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Kurzfassung

Die Erfindung von Laserpulsformern ermöglichte eine Vielzahl von Quantenkontrollexpe-
rimenten, bei denen eine chemische Reaktionen mittels maßgeschneiderten Laserpulsen
gelenkt wird. Allerdings wurde trotz der bedeutenden Rolle der flüssigen Phase in der
Chemie bis heute kein erfolgreicher Versuch publiziert in diesem Aggregatszustand die
Selektivität bei der Spaltung chemischer Bindungen zu kontrollieren. Vielversprechende
Kandidaten für ein derartiges Experiment sind C∞v-symmetrische Trihalidanionen mit
zwei verschiedenen chemischen Bindungen, wie z.B. I2Cl−, da diese Moleküle prinzipiell
das einfachste Kontrollszenario, in dem entweder die eine oder die andere Bindung ge-
spalten wird, ermöglichen und, wie vom meist untersuchten Trihalid I −

3 bekannt, eine
Dissoziationsreaktion unter ultravioletter (UV) Bestrahlung erwartet wird.
Um im Rahmen dieser Arbeit zu untersuchen, ob sich die Dissoziationsreaktion sol-

cher Trihalide in zwei verschiedene Photofragmente aufzweigt, wurde die ultraschnelle
Photodissoziationdynamik von I −

3 , Br −
3 , IBr −

2 und ICl −
2 (Punktgruppe D∞h) sowie

von I2Br− und I2Cl− (Punktgruppe C∞v) in Dichlormethanlösung mittels breitbandiger
transienter Absorptionsspektroskopie in der Magischer-Winkel-Konfiguration gemessen.
Die Identifikation der Reaktionspfade stützt sich auf die Oszillation von Schwingungswel-
lenpaketen, die den Dissoziationsprozess überstehen und folglich nicht nur Informationen
über die Trihalidedukte sondern auch über die Dihalidprodukte tragen.
Diese charakteristischen Schwingungswellenzahlen wurden aus jedem gemessenen tran-

sienten Absorptionsspektrum durch einen globalen Fit der Populationsdynamik zusam-
men mit der Wellenpaketdynamik extrahiert. Bis vor Kurzem war solch eine kombinierte
Modellfunktion in dem gängigen Fitwerkzeug Glotaran nicht verfügbar. Dies machte es
erforderlich eine eigene Implementation des zugrunde liegenden Fitalgorithmus der va-
riablen Projektionen zu entwickeln, wofür die Computeralgebrasoftware Mathematica
gewählt wurde. Mathematicas Funktionsumfang erlaubt nicht nur eine große Flexibili-
tät bei der Konstruktion beliebiger Modellfunktionen, sondern bietet auch die Möglich-
keit, die Ableitungen einer Modellfunktion automatisch zu berechnen. Dies erlaubt der
Fitprozedur die exakte Jacobi-Matrix zu verwenden, anstatt diese mittels der Finite-
Differenzen-Methode zu approximieren.
Wider den Erwartungen wurde für jedes der untersuchten C∞v Trihalide nur einer

der zwei denkbaren Photodissoziationskanäle beobachtet. Da die Photofragmente re-
kombinieren, klingen deren Absorptionssignal und das Grundzustandsausbleichen des
Edukts wieder ab. Dies passiert stets in biexponentieller Form, was im Fall von I −

3 von
Ruhman und Kollegen mit der direkten Bildung von neutralen Dihalogenfragmenten I2
neben den negativ geladenen Dihalidfragmenten I −

2 interpretiert wurde. Im Rahmen
dieser Arbeit ließ sich ein solcher direkter Reaktionskanal nicht beobachten. Stattdessen
wird die schnelle Komponente des biexponentiellen Zerfalls mit überschüssiger Vibrati-
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onsenergie erklärt, die den der Rekombination vorrangehenden Elektrontransferprozess
I −
2 + I −−→ I2 + I− begünstigt, während die langsame Komponente abgekühlten Frag-
menten zugeordnet wird.
Zusätzlich zu den Tihalidexperimenten wurde durch Herleitung Magischer-Winkel-

Bedingungen für Antwortsignale aus elektrischer Dipolwechselwirkung dritter Ordnung
mit beliebig polarisierten Laserpulsen theoretisch untersucht, ob eine Magischer-Winkel-
Konfiguration für Polarisationsformungs-Kontrollexperimente möglich ist. Weiterhing
wurden die Feinheiten anisotroper Signale, die den gut bekannten Bereich von −0.2 bis 0.4
verletzten, untersucht.
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Abstract

The invention of laser pulse shapers allowed for various quantum control experiments,
where a chemical reaction is guided by specifically tailored laser pulses. However, de-
spite of the prominent role of the liquid phase in chemistry, no successful attempt for
controlling the selectivity of a bond-fission reaction has yet been reported in this state
of matter. Promising candidates for such an experiment are C∞v-symmetric trihalide
anions with two different chemical bonds like I2Cl−, because these molecules notion-
ally offer the most simplest selectivity-control scenario of breaking either the one or the
other bond and they are expected to dissociate under ultraviolet (UV) irradiation like
it is known for the most-studied trihalide I −

3 .
In order to investigate in this thesis the possibility that the dissociation reaction of such

trihalides branches into two different photofragments, the ultrafast photodissociation
dynamics of I −

3 , Br −
3 , IBr −

2 and ICl −
2 (point group D∞h) as well as of I2Br− and I2Cl−

(point group C∞v) in dichloromethane solution were measured with broadband transient
absorption spectroscopy in magic-angle configuration. The identification of the reaction
pathway(s) relies on vibrational wavepacket oscillations, which survive the dissociation
process and therefore carry not only informations about the reactant trihalides but also
about the fragment dihalides.

These characteristic vibrational wavenumbers were extracted from the measured tran-
sient absorption spectra by globally fitting the population dynamics together with the
wavepacket dynamics. Until recently, such a combined model function was not available
in the well-established fitting tool Glotaran. This made it inevitable to develop a cus-
tom implementation of the underlying variable-projection fitting algorithm, for which
the computer-algebra software Mathematica was chosen. Mathematica’s sophisticated
built-in functions allow not only for a high flexibility in constructing arbitrary model
functions, but also offer the possibility to automatically calculate the derivative(s) of
a model function. This allows the fitting procedure to use the exact Jacobian matrix
instead of approximating it with the finite difference method.

Against the expectation, only one of the two thinkable photodissociation channels was
found for each of the investigated C∞v trihalides. Since the photofragments recombine,
their absorption signal as well as the reactant ground state bleach recover. This hap-
pens in a biexponential manner, which in the case of I −

3 was interpreted by Ruhman
and coworkers with the direct formation of a neutral dihalogen fragment I2 beside the
negatively charged dihalide fragment I −

2 . In this thesis, such a direct reaction channel
was not found and instead the fast component of the biexponential decay is explained
with vibrational excess energy mediating the recombination-preceding electron transfer
process I −

2 + I −−→ I2 + I−, while the slow component is attributed to cooled-down
fragments.
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In addition to the trihalide experiments, the possibility of a magic-angle configuration
for polarization-shaping control experiments was theoretically investigated in this thesis
by deriving magic-angle conditions for the third-order electric-dipole response signal
of arbitrarily polarized laser pulses. Furthermore, the subtleties of anisotropy signals
violating the well-known range of −0.2 to 0.4 were studied.

10



1. Introduction

A central task of chemistry is molecular synthesis, where a desired product is created by
successively forming and breaking chemical bonds. Each of these reaction steps is con-
trolled by the amount (or concentration) of reactants (possibly with protective groups)
and catalysts, the temperature, the pressure, protective gas, applied voltages/currents
and irradiation. With the invention of laser pulse shapers, this tool chain got extended
by a new control knob: Ultrashort laser pulses that are specifically tailored to guide
reaction pathways [5–11] were successfully used in gas phase experiments to control the
formation and fission of chemical bonds [12,13].
However, for the liquid phase, which is the most important state of matter for chemical

synthesis, no successful photodissociation control attempt has been reported yet. The
simplest possible model system to try this kind of experiment would be a molecule that
consists of only three atoms but offers two distinct chemical bonds, which one then
seeks to break selectively by a tailored pump pulse shape as illustrated in Fig. 1.1.
Promising molecules of this type are trihalide anions like I2Cl– , because each trihalide
is expected to undergo a photodissociation reaction under ultra-violet (UV) irradiation,
as is well known for the trihalide I –

3 [14]. The outcome of the photoreaction is observed
by measuring the intensity of a probe laser pulse that passed the sample cell after the
pump pulse. From this intensity, one can then extract a feedback signal to test the bond-
selectivity and efficiency of the applied pump pulse shapes. However, the identification
of a suitable feedback signal is not a trivial task and requires further knowledge about
the dynamics of the molecular system under study.
Therefore, the first step towards controlling the photodissociation reaction of dissolved

trihalides and the main goal of this thesis is to investigate the ultrafast photochemical
behaviour of the trihalide series I −

3 , Br −
3 , IBr −

2 , ICl −
2 , I2Br−, and I2Cl− with broad-

band transient absorption spectroscopy (Sec. 2), for which an ”unshaped”, i.e., tem-
porally compressed, pump pulse is used. Interpreting the sample’s effect on the probe
intensity with the Bouguer–Lambert–Beer law (Sec. 2.1) allows to identify reactant and
photodissociation-fragment concentrations, whose time-dependent behaviour can be de-
termined by repeating the experiment with different time delays between the pump
pulse and the probe pulse. In general the signal contributions from different molecular
species and different molecular quantum states overlap and therefore a fitting procedure
is required to separate the individual concentrations.
A common open-source software tool for the fitting procedure is Glotaran (global and

target analysis) [15], which implements the variable projection algorithm [16] to effec-
tively exploit the structure of the model function (Sec. 2.3) that consists of a linear com-
bination of non-linear basis functions, typically decaying exponentials. However, until
recently [17], it was not possible to include the pronounced vibrational oscillations of the
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χMA

pulse shaper

detector

pump

probe

sample

control?

Figure 1.1.: Quantum control scheme. Can a pump laser pulse be shaped in such a way that one
controls which chemical bond of dissolved I2Cl− (or a similar trihalide) breaks, while detecting
the reaction with a probe laser pulse? By tuning the laser pulse polarization to a relative angle of
χMA ≈ 54.7°, also called magic angle, the influence of the molecules’ orientation onto the signal
can be suppressed.

trihalides as oscillating cosine functions beside the decaying exponentials and therefore a
custom Mathematica [18] implementation of the variable projection algorithm (Sec. 2.4)
was developed within this thesis (Sec. 4). This implementation has the advantage that
Mathematica is equipped with sophisticated computer-algebra tools, which allow the
user to design her or his own customized model function. Furthermore, Mathematica
can automatically calculate the model function’s partial derivatives and thus construct
the exact Jacobian matrix instead of approximating it with the finite-difference method.
Having separated the concentrations of the quantum states of the molecular species

under study, one still lacks an explanation for the dynamical behaviour of each indi-
vidual concentration and its corresponding signal, which is the key element to design a
promising quantum-control strategy. Understanding the sample’s microscopic behaviour
and how this results in the macroscopic signal is far beyond the scope of the Bouguer–
Lambert–Beer law but requires quantum electrodynamics, which is therefore introduced
and discussed in Sec. 2.2. Especially, quantum-mechanical wavepacket (WP) dynamics
(Sec. 2.2.2) are of interest to explain oscillating signal contributions.

Furthermore, the signal’s dependence on the pump and probe polarization lies in the
focus of this thesis. In the so-called magic-angle configuration χMA = arccos(1/

√
3) ≈

54.7° [19] illustrated in Fig. 1.1, one can suppress the influence of the molecules’ orien-
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tation on the signal to exclusively measure the concentration (or population) changes
of the molecular quantum states. In contrast, anisotropy spectroscopy utilizes this very
effect to extract informations about the molecule structure and reorientation dynam-
ics. Beside this magic-angle condition for linearly polarized pump and probe pulses,
also the case of circularly polarized pump and linearly polarized probe pulses is well
known, but no generalized magic-angle condition for arbitrarily polarized pump and
probe pulses has been reported so far (except [4], which is adapted in this thesis). This
theory extension presented in Sec. 3 is the second goal of this thesis, which might help
to understand future experiments based on polarization-controlled spectroscopy, optical-
activity spectroscopy [circular dichroism (CD) and optical rotatory dispersion (ORD)] or
corresponding quantum control attempts. In Sec. 3.6, the discussion about the general
magic-angle condition is then complemented about the explanation how the anisotropy
signal can exceed in transient absorption spectroscopy the well-known range of −0.4 to
0.2 [see eq. (3.50)].
With the above-mentioned data evaluation tools and the theory about the signal

formation at hand, the broadband transient absorption data of the trihalide series is
finally evaluated and discussed in Sec. 5. Despite the fact that some trihalides have
distinct chemical bonds, always only one major, possibly sole photodissociation fragment
was found. This result, summarized in Sec. 6, complicates the search for a suitable
control strategy (Sec. 7), because instead of disturbing a fragile balance between two
photoproducts, one needs to find out how one photodissociation pathway can be so
dominant and what would be a suitable control knob to force the system in the opposite
direction.
Besides the question about a promising quantum control attempt, the findings of

this thesis might also be of interest for the various applications that employ trihalide
anions. In synthetic chemistry these molecules serve as halogenating agents but play also
important roles in catalysis, electrochemistry, and solar cell technology. For instance,
the most famous trihalide I −

3 is part of the redox electrolyte in the original Grätzel
cell [20] and other dye-sensitized solar cells [21]. Despite being heavily investigated with
ultrafast spectroscopy since 1992 [14], I –

3 did still not reveal all its photodynamical
secrets. Ruhman and coworkers [22] found an unknown photodissociation intermediate
and their explanation for this signal is confirmed and extended by the new data collected
within this thesis.
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2. Transient absorption spectroscopy
All experiments done within this thesis rely on transient absorption (TA) spectroscopy,
of which the basic concepts and the data interpretation within the Bouguer–Lambert–
Beer law are reviewed in the following Sec. 2.1. In addition, potential sources for signal
artefacts are discussed. To understand TA signals beyond the Bouguer–Lambert–Beer
law, Sec. 2.2 looks on TA spectroscopy from a quantum mechanical perspective. Then,
in Sec. 2.3, it is explained how a global model function can be constructed for trihalide
samples consisting of a mixture of photofragmenting molecules. Finally, Sec. 2.4 intro-
duces the variable projection algorithm (VPA), which is ideally suited to fit this kind of
model functions.

2.1. Difference absorbance signal
As depicted in Fig. 1.1, the pathways of a pump (blue) and a probe (red) laser pulse are
spatially overlapped inside a sample cell, but in contrast to a control experiment, the
pulse shaper is now used to temporally compress the pump pulse for an optimal time
resolution. Initially, the reactant sample molecules R are in a thermal equilibrium with
the solvent environment, but then, as illustrated in Fig. 2.1a, a UV, visible (VIS) or
near-infrared (NIR) pump pulse excites (blue arrow) the valence electron configuration
of some of the reactant sample molecules to a state of higher energy R → R∗ and
therefore the pump initiates molecular dynamics (black arrows), i.e., depending on time
T , the excited molecules distribute their excess energy towards the solvent until they
reach again a thermal equilibrium. During this relaxation process, the molecules may
pass through different intermediate electronic states like R∗, which are called product
states P, P∗, ... if not only the physical but also the chemical properties change due
to ionization, isomerization or due to the formation or fission of chemical bonds. In
addition, all changes of the electronic structure are always accompanied by changes of
the nuclear vibrations leading to signal oscillations, as exemplified in Fig. 2.1b. The
overall relaxation or reaction pathway that is taken depends on the specific sample
molecules and it may branch into several routes, which do not necessarily end at the
initial state, but might lead to stable product states.
In order to elucidate the underlying reaction mechanism, the effect of the transient

intermediates on the absorbance

A(λ, T ) = − lg
[
I(λ, T )
I0(λ)

]
=

n−1∑
i=0

ϵi(λ)ci(T )l (2.1)

of the sample is observed as a function of the wavelength λ and the time T = t − t0
that elapsed since the pump excitation at t0. This is done by detecting the transmitted
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Figure 2.1.: Basic concept of transient absorption spectroscopy exemplified by I –
3 . (a) A 348 nm

pump pulse (blue arrow) excites the sample molecules R → R∗ and therefore initiates molecular
dynamics (black arrows), which are detected by the absorbance change ∆A of a subsequent probe
pulse (red arrows) that is temporally delayed about T . Thinkable processes are the absorbance-
increasing ESA and PA (∆A > 0) and the absorbance-decreasing GSB and SE (∆A < 0). (b)
The negative signal was found to be the I –

3 GSB, while the positive signal until 0.4 ps was
identified as I –

3 ESA (Sec. 5.3). After 0.4 ps the chemical bond breaks and later positive signals
were attributed to the I –

2 PA. In addition, one can observe pronounced oscillations, which stem
from the molecules’ vibrations and thus allow for their identification (Sec. 5.6). Unfortunately,
these oscillations cannot be explained with the Bouguer–Lambert–Beer law, but require a more
sophisticated theory considering quantum-mechanically wavepacket dynamics (Sec. 2.2.2). Note
that the probeWL is chirped in such a way that the red part of its spectrum arrives before the blue
part. To correct this wavelength-dependent time axis, a fourth-order polynomial (cyan curve)
was fitted to manually selected t0 points (cyan dots) and the transient absorption spectrum was
shifted accordingly, resulting in Fig. 5.7. [3, Fig. S5] - Reproduced by permission of the PCCP
Owner Societies

spectral intensity I(λ, T ) of the probe pulse, which follows the pump pulse with the time
delay T . While the use of a supercontinuum white-light probe pulse (Sec. 5.2) allows
to cover a broad spectral range with a single laser shot, the temporal changes must be
scanned step-by-step by repeating the whole experiment with different time delays T in
a refreshed sample volume.
Assuming the validity of the Bouguer–Lambert–Beer law [23, Chap. 5.1.3], the de-

crease of the initial probe spectrum I0(λ) to I(λ, T ) depends on the length l of the probe
beam path through the sample, the decadic molar absorption coefficients ϵi(λ) and the
time-dependent concentrations (or populations) ci(T ) of the n components, i.e., the n
energy states that belong to the molecular species, being present inside the probed sam-
ple volume. This includes also the molecules that remained unaffected by the pump and
therefore to extract the weaker transient signal from this stronger static background, a
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reference spectrum Iref(λ) resulting from the absorbance

Aref(λ) = − lg
[
Iref(λ)
Iref,0(λ)

]
=

n−1∑
i=0

ϵi(λ)cil (2.2)

of the static concentrations ci is measured by repeating the experiment without the
pump pulse in a refreshed sample volume. Then, the difference absorbance

∆A(λ, T ) = A(λ, T ) −Aref(λ) = − lg
[
I(λ, T )
I0(λ)

]
+ lg

[
Iref(λ)
Iref,0(λ)

]
(2.3)

≈ − lg
[
I(λ, T )
Iref(λ)

]
(2.4)

is calculated from the negative decadic logarithm of the ratio of the probe spectrum
I(λ, T ) and the reference probe spectrum Iref(λ) by assuming equal initial spectra
I0(λ) ≈ Iref,0(λ) for both measurements, i.e., neglecting power fluctuations of the laser
source.
To fulfil this assumption, both measurements should be temporally as close as possible.

For the used laser source (Sec. 5.2), which delivers pump–probe pulse pairs at a repeti-
tion rate of 1 kHz, the closest time between two measurements is 1 ms and by blocking
every other pump pulse, a single difference spectrum ∆A(λ, T ) for a given time delay
T can be measured in a shot-to-shot manner within this 1 ms, a time window too small
for distortions due to long-term power fluctuations. To achieve a good signal-to-noise
ratio, ∆A(λ, T ) is measured at least a thousand times for each time delay T . However,
fluctuations of the pump power or the pump–probe overlap, which distort the effective
transient concentration ci(T ) seen by the probe pulse, are not corrected by the shot-to-
shot technique. While the pump power fluctuations can be monitored, the pump–probe
overlap fluctuations have to be minimized by choosing a larger pump beam diameter in
comparison to the probe beam diameter.
Having considered the artefacts due to fluctuations of the laser source, the interpre-

tation of the measured difference absorbance

∆A(λ, T ) = A(λ, T ) −Aref(λ) =
n−1∑
i=0

ϵi(λ)ci(T )l −
n−1∑
i=0

ϵi(λ)cil (2.5)

can be addressed. As illustrated by the red arrows in Fig. 2.1a, different processes either
decrease (∆A < 0) or increase (∆A > 0) the measured absorbance depicted in Fig. 2.1b.
Since the pump pulse excites part of the sample, the number of ground state molecules
is reduced (ci(T ) < ci) and therefore the ground state absorption decreases, leading to a
negative difference absorbance (∆A < 0), called ground state bleach (GSB). In contrast,
the appearance of excited state molecules that were not present before (ci(T ) > ci) gives
rise to a positive excited state absorption (ESA) (∆A > 0). If the molecules’ excitation
results in a chemically new product, then the ESA is also called product absorption (PA).
Finally, the probe pulse can also trigger an excited molecule to emit its excess energy
in form of light that amplifies the probe pulse intensity (also ci(T ) > ci but ϵi(λ) < 0).
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This so-called stimulated emission (SE) appears as negative absorbance (∆A < 0) in
the data, because an amplification of the probe light can also be interpreted as reduced
absorption.

2.2. Underlying quantum mechanics
Obviously, the Bouguer–Lambert–Beer law, introduced in the last Sec. 2.1, does not ex-
plain every signal contribution occurring inside the TA spectrum depicted in Fig. 2.1b:
The TA signal starts with a sharp peak that occurs at larger time delays T for longer
wavelengths λ. This so-called coherent artefact (CA) results when the pump and the
probe laser pulse temporally overlap T = 0 and thus the time ordering of the light–
matter interaction (Sec. 2.2.1) is lost. If, as in this case, the probe pulse is chirped
in such a way that the red part of its spectrum arrives before the blue part, then the
time axis becomes wavelength dependent and the time-zero defining CA shifts with λ.
Furthermore, the pronounced oscillatory behaviour stems from vibrational WPs which
travel back and forth on an electronic potential energy surface (PES) of the molecules
under study (Sec. 2.2.2). Finally and less obvious, Fig. 2.1b contains only signals caused
by changes in the population (concentration) of the molecular quantum states. This fil-
tering was achieved by suppressing orientation effects (Sec. 2.2.3) from the TA-relevant
first- and third-order signals (Sects. 2.2.4 and 2.2.5) with the so-called magic-angle con-
figuration (Sec. 3).

2.2.1. Light–matter interaction

Following the Refs. [24] and [25], each molecule n inside the sample volume can be
described by a Hamiltonian

Ĥn ≈ Ĥmol,n + Ĥbath,n

Ĥint,n(t)︷ ︸︸ ︷
−

∞∫
−∞

P̂ n(r) · E⊥(r, t)

≈ Ĥmol,n + Ĥbath,n −
∞∫

−∞

δ(r − Rn)µ̂n · E⊥(r, t), (2.6)

which consists of a molecular Hamiltonian Ĥmol,n representing the isolated molecule,
a bath Hamiltonian Ĥbath,n approximating the molecule’s interaction with the solvent
environment and an interaction Hamiltonian Ĥint,n(t) approximating the molecule’s in-
teraction with a classical external electromagnetic laser field. For the latter it is usu-
ally sufficient to consider only the interaction between the transverse electric laser field
E⊥(r, t) and the molecule’s polarization P̂ n(r), which can often be simplified with the
electric-dipole approximation utilizing the electric dipole moment µ̂n and the Dirac delta
function δ(r − Rn).
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Since the pure quantum state of each molecule is unknown, one uses the density
operator, whose time evolution under the influence of the electric field E⊥(r, t) can be
approximated by a perturbative series

ρ̂n(t) ≈ ρ̂(0)
n (t) + ρ̂(1)

n (t) + ρ̂(2)
n (t) + ρ̂(3)

n (t) + · · · (2.7)

if E⊥(r, t) is sufficiently weak compared to the electric field strength inside the molecule.
The zeroth-order term

ρ̂(0)
n (t) = Û0,n(t, t0)ρ̂n(t0)Û †

0,n(t, t0) = Û0,n(t, t0)ρ̂n(t0) (2.8)

represents the time evolution of the unperturbed, isolated molecule. The density-
operator notation can further be shortened by switching from Hilbert space to Liouville
space, in which the density operator ρ̂(t0) takes the form of a vector, whose time evolu-
tion is described by the time evolution superoperator Û0(t, t0). For more details on the
Liouville space concept, see, e.g., [24, Chap. 3] and [25, Chap. 2.5]. A single interaction
can either act from the left (bra) side or the right (ket) side on the density operator as
described by the commutator inside the first-order term

ρ̂(1)
n (t) = − i

ℏ

t∫
t0

dτ1 Û0,n(t, τ1)
[
Ĥ ′

n(τ1), Û0,n(τ1, t0)ρ̂n(t0)
]

= − i
ℏ

t∫
t0

dτ1 Û0,n(t, τ1)L̂ ′
n(τ1)Û0,n(τ1, t0)ρ̂n(t0), (2.9)

which can be compactly reformulated by introducing the superoperator L̂ ′
n(τ1). Simi-

larly, one receives the density operator’s time evolution for two

ρ̂(2)
n (t) =

(
− i
ℏ

)2 t∫
t0

dτ2

τ2∫
t0

dτ1 Û0,n(t, τ2)L̂ ′
n(τ2)Û0,n(τ2, τ1)L̂ ′

n(τ1)Û0,n(τ1, t0)ρ̂n(t0)

(2.10)

19



and for three

ρ̂(3)
n (t) =

(
− i
ℏ

)3 t∫
t0

dτ3

τ3∫
t0

dτ2

τ2∫
t0

dτ1

Û0,n(t, τ3)L̂ ′
n(τ3)Û0,n(τ3, τ1)L̂ ′

n(τ2)Û0,n(τ2, τ1)L̂ ′
n(τ1)Û0,n(τ1, t0)ρ̂n(t0)

(2.11)

t0t

light–matter interactions et cetera. Each interaction is interpreted such that a part
of the current quantum state is projected into a different energy eigenstate, when the
laser’s photon energy matches the energy gap in between. The interactions can happen
at any time, at which the electromagnetic field amplitude is not zero, which is illustrated
by the three Gaussian-shaped laser pulses below (2.11). However, the interactions are
time ordered, i.e., τ1 ≤ τ2 and τ2 ≤ τ3 and with the three time integrals every possible
combination for these time-ordered interactions is considered. This includes also the
case when all three interactions happen during the first laser pulse. If one is explicitly
interested in the spectroscopic signal resulting from the interaction of three different
laser pulses, e.g., to control the delay times in between the interactions, then one needs
to separate this signal from the signal contributions of all other first-, second-, third- or
higher-order processes as explained in Sec. 2.2.5.

Together with the evolution of the density operator, also the polarization changes, of
which the expectation value

P (r, t) =
∑

n

Tr[P̂ n(r)ρ̂(1)
n (t)]︸ ︷︷ ︸

P (1)

+
∑

n

Tr[P̂ n(r)ρ̂(2)
n (t)]︸ ︷︷ ︸

P (2)

+
∑

n

Tr[P̂ n(r)ρ̂(3)
n (t)]︸ ︷︷ ︸

P (3)

+ · · · ,

(2.12)
especially the transverse part serves as source for an electric signal field

∇2E⊥(r, t) − 1
c2
∂2

∂t2
E⊥(r, t) = 1

ϵ0c2
∂2

∂t2
P⊥(r, t), (2.13)

which is then measured by the detector, e.g., a spectrometer and can be interpreted to
elucidate the molecules’ quantum mechanical properties and behaviour.

2.2.2. Wavepacket dynamics
Having generally discussed how a quantum system is perturbed by an electromagnetic
field (Sec. 2.2.1), a closer look to the specific behaviour of molecular quantum systems
will reveal the origin of the oscillatory WP signal inside Fig. 2.1b: The first step is to
distinguish the atomic nuclei with mass mN,n and charge Zne (Zn ϵN) from the nuclei-
orbiting electrons with mass me and elementary charge −e, which ”glue” the atoms
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together and thus form the molecular structure. Then, the position-space representation
of the molecular Hamiltonian

Hmol =

Te︷ ︸︸ ︷
−
∑

n

ℏ2∇2
e,n

2me
+

Ve︷ ︸︸ ︷
1

4πϵ0

∑
m>n

e2

|re,n − re,m|

−
∑

n

ℏ2∇2
N,n

2mN,n︸ ︷︷ ︸
TN

+ 1
4πϵ0

∑
m>n

ZnZme
2

|rN,n − rN,m|︸ ︷︷ ︸
VN

− 1
4πϵ0

∑
n,m

Zme
2

|re,n − rN,m|︸ ︷︷ ︸
VeN

(2.14)

from (2.6) splits into the electron kinetic energy Te, electron–electron potential energy
Ve, nuclear kinetic energy TN, nuclear–nuclear potential energy VN and electron–nuclear
potential energy VeN, depending on the electron coordinates

re = {re,1, re,2, ...} (2.15)

and momenta −iℏ∇e,n and the nuclear coordinates

rN = {rN,1, rN,2, ...} (2.16)

and momenta −iℏ∇N,n [26, Chap. 12]. Note that the typically weak magnetic effects are
neglected and the particle momentum operator becomes p̂M ≈ p̂ = −iℏ∇ in the position-
space representation. Furthermore, note that also the self interaction is neglected by
choosing m > n for the summation indices.

Since the nuclei are much heavier than the electrons mN,n ≫ me, they react much
slower on any interaction force. From the perspective of the quickly reacting electrons it
seems that the nuclei stand still. This allows to approximate the electron Hamiltonian

He(rN) ≈ Te + Ve + VeN(rN) (2.17)

by choosing a fixed nuclear geometry rN for the electron–nuclear potential energy VeN(rN)
and by neglecting the nuclear kinetic energy TN as well as the nuclear–nuclear potential
energy VN. Solving the corresponding electronic eigenequation

He(rN)ψe,i(re; rN) = Ei(rN)ψe,i(re; rN) (2.18)

leads then to a set of electronic wavefunctions ψe,i(re; rN) of eigenenergy Ei(rN), which
both depend on the chosen nuclear configuration rN. With this results and under the
assumption that the full electronic–nuclear wavefunction

ψi,j(re, rN) = ψe,i(re; rN)ψN,i,j(rN) (2.19)

can be constructed by multiplying the afore-mentioned electronic wavefunction with a
nuclear wavefunction ψN,i,j(rN), the left-hand side of the full eigenequation

Hψi,j(re, rN) = Ei,jψi,j(re, rN) (2.20)
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takes the form

Hψi,j(re, rN) = [Ei(rN) + VN]ψe,i(re; rN)ψN,i,j(rN)

−
∑

n

ℏ2

2mN,n

[
ψe,i(re; rN)∇2

N,nψN,i,j(rN)

+∇N,nψe,i(re; rN) · ∇N,nψN,i,j(rN) + ψN,i,j(rN)∇2
N,nψe,i(re; rN)

]
(2.21)

containing nuclear-coordinate derivatives of the electronic wavefunction in the last two
terms [26, Chap. 12]. Typically, these terms are much smaller than the other terms and
can be neglected, which is known as the Born–Oppenheimer approximation. Without
an operator that acts on the electronic part of the wavefunction, ψe,i(re; rN) can be
dropped and the full eigenequation (2.20) simplifies to an eigenequation[

TN + Ei(rN) + VN︸ ︷︷ ︸
VPES,i(rN)

]
ψN,i,j(rN) = Ei,jψN,i,j(rN) (2.22)

for the nuclear wavefunction ψN,i,j(rN). This equation is mathematically equivalent to
the eigenequation of a particle that propagates on the PES, which is defined by the
attractive or repulsive electronic potential energies Ei(rN) and the repulsive nuclear
potential energy VN.
For the simplest case of a diatomic molecule, the generally multidimensional coordinate

space rN reduces to one dimension: The internuclear distance rN. In such a scenario,
the ith PES [also named potential energy curve (PEC) in the one-dimensional case] can
often be approximated by a Morse potential [29]

VPES,i(rN) = De,ie−2ai(rN−re,i) − 2De,ie−ai(rN−re,i) − E0,i (2.23)

with dissociation energy (or depth) De,i, width ai, equilibrium distance re,i and energy
offset E0,i placing the ith PES relative to the other PES. One possibility to receive these
PES-determining quantities is to derive them from experimental data, like it was done
for various dihalide molecules [27, 28], of which the result for diodide is illustrated in
Fig. 2.2a. The vibrational energies and nuclear wavefunctions of Morse PESs take the
form

Ei,j = hν0,i

(
j + 1

2

)
− (hν0,i)2

4De,i

(
j + 1

2

)2
−De,i − E0,i (2.24)

and

ψN,i,j(rN) =
√
ai(ki − 2j − 1) Γ(j + 1)

Γ(ki − j)
e−kie−ai(rN−re,i)/2

[
kie−ai(rN−re,i)

](ki−2j−1)/2
L

(ki−2j−1)
j

[
kie−ai(rN−re,i)

]
, (2.25)

respectively [30–32], where h is the Planck constant,

ν0,i = ai

2π

√
2De,i

µ
(2.26)
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Figure 2.2.: Wavepackets travelling on PESs. One possibility to characterize the PESs of
a diatomic molecule, e.g., iodine or diodide (a), is to calculate Morse potential energy curves
from experimental data [27, 28]. Each PES i gives a nuclear vibrational eigenequation, which
yields a set of vibrational eigenenergies Ei,j and vibrational wavefunctions ψN,i,j(rN) (b). An
ultrashort and therefore broadband pump laser pulse typically excites multiple vibrational states
simultaneously, which then add up to a vibrational wavepacket oscillating between a minimal
and a maximal internuclear distance rN. Therefore, the spectral position of the probed ESA
shifts depending on the time delay between pump and probe pulse, e.g., T1 and T2.

is the fundamental frequency,
µ = mN,1mN,2

mN,1 +mN,2
(2.27)

is the reduced mass of the diatomic molecule,

ki = 4π
√

2µDe,i

aih
(2.28)

and L
(ki−2j−1)
j [...] are the generalized Laguerre polynomials. Both Ei,j and ψN,i,j(rN)

are qualitatively exemplified in Fig. 2.2b.
These nuclear states ψN,i,j(rN) combined with the electronic states ψe,i(re; rN) form

the quantum states ψi,j(re, rN) between which the molecular system jumps under the
perturbation of a laser pulse, as described in Sec. 2.2.1. For example, a molecule ini-
tially being in the electronic–vibrational ground state ψ0,0(re, rN) can be excited by a
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pump pulse in such a way that a part of the molecular wavefunction is projected into
an electronically and possibly vibrationally excited state ψ1,j(re, rN), as illustrated in
Fig. 2.2b. Such a transition between two quantum states requires that the electromag-
netic field of the pump pulse oscillates with an optical frequency ν that is in resonance
with the molecular energy gap hν = E1,j −E0,0. Since an ultrashort laser pulse is created
by overlapping a multitude of monochromatic waves with different optical frequencies,
the pump pulse is capable to simultaneously excite multiple nuclear states ψN,1,j(rN),
which therefore add up to a vibrational wavepacket oscillating between a minimal and
a maximal internuclear distance [26, Chap. 13]. Consequently, the ESA signal, which
is measured with a subsequent probe pulse, oscillates between two spectral positions
following the wavepacket dynamic. Beyond the effect of the wavepacket position, the
ESA is also influenced by the wavepacket broadening and narrowing around the equi-
librium position re,i and the turning points, respectively. This effect stems from the
Morse potential’s anharmonicity, which also results in a varying energy spacing between
consecutive vibrational states: For lower vibrational energy levels, the energy spacing in-
creases, which also increases the oscillation frequency of a wavepacket that climbs down
the vibrational energy ladder while the molecule cools down by distributing the vibra-
tional energy into the environment. For the I2 system, these effects were extensively
simulated and discussed by Vöhringer [33, Sec. 3.3].

Staying with iodine-based molecules, the next level of complexity is reached with
triiodide I −

3 . Under the assumption that I −
3 has a fixed bond angle of 180° and there-

fore stays always linear, the nuclear coordinates rN reduce to the two bond lengths
rab and rbc, which lead to the two-dimensional PESs depicted in Fig. 2.3. The bot-
tom of the electronic ground state is approximated by a two-dimensional harmonic
potential [Fig. 2.3, (purple)], while the excited states reached after 365 nm excitation
[Fig. 2.3, (blue)] and 266 nm excitation [Fig. 2.3, (green)] are approximated by London–
Eyring–Polanyi–Sato (LEPS) potentials [34], but also ab-initio calculations are avail-
able [35, 36]. Again, the shape-defining parameters were extracted from experimental
data [37]. In contrast to the one-dimensional case, an excited state wavepacket has
now three possibilities: Either it propagates along one of the valleys or over the hill
in between, increasing the bond length rab, rbc or both, respectively. Since a chemi-
cal bond breaks at a certain bond length, the route over the hill results in three-body
dissociation, while the routes along the valleys result in two-body dissociation yielding
a radical iodine atom and a diiodide I −

2 fragment. Therefore, the cross profile of both
valleys smoothly turns into the diiodide’s electronic ground state PES 2Σ+

u,1/2 [Fig. 2.2a],
where then the wavepacket oscillates at a characteristic I −

2 wavenumber. This allows to
identify the diatomic fragment, especially in the case of heteronuclear trihalides, which
have distinguishable valleys leading to different fragments. Note that the wavepacket’s
”choice” of a dissociation channel is a simplification. In fact, as long as the wavepacket is
energetically over the valley-separating barrier, it can spread into both valleys and thus
enter both dissociation channels simultaneously, like a particle in the double-slit exper-
iment. Furthermore, to quantify the wavepacket motion, first one needs to transform
the (rab, rbc) coordinate system into a so-called skewed coordinate system [26, 12.3.3].
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1Σg
+
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266 nm pump

Figure 2.3.: Wavepacket dynamics on I −
3 LEPS potentials. A 365 nm or 266 nm pump laser

pulse excites an I −
3 molecule from the purple electronic ground state PES to the blue or green

LEPS PES, respectively. The wavepacket created in this manner has three options: Either it
enters one of the two valleys or it propagates over the hill in between. In the first two cases,
only one bond length, rab or rbc, increases, leading to two-body dissociation, while the route
over the hill results in three-body dissociation. Along both valleys, the PES smoothly turns into
the the diiodide’s electronic ground state PES, where therefore the wavepacket oscillates at a
characteristic diiodide wavenumber, as illustrated by the double headed arrow.

