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Chapter 1

Introduction

The field of extreme value theory has been a very active research area in recent years. This is
due to the fact that it is of relevance in many practical problems such as the analysis of

• sea levels (Tawn (1988, [72])),

• tidal waves (Coles and Tawn (1991, [10]),

• wind speeds (deHaan and deRonde (1998, [33])),

• rainfall (Schlather and Tawn (2003, [62])),

• metallurgical data (Beirlant et al. (2005, [3])),

• financial data (Hsing et al. (2004, [40])),

• currency exchange rates (Hauksson et al. (2001, [35])),

• insurance data (Reiss and Thomas (2001, [57])),

only to name a few. From the naturally broad variety of literature concerning extreme value
theory we refer to Reiss and Thomas (2001, [57]), Coles (2001, [8]) and Beirlant et al. (2005, [3])
for general introductions to the field. The probabilistic background is discussed in detail, for
example, in Falk et al. (2004, [21]), Resnick (1987, [59]) and Galambos (1978, [29]).

The goal of the present text is to investigate and simulate multivariate generalized Pareto dis-
tributions (GPDs). Different to the univariate case, where GPDs have turned out to be crucial
models for the peaks-over-threshold (POT) approach by the Balkema–deHaan–Pickands Theo-
rem (see Section 1.4 of Reiss and Thomas (2001, [57])), the role of multivariate GPDs in the
framework of extreme value theory is, still, under scrutiny. Recent results, however, in Rootzén
and Tajvidi (2005, [60]), Tajvidi (1996, [71]), Beirlant et al. (2005, [3]) and Falk et al. (2004, [21])
show that multivariate GPDs can again be used for (multivariate) POT approaches.

A fact illustrating that multivariate GPDs are a recent research topic is that there are slightly
varying definitions of multivariate GPDs under investigation. For this manuscript we stick to the
definition of Section 5.1 of Falk et al. (2004, [21]), which was originally introduced by Kaufmann
and Reiss (1995, [45]) for the bivariate case. There are two other definitions closely related
to this one. The first one is to be found in Paper B of Tajvidi (1996, [71]), and the other is
presented in Section 8.3 of Beirlant et al. (2005, [3]) and is investigated in more detail in Rootzén

1



CHAPTER 1. INTRODUCTION 2

and Tajvidi (2005, [60]). These definitions are both identical to ours in the region of interest, see
Section 10.1 of Reiss and Thomas (2001, [57]) and Section 8.3 of Beirlant et al. (2005, [3]). In
contrast to the univariate case it is not intuitively clear, how exceedances over high thresholds are
to be defined. A different approach with a different understanding of extreme observations, which
results in a single-parameter family also called multivariate generalized Pareto distributions, is
described in Balkema and Embrechts (2004, [2]). Extreme value distributions (EVDs) are also
often used as models for threshold exceedances due to a point process limiting result, see for
example Coles and Tawn (1991, [10]), Joe et al. (1992, [43]) or Coles and Tawn (1994, [11]).

A short list with points which have to be worked on for a better understanding of multivari-
ate GPDs is given in the introduction of Tajvidi (1996, [71]). Among other things, the need
for simulations and methods for parametric estimation is mentioned. The computation of the
asymptotic distributions of these estimators and the investigation of alternative definitions to
the one proposed there, are suggested as well. These points briefly describe the program of this
text.

In Chapter 2 we begin with the definitions and notations necessary for the understanding of the
present text. We will also give the most important examples of multivariate GPDs which will
be used throughout this manuscript.

Chapter 3 will be dedicated to the simulation of multivariate GPDs. In many complex prac-
tical situations, problems cannot be solved by analytical methods. Then one has to rely on
Monte-Carlo methods which use simulations. The importance of simulation techniques which
provide multivariate GPD random vectors is, therefore, obvious if one wants to do Monte-Carlo
simulations in GPD models. An application could be the computation of the Value-at-Risk of
a portfolio by Monte-Carlo methods as suggested in Section 7 of Brommundt (2003, [5]). The
elliptical distributions used there could reasonably be changed to GPDs, since one is interested
in the tails of the corresponding distributions. Real portfolios consist of several hundred or even
a few thousand stocks, thus, it is clear that simulation in high dimensions is crucial.

The simulation methods presented here can also be used for a first check of new statistical testing
or estimation procedures in multivariate GPD models, before applying them to real data. This is
important, since in simulated data sets one controls the entire setup, whereas the background of
real data is commonly unknown. This will be a frequent application of the simulation algorithms
throughout this manuscript.

There has been relatively little work concerned with the simulation of multivariate extreme value
distributions and, except Tajvidi (1996, [71]) where only the need for simulations is stated,
and Proposition 6.3.6 of Falk et al. (2004, [21]), where the bivariate Marshall-Olkin GPD is
simulated, there is no publication known to the author referring to the simulation of multivariate
GPDs. An up-to-date summary of the work done on the simulation of multivariate EVDs can
be found in Stephenson (2003, [70]). An additional reference not noted there, are Sections 9.1
and 9.2 of Reiss and Thomas (2001, [57]) where simulation techniques for the bivariate Marshall-
Olkin, Hüsler-Reiss and the logistic extreme value distributions are mentioned. Most of the
simulation methods for extreme value distributions known today deal with the bivariate or the
trivariate case like in Section 3 of Ghoudi et al. (1998, [32]). Stephenson (2003, [70]), where
symmetric and asymmetric extreme value distributions of logistic type are simulated, is the only
source known to the author for a simulation algorithm in general dimension.

The main simulation algorithm presented here will use the Shi transformation and the Shi
coordinates, which will turn out to be the crucial tools of the simulation algorithm. This trans-
formation was first introduced by Shi (1995, [64]) and was used in Stephenson (2003, [70]) for
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the simulation of multivariate EVDs of logistic type. As the simulation algorithm in Stephen-
son (2003, [70]), our algorithm simulating GPDs of logistic type will be formulated for arbitrary
dimension and will also be computationally applicable in high dimensions.

In the sequel we will present another algorithm simulating GPDs comparable to the one simu-
lating EVDs in Ghoudi et al. (1998, [32]). Another related algorithm simulating EVDs is the
one from Section 2 of Nadarajah (1999, [51]), except that we will simulate from a direct repre-
sentation, and not a limiting one as it is done there. Our algorithm will also be formulated for
arbitrary dimension, although, due to computational reasons, it can only be used in low dimen-
sions. However, this algorithm has the ability to simulate distributions outside of the logistic
case.

In Chapters 4, 5 and 6 we will turn to the estimation in GPD models, both in a nonparametric
and a parametric way. Publications known to the author concerning estimation in GPD models
are again Paper B of Tajvidi (1996, [71]), Section 5.2 of Falk et al. (2004, [21]) and Section 10.2 of
Reiss and Thomas (2001, [57]). In the first reference, estimation is done by maximum likelihood
methods for a few restricted parametric models in the bivariate case. We will do more detailed
investigations of ML methods in GPD models, also for higher dimensions, in Chapter 6. In
the second reference above a nonparametric estimator of the Pickands dependence function is
presented for the bivariate case, and in the third the canonical dependence function is estimated.
Our nonparametric estimation methods in Chapters 4 and 5 will be aimed at the angular (or
spectral) density, which is in the bivariate case the second derivative of the Pickands dependence
function, see Section 9.3 of Beirlant et al. (2005, [3]) or Remark 2.2 in Falk and Reiss (2003, [25]).
The reason for our concentration on the angular density is given below.

There is a broad variety of literature dealing with the estimation in EVD models. Most of
it is concerned with finding nonparametric estimators of the Pickands dependence function.
Starting with Pickands (1981, [53]) a lot of estimators for the bivariate extreme value case
have been found by Deheuvels and Martynov (1996, [14]), Deheuvels (1991, [13]), Deheuvels
and Tiago de Oliveira (1989, [15]), Smith et al. (1990, [68]), Hall and Tajvidi (2000, [34]),
Capéraà et al. (1997, [6]), Capéraà and Fougères (2000, [7]), Genest et al. (1995, [31]), Abdous
et al. (1999, [1]), Jiménez et al. (2001, [41]) and Heffernan (2004, [36]), to give a short list. If
these estimators are smooth enough one can, in the bivariate case, derive estimators for the
angular density of them by just twice differentiating, see above.

In Einmahl et al. (1997, [19]) and Einmahl et al. (2001, [18]) the angular distribution of obser-
vations, which come from the domain of attraction of a bivariate extreme value distribution,
is estimated. Drees and Huang (1998, [16]) are concerned with the estimation of the exponent
measure and optimal rates of convergence there, likewise in the domain of attraction of an ex-
treme value distribution. Drees and Huang (1995, [17]) also give upper bounds for the rates of
convergence of estimators of the angular distribution.

Most of the references cited above deal only with the bivariate setup which is a general tendency
in the extreme value literature, see Section 9.4 of Beirlant et al. (2005, [3]). This is only natural,
since it is often the case in extreme value theory that things tend to get complicated when going
from the bivariate to the trivariate case. That is due to the fact that the Pickands dependence
function, which governs these models, is a univariate function in the bivariate case. Therefore,
the step from dimension 2 to 3 is, for the dependence function, the step from dimension 1 to 2.
This leads to more complicated formulas, and not every assertion valid in the bivariate case
carries over to the trivariate case. Some new examples of this phenomenon in GPD models will
be shown in Theorem 2.3.12, Corollary 2.3.19 and Theorem 4.2.1. However, higher dimensional
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cases are naturally of great practical importance, as stated for example in Tawn (1988, [72]).

Parametric estimators for the extreme value case (also in higher dimensions) are presented in
Tawn (1988, [72]), Coles and Tawn (1991, [10]), Joe et al. (1992, [43]), Coles and Tawn (1994, [11]),
Coles et al. (1999, [9]) and Section 3.6 of Kotz and Nadarajah (2000, [47]), along with nonpara-
metric estimators of the angular density. We want to carry them over to the GPD case, since
the angular density is a useful tool in the visual investigation of the tail dependence structure.
The concept of tail dependence is a very useful one to describe dependencies in extreme value
theory, see for example Section 6.1 of Falk et al. (2004, [21]) or Section 8.4 of Coles (2001, [8]).
We will use kernel methods for the estimation of the angular density which also have been suc-
cessfully applied in Tawn (1988, [72]), Joe et al. (1992, [43]), Coles et al. (1999, [9]) or Abdous
et al. (1999, [1]).

Chapter 4 starts with the nonparametric estimation in bivariate case. The estimation of the
angular density is possible there with random variables which follow, after suitable scaling,
exactly the angular distribution.

The problem in going from dimension 2 to 3 mentioned before, leads to a slightly different
approach in the estimation of the angular density for the general multivariate case in Chap-
ter 5. Here it can only be estimated by random variables which follow the angular distribution
asymptotically.

In Chapter 6 we will introduce parametric methods for the estimation in GPD models. We will
use maximum likelihood (ML) approaches as in Coles (2001, [8]), Coles and Tawn (1991, [10]),
Joe et al. (1992, [43]), Coles and Tawn (1994, [11]) or Coles et al. (1999, [9]). We will also
give an approach via relative frequencies inspired by Falk (1998, [20]). Tawn (1988, [72]) shows
that the ML estimators in the extreme value case tend to behave badly when close to the case
of independence. We will be confronted with that in the GPD case, too. The estimation via
relative frequencies will have its strength there. However, it will be inferior to the ML methods
in cases of high dependence.

For all estimators the asymptotic normality will be shown under suitable regularity conditions.
We develop the asymptotic normality under the assumption that the underlying random vec-
tors follow exactly a GPD. This is a common approach in the univariate case, see Section 5.6
of Beirlant et al. (2005, [3]). In practice one will naturally encounter observations, which are
not exactly but only asymptotically distributed by a GPD as a result of the POT approach.
In the univariate case this concept is described by the well known δ-neighborhoods, see for ex-
ample Section 2.2 of Falk et al. (2004, [21]). A suggestion for a multivariate analogue of these
δ-neighborhoods can be found in Kaufmann and Reiss (1995, [45]) or Sections 5.3 and 5.4 of Falk
et al. (2004, [21]). Another alternative will be presented in Section 5.3 of this manuscript.

Finally in Chapter 7 we will apply the presented methods to a real hydrological data set con-
taining water discharges of the rivers Altmühl and Danube in southern Bavaria, Germany. We
will investigate whether extreme water levels tend to appear together alongside these rivers.
Investigations like this could lead to a better understanding of the dynamics of extreme floods,
which have recently occurred quite often in this area, causing damages amounting to several
million euros.

With the final remarks in Chapter 8 we will conclude the present text.



Chapter 2

Multivariate Generalized Pareto
Distributions

This chapter intends to clarify definitions and notations which will be used throughout this
manuscript. The most important one is of course the definition of the multivariate generalized
Pareto distribution. The definition used here originates from Section 5.1 of Falk et al. (2004, [21])
and was first introduced by Kaufmann and Reiss (1995, [45]) for the bivariate case. An alter-
native definition can be found in Paper B of Tajvidi (1996, [71]) and in Section 8.3 of Beirlant
et al. (2005, [3]). The second one is discussed in more detail in Rootzén and Tajvidi (2005, [60]).
Both are closely related to each other and are identical to our definition in the region of
interest, where all components of a random vector are large, see Section 10.1 of Reiss and
Thomas (2001, [57]) and Section 8.3 of Beirlant et al. (2005, [3]). They differ from each other
and from our definition in areas, where only some components are large. While our definition
does not make assumptions on the structure of the generalized Pareto distribution for areas,
where not all components are large, both other definitions make specific assumptions on these
areas.

Section 2.1 will begin by introducing the Pickands coordinates, which are of great importance
to the field of extreme value theory and which we will frequently use. For the role of Pickands
coordinates in the entire extreme value framework we refer to Section 5 of Falk et al. (2004, [21]).

In Section 2.2 we give the definitions of multivariate generalized Pareto and extreme value
distributions. Alongside we will introduce other important objects belonging to GPDs and
EVDs which are necessary for their investigation.

The most important examples of GPDs, namely the logistic case and various generalizations of
it, will be presented in Section 2.3 together with some theoretical results on these distributions.
These include a generalization of a known counterexample, showing that GP functions are not
necessarily distribution functions, to arbitrary dimension d ≥ 3 and the non-uniqueness of the
angular measure for GPDs.

5



CHAPTER 2. MULTIVARIATE GENERALIZED PARETO DISTRIBUTIONS 6

2.1 Pickands Coordinates

Definition 2.1.1
For d ∈ N the set

Rd :=

{
x = (x1, . . . , xd) ∈ (0,∞)d

∣∣∣∣∣
d∑

i=1

xi < 1

}

defines the (open) unit simplex in Rd. By Rd we denote the closed unit simplex with the
representation

Rd =

{
x ∈ [0,∞)d

∣∣∣∣∣
d∑

i=1

xi ≤ 1

}
.

♦

The unit simplex Rd will play an important role in the following. We will need especially the
d–dimensional volume of Rd at several occasions.

Lemma 2.1.2
We have

vol(Rc,d) =
∫

Rc,d

1 dx =
cd

d!
, d ∈ N,

and especially

vol(Rd) = vol
(
Rd

)
=

1
d!

,

where c > 0 and

Rc,d :=

{
(x1, . . . , xd) ∈ (0,∞)d

∣∣∣∣∣
d∑

i=1

xi < c

}
.

Proof:
We will show the assertion by induction. We have for the initial step d = 1

Rc,1 = (0, c) ⇒
∫

Rc,1

1 dx =
∫

(0,c)
1 dx = c =

c1

1!
.

Let the induction hypothesis hold for d− 1. We will show next the induction step d− 1 → d.

We have by Fubini’s Theorem (see for example Fristedt and Gray (1997, [28]), Section 9.2),
where 1A denotes the indicator function of a set A, i.e., 1A(x) = 1 if x ∈ A and 1A(x) = 0 else,

vol(Rc,d) =
∫

Rd

1Rc,d
(x1, . . . , xd) dx1 · · · dxd

=
∫ c

0

∫

Rd−1

1Rc−xd,d−1
(x1, . . . , xd−1) dx1 · · · dxd−1 dxd

=
∫ c

0
vol(Rc−xd,d−1) dxd =

∫ c

0

(c− xd)d−1

(d− 1)!
dxd =

1
(d− 1)!

[
−(c− xd)d

d

]c

0

=
cd

d!
.

We conclude now vol(Rd) = vol(R1,d) = 1
d! = vol

(
Rd

)
since the boundary set ∂Rd is a null set

with regard to the d–dimensional Lebesgue measure.
¤
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The next two related Pickands transformations will be crucial for large parts of this manuscript.

Definition 2.1.3
For d ∈ N, d ≥ 2, define the transformation TP : (−∞, 0]d\{0} → Rd−1 × (−∞, 0) by

TP (x) :=
(

x1

x1 + . . . + xd
, . . . ,

xd−1

x1 + . . . + xd
, x1 + . . . + xd

)
=: (z1, . . . , zd−1, c). (2.1)

TP is called transformation to (standard) Pickands coordinates z := (z1, . . . , zd−1), c. z is called
the angular component and c is called the radial component.

♦

For information on important properties of TP , see Section 5.4 in Falk et al. (2004, [21]) and Falk
and Reiss (2005, [27]). The mapping TP is one-to-one with inverse function

T−1
P (z, c) = c

(
z1, . . . , zd−1, 1−

d−1∑

i=1

zi

)
. (2.2)

It has the same geometrical interpretation as standard polar coordinates with the difference that
polar coordinates use the euclidian norm || · ||2 for the angular and radial component, whereas
Pickands coordinates use the sum norm || · ||1.

Definition 2.1.4
For d ∈ N, d ≥ 2, define the transformation TF : (−∞, 0)d → Rd−1 × (−∞, 0) by

TF (x) :=

(
1
x1

1
x1

+ . . . + 1
xd

, . . . ,

1
xd−1

1
x1

+ . . . + 1
xd

,
1
x1

+ . . . +
1
xd

)
=: (z1, . . . , zd−1, c). (2.3)

TF is called transformation to Pickands coordinates z := (z1, . . . , zd−1), c with regard to Fréchet
margins. z is again called the angular component and c the radial component.

♦

The transformation (2.3) is, as its name already indicates, closely related to the Pickands trans-
formation TP from Definition 2.1.3. In addition we have applied here the transformation y 7→ 1

y
to the components of x. This is the transformation which conveys exponentially distributed
random variables to Fréchet distributed random variables. Therefore, the choice of the name of
TF . The mapping TF is one-to-one with inverse function

T−1
F (z, c) =

1
c

(
1
z1

, . . . ,
1

zd−1
,

1

1−∑d−1
i=1 zi

)
. (2.4)

Since we are going to apply the density transformation theorem it will be important to know
the determinant of the Jacobian matrix of the inverse of TF , which we give in the next lemma.

Lemma 2.1.5
The determinant of the Jacobian matrix of the transformation T−1

F is

det
(
JT−1

F
(z, c)

)
= − 1

cd+1
· 1

z2
1 · z2

2 · . . . · z2
d−1

(
1−∑d−1

i=1 zi

)2 .
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Proof:
As one easily checks we have for the Jacobian matrix

JT−1
F

(z, c) =




∂x1
∂c

∂x1
∂z1

∂x1
∂z2

· · · ∂x1
∂zd−2

∂x1
∂zd−1

∂x2
∂c

∂x2
∂z1

∂x2
∂z2

· · · ∂x2
∂zd−2

∂x2
∂zd−1

...
...

...
. . .

...
...

∂xd−2

∂c
∂xd−2

∂z1

∂xd−2

∂z2
· · · ∂xd−2

∂zd−2

∂xd−2

∂zd−1
∂xd−1

∂c
∂xd−1

∂z1

∂xd−1

∂z2
· · · ∂xd−1

∂zd−2

∂xd−1

∂zd−1
∂xd
∂c

∂xd
∂z1

∂xd
∂z2

· · · ∂xd
∂zd−2

∂xd
∂zd−1




of T−1
F the representation

JT−1
F

(z, c) =

=




1
z1

(− 1
c2

)
1
c

(
− 1

z2
1

)
0 · · · 0 0

1
z2

(− 1
c2

)
0 1

c

(
− 1

z2
2

)
· · · 0 0

...
...

...
. . .

...
...

1
zd−2

(− 1
c2

)
0 0 · · · 1

c

(
− 1

z2
d−2

)
0

1
zd−1

(− 1
c2

)
0 0 · · · 0 1

c

(
− 1

z2
d−1

)

1
1−Pd−1

i=1 zi

(− 1
c2

)
1
c

1

(1−Pd−1
i=1 zi)2

1
c

1

(1−Pd−1
i=1 zi)2 · · · 1

c
1

(1−Pd−1
i=1 zi)2

1
c

1

(1−Pd−1
i=1 zi)2




.

We compute the determinant with the known calculation rules for the determinant (see, for
example, Chapter VI, §2 in Lang (1966, [48])). In the first step we factor out 1

c from the last
d− 1 columns, as well as − 1

c2
once from the first column and, thus, obtain

det
(
JT−1

F
(z, c)

)
=

= − 1
cd+1

· det




1
z1

− 1
z2
1

0 · · · 0 0
1
z2

0 − 1
z2
2

· · · 0 0
...

...
...

. . .
...

...
1

zd−2
0 0 · · · − 1

z2
d−2

0
1

zd−1
0 0 · · · 0 − 1

z2
d−1

1
1−Pd−1

i=1 zi

1

(1−Pd−1
i=1 zi)2

1

(1−Pd−1
i=1 zi)2 · · · 1

(1−Pd−1
i=1 zi)2

1

(1−Pd−1
i=1 zi)2




= − 1
cd+1z1

· det




0 − 1
z2
2

· · · 0 0
...

...
. . .

...
...

0 0 · · · − 1
z2
d−2

0

0 0 · · · 0 − 1
z2
d−1

1

(1−Pd−1
i=1 zi)2

1

(1−Pd−1
i=1 zi)2 · · · 1

(1−Pd−1
i=1 zi)2

1

(1−Pd−1
i=1 zi)2



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− 1
cd+1z2

1

· det




1
z2

− 1
z2
2

· · · 0 0
...

...
. . .

...
...

1
zd−2

0 · · · − 1
z2
d−2

0
1

zd−1
0 · · · 0 − 1

z2
d−1

1
1−Pd−1

i=1 zi

1

(1−Pd−1
i=1 zi)2 · · · 1

(1−Pd−1
i=1 zi)2

1

(1−Pd−1
i=1 zi)2




= − 1

cd+1 · z1 · z2
2 · . . . · z2

d−1 ·
(
1−∑d−1

i=1 zi

)2 · (−1)d−2

︸ ︷︷ ︸
column changes

· (−1)d−2

︸ ︷︷ ︸
negative signs

− 1
cd+1z2

1z2
· det




0 − 1
z2
3

· · · 0
...

...
. . .

...
0 0 · · · − 1

z2
d−1

1

(1−Pd−1
i=1 zi)2

1

(1−Pd−1
i=1 zi)2 · · · 1

(1−Pd−1
i=1 zi)2




− 1
cd+1z2

1z
2
2

· det




1
z3

− 1
z2
3

· · · 0
...

...
. . .

...
1

zd−1
0 · · · − 1

z2
d−1

1
1−Pd−1

i=1 zi

1

(1−Pd−1
i=1 zi)2 · · · 1

(1−Pd−1
i=1 zi)2




= − 1

cd+1 · z1 · z2
2 · . . . · z2

d−1 ·
(
1−∑d−1

i=1 zi

)2 −
1

cd+1 · z2
1 · z2 · z2

3 · . . . · z2
d−1 ·

(
1−∑d−1

i=1 zi

)2

− 1
cd+1z2

1z
2
2

det




1
z3

− 1
z2
3

· · · 0
...

...
. . .

...
1

zd−1
0 · · · − 1

z2
d−1

1
1−Pd−1

i=1 zi

1

(1−Pd−1
i=1 zi)2 · · · 1

(1−Pd−1
i=1 zi)2




= . . .

= − 1
cd+1


 1

z1 · z2
2 · z2

3 · . . . · z2
d−2 · z2

d−1 ·
(
1−∑d−1

i=1 zi

)2

+
1

z2
1 · z2 · z2

3 · . . . · z2
d−2 · z2

d−1 ·
(
1−∑d−1

i=1 zi

)2

+ . . .

+
1

z2
1 · z2

2 · z2
3 · . . . · z2

d−2 · zd−1 ·
(
1−∑d−1

i=1 zi

)2

+
1

z2
1 · z2

2 · z2
3 · . . . · z2

d−2 · z2
d−1 ·

(
1−∑d−1

i=1 zi

)



= − 1
cd+1

· z1 + . . . + zd−1 + 1−∑d−1
i=1 zi

z2
1 · z2

2 · z2
3 · . . . · z2

d−2 · z2
d−1 ·

(
1−∑d−1

i=1 zi

)2



CHAPTER 2. MULTIVARIATE GENERALIZED PARETO DISTRIBUTIONS 10

= − 1
cd+1

· 1

z2
1 · z2

2 · z2
3 · . . . · z2

d−2 · z2
d−1 ·

(
1−∑d−1

i=1 zi

)2 ,

as asserted.
¤

2.2 Multivariate Generalized Pareto and Extreme Value Distri-
butions

In this section we will introduce multivariate extreme value and generalized Pareto distributions.
We assume that the reader is familiar with the family of univariate extreme value and generalized
Pareto distributions. We refer to Sections 1.3 and 1.4 of Reiss and Thomas (2001, [57]) for a
summary on these distributions.

Definition 2.2.1
An extreme value distribution (EVD) with negative exponential margins is defined by the distri-
bution function

G(x1, . . . , xd) = exp

((
d∑

i=1

xi

)
D

(
x1∑d
i=1 xi

, . . . ,
xd−1∑d
i=1 xi

))

for x1, . . . , xd < 0. Thereby the function D : Rd−1 → [0, 1] is called Pickands dependence
function and has to satisfy (2.6) and (2.7) below.

Let G1, . . . , Gd be univariate extreme value distributions. Then the transformation of an EVD
with negative exponential margins to the margins G1, . . . , Gd, i.e.,

G∗(x1, . . . , xd) := G (log (G1(x1)) , . . . , log (Gd(xd)))

where xi ∈ supp(Gi) := {x ∈ R|Gi(x) > 0}, the support of the distribution Gi, is an extreme
value distribution G∗.

♦

It is well known that multivariate extreme value distributions arise, like in the univariate case,
as the limiting distributions of suitably scaled componentwise maxima of independent and iden-
tically distributed random vectors, see for example Section 5.4 of Resnick (1987, [59]). A distri-
bution F is said to be in the domain of attraction of an EVD G∗ if the distribution of suitably
scaled componentwise maxima of independent copies of random vectors, which follow F , con-
verges to G∗. More precisely, if for independent X1, . . . , Xn following F there exist vectors an,
bn ∈ Rd, an > 0, such that

P

(
maxi=1,...,n Xi − bn

an

)
= Fn (anx + bn) →n→∞ G∗(x),

where all operations (including the maximum) and inequalities are meant componentwise, F is
in the domain of attraction of G∗. We note this by F ∈ D(G∗). We refer to Section 5.4 of
Resnick (1987, [59]) for more mathematical details.
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Definition 2.2.2
Let X = (X1, . . . , Xd) be a random vector, which has a distribution function W with the
representation

W (x) = 1 +

(
d∑

i=1

xi

)
D

(
x1∑d
i=1 xi

, . . . ,
xd−1∑d
i=1 xi

)

= 1 + log (G (x1, . . . , xd)) , (x1, . . . , xd) = x ∈ U (2.5)

in a neighborhood U of 0 in the relative topology of the negative quadrant (−∞, 0)d. Then X
follows a generalized Pareto distribution (GPD) with uniform margins. D is thereby again a
Pickands dependence function fulfilling (2.6) and (2.7) below.

Let G∗ be again an extreme value distribution with right upper end point u = (u1, . . . , ud) =
(sup{x ∈ R|Gi(x) < 1})i=1,...,d, and let X = (X1, . . . , Xd) be a random vector, which has a
distribution function W∗ with the representation

W∗(x) = 1 + log (G∗ (x)) , x ∈ U,

in a neighborhood U of u in the relative topology of the quadrant (−∞, u1) × . . . × (−∞, ud).
Then X follows a generalized Pareto distribution.

♦

These definitions of GPDs are in analogy to the relation between extreme value and generalized
Pareto distributions in the univariate case, where also W∗ = 1 + log G∗ holds, see Section 1.4 of
Reiss and Thomas (2001, [57]).

Remark 2.2.3
The marginal distributions of a GPD W∗ are univariate GPDs close to the right upper endpoint
of the distribution. By a suitable marginal transformation we can always transfer a GPD into a
GPD with uniform margins. Unless otherwise stated at special occasions, we will in the course
of this manuscript always consider GPDs W with uniform margins and correspondingly EVDs
with negative exponential margins.

The GP function W = 1 + log G is not a distribution function on the entire set of the negative
quadrant with W (x) ≥ 0, see Section 5.1 in Falk et al. (2004, [21]) for a counterexample with
dimension d = 3. We will give a generalized version of this counterexample for arbitrary di-
mension d ≥ 3 at the end of Section 2.3.2. However, in a neighborhood of 0 the function W (x)
coincides with a distribution function, see Lemma 5.1.3 in Falk et al. (2004, [21]). By suitable
marginal transformations it follows that W∗(x) is also a distribution function close to its upper
endpoint u. Actually in the bivariate case it turns out that a GP function W is a distribution
function on the entire set where W (x) ≥ 0 (see Lemma 5.1.1 in Falk et al. (2004, [21])) but not in
the higher multivariate cases. This is an example, where a property of a bivariate GPD cannot
be transferred to higher dimensions. We will see other examples for this strange behavior in
Sections 2.3.4 and 4.2. In contrast to the generalized Pareto function W , a multivariate extreme
value distribution G is always a distribution function on the entire negative quadrant.

We have a flexible definition of a GPD, since we do not make assumptions on the structure of
the GPD away from the origin. The two other definitions from Tajvidi (1996, [71]), Section 8.3
of Beirlant et al. (2005, [3]) and Rootzén and Tajvidi (2005, [60]) are in the extreme area,
where all components are large, according to Section 10.1 of Reiss and Thomas (2001, [57]) and
Section 8.3 of Beirlant et al. (2005, [3]) identical to ours. For the definition in Tajvidi (1996, [71])
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components of observations, which fall short of given threshold lines, are set to the value of the
threshold. Thus, the threshold lines which are null sets with regard to the Lebesgue measure
have positive probability, and the support of the distribution is limited. Also the univariate
margins are not univariate GPDs. The definition from Section 8.3 of Beirlant et al. (2005, [3])
specifies the GPD distribution as

W (x) =
1

− log G(0)
· log

G(x)
G(min(x, 0))

,

where the minimum (and the following inequalities) are to be taken componentwise. G is the
corresponding extreme value distribution. This leads to W (x) = 0 for x < 0 and W (x) =
1− log G(x)

log G(0) for x > 0, which is our definition in the extreme area x > 0 after a suitable marginal
transformation. Actually this representation was used in Lemma 5.1.3 of Falk et al. (2004, [21])
to show that a GP function close to the origin can be extended to a valid distribution function
on the entire negative quadrant. From the above definition the structure of W in areas, where
only some components are large can also be gained. Remark that due to the minimum in the
definition, the distribution W might not be differentiable at the axes of the coordinate system.

♦

Before we come to the justification of the definition of a GPD we will consider the structure of
a GPD a little closer.

A listing of important properties and characterizations of GPDs and especially of the Pickands
dependence function D from Definitions 2.2.1 and 2.2.2 can be found in Section 4.3 of Falk
et al. (2004, [21]). We only give here a short summary of those properties and characterizations,
which we will need in the present text.

The Pickands dependence function can be written as

D(t1, . . . , td−1) =
∫

Rd−1

max

(
u1t1, . . . , ud−1td−1,

(
1−

d−1∑

i=1

ui

) (
1−

d−1∑

i=1

ti

))
ν(du), (2.6)

where ν is a measure on Rd−1 with

ν
(
Rd−1

)
= d and

∫

Rd−1

uiν(du) = 1, 1 ≤ i ≤ d− 1, (2.7)

see again for example Section 4.3 of Falk et al. (2004, [21]). ν is called the angular measure. The
characterization of this measure by (2.7) is necessary and sufficient to define a proper Pickands
dependence function, see Theorem 4.3.1 in Falk et al. (2004, [21]).

The Pickands dependence function D fulfills

max

(
t1, . . . , td−1, 1−

d−1∑

i=1

ti

)
≤ D (t1, . . . , td−1) ≤ 1.

Both bounds are Pickands dependence functions themselves, the so called cases of complete
dependence and independence, see Section 2.3.1.

By

V (x1, . . . , xd) :=

(
d∑

i=1

xi

)
D

(
x1∑d
i=1 xi

, . . . ,
xd−1∑d
i=1 xi

)
(2.8)
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we denote the exponent measure function of W . By (2.6) this exponent measure function can
be represented as

V (x1, . . . , xd) =
∫

Rd−1

min

(
u1x1, . . . , ud−1xd−1,

(
1−

d−1∑

i=1

ui

)
xd

)
ν(du),

see again Section 4.3 of Falk et al. (2004, [21]) or Section 3.2 of Kotz and Nadarajah (2000, [47])
for the case of Fréchet margins.

A norm on Rd is defined by
||x||D := V (|x1|, . . . , |xd|) ,

see also Section 4.3 in Falk et al. (2004, [21]) and Hofmann (2006, [39]) for further details. Thus,
every generalized Pareto distribution can be written as

W (x1, . . . , xd) = 1− ||x||D, (2.9)

x ∈ (−∞, 0)d, close to 0.

The distribution function

L(z1, . . . , zd−1) = ν ([0, z1]× · · · × [0, zd−1])

of the measure ν is called angular distribution. By

d∗ := ν (Rd−1) (2.10)

we denote the mass of ν in the interior of Rd−1; recall that by (2.7) we have ν
(
Rd−1

)
= d and,

thus,
0 ≤ d∗ ≤ d.

If the measure ν, restricted to Rd−1, possesses a density we denote it with l and call it the an-
gular density. We will see in later chapters that under certain regularity conditions the angular
components of the Pickands coordinates of GPD distributed random vectors follow asymptoti-
cally the angular distribution, thus our choice of the name. In the literature it is also common
to call the angular measure/distribution/density the spectral measure/distribution/density, see
for example Einmahl et al. (1997, [19]) or Einmahl et al. (2001, [18]).

From (2.10) we especially obtain
∫

Rd−1

l(z) dz = d∗. (2.11)

Extreme value distributions arise both in the univariate and the multivariate case as the lim-
iting distributions of componentwise maxima. GPDs are used for peaks-over-threshold (POT)
methods in the univariate case. We will give a short justification that multivariate GPDs can
also be used in multivariate POT models.

Let a d-dimensional random vector follow a distribution function F in the multivariate domain of
attraction of an extreme value distribution G with margins G1, . . . , Gd not necessarily negative
exponential. Then we know by Proposition 5.15 (b) in Resnick (1987, [59]) that the marginal
distributions F1, . . . , Fd of F are in the univariate domains of attraction of the extreme value
distributions G1, . . . , Gd, i.e, Fi ∈ D(Gi), i = 1, . . . , d. Define by

G∗(x1, . . . , xd) = G

(
G−1

1

(
exp

(
− 1

x1

))
, . . . , G−1

d

(
exp

(
− 1

xd

)))
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the corresponding extreme value distribution with standard Fréchet margins and by

F∗(x1, . . . , xd) = F

(
F−1

1

(
1− 1

x1

)
, . . . , F−1

d

(
1− 1

xd

))

the transformation of F to standard Pareto margins. Denote by

X∗ =
(
X

(1)
∗ , . . . , X

(d)
∗

)
=

(
1

1− F1(X1)
, . . . ,

1
1− Fd(Xd)

)

the correspondingly transformed vector X. Then we know by Proposition 5.15 (a) in Resnick
(1987, [59]) that for x = (x1, . . . , xd) with xi > 0, i = 1, . . . , d, the following equation holds with
the notation 1 = (1, . . . , 1) ∈ Rd:

lim
t→∞

1− F∗(tx)
1− F∗(t1)

=
− log G∗(x)
− log G∗(1)

. (2.12)

If we restrict ourselves to xi > 1, i = 1, . . . , d, we can express the above equation (2.12) in
terms of conditional probabilities for X∗ with the convention that inequalities for vectors hold
componentwise and, thus, X∗ 6≤ x means X

(i)
∗ > xi for at least one index i:

1 +
log G∗(x)
− log G∗(1)

= 1− lim
t→∞

1− F∗(tx)
1− F∗(t1)

= 1− lim
t→∞

P (X∗ 6≤ tx)
P (X∗ 6≤ t1)

x>1= 1− lim
t→∞

P (X∗ 6≤ tx,X∗ 6≤ t1)
P (X∗ 6≤ t1)

= 1− lim
t→∞P (X∗ 6≤ tx|X∗ 6≤ t1)

= lim
t→∞P (X∗ ≤ tx|X∗ 6≤ t1) . (2.13)

Thus, we see that under the condition X∗ 6≤ t1 the distribution of the exceedances of X∗ in
the area, where all components exceed the threshold (since x > 1), converges to a GPD with
Pareto margins with a scaling factor of − 1

log G∗(1) > 0. After suitable marginal transformations
we can thus assume that under the condition X 6≤ u for some threshold u the approximation
of the original distribution function F by a GPD with uniform margins is reasonable. Remark
that by our definition of a GPD we only have the representation 1 + log G for an area around
0, i.e., where all components are large. We do not assume a specific distribution for the areas
where only some components are large.

A more detailed version of the result (2.13) showing equivalence to F ∈ D(G) can be found in
Theorems 2.2 and 2.3 of Rootzén and Tajvidi (2005, [60]) for a slightly different version of a
multivariate GPD, see Remark 2.2.3. In Section 5.2 of Falk et al. (2004, [21]) it is also shown
that multivariate GPDs are, as in the univariate case, POT-stable. Thus altogether the GPDs
are natural candidates for POT approaches in the multivariate case.

The result (2.13) was used in equation (2.9) of Smith et al. (1997, [69]) to model exceedances
over high thresholds without putting it into a multivariate GPD context, which we will do in this
manuscript. A variant of (2.13) leading to an extreme value approximation of exceedances over
high thresholds was used in Section 2 of Ledford and Tawn (1996, [49]) to model the correspond-
ing exceedances. Together with a limiting point process result in Coles and Tawn (1991, [10]) and
Joe et al. (1992, [43]) threshold exceedances are often assumed to follow extreme value distribu-
tions. Statistical estimation in such models is done for example in Coles and Tawn (1994, [11]).
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In this manuscript we will model exceedances over high thresholds as coming from GPDs and
will give estimation procedures for this model assumption in Chapters 4 to 6.

Extreme value distributions arise as limiting distributions of suitably scaled maxima. Since
minx = −max(−x), the corresponding limiting distributions G̃ for suitably scaled minima can
easily be given as

G̃(x) = G(−x),

where G(x) = P (X1 ≥ x1, . . . , Xd ≥ xd) is the survivor function of an extreme value distri-
bution G, see Section 9.1 of Reiss and Thomas (2001, [57]). One can correspondingly define
generalized Pareto distributions in this case as

W̃ (x) := 1 + log G̃(x) = 1 + log G(−x).

They are natural candidates for the modelling of the distribution of shortfalls below a certain
threshold. To our knowledge these distributions have not been investigated yet.

For more details on the definitions of GPDs and EVDs and their consequences we refer to Falk
et al. (2004, [21]), Reiss and Thomas (2001, [57]), Coles (2001, [8]) and Beirlant et al. (2005, [3]).

We will show two important theorems for generalized Pareto distributions next.

Theorem 2.2.4
Let the generalized Pareto distribution W be continuously differentiable of order d. Then the
corresponding angular density l fulfills

l

(
1
x1∑d

i=1
1
xi

, . . . ,

1
xd−1∑d
i=1

1
xi

)
=

x2
1 · . . . · x2

d(
−∑d

i=1
1
xi

)−(d+1)

∂d

∂x1 · · · ∂xd
W (x1, . . . , xd).

Proof:
For the angular density of an extreme value distribution with Fréchet margins it is known from
Theorem 1 in Coles and Tawn (1991, [10]) or Section 3.2 in Kotz and Nadarajah (2000, [47])
that

∂d

∂y1 · · · ∂yd
Ṽ (y1, . . . , yd) = −

(
d∑

i=1

yi

)−(d+1)

l

(
y1∑d
i=1 yi

, . . . ,
yd−1∑d
i=1 yi

)
(2.14)

holds where Ṽ is the exponent measure function of the corresponding extreme value distribution
with Fréchet margins. Here we have a generalized Pareto distribution W with uniform margins
and exponent measure function V . This passage is done with the transformation y 7→ − 1

y . We
are going to investigate how (2.14) changes with the transformation of the margins.

Let V (x1, . . . , xd) be the exponent measure function with regard to uniform margins as defined
in (2.8). Then the GPD has the representation

W (x1, . . . , xd) = 1− V (x1, . . . , xd)

in a neighborhood of 0. We have

Ṽ (y1, . . . , yd) = V

(
− 1

y1
, . . . ,− 1

yd

)
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and, furthermore, by the usage of the chain rule (Theorem 165.2 in Heuser (1998, [38])),

∂d

∂y1 · · · ∂yd
Ṽ (y1, . . . , yd) =

∂d

∂y1 · · · ∂yd

(
V

(
− 1

y1
, . . . ,− 1

yd

))

=
1

y2
1 · . . . · y2

d

(
∂d

∂x1 · · · ∂xd
V

)(
− 1

y1
, . . . ,− 1

yd

)
.

This result inserted in (2.14) gives

1
y2
1 · . . . · y2

d

(
∂d

∂x1 · · · ∂xd
V

) (
− 1

y1
, . . . ,− 1

yd

)
= −

(
d∑

i=1

yi

)−(d+1)

l

(
y1∑d
i=1 yi

, . . . ,
yd−1∑d
i=1 yi

)
.

By putting now again xi = − 1
yi

for i = 1, . . . , d one arrives at

x2
1 · . . . · x2

d ·
∂d

∂x1 · · · ∂xd
V (x1, . . . , xd) = −

(
−

d∑

i=1

1
xi

)−(d+1)

l

(
1
x1∑d

i=1
1
xi

, . . . ,

1
xd−1∑d
i=1

1
xi

)
.

Thus, the angular density has the representation

l

(
1
x1∑d

i=1
1
xi

, . . . ,

1
xd−1∑d
i=1

1
xi

)
= − x2

1 · . . . · x2
d(

−∑d
i=1

1
xi

)−(d+1)

∂d

∂x1 · · · ∂xd
V (x1, . . . , xd).

Replacing W = 1− V we see that the assertion holds.
¤

The next theorem shows the importance of the standard Pickands coordinates, since they de-
compose GPD distributed random vectors into two conditionally independent components.

Theorem 2.2.5
Let (X1, . . . , Xd) follow a generalized Pareto distribution W , whose Pickands dependence func-
tion D has continuous partial derivatives of order d. Let C := X1 + . . . + Xd and Z :=
(X1/C, . . . , Xd−1/C) be the standard random Pickands coordinates. Put

φ(z, c) := |c|d−1

(
∂d

∂x1 · · · ∂xd
W

) (
T−1

P (z, c)
)
. (2.15)

Then φ depends only on z and, therefore, we put φ(z) := φ(z, c).

If µ :=
∫
Rd−1

φ(z) dz > 0 we have for c0 < 0 close to 0 the following assertions:

(i) Under the condition C > c0 the components Z and C of the Pickands coordinates are
independent.

(ii) C is conditionally on (c0, 0) uniformly distributed, more precisely P (C > c) = µ|c| for
c0 ≤ c ≤ 0 and, thus,

P (C ≥ c|C > c0) =
c

c0
, c0 ≤ c ≤ 0.
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(iii) Conditional on C > c0 the Pickands coordinate Z has the density

f(z) =
φ(z)
µ

, z ∈ Rd−1.

Proof:
See Theorem 5.4.2 in Falk et al. (2004, [21]).

¤

Definition 2.2.6
For a differentiable GPD W the function

φ(z) := |c|d−1

(
∂d

∂x1 · · · ∂xd
W

) (
T−1

P (z, c)
)
, z ∈ Rd−1

from Theorem 2.2.5 is called the Pickands density.
♦

Remark that the Pickands density is the density of a probability measure only after the division
by µ (in case µ > 0), else it is the density of a measure, which assigns the mass µ to Rd−1.

2.3 Basic Examples of Generalized Pareto Distributions

In this section we present some examples of multivariate generalized Pareto distributions. We
begin with the two extreme cases of independence and complete dependence in Section 2.3.1. Af-
ter that we investigate the most important parametric family, the logistic model in Section 2.3.2.
We also generalize a known counterexample from Falk et al. (2004, [21]) to an arbitrary dimen-
sion d ≥ 3, showing that GP functions are not necessarily distribution functions. The nested
logistic model and the asymmetric logistic model, which are generalizations of the logistic model
are investigated in Sections 2.3.3 and 2.3.4. The asymmetric logistic model is thereby used to
show that the angular measure of a GPD is not uniquely determined.

These models, together with a lot of others, can be found in Sections 3.4 and 3.5 of Kotz and
Nadarajah (2000, [47]), described there for the case of extreme value distributions.

2.3.1 The Cases of Independence and Complete Dependence

Choose the angular measure ν such that it has only mass in the vertices of Rd−1, i.e.,

ν({ei}) = 1, i = 0, . . . , d− 1,

where ei, i = 1, . . . , d − 1 denote the standard unit vectors of Rd−1 and e0 := 0. Thus ei,
i = 0, . . . , d−1, are the vertices of the unit simplex Rd−1. It is easy to see that the conditions (2.7)
hold for this ν. One is also able to see by short elementary calculations that this leads to

D(t1, . . . , td−1) = 1, (t1, . . . , td−1) ∈ Rd−1,

and

W (x1, . . . , xd) = 1 +
d∑

i=1

xi = 1− ||x||1, (x1, . . . , xd) ∈ (−∞, 0)d close to 0.
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In the case of an extreme value distribution with this angular measure ν, the corresponding
random vector X has independent components X1, . . . , Xd. Therefore, this case is referred to
as the independence case. In the generalized Pareto setup, however, the behavior is different.
Actually in this case no observations fall into an area close to 0, which we show in the next
theorem.

Theorem 2.3.1
Let (X1, . . . , Xd) be distributed by W (x) close to 0 with D(t1, . . . , td−1) = 1 for all (t1, . . . , td−1) ∈
Rd−1. With Ks := {x ∈ (−∞, 0)d | ||x||∞ < s}, s > 0 we denote the (open) cube with edge
length s in the negative quadrant. Then there exists b > 0 close to 0 such that

P ((X1, . . . , Xd) ∈ Kb) = 0.

Proof:
By definition of a generalized Pareto distribution there exists a b > 0 close to 0 such that
(X1, . . . , Xd) has the distribution function W (x1, . . . , xd) = 1 +

∑d
i=1 xi on Kb. Thus by Theo-

rem A.2.2 in Bhattacharya and Rao (1976, [4]) the density of W on Kb is

∂d

∂x1 · · · ∂xd
W (x1, . . . , xd) = 0,

and the assertion follows.
¤

However, it is still justified to speak of this case as the case of independence with the follow-
ing rational: Let Y = (Y1, . . . , Yd) be a random vector with distribution function F and tail
independent components Yi. Suppose that the distribution function of Yi is in the univariate
domain of attraction of exp(x), x ≤ 0 for each i = 1, . . . , d. Then F is in the domain of at-
traction of exp (−||x||1), see Proposition 5.27 in Resnick (1987, [59]). Thus by (2.13) or the
results of Section 2 in Rootzén and Tajvidi (2005, [60]) we know that observations falling over
a high threshold have asymptotically the distribution 1 + log (exp (−||x||1)) = 1 − ||x||1 in the
extreme area. So W (x) = 1−||x||1 is the asymptotic exceedance distribution of random vectors
with tail independent components, meaning that random vectors with tail independent compo-
nents have in the limit no observations close to the origin. Because of this we, still, speak of
W (x) = 1− ||x||1 as the independence case.

For practical purposes one should check ones observations for tail independence before applying
a GPD model to make sure that one is not in the case of independence. Otherwise observed
data are likely to show dependence even though one has tail independence, see also Section 8.4
of Coles (2001, [8]). In the case of tail independence a multivariate analysis of the tails can
be reduced to the analysis of the tails of lower dimensional margins. Suggestions for tests for
tail independence are given for example in Section 6.5 of Falk et al. (2004, [21]) or in Falk and
Michel (2006, [24]) for EVD and related models, in Section 9.5.2 of Beirlant et al. (2005, [3])
also for other models.

In the sequel we will introduce the other extreme case, the case of complete dependence. If we
choose the angular measure ν such that it has only mass in the point (1/d, . . . , 1/d) ∈ Rd−1, i.e.,

ν ({(1/d, . . . , 1/d)}) = d

then we get from (2.6) by elementary calculations

D(t1, . . . , td−1) = max

(
t1, . . . , td−1, 1−

d∑

i=1

ti

)
, (t1, . . . , td−1) ∈ Rd−1,
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and
W (x1, . . . , xd) = 1 + min (x1, . . . , xd) = 1−max(−x1, . . . ,−xd) = 1− ||x||∞

for (x1, . . . , xd) ∈ (−∞, 0)d close to 0. Here we have X1 = . . . = Xd with probability 1, i.e., the
random variables are completely dependent. This can be seen as follows.

Theorem 2.3.2
Let X1 < 0 be uniformly distributed on (−1, 0), and put Xd := Xd−1 := . . . := X1 with
probability 1. Then the joint distribution function of (X1, . . . , Xd) on the negative quadrant is
W (x) = 1− ||x||∞ for ||x||∞ ≤ 1 and equal to 0 elsewhere.

Proof:
Choose x = (x1, . . . , xd) ∈ (−1, 0)d. Then

W (x) = P (X1 ≤ x1, . . . , Xd ≤ xd) = P (X1 ≤ x1, . . . , X1 ≤ xd) = P (X1 ≤ min(x1, . . . , xd))
= 1 + min(x1, . . . , xd) = 1−max(|x1|, . . . , |xd|) = 1− ||x||∞.

If one component of x is smaller than −1, we have obviously W (x) = 0.
¤

In case the random variables X1, . . . , Xd follow an extreme value distribution with this angular
measure ν, we also have X1 = . . . = Xd with probability 1. Therefore, this case is referred to as
the case of complete dependence (see also Section 3.2 in Kotz and Nadarajah (2000, [47])).

Remark that we have shown in Theorem 2.3.2 that in the case of complete dependence the GP
function is a distribution function on its entire support.

2.3.2 The Generalized Pareto Distribution of Logistic Type

We introduce in this subsection to the most important parametric family, the logistic family.

Definition 2.3.3
Let (X1, . . . , Xd), d ≥ 2, Xi < 0, i = 1, . . . , d, be a multivariate random vector, whose distribu-
tion function Wλ has for (x1, . . . , xd) in a neighborhood of 0 the representation

Wλ(x1, . . . , xd) = 1 +

(
d∑

i=1

xi

)
Dλ

(
x1∑d
i=1 xi

, . . . ,
xd−1∑d
i=1 xi

)

with

Dλ(t1, . . . , td−1) =




d−1∑

i=1

tλi +

(
1−

d−1∑

i=1

ti

)λ



1/λ

, λ ∈ [1,∞).

The function Wλ is called the generalized Pareto distribution of logistic type, Dλ the Pickands
dependence function of logistic type.

♦

The extreme value distribution of logistic type is, due to its simplicity, one of the most exten-
sively studied and most frequently applied multivariate EVDs, see Section 3.5.1 of Kotz and
Nadarajah (2000, [47]) for more information.
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We start our examination of the GPD of logistic type by giving a simple representation of Wλ

in showing that the corresponding norm in this case is the usual || · ||λ–norm. This makes the
logistic model a very natural model.

