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Abstract
We present a theoretical approach for the simulation of the electric field and exciton propagation

in ordered arrays constructed of molecular-sized noble metal clusters bound to organic polymer

templates. In order to describe the electronic coupling between individual constituents of the

nanostructure we use the ab initio parameterized transition charge method which is more accurate

than the usual dipole-dipole coupling. The electronic population dynamics in the nanostructure

under an external laser pulse excitation is simulated by numerical integration of the time-dependent

Schrödinger equation employing the fully coupled Hamiltonian. The solution of the TDSE gives

rise to time-dependent partial point charges for each subunit of the nanostructure, and the spatio-

temporal electric field distribution is evaluated by means of classical electrodynamics methods.

The time-dependent partial charges are determined based on the stationary partial and transition

charges obtained in the framework of the TDDFT. In order to treat large plasmonic nanostructures

constructed of many constituents, the approximate self-consistent iterative approach presented in

[Lisinetskaya and Mitrić, Phys. Rev. B 035433, 2014] is modified to include the transition-charge-

based interaction. The developed methods are used to study the optical response and exciton

dynamics of Ag+3 and porphyrin-Ag4 dimers. Subsequently, the spatio-temporal electric field distri-

bution in a ring constructed of ten porphyrin-Ag4 subunits under the action of circularly-polarized

laser pulse is simulated. The presented methodology provides a theoretical basis for the investi-

gation of coupled light-exciton propagation in nanoarchitectures built from molecular size metal

nanoclusters in which quantum confinement effects are important.
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I. INTRODUCTION

Noble metal nanoclusters are nowadays widely recognized as promising building blocks for

novel electro-optical devices [1–9]. Their unique optical, chemical and electronic properties

find applications in nanoscience and nanotechnology, providing nonlinear optical sources

[5, 10, 11], biosensors [12–15], energy transport systems [16–18] , solar cell elements [19, 20],

etc. Of particular interest for nanoelectronics and plasmonics are assemblies of nanoparticles,

which demonstrate novel functionalities exceeding those of individual particles [21].

Theoretical simulations play an important role in developing ultrasmall optical and elec-

tronic devices not only by explaining the mechanisms underlying experimentally observed

processes, but also by proposing and examining new systems with interesting properties and

new directions for the experimental research. One of the exciting opportunities opened by

ultra-small metal cluster aggregates is the ability to transport electronic excitation and to

control its localization in space and time. For aggregates constructed of 10-100 nm sized

nanoparticles it was both theoretically and experimentally demonstrated, that ultrafast spa-

tial energy localization can be achieved and controlled by phase-shaped external laser pulses

[22–24]. Along with that, the possibility to control light propagation in structured arrays of

nanoparticles was studied by theoretical and experimental means [25–28]. To describe light

interactions with nanoparticles and their aggregates in this size range, various theoretical

approaches have been employed including the discrete-dipole approximation (DDA) [29],

the extended Mie theory [16, 30–32] and the finite-difference time-domain (FDTD) method

[25, 33, 34].

Pushing the frontier towards further reduction of the size of plasmonic devices, one even-

tually reaches the size regime where “each atom counts”, i.e. alteration of the number of

atoms in a cluster or even their spatial configuration leads to dramatic changes of their

optical and chemical properties [3, 5, 35–39]. In order to describe the interaction of these

ultra-small clusters with electric fields, the well-developed theoretical approaches mentioned

above were coupled to quantum chemistry to account for the intrinsically quantum nature of

the clusters [40–43]. At the moment the attention of researchers is mainly devoted to model

few-energy-level systems with degenerate electronic excited states, while for the development

of novel plasmonic systems and for the interpretation of experimental results the realistic

description of the electronic structure of a single constituent as well as of the aggregate as a
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whole is mandatory. Additionally, due to the small size of individual clusters it is essential

to take into account the effects of the substrate on which cluster arrays are deposited when

modeling the electronic and optical properties of the nanostructures.

The problem of the simulation of light propagation in noble metal cluster arrays with a

realistic description of single-cluster electronic structure has been addressed in our previous

work [44]. The proposed approach included the construction of an array excitonic Hamilto-

nian based on ab initio quantum chemical calculations, solving time-dependent Schrödinger

equation (TDSE) to simulate the optical response of the array, and finally using the obtained

quantum-mechanical time-dependent dipole moments to obtain the electric field distribu-

tion by means of classical electrodynamics. Additionally, a self-consistent iterative method

of solving the TDSE for arrays of well-separated noble metal clusters was proposed. The

iterative method allows for treating large arrays consisting of many subunits with tens of

electronic states per subunit included, which is mandatory even for small metal clusters.

Recently, using this method, the possibility of optimal control of light propagation in a

T-shaped structure constructed of Ag8 clusters has been also demonstrated [45]. The short-

coming of the described method is that it is based on the dipole approximation to describe

the interaction between different clusters and thus can not be applied to arrays built up of

subunits that are larger than their spatial separation.