Detailed simulations of the triiodide wavepacket dynamics following an ultrashort pump
pulse excitation can be found in the literature [37–40] [33, Sec. 2.5].

2.2.3. Macroscopic polarization

Starting with the overall polarization P (r, t) instead of its transverse part P⊥(r, t)
required for the signal field (2.13), the first-order term in (2.12) takes the form

P (1)(r, t) = i
ℏ
∑

n

∞∫
−∞

d3r1

t∫
t0

dτ1

Tr
{

P̂ n(r)Û0,n(t, τ1) ⊗
[
P̂ n(r1), Û0,n(τ1, t0)ρ̂n(t0)

]}
· E⊥(r1, τ1) (2.29)

if the electric interaction Hamiltonian from (2.6) is inserted inside the definition of the
first-order density operator (2.9). Since the transverse electric field E⊥(r, t) is not an
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operator, it can be factored out of the trace, using the scalar (dot) product and the
tensor product ⊗.
If the sample molecules are in equilibrium at time t0, the density operator

Û0,n(τ1, t0)ρ̂(1)
n (t0) = ρ̂(1)

n (t0) (2.30)

does not evolve with the unperturbed time evolution superoperator Û0,n(τ1, t0), not even
for an infinite time interval t0 = −∞ [24, Chap. 5] and thus the polarization simplifies
to

P (1)(r, t) = i
ℏ
∑

n

∞∫
−∞

d3r1

t∫
−∞

dτ1

Tr
{

P̂ n(r)Û0,n(t− τ1) ⊗
[
P̂ n(r1), ρ̂n(−∞)

]}
· E⊥(r1, τ1), (2.31)

using also the fact that the remaining Û0,n(t, τ1) does not depend on the absolute times
t and τ1 but on the difference t− τ1.
Within the electric dipole approximation given in eq. (2.6), the polarization

P (1)(r, t) ≈ i
ℏ
∑

n

∞∫
−∞

d3r1

t∫
−∞

dτ1

Tr
{

µ̂nδ(r − Rn)Û0,n(t− τ1) ⊗ [µ̂nδ(r1 − Rn), ρ̂n(−∞)]
}

· E⊥(r1, τ1) (2.32)

becomes local due to δ(r − Rn), which can be replaced by δ(r − r1), because r1 must
equal the position Rn of the nth molecule due to δ(r1 −Rn). However, one cannot know
the position of every molecule in a gaseous or a liquid sample, which therefore needs
to be approximated by a simplified macroscopic structure. Assuming a homogeneous
sample, δ(r1 − Rn) can be replaced

P (1)(r, t) = i
ℏ
∑

n

∞∫
−∞

d3r1

∞∫
−∞

dτ1

cn Tr
{
µ̂nδ(r − r1)Ĝ0,n(t− τ1) ⊗ [µ̂n, ρ̂n(−∞)]

}
· E⊥(r1, τ1) (2.33)

by the concentration
cn = nn

V
(2.34)

of each molecular species n defined by the amount of substance nn per sample volume V ,
which can be interpreted as the probability density to find a molecule of type n in an
infinitesimal small volume d3r1 located at an arbitrary position r1. Note that this
assumption does not allow to calculate reflection and transmission at interfaces, which,
for example, can be calculated according to Ref. [41, Chap. II:33]. The introduction of
the Liouville space retarded Green function [24, Chap. 3]

Ĝ0,n(t− τ1) = θ(t− τ1)Û0,n(t− τ1) (2.35)
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allows to extend the upper limit of the time integral to ∞ and thus simplifies the Fourier
transformation applied in the next Sec. 2.2.4. Solving the spatial integral reveals that
the spatial dependence of the polarization

P
(1)
⊥ (r, t) = i

ℏ
∑

n

∞∫
−∞

dτ1 cn Tr
{
µ̂nĜ0,n(t− τ1) ⊗ [µ̂n, ρ̂n(−∞)]

}
· E⊥(r, τ1) (2.36)

stems solely from the electric field but not from the sample. Consequently, the polar-
ization inherits its spatial properties from the transverse electric field and thus becomes
also transverse, as required for (2.13).

Note that n now indexes the molecular species instead of the individual molecules.
The simplest scenario

P
(1)
⊥ (r, t) =

∞∫
−∞

dτ1 c
i
ℏ

Tr
{
µ̂Ĝ0(t− τ1) ⊗ [µ̂, ρ̂(−∞)]

}︸ ︷︷ ︸
t(2)(t−τ1)

·E⊥(r, τ1) (2.37)

consists of only one type of molecules, whose orientations can be concisely expressed
by the second-rank tensor t(2)(t − τ1), but since the possibility of individual molecu-
lar orientations was not considered during the spatial averaging, t(2)(t − τ1) describes
molecules that are all oriented in the same direction. However, like for the positions,
also the precise orientations of all molecules are unknown, but for a liquid sample one
can assume that the molecules are randomly oriented, i.e., each orientation occurs with
the same probability. Consequently, no preferred orientation exists and the sample is
isotropic. The information about the orientation of the molecules is contained in the
tensor properties of t(2)(t − τ1). To get the rotationally averaged (denoted below by a
ring accent) tensor T̊(2)(t − τ1) in the laboratory-fixed frame A,B ϵ {X,Y, Z}, one has
to average each element

T̊
(2)
AB =

∑
ab

I
(2)
AB:ab t

(2)
ab (2.38)

of the single-molecule tensor t(2)(t− τ1) in the molecule-fixed frame a, b ϵ {x, y, z}, using
the weighting factor

I
(2)
AB:ab = 1

3
δABδab, (2.39)

which is known from the literature [42] [25, Chap. 3.3] with δij being the Kronecker
delta. Note that for concise equations, the time dependence of the tensor elements is
hidden. Since the only remaining tensor property of the result

T̊(2)(t− τ1) = 1
3

(
t(2)
xx + t(2)

yy + t(2)
zz

)1 0 0
0 1 0
0 0 1

 (2.40)

is the identity matrix, the first-order polarization

P
(1)
⊥ (r, t) =

∞∫
−∞

dτ1 n
i
ℏ

T̊(2)(t− τ1) · E⊥(r, τ1) =
∞∫

−∞

dτ1 S
(1)(t− τ1)E⊥(r, τ1) (2.41)
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can be expressed in terms of a scalar first-order response function S(1)(t− τ1).
In a similar way, one can define the second-order polarization

P
(2)
⊥ (r, t) =

∞∫
−∞

dτ2

∞∫
−∞

dτ1 S(2)(t− τ2, τ2 − τ1) .. [E⊥(r, τ2) ⊗ E⊥(r, τ1)] (2.42)

with the second-order response function

S(2)(t− τ2, τ2 − τ1) = n
i
ℏ

T̊(3)(t− τ2, τ2 − τ1), (2.43)

which is now a rotationally averaged third-rank tensor T̊(3)(t − τ2, τ2 − τ1), whose two
interactions with the electric field are expressed by the double dot product .. and the
tensor product ⊗. Again, the single-molecule tensor

t(3)(t− τ2, τ2 − τ1) = Tr
{

µ̂Ĝ0(t− τ2) ⊗ [µ̂, Ĝ0(τ2 − τ1)[µ̂, ρ̂(−∞)] ]
}

(2.44)

is averaged element-by-element

T̊
(3)
ABC =

∑
abc

I
(3)
ABC:abc t

(3)
abc, (2.45)

for which now the weighting factor

I
(3)
ABC:abc = 1

6
εABCεabc (2.46)

is used with εijk being the Levi-Civita epsilon (εXY Z = εZXY = εY ZX = −εXZY =
−εY XZ = −εZY X = 1 and εijk = 0 for all other cases). Note that the multiplications im-
plied by the commutators in (2.44) are tensor products. It can be shown that the second-
order polarization must vanish for isotropic samples [43, Chap. 9.1] [44, Chap. 1.5.10]
and thus this term is only important for anisotropic samples like birefringent crystals.
Therefore, for dissolved molecules, the lowest-order non-linear signal stems from the

third-order polarization

P
(3)
⊥ (r, t) =

∞∫
−∞

dτ3

∞∫
−∞

dτ2

∞∫
−∞

dτ1

S(3)(t− τ3, τ3 − τ2, τ2 − τ1)
.
.
. [E⊥(r, τ3) ⊗ E⊥(r, τ2) ⊗ E⊥(r, τ1)] (2.47)

depending on the third-order response function

S(3)(t− τ3, τ3 − τ2, τ2 − τ1) = n
i
ℏ

T̊(4)(t− τ3, τ3 − τ2, τ2 − τ1), (2.48)

which is now a rotationally averaged fourth-rank tensor T̊(4)(t − τ3, τ3 − τ2, τ2 − τ1),
whose three interactions with the electric field are expressed by the triple dot product.
Because of the averaging

T̊
(4)
ABCD =

∑
abcd

I
(4)
ABCD:abcd t

(4)
abcd (2.49)
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using now the weighting factor

I
(4)
ABCD:abcd = 1

30

(
δABδCD δACδBD δADδBC

) 4 −1 −1
−1 4 −1
−1 −1 4


δabδcd

δacδbd

δadδbc

 , (2.50)

the 81 tensor elements of an arbitrary rank-four single-molecule tensor

t(4)(t−τ3, τ3−τ2, τ2−τ1) = Tr
{

µ̂Ĝ0(t− τ3) ⊗ [µ̂, Ĝ0(τ3 − τ2)[µ̂, Ĝ0(τ2 − τ1)[µ̂, ρ̂(−∞)] ] ]
}

(2.51)
in the molecule-fixed frame a, b, c, d ϵ {x, y, z} decrease down to 21 non-zero elements

T̊
(4)
iiii =

∑
abcd

1
15

(δabδcd + δacδbd + δadδbc)t
(4)
abcd, (2.52)

T̊
(4)
iijj =

∑
abcd

1
30

(4δabδcd − δacδbd − δadδbc)t
(4)
abcd (i ̸= j), (2.53)

T̊
(4)
ijij =

∑
abcd

1
30

(−δabδcd + 4δacδbd − δadδbc)t
(4)
abcd (i ̸= j), (2.54)

T̊
(4)
ijji =

∑
abcd

1
30

(−δabδcd − δacδbd + 4δadδbc)t
(4)
abcd (i ̸= j), (2.55)

for the tensor T̊(4)(t−τ3, τ3−τ2, τ2−τ1) in the laboratory-fixed frameA,B,C,D ϵ {X,Y, Z}.
But because of

T̊
(4)
iiii = T̊

(4)
iijj + T̊

(4)
ijij + T̊

(4)
ijji (2.56)

only three of these elements are independent [44,45].

2.2.4. First-order signal
The macroscopic polarization derived in the last Sec. 2.2.3 is the only signal-radiating
source term inside the electromagnetic wave eq. (2.13) if solely electric-dipole light–
matter interaction is considered. Splitting the polarization into the perturbative series
defined by (2.12), allows to combine the linear first-order term P

(1)
⊥ (r, t) with the electric

field on the left-hand side of eq. 2.13 [24, Chap. 4]

∇2E⊥(r, t) − 1
c2
∂2

∂t2

[
E⊥(r, t) − 1

ϵ0
P

(1)
⊥ (r, t)

]
= 1
ϵ0c2

∂2

∂t2

∞∑
n=2

P
(n)
⊥ (r, t), (2.57)

which then can be rewritten

∇2E⊥(r, t)− 1
c2
∂2

∂t2

∞∫
−∞

dτ1

[
δ(t− τ1) + 1

ϵ0
S(1)(t− τ1)

]
︸ ︷︷ ︸

ϵr(t−τ1)

E⊥(r, τ1) = 1
ϵ0c2

∂2

∂t2

∞∑
n=2

P
(n)
⊥ (r, t)

(2.58)
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using the response function S(1)(t − τ1) from (2.41) or the relative dielectric function
ϵr(t − τ1). In general, both functions are second-rank tensors, which reduce to scalar
quantities for an isotropic sample [see eq. (2.40)].
The higher the electric-field amplitude, the higher the order of the polarization terms

that become relevant to the light–matter interaction. Therefore, all non-linear terms
P

(n≥2)
⊥ (r, t) can be neglected for sufficiently low field amplitudes. Starting with such a

scenario, the wave equation reduces to

∇2E⊥(r, t) − 1
c2
∂2

∂t2

∞∫
−∞

dτ1 ϵr(t− τ1) · E⊥(r, τ1) = 0, (2.59)

of which the convolution of ϵr(t) and E⊥(r, t) can be simplified to a (dot) product by
switching from the time domain to the (angular) frequency domain

∇2E⊥(r, t) − 1
c2
∂2

∂t2

∞∫
−∞

dτ1 ϵr(t− τ1) ·
∞∫

−∞

dω
2π

E⊥(r, ω)e−iωτ1 = 0, (2.60)

using the Fourier transformation of the electric field. With

t1 = t− τ1 (2.61)

and a reordered integration sequence

∇2E⊥(r, t) − 1
c2
∂2

∂t2

∞∫
−∞

dω
2π

∞∫
−∞

dt1 ϵr(t1) · E⊥(r, ω)e−iω(t−t1) = 0 (2.62)

the time integral can be solved

∇2E⊥(r, t) − 1
c2
∂2

∂t2

∞∫
−∞

dω
2π

ϵr(ω) · E⊥(r, ω)e−iωt = 0 (2.63)

yielding the Fourier transformation of the relative dielectric function ϵr(ω). (For an
inhomogeneous sample ϵr(r, t), also the spatial Fourier transformation needs to be con-
sidered, resulting in a k-dependent ϵr(k, ω) [24, Chap. 4].) Since the time dependence
remains only in the exponential function, now the time derivative

∇2E⊥(r, t) +
∞∫

−∞

dω
2π

ω2

c2 ϵr(ω) · E⊥(r, ω)e−iωt = 0 (2.64)

can be calculated. Furthermore, if one applies the spatial Fourier transformation and
rewrites the full equation in the (k, ω)-space

∇2
∞∫

−∞

d3k

(2π)3

∞∫
−∞

dω
2π

E⊥(k, ω)eik·r−iωt +
∞∫

−∞

d3k

(2π)3

∞∫
−∞

dω
2π

ω2

c2 ϵr(ω) · E⊥(k, ω)eik·r−iωt = 0,

(2.65)
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it becomes obvious that the integrand must vanish
∞∫

−∞

d3k

(2π)3

∞∫
−∞

dω
2π

[
−|k|2E⊥(k, ω) + ω2

c2 ϵr(ω) · E⊥(k, ω)
]

︸ ︷︷ ︸
!=0

eik·r−iωt = 0 (2.66)

to fulfil the wave equation. For isotropic samples ϵr(ω) simplifies to a scalar quan-
tity ϵr(ω) and the relation

k(ω) = ω

c

√
ϵr(ω) = ω

c
n(ω) + iα(ω)

2
(2.67)

must hold to fulfil (2.66). Usually, the real and imaginary part of the root of the
dielectric function are distinguished by the refractive index n(ω) and the absorption
coefficient α(ω).
The interpretation of the above results is that the Fourier transformation applied in

eq. (2.65) decomposes an arbitrary electromagnetic wave E⊥(r, t) into a continuous sum
of (k, ω)-dependent, monochromatic plane waves

E⊥(k, ω)eik·r−iωt, (2.68)

whose wave vector amplitude
k(ω) = ω

c

√
ϵr(ω) (2.69)

is determined by the angular frequency ω and the dielectric function ϵr(ω), which in turn
depends on the sample’s properties. Therefore, also a single monochromatic plane wave

E⊥(r, t) = E0eik0·r−iω0t (2.70)

of angular frequency ω0 with
k0 = ω0

c

√
ϵr(ω0) (2.71)

fulfils the wave eq. (2.13). In order to reshape this spatially and temporally infinitely
wide, complex-valued wave into a real-valued pulse,

E⊥(r, t) = e0E0(r, t)eik0·r−iω0t + c.c. (2.72)

one introduces a spatio–temporal-dependent envelope E0(r, t) with, like in the Jones
formalism [46], a fixed polarization e0 [not to confuse with the material polarization
P (r, t)] and adds the complex conjugate. In the most general case

E⊥(r, t) = e0(r, t)E0(r, t)eik0·r−iω0t + c.c. =
∑

i ϵ {x,y,z}
e0,iAi(r, t)eik0·r−iω0t + c.c., (2.73)

both the envelope and the polarization vector depend on time t [47] and space r. Such
pulses can be generated by a polarization pulse shaper [48, 49]. However, this thesis
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focuses on laser pulses with static polarization. In the frequency domain, the pulse takes
the form

E⊥(r, ω) =
∞∫

−∞

dtE⊥(r, t)eiωt (2.74)

=
∞∫

−∞

dt
[
e0E0(r, t)eik0·r−iω0t + c.c.

]
eiωt (2.75)

=
∞∫

−∞

dt e0E0(r, t)eik0·rei(ω−ω0)t +
∞∫

−∞

dt e∗
0A

∗(r, t)e−ik0·rei(ω+ω0)t (2.76)

= e0E0(r, ω − ω0)eik0·r + e∗
0A

∗(r, ω + ω0)e−ik0·r, (2.77)

which is then inserted into the (frequency-domain) wave eq. (2.64)
∞∫

−∞

dω
2π

[
∇2 + ω2

c2 ϵr(ω)︸ ︷︷ ︸
k2(ω)

]
e0E0(r, ω − ω0)eik0·re−iωt + c.c. = 0. (2.78)

Applying the Laplacian

∇2e0E0(r, ω − ω0)eik0·r = eik0·r
[
∇2 + (2ik0 · ∇) − |k0|2

]
e0E0(r, ω − ω0) (2.79)

leads to
∞∫

−∞

dω
2π

eik0·r
[
∇2 + 2ik0 · ∇ + k2(ω) − k2

0

]
e0E0(r, ω − ω0)e−iωt + c.c. = 0, (2.80)

where the wavenumber difference

k2(ω) − k2
0 = [k(ω) + k0][k(ω) − k0] ≈ 2k0[k(ω) − k0] (2.81)

can be approximated. This allows to expand the wavenumber

k(ω) =
∑
n=0

1
n!

dnk

dωn
(ω0)(ω − ω0)n = k0 + k′

0(ω − ω0) + 1
2
k′′

0(ω − ω0)2 + · · · (2.82)

into a Taylor series around the center frequency ω0, where

k′
0 = 1

v0
(2.83)

represents the inverse group velocity v0 and k′′
0 describes the group velocity dispersion.

For this expansion, in combination with

w = ω − ω0 (2.84)
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and
s0 = k0

|k0|
(2.85)

the wave equation takes the form
∞∫

−∞

dw
2π

2ik0eik0·r
(

∇2

2ik0
+ s0 · ∇ − ik′

0w − i
2
k′′

0w
2 + · · ·

)
e0E0(r, w)e−i(w+ω0)t + c.c. = 0.

(2.86)
Finally, one can rewrite the factors −iw and −w2 as temporal derivatives of e−iwt and
execute the inverse Fourier transformation resulting in the time domain differential equa-
tion (DE)

2ik0eik0·r−iω0t

(
∇2

2ik0
+ s0 · ∇ + k′

0
∂

∂t
+ i

2
k′′

0
∂2

∂t2
+ · · ·

)
e0E0(r, t) + c.c. = 0 (2.87)

for the pulse envelope E0(r, t).
From the perspective of a small molecule placed inside the focus of the typically

Gaussian laser beam [50, Chap. 17.1], the beam profile

E0(r, t) = E0(z, t) (2.88)

seems to be flat and one can neglect the envelope’s second-order spatial variations

∇2E0(z, t) ≪ ∂E0
∂z

(z, t). (2.89)

If, in addition, the temporal variation of the envelope E0(z, t) is small compared to the
oscillations exp(ik0z − iω0t), one can furthermore neglect the envelope’s second- and
higher-order temporal variations

i
2
k′′

0
∂2E0
∂t2

(z, t) ≪ k′
0
∂E0
∂t

(z, t). (2.90)

With these so-called slowly-varying envelope approximation (SVEA) [44, Chap. 7.5.2],
the wave equation simplifies to

2ik0eik0z−iω0t
(
∂

∂z
+ 1
v0

∂

∂t

)
e0E0(z, t) + c.c. = 0, (2.91)

where k′
0 = 1/v0 is rewritten in terms of the group velocity v0. This quantity is often

identified as the velocity with which the laser pulse travels, but the interpretation of
v0 might also be more complex depending on the medium, which is passed by the laser
pulse [51]. In the first case one can switch to a retarded frame of reference

E0(z, t) → E0(ξ, η), (2.92)

where one sits at any place
ξ = z (2.93)
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on top of the laser pulse if t = 0 in

η = t− z

v0
(2.94)

equals zero [52, Chap. 1.2.1]. By also transforming the spatial derivative

∂

∂z
E0(ξ, η) = ∂E0

∂ξ

∂ξ

∂z
+ ∂E0

∂η

∂η

∂z
=
(
∂

∂ξ
− 1
v0

∂

∂η

)
E0(ξ, η) (2.95)

and the temporal derivative

∂

∂t
E0(ξ, η) = ∂E0

∂ξ

∂ξ

∂t
+ ∂E0

∂η

∂η

∂t
= ∂

∂η
E0(ξ, η), (2.96)

the wave equation simplifies to

2ik0eik0ξ−iω0η ∂

∂ξ
e0E0(ξ, η) + c.c. = 0, (2.97)

where the remaining spatial derivative of the envelope ∂E0/∂ξ (ξ, η) = 0 equals zero.
Therefore, the shape of the envelope E0(ξ, η) stays constant while the pulse travels at
the group velocity v0. This is a result of neglecting the higher-order terms of k(ω), which
would add the description of the laser pulse’s dispersion.

2.2.5. Third-order signal
For strong electric fields, like in ultrashort laser pulses with high peak intensities, one
also needs to consider the higher-order polarization terms P

(n)
⊥ (r, t), as described in

eq. (2.57). Since the second order polarization P
(2)
⊥ (r, t) vanishes for isotropic samples

[43, Chap. 9.1] [44, Chap. 1.5.10], the next term of interest is the third-order polarization
P

(3)
⊥ (r, t), which is defined in (2.47) and stems from three interactions between the

electric field (2.72)

E⊥(r, t) =
∑

i

Ei(r, t) =
∑

i

eiEi(r, t)eiki·r−iωit + c.c. (2.98)

and a molecule. Therefore, up to three different laser pulses, Ei(r, t), Ej(r, t) and
El(r, t), may contribute to P

(3)
⊥ (r, t). Each of these laser pulses is again described

within the SVEA, but in contrast to the pulse defined in Sec. 2.2.4, the propagation
direction ki can be arbitrarily chosen. Altogether, the SVEA wave equation (2.91) takes
now the form∑

i

2ikieiki·r−iωit
(

si · ∇ + 1
vi

∂

∂t

)
eiEi(r, t) + c.c. = 1

ϵ0c2
∂2

∂t2
P

(3)
⊥ (r, t). (2.99)

Note that despite of neglecting the spatial beam profile by applying the SVEA, the two
laser pulses must spatially overlap at the molecule position to generate a P

(3)
⊥ (r, t) term.
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Substituting the time coordinates in (2.47) with

t3 = t− τ3 (2.100)
t2 = τ3 − τ2 (2.101)
t1 = τ2 − τ1 (2.102)

leads to

P
(3)
⊥ (r, t) =

∞∫
−∞

dt3
∞∫

−∞

dt2
∞∫

−∞

dt1

S(3)(t3, t2, t1)
.
.
. [E⊥(r, t− t3) ⊗ E⊥(r, t− t3 − t2) ⊗ E⊥(r, t− t3 − t2 − t1)] (2.103)

from which one can factor out the oscillating exp [i(ki ± kj ± kl) · r − i(ωi ± ωj ± ωl)t]
terms to distinguish the different polarization-generating laser pulse combinations

P
(3)
⊥ (r, t) =

∑
i,j,l

P̃i,j,l(r, t)ei(ki±kj±kl)·r−i(ωi±ωj±ωl)t + c.c. (2.104)

for third-order spectroscopy. Each of these polarization terms represents a radiation
source inside the wave eq. (2.99) and thus may emit a signal pulse that oscillates at
the corresponding sum or difference frequency. This signal pulse in turn may generate
another radiating polarization term et cetera. Therefore, one might expect that the
number of generated signal pulses diverge. However, this is avoided by two effects: First,
signal pulses have weaker electric fields, which do not generate measureable third-order
effects. Second, a signal pulse is only created if the so-called phase matching condition is
fulfilled: In the case of transient absorption spectroscopy, the signal pulse E3(r, t) needs
to propagate into the same direction

k3 = k2 + k1 − k1 (2.105)

as the probe pulse E2(r, t) to hit the detector (spectrometer). Thus, from all possible
third-order signals only those remain which interact twice with the pump pulse E1(r, t)
and once with the probe pulse E2(r, t) such that

ω3 = ω1 − ω1 + ω2. (2.106)

The corresponding polarization amplitude [25, Chap.5.5] is

P̃ TA
2,1,1(ξ, η) =

∞∫
−∞

dt3
∞∫

−∞

dt2
∞∫

−∞

dt1

[
S(3)(t3, t2, t1)

.

.

. (e2 ⊗ e1 ⊗ e∗
1)

E2(r, t− t3)eiω2t3E1(r, t− t3 − t2)E∗
1(r, t− t3 − t2 − t1)e−iω1t1

+ S(3)(t3, t2, t1)
.
.
. (e2 ⊗ e∗

1 ⊗ e1)

E2(r, t− t3)eiω2t3E∗
1(r, t− t3 − t2)E1(r, t− t3 − t2 − t1)eiω1t1

]
(2.107)
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and the wave equation of the third-order signal pulse E3(r, t) takes the form

∂

∂ξ
e3E3(ξ, η) + c.c. = iω2

3
2k3ϵ0c2 P̃ TA

2,1,1(η)ei∆kξ + c.c. (2.108)

if the assumption of a small angle k1∡k2 ≈ 0 and similar group velocities v1 ≈ v2 ≈ v3
allows to move into the retarded frame of reference defined in Sec. 2.2.4. In addition, it is
assumed that P̃ TA

2,1,1(η) does not change with ξ, which allows to solve the wave equation
by integration yielding a signal pulse

E3(L, η) ∝ iP TA
2,1,1(η) (2.109)

at the end L of the sample cell. Since signal pulse E3(r, t) and probe pulse E2(r, t)
propagate in the same direction, the spectrometer detects the intensity

|E3(r, t) + E2(r, t)|2 = |E3(r, t)|2 + |E2(r, t)|2 + 2 Re [E3(r, t)E∗
2(r, t)]

≈ |E2(r, t)|2 + 2 Re [E3(r, t)E∗
2(r, t)] (2.110)

of the interference of both laser pulses, of which the pure signal term |E3(r, t)|2 can
be neglected, because the signal pulse is typically much weaker than the probe pulse
E3(r, t) ≪ E2(r, t). Finally, the two remaining terms can be separated if |E2(r, t)|2
is measured on its own by repeating the experiment without the pump pulse and thus
without generating a third-order signal pulse.

2.3. Modelling the reaction kinetics
To separate the GSB, ESA, PA and SE signal contributions described in Sec. 2.1 and
to quantify the underlying molecular dynamics, a model function for the difference ab-
sorbance

∆Akin(λ, T ) =
n−1∑
i=0

ϵi(λ)ci(T )l −
n−1∑
i=0

ϵi(λ)cil

=
n−1∑
i=0

ϵi(λ)ci(T )l − ϵ̄(λ)
n−1∑
i=0

ci(T )l

=
n−1∑
i=0

∆ϵi(λ)ci(T )l (2.111)

has to be fitted to the measured data. Since one cannot extract absolute concentra-
tions ci(T ) and absolute absorption coefficients ϵi(λ) from a difference signal ∆A(λ, T ),
eq. (2.5) is rewritten in terms of the difference absorption coefficient

∆ϵi(λ) = ϵi(λ) − ϵ̄(λ), (2.112)

using the averaged absorption coefficient

ϵ̄(λ) =
∑n−1

i=0 ϵi(λ)ci∑n−1
i=0 ci

(2.113)
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to also consider the most general scenario of multiple starting components, which, e.g.,
is the case for heteronuclear trihalides (Fig. 5.1). Then, the sum over the static ci can be
replaced by the sum over the dynamic ci(T ). This step is only valid if the overall number
of components stays constant, which is obviously not the case for a photodissociation
reaction. Nevertheless, this simplification is possible for the trihalides, because only
one of the two fragments, e.g., I −

2 but not I, is measured within the spectral detection
window, so the number of observed components stays constant.
The temporal behaviour of the concentrations ci(T ) can be described with a compart-

ment model [53] that is based on a reaction scheme, which, as introduced in Sec. 2.1,
describes how the pump-excited molecules evolve to states of lower energy or undergo
chemical reactions until the initial ground state is reached or a stable product is formed.
Assuming that the transition from a state j to a lower energy state i < j (Ei < Ej) is
a stochastic process that happens at a probability linearly depending on the amount of
molecules in the higher energy state, the concentration change

dci

dT
(T ) =

∑
j>i

φijkjcj(T ) − kici(T ) (2.114)

in the lower energy state can be written in form of a first-order DE, in which all higher
energy states j populate the lower energy state i at a characteristic rate kj . Since the
reaction pathway does not need to be straightforward but might branch into different
routes, only the percentage 0 ≤ φij ≤ 1 (∑i φij = 1) reaches the state i. If the state i is
not stable but has a finite lifetime τi = 1/ki, it further decays at a rate ki to states of even
lower energy. However, the probability for a state transition does not need to depend
linearly on the molecules’ concentration [53] but might be quadratic if two molecules
are involved in a reaction [2] et cetera. Despite these additional possibilities, the focus
of this thesis lies on the linear processes and solving the whole system of linear DEs
results in a so-called linear kinetic model, in which the concentrations rise and decay
exponentially. Such a model is called homogeneous if it consists of a discrete number of
exponential functions. In contrast, the model is called inhomogeneous if a continuous
sum of exponentials

∞∫
−∞

dk P (k)e−kT (2.115)

is required to describe the molecular dynamics [53]. This is the case when, for example,
an environment-sensitive decay rate k meets a large variety of molecule–solvent configu-
rations. The result of the continuous sum depends on the specific form of the probability
distribution P (k). A prominent example is the stretched exponential [54, 55]

e−(k′T )β =
∞∫

0

dsP (s, β)e−sk′T , (2.116)

where
s = k

k′ (2.117)
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(T ) = −k2c2(T ) dc2

dT
(T ) = −k2c2(T ) dc2

dT
(T ) = −k2c2(T )

dc1

dT
(T ) = −k1c1(T ) dc1

dT
(T ) = k2c2(T ) − k1c1(T ) dc1

dT
(T ) = φ12k2c2(T ) − k1c1(T )

dc0

dT
(T ) = k1c1(T ) + k2c2(T ) dc0

dT
(T ) = k1c1(T ) dc0

dT
(T ) = k1c1(T ) + φ02k2c2(T )

φ12 ≥ 0 and φ02 ≥ 0
φ12 + φ02 = 1

Figure 2.4.: Basic kinetic models. After being excited by a pump pulse (blue arrows), the
excited states 1 and 2 decay to the ground state 0 (black arrows) following a parallel model (left),
a sequential model (center) or a branching model (right) often referred to as target model. The
vertical displacement illustrates the state’s energy. Below the reaction scheme, the corresponding
initial concentrations and the DE systems are given.

is the normalization of the exponential decay rate k with respect to the stretched-
exponential rate k′.
Concentrating on the homogeneous case, one distinguishes three basic kinetic models,

which are illustrated in Fig. 2.4 with the help of the simplest scenario consisting of
only three components: Either the energy decay happens in parallel (Fig. 2.4, left),
sequentially (Fig. 2.4, center) or in a branching manner (Fig. 2.4, right). Actually, the
parallel model (φ12 = 0, φ02 = 1) and the sequential model (φ12 = 1, φ02 = 0) are just
special cases of the more general branching model, also called target model. Since one
cannot separate the initial concentration ci(t0) = ci,0 from ∆ϵi(λ) without additional
knowledge, these parameters plus the sample cell’s length l are combined to one

∆Akin(λ, T ) =
n−1∑
i=0

[
DADSi(λ)cDADS

i (T ) or EADSi(λ)cEADS
i (T )

or SADSi(λ)cSADS
i (T )

]
, (2.118)

called decay associated difference spectra (DADS) for the parallel model, evolution-
associated difference spectra (EADS) for the sequential model, species-associated differ-
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ence spectra (SADS) for the target model or X associated difference spectra (XADS)
to reference in the following all three cases simultaneously. The remaining cXADS

i (T )
ranging from 0 to 1 describes the concentration profile. However, all three models fit the
data with the same accuracy [53] [56, Sec. 3.2]. Therefore, it is impossible to judge by
the fit result which of the reaction schemes is the correct one, but further information
from complementary measurements or from theoretical considerations are required.

Furthermore, one needs to be careful about which concentration functions are fed into
the fit algorithm. If, for example, only one component is present before the pump
excitation ϵ̄(λ) = ϵ0(λ), then the difference absorption coefficient ∆ϵ0(λ) = 0 and
the XADSi(λ) vanishes and therefore fitting the corresponding ground state concen-
tration profile cXADS

0 (T ) does not make sense. Actually, the excited state concentrations
cXADS

i>0 (T ) ultimately decay into the ground state cXADS
0 (T ) and thus already contain the

dynamics of cXADS
0 (T ). (This is also valid if a stable product is formed, except that the

product’s decay rate towards the ground state becomes zero.)

To fit the non-vanishing XADSi(λ), first their wavelength dependence has to be con-
sidered. Within a kinetic model, this is achieved by defining an individual amplitude
XADSi(λj) for each component i and each measured wavelength data point j. Alterna-
tively, it would also be possible to model the spectrum XADSi(λ) and define an indi-
vidual amplitude cXADS

i (Tj) for each component i and each measured time data point
j or to construct a spectrotemporal model XADSi(λ) · cXADS

i (T ). However, spectral
models are typically more phenomenological and require more fit parameters. While an
extensive discussion about this topic can be found, e.g., in Ref. [53], the present thesis
focuses on the kinetic model, which, from the perspective of a fit algorithm, contains two
types of fit parameters: The rate constants ki determine the decaying exponentials and
are thus non-linear fit parameters. In contrast, the individual amplitudes XADSi(λj)
determine the linear combination of the decaying exponentials and are therefore linear fit
parameters. For example, using three non-linear kinetic fit parameters to model a typi-
cal transient absorption dataset with 256 measured wavelengths requires 3 × 256 = 768
linear XADS fit parameters. This example also illustrates a difficulty of global or target
kinetic models for broadband transient absorption spectra. The large number of param-
eters would not only slow down the fit algorithm, but also increase the probability for
getting trapped in a local minimum. Such a scenario can be avoided by using the variable
projection algorithm (VPA) (Sec. 2.4) [16, 53], which exploits the specific form of the
model function, a linear combination of non-linear functions, called separable non-linear
model or partially non-linear model. Based on the finding that a given set of non-linear
parameters already imply the solution of the linear parameters, the dimensionality of
the parameter search space can be reduced by removing the linear parameters.

