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polyelectrolytes 
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1.1 Introduction  
 

Metal ion induced self-assembly combines the properties of organic ligands and the 

magnetic, electronic, optical, and catalytic potential of metal ions. Dependent on the 

interactions between metal ions and ligands, self-assembly leads to a variety of 

structures. Kinetically labile transition metal complexes are employed to construct in 

metal-organic frameworks (MOFs).[1-5] In this case polymeric species are not dominant 

in solution, which means that the coordination network only exists as crystalline solid 

as it is formed by concomitant metal ion coordination and crystallization.[6] Materials 

built up by kinetically labile interactions can assemble, disassemble and reconstruct 

and are responsive and adaptive to external parameters, such as external fields, ionic 

strength, pH, solvent and temperature. 

Based on the coordination geometry of the metal ion and the structure of the ligands, 

the design of a variety of different structures is possible, for example the self-assembly 

of well-defined discrete cyclic nanostructures mediated by transition metal ions, which 

is reviewed by Stang et al.[7] Thus, the design of two-dimensional molecular polygons, 

like rhomboids[8-10] and helicates,[11-19] molecular triangles,[20-25] squares,[9, 26-31] 

pentagons[14, 32-33] and larger ring systems[34] as well as three-dimensional nanoscopic 

cages, like self-assembled prisms[35-37] and cylinders,[38-39] is reported.[7] Scheme 1 

shows some corresponding examples. 
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Scheme 1. Selected examples of well-defined discrete cyclic nanostructures mediated by 
transition metal ions. Adapted with permission from [7], [11], and [39]. Copyrights 2000 
American Chemical Society, 1996 National Academy of Sciences, and 1999 John Wiley and 
Sons. 

 

If the ligand planes are arranged perpendicular at each metal center, a linear and rigid 

extension of the ligand system leads to a grid-like two-dimensional coordination 

network with regularly arrayed metal ions. These architectures are mainly based on 

tetrahedrally and octahedrally coordinated metal complexes of azaaromatic ligands 

containing bidentate or tridentate subunits as Zhao et al.[40-41] and Lehn et al.[42-46] have 
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reported.[42] Scheme 2 shows a [3×3] grid self-assembled from a tris-terdentate ligand 

and octahedrally coordinated transition metal ions.  

 

 

Scheme 2. Schematic representation of a [3×3] 
grid and octahedrally coordinated metal ions. 
Adapted with permission from ref [46]. Copyright 
2002 John Wiley and Sons. 

 

Metal ion induced self-assembled structures offer many applications as dye-sensitized 

solar cells,[47] spin-state control[48], electrochromic[49-53] and catalysis.[54-60] The large 

surface area of MOFs enables the uptake of gases by variation of the functional groups 

and thus, the pores of the architecture as mainly Yaghi et al. have reported.[4-5, 61-65] 

If the binding constants are sufficiently high, metal ion induced self-assembly can lead 

to polymeric assemblies in solution.[6] For example, stimuli-responsive polymers show 

property changes in response to an environmental stimulus, which is used to synthesize 



 

Chapter 1 

 

From Self-Assembly to Metallo-supramolecular 

polyelectrolytes 

           

 

    
15 

 

  

gels as Beck et al.[66] have reported. The group produced supramolecular 

polyelectrolyte gel-like materials exhibiting thermo-, chemo-, and mechanoresponsive, 

as well as light-emitting properties by the usage of metal-ligand interactions.[66] 

In general, metallo-supramolecular systems are based on coordinative bonds and are 

variable by changing geometry and coordination number of the ligands and by using 

different transition metal ions. Coordination of organic ligands and metal ions results 

in a variety of supramolecular structures ranging from mononuclear compounds to 

nanosized assemblies, soluble coordination polymers, gels all the way to solid state 

networks.[63, 67-70] In case of ditopic bis-terpyridines, such as 1, rigid-rod like metallo-

supramolecular coordination polyelectrolytes (MEPEs) form in solution with transition 

metal ions such as Fe2+, Co2+, Ni2+ or Zn2+ (see Scheme 3).[50, 52-53, 71-84] 
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Scheme 3. Metal ion induced self-assembly of 1,4-bis(2,2’:6’,2’’-terpyridine-4’-yl)benzene (1) 
results in metallo-supramolecular coordination polyelectrolytes (MEPEs). 4’-Phenyl-2,2’:6’,2’’-
terpyridine (2) and 2,2’:6’,2’’-terpyridine (3) form mononuclear complexes with Fe2+, Co2+, Ni2+, 
and Zn2+. The compounds are shown in part (a). The ligands are trans-trans configured in EtOH 
and cis-cis in acetic acid solution (75 vol %) due to hydrogen bonding between the protons 
and the free electron pair of the central nitrogen atom.[85-87] As shown in part (b), K1 and K2 are 
the binding constants for the stepwise coordination of 1 to the metal ion, whereas part (c) 
illustrates the overall reaction of the components. The acetate counter ions are omitted for 
clarity. Adapted from ref [88] with permission from The Royal Society of Chemistry. 

 

Due to the chelating effect of ligand 1 (see Scheme 3), the binding strength to 3d 

transition metal ions, e.g. Fe2+, Co2+ and Ni2+ is sufficient to support macromolecular 

assemblies even in aqueous solutions.[84] With many metal ions coordination results in 

a pseudo-octahedral geometry. In case of rigid bis-terpyridines, such as 1, rigid-rod 

like metallo-supramolecular coordination polyelectrolytes (MEPEs) form in solution, 
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whereas the monotopic ligands, such as 2 or 3, result to mononuclear metal complexes 

(Scheme 3).[89]  

The resulting MEPEs are soluble in water, aqueous acetic acid and polar solvents like 

EtOH or MeOH. Figure 1 shows the ethanolic solutions of Fe-, Co-, and Ni-MEPE. By 

addition of Fe(OAc)2 in acetic acid solution (75 vol %) to a solution of ligand 1 in acetic 

acid solution (75 vol %), the resulting Fe-MEPE shows a deep blue color, whereas the 

complexation of ligand 1 with Co2+, and Ni2+ in acetic acid solution (75 vol %) leads to 

a red and yellow color, respectively.[89] 

 

 

Figure 1. Colors of ethanolic Fe-, Co-, and 
Ni-MEPE solutions (from left to right). 

 

The MEPEs offer interesting features, like electrochromic[49-51] and electrorheological 

properties and can be incorporated in various architectures, including films,[52-53, 82] 

liquid crystals[90] or nanostructures.[91] Polyelectrolyte amphiphile complexes based on 

Fe-MEPE embedded in alkyl phosphate layers exhibit a structure induced and partially 

reversible spin-crossover between diamagnetic low-spin and paramagnetic high-spin 

state. The change in the spin state alters not only the magnetic state but the optical 

properties of the complex as well.[92] Thus, MEPEs are suitable systems for spin-

crossover or thermochromic materials.[83, 92] The properties and applications of the 

MEPEs will be presented in detail in Chapter 1.2.3.2.4.1. 
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1.2 Structures  
 

1.2.1 Self-assembly and supramolecular chemistry  
 

Self-assembly refers to the spontaneous aggregation of molecular or macromolecular 

building blocks into well-defined supramolecular structures through noncovalent 

interactions like hydrogen bonds,[93-100] coordinative bonds,[50, 66, 69-71, 73, 75, 77, 83, 101-112] 

ionic interactions,[113] hydrophobic interactions,[114-118] and π-π stacking,[119-142] as 

shown in Scheme 4.[69, 102, 104-105, 108, 112]  

 

 

Scheme 4. Basic physical molecular interactions exploitable for supramolecular systems. 
Adapted with permission from [102]. Copyright 2016 American Chemical Society. 

 

Two- and three-dimensional systems, i.e. rigid rods, side-chains, and cross-linked 

supramolecular polymeric structures can form, depending on the geometry of the 

interacting components. Scheme 5 shows some of the different types of 

supramolecular polymers, which can be designed by the self-assembly of 

complementary monomers.[69, 102, 104-105, 108, 112, 143-148] 
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Scheme 5. Different types of supramolecular polymers by self-assembly of complementary 
monomers through noncovalent interactions. Adapted with permission from ref [69]. Copyright 
2002 John Wiley and Sons. 

 

The ligands shown in Scheme 5 can form main-chain, side-chain or branched 

structures. Linear polymeric supramolecules can be designed by using ditopic ligands. 

By using flexible spacers between two functional receptors, the resulting linear 

structures are flexible and may be circular. If rigid ditopic molecules are used, the 

resulting structure are rigid rods (see the left side in Scheme 5). Supramolecular 

structures can also be linked by using polytopic ligands, as shown in the middle part 

of Scheme 5, leading to two- and three-dimensional cross-linked supramolecular 

structures. Furthermore, the design of two- and three-dimensional repetitively 

branched supramolecules (dendrimers and arborols) is possible (see the right side of 

Scheme 5).[69, 102, 104-105, 108, 112, 149] 

Thus, the properties of supramolecular polymers are determined by the nature of the 

molecular components and by the type of bonds, acting between them in solution. 
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These polymers can change the molecular-size distribution of their species through 

reversible adaptation to external factors such as concentration, temperature, solvent, 

and stoichiometry as well as the addition of cross-linking and end-capping agents that 

means they are stimuli-responsive.[69, 102, 104-105, 108, 112]  

Dependent on the building blocks of supramolecular structures, they give rise to 

electrochemical,[77] electrochromic,[49-53] magnetic,[68, 150] spin-crossover,[76, 92] and self-

healing properties[66, 71, 93, 101, 111, 113, 117] for applications in films or layers,[52-53, 76, 82, 92, 103, 

151] liquid crystals,[76, 90, 92, 103, 151] nanostructures,[91, 152-165] optically switchable molecular 

compounds,[76, 92, 150, 166-167] and even for 3D printable hydrogels,[102] electrorheological 

fluids,[91, 168] metal-organic frameworks (MOFs) with gas storage,[63, 67-68] catalysis 

properties,[54-60] and organic light-emitting diodes (OLEDs).[128-129] 

 

1.2.2 Metal ion coordination 
 

In general, the coordination of metal ions to organic ligands leads to discrete 

architectures including complexes, grids, helicates and extended assemblies that occur 

as crystalline or amorphous solids, nanoparticles, or soluble polymers as well as thin 

films. MOFs are built up by networks of metal centers or inorganic clusters connected 

by organic linkers through metal-ligand coordination bonds leading to three-

dimensional networks, whereas supramolecular coordination complexes consist of 

metal ions self-assembled to ligands with multiple binding sites and a specific 

angularity. Kinetically labile transition metal complexes mainly result in MOFs and are 

characterized as crystalline solids.[1-5] In these cases the binding constants are small 

and extended assemblies hardly form in solution which means, the coordination 

network forms through crystallization of the discrete species present in solution and 

only exists in the solid state.[6] In recent decades, the ligand diversity for generating 
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metal-organic materials ranges from cyanide to pyridyl- and carboxylate based 

donors.[169-170] For example, the pigment “Prussian Blue” showing a mixed-valent 

Fe2+/Fe3+ network bridged by cyanide ligands is known since the early 1700s (see 

Figure 2).[170-171]  

 

 

Figure 2. Structure of Prussian Blue, the first synthetic 
coordination polymer. Alternating octahedral sites of 
Fe2+ and Fe3+ ions are bridged by cyanide ligands to 
generate a cubic 3D array. Reprinted with permission 
from [170]. Copyright 2013 American Chemical 
Society. 

 

Nowadays, the two most used ligands for supramolecular coordination complex and 

MOF formation are O-donors and N-donors that means carboxylate- and pyridyl-

based ligands, as shown in Scheme 6 and Scheme 7, respectively.[170] 
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Scheme 6. O-donor based building blocks for supramolecular coordination complexes (SCCs) 
and MOFs. Adapted with permission from [170]. Copyright 2013 American Chemical Society.  
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Scheme 7. N-donor based ligands as building blocks for supramolecular coordination 
complexes (SCCs) and MOFs. Adapted with permission from [170]. Copyright 2013 American 
Chemical Society.  

 

As can be seen in Scheme 6 and Scheme 7, supramolecular coordination complexes 

are dominated by N-donor based ligands, while carboxylate ligands are more 
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commonly used to form MOFs.[170] For example, the N-donor ligand 4,4’-bipyridine 

forms a two-dimensional square network material with Cd(NO3)2, as shown in Figure 3, 

which is able to clathrate aromatic guests with high shape specificity.[55, 170] 

 

 

Figure 3. Formation of a two-dimensional square network 
material with 4,4’-bipyridine as the ligand and Cd2+ as a metal 
ion. The counter ions are omitted for clarity. Adapted with 
permission from [55]. Copyright 1994 American Chemical 
Society. 

 

An example of a 3D assembly using the N-donor based ligand 4,4’-bipyridine is given 

by the Ru-based cube of Thomas et al.[172] When ([9]ane-S3)Ru(DMSO)Cl2 is combined 

with 4,4’-bipyridine in a 8:12 ratio, the chlorides and DMSO ligands are displaced. The 

supramolecular cube assembles slowly in 2 weeks in solution, presumably due to 

slower ligand exchange kinetics. Each Ru site acts as the vertex of the cube, with 4,4’-

bipyridine representing the edges (see Scheme 8).[172] 
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Scheme 8. Combining ([9]ane-S3)Ru(DMSO)Cl2 
with 4,4’-bipyridine in an 8:12 ratio leads to a 3D 
assembly, where the chlorides and DMSO 
ligands are displaced. Adapted from ref [172] 
with permission from The Royal Society of 
Chemistry. 

 

Batten et al.[67-68] reported another interesting example by the design of a 

supramolecular nanoball for solvent and hydrogen gas storage. In the first step of 

synthesis the N-donor ligand tris[3-(4’-pyridyl)pyrazol-1-yl]hydroborate is used to 

form an intermediate building block by addition of Cu+ (see Figure 4). Subsequent 

addition of a range of divalent metal salts leads to the self-assembly of analogous 

nanoball species by coordination to the secondary binding sites of the ligand.[67-68] 
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Figure 4. The bifunctional ligand, tris[3-(4’-pyridyl)pyrazol-1-yl]hydro-
borate (upper left side) is used to form an intermediate building block 
(upper right side). Subsequent addition of a range of divalent metal salts 
leads to the self-assembly of the analogous nanoball species by 
coordination to the secondary binding sites of the ligand. Adapted with 
permission from ref [67] and [68]. Copyright 2009 John Wiley and Sons. 

 

As can be seen in Figure 4, Batten et al.[67-68] present an example of metal-varied 

discrete cage-like materials that are synthesized by the intermediate production of a 

metal complex. Here, Cu-nano is a suitable candidate for hydrogen storage. That 

means the MOF is able to uptake 1.2 wt % hydrogen (at 77 K and 1 bar), equating to 

approximately 34 hydrogen molecules per nanoball.[67-68] 
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Besides N-donor ligands, also O-donor that means carboxylate based ligands are used 

to form MOFs as already indicated in Scheme 6. The carboxylate-based linear 1,4-

benzene-dicarboxylate (BDC) can be regarded as a counterpart to 4,4’-bipyridine, 

because it also contains two Lewis-basic moieties. A well-known example of a BDC 

MOF is given by (BDC)3·(DMF)8(C6H5Cl), also known as “MOF-5”.[64, 170] 

 

 

Figure 5. Construction of the MOF-5 framework. Top left, the Zn4(O)O12C6 cluster is shown as 
a ball and stick model (Zn in blue, O in green, and C in grey). Top middle, the same cluster is 
shown with the Zn4(O) tetrahedron indicated in green. Top right, the cluster is shown with the 
ZnO4 tetrahedra indicated in blue. The bottom shows one of the cavities in the resulting MOF-
5 framework indicated by a yellow sphere. Adapted by permission from Macmillan Publishers 
Ltd: Nature [64], copyright 1999. 

