Julius-Maximilians-

UNIVERSITAT
WURZBURG

Design of a Self-Organizing
MAC Protocol for Dynamic
Multi-Hop Topologies

Dissertation zur Erlangung des
naturwissenschaftlichen Doktorgrades
der Julius-Maximilians-Universitat Wiirzburg

vorgelegt von

Clemens Miihlberger

aus
Rosenheim

Fakultit fiir Mathematik und Informatik
Lehrstuhl fiir Informatik V

Wiirzburg 2018

@00






Design of a Self-Organizing
MAC Protocol for Dynamic
Multi-Hop Topologies

Dissertation zur Erlangung des
naturwissenschaftlichen Doktorgrades
der Julius-Maximilians-Universitat Wiirzburg

vorgelegt von

Clemens Miihlberger

aus
Rosenheim

Wiirzburg 2018



Eingereicht am: 09.08.2017

bei der Fakultit fiir Mathematik und Informatik
1. Gutachter: Prof. Dr. Reiner Kolla
2. Gutachter: Prof. Dr. Jorg Nolte

Tag der miindlichen Priifung: 20.02.2018



Acknowledgments

It always seems impossible until it's
done.

Nelson Mandela

This work is the result of my research studies on the field of Wireless Sensor Networks. These
studies have been carried out at the Institute of Computer Science at the Julius-Maximilians-
University of Wiirzburg. It was a great pleasure for me to having had the opportunity to
work and research at the Chair for Computer Engineering V as research assistant and Ph.D.
candidate.

Therefore, I would like to thank my Ph.D. adviser Prof. Dr. Reiner Kolla for the facilitation
of my research, especially his support and patience with me.

Next, I would like to thank my second reviewer Prof. Dr. Jérg Nolte for his time and efforts
in evaluating my work.

Furthermore, I would also like to thank my proof-reader and long-time companion Prof.
Dr. Marcel Baunach, for his constructive spirit, collaborative work and common time.

I would also like to thank my research colleagues and forerunners (in alphabetical order):
Dr. Christian Appold, Prof. Dr. Marcel Baunach, Dr. Jiirgen Bregenzer, and Dr. Armin
Runge for the meaningful (sometimes meaningless but amusing) discussions and for sharing
ideas.

Finally, I wish to say a special thank you to my beloved family and, in particular, to my wife
Filiz Miihlberger - for unlimited support, invaluable personal advice, and your everlasting
faith in me. Especially, during the exceptionally difficult times in 2016 you always offered
your strong shoulder to lean on.




ii



Abstract

Biologically inspired self-organization methods can help to manage the access control to the
shared communication medium of Wireless Sensor Networks. One lightweight approach is
the primitive of desynchronization, which relies on the periodic transmission of short control
messages — similar to the periodical pulses of oscillators. This primitive of desynchroniza-
tion has already been successfully implemented as MAC protocol for single-hop topologies.
Moreover, there are also some concepts of such a protocol for multi-hop topologies available.
However, the existing implementations may handle just a certain class of multi-hop topolo-
gies or are not robust against topology dynamics. In addition to the sophisticated access
control of the sensor nodes of a Wireless Sensor Network in arbitrary multi-hop topologies,
the communication protocol has to be lightweight, applicable, and scalable. These charac-
teristics are of particular interest for distributed and randomly deployed networks (e.g., by
dropping nodes off an airplane).

In this work we present the development of a self-organizing MAC protocol for dynamic
multi-hop topologies. This implies the evaluation of related work, the conception of our
new communication protocol based on the primitive of desynchronization as well as its im-
plementation for sensor nodes. As a matter of course, we also analyze our realization with
regard to our specific requirements. This analysis is based on several (simulative as well as
real-world) scenarios. Since we are mainly interested in the convergence behavior of our
protocol, we do not focus on the "classical” network issues, like routing behavior or data rate,
within this work. Nevertheless, for this purpose we make use of several real-world testbeds,
but also of our self-developed simulation framework.

According to the results of our evaluation phase, our self-organizing MAC protocol for
WSNs, which is based on the primitive of desynchronization, meets all our demands. In
fact, our communication protocol operates in arbitrary multi-hop topologies and copes well
with topology dynamics. In this regard, our protocol is the first and only MAC protocol to
the best of our knowledge. Moreover, due to its periodic transmission scheme, it may be
an appropriate starting base for additional network services, like time synchronization or
routing.

iii



iv



Kurzfassung

Biologisch inspirierte, selbst-organisierende Methoden konnen dabei helfen, die Zugrifts-
kontrolle drahtloser Sensornetze auf das gemeinsame Kommunikationsmedium zu regeln.
Ein leichtgewichtiger Ansatz ist das Primitiv der Desynchronisation, das auf einer periodi-
schen Ubertragung kurzer Kontrollnachrichten beruht - dhnlich den periodischen Impulsen
eines Oszillators. Dieses Primitiv der Desynchronisation wurde bereits erfolgreich als MAC-
Protokoll fiir Single-Hop Topologien implementiert. AufSerdem existieren auch einige Multi-
Hop Konzepte dieser Protokolle. Allerdings konnen die verfiigbaren Implementierungen nur
eine bestimmte Klasse von Multi-Hop Topologien bedienen oder sie sind nicht robust ge-
nug gegeniiber Veranderungen der Netzwerktopologie. Zusitzlich zu dieser ausgekliigelten
Zugriftskontrolle der Sensorknoten eines drahtlosen Sensornetzes in beliebigen Multi-Hop
Topologien muss das Kommunikationsprotokoll leichtgewichtig, effizient anwendbar und
skalierbar sein. Diese Eigenschaften sind insbesondere fiir verteilte und zufillig (z.B. durch
den Abwurf von Sensorknoten aus einem Flugzeug) aufgebaute Netzwerke von Interesse.

In dieser Arbeit prasentieren wir die Entwicklung eines selbst-organisierenden MAC Pro-
tokolls fiir dynamische Multi-Hop Topologien. Dies beinhaltet die Auswertung damit ver-
bundener Arbeiten, der Konzeption unseres neuen, auf dem Primitiv der Desynchronisation
basierenden Kommunikationsprotokolls sowie dessen Umsetzung fiir Sensorknoten. Selbst-
verstandlich untersuchen wir unsere Realisierung hinsichtlich unserer spezifischen Anfor-
derungen. Diese Analyse basiert auf verschiedenen (simulativen, wie auch aus echter Hard-
ware bestehenden) Szenarien. Da wir vornehmlich am Konvergenzverhalten unseres Proto-
kolls interessiert sind, legen wir unser Augenmerk in dieser Arbeit nicht auf die ,,klassischen®
Netzwerkthemen, wie Routing-Verhalten oder Datenrate. Nichtsdestotrotz nutzen wir hier-
fiir verschiedene realititsnahe Testumgebungen, aber auch unsere selbstentwickelte Simula-
tionsumgebung.

Gemaf} den Ergebnissen unserer Evaluationsphase erfiillt unser auf dem Primitiv der De-
synchronisation basierendes, selbst-organisierendes MAC Protokoll fiir drahtlose Sensor-
netze all unsere Anforderungen. Tatsdchlich funktioniert unser Kommunikationsprotokoll
in beliebigen Multi-Hop Topologien und kann zudem gut mit Veranderungen der Topologie
umgehen. In dieser Hinsicht ist - nach unserem besten Wissen — unser Protokoll das ers-
te und einzige MAC Protokoll. AufSerdem bietet sich unser Kommunikationsprotokoll auf-
grund seines periodischen Ubertragungsschemas als geeigneter Ausgangspunkt fiir weitere
Netzwerkdienste, wie Zeitsynchronisation oder Routing, an.




vi



Contents

I Introduction 1
1 Introduction 3
1.1 Motivation . . . . . . .. e e 3
1.2 Requirements. . ... ........ ... ... o 4
1.3 Scientific Contribution . . .. ... ... . .. . .. ... 5

2 Basics 7
21 Definitions . . . ... ... .. 7
2.2 Analysis Techniques . . . .. ...... .. ... ... ... .. . ... ... 22
2.21 Real-World Testbed . ... ......... ... ... ... ...... 23

2.22 Simulation. . ... ... ... ... ... 24

223 Summary ... 25

2.3 Simulation Framework . . .. ... ... ... ... ... .. ... .. .... 25
2.3.1  Motivation . . ... ... e 25

2.3.2 SimulatorextDeSIMc . ... ... .. ... ... .. ... . ... .. 27

2.3.3 SimulationModel .. ... ... ... ... ... ... .. ... ... 32

2.3.4 Generator Script . . . ... L L 32

2.4 Sensor Node Framework . .. ... ... ... ... ... ... ..., 34
241 SNoW>SensorNode. ... ......... ... ... ..... 34

2.42 €Z430Chronos . . . ... ... .. . 36

2.43 SuperGGatewayNode. ... ... ................... 37

2.4.4 SmartOS . . . . .. e 38

2.45 Sniffer . ... 39

I Desynchronization 41
3 Desynchronization 43
31 Introduction . .. ... . ... 43
3.2 Pulse-Coupled Oscillator Framework . . . . ... ........ .. ..... 44
3.3 Using PCOs to Synchronize WSNs . . . . ... ......... .. ..... 45
331 Adaptation . ... ... 46

332 RelatedWork . . .. ... ... ... . 47

3.4 Using PCOs to Desynchronize WSNs . . . ... ................ 47

4 Desynchronization as MAC Protocol 49
41 GenericFramework . . .. . . . . .. .. 49

vii



Contents

43

4.4

4.5

4.6

General Conclusions . . ... ... ... ...
421  Single-Hop Topology . ... ....... ... ... . ... .....
422  Multi-Hop Topology . . . . . ... ... ..
The Midpoint Approach . . . ... ... ... ... ... ... ... . ...
431 ProofofConvergence . .........................
432 RelatedWork . ... ... .. . .. ..
The Local Max Degree Approach . . .. ....... ... ... .......
4.41 RelatedWork . .. ... ... . ...
The Frog-Call Inspired Approach . . . . ....................
451 RelatedWork . ... ... .. ... ... .
The Artificial Force Field Approach . . . .. ..................
4.61 RelatedWork . ... ... .. . .. ..

The extended-Desync Protocol

5.1
5.2

5.3

5.4

5.5

5.6

5.7
5.8

5.9

Motivation . . . . . . ...
The Hidden Terminal Problem Revised . . . ... ... ............
52.1 TheLocal MaxDegree . .. .......................
5.2.2 TheRTS/CTSHandshake . .. ... .. ... ... ... .......
Phase Shift Propagation . . . . ... ......... ... ... ... ... ..
531 BasicIdea .. ... ... ... .. ... ...
5.3.2  Constraint Graph Creation . . . .. ... ...............
53.3 Timed Constraint Graph . ... ...... ... ...........
TimingIssues. . . . . ... ... . ...
5.41 Communication Delays . . ... ....................
5.4.2 Timestamping . ............. . ... . . . . ...
Neighbor Information . . . . .. ........ ... ... .. .. ... ....
5.5.1 Sample Scenario . ... ... ...
55.2 Naive Approach . ........... .. ... . ... ... ..
5.5.3  Phase Shift Approach . ... ....... .. ... .. .......
5.5.4  Reciprocal Phase Shift Approach . . . .. ...............
5.5.5  SUMMAry . .. ... ..
Information Packing. . . . .. ... ... ... .
561 SmartNET Support. . ... ... ... ... ... ... ..
5.6.2 Naive Approach . ......... ... ... ... . ... ... ..
5.6.3  Fixed Size Subset Approach . . . ... ... ... ... .. ... ..
5.6.4 Fixed Percentage Approach . . . .. ..................
56,5 Summary . ...
Frame Structure . . ... ... .. . . .. ..
Practical Issues . . . . . . . . . . . .
581 NodesIn. ... ... ... .. ... .. ..
582 NodesOut. ... ... ... ..,
Summary . ... ...

The extended-Desync™ Protocol

6.1

Motivation . . . . . . . . . . e e e

53
53
55
59
61
67
68
69
70
71
71
73

75
75
76
77
77
79

79
80

81
81
82
85
87
88
88
90
92
94
95
95
98
98
99
100
101
102
102
104
105

viii



Contents

6.2 Stale Information Problem . . . ... .. ... .. ... .. .. ... .. ... 110
6.21  Single-Hop Topology . . ...... ... ... ... ... ....... 110

6.22 Multi-Hop Topology . . . . ... ... ... ... ... 112

6.3 RefractoryThreshold . .. ... ...... ... .. ... .. ... ...... 113
631 BasicIdea .. ... ... ... .. ... .. 114

632 Impact....... .. ... .. ... 115

633 RelatedWork . . ... ... . .. ... ... 116

6.4 Excursion: Pseudo Random Number Generator (PRNG) . ... .. .. .. 117
6.4.1 PRNG Implementation for our Sensor Node Framework . . . . . . 1y

6.4.2 PRNG Implementation for our Simulation Framework . . . . . . . 18

6.5 SUMMAIY . . ottt v i vttt et e e e e 119
111 Evaluation 121
7 Analysis 123
71  Simulation Model Validation . . . . ... .. ... ... ... ... .. .... 123
711 ObjectofInvestigation. . . . ... .. ................. 123

7.1.2 Expectation . . ... ... ... .. ... 125

713  Procedure .. ... ... ... ... .. 126

71.4 Results . . ... ... .. 126

72 SetupConsequences . . . . . . ... ... ... 130
721 Objectof Investigation. . . . .. .................... 131

72.2  Expectation . .. ....... ... .. . o o 131

723 Procedure . ... ... ... ... .. 133

72.4 Results . . .. .. .. . 134

73 Jump Size Parameter. . . . . ... ... .. L L oL 136
731 Objectof Investigation. . . . .. .................... 136

7.3.2 Expectation . . ... ... ... ... . o oo 136

733 Procedure .. ... ... ... ... . 137

73.4 Results . . . .. ... .. 138

7.4 RefractoryThreshold . ... .. ... ... ... .. ... . ... ...... 139
741  Objectof Investigation. . . . .. .................... 141

7.4.2  Expectation . ......... .. .. .. . . o oo 141

743 Procedure .. ... ... ... ... 141

74.4 Results . . . .. .. 142

75 Applicability . . ... ... 145
751  Objectof Investigation . . . . .. .................... 145

752  Expectation . .. ....... .. .. .. L o o 146

753 Procedure . ... ... .. .. ... 146

754 Results . . ... ... ... 146

7.6 SUMMAIY . . . . oot 149

ix



Contents

8 Discussion
81 Outlook . . .. ...
8.1.1  Adaptive Jump Size Parameter . . . ... ... ... ... ......
8.1.2  Adaptive Refractory Threshold . . . . .. ...............
8.1.3  Additional Objects of Investigation . .................

82 Add-Ons . ....... .. .. ...
8.21  Time Synchronization . . . ... ....................
822 Routing ........ ... ... ... o o

8.2.3  Distributed Data Management . . . .. ... .............

9 Summary and Conclusion
9.1 SUMMAry . ... ...
9.2 Conclusion . . .. ... . .. .. e

IV Lists and Indexes
Bibliography

List of Figures

List of Tables

List of Listings

Acronyms

151
151
151
152
153
154
154
155
156

159

159
160

161
163
181
183
185

187




Part |

Introduction

Es ist nicht genug, zu wissen,
man mul auch anwenden;

Johann Wolfgang von Goethe

Abstract

This part motivates for researching on the conceptional design and analysis of a self-organizing com-
munication protocol for arbitrary topologies in Wireless Sensor Networks based on the primitive of
desynchronization. In this regard, this part not only introduces this certain topic, but also specifies the
underlying terms and tools of this work.

In particular, Chapter 1 gives reasons for the development of a self-organizing communication protocol
for WSNs. Referring to this, the necessary requirements, which have to be fulfilled by our communica-
tion protocol, are also specified in this chapter. Chapter 2 defines the essential terms and presents the
particular tools, which are utilized for the purpose of this work. It also discusses our research approach
and outlines the applied methodology. Furthermore, this chapter introduces the hardware as well as
the software framework used for development and evaluation of our communication protocol.






Chapter 1

Introduction

1.1 Motivation

The evolution in the areas of semiconductors and computers over the last decades allows
for the tight integration of complex sensors and actuators as well as computational units.
This development results not only in smaller and more powerful computing platforms but
also in more energy-efficient and globally connected devices. This is one of the keys for
the production of small network components which are able to communicate wirelessly to
achieve (common) goals and to provide distributed services.

The availability of these network components established new fields of research and devel-
opment. Different aspects may be in focus, depending on the intended application domain.
Along with the technology, there was also an evolution in the naming of such networks, be-
ginning with Wireless Sensor Network (WSN)* to Cyber Physical System (CPS)* to Internet
of Things (IoT)* - to name but a few. Nevertheless, the fundamental problems and cen-
tral questions, e.g., regarding the dependability of the underlying wireless communication,
remained the same or similar. For instance, the European Workshop for Wireless Sensor
Networks (EWSN) did change its name to International Conference on Embedded Wireless
Systems and Networks (EWSN) as it did also expand its scope from Wireless Sensor Network
to the fields of Cyber Physical System and Internet of Things in addition. A clear distinction
between these particular network types seems to be not always obvious (cf. [117]). Hence,
even though we will mainly use the term Wireless Sensor Network within this work, our
propositions and statements are also valid for other tpyes of Wireless Networks (WNs) in
principle.

Saying this, all Wireless Networks, and Wireless Sensor Networks in particular, do require
a well-defined communication stack to successfully exchange data, and thus, to perform cer-
tain tasks in the desired (and efficient) way. For instance, a large variety of communication
protocols for WSNs already does exist. However, the applicability of some of these protocols
is restricted to a certain network size and/or to a specific network structure. Apart, highly
dynamic networks, e.g., systems with mobile devices, may not rely on a fixed infrastructure
nor on a central control unit. Therefore, we will aim for a communication protocol which
scales well and is applicable in arbitrary topologies. In this regard, we present a decentralized
and distributed approach to establish a flexible and adaptive communication infrastructure
for a dependable data exchange within such networks.

'For instance, the ACM Conference on Embedded Networked Sensor Systems (Sensys) was established in 2003,
the European Workshop for Wireless Sensor Networks (EWSN) was established in 2004, and the Fachgesprdich
Sensornetze (FGSN) was established in 2003

*For instance, the CPS Week was established in 2008 and the ACM/IEEE International Conference on Cyber-Physical
Systems (ICCPS) was established in 2010.

3For instance, the Internet of Things Conference was established in 2008.




Chapter 1 Introduction

In order to accomplish related communication challenges, Nature often demonstrates an
impressive diversity regarding efficient ways of coping with biological or environmental lim-
itations and the laws of nature. Over hundreds and thousands of years several approaches
have evolved and were tested and refined or discarded by different creatures and organisms
to develop impressive concepts. For instance, cardiac cells show coordinated beating or fire-
flies flash in unison. This spontaneous emergence of collective synchronization does not rely
on a central control unit. Instead, the components just act on perception and simple rules.
This primitive of desynchronization is the basis for this kind of self-organizing communica-
tion. We want to adapt this biological concept for our communication protocol.

To sum up, the objective of this work is the

o conceptional design and analysis of a
o self-organizing

o communication protocol for

o arbitrary topologies in

Wireless Sensor Networks based on the

o primitive of desynchronization.

Our particular requirements for such a communication protocol will be specified in the next
section.

1.2 Requirements

Having drafted the objective of this work, i.e., the development of a self-organizing commu-
nication protocol for arbitrary topologies in WSNs, we still need to specify in detail the scope
of this protocol. In particular, such a protocol has to meet our demands as follows:

1. First of all, we focus on the Medium Access Control (MAC) mechanism of the network
components as main service of our wireless communication protocol. Designed for
tiny embedded systems, this Medium Access Control protocol has to be lightweight
and applicable. This means that the protocol introduces just a small overhead and thus
can be executed by network components of potentially low computational power and
constrained resources, like little memory.

2. Next, wireless communication in a network always involves the risk of packet collisions
and data loss. In general, these packet collisions are undesired as they might lead to
violated real-time constraints, destroy information, and cause additional expenses in
time and energy, e.g., for retransmissions. Therefore, we aim on minimizing the proba-
bility of such packet collisions by developing a Time-Division Multiple Access (TDMA)
scheme with exclusively assigned transmission slots.




1.3 Scientific Contribution

3. In this regard, we want to prevent the single point of failure of centralized synchro-
nization approaches as well as the rigidity of an a priori schedule. Hence, we decided
to rely on neither a global clock nor an explicit time synchronization protocol. In con-
trast, the system should be robust against topology dynamics, e.g., joining or leaving
network components. Therefore, we have developed a self-organizing MAC protocol
based on a dynamic TDMA schedule that is continuously and individually maintained
by each network node. The underlying self-organizing algorithm is mainly influenced
by the biologically inspired primitive of desynchronization. Consequently, the prob-
ability of collisions will be minimized - still enabling the system to adapt rapidly to
topology dynamics.

4. Indeed, there already exist some MAC protocols that are based on this primitive of
desynchronization. However, most of these protocols are applicable for single-hop
WSNss only. In contrast, our protocol shall be generally applicable, i.e., it has to operate
well in arbitrary network types, including multi-hop topologies. Additionally, the self-
organizing protocol has to scale well with the network size, i.e., its performance has to
be independent of the number of network components and links.

5. Finally, due to significant mobility or environmental perturbation in WSNs, a fast con-
vergence of the schedule adaptation is also required in case of such topology changes.
While nodes might operate on different schedules during this short time of disor-
der, there should be no packet collisions and no data loss. However, due to the self-
organizing manner, there are trade-offs, for instance between convergence rate and
protocol overhead.

To sum up, for the communication within Wireless Sensor Networks we are in need of
a lightweight and applicable as well as scalable MAC protocol, which implements a self-
organizing and dynamic TDMA schedule. This communication protocol not only has to
support arbitrary (multi-hop) topologies and has to be robust against environmental per-
turbations, but also has to converge efficiently to an adapted schedule in case of topology
changes. As mentioned before, there already exists a wide variety of communication pro-
tocols for Wireless Sensor Networks. Nevertheless, a communication protocol for Wireless
Sensor Networks that meets all our demands from above is still missing.

1.3 Scientific Contribution

The focus of this work is on the design of a self-organizing communication protocol for Wire-
less Sensor Networks. In particular, we have developed and analyzed a self-organizing MAC
protocol which is applicable for arbitrary multi-hop topologies being subject to topology dy-
namics. In this regard, we are mainly interested in the convergence behavior of our protocol.
Therefore, we do not focus on the "classical” network issues, like routing behavior, data rate,
network throughput, and channel utilization. Thus, this work is organized as follows:

Part I motivates research in this particular topic and also specifies the fundamental terms
and definitions which are used within this work. Moreover, we discuss our research approach
and outline the applied methodology, whose result is tested through a mix of simulation and
experiments. In this regard, we present the framework which was used for development as




Chapter 1 Introduction

well as for evaluation: On the one hand, we deployed real hardware in real-world testbeds, i.e.,
the network components, which executed embedded software, e.g., the embedded operating
system as well as applications. On the other hand, we developed a simulation framework,
which allows an efficient prediction and comfortable ex post facto analysis of the settling
process of Wireless Sensor Networks implementing our self-organizing MAC protocol.

Part IT addresses the core concepts of this work. The initial task is to introduce the biologi-
cally inspired primitive of desynchronization. This primitive is the basis for several approaches
to synchronize but also to desynchronize Wireless Sensor Networks. Furthermore, imple-
mentations of this primitive of desynchronization as MAC protocol for WSNs already exist.
Within this part, these implementations are discussed and opposed to our requirements from
Section 1.2. Since none of the available MAC protocols based on the primitive of desynchro-
nization met our demands, we developed a self-organizing MAC protocol with a dynamic
TDMA schedule for arbitrary WSN topologies. We also attempt to prove the convergence of
our approach for multi-hop topologies under certain assumptions. The development process
and our resulting protocols EXTENDED-DESYNC and EXTENDED-DESYNC, respectively, are
described in detail.

The evaluation of our EXTENDED-DESYNC and EXTENDED-DESYNC™ protocol is presented
in Part III. Here, we do confront our protocols with our requirements from Section 1.2. This
is done by analyzing and discussing the results of appropriate scenarios - realized as simula-
tions or as real-world testbeds. To the best of our knowledge, our communication protocols
EXTENDED-DESYNC as well as EXTENDED-DEsYNC™ are the first and only MAC protocols for
WSNSs, which are based on the primitive of desynchronization, and which are able to operate
in arbitrary multi-hop topology with topology dynamics at the same time. Subsequent to this
evaluating chapter, we give an outlook to future research directions. Moreover, we present
some potential add-ons to our MAC protocol which will offer additional (network) services.
Part III closes with a conclusion about this work.

Part IV contains additional information, like lists and references. These lists are provided
for a more comprehensive understanding of various details within this work.

To sum up, the environment of Wireless Sensor Networks may stimulate topology dynam-
ics due to node failures or mobility. Nevertheless, the stability and robustness of the com-
munication network is essential to fulfill a common task (e.g., distributed real-time control
in wirelessly connected and autonomously driving cars). Especially for arbitrary multi-hop
topologies, a lightweight but adaptive communication protocol, which is able to cope with
such conditions, is missing. In this regard, we developed a MAC protocol for WSNs, which
combines the advantages of a TDMA scheme with the benefits of a self-organizing approach
to meet our demands.




Chapter 2

Basics

Abstract

The number of published literature studying the field of Wireless Networks in general, and
Wireless Sensor Networks in particular, increased within the past years. As a consequence,
the meaning of some terms differs in literature nowadays. Therefore, we first state in Sec-
tion 2.1 our interpretation of the key terms as used within this work. Likewise, the family of
sensor node systems also grew within the past years. Thus, in Section 2.2 we briefly intro-
duce potential analysis techniques to evaluate our approach. Finally, we describe the tools we
used for our simulations and experiments, namely our self-developed simulator EXTDESIMC
in Section 2.3 as well as our sensor node hardware and software in Section 2.4.

2.1 Definitions

As stated in Chapter 1, the main subject of our analyses will be a self-organizing radio com-
munication protocol for Wireless Networks.

Definition 2.1 Self-Organization. In accordance with [55], we call the process by which the
system behavior at a higher level emerges solely from the interactions of system components
atalower level self-organization. Especially, when low-level components have justalocal view
(i.e., they interact according to locally acquired information) and when there is no low-level
component with a global view or global knowledge about the current behavior of the other
components. Therefore, one main characteristics of self-organizing systems is the absence of
an external or a centralized control.

As suggested by Dressler in [55], (a combination of) the following mechanisms can be used
to achieve self-organization:

Feedback A positive feedback would reinforce or activate, whereas a negative feedback
would diminish or suppress a specific behavior of system components. Feedback may
be provided from external or internal system components. Thus, it is strongly related
to the acquiring of information.

Interaction System components may interact with other system components or with the
environment. Communication is the most common kind of interaction and a pre-
requisite for coordination. We further distinguish between direct communication,
e.g., transmission of a message, and indirect communication, which requires auxil-
iary means (like whiteboard, environment, or other system components). Moreover,
modifying as well as sensing of environmental parameters is also considered as indirect
interaction with the environment.




Chapter 2 Basics

Probabilistic Techniques Randomized algorithms can be used to introduce contingency
and arbitrary behavior into the system. The source of randomness can be a Random
Number Generator (RNG) or — as within this work — a Pseudo Random Number Gen-
erator (PRNG). There is a brief excursion on Pseudo Random Number Generator in
Section 6.4.

