
UNIVERSITÄT
WÜRZBURG

Julius-Maximilians-

Design of a Self-Organizing
MAC Protocol for Dynamic

Multi-Hop Topologies

Dissertation zur Erlangung des
naturwissenschaftlichen Doktorgrades

der Julius-Maximilians-Universität Würzburg

vorgelegt von

Clemens Mühlberger

aus
Rosenheim

Fakultät für Mathematik und Informatik
Lehrstuhl für Informatik V

Würzburg 2018

Design of a Self-Organizing
MAC Protocol for Dynamic

Multi-Hop Topologies

Dissertation zur Erlangung des
naturwissenschaftlichen Doktorgrades

der Julius-Maximilians-Universität Würzburg

vorgelegt von

Clemens Mühlberger

aus
Rosenheim

Würzburg 2018

Eingereicht am: 09.08.2017
bei der Fakultät für Mathematik und Informatik
1. Gutachter: Prof. Dr. Reiner Kolla
2. Gutachter: Prof. Dr. Jörg Nolte

Tag der mündlichen Prüfung: 20.02.2018

Acknowledgments

It always seems impossible until it’s
done.

Nelson Mandela

�is work is the result of my research studies on the �eld ofWireless Sensor Networks. �ese
studies have been carried out at the Institute of Computer Science at the Julius-Maximilians-
University of Würzburg. It was a great pleasure for me to having had the opportunity to
work and research at the Chair for Computer Engineering V as research assistant and Ph.D.
candidate.
�erefore, I would like to thankmy Ph.D. adviser Prof. Dr. Reiner Kolla for the facilitation

of my research, especially his support and patience with me.
Next, I would like to thankmy second reviewer Prof. Dr. Jörg Nolte for his time and e�orts

in evaluating my work.
Furthermore, I would also like to thank my proof-reader and long-time companion Prof.

Dr. Marcel Baunach, for his constructive spirit, collaborative work and common time.
I would also like to thank my research colleagues and forerunners (in alphabetical order):

Dr. Christian Appold, Prof. Dr. Marcel Baunach, Dr. Jürgen Bregenzer, and Dr. Armin
Runge for themeaningful (sometimesmeaningless but amusing) discussions and for sharing
ideas.
Finally, I wish to say a special thank you tomy beloved family and, in particular, tomywife

Filiz Mühlberger – for unlimited support, invaluable personal advice, and your everlasting
faith in me. Especially, during the exceptionally di�cult times in 2016 you always o�ered
your strong shoulder to lean on.

i

ii

Abstract

Biologically inspired self-organization methods can help to manage the access control to the
shared communication medium of Wireless Sensor Networks. One lightweight approach is
the primitive of desynchronization, which relies on the periodic transmission of short control
messages – similar to the periodical pulses of oscillators. �is primitive of desynchroniza-
tion has already been successfully implemented as MAC protocol for single-hop topologies.
Moreover, there are also some concepts of such a protocol for multi-hop topologies available.
However, the existing implementations may handle just a certain class of multi-hop topolo-
gies or are not robust against topology dynamics. In addition to the sophisticated access
control of the sensor nodes of a Wireless Sensor Network in arbitrary multi-hop topologies,
the communication protocol has to be lightweight, applicable, and scalable. �ese charac-
teristics are of particular interest for distributed and randomly deployed networks (e.g., by
dropping nodes o� an airplane).
In this work we present the development of a self-organizing MAC protocol for dynamic

multi-hop topologies. �is implies the evaluation of related work, the conception of our
new communication protocol based on the primitive of desynchronization as well as its im-
plementation for sensor nodes. As a matter of course, we also analyze our realization with
regard to our speci�c requirements. �is analysis is based on several (simulative as well as
real-world) scenarios. Since we are mainly interested in the convergence behavior of our
protocol, we do not focus on the "classical" network issues, like routing behavior or data rate,
within this work. Nevertheless, for this purpose we make use of several real-world testbeds,
but also of our self-developed simulation framework.
According to the results of our evaluation phase, our self-organizing MAC protocol for

WSNs, which is based on the primitive of desynchronization, meets all our demands. In
fact, our communication protocol operates in arbitrary multi-hop topologies and copes well
with topology dynamics. In this regard, our protocol is the �rst and only MAC protocol to
the best of our knowledge. Moreover, due to its periodic transmission scheme, it may be
an appropriate starting base for additional network services, like time synchronization or
routing.

iii

iv

Kurzfassung

Biologisch inspirierte, selbst-organisierende Methoden können dabei helfen, die Zugri�s-
kontrolle drahtloser Sensornetze auf das gemeinsame Kommunikationsmedium zu regeln.
Ein leichtgewichtiger Ansatz ist das Primitiv der Desynchronisation, das auf einer periodi-
schenÜbertragung kurzer Kontrollnachrichten beruht – ähnlich den periodischen Impulsen
eines Oszillators. Dieses Primitiv der Desynchronisation wurde bereits erfolgreich als MAC-
Protokoll für Single-HopTopologien implementiert. Außerdem existieren auch einigeMulti-
HopKonzepte dieser Protokolle. Allerdings können die verfügbaren Implementierungen nur
eine bestimmte Klasse von Multi-Hop Topologien bedienen oder sie sind nicht robust ge-
nug gegenüber Veränderungen der Netzwerktopologie. Zusätzlich zu dieser ausgeklügelten
Zugri�skontrolle der Sensorknoten eines drahtlosen Sensornetzes in beliebigen Multi-Hop
Topologien muss das Kommunikationsprotokoll leichtgewichtig, e�zient anwendbar und
skalierbar sein. Diese Eigenscha�en sind insbesondere für verteilte und zufällig (z.B. durch
den Abwurf von Sensorknoten aus einem Flugzeug) aufgebaute Netzwerke von Interesse.
In dieser Arbeit präsentieren wir die Entwicklung eines selbst-organisierendenMAC Pro-

tokolls für dynamische Multi-Hop Topologien. Dies beinhaltet die Auswertung damit ver-
bundener Arbeiten, der Konzeption unseres neuen, auf dem Primitiv der Desynchronisation
basierenden Kommunikationsprotokolls sowie dessen Umsetzung für Sensorknoten. Selbst-
verständlich untersuchen wir unsere Realisierung hinsichtlich unserer spezi�schen Anfor-
derungen. Diese Analyse basiert auf verschiedenen (simulativen, wie auch aus echter Hard-
ware bestehenden) Szenarien. Da wir vornehmlich am Konvergenzverhalten unseres Proto-
kolls interessiert sind, legen wir unser Augenmerk in dieser Arbeit nicht auf die „klassischen“
Netzwerkthemen, wie Routing-Verhalten oder Datenrate. Nichtsdestotrotz nutzen wir hier-
für verschiedene realitätsnahe Testumgebungen, aber auch unsere selbstentwickelte Simula-
tionsumgebung.
Gemäß den Ergebnissen unserer Evaluationsphase erfüllt unser auf dem Primitiv der De-

synchronisation basierendes, selbst-organisierendes MAC Protokoll für drahtlose Sensor-
netze all unsere Anforderungen. Tatsächlich funktioniert unser Kommunikationsprotokoll
in beliebigenMulti-Hop Topologien und kann zudem gut mit Veränderungen der Topologie
umgehen. In dieser Hinsicht ist – nach unserem besten Wissen – unser Protokoll das ers-
te und einzige MAC Protokoll. Außerdem bietet sich unser Kommunikationsprotokoll auf-
grund seines periodischen Übertragungsschemas als geeigneter Ausgangspunkt für weitere
Netzwerkdienste, wie Zeitsynchronisation oder Routing, an.

v

vi

Contents

I Introduction 1

1 Introduction 3
1.1 Motivation . 3
1.2 Requirements . 4
1.3 Scienti�c Contribution . 5

2 Basics 7
2.1 De�nitions . 7
2.2 Analysis Techniques . 22

2.2.1 Real-World Testbed . 23
2.2.2 Simulation . 24
2.2.3 Summary . 25

2.3 Simulation Framework . 25
2.3.1 Motivation . 25
2.3.2 Simulator extDeSIMc . 27
2.3.3 Simulation Model . 32
2.3.4 Generator Script . 32

2.4 Sensor Node Framework . 34
2.4.1 SNoW5 Sensor Node . 34
2.4.2 eZ430 Chronos . 36
2.4.3 SuperG Gateway Node . 37
2.4.4 SmartOS . 38
2.4.5 Sni�er . 39

II Desynchronization 41

3 Desynchronization 43
3.1 Introduction . 43
3.2 Pulse-Coupled Oscillator Framework . 44
3.3 Using PCOs to Synchronize WSNs . 45

3.3.1 Adaptation . 46
3.3.2 Related Work . 47

3.4 Using PCOs to Desynchronize WSNs . 47

4 Desynchronization as MAC Protocol 49
4.1 Generic Framework . 49

vii

Contents

4.2 General Conclusions . 53
4.2.1 Single-Hop Topology . 53
4.2.2 Multi-Hop Topology . 55

4.3 �e Midpoint Approach . 59
4.3.1 Proof of Convergence . 61
4.3.2 Related Work . 67

4.4 �e Local Max Degree Approach . 68
4.4.1 Related Work . 69

4.5 �e Frog-Call Inspired Approach . 70
4.5.1 Related Work . 71

4.6 �e Arti�cial Force Field Approach . 71
4.6.1 Related Work . 73

5 The extended-Desync Protocol 75
5.1 Motivation . 75
5.2 �e Hidden Terminal Problem Revised . 76

5.2.1 �e Local Max Degree . 77
5.2.2 �e RTS/CTS Handshake . 77

5.3 Phase Shi� Propagation . 79
5.3.1 Basic Idea . 79
5.3.2 Constraint Graph Creation . 80
5.3.3 Timed Constraint Graph . 81

5.4 Timing Issues . 81
5.4.1 Communication Delays . 82
5.4.2 Timestamping . 85

5.5 Neighbor Information . 87
5.5.1 Sample Scenario . 88
5.5.2 Naïve Approach . 88
5.5.3 Phase Shi� Approach . 90
5.5.4 Reciprocal Phase Shi� Approach . 92
5.5.5 Summary . 94

5.6 Information Packing . 95
5.6.1 SmartNET Support . 95
5.6.2 Naïve Approach . 98
5.6.3 Fixed Size Subset Approach . 98
5.6.4 Fixed Percentage Approach . 99
5.6.5 Summary . 100

5.7 Frame Structure . 101
5.8 Practical Issues . 102

5.8.1 Nodes In . 102
5.8.2 Nodes Out . 104

5.9 Summary . 105

6 The extended-Desync+ Protocol 109
6.1 Motivation . 109

viii

Contents

6.2 Stale Information Problem . 110
6.2.1 Single-Hop Topology . 110
6.2.2 Multi-Hop Topology . 112

6.3 Refractory �reshold . 113
6.3.1 Basic Idea . 114
6.3.2 Impact . 115
6.3.3 Related Work . 116

6.4 Excursion: Pseudo Random Number Generator (PRNG) 117
6.4.1 PRNG Implementation for our Sensor Node Framework 117
6.4.2 PRNG Implementation for our Simulation Framework 118

6.5 Summary . 119

III Evaluation 121

7 Analysis 123
7.1 Simulation Model Validation . 123

7.1.1 Object of Investigation . 123
7.1.2 Expectation . 125
7.1.3 Procedure . 126
7.1.4 Results . 126

7.2 Setup Consequences . 130
7.2.1 Object of Investigation . 131
7.2.2 Expectation . 131
7.2.3 Procedure . 133
7.2.4 Results . 134

7.3 Jump Size Parameter . 136
7.3.1 Object of Investigation . 136
7.3.2 Expectation . 136
7.3.3 Procedure . 137
7.3.4 Results . 138

7.4 Refractory �reshold . 139
7.4.1 Object of Investigation . 141
7.4.2 Expectation . 141
7.4.3 Procedure . 141
7.4.4 Results . 142

7.5 Applicability . 145
7.5.1 Object of Investigation . 145
7.5.2 Expectation . 146
7.5.3 Procedure . 146
7.5.4 Results . 146

7.6 Summary . 149

ix

Contents

8 Discussion 151
8.1 Outlook . 151

8.1.1 Adaptive Jump Size Parameter . 151
8.1.2 Adaptive Refractory �reshold . 152
8.1.3 Additional Objects of Investigation 153

8.2 Add-Ons . 154
8.2.1 Time Synchronization . 154
8.2.2 Routing . 155
8.2.3 Distributed Data Management . 156

9 Summary and Conclusion 159
9.1 Summary . 159
9.2 Conclusion . 160

IV Lists and Indexes 161

Bibliography 163

List of Figures 181

List of Tables 183

List of Listings 185

Acronyms 187

x

Part I

Introduction
Es ist nicht genug, zu wissen,
man muß auch anwenden;

Johann Wolfgang von Goethe

Abstract

�is part motivates for researching on the conceptional design and analysis of a self-organizing com-
munication protocol for arbitrary topologies in Wireless Sensor Networks based on the primitive of
desynchronization. In this regard, this part not only introduces this certain topic, but also speci�es the
underlying terms and tools of this work.
In particular, Chapter 1 gives reasons for the development of a self-organizing communication protocol
forWSNs. Referring to this, the necessary requirements, which have to be ful�lled by our communica-
tion protocol, are also speci�ed in this chapter. Chapter 2 de�nes the essential terms and presents the
particular tools, which are utilized for the purpose of this work. It also discusses our research approach
and outlines the applied methodology. Furthermore, this chapter introduces the hardware as well as
the so�ware framework used for development and evaluation of our communication protocol.

Chapter 1

Introduction

1.1 Motivation

�e evolution in the areas of semiconductors and computers over the last decades allows
for the tight integration of complex sensors and actuators as well as computational units.
�is development results not only in smaller and more powerful computing platforms but
also in more energy-e�cient and globally connected devices. �is is one of the keys for
the production of small network components which are able to communicate wirelessly to
achieve (common) goals and to provide distributed services.
�e availability of these network components established new �elds of research and devel-

opment. Di�erent aspects may be in focus, depending on the intended application domain.
Along with the technology, there was also an evolution in the naming of such networks, be-
ginning with Wireless Sensor Network (WSN)1 to Cyber Physical System (CPS)2 to Internet
of �ings (IoT)3 – to name but a few. Nevertheless, the fundamental problems and cen-
tral questions, e.g., regarding the dependability of the underlying wireless communication,
remained the same or similar. For instance, the European Workshop for Wireless Sensor
Networks (EWSN) did change its name to International Conference on Embedded Wireless
Systems and Networks (EWSN) as it did also expand its scope fromWireless Sensor Network
to the �elds of Cyber Physical System and Internet of �ings in addition. A clear distinction
between these particular network types seems to be not always obvious (cf. [117]). Hence,
even though we will mainly use the term Wireless Sensor Network within this work, our
propositions and statements are also valid for other tpyes of Wireless Networks (WNs) in
principle.
Saying this, all Wireless Networks, andWireless Sensor Networks in particular, do require

a well-de�ned communication stack to successfully exchange data, and thus, to perform cer-
tain tasks in the desired (and e�cient) way. For instance, a large variety of communication
protocols for WSNs already does exist. However, the applicability of some of these protocols
is restricted to a certain network size and/or to a speci�c network structure. Apart, highly
dynamic networks, e.g., systems with mobile devices, may not rely on a �xed infrastructure
nor on a central control unit. �erefore, we will aim for a communication protocol which
scales well and is applicable in arbitrary topologies. In this regard, we present a decentralized
and distributed approach to establish a �exible and adaptive communication infrastructure
for a dependable data exchange within such networks.
1For instance, the ACM Conference on Embedded Networked Sensor Systems (Sensys) was established in 2003,
the European Workshop for Wireless Sensor Networks (EWSN) was established in 2004, and the Fachgespräch
Sensornetze (FGSN) was established in 2003

2For instance, theCPSWeekwas established in 2008 and theACM/IEEE International Conference onCyber-Physical
Systems (ICCPS) was established in 2010.

3For instance, the Internet of �ings Conference was established in 2008.

3

Chapter 1 Introduction

In order to accomplish related communication challenges, Nature o�en demonstrates an
impressive diversity regarding e�cient ways of coping with biological or environmental lim-
itations and the laws of nature. Over hundreds and thousands of years several approaches
have evolved and were tested and re�ned or discarded by di�erent creatures and organisms
to develop impressive concepts. For instance, cardiac cells show coordinated beating or �re-
�ies �ash in unison. �is spontaneous emergence of collective synchronization does not rely
on a central control unit. Instead, the components just act on perception and simple rules.
�is primitive of desynchronization is the basis for this kind of self-organizing communica-
tion. We want to adapt this biological concept for our communication protocol.
To sum up, the objective of this work is the

• conceptional design and analysis of a

• self-organizing

• communication protocol for

• arbitrary topologies in

• Wireless Sensor Networks based on the

• primitive of desynchronization.

Our particular requirements for such a communication protocol will be speci�ed in the next
section.

1.2 Requirements

Having dra�ed the objective of this work, i.e., the development of a self-organizing commu-
nication protocol for arbitrary topologies inWSNs, we still need to specify in detail the scope
of this protocol. In particular, such a protocol has to meet our demands as follows:

1. First of all, we focus on theMedium Access Control (MAC)mechanism of the network
components as main service of our wireless communication protocol. Designed for
tiny embedded systems, this Medium Access Control protocol has to be lightweight
and applicable. �is means that the protocol introduces just a small overhead and thus
can be executed by network components of potentially low computational power and
constrained resources, like little memory.

2. Next, wireless communication in a network always involves the risk of packet collisions
and data loss. In general, these packet collisions are undesired as they might lead to
violated real-time constraints, destroy information, and cause additional expenses in
time and energy, e.g., for retransmissions. �erefore, we aim onminimizing the proba-
bility of such packet collisions by developing aTime-DivisionMultiple Access (TDMA)
scheme with exclusively assigned transmission slots.

4

1.3 Scienti�c Contribution

3. In this regard, we want to prevent the single point of failure of centralized synchro-
nization approaches as well as the rigidity of an a priori schedule. Hence, we decided
to rely on neither a global clock nor an explicit time synchronization protocol. In con-
trast, the system should be robust against topology dynamics, e.g., joining or leaving
network components. �erefore, we have developed a self-organizing MAC protocol
based on a dynamic TDMA schedule that is continuously and individually maintained
by each network node. �e underlying self-organizing algorithm is mainly in�uenced
by the biologically inspired primitive of desynchronization. Consequently, the prob-
ability of collisions will be minimized – still enabling the system to adapt rapidly to
topology dynamics.

4. Indeed, there already exist some MAC protocols that are based on this primitive of
desynchronization. However, most of these protocols are applicable for single-hop
WSNs only. In contrast, our protocol shall be generally applicable, i.e., it has to operate
well in arbitrary network types, includingmulti-hop topologies. Additionally, the self-
organizing protocol has to scale well with the network size, i.e., its performance has to
be independent of the number of network components and links.

5. Finally, due to signi�cantmobility or environmental perturbation inWSNs, a fast con-
vergence of the schedule adaptation is also required in case of such topology changes.
While nodes might operate on di�erent schedules during this short time of disor-
der, there should be no packet collisions and no data loss. However, due to the self-
organizing manner, there are trade-o�s, for instance between convergence rate and
protocol overhead.

To sum up, for the communication within Wireless Sensor Networks we are in need of
a lightweight and applicable as well as scalable MAC protocol, which implements a self-
organizing and dynamic TDMA schedule. �is communication protocol not only has to
support arbitrary (multi-hop) topologies and has to be robust against environmental per-
turbations, but also has to converge e�ciently to an adapted schedule in case of topology
changes. As mentioned before, there already exists a wide variety of communication pro-
tocols for Wireless Sensor Networks. Nevertheless, a communication protocol for Wireless
Sensor Networks that meets all our demands from above is still missing.

1.3 Scientific Contribution

�e focus of this work is on the design of a self-organizing communication protocol forWire-
less Sensor Networks. In particular, we have developed and analyzed a self-organizing MAC
protocol which is applicable for arbitrary multi-hop topologies being subject to topology dy-
namics. In this regard, we are mainly interested in the convergence behavior of our protocol.
�erefore, we do not focus on the "classical" network issues, like routing behavior, data rate,
network throughput, and channel utilization. �us, this work is organized as follows:
Part I motivates research in this particular topic and also speci�es the fundamental terms

and de�nitions which are usedwithin this work. Moreover, we discuss our research approach
and outline the applied methodology, whose result is tested through a mix of simulation and
experiments. In this regard, we present the framework which was used for development as

5

Chapter 1 Introduction

well as for evaluation: On the one hand, we deployed real hardware in real-world testbeds, i.e.,
the network components, which executed embedded so�ware, e.g., the embedded operating
system as well as applications. On the other hand, we developed a simulation framework,
which allows an e�cient prediction and comfortable ex post facto analysis of the settling
process of Wireless Sensor Networks implementing our self-organizing MAC protocol.
Part II addresses the core concepts of this work. �e initial task is to introduce the biologi-

cally inspired primitive of desynchronization. �is primitive is the basis for several approaches
to synchronize but also to desynchronize Wireless Sensor Networks. Furthermore, imple-
mentations of this primitive of desynchronization as MAC protocol for WSNs already exist.
Within this part, these implementations are discussed and opposed to our requirements from
Section 1.2. Since none of the available MAC protocols based on the primitive of desynchro-
nization met our demands, we developed a self-organizing MAC protocol with a dynamic
TDMA schedule for arbitrary WSN topologies. We also attempt to prove the convergence of
our approach for multi-hop topologies under certain assumptions. �e development process
and our resulting protocols extended-Desync and extended-Desync+, respectively, are
described in detail.
�e evaluation of our extended-Desync and extended-Desync+ protocol is presented

in Part III. Here, we do confront our protocols with our requirements from Section 1.2. �is
is done by analyzing and discussing the results of appropriate scenarios – realized as simula-
tions or as real-world testbeds. To the best of our knowledge, our communication protocols
extended-Desync as well as extended-Desync+ are the �rst and only MAC protocols for
WSNs, which are based on the primitive of desynchronization, and which are able to operate
in arbitrarymulti-hop topology with topology dynamics at the same time. Subsequent to this
evaluating chapter, we give an outlook to future research directions. Moreover, we present
some potential add-ons to our MAC protocol which will o�er additional (network) services.
Part III closes with a conclusion about this work.
Part IV contains additional information, like lists and references. �ese lists are provided

for a more comprehensive understanding of various details within this work.
To sum up, the environment ofWireless Sensor Networksmay stimulate topology dynam-

ics due to node failures or mobility. Nevertheless, the stability and robustness of the com-
munication network is essential to ful�ll a common task (e.g., distributed real-time control
in wirelessly connected and autonomously driving cars). Especially for arbitrary multi-hop
topologies, a lightweight but adaptive communication protocol, which is able to cope with
such conditions, is missing. In this regard, we developed a MAC protocol for WSNs, which
combines the advantages of a TDMA scheme with the bene�ts of a self-organizing approach
to meet our demands.

6

Chapter 2

Basics

Abstract

�e number of published literature studying the �eld of Wireless Networks in general, and
Wireless Sensor Networks in particular, increased within the past years. As a consequence,
the meaning of some terms di�ers in literature nowadays. �erefore, we �rst state in Sec-
tion 2.1 our interpretation of the key terms as used within this work. Likewise, the family of
sensor node systems also grew within the past years. �us, in Section 2.2 we brie�y intro-
duce potential analysis techniques to evaluate our approach. Finally, we describe the tools we
used for our simulations and experiments, namely our self-developed simulator extDeSIMc
in Section 2.3 as well as our sensor node hardware and so�ware in Section 2.4.

2.1 Definitions

As stated in Chapter 1, the main subject of our analyses will be a self-organizing radio com-
munication protocol for Wireless Networks.

De�nition 2.1 Self-Organization. In accordance with [55], we call the process by which the
system behavior at a higher level emerges solely from the interactions of system components
at a lower level self-organization. Especially, when low-level components have just a local view
(i.e., they interact according to locally acquired information) and when there is no low-level
component with a global view or global knowledge about the current behavior of the other
components. �erefore, one main characteristics of self-organizing systems is the absence of
an external or a centralized control.

As suggested byDressler in [55], (a combination of) the followingmechanisms can be used
to achieve self-organization:

Feedback A positive feedback would reinforce or activate, whereas a negative feedback
would diminish or suppress a speci�c behavior of system components. Feedback may
be provided from external or internal system components. �us, it is strongly related
to the acquiring of information.

Interaction System components may interact with other system components or with the
environment. Communication is the most common kind of interaction and a pre-
requisite for coordination. We further distinguish between direct communication,
e.g., transmission of a message, and indirect communication, which requires auxil-
iary means (like whiteboard, environment, or other system components). Moreover,
modifying aswell as sensing of environmental parameters is also considered as indirect
interaction with the environment.

7

Chapter 2 Basics

Probabilistic Techniques Randomized algorithms can be used to introduce contingency
and arbitrary behavior into the system. �e source of randomness can be a Random
Number Generator (RNG) or – as within this work – a Pseudo Random Number Gen-
erator (PRNG). �ere is a brief excursion on Pseudo Random Number Generator in
Section 6.4.

�e node’s decisions are mainly based on just locally available information. Depending on
its degree of non-linearity (e.g., the number of nodes), the behavior of such a self-organizing
system even may be as unpredictable as desirable. In addition, even optimum con�gura-
tions for such systems are subject to change frequently, i.e., a fast convergence behavior is
required (cf. Section 1.2). Consequently and in accordance to, e.g., [55], the behavior of a
self-organizing system may be predictable only to a certain extent when using probabilistic
techniques. For instance, statistical measurements are used in [173] to enhance the conver-
gence rate of the so-called Desync-Ort protocol (cf. Section 4.3.2). Moreover, we utilize
the exponentially weighted moving average (EWMA) (cf. Observation 4.11) to facilitate the
system’s convergence behavior.
Notably, in the context of this work we consider the transmission of messages in general

and of �ring messages (cf. De�nition 3.2) in particular, as inter-component interaction but
not as feedback. �erefore, a combination of interaction and probabilistic techniques is used
within this work for our self-organizing algorithm. �e main �eld of application of our self-
organizing approach is aWireless Ad hoc Network.

De�nition 2.2 Wireless Ad hoc Network, Node. AWireless Ad hoc Network consists of a
set N of participating network elements, so-called nodes. All (heterogeneous or homoge-
neous) nodes of a Wireless Ad hoc Network are able to interact wirelessly ad hoc through a
shared medium, like air (over-the-air) or water (cf. [195, 107, 7, 79]). However, a pre-installed
infrastructure supporting network operation is missing for this "ad hoc" network type. �is
means that the infrastructure has to be built on demand, e.g., in a self-organizing manner by
the nodes themselves.

Meanwhile, there exist various di�erent (sub)types of Wireless Ad hoc Networks. �e
most prominent representative is the Mobile Ad hoc Network (MANET), where every node
can be mobile, i.e., the spatial location of each node can be non-stationary. In addition, one
subtype of the MANET is theWireless Sensor Network (WSN). �is network type will be in
the foreground within this work.

De�nition 2.3 Wireless Sensor Network. �eWireless Sensor Network (WSN) is a subtype
of the MANET and consists of just a few or up to thousands of so-called sensor nodes. To
keep costs low, the network components are usually assembled from cheap and simple com-
ponents. Due to radio interference, sensor node failure as well as leaving or joining sensor
nodes, the (arbitrary) network structure of the WSN is subject to frequent changes1 (cf. [6]).

A WSN is o�en densely deployed to achieve some sort of intentional redundancy since
sensor nodes tend to be error-prone. Besides, some WSN applications require a sink, i.e.,
a node collecting all the data from the other sensor nodes of that network, where the data
1�is may hold for all types of MANETs.

8

2.1 De�nitions

�ow is just one-way towards the sink but not vice versa. In contrast to these applications and
to permit a broader area of network types, the existence of a sink is neither necessary nor
assumedwithin this work. Finally, as sensor nodes usually exchange only short (sensor) data,
aWSN has just low bandwidth requirements. Another subtype of theMANET is theWireless
Sensor/Actuator Network (WSAN), where actuators are explicitly enabled to manipulate the
environment.

De�nition 2.4 Wireless Sensor/Actuator Network. �eWireless Sensor/Actuator Network
(WSAN) is a subtype of the MANET, which is related to the Wireless Sensor Networks. It
consists of just a few or up to thousands of so-called sensor/actuator nodes. In contrast to a
Wireless Sensor Network, a Wireless Sensor/Actuator Network has the ability to modify and
manipulate its environment using actuators. Depending on the current application, the fast
reaction on sensor inputs for a corresponding actuator con�guration is mandatory. �ere-
fore, real-time capability in both, communication and data processing, is an important re-
quirement in Wireless Sensor/Actuator Networks.

Another subtype of the MANET as special type of the WSAN is the Vehicular Ad hoc
Network (VANET), where a mobile node corresponds to a moving vehicle.

De�nition 2.5 Vehicular Ad hoc Network. �e Vehicular Ad hoc Network (VANET) is a
subtype of theMANET. It consists of mobile nodes, namely vehicles or cars, and possibly im-
mobile nodes at the roadside, like road signs, street signs, tra�c lights, and guide posts. �is
di�erentiation allows the communication solely betweenmobile nodes, called Inter-Vehicular
Communication (IVC), car-to-car (C2C) communication, or vehicle-to-vehicle (V2V) com-
munication, as well as the communication between mobile and immobile nodes, called car-
to-infrastructure (C2I) communication. A VANET is characterized by the potentially short
communication time between interacting nodes, which is due to the mobility at (high) ve-
locities of (some) nodes (cf. [115, 53]).

De�nition 2.6 Wireless Sensor Node, Wireless Sensor/Actuator Node. Like any network
component (cf. De�nition 2.2), a sensor node as well as a sensor/actuator node has the ability
to interact with other elements of the network. �erefore, it consists of a microcontroller as
central processing unit and an (integrated) RF unit for wireless communication. Figure 2.1
outlines the scheme of a sensor/actuator node and a sensor node, respectively. In order to
limit costs and size, the RF transceiver typically supports just half-duplex (cf. De�nition 2.9),
and its maximum communication range is from some tens up to few hundreds of meters.
However, the central microcontroller is o�en severely limited in computational power as
well as in memory, i.e., there are limits concerning the computation speed, the accuracy of
the results, and the acceptable amount of input/output values. �erefore, in order to store
undelivered messages, supplementary logged data, miscellaneous con�gurations, or alterna-
tive so�ware images (cf. [13]), an additional non-volatile memory for long-term data storage
is o�en available (cf. Figure 2.1). For programming purposes and enhanced (network) con-
nectivity, a sensor node may support several (wired) interfaces and protocols, like JTAG and
RS-232. Unlike the network components fromDe�nition 2.2, sensor/actuator nodes and sen-
sor nodes in particular, are intended to be equipped with sensor technology (cf. Figure 2.1)
to measure chemical or physical quantities or changes, like temperature, humidity, or accel-
eration. Furthermore, a sensor/actuator node in a Wireless Sensor/Actuator Network may

9

Chapter 2 Basics

Interface
Controller

Microcontroller

Power

Memory

Clock

Interfaces

Actuators Sen
sors

RF Unit

Figure 2.1: �e scheme of a sensor/actuator node and – except for actuators – of a sensor
node. Ports to the environment are colored in gray. Components in white may be (partially)
integrated into the microcontroller.

even be able to control additional actuators, e.g., a display or a stepper motor, and thus also
in�uences and manipulates its surrounding. Mandatory for this work, each sensor/actuator
node as well as each sensor node has to provide its own clock to record its local time as well
as the timestamps of internal and external events (cf. Figure 2.1).

�e spectrum of radio devices used at such wireless platforms ranges from sub 1-GHz
transceivers like RFM TR1000/TR1001 (e.g., at early platforms like EYES [188] and Scat-
terWeb ESB [67]) and Chipcon CC1000/CC1100/CC1101 (e.g., at SNoW5 [20, 23], BTnode
[28], and MICA2 [43]), to 2.4GHz IEEE 802.15.4/ZigBee compliant transceivers Chipcon
CC2420/CC2520 (e.g., at MICAz [46], Telos [144], TelosB/TMote Sky [44], and Imote2 [45])
and System-on-Chip radio transceiver Nordic nRF24 (e.g., at EcoSpire [37]). Or the par-
ticular radio device is moved to a separate communication module, as for instance at the
WaspMote family [106]. �is very variety of radio interfaces as well as the o�ered commu-
nication protocols complicates the interconnection of miscellaneous WSNs. In this regard,
more powerful sensor nodeswith special capabilities, i.e., to operate asmulti-layer gateway or
as protocol converter, already exist. Examples include the s-net gateway [66], Meshlium IoT
gateway [106], and the SuperG gateway [129] (cf. Section 2.4.3). Since most components of a
sensor node consume little energy, most nodes are powered by (rechargeable) battery. Cer-
tainly, sensor nodes also may perform energy harvesting by means of appropriate hardware,
like HelioMote [147], Prometheus [90], or Everlast [162]. �e capability of the SNoW5 sensor
node for energy harvesting is analyzed in [60].
In general, sensor nodes are rather cheap, quite simple in construction, and thus available

in large quantities. From an economic point of view, these characteristics e�ectively facilitate
a wide range of applications. Especially, if the environment is rough, unfriendly, or even

10

2.1 De�nitions

hostile (cf. [116]). Examples include applications for agricultural and habitat monitoring [85,
110, 183, 27], applications for wildlife observation [91, 11, 76] and underwater surveillance
[107, 7] as well as applications being subject to other destructive conditions, like gun�re [163]
or disaster [172].
As a consequence, the failure or malfunction of several sensor nodes of a system within

such a harsh environment is very likely. �e system has to be designed accordingly to accept
this risk, e.g., allowing desired redundancy of hardware components or implementing a dis-
tributed data management (cf. Section 8.2.3). Indeed, this sort of redundancy and �exibility
has to be supported by the used communication protocol as well. Especially, self-organizing
protocols appear to be predestined to operate well under these conditions. Nevertheless, a
robust and self-organizing communication protocol for WSNs in multi-hop topologies with
topology dynamics is still missing. �erefore, we focus on WSNs within this work – even
though our protocol may perform quite well for other network types due to its intended ro-
bustness. Hence, we use the terms sensor node, sensor/actuator node, and node interchange-
ably from now on. Indeed, the interaction between two nodes is realized as direct commu-
nication via a channel.

De�nition 2.7 Channel, Link. �e communication channel corresponds to a logical inter-
node connection over a sharedmedium, e.g., a radio channel withmultiple access. Moreover,
at a time a channel transfers data from exactly one sender (or transmitter) to an arbitrary
number of receivers. �e capacity of a channel, i.e., the channel’s capability to transmit infor-
mation per time unit, is limited and measured by the channel’s bandwidth or the channel’s
data rate. �e point-to-point (P2P) connection of two nodes via a communication channel
is called link.

One approach to overcome issues resulting frommultiple access on the shared medium to
a certain extent is Carrier Sense (CS).

De�nition 2.8 Carrier Sense. �e Carrier Sense (CS) approach supports the avoidance of
potential packet collisions on a shared medium. For this purpose, a node tries to listen to
(sense) the shared medium (carrier) right before its own transmission in order to verify the
absence of other tra�c.

Indeed, we further classify any link by its

• direction, i.e., as unidirectional or as bidirectional link, its

• duplex, i.e., half-duplex or full-duplex mode, and by its

• symmetry, i.e., as symmetrical or as asymmetrical link.

De�nition 2.9 Uni-/Bidirectional, Half duplex/Full duplex, Symmetrical/Asymmetrical.
A link which enables the communication between two nodes in either direction is called
bidirectional. Whereas, a link between two nodes is called unidirectional, if just one of them
is able to transmit data to the other one, but never vice versa. A link may be used in full-
duplex mode, i.e., the radio unit is able to transmit and to receive data at the same time, or a
link may be used in half-duplex mode, i.e., the radio unit is just able either to transmit or to
receive at the same time. At an asymmetrical link, the data transmission between both nodes

11

Chapter 2 Basics

Preamble
SYNC
word

User Data
(Payload) CRC RSSI LQI

Control Data
(Header)

Figure 2.2: �e structure of a potential radio packet. Parts colored in gray are added auto-
matically by the CC1100 radio unit, which is used mostly within our real-world testbeds.

is varying in terms of, e.g., data loss, bandwidth, or data rate. Consequently, a bidirectional
link with equal rates is called symmetrical.

Observation 2.1. A unidirectional link can be considered as an extreme form of an asym-
metrical link.

�e communication amongst the nodes within this work is packet-based, i.e., a link within
this work is able to deliver packets only.

De�nition 2.10 Packet. A packet is a structured unit of data. Within this work, each packet
consists of control data as well as user data (or payload) as illustrated in Figure 2.2. �e
control data provides information which is required by the used protocol(s) for a correct
packet handling, e.g., the packet type, the destination address, or a sequence number. �is
control data typically resides in the header or the trailer of a packet. �e content of the user
data depends on the particular application. In contrast to the header, the payload may even
be omitted, e.g., for acknowledgment (ACK) messages. Header and payload are embedded
into additional parts which are required for a successful transmission, e.g., the preamble,
the SYNC word (SYNC), or parts, which specify the current transmission, e.g., the Cyclic
Redundancy Check (CRC), the Received Signal Strength Indicator (RSSI), or the Link Quality
Indicator (LQI). Depending on the used RF unit, these subsidiary parts may be added by the
radio hardware automatically, but are con�gurable to some extend.

So far, we classi�ed the network types and the network components just technically. In-
deed, to analyze the functionality and applicability of our self-organizing communication
protocol, a formal description of the network structure, also called topology, is mandatory.

De�nition 2.11 Topology. A topology describes the structure of a network, i.e., the links
between the nodes of a system. Noteworthy, a topology may change over time (topology
dynamics) and thus just re�ects the present network con�guration. Especially, this applies
for Mobile Ad hoc Networks with mobile components or Wireless Networks under ever-
changing environmental conditions.

�e topology can be described formally using concepts from graph theory (cf. textbooks
on graph theory like [29, 184, 101]):

De�nition 2.12 (Network) Graph. A directed (network) graph G⃗ = (N , E) is an ordered
pair of disjoint and �nite sets N and E. It consists of the set N of vertices, or nodes, and the
set E ⊆ N × N of directed edges, or links. �e set of edges in a directed graph is composed
of just ordered node pairs: �e directed edge (i, j) ∈ E from a node i ∈ N to another node
j ∈ N denotes that node j is able to receive signals emitted by node i – but not vice versa,
unless there is an edge (j, i) ∈ E. Consequently, the edge (i, j) ∈ E only exists if node j ∈ N is

12

2.1 De�nitions

within the communication range of node i ∈ N . Since the wireless communication inWSNs
is typically realized as half-duplex (cf. De�nition 2.9), self-loops are not contained within a
network graph, i.e., for any node i ∈ N holds (i, i) /∈ E. Accordingly, a (network) graph G
is undirected if the set of edges is composed of not ordered node pairs, i.e., for every edge
(i, j) ∈ E holds (j, i) ∈ E.

Since directed (network) graphs can be used to describemore general scenarios than undi-
rected ones, we will focus on the use of directed (netowrk) graphs. Unless otherwise stated,
in the following a (network) graph G always denotes an directed (network) graph G⃗.

De�nition 2.13 Path, (Single) Hop. A path from a node i ∈ N to a node j ∈ N in the
(directed) graph G = (N , E) is a sequence of nodes (i = i0, i1, . . . , i l−1, i l = j) such that for
any x ∈ {0, . . . , l − 1} holds (ix , ix+1) ∈ E.2 Each edge in a path is called hop. �e length of
the path is equal to l , i.e., the number of edges in the path. Noteworthy, a path of length 1
consists of just a single hop.

To simplify our analysis, we just examine (weakly) connected topologies.

De�nition 2.14 (Weakly) Connected. Two nodes i ∈ N and j ∈ N of an undirected graph
G are called connected, ifG contains a path from node i to node j. If every pair of nodes in an
undirected graph G is connected, this graph G is said to be connected. Within this work, we
call a directed graph G⃗ weakly connected, if replacing all of its directed edges with undirected
ones results in a connected undirected graph G.

�e functionality of our self-organizing protocol strongly relies on the information a node
is able to gather about its neighbor nodes.

De�nition 2.15 One-Hop Neighbor. A node j ∈ N in a (directed) graph G = (N , E) is
called one-hop neighbor of node i ∈ N , if (j, i) ∈ E. �at means, node j is a one-hop neighbor
of node i. Moreover, the shortest path from node j to node i has length 1.

To describe the integration of a node into the network, we have to specify the neighborhood
of a node from its point of view.

De�nition 2.16 Neighborhood, Degree. In conformity withDe�nition 2.15, the setN1(i) ⊆
N of one-hop neighbors of a node i ∈ N , i.e., the one-hop neighborhood of node i, is

N1(i) = { j ∈ N ∖ {i}∶ (j, i) ∈ E}, (2.1)

and the set N2(i) ⊆ N of two-hop neighbors of node i ∈ N , i.e., the two-hop neighborhood of
node i, is

N2(i) = {k ∈ N ∖ {N1(i) ∪ {i}} ∶ (∃ j ∈ N1(i)∶ (k, j) ∈ E)} . (2.2)

Since each node has to receive additional information explicitly due to its local view of the
network, we further de�ne the degree d i of a node i ∈ N as

d i = ∣N1(i)∣. (2.3)
2Please note that we exclude self-loops in our (network) graphs according to De�nition 2.12

13

Chapter 2 Basics

Observation 2.2. As a consequence to De�nition 2.16, we neglect outgoing edges and take
just incoming links into account for a node’s neighborhood. �is means that the neighbor-
hood of a node does not consist of nodes, which have been reached ("outbound") but which
have been gathered ("inbound").

Observation 2.3. �e sets {i}, N1(i), and N2(i) are pairwise disjoint for every i ∈ N .

Network graphs consisting of just a single connected component are of special interest:

De�nition 2.17 Connected Component. A connected component is a maximal connected
subgraph of an undirected network graph G. Each node of G belongs to exactly one con-
nected component, as does each edge.

De�nition 2.18 Subgraph. A graph G′ = (N ′, E′) of a (directed) graph G = (N , E) with
N ′ ⊆ N and E′ ⊆ E is called (induced) subgraph. It is induced by the subset N ′ ⊆ N of nodes
and contains the edge set E′ = {(i, j) ∈ E ∶ i, j ∈ N ′} ⊆ E.

Lemma 2.1 Connectivity. Assuming, the directed network graph G⃗ is not weakly connected,
i.e., the corresponding undirected network graph G is not connected. Hence, the network graph
G⃗ (and G respectively) has at least two connected components. Each subgraph, represented by
a single connected component, can then be considered in isolation as an individual network.

Proof. According toDe�nition 2.17, each connected component is amaximal connected sub-
graph. Since the particular connected components are disjoint, they will never interact with
each other. �erefore, each single connected component can be considered in isolation as
individual network.

�ere are some distinct forms of connected components which are of special interest. Due
to their plain form, these graphs are easy to understand. Amongst others, these forms are
complete graph, star graph, line graph, and circle graph (cf. Figure 2.3). Besides, Choochaisri
also used these forms to analyze the M-Dwarf protocol in [38].

De�nition 2.19 Complete Graph. All nodes in a complete graph C = (N , E) are connected
to each other, i.e., for any two distinct nodes i, j ∈ N with i /= j holds (i, j) ∈ E and (j, i) ∈ E.
Figure 2.3(a) depicts the complete graph C4 of four nodes.

De�nition 2.20 Star Graph. A star graph S = (N , E) with ∣N ∣ ≥ 2 contains one distin-
guished node i ∈ N , which is connected to every other node j ∈ N with j /= i, i.e., for any
node j ∈ N with i /= j holds (i, j) ∈ E and (j, i) ∈ E. Apart, there is no connection between
any pair of non-distinguished nodes. Figure 2.3(b) depicts the star graph S5 of �ve nodes.

De�nition 2.21 Line Graph. A line graph L = (N , E) with ∣N ∣ ≥ 2 is a sequence of nodes
with the start node i1 ∈ N and the end node i∣N ∣

∈ N , i.e., for x ∈ {1, . . . , ∣N ∣ − 1} holds only
(ix , ix+1) ∈ E and only (ix+1, ix) ∈ E. Figure 2.3(c) depicts the line graph L4 of four nodes.

De�nition 2.22 Circle Graph. A circle graph (or ring graph) R = (N , E) with ∣N ∣ ≥ 2 is
a closed line graph (cf. De�nition 2.21), connecting the "start" node i1 ∈ N and the "end"
node i

∣N ∣
∈ N , i.e., for x ∈ {1, . . . , ∣N ∣ − 1} holds (ix , ix+1) ∈ E and (ix+1, ix) ∈ E, as well as

(i
∣N ∣
, i1) ∈ E and (i1, i∣N ∣

) ∈ E. Figure 2.3(d) depicts the circle graph R4 of four nodes.

14

2.1 De�nitions

(a) Complete graph
C4

(b) Star graph S5 (c) Line graph L4 (d) Circle graph
R4

Figure 2.3: Examples of connected components. An arrow represents the direction of a link
from sender to receiver (arrowhead).

Observation 2.4. �ede�nition of a star graph, a line graph, and a circle graph, respectively,
sets a minimum number of nodes to distinguish one form from each other. For instance, a
star as well as a line with ∣N ∣ = 2 is a complete graph. Moreover, a ring with ∣N ∣ = 2 as well as
∣N ∣ = 3 is also a complete graph. Finally, a star with ∣N ∣ = 3 is indistinguishable from a line
with ∣N ∣ = 3.

Within this work, we classify all topologies into single-hop andmulti-hop topologies.

De�nition 2.23 Single-Hop Topology. More restrictive than some literature (cf. [93, 200]),
but in accordance with the signi�cant related work in Chapter 4, we de�ne a single-hop topol-
ogy as a fully meshed topology, i.e., the corresponding network graph is complete (cf. De�-
nition 2.19). �erefore, the broadcast of any participating node could be received directly by
all other nodes of the network (cf. Figure 2.3(a)).

Observation 2.5. For single-hop topologies, N2(i) = ∅ always holds.

De�nition 2.24 Multi-Hop Topology. Consequently, we de�ne amulti-hop topology if the
network is not fully meshed, i.e., the corresponding network graph is not complete. Hence,
in a multi-hop but (weakly) connected topology exists at least one node i ∈ N which is not
able to interact with every other node j ∈ N of the network in a direct way, i.e., edge (i, j)
or edge (j, i) are missing. Let node j be outside of the communication range of node i, i.e.,
(i, j) /∈ E, then node i is called hidden from node j.

Observation 2.6. Any topology containing at least one unidirectional link is considered as
multi-hop topology.

Observation 2.7. For a node i ∈ N being hidden from node j ∈ N always holds (i, j) /∈ E,
and thus i /∈ N1(j).

From De�nition 2.24 directly results the hidden terminal problem, which was �rst de-
scribed by Tobagi and Kleinrock [182].

De�nition 2.25 Hidden Terminal Problem. Suppose, a network consists of three nodes a,
b, and c, as exempli�ed in Figure 2.4(a). Nodes a and c can directly transmit to node b, but
both nodes a and c are unaware of each other. If at overlapping time intervals node a as well

15

Chapter 2 Basics

a b c

(a) Hidden terminal problem

a b c d

(b) Exposed terminal problem

Figure 2.4: Sample scenarios of two famous problems being inherent to multi-hop topolo-
gies. A gray shape represents the communication range of its centric sender.

as node c transmit a packet to node b, both radio packets collide. As a result, the potential
receiver node b receives just corrupt data – if any. Since both nodes a and c are hidden from
each other, they cannot overcome this packet collision using Carrier Sense (cf. De�nition 2.8)
right before their transmissions.

Observation 2.8. Our De�nition 2.24 of multi-hop topologies implies that the hidden ter-
minal problem is inherent to multi-hop topologies.

Moreover, the so-called exposed terminal problem is similar to the hidden terminal prob-
lem, and is de�ned herein for the sake of completeness (cf. Observation 2.9).

De�nition 2.26 Exposed Terminal Problem. Suppose, a network consists of four nodes a,
b, c, and d, as exempli�ed in Figure 2.4(b). Node b transmits a packet which is addressed
to node a but not to node c. At about the same time, node c wants to transmit a packet di-
rected only to node d. However, node c prevents its transmission using Carrier Sense (cf.
De�nition 2.8) right before its transmission: Both (directed) transmissions from node b as
well as from node c are theoretically possible, since node a and node d would receive the cor-
responding packet without distortion. �e Carrier Sense operation here wastes bandwidth
and leads to needless waiting.

Observation 2.9. According to De�nition 2.26, the exposed terminal problem just occurs
due to the directed communication which is realized as unicast (or asmulticast). Otherwise,
the information sent by a node would be relevant for all of its one-hop neighbors. However,
since the communication of our self-organizing protocol is only based on broadcasts, this
problem is just of little importance within this work, and therefore will not be taken into
consideration furthermore (cf. Section 5.2).

De�nition 2.27 Unicast, Multicast, Broadcast. �e unicast is a directed transmission from
a sender towards one speci�c receiver (cf. Figure 2.5(a)). �emulticast is a directed transmis-
sion from a sender towards a speci�c group of receivers (cf. Figure 2.5(b)). �e broadcast is
a transmission from a sender towards all potential receivers within its communication range
(cf. Figure 2.5(c)). Apart from the broadcast, an addressing scheme is required in general.

Since the hidden terminal problem is inherent to multi-hop topologies, each node addi-
tionally requires knowledge about its hidden neighbors for an e�cient and reliable commu-
nication – especially if the communication protocol is based on self-organization. �e con-
straint graph G⃗C(i) is one formalization to describe the information needed by node i ∈ N .

16

2.1 De�nitions

(a) Unicast (b) Multicast (c) Broadcast

Figure 2.5: Examples for the communication between nodes. A gray shape represents the
communication range of its centric sender, arrows represent directed links.

De�nition2.28 ConstraintGraph. �e constraint graph G⃗C(i) = (NC(i), EC(i))of a node
i ∈ N is a directed subgraph of the corresponding network graph G⃗ = (N , E) with the set

NC(i) = {i} ∪N1(i) ∪N2(i) (2.4)

of nodes (i.e., vertices) and the set

EC(i) = {(j, i) ∈ E∶ j ∈ N1(i)} ∪ {(k, j) ∈ E∶ (∃ j ∈ N1(i)∶ k ∈ N1(j))} (2.5)

of corresponding links (i.e., edges).

Observation 2.10. For each node i ∈ N in a single-hop topology, i.e., in a complete graph,
holds: NC(i) = N .

Sincemulti-hop topologies are hard tomonitor, we introduce a special type of sensor node
called sni�er.

De�nition 2.29 Sni�er. A sni�er is a passive sensor node (cf. Section 2.4.5). �at means
that this node does not transmit data but instead listens to the shared medium and records
all data received within a certain period of time. Hence, in any topology, a sni�er does not
have any outgoing edge. �erefore, a sni�er does not interfere with the communication of
nearby nodes, but only observes its (one-hop) neighborhood.

Observation 2.11. Apart from collisions, the (one-hop as well as two-hop) neighborhood of
a sni�er is identical to that one of an "active" node which transmits messages to the network.

According toDe�nition 2.2, all participants of aWirelessNetwork communicate through a
shared medium. Nodes compete for this shared medium by means of a multiple access strat-
egy. �ese competitions can cause packet collisions which are undesired since they violate
real-time constraints, destroy information, and waste information and energy for potential
retransmissions. Furthermore, a collision could even result in the loss of possibly unique
information. �erefore, an e�cient and collision reducing operation of such multiple access
networks is necessary. �eses demands are met by the main service3 of our self-organizing
protocol for WSNs: theMedium Access Control (MAC).
3See Section 8.2 for further feasible services.

17

Chapter 2 Basics

Application Layer
Presentation Layer

Session Layer
Transport Layer
Network Layer

Data Link Layer
Physical Layer

(a) �e 7-layer model of the OSI
network architecture (cf. [201])

Application Layer
Transport Layer
Network Layer

Data Link Layer
Physical Layer

(b) �e reduced WSAN protocol
stack as suggested in [5]

Figure 2.6: Two types of protocol stacks commonly used for wireless communication.

De�nition 2.30 Medium Access Control (MAC). AMedium Access Control (MAC) pro-
tocol manages when and how each participating transceiver may access the shared commu-
nication medium in order to avoid (or at least to reduce the chance for) packet collisions.
Consequently, this would reduce information loss and temporal as well as energy e�orts for
retransmissions. To optimize the multiple access to the shared medium, a MAC protocol
may provide services like addressing schemes and channel access control mechanisms.

According to the 7-layer model of theOpen Systems Interconnection (OSI) network archi-
tecture (cf. Figure 2.6(a)), Medium Access Control is part of the data link layer [201, 87]. In
WSNs as well as WSANs, there is usually no strict implementation of all seven OSI layers
to increase the runtime e�ciency as well as to reduce the implementation e�ort. Instead, a
reduced protocol stack is suggested by Akyildiz et al. in [6, 5] (cf. Figure 2.6(b)):

• On the one hand, the boundaries of the OSI layers may overlap. For instance, to-
day’s RF chips keep getting more powerful, e.g., some of them provide hardware ad-
dress checking (cf. Chipcon’s CC1100 radio transceiver [175]). �erefore, the assembled
hardware already implements some services of several OSI layers, e.g., the physical
layer, and actually parts of the data link layer (hardware address checking).

• On the other hand, just a reduced set of layers may be implemented. Since common
sensor nodes nowadays still have just low performance and limited memory (cf. Def-
inition 2.6), a full implementation of all OSI layers would be a signi�cant overkill for
most application scenarios and hardware platforms (cf. also [157]4).

To prevent packet collisions due to the concurrent medium access, there are several proto-
cols available for managing and controlling the multiple access to the shared communication
medium. In general, MAC protocols can be characterized on basis of several aspects – to
name but a few: For instance, the control of the protocol may be centralized at a single con-
troller or it may be distributed amongst all network components. Next, the transmission
4Diploma thesis conducted in conjunction with this work.

18

2.1 De�nitions

schedule may be staticwithout the chance for change or it even may be dynamic for a �exible
adaption, e.g., on topology dynamics. Furthermore, the transmission of messages within the
network may range from best-e�ort to a guaranteed delivery. Moreover, the intention of the
protocol may be based on contention-based Carrier-Sense Multiple Access (CSMA) or on
schedule-based Time-DivisionMultiple Access (TDMA) – which is the most commonly used
classi�cation.

De�nition 2.31 Carrier-SenseMultipleAccess (CSMA). Acontention-basedCarrier-Sense
Multiple Access (CSMA) protocol is a probabilistic MAC protocol supporting the best-e�ort
strategy. Right before its transmission, the sender tries to verify that within its communi-
cation range no other node is currently transmitting a radio packet. For this purpose, each
sender �rst listens to the communication channel. Next, it uses the information from its radio
receiver unit to decide, whether the desired channel is busy or not. If there is no observable
signal, the node �nally starts its own transmission. Otherwise, the channel is considered to
be busy. In this case, most CSMA protocols use a (probabilistic) back-o� algorithm to post-
pone the retry, and to consequently reduce the probability of concurrent retransmissions on
the shared communication medium. Amongst others, representatives of CSMA protocols
for WSNs are for instance B-MAC [143], S-MAC [197], and T-MAC [185, 186].

De�nition2.32 Time-DivisionMultipleAccess (TDMA). Aschedule-basedTime-Division
Multiple Access (TDMA) protocol divides the communication channel into non-overlapping
time slots. Each node has assigned one (or more) individual time slots for transmission, i.e.,
within the node’s communication range no other node is allowed to transmit a radio packet
at the same time on the same channel. �e implementation of equally sized slots ensures
fairness and the transmission at a �xed frequency bounds message latency. Amongst others,
representatives of TDMA protocols for WSNs are for instance ISOMAC [199], LMAC [187],
PEDAMACS [42], and TRAMA [148, 149].

Observation 2.12. Of course, hybrid MAC protocols implementing features from CSMA
protocols as well as from TDMA protocols also are feasible. Amongst others, representatives
of such hybrid MAC protocols for WSNs are for instance Cranksha� [77], HashSlot [22, 14],
WiseMAC [58], and Z-MAC [154].

Such a schedule-based assignment supports a guaranteed data rate since it minimizes the
probability of collisions. However, this requires a consistent network coordination among the
nodes.

De�nition 2.33 Coordination. In the �eld of network protocols, coordination describes the
(temporary) process of harmonizing the actions of a set of network components to reach a
common goal, e.g., collision free medium access. Besides, coordination is a special form of
interaction (cf. Section 2.1).

�e coordination of a common network schedule can be achieved in (a combination of)
di�erent ways:

Global Clock A global clock o�ers a uniform and accurate time base for the network com-
ponents. �is global clock has to be provided by a dedicated node or an external device,
but would also allow to globally de�ne the start of each time slot (cf. TRAMA [149]).

19

Chapter 2 Basics

However, such a centralized approach for time synchronization always involves a single
point of failure. Furthermore, to synchronize on the global clock, additional hardware
may be required at the nodes (cf. Section 8.2.1). �us, relying on a global clock does
not meet our demands (cf. Section 1.2)

A priori knowledge Each node obtains (e.g., during the installation phase) a priori knowl-
edge about the scheduling of its time slots (cf. Z-MAC [154]). Based on this knowledge,
there may be further negotiation and competition of the nodes about time slots. How-
ever, the nodes may be incapable to handle topology dynamics satisfactorily – unless
adaptive scheduling techniques are made available as required. As a consequence, a
�xed schedule which is based on a priori knowledge is much too rigid for our pur-
poses (cf. Section 1.2).