 

An expanded form of the tritopic analogue of BDC in which phenyl spacers are added 

is used to link zinc acetate to form “MOF-177”, which possesses a surface area of 4500 

m2/g as shown in Figure 6.[61, 170] 
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Figure 6. Construction of the MOF-177 framework by assembly of zinc acetate with the tritopic 
carboxylate ligand 1,3,5-benzenetribenzoate. On the bottom, the zinc acetate scaffolds are 
shown, which lead to disordered metal nodes (top). Zn is shown in yellow, C in gray, and O in 
red. The hydrogen atoms are omitted for clarity. Reprinted with permission from [170]. 
Copyright 2013 American Chemical Society. 

 

The following subchapters give an overview concerning the kinetics and the 

mechanism of replacement reactions of coordination complexes of transition metal 
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ions with 2,2’:6’,2’’-terpyridine, as well as the published kinetic data. Furthermore, two 

important effects concerning the fluorescence properties of metal ion coordination 

complexes are presented.    

 

1.2.2.1 Kinetics and mechanism of replacement reactions of coordination 

complexes of transition metal ions with 2,2’:6’,2’’-terpyridine 
 

The reaction of metal ions and ligands in solution generally involves successive 

replacement of coordinated solvent molecules by the appropriate donor atoms of the 

incoming coordinating ligands. According to Eigen and Wilkins[173] the central metal 

ion (M2+) and the ligand (L) first form an outer-sphere complex followed by the rate-

determining step, the replacement of a solvent molecule (S) by the ligand in the inner 

sphere complex:[174-176] 

�M(S)���	 + L�
⇌ �M(S)���	, L ����� �M(S)���L��	, S (1) 

with �
 being the equilibrium constant for the formation of the outer-sphere complex, 

and ��� being the rate constant for exchange of a solvent molecule between the inner 

sphere and the bulk solvent. Reactions following this rate law are controlled by the rate 

of water ligand dissociation, are largely insensitive to the nature of the incoming 

ligands and are governed by ligand field effects.[177] The reaction scheme predicts the 

rate law to be first order in M2+ and in L. With M2+ in excess, � is the second-order rate 

constant for the overall forward reaction: 
 � = �
��� (2) 

If a negative volume of activation is measured, the mechanism is associative (A). In this 

case, the intermediate shows an increased coordination number. In contrast, in 
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dissociative substitution mechanism (D), the intermediate shows a reduced 

coordination number. Due to the mainly bond-breaking character of dissociative 

substitution mechanisms the volume of activation is positive. When the reaction is 

concerted and there is partial, and equal, association and dissociation of the entering 

and leaving groups, it is an interchange mechanism. Moreover, one can distinguish the 

interchange mechanism (I) with an associative (Ia) or a dissociative activation mode (Id), 

in which the transition states are characterized mainly by bond-formation or bond-

breaking, respectively.[176-179] The water exchange reaction of first row transition metal 

ions, i.e. Mn2+, Fe2+, Co2+, Ni2+ as well as the coordination of these metal ions to bi- 

and terpyridine ligands were studied by Caldin,[174] Ellgen,[175] Hayward,[180] 

Hubbard,[181] Merbach,[182] Moore,[183] van Eldik,[184] and Wilkins.[78, 185] In water 

exchange studies, Co2+ and Ni2+ show positive volumes of activation indicating a 

dissociative interchange (Id) mechanism. However, Fe2+ shows an almost zero value and 

the value for Mn2+ is negative. These results are rationalized in terms of a mechanistic 

changeover along the series with Mn2+ showing associative and Ni2+ dissociative 

behavior, respectively.[181-182] Measurements of volumes of activation indicate that 

coordination reactions of the metal ions Fe2+, Co2+, and Ni2+ with bi- and terpyridines 

take place as an Id mechanism. Thus, the changeover in the solvent-exchange 

mechanism for the first row transition metal elements also applies to complex 

formation reactions involving these metal ions and neutral ligands.[184] Finally, there is 

evidence that the chemical nature of the entering ligand also affects the rate, e.g. in 

chelation-controlled substitutions.[186]  
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1.2.2.2 Binding constants of the formation of transition metal ions and 2,2’:6’,2’’-

terpyridine 
 

Wilkins et al.[78] have shown that the addition of a terpyridine ligand to the metal ion is 

controlled by the first attachment, followed by rapid completion of the chelate.[78, 81] 

Each step is associated with a binding constant, K1 and K2, respectively (see Scheme 

3b).[78] The binding constants are defined by 

 

�� = �ML��M� ∙ �L� (3) 

�� = �ML���ML� ∙ �L� (4) 

 

with �M�, �L�, �ML� and �ML�� being the concentrations of the uncoordinated metal ions 

(M2+), the uncoordinated ligands (1, 2, or 3), and the both coordinated species ([ML]2+ 

and [ML2]2+), respectively (see also Scheme 3b). The binding constants, K1 and K2, for 

the coordination of ligand 3 to Fe2+, Co2+, and Ni2+, and Zn2+ are published by Wilkins 

et al.[78] and Ziessel et al.[187] (see Table 1).  
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Table 1. Literature values of binding constants, K1 and K2, for the coordination of 
different terpyridine ligands to the metal ions Fe2+, Co2+, Ni2+, and Zn2+ at 25 °C. The 
values from ref [78] are measured in water with ligand 3 and bromide as counter ion, 
while the values from ref [187] are measured in acetonitrile with 4,4-difluoro-8-(6’’-
methyl-2’,2’’:6’’,2’’’-terpyridin-6’-yl)-1,3,5,7-tetramethyl-2,4-diethyl-4-bora-3a,4a-diaza-
s-indacene as ligand and perchlorate as counter ion. Adapted with permission from ref 
[188]. Copyright 2017 John Wiley and Sons. 

 Fe2+ (ref [78]) Co2+ (ref [78]) Ni2+ (ref [78]) Zn2+ (ref [187]) 

lg[K1] 7.1 8.4 10.7 8.4 ± 0.5 

lg[K2] 13.8 9.9 11.1 6.4 ± 1.0 

lg[K1 ∙ K2] 20.9 18.3 21.8 14.8 ± 0.5 

lg[K2]/lg[K1] 1.9 1.2 1.0 0.7 ± 0.1 

 

The high binding constants are caused by the chelate effect of ligand 3. The 

coordination of 3 to a metal ion releases three solvent molecules per coordination step, 

which leads to an increasing entropy. Furthermore, the pyridine rings act as electron 

donors, whereas Fe2+, Co2+, and Ni2+ release d-electrons into the empty π*-orbitals of 

the ligand. The resulting π backdonation enhances the tendency for the formation of 

bis-tpy-complexes compared to mono-tpy-complexes, as can be seen in Table 1, where 

K2 is larger than K1 for the coordination of terpyridines to the metal ions Fe2+, Co2+, 

and Ni2+. This can be noticed especially for the coordination of 3 to Fe2+ with lg[K2] - 

lg[K1] = 6.7 (see Table 1). The particular stability of [Fe(3)]2+ is based on a high crystal 

field stabilization energy due to the d6 low-spin electron configuration.[189] According 

to the spectrochemical series, the electron configuration is presumably high-spin in the 

mono-tpy-complex, since the crystal-field splitting is lower by a (3N3O) coordination 

compared to a (6N) coordination.[190] The change from high- to low-spin causes an 

energy gain, which is the reason for the high K2 for the coordination of 3 to Fe2+. 
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Hence, in the case of Fe2+, Co2+, and Ni2+ the bis-tpy-complex that is the species of a 

metal ion complexed to two terpyridine ligands (see Scheme 3) is the preferred species 

even if an excess of metal ions is present in solution.[70, 78, 89, 187]  

Assuming that the binding constants, K1 and K2, are applicable to the formation of 

MEPEs, the average number of MEPE repeat units per chain that is the polymer length 

can be estimated.  

 

1.2.2.3 Fluorescence increasing and quenching effects in transition metal ion 

complexes 
 

While measuring the fluorescence properties of fluorescing ligands, an enhanced or a 

decreased fluorescence intensity, respectively, can be observed upon coordination to 

transition metal ions. These phenomena can be explained by two important effects: the 

chelation-enhanced fluorescence (CHEF) and the photoinduced electron transfer (PET) 

effect. Both effects are shown in Figure 7.  
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Figure 7. Origin of the chelation-enhanced fluorescence (CHEF) and the 
photoinduced-electron-transfer (PET) effect in the excited states of 
fluorophores: (a) fluorescence enhanced by the CHEF effect; (b) fluorescence 
quenched by the PET effect. Reprinted with permission from [89]. Copyright 
2016 American Chemical Society. 

 

In the event of a CHEF effect, lone electron pairs of the ligands are bound by 

protonation or by coordination. In both cases, the energy of the lone pairs is dropped 

below that of the ground state π level of the fluorescing ligand, as shown in Figure 7a. 

Therefore, the probability of transferring excited-state electrons from the excited π* 

level to the ground state π level is increased. As a consequence, the excited ligand 

molecule can return to the ground state π level unimpeded thus enhancing 

emission.[191]  

In case of a PET effect, the lone pairs of the excited ligands are not bound by 

protonation or by complexation. Thus, the lone pairs transfer electrons into the ground 

state π level of the fluorescing ligand leading to a decreased probability of a return of 

ligand’s excited-state π* electrons to the ground state π level. As a consequence, the 

emission of photons is reduced, which leads to a decreased fluorescence intensity (see 

Figure 7b).[191] 
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Both effects play an important role in coordination of terpyridine ligands to the 

transition metal ions, Fe2+, Co2+, Ni2+, and Zn2+. Depending on the metal ion, the 

fluorescence intensity of ligand 1 is enhanced or quenched, respectively, which is an 

important requirement for performing stopped-flow measurements and thus for 

obtaining a deeper insight to the kinetics of formation of the MEPEs.[89] 

 

1.2.3 Supramolecular polymers 
 

 

In contrast to traditional covalent polymers, supramolecular polymers are held 

together by noncovalent bonds, like coordinative bonds, π-π interactions, or hydrogen 

bonding. The design of such systems that is the spontaneous generation of a well-

defined macromolecular architecture by self-assembly of molecular components under 

a given set of conditions without usage of any catalysts, has attracted considerable 

attention.[105, 112, 143-148] In the following subchapters some examples of supramolecular 

polymers are presented. 

 

1.2.3.1 Supramolecular polymers based on hydrogen bonds and π-π interactions 
 

H-bond-mediated self-assembly systems are a way in developing supramolecular 

structures with weak reversible interactions. For example, Lehn et al.[93] reported 

supramolecular polymers, built up by the association of two homoditopic 

heterocomplementary monomers through sextuple hydrogen-bonding arrays, as 

shown in Scheme 9.  
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Scheme 9. Complementary hydrogen-bonded molecular 
recognition units. Adapted with permission from ref [93]. 
Copyright 2002 John Wiley and Sons.  

  

The group used heterocyclic derivatives of diaminopyridine and uracil consisting of 

triple hydrogen-bonding donor (D) and acceptor (A) sites by usage of complementary 

components ADA and DAD, as shown in Scheme 9.[93-94] The self-assembly of these 

derivatives leads to a supramolecular liquid crystalline polymer of triple helical 

superstructure. If these complementary building blocks are connected by a spacer, the 

resulting ditopic components lead to rigid-rod supramolecular polymer systems in a 

nonpolar solvent, as shown schematically in Scheme 10.[93, 99] 
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Scheme 10. Schematic representation 
of the complementary building blocks. 
Reprinted in part with permission from 
ref [93]. Copyright 2002 John Wiley and 
Sons. 

 

Additionally, different hydrogen bond based supramolecular polymers are reported by 

Meijer,[95, 98] Cohen Stuart,[192-195] Bouteiller,[196] and Yagai.[197] For example, Meijer et 

al.[198] reported the self-assembly of supramolecular polymers based on the S-chiral 

oligo(p-phenylenevinylene) as shown in Figure 8.  
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Figure 8. The two aggregation pathways of SOPV, including the growth of two competing 
assemblies. The righthanded P-helices form quickly but are less stable than the left-handed M-
helices, which form more slowly. Reprinted by permission from Macmillan Publishers Ltd: 
Nature [198], copyright 2012.  
 
 

The self-assembly of “SOPV” in apolar solutions is first initiated by formation of a 

quadruple hydrogen-bonded dimer which further self assembles into helical stacks via 

π-π interactions. The growth is described by a nucleation-elongation growth 

mechanism. The steady-state concentration of the aggregates is determined by two 
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different binding constants that is Kn for the nucleation phase and Ke for the elongation 

phase.[198] 

Another well-known example of supramolecular polymers based on π-π interactions 

has been reported by Würthner et al.[123] The group synthesized perylene bisimides 

which form different types of aggregates that means H- and J-type aggregates, as 

shown in Figure 9.  

 

 

Figure 9. Left side: Perylene bisimide chromophores with linear (top) and branched (bottom) 
alkyl substituents. Middle: An increasing steric demand of the alkyl side-chains hinders the 
formation of H-aggregates and leads to J-aggregates. Right side: Packing model for H- (top) 
and J-type (bottom) π stacking. In both cases additional rotational offsets are needed to enable 
both close π-π contact and hydrogen bonding. Adapted with permission from ref [123]. 
Copyright 2008 John Wiley and Sons. 

 

The type of aggregates depends on the steric demand of the side-chains. An increasing 

steric demand of the alkyl side-chains hinders the formation of H-aggregates and leads 
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to J-aggregates. The macroscopic orientation of the perylene bisimide aggregate 

orientation can be switched completely reversibly simply by switching a magnetic 

stirrer on and off.[123]  

 

1.2.3.2 Metallo-supramolecular polymers 
 

Metal containing polymers can be subdivided in three different types, as shown in 

Figure 10. In (a) metal ions or complexes are attached to the polymer at the side-chain, 

whereas in (b) the metal centers are part of the main-chain. In (c) metal ions are 

embedded into a polymer matrix via physical interactions.[199] 

 

 

Figure 10. Overview of the general types of metal containing 
polymers. Reprinted in part from ref [200] with permission from 
The Royal Society of Chemistry. 

 

Metallo-supramolecular polymers, which are a specific class of supramolecular 

polymers, are classified as structures where metal ions are part of the polymer chain 
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(see Figure 10b).[199] In this chapter the focus will be on metallo-supramolecular 

polymers built up by metal ions and organic ligand molecules.  

 

1.2.3.2.1 Porphyrin and carbene based metallo-supramolecular polymers 
 

Metalloporphyrins are known as building blocks for the design of metallo-

supramolecular polymers. Here, the central metal ion coordinates to a planar 

framework and to additional ligands in an axial direction. As reported by Abd-El-Aziz 

et al.,[201] porphyrin containing coordination polymers can be formed to basically three 

different geometries as shown in Figure 11. In the most cases, nitrogen based ligands 

are used for the linkage of the porphyrin rings.[199, 201] 

 

 

Figure 11. Three possible geometries of porphyrin containing coordination polymers. Adapted 
from ref [199] with permission from The Royal Society of Chemistry. 
 

For example, Würthner et al.[202] reported the self-assembly of a Zn2+ containing 

porphyrin-(perylene bisimide)-porphyrin triad with different ditopic ligands as shown 
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in Scheme 11. Instead rectangular assemblies, the group obtained the formation of zig-

zag-shaped polymers, presumably due to the bulkiness of the ligands.[199, 202] 

 

 

Scheme 11. Structure of a zig-zag-shaped metallo-supramolecular coordination polymer built 
up by zinc porphyrin-(perylene bisimide)-zinc porphyrin triads. Adapted from ref [199] with 
permission from The Royal Society of Chemistry.  
 