A generalization of the kinetic model (2.118) that includes oscillating signals optimized
for the VPA was developed in this thesis and will be presented in Sec. 4.1
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2.4. Data fitting with the variable projection algorithm
The VPA of Golub and Pereyra [16,57] is a fit algorithm which exploits the structure of
model functions

η(α, c, t) =
n∑

j=1
cjϕj(α, t) (2.119)

consisting of a linear combination of non-linear functions ϕj(α, t): By eliminating the n
linear parameters

c = (c1, . . . , cn)T, (2.120)

the parameter space is reduced to the q non-linear parameters

α = (α1, . . . , αq)T, (2.121)

resulting in a faster convergence and a higher probability to find the global minimum due
to a possibly reduced number of local minima. In particular, the VPA is ideally suited to
globally fit kinetic models of transient absorption spectra, which typically consists of a
large number of linear parameters c, one for each component and each wavelength pixel of
the DADS, EADS or SADS (Sec. 2.3). An alternative to the VPA would be the reduction
of data points by singular-value decomposition (SVD) filtering, which however is prone
to noise [53]. This drawback can be avoided by the use of the VPA and furthermore, a
variant of the VPA, the partitioned VPA [58], reduces the memory consumption if the
dataset and the model function allow a partitioning, e.g., transient absorption spectra
can be partitioned into single transients (time-dependent signal for single wavelength),
each of which represents the time-dependent signal at a specific wavelength.
For understanding the basic concept of the VPA, it is sufficient to focus on a one-

dimensional dataset, e.g., a single transient,

y = (y1, . . . , ym)T, (2.122)

measured at m time steps
t = (t1, . . . , tm)T, (2.123)

for which the deviation to the model function (2.119) is described by the residuals

ri(α, c) = yi −
n∑

j=1
cjϕj(α, ti). (2.124)

Being a least-square algorithm, the VPA optimizes the parameters α and c to minimize
the l2-norm [16]

min
α,c

f(α, c) = min
α,c

1
2

∥r(α, c)∥2
2 = min

α,c

1
2

∥y − ϕ(α) · c∥2
2 (2.125)

of the residuals, here rewritten in the vector notation using the model matrix

ϕij(α) = ϕj(α, ti). (2.126)
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For a given set of non-linear parameters α, this optimization procedure reduces to finding
the linear parameters

c(α) = ϕ+(α) · y, (2.127)
which can be calculated with the Moore–Penrose pseudoinverse ϕ+(α) [16] [see eq. (2.153)]
uncovering the α-dependency of c(α). Therefore, the fit ”problem must become in-
creasingly ill-conditioned as (and if) it converges to the optimal parameters” [16, p. R4].
On the other hand, this property can be used to convert the fit problem into a well-
conditioned one: Being already determined by the non-linear parameters α, the linear
parameters c(α) can be eliminated from the residuals’ norm

min
α
f(α) = min

α

1
2

∥r(α)∥2
2 = min

α

1
2

∥∥∥y − ϕ(α)
[
ϕ+(α) · y

]∥∥∥2

2
(2.128)

at the cost of calculating the pseudoinverse ϕ+(α) but with the advantage that only the
typically much smaller set of non-linear parameters α is left to be optimized by the fit
algorithm [16]. The new residual form

r(α) =
[
I − ϕ(α) · ϕ+(α)

]
y = P(α) · y, (2.129)

here rewritten with the help of the identity matrix I, is called the variable projection of
y, because P(α) is the projector on the orthogonal complement of the column space of
ϕ(α), varying with the non-linear parameters α [16].

In contrast to the linear parameters, which can be directly calculated with the pseu-
doinverse, the optimization of the non-linear parameters requires an iterative algorithm,
for which Mathematica’s built-in Levenberg–Marquardt–algorithm was chosen in this
thesis (Sec. 4.2). The origin of this algorithm dates back to the Newton–Raphson
method [59] for numerically approximating the zeros (or roots)

f(α) != 0 (2.130)

of a real-valued function, which, for this purpose, is expanded into a first-order Taylor
series

f(αs) + df
dα

(αs)(αs+1 − αs) = 0 (2.131)

around a chosen starting point αs. Then, this linear approximation is iteratively evalu-
ated

αs+1 = αs −
[df

dα
(αs)

]−1
f(αs), (2.132)

following the function’s gradient df/dα (αs) until αs+1 converges to one of f(α) roots.
In the same way, one can apply this algorithm to the gradient

df
dα

(α) != 0, (2.133)

to search for the function’s minimum (or maximum)

min
α
f(α) (2.134)
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by iteratively

αs+1 = αs −
[

d2f

dα2 (αs)
]−1 df

dα
(αs) (2.135)

following the gradient’s gradient d2f
/
dα2 (αs).

For multidimensional functions like the above defined l2-norm (2.128), the gradient

g(α) = ∇f(α) =


∂f

∂α1
(α)
...

∂f
∂αq

(α)

 != 0 (2.136)

becomes a vector quantity, whose roots can be approximated in analogy to the one-
dimensional case by iteratively

αs+1 = αs − [Jg(αs)]−1g(αs) (2.137)
= αs − [Hf (αs)]−1∇f(αs) (2.138)

following the gradient’s derivatives, which are concisely expressed in form of the Jacobian
matrix

Jg(α) =


∂g1
∂α1

(α) · · · ∂g1
∂αq

(α)
... . . . ...

∂gq

∂α1
(α) · · · ∂gq

∂αq
(α)

 = Hf (α) =


∂2f
∂α2

1
(α) · · · ∂2f

∂α1∂αq
(α)

... . . . ...
∂2f

∂αq∂α1
(α) · · · ∂2f

∂α2
q
(α)

 , (2.139)

also known as Hessian matrix Hf (α) in relation to the scalar function f(α). The cal-
culation of the gradient and the Hessian matrix can either be done directly (Ref. [60]
shows how this is combined with the variable projection method) or by exploiting the
l2-norm’s specific dependence on the residual vector

f(α) =
m∑

i=1
r2

i (α), (2.140)

which allows to rewrite the gradient

gj(α) =
m∑

i=1
ri(α) ∂ri

∂αj
(α) (2.141)

or
g(α) = JT

r (α) · r(α) (2.142)

and the Hessian matrix

Hjk(α) =
m∑

i=1

[
∂ri

∂αk
(α) ∂ri

∂αj
(α) + ri(α) ∂2ri

∂αj∂αk
(α)

]
≈

m∑
i=1

∂ri

∂αk
(α) ∂ri

∂αj
(α) (2.143)
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or
Hf (α) ≈ JT

r (α) · Jr(α) (2.144)
in terms of the residuals r(α) and their Jacobian matrix Jr(α), resulting in the well-
known Gauss–Newton algorithm [61]

αs+1 = αs −
[
JT

r (αs) · Jr(αs)
]−1

JT
r (αs) · r(αs), (2.145)

for which the Hessian’s second-order derivatives are neglected. Improving the algorithm’s
convergence control with a damping factor λ, either combined with the identity matrix,

αs+1 = αs −
{

JT
r (αs) · Jr(αs) + λI

}−1
JT

r (αs) · r(αs), (2.146)

or the diagonal part of the approximated Hessian matrix,

αs+1 = αs −
{

JT
r (αs) · Jr(αs) + λ diag

[
JT

r (αs) · Jr(αs)
]}−1

JT
r (αs) · r(αs), (2.147)

leads finally to the Levenberg–Marquardt algorithm [16,62,63].
The advantage that is added by the VPA is how one calculates the residual vector

r(α) [see eq. (2.129)] and the Jacobian matrix Jr(α), of which the kth column was found
to be

J·k = −
[(

P ∂ϕ

∂αk
ϕ+
)

+
(

P ∂ϕ

∂αk
ϕ+
)T
]
y

= −Dkϕ+y + ϕϕ+Dkϕ+y︸ ︷︷ ︸
=−A·k

−ϕ+TDT
k y + ϕ+TDT

k ϕϕ+y︸ ︷︷ ︸
=−B·k

, (2.148)

using the projector property PT = P [16, 57]. Here, the notation is lightened by the
abbreviation of the model matrix’s element-by-element differentiation

Dk = ∂ϕ

∂αk
(2.149)

and the omission of the matrices’ α-dependence. Altogether, the VPA boils down to
efficiently compute the model matrix ϕ(αs), its derivatives Dk(αs) and pseudoinverse
ϕ+(αs) to numerically calculate the residuals r(α) and their Jacobian Jr(α) for each
step s until the Levenberg-Marquardt algorithm (2.146) or (2.147) converges to a set of
non-linear parameters αs that correctly fits the measured data.
While ϕ(αs) can be received from the straightforward evaluation of each part of the

model function ϕj(ti) at each time step ti, Dk(αs) requires the user to also provide the
model function derivatives, as, for example, in O’Leary’s Matlab implementation of the
VPA [57]. Thus, and probably because of the complicated computation of the residual
Jacobian (2.148), many VPA implementations, also tim package (TIMP) [58], directly
approximate

Jij(α) = ∂ri

∂αj
(α) ≈

ri

((
· · · αj + h · · ·

)T
)

− ri

((
· · · αj · · ·

)T
)

h
(2.150)
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with the finite difference method, which can cause inefficiency and unreliability [57].
On the other hand, the manual preparation of the model function derivatives is time-
consuming and error-prone. This issue can be solved with Mathematica’s computer
algebra tools, which allow the VPA implementation developed in this thesis (Sec. 4.2)
to automatically calculate the model function derivatives.
For the numerical calculation of the pseudoinverse ϕ+(αs), a variety of algorithms

exists, of which the two most successful are, on the one hand, the QR decomposition,
which is fast and reliable for well-conditioned linear least-squares problems, and, on the
other hand, the SVD, which is slower but numerically more stable, especially in the
case of ill-conditioned problems [57, 64]. Preferring stability, the latter was chosen for
the Mathematica implementation (Sec. 4.2) of the VPA. The SVD factorizes the m× n
matrix

ϕ(αs) = USV† (2.151)

into the unitary m×m matrix U, the unitary n×n matrix V and the m×n rectangular
diagonal matrix

S = diag (σ1, σ2, · · · , σn) (2.152)

containing the so-called singular values σj on the diagonal. Note that the number of
measured time steps m is typically much larger than the number of the fit function
components n and therefore the number of σj is limited by n. Exploiting the fact that
the complex-conjugate transpose of an unitary matrix is also its inverse U† = U−1, the
pseudoinverse of the model matrix takes the form

ϕ+(αs) = VS+U†, (2.153)

in which the n×m pseudoinverse

S+ = diag
(
σ−1

1 , σ−1
2 , · · · , σ−1

n

)
(2.154)

is received by inverting the singular values on the diagonal and transposing the off-
diagonal zeros. Since a small singular value σj ≈ 0 has a large reciprocal, a small noise
amplitude can have a huge effect in S+. Therefore, the list of reciprocal singular values
is typically truncated

σ−1
j =

{
σ−1

j if σj > t

0 otherwise
(2.155)

at a certain threshold t. This is one possible form of regularization, which improves the
numerical stability of the SVD [64].
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3. Generalized magic angle
In transient absorption experiments (Sec. 2), an anisotropic distribution of transition
dipole moments (TDMs) is created by the pump pulse depending on its polarization [19].
Hence, the differential absorbance signal (2.4) depends on the polarizations and the
propagation directions of the pump and the probe pulse. Employing ultrahigh time
resolution, the anisotropic distribution of TDMs that is generated by the pump pulse
evolves because of population and orientation changes [53, 65–68]. Both processes in-
fluence the anisotropy of the distribution. On the one hand, states with a molecular
structure different from the initial state may be populated. Thus, anisotropy measure-
ments (Sec. 3.6) can be used to determine the relative orientation of TDMs with respect
to the molecular structure [69–71] and to reveal time constants and reaction paths of, e.g.,
energy transfer in reaction centers [72,73], exciton delocalization in dendrimers [74,75],
ligand docking [76–78], or electron hopping in proteins [79, 80]. On the other hand, the
molecules may rotate. In solution, rotational diffusion makes the excited subensemble
isotropic with time [71,81].

If only population changes are of interest, all these anisotropy-changing effects and
their associated decays complicate the measured signal. Therefore, experimental con-
ditions have been derived under which a spectroscopic signal contains contributions
neither from molecular structural changes nor from rotational diffusion but reflects the
pure population dynamics. The most prominent condition is the “magic-angle” con-
figuration for linearly polarized pump and probe pulses in which the two polarization
directions subtend a relative angle of χMA = arccos(1/

√
3) ≈ 54.7◦ [19]. The case

of circularly polarized pump pulses and linearly polarized probe pulses was treated by
Cho [82] who showed that by choosing an angle of 90◦ − χMA ≈ 35.3◦ between the
propagation directions of pump and probe one can suppress contributions from electric
quadrupole transition moments allowing for a selective measurement of the combined
electric-dipole–magnetic-dipole nonlinear response terms contributing to the circularly
polarized two-dimensional pump-probe signal.
In order to generalize these known conditions and to analyse the geometry of arbitrary

pulse propagation directions and polarizations with arbitrary ellipticity (Sec. 3.1), the
probability Pj(T, λ) that a single molecule contributes to the difference absorbance signal

∆A(T, λ) =
∑

j

∆Aj(T, λ) =
∑

j

cV Pj(T, λ) (3.1)

is derived either with the transition-probability approach (Sec. 3.2) or the response-
theory approach (Sec. 3.3). In both cases it is assumed that the molecules form an
isotropic sample having the particle concentration c (2.34), i.e., the molecules are as-
sumed to be randomly oriented inside the volume V that is illuminated by both the pump
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Figure 3.1.: Pump–probe transient absorption
geometry. Pump and probe beam are spatially
overlapped in the sample and their wave vec-
tors enclose the angle β. Adjusting the angle
χ between the linear polarization vectors of the
pump and probe pulses to the magic angle of
χMA = arccos(1/

√
3) ≈ 54.7° suppresses struc-

tural information and orientation dynamics in
the measured signal. The coordinate system
used throughout this section is shown on the left.
The pump wave vector is always assumed to be
parallel to the Z direction. [4, Fig. 1] © IOP Pub-
lishing. Reproduced with permission. All rights
reserved

and the probe beam. As explained in Sec. 3.4, it was discovered that anisotropic contri-
butions in transient absorption signals can also be suppressed for elliptical polarization.
Finally, Sec. 3.5 extends the discussion to two-dimensional spectroscopy.

3.1. Electric-field polarization
The pump and probe pulses are spatially overlapped in the sample, as shown exemplarily
in Fig. 3.1. Therefore, the electric field interacting with the sample consists of two laser
pulses in the case of transient absorption spectroscopy. Each laser pulse is described as
a plane polychromatic wave according to (2.72). Despite the fact that the polarization
vector e(r, t) may depend on space r and time t [see eq. (2.73)], the focus of this section
lies on laser pulses with static polarization but variable ellipticity, as e.g. generated with
a broadband wave-plate. In general, these pulses do not propagate collinearly, but their
wave vectors kpu and kpr enclose an angle β. The linear polarization vectors epu and
epr of the pulses in Fig. 3.1 also enclose an arbitrary angle χ.
Without loss of generality the laboratory Z axis can be chosen as propagation direction

of one of the beams, say the pump, and therefore the polarization vector

epu =

 cos(χpu)
eiδpu sin(χpu)

0

 (3.2)

lies in the XY plane perpendicular to the propagation direction as depicted in Fig. 3.1.
The ratio of the polarization amplitudes in X and Y direction is described by the angle

χpu = arctan
(

|epu,Y |
|epu,X |

)
(3.3)
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and the phase difference between the X and Y polarization components by the angle
δpu. The probe polarization in the laboratory frame

epr = RX(β) ·

 cos(χpr)
eiδpr sin(χpr)

0

 =

 cos(χpr)
eiδpr cos(β) sin(χpr)
eiδpr sin(β) sin(χpr)

 (3.4)

is described analogously, but in addition the rotation matrix RX(β) performs a rota-
tion about the laboratory X axis with the angle β to take into account the different
propagation direction.
To measure only population changes, the magic angle [19] of χMA = arccos(1/

√
3) ≈

54.7◦ is applied. As any polarization vector lies in a plane perpendicular to the propa-
gation direction, the angle β affects the polarization vector in the laboratory coordinate
system. To maintain the magic-angle configuration for any β it is necessary to choose
either the pump or the probe polarization parallel to the rotation axis of β, which is
chosen as the X axis in Fig. 3.1.

3.2. Transition-probability approach
In order to determine Pj in (3.1), time-dependent perturbation theory (Sec. 2.2.1) is
used to calculate the transition probability (superscript “T”)

P
(T)
fi (t) = 1

ℏ2

∣∣∣∣∫ t

t0
dτ eiωfiτH ′

fi(τ)
∣∣∣∣2 (3.5)

for a transition from an initial state |i⟩ to a final state |f⟩ of a molecular system due to the
perturbative electric field of the laser pulses [25, 83]. After applying the electric-dipole
interaction Hamiltonian from (2.6)

H ′
fi(τ) = ⟨f |H ′(τ)|i⟩ = ⟨f |−µ · E⊥(r, τ)|i⟩ = −µfi · E⊥(r, τ) = −µfiµ̃fi · E⊥(r, τ)

(3.6)
with the electric field of a single laser pulse from (2.72) and the amplitude and the
orientation of the TDM µfi and µ̃fi, respectively, the resulting transition probability

P
(T)
fi (t) = 1

4ℏ2

∣∣∣∣µ̃fi · e

∫ t

t0
dτ eiωfiτµfiE(r, τ)ei(k0·r−ω0τ)

+µ̃fi · e∗
∫ t

t0
dτ eiωfiτµfiE

∗(r, τ)e−i(k0·r−ω0τ)
∣∣∣∣2 (3.7)

can be simplified in the rotating-wave approximation, in which the first of the two terms
in (3.7) dominates near the resonance ω0 → ωfi. The transition probability for times t
after the end of the laser-pulse interaction is then the product of an orientation factor
and an amplitude factor. While the amplitude describes in fact the population evolution
that one ultimately wants to measure, the goal of this section is to find anisotropy-free
conditions irrespective of those dynamics. Thus, specifically the orientation factor

P
(T)
fi = |µ̃fi · e|2 (3.8)
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Figure 3.2.: Pump–probe dynamics. One possibility of how
the system may evolve and interact with the light pulses in
transient absorption: The pump pulse induces the first transi-
tion |0⟩ → |1⟩ and after the evolution of the system |1⟩ → |2⟩
during time ∆t, the subsequent probe pulse causes the tran-
sition |2⟩ → |3⟩. The pump and probe transitions have their
TDMs, µ̃pu and µ̃pr, oriented in a certain direction, enclosing
the angle α. [4, Fig. 2] © IOP Publishing. Reproduced with
permission. All rights reserved

that depends explicitly on vectorial properties is considered in the following. One finds
that P (T)

fi is proportional to the squared projection of the complex electric-field polar-
ization vector e onto the normalized TDM direction µ̃fi.
In a transient absorption experiment the system under study may behave as depicted

in Fig. 3.2. The pump pulse excites a system from the initial (ground) state |0⟩ to an
excited state |1⟩; during time ∆t the system evolves from |1⟩ to |2⟩; finally, the probe
pulse triggers the transition from |2⟩ to |3⟩. Without loss of generality, one can use
this representative signal path to derive the orientation dependence of a single signal
contribution Pj (3.1). First, the transition probabilities,

P (T)
pu = |µ̃pu · epu|2, (3.9)

P (T)
pr = |µ̃pr · epr|2, (3.10)

for both the pump and the probe interaction are calculated based on (3.8). From here on
the TDM directions (µ̃pu, µ̃pr) and the transition probabilities (P (T)

pu , P (T)
pr ) are labelled

with the corresponding pulse rather than the involved states. For deriving anisotropy-
free conditions, it is relevant that the pump and the probe pulses can interact with
different TDM directions µ̃pu and µ̃pr, respectively, which enclose in general an arbitrary
angle α.
The derivation of Pj in eq. (3.1) can be divided into three steps. In contrast to the

chronological order in Fig. 3.2, one first considers a probe TDM pointing in direction
(θ, ϕ) and calculates the probability Ppu that a corresponding pump TDM was excited by
the pump pulse. In the second step the probability P (T)

pr of probing an excited molecule
with such a probe TDM is determined. Finally the results for Ppu and P (T)

pr are combined
to derive the probability Pj for a single signal contribution.
To calculate Ppu one has to define the normalized pump and probe TDM directions

µ̃pu and µ̃pr, respectively. Arbitrary but real-valued TDMs enclosing an angle α are
assumed. The orientation of the TDMs is described in spherical coordinates with the
polar angle θ and the azimuthal angle ϕ. In the cartesian coordinate system of Fig. 3.1
the Z direction corresponds to θ = 0°, the X direction to (θ = 90°, ϕ = 0°), and the Y
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Figure 3.3.: Pump–probe TDM rela-
tion. If the probe TDM of an excited
molecule is oriented in direction µ̃pr (red
arrow), a pump TDM µ̃pu pointing onto
the blue circle was excited, because all
these pump TDMs enclose the angle α
with the probe TDM. [4, Fig. 3] © IOP
Publishing. Reproduced with permis-
sion. All rights reserved

direction to (θ = 90°, ϕ = 90°). First one defines a probe TDM

µ̃pr(θ, ϕ) =

sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

cos(θ)

 (3.11)

pointing in the direction (θ, ϕ), which is depicted as red arrow in Fig. 3.3. The cor-
responding pump TDM then has to point to somewhere on the blue circle around µ̃pr
because of the assumption that the pump and probe TDMs enclose the angle α. To
describe all possible pump TDM directions one can choose an initial element

µ̃pu,ini(θ, ϕ, α) =

sin(θ − α) cos(ϕ)
sin(θ − α) sin(ϕ)

cos(θ − α)

 (3.12)

and rotate it around µ̃pr by using the three-dimensional rotation matrix Rn(γ) which
rotates counter-clock-wise around the unit vector n by the angle γ resulting in the pump
TDM direction

µ̃pu(θ, ϕ, α, γ) = Rµ̃pr(γ) · µ̃pu,ini(θ, ϕ, α). (3.13)
In an isotropic sample each of the pump TDMs on the blue circle in Fig. 3.3 contributes

to the signal for a given µ̃pr with the same probability. Therefore, the pump TDMs point
on each infinitesimal line element

dl = sin(α) dγ (3.14)

of the circle with the same orientation probability density (superscript “O”) P (O)
pu given

by
1

2π sin(α)
dl = 1

2π
dγ = P (O)

pu dγ . (3.15)

If any anisotropy were present before excitation, for example due to an orientation or
alignment process [84–88] not considered here, the probability distribution for µ̃pu would
depend on direction.

49



X

Z

Y

α=0°

X

Z

Y

α=90°

Figure 3.4.: Pump distribution Ppu(θ, ϕ) for a linearly polarized pump pulse. For each direction
(θ, ϕ) a vector is drawn with length Ppu(θ, ϕ) as illustrated by the green arrows in the left image.
All these vectors point on a three-dimensional surface. This pump distribution Ppu(θ, ϕ) is
depicted here for a linearly polarized pump pulse (χpu = 0°, δpu = 0°). The case α = 0° is shown
on the left, while the right hand side depicts the case for α = 90°. [4, Fig. 4] © IOP Publishing.
Reproduced with permission. All rights reserved

Now one can multiply the orientation probability P (O)
pu of (3.15) with the transition

probability P (T)
pu of (3.9), insert the pump TDM direction of (3.13) and the pump polar-

ization vector of (3.2) and integrate over all possible pump TDMs pointing on the blue
circle. As a result derived with Mathematica [89] one gets the pump probability

Ppu(θ, ϕ, α, χpu, δpu) =
∫ 2π

0
dγ P (O)

pu P (T)
pu = 1

2π

∫ 2π

0
dγ |µ̃pu · epu|2

= 1
2π

∫ 2π

0
dγ
∣∣∣ cos(χpu)[cos(θ) cos(ϕ) cos(γ) sin(α)

− cos(α) cos(ϕ) sin(θ) − sin(α) sin(ϕ) sin(γ)]
+ eiδpu sin(χpu)[cos(θ) cos(γ) sin(α) sin(ϕ)

− cos(α) sin(θ) sin(ϕ) + cos(ϕ) sin(α) sin(γ)]
∣∣∣2

= 1
8

sin2(α)[3 + cos(2θ) − 2 cos(2ϕ) cos(2χpu) sin2(θ)]

+ 1
8

sin2(θ)[1 + 3 cos(2α)] cos(δpu) sin(2ϕ) sin(2χpu)

+ 1
2

sin2(θ) cos2(α)[1 + cos(2ϕ) cos(2χpu)]

(3.16)

depending on the chosen direction (θ, ϕ) for the probe TDM, the angle α between the
pump and probe TDMs and the electric-field polarization (χpu, δpu) of the pump pulse.

For an illustration, one can draw a vector for every probe TDM orientation (θ, ϕ),
choosing the corresponding pump probability Ppu as its length. All these vectors (Fig. 3.4,
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Figure 3.5.: Pump distribution Ppu(θ, ϕ) for a circularly polarized pump pulse (χpu = 45°,
δpu = 90°) with α = 0° (left) and α = 90° (right). [4, Fig. 5] © IOP Publishing. Reproduced
with permission. All rights reserved

left, green) point on a three-dimensional surface. This surface illustrates the angular
(θ, ϕ) distribution of the pump probability Ppu. Such a distribution is exemplarily de-
picted for a pump pulse propagating in the Z direction with linear (Fig. 3.4), circular
(Fig. 3.5) and elliptical (Fig. 3.6) polarization. In each figure the left image refers to an
angle of α = 0° and the right image to an angle of α = 90° between the pump and probe
TDMs.
In Fig. 3.4 the linearly polarized (χpu = 0°, δpu = 0°) pump pulse leads to the

commonly known cos2 distribution for parallel (α = 0°) and a torus-shaped distribution
for perpendicular (α = 90°) TDMs. Both distributions inherit the symmetry of the three-
dimensional polarization vector epu. In the case of linear polarization in X direction the
distribution is rotationally symmetric around the X axis and has mirror-plane symmetry
with respect to the Y Z plane.
Circular polarization (χpu = 45°, δpu = 90°) as indicated by the blue circle in Fig. 3.5

leads to rotation symmetry around the propagation direction (Z axis) instead of the
polarization direction and to mirror-plane symmetry with respect to the XY plane [90,
91].
In the case of elliptically polarized light (χpu = 45°, δpu = 70°) in Fig. 3.6 only the

XY mirror-plane symmetry is maintained independent of α, but no rotation symmetry
remains.
Now one can proceed with the second step and insert the probe TDM direction (3.11)

and the probe polarization (3.4) into (3.10) to calculate the probability

P (T)
pr (θ, ϕ, χpr, δpr, β) = |µ̃pr · epr|2 =

∣∣∣ sin(θ) cos(ϕ) cos(χpr)+cos(θ) sin(χpr)eiδpr sin(β)

+ sin(θ) sin(ϕ) sin(χpr)eiδpr cos(β)
∣∣∣2 (3.17)

to probe an excited molecule with its probe TDM pointing into the chosen direction
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Figure 3.6.: Pump distribution Ppu(θ, ϕ) for an elliptically polarized pump pulse (χpu = −45°,
δpu = −70°) with α = 0° (left) and α = 90° (right). [4, Fig. 6] © IOP Publishing. Reproduced
with permission. All rights reserved

(θ, ϕ). Again, each direction vector (θ, ϕ) with length P (T)
pr is used to construct a surface

that illustrates the probe distribution as depicted in Fig. 3.7 (left, red) for a linearly
polarized probe pulse.

In the last step one has to consider the probability that the probe TDM of a molecule
points into the chosen direction (θ, ϕ). In an isotropic sample this probability is inde-
pendent of direction. Therefore, the probe TDM points on each infinitesimal small area

dA = sin(θ) dθ dϕ (3.18)

of the unit sphere with the same orientation probability density P (O)
pr given by

1
4π

dA = 1
4π

sin(θ) dθ dϕ = P (O)
pr dθ dϕ . (3.19)

Finally one multiplies the pump probability Ppu (3.16) with the probe orientation
probability P (O)

pr (3.19) and the probe transition probability P (T)
pr (3.17) and integrates
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Figure 3.7.: Pump and probe distributions. The left side depicts the pump distribution Ppu

(blue, χpu = 0°, δpu = 0°, α = 0°) and the probe distribution P (T)
pr (red, χpr = −54.7°, δpr = 0°)

separately, whereas the right side illustrates the overlap distribution PpuP
(T)
pr . [4, Fig. 7] © IOP

Publishing. Reproduced with permission. All rights reserved

over all possible orientations (θ, ϕ). As a result one gets the probability

Pj(α, χpu, δpu, χpr, δpr, β) =
∫ 2π

0
dϕ
∫ π

0
dθ PpuP

(T)
pr P (O)

pr

= 1
60

{
− 2 cos2(χpr)[−3 + cos(2χpu)]

+ [7 − cos(2β) + 2 cos2(β) cos(2χpu)] sin2(χpr)

− 2 cos(β) cos(δpr) cos(δpu) sin(2χpr) sin(2χpu)
}

+ 1
60

cos2(α)
{

2 cos2(χpr)[1 + 3 cos(2χpu)]

+ [−1 + 3 cos(2β) − 6 cos2(β) cos(2χpu)] sin2(χpr)

+ 6 cos(β) cos(δpr) cos(δpu) sin(2χpr) sin(2χpu)
} (3.20)

that a single molecule contributes to the pump–probe signal ∆Aj depending on the angle
α between the pump and probe TDMs and the electric-field polarization of the pump
(χpu, δpu) and the probe pulse (χpr, δpr, β). For multiple spectrally overlapping signals it
is necessary to repeat the calculation above for all pump and probe TDMs combinations
of the involved signal paths and to sum the signals according to (3.1).
To validate the correctness of the rotational averaging procedure in the transition-

probability approach (see Sec. 3.2), one can apply an alternative approach using Euler
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rotations. Again one assumes arbitrary but real-valued TDMs

µ̃pu(ϕ, θ, γ) = R(ϕ, θ, γ) ·

0
0
1

 , (3.21)

µ̃pr(ϕ, θ, γ, α) = R(ϕ, θ, γ) · RY (−α) ·

0
0
1

 , (3.22)

enclosing an angle α, here achieved by a rotation matrix RY rotating the initial vector
around the Y axis. The Euler rotation matrix [92]

R(ϕ, θ, γ) = RZ(ϕ) · RY (θ) · RZ(γ) (3.23)

allows to choose an arbitrary orientation. Now the definition of the pump (3.21) and
probe (3.22) TDM directions and the definition of the pump (3.2) and probe (3.4)
electric-field polarization vectors are applied to the corresponding equations of the tran-
sition probability (3.9) and (3.10) and rotational averaging [42,93–97],

Pj = 1
8π2

∫ 2π

0
dϕ
∫ π

0
dθ
∫ 2π

0
dγ P (T)

pu P (T)
pr sin(θ), (3.24)

is performed over the product of the pump and probe transition probabilities to calculate
the probability Pj . The result is the same as in (3.20).
A graphical interpretation of (3.20) is shown in Fig. 3.7. The pump pulse generates

an excited distribution shaped by the pump polarization and the angle α (Fig. 3.7, left,
blue). The probe pulse queries a distribution shaped by the probe polarization (Fig. 3.7,
left, red). Therefore, the probability Pj depends on the product of both distributions
(Fig. 3.7, right, green) over which one has to integrate, i.e., their overlap.
The α dependence of the pump-induced distribution Ppu connects the probability

Pj to the molecular structure. On the one hand, one can exploit this property to ex-
tract structural information from anisotropy measurements; on the other hand, one can
suppress the structure dependence of the signal to extract information on population
dynamics. Removing the structure dependence is possible if the α-related deformation
of the pump-induced distribution does not affect the intersection volume between the
pump and probe distribution.
To find magic-angle configurations for arbitrarily polarized pump and probe pulses,

thus, the α dependence of the probability Pj has to vanish. According to (3.20), this is
the case for each configuration that fulfills{

2 cos2(χpr)[1 + 3 cos(2χpu)]

+ [−1 + 3 cos(2β) − 6 cos2(β) cos(2χpu)] sin2(χpr)

+ 6 cos(β) cos(δpr) cos(δpu) sin(2χpr) sin(2χpu)
}

= 0, (3.25)
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because α occurs in (3.20) only in the second term. (3.25) is a central result of the
present work as it provides the most general magic-angle condition for arbitrary exci-
tation geometry and static pulse polarizations. Examples for particular realizations of
(3.25) and their relation to the known magic-angle limiting cases will be discussed in
Sec. 3.4.

3.3. Response-theory approach
Compared to the transition-probability approach, the response-theory approach is less
illustrative but more general. It fits into the general framework of nonlinear response
functions [24, 25, 45, 98] and therefore allows to discuss magic-angle conditions not only
for transient absorption, but also for 2D spectroscopy and third-order spectroscopy in
general. These techniques are based on the third-order polarization (2.103) [24, 25].
Being interested in orientation effects, one can focus on the tensor properties of the
response function S(3) and the vector properties of the electric field E. The third-order
response function S(3) is a tensor T(4) of rank four that interacts three times with the
complex polarization vector of the electric field

T(4) ... (e3 ⊗ e2 ⊗ e1). (3.26)

The three polarization vectors e1, e2 and e3 are assigned to individual laser pulses with
different but constant polarization. This approximation is possible if the electric field
E(r, t) consists of temporally separated laser pulses. In third-order spectroscopy, the
information contained in the measured signal is filtered by the phase matching, phase
cycling and time ordering applied in the specific experiment (see Sec. 2.2.5). These filter
conditions also affect the orientation effects in the signal, e.g., the time ordering defines
the order of the polarization vectors in (3.26) and therefore the outcome of this equation.
For transient absorption no phase cycling is applied. According to the phase matching
conditions

kS = kpu − kpu + kpr and kS = −kpu + kpu + kpr (3.27)
for a pump–probe signal detected along direction kS the sample interacts twice with the
pump and once with the probe pulse. These experimental conditions result in the two
combinations

T(4) ...
(
epr ⊗ e∗

pu ⊗ epu
)

and T(4) ...
(
epr ⊗ epu ⊗ e∗

pu

)
, (3.28)

respectively, one has to consider [25]. Like the filter conditions, mentioned above, the
polarization sequence is an additional filter parameter, which allows to measure specific
elements of the tensor T(4).

For isotropic samples, like randomly oriented noninteracting molecules in solution,
which are the focus of this thesis, the tensor T(4) needs to be rotationally averaged
according to (2.49). As in (3.26), the rotationally averaged tensor (denoted by the ring
accent) interacts three times with the electric field of the laser pulses,

T̊(4) ... (e3 ⊗ e2 ⊗ e1) = T(3) .. (e3 ⊗ e2) = T(2) · e3 = T (1). (3.29)
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The vanishing ring accent denotes that the contracted tensors are not isotropic since the
electric-field polarization introduces a preferred direction. Each interaction such as in

T(3) = T̊(4) · e =
∑
D

T̊
(4)
ABCD · eD (3.30)

results in a tensor contraction and finally the remaining tensor of rank one, T (1), carries
the vector property of the third-order polarization P

(3)
⊥ .

A different interpretation of the interactions in (3.29) is as follows. The polariza-
tion of the electric field is used to select the combination of the tensor elements being
measured. Therefore, the question arises which tensor elements are relevant for a magic-
angle condition. Because the magic angle is applied to suppress orientation effects and
retain only isotropic signals, one has to search for the isotropic part of T(2), i.e., after
two pump-pulse interactions. Again rotational averaging

T̊
(2)
AB =

∑
ab

I
(2)
AB:abT

(2)
ab (3.31)

provides the answer. The tensor T̊(2) contains the isotropic part of T(2). Using the
weighting factor (2.39) known from the literature [25,42], rotational averaging results in
a tensor

T̊(2) =

d 0 0
0 d 0
0 0 d

 (3.32)

described by a diagonal matrix consisting of nine elements

d = 1
9

(
t(4)
xxxx + t(4)

xxyy + t(4)
xxzz + t(4)

yyxx + t(4)
yyyy + t(4)

yyzz + t(4)
zzxx + t(4)

zzyy + t(4)
zzzz

)
(3.33)

that belong to the tensor t(4) [see (2.51)] in the molecule-fixed frame. Therefore, to
perform a third-order response experiment under magic-angle condition, one has to
select electric field polarization vectors for which the measured signal contains only
the mentioned nine tensor elements of t(4).
Under ideal phase matching, the third-order polarization emits a signal field

ES ∝ iωSP
(3)
⊥ (t) (3.34)

with the center frequency ωS [compare (2.109)] that is in a transient absorption experi-
ment self-heterodyne detected [24,25],

I(t) ∝ Re [E∗
LO(t)ES(t)], (3.35)

using the probe pulse as the local oscillator E∗
LO(t) [compare (2.110)]. Therefore the

projections

T̊(4) ...
(
e∗

pr ⊗ epr ⊗ e∗
pu ⊗ epu

)
and T̊(4) ...

(
e∗

pr ⊗ epr ⊗ epu ⊗ e∗
pu

)
(3.36)
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of the emitted signal field onto the polarization e∗
pr reach the detector.

In the final step, the definitions of the electric-field polarizations (3.2) and (3.4) are
applied to solve the equation

T̊(4) ...
(
e∗

pr ⊗ epr ⊗ e∗
pu ⊗ epu + e∗

pr ⊗ epr ⊗ epu ⊗ e∗
pu

)
= 2d (3.37)

with d given by (3.33) to find an experimental configuration fulfilling the magic-angle
condition, i.e., a configuration for measuring only the isotropic signal d (3.33). This
procedure is simplified by the following approach. First, the isotropic contribution from
the general tensor T̊(4) is removed by setting each individual tensor element in (3.33)
equal to zero. Then, with the remaining tensor T̊(4)

aniso, the anisotropy signal results in

T̊(4)
aniso

.

.

.