Self-organization �e coordination about the time slots among the nodes is managed by
the nodes themselves in a self-organizing manner without explicit time synchroniza-
tion (cf. De�nition 2.1). �is approach does not rely on a central authority, but the on-
going interaction of the nodes makes it very robust against topology dynamics. How-
ever, additional costs for communication and computation have to be considered.

Hybrids In fact, combinations of the aforementioned coordination approaches are also fea-
sible.

We intend to be able to react �exibly on topology dynamics (cf. Section 1.2). �erefore, we
do not want to rely on a global clock or on a priori knowledge. Instead, we do want to use a
decentralized approach. In particular, we prefer a self-organizing approach within this work.
Nevertheless, and as indicated before, time plays a major role for TDMA protocols as well

as for coordination. As a consequence, time synchronization is an important coordination ser-
vice for someWSNapplications, e.g., to obtain data consistency (sensor fusion) or tomaintain
a certain TDMA protocol (coordinating communication) (cf. Section 8.2.1).

De�nition 2.34 Time Synchronization. Time synchronization describes the process to pro-
vide a common notion of time across a distributed system like a Wireless Sensor Network.

Some WSN applications rely on this explicit understanding of a common time base. For
instance, time synchronization is required to measure the velocity of mobile object, to de-
tect snipers, to analyze seismic activities, or to monitor volcanic eruptions (cf. [192]). More-
over, it also may be used for coordination (cf. De�nition 2.33), for communication (cf. for
instance TDMA protocols), or for routing purposes (cf. Section 8.2.2). Furthermore, such
a common notion of time may also support energy saving (e.g., in the form of coordinated
sleeping phases) and sensor reachback (cf. [108]). �erefore, a more or less accurate time
synchronization service has to be installed. For this reason, several algorithms and protocols
regarding the service’s establishment, maintenance, and accuracy yet exist. Examples include
the following protocols: Reference Broadcast Synchronization (RBS) [59], Timing-Sync Proto-
col for Sensor Netowrks (TPSN) [69], Time-Stamp Synchronization (TSS) [114, 156], Flooding
Time-Synchronization Protocol (FTSP) [111], and Tight Time Synchronization (Tiny-Sync)
[198]. Further approaches and protocols for time synchronization for Wireless Networks
are surveyed for instance in [48, 153, 158, 164], and for more complex networks relying on the
pulse-coupled oscillator framework (cf. Section 3.2) in [9, 134, 161, 194] but also in Section 3.3.

20

2.1 De�nitions

 -1.0

 0.0

 1.0
am

pl
itu

de

time
0 T

2 T 3T
2

5T
22T

(a) In-phase synchronization

am
pl

itu
de

time
0 T

2 T 3T
2

5T
22T

(b) Out-of-phase synchronization

 -1.0

 0.0

 1.0

am
pl

itu
de

time
0 T

2 T 3T
2

5T
22T

(c) Anti-phase synchronization

 -1.0

 0.0

 1.0

am
pl

itu
de

time
0 T

2 T 3T
2

5T
22T

(d) Desynchronization

Figure 2.7: Examples for certain forms of synchronous dynamics (cf. De�nitions 2.35 to 2.38).

Later on, we will use periodic oscillators with identical frequency as clock model. Hence,
we distinguish between di�erent forms of synchronization (cf. Figure 2.7): in-phase synchro-
nization, out-of-phase synchronization, anti-phase synchronization, and desynchronization.

De�nition 2.35 In-Phase Synchronization. Within this work, in-phase synchronization de-
scribes the phenomenon of the phase di�erence between two (ormore) oscillators with iden-
tical frequency being zero. �at means, the oscillators are in unison since their periods start
over at the same time. Figure 2.7(a) exempli�es the in-phase synchronization of three sinu-
soids (with varying amplitudes for enhanced visualization).

De�nition 2.36 Out-of-Phase Synchronization. Within this work, out-of-phase synchro-
nization describes the phenomenon of the phase di�erence between two (or more) oscilla-
tors with identical frequency not being equal to zero (or to an integer multiple of a common
period). �at means, the oscillators are not in unison since their periods always start over at
di�erent times. Figure 2.7(b) exempli�es the out-of-phase synchronization of �ve sinusoids.

De�nition 2.37 Anti-Phase Synchronization. Anti-phase synchronization is a special type
of out-of-phase synchronization. Within this work, anti-phase synchronization describes the
phenomenon of the phase di�erence between two oscillators with identical frequency being
half their period. As a consequence, assuming the phase di�erence of two sinusoidal oscilla-
tors being half their commonperiod, the sumof both oscillator amplitudes always equals zero
(so-called destructive interference). Figure 2.7(c) exempli�es the anti-phase synchronization
of two sinusoids.

21

Chapter 2 Basics

De�nition 2.38 Desynchronization. Within this work, desynchronization is another special
type of out-of-phase synchronization. �erefore, the phase di�erence between two (ormore)
oscillators is not equal to zero. In particular, desynchronization describes the phenomenon
of the phases of all oscillators within the oscillator’s constraint graph (cf. De�nition 2.28)
having a maximum temporal distance towards each other within the common period. �is
means for a complete network of ∣N ∣ desynchronized oscillators (e.g., the nodes of a single-
hop topology) that the phase di�erence between two succeeding oscillators always equals the
∣N ∣-th part of the common period (cf. De�nition 2.28, Observation 2.10, and Lemma 4.5).
�ereby, the oscillators interleave and occur in a round-robin schedule.
In contrast, there is no general statement about the phase di�erence of two succeeding os-

cillators of a non-complete network (e.g., the sensor nodes of amulti-hop topology). One rea-
son here is the potentially di�ering size of the individual constraint graphs (cf. Lemma 4.11).
Figure 2.7(d) exempli�es the desynchronization of �ve sinusoids.

Observation 2.13. If the complete network consists of just two oscillators, desynchronization
and anti-phase synchronization result in the same behavior.

Since desynchronization provides the basic idea of our self-organizing TDMA protocol
for WSNs, we will have a closer look at this phenomenon in Part II. To begin with, we give a
short introduction of potential analysis techniques in the next section.

2.2 Analysis Techniques

In general, there exist several techniques to analyze certain phenomena and to study a speci�c
system. �e most obvious one is the system itself to be subject to studies and examinations.
However, this is o�en too expensive or not applicable at all. Instead, a model of the system
has to be analyzed. Depending on this representation, the following techniques are feasible:

• the veri�cation of empirically derived predictions by means of suitable experiments on
a physical model of the system,

• the analytical solution of a mathematical model of the system, for instance in terms of
a system of linear equations, and

• the execution of a su�cient number of simulation runs based on a certain mathemat-
ical model of the system, i.e., a valid simulation model.

Furthermore, all these techniques feature advantages as well as disadvantages. Depending on
the objectives, the data set, and the available resources, each technique is able to e�ciently
cover just a distinct �eld of applications: Assuming, it is too costly or even impossible to
create a physical model of the system of investigation, the only way out are mathematical
models then – resulting in analytical solutions or corresponding simulations.
�e Proof of Convergence in Section 4.3.1 but also [49, 112] give a �rst impression about

the complexity of a corresponding mathematical (non)linear system. As a result, the design
of an analytical solution of the primitive of desynchronization seems to be an inappropriate
task and thus not very promising. Indeed, some researchers prefer simulations to get valuable
results quite easy and fast. In contrast, [169] emphasizes the need for real-world testbeds, i.e.,

22

2.2 Analysis Techniques

simulations are not always meaningful enough. Due to the conditions and circumferences
of the system to be analyzed, we want to bene�t from both techniques. Consequently, we
focus on experiments and simulationswithin this work. In this regard, we follow [125], which
supports the legitimate coexistence of simulations and real-world testbeds.
Before we describe the tools applied in this work in Section 2.4 and in Section 2.3, we

brie�y introduce the analysis techniques which are relevant for this work: Namely, real-world
testbed as physical model of a system in Section 2.2.1, and simulation as popular usage of a
mathematical model of the system in Section 2.2.2.

2.2.1 Real-World Testbed

A real-world testbedmakes use of components which behave su�ciently similar (replica) or
even identical (original) to that one of the real system. Ideally, a testbed operates under real-
world conditions to draw valid conclusions. For this purpose, components of the testbed are
subject to arbitrary but realistic phenomena, like people moving around or interfering sys-
tems nearby. To keep the experimental setup manageable but to still get meaningful results,
a testbed usually represents the system on a small scale, i.e., it consists of just a small number
of system components. Despite a potentially small scale of a real-world testbed, its outcome
still may allow for interpolation and extrapolation. Also characteristic for real-world testbeds
are speci�c equipment and devices for monitoring and logging purposes (cf. Section 2.4.5).

Benefits

On the one hand, the deployment of a real-world testbed has several bene�ts: Such an exper-
iment is embedded in an environment of the real world, hence the hardware as well as the
so�ware are subject to realistic conditions. Next, all measurements, which are taken during
experimental runs, are subject to conditions of the real world. �erefore, we do expect the
results to be realistic as well. Moreover, using a testbed, it is possible to set up speci�c situ-
ations and scenarios including side e�ects, parallel processing, and concurrent events (e.g.,
switching o� certain nodes). Finally, even though the real-world testbed could be small and
simple, it helps to draw sound conclusions (using interpolation and extrapolation) about the
system – mainly due to the realistic environment.

Limitations

On the other hand, the applicability of a real-world testbed is limited: Since a testbed uses
real hardware, its realizationmay be quite costly. In addition, the extent of the testbed as well
as the used hardware for execution and administration of the tests directly in�uences these
costs. Next, there is no speed up during the test procedure in general. For instance, assum-
ing a certain period length T = 1 s in real will usually also consume 1 s in the experiments.
Moreover, due to the system’s concurrent processing and further unexpected side e�ects, es-
pecially distributed testbeds (as needed within this work) are hard to monitor and hard to
control on-line. Sometimes, conclusions may be drawn just a�er the experiment (ex post),
which may delay the development process and also could impact the testing e�orts. Finally,
due to the dynamics of the environment, it is virtually impossible to reproduce the outcome
of a real-world testbed – even for identical setup conditions.

23

Chapter 2 Basics

2.2.2 Simulation

A simulation tries to draw quantitative conclusions about a system. �us, a simulation can be
considered as the experimentation with di�erent input parameters of a mathematical model.
�e objective is to calculate (e.g., performance-related) e�ects on the system behavior and
the system’s outcome (cf. textbooks on simulation, like [104, 160, 78, 98]).
For this purpose, a simulation always drives a proper simulation time. �is simulation

time denotes the real-time of the simulated system. �us, the progress of this simulation
time needs not necessarily be equal to the simulated real-time or to the elapsed runtime
of the whole simulation. Each simulation model has several entities or components, whose
attributes in total determine the state of themodel at a certain simulation time. A set of trans-
formation rules de�nes the state transition as well as the changes of the entities’ attributes.
Depending on the underlying simulationmodel, there are twomajor types, namely contin-

uous simulation and discrete simulation: Simulations based on continuous models calculate
the state transition by di�erential equations and alike to get continuous results. Simulations
based on discrete models compute the state transition in discrete time, i.e., within a count-
able set of points in time. �ese discrete points in time are the ones at which an event occurs.
�e state of a discrete system only changes at such an event. Consequently, a discrete-event
simulation allows to skip entire time segments – till the next simulation event will occur.

Benefits

�e installation of a simulation has several bene�ts: �e node hardwaremay be too expensive
or too error-prone to deploy an experimental setup. �is node hardware is not required for
simulation runs in general. Next, a certain scenario realized as (single) simulation run usually
is much faster than the same scenario performed by real hardware, i.e., there is no one-to-
one relationship between simulation time and simulated time. Furthermore, each simulation
run is repeatable, i.e., simulations running with identical values for the (setup) parameters
as well as for the (pseudo) Random Number Generator (RNG) will result in an identical
outcome. Finally, and contrary to any real-world scenario, a simulation tool may provide
the opportunity of global knowledge5. �is global knowledge o�ers new and comfortable
possibilities for controlling, monitoring, and deeper analysis.

Limitations

However, the creation or execution of an adequate mathematical model may require con-
siderable computational power. For instance, most supercomputers are installed to support
extensive physical simulations like weather forecast, explosion of nuclear bombs, and arti-
�cial neurons of a human cerebral cortex. In addition, the execution of a simulation is not
always appropriate: First of all, every simulation model is always just an abstraction of the
real world. �erefore, each simulation model has to be validated accordingly. Nevertheless,
there remains the risk of biased results. Especially, when the simulator applies idealistic as-
sumptions or an ideal environment, conclusions drawn from such simulations may be not
sound or insu�ciently detailed.
5�e quality of the global knowledge is limited by the capabilities (e.g., available memory) of the simulation envi-
ronment.

24

2.3 Simulation Framework

2.2.3 Summary

In this section, we characterized the theoretical aspects of promising techniques to analyze a
certain phenomenon and to study a speci�c system. On the one hand, a real-world testbed
(cf. Section 2.2.1) demonstrates its strength on emulating aWSN under real but adverse con-
ditions, like node failure, noise, and unreliable links. On the other hand, a so�ware simulator
(cf. Section 2.2.2) may not only save time, but also may generate fully observable as well as
reproducible scenarios. Moreover, the integration of a (pseudo) Random Number Genera-
tor (RNG) makes simulations controllable – notwithstanding the probabilistic component.
Furthermore, simulations allow the creation of particular scenarios – which are hard to de-
ploy as real-world testbeds. For instance, it is di�cult to provoke the hidden terminal prob-
lem (cf. De�nition 2.25) with hidden nodes starting up simultaneously at the very same time
(i.e., within the same microsecond).
As both techniques do have bene�ts as well as limitations, simulations and real-world

testbeds should be used in complement to stimulate each other. �is postulation also is stated
in [125]. �erefore, we will use these two techniques for our further analysis. In this regard,
we will describe our self-developed simulation framework, which performs our simulations
in Section 2.3. In Section 2.4, we will present our sensor node hardware, which is used within
our real-world testbeds.

2.3 Simulation Framework

SinceWirelessNetworks andWireless SensorNetworks in particular are complex systems, we
want to access the advantages of simulation (cf. Section 2.2.2) for our studies on the settling
process of a Wireless Network implementing our communication protocol. Since a huge
number of network simulators with speci�c objectives and di�erent scopes already exist, we
�rst motivate the development of our own simulator in Section 2.3.1. Next, we describe the
functionality and features of our self-developed simulator in Section 2.3.2. In Section 2.3.3,
we specify the underlying simulationmodel. To create simulation models more comfortably,
we also developed a script, which is introduced in Section 2.3.4.

2.3.1 Motivation

�e bene�ts of simulations obviously are the fast and cheap creation of experimental setups
(cf. Section 2.2.2). Especially, when the system to be analyzed consists of lots of entities,
like (Wireless) Networks in general and Wireless Sensor Networks in particular. �erefore,
various network simulation tools with di�erent scope and objectives are already available as
(commercial) o�-the-shelf products. Well-known network simulation tools are ns-2 [113],
OMNeT++ [139], and EstiNet [62] – to name but a few.

ns-2

�ediscrete event driven network simulation tool ns-2 [113, 31, 64] allows the (tra�c) analysis
of several network protocols and routing mechanisms. It implements just fundamental pro-
tocols of several layers of the protocol stack (cf. Figure 2.6). Most famous ones areHypertext
Transfer Protocol (HTTP) and Transmission Control Protocol (TCP).

25

Chapter 2 Basics

�e core of the ns-2 simulator is the event scheduler: It monitors the simulation time and
triggers the events of the event queue, i.e., the corresponding network component consum-
ing this event is set active. Each active component uses the event scheduler to issue events
for packet handling. Moreover, all network components wait to consume such an event to
further process a packet. �e simulations for the ns-2 simulator are programmed in C++ and
OTcl, which is an object oriented extension of the Tool Command Language (Tcl). It is used
to initialize the event scheduler and to set up the network topology, e.g., when a component
is sending a packet.

OMNeT++

Like ns-2, OMNeT++ [139, 189] is also a discrete event driven network simulation tool for
(communication) networks. However, OMNeT++ is not a network simulator itself, but pro-
vides an Integrated Development Environment (IDE) for simulations. �is network simu-
lation platform combines several modules and frameworks for network analysis. Hence,
OMNeT++ is also generally applicable to queuing networks, hardware architectures, and
business processes. For instance, the so-called INET framework contains models for com-
munication protocols of the Internet, like TCP, Internet Protocol (IP), and User Datagram
Protocol (UDP).
�e simulation kernel and class library of OMNeT++ is written in C++. �is kernel uses

the basic simulation classes to manage the simulation. Simple modules and components,
respectively, are programmed as Network Description (NED). Using NED, such modules
can be combined to create compound modules and thus larger components. Consequently,
the whole network itself is a compound module then.

EstiNet

�e commercial network simulation tool EstiNet [62, 191, 61] indeed is a network simulator
and estimator. It supports all layers of the reduced WSAN protocol stack (cf. Figure 2.6(b)).
Moreover, there are also add-ons for speci�c network types, like Mobile Ad hoc Networks
and Vehicular Ad hoc Networks with just a limited representation of mobility.
In comparison to the aforementioned simulation tools, EstiNet provides a user-friendly

Graphical User Interface (GUI) to design the network to be analyzed. For modeling pur-
pose, several network infrastructure devices are available, like host, hub, switch, and router.
In addition to modeling, this GUI is also to be used for monitoring, simulating and even
debugging. Moreover, EstiNet can be turned from simulator to emulator, i.e., a simulated
network (component) can interact with a real-world network (component). �is means that
the network within the emulator is assembled by physical and simulated components (cf.
Hardware in the Loop (HIL) simulation).

Resumé

Sophisticated and powerful network simulation tools, like ns-2, OMNeT++, and EstiNet,
already exist, but do focus on "classical" network issues, like routing behavior, data rate,
network throughput, and channel utilization. In contrast, the main focus of our analysis

26

2.3 Simulation Framework

in Chapter 7 within this work is on the settling process of a Wireless Network implement-
ing our self-organizingMACprotocol extended-Desync and extended-Desync+, respec-
tively (cf. Chapters 5 and 6).
In particular, we are interested in whether, how, and when a certain scenario will desyn-

chronize (cf. De�nition 4.3). As a result, there is no need for a deep packet analysis. �us, the
"classical" network issues are far less important for this work. Consequently, the named net-
work simulation tools do not suit our requirements. �erefore, we developed in Java a light-
weight simulation tool which exactly meets our speci�c demands. �is simulator extDeS-
IMc supports our extended-Desync and extended-Desync+ protocols and is described
in the next section.

2.3.2 Simulator extDeSIMc

In Section 2.3.1, we motivated our decision not to use one of the available and powerful net-
work simulation tools, but to develop a new simulation tool ourselves instead. Our simulator
extDeSIMc just supports ex post facto visualization, and thus a retrospective analysis. Never-
theless, the simulated time of our simulator has to support a large timescale of high precision.
Like our nodes framework (cf. Section 2.4), extDeSIMc has to support a (simulated) pre-
cision of at least 1 µs. �is high resolution implicates the handling of large timescales up to
billions6 of microseconds.
One e�cient way to cover such a large timescale is the event-driven simulation approach

(cf. [120]). �is approach is implemented not only by the powerful network simulation tools
mentioned in Section 2.3.1, but also by our simulator extDeSIMc. In particular, our sim-
ulator maintains an event queue which contains all events sorted by their occurrences in
ascending order. For a consistent timeline, the times of the events have to increase mono-
tonically, i.e., new events never may be a thing of the past.

State Transition

Each event will be processed by a speci�c event handler. In general, this event handler cor-
responds to a certain node, which consumes this event and will generate a subsequent event.
�us, each event represents a certain state transition of a node. To enforce a certain simula-
tion scenario and simulation setup (cf. Section 7.2), some events (in particular DEAD, ON, OFF,
and FIRING) may be set in advance within the simulation model. �e corresponding state
diagram, i.e., the possible states plus the associated transitions, is depicted in Figure 2.8.
For each simulation holds that every node starts either in ON state or in FIRING state –

in accordance to what is speci�ed within the simulation model: �e ON state represents the
power-on of a node at the event time. Usually, this will be the �rst state for a node. Next, a�er
its initialization, this node will immediately switch to the PREPARE_FIRING state. However,
to enforce certain simulation scenarios, e.g., concurrently �ring nodes, a node may start in
the FIRING state. �is means that the corresponding event starts up this node, and a�er
initialization, the node will skip the PREPARE_FIRING state and immediately switch to the
START_FIRING state. As a result, this node will broadcast an (empty) �ring packet at that

6For instance, 50min equals 3 billions of microseconds, i.e., 3 000 000 000 µs.

27

Chapter 2 Basics

PREPARE_FIRING

START_FIRING FINISH_FIRING

ON

DEAD

FIRING

OFF

Figure 2.8: �e state diagram of a simulated node in our extDeSIMc simulator. Times of
the events to enter the states colored in gray have to be set in advance within the simulation
model.

proper event time – regardless of a common understanding (cf. Section 5.8) and protocol
speci�cations.
In the PREPARE_FIRING state, a node prepares its next �ring and its next �ring packet, re-

spectively, e.g., it may collect neighbor information as described in Section 5.8.1. Depending
on that particular listening strategy, the node either will remain in the PREPARE_FIRING state
or it will switch to the START_FIRING state a�er a certain time, i.e., a�er few periods, as rec-
ommended in Section 5.8.1.
As further investigated in Section 5.4.1, the transmission of a (�ring) packet takes some

time. To re�ect this fact, we introduced two distinct states (and events, respectively): �e
START_FIRING state indicates the start of the transmission, whereas the FINISH_FIRING state
represents the end of the transmission. �e time lag between the states START_FIRING and
FINISH_FIRING depends on the declaration of the communication delay as well as the size
(i.e., the number of neighbor information with regard to Section 5.6) of the corresponding
�ring packet within the simulation model. Consequently, the �ring packet of a simulated
node is delivered to appropriate and available7 receivers when entering the FINISH_FIRING
state. In addition, within this state the node will also plan its next time of �ring (cf. Sec-
tion 4.1). In particular, it plans the occurrence of its next event to enter the START_FIRING
state. �e underlying speci�c implementation of this generic framework for desynchroniza-
tion (cf. Sections 4.3 to 4.6) as well as the realization of further practical issues (cf. Section 5.8)
de�ne the next time of occurrence of the START_FIRING state for a node.
To simulate an arbitrary and temporary power down of a node, e.g., due to low battery, we

introduce the OFF state. �e corresponding event moves the node into some sort of "sleep
mode". Such a node may be powered on again using the corresponding event to enter the
either the ONor the FIRING state . Nomore reactivation is allowed in the DEAD state, as this state
7A node in state OFF or DEAD is not available as receiver.

28

2.3 Simulation Framework

SimulationModeling

< >
XML

#!
PL

 0

 25

 50

 75

 100

 400 425 450 475 500 525 550 575 600

re
l.

p
h
a
se

 [
%

]

time [in #periods]
 0

 25

 50

 75

 100

 400 425 450 475 500 525 550 575 600

re
l.

p
h
a
se

 [
%

]

time [in #periods]
 0

 25

 50

 75

 100

 400 425 450 475 500 525 550 575 600

re
l.

p
h
a
se

 [
%

]

time [#periods]

Evaluation

Figure 2.9:�e process of a simulation run using our extDeSIMc simulator.

de�nitely removes a node from the network, and thus from the further simulation process.
All these events, which enable a node to enter one of the states ON, OFF, FIRING, and DEAD,
have to be speci�ed in advance within the simulation model. Expect from the DEAD state, a
node may switch to the OFF state from any other state. And a node may switch to the DEAD
state from any other state at any time.
�e simulation model speci�es in advance not only the events regarding the power on as

well as power down of the node. In addition, the end of the simulation also has to be speci�ed
in advance within the simulation model. �is means that each simulation run ends a�er that
prede�ned duration.

Simulation Process

�e process of a simulation run using our self-developed simulation tool extDeSIMc is de-
picted in Figure 2.9. �e whole process is mainly divided into the three stepsModeling, Sim-
ulation, and Evaluation:
First, the simulationmodel has to be speci�ed as well-formed and valid eXtensible Markup

Language (XML) �le. �is can be done manually by the user or automated per Perl script
(cf. Section 2.3.4). We will describe the simulation model in detail in Section 2.3.3 and the
Perl script in Section 2.3.4.
Next, such a simulation model then can be processed from within our extDeSIMc simu-

lator. Since the simulation model may specify more than one scenario for the same topology,
the user has to select the speci�c scenarios from the simulation model to be simulated. Af-
terwards, the simulator starts the simulation of these particular scenarios in parallel. During
the execution, the simulator prints information8 about the status of all simulation scenarios
within a particular status tab. As soon as all user-selected scenarios have been �nished, the

8�e level of information can be speci�ed within the simulation model.

29

Chapter 2 Basics

Topology Graph
(nodes and links)

Scenarios
(configuration)

Simulation Model
(content of XML file)

Figure 2.10:�e start screen of our extDeSIMc simulator is split into three areas represent-
ing simulation model (le�), topology graph (top right), and scenarios (bottom right).

outcome of these scenarios in retrospect �nally may be visualized within the simulator’s GUI
(cf. upper right in Figure 2.9) and/or9 as separate plots (e.g., GNU Plot) (cf. lower right in
Figure 2.9). �is supports a subsequent o�ine analysis, e.g., about the system behavior.
Moreover, the nodes in our real-world testbeds are able to log certain data at the serial

interface. �e output format of the node’s logging complies with the input format of our
simulator’s visualization component. �is is an important issue, since it o�ers not only an
e�cient visualization of real-world data but also a fast and smart way to cross-check the
results of real-world testbed and the corresponding simulation for similar system behavior
(cf. Section 7.1). �erefore, we are able to visualize the results of a real-world testbed and a
simulation in an identical way.

Graphical User Interface

�e start screen of our simulator (a�er reading in a simulation model �le) is depicted in Fig-
ure 2.10: To control the simulation model in detail, the content of the currently imported
XML �le (including XML comments) is presented on the le�. �e topology graph as repre-
sentation of the speci�ed topology is depicted top right. Initially, all nodes are placed ran-
domly on a circle layout. However, the nodes can be moved freely and for both, nodes and
links, additional information is presented by tooltips. �is topology is identical for all po-
tential simulation scenarios listed on the bottom right area. Here, the user may check the

9�e output format can be speci�ed within the simulation model.

30

2.3 Simulation Framework

Node List

Firing Graph

Configuration Topology Graph Constraint Graph

Figure 2.11: �e simulation screen of our extDeSIMc simulator is split into �ve areas rep-
resenting in the top half (from le� to right) nodes list, con�guration, topology graph, node’s
neighborhood, and in the lower half the node’s �ring graph.

parameters of the available scenarios. To start the actual simulation, at least one scenario has
to be selected.
�e simulation screen of our simulator provides a tabbed interface, i.e., the status tab and

one scenario tab per simulated scenario. Each scenario tab is split into �ve areas as depicted
in Figure 2.11: �e top half is split again into four areas. Starting from le� to right, the �rst
area "Node List" in the top half lists all available nodes of the current scenario. Here, the user
may select one particular node of interest. Consequently, the node selection a�ects the node
dependent areas, namely "Constraint Graph" and "Firing Graph". In the next area "Con�g-
uration" on the right hand side, the parameters of the current con�guration are listed. �is
information is also included in the simulation scenarios on the start screen (cf. Figure 2.10).
�e area "Topology Graph" to the right shows the graph of the current topology. �is graph
is identical for all other scenario tabs. Moreover, it also equals the one shown on the start
screen (cf. Figure 2.10). Finally, the right most area "Constraint Graph" of the top half of
the scenario tab presents the constraint graph (cf. De�nition 2.28) of the node, which is cur-
rently selected in the "Node List". �is visualization of the node’s one-hop as well as two-hop
neighbors supports the understanding of the node’s �ring behavior – especially for complex
topologies. Similar to the topology graph of the start screen in Figure 2.10, the nodes of the
"Topology Graph" as well as the "Constraint Graph" area can be moved freely.
�e lower half "Firing Graph" of the scenario tab contains the �ring graph from the point

of view of the node, which is currently selected in the "Node List". In particular, the reception
time of the node’s neighborhood, i.e., its one-hop as well as two-hop neighbors, is plotted as

31

Chapter 2 Basics

line chart. �e domain axis of the �ring graph denotes the time (in periods) since the simu-
lation start. �e range axis of the �ring graph denotes the relative phase (here in percentage
of the period length) of the received neighbor nodes’ �rings. Consequently, 100% of a period
is identical with 0% of the subsequent period. �e �ring graph itself can be saved, printed,
and zoomed (in and out). Since this display format facilitates the illustration of a node’s state
of desynchronization, such �ring graphs will appear more o�en within this work.

2.3.3 Simulation Model

We tried to make the simulation model as abstract as possible and as realistic as necessary.
�erefore, our simulator handles simulationmodels speci�ed as well-formed and valid XML
documents. �e excerpt of such an XML �le in Listing 2.1 exempli�es the description of a
simulation model.
In principle, each model is partitioned into two main parts, namely one topology part

<Graph> and one con�guration part <Config> (cf. Listing 2.1): �e topology part speci�es
the (static) topology graph, i.e., nodes (<Vertices>) and links (<Edges>). Each node <Node>
is de�ned by several protocol-related parameters, like identi�er, as well as by parameters of
the presentation layer, like color or symbol (cf. Lines 6 to 12). Furthermore, a unidirectional
link <Link> is represented by an edge, which is speci�ed by one source node and one desti-
nation node as well as some quality parameters, like LQI (cf. Lines 16 to 20). Consequently,
bidirectional links (cf. De�nition 2.9) are speci�ed by two corresponding <Link> elements.
To simulate di�erent scenarios based on the same topology in parallel, the con�guration

part <Config>may contain one ormore such simulation scenarios <Simulation> (cf. Lines 25
to 41). Hence, each scenario is running inside its own thread, and each scenario speci�es its
own stop criterion, i.e., its maximum simulation time (<Duration>). Furthermore, we inte-
grated a simple Pseudo Random Number Generator into our simulator, which enhances the
reproducibility of a simulation run by using the same random seed (cf. Section 6.4.2), which
may be also speci�ed per scenario. In addition, common initial values of several protocol-
related parameters, like listening periods (cf. Section 5.8.1), as well as initial values of output-
related parameters, like appearance of domain axis and range axis, may be set for each sce-
nario. Moreover, each scenario contains a list <EventList> of prede�ned events <Event> (cf.
Section 2.3.2). �ese events may enforce a distinct sequence by powering on (and powering
down, respectively) the nodes from the topology part <Graph> (cf. Lines 34 to 38).

2.3.4 Generator Script

�e simulation model may be quite complex and quite large – depending on the underlying
topology and the number of de�ned scenarios (cf. Section 2.3.3). Hence, the manual model
generation by the user may become a lengthy and error-prone task. �erefore, we developed
a Perl script to semi-automatically create sound simulation models. Nevertheless, such a
generated simulation model may be adapted or changed manually a�erwards by the user.
However, the script prompts the user to enter values for the necessary parameters: First,

the �ring strategy has to be set. Here, the midpoint approach (cf. Section 4.3) would be
set by default. Further, the user has to specify the network size, i.e., the number of nodes
(default value: 25), the length of period T in µs (default value: 1 000 000 µs) as well as the

32

2.3 Simulation Framework

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE extDESYNC SYSTEM "scenarios.dtd">
3 <extDESYNC>
4 <Graph>
5 <Vertices>
6 <Node>
7 <id value="6" type="int" />
8 <alpha value="0" type="int" />
9 <period value="1000000" type="long" />
10 <color value="#FFFFFF" type="String" />
11 <!-- further parameters -->
12 </Node>
13 <!-- further nodes -->
14 </Vertices>
15 <Edges>
16 <Link>
17 <src value="5" type="int" />
18 <dest value="6" type="int" />
19 <lqi value="1.0" type="double" />
20 </Link>
21 <!-- further links -->
22 </Edges>
23 </Graph>
24 <Config>
25 <Simulation>
26 <duration value="300000000" type="long" />
27 <seed value="8690401185424030" type="long" />
28 <createPlot value="true" type="boolean" />
29 <firing value="MIDPOINT" type="FIRING_STRATEGY" />
30 <listenPeriods value="3" type="int" />
31 <phaseKeeping value="0.25" type="double" />
32 <!-- further parameters -->
33 <EventList>
34 <Event>
35 <type value="ON" type="EVENT_TYPE" />
36 <time value="0" type="long" />
37 <owner value="6" type="int" />
38 </Event>
39 <!-- further events -->
40 </EventList>
41 </Simulation>
42 <!-- further scenarios -->
43 </Config>
44 </extDESYNC>

Listing 2.1: Extract of a sample simulation model.

number of listening periods (default value: 1). Next, the user may specify the path to an
available con�guration, i.e., at least one sound <Simulation> element (cf. Section 2.3.3) has
to be imported. Alternatively, the usermay set the number of randomly generated simulation
scenarios. �e script will then generate an appropriate number of <Simulation> elements
with default con�guration parameters and one ON event for each node with event time set
randomly within the �rst user-de�ned number of periods (cf. Section 7.2.3).

33

Chapter 2 Basics

Further, the topology type (supporting only symmetrical, bidirectional links) has to be set.
�e script supports the forms from Section 2.1, namely complete graph (cf. De�nition 2.19),
star graph (cf. De�nition 2.20), circle graph (cf. De�nition 2.22), and line graph (cf. De�ni-
tion 2.21), but also the forms binary tree (as a more complex and acyclic graph), dumbbell
graph (cf. Section 7.4), and randomized graph (cf. Section 7.5). To create the latter form, the
user has to enter a number indicating the average number of one-hop neighbors for each
node. �e script then randomly connects the nodes according to this value. Finally, the user
can decide to automatically add a single sni�er node (cf. De�nition 2.29) – or not.

2.4 Sensor Node Framework

In Section 2.3, we described our simulation framework. �e outcome of a simulation based
on sound simulation model allows quite cheap and fast conclusions about the system un-
der certain conditions. However, each simulation model is just an abstraction, and thus a
simpli�cation of the real world.
�erefore, support documents and detailed information about the system’s real-word be-

havior are required to create, to calibrate, and �nally to verify a simulation model (cf. [125]).
Especially, arbitrary and spontaneous phenomena, e.g., interference while people are mov-
ing around, are likely to appear in real world (cf. Section 7.2). �erefore, we deployed several
real-world testbeds consisting of di�erent types of sensor nodes to register these phenom-
ena. Most of our testbeds were deployed at the Chair of Computer Engineering V at the
Julius-Maximilians-University ofWürzburg. Indeed, to distinguish nodes from each other, a
unique identi�er is assigned to each sensor node (cf. Sections 2.4.1 and 2.4.2).
Additionally, we also want to get detailed data from each node’s point of view. One ap-

proach is to con�gure each node not only to act as network component, but also as measur-
ing device, which logs certain data for on-line observation or for post-processing (cf. Sec-
tion 2.3.2). Indeed, logging also a�ects the node’s system load, i.e., the logging process takes
noticeable time. However, the nodes of a real-world testbed will be con�gured identically
in this regard, i.e., each node may be subject to the same additional time and e�ort. Alto-
gether, this approach enables an e�cient and cost-e�ective (ex post facto) inspection of the
network. We will introduce our sensor node framework, including sensor node hardware
and so�ware, in the following sections.

2.4.1 SNoW5 Sensor Node

Most of our testbeds are based on the modular and versatile SNoW5 sensor node [20, 23].
�is sensor node was designed and developed at the Chair of Computer Engineering V at the
Julius-Maximilians-University ofWürzburg and is depicted in Figure 2.12. �e central unit of
the SNoW5 sensor node is the MSP430F1611 microcontroller [177] from Texas Instruments
– a variant of the MSP430x1xx microcontroller family [174]. �is 16 bit microcontroller pro-
vides 48 kB �ash memory (ROM) and 10 kB RAM. However, the MSP430 allows to place
variables in a speci�c memory location called information memory (infomem). We will use
this part of the MCU’s non-volatile memory to store fundamental con�guration data, like
node ID and settings for the RF unit (cf. Sections 5.6.1 and 6.4.1).

34

2.4 Sensor Node Framework

Figure 2.12:�e SNoW5 sensor node.

�e MCU frequency of 8MHz is o�ered by an external 8MHz quartz crystal which pro-
vides an increased stability in comparison to a so�ware adjustable Digitally Controlled Os-
cillator (DCO). As a result, a timer with resolution of 1 µs is made available. Among sev-
eral bus interfaces like Serial Peripheral Interface (SPI) and Inter-Integrated Circuit (I2C) to
connect sophisticated peripherals, this microcontroller also features analog-to-digital con-
verter (ADC) as well as digital-to-analog converter (DAC) to read various types of sensors
and to drive certain actuators, respectively. Both, the low computational power and the lim-
itedmemory, make high demands on the implementation of our self-organizing protocol (cf.
Chapters 5 and 6).

For wireless communication, the SNoW5 sensor node is equipped with the sub–1GHz
RF transceiver CC1100 [175] from Texas Instruments. �is powerful transceiver operates
in half-duplex mode, i.e., the CC1100 transceiver can either transmit or receive a packet at
the same time. �e CC1100 is highly con�gurable, for instance it supports several so�ware
selectable modulation formats, several base frequencies depending on the current antenna
circuitry as well as a basic hardware address check. As mentioned above, the settings of this
RF transceiver are stored in the MCU’s infomem. �is transceiver as slave is connected via
SPI bus with the central MCU as master. �e convenient interrupt capabilities of this RF
chip provide an appropriate base for highly precise TX/RX timestamping. �is feature is
quite bene�cial when implementing a schedule-based MAC protocol. �erefore, it is note-
worthy that two interrupt-indicating output pins of the radio unit are connected to interrupt-
capable input pins of the central microcontroller at each node. With it, interrupts signaled
by the radio unit can be handled by an appropriate Interrupt Service Routine (ISR) at the
microcontroller. For instance, a TX FIFO under�ow, the end of a SYNC word transmission,
and the end of a SYNC word reception at the radio chip are able to trigger the correspond-
ing interrupt at the microcontroller. �is allows an enhanced coordination between both
components and further enables a deeper timestamping (cf. [19] and Section 5.4.2).

For long-term data storage, the SNoW5 sensor node has assembled Atmel’s 16Mbit non-
volatile �ash memory AT45DB161B [10]. �ere also exists a suitable embedded �le system
for this �ash memory (cf. [109]). Initially, the SNoW5 sensor node is not equipped with any

35

Chapter 2 Basics

Figure 2.13:�e eZ430 Chronos sensor node.

sensors and actuators – except for the RF unit10. However, almost all of the microcontroller’s
General Purpose Input/Output (GPIO) pins are available to plug appropriate peripherals, i.e.,
sensors or actuators. Furthermore, it features an RS-232 serial port communication interface
for interaction with other devices, e.g., a personal computer (PC).
For wired programming purposes, the SNoW5 sensor node implements the JTAG inter-

face. �is way of programming is quite costly and time-consuming as it requires direct (phys-
ical) access to the node. Hence, it is also possible (and more comfortable) to use a remote
maintenance system like SNoW Ghost [13].

2.4.2 eZ430 Chronos

In contrast to the real-world testbeds consisting of the self-developed SNoW5 sensor nodes,
we also want to arrange real-world testbeds consisting of o�-the-shelf sensor nodes. In this
regard, we select the eZ430 Chronos [180] from Texas Instruments for the following rea-
sons: First of all, the eZ430 Chronos provides the CC430F6137 [178]. �e CC430 [179] is an
MSP430 with an integrated RF core. However, an external 26MHz quartz crystal drives this
microcontroller. Hence, it is more tricky to provide a timer with resolution of 1 µs for the
eZ430 Chronos than for SNoW5.
As this CC430 microcontroller is an MSP430 microcontroller with an integrated sub–

1GHz RF transceiver, the eZ430 Chronos is compatible to the SNoW5 sensor node to some
extend. �is compatibility allows the reuse of most of our so�ware and applications already
developed for SNoW5 sensor nodes. Moreover, it also facilitates the establishment of a het-
erogeneous network consisting of SNoW5 and eZ430 Chronos nodes (cf. [12]11). As shown
in Figure 2.13, the eZ430 Chronos is marketed as watch. As a result, it is highly portable and
thus allows for real-world testbeds of high topology dynamics. In addition, this watch in-
nately is equipped with several sensors, like pressure sensor and 3–axis accelerometer as well

10Even though a radio unit measures andmanipulates a physical quantity, we consider the RF unit neither as sensor
nor as an actuator within this work.

11Diploma thesis conducted in conjunction with this work.

36

2.4 Sensor Node Framework

Figure 2.14:�e SuperG gateway node, i.e., stacked on the RSK+ development board (olive-
green) is the extension board (grass-green, on the le� side) containing the RF units.

as a 96 segment Liquid Crystal Display (LCD) ready to be used. �is supports the realization
of several WSN applications.
Indeed, the eZ430 Chronos is not extensible, i.e., the connection of additional sensors or

actuators is not intended. Furthermore, this commercial node o�ers a very limited num-
ber of communication interfaces. �is further complicates debugging and monitoring of
applications for the Chronos. Hence, the LCD may be used for a compressed data output
to provide the desired information. �is type of node and its unusual "debugging interface"
is utilized in [12]12: �e objective of this work is the regulation of the protocol overhead of
our MAC protocol by the self-organizing adaptation of the transmission power and thus the
communication range.

2.4.3 SuperG Gateway Node

So far, we introduced two types of sensor nodes, namely SNoW5 and eZ430 Chronos. �ese
nodes are compatible with regard to the used MCU and RF unit, i.e., these nodes may com-
municate directly with each other. �is already allows the analysis of additional interesting
network scenarios and applications. However, to broaden the �eld of applications further by
interconnecting yet existing or future generations of sensor nodes with di�ering hardware
and communication protocols, we intended to integrate a more powerful node as gateway.
�e SuperG gateway nodewas �rst introduced in [157]13. In particular, thismultilayermul-

tiradio gateway node consists of an self-developed extension board for the Renesas Starter
Kit+ (RSK+) development board [150] for the SH7203 microcontroller [151] from Renesas
and the RSK+ board itself as depicted in Figure 2.14. �e extension board is equipped with
four sub–1GHz RF transceivers CC1100 [175] from Texas Instruments as well as two 2.4GHz
12Bachelor thesis conducted in conjunction with this work.
13Diploma thesis conducted in conjunction with this work.

37

Chapter 2 Basics

RF transceivers CC2520 [176] from Texas Instruments. �e RF transceivers are connected as
slave via SPI bus with the central SH7203 microcontroller at the RSK+ board as master. �e
placement of the CC2520 transceivers should make the SuperG gateway node ready for com-
munication with ZigBee compliant sensor nodes, likeMicaZ and TMote Sky (cf. Section 2.1).
As described in [129], the core element of this gateway architecture is itsExtendedDistribu-

tion System (EDS) – an extension of theDistribution System (DS) of the IEEE 802.11 WLAN
infrastructure [86]: �e EDS provides main services for distribution (i.e., message �ow) and
integration (i.e., protocol translation). To link di�erent networks e�ciently together, the EDS
o�ers several operation modes, like router, hub, and switch, as well as a so-called portal per
network as network-speci�c access point. In conjunction with the current operation mode,
the SuperG gateway architecture not only allows protocol conversion (depending on the un-
derlying MAC protocols), but also o�ers some sort of media conversion, e.g., if networks
based on di�erent frequency bands have to be interconnected.

2.4.4 SmartOS

In Sections 2.4.1 to 2.4.3, we described the sensor node hardware of our real-world testbeds
brie�y. Indeed, the utilization of an operating system (OS) is not mandatory to execute sim-
ple so�ware on sensor nodes. Nevertheless, to run complex so�ware of sophisticated appli-
cations or to coordinate time-critical processes like our self-organizing MAC protocol, an
operating system becomes essential. Moreover, an operating system also supports and facil-
itates the development and reusability of so�ware components, like drivers, modules, and
packages. However, the operating system has to meet our demands on the development of a
self-organizing MAC protocol for Wireless Sensor Networks, for instance a modular design
and real-time operation. �erefore, we decided in favor for SmartOS – a small, modular,
adapt, real-time operating system. Consequently, all our real-world testbeds (cf. Section 7.1)
are based on SmartOS version 2.7.666. A minimal SmartOS application (i.e., kernel plus
idle task) for the MSP430 MCU consumes 4 kB program ROM and 96 B RAM (cf. [18]).
�e SmartOS operating system is introduced in [24] and explained in detail in [18]. It pro-

vides fully preemptive and prioritized tasks together with a collaborative resource sharing ap-
proach. To facilitate real-time operation, SmartOS o�ers a sophisticated time management
with a local 64 bit timeline with a resolution of 1 µs. In addition, it implements an uni�ed in-
terrupt and resource concept with priority ceiling. �is allows the creation of periodic tasks
and a precise timestamping of internal and external events (cf. Section 5.4.2).
Moreover, a large inventory of drivers andmodules for SmartOS already is available. �is

makes the application development much easier. For instance, there exists a math library
for square root calculation (cf. [21]) as well as intersection point calculation (cf. [25, 127]),
an implementation of a Pseudo Random Number Generator (cf. Section 6.4.1), and drivers
for several sensors and actuators like acceleration sensor, stepper motor control, and ultra-
sound transducer (cf. [25, 18]). Furthermore, the lightweight MAC protocol SmartNET is
also available (cf. [13, 18]): �is wireless communication protocol provides an addressing
scheme and supports timestamping. �erefore, we adapted the SmartNET protocol for our
self-organizingMACprotocol extended-Desync and extended-Desync+, respectively, in
Section 5.6.1. Notably, our implementation approach can bemade applicable to amuchwider
class of radio transmitters making just minor modi�cations (cf. Section 5.6.1).

38

2.4 Sensor Node Framework

2.4.5 Sniffer

Finally, we want to pick up again the concept of the sni�er (cf. De�nition 2.29 as well as
[125]). Since each sensor node has just a local view with just limited knowledge about the
surrounding network and environment, the installation of a sni�er may o�er deeper insight
into the network’s information �ow. As mentioned in De�nition 2.29, a sni�er just receives
the packets from its one-hop neighbors, but does not transmit a packet itself. However, the
sni�er may transfer data about the received packets to a personal computer for monitoring
and controlling purpose. �is enables a meaningful comparison of real-world results and
simulation output. In fact, this valuable concept describes rather a role of a node than a type
of node.
Nevertheless, the sni�er is still part of the network, and thus, it is exposed to the same

(harsh) environmental conditions like the other nodes. �is is the reason why the sni�ermay
also miss �ring packets. Consequently, global and omniscient knowledge is not guaranteed.
Depending on the sni�er’s constraint graph, the exposure of a single sni�er may be su�cient
to completely cover the whole (multi-hop) network.

39

40

Part II

Desynchronization
Cuius rei demonstrationem mirabilem
sane detexi. Hanc marginis exiguitas
non caperet.

Pierre de Fermat

Abstract

�is part characterizes desynchronization as biologically inspired primitive. Based on this primitive we
describe in detail our self-organizing MAC protocol extended-Desync and extended-Desync+ , re-
spectively. �emain focus of our TDMAprotocol is on robustness against arbitrary topology dynamics.
As we will show, a straightforward adoption without further improvement of the primitive of desyn-
chronization as self-organizing MAC protocol for single-hop topologies is not su�cient for proper
operation in multi-hop networks. �erefore, we present the development process from the single-hop
MAC protocol Desync towards the extendedMAC protocol extended-Desync and eventually to the
extended-Desync+ protocol. �is extended multi-hop version is more versatile (i.e., not restricted
to speci�c network types) and more robust against arbitrary topology dynamics than single-hop vari-
ations.
Chapter 3 �rst introduces the mathematical model of pulse-coupled oscillators. �is mathematical
model is used not only to formalize the primitive of desynchronization, but also to illustrate its ap-
plicability for WSNs. Chapter 4 presents existing realizations of the primitive of desynchronization as
MAC protocol for single-hop as well as multi-hop topologies. Our approach of the multi-hop proto-
col extended-Desync is described in Chapter 5: �is extension implements the phase shi� propaga-
tion (PSP) – a mechanism which enables each node to gain information about its two-hop neighbor-
hood autonomously. However, due to the associated stale information problem in multi-hop topologies,
we had to make this �rst approach of a self-organizing MAC protocol more robust. �erefore, we in-
troduced probability as an additional protocol extension to relax this problem: �e eventually resulting
extended-Desync+ protocol is described in detail in Chapter 6.

Chapter 3

Desynchronization

Abstract

In this chapter, we take a closer look to the term desynchronization from De�nition 2.38.
�erefore, we �rst introduce the pulse-coupled oscillator (PCO) framework to synchronize
oscillators in Section 3.2. Its application to synchronize wireless sensor nodes is described in
Section 3.3. Section 3.4 motivates the focus shi� from synchronization to desynchronization.
Furthermore, we also identify the problems when applying desynchronization to Wireless
Sensor Networks based on the PCO framework.

3.1 Introduction

As already stated in preparation of De�nition 2.34, time synchronization is an important and
also well-understood service1 for several Wireless Sensor Network applications. Especially,
series of measured data are meaningful only when tagged with corresponding timestamps.
Moreover, the success of synchronized actions performed by distributed entities as concept
of coordination (cf. De�nition 2.33) also relies on time synchronization. However, "inverse"
to the process of synchronization is desynchronization (cf. De�nition 2.38). Indeed, the term
desynchronization has di�erent meanings – depending on the discipline. In the following, we
give two examples to gain a �rst impression:

• In the research �eld of computational neuroscience, desynchronization describes the
procedure when oscillators (in particular, the oscillatory activity of neurons) loose
their initially in-phase synchronization (cf. De�nition 2.35) due to miscellaneous in-
�uences. Such in�uences are for instance the modi�cation of system values, occurring
forces, or particular feedback from external components (cf. [145]).

• In [193], an attack scenario in Wireless Networks at transport layer (cf. Figure 2.6(a))
is also called desynchronization. In this scenario, an attacker permanently broadcasts
messages with disordered sequence numbers. �is will eventually force the receiver to
do nothing but request the retransmission of seemingly missing packets all the time.

�erefore, we have to further improve De�nition 2.38 within this chapter. �e pulse-
coupled oscillator (PCO) framework [118] by Mirollo and Strogatz is one popular mathe-
matical model to cover emerging properties within a (fully-connected) network of oscilla-
tors. Similar to the periodical pulses of oscillators, the primitive of desynchronization relies
on periodic transmissions. Hence, it seems appropriate to implement desynchronization as
MAC protocol for WSNs on the basis of this framework.
1See Section 8.2.1 for related work on time synchronization in Wireless Networks.

43

Chapter 3 Desynchronization

3.2 Pulse-Coupled Oscillator Framework

Inspired by the emergence of synchrony in nature, Mirollo and Strogatz established in [118]
a general framework of pulse-coupled oscillators. In particular, this framework was inspired
by the biological system of male �re�ies �ashing at night-time in southeast Asia and by the
model of self-synchronization of cardiac pacemakers as described by Peskin in [142]. �is
nature-inspired general framework of Mirollo and Strogatz relies on the following assump-
tions:

P1. �e network consists of a set N of oscillators.

P2. Periodically, at the frequency f = 1
T with (potentially individual) period T , each oscil-

lator �res, i.e., it emits an externally perceptible pulse2.

P3. Each oscillator resets its phase immediately a�er the pulse emission. Certainly, the
time required by each oscillator for a phase reset has to be short in comparison to the
time between two consecutively emitted stimuli of each oscillator.

P4. Each oscillator is able to perceive pulses from other oscillators.

De�nition 3.1 Globally Pulse-Coupled. �e oscillators are pulse-coupled when the recep-
tion of a pulse �red by another oscillator may impact the receiver’s behavior, e.g., the �ring
of its next pulse. If each oscillator receives the pulses �red by any other oscillator, i.e., the
corresponding network graph is complete (cf. De�nition 2.19), the oscillators are globally
pulse-coupled.

�e pulsatile coupling is an important characteristic of this framework: Each oscillator
adapts the time of its next emission according to the received pulses (during its current pe-
riod), i.e., according to its coupling with other oscillators. Hence, to synchronize globally
pulse-coupled oscillators, Mirollo and Strogatz use just a simple adjustment function in [118]:
Let the internal state x i of oscillator i ∈ N increase monotonically towards a threshold at
x i = 1. If the internal state x i of oscillator i ∈ N at time t is equal to 1, i.e., x i(t) = 1, os-
cillator i is �ring a pulse and subsequently resets its internal state x i back to 0. Due to the
pulse-coupling, for the subsequent internal state x j(t+) of any other oscillator j ∈ N ∖ {i}
holds

x j(t+) = min{x j(t) + ε, 1} . (3.1)

�at means that either the next internal state x j at time t+ of the oscillator j is pulled up by
a constant positive amount ε > 0, or the receiving oscillator j is even forced to immediately
�re a pulse as well (i.e., x j(t+) = 1).
However, to prove the convergence to the stable state of synchronized oscillators, Mirollo

and Strogatz additionally made the following idealistic assumptions (cf. [118]):

P5. �ere is no loss of pulses (or stimuli).

P6. Each pulse is detected instantly a�er emission, i.e., there is no delay in the message
propagation.

2A pulse can be considered as stimulus, e.g., an electromagnetic signal, a burst, or a broadcast – as in our case.

44

3.3 Using PCOs to Synchronize WSNs

P7. Noise is absent, i.e., there is not any other interfering signal to be misinterpreted as
pulse.

P8. Each oscillator is sensitive for another pulse immediately a�er the detection of a pre-
vious pulse, i.e., there is no rest period.

P9. As tightening of assumptionP2, all oscillators nowperfectly feature the same frequency
f , i.e., there is also no clock dri�.

P10. All computations are "perfect", i.e., the result of a computation is available immediately
with arbitrary precision (cf. continuous mathematics).

P11. �e oscillators are globally pulse-coupled (cf. De�nition 3.1).

Based on these (idealistic) assumptions P1 to P11, Mirollo and Strogatz prove in [118] that
for any set N of oscillators and for almost3 all initial states, a network of globally pulse-
coupled oscillators eventually4 becomes synchronized (cf. [118, 171]). Indeed, networks of
PCOs under these idealistic assumptions are very unlike for real-world scenarios. Notwith-
standing, several counterparts of such a synchronizing network5 can be found in nature, for
instance spiking neurons, �ashing �re�ies, chirping crickets, �ring cardiac pacemaker cells,
and the cycling of earthquakes (cf. [118, 171]).

3.3 Using PCOs to Synchronize WSNs

�e pulse-coupled oscillator framework as described in Section 3.2 o�ers several bene�ts:

B1. �e system behavior emerges solely from the interactions of the oscillators. Accord-
ing to De�nition 2.1, this is one prerequisite for self-organization and thus enables a
distributed control of the system.

B2. Due to the self-organizing nature, there is no need for a central coordinator determin-
ing the point in time when an oscillator has to emit a pulse. Such a central component
could limit the performance of the system (bottleneck) or even stop the system’s op-
eration (single point of failure). �erefore, we support the absence of such a central
control.

B3. Each oscillator operates on just locally available data, namely the received pulses. �is
allows each oscillator to react autonomously on each detected pulse.

B4. �erefrom, each oscillator can react fast on leaving or joining neighbors. �is enables
the system to scale well and to adapt fast to topology dynamics.

B5. Due to this adaptivity and fast reaction on topology dynamics, the entire system gets
more robust against erroneous nodes and node failures.

3�e set of initial states which will never synchronize has Lebesgue measure zero (cf. [118]).
4�e set of initial states without any oscillator’s adjustment also has Lebesgue measure zero (cf. [118]).
5At least the vast majority of the oscillators within such networks is synchronized.

45

Chapter 3 Desynchronization

Network type Pulse-Coupled Oscillators Wireless Sensor Networks
Connectivity globally pulse-coupled single-hop
Component oscillator (sensor) node
Stimulus externally perceptible pulse �ring (radio broadcast)
Communication full-duplex half-duplex

Table 3.1: Comparison of Pulse-Coupled Oscillators with Wireless Sensor Networks.

B6. Each oscillator is based on a simple (cf. [118]) and just local rule set. Consequently,
the computational task should be neither complex nor costly. �is makes the pulse-
coupled oscillator framework suitable for sensor nodes with just low computational
power (cf. De�nition 2.6).

�erefore, we exploit the bene�ts B1 to B6 of the self-maintaining pulse-coupled oscillator
framework for (de)synchronization within the domain of Wireless Sensor Networks.

3.3.1 Adaptation

Somemodi�cations of the framework fromMirollo and Strogatz in Section 3.2 are necessary
for transferring pulse-coupled oscillators to Wireless Sensor Networks:

C1. We have to substitute sensor nodes for oscillators.

C2. Hence, each node has to emit periodically (with period T) some sort of stimulus which
can be received by other nodes.

C3. Since all sensor nodes are able to interact wirelessly by de�nition (cf. De�nition 2.6),
and since a broadcast does not rely on a distinct target addressing scheme (cf. De�ni-
tion 2.27), we will use broadcast messages as stimuli.

C4. �e counterpart of a globally pulse-coupled network is the single-hop topology due to
its completeness.