The node’s decisions are mainly based on just locally available information. Depending on
its degree of non-linearity (e.g., the number of nodes), the behavior of such a self-organizing
system even may be as unpredictable as desirable. In addition, even optimum configura-
tions for such systems are subject to change frequently, i.e., a fast convergence behavior is
required (cf. Section 1.2). Consequently and in accordance to, e.g., [55], the behavior of a
self-organizing system may be predictable only to a certain extent when using probabilistic
techniques. For instance, statistical measurements are used in [173] to enhance the conver-
gence rate of the so-called DEsYNC-ORT protocol (cf. Section 4.3.2). Moreover, we utilize
the exponentially weighted moving average (EWMA) (cf. Observation 4.11) to facilitate the
system’s convergence behavior.

Notably, in the context of this work we consider the transmission of messages in general
and of firing messages (cf. Definition 3.2) in particular, as inter-component interaction but
not as feedback. Therefore, a combination of interaction and probabilistic techniques is used
within this work for our self-organizing algorithm. The main field of application of our self-
organizing approach is a Wireless Ad hoc Network.

Definition 2.2 Wireless Ad hoc Network, Node. A Wireless Ad hoc Network consists of a
set N of participating network elements, so-called nodes. All (heterogeneous or homoge-
neous) nodes of a Wireless Ad hoc Network are able to interact wirelessly ad hoc through a
shared medium, like air (over-the-air) or water (cf. [195, 107, 7, 79]). However, a pre-installed
infrastructure supporting network operation is missing for this "ad hoc" network type. This
means that the infrastructure has to be built on demand, e.g., in a self-organizing manner by
the nodes themselves.

Meanwhile, there exist various different (sub)types of Wireless Ad hoc Networks. The
most prominent representative is the Mobile Ad hoc Network (MANET), where every node
can be mobile, i.e., the spatial location of each node can be non-stationary. In addition, one
subtype of the MANET is the Wireless Sensor Network (WSN). This network type will be in
the foreground within this work.

Definition 2.3 Wireless Sensor Network. The Wireless Sensor Network (WSN) is a subtype
of the MANET and consists of just a few or up to thousands of so-called sensor nodes. To
keep costs low, the network components are usually assembled from cheap and simple com-
ponents. Due to radio interference, sensor node failure as well as leaving or joining sensor
nodes, the (arbitrary) network structure of the WSN is subject to frequent changes’ (cf. [6]).

A WOSN is often densely deployed to achieve some sort of intentional redundancy since
sensor nodes tend to be error-prone. Besides, some WSN applications require a sink, i.e.,
a node collecting all the data from the other sensor nodes of that network, where the data

'This may hold for all types of MANETS.




2.1 Definitions

flow is just one-way towards the sink but not vice versa. In contrast to these applications and
to permit a broader area of network types, the existence of a sink is neither necessary nor
assumed within this work. Finally, as sensor nodes usually exchange only short (sensor) data,
a WSN has just low bandwidth requirements. Another subtype of the MANET is the Wireless
Sensor/Actuator Network (WSAN), where actuators are explicitly enabled to manipulate the
environment.

Definition 2.4 Wireless Sensor/Actuator Network. The Wireless Sensor/Actuator Network
(WSAN) is a subtype of the MANET, which is related to the Wireless Sensor Networks. It
consists of just a few or up to thousands of so-called sensor/actuator nodes. In contrast to a
Wireless Sensor Network, a Wireless Sensor/Actuator Network has the ability to modify and
manipulate its environment using actuators. Depending on the current application, the fast
reaction on sensor inputs for a corresponding actuator configuration is mandatory. There-
fore, real-time capability in both, communication and data processing, is an important re-
quirement in Wireless Sensor/Actuator Networks.

Another subtype of the MANET as special type of the WSAN is the Vehicular Ad hoc
Network (VANET), where a mobile node corresponds to a moving vehicle.

Definition 2.5 Vehicular Ad hoc Network. The Vehicular Ad hoc Network (VANET) is a
subtype of the MANET. It consists of mobile nodes, namely vehicles or cars, and possibly im-
mobile nodes at the roadside, like road signs, street signs, traffic lights, and guide posts. This
differentiation allows the communication solely between mobile nodes, called Inter-Vehicular
Communication (IVC), car-to-car (C2C) communication, or vehicle-to-vehicle (V2V) com-
munication, as well as the communication between mobile and immobile nodes, called car-
to-infrastructure (C2I) communication. A VANET is characterized by the potentially short
communication time between interacting nodes, which is due to the mobility at (high) ve-
locities of (some) nodes (cf. [115, 53]).

Definition 2.6 Wireless Sensor Node, Wireless Sensor/Actuator Node. Like any network
component (cf. Definition 2.2), a sensor node as well as a sensor/actuator node has the ability
to interact with other elements of the network. Therefore, it consists of a microcontroller as
central processing unit and an (integrated) RF unit for wireless communication. Figure 2.1
outlines the scheme of a sensor/actuator node and a sensor node, respectively. In order to
limit costs and size, the RF transceiver typically supports just half-duplex (cf. Definition 2.9),
and its maximum communication range is from some tens up to few hundreds of meters.
However, the central microcontroller is often severely limited in computational power as
well as in memory, i.e., there are limits concerning the computation speed, the accuracy of
the results, and the acceptable amount of input/output values. Therefore, in order to store
undelivered messages, supplementary logged data, miscellaneous configurations, or alterna-
tive software images (cf. [13]), an additional non-volatile memory for long-term data storage
is often available (cf. Figure 2.1). For programming purposes and enhanced (network) con-
nectivity, a sensor node may support several (wired) interfaces and protocols, like JTAG and
RS-232. Unlike the network components from Definition 2.2, sensor/actuator nodes and sen-
sor nodes in particular, are intended to be equipped with sensor technology (cf. Figure 2.1)
to measure chemical or physical quantities or changes, like temperature, humidity, or accel-
eration. Furthermore, a sensor/actuator node in a Wireless Sensor/Actuator Network may




Chapter 2 Basics

Interface

Controller|

Figure 2.1: The scheme of a sensor/actuator node and - except for actuators - of a sensor
node. Ports to the environment are colored in gray. Components in white may be (partially)
integrated into the microcontroller.

even be able to control additional actuators, e.g., a display or a stepper motor, and thus also
influences and manipulates its surrounding. Mandatory for this work, each sensor/actuator
node as well as each sensor node has to provide its own clock to record its local time as well
as the timestamps of internal and external events (cf. Figure 2.1).

The spectrum of radio devices used at such wireless platforms ranges from sub 1-GHz
transceivers like RFM TRiooo/TRi1oo1 (e.g., at early platforms like EYES [188] and Scat-
terWeb ESB [67]) and Chipcon CCro000/CCi1100/CCr101 (e.g., at SNOW? [20, 23], BTnode
[28], and MICA2 [43]), to 2.4 GHz IEEE 802.15.4/ZigBee compliant transceivers Chipcon
CC2420/CC2520 (e.g., at MICAz [46], Telos [144], TelosB/TMote Sky [44], and Imote2 [45])
and System-on-Chip radio transceiver Nordic nRF24 (e.g., at EcoSpire [37]). Or the par-
ticular radio device is moved to a separate communication module, as for instance at the
WaspMote family [106]. This very variety of radio interfaces as well as the offered commu-
nication protocols complicates the interconnection of miscellaneous WSNs. In this regard,
more powerful sensor nodes with special capabilities, i.e., to operate as multi-layer gateway or
as protocol converter, already exist. Examples include the s-net gateway [66], Meshlium IoT
gateway [106], and the SuperG gateway [129] (cf. Section 2.4.3). Since most components of a
sensor node consume little energy, most nodes are powered by (rechargeable) battery. Cer-
tainly, sensor nodes also may perform energy harvesting by means of appropriate hardware,
like HelioMote [147], Prometheus [90], or Everlast [162]. The capability of the SNOW? sensor
node for energy harvesting is analyzed in [60].

In general, sensor nodes are rather cheap, quite simple in construction, and thus available
in large quantities. From an economic point of view, these characteristics effectively facilitate
a wide range of applications. Especially, if the environment is rough, unfriendly, or even

10



2.1 Definitions

hostile (cf. [116]). Examples include applications for agricultural and habitat monitoring [8s,
110, 183, 27], applications for wildlife observation [91, 11, 76] and underwater surveillance
[107, 7] as well as applications being subject to other destructive conditions, like gunfire [163]
or disaster [172].

As a consequence, the failure or malfunction of several sensor nodes of a system within
such a harsh environment is very likely. The system has to be designed accordingly to accept
this risk, e.g., allowing desired redundancy of hardware components or implementing a dis-
tributed data management (cf. Section 8.2.3). Indeed, this sort of redundancy and flexibility
has to be supported by the used communication protocol as well. Especially, self-organizing
protocols appear to be predestined to operate well under these conditions. Nevertheless, a
robust and self-organizing communication protocol for WSNs in multi-hop topologies with
topology dynamics is still missing. Therefore, we focus on WSNs within this work — even
though our protocol may perform quite well for other network types due to its intended ro-
bustness. Hence, we use the terms sensor node, sensor/actuator node, and node interchange-
ably from now on. Indeed, the interaction between two nodes is realized as direct commu-
nication via a channel.

Definition 2.7 Channel, Link. The communication channel corresponds to a logical inter-
node connection over a shared medium, e.g., a radio channel with multiple access. Moreover,
at a time a channel transfers data from exactly one sender (or transmitter) to an arbitrary
number of receivers. The capacity of a channel, i.e., the channel’s capability to transmit infor-
mation per time unit, is limited and measured by the channel’s bandwidth or the channel’s
data rate. The point-to-point (P2P) connection of two nodes via a communication channel
is called link.

One approach to overcome issues resulting from multiple access on the shared medium to
a certain extent is Carrier Sense (CS).

Definition 2.8 Carrier Sense. The Carrier Sense (CS) approach supports the avoidance of
potential packet collisions on a shared medium. For this purpose, a node tries to listen to
(sense) the shared medium (carrier) right before its own transmission in order to verify the
absence of other traffic.

Indeed, we further classify any link by its
« direction, i.e., as unidirectional or as bidirectional link, its
o duplex, i.e., half-duplex or full-duplex mode, and by its
o symmetry, i.e., as symmetrical or as asymmetrical link.

Definition 2.9 Uni-/Bidirectional, Half duplex/Full duplex, Symmetrical/Asymmetrical.
A link which enables the communication between two nodes in either direction is called
bidirectional. Whereas, a link between two nodes is called unidirectional, if just one of them
is able to transmit data to the other one, but never vice versa. A link may be used in full-
duplex mode, i.e., the radio unit is able to transmit and to receive data at the same time, or a
link may be used in half-duplex mode, i.e., the radio unit is just able either to transmit or to
receive at the same time. At an asymmetrical link, the data transmission between both nodes

11



Chapter 2 Basics

SYNC| Control Data User Data

LQI
word (Header) (Payload) CRC [ RSSI | LQ

Preamble

Figure 2.2: The structure of a potential radio packet. Parts colored in gray are added auto-
matically by the CC1100 radio unit, which is used mostly within our real-world testbeds.

is varying in terms of, e.g., data loss, bandwidth, or data rate. Consequently, a bidirectional
link with equal rates is called symmetrical.

Observation 2.1. A unidirectional link can be considered as an extreme form of an asym-
metrical link.

The communication amongst the nodes within this work is packet-based, i.e., a link within
this work is able to deliver packets only.

Definition 2.10 Packet. A packet is a structured unit of data. Within this work, each packet
consists of control data as well as user data (or payload) as illustrated in Figure 2.2. The
control data provides information which is required by the used protocol(s) for a correct
packet handling, e.g., the packet type, the destination address, or a sequence number. This
control data typically resides in the header or the trailer of a packet. The content of the user
data depends on the particular application. In contrast to the header, the payload may even
be omitted, e.g., for acknowledgment (ACK) messages. Header and payload are embedded
into additional parts which are required for a successful transmission, e.g., the preamble,
the SYNC word (SYNC), or parts, which specify the current transmission, e.g., the Cyclic
Redundancy Check (CRC), the Received Signal Strength Indicator (RSSI), or the Link Quality
Indicator (LQI). Depending on the used RF unit, these subsidiary parts may be added by the
radio hardware automatically, but are configurable to some extend.

So far, we classified the network types and the network components just technically. In-
deed, to analyze the functionality and applicability of our self-organizing communication
protocol, a formal description of the network structure, also called topology, is mandatory.

Definition 2.11 Topology. A topology describes the structure of a network, i.e., the links
between the nodes of a system. Noteworthy, a topology may change over time (topology
dynamics) and thus just reflects the present network configuration. Especially, this applies
for Mobile Ad hoc Networks with mobile components or Wireless Networks under ever-
changing environmental conditions.

The topology can be described formally using concepts from graph theory (cf. textbooks
on graph theory like [29, 184, 101]):

Definition 2.12 (Network) Graph. A directed (network) graph G = (N, E) is an ordered
pair of disjoint and finite sets N and E. It consists of the set N of vertices, or nodes, and the
set E € N x N of directed edges, or links. The set of edges in a directed graph is composed
of just ordered node pairs: The directed edge (i, j) € E from a node i € N to another node
j € N denotes that node j is able to receive signals emitted by node i — but not vice versa,
unless there is an edge (j, i) € E. Consequently, the edge (i, j) € E only exists if node j € N is

12



2.1 Definitions

within the communication range of node i € N. Since the wireless communication in WSNs
is typically realized as half-duplex (cf. Definition 2.9), self-loops are not contained within a
network graph, i.e., for any node i € N holds (i,i) ¢ E. Accordingly, a (network) graph G
is undirected if the set of edges is composed of not ordered node pairs, i.e., for every edge
(i,j) € Eholds (j,i) € E.

Since directed (network) graphs can be used to describe more general scenarios than undi-
rected ones, we will focus on the use of directed (netowrk) graphs. Unless otherVXise stated,
in the following a (network) graph G always denotes an directed (network) graph G.

Definition 2.13 Path, (Single) Hop. A path from a node i € N to a node j € N in the
(directed) graph G = (N, E) is a sequence of nodes (i = ig, i1,...,i;_1,i; = j) such that for
any x € {0,...,1 =1} holds (iy,ix11) € E.> Each edge in a path is called hop. The length of
the path is equal to [, i.e., the number of edges in the path. Noteworthy, a path of length 1
consists of just a single hop.

To simplify our analysis, we just examine (weakly) connected topologies.

Definition 2.14 (Weakly) Connected. Two nodes i € N and j € N of an undirected graph
G are called connected, if G contains a path from node i to node j. If every pair of nodes in an
undirected graph G is connected, this graph G is said to be connected. Within this work, we
call a directed graph G weakly connected, if replacing all of its directed edges with undirected
ones results in a connected undirected graph G.

The functionality of our self-organizing protocol strongly relies on the information a node
is able to gather about its neighbor nodes.

Definition 2.15 One-Hop Neighbor. A node j € N in a (directed) graph G = (N, E) is
called one-hop neighbor of node i € N, if (j, i) € E. That means, node j is a one-hop neighbor
of node i. Moreover, the shortest path from node j to node i has length 1.

To describe the integration of a node into the network, we have to specify the neighborhood
of a node from its point of view.

Definition 2.16 Neighborhood, Degree. In conformity with Definition 2.15, the set N; (i) €
N of one-hop neighbors of anode i € N, i.e., the one-hop neighborhood of node i, is

Ni(i) = {je N~ {i}:(j,i) € E}, (2.1)

and the set N, (i) € N of two-hop neighbors of node i € N, i.e., the two-hop neighborhood of
node i, is

Ny (i) = {k e NN {Ny(i) u{i}}:(3j e N1(i): (k. j) € E)}. (2.2)

Since each node has to receive additional information explicitly due to its local view of the
network, we further define the degree d; of anode i € N as

d; = |N1(l)| (2.3)

*Please note that we exclude self-loops in our (network) graphs according to Definition 2.12

13



Chapter 2 Basics

Observation 2.2. As a consequence to Definition 2.16, we neglect outgoing edges and take
just incoming links into account for a node’s neighborhood. This means that the neighbor-
hood of a node does not consist of nodes, which have been reached ("outbound") but which
have been gathered ("inbound").

Observation 2.3. The sets {i}, N1(i), and N, (i) are pairwise disjoint for every i € N.
Network graphs consisting of just a single connected component are of special interest:

Definition 2.17 Connected Component. A connected component is a maximal connected
subgraph of an undirected network graph G. Each node of G belongs to exactly one con-
nected component, as does each edge.

Definition 2.18 Subgraph. A graph G’ = (N’,E’) of a (directed) graph G = (N, E) with
N’ c Nand E’ ¢ E is called (induced) subgraph. It is induced by the subset N’ ¢ N of nodes
and contains the edge set E' = {(i,j) € E:i,je N'} C E.

Lemma 2.1 Connectivity. Assuming, the directed network graph G is not weakly connected,
i.e., the corresponding undirected network graph G is not connected. Hence, the network graph
G (and G respectively) has at least two connected components. Each subgraph, represented by
a single connected component, can then be considered in isolation as an individual network.

Proof. According to Definition 2.17, each connected component is a maximal connected sub-
graph. Since the particular connected components are disjoint, they will never interact with
each other. Therefore, each single connected component can be considered in isolation as
individual network. O

There are some distinct forms of connected components which are of special interest. Due
to their plain form, these graphs are easy to understand. Amongst others, these forms are
complete graph, star graph, line graph, and circle graph (cf. Figure 2.3). Besides, Choochaisri
also used these forms to analyze the M-DWARE protocol in [38].

Definition 2.19 Complete Graph. All nodes in a complete graph C = (N, E) are connected
to each other, i.e., for any two distinct nodes i, j € N with i # jholds (i, j) € E and (j,i) € E.
Figure 2.3(a) depicts the complete graph Cy4 of four nodes.

Definition 2.20 Star Graph. A star graph S = (N, E) with |[N| > 2 contains one distin-
guished node i € N, which is connected to every other node j € N with j # i, i.e., for any
node j € N with i # jholds (i, j) € E and (j, i) € E. Apart, there is no connection between
any pair of non-distinguished nodes. Figure 2.3(b) depicts the star graph S5 of five nodes.

Definition 2.21 Line Graph. A line graph L = (N, E) with |N| > 2 is a sequence of nodes
with the start node i; € N and the end node i|y| € N, i.e,, for x € {1,...,|N| -1} holds only
(ix,ix+1) € E and only (ix11,ix) € E. Figure 2.3(c) depicts the line graph L4 of four nodes.

Definition 2.22 Circle Graph. A circle graph (or ring graph) R = (N, E) with [N| > 2 is
a closed line graph (cf. Definition 2.21), connecting the "start” node i; € N and the "end"
node ijy| € N, i.e, for x € {1,...,|N| =1} holds (ix,ix+1) € E and (ix41,ix) € E, as well as
(ijn)> 1) € Eand (i1, 4)y|) € E. Figure 2.3(d) depicts the circle graph Ry of four nodes.

14



2.1 Definitions

(9) (9) (9) (9) (@) @ -
b I I

(B) (B) (5) (B) (B) () (@) ()

>} Ip—
(a) Complete graph (b) Star graph Ss (c) Line graph Ly (d) Circle graph
C4 R4

Figure 2.3: Examples of connected components. An arrow represents the direction of a link
from sender to receiver (arrowhead).

Observation 2.4. The definition of a star graph, a line graph, and a circle graph, respectively,
sets a minimum number of nodes to distinguish one form from each other. For instance, a
star as well as a line with |[N| = 2 is a complete graph. Moreover, a ring with |N| = 2 as well as
|N| = 3 is also a complete graph. Finally, a star with |N| = 3 is indistinguishable from a line
with |N| = 3.

Within this work, we classify all topologies into single-hop and multi-hop topologies.

Definition 2.23 Single-Hop Topology. More restrictive than some literature (cf. [93, 200]),
but in accordance with the significant related work in Chapter 4, we define a single-hop topol-
ogy as a fully meshed topology, i.e., the corresponding network graph is complete (cf. Defi-
nition 2.19). Therefore, the broadcast of any participating node could be received directly by
all other nodes of the network (cf. Figure 2.3(a)).

Observation 2.5. For single-hop topologies, N, (i) = & always holds.

Definition 2.24 Multi-Hop Topology. Consequently, we define a multi-hop topology if the
network is not fully meshed, i.e., the corresponding network graph is not complete. Hence,
in a multi-hop but (weakly) connected topology exists at least one node i € N which is not
able to interact with every other node j € N of the network in a direct way, i.e., edge (i, j)
or edge (j,i) are missing. Let node j be outside of the communication range of node i, i.e.,
(i,j) ¢ E, then node i is called hidden from node j.

Observation 2.6. Any topology containing at least one unidirectional link is considered as
multi-hop topology.

Observation 2.7. For a node i € N being hidden from node j € N always holds (i, j) ¢ E,
and thus i ¢ N;(j).

From Definition 2.24 directly results the hidden terminal problem, which was first de-
scribed by Tobagi and Kleinrock [182].

Definition 2.25 Hidden Terminal Problem. Suppose, a network consists of three nodes a,
b, and ¢, as exemplified in Figure 2.4(a). Nodes a and ¢ can directly transmit to node b, but
both nodes a and ¢ are unaware of each other. If at overlapping time intervals node a as well

15



Chapter 2 Basics

a c a d
(a) Hidden terminal problem (b) Exposed terminal problem

Figure 2.4: Sample scenarios of two famous problems being inherent to multi-hop topolo-
gies. A gray shape represents the communication range of its centric sender.

as node c¢ transmit a packet to node b, both radio packets collide. As a result, the potential
receiver node b receives just corrupt data — if any. Since both nodes a and ¢ are hidden from
each other, they cannot overcome this packet collision using Carrier Sense (cf. Definition 2.8)
right before their transmissions.

Observation 2.8. Our Definition 2.24 of multi-hop topologies implies that the hidden ter-
minal problem is inherent to multi-hop topologies.

Moreover, the so-called exposed terminal problem is similar to the hidden terminal prob-
lem, and is defined herein for the sake of completeness (cf. Observation 2.9).

Definition 2.26 Exposed Terminal Problem. Suppose, a network consists of four nodes a,
b, ¢, and d, as exemplified in Figure 2.4(b). Node b transmits a packet which is addressed
to node a but not to node c. At about the same time, node ¢ wants to transmit a packet di-
rected only to node d. However, node ¢ prevents its transmission using Carrier Sense (cf.
Definition 2.8) right before its transmission: Both (directed) transmissions from node b as
well as from node ¢ are theoretically possible, since node a and node d would receive the cor-
responding packet without distortion. The Carrier Sense operation here wastes bandwidth
and leads to needless waiting.

Observation 2.9. According to Definition 2.26, the exposed terminal problem just occurs
due to the directed communication which is realized as unicast (or as multicast). Otherwise,
the information sent by a node would be relevant for all of its one-hop neighbors. However,
since the communication of our self-organizing protocol is only based on broadcasts, this
problem is just of little importance within this work, and therefore will not be taken into
consideration furthermore (cf. Section 5.2).

Definition 2.27 Unicast, Multicast, Broadcast. The unicast is a directed transmission from
a sender towards one specific receiver (cf. Figure 2.5(a)). The multicast is a directed transmis-
sion from a sender towards a specific group of receivers (cf. Figure 2.5(b)). The broadcast is
a transmission from a sender towards all potential receivers within its communication range
(cf. Figure 2.5(c)). Apart from the broadcast, an addressing scheme is required in general.

Since the hidden terminal problem is inherent to multi-hop topologies, each node addi-
tionally requires knowledge about its hidden neighbors for an efficient and reliable commu-
nication — especially if the communication protocol is based on self-organization. The con-
straint graph G¢ (i) is one formalization to describe the information needed by node i € N.

16



2.1 Definitions

@ (@) - (@) © (@)
iligbid  iligtad  liglil
(@) (‘5’ () (@ (‘5) / (D) () (‘ ’) ()

ﬁ (ﬁ) ((ﬂ) ﬁ () b ((ﬂ) \«ﬂ ﬁ () ﬁ (E

(a) Unicast (b) Multicast (c) Broadcast

()

Figure 2.5: Examples for the communication between nodes. A gray shape represents the
communication range of its centric sender, arrows represent directed links.

Definition 2.28 Constraint Graph. The constraint graph G¢ (i) = (N c(i),Ec(i)) ofanode
i € N is a directed subgraph of the corresponding network graph G = (N, E) with the set

Nc(i) = {i} UN;i(i) U N2(i) (2.4)

of nodes (i.e., vertices) and the set

Ec(i)={(jsi) € E:je Ny(i)}u{(k,j) € E:(3j € Ni(i):k e Ni(j))} (2.5)
of corresponding links (i.e., edges).

Observation 2.10. For each node i € N in a single-hop topology, i.e., in a complete graph,
holds: N¢(i) = N.

Since multi-hop topologies are hard to monitor, we introduce a special type of sensor node
called sniffer.

Definition 2.29 Sniffer. A sniffer is a passive sensor node (cf. Section 2.4.5). That means
that this node does not transmit data but instead listens to the shared medium and records
all data received within a certain period of time. Hence, in any topology, a sniffer does not
have any outgoing edge. Therefore, a sniffer does not interfere with the communication of
nearby nodes, but only observes its (one-hop) neighborhood.

Observation 2.11. Apart from collisions, the (one-hop as well as two-hop) neighborhood of
a sniffer is identical to that one of an "active" node which transmits messages to the network.

According to Definition 2.2, all participants of a Wireless Network communicate through a
shared medium. Nodes compete for this shared medium by means of a multiple access strat-
egy. These competitions can cause packet collisions which are undesired since they violate
real-time constraints, destroy information, and waste information and energy for potential
retransmissions. Furthermore, a collision could even result in the loss of possibly unique
information. Therefore, an efficient and collision reducing operation of such multiple access
networks is necessary. Theses demands are met by the main service® of our self-organizing
protocol for WSNs: the Medium Access Control (MAC).

3See Section 8.2 for further feasible services.

17



Chapter 2 Basics

(" Application Layer )

Presentation Layer
Session Layer 4 Application Layer )

Transport Layer Transport Layer

Network Layer Network Layer

Data Link Layer Data Link Layer
\__ Physical Layer ) \_ Physical Layer )
(a) The 7-layer model of the OSI (b) The reduced WSAN protocol
network architecture (cf. [201]) stack as suggested in [5]

Figure 2.6: Two types of protocol stacks commonly used for wireless communication.

Definition 2.30 Medium Access Control (MAC). A Medium Access Control (MAC) pro-
tocol manages when and how each participating transceiver may access the shared commu-
nication medium in order to avoid (or at least to reduce the chance for) packet collisions.
Consequently, this would reduce information loss and temporal as well as energy efforts for
retransmissions. To optimize the multiple access to the shared medium, a MAC protocol
may provide services like addressing schemes and channel access control mechanisms.

