closest corner of BTL is at least 1. Then, for at least one of the two

edges, it holds that the line going through the edge does not cross the interior of BBR (it can

happen that only one such line exists as Fig. 7.21a indicates). Without loss of generality, this

holds for the line д that goes through the horizontal edge of BTL.

Next, we observe that д does not cross any vertical line segment of TR; instead, there is a
horizontal line segment of TR lying on д. To see this, suppose the contrary. Thus, there exists

a vertical line segment v of TR that is cut by д; see Fig. 7.23a. Thus, the two endpoints of v
lie at least one unit above and below д, respectively. Consider the horizontal line segment

of TR starting at the top endpoint of v. We can move the horizontal segment downwards and

place it on д. By this operation, the angle sequence does not change and the polygon remains

simple as all line segments of BL, the only segments that might cross TR after his operation,

lie below д by at least one unit. Hence, by moving the horizontal edge downwards, we in fact

shrink the area of the polygon; a contradiction to its optimality. Thus, д contains a horizontal
line segment of TR.

Now, we cut the polygon through д into two parts; see Fig. 7.23b. Then, we shift the upper

part to the left until the endpoint of BL coincides with the bottom right corner of BTL; see

Fig. 7.23c. Hence, Property (C2) is satisfied for BTL. Moreover, the resulting polygon realizes

the same angle sequence as before and has the same area as before. Note that if BBR satisfied

173

Chapter 7 Minimum Rectilinear Polygons for Given Angle Sequences

1P∗1 P∗1

P∗2 P∗2

Figure 7.24: If P∗
2
connects to P∗

1
via two horizontal segments (bold) of distance 1, then the top one of them has

length at least 2. Thus, we can contract both by one unit and reduce the area by one grid cell (hatched).

Property (C2) before the shift operation, then it also satisfies the property afterwards: If its

interior corner (top left corner) lies below д, then any edge containing the corner will remain

unchanged as we do not change anything below д. If its interior corner lies on д, then BBR can

only satisfy Property (C2) by an endpoint of TR which has also to lie on д. During the shift
operation, we move this endpoint only to the left, thus the property remains fulfilled for BBR.

If the polygon is not yet canonical, then we repeat the procedure with BBR (without losing

Property (C2) for BTL) and obtain a canonical optimum polygon. Hence, Property (C2)

holds.

Let P∗ be a canonical optimum polygon. Without loss of generality, Property (C2) is

satisfied for BTL and BBR. Consider the line segment of TR and the line segment of BL that
connect to BTL in a canonical polygon. The two line segments are connected to a same edge

of BTL and are

(i) both horizontal,

(ii) both vertical, or

(iii) perpendicular to each other.

The same holds for BBR. Consequently, there is only a constant number of ways in which the

stairs outside the two bounding boxes are connected to them. Even more, the three cases

cannot appear arbitrarily in an optimum polygon as we will see below.

We cut the optimum polygon P∗ along the edge of BTL to which BL and TR are connected.

We also cut along the respective edge of BBR. We get three polygons P∗1 , P∗2 and P∗3 . The

polygons P∗1 and P∗3 , which lie on the outside, realize the 1-stair sequence defined by TL
and BR (including adjacent extreme edges), respectively, whereas the middle polygon P∗2
realizes the 2-stair sequence defined by the concatenation of BL, TR, and the edge segments

of BTL and BBR that connect them.

Let a = r(TR) and b = r(BL). If a = b, then, for at least one of the two bounding boxes BTL
and BBR, Case (iii) holds. To see this, suppose the contrary. Then, for P∗1 and P∗3 , the two
parallel segments of TR an BL attached to it have distance at least 2, as otherwise we could

shrink the area; see Fig. 7.24. This fact implies that the extreme edges of BTL and BBR to which

we attached P∗2 have length at least 3. Let e and f denote the extreme edges in the angle

sequence of P∗2 to which we attached P∗1 and P∗3 , respectively. By Observation 7.4, we compute

a minimum-area polygon P2 for the angle sequence of P∗2 such that e has length 1 and f has
length at most 2. Then, we can feasibly attach P∗1 and P∗3 to P2 yielding a polygon for S of area
at most area(P∗). However, now the two parallel segments of TR an BL touching P∗1 have

174

The Monotone Case: Minimum Area Section 7.3

only distance 1. As discussed above, we can shrink the area; a contradiction to the optimality

of P∗.
This observation leads to the following algorithm: For ∣S∣ ≤ 36, we find a solution in

constant time by exhaustive search. For larger ∣S∣, we guess which pair of opposite bounding

boxes in {(TL,BR), (TR,BL)} is intersection-free in the canonical optimum polygon P∗ that
we want to compute. Without loss of generality, we guessed BTL and BBR (the other case is

symmetric). Then, we guess howTR and BL, the two stairs outside BTL and BBR, are connected

to each of the two bounding boxes (see Cases (i)–(iii)). The guessed information gives us

two 1-stair instances and a 2-stair instance. We solve the instances independently and then

put the solutions together to form a solution to the whole instance.

Whereas the 1-stair instances are trivial to solve, we apply Lemmas 7.16 and 7.17 to obtain a

solution to the middle instance. For this purpose, we will also fix some edge lengths and assign

priorities to steps as follows. Let a = r(TR) and b = r(BL). Without loss of generality, a ≤ b
and r(TL) ≤ r(BR) (the other cases are symmetric). Assume a = b. If we guessed Case (iii)

for both BTL and BBR, then we choose an arbitrary extreme edge to have length 1. Otherwise,

exactly one of the two bounding boxes is in Case (i) or (ii). When its corresponding instance

has been solved, we have to attach the solution to a particular extreme edge of the solution

of the middle instance. We choose this extreme edge to have length 1 in the solution (see

Lemma 7.16). Next, assume a < b. Recall that for this case, the algorithm of Lemma 7.17 takes

any priorities into account that we have assigned to the steps. The algorithm guarantees that

steps of higher priority are not smaller than steps of lower priority. We will assign the priorities

in the following way. If we guessed Case (ii) for BTL, then we assign the highest priority to

the step of the left delimiter of TR, and the second-highest priority to the step of the right

delimiter of TR. In all other cases, we give the highest priority to the step of the right delimiter

of TR.
In detail, we put our three solutions together as follows. Let P1 denote our solution to

the instance corresponding to BTL, let P2 denote our solution to the middle instance, and

let P3 denote our solution to the instance corresponding to BBR; see Fig. 7.25a. If we guessed

Case (ii) for BTL, then we put P1 and P2 together along their corresponding horizontal extreme

edges. If the bottom extreme edge of P1 is too short, we make it sufficiently longer by shifting

the left extreme edge of P1 to the left; see Fig.. 7.25b. Case (i) works symmetrically. If we

guessed Case (iii) for BTL, then note that the left or top extreme edge of P2 has length at least 2
(independently of that we are in Case (iii)). We glue P1 and P2 together along this extreme

edge and the corresponding extreme edge of P1; see Fig. 7.25a. We repeat the same process

with P2 and P3.
All in all, we obtain a canonical polygon P which realizes the given angle sequence. To

show that it has minimum area, we cut it into three smaller parts and show that the area of

each part is upper bounded by the corresponding part of P∗. Our choice of the parts will

depend on the following cases.

(1) First, assume that we did not prolong any extreme edges. Consider the optimum

polygon P∗ realizing S and our guesses and cut it accordingly to obtain three poly-

gons P∗1 , P∗2 , and P∗3 , corresponding to the three instances of P1, P2 and P3, respectively.
Note that, by construction, P2 is a minimum-area polygon. Since we did not prolong

175

Chapter 7 Minimum Rectilinear Polygons for Given Angle Sequences

P1

P2 P3

(a) The three solutions. The ar-
rows indicate how to attach P1
if we are in Case (iii).

P1

P3

P2

(b)We use Case (ii) for P1 and
Case (i) for P3 , both have to
be stretched.

P′1

P3

P′2

(c) The alternative cut yields
three instances optimally
solved by P′1 , P′2 and
again P3 .

Figure 7.25: Putting the three solutions P1 , P2 and P3 together.

the edges of P1 and P2, these polygons are also of minimum area. Hence, for 1 ≤ i ≤ 3,
we obtain area(Pi) ≤ area(P∗i), implying

area(P) ≤ area(P∗) .

(2) Secondly, assume that we did prolong only an extreme edge of P1. Then we guessed

Cases (i) or (ii) for BTL. Note that we did not prolong any edge of P2 if a = b as

otherwise we would have solved P2 such that the extreme edge on P2 to which we

attached P1 would have unit length; contradicting the necessity to prolong the cor-

responding extreme edge of P1. Thus, we have a < b. Further, observe that we did
not guess Case (i) for P1, as otherwise we would attach P1 to the left extreme edge

of P2. This would, however, contradict the necessity to prolong as the left extreme

edge has unit length by Observation 7.4 and the fact a < b. We conclude that we

prolonged the bottom extreme edge e of P1 in Case (ii); see Fig. 7.25b. We now cut P∗
in a slightly different way. Our first cut goes horizontally through the top endpoint of

the left extreme edge (before, we cut through the bottom endpoint), and our second

cut is the same as before. Hence, by the second cut, we again obtain P∗3 . The two

other polygons that we get, P∗1
′
and P∗2

′
, realize a 1- and a 2-stair instance, respectively.

We cut P in the same way and obtain three polygons P′1 , P′2, and P3, where P′2 is the
polygon realizing the 2 star instance; see Fig. 7.25c. Whereas P1 is not a minimum-area

polygon due to the prolongation of its extreme edge, we have that P′1 as well as P3
is a minimum-area polygon. Hence, area(P′1) ≤ area(P∗1) and area(P3) ≤ area(P∗3).
We now show that area(P′2) ≤ area(P∗2

′) holds by proving that P′2 is a minimum-area

polygon. The three inequalities will imply area(P) ≤ area(P∗).
Let BL′ be the stair sequence that we obtain by adding one reflex and one convex

vertex to BL. Thus, we have r(BL′) = b + 1. Observe that the 2-stair instance realized
by P′2 and P∗2

′
consists of the two stairs TR and BL′. Given that all line segments

belonging to BL in P2 had unit length, so do all the line segments in P′2 belonging
to BL′. The same holds for the left and bottom extreme edge of P′2. Then, note that

176

The Monotone Case: Minimum Area Section 7.3

the step s′ of the left delimiter of TR in P′2 is good. Also note that it is bigger by 1

when compared to the step s of the left delimiter of TR in P2. Given our priorities

on the steps when we computed P2, the size of s is ⌊b/(a + 1)⌋. Consequently, the
size of s′ is ⌊b/(a + 1)⌋ + 1. Let S and S′ denote all the steps belonging to TR with its

delimiters in P2 and P′2, respectively. As the sizes of the steps in S ∖ {s} did not change,
all steps in S′ have sizes in {⌊b/(a + 1)⌋ , ⌈b/(a + 1)⌉ , ⌊b/(a + 1)⌋ + 1}. If s was the
only stair of size ⌊b/(a + 1)⌋, then, given the total size b of all steps in S, all steps in S′
must have the same size (b + 1)/(a + 1). Otherwise, if s was not the only stair in S
of size ⌊b/(a + 1)⌋, then only two different step sizes occur for S′ and, in particular,

we have ⌊b/(a + 1)⌋ = ⌊(b + 1)/(a + 1)⌋. Hence, in every case, all steps in S′ have
size in {⌊(b + 1)/(a + 1)⌋ , ⌈(b + 1)/(a + 1)⌉}. Given all these facts, Observation 7.4

implies that P′2 is a minimum-area polygon.