C5. Due to the hardware limitations of typical sensor nodes (cf. De�nition 2.6), commu-
nication in a WSN is just in half-duplex mode.

Applying the modi�cations C1 to C5, the globally pulse-coupled (and idealistic) network
of oscillators from Section 3.2 complies well to a fully-connected (and idealistic) single-hop
topology of a Wireless Sensor Network. Table 3.1 brie�y compares the pulse-coupled oscilla-
tor framework with Wireless Sensor Networks.

De�nition 3.2 Firing, Firing Message. In order to distinguish clearly between a broadcast
as periodical stimulus (as requested in Section 3.3) and an ordinary (but maybe sporadic)
broadcast propagating another type of message, we call the periodical broadcast �ring and
the corresponding broadcast message �ring message. �is naming is in accordance with the
PCO framework from Section 3.2.

46

3.4 Using PCOs to Desynchronize WSNs

3.3.2 Related Work

�ePCO framework in Section 3.2 always aims to synchronize the pulses of all network com-
ponents. Due to the importance of synchronization services for some applications, successful
implementations of synchronization protocols for WSNs already exist. In the following, we
present a selection of some related synchronization protocols.
Assuming the idealistic conditions P1 to P10 from Section 3.2 but excluding condition

P11, Lucarelli and Wang implemented in [108] a decentralized synchronization protocol for
multi-hop Wireless Sensor Networks. �e synchronization update rules are based on the
PCO framework from Section 3.2. Additionally, this framework utilizes nearest neighbor
communication to handle time varying topologies. �is enables the protocol to handle a
non globally pulse-coupled network with certain topology dynamics like joining or leaving
nodes. �erefore, this implementation o�ers synchronization under ideal assumptions for
multi-hop networks, i.e., ideal networks without global coupling.
However, the optimal conditions from Section 3.2 are unlikely for real-worldWireless Sen-

sor Networks: For instance, noise in real-world deployments is as undeniable as the absence
of continuous mathematics at sensor nodes. �erefore, Hong and Scaglione implemented
in [84] the PCO framework for a fully-connected WSN under more realistic conditions, i.e.,
this protocol considers packet loss, noise, and propagation delay. Furthermore, a refractory
period (cf. Section 6.3) is integrated into this synchronization protocol to further stabilize the
system: �is rest period succeeds each reception of a �ring message. It disables the reception
of further �rings for a speci�c amount of time and thus eliminates in�nite feedback loops.
Finally, Werner-Allen et al. implemented in [192] a synchronization protocol based on

the PCO framework from Section 3.2. Instead of immediate responses on each incoming
impulse, each node �rst records all incoming pulses within one period and "reacts" all at
once at the time of its next �ring. As a consequence, this protocol is able to synchronize the
nodes of a multi-hop network even under more realistic radio e�ects, like message delay or
packet loss.

3.4 Using PCOs to Desynchronize WSNs

So far, we presented the PCO framework to synchronize a network of oscillators in Section 3.2
as well as a network of nodes in Section 3.3. However, in some natural systems, the main
objective is not "synchronization" as exempli�ed so far. In fact, there are (biological) systems
in which the system components do not synchronize but rather desynchronize according to
De�nition 2.38. �erefore, each system component tries to maximize the phase di�erence
towards its neighbors resulting in a regular overall pattern. Indeed, such a desynchronizing
system can be speci�ed by (a variant of) the PCO framework.
For instance, di�erent gaits of an animal can be emulated by a set of correspondingly pulse-

coupled oscillators representing the animal’s extremities (cf. [171]). Another, but also well-
analyzed biological system is the male Japanese Tree Frog (Hyla japonica): It uses mating
calls to attract female Japanese tree frogs. Aihara et al. experimentally observed in [2] that
two male Japanese tree frogs anti-phase synchronize6 their mating calls (with just little over-
lapping). Using the PCO framework, this behavior was mathematically formalized in [3]. In
6Please recall Observation 2.13 here.

47

Chapter 3 Desynchronization

addition, this mathematical model was further extended to desynchronize a complete net-
work of three7 alternately calling male Japanese tree frogs (cf. Section 4.5).
In all scenarios mentioned within this Section 3.4 so far, the components do not synchro-

nize �rst and negotiate an appropriate phase pattern a�erward. Instead, the system com-
ponents use self-maintaining adjustment rules to generate the desired (de)synchronization
pattern autonomously and right from the start. �is makes these systems robust for topology
dynamics, like leaving or joining beings or network components. �is corresponds well with
our focus on a self-organizing MAC protocol which is based on the primitive of desynchro-
nization for multi-hop topologies without a central control and without explicit time syn-
chronization (cf. Section 1.2). �erefore, we can enhance the adaptation of the PCO frame-
work to aWSN from Section 3.3. Indeed, a �ring message does not push the receiving nodes
to �re in unison, but each node has to adjust its next time of �ring in accordance to the
received �ring messages of its neighbors. Hence, based on this PCO framework, implemen-
tations of the primitive of desynchronization asMAC protocol forWSNs already exist. �ese
implementations mainly di�er

• in the algorithm, which estimates the next time of �ring of a node,

• in the set of relevant �rings, i.e., which received �rings are considered for the estima-
tion at each period, and

• in the intended �eld of application and type of topology.

In the next chapter, we give an overview on available implementations of such MAC proto-
cols for Wireless Sensor Networks. However, we will see that all these protocols are either
restricted to particular types of networks or are not robust against topology dynamics (cf.
Section 1.2).

7�e phase di�erence between two subsequent calling tree frogs equals T/3 then.

48

Chapter 4

Desynchronization as MAC Protocol

Abstract

A�er the introduction of the primitive of desynchronization, we present in this chapter var-
ious implementations of MAC protocols applying this primitive. As a start, we develop a
generic framework which implements the primitive of desynchronization as MAC protocol
for WSNs in Section 4.1. Based on this framework, we draw some conclusions regarding
single-hop as well as multi-hop topologies in Section 4.2. Next, we describe some practi-
cal implementations: We begin in Section 4.3 with the midpoint approach, which is quite
popular due to its simple computation. Furthermore, this approach will be the basis for our
algorithm in Chapter 5 and Chapter 6, respectively. Next, we introduce the local max degree
approach in Section 4.4. �e approach depicted in Section 4.5 is inspired by the mating be-
havior of male Japanese tree frogs as mentioned before (cf. Section 3.4). Finally, the arti�cial
force �eld approach, which is based on the pattern formation of mobile robots, is explained
in Section 4.6.

4.1 Generic Framework

In this section, we introduce the generic framework implementing the primitive of desyn-
chronization as MAC protocol for WSNs. For a more comprehensive formalization, we de-
�ne a unique identi�er (ID) i ∈ N+ for each (active) node (cf. De�nition 2.29). Moreover,
we do not further distinguish between the identi�er and the node itself in the set N of (ac-
tive) nodes, but, without loss of generality, let them be numbered consecutively 1 ≤ i ≤ ∣N ∣.
For a common understanding, we have to specify the modulo operation �rst, due to several
conventions possible.

De�nition 4.1 Modulo. Given the natural number a ∈ Z (called dividend) and the natural
number b ∈ Z∖{0} (called divisor). �emodulooperation a mod b calculates the remainder
r of the integer division a/b as

r = a mod b

= a − b ⋅ (sign(a) ⋅ sign(b) ⋅ ⌊ ∣a∣
∣b∣

⌋)

with

sign(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 x > 0
0 x = 0
−1 x < 0

.

49

Chapter 4 Desynchronization as MAC Protocol

true time

tesffo tnatsnoc

kcolc gnitfird

(a) Simple scheme of potential ratio of
local clock time to true time.

T0

T fast = T + e fast

T fast

Tslow = T + e slow

Tslow

T true = T

(b) Examples for individual periods.

Figure 4.1: Exempli�cation of local clock and its impact on period T .

Consequently, the algebraic sign of the result r of the modulo operation within this work
always equals the algebraic sign of the dividend a, i.e., sign(r) = sign(a). Consequently,

− 5 mod +3 = −2
and also − 5 mod −3 = −2 holds.

�is De�nition 4.1 is in accordance with the implementation of Java 1.7.0 (cf. [75]) used for
our simulator (cf. Section 2.3) as well as of the msp430-gcc 3.2.3 compiler used for the pro-
gramming of the real-world sensor nodes (cf. Section 2.4).

Observation 4.1. For ∣a∣ < ∣b∣ holds a mod b = a.

In compliance with the biologically inspired primitive of desynchronization (cf. Chap-
ter 3), each node of the network has to �re (cf. De�nition 3.2) periodically with a common
period T ∈ N+ at the common frequency

f = 1
T
. (4.1)

Since sensor nodes (and computers in general) are �nite state machines, the measurement
and thus the internal representation of the continuous physical quantity "time" within such
digital systems is always discrete with t ∈ N0.
Apart, the common period T is not identical for all nodes due to individual clock dri�

and the resulting limitations in the frequency stability. Figure 4.1(a) shows a scheme of the
potential ratio of a node’s local clock time to the true time. �erefore, T i denotes the period
T measured with the local clock of node i. Consequently, T i = T + γ i with a certain amount
γ i ∈ Z typically holds. �is phenomenon is overdrawn in Figure 4.1(b) with γfast < 0 and
γslow > 0.
Every time a node i ∈ N completes its period, it broadcasts its �ring packet, resets its phase

immediately, and updates its next time of �ring t+i ∈ N0 based on its current time of �ring

50

4.1 Generic Framework

t i ∈ N0. Similar to the notation used for a node’s individual period, the term t ij denotes the
�ring time t j of node j from the local point of view (i.e., registered with the local clock) of
node i. Consequently, the meaning of the term t ii is always identical with the term t i , i.e.,
t ii = t i always holds. If the context clearly speci�es node i’s point of view then we will mainly
just use t j instead of t ij for the sake of convenience. Nevertheless, this di�erentiation will be
relevant for the exchange of timing information in Section 5.5.
Let ϕ(t i , t) ∈ (−T ,T) be the phase shi� of a node i ∈ N since its current �ring at time t i

and a given point in time t ∈ N0 as

ϕ(t i , t) = (t − t i) mod T , (4.2)

utilizing the modulo operation from De�nition 4.1. Please note that the phase shi� ϕ(t i , t)
may be negative, which will be relevant in Section 5.3.

Observation 4.2. If ∣t − t i ∣ ≤ T always holds (cf. Observation 4.1), the phase shi� has not to
be normalized to the period T , i.e., ϕ(t i , t) = t − t i holds.

When node i ∈ N receives a �ring packet of its one-hop neighbor j ∈ N1(i), node i records
the time of reception according to its local clock as time t j . Using Eq. (4.2), node i is able to
calculate the phase shi� ϕ(t i , t j) towards this neighbor j. For example, ϕ(t i , t j) = 0.25 ⋅ T
means that node i has already �nished a quarter of its current periodwhennode j transmitted
its �ring packet at time t j .
Knowledge about the (�ring times of the) nodes of its constraint graph G⃗C(i) (cf. Def-

inition 2.28) is su�cient for a node i ∈ N to solve the hidden terminal problem in a self-
organizing manner (cf. [49]). �erefore, node i relies on the (dynamic) set

NR(i) ⊆ NC(i) ∖ {i} (4.3)

of relevant nodes to update its next time of �ring t+i . �at means, if a relevant node j ∈ NR(i)
of node i ∈ N changes its time of �ring, then node i has to adjust its next time of �ring
t+i correspondingly as a consequence. �e elements of the set of relevant nodes depend on
the practical implementation, i.e., the vague speci�cation in Eq. (4.3) will be de�ned more
accurately within each subsection describing the corresponding relation of the particular
implementation. Anyway, a nonempty set NR(i) /= ∅ of relevant nodes always contains the
phase neighbors of node i, i.e., its predecessor p(i) ∈ NR(i) as well as its successor s(i) ∈
NR(i). �ese phase neighbors will be of special interest.

De�nition 4.2 Phase Neighbor, Successor, Predecessor. A node j ∈ NR(i) is called phase
neighbor of node i ∈ N , if the �ring of node j happens – from the (limited) knowledge of
node i – just before or just a�er the �ring of node i itself. Hence, we call the successive phase
neighbor s(i) ∈ NR(i), which broadcasts its �ring packet just a�er node i, successor, and the
previous phase neighbor p(i) ∈ NR(i), which broadcasts its �ring packet just before node i,
predecessor. Formally stated,

s(i) = argmin
s∈NC(i)∖{i}

ϕ(ts , t i) and p(i) = argmin
p∈NC(i)∖{i}

ϕ(t i , tp). (4.4)

51

Chapter 4 Desynchronization as MAC Protocol

s' p i s

Figure 4.2:Within this line graph L4, nodes s and s′ are transmitting concurrently without
any collision, i.e., ts = ts′ holds. In addition to node p, which is the predecessor p(i) of node
i, nodes s and s′ both are candidates to be the successor s(i) of node i.

Observation 4.3. From a nonempty set NR(i) /= ∅ of relevant nodes of node i directly
follows the existence of the phase neighbors of a node i ∈ N . �us, every node i with degree
d i ≥ 1 has one predecessor p(i) = j ∈ NC(i) ∖ {i} as well as one successor s(i) = k ∈
NC(i) ∖ {i}.

Observation 4.4. It may happen that successor and predecessor are the very same node, i.e.,
s(i) = p(i).

Observation 4.5. In single-hop topologies the packets of concurrently transmitting nodes
collide at all times. �erefore, the result of the argmin function fromDe�nition 4.2 is injective
and well-de�ned. In multi-hop topologies the packets of concurrently transmitting nodes
may not collide. If there are nodes with identical transmission times in the set of relevant
nodes, the result of the argmin function fromDe�nition 4.2may be notwell-de�ned. Instead,
the argmin function could return a set of identi�ers (cf. Figure 4.2). Since our algorithm
rather relies on the phase shi� between nodes than on the node’s ID, which is accessed just
for a more comprehensive formalization, w.l.o.g. we will choose a node from the result set by
random as successor and predecessor, respectively. Indeed, this random selection is valid as
a smarter selection of successor (and predecessor, respectively) from such a result set has no
real e�ect on the system behavior (cf. Lemma 4.8).

According to the primitive of desynchronization, eachnode tries tomaximize the temporal
distance of its time of �ring towards its relevant nodes. �erefore, each node i ∈ N uses an
adjustment function

φ i (NR(i), t) ∈ (−T ,T) (4.5)

to determine its correction value at time t ∈ N0 depending on its current set NR(i) of rel-
evant nodes. Using t i in Eq. (4.5), this function computes the actual displacement of node i
between its current time of �ring t i and its optimal time of �ring. Finally, node i is able to
set its next (absolute) time of �ring t+i depending on the result of its adjustment function, its
current time of �ring t i , and the common period T as

t+i = t i + T + φ i (NR(i), t i) . (4.6)

A�er some iterations, i.e., the so-called settling phase, each adjustment function converges
to a (local) �xed-point. With it, thewhole system is in the stable state of (perfect) desynchrony.

52

4.2 General Conclusions

De�nition 4.3 Desynchrony, Perfect Desynchrony. �e system is in the stable state of
desynchrony, if there exists a point in time t such that the adjustment function of each node
i ∈ N remains constant1 for any later point in time t++ > t, i.e.,

φ i (NR(i), t++) = φ i (NR(i), t) . (4.7)

�e system is in the stable state of perfect desynchrony, if each node respects the same (tem-
poral) distance to its relevant nodes, i.e., the adjustment function converges to 0: �ere exists
a point in time t such that the system is in the stable state according to Eq. (4.7), and addi-
tionally the adjustment function of each node i ∈ N for any later point in time t++ > t results
in

φ i (NR(i), t++) = 0. (4.8)

Once, the system is in the stable state of (perfect) desynchrony, the phase shi� between a
node i ∈ N and any of its relevant nodes j ∈ NR(i) remains constant – apart from clock dri�s
and adaptations to topology changes (cf. Section 7.5).

4.2 General Conclusions

Solely based on the generic framework from Section 4.1 and independent of a speci�c im-
plementation approach, we can already draw some conclusions. �erefore, and based on our
initial enumeration in [122], we additionally identify the following observations regarding
the primitive of desynchronization as MAC protocol. �ese observations are discussed for
single-hop topologies in Section 4.2.1 and for multi-hop topologies in Section 4.2.2.

4.2.1 Single-Hop Topology

Since the network graph of a single-hop topology is complete (cf. De�nition 2.23), the set
N of nodes equals the union of any node i ∈ N and its one-hop neighborhood N1(i), i.e.,
for each node i ∈ N holds N = N1(i) ∪ {i}. Indeed, we assume the shared communication
medium to be error-free, i.e., there is no packet loss due to noise or hardware defects. Hence,
a packet transmission is successful, if there is concurrently not any other packet transmission.
�at means, just one single node of the complete network is allowed to transmit at any point
in time. With it, we can draw the following conclusions for desynchronization in single-hop
topologies:

Lemma 4.1 Single-Hop S1. All nodes of a single-hop topology have the very same degree.

Proof. According to De�nition 2.23, the network graph of a single-hop topology is complete,
and it consists of the set N of nodes. �erefore, for each node i ∈ N holds

d i = ∣N ∣ − 1. (4.9)

1Technically speaking, the nodes are out-of-phase synchronized (cf. De�nition 2.36), if the adjustment function
converges to a constant value being not equal to 0.

53

Chapter 4 Desynchronization as MAC Protocol

Lemma 4.2 Single-Hop S2. If node i ∈ N is phase neighbor of another node j ∈ N1(i),
then node j in turn is the opposing phase neighbor of i. For instance, let w.l.o.g. node i be
predecessor of node j, i.e., p(j) = i, then node j is successor of node i, i.e., s(i) = j.

Proof. Node i ∈ N is phase neighbor of node j ∈ N1(i). Let w.l.o.g. node i be successor of
node j, i.e., s(j) = i. According to De�nition 4.2, t i is the smallest time for which t i > t j
holds. Assuming, node k /= j is the predecessor of node i, i.e., p(i) = k. According to
De�nition 4.2, tk is the greatest time for which tk < t i holds. Due to the completeness of the
corresponding network graph of a single-hop topology (cf. De�nition 2.23), node k ∈ N1(i)∩
N1(j) holds. Hence, t i is the smallest time for which t i > tk holds. �is is a contradiction
to s(j) = i, where t i is the smallest time which holds t i > t j . �erefore, tk = t j must hold.
If j /= k, this would cause collisions at node i due to the single-hop topology. Moreover, this
behavior is contradictory to our assumption that just one single node of the complete network
is allowed to transmit at any point in time. Hence, j = k must hold, and thus p(i) = j.

Lemma 4.3 Single-Hop S3. Moreover, node i ∈ N is the opposing phase neighbor of its phase
neighbors j ∈ N1(i) and k ∈ N1(i), i.e., node i is successor of solely one neighbor j as well as
predecessor of solely one neighbor k.

Proof. Assuming, node i ∈ N has more than one successor (the case for more than one pre-
decessor is analogous): In compliance with De�nition 4.2, the �ring time of each successor
of node i is the smallest time which is greater than t i . �is means that for any two successors
s(i), s′(i) of node i with s(i) /= s′(i) has to hold ts(i) = ts′(i). Using the argumentation from
the proof of Lemma 4.2, s(i) = s′(i) has to hold. �is is a contradiction to our assumption
that node i hasmore than one successor. Hence, node i has solely one successor s(i) ∈ N1(i).
�e rest of Lemma 4.3 follows directly from Lemma 4.2.

Lemma 4.4 Single-Hop S4. Every node i ∈ N with degree d i ≥ 1 is always predecessor p(j) =
i and successor s(k) = i of its phase neighbors j, k ∈ N1(i).

Proof. Follows directly from Lemmas 4.2 and 4.3.

Lemma 4.5 Single-Hop S5. If the system is in the stable state of perfect desynchrony, the
temporal distance between each pair of subsequently �ring nodes then equals T/ ∣N ∣.

Proof. According to De�nition 4.3, each node i ∈ N of a system in perfect desynchrony
respects the same (temporal) distance to its relevant nodes. Due to the primitive of desyn-
chronization, the (temporal) distance of node i’s time of �ring towards each element of its
set NR(i) of relevant nodes is maximized. Using Lemma 4.2, for the phase neighbors s(i)
and p(i) of each node i ∈ N holds ϕ(t i , ts(i)) = ϕ(tp(i), t i). �erefore, all ∣N ∣ nodes are
distributed in temporal equidistance along the common period T , i.e., the temporal distance
between each pair of subsequently �ring nodes is equal to T/ ∣N ∣.

Lemma 4.6 Single-Hop S6. For a collision-free communication within a single-hop topology
the minimum required number of distinct time slots within period T equals the size ∣N ∣ of the
network.

54

4.2 General Conclusions

Proof. �e network graph of a single-hop topology is complete (cf. De�nition 2.23). In con-
junction with Lemma 4.1, for a collision-free communication the period T has to support at
least

max
i∈N

{∣N1(i)∣ + 1}
(2.3)= max

i∈N
{d i + 1} (4.10a)

(4.9)= ∣N ∣ − 1+ 1 (4.10b)
= ∣N ∣ (4.10c)

distinct time slots.

4.2.2 Multi-Hop Topology

Since the network graph of amulti-hop topology is not complete (cf. De�nition 2.24), the hid-
den terminal problem (cf. De�nition 2.25) is inherent to multi-hop topologies. Once more,
we assume the shared communication medium to be error-free, i.e., there is no packet loss
due to noise or hardware defects. Hence, a packet transmission is successful, if there is no
other packet transmission at the same time within the communication range of the receivers.
�at means, two or more nodes of the systemmay be able to transmit a radio packet concur-
rently without any interference. With it, we can draw the following conclusions for desyn-
chronization in multi-hop topologies:

Lemma 4.7 Multi-HopM1. �e degree of the nodes in a multi-hop topology may di�er. How-
ever, for each node i ∈ N holds d i ≤ ∣N ∣ − 1.

Proof. According to De�nition 2.24, the network graph of a multi-hop topology is not com-
plete, but it consists of the set N of nodes. �erefore, for each node i ∈ N holds d i ≤ ∣N ∣ − 1.
�e sample scenario in Figure 4.3(a) depicts di�erent node degrees in a multi-hop topology:
da = 1, but db = 2.

Lemma 4.8 Multi-Hop M2. If node i ∈ N is phase neighbor of another node j ∈ N, then
node j needs not to be the opposing phase neighbor of i. For instance, let w.l.o.g. node i be
predecessor p(j) = i of node j, then node j need not to be successor of node i in turn, i.e., s(i) /= j
may hold. Instead, another node k ≠ j is successor s(i) = k of node i then (cf. Figure 4.3(a)).

Proof. According to De�nition 4.2, for both phase neighbors s(j) and p(j) of any node j
holds s(j), p(j) ∈ N1(j) ∪ N2(j). On the basis of Lemma 4.7, let node i ∈ N2(j) be the
predecessor p(j) = i of node j ∈ N2(i), but for i’s successor holds s(i) ∈ N1(i) with s(i) /∈
N1(j) ∪ N2(j). �erefore, node j cannot be the successor of node i. Exempli�ed by the
sample scenario in Figure 4.3(a), let p(d) = b and d = s(b) with a ∉ N1(d) ∪ N2(d), i.e.,
node b is predecessor of node d, and node d is successor of node b. Moreover, for node a
holds p(a) = b, i.e., node b is also predecessor of node a. However, node a is not successor
of node b, which is node d. �erefore, node a is not the opposing phase neighbor of its own
phase neighbor node b.

For the next conclusion, we have to introduce the concept of a so-called multiple phase
neighbor:

55

Chapter 4 Desynchronization as MAC Protocol

b=p(a) ca=s(b) d=s(b)

da

bc

i p(i) s(i)
a b c
b c d
c a b
d b c

/

(a) Here, node b = p(a) is predecessor of node a,
node d = s(b) is successor of node b.

da

c

e

b

i p(i) s(i)
a b c
b e d
c d e
d b c
e c b

dcb

e

a
(b) Here, node a is neither predecessor nor succes-
sor of any node, since node d = s(b) is successor
of node b, node d = p(c) is successor of node c.

Figure 4.3: Example scenarios on the general conclusions on multi-hop topologies. In both
examples, node a and node d send at the same time without causing any collisions.

De�nition 4.4 Multiple Phase Neighbor. Assuming, node i ∈ N is successor of all ele-
ments of a set NS(i) ⊆ N ∖ {i} of nodes as well as predecessor of all elements of (another)
set NP(i) ⊆ N ∖ {i} of nodes at the same time. Consequently, all nodes within the union
NS(i)∪NP(i) share the same phase neighbor i. If ∣NS(i) ∪NP(i)∣ > 2 holds, we call node i a
multiple phase neighbor. Exempli�ed by the sample scenario in Figure 4.3(b), node b is amul-
tiple phase neighbor since NS(b) = {e} and NP(b) = {a, d} with ∣NS(b) ∪NP(b)∣ = 3 ≥ 2.

Observation4.6. In general, a node i on its own is not able to discoverwhether it is amultiple
phase neighbor, or not. However, based on just locally available information, as a start the
node’s degree d i (cf. De�nition 2.16) may be an indicator in this regard.

Lemma 4.9 Multi-Hop M3. According to Observation 4.5, the argmin function from Def-
inition 4.2 may return a set of nodes. As a result, the phase neighbor s(i) and p(i) may be
not well-de�ned. �erefore, in multi-hop topologies a node i ∈ N could be successor of all ele-
ments of a set NS(i) ⊆ N ∖ {i} of nodes as well as predecessor of all elements of (another) set
NP(i) ⊆ N ∖ {i} of nodes at the same time. If node i is a multiple phase neighbor according to
De�nition 4.4, i.e., ∣NS(i) ∪NP(i)∣ > 2 holds, the whole system could be destabilized when this
multiple phase neighbor i adjusts its next time of �ring. �is will eventually lead to �uctuations
of transmission times.

Proof. In consequence to Lemma 4.8, a node i ∈ N needs not to be the opposing phase
neighbor of its own phase neighbors s(i) and p(i). Indeed, yet another node j ∈ N has to
take over the role of at least one opposing phase neighbor (cf. Observation 4.3). Since each
node always has a single successor as well as a single predecessor according to De�nition 4.2

56

4.2 General Conclusions

in combinationwithObservation 4.5, node j could be amultiple phase neighbor according to
De�nition 4.4. Now, let node j be such a multiple phase neighbor, i.e., ∣NS(i) ∪NP(i)∣ > 2
holds. If node j adjusts its next time of �ring, all nodes within the union NS(j) ∪ NP(j)
could be a�ected at once: Either, a node k ∈ NS(j) ∪ NP(j) also has to adjust its next time
of �ring according to the adjustment of its phase neighbor j and in compliance with the
primitive of desynchronization. Or, node j is not a phase neighbor of node k anymore, i.e.,
k /∈ NS(j) ∪ NP(j) holds, and node k has to adjust itself according to another node l ∈
N1(k) ∪N2(k) with l /= j. Exempli�ed by the sample scenario in Figure 4.3(a) again, node c
ismultiple phase neighbor of the other nodes a, b, and d, i.e.,NS(c)∪NP(c) = {a, b, d}.

Lemma 4.10 Multi-Hop M4. In multi-hop topologies there may be nodes, which are either
only predecessors (but not successors) of other nodes, or which are only successors (but not prede-
cessors) of other nodes, or which are none of both (neither successor nor predecessor). Moreover,
a node i ∈ N being not a relevant node of any other node may vary its next time of �ring within
a certain time interval not triggering the adjustment of any other node’s next time of �ring.

Proof. �e �rst part of Lemma 4.10 follows from Lemmas 4.8 and 4.9. For instance, the
scenario shown in Figure 4.3(a) exempli�es that node d is just successor, but not predecessor,
whereas node a is just predecessor, but not successor. Next, assuming node i ∈ N is not a
relevant node of any other node, i.e., for all nodes j ∈ N holds i /∈ NR(j). In consequence of
Eq. (4.6), the time of �ring of node i is irrelevant for any other node’s time of �ring, since node
i is not relevant at all. �erefore, if node i varies its time of �ring in a certain time interval,
i.e., especially not to become a relevant node, its adjustment does not a�ect the adjustment
of any other node’s next time of �ring. In the sample scenario shown in Figure 4.3(b), node
a is neither successor nor predecessor of another node.

Lemma 4.11 Multi-HopM5. If a multi-hop system is in the stable state of perfect desynchrony,
the temporal distance between each pair of subsequently �ring nodes may not equal T/ ∣N ∣
anymore. Moreover, the temporal distance between a node i ∈ N and its phase neighbors s(i)
and p(i) may now di�er from the temporal distance between another node j ∈ N with j /= i
and its phase neighbors s(j) and p(j).

Proof. �e �rst part of Lemma 4.11 directly follows from Lemma 4.7. Next, assuming nodes
i, j ∈ N with d i /= d j . From ∣N1(i)∣ /= ∣N1(j)∣ and in accordance with Eq. (4.3) could follow
∣N1(i) ∪N2(i)∣ /= ∣N1(j) ∪N2(j)∣. In the worst case, each node within the constraint graph
of node i has a unique time of �ring, i.e., for any pair of nodes k, l ∈ NC(i) holds tk /= t l . If
the same holds for node j, then the temporal distance between node i and its phase neighbors
may be di�erent to the temporal distance between node j and its phase neighbors.

Lemma 4.12 Multi-Hop M6. Besides, in multi-hop topologies there could be two (or more)
nodes within the node set NC(i) of the constraint graph of a node i ∈ N sharing the very same
time of �ring without causing interferences at all (cf. De�nition 2.26).

Proof. Let two nodes j, k ∈ NC(i) of node i ∈ N with j /= k. Assuming, j /∈ N1(k) ∪ N2(k)
and k /∈ N1(j) ∪N2(j) holds, i.e., both nodes are more than two hops away from each other.
�erefore, t j = tk may hold without interference (cf. De�nition 2.25). Exempli�ed by the
sample scenario in Figure 4.3(a) again, this would hold for nodes a, d ∈ NC(c) = {a, b, c, d}
with ta = td .

57

Chapter 4 Desynchronization as MAC Protocol

Protocol Year Approach NR(i) Topology References
Desync 2007 Midpoint p(i), s(i) single-hop [50, 49]
Scattering 2007 Midpoint N1(i) single-hop2 [73]
Frog Call 2009 Frog-Call Inspired N1(i) single-hop [132, 131]
M-Desync 2009 Local Max Degree D i acyclic multi-hop [92]
Desync-Ort 2011 Midpoint p(i), s(i) single-hop [173]
V-Desync 2012 Midpoint p(i), s(i) single-hop [159]
Dwarf 2012 Arti�cial Forces N1(i) single-hop [39]
M-Dwarf 2012 Arti�cial Forces N1(i) ∪ N2(i) multi-hop [38]
extended-Desync 2009 Midpoint p(i), s(i) multi-hop [128, 121, 122]
extended-Desync+ 2012 Midpoint p(i), s(i) multi-hop [124, 126]

Table 4.1: A short comparison of several self-organizing MAC protocols implementing the
primitive of desynchronization.

Lemma 4.13 Multi-HopM7. For a collision-free communication within amulti-hop topology
the su�cient number of distinct time slots within period T equalsmax

i∈N
{∣NC(i)∣}.

Proof. In general, a su�cient number of time slots for �rings to support a collision-free com-
munication within the network may be less or equal to the size ∣N ∣ of the network. How-
ever, although all nodes share the same communication medium, nodes which are more
than two hops (cf. De�nition 2.13) away from each other could also transmit their �rings
concurrently without causing a collision, thus reducing the number of required slots. From
a local perspective of a node j ∈ N , each element of the node set NC(j) of the constraint
graph of this node j ∈ N requires a distinct time slot within period T . In the worst case,
node j ∈ N has the highest the cardinality ∣NC(j)∣ of its node set NC(j) within the network,
i.e., ∣NC(j)∣ = max

i∈N
{∣NC(i)∣} holds. �erefore, for a collision-free communication within a

multi-hop topology the su�cient number of distinct time slots within period T is equal to
max
i∈N

{∣NC(i)∣}. Since the minimum number of distinct time slots within period T may be
even smaller according to Lemma 4.12, the given threshold is just an upper bound.

Observation 4.7. As for single-hop topologies, each node of a (multi-hop) star topology re-
quires its own, distinct time slot within period T for a collision-free communication. �ere-
fore, at least ∣N ∣ time slots are required.

Observation 4.8. In consequence of Observation 4.7, if the system is in the stable state of
perfect desynchrony, the temporal distance between each pair of subsequently �ring nodes
of a star topology also equals T/ ∣N ∣ (cf. Lemma 4.5).

Observation 4.9. For any star topology holds i = s(p(i)) and i = p(s(i)) (cf. Lemma 4.2).

In the following Sections 4.3 to 4.6, we describe a selection of speci�c implementations of
this generic framework for desynchronization. Table 4.1 overviews these implementations
for a node i ∈ N with focus on the realization

• of its set NR(i) of relevant nodes,
2Using an additional central unit, even acyclic multi-hop topologies are supported.

58

4.3 �e Midpoint Approach

• of its adjustment function φ i (NR(i), t), and

• of the type of topology for which the particularMACprotocol was intended to operate.

4.3 The Midpoint Approach

Due to its small set of nodes to be considered and its simple mathematical calculations, the
midpoint approach is straight forward and easy to use. Hence, these characteristics make this
approach feasible for the operation in constrained embedded systems and thus quite popular
in WSNs. For instance, the �rst implementation of the primitive of desynchronization as
MAC protocol Desync [50] for Wireless Sensor Networks utilizes this approach. Moreover,
our robust MAC protocol for multi-hop topologies extended-Desync+ (cf. Chapter 6) is
also based on this approach.
To update its next time of �ring, node i just relies on the data of its phase neighbors, i.e.,

its predecessor p(i) and its successor s(i) (cf. De�nition 4.2). �erefore, the set NR(i) =
{p(i), s(i)} of relevant nodes of node i has at most these two members. According to the
generic framework from Section 4.1 and to maximize its temporal distance towards its rel-
evant nodes, each node i aims on the midpoint of its phase neighbors’ time of �ring. �is
adjustment towards the average would lead the system to the desynchronized state in which
all nodes �re at the midpoints of their phase neighbors’ time of �ring. For this purpose, node
i has to capture the reception times ts(i) and tp(i) of the corresponding �rings from its phase
neighbors. With it, node i can calculate the (relative) phase shi�s ϕ(t i , ts(i)) and ϕ(tp(i), t i),
respectively. Hence, node i is able to compute its adjustment factor εt i with respect to its cur-
rent time of �ring t i as

εt i =
ϕ(t i , ts(i)) − ϕ(tp(i), t i)

2
(4.11a)

(4.2)=
(ts(i) − t i) mod T − (t i − tp(i)) mod T

2
. (4.11b)

Observation 4.10. If Observation 4.2 is applicable, Eq. (4.11b) simpli�es to

εt i =
(ts(i) − t i) − (t i − tp(i))

2
(4.12a)

=
ts(i) + tp(i)

2
− t i . (4.12b)

�e adjustment factor speci�es the actual di�erence between the current time of �ring of
node i and its optimal time of �ring at this stage. With it, the adjustment function from
Eq. (4.5) at time t i equals

φ i (NR(i), t i) = α ⋅ εt i (4.13a)

4.11= α ⋅
ϕ(t i , ts(i)) − ϕ(tp(i), t i)

2
. (4.13b)

�e jump size parameter α ∈ [0, 1] regulates how fast a node moves towards the midpoint
of its phase neighbors. Indeed, the boundaries of this interval will only be considered in
exceptional cases within this work:

59

Chapter 4 Desynchronization as MAC Protocol

firing

i

p(i)

s(i)

ϕ (ti , ts(i))

ϕ
(tp(i) ,ti)

mid

(a) �e network of �ve nodes during the
settling phase.

firing p(i)

i

s(i)

(b) �e network of �ve nodes reached the
stable state of perfect desynchrony.

+ T

time

tp(i) ti tj tk

ϕ(ti , ts(i))

ts(i) t+i t+i

ϕ(tp(i) , ti)

tp(i)
+ t s (i)

+

αεt i

(c) Detail of the timeline during the settling phase of the network of �ve nodes, and
of node i in particular.

Figure 4.4: Snapshots of the progress of desynchronization for a network consisting of �ve
sensor nodes. �e circumference of the circle corresponds to the common period T .

• Setting α = 0 means no movement at all. �is is not desired in general, since it would
simply disable this approach.

• Setting α = 1 forces the node to always jump directly onto the current midpoint of
its phase neighbors without any damping. �is straight behavior could result in the
emergence of new but unstable con�gurations (cf. [73] as well as Section 7.3).

In [50], Degesys et al. suggest α = 0.95 as damping factor for single-hop topologies. However,
further analysis of an optimal value for the damping factor α for multi-hop topologies is
mandatory and can be found in Section 7.3. A snapshot of this settling phase is depicted in
Figure 4.4(a), the corresponding timeline is shown in Figure 4.4(c).
Finally, a�er its current �ring at time t i node i is able to set its next (absolute) time of �ring

t+i as

t+i
(4.6)= t i + T + φ i (NR(i), t i) (4.14a)
4.13= t i + T + α ⋅ εt i (4.14b)
= t i + (1− α) ⋅ T + α ⋅ (εt i + T) . (4.14c)

60

4.3 �e Midpoint Approach

Based on De�nition 4.3, the system has reached the stable state of perfect desynchrony, if
there exists a point in time t such that for any future time of �ring t++i > t for each node i
holds εt++i = 0. Figure 4.4(b) illustrates this stable state of perfect desynchrony.

Observation 4.11. Noteworthy, Eq. (4.14c) shows the algorithmic similarity of the midpoint
approach to the exponentially weighted moving average (EWMA) �lter3 (cf. [155]), which
smooths out short-term �uctuations but instead highlights long-term trends. In particular,

xk = α ⋅ xk−1 + (1− α) ⋅ xk , (4.15)

where the value of xk is the �ltered value of the currently observed value xk combined with
the recently �ltered value xk−1. Again, the value of the �lter constant α ∈ [0, 1], determines
the degree of �ltering.

4.3.1 Proof of Convergence

As already mentioned, the midpoint approach depends on simple calculations. �is also
simpli�es the proof of convergence. However, we will show in Section 7.2 that the initial start
up order of the nodes in a multi-hop topology has a signi�cant impact on the temporal order
of the nodes in general as well as on the temporal order of a node and its phase neighbors
in particular. For this reason, the initial start up order also co-determines the convergence
behavior of thewhole system. Moreover, the con�guration space of thismidpoint approach is
further expandedby the underlying topology and the used values for the protocol parameters,
like the damping factor α. �erefore, we are able to prove the convergence of the midpoint
approach just based on certain assumptions and simpli�cations.
In contrast to the proof of convergence of the midpoint approach for a single-hop topol-

ogy in [50], we do not try to convert the problem of desynchronization into the problem of
graph coloring. Instead, we want to demonstrate the eligibility of other mapping approaches,
like a proper physical model. �erefore, we utilize the physically inspired proof of an elastic
resilience model as introduced by Mühlberger and Kolla in [128] to proof the convergence
of the midpoint approach. Since the convergence of the midpoint approach was proven just
for single-hop topologies, e.g., in [50], but still is missing for multi-hop topologies, we do
focus on multi-hop topologies herein. Nevertheless, this proof also is compliant to single-
hop topologies. In particular, we will focus on a speci�c multi-hop topology, namely a star
topology S

∣N ∣
consisting of the set N of nodes. For instance, the star topology S5 for ∣N ∣ = 5

nodes is depicted in Figure 2.3(b). �erefore, the midpoint approach has to be transferred
into the corresponding elastic resilience model, �rst.

Convergence of the Midpoint Approach. To be able to proof the midpoint approach for the
star topology S

∣N ∣
, we �rst have to make the following assumptions:

A1. One length unit equals one time unit, i.e., the period T can be mapped to a circle of
circumference T .

A2. Due to the underlying star topology and according to Observation 4.7, each node re-
quires its own, distinct time slot within period T for a collision-free communication.4

3�e exponentially weighted moving average �lter is identical to the discrete �rst-order low-pass �lter.
4Noteworthy, Lemma 4.12 is not repealed thereby.

61

Chapter 4 Desynchronization as MAC Protocol

ip(i) s(i)

time

σp(i) σi

∆xσp(i)

∆xσi

ts(i)tp(i) ti
(a) During the settling phase: Coil spring σp(i) is stretched by ∆xσp(i) ,
whereas coil spring σi is compressed by ∆xσ i with ∆xσp(i) = ∆xσ i .

ip(i) s(i)

time

σp(i) σi

ts(i)tp(i) ti

∆xσp(i) = 0 = ∆xσi

(b) In perfect desynchrony: Both coil springs σp(i) and σi are unde-
formed, i.e., ∆xσp(i) = 0 = ∆xσ i .

Figure 4.5: Di�erent stages of the elastic resilience model for our desynchronization ap-
proach. �e black circle represents node i, and the walls represent p(i) and s(i).

A3. In accordance to Lemma 4.13, the period T has to be long enough to contain ∣N ∣ time
slots for all ∣N ∣ nodes.

A4. �e phase di�erence between a node i ∈ N and any of its (phase) neighbors never
exceeds T , i.e., Observation 4.2 applies here.

A5. We assume idealized conditions: All communication links are symmetrical, bidirec-
tional, and reliable. Additionally, not any node will fail, and there is no clock dri�.

A6. Since each node has to assign its own time slot, w.l.o.g. we are able to number all nodes
consecutively, i.e., for a node’s identi�er i holds: i ∈ {0, . . . , ∣N ∣ − 1}.

A7. According to Observation 4.9, for each node i holds: i = p(s(i)) and i = s(p(i)).

A8. To keep the proof manageable, we pick a certain node i ∈ N for deeper analysis. In
particular, although node i adjusts its next time of �ring, its phase neighbors s(i) and
p(i) are "frozen", i.e., they do not adjust their time of �ring. �us, t+s(i) = ts(i) + T as
well as t+p(i) = tp(i) + T always holds.

Based on assumptions A1 to A8, we can de�ne an elastic resilience model which complies
to this network model (cf. Figure 4.5):

62

4.3 �e Midpoint Approach

D1. Nodes are modeled as physical objects with identical mechanical characteristics, i.e.,
they are identical in space and mass.

D2. Each node i ∈ N is linked to its successor s(i) by a coil spring named σi . Consequently,
the spring between node i and its predecessor p(i) is named σp(i).

D3. All coil springs of our elastic resiliencemodel are identical inmaterial and in construc-
tion. Especially, the (arbitrary) spring constant κσ i as well as the undeformed length
is equal for each coil spring σi .

D4. Since each node i ∈ N is connected to its successor s(i), and due to assumptions A2
and A7, all nodes can be arranged consecutively forming a closed loop. �is means
that all nodes and thus all springs are arranged on the circle of circumference T (cf.
assumption A1) such that each node i ∈ N is connected with its phase neighbors p(i)
and s(i) via springs σi and σp(i), respectively (cf. Figure 4.5).

D5. Noteworthy, due to the underlying star topology each phase neighbor is an element
of the union N1(i) ∪ N2(i), i.e., a phase neighbor is one hop or two hops away from
node i ∈ N .

D6. Furthermore, motion along the circle is frictionless for nodes as well as for springs.

D7. Moreover, the radius of this circle is constant.

D8. Finally, there is no external force at all.

Since a node receives information about its two-hop neighbors just bymeans of at least one
of its one-hop neighbors (cf. Section 5.3), phase changes of two-hop neighbors are recognized
within one period later. In combination with assumption A8, a phase neighbor which is two
hops away can be treated as a one-hop neighbor with a delayed exchange of information then.
Hence, it is legitimate to place them all along a single circle.
Besides, the springs are connected in series, trying to decrease their potential energy by

returning to the equilibrium position. As soon as the nodes are distributed equidistantly
along the circle, the resulting equilibrium of forces matches exactly with the stable state of
(perfect) desynchrony. �is means that a�er a settling phase, the stable state has reached
the lowest potential energy of all springs accumulated. �erefore, since each node holds the
largest possible temporal distance to each of its phase neighbors, it is su�cient to show that
the midpoint approach also results in such a stable state.
Assuming ∣N ∣ nodes (and thus ∣N ∣ springs) with 0 ≤ i ≤ ∣N ∣ − 1 along a circle with circum-

ference T as described above. �e potential energy Uσ i stored in spring σi then equals

Uσ i =
κσ i
2
∆x2σ i , (4.16)

where κσ i denotes the spring constant and ∆xσ i denotes the current displacement of spring
σi (cf. textbooks on physics like [72, 102, 65, 181]). �e potential energy UN of all ∣N ∣ springs
accumulates as

UN =
∣N ∣−1
∑
i=0

κσ i
2
∆x2σ i . (4.17)

63

Chapter 4 Desynchronization as MAC Protocol

As mentioned above (cf. assumption D3), all springs have an arbitrary but identical spring
constant. �erefore, for each coil spring σi we choose w.l.o.g. κσ i = 1. Additionally, we are
analyzing just a single node according to assumption A8. We refer w.l.o.g. to node i ∈ N and
thus obtain

UN
(4.17)=

∣N ∣−1
∑
i=0

1
2
∆x2σ i (4.18a)

=
∣N ∣−1
∑
j=0,
j/=i ,

j/=p(i)

1
2
∆x2σ j +

1
2
∆x2σp(i) +

1
2
∆x2σ i . (4.18b)

Noteworthy, if the whole system would move (counter)clockwise along the circle without
changing the relative distances amongst the nodes, the total energy of the elastic resilience
model would remain constant. �is is consistent with our de�nition of (non-perfect) desyn-
chrony (cf. De�nition 4.3).

Next, we have to transform the statements on the elastic resilience model made above into
statements on a Wireless Sensor Network: For this reason, the temporal displacement of
node i ∈ N has to correlate with the displacement of the coil springs connected to this node
as follows (cf. Figure 4.5(a)): With respect to the current time of �ring t i of node i, the value
of its adjustment factor εt i is equal to the value of the displacement ∆xσ i of coil spring σi .
Based on assumption A1, we are able to substitute εt i for ∆xσ i . Since all other nodes and
especially the phase neighbors of node i will not move (cf. assumption A8), this adjustment
factor εt i also a�ects the displacement ∆xσp(i) of coil spring σp(i), since this spring is also
connected to node i (cf. Figure 4.5). In consequence to assumption A7, we are also able to
substitute εt i for ∆xσp(i) . Utilizing assumption A4, Eq. (4.18b) further modi�es to

UN =
∣N ∣−1
∑
j=0,
j/=i

1
2

ε2t j +
1
2

ε2t i +
1
2

ε2t i (4.19a)

4.12b=
∣N ∣−1
∑
j=0,
j/=i

1
2

ε2t j +(
ts(i) + tp(i)

2
− t i)

2

. (4.19b)

One important condition for proving the stable state of our system is that the di�erence
in energy, when a single node i ∈ N moves while all other nodes j ∈ N with j /= i remain
unchanged (cf. assumptionA8), can be obtained by the partial derivative of the total potential
energy UN with respect to t i , i.e.,

64

4.3 �e Midpoint Approach

∂
∂t i

UN = ∂
∂t i

⎛
⎝

∣N ∣−1
∑

j=0, j/=i

1
2

ε2t j +(
ts(i) + tp(i)

2
− t i)

2⎞
⎠

(4.20a)

= ∂
∂t i

∣N ∣−1
∑

j=0, j/=i

1
2

ε2t j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+ ∂
∂t i

(
ts(i) + tp(i)

2
− t i)

2

(4.20b)

= ∂
∂t i

(
ts(i) + tp(i)

2
− t i)

2

(4.20c)

= 2 ⋅ (
ts(i) + tp(i)

2
− t i) ⋅ (−1) (4.20d)

= 2 ⋅ t i − ts(i) − tp(i). (4.20e)

A�er some settling phase, there is nomore change in energy, and the elastic resilience system
enters a stable state (cf. Figure 4.5(b)). �us, it is a necessary condition to �nally have a
minimum di�erence of energy, expressed by

∂
∂t i

UN = 0. (4.21)

Utilizing Eqs. (4.20e) and (4.21), we obtain

t i =
ts(i) + tp(i)

2
. (4.22)

In combination with the particular speci�cation of the adjustment function (cf. Eq. (4.13)),
Eq. (4.22) fully complies with our De�nition 4.3 of (perfect) desynchrony. Furthermore, due
to assumption A4, Eq. (4.22) is also conform to the (denormalized) adjustment factor in
Eq. (4.12b). �is conformity validates our substitution.
So far, we have showed that the elastic resilience system complies well with the midpoint

approach. Furthermore, we characterized the stable state of that system. Since such a sta-
ble state exists, it will be attained eventually, if the change of the total potential energy of
subsequent states decreases in a strictly monotonic way. �is holds, until the stable state
of desynchrony is reached actually. In the case of desynchrony, ∆UN = 0 holds. �us, to
demonstrate the emergence of this stable state, we have to show

∆UN = U+

N −UN < 0, (4.23)

where U+

N denotes the potential energy of all ∣N ∣ springs a�er solely node i ∈ N has changed
its time of �ring from t i to t+i . �is means that just the springs σp(i) and σi are a�ected,
since all other nodes j ∈ N with j /= i remain unchanged (cf. assumption A8). According

65

Chapter 4 Desynchronization as MAC Protocol

to the midpoint approach in Section 4.3 and due to assumption A4, we use the following
substitution

εt+i =
t+s(i) + t+p(i)

2
− t+i (4.24a)

A8=
ts(i) + T + tp(i) + T

2
− t+i (4.24b)

4.14b= T +
ts(i) + tp(i)

2
− (t i + T + α ⋅ εt i) (4.24c)

=
ts(i) + tp(i)

2
− t i − α ⋅ εt i (4.24d)

4.12= εt i − α ⋅ εt i (4.24e)
= (1− α) ⋅ εt i (4.24f)

to prove Eq. (4.23) as

∆UN = U+

N −UN (4.25a)
= ε2t+i − ε2t i (4.25b)

4.24 f= ((1− α) ⋅ εt i)
2 − ε2t i (4.25c)

= (1− α)2 ⋅ ε2t i − ε2t i (4.25d)

= ((1− α)2 − 1) ⋅ ε2t i . (4.25e)

Since we excluded α = 0 as well as α = 1 in Section 4.3, i.e., α ∈ (0, 1) holds, we further
evaluate Eq. (4.25e) as follows

∆UN = ((1− α)2 − 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

<0

⋅ ε2t i
´¸¶
≥0

´¹¹¹¸¹¹¶
≤0

.

(4.26)

As long as the system is not in the stable state of perfect desynchrony (cf. De�nition 4.3),
εt i /= 0 and thus ε2t i > 0 holds. Together with Eq. (4.26) follows

∆UN < 0,

i.e., the total potential energy of subsequent states decreases in a strictly monotonic way as
long as the system is not in the stable state of perfect desynchrony. Consequently, the con-
vergence of the midpoint approach is proved.

Indeed, according to Lemmas 4.7 to 4.13, the proof of convergence formulti-hop topologies
without simplistic assumptions (cf. Items A1 to A8) is very hard – especially in combination
with topology dynamics. A �rst impression of that di�culty is given in [49]. As stated in
[170], it is impossible to obtain an analytical solution for most nonlinear systems in general.

66

4.3 �e Midpoint Approach

Besides, [112] gives another evidence that no numerical proof for arbitrarymulti-hop topolo-
gies exists. Moreover, the conclusions from Section 4.2 identify the respectable complexity
when realizing the PCO framework for multi-hop topologies. For this reason, the proof of
convergence is available at present just for single-hop topologies. Besides the easy-to-handle
star topologies in [38] and in this section, a universal proof for arbitrarymulti-hop topologies
is still missing (cf. [34]).
Indeed, a more realistic model without some (or all) of the limiting assumptions Items A1

to A8 may never reach the stable state of desynchrony (cf. Eq. (4.7)). �is could be caused
by awkward start up scenarios or by too many erroneous nodes (cf. Section 7.2). However,
we identi�ed yet another problem which will be introduced in Section 5.9. �is problem
is inherent to the primitive of desynchronization and causes the system to reach an unsta-
ble but �uctuating state. �erefore, the midpoint approach has to be enhanced further (cf.
Chapter 6).

4.3.2 Related Work

As already mentioned, the �rst implementation of the primitive of desynchronization as
MAC protocol is based on this midpoint approach: In 2007, Degesys, Rose, Patel, and Nag-
pal �rst published Desync, a self-organizing TDMA protocol for fully-meshed WSNs [50].
Its straight forward implementation of the primitive of desynchronization from Section 3.4
allows another simple proof of convergence for complete networks: Since the exclusive as-
signment of disjoint time slots is similar to the problem of graph coloring, Patel, Degesys,
and Nagpal tried to transform the Desync algorithm into such a linear dynamical system
in [141]. Using Jacobian matrices, they proved that the stable state of perfect desynchrony
equals the unique globally stable �xed point of the dynamics based on graph coloring. In-
deed, this MAC protocol was intended for complete network graphs and thus operates just
well for single-hop topologies. Since this restriction limits the amount of possible applica-
tion scenarios, Degesys andNagpal suggested an implementation formulti-hop topologies in
[49]: In order to solve the emerging hidden terminal problem (cf. De�nition 2.25), each node
additionally requires knowledge about its two-hop neighborhood (cf. Section 5.3). However,
each node is still aware of only its one-hop neighborhood. Furthermore, there was no real-
ization of how to get the required knowledge about the nodes of the corresponding constraint
graph in a decentralized but self-organizing network.
Taking advantage of the fact that the time span between any pair of successively trans-

mitting nodes within a perfectly desynchronized and complete network always equals T/ ∣N ∣
(cf. Lemma 4.5), Taechalertpaisarn et al. developed in [173] the orthodontics-inspired algo-
rithm Desync-Ort to speed-up the process of desynchronization for single-hop topologies
with just symmetrical links. Within such a complete network, each node i ∈ N can au-
tonomously determine ∣N ∣ (cf. Lemma 4.1). �is information allows each node i to decide if
it is already perfectly desynchronized according to De�nition 4.3 (i.e., ϕ(t i , ts(i)) = T/ ∣N ∣ =
ϕ(tp(i), t i)), or if it still has to adjust its next time of �ring according to the midpoint ap-
proach. �erefore, each node, which is already perfectly desynchronized (cf. De�nition 4.3),
simply keeps its phase, i.e., for each node i ∈ N holds t+i = t i +T . With it, the impact of obso-
lete information is reduced. However, since the time span between successively transmitting

67

Chapter 4 Desynchronization as MAC Protocol

nodes may not equal T/ ∣N ∣ in multi-hop topologies (cf. Lemma 4.11), this approach is just
feasible for single-hop topologies and thus does not ful�ll our requirements from Section 1.2.
In [159], Settawatcharawanit et al. adapted the midpoint approach to the Inter-Vehicular

Communication (cf. De�nition 2.5) of single-hop topologies. Hence, the so-calledV-Desync
protocol additionally has to meet the special requirements emerging in car-to-car commu-
nication. �erefore, Settawatcharawanit et al. aim for a contact time between passing nodes
of just a few periods. Assuming 250m as communication range and 120 km/h ≈ 33.3m/s as
maximum velocity for each mobile node, the period was set to T ≥ 1 s for the simulations (cf.
[159]). As the �ring packets of concurrently transmitting vehicles would collide, such nodes
will be not able to communicate with each other. Hence, each node i ∈ N implementing the
V-Desync protocol has to add a uniformly chosen random o�set to its adjustment factor (cf.
Eq. (4.11)). �is probabilistic factor should reduce the possibility of colliding packets. Fur-
thermore, each node could run at its own period length, i.e., periods could be multiples as
well as non-multiples from each other. To support di�erent period lengths, V-Desync forces
each node to include the individual period within its �ring packet to classify such "virtual"
nodes. Each receiver with shorter period reserves the corresponding �ring times for such
"virtual" nodes. Indeed, this protocol is also just applicable for single-hop topologies.
�e midpoint approach was also implemented successfully for periodic resource schedul-

ing. In particular, Giusti, Murphy, and Picco developed in [73] an algorithm for the task of
duty-cycling on single-hop topologies – especially for the decentralized scattering ofwake-up
times of sensor nodes. �is algorithm is closely related to the midpoint approach presented
above, since the relevant nodes are once more just the node’s predecessor and its succes-
sor. Indeed, each node �rst listens to the wake up times of its neighbors within several so-
called calibration rounds. Additionally, Giusti et al. also considered a solution for tree-based
multi-hop networks: To avoid unstable behavior like �uctuations within such topologies, the
adjustment of wake-up times is applied only with a given probability. �e value of this prob-
ability parameter for each node depends on the length of the path from the root to this node,
i.e., nodes close to the root should use higher probability values. With such a depth-related
probability parameter, the system also converges faster. However, this multi-hop approach is
not well-de�ned, i.e., pseudocode and algorithmic details (for instance about the formation
of the tree and the information propagation) are missing. Moreover, there are no analyses
about the impact of topology dynamics. In [140], Palopoli, Passerone, Murphy, Picco, and
Giusti further optimized the scattering algorithm for multi-hop topologies: But instead of
improving the algorithm in a self-organizing manner, they just integrated a central control
acting contrary to our requirements.

4.4 The Local Max Degree Approach

Compared to the midpoint approach (cf. Section 4.3), nodes implementing the local max
degree approach do not adjust their time of �ring iteratively. Instead, each node �rst deter-
mines a su�cient number of time slots required for a collision-free communication within
its neighborhood autonomously, since this number de�nes the corresponding length of each
time slot. Indeed, the common period T as well as the local max degree D i of a node i ∈ N
limit the minimum number of slots required for single-hop as well as for acyclic multi-hop
topologies.