Lemma 2.3.4
We have

Wλ(x1, . . . , xd) = 1−
(

d∑

i=1

(−xi)λ

) 1
λ

= 1− ||x||λ,

in which xi < 0, i = 1, . . . , d, x = (x1, . . . , xd) and x lies in a neighborhood of 0.

Proof:
In the following calculations we have xi < 0 and, thus,

∑d
i=1 xi < 0. This leads to

Wλ(x1, . . . , xd) = 1 +




d∑

j=1

xj


Dλ

(
x1∑d
j=1 xj

, . . . ,
xd−1∑d
j=1 xj

)

= 1 +




d∑

j=1

xj







d−1∑

i=1

(
xi∑d

j=1 xj

)λ

+

(
1−

d−1∑

i=1

xi∑d
j=1 xj

)λ



1
λ

= 1 +




d∑

j=1

xj







d−1∑

i=1

(
xi∑d

j=1 xj

)λ

+

(
xd∑d
j=1 xj

)λ



1
λ

= 1 +




d∑

j=1

xj







d∑

i=1

(
xi∑d

j=1 xj

)λ



1
λ

= 1 +




d∑

j=1

xj







d∑

i=1

(
|xi|

|∑d
j=1 xj |

)λ



1
λ

= 1 +

∑d
j=1 xj

|∑d
j=1 xj |

[
d∑

i=1

|xi|λ
] 1

λ

= 1−
(

d∑

i=1

(−xi)λ

) 1
λ

= 1− ||x||λ,

in a neighborhood of 0, which proves the assertion.
¤

Remark 2.3.5
With this representation the case λ = ∞ of complete dependence can also be included in the
logistic family, since we know from functional analysis that

lim
λ→∞

||x||λ = ||x||∞

for any x ∈ Rd. This can be seen as follows. From
∑d

i=1 |xi|λ ≥ max1≤i≤d |xi|λ we conclude
||x||λ ≥ ||x||∞ and lim infλ→∞ ||x||λ ≥ ||x||∞. On the other hand, the inequality

∑d
i=1 |xi|λ ≤

dmax1≤i≤d |xi|λ implies ||x||λ ≤ d
1
λ ||x||∞ and, thus, lim supλ→∞ ||x||λ ≤ ||x||∞, which shows the

assertion.

The parameter λ can now be interpreted as governing the dependence, since λ = 1 is the case
of independence and λ = ∞ the case of complete dependence. Values of λ close to 1 imply a
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great deal of independence, large values of λ a great deal of dependence. A sort of middle case
is given in Lemma 2.3.11.

However, the distribution function for λ = ∞ is not differentiable, which is the reason for
excluding it from some assertions like the following lemma.

♦

We now consider the density of Wλ.

Lemma 2.3.6
For 1 ≤ λ < ∞ the function

wλ(x1, . . . , xd) =
∂d

∂x1 · · · ∂xd
Wλ(x1, . . . , xd)

is the density of Wλ in a neighborhood of 0. It has the representation

wλ(x1, . . . , xd) =
d−1∏

i=1

(iλ− 1)
d∏

i=1

(−xi)λ−1

(
d∑

i=1

(−xi)λ

)−d+ 1
λ

=
d−1∏

i=1

(iλ− 1)
d∏

i=1

(−xi)λ−1||x||1−dλ
λ

for xi < 0, i = 1, . . . , d, and x close to 0.

Proof:
The case λ = 1 is obvious since we know by Theorem 2.3.1 that W1 has probability 0 close to 0
and the function wλ reduces to 0 for λ = 1. Therefore, we assume from now on λ > 1.

First we show by induction that the equation

∂j

∂x1 . . . ∂xj
Wλ(x1, . . . , xd) =

j−1∏

i=1

(iλ− 1)
j∏

i=1

(−xi)λ−1

(
d∑

i=1

(−xi)λ

)−j+ 1
λ

(2.16)

holds for j = 1, . . . , d.

To compute the derivative we return to the representation from Lemma 2.3.4. For the zero step
of the induction (j = 1) we have:

∂

∂x1
Wλ(x1, . . . , xd) = − 1

λ

(
d∑

i=1

(−xi)λ

) 1
λ
−1

λ(−x1)λ−1(−1) =

(
d∑

i=1

(−xi)λ

) 1
λ
−1

(−x1)λ−1

=
1−1∏

i=1

(iλ− 1)
1∏

i=1

(−xi)λ−1

(
d∑

i=1

(−xi)λ

)−1+ 1
λ

,

with the convention that an empty product equals 1.

Assume that the assertion is shown for j − 1 < d. Then

∂j

∂x1 . . . ∂xj
Wλ(x1, . . . , xd)
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=
∂

∂xj

∂j−1

∂x1 . . . ∂xj−1
Wλ(x1, . . . , xd)

=
∂

∂xj




j−2∏

i=1

(iλ− 1)
j−1∏

i=1

(−xi)λ−1

(
d∑

i=1

(−xi)λ

)−j+1+ 1
λ




=
j−2∏

i=1

(iλ− 1)
j−1∏

i=1

(−xi)λ−1 ∂

∂xj




(
d∑

i=1

(−xi)λ

)−j+1+ 1
λ




=
j−2∏

i=1

(iλ− 1)
j−1∏

i=1

(−xi)λ−1

(
1
λ
− j + 1

) (
d∑

i=1

(−xi)λ

)−j+ 1
λ

λ(−xj)λ−1(−1)

=
j−2∏

i=1

(iλ− 1)
j−1∏

i=1

(−xi)λ−1

(
d∑

i=1

(−xi)λ

)−j+ 1
λ

(−xj)λ−1(λj − λ− 1)

=
j−1∏

i=1

(iλ− 1)
j∏

i=1

(−xi)λ−1

(
d∑

i=1

(−xi)λ

)−j+ 1
λ

.

Setting j = d in (2.16), one gets

wλ(x1, . . . , xd) =
∂d

∂x1 . . . ∂xd
Wλ(x1, . . . , xd) =

d−1∏

i=1

(iλ− 1)
d∏

i=1

(−xi)λ−1

(
d∑

i=1

(−xi)λ

)−d+ 1
λ

=
d−1∏

i=1

(iλ− 1)
d∏

i=1

(−xi)λ−1||x||1−dλ
λ ,

and with Theorem A.2.2 from Bhattacharya and Rao (1976, [4]) the assertion follows.
¤

We want to give the Pickands density, introduced in Theorem 2.2.5 and Definition 2.2.6, for the
logistic case. This is the first main result of this manuscript.

Theorem 2.3.7
Let 1 < λ < ∞. Put

φλ(z1, . . . , zd−1) := |c|d−1

(
∂d

∂x1 · · · ∂xd
Wλ

)
(T−1

P (z1, . . . , zd−1, c))

and µλ :=
∫
Rd−1

φλ(z) dz. Then we have

φλ(z1, . . . , zd−1) =

(
d−1∏

i=1

(iλ− 1)

) (∏d−1
i=1 zi

)λ−1 (
1−∑d−1

i=1 zi

)λ−1

Dλ(z1, . . . , zd−1)dλ−1
, (2.17)

µλ > 0 and, thus, fλ(z) := φλ(z)
µλ

is well defined. Furthermore, φλ and fλ respectively assume
their maxima on the compact set Rd−1 in the point

(
1
d , . . . , 1

d

)
, and they have the values

mλ := d
1
λ
−1

d−1∏

i=1

(iλ− 1) and
mλ

µλ
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respectively.

Proof:
We show equation (2.17) by using the density

wλ(x1, . . . , xd) =
∂d

∂x1 . . . ∂xd
Wλ(x1, . . . , xd) =

d−1∏

i=1

(iλ− 1)
d∏

i=1

(−xi)λ−1

(
d∑

i=1

(−xi)λ

)−d+ 1
λ

of Wλ according to Lemma 2.3.6. Then we can compute φλ by inserting the inverse Pickands
transformation (2.2).

φλ(z1, . . . , zd−1) = |c|d−1wλ(T−1
P (z1, . . . , zd−1, c))

= |c|d−1
d−1∏

i=1

(iλ− 1)
d−1∏

i=1

(−czi)λ−1


−c


1−

d−1∑

j=1

zj







λ−1

·




d−1∑

i=1

(−czi)λ +


−c


1−

d−1∑

j=1

zj







λ



1
λ
−d

=

(
d−1∏

i=1

(iλ− 1)

)
|c|d−1(−c)(λ−1)(d−1)

(
d−1∏

i=1

zλ−1
i

)
(−c)λ−1


1−

d−1∑

j=1

zj




λ−1

·


(−c)λ

d−1∑

i=1

zλ
i + (−c)λ


1−

d−1∑

j=1

zj




λ



1
λ
−d

=

(
d−1∏

i=1

(iλ− 1)

)
|c|d−1|c|(λ−1)d

(
d−1∏

i=1

zλ−1
i

)
1−

d−1∑

j=1

zj




λ−1

·|c|λ( 1
λ
−d)




d−1∑

i=1

zλ
i +


1−

d−1∑

j=1

zj




λ



1
λ
−d

=

(
d−1∏

i=1

(iλ− 1)

)
|c|d−1+(λ−1)d+1−λd

(
d−1∏

i=1

zλ−1
i

)
1−

d−1∑

j=1

zj




λ−1

·Dλ(z1, . . . , zd−1)1−dλ

=

(
d−1∏

i=1

(iλ− 1)

) (∏d−1
i=1 zi

)λ−1 (
1−∑d−1

i=1 zi

)λ−1

Dλ(z1, . . . , zd−1)dλ−1

Therefore, we have shown equation (2.17). Since φλ(z) is continuous, non-negative and does not
vanish in the point

(
1
d , . . . , 1

d

)
for 1 < λ < ∞ (see below), µλ > 0 follows.

Now we have to show that φλ takes its maximum on Rd−1 in the point
(

1
d , . . . , 1

d

)
. The existence

of the maximum is guaranteed, since φλ is continuous and Rd−1 is compact. By Section 4.3
of Falk et al. (2004, [21]) the denominator in (2.17) has its minimum in the point

(
1
d , . . . , 1

d

)
.

Therefore, it suffices to show that the numerator assumes its maximum also in
(

1
d , . . . , 1

d

)
. This

will now be proven.
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Put, therefore,

N(z1, . . . , zd−1) :=

(
d−1∏

i=1

zi

)λ−1 (
1−

d−1∑

i=1

zi

)λ−1

.

We have obviously N ≥ 0 on Rd−1. Furthermore, we have N |∂Rd−1
= 0 with

∂Rd−1 :=

{
(x1, . . . , xd−1) ∈ Rd−1

∣∣∣∣∣xi = 0 for an i ∈ {1, . . . , d− 1} or
d−1∑

i=1

xi = 1

}
,

the boundary of Rd−1. This follows immediately from inserting the corresponding boundary
conditions. Thus, the maximum must lie in the interior. We compute the gradient of N and set
it to 0.

∂

∂zi
N(z1, . . . , zd−1) =




d−1∏

j=1,j 6=i

zj




λ−1

(λ− 1)zλ−2
i


1−

d−1∑

j=1

zj




λ−1

+




d−1∏

j=1

zj




λ−1

(λ− 1)


1−

d−1∑

j=1

zj




λ−2

(−1) = 0

⇐⇒ 0 = zλ−2
i


1−

d−1∑

j=1

zj




λ−1

− zλ−1
i


1−

d−1∑

j=1

zj




λ−2

⇐⇒ 0 = 1−
d−1∑

j=1

zj − zi ⇐⇒ 2zi +
d−1∑

j=1,i6=j

zj = 1

In the transformation the respective terms could be cancelled, since they only vanish on the
boundary. The final equation is equivalent to the system of linear equations

Az :=




2 1 1 · · · 1
1 2 1 · · · 1

1 1 2
...

...
...

. . . 1
1 1 · · · 1 2







z1

z2

z3
...

zd−1




=




1
1
1
...
1




.

The matrix A is a (d − 1) × (d − 1)–matrix and has full rank, thus the system of equations
is uniquely solvable. Insertion of z =

(
1
d , . . . , 1

d

)T shows that this is a solution and, thus, the
only possible one. Therefore, N takes its maximum on

(
1
d , . . . , 1

d

)
, and we can conclude that(

1
d , . . . , 1

d

)
is the maximum of φλ.

Inserting this point in (2.17) we get

mλ =

(
d−1∏

i=1

(iλ− 1)

)
(1

d)d(λ−1)

(
d

(
1
d

)λ
) 1

λ
(dλ−1)

= d
1
λ
−1

d−1∏

i=1

(iλ− 1).

¤
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Observe that we can compute the Pickands density only for λ < ∞, since the case λ = ∞ is not
differentiable. Furthermore, we have seen that µλ =

∫
Rd−1

φλ(z) dz > 0 if and only if 1 < λ < ∞,
since φ1 = 0. Therefore, the case λ = 1 also had to be excluded in Theorem 2.3.7.

Example 2.3.8
We display the Pickands density φλ of the logistic family computed in Theorem 2.3.7 for d = 2
and various λ,
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♦

Remark 2.3.9
The factor

∏d−1
i=1 (iλ− 1) appearing in Theorem 2.3.7 also has the representation

d−1∏

i=1

(iλ− 1) = λd−1 Γ
(
d− 1

λ

)

Γ
(
1− 1

λ

) ,
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where Γ(x) =
∫∞
0 tx−1 exp(−t) dt, x > 0 denotes the Gamma function. Since the relation

Γ(x + 1) = xΓ(x) holds (see Theorem 150.1 in Heuser (1998, [38])), we get

d−1∏

i=1

(iλ− 1) = λd−1
d−1∏

i=1

(
i− 1

λ

)

= λd−1

(
d− 1− 1

λ

)
·
(

d− 2− 1
λ

)
·
(

d− 3− 1
λ

)
· . . . ·

(
2− 1

λ

)
·
(

1− 1
λ

)

= λd−1 Γ
(
d− 1

λ

)

Γ
(
d− 1− 1

λ

) · Γ
(
d− 1− 1

λ

)

Γ
(
d− 2− 1

λ

) · Γ
(
d− 2− 1

λ

)

Γ
(
d− 3− 1

λ

) · . . . · Γ
(
3− 1

λ

)

Γ
(
2− 1

λ

) · Γ
(
2− 1

λ

)

Γ
(
1− 1

λ

)

= λd−1 Γ
(
d− 1

λ

)

Γ
(
1− 1

λ

) .

This second representation can be simpler for practical evaluations with the computer, if one can
compute Γ(x) efficiently. With the product representation d multiplications have to be done,
which is of order O(d), whereas for fixed λ a constant number of operations has to be carried
out for the representation via the Gamma function. In Mathematica, for instance, this new
representation is superior to the product representation for very high d. This can be seen in the
following table, where both representations were used to compute the factor for λ = 4.

d 10 1000 100000 10000000

time in sec. for λd−1 Γ(d− 1
λ)

Γ(1− 1
λ) 0.01 0.01 0.01 0.01

time in sec. for
∏d−1

i=1 (iλ− 1) 0.01 0.01 0.26 26.8

The differences are only noticeable in very high dimensions. This new representation will also
be used for the computation of upper bounds of certain runtimes in Theorem 3.2.13.

♦

Example 2.3.10
The logistic family has, according to Section 3.5.1 in Kotz and Nadarajah (2000, [47]), for
1 ≤ λ < ∞ the angular density

lλ(z1, . . . , zd−1)

=
d−1∏

i=1

(iλ− 1)

(
d−1∏

i=1

zi

)−λ−1 (
1−

d−1∑

i=1

zi

)−λ−1



d−1∑

i=1

z−λ
i +

(
1−

d−1∑

i=1

zi

)−λ



1/λ−d

with d∗λ = d for λ > 1. Like the Pickands density the angular density reduces to 0 for λ = 1. It
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has for d = 2 and miscellaneous λ the graphs
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and for d = 3 the graphs
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♦

For the investigation of the tail dependence structure the behavior of l(z) especially at the
vertices of Rd−1 is of interest. A convergence of the angular density to ∞ in the vertices signifies
a high degree of independence, convergence to 0 a high degree of dependence. This follows
from the fact that in the case of independence the angular measure ν has all its mass in the
vertices of Rd−1, and in the case of complete dependence all its mass in the point

(
1
d , . . . , 1

d

)
,

see Section 2.3.1.

The tail dependence structure is not distinctly visualized in such a way by the Pickands density,
since all functions have a maximum in the interior and converge to 0 at the boundary in the
logistic case, see Example 2.3.8. However, we will see that the Pickands density will also be an
important tool in these considerations in Chapter 4.
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We want to investigate the logistic case still a little closer. We are interested in a kind of
boundary between complete dependence and independence. The following lemma shows that
λ = d can be considered as such a boundary, since in this case the angular density converges to
a fixed real value not equal to 0 when approaching the vertices.

Lemma 2.3.11
We have for λ > 1

lim
z→ei

lλ(z) =





∞ for λ < d,(∏d−1
i=1 (iλ− 1)

)
(d− 1)1/λ−d for λ = d,

0 for λ > d,

where ei, i = 0, . . . , d− 1 are the vertices of Rd−1 as above.

Proof:
We first consider the case z → e0.

lim
t→0

lλ(t, . . . , t) = lim
t→0

(
d−1∏

i=1

(iλ− 1)

)(
td−1

)−λ−1
(1− (d− 1)t)−λ−1 ·

·
(
(d− 1)t−λ + (1− (d− 1)t)−λ

)1/λ−d

=

(
d−1∏

i=1

(iλ− 1)

)
lim
t→0

(
td−1

)−λ−1 (
(d− 1)t−λ

)1/λ−d

=

(
d−1∏

i=1

(iλ− 1)

)
(d− 1)1/λ−d lim

t→0
t(d−1)(−λ−1)+(−λ)(1/λ−d)

=

(
d−1∏

i=1

(iλ− 1)

)
(d− 1)1/λ−d lim

t→0
t−d+λ

=





∞ for λ < d,(∏d−1
i=1 (iλ− 1)

)
(d− 1)1/λ−d for λ = d,

0 for λ > d.

Since l(z) is continuous, we have

lim
t→0

lλ(t, . . . , t) = lim
z→e0

lλ(z).

Because of the following equalities, which are easily checked,

lλ(t, . . . , t) = lλ(1− (d− 1)t, t, . . . , t) = lλ(t, 1− (d− 1)t, t, . . . , t) = . . . = lλ(t, . . . , t, 1− (d− 1)t)

and again the continuity of lλ, we have exactly the same behavior in the other vertices. Thus
λ = d can be seen as the boundary case between complete dependence and independence.

¤

In Remark 2.2.3 it was stated that a GP function W is not necessarily a distribution function on
its entire support in the negative quadrant. In Section 5.1 of Falk et al. (2004, [21]) an example
was given for this by showing that in the trivariate case W (x1, x2, x3) = max(1+x1 +x2 +x3, 0)
does not define a distribution function, since it would assign the probability −1

2 to the cube
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(−1
2 , 0

]d. This example corresponds to the case where D = 1, i.e, the case of independence, which
corresponds to the logistic case with λ = 1. We will show in the sequel that this counterexample
also holds for dimensions d ≥ 3, and we show additionally that this example can be transferred
to cases where D is not the constant 1. This is done with the help of the logistic model. Recall
that it was shown in Section 5.1 of Falk et al. (2004, [21]) that a bivariate GPD is a distribution
function on its entire support in the negative quadrant. The main result we present here shows
that no such assertion is possible for arbitrary dimension d ≥ 3.

Theorem 2.3.12
The following assertions hold for any dimension d ≥ 3:

(i) The GP function
W1(x) = max (1− ||x||1, 0)

for x = (x1, . . . , xd) with xi < 0, i = 1, . . . , d does not define a distribution function.

(ii) There exists a λ0 > 1, depending on d, such that the function

Wλ(x) = max (1− ||x||λ, 0)

for x = (x1, . . . , xd) with xi < 0, i = 1, . . . , d does not define a distribution function for
any 1 ≤ λ < λ0.

Proof:
We prove assertion (i) by showing that the cube K :=

(−1
2 , 0

]d would be assigned a negative
probability if W1 were a distribution function. By Section 4.1 of Falk et al. (2004, [21]) the
probability of K under W1 would be

P (K) =
∑

m∈{0,1}d

(−1)(d−Pd
j=1 mj)W1

(
0m1

(
−1

2

)1−m1

, . . . , 0md

(
−1

2

)1−md
)

with the convention that 00 := 1. Note that if more than one argument of W1 is −1
2 , i.e., mj = 0

for more than one index j = 1, . . . , d, then W1 equals 0 at this point. Thus the above sum
reduces to those summands, where at most one component of m is 0. With

1A(x) =
{

1 if x ∈ A,
0 else,

(2.18)

denoting the indicator function of a set A, the probability of K can be written as

P (K) = W1(0, . . . , 0) +
d∑

j=1

(−1)(d−(d−1))W1

(
−1

2
· 1{j}(1), . . . ,−1

2
· 1{j}(d)

)

= 1 +
d∑

j=1

(−1)
(

1− 1
2

)
= 1− d

2
.

We have 1− d
2 < 0 if d ≥ 3 and, thus, W1 cannot define a distribution function there.

We will show assertion (ii) by using assertion (i) together with a continuity argument. Since we
know from functional analysis that

lim
λ→1

||x||λ = ||x||1
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for any x ∈ Rd, we can conclude the pointwise convergence

lim
λ→1

Wλ(x) = W1(x) (2.19)

for x in the negative quadrant.

Let m = (m1, . . . , md) ∈ {0, 1}d and define the point

pm :=

(
0m1

(
−1

2

)1−m1

, . . . , 0md

(
−1

2

)1−md
)
∈ Rd

with the convention 00 = 1 as above. Since the cardinality of {0, 1}d is 2d, the pm define 2d

different points.

Let ε > 0 be given. By the pointwise convergence (2.19) of Wλ, there exists a λm > 1 for any
m ∈ {0, 1}d such that

|Wλ(pm)−W1(pm)| < ε

2d

for all 1 < λ < λm. Put λ0 := minm∈{0,1}d λm > 1. Then we have

|Wλ(pm)−W1(pm)| < ε

2d
(2.20)

for all 1 < λ < λ0 and all m ∈ {0, 1}d. If we assume that Wλ is a distribution function, we have
for the probability Pλ(K) under Wλ

∣∣∣∣Pλ(K)−
(

1− d

2

)∣∣∣∣ =

∣∣∣∣∣∣
∑

m∈{0,1}d

(−1)(d−Pd
j=1 mj)Wλ (pm)−

∑

m∈{0,1}d

(−1)(d−Pd
j=1 mj)W1 (pm)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

m∈{0,1}d

(−1)(d−Pd
j=1 mj) (Wλ (pm)−W1(pm))

∣∣∣∣∣∣

≤
∑

m∈{0,1}d

|Wλ (pm)−W1(pm)| (2.20)
<

∑

m∈{0,1}d

ε

2d
= ε.

We know that 1 − d
2 ≤ −1

2 for d ≥ 3. If we choose ε = 1
4 , then we know that there exists a

λ0 > 1 such that we have Pλ(K) ≤ −1
4 for any 1 < λ < λ0. Thus Wλ cannot be a distribution

function for λ < λ0.
¤

We have shown in Theorem 2.3.12 that GP functions close to the independence case do not define
a distribution function on their entire support for arbitrary dimension d ≥ 3. However, we have
seen in Theorem 2.3.2 that the GP function is a valid distribution function on its entire support
in the case of complete dependence for any dimension. An open question is, how far one has to
divert from the independence case or, respectively, how close one has to be to case of complete
dependence such that a GP function is a valid distribution function on its entire support. Is
there, for example, a λ0 in the logistic case such that for λ < λ0 the corresponding GPD is not
a distribution function and for λ > λ0 the corresponding GP function is a distribution function
on its entire support? Or is λ = ∞ the only case, where a GP function is a distribution function
on its entire support?
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Theorem 2.3.12 was shown by computing the probability of the cube
(−1

2 , 0
]d. These consid-

erations can surely be generalized to cubes (−a, 0]d with a > 0 suitably chosen. What these
examples do not show, however, is the underlying mathematical structure, which results in this
strange behavior for d ≥ 3.

2.3.3 The Generalized Pareto Distribution of Nested Logistic Type

The logistic GPD from the previous section is an exchangeable model, i.e., an arbitrary per-
mutation of the components of a corresponding random vector X has the same distribution as
the original random vector itself. Such a random vector is often referred to as symmetric. In
this and the next section we will introduce GPDs, whose corresponding random vectors are not
exchangeable. Such models are often called asymmetric.

The idea behind the nested logistic model is to generalize the logistic model to allow different
degrees of dependence between the components of the underlying random vector. In the logistic
model with parameter λ the bivariate marginal distributions are again GPDs of logistic type, all
with the same parameter λ. In the nested logistic model the bivariate margins will still remain
GPDs of logistic type but with (possibly) different parameters.

The nested logistic distribution introduced in this section is a special case of the two-level logistic
distribution from Section 3.5.2 in Kotz and Nadarajah (2000, [47]). The nested logistic model
is described in its full multivariate version among others in Section 3 of Joe (1994, [42]) for the
extreme value case.

Let λ1, . . . , λd−1 ≥ 1. Define now for x = (x1, . . . , xd) ∈ Rd recursively the following norm

||x||λ1,...,λd−1
:= ||(x1, . . . , xd)||λ1,...,λd−1

:=
∣∣∣
∣∣∣
(||(x1, . . . , xd−1)||λ1,...,λd−2

, xd

) ∣∣∣
∣∣∣
λd−1

, (2.21)

where || · ||λ is the usual λ–norm with the convention that the absolute value is taken if the
norm does not have an index. For d = 2 or λ1 = . . . = λd−1 = λ the norm (2.21) reduces to the
λ–norm. For d > 2 one can easily show by induction for d that this is indeed a norm.

Definition 2.3.13
For λ1 ≥ . . . ≥ λd−1 ≥ 1 the distribution function

Wλ1,...,λd−1
(x1, . . . , xd) := 1− ||(x1, . . . , xd)||λ1,...,λd−1

for xi < 0, i = 1, . . . , d, close to 0 is called the generalized Pareto distribution of nested logistic
type.

♦

Remark 2.3.14
In the case d = 2 or λ1 = . . . = λd−1 this is the logistic distribution from Definition 2.3.3. For
d = 3 the distribution function is

Wλ1,λ2(x1, x2, x3) = 1−
((

(−x1)
λ1 + (−x2)

λ1

)λ2/λ1

+ (−x3)
λ2

)1/λ2

.

One can easily see by letting the respective arguments tend to 0 that the marginal distribution
of X1 and X2 is a logistic GPD with parameter λ1, that the marginal distribution of X1 and X3

as well as the marginal distribution of X2 and X3 is a logistic GPD with the same parameter λ2.



CHAPTER 2. MULTIVARIATE GENERALIZED PARETO DISTRIBUTIONS 32

For d = 4 we have the distribution function

Wλ1,λ2,λ3(x1, x2, x3, x4) = 1−
(((

(−x1)
λ1 + (−x2)

λ1

)λ2/λ1

+ (−x3)
λ2

)λ3/λ2

+ (−x4)
λ3

)1/λ4

.

Again the bivariate margins are logistic with different parameters. The extension to higher
dimensions is intuitively clear, although a little tedious to notate.

Remark that not every possible combination of bivariate logistic margins can be combined in
this manner to a nested logistic model. The references at the beginning of the section contain
further possible generalizations with more freedom in the choice of the dependence parameters
of the bivariate margins.

The condition λ1 ≥ . . . ≥ λd−1 ≥ 1 is sufficient for Wλ1,...,λd−1
to define a GPD, see Section 5

in Joe (1994, [42]), where the proof is given for extreme value distributions. It is, however,
unclear if this condition is also necessary. A counterexample, given in Remark 6.9 of Hof-
mann (2006, [39]), shows that arbitrary λ1, . . . , λd−1 ≥ 1 do not always give an extreme value
and, thus, a generalized Pareto distribution of nested logistic type.

The angular and the Pickands density are hard to denote in general dimension. We, therefore,
only give them for dimension d = 3, since they will be plotted in Example 2.3.15 and used in
the estimation procedures in Section 7.3.

lλ1,λ2(z1, z2) = (λ2 − 1) (z1z2)
−λ1−1 (1− z1 − z2)

−λ2−1
(
z−λ1
1 + z−λ1

2

)λ2
λ1
−2

·
((

z−λ1
1 + z−λ1

2

)λ2
λ1 + (1− z1 − z2)

−λ2

) 1
λ2
−3

·
(

(λ1 − λ2)(1− z1 − z2)−λ2 + (λ1 + λ2 − 1)
(
z−λ1
1 + z−λ1

2

)λ2
λ1

)
,

φλ1,λ2(z1, z2) = (λ2 − 1) (z1z2)
λ1−1 (1− z1 − z2)

λ2−1
(
zλ1
1 + zλ1

2

)λ2
λ1
−2

·
((

zλ1
1 + zλ1

2

)λ2
λ1 + (1− z1 − z2)

λ2

) 1
λ2
−3

·
(

(λ1 − λ2)(1− z1 − z2)λ2 + (λ1 + λ2 − 1)
(
zλ1
1 + zλ1

2

)λ2
λ1

)
.

In Section 4.5 of Coles and Tawn (1991, [10]) it is stated that the underlying angular measure ν
has all its mass in the interior of Rd−1, i.e., d∗λ1,...,λd−1

= d, if not λi = 1 for i = 1, . . . , d− 1.
♦

Example 2.3.15
In this example we display the angular density and the Pickands density of the nested logistic
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GPD for various sets of parameters in d = 3. We start with the angular density
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and display the Pickands density with the same parameters:
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In both cases the first parameter determines the spreading along the viewing axes, the second
one the spreading along the orthogonal direction. For small λ2 the angular density converges to
∞ at the origin and the line z1 + z2 = 1.

Observe also that for small λ2 the Pickands density is unbounded when approaching the origin,
see for example the graphic with λ1 = 4 and λ2 = 1.5. This seems always to be the case
when λd−1 < d− 1 and all parameters are pairwise different. This relation is easy to see in the
trivariate case but is an open problem to show in the general multivariate case.

♦
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2.3.4 The Generalized Pareto Distribution of Asymmetric Logistic Type

The family of asymmetric logistic distributions was first introduced in Tawn (1990, [73]) for the
extreme value case. It is derived there as a limiting distribution of componentwise maxima of
storms recorded at different locations along a coastline and is also a generalization of the logistic
model but does not include the nested logistic model from the previous section.

Definition 2.3.16
Let B := P({1, . . . , d})\{∅} be the power set of {1, . . . , d} containing all non-empty subsets,
and let λΓ ≥ 1 be arbitrary numbers for every Γ ∈ B with |Γ| > 1 and λΓ = 1 for |Γ| = 1.
Furthermore, let 0 ≤ ψj,Γ ≤ 1, where ψj,Γ = 0 if j /∈ Γ and the side condition

∑
Γ∈B ψj,Γ = 1 is

fulfilled for j = 1, . . . , d. Then the distribution function

Was(x1, . . . , xd) := 1−
∑

Γ∈B





∑

j∈Γ

(−ψj,Γxj)
λΓ





1/λΓ

(2.22)

for xi < 0, i = 1, . . . , d, close to 0 is called the generalized Pareto distribution of asymmetric
logistic type.

♦
Remark 2.3.17
Due to the side conditions for the ψj,Γ we have in this model 2d−1(d+2)−(2d+1) free parameters,
2d − d− 1 for the various λΓ and the rest for the ψj,Γ, see Section 2 in Stephenson (2003, [70]).
In the case ψj,{1,...,d} = 1 for j = 1, . . . , d and λ = λΓ ≥ 1 we have again the (symmetric) logistic
distribution.

This model has in general d∗ < d, i.e., the angular measure ν has mass on the boundary of Rd−1.
It has, using the abbreviation ∆ := {1, . . . , d}, the angular density

las(z1, . . . , zd−1) =

(
d−1∏

i=1

(iλ∆ − 1)

)
·
(

d∏

i=1

ψi,∆

)λ∆

·
(

d−1∏

i=1

zi

)−λ∆−1 (
1−

d−1∑

i=1

zi

)−λ∆−1

·



d−1∑

i=1

(
ψi,∆

zi

)λ∆

+

(
ψd,∆

1−∑d−1
i=1 zi

)λ∆



1
λ∆

−d

,

and

d∗ =
d∑

j=1

ψj,∆,

see Sections 3.4 and 3.5 in Kotz and Nadarajah (2000, [47]).

With d = 2 and the short notations ψ1 := ψ1,{1,2}, ψ2 := ψ2,{1,2}, λ := λ{1,2}, formula (2.22)
reduces to

Was(x1, x2) = 1 + (1− ψ1)x1 + (1− ψ2)x2 −
(
(−ψ1x1)λ + (−ψ2x2)λ

)1/λ
,

and the angular density becomes

las(z) = (λ− 1) · (ψ1ψ2)
λ · z−λ−1 (1− z)−λ−1 ·

((
ψ1

z

)λ

+
(

ψ2

1− z

)λ
) 1

λ
−2

= (λ− 1) · (ψ1ψ2)
λ · zλ−2 (1− z)λ−2 ·

(
(ψ2z)λ + (ψ1(1− z))λ

) 1
λ
−2

.
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Here we have d∗ = ψ1 + ψ2.

In the case d = 3 we have

Was(x1, x2, x3) = 1 + (1− ψ1 − ψ3 − ψ7)x1 + (1− ψ2 − ψ5 − ψ8)x2 + (1− ψ4 − ψ6 − ψ9)x3

−
(
(−ψ1x1)λ1 + (−ψ2x2)λ1

)1/λ1

−
(
(−ψ3x1)λ2 + (−ψ4x3)λ2

)1/λ2

−
(
(−ψ5x2)λ3 + (−ψ6x3)λ3

)1/λ3

−
(
(−ψ7x1)λ4 + (−ψ8x2)λ4 + (−ψ9x3)λ4

)1/λ4

with the corresponding short notations for the ψj,Γ and λΓ.
♦

Lemma 2.3.18
The function

was(x1, . . . , xd) =

(
d−1∏

i=1

(iλ∆ − 1)

)(
d∏

i=1

ψi,∆

)λ∆ (
d∏

i=1

(−xi)

)λ∆−1



d∑

j=1

(−ψj,∆xj)λ∆




1
λ∆

−d

is the density of Was for xi < 0, i = 1, . . . , d and x close to 0.

Proof:
In the case λ∆ = 1 the derivative ∂d

∂x1···∂xd
Was reduces to 0 as in Theorem 2.3.1, which is covered

by was. This is again the independence case. Therefore, we assume from now on λ∆ > 1.

First we show by induction that the equation

∂j

∂x1 . . . ∂xj
Was(x1, . . . , xd) (2.23)

=
∑

Γ∈B,{1,...,j}⊆Γ

(
j−1∏

i=1

(iλΓ − 1)

)(
j∏

i=1

ψi,Γ

)λΓ (
j∏

i=1

(−xi)

)λΓ−1

·
(∑

i∈Γ

(−ψi,Γxi)λΓ

) 1
λΓ
−j

holds for j = 1, . . . , d.

For the zero step of the induction (j = 1) we have

∂

∂x1
Was(x1, . . . , xd)

= −
∑

Γ∈B,{1}⊆Γ

1
λΓ

(∑

i∈Γ

(−ψi,Γxi)λΓ

) 1
λΓ
−1

λΓ (−ψ1,Γx1)
λΓ−1 (−ψ1,Γ)

=
∑

Γ∈B,{1}⊆Γ

(
1−1∏

i=1

(iλΓ − 1)

)(
1∏

i=1

(ψ1,Γ)

)λΓ
(

1∏

i=1

(−x1)

)λΓ−1 (∑

i∈Γ

(−ψi,Γxi)λΓ

) 1
λΓ
−1

.

Assume that the assertion is shown for j − 1. Then

∂j

∂x1 . . . ∂xj
Was(x1, . . . , xd)
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=
∂

∂xj

∂j−1

∂x1 . . . ∂xj−1
Was(x1, . . . , xd)

=
∂

∂xj


 ∑

Γ∈B,{1,...,j−1}⊆Γ

(
j−2∏

i=1

(iλΓ − 1)

)(
j−1∏

i=1

ψi,Γ

)λΓ (
j−1∏

i=1

(−xi)

)λΓ−1

·
(∑

i∈Γ

(−ψi,Γxi)λΓ

) 1
λΓ
−j+1




=
∑

Γ∈B,{1,...,j}⊆Γ

(
j−2∏

i=1

(iλΓ − 1)

)(
j−1∏

i=1

ψi,Γ

)λΓ (
j−1∏

i=1

(−xi)

)λΓ−1

· ∂

∂xj




(∑

i∈Γ

(−ψi,Γxi)λΓ

) 1
λΓ
−j+1




=
∑

Γ∈B,{1,...,j}⊆Γ

(
j−2∏

i=1

(iλΓ − 1)

)(
j−1∏

i=1

ψi,Γ

)λΓ (
j−1∏

i=1

(−xi)

)λΓ−1

·
(

1
λΓ

− j + 1
) (∑

i∈Γ

(−ψi,Γxi)λΓ

) 1
λΓ
−j

λΓ(−ψj,Γxj)λΓ−1(−ψj,Γ)

=
∑

Γ∈B,{1,...,j}⊆Γ

(
j−1∏

i=1

(iλΓ − 1)

)(
j∏

i=1

ψi,Γ

)λΓ (
j∏

i=1

(−xi)

)λΓ−1

·
(∑

i∈Γ

(−ψi,Γxi)λΓ

) 1
λΓ
−j

.

With Theorem A.2.2 of Bhattacharya and Rao (1976, [4]) and by setting j = d in (2.23), one
gets the assertion, since the leading sum then consists only of one summand.

¤

Note that in the density in Lemma 2.3.18 only the parameters with the set ∆ = {1, . . . , d} in
the index occur. In contrast to the extreme value case the lower hierarchical parameters do not
play a role close to the origin.

The next corollary follows from Lemma 2.3.18 and is another main result of this manuscript.
To our knowledge it has not been mentioned anywhere else.

Corollary 2.3.19
Let W1 and W2 be GPDs. The fact that there exists a neighborhood U of 0 (in the relative
topology of the negative quadrant), such that

PW1(B) = PW2(B)

for all Borel sets B ⊆ U does not necessarily entail that W1 and W2 and correspondingly ν1 and
ν2 are identical.

Proof:
We will show the assertion by looking at the case d = 3. Let W1 and W2 be two trivariate
GPDs of asymmetric logistic type with identical parameters ψ7, ψ8, ψ9 and λ4 in the notation of
Remark 2.3.17 but with different parameter λ1. Then we know by Lemma 2.3.18 that W1 and
W2 have the same density close to the origin, i.e., PW1(B) = PW2(B) for all Borel sets B close
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to the origin. Let Gi = exp(Wi − 1), i = 1, 2 be the corresponding extreme value distributions.
The angular measures ν1 and ν2 belonging to G1 and G2 and, thus, W1 and W2 are given in
Section 3.5.1 of Kotz and Nadarajah (2000, [47]) in terms of their measure densities. These
measure densities depend (on the lower boundaries of R2) on the parameter λ1 and are, thus,
different for different λ1, leading to ν1 6= ν2.

¤

When modelling exceedances with GPDs it is in some cases, thus, possible by Corollary 2.3.19 to
do this with different GPDs, which lead however to the same results, since only the area around
the origin is of interest. For distributions Fi ∈ D(Gi), i = 1, 2 from the domains of attraction of
different EVDs G1 6= G2 it may be possible to model exceedances over high thresholds of F1 by
W2 and vice versa.

Remark that the difference between the two angular measures in the proof of Corollary 2.3.19 lay
in the lower dimensional boundaries of the unit simplex. Both measures agreed in the interior
and, thus, had the same angular density.

The proof of Corollary 2.3.19 can also be done with dimensions d > 3, since it only needed free
lower hierarchical parameters. Since these exist in the asymmetric logistic case only for d > 2,
we again see an example of the fact that things tend to get complicated or even sometimes
strange, when going from dimension d = 2 to dimension d = 3.

Theorem 2.3.20
The Pickands density for the asymmetric logistic distribution is

φas(z1, . . . , zd−1) =

(
d−1∏

i=1

(iλ∆ − 1)

)(
d∏

i=1

ψi,∆

)λ∆ (
d−1∏

i=1

zi

)λ∆−1 (
1−

d−1∑

i=1

zi

)λ∆−1

·




d−1∑

j=1

(ψj,∆zj)
λ∆ +


ψd,∆


1−

d−1∑

j=1

zj







λ∆



1
λ∆

−d

.

Proof:
Using the density from Lemma 2.3.18 and the definition of the Pickands density from Defini-
tion 2.2.6 we get

φas(z1, . . . , zd−1) = |c|d−1was(T−1
P (z1, . . . , zd−1, c))

= |c|d−1

(
d−1∏

i=1

(iλ∆ − 1)

)(
d∏

i=1

ψi,∆

)λ∆ (
d−1∏

i=1

(−czi)

)λ∆−1 (
−c

(
1−

d−1∑

i=1

zi

))λ∆−1

·




d−1∑

j=1

(−ψj,∆czj)λ∆ +


−ψd,∆c


1−

d−1∑

j=1

zj







λ∆



1
λ∆

−d

= |c|d−1+(d−1)(λ∆−1)+λ∆−1+λ∆( 1
λ ∆

−d)
(

d−1∏

i=1

(iλ∆ − 1)

)(
d∏

i=1

ψi,∆

)λ∆ (
d−1∏

i=1

zi

)λ∆−1

·
(

1−
d−1∑

i=1

zi

)λ∆−1



d−1∑

j=1

(ψj,∆zj)λ∆ +


ψd,∆


1−

d−1∑

j=1

zj







λ∆



1
λ∆

−d
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=

(
d−1∏

i=1

(iλ∆ − 1)

)(
d∏

i=1

ψi,∆

)λ∆ (
d−1∏

i=1

zi

)λ∆−1 (
1−

d−1∑

i=1

zi

)λ∆−1

·




d−1∑

j=1

(ψj,∆zj)λ∆ +


ψd,∆


1−

d−1∑

j=1

zj







λ∆



1
λ∆

−d

.

¤

Example 2.3.21
In this example we want to illustrate the angular density and the Pickands density of the
asymmetric logistic model for various sets of parameters. We start with the bivariate angular
density
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and then show the bivariate Pickands density with the same parameters.
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This is a non exchangeable model, which can be clearly seen in the pictures since they are not
symmetric to 1

2 . The parameters ψ1 and ψ2 determine the center of the corresponding density,
the parameter λ its shape.
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We also give the angular densities for the dimension d = 3 for selected parameter values
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and the corresponding Pickands densities.

Λ = 2, Ψ7 = 0.4, Ψ8 = 0.7, Ψ9 = 0.8

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

0
0.25
0.5

0.75
1

0.2
0.4

0.6
0.8

Λ = 7, Ψ7 = 0.4, Ψ8 = 0.7, Ψ9 = 0.8

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

0
5

10
15
20

0.2
0.4

0.6
0.8

Λ = 2, Ψ7 = 0.3, Ψ8 = 0.1, Ψ9 = 0.1

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

0
0.1
0.2
0.3
0.4

0.2
0.4

0.6
0.8

Λ = 7, Ψ7 = 0.3, Ψ8 = 0.1, Ψ9 = 0.1

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

0
1
2
3
4

0.2
0.4

0.6
0.8

♦



Chapter 3

Simulation in Multivariate
Generalized Pareto Models

Many problems arising in complex practical situations cannot be solved by analytical methods.
Then one has to rely on Monte-Carlo methods, which use simulations. One such example,
estimating the Value-at-Risk of portfolios, can be found in Section 7 of Brommundt (2003, [5]).
If one wanted to use GPD distributed random vectors for the tails of the distributions, instead
of the elliptical distributions used there, one would have to generate random vectors following a
multivariate GPD. The aim of this section is to complete this task.

Simulations can also be used as checks for new statistical testing or estimation procedures before
applying them to real data. They are useful in this situation, since one controls the entire setup
there, whereas the background of real data is commonly unknown. This will be a frequent
application of the simulation algorithms derived in this chapter.

We will start in Section 3.1 with a special case, where we will present an efficient simulation
algorithm for GPDs of logistic type using the Shi transformation. An analogous algorithm
simulating EVDs of logistic type has been given in Stephenson (2003, [70]).

In Section 3.2 we will consider a method for a wider range of GPDs, using standard Pickands
coordinates. But this method will not be as efficient as the first one. It is comparable to a
method of simulating EVDs presented in Section 3 of Ghoudi et al. (1998, [32]), although we
also formulate it for higher dimensions than the bivariate case. Another comparable algorithm
for the EVD case is to be found in Section 2 of Nadarajah (1999, [51]) where, however, the
random vectors are simulated from a limiting and not a direct representation.

Finally in Section 3.3 we will simulate relative frequencies of GPD distributed random vectors
falling into certain sets. The application of this algorithm will be necessary in Section 6.3.

3.1 Simulation of Generalized Pareto Distributions of Logistic
Type

The aim of this section is to simulate generalized Pareto distributions of logistic type, which
were defined in Section 2.3.2. Shi (1995, [64]) proposed a transformation that we call Shi trans-
formation, which was used by Stephenson (2003, [70]) to simulate random vectors following a
multivariate EVD of logistic type. In Theorem 5.4.2 of Falk et al. (2004, [21]) the conditional

40
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independence of the Pickands coordinates of GPDs was shown in a certain neighborhood of 0,
see also Theorem 2.2.5. Both approaches will be joined to formulate a simulation algorithm for
GPDs of logistic type.

In Section 3.1.1 we will introduce the Shi transformation and the Shi coordinates, which will
turn out to be the crucial tool of the simulation algorithm. Afterwards we show in Section 3.1.2
the conditional independence of the Shi coordinates in logistic GPD models and give a straight-
forward and easy to implement simulation algorithm in Section 3.1.3.

3.1.1 The Shi Transformation

As before, the dimension d is always a number larger than 1 throughout this text.

Definition 3.1.1
The mapping P : (0,∞)× (

0, π
2

)d−1 → (0,∞)d with

P (r, ψ1, . . . , ψd−1) = r


cosψ1, cosψ2 sinψ1, . . . , cosψd−1

d−2∏

j=1

sinψj ,

d−1∏

j=1

sinψj




is the polar transformation, and its inverse defines the polar coordinates r, ψ = (ψ1, . . . , ψd−1)
in (0,∞)d.

♦

Remark 3.1.2
The following facts are well known (see for example Mardia et al. (1979, [50]), Section 2.4): the
mapping P is one-to-one, infinitely often differentiable and

1 = ||P (1, ψ1, . . . , ψd−1)||22 =
d−1∑

i=1

cos2 ψi

i−1∏

j=1

sin2 ψj +
d−1∏

j=1

sin2 ψj , (3.1)

i.e., for r = 1 the function P (1, ψ1, . . . , ψd−1) is a one-to-one mapping from the cube
(
0, π

2

)d−1

in Rd−1 onto the intersection of (0,∞)d with the unit sphere of Rd with respect to the Euclidian
|| · ||2–norm.

♦

Lemma 3.1.3
The mapping T :

(
0, π

2

)d−1 → (0,∞)d with

T (ψ1, . . . , ψd−1) := (T1(ψ1), T2(ψ1, ψ2), . . . , Td−1(ψ1, . . . , ψd−1), Td(ψ1, . . . , ψd−1))

:=


cos2 ψ1, cos2 ψ2 sin2 ψ1, . . . , cos2 ψd−1

d−2∏

j=1

sin2 ψj ,
d−1∏

j=1

sin2 ψj




maps the cube
(
0, π

2

)d−1 one-to-one and infinitely often differentiable onto the simplex

Sd :=

{
x ∈ (0,∞)d

∣∣∣∣∣
d∑

i=1

xi = 1

}
,

i.e., to the unit circle in (0,∞)d with regard to the || · ||1–norm.
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Proof:
The function x 7→ x2 maps the interval (0, 1) one-to-one onto itself, thus the bijectivity and
differentiability of T follow from the corresponding properties of the polar transformation in
Remark 3.1.2. Let

x = (x1, . . . , xd) = T (ψ1, . . . , ψd−1)
= (T1(ψ1), T2(ψ1, ψ2), . . . , Td−1(ψ1, . . . , ψd−1), Td(ψ1, . . . , ψd−1)) .

Then we have because of (3.1)

d∑

i=1

xi =
d−1∑

i=1

Ti(ψ1, . . . , ψi) + Td(ψ1, . . . , ψd−1) =
d−1∑

i=1

cos2 ψi

i−1∏

j=1

sin2 ψj +
d−1∏

j=1

sin2 ψj

= ||P (1, ψ1, . . . , ψd−1)||22 = 1.

¤
Remark 3.1.4
Let x = (x1, . . . , xd) ∈ (−∞, 0)d and λ ≥ 1. Then

x = −||x||λ
( −x1

||x||λ , . . . ,
−xd

||x||λ

)

holds. We have

∣∣∣∣
∣∣∣∣
( −x1

||x||λ , . . . ,
−xd

||x||λ

)∣∣∣∣
∣∣∣∣
λ

=

(
d∑

i=1

(−xi)λ

||x||λλ

)1/λ

=
1

||x||λ

(
d∑

i=1

(−xi)λ

)1/λ

︸ ︷︷ ︸
=||x||λ

= 1 (3.2)

and, thus,

∣∣∣∣
∣∣∣∣
(

(−x1)λ

||x||λλ
, . . . ,

(−xd)λ

||x||λλ

)∣∣∣∣
∣∣∣∣
1

=
d∑

i=1

(−xi)λ

||x||λλ
=




(
d∑

i=1

(−xi)λ

||x||λλ

)1/λ



λ

(3.2)
= 1λ = 1.

It follows that (
(−x1)λ

||x||λλ
, . . . ,

(−xd)λ

||x||λλ

)
∈ Sd,

and this point has a representation with regard to the transformation T . More precisely, there
exist uniquely determined (ψ1, . . . , ψd−1) ∈

(
0, π

2

)d−1 with

(
(−x1)λ

||x||λλ
, . . . ,

(−xd)λ

||x||λλ

)
=


cos2 ψ1, cos2 ψ2 sin2 ψ1, . . . , cos2 ψd−1

d−2∏

j=1

sin2 ψj ,
d−1∏

j=1

sin2 ψj


 .

This is equivalent to (
x1

||x||λ , . . . ,
xd

||x||λ

)
=

=


− cos2/λ ψ1,− cos2/λ ψ2 sin2/λ ψ1, . . . ,− cos2/λ ψd−1

d−2∏

j=1

sin2/λ ψj ,−
d−1∏

j=1

sin2/λ ψj


 .
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By putting c := ||x||λ one arrives at

x = c


− cos2/λ ψ1,− cos2/λ ψ2 sin2/λ ψ1, . . . ,− cos2/λ ψd−1

d−2∏

j=1

sin2/λ ψj ,−
d−1∏

j=1

sin2/λ ψj




= c
(
−T

1/λ
1 (ψ1),−T

1/λ
2 (ψ1, ψ2), . . . ,−T

1/λ
d−1(ψ1, . . . , ψd−1),−T

1/λ
d (ψ1, . . . , ψd−1)

)
.

♦

Definition 3.1.5
The transformation described in Remark 3.1.4

x = (x1, . . . , xd) = STλ (c, ψ1, . . . , ψd−1)

:= −c


cos2/λ ψ1, cos2/λ ψ2 sin2/λ ψ1, . . . , cos2/λ ψd−1

d−2∏

j=1

sin2/λ ψj ,
d−1∏

j=1

sin2/λ ψj




is called the Shi transformation STλ. The transformation STλ : (0,∞)× (
0, π

2

)d−1 → (−∞, 0)d

is one-to-one and infinitely often differentiable.