In the field of energy transfer in biological systems several approaches to evaluate the

interaction between large closely-placed molecules have been proposed, which go beyond

the dipole approximation. Among them are the transition density cube (TDC) [46] and

transition charge (TC) [47] methods. Within the TDC approach the transition density

for each subunit is calculated on a grid using first principles methods such as TDDFT,

and the interaction between subunits is subsequently evaluated as the Coulomb interaction

between two charge densities. The TC approach is an approximation of the TDC method

on fitting of the electrostatic potential produced by the transition density with a set of

point charges located at nuclear positions. The interaction between two sets of these charges

representing two molecules is then calculated according to the Coulomb law. The TC method

is computationally very efficient and has the advantage that the TCs once calculated for a

selected molecule can be further used to estimate the intermolecular interactions at different

mutual positions and orientations of molecules.

In the current contribution we combine our approach for the simulation of light propa-
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gation in small noble-metal cluster arrays with the TC method for the description of the

cluster-cluster interaction beyond the dipole approximation. The developed method is ap-

plied to study the optical response and light propagation in porphyrin-Ag4 (PorphAg4)

oligomers. The PorphAg4 subunit is chosen due to the following reasons: First, the por-

phyrin molecules are well known for their property to strongly bind metal atoms to the

central site, and quantum chemical simulations reveal that small metal clusters are strongly

bound to the central site strongly as well [48]. Secondly, modern chemical methods allow

for synthesis of a large variety of sophisticated one-, two-, and three-dimensional structures

with the porphyrin molecule serving as a building block [49, 50]. Therefore the porphyrin

oligomers seem to be a promising support for the spatial organization of ultra-small noble-

metal clusters. As an example of a two-dimensional PorphAg4 array, in the current work we

consider a plane ring constructed of ten PorphAg4 subunits and study the response of the

ring to the irradiation of circularly polarized light. The simulations reveal that this system

is sensitive to the direction of the polarization plane rotation.

II. THEORY

A. Excitonic Hamiltonian for the cluster array

Consider an array consisting of N building blocks to which we will further refer as to

“clusters”. The electronic Hamiltonian of the array irradiated by an external laser field can

be constructed based on the single-cluster Hamiltonians H0
I , the pairwise cluster interaction

operator VIJ , and the interaction with electric field Vext
I in the following way:

H =
N∑

I=1

H0
I ⊗ II +

N∑
I=1

∑
J>I

VIJ ⊗ IIJ +
N∑

I=1

Vext
I ⊗ II = Harr +

N∑
I=1

Vext
I ⊗ II . (1)

Here, II and IIJ are the identity operators acting on the electrons of all clusters in the array,

except the cluster I or I and J , respectively.

We consider a nanostructure built up of individual components, which are much smaller

than the wavelength of the external laser field. Under this assumption each single cluster

can be represented by a dipole emitter and the interaction with the external field can be

described by a dipole term Vext
I ≈ −µI · ε0 (t) (ei(kω ·RI−ωt) + c.c). Here µI is the dipole

moment operator of the I-th cluster located at the cluster charge center RI ; ε0 (t), kω and
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ω represent the time envelope, wave vector and angular frequency of the electric field. In

this manner the spatial variation of the external electric field over the whole array is taken

into account by the position-dependent phase.

Interaction between clusters within the described approach is considered to be purely

electromagnetic. Since the distance between neighboring array subunits is comparable to

the size of a subunit, the dipole approximation cannot be used to simulate the cluster-

cluster interaction and the spatial distribution of electrons and nuclei of a single cluster has

to be taken into account. For this purpose, we employ the electrostatic-potential-derived

transition charges [47], which allow for describing the interaction between molecules that

are large compared to the distance between them. These charges are obtained by fitting the

electrostatic potential produced by electrons and nuclei of a molecule with a set of point

charges located at the positions of the nuclei:

ϕij (r) = −
ˆ

ρij (r′)

|r− r′|
dr′ +

∑
a

Qa

|r− ra|
≈
∑

a

qaij
|r− ra|

. (2)

For i 6= j the transition charges are calculated based on the transition density ρij between

electronic states i and j, while for i = j the density ρii corresponds to the one-electron density

and the contribution of nuclear charges Qa is taken into account. Thus the transition charges

qaii are the same as the partial atomic charges derived based on the electrostatic potential fit

for the electronic state i .

In this approximation the interaction operator VIJ is written in the Coulomb form:

VIJ =
∑
ab

qI,aqJ,b
|rI,a − rJ,b|

. (3)

Here rI,a and rJ,b stand for positions of nucleus a in cluster I and nucleus b in cluster J ,

respectively; the summation goes over all nuclei to which the transition charges are assigned.

The operator qI,a is defined in the following way:

qI,a =
∑
ij

qI,aij
∣∣ΨI

i

〉 〈
ΨI
j

∣∣ , (4)

where
∣∣ΨI

i

〉
is the eigenfunction of the Ith cluster Hamiltonian H0

I corresponding to the

electronic state energy EI
i , and q

I,a
ij stands for the transition charge of the Ith cluster located

at the position of nucleus a, derived based on the transition density between electronic states

i and j.
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Considering Eq. (1) we see that the first two terms are time-independent and are com-

pletely determined by the array structure and the type of individual constituents. Therefore

the natural basis for solving the TDSE with Hamiltonian (1) is the basis spanned by the

eigenfunctions of the time-independent part of the Hamiltonian (Harr).