 

Rigid bis-N-heterocyclic carbene derivatives can also be used for the construction of 

metallo-supramolecular polymers as shown in Figure 12. Stable metallopolymers 

incorporating these ligands and Pd2+ or Pt2+ ions are reported in the 

literature.[199, 203-208] 
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Figure 12. Schematic representation of metallopolymers containing telechelic N-heterocyclic 
carbene ligands. Adapted from ref [199] with permission from The Royal Society of Chemistry.  
 

 

1.2.3.2.2 Metallocene based metallo-supramolecular polymers 
 

Metallo-supramolecular polymers via metal-arene π-complexation are reported to 

form four different types of geometries (type A to D) as shown in Figure 13. 

Metallocene based metallo-supramolecular polymers of type A are reported mainly by 

Siebert et al.[209-213] For example, the polycondensation of substituted tris-

(allyl)dinickel-(µ-2,3-dihydro-1,3-diborolyl) complexes yields the Ni2+-containing 

“polydecker” complexes (see Figure 13, bottom, left).[209-213]  
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Figure 13. The four generally different types of metallocene based metallo-supramolecular 
polymers (top) and the corresponding examples (bottom). Adapted with permissions from 
[214] and [199] from The Royal Society of Chemistry and the American Chemical Society.  
 
 

A variety of type-B polymeric metallocenes are investigated by Rosenblum et al.[214-218] 

Here, the metallocene units are ordered face-to-face with naphthalene or biphenyl as 

a spacer group (see Figure 13).[214-218] Metallocene based metallo-supramolecular 

polymers of type C are known from Lagowski et al.,[219] for example poly[µ-η6,η6-

naphthalene)chromium].[219] Finally, The fulvalene dianion shown in Figure 13 (bottom, 

right) represents a building block that can already be used for the synthesis of 

polyferrocenylenes (type D).[199, 220]  
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1.2.3.2.3 Pyridine based metallo-supramolecular polymers 
 

In the following, the focus is on pyridine based metallo-supramolecular polymers. For 

example, metallo-supramolecular polymers that are water-soluble at every metal ion 

to ligand ratio were presented by Cohen Stuart et al.[70] as they used flexible 

bifunctional ligands which differ in spacer length, coordinated to Zn2+ ions (see Scheme 

12).[70] 

 

 

Scheme 12. Schematic representation of the water-soluble bifunctional ligands, and the 
formation of polymers and rings. Adapted with permission from [70]. Copyright 2003 
American Chemical Society.  
 
 

Since the used ligand is flexible, the formation of linear polymers and rings is obtained. 

The group followed the formation of the polymers as a function of the metal ion to 

ligand ratio, the total ligand concentration, and the temperature by viscosity 

measurements. Viscosity and 1H NMR measurements confirm the reversibility of the 

coordination bonds and the formation of rings at low concentrations. If the metal ion 

to ligand ratio is 1:1, viscosity reaches a maximum. Furthermore, a model developed 

by Jacobson and Stockmayer[221] was used to calculate the molecular weight 
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distributions of chains and rings. The model is in qualitative agreement with the 

experimental results.[70] 

The coordination properties of the tridentate ligand 2,2’:6’,2’’-terpyridine with metal 

salts was reported in 1992 by Constable et al.[73] The ditopic 2,2’:6’,2”-terpyridine 

ligands are ideal structural units, which form supramolecular polymers with a metal 

center by self-assembly (see Scheme 13). The ditopic “back-to-back” terpyridine 

ligands are used to assemble linear coordination polymers, including six-coordinated 

metal centers.[73] 

 

 
 

Scheme 13. The use of “back-to-back” 2,2’:6’,2”-terpyridine ligands to assemble coordination 
polymers or oligomers bearing specific terminator groups (X = spacer unit). Adapted from ref 
[73] with permission from The Royal Society of Chemistry. 

 

Not surprisingly, an increasing denticity of (poly)pyridyl ligands leads to an increased 

complex stability due to the chelation effect as reported by Würthner et al.[222] For the 

single interaction of Zn2+ with a pyridine ligand a binding constant of 103 M-1 can be 
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found, whereas the binding constant increases to > 108 M-1 for the Zn2+-terpyridine 

system.[199, 222] 

Ditopic ligands carrying terpyridine units and their self-assembly with metal ions can 

also be used for the design of fluorescent supramolecular polymers as the same 

group[75] has reported in 2005. They used perylene bisimide fluorophores as a spacer 

group between two terpyridine moieties, as shown in Scheme 14.[75] 

 

 

Scheme 14. Coordination of a terpyridine-functionalized perylene dye with 
Zn(OTf)2 leads to the corresponding Zn-coordinated polymer. Adapted with 
permission from [75]. Copyright 2005 American Chemical Society. 
 

 

The complexation of this ditopic terpyridine ligand with a series of first row transition 

metal ions that is Fe2+, Co2+, Ni2+, Cu2+, and Zn2+, leads to fluorescing metallo-

supramolecular dimers and polymers at room temperature. Diffusion ordered NMR 
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spectroscopy and fluorescence anisotropy measurements reveal that the terpyridine-

Zn2+ complex is characterized by a thermodynamically stable (that means a high 

binding constant) yet kinetically labile (that is a fast ligand exchange) coordination 

bonding. For both dimer and polymer, reversible coordination was observed 

depending on the metal ion to ligand ratio. If the ratio exceeds 1:1, the chain-length of 

the supramolecular polymers is drastically decreased. Furthermore, the compounds 

obtain high fluorescence quantum yields.  

Metal-coordination polymers also obtain potential for the development of self-healing 

materials, as the groups of Rowan[66, 71] and Schubert[101, 111] have shown. In 2011 Rowan 

et al.[66, 71] reported a healable metallo-supramolecular polymer based on a ligand 

containing poly(ethylene-co-butylene) core with 2,6-bis(1’-methylbenzimidazolyl)-

pyridine (“Mebip”), complexed to Zn2+ that can be mended through exposure to light 

(see Scheme 15).[71]   
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Scheme 15. Top: “Mebip”-ligand and its polymerization by addition of Zn(NTf2)2. Bottom: 
Proposed optical healing of the metallo-supramolecular network. Adapted by permission from 
Macmillan Publishers Ltd: Nature [71], copyright 2011. 

 

On exposure to ultraviolet light, the metal-ligand motifs are electronically excited and 

the absorbed energy is converted into heat. This causes temporary disengagement of 

the metal-ligand motifs and a concomitant reversible decrease in the polymers’ molar 

mass and viscosity,[74] thereby allowing quick and efficient defect healing. Light can be 

applied locally to a damaged site, so objects can in principle be healed under load. The 

formation of lamellar morphologies in which a hard phase comprising the metal-ligand 

complexes physically crosslinks soft domains of the poly(ethylene-cobutylene) cores is 

the main determinant for the thermomechanical characteristics of the materials 

studied. The data suggest that the dynamics of the light-induced depolymerization 

and, thereby, the healing behavior are governed by the presence of an excess of free 

ligands and the nature of the metal-ligand bond. The group assumes that the concept 
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of photothermally induced healing of supramolecular materials should be applicable 

to any supramolecular polymer with a binding motif that is sufficiently dynamic. They 

anticipate that this approach to healable materials, based on supramolecular polymers 

and a light-heat conversion step, can be applied to a wide range of supramolecular 

materials that use different chemistries.[71]   

Another self-healing metallo-supramolecular polymer system was reported by 

Schubert et al.[101, 111] in 2013. Polymer coatings based on crosslinked metallo-

supramolecular polymers were synthesized containing the metal-ligand coordination 

in the side-chain of flexible alkyl methacrylate polymers, as shown in Scheme 16.[101]  

  

 

Scheme 16. Schematic representation of the synthesis of the Fe2+ crosslinked polymer network 
by reversible addition-fragmentation chain transfer (RAFT) polymerization technique and a 
following complexation with the metal ion. Adapted with permission from ref [101]. Copyright 
2013 John Wiley and Sons. 

 

First, the terpyridine containing polymers are received from copolymerization of a 

terpyridine with alkyl methacrylate monomers, in order to adjust the amount of the 

crosslinking units as well as to tune the thermal and mechanical properties of the 

resulting polymer networks. The reversible addition-fragmentation chain transfer 

(RAFT) polymerization technique is used to obtain well defined polymers with 
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adjustable composition.[80] Subsequently, the terpyridine containing copolymers are 

crosslinked by the addition of iron(II)sulfate, as shown in Scheme 16. The copolymer 

network containing lauryl methacrylate is able to heal scratches which the group 

ascribes to the high flexibility of the polymer backbone. In all cases, the crosslinked 

copolymer networks did not melt during the healing process. As no residual solvent is 

present, the formation of an organogel can also be excluded. Therefore, the above 

described healing is based on an intrinsic self-healing capability of the materials.[101] 

 
In conclusion, the field of metallo-supramolecular polymers offers many attractive 

possibilities in varying metal ions and ligands. But so far, the details of the kinetics of 

the growth of the presented metallo-supramolecular polymers are mostly unknown. 

Thus, it is important to understand the underlying polymerization mechanisms in detail. 

The following subchapter gives an overview of polymerization mechanisms in general 

and the different possible polymerization mechanisms in supramolecular 

polymerization.  

 

1.2.3.2.4 Metallo-supramolecular polyelectrolytes (MEPEs) studied in this thesis 
 

1.2.3.2.4.1 Applications  
 

In 2007 and 2008 Kurth et al.[50-51] reported the photophysical, electrochemical and 

electrochromic properties of MEPEs. Different types of MEPEs were assembled from 

different bisterpyridine ligands and investigated in terms of their electrochromic 

properties. By self-assembly of rigid, π-conjugated ditopic terpyridine ligands to Fe2+, 

Ru2+, and Co2+, metallo-supramolecular polyelectrolytes form in solution, as shown in 

Scheme 17.[50-51] 
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Scheme 17. Structures of different ditopic terpyridine ligands and the 
corresponding MEPEs, where electrochromic properties can be 
demonstrated. M indicates the metal ions Fe2+, Ru2+, and Co2+, L 
represents the ligands, and MEPE stands for metallo-supramolecular 
coordination polyelectrolytes. Adapted with permission from and [51]. 
Copyright 2008 American Chemical Society. 

 

By dissolving the MEPEs in a mixture of MeOH and H2O, the different polymers display 

different colors spanning the entire visible regions, as shown in Figure 14.[50-51] 

 

 

Figure 14. Colors of (a) FeL1-MEPE - FeL5-MEPE (0.25 mM, MeOH), (b) RuL1-MEPE - RuL5-

MEPE (0.05 mM, MeOH/H2O (v/v = 4/1)) (B), and (c) CoL1-MEPE - CoL5-MEPE (0.5 mM, 
MeOH). Adapted with permission from and [51]. Copyright 2008 American Chemical Society. 
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Kurth et al.[50-51] have shown that the electrochromic properties of the MEPEs are 

affected by the nature of the substituents at the peripheral pyridine rings that is “R” in 

Scheme 17. The response times can be tuned by the design of the ligands that means 

by variation of the spacer unit between the terpyridine units and by variation of the 

substituents at the peripheral pyridine rings, which makes the MEPEs attractive as 

electrochromic materials.[50-51] 
 

Also the properties of electrorheological fluids (ERFs) based on Fe-MEPE-silicate 

composites were reported from Kurth et al.[91, 168] The ERFs are designed by usage of 

self-assembled Fe-MEPE and the corresponding mononuclear complexes, as shown in 

Figure 15.  

 

 

Figure 15. Top left: Fe-MEPE and the corresponding mononuclear complex are based on Fe2+ 
and ligands 1 or 2, respectively. Bottom: Scheme of the self-assembly process. The counterions 
are omitted for clarity. Top right: TEM image of a SBA-15 particle edge revealing the hexagonal 
orientated mesopores and schematic illustration of MEPEs incorporated in the pores. Adapted 
with permission from [168]. Copyright 2013 American Chemical Society. 
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For this purpose, Fe-MEPE was incorporated in mesoporous SBA-15 silica resulting to 

a 10 wt % Fe-MEPE/SBA-15 composite. Dispersion of the composite in silicone oil leads 

to a fluid obtaining a strong electrorheological effect, even at low concentration of the 

active component (0.16 wt %).[168, 223-226] 
 

MEPEs can also be used for the synthesis of metallo-supramolecular polyelectrolyte-

amphiphile complexes. The self-assembly of an aqueous solution of MEPE with a 

chloroform solution containing long-chain dialkyl-phosphoric acid esters leads to 

polyelectrolyte-amphiphile complexes (PACs) via electrostatic interactions, as shown in 

Scheme 18. This leads to an architecture, where the polymers are embedded in 

between the amphiphile layers.[76, 90, 92, 103, 151] 
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Scheme 18. Self-assembly of metal ions and ditopic bis-terpyridine ligands in aqueous 
solutions results in a positively charged metallo-supramolecular coordination polyelectrolyte 
(MEPE). Due to the octahedral coordination geometry a one-dimensional, positively charged 
macromolecule is formed. The square connecting the two terpyridine groups indicates a 
suitable spacer or functional component. Sequential self-assembly of MEPE and amphiphile 
gives a polyelectrolyte-amphiphile complex (PAC). The solubility properties of PAC suggest 
that the amphiphiles are primarily located around the hydrophilic metal-ion centers, as 
depicted in the scheme. The amphiphiles presumably form a charged hydrogen-bonded 
network that binds to MEPE through electrostatic interactions. Adapted with permission from 
ref [103]. Copyright 2002 John Wiley and Sons. 
 