(
e∗

pr ⊗ epr ⊗ e∗
pu ⊗ epu + e∗

pr ⊗ epr ⊗ epu ⊗ e∗
pu

)
={

2 cos2(χpr)[1 + 3 cos(2χpu)] + [−1 + 3 cos(2β) − 6 cos2(β) cos(2χpu)] sin(2χpu)

+ 6 cos(β) cos(δpr) cos(δpu) sin(2χpr) sin(2χpu)
}

× (t(4)
xyxy + t(4)

xyyx + t(4)
xzxz + t(4)

xzzx + t(4)
yxxy + t(4)

yxyx

+ t(4)
yzyz + t(4)

yzzy + t(4)
zxxz + t(4)

zxzx + t(4)
zyyz + t(4)

zyzy). (3.38)

To measure under magic-angle conditions, the anisotropic signal contribution (3.38) has
to vanish. This is achieved for each configuration that fulfills (3.25), i.e., the same con-
dition is retrieved here as in the transition-probability approach. Apart from this confir-
mation of the transition-probability approach (Sec. 3.2), the response-theory approach
can also be used to derive magic-angle conditions for geometries other than pump–probe
spectroscopy (see, e.g., Sec. 3.5 for 2D spectroscopy).

3.4. Generalized magic-angle condition for transient absorption
As concluded in Sec. 3.2 and Sec. 3.3, an anisotropy-free pump–probe measurement
requires an experimental configuration in which the pump polarization (χpu, δpu), the
probe polarization (χpr, δpr) and the probe direction angle β fulfill the magic-angle
condition (3.25). Interestingly, the phase differences δpu and δpr occur only in the last
of the three terms of (3.25). Thus if one demands for this term

cos(β) cos(δpr) cos(δpu) sin(2χpr) sin(2χpu) = 0, (3.39)

the remaining magic-angle condition{
2 cos2(χpr)[1 + 3 cos(2χpu)] + [−1 + 3 cos(2β) − 6 cos2(β) cos(2χpu)] sin2(χpr)

}
= 0
(3.40)

is valid for any phase difference δpu and δpr, i.e., it is valid for any ellipticity that can be
achieved for a given angle χpu and χpr. However, these angles still have to fulfill (3.40).
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(3.39) offers five possibilities for how any dependence of (3.25) onto the phase differences
δpu and δpr can be eliminated.
Case 1: The amplitude ratio of the pump pulse χpu could be set to 0° such that

sin(2χpu) = 0. This corresponds to selecting a linear pump polarization along the X
axis and it is intuitively clear that the phase difference δpu is not relevant if the pump
polarization consists only of an X component. The resulting rotation symmetry with
respect to the X axis (see Fig. 3.4) cancels the β dependence and simplifies (3.40) to

χpr = arccos
( 1√

3

)
≈ 54.7°. (3.41)

For a linearly polarized probe pulse (δpr = 0°) this is the well-known magic-angle condi-
tion [19], but the condition is also valid for an elliptical polarized probe pulse with any
phase difference δpr, because the δpr dependence vanishes from the general magic-angle
condition (3.25) due to fulfillment of (3.39).
Case 2: To fulfill (3.39), the probe polarization is chosen to be parallel to the X axis,

χpr = 0°, such that sin(2χpr) = 0. The β dependence vanishes due to rotation symmetry
with respect to the X axis. Then the phase difference δpr is not relevant because the
probe polarization consists only of an X component. (3.40) then simplifies to

χpu = arccos
( 1√

3

)
≈ 54.7°. (3.42)

Similar to the first case, for linearly polarized pump pulses, δpu = 0°, this is the well-
known magic-angle condition and the general approach extends this condition to ellip-
tically polarized pump pulses with any phase difference δpu.
Case 3: Now the pump polarization is chosen to be parallel to the Y axis, χpu = 90°,

such that sin(2χpu) = 0. With only the Y polarization component, the phase difference
δpu is again not relevant. In contrast to cases 1 and 2, the configuration shows no rotation
symmetry around the X axis and β does not vanish, but is connected to χpr via the
magic-angle condition

−1 − 3 cos(2χpr) + 6 cos(2β) sin2(χpr) = 0 (3.43)

that remains from (3.40). This condition is again valid for elliptically polarized probe
pulses with any phase difference δpr.

Case 4: A horizontal probe polarization located in the Y Z plane is chosen, χpr = 90°,
such that sin(2χpr) = 0. Without the vertical X part, the polarization does again
not depend on the phase difference δpr. Similar to case 3, the rotation symmetry with
respect to the X axis vanishes. Now the angle β is connected to χpu via the magic-angle
condition

−1 + 3 cos(2β) − 6 cos2(β) cos(2χpu) = 0 (3.44)
remaining from (3.40), which is valid for an elliptically polarized pump pulse with any
phase difference δpu.
Case 5: The last possibility to fulfill (3.39) for any δpu and δpr dependence is to set

β = 90°, such that cos(β) = 0. Such a perpendicular configuration is not very practical
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Figure 3.8.: Generalized magic-angle condition. The black curve represents the relationship
(3.46) between the propagation angle β of the probe beam and the amplitude ratio χpu of the
pump polarization vector for an arbitrarily polarized pump pulse and a probe pulse with a linear
polarization vector in the Y Z plane (χpr = 90°). Below χpu = 35.3° no solution exists and
therefore no magic-angle configuration can be found. The colored plot markers highlight three
special cases: Circular (red ◦) pump polarization and linear pump polarization for collinear (green
⋄) and noncollinear (blue □) propagation direction. [4, Fig. 8] © IOP Publishing. Reproduced
with permission. All rights reserved

for the thin-film cuvettes used in most time-resolved liquid-phase measurements although
it may be an option in the gas phase. The magic-angle condition (3.40) then simplifies
to

−1 + 3 cos(2χpr) + 6 cos2(χpr) cos(2χpu) = 0 (3.45)

and is valid for elliptically polarized pump and probe pulses with any phase difference
δpu and δpr, respectively.
In case 1 and case 2 discussed above, the polarizations of the pump and the probe

pulses are given by the magic-angle conditions (3.41) and (3.42), respectively. It is
possible to choose any phase difference δpr or δpu, respectively, but the amplitude-ratio
angle is determined by the magic angle of arccos(1/

√
3) ≈ 54.7°. To find a magic-

angle configuration for an arbitrary pump or probe polarization, one of the options from
cases 3-5 has to be applied. If one, e.g., wants to excite the system under study with
an arbitrarily polarized pump pulse in the common nonperpendicular geometry, case 4
would lead to an anisotropy-free configuration. Solving (3.44) for β results in

β = ± arccos 1√
3|sin(χpu)|

(3.46)

and connects the amplitude ratio χpu of the pump pulse to the propagation angle β of
the probe pulse. This relationship is depicted by the black curve in Fig. 3.8 and three
special cases of (3.46) are shown as coloured plot markers.

Case 4a: For collinear pump and probe pulses propagating along the Z direction
(β = 90°) the amplitude ratio becomes χpu = 35.3° (Fig. 3.8, green ⋄). Subtracting both
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amplitude-ratio angles,

χpr − χpu = 90° − 35.3° = 54.7° = χMA, (3.47)

reveals that the angle of 35.3° is the known magic angle, just measured with respect to
the X axis instead of the Y axis. This is only valid for a collinear geometry (β = 0°). For
the commonly used noncollinear geometry (β > 0°), it is necessary to adjust the angles
β and χpu according to (3.46). If one chooses, for example, β = 10° as often employed in
pump–probe experiments a corrected angle of χpu ≈ 35.9° is required. Thus, in contrast
to (3.41) and (3.42) it is not sufficient to rotate the polarization of one of the pulses about
54.7° to achieve the magic-angle configuration if one starts with horizontally polarized
pump and probe pulses (χpu = 90° and χpr = 90°), because of the lacking rotation
symmetry around the X axis.
Case 4b: In the second special limit of case 4, a linearly polarized pump pulse (δpu = 0)

whose polarization is contained in the Y Z plane (χpu = 90°) results in an angle β = 54.7°
(Fig. 3.8, blue □).

Case 4c: Finally for a circularly polarized pump pulse (χpu = 45°, δpu = π/2) one
derives an angle of β = 35.3° = 90° − χMA (Fig. 3.8, red ◦) also found by Cho [82] for a
transient circular dichroism experiment.
Below an amplitude ratio of χpu = 35.3° = 90° − χMA no solution exists for the

limitation of a probe pulse with a linear polarization vector (δpr = 0°) located in the Y Z
plane (χpr = 90°) and therefore no magic-angle configuration.
The result generalizes the known anisotropy-free condition of linearly and circularly

polarized pulses (colored plot markers in Fig. 3.8) to elliptically polarized pulses (black
line in Fig. 3.8).
By design, the signal fulfilling (3.39) does not depend on the phase difference δpu

as resulting from the third-order interaction within the electric dipole approximation.
This means that any remaining experimentally detected presence of a δpu-dependent
signal indicates either higher-order interactions or violation of the electric dipole ap-
proximation. Thus, such an arrangement allows access exclusively to signals of fifth-
or higher-order interaction or it can be used as a sensitive probe for nondipolar tran-
sitions like chiral signals that stem from the combined electric dipole, magnetic dipole
and electric quadrupole interaction [25]. Applications of phase-cycling methods should
be compatible with the generalized magic angle as well.

3.5. Magic-angle condition for 2D spectroscopy
Concerning the electric-field polarization, one advantage of 2D spectroscopy compared to
transient absorption spectroscopy is the possibility to control the polarization state of up
to four instead of two laser pulses. Therefore more polarization combinations are acces-
sible to filter out the desired information from the measured signal as Hochstrasser [45]
and Zanni and coworkers [98] demonstrated. They found polarization sequences that en-
hance weak cross peaks that would ordinarily be covered by dominating diagonal peaks.
Several sample applications are available in the literature [99–107].
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In the literature on 2D spectroscopy specific polarization sequences are often recorded
and combined linearly to obtain derived quantities. However, for anisotropy-free dynam-
ics, the magic-angle condition could also be employed [108], because the response-theory
approach in Sec. 3.3 is not restricted to transient absorption spectroscopy. If one consid-
ers linear polarization and chooses for 2D spectroscopy in pump–probe geometry the first
two pulses to be in parallel polarization, then the known angle of (e1∥e2)∡e3 = 54.7° be-
tween the first two and the third pulse fulfils the magic-angle condition. The same angle
(e1∥e2)∡(e3∥e4) = 54.7° is valid for 2D spectroscopy in phase-matched box geometry if
the polarization vectors of the four pulses are selected to be pairwise parallel.

At least two ways exist to implement such a configuration. On the one hand, the
k vectors of the four laser beams may enclose small angles with respect to each other
and enter the sample approximately collinearly. Thus, the influence of the propagation
vectors onto the polarization vectors may be neglected and in this near-collinear geom-
etry, the polarization vectors e3∥e4 are rotated by 54.7° with respect to e1∥e2. On the
other hand, when the four beams enclose a larger mutual angle and the near-collinear
approximation is not valid, the propagation vectors of the first two pulses k1 and k2
can be considered to define a plane, and the corresponding polarization vectors e1 and
e2 can be chosen to be perpendicular with respect to that plane. Likewise, the last two
pulses k3 and k4 can be considered to define a plane with e3 and e4 being perpendicular
to that plane. To fulfill the magic-angle condition, it is then necessary to choose prop-
agation vectors for which both planes enclose the magic angle of 54.7°. This geometry
thus works for larger inter-beam angles.

3.6. Anisotropy
The magic-angle conditions discussed so far allow to exclusively measure population
changes, because the anisotropy signal is suppressed. In contrast to that, one can also
use a particular polarization configuration of the experimental setup to measure specifi-
cally the anisotropy signal. Two measurements are required, one with mutually parallel
pump and probe polarizations (∆A∥), i.e., χ = 0◦, and one with mutually perpendicular
polarizations (∆A⊥), i.e. χ = 90◦. Again it is necessary to choose one of the polariza-
tions parallel to the X axis to maintain the parallel configuration for any angle β. The
anisotropy defined as

r =
∆A∥ − ∆A⊥

∆A∥ + 2∆A⊥
(3.48)

allows determining the angle between the participating pump and probe TDMs if their
degeneracy is known. For example, if the pumped and probed TDMs µpu and µpr,
respectively, are non-degenerate, one can determine from r the angle

α = arccos
√

1 + 5r√
3

(3.49)

that they enclose [71]. However, overlapping and/or degenerate bands might impede
such a straightforward analysis; only for special cases of degenerate TDMs an equivalent
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Figure 3.9.: Diverging anisotropy. The plotted curves r(a2) = a1r1/(a1 + a2) + a2r2/(a1 + a2)
of the overlapping signals a1 and a2 exemplify the effect of overlapping anisotropy signals. The
amplitude a1 = 1 and the anisotropy r1 = 0.4 of one signal are fixed, whereas a2 and r2 of the
other signal vary. [4, Fig. 9] © IOP Publishing. Reproduced with permission. All rights reserved

relation can be given [68,77,109].

3.6.1. Single signal contribution
Like for deriving the magic-angle conditions, one can apply the general model from
Sec. 3.2 to connect the measured anisotropy to informations about the molecular struc-
ture, i.e., the angle α between the pump and probe TDMs. Using the anisotropy defini-
tion (3.48) for measured absorbance changes (3.1) and the probability Pj (3.20) one can
calculate the anisotropy according to

rj(α) = Pj(α, 0, 0, 0, 0, β) − Pj(α, 0, 0, 90°, 0, β)
Pj(α, 0, 0, 0, 0, β) + 2Pj(α, 0, 0, 90°, 0, β)

= 1
10

[1 + 3 cos(2α)], (3.50)

which is in agreement with the literature result for linearly polarized pulses [110]. Ac-
cording to (3.50), the valid range for the anisotropy is −0.2 ≤ rj ≤ 0.4. As the system
evolves with the time delay ∆t, the structural information α and its dynamic behavior
is masked by rotational diffusion, which results finally in randomly oriented molecules.
Therefore, the anisotropy decays to zero.

3.6.2. Overlapping signal contributions
If the signals of multiple combinations of pump and probe TDMs overlap, the measurable
anisotropy

r =
∑

j ∆A∥,j −
∑

j ∆A⊥,j∑
j ∆A∥,j + 2

∑
j ∆A⊥,j

(3.51)

depends on all signal contributions. With the relation [19]

∆AMA,j =
∆A∥,j + 2∆A⊥,j

3
(3.52)

62



μpu,2 μpu,1

μpr

μpu

n

90° αn
α

Figure 3.10.: Degenerate TDM. In a molecule with a
two-fold degenerate pump TDM µpu, each orientation
(green arrows in the disk) contributes to the measured
signal. One can describe all possibilities with two basis
vectors (µpu,1,µpu,2) and one basis vector can always
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TDM. [4, Fig. 10] © IOP Publishing. Reproduced with
permission. All rights reserved

for absorbance changes detected in magic-angle configuration, it is possible to rewrite
(3.51) to obtain

r =
∑

j rj∆AMA,j∑
j ∆AMA,j

, (3.53)

and thus the anisotropy is the average over the anisotropies rj of each single signal
contribution with the corresponding magic-angle signal ∆AMA,j as a weighting factor.
Therefore, the averaged anisotropy −∞ < r < ∞ clearly deviates from the range −0.2 ≤
rj ≤ 0.4 of a single signal contribution, e.g., if the magic-angle signals ∆AMA,j have
differing signs. In Fig. 3.9 this behaviour of the anisotropy

r(a2) = a1r1
a1 + a2

+ a2r2
a1 + a2

(3.54)

is visualized for two overlapping signals a1 = 1 and a2 with anisotropies of r1 = 0.4
and r2. Both, changes in the signal amplitude a2 and changes in the anisotropy r2
influence the measured anisotropy r. At a2 = −a1, (3.54) has a pole and the anisotropy
r diverges. Experimental anisotropy data which actually diverge because of overlapping
signal contributions can be found in the literature [111–113].

3.6.3. Degenerate transition dipole moments
An example for overlapping anisotropy contributions are molecules with degenerate
TDMs. In such a system [68, 77, 109], the orientation of the TDM is not defined by a
single vector. Instead it is possible to draw a three-dimensional surface shaped depend-
ing on the degeneracy and every vector pointing to any point of this surface represents a
valid orientation of the degenerate TDM. A set of suitable basis vectors can be used to
describe all these directions. Such degenerate TDMs occur typically in highly symmetric
molecules such as porphyrin or benzene. These molecules have a two-fold degeneracy
composed of two perpendicular basis vectors, which form a disk as depicted in Fig. 3.10.
Assuming that the pump TDM is degenerate, one can always choose one of the two basis
vectors to enclose an angle of 90° with the probe TDM. The other basis vector encloses
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in general an arbitrary angle α with the probe TDM. According to (3.50) and (3.53) one
can calculate the anisotropy

r(α) = 1
2
r1(90°) + 1

2
r2(α) = 1

20
[3 cos(2α) − 1] (3.55)

as the average over both signal contributions [109]. The weighting factor of 1/2 is the
same for both pump TDMs because both are pumped with the same probability and
both signals have the same sign. It is also possible to express the anisotropy

r(αn) = 1
20

{3 cos[2(90° − αn)] − 1} = − 1
20

[3 cos(2αn) + 1] (3.56)

dependent on the angle αn = 90° − α between the normal of the disk-shaped surface in
Fig. 3.10 and the probe TDM. The result (3.56), derived with the general approach, is
in agreement with the literature [68,77,109].
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4. Variable projection algorithm

A valuable tool utilizing the VPA (Sec. 2.4) for data analysis is the open-source TIMP
[58], which can be operated via the graphical user interface Glotaran [15]. However,
until recently [17], this software package did not allow for fitting the pronounced vi-
brational oscillations of the trihalide molecules according to eq. (4.1). Therefore, a
custom version of the partitioned VPA, capable to process the complex-valued, linear
oscillation-associated difference spectra (OADS) fit parameters from eq. (4.2), was im-
plemented in Mathematica [18] on top of the built-in Levenberg–Marquardt algorithm by
following a recent Matlab implementation [57] and the R package TIMP [58]. Further-
more, this new implementation allows to use the sophisticated computer-algebra tools of
Mathematica to flexibly design new customized model functions. Another advantage of
the computer-algebra tools is that Mathematica can automatically calculate the model
function’s partial derivatives and thus construct the exact Jacobian matrix instead of
approximating it with the finite-difference method.

4.1. Modelling vibrational wavepacket oscillations
For taking the vibrational WP signals (Sec. 2.2.2) in Fig. 2.1 into account, each of the
m vibrational modes

∆Aosc(λ, T ) =
m−1∑
j=0

2Aj(λ) cos[ωjT + ϕj(λ)]e−δjT

=
m−1∑
j=0

[OADSj(λ)eiωjT −δjT + OADS∗
j (λ)e−iωjT −δjT ] (4.1)

is modelled as a component with a spectrum Aj(λ) and a concentration profile, which
oscillates with angular frequency ωj and decays with a damping factor δj . In general,
this temporal oscillation is accompanied by a spectral oscillation, which is considered by
the wavelength-dependent phase ϕj(λ). By switching to the exponential representation
of the cosine, the non-linear fit parameter ϕj(λ) is combined with Aj(λ) and therefore
transformed into a single, complex linear fit parameter: the OADS

OADSj(λ) = Aj(λ) eiϕj(λ), (4.2)

which matches ideally the concept of the VPA, but requires an algorithm designed for
complex numbers [114]. To have a fit algorithm fulfilling all the above-mentioned re-
quirements and to be as flexible as possible in extending the fit function, a custom version
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of the complex partitioned VPA was implemented in Mathematica [18], as described in
the next Sec. 4.2. Analogous to this implementation, global fitting of kinetic and oscil-
lating signals was also developed independently and simultaneously by van Stokkum and
coworkers [17], who use the sum of a sine and cosine function instead of the exponential
cosine representation.
In addition to the molecular kinetics and oscillations, the coherent artefact (CA)

CA(λ, T ) =
2∑

j=0
CAADSj(λ) ∂

j

∂T j
IRF(λ, T ) (4.3)

is modelled by multiplying the CA-associated difference spectra (CAADS) CAADSj(λ)
with the instrumental response function (IRF)

IRF(λ, T ) = 1√
2π

2
√

2 ln 2
∆T (λ)

e−4 ln(2)[T −t0(λ)]2/∆T (λ)2 (4.4)

and its first and second derivative. The Gaussian shape is based on the assumption
that the IRF stems from the convolution of Gaussian-shaped pump and probe pulses. If
the chirp is corrected as described in Fig. 2.1b, the wavelength dependence of time zero
t0(λ) can be removed. Additionally, the minor wavelength dependence of the full width
at half maximum (FWHM) ∆T (λ) can often be neglected.

Since a second Gaussian-shaped peak occurs in Fig. 2.1b right after the CA due to a
WP on the excited I –

3 PES (Sec. 2.2.2), the flexibility of the custom VPA implementation
(Sec. 4) is exploited to add another model function, which describes this WP

WP(λ, T ) = WPADSj(λ)e−4 ln(2)[T −tWP,0(λ)]2/∆tWP(λ)2 (4.5)

with the WP-associated difference spectra WPADSj(λ) and a Gaussian function similar
to the CA model. Despite the small wavelength-dependent shift tWP,0(λ) visible in the
dataset, the WP was sufficiently approximated by neglecting the wavelength dependence
for tWP,0(λ) and ∆tWP(λ). Analogous to modelling this Gaussian-shaped WP, it is
possible with the mentioned VPA implementation to consider other signals that deviate
from the extended model consisting of kinetics, oscillations and CA.
Finally, all parts are combined to the overall model function

∆Amodel(λ, T ) = CA(λ, T ) + {[∆Akin(λ) + ∆Aosc(λ) + WP(λ)] ∗ IRF}(T ) (4.6)

in which the kinetic model (2.118), the oscillation model and the WPmodel are convolved
∗ with the IRF to consider the limited temporal resolution of the experimental setup.

4.2. Mathematica implementation
The Mathematica VPA implementation developed in this thesis is based on Mathemat-
ica’s built-in function minimizer

{fmin, αmin} = FindMinimum[f @@ αsym, αinit];,
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which can be used to numerically iterate the fit parameters
αsym = {α1, α2, ...};

of the variable projection norm f @@ αsym (2.128) until a local minimum fmin at
αmin = {α1 -> α1,min, α2 -> α2,min, ...};

is found in the region around the initialization point
αinit = {{α1, α1,0}, {α2, α2,0}, ...};.

Selecting the Levenberg–Marquardt algorithm
1 {fmin, αmin} = FindMinimum[Null, αinit,
2 Method -> {
3 "LevenbergMarquardt",
4 "Residual" -> rfunc @@ αsym,
5 "Jacobian" -> jfunc @@ αsym (*or "FiniteDifference"*)
6 }
7 ];

allows to directly use the residual function rfunc @@ αsym (2.129) and the Jacobian ma-
trix jfunc @@ αsym (2.148) of the variable projection norm f @@ αsym, which therefore
can be neglected by passing Null to FindMinimum[...]. Furthermore, one can easily
switch between the exact Jacobian and its finite difference approximation by replac-
ing jfunc @@ αsym with the "FiniteDifference" option and vice versa. This approximation
is a quite useful backup strategy if, for some reason, the calculation of the exact Jacobian
fails. In addition, the finite-difference method allows a step-by-step development of the
VPA, because, first, one can focus on the implementation of the residual function

1 rfunc[α__?NumericQ] := Module[
2 {ϕ, ϕpinv, c},
3 ϕ = Compile[{{xvec, _Real, 1}},
4 Evaluate[ϕvec /. Thread[xsym -> (Indexed[xvec, #] & /@ Range@Length@xsym)]],
5 Parallelization -> True,
6 RuntimeAttributes -> {Listable},
7 RuntimeOptions -> "Speed"] @ x;
8 ϕpinv = PseudoInverse@ϕ;
9 c = ϕpinv.y;

10 Re[y - ϕ.c]
11 ];

without worrying about the Jacobian. For each iteration step i of the Levenberg–
Marquardt algorithm (2.146) or (2.147), FindMinimum[...] calls the residual function with
the current numeric fit parameters

α = {α1,i, α2,i, ...};,

which are automatically inserted into each model function (2.119)
ϕvec = {ϕ1 @@ xsym, ϕ2 @@ xsym, ...};,

leaving only the functions’ dependency on the coordinates
xsym = {x1, x2, ...};.
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Note that in contrast to the simplified one-dimensional case xsym = {t} of eq. (2.119), the
fit functions might be multi-dimensional, e.g., xsym = {λ, t} in the case of a spectrotem-
poral model (see Sec. 2.3) or an uncorrected chirp in eq. (4.4). To receive the model
matrix ϕ (2.126), each function in ϕvec needs to be evaluated at all measured coordinate
tuples

x = {{x1,1, x2,1, ...}, {x1,1, x2,2, ...}, ...,
{x1,2, x2,1, ...}, {x1,2, x2,2, ...}, ...};,

e.g., x = Tuples[{{λ1, λ2, ...},{t1, t2, ...}}] in the aforementioned (λ, t)-dependent
case. To speed up this bottleneck, the model functions are compiled via the function
Compile[... ϕvec ...] @ x before they are applied to x. For this purpose, the custom
coordinate names, e.g., xsym = {λ, t}, need to be replaced by the vector

xvec = {xvec1, xvec2, ...};.

With Mathematica’s built-in, SVD-based pseudoinverse function PseudoInverse[...] the
remaining calculations become straightforward following eq. (2.129), except for taking
the real part Re[...], which is required to ensure that the fit model ϕ.c always has a
real-valued output but can consist of complex-valued fit parameters, e.g., the OADS
(4.2).
If the non-linear fit functions ϕvec depend on less coordinates than the linear fit param-

eters c, it would be a waste of computation time to re-evaluate ϕvec for every coordinate
tuple. For example, this is the case in the model introduced in Sec. 4.1: When the chirp
in eq. (4.4) is corrected, ϕvec depends only on t but not on λ and one should evaluate
ϕvec once for the t-coordinates and reuse the result for every λ-coordinate. The residual
function rfunc already provides this feature, all one has to do is to use a one-dimensional
coordinate set xsym = {t} with x = {t1, t2, ...} and replace the before vectorized mea-
surement data

y = {y[λ1, t1], y[λ1, t2], ..., y[λ2, t1], y[λ2, t2], ...};

with its actual two-dimensional form
y = {{y[λ1, t1], y[λ2, t1], ...},

{y[λ1, t2], y[λ2, t2], ...},
...};.

Since, FindMinimum[...] expects a residual vector, one has to check for this optimized
fitting procedure

1 rfunc[α__?NumericQ] := Module[
2 {ϕ, ϕpinv, c, r},
3 ϕ = Compile[{{xvec, _Real, 1}},
4 Evaluate[ϕvec /. Thread[xsym -> (Indexed[xvec, #] & /@ Range@Length@xsym)]],
5 Parallelization -> True,
6 RuntimeAttributes -> {Listable},
7 RuntimeOptions -> "Speed"] @ x;
8 ϕpinv = PseudoInverse@ϕ;
9 c = ϕpinv.y;

10 r = Re[y - ϕ.c];
11 If[VectorQ@y, r, Join @@ Transpose@r]
12 ];
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and vectorize the then two-dimensional array of residuals r by Join @@ Transpose@r.
Even if the latter optimization cannot be applied, it is possible to further improve the

calculation of the residuals
1 rfunc[α__?NumericQ] := Module[
2 {x, ϕ, ϕpinv, c, r},
3 x = If[xpar === None || Depth[y] > 3,
4 Flatten /@ Tuples[xvar, 1],
5 Flatten /@ Tuples@{xpar, xvar}];
6 ϕ = Compile[{{xvec, _Real, 1}},
7 Evaluate[ϕvec /. Thread[xsym -> (Indexed[xvec, #] & /@ Range@Length@xsym)]],
8 Parallelization -> True,
9 RuntimeAttributes -> {Listable},

10 RuntimeOptions -> "Speed"]@x;
11 ϕ = If[xpar === None || Depth[y] > 3, {ϕ}, Partition[ϕ, Length@xvar]];
12 ϕpinv = PseudoInverse /@ ϕ;
13 Join @@ MapThread[(
14 ϕ = #1; ϕpinv = #2; y = #3;
15 c = ϕpinv.y;
16 r = Re[y - ϕ.c];
17 If[VectorQ@#3, r, Join @@ Transpose@r]) &,
18 {ϕ, ϕpinv, y}]
19 ];

for multidimensional datasets, for which the evaluation of the model functions ϕvec at
each coordinate tuple, e.g., {λi, tj}, is not only time consuming, but leads also to huge
ϕ-matrices, for which the calculation of the pseudoinverse requires a lot of memory and
long computation times. To circumvent the latter issue, one splits the coordinate tuples
into two groups xpar and xvar and partitions ϕ = Partition[ϕ, Length@xvar] the ϕ-matrix
in such a way that one receives for each coordinate tuple in xpar a separate matrix in
ϕ = {ϕ1, ϕ2, ...}. For example, a transient absorption spectrum can be partitioned into
the transients

y = {{y[λ1, t1], y[λ1, t2], ...},
{y[λ2, t1], y[λ2, t2], ...},
...};.

with xvar = {t1, t2, ...} for each wavelength xpar = {λ1, λ2, ...}, to which therefore an
individual matrix ϕi is assigned. Then, the pseudoinverse function ϕpinv = PseudoInverse /@ ϕ
is applied separately on each ϕi via the map operator /@ and the individual residuals r
are calculated with the help of MapThread[...]. This third and final version of the resid-
ual function rfunc can also be applied to the first two scenarios, whose above defined
datasets require now an additional surrounding curly bracket, e.g.,

y = {{y[λ1, t1], y[λ1, t2], ..., y[λ2, t1], y[λ2, t2], ...}};

and
y = {{{y[λ1, t1], y[λ2, t1], ...},

{y[λ1, t2], y[λ2, t2], ...},
...}};,

to inform rfunc that only one partition needs to be evaluated. In addition, the partition
coordinates xpar = None need to be None for the first case.
Based on the residual function rfunc, one can develop the Jacobian function
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1 jfunc[α__?NumericQ] := Module[
2 {x, d, ϕ, ϕpinv, c, atr, btr, jtr},
3 x = If[xpar === None || Depth[y] > 3,
4 Flatten /@ Tuples[xvar, 1],
5 Flatten /@ Tuples@{xpar, xvar}];
6 d = Compile[{{xvec, _Real, 1}},
7 Evaluate[# /. Thread[xsym -> (Indexed[xvec, #] & /@ Range@Length@xsym)]],
8 Parallelization -> True,
9 RuntimeAttributes -> {Listable},

10 RuntimeOptions -> "Speed"]@x & /@ dϕset;
11 ϕ = Compile[{{xvec, _Real, 1}},
12 Evaluate[ϕvec /. Thread[xsym -> (Indexed[xvec, #] & /@ Range@Length@xsym)]],
13 Parallelization -> True,
14 RuntimeAttributes -> {Listable},
15 RuntimeOptions -> "Speed"]@x;
16 d = If[xpar === None || Depth[y] > 3, {d}, Transpose[#, {1, 3, 2, 4}]& @

Partition[Transpose[d, {2, 1, 3}], Length@xvar]];↪→
17 ϕ = If[xpar === None || Depth[y] > 3, {ϕ}, Partition[ϕ, Length@xvar]];
18 ϕpinv = PseudoInverse /@ ϕ;
19 Join @@ MapThread[(
20 ϕ = #1; ϕpinv = #2; y = #3; d = #4;
21 c = ϕpinv.y;
22 atr = #.c - ϕ.(ϕpinv.(#.c)) & /@ d;
23 btr = ϕpinv†.(#†.y) - ϕpinv†.(#†.(ϕ.c)) & /@ d;
24 jtr = Re[-atr - btr];
25 If[VectorQ@y, Transpose[jtr], Join @@ (Transpose[jtr, {3, 2, 1}])]) &,
26 {ϕ, ϕpinv, y, d}]
27 ];

according to eq. (2.148). The calculation of x, ϕ and ϕpinv remains exactly the same,
but, in addition, the model functions’ derivatives

dϕset = Transpose[D[ϕvec, {αsym}]];

need to be evaluated at every coordinate tuple to receive the derivative matrix d (2.149)
in analogy to the calculation of ϕ. Note that Mathematica’s built-in function D[...]
allows for an automatic derivation of the model functions ϕvec with respect to the non-
linear fit parameters αsym. Finally, the (transposed) Jacobian jtr is computed via the
(transposed) auxiliary matrices atr and btr as defined in eq. (2.148).

The complete source code of the implemented parVarPro.nb package can be found in
Sec. A.2. It combines the above-explained core functions into one fit function parVarPro[...],
which also allows to compute multiple datasets simultaneously. Also, the number of
iteration steps, the number of residual and Jacobian function calls and the overall re-
quired computation time is provided. Furthermore, the sum squared residual (SSR), the
weighted residual mean square σ, the corrected total sum of squares (CTSS) and the
square of the multiple correlation coefficient R2 are computed according to Ref. [57].
To allow for a comfortable access to this multitude of information, parVarPro[...] re-
turns the custom data format fittedModel[...]. However, features like weighting of data
points, constraining fit parameters and calculating error bars for the fit parameters are
not available yet and require further development work.
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1
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0
3
4

Figure 4.1.: Glotaran demo target model. The pump
pulse populates state four (blue arrow), whose de-
cay (black arrows) branches into state three and two,
which decay into state one, which in turn decays into
the ground state zero.

4.3. Examples
To prove the afore-mentioned features of the Mathematica VPA implementation and to
demonstrate its handling, the fit function parVarPro[...] is first applied to Glotaran’s
demo dataset. Then, the capability to fit spectro-temporal oscillations is shown with a
second, specifically tailored test dataset.
Following Glotaran’s demo project, the temporal concentration profiles

1 cModel[t_] = {c4[t], c3[t], c2[t], c1[t]} /. Flatten@DSolve[
2 {c4[0] == 1, c4'[t] == -k4 c4[t],
3 c3[0] == 0, c3'[t] == -k3 c3[t] + ϕ43 k4 c4[t],
4 c2[0] == 0, c2'[t] == -k2 c2[t] + ϕ42 k4 c4[t],
5 c1[0] == 0, c1'[t] == -k1 c1[t] + k2 c2[t] + k3 c3[t],
6 c0[0] == 1, c0'[t] == +k1 c1[t]},
7 {c4[t], c3[t], c2[t], c1[t], c0[t]}, t] /.
8 {k4 -> 9.49943878184853, ϕ43 -> 0.087, ϕ42 -> 0.913};

are modelled (compare Fig. 2.4) in such a way that, as depicted in Fig. 4.1, the con-
centration (population) decay c4[t] of the initially pump-populated state four branches
into state three c3[t] and two c2[t], which both decay into state one c1[t], which in
turn decays into the ground state c0[t]. Here, one can already see a great advantage of
using Mathematica: It allows the user to directly write the target model in form of a
set of DE for the temporal concentration derivatives ci'[t] (compare with Fig. 2.4) and
automatically calculates the corresponding model functions via DSolve[...]. Note that
in this example the value of the decay rate k4 and the branching ratio ϕ43 = 1 - ϕ42 are
fixed. Furthermore, note that one can chose arbitrary initial concentration amplitudes
c4[0] == 1 and c0[0] == 1, because the fit algorithm compensates them by scaling the
corresponding DADS, EADS or SADS.
The limited temporal resolution of the experimental setup is considered by convolving

[compare eq. (4.6)]
1 fitModel = Flatten@{
2 Convolve[cModel[τ] UnitStep[τ], irfModel[τ], τ, t],
3 irfModel[t]} /. t0 -> t0Model;

the instantly occurring kinetic signal (cModel[t] UnitStep[t]) with a Δt-broad, Gaussian-
shaped IRF [compare eq. (4.4)]

irfModel[t_] = 2. Sqrt[Log[2.]/π]/Δt Exp[-4. Log[2.] (t - t0)^2/Δt^2];,
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Figure 4.2.: Summary of the fit result. The SSR converged within 59 iteration steps requiring
60 residual function calls and 60 Jacobian function calls, which altogether took ≈ 60.0 s. The
finally achieved fit quality is described by the SSR, the weighted residual mean square σ, the
CTSS and the square of the multiple correlation coefficient R2, while all remaining parameters
represents the resulting nonlinear fit parameters.

which is also used to describe the CA around time zero t0 [compare eq. (4.3) without
the derivatives]. To take care of the chirp, t0 is replaced with the wavelength-dependent
polynomial function

t0Model = a0 + a1(λ - λc)/100. + a2((λ - λc)/100.)^2 + a3((λ - λc)/100.)^3/.λc->550;

having the center wavelength λc->550.
The complete model function fitModel, its variables {λ, t} and initial fit parameters

{{k3, 0.35}, {k2, 0.04}, ...} are passed to the fit function
1 vpm = parVarPro[
2 {{wavelength, time, transient, {λ, t}, fitModel}},
3 {{k3, 0.35}, {k2, 0.04}, {k1, 0.02},
4 {Δt, 0.06}, {a0, 0.91}, {a1, 0.31}, {a2, -0.10}, {a3, 0.01}}]

together with the wavelength axis
wavelength = {λ1, λ2, ...};,

the time axis
time = {t1, t2, ...};

and the dataset in form of a list of transients
transient = {{y[λ1, t1], y[λ1, t2], ...},

{y[λ2, t1], y[λ2, t2], ...},
...};.

As result parVarPro[...] returns a vpm = fittedModel[...] object, which is visually sum-
marized as shown in Fig. 4.2. The graph illustrates how the natural logarithm of the SSR
converges, while the blue info box tells that the convergence criterion was reached after
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Figure 4.3.: Details of the fit result. For a given dataset (a), the fit algorithm identifies the
chirp curvature (cyan curve) and splits the measured transient absorption spectrum into the
fit residuals (b) and a model spectrum, which is defined by the SADS (c) and the temporal
concentration profiles (d).