B. Eigenfunctions and eigenenergies of Harr

We represent the coupled array Hamiltonian Harr using the tensor product basis con-

structed from the eigenfunctions of the individual clusters:

|φij...z〉 =
∣∣Ψ1

i

〉
⊗
∣∣Ψ2

j

〉
⊗ . . .⊗

∣∣ΨN
z

〉
, (5)

where the indices i, j, . . . , z run over all included electronic states for each individual cluster,

and superscripts 1, 2, ..., N denote the index number of the cluster in the array. Since the

Hamiltonian Harr contains only one-cluster (H0
I) and two-cluster (VIJ) terms, all matrix

elements with three or more different indices in the set ij . . . z are zero due to orthogonality

of the single-cluster eigenfunctions
〈
ΨI
i′

∣∣ΨI
i

〉
= δii′ . The diagonal matrix elements have the

following form:

(Harr)ij...z,ij...z =
N∑

I=1

EI
kI

+
N∑

I=1
J>I

∑
ab

qI,akIkIq
J,b
kJkJ

|rI,a − rJ,b|
, (6)

where kI is the the index of the electronic state of the I-th cluster in the set ij . . . z. The

non-diagonal elements of the matrix (Harr) with only one different index are:

(Harr)ij...kI ...z,ij...k′I ...z
=

N∑
J=1
J 6=I

∑
ab

qI,akIk′I
qJ,bkJkJ

|rI,a − rJ,b|
. (7)

Finally, the elements of the matrix (Harr) with two different indices read:

(Harr)ij...kI ...kJ ...z,ij...k′I ...k′J ...z
=
∑
ab

qI,akIk′I
qJ,bkJk′J

|rI,a − rJ,b|
. (8)

After the matrix has been constructed, the eigenvalue problem is solved

Harr |ψp〉 = Ep |ψp〉 , (9)
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which yields the set of the array excitonic states with eigenenergies Ep and eigenvectors |ψp〉

represented in the basis (5) by the set of coefficients Cp
ij...z:

|ψp〉 =
∑
ij...z

Cp
ij...z |φij...z〉 . (10)

C. Construction of Harr based on TDDFT

Eqs. (6)-(8) indicate that the essential quantities needed for construction of the array

Hamiltonian are the electronic state energies of each single constituent and the transition

charges between all electronic states included in the simulations. In general, for molecular-

sized clusters, these quantities can be obtained using any ab initio or semiempirical electronic

structure method. In the current work we use the linear response time-dependent density

functional theory (TDDFT) in order to obtain the energies of the electronic states since this

method is efficient and can be applied to relatively large complex systems. To determine

the transition charges, the corresponding transition densities are required. Notice that the

full set of transition densities including the transitions among excited states cannot be

calculated using standard linear responseTDDFT routines and therefore an approximate

procedure presented in detail in Ref. [51] will be used here.

Briefly, the excited state electronic wavefunction is approximated by the configuration

interaction singles-like (CIS) expansion:

|Ψk(r)〉 =
∑
i,a

cki,a
∣∣ΦCSF

i,a (r)
〉
. (11)

where
∣∣ΦCSF

i,a (r)
〉
is a singlet spin-adapted configuration state function (CSF) defined as:

∣∣ΦCSF

i,a (r)
〉

=
1√
2

(∣∣∣Φaβ
iα (r)

〉
+
∣∣Φaα

iβ (r)
〉)
, (12)

and
∣∣∣Φaβ

iα (r)
〉

(
∣∣Φaα

iβ (r)
〉
) is a Slater determinant with two unpaired electrons, one on the

occupied Kohn-Sham (KS) orbital i with spin α (β) and another on the virtual orbital

a with spin β (α). The expansion coefficients cki,a in Eq. (11) are determined on physical

grounds by requiring that the wavefunction in Eq. (11) leads to the same density response as

the one obtained by the linear response TDDFT procedure. Thus, for non-hybrid functionals

without exact exchange the coefficients cki,a are given by:
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cki,a =

(
εa − εi
ωk

)−1/2 (
Xk
ia + Y k

ia

)
, (13)

where εi and εa are the Kohn-Sham orbital energies of i-th occupied and a-th virtual single

electron orbitals, respectively, ωk is the excitation energy of the k-th excited state, and Xk

and Y k represent the solution of the TDDFT eigenvalue problem [52, 53]. This allows one

to define the set of mutually orthogonal electronic wavefunctions |Ψk(r)〉 which can be used

as an approximate basis to represent the electronic eigenstates of a cluster.

The transition density in Eq. (2) is defined as

ρij (r1) = Nel

˙
Ψ∗i (x) Ψj (x) dx2 . . . dxNel

dσ1, (14)

where x stands for spatial and spin coordinates of all electrons in the cluster, Nel is the

number of electrons, the integration runs over all spatial and spin coordinates of all electrons

except the spatial coordinates of the first one.

Consequently, Eqs. (11) and (12) are substituted into Eq. (14) and the resulting in-

tegral is calculated taking into account mutual orthogonality of the KS orbitals. Finally,

the expressions for single-cluster transition densities between all the states of interest are

obtained

ρ00 = 2
∑

a

ψ∗aψa, (15)

ρ0i = 2
∑
ar

cia,rψ
∗
aψr, (16)

ρij = 2

(
δijρ00 +

∑
ars

ci∗a,rc
j
a,sψ

∗
rψs −

∑
abr

ci∗a,rc
j
b,rψ

∗
aψb

)
, (17)

where {ψ} are the KS orbitals of the cluster, indices a, b run over all occupied and r, s over

all virtual orbitals. After the transition densities have been calculated, the corresponding

transition charges can be straightforwardly determined via Eq. (2).