The electrostatic interactions result from the positive charged MEPEs with the negative 

charged head groups of the amphiphiles, where six amphiphiles bind per MEPE repeat 

unit. The polar metal-ion coordination centers are efficiently shielded by the 

amphiphiles, which leads to a hydrophobic nature of the PAC and solubility in common 

apolar organic solvents.[76, 90, 92, 103, 151] 
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PACs obtain liquid-crystalline properties: upon heating above room temperature, the 

systems show a spin-crossover (SCO) process. PACs based on Fe-MEPE embedded 

between alkyl phosphate layers exhibit a structure induced and partially reversible spin-

crossover between diamagnetic low-spin and paramagnetic high-spin state (see 

Scheme 19). The change in the spin state modifies not only the magnetic state but the 

optical properties of the complex as well.[76, 92] 

 

 

Scheme 19. Upon heating of the multilayer, the alkyl chains of the mesophase 
melt, resulting in a distortion of the metal ion coordination geometry. The 
unfavorable coordination of the terpyridines around Fe2+ results in a lowering 
of the energy gap between the d-orbital subset, giving rise to a reversible 
transition from a diamagnetic low-spin state to a paramagnetic high-spin state. 
Adapted with permission from ref [76]. Copyright 2008 Elsevier. 
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1.2.3.2.4.2 Modeling the chain-length of MEPEs 
 

The chain-length of MEPEs is affected by the metal ion to ligand ratio, �: 

� = �M�
�L�
  (5) 

 

with [M]0 being the initial concentration of metal ions, and [L]0 the initial concentration 

of the ligands (see also Scheme 3). Close to � = 1, small changes in this ratio affects 

the conductivity, chain-length and viscosity deviations of the final MEPE solutions as 

reported by Dormidontova et al.[72] and Kurth et al.[84, 227] The impact of a change in � 

can be illustrated by calculating the number average degree of polymerization, �� , if 

the metal ion to ligand ratio, � < 1:[88, 228] 

�� = 1 + �1 − � (6) 

or if the metal ion to ligand ratio, � > 1: 

�� = 1 + ���1 − ��� (7) 

with the assumption that the extent of reaction is 100%.[228] For example, � = 0.99 ± 

0.005 results in ��  = 266 ± 134, which is an inacceptable error in adjusting a desired 

chain-length.[88] Using the law of mass action, the average number of repeat units per 

chain, 〈&�〉, can be calculated. For this purpose, the coordination of ligand 1 to the metal 

ion, M2+, is described by a set of chemical equilibria. In the following, several 

equilibrium constants are defined, with [M] being the concentration of the transition 

metal ions, M2+, and [tpy] being the concentration of the terpyridine receptors. The 

binding constants for the formation of [M(tpy)]2+ and [M(tpy)2]2+ as well as for the 

formation of protonated terpyridine groups, [H(tpy)]+, [H2(tpy)]2+, or [H3(tpy)]3+ in 

acidic solution are defined in the following. The charges are omitted for clarity. Here, 
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K1 and K2 are the equilibrium constants for the formation of the metal-ligand 

complexes: 

�� = �M(tpy)��M� ∙ �tpy� (8) 

 �� = �M(tpy)���M(tpy)� ∙ �tpy� (9) 

 

 

The acid dissociation constants, �+,,�, of [Hx(tpy)]x+ are defined as 
 

 -�+,,�.�� = �H(tpy)� �tpy� ∙ �H	� (10) 

 -�+,,�.�� = �H�(tpy)��H(tpy)� ∙ �H	� (11) 

 -�+,,0.�� = �H0(tpy)��H�(tpy)� ∙ �H	� (12) 

 

 

With the initial concentration of the terpyridine receptors, [tpy]0, it follows: 
 

 �tpy� + �M(tpy)� + �M(tpy)�� + �H(tpy)� + �H�(tpy)� + �H0(tpy)� = �tpy�
 = 2 ∙ �L�
 
(13) 

 

 

And with the initial concentration of metal ions, [M]0, one arrives at: 
 �M�
 = �M� + �M(tpy)� + �M(tpy)�� (14) 
 

 

With [M(tpy)2]2+ representing the concentration of [M(tpy)2]2+ units in the MEPE chain 

and [tpy], [M(tpy)]2+, [H(tpy)]+, [H2(tpy)]2+, and [H3(tpy)]3+ being end groups, the 

average number of MEPE repeat units, [ML]2+, per chain, 〈&〉, can be described as 
 〈&�〉 =  2 ∙ �M(tpy)���tpy� + �M(tpy)� + �H(tpy)� + �H�(tpy)� + �H0(tpy)� (15) 
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Equations (8) to (15) are solved by Mathematica providing a numerical approximated 

solution, with 2�+,,�= 1.7, 2�+,,� = 3.5, 2�+,,0 = 4.7,[229] and [M]0 = 6.7 × 10-3 M. The 

calculated average number of repeat units per chain, 〈&�〉, that is the polymer length, is 

shown in Figure 16.  

 

 

Figure 16. Average number of repeat units per chain, 〈&�〉, as function of (a) K1 
and K2, and (b) as a function of the initial concentration of M2+. In (a) the 
parameters are set to [L]0 = [M]0 = 6.7 mM, pH = 7, and � = 1 with varying K1 
and K2, whereas in (b) the parameters are set to pH = 7, � = 1, and K1 and K2 
according to Table 1, while [M]0 is varying. The average chain-length of MEPEs 
increases with increasing binding constant K1 and with increasing ratio 
lg[K2]/lg[K1], as well as with increasing initial concentration [M]0. In (a) the 
symbols correspond to the literature values of lg[K2]/lg[K1] (see also Table 1), 
whereas in (b) the symbols correspond to lg[M]0 = -2.2 ([M]0 = 6.7 mM). Adapted 
with permission from ref [188]. Copyright 2017 John Wiley and Sons. 

 

Here, the repeat unit is defined as a ligand and a metal ion as shown in Scheme 3. 

Figure 16a shows the average number of repeat units as a function of binding constants 

K1 and K2. The chain-length increases with increasing K1 and with increasing ratio 

lg[K2]/lg[K1]. Figure 16b shows the average number of MEPE repeat units per chain with 

increasing concentration, [M]0. As expected, chain-length increases with increasing 

initial concentration of the metal ion, [M]0. As can be seen in Figure 16a, lg〈&�〉 amounts 

to 5.6, 3.9, 4.5 and 2.1 for Fe-, Co-, Ni- and Zn-MEPE, respectively, which corresponds 



 

Chapter 1 

 

From Self-Assembly to Metallo-supramolecular 

polyelectrolytes 

           

 

    
60 

 

  

to number average molar masses of 2.8 × 108 g mol-1, 5.7 × 106 g mol-1, 2.3 × 107 g 

mol-1, and 9.1 × 104 g mol-1. Therefore, according to the theoretical predictions from 

Figure 16, the molar mass follows the order Zn-MEPE < Co-MEPE < Ni-MEPE < Fe-

MEPE, if pH = 7 and � = 1. Protonation of the ligand competes with metal ion 

coordination. Using the law of mass action, the concentrations of M2+, [ML]2+, and 

[ML2]2+ can be calculated as a function of pH. The results are shown in Figure 17.  

 

 

Figure 17. Concentrations of M2+, [ML]2+, and [ML2]2+ for (a) Fe2+, (b) Co2+, 
(c) Ni2+, and (d) Zn2+, respectively, as function of pH with given binding 
constants K1 and K2 according to Table 1. The initial ligand concentration 
[L]0 is set to 6.7 mM with � = 1. The critical pH blocking the formation of 
chains rises from < 1.5 in the case of Fe2+, Co2+, and Ni2+ to 2.2 in the case 
of Zn2+. Adapted with permission from ref [188]. Copyright 2017 John Wiley 
and Sons. 

 

Interestingly, long chains form in solution above pH = 1, if the affinity of the ligand and 

the metal ions is high enough, e.g. Fe2+, Co2+, and Ni2+. In order to analyze the chain-
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length of the MEPEs, acetic acid solution (75 vol %) is the solvent of choice. If Zn2+ is 

used as a metal ion in acetic acid solution (75 vol %) with pH = 1.8, [ZnL]2+ complexes 

predominate that means, no long chains form. Figure 18 shows the calculated average 

number of MEPE repeat units per chain, 〈&〉, as function of the pH as well as of the 

metal ion to ligand ratio, �.  

 

 

Figure 18. Average number of MEPE repeat units, [ML], per chain, 〈&〉, as 
function of pH and metal ion to ligand ratio, �, with (a) Fe2+, (b) Co2+, (c) Ni2+, 
and (d) Zn2+ as a metal ion. The initial ligand concentration [M]0 is set to 6.7 
mM. The chain-length reaches its maximum at � = 1.00. Adapted with 
permission from ref [188]. Copyright 2017 John Wiley and Sons. 

 

The chain-length reaches its maximum at � = 1.00. In case of Fe2+, lg[K2] is around twice 

as high as lg[K1] (see Table 1 in Chapter 1.2.2.2) and the maximum of lg〈&〉 is > 105. The 
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chain-length is asymmetric with respect to � as shown in Figure 18a. In case of Co2+ 

and Ni2+ where the difference between K1 and K2 is smaller, the average number of 

repeat units is smaller compared to Fe-MEPE and the asymmetry with respect to � is 

negligible (Figure 18b and Figure 18c). However, coordination of 1 to Zn2+ leads to 

relatively short chains nearly unaffected by �, because K2 < K1 (Figure 18d). At pH = 1.8 

as in acetic acid solution (75 vol %) and � = 1.00, lg〈&�〉 amounts to 2.5, 1.4, and 2.0 for 

Fe-, Co-, and Ni-MEPE, respectively, which corresponds to number average molar 

masses of 2.1 × 105 g mol-1, 1.7 × 104 g mol-1, and 7.7 × 104 g mol-1. As already 

mentioned, complexation of Zn2+ to ligand 1 mainly leads to [Zn1]2+ complexes at 

these conditions. 

These results are in agreement with Monte Carlo simulations presented by 

Dormidontova et al.[72] They have shown that the maximum degree of polymerization 

in metallo-supramolecular polymers occurs at the metal ion to ligand ratio of � = 

1.00.[72] In case of the non-linear chain-length dependence in the proximity of � = 1.00, 

small changes in � cause large variations in chain-length, e.g. by experimental errors 

and impurities (see Figure 18).[72, 84, 227]  

 

1.2.4 Ways to control supramolecular polymerization  
 

The chain-length of polymers can be tuned by using chain stoppers. For 

supramolecular polymers this so-called “stopper experiment” was first reported by 

Meijer et al.[97, 100] The group designed supramolecular polymers based on quadruple 

hydrogen bonding and decreased the degree of polymerization and therefore the 

polymer's chain-length by usage of end-caps that can be formed by a photochemical 

process as shown in Scheme 20.  
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Scheme 20. Bifunctional compound (upper left), which forms supramolecular polymer chains, 
and monofunctional compound (upper right), which acts as an end-cap. Adapted from ref [97] 
with permission from The Royal Society of Chemistry. 

 

Thus, they are able to trigger the viscosity of the solution by light.[97, 100] Chain stopper 

molecular systems were later applied to different other hydrogen bond based 

supramolecular polymers by Meijer,[95, 98] Lehn,[93] Cohen Stuart,[192-195] Bouteiller,[196] 

and Yagai.[197]  

Besides hydrogen based supramolecular polymerizations, the polymerization of 

porphyrin based polymers can also be controlled by the usage of chain stoppers. For 

example, Hunter et al.[107] constructed porphyrin polymers by coordination of 

aminoporphyrins as shown in Scheme 21.[107] 
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Scheme 21. Self-assembly of a cobalt porphyrin polymer (top) and a cobalt porphyrin dimer 
(bottom) via coordination of two covalently attached pyridine ligands. Both aminoporphyrins 
were prepared from the corresponding nitroporphyrins using 4-pyridinecarbonyl chloride and 
Co(OAc)2. Adapted with permission from ref [107]. Copyright 2000 John Wiley and Sons. 

 

Size exclusion chromatography (SEC) indicates the formation of stable, high molecular 

weight polymers. Here, the monofunctional cobalt porphyrin acts as a chain stopper, 
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which can be used to control the mean molecular weight of the cobalt porphyrin 

polymer.[107] 

 

1.3 Mechanism  
 

1.3.1 Polymerization mechanisms 
 

Polymerization mechanisms can be distinguished in two classes: chain growth and 

step growth polymerizations (see Figure 19). 

 

 

Figure 19. Step growth and chain growth mechanism in 2D array of monomers. White colored 
lattice sites represent the unreacted monomers while the red colors exhibit the polymerized 
sites. Adapted from ref [230] with permission from The Royal Society of Chemistry. 

 

In chain growth polymerization an initiator is used to produce an initiator species, R*, 

with a reactive center, which may be a free radical, cation, or anion. Polymerization 

takes place by addition of monomer molecules to the active site of a growing polymer 

chain and the addition of each monomer unit regenerates the active site as shown in 
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Figure 19a.[231] In contrast to step growth polymerization, the different-sized species 

such as dimer, trimer, tetramer, and n-mer do not react with each other. An example 

for a chain growth mechanism is the polymerization of vinyl monomers as shown in 

Scheme 22. The growth of the polymer chain ceases when the reactive center is 

deactivated by one or more of a number of possible termination reactions.[228, 232]  

 

 

Scheme 22. Polymerization of vinyl 
monomers.[232]  

 

Chain polymerizations without the ability of chain termination reactions are called 

“living polymerization”.[228] For example, Szwarc et al. [233-234] reported the anionic living 

polymerization of styrene in THF. First, styrene is activated by an initiator. As shown in 

Scheme 23, the resulting anion leads to a situation where termination reactions cannot 

occur anymore. The terminal anions will stay at the ends of the polymer and 

polymerization proceeds until all monomers are integrated.[228, 233-234]  

 

 

Scheme 23. Anionic living polymerization by activation of styrene in THF. 
The resulting anion hinders any termination reaction.[233-234]  

 



 

Chapter 1 

 

From Self-Assembly to Metallo-supramolecular 

polyelectrolytes 

           

 

    
67 

 

  

Living polymerizations are a common method for synthesizing block copolymers since 

the polymer can be synthesized in different stages with different monomers.[228, 233-234] 

The situation is different in step growth polymerizations which proceed from monomer 

to dimer, trimer, tetramer, pentamer, and so on until large-sized polymers have been 

formed as shown in Figure 19b. The reaction occurs between any of the different-sized 

oligomers present in the reaction system.[228] Step polymerizations are furthermore 

classified as “condensation polymerizations”, if a small molecule, like water, is 

eliminated in the polymerization process. Common examples for a step growth 

polymerization are polyamides, which are built up by diamines and diacids by 

elimination of water[228, 235] or polycarbonates, which are formed by the reaction of 

aromatic dihydroxy reactants with phosgene by elimination of hydrogen chloride as 

shown in Scheme 24.[228, 236]   

 

 

Scheme 24. The polycondensation of bisphenol A and phosgene leads to polycarbonate by 
elimination of hydrogen chloride.[236]  

 

In contrast, “addition polymers” are classified by Carothers[237] as step growth polymers 

formed from monomers without loss of a small molecule. A well-known example for 

addition polymers are polyurethanes, which are formed by the reaction of diols with 

diisocyanate.[228, 238] 

Generally, polymer growth of a linear step growth polymerization can be described as 

�� = �A�
�4 + 1 = 11 − 2 (16) 
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with ��  being the number-average degree of polymerization, �A�
 the concentration 

of monomers at the beginning of the polymerization, � the rate constant, 4 the time, 

and 2 the monomer conversion.[239] Carothers[240] established a connection of the 

weight-average degree of polymerization, ��5, to the monomer conversion, 2: 
 ��5 = 1 + 21 − 2 (17) 

with ��5 being defined as  

��5 = 6756� (18) 

with 675 being the weight-average molar mass of the polymer, and 6� being the molar 

mass of the monomer, A. With eqs (16) and (17) the weight-average degree of 

polymerization, ��5, can be described as a function of time: 

��5 = 2�A�
�4 + 1 (19) 

With ��5 at hand, the monomer conversion, 2, can be calculated by rearranging eq (17): 

2 = ��5 − 1��5 + 1 (20) 

By usage of eqs (19) and (20) the monomer conversion, 2, at a time, 4, can be calculated 

if the rate constant � is known.[239] 

 

1.3.2 Growth mechanisms in supramolecular polymerization 
 

In the field of supramolecular polymerization, three major models are distinguished in 

literature: In the so-called “isodesmic supramolecular polymerization” (ISP), also known 

as the “equal K model”, “free association model” or “multistage open association 
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model”, each additional step is equivalent and independent of the polymer length as 

shown in Scheme 25a. 

 

Scheme 25. Schematic representation of the three mechanisms for supramolecular 
polymerization mechanisms: (a) isodesmic supramolecular polymerization (ISP), (b) 
ring-chain mediated supramolecular polymerization and (c) cooperative 
supramolecular polymerization (CSP). Adapted from ref [199] with permission from The 
Royal Society of Chemistry. 