(3) Thirdly, assume that we also prolonged an extreme edge of P3. By a similar argument

that we used for P1, one can show that this may happen only if we guessed Case (i)

for BBR and a < b holds. In what follows, let r be the step of the delimiter of TR in P2.
If we did not prolong any extreme edge of P1 and if r has size ⌊b/(a + 1)⌋, then we can

conduct a similar discussion as in Case (2) and obtain area(P) ≤ area(P∗).
To this end, we therefore assume that (a) we did prolong an extreme edge of P1 (it has
to be the bottom one), or that (b) the step r has size ⌊b/(a + 1)⌋ + 1. We cut P∗ and P
in the same way as in Case (2) and we define, for 1 ≤ i ≤ 3, the variables P′i and P∗i

′
, as

well as BL′, S, S′, s and s′ in the same way as in Case (2). Note that r is in S and in S′.
Also note that r has the smallest size among all steps in S ∖ {s} as it received at least

the second-highest priority when computing P2. We claim that P′2 is a minimum-area

polygon and that r is a smallest step in S′. Given this claim, we can conduct a similar

discussion as in Case (2) and obtain area(P) ≤ area(P∗).
If we did prolong the bottom extreme edge e of P1 (which can happen only in Case (ii)

for BTL), then the polygon P′2 is of minimum area by our discussion of Case (2). Given

that r has the smallest size among all steps in S ∖ {s} and given that s′ is greater than s,
we conclude that r is a smallest step in S′.
Otherwise, assume that we did not prolong e. There are two immediate consequences.

First, e is at least one unit longer than the top extreme edge of P2. Thus, Obser-

vation 7.4 implies ∥e∥ ≥ ⌊b/(a + 1)⌋ + 1. Secondly, ⌊b/(a + 1)⌋ + 1 is the size of the
step r as one of the two assumptions (a) or (b) must hold. Hence, given the size

of r, the left extreme edge д of P3 has length ⌊b/(a + 1)⌋ + 2 after its prolongation.
Recall our assumption r(TL) ≤ r(BR) and observe ∥e∥ = r(TL) + 1 and (after prolon-

gation) ∥д∥ > r(BL) + 1. Thus,

⌊b/(a + 1)⌋ + 1 ≤ ∥e∥ < ∥д∥ = ⌊b/(a + 1)⌋ + 2 ,

and so we have ∥e∥ = ⌊b/(a + 1)⌋ + 1. Further, observe that all line segments belonging

to BL′ as well as the left and bottom extreme edge are of unit length in P′2. Since the
top extreme edge of P′2 coincides with e, we conclude that s′ is a good step that is

bigger than s by exactly one unit. Given that r has the smallest size among all steps

in S ∖ {s} and size greater than s, all steps in S ∖ {s} are of size ⌊b/(a + 1)⌋ + 1. Thus,

177

Chapter 7 Minimum Rectilinear Polygons for Given Angle Sequences

L L

R R

(a) An x-monotone polygon. (b) Conditions (D1)–(D2) are satisfied.

(c) Conditions (D1)–(D3) are satisfied.

Figure 7.26: Illustration of how tomake a polygon canonical. The bold horizontal edges are outer extreme edges,
the hashed area marks double stairs (see definition in proof of Theorem 7.4). Note that the illustrating drawing is
not optimal.

all steps in S′ are good and of the same size, hence, of size (b + 1)/(a + 1). Therefore,

by Observation 7.4, P′2 is a minimum-area polygon and r a smallest step in S′.

We conclude that we computed a polygon of minimum area. The run time is linear in n
since our algorithm computes only constantly many 1-stair and 2-stair instances which are

each solvable in linear time. Given the number of reflex vertices for the four stairs, we can

even compute the minimum area in constant time since this is true for instances with two or

less stairs. This observation completes our proof of Theorem 7.3.

7.3.2 The x-Monotone Case

For the x-monotone case, we first give an algorithm that minimizes the bounding box of the

polygon, and then an algorithm that minimizes the area.

An x-monotone polygon consists of two vertical extreme edges, that is, the leftmost and the

rightmost vertical edge, and at least two horizontal extreme edges, which are defined to be the

horizontal edges of locally maximum or minimum height. The vertical extreme edges divide

the polygon into an upper and a lower hull, each of which consists of xy-monotone chains that

are connected by the horizontal extreme edges. We call a horizontal extreme edge of type RR

an inner extreme edge, and a horizontal extreme edge of type LL an outer extreme edge; see
Fig. 7.26a. Similar to the xy-monotone case, we consider a stair to be an xy-monotone chain

between any two consecutive extreme edges (outer and inner extreme edges as well as vertical

extreme edges) and we let stair sequence denote the corresponding angle subsequence (LR)∗.
Without loss of generality, at least one inner extreme edge exists, otherwise the polygon

is xy-monotone and we refer to Section 7.3.1. Given an x-monotone sequence, we always draw

the first RR-subsequence as the leftmost inner extreme edge of the lower hull. By this, the

correspondence between the angle subsequences and the stairs and extreme edges is unique.

178

The Monotone Case: Minimum Area Section 7.3

Definition 7.7. An x-monotone polygon is canonical if

(D1) all outer extreme edges are lying on the border of the bounding box,

(D2) each vertical non-extreme edge that is not incident to an inner extreme edge has

length 1, and

(D3) each horizontal edge that is not an outer extreme edge has length 1.

The following lemma states that it suffices to find a canonical x-monotone polygon of

minimum bounding box; see Fig. 7.26 for an illustration.

Lemma 7.19. Any x-monotone polygon can be transformed into a canonical x-monotone poly-
gon without changing its bounding box.

Proof. Let P be an x-monotone polygon. We transform it into a canonical polygon in two

steps without changing its bounding box.

First, we move all horizontal edges on the upper hull as far up as possible and all horizontal

edges on the lower hull as far down as possible; see Fig. 7.26a and 7.26b. This establishes

Condition (D1). Furthermore, assume that there is a vertical edge (u, v) on the upper hull

with y(u) > y(v) + 1. If the (unique) horizontal edge (v ,w) is not an inner extreme edge,

then it can be moved upwards until y(u) = y(v) + 1, which contradicts the assumption that

all horizontal edges on the upper hull are moved as far up as possible. This argument applies

symmetrically to the edges on the lower hull. Hence, Condition (D2) is established.

Second, we move all vertical edges on a stair as far as possible in the direction of the inner

extreme edge bounding the stair, for instance, if the stair lies on the upper hull and is directed

downwards, then all vertical edges are moved as far right as possible; see Fig. 7.26b and 7.26c.

This movement stretches the outer extreme edges while simultaneously contracting all other

horizontal edges to length 1, which satisfies Condition (D3).

Note that in neither step the bounding box changed. Since all conditions are satisfied, the

resulting polygon is canonical.

We observe that the length of the vertical extreme edges depends on the height of the

bounding box, while the length of all other vertical edges is fixed by the angle sequence. Thus,

a canonical x-monotone polygon is fully described by the height of its bounding box and

the length of its outer extreme edges. Furthermore, the y-coordinate of each vertex depends

solely on the height of the bounding box.

We use a dynamic program that constructs a canonical polygon of minimum bounding

box in timeO(n3). For each possible height h of the bounding box, the dynamic program

populates a table that contains an entry for any pair of an extreme vertex p (that is, an

endpoint of an outer extreme edge) and a horizontal edge e of the opposite hull. The value of

the entry T[p, e] is the minimum width w such that the part of the polygon left of p can be

drawn in a bounding box of height h and width w in such a way that the edge e is intersecting
the interior of the grid column left of p.

Theorem 7.4. Given an x-monotone angle sequence S of length n, we can find a polygon P that
realizes S and minimizes its bounding box inO(n3) time.

179

Chapter 7 Minimum Rectilinear Polygons for Given Angle Sequences

p′

e

p
e′

w′

h

w

Figure 7.27: Two extreme column pairs (p, e) and (p′ , e′) with T[p, e] = T[p′ , e′] +w′ = w. The part of the
polygon left of p can be drawn in the bounding box of size h ×w.

Proof. To prove the theorem, we present an algorithm that constructs a canonical polygon

of minimum bounding box in time O(n3). The height of any minimum bounding box is

at most n; otherwise, as there are only n vertices, there is a y-coordinate on the grid that

contains no vertex and can be “removed”. For any height h of the n possible heights of an

optimum polygon, we run the following dynamic program inO(n2) time.

We call the left and right endpoint of an outer extreme edge the left extreme vertex and
the right extreme vertex, respectively. The dynamic program contains an entry for any pair

of an extreme vertex p and a horizontal edge e of the opposite hull. Consider the part of
the polygon between p and e that includes the left vertical extreme edge, that is, the chain

that goes from p to e over the left vertical extreme edge. The value of the entry T[p, e] is the
minimum width w of a bounding box of height h in which this part of the polygon can be

drawn in such a way that edge e is intersecting the interior of the grid column left of p and
such that e has the same y-coordinate as it has in a canonical drawing of the whole polygon

in a bounding box of height h; see Fig. 7.27. We call (p, e) an extreme column pair.
We compute T[p, e] as follows. Consider a drawing of the part of the polygon between p

and e that includes the left vertical extreme edge in a bounding box of height h and minimum

width. Let p′ be the rightmost extreme vertex in this drawing to the left of p, let (p′ , e′) be the
corresponding extreme column pair, and let w′ be the horizontal distance between p and p′;
see Fig. 7.27.

We can find (p′ , e′) andw′ from the angle sequence as follows. If p is a left extreme vertex,

then, by Condition (D3), the pair (p′ , e′) and the distance w′ is fully determined. Otherwise,

if p is a right extreme vertex, then p′ is either the left extreme vertex incident to p, or p′ is
the horizontally closest extreme vertex on the opposite hull; we test both cases. Again, by

Condition (D3), edge e′ and distance w′ is fully determined.

When determining (p′ , e′) and w′, we also test, as we will describe in the next paragraph,

whether we can canonically draw the part of the polygon between (p′ , e′) and (p, e) in the

given space constraints. If we can, then we call (p′ , e′) a feasible pair for (p, e). We find a

feasible pair (p′ , e′) for (p, e) with the smallest value of T[p′ , e′] +w′ and set

T[p, e] = T[p′ , e′] +w′ .

If all pairs for (p, e) are infeasible, we set T[p, e] = ∞.