According to the 7-layer model of the Open Systems Interconnection (OSI) network archi-
tecture (cf. Figure 2.6(a)), Medium Access Control is part of the data link layer [201, 87]. In
WSNs as well as WSAN:Ss, there is usually no strict implementation of all seven OSI layers
to increase the runtime efficiency as well as to reduce the implementation effort. Instead, a
reduced protocol stack is suggested by Akyildiz et al. in [6, 5] (cf. Figure 2.6(b)):

o On the one hand, the boundaries of the OSI layers may overlap. For instance, to-
day’s RF chips keep getting more powerful, e.g., some of them provide hardware ad-
dress checking (cf. Chipcon’s CC1100 radio transceiver [175]). Therefore, the assembled
hardware already implements some services of several OSI layers, e.g., the physical
layer, and actually parts of the data link layer (hardware address checking).

o On the other hand, just a reduced set of layers may be implemented. Since common
sensor nodes nowadays still have just low performance and limited memory (cf. Def-
inition 2.6), a full implementation of all OSI layers would be a significant overkill for
most application scenarios and hardware platforms (cf. also [157]%).

To prevent packet collisions due to the concurrent medium access, there are several proto-
cols available for managing and controlling the multiple access to the shared communication
medium. In general, MAC protocols can be characterized on basis of several aspects - to
name but a few: For instance, the control of the protocol may be centralized at a single con-
troller or it may be distributed amongst all network components. Next, the transmission

4Diploma thesis conducted in conjunction with this work.

18



2.1 Definitions

schedule may be static without the chance for change or it even may be dynamic for a flexible
adaption, e.g., on topology dynamics. Furthermore, the transmission of messages within the
network may range from best-effort to a guaranteed delivery. Moreover, the intention of the
protocol may be based on contention-based Carrier-Sense Multiple Access (CSMA) or on
schedule-based Time-Division Multiple Access (TDMA) — which is the most commonly used
classification.

Definition 2.31 Carrier-Sense Multiple Access (CSMA). A contention-based Carrier-Sense
Multiple Access (CSMA) protocol is a probabilistic MAC protocol supporting the best-effort
strategy. Right before its transmission, the sender tries to verify that within its communi-
cation range no other node is currently transmitting a radio packet. For this purpose, each
sender first listens to the communication channel. Next, it uses the information from its radio
receiver unit to decide, whether the desired channel is busy or not. If there is no observable
signal, the node finally starts its own transmission. Otherwise, the channel is considered to
be busy. In this case, most CSMA protocols use a (probabilistic) back-off algorithm to post-
pone the retry, and to consequently reduce the probability of concurrent retransmissions on
the shared communication medium. Amongst others, representatives of CSMA protocols
for WSNs are for instance B-MAC [143], S-MAC [197], and T-MAC [185, 186].

Definition 2.32 Time-Division Multiple Access (TDMA). A schedule-based Time-Division
Multiple Access (TDMA) protocol divides the communication channel into non-overlapping
time slots. Each node has assigned one (or more) individual time slots for transmission, i.e.,
within the node’s communication range no other node is allowed to transmit a radio packet
at the same time on the same channel. The implementation of equally sized slots ensures
fairness and the transmission at a fixed frequency bounds message latency. Amongst others,
representatives of TDMA protocols for WSNs are for instance ISOMAC [199], LMAC [187],
PEDAMACS [42], and TRAMA [148, 149].

Observation 2.12. Of course, hybrid MAC protocols implementing features from CSMA
protocols as well as from TDMA protocols also are feasible. Amongst others, representatives
of such hybrid MAC protocols for WSNs are for instance Crankshaft [77], HashSlot [22, 14],
WiseMAC [58], and Z-MAC [154].

Such a schedule-based assignment supports a guaranteed data rate since it minimizes the
probability of collisions. However, this requires a consistent network coordination among the
nodes.

Definition 2.33 Coordination. In the field of network protocols, coordination describes the
(temporary) process of harmonizing the actions of a set of network components to reach a
common goal, e.g., collision free medium access. Besides, coordination is a special form of
interaction (cf. Section 2.1).

The coordination of a common network schedule can be achieved in (a combination of)
different ways:

Global Clock A global clock offers a uniform and accurate time base for the network com-
ponents. This global clock has to be provided by a dedicated node or an external device,
but would also allow to globally define the start of each time slot (cf. TRAMA [149]).

19



Chapter 2 Basics

However, such a centralized approach for time synchronization always involves a single
point of failure. Furthermore, to synchronize on the global clock, additional hardware
may be required at the nodes (cf. Section 8.2.1). Thus, relying on a global clock does
not meet our demands (cf. Section 1.2)

A priori knowledge Each node obtains (e.g., during the installation phase) a priori knowl-
edge about the scheduling of its time slots (cf. Z-MAC [154]). Based on this knowledge,
there may be further negotiation and competition of the nodes about time slots. How-
ever, the nodes may be incapable to handle topology dynamics satisfactorily — unless
adaptive scheduling techniques are made available as required. As a consequence, a
fixed schedule which is based on a priori knowledge is much too rigid for our pur-
poses (cf. Section 1.2).

Self-organization The coordination about the time slots among the nodes is managed by
the nodes themselves in a self-organizing manner without explicit time synchroniza-
tion (cf. Definition 2.1). This approach does not rely on a central authority, but the on-
going interaction of the nodes makes it very robust against topology dynamics. How-
ever, additional costs for communication and computation have to be considered.

Hybrids In fact, combinations of the aforementioned coordination approaches are also fea-
sible.

We intend to be able to react flexibly on topology dynamics (cf. Section 1.2). Therefore, we
do not want to rely on a global clock or on a priori knowledge. Instead, we do want to use a
decentralized approach. In particular, we prefer a self-organizing approach within this work.

Nevertheless, and as indicated before, time plays a major role for TDMA protocols as well
as for coordination. Asa consequence, time synchronization is an important coordination ser-
vice for some WSN applications, e.g., to obtain data consistency (sensor fusion) or to maintain
a certain TDMA protocol (coordinating communication) (cf. Section 8.2.1).

Definition 2.34 Time Synchronization. Time synchronization describes the process to pro-
vide a common notion of time across a distributed system like a Wireless Sensor Network.

Some WSN applications rely on this explicit understanding of a common time base. For
instance, time synchronization is required to measure the velocity of mobile object, to de-
tect snipers, to analyze seismic activities, or to monitor volcanic eruptions (cf. [192]). More-
over, it also may be used for coordination (cf. Definition 2.33), for communication (cf. for
instance TDMA protocols), or for routing purposes (cf. Section 8.2.2). Furthermore, such
a common notion of time may also support energy saving (e.g., in the form of coordinated
sleeping phases) and sensor reachback (cf. [108]). Therefore, a more or less accurate time
synchronization service has to be installed. For this reason, several algorithms and protocols
regarding the service’s establishment, maintenance, and accuracy yet exist. Examples include
the following protocols: Reference Broadcast Synchronization (RBS) [59], Timing-Sync Proto-
col for Sensor Netowrks (TPSN) [69], Time-Stamp Synchronization (TSS) [114, 156], Flooding
Time-Synchronization Protocol (FTSP) [111], and Tight Time Synchronization (Tiny-Sync)
[198]. Further approaches and protocols for time synchronization for Wireless Networks
are surveyed for instance in [48, 153, 158, 164], and for more complex networks relying on the
pulse-coupled oscillator framework (cf. Section 3.2) in [9, 134, 161, 194] but also in Section 3.3.

20



2.1 Definitions

1.0 |
. 1 ;
9 : o
E : E
= 0.0 =
o ! oy
g : g
© : <
1.0 i i i
T 3T 5T
0 7 T > 2T > 0
time time
(a) In-phase synchronization (b) Out-of-phase synchronization
1.0 1.0

amplitude
o
(=}
|
amplitude
o
(=]

3

10 3T 5T 10 T ‘ T 5T
0 T 5> 2T > 0 5 T > 2T >
time time
(c) Anti-phase synchronization (d) Desynchronization

Figure 2.7: Examples for certain forms of synchronous dynamics (cf. Definitions 2.35 to 2.38).

Later on, we will use periodic oscillators with identical frequency as clock model. Hence,
we distinguish between different forms of synchronization (cf. Figure 2.7): in-phase synchro-
nization, out-of-phase synchronization, anti-phase synchronization, and desynchronization.

Definition 2.35 In-Phase Synchronization. Within this work, in-phase synchronization de-
scribes the phenomenon of the phase difference between two (or more) oscillators with iden-
tical frequency being zero. That means, the oscillators are in unison since their periods start
over at the same time. Figure 2.7(a) exemplifies the in-phase synchronization of three sinu-
soids (with varying amplitudes for enhanced visualization).

Definition 2.36 Out-of-Phase Synchronization. Within this work, out-of-phase synchro-
nization describes the phenomenon of the phase difference between two (or more) oscilla-
tors with identical frequency not being equal to zero (or to an integer multiple of a common
period). That means, the oscillators are not in unison since their periods always start over at
different times. Figure 2.7(b) exemplifies the out-of-phase synchronization of five sinusoids.

Definition 2.37 Anti-Phase Synchronization. Anti-phase synchronization is a special type
of out-of-phase synchronization. Within this work, anti-phase synchronization describes the
phenomenon of the phase difference between two oscillators with identical frequency being
half their period. As a consequence, assuming the phase difference of two sinusoidal oscilla-
tors being half their common period, the sum of both oscillator amplitudes always equals zero
(so-called destructive interference). Figure 2.7(c) exemplifies the anti-phase synchronization
of two sinusoids.

21



Chapter 2 Basics

Definition 2.38 Desynchronization. Within this work, desynchronization is another special
type of out-of-phase synchronization. Therefore, the phase difference between two (or more)
oscillators is not equal to zero. In particular, desynchronization describes the phenomenon
of the phases of all oscillators within the oscillator’s constraint graph (cf. Definition 2.28)
having a maximum temporal distance towards each other within the common period. This
means for a complete network of | N| desynchronized oscillators (e.g., the nodes of a single-
hop topology) that the phase difference between two succeeding oscillators always equals the
|N|-th part of the common period (cf. Definition 2.28, Observation 2.10, and Lemma 4.5).
Thereby, the oscillators interleave and occur in a round-robin schedule.

In contrast, there is no general statement about the phase difference of two succeeding os-
cillators of a non-complete network (e.g., the sensor nodes of a multi-hop topology). One rea-
son here is the potentially differing size of the individual constraint graphs (cf. Lemma 4.11).
Figure 2.7(d) exemplifies the desynchronization of five sinusoids.

Observation 2.13. If the complete network consists of just two oscillators, desynchronization
and anti-phase synchronization result in the same behavior.

Since desynchronization provides the basic idea of our self-organizing TDMA protocol
for WSNs, we will have a closer look at this phenomenon in Part II. To begin with, we give a
short introduction of potential analysis techniques in the next section.

2.2 Analysis Techniques

In general, there exist several techniques to analyze certain phenomena and to study a specific
system. The most obvious one is the system itself to be subject to studies and examinations.
However, this is often too expensive or not applicable at all. Instead, a model of the system
has to be analyzed. Depending on this representation, the following techniques are feasible:

o the verification of empirically derived predictions by means of suitable experiments on
a physical model of the system,

o the analytical solution of a mathematical model of the system, for instance in terms of
a system of linear equations, and

« the execution of a sufficient number of simulation runs based on a certain mathemat-
ical model of the system, i.e., a valid simulation model.

Furthermore, all these techniques feature advantages as well as disadvantages. Depending on
the objectives, the data set, and the available resources, each technique is able to efficiently
cover just a distinct field of applications: Assuming, it is too costly or even impossible to
create a physical model of the system of investigation, the only way out are mathematical
models then - resulting in analytical solutions or corresponding simulations.

The Proof of Convergence in Section 4.3.1 but also [49, 112] give a first impression about
the complexity of a corresponding mathematical (non)linear system. As a result, the design
of an analytical solution of the primitive of desynchronization seems to be an inappropriate
task and thus not very promising. Indeed, some researchers prefer simulations to get valuable
results quite easy and fast. In contrast, [169] emphasizes the need for real-world testbeds, i.e.,

22



2.2 Analysis Techniques

simulations are not always meaningful enough. Due to the conditions and circumferences
of the system to be analyzed, we want to benefit from both techniques. Consequently, we
focus on experiments and simulations within this work. In this regard, we follow [125], which
supports the legitimate coexistence of simulations and real-world testbeds.

Before we describe the tools applied in this work in Section 2.4 and in Section 2.3, we
briefly introduce the analysis techniques which are relevant for this work: Namely, real-world
testbed as physical model of a system in Section 2.2.1, and simulation as popular usage of a
mathematical model of the system in Section 2.2.2.

2.2.1 Real-World Testbed

A real-world testbed makes use of components which behave sufficiently similar (replica) or
even identical (original) to that one of the real system. Ideally, a testbed operates under real-
world conditions to draw valid conclusions. For this purpose, components of the testbed are
subject to arbitrary but realistic phenomena, like people moving around or interfering sys-
tems nearby. To keep the experimental setup manageable but to still get meaningful results,
a testbed usually represents the system on a small scale, i.e., it consists of just a small number
of system components. Despite a potentially small scale of a real-world testbed, its outcome
still may allow for interpolation and extrapolation. Also characteristic for real-world testbeds
are specific equipment and devices for monitoring and logging purposes (cf. Section 2.4.5).

Benefits

On the one hand, the deployment of a real-world testbed has several benefits: Such an exper-
iment is embedded in an environment of the real world, hence the hardware as well as the
software are subject to realistic conditions. Next, all measurements, which are taken during
experimental runs, are subject to conditions of the real world. Therefore, we do expect the
results to be realistic as well. Moreover, using a testbed, it is possible to set up specific situ-
ations and scenarios including side effects, parallel processing, and concurrent events (e.g.,
switching off certain nodes). Finally, even though the real-world testbed could be small and
simple, it helps to draw sound conclusions (using interpolation and extrapolation) about the
system — mainly due to the realistic environment.

Limitations

On the other hand, the applicability of a real-world testbed is limited: Since a testbed uses
real hardware, its realization may be quite costly. In addition, the extent of the testbed as well
as the used hardware for execution and administration of the tests directly influences these
costs. Next, there is no speed up during the test procedure in general. For instance, assum-
ing a certain period length T = 1s in real will usually also consume 1s in the experiments.
Moreover, due to the system’s concurrent processing and further unexpected side effects, es-
pecially distributed testbeds (as needed within this work) are hard to monitor and hard to
control on-line. Sometimes, conclusions may be drawn just after the experiment (ex post),
which may delay the development process and also could impact the testing efforts. Finally,
due to the dynamics of the environment, it is virtually impossible to reproduce the outcome
of a real-world testbed - even for identical setup conditions.

23



Chapter 2 Basics

2.2.2 Simulation

A simulation tries to draw quantitative conclusions about a system. Thus, a simulation can be
considered as the experimentation with different input parameters of a mathematical model.
The objective is to calculate (e.g., performance-related) effects on the system behavior and
the system’s outcome (cf. textbooks on simulation, like [104, 160, 78, 98]).

For this purpose, a simulation always drives a proper simulation time. This simulation
time denotes the real-time of the simulated system. Thus, the progress of this simulation
time needs not necessarily be equal to the simulated real-time or to the elapsed runtime
of the whole simulation. Each simulation model has several entities or components, whose
attributes in total determine the state of the model at a certain simulation time. A set of trans-
formation rules defines the state transition as well as the changes of the entities’ attributes.

Depending on the underlying simulation model, there are two major types, namely contin-
uous simulation and discrete simulation: Simulations based on continuous models calculate
the state transition by differential equations and alike to get continuous results. Simulations
based on discrete models compute the state transition in discrete time, i.e., within a count-
able set of points in time. These discrete points in time are the ones at which an event occurs.
The state of a discrete system only changes at such an event. Consequently, a discrete-event
simulation allows to skip entire time segments - till the next simulation event will occur.

Benefits

The installation of a simulation has several benefits: The node hardware may be too expensive
or too error-prone to deploy an experimental setup. This node hardware is not required for
simulation runs in general. Next, a certain scenario realized as (single) simulation run usually
is much faster than the same scenario performed by real hardware, i.e., there is no one-to-
one relationship between simulation time and simulated time. Furthermore, each simulation
run is repeatable, i.e., simulations running with identical values for the (setup) parameters
as well as for the (pseudo) Random Number Generator (RNG) will result in an identical
outcome. Finally, and contrary to any real-world scenario, a simulation tool may provide
the opportunity of global knowledge®. This global knowledge offers new and comfortable
possibilities for controlling, monitoring, and deeper analysis.

Limitations

However, the creation or execution of an adequate mathematical model may require con-
siderable computational power. For instance, most supercomputers are installed to support
extensive physical simulations like weather forecast, explosion of nuclear bombs, and arti-
ficial neurons of a human cerebral cortex. In addition, the execution of a simulation is not
always appropriate: First of all, every simulation model is always just an abstraction of the
real world. Therefore, each simulation model has to be validated accordingly. Nevertheless,
there remains the risk of biased results. Especially, when the simulator applies idealistic as-
sumptions or an ideal environment, conclusions drawn from such simulations may be not
sound or insufficiently detailed.

5The quality of the global knowledge is limited by the capabilities (e.g., available memory) of the simulation envi-
ronment.

24



2.3 Simulation Framework

2.2.3 Summary

In this section, we characterized the theoretical aspects of promising techniques to analyze a
certain phenomenon and to study a specific system. On the one hand, a real-world testbed
(cf. Section 2.2.1) demonstrates its strength on emulating a WSN under real but adverse con-
ditions, like node failure, noise, and unreliable links. On the other hand, a software simulator
(cf. Section 2.2.2) may not only save time, but also may generate fully observable as well as
reproducible scenarios. Moreover, the integration of a (pseudo) Random Number Genera-
tor (RNG) makes simulations controllable — notwithstanding the probabilistic component.
Furthermore, simulations allow the creation of particular scenarios — which are hard to de-
ploy as real-world testbeds. For instance, it is difficult to provoke the hidden terminal prob-
lem (cf. Definition 2.25) with hidden nodes starting up simultaneously at the very same time
(i.e., within the same microsecond).

As both techniques do have benefits as well as limitations, simulations and real-world
testbeds should be used in complement to stimulate each other. This postulation also is stated
in [125]. Therefore, we will use these two techniques for our further analysis. In this regard,
we will describe our self-developed simulation framework, which performs our simulations
in Section 2.3. In Section 2.4, we will present our sensor node hardware, which is used within
our real-world testbeds.

2.3 Simulation Framework

Since Wireless Networks and Wireless Sensor Networks in particular are complex systems, we
want to access the advantages of simulation (cf. Section 2.2.2) for our studies on the settling
process of a Wireless Network implementing our communication protocol. Since a huge
number of network simulators with specific objectives and different scopes already exist, we
first motivate the development of our own simulator in Section 2.3.1. Next, we describe the
functionality and features of our self-developed simulator in Section 2.3.2. In Section 2.3.3,
we specify the underlying simulation model. To create simulation models more comfortably,
we also developed a script, which is introduced in Section 2.3.4.

2.3.1 Motivation

The benefits of simulations obviously are the fast and cheap creation of experimental setups
(cf. Section 2.2.2). Especially, when the system to be analyzed consists of lots of entities,
like (Wireless) Networks in general and Wireless Sensor Networks in particular. Therefore,
various network simulation tools with different scope and objectives are already available as
(commercial) off-the-shelf products. Well-known network simulation tools are ns-2 [113],
OMNeT++ [139], and EstiNet [62] - to name but a few.

ns-2

The discrete event driven network simulation tool ns-2 [113, 31, 64] allows the (traffic) analysis
of several network protocols and routing mechanisms. It implements just fundamental pro-
tocols of several layers of the protocol stack (cf. Figure 2.6). Most famous ones are Hypertext
Transfer Protocol (HTTP) and Transmission Control Protocol (TCP).

25



Chapter 2 Basics

The core of the ns-2 simulator is the event scheduler: It monitors the simulation time and
triggers the events of the event queue, i.e., the corresponding network component consum-
ing this event is set active. Each active component uses the event scheduler to issue events
for packet handling. Moreover, all network components wait to consume such an event to
further process a packet. The simulations for the ns-2 simulator are programmed in C++ and
OTcl, which is an object oriented extension of the Tool Command Language (Tcl). It is used
to initialize the event scheduler and to set up the network topology, e.g., when a component
is sending a packet.

OMNeT++

Like ns-2, OMNeT++ [139, 189] is also a discrete event driven network simulation tool for
(communication) networks. However, OMNeT++ is not a network simulator itself, but pro-
vides an Integrated Development Environment (IDE) for simulations. This network simu-
lation platform combines several modules and frameworks for network analysis. Hence,
OMNeT++ is also generally applicable to queuing networks, hardware architectures, and
business processes. For instance, the so-called INET framework contains models for com-
munication protocols of the Internet, like TCP, Internet Protocol (IP), and User Datagram
Protocol (UDP).

The simulation kernel and class library of OMNeT++ is written in C++. This kernel uses
the basic simulation classes to manage the simulation. Simple modules and components,
respectively, are programmed as Network Description (NED). Using NED, such modules
can be combined to create compound modules and thus larger components. Consequently,
the whole network itself is a compound module then.

EstiNet

The commercial network simulation tool EstiNet [62, 191, 61] indeed is a network simulator
and estimator. It supports all layers of the reduced WSAN protocol stack (cf. Figure 2.6(b)).
Moreover, there are also add-ons for specific network types, like Mobile Ad hoc Networks
and Vehicular Ad hoc Networks with just a limited representation of mobility.

In comparison to the aforementioned simulation tools, EstiNet provides a user-friendly
Graphical User Interface (GUI) to design the network to be analyzed. For modeling pur-
pose, several network infrastructure devices are available, like host, hub, switch, and router.
In addition to modeling, this GUI is also to be used for monitoring, simulating and even
debugging. Moreover, EstiNet can be turned from simulator to emulator, i.e., a simulated
network (component) can interact with a real-world network (component). This means that
the network within the emulator is assembled by physical and simulated components (cf.
Hardware in the Loop (HIL) simulation).

Resumeé

Sophisticated and powerful network simulation tools, like ns-2, OMNeT++, and EstiNet,
already exist, but do focus on "classical" network issues, like routing behavior, data rate,
network throughput, and channel utilization. In contrast, the main focus of our analysis

26



2.3 Simulation Framework

in Chapter 7 within this work is on the settling process of a Wireless Network implement-
ing our self-organizing MAC protocol EXTENDED-DESYNC and EXTENDED-DESYNC, respec-
tively (cf. Chapters 5 and 6).

In particular, we are interested in whether, how, and when a certain scenario will desyn-
chronize (cf. Definition 4.3). As a result, there is no need for a deep packet analysis. Thus, the
“classical" network issues are far less important for this work. Consequently, the named net-
work simulation tools do not suit our requirements. Therefore, we developed in Java a light-
weight simulation tool which exactly meets our specific demands. This simulator EXTDES-
IMc supports our EXTENDED-DESYNC and EXTENDED-DESYNC" protocols and is described
in the next section.

2.3.2 Simulator extDeSIMc

In Section 2.3.1, we motivated our decision not to use one of the available and powerful net-
work simulation tools, but to develop a new simulation tool ourselves instead. Our simulator
exTDESIMCc just supports ex post facto visualization, and thus a retrospective analysis. Never-
theless, the simulated time of our simulator has to support a large timescale of high precision.
Like our nodes framework (cf. Section 2.4), EXTDESIMC has to support a (simulated) pre-
cision of at least 1 us. This high resolution implicates the handling of large timescales up to
billions® of microseconds.

One efficient way to cover such a large timescale is the event-driven simulation approach
(cf. [120]). This approach is implemented not only by the powerful network simulation tools
mentioned in Section 2.3.1, but also by our simulator ExTDESIMc. In particular, our sim-
ulator maintains an event queue which contains all events sorted by their occurrences in
ascending order. For a consistent timeline, the times of the events have to increase mono-
tonically, i.e., new events never may be a thing of the past.

State Transition

Each event will be processed by a specific event handler. In general, this event handler cor-
responds to a certain node, which consumes this event and will generate a subsequent event.
Thus, each event represents a certain state transition of a node. To enforce a certain simula-
tion scenario and simulation setup (cf. Section 7.2), some events (in particular DEAD, ON, OFF,
and FIRING) may be set in advance within the simulation model. The corresponding state
diagram, i.e., the possible states plus the associated transitions, is depicted in Figure 2.8.
For each simulation holds that every node starts either in ON state or in FIRING state —
in accordance to what is specified within the simulation model: The ON state represents the
power-on of a node at the event time. Usually, this will be the first state for a node. Next, after
its initialization, this node will immediately switch to the PREPARE_FIRING state. However,
to enforce certain simulation scenarios, e.g., concurrently firing nodes, a node may start in
the FIRING state. This means that the corresponding event starts up this node, and after
initialization, the node will skip the PREPARE_FIRING state and immediately switch to the
START_FIRING state. As a result, this node will broadcast an (empty) firing packet at that

SFor instance, 50 min equals 3 billions of microseconds, i.e., 3000 000 000 ps.

27



Chapter 2 Basics

%

FIRING

ON OFF ]

@4—[ DEAD ]<—Ij+[PREPARE_FIRING

A ¢

START_FIRING FINISH_FIRING

1 L
[

Figure 2.8: The state diagram of a simulated node in our ExTDESIMc simulator. Times of
the events to enter the states colored in gray have to be set in advance within the simulation
model.

proper event time — regardless of a common understanding (cf. Section 5.8) and protocol
specifications.

In the PREPARE_FIRING state, a node prepares its next firing and its next firing packet, re-
spectively, e.g., it may collect neighbor information as described in Section 5.8.1. Depending
on that particular listening strategy, the node either will remain in the PREPARE_FIRING state
or it will switch to the START_FIRING state after a certain time, i.e., after few periods, as rec-
ommended in Section 5.8.1.

As further investigated in Section 5.4.1, the transmission of a (firing) packet takes some
time. To reflect this fact, we introduced two distinct states (and events, respectively): The
START_FIRING state indicates the start of the transmission, whereas the FINISH_FIRING state
represents the end of the transmission. The time lag between the states START_FIRING and
FINISH_FIRING depends on the declaration of the communication delay as well as the size
(i.e., the number of neighbor information with regard to Section 5.6) of the corresponding
firing packet within the simulation model. Consequently, the firing packet of a simulated
node is delivered to appropriate and available” receivers when entering the FINISH_FIRING
state. In addition, within this state the node will also plan its next time of firing (cf. Sec-
tion 4.1). In particular, it plans the occurrence of its next event to enter the START_FIRING
state. The underlying specific implementation of this generic framework for desynchroniza-
tion (cf. Sections 4.3 to 4.6) as well as the realization of further practical issues (cf. Section 5.8)
define the next time of occurrence of the START_FIRING state for a node.

To simulate an arbitrary and temporary power down of a node, e.g., due to low battery, we
introduce the OFF state. The corresponding event moves the node into some sort of "sleep
mode". Such a node may be powered on again using the corresponding event to enter the
either the ON or the FIRING state . No more reactivation is allowed in the DEAD state, as this state

7 A node in state OFF or DEAD is not available as receiver.

28



2.3 Simulation Framework

/" Modeling Y Simulation

=)= o0

Evaluation )

“EREE KR R KA KRR
RET AR KT R AT KR
I )

Fauf\_ " \ I

w = WY %\ |

Figure 2.9: The process of a simulation run using our EXTDESIMc simulator.

definitely removes a node from the network, and thus from the further simulation process.
All these events, which enable a node to enter one of the states ON, OFF, FIRING, and DEAD,
have to be specified in advance within the simulation model. Expect from the DEAD state, a
node may switch to the OFF state from any other state. And a node may switch to the DEAD
state from any other state at any time.