D. Optical response to the external laser field

Once the excitonic Hamiltonian is constructed, the electron dynamics in the cluster array

induced by an external electromagnetic field can be simulated fully quantum-mechanically
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using the method described in Ref. [44]. Briefly, the total time-dependent wavefunction of

the whole cluster array is expanded in the basis spanned by the excitonic eigenfunctions |ψp〉

(see Eq. (9)) as |Φ (t)〉 =
∑
p

Dp (t) e−iEpt |ψp〉, where Dp(t) are the time-dependent expansion

coefficients and Ep are the excitonic energies of the corresponding eigenstates. Substitution

of this wavefunction into the TDSE with the Hamiltonian (1) leads eventually to the set of

coupled differential equations:

Ḋq (t) = iε0 (t) ·
∑
p

Dp (t) e−i(Ep−Eq)t
(
M+

qpe
−iωt + M−

qpe
iωt
)
, (18)

with the excitonic eigenstates q and p coupled by the electric field. The following matrix

elements M±
qp play the role of transition dipole moments for the extended nanostructure:

M±
qp =

∑
I

e±ikω ·RI

∑
ij...z

∑
k′I

C∗qij...k′I ...z
Cp
ij...kI ...z

µIk′IkI , (19)

where µIk′IkI are the transition dipole moments between states kI and k′I of the cluster I.

These dipole moments can be naturally calculated using the transition charges as

µIk′IkI =
∑

a

qI,ak′IkI
rI,a. (20)

In order to extract information about each individual cluster response from the array

wavefunction we employ the reduced density matrix formalism. Calculation of the partial

trace of the full array density operator P = |Φ (t)〉 〈Φ (t)| over all clusters except the one of

interest yields the reduced density operator for that cluster

PI =
∑
pq

Dp (t)D∗q (t) e−i(Ep−Eq)t
∑
ij...z

∑
k′I

C∗qij...k′I ...z
Cp
ij...kI ...z

∣∣ΨI
kI

〉 〈
ΨI
k′I

∣∣∣ . (21)

The diagonal elements of the reduced density matrix in the basis
∣∣ΨI

kI

〉
provide the pop-

ulation of the corresponding electronic states of the selected cluster I, and the expectation

value of any observable of interest can be determined as a trace of the product of the corre-

sponding operator with the reduced density operator.

In the current study we aim to simulate the spatial distribution of the electric field

produced by an array constructed of nanosized subunits with the distance between them

smaller than the size of an individual component. For this purpose we represent individual

constituents of the array by sets of point charges located at the nuclear positions with the

time-dependent charge determined as follows:
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qI,a(t) = Tr (PIqI,a) . (22)

Under this assumption, the electric field produced by each single point charge can be

calculated using the classical electromagnetic-field expression [54] and the total electric field

distribution is obtained by superposition of all point charge contributions:

E (r, t) =
N∑
I

∑
a

qI,a(t) (r− rI,a)

|r− rI,a|3
. (23)

E. Approximate iterative approach for the simulation of electromagnetic field

propagation

The transition-charge-based quantum mechanical approach described above allows for the

simulation of electron dynamics in any system constructed of well-distin-guishable subunits.

In practice, this approach faces the problem of exponential growth of the Hamiltonian matrix

with increasing number of subunits. Indeed, the size of the basis (5) grows as the number

of states per cluster to the power of N , with N being the number of clusters. On the other

hand, it is mandatory to include tens of electronic excited states per cluster in order to

describe real systems and take into account possible nonlinear effects [10, 55]. Therefore,

in order to be able to treat large systems we modify the approximate iterative procedure

presented in [44] to include the transition-charge-based interaction between clusters.

Here we briefly outline the main steps of the iterative procedure. In general, we solve the

following TDSE for each single subunit

i
∂

∂t
|ΦI(t)〉 =

H0
I +

N∑
J=1
J 6=I

VIJ + Vext
I

 |ΦI(t)〉 , (24)

with the single-cluster operators H0
I and Vext

I the same as described in Sec. IIA. The

cluster-cluster interaction operator VIJ we approximate with

VIJ ≈
∑
ab

qI,aqJ,b(t)

|rI,a − rJ,b|
. (25)

Here instead of the operator qJ,b we use its expectation value determined according to Eq.

(22) but with the density operator equal to |ΦJ(t)〉 〈ΦJ(t)|. This means that in order to
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determine the wavefunction |ΦI(t)〉 the wavefunctions |ΦJ(t)〉 of all other clusters in the

array are required, which is impossible without knowledge of |ΦI(t)〉. Therefore the Eqs.

(24)-(25) are solved iteratively with the initial guess for time-dependent charges equal to

ground-state partial charges of the corresponding atoms. The deviation between the charges

obtained in subsequent iterations is taken as a convergence criterion:

δ =
1

T

∑
I

∑
a

T̂

0

∣∣qi+1
I,a (t)− qiI,a(t)

∣∣ dt < ε, (26)

where T is the simulation time. Finally, the electric field is calculated according to Eq. (23)

with the time-dependent charges obtained in the last iteration.