Let (x1, . . . , xd) ∈ (−∞, 0)d. The components of the vector

(c, ψ1, . . . , ψd−1) := ST−1
λ (x1, . . . , xd)

are the Shi coordinates of (x1, . . . , xd). c is called the radial component and ψ := (ψ1, . . . , ψd−1)
is called the angular component.

By (C, Ψ1, . . . ,Ψd−1) = ST−1
λ (X1, . . . , Xd) we denote the Shi coordinates of a random vector

(X1, . . . , Xd) ∈ (−∞, 0)d. Remark that C = ||X||λ.
♦

Note that in the case λ = 2 the Shi transformation is up to the sign the polar transformation from
Definition 3.1.1. For λ = 1 we have a variant of the inverse Pickands transformation (2.2), where
the angular component has an additional parametrization with regard to the cube

(
0, π

2

)d−1.

Example 3.1.6
For the illustration of the mapping properties of STλ some plots were created for d = 2. The
rectangle (0, 1) × (0, π/2), which was covered by a grid and which can be seen in the following
plot,
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is mapped one-to-one by STλ onto the unit ball with regard to the || · ||λ–norm. In the following
graphic, one can see the images of the grid points of the rectangle shown above under the Shi
transformation for different λ:

-1

-1

Λ=10

-1

-1

Λ=15

-1

-1

Λ=20

-1

-1

Λ=4

-1

-1

Λ=6

-1

-1

Λ=8

-1

-1

Λ=1

-1

-1

Λ=2

-1

-1

Λ=3

Note that the border areas of (0, 1)×(0, π/2) are stretched with increasing λ, whereas the interior
areas are compressed.

♦
Lemma 3.1.7
Put γi := cos ψi, σi := sinψi for i = 1, . . . , d − 1 and α := 2

λ . Then the Jacobian matrix of the
transformation STλ has the following form

A1,...,d := JSTλ
(c, ψ1, . . . , ψd−1) =

=




− γα
1 αcγα

1
σ1
γ1

0 · · · 0
−γα

2 σα
1 −αcγα

2 σα
1

γ1

σ1
αcγα

2 σα
1

σ2
γ2

0

−γα
3

∏2
i=1 σα

i −αcγα
3

∏2
i=1 σα

i
γ1

σ1
−αcγα

3

∏2
i=1 σα

i
γ2

σ2

. . . 0

−γα
4

∏3
i=1 σα

i −αcγα
4

∏3
i=1 σα

i
γ1

σ1
−αcγα

4

∏3
i=1 σα

i
γ2

σ2
0

...
...

...
...

...
...

... 0
−γα

d−1

∏d−2
i=1 σα

i −αcγα
d−1

∏d−2
i=1 σα

i
γ1

σ1
−αcγα

d−1

∏d−2
i=1 σα

i
γ2

σ2
· · · αcγα

d−1

∏d−2
i=1 σα

i
σd−1

γd−1

−∏d−1
i=1 σα

i −αc
∏d−1

i=1 σα
i

γ1

σ1
−αc

∏d−1
i=1 σα

i
γ2

σ2
· · · −αc

∏d−1
i=1 σα

i
γd−1

σd−1




.
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Proof:
The Shi transformation is

xi = −cT
1/λ
i (ψ1, . . . , ψi) for i ≤ d− 1 and xd = −cT

1/λ
d (ψ1, . . . , ψd−1). (3.3)

For a shorter notation we will write xi = −cT
1/λ
i (ψ1, . . . , ψi) from now on as an abbreviation

for (3.3), disregarding that a variable ψd does not exist in the case i = d.

Since
∂xi

∂c
= −T

1/λ
i (ψ1, . . . , ψi),

the first column of the Jacobian matrix

A1,...,d =




∂x1
∂c

∂x1
∂ψ1

∂x1
∂ψ2

· · · ∂x1
∂ψd−1

∂x2
∂c

∂x2
∂ψ1

∂x2
∂ψ2

· · · ∂x2
∂ψd−1

...
...

...
. . .

...
∂xd
∂c

∂xd
∂ψ1

∂xd
∂ψ2

· · · ∂xd
∂ψd−1




is obvious. It is also obvious that for i < j one has

∂xi

∂ψj
= 0,

since the corresponding terms do not depend on ψj . For the last row we have

∂xd

∂ψj
=

∂

∂ψj

(
−c

d−1∏

i=1

sin2/λ ψi

)
= −c




d−1∏

i=1,i 6=j

sin2/λ ψi


 2

λ
sin2/λ−1 ψj cosψj

= − 2
λ

c

(
d−1∏

i=1

sin2/λ ψi

)
cosψj

sinψj
.

With the abbreviations given above one can easily see that this is the last row. For the upper
secondary diagonal we compute

∂xj

∂ψj
=

∂

∂ψj

(
−c cos2/λ ψj

j−1∏

i=1

sin2/λ ψi

)
= −c

(
j−1∏

i=1

sin2/λ ψi

)
2
λ

cos2/λ−1 ψj(− sinψj)

=
2
λ

c

(
j−1∏

i=1

sin2/λ ψi

)
cos2/λ ψj

sinψj

cosψj
.

Finally for the other elements, i.e., for k < d and j = 1, . . . , k − 1 we get

∂xk

∂ψj
=

∂

∂ψj

(
−c cos2/λ ψk

k−1∏

i=1

sin2/λ ψi

)

= −c cos2/λ ψk




k−1∏

i=1,i6=j

sin2/λ ψi


 2

λ
sin2/λ−1 ψj(cosψj)

= − 2
λ

c

(
k−1∏

i=1

sin2/λ ψi

)
cos2/λ ψk

cosψj

sinψj
.

Thus, all the entries of the Jacobian matrix have been given, and the assertion follows.
¤
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Lemma 3.1.8
With the abbreviations of Lemma 3.1.7 we have

| det(A1,...,d)| = (αc)d−1
d−1∏

i=1

γα−1
i σ

α(d−i)−1
i .

Proof:
We prove the assertion by induction. For d = 2 we have the Jacobian matrix

A1,2 =

(
−γα

1 αcγα
1

σ1
γ1

−σα
1 −αcσα

1
γ1

σ1

)
,

which has the determinant

|det(A1,2)| =
∣∣∣∣γα

1 αcσα
1

γ1

σ1
+ σα

1 αcγα
1

σ1

γ1

∣∣∣∣ = αcγα
1 σα

1

∣∣∣∣
γ1

σ1
+

σ1

γ1

∣∣∣∣ = αcγα
1 σα

1

∣∣∣∣
γ2
1 + σ2

1

γ1σ1

∣∣∣∣
︸ ︷︷ ︸

= 1
γ1σ1

= αcγα−1
1 σα−1

1 = (αc)2−1
2−1∏

i=1

γα−1
i σ

α(2−i)−1
i .

Assume now that the assertion holds for all matrices of dimension d − 1. By expanding the
determinant according to the first row and the calculation rules for determinants (Chapter VI,
§2 in Lang (1966, [48])), one gets

det(A1,...,d) =

= −γα
1 · det




− αcγα
2 σα

1
γ1

σ1
αcγα

2 σα
1

σ2
γ2

0 0

−αcγα
3

∏2
i=1 σα

i
γ1

σ1
−αcγα

3

∏2
i=1 σα

i
γ2

σ2

. . . 0

−αcγα
4

∏3
i=1 σα

i
γ1

σ1
−αcγα

4

∏3
i=1 σα

i
γ2

σ2
0

...
...

...
...

... 0
−αcγα

d−1

∏d−2
i=1 σα

i
γ1

σ1
−αcγα

d−1

∏d−2
i=1 σα

i
γ2

σ2
· · · αcγα

d−1

∏d−2
i=1 σα

i
σd−1

γd−1

−αc
∏d−1

i=1 σα
i

γ1

σ1
−αc

∏d−1
i=1 σα

i
γ2

σ2
· · · −αc

∏d−1
i=1 σα

i
γd−1

σd−1




−

−αcγα
1

σ1

γ1
· det




− γα
2 σα

1 αcγα
2 σα

1
σ2
γ2

0 0

−γα
3

∏2
i=1 σα

i −αcγα
3

∏2
i=1 σα

i
γ2

σ2

. . . 0

−γα
4

∏3
i=1 σα

i −αcγα
4

∏3
i=1 σα

i
γ2

σ2
0

...
...

...
...

... 0
−γα

d−1

∏d−2
i=1 σα

i −αcγα
d−1

∏d−2
i=1 σα

i
γ2

σ2
· · · αcγα

d−1

∏d−2
i=1 σα

i
σd−1

γd−1

−∏d−1
i=1 σα

i −αc
∏d−1

i=1 σα
i

γ2

σ2
· · · −αc

∏d−1
i=1 σα

i
γd−1

σd−1




= −γα
1 αc

γ1

σ1
(σα

1 )d−1 · det(A2,...,d)− αcγα
1

σ1

γ1
(σα

1 )d−1 · det(A2,...,d)
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= −αcγα
1 (σα

1 )d−1 · det(A2,...,d) ·
(

γ1

σ1
+

σ1

γ1

)

︸ ︷︷ ︸
= 1

γ1σ1

= −αcγα−1
1 σ

α(d−1)−1
1 · det(A2,...,d).

Thus, we obtain by induction

|det(A1,...,d)| = αcγα−1
1 σ

α(d−1)−1
1 · |det(A2,...,d)|

= αcγα−1
1 σ

α(d−1)−1
1 · (αc)d−2

d−1∏

i=2

γα−1
i σ

α(d−i)−1
i

= (αc)d−1
d−1∏

i=1

γα−1
i σ

α(d−i)−1
i ,

which completes the proof.
¤

3.1.2 Conditional Independence of the Shi Coordinates

Let
Bλ

r := {x ∈ (−∞, 0)d : ||x||λ < r}, r > 0,

be the ball in (−∞, 0)d of radius r with respect to the || · ||λ–norm, centered at the origin.

Lemma 3.1.9
Let (X1, . . . , Xd) < 0 be a random vector, which is distributed according to a GPD Wλ of logistic
type. Choose a number c0 > 0, such that Wλ has on Bλ

c0 the representation

Wλ(x1, . . . , xd) = 1− ||x||λ
and denote by wλ the density of Wλ. Then the inverse Shi transformation ST−1

λ : Bλ
c0 →

(0, c0)×
(
0, π

2

)d−1 of the random vector restricted to Bλ
c0 has a density, which is independent of

the radial component c and which factorizes with regard to the angular components ψ1, . . . , ψd−1.
More precisely,

f(c, ψ1, . . . , ψd−1) =
d−1∏

i=1

(
2i− 2

λ

)
· cosψi · sin2(d−i)−1 ψi

is the density of ST−1
λ (X1, . . . , Xd) on (0, c0) ×

(
0, π

2

)d−1 under the restriction (X1, . . . , Xd) ∈
Bλ

c0 .

Proof:
According to the density transformation theorem (see for example Fristedt and Gray (1997, [28]),
Section 9.5), Lemma 2.3.6 and Lemma 3.1.8, one has

f(c, ψ1, . . . , ψd−1)
= wλ(STλ(c, ψ1, . . . , ψd−1)) |detJSTλ

(c, ψ1, . . . , ψd−1)|

=

(
d−1∏

i=1

(iλ− 1)

)
c1−dλ

d∏

i=1

(
cT

1/λ
i (ψ1, . . . , ψi)

)λ−1
(

2
λ

c

)d−1 d−1∏

i=1

cos2/λ−1 ψi · sin2(d−i)/λ−1 ψi
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=

(
d−1∏

i=1

(
2i− 2

λ

))
c1−dλ+d−1+dλ−d

d∏

i=1

(Ti(ψ1, . . . , ψi))
1−1/λ

d−1∏

i=1

cos2/λ−1 ψi · sin2(d−i)/λ−1 ψi

=

(
d−1∏

i=1

(
2i− 2

λ

))
d∏

i=1

(Ti(ψ1, . . . , ψi))
1−1/λ

d−1∏

i=1

cos2/λ−1 ψi · sin2(d−i)/λ−1 ψi.

We have now

d∏

i=1

(Ti(ψ1, . . . , ψi))
1−1/λ

=
(
cos2 ψ1

)1−1/λ · (cos2 ψ2 sin2 ψ1

)1−1/λ · (cos2 ψ3 sin2 ψ2 sin2 ψ1

)1−1/λ · . . .

. . . ·

cos2 ψd−1

d−2∏

j=1

sin2 ψj




1−1/λ

·



d−1∏

j=1

sin2 ψj




1−1/λ

=
(
cos2 ψ1

(
sin2 ψ1

)d−1
)1−1/λ

·
(
cos2 ψ2

(
sin2 ψ2

)d−2
)1−1/λ

· . . .

. . . ·
(
cos2 ψd−2

(
sin2 ψd−2

)2
)1−1/λ

· (cos2 ψd−1 sin2 ψd−1

)1−1/λ

=
d−1∏

i=1

(
cos2 ψi

(
sin2 ψi

)d−i
)1−1/λ

=
d−1∏

i=1

(
cos2−2/λ ψi sin2(d−i)−2(d−i)/λ ψi

)

and, thus, altogether

f(c, ψ1, . . . , ψd−1) =
d−1∏

i=1

(
2i− 2

λ

)
cosψi · sin2(d−i)−1 ψi,

as asserted.
¤

A corresponding result to Lemma 3.1.9 for extreme value distributions of logistic type has been
shown in Shi (1995, [64]), Theorem 3. In the extreme value case the result can immediately be
used to simulate the corresponding random vectors, which was done in Section 1 of Stephen-
son (2003, [70]). For our GPD case we still need the following Theorem 3.1.10 to be able to give
the simulation algorithm, since a GPD is only explicitly defined close to the origin.

The theorem below is a main result of this manuscript and an analogy to Theorem 5.4.2
from Falk et al. (2004, [21]) for the logistic case and the Shi transformation. Whereas in Falk
et al. (2004, [21]) the independence of the angular and the radial component of Pickands coor-
dinates for general GPDs could be shown, we prove here in addition the mutual independence
of the angular components. We are also able to specify their distributions more precisely. But
we have to pay for that by restricting ourselves to the logistic case.

Theorem 3.1.10
Let (X1, . . . , Xd) follow a logistic GPD with parameter λ > 1 and have the density

f(ψ1, . . . , ψd−1) = f(c, ψ1, . . . , ψd−1)
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with regard to its Shi coordinates on Bλ
c0 as in Lemma 3.1.9. Then f has a positive mass on(

0, π
2

)d−1:

η :=
∫

(0, π
2 )d−1

f(ψ1, . . . , ψd−1) d(ψ1, . . . , ψd−1) =
d−1∏

i=1

(
i− 1

λ

d− i

)
> 0.

Furthermore, we have, conditional on C = ||X||λ < c0:

(i) The Shi coordinates C, Ψ1, . . . ,Ψd−1 are independent.

(ii) The random variable C is on (0, c0) uniformly distributed.

(iii) The angular component Ψi has the density

fi(ψi) := (2d− 2i) cos ψi sin2(d−i)−1 ψi,

and, thus, the distribution function

Fi(ψi) :=
∫ ψi

0
fi(t) dt = sin2(d−i) ψi

with corresponding quantile function

F−1
i (ψi) = arcsin

(
2(d−i)

√
ψi

)
,

for i = 1, . . . , d− 1.

Proof:
From Fubini’s Theorem (see for example Fristedt and Gray (1997, [28]), Section 9.2) and with
ψ = (ψ1, . . . , ψd−1) one gets

η =
∫

(0, π
2 )d−1

f(ψ1, . . . , ψd−1) dψ

=
∫

(0, π
2 )d−1

d−1∏

i=1

(
2i− 2

λ

)
· cosψi · sin2(d−i)−1 ψi dψ

=
∫

(0, π
2 )d−1

d−1∏

i=1

(
i− 1

λ

d− i

)
· (2d− 2i) · cosψi · sin2(d−i)−1 ψi dψ

=

(
d−1∏

i=1

i− 1
λ

d− i

)(
d−1∏

i=1

∫ π
2

0
(2d− 2i) · cosψi · sin2(d−i)−1 ψi dψi

)

=

(
d−1∏

i=1

i− 1
λ

d− i

)(
d−1∏

i=1

[
sin2(d−i) ψi

]π
2

0

)

︸ ︷︷ ︸
=1

=
d−1∏

i=1

(
i− 1

λ

d− i

)
.

The condition η = 0 is equivalent to i = 1
λ for an i ∈ {1, . . . , d − 1}. Since λ ≥ 1 according to

Definition 2.3.3 of the logistic case this is equivalent to λ = 1. Thus

η > 0 ⇐⇒ λ > 1

follows.
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Put Ψ := (Ψ1, . . . , Ψd−1). Consequently we have for c ≤ c0

P (C < c) = P

(
C < c,Ψ ∈

(
0,

π

2

)d−1
)

=
∫ c

0

∫

(0, π
2 )d−1

f(c, ψ1, . . . , ψd−1) dψ dc

=
∫ c

0

∫

(0, π
2 )d−1

f(ψ1, . . . , ψd−1) dψ

︸ ︷︷ ︸
=η

dc = c · η. (3.4)

Then for c ∈ (0, c0)

P (C < c|C < c0) =
P (C < c,C < c0)

P (C < c0)
=

P (C < c)
P (C < c0)

=
c · η
c0 · η =

c

c0
(3.5)

holds. Thus, C is uniformly distributed on (0, c0), and we have (ii).

Let B be a Borel set from
(
0, π

2

)
. Notice that

f(c, ψ) =
d−1∏

i=1

(
i− 1

λ

d− i

)
fi(ψi) = η

d−1∏

i=1

fi(ψi) (3.6)

and
∫ π/2

0
fi(ψi) dψi =

∫ π/2

0
(2d− 2i) cos ψi sin2(d−i)−1 ψi dψi = [sin2(d−i) ψi]

π/2
0 = 1 (3.7)

for all 1 ≤ i ≤ d− 1. Then we have, for all i ∈ {1, . . . , d− 1}, by Fubini’s Theorem

P (Ψi ∈ B|C < c0) =
P (Ψi ∈ B,C < c0)

P (C < c0)

=
P (Ψ1 ∈

(
0, π

2

)
, . . . , Ψi−1 ∈

(
0, π

2

)
, Ψi ∈ B,Ψi+1 ∈

(
0, π

2

)
, . . . ,Ψd−1 ∈

(
0, π

2

)
, C < c0)

P (C < c0)

(3.4)
=

1
c0η

∫ π
2

0
. . .

∫ π
2

0

∫

B

∫ π
2

0
. . .

∫ π
2

0

∫ c0

0
f(c, ψ1, . . . , ψd−1)dcdψd−1 . . . dψi+1dψidψi−1 . . . dψ1

(3.6),(3.7)
=

1
ηc0

c0η

∫

B
(2d− 2i) cos ψi sin2(d−i)−1 ψidψi

=
∫

B
(2d− 2i) cosψi sin2(d−i)−1 ψi︸ ︷︷ ︸

=fi(ψi)

dψi.

Choosing B = (0, ψi], the above equation reduces to

Fi(ψi) := P (Ψi ≤ ψi|C < c0) =
∫ ψi

0
(2d− 2i) cos t · sin2(d−i)−1 t dt

=
[
sin2(d−i) t

]ψi

0
= sin2(d−i) ψi.

The function
F−1

i (ψi) = arcsin
(

2(d−i)
√

ψi

)
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is obviously the quantile function of Fi. For this reason (iii) follows.

Let A ⊂ (
0, π

2

)d−1 be a Borel set and 0 < c < c0. We have, again by Fubini’s Theorem,

P (C < c,Ψ ∈ A|C < c0) =
P (Ψ ∈ A,C < c)

P (C < c0)
(3.4)
=

1
c0η

∫

A

∫

(0,c)
f(t, ψ) dt dψ

=
1
η

∫

A
f(ψ) dψ · c

c0
=

1
ηc0

c0

∫

A
f(ψ) dψ · c

c0

=
1

ηc0

∫

A

∫

(0,c0)
f(t, ψ) dt dψ · c

c0

(3.4)
=

P (Ψ ∈ A,C < c0)
P (C < c0)

· c

c0

(3.5)
= P (Ψ ∈ A|C < c0) · P (C < c|C < c0),

thus the conditional independence of the Shi coordinates C and Ψ.

Let A1, . . . , Ad−1 be Borel sets in
(
0, π

2

)
. To prove the independence of the angular components,

one has to show

P (Ψ1 ∈ A1, . . . , Ψd−1 ∈ Ad−1|C < c0) =
d−1∏

i=1

P (Ψi ∈ Ai|C < c0). (3.8)

With an induction we show the equation

P (Ψ1 ∈ A1, . . . ,Ψj ∈ Aj |C < c0) =
j∏

i=1

P (Ψi ∈ Ai|C < c0)

for j = 1, . . . , d − 1. By putting j = d − 1 one gets (3.8). For j = 1 the assertion is obvious,
hence assume that the assertion is valid for j with 1 ≤ j < d − 1. Then we have by Fubini’s
Theorem, applied several times,

P (Ψ1 ∈ A1, . . . ,Ψj+1 ∈ Aj+1|C < c0)

=
P (C < c0, Ψ1 ∈ A1, . . . , Ψj+1 ∈ Aj+1)

P (C < c0)
(3.4)
=

1
c0η

∫ c0

0

∫

A1×...×Aj+1×(0,π/2)d−1−j−1

f(c, ψ) dψdc · 1

(3.6),(3.7)
=

1
c0

∫ c0

0

∫

A1×...×Aj+1×(0,π/2)d−j−2

d−1∏

i=1

fi(ψi) dψdc ·
∫ π/2

0
fj+1(ψj+1) dψj+1

=
1
c0

∫ c0

0

∫

A1×...×Aj×(0,π/2)d−j−1

d−1∏

i=1

fi(ψi) dψdc ·
∫

Aj+1

fj+1(ψj+1) dψj+1 · 1

(3.7)
=

1
c0η

∫ c0

0

∫

A1×...×Aj×(0,π/2)d−j−1

η
d−1∏

i=1

fi(ψi) dψdc ·
∫

Aj+1

fj+1(ψj+1) dψj+1

·
d−1∏

i=1,i6=j+1

∫ π/2

0
fi(ψi) dψi

(3.6)
=

1
c0η

∫ c0

0

∫

A1×...×Aj×(0,π/2)d−j−1

f(c, ψ) dψdc ·
∫

(0,π/2)j×Aj+1×(0,π/2)d−j−2

d−1∏

i=1

fi(ψi) dψ
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= P (Ψ1 ∈ A1, . . . , Ψj ∈ Aj |C < c0) · 1
c0η

∫ c0

0

∫

(0,π/2)j×Aj+1×(0,π/2)d−j−2

η
d−1∏

i=1

fi(ψi) dψ dc

=
j∏

i=1

P (Ψi ∈ Ai|C < c0) · P (Ψj+1 ∈ Aj+1|C < c0)

=
j+1∏

i=1

P (Ψi ∈ Ai|C < c0).

Thus the angular components are (conditionally) mutually independent and (i) follows.
¤

As mentioned above, an analogy to this theorem has been shown in Theorem 3 of Shi (1995, [64])
for the extreme value case, and has been used in Algorithm 1.1 of Stephenson (2003, [70]) to
simulate the corresponding random vectors. It is one of the very few results for the simulation
of EVDs in general dimension. However, the distributions of the angular components are a little
more complicated in the EVD case than here in the GPD case. We will apply Theorem 3.1.10
to simulate GPDs of logistic type in general dimension in the next section.

3.1.3 The Simulation Algorithm

Theorem 3.1.10 provides us with a straightforward method of simulating a random vector
(X1, . . . , Xd) following a GPD of logistic type on Bλ

c0 . The next algorithm is the only algo-
rithm known to the author dealing with the simulation of GPDs of logistic type.

Algorithm 3.1.11
1. Generate U1 uniformly on (0, c0) and U2, . . . , Ud uniformly on (0, 1), all independent from

each other.

2. Compute Ψi := F−1
i (Ui+1) for i = 1, . . . , d− 1.

3. Return the vector (X1, . . . , Xd) = STλ(U1, Ψ1, . . . , Ψd−1).
♦

The correctness of Algorithm 3.1.11 follows immediately from Theorem 3.1.10 and the simulation
of univariate random variables by the quantile transformation, see for example Corollary 1.6.4
in Falk et al. (2002, [23]).

Example 3.1.12
For illustration purposes Algorithm 3.1.11 is now used to generate 1000 vectors with the para-
meter values λ = 4 and c0 = 0.1 for d = 2 and d = 3. First one generates the random vector
(U1, U2) (to be seen in the first figure), then the angular component of the Shi coordinates is
transformed by the quantile function F−1

1 (second figure), after that the Shi transformation is



CHAPTER 3. SIMULATION IN GENERALIZED PARETO MODELS 53

carried out (third figure).
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Along the same lines, one proceeds for d = 3, only two angular components have to be trans-
formed this time by their quantile function (done simultaneously in the second figure).
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Next we look at some results for d = 2 and miscellaneous λ, in each plot 1000 points were
generated.
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The corresponding plots for d = 3 are presented next.
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Visualizing more than three dimensions is quite difficult. A possibility are scatterplot matrices,
where in each case two coordinates are plotted against each other. The next picture shows
1000 points generated by Algorithm 3.1.11 with d = 4 and λ = 1.2 as a scatter plot matrix.
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It is easy to see by definition that the bivariate margins of GPDs of logistic type are bivariate
GPDs of logistic type with the same parameter λ. This is reflected in the scatter plot matrices
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above and below, where all plots show almost identical distribution patterns. The differences to
the bivariate random vectors above result from the different conditions C < c0 in dimensions 2
and 4.

The simulated random vectors in the next plot correspond to a parameter of λ = 6.
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The generated points arrange themselves in all pictures in a sort of d–dimensional cone, whose
peak lies in the origin and whose center is the line xi = xj , i, j = 1, . . . , d . The lower end is
naturally bounded by ||x||λ = c0. The parameter λ describes the width of the cone. For λ close
to 1 it is opened very wide, for larger λ it becomes more narrow. This is the growing dependence
for λ →∞, see Section 2.3.2.

♦

We will finish this section with a short runtime analysis of Algorithm 3.1.11. In the first step,
d operations are done, namely the generation of d uniformly distributed random variables,
so this step is O(d). In the second step, a quantile function is evaluated with a constant
number of operations d− 1 times, so here we also have the runtime O(d). In the final step, the
Shi transformation is computed. This should be done in an efficient way. Let (x1, . . . , xd) =
STλ(c, ψ1, . . . , ψd−1). It is easy to see by Definition 3.1.5 that the following recursion holds

x1 = −c · cos2/λ ψ1,

xi = xi−1 · cos2/λ ψi · tan2/λ ψi−1, i = 2, . . . , d− 1,

xd = xd−1 · tan2/λ ψd−1.

With this recursion an evaluation of the Shi transformation can be done in order O(d), since for
each of the d components a constant number of operations has to be carried out. A straightfor-
ward implementation of the Shi transformation by Definition 3.1.5 leads to a runtime of order
O(d2), which can be seen as follows. When counting the computation of cos2/λ and sin2/λ as
one operation as well as the multiplication of those terms, we have one operation for the first
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component, 3 operations for the second component, 5 operations for the third component and
so on. By summing up over the d components of the computed vector we get an order of O(d2).
Altogether, when using the first method, Algorithm 3.1.11 can be implemented with a runtime
of order O(d).

This result is backed up by the following table of runtime experiments, where 100 random vectors
of dimension d with λ = 4 were generated with Mathematica, version 5.2 on a Dell Notebook
with an Intel Pentium M Processor with 1600 MHz.

d 2 5 10 20 50 100 200 400 800 1600
time in sec. 0.01 0.03 0.06 0.12 0.29 0.59 1.20 2.57 5.71 13.57

One can see that with a doubling of d the needed time is approximately also doubled, which
means that we have a linear runtime.

We can also see that we are able to simulate very high-dimensional cases within a reasonable
amount of time. This makes this algorithm interesting for practical purposes like Monte-Carlo
methods in higher dimensions.

The Shi transformation used in Algorithm 3.1.11 was constructed especially for the logistic case.
A question following immediately is, whether a variant of the Shi transformation exists, by which
one can simulate other cases like the asymmetric or the nested logistic model. A possible gen-
eralization for the trivariate nested logistic EVD case is proposed by Shi and Zhou (1999, [65]),
however, the components of that transformation are not independent like the Shi coordinates.
Nevertheless, it leads to a possible simulation algorithm. To find a full generalization of the
Shi transformation is, still, an open problem, which seems nontrivial, see the remarks at the
end of Section 2 in Ghoudi et al. (1998, [32]). Stephenson (2003, [70]) was able to simulate the
asymmetric logistic EVD case in general dimension but not by a generalization of the Shi trans-
formation. He constructed asymmetric logistic EVD distributed random vectors from random
vectors following a logistic EVD.

In the next section we will simulate GPD cases outside the logistic model, but we will use a
different approach than a generalization of the Shi transformation.

3.2 Simulation of Multivariate Generalized Pareto Distributions
with Bounded Pickands Density

The GPD of logistic type is the most important example of a GPD. But for practical applications
it will surely be necessary to be capable of simulating random vectors outside the logistic case.
That is the goal of this section. The algorithm introduced here is based on a method for the
simulation of random vectors with the help of the density, the so called rejection method. It is
described for example in Section 3.4 of Saucier (2000, [61]). Another important tool will be the
transformation to Pickands coordinates, see Definition 2.1.3. The method presented here will
not be as efficient as Algorithm 3.1.11 and, thus, not be applicable in high dimensions, but it
has the advantage of being able to simulate a broader variety of GPDs, namely those with a
bounded Pickands density. It is comparable to an algorithm simulating bivariate EVDs from
Section 3 of Ghoudi et al. (1998, [32]) or Section 2 of Nadarajah (1999, [51]). But it can also go
into higher dimensions.

In Section 3.2.1 we will describe the rejection method, in Section 3.2.2 we will establish a
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simulation algorithm for uniform random vectors on the unit simplex which will be needed
later. Finally in Section 3.2.3 we will give the simulation algorithm for GPDs with bounded
Pickands density.

3.2.1 The Rejection Method for the Generation of Random Vectors

Let F : Rd → [0, 1] be a distribution function, which is to be simulated. We assume that it has
a density f = ∂d

∂x1··· ∂xd
F . Furthermore, we assume that

A := supp(f) = {x ∈ Rd | f(x) 6= 0}
is a compact set in Rd. In addition let f be bounded on A (this is always fulfilled if f is
continuous on A). Then there exists supx∈A f(x) ∈ R. In the case of continuity we have a
maximum instead of a supremum. Furthermore, let ξ be some real number with ξ > 0 and put
g(z) := ξf(z). Thus ξ supx∈A f(x) is the supremum of g on A. Choose some number M with
M ≥ ξ supx∈A f(x). With

G :=
{

(x1, . . . , xd+1) ∈ Rd+1 | (x1, . . . , xd) ∈ A, 0 ≤ xd+1 ≤ g(x1, . . . , xd)
}

we define the set of points in Rd+1, which are enclosed by the graph of g and the plane xd+1 = 0.

Then we can give the following algorithm for the simulation of F .

Algorithm 3.2.1
1. Generate a random vector X = (X1, . . . , Xd), uniformly distributed on A.

2. Generate a random number Y independent of X, which is uniformly distributed on [0,M ].

3. Return X if Y ≤ g(X), else go to 1.
♦

Algorithm 3.2.1 describes the rejection method for the generation of random vectors. One
executes this algorithm until one has the desired number of random vectors.

Lemma 3.2.2
A random vector generated by Algorithm 3.2.1 has the distribution function F .

Proof:
Let x1, . . . , xd ∈ R. Put B := {(y1, . . . , yd) ∈ A | yi ≤ xi, i = 1, . . . , d}. Then we have for the
distribution function F̃ of an accepted point

F̃ (x1, . . . , xd) = P ((X1, . . . , Xd) ≤ (x1, . . . , xd) | (X1, . . . , Xd, Y ) ∈ G)

=
P ((X1, . . . , Xd) ≤ (x1, . . . , xd), (X1, . . . , Xd, Y ) ∈ G)

P ((X1, . . . , Xd, Y ) ∈ G)

=

R
B g(z) dzR

A×[0,M ] 1 dζ
R

A g(z) dzR
A×[0,M ] 1 dζ

=

∫
B ξf(z) dz∫
A ξf(z) dz

=

∫
B f(z) dz∫
A f(z) dz

=
∫

B
f(z) dz = F (x1, . . . , xd),

since due to the uniform distribution of the generated points the probabilities can be expressed
by corresponding volumes. Also note that

∫
A f(z) dz = 1, because f is a density on A.

¤
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A geometric interpretation of this method can be found in Section 3.4 of Saucier (2000, [61]).

Remark 3.2.3
If ξ = 1 in Algorithm 3.2.1 the rejection method is executed with the exact density. However,
Lemma 3.2.2 also shows that the rejection method is applicable if only a constant multiple g of
the density f is known with ξ possibly unknown. This is something which we will use later in
Algorithm 3.2.11.

♦

It is immediately clear that Algorithm 3.2.1 can be very inefficient, since, owing to circumstances,
a lot of points might have to be generated to get one ”useable” point. A measure for the efficiency
of Algorithm 3.2.1 is the probability that the point (X, Y ), which is uniformly distributed on
A× [0,M ], lies in G and is, thus, accepted.

Definition 3.2.4
The probability ω := P ((X, Y ) ∈ G) is called the efficiency of Algorithm 3.2.1.

♦

Theorem 3.2.5
We have

ω =
ξ

M · vol(A)
≤ 1

supx∈A f(x) · vol(A)

with equality holding if M = ξ supx∈A f(x) is chosen. Thereby vol(A) :=
∫
A 1 dz denotes the

volume of A.

Proof:
The probability ω is the ratio of the volume under the graph of g to the volume of the set
A× [0,M ]. Therefore, we have

ω = P ((X,Y ) ∈ G) =

∫
A g(z) dz∫

A×[0,M ] 1 dζ
=

ξ

M · ∫A 1 dz
.

Thus by M ≥ ξ supx∈A f(x) we have

ω ≤ 1
supx∈A f(x) · vol(A)

.

By choosing M = ξ supx∈A f(x) we get

ω =
1

supx∈A f(x) · vol(A)
.

¤

If one wants to have n random vectors following F one has to generate

n

ω
= n · M

ξ
· vol(A) ≥ n · sup

x∈A
f(x) · vol(A)

points on the average. Here we see why M should be chosen close to ξ supx∈A f(x) and, thus,
as small as possible. Every increase in M leads to a decrease of the efficiency and, thus, to a
raise in the number of generated points.

Besides the possible inefficiency there are further problems with this method.
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(i) How to generate the uniform distribution on A ?

(ii) How to compute M , the supremum of g or a proper, i.e., not to rough estimation?

These are questions, which can best be solved for a given problem. Possibilities that always
work, but which are not necessarily efficient, are for example

(i) The uniform distribution on a d–dimensional cube K is easy to simulate. Thus find a
cube K with A ⊆ K, generate a random vector, uniformly distributed on it, and accept it
only if it also falls into A. This is again the rejection method.

(ii) Since the computation of the gradient and the following solution of a system of equations
can often not be done exactly, one can use numerical optimization procedures such as the
algorithm by Nelder-Mead (see for example Section 8.1 in Kelley (1999, [46])) to get an
approximation of the maximum.

Remark 3.2.6
If supp(f) is not a compact set, i.e., if it is not bounded, but if f is bounded, one defines with
ε > 0 the function

f̃(x) =
{

f(x) if f(x) > ε,
0 else.

If ε is small enough, f̃ is a good approximation for f and has a compact support. Thus one can
carry out Algorithm 3.2.1 with f̃ and get random vectors which are approximately distributed
by F . Thereby we have of course

∫
f̃ dx < 1. ε should, thus, be chosen such that the integral is

close to 1.

If the density f itself is unbounded, one could choose a large number M and define

f̃(x) =
{

f(x) if f(x) < M,
M else,

such that the integral is still close to 1. The rejection method is then applicable, and f is
approximated by a density f̃ which corresponds to the uniform distribution in the area, where f
is unbounded. Depending on f , this might be a crude approximation of the original distribution,
especially if one is interested in the area, where the density is unbounded.

There exist also other variants of the rejection method, where a density g is needed, which can
easily be simulated and which fulfills f(x)

g(x) ≤ M for all x ∈ A. The random vector X, which is

originally distributed by g, is accepted if Y ≤ f(X)
g(X) for a uniform random number Y ∈ [0,M ],

see Section 3.4 of Saucier (1999, [61]) for details.
♦

3.2.2 Generation of Uniform Random Vectors on the Unit Simplex

For the simulation of generalized Pareto distributions with the help of the rejection method it
will be important to be able to generate uniformly distributed random variables on the unit
simplex Rd. We present a method in this section to complete this task as efficient as possible.
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Theorem 3.2.7
Let c > 0 and (U1, . . . , Ud) be uniformly distributed on Rc,d with Rc,d defined as in Lemma 2.1.2.
Then we have that (U1, . . . , Ud−1) is uniformly distributed on Rc−ud,d−1, conditional on Ud =
ud ∈ (0, c), i.e.,

P (U1 ≤ u1, . . . , Ud−1 ≤ ud−1 | Ud = ud) =
u1 · . . . · ud−1

vol (Rc−ud,d−1)
,

where (u1, . . . , ud−1) ∈ Rc−ud,d−1 and ud ∈ (0, c).

Proof:
Note that Ud is not uniformly distributed on (0, c), since we have by Lemma 2.1.2

K(ud) := P (Ud ≤ ud) = 1− P (Ud > ud) = 1− P (Ud > ud, U1 ≤ c, . . . , Ud−1 ≤ c)

= 1− vol
(
Rc,d ∩

{
x ∈ Rd|xd > ud

})

vol(Rc,d)

= 1− vol
(
Rc−ud,d + (0, . . . , 0, ud)T

)

vol(Rc,d)

= 1− vol (Rc−ud,d)
vol(Rc,d)

= 1− (c− ud)d

cd
, (3.9)

because the intersection of Rc,d with
{
x ∈ Rd|xd > ud

}
is a simplex of edge length c−ud shifted

by the vector (0, . . . , 0, ud)T . This is illustrated by the following figure for the case d = 2:

ud

H0,0L Hc,0L

H0,cL

Rc,d

Rc-ud,d+H0,udL
T

From (3.9), Lemma 2.1.2 and Example 5.2.24 from Gänssler and Stute (1977, [30]) we conclude
for (u1, . . . , ud−1) ∈ Rc−ud,d−1:

P (U1 ≤ u1, . . . , Ud−1 ≤ ud−1 | Ud = ud)
= lim

ε→0
P (U1 ≤ u1, . . . , Ud−1 ≤ ud−1 | Ud ∈ [ud, ud + ε])

= lim
ε→0

P (U1 ≤ u1, . . . , Ud−1 ≤ ud−1, Ud ∈ [ud, ud + ε])
P (Ud ∈ [ud, ud + ε])

= lim
ε→0

ε · u1 · . . . · ud−1/vol(Rc,d)
ε

· ε

P (Ud ∈ [ud, ud + ε])

=
u1 · . . . · ud−1

vol(Rc,d)
· lim

ε→0

ε

K(ud + ε)−K(ud)
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=
u1 · . . . · ud−1

vol(Rc,d)
· 1
K ′(ud)

=
u1 · . . . · ud−1

vol(Rc,d)
· 1

∂
∂ud

(
1− (c−ud)d

cd

)

=
d !cd

cdd(c− ud)d−1
· u1 · . . . · ud−1 =

u1 · . . . · ud−1

vol (Rc−ud,d−1)
,

as asserted.
¤

Corollary 3.2.8
Let (U1, . . . , Ud) be uniformly distributed on Rd, and suppose that the realizations ui+1, . . . , ud, i ∈
{1, . . . , d} of Ui+1, . . . , Ud are observed. Then Ui has the conditional distribution function

Hi(ui) := P (Ui ≤ ui|Ui+1 = ui+1, . . . , Ud = ud) = 1− (1− ud − . . .− ui+1 − ui)i

(1− ud − . . .− ui+1)i

and the corresponding conditional quantile function

H−1
i (x) = (1− ud − . . .− ui+1)(1− i

√
1− x).

Proof:
We prove the first assertion by induction, more precisely we show:

Given ui+1, . . . , ud we have that (U1, . . . , Ui) is uniformly distributed on R1−ud−...−ui+1,i and Ui

has the distribution function

H(ui) = 1− (1− ud − . . .− ui+1 − ui)i

(1− ud − . . .− ui+1)i
.

In the case i = d, the random vector (U1, . . . , Ud) is uniformly distributed on Rd by assumption,
and by (3.9) Ud has the distribution function

H(ud) = P (Ud ≤ ud) = 1− (1− ud)d

1d
,

which shows the assertion in this case.

Let the assertion hold for i ∈ {2, . . . , d}. In the induction step we show the assertion for i− 1.

Let (ui, . . . , ud) be given. (U1, . . . , Ui) is by the induction hypothesis uniformly distributed on
R1−ud−...−ui+1,i. Since now, in addition, ui is given, (U1, . . . , Ui−1) is by Theorem 3.2.7 uniformly
distributed on R1−ud−...−ui+1−ui,i−1. By (3.9) we know that Ui−1 has then the distribution
function

H(ui−1) = P (Ui−1 ≤ ui−1) = 1− (1− ud . . .− ui+1 − ui − ui−1)i−1

(1− ud − . . .− ui+1 − ui)i−1
.

This is the assertion for i− 1.

Now we compute the quantile function of Hi(ui). We have

x = Hi(ui) = 1− (1− ud − . . .− ui+1 − ui)i

(1− ud − . . .− ui+1)i
⇐⇒ (1− ud − . . .− ui+1 − ui)i

(1− ud − . . .− ui+1)i
= 1− x

⇐⇒ 1− ud − . . .− ui+1 − ui = (1− ud − . . .− ui+1)
i
√

1− x

⇐⇒ ui = (1− ud − . . .− ui+1)− (1− ud − . . .− ui+1)
i
√

1− x

⇐⇒ ui = (1− ud − . . .− ui+1)(1− i
√

1− x) = H−1
i (x).

¤
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The known quantile transformation method, see for example Corollary 1.6.4 from Falk et
al. (2002, [23]), together with Corollary 3.2.8 provides us with the following recursive algorithm
for the simulation of a uniformly distributed random vector on the unit simplex Rd.

Algorithm 3.2.9
Set k:=0 and for i = d, . . . , 1 do

1. Generate a random number xi on (0, 1) uniformly distributed and independent of xj , i+1 ≤
j ≤ d.

2. Compute ui := (1− k)(1− i
√

1− xi).

3. Put k := k + ui.

Return the vector (u1, . . . , ud).
♦

The runtime of Algorithm 3.2.9 is of order O(d), since in each of the d steps a constant number
of operations is performed. Anything better cannot be expected since at least the d components
of the vector must be generated. If one wants to have n uniformly distributed random vectors,
one has to call Algorithm 3.2.9 n times independently. Then the runtime is of order O(nd),
which is also optimal.

Example 3.2.10
In this example we want to take a look at a practical implementation of Algorithm 3.2.9 for
the simulation of the uniform distribution on Rd. With Algorithm 3.2.9 100, 1000 and 10000
random vectors were generated for d = 2 and plotted in the following three graphics.
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Exactly the same was done for the case d = 3.
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In the following table we note the time in seconds which was needed on an Intel Pentium 4
Processor to generate 100 points with Mathematica, version 5.2, in various dimensions d.

d 2 10 100 1000 10000
time in sec. 0.01 0.05 0.42 4.14 41.17

We see that a multiplication of the dimension by a factor of 10 leads to an increase in the runtime
by a factor of approximately 10.

♦

3.2.3 The Simulation Algorithm for Multivariate Generalized Pareto Distri-
butions with Bounded Pickands Density

A natural scheme for the simulation of a generalized Pareto distribution W is the application of
the rejection method to W or more precisely to its density w = ∂d

∂xd...∂x1
W . However, as can be

seen for the density of the logistic case (Lemma 2.3.6), the relation

lim
t→0−

wλ(t, . . . , t) = lim
t→0−

(
d−1∏

i=1

(iλ− 1)

)(
(−t)λ−1

)d (
d(−t)λ

)−d+ 1
λ

=

(
d−1∏

i=1

(iλ− 1)

)
d−d+ 1

λ lim
t→0−

(−t)λd−d−dλ+1

=

(
d−1∏

i=1

(iλ− 1)

)
d−d+ 1

λ lim
t→0−

(
−1

t

)d−1

= ∞

holds. Thus even in the most common case the density w is not bounded. Therefore, the
rejection method is not directly applicable, since we are especially interested in the area close
to 0, see Remark 3.2.6. In some cases, however, a detour via Pickands coordinates can be very
helpful.

The idea is to generate the Pickands coordinates Z and C of a random vector, which follows
W , separately. These are by Theorem 2.2.5 independent under C > c0 and, in addition, C is
uniformly distributed on (c0, 0) and, thus, easy to simulate.

For the generation of Z we can apply the rejection method if its density f and, thus, the
Pickands density φ are bounded. This is for example the case with the logistic distribution,
see Theorem 2.3.7. Since Z lies in the unit simplex Rd−1, the uniform distribution there can
be simulated by Algorithm 3.2.9. One uses the Pickands density φ, since for the use of f the
number µ, see Theorem 2.2.5, would have to be calculated, which is possible only approximately
and only with a great numerical effort. In the end one has to invert the Pickands transformation
to get the desired random vector.

The following algorithm implementing these considerations is another main result of this man-
uscript.

Algorithm 3.2.11
1. Generate the realization (z1, . . . , zd−1) of a random vector, which has density f , with Al-

gorithm 3.2.1 applied to the Pickands density φ. Use the parameters A = Rd−1, M =
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supz∈Rd−1
φ(z) for the generation. For the uniform distribution on the unit simplex Rd−1

use Algorithm 3.2.9, M can, for example, be computed with the algorithm by Nelder-Mead.

2. Generate, independent of (z1, . . . , zd−1), a random number c, uniformly distributed on
(c0, 0).

3. Return the vector
(
cz1, . . . , czd−1, c− c

∑d−1
i=1 zi

)
.

♦

To get n random vectors one has to call Algorithm 3.2.11 n times. The efficiency of the algorithm
is that of Algorithm 3.2.1, since all other steps are deterministic.

Example 3.2.12
We want to examine Algorithm 3.2.11 a little closer for the logistic case. We used again Mathe-
matica, version 5.2 and took M from Theorem 2.3.7. We begin with the parameters d = 2,
λ = 3.

In the left graphic one can see 1000 random numbers, distributed according to f3 and generated
with the Pickands density φ3, the angular components. In the right picture one can see the
desired logistic random vectors. These were generated by the addition of the radial component
with c = −0.1 to the angular components and the inversion of the Pickands transformation.
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Next we show the same plots for d = 3.
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For more graphics with vectors coming from the logistic distribution, see Example 3.1.12.
♦

In the sequel we will do some efficiency considerations.

Theorem 3.2.13
The efficiency of Algorithm 3.2.11 in the logistic case is

ωλ =
µλ(d− 1)!

d
1
λ
−1 ∏d−1

i=1 (iλ− 1)
=

µλ(d− 1)!Γ(1− 1
λ)

d
1
λ
−1λd−1Γ(d− 1

λ)
(3.10)

with ωλ = O
(

1
λd−1

)
for λ →∞ and limλ→1 ωλ = 1.

Proof:
We have by Lemma 2.1.2, Theorems 2.3.7 and 3.2.5

ωλ =
1

mλ
µλ
· 1

(d−1)!

=
µλ(d− 1)!

d
1
λ
−1 ∏d−1

i=1 (iλ− 1)
=

µλ(d− 1)!Γ(1− 1
λ)

d
1
λ
−1λd−1Γ(d− 1

λ)
,

where the final equality is due to Remark 2.3.9. We have

lim
λ→∞

Γ
(

1− 1
λ

)
= Γ(1) = 1,

lim
λ→∞

Γ
(

d− 1
λ

)
= Γ(d) = (d− 1)!,

lim
λ→∞

d
1
λ
−1 = d−1,

lim
λ→∞

µλ =
1
d
, (3.11)

where (3.11) will be shown in Theorem 5.7.2. Putting the above results into (3.10) we get

ωλ = O

(
1

λd−1

)
for λ →∞.

We will use the representation (3.10) and the representation of the logistic Pickands density
from Theorem 2.3.7 for the second limit:

lim
λ→1

ωλ = lim
λ→1

µλ(d− 1)!

d
1
λ
−1 ∏d−1

i=1 (iλ− 1)

= (d− 1)! lim
λ→1

∫
Rd−1

φλ(z) dz
∏d−1

i=1 (iλ− 1)
= (d− 1)! lim

λ→1

∫

Rd−1

φλ(z)∏d−1
i=1 (iλ− 1)

dz

= (d− 1)! lim
λ→1

∫

Rd−1

(
d−1∏

i=1

zi

)λ−1 (
1−

d−1∑

i=1

zi

)λ−1



d−1∑

i=1

zλ
i +

(
1−

d−1∑

i=1

zi

)λ



1
λ
−d

dz.

The function φλ(z)Qd−1
i=1 (iλ−1)

converges pointwise to the constant 1 for λ → 1. Since by Theorem 2.3.7

the function φλ(z)Qd−1
i=1 (iλ−1)

is bounded by d
1
λ
−1 ≤ 1, the dominated convergence theorem (see
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for example Fristedt and Gray (1997, [28]), Section 8.2) is applicable and, thus, we get with
Lemma 2.1.2

lim
λ→1

ωλ = (d− 1)!
∫

Rd−1

lim
λ→1

(
d−1∏

i=1

zi

)λ−1 (
1−

d−1∑

i=1

zi

)λ−1



d−1∑

i=1

zλ
i +

(
1−

d−1∑

i=1

zi

)λ



1
λ
−d

dz

= (d− 1)!
∫

Rd−1

1 dz =
(d− 1)!
(d− 1)!

= 1,

which completes the proof.
¤

On the average one has to generate n
ωλ

points to get n vectors distributed by fλ. Since all
deterministic operations in Algorithm 3.2.11 are of order O(d) and O(nd) respectively, the total
runtime of Algorithm 3.2.11 is thus

O
( n

ωλ︸︷︷︸
number of uniformly
distributed points

· d︸︷︷︸
runtime of generation
of uniform distribution

+ nd︸︷︷︸
remaining
operations

)

on average.

Thus by Theorem 3.2.13 for a large λ this runtime is of order O
(
ndλd−1

)
, for small λ approxi-

matively of order O(nd).

Observe that the runtime is independent of the threshold c0. The linear factor n is to be
expected, since we want to generate n points. The linear factor d is also not surprising, since
a higher-dimensional point also possesses more components, which have to be generated. What
makes the algorithm very slow for large d and large λ, is the factor λd−1. However, this is also
not unusual, since in many d–dimensional problems the dimension shows up as an exponent in
the runtime. This phenomenon is also known as the ”Curse of Dimension”.

To get an empirical measure for the efficiency of Algorithm 3.2.11, one can define the empirical
efficiency ω̂ by

ω̂ :=
n

total number of points generated
. (3.12)

This converges for n → ∞ by the law of large numbers (see for example Serfling (1980, [63]),
Theorem 1.8B) to the theoretical efficiency ω, see Definition 3.2.4.

Example 3.2.14
First we want the show some numerical evaluations (done according to (3.10) with NIntegrate
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from Mathematica) of the efficiency ωλ in two and three dimensions.
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One sees the low efficiency for large λ and the large efficiency for small λ. As to be expected
the values for d = 2 are much better. Only for λ very close to 1, the efficiency ωλ is also close
to 1, which means that the second convergence from Theorem 3.2.13 is very slow. This behavior
strengthens when going to dimension 3 and higher.

Finally we created a table with the theoretical efficiency ωλ as in Theorem 3.2.13, the empirical
efficiency ω̂ according to (3.12) and the runtime of an implementation of Algorithm 3.2.11 for the
logistic case in Mathematica, version 5.2, for various d and λ. Each time, 100 GPD distributed
points had to be generated on an Intel Pentium 4 Processor.