68

4.4 �e Local Max Degree Approach

De�nition 4.5 Local Max Degree, Global Max Degree. �e local max degree D i of a node
i ∈ N equals the maximum degree of its one-hop neighbors and the node itself:

D i = max{d j ∶ j ∈ N1(i) ∪ {i}} . (4.27)

According to De�nition 2.16, d j denotes the degree of node j. Consequently, the global max
degree DN of a network consisting of the set N of nodes equals the maximum local max
degree of all nodes of this network:

DN = max {D i ∶ i ∈ N} . (4.28)

To obtain the local max degree, each node must collect information about the degree of
its one-hop neighbors. �erefore, each node i ∈ N has to broadcast its current degree d i , i.e.,
the size of its currently known one-hop neighborhood (cf. De�nition 2.16). With it, node
i can determine its local max degree D i , and hence, it can estimate a minimum number of
time slots required for a collision-free communication. A�erwards, node i repeatedly tries
to use one of these D i slots for its own �rings – as long as there is no more collision, i.e., as
long as not any other node also had assigned the very same time slot.
Hence, the set of relevant nodes NR(i) of a node i ∈ N here equals its one-hop neighbor-

hood, i.e., NR(i) = N1(i). �e adjustment function φ i (NR(i), t i) just has to choose (for
instance to randomize) one of the o�ered time slots. Finally, if a node i ∈ N has successfully
assigned a time slot, the next time of transmission results in a periodical transmission for
this �xed time slot without further adjustments, i.e., t+i = t i + T holds.
However, each node i ∈ N �rst has to exchange information about its current degree d i

with all its one-hop neighbors to determine its local max degree D i . �is exchange stagemay
be lengthy due to collisions5. Depending on the currently implemented algorithm, the com-
petitive selection stage, where each node has to select one of the available time slots uniquely,
also takes a while – de�nitely as long as there are nomore con�icts with nearby nodes for the
very same time slot. Finally, both the lengthy exchange stage as well as the non-deterministic
selection stage will be restarted in case of any topology dynamics. �erefore, the local max
degree approach is neither very robust nor �exible (regarding topology dynamics).

4.4.1 Related Work

Motskin, Roughgarden, Skraba, and Guibas designed in [119] a desynchronization algorithm
based on the local max degree approach for multi-hop topologies: Each node �rst divides
the common period T into 2 ⋅ (D i + 1) slots, and next assigns one of these available slots
randomly – as long as there are still collisions, i.e., as long as there are at least two nodes
competing for the very same time slot. Indeed, Motskin et al. proved that their algorithm
converges with high probability withinO(DN ⋅ log ∣N ∣) periods (cf. [119]). However, approx-
imately half of the provided slots remain unassigned which wastes bandwidth and increases
communication latency. Furthermore, each node requires knowledge about the global max
degreeDN for this fast convergence. �erefore, each node’s local max degree has to be propa-
gated to each other node of the network (e.g., by �ooding) causing high communication costs
(especially in multi-hop topologies).
5�e exchange stage just applies a contention-based back-o� algorithm to access the shared communication
medium since a more sophisticated access control scheme is unavailable at present (cf. [92]).

69

Chapter 4 Desynchronization as MAC Protocol

�eM-Desync algorithm of Kang andWong [92] for acyclic multi-hop topologies is also
based on the localmax degreeD i . However, M-Desync tries tomaximize the slot utilization,
i.e., to get along with the minimum number of required slots. �erefore, Kang and Wong
proved for single-hop as well as acyclic multi-hop topologies that the minimum number
of slots required per period for a collision-free communication within the communication
range of a node i ∈ N equals the local max degree D i of this node plus 1: If each node knows
its localmax degreeD i , depending on the common period T , it can autonomously determine
the maximum length of a time slot. As already mentioned, the real slot assignment occurs
within the selection stage. To speed up this competitive process, the assignment of the D i + 1
time slots is now prioritized according to the node’s local max degree (cf. [92]). Nevertheless,
the M-Desync algorithm is not applicable for cyclic multi-hop topologies (cf. [122]).

4.5 The Frog-Call Inspired Approach

�is approach is also inspired by nature, since it is closely related to the mating calls of the
male Japanese Tree Frog (Hyla japonica) which tries to attract female Japanese tree frogs in
this way. Aihara, Kitahata, Yoshikawa, and Aihara developed in [3] a mathematical model,
which utilizes the PCO framework from Section 3.2 (cf. also Section 3.4). However, in com-
parison to the approaches named above, a periodically croaking frog does not regulate its
phase according to its relevant frogs. Instead, each frog changes its �ring frequency to adjust
its next time of "croaking" (i.e., �ring).
According to its natural occurrence, where each frog relies on the �rings of just nearby

frogs, this approach was designed for single-hop topologies. �erefore, the set NR(i) of
relevant nodes of a node i ∈ N equals its set of one-hop neighbors, i.e., NR(i) = N1(i).
Similar to the algorithmofWerner-Allen, Tewari, Patel,Welsh, andNagpal [192], a node does
not react immediately every time it receives a �ring. Instead, each node �rst accumulates the
stimuli it is receiving within a single period. Next, it emits its own stimulus, and �nally reacts
to the received stimuli as a whole. As suggested by Aihara et al. in [3], the frog-call inspired
approach utilizes a sinusoid as adjustment function. Using a sinusoid seems suitable for this
reason, since this sort of function is as well periodic as the �rings of each node. Besides, the
amplitude of a sinusoid is always greater or equal 0 but can be monitored by an additional
coe�cient.
Indeed, for proper operation the frog-call inspired approach requires the network to be

organized as rooted tree a priori (cf. [80]). �is is feasible neither for networks with high
topology dynamics nor for networks containing non idealistic and asymmetrical links. Fur-
thermore, the computation of a sine is a challenging task – especially for sensor nodes which
nowadays still provide just low computational power (cf. De�nition 2.6). In this regard, there
may existmore e�cient algorithms to compute complexmathematical functions, for instance
for the square root function in [21]. Using a lookup table (LUT) containing precalculated
function values is always of just limited length and thus may be neither su�cient nor suit-
able. Besides, the memory of sensor nodes is also limited (cf. De�nition 2.6). Furthermore,
the frog-call inspired approach is only applicable for single-hop topologies, at least an exten-
sion for multi-hop topologies is still missing.

70

4.6 �e Arti�cial Force Field Approach

4.5.1 Related Work

As already mentioned, Aihara et al. suggest for their mathematical model in [3] a sinusoid
as adjustment function: �e sine of the phase shi� between node i ∈ N and its one-hop
neighbor j ∈ N1(i) is multiplied by the corresponding coupling coe�cient κ ij > 0. �is
coupling coe�cient represents the strength of the (pairwise) coupling between both nodes.
With it, the adjustment function for a node i ∈ N at its �ring time t i equals

φ i (N1(i), t i) = −
1

∣N1(i)∣
∑

j∈N1(i)
κ ij ⋅ sin (ϕ(t i , t j)) . (4.29)

However, due to the symmetric sine function, the sum in Eq. (4.29) divides the nodes of the
complete network (consisting of more than one node) into groups of two or three nodes (cf.
[132, 133]). �erefore, this implementation just works well for single-hop topologies consist-
ing of at most three nodes.
Within his master thesis [131], Mutazono tried to apply the frog-call inspired approach for

single-hop topologies consisting ofmore than three nodes. For this purpose, a receiving node
i ∈ N �rst weights every �ring from a one-hop neighbor j ∈ N1(i) according to the phase
distance δ i , j ∈ [0,T), which mainly depends on the absolute value of the corresponding
phase shi� (cf. Eq. (4.2)):

δ i , j = min{∣ϕ(t i , t j)∣ ,T − ∣ϕ(t i , t j)∣} . (4.30)

Next, for the sake of simplicity, the coupling coe�cient is equalized to a common value κ
regardless of the applied pair of nodes. Finally, the adjustment function for a node i ∈ N at
time t i from Eq. (4.29) is slightly modi�ed to

φ i (N1(i), t i) = ∑
j∈N1(i)

κ ⋅ sin (ϕ(t i , t j)) ⋅ e−δ i , j . (4.31)

Due to the weighted adjustment function, even large single-hop networks are able to desyn-
chronize well (cf. [132, 133]). Notably, Mutazono uses the term anti-phase synchronization as
a synonym for desynchronization (cf. Observation 2.13).
Hernández and Blum further improved the frog-call inspired approach for single-hop

topologies (cf. [80, 81]). �ey added a so-called relevance parameter, which depends on the
number of received �rings during the current period: Messages from nodes, which were in-
�uenced by many other nodes, should have less weight. �erefore, messages from nodes
being in�uenced just marginally by other nodes get a higher weight. �is adaption results in
a faster convergence requiring less communication rounds. However, for proper operation,
the relevance parameter also has to be transmitted in every single �ring message.

4.6 The Artificial Force Field Approach

�is approach originates from the robotic pattern formation: Mobile robots without global
knowledge but just a limited visibility range have to evenly distribute themselves to perform a
circle pattern. Forming a regular circle pattern in a self-organizingmanner is a quite complex

71

Chapter 4 Desynchronization as MAC Protocol

task. �erefore, Boonpinon and Sudsang successfully installed in [30] an arti�cial force �eld
as a helpful abstraction for the velocity adaptation of each robot.
Indeed, this self-organizing technique of an arti�cial force �eld in a spatial domain can

also be implemented inside the temporal domain, namely to establish a TDMA protocol for
Wireless SensorNetworks: �e �ring times of sensor nodes, which should be spread out tem-
porarily equidistant over the common period T , are substituted for the nicely spaced mobile
robots. �e arti�cial force �eld then is equivalent to the length of a circle’s circumference T ,
i.e., nodes within the same arti�cial force �eld are interfering with each other.
A single erroneous time of �ring of a node j ∈ NR(i) impacts the next time of �ring

of node i ∈ N more signi�cantly when the set NR(i) of relevant nodes is small6. For this
reason, the arti�cial force �eld approach utilizes a large set of relevant nodes to smooth out
erroneous data about relevant nodes: �e set NR(i) of relevant nodes of a node i equals the
union of the set N1(i) of its one-hop neighbors and the set N2(i) of its two-hop neighbors,
i.e., NR(i) = N1(i) ∪N2(i). Nevertheless, the �ring time of a node i is "pushed away" from
the �ring time of each of its relevant nodes j ∈ NR(i) according to the arti�cial repelling force
f i , j . Indeed, this approach demands that each node obtains information about all its relevant
nodes at every period. �is demand hinders the integration of techniques for energy saving,
since the permanent demand for current information causes high communication costs.
�e smaller the temporal distance between the �rings of two interacting nodes i and j, the

higher the magnitude of this repelling force should be. �is e�ect is described by the phase
di�erence ∆ i , j ∈ [− T

2 ,
T
2] between both nodes i and j, which depends on the phase distance

δ i , j from Eq. (4.30):

∆ i , j =
⎧⎪⎪⎨⎪⎪⎩

δ i , j − T if δ i , j > T
2

δ i , j otherwise
. (4.32)

With it, the magnitude of the repelling force f i , j between both nodes i and j equals

f i , j = −
T
∆ i , j
. (4.33)

�e critical case ∆ i , j = 0 represents nodes i and j both �ring at the (same) time, i.e., t i =
t j mod T and vice versa. However, this case is very unusual in single-hop topologies, where
it could be ignored then. Indeed, it could arise inmulti-hop topologies and has to be handled
explicitly therefore. Furthermore, node j does not repel node i, i.e., f i , j = 0, if both nodes i
and j are balanced, i.e., if ∆ i , j ∈ {− T

2 ,
T
2 }. �is case has to be taken into account explicitly

as well. Since the phase di�erence of a balanced pair of nodes is ignored in the related work,
the open interval for the phase di�erence is used therefore. �e sum of all forces perceived
by node i during its current period results in the total force Fi , i.e.,

Fi = ∑
j∈NR(i)

f i , j . (4.34)

Finally, the adjustment function φ i (NR(i), t i) of a node i at its �ring time t i equals the
total force Fi weighted by the jump size parameter αAF ≥ 0, i.e.,

φ i (NR(i), t i) = αAF ⋅ Fi . (4.35)
6Comparable to the midpoint approach, which utilizes just the phase neighbors.

72

4.6 �e Arti�cial Force Field Approach

�is damping coe�cient αAF is similar to the jump size parameter α from Section 4.3,
since it regulates the convergence behavior of the system: �e systemmay converge just very
slowly, if the value of αAF is too small, whereas it may overshoot and even may not converge
at all, if the value of αAF is too large. �erefore, setting αAF = 0 is allowed (cf. [38]) but is not
very useful – as for α in Section 4.3.
However, a su�cient value for α was identi�ed just empirically (cf. [50]), whereas a su�-

cient value for αAF was determined analytically this time: �e phase di�erence between two
nodes tend to be smaller in a dense network than in a sparse network. As a result, a node in
a sparse network may have to make a bigger adjustment to its optimum next time of �ring.
�e corresponding coe�cient αAF should take these circumstances into account. �erefore,
it has to be inversely proportional to the power of the number of relevant nodes.
Since the total force corresponds to the net force of a mechanical system, a node i ∈ N

is in an equilibrium state, if its total force is equal to 0 (cf. mechanical equilibrium). Due
to Eq. (4.35), the whole system has reached the stable state of (perfect) desynchrony, if each
node i ∈ N of the network is in an equilibrium state, i.e., for each i ∈ N holds: Fi = 0.
However, the determination of the next time of �ring involves high computational costs,

since there are several divisions required to calculate the total force from the received �ring
packets within each period. Moreover, the communication costs are also high, as information
about all relevant nodes is required at every period. Mainly because of the low computational
power of sensor nodes nowadays (cf. De�nition 2.6), the arti�cial force �eld approach is of
just limited suitability regarding our purposes.

4.6.1 Related Work

Dwarf [39] is the �rst MAC protocol for single-hop topologies which implements the arti-
�cial force �eld approach. �e main contribution of this protocol is to reduce the impact of
erroneous information at each node. For this purpose, the set of relevant nodes of a node
i ∈ N is equal to its set of one-hop neighbors, i.e., NR(i) = N1(i). �is allows a fast conver-
gence as well as a high robustness to topology dynamics, e.g., nodes joining or leaving the
network. In [39], the proper value for the damping factor has been determined by experi-
ments as

αAF = 38.597 ⋅ ∣NR(i)∣−1.874 ⋅
T
1000

. (4.36)

�is computationally demanding coe�cient makes the calculation of the next time of �ring
even more expensive: A precalculated lookup table for certain values of αAF could save this
costly runtime computation. However, similar to the frog call approach (cf. Section 4.5), such
a lookup table always contains just a limited number of values and requires memory, which
is still restricted at sensor nodes nowadays (cf. De�nition 2.6).
�eM-Dwarf protocol by Choochaisri [38] is the multi-hop extension of the Dwarf pro-

tocol named above. �emulti-hop variant has to solve the hidden terminal problemwhich is
inherent tomulti-hop topologies (cf. De�nition 2.25). For this purpose, Choochaisri installed
our phase shi� propagation, which was proposed �rst by Mühlberger and Kolla in [128] and
will be explained in detail in Section 5.3. Furthermore, due to Lemma 4.12, there could be
two (or more) relevant nodes of a node i ∈ N which are �ring at the same time, e.g., for a
node j ∈ N1(i) and for a node k ∈ N2(i) let t j = tk . Corresponding to the arti�cial force �eld

73

Chapter 4 Desynchronization as MAC Protocol

approach, the identical forces f i , j = f i ,k would both repel node i. However, this treatment
does not agree to the primitive of desynchronization, at least one of these forces has to be
absorbed. �erefore, Choochaisri additionally developed the force absorption mechanism in
[38], which absorbs the overwhelming force from at least two nodes as follows: At every pe-
riod, each node i ∈ N sorts the received times of �ring of its relevant nodes by the ascending
absolute value of the corresponding phase di�erence, resulting

• in a sorted list of successive neighbors LS(i) = {s(i) = s(i)1, s(i)2, s(i)3, . . .}, where
s(i)x denotes the x-th next neighbor, as well as

• in a sorted list of preceding neighbors LP(i) = {p(i) = p(i)1, p(i)2, p(i)3, . . .}, where
p(i)x denotes the x-th previous neighbor.

With it, the absorbed force f ′i , j from a successive neighbor j = s(i)x to a node i equals

f ′i , j =
⎧⎪⎪⎨⎪⎪⎩

f i , j if node j is phase neighbor of node i, i.e., x = 1 holds
f i ,s(i)x+1 − f i , j otherwise

. (4.37)

�is applies analogously to a preceding neighbor j = p(i)x .
Choochaisri also tried to prove the convergence of its M-Dwarf algorithm within his

dissertation [38] by maintaining the damping factor αAF from the single-hop variant (cf.
Eq. (4.36)). In particular, Choochaisri was able to demonstrate that the M-Dwarf algorithm
keeps a star topology with an even number of nodes within the stable state of perfect desyn-
chrony – even under small perturbation7 (cf. [38]). However, the �ring times of the nodes
of a star topology at perfect desynchrony are distributed as equidistantly as at a single-hop
topology consisting of the same number of nodes (cf. Observation 4.8).

7�emagnitude of a tolerable perturbation was not further explained.

74

Chapter 5

The extended-Desync Protocol

Abstract

�is chapter describes the extended-Desync protocol, which extends the idea of the mid-
point approach from single-hop topologies to multi-hop topologies (cf. Section 5.1). In con-
sequence to Observation 2.8, we thus have to cope with the hidden terminal problem: Sec-
tion 5.2 presents two potential approaches solving this problem without a central coordina-
tor. Since these solutions are still not su�cient for our demands, we developed the phase
shi� propagation (PSP) approach, which is speci�ed in Section 5.3. �e timing issues of the
phase shi� propagation are further examined in Section 5.4, whereas Section 5.5 analyzes the
proper information to be exchanged between neighboring nodes. On this basis, the packing
of this information is discussed in Section 5.6. �e intended frame structure including appli-
cation data is presented in Section 5.7. In Section 5.8, we describe practical issues originating
from real-world conditions to improve our extended-Desync protocol. Finally, Section 5.9
summarizes the properties of our extended-Desync protocol but also leads us to another
problemwhich is strongly related to the primitive of desynchronization: the stale information
problem, which will be addressed in Chapter 6.

5.1 Motivation

In Chapter 4, we discussed various approaches together with relevant implementations of the
primitive of desynchronization as self-organizing MAC protocol for WSNs. Apart from the
M-Dwarf protocol, which is based on the arti�cial force �eld approach (cf. Section 4.6), the
usability of the self-organizing protocols presented in Chapter 4 is strictly limited to single-
hop topologies, or at its best, to acyclic multi-hop topologies (cf. Table 4.1).
Since one of our objectives is to develop a robust but self-organizing MAC protocol for

arbitrary multi-hop topologies (cf. Section 1.2), the arti�cial force �eld approach looks quite
promising (cf. Section 4.6). However, this approach as MAC protocol for multi-hop WSNs
(cf. Section 4.6.1) not only causes high communication costs but it also requires high com-
putational e�orts due to the following reasons:

• Based on the information of all �ring packets which have been received within a sin-
gle period, node i ∈ N has to perform several time-consuming divisions to calculate
the total force Fi from the repelling forces of all its one-hop neighbors according to
Eqs. (4.33) and (4.34).

• For this computation node i requires up-to-date information about its whole one-hop
as well as its two-hop neighborhood in every period. �is causes high communication
costs.

75

Chapter 5 �e extended-Desync Protocol

• Moreover, the total force Fi is multiplied by the extensive damping factor αAF, which
also causes high computational e�orts (cf. Eq. (4.36)).

• In fact, a precalculated lookup table for values of αAF could save costly runtime compu-
tations. However, such a lookup table is hardly feasible: Due to the restricted memory
at sensor nodes nowadays (cf. De�nition 2.6 as well as Section 2.4), a lookup table can
contain just a limited and insu�cient number of such values.

In consequence, we prefer the midpoint approach (cf. Section 4.3) over the arti�cial force
�eld approach as basis for our self-organizing MAC protocol due to the following reasons:

• In general, the amount of relevant nodes NR(i) of a node i ∈ N in the implementation
of the midpoint approach is less than (or equal to) the amount of relevant nodes in the
implementation of any other approach from Chapter 4 (cf. Table 4.1).

• �e smaller the set of relevant nodes, the less administration e�ort is necessary. �is
even may save communication costs.

• Due to its simple algorithm, the computation of the midpoint approach (cf. Eq. (4.13))
consumes less time and less memory (on sensor node hardware) than the computa-
tion of other approaches from Chapter 4 and of the arti�cial force �eld approach in
particular.

Based on the midpoint approach from Section 4.3, we developed the extended-Desync
protocol as lightweight and self-organizingMAC protocol for arbitrarymulti-hop topologies
in WSNs. Nevertheless, the main problem of an implementation for multi-hop topologies is
the hidden terminal problem (cf. De�nition 2.25): �is problemmay cause undesired packet
collisions. Since this problem is inherent tomulti-hop topologies, solutions like the RTS/CTS
handshaking do exist. However, we will argue in the next Section 5.2, why the available so-
lutions do not meet our demands. Furthermore, for any decentralized and self-organizing
realization of the midpoint approach for multi-hop topologies, each node has to gain knowl-
edge about its constraint graph (cf. De�nition 2.28). Hence, we will use this fact in Section 5.3
to cope with the hidden terminal problem.

5.2 The Hidden Terminal Problem Revised

As already indicated, a feasible extension of themidpoint approach (cf. Section 4.3) formulti-
hop topologies has to address the hidden terminal problem (cf. De�nition 2.25) as well as the
exposed terminal problem (cf. De�nition 2.26). Since our protocol will only use broadcasts
(within this work), it is su�cient to just concentrate on the hidden terminal problem. As a
result of Observation 2.9, the exposed terminal problem is not relevant within this work and
will not be taken into consideration furthermore.
In this section, we �rst illustrate two potential approaches which solve the hidden terminal

problem in (acyclic) multi-hop topologies without a central coordinator, namely Local Max
Degree in Section 5.2.1 andRTS/CTS handshaking in Section 5.2.2. However, neither approach
is su�cient for our purposes (cf. Section 1.2):

• We have to solve the hidden terminal problem for arbitrary multi-hop topologies.

76

5.2 �e Hidden Terminal Problem Revised

• Consequently, we do not assume bidirectional links, i.e., we have to support asymmet-
rical and even unidirectional links (cf. De�nition 2.9).

• We expect topology dynamics, i.e., changes in the underlying topology are likely and
have to be considered.

�erefore, we developed our phase shi� propagation approach, which will be introduced in
Section 5.3.

5.2.1 The Local Max Degree

Asmentioned in Section 4.4, the local max degree is equal to the provable minimumnumber
of time slots required for a collision free but periodic communication within acyclic multi-
hop topologies. �at means, if a node has knowledge about its local max degree, it eventually
is able to assign one of this minimum number of potential time slots. However, this method
is not su�cient for our purposes. In particular, it su�ers from a couple of drawbacks:

• To determine its own local max degree, each node has to exchange information about
its current degree (cf. De�nition 2.16) at �rst. �is procedure could take a long time
due to emerging collisions.1

• Next, each node selects one of the available time slots. �is process is time consuming
and lasts until each node has assigned one unique time slot. Hence, this process is quite
competitive, and so collisions are very likely.

• Moreover, these long lasting stages, namely the exchange of degree information and
the selection of a unique slot, have to be restarted a�er any topology change.

• Finally, the localmax degree approachworks just well for acyclicmulti-hop topologies.
However, our protocol has to operate in arbitrary and thus cyclic multi-hop topologies
to ful�ll our requirements from Section 1.2.

In summary, the local max degree method is just capable of acyclic multi-hop topologies.
Additionally, it is neither robust nor �exible to topology dynamics. �erefore, to solve the
hidden terminal problem, the local max degree approach does not meet our demands (cf.
Section 1.2).

5.2.2 The RTS/CTS Handshake

�e RTS/CTS handshake protocol (cf. [94, 86]) is another well-known approach to solve the
hidden terminal problem in multi-hop topologies. �is handshaking protocol is suitable
especially for contention-based CSMA protocols.
To describe the RTS/CTS handshaking, we refer to a sample scenario with the linear topol-

ogy L3 of three nodes, namely node a, node b, and node c. As depicted in Figure 5.1, node a
is not able to directly communicate with node c and vice versa:

1Please note that a reasonable MAC protocol, which shall reduce such collisions, is missing at this stage.

77

Chapter 5 �e extended-Desync Protocol

a

CTS

data

tim
e

RTS

tim
e

tim
e

b c

data
data

network graph

(a) Successful RTS/CTS
handshake

a b c

network graph

tim
e

tim
e

tim
e

RTS

retry

RTS

timeout

~~

(b) No reception of RTS

a b c

network graph

tim
e

tim
e

tim
e

RTS

retry

RTS

timeout

CTS

~~

(c) No reception of CTS

Figure 5.1: Sample scenarios of the RTS/CTS handshaking to solve the hidden terminal prob-
lem.

• Assuming, node a wants to transmit data to its neighbor node b. Hence, node a ini-
tially has to broadcast a short request-to-send (RTS) to the desired receiver node b.

• If node b receives this RTS from node a correctly, i.e., before a certain timeout and
without any collision (cf. Figure 5.1(b)), node b in return responds a short clear-to-
send (CTS) which allows the requesting node a to transmit data for an appointed
period of time (cf. Figure 5.1(a)).

• �eRTS/CTS handshake is successful, if node a correctly (i.e., before a certain timeout
and without any interference) receives the responding CTS from node b. As a result,
merely node a is allowed to allocate the designated channel and to transmit its data to
node b within the announced period of time (cf. Figure 5.1(a)).

• Otherwise, if node a did not receive the corresponding CTS to its former RTS, node a
has to retransmit its request-to-send, for instance a�er a certain (and maybe mutable)
back-o� time (cf. Figure 5.1(b)).

• Since request-to-send as well as clear-to-send are transmitted as broadcasts, nearby
nodes (here: node c) are able to register the announced data transmission. As a con-
sequence, each overhearing node (cf. node c in Figure 5.1) will be silent (depicted as
dotted line in Figure 5.1) during the requested data transfer. �e objective is to not
interfere the arranged communication (cf. Figure 5.1(a)) – even when the requesting
node a did not receive the CTS correctly (cf. Figure 5.1(c)).

78

5.3 Phase Shi� Propagation

However, any implementation of the primitive of desynchronization as MAC protocol for
WSNs follows a self-organizingmanner. �ese implementations all result in a schedule-based
TDMAprotocolwith periodic �rings (cf. Chapter 4). �is is in contrast to a contention-based
CSMA protocol with maybe arbitrary transmission times but explicit requests. Nevertheless,
the RTS/CTS handshake protocol explicitly requests to send. �erefore, it is incompatible
with our basic idea and with the underlying algorithm for a self-organizing MAC protocol.
Besides, the RTS/CTS protocol seems to be not robust against topology dynamics. In ad-

dition, the RTS/CTS handshaking explicitly relies on bidirectional links to solve the hidden
terminal problem. Hence, this approach does not meet our demands from above. For this
reason, we developed the phase shi� propagation (PSP), which is described in the following
section.

5.3 Phase Shift Propagation

Both approaches presented in Section 5.2 do solve the hidden terminal problem, but are not
su�cient for our purposes: �e local max degree is not universally applicable, since it is
just feasible for acyclic multi-hop topologies. Whereas, the RTS/CTS handshake is primarily
designed for contention-based MAC protocols with arbitrary transmission times and on-
demand communication. �us, it does not comply with the primitive of desynchronization.
Nevertheless, the local max degree approach does not rely on a priori knowledge nor on a

�xed schedule. Instead, it collects information about its neighborhood to create a competitive
assignment of time slots. Despite the maybe long lasting competitive assignment procedure,
such a collecting method could be helpful to solve the hidden terminal problem in a self-
organizing manner. �erefore, we developed the phase shi� propagation (PSP) approach.
A�er a short description of our basic idea in Section 5.3.1, we will proof in Section 5.3.2

that the collective propagation of information about one-hop neighbors enables each node
to generate its constraint graph (cf. De�nition 2.28) autonomously. In Section 5.3.3, we will
introduce a timed constraint graph, i.e., wewill discuss the preparation and integration of tim-
ing information to perform the necessary calculations according to the midpoint approach
from Section 4.3.

5.3.1 Basic Idea

As shown in [49], information about the constraint graph (cf. De�nition 2.28) is one helpful
formalization to solve the hidden terminal problem for multi-hop topologies but to remain
consistent with the primitive of desynchronization. �erefore, we developed the lightweight
and universal applicable phase shi� propagation (PSP), which enables each node to gather
timing information about the nodes of its constraint graph autonomously. Such amethodwas
�rst described in [68]2 and enhanced with respect to the primitive of desynchronization in
multi-hop topologies by Mühlberger and Kolla in [128]. Apart from the extended-Desync
protocol (cf. Chapter 5) and the extended-Desync+ protocol (cf. Chapter 6), respectively,
this method is also implemented in the M-Dwarf protocol by Choochaisri (cf. [38] and Sec-
tion 4.6) as well as in the protocol of Buranapanichkit in [33].
2Diploma thesis conducted in conjunction with this work.

79

Chapter 5 �e extended-Desync Protocol

�e basic idea of the phase shi� propagation approach is that each node repetitively prop-
agates timing information about its set of one-hop neighbors. Ideally, the periodic �ring
packets are used for this purpose. As a consequence, each receiving node is able to further
gain (temporal) knowledge about its two-hop neighbors.

5.3.2 Constraint Graph Creation

�e �rst challenging problem for each node, which realizes the phase shi� propagation ap-
proach, is the autonomous creation of its constraint graph: Due to the self-organizing man-
ner, just locally available information can be used for this task, remote information has to be
made local �rst. In fact, information about the node’s one-hop neighborhood can be easily
acquired in terms of incoming �ring packets. Regarding the information about the node’s
two-hop neighborhood, each node depends on the collaboration of its neighbors:

Lemma 5.1 Constraint Graph Creation. If each node j ∈ N transmits information (i.e., the
identi�ers) about its one-hop neighborhood N1(j)within its �ring packets, each receiver i ∈ N is
able to establish its constraint graph G⃗C(i) autonomously a�er a �nite number of �ring packets.

Proof. Let each node j ∈ N transmit its whole set N1(j) of one-hop neighbors within its
�ring packet. Since there is just a �nite number of one-hop neighbors, the length of a �ring
packet is �nite as well as the number of �ring packets which have to be received. Further,
let node i ∈ N receive this �ring packet from node j. In compliance with De�nitions 2.15
and 2.16, j ∈ N1(i) holds. Hence, node i is able to create the graph G⃗C(i) = (NC(i), EC(i))
as follows: Since node i received the �ring packet from node j, the relations i ∈ NC(i),
j ∈ NC(i), and (j, i) ∈ EC(i) hold. Furthermore, since the �ring packet of node j includes
its one-hop neighborhood N1(j), and since this one-hop neighborhood contains all nodes
previously received by node j (cf. De�nition 2.16), the receiving node i is also able

• to add each node k ∈ N1(j) to its set NC(i) of nodes, and

• to add each link (k, j) with k ∈ N1(j) ⊆ N to its set EC(i) of links.

Because each node of the network broadcasts its one-hop neighborhood in this way, this is
especially true for each one-hop neighbor j ∈ N1(i) of node i. Again, there is just a �nite
number of one-hop neighbors. �us, a�er a �nite number of �ring packets for the �nite set
NC(i) of node i holds

NC(i) = {i} ∪N1(i) ∪ {k ∈ N1(j) ∶ ∃ j ∈ N1(i)}, (5.1)

and for the �nite set EC(i) of node i holds

EC(i) = {(j, i) ∈ E ∶ j ∈ N1(i)} ∪ {(k, j) ∈ E ∶ (∃ j ∈ N1(i) ∶ k ∈ N1(j))} (5.2a)
(2.5)= EC(i). (5.2b)

Since NC(i) contains {i} as well as N1(i) anyway, both sets can be excluded from the last
subset in Eq. (5.1). As a result, we get

NC(i) = {i} ∪N1(i) ∪ {k ∈ N1(j) ∖ {N1(i) ∪ {i}} ∶ j ∈ N1(i)} (5.3a)
(2.4)= NC(i). (5.3b)

80

5.4 Timing Issues

�erefore,NC(i) = NC(i) and EC(i) = EC(i) are the corresponding sets of the graph G⃗C(i),
which was just created by node i autonomously. �is graph is equal to the constraint graph
G⃗C(i) of node i according to De�nition 2.28, i.e., G⃗C(i) = G⃗C(i) holds.

So far, each node is able to determine who (i.e., which node) is involved in which way
(i.e., by which edge) within its constraint graph. However, for a proper operation of our self-
organizing MAC protocol this information is not su�cient. Additionally, each node must
be able to estimate at which time the (two-hop) neighbors of its constraint graph are �ring
to solve the hidden terminal problem in conjunction with the primitive of desynchroniza-
tion. �e integration of timing information results in a Timed Constraint Graph and will be
introduced in the next section.

5.3.3 Timed Constraint Graph

In principle, it seems to be a simple task for a sensor node to acquire timing information
about its one-hop and its two-hop neighbors: According to De�nition 2.6, each sensor node
operates a local clock. �is local clock can be used to timestamp internal as well as external
events. Consequently, each node is able to timestamp incoming �ring packets (with more or
less accuracy). �erefore, each node is able to achieve timing information about its one-hop
neighbors autonomously, e.g., by timestamping incoming �ring packets. To support other
nodes in gathering timing information about their two-hop neighbors, each node has to

• record the reception time of any incoming �ring packet from all its one-hop neighbors,
and �nally

• forward a collection of this information within its own �ring packets.

As a result, any receiving node shall be able to calculate the time of �rings of its two-hop
neighbors – similar to Lemma 5.1 (cf. also Section 5.5). Nevertheless, the following issues
have to be resolved therefore:

I1. �e timestamping, i.e., how may a node obtain accurate and precise timestamps of
incoming �ring packets.

I2. �e proper amount of information, i.e., which set of (timing) information is essential
to be shared and how frequently has this information to be provided.

We will analyze issue I1 about timestamping in Section 5.4 and issue I2 about information
quantity in Section 5.5, respectively.

5.4 Timing Issues

�e functionality as well as the e�ciency of our self-organizing MAC protocol extended-
Desync strongly depends on the availability of accurate and precise timing information.
�us, it is important to get accurate timestamps of consistently high quality. Indeed, any
implementation of the sketchy approach from Section 5.3.3 will face issues about communi-
cation delays, which will be described in Section 5.4.1, as well as issues about the process of
accurate and precise timestamping, which will be described in Section 5.4.2.

81

Chapter 5 �e extended-Desync Protocol

Delay Type Send Medium Access Propagation Transmission / Receive
Reception

Caused by OS & driver MAC protocol distance data length & OS & driver
data rate

Namely SmartOS / extended-Desync / < 1 km ≤ 64B SmartOS /
(in testbeds) SmartNET extended-Desync+ (100 kbps) SmartNET
Magnitude ms µs ns ms ms
Negligible No Yes Yes No No
Predictability Bad Good Good Good Bad

Table 5.1: Survey of di�erent communication delays during a packet transmission.

time

time

sender

receiver

send access transmission

reception receive

propagation

Figure 5.2: Di�erent communication delays during a packet transmission.

5.4.1 Communication Delays

Our self-organizing MAC protocol neither relies on explicit time synchronization (cf. Sec-
tion 1.2) nor is it introduced to operate as time synchronization protocol for sensor nodes (cf.
De�nition 2.34). Nevertheless, the necessary exchange of timing information to cope with
multi-hop topologies is carried out wirelessly, and thus will be subject to comparable re-
quirements as mature time synchronization protocols (cf. Section 8.2.1). Besides, any other
wireless transmission of data also has to operate under these conditions. Although, some
of these conditions may be ignored for speci�c contention-based applications and protocols
(cf. De�nition 2.31). Anyhow, the midpoint approach does rely on time. Consequently, these
delays have to be considered within our extended-Desync protocol and – in particular –
within our phase shi� propagation approach from Section 5.3 as well.
�e communication delays of the wireless communication process have been �rst ana-

lyzed by Kopetz and Ochsenreiter in [100]. �eir classi�cation has been extended by Maróti
et al. in [111] (cf. also [48, 158, 70]). Since these delays also occur during the exchange of
(timing) information, we will analyze the impact of these delays on our real-world testbed
and the implementation of our extended-Desync protocol, respectively. A scheme of the
sending/receiving process of two distinct nodes is depicted in Figure 5.2. To get a �rst im-
pression about the impact of each condition on our real-world testbeds, Table 5.1 gives a short
overview of these potential delays:

Send Delay �e creation of a �ring packet as well as its transfer to the communication in-
terface takes time. For instance and representative for many sensor nodes, the micro-
controller of a SNoW5 node is connected to the radio unit via SPI (cf. Section 2.4). �e

82

5.4 Timing Issues

time between the send command of the application and the packet transfer to the ra-
dio unit is non-deterministic in general, and mainly depends on the operating system,
the network driver, and the current workload of the involved hardware resources, like
microcontroller, radio unit, and bus interface. According to the midpoint approach
(cf. Section 4.3) and due to the underlying primitive of desynchronization, each node
estimates its next time of �ring in advance. As a consequence, the (start of the) trans-
mission of the �ring packet has to occur very closely to this speci�c time. Due to the
run-to-completion scheduling, this non-deterministic delay between send command
and actual transmission of a radio packet may be in the order of several milliseconds
when using a non-preemptive operating system (cf. [82, 111]). For our demands, this
delay should be minimized (cf. [123]).

�is is one of the reasons why we use the real-time operating system SmartOS [24,
18] (cf. also Section 2.4.4): It operates a 64 bit timeline with a resolution of 1 µs. Note-
worthy, SmartOSo�ers fully preemptive prioritized tasks togetherwith a collaborative
resource sharing approach (cf. [17]). �erefore, we de�ned a sending task with high
priority which preempts tasks with lower priority in case a �ring packet has to be trans-
mitted. �is sending task obviously relies on exclusively shared hardware resources
(e.g., SPI bus and RF unit as mentioned in Section 2.4.1 for the SNoW5 sensor node).
However, any of these resources may currently be kept by other tasks (with lower pri-
ority), thus the sending task would not be able to duly broadcast its �ring packet. �e
collaborative resource sharing approach of SmartOS comes into play here: �e task
with lower priority holding at least one resource, which is concurrently requested by
the sending task, gets a so-called dynamic hint to release this particular resource. By
contract, each "hinted" task then releases this speci�c resource to allow a timely trans-
mission within a well-de�ned delay. More details about dynamic hinting can be found
in [15, 16].

However, this approach will not guarantee the transmission of a �ring packet at the
intended point in time in any case. Nevertheless, the sending task will be informed
about the continued blocking of a resource in advance of the transmission deadline.
�is information enables the sending task to remedy the situation (e.g., to delay or
even to skip the transmission of this current �ring packet).

Access Delay Right before the transmission of a packet, the radio unit has to get (exclusive)
access to the communication channel to avoid collisions. Depending on the usedMAC
protocol, this delay ismore or less predictable. Due to the underlying schedule, TDMA
protocols aremore predictable than contention-basedCSMAprotocols whichmay im-
plement a (probabilistic) back-o� algorithm (cf. De�nitions 2.31 and 2.32). Since our
self-organizing communication protocol results in a schedule-based TDMA protocol,
it does not necessarily rely on Carrier Sense before transmission in general.

Indeed, a node performing Carrier Sense right before its transmission would be able
to react on erroneously transmitting nodes accordingly, e.g., by shi�ing its own time of
transmission and thus avoiding collisions. �erefore, using CS right before a transmis-
sion could make the extended-Desync protocol more robust against disturbances.
However, the RF unit needs a �xed but usually non-negligible amount of time to switch

83

Chapter 5 �e extended-Desync Protocol

from the RXmode for Carrier Sense to TXmode for �ring (cf. [96]). For instance, the
radio chip CC1100 (cf. Section 2.4) typically needs 9.6 µs for this switching operation
(cf. [175]). Nevertheless, to minimize the probability of collisions, we enable Carrier
Sense for our real-world testbeds: �e radio unit is con�gured to enter TX mode just
a�er a clear channel assessment (CCA), i.e., if the RSSI is below a certain threshold and
the node is not currently receiving a packet (cf. [175]).

Propagation Delay Even though radio waves in air travel at approximately3 the speed of
light, the propagation of a �ring packet takes some time. For instance, a radio wave
travels the distance of 300m in air in about one microsecond.
�e communication range of a sensor node in general (cf. De�nition 2.6) and of the
SNoW5 sensor node in particular (cf. Section 2.4) is at most a few hundred meters (cf.
[26, 68]). Hence, the propagation delay is usually less than 1 µs, which equals the reso-
lution of the SmartOS timeline (cf. Section 2.4.4). �erefore, this delay is impossible
to be measured correctly by the deployed hardware, and thus will be neglect.

Transmission Delay Even though the propagation delay is quite small, it takes some time
for the sender to transmit the �ring packet. However, this delay depends on the packet
length as well as on the used data rate. Due to the (common) con�guration of the radio
unit, both, sender and receiver, are aware of the used data rate.
�e length of a �ring packet is well-known in advance and integrated into the �ring
packet (cf. Section 5.6). �ereby, the transmission delay can be estimated accordingly.
Since the data rate is limited by the deployed hardware, the packet length has to be
reduced to minimize this delay. We will analyze the structure of the information and
corresponding data packet to be transmitted in Section 5.5. Subsequently, we will make
suggestions on a suitable trade-o� between adequate content and transmission delay.

Reception Delay �e reception of the �ring packet at the receiver’s side also takes some
time. �is delay equals the transmission delay, but it is shi�ed just by the propaga-
tion delay (cf. Figure 5.2). Since packet length and data rate are known by sender and
receiver, this delay is also well predictable.
Noteworthy, the reception process is delayed by a certain but �xed time lag due to
�ltering and circuitry delays of the used radio unit. �is phenomenon is further de-
scribed in [135]. In particular, we measured the delay τ between the sender’s SYNC
word interrupt and the receiver’s SYNC word interrupt for the CC1100 radio unit of
our SNoW5 sensor nodes with an oscilloscope as τSNoW = 90µs (cf. [123]). For the
comparable CC430 radio unit of the eZ430 Chronos sensor nodes, we measured this
delay as about τChronos = 20µs. Moreover, this delay τ is independent of the distance
between the nodes, but it strongly depends on the con�guration of the radio unit, e.g.,
the radio frequency. Since this constant delay exceeds the propagation delay by far, it
is non-negligible and has to be taken into account. For instance, our driver for the ra-
dio unit automatically considers this (constant, but hardware dependent) delay τ when
receiving a �ring packet.

3�e speed of electromagnetic waves equals the speed of light c0 = 299 792 km/s in vacuum, but depends on the
traversed medium (cf. textbooks on physics like [65]).

84

5.4 Timing Issues

Receive Delay �e receiving delay is related to the processing of the incoming packet. �is
includes the transfer to the processing unit (i.e., the microcontroller) as well as the
noti�cation of the corresponding task at application layer (cf. Figure 2.6). �e receive
delay is non-deterministic in general, but mainly depends on similar conditions as the
send delay. Indeed, a prompt handling of a �ring packet at the receiver is not as time-
critical as the adherence to the time of �ring by the sender. However, the real-time
capabilities of SmartOS (cf. Section 2.4) are bene�cial here once again.

Summing up, the real-time operating system SmartOS helps to reduce the send delay as
well as the receive delay. �e access delay is minimized due to the resulting TDMA proto-
col, which should provide exclusive access to the medium. Due to the speci�cation of the
deployed node hardware, the propagation delay will be neglected. Furthermore, both, trans-
mission delay as well as reception delay, are directly proportional to the packet length, i.e.,
they are not negligible but predictable. In contrast, the reception delay contains an additional
time lag τ introduced by the used radio unit.
So far, we evaluated the communication delays during the exchange of timing information

within a �ring packet. Additionally, the extended-Desync protocol also relies on accurate
timestamps, which will be considered next.

5.4.2 Timestamping

As suggested in Section 5.3.3, each node can achieve timing information about its one-hop
neighbors autonomously by timestamping incoming �ring packets. According to Eq. (4.11b),
the accuracy of the adjustment factor and thus of the next time of �ring strongly depends on
the accuracy of these timestamps as well as on the accuracy of the propagated timing infor-
mation. For instance (and provided that Observation 4.10 holds), when node i ∈ N times-
tamps w.l.o.g. its predecessor p(i) with an inaccuracy of γ, this would falsify the resulting
adjustment factor ε̃t i at least by half of this inaccuracy γ:

ε̃t i
4.12b=

ts(i) + (tp(i) ± γ)
2

− t i

=
ts(i) + tp(i)

2
− t i ±

γ
2

4.12b= εt i ±
γ
2
.

One naïve approach is to take all timestamps at application layer (cf. Figure 2.6): An appli-
cation task would query the system time once the radio protocol noti�es a packet reception.
Due to the delay caused by the protocol and application stack (cf. Figure 2.6), such times-
tamps would be quite inaccurate and thus unreliable due to non-deterministic delays of the
application so�ware (cf. Section 5.4.1). For instance, using a non-preemptive operating sys-
tem like TinyOS [82], this delay could be in the order of several milliseconds (cf. [111]). �is
is not the only reason, why we prefer the preemptive operating system SmartOS [24] for our
real-world testbeds as it has integrated timestamping features at IRQ level (cf. Section 2.4).
As mentioned before, accurate and precise timing information is mandatory for a proper
operation of our self-organizing MAC protocol.

85

Chapter 5 �e extended-Desync Protocol

timer tick

(external)
event e

start
ISR

take
timestamp te

interrupt
latency

ISR

te

te

Figure 5.3: Example of interrupt latency during timestamping.

In general, the timestamping of incoming packets may be located at MAC layer instead of
application layer (cf. Figure 2.6): Such a low layered timestamping approach may reduce the
send delay as well as the receive delay at sender and receiver, respectively. Even though the
availability of such timestamping depends on the underlying hardware, its implementation
is also advised in [48, 123] – to name but a few. In particular, we use an interrupt-driven
timestamping approach in all our testbed implementations: Here, the SNoW5 sensor node
features the radio chip CC1100 (cf. Section 2.4). �is radio unit is able to signal every com-
plete reception (or every transmission) of a SYNC word via a dedicated IRQ pin (cf. [175]).
Even somemicrocontrollers with integrated RF transceivers support a similar interrupt con-
cept, although there is no "wired" connection towards the microcontroller. For instance, the
CC430 of the eZ430 Chronos (cf. Section 2.4) is such a microcontroller with integrated RF
chip, which is able to signal an interrupt on certain (transmission) events.
Since an Interrupt Service Routine (ISR) is more privileged than any task at application

layer, such an ISR seems ideal to capture timestamps of incoming �ring packets. Indeed,
even the ISR is executed only a�er some delay, the so-called interrupt latency. �is latency
is exempli�ed in Figure 5.3: As already stated in Section 4.1, the local time of each sensor
node is discrete. Hence, any external event e will occur in between two subsequent timer
ticks. Moreover, the �rst instruction of the Interrupt Service Routine is started just a�er
some additional delay (interrupt latency). A�erwards, within the ISR, the timestamp te for
the external event e is taken (few ticks) later on. Depending on the actual realization of the
microcontroller’s interrupt concept (e.g., prioritization of interrupts), this delay may be non-
deterministic – especially when an additional Interrupt Request (IRQ) with higher priority
is pending already.
To consider such a non-deterministic delay in a proper and e�cient way, we suggest to

utilize the deep timestamping concept as speci�ed by Baunach in [18]: �e basic idea is to
integrate the timemanagement directly into the kernel of the operating system. In particular,
if an external event triggers an interrupt then

1. the current timestamp is taken �rst, and

2. the corresponding IRQ will be executed with access to the previously captured times-
tamp.

Still, there may be asymmetrical rounding errors during timestamping due to the dis-
cretization of time (cf. [65]). By con�guring the hardware timer adequately, the deep time-
stamping approach provides an accuracy of ± 12 λ for any time resolution λ (cf. [18]). Besides,

86

5.5 Neighbor Information

it also supports the autonomous clock dri� compensation of a pair of nodes (cf. [19]). Alter-
natively, the periodical update of neighbor information could be used as well to smooth out
non-deterministic delays as described, e.g., in [168].
As mentioned before, the precision of a timestamp strongly depends on the resolution of

the underlying local clock. For our real-world testbeds, we use the SmartOS operating sys-
tem (cf. Section 2.4). �is operating system for embedded systemsmaintains a 64 bit timeline
with the resolution of 1 µs4. �ereby, the precision is limited to 1 µs, which is su�cient for our
purposes. Besides, our simulator is based on a timeline with the same resolution of 1 µs (cf.
Section 2.3).
To sum up, an interrupt-driven deep timestamping approach minimizes the time delay

between the occurrence of the external trigger event and the timestampmeasurement. If the
hardware is con�gured accordingly, the resulting timestamps show an error of ± 12 λ (cf. [18]).
�is accuracy as well as the precision of our timestamps (of external events) is su�cient for
our purposes.

5.5 Neighbor Information

In the last Section 5.4, we analyzed the accuracy and precision of the timestamp measure-
ment. Indeed, due to the hidden terminal problem, a node needs to gain knowledge about
the �ring time of its two-hop neighbors just by means of the �ring packets of its one-hop
neighbors. �us, we have to specify the kind of information as well as the data set which is
required for a proper operation of the extended-Desync protocol.
In compliance with De�nition 2.10, a �ring packet is composed of a header and a pay-

load. While the header provides important control information (like the ID of the sender, a
sequence number, or a checksum) of �xed size, the payload of the �ring packet contains a
set of neighbor information, i.e., a certain amount of agreed information about the sender’s
one-hop neighbors. As already mentioned in Section 4.1, within this section we have to ex-
plicitly name the node, whose point of view is relevant for the current analysis. �erefore,
we do have to use t ij to denote the �ring time t

j
j = t j of node j from the local point of view

of node i. In particular, t ij denotes node j’s reception time of the �ring of node i at time t
i
i .

�is is true while there is a negligible (or at least constant) displacement between sending
and receiving time (cf. Section 5.4.1). However, we will use this notation also to express the
�ring time of two-hop neighbors from a certain node’s perspective. Consequently, due to
the delays analyzed in Section 5.4.1, we do have to distinguish node i’s intended next time of
�ring t+ ii = t+i from node i’s real next time of �ring t̂

+ i
i . Besides, this distinction also holds

for node i’s intended time of �ring t ii and node i’s real time of �ring t̂
i
i .

�e basis for our discussion of di�erent approaches on how to compile the data required
for a proper operation of the extended-Desyncprotocol, is the sample scenario described in
Section 5.5.1. A�erwards, wewill start with a naïve approach in Section 5.5.2. Section 5.5.3 and
Section 5.5.4 each will present a more sophisticated variant. Finally, Section 5.5.5 concludes
this section and reasons one approach to be selected for our further realization and analysis.

4�e corresponding hardware support is one of the prerequisites to use SmartOS.

87

Chapter 5 �e extended-Desync Protocol

time

node b

time

node c

time

node a
?

Tb

tab tac

tbb tbc

tcb tcc

t+a
b

t+bb

t+ c
b

ϕ(tbb , t
b
c) αεtbb

Figure 5.4: Examplary and abstract scenario for the propagation of neighbor information.

5.5.1 Sample Scenario

For the following analysis we rely on Figure 5.4: Like in Section 5.2.2, this linear topology L3
consists of three nodes, namely node a, node b, and node c. Moreover, node a is not able to
directly communicate with node c and vice versa. As introduced in Section 4.1, the term tab
denotes the �ring time tbb = tb of node b from the local perspective (i.e., registered with the
local clock) of node a. Whereas the term Tb denotes the period T from the local point of
view of node b (cf. Figure 4.1(b)). Please note that the �rings of node a are not illustrated in
the figures of this Section 5.5 for the sake of clarity.
In this particular scenario, node b �res at time tbb (cf. Figure 5.4). �is �ring message is

received by node a at time tab and by node c at time t
c
b . Next, node c �res at time t

c
c . �is

�ring message is received only by node b at time tbc . Since node b needs to adjust its next
time of �ring, it �res again a�er period Tb plus the corresponding adjustment factor εtbb

at

time t+bb (cf. Eq. (4.14b)). Please note that the adjustment factor in this example scenario is
negative. �is �ring packet is recognized by node a at time t+ab and by node c at time t

+c
b ,

respectively. For the following analysis, the main task of node a is – according to its local
clock – to estimate the time of �ring tac of its two-hop neighbor node c.

5.5.2 Naïve Approach

As a naïve approach, each node just forwards the reception time of the �ring packet of all
its one-hop neighbors. Indeed, the reception time is always recorded by means of the node’s
local clock. Following the scenario depicted in Figure 5.4, this means that for instance node b
forwards within its �ring message at time t+bb the timestamp t

b
c of its reception of node c’s

�ring message. Consequently, node a will receive this timestamp tbc at time t+ab . Without
any additional information about how to interpret this absolute timestamp tbc from node b’s
local clock, node a is unable to transfer the received timestamp from node b’s local clock into
a timestamp of its own local clock.

88

5.5 Neighbor Information

In fact, node b could add its initially scheduled next time of �ring t+bb to its �ring packet,
as this point in time is known in due time. However, it is not possible for a node i to always
strictly adhere to this intended point in time (cf. Section 5.4.1). Hence, there may be a �ring
delay

δt ii = t̂ ii − t ii and δt+ i
i
= t̂+ ii − t+ ii (5.4)

between node i’s scheduled (next) time of �ring t ii (and t
+ i
i) and its correpsonding real trans-

mission time t̂ ii (and t̂
+ i
i , respectively). As t̂

i
i ≥ t ii (as well as t̂

+ i
i ≥ t+ ii) is always true, δt ii ≥ 0

(as well as δt+ i
i
≥ 0) holds. �e receiver should be informed about this latency, which is

mainly caused by certain communication delays as described in Section 5.4.1. Especially, the
send delay is badly predictable but non-negligible. Furthermore, the �ring delay even may
vary from �ring to �ring (as indicated by its subscript), i.e., in general δt ii /= δt+ i

i
holds.

By virtue of the timestamping and the interrupt concept introduced in Section 5.4.2, e.g.,
the SNoW5 sensor node is able to transmit the real transmission time within �ringmessages:
�e CC1100 radio controller signals the transmission of the SYNC word. �is interrupt is
timestamped by the SmartOS operating system (cf. Section 5.4). �is timestamp still can
be added (unmodi�ed) to the packet – although the transmission of the packet already is in
progress. �is procedure performs well despite the very rare case of an TX FIFO under�ow
(cf. Section 2.4.1), e.g., due to unexpected and arbitrary delays (within the used communi-
cation bus system) or due to interrupts with higher priority. In such a disrupted case, the
current transmission is aborted. �e a�ected �ring packet is corrupted and lost. �us, each
node i ∈ N always has to add both values to its �ring packet, namely its intended time of �r-
ing t ii and the corresponding real transmission time t̂

i
i . �is enables each receiver to calculate

the �ring delay δt ii of the currently sending node i.
To reduce the required space within a �ring packet, just the time di�erence δt ii between the

timestamp of the SYNC word interrupt and the intended time of �ring of the sending node i
could be transmitted. However, the computation of this di�erence complicates the sending
process. Besides, even then such packets could be corrupted and lost due to an TX FIFO
under�ow of the SNoW5’s transceiver. �erefore, we decide to transmit both timestamps as
absolute time measurement.
As a result, node a from the sample scenario depicted in Figure 5.5 is able to estimate the

�ring time tac of node c as

tac = t+ab − δt+b
b
− (t+bb − tbc) (5.5a)

(5.4)= t+ab − (t̂+bb − t+bb) − (t+bb − tbc) , (5.5b)

where t+ab is measured by node a itself and the timestamps t̂
+b
b , t

+b
b , and t

b
c are taken from

the �ring packet of node b.
However, Eq. (5.5a) is based on the assumption that t+ab = t̂+bb holds. As already men-

tioned in Section 5.4 and in [135, 123], this assumption is wrong in general, i.e., t+ab = t̂+bb + τ
technically holds. �is delay τ is non-negligible and depends on the used hardware but seems
to be �xed (cf. [135]). We did analyze this delay τ empirically for the sensor nodes used in
our real-world testbeds: According to our measurements, this delay is τSNoW = 90µs for

89

Chapter 5 �e extended-Desync Protocol

δ t cc

time

node b

time

node c

time

node a
?

Tb

τ

ττ

τ τ

tab tac

tbb tbc

tcb tcc

t+a
b

t+bb

t+ c
b

t̂bb

t̂cc

t̂+bb

δtbb δt+ b
b

αεtbb

Figure 5.5: �e naïve approach regarding the propagation of neighbor information. Bold
labels are required by node a.

the SNoW5 sensor nodes and τChronos = 20µs for the eZ430 Chronos (cf. Section 5.4.1). As
already mentioned, our driver for the radio unit automatically takes into account this �xed
delay when receiving a �ring packet. �erefore, we may disregard this delay τ for our further
analysis for the sake of clarity.
Indeed, this naïve approach is not very e�cient: First, the reception time of the one-hop

neighbors and the intended as well as the real transmission timestamp have to be transmitted
within each �ring packet. According to Eq. (5.5b), these timestamps are t̂+bb , t

+b
b , and tbc .