III. RESULTS AND DISCUSSION

A. Optical and electronic properties of PorphAg4 monomer

In order to carry out simulations of electron dynamics and electric field propagation in

arrays constructed of PorphAg4 subunits, we determine first the optical and electronic prop-

erties of an individual PorphAg4 molecule using linear-response TDDFT with the Coulomb-

attenuated B3-LYP functional [56] and the triple zeta valence plus polarization atomic Gaus-

sian basis set (TZVPP) [57]. For silver, the atomic basis set and relativistic 11 electron

effective core potential optimized to describe the excited electronic states of silver clusters

[3, 58, 59] was used. The minimal energy structure of the PorphAg4 molecule is presented in

Fig. 1. For this nuclear configuration the 34 lowest electronic excited states were calculated

at the same level of theory and the one-electron and transition densities between all these

states were determined according to Eqs. (15)-(17). Subsequently, based on the electrostatic

potential fit (2) the set of corresponding partial charges and transition charges was obtained.

In order to reduce the number of point charges, those located on hydrogen atoms were set

to zero prior to the fitting procedure.

The analysis reveals [48] that the PorphAg4 monomer can be considered as a positively

charged Ag+3 cluster placed on a negatively charged PorphAg− support, making the whole

system electrically neutral. Moreover, it can be shown [48] that the lowest bright optical

transitions of the Ag+3 cluster are almost fully preserved in the PorphAg4 molecule. The

absorption spectrum of the bare Ag+3 cluster calculated at the CAM-B3-LYP/TZVPP level of
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Figure 1: The minimal energy structure of PorphAg4 calculated at the CAM-B3LYP/TZVPP level

of theory.

theory is presented in Fig. 2 (a). The lowest absorption peak of Ag+3 contains transitions to

the two degenerate electronic excited states S0 → S1 and S0 → S2 with the transition dipole

moments lying in the plane of the cluster (directions Y and Z in Fig. 2 (a)) and having the S-

like to P-like excitation character. The second absorption peak is due to S0 → S3 excitation

with the transition dipole moment perpendicular to the plane of the cluster (direction X).

The corresponding transition densities, which in the current realisation are real quantities,

are shown in Fig. 2 (b).

In the PorphAg4 molecule excitations with the transition density localized mainly on the

Ag+3 part can be found as well (cf. Fig. 2 (c)-(d)). These are S0 → S13 (Y), S0 → S15 (Z),

and S0 → S31 (X) electronic state with a dominant S→P excitation character localized on the

cluster subunit. Due to the interaction with the PorphAg− support, the degeneracy of the Y

and Z transitions is broken and the X transition is shifted to lower energies. The amount of

the transition density localized on the PorphAg− substrate for these excitations is relatively

small, indicating that the transitions characteristic to the pure Ag+3 cluster are preserved

in the PorphAg4 subunit. The comparison between PorphAg4 and PorphAg− spectra (the

latter is shown in Fig. 2 (c) as the shaded area) confirms that the broad absorption band

in the PorphAg4 spectrum at 4.0-4.5 eV is formed not only by the transitions localized
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Figure 2: (a) Absorption spectrum of Ag+3 cluster. The nuclear configuration of the cluster together

with the directions of the selected transition dipole moments are shown in the inset; (b) transition

densities of the optical transitions highlighted in (a) calculated using Eq. (16). The positive lobe is

denoted with red and the negative one with blue colors; (c) absorption spectrum of the PorphAg4

molecule. The absorption spectrum of the substrate PorphAg− molecule alone is presented as the

shaded area in the background; (d) transition densities of the optical transitions marked in (c).

mainly on the Ag+3 cluster, but also by the hybrid ones involving cluster and substrate

simultaneously. Notably, the pure PorphAg− molecule possesses no significant absorption

in this region. The further detailed analysis of the optical properties of the Ag+3 cluster vs.

PorphAg4 molecule is presented elsewhere [48].

B. Light-induced exciton dynamics dynamics in Ag+3 cluster and PorphAg4 dimers

We first apply our methodology to study the electron dynamics in the PorphAg4 dimer

and compare it to the pure Ag+3 cluster dimer in order to validate the approximate iterative

approach presented in Section II E versus the full quantum approach from Section IID .

The laser-driven electron dynamics in the dimers was induced by an external short laser

pulse with the temporal profile described by a Gaussian function
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ε0(t) = εmax exp

(
−(t− t0)2

2σ2

)
, (27)

with the full width at half maximum (FWHM) of 19 fs (σ = 8.0 fs), the peak pulse strength

εmax = 5 ·10−3Eh/ea0, and the pulse center at t0 = 20 fs. The central frequency of the pulse

was chosen to be resonant with the lowest intense transition localized on the silver cluster

(denoted with Y in Fig. 2), which for the bare Ag3 cluster is equal to 4.22 eV and for the

PorphAg4 to 4.05 eV. The field propagates along the line connecting the subunits’ centers

and is polarized in the plane containing the porphyrin layer (see inset in Fig. 3 (c)). For the

Ag+3 dimer the orientation of the clusters and the electric field is the same. In both cases

the distance between the cluster centers in the dimers is equal to 9 Å.