180

The Monotone Case: Minimum Area Section 7.3

First, we will argue that if there is such a canonical drawing, then it is unique. We

assume T[p′ , e′] < ∞. We group each pair of stairs that share an inner extreme edge as

a double stair; see Fig. 7.26c. Each remaining stair forms a double stair by itself. Let P⊺ denote
the part of the upper hull between (p′ , e′) and (p, e). Given the choice of p′, it does not
contain any endpoint of an outer extreme edge in its interior. Hence, there are only two cases.

Either P⊺ consists of a single horizontal line segment belonging to an outer extreme edge, or

it is a subchain belonging to a double stair. In the first case, by Condition (D1), we have to

draw P⊺ on the top boundary of the bounding box. Further, its left endpoint has x-coordinate
equal to T[p′ , e′] and the length of the segment is w′. Hence, the drawing is unique. In the

second case, note that conditions (D1)–(D3) determine the lengths and y-positions of all
edges with the exception of the lengths of the outer extreme edges. Thus, given the x-position
of any vertex of a double stair, there is only one canonical way to draw the double stair. In our

case, the value of T[p′ , e′] is equal to the x-position of the leftmost vertex of P⊺. Hence, the
drawing of P⊺ is unique. By the same arguments, we have to draw the part P� of the lower
hull between (p′ , e′) and (p, e) in a unique way.

Now, given the unique drawings of P⊺ and P�, we check for every x-coordinate whether P⊺
is lying above P�. If and only if this is the case, then the two drawings together form a feasible

canonical drawing and (p′ , e′) is a feasible pair for (p, e).
In the last step, we compute the minimumwidthw of the bounding box assuming height h.

Consider an optimum canonical drawing of the whole polygon in a bounding box of height h.
Let p∗ be a rightmost (right) extreme vertex. Note that for p∗ there are only two candidates,
one from the upper hull and one from the lower hull. Since p∗ is a rightmost extreme vertex,

all horizontal edges to the right of p∗ (on the upper and on the lower hull) are segments of

length 1. Thus, given p∗, we can compute the distance r∗ between p∗ and the right vertical
extreme edge. Let e∗ be the r∗-th horizontal edge from the right on the hull opposite to p∗.
Observe that edge e∗ is the edge that forms an extreme column pair with p∗. Hence, the width
of the polygon is w = T[p∗ , e∗] + r∗.

We compute width w as follows. For each one of the two candidates for p∗, we de-

termine r∗ and e∗. Then we check whether the candidate is feasible. For this, recall that

Conditions (D1)–(D3) determine the y-positions of all edges. Also recall that all horizontal
edges to the right of (p∗ , e∗) are of length 1. Hence, there is only one way to canonically draw

the edges right to (p∗ , e∗). If the upper hull always stays above the lower hull, candidate p∗ is
feasible. Thus, we get the width by

w = min
feasible candidate p∗

{T[p∗ , e∗] + r∗} ∪ {∞} .

For every height h, we compute the minimum width w and find the bounding box of

minimum area w ⋅ h.
It remains to show the run time of the algorithm. The table T consists ofO(n2) entries.

To find the value of an entry T[p, e], we have to find the closest column pair (p′ , e′) to
the left, the distance w′, and we have to test whether we can canonically draw the polygon

between (p′ , e′) and (p, e). We now show that each of these steps is possible inO(1) time by

precomputing some values for each point.

181

Chapter 7 Minimum Rectilinear Polygons for Given Angle Sequences

(i) For each point, we store its y-coordinate. As observed above, the y-coordinate is fixed,
and it can be computed inO(n) time in total by traversing the stairs.

(ii) For each point p, we store the next extreme point λ(p) to the left on the same hull, as

well as the distance δ(p) to it. These values can be computed inO(n) time in total by

traversing the upper and the lower hull from left to right.

(iii) For each left extreme vertex q, we store an array that contains all horizontal edges

between q and λ(q) ordered by their appearance on a walk from q to λ(q) on the same

hull. We also store the index of the inner extreme edge in this array. These arrays can

be computed altogether inO(n) time by traversing the upper and the lower hull from

right to left.

The precomputation takesO(n) time in total. Given an extreme column pair (p, e), let le
be the left endpoint of e. We can use the precomputation of Step (ii) to find in O(1) time

the closest extreme vertex p′ to the left of p, since it is either λ(p) or λ(le), as well as the
distance w′, which is either δ(p) or δ(le). To test whether we can canonically draw the

polygon between (p′ , e′) and (p, e), we make use of the fact that there is no outer extreme

edge between them. Hence, we only have to test whether a pair of opposite double stairs

intersects. To this end, we observe that a pair of double stairs can only intersect if the inner

extreme edge of the lower hull lies (partially) above the upper hull or the inner extreme

edge of the upper hull lies (partially) below the lower hull. With the array precomputed in

Step (iii), we can find the edge opposite of the inner extreme edges, and by Step (i), each

point (and thus each edge) knows its y-coordinate, which we only have to compare to find out

whether an intersection exists. Hence, we can compute each table entry inO(1) time after a

precomputation step that takesO(n) time.

Since we call the dynamic programO(n) times—once for each candidate for the height

of the bounding box—the algorithm takesO(n3) time in total. Following Lemma 7.19, this

proves the theorem.

For the area minimization, we make two key observations. First, since the polygon is x-
monotone, each grid column (properly) intersects either no or exactly two horizontal edges:

one edge from the upper hull and one edge from the lower hull. Secondly, a pair of horizontal

edges share at most one column; otherwise, the polygon could be drawn with less area by

shortening both edges. With the same argument as for the bounding box, the height of any

minimum-area polygon is at most n.
We use a dynamic program to solve the problem. To this end, we fill a three-dimensional

table T as follows. Let e be a horizontal edge on the upper hull, let f be a horizontal edge
of the lower hull, and let h be an integer satisfying 1 ≤ h ≤ n. The entry T[e , f , h] specifies
the minimum area required to draw the part of the polygon to the left of (and including) the

unique common column of e and f under the condition that e and f share a column and

have vertical distance h.
Let e1 , . . . , ek be the horizontal edges on the upper hull from left to right and let f1 , . . . , fm

be the horizontal edges on the lower hull from left to right. For each h with 1 ≤ h ≤ n, we
initialize the table with T[e1 , f1 , h] = h. To compute any other entry T[e i , f j , h′], we need
to find the correct entry from the column left of the column shared by e i and f j . There are

182

The Monotone Case: Minimum Perimeter Section 7.4

eR

e

R

L

Figure 7.28: First step of transforming P into a canonical form. We decrease ∥e∥ by increasing ∥eR∥.

three possibilities: this column either intersects e i−1 and f j−1, it intersects e i and f j−1, or it
intersects e i−1 and f j . For each of these possibilities, we check which height can be realized

if e i and f j have vertical distance h′ and search for the entry of minimum value. We set

T[e i , f j , h′] = min
h′′ valid

{T[e i−1 , f j−1 , h′′], T[e i , f j−1 , h′′], T[e i−1 , f j , h′′]} + h′ .

Finally, we can find the optimum solution by finding min1≤h≤n{T[ek , fm , h]}. Since the table
hasO(n3) entries each of which we can compute inO(n) time, the algorithm runs inO(n4)
time. This proves the following theorem.

Theorem 7.5. Given an x-monotone angle sequence S of length n, we can find a minimum-area
polygon that realizes S inO(n4) time.

7.4 TheMonotone Case: Minimum Perimeter
In this section, we show how to compute a polygon of minimum perimeter for any xy-
monotone or x-monotone angle sequence S of length n.

Let P be an x-monotone polygon realizing S. Let eL be the leftmost vertical edge and

let eR be the rightmost vertical edge of P. Recall that P consists of two x-monotone chains;

an upper chain T and a lower chain B connected by eL and eR . For every e ∈ T , let T(eR , e)
denote the subchain of T consisting of all segments between eR and e (without eR and e).
Similarly, for every e′ ∈ B, let B(e′ , eR) denote the subchain of B consisting of all segments

between e′ and eR (without e′ and eR). Without loss of generality, we assume that the number

of reflex vertices of T and B satisfies r(T) ≥ r(B).

Definition 7.8. An x-monotone polygon is perimeter-canonical if

(1) every vertical edge except eR and eL has unit length, and

(2) every horizontal edge of T has unit length.

We show that it suffices to find a perimeter-canonical polygon of minimum perimeter.

Lemma 7.20. Any x-monotone polygon can be transformed into a perimeter-canonical x-mo-
notone polygon without increasing its perimeter.

183

Chapter 7 Minimum Rectilinear Polygons for Given Angle Sequences

e

e′
eR

f

f ′

(a)

e

e′

f

f ′ eR

(b)

Figure 7.29: Steps two and three of transforming P into a canonical form. We decrease the length of e and e′
(bold) by increasing ∥eL∥ and ∥eR∥. Stretching e l and eR prevents the crossing of f and f ′ (bold).

Proof. We transform any minimum-perimeter polygon into a perimeter-canonical form

without sacrificing its perimeter in two steps as follows. First, we shorten every long vertical
edge e ∈ T ∪ B with ∥e∥ > 1 so that ∥e∥ = 1 holds. This shortening is always possible: For any

long vertical edge e ∈ T ∪ B, say e ∈ T , if its end vertices have turns RL in ccw order, then we

proceed as follows; see Fig. 7.28. We move the subchain T(eR , e) upward by ∥e∥ − 1 units
by shortening e and by simultaneously stretching eR . This movement guarantees that ∥e∥
decreases and ∥eR∥ increases by the same amount of ∥e∥ − 1, so the perimeter remains the

same. We can also shorten any long vertical edge whose end vertices have turns LR in a

symmetric way.

Secondly, we shorten every long horizontal edge e ∈ T with ∥e∥ > 1 so that its length

becomes 1. Suppose that e is the rightmost long horizontal edge e in T . Since r(T) ≥ r(B),
there must be a long horizontal edge e′ in B. We shorten both e and e′ by one unit, and
move the two subchains T(eR , e) and B(e′ , eR) together with eR one unit left. This move

may cause two vertical edges, f ∈ T and f ′ ∈ B, to intersect; see Fig. 7.29a. Note that exactly
one of both vertical edges did not move, say f ′, as otherwise there would be no intersection

between them. This means f ′ is to the left of e′, that is, f ′ ∈ B ∖ B(e′ , eR). We also know that

the x-distance between f and f ′ prior to themove was one, otherwise they would not intersect.

Since f and f ′ are of unit length, the lower end vertex of f has the same y-coordinate as the
upper end vertex of f ′. To avoid the intersection, we first move the whole upper chain T
one unit upward by stretching eR and eL each by one unit, as in Fig. 7.29b. Then we can

move T(eR , e), B(e′ , eR), and eR one unit to the left without causing any intersection. We get

rid of two units by shortening e and e′, and receive two units by stretching eR and eL , so the
total perimeter remains unchanged. We repeat this second step until ∥e∥ = 1.