The simulation model specifies in advance not only the events regarding the power on as
well as power down of the node. In addition, the end of the simulation also has to be specified
in advance within the simulation model. This means that each simulation run ends after that
predefined duration.

Simulation Process

The process of a simulation run using our self-developed simulation tool ExXTDESIMC is de-
picted in Figure 2.9. The whole process is mainly divided into the three steps Modeling, Sim-
ulation, and Evaluation:

First, the simulation model has to be specified as well-formed and valid eXtensible Markup
Language (XML) file. This can be done manually by the user or automated per Perl script
(cf. Section 2.3.4). We will describe the simulation model in detail in Section 2.3.3 and the
Perl script in Section 2.3.4.

Next, such a simulation model then can be processed from within our ExTDESIMCc simu-
lator. Since the simulation model may specify more than one scenario for the same topology,
the user has to select the specific scenarios from the simulation model to be simulated. Af-
terwards, the simulator starts the simulation of these particular scenarios in parallel. During
the execution, the simulator prints information® about the status of all simulation scenarios
within a particular status tab. As soon as all user-selected scenarios have been finished, the

8The level of information can be specified within the simulation model.

29



Chapter 2 Basics

Topology Graph
(nodes and links)

Simulation Model
(content of XML file)

1000000000,

BEOMLIESA240

Scenarios
»  (configuration)

PLAN
MIDPOIT
ALL_DNE_HOP_HEIGHBORS
OFF

alidateCe-4-21-3 D 5)
ValidsteC4-4-3-2-1 (D6)

Start Simulation |

Figure 2.10: The start screen of our ExTDESIMc simulator is split into three areas represent-
ing simulation model (left), topology graph (top right), and scenarios (bottom right).

outcome of these scenarios in retrospect finally may be visualized within the simulator’s GUI
(cf. upper right in Figure 2.9) and/or’ as separate plots (e.g., GNU Plot) (cf. lower right in
Figure 2.9). This supports a subsequent oftline analysis, e.g., about the system behavior.

Moreover, the nodes in our real-world testbeds are able to log certain data at the serial
interface. The output format of the node’s logging complies with the input format of our
simulator’s visualization component. This is an important issue, since it offers not only an
efficient visualization of real-world data but also a fast and smart way to cross-check the
results of real-world testbed and the corresponding simulation for similar system behavior
(cf. Section 7.1). Therefore, we are able to visualize the results of a real-world testbed and a
simulation in an identical way.

Graphical User Interface

The start screen of our simulator (after reading in a simulation model file) is depicted in Fig-
ure 2.10: To control the simulation model in detail, the content of the currently imported
XML file (including XML comments) is presented on the left. The topology graph as repre-
sentation of the specified topology is depicted top right. Initially, all nodes are placed ran-
domly on a circle layout. However, the nodes can be moved freely and for both, nodes and
links, additional information is presented by tooltips. This topology is identical for all po-
tential simulation scenarios listed on the bottom right area. Here, the user may check the

9The output format can be specified within the simulation model.

30



2.3 Simulation Framework

Node List

22459000
10229500

Calliding

Configuration

o
BEOANLIESANC:
u
ru
tru
fals

tru [l

of
AL ONE_HOP_NEIGHBOR
of

-3-2-1 6) NaldateCd-4-1-3-2 ) | ValidateCd-1-2-3-4 extra (5]

Topolagy

1

fal
Oy
Oy

pLAD

Hop Neighborhoor

A
=t

Topology Graph _JJ Constraint Graph

-
Norde 0 (NLj=4, [N2|=0)

Node ID 0 (ValidateC4-4-1-2-3 (1))

100 |1
90
so
70
60 1
so

rel, phase [%]

ao
a0
20
10

° {
400 410 420 430 440 450 460 470 480

Firing Graph

490 S00 510
time [#periods]
—1 3 £

520 530 540 S50 S60 570 580 590 600

—z

Figure 2.11: The simulation screen of our EXTDESIMCc simulator is split into five areas rep-
resenting in the top half (from left to right) nodes list, configuration, topology graph, node’s
neighborhood, and in the lower half the node’s firing graph.

parameters of the available scenarios. To start the actual simulation, at least one scenario has
to be selected.

The simulation screen of our simulator provides a tabbed interface, i.e., the status tab and
one scenario tab per simulated scenario. Each scenario tab is split into five areas as depicted
in Figure 2.11: The top half is split again into four areas. Starting from left to right, the first
area "Node List" in the top half lists all available nodes of the current scenario. Here, the user
may select one particular node of interest. Consequently, the node selection affects the node
dependent areas, namely "Constraint Graph" and "Firing Graph". In the next area "Config-
uration"” on the right hand side, the parameters of the current configuration are listed. This
information is also included in the simulation scenarios on the start screen (cf. Figure 2.10).
The area "Topology Graph" to the right shows the graph of the current topology. This graph
is identical for all other scenario tabs. Moreover, it also equals the one shown on the start
screen (cf. Figure 2.10). Finally, the right most area "Constraint Graph" of the top half of
the scenario tab presents the constraint graph (cf. Definition 2.28) of the node, which is cur-
rently selected in the "Node List". This visualization of the node’s one-hop as well as two-hop
neighbors supports the understanding of the node’ firing behavior - especially for complex
topologies. Similar to the topology graph of the start screen in Figure 2.10, the nodes of the
"Topology Graph" as well as the "Constraint Graph" area can be moved freely.

The lower half "Firing Graph" of the scenario tab contains the firing graph from the point
of view of the node, which is currently selected in the "Node List". In particular, the reception
time of the node’s neighborhood, i.e., its one-hop as well as two-hop neighbors, is plotted as

31



Chapter 2 Basics

line chart. The domain axis of the firing graph denotes the time (in periods) since the simu-
lation start. The range axis of the firing graph denotes the relative phase (here in percentage
of the period length) of the received neighbor nodes’ firings. Consequently, 100 % of a period
is identical with 0 % of the subsequent period. The firing graph itself can be saved, printed,
and zoomed (in and out). Since this display format facilitates the illustration of a node’s state
of desynchronization, such firing graphs will appear more often within this work.

2.3.3 Simulation Model

We tried to make the simulation model as abstract as possible and as realistic as necessary.
Therefore, our simulator handles simulation models specified as well-formed and valid XML
documents. The excerpt of such an XML file in Listing 2.1 exemplifies the description of a
simulation model.

In principle, each model is partitioned into two main parts, namely one topology part
<Graph> and one configuration part <Config> (cf. Listing 2.1): The topology part specifies
the (static) topology graph, i.e., nodes (<Vertices>) and links (<Edges>). Each node <Node>
is defined by several protocol-related parameters, like identifier, as well as by parameters of
the presentation layer, like color or symbol (cf. Lines 6 to 12). Furthermore, a unidirectional
link <Link> is represented by an edge, which is specified by one source node and one desti-
nation node as well as some quality parameters, like LQI (cf. Lines 16 to 20). Consequently,
bidirectional links (cf. Definition 2.9) are specified by two corresponding <Link> elements.

To simulate different scenarios based on the same topology in parallel, the configuration
part <Config>may contain one or more such simulation scenarios <Simulation> (cf. Lines 25
to 41). Hence, each scenario is running inside its own thread, and each scenario specifies its
own stop criterion, i.e., its maximum simulation time (<Duration>). Furthermore, we inte-
grated a simple Pseudo Random Number Generator into our simulator, which enhances the
reproducibility of a simulation run by using the same random seed (cf. Section 6.4.2), which
may be also specified per scenario. In addition, common initial values of several protocol-
related parameters, like listening periods (cf. Section 5.8.1), as well as initial values of output-
related parameters, like appearance of domain axis and range axis, may be set for each sce-
nario. Moreover, each scenario contains a list <EventList> of predefined events <Event> (cf.
Section 2.3.2). These events may enforce a distinct sequence by powering on (and powering
down, respectively) the nodes from the topology part <Graph> (cf. Lines 34 to 38).

2.3.4 Generator Script

The simulation model may be quite complex and quite large — depending on the underlying
topology and the number of defined scenarios (cf. Section 2.3.3). Hence, the manual model
generation by the user may become a lengthy and error-prone task. Therefore, we developed
a Perl script to semi-automatically create sound simulation models. Nevertheless, such a
generated simulation model may be adapted or changed manually afterwards by the user.
However, the script prompts the user to enter values for the necessary parameters: First,
the firing strategy has to be set. Here, the midpoint approach (cf. Section 4.3) would be
set by default. Further, the user has to specify the network size, i.e., the number of nodes
(default value: 25), the length of period T in ps (default value: 1000000 ps) as well as the

32



2.3 Simulation Framework

1| <?xml version="1.0" encoding="UTF-8"7>
2| <!DOCTYPE extDESYNC SYSTEM "scenarios.dtd">
3| <extDESYNC>

4| <Graph>

5 <Vertices>

6 <Node>

7 <id value="6" type="int" />

8 <alpha value="0" type="int" />

9 <period value="1000000" type="long" />
10 <color value="#FFFFFF" type="String" />
u <!-- further parameters -->

B </Node>

13 <!-- further nodes -->

14 </Vertices>

15 <Edges>

16 <Link>

17 <src value="5" type="int" />

18 <dest value="6" type="int" />

19 <lqi value="1.0" type="double" />

20 </Link>

2 <!-- further links -->

22 </Edges>

23 </Graph>
24| <Config>

25 <Simulation>

26 <duration value="300000000" type="long" />

27 <seed value="8690401185424030" type="long" />
28 <createPlot value="true" type="boolean" />

29 <firing value="MIDPOINT" type="FIRING_STRATEGY" />
30 <listenPeriods value="3" type="int" />

31 <phaseKeeping value="0.25" type="double" />
3 <!-- further parameters -->

3 <EventList>

34 <Event>

35 <type value="ON" type="EVENT_TYPE" />

36 <time value="0" type="long" />

37 <owner value="6" type="int" />

38 </Event>

39 <!-- further events -->

40 </EventList>

. </Simulation>

s <!-- further scenarios -->

4| </Config>
44| </extDESYNC>

Listing 2.1: Extract of a sample simulation model.

number of listening periods (default value: 1). Next, the user may specify the path to an
available configuration, i.e., at least one sound <Simulation> element (cf. Section 2.3.3) has
to be imported. Alternatively, the user may set the number of randomly generated simulation
scenarios. The script will then generate an appropriate number of <Simulation> elements
with default configuration parameters and one 0N event for each node with event time set
randomly within the first user-defined number of periods (cf. Section 7.2.3).

33



Chapter 2 Basics

Further, the topology type (supporting only symmetrical, bidirectional links) has to be set.
The script supports the forms from Section 2.1, namely complete graph (cf. Definition 2.19),
star graph (cf. Definition 2.20), circle graph (cf. Definition 2.22), and line graph (cf. Defini-
tion 2.21), but also the forms binary tree (as a more complex and acyclic graph), dumbbell
graph (cf. Section 7.4), and randomized graph (cf. Section 7.5). To create the latter form, the
user has to enter a number indicating the average number of one-hop neighbors for each
node. The script then randomly connects the nodes according to this value. Finally, the user
can decide to automatically add a single sniffer node (cf. Definition 2.29) - or not.

2.4 Sensor Node Framework

In Section 2.3, we described our simulation framework. The outcome of a simulation based
on sound simulation model allows quite cheap and fast conclusions about the system un-
der certain conditions. However, each simulation model is just an abstraction, and thus a
simplification of the real world.

Therefore, support documents and detailed information about the system’s real-word be-
havior are required to create, to calibrate, and finally to verify a simulation model (cf. [125]).
Especially, arbitrary and spontaneous phenomena, e.g., interference while people are mov-
ing around, are likely to appear in real world (cf. Section 7.2). Therefore, we deployed several
real-world testbeds consisting of different types of sensor nodes to register these phenom-
ena. Most of our testbeds were deployed at the Chair of Computer Engineering V at the
Julius-Maximilians-University of Wiirzburg. Indeed, to distinguish nodes from each other, a
unique identifier is assigned to each sensor node (cf. Sections 2.4.1 and 2.4.2).

Additionally, we also want to get detailed data from each node’s point of view. One ap-
proach is to configure each node not only to act as network component, but also as measur-
ing device, which logs certain data for on-line observation or for post-processing (cf. Sec-
tion 2.3.2). Indeed, logging also affects the node’s system load, i.e., the logging process takes
noticeable time. However, the nodes of a real-world testbed will be configured identically
in this regard, i.e., each node may be subject to the same additional time and effort. Alto-
gether, this approach enables an efficient and cost-effective (ex post facto) inspection of the
network. We will introduce our sensor node framework, including sensor node hardware
and software, in the following sections.

2.4.1 SNoW? Sensor Node

Most of our testbeds are based on the modular and versatile SNOW? sensor node [20, 23].
This sensor node was designed and developed at the Chair of Computer Engineering V at the
Julius-Maximilians-University of Wiirzburg and is depicted in Figure 2.12. The central unit of
the SNoW? sensor node is the MSP430F1611 microcontroller [177] from Texas Instruments
— a variant of the MSP430x1xx microcontroller family [174]. This 16 bit microcontroller pro-
vides 48 kB flash memory (ROM) and 10 kB RAM. However, the MSP430 allows to place
variables in a specific memory location called information memory (infomem). We will use
this part of the MCU’s non-volatile memory to store fundamental configuration data, like
node ID and settings for the RF unit (cf. Sections 5.6.1 and 6.4.1).

34



2.4 Sensor Node Framework

Figure 2.12: The SNoW? sensor node.

The MCU frequency of 8 MHz is offered by an external 8 MHz quartz crystal which pro-
vides an increased stability in comparison to a software adjustable Digitally Controlled Os-
cillator (DCO). As a result, a timer with resolution of 1 s is made available. Among sev-
eral bus interfaces like Serial Peripheral Interface (SPI) and Inter-Integrated Circuit (I*C) to
connect sophisticated peripherals, this microcontroller also features analog-to-digital con-
verter (ADC) as well as digital-to-analog converter (DAC) to read various types of sensors
and to drive certain actuators, respectively. Both, the low computational power and the lim-
ited memory, make high demands on the implementation of our self-organizing protocol (cf.
Chapters 5 and 6).

For wireless communication, the SNoW? sensor node is equipped with the sub-1GHz
RF transceiver CCi100 [175] from Texas Instruments. This powerful transceiver operates
in half-duplex mode, i.e., the CC1100 transceiver can either transmit or receive a packet at
the same time. The CC1100 is highly configurable, for instance it supports several software
selectable modulation formats, several base frequencies depending on the current antenna
circuitry as well as a basic hardware address check. As mentioned above, the settings of this
RF transceiver are stored in the MCU’s infomem. This transceiver as slave is connected via
SPI bus with the central MCU as master. The convenient interrupt capabilities of this RF
chip provide an appropriate base for highly precise TX/RX timestamping. This feature is
quite beneficial when implementing a schedule-based MAC protocol. Therefore, it is note-
worthy that two interrupt-indicating output pins of the radio unit are connected to interrupt-
capable input pins of the central microcontroller at each node. With it, interrupts signaled
by the radio unit can be handled by an appropriate Interrupt Service Routine (ISR) at the
microcontroller. For instance, a TX FIFO underflow, the end of a SYNC word transmission,
and the end of a SYNC word reception at the radio chip are able to trigger the correspond-
ing interrupt at the microcontroller. This allows an enhanced coordination between both
components and further enables a deeper timestamping (cf. [19] and Section 5.4.2).

For long-term data storage, the SNOW? sensor node has assembled Atmel’s 16 Mbit non-
volatile flash memory AT45DB161B [10]. There also exists a suitable embedded file system
for this flash memory (cf. [109]). Initially, the SNOW? sensor node is not equipped with any

35



Chapter 2 Basics

Figure 2.13: The eZ430 Chronos sensor node.

sensors and actuators — except for the RF unit'°. However, almost all of the microcontroller’s
General Purpose Input/Output (GPIO) pins are available to plug appropriate peripherals, i.e.,
sensors or actuators. Furthermore, it features an RS-232 serial port communication interface
for interaction with other devices, e.g., a personal computer (PC).

For wired programming purposes, the SNoW? sensor node implements the JTAG inter-
face. This way of programming is quite costly and time-consuming as it requires direct (phys-
ical) access to the node. Hence, it is also possible (and more comfortable) to use a remote
maintenance system like SNOW GHOST [13].

2.4.2 eZ430 Chronos

In contrast to the real-world testbeds consisting of the self-developed SNOW? sensor nodes,
we also want to arrange real-world testbeds consisting of off-the-shelf sensor nodes. In this
regard, we select the eZ430 Chronos [180] from Texas Instruments for the following rea-
sons: First of all, the eZ430 Chronos provides the CC430F6137 [178]. The CC430 [179] is an
MSP430 with an integrated RF core. However, an external 26 MHz quartz crystal drives this
microcontroller. Hence, it is more tricky to provide a timer with resolution of 1 s for the
eZ430 Chronos than for SNoW?>.

As this CC430 microcontroller is an MSP430 microcontroller with an integrated sub-
1 GHz RF transceiver, the eZ430 Chronos is compatible to the SNoW? sensor node to some
extend. This compatibility allows the reuse of most of our software and applications already
developed for SNoW? sensor nodes. Moreover, it also facilitates the establishment of a het-
erogeneous network consisting of SNoW? and eZ430 Chronos nodes (cf. [12]'"). As shown
in Figure 2.13, the eZ430 Chronos is marketed as watch. As a result, it is highly portable and
thus allows for real-world testbeds of high topology dynamics. In addition, this watch in-
nately is equipped with several sensors, like pressure sensor and 3-axis accelerometer as well

1°Even though a radio unit measures and manipulates a physical quantity, we consider the RF unit neither as sensor
nor as an actuator within this work.
"'Diploma thesis conducted in conjunction with this work.

36



2.4 Sensor Node Framework

Figure 2.14: The SuperG gateway node, i.e., stacked on the RSK+ development board (olive-
green) is the extension board (grass-green, on the left side) containing the RF units.

as a 96 segment Liquid Crystal Display (LCD) ready to be used. This supports the realization
of several WSN applications.

Indeed, the eZ430 Chronos is not extensible, i.e., the connection of additional sensors or
actuators is not intended. Furthermore, this commercial node offers a very limited num-
ber of communication interfaces. This further complicates debugging and monitoring of
applications for the Chronos. Hence, the LCD may be used for a compressed data output
to provide the desired information. This type of node and its unusual "debugging interface"
is utilized in [12]'* The objective of this work is the regulation of the protocol overhead of
our MAC protocol by the self-organizing adaptation of the transmission power and thus the
communication range.

2.4.3 SuperG Gateway Node

So far, we introduced two types of sensor nodes, namely SNoW?> and eZ430 Chronos. These
nodes are compatible with regard to the used MCU and RF unit, i.e., these nodes may com-
municate directly with each other. This already allows the analysis of additional interesting
network scenarios and applications. However, to broaden the field of applications further by
interconnecting yet existing or future generations of sensor nodes with differing hardware
and communication protocols, we intended to integrate a more powerful node as gateway.
The SuperG gateway node was first introduced in [157]**. In particular, this multilayer mul-
tiradio gateway node consists of an self-developed extension board for the Renesas Starter
Kit+ (RSK+) development board [150] for the SH7203 microcontroller [151] from Renesas
and the RSK+ board itself as depicted in Figure 2.14. The extension board is equipped with
four sub-1 GHz RF transceivers CC1100 [175] from Texas Instruments as well as two 2.4 GHz

>Bachelor thesis conducted in conjunction with this work.
3Diploma thesis conducted in conjunction with this work.

37



Chapter 2 Basics

RF transceivers CC2520 [176] from Texas Instruments. The RF transceivers are connected as
slave via SPI bus with the central SH7203 microcontroller at the RSK+ board as master. The
placement of the CC2520 transceivers should make the SuperG gateway node ready for com-
munication with ZigBee compliant sensor nodes, like MicaZ and TMote Sky (cf. Section 2.1).

As described in [129], the core element of this gateway architecture is its Extended Distribu-
tion System (EDS) - an extension of the Distribution System (DS) of the IEEE 802.11 WLAN
infrastructure [86]: The EDS provides main services for distribution (i.e., message flow) and
integration (i.e., protocol translation). To link different networks efficiently together, the EDS
offers several operation modes, like router, hub, and switch, as well as a so-called portal per
network as network-specific access point. In conjunction with the current operation mode,
the SuperG gateway architecture not only allows protocol conversion (depending on the un-
derlying MAC protocols), but also offers some sort of media conversion, e.g., if networks
based on different frequency bands have to be interconnected.

2.4.4 SmartOS

In Sections 2.4.1 to 2.4.3, we described the sensor node hardware of our real-world testbeds
briefly. Indeed, the utilization of an operating system (OS) is not mandatory to execute sim-
ple software on sensor nodes. Nevertheless, to run complex software of sophisticated appli-
cations or to coordinate time-critical processes like our self-organizing MAC protocol, an
operating system becomes essential. Moreover, an operating system also supports and facil-
itates the development and reusability of software components, like drivers, modules, and
packages. However, the operating system has to meet our demands on the development of a
self-organizing MAC protocol for Wireless Sensor Networks, for instance a modular design
and real-time operation. Therefore, we decided in favor for SMARTOS - a small, modular,
adapt, real-time operating system. Consequently, all our real-world testbeds (cf. Section 7.1)
are based on SMARTOS version 2.7.666. A minimal SMARTOS application (i.e., kernel plus
idle task) for the MSP430 MCU consumes 4 kB program ROM and 96 B RAM (cf. [18]).

The SMARTOS operating system is introduced in [24] and explained in detail in [18]. It pro-
vides fully preemptive and prioritized tasks together with a collaborative resource sharing ap-
proach. To facilitate real-time operation, SMARTOS offers a sophisticated time management
with a local 64 bit timeline with a resolution of 1 ps. In addition, it implements an unified in-
terrupt and resource concept with priority ceiling. This allows the creation of periodic tasks
and a precise timestamping of internal and external events (cf. Section 5.4.2).

Moreover, a large inventory of drivers and modules for SMARTOS already is available. This
makes the application development much easier. For instance, there exists a math library
for square root calculation (cf. [21]) as well as intersection point calculation (cf. [25, 127]),
an implementation of a Pseudo Random Number Generator (cf. Section 6.4.1), and drivers
for several sensors and actuators like acceleration sensor, stepper motor control, and ultra-
sound transducer (cf. [25, 18]). Furthermore, the lightweight MAC protocol SMARTNET is
also available (cf. [13, 18]): This wireless communication protocol provides an addressing
scheme and supports timestamping. Therefore, we adapted the SMARTNET protocol for our
self-organizing MAC protocol EXTENDED-DESYNC and EXTENDED-DESYNCY, respectively, in
Section 5.6.1. Notably, our implementation approach can be made applicable to a much wider
class of radio transmitters making just minor modifications (cf. Section 5.6.1).

38



2.4 Sensor Node Framework

2.4.5 Sniffer

Finally, we want to pick up again the concept of the suiffer (cf. Definition 2.29 as well as
[125]). Since each sensor node has just a local view with just limited knowledge about the
surrounding network and environment, the installation of a sniffer may offer deeper insight
into the network’s information flow. As mentioned in Definition 2.29, a sniffer just receives
the packets from its one-hop neighbors, but does not transmit a packet itself. However, the
sniffer may transfer data about the received packets to a personal computer for monitoring
and controlling purpose. This enables a meaningful comparison of real-world results and
simulation output. In fact, this valuable concept describes rather a role of a node than a type
of node.

Nevertheless, the sniffer is still part of the network, and thus, it is exposed to the same
(harsh) environmental conditions like the other nodes. This is the reason why the sniffer may
also miss firing packets. Consequently, global and omniscient knowledge is not guaranteed.
Depending on the sniffer’s constraint graph, the exposure of a single sniffer may be sufficient
to completely cover the whole (multi-hop) network.

39



40



Part |1

Desynchronization

Cuius rei demonstrationem mirabilem
sane detexi. Hanc marginis exiguitas
non caperet.

Pierre de Fermat

Abstract

This part characterizes desynchronization as biologically inspired primitive. Based on this primitive we
describe in detail our self-organizing MAC protocol EXTENDED-DEsYNC and EXTENDED-DEsYNC', re-
spectively. The main focus of our TDMA protocol is on robustness against arbitrary topology dynamics.
As we will show, a straightforward adoption without further improvement of the primitive of desyn-
chronization as self-organizing MAC protocol for single-hop topologies is not sufficient for proper
operation in multi-hop networks. Therefore, we present the development process from the single-hop
MAC protocol DEsyNC towards the extended MAC protocol EXTENDED-DESYNC and eventually to the
EXTENDED-DEsYNC' protocol. This extended multi-hop version is more versatile (i.e., not restricted
to specific network types) and more robust against arbitrary topology dynamics than single-hop vari-
ations.

Chapter 3 first introduces the mathematical model of pulse-coupled oscillators. This mathematical
model is used not only to formalize the primitive of desynchronization, but also to illustrate its ap-
plicability for WSNs. Chapter 4 presents existing realizations of the primitive of desynchronization as
MAC protocol for single-hop as well as multi-hop topologies. Our approach of the multi-hop proto-
col EXTENDED-DESYNC is described in Chapter 5: This extension implements the phase shift propaga-
tion (PSP) — a mechanism which enables each node to gain information about its two-hop neighbor-
hood autonomously. However, due to the associated stale information problem in multi-hop topologies,
we had to make this first approach of a self-organizing MAC protocol more robust. Therefore, we in-
troduced probability as an additional protocol extension to relax this problem: The eventually resulting
EXTENDED-DEsyNC* protocol is described in detail in Chapter 6.






Chapter 3

Desynchronization

Abstract

In this chapter, we take a closer look to the term desynchronization from Definition 2.38.
Therefore, we first introduce the pulse-coupled oscillator (PCO) framework to synchronize
oscillators in Section 3.2. Its application to synchronize wireless sensor nodes is described in
Section 3.3. Section 3.4 motivates the focus shift from synchronization to desynchronization.
Furthermore, we also identify the problems when applying desynchronization to Wireless
Sensor Networks based on the PCO framework.

3.1 Introduction

As already stated in preparation of Definition 2.34, time synchronization is an important and
also well-understood service' for several Wireless Sensor Network applications. Especially,
series of measured data are meaningful only when tagged with corresponding timestamps.
Moreover, the success of synchronized actions performed by distributed entities as concept
of coordination (cf. Definition 2.33) also relies on time synchronization. However, "inverse"
to the process of synchronization is desynchronization (cf. Definition 2.38). Indeed, the term
desynchronization has different meanings — depending on the discipline. In the following, we
give two examples to gain a first impression:

« In the research field of computational neuroscience, desynchronization describes the
procedure when oscillators (in particular, the oscillatory activity of neurons) loose
their initially in-phase synchronization (cf. Definition 2.35) due to miscellaneous in-
fluences. Such influences are for instance the modification of system values, occurring
forces, or particular feedback from external components (cf. [145]).

o In [193], an attack scenario in Wireless Networks at transport layer (cf. Figure 2.6(a))
is also called desynchronization. In this scenario, an attacker permanently broadcasts
messages with disordered sequence numbers. This will eventually force the receiver to
do nothing but request the retransmission of seemingly missing packets all the time.

Therefore, we have to further improve Definition 2.38 within this chapter. The pulse-
coupled oscillator (PCO) framework [118] by Mirollo and Strogatz is one popular mathe-
matical model to cover emerging properties within a (fully-connected) network of oscilla-
tors. Similar to the periodical pulses of oscillators, the primitive of desynchronization relies
on periodic transmissions. Hence, it seems appropriate to implement desynchronization as
MAC protocol for WSNs on the basis of this framework.