The population dynamics of the first Ag+3 cluster in the dimer is presented in Fig. 3

(a). The population of the second cluster is almost the same and is not presented here.

The simulation was performed using the full-quantum approach based on the dipole-dipole

intercluster coupling as described in [44]. The distance between the clusters is large enough

compared to the single cluster size, making it possible to use the dipole approximation in

such systems. It is seen that under the action of the pulse the electronic population is first

transferred to the S1 electronic excited state, which is resonant to the laser field frequency.

Subsequently, part of the electronic population is transferred to the S2 state, although the

transition dipole moment to the S2 state is orthogonal to the laser field polarization. Notably,

when a single cluster is irradiated by the same laser pulse, no population transfer to the S2

state is observed, which suggests that the effect is purely due to the intercluster coupling.

Indeed, since the single cluster is charged, the matrix elements (7) and (8) between the

basis functions |φ01〉, |φ02〉, |φ10〉, and |φ20〉 are nonzero due to the charge-dipole interaction.

Because the S1 and S2 states are energetically degenerate, these four basis functions mix to

form the four lowest excitonic eigenstates of the array Hamiltonian

|ψ1,4〉 = 0.47 (|φ01〉 ± |φ10〉)∓ 0.53 (|φ02〉 ∓ |φ20〉) , (28)

|ψ2,3〉 = 0.53 (|φ01〉 ∓ |φ10〉)∓ 0.47 (|φ02〉 ± |φ20〉) . (29)

The electronic excitation energies of these four states lie in the range of 4.16-4.30 eV and are

resonant to the laser pulse energy. Since both |ψ1〉 and |ψ3〉 eigenstates are symmetric with
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respect to |φ01〉 and |φ10〉 and antisymmetric with respect to |φ02〉 and |φ20〉, the transition

dipole moments (19) from the dimer ground state to these eigenstates are parallel to µ01 in

agreement with Eq. (19) and thus to the direction of the laser pulse polarization. Therefore,

the electron population of the dimer is first transferred to these two states. Subsequently,

another group of dimer eigenstates is populated, namely, the states |ψ7,9,10〉, which contain

significant contributions from the |φ11〉, |φ12〉, |φ21〉, and |φ22〉 basis functions. The excitation

energies of these states are approximately twice the energy of the exciting laser pulse and the

transition dipole moments from the |ψ1〉 or |ψ3〉 states are parallel to the laser polarization

vector. In this manner, the electron population oscillates between |ψ0〉, |ψ1,3〉, and |ψ7,9,10〉

states until the laser pulse ceases.

In order to retrieve the electron population dynamics in each single cluster, the diagonal

elements of the reduced density matrix (21) are calculated. Since the contributions of the

S1 and S2 single-cluster states to the involved dimer eigenstates are almost equal in mag-

nitude, the phase of the eigencoefficients Cp
ij (see Eq. (10)) and time-dependent expansion

coefficients Dp (t) e−iEpt determines the population of the single-cluster states. When the

laser field starts to act, the phase shift between D1 (t) e−iE1t and D3 (t) e−iE3t is small and

the relative phase between C1
ij and C3

ij plays a decisive role. Since both |ψ1〉 and |ψ3〉 eigen-

states are symmetric with respect to |φ01〉 and |φ10〉 and antisymmetric with respect to |φ02〉

and |φ20〉, the interference between these eigenstates leads to electron population transfer

to the S1 state only in the single-cluster picture. The increase of the phase shift between

the time-dependent coefficients as well as the change of their magnitude leads to subsequent

electron population oscillations between the S1 and S2 single-cluster degenerate states even

after the laser pulse ceases (after ∼40 fs of simulation time).

When the substrate is taken into account, the electronic population dynamics changes

significantly (see Fig. 3 (b)). The electronic excited states S13 and S15 which correspond to

the S1 and S2 states of the bare cluster, are not degenerate and thus almost no population

transfer to the S15 state is observed. The effect of charge-dipole interaction, which played

an important role for Ag+3 dimer, is now compensated by interaction with the negative

charge localized on porphyrin. Instead, during the external laser pulse action some part of

the electronic population is transferred to the S19 state, which has the transition density

almost equally distributed between the Ag+3 part and porphyrin. After the pulse ceases,

the population of this state vanishes and the population of the excited S13 and ground S0
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Figure 3: (a) Electronic population dynamics in the first cluster of the Ag+3 dimer induced by

the external laser pulse; (b) electron population dynamics in the first subunit of the PorphAg4

dimer. The simulations were performed using the full-quantum method described in Sec. IID

(solid lines) and the approximate iterative approach presented in Sec. II E (dashed lines); (c)

population dynamics in the first subunit of the PorphAg4 dimer calculated using the full-quantum

approach based on the dipole interaction between clusters as presented in Ref. [44]. The structure

of the dimer considered in (b) and (c) as well as the external laser field configuration are shown in

the inset.

electronic states remains constant with time. The results obtained using the approximate

iterative approach presented in Sec. II E (see Fig. 3 (b), dashed lines) reproduce the full-

quantum calculations (Fig. 3 (b), solid lines) quite accurately.