 
That means, that all reactive sites of the monomers, oligomers and polymer chains have 

the same reactivity and every step during polymerization exhibits the same equilibrium 

constant. In isodesmic growth polymerizations, no critical temperature or 

concentration of the monomers is required for the polymerization to occur.[199, 228]  

The second polymerization mechanism occurs if oligomers can also react to closed 

rings of polymers, as shown in Scheme 25b. If the monomer concentration is below a 
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critical concentration, the ends of small oligomers are more likely to undergo an 

intramolecular reaction and form a polymer ring. Above a specific critical concentration, 

the probability of intermolecular reactions is increased, which leads to the growth of 

long polymer chains.[143, 188, 241-246] In ring-chain mediated supramolecular 

polymerization two equilibrium constants can be defined: one for the intra- and one 

for the intermolecular reaction. The so-called “effective molarity” is then defined 

as[143, 199] 
 EM = �9:;<=�9:;>< (21) 

If EM > 1 cyclization if favored, whereas linear chains are formed if EM < 1.[199, 228] Ring-

chain mediated supramolecular polymerizations are reported in the literature.[227, 247-

252] For example, Newkome et al.[250] reported the formation of linear 

([methylphenylenebis(terpyridine)]nRu2+
n-1) complexes and macrocycles by a single-

pot reaction as shown in Scheme 26.  
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Scheme 26. Synthesis of the bis(Ru3+) and mono(Ru3+) monomers and the formation of the 
linear ([methylphenylenebis(terpyridine)]nRu2+

n-1) complexes (left) and macrocycle (right) by a 
single-pot reaction. Adapted with permission from ref [250]. Copyright 2006 John Wiley and 
Sons. 

 

The third polymerization mechanism is called the “cooperative model”, or “nucleation-

elongation polymerization” (NEP) as shown in Scheme 25c. This mechanism involves 
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two consecutive periods of growth: an initial nucleation process (�?), followed by an 

elongation growth process (�@). In nucleation-elongation mechanism, the bonds 

between monomers are weak, hindering the spontaneous formation of polymers, but 

after a nucleus is formed, further monomer addition becomes favorable, at which point 

polymer growth begins as known in polymerization of helices. In contrast to isodesmic 

chain growth polymerizations (ISP), long polymer chains will form only above a certain 

temperature and monomer concentration.[143, 198-199, 228, 239, 253-259] 

As already mentioned, the aim of this thesis is to obtain a better understanding in the 

growth kinetics of MEPEs. In Chapter 3, the kinetics of growth are presented in detail 

based on the assumption of an isodesmic growth mechanism. Since association 

constants provide information on the binding strength and therefore the length of 

supramolecular polymers the following subchapter will give an overview of literature 

known association constants in supramolecular polymers.  

 

Association constants of supramolecular polymers. The association constant, �A, 

for the polymerization of supramolecular polymers is defined as  

�A = ���� (22) 

with �� and �� being the rate constants of the forward and reverse polymerization 

reaction, respectively. Relatively low association constants, �A, are obtained for 

cylindrical β-sheet peptide assemblies (�A = 1.2 × 101 M-1 to 2.6 × 103 M-1), which stack 

through backbone-backbone hydrogen-bonding to form nanotubular structures as 

shown in Figure 20.[242, 260]  
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Figure 20. Self-assembling cyclic nanotubes, where the subunits 
are designed to adopt flat, disklike conformations and stack 
through antiparallel backbone-backbone hydrogen-bonding. 
Adapted with permission from [260]. Copyright 1998 American 
Chemical Society. 

 

Phenylene ethynylene macrocycles undergoing solvent induced π-stacked 

organization exhibit slightly higher association constants in the range of �A = 5.0 × 

101 M-1 to 1.5 × 104 M-1, whereas Meijer et al.[98] introduced supramolecular polymers 

based on the self-complementary quadruple hydrogen bonding ureidopyrimidinone 

and ureidotriazine, which obtain “moderate” (�A = 2 × 104 M-1) to “high” (�A = 6 × 

107 M-1) association constants between the units.[98, 100, 241-242, 257, 261-262] One polymer 

based on zinc porphyrin, covalently linked to an appropriate pyridine side arm, forms 

macrocyclic dimers with high association constants in the range �A = 106 M-1 to 

108 M-1.[107, 242] Finally, Gong et al.[263] describe the design of a self-complementary 
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six-H-bonded duplex with an association constant up to 7 × 109 M-1 as shown in 

Scheme 27.[242, 263] 

 

Scheme 27. Six-H-bonded, self-complementary duplex that contains the 
AADADD-DDADAA array. Adapted from ref [263] with permission from The 
Royal Society of Chemistry. 

 

 

The hydrogen-bonded complexes are based on rigid heterocycles with multiple H-

bonding donor (D) and acceptor (A) sites. In general, increasing the number of H-bonds 

leads to an increasing stability of the corresponding H-bonded duplex.[263] 

The association constant, �A, influences the number average degree of polymerization, �� , according to �� ~(�AC)
.E (23) 
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with C being the overall concentration of ditopic monomers.[194] The number and 

weight average degrees of polymerization are shown theoretically in Figure 21.  

 

 

 

Figure 21. Concentration-dependent 
properties of isodesmic supramolecular 
polymers in ideal solutions. Number and 
weight average degrees of polymerization 

as a function of �AC. Adapted in part with 
permission from [143]. Copyright 2009 
American Chemical Society. 

 

As can be seen, the fraction of monomer incorporated in polymeric species is 

increasing with the concentration, C. Furthermore, a high equilibrium constant �A is 

needed (�A > 106 M-1) to obtain supramolecular polymers with high degrees of poly-

merizations in dilute solutions (C < 1M).[143] 
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1.4 Conclusion and aim of this thesis 
 

Despite the widespread use of metal ion coordination, the mechanisms of formation in 

coordination networks and soluble polymers are poorly understood. Tailoring the 

structure and properties of metallo-supramolecular architectures requires a better 

understanding of the kinetic and thermodynamic properties of metal ion ligand 

interactions. For instance, one could make predictions of the size of metallo-

supramolecular assemblies as well as their dynamic response to external stimuli if the 

binding constants and ligand substitution rates were available. Therefore, investigation 

of the kinetics of metal-ligand coordination as well as the kinetics of polymer growth 

of the MEPEs seems a promising way to understand the properties of metal ion ligand 

interactions.[89, 188] Tailoring specific chain-lengths of the MEPEs also presents a method 

to adjust the properties of these polymers.[88] Studies on these concepts are presented 

in the following Chapters of this thesis. 

 

Aim of this thesis. The mechanisms and the kinetics of complex formation and 

polymer growth of MEPEs are poorly understood and tailoring the size and dynamic 

response of the MEPEs are not possible so far. Thus, a motivation of this thesis is to 

understand the kinetics of coordination of the ditopic ligand 1 to Fe2+, Co2+, and Ni2+ 

and to obtain a better understanding of the metal ion ligand interactions and their 

complexation. Based on the already known binding constants and rate constants, 

reported by Wilkins et al.[78] the intension is the verification of these results and the 

transferability to the kinetics of the coordination of the ditopic ligand 1 to Fe2+, Co2+, 

and Ni2+. Aim of this thesis is to present a full kinetic rate law for the complexation of 

MEPEs. Furthermore, the absorption and emission properties of the MEPEs as well as 

of the corresponding complexes are of great interest as well as the impacts on 
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enhanced or reduced emission intensity. Another motivation is to understand the 

impact of concentration, pH, metal ion to ligand ratio, and binding constants on the 

polymer growth kinetics and the final chain-length of the polymers in solution. Thus, it 

is necessary to develop a theoretical model to predict the polymer length and the 

verification of this model by means of the experimental determination of the MEPE’s 

growth and their final average chain-length. The thesis presents conditions for 

obtaining high degrees of polymerization and a procedure to adjust the chain-length 

and viscosity of the systems will be developed by usage of a monotopic chain stopper. 

In addition, aim of the thesis is to develop a full kinetic rate law for the polymer growth 

inclusive of the determination of forward and reverse polymerization rate constants 

and the corresponding association constants. Furthermore, the motivation is to 

determine constants for converting the weight average molar mass to the viscosity.  
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2 Kinetic Studies of the Coordination of Mono- and Ditopic Ligands with First Row 

Transition Metal Ions 

2 
Kinetic Studies of the Coordination of 

Mono- and Ditopic Ligands with First Row 
Transition Metal Ions 

 

This Chapter is based on: “Kinetic Studies of the Coordination of Mono- and Ditopic Ligands with First Row 

Transition Metal Ions”, S. M. Munzert, G. Schwarz, D. G. Kurth, Inorg. Chem. 2016, 55, 2565-2573. 

 

Abstract: The reactions of the ditopic ligand 1 as well as the monotopic ligands 2 and 

3 with Fe2+, Co2+, and Ni2+ in solution are studied. While the reaction of 1 with Fe2+, 

Co2+, and Ni2+ results in metallo-supramolecular coordination polyelectrolytes (MEPEs), 

ligands 2 and 3 give mononuclear complexes. All compounds are analyzed by UV/Vis 

and fluorescence spectroscopy. Fluorescence spectroscopy indicates that protonation 

as well as coordination to Zn2+ leads to an enhanced fluorescence of the terpyridine 

ligands. In contrast, Fe2+, Co2+, or Ni2+ quench the fluorescence of the ligands. The 

kinetics of the reactions are studied by stopped-flow fluorescence spectroscopy. 

Analysis of the measured data is presented and the full kinetic rate laws for the 

coordination of the terpyridine ligands 1, 2, and 3 to Fe2+, Co2+, and Ni2+ are presented. 

The coordination occurs within a few seconds, and the rate constant increases in the 

order Ni2+ < Co2+ < Fe2+. With the rate constants at hand, the polymer growth of Ni-

MEPE is computed.[89] 
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2.1 Introduction 
 

In order to understand the growth and complexation of MEPEs based on Fe2+, Co2+, 

Ni2+, and ligand 1, a comprehensive analysis of the coordination kinetics using 

stopped-flow measurements in solution is presented. The monotopic ligands 4’-

phenyl-2,2’:6’,2’’-terpyridine (2) and 2,2’:6’,2’’-terpyridine (3) (Scheme 3) are used for 

control experiments. Based on the kinetic data presented by Wilkins et al.[78] it is 

expected that coordination in MEPEs occurs on a time scale, which is readily available 

by conventional stopped-flow methods.[89] 

 

2.2 Results and discussion 
 

2.2.1 UV/Vis and emission properties 
 

Here, the focus is on the overall rate that is the formation of bis-terpyridine complexes. 

The rate is determined from the fluorescence quenching of the ligands 1, 2, and 3 upon 

metal ion binding with Fe2+, Co2+, and Ni2+. It is assumed that the emission signal is 

proportional to the concentration of uncoordinated terpyridine receptors. 

Furthermore, it is expected that the selected metal ions have a strong preference for 

binding two terpyridine receptors because K2 >> K1. As a result, the emission decay 

that is the consumption of terpyridine receptors is directly related to the overall rate of 

two terpyridine groups coordinating to the metal ion. The emission as a function of 

time is monitored with the stopped-flow technique. The rate, F, of coordination is 

obtained from the slope of the emission decay. First, the absorption and fluorescence 

properties of the ligands and the corresponding complexes, are presented followed by 

a discussion of stopped-flow analysis. Here, the interest is on the coordination of the 
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ligands to Fe2+, Co2+, and Ni2+ given that the coordination of Zn2+ to ligand 1 does not 

lead to polymers as mentioned above. 

Figure 22 shows the UV/Vis absorption spectra of ligand 1 in (a) acetic acid solution 

(75 vol %) and in (b) EtOH, as well as of Fe-, Co-, Ni-, and [Zn(1)]2+ in (a) acetic acid 

solution (75 vol %), (b) EtOH, and (c) H2O. 

 

 

 

Figure 22. Absorption spectra of ligand 1 in (a) acetic acid solution (75 vol %) and in 
(b) EtOH, as well as of [Zn(1)]2+, Fe-, Co-, and Ni-MEPE in (a) acetic acid solution (75 
vol %), (b) EtOH, and (c) H2O recorded at 20 °C. The concentration of the metal ions 
and of ligand 1 is 10-3 M in all samples. Because ligand 1 shows scattering background 
in EtOH under these conditions, a baseline correction was applied. Adapted with 
permission from [89]. Copyright 2016 American Chemical Society. 
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With simple counter ions like acetate, MEPEs are soluble in water, aqueous acetic acid, 

and polar solvents like EtOH or MeOH. On the other hand, ligand 1 is soluble in 

aqueous acetic acid, but less soluble in polar solvents such as water, EtOH, or MeOH. 

At a concentration of at least 10-3 M, which is needed for measuring meaningful 

absorption spectra, ligand 1 forms a precipitate in EtOH or MeOH giving rise to 

scattering. For this reason, the absorption spectrum of ligand 1 is recorded in acetic 

acid solution (75 vol %) (Figure 22a). The UV/Vis absorption spectra of MEPEs recorded 

in acetic acid solution (75 vol %), EtOH, or H2O do not show any significant difference 

in the spectral envelope. 

Protonated ligand 1 displays two distinct absorption bands associated with π-π* 

transitions at 292 and 321 nm. Due to the low solubility in EtOH, ligand 1 shows a broad 

and featureless absorption band at around 290 nm in EtOH (see Figure 22b); at a 

concentration sufficient for measuring absorption spectra the solution turns turbid due 

to agglomeration of ligand 1.[85-87]  

Similar to the protonated ligand 1, the spectra of MEPEs show two π-π* transitions 

with band maxima occurring at around 287 and 321 nm, respectively. Coordinating to 

the metal ion forces the terpyridine receptor to the cis-cis configuration.[87, 264] The blue 

color of Fe-MEPE originates from the additional absorption band at approximately 580 

nm, a metal-to-ligand charge-transfer (MLCT) band, typical for Fe-terpyridine 

complexes.[265] Co-MEPE has a red color originating from the d-d transitions in the 

range from 400 to 550 nm.[103] The orange color of Ni-MEPE is associated with a d-d 

transition at 341 nm, the π-π* transitions are slightly shifted to 294 and 332 nm. 

[Zn(1)]2+ is colorless due to its d10 electron configuration.[111] 

Next, the fluorescence data of the complexes are presented. While aqueous acetic acid 

would be the solvent of choice, the fluorescence spectra are measured in EtOH. First, 

acetic acid can cause corrosion of the stopped-flow apparatus. Second, fluorescence 



 

Chapter 2 

 

Kinetic Studies of the Coordination of Mono- and Ditopic 

Ligands with First Row Transition Metal Ions 

           

 

    
82 

 

  

spectra are recorded at concentrations of 10-4 M and below. At these concentrations, 

ligand 1 and all other species are soluble in EtOH. Finally, the protons of acetic acid 

would compete with the metal ions in coordination, adding a further variable to the 

equation. Figure 23a shows the fluorescence spectra of ligand 1 and [Zn(1)]2+ recorded 

in EtOH. 

 

 

Figure 23. Fluorescence spectra of (a) ligand 1 (dissolved in acetic acid solution (75 vol 
%) and EtOH) and [Zn(1)]2+ (excitation wavelength G� = 292 nm, dissolved in EtOH), (b) 
2 and [Zn(2)2]2+ (G� = 289 nm, EtOH), 3 and [Zn(3)2]2+ (G� = 281 nm, EtOH). Spectra are 
recorded at 20 °C with 10-5 M concentration of 1, 2, and 3, respectively. Adapted with 
permission from [89]. Copyright 2016 American Chemical Society. 