Assume that P is a minimum-perimeter canonical polygon that realizes S. Assume further

that r(T) ≥ r(B) holds. Let peri(P) denote the perimeter of P. By Conditions (1)–(2), every

edge in T is of unit length, so the length of T is 2 r(T) + 1. This property implies that the

width of B should be r(T) + 1. By Condition (1), the length of the vertical edges in B is r(B),
so the total length of B is r(T) + r(B) + 1. Thus, we can observe the following property.

Lemma 7.21. Given an x-monotone angle sequence S, there is a canonical minimum-perimeter
polygon P realizing S with r(T) ≥ r(B) such that peri(P) = 3 r(T) + r(B) + 2 + ∥eL∥ + ∥eR∥
holds.

184

The Monotone Case: Minimum Perimeter Section 7.4

The first three terms of peri(P) in Lemma 7.21 are constant, so we need to minimize

the sum of the last two terms, ∥eL∥ and ∥eR∥, to get a minimum perimeter. However, once

one of them is fixed, the other is automatically determined by the fact that all vertical edges

in T and B are unit-length segments. Even more, minimizing one of them is equivalent to

minimizing their sum, consequently minimizing the perimeter. We call the length of the left

vertical extreme edge of a polygon the height of the polygon.

7.4.1 The xy-Monotone Case

Let P be aminimum-perimeter canonical xy-monotone polygon that realizes an xy-monotone

angle sequence S of length n. As before, we assume that r(T) ≥ r(B) holds. When n = 4, that
is, the number r of reflex vertices is 0, then a unit square P achieves the minimum perimeter.

Therefore, we assume in the following that we have r > 0. Recall that the boundary of P
consists of four stairs, TR,TL,BL, and BR. Let (r1 , r2 , r3 , r4) be a quadruple of the numbers

of reflex vertices of TR,TL,BL, and BR, respectively. Then r = r1 + r2 + r3 + r4, where r i ≥ 0
for each i with 1 ≤ i ≤ 4. Again, we define L as the chain consisting of TL, eL and BL and R as

the chain consisting of BR, eR and TR. In P, letw(T) andw(B) denote the widths of T and B,
respectively, and h(L) and h(R) the heights of L and R, respectively. Hence, the perimeter

of P is

peri(P) = w(T) +w(B) + h(L) + h(R) .

Note that w(T) = w(B) holds and, by Condition (2),

w(T) = r1 + 1 + r2 .

Thus, w(T) +w(B) = 2(r1 + r2) + 2. Similarly, h(L) = h(R), and, by Condition (1),

h(L) = r2 + ∥eL∥ + r3 and h(R) = r4 + ∥eR∥ + r1 .

Thus, if ∥eL∥ = 1, then
h(L) + h(R) = 2(r2 + r3) + 2 ,

and, if ∥eR∥ = 1, then
h(L) + h(R) = 2(r1 + r4) + 2 .

Furthermore observe that ∥eL∥ = 1 implies

r2 + r3 ≥ r1 + r4 ,

and that ∥eR∥ = 1 implies

r2 + r3 ≤ r1 + r4 .
Hence, if ∥eL∥ = 1 or ∥eR∥ = 1, then

h(L) + h(R) = r + ∣r2 + r3 − r1 − r4∣

185

Chapter 7 Minimum Rectilinear Polygons for Given Angle Sequences

and eventually

peri(P) = 3(r1 + r2) + (r3 + r4) + ∣r2 + r3 − r1 − r4∣ + 4 . (7.3)

Now, consider the remaining case when ∥eL∥ ≥ 2 and ∥eR∥ ≥ 2. We will observe that

this case can occur only if (r1 , r2 , r3 , r4) is (r1 , 0, r1 , 0) or (0, r2 , 0, r2). We will also ob-

serve that then ∥eL∥ = ∥eR∥ = 2. Hence, we obtain that peri(P) = 2r1 + 6 for case (r1 , 0, r1 , 0),
and peri(P) = 2r2 + 6 for case (0, r2 , 0, r2). For all other cases, Equation 7.3 holds.

To make these observations, we first apply the same contraction step as depicted in

Fig. 7.26b of Lemma 7.19. That is, we contract all horizontal segments of BL to length 1 by

moving all their right endpoints as far as possible to the left, and we contract all horizontal

segments of BR to length 1 by moving all their left endpoints as far as possible to the right.

By this, all edges of B except the bottom extreme edge have length 1, and the perimeter does

not change. Next, note that T and B have vertical distance 1 to each other. Otherwise, we

could move B at least one unit to the top by simultaneously shrinking eL and eB , and thus

shrinking the perimeter of P, a contradiction to the minimality of peri(P). As T consists only

of unit-length segments (Conditions (1)–(2)), there is a vertex p in T having distance 1 to B.
First assume that p belongs to TR. We choose the rightmost such p. If p were a convex

vertex, then it would be the top endpoint of eR , and, hence, we would have ∥eR∥ = 1; a
contradiction to ∥eR∥ ≥ 2. Thus, p is a reflex vertex and therefore a left endpoint of a horizontal

edge pp′. Hence, the right endpoint p′ of pp′ is convex. Let e be the edge in B below pp′, that
is, the edge that crosses the same grid column as pp′. Observe that the distance between pp′
and e is at least 2. If it were 1, then the vertical edge p′p′′ incident to p′ would connect to e
(recall that p′ is convex). Hence, pp′ and e would be incident to eR = p′p′′, and again we

would have ∥eR∥ = 1; a contradiction. Thus, the distance between p and e is at least 2. Let q
be the point of B directly one unit below p. Then e lies at least one unit below q. Hence, q
has to connect to e via a vertical edge, and, consequently, q has to be a reflex vertex and

belong to BL. By Condition (1), the vertical edge connecting q and e has length 1, hence, the

distance between pp′ and e is exactly 2. But now, either the bottom endpoint p′′ of p′p′′
has distance 1 to B, or p′′ lies on B, that is, p′p′′ = eR . The former case contradicts our

assumption that p is the rightmost vertex of T having distance 1 to B. Thus, the latter case

holds and pp′ and e are incident to eR . Hence, ∥eR∥ = 2, e is the bottom extreme edge and

has length ∥e∥ = 1, and BR is empty, that is, r4 = 0. Thus, all horizontal edges in B have unit

length. This property allows us to use the same argument as above to show r2 = 0 and ∥eL∥ = 2.
Given r1 + 1 = w(T) = w(B) = r3 + 1, we get r1 = r3.

Finally, assume that p belongs to TL. Then we can show in a similar way as above that we

are in case (0, r2 , 0, r2), and, again, ∥eL∥ = ∥eR∥ = 2. Thus, our observation follows.

Theorem 7.6. Given an xy-monotone angle sequence S of length n, we can find a polygon P
that realizes S and minimizes its perimeter inO(n) time. Furthermore, if the lengths of the stair
sequences are given as above as a tuple ℓ where ℓ = (r1 , r2 , r3 , r4), then peri(P) can be expressed
as:

peri(P) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

4r1 + 6 if ℓ = (r1 , 0, r1 , 0),
4r2 + 6 if ℓ = (0, r2 , 0, r2),
3(r1 + r2) + (r3 + r4) + ∣r3 − (r1 − r2 + r4)∣ + 4 otherwise.

186

The Monotone Case: Minimum Perimeter Section 7.4

t i

t i−1

A[i−1, j−1]
b j

b j−1

A[i , j]

(a)

t i

t i−1

b j

b j−1

(b)

t i

t i−1

b j

b j−1

(c)
t i

t i−1

b j

b j−1

(d)

b j

A[i−1, j]

t i

t i−1

A[i , j]

(e)

b j

t i

t i−1

(f)

Figure 7.30: Six situations when t i and b j are considered to fill A[i , j].

7.4.2 The x-Monotone Case

A minimum height polygon P that realizes S can be computed inO(n2) time using dynamic

programming. Recall that a perimeter-canonical polygon of minimum height is a polygon of

minimum perimeter.

From right to left, let t1 , . . . , tr(T) be the horizontal edges in T and b1, b2, . . . , br(B) be
the horizontal edges in B. Recall our assumption r(T) ≥ r(B). For i ≥ j ≥ 1, let A[i , j] be the
minimum height of the subpolygon formed with the first i horizontal edges from T and the

first j horizontal edges from B. Note that the leftmost vertical edge of the subpolygon whose

minimum height is stored in A[i , j] joins the left endpoints of t i and b j . To compute A[i , j],
we attach edges t i and b j to the upper and lower chains of the subpolygon constructed so

far. Since t i has unit length, either t i and b j are attached to the subpolygon with height

of A[i − 1, j − 1] or just t i is attached to the subpolygon with height of A[i − 1, j]. Figure 7.30
shows that there are four cases, Cases (a)–(d), for the first attachment and two cases, Cases (e)–

(f), for the second attachment, according to the turns formed at the attachments.

Let u and v be the left end vertex of t i−1 and the right end vertex of t i , respectively. Let u′
and v′ be the right end vertex of b j and the left end vertex of b j−1, respectively. Notice

that both vertical edges (u, v) and (u′ , v′) have unit length. As an example, let us explain

how to calculate A[i , j] when uv = LR and u′v′ = LR, which corresponds to Fig. 7.30b and

Fig. 7.30f. We set A[i , j] to the minimum height of the two possible attachments of Cases (b)

and (f). For now, consider the height for Case (b). If A[i − 1, j − 1] > 1, then t i and b j are

187

Chapter 7 Minimum Rectilinear Polygons for Given Angle Sequences

attached to the subpolygon as illustrated in Fig. 7.30b. Since edges (u, v) and (u′ , v′) have
unit length, A[i , j] = A[i − 1, j − 1]. In the other case, if A[i − 1, j − 1] = 1, then we can move

the upper chain of the subpolygon one unit upward without intersection so that t i and b j are

safely attached to the subpolygon with A[i , j] = 2. Note that this is the smallest possible value

for A[i , j] given uv = LR and u′v′ = LR. Thus, A[i , j] = max {A[i − 1, j − 1], 2}. The height

for Case (f) should be at least 1, so it is expressed as max {A[i − 1, j] − 1, 1}. Therefore,

A[i , j] = min{max {A[i − 1, j − 1], 2} , max {A[i − 1, j] − 1, 1}} .

For the other turns at uv and u′v′, we can similarly define the equations as follows:

A[i , j] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

undefined if i = 0, j = 0 or i < j,
1 if i = 1, j = 1,
A[i − 1, j] + 1 if uv = RL, j = 1,
max {A[i − 1, j] − 1, 1} if uv = LR, j = 1,
min{max {A[i − 1, j − 1], 2} ,A[i − 1, j] + 1} if uv = RL, u′v′ = RL,
min{A[i − 1, j − 1] + 2,A[i − 1, j] + 1} if uv = RL, u′v′ = LR,
min{max {A[i − 1, j − 1], 2} ,

max {A[i − 1, j] − 1, 1}} if uv = LR, u′v′ = LR,
min{max {A[i − 1, j − 1] − 2, 1} ,

max {A[i − 1, j] − 1, 1}} if uv = LR, u′v′ = RL .

Evaluating each entry takes constant time, so the total time to fill A isO(n2). Using A, a
minimum-perimeter polygon can be reconstructed within the same time bound.