59 steps with 60 residual and Jacobian function calls, for which a Win7-operated Intel
Core i7-4790 CPU with 3.6 GHz and 16 GB of RAM required ≈ 60.0 s (≈ 1 s/step). In ad-
dition, the box informs about the optimized nonlinear fit parameters as well as the SSR,
the weighted residual mean square σ, the CTSS and the square of the multiple correlation
coefficient R2 that were achieved with the last iteration step according to Ref. [57]. Be-
yond this summary, one can access every information inside the fittedModel[...] object
by using one of the following key words:

vpm[#]& /@ {"Data", "DataSets", "FitResiduals", "Function", "LinearParameters",
"NonlinearParameters", "Monitor", "Statistic"};.↪→

This allows to inspect all details, as shown in Fig. 4.3, where (a) depicts the original
dataset plus the fitted chirp, (b) the fit residuals, (c) the linear fit parameters, i.e., the
SADS, and (d) the corresponding temporal concentrations profiles.
For comparison, Fig. 4.4 shows the fit result of Glotaran, which found after 54 steps
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(c)

(d)

Figure 4.4.: Details of Glotaran’s fit result. Within the fit error, the SADS (c) and the concen-
tration profiles (d) equal those of the Mathematica result in Fig. 4.3.
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Figure 4.5.: Summary of the chirp-corrected fit. The fit parameters equal the result of the
uncorrected fit from Fig. 4.2, but were achieved within only ≈ 5 s.

taking ≈ 145 s (≈ 2.7 s/step on the same computer) the same nonlinear fit parameters
within the fit error (bracketed values in the upper-right parameter table of Fig. 4.4).
The Mathematica Δt value needs to be divided by 2

√
2 ln 2 before it can be compared to

the Glotaran irf2 value. Furthermore, Glotaran’s root mean square (RMS) value is a
thousand times smaller than the equivalent Mathematica R2 value, because OD instead
of mOD was used for the absorption amplitude. Finally, it should be mentioned that,
in contrast to the parameter table legend of Fig. 4.4, Glotaran presents the lifetimes in
ps and not in s. In fact, both, Glotaran and the Mathematica VPA implementation,
do not process units of measurements and the user has to deduce the units of the fit
parameters from the units of the input dataset, which had a ps time axis in the present
example. Note that Mathematica seems to be faster than Glotaran, but one should not
forget that Glotaran performs an error calculation, which is still a missing feature in the
Mathematica VPA implementation. Furthermore, this single measurement gives only a
rough estimation of the consumed computation time, but cannot identify a trend, which
in addition might heavily depend on the chosen model function and the chosen dataset.
A significant reduction of computation time can be achieved by performing a chirp

correction, i.e., by temporally shifting each transient in such a way that all transients
start at the same time zero. Then, the t0Model function can be replaced with a single fit
parameter t0 and the overall fit model becomes wavelength-independent. Consequently,
the fit algorithm does not need to evaluate the model function for every (λi, tj)-tuple
but only for the time steps tj. The required individual time offset

t0Corr = t0Func /@ wavelength;

for each transient stems from applying the chirp function t0Func to every wavelength.
Here, the already fitted t0Model was used for t0Func, but actually one wants to do the
chirp correction before the fit procedure. A reliable strategy is to fit the chirp model
function t0Model with Mathematica’s default LinearModelFit[...] to a manually selected
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Figure 4.6.: Details of the chirp-corrected fit. For a given dataset (a), the fit algorithm splits
the measured transient absorption spectrum into the fit residuals (b) and a model spectrum,
which is defined by the SADS (c) and the temporal concentration profiles (d).

set of t0-values, which can comfortably be extracted from any Mathematica plot: Right-
click the plot, select ”Get Coordinates”, click at the positions of t0 (center of the coherent
artefact for a set of different transients) and strg-c / strg-v copy them to the notebook.
In order to shift the transients about an arbitrary time offset, they need to be inter-

polated:
1 pad = 100;
2 transientFunc = Interpolation[
3 Transpose@{ArrayPad[time, pad, "Extrapolated"],
4 ArrayPad[ArrayPad[#, {0, pad}, "Fixed"], {pad, 0}, 0]},
5 InterpolationOrder -> 1] & /@ transient;.

Since the temporally shifted transients would cover different time ranges, one either needs
to cut away the nonoverlapping region or to extrapolate this gap. Here the latter option
was chosen and the time axis was padded with pad = 100 "Extrapolated" entries at both
ends, while the transients were extended with 100 zeros before t0 and 100 "Fixed" values
at the end, i.e., the last signal value was attached a 100 times. The latter assumption
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of a constant signal is valid if the end of the time axis lies in the ns-region, where the
ps-shift of the chirp correction can be neglected.
With the such-prepared interpolation functions one can finally shift the transients

1 cctas = Transpose@Table[transientFunc[[i]][time + t0Corr[[i]]],
2 {i, 1, Length@t0Corr, 1}];

and transpose the result to get a chirp-corrected transient absorption spectrum

cctas = {{y[λ1, t1], y[λ2, t1], ...},
{y[λ1, t2], y[λ2, t2], ...},
...};,

i.e., a list of difference spectra, which is then fed into the fit function

1 vpm = parVarPro[
2 {{wavelength, time, {cctas}, {t}, fitModel}},
3 {{k3, 0.5}, {k2, 0.05}, {k1, 0.01},
4 {Δt, 0.2}, {t0, 0.7}}]

yielding the same result as the uncorrected dataset but much faster, as can be seen in
the Fig. 4.5 and 4.6. Again, Glotaran (≈ 0.44 s/step) and Mathematica (≈ 0.15 s/step)
are similarly fast. Note that the used Glotaran version did not allow for fitting the
CA without defining a chirp function. However, even with fixed parameters, the chirp
function cancels the above-described gain in computation speed. Therefore, this function
was neglected for the calculation speed comparison with Mathematica at the cost of
getting an incorrect fit result.
If the transient absorption signal shows dynamics that can not be explained with the

so-far discussed models, Mathematica allows for a comfortable adaption of the model
function. For example, the afore-mentioned wavepacket oscillations can be fitted with
the two complex conjugate decaying exponentials [compare eq. (4.1)]

fitModel = {Exp[-I ω t] Exp[-δ t], Exp[I ω t] Exp[-δ t]}/2;,

which add up to a real-valued cosine function, but allow the fit function

1 vpm = parVarPro[
2 {{wavelength, time, {dataset}, {t}, fitModel}},
3 {{ω, 22.}, {δ, 1/5.}}]

to search for complex-valued linear fit parameters, which then form the OADS amplitude
and phase in Fig. 4.7c, while Fig. 4.7d shows the corresponding damped oscillation
profile. As can be seen from Fig. 4.7b, the residuals consist solely of noise, i.e., the fit
function perfectly matches the oscillations.
In the case that the fit algorithm fails, because the model functions’ derivatives can

not be calculated by Mathematica, the option

parVarPro[..., "Jacobian" -> "FiniteDifference"]

allows to fall back to the finite difference method. Finally, like in Glotaran, it is also
possible to simultaneously fit
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Figure 4.7.: Damped oscillation fit with wavelength-dependent phase. The wavepacket dynam-
ics of I −

3 were mimicked in the test dataset (a) by a damped oscillation with a phase jump
around 363 nm. The fit algorithm perfectly separated the noise, which remains in the residuals
(b), from the oscillation, whose OADS amplitude and phase are shown in (c), while the temporal
oscillation profile can be seen in (d).

1 vpm = parVarPro[
2 {{wavelength1, time1, {dataset1}, {t}, fitModel1},
3 {wavelength2, time2, {dataset2}, {t}, fitModel2}.
4 ...},
5 {{kn, 0.5}, ...}]

multiple datasets dataset1, dataset2, ... with different fit models fitModel1, fitModel2, ...
sharing the nonlinear fit parameters kn.
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5. Trihalide photodissociation pathways
Investigations of I −

3 with femtosecond spectroscopy were pioneered by Ruhman and
coworkers [14, 22, 37, 115–125] and by the Vöhringer group [33, 39, 111, 126–130]. With
ultrashort pulses, the nanosecond time resolution of flash photolysis experiments [131–
135] could be improved, and the primary processes in the photodissociation reaction

I −
3 + UV photon −−→ I −

2 + I (5.1)
were unraveled.
Ruhman’s group found that when I −

3 is excited with pump pulses at 308 nm, the
spectral signature of I −

2 fragments absorbing around 740 nm [133, 135, 136] appears
within 300 fs. Since this photodissociation process is faster than the dephasing of the
photoinduced coherent reactant vibrations, the I −

2 fragments inherit these vibrations
which give rise to a transient signal oscillating with a wavenumber of (94 ± 5) cm−1. The
transient oscillations at the blue and the red edge of the I −

2 absorption band show a
phase difference of π as expected for an oscillating vibrational WP (Sec. 2.2.2) [137–140].
With (450 ± 50) fs, the dephasing of the coherent oscillation is about ten times faster
than the ≈ 4 ps narrowing of the I −

2 PA band due to vibrational cooling. The GSB of I −
3

decays biexponentially [(5 ± 1) ps and (75 ± 10) ps] and is accompanied by a 110 cm−1

oscillation lasting for ≈ 1.5 ps which is assigned to the symmetric stretch vibration of
I −
3 excited via resonant impulsive stimulated Raman scattering.
Vöhringer’s group [39, 126, 128] excited I −

3 with femtosecond pulses at 400 nm or
266 nm and observed three-body dissociation at the higher pump energy. Furthermore,
the first 300 fs of the WP evolution from excited I −

3 towards the I −
2 + I fragments

could be resolved and by probing at various wavelengths between 400 nm and 960 nm,
a wavelength dependence for the wavenumber of the I −

2 oscillation was identified and
explained by a filter effect of the Franck–Condon window which limits the accessible
vibrational states depending on the optical transition wavelength. By reconstructing the
I −
2 PA spectrum, the vibrational cooling and the associated spectral band narrowing
and shifting could be separated from the biexponential decay (≈ 2.45 ps and ≈ 73 ps).
Since the I −

3 GSB as well as the I −
2 PA decay biexponentially with basically identical

time constants, this process stems most likely from recombination of the I −
2 +I fragments.

The biexponential behaviour was first explained by a diffusion model, [126] but the
observation of an additional PA band [22, 121] required the consideration of a second
product species X in addition to or instead of the diffusion concept. The X species were
identified as I −

2 +I contact pairs [22] which are trapped in the solvent cage and give rise
to a disturbed I −

2 signal because of the small interfragment distance. The slow decay
of this signal was explained with an electron transfer (ET)

I −
2 + I −−→ I2 + I− (5.2)
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preceding the recombination process

I2 + I− −−→ I −
3 , (5.3)

while the fast decay of the PA was attributed to an alternative photodissociation channel

I −
3 + UV photon −−→ I2 + I−, (5.4)

which results in directly recombining fragment pairs and was also observed in gas-phase
experiments [35, 141, 142]. To test the latter assignment, in the present thesis TA mea-
surements with broadband probing in the spectral region of the 505 nm absorption band
of I2 and the 445 nm absorption band of the I2-ethanol complex [143] are performed.
An important factor for the efficiency of the competing photofragmentation channels

is the symmetry of the two bonds, which also has an impact on the molecular vibrations
and hence on the oscillating signal contribution. Kühne et al. deconvolved the I −

3 GSB
oscillation via linear-prediction singular-value decomposition [39,126] and uncovered not
only higher harmonics of the I −

3 symmetric stretch vibration but also a weak signal at
140 cm−1, from the asymmetric stretch vibration of I −

3 . Gershgoren et al. also observed
the combination band at (253 ± 2) cm−1 which they extracted with the filter diagonaliza-
tion method [124]. The asymmetric stretch vibration was also evident in earlier Raman
experiments [144–149] with a strong solvent dependence [150]. Since the asymmetric
stretch vibration is not Raman-active for the D∞h-symmetric I −

3 , some solvents must
break the D∞h symmetry into C∞v by lengthening one bond, or into C2v by bending
the molecule, or into CS by doing both. A series of theoretical papers [129, 151–158]
addressed this issue and recently structural information was obtained directly by time-
resolved X-ray liquidography (TRXL) [159, 160] or extracted from X-ray photoelectron
spectroscopy (XPS) supported by ab-initio molecular dynamics simulations [161–163].
The TRXL data revealed D∞h symmetry for I −

3 in acetonitrile, C∞v in methanol, and
CS in water.
The effect of a broken symmetry on the photodissociation reaction on an ultrafast

time scale was investigated by Ruhman and coworkers by applying transient absorption
spectroscopy to I −

3 in acetonitrile and ethanol and to I2Br− in acetonitrile [119,120]. In
all three cases, the formation of coherently oscillating I −

2 fragments was observed, but
for the broken symmetry, achieved either by the ethanol solvent or by substituting I −

3
with I2Br−, the I −

2 fragments are cooler and have a more compact and localized WP, so
that the transient oscillation is more pronounced. Furthermore, I −

2 was found to be the
major, possibly sole dihalide product of I2Br− photodissociation, because no indication
for IBr− formation was found, even not in measurements utilizing broadband probe
pulses [164]. However, the existence of competing photodissociation channels in trihalide
molecules was shown in gas-phase experiments, where photoexcitation of IBrCl− yielded
both IBr− and ICl− fragments [165] and photoexcitation of I2Br− yielded I2, I −

2 , IBr
and IBr− fragments [166] as well as I– fragments [167]. Nevertheless, these findings do
not guarantee the existence of branching photodissociation channels in the liquid phase,
but rather demonstrate the significant impact of a solvent environment on the efficiency
of the different reaction channels as it is discussed for the case of I −

3 [35,40,141,168,169].

80



Table 5.1.: Reactant concentrations in mmol l−1 for trihalide samples prepared in DCM
sample name (inter)halogen + halide
I2 + I– I2 (2.5) + I– (5)
Br –

3 - + -
IBr + Br– IBr (10) + Br– (40)
ICl + Cl– ICl (50) + Cl– (200)
I2 + Br– I2 (2.5) + Br– (10)
I2 + Cl– I2 (2.5) + Cl– (2.5)

In this study, the photodissociation channels of I −
3 , Br −

3 , IBr −
2 , ICl −

2 , I2Br−, and
I2Cl− are investigated by ultrafast transient absorption spectroscopy with broadband
probing covering the UV-VIS spectral ranges 310 nm to 610 nm and 270 nm to 515 nm.
The key element in identifying photodissociation channels is the characteristic vibra-
tional frequency of the resulting diatomic fragments, which can be extracted from the
transient oscillations of the PA. For a general treatment, a global analysis implemen-
tation is developed for broadband transient absorption data, so that both coherent vi-
brational and exponential decay dynamics can be modelled simultaneously. This sys-
tematic approach, demonstrated for six trihalide anions, provides extensive information
on whether competing fragmentation patterns are accessible for trihalides in solution or
whether the presence of the environment might prevent this possibility.

5.1. Sample preparation
The trihalide anions I −

3 , IBr −
2 , ICl −

2 , I2Br−, I2Cl− were prepared by mixing the halo-
gen I2 (CAS 7553-56-2, AR grade) or the interhalogen IBr or ICl (CAS 7789-33-5 or
7790-99-0, respectively, Sigma-Aldrich: 1 mol l−1 in dichloromethane (DCM)) with the
corresponding tetrabutylammonium iodide, bromide or chloride salt (CAS 311-28-4,
reagent 98 %, CAS 1643-19-2, ACS ≥ 98 %, or CAS 1112-67-0, ≥ 97 %, respectively,
Sigma-Aldrich) in DCM (CAS 75-09-2, ≥ 99.9 %, Merck Millipore) as listed in Tab. 5.1.
Since within the chemical equilibrium, multiple trihalide molecules may coexist (see
Fig. 5.1), the samples are named after the reactant combination. The Br −

3 anion was
prepared by dissolving tetrabutylammonium tribromide (CAS 38932-80-8, 98 %, Sigma-
Aldrich) in DCM. Instead of the solvent ethanol (most commonly used for TA studies
on I −

3 ) [14, 22, 33, 39, 111, 115–117, 119–128, 130, 170] or room-temperature ionic liq-
uids [171, 172] anhydrous DCM was preferred in this paper, as it ensures the stability
of the starting materials I2, IBr and ICl, which dissociate in ethanol in the presence of
slightest traces of water [143]. To ensure the solubility of the halide salts in DCM, an
organic cation like tetrabutylammonium Bu4N+ is required.
Concentrations of the different trihalides were chosen in such a way as to guarantee

an absorbance of at least 0.3 OD at the excitation wavelength for a sample flow cell of
200µm optical path length. To measure with each laser shot (each 1 ms) a completely
refreshed sample, the solution was circulated with a micro annular gear pump (mzr-4605,
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Figure 5.1.: Absorption spectra of different trihalide-forming (inter)halogen-halide equilibria
in DCM plus pump and probe spectra. (a) Without a halide salt, the halogen I2 (505 nm) and
the interhalogens IBr (485 nm) and ICl (465 nm) are stable in DCM. (b) I2 + I– : An increasing
I– (244 nm) concentration decreases the amount of I2 (505 nm) and increases the I –

3 (295 nm
D-band and 365 nm C-band) concentration (red arrows). (c) I2 + Cl– : A mixture of trihalides
is formed. With an increasing Cl– (below 210 nm) concentration, the amount of ICl –

2 (230 nm)
increases, while the I –

3 (295 nm D-band and 365 nm C-band) concentration decreases and the
amount of I2Cl– (264 nm, probably D-band) stays nearly constant. [3, Fig. 1] - Reproduced by
permission of the PCCP Owner Societies

HNP Mikrosysteme).
The heteronuclear trihalides are expected to form only one isomer with the heaviest

element located at the center position. Hence, if Y is heavier than X, [X−Y−X]− is
preferred over [Y−X−X]−, whereas [Y−Y−X]− is preferred over [Y−X−Y]− [151,152].
In solution, the yield of the homonuclear trihalides is determined by an equilibrium
reaction, e.g.

I2 + I− −−⇀↽−− I −
3 , (5.5)

which allows to control the balance between I2 and I −
3 by the concentration of I−, as

seen in the absorption spectrum (Fig. 5.1b). Since the I− absorption (244 nm) [173] lies
outside the range of the transient absorption setup, the halide concentration is increased
to minimize the I2 (505 nm, Fig. 5.1a) amount, in which case also the I −

3 (295 nm D-band
and 365 nm C-band) [174] concentration increases. To avoid three-body dissociation
observed when pumping at 266 nm, [39, 160] an excitation wavelength of 348 nm was
chosen.
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Balancing the equilibrium reactions of the heteronuclear trihalides is more delicate,
because multiple pathways, e.g.

I2 + Cl− −−⇀↽−− I2Cl− (5.6)
I2Cl− + Cl− −−⇀↽−− ICl −

2 + I− (5.7)
I2Cl− + I− −−⇀↽−− I −

3 + Cl− (5.8)
ICl −

2 −−⇀↽−− ICl + Cl−, (5.9)

lead to a mixture of various trihalides [175] which can be identified in the absorption
spectrum (Fig. 5.1c) [174–178]. The amount of ICl −

2 (230 nm D-band) increases with the
Cl− (below 210 nm) [173] concentration, while the amount of I −

3 (295 nm D-band and
365 nm C-band) decreases and the I2Cl− (264 nm, probably D-band) concentration stays
nearly constant. Using a high excess of Cl−, even the I2Cl− vanishes and a predominant
ICl −

2 solution is prepared. I2Cl− cannot be purified this way, because it requires a
balance between Cl− and I− anions and therefore also ICl −

2 and I −
3 is present. To

measure primarily the transient absorption of I2Cl−, an excitation wavelength of 261 nm
(at the cost of probably entering the three-body dissociation channel) was chosen.
By exchanging Cl with Br, the reactions (5.6) to (5.9) are also valid for iodine-bromine

systems. However, in these cases different trihalides cannot be separated by their spec-
troscopic signatures because all absorption bands are merged into a single band that
shifts if the balance between the trihalides changes. Therefore, it is not possible to
selectively excite I2Br− only. The excitation wavelengths 348 nm and 261 nm, selected
for I −

3 and I2Cl− experiments, are not in resonance with the remaining trihalides Br −
3 ,

IBr −
2 , ICl −

2 and I2Br−, except for IBr −
2 , which absorbs at 260 nm. Therefore, these

trihalides are excited at either the blue or the red edge of their C-/D-absorption band
(261 nm) or at the A-/B-band (348 nm), [174] for which the low absorption efficiency
was compensated by a higher sample concentration.

5.2. Transient absorption setup
The TA setup (Fig. 5.2a) was driven by a regenerative titanium-sapphire (Ti:Sa) am-
plifier system (Solstice, Spectra-Physics: 797 nm, 100 fs, 1 kHz) whose output was split
into a pump and a probe beam.
To excite the trihalide samples, the pump was converted to the UV spectral range

[348 nm (261 nm) for the first (second) measurement series] via a noncollinear optical
parametric amplifier (NOPA) followed by second-harmonic generation in a β-barium
borate crystal (TOPAS-White, Light Conversion). The UV pump passed a Keplerian
telescope consisting of two spherical mirrors (SMs) (focal lengths: f1 = 500 mm and
f2 = 300 mm), which adapted the beam diameter for the following UV pulse shaper, an
acousto-optic programmable dispersive filter (Dazzler UV-250-400, Fastlite) [179–182].
The shaper was used to optimize the temporal resolution by compressing the UV pump
pulses to a FWHM duration of 70 fs at 261 nm and 40 fs at 348 nm (see Figs. 5.3 and 5.4
for XFROG [180,181,183–186] measurements). An SM (f = 175 mm) was used to focus
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Figure 5.2.: Schematic transient absorption setup for (310–610) nm WL (a) and (270–515) nm
WL (b). (a) The output of a Ti:Sa amplifier is split into two beams, which are focussed and
overlapped inside the sample. A pump pulse excites the sample molecules and a snapshot of
the subsequent decay dynamics is observed via a probe pulse. To scan the full dynamics, the
experiment needs to be repeated for different pump–probe time delays. Probe power fluctuations
and the static background are removed with the help of reference measurements for which every
other pump pulse is blocked by a chopper wheel. A NOPA (TOPAS WHITE) in combination
with a SHG crystal is used to tune the pump wavelength to the sample’s absorption wavelength,
while WL generation in the probe beam allows to measure multiple wavelengths at once, when
the intense 800 nm fundamental is blocked by a colour filter. Wherever necessary, the laser
intensity is adjusted by ND filters. To suppress the anisotropy signal resulting from reorienting
molecules, a half-wave plate (λ/2) rotates the horizontal probe polarization (↕) to the MA with
respect to the vertical polarization (⊙) of the pump. Finally, an AOPDF (DAZZLER, Fastlite)
allows to compress the pump pulse for maximum temporal resolution or to generate arbitrarily
shaped pump pulses for more complex spectroscopy or coherent control experiments. Note that
in this scheme most of the plane, beam-guiding mirrors are omitted. (b) The additional BBO
converts the probe wavelength to 400 nm, while the 800 nm is blocked by a colour filter. This
allows to generate WL with shorter wavelengths, whose intense 400 nm fundamental is blocked
by a BS. Note that the 400 nm generation rotates the probe polarization about 90°, which needs
to be considered by adjusting the MA.
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Figure 5.3.: Measured (a) and reconstructed (b) XFROG trace of the 261 nm pump pulse and
the resulting temporal (c) and spectral (d) intensity (red) and phase (green). The XFROG error
is 2.1%, the temporal FWHM 72 fs and the FWHM bandwidth 2.3 nm. [3, Fig. S2] - Reproduced
by permission of the PCCP Owner Societies

the 140 nJ UV pump pulses to an FWHM diameter of 27µm (Fig. 5.5a) inside the flow
cell with thin window apertures (48/UTWA2/Q/0.2, Starna GmbH). With this pump
energy and beam diameter, the transient absorption measurement was operated in the
non-linear, saturation regime (see Fig. 5.6 for energy dependence).
The induced photodynamics were observed with a probe pulse following each pump

pulse at a delay time T , which was adjusted by directing the probe on a retroreflec-
tor mounted on a motorized delay stage (M-IMS600LM, Newport). Guided by mirrors
with high reflectivity for 800 nm, the beam diameter (Galilean lens telescope), intensity
(variable attenuator wheel) and polarization (zero-order half-wave plate) were adapted
for supercontinuum white light (WL) generation achieved by focussing (plano-convex
lens: f = 100 mm) the probe into a linearly moving, 5 mm thick CaF2 plate, generating
spectral components down to 310 nm (Fig. 5.1b) [187–189]. An iris in front of the fo-
cussing lens allowed to fine-tune the beam diameter. Anisotropy effects were eliminated
from the measured signal by adjusting the linear probe polarization to the magic angle
(MA = 54.7°) [4, 19] (see Sec. 3) with respect to the vertical, linear pump polarization.
After collimating the WL with an SM (f = 150 mm, diameter d = 2 in), it was guided
towards the sample by UV-enhanced aluminum mirrors and the intense 797 nm funda-
mental was blocked by a custom-made filter (Laser Components GmbH). With an SM
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Figure 5.4.: Measured (a) and reconstructed (b) XFROG trace of the 348 nm pump pulse and
the resulting temporal (c) and spectral (d) intensity (red) and phase (green). The XFROG error
is 2.2%, the temporal FWHM 34 fs and the FWHM bandwidth 6.2 nm. [3, Fig. S1] - Reproduced
by permission of the PCCP Owner Societies

(f = 100 mm), the remaining WL was focussed to an FWHM diameter of 17µm (see
Fig. 5.5b) inside the sample flow cell and spatially overlapped with the UV pump.
To extend the WL spectral range to the UV for the second measurement series (261 nm

pump), the 800 nm probe light was converted to 400 nm and the residual 800 nm light was
filtered out before focussing the 400 nm probe into the CaF2 plate (Fig. 5.2b), resulting
in spectral components down to 270 nm (Fig. 5.1c) [188, 190]. The 400 nm fundamental
was blocked by a beamsplitter being reflective for 370 nm to 455 nm but transmissive for
the rest of the 270 nm to 515 nm range. Regarding possible imperfections with regard to
the linear polarization of the WL probe, note that the WP oscillations are not disturbed
by polarization deviations and since the pump-selected molecular alignment redistributes
within 15 ps even for the largest molecule I −

3 , only the short-time dynamics would be
affected.
The WL not absorbed by the sample was collimated again by an SM (f = 100 mm),

optionally attenuated by a neutral density (ND) filter and finally focussed with an SM
(f = 75 mm) into a spectrograph (SP2500i, Acton). The attached two-dimensional
charge-coupled device (CCD) camera (Pixis 2K, Princeton Instruments) measured the
WL spectrum of each probe pulse separately at an acquisition rate of 1 kHz. Blocking
every other pump pulse, either by an additional chopper placed in the pump beam or
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Since the slope is below one, the experiment is carried out in the saturation regime. [3, Fig. S4]
- Reproduced by permission of the PCCP Owner Societies

by using the toggle mode of the pulse shaper, allowed to collect the dynamic spectrum
I(λ, T ) and the unpumped, static reference spectrum Iref(λ) on a shot-to-shot basis.
Therefore, a single difference absorption spectrum defined by (2.4) for a given delay
time T could be calculated from two consecutive laser shots. For the TA data, 1000
consecutive difference absorption spectra were averaged at each delay time T , of which
the first 6 ps were scanned in 300 steps with an increment of 20 fs and the remaining 2 ns
were scanned with 100 steps with exponentially increasing increments. For each sample,
up to 5 consecutive datasets were collected. The 2048 camera pixels were binned in
groups of 8 pixels, resulting in 256 wavelength steps with 0.177 nm increment. The
upper wavelength limit was given by the second-order diffraction of the spectrograph’s
grating, which starts to disturb the first-order diffraction at 620 nm (515 nm) for the first
(second) measurement series.

87



350 400 450 500 550 600

0

1

2

3

4

5

101

102

103

Wavelength λ [nm]

T
im

e
d
e
la

y
T
[p

s
]

ΔA

[mOD]

-60

-40

-20

0

Figure 5.7.: TA data of the I –
3 dynamics in DCM after pumping at 348 nm. Note the loga-

rithmic time scale for delays larger than 5.5 ps. The data is corrected for pump stray light and
the chirp of the probe pulse according to Sec. 5.3. The negative I –

3 GSB at 366 nm is accompa-
nied by pronounced oscillations from a ground-state vibrational WP, which travels between the
turning points associated with transitions at ≈ 350 nm and ≈ 385 nm. In the red part (above
450 nm), the positive I –

2 PA rises after the excited-state WP travelled through an intermediate
bond-fission state giving rise to a sharp peak right after the CA. This peak shifts to later delay
times for smaller wavelengths. The I –

3 GSB and I –
2 PA decay from recombining I –

2 +I fragment
pairs lasts until ≈ 200 ps, then a weak permanent signal from escaped I –

2 fragments remains.
For ≈ 4 ps, the I –

2 PA decay is accompanied by a blue shift due to the vibrational cooling of the
hot I –

2 fragments. The short-time dynamics are detailed in the Fig. 2.1. [3, Fig. 2] - Reproduced
by permission of the PCCP Owner Societies

5.3. Transient absorption signals: the case of triiodide
The different signal contributions of a trihalide system and the data fitting procedure
are exemplified for the I −

3 sample pumped at 348 nm and probed in the spectral region
310 nm to 610 nm. However, before the actual fitting was applied, each of the multiple
raw datasets per sample was preprocessed. First, pump stray light, which leaked into
the spectrograph, was removed either by subtracting the averaged before-t0 difference
spectra or by deleting the contaminated spectral region. Second, the WL chirp was
corrected by shifting the transients according to a fourth-order polynomial, which was
fitted to manually selected t0 points illustrated at the right side of Fig. 2.1. Third and
finally, the different datasets of one sample were averaged after aligning their t0, resulting
in Fig. 5.7.
The short-time dynamics start with a Gaussian-shaped coherent artefact (CA) defining

time zero t0. In addition to the CA, a negative difference absorption signal together with
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a pronounced oscillation, both centred at 366 nm, set in instantly. Since the spectral
position matches the 365 nm absorption band of I −

3 and the formation of a product
molecule would require some time, both effects are attributed to the GSB of the reactant
I −
3 . The oscillatory behaviour is due to a vibrational WP which travels back and forth
on the electronic ground-state PES. At the turning points (about 350 nm and 385 nm)
the WP narrows, while it broadens at the equilibrium position (366 nm) [33].

In the red part (above 450 nm) of the TA data, right after the CA, a narrow Gaussian-
shaped peak appears, attributed to the ESA of I −

3 . The non-exponential rise and decay
behaviour can be explained by a WP, which moves on the excited-state PES in such a
way that its corresponding signal first occurs at 600 nm or above and then shifts towards
the blue (≈ 450 nm). Kühne et al. could not resolve this WP motion below 600 nm, but
for wavelengths above 600 nm they observed a similar WP inducing a signal that shifts
towards the red [39]. For the increasing interfragment distance along the dissociation
channel, the excited state PES of I −

3 smoothly converts into the ground state PES of
I −
2 . Thus, the WP pathway leads finally to the formation of I −

2 giving rise to a positive
PA signal. Since the bond fission proceeds faster than the WP dephasing, the WP is
still present in the diatomic fragment, resulting in an oscillatory contribution to the PA.
The long-time dynamics show the ≈ 200 ps decay of the PA and the corresponding

GSB recovery, followed by a small signal remaining constant within the measured time
window of 2 ns. For the first 4 ps, the PA decay is accompanied by a pronounced blue
shift, which may reflect vibrational cooling due to the increasing energy gap between the
electronically excited state of I −

2 and its electronic ground state with decreasing vibra-
tional energy. Another possible explanation for the blue shift suspects the deformation
of the I −

2 PES due to the iodine radical I right after bond fission. With increasing
interfragment distance, the I −

2 PES and therefore also the PA would gradually change.
The measured TA data sets for each of the trihalide reactants were globally analyzed

according to the procedure described in Sec. 2.3, Sec. 2.4 and Sec. 4, comprising a par-
allel kinetic model (yielding DADS) [53] extended with damped oscillating components
(yielding OADS). In this way, both the decay dynamics and the oscillating WP prop-
agation on the I −

2 PES can be described with high accuracy. To account for the CA
and the subsequent WP motion on the excited state PES of I −

3 two Gaussian functions
were included in the fit model. The temporal resolution is considered by convolving
the kinetic model, the oscillating WP, and the Gaussian WP with the IRF represented
by the Gaussian CA. Selected transients together with the best-fit curves are shown in
Fig. 5.8, while the resulting non-linear fit parameters are listed under I2 +I− in Tab. 5.2.
The linear fit parameters of the damped oscillations and the parallel kinetic model, i.e.,
the OADS and DADS, are displayed in Fig. 5.9. Since OADS are complex quantities,
they are represented by their amplitude and phase.
The high wavenumber ν̃2 = 113.1 cm−1 oscillation (Fig. 5.9a) with a damping lifetime

of δ2 = 1.08 ps matches the symmetric stretching vibration of ground state I −
3 (see

Sec. 5.5 and Tab. 5.3) and is therefore attributed to a WP travelling around a minimum
on the ground-state PES of I −

3 . In the corresponding OADS (Fig. 5.9a, black) two pro-
nounced peaks (350 nm and 385 nm) with a phase difference of π can be seen. Therefore,
these signals are attributed to transitions originating from the WP’s two turning points,
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Figure 5.8.: Selected transients (dots) and best fit (solid line) after pumping I –
3 in DCM at

348 nm. Note the logarithmic time scale for delays larger than 5.5 ps. On the excited-state
PES of I –

3 , the WP moves through an intermediate bond-fission state and gives rise to a sharp,
Gaussian-shaped peak right after the CA above 450 nm. Subsequently, one bond breaks and the
I –
2 PA rises. With the blue shift of the PA spectrum, its maximum appears at later delay times
for smaller wavelengths. A weak oscillation from the I –

2 vibration sits on top of the PA, but
around 450 nm the GSB and the corresponding I –

3 vibration start to overlap the PA signal. The
I –
3 vibration is most pronounced at the out-of-phase WP turning points (386 nm and 347 nm),
but at the GSB center wavelength (367 nm) nearly no oscillation is observed. Both PA and GSB
decay biexponentially. [3, Fig. 3] - Reproduced by permission of the PCCP Owner Societies

while the low amplitude at the center wavelength (366 nm) is attributed to the WP being
at a position in coordinate space that corresponds to the PES minimum. Being in phase
with the low-energy turning point (385 nm), a small peak is present at ≈ 320 nm, the
red edge of the D-absorption band (295 nm). Furthermore, the shoulder at ≈ 450 nm is
also in phase with the low-energy turning point (385 nm), whereas for increasing probe
wavelengths, the phase shifts gradually. It is not clear whether the latter oscillation
signal stems from the A-/B-band of I −

3 or from the fragment I −
2 .

For the low wavenumber, three peaks can be seen in the OADS (Fig. 5.9a, red). The
first one (335 nm) is blue-shifted with respect to the WP’s high-energy turning point
(350 nm), the second one (420 nm) is red-shifted with respect to the WP’s low-energy
turning point (385 nm), and the third one (560 nm) covers the region of the PA. Since the
wavenumber ν̃1 = 3.3 cm−1 is small and the associated period (10.1 ps) is much longer
than the damping (δ1 = 1.6 ps), the corresponding signal (Fig. 5.10) close to the WP’s
turning points looks more like a decaying GSB or SE rather than an oscillation. However,
the decay has a non-exponential curvature, which can be expressed by a damped, low-
frequency cosine function. In the PA region, the low-frequency oscillation appears like
a rise followed by a decay, both of non-exponential character. Starting at 600 nm, this
signal shifts to larger delay times for decreasing wavelengths due to the gradual phase
shift (Fig. 5.9a, red-dashed line). Thus, the blue shift of the actual PA is modelled by a
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Figure 5.9.: Oscillation- and decay-associated difference spectra. (a) OADS: The ν̃2 = 113 cm−1

symmetric stretch vibration of I –
3 (black) has the largest amplitudes (solid) at the out-of-phase

(dashed) WP turning points (350 nm and 385 nm) of the I –
3 C-absorption band (365 nm). The

small peak at ≈ 320 nm results from the red edge of the D-absorption band (295 nm) and the
weak shoulder around 450 nm might stem from the A- or B-absorption band or from the I –

2
fragment. Both signals are in phase with the signal at the red turning point (385 nm). Towards
the red, the amplitude decreases and the phase shifts gradually. The low-wavenumber oscillation
(red) shows three amplitude peaks (solid) and a gradually shifting phase (dashed), which results
in a blue-shifting PA band (see Fig. 5.10). (b) DADS: After the initial, fast τ3 = 5.4 ps decay of
the negative I –

3 GSB and the positive I –
2 PA (black), probably due to direct I –

2 + I fragment
recombination, an intermediate X (red), which lives for τ2 = 91 ps, is formed. The blue shift of
the PA can be explained with vibrational cooling, but the blue shift of the GSB might be an
artefact due to the use of a parallel fit model for a sequential process. After the intermediate
X vanished, the for the measured delay of 2 ns permanent signal τ1 ≈ ∞ ps from free I –

2 (blue)
remains. Since X and free I –

2 have similar difference spectra, X is probably a I –
2 fragment,

which is disturbed by its I partner. [3, Fig. 4] - Reproduced by permission of the PCCP Owner
Societies
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Figure 5.10.: Fitted TA data associated with the low-frequency vibration. (a) These transient
signals follow a cosine curvature and therefore have a nonexponential shape. The wavelength-
dependent phase ϕ(λ) of the cosine function allows the modelling of the blue shift of the PA band.
(b) The fit residuals of the I –

3 sample still show some structure beyond pure noise, probably
resulting from an imperfect fit of the PA blue shift. [3, Fig. 5] - Reproduced by permission of the
PCCP Owner Societies

damped low-wavenumber oscillation with wavelength-dependent phase.
The further dynamics underlying the data in Fig. 5.7 can be modelled with expo-

nential decays, yielding the DADS depicted in Fig. 5.9b. Since the largest lifetime τ1
considerably exceeds the maximum delay time of 2 ns accessible in the measurement,
the corresponding positive PA signal in the DADS (Fig. 5.9b, blue) originates from a
photoproduct that is stable within the scanned time window. The exact spectral po-
sition of this PA is obscured by the overlapping GSB at 362 nm, but since the GSB
is slightly blue-shifted compared to the 365 nm absorption band of I −

3 (Fig. 5.1b), the
PA’s maximum must be located to the low-energy side of the GSB. Matching the wave-
length region of the 395 nm absorption band of I −

2 , [135, 136] this long-lived PA signal
is assigned to I −

2 fragments that managed to escape their I counterpart. If a I −
2 + I

fragment pair stays together or meets again after separation due to diffusion processes,
I −
3 can be formed by geminate recombination. Fitting the corresponding decay of the
GSB and the PA yields two lifetimes (τ3 = 5.4 ps and τ2 = 91 ps) which are close to the
values found in ethanol environment [(5 ± 1) ps and (75 ± 10) ps] [116].