'See Section 8.2.1 for related work on time synchronization in Wireless Networks.

43



Chapter 3 Desynchronization

3.2 Pulse-Coupled Oscillator Framework

Inspired by the emergence of synchrony in nature, Mirollo and Strogatz established in [118]
a general framework of pulse-coupled oscillators. In particular, this framework was inspired
by the biological system of male fireflies flashing at night-time in southeast Asia and by the
model of self-synchronization of cardiac pacemakers as described by Peskin in [142]. This
nature-inspired general framework of Mirollo and Strogatz relies on the following assump-
tions:

P1. The network consists of a set N of oscillators.

P2. Periodically, at the frequency f = % with (potentially individual) period T, each oscil-
lator fires, i.e., it emits an externally perceptible pulse?.

P3. Each oscillator resets its phase immediately after the pulse emission. Certainly, the
time required by each oscillator for a phase reset has to be short in comparison to the
time between two consecutively emitted stimuli of each oscillator.

P4. Each oscillator is able to perceive pulses from other oscillators.

Definition 3.1 Globally Pulse-Coupled. The oscillators are pulse-coupled when the recep-
tion of a pulse fired by another oscillator may impact the receiver’s behavior, e.g., the firing
of its next pulse. If each oscillator receives the pulses fired by any other oscillator, i.e., the
corresponding network graph is complete (cf. Definition 2.19), the oscillators are globally
pulse-coupled.

The pulsatile coupling is an important characteristic of this framework: Each oscillator
adapts the time of its next emission according to the received pulses (during its current pe-
riod), i.e., according to its coupling with other oscillators. Hence, to synchronize globally
pulse-coupled oscillators, Mirollo and Strogatz use just a simple adjustment function in [118]:
Let the internal state x; of oscillator i € N increase monotonically towards a threshold at
x; = 1. If the internal state x; of oscillator i € N at time ¢ is equal to 1, i.e., x;(t) = 1, os-
cillator i is firing a pulse and subsequently resets its internal state x; back to 0. Due to the
pulse-coupling, for the subsequent internal state x;(¢") of any other oscillator j € N \ {i}
holds

xj(t+):min{xj(t)+s,1}. (3.1)
That means that either the next internal state x; at time ¢* of the oscillator j is pulled up by
a constant positive amount & > 0, or the receiving oscillator j is even forced to immediately
fire a pulse as well (i.e., x;(t*) = 1).
However, to prove the convergence to the stable state of synchronized oscillators, Mirollo
and Strogatz additionally made the following idealistic assumptions (cf. [118]):

Ps. There is no loss of pulses (or stimuli).

P6. Each pulse is detected instantly after emission, i.e., there is no delay in the message
propagation.

%A pulse can be considered as stimulus, e.g., an electromagnetic signal, a burst, or a broadcast - as in our case.

44



3.3 Using PCOs to Synchronize WSNs

P7.

Ps.

Po.

P1o.

P11

Noise is absent, i.e., there is not any other interfering signal to be misinterpreted as
pulse.

Each oscillator is sensitive for another pulse immediately after the detection of a pre-
vious pulse, i.e., there is no rest period.

As tightening of assumption P2, all oscillators now perfectly feature the same frequency
f, i.e., there is also no clock drift.

All computations are "perfect’, i.e., the result of a computation is available immediately
with arbitrary precision (cf. continuous mathematics).

The oscillators are globally pulse-coupled (cf. Definition 3.1).

Based on these (idealistic) assumptions P1 to P11, Mirollo and Strogatz prove in [118] that
for any set N of oscillators and for almost® all initial states, a network of globally pulse-
coupled oscillators eventually* becomes synchronized (cf. [118, 171]). Indeed, networks of
PCOs under these idealistic assumptions are very unlike for real-world scenarios. Notwith-
standing, several counterparts of such a synchronizing network® can be found in nature, for
instance spiking neurons, flashing fireflies, chirping crickets, firing cardiac pacemaker cells,
and the cycling of earthquakes (cf. [118, 171]).

3.3

Using PCOs to Synchronize WSNs

The pulse-coupled oscillator framework as described in Section 3.2 offers several benefits:

B1.

Ba.

Bs.

B4.

Bs.

The system behavior emerges solely from the interactions of the oscillators. Accord-
ing to Definition 2.1, this is one prerequisite for self-organization and thus enables a
distributed control of the system.

Due to the self-organizing nature, there is no need for a central coordinator determin-
ing the point in time when an oscillator has to emit a pulse. Such a central component
could limit the performance of the system (bottleneck) or even stop the system’s op-
eration (single point of failure). Therefore, we support the absence of such a central
control.

Each oscillator operates on just locally available data, namely the received pulses. This
allows each oscillator to react autonomously on each detected pulse.

Therefrom, each oscillator can react fast on leaving or joining neighbors. This enables
the system to scale well and to adapt fast to topology dynamics.

Due to this adaptivity and fast reaction on topology dynamics, the entire system gets
more robust against erroneous nodes and node failures.

3The set of initial states which will never synchronize has Lebesgue measure zero (cf. [118]).
4The set of initial states without any oscillator’s adjustment also has Lebesgue measure zero (cf. [118]).
5 At least the vast majority of the oscillators within such networks is synchronized.

45



Chapter 3 Desynchronization

Network type Pulse-Coupled Oscillators | Wireless Sensor Networks
Connectivity globally pulse-coupled single-hop

Component oscillator (sensor) node

Stimulus externally perceptible pulse | firing (radio broadcast)
Communication | full-duplex half-duplex

Table 3.1: Comparison of Pulse-Coupled Oscillators with Wireless Sensor Networks.

B6. Each oscillator is based on a simple (cf. [118]) and just local rule set. Consequently,
the computational task should be neither complex nor costly. This makes the pulse-
coupled oscillator framework suitable for sensor nodes with just low computational
power (cf. Definition 2.6).

Therefore, we exploit the benefits B1 to B6 of the self-maintaining pulse-coupled oscillator
framework for (de)synchronization within the domain of Wireless Sensor Networks.

3.3.1 Adaptation

Some modifications of the framework from Mirollo and Strogatz in Section 3.2 are necessary
for transferring pulse-coupled oscillators to Wireless Sensor Networks:

C1. We have to substitute sensor nodes for oscillators.

C2. Hence, each node has to emit periodically (with period T) some sort of stimulus which
can be received by other nodes.

C3. Since all sensor nodes are able to interact wirelessly by definition (cf. Definition 2.6),
and since a broadcast does not rely on a distinct target addressing scheme (cf. Defini-
tion 2.27), we will use broadcast messages as stimuli.

C4. The counterpart of a globally pulse-coupled network is the single-hop topology due to
its completeness.

Cs. Due to the hardware limitations of typical sensor nodes (cf. Definition 2.6), commu-
nication in a WSN is just in half-duplex mode.

Applying the modifications C1 to Cs, the globally pulse-coupled (and idealistic) network
of oscillators from Section 3.2 complies well to a fully-connected (and idealistic) single-hop
topology of a Wireless Sensor Network. Table 3.1 briefly compares the pulse-coupled oscilla-
tor framework with Wireless Sensor Networks.

Definition 3.2 Firing, Firing Message. In order to distinguish clearly between a broadcast
as periodical stimulus (as requested in Section 3.3) and an ordinary (but maybe sporadic)
broadcast propagating another type of message, we call the periodical broadcast firing and
the corresponding broadcast message firing message. This naming is in accordance with the
PCO framework from Section 3.2.

46



3.4 Using PCOs to Desynchronize WSNs

3.3.2 Related Work

The PCO framework in Section 3.2 always aims to synchronize the pulses of all network com-
ponents. Due to the importance of synchronization services for some applications, successful
implementations of synchronization protocols for WSNs already exist. In the following, we
present a selection of some related synchronization protocols.

Assuming the idealistic conditions P1 to P1o from Section 3.2 but excluding condition
P11, Lucarelli and Wang implemented in [108] a decentralized synchronization protocol for
multi-hop Wireless Sensor Networks. The synchronization update rules are based on the
PCO framework from Section 3.2. Additionally, this framework utilizes nearest neighbor
communication to handle time varying topologies. This enables the protocol to handle a
non globally pulse-coupled network with certain topology dynamics like joining or leaving
nodes. Therefore, this implementation offers synchronization under ideal assumptions for
multi-hop networks, i.e., ideal networks without global coupling.

However, the optimal conditions from Section 3.2 are unlikely for real-world Wireless Sen-
sor Networks: For instance, noise in real-world deployments is as undeniable as the absence
of continuous mathematics at sensor nodes. Therefore, Hong and Scaglione implemented
in [84] the PCO framework for a fully-connected WSN under more realistic conditions, i.e.,
this protocol considers packet loss, noise, and propagation delay. Furthermore, a refractory
period (cf. Section 6.3) is integrated into this synchronization protocol to further stabilize the
system: This rest period succeeds each reception of a firing message. It disables the reception
of further firings for a specific amount of time and thus eliminates infinite feedback loops.

Finally, Werner-Allen et al. implemented in [192] a synchronization protocol based on
the PCO framework from Section 3.2. Instead of immediate responses on each incoming
impulse, each node first records all incoming pulses within one period and "reacts" all at
once at the time of its next firing. As a consequence, this protocol is able to synchronize the
nodes of a multi-hop network even under more realistic radio effects, like message delay or
packet loss.

3.4 Using PCOs to Desynchronize WSNs

So far, we presented the PCO framework to synchronize a network of oscillators in Section 3.2
as well as a network of nodes in Section 3.3. However, in some natural systems, the main
objective is not "synchronization" as exemplified so far. In fact, there are (biological) systems
in which the system components do not synchronize but rather desynchronize according to
Definition 2.38. Therefore, each system component tries to maximize the phase difference
towards its neighbors resulting in a regular overall pattern. Indeed, such a desynchronizing
system can be specified by (a variant of) the PCO framework.

For instance, different gaits of an animal can be emulated by a set of correspondingly pulse-
coupled oscillators representing the animal’s extremities (cf. [171]). Another, but also well-
analyzed biological system is the male Japanese Tree Frog (Hyla japonica): It uses mating
calls to attract female Japanese tree frogs. Aihara et al. experimentally observed in [2] that
two male Japanese tree frogs anti-phase synchronize® their mating calls (with just little over-
lapping). Using the PCO framework, this behavior was mathematically formalized in [3]. In

6Please recall Observation 2.13 here.

47



Chapter 3 Desynchronization

addition, this mathematical model was further extended to desynchronize a complete net-
work of three” alternately calling male Japanese tree frogs (cf. Section 4.5).

In all scenarios mentioned within this Section 3.4 so far, the components do not synchro-
nize first and negotiate an appropriate phase pattern afterward. Instead, the system com-
ponents use self-maintaining adjustment rules to generate the desired (de)synchronization
pattern autonomously and right from the start. This makes these systems robust for topology
dynamics, like leaving or joining beings or network components. This corresponds well with
our focus on a self-organizing MAC protocol which is based on the primitive of desynchro-
nization for multi-hop topologies without a central control and without explicit time syn-
chronization (cf. Section 1.2). Therefore, we can enhance the adaptation of the PCO frame-
work to a WSN from Section 3.3. Indeed, a firing message does not push the receiving nodes
to fire in unison, but each node has to adjust its next time of firing in accordance to the
received firing messages of its neighbors. Hence, based on this PCO framework, implemen-
tations of the primitive of desynchronization as MAC protocol for WSNs already exist. These
implementations mainly differ

« in the algorithm, which estimates the next time of firing of a node,

« in the set of relevant firings, i.e., which received firings are considered for the estima-
tion at each period, and

« in the intended field of application and type of topology.

In the next chapter, we give an overview on available implementations of such MAC proto-
cols for Wireless Sensor Networks. However, we will see that all these protocols are either
restricted to particular types of networks or are not robust against topology dynamics (cf.
Section 1.2).

7The phase difference between two subsequent calling tree frogs equals T/3 then.

48



Chapter 4

Desynchronization as MAC Protocol

Abstract

After the introduction of the primitive of desynchronization, we present in this chapter var-
ious implementations of MAC protocols applying this primitive. As a start, we develop a
generic framework which implements the primitive of desynchronization as MAC protocol
for WSNs in Section 4.1. Based on this framework, we draw some conclusions regarding
single-hop as well as multi-hop topologies in Section 4.2. Next, we describe some practi-
cal implementations: We begin in Section 4.3 with the midpoint approach, which is quite
popular due to its simple computation. Furthermore, this approach will be the basis for our
algorithm in Chapter 5 and Chapter 6, respectively. Next, we introduce the local max degree
approach in Section 4.4. The approach depicted in Section 4.5 is inspired by the mating be-
havior of male Japanese tree frogs as mentioned before (cf. Section 3.4). Finally, the artificial
force field approach, which is based on the pattern formation of mobile robots, is explained
in Section 4.6.

4.1 Generic Framework

In this section, we introduce the generic framework implementing the primitive of desyn-
chronization as MAC protocol for WSNs. For a more comprehensive formalization, we de-
fine a unique identifier (ID) i € N* for each (active) node (cf. Definition 2.29). Moreover,
we do not further distinguish between the identifier and the node itself in the set N of (ac-
tive) nodes, but, without loss of generality, let them be numbered consecutively 1 < i < |N|.
For a common understanding, we have to specify the modulo operation first, due to several
conventions possible.

Definition 4.1 Modulo. Given the natural number a € Z (called dividend) and the natural
number b € Z \ {0} (called divisor). The modulo operation a mod b calculates the remainder
r of the integer division a/b as

r=amodb

|4l

with
1 x>0
sign(x) =40 x=
-1 x<0

49



Chapter 4 Desynchronization as MAC Protocol

A
<
‘\ 5 b@
v e &
£ S By
I I
5l $§ 2%
=} . QQO
= & S
$ S ;
rb‘&
&
&>
C Ttrue —
slow _ slow .
o T =T+e time
true time 0 Thst o pslow
(a) Simple scheme of potential ratio of (b) Examples for individual periods.

local clock time to true time.

Figure 4.1: Exemplification of local clock and its impact on period T.

Consequently, the algebraic sign of the result r of the modulo operation within this work
always equals the algebraic sign of the dividend g, i.e., sign(r) = sign(a). Consequently,

—5mod +3=-2
andalso -5mod-3=-2 holds.

This Definition 4.1 is in accordance with the implementation of Java 1.7.0 (cf. [75]) used for
our simulator (cf. Section 2.3) as well as of the msp430-gcc 3.2.3 compiler used for the pro-
gramming of the real-world sensor nodes (cf. Section 2.4).

Observation 4.1. For |a| < |b| holds a mod b = a.

In compliance with the biologically inspired primitive of desynchronization (cf. Chap-
ter 3), each node of the network has to fire (cf. Definition 3.2) periodically with a common
period T € IN* at the common frequency

1

T (4.1)

f =
Since sensor nodes (and computers in general) are finite state machines, the measurement
and thus the internal representation of the continuous physical quantity "time" within such
digital systems is always discrete with ¢ € IN°.

Apart, the common period T is not identical for all nodes due to individual clock drift
and the resulting limitations in the frequency stability. Figure 4.1(a) shows a scheme of the
potential ratio of a node’s local clock time to the true time. Therefore, T? denotes the period
T measured with the local clock of node i. Consequently, T* = T + y’ with a certain amount
y' € Z typically holds. This phenomenon is overdrawn in Figure 4.1(b) with st < 0 and
yslow > 0.

Every time anode i € N completes its period, it broadcasts its firing packet, resets its phase
immediately, and updates its next time of firing t; € IN? based on its current time of firing

50



4.1 Generic Framework

t; € INO. Similar to the notation used for a node’s individual period, the term t! denotes the
firing time ¢; of node j from the local point of view (i.e., registered with the local clock) of
node i. Consequently, the meaning of the term ! is always identical with the term t;, i.e.,
ti = t; always holds. If the context clearly specifies node i’s point of view then we will mainly
just use ¢; instead of t;. for the sake of convenience. Nevertheless, this differentiation will be
relevant for the exchange of timing information in Section 5.5.

Let ¢(¢;,t) € (=T, T) be the phase shift of a node i € N since its current firing at time ¢;
and a given point in time ¢ € N as

¢(ti,t)=(t—t;) mod T, (4.2)

utilizing the modulo operation from Definition 4.1. Please note that the phase shift ¢(¢;, t)
may be negative, which will be relevant in Section 5.3.

Observation 4.2. If|t — ;| < T always holds (cf. Observation 4.1), the phase shift has not to
be normalized to the period T, i.e., ¢(¢;,¢) = t — t; holds.

When node i € N receives a firing packet of its one-hop neighbor j € N (i), node i records
the time of reception according to its local clock as time #;. Using Eq. (4.2), node i is able to
calculate the phase shift ¢(¢;, t;) towards this neighbor j. For example, ¢(¢;,¢;) = 0.25- T
means that node i has already finished a quarter of its current period when node j transmitted
its firing packet at time ¢;.

Knowledge about the (firing times of the) nodes of its constraint graph G¢ (i) (cf. Def-
inition 2.28) is sufficient for a node i € N to solve the hidden terminal problem in a self-
organizing manner (cf. [49]). Therefore, node i relies on the (dynamic) set

Ng(i) € Nc(i) ~ {i} (4.3)

of relevant nodes to update its next time of firing ¢;. That means, if a relevant node j € N (i)
of node i € N changes its time of firing, then node i has to adjust its next time of firing
t1 correspondingly as a consequence. The elements of the set of relevant nodes depend on
the practical implementation, i.e., the vague specification in Eq. (4.3) will be defined more
accurately within each subsection describing the corresponding relation of the particular
implementation. Anyway, a nonempty set Ng (i) # & of relevant nodes always contains the
phase neighbors of node i, i.e., its predecessor p(i) € Ng(i) as well as its successor s(i) €
Ng(i). These phase neighbors will be of special interest.

Definition 4.2 Phase Neighbor, Successor, Predecessor. A node j € Np(i) is called phase
neighbor of node i € N, if the firing of node j happens - from the (limited) knowledge of
node i — just before or just after the firing of node i itself. Hence, we call the successive phase
neighbor s(i) € Ng(i), which broadcasts its firing packet just after node i, successor, and the
previous phase neighbor p(i) € Ng (i), which broadcasts its firing packet just before node i,
predecessor. Formally stated,

s(i)= argmin ¢(ts 1) and p(i) = argmin ¢(t;,tp). (4.4)
seNc (i)~ {i} peNc(i)~{i}

51



Chapter 4 Desynchronization as MAC Protocol

(@) () (@) (@)
N
s’ P i s
Figure 4.2: Within this line graph Ly, nodes s and s are transmitting concurrently without
any collision, i.e., t; = ty holds. In addition to node p, which is the predecessor p(i) of node

i, nodes s and s’ both are candidates to be the successor s(i) of node i.

Observation 4.3. From a nonempty set Ng(i) # @ of relevant nodes of node i directly
follows the existence of the phase neighbors of a node i € N. Thus, every node i with degree
d; > 1has one predecessor p(i) = j € Nc(i) \ {i} as well as one successor s(i) = k €

Nc(i)~{i}.

Observation 4.4. It may happen that successor and predecessor are the very same node, i.e.,

s(i) = p(i).

Observation 4.5. In single-hop topologies the packets of concurrently transmitting nodes
collide at all times. Therefore, the result of the argmin function from Definition 4.2 is injective
and well-defined. In multi-hop topologies the packets of concurrently transmitting nodes
may not collide. If there are nodes with identical transmission times in the set of relevant
nodes, the result of the argmin function from Definition 4.2 may be not well-defined. Instead,
the argmin function could return a set of identifiers (cf. Figure 4.2). Since our algorithm
rather relies on the phase shift between nodes than on the node’s ID, which is accessed just
for a more comprehensive formalization, w.l.o.g. we will choose a node from the result set by
random as successor and predecessor, respectively. Indeed, this random selection is valid as
a smarter selection of successor (and predecessor, respectively) from such a result set has no
real effect on the system behavior (cf. Lemma 4.8).

According to the primitive of desynchronization, each node tries to maximize the temporal
distance of its time of firing towards its relevant nodes. Therefore, each node i € N uses an
adjustment function

@i (NR(i),t) € (=T, T) (4.5)

to determine its correction value at time ¢ € IN? depending on its current set N (i) of rel-
evant nodes. Using ¢; in Eq. (4.5), this function computes the actual displacement of node i
between its current time of firing ¢; and its optimal time of firing. Finally, node i is able to
set its next (absolute) time of firing ¢] depending on the result of its adjustment function, its
current time of firing ¢;, and the common period T as

ti =t;+T+¢; (Nr(i), t;). (4.6)

After some iterations, i.e., the so-called settling phase, each adjustment function converges
to a (local) fixed-point. With it, the whole system is in the stable state of (perfect) desynchrony.

52



4.2 General Conclusions

Definition 4.3 Desynchrony, Perfect Desynchrony. The system is in the stable state of
desynchrony, if there exists a point in time ¢ such that the adjustment function of each node
i € N remains constant’ for any later point in time t** > ¢, i.e.,

@i (NR(i),t"%) = 9; (NR(i), t). (4.7)

The system is in the stable state of perfect desynchrony, if each node respects the same (tem-
poral) distance to its relevant nodes, i.e., the adjustment function converges to 0: There exists
a point in time ¢ such that the system is in the stable state according to Eq. (4.7), and addi-
tionally the adjustment function of each node i € N for any later point in time t** > ¢ results
in

pi (Nr(i),t*) =0. (4.8)

Once, the system is in the stable state of (perfect) desynchrony, the phase shift between a
node i € N and any of its relevant nodes j € Ng (i) remains constant — apart from clock drifts
and adaptations to topology changes (cf. Section 7.5).

4.2 General Conclusions

Solely based on the generic framework from Section 4.1 and independent of a specific im-
plementation approach, we can already draw some conclusions. Therefore, and based on our
initial enumeration in [122], we additionally identify the following observations regarding
the primitive of desynchronization as MAC protocol. These observations are discussed for
single-hop topologies in Section 4.2.1 and for multi-hop topologies in Section 4.2.2.

4.2.1 Single-Hop Topology

Since the network graph of a single-hop topology is complete (cf. Definition 2.23), the set
N of nodes equals the union of any node i € N and its one-hop neighborhood Nj (i), i.e.,
for each node i € N holds N = N;(i) u {i}. Indeed, we assume the shared communication
medium to be error-free, i.e., there is no packet loss due to noise or hardware defects. Hence,
a packet transmission is successful, if there is concurrently not any other packet transmission.
That means, just one single node of the complete network is allowed to transmit at any point
in time. With it, we can draw the following conclusions for desynchronization in single-hop
topologies:

Lemma 4.1 Single-Hop S1. All nodes of a single-hop topology have the very same degree.

Proof. According to Definition 2.23, the network graph of a single-hop topology is complete,
and it consists of the set N of nodes. Therefore, for each node i € N holds

di =|N|-1. (4.9)

O

Technically speaking, the nodes are out-of-phase synchronized (cf. Definition 2.36), if the adjustment function
converges to a constant value being not equal to 0.

53



Chapter 4 Desynchronization as MAC Protocol

Lemma 4.2 Single-Hop S2. If node i € N is phase neighbor of another node j € Ny(i),
then node j in turn is the opposing phase neighbor of i. For instance, let w.l.o.g. node i be
predecessor of node j, i.e., p(j) = i, then node j is successor of node i, i.e., s(i) = j.

Proof. Node i € N is phase neighbor of node j € Ni(i). Let wl.o.g. node i be successor of
node j, i.e., s(j) = i. According to Definition 4.2, t; is the smallest time for which ¢; > ¢;
holds. Assuming, node k # j is the predecessor of node i, i.e., p(i) = k. According to
Definition 4.2,  is the greatest time for which t; < t; holds. Due to the completeness of the
corresponding network graph of a single-hop topology (cf. Definition 2.23), node k € Ny (i) n
Ni(j) holds. Hence, #; is the smallest time for which t; > t; holds. This is a contradiction
to s(j) = i, where ¢; is the smallest time which holds ¢; > t;. Therefore, t; = ¢; must hold.
If j # k, this would cause collisions at node i due to the single-hop topology. Moreover, this
behavior is contradictory to our assumption that just one single node of the complete network
is allowed to transmit at any point in time. Hence, j = k must hold, and thus p(i) =j. O

Lemma 4.3 Single-Hop S3. Moreover, node i € N is the opposing phase neighbor of its phase
neighbors j € N1(i) and k € Ni(i), i.e., node i is successor of solely one neighbor j as well as
predecessor of solely one neighbor k.

Proof. Assuming, node i € N has more than one successor (the case for more than one pre-
decessor is analogous): In compliance with Definition 4.2, the firing time of each successor
of node i is the smallest time which is greater than ¢;. This means that for any two successors
s(i),s'(i) of node i with s(i) # s"(i) hastohold £5(;) = ty(;y. Using the argumentation from
the proof of Lemma 4.2, s(i) = s’(i) has to hold. This is a contradiction to our assumption
that node i has more than one successor. Hence, node i has solely one successor s(i) € Ny(i).
The rest of Lemma 4.3 follows directly from Lemma 4.2. ]

Lemma 4.4 Single-Hop S4. Every node i € N with degree d; > 1is always predecessor p(j) =
i and successor s(k) = i of its phase neighbors j, k € N1(i).

Proof. Follows directly from Lemmas 4.2 and 4.3. O

Lemma 4.5 Single-Hop Ss. If the system is in the stable state of perfect desynchrony, the
temporal distance between each pair of subsequently firing nodes then equals T/ |N]|.

Proof. According to Definition 4.3, each node i € N of a system in perfect desynchrony
respects the same (temporal) distance to its relevant nodes. Due to the primitive of desyn-
chronization, the (temporal) distance of node i’s time of firing towards each element of its
set Ng (i) of relevant nodes is maximized. Using Lemma 4.2, for the phase neighbors s(i)
and p(i) of each node i € N holds ¢(t;, ;) = ¢(tp(i),ti). Therefore, all [N| nodes are
distributed in temporal equidistance along the common period T, i.e., the temporal distance
between each pair of subsequently firing nodes is equal to T/ |N|. O

Lemma 4.6 Single-Hop S6. For a collision-free communication within a single-hop topology
the minimum required number of distinct time slots within period T equals the size |N| of the
network.

54



4.2 General Conclusions

Proof. The network graph of a single-hop topology is complete (cf. Definition 2.23). In con-
junction with Lemma 4.1, for a collision-free communication the period T has to support at
least

. (2.3)
maxi [Ny(i)|+1 =’ max{d; +1 .10a
nax{ [N ()] +1) 2 max{d; +1} (4100
(49) IN|-1+1 (4.10b)
= |N| (4.10¢)
distinct time slots. O

4.2.2 Multi-Hop Topology

Since the network graph of a multi-hop topology is not complete (cf. Definition 2.24), the hid-
den terminal problem (cf. Definition 2.25) is inherent to multi-hop topologies. Once more,
we assume the shared communication medium to be error-free, i.e., there is no packet loss
due to noise or hardware defects. Hence, a packet transmission is successful, if there is no
other packet transmission at the same time within the communication range of the receivers.
That means, two or more nodes of the system may be able to transmit a radio packet concur-
rently without any interference. With it, we can draw the following conclusions for desyn-
chronization in multi-hop topologies:

Lemma 4.7 Multi-Hop M1. The degree of the nodes in a multi-hop topology may differ. How-
ever, for each node i € N holds d; < |N| - 1.