Theorem 7.7. Given an x-monotone angle sequence S of length n, we can find a polygon P that
realizes S and minimizes its perimeter inO(n2) time.

7.5 Conclusion
In this chapter, we considered the problem of drawing a polygon satisfying a given angle

sequence on a rectilinear grid such that its area, its bounding box, or its perimeter isminimized.

We have seen several efficient algorithms for x-monotone and xy-monotone variants of the

problem and have shown that the general variant is NP-hard for all three objectives. Hence,

these results raise the question about the approximability of the general problem. As a next

step, one could consider stepwise more complicated objects than polygons. Eventually, one

would arrive at the following general question: Given an orthogonal representation of a graph

that specifies an angle sequence for each edge and an angle for each vertex, draw the graph

without crossings on an integer grid realizing the orthogonal representation while minimizing

the bounding box or the perimeter. Patrigani [Pat01] showed that this problem does not admit

a PTAS unless P = NP, and Bannister et al. [BES12] even rule out any subpolynomial factors

for the non-planar case. It would be interesting to give a non-trivial upper bound on the

approximation ratio or to increase the lower bound.

188

7Open Problems

In the preceding chapters, we examined five network design problems related to graphs and

the Euclidean plane. In the process, a number of questions were left open. Now, we briefly

recall the results that we obtained and summarize the most interesting open problems.

Disjoint Connecting Paths. In Chapter 3, we examined the problems of routing terminal

pairs by edge- and node-disjoint paths in graphs of bounded feedback vertex set number r. Our

main observation is that r is a parameter that describes the “difficulty” of the problems quite

well. We base this observation on lower and upper bounds related to r that are implied by our al-

gorithms as well as our hardness results. On the positive side, we have obtained, among others,

the following result forMaxEDP. Let k be the number of terminal pairs, n the number of nodes

and OPT* the optimum objective value of the underlying multi-commodity flow relaxation.

Up to the logarithmic factor of log kr, our Ω(OPT* /(
√
r log kr))-approximation algorithm

for MaxEDP is improving the best-known approximation ratio of Ω(OPT* /
√
n) [CKS06],

since r ≤ n. Hence, this result leads to our first open problem.

Open Problem 1. Can we get rid of the log kr-factor? That is, can we obtain an approxima-

tion algorithm with ratio Ω(OPT* /
√
r) for Maximum Edge Disjoint Paths problem with

feedback vertex set number r?

On the negative side, we have shown that the decision variant of MaxEDP is NP-hard
already for r = 2. In our extended abstract [FMS18], we conjectured that for r = 1 the problem
is decidable in polynomial time. Recently, Ganian et al. [GOS17] settled this open problem by

giving a positive answer.

Capacitated Facility Location. In Chapter 4, we presented constant-factor approximation

algorithms for hard-capacitated k-Facility Location problems, where we considered either

non-uniform capacities or non-uniform opening costs. Hence, it would be interesting to

consider the generalization of both.

Open Problem 2. For hard-capacitated k-Facility Location where both the capacities and

openings are non-uniform, give a constant-factor approximation algorithm with capacity

violation bounded by a constant.

Both our algorithms, which are based on the standard LP relaxation, violate the capacities

only by small constants. It is known that any standard integer program permitting capacity

violation at most 2 − ε has unbounded integrality gap for any sufficiently small positive ε. Our

results imply that this lower bound is practically tight for the uniform capacitated case. For

the non-uniform capacitated case, we know that the barrier on capacity violation lies in the

interval [2 − ε, 3 + ε]. Hence, the precise location of the barrier is still open.

Open Problems

Open Problem 3. What is the smallest capacity violation that a standard integer program for

non-uniform hard-capacitated k-Facility Location can permit such that the integrality gap

is bounded?

Unsolved remains the important question on the approximability of capacitated k-Median

when no constraints are relaxed.

Open Problem 4. Does capacitated k-Median admit a constant-factor approximation algo-

rithm?

Stabbing Rectangles with Line Segments. In Chapter 5, we first showed that Stabbing

is an NP-hard problem and two variants of it are even APX-hard. Next, we tried various

approaches to obtain good approximation algorithms. However, the combinatorial algorithm

that we obtained, a greedy one, yields only a logarithmic approximation ratio. Thus, there is

a significant gap to the approximation ratio ofO(1) that we obtained by an applications of

Varadarajan’s [Var10] quasi-uniform sampling method. Thus, we ask for the following.

Open Problem 5. Give a combinatorialO(1)-approximation algorithm for Stabbing and

determine its precise approximation ratio.

Colored Steiner Problem. In Chapter 6, we studied the k-Colored Non-Crossing Eu-

clidean Steiner Forest problem. Thereby, we obtained several approximation algorithms

for different values of k. For k = 2, we achieved a PTASmodifyingArora’s PTAS for Euclidean

Steiner Tree [Aro98]. In this context, we ask:

Open Problem 6. Can we improve the run time of the PTAS for 2-CESF fromO(nO(1/ε))
toO(n(log n)O(1/ε)) as Arora [Aro98] did for Euclidean Steiner Tree?

For k = 3, we achieved a ratio of 5/3 + ε and were not able to obtain a PTAS. Hence, this

fact raises the following question.

Open Problem 7. Is k-CESF APX-hard for some k with k ≥ 3?

For general k, we achieved ratios k + ε andO(
√
n log k).

Open Problem 8. Can we obtain better approximation ratios for k-CESF with k ≥ 3?

Drawing Rectilinear Polygons for Given Angle Sequences. In Chapter 7, we asked

for a rectilinear polygon realizing a given angle sequence while minimizing the area of the

bounding box, the area of the polygon, or its perimeter. We showed that the problem is

NP-hard. In the same chapter, we obtained several exact algorithms for special variants of the

problem. Hence, it would be interesting to design algorithms for the general case and study

its approximability.

Open Problem 9. Examine the approximability of Minimum Rectilinear Polygon for

Given Angle Sequence. Does it admit a constant-factor approximation algorithm? Is it

APX-hard?

190

Open Problems

Another direction worth to be studied is to generalize the problem.

Open Problem 10. Examine the complexity and approximability of the following problem:

Given an orthogonal representation of a graph that specifies an angle sequence for each edge

and an angle for each vertex, draw the graph without crossings on an integer grid realizing

the orthogonal representation while minimizing the bounding box or the perimeter.

It is known that this problem does not admit a PTAS unless P = NP [Pat01].

191

7Bibliography
[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: AModern Approach.

Cambridge University Press, 1st edition, 2009. [see pages 9 and 15]

[ABC+15] Hyung-Chan An, Aditya Bhaskara, Chandra Chekuri, Shalmoli Gupta, Vivek

Madan, and Ola Svensson. Centrality of trees for capacitated k-center. Math.
Program., 154(1):29–53, 2015. [see page 48]

[ADA18] SaeedAsaeedi, FarzadDidehvar, andMohadesAli. NLP formulation for polygon

optimization problems, 2018. Preprint available at https://www.preprints.

org/manuscript/201811.0300 . [see page 137]

[AES10] Boris Aronov, Esther Ezra, and Micha Sharir. Small-size ε-nets for axis-parallel
rectangles and boxes. SIAM J. Comput., 39(7):3248–3282, 2010. [see pages 94,
99, and 115]

[AGK+01] Vijay Arya, Naveen Garg, Rohit Khandekar, AdamMeyerson, Kamesh Muna-

gala, and Vinayaka Pandit. Local search heuristic for k-median and facility

location problems. In Proc. 33th ACM Symp. Theory Comput. (STOC’01), pages
21–29, 2001. [see page 49]

[AGLR94] Baruch Awerbuch, Rainer Gawlick, Tom Leighton, and Yuval Rabani. On-line

admission control and circuit routing for high performance computing and

communication. In Proc. IEEE 35rd Symp. Found. Comput. Sci. (FOCS’94), pages
412–423, 1994. [see page 26]

[AKK+11] Isolde Adler, Stavros G. Kolliopoulos, Philipp Klaus Krause, Daniel Lokshtanov,

Saket Saurabh, and Dimitrios Thilikos. Tight bounds for linkages in planar

graphs. In Proc. 38th Int. Colloq. Aut. Lang. Prog. (ICALP’11), pages 110–121, 2011.
[see page 25]

[ALB+13] Ankit Aggarwal, Anand Louis, Manisha Bansal, Naveen Garg, Neelima Gupta,

Shubham Gupta, and Surabhi Jain. A 3-approximation algorithm for the facility

location problem with uniform capacities. Math. Program., 141(1):527–547, 2013.
[see page 48]

[And10] Matthew Andrews. Approximation algorithms for the edge-disjoint paths

problem via Räcke decompositions. In Proc. IEEE 51st Symp. Found. Comput.
Sci. (FOCS’10), pages 277–286, 2010. [see page 22]

[AR95] Yonatan Aumann and Yuval Rabani. Improved bounds for all optical routing.

In Proc. 6th ACM-SIAM Symp. Discrete Algorithms (SODA’95), pages 567–576,
1995. [see page 26]

https://www.preprints.org/manuscript/201811.0300
https://www.preprints.org/manuscript/201811.0300

Bibliography

[AR98] Yonatan Aumann and Yuval Rabani. AnO(log k) approximate min-cut max-

flow theorem and approximation algorithm. SIAM J. Comput., 27(1):291–301,
1998. [see page 26]

[Aro98] Sanjeev Arora. Polynomial time approximation schemes for Euclidean traveling

salesman and other geometric problems. J. ACM, 45(5):753–782, 1998. [see

pages 2, 6, 117, 118, 120, 123, 127, 133, and 190]

[ARRC11] Basak Alper, Nathalie Henry Riche, Gonzalo Ramos, and Mary Czerwinski.