The DADS (Fig. 5.9b, red) of the slow decay time τ2 = 91 ps is very similar to the
DADS of the free I −

2 fragment (Fig. 5.9b, blue), yet the PA amplitude of the former is
larger and its GSB is slightly red-shifted. Since a blue shift is expected for the observed
larger PA amplitude, but a red shift occurs, the decaying PA must be narrower or its
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position must be red shifted compared to the I −
2 PA. Both effects cannot be explained

with vibrational cooling due to the long lifetime τ2 = 91 ps. Instead, an additional
photoproduct or electronic state X is required. This hypothesis is in agreement with
former observations of the 740 nm absorption band of I −

2 , where the overlapping X-
state signature is more evident due to the absence of the disturbing GSB [22, 121]. For
the X species, a I −

2 +I contact pair that is trapped in the solvent cage was suggested, [22]
assuming that the I −

2 fragment is disturbed by the nearby I partner and thus instead of
the free I −

2 signal a red-shifted signal is observed. The necessity of the ET reaction (5.2)
before the recombination was suggested to explain the long lifetime of the contact pair.
In contrast to this long lifetime, also a fast recombination with a time constant of τ3 =

5.4 ps exists, raising the question how some contact pairs can directly recombine while
others need more time. Baratz and Ruhman suggested the formation of I2 + I− contact
pairs for which recombination is not hindered by an ET process [22]. With TA data in
the UV region now at hand, the 505 nm absorption band of the assumed I2 fragment
(Fig. 5.1a) should appear as PA in the DADS of the fast decay (Fig. 5.9b, black).
However, the observed PA is located in the UV and matches the 395 nm absorption
band of I −

2 rather than the I2 signal. Moreover, an oscillation with the vibrational
frequency of I −

2 is present in the TA data (as discussed in Sec. 5.6) whereas an I2
oscillation is absent, suggesting that only I −

2 is formed. An alternative explanation for
the biexponential decay is an ET rate which is much faster for hot contact pairs than
for cold ones. Thus, a direct recombination occurs during the first few picoseconds,
whereas after cooling (τ3 = 5.4 ps) the electron is trapped and therefore the ET takes
longer (τ2 = 91 ps). Such a behaviour was first observed for ion pairs in a low-dielectric
solvent [191] and recently the vibrational dependence of ET rates was utilized to control
different ET pathways in donor-acceptor molecules [192]. A consequence of this reaction
path would be a delayed, sequential formation of the cool contact pairs, which would be
mimicked in the parallel fit model by a negative absorption signal in the DADS of the
preceding hot contact pairs. This signal should appear at the position of the cool I −

2
fragment, i.e., at the red edge of the GSB which should therefore be red-shifted, and
indeed a red shift of the GSB to 370 nm is observed. Alternative origins for the red shift
of the GSB would require an additional photoproduct or excited state for a PA or ESA
at the blue edge of the GSB, or a SE at the red edge of the GSB.

5.4. Transient absorption signals of the other five trihalides

The TA signals in DCM solution were also recorded for the Br −
3 , IBr + Br−, ICl +

Cl−, I2 + Br−, I2 + Cl− samples, which were pumped at 348 nm or 261 nm and probed
with (310–610) nm WL or with (270–515) nm WL, respectively (Fig. 5.11). All best-fit
parameters are summarized in Tab. 5.2, while the corresponding OADS, DADS, and
fit residuals can be found in the Figs. 5.12 to 5.16. The fit model introduced for I −

3
was also used as a starting point to fit the different TA data and yielded conclusive
results, although in some cases a few modifications were necessary as outlined next. The
dissociation reaction generally was faster compared to I −

3 and therefore the Gaussian-
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Figure 5.11.: TA data for the different trihalide samples Br –
3 , IBr+Br– , ICl+Cl– , I2 +Br– ,

and I2 + Cl– pumped at 261 nm (narrow panels) and at 348 nm (wide panels). For the latter
I2 + Cl– only the TA data with 261 nm pump was measured. Note that the data sets do not
necessarily show the same dynamics which would make it possible to just concatenate them,
but due to the pump-wavelength variation a different behaviour can be probed, e.g. three-body
dissociation only occurs for deep-UV excitation. Also note the logarithmic time scale for delays
larger than 5.5 ps. More detailed graphs including the full wavelength range of the TA data as
well as the DADS, OADS, and fit residuals are displayed in the Figs. 5.12 to 5.16. [3, Fig. 6] -
Reproduced by permission of the PCCP Owner Societies
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Figure 5.12.: Transient absorption data of Br –
3 pumped at 348 nm (a)-(d) and pumped at

261 nm (e)-(h). The transient absorption spectra (a), (e) were fitted similar to I –
3 , where also

the weak fragment oscillations of the fit residuals (b), (f) are discussed. Like for I –
3 , the main

part of the Br –
3 model function consists of a combination of damped oscillations and decaying

exponentials with the corresponding OADS (c), (g) and DADS (d), (h), respectively. [3, Fig. S6]
- Reproduced by permission of the PCCP Owner Societies
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Figure 5.13.: Transient absorption data of the IBr + Br– sample pumped at 348 nm (a)-(d)
and pumped at 261 nm (e)-(h). The transient absorption spectra (a), (e) were fitted similar
to I –

3 , where also the weak fragment oscillations of the fit residuals (b), (f) are discussed.
Like for I –

3 , the main part of the IBr –
2 model function consists of a combination of damped

oscillations and decaying exponentials with the corresponding OADS (c), (g) and DADS (d), (h),
respectively. [3, Fig. S7] - Reproduced by permission of the PCCP Owner Societies
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Figure 5.14.: Transient absorption data of the ICl + Cl– sample pumped at 348 nm (a)-(d)
and pumped at 261 nm (e)-(h). The transient absorption spectra (a), (e) were fitted similar to
I –
3 , where also the weak fragment oscillations of the fit residuals (b), (f) are discussed. Like for
I –
3 , the main part of the ICl –

2 or the ICl –
2 /I2Cl– model functions consists of a combination of

damped oscillations and decaying exponentials with the corresponding OADS (c), (g) and DADS
(d), (h), respectively. [3, Fig. S8] - Reproduced by permission of the PCCP Owner Societies
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Figure 5.15.: Transient absorption data of I2 +Br– pumped at 348 nm (a)-(d) and pumped at
261 nm (e)-(h). The transient absorption spectra (a), (e) were fitted similar to I –

3 , where also the
weak fragment oscillations of the fit residuals (b), (f) are discussed. Like for I –

3 , the main part
of the I –

3 /I2Br– model functions consists of a combination of damped oscillations and decaying
exponentials with the corresponding OADS (c), (g) and DADS (d), (h), respectively. [3, Fig. S9]
- Reproduced by permission of the PCCP Owner Societies
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Figure 5.16.: Transient absorption data of I2+Cl– pumped at 261 nm. The transient absorption
spectra (a) were fitted similar to I –

3 , where also the weak fragment oscillations of the fit residuals
(b) are discussed. Like for I –

3 , the main part of the I –
3 /I2Cl– model functions consists of a

combination of damped oscillations and decaying exponentials with the corresponding OADS
(c) and DADS (d), respectively. [3, Fig. S10] - Reproduced by permission of the PCCP Owner
Societies
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shaped WP travelling through the bond-fission state could not be separated from the
CA, resulting in a broader CA. Furthermore, the ICl + Cl− sample pumped at 348 nm
required a fourth exponential lifetime τ4 instead of a low-wavenumber contribution, while
Br −

3 pumped at 348 nm required two low-wavenumber components. Some of the low-
wavenumber oscillations come with a conspicuous large error, making the peak-shift
interpretation less reliable. Finally, the number of the fitted WP oscillations differs
according to the number of reactants or fragment molecules in the sample.
Common for all measurements are three exponential lifetimes, which are interpreted in

analogy to the three lifetimes of I −
3 : The shortest lifetime τ3 originates from an anionic

dimer and represents a hot and therefore possibly fast ET and subsequent recombination
with the neutral atom from the photofragmentation process. This fast ET slows down
after the fragments have cooled, giving rise to a longer lifetime τ2 that describes recom-
bination of fragment pairs that are then trapped in the solvent cage. The third lifetime
τ1, which is infinite with regard to the measured time window, represents permanently
separated fragment pairs.
Measuring six different trihalides in an identical manner allows for a direct comparison

and several inferences. Despite the fact that the fast decay τ3 is within the error the same
for all measurements except for I2 + Br− pumped at 348 nm and 261 nm, a trend can
be seen. With 348 nm pump pulses τ3 decreases for lighter elements and for non-D∞h-
symmetric molecular species. For the measurements with 261 nm pump pulses, all τ3
values are larger than for 348 nm pump pulses. This slightly slower decay suggests that
the larger photon energy of the 261 nm pump results in a higher vibrational excess energy
transferred to the dihalide anion, and this excess energy takes longer to be distributed
to the environment.
The TA data further disclose that the assumed ET with subsequent fragment recom-

bination exhibits a much more pronounced sensitivity on the sort of involved halogen
atoms for cool fragments than for hot fragments. This is evident from the data in
Tab. 5.2, showing that in contrast to the very similar τ3 lifetimes, the τ2 lifetimes show
a much stronger trihalide dependence.
For τ2 associated with the recombination of cooled ion pairs, one might expect no

changes for the pump wavelength either set to 348 nm or 261 nm as long as the same
fragments are formed, because the vibrational excess energy has already been transferred
to the solvent on this time scale. Yet, within the fit error, τ2 determined for both
pump wavelengths coincides only for IBr + Br− and I2 + Br−, but not for Br −

3 and
ICl + Cl−for which τ2 increases for deep-UV pumping. A putative explanation is that
since the fragments initially exhibit more excess energy, they can also separate further,
which slows down the subsequent recombination process. Furthermore, for the ICl+Cl−
sample, investigating the WP oscillations in Fig. 5.17h reveals that due to the chemical
equilibration, I2Cl− is present as a reactant besides the target molecule ICl −

2 . Since
the 261 nm pump is close to the I2Cl− resonance, more I −

2 and less ICl− fragments are
generated, obscuring the TA data and causing increase for the fitted τ2 value.

The frequencies of the coherent WP motion may provide a more intuitive picture of
the distributions of reactant trihalides and fragment dihalides than the overlapping ab-
sorption bands do. Therefore, the WP oscillations observed in the TA data are analysed
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Table 5.3.: Calculated vibrational wavenumbers for trihalide/fragment molecules of D∞,h sym-
metry and their IR and Raman (R) activity. In addition, published experimental values are
given in parentheses.

sym. stretch bend asym. stretch
ν̃1 [cm−1] (R) ν̃2 [cm−1] (IR) ν̃3 [cm−1] (IR)

I−I 219 (209)a - -
[I−I]– 115 (114)b - -
Br−Br 325 (316)a - -
[Br−Br]– 163 (165)b - -
Cl−Cl 553 (546)a - -
[Cl−Cl]– 260 (271)b - -
[I−I−I]– 115 (114) 59 (52) 142 (145)c

[Br−Br−Br]– 166 (164) 91 (53) 190 (191)c

[Cl−Cl−Cl]– 254 (275) 163 (165) 266 (232)d

[Br−I−Br]– 162 (162) 76 (64) 174 (174)c

[Cl−I−Cl]– 232 (269) 108 (127) 262 (226)c

[Cl−Br−Cl]– 238 (278) 130 (135) 269 (225)c

aRaman in DCM, cyclohexane or carbon tetrachloride [193]
bTime-resolved resonance Raman in N2O saturated aqueous solution [194]
cIR and Raman in DCM [148]
dIR and Raman in benzene/acetonitrile [195]

in great detail in Sec. 5.6, but first the characteristic wavenumbers of all possible species
are determined in a theoretical investigation.

5.5. Ab-initio frequency calculations
Ab-initio frequency calculations were performed by Jan Hrušák (J. Heyrovský Institute
of Physical Chemistry v.v.i., Academy of Sciences of the Czech Republic, Dolejškova
3, 182 23 Praha 8, Czech Republic) to determine the characteristic wavenumbers of
the complete iodine–bromine–chlorine series of stable anionic trihalide isomers and their
possible neutral or anionic diatomic photodissociation fragments. This theoretical inves-
tigation complements the calculations on different subsets of the trihalide series, which
are already available in the literature [151,152,165,198–200], and provides a systematic
series of theoretical vibrational frequencies, which are comparable regarding to the (now
higher) quality of the calculation method and the size of the used basis set.
Highly correlated quantum-chemical calculations provide a powerful tool in predicting

physico-chemical properties. For small atomic clusters like in the present case quanti-
tative agreement with the experiments can be expected if a complemented basis set
is used in conjunction with the inclusion of correlation energy. In addition, heavy-
elements-containing species exhibit relativistic effects, which have significant influence
on the results of the calculations. One convenient way to avoid expensive solutions based
on Dirac-Hartree-Fock equations is the use of pseudopotentials, by which the major rel-

102



Table 5.4.: Calculated vibrational wavenumbers for trihalide/fragment molecules of C∞v sym-
metry and their IR and Raman (R) activity. In addition, published experimental values are
given in parentheses.

sym. stretch bend asym. stretch
ν̃1 [cm−1] (IR,R) ν̃2 [cm−1] (IR,R) ν̃3 [cm−1] (IR,R)

I−Br 272 (262)a - -
[I−Br]– 139 (136) [165] - -
I−Cl 389 (374)a - -
[I−Cl]– 193 (180)b - -
Br−Cl 442 - -
[Br−Cl]– 215 - -
[I−I−Br]– 132 (138) 68 164 (157)c

[I−I−Cl]– 138 (155) 84 (107) 233 (324)c

[Br−Br−Cl]– 186 109 245
[Br−I−Cl]– 172 (177) 93 242 (232)d

aRaman in DCM, cyclohexane or carbon tetrachloride [193]
bAll-electron MR-CI calculation [196]
cRaman on crystals with (CH3)4N+ or Cu(NH3)2+

4 cations [197]
dRaman in chloromethane [144]

ativistic effects (mass–velocity and Darwin terms) are easily included in a parametric
way into the pseudopotentials, while at the same time the valence electrons are treated
by the non-relativistic Schrödinger equation. Several relativistic pseudopotentials (or
effective core potentials – RECP) were generated and successfully tested over the last
three decades. These RECPs include the two major relativistic contributions to atomic
properties (i.e., the mass–velocity and Darwin terms) and allow the molecular calculation
being performed in a traditional non-relativistic formalism. In the present thesis, the
well-established RECP parametrizations of the Stuttgart group [201–205] are applied for
Br and I to replace the inner-shell electrons by the core potential. These RECP are used
in conjunction with the correlation-consistent basis set of Martin and Sundermann, [206]
which is contracted to approximately quintuple zeta quality and saturated with respect
to the electronic correlation by four d-polarization functions, three f-polarization func-
tions and two g-type polarization functions (15s12p4d3f2g/5s5p4d3f2g). Similar basis
set contraction has been proven sufficient to achieve quantitative agreement of the calcu-
lated first-order properties of small iodine clusters [198] with the corresponding experi-
mental values. The experimental electron affinities, equilibrium bond lengths, harmonic
vibrational frequencies, dissociation and excitation energies of neutral and charged iodo
clusters can be reproduced with an average accuracy of about four percent. Similarly to
these calculations, the coupled-cluster CCSD(T) method was employed, [207] which was
proven to be superior to the QCISD(T) method [208]. For the chlorine atom, the 1s or-
bital was not replaced by a RECP but the all-electron aug-cc-pV5Z basis was used [209].
All valence electrons have been correlated in the coupled-cluster calculations irrespec-
tively if a RECP or an all-electron basis was employed. The geometry optimization and
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Figure 5.17.: Amplitude of the Fourier-transformed WP oscillations pumped at 348 nm [(a) to
(e)] and at 261 nm [(f) to (j)]. To simultaneously consider the strong, already fitted oscillations
and the weak ones remaining in the fit residuals, the former were rescaled and the sum of both
was then Fourier transformed. The most prominent peaks are labelled with their respective
wavenumber. [3, Fig. 7] - Reproduced by permission of the PCCP Owner Societies

the subsequent calculation of vibrational harmonics were done with the GAUSSIAN09
program [210] using numerical derivatives of the potential energy. No symmetry con-
straints were applied a priori in the calculations. The resulting vibrational wavenumbers
are presented in Tab. 5.3 and Tab. 5.4 together with experimental values from former
Raman (R) or infrared (IR) measurements.

5.6. Reactant and fragment identification
Each trihalide and each of the possible diatomic fragments has a characteristic vibra-
tional wavenumber, which should occur in the WP oscillations if the corresponding
species is present in the sample and symmetry selection rules allow its observation.
Therefore, the fitted, non-oscillating background was removed and the remaining oscil-

104



lations were Fourier-transformed with respect to the time delay T to identify reactant
mixtures, e.g. for I2Cl− (Fig. 5.1c), as well as possible competing fragmentation path-
ways. To identify also weak oscillations from the fit residuals simultaneously with the
strong ones already fitted in the OADS, the latter were rescaled before the sum of
both was Fourier-transformed. The resulting spectral amplitude, i.e., the absolute value
of the Fourier-transformed signal, is depicted in Fig. 5.17, where panels a–e represent
experiments with 348 nm pump pulses and probed with (310–610) nm WL, while for
panels f–j 261 nm pump and (270–515) nm WL probe pulses were used. Signal contri-
butions below 50 cm−1 are neglected, because this wavenumber region is disturbed by
low-wavenumber fluctuations of the laser sources. For all samples, the 285 cm−1 oscil-
lation of DCM could be observed, in some samples even the 700 cm−1 and 740 cm−1

oscillations of DCM [211–220]. Furthermore, a 490 cm−1 oscillation occurred in nearly
every sample. This signal is considered to be an artefact, because it does not belong to
DCM and its structure shows no sample dependence.
In the following, the observed vibrational dynamics will be discussed for each of the

investigated trihalide samples:
(a) I2 + I−: Like in the OADS in Fig. 5.9a, two pronounced 113 cm−1 peaks, which

match the symmetric stretch vibration of I −
3 , appear at 350 nm and 385 nm, respectively,

i.e., the peaks are centered around the GSB at 366 nm and therefore correspond to the
C-absorption band of I −

3 . In addition, the red edge of the D-absorption band reaches
the spectral detection window and gives rise to a weak 113 cm−1 peak at ≈ 320 nm. All
peaks show a Lorentzian lineshape due to the exponential decay of the corresponding
oscillation in the time domain.
The intense GSB and symmetric stretch oscillation increase the noise amplitude in

the 330 nm to 390 nm region, which makes it difficult to identify weaker oscillations.
Two small peaks at 143 cm−1 are found at 350 nm and 385 nm, respectively, representing
the asymmetric stretch of I −

3 , which indicates that the DCM environment breaks the
D∞h symmetry of I −

3 and leads to a Raman-active asymmetric stretch vibration, as
also observed by Gabes and Gerding [148]. Furthermore, two 163 cm−1 peaks appear
at the same wavelengths. Since this wavenumber does not match any of the I −

3 , I −
2

or I2 vibrations or higher harmonics, it may be assigned to a polyiodide consisting of
more than three atoms [221]. The two 245 cm−1 peaks, which can be seen at 345 nm
and 368 nm, respectively, i.e., blue-shifted with respect to the C-absorption band of I −

3 ,
might be assigned to the combination band previously reported at (253 ± 2) cm−1 [124].

At 600 nm, a 95 cm−1 signal appears, which narrows and shifts to higher wavenumbers
for decreasing wavelengths in the PA region until it reaches 105 cm−1 at ≈ 500 nm. Such
a behaviour can be explained with a vibrationally hot I −

2 fragment that oscillates in the
beginning at lower wavenumbers due to the PES anharmonicity [222] and cools down
to larger wavenumbers at later delay times. The cooling effect can also explain the
narrowing and the blue shift of the PA band (see Sec. 5.3), which in turn might be the
reason for the wavelength-dependent wavenumber shift. An alternative interpretation
for the wavelength dependence is based on the filter effect of the Franck–Condon window,
which limits the accessible vibrational states depending on the wavelength of the optical
transition [126]. Furthermore, the I −

3 signal intensifies towards UV wavelengths and
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since I −
3 and (cool) I −

2 have nearly the same fundamental wavenumber, it is not clear
at which wavelength the I −

2 signal ends and the I −
3 signal starts [126]. Finally, the small

interfragment distance at the beginning deforms the I −
2 PES and therefore influences the

vibrational wavenumber, which will change for an increasing fragment separation [126].
(b) Br −

3 : In analogy to the I −
3 /I −

2 system in (a), the 160 cm−1 peak which is evident
in the GSB region was assigned to the symmetric stretch of Br −

3 . In the same way, also
a cooling Br −

2 fragment can be identified, giving rise to the narrowing signal that shifts
from 142 cm−1 to 155 cm−1 in the PA region.
(c) IBr+Br−: an oscillation at 162 cm−1 is found, which however appears at a different

wavelength position compared to the observation in (b). Therefore, it is assigned to the
symmetric stretch of IBr −

2 and not to Br −
3 which could also be present in the sample

due to equilibration. The asymmetric stretch of I2Br−, another possible side-reactant,
is also ruled out, since the 162 cm−1 peak is absent in a sample [discussed under (e)]
which clearly contains I2Br−. Furthermore, the 132 cm−1 oscillation is assigned to the
IBr− fragment instead of the symmetric stretch of I2Br−, for which a different signa-
ture is observed in (e). Finally, the contribution spanning from 126 cm−1 to 135 cm−1

coresponds to IBr− and the wavenumber shift is again explained by the cooling effect.
(d) ICl + Cl−: Since ICl −

2 absorbs deep in the UV at 230 nm (Fig. 5.1c), only the
PA region lies in the spectral detection window. There, an oscillation at 175 cm−1 is
observed, which originates from the ICl− fragment. In contrast to the measurements (a)
to (c), no clear wavenumber shift can be seen.
(e) I2 + Br−: For this sample, the I −

3 signature at 113 cm−1 and the I −
2 signature

spanning from 105 cm−1 to 95 cm−1, as known from (a), are clearly visible. Further-
more, a 136 cm−1 oscillation appears, which is much stronger than in (c) and consists
of two out-of-phase peaks instead of only one peak. In contrast to (c), the 126 cm−1

to 135 cm−1 oscillation is barely visible. Therefore, the 136 cm−1 peak is assigned to
I2Br− (symmetric stretch), a reactant which mainly gives rise to the I −

2 fragment upon
photolysis as it was observed for the liquid phase [119,120,164].

The following oscillations have been identified in the TA data with 261 nm excitation:
(f) Br −

3 : The pronounced 164 cm−1 peaks located below 270 nm and at 290 nm origi-
nate from the D-absorption band of Br −

3 , while the 164 cm−1 peak at ≈ 342 nm, which is
also visible in (b), most likely is due to the C- or B-absorption band. In contrast to (b),
here the 342 nm peak is less intense as a consequence of the lower concentration of Br −

3 ,
which is required to prevent saturation of the strong D-absorption band. After magni-
fying the VIS region by a factor of eight, a very weak signal spanning from 158 cm−1

to 165 cm−1 becomes visible, representing the coherent oscillation of the Br −
2 fragment.

Thus, it seems that for pumping at 261 nm instead of 348 nm the WP dephasing is much
faster or the Br −

2 fragment formation is less efficient. The latter aspect is substantiated
by the possibility of a competing reaction channel, namely three-body dissociation as
also observed for I −

3 pumped at 266 nm [39].
(g) IBr+Br−: Like for the 348 nm pump measurement in (c), the 167 cm−1 oscillation is

assigned to the symmetric stretch of IBr −
2 and the contribution spanning from 138 cm−1

to 125 cm−1 is associated with the IBr− fragment. Around 350 nm, the 167 cm−1 peak
is much weaker than in (c), because here the overall reactant concentration is reduced
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to avoid saturation of the strong D-absorption band of IBr −
2 . Br −

3 would also match
as putative origin of the 167 cm−1 peak, but it is ruled out since no corresponding signal
is present in (c).
(h) ICl + Cl−: The 263 cm−1 symmetric stretch vibration of ICl −

2 is now visible, in
contrast to the data of (d), yet the 175 cm−1 signature of ICl− vanished. The latter might
result from pumping at 261 nm instead of 348 nm leading to a faster WP dephasing or
a predominant, alternative reaction channel, e.g., three-body dissociation.
In addition, a 150 cm−1 peak matching the symmetric stretch wavenumber of I2Cl−

appears. Therefore, in spite of the ICl −
2 purification due to Cl− excess (Sec. 5.1), a low

concentration of I2Cl− must still be present due to equilibration. Since the 261 nm pump
wavelength is resonant with the I2Cl− absorption (Fig. 5.1c), a signal of measurable
intensity may occur for such low concentrations.
Two further signals are identified, one spanning from 108 cm−1 to 113 cm−1 and the

other one from 110 cm−1 to 100 cm−1, respectively. Both signals are attributed to the
I −
2 fragment, which results from the photodissociation of I2Cl−. I −

3 is ruled out as
source of the 113 cm−1 signal, because the three typical 113 cm−1 peaks from (a) and (j)
are missing, instead only one peak shifting from 108 cm−1 to 113 cm−1 can be seen in
this wavelength region. Furthermore, the phase of the 108 cm−1 to 113 cm−1 oscillation
is shifted about π with respect to the phase of the 110 cm−1 to 100 cm−1 oscillation, as
it is expected for a WP which is trapped on the ground-state PES associated with the
395 nm absorption band of I −

2 . Like for (a), the wavenumber shift can be explained by
vibrational cooling on an anharmonic PES. In the beginning, the broad, red-shifted PA
spectrum of a hot I −

2 fragment causes a low-wavenumber oscillation observable far away
from the absorption’s band-center wavelength. While cooling down, the PA spectrum
narrows and blue-shifts, and therefore the oscillation signal of increasing wavenumber
moves towards the center wavelength. Such a behaviour was also observed for the
740 nm absorption band of I −

2 , [126] but the wavenumber shift was explained with the
wavelength-dependent wavenumber filter effect of the Franck–Condon window and the
PES-disturbing small interfragment distance at the beginning of the dissociation reac-
tion.
(i) I2 + Br−: In analogy to the observations in (e), the strong 135 cm−1 peaks are

assigned to the symmetric stretch of I2Br−, while the 110 cm−1 to 105 cm−1 contribution
is associated with the I −

2 fragment. The latter is much weaker than in (e) and requires
a relative magnification of five to become visible in one plot together with the other
peaks. Also a weak 116 cm−1contribution from I −

3 , which overlaps with the 135 cm−1

peaks, can be seen. This signal is weak, because the 261 nm pump wavelength is not in
resonance with any of the I −

3 absorption bands.
(j) I2 +Cl−: The signature of the I −

3 /I −
2 system is evident in the 116 cm−1 oscillation

and the contributions spanning from 110 cm−1 to 105 cm−1. Furthermore, the 155 cm−1

symmetric stretch vibration of I2Cl− already known from (c) occurs. Since no spectral
feature of ICl− is observed, I −

2 must be the main fragment of the I2Cl− photodissocia-
tion. Thus, although two different dihalide anion fragments are conceivable from I2Cl−,
only the bond between the center iodine and the chlorine atom is cleaved upon deep-UV
photoexcitation.
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5.7. Conclusion

In agreement with former time-resolved experiments on I −
3 in the VIS-NIR range, [22]

both the GSB and the PA of I −
3 show a biexponential decay (τ3 = 5.4 ps, τ2 = 91 ps)

associated with fragment recombination and a permanent signal, which is assigned to the
UV absorption band (395 nm) of long-lived I −

2 fragments that escaped their I partner and
are therefore stable within the scanned time window of 2 ns. Despite the lack of the exact
PA band position due to the overlapping GSB, the slow recombination decay τ2 = 91 ps
seems to be accompanied by a blue shift of the PA band. Baratz and Ruhman observed
the same behaviour much more clearly for the NIR absorption band of I −

2 (740 nm) [22]
and the interpretation within this thesis follows their inference that the blue shift stems
from the recombination of caged I −

2 +I contact pairs, whose PA is red-shifted compared
to free I −

2 due to the small interfragment distance. The existence of such long-lived
contact pairs was explained by Baratz and Ruhman with the necessity of an ET process
that has to take place before the actual recombination, whereas they assigned the fast
decay τ3 = 5.4 ps to I2 + I− contact pairs, which can recombine directly. Since neither
the PA band nor the vibrational wavenumber of I2 could be observed in the experiment
presented in this thesis, it is suggested that no or only very few I2 + I− contact pairs are
formed and that instead the biexponential decay stems from a vibrational-dependent ET
rate [191,192] which slows down as the I −

2 + I contact pairs cool down. On longer time
scales, the assumed absence of I2 + I− fragments is further supported by time-resolved
X-ray liquidography experiments with 100 ps time resolution [160].
For the other trihalides (Sec. 5.4), the observations in the TA studies can be interpreted

in close analogy to the case of I −
3 . All processes identified for I −

3 also occur in the
other trihalides, yet with different time constants. In particular, no indication for a
neutral diatomic fragment was found, but the observed absorption signals point towards
a fragmentation pattern where always the bond between the center atom and the lighter
halogen atom is cleaved, yielding a fragment pair of a dihalide anion and a neutral atom
of the lightest involved halogen.
On short time scales, i.e., below 2 ps, vibrational WP oscillations of such a pronounced

amplitude were observed that for a successful fit of the transient absorption data they
needed to be considered explicitly in the model function (Sec. 4.1), which made a custom
implementation of the variable projection fitting algorithm necessary (Sec. 4.2). Beside
the molecular vibrations, the oscillation function, introduced in this thesis, was also capa-
ble of fitting the non-exponential and blue-shifting dynamics within the first ps (Sec. 5.3).
Such a non-exponential behaviour already occurred for I −

3 in isobutyl alcohol, [121] but
instead of a low-wavenumber oscillation, Ruhman and coworkers used a polynomial func-
tion for modelling the signal curvature. To extract finer details of the possible reaction
pathways, the oscillations were Fourier-transformed (Sec. 5.6) and compared to ab-initio
quantum-chemical calculations (Sec. 5.5) for the characteristic vibrational wavenumbers
of the reactants and diatomic fragments. For all investigated trihalide reactants, only
one wavenumber could be assigned to a diatomic fragment. Therefore, the analysis of
the coherent WP oscillations corroborates that for every trihalide only one predominant
photodissociation channel towards one anionic dihalide fragment exists. While ICl −

2
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and IBr −
2 yield vibrational signatures of the only possible dihalide (the heteronuclear

ICl− and IBr−, respectively), the finding of only one fragment is of special relevance in
the case of the asymmetric trihalides I2Br− and I2Cl−, which result both in I −

2 as sole
dihalide fragment. This confirms and extends the studies on I2Br− [120,164] where such
a behaviour was previously reported.
For all investigated trihalides, the intensity of the fragment signals is weaker for deep-

UV pumping as a consequence of the increasing importance of photoinduced three-body
dissociation. For ICl −

2 pumped at 261 nm, the ICl− signature was not even detectable.
Broadband probing in the UV range allowed to determine a wavelength-dependent shift
of the fragment oscillation wavenumbers, as found for I −

2 in the NIR range [126]. In line
with conclusions drawn for experiments with only I −

3 , [117] the increasing wavenumber
observed for all samples can be explained with a cooling WP which descends in an
anharmonic potential.
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6. Summary

The most basic molecule to test the possibility of controlling photodissociation reactions
in the liquid phase requires at least two branching dissociation pathways, i.e., competing
photofragmentation patterns that give rise to different product species originating from
the same precursor. In the simplest case, a molecule consisting of only three atoms
connected with two distinct chemical bonds is sufficient. Promising candidates of this
kind can be found in the family of the trihalides. To test whether these molecules offer
besides their simple structure also two branching dissociation pathways, the ultrafast
photodissociation and the subsequent fragment caging and fragment recombination of
the trihalide anions I −

3 , Br −
3 , IBr −

2 , ICl −
2 , I2Br− and I2Cl− in dichloromethane (DCM)

solution were studied in this thesis with transient absorption spectroscopy (Sec. 5).
To reconstruct the reaction pathway, the fragments were identified by their char-

acteristic wavepacket (WP) vibrations that originate from the photoinduced reactant
vibrations, whose dephasing rates are slower than the photodissociation process. For
each investigated trihalide only one diatomic fragment and therefore only one predom-
inant photodissociation channel was found. While the symmetric I −

3 , Br −
3 , ICl −

2 and
IBr −

2 yield I −
2 , Br −

2 , ICl− and IBr−, respectively, the asymmetric I2Br− and I2Cl−
result both in I −

2 , but not in IBr− or ICl−, respectively. Furthermore, no oscillation
wavenumber could be assigned to a neutral diatomic fragment. Thus, except for three-
body dissociation at deep-UV excitation, no branching reaction pathways were observed.
In the case of I −

3 , this finding also makes the direct formation of I2 + I− fragments pairs
unlikely. Therefore, the electron transfer process I −

2 + I −−→ I2 + I− that precedes
the fragment recombination I2 + I− −−→ I −

3 [22] must be able to happen on different
rates to explain the observed two recombination time constants occurring for only one
fragment pair I −

2 + I −−→ I −
3 . Probably, right after the photodissociation, the electron

transfer process is mediated by vibrational excess energy that is then distributed to the
environment and thus leads to trapped I −

2 + I contact pairs.
On more general terms, this study shows how photoproducts can be identified from

vibrationally coherent oscillations in broadband transient absorption electronic spec-
troscopy. For this purpose, simultaneous global fitting of kinetic and oscillating com-
ponents was implemented in Mathematica as detailed in Sec. 4. This approach should
be applicable to a large range of molecular systems and thus help advance the further
extension of vibrationally coherent time-domain spectroscopy. A drawback of accessing
the vibrational signal of dissolved molecules in the time domain instead of the frequency
domain is the high dephasing rate, which rapidly averages out the wave packet oscilla-
tions. Only photophysical-/chemical processes that proceed faster than the dephasing
may be investigated by observing their vibrational dynamics. Fortunately, the pho-
todissociation of the trihalides (≈ 300 fs for I –

3 ) is about three times faster than the
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vibrational dephasing (≈ 1 ps for I –
3 ). However, the fragment recombination dynamics

and the behaviour of the solvent-trapped contact pair are beyond the dephasing time
window. A possible strategy to overcome this limitation is to reactivate the molecules’
oscillation with a second pump pulse, also called repump, as it is done in transient
resonance impulsive stimulated Raman scattering (TRISRS) [111,117,223].
Besides the above mentioned contributions to the photodynamics of trihalides and

the data evaluation procedure of ultrafast spectroscopy, two approaches (transition-
probability approach in Sec. 3.2 and response-theory approach in Sec. 3.3) for calculating
magic-angle conditions in third-order spectroscopy of isotropic molecular samples were
introduced in the theoretical part of this thesis (Sec. 3). Allowing for elliptical polariza-
tion and arbitrary propagation directions of each laser pulse a generalized magic-angle
condition (Sec. 3.4) was developed for elliptically polarized pulses, of which the linear
and circular polarizations known from the literature are limiting cases. The general-
ity of the approach allowed the investigation of the influence of the pump and probe
propagation directions onto the magic-angle configuration and made the calculation of
a corrected magic angle for a noncollinear geometry possible.

In addition, magic-angle configurations were found, under which the measured third-
order signal does not depend on the phase differences between the polarization compo-
nents of the pump δpu and/or the probe pulse δpr. Thus, if in such a configuration e.g.
a δpu-dependent signal occurs, it results either from a higher-order interaction or the
electric dipole approximation is violated. Such a signal could be isolated by polarization
phase cycling of the phase difference δpu.