ω
ω̂ λ = 1.2 λ = 2 λ = 3 λ = 4 λ = 8 λ = 16

time in sec.
0.8577 0.53284 0.354224 0.263868 0.12918 0.0636262

d = 2 0.884956 0.487805 0.353358 0.263852 0.118196 0.0680736
0.032 0.031 0.063 0.078 0.125 0.093

0.722672 0.271875 0.120392 0.0670297 0.016305 0.00399798
d = 3 0.78125 0.247525 0.110011 0.0803983 0.0159464 0.00372633

0.044 0.093 0.188 0.297 1.281 5.48
0.605439 0.137269 0.0404847 0.0168861 0.00204753 0.000250514

d = 4 0.636943 0.135136 0.0391547 0.0198414 0.00247012 0.000248682
0.057 0.188 0.625 1.234 9.813 97.421

0.506153 0.0690263 0.0135639 0.00423957 0.000256629 0.0000156806
d = 5 0.469484 0.0644333 0.0131222 0.00466592 0.000260431 0.0000140977

0.084 0.454 2.14 6.031 107.454 1993.94

Here we see the exploding runtimes for large λ and d, as described above. The runtimes itself can
be shortened by using better suited numerical programming packages like Matlab or C++, but
the overall asymptotic behavior remains unaffected.

♦

From the above runtime considerations it is clear that Algorithm 3.1.11 is superior to the al-
gorithm considered here, with the exception of values of λ very close to 1. Another advantage
of Algorithm 3.1.11 is that it is deterministic. But Algorithm 3.2.11 has the advantage that it
can be used for cases other than the logistic one. We will use this property in the following two
examples.
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Example 3.2.15
In the following plots we want to give a visual impression of data simulating the nested lo-
gistic distribution from Definition 2.3.13. The Pickands density needed for this is given in
Remark 2.3.14.

As before, the left picture shows the corresponding angular components of the Pickands coordi-
nates, the right picture the actual observations after the inverse Pickands transformation. One
has to be careful with the nested logistic model, since the Pickands density is not always bounded
there, see the pictures in Example 2.3.15. For the examples shown here we have checked that
the Pickands density is bounded. The following plot shows 1000 points originating from the
parameter values λ1 = 8, λ2 = 2 with c = −0.1.
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Furthermore, we have λ1 = 8, λ2 = 4.
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Next λ1 = 5, λ2 = 2.
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And finally λ1 = 5, λ2 = 4.
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In contrast to the logistic model the observations no longer form a cone which is symmetric to
the line xi = xj , i, j = 1, . . . , d, see the remarks in Example 3.1.12. In the case d = 3, the cone is
distorted in the x3-direction, and the heaviness of the distortion is determined by the difference
of the parameters. The closer the parameters are to each other, the closer one is to the logistic
model, and the more symmetric the cone becomes with regard to the line xi = xj , i, j = 1, . . . , d.
In terms of the angular components in d = 3, the parameter λ1 governs the opening angle of the
angular components and λ2 determines how closely the angular components come to the origin.

Due to the complicated nature of the model we skip a runtime analysis.
♦

Example 3.2.16
For the rest of this section we want to visualize the asymmetric logistic model from Defini-
tion 2.3.16 with the abbreviations from Remark 2.3.17. Putting in the case d = 2 the parameters
to ψ1 = 0.9, ψ2 = 0.1 and λ = 2, we get the following 1000 angular components and random
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vectors again with c = −0.1.
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ψ1 = 0.9, ψ2 = 0.1 and λ = 6.
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ψ1 = 0.2, ψ2 = 0.6 and λ = 2.
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ψ1 = 0.2, ψ2 = 0.6 and λ = 6.

0 0.2 0.4 0.6 0.8 1

-0.1 -0.08 -0.06 -0.04 -0.02

-0.1

-0.08

-0.06

-0.04

-0.02

In the logistic case the points always gathered around the bisector of the third quadrant. With
the parameters ψ1, ψ2 one can determine a gathering line different from the bisector. The
parameter λ determines how closely the points stick to that line.

The same behavior can also be observed in the trivariate case. Although there are a large
number of parameters with a lot of different possibilities for the structure of Was, we restrict
ourselves to two examples. But observe that only the parameters ψ7, ψ8, ψ9 and λ4 play a role
according to Theorem 2.3.20.

λ4 = 2, ψ8 = 0.7, ψ7 = ψ9 = 0.1.
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λ4 = 7, ψ8 = 0.7, ψ7 = ψ9 = 0.1.
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The parameters ψ7, ψ8, ψ9 govern the center of the angular components in R2, λ4 determines
how close the points stick to that center.

Due to the complicated nature of the model we, again, skip a runtime analysis.
♦

3.3 Simulation of Relative Frequencies of Generalized Pareto
Distributions

In Section 6.3 we will introduce an estimation procedure, which will be based on relative fre-
quencies of GPD distributed random vectors. We will test this estimation procedure with the
help of simulated data. For that we will have to simulate relative frequencies of GPD distributed
random vectors falling into certain sets. However, by Algorithms 3.1.11 and 3.2.11 we are only
able to simulate conditional GPDs in a neighborhood of the origin. What we need is a way to
simulate the desired relative frequencies with the help of the results of the previous sections.

In this situation, an important property of generalized Pareto distributions, namely the POT-
stability, will enable us to do the desired simulations. We present in this section the algorithm
together with the theoretical background.

Theorem 3.3.1
Let X = (X1, . . . , Xd) be a random vector, which follows a generalized Pareto distribution W
with dependence function D. Let k := dD(1/d, . . . , 1/d) and ti ∈ [−1/k, 0), i = 1, . . . , d, such
that κ := P (Xi ≥ ti, i ≤ d) > 0 holds. Then we have for ti ≤ κsi ≤ 0, i = 1, . . . , d,

P (Xi ≥ κsi, i ≤ d|Xi ≥ ti, i ≤ d) = P (Xi ≥ si, i ≤ d).

Proof:
See Section 5.2, page 140 in Falk et al. (2004, [21]).

¤
Remark 3.3.2
Since D(z) ≤ 1 for all z ∈ Rd−1, we conclude k ≤ d and, thus, with the choice of ti ∈ [−1/d, 0),
the assumption in Theorem 3.3.1 is fulfilled for all generalized Pareto distributions W .

♦
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Corollary 3.3.3
Let Y be a random vector, which follows a GPD W . Put κ := P (Y ≥ t), where t ∈
diag

(
(−1/d, 0)d

)
, and the inequality is meant componentwise. diag

(
(−1/d, 0)d

)
are thereby

all elements in (−1/d, 0)d with identical components. Let κ > 0. Furthermore, let X be condi-
tionally generalized Pareto distributed, i.e.,

P (X ≥ x) =
W (x)

κ

for x ≥ t again meant componentwise. We denote by W the survivor function of W . Then Y
and X

κ are close to 0 identically distributed and, thus, X
κ is generalized Pareto distributed.

Proof:
We have for x close to 0 by Theorem 3.3.1

P (X ≥ x) =
W (x)

κ
=

P (Y ≥ x)
P (Y ≥ t)

= P (Y ≥ x|Y ≥ t)

= P
(

Y ≥ x

κ
κ
∣∣∣ Y ≥ t

)
= P

(
Y ≥ x

κ

)
= P (κY ≥ x)

Thus X and κY are identically distributed close to 0 and, therefore, also Y and X
κ .

¤

Corollary 3.3.3 provides a straightforward way of getting GPD distributed random vectors from
conditionally GPD distributed random vectors. It suffices as in Algorithms 3.1.11 or 3.2.11 to
simulate conditional GPDs. A division by κ turns them into unconditionally distributed GPD
random vectors, since only the distribution close to the origin is crucial for the definition of
a GPD.

Especially, the following algorithm for the simulation of the relative frequency of a set A under
a generalized Pareto distribution W is implied by Corollary 3.3.3. Thereby let t > 0 be chosen
in such a manner that

A ⊆ Kt :=
{

x ∈ (−∞, 0)d
∣∣∣ ||x||∞ < t

}
,

and the vector (−t, . . . ,−t) fulfills the conditions of Theorem 3.3.1 and Corollary 3.3.3.

Algorithm 3.3.4
1. Generate n random vectors x1, . . . , xn in the cube Kt, which are conditionally distributed

by a generalized Pareto distribution (for example with the help of Algorithm 3.1.11 for the
logistic type or Algorithm 3.2.11 for other cases).

2. Compute κ and yi := xi
κ , i = 1, . . . , n.

3. Count the number m of the yi with yi ∈ A.

4. Return m/n.
♦



Chapter 4

Nonparametric Estimation of the
Angular Density in Bivariate
Generalized Pareto Models

In many applications it is of great importance to have a good insight into the tail dependence
structure of a given data set. Consider, for example, the analysis of a portfolio consisting, for
simplicity reasons, of only two stocks (X1, X2) from two different companies. One is interested
in the behavior of the portfolio when the value of the portfolio X1 + X2 falls short of a certain
threshold c. A potential investor would surely like know if there is some kind of dependence
between the two stocks, once they are in the extreme area X1 +X2 < c. If we assume that −X1

and −X2 follow in their upper tail a generalized Pareto distribution, we are in need of tools,
which describe and visualize the extremal dependence between the two stocks. To introduce one
such possible tool is the goal of this chapter. Then we may be able to get valuable insight into
the extremal behavior of the two stocks. Especially in our example one would be interested if
it makes economic sense to put them together into one portfolio, i.e., one does not want both
stocks to fail at the same time. Since real portfolios usually contain more than two stocks, a
treatment of the general multivariate case is of great practical importance and will be dealt with
in Chapter 5.

When assuming the data to come from an extreme value or generalized Pareto distribution, there
are a lot of objects, which can be estimated to get an insight into the distribution underlying
the data. Possibilities are the distribution function itself, its density, the exponent measure,
the Pickands dependence function, the angular measure, distribution or density. As we have
seen in the pictures of Example 2.3.10, the angular density is a good tool to visualize extremal
dependence, since it converges to ∞ at the vertices of the unit simplex close to the independence
case, and to 0 close to the dependence case. Therefore, the angular density will be the target of
our nonparametric estimation efforts in Chapters 4 and 5, and by it we want to gain a tool for
the visualization of the extremal dependence structure. Estimating the angular density for that
purpose is also popular in extreme value models, see for example Coles and Tawn (1991, [10]),
Coles and Tawn (1994, [11]) or Coles et al. (1999, [9]).

There is a vast literature concerning the nonparametric estimation of the objects mentioned
above in the extreme value case. Most of these are concerned with finding nonparametric esti-
mators for the Pickands dependence function but also the angular distribution and the exponent
measure. An enumeration of the most important papers can be found in the Chapter 1. Sum-

74
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maries of the estimators in the literature are given for example in Section 3.6 of Kotz and
Nadarajah (2000, [47]) or Sections 9.3 and 9.4 of Beirlant et al. (2005, [3]). If the estimators of
the Pickands dependence function presented there are smooth enough, one can, in the bivariate
case, derive estimators for the angular density by just twice differentiating them.

The corresponding literature for estimations in the generalized Pareto case is rare. The only
known sources to the author are Section 5.2 of Falk et al. (2004, [21]) and Section 10.2 of Reiss
and Thomas (2001, [57]), where the Pickands dependence function and the canonical dependence
function of GPD random vectors are estimated.

We begin in Section 4.1 with the estimation in the bivariate case, which will turn out to be a
unique case. We can estimate the angular density from observations, of which the exact density,
a suitably scaled version of the Pickands density, is known. This is in contrast to Chapter 5
where we estimate with observations of which only the asymptotic density is known.

Section 4.1.1 will give a representation of the angular density by means of the Pickands density.
Therefore, the Pickands density will be estimated nonparametrically in Section 4.1.2 with an
appropriate kernel density estimator and automatic bandwidth selection. Then we can present
a nonparametric estimator of the angular density in Section 4.1.3.

All these estimators will be tested with random vectors generated from Algorithm 3.1.11, and
their asymptotic normality will be shown under suitable regularity conditions.

In Section 4.2 we will see that the method presented in this chapter cannot be transferred to
higher dimensions. An alternative in the multivariate case will be given in Chapter 5.

An application of the method developed here to a hydrological data set will be given in Chapter 7.

4.1 The Bivariate Case

4.1.1 Representation of the Angular Density in the Bivariate Case

Theorem 4.1.1
Let (X1, X2) follow a bivariate generalized Pareto distribution W , which is twice differentiable.
Let the quantity µ from Theorem 2.2.5 fulfill µ > 0. Then we have for the angular density

l(z) =
φ(1− z)
z(1− z)

=
µ · f(1− z)

z(1− z)
,

where φ is the Pickands density and µ and f are defined in Theorem 2.2.5.

Proof:
From Theorem 2.2.4 we know that

l

(
1
x1

1
x1

+ 1
x2

)
=

x2
1x

2
2(

−
(

1
x1

+ 1
x2

))−3

∂2

∂x1∂x2
W (x1, x2).

Inserting the inverse Pickands transformation (2.2) we get

l

(
1
cz

1
cz + 1

c(1−z)

)
= − (cz)2(c(1− z))2(

1
cz + 1

c(1−z)

)−3 ·
∂2

∂x1∂x2
W

(
T−1

P (z, c)
)
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⇔ l

(
1
z

1
z + 1

1−z

)
= −c4z2(1− z)2c−3

(
1
z + 1

1−z

)−3 · ∂2

∂x1∂x2
W

(
T−1

P (z, c)
)

⇔ l

(
1
z

1−z+z
z(1−z)

)
= (−c)

z2(1− z)2(
1−z+z
z(1−z)

)−3 ·
∂2

∂x1∂x2
W

(
T−1

P (z, c)
)

⇔ l (1− z) = (−c)
z2(1− z)2

(z(1− z))3
· ∂2

∂x1∂x2
W

(
T−1

P (z, c)
)

⇔ l (1− z) =
|c|

z(1− z)
· ∂2

∂x1∂x2
W

(
T−1

P (z, c)
)
.

With the definition of the Pickands density φ from Theorem 2.2.5 we get

l (1− z) =
φ(z)

z(1− z)
.

Replacing z by 1 − z and using the definition of f from Theorem 2.2.5 we finally have the
assertion

l (z) =
φ(1− z)
z(1− z)

=
µ · f(1− z)

z(1− z)
.

¤

Remark 4.1.2
If the random variables X1, X2 are exchangeable, i.e., if (X1, X2), and (X2, X1) have the same
distribution, then the assertion of Theorem 4.1.1 reduces to

l(z) =
φ(z)

z(1− z)
=

µ · f(z)
z(1− z)

.

♦

4.1.2 Estimation of the Pickands Density

Let (X̃1, X̃2) < 0 be a bivariate random vector following a generalized Pareto distribution W .
Suppose that we have n independent copies (X̃1i, X̃2i) of (X̃1, X̃2), and denote by Z̃i := X̃1i/(X̃1i+
X̃2i) and C̃i := X̃1i + X̃2i the corresponding bivariate Pickands coordinates, i = 1, . . . , n. Fix
a threshold c0 close to 0, and consider only those observations (X̃1i, X̃2i) with C̃i > c0. Denote
these by (X11, X21), . . . , (X1m, X2m), where m = τn is the random number of observations with
C̃i > c0. From Theorem 1.4.1 in Reiss (1993, [56]) we know that τn and the (X1j , X2j) are all
independent random variables, that τn is binomial B(n, p) distributed with p = P (C̃ > c0), and
the Zj have by Theorem 2.2.5 the density f(z).

A natural estimator of f is the kernel density estimator with kernel function k and bandwidth
h > 0

f̂m(z) :=
1

mh

m∑

i=1

k

(
z − Zi

h

)
, (4.1)

where Zi := X1i/(X1i + X2i), i = 1, . . . , m. For basic information on kernel density estimators
see Chapters 1 and 6 of Falk et al. (2002, [23]), and also the discussion in Section 5.2.
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Example 4.1.3
Taking k to be the normal kernel k(x) = 1√

2π
exp

(
−x2

2

)
we did simulations of estimator (4.1)

using Algorithm 3.1.11 for the simulation of GPDs of logistic type. The following figures show
the results for different h with m = 50, λ = 4 and c0 = −0.1.

dashed line: underlying density, solid line: estimated density
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As one can see from the pictures, the choice of a suitable bandwidth h is crucial, which is a
common problem with kernel density estimators. This bandwidth is highly dependent on the
density itself. So there is the need for an automatic generation of an appropriate bandwidth.

In the literature there is a broad variety of methods to determine an optimal bandwidth, which
are also used by software packages such as SAS. Jones et al. (1996, [44]) investigate several
advanced methods for the choice of h and recommend a method described in Sheather and
Jones (1991, [66]). This computation of h, however, requires a certain fixed point equation
to be solved and is, thus, unsuited for theoretical considerations and straightforward practical
implementation.

If one assumes the data to be normally distributed and if one chooses the normal kernel, this
method reduces to the choice

h = Sm

(
4

3m

)1/5

, (4.2)

with

Sm :=

(
1

m− 1

m∑

i=1

(Zi − Z̄m)2
)1/2

, Z̄m :=
1
m

m∑

i=1

Zi ,

the empirical standard deviation and the arithmetic mean of the Zj . In our case we do not
have normal data. But as can be seen from the pictures in Example 2.3.8 and those below, the
densities of the Zj have, at least in the logistic case, some similarity to the shape of a normal
density. So it is natural to use the choice of h according to (4.2) and to see, whether this is a
good one. A lot of simulations we did, indicate that this is actually true. We will discuss these
topics of kernel choice and automatic bandwidth selection in Section 5.2 in more detail, when
we come to the general multivariate case.
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Since we have a bounded support of the density, which is to be estimated, one should use
reflection techniques, see Section 2.1 of Reiss and Thomas (2001, [57]), to further improve the
estimation. Thereby the data set is reflected at the boundaries of the support, in this case 0
and 1, and then the density estimator for the enlarged data set is computed. This is done for
all following estimations, see also the general discussion in Section 5.2.

Here are some results, again for the logistic case with m = 50, c0 = −0.1 but this time for
different λ and the corresponding h is given.

dashed line: underlying density, solid line: estimated density
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♦

With the special choice of h given in (4.2) formula (4.1) becomes

f̂m(z) =
1

mSm

(
4

3m

)1/5

m∑

j=1

k

(
z − Zj

Sm

(
4

3m

)1/5

)
=

1
mh′Sm

m∑

j=1

k

(
z − Zj

h′Sm

)
,

with h′ =
(

4
3m

)1/5. So for practical purposes we advocate a kernel density estimator of the form

f̂ s
m(z) :=

1
mhSm

m∑

j=1

k

(
z − Zj

hSm

)
.

f̂s
m(z) is a special case of a kernel density estimator with data sphering, see again the general

discussion in Section 5.2 for more details.

We will shortly note a result on the theoretical behavior of the estimator (4.1), which we get
from Powell (2002, [54]). For simplicity reasons we abstain from including the data sphering in
our theoretical considerations. The regularity assumptions on the Pickands and, thus, the angu-
lar density and the kernel will be given later in detail in Section 5.4 for the general multivariate
case. For the next theorem we just refer to the corresponding passages.
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Theorem 4.1.4
Let the Pickands density φ have a Taylor expansion of the form (5.15) at a point z ∈ (0, 1),
where φ(z) 6= 0, and let the kernel k have bounded support and fulfill (5.17). If h = o

(
m−1/5

)
,

then √
mh

(
f̂m(z)− f(z)

)
−→D N

(
0, f(z)

∫
k2(u) du

)
.

Proof:
See Powell (2002, [54]).

¤

Remark that the normal kernel does not have bounded support and, thus, Theorem 4.1.4 does
not hold there. But it has the advantage of a simple automatic bandwidth selection. For this
reason, it is used throughout this manuscript, see again the detailed discussion in Section 5.2.

4.1.3 Estimation of the Angular Density

By estimating f we are now able to estimate the angular density and derive a graphical tool for
the investigation of the tail dependence structure.

We obtain from Theorem 4.1.1 that

g(z) :=
f(1− z)
z(1− z)

=
l(z)
µ

, 0 ≤ z ≤ 1.

The function g, which is a constant multiple of the angular density l, visualizes if the underlying
distribution of (X1, X2) is closer to the case of independence or the case of dependence. A peak
of g(z) near 0 and 1 indicates that our observations come from a distribution which is closer to
the independence case, whereas a peak in the interior of the unit interval visualizes that we are
closer to the dependence case, see the remarks after Example 2.3.10. In the logistic case for λ
close to 1, we have convergence to ∞ as we approach the boundary of [0, 1], and for large λ, we
have convergence to 0 at the boundary and a single peak at 1

2 .

With the ability to estimate f(z) by f̂m(z), we have also gained the ability to estimate g(z) by

ĝm(z) :=
f̂m(1− z)
z(1− z)

. (4.3)
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Example 4.1.5
The estimator (4.3) was simulated in the following graphic for the logistic case with m = 50,
c0 = −0.1 and different λ.
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Once again data sphering and reflection techniques were included for practical purposes.

For λ noticeably smaller or larger than 2, the functions g and ĝm have the same behavior at the
boundary. For λ close to 2, the angular density g and its estimator ĝm seem to behave differently
when approaching the boundary. This is due to numerical effects coming from the division by
z(1− z). Convergence of ĝm to 0 when approaching the boundary is a clear sign of dependence.
In contrast to this, one has to be careful when ĝm tends to ∞ at the boundary. This can happen
up to λ = 3, although λ = 3 means that the data are quite dependent. If this convergence to ∞
begins close to the boundary, we have a larger λ (see for example the figure with λ = 2), if the
convergence begins away from the boundary we have a small λ (see the example with λ = 1.2)
and, thus, nearly tail independence.

♦

Theorem 4.1.6
Let the assumptions of Theorem 4.1.4 hold. Then we have

√
mh

(
ĝm(z)− l(z)

µ

)
−→D N

(
0,

f(1− z)
z2(1− z)2

∫
k2(u) du

)
.

Proof:
With Theorem 4.1.4 we get

√
mh

(
ĝm(z)− l(z)

µ

)
=

√
mh (ĝm(z)− g(z)) =

√
mh

(
f̂m(1− z)
z(1− z)

− f(1− z)
z(1− z)

)

−→D N
(

0,
f(1− z)

z2(1− z)2

∫
k2(u) du

)
.

¤
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Remark 4.1.7
Note that the distribution of the angular components of the Pickands coordinates is independent
of the chosen threshold c0. This could also be a tool for the graphical verification of the GPD
model assumption by using different thresholds and comparing the resulting estimators of the
angular density. If the data actually follow a GPD, then all estimators should basically give the
same graphic. If the graphics differ heavily, then one can have doubts about the GPD model
assumption. Such considerations are also used to check the EVD approximation in threshold
models by Joe et al. (1992, [43]) and Coles and Tawn (1994, [11]).

♦

4.2 The Problem of Generalization to the Trivariate Case

We have seen in Remark 4.1.2 that we could find a multiplicative decomposition of the angular
density l into

l(z) = κ
φ(z)

z(1− z)
,

in the case of exchangeability, where κ is a constant depending only on l but not on z. The
natural generalization to the trivariate case would be that

l(z1, z2) = κ
φ(z1, z2)

z1z2(1− z1 − z2)

for exchangeable models where again κ is a constant only depending on l. We will, however, see
that this equation does not hold. In fact, we will see that there is no multiplicative decomposition
of a differentiable l such that

l(z1, z2) = κb(z1, z2)φ(z1, z2),

with κ depending only on l, and b differentiable of order 1, depending only on z1 and z2 but not
on l.

To show this, we will use the logistic case and disprove the equation

lλ(z1, z2) = κ(λ)b(z1, z2)φλ(z1, z2).

Theorem 4.2.1
There does not exist a function κ : (1,∞) → R and a differentiable function b(z1, z2) : R2 → R
such that for λ > 1 the decomposition

lλ(z1, z2) = κ(λ)b(z1, z2)φλ(z1, z2)

holds, where lλ is the angular density and φλ the Pickands density of a logistic GPD with
parameter λ.

Proof:
Suppose that there exist functions κ and b such that

lλ(z1, z2) = κ(λ)b(z1, z2)φλ(z1, z2), (z1, z2) ∈ R2.

From representation (2.17) in Theorem 2.3.7, we know that φλ > 0 for λ > 1. Dividing by φλ

we get
lλ(z1, z2)
φλ(z1, z2)

= κ(λ)b(z1, z2).
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Since also lλ(z1, z2) > 0 by Example 2.3.10 for any (z1, z2) ∈ R2, we can assume without loss of
generality that κ(λ) > 0 and b(z1, z2) > 0. Therefore, we get

log
(

lλ(z1, z2)
φλ(z1, z2)

)
= log(κ(λ)) + log(b(z1, z2))

by taking the logarithm on both sides. Computing the partial derivative with respect to z1 (or
to z2 leading to the same results due to the exchangeability of z1 and z2 in the logistic case), we
have

a(λ, z1, z2) :=
∂

∂z1
log

(
lλ(z1, z2)
φλ(z1, z2)

)
=

∂
∂z1

b(z1, z2)
b(z1, z2)

,

which is constant with regard to λ. This will be our contradiction since we will show that there
exist λ1, λ2 > 1 and (z1, z2) ∈ R2 such that

a(λ1, z1, z2) 6= a(λ2, z1, z2).

With the representations of lλ and φλ from Example 2.3.10 and Theorem 2.3.7, we compute

a(λ, z1, z2) =
∂

∂z1
log




(z1z2)−λ−1(1− z1 − z2)−λ−1
(
z−λ
1 + z−λ

2 + (1− z1 − z2)−λ
)1/λ−3

(z1z2)λ−1(1− z1 − z2)λ−1
(
zλ
1 + zλ

2 + (1− z1 − z2)λ
)1/λ−3




=
∂

∂z1
log


(z1z2)−2λ(1− z1 − z2)−2λ

(
z−λ
1 + z−λ

2 + (1− z1 − z2)−λ

zλ
1 + zλ

2 + (1− z1 − z2)λ

)1/λ−3



=
∂

∂z1

(
− 2λ log(z1z2)− 2λ log(1− z1 − z2)

+
(

1
λ
− 3

)
log

(
z−λ
1 + z−λ

2 + (1− z1 − z2)−λ
)

−
(

1
λ
− 3

)
log

(
zλ
1 + zλ

2 + (1− z1 − z2)λ
))

= −2λ
z2

z1z2
− 2λ

−1
1− z1 − z2

+
(

1
λ
− 3

) −λz−λ−1
1 − λ(1− z1 − z2)−λ−1(−1)
z−λ
1 + z−λ

2 + (1− z1 − z2)−λ

−
(

1
λ
− 3

)
λzλ−1

1 + λ(1− z1 − z2)λ−1(−1)
zλ
1 + zλ

2 + (1− z1 − z2)λ

= 2λ

(
1

1− z1 − z2
− 1

z1

)
+ (3λ− 1)

z−λ−1
1 − (1− z1 − z2)−λ−1

z−λ
1 + z−λ

2 + (1− z1 − z2)−λ

+(3λ− 1)
zλ−1
1 − (1− z1 − z2)λ−1

zλ
1 + zλ

2 + (1− z1 − z2)λ
.

By choosing z1 = z2 = 1
4 we get

a

(
λ,

1
4
,
1
4

)
= 2λ

(
1
1
2

− 1
1
4

)
+ (3λ− 1)

(
1
4

)−λ−1 − (
1
2

)−λ−1

(
1
4

)−λ +
(

1
4

)−λ +
(

1
2

)−λ

+(3λ− 1)

(
1
4

)λ−1 − (
1
2

)λ−1

(
1
4

)λ +
(

1
4

)λ +
(

1
2

)λ
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= −4λ + (3λ− 1)
4λ+1 − 2λ+1

4λ + 4λ + 2λ
+ (3λ− 1)

(
1
4

)λ−1 − (
1
2

)λ−1

(
1
4

)λ +
(

1
4

)λ +
(

1
2

)λ

= −4λ + (3λ− 1)
2λ+1

(
2λ+1 − 1

)

2λ (2 · 2λ + 1)
+ (3λ− 1)

(
1
2

)λ−1
((

1
2

)λ−1 − 1
)

(
1
2

)λ
(
2

(
1
2

)λ + 1
)

= −4λ + 2(3λ− 1)
(

2λ+1 − 1
2λ+1 + 1

+
1− 2λ−1

2λ−1 + 1

)
.

If we look now at

a

(
2,

1
4
,
1
4

)
= −8 + 10

(
7
9

+
−1
3

)
= −8 + 10 · 4

9
= −32

9
≈ −3.556

and

a

(
3,

1
4
,
1
4

)
= −12 + 16 ·

(
15
17

+
−3
5

)
= −636

85
≈ −7.482,

we see that

a

(
2,

1
4
,
1
4

)
6= a

(
3,

1
4
,
1
4

)
,

which completes the proof.
¤

Therefore, the results and procedures of this chapter cannot be analogously transferred to the
multivariate case. The bivariate case seems insofar to be a special case. However, in Chapter 5
we will give procedures, which will approximate the results of this chapter.



Chapter 5

Nonparametric Estimation of the
Angular Density in Multivariate
Generalized Pareto Models

In this chapter we will generalize the results of the previous chapter to an arbitrary dimension
d ≥ 2. As we have seen in Section 4.2, this is not possible in a straightforward manner. Instead,
we have to use a slightly modified approach.

In Section 5.1 we will see that the distribution of the angular component of the Pickands co-
ordinates with regard to Fréchet margins is, under weak regularity conditions, close to the
angular distribution. This will be used in Section 5.2 to estimate the angular density with ker-
nel methods as in Chapter 4. This estimator will be an analogue of an estimator introduced in
Joe et al. (1992, [43]) and in Coles and Tawn (1994, [11]) from an EVD point of view.

In Section 5.3 we will introduce δ-neighborhoods of GPDs, to which EVDs belong, and show
that the estimation procedure can be carried over to these neighborhoods. Sections 5.4 to 5.6
will be concerned with the asymptotic normality of our estimator.

Finally in Section 5.7 we investigate the quantity µ from Theorem 2.2.5, which is the integral
of the Pickands density. The result gained in this section is needed in Section 3.2.3 during the
investigation of runtimes. It can only be shown here, since the tools necessary for its derivation
will be introduced during the course of this chapter.

5.1 Distribution of the Pickands Coordinates with Regard to
Fréchet Margins in Generalized Pareto Models

The goal in this section is to generate random vectors, whose density is close to the angular
density. For that purpose we will need the Pickands transformation with regard to Fréchet
margins. The following lemma shows that the additional transformation to Fréchet margins is
crucial.

Lemma 5.1.1
Let the random vector (X1, . . . , Xd) follow a generalized Pareto distribution with uniform mar-
gins, i.e., its distribution function W has the representation (2.5) for a neighborhood U of 0,
which can be assumed to be a cube (possibly after a suitable reduction). Let the Pickands

84
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dependence function D have continuous partial derivatives of order d. Then the Pickands trans-
formation with regard to Fréchet margins TF (X1, . . . , Xd) = (Z, C) has a density f(z, c) on
TF (U), which can be factorized with regard to z and c. More precisely

f(z, c) = c−2l(z) , (z, c) ∈ TF (U),

where l is the angular density of W and is continuous.

Proof:
The distribution function W possesses for x ∈ U the density

∂d

∂x1 · · · ∂xd
W (x1, . . . , xd),

see Theorem A.2.2 in Bhattacharya and Rao (1976, [4]). According to the density transformation
theorem (see for example Fristedt and Gray (1997, [28]), Section 9.5), the density of Pickands
coordinates with regard to Fréchet margins has the form

f(z, c) =
∂d

∂x1 · · · ∂xd
W

(
T−1

F (z, c)
) ∣∣∣det JT−1

F
(z, c)

∣∣∣ , (5.1)

where f as concatenation of continuous functions is likewise continuous.

We will now establish the connection between the density f and the angular density l. From
Theorem 2.2.4 we know that the angular density l has the representation

l

(
1
x1∑d

i=1
1
xi

, . . . ,

1
xd−1∑d
i=1

1
xi

)
=

x2
1 · . . . · x2

d(
−∑d

i=1
1
xi

)−(d+1)
· ∂d

∂x1 · · · ∂xd
W (x1, . . . , xd).

If one inserts the Pickands coordinates with regard to Fréchet margins from Definition 2.1.4, we
get

l(z1, . . . , zd−1) =

1
c2z2

1
· . . . · 1

c2z2
d−1

· 1

c2(1−Pd−1
i=1 zi)2

(−c)−(d+1)
· ∂d

∂x1 · · · ∂xd
W

(
T−1

F (z, c)
)

= (−c)−d+1 1
z2
1

· . . . · 1
z2
d−1

· 1(
1−∑d−1

i=1 zi

)2 ·
∂d

∂x1 · · · ∂xd
W

(
T−1

F (z, c)
)
.

We can now show with Lemma 2.1.5 the announced relation with the density f .

l(z) = c2 (−c)−d−1 1
z2
1

· . . . · 1
z2
d−1

· 1(
1−∑d−1

i=1 zi

)2

︸ ︷︷ ︸
=|det J

T−1
F

(z,c)
|

· ∂d

∂x1 · · · ∂xd
W

(
T−1

F (z, c)
)

= c2
∣∣∣detJT−1

F (z,c)

∣∣∣ ∂d

∂x1 · · · ∂xd
W

(
T−1

F (z, c)
)

︸ ︷︷ ︸
=f(z,c)

(5.1)
= c2f(z, c).

Thus l(z) : Rd−1 → R is also continuous, and we have the representation

f(z, c) = c−2l(z).

¤
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That the exponent measure function of an extreme value or generalized Pareto distribution
factorizes across radial and angular components of pseudo polar coordinates is a well-known
result, see for example Section 4.2 of Falk et al. (2004, [21]) or Section 5.4 of Resnick (1987, [59]).
Since a GPD and its exponent measure function are closely connected by (2.5) and (2.8), the
factorization of the density of a GPD in Lemma 5.1.1 is not really surprising. In the sequel, we
will investigate the consequences of this factorization.

Before we proceed, we have to introduce some notations. With

Ks := {x ∈ (−∞, 0)d | ||x||∞ < s}, s > 0

we designate the (open) cube with edge length s in the negative quadrant. For r, s > 0, let

Qr,s :=
{
z ∈ Rd−1 | T−1

F (z,−r) ∈ Ks

}
(5.2)

be the set of z–coordinates of the Pickands transformation with regard to Fréchet margins of
the points in the cube Ks, whose c–coordinate has the value −r.

Lemma 5.1.2
Let s > 0 be fixed. Then Qr,s has the representation

Qr,s =

{
(z1, . . . , zd−1) ∈ Rd−1

∣∣∣∣∣zi >
1
rs

, i = 1, . . . , d− 1,
d−1∑

i=1

zi < 1− 1
rs

}
. (5.3)

Furthermore, we have Qr,s 6= ∅ for all r > d
s , Qr1,s ⊆ Qr2,s for r1 < r2 and limr→∞Qr,s = Rd−1.

Proof:
The assertion z ∈ Qr,s is valid according to the definition of Qr,s if and only if

s > ||T−1
F (z,−r)||∞ =

1
r

max

{
1
z1

, . . . ,
1

zd−1
,

1

1−∑d−1
i=1 zi

}
,

thus if and only if

s >
1
r
· 1
zi

, i = 1, . . . , d− 1 and s >
1
r
· 1

1−∑d−1
i=1 zi

⇐⇒ zi >
1
rs

, i = 1, . . . , d− 1 and
d−1∑

i=1

zi < 1− 1
rs

.

With the representation (5.3) the other assertions follow immediately.
¤

The quantity introduced next will play an important role in the asymptotic considerations,
which are to follow.

Definition 5.1.3
Let l be the angular density of some GPD W . Define

χ(r, s) :=
∫

Qr,s

l(z) dz (5.4)

for r , s > 0.
♦
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Lemma 5.1.4
We have

lim
r→∞χ(r, s) = d∗

monotone increasing with d∗ from (2.11).

Proof:
Because of (2.11) and Lemma 5.1.2, the dominated convergence theorem (see for example Fristedt
and Gray (1997, [28]), Section 8.2) is applicable, and, thus,

lim
r→∞χ(r, s) = lim

r→∞

∫

Qr,s

l(z) dz =
∫

Rd−1

l(z) dz
(2.11)
= d∗.

Since l(z) ≥ 0 the monotonicity follows.
¤

As we will see later, the rate of convergence of χ heavily influences the rates of convergence of
our estimation procedures. For details see Sections 5.4 to 5.6. These rates of convergence can
be very different, as we will show in the following example.

Example 5.1.5
To show that the rates of convergence of χ(r, s) can be very different, we consider the bivariate
case

χ(r, s) =
∫ 1− 1

rs

1
rs

l(z) dz.

As the underlying distribution we take the logistic distribution from Section 2.3.2. The graphs
of the different angular densities in Example 2.3.10 already suggest that this rate of convergence
is for higher λ faster than for lower λ. The following plots show numerical results obtained
with NIntegrate of the software package Mathematica for χ(r, 0.1) with λ = 6 and λ = 1.2,
where the graphs tend to 2 for r →∞ in both cases.
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One clearly sees that the rate of convergence for lower λ, thus close to the independence case,
is considerably slower than for high λ, close to the dependence case.

♦

We now state the first main result of this section, with the help of which the angular density is
to be estimated later.

Theorem 5.1.6
Let the random vector X follow a generalized Pareto distribution W with angular density l and
d∗ > 0. Then there exists s0 > 0, such that for all 0 < s < s0 and all r > 0 as well as for any
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Borel set B ⊆ Rd−1 the equation

P (Z ∈ B|C = −r, Z ∈ Qr,s) =
1

χ(r, s)

∫

B∩Qr,s

l(z) dz

holds with Z and C being the random Pickands coordinates with regard to Fréchet margins. In
case Qr,s = ∅ both sides are set to 0. We also have for any Borel set B ⊆ Rd−1 the limit

lim
r→∞P (Z ∈ B|C = −r, Z ∈ Qr,s) =

∫

B

l(z)
d∗

dz.

Proof:
There exists an s0 > 0 such that W has on Ks0 the representation

W (x) = 1 +

(
d∑

i=1

xi

)
D

(
x1∑d
i=1 xi

, . . . ,
xd−1∑d
i=1 xi

)

and, thus, the transformation to Pickands coordinates with regard to Fréchet margins has the
density f(z, c) = c−2l(z) according to Lemma 5.1.1.

Consider 0 < s < s0 and r > 0 such that Qr,s 6= ∅, else we have nothing to show. The situation
can be illustrated with the following picture for the bivariate case, where Qr,s =

(
1
rs , 1− 1

rs

)
.

C = -r

-s

-s

-s0

-s0

Ks

Ks0

0

Z = 1�rs

Z = 1- 1�rs

Let B ⊆ Rd−1 be a Borel set. Then we have, see for example Gänssler and Stute (1977, [30]),
Example 5.2.24,

P (Z ∈ B|C = −r, Z ∈ Qr,s) = lim
ε→0

P (Z ∈ B|C ∈ (−r − ε,−r + ε), Z ∈ Qr,s)

= lim
ε→0

P (Z ∈ B ∩Qr,s, C ∈ (−r − ε,−r + ε))
P (C ∈ (−r − ε,−r + ε), Z ∈ Qr,s)

= lim
ε→0

∫
B∩Qr,s

∫ −r+ε
−r−ε c−2l(z) dc dz

∫
Qr,s

∫ −r+ε
−r−ε c−2l(z) dc dz
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=

∫
B∩Qr,s

l(z) dz∫
Qr,s

l(z) dz
lim
ε→0

∫ −r+ε
−r−ε c−2 dc

∫ −r+ε
−r−ε c−2 dc

=
1

χ(r, s)

∫

B∩Qr,s

l(z) dz,

and, thus, by the dominated convergence theorem as in the proof of Lemma 5.1.4 for all B ⊆ Rd−1

lim
r→∞P (Z ∈ B|C = −r, Z ∈ Qr,s) = lim

r→∞
1

χ(r, s)

∫

B∩Qr,s

l(z) dz =
1
d∗

∫

B
l(z) dz =

∫

B

l(z)
d∗

dz.

¤

We want to investigate the asymptotic shown in Theorem 5.1.6 a little closer. Therefore, we
define the set

Ar,s :=
{

x = (x1, . . . , xd) ∈ Ks

∣∣∣∣c =
1
x1

+ . . . +
1
xd

< −r

}
. (5.5)

In the bivariate case the situation can be illustrated as follows:

c = -r

-s

-s

Ar,s

0

In the sequel we will be only interested in the observations, which fall into the set Ar,s. Therefore,
the following specification of Theorem 5.1.6, which is another main result of this manuscript.

Theorem 5.1.7
Let the random vector X follow a generalized Pareto distribution W . Then

sup
B∈Bd−1∩Rd−1

∣∣∣∣P (Z ∈ B|X ∈ Ar,s)−
∫

B

l(z)
d∗

dz

∣∣∣∣ = O (d∗ − χ(r, s))

holds, where the (d−1)–dimensional Borel sets are noted with Bd−1. I.e., the Pickands coordinate
with regard to Fréchet margins Z has asymptotically (uniform) for r → ∞ the conditional
density l(z)

d∗ .

Proof:
We define the conditional probability measure

Pr,s(Z ∈ B) := P (Z ∈ B|X ∈ Ar,s)
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and note with C := Pr,s ∗ C the distribution of the random variable C under the condition
X ∈ Ar,s. Since C < −r follows, we have

∫ −r

−∞
1 C(dc) = C((−∞,−r)) = 1. (5.6)

Then again with Example 5.2.24 in Gänssler and Stute (1977, [30]) as well as the representation of
a distribution by its conditional distribution (see for example Chapter V, §2 in Rényi (1966, [58]))
we get

P (Z ∈ B|X ∈ Ar,s) = Pr,s(Z ∈ B)

=
∫ −r

−∞
Pr,s(Z ∈ B|C = c)(Pr,s ∗ C)(dc)

=
∫ −r

−∞
lim
ε→0

Pr,s(Z ∈ B|C ∈ (c− ε, c + ε)) C(dc)

=
∫ −r

−∞
lim
ε→0

Pr,s(Z ∈ B,C ∈ (c− ε, c + ε))
Pr,s(C ∈ (c− ε, c + ε))

C(dc)

=
∫ −r

−∞
lim
ε→0

P (Z ∈ B, C ∈ (c− ε, c + ε)|X ∈ Ar,s)
P (C ∈ (c− ε, c + ε)|X ∈ Ar,s)

C(dc)

=
∫ −r

−∞
lim
ε→0

P (Z ∈ B, C ∈ (c− ε, c + ε), X ∈ Ar,s)
P (C ∈ (c− ε, c + ε), X ∈ Ar,s)

· P (X ∈ Ar,s)
P (X ∈ Ar,s)

C(dc)

=
∫ −r

−∞
lim
ε→0

P (Z ∈ B|C ∈ (c− ε, c + ε), X ∈ Ar,s) C(dc)

=
∫ −r

−∞
P (Z ∈ B|C = c,X ∈ Ar,s) C(dc)

=
∫ −r

−∞
P (Z ∈ B|C = c, Z ∈ Q−c,s) C(dc).

The final equality follows from the fact that, according to the definition (5.2), of Qr,s the
conditions

C = c,X ∈ Ar,s ⇐⇒ C = c, Z ∈ Q−c,s

are equivalent. With the help of Theorem 5.1.6 and the above equality it follows that
∣∣∣∣P (Z ∈ B|X ∈ Ar,s)−

∫

B

l(z)
d∗

dz

∣∣∣∣

=
∣∣∣∣
∫ −r

−∞
P (Z ∈ B|C = c, Z ∈ Q−c,s) C(dc)−

∫

B

l(z)
d∗

dz

∣∣∣∣

=

∣∣∣∣∣
∫ −r

−∞

∫

B∩Q−c,s

l(z)
χ(−c, s)

dz C(dc)−
∫

B

l(z)
d∗

dz

∣∣∣∣∣

≤
∣∣∣∣
∫ −r

−∞

∫

B

l(z)
χ(−c, s)

dz C(dc)−
∫

B

l(z)
d∗

dz

∣∣∣∣

+

∣∣∣∣∣
∫ −r

−∞

∫

B∩Q−c,s

l(z)
χ(−c, s)

dz C(dc)−
∫ −r

−∞

∫

B

l(z)
χ(−c, s)

dz C(dc)

∣∣∣∣∣

=
(∫

B

l(z)
d∗

dz

)

︸ ︷︷ ︸
≤1

∣∣∣∣
∫ −r

−∞

d∗

χ(−c, s)
C(dc)− 1

∣∣∣∣ +
∫ −r

−∞

∫

B\Q−c,s

l(z)
χ(−c, s)

dz C(dc)
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(5.6)

≤
∣∣∣∣
∫ −r

−∞

d∗

χ(−c, s)
− 1 C(dc)

∣∣∣∣ +
∫ −r

−∞

∫

Rd−1\Qr,s

l(z)
χ(r, s)

dz C(dc)

=
∫ −r

−∞

d∗ − χ(−c, s)
χ(−c, s)

C(dc) +
∫

Rd−1\Qr,s

l(z)
χ(r, s)

dz

∫ −r

−∞
1 C(dc)

(5.6)

≤
∫ −r

−∞

d∗ − χ(r, s)
χ(r, s)

C(dc) +
1

χ(r, s)

(∫

Rd−1

l(z) dz −
∫

Qr,s

l(z) dz

)

=
d∗ − χ(r, s)

χ(r, s)

∫ −r

−∞
1 C(dc) +

d∗ − χ(r, s)
χ(r, s)

(5.6)
= O(d∗ − χ(r, s)).

The right hand side does not depend on B and, thus, we have the uniform convergence

sup
B∈Bd−1∩Rd−1

∣∣∣∣P (Z ∈ B|X ∈ Ar,s)−
∫

B

l(z)
d∗

dz

∣∣∣∣ = O (d∗ − χ(r, s)) .

¤

5.2 Nonparametric Estimation of the Angular Density for Gen-
eralized Pareto Distributions

The goal of this section is to give an estimation procedure for the angular density with the help
of the results found in Section 5.1. We will proceed analogously to Section 4.1 and use again
kernel density estimators but this time for arbitrary dimension d ≥ 2.

Assume that we have n independent copies X̃(1), . . . , X̃(n) of a random vector X, which follows
a generalized Pareto distribution according to representation (2.5) with U = Ks. Denote by Z̃(i)

and C̃(i) the corresponding Pickands coordinates with regard to Fréchet margins, i = 1, . . . , n.
Choose a large threshold r > 0, and consider only those observations X̃(i) with X̃(i) ∈ Ar,s, i.e.,
X̃(i) ∈ Ks and C̃(i) < −r. We denote these by X(1), . . . , X(m). They are independent of the
binomially distributed random variable m = τn, independent from each other and identically
distributed, see Theorem 1.4.1 in Reiss (1993, [56]). According to Theorem 5.1.7 the Z(i) have
the density l(z)/d∗ for r →∞.

A natural estimator for l is, thus, a kernel density estimator with kernel k, bandwidth h > 0
and data sphering

l̂m,r(z) = d · 1

(detSm)1/2 mhd−1

m∑

i=1

k

(
S
−1/2
m

(
z − Z(i)

)

h

)
. (5.7)

Thereby Sm denotes the covariance matrix of the Z(i) and S
−1/2
m its inverse symmetric root.

For a practical introduction on multivariate kernel density estimators we again refer to Falk
et al. (2002, [23]), Chapter 6 or Chapter 4 of Simonoff (1996, [67]). A more theoretical intro-
duction can be found in Chapters 2 and 3 of Prakasa Rao (1983, [55]) or Chapter 4 of Wertz
(1978, [74]).

Data sphering is a concept from multivariate analysis, where the data are first multiplied by the
inverse symmetric root of their covariance matrix, then the density is estimated, and afterwards
transformed back, thus using the so called Mahalanobis distance. In the univariate case, this
reduces to dividing the data by their empirical standard deviation. For more information on
data sphering, see for example Falk et al. (2002, [23]), Chapter 6.
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The factor d in the estimator (5.7) is included to get an asymptotically unbiased estimator of
l(z) in the case d∗ = d. To get an unbiased estimator in an arbitrary case, we would have
to put d∗ here. But since d∗ depends on the angular density which is to be estimated, d∗ is
usually unknown. So in the case d∗ < d we can only estimate a constant multiple of l(z). The
asymptotic results underlying these statements will be shown in Sections 5.4 to 5.6.

Regarding the choice of the kernel, there are a number of popular variants. One is the normal
kernel

kN (x) = (2π)−(d−1)/2 exp
(
−1

2
xT x

)
,

another one the Epanechnikov kernel

kE(x) = max

{
0,

(
1 + d−1

2

)
(d− 1)Γ

(
d−1
2

)

2π(d−1)/2

(
1− xT x

)
}

,

where Γ denotes the Gamma function, see also Remark 2.3.9. As experience shows, the choice
of the kernel does not play an overly important role in practice, see, for example, Chapter 4
in Wertz (1978, [74]). Thus, also other kernels can be used, see, for example, Section 6.4 in Falk
et al. (2002, [23])) for further possibilities.

The asymptotic theory in Sections 5.4 to 5.6 will be developed for kernels with bounded support,
which also fulfill conditions, which are stated in (5.17). The Epanechnikov kernel fulfills all these
conditions, the normal kernel does this with one exception, the bounded support. Thus the
Epanechnikov kernel seems a more natural choice. However, the normal kernel has one advantage
in practical applications, and that is a simple choice of the bandwidth. Simonoff (1996, [67]) gives
in Section 4 a generalization of the optimal bandwidth (4.2) in the general multivariate case for
normally distributed data and the normal kernel. With our notations this bandwidth reads

h =
(

4
m(d + 1)

)1/(d+3)

. (5.8)

Of course we do not have normal data here, in contrast to the Pickands densities in Section 4.1.2,
the angular densities of logistic type close to the independence case do not resemble the normal
distribution. Nevertheless, simulations show that with the bandwidth given above, quite good
results can be achieved and that this is a reasonable approach.

Due to this simple automatic choice of a bandwidth, we restrict ourselves, thus, in the course
of this manuscript for practical purposes to the normal kernel and to (5.8). Of course there are
again advanced methods for the choice of h, see the references in Section 4.1.2, which should be
used for other choices of kernels such as the Epanechnikov kernel, but which are much harder
to implement.

Since we have a bounded support of the angular density, one should use reflection techniques,
see Sections 2.1 and 8.2 of Reiss and Thomas (2001, [57]), to further improve the estimation.
Thereby the data set is reflected at the boundaries of the support. In our case these were the
(d − 2)-dimensional coordinate planes xi = 0, i = 1, . . . , d − 1 and the plane

∑d−1
i=1 xi = 1.

Then the density estimator for the enlarged data set is computed. This especially improves the
behavior of the kernel density estimator at the boundary of the support, and was used in all
following estimations.

Example 5.2.1
We want to evaluate the estimator l̂m,r(z) for the angular density found in (5.7) with simulated
data. The logistic random vectors underlying the estimator, which are used in the following,
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were all generated by Algorithm 3.1.11. Remark that in the logistic case d∗ = d holds for λ > 1.
We begin with λ = 6 and d = 2. We choose s = 0.1, and in each case 100 data points X(i)

are generated, which fulfill C(i) < −r for r = 50, 500, 5000 and ||X(i)||∞ < s, i.e., X(i) ∈ Ar,s.
The following plots show the resulting data together with the corresponding threshold line. For
illustration purposes a logarithmic scale is used.
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Subsequently the angular components Z(i) are computed and can be seen in the following graph-
ics.