Proof. According to Definition 2.24, the network graph of a multi-hop topology is not com-
plete, but it consists of the set N of nodes. Therefore, for each node i € N holds d; < |[N|-1.
The sample scenario in Figure 4.3(a) depicts different node degrees in a multi-hop topology:
dg =1,butdy = 2. O

Lemma 4.8 Multi-Hop M2. If node i € N is phase neighbor of another node j € N, then
node j needs not to be the opposing phase neighbor of i. For instance, let w.l.o.g. node i be
predecessor p(j) = i of node j, then node j need not to be successor of node i in turn, i.e., s(i) # j
may hold. Instead, another node k # j is successor s(i) = k of node i then (cf. Figure 4.3(a)).

Proof. According to Definition 4.2, for both phase neighbors s(j) and p(j) of any node j
holds s(j), p(j) € N1(j) U N2(j). On the basis of Lemma 4.7, let node i € N,(j) be the
predecessor p(j) = i of node j € N, (i), but for i’s successor holds s(i) € Ny(i) with s(i) ¢
Ni1(j) U N3(j). Therefore, node j cannot be the successor of node i. Exemplified by the
sample scenario in Figure 4.3(a), let p(d) = b and d = s(b) with a ¢ N1(d) u N»(d), i.e.,
node b is predecessor of node d, and node d is successor of node b. Moreover, for node a
holds p(a) = b, i.e,, node b is also predecessor of node a. However, node a is not successor
of node b, which is node d. Therefore, node a is not the opposing phase neighbor of its own
phase neighbor node b. O

For the next conclusion, we have to introduce the concept of a so-called multiple phase
neighbor:

55



Chapter 4 Desynchronization as MAC Protocol

i | p) ] s@i) i | p@) ] s@i)
a b c a b c
b c d b e d
c a b c d e
d b c d b c
e c b
(E) e
() () (@) (®) e
() () (@)
S fe—>fe—s]
a#s(b b=p(a c d=s(b @
#s(b) p(a) (b) [[) b c d
a
(a) Here, node b = p(a) is predecessor of node a, (b) Here, node a is neither predecessor nor succes-
node d = s(b) is successor of node b. sor of any node, since node d = s(b) is successor

of node b, node d = p(c) is successor of node c.

Figure 4.3: Example scenarios on the general conclusions on multi-hop topologies. In both
examples, node a and node d send at the same time without causing any collisions.

Definition 4.4 Multiple Phase Neighbor. Assuming, node i € N is successor of all ele-
ments of a set Ng(i) € N \ {i} of nodes as well as predecessor of all elements of (another)
set Np(i) € N\ {i} of nodes at the same time. Consequently, all nodes within the union
Ng(i) U Np(i) share the same phase neighbor i. If[Ng(i) U Np(i)| > 2 holds, we callnode i a
multiple phase neighbor. Exemplified by the sample scenario in Figure 4.3(b), node b is a mul-
tiple phase neighbor since Ng(b) = {e} and Np(b) = {a,d} with [Ng(b) UNp(b)| =3 > 2.

Observation 4.6. In general, anode i on its own is not able to discover whether it is a multiple
phase neighbor, or not. However, based on just locally available information, as a start the
node’s degree d; (cf. Definition 2.16) may be an indicator in this regard.

Lemma 4.9 Multi-Hop M3. According to Observation 4.5, the argmin function from Def-
inition 4.2 may return a set of nodes. As a result, the phase neighbor s(i) and p(i) may be
not well-defined. Therefore, in multi-hop topologies a node i € N could be successor of all ele-
ments of a set Ng(i) € N ~ {i} of nodes as well as predecessor of all elements of (another) set
Np(i) € N~ {i} of nodes at the same time. If node i is a multiple phase neighbor according to
Definition 4.4, i.e., [Ns(i) U Np(i)| > 2 holds, the whole system could be destabilized when this
multiple phase neighbor i adjusts its next time of firing. This will eventually lead to fluctuations
of transmission times.

Proof. In consequence to Lemma 4.8, a node i € N needs not to be the opposing phase
neighbor of its own phase neighbors s(i) and p(i). Indeed, yet another node j € N has to
take over the role of at least one opposing phase neighbor (cf. Observation 4.3). Since each
node always has a single successor as well as a single predecessor according to Definition 4.2

56



4.2 General Conclusions

in combination with Observation 4.5, node j could be a multiple phase neighbor according to
Definition 4.4. Now, let node j be such a multiple phase neighbor, i.e., [Ng(i) U Np(i)| > 2
holds. If node j adjusts its next time of firing, all nodes within the union Ng(j) U Np(j)
could be affected at once: Either, a node k € Ng(j) U Np(j) also has to adjust its next time
of firing according to the adjustment of its phase neighbor j and in compliance with the
primitive of desynchronization. Or, node j is not a phase neighbor of node k anymore, i.e.,
k ¢ Ng(j) u Np(j) holds, and node k has to adjust itself according to another node I «
Ni(k) u N, (k) with I # j. Exemplified by the sample scenario in Figure 4.3(a) again, node ¢
is multiple phase neighbor of the other nodes a, b, and d, i.e., Ns(c) UNp(c) = {a,b,d}. O

Lemma 4.10 Multi-Hop M4. In multi-hop topologies there may be nodes, which are either
only predecessors (but not successors) of other nodes, or which are only successors (but not prede-
cessors) of other nodes, or which are none of both (neither successor nor predecessor). Moreover,
anode i € N being not a relevant node of any other node may vary its next time of firing within
a certain time interval not triggering the adjustment of any other node’s next time of firing.

Proof. The first part of Lemma 4.10 follows from Lemmas 4.8 and 4.9. For instance, the
scenario shown in Figure 4.3(a) exemplifies that node d is just successor, but not predecessor,
whereas node a is just predecessor, but not successor. Next, assuming node i € N is not a
relevant node of any other node, i.e., for all nodes j € N holds i ¢ Ng(j). In consequence of
Eq. (4.6), the time of firing of node i is irrelevant for any other node’s time of firing, since node
i is not relevant at all. Therefore, if node i varies its time of firing in a certain time interval,
i.e., especially not to become a relevant node, its adjustment does not affect the adjustment
of any other node’s next time of firing. In the sample scenario shown in Figure 4.3(b), node
a is neither successor nor predecessor of another node. O

Lemma 4.11 Multi-Hop Ms. Ifa multi-hop system is in the stable state of perfect desynchrony,
the temporal distance between each pair of subsequently firing nodes may not equal T[|N]|
anymore. Moreover, the temporal distance between a node i € N and its phase neighbors s(i)
and p(i) may now differ from the temporal distance between another node j € N with j # i
and its phase neighbors s(j) and p(j).

Proof. The first part of Lemma 4.11 directly follows from Lemma 4.7. Next, assuming nodes
i,j € N with d; # d;. From [N1(i)| # [N1(j)| and in accordance with Eq. (4.3) could follow
[N1(i) UN2(i)| # [N1(j) U N2(j)|. In the worst case, each node within the constraint graph
of node i has a unique time of firing, i.e., for any pair of nodes k, ! € N¢ (i) holds # # ;. If
the same holds for node j, then the temporal distance between node i and its phase neighbors
may be different to the temporal distance between node j and its phase neighbors. O

Lemma 4.12 Multi-Hop M6. Besides, in multi-hop topologies there could be two (or more)
nodes within the node set N¢ (i) of the constraint graph of a node i € N sharing the very same
time of firing without causing interferences at all (cf. Definition 2.26).

Proof. Let two nodes j,k € Nc(i) of node i € N with j # k. Assuming, j ¢ Ny(k) u N2(k)
and k ¢ Ni(j) U N2(j) holds, i.e., both nodes are more than two hops away from each other.
Therefore, t; = t; may hold without interference (cf. Definition 2.25). Exemplified by the
sample scenario in Figure 4.3(a) again, this would hold for nodes a,d € Nc(c) = {a,b,c,d}
with t, = t,. O

57



Chapter 4 Desynchronization as MAC Protocol

Protocol Year | Approach Ngr (i) Topology References
DESYNC 2007 | Midpoint p(i), s(i) single-hop [50, 49]
Scattering 2007 | Midpoint Ni(i) single-hop? [73]

Frog Call 2009 | Frog-Call Inspired | Ni(i) single-hop [132,131]
M-DESYNC 2009 | Local Max Degree | D; acyclic multi-hop | [92]
DEesyNC-ORT 2011 Midpoint p(i), s(i) single-hop [173]
V-DESYNC 2012 | Midpoint p(i), s(i) single-hop [159]
DWARF 2012 Artificial Forces Ni(i) single-hop [39]
M-DWARF 2012 | Artificial Forces Ni(i) UN,(i) | multi-hop [38]
EXTENDED-DESYNC 2009 | Midpoint p(i), s(i) multi-hop [128, 121, 122]
EXTENDED-DESYNC' | 2012 | Midpoint p(i), s(i) multi-hop [124, 126]

Table 4.1: A short comparison of several self-organizing MAC protocols implementing the
primitive of desynchronization.

Lemma 4.13 Multi-Hop M7. For a collision-free communication within a multi-hop topology
the sufficient number of distinct time slots within period T equals me}\rx{|NC ()}
1€

Proof. In general, a sufficient number of time slots for firings to support a collision-free com-
munication within the network may be less or equal to the size |[N| of the network. How-
ever, although all nodes share the same communication medium, nodes which are more
than two hops (cf. Definition 2.13) away from each other could also transmit their firings
concurrently without causing a collision, thus reducing the number of required slots. From
a local perspective of a node j € N, each element of the node set Nc(j) of the constraint
graph of this node j € N requires a distinct time slot within period T. In the worst case,
node j € N has the highest the cardinality [N¢(j)| of its node set N¢(j) within the network,
ie, |[Nc(j)| = r'réeﬁ(ﬂNc(i )|} holds. Therefore, for a collision-free communication within a
1

multi-hop topology the sufficient number of distinct time slots within period T is equal to
mz;.\]x{|N C(z)|} Since the minimum number of distinct time slots within period T may be
1€

even smaller according to Lemma 4.12, the given threshold is just an upper bound. O
Observation 4.7. As for single-hop topologies, each node of a (multi-hop) star topology re-

quires its own, distinct time slot within period T for a collision-free communication. There-
fore, at least |N| time slots are required.

Observation 4.8. In consequence of Observation 4.7, if the system is in the stable state of
perfect desynchrony, the temporal distance between each pair of subsequently firing nodes
of a star topology also equals T/ |N| (cf. Lemma 4.5).

Observation 4.9. For any star topology holds i = s(p(i)) and i = p(s(i)) (cf. Lemma 4.2).

In the following Sections 4.3 to 4.6, we describe a selection of specific implementations of
this generic framework for desynchronization. Table 4.1 overviews these implementations
for a node i € N with focus on the realization

o of its set Ng (i) of relevant nodes,

?Using an additional central unit, even acyclic multi-hop topologies are supported.

58



4.3 The Midpoint Approach

« of its adjustment function ¢; (Ng(i),t), and

o of the type of topology for which the particular MAC protocol was intended to operate.

4.3 The Midpoint Approach

Due to its small set of nodes to be considered and its simple mathematical calculations, the
midpoint approach is straight forward and easy to use. Hence, these characteristics make this
approach feasible for the operation in constrained embedded systems and thus quite popular
in WSNs. For instance, the first implementation of the primitive of desynchronization as
MAC protocol DEsYNC [50] for Wireless Sensor Networks utilizes this approach. Moreover,
our robust MAC protocol for multi-hop topologies EXTENDED-DESYNC™ (cf. Chapter 6) is
also based on this approach.

To update its next time of firing, node i just relies on the data of its phase neighbors, i.e.,
its predecessor p(i) and its successor s(i) (cf. Definition 4.2). Therefore, the set Ng(i) =
{p(i),s(i)} of relevant nodes of node i has at most these two members. According to the
generic framework from Section 4.1 and to maximize its temporal distance towards its rel-
evant nodes, each node i aims on the midpoint of its phase neighbors’ time of firing. This
adjustment towards the average would lead the system to the desynchronized state in which
all nodes fire at the midpoints of their phase neighbors’ time of firing. For this purpose, node
i has to capture the reception times ;) and ¢, ;) of the corresponding firings from its phase
neighbors. With it, node i can calculate the (relative) phase shifts ¢ (;, t;(;)) and (i, i),
respectively. Hence, node i is able to compute its adjustment factor &;, with respect to its cur-
rent time of firing t; as

&y = WSELIO) 2¢(tp(l)’tl) (4.112)
(42 (ts( —ti) mod T (ti —t,(;)) mod T
i > )
Observation 4.10. If Observation 4.2 is applicable, Eq. (4.11b) simplifies to

Loy —ti) —(ti =ty
st,.:(s“) )2( 70)) (4120)

teeiy + b
_ s () t. (4.12b)

2
The adjustment factor specifies the actual difference between the current time of firing of
node i and its optimal time of firing at this stage. With it, the adjustment function from

Eq. (4.5) at time ¢; equals
@i (Nr(i),ti) = a-e (4.13a)
an d(tits(iy) = $(tp(iys ti)
5 .

The jump size parameter a € [0,1] regulates how fast a node moves towards the midpoint
of its phase neighbors. Indeed, the boundaries of this interval will only be considered in
exceptional cases within this work:

(4.11b)

(4.13b)

59



Chapter 4 Desynchronization as MAC Protocol

(1 r(!)J;) ¢

(a) The network of five nodes during the (b) The network of five nodes reached the
settling phase. stable state of perfect desynchrony.

toiys ti
¢( p(i) z) I I I , I time
I T T 1 [

tpti) t; i) bt b &t x )

(c) Detail of the timeline during the settling phase of the network of five nodes, and
of node i in particular.

Figure 4.4: Snapshots of the progress of desynchronization for a network consisting of five
sensor nodes. The circumference of the circle corresponds to the common period T.

« Setting « = 0 means no movement at all. This is not desired in general, since it would
simply disable this approach.

o Setting a = 1 forces the node to always jump directly onto the current midpoint of
its phase neighbors without any damping. This straight behavior could result in the
emergence of new but unstable configurations (cf. [73] as well as Section 7.3).

In [50], Degesys et al. suggest a = 0.95 as damping factor for single-hop topologies. However,
further analysis of an optimal value for the damping factor a for multi-hop topologies is
mandatory and can be found in Section 7.3. A snapshot of this settling phase is depicted in
Figure 4.4(a), the corresponding timeline is shown in Figure 4.4(c).

Finally, after its current firing at time t; node i is able to set its next (absolute) time of firing
t] as

6 .
t “s Ty @i (Nr(i),t;) (4.142)
Lo Trae, (4.14b)
= ti+(l-a) T+a-(e+T). (4.14¢)

60



4.3 The Midpoint Approach

Based on Definition 4.3, the system has reached the stable state of perfect desynchrony, if
there exists a point in time ¢ such that for any future time of firing ¢;* > ¢ for each node i
holds €,++ = 0. Figure 4.4(b) illustrates this stable state of perfect desynchrony.

Observation 4.11. Noteworthy, Eq. (4.14¢) shows the algorithmic similarity of the midpoint
approach to the exponentially weighted moving average (EWMA) filter® (cf. [155]), which
smooths out short-term fluctuations but instead highlights long-term trends. In particular,

Tp= @ T+ (1-0) xp (415)

where the value of X, is the filtered value of the currently observed value x; combined with
the recently filtered value X;_;. Again, the value of the filter constant « € [0,1], determines
the degree of filtering.

4.3.1 Proof of Convergence

As already mentioned, the midpoint approach depends on simple calculations. This also
simplifies the proof of convergence. However, we will show in Section 7.2 that the initial start
up order of the nodes in a multi-hop topology has a significant impact on the temporal order
of the nodes in general as well as on the temporal order of a node and its phase neighbors
in particular. For this reason, the initial start up order also co-determines the convergence
behavior of the whole system. Moreover, the configuration space of this midpoint approach is
further expanded by the underlying topology and the used values for the protocol parameters,
like the damping factor a. Therefore, we are able to prove the convergence of the midpoint
approach just based on certain assumptions and simplifications.

In contrast to the proof of convergence of the midpoint approach for a single-hop topol-
ogy in [50], we do not try to convert the problem of desynchronization into the problem of
graph coloring. Instead, we want to demonstrate the eligibility of other mapping approaches,
like a proper physical model. Therefore, we utilize the physically inspired proof of an elastic
resilience model as introduced by Miihlberger and Kolla in [128] to proof the convergence
of the midpoint approach. Since the convergence of the midpoint approach was proven just
for single-hop topologies, e.g., in [50], but still is missing for multi-hop topologies, we do
focus on multi-hop topologies herein. Nevertheless, this proof also is compliant to single-
hop topologies. In particular, we will focus on a specific multi-hop topology, namely a star
topology S|y, consisting of the set N of nodes. For instance, the star topology Ss for [N| = 5
nodes is depicted in Figure 2.3(b). Therefore, the midpoint approach has to be transferred
into the corresponding elastic resilience model, first.

Convergence of the Midpoint Approach. To be able to proof the midpoint approach for the
star topology |, we first have to make the following assumptions:

A1. One length unit equals one time unit, i.e., the period T can be mapped to a circle of
circumference T.

A>2. Due to the underlying star topology and according to Observation 4.7, each node re-
quires its own, distinct time slot within period T for a collision-free communication.*

3The exponentially weighted moving average filter is identical to the discrete first-order low-pass filter.
4Noteworthy, Lemma 4.12 is not repealed thereby.

61



Chapter 4 Desynchronization as MAC Protocol

P %p(i) '

>
&
32
'_f. :

A

Ip(i) ti

(a) During the settling phase: Coil spring o, (;y is stretched by Axg,

whereas coil spring o; is compressed by Ax,; with Axs, () = Ax,;.

s(i)

p(i) . i o;

. ; g
I T T
i ts(i )

(b) In perfect desynchrony: Both coil springs o,(;) and o; are unde-
formed, i.e., Axgp(i) =0 = Axy,.

Figure 4.5: Different stages of the elastic resilience model for our desynchronization ap-
proach. The black circle represents node i, and the walls represent p(i) and s(i).

As.

Aq.

As.

A6.

A7.

A8.

In accordance to Lemma 4.13, the period T has to be long enough to contain |N| time
slots for all [N| nodes.

The phase difference between a node i € N and any of its (phase) neighbors never
exceeds T, i.e., Observation 4.2 applies here.

We assume idealized conditions: All communication links are symmetrical, bidirec-
tional, and reliable. Additionally, not any node will fail, and there is no clock drift.

Since each node has to assign its own time slot, w.l.o.g. we are able to number all nodes
consecutively, i.e., for a node’s identifier i holds: i € {0,...,|N|—1}.

According to Observation 4.9, for each node i holds: i = p(s(i)) and i = s(p(i)).

To keep the proof manageable, we pick a certain node i € N for deeper analysis. In
particular, although node i adjusts its next time of firing, its phase neighbors s(i) and
p(i) are "frozen", i.e., they do not adjust their time of firing. Thus, t:(i) =ty + T as

well as t;(i) = tp(;) + T always holds.

Based on assumptions A1 to A8, we can define an elastic resilience model which complies
to this network model (cf. Figure 4.5):

62



4.3 The Midpoint Approach

D1. Nodes are modeled as physical objects with identical mechanical characteristics, i.e.,
they are identical in space and mass.

D2. Eachnodei € N islinked to its successor s(i) by a coil spring named ¢;. Consequently,
the spring between node i and its predecessor p(i) is named o, ;).

D3. All coil springs of our elastic resilience model are identical in material and in construc-
tion. Especially, the (arbitrary) spring constant x,, as well as the undeformed length
is equal for each coil spring o;.

D4. Since each node i € N is connected to its successor s(i), and due to assumptions A2
and Ay, all nodes can be arranged consecutively forming a closed loop. This means
that all nodes and thus all springs are arranged on the circle of circumference T (cf.
assumption A1) such that each node i € N is connected with its phase neighbors p(i)
and s(i) via springs o; and 0,,(;), respectively (cf. Figure 4.5).

Ds. Noteworthy, due to the underlying star topology each phase neighbor is an element
of the union Nj(i) U N, (i), i.e., a phase neighbor is one hop or two hops away from
node i€ N.

Dé6. Furthermore, motion along the circle is frictionless for nodes as well as for springs.
D7. Moreover, the radius of this circle is constant.
D8. Finally, there is no external force at all.

Since a node receives information about its two-hop neighbors just by means of at least one
of its one-hop neighbors (cf. Section 5.3), phase changes of two-hop neighbors are recognized
within one period later. In combination with assumption A8, a phase neighbor which is two
hops away can be treated as a one-hop neighbor with a delayed exchange of information then.
Hence, it is legitimate to place them all along a single circle.

Besides, the springs are connected in series, trying to decrease their potential energy by
returning to the equilibrium position. As soon as the nodes are distributed equidistantly
along the circle, the resulting equilibrium of forces matches exactly with the stable state of
(perfect) desynchrony. This means that after a settling phase, the stable state has reached
the lowest potential energy of all springs accumulated. Therefore, since each node holds the
largest possible temporal distance to each of its phase neighbors, it is sufficient to show that
the midpoint approach also results in such a stable state.

Assuming |N| nodes (and thus |N| springs) with 0 < i < |[N| -1 along a circle with circum-
ference T as described above. The potential energy Uy, stored in spring o; then equals

Kg;
Uy, = ;’

Ax}, (4.16)

where #,, denotes the spring constant and Ax,, denotes the current displacement of spring
0; (cf. textbooks on physics like [72, 102, 65, 181]). The potential energy Uy of all |N| springs

accumulates as
IN|-1

Ko,
Uy = Z Ji Axtz,_. (4.17)
i 2

63



Chapter 4 Desynchronization as MAC Protocol

As mentioned above (cf. assumption D3), all springs have an arbitrary but identical spring
constant. Therefore, for each coil spring o; we choose w.l.o.g. k., = 1. Additionally, we are
analyzing just a single node according to assumption A8. We refer w.l.o.g. to node i € N and
thus obtain

(4.17) NIty
Uy =7 ) “AxZ (4.18a)
iz 2
NI 2 2 1.
= ]; EAxG + zAxUp(i) + EAxgi. (4.18b)
Jj#i,
j#p(i)

Noteworthy, if the whole system would move (counter)clockwise along the circle without
changing the relative distances amongst the nodes, the total energy of the elastic resilience
model would remain constant. This is consistent with our definition of (non-perfect) desyn-
chrony (cf. Definition 4.3).

Next, we have to transform the statements on the elastic resilience model made above into
statements on a Wireless Sensor Network: For this reason, the temporal displacement of
node i € N has to correlate with the displacement of the coil springs connected to this node
as follows (cf. Figure 4.5(a)): With respect to the current time of firing ¢; of node i, the value
of its adjustment factor &, is equal to the value of the displacement Ax,, of coil spring o;.
Based on assumption A1, we are able to substitute ¢;, for Ax,,. Since all other nodes and
especially the phase neighbors of node i will not move (cf. assumption A8), this adjustment
factor ¢;; also affects the displacement Axg ) of coil spring g, (;), since this spring is also
connected to node i (cf. Figure 4.5). In consequence to assumption Ay, we are also able to
substitute ¢/, for Axgp(i). Utilizing assumption A4, Eq. (4.18b) further modifies to

N, 1, 1,

U = —&. + & + & 198

! jg,ztf 272 (99
J#i
INI-1 ¢ teny + Eogi 2

4.12b Z sf_+($(l)p(l)—l‘i) . (4.19b)

=, 2t 2
J#i

One important condition for proving the stable state of our system is that the difference
in energy, when a single node i € N moves while all other nodes j € N with j # i remain
unchanged (cf. assumption A8), can be obtained by the partial derivative of the total potential
energy Uy with respect to ¢;, i.e.,

64



4.3 The Midpoint Approach

) o [ INI-1 4 ts(iy + (i) 2
UN:( Z 8%.+(—ti) (4.20a)
ot; ot \ ;6342 Y >

0 IN|-1 1, ) ts(i) + tp(i) 2
- aT, ._OZ. ‘zeff +aTi (2 - fz’) (4.20b)
Jj=0,j#i
—
=0
B o [ ts(iy +Ep(i) | 2
ot ( 2 ti (4.20¢)
toiy + b
) 2.(()217() B ti) (1) (4.20d)
=2 ti - ts(i) - tp(l) (4.206)

After some settling phase, there is no more change in energy, and the elastic resilience system
enters a stable state (cf. Figure 4.5(b)). Thus, it is a necessary condition to finally have a
minimum difference of energy, expressed by

ait,' Uy =0. (4.21)
Utilizing Egs. (4.20e) and (4.21), we obtain
(i) Ep(i
t = % (4.22)

In combination with the particular specification of the adjustment function (cf. Eq. (4.13)),
Eq. (4.22) fully complies with our Definition 4.3 of (perfect) desynchrony. Furthermore, due
to assumption A4, Eq. (4.22) is also conform to the (denormalized) adjustment factor in
Eq. (4.12b). This conformity validates our substitution.

So far, we have showed that the elastic resilience system complies well with the midpoint
approach. Furthermore, we characterized the stable state of that system. Since such a sta-
ble state exists, it will be attained eventually, if the change of the total potential energy of
subsequent states decreases in a strictly monotonic way. This holds, until the stable state
of desynchrony is reached actually. In the case of desynchrony, AUy = 0 holds. Thus, to
demonstrate the emergence of this stable state, we have to show

AUy =U{-Uy<0, (4.23)
where U}, denotes the potential energy of all [N| springs after solely node i € N has changed

its time of firing from ¢; to ¢]. This means that just the springs 0,(;) and o; are affected,
since all other nodes j € N with j # i remain unchanged (cf. assumption A8). According

65



Chapter 4 Desynchronization as MAC Protocol

to the midpoint approach in Section 4.3 and due to assumption A4, we use the following
substitution

tho +th
st;r - M _ t?’ (4.24a)
tqny+ T+t pn+T
A8 Is(i) _ p(i) —t (4.24b)
tony +Eoi
414b o w —(ti+T+a-e,) (4.24¢)
tociy + o
L tho ., (4.24)
412 e —a-ey, (4.24€)
= (1 — a) . Eti (424f)
to prove Eq. (4.23) as
AUy = UL-Uy (4.252)
= sf;, - e%i (4.25b)
4.24 2
2 (-a)-en) -2 (4.250)
= (1-a) e ¢ (4.25d)
= ((Q-a)®-1)-¢. (4.25€)

Since we excluded & = 0 as well as @ = 1in Section 4.3, i.e, @ € (0,1) holds, we further
evaluate Eq. (4.25¢) as follows

AUy = ((1-a)*-1)- & .
———————— s —
<0 >0 (4.26)

<0

As long as the system is not in the stable state of perfect desynchrony (cf. Definition 4.3),
&t; # 0 and thus e%i > 0 holds. Together with Eq. (4.26) follows

AUN <0,

i.e., the total potential energy of subsequent states decreases in a strictly monotonic way as
long as the system is not in the stable state of perfect desynchrony. Consequently, the con-
vergence of the midpoint approach is proved. O

Indeed, according to Lemmas 4.7 to 4.13, the proof of convergence for multi-hop topologies
without simplistic assumptions (cf. Items A1 to A8) is very hard - especially in combination
with topology dynamics. A first impression of that difficulty is given in [49]. As stated in
[170], it is impossible to obtain an analytical solution for most nonlinear systems in general.