Design study of LineSets, a novel set visualization technique. IEEE Trans. Vis.
Comput. Graphics, 17(12):2259–2267, 2011. [see page 119]

[AS04] Alexander A. Ageev and Maxim I. Sviridenko. Pipage rounding: A new method

of constructing algorithms with proven performance guarantee. J. Comb. Optim.,
8(3):307–328, 2004. [see page 62]

[ASS17] Hyung-Chan An, Mohit Singh, and Ola Svensson. LP-based algorithms for

capacitated facility location. SIAM J. Comput., 46(1):272–306, 2017. [see page 48]

[AvdBGL15] Karen Aardal, Pieter L. van den Berg, Dion Gijswijt, and Shanfei Li. Approxi-

mation algorithms for hard capacitated k-facility location problems. Europ. J.
Operational Research, 242(2):358–368, 2015. [see page 49]

[BBF99] Vineet Bafna, Piotr Berman, and Toshihiro Fujito. A 2-approximation algorithm

for the undirected feedback vertex set problem. SIAM J.DiscreteMath., 12(3):289–
297, 1999. [see pages 28 and 34]

[BDHM16] Mohammad Hossein Bateni, Erik D. Demaine, Mohammad Taghi Hajiaghayi,

and Dániel Marx. A PTAS for planar group Steiner tree via spanner bootstrap-

ping and prize collecting. In Proc. 48th ACM Symp. Theory Comput. (STOC’16),
pages 570–583, 2016. [see page 119]

[BDS11] Therese C. Biedl, Stephane Durocher, and Jack Snoeyink. Reconstructing poly-

gons from scanner data. Theor. Comput. Sci., 412(32):4161–4172, 2011. [see

page 137]

[Bes03] Sergey Bespamyatnikh. Computing homotopic shortest paths in the plane. J.
Algorithms, 49(2):284–303, 2003. [see page 119]

[BES12] Michael J. Bannister, David Eppstein, and Joseph A. Simons. Inapproximability

of orthogonal compaction. J. Graph Algorithms and Applications, 16(3):651–673,
2012. [see pages 137 and 188]

[BF98] Oliver Bastert and Sandor P. Fekete. Geometric wire routing. Technical

Report 96.247, Universität zu Köln, 1998. Available at http://e-archive.

informatik.uni-koeln.de/247 . [see pages 119 and 120]

194

http://e-archive.informatik.uni-koeln.de/247
http://e-archive.informatik.uni-koeln.de/247

Bibliography

[BFK+15] Sergey Bereg, Krzysztof Fleszar, Philipp Kindermann, Sergey Pupyrev, Joachim

Spoerhase, and AlexanderWolff. Colored non-crossing Euclidean Steiner forest.

In Proc. 26th Int. Symp. Algorithms Comput. (ISAAC’15), pages 429–441, 2015.
[see page 6]

[BFRS15] Jarosław Byrka, Krzysztof Fleszar, Bartosz Rybicki, and Joachim Spoerhase.

Bi-factor approximation algorithms for hard capacitated k-median problems.

In Proc. 26th ACM-SIAM Symp. Discrete Algorithms (SODA’15), pages 722–736,
2015. [see pages 5, 49, and 50]

[BFSU99] Andrei Z. Broder, AlanM. Frieze, Stephen Suen, andEliUpfal. Optimal construc-

tion of edge-disjoint paths in random graphs. SIAM J. Comput., 28(2):541–573,
1999. [see page 26]

[BFU94] Andrei Z. Broder, Alan M. Frieze, and Eli Upfal. Existence and construction of

edge-disjoint paths on expander graphs. SIAM J. Comput., 23(5):976–989, 1994.
[see page 26]

[BG95] Hervé Brönnimann and Michael T. Goodrich. Almost optimal set covers in

finite VC-dimension. Discrete Comput. Geom., 14(4):463–479, 1995. [see

page 94]

[BGG12] Manisha Bansal, Naveen Garg, and Neelima Gupta. A 5-approximation for

capacitated facility location. In Proc. 20th Europ. Conf. Algorithms (ESA’12),
pages 133–144, 2012. [see page 48]

[BKM09] Glencora Borradaile, Philip Klein, and Claire Mathieu. AnO(n log n) approx-
imation scheme for Steiner tree in planar graphs. ACM Trans. Algorithms,
5(3):31:1–31:31, 2009. [see pages 119 and 120]

[BOS12] Sang Won Bae, Yoshio Okamoto, and Chan-Su Shin. Area bounds of rectilinear

polygons realized by angle sequences. In Proc. 23rd Int. Symp. Algorithms
Comput. (ISAAC’12), pages 629–638, 2012. [see page 136]

[BP14] Nikhil Bansal and Kirk Pruhs. The geometry of scheduling. SIAM J. Comput.,
43(5):1684–1698, 2014. [see page 95]

[BPR+17] Jarosław Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa

Trinh. An improved approximation for k-median and positive correlation in

budgeted optimization. ACM Trans. Algorithms, 13(2):23:1–23:31, 2017. [see

page 49]

[BRU16] Jarosław Byrka, Bartosz Rybicki, and Sumedha Uniyal. An approximation algo-

rithm for uniform capacitated k-median problem with 1 + ε capacity violation.
In Proc. 18th Int. Conf. Integer Prog. Comb. Optim. (IPCO’16), pages 262–274,
2016. [see page 50]

[BTY11] Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for

disjoint cycles and disjoint paths. Theoret. Comput. Sci., 412(35):4570–4578,
2011. [see pages 25 and 26]

195

Bibliography

[CE13] Chandra Chekuri andAlina Ene. Poly-logarithmic approximation formaximum

node disjoint paths with constant congestion. In Proc. 24th ACM-SIAM Symp.
Discrete Algorithms (SODA’13), pages 326–341, 2013. [see page 22]

[CFK+15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel

Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized
Algorithms. Springer Publishing Company, Incorporated, 1st edition, 2015. [see

pages 2, 9, 12, and 15]

[CG85] Fan R. K. Chung and Ronald L. Graham. A new bound for Euclidean Steiner

minimal trees. Annals New York Acad. Sci., 440(1):328–346, 1985. [see pages 2
and 118]

[CG14] Timothy M. Chan and Elyot Grant. Exact algorithms and APX-hardness results

for geometric packing and covering problems. Comput. Geom. Theory Appl.,
47(2):112–124, 2014. [see pages 95 and 111]

[CGKS12] Timothy M. Chan, Elyot Grant, Jochen Könemann, and Malcolm Sharpe.

Weighted capacitated, priority, and geometric set cover via improved quasi-

uniform sampling. In Proc. 23th ACM-SIAM Symp. Discrete Algorithms
(SODA’12), pages 1576–1585, 2012. [see pages 95, 101, 102, and 105]

[CGTS99] Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-

factor approximation algorithm for the k-median problem (extended abstract).

In Proc. 31st ACM Symp. Theory Comput. (STOC’99), pages 1–10, 1999. [see

pages 47, 49, 55, 56, and 85]

[CHK12] Marek Cygan, Mohammad Taghi Hajiaghayi, and Samir Khuller. LP rounding

for k-centers with non-uniform hard capacities. In Proc. IEEE 53rd Symp. Found.
Comput. Sci. (FOCS’12), pages 273–282, 2012. [see page 48]

[CHKL13] TimothyM.Chan, Hella-FranziskaHoffmann, StephenKiazyk, andAnna Lubiw.

Minimum length embedding of planar graphs at fixed vertex locations. InGraph
Drawing (GD’13), pages 376–387, 2013. [see pages 119, 120, and 122]

[Chu16] Julia Chuzhoy. Routing in undirected graphs with constant congestion. SIAM J.
Comput., 45(4):1490–1532, 2016. [see page 22]

[CKL16] Julia Chuzhoy, David H. K. Kim, and Shi Li. Improved approximation for

node-disjoint paths in planar graphs. In Proc. 47th ACM Symp. Theory Comput.
(STOC’16), pages 556–569, 2016. [see page 26]

[CKN18] Julia Chuzhoy, David H. K. Kim, and Rachit Nimavat. Almost polynomial

hardness of node-disjoint paths in grids. In Proc. 50th ACM Symp. Theory
Comput. (STOC’18), pages 1220–1233, 2018. [see page 22]

[CKS06] Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. An O(
√
n) ap-

proximation and integrality gap for disjoint paths and unsplittable flow. Theory
Comput., 2:137–146, 2006. [see pages 21, 22, 23, 24, 27, 45, and 189]

196

Bibliography

[CKS09] Chandra Chekuri, Sanjeev Khanna, and F Bruce Shepherd. A note onmultiflows

and treewidth. Algorithmica, 54(3):400–412, 2009. [see page 22]

[CL12] Moses Charikar and Shi Li. A dependent LP-rounding approach for the k-
median problem. In Proc. 39th Int. Colloq. Aut. Lang. Prog. (ICALP’12), pages
194–205, 2012. [see pages 49 and 50]

[CL16] Julia Chuzhoy and Shi Li. A polylogarithmic approximation algorithm for

edge-disjoint paths with congestion 2. J. ACM, 63(5):45:1–45:51, 2016. [see

page 22]

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms. The MIT Press, 3rd edition, 2009. [see page 9]

[CMS07] Chandra Chekuri, Marcelo Mydlarz, and F. Bruce Shepherd. Multicommodity

demand flow in a tree and packing integer programs. ACM Trans. Algorithms,
3(3):27:1–27:23, 2007. [see page 26]

[CNS13a] Chandra Chekuri, Guyslain Naves, and F. Bruce Shepherd. Maximum edge-

disjoint paths in k-sums of graphs. In Proc. 40th Int. Colloq. Aut. Lang. Prog.
(ICALP’13), pages 328–339, 2013. [see page 22]

[CNS13b] Chandra Chekuri, Guyslain Naves, and F. Bruce Shepherd. Maximum edge-

disjoint paths in k-sums of graphs. Arxiv report, 2013. Available at http:

//arxiv.org/abs/1303.4897 . [see page 27]

[CPC09] Christopher Collins, Gerald Penn, and Sheelagh Carpendale. Bubble sets:

Revealing set relations with isocontours over existing visualizations. IEEE Trans.
Vis. Comput. Graphics, 15(6):1009–1016, 2009. [see page 119]

[CR85] Joseph C. Culberson and Gregory J. E. Rawlins. Turtlegons: Generating simple

polygons from sequences of angles. In Proc. 1st ACM Symp. Comp. Geom.
(SoCG’85), pages 305–310, 1985. [see page 136]

[CR05] Julia Chuzhoy and Yuval Rabani. Approximating k-median with non-uniform

capacities. In Proc. 16th ACM-SIAM Symp. Discrete Algorithms (SODA’05), pages
952–958, 2005. [see page 49]

[Cre97] P. Crescenzi. A short guide to approximation preserving reductions. In Proc.
12th IEEE Conf. Comput. Compl. (CCC’97), 1997. [see page 15]

[CSW13] Chandra Chekuri, F. Bruce Shepherd, and Christophe Weibel. Flow-cut gaps

for integer and fractional multiflows. J. Comb. Theory, Ser. B, 103(2):248–273,
2013. [see page 26]

[CvDF+18] Timothy Chan, Thomas C. van Dijk, Krzysztof Fleszar, Joachim Spoerhase, and

Alexander Wolff. Stabbing rectangles by line segments. In Proc. 29th Int. Symp.
Algorithms Comput. (ISAAC’18), 2018. To appear. [see page 6]

197

http://arxiv.org/abs/1303.4897
http://arxiv.org/abs/1303.4897

Bibliography

[CW12] Danny Z. Chen and Haitao Wang. An improved algorithm for reconstructing a

simple polygon from its visibility angles. Comput. Geom., 45(5):254–257, 2012.
[see page 137]

[DFK+18] AparnaDas, Krzysztof Fleszar, StephenG.Kobourov, JoachimSpoerhase, Sankar

Veeramoni, and Alexander Wolff. Approximating the generalized minimum

Manhattan network problem. Algorithmica, 80(4):1170–1190, 2018. [see pages 6,
94, and 96]

[DL16] Gökalp Demirci and Shi Li. Constant approximation for capacitated k-median

with (1 + ε)-capacity violation. In Proc. 43th Int. Colloq. Aut. Lang. Prog.
(ICALP’16), pages 73:1–73:14, 2016. [see pages 49 and 50]