0 1
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0 1

r = 500

0 1

r = 5000

One now estimates the angular density by using a kernel density estimator for the Z(i). The
dashed line represents the underlying angular density (see Example 2.3.10).
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Exactly the same graphics were also created for the choice of λ = 1.2. The other parameters
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were thereby left unchanged.
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In the case of a high degree of dependence (λ = 6), one gets always good results, independent of
the choices of r. However, in the case of a low degree of dependence (λ = 1.2), a clear difference
in the pictures is visible for different r. The rate of convergence underlying the distribution of the
used data depends, according to Theorem 5.1.7, on how fast χ(r, s) converges to d∗. This rate
is slower for lower λ according to Example 5.1.5. Exact mathematical results of the influence
of χ(r, s) on the convergence will be shown in Sections 5.4 to 5.6. That such nonparametric
estimators depend heavily on the threshold and have difficulties close to the independence case
is a common phenomenon in extreme value analysis, see for example Section 4.4 of Coles et
al. (1999, [9]). A proposal for the practical choice of r with real data can be found in Section 5
in Joe et al. (1992, [43]) and in Section 6 in Coles and Tawn (1994, [11]), where similar estimators
for the extreme value case are given.

The three dimensional case can also be visualized quite well. We begin again with λ = 6. For
the values of r = 100, 1000, 10000 and s = 0.1, the following 100 data were generated and again
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plotted on a logarithmic scale.
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We compute the angular components of these points
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and are again able to estimate the angular density. A picture of the underlying angular density
can be found in Example 2.3.10.
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One proceeds in exactly the same way for λ = 1.2.
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The behavior of the estimator is roughly the same as in the bivariate case. One can see again
in the case close to the independence that the angular components accumulate only for high r
in the vertices of R2.

For dimensions d ≥ 4 a complete graphical representation is not possible. The data and the
angular components can be visualized, for example, by a scatterplot matrix, see Example 3.1.12.
Also the angular density and its estimator are only partially presentable. To investigate the tail
dependence structure, the behavior of l(z) and l̂m,r(z) respectively is of interest especially in the
vertices of Rd−1, see Example 2.3.10. So one should try to visualize these areas.

Let ei, i = 0, . . . , d− 1 be the vertices of the unit simplex Rd−1, as defined at the beginning of



CHAPTER 5. NONPARAMETRIC ESTIMATION IN THE MULTIVARIATE CASE 97

Section 2.3.1. We consider the lines

gi(t) :=




1/d
...

1/d


 + t


ei −




1/d
...

1/d





 , t ∈ [0, 1), i = 0, . . . , d− 1.

They originate at (1/d, . . . , 1/d) and end at the vertices ei. Through the corresponding graph
of l (gi(t)) and l̂m,r (gi(t)) respectively, one can draw conclusions about the behavior of the
estimator at the boundary. We want to show this for the case d = 4.

s was again chosen as 0.1, r was set to 100 and 10000 respectively and 250 points were generated,
which exceeded the corresponding thresholds. Beginning with λ = 6, we plot the angular
components
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and subsequently parts of the angular density (dashed) together with its estimator as described
above.
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Exactly the same parameters were also used in the case λ = 1.2.
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One sees again the strong dependence of the estimator on r, close to the independence case.

To use kernel density estimators in dimensions higher than 4 or 5 is practically not very reason-
able. Because of the so-called ”Problem of Empty Space” an unrealistically high number of data
is necessary. Further information on problems with kernel density estimators in high dimensions
can be found in Section 4 of Simonoff (1996, [67]).

♦

5.3 Differentiable δ–Neighborhoods of Pickands Transforms with
Regard to Fréchet Margins

For practical applications, the assumption of random vectors following exactly a GPD might
not be the most realistic one. By the POT approach, one more often encounters random vec-
tors whose distribution function is, in a certain sense, close to a GPD. In the univariate case
this leads to the definition of δ-neighborhoods, see Section 2.2 of Falk et al. (2004, [21]). The
problem of defining appropriate multivariate versions of δ-neighborhoods is dealt with in Kauf-
mann and Reiss (1995, [45]) and Section 5.3 of Falk et al. (2004, [21]). In Section 5.4 of Falk
et al. (2004, [21]), the concept of differentiable δ-neighborhoods with the help of the standard
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Pickands transformation is introduced. This is also a possible way to define a multivariate ver-
sion of δ-neighborhoods. It is used to extend certain results shown for GPDs to a broader class
of distribution functions. In this section, we want to give an analogue of these differentiable
δ-neighborhoods for the case of the Pickands transform with regard to Fréchet margins. It helps
us to find a wider class of distribution functions, to which the estimator defined in the previous
section is applicable.

Definition 5.3.1
Let X = (X1, . . . , Xd) ∈ (−∞, 0)d be a random vector with a distribution function H. For
δ > 0 the distribution function H is said to be in the differentiable δ–neighborhood (with regard
to Fréchet margins) of the generalized Pareto distribution W with angular density l, if a neigh-
borhood U of 0 in the relative topology of the negative quadrant (−∞, 0)d exists, such that
the Pickands transformation with regard to Fréchet margins TF (X) = (Z,C) has on TF (U) a
density h(z, c) with the uniform representation

h(z, c) = c−2

(
l(z) + q(z)O

(∣∣∣∣
1
c

∣∣∣∣
δ
))

for c → −∞, where q(z) ≥ 0. Thereby we demand that a number s > 0 exists, such that for all
v > 0 the integral

α(v, s) :=
∫

Qv,s

q(z) dz

exists and is finite.
♦

Remark 5.3.2
In contrast to the limit of χ(r, s) the limit limv→∞ α(v, s) may not exist. For the targeted
estimation procedure to work, some conditions on the rate of convergence of v → ∞ must be
met. Then we can prove extensions of Theorems 5.1.6 and 5.1.7 for distribution functions from
the δ–neighborhood of generalized Pareto distributions.

♦

Example 5.3.3
In this example we want to show that an extreme value distribution falls into the 1-neighborhood
of the corresponding GPD. An extreme value distribution is defined by

G(x1, . . . , xd) = exp

((
d∑

i=1

xi

)
D

(
x1∑d
i=1 xi

, . . . ,
xd−1∑d
i=1 xi

))
,

see Definition 2.2.1. As was shown in Falk and Reiss (2005, [27]) after the proof of Theorem 5.3,
we have

∂d

∂x1 · · · ∂xd
G(x1, . . . , xd) =

∂d

∂x1 · · · ∂xd
W (x1, . . . , xd) + O

(
1

|x1 + . . . + xd|d−2

)

close to 0.

Then we have, by inserting the inverse Pickands transformation with regard to Fréchet mar-
gins (2.3),

∂d

∂x1 · · · ∂xd
G

(
T−1

F (z, c)
)
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=
∂d

∂x1 · · · ∂xd
W

(
T−1

F (z, c)
)

+ O


 1

1
|c|d−2

(
1
z1

+ . . . + 1
zd−1

+ 1
1−Pd

i=1 zi

)d−2




=
∂d

∂x1 · · · ∂xd
W

(
T−1

F (z, c)
)

+ O
(
|c|d−2

)
,

since the function
(z1, . . . , zd−1) → 1(

1
z1

+ . . . + 1
zd−1

+ 1
1−Pd

i=1 zi

)d−2

is bounded on Rd−1. Thus, we have for the density g of G in terms of the Pickands coordi-
nates with regard to Fréchet margins by Lemma 5.1.1, the density transformation theorem and
Lemma 2.1.5

g(z, c) =
∂d

∂x1 · · · ∂xd
G

(
T−1

F (z, c)
) |det JT−1

F
(z, c)|

=
(

∂d

∂x1 · · · ∂xd
W

(
T−1

F (z, c)
)

+ O
(
|c|d−2

))
| detJT−1

F
(z, c)|

= f(z, c) + |det JT−1
F

(z, c)|O
(
|c|d−2

)

= c−2l(z) +
1

|c|d+1
· 1

z2
1 · z2

2 · . . . · z2
d−1

(
1−∑d−1

i=1 zi

)2

︸ ︷︷ ︸
:=q(z)

O
(
|c|d−2

)

= c−2l(z) + q(z)O
(|c|−3

)

= c−2

(
l(z) + q(z)O

(∣∣∣∣
1
c

∣∣∣∣
))

.

Since q(z) ≥ 0 is continuous on Rd−1, the function is integrable for every v > 0 on Qv,s.
Thus the extreme value distribution G lies in the 1–neighborhood of the generalized Pareto
distribution W . Note, however, that

lim
v→∞α(v, s) = lim

v→∞

∫

Qv,s

q(z) dz = ∞

for the special choice of

q(z) =
1

z2
1 · z2

2 · . . . · z2
d−1

(
1−∑d−1

i=1 zi

)2 .

♦

We can now show analogues of Theorems 5.1.6 and 5.1.7 for distribution functions in δ-neigh-
borhoods of GPDs.

Theorem 5.3.4
Let the random vector X ∈ (−∞, 0)d follow a distribution function H, which lies in the δ–
neighborhood of a generalized Pareto distribution W with angular density l(z) and d∗ > 0.
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Then there exists s0 > 0 such that for all 0 < s < s0 and all 0 < v ≤ r and any Borel set
B ⊆ Rd−1 the equation

P (Z ∈ B|C = −r, Z ∈ Qv,s) =
1

χ(v, s)

∫

B∩Qv,s

l(z) dz + O
(
α(v, s)r−δ−1

)

holds. If

r−δ−1α(v, s) → 0 (5.9)

for r →∞ and v →∞, then

lim
r→∞,v→∞P (Z ∈ B|C = −r, Z ∈ Qv,s) =

∫

B

l(z)
d∗

dz.

Proof:
Before we begin with the actual proof, we need an auxiliary result. First we have for δ, ε > 0
and r > 0 with a proper constant M > 0

∣∣∣∣
∫ −r+ε

−r−ε
O

(
|c|−δ−2

)
dc

∣∣∣∣ ≤
∫ −r+ε

−r−ε
M |c|−δ−2 dc = M

[ |c|−δ−1

δ + 1

]−r+ε

−r−ε

=
M

δ + 1

(
| − r + ε|−δ−1 − | − r − ε|−δ−1

)
= O

(
r−δ−1

)
. (5.10)

Now we prove the main result. By assumption an s0 > 0 exists, such that H possesses on Ks0

in the Pickands coordinates with regard to Fréchet margins the density

h(z, c) = c−2l(z) + q(z)O
(
|c|−δ−2

)
.

Consider 0 < s < s0. Let B ⊆ Rd−1. We get as in Theorem 5.1.6 and with the calculation rules
of the O-notation

P (Z ∈ B|C = −r, Z ∈ Qv,s)
= lim

ε→0
P (Z ∈ B|C ∈ (−r − ε,−r + ε), Z ∈ Qv,s)

= lim
ε→0

P (Z ∈ B ∩Qv,s, C ∈ (−r − ε,−r + ε))
P (C ∈ (−r − ε,−r + ε), Z ∈ Qv,s)

= lim
ε→0

∫
B∩Qv,s

∫ −r+ε
−r−ε c−2

(
l(z) + q(z)O

(|c|−δ
))

dc dz
∫
Qv,s

∫ −r+ε
−r−ε c−2 (l(z) + q(z)O (|c|−δ)) dc dz

= lim
ε→0

∫
B∩Qv,s

∫ −r+ε
−r−ε c−2l(z) dc dz +

∫
B∩Qv,s

∫ −r+ε
−r−ε q(z)O

(|c|−δ−2
)

dc dz
∫
Qv,s

∫ −r+ε
−r−ε c−2l(z) dc dz +

∫
Qv,s

∫ −r+ε
−r−ε q(z)O (|c|−δ−2) dc dz

= lim
ε→0

∫
B∩Qv,s

l(z) dz
∫ −r+ε
−r−ε c−2 dc +

∫
B∩Qv,s

q(z) dz
∫ −r+ε
−r−ε O

(|c|−δ−2
)

dc
∫
Qv,s

l(z) dz
∫ −r+ε
−r−ε c−2 dc +

∫
Qv,s

q(z) dz
∫ −r+ε
−r−ε O (|c|−δ−2) dc

(5.10)
= lim

ε→0

∫
B∩Qv,s

l(z) dz
∫ −r+ε
−r−ε c−2 dc +

∫
B∩Qv,s

q(z) dz ·O (
r−δ−1

)
∫
Qv,s

l(z) dz
∫ −r+ε
−r−ε c−2 dc + α(v, s) ·O (r−δ−1)

= lim
ε→0

∫
B∩Qv,s

l(z) dz
∫ −r+ε
−r−ε c−2 dc

∫
Qv,s

l(z) dz
∫ −r+ε
−r−ε c−2 dc

+ O
(
α(v, s)r−δ−1

)
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=

∫
B∩Qv,s

l(z) dz∫
Qv,s

l(z) dz
+ O

(
α(v, s)r−δ−1

)

=
1

χ(v, s)

∫

B∩Qv,s

l(z) dz + O
(
α(v, s)r−δ−1

)
.

If (5.9) holds, we have for all Borel sets B ⊆ Rd−1 by the dominated convergence theorem (see
for example Fristedt and Gray (1997, [28]), Section 8.2)

lim
r→∞,v→∞P (Z ∈ B|C = −r, Z ∈ Qv,s) = lim

r→∞,v→∞
1

χ(v, s)

∫

B∩Qv,s

l(z) dz + O
(
α(v, s)r−δ−1

)

=
∫

B

l(z)
d∗

dz.

¤

Again we want to investigate the shown asymptotic closer. For this we define for v ≤ r the set

Ar,s,v :=

{
x ∈ Ks

∣∣∣∣∣c =
1
x1

+ . . . +
1
xd

< −r, z =

(
1
x1

c
, . . . ,

1
xd−1

c

)
∈ Qv,s

}
. (5.11)

In the bivariate case it can be illustrated as follows:

c = -r

-s

-s

Ar,s,r

0

c = -r

-s

-s

Ar,s,v

0

Due to Theorem 5.3.4 we are only interested in observations, which fall into the set Ar,s,v.
Therefore, we make the following specification of Theorem 5.3.4.

Theorem 5.3.5
Let the random vector X ∈ (−∞, 0)d follow a distribution function H, which lies in the δ–
neighborhood of a generalized Pareto distribution W . Then

sup
B∈Bd−1∩Rd−1

∣∣∣∣P (Z ∈ B|X ∈ Ar,s,v)−
∫

B

l(z)
d∗

dz

∣∣∣∣ = O
(
(d∗ − χ(v, s)) +

(
α(v, s)r−δ−1

))

holds for v ≤ r, where the (d− 1)–dimensional Borel sets are again denoted by Bd−1.

Proof:
We define, in analogy to the proof of Theorem 5.1.7, the conditional probability measure

Pr,s,v(Z ∈ B) := P (Z ∈ B|X ∈ Ar,s,v),
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and by C := Pr,s,v ∗ C we denote again the distribution of the random variable C, this time
under the condition X ∈ Ar,s,v. Since C < −r follows, we have

∫ −r

−∞
1 C(dc) = C((−∞,−r)) = 1. (5.12)

Analogously to the proof of Theorem 5.1.7 one shows that

P (Z ∈ B|X ∈ Ar,s,v) =
∫ −r

−∞
P (Z ∈ B|C = c, Z ∈ Qv,s) C(dc).

With the help of Theorem 5.3.4 and analogously to the proof of Theorem 5.1.7, we obtain
∣∣∣∣P (Z ∈ B|X ∈ Ar,s,v)−

∫

B

l(z)
d∗

dz

∣∣∣∣

=
∣∣∣∣
∫ −r

−∞
P (Z ∈ B|C = c, Z ∈ Qv,s) C(dc)−

∫

B

l(z)
d∗

dz

∣∣∣∣

=

∣∣∣∣∣
∫ −r

−∞

1
χ(v, s)

∫

B∩Qv,s

l(z) dz + O
(
α(v, s)c−δ−1

)
C(dc)−

∫

B

l(z)
d∗

dz

∣∣∣∣∣

≤
∣∣∣∣∣
∫ −r

−∞

1
χ(v, s)

∫

B∩Qv,s

l(z) dz C(dc)−
∫

B

l(z)
d∗

dz

∣∣∣∣∣ +
∣∣∣∣
∫ −r

−∞
O

(
α(v, s)c−δ−1

)
C(dc)

∣∣∣∣
(5.12)

≤
∣∣∣∣∣

1
χ(v, s)

∫

B∩Qv,s

l(z) dz −
∫

B

l(z)
d∗

dz

∣∣∣∣∣ +
∫ −r

−∞
O

(
α(v, s)r−δ−1

)
C(dc)

≤
∣∣∣∣∣

1
χ(v, s)

∫

B∩Qv,s

l(z) dz − 1
χ(v, s)

∫

B
l(z) dz

∣∣∣∣∣

+
∣∣∣∣

1
χ(v, s)

∫

B
l(z) dz −

∫

B

l(z)
d∗

dz

∣∣∣∣ + O
(
α(v, s)r−δ−1

)

=
∫

B\Qv,s

l(z)
χ(v, s)

dz +
∫

B
l(z) dz

(
1

χ(v, s)
− 1

d∗

)
+ O

(
α(v, s)r−δ−1

)

≤
∫

Rd−1\Qv,s

l(z)
χ(v, s)

dz + d∗
d∗ − χ(v, s)
d∗χ(v, s)

+ O
(
α(v, s)r−δ−1

)

=
∫

Rd−1

l(z)
χ(v, s)

dz −
∫

Qv,s

l(z)
χ(v, s)

dz +
d∗ − χ(v, s)

χ(v, s)
+ O

(
α(v, s)r−δ−1

)

=
d∗

χ(v, s)
− 1 + O (d∗ − χ(v, s)) + O

(
α(v, s)r−δ−1

)

= O
(
(d∗ − χ(v, s)) + α(v, s)r−δ−1

)
.

The right hand side does not depend on B and, thus, uniform convergence holds

sup
B∈Bd−1∩Rd−1

∣∣∣∣P (Z ∈ B|X ∈ Ar,s,v)−
∫

B

l(z)
d∗

dz

∣∣∣∣ = O
(
(d∗ − χ(v, s)) +

(
α(v, s)r−δ−1

))
.

¤

By Theorem 5.3.5 we know that the Pickands coordinate Z (with regard to Fréchet margins)
has asymptotically (uniform) for r →∞ and v →∞ the conditional density l(z)

d∗ if the condition

r−δ−1α(v, s) → 0
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is fulfilled for r →∞ and v →∞ with v ≤ r, as in Theorem 5.3.4.

Since, thus, the density of the Pickands coordinates with regard to Fréchet margins lies under
certain regularity conditions close to the angular density for distributions in δ–neighborhoods,
we have, as in Section 5.2, the possibility to estimate the angular density by means of (5.7).
One has to bear in mind that here one can only use observations, for which C(i) < −r and
additionally Z(i) ∈ Qv,s, i.e., X(i) ∈ Ar,s,v, holds.

Example 5.3.6
In continuation of Example 5.3.3, we look at extreme value distributions. Before we estimate
the angular density, we investigate condition (5.9) from Theorem 5.3.4 for the extreme value
case and the special choice of

q(z) =
1

z2
1 · z2

2 · . . . · z2
d−1

(
1−∑d−1

i=1 zi

)2 ,

see Example 5.3.3. We choose r = v and plot numerically with NIntegrate the graphs of
r−2α(r, 0.1) for the cases d = 2 and d = 3.

100 200 300 400 500
r

0.002

0.004

0.006

0.008

0.01

0.012

0.014

r-2ΑHr,sL d = 2

200 400 600 800 1000
r

0.02

0.04

0.06

0.08

0.1
r-2ΑHr,sL d = 3

In the case d = 2, we have clear convergence to 0, in the case d = 3, this convergence is already
much slower. We note that in low dimensions the choice of r = v is sufficient to imply the
convergence (5.9), in higher dimensions one should choose v = rξ with ξ < 1 to slow down the
convergence of α to ∞. Further numerical investigations show that ξ = 1

d−1 seems to be a good
choice.

In the extreme value case, we evaluate the estimator l̂m,r(z) with simulated data. Therefore,
observations are generated, which are distributed according to an extreme value distribution Gλ

of logistic type, i.e.,

Gλ(x1, . . . , xd) = exp

((
d∑

i=1

xi

)
Dλ

(
x1∑d
i=1 xi

, . . . ,
xd−1∑d
i=1 xi

))
= exp (−||x||λ)

with Dλ from Definition 2.3.3. As shown in Example 5.3.3, this distribution function is in the
1–neighborhood of Wλ. An algorithm for the generation of these random vectors can be found
in Stephenson (2003, [70]), Algorithm 1.1.

We choose s = 0.1, and in each case 100 data points are generated, for which C < −r and
Z ∈ Qv,s with v, r = 50, 500, 5000 hold respectively. Note that for these examples we always
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chose r = v. For λ = 6 the following plots result (the original data are again transformed to a
logarithmic scale):
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Once again we also investigate the case λ = 1.2.
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As in Example 5.2.1 we see that cases with low dependence are more difficult to grasp.

Another interesting case, which is not covered by Theorems 5.3.4 and 5.3.5, is the case of
independence, since we have d∗ = 0 there. Nevertheless, we also investigate the estimator here
for d = 2. The underlying angular measure is the point measure on {0, 1}. The angular density
vanishes on the interior of Rd−1. But the angular components should accumulate at 0 and 1,
and when one estimates the density of these, one should get a graph, which is close to 0 in the
central area and converges at the boundary quickly to ∞.
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With the chosen bandwidth a better result of the kernel density estimator is not possible, since
the angular components are almost only on the points 0 and 1 and are, thus, almost perfectly
separated.

A further question would be whether the transformation to Pickands coordinates with regard
to Fréchet margins in these δ-neighborhoods generates random variables, which have (asymp-
totically) the standardized angular distribution as distribution, although one knows that no
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angular density exists or it vanishes in the interior of Rd−1. A mathematical affirmation of this
is indicated in Joe et al. (1992, [43]) and Coles and Tawn (1994, [11]) for the extreme value case.

Again we investigate the case d = 3. For comparison the parameters are chosen exactly as in
Example 5.2.1 with r = v. At first again λ = 6.
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Then λ = 1.2.
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-10-1

-10-2
-10-3

-10-1
-10-2-10-3

-10-1

-10-2
-10-3

10-1

-10-2
-10-3

-10-1
-10-2-10-3

r = 1000

-10-1

-10-2
-10-3

-10-1
-10-2-10-3

-10-1

-10-2
-10-3

10-1

-10-2
-10-3

-10-1
-10-2-10-3

r = 10000

-10-1

-10-2
-10-3

-10-1
-10-2-10-3

-10-1

-10-2
-10-3

10-1

-10-2
-10-3

-10-1
-10-2-10-3

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
r = 100

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
r = 1000

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
r = 10000

r = 100

0.2
0.4

0.6
0.8

0.2
0.4
0.6
0.8

0
5

10
15
20

0.2
0.4

0.6
0.8

r = 1000

0.2
0.4

0.6
0.8

0.2
0.4
0.6
0.8

0
2.5
5

7.5
10

0.2
0.4

0.6
0.8

r = 10000

0.2
0.4

0.6
0.8

0.2
0.4
0.6
0.8

0
5

10

0.2
0.4

0.6
0.8

The results resemble those in Example 5.2.1, see the corresponding remarks there.
♦

The estimation of the angular density in the extreme value case has been done in several papers,
for example Coles and Tawn (1991, [10]), Coles and Tawn (1994, [11]), Coles et al. (1999, [9])
or Joe et al. (1992, [43]) with the help of the Pickands coordinates with regard to Fréchet
margins. In contrast to our approach, an extreme value model was assumed which is valid not
only close to the origin. Then one does not need to introduce the parameter v and is able to
work with all angular components for which C(i) < −r holds. But also then one has problems
and instability of the estimator close to the independence case. This can especially be seen in
Section 4 of Coles et al. (1999, [9]), where only the estimated angular density in an interior
set of Rd−1 away from the boundary is considered reliable. This is also done here with the
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introduction of v. In Section 5 of Joe et al. (1992, [43]), an example of this procedure with real
data can be found and a practical way of choosing r is given.

The difference of our estimation procedure to the ones in the above cited references are the
weaker assumptions of our estimator. We only assume an extreme value distribution close to
the origin, for example in a cube around the origin, whereas the other procedures need that
assumption for a larger area. With the concept of the δ-neighborhoods we are also able to
transfer that method to other distribution functions close to a GPD, not only extreme value
distributions.

5.4 Conditional Expectation and Conditional Variance of the
Nonparametric Estimator

In the next three sections, we want to examine some mathematical properties of estimator (5.7),
especially we will compute its asymptotic distribution. The asymptotic normality of both
univariate and multivariate kernel density estimators under suitable regularity conditions is
well known, see for example Chapters 2 and 3 of Prakasa Rao (1983, [55]), Chapter 4 of
Wertz (1978, [74]) or Powell (2002, [54]). Since we base our estimator on observations, of
which the distribution is only asymptotically known, the above references cannot directly be
used as in Chapter 4. Instead, we will proceed analogously to Powell (2002, [54]) to show the
asymptotic normality for our estimator under suitable regularity conditions.

For a mathematical simplification we look at the asymptotic properties without data sphering
and reflection techniques, i.e., we consider an estimator of the shape

l̂m,r(z) = d · 1
mhd−1

m∑

i=1

k

(
z − Z(i)

h

)
. (5.13)

To our knowledge the computation of the asymptotic distribution of kernel density estimators
with data sphering is, still, an open problem.

At first we assume that the m independent observations X(1), . . . , X(m) with Pickands coordi-
nates with regard to Fréchet margins (Z(1),−r1), . . . , (Z(m),−rm) and ||X(i)||∞ < s for s > 0
and i = 1, . . . , m are the basis of this estimator. Thereby the X(i) follow a generalized Pareto
distribution W with angular density l(z) and ri > r > 0 holds for i = 1, . . . , m. We begin by
examining the expectation, variance and asymptotic distribution under the condition that the
m observations fulfill C(i) < −r and that C(1) = −r1, . . . , C

(m) = −rm holds. Then we will
remove these conditions in Section 5.6 and get to the unconditional asymptotic distribution of
estimator (5.13).

By Theorem 5.1.6 we know that every Z(i) possesses the density

li(z) :=

{
l(z)

χ(ri,s)
for z ∈ Qri,s,

0 else,
(5.14)

under the above conditions. Thereby Qr,s and χ(r, s) are defined as in (5.2) and Definition 5.1.3
respectively. With the notation

ζim :=
d

hd−1
k

(
z − Z(i)

h

)
,
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we can write (5.13) as

l̂m,r(z) =
1
m

m∑

i=1

ζim.

Throughout the following we assume that z ∈ Qr,s and l(z) 6= 0 holds with z arbitrary but fixed.
Furthermore, we assume that the underlying angular density l(z) is smooth enough to have a
Taylor series expansion of the form

l(z − hu) = l(z)− h (∇zl(z) · u) +
h2

2
tr

(
∂2l(z)

∂zj1∂zj2

uj1uj2

)

1≤j1,j2≤d−1

+ o(h2) (5.15)

for h → 0 and u ∈ Rd−1, see Theorem 168.2 in Heuser (1998, [38]). By∇zl we denote the gradient
of l and with (u ·v) the usual scalar product of two vectors u and v. Since this expansion implies
that l is continuous, we have d∗ > 0. The remainder term shall be bounded from above for every
compact subset U ⊂ Rd−1 by the third power of h and a constant MU , depending only on U ,
i.e.,

sup
u∈U

∣∣∣∣∣l(z − hu)−
(

l(z)− h (∇zl(z) · u) +
h2

2
tr

(
∂2l(z)

∂zj1∂zj2

uj1uj2

)

1≤j1,j2≤d−1

)∣∣∣∣∣ ≤ MUh3, (5.16)

thus being o(h2) for u ∈ U .

Also li(z) has for z ∈ Qr,s and h small enough the same Taylor series expansion as (5.15) with
the additional factor 1

χ(ri,s)
.

Let the kernel k ≥ 0 have bounded support and for j, j1, j2 ∈ {1, . . . , d− 1} fulfill
∫

k(u) du = 1,

∫
ujk(u) du = 0,

∫
uj1uj2k(u) du < ∞,

∫
k2(u) du < ∞ and

∫
k3(u) du < ∞. (5.17)

The normal kernel for example fulfills conditions (5.17), but does not have bounded support,
thus the asymptotic theory developed her is not valid for the normal kernel. The Epanechnikov
kernel, however, has bounded support and fulfills conditions (5.17) and is, thus, to be preferred
from an asymptotic viewpoint.

We begin with the asymptotic theory by examining the expectation.

Lemma 5.4.1
Under the above assumptions we have for the conditional expectation

E
(
ζim

∣∣∣C(i) = ri, i = 1, . . . , m
)

=
d

χ(ri, s)
l(z) +

h2

2
d

χ(ri, s)
tr

(
∂2l(z)

∂zj1∂zj2

∫
uj1uj2k(u) du

)
+ o

(
h2

)
,

and the convergence of the remainder term is uniform in r.
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Proof:
With a substitution, the Taylor series (5.15) and conditions (5.17) we get

E
(
ζim

∣∣∣C(i) = ri, i = 1, . . . , m
)

= E

(
d

hd−1
k

(
z − Z(i)

h

) ∣∣∣C(i) = ri, i = 1, . . . , m

)

=
∫

d

hd−1
k

(
z − x

h

)
li(x) dx =

∫
dk(u)li(z − hu) du

(5.15)
=

∫
dk(u)

1
χ(ri, s)

(
l(z)− h (∇zl(z) · u) +

h2

2
tr

(
∂2l(z)

∂zj1∂zj2

uj1uj2

)
+ o

(
h2

))
du

=
d

χ(ri, s)
l(z)

∫
k(u) du− h

d

χ(ri, s)

(
(∇zl(z)) ·

(∫
ujk(u) du

)

1≤j≤d−1

)

+
h2

2
d

χ(ri, s)
tr

(
∂2l(z)

∂zj1∂zj2

∫
uj1uj2k(u) du

)
+

∫
dk(u)

1
χ(ri, s)

o(h2) du

(5.17)
=

d

χ(ri, s)
l(z) +

h2

2
d

χ(ri, s)
tr

(
∂2l(z)

∂zj1∂zj2

∫
uj1uj2k(u) du

)
+ o

(
h2

)
.

We will show the above equality for the remainder term next. Since the kernel has bounded
support S := {x ∈ Rd−1|k(x) > 0}, and the remainder of the Taylor series is bounded from
above by MSh3 for u ∈ S, see (5.16), the remainder term can be written as

∫
dk(u)

1
χ(ri, s)

o(h2) du ≤ dMS

χ(ri, s)
h3.

Due to χ(r, s) ≤ χ(ri, s) ≤ d∗ and χ(r, s) →r→∞ d∗ > 0 by Lemma 5.1.4, we have for the
remainder term then

∫
dk(u)

1
χ(ri, s)

o(h2) du ≤ dMS

χ(ri, s)
h3 ≤ dMS

χ(r, s)
h3 = o(h2),

uniformly in r since the factor dMS
χ(r,s) is bounded.

¤

Theorem 5.4.2
Under the above assumptions we have

E
(
l̂m,r(z)

∣∣∣C(i) = ri, i = 1, . . . , m
)

= l(z)
d

m

m∑

i=1

1
χ(ri, s)

+
h2

2
tr

(
∂2l(z)

∂zj1∂zj2

∫
uj1uj2k(u) du

)
d

m

m∑

i=1

1
χ(ri, s)

+ o
(
h2

)
,

where the remainder term is uniform in m and r. Thereby

d

d∗
≤ d

m

m∑

i=1

1
χ(ri, s)

≤ d

χ(r, s)
→ d

d∗
(5.18)

for r →∞.
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Proof:
With Lemma 5.4.1,

E
(
l̂m,r(z)

∣∣∣C(i) = ri, i = 1, . . . , m
)

=
1
m

m∑

i=1

E
(
ζim

∣∣∣C(i) = ri, i = 1, . . . , m
)

=
1
m

m∑

i=1

d

χ(ri, s)
l(z) +

1
m

m∑

i=1

h2

2
d

χ(ri, s)
tr

(
∂2l(z)

∂zj1∂zj2

∫
uj1uj2k(u) du

)
+ o

(
h2

)

= l(z)
d

m

m∑

i=1

1
χ(ri, s)

+
h2

2
tr

(
∂2l(z)

∂zj1∂zj2

∫
uj1uj2k(u) du

)
d

m

m∑

i=1

1
χ(ri, s)

+ o
(
h2

)

holds. For the second equality sign we used 1
m

∑m
i=1 o(h2) = o(h2). We will show now that this

is correct. From the proof of Lemma 5.4.1, we know that for o(h2) an upper bound can be given
in terms of o(h2) ≤ dMS

χ(r,s)h
3 with MS from the Taylor series expansion (5.15). We have now

1
m

m∑

i=1

o(h2) ≤ 1
m

m∑

i=1

d

χ(r, s)
MSh3 =

MSd

χ(r, s)
h3 = o(h2)

uniformly in m and r, since χ(r, s) →r→∞ d∗ > 0 monotonously increasing.

The assertion (5.18) follows from Lemma 5.1.4, since

d

d∗
=

d

m

m∑

i=1

1
d∗
≤ d

m

m∑

i=1

1
χ(ri, s)

≤ d

m

m∑

i=1

1
χ(r, s)

=
d

χ(r, s)

and χ(r, s) → d∗ for r →∞.
¤

Theorem 5.4.2 states that the bias of the estimator (5.13) depends on the parameters h, ri

and d∗. We will derive conditions for the rate of convergence of h at the end of this, and the
beginning of the next section. Since the rate of convergence of χ(r, s) =

∫
Qr,s

l(z) dz is crucial
for a suitable rate of convergence of the parameter r, the underlying and commonly unknown
angular density l itself plays an important role there. We have seen in Example 5.2.1 that this
rate can be very different. Which conditions must be fulfilled here, and how they link up to
rate of convergence of h will be examined in Section 5.5. The bias coming from d∗ cannot be
controlled, but it consists of, as we will shortly see, only a constant factor, which equals 1 in the
case d∗ = d.

Next we turn to the investigation of the variance.

Lemma 5.4.3
Under the above assumptions, we have

σ2
im := Var

(
ζim

∣∣∣C(i) = ri, i = 1, . . . , m
)

=
d2

χ(ri, s)hd−1
l(z)

∫
k2(u) du + O

(
1

hd−2

)

with uniform convergence of the remainder term in r.

Proof:
Additional to Lemma 5.4.1 we use again a substitution, the Taylor series (5.15) and the condi-
tions (5.17)

σ2
im = Var(ζim) = E(ζ2

im)−E(ζim)2
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= E




(
d

hd−1
k

(
z − Z(i)

h

))2

− E(ζim)2

=
∫

d2

h2(d−1)
k2

(
z − x

h

)
li(x) dx− E(ζim)2

=
d2

hd−1

∫
k2(u)li(z − hu) du− E(ζim)2

=
d2

hd−1

∫
k2(u)

(
l(z) + O(h)

χ(ri, s)

)
du− E(ζim)2

=
d2

χ(ri, s)hd−1
l(z)

∫
k2(u) du + O

(
1

hd−2

)
− E(ζim)2

=
d2

χ(ri, s)hd−1
l(z)

∫
k2(u) du + O

(
1

hd−2

)
,

since E(ζim) converges to d
d∗ · l(z) for h → 0, r →∞. The uniform convergence of the remainder

term in r follows as in the proof of Lemma 5.4.1.
¤

Theorem 5.4.4
Under the above assumptions we have

Var
(
l̂m,r(z)

∣∣∣C(i) = ri, i = 1, . . . , m
)

= l(z)
1

m2

(
m∑

i=1

1
χ(ri, s)

)
d2

hd−1

∫
k2(u) du + O

(
1

mhd−2

)

with the convergence of the remainder term being uniformly in r.

Proof:
We have with Lemma 5.4.3 and the independence of the underlying observations

Var
(
l̂m,r(z)

∣∣∣C(i) = ri, i = 1, . . . , m
)

= Var

(
1
m

m∑

i=1

ζim

∣∣∣C(i) = ri, i = 1, . . . , m

)
=

1
m2

m∑

i=1

σ2
im

=
1

m2

(
d2

hd−1
l(z)

∫
k2(u) du

m∑

i=1

1
χ(ri, s)

+ O
( m

hd−2

))

= l(z)
1

m2

(
m∑

i=1

1
χ(ri, s)

)
d2

hd−1

∫
k2(u) du + O

(
1

mhd−2

)
.

The uniform convergence of the remainder term in r and m follows as in Theorem 5.4.2.
¤

Remark 5.4.5
The inequalities

1
d∗
≤ 1

m

m∑

i=1

1
χ(ri, s)

≤ 1
χ(r, s)

, (5.19)
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follow as in Theorem 5.4.2, thus an upper bound for the variance in Theorem 5.4.4 can be given
by

Var
(
l̂m,r(z)

∣∣∣C(i) = ri, i = 1, . . . ,m
)
≤ l(z)

1
m

1
χ(r, s)

d2

hd−1

∫
k2(u) du + O

(
1

mhd−2

)
.

The term on the right side goes to 0 for mhd−1 → ∞, where m → ∞ and h → 0. Also we
have l(z) d2

d∗mhd−1

∫
k2(u) du + O

(
1

mhd−2

)
for r → ∞, which is by (5.19) a lower bound for the

variance. This term converges for mhd−1 →∞ to 0 as well.
♦

5.5 Conditional Asymptotic Distribution of the Nonparametric
Estimator

In this section we consider the asymptotic distribution of the estimator (5.13). In this we follow
the line of arguments suggested by Powell (2002, [54]). Before we begin though, we need some
auxiliary results.

Lemma 5.5.1
Let X be a random variable. The a–norm is defined as ||X||a := (E (|X|a))1/a for a ≥ 1 by the
ath absolute moment. Then for all a, b with 1 ≤ b ≤ a the relation

||X||b ≤ ||X||a (5.20)

holds.

Proof:
The Hölder inequality (see Gänssler and Stute (1977, [30]), Theorem 1.13.2) states that for two
random variables Y and Z and p, q ≥ 1 with 1

p + 1
q = 1, we have

||Y Z||1 = E(|Y Z|) ≤ (E (|Y |p))1/p (E (|Z|q))1/q = ||Y ||p||Z||q. (5.21)

By putting Y = |X|b, Z = 1, p = a
b and q = a

a−b in (5.21), we arrive at

E
(
|X|b

)
≤ (E (|X|a))b/a

(
E

(
1a/(a−b)

))(a−b)/a
= (E (|X|a))b/a .

By taking the bth root on both sides (5.20) follows.
¤

Lemma 5.5.2
We have for n ∈ N

||X − E(X)||n ≤ 2||X||n.

Especially we have for the nth absolute central moment that it has the (suitably scaled) uncen-
tered absolute moment as an upper bound, more precisely

E(|X − E(X)|n) ≤ 2nE(|X|n).

Proof:
With the triangular inequality, the binomial formula, Lemma 5.5.1 and the formula

2n = (1 + 1)n =
n∑

i=0

(
n

i

)
1i1n−i =

n∑

i=0

(
n

i

)
,
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the relation

E(|X −E(X)|n) ≤ E ((|X|+ E(|X|))n) = E

(
n∑

i=0

(
n

i

)
|X|iE(|X|)n−i

)

=
n∑

i=0

(
n

i

)
E(|X|i)E(|X|)n−i =

n∑

i=0

(
n

i

)
||X||ii||X||n−i

1

≤
n∑

i=0

(
n

i

)
||X||in||X||n−i

n = ||X||nn
n∑

i=0

(
n

i

)
= 2n||X||nn

holds and, thus, the assertions follow.
¤

To prove the asymptotic normality of estimator (5.13), we use the version of the Berry–Esséen
Theorem from Section 1.9.5 of Serfling (1980, [63]). It assumes independent but not necessarily
identically distributed random variables ζim with variance Var(ζim) = σ2

im and existing ath
central moment ρim := E(|ζim −E(ζim)|a) < ∞ for an a > 2. If the Liapunov condition

(
∑m

i=1 ρim)1/a

(∑m
i=1 σ2

im

)1/2
→ 0 (5.22)

holds for an a > 2, the sum

ζ̄m =
1
m

m∑

i=1

ζim

is asymptotically normal, i.e.,
ζ̄m −E(ζ̄m)√

Var(ζ̄m)
−→D N (0, 1).

The Berry-Esséen Theorem from Section 1.9.5 of Serfling (1980, [63]) makes additional specifi-
cations on the rate of convergence, which we will use in the following lemma.

Lemma 5.5.3
Under the above assumptions, we have under the condition C(1) = −r1, . . . , C

(m) = −rm the
convergence

l̂m,r(z)−E
(
l̂m,r(z)

)
√

Var
(
l̂m,r(z)

) −→D N (0, 1), (5.23)

if mhd−1 →∞ for m →∞ and h → 0. More precisely

P




l̂m,r(z)−E
(
l̂m,r(z)

)
√

Var
(
l̂m,r(z)

) ≤ x

∣∣∣∣∣∣∣∣
C(1) = −r1, . . . , C

(m) = −rm


 = Φ (x) + O

((
mhd−1

)−1/6
)

,

where Φ notes the distribution function of the standard normal distribution, and the remainder
term converges uniformly in r.
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Proof:
Our goal is to verify the Liapunov condition for a = 3. For that purpose we have with
Lemma 5.5.2 and again the Taylor series expansion of l as in the lemmata of Section 5.4

ρim = E(|ζim − E(ζim)|3) ≤ 8E(|ζim|3)
=

8d3

χ(ri, s)h2(d−1)
l(z)

∫
k3(u) du + o

(
1

h2(d−1)

)

uniform in r. Together with Lemma 5.4.3 we get

(
∑m

i=1 ρim)1/3

(∑m
i=1 σ2

im

)1/2
≤

(∑m
i=1

8d3

χ(ri,s)h2(d−1) l(z)
∫

k3(u) du + o
(

1
h2(d−1)

))1/3

(∑m
i=1

d2

χ(ri,s)hd−1 l(z)
∫

k2(u) du + o
(

1
hd−1

))1/2

=

(
8d3

h2(d−1) l(z)
∫

k3(u) du
∑m

i=1
1

χ(ri,s)
+ o

(
m

h2(d−1)

))1/3

(
d2

hd−1 l(z)
∫

k2(u) du
∑m

i=1
1

χ(ri,s)
+ o

(
m

hd−1

))1/2

(5.19)

≤

(
m

χ(r,s)
8d3

h2(d−1) l(z)
∫

k3(u) du + o
(

m
h2(d−1)

))1/3

(
m
d∗

d2

hd−1 l(z)
∫

k2(u) du + o
(

m
hd−1

))1/2

= O

(
m1/3

h
2
3
(d−1)

)
·O

(
m−1/2

h−(d−1)/2

)

= O

((
mhd−1

)−1/6
)
→ 0,

if mhd−1 → ∞ for m → ∞ and h → 0, the same condition, which also guaranteed the conver-
gence of the variance. The convergence is uniform in r, see the third to last line of the calcu-
lations above. The assertions now follow from the Theorem of Berry–Esséen, see Section 1.9.5
in Serfling (1980, [63]).

¤

The targeted value of the estimator l̂m,r(z) is actually l(z) for d∗ = d or a constant multiple of
l(z) in case d∗ < d, and not the expectation of l̂m,r(z). By Theorem 5.4.2, the expectation is in
general different from the targeted value. This bias of the estimation vanishes asymptotically
though, which we want to show next.

Theorem 5.5.4
Under the above assumptions, we have, with the notation σ :=

√
d2

d∗ l(z)
∫

k2(u) du,

P

(√
mhd−1

(
l̂m,r(z)− d

d∗
l(z)

)
≤ x

∣∣∣∣ C(1) = −r1, . . . , C
(m) = −rm

)

= Φ
(x

σ

)
+ O

(
h +

(
mhd−1

)−1/6
+
√

mhd+3 +
√

mhd−1(d∗ − χ(r, s))
)

uniformly in h, m and r. I.e., under m → ∞, h → 0, r → ∞, mhd−1 → ∞, mhd+3 → 0,√
mhd−1(d∗−χ(r, s)) → 0 the estimator l̂m,r(z), conditional on C(1) = −r1, . . . , C

(m) = −rm, is
asymptotically unbiased and normally distributed.
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Proof:
Before we can prove the main result, we have to show two auxiliary results, namely

O




√
d2

d∗
l(z)

∫
k2(u) du−

√√√√d2l(z)
∫

k2(u) du
1
m

m∑

i=1

1
χ(ri, s)

+ O(h)




= O (h + (d∗ − χ(r, s))) (5.24)

and

O

(√
mhd−1

(
d

d∗
l(z)− l(z)

d

m

m∑

i=1

1
χ(ri, s)

+ O
(
h2

)
))

= O
(√

mhd+3 +
√

mhd−1(d∗ − χ(r, s))
)

. (5.25)

Because of Lemma 5.1.4 it follows for (5.24) that

O




√
d2

d∗
l(z)

∫
k2(u) du−

√√√√d2l(z)
∫

k2(u) du
1
m

m∑

i=1

1
χ(ri, s)

+ O(h)




= O




d2

d∗ l(z)
∫

k2(u) du− l(z)d2
∫

k2(u) du 1
m

∑m
i=1

1
χ(ri,s)

+ O(h)
√

d2

d∗ l(z)
∫

k2(u) du +
√

d2l(z)
∫

k2(u) du 1
m

∑m
i=1

1
χ(ri,s)

+ O(h)




= O

(
d2

d∗
l(z)

∫
k2(u) du− l(z)d2

∫
k2(u) du

1
m

m∑

i=1

1
χ(ri, s)

+ O(h)

)

= O

(
h + d2l(z)

∫
k2(u) du

(
1
d∗
− 1

m

m∑

i=1

1
χ(ri, s)

))

= O

(
h +

(
1
d∗
− 1

m

m∑

i=1

1
χ(ri, s)

))

= O

(
h +

(
1
d∗
− 1

m

m∑

i=1

1
χ(r, s)

))

= O

(
h +

(
1
d∗
− 1

χ(r, s)

))

= O

(
h +

(
χ(r, s)− d∗

d∗χ(r, s)

))

= O (h + (d∗ − χ(r, s))) .

Again with Lemma 5.1.4, equation (5.25) also follows as above

O

(√
mhd−1

(
d

d∗
l(z)− l(z)

d

m

m∑

i=1

1
χ(ri, s)

+ O
(
h2

)
))

= O

(√
mhd+3 + l(z)

√
mhd−1

(
d

d∗
− d

m

m∑

i=1

1
χ(ri, s)

))

= O
(√

mhd+3 +
√

mhd−1 (d∗ − χ(r, s))
)

.
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Throughout the following we will also need the Taylor series expansion

Φ(x + h)− Φ(x) = hϕ(x) + o(h) = O(h) (5.26)

of the distribution function of the standard normal distribution, see Theorem 168.1 in Heuser
(1998, [38]). The convergence is independent of x, since ϕ and its derivative are bounded.

With the substitution

x =
t√

d2l(z)
∫

k2(u) du 1
m

∑m
i=1

1
χ(ri,s)

+ O(h)
,

we get from Lemma 5.5.3 and Theorem 5.4.4

P
(√

mhd−1
(
l̂m,r(z)− E

(
l̂m,r(z)

))
≤ t

∣∣∣C(1) = −r1, . . . , C
(m) = −rm

)

= Φ


 t√

d2l(z)
∫

k2(u) du 1
m

∑m
i=1

1
χ(ri,s)

+ O(h)


 + O

((
mhd−1

)−1/6
)

= Φ
(

t

σ

)
+ Φ


 t√

d2l(z)
∫

k2(u) du 1
m

∑m
i=1

1
χ(ri,s)

+ O(h)


− Φ

(
t

σ

)
+ O

((
mhd−1

)−1/6
)

(5.26)
= Φ

(
t

σ

)
+ O


 t√

d2l(z)
∫

k2(u) du 1
m

∑m
i=1

1
χ(ri,s)

+ O(h)
− t

σ


 + O

((
mhd−1

)−1/6
)

= Φ
(

t

σ

)
+ O




tσ − t
√

d2l(z)
∫

k2(u) du 1
m

∑m
i=1

1
χ(ri,s)

+ O(h)

σ
√

d2l(z)
∫

k2(u) du 1
m

∑m
i=1

1
χ(ri,s)

+ O(h)


 + O

((
mhd−1

)−1/6
)

= Φ
(

t

σ

)
+ O


σ −

√√√√d2l(z)
∫

k2(u) du
1
m

m∑

i=1

1
χ(ri, s)

+ O(h)


 + O

((
mhd−1

)−1/6
)

(5.24)
= Φ

(
t

σ

)
+ O

(
h + (d∗ − χ(r, s)) +

(
mhd−1

)−1/6
)

.

Thus

Φ
(

t

σ

)
+ O

(
h + (d∗ − χ(r, s)) +

(
mhd−1

)−1/6
)

= P
(√

mhd−1
(
l̂m,r(z)− E

(
l̂m,r(z)

))
≤ t

∣∣∣ C(1) = −r1, . . . , C
(m) = −rm

)

= P

(√
mhd−1

(
l̂m,r(z)− d

d∗
l(z)

)
+
√

mhd−1

(
d

d∗
l(z)− E

(
l̂m,r(z)

))
≤ t

∣∣∣∣
C(1) = −r1, . . . , C

(m) = −rm

)

= P

(√
mhd−1

(
l̂m,r(z)− d

d∗
l(z)

)
≤ t−

√
mhd−1

(
d

d∗
l(z)− E

(
l̂m,r(z)

))∣∣∣∣
C(1) = −r1, . . . , C

(m) = −rm

)
.

With the substitution

x = t−
√

mhd−1

(
d

d∗
l(z)− E

(
l̂m,r(z)

))
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and Theorem 5.4.2, we finally arrive at

P

(√
mhd−1

(
l̂m,r(z)− d

d∗
l(z)

)
≤ x

∣∣∣∣C(1) = −r1, . . . , C
(m) = −rm

)

= Φ


x +

√
mhd−1

(
d
d∗ l(z)− E

(
l̂m,r(z)

))

σ


 + O

(
h + (d∗ − χ(r, s)) +

(
mhd−1

)−1/6
)

= Φ
(x

σ

)
+ Φ


x +

√
mhd−1

(
d
d∗ l(z)−E

(
l̂m,r(z)

))

σ


− Φ

(x

σ

)

+O

(
h + (d∗ − χ(r, s)) +

(
mhd−1

)−1/6
)

(5.26)
= Φ

(x

σ

)
+ O


x +

√
mhd−1

(
d
d∗ l(z)− E

(
l̂m,r(z)

))
− x

σ




+O

(
h + (d∗ − χ(r, s)) +

(
mhd−1

)−1/6
)

= Φ
(x

σ

)
+ O

(√
mhd−1

(
d

d∗
l(z)− l(z)

d

m

m∑

i=1

1
χ(ri, s)

+ O
(
h2

)
))

+O

(
h + (d∗ − χ(r, s)) +

(
mhd−1

)−1/6
)

(5.25)
= Φ

(x

σ

)
+ O

(
h +

(
mhd−1

)−1/6
+
√

mhd+3 +
√

mhd−1(d∗ − χ(r, s))
)

,

which we had to show.
¤

Note that for d∗ = d, Theorem 5.5.4 states that we have an asymptotically unbiased estimator.

The condition
√

mhd−1(d∗ − χ(r, s)) → 0 can also be formulated as

√
mhd−1

(∫

Rd−1\Qr,s

l(z) dz

)
→ 0.

Thus the rate convergence at which r has to converge to∞, does not only depend on m and h but
also on the estimated angular density l itself. A sufficient condition for the above convergence,
together with the other convergence conditions from Theorem 5.5.4, is, for example, that

d∗ − χ(r, s)
h2

is bounded, since then

√
mhd−1(d∗ − χ(r, s)) =

√
mhd+3 · d∗ − χ(r, s)

h2
→ 0.
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5.6 Asymptotic Normality of the Nonparametric Estimator

Let X be a random vector, which follows a generalized Pareto distribution by representation (2.5)
with U = Ks. As in (5.5) let the set Ar,s be given by

Ar,s =
{

x = (x1, . . . , xd) ∈ Ks

∣∣∣∣c =
1
x1

+ . . . +
1
xd

< −r

}
.