 

The concentration of 1 is 10-5 M in both samples. At this concentration, a clear solution 

is obtained, yet enough signal to record fluorescence spectra. The low intensity of the 

Rayleigh scattering signal suggests that ligand 1 is dissolved and that aggregates, 

which form at higher concentrations, are absent. Formation of aggregates at higher 

concentrations is readily observed by an increasing Rayleigh scattering signal.[266] 

Dissolved in EtOH ligand 1 shows a broad emission band with a maximum at 360 nm 

(Figure 23a). It is noted that in acetic acid solution (75 vol %) 1 reveals an enhanced 

emission band at 438 nm. Similarly, [Zn(1)]2+ shows an increased emission, with a 
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maximum at 389 nm. Protonation of the terpyridine receptors as well as coordination 

of Zn2+ enhances the fluorescence intensity due to the chelation-enhanced 

fluorescence (CHEF) effect (see Figure 7a in Chapter 1.2.2.3).[191] 

Ligands 2 and 3 show fluorescence bands at 338, 344, and 352 nm, respectively (see 

Figure 23b). The complexes [Zn(2)2]2+ and [Zn(3)2]2+ also show an increased emission 

intensity compared to the uncoordinated ligands, due to the CHEF effect. 

The fluorescence intensities of the monotopic ligands 2 and 3 in EtOH (intensity 

maxima 229 and 174 a.u.) in Figure 23b are higher compared with the intensity of the 

ditopic ligand 1 in EtOH (Figure 23a, intensity maximum 69 a.u.). It appears that a 

photoinduced-electron-transfer (PET)[191] effect may be responsible for the decreased 

fluorescence of the free and unprotonated ditopic ligand 1 in EtOH (see Figure 7b in 

Chapter 1.2.2.3). It is assumed that the PET effect in EtOH is more effective for the 

ditopic ligand 1, consisting of two terpyridine receptors, as for the monotopic ligands 

2 and 3. In contrast, the complexes containing Fe2+, Co2+, and Ni2+ do not show 

fluorescence (see Figure 24).  
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Figure 24. Fluorescence spectra of (a) ligand 1 (dissolved in acetic acid solution (75 vol 
%) and EtOH), [Zn(1)]2+, Fe-, Co, and Ni-MEPE (dissolved in EtOH, G� = 292 nm), and (b) 
2, [Fe(2)2]2+, [Co(2)2]2+, [Ni(2)2]2+, [Zn(2)2]2+ (EtOH, G� = 289 nm), 3, [Fe(3)2]2+, [Co(3)2]2+, 
[Ni(3)2]2+, and [Zn(3)2]2+ (EtOH, G� = 281 nm). Spectra were recorded at 20 °C with 10-5 M 
concentration of 1, 2, and 3, respectively. Adapted with permission from [89]. Copyright 
2016 American Chemical Society. 
 

 
The fluorescence quenching is associated with the coordination of the metal ion to the 

terpyridine receptor. As reported in the literature, the presence of transition metal ions 

with empty or half-filled d-orbitals like Cr3+, Mn2+, Fe2+, Fe3+, Co2+, Ni2+, and Cu2+ 

quenches the fluorescence presumably through a ligand-to-metal charge-transfer 

mechanism giving rise to a nonradiative deactivation of the excited singlet state of the 

ligand.[267-270] In the nonfluorescent complexes, the excited singlet state of the ligands 

1, 2, and 3 are likely to act as energy donors. The transition metal ions Fe2+, Co2+ and 

Ni2+ possess empty or half-filled orbitals (d6, d7, and d8 configuration, respectively), 

which can be involved in an energy-transfer mechanism where they act as energy-

transfer acceptors in a ligand-to-metal charge-transfer. This leads to a nonradiative 

deactivation of the photoexcited fluorophores 1, 2, and 3.[267-270] Due to the d10 

configuration, Zn2+ does not participate in such an energy-transfer process.[268] 

Degassing the solutions has no significant effect on the fluorescence properties of all 

samples. 
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Figure 25 shows (a) the fluorescence spectra and (b) the fluorescence intensity of ligand 

1 as a function of Ni2+ concentration. The stoichiometry, δ, of metal ion to ligand 

concentration is varied from δ = 0 (no Ni2+ metal ions present) to δ = 1.0. As the 

stoichiometry approaches one, the fluorescence is fully quenched as discussed above. 

Figure 25b shows the fluorescence intensity at G�A� = 360 nm as a function of δ.  

 

 

Figure 25. Fluorescence spectra (a) of ditopic ligand 1 on addition of Ni(OAc)2∙(H2O)4 
(excitation wavelength G� = 292 nm) and (b) fluorescence intensity at G�A� = 360 nm 
as a function of stoichiometry, δ = [Ni2+]/[1]. Spectra are recorded in EtOH at 20 °C 
with 10-5 M concentration of 1. Adapted with permission from [89]. Copyright 2016 
American Chemical Society. 

 

 

A linear decrease of the fluorescence intensity as a function of increasing Ni2+ 

concentration is observed and thus as a function of decreasing concentration of 

uncoordinated ligand 1. The dependence of fluorescence intensity HI on the 

concentration, C, is given by a form of the Lambert-Beer law: 

HI = H
 ∙ J ∙ (1 − K�LMN) (24) 

with H
 being the intensity of incident radiation, J being the fluorescence quantum 

yield, O being the absorptivity, and P being the path length. For low concentrations (OCP 

<< 1), the fluorescence intensity is proportional to the concentration:[266] 
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HI = H
 ∙ J ∙ OCP (25) 

This is consistent with the observed linearity in Figure 25b, where the intensity is 

proportional to the concentration of Ni2+ and uncoordinated terpyridine receptor, 

respectively. 

To quench the emission of the ditopic ligand completely by coordination with Ni2+, the 

metal ion to ligand ratio has to be δ = 1. In this case, both terpyridine receptors of the 

ligand are occupied, except one receptor at the very end of the Ni-MEPE chains. If δ = 

0.5, two ligands will associate to [Ni(1)2]2+ complexes, because K2 >> K1. As shown in 

Figure 25, fluorescence intensity for Ni-MEPE at δ = 0.5 is quenched to half of the 

ligand’s initial intensity (δ = 0). The metal ion quenches only the coordinating 

terpyridine receptor, not the entire ditopic ligand. The same results are obtained for 

Fe2+ and Co2+ (see Figure 26). This result proves that in the investigated concentration 

range, fluorescence quenching is linearly related to the coordination of bisterpyridine 

metal ion complexes.[89] 
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Figure 26. Fluorescence spectra of ditopic ligand 1 on addition of (a) 
Co(OAc)2∙(H2O)4 and (c) Fe(OAc)2∙(H2O)4 (excitation wavelength G� = 292 
nm) and fluorescence intensity at G�A� = 360 nm as a function of 
stoichiometry, (b) δ = [Co2+]/[1] and (d) δ = [Fe2+]/[1]. Spectra were 
recorded in EtOH at 20 °C with 10-5 M concentration of 1. Adapted with 
permission from [89]. Copyright 2016 American Chemical Society. 

 
 
 

2.2.2 Fluorescence quenching 
 

 

Fluorescence spectroscopy is used to monitor the emission intensity decay of the 

fluorescing ligands 1, 2, and 3 as a function of coordination to the metal ions Fe2+, 

Co2+, and Ni2+. Controlled mixing of the reagents is achieved with a stopped-flow 

method. In this technique, the ligand solutions 1, 2, or 3 and the solutions containing 

the metal ions Fe2+, Co2+, or Ni2+ are forced with sample syringes into the observation 

cell, where the reaction mixture is studied by fluorescence spectroscopy. For the 
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reasons mentioned above the reactions are carried out in EtOH at concentrations of 

10-4 M and below. For the concentration range of interest, a calibration curve is 

recorded that relates ligand concentration to emission signal as described in Chapter 

5.4. In the concentration range a linear relationship between concentration of ligand 

and emission signal is observed. 

The data is analyzed in the following way. The relation between the rate of a reaction 

and the concentration of a chemical species is given by 

F = ��M�	�
A�L�
Q (26) 

with F being the rate of the reaction, � being the rate constant, [L]0 being the initial 

concentration of the respective ligand 1, 2, or 3, and [M2+]0 the initial concentration of 

the respective transition metal ion. The exponents, R and S, are defined as the order of 

the reaction.[179] Wilkins et al.[78] proved that the coordination reactions are first order 

in metal ions and first order in monotopic terpyridine ligands. However, the order of 

reaction in ditopic terpyridine ligand 1 is investigated. For this purpose, the order is 

determined by keeping the concentration [L]0 constant, while [M2+]0 is varied and vice 

versa. With R and S at hand, one is able to calculate the rate constant � and therefore 

the full rate law for the coordination reaction. 

The method of initial rates[179] is used to estimate the order of the reaction related to 

each reactant. The initial rate varies with the concentration of the respective reactant. 

Higher initial concentrations of the metal ion result in a faster quenching of the 

terpyridine’s emission. Thus, the rate of coordination increases with increasing initial 

concentration of the metal ion (see Figure 27). 
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Figure 27. (a) Fluorescence intensity and (b) concentration of uncoordinated ditopic 
ligand 1 as a function of time for different stoichiometries, δ = [Ni2+]0/[1]0 in EtOH at 
20 °C (excitation wavelength λ> = 292 nm). The initial concentration of [1]0 is 10-4 M, 
while that of Ni2+ is increased from 5 × 10-5 to 10-3 M. The concentration of 
uncoordinated 1 is determined from the emission intensity via a calibration curve. 
Note that the values of the fluorescence intensities in (a) differ from the fluorescence 
intensities obtained by steady-state fluorescence spectroscopy in Figure 26, because 
the spectra were recorded with different spectrometers. Adapted with permission 
from [89]. Copyright 2016 American Chemical Society. 

 
 

As the reaction proceeds, the concentration of uncoordinated terpyridine receptors 

decreases, which is monitored as decaying emission signal. Plotting the emission 

intensity against time results in decreasing exponential curves, as shown exemplary in 

Figure 27 for the reaction of 1 and Ni2+. Under these experimental conditions, the 

coordination of 1 to Ni2+ takes place within a few seconds. Figure 27 shows that δ = 

[Ni2+]0/[1]0 = 1.0 is sufficient to reduce the concentration of uncoordinated ditopic 

ligand 1 to zero. Due to the ditopic structure of 1 and the strong preference for forming 

the bisterpyridine complex, δ = 1.0 is sufficient to occupy all terpyridine receptors 

except at the end of the chain. If δ < 1.0, the emission of uncoordinated terpyridine 

receptors is detected (Figure 27). These results are in agreement with the steady-state 

measurements discussed above. 
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The reaction rate is determined from the slopes of the concentration/time traces at 4 

= 0 (see Chapter 5.4.2). The data is extrapolated to 4 = 0 because the dead time of the 

stopped-flow measurement prevents recording data at 4 = 0. The slope is determined 

from the curve fit of the experimental data. The resulting rates, F, for the reaction of 1 

and Ni2+ are summarized in Table 2. 

 

Table 2. Rates F at 4 = 0 for the reaction of 1 with 
Ni2+ at different concentrations in EtOH at 20 °C. 
Adapted with permission from [89]. Copyright 
2016 American Chemical Society.  

[1]0 (mol L-1) [Ni2+]0 (mol L-1) U (mol L-1 s-1) 

1.0 × 10-4 1.0 × 10-4 1.0 × 10-4 
1.0 × 10-4 2.5 × 10-4 2.7 × 10-4 
1.0 × 10-4 5.0 × 10-4 5.5 × 10-4 
1.0 × 10-4 7.5 × 10-4 7.8 × 10-4 
1.0 × 10-4 1.0 × 10-3 1.1 × 10-3 

 

Higher initial concentrations of the metal ion Ni2+ lead to higher rates, as Figure 27 

already indicated. The reaction order R is calculated by plotting ln�F� and ln�Ni�	�
 (see 

Figure 28) according to 

F = ��Ni�	�
A�Z�
Q (27) 

⇔ ln�F� = R ln�Ni�	�
 + ln��� + S ln�Z�
 (28) 

The data follows a straight line with a slope of approximately one indicating that the 

reaction is first order in Ni2+. 
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Figure 28. Plot of ln�F� versus ln�Ni�	�
 for coordination of 1 and Ni(OAc)2∙(H2O)4 in EtOH at 
20 °C. The slope corresponding to the reaction order, R, is calculated to 1.00. Adapted with 
permission from [89]. Copyright 2016 American Chemical Society. 

 
 

Likewise, the order in ditopic ligand 1 is determined by using a constant initial 

concentration of the metal ion [Ni2+]0 and varied initial concentrations of ditopic ligand 

[1]0. Applying the same procedure as for the metal ion the order in 1 is found to be 

one. The overall order of the coordination reaction of 1 and Ni2+ is therefore second 

order. With R and S equal to one, the rate law reduces to 

F = ��Ni�	�
�Z�
 (29) 

The reaction order can be confirmed for the coordination of Fe2+ and Co2+ to the 

ditopic terpyridine ligand 1. The rate constant � is now determined by plotting F that 

is the slope at 4 = 0, against different initial concentrations of [Ni2+]0 and [1]0. Figure 

29 shows the obtained data, where � = (8.0 ± 0.4) × 103 M-1 s-1 is obtained. 
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Figure 29. Plot of F versus [Ni2+]0[1]0 for coordination of 1 and Ni(OAc)2∙(H2O)4 in EtOH at 20 
°C. The slope is the rate constant, �, which is calculated to be (8.0 ± 0.4) × 103 M-1s-1. Reprinted 
with permission from [89]. Copyright 2016 American Chemical Society. 

 
 

Therefore, the full rate law for the coordination of Ni2+ to 1 results in 

F = (8.0 ±  0.4)  × 1006��a���Ni�	�
�Z�
 (30) 

The same procedure is repeated for the reactions of 2 and 3 with Fe2+, Co2+, and Ni2+, 

resulting in [Co(2)2]2+, [Ni(2)2]2+, [Fe(2)2]2+, [Co(3)2]2+, [Ni(3)2]2+, and [Fe(3)2]2+ (see 

Figure 30).  
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Figure 30. Plot of F versus [M2+]0[L]0 for coordination of (a) Ni(OAc)2∙(H2O)4, (b) 
Fe(OAc)2∙(H2O)4, and (c) Co(OAc)2∙(H2O)4 to the ligands 1, 2, and 3 in EtOH at 20 °C. 
The slopes are the rate constants, �. Adapted with permission from [89]. Copyright 
2016 American Chemical Society. 