Moreover, the computation of Eq. (5.5b) is quite complex and cannot be accelerated by the
receiver.
As SmartOS operates a 64 bit timeline, each (absolute) timestamp t yx is stored as unsigned

64 bit integer of size lt yx = 8B, i.e., as uint64_t within msp430-gcc and as long within Java.
Consequently, the size required in the �ring packet of the sending node b is ltbj

= 8B for each
one-hop neighbor j ∈ N1(b) plus lt+b

b
= 8B and l t̂+b

b
= 8B for the sender’s timestamps to

enable the receiving node (here: node a) to calculate the time di�erence δt+b
b
according to

Eq. (5.4). As a result, the size lN1naïve required in a �ring packet of node b for the neighbor
information when using the naïve approach in total is

lN1naïve = ∣N1(b)∣ ⋅ ltbj + lt+b
b
+ l t̂+b

b
(5.6a)

= ∣N1(b)∣ ⋅ 8B+ 8B+ 8B (5.6b)
= (∣N1(b)∣ + 2) ⋅ 8B. (5.6c)

5.5.3 Phase Shift Approach

According to Eq. (4.13b), the phase shi� is technically used for the midpoint approach to
compute the node’s next time of �ring. �erefore, it should be su�cient to just forward the
phase shi� between the �ring node and its one-hop neighbors. Moreover, this data needs not

90

5.5 Neighbor Information

δ t cc

time

node b

time

node c

time

node a
?

Tb

τ

ττ

τ τ

tab tac

tbb tbc

tcb tcc

t+a
b

t+bb

t+ c
b

t̂bb

t̂cc

t̂+bb

δtbb δt+ b
b

ϕ(tbb , t
b
c) αεtbb

Figure 5.6: �e phase shi� approach regarding the propagation of neighbor information.
Bold labels are required by node a.

to be computed separately: Due to the node’s computation of its next time of �ring, this data
already is available at sender’s side.
In compliance with Eq. (4.13b), node b just transmits the relative phase shi� ϕ(tbb , t

b
c) at

its next �ring at time t+bb (cf. Figure 5.6). As long as the receiver is able to remember the last
time of �ring of the current sender (here: tab), the transmission of the phase shi� is su�cient.
For instance, node a has to recall tab to estimate the �ring time t

a
c of its two-hop neighbor

node c as

tac = tab − δtbb
+ ϕ(tbb , t

b
c) (5.7a)

= tab − (t̂bb − tbb) + ϕ(t
b
b , t

b
c), (5.7b)

where tab was measured by node a itself, the phase shi� ϕ(t
b
b , t

b
c) and the timestamps tbb and

t̂bb are taken from the (previous) �ring packet of node b.
Since our operating system SmartOS operates an 64 bit timeline with the resolution of

1 µs, a signed 32 bit integer should be su�cient to represent a relative phase shi�: We store
each phase shi� as signed 32 bit integer of size lϕ = 4B, i.e., as int32_t within msp430-gcc
and as int within Java. �us, the maximum value of a phase shi�, i.e., a delay between two
nodes, equates to about 2147.5 s, which is more than half an hour.
�is phase shi� approach seems to be more e�cient than the naïve one from Section 5.5.2:

Just the phase shi� to each one-hop neighbor has to be transmitted within a �ring packet.
�is data is already available at the sender due to the estimation of its next time of �ring.
�is reduces the computational e�ort for both, sender and receiver. Due to the fact that we
utilize a signed 32 bit integer to store a phase shi�, the size lN1phase required in a �ring packet
of node b for its neighbor information when using the phase shi� approach in total is

lN1phase = ∣N1(b)∣ ⋅ lϕ (5.8a)

= ∣N1(b)∣ ⋅ 4B. (5.8b)

91

Chapter 5 �e extended-Desync Protocol

�is is more than half the size required by the previous approach (cf. Section 5.5.2). Since
the phase shi� is always computed according to the current (real) time of �ring, additional
information about the �ring delay is irrelevant here.
However, each node has to store the last time of �ring of all its one-hop neighbors to

calculate the �ring time of its two-hop neighbors: Remember, the information about a node’s
phase shi� always will be propagated within one of the node’s upcoming �ring packets. For
instance, the phase shi� ϕ(tbb , t

b
c) fromEq. (5.7) refers to the �ring of node b at time t̂bb butwill

be transmitted by node b at �ring time t̂+bb at the earliest (cf. Figure 5.6). �erefore, recalling
that each (absolute) timestamp t yx requires lt yx = 8B and the �ring delay δt yx may require
lδ t yx

= 4B, each node has to allocate – at least – memory of size ∣N1(b)∣ ⋅ lδ t yx
= ∣N1(b)∣ ⋅ 4B

in addition to the space needed for the �ring packet (cf. Eq. (5.8b)). �is additional memory
requirement equals about the size of the neighbor information in a �ring packet.
Furthermore and most disadvantageous, this approach operates with stale information:

Any adjustment in the �ring time of a one-hop neighbor is deferred. For instance, node b
�res at time tbb and than adjusts its next time of �ring, i.e., t

+b
b − t

b
b /= Tb holds (cf. Figure 5.6).

As a result, node a makes estimations about its next time of �ring at time t+ab based on the
stale information from time tab . We will further analyze this stale information problem in
Section 6.2.

5.5.4 Reciprocal Phase Shift Approach

�e previous approach from Section 5.5.3 propagates just the phase shi� towards one-hop
neighbors to save space within the �ring packet. However, this approach still

• applies stale information, and

• requires additional memory at each sensor node to store previous times of �rings.

Indeed, we want to amend these de�cits but to keep the small size of a �ring packet at the
same time. For this reason, we introduce the reciprocal phase shi�.

De�nition 5.1. Let ϕr(t ij , t
+ i
i) ∈ N+ be the reciprocal phase shi� of a node i ∈ N based on

the intended next time of �ring t+ ii and the reception time t
i
j of a �ring packet of its one-hop

neighbor j ∈ N1(i) as
ϕr(t ij , t

+ i
i) = t+ ii − t ij . (5.9)

Please note that the reciprocal phase shi� may be greater than the common period T – in
contrast to the "normal" phase shi� as introduced in Section 4.1.

Observation 5.1. �e reciprocal phase shi� ϕr(t ij , t
+ i
i) is always positive, since t

+ i
i > t ij

always holds. It is also of no relevance here, whether node j is one-hop or two-hop neighbor
of node i.

Observation 5.2. As already mentioned in De�nition 5.1, the reciprocal phase shi� could be
greater than the common period T . �erefore, the normalization to the common period T
as utilized for the phase shi� in Eq. (4.2) is not necessary, but instead would be obstructive.

92

5.5 Neighbor Information

δ t cc

time

node b

time

node c

time

node a
?

Tb

τ

ττ

τ τ

tab tac

tbb tbc

tcb tcc

t+a
b

t+bb

t+ c
b

t̂bb

t̂cc

t̂+bb

δtbb δt+ b
b

ϕ(tbb , t
b
c) ϕr(tbc , t+bb) αεtbb

Figure 5.7:�e reciprocal phase shi� approach regarding the propagation of neighbor infor-
mation. Bold labels are required by node a.

According to Section 4.3, each node is able to set its next time of �ring immediately a�er
its current �ring5. Henceforth, the node’s next time of �ring is known at the latest a�er the
reception of its successor’s �ring packet. If a node is receiving a �ring packet from a one-
hop neighbor, it (additionally) can calculate the reciprocal phase shi� towards this one-hop
neighbor based on its next time of �ring. Due to this relation, the sender has to add its
intended next time of �ring together with its real transmission time into the �ring packet –
likewise the naïve approach from Section 5.5.2.
Referring to the sample scenario depicted in Figure 5.7, at time tbc node b already knows

its next time of �ring t+bb . �erefore, when node b receives the �ring packet of node c at time
tbc , it calculates the reciprocal phase shi�

ϕr(tbc , t+bb) = t+bb − tbc . (5.10)

Finally, node b transmits the following data within its �ring packet at time t̂+bb :

• the ∣N1(b)∣many reciprocal phase shi�s towards its one-hop neighbors,

• its scheduled time of �ring t+bb , and

• its real transmission time t̂+bb .

With it, the receiving node a is able to estimate the �ring time tac of node c as

tac = t+ab − δt+b
b
− ϕr(tbc , t+bb) (5.11a)

(5.4)= t+ab − (t̂+bb − t+bb) − ϕr(t
b
c , t

+b
b), (5.11b)

5In Section 6.2.1 we will demonstrate why a node should await the reception of a �ring message from its successor
before computing its next time of �ring.

93

Chapter 5 �e extended-Desync Protocol

where t+ab is measured by node a itself, the timestamps t̂
+b
b and t

+b
b as well as the reciprocal

phase shi� ϕr(tbc , t+bb) are taken from the �ring packet of node b.
Similar to the phase shi� approach above, an unsigned 32 bit integer is su�cient for the

representation of a reciprocal phase shi�. We store a reciprocal phase shi� as unsigned 32 bit
integer of size lϕr = 4B, i.e., as uint32_t within msp430-gcc and as int within Java. �en,
themaximumvalue of a reciprocal phase shi� at resolution 1 µs is about 4295 s, which ismore
than one hour.
In comparison to the phase shi� approach from Section 5.5.3, we do need the sender’s

timestamps t+bb and t̂+bb to enable the receiving node to calculate the time di�erence δt+b
b

according to Eq. (5.11b). As a result, the size lN1reci required in a �ring packet of node b for
the neighbor information when using the reciprocal phase shi� approach in total is

lN1reci = ∣N1(b)∣ ⋅ lϕr + lt+b
b
+ l t̂+b

b
(5.12a)

= ∣N1(b)∣ ⋅ 4B+ 8B+ 8B (5.12b)
= (∣N1(b)∣ + 4) ⋅ 4B. (5.12c)

�is is just a little bit more space than required for the neighbor information within a �ring
packet when implementing the phase shi� approach from Section 5.5.3. However, there is
no additional memory needed to store timestamps of outdated �ring times from one-hop
neighbors. In addition, this reciprocal phase shi� approach o�ers the most current timing
information within a �ring packet.

5.5.5 Summary

�e reciprocal phase shi� approach from Section 5.5.4 is most bene�cial: �e naïve approach
fromSection 5.5.2 just utilizes absolute timestamps for any neighbor information. In contrast,
the other two approaches from Sections 5.5.3 and 5.5.4 do reduce the corresponding size of
the neighbor information in a �ring packet by half. Actually, the phase shi� approach even
does not require the two absolute timestamps, namely the scheduled time of �ring t+ ii and
the real transmission time t̂+ ii of the sending node i.
However, utilizing the phase shi� approach from Section 5.5.3, a receiver does rely on the

last �ring times of its one-hop neighbors. According to the agreed data types, this approach
requires as much memory on the node as required for the neighbor information in a �ring
packet. Moreover, the reciprocal phase shi� from Section 5.5.4 is always based on the node’s
next time of �ring (cf. De�nition 5.1). �us, it bans the majority of sources of stale infor-
mation. �is enables the reciprocal phase shi� approach to use more reliable and less stale
data than the phase shi� approach. If the reciprocal phase shi� has to be available for the
propagation of neighbor information, we could use the reciprocal phase shi� approach also
for the estimation of a node’s next time of �ring as follows: First of all, please note that

ϕr(t ip(i), t
i
i)

(4.2)= t ii − t ip(i)
(5.10)= ϕ(t ip(i), t

i
i) (5.13)

94

5.6 Information Packing

for the predecessor p(i) of node i ∈ N holds. Using the reciprocal phase shi� from Sec-
tion 5.5.4 to calculate the adjustment factor εt ii of node i with respect to its last time of �ring
t ii at the reception of its successor’s �ring packet at time t

i
s(i) produces

εt ii
4.11=

ϕ(t ii , t
i
s(i)) − ϕr(t

i
p(i), t

i
i)

2
(5.14a)

(5.13)=
ϕ(t ii , t

i
s(i)) − ϕ(t

i
p(i), t

i
i)

2
. (5.14b)

�erefore, we will use the reciprocal phase shi� approach from Section 5.5.4 from now on to
calculate the node’s next time of �ring and to be propagated within the corresponding �ring
packet.

5.6 Information Packing

In the previous section, we optimized the quality of the timing information to be shared with
respect to the midpoint approach. Notably, even though it is not necessary to propagate the
identi�er of a one-hop neighbor for proper operation of the extended-Desync algorithm
(cf. Section 4.3), such an identi�er simpli�es the protocol management and administration.
For instance, a receiver has the ability to identify the potential neighbor and to correlate
the received timing information with a previously measured one originating from the same
sender. Moreover, the node ID as unique attribute (cf. Section 4.1) is quite useful for the
veri�cation of the received information as well as for monitoring and debugging purposes
(during development). For this reason, we do continue to maintain the identi�er as inherent
part of the neighbor information. Hence, the space per neighbor information will increase
(cf. Section 5.6.1) – irrespective of the realized approaches from the previous section.
Indeed, the size of a �ring packet is limited in general: For instance, the CC1100 from our

real-world testbed is con�gured to support packets of a variable packet size with a maximum
packet length lmax = 250B in total (cf. [175]). Wewill use this upper limit as a prerequisite for
our analysis within this section. According to De�nition 2.10, a (�ring) packet contains some
control data in the header (cf. De�nition 2.10). As a consequence, the remaining payload
of a �ring packet may be available for neighbor information. In the next sections, we are
looking for an approach to use the payload of a �ring packet for the transmission of neighbor
information in an e�cient and space-saving manner.

5.6.1 SmartNET Support

According to our requirements in Section 1.2, we aim for a self-organized and versatile com-
munication protocol for Wireless Networks and Wireless Sensor Networks in particular. To
facilitate this objective, we apply the SmartNET radio stack as described in [18] for our (real-
world) implementation – not only for compatibility reasons: �e data exchange between ex-
isting and potential future SmartNET based applications (cf. [20, 25, 13, 152, 18],[95, 54, 12]6,
and [157]7) can be realized easily. However, the SmartNET-compatible radio driver demands
6Bachelor theses conducted in conjunction with this work.
7Diploma thesis conducted in conjunction with this work.

95

Chapter 5 �e extended-Desync Protocol

Symbol Description Size Range
llength packet length 1 B 0 . . . 255
lIDdst destination address 2B 0 . . . 65535
lIDsrc source address 2B 0 . . . 65535
lflags �ag �eld 1 B 0x00 . . . 0xFF
lapp application identi�er 1 B 0 . . . 255
l t̂ ii real time of �ring 8B 0 . . . 264 − 1

lnet total control data 15B

Table 5.2: Inherent parts of the SmartNET-compatible packet header.

lnet = 15 B of control data as follows:

• the packet length of size llength = 1 B,

• the (next) destination address8 of size lIDdst = 2B,

• the (last) source address, i.e., the sender’s identi�er, of size lIDsrc = 2B,

• a �ag �eld, e.g., to signalize a certain message type, of size lflags = 1 B,

• the application ID of size lapp = 1 B, and

• the timestamp t̂ ii of node i’s current transmission9 of size l t̂ ii = 8B.

Table 5.2 also summarizes the control data of the SmartNET compatible packet header, Fig-
ure 5.8 depicts the structure of a �ring packet. Hence, not more than

ldata = lmax − lnet (5.15a)
= 250B− 15 B (5.15b)
= 235B (5.15c)

per (�ring) packet do remain for the payload, namely the neighbor information within this
work (cf. also [18]).
Indeed, the SmartNET protocol provides some features which additionally support our

extended-Desync protocol: �e timestamp of a sender’s current transmission can be made
available within the control data of the SmartNET compatible packet header automatically.
Indeed, this timestamp is required by the reciprocal phase shi� approach from Section 5.5.4.
�erefore, it is not necessary anymore to add this particular information to the protocol data.
Consequently, the protocol overhead issued by the reciprocal phase shi� approach can be
reduced by l t̂ ii = 8B. As a result, the size lN1reci required in a �ring packet of node i ∈ N for

8Even though we technically just use broadcast messages for our self-organizing MAC protocol.
9�is process may be automated by setting the corresponding �ag in the �ag �eld mentioned above.

96

5.6 Information Packing

pre-
amble

RSSI LQISYNC
word

8 88 1 14
size

[byte]

...

<216

firing
TS real

7

control
data

neighbor
info

firing
TS plan

neighbor
info

6 6

2 2 1 1

node
ID

timing
info

2 4

neighbor infocontrol data (header)

packet
length

ID
dest

ID
src flags

app.
ID

1
size

[byte]

Figure 5.8:�e structure of a �ring packet. Parts colored in gray are added automatically by
the radio unit, parts colored in black are added by the SmartNET-compatible driver.

the neighbor information when using the reciprocal phase shi� approach from Section 5.5.4
yields in

lN1reci = ∣N1(i)∣ ⋅ (lϕr + lID) + lt ii (5.16a)

= (∣N1(i)∣ ⋅ 4B) + 8B (5.16b)
= (∣N1(i)∣ + 2) ⋅ 4B. (5.16c)

As indicated before, we do insist on the transmission of node IDs for each corresponding
neighbor information. At the SNoW5 sensor nodes of our real-world testbeds, the node ID of
size lID = 2B is stored within the volatile memory infomem (cf. Section 2.4.1) as an unsigned
short, i.e., as uint16_t within msp430-gcc. �e SmartOS operating system provides the
speci�c function from Listing 5.1 to enable each node (and each sender, in particular) to
easily get its own node ID.

1 static inline unsigned short infomem_getNodeID() { return *IM_PNODEID; }

Listing 5.1: �e SmartOS function to get the node’s ID from the SNoW5’s volatile
memory infomem.

Hence, the size of each neighbor information increases by lID = 2B. Consequently, a
realization of the reciprocal phase shi� approach requires now 6B per neighbor information,
i.e., lID = 2B for the identi�er of the corresponding one-hop neighbor plus lϕr = 4B for the
reciprocal phase shi� towards this one-hop neighbor (cf. Section 5.5.4). �us, the size lN1reci ,
which is required in a �ring packet of node i for its neighbor information when using the
reciprocal phase shi� approach from Section 5.5.4, results in

lN1reci = ∣N1(i)∣ ⋅ (lϕr + lID) + lt ii (5.17a)

= ∣N1(i)∣ ⋅ (4B+ 2B) + 8B (5.17b)
= ∣N1(i)∣ ⋅ 6B+ 8B. (5.17c)

97

Chapter 5 �e extended-Desync Protocol

In comparison to Eq. (5.12), this size now is reduced by l t̂+b
b
= 8B (cf. Eq. (5.16)) but is

increased by ∣N1(i)∣ ⋅ lID = ∣N1(i)∣ ⋅ 2B for the identi�er of node i’s neihgbor nodes. �e �nal
scheme of such a �ring packet when implementing the reciprocal phase shi� approach based
on the SmartNET-compatible driver is depicted in Figure 5.8.

5.6.2 Naïve Approach

One naïve approach would be that each node always transmits within its �ring packet the
neighbor information of all its one-hop neighbors once every period. �is would be feasible
as long as the set of one-op neighbors always is small enough to �t into a single �ring packet.
As mentioned before, the size of a �ring packet in general is limited by certain factors (cf.
Section 5.6).
Utilizing the reciprocal phase shi� approach, the maximum number nmax of neighbor

information per �ring packet can be calculated (for the used RF unit CC1100) as

nmax =
⎢⎢⎢⎢⎢⎣

ldata − lt ii
lϕr + lID

⎥⎥⎥⎥⎥⎦
(5.18a)

= ⌊235B− 8B
4B+ 2B

⌋ (5.18b)

= ⌊227B
6B

⌋ (5.18c)

= ⌊37.83⌋ (5.18d)
= 37. (5.18e)

�is limitation is valid for all sensor nodes of our real-world testbeds (cf. Section 2.4).
Nevertheless, this maximum number seems to be a su�ciently large number of potential
one-hop neighbors. However, there may be multi-hop topologies with nodes having more
than nmax = 37 one-hop neighbors. Moreover, the transmission delay as well as the reception
delay (cf. Section 5.4.1) are directly proportional to the length of the �ring packet. �ismeans
that a smaller number of neighbor information e�ects shorter delays (cf. Table 5.1). �erefore,
it may be sensible to limit the quantity of neighbor information which has to be propagated
within a single �ring packet. In this regard, the appropriate subset of potentially available
neighbor information (i.e., information from a subset of the available one-hop neighbors)
has to be selected. Next, we will discuss in the following sections some selection strategies.

5.6.3 Fixed Size Subset Approach

One option could be to de�ne a �xed upper bound nfixed ∈ N+ for the quantity of neighbor
information to be transmitted within a single �ring packet. Certainly, this �xed upper bound
is naturally restricted by the maximum packet length lmax. In accordance with Eq. (5.18), for
our real-world testbed holds

nfixed ≤ nmax
5.18= 37. (5.19)

98

5.6 Information Packing

If the corresponding neighbor information is selected progressively without any duplicates,
node i has transmitted the neighbor information of all its one-hop neighbors N1(i) a�er at
least

mfixed = ⌈ ∣N1(i)∣
nfixed

⌉ (5.20)

�ring packets.
For the following considerations, we assume that the system is unlikely to change, in par-

ticular, there will be no topology dynamics. For instance, let ∣N1(i)∣ = 100, i.e., node i ∈ N
has 100 one-hop neighbors, and let nfixed = 8, i.e., the maximum capacity of neighbor infor-
mation for each �ring packet was restricted to 8. �en node i has propagated the neighbor
information of all its one-hop neighbors N1(i) a�er at least

mfixed
(5.20)= ⌈ 100

8
⌉

= ⌈12.5⌉
= 13

�ring packets.
�is latency is inversely proportional to the maximum quantity of neighbor information

per �ring packet (cf. Eq. (5.20)). �us, a smaller quantity nfixed of neighbor information per
�ring packet results in a higher number of �ring packets required to gain total knowledge
about another node’s one-hop neighbors. Certainly, this proposition is valid only if the one-
hop neighborhood of the (sending) node is unlikely to change.

5.6.4 Fixed Percentage Approach

Likewise the �xed upper bound for the quantity of neighbor information, a certain per-
centage npercent ∈ [0, 1] of the available neighbor information could be transmitted. Since
npercent = 0 means that no neighbor information will be transmitted at all, this endpoint of
the interval is not considered any further.
Nevertheless, and likewise the �xed upper bound nfixed, themaximumpercentage npercent

is also naturally restricted for a node i ∈ N . Additionally, the maximum percentage npercent
depends on the individual size of the node’s one-hop neighborhood ∣N1(i)∣ ≥ 1:

npercent ≤ min{
nmax
∣N1(i)∣

, 1} . (5.21)

If for instance ∣N1(i)∣ = 100, i.e., node i has 100 one-hop neighbors, then for our real-world
testbed (cf. Section 5.6) holds

npercent
(5.21)
≤ min{ 37

100
, 1}

≤ min{0.37, 1}
≤ 0.37.

99

Chapter 5 �e extended-Desync Protocol

�is means that node i is able to transmit a maximum of 37% of its 100 one-hop neighbors
per single �ring packet. Once more, if the corresponding neighbor information is selected
progressively without duplicates, node i has transmitted the neighbor information of all one-
hop neighbors N1(i) a�er at least

mpercent =
⎡⎢⎢⎢⎢

∣N1(i)∣
⌊∣N1(i)∣ ⋅ npercent⌋

⎤⎥⎥⎥⎥
(5.22)

�ring packets.
For instance, let ∣N1(i)∣ = 100, i.e., node i has got 100 one-hop neighbors, and let npercent =

0.125, i.e., the maximum percentage of the node’s one-hop neighborhood for each �ring
packet equals 12.5%. �en node i has propagated the neighbor information of all its one-
hop neighbors a�er at least

mpercent
(5.22)= ⌈ 100

⌊100⋅0.125⌋⌉

= ⌈ 10012 ⌉
= 9

�ring packets.
Again, the packet count is inversely proportional to the maximum number of neighbor

information per �ring packet (cf. Eq. (5.22)). �us, a smaller maximum percentage of the
node’s one-hop neighborhood as neighbor information per �ring packet npercent results in
a higher number of �ring packets needed to gain su�cient knowledge about another node’s
one-hop neighbors. �is approach facilitates a dynamic trad-o� between the percentage of
neighbor information and the size of a single �ring packet. Certainly, this proposition is valid
only if the one-hop neighborhood of the sending node is unlikely to change.
However, in contrast to the �xed size subset approach with the �xed upper bound nfixed

(cf. Section 5.6.3), the maximum percentage npercent strongly depends on the individual size
of the node’s one-hop neighborhood (cf. Eq. (5.21)). Consequently, any modi�cation of the
node’s one-hop neighborhood as basic part may disable the above statement. As a result, the
�xed percentage approach is not constant but necessitates appropriate subset updates. For
instance, let ∣N1(i)∣ = 100, i.e., node i ∈ N has got 100 one-hop neighbors, and let npercent =
0.1, i.e., the maximum percentage of the node’s one-hop neighborhood for each �ring packet
equals 10%. As a result, node i will transmit the neighbor information of 100 ⋅ 0.1 = 10 one-
hop neighbors per �ring packet. If the size of node i’s one-hop neighbors reduces to 50, the
number of neighbor information of just 50 ⋅ 0.1 = 5 one-hop neighbors per �ring packet will
be transmitted. �is di�erent number of neighbor information results in a di�erent size of
the �ring packet. Consequently, transmission and reception delays also di�er. �erefore, we
do not consider this approach to be applicable enough for our purpose.

5.6.5 Summary

�e naïve approach from Section 5.6.2 is not su�cient for our purposes at all. Moreover, for
our (real-world testbeds implementation of the) extended-Desync protocol, we do prefer
the �xed size subset approach with the �xed upper bound nfixed from Section 5.6.3 to the

100

5.7 Frame Structure

ζF(i,2) F(i,k)F(i-1,k) ...

time

frame F(i) frame F(i+1)frame F(i-1)
F(i,1) F(i+1,1)

safety marginfiring slot data slot

ζ

Figure 5.9: �e structure of a frame of our extended-Desync protocol. �e frames are
slotted and divided by a safety margin ζ .

�xed percentage approach with the �xed percentage npercent from Section 5.6.4: Indeed, the
�xed size subset approach may not use the available resources, mainly the node’s memory, in
an optimal way. Especially, when the number of one-hop neighbors is not divisible without
remainder by the selected, �xed size of the subset.
However, the �xed size subset approach ismore predictable and thusmore reliable than the

�xed percentage approach: �e �xed percentage approach strongly depends on the (varying)
size of the node’s one-hop neighborhood. �erefore, the quantity of neighbor information to
be transmitted within the node’s current �ring packet has to be recalculated at any dynamic
change in the node’s one-hop neighborhood. �us, not only the size of a �ring packet but
also its transmission delay as well as reception delay are quite unstable. Utilizing the �xed
size subset approach, especially these time consuming calculations per period can be omitted.
�is procedure results in a more stable and predictable behavior notwithstanding topology
dynamics.

5.7 Frame Structure

In the last section, we discussed several approaches regarding the packet structure of a �ring
message with a special focus on the neighbor information. However, it is in general essential
that sensor nodes are able to exchange additional (sensor) data to accomplish a common task
– depending on the particular WSN application. �us, the communication protocol has to
accommodate application data as well.
As already proved in Lemma 4.13, a collision-free communication period T has to support

at least max
i∈N

{∣NC(i)∣} �ring packets for a network N . Consequently, the period T is the
limiting factor of the midpoint approach. For this purpose, each node i ∈ N allocates one
single frame F(i) of size lF(i) = ∣F(i)∣ < ϕ(t i , ts(i)) per period. Similar to other MAC
protocols implementing a TDMA scheme (e.g., LMAC [187] or Cranksha� [77]), each frame
F(i) may be subdivided into k slots F(i, j) with j ∈ {1, . . . , k}. Figure 5.9 illustrates the
structure of such a frame.
�e �rst slot F(i, 1) of the frame F(i) of each node i is assigned to its �ring message (cf.

De�nition 3.2 as well as Section 5.6). �us, we also call this slot �ring slot. �e remainder of
the frame is le� to the free use of the application(s), i.e., the remaining slot(s) F(i, k) for k ≥ 2
of node i can be used for application data transmission. �is means that the �ring slot marks
the start of the node’s transmission frame as depicted in Figure 5.9. Utilizing the �xed size
subset approach for the information packing from Section 5.6.3 as suggested in Section 5.6.5,

101

Chapter 5 �e extended-Desync Protocol

the size of the �ring slots is equal for each node. Notably, for k = 1 the corresponding frame
will contain just one single slot, namely the �ring slot. Consequently, the length of a frame
equals the length of the �ring slot, i.e., lF(i) = ∣F(i, 1)∣. However, it is not possible to transmit
any application data then.
Furthermore, we introduce a safety margin ζ to compensate for potential collisions due

to (re)joining nodes, clock dri�s (cf. Section 7.1.1), or other indeterminate delays based on
so�ware defect or hardware failure (cf. also [96]). �is safety margin precedes the �rst slot
of a node’s frame as shown in Figure 5.9. Indeed, the size of this safety margin ∣ζ ∣ is a trade-
o� between appropriateness and network utilization: If the safety margin is smaller than
reasonable, potential collisions may not be compensated, and if the safety margin is bigger
than necessary, the network is utilized not in an e�cient way. �erefore, for the size of this
safety margin we propose at least half of the size of the �ring slot ∣F(i, 1)∣ of node i ∈ N .
Further information about this frame structure of our extended-Desync protocol can be

found in [121]: �is work also outlines a short and theoretical analysis of energy-related and
temporal aspects regarding the extended-Desync protocol. As a conclusion, the author
in [121] argues not to relate the size of the (�ring) slot of the frame to the variable size of
the node’s one-hop neighborhood. �is is another reason against the implementation of the
�xed percentage approach from Section 5.6.4

5.8 Practical Issues

Mainly due to the experiences with our real-world testbeds, we discovered some curious
system behavior – although the nodes still did ful�ll the quali�cations of the extended-
Desync protocol, like unique identi�ers, periodical �rings, and a period of su�cient length.
�is behavior does not �t well to our objective of robust and adaptable MAC protocol (cf.
Section 1.2). Nevertheless, this behavior is reproducible and thus could be analyzed in detail.
In summary, we identi�ed a strong correlation with topology dynamics. �erefore, we

will have a closer look at nodes, which are re-joining the network, and at nodes, which are
(seemingly) leaving the network. Based on the results from [68, 167]10, and adapted from our
work in [128], we introduce additional protocol parameters to make our extended-Desync
protocol

• more robust against topology dynamics and

• more adaptable with respect to nearby nodes starting up concurrently.

In particular, we will provide a listening time in combination with a node-speci�c waiting
time in Section 5.8.1 as well as an expiration time in Section 5.8.2.

5.8.1 Nodes In

For some scenarios, our system initially did behave quite badly, i.e., the system hardly desyn-
chronized. �is behavior could be observedmainly for real-world testbeds, when somenodes
where switched on concurrently, e.g., using a switchable multi-outlet power strip. Due to
10Diploma theses conducted in conjunction with this work.

102

5.8 Practical Issues

such a concurrent start up, all these nodes simultaneously try to follow the implemented
extended-Desync protocol. In particular, without any variation, each node immediately
tries to broadcast its �rst �ring packet. As a consequence, the �ring packets are most likely
transmitted at the very same time. Depending on the nodes’ communication ranges and
thereby the underlying topology, in worst case all �ring packets could collide. Especially in a
single-hop topology, not a single nodewould gain knowledge about the existence of any other
neighbor. If there is no variation or extraordinary "occurrence", like clock dri� or topology
dynamics, there will be no change in behavior, and thus the �ring packets will collide per-
manently.
In the following, we will exemplify and analyze this issue in detail by means of the simple

complete graph C2 consisting of two nodes, node a and node b, where node a is within the
communication range of node b – and vice versa. In addition, both nodes are starting up
concurrently, and thus both will broadcast their (�rst) �ring packet at the same time. As
already mentioned, in doing so, the �ring packets will collide. Since both nodes here do not
receive further information, e.g., about other neighbors, each node still assumes to be alone.
Again, each node waits one period, during which no other neighbor node will be detected.
�us, node a and node b will broadcast their �ring packets again at the same time, and,
once more, both �ring packets will collide. Since none of both nodes did receive further
information, repeatedly, both �ring packets will be transmitted at the same time and will
collide again. Consequently, both nodes never will detect each other. Instead, each node will
assume to be the only node within this particular network – at least as long as there is no
"randomness", like clock dri�s or topology dynamics.
�erefore, we introduce some randomness in terms of a random amount of time ∆trand ∈

[0,T) following a discrete uniform distribution. Each node now has to additionally wait this
random amount of time ∆trand before transmitting its �rst �ring packet. In this regard, we
had to install at each node a Pseudo Random Number Generator (cf. Section 6.4.1), which
uses the unique node ID as seed to generate such random numbers. �e probability of nodes
still �ring at the same time decreases with an increasing amount of periods. Indeed, the
introduction of randomness solves the issue on concurrently starting nodes.
However, this randomness was not su�cient for any scenario: We could observe some

"restlessness" of the system during settling time, especially when nearby nodes (i.e., potential
one-hop neighbors) were joining the network node by node within too closely timed inter-
vals. �is means that appropriate parts of the network were not stabilized enough to tolerate
these topology dynamics of quick succession. To temper such "restlessness", we introduced
an additional listening time

∆tlisten = n ⋅ T (5.23)

with n ∈ N0 at the start up of each node. In particular, each node has to listen �rst for a
certain amount of periods, the so-called listening periods, before it is allowed to broadcast its
�rst �ring packet.
On the one hand, this listening time at start up enables a joining node to gather reliable

information about its neighborhood and its constraint graph (cf. De�nition 2.28), respec-
tively. Consequently, the node is enabled to join "smoother", i.e., to select an appropriate
point in time for its �rst �ring beforehand. On the other hand, such a passiveness (cf. Sec-

103

Chapter 5 �e extended-Desync Protocol

tion 2.4.5) prevents the node for the speci�ed listening time from transmitting messages and
from exchanging information, respectively.
Especially in urgent cases, when for instance control values for actuators have to be trans-

mitted at the right time, any delay is undesired or even counterproductive. Hence, a trade-o�
is desired between the point in time, when a node is allowed to transmit its �rst �ring packet
since its start up, and a faster but more controlled desynchronization process. For our simu-
lations and testbeds, we identi�ed a number of three listening periods, i.e., ∆tlisten = 3 ⋅ T , as
a proper and useful initial value for a node’s start up phase.
In summary, the start up phase of a node implementing our back-o� strategy from above

is as follows:

1. �e node is powered on.

2. �e node sets its individual waiting time ∆trand ∈ [0,T) according to its node ID (cf.
Listing 5.1).

3. �e node next listens for a total of ∆tlisten + ∆trand = 3 ⋅ T + ∆trand before the trans-
mission of its �rst �ring packet.
a) If the node receives at least one �ring packet from another node during this time
span, it matches the received neighbor information and chooses the phase of
its �rst time of �ring as shown in Listing 5.3 on Page 107. �e further progress
follows the extended-Desync algorithm as described in Section 5.3.

b) Else, when this listening time elapsed without receiving any single �ring packet,
the node immediately broadcasts its �rst �ring packet and now listens for T +
∆t′rand, i.e., one period T plus another random waiting time ∆t

′

rand ∈ [0,T).
�e further progress follows 3a or 3b, depending on whether �ring packets of other
nodes could be received during the individual listening time – or not.

5.8.2 Nodes Out

From some of our real-world testbeds, we obtained further strange outcomes. In particular,
we observed some outliers of unsteady and unsettled behavior caused by unreliable links,
i.e., usually bidirectional links between two nodes which just sporadically behave like unidi-
rectional links. By reason of such an unreliable link, a node (with just local view) may not
receive anymore �ring packets (accompanied by neighbor information (cf. Section 5.5)) of
formerly one-hop neighbors. Usually, if the (expected) �ring packet of an already known
neighbor is not received within the next period, this still-neighbor will be removed imme-
diately from the corresponding list. As a consequence, this neighbor will not be considered
as relevant node for the adjustment function of the midpoint approach – at least till a �ring
packet of this excluded neighbor is received once again. Due to the midpoint approach, the
receiving node will adjust its next time of �ring accordingly if the excluded neighbor was a
phase neighbor.
Due to the unreliable link, it is very likely that the seemingly exited neighbor is re-joining

the network within one of the subsequent periods. If this re-joining neighbor becomes phase
neighbor again, the receiving node once more will have to adjust its next time of �ring ac-
cordingly. �is issue is even multiplied when the receiving node is also phase neighbor of

104

5.9 Summary

another node or even a multiple phase neighbor (cf. De�nition 4.4). As a result, nodes of (at
least parts of) the network will have to adjust their next time of �ring as well. As a conse-
quence, the system shows a "restless" behavior. Depending on how o�en and for how long
such an unreliable link persists, the corresponding part(s) of the network may be not sta-
ble (with regards to desynchrony) for a certain amount of time. Especially, such topology
dynamics are not easy to cope with at frequent intervals.
To introduce more stability, each node i ∈ N adds to each of its (one-hop as well as two-

hop) neighbors j ∈ N1(i) ∪N2(i) an expiration time

∆texpire(j) = n ⋅ T (5.24)

with n ∈ N0. �is means that if an already known neighbor j ∈ N1(i)∪N2(i) is not received
within this amount of consecutive periods, its �ring time will be extrapolated by one period
each. Hence, the neighbor’s time of �ring will be kept virtually up-to-date. In particular, the
corresponding reciprocal phase shi� will be kept. In fact, a neighbor will be removed from a
node’s neighbor list a�er the speci�ed number of consecutive periods without any reception.
Nevertheless, the abrupt absence of a neighbor (and a phase neighbor in particular) does not
necessarily provoke prompt adjustments of �ring times when utilizing the expiration time.
For a better adaptability according to the underlying topology, we introduced the expiration
time for one-hop neighbors as well as for two-hop neighbors, each to be set independently
but node-speci�c.
If the seemingly exited and virtually kept neighbor will re-join the network during the

expiration time, there may be a little deviation between the "real" time of �ring and the "vir-
tual" time of �ring – especially in a not yet (perfect) desynchronized network. Moreover,
the impact on the system of such small di�erences in the time of �ring is far less than the
occurrence of unreliable links without expiration time. For our simulations and testbeds, we
identi�ed an expiration time of about three periods, i.e., ∆texpire(j) = 3 ⋅ T , as a proper and
useful initial value for one-hop as well as two-hop neighbors j ∈ N1(i)∪N2(i) of node i ∈ N .
�is setting smooths out the "restless" behavior based on unreliable links quite well. Likewise
the listening periods from Section 5.8.1, the selected value for the expiration time provides a
good trade-o� between latency and fault-tolerance.

5.9 Summary

In this chapter, we described our self-organizing MAC protocol extended-Desync. In par-
ticular, we improved the midpoint approach from Section 4.3 to make it applicable for multi-
hop topologies. In this regard, the main challenge was to solve the hidden terminal problem
(cf. Section 5.2). Due to the fact that already available approaches, which do solve the hidden
terminal problem, are not su�cient for our purposes, we developed the phase shi� propa-
gation approach in Section 5.3: �e objective of the phase shi� propagation is to enable each
node to create its constraint graph solely based on local information (cf. Section 5.3.2) . With
it, each node gains knowledge about its two-hop neighborhood required for a self-organizing
and collision-free communication. Enriching the neighbor information with additional in-
formation about the reception time of the neighbor’s �ring messages enables each node to
consider its two-hop neighbors for the calculation of its next time of �ring accordingly, and
thus to solve the hidden terminal problem.

105

Chapter 5 �e extended-Desync Protocol

�e quality as well as the steadiness of our protocol strongly depends on accurate and
precise timing information. In Section 5.4 we analyzed potential communication delays as
well as timestamping mechanisms. Particularly, the exchange of accurate timestamps is the
key factor of our extended-Desync protocol in this regards. Based on this, we described
the neighbor information to be exchanged in Section 5.5: As a result, each node broadcasts its
reciprocal phase shi� (cf. De�nition 5.1) to allow the receiving nodes an accurate and precise
estimation of transmission times of their corresponding two-hop neighbors.
As envisioned in Section 5.6, the information about a node’s whole one-hop neighborhood

may be too large to �t into one single �ring packet. As a consequence, the information about
a node’s one-hop neighborhood has to be distributed among several �ring packets. A�er
the introduction of several approaches about which information shall be considered within a
�ring packet and how, we concluded to implement the �xed size subset approach from Sec-
tion 5.6.3. Indeed, it may take several periods for a receiving node to collect all the informa-
tion required when implementing this approach. However, the �xed size of the �ring packet
allows for a more predictable communication behavior. �is bene�t is crucial, especially,
when the period is divided into frames to also accommodate application data as described in
Section 5.7. Based on our practical experiences, we further enhanced our extended-Desync
protocol in Section 5.8. In particular, we introduced a waiting time for (re)joining nodes and
an expiration time for neighbors which (seemingly) le� the network.
Next, we present the algorithm to calculate the next time of �ring of a node i ∈ N of our

extended-Desync protocol. In particular, we inspect the event on sending a �ring packet
by node i, and the event on receiving a �ring packet from a neighbor node by node i. �e
�ring case is presented in Listing 5.2. Here, we assume that node i ∈ N has to transmit its
�ring packet: �is means that the previously set �ring timer expires, i.e., the next time of
�ring is reached (cf. Line 2). Consequently, the "old" next time of �ring t+ ii becomes the
current time of �ring t ii in Line 4. As a precaution11, a�er transmitting its �ring packet in
Line 5 at time t̂ ii , node i schedules its next time of �ring at time t

+ i
i in Line 9. In Line 6,

the node’s real transmission time t̂ ii is extracted from the just transmitted �ring packet (cf.
Section 5.6.1) to calculate the �ring delay δt ii for monitoring purposes (cf. Line 7). Node i
will use the precautionary scheduled next time of �ring in case it will not receive any other
�ring packet until then.

1 // upon firing of node i
2 if (firingTimerExpired()) {
3 setFirstPacketReceived(true);
4 t ii = t+ i

i; // "old" next firing time now is current firing time
5 transmit(firingPacket); // blocking send command
6 t̂ ii = getRealTransmissionTime(firingPacket);
7 δt ii = (t̂

i
i − t ii);

8 t+ i
i = t ii + T;

9 setFiringTimer(t+ i
i); // precautionary scheduling

10 }

Listing 5.2: �e calculation of the next time of �ring t+ ii of node i ∈ N as imple-
mented in our extended-Desync protocol when node i is sending its �ring packet.

11�e exact reasons for this precaution will be explained in detail in Section 6.2.1

106

5.9 Summary

�e receiving case is presented in Listing 5.3. Here, node i ∈ N is receiving at least one
�ring packet from a neighbor node before the expiration of its �ring timer: �e received
�ring packet may be the �rst one a�er node i’s own transmission – or not. Assuming, the
currently received �ring packet is the �rst �ring packet a�er the transmission of its own
�ring packet (cf. Line 2) at time t is(i) (cf. Line 4). According to De�nition 4.2, this neighbor
node is the successor s(i) of node i. As stated in Section 5.5.5, node i then has to update
the precautionary scheduled next time of �ring t+ ii in Lines 5 to 8 according to Eqs. (4.14)
and (5.14a). If node i receives additional �ring packets from further neighbor nodes (cf.
Lines 9 to 12), node i records the particular reception time (cf. Line 10) of this potential
predecessor (cf. De�nition 4.2). Moreover, it also calculates the corresponding reciprocal
phase shi� ϕr(t ip(i), t

+ i
i) in Line 11 based on the updated next time of �ring t

+ i
i as described

in Section 5.5.4.

1 // upon receiving a firing packet
2 if (isFirstPacketReceived()) {
3 setFirstPacketReceived(false);
4 t is(i) = now();
5 ϕ(t ii , t

i
s(i)) = (t

i
s(i) − t ii);

6 εt ii = (ϕ(t
i
i , t

i
s(i)) − ϕr(t

i
p(i), t

i
i)) /2;

7 t+ i
i = t ii + T + α ⋅ εt ii ; // overrides the next time of firing

8 setFiringTimer(t+ i
i);

9 } else {
10 t ip(i) = now();
11 ϕr(t ip(i), t

+ i
i) = (t

+ i
i − t ip(i));

12 }

Listing 5.3: �e calculation of the next time of �ring t+ ii of node i ∈ N as imple-
mented in our extended-Desync protocol when node i is receiving �ring packets.

Nevertheless, we could observe another phenomenon, which is inherent to the primitive
of desynchronization, namely the stale information problem: �e received data about a neigh-
bor sometimes is "stale", i.e., the information obtained from a received �ring packet may be
obsolete at the time of its utilization. Consequently, this information may be unreliable or
even invalid. Such stale information has a strong impact on the convergence behavior of
the system (cf. [126]). However, in this regard our extended-Desync protocol is limited in
terms of robustness as well as stability due to the stale information problem (cf. Section 6.2).
Since this problem is inherent to the primitive of desynchronization and already appears in
single-hop topologies but is intensi�ed in multi-hop topologies, further enhancements are
necessary. �erefore, we developed extended-Desync+ which is explained in detail in the
next chapter.

107

108

Chapter 6

The extended-Desync+ Protocol

Abstract

�is chapter describes the extended-Desync+ protocol, which improves the self-organizing
MAC protocol extended-Desync from Chapter 5. As already indicated in Section 5.9, the
applicability of the extended-Desync protocol as realization of the midpoint approach for
multi-hop topologies is restricted by the stale information problem. We will repeat the for-
mulation of this problem in Section 6.1. A�er this short motivation, we will analyze the stale
information problem for single-hop as well as multi-hop topologies in Section 6.2. In Sec-
tion 6.3, we will present the refractory threshold as additional protocol parameter to solve this
problem especially for multi-hop topologies. A short excursion on Pseudo RandomNumber
Generator in Section 6.4 explains the particular implementation for our real-world testbeds
as well as for our simulator extDeSIMc. Finally, Section 6.5 summarizes the features of the
resulting extended-Desync+ protocol.

6.1 Motivation

In Chapter 5 we introduced the phase shi� propagation to extend the midpoint approach for
use as self-organizing MAC protocol for multi-hop topologies. �e resulting extended-
Desync protocol seems to meet all demands from Section 1.2. Initially, our extended-
Desync protocol is not limited to certain topology types – in contrast to some other MAC
protocols based on the primitive of desynchronization (cf. Section 5.1). Finally, numerous
simulations as well as experiments of our extended-Desync protocol for various single-hop
andmulti-hop topologies, including joining or leaving nodes, always reached the stable state
of desynchrony (cf. [122, 123, 128] and [68, 167]1).
Surprisingly, for certain multi-hop scenarios, we observed a remarkable behavior of the

overall network, and, in compliance with De�nition 2.1, of the nodes: �e system did not
reach the stable state of desynchrony. Quite the contrary, some nodes alternated between
two speci�c values (according to their relative phase). Moreover, it seems that the system
presumably will never reach the stable state of desynchrony. Interestingly, we could neither
observe nor provoke such a behavior for any single-hop scenario.
A deeper analysis (cf. Section 6.2.2) of such a multi-hop topology with our simulator

extDeSIMc (cf. Section 2.3.2) enables us to identify the reason for this alternating behav-
ior, namely the so-called stale information problem. �is problem is inherent to the primi-
tive of desynchronization and yet known for single-hop topologies. However, this problem
– to the best of our knowledge – has not been investigated for multi-hop topologies, yet.
1Diploma theses conducted in conjunction with this work.

109

Chapter 6 �e extended-Desync+ Protocol

Consequently, the problem’s impact and its e�ect on the system behavior is also still under-
researched. Before we present our approach to solve the stale information problem in Sec-
tion 6.3, we �rst describe this problem for single-hop as well as for multi-hop topologies in
the next section.

6.2 Stale Information Problem

One characteristic of our self-organizing extended-Desync protocol is the ability of each
node to work with just locally available information. In fact, some information to solve the
hidden terminal problem is "self-provided" (e.g., information about a one-hop neighbor),
whereas some is "self-acquired" (e.g., information about a two-hop neighbor). In this regard,
the extended-Desync protocol implements the phase shi� propagation approach where
each node propagates information about its one-hop neighbors within its �ring packets (cf.
Section 5.3). Consequently, neighbor information of a two-hop neighbor (cf. Section 5.5)
which has been propagated by a one-hop neighbor usually becomes "stale". �is means that
the neighbor information, which a node is obtaining from received �ring packets, may be
obsolete, and thus unreliable or even invalid.
Even more remarkable, the problem of "stale" information already exists in single-hop

topologies (see Section 6.2.1): Here, this problem just impacts the convergence rate of the
system, i.e., the stable state of desynchrony still will be reached eventually – however later
than necessary. As mentioned before, the e�ect of this problem is intensi�ed for multi-hop
topologies (see Section 6.2.2): Here, "stale" information additionally impacts the convergence
behavior (of particular nodes), i.e., the stable state of desynchrony may not be reached at all
(cf. Section 5.9).

6.2.1 Single-Hop Topology

�e main characteristic of the midpoint approach as underlying concept of our extended-
Desync protocol is each node’s ability to autonomously calculate its next time of �ring. In
fact, when a node i ∈ N utilizes Eqs. (4.14) and (5.14) to calculate its next time of �ring t+i ,
this computation is based on "stale" information: Each node autonomously operates on just
locally available data. Hence, any adjustment of a node’s next time of �ring is neither subject
to approval by other nodes nor has the node’s adjustment to be announced or registered
in advance: Assuming, node i ∈ N transmits its �ring packet at time t i and immediately
calculates its next time of �ring t+i according to Eq. (4.14). Meanwhile, each phase neighbor
p(i) and s(i)may already have autonomously adjusted its individual next time of �ring t+p(i)
and t+s(i), respectively. �erefore, the phase shi�s ϕ(tp(i), t i) and ϕ(t i , ts(i)) may be based
on stale information. Hence, the estimation of the next time of �ring of node i utilizes old,
and thus potentially unreliable information – in particular the reception time of the �ring
packets of its phase neighbors. �e di�erent kinds of (reciprocal) phase shi�s are depicted in
Figure 6.1 for the sake of clarity.
�is stale information problem for single-hop topologies was �rst described by Degesys

et al. in [50]. Patel et al. further analyzed this problem for single-hop topologies in [141]. �ey
also developed the Desync-Stale protocol, which – with regard to the jump size parameter

110

6.2 Stale Information Problem

time

tp(i) ti

ϕ(ti , ts(i))

ts(i) t+i

ϕ (ts(i) , t)+irϕ(tp(i) , ti)
ϕr(tp(i) , ti)
=

Figure 6.1: Diagram of the di�erent kinds of (reciprocal) phase shi�s.

α – is more robust towards stale information than the Desync protocol (cf. [141]). �e main
idea to omit at least the stale information about the successor node is that each node shi�s
the calculation of its next time of �ring.
In particular, node i ∈ N calculates its next time of �ring t+i not immediately a�er the

transmission of its own �ring packet at time t i , but instead immediately a�er the reception of
the �rst subsequent �ring packet of its successor s(i) at time ts(i). As a result, the phase shi�
ϕ(t i , ts(i)) towards this successor is nowbased on this very current value ts(i) (cf. Figure 6.1).
Hence, node i now appliesmore recent data. EvenEq. (4.14)may remain the same to compute
the next time of �ring t+i . Just themoment when the next time of �ring is calculated by node i
is shi�ed from t i to ts(i). �is implementation is already described in Section 5.9 in Listing 5.2
on Page 106 and in Listing 5.3 on Page 107, respectively.
However, node i ∈ N cannot predict if there (once again) will be a successor transmitting a

�ring packet. �erefore, by reasons of precaution, node i has to schedule its next time of �ring
independently from any received �rings as t+i = t i + T immediately a�er the transmission
of its �ring message at time t i (cf. Line 9 in Listing 5.2). However, if node i is receiving the
�ring of a successively transmitting node, the precautionary scheduled time of its next �ring
t+i must be replaced by an updated next time of �ring according to Eq. (4.14) and Eq. (5.14),
respectively (cf. Lines 7 and 8 in Listing 5.3). Once again, just the time when this calculation
has to be performed by node i changes from t i to ts(i). Nevertheless, the information about
the predecessor remains stale. According to [50, 141], this stale information does not a�ect
the functionality of the algorithm (for single-hop topologies), but slows down its convergence
rate.
�e impact of the point in time,when a node estimates its next time of �ring, is analyzed in

[95]2. Here, a real-world testbed was installed representing a single-hop topology C4S of four
nodes plus sni�er (cf. Section 2.4.5). On the one hand, each node was set up to adjust its next
time of �ring immediately a�er broadcasting its current �ring packet. On the other hand,
each node was additionally set up to re-adjust its next time of �ring when the node received
the �ring packet (a�er its own �ring). As a result, the stable state of (perfect) desynchrony
is achieved faster in the second case, i.e., if each node re-adjusts its next time of �ring a�er
the reception of its successor’s �ring packet. As this particular packet is sent by the node’s
successor (at least in single-hop topologies), the most current information then is locally
available for the receiving node to compute its adjustment function according to Eq. (4.13b).
We will revisit this experiment in more detail in Section 7.3.

2Bachelor thesis conducted in conjunction with this work.

111

Chapter 6 �e extended-Desync+ Protocol

δ t cc

time

node b

time

node c

time

node a
?

τ

τ

tac

tbc

tcc

t+a
b

t+bb

t̂cc

t̂+bb

δt+ b
b

ϕr(tbc , t+bb)

Figure 6.2: �e information delay, when node a wants to gain knowledge about the �ring
time of its two-hop neighbor c ∈ N2(a) by means of its one-hop neighbor b ∈ N1(a).

6.2.2 Multi-Hop Topology

For a variety of multi-hop topologies, it may be su�cient that each node i ∈ N just shi�s the
calculation of its next time of �ring t+i from t i to ts(i). However, the impact of the stale infor-
mation problem is intensi�ed in multi-hop topologies due to the hidden terminal problem:
In this regard, each node i additionally has to take care of its two-hop neighbors N2(i) (cf.
Section 5.3.1). Realizing the phase shi� propagation approach from Section 5.3, node i gains
information about its two-hop neighbor k ∈ N2(i) just in cooperation with the correspond-
ing one-hop neighbor j ∈ N1(i) with k ∈ N1(j). In fact, this information �ow is further
delayed by at least the phase shi� ϕ(tk , t j) > 0 between j and k. As a result, when node i
calculates the �ring times of its two-hop neighbors according to Eq. (5.11), this computation
is based on stale information. Recalling the sample scenario from Section 5.5.1, node a gains
knowledge about the �ring time of its two-hop neighbor node c ∈ N2(a) just by means of
its one-hop neighbor node b ∈ N1(a) with node c ∈ N1(b) a�er at least ϕr(tbc , t+bb) > 0. A
scenario exemplifying this particular delay ϕr(tbc , t+bb) is depicted in Figure 6.2.
For a better illustration of the impact of stale information in multi-hop topologies, we use

the rather small but manageable dumbbell topology D7 as shown in Figure 6.3: �e network
consists of seven nodes ND7 = {a, . . . , f , h}. Noteworthy, this topology D7 contains two
cyclic (and complete) subgraphs C3 l and C3r with NC3 l = {a, b, c} and NC3r = {d, e, f }.
Both subgraphs are connected just by means of the helping node h. As a result, without
node h there would remain two disjoint connected components, and thus two individual
networks (cf. De�nition 2.17).
For our simulation we assume idealized conditions, i.e., all communication links are bidi-

rectional and reliable, not anynodewill fail, and there is no clock dri�. As protocol parameter,
we set period T = 1 000 000µs and damping factor α = 0.95. Next, let the nodes of the com-
plete subgraphs C3 l and C3r start node by node �rst. In compliance with Lemma 2.1, both
subgraphs are unaware of each other and thus will desynchronize independently as long as
node h is not running. When node h joins the network a�er a while, in the �rst step it gathers

112

6.3 Refractory �reshold

a h

f

c

d

e

b

C3l C3r

Figure 6.3:�e topology D7 consists of the set N = {a, . . . , f , h} of nodes with bidirectional
links.

knowledge about the yet desynchronized subgraphs C3 l and C3r . Next, the �ring packets of
node h contain information about its one-hop neighbors, namely node a and node d. As a
result, node h will connect both subgraphsC3 l andC3r with its �rst �ring packet. �e system
eventually forms the topology D7.
An extract (about 110 periods) of the outcome of a simulation run for this scenario is shown

in Figure 6.4: From the point of view (POV) of node h, the neighborhood switches between
two distinct phase values. �is undesired behavior is due to the stale information about the
two-hop neighbors within this multi-hop topology. In contrast to the idea behind the prim-
itive of desynchronization, the one-hop and two-hop neighbors of node h (i.e, all nodes of
C3 l and C3r , respectively) seemingly rather diverge than converge. In fact, the time of trans-
mission of each node �uctuates with a constant but individual amplitude. Besides, the phase
neighbors of node h are two-hop neighbors. According to Figure 6.4, these phase neighbors
are the topmost and the lowermost nodes, namely node f and node b (cf. Figure 6.3).
�is �uctuation is caused by the stale information about two-hop neighbors being phase

neighbors: Using the scenario above, node d gains knowledge about its two-hop neighbor
node a just by means of node h. Indeed, the information �ow about the �ring time of node a
towards node d is delayed by ϕ(ta , th), and about the �ring time of node d towards node a
by ϕ(td , th). As a result, the nodes of subgraph C3 l and C3r behave like the teeth of two gear
wheels moving back and forth all the time. Obviously, the nodes are not able to overcome
this perpetuating situation – even though each node propagates the neighbor information of
its one-hop neighbors according to Section 5.5.