Denote by pr,s := P (X ∈ Ar,s) the probability that the random vector X falls into the set Ar,s.
We have pr,s → 0 for r →∞. An illustration of the situation for the bivariate case can be found
in Section 5.1.

Assume we have n independent copies X̃(1), . . . , X̃(n) of the random vector X, and denote by Z̃(i)

and C̃(i) the corresponding Pickands coordinates with regard to Fréchet margins, i = 1, . . . , n.
For the threshold r > 0 consider only those observations X̃(i) with X̃(i) ∈ Ar,s. This is a
random number m = τn. We denote the resulting random vectors by X(1), . . . , X(m), and
Z(i) and C(i) designate the corresponding Pickands coordinates with regard to Fréchet margins,
i = 1, . . . , m = τn. τn is a B(n, pr,s) distributed random variable with expectation npr,s and is,
by Theorem 1.4.1 in Reiss (1993, [56]), independent of X1, . . . , Xm. We assume npr,s → ∞ for
n →∞, r →∞. Thus we also have m →∞ with probability 1, which we will show in the next
lemma.

Lemma 5.6.1
Let τn be a B(n, pn) distributed random variable. For every K ∈ N0, we then have

P
(
lim inf
n→∞ τn > K

)
= 1

for n →∞, pn → 0 and npn →∞ with the growth condition
∑

n∈N
(npn)k exp(−npn) < ∞ (5.27)

for all k ∈ N.

Proof:
We have

P
(
lim inf
n→∞ τn > K

)
= 1− P

(
lim inf
n→∞ τn ≤ K

)

= 1− P (τn ≤ K for infinitely many n)

= 1− P

(
lim sup

n→∞
An

)
,

with An := {τn ≤ K}. We know by the Borel-Cantelli-Lemma (see Lemma 3 in Section 6.2 of
Fristedt and Grey (1997, [28])) that P (lim supn→∞An) = 0 if

∑∞
n=1 P (An) < ∞. We will show

that, and the assertion of the lemma follows.

∞∑

n=1

P (An) =
∞∑

n=1

B(n, pn){0, , . . . , K} =
∞∑

n=1

K∑

k=0

B(n, pn){k}

=
K∑

k=0

∞∑

n=1

B(n, pn){k}.
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The sums can be exchanged, since all summands are larger than 0. It suffices, thus, to show
that

∑∞
n=1 B(n, pn){k} < ∞ for every 0 ≤ k ≤ K.

Our next aim is to show that
(
1− npn

n

)n
≤ e−npn (5.28)

for every n ∈ N. By the general inequality log x ≤ x− 1 for x > 0, we get

n log(1− pn) ≤ n(1− pn − 1) = −npn.

By applying the exponential function on both sides, we arrive at (5.28). Since pn →n→∞ 0,
there exists a p < 1 and an n0 ∈ N, such that pn ≤ p for all n ≥ n0. Then we have

∞∑

n=1

B(n, pn){k}

=
∞∑

n=1

(
n

k

)
pk

n(1− pn)n−k =
∞∑

n=1

n!
k!(n− k)!

pk
n

(
1− npn

n

)n−k

(5.28)

≤
∞∑

n=1

n · . . . · (n− k + 1)pk
ne−npn (1− pn)−k

≤
∞∑

n=1

(npn)ke−npn (1− pn)−k

≤
n0−1∑

n=1

(npn)ke−npn (1− pn)−k + (1− p)−k
∞∑

n=n0

(npn)ke−npn

< ∞,

since the first sum is finite, and the second one exists by assumption (5.27).
¤

Under the conditions τn = m, C(1) = −r1, . . . , C
(m) = −rm, we have shown in Section 5.5 that

l̂τn,r(z) is asymptotically unbiased and normally distributed. In the course of this section, we
will obtain unconditional results.

Lemma 5.6.2
Under npr,s → ∞ with growth condition (5.27), mhd−1 → ∞, mhd+3 → 0 and

√
mhd−1(d∗ −

χ(r, s)) → 0 the relation

P

(√
τnhd−1

(
l̂τn,r(z)− d

d∗
l(z)

)
≤ x

∣∣∣∣ τn = m

)

= Φ
(x

σ

)
+ O

(
h +

(
mhd−1

)−1/6
+
√

mhd+3 +
√

mhd−1 (d∗ − χ(r, s))
)

holds for n →∞, h → 0 and r →∞, with σ defined as in Theorem 5.5.4.

Proof:
We note with C(1)× . . .×C(m) the distribution of the random variables C(1), . . . , C(m) under the
condition that X(i) ∈ Ar,s, i = 1, . . . , m. We then have

∫

(−∞,−r)m

1
(
C(1) × . . .× C(m)

)
(d(r1, . . . , rm)) = 1. (5.29)
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Therefore, and because of the independence of τn and X1, . . . , Xm as well as the representation of
a distribution by its conditional distribution (see for example Chapter V, §2 in Rényi (1966, [58])),
Lemma 5.6.1 and Theorem 5.5.4, we get

P

(√
τnhd−1

(
l̂τn,r(z)− d

d∗
l(z)

)
≤ x

∣∣∣∣ τn = m

)

=
P

(√
τnhd−1

(
l̂τn,r(z)− d

d∗ l(z)
)
≤ x, τn = m

)

P (τn = m)

=
P

(√
mhd−1

(
l̂m,r(z)− d

d∗ l(z)
)
≤ x

)
P (τn = m)

P (τn = m)

= P

(√
mhd−1

(
l̂m,r(z)− d

d∗
l(z)

)
≤ x

)

=
∫

(−∞,−r)m

P

(√
mhd−1

(
l̂m,r(z)− d

d∗
l(z)

)
≤ x

∣∣∣∣C(1) = −r1, . . . , C
(m) = −rm

)

(
C(1) × . . .× C(m)

)
(d(r1, . . . , rm))

=
∫

(−∞,−r)m

Φ
(x

σ

)
+ O

(
h +

(
mhd−1

)−1/6
+
√

mhd+3 +
√

mhd−1(d∗ − χ(r, s))
)

(
C(1) × . . .× C(m)

)
(d(r1, . . . , rm))

=
(

Φ
(x

σ

)
+ O

(
h +

(
mhd−1

)−1/6
+
√

mhd+3 +
√

mhd−1(d∗ − χ(r, s))
))

·
∫

(−∞,−r)m

1
(
C(1) × . . .× C(m)

)
(d(r1, . . . , rm))

(5.29)
= Φ

(x

σ

)
+ O

(
h +

(
mhd−1

)−1/6
+
√

mhd+3 +
√

mhd−1(d∗ − χ(r, s))
)

.

¤

In the final step we want to get rid of the condition τn = m.

Theorem 5.6.3
Let τn be the number of observations with X̃(i) ∈ Ar,s. Then we have under the growth
condition (5.27) for npr,s, (npr,s −

√
n) hd−1 → ∞, nhd+3 → 0,

√
nhd−1(d∗ − χ(r, s)) → 0 and

Φ
(
−p

−1/2
r,s

) (
hd−1

)−1/6 → 0 the relation

P

(√
τnhd−1

(
l̂τn,r(z)− d

d∗
l(z)

)
≤ x

)

= Φ
(x

σ

)
+ O

(
h + Φ

(
−p−1/2

r,s

)(
hd−1

)−1/6
+

((
npr,s −

√
n
)
hd−1

)−1/6

+
√

nhd−1 (d∗ − χ(r, s)) +
√

nhd+3
)

for n →∞, h → 0 and r →∞ with the definition of σ from Theorem 5.5.4.

Proof:
First we note that with the convergence condition (npr,s −

√
n) →∞ also npr,s →∞ follows.

Before we begin with the actual proof, we need an auxiliary result on the distribution of τn.
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Since τn is B(n, pr,s) distributed, it follows from the Berry-Esséen Theorem (see Section 1.9.5
in Serfling (1980, [63])),

P
(
τn ≤ npr,s −

√
n
)

= P
(
τn − npr,s ≤ −√n

)

= P

(
τn − npr,s√

npr,s(1− pr,s)
≤ −

√
n√

npr,s(1− pr,s)

)

= P

(
τn − npr,s√

npr,s(1− pr,s)
≤ − 1√

pr,s(1− pr,s)

)

= Φ

(
− 1√

pr,s(1− pr,s)

)
+ O

(
pr,s(1− pr,s)

(
(1− pr,s)2 + p2

r,s

)

(pr,s(1− pr,s))
3/2√n

)

= Φ

(
− 1√

pr,s(1− pr,s)

)
+ O

(
1√

npr,s

)

= O

(
Φ

(
− 1√

pr,s

)
+

1√
npr,s

)
(5.30)

for n →∞, r →∞.

In the special case m = 0, when no data fall over the threshold −r, we define l̂0,r(z) = 0. Then

we have P
(√

τnhd−1
(
l̂τn,r(z)− d

d∗ l(z)
)
≤ x|τn = 0

)
= O(1). Thus we get with Lemma 5.6.2

P

(√
τnhd−1

(
l̂τn,r(z)− d

d∗
l(z)

)
≤ x

)

= P

(√
τnhd−1

(
l̂τn,r(z)− d

d∗
l(z)

)
≤ x

∣∣∣∣ τn = 0
)

P (τn = 0)

+
n∑

m=1

P

(√
τnhd−1

(
l̂τn,r(z)− d

d∗
l(z)

)
≤ x

∣∣∣∣ τn = m

)
P (τn = m)

= O(1)P (τn = 0) +
n∑

m=1

Φ
(x

σ

)
P (τn = m)

+
n∑

m=1

O

(
h +

(
mhd−1

)−1/6
+
√

mhd+3 +
√

mhd−1 (d∗ − χ(r, s))
)

P (τn = m)

= Φ
(x

σ

)
+ O(1)P (τn = 0)

+
bnpr,s−√nc∑

m=1

O

(
h +

(
mhd−1

)−1/6
+
√

mhd−1 (d∗ − χ(r, s)) +
√

mhd+3

)
P (τn = m)

+
n∑

m=dnpr,s−√ne
O

(
h +

(
mhd−1

)−1/6
+
√

mhd−1 (d∗ − χ(r, s)) +
√

mhd+3

)
P (τn = m)

= Φ
(x

σ

)
+ O ((1− pr,s)n)

+
bnpr,s−√nc∑

m=1

O

(
h +

(
hd−1

)−1/6
+

√
(npr,s −

√
n)hd−1 (d∗ − χ(r, s))

+
√

(npr,s −
√

n)hd+3

)
· P (τn = m)



CHAPTER 5. NONPARAMETRIC ESTIMATION IN THE MULTIVARIATE CASE 124

+
n∑

m=dnpr,s−√ne
O

(
h +

(
(npr,s −

√
n)hd−1

)−1/6
+
√

nhd−1 (d∗ − χ(r, s)) +
√

nhd+3

)

·P (τn = m)

= Φ
(x

σ

)
+ O ((1− pr,s)n)

+O

(
h +

(
hd−1

)−1/6
+

√
(npr,s −

√
n)hd−1 (d∗ − χ(r, s)) +

√
(npr,s −

√
n)hd+3

)

·P (τn ≤ npr,s −
√

n)

+O

(
h +

(
(npr,s −

√
n)hd−1

)−1/6
+
√

nhd−1 (d∗ − χ(r, s)) +
√

nhd+3

)

(5.30)
= Φ

(x

σ

)
+ O ((1− pr,s)n)

+O

(
h +

(
hd−1

)−1/6
+

√
(npr,s −

√
n)hd−1 (d∗ − χ(r, s)) +

√
(npr,s −

√
n)hd+3

)

·O
(

Φ
(
− 1√

pr,s

)
+

1√
npr,s

)

+O

(
h +

(
(npr,s −

√
n)hd−1

)−1/6
+
√

nhd−1 (d∗ − χ(r, s)) +
√

nhd+3

)

= Φ
(x

σ

)
+ O ((1− pr,s)n)

+O

(
hΦ

(
− 1√

pr,s

)
+ Φ

(
− 1√

pr,s

)(
hd−1

)−1/6

+Φ
(
− 1√

pr,s

)√
(npr,s −

√
n)hd−1 (d∗ − χ(r, s))

+Φ
(
− 1√

pr,s

)√
(npr,s −

√
n)hd+3

)

+O

(
h√
npr,s

+
(
(npr,s)3hd−1

)−1/6
+

√(
1− 1√

npr,s

)
hd−1 (d∗ − χ(r, s))

+

√(
1− 1√

npr,s

)
hd+3

)

+O

(
h +

(
(npr,s −

√
n)hd−1

)−1/6
+
√

nhd−1 (d∗ − χ(r, s)) +
√

nhd+3

)

= Φ
(x

σ

)
+ O

(
(1− pr,s)n + hΦ

(
− 1√

pr,s

)
+ Φ

(
− 1√

pr,s

)(
hd−1

)−1/6

+Φ
(
− 1√

pr,s

) √
(npr,s −

√
n)hd−1 (d∗ − χ(r, s)) + Φ

(
− 1√

pr,s

) √
(npr,s −

√
n)hd+3

+
h√
npr,s

+
(
(npr,s)3hd−1

)−1/6
+

√(
1− 1√

npr,s

)
hd−1 (d∗ − χ(r, s))

+

√(
1− 1√

npr,s

)
hd+3 + h +

(
(npr,s −

√
n)hd−1

)−1/6

+
√

nhd−1 (d∗ − χ(r, s)) +
√

nhd+3
)
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= Φ
(x

σ

)
+ O

(
h + Φ

(
− 1√

pr,s

) (
hd−1

)−1/6
+

(
(npr,s −

√
n)hd−1

)−1/6

+
√

nhd−1 (d∗ − χ(r, s)) +
√

nhd+3
)

for n →∞, r →∞, h → 0. Note that by (5.28) we have (1−pr,s)n =
(
1− npr,s

n

)n ≤ e−npr,s → 0
for npr,s → ∞, and since this behaves, thus, asymptotically as e−npr,s , it converges faster to 0
than

(
(npr,s −

√
n)hd−1

)−1/6.
¤

Remark that in the proof of Theorem 5.6.3 one can replace the rate of convergence npr,s −
√

n
by npr,s − na with 0 < a < 1

2 and in this manner get further relations between the rates of
convergence of n, h and r, which might be useful in certain situations.

The next goal is to find some other criteria, which are easier to handle and also imply the
asymptotic normality of the estimator l̂m,r(z) at least in some cases. For this we need an
auxiliary result on pr,s.

Lemma 5.6.4
We have

χ(r, s)
r

≤ pr,s =
∫ −r

−∞
c−2χ(−c, s) dc ≤ d∗

r
.

Proof:
The assertion follows from

pr,s = P (X ∈ Ar,s) =
∫ −r

−∞

∫

Q−c,s

c−2l(z) dz dc =
∫ −r

−∞
c−2χ(−c, s) dc ≥

∫ −r

−∞
c−2χ(r, s) dc

= χ(r, s)
∫ −r

−∞
c−2 dc = χ(r, s)

[
−1

c

]−r

−∞
=

χ(r, s)
r

and

pr,s =
∫ −r

−∞
c−2χ(−c, s) dc ≤

∫ −r

−∞
c−2d∗ dc = d∗

∫ −r

−∞
c−2 dc = d∗

[
−1

c

]−r

−∞
=

d∗

r
.

¤

Corollary 5.6.5
Let τn be defined as in Theorem 5.6.3 and

(n

r
−√n

)
hd−1 → ∞, (5.31)

nhd+3 → 0, (5.32)√
nhd−1(d∗ − χ(r, s)) → 0, (5.33)

Φ
(−√r

) (
hd−1

)− 1
6 → 0, (5.34)

∞∑

n=1

(n

r

)k
exp

(
−n

r

)
< ∞, where k ∈ N, (5.35)
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for n →∞, r = rn →∞ and h = hn → 0. Then we have

√
τnhd−1

(
l̂τn,r(z)− d

d∗
l(z)

)
−→D N

(
0,

d2

d∗
l(z)

∫
k2(u) du

)
.

Proof:
It suffices to show that the conditions in Theorem 5.6.3 are fulfilled. We have with Lemma 5.6.4,
for r large enough,

(
npr,s −

√
n
)
hd−1 ≥

(
n

χ(r, s)
r

−√n

)
hd−1 ≥

(n

r
−√n

)
hd−1 →∞,

and

Φ
(
−p−1/2

r,s

)(
hd−1

)−1/6
≤ Φ

(
−

(
d∗

r

)− 1
2

) (
hd−1

)−1/6
= Φ

(
−

√
r

d∗

) (
hd−1

)−1/6
→ 0,

since the constant factor 1
d∗ does not matter for r → ∞. To show growth condition (5.27) we

let r = rn depend explicitly on n. Since rn →∞, there exists n0 such that χ(rn, s) ≥ d∗
2 for all

n > n0. Thus we get with Lemma 5.6.4

∞∑

n=1

(nprn,s)
k e−nprn,s ≤

∞∑

n=1

(
nd∗

rn

)k

e−
nχ(rn,s)

rn

≤
n0∑

n=1

(
nd∗

rn

)k

e−
nχ(rn,s)

rn + 2k
∞∑

n=n0+1

(
d∗

2
· n

rn

)k

e−
d∗
2
· n
rn

< ∞,

because the first sum is finite and the second one exists by (5.35), since the factor d∗
2 does not

influence the convergence.
¤

Remark that if any of the convergence conditions (5.31) to (5.34) is modified in such a way that
only convergence to a fixed real number greater than 0 is demanded, we know by Theorem 5.6.3
that our estimator will be biased, i.e., the asymptotic normal distribution will not have mean 0.
However, the effects of that bias are uncontrolled, since we do not have an explicit representation
for it.

We now want to check the assumptions of Corollary 5.6.5 for the case of a bounded angular
density. In the logistic case, the angular density is bounded if λ ≥ d holds, i.e., if we are closer
to the case of complete dependence. This is also the situation, where our estimator worked well
in Example 5.2.1.

Lemma 5.6.6
Let the angular density l of a generalized Pareto distribution be bounded, i.e., there exists an
M > 0 with l(z) ≤ M for all z ∈ Rd−1. Then we have

d∗ − χ(r, s) =
∫

Rd−1\Qr,s

l(z) dz ≤ dM

(d− 2)!
1
rs

+ o

(
1
r

)
.
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Proof:
By Lemma 2.1.2, we have for the volume of Rd−1 the relation

vol(Rd−1) =
∫

Rd−1

1 dz =
1

(d− 1)!
.

Since by Lemma 5.1.2 the set Qr,s is a shifted simplex of edge length 1 − d
rs , we also have by

Lemma 2.1.2

vol(Qr,s) =
∫

Qr,s

1 dz =

(
1− d

rs

)d−1

(d− 1)!
.

Thus, with the usage of the binomial formula,

∫

Rd−1\Qr,s

l(z) dz ≤ M

(∫

Rd−1

1 dz −
∫

Qr,s

1 dz

)
= M

(
1

(d− 1)!
−

(
1− d

rs

)d−1

(d− 1)!

)

=
M

(d− 1)!

(
1−

(
1− d

rs

)d−1
)

=
M

(d− 1)!

(
1−

d−1∑

i=0

(
d− 1

i

)(
− d

rs

)d−1−i
)

=
M

(d− 1)!

(
1− 1 +

(
d− 1
d− 2

)
d

rs
+ o

(
1
r

))

=
M

(d− 1)!
(d− 1)!
(d− 2)!

d

rs
+ o

(
1
r

)
=

dM

(d− 2)!
1
rs

+ o

(
1
r

)
.

¤

For the case of a bounded angular density one can very easily give suitable rates of convergence.

Corollary 5.6.7
By choosing r = n

2
d+3 and h = n−

1
d+2 , the convergence conditions of Corollary 5.6.5 are fulfilled

for a bounded angular density.

Proof:
First we obviously have r →∞ and h → 0 for n →∞. In addition,

(n

r
−√n

)
hd−1 =

(
n

n
2

d+3

−√n

)
n−

d−1
d+2 =

(
n1− 2

d+3 − n
1
2

)
n−

d−1
d+2 =

(
n

d+1
d+3 − n

1
2

)
n−

d−1
d+2

= n
d+1
d+3

− d−1
d+2 − n

1
2
− d−1

d+2 →∞,

since

d + 1
d + 3

>
d− 1
d + 2

⇔ (d + 2)(d + 1) > (d− 1)(d + 3) ⇔ d2 + 3d + 2 > d2 + 2d− 3 ⇔ d > −5

and

d + 1
d + 3

− d− 1
d + 2

>
1
2
− d− 1

d + 2
⇔ d + 1 >

d

2
+

3
2
⇔ 1

2
d >

1
2
⇔ d > 1.
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Furthermore,

nhd+3 = n1− d+3
d+2 = n−

1
d+2 → 0,

and with Lemma 5.6.6,

√
nhd−1(d∗ − χ(r, s)) = n

1
2(1− d−1

d+2 ) ·O
(

1

n
2

d+3

)
= n

3
2(d+3) ·O

(
n
− 4

2(d+3)

)
= O

(
n
− 1

2(d+3)

)
→ 0.

The condition

Φ
(−√r

) (
hd−1

)− 1
6 → 0

is clear, since Φ(−√r) converges exponentially to 0, whereas hd−1 converges only polynomially

to 0 and, thus,
(
hd−1

)− 1
6 converges only polynomially to ∞.

The growth condition (5.35) is in our case

∞∑

n=1

(
n

d+1
d+3

)k
exp

(
−n

d+1
d+3

)
< ∞.

This can be checked by the existence of the integrals
∫∞
0 xke−x = Γ(k + 1) and the comparison

of sums criterion, see Theorem 88.1 in Heuser (1998, [37]). By the substitution y = x
d+1
d+3 it is

easily shown that
∫ ∞

0

(
x

d+1
d+3

)k
exp

(
−x

d+1
d+3

)
dx =

d + 3
d + 1

· Γ
(

k +
d + 3
d + 1

)
< ∞.

¤

In the case of an unbounded angular density, the situation cannot be as easily handled. The
verification of suitable convergence conditions there is, still, an open problem. One might have
to use variants of Theorem 5.6.3 with npr,s −

√
n replaced by npr,s − na, see above.

Remark 5.6.8
In the unbiased case of d = d∗, approximate confidence intervals of level α for l(z) of the type

[
l̂m,r(z)− Φ−1

(
1− α

2

)
· dl(z)

∫
k2(u) du√

mhd−1
, l̂m,r(z) + Φ−1

(
1− α

2

)
· dl(z)

∫
k2(u) du√

mhd−1

]

can be derived from Theorem 5.6.3 by using the corresponding quantiles from the standard
normal distribution. Replacing the unknown angular density l(z) again by its estimator, one
arrives at estimated 95% confidence intervals of the type
[
l̂m,r(z)− Φ−1

(
1− α

2

)
· dl̂m,r(z)

∫
k2(u) du√

mhd−1
, l̂m,r(z) + Φ−1

(
1− α

2

)
· dl̂m,r(z)

∫
k2(u) du√

mhd−1

]

for l(z). But these confidence intervals have to be viewed with much care, see Powell (2002, [54]).
♦
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5.7 A Supplement on the Integral of the Pickands Density

In this section we want to show the limit (3.11), used in Section 3.2.3 for the computation of
runtimes, since now we have the necessary tools at our disposal. Once again we can see here
the importance of the Pickands coordinates with regard to Fréchet margins, without which the
proof below would not be possible. We begin with a geometric lemma.

Lemma 5.7.1
Let d ∈ N, d ≥ 2 and s > t > 0. Then we have

A d2

t
, s
d

⊆ −sRd ⊆ A d2

s
,s
,

with Ar,s defined as in (5.5).

Proof:
To illustrate the assertion of the lemma we look at the situation for the bivariate case.

-s

-s

-s�d

-s�d
-sRd

A d2
������s ,s

A d2
������t , s
����d

0

We first consider the left inclusion. Let x = (x1, . . . , xd) ∈ A d2

t
, s
d

. Then 0 > xi > − s
d for all

i = 1, . . . , d. Thus 0 > x1 + . . . + xd > d · (− s
d

)
= −s, so x ∈ −sRd.

For the right inclusion let x = (x1, . . . , xd) ∈ −sRd, i.e., 0 > xi > −s for i = 1, . . . , d and
0 >

∑d
i=1 xi > −s. Then we have x ∈ Ks. To conclude that x ∈ A d2

s
,s
, we still have to show

∑d
i=1

1
xi

< −d2

s .

We have xd > −s−∑d−1
i=1 xi and, thus,

d∑

i=1

1
xi

<

d−1∑

i=1

1
xi

+
1

−s−∑d−1
i=1 xi

=: f(x1, . . . , xd−1).

We determine the maximum of the function f : −sRd−1 → R via partial derivatives. Since the
function f converges on the boundary of −sRd−1 to −∞, a unique local maximum must then
be a global maximum. We have for i = 1, . . . , d− 1

∂

∂xi
f(x1, . . . , xd−1) = − 1

x2
i

+
1

(s + x1 + . . . + xd−1)2
= 0
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⇐⇒ −(s + x1 + . . . + xd−1)2 + x2
i = 0

⇐⇒ −

s +

d−1∑

j=1,j 6=i

xj




2

− 2


s +

d−1∑

j=1,j 6=i

xj


xi − x2

i + x2
i = 0

⇐⇒ 2


s +

d−1∑

j=1,j 6=i

xj


xi = −


s +

d−1∑

j=1,j 6=i

xj




2

⇐⇒ 2xi = −

s +

d−1∑

j=1,j 6=i

xj




⇐⇒ 2xi +
d−1∑

j=1,j 6=i

xj = −s.

This leads to the system of equations

Ax :=




2 1 1 · · · 1
1 2 1 · · · 1

1 1 2
...

...
...

. . . 1
1 1 · · · 1 2







x1

x2

x3
...

xd−1




=




−s
−s
−s
...
−s




.

The matrix A is a (d − 1) × (d − 1) matrix with full rank, thus the system of equations is
uniquely solvable. This matrix also occurred in the proof of Theorem 2.3.7. By choosing
x1 = . . . = xd−1 = − s

d we see that this is one and, thus, the only solution of the system of
equations.

Therefore,
(− s

d , . . . ,− s
d

)
is the maximum of the function f . We have

f
(
−s

d
, . . . ,−s

d

)
= −

d−1∑

i=1

d

s
+

1

−s +
∑d−1

i=1
s
d

= −(d− 1)
d

s
+

1
−s + (d− 1) s

d

= −d2

s
+

d

s
− d

s
= −d2

s
,

thus
d∑

i=1

1
xi

< f(x1, . . . , xd−1) ≤ −d2

s
,

which had to be shown.
¤

Theorem 5.7.2
Let W be a d–dimensional generalized Pareto distribution, TP the transformation to Pickands
coordinates, and

φ(z) = |c|d−1

(
∂d

∂x1 · · · ∂xd
W

)(
T−1

P (z, c)
)

the corresponding Pickands density. Then we have for the number µ from Theorem 2.2.5

µ =
∫

Rd−1

φ(z) dz ≤ d∗

d2
≤ 1

d
. (5.36)
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Suppose that Wλ, λ ∈ Λ ⊆ Rk is a parametric family of generalized Pareto distributions. We
assume the existence of a λ0 ∈ Λ (the closure is to be taken with regard to Rk such that λ0 = ∞
for example in the one-parametric case is possible) with

d∗λ0
:= lim

λ→λ0

χλ(r, s) = lim
λ→λ0

d∗λ, (5.37)

for s small enough and any r > d
s fixed. Then we have

lim
λ→λ0

µλ =
d∗λ0

d2
. (5.38)

If λ1 ∈ Λ exists with

lim
λ→λ1

χλ(r, s) = 0 (5.39)

for s small enough and any r > d
s fixed, then we have

lim
λ→λ1

µλ = 0.

Proof:
Let X be a d–dimensional random vector, which follows a GPD, i.e., there exists s0 > 0, such
that X possesses on Ks0 the distribution function W . Let 0 < s < s0, then we have with the
Pickands coordinates and by Lemma 5.4.1 from Falk et al. (2004, [21]), as well as by Fubini’s
Theorem (see for example Fristedt and Gray (1997, [28]), Section 9.2),

P (X ∈ −sRd) =
∫

−sRd

∂d

∂x1 · · · ∂xd
W (x1, . . . , xd) d(x1, . . . , xd)

=
∫

TP (−sRd)
|c|d−1 ∂d

∂x1 · · · ∂xd
W (T−1

P (z, c)) d(z, c)

=
∫

Rd−1×(−s,0)
φ(z) d(z, c)

=
∫ 0

−s

∫

Rd−1

φ(z) dz dc =
∫ 0

−s
µdc = sµ. (5.40)

Furthermore, we have by Lemma 5.6.4

P

(
X ∈ A d2

s
,s

)
≤ d∗

d2

s

=
sd∗

d2
.

Since −sRd ⊆ A d2

s
,s

holds by Lemma 5.7.1, µ ≤ d∗
d2 ≤ 1

d immediately follows.

Using the lower bound from Lemma 5.6.4 for the parametric case, we get for every t < s

P

(
X ∈ A d2

t
, s
d

)
≥

χλ

(
d2

t , s
d

)

d2

t

.

Since t < s, we conclude d2

t > d
s
d

and, thus, the assumptions for the passage to the limit are
fulfilled for s small enough. Together with the first inclusion in Lemma 5.7.1, we arrive at

lim
λ→λ0

sµλ ≥ lim
λ→λ0

χλ

(
d2

t , s
d

)

d2

t

(5.37)
=

d∗λ0

d2

t

=
td∗λ0

d2
.
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From the assertion (5.36) we get

lim
λ→λ0

sµλ ≤ lim
λ→λ0

s
d∗λ
d2

(5.37)
= s

d∗λ0

d2
.

If now t converges to s, we conclude

d∗λ0

d2
≥ lim

λ→λ0

µλ ≥
d∗λ0

d2

and, thus, the assertion (5.38) holds. Finally, we have again with Lemmata 5.7.1 and 5.6.4

lim
λ→λ1

µλ = lim
λ→λ1

sµλ

s

(5.40)
= lim

λ→λ1

P (X ∈ −sRd)
s

≤ lim
λ→λ1

P

(
X ∈ A d2

s
,s

)

s

5.6.4=
1
s

lim
λ→λ1

∫ −r

−∞
c−2χλ(c, s) dc =

1
s

∫ −r

−∞
c−2 lim

λ→λ1

χλ(c, s) dc
(5.39)
= 0,

where the integral and the limit can be exchanged due to the dominated convergence theorem
(see for example Fristedt and Gray (1997, [28]), Section 8.2), since χλ(c, s) is bounded by d∗λ ≤ d,
and c−2 is integrable over (−∞,−r).

¤

Remark 5.7.3
In the logistic case, the conditions of Theorem 5.7.2 are fulfilled with λ0 = ∞ and λ1 = 1, the
cases of complete dependence and independence and d∗ = d for λ > 1, thus limλ→∞ µλ = 1

d
follows and the limit (3.11) holds.

♦



Chapter 6

Parametric Estimation in
Generalized Pareto Models

In Chapters 4 and 5 we used nonparametric methods to estimate the angular density. In this
chapter we want to estimate it, when we assume a parametric model underlying the data. The
estimation of the angular density then reduces to the estimation of the model parameters. In
Section 6.1, we present two maximum likelihood (ML) methods based on the angular density
to achieve this goal. In Section 6.2, we will also introduce a maximum likelihood method but
use the Pickands density instead of the angular density. Relative frequencies will be used in
Section 6.3 for another estimation procedure. For all procedures, the asymptotic behavior is
studied. Some combined estimation procedures will be given in Section 6.4, and all procedures
will be compared extensively with the help of simulated data for the logistic case.

In the literature, the maximum likelihood method is quite popular for parametric estimation
in extreme value models, see for example Section 8.2 of Coles (2001, [8]), Coles and Tawn
(1991, [10]), Coles and Tawn (1994, [11]) or Coles et al. (1999, [9]). In Section 9.3 of Reiss and
Thomas (2001, [57]), two other methods are mentioned, one is the method of moments, the other
is a Pickands estimator in a Marshall-Olkin model. In Paper B, Section 8, of Tajvidi (1996, [71]),
the ML method is used to estimate in bivariate GPD models, which is by our knowledge the only
source of parametric estimation for GPDs. The estimation via relative frequencies in Section 6.3
follows an idea of Falk (1998, [20]).

Possible parametric models are given in Section 2.3. Further models, described for the extreme
value case, can be found in Section 3.5 of Kotz and Nadarajah (2000, [47]).

6.1 Maximum Likelihood Estimation with the Angular Density

For general information on the maximum likelihood method we refer to Section 2.6 of Coles
(2001, [8]) and Section 4.2 of Serfling (1980, [63]).

In this chapter, we assume that we have n independent copies X̃(1), . . . , X̃(n) of a random vector
X, which follows a generalized Pareto distribution Wλ1,...,λk

from a k–parametric family with
U = Ks by representation (2.5). Let Wλ1,...,λk

have the angular density lλ1,...,λk
, and suppose

that d∗λ1,...,λk
> 0. An example is the logistic distribution with k = 1. To keep the notation as

simple as possible we set λ := (λ1, . . . , λk), where λ ∈ Λ ⊆ Rk.

133
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We assume, furthermore, that for the copies ||X̃(i)||∞ < s holds, and denote again by Z̃(i) and
C̃(i) the corresponding Pickands coordinates with regard to Fréchet margins, i = 1, . . . , n. Again
we choose the threshold r > 0 and consider only those observations X̃(i) with C̃(i) < −r. We
denote these by X(1), . . . , X(m). They are independent from each other and from the random
number m = τn (see Sections 4.1 and 5.2).

By Theorem 5.1.7 they have a density, which is not exactly known but close to lλ(z)
d∗λ

. This is
a suitable approach for an (asymptotic) maximum likelihood estimation of λ = (λ1, . . . , λk) by
choosing λ̂m,r such that the expression

m∏

i=1

lλ
(
Z(i)

)

d∗λ

is maximized in λ. This is equivalent to maximizing the term

Υ(λ) := log

(
m∏

i=1

lλ
(
Z(i)

)

d∗λ

)
=

m∑

i=1

log

(
lλ

(
Z(i)

)

d∗λ

)

in λ = (λ1, . . . , λk). Theoretically one must only compute the gradient ∇λΥ(λ) of this term, set
it to 0 and solve this equation in λ1, . . . , λk. Since, however, in most cases the expression lλ

d∗λ
is

quite complicated in λ, one can hardly proceed in this manner. Instead, one must try to maximize
this expression numerically. Therefore, one needs a method of maximizing a function without
using the derivatives. The simplest method is the algorithm by Nelder-Mead, see Section 8.1
in Kelley (1999, [46]). Most common software packages like Mathematica or Matlab have
implemented algorithms based on Nelder-Mead for the numerical computation of a maximum,
which will be used in this manuscript. They all have in common that they cannot guarantee the
convergence to a global maximum but only convergence to a local maximum.

These procedures have to evaluate the function, which is to be maximized, at a lot of points.
Therefore, this evaluation should be as efficient as possible. An analytical expression of d∗λ is
known in most common parametric models like the logistic or asymmetric logistic model (see
Section 2.3). If this is not the case, one has to rely on numerical methods for the evaluation of
d∗λ, since this is the integral of the angular density. These numerical integration methods would
make the computational effort much higher and, thus, should be avoided if possible.

The asymptotic consistency, normality and efficiency of maximum likelihood estimators are well
known, see for example Section 4.2 in Serfling (1980, [63]), Section 33.2 in Cramer (1963, [12]),
Section 2.5 in Witting and Nölle (1970, [75]) or Section 7.5 of Pfanzagl (1994, [52]). However,
we did not choose the exact procedure of the maximum likelihood estimation method, since we
do not insert the observations into their density, but into a function, which is only close to their
density (see Theorem 5.1.7). Therefore, we refer to this method as the asymptotic maximum
likelihood (Asymptotic ML) method, and the asymptotic behavior of the above defined Asymp-
totic ML estimator λ̂m,r, which maximizes Υ(λ), must be examined more closely. Thereby we
proceed analogously to the references above. First we begin with a lemma.

Lemma 6.1.1
Let fn, n ∈ N be a sequence of k–dimensional random vectors with the property

√
nfn −→D N (0, Π)

with a k × k matrix Π. Let, in addition, An, n ∈ N, be a sequence of k × k matrices with
An →n→∞ A componentwise to a k × k matrix A. Then we have

√
nAnfn −→D N (0, AΠAT ).
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Proof:
We have (see for example Falk et al. (2002, [23]), Theorem 3.3.7)

√
nAfn −→D N (0, AΠAT ).

Thus
√

nAnfn =
√

nAnfn −
√

nAfn +
√

nAfn =
√

n(An −A)fn︸ ︷︷ ︸
→0 for n→∞

+
√

nAfn −→D N (0, AΠAT ),

as asserted.
¤

Now we come to a first main result of this section.

Theorem 6.1.2
Let s > 0 be fixed and r > 0 such that Qr,s 6= ∅. Let X1, . . . , Xm be independent random
variables, distributed according to a generalized Pareto distribution Wλ with d∗λ > 0, and with
C(i) < −r, Xi ∈ Ks. Let the function

%(λ, z) :=
lλ(z)
d∗λ

be three times continuously differentiable in λ, where lλ(z) is the angular density. In addition, we
assume that for every θ̃ ∈ Λ there exist functions g(z), h(z) and H(z) > 0, possibly depending
on θ̃, such that the relations

∣∣∣∣
∂

∂θj
%(θ, z)

∣∣∣∣ ≤ g(z),
∣∣∣∣

∂2

∂θj1∂θj2

%(θ, z)
∣∣∣∣ ≤ h(z),

∣∣∣∣
∂3

∂θj1∂θj2∂θj3

log (%(θ, z))
∣∣∣∣ ≤ H(z), (6.1)

hold for θ from a neighborhood N(θ̃) of θ̃, for j, j1, j2, j3 = 1, . . . , k, and for all z ∈ Rd−1. Next
we demand that

∫

Rd−1

g(z) dz < ∞,

∫

Rd−1

h(z) dz < ∞,

∫

Rd−1

H(z) dz < ∞,

∫

Rd−1

H(z)%(θ, z) dz < ∞ for θ ∈ N(θ̃), (6.2)
∫

Rd−1

H2(z) dz < ∞,

∫

Rd−1

H2(z)%(θ, z) dz < ∞ for θ ∈ N(θ̃).

Furthermore, we assume that for λ ∈ Λ and j, j1, j2 = 1, . . . , k, the integrals

0 < vλ,j1,j2 :=
∫

Rd−1

1
%(λ, z)

(
∂

∂λj1

%(λ, z)
)(

∂

∂λj2

%(λ, z)
)

dz < ∞, (6.3)

∫

Rd−1

1
%(λ, z)

∣∣∣∣
∂

∂λj
%(λ, z)

∣∣∣∣ dz < ∞, (6.4)

∫

Rd−1

1
%(λ, z)

(
∂2

∂λj1∂λj2

%(λ, z)
)

−
(

1
%(λ, z)

)2 (
∂

∂λj1

%(λ, z)
)(

∂

∂λj2

%(λ, z)
)

dz < ∞, (6.5)
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uλ,j1,j2 :=
∫

Rd−1

(
1

%(λ, z)

)2 (
∂

∂λj1

%(λ, z)
)(

∂

∂λj2

%(λ, z)
)

dz < ∞, (6.6)

∫

Rd−1

(
1

%(λ, z)

)(
∂2

∂λj1∂λj2

%(λ, z)
)2

+
(

1
%(λ, z)

)3 (
∂

∂λj1

%(λ, z)
)2 (

∂

∂λj2

%(λ, z)
)2

−2
(

1
%(λ, z)

)2 (
∂

∂λj1

%(λ, z)
)
·
(

∂

∂λj2

%(λ, z)
)
·
(

∂2

∂λj1∂λj2

%(λ, z)
)

dz < ∞, (6.7)

∫

Rd−1

(
1

%(λ, z)

)2 (
∂2

∂λj1∂λj2

%(λ, z)
)2

+
(

1
%(λ, z)

)4 (
∂

∂λj1

%(λ, z)
)2 (

∂

∂λj2

%(λ, z)
)2

−2
(

1
%(λ, z)

)3

·
(

∂2

∂λj1∂λj2

%(λ, z)
)
·
(

∂

∂λj1

%(λ, z)
)
·
(

∂

∂λj2

%(λ, z)
)

dz < ∞, (6.8)

∫

Rd−1

(
1

%(λ, z)

)2

·
∣∣∣∣

∂

∂λj
%(λ, z)

∣∣∣∣
3

dz < ∞, (6.9)

∫

Rd−1

(
1

%(λ, z)

)3

·
∣∣∣∣

∂

∂λj
%(λ, z)

∣∣∣∣
3

dz < ∞, (6.10)

exist. These regularity conditions (6.1) to (6.10) make sure that certain moments of diverse
random variables in the proof exist and that certain limits and integrals can be exchanged.

Let the matrix
Vλ := (vλ,j1,j2)j1,j2=1,...,k

be invertible. Then there exists a sequence of the maximum likelihood estimators λ̂m,r, which
solve ∇θΥ(θ) = 0, and for whom the convergence

√
m

(
λ̂m,r − λ

)
−→D N

(
0, V −1

λ

)

holds for m →∞ and r →∞ if
√

m (d∗λ − χλ(r, s)) →m→∞,r→∞ 0. (6.11)

The matrix Vλ is the Fisher information matrix. Thus, the estimation is asymptotically efficient
in the sense that it possesses for m → ∞, r → ∞ the inverse of the Fisher information matrix
from the information inequality (see Section 4.1.3 in Serfling (1980, [63])) as covariance matrix.

Proof:
Because of the differentiability of %(θ, z) with regard to θ, there exists a Taylor series expansion
for the gradient ∇θ of the function log(%(θ, z)) in a neighborhood N(λ) of λ, the underlying
parameter. We denote it as

∇θ log(%(θ, z)) = ∇θ log(%(θ, z))|θ=λ + (Heθ log(%(θ, z))|θ=λ + R(z, θ, λ)) (θ − λ) ,

where Heθ is the Hessian matrix, R(z, θ, λ) is a matrix with

||R(z, θ, λ)||∞ ≤ H(z)||θ − λ||∞,
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and H is the function from condition (6.1), see Theorems 168.4 and 168.5 in Heuser (1998, [38]).
We put

Am :=
1
m

m∑

i=1

∇θ log
(
%

(
θ, Z(i)

))∣∣∣
θ=λ

,

Bm :=
1
m

m∑

i=1

Heθ log
(
%

(
θ, Z(i)

))∣∣∣
θ=λ

,

Cm :=
1
m

m∑

i=1

H
(
Z(i)

)
.

Then we have

1
m
∇θΥ(θ) = Am +

(
Bm +

1
m

m∑

i=1

R
(
Z(i), θ, λ

))
(θ − λ), (6.12)

where
∣∣∣∣∣

∣∣∣∣∣
1
m

m∑

i=1

R
(
Z(i), θ, λ

) ∣∣∣∣∣

∣∣∣∣∣
∞
≤ |Cm| · ||θ − λ||∞. (6.13)

Due to conditions (6.1) and (6.2), differentiation and integration can be interchanged, and we
get for j = 1, . . . , k

∫

Rd−1

∂

∂θj
%(θ, z) dz =

∂

∂θj

∫

Rd−1

%(θ, z) dz =
∂

∂θj

∫

Rd−1

lθ(z)
d∗θ

dz
(2.11)
=

∂

∂θj
(1) = 0, (6.14)

and equally for j1, j2 = 1, . . . , k

∫

Rd−1

∂2

∂θj1∂θj2

%(θ, z) dz = 0. (6.15)

Theorem 5.1.7 implies that the Z(i) possess a density, which can be expanded to

lλ(z)
d∗λ

+ O (d∗λ − χλ(r, s)) = %(λ, z) + O (d∗λ − χλ(r, s)) .

With that we have for j = 1, . . . , k and Z = Z(i)

Eλ

(
∂ log (% (λ,Z))

∂λj

)
=

∫

Rd−1

1
% (λ, z)

(
∂

∂λj
% (λ, z)

)
(%(λ, z) + O (d∗λ − χλ(r, s))) dz

=
∫

Rd−1

1
% (λ, z)

(
∂

∂λj
% (λ, z)

)
%(λ, z) dz

+
∫

Rd−1

1
% (λ, z)

(
∂

∂λj
% (λ, z)

)
O (d∗λ − χλ(r, s)) dz

(6.14)
=

(∫

Rd−1

1
% (λ, z)

(
∂

∂λj
% (λ, z)

)
dz

)
O (d∗λ − χλ(r, s))

=: tj(λ, r).
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Thereby limr→∞ tj(λ, r) = 0 holds due to (6.4). Furthermore, we have for j1, j2 = 1, . . . , k

Eλ

(
∂2 log (% (λ,Z))

∂λj1∂λj2

)
=

=
∫

Rd−1

(
1

% (λ, z)

(
∂2

∂λj1∂λj2

% (λ, z)
)
−

(
1

% (λ, z)

)2 (
∂

∂λj1

% (λ, z)
)(

∂

∂λj2

% (λ, z)
))

(%(λ, z) + O (d∗λ − χλ(r, s))) dz

=
∫

Rd−1

1
% (λ, z)

(
∂2

∂λj1∂λj2

% (λ, z)
)

%(λ, z) dz

+
∫

Rd−1

1
% (λ, z)

(
∂2

∂λj1∂λj2

% (λ, z)
)

O (d∗λ − χλ(r, s)) dz

−
∫

Rd−1

(
1

% (λ, z)

)2 (
∂

∂λj1

% (λ, z)
)(

∂

∂λj2

% (λ, z)
)

(%(λ, z) + O (d∗λ − χλ(r, s))) dz

(6.15)
= O (d∗λ − χλ(r, s))

∫

Rd−1

1
% (λ, z)

(
∂2

∂λj1λj2

% (λ, z)
)

−
(

1
% (λ, z)

)2 (
∂

∂λj1

% (λ, z)
)(

∂

∂λj2

% (λ, z)
)

dz

−
∫

Rd−1

(
1

% (λ, z)

)2 (
∂

∂λj1

% (λ, z)
)(

∂

∂λj2

% (λ, z)
)

%(λ, z) dz

(6.3)
=: t̃j1,j2(λ, r)− vλ,j1,j2 .

Due to (6.5), we have limr→∞ t̃j1,j2(λ, r) = 0. Analogously,

Eλ

(
∂ log (% (λ,Z))

∂λj1

· ∂ log (% (λ,Z))
∂λj2

)
=

=
∫

Rd−1

(
1

% (λ, z)

)2 (
∂

∂λj1

% (λ, z)
)(

∂

∂λj2

% (λ, z)
)

(%(λ, z) + O (d∗λ − χλ(r, s))) dz

=
∫

Rd−1

(
1

% (λ, z)

)(
∂

∂λj1

% (λ, z)
)(

∂

∂λj2

% (λ, z)
)

dz

+O (d∗λ − χλ(r, s))
∫

Rd−1

(
1

% (λ, z)

)2 (
∂

∂λj1

% (λ, z)
) (

∂

∂λj2

% (λ, z)
)

dz

(6.3),(6.6)
= vλ,j1,j2 −O (d∗λ − χλ(r, s))uλ,j1,j2 . (6.16)

Next we consider

Eλ

((
∂2 log (% (λ,Z))

∂λj1∂λj2

)2
)

=

=
∫

Rd−1

(
1

% (λ, z)

(
∂2

∂λj1∂λj2

% (λ, z)
)
−

(
1

% (λ, z)

)2 (
∂

∂λj1

% (λ, z)
) (

∂

∂λj2

% (λ, z)
))2

(%(λ, z) + O (d∗λ − χλ(r, s))) dz

=
∫

Rd−1

1
% (λ, z)

(
∂2

∂λj1∂λj2

% (λ, z)
)2

+
(

1
% (λ, z)

)3 (
∂

∂λj1

% (λ, z)
)2 (

∂

∂λj2

% (λ, z)
)2
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−2
(

1
% (λ, z)

)2 (
∂2

∂λj1∂λj2

% (λ, z)
)(

∂

∂λj1

% (λ, z)
)(

∂

∂λj2

% (λ, z)
)

dz

+O (d∗λ − χλ(r, s))
∫

Rd−1

(
1

% (λ, z)

)2 (
∂2

∂λj1∂λj2

% (λ, z)
)2

+
(

1
% (λ, z)

)4 (
∂

∂λj1

% (λ, z)
)2 (

∂

∂λj2

% (λ, z)
)2

−2
(

1
% (λ, z)

)3 (
∂2

∂λj1∂λj2

% (λ, z)
)(

∂

∂λj1

% (λ, z)
)(

∂

∂λj2

% (λ, z)
)

dz

=: wλ,j1,j2 + q′j1,j2(λ, r).

The corresponding integrals exist by (6.7) and (6.8) and, thus, limr→∞ q′j1,j2
(λ, r) = 0. Finally

we have

Eλ

(∣∣∣∣
∂ log (% (λ,Z))

∂λj

∣∣∣∣
3
)

=

=
∫

Rd−1

(
1

% (λ, z)

∣∣∣∣
∂

∂λj
% (λ, z)

∣∣∣∣
)3

(%(λ, z) + O (d∗λ − χλ(r, s))) dz

=
∫

Rd−1

(
1

% (λ, z)

)2 ∣∣∣∣
∂

∂λj
% (λ, z)

∣∣∣∣
3

dz + O (d∗λ − χλ(r, s))
∫

Rd−1

(
1

% (λ, z)

)3 ∣∣∣∣
∂

∂λj
% (λ, z)

∣∣∣∣
3

dz

=: cλ,j + q̃j(λ, r). (6.17)

The corresponding integrals exist by assumptions (6.9) and (6.10) and, thus, limr→∞ q̃j(λ, r) = 0.

From the above considerations we conclude that

(i) Am is an arithmetic mean of independent, identically distributed random vectors with
expectation t(λ, r) := (t1(λ, r), . . . , tk(λ, r)) and covariance matrix

(vλ,j1,j2 + O(d∗λ − χλ(r, s))uλ,j1,j2 − tj1(λ, r)tj2(λ, r))j1,j2=1,...,k

=: Vλ + O(d∗λ − χλ(r, s))Uλ + t(λ, r)tT (λ, r).

(ii) Bm is an arithmetic mean of independent, identically distributed random vectors (noted
as a matrix) with expectation matrix

(−vλ,j1,j2 + t̃j1,j2(λ, r)
)
j1,j2=1,...,k

=: −Vλ + t̃(λ, r).
The components of the random vectors underlying Bm have the variance

wλ,j1,j2 + q′j1,j2(λ, r)− (
t̃j1,j2(λ, r)− vλ,j1,j2

)2 →r→∞ wλ,j1,j2 − v2
λ,j1,j2 .

(iii) Cm is an arithmetic mean of independent, identically distributed random variables with
expectation

Eλ(H(Z)) =
∫

Rd−1

H(z)%(λ, z) dz

︸ ︷︷ ︸
=:Fλ

+O(d∗λ − χλ(r, s))
∫

Rd−1

H(z) dz

︸ ︷︷ ︸
=:t′(λ,r)

< ∞

due to (6.2) and limr→∞ t′(λ, r) = 0. The variance is

Eλ(H2(Z))− (Eλ(H(Z)))2

=
∫

Rd−1

H2(z)%(λ, z) dz

︸ ︷︷ ︸
=:Lλ

+O(d∗λ − χλ(r, s))
∫

Rd−1

H2(z) dz

︸ ︷︷ ︸
=:q(λ,r)

− (
Fλ + t′(λ, r)

)2
.
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Because of (6.2), the variance exists and converges to Lλ − F 2
λ for r →∞.