For comparison, we simulated the electronic population dynamics in the PorphAg4 dimer
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using the full-quantum approach presented in [44], in which the clusters within the array

interact between each other as point dipoles. The results are shown in Fig. 3 (c). It is

evident that the latter method overestimates the excited state population during the laser

pulse action as well as the final ground state population. However, the main features of

the population dynamics are preserved, which is mainly due to the fact that the transition

densities to the excited states involved in the dynamics are localized on the Ag+3 part and

the distance between them in the dimer is large enough.

The essential quantities needed to simulate the electric field distribution in the PorphAg4

array are the time-dependent partial charges (Eq. (22)). We compare the charges located

on the silver atoms A, B, and C (see scheme in Fig. 4 (a)) calculated using the full-

quantum approach (Sec. IID) and the iterative approach (II E). The convergence of the

iterative method was reached after ∼ 20 iterations, the relative difference between the time-

dependent charges obtained in each two subsequent iterations calculated according to Eq.

(26) is plotted in Fig. 4 (b). The time-dependent charges are presented in Fig. 4 (c) and (d).

The charges on atoms A and B strongly oscillate in the counter-phase, while the charge on

C remains almost unchanged during the electron dynamics. It is evident that the iterative

approach allows for simulation of such time-dependent observables with good accuracy. The

average difference between the two methods is about 4%.

C. Exciton dynamics in a PorphAg4-ring

Finally we apply the developed iterative approach to the simulation of light-exciton dy-

namics in a ring constructed of 10 PorphAg4 clusters shown in Fig. 5. The ring is irradiated

by a circularly polarized light with the wave vector perpendicular to the ring plane and the

polarization vector rotating in the plane of the ring. Other parameters of the laser field are

the same as stated in Sec. III B. Since the Ag+3 cluster is oriented along the diagonal of the

square representing the porphyrin molecule, the ring formed in this manner is asymmetric

with respect to the clockwise and anti-clockwise rotations. Therefore different electron pop-

ulation dynamics induced by two different directions of the polarization plane rotation can

be expected.

The population dynamics of one of the subunits in the ring under the action of either an

external right-handed or left-handed polarized laser pulse are presented in Fig. 6. The other
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subunits demonstrate essentially the same dynamics and are not shown here. It is evident,

that the two different directions of the polarization-plane rotation induce different electronic

state population dynamics. Under the action of left-handed polarized pulse significant part

of the electronic population is transferred to the excited state S10, which is not the case

for the right-handed polarized light. Additionally, the ground state population after the

pulse has ceased is more than two times lower for the left-handed polarized pulse and the

population oscillations between the S9 and S13 excited electronic states are more pronounced

in this case. This means, that the dipole-quadrupole and quadrupole-quadrupole interactions

between the subunits play an important role for this system.

The different electronic population dynamics results in different spatio-temporal electric

field distribution induced by the two circularly polarized pulses in the ring. We use Eq. (23)

to evaluate the electric field energy localized around the silver cluster in a PorphAg4 subunit.

Since the electric field energy is proportional to the square of the electric field strength, we

integrate |E2| over a sphere of 2.4 Å radius centered at the Ag+3 geometrical center. The

radius of the sphere was chosen so that the sphere contained all three silver atoms but

is well separated from the porphyrin plane. The results are presented in Fig. 7. The

elelctric field energy was divided into the quasi-static (shown with solid black line) and fast-

oscillating dynamic (semi-transparent red line) fractions. The quasi-static part represents

the contribution of the slowly-varying time-dependent dipole moment of a subunit to the

total electric field, while the dynamic one reflects the instantaneous changes in the electron

density. With the solid red line the average value of the fast-oscillating fraction of the

electric field energy is shown. It is clearly seen, that while the right-handed polarized laser

pulse provides almost equal distribution of the electric field energy between the quasi-static

and dynamic components, the left-handed polarized one induces a much higher quasi-static

component as compared to the dynamic one.

The observed difference can be interpreted in terms of electronic population dynamics

caused by two pulses. Indeed, irradiation with the left-handed polarized laser pulse leads

to excitation, among others, of the S9 and S10 electronic states. These states possess rela-

tively high permanent dipole moments, which contribute to the total time-dependent dipole

moment of the subunit proportionally to the actual population of the states. Therefore,

the maxima in the S9 electronic population correspond to the maxima in the quasi-static

component of the electric field energy. In the case of right-handed polarized laser pulse, no
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population transfer to the S10 state occurs, thus decreasing the quasi-static contribution to

the total electric field. On the other hand, the fast-oscillating component of the electric field

arises due to coupling between the ground and S13 excited electronic states, because the

transition dipole moment between these states is high enough and lies in the plane which

the polarization vector of the laser pulse belongs to. Additionally, the excitation energy of

the S13 state is resonant to the laser photon energy. Consequently, the dynamic part of the

electric field energy produced by each subunit oscillates with a frequency close to the driving

electric field and with an amplitude reflecting the electronic populations of the ground and

S13 states. In particular, comparing Figs. 6 and 7 it can be clearly seen, that after the laser

pulse has ceased and no more electronic population transfer from and to the ground state

occurs, the maxima of the dynamic part of the electric field coincide with the maxima of

the S13 state population.