66



4.3 The Midpoint Approach

Besides, [112] gives another evidence that no numerical proof for arbitrary multi-hop topolo-
gies exists. Moreover, the conclusions from Section 4.2 identify the respectable complexity
when realizing the PCO framework for multi-hop topologies. For this reason, the proof of
convergence is available at present just for single-hop topologies. Besides the easy-to-handle
star topologies in [38] and in this section, a universal proof for arbitrary multi-hop topologies
is still missing (cf. [34]).

Indeed, a more realistic model without some (or all) of the limiting assumptions Items A1
to A8 may never reach the stable state of desynchrony (cf. Eq. (4.7)). This could be caused
by awkward start up scenarios or by too many erroneous nodes (cf. Section 7.2). However,
we identified yet another problem which will be introduced in Section 5.9. This problem
is inherent to the primitive of desynchronization and causes the system to reach an unsta-
ble but fluctuating state. Therefore, the midpoint approach has to be enhanced further (cf.
Chapter 6).

4.3.2 Related Work

As already mentioned, the first implementation of the primitive of desynchronization as
MAC protocol is based on this midpoint approach: In 2007, Degesys, Rose, Patel, and Nag-
pal first published DESYNC, a self-organizing TDMA protocol for fully-meshed WSNs [50].
Its straight forward implementation of the primitive of desynchronization from Section 3.4
allows another simple proof of convergence for complete networks: Since the exclusive as-
signment of disjoint time slots is similar to the problem of graph coloring, Patel, Degesys,
and Nagpal tried to transform the DEsYNc algorithm into such a linear dynamical system
in [141]. Using Jacobian matrices, they proved that the stable state of perfect desynchrony
equals the unique globally stable fixed point of the dynamics based on graph coloring. In-
deed, this MAC protocol was intended for complete network graphs and thus operates just
well for single-hop topologies. Since this restriction limits the amount of possible applica-
tion scenarios, Degesys and Nagpal suggested an implementation for multi-hop topologies in
[49]: In order to solve the emerging hidden terminal problem (cf. Definition 2.25), each node
additionally requires knowledge about its two-hop neighborhood (cf. Section 5.3). However,
each node is still aware of only its one-hop neighborhood. Furthermore, there was no real-
ization of how to get the required knowledge about the nodes of the corresponding constraint
graph in a decentralized but self-organizing network.

Taking advantage of the fact that the time span between any pair of successively trans-
mitting nodes within a perfectly desynchronized and complete network always equals T/ |N|
(cf. Lemma 4.5), Taechalertpaisarn et al. developed in [173] the orthodontics-inspired algo-
rithm DESYNC-ORT to speed-up the process of desynchronization for single-hop topologies
with just symmetrical links. Within such a complete network, each node i € N can au-
tonomously determine |N| (cf. Lemma 4.1). This information allows each node i to decide if
it is already perfectly desynchronized according to Definition 4.3 (i.e., ¢ (¢;, t5(;)) = T/ |N| =
¢(tp(i)> ti))> or if it still has to adjust its next time of firing according to the midpoint ap-
proach. Therefore, each node, which is already perfectly desynchronized (cf. Definition 4.3),
simply keeps its phase, i.e., for each node i € N holds ¢} = t; + T. With it, the impact of obso-
lete information is reduced. However, since the time span between successively transmitting

67



Chapter 4 Desynchronization as MAC Protocol

nodes may not equal T/|N| in multi-hop topologies (cf. Lemma 4.11), this approach is just
feasible for single-hop topologies and thus does not fulfill our requirements from Section 1.2.

In [159], Settawatcharawanit et al. adapted the midpoint approach to the Inter-Vehicular
Communication (cf. Definition 2.5) of single-hop topologies. Hence, the so-called V-DEsyNc
protocol additionally has to meet the special requirements emerging in car-to-car commu-
nication. Therefore, Settawatcharawanit et al. aim for a contact time between passing nodes
of just a few periods. Assuming 250 m as communication range and 120 km/h ~ 33.3m/s as
maximum velocity for each mobile node, the period was set to T > 1s for the simulations (cf.
[159]). As the firing packets of concurrently transmitting vehicles would collide, such nodes
will be not able to communicate with each other. Hence, each node i € N implementing the
V-DEsyNc protocol has to add a uniformly chosen random offset to its adjustment factor (cf.
Eq. (4.11)). This probabilistic factor should reduce the possibility of colliding packets. Fur-
thermore, each node could run at its own period length, i.e., periods could be multiples as
well as non-multiples from each other. To support different period lengths, V-DEsyNc forces
each node to include the individual period within its firing packet to classify such "virtual"
nodes. Each receiver with shorter period reserves the corresponding firing times for such
"virtual" nodes. Indeed, this protocol is also just applicable for single-hop topologies.

The midpoint approach was also implemented successfully for periodic resource schedul-
ing. In particular, Giusti, Murphy, and Picco developed in [73] an algorithm for the task of
duty-cycling on single-hop topologies — especially for the decentralized scattering of wake-up
times of sensor nodes. This algorithm is closely related to the midpoint approach presented
above, since the relevant nodes are once more just the node’s predecessor and its succes-
sor. Indeed, each node first listens to the wake up times of its neighbors within several so-
called calibration rounds. Additionally, Giusti et al. also considered a solution for tree-based
multi-hop networks: To avoid unstable behavior like fluctuations within such topologies, the
adjustment of wake-up times is applied only with a given probability. The value of this prob-
ability parameter for each node depends on the length of the path from the root to this node,
i.e., nodes close to the root should use higher probability values. With such a depth-related
probability parameter, the system also converges faster. However, this multi-hop approach is
not well-defined, i.e., pseudocode and algorithmic details (for instance about the formation
of the tree and the information propagation) are missing. Moreover, there are no analyses
about the impact of topology dynamics. In [140], Palopoli, Passerone, Murphy, Picco, and
Giusti further optimized the scattering algorithm for multi-hop topologies: But instead of
improving the algorithm in a self-organizing manner, they just integrated a central control
acting contrary to our requirements.

4.4 The Local Max Degree Approach

Compared to the midpoint approach (cf. Section 4.3), nodes implementing the local max
degree approach do not adjust their time of firing iteratively. Instead, each node first deter-
mines a sufficient number of time slots required for a collision-free communication within
its neighborhood autonomously, since this number defines the corresponding length of each
time slot. Indeed, the common period T as well as the local max degree D; of anode i € N
limit the minimum number of slots required for single-hop as well as for acyclic multi-hop
topologies.

68



4.4 The Local Max Degree Approach

Definition 4.5 Local Max Degree, Global Max Degree. The local max degree D; of a node
i € N equals the maximum degree of its one-hop neighbors and the node itself:

D; =max{d;:je Ny(i) u{i}}. (4.27)

According to Definition 2.16, d; denotes the degree of node j. Consequently, the global max
degree Dy of a network consisting of the set N of nodes equals the maximum local max
degree of all nodes of this network:

Dy =max{D;:i€ N}. (4.28)

To obtain the local max degree, each node must collect information about the degree of
its one-hop neighbors. Therefore, each node i € N has to broadcast its current degree d;, i.e.,
the size of its currently known one-hop neighborhood (cf. Definition 2.16). With it, node
i can determine its local max degree D;, and hence, it can estimate a minimum number of
time slots required for a collision-free communication. Afterwards, node i repeatedly tries
to use one of these D; slots for its own firings - as long as there is no more collision, i.e., as
long as not any other node also had assigned the very same time slot.

Hence, the set of relevant nodes Ny (i) of a node i € N here equals its one-hop neighbor-
hood, i.e., Nr(i) = Ni(i). The adjustment function ¢; (Ng(i), ;) just has to choose (for
instance to randomize) one of the offered time slots. Finally, if a node i € N has successfully
assigned a time slot, the next time of transmission results in a periodical transmission for
this fixed time slot without further adjustments, i.e., t:r = t; + T holds.

However, each node i € N first has to exchange information about its current degree d;
with all its one-hop neighbors to determine its local max degree D;. This exchange stage may
be lengthy due to collisions®. Depending on the currently implemented algorithm, the com-
petitive selection stage, where each node has to select one of the available time slots uniquely,
also takes a while - definitely as long as there are no more conflicts with nearby nodes for the
very same time slot. Finally, both the lengthy exchange stage as well as the non-deterministic
selection stage will be restarted in case of any topology dynamics. Therefore, the local max
degree approach is neither very robust nor flexible (regarding topology dynamics).

4.4.1 Related Work

Motskin, Roughgarden, Skraba, and Guibas designed in [119] a desynchronization algorithm
based on the local max degree approach for multi-hop topologies: Each node first divides
the common period T into 2- (D; +1) slots, and next assigns one of these available slots
randomly - as long as there are still collisions, i.e., as long as there are at least two nodes
competing for the very same time slot. Indeed, Motskin et al. proved that their algorithm
converges with high probability within O (Dy - log|N|) periods (cf. [119]). However, approx-
imately half of the provided slots remain unassigned which wastes bandwidth and increases
communication latency. Furthermore, each node requires knowledge about the global max
degree Dy for this fast convergence. Therefore, each node’s local max degree has to be propa-
gated to each other node of the network (e.g., by flooding) causing high communication costs
(especially in multi-hop topologies).

>The exchange stage just applies a contention-based back-off algorithm to access the shared communication
medium since a more sophisticated access control scheme is unavailable at present (cf. [92]).

69



Chapter 4 Desynchronization as MAC Protocol

The M-DEesyNc algorithm of Kang and Wong [92] for acyclic multi-hop topologies is also
based on the local max degree D;. However, M-DEsYNC tries to maximize the slot utilization,
i.e., to get along with the minimum number of required slots. Therefore, Kang and Wong
proved for single-hop as well as acyclic multi-hop topologies that the minimum number
of slots required per period for a collision-free communication within the communication
range of a node i € N equals the local max degree D; of this node plus 1: If each node knows
its local max degree D;, depending on the common period T, it can autonomously determine
the maximum length of a time slot. As already mentioned, the real slot assignment occurs
within the selection stage. To speed up this competitive process, the assignment of the D; +1
time slots is now prioritized according to the node’s local max degree (cf. [92]). Nevertheless,
the M-DEsYNc algorithm is not applicable for cyclic multi-hop topologies (cf. [122]).

4.5 The Frog-Call Inspired Approach

This approach is also inspired by nature, since it is closely related to the mating calls of the
male Japanese Tree Frog (Hyla japonica) which tries to attract female Japanese tree frogs in
this way. Aihara, Kitahata, Yoshikawa, and Aihara developed in [3] a mathematical model,
which utilizes the PCO framework from Section 3.2 (cf. also Section 3.4). However, in com-
parison to the approaches named above, a periodically croaking frog does not regulate its
phase according to its relevant frogs. Instead, each frog changes its firing frequency to adjust
its next time of "croaking" (i.e., firing).

According to its natural occurrence, where each frog relies on the firings of just nearby
frogs, this approach was designed for single-hop topologies. Therefore, the set N (i) of
relevant nodes of a node i € N equals its set of one-hop neighbors, i.e., Ng(i) = Ni(i).
Similar to the algorithm of Werner-Allen, Tewari, Patel, Welsh, and Nagpal [192], anode does
not react immediately every time it receives a firing. Instead, each node first accumulates the
stimuli it is receiving within a single period. Next, it emits its own stimulus, and finally reacts
to the received stimuli as a whole. As suggested by Aihara et al. in [3], the frog-call inspired
approach utilizes a sinusoid as adjustment function. Using a sinusoid seems suitable for this
reason, since this sort of function is as well periodic as the firings of each node. Besides, the
amplitude of a sinusoid is always greater or equal 0 but can be monitored by an additional
coefficient.

Indeed, for proper operation the frog-call inspired approach requires the network to be
organized as rooted tree a priori (cf. [80]). This is feasible neither for networks with high
topology dynamics nor for networks containing non idealistic and asymmetrical links. Fur-
thermore, the computation of a sine is a challenging task — especially for sensor nodes which
nowadays still provide just low computational power (cf. Definition 2.6). In this regard, there
may exist more efficient algorithms to compute complex mathematical functions, for instance
for the square root function in [21]. Using a lookup table (LUT) containing precalculated
function values is always of just limited length and thus may be neither sufficient nor suit-
able. Besides, the memory of sensor nodes is also limited (cf. Definition 2.6). Furthermore,
the frog-call inspired approach is only applicable for single-hop topologies, at least an exten-
sion for multi-hop topologies is still missing.

70



4.6 The Artificial Force Field Approach

4.5.1 Related Work

As already mentioned, Aihara et al. suggest for their mathematical model in [3] a sinusoid
as adjustment function: The sine of the phase shift between node i € N and its one-hop
neighbor j € Ni(i) is multiplied by the corresponding coupling coefficient x;; > 0. This
coupling coefficient represents the strength of the (pairwise) coupling between both nodes.
With it, the adjustment function for a node i € N at its firing time ¢; equals

1 )
M .2, o ) 2

@i (Ni(i), i) = -
However, due to the symmetric sine function, the sum in Eq. (4.29) divides the nodes of the
complete network (consisting of more than one node) into groups of two or three nodes (cf.
[132, 133]). Therefore, this implementation just works well for single-hop topologies consist-
ing of at most three nodes.

Within his master thesis [131], Mutazono tried to apply the frog-call inspired approach for
single-hop topologies consisting of more than three nodes. For this purpose, a receiving node
i € N first weights every firing from a one-hop neighbor j € N;(i) according to the phase
distance 0; ;j € [0, T), which mainly depends on the absolute value of the corresponding
phase shift (cf. Eq. (4.2)):

(Si,j=I’nin{|¢(ti,tj)|,T—|¢)(ti,tj)|}. (4.30)

Next, for the sake of simplicity, the coupling coefficient is equalized to a common value
regardless of the applied pair of nodes. Finally, the adjustment function for a node i € N at
time t; from Eq. (4.29) is slightly modified to

oi (N1(i),t;) = > x-sin(¢(tirt))) ce 0, (4.31)

jeN(i)

Due to the weighted adjustment function, even large single-hop networks are able to desyn-
chronize well (cf. [132, 133]). Notably, Mutazono uses the term anti-phase synchronization as
a synonym for desynchronization (cf. Observation 2.13).

Hernandez and Blum further improved the frog-call inspired approach for single-hop
topologies (cf. [80, 81]). They added a so-called relevance parameter, which depends on the
number of received firings during the current period: Messages from nodes, which were in-
fluenced by many other nodes, should have less weight. Therefore, messages from nodes
being influenced just marginally by other nodes get a higher weight. This adaption results in
a faster convergence requiring less communication rounds. However, for proper operation,
the relevance parameter also has to be transmitted in every single firing message.

4.6 The Artificial Force Field Approach

This approach originates from the robotic pattern formation: Mobile robots without global
knowledge but just a limited visibility range have to evenly distribute themselves to perform a
circle pattern. Forming a regular circle pattern in a self-organizing manner is a quite complex

71



Chapter 4 Desynchronization as MAC Protocol

task. Therefore, Boonpinon and Sudsang successfully installed in [30] an artificial force field
as a helpful abstraction for the velocity adaptation of each robot.

Indeed, this self-organizing technique of an artificial force field in a spatial domain can
also be implemented inside the temporal domain, namely to establish a TDMA protocol for
Wireless Sensor Networks: The firing times of sensor nodes, which should be spread out tem-
porarily equidistant over the common period T, are substituted for the nicely spaced mobile
robots. The artificial force field then is equivalent to the length of a circle’s circumference T,
i.e., nodes within the same artificial force field are interfering with each other.

A single erroneous time of firing of a node j € Ng(i) impacts the next time of firing
of node i € N more significantly when the set Ny (i) of relevant nodes is small®. For this
reason, the artificial force field approach utilizes a large set of relevant nodes to smooth out
erroneous data about relevant nodes: The set N (i) of relevant nodes of a node i equals the
union of the set N (i) of its one-hop neighbors and the set N, (i) of its two-hop neighbors,
i.e., Nr(i) = N1(i) U N, (i). Nevertheless, the firing time of a node i is "pushed away" from
the firing time of each of its relevant nodes j € Ng (i) according to the artificial repelling force
fi,j- Indeed, this approach demands that each node obtains information about all its relevant
nodes at every period. This demand hinders the integration of techniques for energy saving,
since the permanent demand for current information causes high communication costs.

The smaller the temporal distance between the firings of two interacting nodes i and j, the
higher the magnitude of this repelling force should be. This effect is described by the phase
difference A; ; € [—%, %] between both nodes i and j, which depends on the phase distance
d;,; from Eq. (4.30):

8T ifd;;>%
Apj=1 " b7 32
b {Si,j otherwise (432)
With it, the magnitude of the repelling force f; ; between both nodes i and j equals
T
fii=-3 (4.33)

i.j
The critical case A; ; = 0 represents nodes i and j both firing at the (same) time, i.e., t; =
tj mod T and vice versa. However, this case is very unusual in single-hop topologies, where
it could be ignored then. Indeed, it could arise in multi-hop topologies and has to be handled
explicitly therefore. Furthermore, node j does not repel node i, i.e., f; j = 0, if both nodes i
and j are balanced, i.e., if A; ; € {—I, %} This case has to be taken into account explicitly
as well. Since the phase difference of a balanced pair of nodes is ignored in the related work,
the open interval for the phase difference is used therefore. The sum of all forces perceived
by node i during its current period results in the fotal force F;, i.e.,

Fi= > fij (4.34)

JjeNgr (i)

Finally, the adjustment function ¢; (Ng(i),;) of a node i at its firing time ¢; equals the
total force F; weighted by the jump size parameter aar > 0, i.e.,

@i (Nr(i),t;) = aar - F;. (4.35)

¢Comparable to the midpoint approach, which utilizes just the phase neighbors.

72



4.6 The Artificial Force Field Approach

This damping coefficient asr is similar to the jump size parameter « from Section 4.3,
since it regulates the convergence behavior of the system: The system may converge just very
slowly, if the value of ar is too small, whereas it may overshoot and even may not converge
at all, if the value of aor is too large. Therefore, setting aar = 0 is allowed (cf. [38]) but is not
very useful - as for « in Section 4.3.

However, a sufficient value for « was identified just empirically (cf. [50]), whereas a suffi-
cient value for apr was determined analytically this time: The phase difference between two
nodes tend to be smaller in a dense network than in a sparse network. As a result, a node in
a sparse network may have to make a bigger adjustment to its optimum next time of firing.
The corresponding coefficient oo should take these circumstances into account. Therefore,
it has to be inversely proportional to the power of the number of relevant nodes.

Since the total force corresponds to the net force of a mechanical system, a node i € N
is in an equilibrium state, if its total force is equal to 0 (cf. mechanical equilibrium). Due
to Eq. (4.35), the whole system has reached the stable state of (perfect) desynchrony, if each
node i € N of the network is in an equilibrium state, i.e., for each i € N holds: F; = 0.

However, the determination of the next time of firing involves high computational costs,
since there are several divisions required to calculate the total force from the received firing
packets within each period. Moreover, the communication costs are also high, as information
about all relevant nodes is required at every period. Mainly because of the low computational
power of sensor nodes nowadays (cf. Definition 2.6), the artificial force field approach is of
just limited suitability regarding our purposes.

4.6.1 Related Work

DwaRE [39] is the first MAC protocol for single-hop topologies which implements the arti-
ficial force field approach. The main contribution of this protocol is to reduce the impact of
erroneous information at each node. For this purpose, the set of relevant nodes of a node
i € N is equal to its set of one-hop neighbors, i.e., Nr(i) = Ni(i). This allows a fast conver-
gence as well as a high robustness to topology dynamics, e.g., nodes joining or leaving the
network. In [39], the proper value for the damping factor has been determined by experi-

ments as
s T

1000

This computationally demanding coefficient makes the calculation of the next time of firing
even more expensive: A precalculated lookup table for certain values of aar could save this
costly runtime computation. However, similar to the frog call approach (cf. Section 4.5), such
a lookup table always contains just a limited number of values and requires memory, which
is still restricted at sensor nodes nowadays (cf. Definition 2.6).

The M-DwARF protocol by Choochaisri [38] is the multi-hop extension of the DWARE pro-
tocol named above. The multi-hop variant has to solve the hidden terminal problem which is
inherent to multi-hop topologies (cf. Definition 2.25). For this purpose, Choochaisri installed
our phase shift propagation, which was proposed first by Miihlberger and Kolla in [128] and
will be explained in detail in Section 5.3. Furthermore, due to Lemma 4.12, there could be
two (or more) relevant nodes of a node i € N which are firing at the same time, e.g., for a
node j € Ni(i) and for anode k € N (i) let t; = t;. Corresponding to the artificial force field

aAf = 38597 [Nr(i)|” (4.36)

73



Chapter 4 Desynchronization as MAC Protocol

approach, the identical forces f; ; = f; x would both repel node i. However, this treatment
does not agree to the primitive of desynchronization, at least one of these forces has to be
absorbed. Therefore, Choochaisri additionally developed the force absorption mechanism in
[38], which absorbs the overwhelming force from at least two nodes as follows: At every pe-
riod, each node i € N sorts the received times of firing of its relevant nodes by the ascending
absolute value of the corresponding phase difference, resulting

« in a sorted list of successive neighbors Lg(i) = {s(i) = s(i)1,5(i)2,5(i)3,...}, where
s(i)x denotes the x-th next neighbor, as well as

« inasorted list of preceding neighbors Lp (i) = {p(i) = p(i)1, p(i)2, p(i)3, ...}, where
p(i)y denotes the x-th previous neighbor.

With it, the absorbed force f] j from a successive neighbor j = s(i), to a node i equals

i if node j is phase neighbor of node i, i.e., x = 1 holds
fli= {f y JISP 8 . (437)

Jiss(iyem — fi,j otherwise

This applies analogously to a preceding neighbor j = p(i).

Choochaisri also tried to prove the convergence of its M-DWARF algorithm within his
dissertation [38] by maintaining the damping factor aar from the single-hop variant (cf.
Eq. (4.36)). In particular, Choochaisri was able to demonstrate that the M-DwARF algorithm
keeps a star topology with an even number of nodes within the stable state of perfect desyn-
chrony - even under small perturbation” (cf. [38]). However, the firing times of the nodes
of a star topology at perfect desynchrony are distributed as equidistantly as at a single-hop
topology consisting of the same number of nodes (cf. Observation 4.8).

7The magnitude of a tolerable perturbation was not further explained.

74



Chapter 5

The extended-Desync Protocol

Abstract

This chapter describes the EXTENDED-DESYNC protocol, which extends the idea of the mid-
point approach from single-hop topologies to multi-hop topologies (cf. Section s5.1). In con-
sequence to Observation 2.8, we thus have to cope with the hidden terminal problem: Sec-
tion 5.2 presents two potential approaches solving this problem without a central coordina-
tor. Since these solutions are still not sufficient for our demands, we developed the phase
shift propagation (PSP) approach, which is specified in Section 5.3. The timing issues of the
phase shift propagation are further examined in Section 5.4, whereas Section 5.5 analyzes the
proper information to be exchanged between neighboring nodes. On this basis, the packing
of this information is discussed in Section 5.6. The intended frame structure including appli-
cation data is presented in Section 5.7. In Section 5.8, we describe practical issues originating
from real-world conditions to improve our EXTENDED-DESYNC protocol. Finally, Section 5.9
summarizes the properties of our EXTENDED-DESYNC protocol but also leads us to another
problem which is strongly related to the primitive of desynchronization: the stale information
problem, which will be addressed in Chapter 6.

5.1 Motivation

In Chapter 4, we discussed various approaches together with relevant implementations of the
primitive of desynchronization as self-organizing MAC protocol for WSNs. Apart from the
M-DwaRE protocol, which is based on the artificial force field approach (cf. Section 4.6), the
usability of the self-organizing protocols presented in Chapter 4 is strictly limited to single-
hop topologies, or at its best, to acyclic multi-hop topologies (cf. Table 4.1).

Since one of our objectives is to develop a robust but self-organizing MAC protocol for
arbitrary multi-hop topologies (cf. Section 1.2), the artificial force field approach looks quite
promising (cf. Section 4.6). However, this approach as MAC protocol for multi-hop WSNs
(cf. Section 4.6.1) not only causes high communication costs but it also requires high com-
putational efforts due to the following reasons:

« Based on the information of all firing packets which have been received within a sin-
gle period, node i € N has to perform several time-consuming divisions to calculate
the total force F; from the repelling forces of all its one-hop neighbors according to
Egs. (4.33) and (4.34).

o For this computation node i requires up-to-date information about its whole one-hop
as well as its two-hop neighborhood in every period. This causes high communication
costs.

75



Chapter 5 The extended-Desync Protocol

» Moreover, the total force F; is multiplied by the extensive damping factor asp, which
also causes high computational efforts (cf. Eq. (4.36)).

o Infact, a precalculated lookup table for values of a s r could save costly runtime compu-
tations. However, such a lookup table is hardly feasible: Due to the restricted memory
at sensor nodes nowadays (cf. Definition 2.6 as well as Section 2.4), a lookup table can
contain just a limited and insufficient number of such values.

In consequence, we prefer the midpoint approach (cf. Section 4.3) over the artificial force
field approach as basis for our self-organizing MAC protocol due to the following reasons:

« In general, the amount of relevant nodes N (i) of anode i € N in the implementation
of the midpoint approach is less than (or equal to) the amount of relevant nodes in the
implementation of any other approach from Chapter 4 (cf. Table 4.1).

o The smaller the set of relevant nodes, the less administration effort is necessary. This
even may save communication costs.

« Due to its simple algorithm, the computation of the midpoint approach (cf. Eq. (4.13))
consumes less time and less memory (on sensor node hardware) than the computa-
tion of other approaches from Chapter 4 and of the artificial force field approach in
particular.

Based on the midpoint approach from Section 4.3, we developed the EXTENDED-DESYNC
protocol as lightweight and self-organizing MAC protocol for arbitrary multi-hop topologies
in WSNs. Nevertheless, the main problem of an implementation for multi-hop topologies is
the hidden terminal problem (cf. Definition 2.25): This problem may cause undesired packet
collisions. Since this problem is inherent to multi-hop topologies, solutions like the RTS/CTS
handshaking do exist. However, we will argue in the next Section 5.2, why the available so-
lutions do not meet our demands. Furthermore, for any decentralized and self-organizing
realization of the midpoint approach for multi-hop topologies, each node has to gain knowl-
edge about its constraint graph (cf. Definition 2.28). Hence, we will use this fact in Section 5.3
to cope with the hidden terminal problem.

5.2 The Hidden Terminal Problem Revised

As already indicated, a feasible extension of the midpoint approach (cf. Section 4.3) for multi-
hop topologies has to address the hidden terminal problem (cf. Definition 2.25) as well as the
exposed terminal problem (cf. Definition 2.26). Since our protocol will only use broadcasts
(within this work), it is sufficient to just concentrate on the hidden terminal problem. As a
result of Observation 2.9, the exposed terminal problem is not relevant within this work and
will not be taken into consideration furthermore.

In this section, we first illustrate two potential approaches which solve the hidden terminal
problem in (acyclic) multi-hop topologies without a central coordinator, namely Local Max
Degree in Section 5.2.1and RTS/CTS handshaking in Section 5.2.2. However, neither approach
is sufficient for our purposes (cf. Section 1.2):

o We have to solve the hidden terminal problem for arbitrary multi-hop topologies.