[DMW11] Yann Disser, Matús Mihalák, and Peter Widmayer. A polygon is determined by

its angles. Comput. Geom., 44(8):418–426, 2011. [see page 137]

[DS14] Irit Dinur and David Steurer. Analytical approach to parallel repetition. In

Proc. 46th ACM Symp. Theory Comput. (STOC’14), pages 624–633, 2014. [see
page 94]

[EFK+16] William S. Evans, Krzysztof Fleszar, Philipp Kindermann, Noushin Saeedi,

Chan-Su Shin, and Alexander Wolff. Minimum rectilinear polygons for given

angle sequences. In Proc. 18th Japan Conf. Discrete Comput. Geom. Graphs
(JCDCGG’15), Revised Selected Papers, pages 105–119, 2016. [see pages 7 and 137]

[EHKP15] Alon Efrat, Yifan Hu, Stephen Kobourov, and Sergey Pupyrev. Mapsets: Visu-

alizing embedded and clustered graphs. J. Graph Algorithms and Applications,
19(2):571–593, 2015. [see pages 117, 118, and 120]

[EIS75] Shimon Even, Alon Itai, and Adi Shamir. On the complexity of time table and

multi-commodity flow problems. In Proc. IEEE 16th Symp. Found. Comput. Sci.
(FOCS’75), pages 184–193, 1975. [see page 21]

[EKL06] Alon Efrat, Stephen G. Kobourov, and Anna Lubiw. Computing homotopic

shortest paths efficiently. Comput. Geom. Theory Appl., 35(3):162–172, 2006.
[see page 119]

[ELR+08] Guy Even, Retsef Levi, Dror Rawitz, Baruch Schieber, Shimon Shahar, and

Maxim Sviridenko. Algorithms for capacitated rectangle stabbing and lot sizing

with joint set-up costs. ACM Trans. Algorithms, 4(3):34:1–34:17, 2008. [see

page 95]

[EMPR16] Alina Ene, Matthias Mnich, Marcin Pilipczuk, and Andrej Risteski. On routing

disjoint paths in bounded treewidth graphs. In Proc. 10th Scand. Workshop
AlgorithmTheory (SWAT’06), pages 15:1–15:15, 2016. [see pages 22, 26, and 41]

[EN11] Jeff Erickson and Amir Nayyeri. Shortest non-crossing walks in the plane. In

Proc. 22nd ACM-SIAM Symp. Discrete Algorithms (SODA’11), pages 297–308,
2011. [see pages 119 and 120]

198

Bibliography

[Fei98] Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–

652, 1998. [see pages 94 and 96]

[FG06] J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical

Computer Science. An EATCS Series. Springer-Verlag New York, Inc., 2006.

[see pages 9 and 15]

[FHRV09] Michael R. Fellows, DannyHermelin, Frances Rosamond, and Stéphane Vialette.

On the parameterized complexity of multiple-interval graph problems. Theoret.
Comput. Sci., 410(1):53–61, 2009. [see page 41]

[FJQS08] Gerd Finke, Vincent Jost, Maurice Queyranne, and András Sebö. Batch pro-

cessing with interval graph compatibilities between tasks. Discrete Appl. Math.,
156(5):556–568, 2008. [see pages 6 and 94]

[FMS18] Krzysztof Fleszar, Matthias Mnich, and Joachim Spoerhase. New algorithms for

maximum disjoint paths based on tree-likeness. Math. Program., 171(1):433–461,
2018. [see pages 4, 26, and 189]

[Fri01] Alan M. Frieze. Edge-disjoint paths in expander graphs. SIAM J. Comput.,
30(6):1790–1801, 2001. [see page 26]

[Gas12] William I. Gasarch. Guest column: The second P =?NP poll. SIGACT News,
43(2):53–77, 2012. [see page 13]

[GGP17a] Sapna Grover, Neelima Gupta, and Aditya Pancholi. Private communication,

2017. [see page 49]

[GGP17b] Sapna Grover, Neelima Gupta, and Aditya Pancholi. Constant factor ap-

proximation algorithms for uniform hard capacitated facility location prob-

lems: Natural LP is not too bad. Arxiv report, 2017. Available at http:

//arxiv.org/abs/1606.08022 . [see page 49]

[GIK02] Daya Ram Gaur, Toshihide Ibaraki, and Ramesh Krishnamurti. Constant ratio

approximation algorithms for the rectangle stabbing problem and the rectilinear

partitioning problem. J. Algorithms, 43(1):138–152, 2002. [see page 95]

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1979. [see pages 118,

119, 120, and 138]

[GJS74] Michael R. Garey, David S. Johnson, and Larry Stockmeyer. Some simplified

NP-complete problems. In Proc. 6th ACM Symp. Theory Comput. (STOC’74),
pages 47–63, 1974. [see page 106]

[GK99] Sudipto Guha and Samir Khuller. Greedy strikes back. J. Algorithms, 31(1):228–
248, 1999. [see page 48]

199

http://arxiv.org/abs/1606.08022
http://arxiv.org/abs/1606.08022

Bibliography

[GKPS06] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan.

Dependent rounding and its applications to approximation algorithms. J. ACM,

53(3):324–360, 2006. [see page 62]

[GKRW13] Panos Giannopoulos, Christian Knauer, Günter Rote, and DanielWerner. Fixed-

parameter tractability and lower bounds for stabbing problems. Comput. Geom.
Theory Appl., 46(7):839–860, 2013. [see page 95]

[GOS17] Robert Ganian, Sebastian Ordyniak, and Ramanujan Sridharan. On structural

parameterizations of the edge disjoint paths problem. In Proc. 28th Int. Symp.
Algorithms Comput. (ISAAC’17), pages 36:1–36:13, 2017. [see pages 25, 26,

and 189]

[Gün07] Oktay Günlük. A newmin-cut max-flow ratio for multicommodity flows. SIAM
J. Discrete Math., 21(1):1–15, 2007. [see page 26]

[GVY97] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Primal-dual approxi-

mation algorithms for integral flow and multicut in trees. Algorithmica, 18(1):3–
20, 1997. [see pages 22, 23, 25, 26, and 27]

[Har89] Richard I. Hartley. Drawing polygons given angle sequences. Inform. Process.
Lett., 31(1):31–33, 1989. [see page 136]

[HKvK+18] Ferran Hurtado, Matias Korman, Marc J. van Kreveld, Maarten Löffler, Vera Sac-

ristán, Akiyoshi Shioura, Rodrigo I. Silveira, Bettina Speckmann, and Takeshi

Tokuyama. Colored spanning graphs for set visualization. Comput. Geom.,
68:262–276, 2018. Special issue in memory of Ferran Hurtado. [see page 119]

[Hol81] Ian Holyer. TheNP-completeness of edge-coloring. SIAM J. Comput., 10(4):718–
720, 1981. [see page 44]

[HS85] Dorit S. Hochbaum and David B. Shmoys. A best possible heuristic for the

k-center problem. Math. Oper. Res., 10(2):180–184, 1985. [see page 48]

[JMM+03] Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and

Vijay V. Vazirani. Greedy facility location algorithms analyzed using dual fitting

with factor-revealing LP. J. ACM, 50(6):795–824, 2003. [see page 48]

[Kar75] Richard M. Karp. On the computational complexity of combinatorial problems.

Networks, 5:45–68, 1975. [see page 21]

[KK10] Ken-ichi Kawarabayashi and Yusuke Kobayashi. AnO(log n)-approximation

algorithm for the disjoint paths problem in eulerian planar graphs and 4-edge-

connected planar graphs. In Proc. APPROX-RANDOM’10, pages 274–286, 2010.
[see pages 22 and 26]

[KMN01] Yoshiyuki Kusakari, Daisuke Masubuchi, and Takao Nishizeki. Finding a non-

crossing Steiner forest in plane graphs under a 2-face condition. J. Comb. Optim.,
5(2):249–266, 2001. [see pages 119 and 120]

200

Bibliography

[Knu76] Donald E. Knuth. Big omicron and big omega and big theta. SIGACT News,
8(2):18–24, 1976. [see page 10]

[KR96] Jon Kleinberg and Ronitt Rubinfeld. Short paths in expander graphs. In Proc.
IEEE 37rd Symp. Found. Comput. Sci. (FOCS’96), pages 86–95, 1996. [see

page 26]

[Kru56] Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling

salesman problem. Proc. Amer. Math. Soc., 7(1):48–50, 1956. [see page 1]

[KS04] Stavros G. Kolliopoulos and Clifford Stein. Approximating disjoint-path prob-

lems using packing integer programs. Math. Program., 99(1):63–87, 2004. [see
page 22]

[KS06] SofiaKovaleva and Frits C. R. Spieksma. Approximation algorithms for rectangle

stabbing and interval stabbing problems. SIAM J. Discrete Math., 20(3):748–768,
2006. [see page 95]

[KT95] Jon Kleinberg and Éva Tardos. Disjoint paths in densely embedded graphs. In

Proc. IEEE 36th Symp. Found. Comput. Sci. (FOCS’95), pages 52–61, 1995. [see
page 26]

[KT98] Jon Kleinberg and Éva Tardos. Approximations for the disjoint paths problem

in high-diameter planar networks. J. Comput. Syst. Sci., 57(1):61–73, 1998. [see
page 26]

[KW10] Ken-ichi Kawarabayashi and Paul Wollan. A shorter proof of the graph minor

algorithm: the unique linkage theorem. In Proc. 42nd ACM Symp. Theory
Comput. (STOC’10), pages 687–694, 2010. [see page 24]

[Li13] Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location

problem. Inform. Comput., 222:45–58, 2013. [see page 48]

[Li14] Shanfei Li. An improved approximation algorithm for the hard uniform capaci-

tated k-median problem. In Proc. APPROX-RANDOM’14, pages 325–338, 2014.
[see page 85]

[Li16] Shi Li. Approximating capacitated k-median with (1 + ε)k open facilities. In

Proc. 27th ACM-SIAM Symp. Discrete Algorithms (SODA’16), pages 786–796,
2016. [see pages 50 and 89]

[Li17] Shi Li. On uniform capacitated k-median beyond the natural LP relaxation.

ACM Trans. Algorithms, 13(2):22:1–22:18, 2017. [see pages 48 and 50]

[LLR95] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and

some of its algorithmic applications. Combinatorica, 15(2):215–245, 1995. [see
page 26]

201

Bibliography

[LLS04] Ching-Chi Lin, Hsueh-I Lu, and I-Fan Sun. Improved compact visibility rep-

resentation of planar graph via Schnyder’s realizer. SIAM J. Discrete Math.,
18(1):19–29, 2004. [see page 106]

[LMM+95] Thomas M. Liebling, François Margot, Didier Müller, Alain Prodon, and Lynn

Stauffer. Disjoint paths in the plane. ORSA J. Comput., 7(1):84–88, 1995. [see
pages 118, 119, 120, and 122]

[Löf11] Maarten Löffler. Existence and computation of tours through imprecise points.