Furthermore, the results were also transferred to 2D spectroscopy (Sec. 3.5) and third-
order spectroscopy in general utilizing the universality of the response-theory approach
(Sec. 3.3). A configuration for magic-angle 2D spectroscopy in box geometry was sug-
gested that avoids the often used approximation of nearly collinear beams.
Finally, in agreement with the literature, the anisotropy and its relation to the angle α

between the corresponding transition dipole moments (TDMs) was calculated (Sec. 3.6),
not only for a single signal but also for multiple overlapping signal contributions on the
example of a two-fold degenerate TDM.
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7. Outlook for quantum control

With the results of this thesis, it is now possible to outline a potential strategy for
controlling the selectivity and efficiency of the trihalides’ photodissociation reaction. It
became clear that the heteronuclear trihalides with two distinct chemical bonds cannot
easily purified, because they always form a chemical equilibrium with all other trihalides
thinkable for the halogen atoms involved in the synthesis (see Fig. 5.1). Even the signal
of I2Cl– , which seemed to be spectroscopically selectable, is contaminated with signal
contributions from other trihalides (see Fig. 5.17j). This is a serious issue, because one
cannot easily trace back the origin of an observed photodissociation fragment and thus
one cannot judge about the control efficiency of a specific pulse shape. Furthermore, non
of the examined trihalides showed competing reaction pathways but all of them dissociate
into a major, possibly sole dihalide fragment. Nevertheless, I2Cl– remains a promising
test candidate. Indeed, one cannot tell if the observed I –

2 fragments stem from I2Cl–
or I –

3 , but as soon as a ICl– signal occurs, one can assume a successful control of the
I2Cl– photodissociation in favour of the reaction channel towards the ICl– fragment.
However, the disadvantage of observing only one natural photodissociation channel is
that a control experiment cannot just aim to perturb a fragile balance but one must
overcome the given, possibly strong selectivity of the photoreaction. Therefore, a trial
and error control attempt will turn into the famous search for the needle in a hay stack,
making a more concerted strategy necessary.
At this point it is advisable to recall the photodynamics of I –

3 already known from the
literature, illustrated in Fig. 2.3. The reaction starts with a pump pulse that generates
a wavepacket (WP) on the excited state potential energy surface (PES). Then, this WP
evolves according to the PES’s shape, which offers two reaction channels, each resulting
in the cleavage of another chemical bond. Due to the symmetry of I –

3 , the WP is
initially placed on the top of the barrier between the two reaction channels and can
therefore enter both channels simultaneously. In contrast, for trihalides lacking this
kind of symmetry, e.g., I2Cl– , one could expect that the barrier is shifted with respect
to the initial WP position and thus guides the WP into a specific direction. This would
explain the natural selectivity of the photodissociation reaction and for a successful
control attempt, one then needs to place the WP on the other side of the barrier or give
the WP an initial momentum sufficient to overcome the barrier.
However, none of these effects can be induced directly by the pump pulse, because a

laser pulse can only alter the molecules’ energy, i.e., it can only shift the WP between
different PES while the WP’s position and motion in the coordinate space depend on the
molecular properties. Nevertheless, the control goal may be achieved indirectly following
the Tannor-Kosloff-Rice scheme [5,6]: First, one utilizes a laser pulse to generate a WP on
a PES that is appropriate to evolve the required WP position and/or momentum. Then,
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with the help of a second laser pulse, the WP is transferred to the photodissociation
PES, where it can now enter the desired reaction channel. A possible intermediate PES
to prepare the WP properties might be given by the I2Cl– ground state, for which
the formation of a WP due to RISRS was already observed in the transient absorption
measurement. The question whether the ground state PES can help the WP to overcome
the barrier on the photodissociation PES might be answered with a theoretical study
of the WP dynamics. However, prior to that one needs to calculate the shape of the
involved PES, because this information is only available for I –

3 [37] but not for the other
trihalides.
Assuming that the ground state PES can be used to prepare the WP, one can further

speculate about the properties required for the pump pulse(s). Since the I –
3 WP oscil-

lates between 350 nm and 385 nm and a similar bandwidth can be expected for I2Cl– ,
just shifted towards the blue, the pump should either cover the whole spectral range of
the WP oscillation or at least the two colors relevant for the two WP transitions nec-
essary for the Tannor-Kosloff-Rice scheme. With the current spectroscopic setup (see
Fig. 5.2), the pump bandwidth is in the range of 2 nm to 6 nm, far below the required
value. Another challenge might be the pump intensity, which needs to be higher to
access higher-order non-linear effects. The current pump intensity serves for third-order
spectroscopy but might be too low to efficiently support the fifth-order pump–repump
control scheme. A possibility to solve both issue might be the usage of a hollow core fi-
bre instead of a noncollinear optical parametric amplifier (NOPA) to generate the pump
pulse(s).
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A. femtoTools package collection
The Mathematica packages (*.m-files) that are listed in the following subsections form
the femtoTools collection, which offers various functions to process, fit and plot transient
absorption data and to trace Gaussian beams through optical systems. Calling

<<femtoTools`;

includes the full collection in the current Mathematica notebook (*.nb-file) if either the
femtoTools folder is placed at a location that is specified in the $Path variable or if the
location of the femtoTools folder is added

AppendTo[$Path,"L:/Mathematica"];

to the $Path variable. If the latter command is added in the init.m file located in
FileNameJoin[{$UserBaseDirectory,"Kernel","init.m"}],

the $Path variable is updated automatically on each startup of Mathematica. Note
that each *.m-file was automatically created from a *.nb file by switching the option
AutoGeneratedPackage under Format → Option Inspector... → Global Preferences to man-
ual. Then, Mathematica asks if it should generate an *.m-file that contains the contents
of the initialization cells (right-click cell bracket → select initialization cell). To display
for one package, e.g., parVarPro, the available functions together with a short description
call

?"femtoTools`parVarPro`*"

and replace the term parVarPro with the desired package name.

A.1. Kernel/init.m
This *.m-file defines and loads the femtoTools package collection.

1 (* Mathematica Package *)
2 (* :Title: femtoTools *)
3 (* :Context: femtoTools` *)
4 (* :Summary: Package collection to fit a plot transient absorption data. *)
5 (* :Keywords: fitting, variable projection, nonlinear least square *)
6 (* :Author: Sebastian Schott, IPTC Universität Würzburg *)
7 (* :Mail: sebastian.schott[at]phys-chemie.uni-wuerzburg.de *)
8 (* :Licence:
9 Copyright 2016, Sebastian Schott

10
11 Licensed under the Apache License,Version 2.0 (the "License");
12 you may not use this file except in compliance with the License.
13 You may obtain a copy of the License at
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14
15 http://www.apache.org/licenses/LICENSE-2.0
16
17 Unless required by applicable law or agreed to in writing,software
18 distributed under the License is distributed on an "AS IS" BASIS,
19 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,either express or implied.
20 See the License for the specific language governing permissions and
21 limitations under the License. *)
22 (* :Mathematica version: 10.3.1*)
23 (* :Package version: 1.0*)
24 (* :History:
25 2016-02-26: Version 1.0
26 *)
27 (* :Description:
28 To use the Mathematica package femtoTools, the parent directory of the
29 femtoTools folder needs to be in the $Path variable of Mathematica.
30 Either you copy femtoTools to a folder already present in $Path or you
31 add the location of femtotools to $Path, e.g.
32 "AppendTo[$Path,"L:/Mathematica"];". If you add the former command to
33 your "init.m" file located in
34 "FileNameJoin[{$UserBaseDirectory,"Kernel","init.m"}]",
35 the $Path variable is updated automatically on the startup of
36 Mathematica.
37 *)
38
39 <<femtoTools`io`;
40 <<femtoTools`fourier`;
41 <<femtoTools`gaussTrace`;
42 <<femtoTools`plotOptions`;
43 <<femtoTools`framePlot`;
44 <<femtoTools`imagePlot`;
45 <<femtoTools`parVarPro`;

A.2. parVarPro.nb
This package requires

• plotOptions

for the graphical output (e.g. Fig. 4.2) and allows to fit transient absorption data with
the VPA, as explained in Sec. 4.2 and exemplified in Sec. 4.3.

1 (* Mathematica Package *)
2 (* :Title: parVarPro *)
3 (* :Context: femtoTools`parVarPro` *)
4 (* :Summary: Fit with the partitioned variable projection algorithm. *)
5 (* :Keywords: fitting, variable projection, nonlinear least square *)
6 (* :Mathematica version: 10.3.0*)
7 (* :Package version: 1.0*)
8 (* :Author: Sebastian Schott, IPTC Universität Würzburg *)
9 (* :Mail: sebastian.schott[at]phys-chemie.uni-wuerzburg.de *)

10 (* :Licence:
11 Copyright 2016, Sebastian Schott
12
13 Licensed under the Apache License,Version 2.0 (the "License");
14 you may not use this file except in compliance with the License.
15 You may obtain a copy of the License at
16
17 http://www.apache.org/licenses/LICENSE-2.0
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18
19 Unless required by applicable law or agreed to in writing,software
20 distributed under the License is distributed on an "AS IS" BASIS,
21 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,either express or implied.
22 See the License for the specific language governing permissions and
23 limitations under the License. *)
24 (* :Dependencies:
25 femtoTools`plotOptions`
26 *)
27 (* :History:
28 2016-02-26: Version 1.0
29 *)
30 (* :Description:
31 Examples of use are available in femtoTools/examples/parVarPro.nb.
32
33 The variable projection algorithm (varPro) [1] was implemented to
34 Mathematica via the built-in FindMinimum function [2] following a recent
35 Matlab implementation [3] and it was extended to the partitioned variable
36 projection algorithm (parVarPro) according to TIMP/Glotaran [4,5].
37
38 Despite the fact that the function varPro is already deprecated, it stays
39 in the package for educational reasons. The basic concept of the variable
40 projection algorithm and its Mathematica implementation is easier to
41 understand in the less complex varPro function.
42
43 ToDo:
44 - Implement error calculation for the linear and nonlinear parameters.
45
46 Features:
47 - Be as flexible as Mathematica in choosing your model function, e.g. fit
48 oscillations with a wavelength dependend phase or fit stretched-
49 exponential decays in transient absorption data.
50 - Use the analytic Jacobian or its finite difference approximation.
51 - Derivatives for analytic Jacobian are automatically calculated.
52 - Fit multiple datasets globally.
53 - Fit 1D, 2D and partitioned 2D datasets.
54 - Exploit the structure of the data to speed up the fitting procedure, e.g.
55 for transient absorption data do a chirp correction before fitting.
56 - Compact source code.
57
58 Missing features / disadvantages compared to \gls{glotaran}:
59 - Error calculation for the linear and nonlinear parameters (see ToDo).
60 - Weighting
61 - Constraints:
62 - Upper and lower bounds for nonlinear parameters.
63 - Non-negative linear parameters.
64 - Set some linear parameters equal to zero (K-matrix).
65 - Equalize some linear parameters (K-matrix).
66 - Singular value decomposition (SVD) tool set. However, Mathematica
67 implements a SVD algorithm.
68 - Mathematica is closed source.
69
70 [1] G. Golub and V. Pereyra, Inverse Problems 19, R1 (2003)
71 [2] Alexey Popkov, http://mathematica.stackexchange.com/a/16714 (2016-26-02)
72 [3] K.M. Mullen and I.H.M. van Stokkum, J. Stat. Softw. 18, 1 (2007)
73 [4] J.J. Snellenburg, S.P. Laptenok, R. Seger, K.M. Mullen,
74 and I.H.M. van Stokkum, J. Stat. Softw. 49, 1 (2012)
75 [5] D.P. O\[CloseCurlyQuote]Leary and B.W. Rust, Comput Optim Appl 54, 579 (2013)
76 *)
77
78 BeginPackage["femtoTools`parVarPro`", {"femtoTools`plotOptions`"}]
79
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80 collectExp::usage = "collectExp[expr] collects together terms \
81 involving the same exponantial Exp[...]."
82
83 varPro::usage = "varPro[...] is deprecated, use parVarPro[...].
84 varPro[{dataset,...},{\[Alpha]1,...}] fits multiple datasets \
85 simultaneously using the parameters \[Alpha]1,....
86 varPro[{{{x1,...},{y1,...},x,{f1[x],...}},...},{\[Alpha]1,...}] fits \
87 the linear combination of the functions f1[x],... to one-dimensinal \
88 datasets y1,... depending on the variable x1,....
89 varPro[{{{x1,...},{{y21,y22,...},{y11,y12,...}},x,{f1[x],...}},...},{\
90 \[Alpha]1,...}] fits two-dimensional datasets."
91
92 parVarPro::usage = "parVarPro[{dataset,...},{\[Alpha]1,...}] fits \
93 multiple datasets simultaneously using the parameters \[Alpha]1,....
94 parVarPro[{{None,{x1,...},{{y1,...}},{x},{f1[x],...}},...},{\[Alpha]\
95 1,...}] fits the linear combination of the functions f1[x],... to \
96 one-dimensinal datasets y1,... depending on the variable x1,....
97 parVarPro[{{None,{x1,...},{{{y21,y22,...},{y11,y12,...}}},{x},{f1[x],\
98 ...}},...},{\[Alpha]1,...}] fits two-dimensional datasets.
99 parVarPro[{{{x21,x22,...},{x11,x12,...},{{y21,y22,...},{y11,y12,...}}\

100 ,{x2,x1},{f1[x2,x1],...}},...},{\[Alpha]1,...}] partition a \
101 two-dimensional dataset to include the dependency on a second \
102 variable x2."
103
104 fittedModel::usage = "fittedModel[...] represents the symbolic fitted \
105 model obtained from parVarPro[...]."
106
107 Begin["`Private`"]
108
109 collectExp[expr_] := Collect[Expand@expr, Exp[_], Simplify];
110
111 varPro[dataset_, \[Alpha]init_, opt : OptionsPattern[]] := Module[
112 {\[Alpha]sym, d\[Phi]set,
113 \[Phi]buf, \[Phi]pinvbuf, cbuf,
114 rfunc, jfunc, cfunc,
115 fmin, \[Alpha]opt,
116 monitor, step = 0, reval = 0, jeval = 0,
117 statistic, m, q, n, yvec, ymean, ssr, \[Sigma], ctss, r2},
118
119 \[Alpha]sym = # /. {\[Alpha]sym_, _} :> \[Alpha]sym & /@ \
120 \[Alpha]init;
121 d\[Phi]set = Transpose[D[#, {\[Alpha]sym}]] & /@ dataset[[;; , 4]];
122 cbuf = ConstantArray[{}, Length@dataset];
123
124 (*Residuals*)
125 rfunc[\[Alpha]__?NumericQ] := Join @@ Table[Module[
126 {x, y, xsym, \[Phi]vec, \[Phi], \[Phi]pinv, c, r},
127 {x, y, xsym, \[Phi]vec} = dataset[[i]];
128 \[Phi] = Compile[Evaluate[List /@ xsym], Evaluate[\[Phi]vec],
129 Parallelization -> True,
130 RuntimeAttributes -> {Listable},
131 RuntimeOptions -> "Speed"]@x;
132 \[Phi]pinv = PseudoInverse@\[Phi];
133 c = cbuf[[i]] = \[Phi]pinv.y;
134 r = Re[y - \[Phi].c];
135 If[VectorQ@y, r, Join @@ Transpose@r]],
136 {i, 1, Length@dataset}];
137
138 (*Jacobian*)
139 jfunc[\[Alpha]__?NumericQ] := Join @@ Table[Module[
140 {x, y, xsym, \[Phi]vec, d, \[Phi], \[Phi]pinv, c, atr, btr,
141 jtr},
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142 {x, y, xsym, \[Phi]vec} = dataset[[i]];
143 d = Compile[Evaluate[List /@ xsym], Evaluate[#],
144 Parallelization -> True,
145 RuntimeAttributes -> {Listable},
146 RuntimeOptions -> "Speed"]@x & /@ d\[Phi]set[[i]];
147 \[Phi] = Compile[Evaluate[List /@ xsym], Evaluate[\[Phi]vec],
148 Parallelization -> True,
149 RuntimeAttributes -> {Listable},
150 RuntimeOptions -> "Speed"]@x;
151 \[Phi]pinv = PseudoInverse@\[Phi];
152 c =(*cbuf[[i]]=*)\[Phi]pinv.y;
153 atr = #.c - \[Phi].(\[Phi]pinv.(#.c)) & /@ d;
154 btr = \
155 \[Phi]pinv\[ConjugateTranspose].(#\[ConjugateTranspose].y) - \
156 \[Phi]pinv\[ConjugateTranspose].(#\[ConjugateTranspose].(\[Phi].c)) & \
157 /@ d;
158 jtr = Re[-atr - btr];
159 If[VectorQ@y, Transpose[jtr],
160 Join @@ (Transpose[jtr, {3, 2, 1}])]],
161 {i, 1, Length@dataset}];
162
163 (*LevenbergMarquardt*)
164 {fmin, \[Alpha]opt} = FindMinimum[Null, \[Alpha]init,
165 StepMonitor :> step++,
166 EvaluationMonitor :> reval++,
167 Method -> {
168 "LevenbergMarquardt",
169 "Residual" -> rfunc @@ \[Alpha]sym,
170 "Jacobian" -> {OptionValue["Jacobian"] /.
171 Automatic -> (jfunc @@ \[Alpha]sym),
172 EvaluationMonitor :> jeval++}
173 }];
174 monitor = {"Steps" -> step, "Residual" -> reval,
175 "Jacobian" -> jeval};
176
177 (*Statistics*)
178 m = Length@Flatten@dataset[[;; , 2]];
179 q = Length@\[Alpha]sym;
180 n = Length@Flatten@dataset[[;; , 4]];
181
182 yvec = Join @@ Table[Module[
183 {y = dataset[[i, 2]]},
184 If[VectorQ@y, y, Join @@ Transpose@y]],
185 {i, 1, Length@dataset}];
186 ymean = Mean@yvec;
187
188 ssr = 2 fmin;
189 \[Sigma] = Sqrt[ssr]/Sqrt[m - n - q];
190 ctss = Total@((yvec - ymean)^2);
191 r2 = 1 - ssr/ctss;
192 statistic = {"SSR" -> ssr, "\[Sigma]" -> \[Sigma], "CTSS" -> ctss,
193 "R2" -> r2};
194
195 (*Result*)
196 {monitor, statistic, \[Alpha]opt, cbuf}
197 ];
198
199 Options[varPro] = {"Jacobian" -> Automatic(* or "FiniteDifference"*)};
200
201 parVarPro[dataset_, \[Alpha]init_, opt : OptionsPattern[]] := Module[
202 {\[Alpha]sym, d\[Phi]set,
203 \[Phi]buf, \[Phi]pinvbuf, cbuf, rbuf, ssrbuf,
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204 rfunc, jfunc, cfunc,
205 absolutetiming, fmin, \[Alpha]opt,
206 monitor, step = 0, reval = 0, jeval = 0,
207 statistic, m, q, n, yvec, ymean, ssr, \[Sigma], ctss, r2},
208
209 \[Alpha]sym = # /. {\[Alpha]sym_, _} :> \[Alpha]sym & /@ \
210 \[Alpha]init;
211 d\[Phi]set = Transpose[D[#, {\[Alpha]sym}]] & /@ dataset[[;; , 5]];
212 cbuf = ConstantArray[{}, Length@dataset];
213 rbuf = ConstantArray[{}, Length@dataset];
214 ssrbuf = {};
215
216 (*Residuals*)
217 rfunc[\[Alpha]__?NumericQ] := (AppendTo[ssrbuf, 0];
218 Join @@ Table[Module[
219 {x, xpar, xvar, y,
220 xsym, \[Phi]vec, \[Phi], \[Phi]pinv, c, r},
221 {xpar, xvar, y, xsym, \[Phi]vec} = dataset[[i]];
222 x =
223 If[xpar === None Depth[y] > 3, Flatten /@ Tuples[xvar, 1],
224 Flatten /@ Tuples@{xpar, xvar}];
225 \[Phi] = Compile[{{xvec, _Real, 1}},
226
227 Evaluate[\[Phi]vec /.
228 Thread[xsym -> (Indexed[xvec, #] & /@
229 Range@Length@xsym)]],
230 Parallelization -> True,
231 RuntimeAttributes -> {Listable},
232 RuntimeOptions -> "Speed"]@x;
233 \[Phi] =
234 If[xpar === None Depth[y] > 3, {\[Phi]},
235 Partition[\[Phi], Length@xvar]];
236 \[Phi]pinv = PseudoInverse /@ \[Phi];
237 cbuf[[i]] = {}; rbuf[[i]] = {};
238 Join @@ MapThread[(
239 \[Phi] = #1; \[Phi]pinv = #2; y = #3;
240 c = \[Phi]pinv.y; AppendTo[cbuf[[i]], c];
241 r = Re[y - \[Phi].c]; AppendTo[rbuf[[i]], r];
242 ssrbuf[[-1]] += Total[r^2, \[Infinity]];
243 If[VectorQ@#3, r, Join @@ Transpose@r]) &,
244 {\[Phi], \[Phi]pinv, y}]],
245 {i, 1, Length@dataset}]);
246
247 (*Jacobian*)
248 jfunc[\[Alpha]__?NumericQ] := Join @@ Table[Module[
249 {x, xpar, xvar, y, xsym, \[Phi]vec, d, \[Phi], \[Phi]pinv, c,
250 atr, btr, jtr},
251 {xpar, xvar, y, xsym, \[Phi]vec} = dataset[[i]];
252 x =
253 If[xpar === None Depth[y] > 3, Flatten /@ Tuples[xvar, 1],
254 Flatten /@ Tuples@{xpar, xvar}];
255 d = Compile[{{xvec, _Real, 1}},
256
257 Evaluate[# /.
258 Thread[xsym -> (Indexed[xvec, #] & /@
259 Range@Length@xsym)]],
260 Parallelization -> True,
261 RuntimeAttributes -> {Listable},
262 RuntimeOptions -> "Speed"]@x & /@ d\[Phi]set[[i]];
263 \[Phi] = Compile[{{xvec, _Real, 1}},
264
265 Evaluate[\[Phi]vec /.
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266 Thread[xsym -> (Indexed[xvec, #] & /@ Range@Length@xsym)]],
267 Parallelization -> True,
268 RuntimeAttributes -> {Listable},
269 RuntimeOptions -> "Speed"]@x;
270 d =
271 If[xpar === None Depth[y] > 3, {d},
272 Transpose[#, {1, 3, 2, 4}] &@
273 Partition[Transpose[d, {2, 1, 3}], Length@xvar]];
274 \[Phi] =
275 If[xpar === None Depth[y] > 3, {\[Phi]},
276 Partition[\[Phi], Length@xvar]];
277 \[Phi]pinv = PseudoInverse /@ \[Phi];
278 (*cbuf[[i]]={};*)
279 Join @@ MapThread[(
280 \[Phi] = #1; \[Phi]pinv = #2; y = #3; d = #4;
281 c = \[Phi]pinv.y;(*AppendTo[cbuf[[i]],c];*)
282 atr = #.c - \[Phi].(\[Phi]pinv.(#.c)) & /@ d;
283
284 btr = \[Phi]pinv\[ConjugateTranspose].(#\
285 \[ConjugateTranspose].y) - \[Phi]pinv\[ConjugateTranspose].(#\
286 \[ConjugateTranspose].(\[Phi].c)) & /@ d;
287 jtr = Re[-atr - btr];
288
289 If[VectorQ@y, Transpose[jtr],
290 Join @@ (Transpose[jtr, {3, 2, 1}])]) &,
291 {\[Phi], \[Phi]pinv, y, d}]],
292 {i, 1, Length@dataset}];
293
294 (*LevenbergMarquardt*)
295 {absolutetiming, {fmin, \[Alpha]opt}} =
296 FindMinimum[Null, \[Alpha]init,
297 StepMonitor :> step++,
298 EvaluationMonitor :> reval++,
299 Method -> {
300 "LevenbergMarquardt",
301 "Residual" -> rfunc @@ \[Alpha]sym,
302 "Jacobian" -> {OptionValue["Jacobian"] /.
303 Automatic -> (jfunc @@ \[Alpha]sym),
304 EvaluationMonitor :> jeval++}
305 }] // AbsoluteTiming;
306 monitor = {
307 "Steps" -> step, "Residual" -> reval, "Jacobian" -> jeval,
308 "AbsoluteTiming" -> absolutetiming, "SSRConvergence" -> ssrbuf};
309
310 (*Statistics*)
311 m = Length@Flatten@dataset[[;; , 3]];
312 q = Length@\[Alpha]sym;
313 n = Length@Flatten@dataset[[;; , 5]];
314
315 yvec = Join @@ Table[
316 Module[{x, xpar, xvar, y, xsym, \[Phi]vec},
317 {xpar, xvar, y, xsym, \[Phi]vec} = dataset[[i]];
318 Join @@
319 Map[If[xpar === None Depth[y] > 3,
320 If[VectorQ@#, #, Join @@ Transpose@#], #] &, y]],
321 {i, 1, Length@dataset}];
322 ymean = Mean@yvec;
323
324 ssr = 2 fmin;
325 \[Sigma] = Sqrt[ssr]/Sqrt[m - n - q];
326 ctss = Chop@Total@((yvec - ymean)^2);
327 r2 = Chop[1 - ssr/ctss];

121



328 statistic = {"SSR" -> ssr, "\[Sigma]" -> \[Sigma], "CTSS" -> ctss,
329 "R2" -> r2};
330
331 (*Result*)
332 fittedModel[monitor, statistic, \[Alpha]opt,
333 Join[dataset, List /@ cbuf, List /@ rbuf, 2]]
334 ];
335
336 Options[parVarPro] = {"Jacobian" -> Automatic(* or "FiniteDifference"*)};
337
338 Format[fittedModel[monitor_, statistic_, \[Alpha]opt_, dataset_]] :=
339 ListPlot[Log["SSRConvergence" /. monitor],
340 Epilog -> {
341 Inset[Framed[#, Background -> LightBlue] &@Column[{
342 Multicolumn[#, 2] &@Join[
343 legendForm[#, 3] & /@ monitor[[;; 3]],
344 {"in " <>
345 ToString@legendForm["AbsoluteTiming" /. monitor, 3] <>
346 " s"},
347 legendForm[#, 3] & /@ statistic],
348 "",
349 Multicolumn[legendForm[#, 3] & /@ \[Alpha]opt, 2]}],
350 Scaled[{1, 1}], {1, 1}]},
351 Frame -> True,
352 FrameLabel -> {"Iteration", "ln(RSS)"},
353 Joined -> True,
354 ImageSize -> 12 cm,
355 Mesh -> All, MeshStyle -> Black,
356 PlotRange -> All, PlotStyle -> Red];
357 fittedModel[monitor_, statistic_, \[Alpha]opt_, dataset_][
358 prop_?(VectorQ[#, StringQ] &)] :=
359 fittedModel[monitor, statistic, \[Alpha]opt, dataset] & /@ prop;
360 fittedModel[monitor_, statistic_, \[Alpha]opt_, dataset_][
361 nr_?IntegerQ] /; 0 < nr < Length@dataset := dataset[[nr]];
362 fittedModel[monitor_, statistic_, \[Alpha]opt_, dataset_]["Data"] :=
363 dataset[[;; , ;; 3]];
364 fittedModel[monitor_, statistic_, \[Alpha]opt_, dataset_][
365 "DataSets"] := dataset;
366 fittedModel[monitor_, statistic_, \[Alpha]opt_, dataset_][
367 "FitResiduals"] := dataset[[;; , 7]];
368 fittedModel[monitor_, statistic_, \[Alpha]opt_, dataset_][
369 "Function"] := dataset[[;; , 5]];
370 fittedModel[monitor_, statistic_, \[Alpha]opt_, dataset_][
371 "LinearParameters"] := dataset[[;; , 6]];
372 fittedModel[monitor_, statistic_, \[Alpha]opt_, dataset_][
373 "NonlinearParameters"] := \[Alpha]opt;
374 fittedModel[monitor_, statistic_, \[Alpha]opt_, dataset_]["Monitor"] :=
375 monitor;
376 fittedModel[monitor_, statistic_, \[Alpha]opt_, dataset_][
377 "Statistic"] := statistic;
378
379 End[]
380
381 EndPackage[]

A.3. gaussTrace.nb
This package allows to trace Gaussian beams through optical systems.

1 (* Mathematica Package *)
2 (* :Title: gaussTrace *)
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3 (* :Context: femtoTools`gaussTrace` *)
4 (* :Summary: Trace a Gaussian beam through an optical system consisting
5 of lenses and mirrors. *)
6 (* :Keywords: gaussian beam, ray tracing, lens, mirror *)
7 (* :Mathematica version: 10.3.0*)
8 (* :Package version: 1.0*)
9 (* :Author: Sebastian Schott, IPTC Universität Würzburg *)

10 (* :Mail: sebastian.schott[at]phys-chemie.uni-wuerzburg.de *)
11 (* :Licence:
12 Copyright 2016, Sebastian Schott
13
14 Licensed under the Apache License,Version 2.0 (the "License");
15 you may not use this file except in compliance with the License.
16 You may obtain a copy of the License at
17
18 http://www.apache.org/licenses/LICENSE-2.0
19
20 Unless required by applicable law or agreed to in writing,software
21 distributed under the License is distributed on an "AS IS" BASIS,
22 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,either express or implied.
23 See the License for the specific language governing permissions and
24 limitations under the License. *)
25 (* :Dependencies: *)
26 (* :History:
27 2016-02-26: Version 1.0
28 *)
29 (* :Description:
30 Examples of use are available in femtoTools/examples/gaussTrace.nb.
31
32 The Gauss tracing algorithm follows the equations from Siegman [1].
33
34 [1] A.E. Siegman, Lasers (University Science Books, Sausalito, 1986)
35 *)
36
37 BeginPackage["femtoTools`gaussTrace`"]
38
39 lens::usage = "lens[p,d,h,r1,r2,n] represents a lens of thickness d, \
40 height h, left radius r1, right radius r2 and refractive index n at \
41 position p."
42
43 mirror::usage = "mirror[p,d,h,r1,r2] represents a mirror of thickness \
44 d, height h, left radius r1 and right radius r2 at position p."
45
46 stop::usage = "stop[p] represents a beam stop at position p."
47
48 abcd::usage = "abcd[n,optic] returns the ABCD matrix of an optic \
49 surrounded by a medium of refractive index n."
50
51 gaussTrace::usage = "gaussTrace[z,{p0,n0,qr0},{o1,...}] a Gaussian \
52 beam starting at position p0 in a medium of refractive index n0 with \
53 a reduced complex radius qr0 is traced through the optical system o1,...."
54
55 Begin["`Private`"]
56
57 sphericaloptic[p_, d_, h_, r1_, r2_] := Module[
58 {s1, \[Theta]1, s2, \[Theta]2},
59 s1 = If[Abs[r1] === \[Infinity],
60 {{p, -h/2}, {p, h/2}},
61 \[Theta]1 = ArcSin[h/(2 Abs@r1)];
62 Table[{p - r1, 0} +
63 r1 {Cos[\[Theta]],
64 Sin[\[Theta]]}, {\[Theta], -\[Theta]1, \[Theta]1,
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65 2 \[Theta]1/10}]];
66 s2 = If[Abs[r2] === \[Infinity],
67 {{p + d, Sign[r1 r2] h/2}, {p + d, -Sign[r1 r2] h/2}},
68 \[Theta]2 = -Sign[r1 r2] ArcSin[h/(2 Abs@r2)];
69 Table[{p - r2, 0} + {d, 0} +
70 r2 {Cos[\[Theta]],
71 Sin[\[Theta]]}, {\[Theta], -\[Theta]2, \[Theta]2,
72 2 \[Theta]2/10}]];
73 Polygon[Join @@ {s1, s2}]
74 ];
75
76 lens /: Graphics[lens[p_, d_, h_, r1_, r2_, n_]] :=
77 Graphics[{EdgeForm[Blue], FaceForm[LightBlue],
78 sphericaloptic[p, d, h, r1, r2]}];
79
80 mirror /: Graphics[mirror[p_, d_, h_, r1_, r2_]] :=
81 Graphics[{EdgeForm[Gray], FaceForm[LightGray],
82 sphericaloptic[p, d, h, r1, r2]}];
83
84 stop /: Graphics[stop[p_]] := Graphics[];
85
86 abcd[n1_,
87 lens[p_, d_, h_, r1_, r2_,
88 n2_]] := {{1, 0}, {(n1 - n2)/r2, 1}}.{{1, d/n2}, {0, 1}}.{{1,
89 0}, {(n2 - n1)/r1, 1}};
90
91 gaussTrace[z_, {p0_, n0_, qr0_}, optic_] := Module[
92 {orientedoptic, interface, p1, mp1, qr1, p2, mp2, qr2, mi, qrp},
93
94 p2 = p0;
95 orientedoptic = Table[
96 p1 = p2; p2 = First[List @@ o];
97 If[p2 - p1 < 0, Left[o], Right[o]], {o, optic}];
98
99 interface = Join @@ (orientedoptic /. {

100 Right[lens[p_, d_, h_, r1_, r2_, n_]] :> {
101 {p, {{1, 0}, {(n - n0)/r1, 1}}, {{1, (z - p)/n}, {0, 1}}},
102 {p +
103 d, {{1, 0}, {(n0 - n)/r2, 1}}, {{1, (z - p - d)/n0}, {0,
104 1}}}},
105 Left[lens[p_, d_, h_, r1_, r2_, n_]] :> {
106 {p +
107 d, {{1, 0}, {(n - n0)/r2, 1}}, {{1, (z - p - d)/n}, {0,
108 1}}},
109 {p, {{1, 0}, {(n0 - n)/r1, 1}}, {{1, (z - p)/n0}, {0, 1}}}},
110 Right[mirror[p_, d_, h_, r1_, r2_]] :> {
111 {p, {{1, 0}, {2/r1, 1}}, {{1, (z - p)/n0}, {0, 1}}}},
112 Left[mirror[p_, d_, h_, r1_, r2_]] :> {
113 {p + d, {{1, 0}, {2/r2, 1}}, {{1, (z - p - d)/n0}, {0, 1}}}},
114 Right[stop[p_]] | Left[stop[p_]] :> {
115 {p, {{1, 0}, {0, 1}}, {{1, 0}, {0, 1}}}}
116 });
117
118 {p2, mp2, qr2} = {p0, {{1, (z - p0)/n0}, {0, 1}}, qr0};
119
120 Table[
121 {p1, mp1, qr1} = {p2, mp2, qr2};
122 {p2, mi, mp2} = i;
123 qrp = Divide @@ (mp1.{qr1, 1});
124 qr2 = Divide @@ (mi.{qrp /. z -> p2, 1});
125 {qrp, {p1, p2}}, {i, interface}]];
126
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127 End[]
128
129 EndPackage[]

A.4. imagePlot.nb
This package requires

• plotOptions,

• CustomTicks

and allows to plot the two-dimensional transient absorption data in form of bitmap
graphics consuming less memory and computation power when displayed on the com-
puter screen. Beside linear time axes (e.g. Fig. 4.7a), also mixed linear–logarithmic time
axes (e.g. Fig. 4.6) are supportet.