76



5.2 The Hidden Terminal Problem Revised

» Consequently, we do not assume bidirectional links, i.e., we have to support asymmet-
rical and even unidirectional links (cf. Definition 2.9).

o We expect topology dynamics, i.e., changes in the underlying topology are likely and
have to be considered.

Therefore, we developed our phase shift propagation approach, which will be introduced in
Section 5.3.

5.2.1 The Local Max Degree

As mentioned in Section 4.4, the local max degree is equal to the provable minimum number
of time slots required for a collision free but periodic communication within acyclic multi-
hop topologies. That means, if a node has knowledge about its local max degree, it eventually
is able to assign one of this minimum number of potential time slots. However, this method
is not sufficient for our purposes. In particular, it suffers from a couple of drawbacks:

o To determine its own local max degree, each node has to exchange information about
its current degree (cf. Definition 2.16) at first. This procedure could take a long time
due to emerging collisions.’

« Next, each node selects one of the available time slots. This process is time consuming
and lasts until each node has assigned one unique time slot. Hence, this process is quite
competitive, and so collisions are very likely.

o Moreover, these long lasting stages, namely the exchange of degree information and
the selection of a unique slot, have to be restarted after any topology change.

« Finally, the local max degree approach works just well for acyclic multi-hop topologies.
However, our protocol has to operate in arbitrary and thus cyclic multi-hop topologies
to fulfill our requirements from Section 1.2.

In summary, the local max degree method is just capable of acyclic multi-hop topologies.
Additionally, it is neither robust nor flexible to topology dynamics. Therefore, to solve the
hidden terminal problem, the local max degree approach does not meet our demands (cf.
Section 1.2).

5.2.2 The RTS/CTS Handshake

The RTS/CTS handshake protocol (cf. [94, 86]) is another well-known approach to solve the
hidden terminal problem in multi-hop topologies. This handshaking protocol is suitable
especially for contention-based CSMA protocols.

To describe the RTS/CTS handshaking, we refer to a sample scenario with the linear topol-
ogy L3 of three nodes, namely node a, node b, and node c. As depicted in Figure 5.1, node a
is not able to directly communicate with node ¢ and vice versa:

!Please note that a reasonable MAC protocol, which shall reduce such collisions, is missing at this stage.

77



Chapter 5 The extended-Desync Protocol

o netwo1(rk) graph o o IletWOI(‘IE graph o o netwogls graph o
ingndinond N D e BN Samd hamg
a b c a b c a b c

RTS RTS RTS

7.
:

data

}

data

}

data

f

\

CTS CTs 1S CTs

() timeout

£ £ “’l £ £ g “él
\ = =Y E B=! E=a 4 =Y 4 =i
(a)  Successful RTS/CTS (b) No reception of RTS (c) No reception of CTS
handshake

Figure 5.1: Sample scenarios of the RTS/CTS handshaking to solve the hidden terminal prob-

lem.

Assuming, node a wants to transmit data to its neighbor node b. Hence, node a ini-
tially has to broadcast a short request-to-send (RTS) to the desired receiver node b.

If node b receives this RTS from node a correctly, i.e., before a certain timeout and
without any collision (cf. Figure 5.1(b)), node b in return responds a short clear-to-
send (CTS) which allows the requesting node a to transmit data for an appointed
period of time (cf. Figure 5.1(a)).

« The RTS/CTS handshake is successful, if node a correctly (i.e., before a certain timeout

and without any interference) receives the responding CTS from node b. As a result,
merely node a is allowed to allocate the designated channel and to transmit its data to
node b within the announced period of time (cf. Figure 5.1(a)).

o Otherwise, if node a did not receive the corresponding CTS to its former RTS, node a

has to retransmit its request-to-send, for instance after a certain (and maybe mutable)
back-off time (cf. Figure 5.1(b)).

o Since request-to-send as well as clear-to-send are transmitted as broadcasts, nearby

nodes (here: node c) are able to register the announced data transmission. As a con-
sequence, each overhearing node (cf. node ¢ in Figure 5.1) will be silent (depicted as
dotted line in Figure 5.1) during the requested data transfer. The objective is to not
interfere the arranged communication (cf. Figure 5.1(a)) — even when the requesting
node a did not receive the CTS correctly (cf. Figure 5.1(c)).

78



5.3 Phase Shift Propagation

However, any implementation of the primitive of desynchronization as MAC protocol for
WSNss follows a self-organizing manner. These implementations all result in a schedule-based
TDMA protocol with periodic firings (cf. Chapter 4). This is in contrast to a contention-based
CSMA protocol with maybe arbitrary transmission times but explicit requests. Nevertheless,
the RTS/CTS handshake protocol explicitly requests to send. Therefore, it is incompatible
with our basic idea and with the underlying algorithm for a self-organizing MAC protocol.

Besides, the RTS/CTS protocol seems to be not robust against topology dynamics. In ad-
dition, the RTS/CTS handshaking explicitly relies on bidirectional links to solve the hidden
terminal problem. Hence, this approach does not meet our demands from above. For this
reason, we developed the phase shift propagation (PSP), which is described in the following
section.

5.3 Phase Shift Propagation

Both approaches presented in Section 5.2 do solve the hidden terminal problem, but are not
sufficient for our purposes: The local max degree is not universally applicable, since it is
just feasible for acyclic multi-hop topologies. Whereas, the RTS/CTS handshake is primarily
designed for contention-based MAC protocols with arbitrary transmission times and on-
demand communication. Thus, it does not comply with the primitive of desynchronization.

Nevertheless, the local max degree approach does not rely on a priori knowledge nor on a
fixed schedule. Instead, it collects information about its neighborhood to create a competitive
assignment of time slots. Despite the maybe long lasting competitive assignment procedure,
such a collecting method could be helpful to solve the hidden terminal problem in a self-
organizing manner. Therefore, we developed the phase shift propagation (PSP) approach.

After a short description of our basic idea in Section 5.3.1, we will proof in Section 5.3.2
that the collective propagation of information about one-hop neighbors enables each node
to generate its constraint graph (cf. Definition 2.28) autonomously. In Section 5.3.3, we will
introduce a timed constraint graph, i.e., we will discuss the preparation and integration of tim-
ing information to perform the necessary calculations according to the midpoint approach
from Section 4.3.

5.3.1 Basic ldea

As shown in [49], information about the constraint graph (cf. Definition 2.28) is one helpful
formalization to solve the hidden terminal problem for multi-hop topologies but to remain
consistent with the primitive of desynchronization. Therefore, we developed the lightweight
and universal applicable phase shift propagation (PSP), which enables each node to gather
timing information about the nodes of its constraint graph autonomously. Such a method was
first described in [68]* and enhanced with respect to the primitive of desynchronization in
multi-hop topologies by Miihlberger and Kolla in [128]. Apart from the EXTENDED-DESYNC
protocol (cf. Chapter 5) and the EXTENDED-DESYNC* protocol (cf. Chapter 6), respectively,
this method is also implemented in the M-DwARF protocol by Choochaisri (cf. [38] and Sec-
tion 4.6) as well as in the protocol of Buranapanichkit in [33].

?Diploma thesis conducted in conjunction with this work.

79



Chapter 5 The extended-Desync Protocol

The basic idea of the phase shift propagation approach is that each node repetitively prop-
agates timing information about its set of one-hop neighbors. Ideally, the periodic firing
packets are used for this purpose. As a consequence, each receiving node is able to further
gain (temporal) knowledge about its two-hop neighbors.

5.3.2 Constraint Graph Creation

The first challenging problem for each node, which realizes the phase shift propagation ap-
proach, is the autonomous creation of its constraint graph: Due to the self-organizing man-
ner, just locally available information can be used for this task, remote information has to be
made local first. In fact, information about the node’s one-hop neighborhood can be easily
acquired in terms of incoming firing packets. Regarding the information about the node’s
two-hop neighborhood, each node depends on the collaboration of its neighbors:

Lemma 5.1 Constraint Graph Creation. If each node j € N transmits information (i.e., the
identifiers) about its one-hop neighborhood N (j) within its firing packets, each receiveri € N is
able to establish its constraint graph G ¢ (i) autonomously after a finite number of firing packets.

Proof. Let each node j € N transmit its whole set N;(j) of one-hop neighbors within its
firing packet. Since there is just a finite number of one-hop neighbors, the length of a firing
packet is finite as well as the number of firing packets which have to be received. Further,
let node i € N receive this firing packet from node j. In compliance with Definitions 2.15
and 2.16, j € N;(i) holds. Hence, node i is able to create the graph G¢ (i) = (Ne(i),Ec(i))
as follows: Since node i received the firing packet from node j, the relations i € Ne(i),
j € Ne(i), and (j,i) € Ec(i) hold. Furthermore, since the firing packet of node j includes
its one-hop neighborhood Nj(j), and since this one-hop neighborhood contains all nodes
previously received by node j (cf. Definition 2.16), the receiving node i is also able

« to add each node k € Ny (j) to its set Ne (i) of nodes, and
« to add each link (k, j) with k € N1(j) € N to its set E¢ (i) of links.

Because each node of the network broadcasts its one-hop neighborhood in this way, this is
especially true for each one-hop neighbor j € N;(i) of node i. Again, there is just a finite
number of one-hop neighbors. Thus, after a finite number of firing packets for the finite set
Ne (i) of node i holds

Ne(i) = {i} uNi(i) u {k € N1 (j) : 3j € N1 (i) }, (5.1)

and for the finite set E¢ (i) of node i holds
Ec(i) = {(Gii)eE:jeNi(i)}u{(kj)eE:(IjeNi(i):keNi(j))}  (522)
%) Ec(i). (5.2b)

Since N¢ (i) contains {i} as well as N (i) anyway, both sets can be excluded from the last
subset in Eq. (5.1). As a result, we get

Ne(i) = {iyuNi(i)u{ke Ni(j) N {Ni(i)u{i}}: jeNi(i)} (5.32)
“ Ne(i). (5.3b)

8o



5.4 Timing Issues

Therefore, N¢ (i) = N¢(i) and E¢ (i) = Ec (i) are the corresponding sets of the graph Ge (i),
which was just created by node i autonomously. This graph is equal to the constraint graph
G (i) of node i according to Definition 2.28, i.e., Ge (i) = G¢ (i) holds. O

So far, each node is able to determine who (i.e., which node) is involved in which way
(i.e., by which edge) within its constraint graph. However, for a proper operation of our self-
organizing MAC protocol this information is not sufficient. Additionally, each node must
be able to estimate at which time the (two-hop) neighbors of its constraint graph are firing
to solve the hidden terminal problem in conjunction with the primitive of desynchroniza-
tion. The integration of timing information results in a Timed Constraint Graph and will be
introduced in the next section.

5.3.3 Timed Constraint Graph

In principle, it seems to be a simple task for a sensor node to acquire timing information
about its one-hop and its two-hop neighbors: According to Definition 2.6, each sensor node
operates a local clock. This local clock can be used to timestamp internal as well as external
events. Consequently, each node is able to timestamp incoming firing packets (with more or
less accuracy). Therefore, each node is able to achieve timing information about its one-hop
neighbors autonomously, e.g., by timestamping incoming firing packets. To support other
nodes in gathering timing information about their two-hop neighbors, each node has to

o record the reception time of any incoming firing packet from all its one-hop neighbors,
and finally

« forward a collection of this information within its own firing packets.

As a result, any receiving node shall be able to calculate the time of firings of its two-hop
neighbors - similar to Lemma 5.1 (cf. also Section 5.5). Nevertheless, the following issues
have to be resolved therefore:

I1. The timestamping, i.e., how may a node obtain accurate and precise timestamps of
incoming firing packets.

I2. The proper amount of information, i.e., which set of (timing) information is essential
to be shared and how frequently has this information to be provided.

We will analyze issue I1 about timestamping in Section 5.4 and issue I2 about information
quantity in Section 5.5, respectively.

5.4 Timing Issues

The functionality as well as the efficiency of our self-organizing MAC protocol EXTENDED-
DEsyNc strongly depends on the availability of accurate and precise timing information.
Thus, it is important to get accurate timestamps of consistently high quality. Indeed, any
implementation of the sketchy approach from Section 5.3.3 will face issues about communi-
cation delays, which will be described in Section 5.4.1, as well as issues about the process of
accurate and precise timestamping, which will be described in Section 5.4.2.

81



Chapter 5 The extended-Desync Protocol

Delay Type Send Medium Access Propagation | Transmission/ | Receive
Reception

Caused by OS & driver | MAC protocol distance data length & OS & driver
data rate

Namely SMARTOS / | EXTENDED-DESYNC/ | <1lkm <64B SMARTOS /

(in testbeds) SMARTNET EXTENDED-DESYNC" (100 kbps) SMARTNET

Magnitude ms s ns ms ms

Negligible No Yes Yes No No

Predictability | Bad Good Good Good Bad

Table 5.1: Survey of different communication delays during a packet transmission.

()] ..
é send access | transmission time
»
sender .
propagation—>
()] o g
b reception receive time
>
. >
receiver

Figure 5.2: Different communication delays during a packet transmission.

5.4.1 Communication Delays

Our self-organizing MAC protocol neither relies on explicit time synchronization (cf. Sec-
tion 1.2) nor is it introduced to operate as time synchronization protocol for sensor nodes (cf.
Definition 2.34). Nevertheless, the necessary exchange of timing information to cope with
multi-hop topologies is carried out wirelessly, and thus will be subject to comparable re-
quirements as mature time synchronization protocols (cf. Section 8.2.1). Besides, any other
wireless transmission of data also has to operate under these conditions. Although, some
of these conditions may be ignored for specific contention-based applications and protocols
(cf. Definition 2.31). Anyhow, the midpoint approach does rely on time. Consequently, these
delays have to be considered within our EXTENDED-DESYNC protocol and - in particular —
within our phase shift propagation approach from Section 5.3 as well.

The communication delays of the wireless communication process have been first ana-
lyzed by Kopetz and Ochsenreiter in [100]. Their classification has been extended by Maréti
et al. in [111] (cf. also [48, 158, 70]). Since these delays also occur during the exchange of
(timing) information, we will analyze the impact of these delays on our real-world testbed
and the implementation of our EXTENDED-DESYNC protocol, respectively. A scheme of the
sending/receiving process of two distinct nodes is depicted in Figure 5.2. To get a first im-
pression about the impact of each condition on our real-world testbeds, Table 5.1 gives a short
overview of these potential delays:

Send Delay The creation of a firing packet as well as its transfer to the communication in-
terface takes time. For instance and representative for many sensor nodes, the micro-
controller of a SNoW? node is connected to the radio unit via SPI (cf. Section 2.4). The

82



5.4 Timing Issues

time between the send command of the application and the packet transfer to the ra-
dio unit is non-deterministic in general, and mainly depends on the operating system,
the network driver, and the current workload of the involved hardware resources, like
microcontroller, radio unit, and bus interface. According to the midpoint approach
(cf. Section 4.3) and due to the underlying primitive of desynchronization, each node
estimates its next time of firing in advance. As a consequence, the (start of the) trans-
mission of the firing packet has to occur very closely to this specific time. Due to the
run-to-completion scheduling, this non-deterministic delay between send command
and actual transmission of a radio packet may be in the order of several milliseconds
when using a non-preemptive operating system (cf. [82, 111]). For our demands, this
delay should be minimized (cf. [123]).

This is one of the reasons why we use the real-time operating system SMARTOS [24,
18] (cf. also Section 2.4.4): It operates a 64 bit timeline with a resolution of 1 ys. Note-
worthy, SMARTOS offers fully preemptive prioritized tasks together with a collaborative
resource sharing approach (cf. [17]). Therefore, we defined a sending task with high
priority which preempts tasks with lower priority in case a firing packet has to be trans-
mitted. This sending task obviously relies on exclusively shared hardware resources
(e.g., SPI bus and RF unit as mentioned in Section 2.4.1 for the SNoW?> sensor node).
However, any of these resources may currently be kept by other tasks (with lower pri-
ority), thus the sending task would not be able to duly broadcast its firing packet. The
collaborative resource sharing approach of SMARTOS comes into play here: The task
with lower priority holding at least one resource, which is concurrently requested by
the sending task, gets a so-called dynamic hint to release this particular resource. By
contract, each "hinted" task then releases this specific resource to allow a timely trans-
mission within a well-defined delay. More details about dynamic hinting can be found
in [15,16].

However, this approach will not guarantee the transmission of a firing packet at the
intended point in time in any case. Nevertheless, the sending task will be informed
about the continued blocking of a resource in advance of the transmission deadline.
This information enables the sending task to remedy the situation (e.g., to delay or
even to skip the transmission of this current firing packet).

Access Delay Right before the transmission of a packet, the radio unit has to get (exclusive)
access to the communication channel to avoid collisions. Depending on the used MAC
protocol, this delay is more or less predictable. Due to the underlying schedule, TDMA
protocols are more predictable than contention-based CSMA protocols which may im-
plement a (probabilistic) back-off algorithm (cf. Definitions 2.31 and 2.32). Since our
self-organizing communication protocol results in a schedule-based TDMA protocol,
it does not necessarily rely on Carrier Sense before transmission in general.

Indeed, a node performing Carrier Sense right before its transmission would be able
to react on erroneously transmitting nodes accordingly, e.g., by shifting its own time of
transmission and thus avoiding collisions. Therefore, using CS right before a transmis-
sion could make the EXTENDED-DESYNC protocol more robust against disturbances.
However, the RF unit needs a fixed but usually non-negligible amount of time to switch

83



Chapter 5 The extended-Desync Protocol

from the RX mode for Carrier Sense to TX mode for firing (cf. [96]). For instance, the
radio chip CCr100 (cf. Section 2.4) typically needs 9.6 s for this switching operation
(cf. [175]). Nevertheless, to minimize the probability of collisions, we enable Carrier
Sense for our real-world testbeds: The radio unit is configured to enter TX mode just
after a clear channel assessment (CCA), i.e., if the RSSI is below a certain threshold and
the node is not currently receiving a packet (cf. [175]).

Propagation Delay Even though radio waves in air travel at approximately® the speed of
light, the propagation of a firing packet takes some time. For instance, a radio wave
travels the distance of 300 m in air in about one microsecond.

The communication range of a sensor node in general (cf. Definition 2.6) and of the
SNoW? sensor node in particular (cf. Section 2.4) is at most a few hundred meters (cf.
[26, 68]). Hence, the propagation delay is usually less than 1 ps, which equals the reso-
lution of the SMARTOS timeline (cf. Section 2.4.4). Therefore, this delay is impossible
to be measured correctly by the deployed hardware, and thus will be neglect.

Transmission Delay Even though the propagation delay is quite small, it takes some time
for the sender to transmit the firing packet. However, this delay depends on the packet
length as well as on the used data rate. Due to the (common) configuration of the radio
unit, both, sender and receiver, are aware of the used data rate.

The length of a firing packet is well-known in advance and integrated into the firing
packet (cf. Section 5.6). Thereby, the transmission delay can be estimated accordingly.
Since the data rate is limited by the deployed hardware, the packet length has to be
reduced to minimize this delay. We will analyze the structure of the information and
corresponding data packet to be transmitted in Section 5.5. Subsequently, we will make
suggestions on a suitable trade-off between adequate content and transmission delay.

Reception Delay The reception of the firing packet at the receiver’s side also takes some
time. This delay equals the transmission delay, but it is shifted just by the propaga-
tion delay (cf. Figure 5.2). Since packet length and data rate are known by sender and
receiver, this delay is also well predictable.

Noteworthy, the reception process is delayed by a certain but fixed time lag due to
filtering and circuitry delays of the used radio unit. This phenomenon is further de-
scribed in [135]. In particular, we measured the delay 7 between the sender’s SYNC
word interrupt and the receiver’s SYNC word interrupt for the CCi100 radio unit of
our SNOW? sensor nodes with an oscilloscope as Tsnxow = 90 ps (cf. [123]). For the
comparable CC430 radio unit of the eZ430 Chronos sensor nodes, we measured this
delay as about Tchyonos = 20 ps. Moreover, this delay 7 is independent of the distance
between the nodes, but it strongly depends on the configuration of the radio unit, e.g.,
the radio frequency. Since this constant delay exceeds the propagation delay by far, it
is non-negligible and has to be taken into account. For instance, our driver for the ra-
dio unit automatically considers this (constant, but hardware dependent) delay 7 when
receiving a firing packet.

3The speed of electromagnetic waves equals the speed of light cg = 299792km/s in vacuum, but depends on the
traversed medium (cf. textbooks on physics like [65]).

84



5.4 Timing Issues

Receive Delay The receiving delay is related to the processing of the incoming packet. This
includes the transfer to the processing unit (i.e., the microcontroller) as well as the
notification of the corresponding task at application layer (cf. Figure 2.6). The receive
delay is non-deterministic in general, but mainly depends on similar conditions as the
send delay. Indeed, a prompt handling of a firing packet at the receiver is not as time-
critical as the adherence to the time of firing by the sender. However, the real-time
capabilities of SMARTOS (cf. Section 2.4) are beneficial here once again.

Summing up, the real-time operating system SMARTOS helps to reduce the send delay as
well as the receive delay. The access delay is minimized due to the resulting TDMA proto-
col, which should provide exclusive access to the medium. Due to the specification of the
deployed node hardware, the propagation delay will be neglected. Furthermore, both, trans-
mission delay as well as reception delay, are directly proportional to the packet length, i.e.,
they are not negligible but predictable. In contrast, the reception delay contains an additional
time lag 7 introduced by the used radio unit.

So far, we evaluated the communication delays during the exchange of timing information
within a firing packet. Additionally, the EXTENDED-DESYNC protocol also relies on accurate
timestamps, which will be considered next.

5.4.2 Timestamping

As suggested in Section 5.3.3, each node can achieve timing information about its one-hop
neighbors autonomously by timestamping incoming firing packets. According to Eq. (4.11b),
the accuracy of the adjustment factor and thus of the next time of firing strongly depends on
the accuracy of these timestamps as well as on the accuracy of the propagated timing infor-
mation. For instance (and provided that Observation 4.10 holds), when node i € N times-
tamps w.l.o.g. its predecessor p(i) with an inaccuracy of y, this would falsify the resulting
adjustment factor &;, at least by half of this inaccuracy y:

sy s+ (G £y)

) ti
t; 2 i
. Botho oy
2 2
4'1:2b Et; + X
2

One naive approach is to take all timestamps at application layer (cf. Figure 2.6): An appli-
cation task would query the system time once the radio protocol notifies a packet reception.
Due to the delay caused by the protocol and application stack (cf. Figure 2.6), such times-
tamps would be quite inaccurate and thus unreliable due to non-deterministic delays of the
application software (cf. Section 5.4.1). For instance, using a non-preemptive operating sys-
tem like TinyOS [82], this delay could be in the order of several milliseconds (cf. [111]). This
is not the only reason, why we prefer the preemptive operating system SMARTOS [24] for our
real-world testbeds as it has integrated timestamping features at IRQ level (cf. Section 2.4).
As mentioned before, accurate and precise timing information is mandatory for a proper
operation of our self-organizing MAC protocol.

85



Chapter 5 The extended-Desync Protocol

(external) start take
event e ISR timestamp £,
interrupt ISR
} 1ater=1cy V. I time >
timer tick te

Figure 5.3: Example of interrupt latency during timestamping.

In general, the timestamping of incoming packets may be located at MAC layer instead of
application layer (cf. Figure 2.6): Such a low layered timestamping approach may reduce the
send delay as well as the receive delay at sender and receiver, respectively. Even though the
availability of such timestamping depends on the underlying hardware, its implementation
is also advised in [48, 123] - to name but a few. In particular, we use an interrupt-driven
timestamping approach in all our testbed implementations: Here, the SNoW? sensor node
features the radio chip CCi100 (cf. Section 2.4). This radio unit is able to signal every com-
plete reception (or every transmission) of a SYNC word via a dedicated IRQ pin (cf. [175]).
Even some microcontrollers with integrated RF transceivers support a similar interrupt con-
cept, although there is no "wired" connection towards the microcontroller. For instance, the
CC430 of the eZ430 Chronos (cf. Section 2.4) is such a microcontroller with integrated RF
chip, which is able to signal an interrupt on certain (transmission) events.

Since an Interrupt Service Routine (ISR) is more privileged than any task at application
layer, such an ISR seems ideal to capture timestamps of incoming firing packets. Indeed,
even the ISR is executed only after some delay, the so-called interrupt latency. This latency
is exemplified in Figure 5.3: As already stated in Section 4.1, the local time of each sensor
node is discrete. Hence, any external event e will occur in between two subsequent timer
ticks. Moreover, the first instruction of the Interrupt Service Routine is started just after
some additional delay (interrupt latency). Afterwards, within the ISR, the timestamp ¢, for
the external event e is taken (few ticks) later on. Depending on the actual realization of the
microcontroller’s interrupt concept (e.g., prioritization of interrupts), this delay may be non-
deterministic - especially when an additional Interrupt Request (IRQ) with higher priority
is pending already.

To consider such a non-deterministic delay in a proper and efficient way, we suggest to
utilize the deep timestamping concept as specified by Baunach in [18]: The basic idea is to
integrate the time management directly into the kernel of the operating system. In particular,
if an external event triggers an interrupt then

1. the current timestamp is taken first, and

2. the corresponding IRQ will be executed with access to the previously captured times-
tamp.

Still, there may be asymmetrical rounding errors during timestamping due to the dis-
cretization of time (cf. [65]). By configuring the hardware timer adequately, the deep time-
stamping approach provides an accuracy of i%/l for any time resolution A (cf. [18]). Besides,

86



5.5 Neighbor Information

it also supports the autonomous clock drift compensation of a pair of nodes (cf. [19]). Alter-
natively, the periodical update of neighbor information could be used as well to smooth out
non-deterministic delays as described, e.g., in [168].

As mentioned before, the precision of a timestamp strongly depends on the resolution of
the underlying local clock. For our real-world testbeds, we use the SMARTOS operating sys-
tem (cf. Section 2.4). This operating system for embedded systems maintains a 64 bit timeline
with the resolution of 1 us*. Thereby, the precision is limited to 1 ps, which is sufficient for our
purposes. Besides, our simulator is based on a timeline with the same resolution of 1 us (cf.
Section 2.3).

To sum up, an interrupt-driven deep timestamping approach minimizes the time delay
between the occurrence of the external trigger event and the timestamp measurement. If the
hardware is configured accordingly, the resulting timestamps show an error of i%)t (cf. [18]).
This accuracy as well as the precision of our timestamps (of external events) is sufficient for
our purposes.

5.5 Neighbor Information

In the last Section 5.4, we analyzed the accuracy and precision of the timestamp measure-
ment. Indeed, due to the hidden terminal problem, a node needs to gain knowledge about
the firing time of its two-hop neighbors just by means of the firing packets of its one-hop
neighbors. Thus, we have to specify the kind of information as well as the data set which is
required for a proper operation of the EXTENDED-DESYNC protocol.

In compliance with Definition 2.10, a firing packet is composed of a header and a pay-
load. While the header provides important control information (like the ID of the sender, a
sequence number, or a checksum) of fixed size, the payload of the firing packet contains a
set of neighbor information, i.e., a certain amount of agreed information about the sender’s
one-hop neighbors. As already mentioned in Section 4.1, within this section we have to ex-
plicitly name the node, whose point of view is relevant for the current analysis. Therefor