 
 

Analogously to the reaction of 1 and Ni2+ the reaction orders R and S are one, and 

therefore all evaluated reactions of the metal ions Fe2+, Co2+, and Ni2+ with 1, 2, and 3 

are first order in the reactants and second order in total, which is in agreement with 

the works of Wilkins[78] and Ellgen et al.[175] Comparing the results, as summarized in 

Table 3, it can be seen that there is not a simple relation between the metal ion, the 

ligand, and the resulting rates for coordination. 
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Table 3. Rate constants � (M-1s-1) for the reaction of ligands 1, 2, and 3 
with Co2+, Ni2+, and Fe2+ determined by stopped-flow experiments in EtOH 
at 20 °C and for comparison literature values for the coordination of the 
metal ions to ligand 3. The literature values are measured in water at 25 
°C and bromide as counter ion by usage of UV/Vis spectroscopy. Adapted 
with permission from [89]. Copyright 2016 American Chemical Society.  
 1 2 3 3 (ref [78]) 

Ni2+ (8.0 ± 0.4) × 103 (5.5 ± 0.3) × 103 (4.3 ± 0.2) × 103 1.4 × 103 
Co2+ (1.8 ± 0.1) × 105 (1.3 ± 0.1) × 105 (1.4 ± 0.1) × 105 2.4 × 104 
Fe2+ (3.9 ± 0.8) × 105 (1.9 ± 0.1) × 105 (2.0 ± 0.2) × 105 5.6 × 104 

 

The obtained rate constants are of the same order of magnitude as presented in a 

publication by Wilkins et al. for the coordination of 3 to the same metal ions in water 

at 25 °C, bromide as counterion, and usage of the time-dependent absorption spectra 

at wavelength of 320 to 335 nm (see Table 3).[78] The reaction rates decrease in the 

order Fe2+ > Co2+ > Ni2+. The rate constants are sensitive to the ionic radius bc and the 

electronic configuration of the metal(II) ion. The following values apply to the used 

acetate tetrahydrate complexes Fe(OAc)2∙4H2O (bc = 78 pm, d6 configuration), 

Co(OAc)2·4H2O (bc = 74 pm, d7 configuration) and Ni(OAc)2·4H2O (bc = 69 pm, d8 

configuration).[271] The coordination involves the replacement of a ligand coordinated 

to the metal ion, e.g. H2O or OAc-, by the entering ligand 1, 2, or 3 in solution. As 

discussed in Chapter 1.2.2.1, coordination reactions of the metal ions Fe2+, Co2+, and 

Ni2+ and terpyridine take place via an Id mechanism. The ionic radius decreases from 

Mn2+ to Ni2+ and leaves less and less space for the entering ligand. The t2g orbitals are 

nonbonding whereas eg* orbitals are antibonding. For σ-bonded octahedral complexes 

the t2g orbitals are spread out between the ligands and therefore their gradual filling 

will electrostatically disfavor the approach of a terpyridine molecule toward the 

octahedron. Thus, the possibility of bond-making is decreased for increased number 

of electrons filled in t2g orbitals. The eg* orbitals are directed toward the ligands and 
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their increased occupancy will increase the tendency of bond breaking, which leads to 

a weaker coordination. Both effects, combined with steric effects due to a decrease in 

the ionic radius lead to an increasing dissociative character of the exchange mechanism 

and thus, a decreasing rate constant from Fe2+ to Ni2+ for the coordination to the 

terpyridine ligands 1, 2, and 3.[182, 184, 271] Not surprisingly, ligands 2 and 3 exhibit similar 

rates. However, coordination reactions of the ditopic ligand 1 proceed approximately 

twice as fast than the monotopic ligands. While the observed reactivity may be an 

intrinsic function of ligand 1, e.g. a result of its structure, it may hint to the fact that the 

reactivity of the terpyridine receptors toward metal ions is simply additive.[89] 

 

2.2.3 Formation of MEPE chains 
 

Next, the intension is to verify if the kinetic data determined for the formation of 

mononuclear complexes and if it is also valid for MEPE growth. In a first approximation, 

an isodesmic step growth polymerization for the formation of MEPE chains is assumed, 

which means that the reactivity of binding is independent of chain-length. Thus, not 

only monomers can add to chains, but chains of different length can react with each 

other.[228, 231, 235-236, 238] It is assumed that there is no energy difference between adding 

a monomer to an oligomer or to another monomer. The monomer is defined as 

[M(1)]2+ (see also Scheme 3). Thus, the reactivity of polymerizable groups should be 

independent of chain-length. MEPEs based on ligand 1 are linear and incapable of 

forming angled structures. In Scheme 28 the formation of MEPEs is shown, with � being 

the rate constant of the polymerization process. 
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Scheme 28. Self-assembly of MEPEs, with � 
being the rate constant of the 
polymerization process. Reprinted with 
permission from [89]. Copyright 2016 
American Chemical Society. 
 

It is assumed that � equals the values found for reaction of 1 with the corresponding 

metal ion (see also Table 3). A first-order kinetic with respect to the monomer, [M(1)]2+ 

is assumed (see Scheme 28). In Figure 31 the monomer conversion, 2, of Ni-MEPE is 

computed by using eqs (19) and (20) (see Chapter 1.3.1) with [M(1)]0
2+ = 6.7 mmol L-1 

and � = 8.0 × 103 M-1 s-1 (see Table 3). 
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Figure 31. Time dependence of the monomer conversion, 2, for polymer chain growth 
of Ni-MEPE, calculated using eqs (19) and (20). (a) Computed conversion as a function 
of time ([M(1)]0

2+ = 6.7 mmol L-1) with (b) region as 2 approaches 1. For comparison, 
polymer growth is computed with the found rate constant � = 8.0 × 103 M-1 s-1 from 
Table 3 (solid line) and also with rate constants ranging from � = 8.0 × 100 M-1 s-1 to � 
= 8.0 × 10−3 M−1 s−1. Finally, this figure shows the MEPE growth in 0.1 M KOAc acetic 
acid solution (75 vol %) at a temperature of 20 °C ([M(1)]0

2+ = 6.7 mmol L-1), measured 
experimentally by static light scattering (for details concerning the theory of static light 
scattering, see Chapter 5.4.3.1). Adapted with permission from [89]. Copyright 2016 
American Chemical Society. 
 

 

For verification of the computed data, static light scattering (SLS) is used to investigate 

the growth of Ni-MEPEs (for details concerning the theory of static light scattering, see 

Chapter 5.4.3.1). A solution of ligand 1 in 0.1 M KOAc acetic acid solution (75 vol %) 

and a solution of Ni2+ in 0.1 M KOAc acetic acid solution (75 vol %) are mixed and the 

weight-average molar mass, 675 of the resulting Ni-MEPE is obtained by using the SLS 

technique. With 675 at hand, the monomer conversion, 2, is calculated according to eqs 

(19) and (20). The results are shown in Figure 31. It is noted that in a first approximation 

MEPE growth follows the predicted curve based on the rate of complex formation 

determined above. However, a closer look at the data (Figure 31b) shows that the MEPE 

does not quite reach the computed conversion, 2. The deviation toward full conversion 

is not surprising, because an isodesmic step growth polymerization is assumed in a first 
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approximation. In addition, it is not clear, if the system reaches equilibrium, in particular 

the reaction rate may slow down as the chains grow due to dissociation and exchange 

processes of the highly anisometric assemblies. This may further reduce the final 

conversion, 2. Also, it is well-known that polymerization critically depends on the 

experimental conditions. The rate constant, �, shown in Table 3 is determined in 

ethanolic solutions, whereas the polymer growth, shown in Figure 31, is measured in 

0.1 M KOAc acetic acid solution (75 vol %). Further studies elucidate the details of the 

growth mechanism of MEPEs, which are presented in Chapter 3. 

 

2.3 Conclusions  
 

In this Chapter data on the overall rates of the coordination reaction of terpyridine 

ligands and Fe2+, Co2+, and Ni2+ are presented. Advantage is taken of the fact that metal 

ion coordination causes fluorescence quenching of the free ligand. Thus, fluorescence 

quenching is a direct measure of the reaction rate. The rates are such that the reactions 

can be followed by stopped-flow measurements. The coordination reactions occur 

within a few seconds, but there are remarkable differences between the metal ions, due 

to the electron configuration and the ionic radii. The reaction rates decrease in the 

order Fe2+ > Co2+ > Ni2+. On the other side, monotopic ligands 2 or 3 show similar 

reaction rates, however, ligand 1 reveals a higher rate constant. Since ditopic 

terpyridine ligands and metal ions form polymers, the next Chapter will focus on the 

coordination kinetics and the details of polymer growth of MEPEs. 
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3 
The kinetics of growth of metallo-supramolecular 

polyelectrolytes in solution 
 

This Chapter is based on: “The kinetics of growth of metallo-supramolecular polyelectrolytes in solution”, 

S. M. Munzert, S. P. Stier, G. Schwarz, H. Weissman, B. Rybtchinski, D. G. Kurth, Chem. Eur. J. 2017, doi: 

10.1002/chem.201701417. 

 

Abstract: Several transition metal ions, like Fe2+, Co2+, Ni2+, and Zn2+ complex to the 

ditopic ligand 1,4-bis(2,2’:6’,2’’-terpyridin-4’-yl)benzene (1). Due to the high association 

constant, metal ion induced self-assembly of Fe2+, Co2+, and Ni2+ leads to extended, 

rigid-rod like metallo-supramolecular coordination polyelectrolytes (MEPEs) even in 

aqueous solution. Here, the kinetics of growth of MEPEs are presented. The species in 

solutions are analyzed by light scattering, viscometry and cryogenic transmission 

electron microscopy (cryo-TEM). At near-stoichiometric amounts of the reactants, high 

molar masses are obtained, which follow the order Ni-MEPE ~ Co-MEPE < Fe-MEPE. 

The experiments indicate that the kinetics of MEPE growth follows a reversible step 

growth mechanism. The forward polymerization rate constants follow the order Co-

MEPE < Fe-MEPE < Ni-MEPE and the growth of MEPEs can be accelerated by adding 

KOAc. 
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3.1 Introduction 
 

The results are subdivided in different sections. The first section describes the accurate 

preparation of MEPEs by conductometry and viscometry. In the second section, results 

from light-scattering on MEPE growth are presented. Third, a comprehensive analysis 

of the kinetics of MEPE growth is presented. Finally, the structure and chain-length of 

MEPEs is illustrated by cryo-TEM. 

 

3.2 Results and discussion 
 

3.2.1 Metal ion to ligand ratio 
 

As already discussed in Chapter 1.2.3.2.4.2, the maximum degree of polymerization in 

metallo-supramolecular polymers occurs at � = 1. In order to achieve a most accurate 

metal ion to ligand ratio, � = 1.00, a protocol is developed based on conductometry.[84, 

227] Here, the metal ion solution is titrated to a given volume of the ligand solution. 

Figure 32 summarizes the experimentally determined conductivity data during titration 

of metal acetate solution (14 mM) to 30 mL of ligand solution (14 mM) as a function of 

the volume ratio, def,/dZ. 
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Figure 32. Experimentally determined conductivity data during titration of Fe2+, Co2+, and Ni2+ 
(14 mM) to ligand 1 in acetic acid solution (75 vol %), (dZ = 30 mL; 14 mM) at 20 °C. The 
minimum of conductivity occurs at a volume ratio of dI�f,/dZ = 1.020, dhif,/dZ = 0.923, and djcf,/dZ = 0.980, respectively. Due to experimental errors, the data vary from batch to batch. 
To discern the minimum more clearly, the significant part of the conductivity is shown from def,/dZ = 0.6 to 1.2. Reprinted with permission from ref [188]. Copyright 2017 John Wiley and 
Sons. 

 

Here, def, corresponds to the added volume of metal ion solution and dZ to the volume 

of the ligand solution, respectively. In the absence of experimental errors def,/dZ 

would be unity. As can be seen in Figure 32, this is not the case, the minimum in 

conductivity, which occurs at � = 1.00, varies from batch to batch due to impurities and 

experimental errors. Therefore, a stock solution for each metal salt and ligand is 

prepared, from which the MEPE solutions are prepared under the exact same 

conditions. The data shown in Figure 32 is recorded from the batches that are used for 

the measurements presented in this Chapter.  

In agreement with previously published data,[72, 84, 227] the conductivity decreases with 

the addition of the metal acetate solution to the ligand solution. The conductivity of 

acetic acid solution (75 vol %) is with 200 ± 15 μS cm-1 considerably lower than that of 

the acetic acid solution containing the ligand with 580 ± 15 μS cm-1. The conductivity 

minimum occurs at a volume of dI�f, = 30.6 mL, dhif, = 27.7 mL, and djcf, = 29.4 mL, 

respectively, which corresponds to a volume ratio of dI�f,/dZ = 1.020, dhif,/dZ = 0.923, 



 

Chapter 3 

 

The kinetics of growth of metallo-supramolecular 

polyelectrolytes in solution 

    

 

    
102 

 

  

and djcf,/dZ = 0.980. Eventually, the conductivity rises due to the excess of metal ions 

in solution (Figure 32).  

Next, data on the viscosity of the resulting solutions are presented. According to the 

above mentioned theory, the viscosity should peak at the maximum MEPE chain-

length, which is expected at � = 1.00.[72, 84, 227] The viscosity should peak at �-values 

that coincide with corresponding �-values determined by conductivity. 

Accordingly, dZ = 3.00 mL of the ligand solution is mixed with different volumes of the 

metal acetate solution (def, = 2.72 mL to 3.15 mL), corresponding to a volume ratio of def,/dZ = 0.907 to 1.050. The dynamic viscosities of the solutions are measured until 

they plateau as shown in Figure 33. 
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Figure 33. Dynamic viscosity, k, of (a) Fe-MEPE, (b) Co-MEPE, and (c) Ni-MEPE vs. time, 4, and (d) volume ratio, def,/dZ, respectively, using a MEPE concentration of 4.8 g L-1 
(= 6.7 mM). The time dependent dynamic viscosities (a) are monitored after addition of 
different volumes of the metal ion solution, def,, to a solution of the ligand, dZ = 3.00 
mL. Figure (d) shows the final dynamic viscosities vs. the volume ratio, def,/dZ, after an 
equilibration time of 18 days. All measurements were performed in acetic acid solution 
(75 vol %) at 20 °C. The dotted lines in (d) are a guide for the eye. Reprinted with 
permission from ref [188]. Copyright 2017 John Wiley and Sons. 

 

The viscosity, k, is expected to peak at the corresponding volume ratios determined 

above (dI�f,/dZ = 1.020, dhif,/dZ = 0.923, and djcf,/dZ = 0.980).  

In the case of Fe-MEPE and Co-MEPE an initially increase of the viscosity is observed 

upon adding metal acetate solution to the ligand solution until the viscosity plateaus 

(Figure 33a and Figure 33b). In contrast, the viscosity of the Ni-MEPE solutions show a 
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different behavior. Initially the viscosity increases rapidly but then exhibits a decline 

and finally reaches a plateau. Notably, the viscosity of the Ni-MEPE solution with a 

volume ratio of djcf,/dZ = 0.977 rapidly increases until it levels off to a final viscosity 

of k = 70.2 mPa s (Figure 33c). Since polymer chain-length correlates with viscosity, it 

is concluded, that Fe- and Co-MEPE in acetic acid solution (75 vol %) grow until they 

reach an equilibration viscosity after 18 and 6 days, respectively. In the case of Ni-MEPE 

a surprisingly fast initial rise in viscosity is observed followed by a decline until a plateau 

is reached. Obviously, there is another yet unknown process operative, for instance 

initial formation of aggregates or gels that equilibrate on a longer time scale. However, 

there is no spectroscopic evidence yet that would confirm the formation of 

intermediate species other than MEPEs.  

The final dynamic viscosities, k, of the MEPEs are shown in Figure 33d. As can be seen, 

the maxima occur at dI�f,/dZ = 0.973, dhif,/dZ = 0.913, and djcf,/dZ = 0.977. The 

deviation between the conductivity minima (dI�f,/dZ = 1.020, dhif,/dZ = 0.923, and djcf,/dZ = 0.980) and the viscosity maxima, (dI�f,/dZ = 0.973, dhif,/dZ = 0.913, and djcf,/dZ = 0.977) is 4.6 %, 1.1 %, and 0.3%, respectively, the values obtained in the 

titration measurements are slightly larger. The titrations are finished in approximately 

2 h, where the MEPE chains are not yet completely equilibrated, as indicated by the 

time scale of the viscosity measurements. While the procedures occur on different time 

scales and under different experimental boundary conditions the overall error of 

approx. 2 % is within the experimental error, including impurities and weighing errors. 

As can be seen in Figure 33d, the dynamic viscosity of Ni-MEPE decreases stronger in 

the area of metal acetate excess, in accordance with results from Chapter 1.2.3.2.4.2. As 

expected, Fe-MEPE solutions exhibit higher viscosities than Co-, and Ni-MEPE 

solutions, due to a higher binding constant, K2, between metal ion and terpyridine 

unit.[78] Furthermore, the viscosity of Fe-MEPE solutions are less affected to variations 
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of the volume ratio, dI�f,/dZ, compared to Co-, and Ni-MEPE solutions, as indicated by 

the slope of the dotted lines (see Figure 33d).  