6.3 Refractory Threshold

In Section 6.2, we speci�ed the stale information problem with special focus on multi-hop
topologies. In this section, we present our approach to solve the stale information problem in
multi-hop topologies while still being compliant to the primitive of desynchronization: We
start with the introduction of our refractory threshold as probabilistic protocol parameter in
Section 6.3.1. Next, we brie�y analyze the parameter’s impact onmulti-hop topologies in Sec-
tion 6.3.2. We complete this section with some related work about this topic in Section 6.3.3.

113

Chapter 6 �e extended-Desync+ Protocol

 0

 25

 50

 75

 100

 100 110 120 130 140 150 160 170 180 190 200 210

re
l.

p
h
a

se
 [

%
]

time [#periods]

a

f

c

d

e

b

Figure 6.4: Excerpt of a simulation run of topology D7 from Figure 6.3 (T = 1 000 000µs;
α = 0.95; POV: node h).

6.3.1 Basic Idea

As already mentioned, the stale information problem is inherent to the primitive of desyn-
chronization. Hence, we are not able to avoid the stale information problem at all. Moreover,
this problem may compel the nodes of a multi-hop topology to transmit their �ring packets
in an alternating and never-ending manner as exempli�ed in Figure 6.4 (cf. Section 6.2.2).
�erefore, we want to understand its appearance, and – even more important – we want to
reduce its impact on multi-hop topologies. However, the nodes will never desynchronize
unassistedly from such an alternating behavior.
To relax the stale information problem and to eventually escape this "vicious circle", our

main idea follows the law of similars3 to some extent: �e adjustment of a node’s next time of
�ring shall be delayed intentionally. For this purpose, we introduce the refractory threshold
ρ ∈ [0, 1] as additional protocol parameter. As already stated in [124, 126], we specify the
refractory threshold ρ along with a continuous random variable X i ∈ [0, 1), following the
continuous uniform distribution U(0, 1).
As a result, the adjustment function φ i (NR(i), t i) and the adjustment factor εt i , respec-

tively, will be considered by node i ∈ N just sporadically – depending on this new probabilis-
tic parameter ρ. According to Eqs. (4.14) and (5.14), node i is setting its next (absolute) time
of �ring t+i a�er the reception of its successor s(i) ∈ N1(i) ∪N2(i) at time ts(i) as

t+i =
⎧⎪⎪⎨⎪⎪⎩

t i + T X i < ρ
t i + T + α ⋅ εt i otherwise

. (6.1)

Similar to the jump size parameter α from Section 4.3, the boundaries of the interval of
the refractory threshold ρ ∈ [0, 1] are of special importance:
3Similia similibus curentur, i.e., let like be cured by like.

114

6.3 Refractory �reshold

• Setting ρ = 0 lets the node always adjust its next time of �ring. �e resulting be-
havior would be identical to that one emerging from the extended-Desync protocol.
For simulation purposes, e.g., to compare the extended-Desyncwith the extended-
Desync+ protocol, this setting may be useful.

• Setting ρ = 1 forces the node to not use the adjustment function anymore. Conse-
quently, the next time of �ring will never be adjusted. As mentioned in Section 4.3,
setting the jump size parameter α = 0 results in the same behavior. �is can be useful
when integrating a sni�er (cf. Section 2.4.5), which should act as reference or "referee",
as exempli�ed in Chapter 7.

To some extent, the refractory threshold ρ contradicts the primitive of desynchronization:
�e adjustment of the next time of �ring may be "skipped". However, the refractory thresh-
old as probabilistic parameter enables a node to keep its phase, i.e., to not adjust its next time
of �ring. �is could be one option for the system to eventually reach the stable state of desyn-
chrony: For instance, let node i ∈ N be phase neighbor of another node j ∈ N1(i) ∪ N2(i).
According to Lemma 4.8, node j in turn needs not to be the opposing phase neighbor of node
i. Moreover, node i and node j both implement the refractory threshold approach according
to Eq. (6.1). Assuming, node i is skipping the adjustment of its next time of �ring due to the
random variable X i . As a result, the estimation of its next time of �ring of node j remains
valid regarding its phase shi� towards node i. Consequently, the information about node i is
still reliable. Since each node decides individually based on its own Pseudo RandomNumber
Generator, this approach seems to cope with the stale information problem adequately. �us,
we will next analyze the impact and bene�t of our refractory threshold in the next section.

6.3.2 Impact

To get a �rst impression, we exemplify the impact of our new refractory threshold ρ on the
sample scenario fromFigure 6.3. In particular, the two disjoint single-hop topologiesC3 l and
C3r are joined by node h. We use our self-developed simulator extDeSIMc as introduced in
Section 2.3. Again, we set period T = 1 000 000µs and damping factor α = 0.95 as protocol
parameter. �e other parameters remain unchanged.
In contrast to the scenario described in Section 6.2.2, each node i now calculates its next

time of �ring t+i according to Eq. (6.1). Moreover, each node uses ρ = 0.25 as refractory
threshold. �is means that each node keeps its phase at every fourth �ring on average. If a
node is keeping its phase, all nearby receiving nodes estimate their next times of �ring on
more reliable, i.e., less stale information. As a result, the refractory threshold supports the
network to converge. Eventually, the system reaches the stable state of desynchrony, i.e., the
time of transmission of the nodes is not �uctuating any more. �is behavior is depicted in
Figure 6.5 presenting the same excerpt as shown in Figure 6.4 – just implementing the new
refractory threshold ρ. Noteworthy, the ordering of the nodes in Figure 6.5 is identical to
that one depicted in Figure 6.4 – at least from the view of node h.
Certainly, this sample scenario cannot replace a deep analysis. �us, we will analyze the

refractory threshold inmore detail in Section 7.4. Nevertheless, this �rst impression indicates
the capability of the refractory threshold.

115

Chapter 6 �e extended-Desync+ Protocol

 0

 25

 50

 75

 100

 100 110 120 130 140 150 160 170 180 190 200 210

re
l.

p
h
a

se
 [

%
]

time [#periods]

a

f

c

d

e

b

Figure 6.5: Excerpt of the outcome of a simulation run of topologyD7 utilizing the refractory
threshold ρ (T = 1 000 000µs; α = 0.95; ρ = 0.25; POV: node h).

6.3.3 Related Work

We introduced in Section 6.3.1 the refractory threshold ρ to cope with outdated and thus
unreliable data. Reworded, consciously we make data of a node obsolete for one period T to
obtain more reliable data. Our approach is quite similar to the refractory period, i.e., a node
does not register any incoming �ring packets for this certain amount of time. �e refractory
period and the refractory threshold, respectively, are both biologically inspired. As in nature,
such an "resisting time" is essential to prevent harmful oscillations, e.g., on neurons.
�e refractory period was suggested in [51, 99] to synchronize (strongly) pulse-coupled

oscillators: If an oscillator receives the �ring of a neighbor within this refractory period, the
receiving oscillator must not further process this incoming �ring. �is means that the par-
ticular phase shi� between sender and receiver is less than the refractory period, and thus
will not be considered by the receiving oscillator. As a consequence, the receiver temporar-
ily does not adjust its next time of �ring. Since our goal is to desynchronize the �rings of
nodes, this synchronization process is contrary to our objective. Moreover, the utilization of
the refractory period depends on the interval between a couple of nodes. In contrast, our
refractory threshold ρ is devised as a constant parameter – similar to the damping factor α.
However, [89] aswell as [51] suppose the refractory period to be a serviceable parameter for

(strongly) pulse-coupled oscillators. �is should improve the convergence behavior and the
convergence rate, in particular. Indeed, the resulting model may get more complex and thus
more di�cult to be calculated. Although the refractory threshold approach slightly di�ers
from the refractory period approach, our experience so far in Section 6.3.2 con�rms these
assumptions. Nevertheless, we will have to analyze the convergence behavior utilizing the
refractory threshold in more detail in Section 7.4. However, we �rst make a short excursion
about the generation of the essential random variable X i in the next section

116

6.4 Excursion: Pseudo Random Number Generator (PRNG)

6.4 Excursion: Pseudo Random Number Generator (PRNG)

We introduced in our extended-Desync+ protocol the refractory threshold ρ as proba-
bilistic parameter. For an implementation in our simulator extDeSIMc as well as in our
real-world testbeds, we are in need of a Pseudo Random Number Generator (PRNG). �ere-
fore, we �rst describe the implementation of a Pseudo Random Number Generator for our
sensor node framework in Section 6.4.1. In Section 6.4.2, we present implementation details
for the Pseudo Random Number Generator of our simulator extDeSIMc.

6.4.1 PRNG Implementation for our Sensor Node Framework

As already mentioned, we rely on a Pseudo Random Number Generator due to several rea-
sons (cf. Sections 2.2.2 and 5.8). However, to implement the refractory threshold approach
fromSection 6.3.1 the availability of such a PseudoRandomNumberGenerator nowbecomes
mandatory, and is of particular importance: In fact, if the "random" variable X i fromEq. (6.1)
is chosen inappropriately, each node would skip the adjustment of its next time of �ring – in
worst case simultaneously. �is e�ect is not desired and shall be prevented.
�ere are several approaches and techniques on how to implement a Pseudo Random

Number Generator (cf. textbooks on random number generation like [71, 137]). �ese gener-
atingmethods di�er in complexity, reproducibility, and contingency of the generated random
numbers (cf. [1, 8]). For our purposes, the reproducibility of the used generator is important.
In particular, we want to keep the system behavior rather controllable and manageable than
to generate perfectly randomized numbers – especially for our simulator extDeSIMc (cf.
Section 2.3.2).
Furthermore, the computational e�ort of a node to generate such a random number has to

be considered as well. Due to the fact that the computational power of sensor nodes deployed
in our real-world testbeds is quite limited (cf. Section 2.4), we choose a Linear Congruential
Pseudo Random Number Generator [8, 105] which is solely based on simple calculations. For
instance, this kind of a PRNG equals Java’s default implementation of a Pseudo Random
Number Generator (cf. java.util.Random). �e basis of calculation of the Linear Congru-
ential PRNG is outlined in Listing 6.1.

1 seed = (seed ∗ multiplier+ summand) mod 2precision

Listing 6.1: Pseudo-code of Java’s default PRNG implementation.

For the used so�ware framework of our sensor nodes, there already exists a simple but
feasible implementation of such a Linear Congruential Pseudo Random Number Genera-
tor, written in C. �e functions of the SmartOS compliant library are shown in Listing 6.2:
Besides the declaration of necessary constants and variables in Lines 2 to 4, this so�ware
component just o�ers three functions as follows: First of all, there is the initialization routine
in Lines 6 to 8 to prepare the generation of random numbers with an (application) speci�c
initial value (seed). For instance, the node IDmay be used as seed here (cf. Listing 6.3). Next,
there are two functions le� to return a random number: �e �rst function in Lines 10 to 12
returns the random number as uint16_t. �e second one in Lines 14 to 16 calls the �rst one,
but returns the resulting random number as char value. �e latter function complies well
with Java’s default implementation in Listing 6.1.

117

Chapter 6 �e extended-Desync+ Protocol

1 // PRNG functionality of SmartOS
2 static const uint_16 factor = 277;
3 static const uint_16 add = 2455;
4 static uint_16 seed;
5 // Initialization
6 void prng_init(uint_16 _seed) {
7 seed = _seed;
8 }
9 // Return of pseudo random word
10 uint_16 prng_getWord(void) {
11 return seed = (seed * factor) + add;
12 }
13 // Return of pseudo random byte
14 unsigned char prng_getByte(void) {
15 return prng_getWord() >> 4;
16 }

Listing 6.2:�e SmartOS-compliant implementation of a PRNG.

In our real-world testbeds, each node has to generate random numbers. Consequently,
each node runs its own Pseudo Random Number Generator to get these numbers. Besides,
each sensor node features a unique ID for identi�cation and recognition (cf. Sections 2.4
and 5.6). As already mentioned in Section 5.6, the node ID also is stored in the infomem
of the assembled microcontroller MSP430 (cf. Section 2.4). �e SmartOS operating sys-
tem provides the speci�c function infomem_getNodeID() to read this special data from the
infomem. �erefore, we will use this unique identi�er as seed to initialize the Pseudo Ran-
domNumber Generator as presented in Listing 6.3 for the implementation of our real-world
testbeds (cf. Listing 5.1).

1 prng_init(infomem_getNodeID());

Listing 6.3: Using the node ID as seed for the PRNG.

6.4.2 PRNG Implementation for our Simulation Framework

For our simulations, wemake use of the Pseudo RandomNumber Generator provided by the
Java programming language as described in Section 6.4.1 and Listing 6.1. In fact, there is no
need that each simulated sensor node operates its own instance of a Pseudo Random Num-
ber Generator. However, the behavior of a node of the real-world testbed would be re�ected
more precisely by node-speci�c instances. For the sake of e�ciency and to get comparable
simulation results, we instantiate just one "global" Pseudo Random Number Generator per
simulation. Of course, each node within the simulation gets access to this instance. Conse-
quently, there is just one "global" seed per simulation scenario to initiate the generation of
random numbers. �is seed can be speci�ed within the simulation con�guration (cf. Sec-
tion 2.3). Initially, we use the same default seed, namely 8 690 401 185 424 030, for our simu-
lation tool (implemented in Java) as well as for our script (implemented in Perl) to generate
simulation models (cf. Sections 2.3.2 and 2.3.4). Certainly, the seed of the simulator extDeS-
IMc as well as of the script may be adjusted independently of each other. Please note, since
our embedded so�ware expects the seed as uint16_t value for initialization according to

118

6.5 Summary

Listing 6.2, the default seed used for the Java and Perl implementations is too big to be re-
used for our sensor node framework from Section 2.4 (cf. Listing 6.4). �is is an additional
argument in favor of utilizing the node ID as seed for the real-world testbeds as described
above.

6.5 Summary

In Chapter 5, we described our self-organizingMAC protocol extended-Desync. �is pro-
tocol is quite �exible and applicable for arbitrary multi-hop topologies. However, we dis-
covered a certain scenario in which the extended-Desync protocol was not able to desyn-
chronize the system. �e main reason for this behavior is the stale information problem as
introduced in Section 6.2.
As a solution, we introduced the refractory threshold as probabilistic parameter for our

extended-Desync+ protocol (for multi-hop topologies) in Section 6.3: Depending on this
threshold, a node will skip the adjustment of its next time of �ring – or not. �ese individual
decisions help the system to eventually reach the stable state of desynchrony. �eusage of this
probabilistic parameter now strictly requires the application of a Pseudo Random Number
Generator. �erefore, we inserted a brief excursion about the particular implementation and
utilization of a Pseudo Random Number Generator for our simulator extDeSIMc and for
our real-world testbeds in Section 6.4.
Next, we present the algorithm to calculate the next time of �ring of a node i ∈ N of our

extended-Desync+ protocol. Since the event on sending a �ring packet by node i remains
unchanged in relation to our extended-Desync protocol as shown in Listing 5.3, we just
inspect the event on receiving a �ring packet from a neighbor node by node i in Listing 6.4.
Here, node i ∈ N is receiving at least one �ring packet from a neighbor node before the
expiration of its �ring timer (cf. Lines 1 to 12): As already described in Section 5.9, the received
�ring packet may be the �rst one a�er node i’s own transmission – or not. In comparison
to the algorithm of the extended-Desync protocol presented in Listing 5.3, there is only
one adjustment made. In Line 6 in Listing 6.4, we apply a ternary operator (namely ? :) to
implemented the conditional expression of Eq. (6.1). If the refractory threshold ρ is less a
random value, then the adjustment factor εt ii is set according to Eq. (5.14a), else it is set to 0.

1 // upon receiving a firing packet
2 if (isFirstPacketReceived()) {
3 setFirstPacketReceived(false);
4 t is(i) = now();
5 ϕ(t ii , t

i
s(i)) = (t

i
s(i) − t ii);

6 εt ii = (ρ < Random.nextDouble()) ? (ϕ(t ii , t
i
s(i)) − ϕr(t

i
p(i), t

i
i)) /2 : 0;

7 t+ i
i = t ii + T + α ⋅ εt ii ; // overrides the next time of firing

8 setFiringTimer(t+ i
i);

9 } else {
10 t ip(i) = now();
11 ϕr(t ip(i), t

+ i
i) = (t

+ i
i − t ip(i));

12 }

Listing 6.4:�e calculation of the next time of �ring t+ ii of node i ∈ N integrating
the refractory threshold ρ as implemented in our extended-Desync+ protocol.

119

Chapter 6 �e extended-Desync+ Protocol

So far, we just did exemplify the impact of this probabilistic parameter in Section 6.3.2.
In addition, no universal value for the refractory threshold has been elaborated so far. We
just used a certain value for this probabilistic parameter for the purpose of illustration. A
deeper analysis of this threshold is missing. For this reason, we refer to the next chapter, and
to Section 7.4 in particular.

120

Part III

Evaluation
Was macht die Zeit, wenn sie
vergeht?

Albert Einstein

Abstract

In the previous part, we introduced the underlying primitive of desynchronization and presented our
communication protocols extended-Desync and extended-Desync+ . With this current part we
conclude this work. �is means, we will analyze our protocols, discuss the results of our experiments
and simulations, and �nally summarize the main results of our work.
In particular, Chapter 7 evaluates our self-organizing MAC protocols. For this purpose, we use the
mechanisms simulation and experiments as described in Section 2.2. �is means that we will analyze
the protocol handling as well as the basic protocol parameters, namely jump size parameter α and
refractory threshold ρ. Moreover, wewill also oppose our self-organizing protocols to our requirements
from Section 1.2 within this chapter. �e outcome of this analysis is discussed in Chapter 8: In this
chapter, we give a short outlook to future work. Furthermore, we also present some (network) services
to be realized as add-ons for our self-organizing protocols. Finally, Chapter 9 sums up the key aspects,
and concludes this work.

Chapter 7

Analysis

Abstract

In this chapterwe analyze several aspects of our self-organizing protocols extended-Desync
from Chapter 5 and extended-Desync+ from Chapter 6, respectively. Especially, we will
check whether our requirements from Section 1.2 are met. In this regard, we also will moti-
vate the protocol-speci�c parameters, namely the jump size parameter α and the refractory
threshold ρ. For this purpose, various techniques, namely simulation, experiment, and an-
alytical solution, are feasible (cf. Section 2.2). Indeed, for all our analyses we just did set up
experiments with real-world testbeds (cf. Section 2.2.1) as well as simulation runs of adequate
models with our self-developed simulator extDeSIMc (cf. Section 2.2.2).
Since a simulation model always just abstracts the real-world, we �rst validate our simula-

tionmodel in Section 7.1. In Section 7.2, we demonstrate the (undesired but complicating) fact
that even small changes in the system setup may result in a totally di�erent outcome. Next,
we analyze the distinctive protocol parameters of our MAC protocols extended-Desync
and extended-Desync+. In particular, we examine the jump size parameter α in Section 7.3
and the refractory threshold ρ in Section 7.4. Our requirements from Section 1.2 are checked
in Section 7.5: �is means that we will verify applicability, scalability, and robustness against
environmental perturbations of our self-organizing communication protocols to meet our
demands. Finally, Section 7.6 concludes this chapter.

7.1 Simulation Model Validation

In Section 2.3, we described our self-developed simulator extDeSIMc in detail. However,
any conclusion drawn from simulation runs is at most as reliable as permitted by the under-
lying simulation model. �erefore, the validation of a simulation model is an essential pro-
cedure to get sound results and to draw reliable conclusions. For this reason, this section de-
scribes the validation process of our simulation model against the corresponding real-world
scenario.

7.1.1 Object of Investigation

It is always a hard task to create a simulation model of a physical system when the creation
process is exclusively based on certain technical characteristics of this system. Hence, the sole
values from the data sheets of the assembled hardware components of our real-world testbeds
are not su�cient to specify our simulation model properly. We illustrate this proposition by

123

Chapter 7 Analysis

the phenomenon clock dri�, which is inherent to networked systems but di�cult to emulate
in detail1:

1. First of all, the data sheet values for an external quartz crystal, which drives the node’s
microcontroller, are not su�cient at all: Some of its parameters depend on speci�c
environmental conditions. For instance, the frequency tolerance of the crystal quartz
model HC49/3H from IQD, which is assembled on the SNoW5 sensor node, was spec-
i�ed at 25 ○C ± 2 ○C (cf. [88]). In general, these values are not speci�ed in correlation
to other environmental conditions, e.g., at 10 ○C. Furthermore, it also is not likely that
the system environment always ful�lls these speci�c conditions.

2. Next, the frequency stability of an external quartz crystal driving the node’s micro-
controller is in�uenced by several factors like aging, temperature, and humidity (cf.
De�nition 2.6). �is environmental impact is signi�cant and not negligible, especially
for outdoor deployments where parts of the network could be exposed to direct sun-
light, whereas other parts of the network may lay in the shade. For a very accurate and
�ne grained model, all these factors would have to be taken into account. However,
even though it may be possible to determine all physio-chemical properties of the sur-
rounding for each quartz crystal by placing adequate sensors nearby each crystal, it is
quite di�cult to determine the aging of a crystal quartz precisely (cf. [136]).

3. Moreover, some properties in the data sheet are not speci�ed as single value but as
range of values instead. For instance, the e�ect of aging on the frequency stability of
the IQD crystal quartz HC49/3H model is speci�ed from −5 ppm up to +5 ppm per
year (cf. [88]). Setting this parameter for a simulation model accordingly is hardly
possible2.

4. In addition, clock dri� is just a statement between two clocks. As our self-organizing
system usually does not provide a global reference clock (cf. Section 1.2), the clock dri�
here is always speci�ed between pairs of clocks. As a consequence, for an accurate sim-
ulationmodel not only information about the frequency stability of each crystal quartz
assembled but also information about the clock dri� between each pair of interacting
nodes3 would be required. Depending on the network size, network density, and the
network topology, this is a quite di�cult task.

5. Since all digital systems use time not as continuum but in discretization, inaccuracies
in this regard are rather inevitable. Indeed, techniques to minimize these inaccuracies
yet exist. Furthermore, methods to get just symmetrical errors on timestamping are
also available, for instance as described byBaunach in [19]. Nevertheless, there remains
some inaccuracy to a certain extent.

6. Finally, there still may be further but arbitrary and non-deterministic delays in the
individual timing of a node. Such delays may be caused by hardware and/or so�ware

1Nevertheless, our simulation model allows the de�nition of a constant clock dri� rate for each node.
2Measuring the crystal’s inaccuracy (e.g., by an oscilloscope) just determines the overall inaccuracy, but not the
causing factors, like aging, in isolation.

3Noteworthy, in fully connected networks the number of pairs grows quadratically with the number of nodes.

124

7.1 Simulation Model Validation

issues. For instance, entering a subroutine (e.g., an ISR) due to an (external) event
(causing an IRQ) supports this e�ect. Such sporadic e�ects are hard to simulate, but
could be emulated using probabilistic elements during simulation.

Hence, we were not able to set up an accurate model just from data sheet values at reason-
able expense. Instead, we had to use measurements taken from real-world testbeds as addi-
tional data basis to re�ne the corresponding simulation model. For this reason, we compare
the behavior of a real-world testbed against the outcome of the corresponding simulation
model iteratively – until the model matched the behavior of the testbed.
Moreover, assuming that it would be possible to model every property of the real-world

testbed and its surrounding, this high level of detail may be undesired: �e size as well as the
complexity of the simulation model would grow tremendously. �is additionally a�ects the
time required for a single simulation run. Accompanied is the di�culty to e�ciently handle
such a huge model. As a consequence, we are trying to keep the simulation model as accu-
rate as necessary but also as simple as possible (cf. Section 2.3.3). �erefore, we do not aim
for a simulation model as exact replication of physical e�ects but as a valid representative of
scenarios related to the primitive of desynchronization by tolerating slight but comprehensi-
ble di�erences. Indeed, we rather want to observe and monitor the system behavior, i.e., the
convergence behavior of the nodes in particular (cf. Section 2.3).

7.1.2 Expectation

A�er the development phase, inwhich the simulationmodelwas iteratively implemented and
improved according to the oucome of the underlying real-world testbed, we expect just little
deviations. Since there are inaccuracies in time measurement and timing (cf. Section 7.1.1)
and since our focus mainly is on the convergence behavior of the system (cf. Section 1.2), we
do not rely on a very �ne-grained simulation model. �is means that we do not insist on the
exact replication of physical e�ects. �is is the reason why we could not expect an identical
output but little deviations for a simulation scenario. �ese deviations in general may di�er
in

Convergence Rate One variant (e.g., simulation) may converge considerably faster than
the other (e.g., testbed).

Set of Neighbors In the stable state of (perfect) desynchrony, the transmission order of
the nodes may di�er, i.e., re�ected by a permutation of the node’s neighborhood.

Phase Shift �e (reciprocal) phase shi� between a pair of nodes of one variant (e.g., sim-
ulation) may di�er from the (reciprocal) phase shi� of the same pair of nodes of the
other variant (e.g., testbed).

If the system reaches the stable state of (perfect) desynchrony, we just expect permutations of
neighbors. �is permutationmay appear as shi�ed transmission times or as a di�erent order
of neighbor nodes. At least, the phase shi� between successor and predecessor is expected to
be identical. Since we do not consider identical start up times but an identical start up order
for simulation and real-world testbed, we have to run the same simulation model for several
times to smooth out potential deviations.

125

Chapter 7 Analysis

7.1.3 Procedure

�ewireless communication of sensor nodes is in�uenced by environmental conditions. For
instance, the RSSI value of the RF unit (cf. Section 2.2.1) is in�uenced by moving people or
the opening and closing of a door. Since our simulation framework extDeSIMc allows the
generation of fully observable as well as reproducible scenarios, it is easier for us to re�ne the
simulation model according to the underlying real-world testbed than to modify the corre-
sponding testbed. �erefore, we always run the real-world testbed �rst and – according to
the recorded data of the testbed – we develop and adjust the simulation model then.
Neither is it possible to set up all potential scenarios, nor is our stock of real sensor nodes

unlimited. Hence, within this section we focus on some small, but manageable scenarios of
real-world testbeds consisting of up to six SNoW5 sensor nodes (cf. Section 2.4.1), including
active ones as well as sni�ers (cf. Section 2.4.5). �e validation procedure for each speci�c
scenario was as follows:

V1. First, we installed a particular real-world testbed consisting of SNoW5 sensor nodes
at the laboratories. �e objective was to construct a particular topology by skillful and
clever arrangement of the sensor nodes.

V2. �is testbed ran for awhile logging data4. Asmentioned before in Section 7.1.1, a sensor
node not only acts as object of investigation but also as measuring device. �is means
that each node logs every incoming packet, every �ring packet transmitted, and its
list of one-hop as well as two-hop neighbors at its time of �ring. All these data is pro-
vided at the serial communication interface of the node, e.g., to be stored by a terminal
program at a PC.5

V3. According to the recorded data, we developed a simulationmodel primarily emulating
the topology and the start up order (with randomized start up times) of the nodes.
Certainly, we set up identical protocol parameters (i.e., jump size parameter α and
refractory threshold ρ) for both, simulation and testbed. Due to potential e�ects like
roundings, interferences, and clock dri�s, each simulation run was performed at least
ten times to compensate such deviations.

V4. Next, we compared the outcome of the particular testbed to the outcome of the corre-
sponding simulation run mainly by visual control.

V5. If the simulation could not reproduce the convergence behavior of the testbed (tem-
porary deviations, e.g., due to moving people, may be tolerable), the simulation model
was adjusted and rerun (see Item V3).

7.1.4 Results

As expected, a few times the outcome of the simulation run di�ered to the outcome of the
real-world testbed even a�er the development phase of the simulation model. �ese devia-
tions appeared due to the dynamics of the environment as well as the randomized start up
4Depending on the underlying topology, we used one or more sni�ers for data logging.
5Certainly, using the serial communication interface for the output of the logging information additionally a�ects
the system load of a node (cf. Section 2.4).

126

7.1 Simulation Model Validation

21

4
5

3

Figure 7.1: �e topology A4S consists of the set N = {1, . . . , 5} of nodes with sni�er node 5.
Notably, there is a unidirectional link from node 3 to node 4.

times of the nodes. Indeed, we could identify the following con�gurations promoting the
emergence of such deviations:

• If the time lag between the start up time of two subsequent nodes within the same
constraint graph is too small (i.e., less than the packet transmission time between both
nodes), the subsequent node would impair the transmission of other nodes – at least
the preceding one. Moreover, the �ring packets of these nodes may collide. Finally,
these collisions could even destabilize the whole system (cf. Section 5.8).

• If the system has not yet reached the stable state of (perfect) desynchrony but still is in
settling mode and tries to desynchronize, nodes starting up and joining the network
in the meantime could prolong this settling process. In the worst case, such joining
nodes could even destabilize the system – especially in scenarios when all nodes start
up within the �rst period (cf. Section 7.2). �is phenomena appears when the tem-
poral distance between the start up time of the joining node is too short (i.e., up to
several hundreds of microseconds) to the next time of �ring of an already participat-
ing node. �is means that even Carrier Sense right before �ring could not detect such
an interruption, e.g., due to the switching time from receive mode to transmit mode
of the radio unit (cf. [96]). For instance, the CC1100, which is placed on the SNoW5,
requires 9.6 µs to switch from RX mode to TX mode (cf. [175]).

As an example, we present here the outcome of topology A4S , which is one of the analyzed
scenarios (cf. [125]): As depicted in Figure 7.1, the network consists of four active nodes and
one sni�er (cf. Section 2.4.5). Noteworthy, the link between node 3 and node 4 is unidirec-
tional, i.e., node 4 receives packets from node 3 but not vice versa. Since node 4 is three hops
away from node 3 within this topology, node 3 will gain no knowledge about the presence of
node 4 without further exchange of information. For simulation and real-world testbed we
set period T = 500 000µs, damping factor α = 0.95, and refractory threshold ρ = 0.
For comparison, Figure 7.2 opposes the same extract of the outcome of the real-world

testbed in Figure 7.2(a) to the outcome of the simulation run in Figure 7.2(b). Both diagrams
in Figure 7.2 show the point of view of the sni�ng node 5. �e domain axis denotes the
time as number of periods since start up of the simulation, the range axis denotes the relative
phase in percentage of the period length, i.e., 100% of a period is identical with 0% of the
subsequent period (cf. Section 2.3). As expected, both graphs look quite similar. �e shown
convergence behavior seems to be identical.

127

Chapter 7 Analysis

 0

 25

 50

 75

 100

 400 425 450 475 500 525 550 575 600

re
l.

p
h
a

se
 [

%
]

time [#periods]

1

2

4

3

(a) Excerpt of the outcome of the real-world testbed.

 0

 25

 50

 75

 100

 400 425 450 475 500 525 550 575 600

re
l.

p
h
a
se

 [
%

]

time [#periods]

1

3

2

4

(b) Excerpt of the outcome of the simulation run.

Figure 7.2: Excerpts of the outcome of the real-world testbed and the simulation run of topol-
ogy A4S (T = 500 000µs; α = 0.95; ρ = 0; POV: node 5).

Small di�erences becomemore obvious in the overlap of both outcomes in Figure 7.3: Due
to the limited frequency stability and integer rounding at the real nodes, the abscissas of the
outcome of the simulation (using perfect clocks without clock dri�) were rescaled by 106%
here. Indeed, the outcome of the simulation run looks more straight-lined than the slightly
wavy graph of the real-world testbed. �ese undulations in the outcome of the real-world
testbed are mainly caused by clock dri�s and roundings. Nevertheless, the simulation model

128

7.1 Simulation Model Validation

 400 425 450 475 500 525 550 575
 0

 25

 50

 75

 100

re
l.

p
h

a
se

 [
%

]

time [#periods]

Figure 7.3: Overlap of the outcome of the real-world testbed (gray) from Figure 7.2(a) and
the outcome of the simulation run (black) from Figure 7.2(b).

(at least for this particular scenario) can be considered to be valid.
Certainly, this visual comparison is not on a parwith an analytical solution. Indeed, in Sec-

tions 7.1.1 and 7.1.2, we sketched the potential complexity of a �ne-grained simulation model
as well as the di�culty to set up a corresponding mathematical (non)linear system (cf. [112]).
Since we are mainly interested in the system’s convergence behavior, small di�erences in the
outcome as depicted in Figure 7.3 are tolerable for our purposes. Indeed, several dimension-
ing rules as maximum tolerable deviation for the outcome are arguable. For instance, the
di�erence between simulation and testbed has to be less than a �xed value or less than a
particular percentage of packet length or period length. However, these dimensioning rules
must not have any notable impact on the system’s convergence behavior.
Hence, we specify the following dimensioning rules to classify the current state of node:

R1. First, we specify the stable state of desynchrony (cf. De�nition 4.3) of a node. In compli-
ancewith Eq. (4.7), the absolute di�erence between the value of a node’s current adjust-
ment function and the value of its previous adjustment function is less or equal a cer-
tain threshold. �is threshold depends on the current period T , it shall be in the mag-
nitude of a thousandth part of this period T . For instance, let T = 1 000 000µs. Choos-
ing a factor of 1‰ then results in a maximum tolerable deviation of T ⋅ 1‰ = 1000 µs.

R2. Next, we specify the stable state of perfect desynchrony (cf. De�nition 4.3) of a node. For
this purpose, it is a mandatory prerequisite that the node already is in the stable state
of desynchrony as described in dimensioning rule R1. In addition and in compliance
with Eq. (4.8), the absolute value of the previous adjustment function has to be less
or equal the half of the threshold from dimensioning rule R1. Continuing the example
fromdimensioning rule R1, themaximum tolerable deviation of the absolute di�erence
between the previous and the current result of a node’s adjustment function is 500 µs.

129

Chapter 7 Analysis

R3. In any other case, a node is considered to be not in a stable state.

�ese dimensioning rules are implemented in our simulator extDeSIMc as shown in List-
ing 7.1: In Line 2, the maximum tolerable deviation is initialized. �e function to determine
the node’s current state of desynchrony is speci�ed in Lines 5 to 27. �e seriesRingBuffer
is used in Lines 9 to 11 to compare the value of the node’s past adjustment function with the
current one. �e node’s state of desynchrony is set in Line 24 and Line 26, respectively.

1 // setting maximum tolerable deviation
2 this.MAX_TOLERABLE_PHASE_DIFF = T ⋅ 1‰;
3

4 // determining the node’s current state
5 protected DESYNC_STATE getMyDesyncState() {
6 boolean isStable = false;
7 Number lastValue = null;
8 Number currentValue = null;
9 for (int i = 0; i < seriesRingBuffer.getSize(); i++) {
10 lastValue = seriesRingBuffer.get(i);
11 currentValue = seriesRingBuffer.get(i + 1);
12 if (lastValue != null && currentValue != null) {
13 if (Math.abs(currentValue.doubleValue()
14 - lastValue.doubleValue()) > MAX_TOLERABLE_PHASE_DIFF) {
15 isStable = false;
16 break;
17 }
18 }
19 isStable = true;
20 }
21 if (isStable && lastValue != null
22 && (Math.abs(lastValue.doubleValue()) <=
23 (MAX_TOLERABLE_PHASE_DIFF / 2))) {
24 return DESYNC_STATE.PERFECT_DESYNC;
25 } else
26 return (isStable) ? DESYNC_STATE.DESYNC : DESYNC_STATE.OUT_OF_SYNC;
27 }

Listing 7.1: Implementation of the dimensioning rules specifying the stable state of
(perfect) desynchrony of our simulator extDeSIMc.

Notwithstanding, there seems to be no continuity at the exemplary scenario as depicted in
Figure 7.2: �e temporal distance between each pair of nodes remains constant, whereas the
whole system rotates at constant speed along the period T . In compliance with De�nition 4.3
and according to dimensioning rule R2, the stable state of perfect desynchrony will never be
reached. �is phenomenon is caused by the unidirectional link between node 3 and node 4,
which will be further analyzed in Section 7.5.

7.2 Setup Consequences

We selected the midpoint approach in Section 4.3 as basis for our self-organizing MAC pro-
tocols due to its simple algorithm. However, the design space of a (self-organizing)multi-hop
WSN is quite complex by nature. �is complexity is in�uenced by the following factors:

130

7.2 Setup Consequences

F1. First of all, the used MAC protocols extended-Desync and extended-Desync+ are
con�gurable in various ways. Hence, its design space is in�uenced by certain protocol
parameters, like the damping factor α (cf. Section 7.3) and the refractory threshold ρ
(cf. Section 7.4) of the extended-Desync+ protocol.

F2. Next, several parts of the design space are in�uenced by network parameters. �is
includes typical parameters like network structure, link quality, and network size. In-
deed, network changes, like (partial) mobility of the nodes or (arbitrary) topology dy-
namics, do also a�ect the system complexity. In fact, these factors are signi�cant for
the convergence behavior of the system. In this regard, we stress once more the fact
documented in Section 4.2: �e deployment and the analysis of a multi-hop topology
are much more elaborate than of a single-hop topology.

7.2.1 Object of Investigation

During the validation of our simulation model (cf. Section 7.1), we identi�ed another fac-
tor which not only further increases the system complexity but also a�ects the convergence
behavior of the system: the start up order of the nodes. To illustrate this e�ect, the snif-
fer’s outcome of one of the simulation models describing the scenario of topology A4S from
Section 7.1 is displayed in Figure 7.4(a): Here, the simulated system seems to be in perfect
desynchrony – at least from the sni�er’s point of view. Notwithstanding, this behavior satis-
�es our expectations on a self-organizing MAC protocol much more than the outcome from
Section 7.1. However, the outcome of this particular simulation as shown in Figure 7.4(a)
totally does not match with the observed outcome of a real-world testbed as exempli�ed in
Figure 7.2(a). Moreover, it does not look like the sawtooth wave resulting from simulation
runs as exempli�ed in Figure 7.2(b).
�e reason for this di�erence in outcome was the inadvertent swap of the start up time of

node 2 and node 4 in the simulation model. �e start up order in this particular simulation
model was (2, 1, 4, 3), but should be (4, 1, 2, 3) to correspond with the start up order of the
underlying real-world testbed. �erefore, the initial start up order of the participating nodes
prede�nes the order of the nodes along the period in a certain way. Moreover, this order
obviously a�ects the convergence behavior of the system. Indeed, a swap of the start up
time of nodes results in a di�erent ordering of the nodes but not necessarily in a di�erent
convergence behavior as illustrated in Figure 7.4(b): Here, the start up time of node 1 and
node 4 in the simulation model was swapped. �is means that the start up order of the
simulation model was (1, 4, 2, 3) in contrast to the testbed’s order (4, 1, 2, 3). Seemingly, the
convergence behavior of simulation and testbed are identical. However, the lines of the �ring
graph in Figure 7.2(b) are going from top le� to bottom right, whereas the lines of the �ring
graph in Figure 7.4(b) are going from bottom le� to top right.

7.2.2 Expectation

Our introductory example from Section 7.2.1 already provides two di�erent convergence be-
haviors – just because of a di�erent start up order of the nodes. For this reason, we could
expect several potential convergence results solely based on another start up order and start

131

Chapter 7 Analysis

3

4

2

1

 0

 25

 50

 75

 100

 400 425 450 475 500 525 550 575 600

re
l.

p
h
a

se
 [

%
]

time [#periods]

(a) Excerpt of the outcome of the simulation run of topology A4S . In comparison to Figure 7.2(b),
just the start up time of node 2 and node 4 was swapped here, i.e., the start up order is (2, 1, 4, 3).

 0

 25

 50

 75

 100

 400 425 450 475 500 525 550 575 600

re
l.

p
h
a
se

 [
%

]

time [#periods]

3

4

2

1

(b) Excerpt of the outcome of the simulation run of topology A4S . In comparison to Figure 7.2(b),
just the start up time of node 1 and node 4 was swapped here, i.e., the start up order is (1, 4, 2, 3).

Figure 7.4: Excerpts of the outcomeof simulation runs of topologyA4S with swapped starting
times (T = 500 000µs; α = 0.95; ρ = 0; POV: node 5).

up times in addition. �e results could vary from stable state of (perfect) desynchrony to
�uctuations and divergence to even chaotic behavior.
As a consequence of the results in Section 7.1.4, the particular start up time of a node

impacts the system behavior in a certain way. �us, it could make a di�erence, whether a

132

7.2 Setup Consequences

Start up order Legend
(4, 1, 2, 3) initial situation, no swap
(1, 4, 2, 3) swap node 4 for node 1
(2, 1, 4, 3) swap node 4 for node 2
(3, 1, 2, 4) swap node 4 for node 3
(4, 2, 1, 3) swap node 1 for node 2
(4, 3, 2, 1) swap node 1 for node 3
(4, 1, 3, 2) swap node 2 for node 3
(1, 2, 3, 4) for comparison purposes

Table 7.1: List of simulated swaps in start up order with (4, 1, 2, 3) as starting point.

node starts for instance at time 0 ⋅ T , 0.5 ⋅ T , or at time 1 ⋅ T . Indeed, we are not able to
simulate all potential start up times for each node – not even for that small scenario described
in Section 7.1 due to limitations in the available execution time. �us, we have to focus on
the start up order in contrast. Consequently, using di�erent start up orders let us expect
to observe additional convergence behaviors, but we do not expect to perceive all potential
convergence behaviors, like �uctuations. For instance, we will not simulate the special case
that all nodes are starting up at the very same time within this section.
Moreover, the start up order has an impact on the complexity of the system. Hence, we

need an appropriate speci�cation on how to get comparable results, i.e., the start up order
has to be normalized: �is speci�cation should assign certain restrictions and requirements
to keep the setup of the simulation manageable. Against this background, we further expect
initial indications and recommendations for a speci�cation to model the start up time (and
thus the start up order) of the nodes in an e�cient and comparable way.

7.2.3 Procedure

As alreadymentioned, we inadvertently swapped the starting times of the validation scenario
for topology A4S from Section 7.1.3. Consequently, the start up order of these two nodes also
did swap. �erefore, we further modi�ed the corresponding simulation model of the vali-
dation scenario: In particular, we took the start up order of the real-world testbed (4, 1, 2, 3)
as starting point and modeled all potential swaps of starting times for two of the four ac-
tive nodes (i.e., node 1 to node 4) as listed in Table 7.1. For the purpose of comparison, we
also simulated the start up order (1, 2, 3, 4). For all these simulation models, we set period
T = 500 000µs, damping factor α = 0.95, and refractory threshold ρ = 0.
Since this small number of simulation models seems not to capture all potential conver-

gence behaviors, we wanted to simulate additional models of this topology using the same
settings. For this reason, we have to modify both, start up times as well as start up order. In-
deed, the start up times of the nodes in the hitherto existing models are quite scattered, e.g.,
the temporal distance between the �rst and the last starting node is about 30 s = 60 periods.
�is is quite a long time for our simulationmodel being accurate to amicrosecond. However,
as already mentioned, we are not able to simulate all potential start up times – and certainly
not for such a long time span. �erefore, we intended to use randomized start up times as

133

Chapter 7 Analysis

Order Node 1 Node 2 Node 3 Node 4 Outcome
(4, 1, 2, 3) 3 539 940 µs 10 229 500 µs 30 500 564 µs 368 500 µs Fig. 7.2(b)
(1, 4, 2, 3) 368 500 µs 10 229 500 µs 30 500 564 µs 3 539 940 µs Fig. 7.4(b)
(2, 1, 4, 3) 3 539 940 µs 368 500 µs 30 500 564 µs 10 229 500 µs Fig. 7.4(a)
(3, 1, 2, 4) 3 539 940 µs 10 229 500 µs 368 500 µs 30 500 564 µs Fig. 7.4(b)
(4, 2, 1, 3) 10 229 500 µs 3 539 940 µs 30 500 564 µs 368 500 µs Fig. 7.4(a)
(4, 3, 2, 1) 30 500 564 µs 10 229 500 µs 3 539 940 µs 368 500 µs Fig. 7.4(a)
(4, 1, 3, 2) 3 539 940 µs 30 500 564 µs 10 229 500 µs 368 500 µs Fig. 7.4(b)
(1, 2, 3, 4) 368 500 µs 3 539 940 µs 10 229 500 µs 30 500 564 µs Fig. 7.4(a)

Table 7.2: Starting times of the nodes from topology A4S and the corresponding outcome
with identical parameter set (T = 500 000µs; α = 0.95; ρ = 0; POV: node 5). �e sni�er node
5 always started at the very beginning of the simulation (i.e., at time 0 µs).

well as randomized start up orders with certain restrictions in terms of the supported time
span.
For this reason, we con�gured our generator script from Section 2.3.4 accordingly. How-

ever, to keep the set of randomized simulation models manageable, some regulation regard-
ing the time span is required. In [38], Choochaisri suggests that all nodes should start up
within the �rst period, i.e., within [0,T]. Depending on the size of a node’s neighborhood as
well as the period length, this constraint may be too restrictive. �erefore, we want all nodes
to start up within a small number of periods. �en, the real start up time for each node is
randomized within this time span using the Perl instructions from Listing 7.2. Notably, the
Pseudo RandomNumber Generator of Perl is initiated (cf. Line 2) by the same (default) seed
(cf. Line 1) as the PRNG used in our simulator extDeSIMc from Section 2.3. With it, this
approach allows repeatable results.
However, to be comparable to the results from the related work and from Section 4.3.2 in

particular, we harmonized our creation process to comply with the proposal of Choochaisri
in [38], where all nodes have to start up within the �rst period. �is is the reason why we did
use $startupPeriods = 1 in Line 3 for the simulation models with randomized start up times
within this section.

1 $seed = 8690401185424030; # init seed
2 srand($seed); # init RNG
3 $startupTime = int(rand($startupPeriods * T)); # set start up time

Listing 7.2: Perl instructions to generate randomized start up times within a �xed
number ($startupPeriods) of periods.

7.2.4 Results

As mentioned in the previous section, we simulated the possible swapped starting times as
listed in Table 7.2 with the start up order (4, 1, 2, 3) as initial value. For the purpose of com-
parison, we also simulated the start up order (1, 2, 3, 4). Concluding, we could not observe
further convergence behavior in addition to that one mentioned in Sections 7.1 and 7.2: �e

134

7.2 Setup Consequences

55
45

0
0

10
20
30
40
50
60

Desynchrony Perfect Desynchrony Others

Figure 7.5: Result a�er 100 simulation runs of topology A4S with randomized start up times.

system always reached the stable state of (perfect) desynchrony according to the dimension-
ing rules R1 and R2 from Section 7.1.4. At no time, the system ended in dimensioning rule
R3, e.g., in �uctuation or even chaotic behavior.

However, for certain start up orders, we could observe an additional outcome, which
looked di�erent to those exempli�ed in Figure 7.2(b) and in Figure 7.4(a), respectively. �is
novel behavior is shown in Figure 7.4(b): �e whole system rotates at constant speed along
the period T (quite similar to Figure 7.2(b)). Indeed, in this case the whole system rotates
backwards from the sni�er’s perspective. Still, the temporal distance between each pair of
nodes remains constant. According to dimensioning rule R2, the system reached the stable
state of desynchrony.

To support this theory, we arranged further simulation runs. In particular, we this used
the same topology A4S as described in Section 7.1.4 but randomized start up times and start
up order, respectively. Using the randomization procedure as described in Section 7.2.3, i.e.,
the nodes start up at randomized times within the �rst period, we simulated 100 di�erent
simulation models based on topology A4S . �e outcome of these simulations is depicted in
Figure 7.5: As a result, 55 simulation runs reached the stable state of desynchrony, whereas 45
simulation runs even perfectly desynchronized. Moreover, no simulation model diverged or
resulted in chaotic behavior. In fact, we could not observe any further convergence behavior
in addition. To sum up, the system always reached the stable state of (perfect) desynchrony.
�is result argues for the applicability of our protocol – at least for this particular topology,
but with randomized start up order as well as start up times.

As expected, the restriction on the time span to select start up times by random was quite
useful: First, especially the automated creation of a simulation model using the Perl script
from Section 2.3.4 was simpli�ed a lot. Next, the outcome of these di�erent simulation runs
remains comparable due to this limitation. Finally, using the same seed for the Pseudo Ran-
dom Number Generator, the simulation models can be re-enacted. �erefore, to check cer-
tain thresholds or to test the limits of a (protocol) parameter by simulation, we will use a
randomized start up order within a �xed number of periods. Next, we will analyze the pro-
tocol parameters.

135

Chapter 7 Analysis

7.3 Jump Size Parameter

�e basic algorithm of the midpoint approach was introduced in Section 4.3. �is algorithm
is quite simple in computation and easy to con�gure: Since the period T is a�ected by the
size of the network (cf. Lemma 4.6 and Lemma 4.13, respectively), the jump size parameter
α ∈ [0, 1] (cf. Eq. (4.14b)) is the only adjustable protocol parameter for themidpoint approach
and, consequently, the extended-Desync protocol (cf. Item F1 in Section 7.2). Nevertheless,
this damping factor has a high impact on the convergence rate of the system as it controls
the exponentially weighted moving average (cf. Observation 4.11). �erefore, the jump size
parameter should be set to its optimum.

7.3.1 Object of Investigation

As already mentioned, the jump size parameter is a very important parameter for the mid-
point approach – and thus for the derived communication protocols. Hence, Degesys et al.
try to �nd in [50] an optimum value for this damping factor α. Due to the iterative proce-
dure of the algorithm, there is no analytical solution available at present. �us, the authors in
[50] try to empirically identify an optimum value for the jump size parameter α – at least for
single-hop topologies. As a result, they suggest to use a value close to 1 for a fast convergence
of the system in case of single-hop topologies. Indeed, some publications use α = 0.9, e.g.,
[49], others use α = 0.95, e.g., [141, 50], for their experiments and in their simulations.
In addition, there is – to the best of our knowledge – no research on an optimal value of

the jump size parameter for multi-hop topologies, yet. Due to the complexity of multi-hop
topologies (cf. Section 4.2.2), it even seems likely that there will be no universal value for
the jump size parameter which �ts any potential multi-hop topology. �is means that the
existence of such an optimal value for multi-hop topologies is uncertain at present.
Since there seems to be no chance to �nd an analytical solution for the optimum value of

the jump size parameter (cf. Section 4.3.2), we want to verify the suggested optimum value
of the jump size parameter for single-hop topologies by experiments �rst. Next, we want to
simulate di�erent multi-hop topologies with various values for the jump size parameter α.
In this manner, we try to �nd an optimum and universally valid value or – in contrast – at
least an indication for its unavailability.

7.3.2 Expectation

Based on the results of the related work on the jump size parameter for single-hop topologies,
we expect to verify this optimumvalue bymeans of our real-world experiments. In particular,
the outcomeof our experiments should equal the values stated in the relatedwork, i.e., α = 0.9
or α = 0.95.
Moreover, using the experimental setup, we also want to con�rm the approach to alleviate

the stale information problem for single-hop topologies from Section 6.2.1. �erefore, when
each node estimates its next time of �ring right a�er the reception of its successor’s �ring,
we expect a positive e�ect in comparison to the estimation immediately a�er the node’s own
�ring. Nevertheless, using the stale information of the latter approach we expect the system
needs longer to reach the stable state.

136

7.3 Jump Size Parameter

Again, for multi-hop topologies there is no comprehensive data available. �erefore, our
expectation regarding the optimum value for the jump size parameter for multi-hop topolo-
gies is not �xed: On the one hand, the outcome of our multi-hop simulations could indicate
that there is no optimum value which is universally valid. �is could be expressed by di�er-
ent convergence rates on di�erent topologies. �is result seems likely due to the complexity
of multi-hop topologies (cf. Section 4.2). On the other hand, the results of our simulations
could even provide an indication of an optimum value for the jump size parameter – at least
for the simulated topologies and scenarios. �is could be expressed by the same optimum
convergence rate based on an identical value for the jump size parameter valid for all (simu-
lated) multi-hop topologies.
Indeed, per se each node does not have any (a priori) knowledge about its neighborhood,

its constraint graph, and eventually the network topology (at start up). �erefore, a particular
initial value for the jump size parameter α anyhow is required for the implementation of
the midpoint approach. Hence, there has to be a default value which is independent of the
underlying topology. In the end, we expect to get (at least an indication for) such a default
value for the jump size parameter α.

7.3.3 Procedure

To verify the optimum value for the jump size parameter for single-hop topologies, we adopt
the results from the real-world testbed primarily deployed and described in detail by Ke-
upp in [95]6: �e testbed C4S consists of �ve SNoW5 sensor nodes, in particular four fully-
connected nodes and one sni�er for logging purpose as depicted in Figure 7.6. To get roughly
repeatable results, all nodes are powered by a switchable multi-outlet power strip. Powering
on all nodes of the real-world testbed ensures an identical base line for all the distributed
and local timelines of the nodes. In this regard, please recall also our recommendations in
Section 5.8. As suggested by Choochaisri in [38], all nodes start up within the �rst period.
As described in Section 5.8.1, the particular starting time depends on the node’s identi�er –
except for the sni�er, which always starts up immediately.
�e procedure of the tests is as follows:

1. �e initial value for the period is set to T = 500 000µs.

2. �e initial value for the jump size parameter is set to α = 0.1.

3. �e nodes perform the extended-Desync protocol. Consequently, there is no refrac-
tory threshold, i.e., ρ = 0.

4. Every 100 periods7, each node of the complete subgraph C4
• drops its current list of neighbors,

• increases α by 0.1 (up to α = 1),
• resets its start up time, and

6Bachelor thesis conducted in conjunction with this work.
7We assume that this amount of periods is su�cient to reach the stable state of (perfect) desynchrony – if at all.

137

Chapter 7 Analysis

5

21

3 4

Figure 7.6: �e topology C4S consists of the set N = {1, . . . , 5} of nodes. Notably, node 1 to
node 4 form the complete subgraph C4, node 5 (sni�er) is just receiving.

• pauses any transmission for 5 periods8 to restart the desynchronization proce-
dure.

In addition, to analyze the impact of the stale information problem for single-hop topolo-
gies as mentioned in Section 6.2.1, we rerun this experiment with slight modi�cations. Now,
each node estimates its next time of �ring not a�er the reception of its successor as stated
in Section 6.2.1, but immediately a�er its current �ring. �is "early" estimation will not be
adjusted – even a�er the reception of succeeding �rings. �us, the last known time of �ring
of the node’s successor from the previous period will be considered (cf. Eq. (4.14)). Indeed,
this information is "stale" (cf. Figure 6.1 on Page 111). To sum up, stale information about
the node’s predecessor as well as stale information about the node’s successor is used for this
estimation of the node’s next time of �ring.
Formulti-hop topologies, there is neither a guidance value nor a comparative value for the

jump size parameter α available. �erefore, we transfer the procedure from above used for
single-hop scenarios for multi-hop topologies. In particular, we simulated di�erent multi-
hop topologies with the identical parameter set from above, i.e., period T = 500 000µs, re-
fractory threshold ρ = 0, and the initial value for jump size parameter α = 0.1. Indeed, the
values for the jump size parameter α increase similar to the single-hop scenarios. In addition,
for the multi-hop simulations we assume idealized conditions, i.e., all communication links
are bidirectional and reliable, not any node will fail, and there is no clock dri�. �e start up
time for each node is randomized within the �rst period since system start. In particular, we
analyzed a star graph S4 (cf. De�nition 2.20) consisting of four sensor nodes9, a circle graph
R4S (cf. De�nition 2.22) consisting of four sensor nodes plus one sni�er, a line graph L4S
(cf. De�nition 2.21) of four sensor nodes plus one sni�er, and the dumbbell graph D7 from
Section 6.2.2 consisting of seven sensor nodes (without sni�er) as depicted in Figure 6.3.

7.3.4 Results

As expected, all single-hop experiments reached the stable state of desynchrony quite fast.
�e system behavior for values, which are close to the boundaries of the interval of the jump
size parameter, was insu�cient: For instance, setting α = 0.1 results in a slow convergence
8We assume that this amount of periods is su�cient to detect the restart of the desynchronization procedure easily
but de�nitely.

9Since the there is no need for an additional sni�er.