From the strong law of large numbers (see, for example, Serfling (1980, [63]), Theorem 1.8B),
we conclude with probability 1

Am →m→∞ t(λ, r), Bm →m→∞ −Vλ + t̃(λ, r), Cm →m→∞ Fλ + t′(λ, r). (6.18)

Furthermore, we have the convergences

Am →m→∞,r→∞ 0, Bm →m→∞,r→∞ −Vλ, Cm →m→∞,r→∞ Fλ (6.19)

in probability, as we will show in the following. For ε > 0 we get with the help of the inequality
by Tchebychev, see Corollary 1.18.3 in Gänssler and Stute (1977, [30]), where Am,j denotes the
jth component of Am,

P (||Am||∞ ≥ ε) = P (||Am − t(λ, r) + t(λ, r)||∞ ≥ ε)
≤ P (||Am − t(λ, r)||∞ + ||t(λ, r)||∞ ≥ ε)
= P (||Am − t(λ, r)||∞ ≥ ε− ||t(λ, r)||∞)

= P




k⋃

j=1

{|Am,j − tj(λ, r)| ≥ ε− ||t(λ, r)||∞}



≤
k∑

j=1

P (|Am,j − tj(λ, r)| ≥ ε− ||t(λ, r)||∞)

≤
k∑

j=1

Var(Am,j)
(ε− ||t(λ, r)||∞)2

(i)
=

1
m

k∑

j=1

vλ,j,j + O(d∗λ − χλ(r, s))uλ,j,j − t2j (λ, r)

(ε− ||t(λ, r)||∞)2

→m→∞,r→∞ 0.

Since the denominator does not vanish for r large enough due to t(λ, r) →r→∞ 0, the sum
converges for r →∞ to a fixed value, and with the factor 1

m we get the convergence to 0. Thus,
we have shown the first convergence of (6.19).

Analogously we show the assertion for Bm, where Bm,j1,j2 denotes the (j1, j2)th component of
the random matrix Bm.

P (||Bm + Vλ||∞ ≥ ε) = P
(||Bm + Vλ − t̃(λ, r) + t̃(λ, r)||∞ ≥ ε

)

≤ P
(||Bm + Vλ − t̃(λ, r)||∞ + ||t̃(λ, r)||∞ ≥ ε

)

= P
(||Bm + Vλ − t̃(λ, r)||∞ ≥ ε− ||t̃(λ, r)||∞

)

= P




k⋃

j1,j2=1

{|Bm,j1,j2 + vλ,j1,j2 − t̃j1,j2(λ, r)| ≥ ε− ||t̃(λ, r)||∞
}



≤
k∑

j1,j2=1

P
(|Bm,j1,j2 + vλ,j1,j2 − t̃j1,j2(λ, r)| ≥ ε− ||t̃(λ, r)||∞

)

≤
k∑

j1,j2=1

Var(Bm,j1,j2)(
ε− ||t̃(λ, r)||∞

)2
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(ii)
=

1
m

k∑

j1,j2=1

wλ,j1,j2 + q′j1,j2
(λ, r)− (

t̃j1,j2(λ, r)− vλ,j1,j2

)2

(
ε− ||t̃(λ, r)||∞

)2

→m→∞,r→∞ 0.

Likewise we conclude for Cm

P (|Cm − Fλ| ≥ ε) = P
(|Cm − Fλ − t′(λ, r) + t′(λ, r)| ≥ ε

)

≤ P
(|Cm − Fλ − t′(λ, r)|+ |t′(λ, r)| ≥ ε

)

= P
(|Cm − Fλ − t′(λ, r)| ≥ ε− |t′(λ, r)|)

≤ Var(Cm)
(ε− |t′(λ, r)|)2

(iii)
=

1
m
· Lλ + q(λ, r)− (Fλ + t′(λ, r))2

(ε− |t′(λ, r)|)2
→m→∞,r→∞ 0.

The aim is now to show that
√

mAm −→D N (0, Vλ) (6.20)

holds. For this purpose we decompose
√

mAm =
√

m(Am − t(λ, r)) +
√

mt(λ, r).

The second term converges by condition (6.11) for m → ∞, r → ∞ to 0. It remains to show
that √

m(Am − t(λ, r)) −→D N (0, Vλ).

For that we use a version of the central limit theorem by Lindeberg for the multivariate case, as
described in Corollary 18.3 of Bhattacharya and Rao (1976, [4]). For reasons of clarity, we let
r = rm depend on m. We put

Xi,m := ∇λ log
(
%

(
λ,Z(i)

))
− t(λ, rm).

Then we have
√

m(Am − t(λ, rm)) =
1√
m

m∑

i=1

Xi,m.

We set

Tm :=

(
1
m

m∑

i=1

Cov(Xi,m)

)−1/2

.

From the multivariate central limit theorem by Lindeberg, we conclude the asymptotic normality
if

1
m3/2

m∑

i=1

E
(||TmXi,m||3∞

) →m→∞ 0. (6.21)

We will now show the condition (6.21). Then with Lemma 6.1.1 the assertion on the limit
covariance matrix follows, since Corollary 18.3 of Bhattacharya and Rao (1976, [4]) is formulated
for the standard normal distribution.
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First we get by (i)

Tm =

(
1
m

m∑

i=1

Cov(Xi,m)

)−1/2

=

(
1
m

m∑

i=1

Vλ + O(d∗λ − χλ(rm, s))Uλ + t(λ, rm)tT (λ, rm)

)−1/2

=
(
Vλ + O(d∗λ − χλ(rm, s))Uλ + t(λ, rm)tT (λ, rm)

)−1/2

→m→∞ V
−1/2
λ ,

and then, where X
(j)
i,m denotes the jth individual component of Xi,m, with Lemma 5.5.2

1
m3/2

m∑

i=1

E
(||TmXi,m||3∞

)

≤ 1
m3/2

||Tm||3∞
m∑

i=1

E
(||Xi,m||3∞

)

≤ 1
m3/2

||Tm||3∞
m∑

i=1

E




k∑

j=1

∣∣∣X(j)
i,m

∣∣∣
3




=
1

m3/2
||Tm||3∞

m∑

i=1

k∑

j=1

E

(∣∣∣X(j)
i,m

∣∣∣
3
)

≤ 1
m3/2

||Tm||3∞
m∑

i=1

k∑

j=1

8E

(∣∣∣∣
∂

∂λj
log

(
%

(
λ,Z(i)

))∣∣∣∣
3
)

(6.17)
=

8
m3/2

||Tm||3∞
m∑

i=1

k∑

j=1

(cλ,j + q̃j(λ, rm))

=
8

m1/2
||Tm||3∞

k∑

j=1

(cλ,j + q̃j(λ, rm))

→m→∞ 0.

Thus (6.20) is shown.

Let ε > 0. We will now show that under certain conditions a solution of the maximum likelihood
equation exists in the ball K∞

ε (λ) with radius ε around λ with regard to the ∞–norm.

For this purpose we put

η := min

{
ε,

ε

||Vλ||∞ ,
1

3|Fλ| · ||V −1
λ ||∞

}
. (6.22)

Define
∆ :=

{
Vλϕ

∣∣∣ϕ ∈ Rk, ||ϕ||∞ ≤ η
}

.

Then ∆ is compact and convex, as well as ∆ ⊆ K∞
ε (0), since by (6.22)

||Vλϕ||∞ ≤ ||Vλ||∞||ϕ||∞ ≤ ||Vλ||∞η ≤ ε.
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We define now the function f : ∆ → Rk by

f(x) :=
1
m
∇θΥ(θ)

∣∣∣∣
θ=λ+V −1

λ x

+ x.

Due to the assumptions, f is continuous. We show next that f(x) ∈ ∆ for x ∈ ∆. For that
we check ||V −1

λ f(x)||∞ ≤ η. From this we can conclude f(x) = VλV −1
λ f(x) ∈ ∆. With the

representation x = Vλϕ for a ϕ ∈ K∞
η (0) we get

||V −1
λ f(x)||∞ ≤ ||V −1

λ ||∞||f(x)||∞ = ||V −1
λ ||∞||f(Vλϕ)||∞

= ||V −1
λ ||∞

∣∣∣∣∣

∣∣∣∣∣Am + Bm

(
λ + V −1

λ Vλϕ− λ
)

+

(
1
m

m∑

i=1

R(Z(i), λ + V −1
λ Vλϕ, λ)

)
(
λ + V −1

λ Vλϕ− λ
)

+ Vλϕ

∣∣∣∣∣

∣∣∣∣∣
∞

= ||V −1
λ ||∞

∣∣∣∣∣

∣∣∣∣∣Am + (Bm + Vλ)ϕ +

(
1
m

m∑

i=1

R(Z(i), λ + ϕ, λ)

)
ϕ

∣∣∣∣∣

∣∣∣∣∣
∞

(6.13)

≤ ||V −1
λ ||∞||Am||∞ + ||V −1

λ ||∞||(Bm + Vλ)||∞||ϕ||∞ + ||V −1
λ ||∞|Cm| · ||λ + ϕ− λ||∞ · ||ϕ||∞

(6.22)

≤ ||V −1
λ ||∞||Am||∞ + ||V −1

λ ||∞||(Bm + Vλ)||∞η +
||V −1

λ ||∞ · |Cm| · η
3|Fλ| · ||V −1

λ ||∞
≤ ||V −1

λ ||∞||Am||∞ + ||V −1
λ ||∞η||(Bm + Vλ)||∞ +

η

3
|Cm|
|Fλ| .

When the conditions

||Am||∞ ≤ η

4||V −1
λ ||∞

, ||Bm + Vλ||∞ ≤ 1
4||V −1

λ ||∞
,

|Cm|
|Fλ| ≤

3
2

(6.23)

are fulfilled, the inequality

||V −1
λ f(x)||∞ ≤ η

4
+

η

4
+

η

3
· 3
2

= η

follows.

We know that under (6.23) f is a continuous function with f : ∆ → ∆. By the Brower fixed
point theorem (see Theorem 229.2 in Heuser (1998, [38])), a fixed point x ∈ ∆ with f(x) = x
therefore exists. For this fixed point x, we have

1
m
∇θΥ(θ)

∣∣∣∣
θ=λ+V −1

λ x

+ x = x ⇐⇒ 1
m
∇θΥ(θ)

∣∣∣∣
θ=λ+V −1

λ x

= 0.

Thus λ + V −1
λ x is a solution of the maximum likelihood equation. If one writes x by x = Vλϕ

with ||ϕ||∞ ≤ η, one arrives at λ + V −1
λ Vλϕ = λ + ϕ. Thus under condition (6.23) a solution of

the maximum likelihood equation lies in K∞
η (λ) ⊆ K∞

ε (λ), what had to be shown.

Especially K∞
ε (λ) contains, due to the continuity of ∇θΥ(θ), the special, recursively defined

solution

λ̂m,r,ε :=




λ̂
(1)
m,r,ε

λ̂
(2)
m,r,ε
...

λ̂
(k)
m,r,ε




=




inf {θ1|θ ∈ K∞
ε (λ),∇θΥ(θ) = 0}

inf
{

θ2|θ ∈ K∞
ε (λ),∇θΥ(θ) = 0, θ1 = λ̂

(1)
m,r,ε

}

...
inf

{
θk|θ ∈ K∞

ε (λ),∇θΥ(θ) = 0, θ1 = λ̂
(1)
m,r,ε, . . . , θk−1 = λ̂

(k−1)
m,r,ε

}



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with θ = (θ1, . . . , θk)T . Because of the construction of λ̂m,r,ε with infima, λ̂m,r,ε is a random
variable, see the proof of the theorem in Section 4.2.2 of Serfling (1980, [63]). In case that the
condition (6.23) is not fulfilled, we set λ̂m,r,ε := 0.

We now construct a random variable λ̂m,r, which does not depend on the choice of ε. We put,
therefore, λ̂m,rm := λ̂m,rm, 1

m
. For reasons of clarity, we again let r = rm depend on m. We show

that this random variable converges in probability to λ. Let ε > 0 and η be defined as in (6.22).

P
(
||λ̂m,rm − λ||∞ ≥ ε

)

= P

(
||λ̂m,rm − λ||∞ ≥ ε, ||Am||∞ ≤ η

4||V −1
λ ||∞

, ||Bm + Vλ||∞ ≤ 1
4||V −1

λ ||∞
,

|Cm|
|Fλ| ≤

3
2

)

+P

(
||λ̂m,rm − λ||∞ ≥ ε,

{
||Am||∞ ≤ η

4||V −1
λ ||∞

,

||Bm + Vλ||∞ ≤ 1
4||V −1

λ ||∞
,

|Cm|
|Fλ| ≤

3
2

}c)

≤ P

(
||λ̂m,rm − λ||∞ ≥ ε, ||Am||∞ ≤ η

4||V −1
λ ||∞

, ||Bm + Vλ||∞ ≤ 1
4||V −1

λ ||∞
,

|Cm|
|Fλ| ≤

3
2

)

+P

({
||Am||∞ ≤ η

4||V −1
λ ||∞

, ||Bm + Vλ||∞ ≤ 1
4||V −1

λ ||∞
,

|Cm|
|Fλ| ≤

3
2

}c)

= P

(
||λ̂m,rm − λ||∞ ≥ ε, ||Am||∞ ≤ η

4||V −1
λ ||∞

, ||Bm + Vλ||∞ ≤ 1
4||V −1

λ ||∞
,

|Cm|
|Fλ| ≤

3
2

)

+P

(({
||Am||∞ ≤ η

4||V −1
λ ||∞

}
∩

{
||Bm + Vλ||∞ ≤ 1

4||V −1
λ ||∞

}
∩

{ |Cm|
|Fλ| ≤

3
2

})c)

= P

(
||λ̂m,rm − λ||∞ ≥ ε, ||Am||∞ ≤ η

4||V −1
λ ||∞

, ||Bm + Vλ||∞ ≤ 1
4||V −1

λ ||∞
,

|Cm|
|Fλ| ≤

3
2

)

+P

({
||Am||∞ >

η

4||V −1
λ ||∞

}
∪

{
||Bm + Vλ||∞ >

1
4||V −1

λ ||∞

}
∪

{ |Cm|
|Fλ| >

3
2

})

≤ P

(
||λ̂m,rm − λ||∞ ≥ ε, ||Am||∞ ≤ η

4||V −1
λ ||∞

, ||Bm + Vλ||∞ ≤ 1
4||V −1

λ ||∞
,

|Cm|
|Fλ| ≤

3
2

)

+P

(
||Am||∞ >

η

4||V −1
λ ||∞

)
+ P

(
||Bm + Vλ||∞ >

1
4||V −1

λ ||∞

)
+ P

( |Cm|
|Fλ| >

3
2

)

→m→∞ 0.

The convergence of the last three terms follows from (6.19). The estimator λ̂m,rm is, when
fulfilling the secondary conditions (6.23), by definition in a ball around λ, with a radius smaller
than ε from this m onward. Thus, the first term converges to 0, since 1

m < ε for m large enough.

We have now

0 =
1
m
∇θΥ(θ)|θ=λ̂m,r

= Am +

(
Bm +

1
m

m∑

i=1

R
(
Z(i), λ̂m,r, λ

))

︸ ︷︷ ︸
=:Gm,r

(
λ̂m,r − λ

)
,
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with a probability converging to 1 for all m and r large enough. For m →∞, r →∞, we have
Gm,r → −Vλ due to (6.13), and λ̂m,r → λ in probability. Since Vλ is invertible by assumption,
Gm,r is also invertible for m and r large enough. For these m and r, we have

√
m

(
λ̂m,r − λ

)
= −G−1

m,r

√
mAm.

By the asymptotic normality (6.20) of Am, Lemma 6.1.1 and the symmetry of Vλ, we finally
conclude √

m
(
λ̂m,r − λ

)
−→D N

(
0,

(
V −1

λ

)T
VλV −1

λ

)
= N (

0, V −1
λ

)

for m →∞, r →∞.

Because of (6.16), we have for the Fisher information Iλ of the angular component Z of a random
vector X distributed by Wλ, for whom C < −r and X ∈ Ks holds,

Iλ = Vλ + O (d∗λ − χλ(r, s))Uλ →r→∞ Vλ.

I.e., the estimation procedure has asymptotically the inverse of the Fisher information as co-
variance matrix and is, thus, asymptotically efficient.

¤

Example 6.1.3
We choose again the logistic distribution Wλ as an example. With the angular density given in
Example 2.3.10, we calculate as function, which is to be maximized,

Υ(λ) =
m∑

i=1




d−1∑

j=1

log(jλ− 1)


 + (−λ− 1)

d−1∑

j=1

log
(
Z

(i)
j

)
+ (−λ− 1) log


1−

d−1∑

j=1

Z
(i)
j




+
(

1
λ
− d

)
log




d−1∑

j=1

(
Z

(i)
j

)−λ
+


1−

d−1∑

j=1

Z
(i)
j



−λ


−m log d

with Z(i) =
(
Z

(i)
1 , . . . , Z

(i)
d−1

)
. Remark that in the logistic case d∗λ = d holds for λ > 1.

The subtraction of the constant m log d does not influence the maximization, thus one can
maximize the term

m∑

i=1

log
(
lλ

(
Z(i)

))

in λ.

The only realistic way to find maximal values of Υ in practice is, as stated above, by numerical
methods. In this example, we use the function NMaximize of the software package Mathema-
tica, version 5.2.

With Algorithm 3.1.11, we generated the necessary data for simulations of λ̂m,r. Thereby, for
each combination of the parameter values m = 10, 50 and r = 50, 500, 5000, a data set was
created with the fixed parameter values d = 2 and λ = 6. For each of the six data sets λ was
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estimated. This was done 100 times for each setting of parameters, and in the following graphics,
the 100 estimations λ̂m,r for λ are represented by a boxplot.

m = 10,
r = 50

m = 10,
r = 500

m = 10,
r = 5000

m = 50,
r = 50

m = 50,
r = 500

m = 50,
r = 5000

4

6

8

10

12

14

d = 2, Λ = 6

As was to be expected, the variance of the estimations reduces, when they are based on more
data. The boxplots become more and more symmetric with increasing parameters. Thus, the
estimations seem to work well and estimate the right parameter on average for these parameter
settings, independent of r.

For the next plot we set d = 5, all other parameters remain unchanged.

m = 10,

r = 50

m = 10,

r = 500

m = 10,

r = 5000

m = 50,

r = 50

m = 50,

r = 500

m = 50,

r = 5000

5

6

7

8

9

d = 5, Λ = 6

Once again the results are satisfactory.

In the next step d, is set to 2 again and λ is set to 1.2.

m = 10,

r = 50

m = 10,

r = 500

m = 10,

r = 5000

m = 50,

r = 50

m = 50,

r = 500

m = 50,

r = 5000

1.2
1.4
1.6
1.8

2
2.2
2.4

d = 2, Λ = 1.2

Here we see a clear dependence of the results on the choice of r. The value 1.2, which is to
be estimated, lies for all boxplots outside the whiskers. Thus, we have a bias, which vanishes
asymptotically by Theorem 6.1.2. The overestimation of λ reduces, as one should expect, only
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with increasing r, but even for the value of r = 5000 it can still be seen in the above graphic.
The same effect can be observed for d = 5.

m = 10,
r = 50

m = 10,
r = 500

m = 10,
r = 5000

m = 50,
r = 50

m = 50,
r = 500

m = 50,
r = 5000

1.25
1.5
1.75

2
2.25
2.5
2.75

3
d = 5, Λ = 1.2

So we have an estimation procedure, which is asymptotically efficient and works fine for cases of
high dependence, but is biased for fixed sample sizes when approaching the independence case
and, thus, not reliable there. This is not an uncommon phenomenon in extreme value analysis.
For example the ML estimators presented in Tawn (1988, [72]) are shown to behave badly when
close to the independence case. In Section 6.3, we will introduce an estimation procedure, which
has reversed properties, i.e, is reliable close to the independence case and has high variability
close to the dependence case.

♦

The approximation of the density of the Z(i) by lλ/d∗λ seems to be very crude for fixed r, when
one is close to the independence case. If we look at the density of the Z(i) under the additional
condition C(i) = −ri and Z(i) ∈ Qri,s, we know by Theorem 5.1.6 that the Z(i) have the density

l̃λ,ri
(z) =

{
lλ(z)

χλ(ri,s)
for z ∈ Qri,s,

0 else.

This can also be used for a conditional approach of a maximum likelihood estimation of λ =
(λ1, . . . , λk) by choosing λ̂m,r such that the expression

m∏

i=1

l̃λ,ri

(
Z(i)

)

is maximized in λ. This is equivalent to maximizing the term

Υ̃(λ) := log

(
m∏

i=1

l̃λ,ri

(
Z(i)

))

=
m∑

i=1

log
(
l̃λ,ri

(
Z(i)

))
=

m∑

i=1

log

(
lλ

(
Z(i)

)

χλ(ri, s)

)

=
m∑

i=1

log
(
lλ

(
Z(i)

))
−

m∑

i=1

log (χλ(ri, s))

in λ = (λ1, . . . , λk). Since we are using conditional densities we refer to this method as the
conditional maximum likelihood (Conditional ML) method.
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In contrast to the Asymptotic ML method via Υ(λ), we have the additional complication that
χλ(ri, s) is an integral and must be evaluated numerically, since analytical expressions are not
even known for the most common parametric models like the logistic or asymmetric logistic
model. Here m different integrals have to be evaluated for Υ̃(λ), whereas for a computation
of Υ(λ) at most one numerical integral has to be evaluated if no analytical expression of d∗λ is
known. This makes an evaluation of Υ̃(λ) much more costly and, thus, prolongs the runtime for
the maximization of Υ̃(λ) by a high factor.

We show next that the Conditional ML estimation with Υ̃(λ) also leads to an estimator, which
is asymptotically normal under suitable regularity conditions.

Theorem 6.1.4
Let s > 0 be fixed and r > 0 such that Qr,s 6= ∅. Let X1, . . . , Xm be independent random
vectors, which follow a generalized Pareto distribution Wλ with d∗λ > 0, with C(i) = −ri and
ri > r for all i = 1, . . . , m, as well as Xi ∈ Ks. Let the function

%(λ, z, r) :=
lλ(z)

χλ(r, s)

be three times continuously differentiable in λ for every r large enough. lλ(z) is the angular
density, and χ is defined as in Definition 5.1.3. In addition, we assume that for every θ̃ ∈ Λ
there exist functions gr(z), hr(z) and Hr(z) > 0, possibly depending on θ̃ and r, such that the
relations

∣∣∣∣
∂

∂θj
%(θ, z, r)

∣∣∣∣ ≤ gr(z),
∣∣∣∣

∂2

∂θj1∂θj2

%(θ, z, r)
∣∣∣∣ ≤ hr(z), (6.24)

∣∣∣∣
∂3

∂θj1∂θj2∂θj3

log (%(θ, z, r))
∣∣∣∣ ≤ Hr(z),

hold for r large enough, for θ in a neighborhood N(θ̃) of θ̃, for j, j1, j2, j3 = 1, . . . , k, and for all
z ∈ Rd−1. Next we demand that

∫

Rd−1

gr(z) dz < ∞,

∫

Rd−1

hr(z) dz < ∞,

tθ,r :=
∫

Qr,s

Hr(z)%(θ, z, r) dz < ∞, t̃θ,r :=
∫

Qr,s

H2
r (z)%(θ, z, r) dz < ∞ (6.25)

for θ ∈ N(θ̃) and all r large enough. Furthermore, we assume that for λ ∈ Λ, r large enough
and j, j1, j2 = 1, . . . , k, the integrals

0 < vλ,j1,j2,r :=
∫

Qr,s

1
%(λ, z, r)

(
∂

∂λj1

%(λ, z, r)
)(

∂

∂λj2

%(λ, z, r)
)

dz < ∞, (6.26)

wλ,j1,j2,r :=
∫

Qr,s

(
1

%(λ, z, r)

(
∂2

∂λj1∂λj2

%(λ, z, r)
)

−
(

1
%(λ, z, r)

)2 ∂

∂λj1

%(λ, z, r) · ∂

∂λj2

%(λ, z, r)

)2

%(λ, z, r) dz < ∞, (6.27)

uλ,j,r :=
∫

Qr,s

(
1

%(λ, z, r)

)2

·
∣∣∣∣

∂

∂λj
%(λ, z, r)

∣∣∣∣
3

dz < ∞, (6.28)
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exist. These regularity conditions (6.24) to (6.28) make sure that certain moments of diverse
random variables in the proof exist and that certain limits and integrals can be exchanged.
In addition, we require that the behavior of these integrals with regard to r is regular, more
precisely there have to exist real numbers Fλ, βλ, γλ,j1,j2 , δλ,j1,j2 and αλ,j such that

tθ,r → Fλ, t̃θ,r → βλ,

vλ,j1,j2,r → γλ,j1,j2 , wλ,j1,j2,r → δλ,j1,j2 , (6.29)
and uλ,j,r → αλ,j ,

monotone increasing for r →∞.

Let the matrix
Γλ := (γλ,j1,j2)j1,j2=1,...,k

be invertible. Then there exists a sequence of maximum likelihood estimators λ̂m,r, which solve
∇θΥ̃(θ) = 0 and for whom the convergence

√
m

(
λ̂m,r − λ

)
−→D N

(
0, Γ−1

λ

)

holds for m →∞ and r →∞.

Proof:
We will proceed analogously as in the proof of Theorem 6.1.2.

Because of the differentiability of %(θ, z, r) with regard to θ, there exists a Taylor series expansion
for the gradient ∇θ of the function log(%(θ, z, r)) in a neighborhood N(λ) of λ, the underlying
parameter. We write it as

∇θ log(%(θ, z, r)) = ∇θ log(%(θ, z, r))|θ=λ + (Heθ log(%(θ, z, r))|θ=λ + R(z, θ, λ, r)) (θ − λ) ,

where Heθ again denotes the Hessian matrix, where R(z, θ, λ, r) is a matrix with

||R(z, θ, λ, r)||∞ ≤ Hr(z)||θ − λ||∞
and Hr is the function from condition (6.24), see Theorems 168.4 and 168.5 in Heuser (1998, [38]).
We put as before

Am :=
1
m

m∑

i=1

∇θ log
(
%

(
θ, Z(i), ri

))∣∣∣
θ=λ

,

Bm :=
1
m

m∑

i=1

Heθ log
(
%

(
θ, Z(i), ri

))∣∣∣
θ=λ

,

Cm :=
1
m

m∑

i=1

Hri

(
Z(i)

)
.

Then we have

1
m
∇θΥ̃(θ) = Am +

(
Bm +

1
m

m∑

i=1

R
(
Z(i), θ, λ, ri

))
(θ − λ), (6.30)

where
∣∣∣∣∣

∣∣∣∣∣
1
m

m∑

i=1

R
(
Z(i), θ, λ, ri

) ∣∣∣∣∣

∣∣∣∣∣
∞
≤ |Cm| · ||θ − λ||∞. (6.31)
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Due to conditions (6.24) and (6.25) differentiation and integration can be interchanged, and we
get for j = 1, . . . , k and r large enough

∫

Qr,s

∂

∂θj
%(θ, z, r) dz =

∂

∂θj

∫

Qr,s

%(θ, z, r) dz =
∂

∂θj

∫

Qr,s

lθ(z)
χθ(r, s)

dz
(5.4)
=

∂

∂θj
(1) = 0, (6.32)

and equally for j1, j2 = 1, . . . , k

∫

Qr,s

∂2

∂θj1∂θj2

%(θ, z, r) dz = 0. (6.33)

Theorem 5.1.6 states that the Z(i) possess a density, which is %(θ, z, ri) for z ∈ Qr,s and 0 else.
Note that since we condition on C(i) = ri the Z(i) are, in contrast to the proof of Theorem 6.1.2,
not identically distributed. So we have for j = 1, . . . , k and i = 1, . . . , m

Eλ

(
∂ log

(
%

(
λ,Z(i), ri

))

∂λj

)
=

∫

Qri,s

1
% (λ, z, ri)

(
∂

∂λj
% (λ, z, ri)

)
%(λ, z, ri) dz

(6.32)
= 0.

Furthermore, we have for j1, j2 = 1, . . . , k and i = 1, . . . , m

Eλ

(
∂2 log

(
%

(
λ,Z(i), ri

))

∂λj1∂λj2

)
=

=
∫

Qri,s

(
1

% (λ, z, ri)

(
∂2

∂λj1∂λj2

% (λ, z, ri)
)

−
(

1
% (λ, z, ri)

)2 (
∂

∂λj1

% (λ, z, ri)
)(

∂

∂λj2

% (λ, z, ri)
))

%(λ, z, ri) dz

(6.33)
= −

∫

Qri,s

1
%(λ, z, ri)

(
∂

∂λj1

%(λ, z, ri)
)(

∂

∂λj2

%(λ, z, ri)
)

dz

(6.26)
= −vλ,j1,j2,ri .

Analogously

Eλ

(
∂ log

(
%

(
λ,Z(i), ri

))

∂λj1

· ∂ log
(
%

(
λ,Z(i), ri

))

∂λj2

)
=

=
∫

Qri,s

(
1

% (λ, z, ri)

)2 (
∂

∂λj1

% (λ, z, ri)
)(

∂

∂λj2

% (λ, z, ri)
)

%(λ, z, ri) dz

=
∫

Qri,s

1
% (λ, z, ri)

(
∂

∂λj1

% (λ, z, ri)
)(

∂

∂λj2

% (λ, z, ri)
)

dz

(6.26)
= vλ,j1,j2,ri .

Next we consider

Eλ




(
∂2 log

(
%

(
λ,Z(i), ri

))

∂λj1∂λj2

)2

 =
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=
∫

Qri,s

(
1

% (λ, z, ri)

(
∂2

∂λj1∂λj2

% (λ, z, ri)
)

−
(

1
% (λ, z, ri)

)2 (
∂

∂λj1

% (λ, z, ri)
) (

∂

∂λj2

% (λ, z, ri)
))2

%(λ, z, ri) dz

(6.27)
= wλ,j1,j2,ri .

Finally we have

Eλ




∣∣∣∣∣
∂ log

(
%

(
λ,Z(i), ri

))

∂λj

∣∣∣∣∣
3

 =

=
∫

Qri,s

(
1

% (λ, z, ri)

∣∣∣∣
∂

∂λj
% (λ, z, ri)

∣∣∣∣
)3

%(λ, z, ri) dz

=
∫

Qri,s

(
1

% (λ, z, ri)

)2 ∣∣∣∣
∂

∂λj
% (λ, z, ri)

∣∣∣∣
3

dz

(6.28)
= uλ,j,ri . (6.34)

From the above considerations we conclude that

(i) Am is an arithmetic mean of independent but not identically distributed random vectors
with expectation 0 and covariance matrix Vλ,ri = (vλ,j1,j2,ri)j1,j2=1,...,k.

(ii) Bm is an arithmetic mean of independent but not identically distributed random vectors
(noted as a matrix) with expectation matrix −Vλ,ri . The components of the random
vectors underlying Bm have the variance wλ,j1,j2,ri

− v2
λ,j1,j2,ri

.

(iii) Cm is an arithmetic mean of independent, but not identically distributed random variables
with expectation tλ,ri and with variance t̃λ,ri − t2λ,ri

due to (6.25).

Next, we will show the convergences

Am →m→∞ 0, Bm →m→∞,r→∞ −Γλ, Cm →m→∞,r→∞ Fλ (6.35)

in probability. We denote by Am,j the jth component of Am, and for ε > 0 we get with the help
of the inequality by Tchebychev, see Corollary 1.18.3 in Gänssler and Stute (1977, [30])

P (||Am||∞ ≥ ε) = P




k⋃

j=1

{|Am,j | ≥ ε}

 ≤

k∑

j=1

P (|Am,j | ≥ ε) ≤
k∑

j=1

Var(Am,j)
ε2

(i)
=

1
m2ε2

k∑

j=1

m∑

i=1

vλ,j,j,ri ≤
1

mε2

k∑

j=1

γλ,j,j

→m→∞ 0.

Thus, we have shown the first convergence of (6.35).
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Analogously we show the assertion for Bm, where Bm,j1,j2 denotes the (j1, j2)th component of
the random matrix Bm.

P (||Bm + Γλ||∞ ≥ ε)

= P

(∣∣∣∣∣

∣∣∣∣∣Bm +
1
m

m∑

i=1

Vλ,ri + Γλ − 1
m

m∑

i=1

Vλ,ri

∣∣∣∣∣

∣∣∣∣∣
∞
≥ ε

)

≤ P

(∣∣∣∣∣

∣∣∣∣∣Bm +
1
m

m∑

i=1

Vλ,ri

∣∣∣∣∣

∣∣∣∣∣
∞
≥ ε−

∣∣∣∣∣

∣∣∣∣∣Γλ − 1
m

m∑

i=1

Vλ,ri

∣∣∣∣∣

∣∣∣∣∣
∞

)

= P




k⋃

j1,j2=1

{∣∣∣∣∣Bm,j1,j2 +
1
m

m∑

i=1

vλ,j1,j2,ri

∣∣∣∣∣ ≥ ε−
∣∣∣∣∣

∣∣∣∣∣Γλ − 1
m

m∑

i=1

Vλ,ri

∣∣∣∣∣

∣∣∣∣∣
∞

}


≤
k∑

j1,j2=1

P

({∣∣∣∣∣Bm,j1,j2 +
1
m

m∑

i=1

vλ,j1,j2,ri

∣∣∣∣∣ ≥ ε−
∣∣∣∣∣

∣∣∣∣∣Γλ − 1
m

m∑

i=1

Vλ,ri

∣∣∣∣∣

∣∣∣∣∣
∞

})

(ii)

≤
k∑

j1,j2=1

1
m2

∑m
i=1 wλ,j1,j2,ri − v2

λ,j1,j2,ri(
ε− ||Γλ − 1

m

∑m
i=1 Vλ,ri ||∞

)2

(6.29)

≤
k∑

j1,j2=1

1
m2

∑m
i=1 δλ,j1,j2 − v2

λ,j1,j2,r(
ε− ||Γλ − 1

m

∑m
i=1 Vλ,ri ||∞

)2

=
1
m

k∑

j1,j2=1

δλ,j1,j2 − v2
λ,j1,j2,r(

ε− ||Γλ − 1
m

∑m
i=1 Vλ,ri ||∞

)2

→m→∞,r→∞ 0,

since the numerator is bounded and the denominator is bounded away from 0 for r large enough,
due to 1

m

∑m
i=1 Vλ,ri →r→∞ Γλ by (6.29).

Likewise we conclude for Cm

P (|Cm − Fλ| ≥ ε) = P

(∣∣∣∣∣Cm − 1
m

m∑

i=1

tλ,ri
−

(
Fλ − 1

m

m∑

i=1

tλ,ri

)∣∣∣∣∣ ≥ ε

)

≤ P

(∣∣∣∣∣Cm − 1
m

m∑

i=1

tλ,ri

∣∣∣∣∣ ≥ ε−
∣∣∣∣∣Fλ − 1

m

m∑

i=1

tλ,ri

∣∣∣∣∣

)

(iii)

≤
1

m2

∑m
i=1 t̃λ,ri

− t2λ,ri(
ε− ∣∣Fλ − 1

m

∑m
i=1 tλ,ri

∣∣)2

≤ 1
m

βλ − t2λ,r(
ε− ∣∣Fλ − 1

m

∑m
i=1 tλ,ri

∣∣)2

→m→∞,r→∞ 0,

since the numerator is bounded and the denominator is bounded away from 0 for r large enough,
due to 1

m

∑m
i=1 tλ,ri →r→∞ Fλ by (6.29).

The aim is now to show that
√

mAm −→D N (0, Γλ) (6.36)
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holds.

For that we use again the version of the central limit theorem by Lindeberg for the multivariate
case as described in Corollary 18.3 of Bhattacharya and Rao (1976, [4]) and already used in the
proof of Theorem 6.1.2. We put

Xi,m := ∇λ log
(
%

(
λ,Z(i), ri

))
.

Then we have
√

mAm =
1√
m

m∑

i=1

Xi,m.

We set

Tm :=

(
1
m

m∑

i=1

Cov(Xi,m)

)−1/2

.

From the multivariate central limit theorem by Lindeberg, we conclude the asymptotic normality
if

1
m3/2

m∑

i=1

E
(||TmXi,m||3∞

) →m→∞,r→∞ 0. (6.37)

We will now show the condition (6.37) as before. Then with Lemma 6.1.1, the assertion on the
limit covariance matrix follows.

First we get by (i)

Tm =

(
1
m

m∑

i=1

Cov(Xi,m)

)−1/2

=

(
1
m

m∑

i=1

Vλ,ri

)−1/2

→m→∞,r→∞ Γ−1/2
λ ,

since 1
m

∑m
i=1 vλ,j1,j2,ri → γλ,j1,j2 by (6.29).

Then, we denote with X
(j)
i,m the jth individual component of Xi,m and obtain

1
m3/2

m∑

i=1

E
(||TmXi,m||3∞

)

≤ 1
m3/2

||Tm||3∞
m∑

i=1

E
(||Xi,m||3∞

)

≤ 1
m3/2

||Tm||3∞
m∑

i=1

E




k∑

j=1

∣∣∣X(j)
i,m

∣∣∣
3




=
1

m3/2
||Tm||3∞

m∑

i=1

k∑

j=1

E

(∣∣∣∣
∂

∂λj
log

(
%

(
λ,Z(i), ri

))∣∣∣∣
3
)

(6.34)
=

1
m3/2

||Tm||3∞
m∑

i=1

k∑

j=1

uλ,j,ri

(6.29)

≤ 1
m3/2

||Tm||3∞
m∑

i=1

k∑

j=1

αλ,j =
1

m1/2
||Tm||3∞

k∑

j=1

αλ,j

→m→∞,r→∞ 0.
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Thus (6.36) is shown.

Now we are exactly in the same situation as in the proof of Theorem 6.1.2. The existence of a
solution of the ML equation and its convergence in probability to λ follow in exactly the same
manner. Consequently,

0 =
1
m
∇θΥ̃(θ)

∣∣∣
θ=λ̂m,r

= Am +

(
Bm +

1
m

m∑

i=1

R
(
Z(i), λ̂m,r, λ, ri

))

︸ ︷︷ ︸
=:Gm,r,r1,...,rm

(
λ̂m,r − λ

)
,

with a probability which converges to 1 for all m and r large enough. We have

||Gm,r,r1,...,rm + Γλ||∞ =

∣∣∣∣∣

∣∣∣∣∣Bm + Γλ +
1
m

m∑

i=1

R
(
Z(i), λ̂m,r, λ, ri

)∣∣∣∣∣

∣∣∣∣∣
∞

≤ ||Bm + Γλ||∞ +

∣∣∣∣∣

∣∣∣∣∣
1
m

m∑

i=1

R
(
Z(i), λ̂m,r, λ, ri

)∣∣∣∣∣

∣∣∣∣∣
∞

≤ ||Bm + Γλ||∞ + |Cm| ·
∣∣∣
∣∣∣λ̂m,r − λ

∣∣∣
∣∣∣
∞

,

thus Gm,r,r1,...,rm →m→∞,r→∞ −Γλ in probability. The asymptotic normality of
√

m
(
λ̂m,r − λ

)

now follows as in the proof of Theorem 6.1.2.
¤

Remark that although we conditioned on C(i) = ri, all convergences in the above proof where
shown to be only depending on r.

Corollary 6.1.5
Let X̃(1), . . . , X̃(n) follow a GPD with the assumptions from Theorem 6.1.2. Then the Condi-
tional ML estimator λ̂m,r, based on the random number m = τn of observations with C̃(i) < −r,
||X(i)||∞ < s, is asymptotically normal, i.e.,

√
m

(
λ̂m,r − λ

)
−→D N

(
0,Γ−1

λ

)
,

if npr,s → ∞, where pr,s = P
(
X̃(i) ∈ Ar,s

)
, and n → ∞, r → ∞ with growth condition (5.27)

fulfilled.

Proof:
Due to npr,s → ∞ and (5.27), we know by Lemma 5.6.1 that τn = m → ∞ with probability 1
and, thus, with probability 1 a triangular array of radial components

rn < r1,n, . . . , rm,n

with rn → ∞, m = τn → ∞ is generated by the underlying random variables. Moving along
this triangular array the assertion follows with Theorem 6.1.4, since all convergences there only
depend on r.

¤
Remark 6.1.6
Note that the quantity Am in the proof of Theorem 6.1.4 has expectation 0 independent of r
and ri, whereas in the proof of Theorem 6.1.2 the quantity Am had expectation t(λ, r), which
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converged to 0 for r → ∞ but did not vanish for fixed r. This resulted in a bias, which could
be seen in the simulations of Example 6.1.3. We, thus, expect not to see a bias in simulations
for the Conditional ML method, which are carried out in Example 6.1.7.

In addition to the conditions for the asymptotic normality of the Asymptotic ML estimator
in Theorem 6.1.2, we also needed here that the conditions (6.29), concerning the behavior of
diverse integrals with regard to r, are fulfilled. We take a short look at the condition concern-
ing vλ,j1,j2,r. The assumption is that a γλ,j1,j2 < ∞ exists, such that vλ,j1,j2,r →r→∞ γλ,j1,j2

monotonously increasing. If we could exchange the corresponding limits with the integration
and differentiation, we would get

γλ,j1,j2 = lim
r→∞ vλ,j1,j2,r = lim

r→∞

∫

Qr,s

1
%(λ, z, r)

(
∂

∂λj1

%(λ, z, r)
)(

∂

∂λj2

%(λ, z, r)
)

dz

= lim
r→∞

∫

Qr,s

χλ(r, s)
lλ(z)

(
∂

∂λj1

lλ(z)
χλ(r, s)

)(
∂

∂λj2

lλ(z)
χλ(r, s)

)
dz

=
∫

Rd−1

d∗λ
lλ(z)

(
∂

∂λj1

lλ(z)
d∗λ

)(
∂

∂λj2

lλ(z)
d∗λ

)
dz

= vλ,j1,j2

with vλ,j1,j2 being defined as in Theorem 6.1.2. Thus condition (6.29) is fulfilled if the limit
r → ∞ can be interchanged with integration and differentiation, the limit integral exists and
the convergence is monotonous in r. Considerations similar to those above can also be made for
wλ,j1,j2,r and uλ,j,r. Thus the requirements (6.29) are not unreasonable ones.

We want to illustrate conditions (6.29) for the logistic case by plotting the quantities vλ,1,1,r,
wλ,1,1,r and uλ,1,1,r for d = 2, s = 0.1 and different λ. As a reference, the corresponding limits if
the exchange of limits with integration/differentiation is permitted, are drawn as lines. For the
numerical evaluation we used the function NIntegrate from Mathematica. With λ = 6 we
get the following behavior:

50 75 100 125 150 175 200
r

0.01

0.02
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0.04

0.05

vΛ,1,1,r

50 75 100 125 150 175 200
r

0.0005
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wΛ,1,1,r

50 75 100 125 150 175 200
r
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0.02

0.025

uΛ,1,1,r

We have fast monotonous convergence to constants, which seem to be the values after the
exchange of the limit r →∞ with the differentiation and integration. Next we look at λ = 1.2.
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The convergence here is much slower but also monotonous. The quantities vλ,1,1,r, wλ,1,1,r and
uλ,1,1,r have a similar behavior as the function χ, see Example 5.1.5. χ also converged very
slowly to d∗λ = d for λ close to 1. In Example 6.2.2 we show evaluations of vλ,1,1,r for very
high r supporting the conjecture that vλ,1,1,r converges actually to vλ,1,1 of the Asymptotic ML
method. Thus the conditions (6.29) are, in all, not unrealistic requirements and seem to be
fulfilled in the logistic case.

♦

Example 6.1.7
We want to test the estimator, which maximizes Υ̃(λ) as in Example 6.1.3. The following plots
are done for d = 2, the other parameters are chosen as in Example 6.1.3.

m = 10,

r = 50
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m = 50,

r = 500
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2.5
2.75

d = 2, Λ = 1.2

In the case of high dependence nothing has changed, in the case of low dependence, the bias we
have seen in Example 6.1.3 is not existing any more. Remark also that in the low dependence case
often a value of 1 is estimated, which would mean independence although we have dependence
in our simulated data due to λ > 1.

We do not give graphics for higher dimensions, since the generation of a graphic like the one
above for d = 3 can take days already. This is due to the numerical inefficiency of the Conditional
ML method described above.

♦

This procedure is hardly suited for practical purposes in higher dimensions, since the compu-
tation takes too long. A possible way to make this work in practice would be to find easily
evaluable functions f(s, r, λ) which approximate χλ(r, s), and then to maximize

m∑

i=1

log
(
lλ

(
Z(i)

))
−

m∑

i=1

log (f(s, ri, λ))
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instead of Υ̃(λ). But such functions are yet unknown.

We will compare the two procedures presented here together with a few others, which will be
introduced in the next sections, in Section 6.4 in detail.

6.2 Maximum Likelihood Estimation with the Pickands Density

As in the previous section, we assume that we have n independent copies X̃(1), . . . , X̃(n) of a
random vector X, which follows a generalized Pareto distribution Wλ from a k–parametric family
with U = Ks by representation (2.5). By φλ we denote the corresponding Pickands density,
and this time we denote by Z̃(i) and C̃(i) the corresponding standard Pickands coordinates,
i = 1, . . . , n. We choose a threshold r < 0 close enough to 0 for the conditions of Theorem 2.2.5
to hold, and consider only those observations with C̃(i) > r. We denote these by X(1), . . . , X(m).
They are independent (see Sections 4.1 and 5.2) and have, by Theorem 2.2.5, the density φλ(z)

µλ
,

independent of r. Again we can do a maximum likelihood estimation of λ = (λ1, . . . , λk) by
choosing λ̂m such that the expression

m∏

i=1

φλ

(
Z(i)

)

µλ
or Ω(λ) :=

m∑

i=1

log
(
φλ

(
Z(i)

))
−m log(µλ)

is maximized in λ.

Since here, in contrast to Section 6.1, we insert the observations into their exact densities, we
can refer for the proof of the asymptotic normality of the maximum likelihood estimation to the
corresponding literature, see below.

Theorem 6.2.1
Let r < 0 be chosen such that the conditions of Theorem 2.2.5 hold. Let X1, . . . , Xm be
independent random vectors, distributed according to a generalized Pareto distribution Wλ,
with C(i) > r. Let the function

%(λ, z) :=
φλ(z)
µλ

be three times continuously differentiable in λ, where φλ(z) is the Pickands density. In addition,
we assume that for every θ̃ ∈ Λ there exist functions g(z), h(z) and H(z) > 0, possibly depending
on θ̃, such that the relations

∣∣∣∣
∂

∂θj
%(θ, z)

∣∣∣∣ ≤ g(z),
∣∣∣∣

∂2

∂θj1∂θj2

%(θ, z)
∣∣∣∣ ≤ h(z),

∣∣∣∣
∂3

∂θj1∂θj2∂θj3

log (%(θ, z))
∣∣∣∣ ≤ H(z),

hold for θ in a neighborhood N(θ̃) of θ̃ and for j, j1, j2, j3 = 1, . . . , k and for all z ∈ Rd−1. Next
we demand that

∫

Rd−1

g(z) dz < ∞,

∫

Rd−1

h(z) dz < ∞,

∫

Rd−1

H(z) dz < ∞,

∫

Rd−1

H(z)%(θ, z) dz < ∞ for θ ∈ N(θ̃),

and

vλ,j1,j2 := Eλ

((
∂ log (% (λ,Z))

∂λj1

)(
∂ log (% (λ, Z))

∂λj2

))
< ∞
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hold for j1, j2 = 1, . . . , k, Z = Z(i). Let the matrix

Vλ := (vλ,j1,j2)j1,j2=1,...,k

be invertible. Then there exists a sequence of the maximum likelihood estimators λ̂m, which
solve ∇θΩ(θ) = 0 and for whom the convergence

√
m(λ̂m − λ) −→D N

(
0, V −1

λ

)

holds for m → ∞. The matrix Vλ is the Fisher information matrix. Thus the estimation is
asymptotically efficient.

Proof:
See Section 4.2 in Serfling (1980, [63]), Section 33.2 in Cramer (1963, [12]) and Section 2.5
in Witting and Nölle (1970, [75]).

¤

Due to the fact that by Theorem 6.2.1 this estimation procedure is asymptotically normal,
independent of r, it may seem superior to the estimation procedures in Section 6.1. But with
regard to the Asymptotic ML method it has the practical disadvantage of the computation of
µλ. In contrast to d∗λ, no analytical expressions of µλ are known, even in the logistic case.
Thus, the only possibility to overcome this problem is in a numerical way, and this leads to
higher runtimes, since we have to maximize (again by numerical means) with regard to λ. This
corresponds to the problem of evaluating χλ(ri, s) for Υ̃(λ) in Section 6.1, but, in contrast, we
have here only one integral in the function which is to be maximized, whereas previously we had
m different integrals for the Conditional ML method.

A mathematical disadvantage are the higher asymptotic variances in comparison to the Asymp-
totic and the Conditional ML methods, see the next example for a numerical evaluation in the
logistic case.

Example 6.2.2
We can compare the three ML methods considered so far by their asymptotic variances, com-
puted in Theorems 6.1.2, 6.1.4 and 6.2.1. In the following plot, these asymptotic variances are
plotted for the logistic case with d = 2. The asymptotic variance γ−1

λ,1,1 of the Conditional ML
method is thereby evaluated by the insertion of a high r into vλ,1,1,r, see Theorem 6.1.4.

2 3 4 5 6
Λ
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15

20

25

Pickands ML

Asymptotic ML

Conditional ML
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We note that the asymptotic variance of the Asymptotic and the Conditional ML seem to be
identical. This leads to the conjecture that vλ,1,1 = γλ,1,1 = limr→∞ vλ,1,1,r with the notations
from Theorems 6.1.2 and 6.1.4. The asymptotic variance of the Pickands ML is generally larger.

For simulation of the Pickands ML estimator we choose as before the logistic distribution Wλ

as the distribution underlying the simulated data. In this example, we use again the func-
tions NMaximize and NIntegrate of the software package Mathematica, version 5.2, for the
maximization of Ω(λ) and the computation of µλ.

With Algorithm 3.1.11, m = 10 and m = 50 data, which fell over the thresholds r = −0.1, −0.05,
−0.01 were generated for the parameter values d = 2 and λ = 6. In the following graphics, 100
estimations λ̂m for λ are represented by a boxplot as in Examples 6.1.3 and 6.1.7.

m = 10,

r = -0.1

m = 10,

r = -0.05

m = 10,

r = -0.01

m = 50,

r = -0.1

m = 50,

r = -0.05

m = 50,

r = -0.01

4

6

8

10

12

14

d = 2, Λ = 6

As was to be expected, the variance of the estimations reduces, when they are based on more
data, and the results are independent of r.

In the next step, λ is set to 1.2. This gives

m = 10,

r = -0.1

m = 10,

r = -0.05

m = 10,

r = -0.01

m = 50,

r = -0.1

m = 50,

r = -0.05

m = 50,

r = -0.01

1

1.5

2

2.5

3

d = 2, Λ = 1.2

leading basically to the same results as for λ = 6. Quite often, however, the estimation is 1, i.e.,
independence, which is an underestimation leading to misinterpretation, see also Example 6.1.7.

In contrast to the Asymptotic ML method with the angular density, we do not have a bias close
to the independence case. So this method, in spite of the higher asymptotic variance, gives more
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reliable results. But the price for that is the higher numerical complexity.
♦

6.3 Estimation via Relative Frequencies

In this section, we present another way to estimate in parametric multivariate generalized
Pareto models. The idea for this method results from the fact that the number of observa-
tions, which fall into a certain area, can be asymptotically sufficient for the parameters of the
model, see Falk (1998, [20]).

As in Section 6.1, we assume that we have independent and identically distributed random
vectors X1, . . . , Xn following a GPD Wλ1,...,λk

with an in λ1, . . . , λk continuously differentiable
angular density lλ1,...,λk

(z) and d∗λ1,...,λk
> 0. For simplicity of notation, we put again λ :=

(λ1, . . . , λk), where λ ∈ Λ ⊆ Rk. We, furthermore, assume that the parameter space Λ is an
open nonempty subset of Rk.