As a result of the interplay between the quasi-static and dynamic components, the total

energy of the electric field produced by the PorphAg4 subunit demonstrates different spatial

and temporal behavior. For the left-handed polarized laser pulse the quasi-static part signif-

icantly exceeds the dynamic one and the total electric field exhibits pronounced oscillations

corresponding to the S9 electronic state population maxima. On the other hand, when the

PorphAg4 ring is irradiated with the right-handed polarized light, the two components are

approximately of the same magnitude. Since these components vary with opposite phases

(cf. Fig. 7 top), the oscillations of the total electric field energy are quenched.

Finally, in order to compare the spatial electric field energy distribution, we simulate

the electric field distribution in the plane parallel to the ring plane and passing through

geometrical centers of the Ag+3 clusters. Fig. 8 illustrates the spatial configuration of

the electric field energy at different instants of time. It is seen that the two circular light

polarizations with different direction of the polarization-plane rotation create highly spatially

and temporally inhomogeneous electric field localized at the inner or outer atoms of the silver

clusters. Due to this fact, the field strength at the center of the ring is in average lower for the

right-handed polarization than for the left-handed one. The bottom panel in Fig. (8) shows

the difference between the electric field energies produced by the ring at the current instant of

time to the initial electric field distribution in the ground state for the left-handed polarized

light. It is seen, that at the beginning (2 fs) the electric field is redistributed between two

silver atoms and later additional decrease of the electric field outside the cluster plane is
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observed and the electric field is localized in the plane of the cluster.

IV. CONCLUSION

In conclusion, we have presented a theoretical approach for the simulation of the light

propagation and exciton dynamics in structured arrays of small noble-metal clusters de-

posited on an organic template support. Within the presented methodology the inter-

action between subunits is described using the ab initio parameterized transition charge

method, which enables one to take into account dipole-quadrupole, quadrupole-quadrupole,

and higher terms in the multipole expansion of the Coulomb interaction, making the method

applicable to nanostructures with a separation between individual constituents smaller or

comparable to their size. The excitonic Hamiltonian used to simulate the quantum temporal

evolution of the array under the action of an external electric field is constructed based on

first principles TDDFT calculations, thus allowing for a realistic description of the electronic

structure of the array including many electronic states per unit. Based on the numerical

solution of the TDSE with such a coupled exciton Hamiltonian the set of time-dependent

partial charges is determined, which is further used to simulate the spatio-temporal electric

field distribution created by the array. The use of the set of time-dependent charges instead

of time-dependent dipole moments allows for the investigation of the highly inhomogeneous

electric field localized around different parts of same subunit. The developed iterative ap-

proach extends the applicability of the method to large arrays consisting of a significant

number of constituents with tens of electronic excited states per subunit.

The methodology presented in the current work can be combined with our field-induced

surface-hopping (FISH) method [60] to include the nuclear dynamics of the studied aggre-

gates into the simulations. Although in the current work the simulation time period is

relatively short for the nuclear rearrangement to have significant impact on the electronic

structure of the noble-metal clusters [10, 61, 62], in further investigations the simulation time

scale can be extended to study the effect of laser-induced coupled electron-nuclear dynamics

on the light propagation in noble-metal cluster aggregates.

The proposed methodology was used to simulate the optical response of the pure Ag+3
cluster dimer as well as the PorphAg4 dimer (cluster array deposited on porphyrin support).

It was demonstrated that the electronic state population dynamics differs significantly when
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the porphyrin support is included into simulations. Additionally, the latter system was used

to validate the approximate iterative approach.

Finally, using the iterative approach the optical response and the spatio-temporal elec-

tric field distribution of the plane ring constructed of ten PorphAg4 subunits under action

of circularly polarized light was simulated. It was found that in such systems different direc-

tions of the polarization-plane rotation lead to different electron population dynamics and

thus to different electric field distributions. Such systems are promising building blocks for

nanooptical devices switching the regimes of operation under circularly polarized external

laser pulses.
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Figure 4: (a) Nuclear configuration of the PorphAg4 subunit; (b) deviation between the time-

dependent charges obtained in the given iteration and in the previous one (see Eq. 26); (c)

time-dependent charges located on atoms denoted in (a) with A, B, C, obtained in full-quantum

simulations; (d) same as (c) but obtained using the iterative approach.
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Figure 5: Schematic representation of a ring constructed of ten PorphAg4 subunits irradiated by a

circularly polarized laser pulse.

Figure 6: Electron population dynamics induced in the PorphAg4 ring by (a) right-handed and (b)

left-handed polarized laser pulse.
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Figure 7: Electric field energy localized around an Ag+3 cluster after irradiation with (top) a right-

and (bottom) a left-handed polarized laser pulse.
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Figure 8: Spatial distribution of electric field energy induced by left- (upper panel, L) and right-

handed (middle panel, R) circularly polarized light. The snapshots are taken at selected instants

of time specified in each subplot. The magnitude of the electric field energy at each point is shown

with the color code from minimal (dark blue) to maximal (red). The lower panel shows the electric

field energy difference to the initial electric field distribution for the left-handed polarization (Diff),

with blue color indicating decrease, red one increase, and green one indicating zero change.
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