1 (* Mathematica Package *)
2 (* :Title: imagePlot *)
3 (* :Context: femtoTools`imagePlot` *)
4 (* :Summary: Fast density plot for large datasets. *)
5 (* :Keywords: ListDensityPlot, large dataset, fast *)
6 (* :Mathematica version: 10.3.0*)
7 (* :Package version: 1.0*)
8 (* :Author: Sebastian Schott, IPTC Universität Würzburg *)
9 (* :Mail: sebastian.schott[at]phys-chemie.uni-wuerzburg.de *)

10 (* :License:
11 Copyright 2016, Sebastian Schott
12
13 Licensed under the Apache License,Version 2.0 (the "License");
14 you may not use this file except in compliance with the License.
15 You may obtain a copy of the License at
16
17 http://www.apache.org/licenses/LICENSE-2.0
18
19 Unless required by applicable law or agreed to in writing,software
20 distributed under the License is distributed on an "AS IS" BASIS,
21 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,either express or implied.
22 See the License for the specific language governing permissions and
23 limitations under the License. *)
24 (* :Dependencies:
25 femtoTools`plotOptions`
26 CustomTicks`
27 :Author: Mark A. Caprio, Department of Physics, University of Notre Dame
28 :License: Copyright 2012, Mark A. Caprio
29 *)
30 (* :History:
31 2016-02-26: Version 1.0
32 *)
33 (* :Description:
34 Examples of use are available in femtoTools/examples/imagePlot.nb.
35 *)
36
37 BeginPackage["femtoTools`imagePlot`", {
38 "femtoTools`plotOptions`",
39 "CustomTicks`"}]
40
41 rescale::usage = "rescale[z,{min,max}] gives z rescaled to run from 0 \
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42 to 0.5 over the range min to 0 and to run from 0.5 to 1 over the \
43 range 0 to max. Invalid values max<0, min>0 are set to 0."
44
45 imageTransform::usage = "imageTransform[image,{x,y},size] gives an \
46 image that is transformed to fit the scales of the x- and y-axes. \
47 Optionally, the image size can be changed."
48
49 barLegend::usage = "barLegend[{min,max},pos] generates a legend that \
50 identifies colors with the range of values between min and max. The \
51 FrameTicks and FrameLabel of the barLegend are placed according to \
52 pos (Left, Right, Bottom or Top)."
53
54 imagePlot::usage = "imagePlot[{\!\(\*SubscriptBox[\(x\), \
55 \(1\)]\),\!\(\*SubscriptBox[\(x\), \
56 \(2\)]\),..},{\!\(\*SubscriptBox[\(y\), \
57 \(1\)]\),\!\(\*SubscriptBox[\(y\), \(2\)]\),..},{{\!\(\*SubscriptBox[\
58 \(z\), \(11\)]\),\!\(\*SubscriptBox[\(z\), \
59 \(12\)]\),..},{\!\(\*SubscriptBox[\(z\), \
60 \(21\)]\),\!\(\*SubscriptBox[\(z\), \(22\)]\)..},..}] generates a \
61 smooth density plot with z-values defined at specified x-y-points."
62
63 imageLinLogPlot::usage = "imageLinLogPlot[{\!\(\*SubscriptBox[\(x\), \
64 \(1\)]\),\!\(\*SubscriptBox[\(x\), \
65 \(2\)]\),..},{\!\(\*SubscriptBox[\(y\), \
66 \(1\)]\),\!\(\*SubscriptBox[\(y\), \(2\)]\),..},{{\!\(\*SubscriptBox[\
67 \(z\), \(11\)]\),\!\(\*SubscriptBox[\(z\), \
68 \(12\)]\),..},{\!\(\*SubscriptBox[\(z\), \
69 \(21\)]\),\!\(\*SubscriptBox[\(z\), \(22\)]\)..},..},logStart] \
70 generates a smooth density plot with z-values defined at specified \
71 x-y-points and a mixed-lin-log y-axis."
72
73 Begin["`Private`"]
74
75 rescale[z_, {min_, max_}] := Piecewise[{
76 {Rescale[Clip[z, {Min@z, 0}], {min, 0}, {0, 0.5}],
77 min <= 0 && max <= 0},
78 {Rescale[Clip[z, {0, Max@z}], {0, max}, {0.5, 1}],
79 min >= 0 && max >= 0},
80 {Clip[Rescale[Clip[z, {Min@z, 0}], {min, 0}, {0, 0.5}] +
81 Rescale[Clip[z, {0, Max@z}], {0, max}, {0.5, 1}] - 0.5, {0,
82 1}], min <= 0 && max >= 0}
83 }];
84
85 imageTransform[img_?ImageQ, {x_, y_}, size_: Automatic] := Module[
86 {xfunc, yfunc},
87 xfunc =
88 Interpolation[Transpose@{x, Range@Length@x},
89 InterpolationOrder -> 1];
90 yfunc =
91 Interpolation[Transpose@{y, Range@Length@y},
92 InterpolationOrder -> 1];
93 ImageTransformation[
94 img, {xfunc@#[[1]], yfunc@#[[2]]} &,
95 size /. Automatic -> Length /@ {x, y},
96 DataRange -> {{1, Length@x}, {1, Length@y}}, Padding -> "Fixed",
97 PlotRange -> {{Min@x, Max@x}, {Min@y, Max@y}}]
98 ];
99

100 barLegend[{min_, max_}, pos_, opt : OptionsPattern[]] := Module[
101 {fullOpt, graphicsOpt, linTicksOpt,
102 frameLabel, frameTicks,
103 step, z, img, xyrange},
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104 fullOpt = DeleteDuplicatesBy[First]@Flatten@{opt,
105 Charting`ResolvePlotTheme[OptionValue@PlotTheme, barLegend],
106 Options@barLegend};
107 graphicsOpt =
108 Complement[FilterRules[fullOpt, #], #] &@Options@Graphics;
109 linTicksOpt =
110 Complement[FilterRules[fullOpt, #], #] &@Options@LinTicks;
111
112 frameLabel = {{None, None}, {None, None}};
113 frameLabel =
114 ReplacePart[
115 frameLabel, (pos /. {Left -> {1, 1}, Right -> {1, 2},
116 Bottom -> {2, 1}, Top -> {2, 2}}) -> FrameLabel /. fullOpt];
117
118 frameTicks = {{None, None}, {None, None}};
119 frameTicks =
120 ReplacePart[
121 frameTicks, (pos /. {Left -> {1, 1}, Right -> {1, 2},
122 Bottom -> {2, 1}, Top -> {2, 2}}) -> (LinTicks[##,
123 TickLengthScale ->
124 If[MemberQ[{Left, Right}, pos], 16,
125 1] (TickLengthScale /. fullOpt), linTicksOpt] &)];
126
127 step = (max - min)/512.;
128 z = Range[min, 0, step]~Join~Range[0, max, step];
129 img = Colorize[Image@If[MemberQ[{Left, Right}, pos],
130 {#} & /@ Reverse@rescale[z, {min, max}],
131 Transpose[{#} & /@ rescale[z, {min, max}]]],
132 ColorFunction -> colorData[ColorFunction /. fullOpt],
133 ColorFunctionScaling -> False];
134 xyrange = If[MemberQ[{Left, Right}, pos],
135 {{0, 1}, {min, max}},
136 {{min, max}, {0, 1}}];
137
138 Legended[#, LegendLabel /. fullOpt] &@Graphics[
139 Inset[Show[img, AspectRatio -> Full],
140 xyrange[[;; , 1]], {0, 0},
141 xyrange[[;; , 2]] - xyrange[[;; , 1]]],
142 AspectRatio -> pos /. {Left Right -> 16, Bottom Top -> 1/16},
143 FrameLabel -> frameLabel,
144 FrameTicks -> frameTicks,
145 (*ImageSize\[Rule]{Automatic,ImageSize/.fullOpt},*)
146 PlotRange -> xyrange,
147 graphicsOpt]
148 ];
149
150 Options[barLegend] = DeleteDuplicatesBy[First]@Join[
151 {ColorFunction -> "TransientAbsorption",
152 Frame -> True,
153 ImageResolution -> Automatic,
154 LegendLabel -> None,
155 PlotRangePadding -> None,
156 PlotTheme :> $PlotTheme,
157 TickDirection -> Out,
158 TickLabelStep -> 1,
159 TickLengthScale -> 2},
160 FilterRules[Options@Graphics, Except@PlotRangeClipping]];
161
162 Themes`AddThemeRules["Presentation", barLegend,
163 BaseStyle -> {FontFamily -> "Helvetica", FontSize -> 14},
164 FrameStyle -> Directive[Black, Thick],
165 ImageSize -> {Automatic, 6 cm},
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166 LabelStyle -> Black,
167 TickLengthScale -> 3];
168
169 imagePlot[
170 x_?(VectorQ[#, NumberQ] &),
171 y_?(VectorQ[#, NumberQ] &),
172 z_?(MatrixQ[#, NumberQ] &),
173 opt : OptionsPattern[]
174 ] := Module[
175 {fullOpt, graphicsOpt, linTicksOpt,
176 dataRange, plotRange, frameTicks, img,
177 xint, xfunc, yint, yfunc, xs, xe, ys, ye,
178 xroi, yroi, zroi,
179 xPos, yPos},
180 fullOpt = DeleteDuplicatesBy[First]@Flatten@{opt,
181 Charting`ResolvePlotTheme[OptionValue@PlotTheme, imagePlot],
182 Options@imagePlot};
183 linTicksOpt =
184 Complement[FilterRules[fullOpt, #], #] &@Options@LinTicks;
185 graphicsOpt =
186 Complement[FilterRules[fullOpt, #], #] &@Options@Graphics;
187
188 dataRange = {{Min@x, Max@x}, {Min@y, Max@y}, {Min@z, Max@z}};
189
190 plotRange = plotRange3DOpt[PlotRange /. fullOpt];
191 plotRange =
192 MapThread[
193 Replace[#1, All Automatic Full -> #2] &, {plotRange,
194 dataRange}, 2];
195
196 frameTicks = frameTicksOpt[FrameTicks /. fullOpt];
197 frameTicks = Replace[frameTicks, {
198 True -> (LinTicks[##, ShowTickLabels -> False, linTicksOpt] &),
199 All -> (LinTicks[##, linTicksOpt] &)}, 2];
200
201 xint =
202 Interpolation[Transpose@{x, Range@Length@x},
203 InterpolationOrder -> 1];
204 xfunc =
205 Piecewise[{{1, # < Min@x}, {xint@#,
206 Min@x <= # <= Max@x}, {-1, # > Max@x}}] &;
207 yint =
208 Interpolation[Transpose@{y, Range@Length@y},
209 InterpolationOrder -> 1];
210 yfunc =
211 Piecewise[{{1, # < Min@y}, {yint@#,
212 Min@y <= # <= Max@y}, {-1, # > Max@y}}] &;
213 xs = Floor@xfunc@plotRange[[1, 1]];
214 xe = Ceiling@xfunc@plotRange[[1, 2]];
215 ys = Floor@yfunc@plotRange[[2, 1]];
216 ye = Ceiling@yfunc@plotRange[[2, 2]];
217 xroi = x[[xs ;; xe]];
218 yroi = y[[ys ;; ye]];
219 zroi = z[[ys ;; ye, xs ;; xe]];
220
221 img = imageTransform[
222 Colorize[
223 Image[rescale[zroi, plotRange[[3]]]],
224 ColorFunction -> colorData[ColorFunction /. fullOpt],
225 ColorFunctionScaling -> False],
226 {xroi, Reverse@yroi}, ImageResolution /. fullOpt];
227
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228 Graphics[{Inset[Show[img, AspectRatio -> Full],
229 {Min@xroi, Min@yroi}, {0, 0}, {Max@xroi - Min@xroi,
230 Max@yroi - Min@yroi}],
231 White, FilledCurve[{
232 Line[ImageScaled /@ {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}}],
233 Line[Scaled /@ {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}}]}]},
234 FrameLabel -> ReplaceAll[FrameLabel /. fullOpt,
235 Function[barLegend[zrange_, pos_, opts___]] :>
236 If[MemberQ[{Left, Right}, pos],
237 Rotate[#, -90 Degree] &@#, #] &@barLegend[
238 plotRange[[3]], pos, opts,
239 FilterRules[
240 fullOpt, {BaseStyle, ColorFunction, FrameStyle, PlotTheme}]]],
241 FrameTicks -> frameTicks,
242 PlotRange -> plotRange[[;; 2]],
243 graphicsOpt]
244 ];
245
246 Options[imagePlot] = DeleteDuplicatesBy[First]@Join[
247 {AspectRatio -> 1,
248 ColorFunction -> "TransientAbsorption",
249 Frame -> True,
250 ImageResolution -> Automatic,
251 PlotRangePadding -> None,
252 PlotTheme :> $PlotTheme,
253 TickDirection -> Out,
254 TickLengthScale -> 1},
255 FilterRules[Options@Graphics, Except@PlotRangeClipping]];
256
257 Themes`AddThemeRules["Presentation", imagePlot,
258 BaseStyle -> {FontFamily -> "Helvetica", FontSize -> 14},
259 FrameStyle -> Directive[Black, Thick],
260 ImageSize -> 12 cm,
261 LabelStyle -> Black,
262 TickLengthScale -> 2];
263
264 imageLinLogPlot[
265 x_?(VectorQ[#, NumberQ] &),
266 y_?(VectorQ[#, NumberQ] &),
267 z_?(MatrixQ[#, NumberQ] &),
268 logStart_?NumberQ,
269 opt : OptionsPattern[]
270 ] := Module[{fullOpt, imagePlotOpt, linTicksOpt, frameTicks},
271 fullOpt = DeleteDuplicatesBy[First]@Flatten@{opt,
272 Charting`ResolvePlotTheme[OptionValue@PlotTheme,
273 imageLinLogPlot],
274 Options@imageLinLogPlot};
275 linTicksOpt =
276 Complement[FilterRules[fullOpt, #], #] &@Options@LinTicks;
277 imagePlotOpt =
278 Complement[FilterRules[fullOpt, #], #] &@Options@imagePlot;
279 frameTicks = frameTicksOpt[FrameTicks /. fullOpt];
280 frameTicks[[1]] = Replace[frameTicks[[1]], {
281 True -> (linLogTicks[##, logStart, ShowTickLabels -> False,
282 linTicksOpt] &),
283 All -> (linLogTicks[##, logStart, linTicksOpt] &)}, 1];
284 imagePlot[x, linLogAxis[y, logStart], z, FrameTicks -> frameTicks,
285 imagePlotOpt]
286 ];
287
288 Options[imageLinLogPlot] = Options[imagePlot];
289
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290 Themes`AddThemeRules["Presentation", imageLinLogPlot,
291 Charting`ResolvePlotTheme["Presentation", imagePlot]];
292
293 End[]
294
295 EndPackage[]

A.5. framePlot.nb
This package requires

• plotOptions,

• CustomTicks

and allows to plot one-dimensional data with mixed linear–logarithmic coordinates (e.g.
Fig. 5.8) or two different ordinates (e.g. Fig. 5.3c and d).

1 (* Mathematica Package *)
2 (* :Title: framePlot *)
3 (* :Context: femtoTools`framePlot` *)
4 (* :Summary: ListPlot wrapper using custom PlotRangeClipping and FrameTicks. *)
5 (* :Keywords: ListPlot, Frame*)
6 (* :Mathematica version: 10.3.0*)
7 (* :Package version: 1.0*)
8 (* :Author: Sebastian Schott, IPTC Universität Würzburg *)
9 (* :Mail: sebastian.schott[at]phys-chemie.uni-wuerzburg.de *)

10 (* :Licence:
11 Copyright 2016, Sebastian Schott
12
13 Licensed under the Apache License,Version 2.0 (the "License");
14 you may not use this file except in compliance with the License.
15 You may obtain a copy of the License at
16
17 http://www.apache.org/licenses/LICENSE-2.0
18
19 Unless required by applicable law or agreed to in writing,software
20 distributed under the License is distributed on an "AS IS" BASIS,
21 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,either express or implied.
22 See the License for the specific language governing permissions and
23 limitations under the License. *)
24 (* :Dependencies:
25 femtoTools`plotOptions`
26 CustomTicks`
27 :Author: Mark A. Caprio, Department of Physics, University of Notre Dame
28 :License: Copyright 2012, Mark A. Caprio
29 *)
30 (* :History:
31 2016-02-26: Version 1.0
32 *)
33 (* :Description: *)
34
35 BeginPackage["femtoTools`framePlot`", {
36 "femtoTools`plotOptions`",
37 "CustomTicks`"}]
38
39 frameListPlot::usage = "frameListPlot[{{{x1,y1},...},...}] generates \
40 a framed ListPlot using a custom PlotRangeClipping."
41
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42 frameListLinLogPlot::usage = \
43 "frameListLinLogPlot[{{{x1,y1},...},...}] generates a framed ListPlot \
44 with a mixed-lin-log x-axis."
45
46 yyShow::usage = "yyShow[p1,p2] combines plot p1 with y-axis frame on \
47 the left and plot p2 with y-axis frame on the right."
48
49 Begin["`Private`"]
50
51 frameListPlot[data_, opt : OptionsPattern[]] := Module[
52 {fullOpt, linTicksOpt, listPlotOpt, frameTicks, plot},
53 fullOpt = DeleteDuplicatesBy[First]@Flatten@{opt,
54 Charting`ResolvePlotTheme[OptionValue@PlotTheme, frameListPlot],
55 Options@frameListPlot};
56 linTicksOpt =
57 Complement[FilterRules[fullOpt, #], #] &@Options@LinTicks;
58 listPlotOpt =
59 Complement[FilterRules[fullOpt, #], #] &@Options@ListPlot;
60
61 frameTicks = frameTicksOpt[FrameTicks /. fullOpt];
62 frameTicks = Replace[frameTicks, {
63 True -> (LinTicks[##, ShowTickLabels -> False, linTicksOpt] &),
64 All -> (LinTicks[##, linTicksOpt] &)}, 2];
65
66 plot = ListPlot[data,
67 FrameTicks -> frameTicks,
68 PlotRangeClipping -> False,
69 listPlotOpt];
70 If[PlotRangeClipping /. fullOpt,
71 Show[plot, Graphics[{White, FilledCurve[{
72 Line[ImageScaled /@ {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}}],
73 Line[Scaled /@ {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}}]}]}]],
74 plot]
75 ];
76
77 Options[frameListPlot] = DeleteDuplicatesBy[First]@Join[
78 {Frame -> True,
79 PlotRange -> All,
80 PlotRangePadding -> {None, Automatic},
81 TickDirection -> Out,
82 TickLengthScale -> 1},
83 Options@ListPlot];
84
85 Themes`AddThemeRules[Automatic, frameListPlot,
86 Charting`ResolvePlotTheme[Automatic, ListPlot]];
87 Themes`AddThemeRules["Presentation", frameListPlot,
88 BaseStyle -> {FontFamily -> "Helvetica", FontSize -> 14},
89 FrameStyle -> Directive[Black, Thick],
90 ImageSize -> 12 cm,
91 LabelStyle -> Black,
92 TickLengthScale -> 2];
93
94 frameListLinLogPlot[data_, logStart_?NumberQ,
95 opt : OptionsPattern[]] := Module[
96 {fullOpt, linTicksOpt, frameListPlotOpt, frameTicks, plot},
97 fullOpt = DeleteDuplicatesBy[First]@Flatten@{opt,
98 Charting`ResolvePlotTheme[OptionValue@PlotTheme,
99 frameListLinLogPlot],

100 Options@frameListLinLogPlot};
101 linTicksOpt =
102 Complement[FilterRules[fullOpt, #], #] &@Options@LinTicks;
103 frameListPlotOpt =
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104 Complement[FilterRules[fullOpt, #], #] &@Options@frameListPlot;
105
106 frameTicks = frameTicksOpt[FrameTicks /. fullOpt];
107 frameTicks[[2]] = Replace[frameTicks[[1]], {
108 True -> (linLogTicks[##, logStart, ShowTickLabels -> False,
109 linTicksOpt] &),
110 All -> (linLogTicks[##, logStart, linTicksOpt] &)}, 1];
111
112 frameListPlot[
113 Transpose@{linLogAxis[#[[;; , 1]], logStart], #[[;; , 2]]} & /@
114 If[Depth@data > 3, data, {data}],
115 FrameTicks -> frameTicks,
116 frameListPlotOpt]
117 ];
118
119 Options[frameListLinLogPlot] = Options[frameListPlot];
120
121 Themes`AddThemeRules[Automatic, frameListLinLogPlot,
122 Charting`ResolvePlotTheme[Automatic, frameListPlot]];
123 Themes`AddThemeRules["Presentation", frameListLinLogPlot,
124 Charting`ResolvePlotTheme["Presentation", frameListPlot]];
125
126 yyShow[fgraphin_, ggraphin_, opt : OptionsPattern[]] := Module[
127 {linTicksOpt, graphicsOpt,
128 clipping, fgraph, ggraph,
129 frange, grange, frameTicks},
130 linTicksOpt =
131 Complement[FilterRules[{opt}, #], #] &@Options@LinTicks;
132 graphicsOpt =
133 Complement[FilterRules[{opt}, #], #] &@Options@Graphics;
134 clipping = {White, FilledCurve[{
135 Line[ImageScaled /@ {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}}],
136 Line[Scaled /@ {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}}]}]};
137 {fgraph, ggraph} =
138 DeleteCases[#, clipping, \[Infinity]] & /@ {fgraphin, ggraphin};
139 {frange,
140 grange} = (PlotRange /. AbsoluteOptions[#, PlotRange])[[
141 2]] & /@ {fgraph, ggraph};
142 frameTicks = frameTicksOpt[OptionValue@FrameTicks];
143 frameTicks = Replace[frameTicks, {
144 True -> (LinTicks[##, ShowTickLabels -> False, linTicksOpt] &),
145 All -> (LinTicks[##, linTicksOpt] &)}, 2];
146 frameTicks[[1, 2]] = Replace[frameTicks[[1, 2]],
147 f_Function :> f[grange[[1]], grange[[2]],
148 TickPostTransformation -> (Rescale[#, grange, frange] &)]];
149 Show[
150 fgraph,
151 ggraph /. Graphics[graph_, s___] :> Graphics[
152 GeometricTransformation[graph,
153 RescalingTransform[{{0, 1}, grange}, {{0, 1}, frange}]], s],
154 Graphics[clipping],
155 FrameTicks -> frameTicks,
156 graphicsOpt]
157 ];
158
159 Options[yyShow] = DeleteDuplicatesBy[First]@Join[
160 {TickDirection -> Out,
161 TickLengthScale -> 1},
162 Options@Graphics];
163
164 End[]
165
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166 EndPackage[]

A.6. plotOptions.nb
This package requires

• CustomTicks.

and defines the basic plot options for all other plot packages.
1 (* Mathematica Package *)
2 (* :Title: plotOptions *)
3 (* :Context: femtoTools`plotOptions` *)
4 (* :Summary: Basic plot options for custom plot functions. *)
5 (* :Keywords: *)
6 (* :Mathematica version: 10.3.0*)
7 (* :Package version: 1.0*)
8 (* :Author: Sebastian Schott, IPTC Universität Würzburg *)
9 (* :Mail: sebastian.schott[at]phys-chemie.uni-wuerzburg.de *)

10 (* :Licence:
11 Copyright 2016, Sebastian Schott
12
13 Licensed under the Apache License,Version 2.0 (the "License");
14 you may not use this file except in compliance with the License.
15 You may obtain a copy of the License at
16
17 http://www.apache.org/licenses/LICENSE-2.0
18
19 Unless required by applicable law or agreed to in writing,software
20 distributed under the License is distributed on an "AS IS" BASIS,
21 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,either express or implied.
22 See the License for the specific language governing permissions and
23 limitations under the License. *)
24 (* :Dependencies:
25 CustomTicks`
26 :Author: Mark A. Caprio, Department of Physics, University of Notre Dame
27 :License: Copyright 2012, Mark A. Caprio
28 *)
29 (* :History:
30 2016-02-26: Version 1.0
31 *)
32 (* :Description:
33 http://mathematica.stackexchange.com/questions/45501/plotlegends-and-imagesize
34 *)
35
36 BeginPackage["femtoTools`plotOptions`", {"CustomTicks`"}]
37
38 colorData::usage = "colorData[\"scheme\"] gives a function that \
39 generates colors in the named color scheme when applied to parameter \
40 values."
41
42 cm::usage = "Converts cm to printer points."
43
44 frameTicksOpt::usage = "frameTicksOpt[expr] preprocesses all possible \
45 FrameTicks settings."
46
47 insetLegend::usage = "insetLegend[plot] converts a legend into an \
48 inset. This workaround is required to guarantee the correct size of \
49 exported eps/pdf/?... files. Depracated: Size bug relates to Printout \
50 environment. Workaround: \
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51 SetOptions[$FrontEnd,PrintingStyleEnvironment\[Rule](*\"Printout\"*)\"\
52 Working\"]"
53
54 legendForm::usage = "legendForm[expr,n] prints real numbers (n-digit \
55 precision) in a compact notation, which is suitable for PlotLegend."
56
57 linLogAxis::usage = "linLogAxis[{\!\(\*SubscriptBox[\(x\), \
58 \(1\)]\),\!\(\*SubscriptBox[\(x\), \(2\)]\),..},logStart] generates a \
59 lin-log-mixed axis by taking the decadic logarithm of \
60 \!\(\*SubscriptBox[\(x\), \(n\)]\)>logStart."
61
62 linLogTicks::usage = "linLogTicks[min,max,logStart] generates \
63 lin-log-mixed tick marks starting the decadic log part at logStart \
64 (based on CustomTicks)."
65
66 plotRange3DOpt::usage = "plotRange3DOpt[expr] preprocesses all \
67 possible 3D PlotRange settings."
68
69 Begin["`Private`"]
70
71 colorData["TransientAbsorption"] := Module[
72 {darkPurple = RGBColor[0.2, 0, 0.4],
73 purple = RGBColor[0.4, 0, 0.8],
74 darkRed = RGBColor[0.5, 0, 0]},
75 Blend[{darkPurple, purple, Blue, White, Yellow, Red,
76 darkRed}, #] &];
77
78 (*Matlab FROG code from Trebino's group: \
79 http://frog.gatech.edu/code.html*)
80 colorData["FROG"] := Module[
81 {n = 255, step1, step2, step3, frogcolmap},
82
83 step1 = Floor[0.15*n];
84 step2 = Floor[0.50*n];
85 step3 = Floor[0.95*n];
86
87 frogcolmap = ConstantArray[0, {n, 3}];
88 frogcolmap[[1 ;; step1, 1]] = 1.;
89 frogcolmap[[1 ;; step1, 2]] = (Range[1., step1]/step1)^0.7;
90 frogcolmap[[1 ;; step1, 3]] = 0.;
91
92 frogcolmap[[step1 ;; step2,
93 1]] = ((step2 - Range[step1, step2])/(step2 - step1))^0.7;
94 frogcolmap[[step1 ;; step2, 2]] = 1.;
95 frogcolmap[[step1 ;; step2, 3]] = 0.;
96
97 frogcolmap[[step2 ;; step3, 1]] = 0.;
98 frogcolmap[[step2 ;; step3,
99 2]] = ((step3 - Range[step2, step3])/(step3 - step2))^0.8;

100 frogcolmap[[step2 ;; step3,
101 3]] = ((Range[step2, step3] - step2)/(step3 - step2))^0.8;
102
103 frogcolmap[[step3 ;; n,
104 1]] = ((Range[step3, n] - step3)/(n - step3))^1.0;
105 frogcolmap[[step3 ;; n, 2]] = frogcolmap[[step3 ;; n, 1]];
106 frogcolmap[[step3 ;; n, 3]] = 1.;
107
108 frogcolmap = Join[ConstantArray[0, {n + 1, 3}], frogcolmap];
109 Blend[RGBColor @@@ frogcolmap, #] &];
110
111 (*Glotaran documentation: \
112 http://timpgui.org/wiki/doku.php?id=color_and_line_convention*)
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113 colorData["Glotaran"] := {
114 Black, Red, Blue, Green, Magenta, Cyan, Yellow,
115 RGBColor[{0, 139, 0}/255.], Orange, RGBColor[{150, 75, 0}/255.],
116 RGBColor[{128, 128, 128}/255.], RGBColor[{148, 0, 211}/255.],
117 RGBColor[{64, 224, 208}/255.], RGBColor[{128, 0, 0}/255.],
118 RGBColor[{75, 0, 130}/255.], Black};
119
120 cm = 72/2.54;
121
122 frameTicksOpt[frameTicksInit_] := Module[{frameTicks = frameTicksInit},
123 frameTicks =
124 Replace[frameTicks, # -> {#, #} & /@ {None, Automatic, True, All}];
125 frameTicks =
126 Replace[frameTicks, # -> {#, #} & /@ {None, Automatic, True, All},
127 1];
128 frameTicks[[;; , 1]] =
129 Replace[frameTicks[[;; , 1]], Automatic -> All, 1];
130 frameTicks[[;; , 2]] =
131 Replace[frameTicks[[;; , 2]], Automatic -> True, 1];
132 frameTicks];
133
134 insetLegend[plot_Legended] := Show[
135 plot[[1]],
136 Graphics[Inset[plot[[2, 1]],
137 Scaled@plot[[2, 2, 1]] /. {Left -> 0, Right -> 1, Bottom -> 0,
138 Top -> 1},
139 plot[[2, 2, 2]]]]
140 ];
141
142 legendForm[expr_, n_] :=
143 EngineeringForm[expr, n,
144 NumberFormat -> (Row[{StringTrim[#1, "."],
145 If[#3 == "", "", "e"], #3}] &)];
146
147 linLogAxis[axis_?VectorQ, logStart_] := Module[
148 {linpart, logpart},
149 {linpart, logpart} = SplitBy[axis, logStart <= # &];
150 Join[linpart, (Log[10, logpart] - Log[10, First@logpart] +
151 First@logpart)]
152 ];
153
154 linLogTicks[min_, max_, logStart_, opt : OptionsPattern[]] := Join[
155 LinTicks[min, logStart, opt],
156 Select[
157 LogTicks[0, max,
158 opt] /. {a_, b_, c_, d_} :> {a - Log[10, logStart] + logStart,
159 b, c, d},
160 #[[1]] > logStart &]
161 ];
162 Options[linLogTicks] = Options[LinTicks];
163
164 plotRange3DOpt[plotRangeInit_] := Module[{plotRange = plotRangeInit},
165 plotRange =
166 Replace[plotRange, # -> {#, #, #} & /@ {All, Automatic, Full}];
167 plotRange =
168 Replace[plotRange, z_?NumericQ :> {Automatic, Automatic, {-z, z}}];
169 plotRange =
170 Replace[plotRange,
171 z_?(VectorQ[#, NumericQ] &) :> {Automatic, Automatic, z}];
172 plotRange = Replace[plotRange,
173 xy_?(Length[#] == 2 &) :> {First@xy, Last@xy, Automatic}];
174 plotRange =
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175 Replace[plotRange, # -> {#, #} & /@ {All, Automatic, Full}, 1];
176 plotRange];
177
178 End[]
179
180 EndPackage[]

A.7. fourier.nb
This packages provides the Fourier transformation tools, which were used to prepare the
data for Fig. 5.17 and to unwrap the spectral phase in, e.g., Fig. 5.9a.

1 (* Mathematica Package *)
2 (* :Title: fourier *)
3 (* :Context: femtoTools`fourier` *)
4 (* :Summary: Basic tools to process Fourier transformed data. *)
5 (* :Keywords: centered fftc, fft shift, unwrap phase, blank phase*)
6 (* :Mathematica version: 10.3.0*)
7 (* :Package version: 1.0*)
8 (* :Author: Sebastian Schott, IPTC Universität Würzburg *)
9 (* :Mail: sebastian.schott[at]phys-chemie.uni-wuerzburg.de *)

10 (* :Licence:
11 Copyright 2016, Sebastian Schott
12
13 Licensed under the Apache License,Version 2.0 (the "License");
14 you may not use this file except in compliance with the License.
15 You may obtain a copy of the License at
16
17 http://www.apache.org/licenses/LICENSE-2.0
18
19 Unless required by applicable law or agreed to in writing,software
20 distributed under the License is distributed on an "AS IS" BASIS,
21 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,either express or implied.
22 See the License for the specific language governing permissions and
23 limitations under the License. *)
24 (* :Dependencies: *)
25 (* :History:
26 2016-02-26: Version 1.0
27 *)
28 (* :Description: *)
29
30 BeginPackage["femtoTools`fourier`"]
31
32 fftShift::usage = "fftShift[list] shifts the elements of a \
33 one-dimensional list to place the first element at the center."
34
35 ifftShift::usage = "ifftShift[list] undoes the result of fftShift."
36
37 fftc::usage = "fftc[list] finds the zero-frequency-centered discrete \
38 Fourier transform of a zero-time-centered list of complex numbers."
39
40 ifftc::usage = "ifftc[list] finds the zero-time-centered discrete \
41 Fourier transform of a list of zero-frequency-centered complex \
42 numbers."
43
44 fftcAxis::usage = "fftcAxis[list] converts a zero-time-centered axis \
45 into a zero-frequency-axis and vice versa."
46
47 blankPhase::usage = "blankPhase[spectrum,threshold] extracts the \
48 phase from a complex spectrum and removes the datapoints with \
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49 amplitude<threshold*Max[amplitude]"
50
51 unwrap::usage = "unwrap[phase] to remove/reduce phase jumps."
52
53 Begin["`Private`"]
54
55 fftShift[list_] := RotateLeft[list, Ceiling[Length[list]/2]];
56 ifftShift[list_] := RotateLeft[list, Floor[Length[list]/2]];
57
58 fftc[list_] := fftshift@Fourier@ifftshift@list;
59 ifftc[list_] := fftshift@InverseFourier@ifftshift@list;
60
61 fftcAxis[tn_] := Module[
62 {T, dt, F, df},
63 T = tn[[-1]] - tn[[1]]; dt = T/(Length[tn] - 1);
64 F = 1/dt; df = 1/T;
65 Range[-F/2, F/2, df]
66 ];
67
68 blankPhase[spectrum_?MatrixQ, threshold_] := Module[
69 {wavelength, amplitude, phase, blanked},
70 wavelength = spectrum[[;; , 1]];
71 amplitude = Abs@spectrum[[;; , 2]];
72 phase = Arg@spectrum[[;; , 2]];
73 blanked =
74 Select[Transpose@{wavelength, amplitude, phase}, #[[2]] >
75 threshold Max@amplitude &];
76 Transpose@{blanked[[;; , 1]], blanked[[;; , 3]]}
77 ];
78 blankPhase[spectrum_?(VectorQ[#, MatrixQ[#] &] &), threshold_] :=
79 blankPhase[#, threshold] & /@ spectrum;
80
81 unwrap[Phase_, Cutoff_: N[\[Pi]]] :=
82 Module[{p, dp, dps, dpcorr, PhaseCorr},
83 p = Phase;
84 (*Incremental phase variations*)
85 dp = Differences[p];
86 (*Equivalent phase variations in[-pi,pi)*)
87 dps = Mod[dp + \[Pi], 2 \[Pi]] - \[Pi];
88 (*Preserve variation sign for pi vs.-pi; Numerical precision of #1==
89 N[-\[Pi]]?*)
90 dps = MapIndexed[
91 If[#1 == N[-\[Pi]] && dp[[First@#2]] > 0, \[Pi], #1] &, dps];
92 (*Incremental phase corrections*)
93 dpcorr = dps - dp;
94 (*Ignore correction when incr.variation is<CUTOFF*)
95 dpcorr =
96 MapIndexed[If[Abs[dp[[First@#2]]] < Cutoff, 0, #1] &, dpcorr];
97 (*Integrate corrections and add to Phase to produce smoothed phase \
98 values*)
99 p[[2 ;;]] = p[[2 ;;]] + Accumulate[dpcorr];

100 (*Offset correction*)
101 p - p[[Round[Length@Phase/2]]]
102 ];
103
104 End[]
105
106 EndPackage[]
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A.8. io.nb
This packages allows to format and export transient absorption data for Glotaran.

1 (* Mathematica Package *)
2 (* :Title: io *)
3 (* :Context: femtoTools`io` *)
4 (* :Summary: Custom file format io functions. *)
5 (* :Keywords: *)
6 (* :Mathematica version: 10.3.0*)
7 (* :Package version: 1.0*)
8 (* :Author: Sebastian Schott, IPTC Universität Würzburg *)
9 (* :Mail: sebastian.schott[at]phys-chemie.uni-wuerzburg.de *)

10 (* :Licence:
11 Copyright 2016, Sebastian Schott
12
13 Licensed under the Apache License,Version 2.0 (the "License");
14 you may not use this file except in compliance with the License.
15 You may obtain a copy of the License at
16
17 http://www.apache.org/licenses/LICENSE-2.0
18
19 Unless required by applicable law or agreed to in writing,software
20 distributed under the License is distributed on an "AS IS" BASIS,
21 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,either express or implied.
22 See the License for the specific language governing permissions and
23 limitations under the License. *)
24 (* :Dependencies: *)
25 (* :History:
26 2016-02-26: Version 1.0
27 *)
28 (* :Description: *)
29
30 BeginPackage["femtoTools`io`"]
31
32 export::usage = "export[\"file.ascii\",{x,y,z},\"Glotaran\"] exports \
33 2D data to a file in the Glotaran format."
34
35 Begin["`Private`"]
36
37 export[File_, {x_?VectorQ, y_?VectorQ, z_?MatrixQ}, "Glotaran",
38 precision_: 5] := Module[{header, data},
39 header = {
40 {"Header"},
41 {"Created by femtotools (Mathematica 10)"},
42 {"Time explicit"},
43 {"intervalnr " <> ToString[Length[x]]}
44 };
45 (* SetPrecision[...,5] precise enough? *)
46 data =
47 SetPrecision[Prepend[Prepend[z, y] // Transpose, x], precision];
48 Export[File, header~Join~data, "Table"]];
49
50 End[]
51
52 EndPackage[]
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Glossary
AOPDF acousto-optic programmable dispersive filter.

BBO barium borate.

BS beam splitter.

CA coherent artefact.

CAADS CA-associated difference spectra.

CCD charge-coupled device.

CD circular dichroism.

CTSS corrected total sum of squares.

DADS decay associated difference spectra.

DCM dichloromethane.

DE differential equation.

EADS evolution-associated difference spectra.

ESA excited state absorption.

ET electron transfer.

FWHM full width at half maximum.

Glotaran global and target analysis.

GSB ground state bleach.

IR infrared.

IRF instrumental response function.

LEPS London–Eyring–Polanyi–Sato.

MA magic angle.
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ND neutral density.

NIR near-infrared.

NOPA noncollinear optical parametric amplifier.

OADS oscillation-associated difference spectra.

ORD optical rotatory dispersion.

PA product absorption.

PEC potential energy curve.

PES potential energy surface.

RECP relativistic effective core potential.

RMS root mean square.

SADS species-associated difference spectra.

SE stimulated emission.

SHG second harmonic generation.

SM spherical mirror.

SSR sum squared residual.

SVD singular-value decomposition.

SVEA slowly-varying envelope approximation.

TA transient absorption.

TDM transition dipole moment.

Ti:Sa titanium-sapphire.

TIMP tim package.

TRISRS transient resonance impulsive stimulated Raman scattering.

UV ultra-violet.

VIS visible.

VPA variable projection algorithm.
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WL white light.

WP wavepacket.

XADS X associated difference spectra.
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