138

7.4 Refractory �reshold

rate, whereas setting α = 1.0 results in a settling phase with lots of �uctuations. In Fig-
ure 7.7(a), an excerpt illustrates the system behavior for the three values α = 0.8, α = 0.9,
and α = 1.0 of our single-hop real-world testbed, when each node adjusts its next time of
�ring just a�er the reception of its successor’s �ring packet. For this particular topology C4,
there are no more than just marginal deviations between the outcome when the jump size
parameter is set as α = 0.8 and as α = 0.9. Notably, the system desynchronizes even though
the jump size parameter was set to its upper bound α = 1.0. However, it looks as if setting
the jump size parameter α = 0.9 may be the optimum value for single-hop topologies. In
contrast, Figure 7.7(b) presents the outcome of our real-world testbed, when a node is calcu-
lating its next time of �ring immediately a�er its own �ring. �is excerpt of our single-hop
real-world testbed illustrates the system behavior for the three values α = 0.8, α = 0.9, and
α = 1.0. For this particular topology C4, the deviations between the di�erent settings for α
are obvious. Seemingly, setting α = 0.8 looks best here.
Consequently, we de�nitely can con�rm the approach from Section 6.2.1. In particular,

node i ∈ N has to calculate its next time of �ring t+i not immediately a�er the transmission of
its own �ring packet at time t i (cf. Figure 7.7(b)), but instead immediately a�er the reception
of the �rst subsequent �ring packet of its successor s(i) at time ts(i) (cf. Figure 7.7(a)).
Despite the dumbbell topology D7, the same applies to the outcome of our simulations of

the analyzed multi-hop topologies, namely star graph S4, circle graph R4S , and line graph
L4S . All these multi-hop topologies showed quite a similar behavior and a similar conver-
gence rate for the corresponding values of α. In particular, there are also just marginal devi-
ations in comparison to the outcome of the single-hop experiments.
When a node starts up, usually it has no knowledge about its network and its topology,

respectively. �erefore, the initial value of the jump size parameter has to suit for both,
single-hop as well as multi-hop topologies. Even though the analyzed scenarios here nei-
ther cover all possible constellations of sensor nodes nor include all potential topologies, the
outcome of this analysis demonstrates a sense of direction for the initial value of the jump
size parameter α. Hence, and as stated in some related work (e.g., in [141, 50]), we also rec-
ommend to set α = 0.95 as initial value of the jump size parameter for single-hop as well as
multi-hop topologies.
However, while analyzing the jump size parameter for multi-hop topologies, the dumbbell

graph D7 sometimes did not desynchronize. Due to the stale information problem (cf. Sec-
tion 6.2.2), the system of the dumbbell topology rather diverges than converges. In fact, the
time of transmission of each node �uctuates with a constant but individual amplitude, like-
wise shown in Figure 6.4. �is �uctuating behavior is irrespective of the particular value of
the jump size parameter. Hence, we will analyze the refractory threshold in the next section
to possibly solve the stale information problem.

7.4 Refractory Threshold

One drawback of the midpoint approach is the stale information problem. �is problem was
�rst described and analyzed for single-hop topologies byDegesys et al. in [50]. Unfortunately,
this problem is inherent to the primitive of desynchronization (cf. Section 6.2). As already
indicated in Section 6.2.2, the impact of this problem is intensi�ed in multi-hop topologies.

139

Chapter 7 Analysis

α = 0.8 α = 0.9 α = 1.0

 0

 25

 50

 75

 100
re

l.
p

h
a

se
 [

%
]

 400 450 500

time [#periods]

1

4

2

3

(a) �enext time of �ring is calculated a�er the reception of the �ring packet of the node’s successor.
In particular, the outcome for α = 0.8, α = 0.9, and α = 1.0 is shown.

α = 0.8 α = 0.9 α = 1.0

 0

 25

 50

 75

 100

re
l.

p
h
a
se

 [
%

]

 400 450 500

time [#periods]

1

4

2

3

(b) �e next time of �ring is calculated immediately a�er the node’s own �ring. In particular, the
outcome for α = 0.8, α = 0.9, and α = 1.0 is shown.

Figure 7.7: Excerpts of the outcome of our real-world testbed analyzing the jump size pa-
rameter for topology CS4, POV: node 5 (sni�er).

As a consequence, also the extended-Desync protocol su�ers from stale information (cf.
Section 6.5).
To solve this issue, we have introduced the refractory threshold in Section 6.3. In Sec-

tion 6.3.2, we made a �rst and rough estimation of the impact of this probabilistic parameter;

140

7.4 Refractory �reshold

a deeper analysis is still missing. Since the value of the refractory threshold is set once during
initialization (likewise the jump size parameter α), a reasonable initial value has to be iden-
ti�ed. However, such a (default) initial value has not been speci�ed so far. �erefore, we also
try to discover an optimal value for this probabilistic parameter ρ (for multi-hop topologies)
by means of simulations.

7.4.1 Object of Investigation

�e simple dumbbell topology D7 in Section 6.2.2 impressively demonstrates the implica-
tion of the stale information problem in multi-hop topologies. For this reason, we introduce
a probabilistic parameter in Chapter 6. In particular, we did add in Section 6.3 the refrac-
tory threshold ρ to the extended-Desync protocol to eventually improve it as extended-
Desync+ protocol.
Indeed, for the refractory threshold there is no optimal (initial) value available at present.

Due to the complexity of multi-hop topologies and similar to the damping factor α, there
may be no analytical solution for an optimal value of this probabilistic parameter ρ (cf. Sec-
tion 7.3.1). �erefore, it even seems likely that there will be no universal value for the re-
fractory threshold which �ts any potential multi-hop topology. In contrast to the jump size
parameter, there do exist neither reference values nor comparable results from former analy-
ses. Hence, we have to try to �nd an (seemingly) optimal initial value from scratch by means
of simulations or experiments.

7.4.2 Expectation

�e main challenge to �nd an optimum (initial) value for the refractory threshold ρ is the
absence of reference values. Indeed, Eq. (6.1) in combination with the domain of the refrac-
tory threshold ρ, and especially its boundaries give some guidance: As already mentioned in
Section 6.3.1, setting ρ = 0 lets a node always adjust its next time of �ring according to its
adjustment function. In contrast, setting ρ = 1 forces a node to not use the adjustment func-
tion anymore. Hence, there will be a trade-o� between �uctuating behavior and a prolonged
convergence phase.
Consequently, for values of the refractory threshold ρ close to 0, we expect the system to

result in the same convergence behavior like using the extended-Desync protocol (without
this probabilistic parameter). �is may be even a �uctuating and rather chaotic behavior (cf.
Section 6.2.2). Whereas, for values of the refractory threshold ρ close to 1, we expect the
system to converge a�er a quite long convergence phase – if at all. �us, the closer the value of
the refractory threshold is to 1, the longer takes the convergence phase of the system. Finally,
recalling the short impact analysis from Section 6.3.2, we expect the system to desynchronize
for certain values of the refractory threshold – at least for ρ = 0.25 as indicated in the sample
scenario in Section 6.3.2.

7.4.3 Procedure

For a deeper analysis of the refractory threshold ρ, we reconsider the sample scenario as in-
troduced in Section 6.2.2: �is scenario is based on a dumbbell topology D7 as reillustrated
in Figure 7.8. In particular, the network consists of two complete (as well as cyclic) subgraphs,

141

Chapter 7 Analysis

a h

f

c

d

e

b

Figure 7.8:�e reillustrated topology D7 consists of the set N = {a, . . . , f , h} of nodes with
bidirectional links.

which are connected through node h. Consequently, without node h there remain two dis-
joint connected components, and thus two independent networks. Please note that we do
not install a sni�er in addition, since NC(h) = N holds. Hence, we primarily select node h
for monitoring the system behavior.
For an e�cient and fast analysis, we created and executed the simulationmodels as follows:

All simulations are based on the same parameter set to get comparable results. In particular,
we set period T = 1 000 000µs, jump size parameter α = 0.95, and the initial value for the
refractory threshold ρ = 0.0. As suggested by Choochaisri in [38] and as a result from Sec-
tion 7.2, the nodes of these two subgraphs start up within the �rst period – except for node h:
To better examine the impact of the refractory threshold, we utilized node h as "connecter",
i.e., this node starts up just a few periods a�er the (perfect) desynchronization of each of
both subgraphs. �is is an important prerequisite to enforce the �uctuating behavior from
Section 6.2.2, and thus, to focus on the analysis of the stale information problem.
Since the refractory threshold ρ may be stated as parameter <phaseKeeping> within the

<Simulation> element of a simulation model (cf. Section 2.3.3), we may de�ne di�erent sim-
ulation elements for the same topology within one �le. To obtain comparable simulation
results, we reuse the list of events within the di�erent <Simulation> elements of one simu-
lation model. Hence, we only have to adjust the refractory threshold ρ as attribute of the
<phaseKeeping> element within each <Simulation> section of a simulation model. �is
means that we will use di�erent values for the refractory threshold and keep the (random-
ized) multi-hop topology as well as the rest of a simulation con�guration unchanged.

7.4.4 Results

As expected, the nodes of the network rather �uctuate than desynchronize when setting the
refractory threshold ρ = 0. In fact, the outcome was similar or even identical to the outcome
shown in Figure 6.4 on Page 114. However, slightly increasing the value of the refractory
threshold results in a decreasing amplitude of the �uctuation. Nevertheless, the system may
still not end up in the stable state of (perfect) desynchrony. Indeed, the nodes of the two sub-
graphs in topology D7 still behave like the teeth of two gear wheels moving back and forth all
the time. For instance, Figure 7.9(a) exempli�es the outcome of one simulation run of topol-
ogy D7 with refractory threshold ρ = 0.1 from the POV of node 7 since its start up in period
45. Please note that the rest of topology D7, i.e., the two subgraphs, are desynchronized at

142

7.4 Refractory �reshold

 0

 25

 50

 75

 100

 40 50 60 70 80 90 100 110 120 130 140 150

re
l.

p
h
a

se
 [

%
]

time [#periods]

a

f

c

d

e

b

(a) Excerpt of the outcome of a simulation run of topology D7 (T = 1 000 000 µs; α = 0.95; ρ = 0.1;
POV: node h).

 0

 25

 50

 75

 100

 40 50 60 70 80 90 100 110 120 130 140 150

re
l.

p
h
a
se

 [
%

]

time [#periods]

e

d

a

f

c

b

(b) Excerpt of the outcome of a simulation run of topology D7 (T = 1 000 000 µs; α = 0.95; ρ = 0.9;
POV: node h).

Figure 7.9: Excerpts of the undesired outcome of a simulation run of topology D7 analyzing
the refractory threshold, POV: node h.

this particular period. �is is indicated in Figure 7.9 by the short horizontal lines on the le�
side of the corresponding line chart. �ese horizontal lines are the direct result of node h’s
listening time before its �rst own �ring as introduced in Section 5.8.1.
Also as expected, the convergence is prolonged for high values. For instance, setting ρ =

143

Chapter 7 Analysis

 0

 25

 50

 75

 100

 40 50 60 70 80 90 100 110 120 130 140 150

re
l.

p
h
a

se
 [

%
]

time [#periods]

b

e

a

f

c

d

Figure 7.10: Excerpt of the outcome of a simulation run of topology D7 analyzing the refrac-
tory threshold (T = 1 000 000µs; α = 0.95; ρ = 0.25; POV: node h).

0.9 means that node i ∈ N will adjust its next time of �ring t+i only in one out of ten periods.
Figure 7.9(b) exempli�es one outcome of the simulation run of topology D7 with refractory
threshold ρ = 0.9 from the POV of node 7 since its start up in period 45. Here, the system
reaches the stable state of perfect desynchrony eventually a�er about 60 periods since the
joining of node h. Nevertheless, the system utilizing the refractory threshold is not inferior
in quality to the system without using this probabilistic parameter.
As already mentioned in Section 6.3.2, the system desynchronizes when setting ρ = 0.25.

�us, the probabilistic parameter refractory threshold de�nitelymay help nodes inmulti-hop
topologies to solve the stale information problem and eventually to escape the "vicious circle"
of �uctuating (and probably chaotic) behavior. So far, the system eventually reaches the stable
state of (perfect) desynchrony due to a serviceable protocol con�guration. However, another
interesting criterion is the convergence rate. In Figure 7.9(b), the system reaches the stable
state of perfect desynchrony a�er about 60 periods since node h joined the network. To
interpret the performance of the extended-Desync+ protocol, we compare this outcome of
a simulation utilizing ρ = 0.9 to that one using ρ = 0.25. �us, Figure 7.10 exempli�es the
convergence behavior of the system based on the same con�guration as used for Figure 7.9,
despite the refractory threshold is set as ρ = 0.25: Although each node skips every forth
calculation of its next time of �ring, the system reaches the stable state of perfect desynchrony
a�er about 20 periods since node h joined the network. �is is much faster and suits our
expectations much better.
Likewise for the jump size parameter, the initial value of the refractory threshold has to

suit for both, single-hop as well asmulti-hop topologies. Even though, the analyzed scenarios
neither cover all possible constellations of sensor nodes nor include all potential topologies,
the outcome of this analysis demonstrates a sense of direction for the initial value of the
refractory threshold ρ. As demonstrated by the simulation of topology D7, setting the re-

144

7.5 Applicability

fractory threshold ρ too close to 0 may be not su�cient (cf. Figure 7.9(a)). Since the system
seems not to bene�t from higher values for the refractory threshold, setting ρ = 0.25 as initial
value of the refractory threshold looks like a good candidate. �erefore, we recommend to
use ρ = 0.25 as initial value for the refractory threshold of the extended-Desync+ protocol.
Nevertheless, this result is mainly based on the analysis of the particular dumbbell topology
D7 from Figure 7.8. In the next section, the extended-Desync+ protocol and the refrac-
tory threshold, respectively, will be subject to further tests against our requirements from
Section 1.2.

7.5 Applicability

In Section 1.2, we stated our demands which have to be met by our protocol. �e analy-
ses within the previous section, indicate that our extended-Desync+ protocol ful�lls at
least some of our requirements. Nevertheless, a concluding analysis in this regard is miss-
ing. �erefore, in this section we verify the statement from Section 1.2, i.e., our extended-
Desync+ protocol is "a lightweight and applicable as well as scalable MAC protocol, which
implements a self-organizing and dynamic TDMA schedule. �is communication protocol not
only has to support arbitrary (multi-hop) topologies and has to be robust against environmen-
tal perturbations, but also has to converge e�ciently to an adapted schedule in case of topology
changes".

7.5.1 Object of Investigation

As mentioned before, we veri�ed in Sections 7.1 to 7.4 some of our requirements from Sec-
tion 1.2. In particular, our extended-Desync+ protocol is lightweight, as it requires just low
computational e�ort and a small overhead due to

• the implementation of the simple midpoint approach from Section 4.3 as well as

• our phase shi� propagation approach from Section 5.3 to solve the hidden terminal
problem. In addition, it

• neither relies on expensive lookup tables

• nor does its realization contain complex calculations.

Moreover, the numerous real-world testbeds (cf. Sections 7.1 to 7.4 as well as, e.g., [124, 125,
126]) which are built upon real sensor nodes from Section 2.4, e.g., SNoW5, prove the appli-
cability of our protocol for Wireless Sensor Networks. �is means that even sensor nodes,
which are in general severely limited in computational power as well as in memory (cf. Def-
inition 2.6), are able to execute our extended-Desync and extended-Desync+ protocols.
Furthermore, our communication protocols do not rely on a �xed infrastructure nor on a
central control unit10. Instead, the midpoint approach and the phase shi� propagation ap-
proach are realized just by means of locally available information. �us, the extended-
Desync+ protocol implements a self-organizing and dynamic TDMA schedule.
10As a sni�er just receives but does not transmit packets itself, we do not consider a sni�er as central control unit.

145

Chapter 7 Analysis

As a result, we will have to demonstrate within this section the remaining requirements
from Section 1.2. In particular, we will show that our self-organizing protocol is scalable,
supports arbitrary (multi-hop) topologies, and is robust against environmental perturbations.
In case of topology dynamics our extended-Desync+ protocol converges e�ciently to an
adapted schedule. With it, our communication protocol will meet all our demands from
Section 1.2.

7.5.2 Expectation

As indicated in the previous Section 7.5.1, we expect our extended-Desync+ protocol to
meet all our demands from Section 1.2. Indeed, we may expect a prolonged convergence
phase for very complexmulti-hop topologies – especially when there are topology dynamics.
However, we do not expect any �uctuations or even collisions. In contrast, we expect any
analyzed system to eventually reach the stable state of (perfect) desynchrony – at least in
phases without environmental perturbations but regardless of the underlying topology.

7.5.3 Procedure

It is impossible to simulate all potential (multi-hop) networks. In addition, it is also impos-
sible to simulate all possible environmental perturbations. Nevertheless, to cope with these
two issues, we will focus on randomized graphs to cover a large variety of di�erent multi-hop
topologies. In this regard, wemake intensive usage of our generator script from Section 2.3.4:
Depending on the network size, the randomly generated network typically results in a multi-
hop topology. To get comparable results, we mainly set the initial values of the protocol
parameters jump size parameter α = 0.95 and refractory threshold ρ = 0.25.
To receive an impression about the relation of the number of nodes and the number of

simulation scenarios to the size of the simulation model, Table 7.3 lists the �le size of se-
lected simulation models (cf. Section 2.3.3). With respect to the hardware limitations of the
simulating PC, simulation models of a network with up to 100 nodes are not only well man-
ageable but also su�cient and feasible to demonstrate the system behavior. �erefore, we
set up randomized multi-hop topologies consisting of up to 100 nodes and up to 100 simula-
tion scenarios maximum. Moreover, and according to Section 7.2.4, the start up times of the
nodes are set randomly within the �rst few periods.
To analyze the robustness of the extended-Desync+ protocol against environmental per-

turbations, we manually modify the event list of at least one node in some of the randomized
simulation scenarios by means of ON, OFF, and DEAD events (cf. Section 2.3.2): �e OFF event
simulates an arbitrary and temporary power down of a node, e.g., due to low battery. To
reactivate such a "sleeping" node later during the simulation run, we use the ON event. To
de�nitely remove a node from the network (and thus from the simulation), we utilize the
DEAD event. �e usage of these events may even be used to emulate mobility of the nodes to
some extend (cf. Section 8.1.3).

7.5.4 Results

As mentioned in Section 7.5.3, we extensively used our generator script from Section 2.3.4
to generate these multi-hop simulation models. In this regard, we simulated networks con-

146

7.5 Applicability

#Nodes #Simulations File Size
10 10 40.3 kB
10 100 293.6 kB
100 10 417.2 kB
100 100 1.9MB
1000 10 4.0MB
1000 100 19.0MB
5000 10 20.0MB
5000 100 95.5MB

Table 7.3: File size of randomized simulation models in relation to the number of nodes and
the number of simulation scenarios.

sisting of just �ve nodes (e.g., topology A4S from Section 7.1.4) up to networks of 100 nodes
(e.g., within this section). According to Section 7.2.4, all nodes of these randomized simu-
lation scenarios start up randomly within the �rst few periods. As expected, some of these
network scenarios reached the stable state of (perfect) desynchrony, although the refractory
threshold was set to ρ = 0. However, setting jump size parameter α = 0.95 and refractory
threshold ρ = 0.25, all these randomized networks being subject of investigation eventually
reached the stable state of (perfect) desynchrony – at least when there are no topology dy-
namics. Consequently, due to the randomized generation procedure, we may state that our
extended-Desync+ protocol supports arbitrary (multi-hop) topologies. Moreover, due to
the di�erent network sizes, we may also state that the extended-Desync+ protocol is scal-
able.
In addition and as described in the previous section, we also emulate environmental per-

turbations. Indeed, immediately a�er such a perturbation an already desynchronized system
may not be desynchronized for some periods. However, we detected no collision or packet
loss, neither when a node joined the network nor when a node le� the network. Nevertheless,
a�er a short settling phase, the simulated networks again reached the stable state of (perfect)
desynchrony – at least for jump size parameter α = 0.95 and refractory threshold ρ = 0.25.
Hence, due to the re-attainment of the stable state of (perfect) desynchrony, we may further
state that the extended-Desync+ protocol is robust against topology dynamics.
To support our statements from above, we present in detail the behavior of a sample sce-

nario (cf. [125]): Especially, we discuss (excerpts of) the outcome of the randomly generated
topology A100 consisting of the set N = {1, . . . , 100} of nodes without a sni�er. Here, the
links between the nodes are symmetric and set randomly. All nodes start up within the �rst
three periods. �e protocol parameters of this scenario are: period T = 10 000 000µs, jump
size parameter α = 0.95, and refractory threshold ρ = 0.25. To illustrate the system behavior
on topology perturbations and, notably, leaving and re-joining nodes, we focus on the be-
havior of one speci�c node, namely node 82 ∈ A100. �e constraint graph NC(82) of node 82
is shown in Figure 7.11. First, we switch o� (i.e., OFF event) one three-hop neighbor (i.e.,
node 25), next one two-hop neighbor (i.e., node 9), and �nally one one-hop neighbor (i.e.,
node 15) of node 82. �ese three nodes will be switched on (i.e., ON event) and thus re-join
the network a�er 45 periods of downtime:

147

Chapter 7 Analysis

82
87

24

5715

23
78

58 86

51
9

99

33

83

1962

27
40

Figure 7.11:�e constraint graph NC(82) of node 82 within topology A100 consisting of the
set N = {1, . . . , 100} of nodes.

• �e three-hop neighbor node 25 leaves at period 15 and rejoins at period 60,

• the two-hop neighbor node 9 leaves at period 30 and rejoins at period 75, and

• the one-hop neighbor node 15 leaves at period 45 and rejoins at period 90.

�e corresponding excerpt of the simulation outcome from the point of view of node 82
is illustrated in Figure 7.12: First, the three-hop neighbor node 25 is leaving the network at
period 15. Since this node 25 is not part of the constraint graph NC(82) of node 82 (cf. Fig-
ure 7.11), the leave of this node has nomeasurable impact on node 82 (as expected). Next, the
two-hop neighbor node 9 is leaving the network at period 30. As described in Section 5.8.2,
this two-hop neighbor is "virtually" kept by node 82 for a few periods. A�erwards, this two-
hopneighborwill not be considered anymore bynode 82 (cf. Figure 7.12). Finally, the one-hop
neighbor node 15 together with the two-hop neighbors node 87, node 78, node 62, node 58,
node 51, and node 9 of node 82 (cf. Figure 7.11) are leaving the network at period 45.11 Again,
node 15 as well as all corresponding two-hop neighbors of node 82, which are propagated
by this one-hop neighbor, are virtually kept for a few periods. As displayed in Figure 7.12,
the leave of this one-hop neighbor node 15 has a high impact on the network and especially
on node 82. In particular, this part of the the network tries to desynchronize again around
period 50. Nevertheless, a�er a short settling phase of about 10 periods, the system is once
again in the stable state of desynchrony.
As mentioned before, switching on the three-hop neighbor node 25 at period 60 has no

measurable impact on the behavior of node 82. Since the connecting one-hop neighbor
node 15 still is powered o�, switching on the two-hop neighbor node 9 at period 75 has also
no measurable in�uence. Finally, when the one-hop neighbor node 15 re-joins the network,
the corresponding two-hop neighbors are also visible for node 82. As expected, the re-entry
of this one-hop neighbor has a high impact on the behavior of the system and of node 82 in
particular (cf. Figure 7.12). However, the system reaches the stable state of desynchrony about
20 periods a�er the re-joining of node 15 at period 110. In addition, we detect no collision or
packet loss, neither when a node joined the network nor when a node le� the network.

11Please note that node 9 has already le� the network at period 30

148

7.6 Summary

re
l.

p
h

a
se

 [
%

]

time [#periods]

 0

 25

 50

 75

 100

 0 10 20 30 40 50 60 70 80 90 100 110 120

off25 on25off9 on9

9

9

off15 on15

15 15

Figure 7.12: Excerpt of the outcome of the simulation of topology A100 (T = 10 000 000µs;
α = 0.95; ρ = 0.25; POV: node 82).

7.6 Summary

In this chapter, we evaluated our self-organizing MAC protocols extended-Desync and
extended-Desync+ in real-world testbeds as well as simulations. Since any conclusion
drawn from simulation runs is at most as reliable as the underlying simulation model per-
mits, we had to validate our simulation models �rst. �is validation process is discussed in
Section 7.1. Here, we oppose the results froma speci�c andwell-con�gured real-world testbed
to the results of the corresponding simulation model. �is iterative approach not only led us
to a valid simulation model but also pointed us to another "con�guration pitfall": �e setup
of testbed and simulation in terms of start up order may in�uence the simulation results.
�erefore, we next analyzed the setup di�culties in Section 7.2. In particular, we discussed

the impact of di�erent start up times as well as di�erent start up orders. As a result, we came
up with an appropriate speci�cation on how to get comparable results. Moreover, the restric-
tion on a certain time span for start up times simpli�es the process of automated simulation
model creation.
Furthermore, we analyzed the protocol parameters jump size parameter α in Section 7.3

and refractory threshold ρ in Section 7.4. First, we elaborated the initial value of the jump size
parameter α = 0.95 for multi-hop topologies. �is initial value is also suggested for single-
hop topologies in the related work. In addition, we analyzed the new parameter refractory
threshold. In this regard, we tried to �nd an appropriate initial value for the refractory thresh-
old, which is feasible and suitable for single-hop as well as multi-hop topologies. As a result,
we recommend to set the refractory threshold ρ = 0.25, i.e., each node should skip every
forth estimation of its next time of �ring.

149

Chapter 7 Analysis

Finally, we checked the applicability of our extended-Desync+ protocol. �erefore, we
run several simulations of our communication protocol on randomized multi-hop topolo-
gies setting jump size parameter α = 0.95 and refractory threshold ρ = 0.25. In particular, we
were able to show that our demands from Section 1.2 are all met – at least for the analyzed
simulation models. To sum up, our extended-Desync+ protocols is scalable, supports ar-
bitrary (multi-hop) topologies, and is robust against environmental perturbations.

150

Chapter 8

Discussion

Abstract

In the last chapter, we have analyzed our self-organizingMAC protocols extended-Desync
and extended-Desync+, respectively. �is analysis mainly checks for the protocol’s com-
pliance with our requirements from Section 1.2. As a result, our communication protocol
showed to meet our demands – at least for the analyzed test cases and scenarios. Never-
theless, there is room for improvement. �erefore, we give a short outlook to potential en-
hancements regarding the protocol in Section 8.1. Moreover, our self-organizing protocol
seemingly is predestined to inherently support additional (network) services. We will sug-
gest some of these add-ons in Section 8.2.

8.1 Outlook

In Chapters 5 and 6, we have speci�ed our self-organizing protocols extended-Desync and
extended-Desync+, respectively. �e speci�cationmainly utilizes the two protocol param-
eters jump size parameter α and refractory threshold ρ for con�guration and tuning. Never-
theless, both parameters are intended to be �xed from system start. �ismeans that the initial
value neitherwill be changed nor is able to re�ect speci�c network conditions like the change-
able size of a node’s constraint graph. �erefore, we will brie�y discuss adaptive versions of
the jump size parameter in Section 8.1.1 and of the refractory threshold in Section 8.1.2. Sec-
tion 8.1.3 outlines further potential objects of investigation of our extended-Desync and
extended-Desync+ protocols.

8.1.1 Adaptive Jump Size Parameter

�ekey parameter of themidpoint approach, and thus of our extended-Desync protocol, is
the jump size parameter α. In accordance with the related work, we consider this parameter
to be �xed from system start. �erefore, it is important to carefully select the best possible
value at design time. Consequently, the ideal value was identi�ed empirically for single-
hop topologies by Degesys et al. in [50] and for multi-hop topologies by Keupp in [95]1.
Based on this work, we further analyzed this particular parameter in Section 7.3 for multi-
hop topologies. In this regard, we identi�ed α = 0.95 as an ideal value for single-hop as well
as multi-hop topologies.
Nevertheless, this parameter is set once and unchangeably at system start within the initial-

ization phase. Consequently, it cannot dynamically re�ect topology dynamics or any other
1Bachelor thesis conducted in conjunction with this work.

151

Chapter 8 Discussion

e�ect. Moreover, the jump size parameter is identical for each node of the network – irre-
spective of node-speci�c issues, e.g., the characteristic of its constraint graph.
�erefore, we �rst propose to introduce a node-speci�c jump size parameter, i.e., to sub-

stitute the individual parameter α i for each node i ∈ N for the common parameter α. �is
allows for the consideration of node-speci�c issues, e.g., the node’s degree or the size of its
constraint graph. Consequently, each node imay be equippedwith an individual initial value
for its jump size parameter α i .
Next, we propose tomake the node-speci�c jump size parameter α i adaptable during run-

time. For instance, assuming node i is in the stable state of perfect desynchrony. According
to De�nition 4.3, this means that the adjustment function of node i φ i (NR(i), t++) = 0 for
some periods. As we utilize the midpoint approach, according to Eqs. (4.13) and (4.14) the
calculation of the next time of �ring t+i of node i is

φ i (NR(i), t i) = 0 = α i ⋅ εt i .

Hence, it may be possible to set α i = 0 in case node i is in perfect desynchrony, and thus to
simplify the calculation of node i’s next time of �ring.
Moreover, an adjustable α i enables each node i to react in a more �exible way, e.g., in case

of topology dynamics: Continuing the example from above, the constraint graph of node i
will change and, as a result, its phase neighbor(s) as well. Consequently, this node needs
to adapt its next time of �ring. �is means that node i has to set the value of its jump size
parameter appropriately.
As discussed in Lemma 4.9 on Page 56, a so-called multiple phase neighbor (cf. De�ni-

tion 4.4) could destabilize a multi-hop system. According to Observation 4.6, a node is not
aware of its role as multiple phase neighbor in general. However, the node’s degree may be
an indicator to start with in this regard. �erefore, it may be reasonable to install the jump
size parameter α i of node i ∈ N as a function of the size of the set of nodes ∣NC(i)∣ of its con-
straint graph (cf. De�nition 2.28). Indeed, the jump size parameter of such a multiple phase
neighbor, i.e., of a node with high degree, should be adapted more carefully in a conservative
way.
In fact, a compensation strategy depending on the number of nodes is declined in [141]: Es-

pecially in highly dynamic networks, the (size of the) constraint graph is subject to frequent
changes. Consequently, it may be di�cult to estimate this size in an accurate way. Never-
theless, our protocol relies on the periodical �ring of neighbor information (cf. Sections 5.5
and 5.6). �erefore, we still think that it is reasonable to implement an adaptive jump size
parameter, which depends on, e.g., the (size of the) node’s constraint graph. Nevertheless,
the analysis of our proposals regarding the adaptive jump size parameter remains a subject
of future work.

8.1.2 Adaptive Refractory Threshold

�e key parameter of our extended-Desync+ protocol is the refractory threshold ρ. Com-
parable to the jump size parameter, the value of the refractory threshold is not only set once
at system start but also identical for each node of the network. �is implementation of the
refractory threshold su�ers from the same shortcomings as the non-adaptive implementa-
tion of the jump size parameter (cf. Section 8.1.1): In particular, the current implementation

152

8.1 Outlook

does not consider node speci�c issues. Moreover, as demonstrated in Section 7.4, it is di�-
cult to �nd an ideal value for the refractory threshold. However, we identi�ed ρ = 0.25 as
good trade-o� between convergence rate and damping �uctuations for single-hop as well as
multi-hop topologies.
�erefore, we �rst propose to introduce a node-speci�c refractory threshold ρ i for each

node i ∈ N by replacing the common parameter ρ. Next, we propose to make the refractory
threshold adaptable during runtime: For instance, assuming node i is in the stable state of
perfect desynchrony. �is means that the adjustment function of node i φ i (NR(i), t++) = 0
for some periods. In case node i is in perfect desynchrony, we suggest to set the refractory
threshold of node i to ρ i = 1 (cf. Section 6.3.1). �is simpli�es and shortens the calculation
of node i’s next time of �ring.
Furthermore, we also propose to let the refractory threshold ρ i of node i ∈ N depend on

node-speci�c conditions. Likewise for the jump size parameter, the size of the set of nodes
∣NC(i)∣ of its constraint graph (cf. De�nition 2.28) may be such a node-speci�c condition.
Indeed, it may be also feasible that the refractory threshold is a function of the current value
of its adjustment factor εt i (cf. Eq. (4.11)). With it, the state of convergence of a node would
in�uence its refractory behavior using the refractory threshold. Nevertheless, the analysis of
our proposals regarding the adaptive refractory threshold remains a subject of future work.

8.1.3 Additional Objects of Investigation

In Section 1.1, we motivated the objective of this work, i.e., the conceptional design and anal-
ysis of a self-organizing communication protocol for arbitrary topologies in Wireless Sen-
sor Networks based on the primitive of desynchronization. In Chapter 7, we have checked
whether our requirements from Section 1.2 are ful�lled by our protocols extended-Desync
and extended-Desync+. Consequently, we are mainly interested in the protocol’s conver-
gence behavior. �us, "classical" network issues, like routing behavior, data rate, network
throughput, and channel utilization have not been analyzed in-depth, but will be subject of
future work.
Regarding the energy-related performance of our extended-Desync protocol, there is an

initial analysis in [121]. Indeed, this analysis is not in-depth andmay need further considera-
tions. Moreover, strictly speaking, we analyzed in Chapter 7 the behavior of our protocol just
for one speci�c type ofWireless Network, namelyWireless Sensor Networks. Hence, further
real-world testbeds and/or simulations have to be established for future work to extend the
number of properly considered Wireless Network types.
In addition, mobility was also simpli�ed within this work: We did respect changes in the

topology, but we did not consider temporal aspects, e.g., for fast moving nodes. However, es-
pecially in Vehicular Ad hoc Networks velocity and communication range are two important
parameters to make a statement on the network behavior. For instance, a �rst protocol based
on the primitive of desynchronization but speci�c to (single-hop) VANETs is presented in
[159]. Consequently, the analysis of these aspects mentioned within this section also remains
subject of future work.

153

Chapter 8 Discussion

8.2 Add-Ons

Due to the periodic transmission scheme, our self-organizing protocols extended-Desync
and extended-Desync+ are predestined to support additional (network) services. Espe-
cially such (network) services which implement a beacon-based approach: In general, a bea-
con is a small packet that is transmitted periodically and contains all necessary data to o�er
this particular service. Such beacons may be transmitted easily subsequent to a �ring packet.
�erefore, due to the periodical transmission scheme of our protocols, it may be an easy

task to o�er additional (network) services. In this section we will exemplify some potential
services, namely time synchronization in Section 8.2.1, routing in Section 8.2.2, and distributed
data management in Section 8.2.3.

8.2.1 Time Synchronization

As already stated in De�nition 2.6, each sensor node operates its own clock to record its local
time of internal aswell as of external events. Usually, this local clock is driven by a quartz crys-
tal connected to the node’s microcontroller. Unfortunately, the frequency stability of these
crystal oscillators is in�uenced by several (environmental) factors. �e in�uence of ther-
mal factors is remarkable compared to the already existing frequency tolerance of such clock
generators. For instance, the Vishay XT49S crystal [190], as a typical representative of low
cost quartz crystals o�en deployed on sensor nodes, has a frequency tolerance of ±30 ppm at
25 ○C. Its frequency tolerance over the entire operating temperature range (−10 ○C to+70 ○C)
is ±50 ppm, and its aging e�ect in the �rst year is ±5 ppm. Especially, since di�erent temper-
ature gradients at sensor nodes are likely in such a distributed system, these distributed local
clocks do not run synchronously in general. Consequently, a common notion of time within
such systems is missing without further support. And in fact, time synchronization is an im-
portant service for several applications for Wireless Networks (cf. De�nition 2.34).
For this reason, some methods to maintain a common notion of time within such dis-

tributed systems already exist: For instance, the interpretation of a (global) time radio signal
enables a common notion of time with admissible precision for (some) nodes of a WSN –
at least within a limited area around the sender. One example is the DCF77 long wave time
signal, which is transmitted fromMain�ingen (nearby Frankfurt/Main) and can be received
within a radius of 2000 km in large parts of Europe. �is time signal is used not only bymany
radio controlled clocks within Europe, but also by some WSN applications (cf. [36, 138]).
However, each node which has to receive and to decode the DCF77 time signal requires a
particular hardware unit, which consumes a signi�cant amount of energy, is quite costly, and
increases size and weight of the hosting sensor node.
Another example are (global) satellite navigation systems, like Galileo or GPS [146, 83, 52,

165, 196]. Such a satellite navigation system allows not only a precise outdoor localization of
(mobile) objects, but also a precise time synchronization. In fact, the precise localization of
the receiver is a basic prerequisite for a precise time synchronization: Only a�er the localiza-
tion it is possible to determine the exact propagation delay (cf. Section 5.4.1). Consequently,
both services work well just outdoors due to the required line-of-sight between satellites and
receivers. Nevertheless, the precise time signal of a satellite navigation system was already
utilized by some WSN applications in [91, 47, 32]. However, each node which has to receive

154

8.2 Add-Ons

and to decode such a satellite signal also requires a particular hardware unit. Likewise the
DCF77 time signal receiver unit, this hardware is also quite costly and consumes a consider-
able amount of energy.
Since the interpretation of both signals, the DCF77 time signal as well as the time signal

of a satellite navigation system, is not applicable for most WSNs due to energy and cost con-
straints, the synchronization of local clocks of sensor nodes can be achieved by installing a
particular time synchronization service (cf. De�nition 2.34). However, due to the inherent in-
stabilities of the assembled quartz crystals as well as the limited precision of such local clocks,
the time synchronization process of the distributed clocks should be performed periodically
(cf. [158]).
Indeed, there are design principles for time synchronization protocols, namely energy con-

sumption, scalability, robustness (regarding topology dynamics), security and reliability, as
well as ad hoc deployment (cf. for instance [55, 158]). According to Section 1.2 and Chapter 7,
our self-organizing MAC protocols do meet these demands quite well. �is enables our pro-
tocols to be utilized for an appropriate time synchronization: As described in Sections 5.5
and 5.6, our self-organizing protocols rely on the periodical exchange of accurate and precise
timestamps (cf. Section 5.4). Certainly, these timestamps can be used to provide a common
notion of time across the Wireless Sensor Network (cf. De�nition 2.34). Moreover, some
time synchronization protocols comprise an exploration phase. In general, this phase pro-
ceeds the proper time synchronization and has to be executed once in a while. Here, the
periodical �ring messages of our self-organizing protocol may facilitate such an exploration
phase as well.
A �rst implementation of such a time synchronization approach, which is based on our

extended-Desync protocol is presented in [123]. �e synchronization error here is in the
order of a few microseconds at a clock resolution of 1 µs. Moreover, an enhanced time syn-
chronization mechanism, which is also based on our extended-Desync protocol but addi-
tionally allows the calculation of clock dri�s, is described in [19].

8.2.2 Routing

Another important service in Wireless Sensor Networks is the routing of messages in multi-
hop topologies: Assuming, speci�c data has to be transmitted from one particular sender
to certain receiver(s). Since the sender might not be able to communicate directly with the
intended receiver(s) in multi-hop topology networks, a routing service is needed. Such a
routing service will select a speci�c path from sender to receiver within the network, corre-
spondingly. Finally, the data will be routed along this path.
Indeed, data can also be transmitted to a distant receiver without a distinct routing service.

For instance, one simple approachmay be the �ooding of the whole network: �ismeans that
the sender broadcasts its data to all nodes within its communication range. Each receiving
neighbor in addition also broadcasts this information, and so on. Finally, each node of the
network not only forwarded the data but also received the data. Consequently, the intended
receiver(s) did receive the data as well. However, this approach is very costly due to themulti-
ple (and probably recurring) transmission (i.e., reception and forwarding) of data. �erefore,
sophisticated and more e�cient routing protocols do exist. For an overview on routing ap-
proaches and protocols forWireless Sensor Networks see for example [4, 56, 57, 103, 130, 166].

155

Chapter 8 Discussion

One principle of our self-organizing protocol is the phase shi� propagation, i.e., the ex-
change of neighbor information (cf. Section 5.3). In addition, each node is able to create its
constraint graph (cf. Section 5.3.2). Consequently, to some extent, each node also has knowl-
edge about its two-hop neighborhood. Due to the periodic transmission of neighbor infor-
mation (i.e., �ring messages), this knowledge is updated continuously. Remarkably, some
routing protocols are based on this information. �erefore, it should be feasible to extend
our protocol to support routing protocols (at higher levels).
For instance, the Optimized Link State Routing (OLSR) is described in [40]. �is routing

protocol uses so-called Hello as well as Topology Control (TC) messages to discover and up-
grade the node’s one-hop as well as two-hop neighborhood information. According to this
information, the OLSR service will establish a route from sender to receiver. Moreover, the
Statistic-Based Routing (SBR) in [97] is also based on periodically transmitted Hello mes-
sages. However, this protocol implements a statistic-based approach, i.e., it keeps records on
the frequency of the paths used. Especially in highly dynamic networks, the SBR is more
e�cient in terms of reliability and reduced overhearing than the OLSR due to the utilization
of this statistical data (cf. [97]). A more detailed analysis on the performance issues of rout-
ing protocols is outlined for instance in [96]. Nevertheless, the implementation and analysis
of a routing service based on the extended-Desync and extended-Desync+ protocol as
mentioned within this section remains a subject of future work.

8.2.3 Distributed Data Management

As mentioned in De�nition 2.6, sensor nodes are not fail safe but rather error-prone. Hence,
it may be wise to distribute (an aggregation of) sensor data or to share other important infor-
mation, which is required to perform the common task of theWSN application. For instance,
the Flooding Time-Synchronization Protocol [111] is based on a certain network procedure,
which "�oods" the network with speci�c data to enforce a speci�c situation of the network.
According to De�nition 2.6, a sensor node is severely limited in memory. �erefore, a sen-
sor node may not be able to store all relevant data locally. Apart, sensor nodes tend to be
error-prone and it may be reasonable to store important data redundantly distributed across
(parts of) the network instead of in a single node. Both scenarios call for distributed data
management, i.e., a sophisticated service to spread important data within the network.
One example for such a distributed data management protocol is provided in [74]: �e

proposed protocol implements a low-complexity greedy mechanism to distribute and also
to replicate particular sensor data. �e basis of this mechanism is the periodical broadcast
of each node’s so-calledmemory advertisement message. �is message contains the currently
available memory space of the sending node as well as the memory status of the sender’s
one-hop neighbors. With it, this data replication protocol increases the robustness of the
Wireless Sensor Network against node failure or memory shortage. Notably, this protocol
was evaluated empirically by real-world testbeds consisting of 78 sensor nodes within the
SensLAB environment (cf. [35]).
Another example for such a data management protocol is the Distributive Cluster Method

(DCM) in [41]. �is protocol is beacon-based, i.e., it shares important datawith nearby nodes
by periodic messages. A more fault-tolerant variant of the DCM is introduced in [63]2. �e
2Diploma thesis conducted in conjunction with this work.

156

8.2 Add-Ons

Local Fault-Tolerant Data Management (LFDM) approach implements the XOR operation to
achieve a high reliability with little memory: On the one hand, each node broadcasts (e.g.,
as attachment to the corresponding �ring packet) its data. On the other hand, each node
combines the data received within one period utilizing logical operations. �is allows the
recreation of data of any one-hop neighbor in case of a node failure.
Once again, the periodic �ring of our MAC protocol in conjunction with its exchange of

neighbor information may lend support here. Nevertheless, the implementation and anal-
ysis of a data management service, e.g., the LFDM, based on the extended-Desync and
extended-Desync+ protocols as mentioned within this section, remains a subject of future
work.

157

158

Chapter 9

Summary and Conclusion

Abstract

�is �nal chapter summarizes the outcome and the results of this work. In this regard, Sec-
tion 9.1 �rst recapitulates the scienti�c contribution of this work and of our self-organizing
MAC protocol for arbitrary multi-hop topologies. Finally, we conclude this work in Sec-
tion 9.2.

9.1 Summary

�emain focus of this work was on the design of a self-organizing multi-hop MAC protocol
for arbitrary topology dynamics. In this regard, Part I speci�es basic terms and essential
de�nitions. As already mentioned in the introduction in Chapter 1, our main interest is in
the analysis of the protocol’s convergence behavior. For this purpose, we not only applied
a sensor node framework in terms of real-world testbeds made up of di�erent real sensor
nodes, but we also developed a speci�c simulation framework. �is framework meets our
demands and supports the analysis of simulation scenarios from modeling and simulation
to the ex post facto evaluation.
However, the core concepts of this work are addressed in Part II: Chapter 3 introduces the

biologically inspired primitive of desynchronization as basis for our protocol. �is primi-
tive is the starting point for di�erent approaches to establish a MAC protocol for Wireless
Sensor Networks as described in Chapter 4. In fact, most of these protocols are applicable
for single-hopWSNs only. Without doubt, multi-hop topologies are signi�cantly more com-
plex than single-hop topologies, e.g., due to the hidden terminal problem – to give but one
example. Anyway, a MAC protocol which works well in arbitrary multi-hop topologies was
seemingly missing.
In this context, we utilized the physically inspired proof of an elastic resilience model to

prove the convergence of the midpoint approach for multi-hop topologies. As a result, the
midpoint approach showed great promise to facilitate the development of a self-organizing
MAC protocol, which also works well in arbitrary multi-hop topologies. Hence, based on
this midpoint approach we developed the extended-Desync protocol in Chapter 5. In par-
ticular, we introduced the phase shi� propagation approach to solve the hidden terminal
problem. Here, each sender broadcasts information about the phase shi�s of its one-hop
neighbors. �is allows each receiver to create its constraint graph and enables the extended-
Desync protocol to be the �rst self-organizing MAC protocol, which is based on the primi-
tive of desynchronization and, at the same time, supports Wireless Sensor Networks in arbi-
trary multi-hop topologies.

159

Chapter 9 Summary and Conclusion

Nevertheless, the installation of the phase shi� propagation enhancement is not su�cient
to cope with any stale information related to the communication process: �e reception of
information about two-hop neighbors is deferred by about one period when utilizing the
phase shi� propagation. In short, the additional but essential exchange of neighbor infor-
mation intensi�es the stale information problem in multi-hop topologies as a side-e�ect.
For this purpose, we improved our extended-Desync protocol to the extended-Desync+
protocol in Chapter 6: In particular, we introduced the refractory threshold, which allows a
sensor node to pause the adaptation process of a node’s next time of �ring of the underly-
ing midpoint approach. �is means that information about a neighbor may remain valid for
another period, and thus may prevent additional "stale" information. As a result, this prob-
abilistic protocol parameter may diminish the otherwise �uctuating behavior of the sensor
nodes.
Our proposals from Part II are evaluated in Part III: In Chapter 7, we analyze several as-

pects of our protocols. For this purpose, we utilize real-world testbeds as well as our simula-
tion framework as introduced in Chapter 2. As a result, several experiments and simulations
do con�rm that our protocols do meet our demands from Section 1.2. Nevertheless, there
might be room for improvement. Potential enhancements regarding the key protocol pa-
rameters as well as possible add-ons (in terms of additional network services) are discussed
in Chapter 8.

9.2 Conclusion

�is work presents two self-organizing multi-hop MAC protocols for arbitrary topology dy-
namics, namely the extended-Desync and extended-Desync+ protocol. �e basis for
this communication protocol is the biologically inspired primitive of desynchronization. We
evaluated this primitive theoretically. For instance, we proved its convergence for the mid-
point approach. Based on this midpoint approach, we developed the extended-Desync
protocol to operate in multi-hop topologies. In this regard, we solved the hidden terminal
problem by introducing the phase shi� propagation. Besides, we also identi�ed the stale in-
formation problem. For this problem, we installed the refractory threshold and made the
resulting extended-Desync+ protocol more resistant to stale information. Eventually, we
developed for the communication within Wireless Sensor Networks a lightweight and ap-
plicable as well as scalable MAC protocol, which implements a self-organizing and dynamic
TDMA schedule.
�eir characteristics predestine our self-organizing protocols, namely extended-Desync

and extended-Desync+, to be used for various applications in highly dynamic networks.
�is includes not only arbitrary multi-hop topologies in Wireless Sensor Networks, and
Wireless Networks in general. In addition, our protocols also support networks with mobile
devices and can cope with malfunctioning network devices up to a certain extent. Moreover,
the discussion on potential add-ons in Section 8.2 gives an outlook on the protocol’s other
capabilities, like time synchronization, routing, and data management.

160

Part IV

Lists and Indexes
Wer am Ende ist, kann von vorn’
anfangen, denn das Ende ist der
Anfang von der anderen Seite

Karl Valentin

Bibliography

Whenever possible, this bibliography avoids the declaration of an Uniform Resource Locator
(URL) due to its transient nature. When an URL is essential for a citation and thus could not
be avoided, the availability has been checked on August 4th, 2017.

[1] Rana E. Ahmed. E�cient pseudo-random number generators for wireless sensor net-
works. In IEEE 59th International Midwest Symposium on Circuits and Systems, MWS-
CAS 2016, pages 1–4, October 2016. doi: 10.1109/MWSCAS.2016.7869989.

[2] Ikkyu Aihara, Shunsuke Horai, Hiroyuki Kitahata, Kazuyuki Aihara, and Kenichi
Yoshikawa. Dynamical Calling Behavior Experimentally Observed in Japanese Tree
Frogs (Hyla japonica). IEICE Trans. Fundam. Electron. Commun. Comput. Sci., E90-A
(10):2154–2161, October 2007. ISSN 0916-8508. doi: 10.1093/ietfec/e90-a.10.2154.

[3] Ikkyu Aihara, Hiroyuki Kitahata, Kenichi Yoshikawa, and Kazuyuki Aihara. Math-
ematical modeling of frog’s calling behavior and its possible application to arti�cial
life and robotics. Arti�cial Life and Robotics, 12:29–32, 2008. ISSN 1433-5298. doi:
10.1007/s10015-007-0436-x.

[4] Kemal Akkaya and Mohamed F. Younis. A survey on routing protocols for wireless
sensor networks. AdHoc Networks, 3(3):325–349, May 2005. doi: 10.1016/j.adhoc.2003.
09.010.

[5] Ian F. Akyildiz and Ismail H. Kasimoglu. Wireless sensor and actor networks: research
challenges. AdHocNetworks, 2(4):351–367, October 2004. ISSN 15708705. doi: 10.1016/
j.adhoc.2004.04.003.

[6] Ian F. Akyildiz,Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. Wireless
sensor networks: a survey. Computer Networks, 38(4):393–422, March 2002.

[7] Davide Anguita, Davide Brizzolara, and Giancarlo Parodi. Prospects and Problems
of Optical Di�use Wireless Communication for Underwater Wireless Sensor Networks,
chapter 12, pages 205–230. Volume edited of Merrett and Tan [116], 2010. ISBN 978-
953-307-321-7. doi: 10.5772/14472.

[8] Annam Thomas Antu and Paul Varghese. Random Number Generation Methods a
Survey. International Journal of Advanced Research in Computer Science and So�ware
Engineering, 6(1):556–559, January 2016. ISSN 2277-128X. doi: 10.23956/ijarcsse.

[9] Alex Arenas, Albert Díaz Guilera, Jürgen Kurths, Yamir Moreno, and Changsong
Zhou. Synchronization in complex networks. Physics Reports, 469(3):93–153, 12. De-
cember 2008. ISSN 0370-1573. doi: 10.1016/j.physrep.2008.09.002.

163

Bibliography

[10] AT45DB161B. 16-megabit 2.5-volt Only or 2.7-volt Only DataFlash AT45DB161B. Atmel
Corp., San Jose, CA (USA), October 2004.

[11] Ravi Bagree, Vishwas Raj Jain, AmanKumar, and Prabhat Ranjan. TigerCENSE:Wire-
less Image Sensor Network to Monitor Tiger Movement. In Pedro J. Marron, �iemo
Voigt, Peter Corke, and Luca Mottola, editors, 4th International Workshop on Real-
World Wireless Sensor Networks, REALWSN 2010, pages 13–24. Springer, Berlin, Hei-
delberg, December 2010. ISBN 978-3-642-17520-6. doi: 10.1007/978-3-642-17520-6_2.

[12] Fabian Barthel. Regulierung des Overheads eines selbst-organisierendenMAC Proto-
kolls durch Sendestärkenadaption. Bachelorarbeit, UniversitätWürzburg, 21. Septem-
ber 2013.

[13] Marcel Baunach. Ghost: So�ware and Con�guration Distribution for Wireless Sen-
sor/Actor Networks. In Hartmut Ritter, Kirsten Ter�oth, Georg Wittenburg, and
Jochen Schiller, editors, 7. GI/ITGKuVS Fachgespräch Drahtlose Sensornetze, pages 81–
84, Berlin, Germany, September 2008. Freie Universität Berlin, Institute of Computer
Science. Technical Report B 08-12.

[14] Marcel Baunach. Speed, Reliability and Energy E�ciency of HashSlot Communica-
tion in WSN Based Localization Systems. In Roberto Verdone, editor, 5th European
Conference onWireless Sensor Networks, EWSN 2008, pages 74–89, Berlin, Heidelberg,
2008. Springer. ISBN 978-3-540-77690-1. doi: 10.1007/978-3-540-77690-1_5.

[15] Marcel Baunach. Dynamic Hinting: Real-Time Resource Management in Wireless
Sensor/Actor Networks. In 15th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications, RTCSA 2009, pages 31–40. IEEE Computer
Society, 2009. ISBN 978-0-7695-3787-0. doi: 10.1109/RTCSA.2009.65.

[16] Marcel Baunach. Dynamic Hinting: Collaborative Real-Time Resource Management
for Reactive Embedded Systems. Journal of Systems Architecture (JSA), 57:799–814,
October 2011. ISSN 1383-7621. doi: 10.1016/j.sysarc.2011.07.001.

[17] Marcel Baunach. Towards Collaborative Resource Sharing under Real-Time Condi-
tions in Multitasking and Multicore Environments. In 17th IEEE International Con-
ference on Emerging Technologies Factory Automation, ETFA 2012, pages 1–9. IEEE
Computer Society, September 2012. ISBN 978-1-4673-4735-8. doi: 10.1109/ETFA.2012.
6489587.

[18] Marcel Baunach. Advances in Distributed Real-Time Sensor/Actuator Systems Opera-
tion – Operating Systems, Communication, and Application Design Concepts. Disserta-
tion, Institut für Informatik, Universität Würzburg, 30. October 2012.

[19] Marcel Baunach. Handling Time and Reactivity for Synchronization and Clock Dri�
Calculation inWireless Sensor/Actuator Networks. InMarten van Sinderen, Octavian
Postolache, César Benavente-Peces, andAli Falah, editors, 3rd International Conference
on Sensor Networks, SENSORNETS 2014, pages 63–72, Lisbon, Portugal, January 2014.
SciTePress. ISBN 978-989-758-001-7.

164

Bibliography

[20] Marcel Baunach, ReinerKolla, andClemensMühlberger. SNoW5: A versatile ultra low
power modular node for wireless ad hoc sensor networking. In Pedro José Marrón,
editor, 5. GI/ITGKuVS Fachgespräch Drahtlose Sensornetze, pages 55–59, Stuttgart, 17.–
18. July 2006. Institut für Parallele und Verteilte Systeme.

[21] Marcel Baunach, Reiner Kolla, and Clemens Mühlberger. Beyond �eory: Devel-
opment of a Real World Localization Application as Low Power WSN. In 32nd
IEEE Conference on Local Computer Networks, LCN 2007, pages 872–884, Washing-
ton, DC, USA, October 2007. IEEE Computer Society. ISBN 0-7695-3000-1. doi:
10.1109/LCN.2007.38.

[22] Marcel Baunach, Reiner Kolla, and Clemens Mühlberger. A Method for Self-
Organizing Communication in WSN Based Localization Systems: HashSlot. In 32nd
IEEE Conference on Local Computer Networks, LCN 2007, pages 825–832, Washing-
ton, DC, USA, October 2007. IEEE Computer Society. ISBN 0-7695-3000-1. doi:
10.1109/LCN.2007.13. SenseApp 2007, Dublin (Ireland).

[23] Marcel Baunach, Reiner Kolla, andClemensMühlberger. SNoW5: amodular platform
for sophisticated real-time wireless sensor networking. Technical Report 399, Institut
für Informatik, Universität Würzburg, January 2007.

[24] Marcel Baunach, Reiner Kolla, and Clemens Mühlberger. Introduction to a Small
Modular Adept Real-Time Operating System. In Distributed Systems Group, editor,
6. GI/ITG KuVS Fachgespräch Sensornetzwerke, pages 1–4, Aachen, 16.–17. July 2007.
RWTH Aachen University.

[25] Marcel Baunach, Reiner Kolla, and Clemens Mühlberger. SNoW Bat: A high precise
WSN based location system. Technical Report 424, Institut für Informatik, Universität
Würzburg, May 2007.

[26] Marcel Baunach, Clemens Mühlberger, Christian Appold, Martin Schröder, and Flo-
rian Füller. Analysis of Radio Signal Parameters for Calibrating RSSI Localization
Systems. Technical Report 455, Institut für Informatik, Universität Würzburg, March
2009.

[27] Luca Bencini, Davide Di Palma, Giovanni Collodi, Antonio Manes, and Gianfranco
Manes.Wireless Sensor Networks for On-Field Agricultural Management Process, chap-
ter 2, pages 17–34. Volume edited of Merrett and Tan [116], 2010. ISBN 978-953-307-
321-7. doi: 10.5772/13001.

[28] Jan Beutel, Oliver Kasten, Friedemann Mattern, Kay Römer, Frank Siegemund, and
Lothar Thiele. Prototyping Wireless Sensor Network Applications with BTnodes. In
Holger Karl, Adam Wolisz, and Andreas Willig, editors, 1st European Workshop on
Sensor Networks (EWSN 2004), volume 2920 of Lecture Notes in Computer Science,
pages 323–338, Berlin, January 2004. Springer. ISBN 978-3-540-24606-0. doi: 10.1007/
978-3-540-24606-0_22.

[29] Bela Bollobás. Modern Graph Theory. Graduate Texts in Mathematics. Springer, July
1998. ISBN 0-387-98488-7.

165

Bibliography

[30] Nuttapon Boonpinon and Attawith Sudsang. Heterogeneity Driven Circular Forma-
tion. In IEEE International Conference on Robotics and Biomimetics, ROBIO 2006,
pages 971–976. IEEE Computer Society, 2006. ISBN 1-4244-0570-X. doi: 10.1109/
ROBIO.2006.340360.