For v > d put

Qv :=

{
(z1, . . . , zd−1) ∈ Rd−1

∣∣∣∣∣zi >
1
v
, i = 1, . . . , d− 1,

d−1∑

i=1

zi < 1− 1
v

}
.

The restriction v > d takes care of the fact that the set Qv is not empty. This corresponds to
the condition r > d

s in Lemma 5.1.2. We have Qr,s = Qrs for the set Qr,s considered so far
in (5.2) and (5.3). Furthermore, we put

Br,v :=
{

x ∈ (−∞, 0)d|c < −r, z ∈ Qv

}
,

where c and z are the Pickands coordinates of x with regard to Fréchet margins.

In the following, it is crucial that Br,v ⊆ Ks holds for 0 < s < 1. Thereby s is to be fixed such
that Wλ possesses the representation (2.5) on Ks. Next v and r have to be chosen such that the
inequality v < sr holds. Then Br,v ⊆ Ks is fulfilled, since for x ∈ Br,v we have

||x||∞ =
∣∣∣
∣∣∣T−1

F (z, c)
∣∣∣
∣∣∣
∞

=
1
|c| max

{
1
z1

, . . . ,
1

zd−1
,

1

1−∑d−1
i=1 zi

}

<
1
r

max{v, . . . , v, v} =
v

r
< s,

and, thus, x ∈ Ks.

The set Br,v can be illustrated in the bivariate case as follows:

c = -r

-s

-s

Br,v

0
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The parameter v describes thereby the opening angle of Br,v. It is small for v close to d, and it
converges to a right angle for v →∞. Remark that Br,v is the same set as Ar,s, v

s
in (5.11).

We have

P (X1 ∈ Br,v) =
∫ −r

−∞

∫

Qv

c−2lλ(z) dz dc =
∫ −r

−∞
c−2 dc ·

∫

Qv

lλ(z) dz

︸ ︷︷ ︸
=:χλ(v)

=
χλ(v)

r
. (6.38)

Thereby χλ(r, s) = χλ(rs) for χ from Definition 5.1.3. With

h(Br,v) =
1
n

n∑

i=1

1Br,v(Xi)

we denote the relative frequency of the occurrence of the event Br,v with the indicator function 1
as in (2.18). By the law of large numbers (see for example Serfling (1980, [63]), Theorem 1.8B),
this relative frequency converges for n → ∞ to the probability of occurrence P (X1 ∈ Br,v) =
χλ(v)

r .

Choose now vj , j = 1, . . . , k, such that d < v1 < . . . < vk < sr. With these define the function
ψ : Λ → [0, 1]k by

ψ(λ) =




χλ(v1)
r
...

χλ(vk)
r


 . (6.39)

During the following we assume that ψ is injective.

We estimate the parameter λ by λ̂ such that

ψ(λ̂) =




h(Br,v1)
...

h(Br,vk
)


 (6.40)

holds. For this we have to assume that



h(Br,v1)
...

h(Br,vk
)


 ∈ Im(ψ), (6.41)

with Im(ψ) being the image of the function ψ, otherwise define λ̂ arbitrary. For large n, this
holds by the law of large numbers with a probability converging to 1, i.e.,

P







h(Br,v1)
...

h(Br,vk
)


 /∈ Im(ψ)


 →n→∞ 0. (6.42)

if ψ(λ) is no boundary element of the image, which must be assumed. With real data sets, it
can and will happen that (6.41) does not hold, even if all other assumptions are fulfilled. We
will see this in the simulations in Example 6.3.8. One should then change the parameters r and
v if possible, see Example 6.3.5 and Section 6.4, where we will try to find appropriate r and v.
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By the law of large numbers we get

ψ(λ̂) =




h(Br,v1)
...

h(Br,vk
)


 →n→∞




χλ(v1)
r
...

χλ(vk)
r


 = ψ(λ).

The function ψ is, by the assumptions on lλ, continuously differentiable and, thus, we conclude
from ψ(λ̂) →n→∞ ψ(λ) and the injectivity of ψ, the convergence λ̂ → λ for n →∞.

We also want to show the asymptotic normality of the estimator. Due to the continuous dif-
ferentiability of ψ noted above, this function possesses a Taylor series expansion of first or-
der (see Theorems 168.4 and 168.5 in Heuser (1998, [38])), i.e., there exists a ϑ ∈ Rk with
||ϑ− λ||∞ < ||λ̂− λ||∞, such that

ψ(λ̂) = ψ(λ) + Jψ(ϑ)
(
λ̂− λ

)

holds, where Jψ(ϑ) is the Jacobian matrix of ψ at ϑ, as in Lemma 2.1.5.

We conclude

Jψ(ϑ)
(
λ̂− λ

)
= ψ(λ̂)− ψ(λ) =




h(Br,v1)
...

h(Br,vk
)


−




χλ(v1)
r
...

χλ(vk)
r


 −→n→∞ 0 (6.43)

by the law of large numbers. Since λ̂ →n→∞ λ, we also have Jψ(ϑ) →n→∞ Jψ(λ) due to the
continuous differentiability of ψ.

Lemma 6.3.1
Let the random vector X have distribution Wλ with d∗λ > 0, and choose v1, . . . , vk with d <
v1 < . . . < vk < sr. Define the k–dimensional random vector

Ξ :=




Ξ1
...

Ξk


 :=




1Br,v1
(X)− χλ(v1)

r
...

1Br,vk
(X)− χλ(vk)

r


 .

It has expectation 0 and covariance matrix Σ = (ςij)1≤i,j≤k with

ςij :=
χλ

(
vmin(i,j)

)

r
− χλ(vi)χλ(vj)

r2
, 1 ≤ i, j ≤ k.

Proof:
We have for i = 1, . . . , k

E(Ξi) = E

(
1Br,vi

(X)− χλ(vi)
r

)
= P (X ∈ Br,vi)−

χλ(vi)
r

(6.38)
= 0,

and for 1 ≤ i, j ≤ k

ςij = E (ΞiΞj) = E

((
1Br,vi

(X)− χλ(vi)
r

)(
1Br,vj

(X)− χλ(vj)
r

))
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= E

(
1Br,vi

(X) · 1Br,vj
(X)− 1Br,vi

(X)
χλ(vj)

r
− 1Br,vj

(X)
χλ(vi)

r
+

χλ(vi)
r

· χλ(vj)
r

)

= E
(
1Br,vi∩Br,vj

(X)
)
− P (X ∈ Br,vi)

χλ(vj)
r

− P (X ∈ Br,vj )
χλ(vi)

r
+

χλ(vi) · χλ(vj)
r2

(6.38)
= E

(
1Br,min(vi,vj)

(X)
)
− χλ(vi) · χλ(vj)

r2
= P

(
X ∈ Br,min(vi,vj)

)
− χλ(vi) · χλ(vj)

r2

(6.38)
=

χλ

(
vmin(i,j)

)

r
− χλ(vi)χλ(vj)

r2
,

since the vi are ordered by definition.
¤

Remark 6.3.2
The variance of the random variables Ξi from Lemma 6.3.1 is

Var(Ξi) =
χλ(vi)

r

(
1− χλ(vi)

r

)
,

and the matrix Σ vanishes for r →∞ with fixed λ and v.
♦

Lemma 6.3.3
Let ψ be injective and ψ(λ) /∈ ∂Im(ψ) hold. Then we have with t ∈ Rk and the matrix Σ from
Lemma 6.3.1,

P
(√

nJψ(ϑ)(λ̂− λ) ≤ t
)
−→D N (0,Σ)

for n →∞, where the inequality is meant componentwise.

Proof:
By the independence and the identical distribution of the Xi, as well as (6.43), Lemma 6.3.1
and the multivariate central limit theorem (see for example Gänssler and Stute (1977, [30]),
Theorem 8.8.1), we have

P



√

nJψ(ϑ)(λ̂− λ) ≤ t,




h(Br,v1)
...

h(Br,vk
)


 ∈ Im(ψ)




(6.43)
= P



√

n







h(Br,v1)
...

h(Br,vk
)


−




χλ(v1)
r
...

χλ(vk)
r





 ≤ t




= P



√

n




1
n

∑n
i=1 1Br,v1

(Xi)− χλ(v1)
r

...
1
n

∑n
i=1 1Br,vk

(Xi)− χλ(vk)
r


 ≤ t




= P




1√
n

n∑

i=1




1Br,v1
(Xi)− χλ(v1)

r
...

1Br,vk
(Xi)− χλ(vk)

r


 ≤ t




−→D N (0,Σ)
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for n →∞. Thus, by (6.42)

P
(√

nJψ(ϑ)(λ̂− λ) ≤ t
)

= P



√

nJψ(ϑ)(λ̂− λ) ≤ t,




h(Br,v1)
...

h(Br,vk
)


 ∈ Im(ψ)




+P



√

nJψ(ϑ)(λ̂− λ) ≤ t,




h(Br,v1)
...

h(Br,vk
)


 /∈ Im(ψ)




︸ ︷︷ ︸
→n→∞0

−→D N (0, Σ)

for n →∞.
¤

Theorem 6.3.4
Under the assumptions of Lemma 6.3.3, we have

P
(√

n
(
λ̂− λ

)
≤ t

)
−→D N

(
0, (Jψ(λ))−1 Σ

(
JT

ψ (λ)
)−1

)

for n →∞.

Proof:
Since the function ψ is injective by assumption, the inverse of its Jacobian matrix exists at the
point λ. The assertion follows immediately from Lemma 6.3.3 and Lemma 6.1.1.

¤

Example 6.3.5
In this example, X1, . . . , Xn follow a logistic distribution with parameter λ > 1. The angular
density lλ(z) is then continuously differentiable, and the parameter space Λ = (1,∞) ⊆ R is an
open set. We choose now r, s > 0 and d < v < sr. Then we have for the function ψ : (1,∞) → R
the representation

ψ(λ) =
1
r
χλ(v) =

1
r

∫

Qv

lλ(z) dz

with the angular density lλ known from Example 2.3.10. If this function is strongly monotonous
in λ, the other two conditions, which ψ should fulfill (injectivity and every image point is an
inner point), are given. For the property of monotonicity in λ the parameter r does not play
a role. An analytical proof of the monotonicity is very difficult due to the complex structure
of lλ. Numerical experiments, such as the following figure (done again with the Mathema-
tica function NIntegrate), however, lead to the conjecture that the condition of monotonicity
is fulfilled. In the following picture, the function

χλ(v) =
∫

Qv

lλ(z) dz

was plotted for the parameters v ∈ (2, 10) and λ ∈ (1, 5) for the case d = 2. With v fixed the
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function is increasing in λ.
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Remark that due to the structure of the function, small fluctuations in the data, leading to
slightly different relative frequencies, can have large effects on the estimator, since one computes
it by taking the inverse function. This property is also reflected in the high variance for certain
parameters below.

The variance of the normal approximation given in Theorem 6.3.4 for this case is

ψ(λ)(1− ψ(λ))
(ψ′(λ))2

=
χλ(v)(r − χλ(v))(

∂
∂λχλ(v)

)2 =: b(r, v, λ).

Note that χλ(v) ≤ d and r > d
s with s < 1, by the general assumptions of this estimation

procedure, certify that the variance above is always positive. The parameter r is usually chosen
by the user and expresses, which observations are considered to be extreme. We note that by
the above formula a smaller r leads to lower variance. The dependence of this variance on λ
and v is much more complex. In the following graphic, we plot the function b(100, v, λ), again
depending on v and λ, for d = 2.
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When v is fixed the variance increases with λ such that we expect the procedure to deliver good
results for small λ (close to independence), whereas we expect higher variability for larger λ.

Keeping λ fixed, the variance seems to converge for v → d and v → ∞ to ∞ respectively. In
between there seems to exist a v with minimal variance. This would be the optimal v, on which
the estimation procedure should be based. Since this optimum, however, depends directly on
the parameter which is to be estimated it cannot be computed in practice. In Section 6.4, a
method will be presented, with which approximations of this optimal v can be gained.

Here we restrict ourselves to computing the optimal v for the parameters λ = 1.2 and λ = 6,
which we consider in our examples. Next the function b(100, v, 1.2) is plotted for v ∈ (2, 150).
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bH100,v,1.2L

Through numerical minimization (analogously to Section 6.1, the function NMinimize from
Mathematica, version 5.2, was used) we find as optimal v the value 28.51. Observe that
v < sr must hold, which is fulfilled here. In situations, where this is not the case, sr should be
considered as the best value.

In the same manner we plot the function b(100, v, 6) for v ∈ (2, 3).
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Here the optimal v is approximately 2.233.

Since r À χλ(v) and, thus, r − χλ(v) ≈ r, one gets similarly good approximations by just
minimizing the function

χλ(v)(
∂
∂λχλ(v)

)2 .
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It does not depend on r anymore and is preferable for computational and efficiency reasons. The
approximations for v gained in this manner for the above examples are 27.96 and 2.227. The
values of the function b at these points, and thus the variance of the corresponding estimation
procedure, are numerically identical, i.e., the computer returns the same values of b for both
approaches.

♦

Remark 6.3.6
In the case k = 1, the covariance matrix (Jψ(λ))−1 Σ

(
JT

ψ (λ)
)−1

can be computed and minimized
with regard to v as in Example 6.3.5. But a minimization of the covariance matrix in a proper
sense with regard to v = (v1, . . . , vk) is also necessary for the case k > 1. A common criterion is
the minimization of the determinant, see Section 4.1.2 in Serfling (1980, [63]). It is known from
linear algebra (see for example Chapter XI of Lang (1966, [48])) that for symmetric matrices
the determinant is the product of the eigenvalues, i.e., one has to minimize the product of the

eigenvalues of (Jψ(λ))−1 Σ
(
JT

ψ (λ)
)−1

with regard to v.
♦

Remark 6.3.7
The definition of Br,v and especially Qv given above should be modified if one examines models
like the asymmetric logistic model. With this definition of Br,v and Qv it may be possible that
no injective function ψ can be found. Then the set Br,v should be modified in such a manner
that it is not anymore symmetric to the bisecting line of the negative quadrant.

♦

Example 6.3.8
With the help of Algorithm 3.3.4 it is possible to evaluate the estimation procedure presented
in this section with simulated data. As an example we use again the logistic distribution. We
also want to check with these simulated data the insights gained through the considerations
in Example 6.3.5 concerning the reliability of the procedure. Example 6.3.5 suggests that the
procedure works well in cases of low dependence, whereas in cases of high dependence, it should
work less well and depend highly on the choice of the parameter v.

With real data sets, we often have the problem that condition (6.41) is not fulfilled. In the
logistic case ψ increases and we have ψ(λ) → 0 for λ → 1. Since large values of ψ(λ) correspond
to large values of λ, due to the monotonicity of ψ, a violation of (6.41) suggests a high degree
of dependence. Actually an estimation of λ̂ = ∞ would then be reasonable. Since this would
lead to a difficult graphical representation of the results of the estimation procedure below, we
set in these cases λ̂ to 20 during the simulations.

The evaluation of the simulations is done as in Examples 6.1.3, 6.1.7 and 6.2.2 by creating
boxplots of 100 computed estimators for a fixed set of parameters. In addition we note how
often the case λ̂ = 20 happened, i.e., how often the condition (6.41) was violated. As in
Example 6.3.5 we only examine the two-dimensional case here.

We consider the sample sizes of n = 10000, 50000, 100000 as well as r = 300 and r = 600.
Remark that only a small fraction of these seemingly gigantic data sets are extreme observations,
on which the estimations are actually based. In a first simulation the underlying parameter is
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set to 1.2 and v = 20 is chosen.
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d = 2, Λ = 1.2

One realizes that the condition (6.41) was always fulfilled and that the estimation aimed at the
right parameter on average. As was to be expected the fluctuation of the estimator decreases
with growing n. It increases, however, with growing r. This is a phenomenon that was predicted
in Example 6.3.5.

Next we reduce v to 3, i.e., we diminish the set Br,v, whose relative frequency is the base of our
estimation procedure, via the opening angle.
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The estimator still works quite well.

The optimal v for the case λ = 1.2, was according to Example 6.3.5, at v ≈ 27.96. With this
parameter the estimation gives the following results, which do not differ much from those gained
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above.
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Next we examine the case λ = 6 for v = 20.
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Observing the corresponding frequencies of λ̂ = 20, we immediately see that for about a third to
a half of the data, no estimator could be computed at all. This leads of course to an extremely
high variance of the estimator, which would be ∞ if λ̂ would have been set to ∞ in these cases.
So in this case the estimator is useless.

We reduce the opening angle again to v = 3.
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Here the number of clearly mistaken results decreases, however, condition (6.41) is, still, too
often violated to consider this a useful method.

According to Example 6.3.5 the optimal v lies at about 2.227. With v = 3 one is already quite
close to this value, nevertheless, we gain a considerable improvement by taking the optimal v,
as the next graphic shows.
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In no case condition (6.41) was violated here.

We have seen that the procedure works quite well close to the independence case even with
different choices of v, close to the dependence case the procedure, however, reacts very sensitively
to changes of v. This is exactly reciprocal to the asymptotic maximum likelihood estimation in
Section 6.1, which reacted in the independence case very sensitively to changes of the parameter
r. This leads to the idea to combine both approaches to a common estimation procedure which
is to be presented in the next section.

♦

6.4 Comparison of the Estimation Procedures

The results of the previous sections suggest a combination of some of the estimation procedures.

We begin with a simple iteration.

Algorithm 6.4.1
1. Determine λ(0) by the Asymptotic ML method, maximizing Υ.

2. Determine v ∈ (d, rs]k such that the determinant of the covariance matrix of the estimator
via relative frequencies with underlying parameter λ(0) becomes minimal.

3. Determine the estimator λ(1) through the procedure via relative frequencies with parame-
ter v.

4. Return λ(1).
♦

The first estimation of λ(0) can also be done by some other estimation procedures, but maximiz-
ing Υ by the Asymptotic ML method is typically the computationally fastest way. And since
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we only want a reasonable starting value the Asymptotic ML method suffices, since we have
seen in Example 6.3.8 that the estimation procedure is robust to choices of v in cases close to
independence, where the Asymptotic ML is biased. In cases of high dependence, Asymptotic
ML is not biased and, thus, also a reasonable starting value.

There is also the possibility to iterate this procedure, this leads to a multiple iteration.

Algorithm 6.4.2
Let i = 1, η > 0 small, and I ∈ N.

1. Determine λ(0) by the Asymptotic ML method, maximizing Υ.

2. Determine v(i) ∈ (d, rs]k such that the determinant of the covariance matrix of the esti-
mator via relative frequencies with underlying parameter λ(i−1) becomes minimal.

3. Determine the estimator λ(i) through the procedure via relative frequencies with parame-
ter v(i).

4. If
∣∣∣λ(i−1)−λ(i)

λ(i−1)

∣∣∣ ≤ η or i = I, return λ(i), else increase i by 1 and go to 2.

♦

The choice of the break off parameters η and I depends on the underlying problem and cannot
be specified in general.

We now want to compare the procedures presented in this chapter for the estimation of the model
parameters by using them with comparable parameters on identical data sets. We examine the
following procedures:

• Asymptotic ML: the parameters are estimated by maximizing Υ.

• Conditional ML: the parameters are estimated by maximizing Υ̃.

• Pickands ML: the parameters are estimated by maximizing Ω.

• Simple Iteration: the parameters are estimated by Algorithm 6.4.1.

• Multiple Iteration: the parameters are estimated by Algorithm 6.4.2, where η = 0.01 and
I = 10.

Since Asymptotic ML, Conditional ML, Simple and Multiple Iteration are based on Pickands
coordinates with regard to Fréchet margins, whereas Pickands ML is based on standard Pickands
coordinates, the estimation procedures use different (random) sample sizes. Thus a comparison
with identical parameters becomes difficult. Especially the extreme areas are different in those
cases. Thus the choice of the respective threshold must be adjusted such that roughly the same
number of observations falls over the respective thresholds. This we did by

rP = −1.5 · d2

rF
, (6.44)

where rF is the chosen threshold for the Pickands coordinates with regard to Fréchet margins,
and rP the threshold for standard Pickands coordinates. It turns out that with this choice, the
Pickands ML method gets slightly more data in cases with high dependence and slightly less
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data than the other methods in cases close to independence. This should be taken into account
when interpreting the simulations. In practice one usually chooses the thresholds by considering
the area, which is thought to be extreme.

Before we compute the simulations for the logistic case, we want to add some short considerations
on the computational efficiency of the methods.

For the Asymptotic ML method we only have to maximize a quickly evaluable function, which
is usually done with an iteration procedure and is very efficient with the corresponding software
packages. This is the only method which is usable in high dimensions (≥ 5) from an efficiency
point of view, since no numerical evaluation of an integral has to be done if an analytical
expression of d∗λ is known.

For the Conditional ML method we also have to maximize a function, which contains, however,
m integrals, which are in practice only computable by numerical methods. In every step of
the maximization procedure, m integrals have to be evaluated, which makes this method very
ineffective.

For the Pickands ML method, we have to maximize a function with one numerical integral in
general. This is the same effort as for the Asymptotic ML method if d∗λ is unknown. But in
most practical cases, Asymptotic ML is faster due to the known analytical representation of d∗λ.

For the Simple Iteration we have to do an Asymptotic ML estimation first, then, to determine v,
we have to maximize a function, which contains two numerical integrals and one numerical
derivative. Subsequently, we have to solve an equation numerically which contains one integral.
Thus this method is more costly than the Asymptotic ML and the Pickands ML method, but
a lot less numerical integrals have to be determined than with the Conditional ML method. So
this procedure is more efficient than Conditional ML and is from this point of view preferable
to it.

Since for the Multiple Iteration the Simple Iteration has to be executed repeatedly, it is more
costly than this but most of the time, still, less costly than Conditional ML.

Example 6.4.3
The five procedures introduced above are now compared by their results on identical data sets.
For each setting of parameters, i.e, for each of the graphics below, 100 data sets, whose observa-
tions follow a logistic GPD with parameter λ, are generated. For every procedure the estimator
for the 100 data sets was computed. These estimations are summarized in the following plots
as usual as boxplots. At first the parameters were set to d = 2, n = 10000, r = 300 and s = 0.1,
the threshold for the Pickands ML methods was computed as in (6.44). For these parameter
settings the behavior of the estimators was examined for λ = 1.2, 1.4, 1.6, 1.8, 2, 3, 4, 5 and 6.
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First of all we observe that the two iteration methods hardly differ in their behavior so that the
most efficient method of Simple Iteration should be used, since there is not much gained in other
iteration steps. Also the Conditional ML and the Pickands ML do not show big differences. So
here the more efficient Pickands ML is preferable. Very noticeable is the bias of the efficient
Asymptotic ML method for small λ. In these cases an additional correction by another procedure
is necessary to reduce the bias.
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For small λ, the iteration methods are better, i.e., the estimations have smaller variances, for
large λ the ML methods. We can read from the graphics that with these parameter values one
should add a correction to the Asymptotic ML estimator if the original estimation is smaller
than 2. Also an iteration procedure should used if the Conditional ML or the Pickands ML
return an estimate smaller than 2 to reduce the variance of the estimator. This correction is
most reasonably done with the Simple Iteration.

Next we put r = 100.
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Here one should make a correction with the Simple Iteration when the Asymptotic ML estimation
is smaller than 2.5. We observe that a small r reduces the variances of the estimators via relative
frequencies, so they are superior to the ML methods in more cases than before. r must, however,
be at least d/s, what would be 20 in this case. So one should choose r not too small securing
that one has still enough freedom for the choice of v. In all, the behavior of the methods is as
before.
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Finally we put r = 1000.
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The acceptance level for the Asymptotic ML method could here be at 1.8. A value between 2
and 2.5 seems to be a good value to decide the question if one should do an additional iteration
with the estimator via relative frequencies or not, when one has used the efficient Asymptotic
ML method. The new value should only be accepted if it is smaller than the old one to prevent
the possibly higher variance of the simple iteration from entering into the estimation on a larger
scale.
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The Conditional ML and the Pickands ML method seem to be working quite well in all cases.

We also examine the behavior for d = 3, however, we restrict ourselves to a few graphics here.
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The behavior is identical to the bivariate cases shown above. For small λ, i.e., close to inde-
pendence, the iteration procedures are superior, for λ = 2 all procedures are roughly equivalent,
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for λ = 3, the boundary case between dependence and independence, see Lemma 2.3.11, the
ML methods are preferable. A value a little larger than 2 also seems to be a good value here, to
decide the question whether another iteration is necessary after executing the Asymptotic ML
method.

In all, also taking into consideration the asymptotic variances from Example 6.2.2, the Condi-
tional ML method seems to be the best estimator, but since it takes a very long time to compute
an estimation with it, it might not be the best suited estimation procedure for practical pur-
poses, especially in dimensions larger than 2. In these cases one should turn to one of the other
estimation procedures. Asymptotic ML is the only method, which can efficiently be used in high
dimensions, but is possibly biased for finite sample sizes.

♦



Chapter 7

Application to a Hydrological Data
Set

In this chapter we want to apply the methods presented in the previous chapters to a real
hydrological data set. In recent years southern Bavaria has been hit by floods with damages
amounting to several million euros. Naturally an investigation in the dynamics behind these
floods is essential for the understanding of their impacts and for possible flood protection mea-
sures taken by the authorities. We want to give an example here, how extreme value theory can
help in these analyses.

The data we investigate consist of water discharges, which are measured in cubic meters per
second (m3/sec). We look at the measurements from three different locations in southern
Bavaria. The first site is Eichstätt situated on the Altmühl, the other two are Donauwörth
and Regensburg, which are lying on the Danube with Regensburg being downstream, see the
following sketch.

The data were provided by the Bavarian State Office for the Environment (Bayerisches Lan-
desamt für Umwelt). For the sites in Donauwörth and Regensburg the data were available from
the 1st of November 1923 to the 31st of December 2004, for the site in Eichstätt the data were
available from the 1st of November 1929 to the 31st of December 2004. For the seasonal adjust-
ment all of the data were used, for the multivariate analysis the data from 1923 to 1929 for the
locations at the Danube were dropped to have balanced data.

We will investigate the problem, whether extreme water levels tend to appear together at these
sites. Naturally we would expect a high degree of dependence between the sites in Donauwörth
and Regensburg, since they are lying along the same river. But is there, for example, an extremal

184
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dependence between Eichstätt and Donauwörth?

As suggested in Section 8.2.2 of Coles (2001, [8]) we begin in Section 7.1 with a univariate
analysis of the data at each site. After transforming the data to suitable margins a bivariate
and trivariate analysis, i.e., a modelling of the extremal dependence structure with generalized
Pareto distributions is done in Sections 7.2 and 7.3. We compute nonparametric estimators of
the angular density and give the degrees of dependence by means of the logistic models from
Section 2.3 and the estimation procedures from Chapter 6.

7.1 Univariate Analysis

Before we can begin the multivariate analysis we have to do an univariate analysis for each of
the three locations. In this section we restrict ourselves to the data collected at Donauwörth,
the other two were treated in a similar manner. In the course of our investigation we will
frequently use terms from time series analysis. For an introduction to time series analysis we
refer to Falk et al. (2006, [22]), especially to Chapters 1 and 3, where seasonal adjustment, the
autocorrelation function and the periodogram are explained. A summary of the tools used here
can also be found in Section 2.5 of Reiss and Thomas (2001, [57]). The plots in this section
were done with SAS, version 9.1.3 (using the programs from Falk et al. (2002, [23]) and Falk
et al. (2006, [22]) as templates), the seasonal adjustment was done with Statistica, version 7.0,
and the rest of the calculations with Mathematica, version 5.2.

Every 15 minutes the water discharge is measured at the site in Donauwörth, and for each day
the arithmetic mean of the respective observations is computed. This daily arithmetic mean
is the target measurement of our investigation. The only exception is in leap years where for
reasons of seasonal adjustment (to get a fixed cycle of 365 days) the observation for the 28th of
February contains the arithmetic mean of the data from the 28th and 29th of February. There
is, thus, no observation for the 29th of February.

We begin by taking a simple look at the data of daily means plotted over the time axis.
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There seems to be no visible trend, but there might be a seasonal component. Tools to investigate
temporal dependence are the autocorrelation function and the periodogram. So next we plot
the autocorrelation function and the periodogram of the Donauwörth data.

Both graphics point to a high seasonality in the data with a period of 365 observations, since
the periodogram has one clear peak, which is at 0.002734 ≈ 1

365 . The autocorrelation function is
also varying very regularly with this period. So a seasonal adjustment with a period of 365 was
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done, and the autocorrelation function and the periodogram of the adjusted data are plotted.

The high seasonality is now taken out. However, there is, still, a clear temporal dependence in
the data, i.e., observations at a given date have a high correlation with the previous observations.
Since we are only interested in the extremes of the data, and since we want to the model the
data as coming from independent random variables, we now take blockwise maxima of order 50.
I.e., the time axis is divided into intervals of 50 days, and for each interval only the maximum is
considered further. This procedure is suggested by the fact that observations with a lag of only a
few days show a high correlation. It is also the standard method in extreme value analysis of time
series, see Sections 9.3 and 10.2 of Beirlant et al. (2005, [3]). The traditional approach would be
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to take annual block maxima, however, to get more data it is also an advisable procedure to take
maxima of smaller block sizes, see Section 11.1 of Reiss and Thomas (2001, [57]). The necessity
to move away from daily observations is also given, since it takes the water up to several days to
go from Donauwörth or Eichstätt to Regensburg and, thus, a multivariate analysis based on the
daily observations could lead to wrong interpretations of the results. Altogether our data set is,
thus, reduced to 549 observations, consisting of maxima of blocks with a length of 50 days from
the daily observations. We plot again the autocorrelation function and the periodogram of the
block maxima data.
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There might be still some low level temporal dependence in the data, but for simplicity reasons
we model the blockwise maxima data as coming from independent and identically distributed
random variables.

A possible alternative to taking block maxima of fixed size is using clusters of variable lengths
by defining appropriate thresholds, see Section 5.3 in Coles (2001, [8]).

The question we consider next is, which distribution function could possibly underly our block
maxima data. Remember that our original data were daily means, and as such it is reasonable to
assume that they are approximately normally distributed. These data were seasonally adjusted,
and blockwise maxima were taken afterwards. Since the normal distribution lies in the maximum
domain of attraction of the Gumbel distribution (see for example Section 2.2 in Reiss and
Thomas (2001, [57]) or Section 2.3.2 in Galambos (1978, [29])), it seems reasonable to assume
that the data follow a Gumbel distribution. I.e., they have the distribution function

Fµ,σ(x) = exp
(
− exp

(
−x− µ

σ

))

with a location parameter µ ∈ R and a scale parameter σ > 0. This convergence of normal
maxima to the Gumbel distribution remains true, even if the underlying random variables are
dependent, see Sections 5.2 and 5.3 in Coles (2001, [8]). We check this distribution assumption
with the following quantile plot. We refer to Section 1.6 of Falk et al. (2002, [23]) for more
information on quantile plots.

Since this plot is close to a line the assumption of the Gumbel distribution is a reasonable one.
This is in accordance with Section 2.2 of Beirlant et al. (2005, [3]), as well as Sections 4.1 and 11
of Reiss and Thomas (2001, [57]), where it is noted that the Gumbel distribution is commonly
used in hydrology for the modelling of river discharge maxima.

Next we have to estimate the parameters µ and σ, which we do by the standard maximum-
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likelihood method, i.e., we maximize the loglikelihood function

Λ (µ, σ) = log

(
n∏

i=1

1
σ

exp
(
−xi − µ

σ

)
exp

(
− exp

(
−xi − µ

σ

)))

= −n log σ − n

σ

(
1
n

n∑

i=1

xi − µ

)
−

n∑

i=1

exp
(
−xi − µ

σ

)

with regard to µ and σ, where x1, . . . , xn are our data. This is an approach of estimation
suggested in Section 5.1 of Beirlant et al. (2005, [3]) and Section 3.3 of Coles (2001, [8]). For
the case of the Donauwörth data this leads to the estimators

µ̂1 = 312.207 and σ̂1 = 147.07.

These were again computed by the function NMaximize of Mathematica. Since we will need
them later we also give the corresponding values for the Regensburg and Eichstätt data:

µ̂2 = 664.872 and σ̂2 = 294.72,

µ̂3 = 14.6549 and σ̂3 = 13.8436.

The function Fµ̂1,σ̂1 is then the estimated distribution function of the Donauwörth data. There-
fore, we can transform the data onto (−1, 0) by computing

yi := Fµ̂1,σ̂1(xi)− 1, i = 1, . . . , n. (7.1)

With this transformation we can model the yi to come from a uniform distribution on (−1, 0),
see Corollary 1.6.4 in Falk et al. (2002, [23]). This is, clearly, only an approximation. The
ordering of the data remains untouched by the transformation, so that the extreme observations
will now be close to 0.

This method of first estimating the margins and then estimating the dependence parameters of
the suitably transformed data is often referred to as piecing-together estimates (PTEs), see for
example Section 9.3 of Reiss and Thomas (2001, [57]).

By estimating the margins in the way we did we followed the classical approach of extreme
value theory. This was done to be able to give a closed formula at the end of Section 7.3 for
the probability of events, which have not been recorded yet. Instead of using the parametric
assumption of the Gumbel distribution we could also use recently introduced methods to trans-
form the data with the empirical distribution function to (−1, 0) as it is proposed in Capéraà
et al. (1997, [6]), Coles et al. (1999, [9]), Einmahl et al. (2001, [18]) or Section 9.3 of Beirlant
et al. (2005, [3]). This corresponds to the rank transformation. Another possibility would be
to use a smoothed version of the empirical distribution function, see Section 2.1 of Reiss and
Thomas (2001, [57]).

7.2 Bivariate Analysis

After having computed the univariate analysis in the previous section, we can now come to the
bivariate analysis. By denoting the resulting transformed data with doi for Donauwörth, eii for
Eichstätt and rei for Regensburg, i = 1, . . . , 549 we look at each combination separately. First we
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plot the bivariate data (doi, eii), (eii, rei) and (doi, rei) and the extreme area K0.3 = (−0.3, 0)2,
in which we will be especially interested in the sequel, to get a first visual impression.
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One immediately sees that for the last data set a clear dependence between the components
is present. For the other two there also seems to be some weak dependence. But what about
the extreme area? Is there some dependence present, and if so, are there differences in the
dependencies between the data sets?
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The left picture for each data set can also be interpreted as the estimated copula of the data.
In fact, there is a close connection between GPDs and copulas. According to Section 5.1 of Falk
et al. (2004, [21]) GPDs are, after a certain shift, quasi-copulas.

The observations falling into K0.3, which can be seen in the right graphics above are now modelled
as coming from independent and identically distributed random variables following a bivariate
GPD.

This is justified, since we look at these data under the condition that they exceed some high
threshold (each transformed component is larger than −0.3 in the extreme area). We know
from (2.13) or Theorems 2.2 and 2.3 in Rootzén and Tajvidi (2005, [60]) that such exceedances
follow asymptotically a GPD close to 0. Since we transformed the data to uniform margins
in the univariate analysis in Section 7.1, a bivariate GPD with uniform margins is the natural
choice here.

There is also another way of justifying this approach of modelling the extremes. The compo-
nentwise maxima taken in Section 7.1 are reasonably modelled by a bivariate EVD when the
corresponding bivariate observations are put together. To standardize the margins, the univari-
ate data should be transformed to a negative exponential distribution, i.e.,

ỹi := log Fµ̂,σ̂(xi), i = 1, . . . , 549, (7.2)

instead of yi = Fµ̂,σ̂(xi) − 1 as in (7.1). But from the known relation log(1 + ε) ≈ ε for ε close
to 0, which can easily be seen by a Taylor expansion, we get for extreme observations, i.e., for
Fµ̂,σ̂ close to 1, the approximation

ỹi = log Fµ̂,σ̂(xi) = log (1 + Fµ̂,σ̂(xi)− 1) ≈ Fµ̂,σ̂(xi)− 1 = yi.

The bivariate data, transformed to negative exponential margins, should reasonably be modelled
by an EVD with negative exponential margins. But such an EVD can close to the origin be
approximated by a GPD with uniform margins, since an EVD is in the spectral 1-neighborhood
of a GPD, see Section 5.3 of Falk et al. (2004, [21]) and Section 5.3 in this manuscript.

Thus, with both marginal transformations, which do not differ much for the extreme observations
we are interested in, a GPD approximation of the underlying distribution of the extreme data
is reasonable.

The first justification has the advantage that it can also be applied when the data originally do
not follow asymptotically an EVD, which will be the case in most applications.

Before coming to the estimations under the GPD model assumption, we have to make sure that
we are not in the case of independence

W (x1, x2) = 1 + x1 + x2,

where we should asymptotically see no observations above our thresholds. Therefore we have
to check, whether the distribution underlying our observations, which is to be approximated by
a GPD, has tail independent margins. Our observations containing the 549 maxima originally
follow asymptotically an EVD, and we transform the margins as in (7.2) to negative exponential
margins, which does vary much from the transformation to uniform margins in the extreme
area, see above. In Section 6.5 of Falk et al. (2004, [21]) and in Falk and Michel (2006, [24])
a test for tail independence in EVD models is introduced, which tests for D(z) = 1. We use
the Neyman-Pearson version of this test to check the null hypothesis of tail independence for
different thresholds c. The resulting p-values are given in the following table.
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Data set c = −0.3 c = −0.2 c = −0.1
Donauwörth & Eichstätt 1.01 · 10−28 9.60 · 10−14 5.28 · 10−7

Eichstätt & Regensburg 5.37 · 10−28 5.86 · 10−22 6.45 · 10−12

Donauwörth & Regensburg 2.09 · 10−29 3.12 · 10−16 9.34 · 10−4

We see that the null hypothesis of tail independence is rejected at the 5% level, even after a
Bonferroni correction, in all cases. Thus, the GPD approximation does not lead to the case of
independence. We refer to the above references for details of the testing procedure.

By the GPD model assumption the methods presented in the previous chapters are applicable,
and we begin by estimating the angular density of the data with the estimator (4.3) from
Chapter 4. Thereby we chose −0.2 and −0.1 as thresholds r for the radial component of the
standard Pickands coordinates. The corresponding number of observations which fall over the
threshold is given in the graphics as m.
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First we notice that the results seem to be independent of the choice of the threshold, when one
takes into account that the kernel density estimators are based on less data in the right graphics,
which naturally increases the variance. This supports the model assumption of generalized
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Pareto distributions since by the results of Chapter 4 the distribution of the angular components
is independent of the threshold, see especially Remark 4.1.7.

Between the extremes of Donauwörth and Eichstätt there seems to be a high degree of indepen-
dence present, whereas a little more dependence seems to be between Eichstätt and Regensburg.
But the clearest dependence is suggested by the graphics to be between Donauwörth and Re-
gensburg. This is not surprising since the Danube contains much more water than the Altmühl.
Thus we could argue that an extreme water discharge at Donauwörth would effect Regensburg
much harder than an extreme water discharge in Eichstätt which is more easily swallowed by
the Danube.

Next we assume the data to come from a logistic model, and we want to estimate the parameters,
thereby giving quantitative measures of dependence. This model assumption is not contradicted
by the nonparametric estimators, although it cannot be excluded that some slight asymmetry
may be present. We chose s = 0.3, rF = 80 and rP = −0.1, and with these parameters
we computed the five estimators as in Example 6.4.3. Between 20 and 40 of the observations
transformed in Section 7.1 fell over the respective thresholds each time. The results are given
in the following table for each data set.

Data set Asym. ML Cond. ML Pick. ML Simple It. Multiple It.
Donauwörth & Eichstätt 1.43 1.01 1.0 1.45 1.45
Eichstätt & Regensburg 1.45 1.08 1.0 1.57 1.49

Donauwörth & Regensburg 2.28 2.23 2.16 3.30 2.96

In the next table we give the estimated standard errors of the above estimators, using the normal
approximations of Theorems 6.1.2, 6.1.4, 6.2.1 and 6.3.4. The underlying parameter was thereby
replaced by its estimation. For the iteration methods the parameter v from the final iteration
was used to compute the standard error by Theorem 6.3.4, so that these estimated standard
errors have to be viewed with some care.

Data set Asym. ML Cond. ML Pick. ML Simple It. Multiple It.
Donauwörth & Eichstätt 0.09 0.003 - 0.24 0.24
Eichstätt & Regensburg 0.10 0.02 - 0.25 0.26

Donauwörth & Regensburg 0.28 0.27 0.29 0.71 1.09

In two cases of the Pickands ML method the standard error could not be given due to the
estimation of 1.0. Also the standard errors of the Conditional ML estimators have to interpreted
carefully due to the estimation close to 1.

Note that in all these and the following estimations the uncertainties arising from having to
estimate the margins are not taken into account. This is, however, not uncommon, see Section 9.3
of Beirlant et al. (2005, [3]).

For the two data sets including Eichstätt we get very similar results. Both Conditional and
Pickands ML give values very close to 1, whereas Asymptotic ML and the iteration methods
estimate around 1.5. We have seen in Examples 6.1.3, 6.2.2 and 6.4.3 that in cases of low
dependence Conditional ML and Pickands ML tend to estimate very close to 1 in many cases,
although the underlying parameter is higher. We have also seen in the test for tail independence
above that the case of independence is not an appropriate model for these data. Since we have
also noted in Example 6.4.3 that the Asymptotic ML method is possibly biased close to the
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independence and we are not able to give reasonable standard errors for two of the ML methods,
the iteration methods should be preferred here. They are also more reliable by Example 6.4.3
and, thus, be the ones we stick to. So in both data sets the parameter is estimated close to 1.5
with a standard error of about 0.25, thereby the values for the second one being a little higher.

The estimations for the Donauwörth & Regensburg data set are different, since the three ML
methods seem to agree here, whereas the iteration methods give higher values and have higher
standard errors either. This is a behavior known from Example 6.4.3. Since we are closer to
the dependence case the ML methods should be preferred, giving estimations around 2.2 with a
standard error of around 0.3. So there is stronger dependence here, but not as strongly as one
might have guessed aforehand, since it is only little over the boundary case of λ = 2 between
complete dependence and independence in the logistic model, see Lemma 2.3.11.

The result could be interpreted in the following way: Even for locations lying alongside the
same river an extreme flood at one location does not necessarily entail an extreme flood at the
other location. Either the extreme flood forms between the two sites or it may weaken between
them so that one location experiences an extreme flood while the other may, still, have a flood
but not at extreme levels. To determine the underlying reasons for that like the geology, the
rainfall in the area or others, to formulate corresponding interpretations and suggest resulting
consequences for flood protection measures is now the task of a hydrologist.

7.3 Trivariate Analysis

In this section we finally look at the full trivariate data set. The goal is here to find a suitable
trivariate model for the data. We begin, as before, by taking a look at the data (doi, rei, eii) in
full and in the extreme area.
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Again there seems to be some dependence present, but to specify it from just looking at the
data is very hard. As in Section 7.2 we model the extreme data in the right graphic to come
from independent and identically distributed random variables following a trivariate GPD with
uniform margins. Since we are not anymore in the bivariate case we have to use the methods
from Chapter 5, especially estimator (5.7) for nonparametric estimation of the angular density.
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We choose s to be 0.3 and plot the angular components with regard to Fréchet margins and
the estimated angular density for two different thresholds. m denotes again the number of
observations falling over the respective thresholds.
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The angular density seems to be unbounded close to the origin, with mass along the bisector
and close to the line x1 +x2 = 1. Such a behavior is typical for the nested logistic model, see the
graphics in Example 2.3.15. This was to be expected since we found out in the previous section
under the logistic model that between Eichstätt and the other two locations there seems to be
the same kind of (weak) dependence, whereas between Donauwörth and Regensburg there was a
higher degree of dependence. So the logistic model does not fit the data, but because of the bi-
variate margins mentioned above the nested logistic model seems reasonable, see Remark 2.3.14.
This is confirmed by the nonparametric estimators shown above.

The final task is now to determine the parameters of the nested logistic model. We did this with
the estimation procedures as above, where we chose s = 0.3, rF = 50, and rP = −0.25. The
results are summarized in the following table.
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Parameter Asymptotic ML Conditional ML Pickands ML
λ̂1 2.40 2.28 2.07
λ̂2 1.63 1.14 1.18

The estimated standard errors for the ML methods by Theorems 6.1.2, 6.1.4 and 6.2.1 are given
below.

Parameter Asymptotic ML Conditional ML Pickands ML
λ̂1 0.21 0.28 0.60
λ̂2 0.10 0.04 0.08

The iteration methods could not be used since condition (6.41) did not hold even with the
estimated optimal choices of the parameter v, see Example 6.3.5. This behavior could have
different reasons. First it could mean that the sample size is not large enough, which is the most
plausible explanation. Another possibility is that the nested logistic model might not be fitting
the data as good as one could hope. Or finally it might be the case that the iteration procedure
does in general not perform well in the nested logistic case. To clarify these questions detailed
investigations on the choice of appropriate sample sizes and the performance of the iteration
procedures for the nested logistic model would have to be made. Also methods for the checking
of parametric model assumptions like the nested logistic model have yet to be investigated.

The estimations of the parameters with the ML methods give similar results as in the bivariate
case with the parameter λ̂1 being around 2.2 and thereby being larger than the second parameter
λ̂2 being somewhere around 1.4, when considering the standard errors. This indicates again
stronger dependence between Donauwörth and Regensburg than between Eichstätt and the two
other locations.

With these estimated values we can now give the estimated distribution function of the maxima
of the seasonally adjusted data in its upper tail. It reads

Ŵ (x1, x2, x3) = 1−
((

(1− Fµ̂1,σ̂1(x1))
λ̂1 + (1− Fµ̂2,σ̂2(x2))

λ̂1

)λ̂2/λ̂1

+ (1− Fµ̂3,σ̂3(x3))
λ̂2

)1/λ̂2

= 1−
(((

1− exp
(
− exp

(
−x1 − µ̂1

σ̂1

)))λ̂1

+
(

1− exp
(
− exp

(
−x2 − µ̂2

σ̂2

)))λ̂1
)λ̂2/λ̂1

+
(

1− exp
(
− exp

(
−x3 − µ̂3

σ̂3

)))λ̂2
)1/λ̂2

with µ̂i, σ̂i, i = 1, 2, 3 from Section 7.1. It can, for example, be used to estimate the probability
of events beyond the range of the data.

If we use the estimated values λ̂1 and λ̂2 from the Conditional ML method, we can give the
probability that the three places experience high (seasonally adjusted) water discharges within a
short time frame (50 days). For example we look at the probability that the seasonally adjusted
water discharge at Donauwörth exceeds 1300m3/sec., the seasonally adjusted water discharge
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at Regensburg exceeds 1500m3/sec. and the seasonally adjusted water discharge at Eichstätt
exceeds 100m3/sec. together within 50 days. I.e., we want to estimate the probability that the
three places experience together a severe flood of a magnitude, which has never been recorded
before. The estimation for the probability of such an event is

ŴS(1300, 1500, 100) = 0.000254545,

where ŴS denotes the survivor function of Ŵ . I.e., it is estimated that such a flood occurs
every 1

0.000254545 · 50
365 ≈ 538.2 years on average. However, such numbers have to be viewed with

some care since by taking λ̂1 = 2.2 and λ̂2 = 1.4, which cannot be excluded by the above shown
estimators and standard errors, we get a probability for the above event of 0.000555271 and,
thus, an average of approximately 246.7 years for the occurrence of such an event.



Chapter 8

Final Remarks

The preceding text dealt with the investigation of the multivariate generalized Pareto distribu-
tions and their role in the framework of extreme value theory. Some theoretical considerations,
like the non-uniqueness of the angular measure for GPDs and the generalization of a known
counterexample to an arbitrary dimension d ≥ 3, showing that GP functions are not necessarily
distribution functions, were made.

We have developed an algorithm for the simulation of multivariate generalized Pareto distribu-
tions of logistic type. This algorithm is easy to implement and generates random vectors for a
few thousand dimensions within a reasonable time. The development of this algorithm was based
on results by Shi (1995, [64]), Stephenson (2003, [70]) and Section 5.4 of Falk et al. (2004, [21]).
We have also introduced algorithms for the generation of other GPDs in low dimensions. An
unsolved problem, where much work is to be done in the future, is the efficient simulation of
arbitrary GPDs in high dimensions. Except Shi and Zhou (1999, [65]), where a possible gener-
alization of the Shi transformation, with some drawbacks, for the trivariate nested logistic EVD
case is given, there is not much known in this area. It is an open problem to find a method
similar to the one presented in Section 3.1 for other (parametric) cases than the logistic one.

Ways to estimate nonparametrically and parametrically in generalized Pareto models were pre-
sented, following ideas of Coles and Tawn (1991, [10]), Coles and Tawn (1994, [11]) or Coles
et al. (1999, [9]) from the extreme value setup. It is surely possible to improve these methods
and invent others which must be compared to those presented here.

One point not treated in this manuscript is the problem of checking the generalized Pareto model
assumption. We did this briefly for the hydrological data set in Chapter 7 by graphical means,
but statistical methods for that are yet unknown. Another open problem remains the testing of
parametric model assumptions and the discrimination between different parametric models as
stated in Tawn (1988, [72]) or Paper B of Tajvidi (1996, [71]). One way to proceed here could
be to use condition (6.41) as a check of the model assumption. It would have to be investigated
to what extent condition (6.41) will be violated even if the parametric model is truly underlying
the data.

Then a lot of practical questions, which could be treated much more thoroughly than done in
Chapter 7, have to be considered when applying the estimation methods in GPD models to real
data sets. Examples are the transformation of the margins or the choice of the sample size and
appropriate thresholds.

We have mainly considered extreme value distributions with negative exponential margins and
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generalized Pareto distributions with uniform margins in this manuscript. The choice of these
margins is somewhat arbitrary, since by simple marginal transformations one can consider any
desired marginal form. Another popular choice of margins preferred by various authors are the
Fréchet margins for EVDs and, thus, the standard Pareto margins for GPDs. There have been
discussions, which kind of marginal form should be preferred for theoretical considerations. The
result of this manuscript to that question is something like a solomonic verdict, since we have
seen both advantages and disadvantages for both choices of margins during the course of this
text.

In the simulations, the uniform margins lead to easier definitions of the Shi coordinates whose
radial component is just the λ-norm of the desired random vector. Working with Fréchet or
Pareto margins, one has to introduce the transformation x 7→ 1

x before taking the λ-norm to
compute the radial component. This can be seen at the beginning of Section 2 in Stephen-
son (2003, [70]), who works with Fréchet margins and where the radial component is the λ-norm
of the reciprocal of the desired vector. Thus, the uniform margins seem more natural here,
since with the other margins one uses implicitly the uniform margins. Also the uniform mar-
gins lead to the independence of the radial and angular component of the Pickands coordinates
which was used in the simulations in Section 3.2. The components of Pickands coordinates of
GPD random vectors with Pareto margins are not independent, only after the transformation
x 7→ − 1

x to uniform margins. And the uniform margins have shown their advantages in the
bivariate nonparametric estimations where the angular density could efficiently be estimated,
since the distribution of the angular components of the Pickands coordinates was exactly known
and independent of the corresponding threshold.

But there have also been disadvantages of the uniform margins. The nonparametric estimation
of the angular density in higher dimensions was not possible with the standard Pickands coor-
dinates. Instead, one had to go to Pickands coordinates with regard to Fréchet margins and,
thus, implicitly go to Pareto margins by the transformation x 7→ − 1

x .

So we see that both marginal choices have their justification, and both should be considered.
There does not seem to be a natural choice of the margins, but, instead, the choice of the margins
should depend on the problem which is to be considered.

The above mentioned problems are just a small sample of those which have to be worked on for
a better understanding of GPDs in the future. In a nutshell, the investigation of the generalized
Pareto distributions in the framework of extreme value theory is, still, in its beginning and will
surely be an active research area in the coming years.
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