Int. J. Comput. Geom. Appl., 21(1):1–24, 2011. [see page 119]

[LR99] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems

and their use in designing approximation algorithms. J. ACM, 46(6):787–832,

1999. [see page 26]

[LRS18] Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh. Linear time param-

eterized algorithms for subset feedback vertex set. ACM Trans. Algorithms,
14(1):7:1–7:37, 2018. [see page 36]

[LS16] Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation.

SIAM J. Comput., 45(2):530–547, 2016. [see page 49]

[LSS12] Retsef Levi, David B. Shmoys, and Chaitanya Swamy. LP-based approximation

algorithms for capacitated facility location. Math. Program., 131(1):365–379,
2012. [see pages 47, 48, 50, and 57]

[MHT10] Matthias Müller-Hannemann and Siamak Tazari. A near linear time approxi-

mation scheme for Steiner tree among obstacles in the plane. Comput. Geom.
Theory Appl., 43(4):395–409, 2010. [see page 119]

[Mit99] Joseph S.B. Mitchell. Guillotine subdivisions approximate polygonal subdivi-

sions: A simple polynomial-time approximation scheme for geometric TSP,

k-MST, and related problems. SIAM J. Comput., 28(4):1298–1309, 1999. [see
pages 118 and 120]

[Mit00] Joseph S.B. Mitchell. Geometric shortest paths and network optimization. In

Handbook of Computational Geometry, chapter 15. North-Holland, 2000. [see
page 119]

[MR10] Nabil H. Mustafa and Saurabh Ray. Improved results on geometric hitting set

problems. Discrete Comput. Geom., 44(4):883–895, 2010. [see page 94]

[MRR15] Nabil H. Mustafa, Rajiv Raman, and Saurabh Ray. Quasi-polynomial time

approximation scheme for weighted geometric set cover on pseudodisks and

halfspaces. SIAM J. Comput., 44(6):1650–1669, 2015. [see page 95]

[NVZ01] Takao Nishizeki, Jens Vygen, and Xiao Zhou. The edge-disjoint paths problem

is NP-complete for series-parallel graphs. Discrete Appl. Math., 115(1):177–186,
2001. [see page 22]

202

Bibliography

[Pap94] Christos H. Papadimitriou. Computational complexity. In Encyclopedia of
Computer Science. Addison Wesley Pub Co Inc, 1994. [see pages 9 and 15]

[Pap99] Evanthia Papadopoulou. k-Pairs non-crossing shortest paths in a simple poly-

gon. Int. J. Comput. Geom. Appl., 9(6):533–552, 1999. [see page 119]

[Pat01] Maurizio Patrignani. On the complexity of orthogonal compaction. Comput.
Geom. Theory Appl., 19(1):47–67, 2001. [see pages 137, 188, and 191]

[PM05] Valentin Polishchuk and Joseph S. B. Mitchell. Touring convex bodies – A conic

programming solution. In Canadian Conf. Comput. Geom., pages 290–293,
2005. [see page 119]

[PM07] Valentin Polishchuk and Joseph S. B. Mitchell. Thick non-crossing paths and

minimum-cost flows in polygonal domains. In Proc. 23rd ACM Symp. Comput.
Geom. (SoCG’07), pages 56–65, 2007. [see page 119]

[PY91] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approxima-

tion, and complexity classes. J. Comput. Syst. Sci., 43(3):425–440, 1991. [see

pages 14 and 113]

[Raz08] Mina Razaghpour. The Steiner ratio for the obstacle-avoiding Steiner tree

problem. Master’s thesis, University of Waterloo, 2008. Available at http:

//hdl.handle.net/10012/4055 . [see page 119]

[RBvK+08] Iris Reinbacher, Marc Benkert, Marc J. van Kreveld, Joseph S. B. Mitchell, Jack

Snoeyink, and Alexander Wolff. Delineating boundaries for imprecise regions.

Algorithmica, 50(3):386–414, 2008. [see page 119]

[RS95] Neil Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths

problem. J. Comb. Theory, Ser. B, 63(1):65–110, 1995. [see pages 22 and 31]

[RS04] Neil Robertson and P. D. Seymour. Graph minors. XX. Wagner’s conjecture. J.
Comb. Theory, Ser. B, 92(2):325–357, 2004. [see page 16]

[RT87] Prabhakar Raghavan and Clark D. Tompson. Randomized rounding: A tech-

nique for provably good algorithms and algorithmic proofs. Combinatorica,
7(4):365–374, 1987. [see pages 22, 23, 24, and 45]

[RZ10] Satish Rao and Shuheng Zhou. Edge disjoint paths in moderately connected

graphs. SIAM J. Comput., 39(5):1856–1887, 2010. [see page 26]

[Sac84] Jörg-Rüdiger Sack. Rectilinear Computational Geometry. PhD the-

sis, School of Computer Science, McGill University, 1984. Available

at http://digitool.library.mcgill.ca/R/?func=dbin-jump-full&

object_id=71872&local_base=GEN01-MCG02 . [see page 136]

[Sch94] Petra Scheffler. A practical linear time algorithm for disjoint paths in graphs with

bounded tree-width. Technical Report TR 396/1994, FU Berlin, Fachbereich 3

Mathematik, 1994. [see pages 21, 25, and 46]

203

http://hdl.handle.net/10012/4055
http://hdl.handle.net/10012/4055
http://digitool.library.mcgill.ca/R/?func=dbin-jump-full&object_id=71872&local_base=GEN01-MCG02
http://digitool.library.mcgill.ca/R/?func=dbin-jump-full&object_id=71872&local_base=GEN01-MCG02

Bibliography

[SCS11] Loïc Séguin-Charbonneau and F. Bruce Shepherd. Maximum edge-disjoint

paths in planar graphs with congestion 2. In Proc. IEEE 52nd Symp. Found.
Comput. Sci. (FOCS’11), pages 200–209, 2011. [see page 26]

[Tam87] Roberto Tamassia. On embedding a graph in the grid with the minimum

number of bends. SIAM J. Comput., 16(3):421–444, 1987. [see page 136]

[Tam16] Roberto Tamassia. Handbook of Graph Drawing and Visualization. Chapman &

Hall/CRC, 2016. [see page 9]

[Tar85] Éva Tardos. A strongly polynomial minimum cost circulation algorithm. Com-
binatorica, 5(3):247–255, 1985. [see page 51]

[Tru93] Richard J. Trudeau. Introduction to Graph Theory. New York: Dover Pub, 1993.

[see page 9]

[Var10] Kasturi Varadarajan. Weighted geometric set cover via quasi-uniform sampling.

In Proc. 42nd ACM Symp.Theory Comput. (STOC’10), pages 641–648, 2010. [see
pages 94 and 190]

[Vaz10] Vijay V. Vazirani. Approximation Algorithms. Springer Publishing Company,

Incorporated, 2010. [see page 9]

[Ver13] Kevin Verbeek. Homotopic C-oriented routing. In Graph Drawing (GD’12),
pages 272–278, 2013. [see page 119]

[VW85] Gopalakrishnan Vijayan and Avi Wigderson. Rectilinear graphs and their

embeddings. SIAM J. Comput., 14(2):355–372, 1985. [see page 136]

[WS11] David P. Williamson and David B. Shmoys. The Design of Approximation Algo-
rithms. Cambridge University Press, 1st edition, 2011. [see pages 9 and 48]

204

Given points in the plane, connect them using minimum ink.
Though the task seems simple, it turns out to be very time
consuming. In fact, scientists believe that computers cannot
efficiently solve it. So, do we have to resign?

This book examines such NP-hard network-design problems,
from connectivity problems in graphs to polygonal drawing
problems on the plane. First, we observe why it is so hard to
optimally solve these problems. Then, we go over to attack
them anyway. We develop fast algorithms that find approxi-
mate solutions that are very close to the optimal ones. Hence,
connecting points with slightly more ink is not hard.

N
et

w
or

k-
D

es
ig

n
P

ro
b

le
m

s
in

 G
ra

p
h

s
an

d
 o

n
th

e
P

la
ne

K
rz

ys
zt

of
 F

le
sz

ar
Krzysztof Fleszar

Network-Design Problems in
Graphs and on the Plane

Würzburg University Press

ISBN 978-3-95826-076-4

	Acknowledgments
	Preface
	Contents
	Introduction
	Outline of the Book
	Problems in Graphs
	Problems on the Plane

	Preliminaries
	Mathematical Notation
	Complexity
	Algorithmic Model and Run Time
	Problem Types, Complexity Classes, and Approximation
	Reducibility and Hardness

	Graphs

	I Problems in Graphs
	New Algorithms for Maximum Disjoint Paths Based on Tree-Likeness
	Introduction
	Motivation and Contribution

	Preliminaries
	Bi-Criteria Approximation for MaxEDP with Low Congestion
	Algorithm
	Analysis

	Refined Approximation Bound for MaxEDP
	Irreducible Routings with Low Congestion
	Approximation Algorithm

	Fixed-Parameter Algorithm for MaxNDP
	Dynamic Programming Table
	Analysis
	Reconstruction of an Optimal Routing

	Parameterized Intractability of MaxNDP for the Parameter r
	Hardness of Edge-Disjoint Paths in Almost-Forests
	Concluding Remarks

	Approximating Hard-Capacitated k-Facility Location Problems
	Introduction
	Star Clusters and Star Instances
	The Dependent Rounding Approach

	Algorithm for Uniform Hard-Capacitated k-Facility Location
	Constructing a Star Forest
	Solving a Star Forest

	Algorithm for Non-uniform Hard-Capacitated k-Median
	Obtaining a [1/2,1]-Solution with Capacity Violations
	Computing a Weak {1/2,1}-Solution
	Rounding a Weak {1/2,1}-Solution to an Integral Solution

	Concluding Remarks and Open Questions

	II Problems on the Plane
	Stabbing Rectangles by Line Segments
	Introduction
	Structural Properties and Applicability of Existing Techniques
	Greedy Algorithm for Set Cover
	Relation to Piercing

	A Constant-Factor Approximation Algorithm for Stabbing
	Set Cover and Linear Programming
	Shallow-Cell Complexity
	Decomposition Lemma for Set Cover
	x-Laminar Instances
	Decomposing General Instances into Laminar Instances

	Further Applications of the Decomposition Lemma
	NP-Hardness of Stabbing
	APX-Hardness of Cardinality and Constrained Stabbing
	Conclusion

	Colored Non-Crossing Euclidean Steiner Forest
	Introduction
	Algorithms for k-CESF
	PTAS for 2-CESF
	Algorithm for 3-CESF
	Conclusion

	Minimum Rectilinear Polygons for Given Angle Sequences
	Introduction
	NP-Hardness of the General Case
	NP-Hardness of FitBoundingBox
	Extension to the Optimization Versions

	The Monotone Case: Minimum Area
	The xy-Monotone Case
	The x-Monotone Case

	The Monotone Case: Minimum Perimeter
	The xy-Monotone Case
	The x-Monotone Case

	Conclusion

	Open Problems
	Bibliography