[31] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, JohnHeidemann, AhmedHelmy,
Polly Huang, Steven McCanne, Kannan Varadhan, Ya Xu, and Haobo Yu. Advances
in Network Simulation. Computer, 33(5):59–67, May 2000. ISSN 0018-9162. doi: 10.
1109/2.841785.

[32] Bernhard Buchli, Felix Sutton, and Jan Beutel. GPS-Equipped wireless sensor network
node for high-accuracy positioning applications. In 9th European Conference onWire-
less Sensor Networks (EWSN 2012), volume 7158 of Lecture Notes in Computer Science,
pages 179–195, Berlin, Heidelberg, February 2012. Springer. ISBN 978-3-642-28168-6.
doi: 10.1007/978-3-642-28169-3_12.

[33] Dujdow Buranapanichkit. Multichannel Distributed Coordination for Wireless Sensor
Networks: Convergence Delay and Energy Consumption Aspects. Dissertation, Depart-
ment of Electronic and Electrical Engineering, University College London, UK, Au-
gust 2013.

[34] Dujdow Buranapanichkit, Nikos Deligiannis, and Yiannis Andreopoulos. Conver-
gence of Desynchronization Primitives in Wireless Sensor Networks: A Stochastic
Modeling Approach. IEEE Transactions on Signal Processing, 63(1):221–233, Jan 2015.
ISSN 1053-587X. doi: 10.1109/TSP.2014.2369003.

[35] Clément Burin des Rosiers, Guillaume Chelius, Eric Fleury, Antoine Fraboulet, An-
toine Gallais, Nathalie Mitton, and Thomas Noël. SensLAB - Very Large Scale
Open Wireless Sensor Network Testbed. In �anasis Korakis, Hongbin Li, Phuoc
Tran-Gia, and Hong-Shik Park, editors, Testbeds and Research Infrastructure. Devel-
opment of Networks and Communities, volume 90 of TridentCom 2011, pages 239–
254. Springer, Berlin, Heidelberg, April 2012. ISBN 978-3-642-29273-6. doi: 10.1007/
978-3-642-29273-6_19.

[36] Marcus Chang. Power E�cient Duty-cycling with Ultra Low-power Receivers. Mas-
terthesis, University of Copenhagen, Denmark, June 2006.

[37] Chien-Ying Chen, Yu-Ting Chen, Yi-Hsuan Tu, Shun-Yao Yang, and Pai H. Chou.
EcoSpire: An Application Development Kit for an Ultra-Compact Wireless Sensing
System. IEEE Embedded Systems Letters, 1(3):65–68, October 2009. ISSN 1943-0663.
doi: 10.1109/LES.2009.2037984.

[38] Supasate Choochaisri. APhysicomimetics Desynchronization Algorithmwithout Global
Time Knowledge for Wireless Sensor Networks. Dissertation, Faculty of Engineering,
Chulalongkorn University, �ailand, 11. May 2012.

166

Bibliography

[39] Supasate Choochaisri, Kittipat Apicharttrisorn, Kittiporn Korprasertthaworn, Pong-
pakdi Taechalertpaisarn, and Chalermek Intanagonwiwat. Desynchronization with
an Arti�cial Force Field for Wireless Networks. SIGCOMM Comput. Commun. Rev.,
42(2):7–15, April 2012. ISSN 0146-4833. doi: 10.1145/2185376.2185378.

[40] Thomas Clausen and Philippe Jacquet. Optimized Link State Routing Protocol
(OLSR). RFC 3626, RFC Editor, October 2003.

[41] Alexander Coers. Verfahren zur redundanten und distributiven Datenverarbeitung in
drahtlosen Sensornetzen. Fraunhofer IRB Verlag, 2007. ISBN 978-3-8167-7393-1.

[42] SinemColeri Ergen and Pravin Varaiya. PEDAMACS: power e�cient and delay aware
medium access protocol for sensor networks. IEEETransactions onMobile Computing,
5(7):920–930, July 2006. ISSN 1536-1233. doi: 10.1109/TMC.2006.100.

[43] MICA2. MICA2 Wireless Measurement System. Crossbow Technology Inc., San Jose
(USA), 2005.

[44] TelosB. TelosB Mote Platform. Crossbow Technology Inc., San Jose (USA), 2006.

[45] Imote2. Imote2 High-Performance Wireless Sensor Network Node. Crossbow Technol-
ogy Inc., San Jose (USA), 2007.

[46] MICAz. MICAz Wireless Measurement System. Crossbow Technology Inc., San Jose
(USA), 2007.

[47] Hui Dai and Richard Han. TSync: A Lightweight Bidirectional Time Synchronization
Service for Wireless Sensor Networks. SIGMOBILE Mob. Comput. Commun. Rev., 8
(1):125–139, January 2004. ISSN 1559-1662. doi: 10.1145/980159.980173.

[48] Waltenegus Dargie and Christian Poellabauer. Fundamentals of Wireless Sensor Net-
works –�eory andPractice. WirelessCommunications andMobileComputing.Wiley,
July 2010. ISBN 978-0-470-99765-9.

[49] Julius Degesys and Radhika Nagpal. Towards Desynchronization of Multi-hop
Topologies. In 2nd IEEE International Conference on Self-Adaptive and Self-Organizing
Systems, SASO 2008, pages 129–138, Washington, DC, USA, 2008. IEEE Computer So-
ciety. ISBN 978-0-7695-3404-6. doi: 10.1109/SASO.2008.70.

[50] Julius Degesys, Ian Rose, Ankit Patel, and Radhika Nagpal. DESYNC: Self-Organizing
Desynchronization and TDMA onWireless Sensor Networks. In Tarek F. Abdelzaher,
Leonidas J. Guibas, andMatt Welsh, editors, 6th International Conference on Informa-
tion Processing in Sensor Networks, IPSN 2007, pages 11–20, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-638-7. doi: 10.1145/1236360.1236363.

[51] Julius Degesys, Prithwish Basu, and Jason Redi. Synchronization of Strongly Pulse-
Coupled Oscillators with Refractory Periods and Random Medium Access. In ACM
Symposium on Applied Computing, SAC 2008, pages 1976–1980, New York, NY, USA,
2008. ACM. ISBN 978-1-59593-753-7. doi: 10.1145/1363686.1364164.

167

Bibliography

[52] Hans Dodel and Dieter Häupler. Satellitennavigation. Springer, 2nd edition, 2010.
ISBN 978-3-540-79443-1. doi: 10.1007/978-3-540-79444-8.

[53] Johannes Dölfel. Development and Evaluation of a UMTS-based Architecture for Ve-
hicular Local Danger Warning. Diplomarbeit, University of Würzburg, Würzburg,
17. August 2007.

[54] Jingyi Dong. Implementierung eines Schallquelle Ortungssystems mit SNoW5 Sen-
sorknoten. Bachelorarbeit, Universität Würzburg, 02. January 2012.

[55] Falko Dressler. Self-Organization in Sensor and Actor Networks. John Wiley & Sons,
December 2007. ISBN 978-0-470-02820-9. doi: 10.1002/9780470724460.

[56] Frederick Ducatelle, Gianni A. Di Caro, and Luca M. Gambardella. Principles and
applications of swarm intelligence for adaptive routing in telecommunications net-
works. Swarm Intelligence, 4(3):173–198, September 2010. ISSN 1935-3820. doi:
10.1007/s11721-010-0040-x.

[57] Hassan Echoukairi, Khalid Bourgba, and Mohammed Ouzzif. A Survey on Flat
Routing Protocols in Wireless Sensor Networks. In Essaïd Sabir, Hicham Medromi,
and Mohamed Sadik, editors, Advances in Ubiquitous Networking: Proceedings of the
UNet’15, volume 366 of Lecture Notes in Electrical Engineering (LNEE), pages 311–324.
Springer, Singapore, 2016. ISBN 978-981-287-990-5. doi: 10.1007/978-981-287-990-5_
25.

[58] Amre El Hoiydi and Jean-Dominique Decotignie. WiseMAC: An Ultra Low Power
MAC Protocol for Multi-hopWireless Sensor Networks. In Sotiris E. Nikoletseas and
José D. P. Rolim, editors, 1st International Workshop on Algorithmic Aspects of Wire-
less Sensor Networks, ALGOSENSORS 2004, pages 18–31. Springer, Berlin, Heidelberg,
16. July 2004. ISBN 978-3-540-27820-7. doi: 10.1007/978-3-540-27820-7_4.

[59] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-Grained Network Time Syn-
chronization using Reference Broadcasts. In 5th Symposium on Operating Systems De-
sign and Implementation, volume 36 of OSDI 2002, pages 147–163, Boston, MA, USA,
December 2002. ACM. doi: 10.1145/844128.844143.

[60] Andreas Engel. SNoW-RA: Reap and Allot – Energieneutraler Betrieb des SNoW5-
Sensorknotens durch Gewinnen und Verteilen von Solarenergie. Diplomarbeit, Uni-
versität Würzburg, 5. July 2009.

[61] EstiNet Technologies Inc. The GUI UserManual for the EstiNet 9.0 Network Simulator,
3. August 2015.

[62] EstiNet Technologies Inc. EstiNet Technologies, 2016. URL http://www.estinet.
com/ns/.

[63] Patrick Fakesch. Methoden zur fehlertoleranten Datenhaltung in Sensornetzen.
Diplomarbeit, Universität Würzburg, 31. August 2010.

168

http://www.estinet.com/ns/
http://www.estinet.com/ns/

Bibliography

[64] Kevin Fall, Kannan Varadhan, and the VINT project. The ns Manual, 01. November
2011. URL http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf.

[65] Paul M. Fishbane, Stephen G. Gasiorowicz, and Stephen T. �ornton. Physics for Sci-
entists and Engineers. Pearson PrenticeHall, 3rd edition, 2005. ISBN978-0-13-191182-6.

[66] s-net® – Wireless Sensor Networks. Fraunhofer Institute for Integrated Circuits (IIS),
September 2011. URL http://www.s-net-info.com.

[67] FU Berlin. ScatterWeb – Embedded Sensor Board (ESB), 2005. URL http://www.
mi.fu-berlin.de/inf/groups/ag-tech/projects/ScatterWeb/.

[68] Florian Füller. Entwicklung eines Protokolls zu einer RSS-Lokalisationsinfrastruktur
in drahtlosen Sensornetzen. Diplomarbeit, Universität Würzburg, 20. February 2009.

[69] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. Timing-sync Protocol for
Sensor Networks. In 1st International Conference on Embedded Networked Sensor Sys-
tems, SenSys 2003, pages 138–149, New York, NY, USA, 2003. ACM Press. ISBN 1-
58113-707-9. doi: 10.1145/958491.958508.

[70] Saurabh Ganeriwal, Jeremy Elson, and Mani B. Srivastava. Time Synchronization.
In Nirupama Bulusu and Sanjay Jha, editors, Wireless Sensor Networks - A Systems
Perspective, MEMS, chapter 5, pages 59–74. Artech House, 2005. ISBN 978-1-58053-
867-1.

[71] James E. Gentle. Random Number Generation and Monte Carlo Methods. Springer-
Verlag, 2nd edition, 2003. ISBN 978-0-387-00178-4. doi: 10.1007/b97336.

[72] Douglas C. Giancoli. Physik – Lehr- und Arbeitsbuch. Pearson Studium, 3rd ext. edi-
tion, October 2009. ISBN 978-3-8689-4023-7.

[73] AlessandroGiusti, Amy L.Murphy, andGian Pietro Picco. Decentralized Scattering of
Wake-up Times inWireless Sensor Networks. In 4th European Conference onWireless
Sensor Networks, EWSN2007, pages 245–260, Berlin, Heidelberg, 2007. Springer. ISBN
978-3-540-69829-6. doi: 10.1007/978-3-540-69830-2_16.

[74] Pietro Gonizzi, Gianluigi Ferrari, Vincent Gay, and Jeremie Leguay. REDUNDANT
DISTRIBUTED DATA STORAGE - Experimentation with the SensLab Testbed.
In Marten van Sinderen, Octavian Postolache, and César Benavente-Peces, editors,
1st International Conference on Sensor Networks, SENSORNETS 2012, pages 15–23,
Rome, Italy, February 2012. SciTePress. ISBN 978-989-8565-01-3. doi: 10.5220/
0003803900150023.

[75] JamesGosling, Bill Joy, Guy Steele, Gilad Bracha, andAlex Buckley. The Java Language
Speci�cation – Java SE 7 Edition. Oracle America, Inc., 500 Oracle Parkway, Redwood
City, CA 94065, USA, 28. February 2013.

[76] HarryGros desormeaux, PhilippeHunel, andNicolasVidot.Wildlife AssessmentUsing
Wireless Sensor Networks, chapter 3, pages 35–49. Volume edited of Merrett and Tan
[116], 2010. ISBN 978-953-307-321-7. doi: 10.5772/13812.

169

http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf
http://www.s-net-info.com
http://www.mi.fu-berlin.de/inf/groups/ag-tech/projects/ScatterWeb/
http://www.mi.fu-berlin.de/inf/groups/ag-tech/projects/ScatterWeb/

Bibliography

[77] G.P. Halkes and K.G. Langendoen. Cranksha�: An Energy-E�cient MAC-Protocol
for Dense Wireless Sensor Networks. In 4th European Conference on Wireless Sensor
Networks, EWSN 2007, pages 228–244, Berlin, Heidelberg, 2007. Springer. ISBN 978-
3-540-69829-6. doi: 10.1007/978-3-540-69830-2_15.

[78] Ulrich Hedtstück. Simulation diskreter Prozesse. Springer Verlag, 2013. ISBN 978-3-
642-34870-9. doi: 10.1007/978-3-642-34871-6.

[79] JohnHeidemann,Milica Stojanovic, andMichele Zorzi. Underwater sensor networks:
applications, advances and challenges. Philosophical Transactions of The Royal Society
A, 370(1958):158–175, January 2012. doi: 10.1098/rsta.2011.0214.

[80] Hugo Hernández and Christian Blum. Implementing aModel of Japanese Tree Frogs’
Calling Behavior in Sensor Networks: a Study of Possible Improvements. In Natalio
Krasnogor and Pier Luca Lanzi, editors, 13th Annual Conference Companion onGenetic
and Evolutionary Computation, GECCO 2011, pages 615–622, New York, NY (USA),
July 2011. ACM. ISBN 978-1-4503-0690-4. doi: 10.1145/2001858.2002057.

[81] Hugo Hernández and Christian Blum. Distributed graph coloring: an approach based
on the calling behavior of Japanese tree frogs. Swarm Intelligence, 6(2):117–150, 2012.
ISSN 1935-3812. doi: 10.1007/s11721-012-0067-2.

[82] JasonHill, Robert Szewczyk, AlecWoo, SethHollar, David Culler, andKristofer Pister.
System Architecture Directions for Networked Sensors. SIGPLAN Not., 35(11):93–104,
November 2000. ISSN 0362-1340. doi: 10.1145/356989.356998.

[83] BernhardHofmannWellenhof, Herbert Lichtenegger, and ElmarWasle. GNSS Global
Navigation Satellite Systems –GPS, GLONASS, Galileo, andmore. Springer, 2008. ISBN
978-3-211-73012-6. doi: 10.1007/978-3-211-73017-1.

[84] Yao-Win Hong and Anna Scaglione. A Scalable Synchronization Protocol For Large
Scale Sensor Networks And Its Applications. IEEE Journal on Selected Areas in Com-
munications, 23(5):1085–1099, May 2005. ISSN 0733-8716. doi: 10.1109/JSAC.2005.
845418.

[85] Jeonghwan Hwang, Changsun Shin, and Hyun Yoe. Study on an Agricultural Envi-
ronment Monitoring Server System using Wireless Sensor Networks. Sensors, 10(12):
11189–11211, 2010. ISSN 1424-8220. doi: 10.3390/s101211189.

[86] IEEE Standard for Information technology - Telecommunications and information ex-
change between systems - Local and metropolitan area networks - Speci�c requirements,
Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Speci-
�cations (IEEE Std 802.11-2007). IEEE Computer Society, New York, NY 10016-5997,
USA, June 2007.

[87] ITU-T Recommendation X.200. International Telecommunication Union (ITU), July
1994.

[88] Quartz Crystal Speci�cation – HC49/3H. IQD Frequency Products, July 2016.

170

Bibliography

[89] Eugene M. Izhikevich. Weakly pulse-coupled oscillators, FM interactions, synchro-
nization, and oscillatory associative memory. IEEE Transactions on Neural Networks,
10(3):508–526, May 1999. ISSN 1045-9227. doi: 10.1109/72.761708.

[90] Xiaofan Jiang, Joseph Polastre, andDavid Culler. Perpetual Environmentally Powered
Sensor Networks. In 4th International Symposium on Information Processing in Sensor
Networks, IPSN 2005, pages 463–468, Piscataway, NJ, USA, April 2005. IEEE Press.
ISBN 0-7803-9202-7. doi: 10.1109/IPSN.2005.1440974.

[91] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li-Shiuan Peh, and
Daniel Rubenstein. Energy-E�cient Computing forWildlife Tracking: Design Trade-
o�s and Early Experiences with ZebraNet. In 10th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, ASPLOS X,
pages 96–107, New York, NY, USA, December 2002. ACM. ISBN 1-58113-574-2. doi:
10.1145/605397.605408.

[92] Hui Kang and Jennifer L. Wong. A Localized Multi-Hop Desynchronization Algo-
rithm for Wireless Sensor Networks. In INFOCOM 2009, IEEE, pages 2906–2910, Rio
de Janeiro, Brazil, April 2009. IEEE Computer Society. doi: 10.1109/INFCOM.2009.
5062256.

[93] Holger Karl and Andreas Willig. Protocols and Architectures for Wireless Sensor Net-
works. John Wiley & Sons, 2005. ISBN 978-0-470-09510-2.

[94] Phil Karn. MACA - A new channel access method for packet radio. In Computer
Networking Conference, pages 134–140, London, ON, Canada, September 1990.

[95] MartinKeupp. Experimentelle Evaluation derRobustheit eines selbst-organisierenden
MAC Protokolls für Multi-Hop Topologien. Bachelorarbeit, Universität Würzburg,
24. July 2012.

[96] Alexander Klein. Performance Issues of MAC and Routing Protocols in Wireless Sensor
Networks. Dissertation, Institut für Informatik, Universität Würzburg, 25. May 2010.

[97] Alexander Klein and Phuoc Tran Gia. A Statistic-Based Approach towards Routing
in Mesh Networks. In IEEE International Conference on Mobile Adhoc and Sensor
Systems, pages 1–6. IEEE Computer Society, October 2007. doi: 10.1109/MOBHOC.
2007.4428722.

[98] Franziska Klügl. Multiagentensimulation. Konzepte, Werkzeuge, Anwendung. Agen-
tentechnologie. Addison-Wesley Verlag, 2001. ISBN 978-3-8273-1790-2.

[99] Keiji Konishi and Hideki Kokame. Synchronization of pulse-coupled oscillators with
a refractory period and frequency distribution for a wireless sensor network. Chaos:
An Interdisciplinary Journal of Nonlinear Science, 18(3):033132, 2008. doi: 10.1063/1.
2970103.

[100] Hermann Kopetz and Wilhelm Ochsenreiter. Clock Synchronization in Distributed
Real-time Systems. IEEE Transactions on Computers, C-36(8):933–940, August 1987.
ISSN 0018-9340. doi: 10.1109/TC.1987.5009516.

171

Bibliography

[101] Sven Oliver Krumke and Hartmut Noltemeier. Graphentheoretische Konzepte und Al-
gorithmen. Leitfäden der Informatik. Vieweg + Teubner, 3rd edition, 2012. ISBN 978-
3-8348-1849-2. doi: 10.1007/978-3-8348-2264-2.

[102] Horst Kuchling. Taschenbuch der Physik. Hanser, 20th edition, November 2010. ISBN
978-3-446-42457-9.

[103] Jeevan Kumar, Sachin Tripathi, and Rajesh Kumar Tiwari. A Survey on Routing Pro-
tocols for Wireless Sensor Networks Using Swarm Intelligence. International Journal
of Internet Technology and Secured Transactions, 6(2):79–102, January 2016. ISSN 1748-
569X. doi: 10.1504/IJITST.2016.078574.

[104] Averill M. Law andDavidM. Kelton. SimulationModeling and Analysis. McGraw-Hill
Higher Education, 3rd edition, 1999. ISBN 978-0-07-059292-6.

[105] Pierre L’Ecuyer. Tables of linear congruential generators of di�erent sizes and good
lattice structure. Mathematics of Computation, 68(225):249–260, January 1999. ISSN
1088-6842. doi: 10.1090/S0025-5718-99-00996-5.

[106] WaspMote. Waspmote Datasheet. Libelium Comunicaciones Distribuidas S.L.,
Zaragoza (Spain), v7.0 edition, oct 2016.

[107] Jesus Antonio Llor Sirvent andManuel PerezMalumbres.Modelling UnderwaterWire-
less SensorNetworks, chapter 11, pages 185–203. Volume edited ofMerrett andTan [116],
2010. ISBN 978-953-307-321-7. doi: 10.5772/13144.

[108] Dennis Lucarelli and I-Jeng Wang. Decentralized Synchronization Protocols with
Nearest Neighbor Communication. In John A. Stankovic, Anish Arora, and Ramesh
Govindan, editors, 2nd International Conference on Embedded Networked Sensor Sys-
tems, SenSys 2004, pages 62–68, New York, NY, USA, November 2004. ACM. ISBN
1-58113-879-2. doi: 10.1145/1031495.1031503.

[109] Gerald Lutter. Filesystem für YAOS auf einem MSP430 mit AT54DB161B. Department
of Computer Engineering, University of Wuerzburg, Würzburg, Germany, 2006.

[110] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and John Ander-
son. Wireless Sensor Networks for Habitat Monitoring. In 1st ACM International
Workshop on Wireless Sensor Networks and Applications, WSNA 2002, pages 88–97,
New York, NY, USA, 2002. ACM. ISBN 1-58113-589-0. doi: 10.1145/570738.570751.

[111] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. The Flooding Time
Synchronization Protocol. In John A. Stankovic, Anish Arora, and Ramesh Govindan,
editors, 2nd International Conference on Embedded Networked Sensor Systems, SenSys
2004, pages 39–49, New York, NY, USA, November 2004. ACM. ISBN 1-58113-879-2.
doi: 10.1145/1031495.1031501.

[112] Rudolf Mathar and Jürgen Mattfeldt. Pulse-Coupled Decentral Synchronization.
SIAM Journal on Applied Mathematics, 56(4):1094–1106, 1996. ISSN 0036-1399. doi:
10.1137/S0036139994278135.

172

Bibliography

[113] Steven McCanne and Sally Floyd. The Network Simulator – ns-2, 2011. URL http:
//www.isi.edu/nsnam/ns/.

[114] Lennart Meier, Philipp Blum, and Lothar Thiele. Internal Synchronization of Dri�-
Constraint Clocks in Ad-Hoc Sensor Networks. In 5th ACM International Symposium
onMobile AdHocNetworking andComputing, MobiHoc 2004, pages 90–97, NewYork,
NY, USA, 2004. ACM. ISBN 1-58113-849-0. doi: 10.1145/989459.989471.

[115] Rabah Meraihi, Sidi-Mohammed Senouci, Djamal-Eddine Meddour, and Moez Jerbi.
Vehicle-to-Vehicle Communications: Applications and Perspectives. In Houda
Labiod, editor,Wireless Ad Hoc and Sensor Networks, ISTE, chapter 12, pages 285–308.
John Wiley & Sons, 2008. ISBN 978-1-84821-003-5.

[116] Geo� V. Merrett and Yen Kheng Tan, editors. Wireless Sensor Networks: Application-
Centric Design, volume edited. InTech, 2010. ISBN 978-953-307-321-7. doi: 10.5772/658.

[117] Roberto Minerva, Abyi Biru, and Domenico Rotondi. Towards a de�nition of the
Internet of Things (IoT). IEEE Internet Initiative, 1:1–86, 27. May 2015.

[118] Renato E. Mirollo and Steven H. Strogatz. Synchronization of Pulse-Coupled Biolog-
ical Oscillators. SIAM Journal on Applied Mathematics, 50(6):1645–1662, 1990. ISSN
0036-1399. doi: 10.1137/0150098.

[119] Arik Motskin, Tim Roughgarden, Primoz Skraba, and Leonidas J. Guibas. Light-
weight Coloring and Desynchronization for Networks. In INFOCOM 2009, IEEE,
pages 2383–2391, Rio de Janeiro, Brazil, April 2009. IEEE Computer Society. doi:
10.1109/INFCOM.2009.5062165.

[120] Clemens Mühlberger. Vergleich von Ereignis-basierter und Takt-gesteuerter Sim-
ulation in Multiagentensystemen. Diplomarbeit, Universität Würzburg, Würzburg,
27. January 2005.

[121] Clemens Mühlberger. Energetic and Temporal Analysis of a Desynchronized TDMA
Protocol for WSNs. In Institut für Telematik, editor, 8. GI/ITG KuVS Fachgespräch
Drahtlose Sensornetze, pages 59–62, Hamburg, Germany, August 2009. Technische
Universität Hamburg-Harburg, Institute of Telematics.

[122] Clemens Mühlberger. Desynchronization in Multi-Hop Topologies: A Challenge. In
Reiner Kolla, editor, 9. GI/ITGKuVS Fachgespräch Drahtlose Sensornetze, pages 21–24,
Würzburg, Germany, September 2010. Universität Würzburg, Institut für Informatik.
urn:nbn:de:bvb:20-opus-51106.

[123] Clemens Mühlberger. Integrating Time-Stamped Synchronization into a Periodical
MAC Protocol - Problems and Experiences. Technical Report 477, Institut für Infor-
matik, Universität Würzburg, December 2010.

[124] Clemens Mühlberger. On the Improvement of a Self-Organized MAC Protocol for
Multi-Hop Wireless Sensor Networks. In 11. GI/ITG KuVS Fachgespräch Drahtlose
Sensornetze, pages 7–10, Darmstadt, Germany, September 2012. Technische Univer-
sität Darmstadt, Fachbereich Informatik. SEEMOO-TR-2012-03.

173

http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/

Bibliography

[125] ClemensMühlberger. Analyzing a Self-OrganizingMulti-Hop Protocol: Ease of Simu-
lations and Need for Real-World Tests. In 9th International Wireless Communications
and Mobile Computing Conference, IWCMC 2013, pages 1029–1034. IEEE Computer
Society, 2013. ISBN 978-1-4673-2479-3. doi: 10.1109/IWCMC.2013.6583698.

[126] Clemens Mühlberger. On the Pitfalls of Desynchronization in Multi-hop Topologies.
In Marten van Sinderen, Octavian Postolache, and César Benavente-Peces, editors,
2nd International Conference on Sensor Networks, SENSORNETS 2013, pages 99–108,
Barcelona, Spain, February 2013. SciTePress. ISBN 978-989-8565-45-7. doi: 10.5220/
0004230900990108. Best Student Paper Award.

[127] Clemens Mühlberger and Marcel Baunach. Tab WoNS: Calibration Approach for
WSN based Ultrasound Localization Systems. In Hartmut Ritter, Kirsten Ter�oth,
Georg Wittenburg, and Jochen Schiller, editors, 7. GI/ITG KuVS Fachgespräch Draht-
lose Sensornetze, pages 41–44, Berlin, Germany, September 2008. Freie Universität
Berlin, Institute of Computer Science. Technical Report B 08-12.

[128] Clemens Mühlberger and Reiner Kolla. Extended Desynchronization for Multi-Hop
Topologies. Technical Report 460, Institut für Informatik, UniversitätWürzburg, July
2009.

[129] Clemens Mühlberger and Tobias Schäfer. SuperG: A Multi-Radio Architecture to in-
terconnect multiple Wireless Sensor Networks. In Hannes Frey, editor, 10. GI/ITG
KuVS Fachgespräch Drahtlose Sensornetze, pages 13–16, Paderborn, Germany, Septem-
ber 2011. Universität Paderborn, Institut für Informatik. TR-RI-11-313.

[130] David Murray, Micheal Dixon, and Terry Koziniec. An Experimental Comparison of
Routing Protocols inMultiHopAdHocNetworks. InAustralasianTelecommunication
Networks and Applications Conference (ATNAC), pages 159–164, October 2010. doi:
10.1109/ATNAC.2010.5680190.

[131] Akira Mutazono. Frog Call-Inspired Self-Organizing Transmission Scheduling
Scheme for Wireless Sensor Networks. Masterthesis, Graduate School of Information
Science Technology, Osaka University, February 2009.

[132] Akira Mutazono, Masashi Sugano, and Masayuki Murata. Frog Call-Inspired Self-
Organizing Anti-Phase Synchronization for Wireless Sensor Networks. In 2nd Inter-
national Workshop on Nonlinear Dynamics and Synchronization, INDS 2009, pages
81–88, Klagenfurt (Austria), July 2009.

[133] Akira Mutazono, Masashi Sugano, and Masayuki Murata. Self-organizing Anti-phase
Synchronization Scheme for Sensor Networks Inspired by Frogs’ Calling Behavior.
ISAST Transactions on Computers and Intelligent Systems, 1(2):86–93, 2009. ISSN 1798-
2448.

[134] Akira Mutazono, Masashi Sugano, and Masayuki Murata. Comparison of robustness
of time synchronisation in sensor networks. International Journal of Autonomous and
Adaptive Communications Systems (IJAACS), 4(2):202–216, 2011. doi: 10.1504/IJAACS.
2011.039724.

174

Bibliography

[135] Siri Namtvedt. Design Note DN506 - GDO Pin Usage. Texas Instruments Inc., Dallas,
Texas (USA), October 2007.

[136] Bernd Neubig and Wolfgang Briese. Das große Quarzkochbuch. Franzis Verlag, 2nd
edition, 2000. ISBN 978-3-7723-5853-1.

[137] Harald Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1992. ISBN
978-0-898712-95-7.

[138] Lars Niemann, Marcus Venzke, Christian Renner, and Volker Turau. Clock Synchro-
nization of TinyOS-based Sensor Networks with DCF77. In Institut für Telematik,
editor, 8. GI/ITG KuVS Fachgespräch Drahtlose Sensornetze, pages 45–46, Hamburg,
Germany, August 2009. TechnischeUniversitätHamburg-Harburg, Institute of Telem-
atics.

[139] OpenSim Ltd. OMNeT++, 2015. URL https://omnetpp.org.

[140] Luigi Palopoli, Roberto Passerone, Amy L. Murphy, Gian Pietro Picco, and Alessan-
dro Giusti. Solving theWake-Up Scattering ProblemOptimally. In 6th European Con-
ference on Wireless Sensor Networks, EWSN 2009, pages 166–182, Berlin, Heidelberg,
2009. Springer. ISBN 978-3-642-00223-6. doi: 10.1007/978-3-642-00224-3_11.

[141] Ankit Patel, Julius Degesys, and Radhika Nagpal. Desynchronization: The �e-
ory of Self-Organizing Algorithms for Round-Robin Scheduling. In 1st International
Conference on Self-Adaptive and Self-Organizing Systems, SASO 2007, pages 87–96,
Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2906-2. doi:
10.1109/SASO.2007.17.

[142] Charles S. Peskin. Mathematical Aspects of Heart Physiology. Courant Institute of
Mathematical Sciences, New York University, 251 Mercer Street, NY 10012, USA, 1975.

[143] Joseph Polastre, Jason Hill, and David Culler. Versatile Low Power Media Access for
Wireless Sensor Networks. In 2nd International Conference on Embedded Networked
Sensor Systems, SenSys 2004, pages 95–107, New York, NY, USA, November 2004.
ACM. ISBN 1-58113-879-2. doi: 10.1145/1031495.1031508.

[144] JosephPolastre, Robert Szewczyk, andDavidCuller. Telos: EnablingUltra-LowPower
Wireless Research. In 4th International Conference on Information Processing in Sensor
Networks, IPSN/SPOTS 2005, 25.–27. April 2005.

[145] Oleksandr V. Popovych, Peter A. Tass, and Christian Hauptmann. Desynchroniza-
tion (computational neuroscience). Scholarpedia, 6(10):1352, 2011. doi: 10.4249/
scholarpedia.1352.

[146] Ramjee Prasad and Marina Ruggieri, editors. Applied Satellite Navigation Using GPS,
GALILEO, and Augmentation Systems. mobile communications series. Artech House,
2005. ISBN 978-1-58053-814-2.

175

https://omnetpp.org

Bibliography

[147] Vijay Raghunathan, Aman Kansal, Jason Hsu, Jonathan Friedman, and Mani Srivas-
tava. Design Considerations for Solar Energy Harvesting Wireless Embedded Sys-
tems. In 4th International Symposium on Information Processing in Sensor Networks,
IPSN 2005, pages 457–462, Piscataway, NJ, USA, April 2005. IEEE Press. ISBN 0-7803-
9202-7. doi: 10.1109/IPSN.2005.1440973.

[148] Venkatesh Rajendran, Katia Obraczka, and J.J. Garcia-Luna Aceves. Energy-e�cient
Collision-free Medium Access Control for Wireless Sensor Networks. In 1st In-
ternational Conference on Embedded Networked Sensor Systems, SenSys ’03, pages
181–192, New York, NY, USA, November 2003. ACM. ISBN 1-58113-707-9. doi:
10.1145/958491.958513.

[149] Venkatesh Rajendran, Katia Obraczka, and J.J. Garcia-Luna Aceves. Energy-E�cient,
Collision-Free Medium Access Control for Wireless Sensor Networks. Wireless Net-
works, 12(1):63–78, February 2006. ISSN 1022-0038. doi: 10.1007/s11276-006-6151-z.

[150] Renesas Starter Kit+ for SH7203 – User’s Manual. Renesas Electronics Corporation,
Kanagawa (Japan), reg10j0060-0200 edition, 17. January 2009.

[151] SH7203 Group – Hardware Manual. Renesas Electronics Corporation, Kanagawa
(Japan), rej09b0313-0300 edition, 28. September 2009.

[152] Tobias Reusing. Implementierung und Analyse eines WSN gestützten Lokalisa-
tionsalgorithmus auf Basis des SNoW5 Sensorknotens. Bachelorarbeit, Universität
Würzburg, 18. June 2010.

[153] Ill-Keun Rhee, Jaehan Lee, Jangsub Kim, Erchin Serpedin, and Yik-ChungWu. Clock
Synchronization in Wireless Sensor Networks: An Overview. Sensors, 9(1):56–85, Jan-
uary 2009. ISSN 1424-822. doi: 10.3390/s90100056.

[154] Injong Rhee, Ajit Warrier, Mahesh Aia, and Jeongki Min. Z-MAC: a Hybrid MAC
for Wireless Sensor Networks. In Jason Redi, Hari Balakrishnan, and Feng Zhao,
editors, 3rd International Conference on Embedded Networked Sensor Systems, SenSys
2005, pages 90–101, SanDiego, CA, USA, November 2005. ACM. ISBN 1-59593-054-X.
doi: 10.1145/1098918.1098929.

[155] S. W. Roberts. Control Chart Tests Based on Geometric Moving Averages. Techno-
metrics, 1(3):239–250, August 1959. ISSN 0040-1706.

[156] Kay Römer. Time Synchronization in Ad Hoc Networks. In 2nd ACM International
Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc 2001, pages 173–
182, New York, NY, USA, 2001. ACM. ISBN 1-58113-428-2. doi: 10.1145/501436.501440.

[157] Tobias Schäfer. Implementierung eines Multilayer Multiradio Gateways für drahtlose
Sensornetze. Diplomarbeit, Universität Würzburg, 26. July 2011.

[158] Erchin Serpedin and Qasim M. Chaudhari. Synchronization in Wireless Sensor Net-
works: Parameter Estimation, Peformance Benchmarks, and Protocols. Cambridge Uni-
versity Press, New York, NY, USA, 1st edition, 2009. ISBN 978-0-521-76442-1.

176

Bibliography

[159] Tossaphol Settawatcharawanit, Supasate Choochaisri, Chalermek Intanagonwiwat,
and Kultida Rojviboonchai. V-DESYNC: Desynchronization for Beacon Broadcast-
ing onVehicularNetworks. In 75th IEEEVehicular Technology Conference, VTC Spring
2012, pages 1–5, 2012. doi: 10.1109/VETECS.2012.6239966.

[160] Hans-Jürgen Siegert. Simulation zeitdiskreter Systeme. R. Oldenbourg, 1991. ISBN
978-3486218329.

[161] Osvaldo Simeone and Umberto Spagnolini. Distributed Time Synchronization in
Wireless Sensor Networks with Coupled Discrete-Time Oscillators. EURASIP Jour-
nal on Wireless Communications and Networking, 2007(1):057054, March 2007. ISSN
1687-1499. doi: 10.1155/2007/57054.

[162] Farhan Simjee and Pai H. Chou. Everlast: Long-life, Supercapacitor-operated Wire-
less Sensor Node. In International Symposium on Low Power Electronics and Design,
ISLPED 2006, pages 197–202, New York, NY, USA, October 2006. ACM. ISBN 1-
59593-462-6. doi: 10.1145/1165573.1165619.

[163] Gyula Simon, Miklós Maróti, Ákos Lédeczi, György Balogh, Branislav Kusy, András
Nádas, Gábor Pap, János Sallai, and Ken Frampton. Sensor Network-based Counter-
sniper System. In 2nd International Conference on Embedded Networked Sensor Sys-
tems, SenSys 2004, pages 1–12, New York, NY, USA, 2004. ACM. ISBN 1-58113-879-2.
doi: 10.1145/1031495.1031497.

[164] Fikrit Sivrikaya and Bülent Yener. Time Synchronization. In Zheng and Jamalipour
[200], chapter 9, pages 285–306. ISBN 978-0-470-16763-2.

[165] Michael So�el and Ralf Langhans. Space-Time Reference Systems. Astronomy
and Astrophysics Library. Springer, 2013. ISBN 978-3-642-30225-1. doi: 10.1007/
978-3-642-30226-8.

[166] Kazem Sohraby, Daniel Minoli, and Taieb Znati. Wireless Sensor Networks – Technol-
ogy, Protocols, and Applications. John Wiley & Sons, 2007. ISBN 978-0-471-74300-2.

[167] Daniel Stegmeier. Einfache Zeitsynchronisation in drahtlosen Sensornetzen. Diplo-
marbeit, Universität Würzburg, 23. November 2009.

[168] Stig Støa and Ilangko Balasingham. Periodic-MAC: Improving MAC Protocols for
Biomedical Sensor Networks Through Implicit Synchronization. In Anthony N.
Laskovski, editor, Biomedical Engineering Trends in Electronics, Communications and
So�ware, chapter 26, pages 507–522. InTech, Rijeka, Croatia, January 2011. ISBN 978-
953-307-475-7. doi: 10.5772/13223.

[169] Girts Strazdins, Atis Elsts, Krisjanis Nesenbergs, and Leo Selavo. Wireless Sensor
Network Operating System Design Rules Based on Real-World Deployment Survey.
Journal of Sensor and Actuator Networks, 2(3):509–556, 2013. ISSN 2224-2708. doi:
10.3390/jsan2030509.

177

Bibliography

[170] Steven H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics, Bi-
ology, Chemistry and Engineering. Westview Press, 2000. ISBN 978-0-7382-0453-6.

[171] StevenH. Strogatz. Sync: HowOrder Emerges FromChaos In the Universe, Nature, and
Daily Life. Hyperion Books, 2003. ISBN 978-0-7868-8721-7.

[172] Maneesha Sudheer. Wireless Sensor Network for Disaster Monitoring, chapter 3, pages
51–70. Volume edited of Merrett and Tan [116], 2010. ISBN 978-953-307-321-7. doi:
10.5772/13119.

[173] Pongpakdi Taechalertpaisarn, Supasate Choochaisri, and Chalermek Intanagonwiwat.
An Orthodontics-Inspired Desynchronization Algorithm for Wireless Sensor Net-
works. In 13th IEEE International Conference on Communication Technology, ICCT
2011, pages 631–636, Jinan, China, September 2011. doi: 10.1109/ICCT.2011.6157953.

[174] MSP430x1xx Family User’s Guide. Texas Instruments Inc., Dallas, Texas (USA), 2006.

[175] CC1100 Low-Power Sub-1 GHz RF Transceiver. Texas Instruments Inc., Dallas, Texas
(USA), December 2009.

[176] CC2520 2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER. Texas Instruments Inc.,
Dallas, Texas (USA), December 2009.

[177] MSP430F15x, MSP430F16x, MSP430F161x Mixed Signal Microcontroller. Texas Instru-
ments Inc., Dallas, Texas (USA), March 2011.

[178] MSP430™ SoCWith RF Core. Texas Instruments Inc., Dallas, Texas (USA), September
2013.

[179] CC430 FamilyUser’s Guide. Texas Instruments Inc., Dallas, Texas (USA), January 2013.

[180] eZ430-Chronos™ Development Tool User’s Guide. Texas Instruments Inc., Dallas, Texas
(USA), January 2013.

[181] Paul A. Tipler and Gene Mosca. Physik für Wissenscha�ler und Ingenieure. Spektrum
Akademischer Verlag, 6th edition, August 2009. ISBN 978-3827419453.

[182] FouadA. Tobagi and LeonardKleinrock. Packet Switching inRadioChannels: Part II–
The Hidden Terminal Problem in Carrier Sense Multiple-Access and the Busy-Tone
Solution. IEEE Transactions on Communications, 23(12):1417–1433, December 1975.
ISSN 0090-6778. doi: 10.1109/TCOM.1975.1092767.

[183] Gilman Tolle, Joseph Polastre, Robert Szewczyk, David Culler, Neil Turner, Kevin
Tu, Stephen Burgess, Todd Dawson, Phil Buonadonna, David Gay, and Wei Hong. A
Macroscope in theRedwoods. In 3rd International Conference on EmbeddedNetworked
Sensor Systems, SenSys 2005, pages 51–63, New York, NY, USA, 2005. ACM. ISBN 1-
59593-054-X. doi: 10.1145/1098918.1098925.

[184] Volker Turau. Algorithmische Graphentheorie. Oldenbourg, 3rd edition, 2009. ISBN
978-3-486-59057-9. doi: 10.1524/9783486598520.

178

Bibliography

[185] Tijs van Dam. An Adaptive Energy-E�cient MAC Protocol for Wireless Sensor Net-
works. Dissertation, Faculteit Electrotechniek, Wiskunde en Informatica, Technische
Universiteit Del�, 13. June 2003.

[186] Tijs van Dam and Koen Langendoen. An Adaptive Energy-e�cientMAC Protocol for
Wireless Sensor Networks. In 1st International Conference on Embedded Networked
Sensor Systems, SenSys 2003, pages 171–180, New York, NY, USA, November 2003.
ACM. ISBN 1-58113-707-9. doi: 10.1145/958491.958512.

[187] Lodewijk F.W. van Hoesel and Paul J.M. Havinga. A Lightweight Medium Access
Protocol (LMAC) for Wireless Sensor Networks: Reducing Preamble Transmissions
and Transceiver State Switches. In 1st International Workshop on Networked Sensing
Systems, INSS 2004, pages 205–208, Tokio, Japan, June 2004. Society of Instrument
and Control Engineers (SICE). URL http://doc.utwente.nl/64756/.

[188] Lodewijk F.W. van Hoesel, Stefan O. Dulman, Paul J.M. Havinga, and Harry J. Kip.
Design of a low-power testbed forWireless Sensor Networks and veri�cation. Internal
Report TR-CTIT-03-45, CTIT,University of Twente, Enschede, theNetherlands, 2003.
URL http://purl.org/utwente/41407.

[189] András Varga and Rudolf Hornig. An Overview of the OMNeT++ Simulation Envi-
ronment. In 1st International Conference on Simulation Tools and Techniques for Com-
munications, Networks and Systems & Workshops, Simutools 2008, pages 60:1–60:10,
Brussels, Belgium, 2008. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering). ISBN 978-963-9799-20-2.

[190] Low Pro�le Holder Type Crystal Units - XT49S. Vishay Intertechnology, Inc., March
2010.

[191] Shie-Yuan Wang, Chih-Liang Chou, and Chun-Ming Yang. EstiNet OpenFlow Net-
work Simulator andEmulator. IEEECommunicationsMagazine, 51(9):110–117, Septem-
ber 2013. ISSN 0163-6804. doi: 10.1109/MCOM.2013.6588659.

[192] Geo�rey Werner-Allen, Geetika Tewari, Ankit Patel, Matt Welsh, and Radhika Nag-
pal. Fire�y-Inspired Sensor Network Synchronicity with Realistic Radio E�ects. In 3rd
International Conference on Embedded Networked Sensor Systems, SenSys 2005, pages
142–153, New York, NY, USA, 2005. ACM. ISBN 1-59593-054-X. doi: 10.1145/1098918.
1098934.

[193] AnthonyD.Wood and JohnA. Stankovic. Denial of Service in SensorNetworks. Com-
puter, 35(10):54–62, October 2002. ISSN 0018-9162. doi: 10.1109/MC.2002.1039518.

[194] ChaiWahWu. Synchronization in Complex Networks of Nonlinear Dynamical Systems.
World Scienti�c Publishing, May 2007. ISBN 978-981-270-973-8.

[195] Peng Xie and Jun-Hong Cui. R-MAC: An Energy-E�cient MAC Protocol for Under-
water Sensor Networks. In International Conference on Wireless Algorithms, Systems
and Applications, WASA 2007, pages 187–198, 2007. doi: 10.1109/WASA.2007.37.

179

http://doc.utwente.nl/64756/
http://purl.org/utwente/41407

Bibliography

[196] Guochang Xu. GPS – Theory, Algorithms and Applications. Springer, 2007. ISBN
978-3-540-72714-9. doi: 10.1007/978-3-540-72715-6.

[197] Wei Ye, John Heidemann, and Deborah Estrin. An Energy-E�cient MAC Protocol
for Wireless Sensor Networks. In 21st Annual Joint Conference of the IEEE Computer
and Communications Societies, volume 3 of INFOCOMM 2002, pages 1567–1576, 2002.
doi: 10.1109/INFCOM.2002.1019408.

[198] Suyoung Yoon, Chanchai Veerarittiphan, and Mihail L. Sichitiu. Tiny-Sync: Tight
Time Synchronization for Wireless Sensor Networks. ACM Trans. Sen. Netw., 3(2):34,
June 2007. ISSN 1550-4859. doi: 10.1145/1240226.1240228.

[199] Fan Yu, Tao Wu, and Subir Biswas. Toward In-Band Self-Organization in Energy-
E�cient MAC Protocols for Sensor Networks. IEEE Transactions on Mobile Comput-
ing, 7(2):156–170, February 2008. ISSN 1536-1233. doi: 10.1109/TMC.2007.70719.

[200] Jun Zheng and Abbas Jamalipour, editors. Wireless Sensor Networks: A Networking
Perspective. John Wiley & Sons, 2009. ISBN 978-0-470-16763-2.

[201] Hubert Zimmermann. OSI Reference Model - The ISO Model of Architecture for
Open Systems Interconnection. IEEE Transactions on Communications, 28(4):425–
432, April 1980. ISSN 0090-6778. doi: 10.1109/TCOM.1980.1094702.

180

List of Figures

2.1 Sensor/actuator node scheme . 10
2.2 Radio packet structure . 12
2.3 Interesting connected components. 15
2.4 Hidden terminal problem and exposed terminal problem 16
2.5 Communication schemes . 17
2.6 Protocol stacks . 18
2.7 Synchronous dynamics . 21
2.8 State Diagram of a simulated Node . 28
2.9 Simulation Process . 29
2.10 extDeSIMc Simulator: Start Screen . 30
2.11 extDeSIMc Simulator: Simulation Screen 31
2.12 SNoW5 sensor node . 35
2.13 eZ430 Chronos sensor node . 36
2.14 SuperG gateway node . 37

4.1 Local Clock Implication . 50
4.2 Phase neighbor example . 52
4.3 Examples for multi-hop conclusions . 56
4.4 Snapshots of the progress of desynchronization 60
4.5 Elastic resilience model . 62

5.1 Sample scenario of RTS/CTS handshaking 78
5.2 Di�erent communication delays during a packet transmission. 82
5.3 Example of interrupt latency during timestamping. 86
5.4 Propagation of neighbor information – scheme 88
5.5 Propagation of neighbor information – naïve approach 90
5.6 Propagation of neighbor information – phase shi� approach 91
5.7 Propagation of neighbor information – reciprocal phase shi� approach . . 93
5.8 Firing packet structure . 97
5.9 Frame structure . 101

6.1 Phase Shi� Diagram . 111
6.2 Two-hop Neighbor Information Delay . 112
6.3 Topology D7 "Dumbbell" . 113
6.4 Outcome of topology D7 "Dumbbell" (excerpt) 114
6.5 Impact of ρ on topology D7 "Dumbbell" (excerpt) 116

7.1 Topology A4S with unidirectional link . 127
7.2 Simulation Model Validation (excerpts) . 128
7.3 Outcome overlap . 129

181

List of Figures

7.4 Impact of swapped starting times . 132
7.5 Randomized start up time result . 135
7.6 Topology C4S with sni�er . 138
7.7 Outcome of jump size parameter experiment (excerpts) 140
7.8 Topology D7 "Dumbbell" - reillustrated . 142
7.9 Outcome of refractory threshold simulations (excerpts) 143
7.10 Outcome of refractory threshold analysis with ρ = 0.25 (excerpt) 144
7.11 Constraint graph NC(82) . 148
7.12 Outcome of simulation of A100 (excerpt) . 149

182

List of Tables

3.1 Comparison of PCO with WSN . 46

4.1 Survey on MAC protocols implementing primitive of desynchronization . 58

5.1 Survey of di�erent communication delays 82
5.2 Parts of the SmartNET-compatible header 96

7.1 List of simulated swaps in start up order. 133
7.2 Setup parameters when using topology A4S 134
7.3 File size of randomized simulation models 147

183

184

List of Listings

2.1 Extract of a sample simulation model . 33

5.1 SmartOS function to get node’s ID . 97
5.2 Calculation of the next time of �ring – �ring case. 106
5.3 Calculation of the next time of �ring – receiving case. 107

6.1 Java’s default PRNG implementation . 117
6.2 SmartOS-compliant PRNG implementation 118
6.3 Initiating PRNG with node ID as seed . 118
6.4 Calculation of the next time of �ring with refractory threshold ρ 119

7.1 Dimensioning rules implementation in extDeSIMc 130
7.2 Perl script for start up generation . 134

185

186

Acronyms

List of abbreviations and the like.

ACK acknowledgment

ADC analog-to-digital converter

C2C car-to-car

C2I car-to-infrastructure

CCA clear channel assessment

CPS Cyber Physical System

CRC Cyclic Redundancy Check

CS Carrier Sense

CSMA Carrier-Sense Multiple Access

CTS clear-to-send

DAC digital-to-analog converter

DCF77 DCF77 time signal

DCM Distributive Cluster Method

DCO Digitally Controlled Oscillator

DS Distribution System

EDS Extended Distribution System

EWMA exponentially weighted moving average

FIFO �rst in, �rst out

FTSP Flooding Time-Synchronization Protocol

GPIO General Purpose Input/Output

GPS Global Positioning System

GUI Graphical User Interface

HIL Hardware in the Loop

187

Acronyms

HTTP Hypertext Transfer Protocol

I2C Inter-Integrated Circuit

ID identi�er

IDE Integrated Development Environment

IoT Internet of �ings

IP Internet Protocol

ISR Interrupt Service Routine

IRQ Interrupt Request

IVC Inter-Vehicular Communication

JTAG Joint Test Action Group

LCD Liquid Crystal Display

LFDM Local Fault-Tolerant Data Management

LQI Link Quality Indicator

LUT lookup table

MAC Medium Access Control

MANET Mobile Ad hoc Network

MCU microcontroller

NED Network Description

OS operating system

OSI Open Systems Interconnection

OLSR Optimized Link State Routing

P2P point-to-point

PC personal computer

PCO pulse-coupled oscillator

POV point of view

PRNG Pseudo Random Number Generator

PSP phase shi� propagation

188

Acronyms

RAM random-access memory

RBS Reference Broadcast Synchronization

RF Radio Frequency

RNG Random Number Generator

ROM read-only memory

RS-232 RS-232 serial port

RSK+ Renesas Starter Kit+

RSSI Received Signal Strength Indicator

RTS request-to-send

RTS/CTS RTS/CTS handshake

RX Receive, Receive Mode

SBR Statistic-Based Routing

SPI Serial Peripheral Interface

SYNC SYNC word

TC Topology Control

Tcl Tool Command Language

TCP Transmission Control Protocol

TDMA Time-Division Multiple Access

Tiny-Sync Tight Time Synchronization

TPSN Timing-Sync Protocol for Sensor Netowrks

TSS Time-Stamp Synchronization

TX Transmit, Transmit Mode

TX/RX Transmit/Receive

UDP User Datagram Protocol

URL Uniform Resource Locator

V2V vehicle-to-vehicle

VANET Vehicular Ad hoc Network

189

Acronyms

WLAN Wireless Local Area Network

WSAN Wireless Sensor/Actuator Network

WSN Wireless Sensor Network

XML eXtensible Markup Language

190

	I Introduction
	1 Introduction
	1.1 Motivation
	1.2 Requirements
	1.3 Scientific Contribution

	2 Basics
	2.1 Definitions
	2.2 Analysis Techniques
	2.2.1 Real-World Testbed
	2.2.2 Simulation
	2.2.3 Summary

	2.3 Simulation Framework
	2.3.1 Motivation
	2.3.2 Simulator extDeSIMc
	2.3.3 Simulation Model
	2.3.4 Generator Script

	2.4 Sensor Node Framework
	2.4.1 SNoW5 Sensor Node
	2.4.2 eZ430 Chronos
	2.4.3 SuperG Gateway Node
	2.4.4 SmartOS
	2.4.5 Sniffer

	II Desynchronization
	3 Desynchronization
	3.1 Introduction
	3.2 Pulse-Coupled Oscillator Framework
	3.3 Using PCOs to Synchronize WSNs
	3.3.1 Adaptation
	3.3.2 Related Work

	3.4 Using PCOs to Desynchronize WSNs

	4 Desynchronization as MAC Protocol
	4.1 Generic Framework
	4.2 General Conclusions
	4.2.1 Single-Hop Topology
	4.2.2 Multi-Hop Topology

	4.3 The Midpoint Approach
	4.3.1 Proof of Convergence
	4.3.2 Related Work

	4.4 The Local Max Degree Approach
	4.4.1 Related Work

	4.5 The Frog-Call Inspired Approach
	4.5.1 Related Work

	4.6 The Artificial Force Field Approach
	4.6.1 Related Work

	5 The extended-Desync Protocol
	5.1 Motivation
	5.2 The Hidden Terminal Problem Revised
	5.2.1 The Local Max Degree
	5.2.2 The RTS/CTS Handshake

	5.3 Phase Shift Propagation
	5.3.1 Basic Idea
	5.3.2 Constraint Graph Creation
	5.3.3 Timed Constraint Graph

	5.4 Timing Issues
	5.4.1 Communication Delays
	5.4.2 Timestamping

	5.5 Neighbor Information
	5.5.1 Sample Scenario
	5.5.2 Naïve Approach
	5.5.3 Phase Shift Approach
	5.5.4 Reciprocal Phase Shift Approach
	5.5.5 Summary

	5.6 Information Packing
	5.6.1 SmartNET Support
	5.6.2 Naïve Approach
	5.6.3 Fixed Size Subset Approach
	5.6.4 Fixed Percentage Approach
	5.6.5 Summary

	5.7 Frame Structure
	5.8 Practical Issues
	5.8.1 Nodes In
	5.8.2 Nodes Out

	5.9 Summary

	6 The extended-Desync+ Protocol
	6.1 Motivation
	6.2 Stale Information Problem
	6.2.1 Single-Hop Topology
	6.2.2 Multi-Hop Topology

	6.3 Refractory Threshold
	6.3.1 Basic Idea
	6.3.2 Impact
	6.3.3 Related Work

	6.4 Excursion: Pseudo Random Number Generator (PRNG)
	6.4.1 PRNG Implementation for our Sensor Node Framework
	6.4.2 PRNG Implementation for our Simulation Framework

	6.5 Summary

	III Evaluation
	7 Analysis
	7.1 Simulation Model Validation
	7.1.1 Object of Investigation
	7.1.2 Expectation
	7.1.3 Procedure
	7.1.4 Results

	7.2 Setup Consequences
	7.2.1 Object of Investigation
	7.2.2 Expectation
	7.2.3 Procedure
	7.2.4 Results

	7.3 Jump Size Parameter
	7.3.1 Object of Investigation
	7.3.2 Expectation
	7.3.3 Procedure
	7.3.4 Results

	7.4 Refractory Threshold
	7.4.1 Object of Investigation
	7.4.2 Expectation
	7.4.3 Procedure
	7.4.4 Results

	7.5 Applicability
	7.5.1 Object of Investigation
	7.5.2 Expectation
	7.5.3 Procedure
	7.5.4 Results

	7.6 Summary

	8 Discussion
	8.1 Outlook
	8.1.1 Adaptive Jump Size Parameter
	8.1.2 Adaptive Refractory Threshold
	8.1.3 Additional Objects of Investigation

	8.2 Add-Ons
	8.2.1 Time Synchronization
	8.2.2 Routing
	8.2.3 Distributed Data Management

	9 Summary and Conclusion
	9.1 Summary
	9.2 Conclusion

	IV Lists and Indexes
	Bibliography
	List of Figures
	List of Tables
	List of Listings
	Acronyms