It is assumed that under these experimental conditions, MEPE synthesis leads to high 

chain-lengths, and therefore, an expressive growth should be obtained suitable for 

studying the kinetics of MEPE self-assembly. In the next section, the growth of MEPEs 

is presented by monitoring the chain-length at different times using static light 

scattering. Based on this data, a comprehensive analysis of the kinetics of MEPE growth 

is presented. 

 

3.2.2 Kinetics of MEPE growth 
 

In order to study the kinetics of MEPE growth, the weight average molar masses, 675, 

of the MEPEs are measured at different times, 4, by using static light scattering (for 

details concerning the theory and the data analysis of static light scattering, see 

Chapter 5.4.3.1). With 675 at hand, the conversion, 2, is calculated according to eqs (17) 

and (18) (see Chapter 1.3.1). 

After mixing the solutions of ligand 1 and metal acetate the growth of MEPE is 

monitored. The obtained values for 675 vs. 4, are shown in Figure 34, exemplary for Co-

MEPE. 
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Figure 34. Time dependent (a) weight average molar mass, 675, and (b) conversion, 2, 
vs. 4 of Co-MEPE in acetic acid solution (75 vol %) at a temperature of 20 °C. Inset (c) 
shows the time dependent conversion in the range of 2 = 0.948 to 0.966 (dhif,/dZ = 
0.913, Co-MEPE concentration of 4.8 g L-1). The experimental error is within the solid dots 
(± 7 min) (see text). The reaction volume is kept constant during the experiment. Adapted 
with permission from ref [188]. Copyright 2017 John Wiley and Sons. 

 

At 4 = 0, the solution of ligand 1 is added to the Co(OAc)2 solution all at once, both 

dissolved in acetic acid solution (75 vol %). As can be seen in Figure 34a, the weight 

average molar mass, 675, increases with time, 4. At the beginning of the reaction, 

growth proceeds relatively fast and levels off after ~ 6 days at 675 = 3.8 × 104 g mol-1, 

which corresponds to a weight average degree of polymerization, ��5 = 53. Thus, 675 is 

in the same order of magnitude as predicted by the calculations from Figure 18 (1.7 × 

104 g mol-1 at pH = 1.8 and z = 1.00). Figure 34b shows the corresponding conversion 

of reaction, 2, calculated according to eq (20). A volume ratio of dhif,/dZ = 0.913 is 

used, as discussed above, at a Co-MEPE concentration of 4.8 g L-1 (= 6.7 mM). Since 

self-assembly of ligand 1 and Co2+ proceeds within seconds,[89] it is not possible to 

obtain data within the first seconds of the reaction. For clarity, a data point at 4 = 0 is 

added corresponding to the molar mass of the monomer that is [Co(1)]2+. 

Due to the near-stoichiometric ratio of the reactants (volume ratio of dhif,/dZ = 0.913) 

and the absence of cyclization and other side reactions, high conversions (2 > 0.95) are 
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obtained for MEPE growth (see Figure 34). In contrast to common (condensation) 

polymerizations, metal ion induced self-assembly does not require high temperature, 

catalyst, or solvent removal. At a first glance, SLS confirms the results from viscosity 

measurements that MEPE growth occurs on a time scale of days.  

Next, the focus is on the analysis of the data in Figure 34 to elucidate the mechanism 

and kinetics of MEPE growth. Within the experimental conditions the reaction volume 

is kept constant during polymer growth. Furthermore, it is assumed that side reactions 

such as branching or ring-closure can be excluded. In the used concentration range, 

no clouding of the solution or precipitation of MEPE is observed, therefore all metal 

ions, ligands and MEPE chains in solution are available to react with each other. Also, it 

is assumed that under the current experimental conditions the polymerization 

proceeds in a stepwise manner with the weight average molar mass, 675, of the MEPE 

continuously increasing in time. Therefore, the rate of a step polymerization is the sum 

of the rates of reactions between MEPEs of various sizes. The kinetic analysis is 

simplified if one further assumes an isodesmic growth mechanism. These simplifying 

assumptions, often referred to as the “concept of equal reactivity”, allow to start the 

analysis with the equations derived for simple reactions.[228] 

The mechanism of step growth polymerizations can be treated by two different 

theoretical considerations depending on the type of monomer(s) employed.[228] The 

first involves two different bifunctional monomers in which each monomer possesses 

only one type of functional group, like it is in MEPE growth, if the metal ion, M2+, and 

the ligand 1 are regarded as two different bifunctional monomers (see Scheme 29a).  
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Scheme 29. Theoretical approaches for investigation of MEPE growth involving (a) two 
different bifunctional monomers in which each monomer possesses only one type of functional 
group and (b) a single monomer containing both types of functional groups. Reprinted with 
permission from ref [188]. Copyright 2017 John Wiley and Sons. 

 

The second approach involves a single monomer containing both types of functional 

groups, like it is in MEPE growth, if the repeat unit, [M(1)]2+, is regarded as the 

monomer (see Scheme 29b). This assumption is reasonable because first it is known 

that M2+ and ligand 1 react to [M(1)]2+ within a few seconds in solution and second 

that due to high binding constant of the chelating terpyridine receptor the 

concentration of free metal ion and ligand is negligible (see also Figure 17).[89] In the 

following a closer look at both descriptions is reported.  

In order to describe the growth of MEPEs, the applicability of different possible kinetic 

rate laws is tested on the data in the next section. Depending on the definition of the 

monomer, the step growth polymerization could either be described as a second-order 

kinetic mechanism (see Scheme 29a) or as a first-order kinetic mechanism (see Scheme 

29b). First, the kinetics of irreversible first-order polymerization kinetics is presented.  
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3.2.2.1 Irreversible first-order kinetics 
 

Generally, the irreversible first-order kinetics of a species A, is described by 

A �→ B (31) 

with A representing a polymerizable group that is the repeat unit, and � being the rate 

constant of the polymerization reaction. The rate law that is the rate of reaction, F, is 

defined as the increase of n with time, 4: 

F = PnP4 = �(�A� − n) (32) 

with n being the extent of reaction, o, per unit volume (n =  o/d), 4 being the time, and �A� being the initial concentration of the species A.[239, 272] Multiplying with P4 and 

dividing by (�A� − n) to separate the variables followed by integration from n = 0 at 4 = 0 to n = n at 4 = 4, respectively, yields:[272] 

p 1(�A� − n) Pn�

 = p �P4q


  (33) 

Rewriting n as the product of conversion, 2, and concentration, �A�: 
n = 2 ∙ �A� (34) 

simplifies eq (33) to 

r& s 11 − 2t = �4 (35) 

or by rearranging: 

2 = 1 − K��q (36) 

which is the conversion of a first-order reaction of a single component.[272] Here, �A� 
corresponds to the initial concentration of the repeat unit, [M(1)]2+. Fitting the 



 

Chapter 3 

 

The kinetics of growth of metallo-supramolecular 

polyelectrolytes in solution 

    

 

    
110 

 

  

experimentally determined conversion, 2, vs. 4 to eq (36) gives the polymerization rate 

constant, �. Nonlinear least square curve fitting of the data from Figure 34b by eq (36) 

is performed applying the Levenberg-Marquardt algorithm (see Chapter 5.4.6).[273-274] 

The results are shown in Figure 35, uv�N� , is defined as the sum of the squares of the 

deviations of the calculated and experimental data. The fit of eq (36) to the data in 

Figure 35 leads to uv�N�  = 1.2 × 10-3. 

 

 

 

Figure 35. Plot of (a) conversion, 2, vs. 4 according to an irreversible first-order kinetic model 
with (b) being the inset, exemplary for the growth of Co-MEPE in acetic acid solution (75 vol 
%) at a temperature of 20 °C. The dashed line shows the nonlinear least square curve fitting of 
the data by eq (36), applying the Levenberg-Marquardt algorithm with uv�N�  = 1.2 × 10-3. 
Reprinted with permission from ref [188]. Copyright 2017 John Wiley and Sons. 

 

As mentioned above, step growth polymerization can also proceed as a second-order 

kinetic mechanism, if the metal ion, M2+, and 1 are regarded as bifunctional monomers 

(see Scheme 29a). Next, the irreversible second-order kinetic rate law is tested on the 

data. 
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3.2.2.2 Irreversible second-order kinetics 
 

Generally, the irreversible second-order kinetics of two species A and B, is described as 

A + B �→ AB (37) 

with A and B representing the two polymerizable groups of the repeat unit, and � being 

as above the rate constant of the polymerization. In this case, the rate law is defined 

as:[239, 272]  

F = PnP4 = �(�A� − n)(�B� − n) (38) 

with n again being the extent of reaction, o, per unit volume (n =  o/d), 4 being the 

time, and �A� and �B� being the initial concentrations of the metal ion, M2+ and 1, 

respectively.[239, 272] If the initial concentrations �A� and �B� are equal, the rate expression 

can be written as 

F = PnP4 = �(�A� − n)� (39) 

With the same argument as above this equation yields: 

p 1(�A� − n)� Pn�

 = p �P4q


  (40) 

Rewriting n as the product of conversion, 2, and initial concentration, �A�: 
n = 2 ∙ �A� (41) 

eq (40) simplifies to 

2 = �A��4�A��4 + 1 (42) 

As discussed in the previous section, a near-stoichiometric amount of the reactants is 

ensured. Therefore, equating the initial concentrations �A� and �B� is justified. 



 

Chapter 3 

 

The kinetics of growth of metallo-supramolecular 

polyelectrolytes in solution 

    

 

    
112 

 

  

According to eq (42), curve fitting of the experimentally determined conversions, 2, vs. 4 provides the polymerization rate constant, �. Figure 36 shows the nonlinear least 

square curve fit of the data shown in Figure 34b by eq (42) using the Levenberg-

Marquardt algorithm.  

 

 

 

Figure 36. Plot of (a) conversion, 2, vs. 4 according to an irreversible second-order kinetic 
model with (b) being the inset, exemplary for the growth of Co-MEPE in acetic acid solution 
(75 vol %) at a temperature of 20 °C. The dashed line shows the nonlinear least square curve 
fitting of the data by eq (42), applying the Levenberg-Marquardt algorithm with uv�N�  = 9.8 × 
10-4. Reprinted with permission from ref [188]. Copyright 2017 John Wiley and Sons. 

 

The fit of eq (42) to the data points leads to uv�N�  = 9.8 × 10-4, which is a smaller value 

compared to the previous irreversible first-order kinetic model.  

Next, the model will be extended to a reversible first- and second-order kinetic rate 

law.  
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3.2.2.3 Reversible first-order kinetics 

  

Generally, the reversible first-order kinetics of a species A, is described by 

w ��⇌�� x (43) 

with A representing the polymerizable repeat unit, and �� and �� being the rate 

constants of the forward and reverse polymerization reaction, respectively. The rate law 

is written as: 

F = PnP4 = ��(�A� − n) − ��(�B� + n) (44) 

 

with the variables defined as above.[239, 272] If the initial concentration of the product �B� = 0, the rate expression can be written as 

F = PnP4 = ��(�A� − n) − ��n (45) 

and as above, one can write: 

p 1(�A� − n) − y n�Az Pn�

 = p ��P4q


  (46) 

with �A = ��/�� being the equilibrium constant of the polymerization reaction. 

Rewriting n as the product of conversion, 2, and initial concentration, �A�: 
n = 2 ∙ �A� (47) 

eq (45) simplifies to 

�A1 + �A r& s �A�A − 2(1 + �A)t = ��4 (48) 

or by rearranging: 
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2 = �A {1 − K��|q(�	}~)}~ �1 + �A  
(49) 

The experimental data that is the conversion, 2, is fitted by eq (48) to yield the 

association constant, �A, and the rate constant of the forward polymerization reaction, ��. Figure 37 shows the corresponding nonlinear least square curve fit of the data by 

eq (48).  

 

 

Figure 37. Plot of (a) conversion, 2, vs. 4 according to a reversible first-order kinetic model with 
(b) being the inset, exemplary for the growth of Co-MEPE in acetic acid solution (75 vol %) at 
a temperature of 20 °C. The dashed line shows the nonlinear least square curve fitting of the 
data by eq (48) (uv�N�  = 4.4 × 10-7, �A and �� amount to (2.6 ± 0.02) × 101 and (3.9 ± 0.1) × 10-4 
s-1, respectively). Reprinted with permission from ref [188]. Copyright 2017 John Wiley and 
Sons. 

 

The curve fitting of eq (48) to the data points in Figure 37 leads to uv�N�  = 4.4 × 10-7, 

which is remarkably lower than u� for the curve fitting of the irreversible first- and 

second-order kinetic models. �A is calculated to (2.6 ± 0.02) × 101 and �� is calculated 

to (3.9 ± 0.1) × 10-4 s-1. The rate constant for the reverse polymerization reaction, ��, 

amounts to (1.5 ± 0.03) × 10-5 s-1. Obviously, �� is smaller than ��, in agreement with 

the binding of terpyridines and first row transition metal ions. 
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Finally, the analysis for the reversible second-order kinetic model is presented, where 

the metal ion, M2+ and 1 are regarded as bifunctional monomers (see Scheme 29a).  

 

3.2.2.4 Reversible second-order kinetics 
 

The reversible second-order kinetics of two species A and B, is described by 

A + B ��⇌�� C (50) 

with A and B representing the two polymerizable groups of the repeat unit and �� and �� being the rate constants for the forward and reverse polymerization reactions, 

respectively. Therefore, the rate of reaction, F, is defined as:[239, 272] 

F = PnP4 = ��(�A� − n)(�B� − n) − ��(�C� + n) (51) 

If the initial concentrations �A� and �B� are equal, and the initial concentration of �C� =0, the rate expression is simplified according to 

F = PnP4 = ��(�A� − n)� − ��n (52) 

Integration using the above-mentioned limits: 

p 1(�A� − n)� − y n�Az Pn�

 = p ��P4q


  (53) 

where �A = ��/�� is the association constant of the polymerization reaction. Rewriting n as the product of conversion, 2, and initial concentration, �A�: 
n = 2 ∙ �A� (54) 

eq (53) leads to 
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�A�4�A�A� + 1 ∙
∙ r& -2�A�A�2 − 2�A�A� − �4�A�A� + 1 − 1.-2�A�A� − �4�A�A� + 1 + 1.-2�A�A�2 − 2�A�A� + �4�A�A� + 1 − 1.-2�A�A� + �4�A�A� + 1 + 1. = ��4 

(55) 

 

or by rearranging 

2 = 2�A�A� �K�|q��}~���	�}~ − 1�
-2�A�A� + �4�A�A� + 1 + 1.K�|q��}~���	�}~ − 2�A�A� + �4�A�A� + 1 − 1 (56) 

 

Again, �A� is the initial concentration of either metal ion, M2+ or 1. The experimental 

data that is the conversion, 2, are fitted by eq (56) to yield the association constant, �A, 

and the rate constant for the forward polymerization reaction, ��. The resulting curve 

fit is shown in Figure 38 exemplary for Co-MEPE.  

 

 

 

Figure 38. Plot of (a) conversion, 2, vs. 4 according to a reversible second-order kinetic model 
with (b) being the inset, exemplary for the growth of Co-MEPE in acetic acid solution (75 vol 
%) at a temperature of 20 °C. The dashed line shows the nonlinear least square curve fitting of 
the data by eq (56) (uv�N�  = 4.4 × 10-7, �A and �� amount to (1.0 ± 0.02) × 105 M-1 and (3.9 ± 
0.1) × 10-1 M-1 s-1, respectively). Reprinted with permission from ref [188]. Copyright 2017 John 
Wiley and Sons. 
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This fit leads to uv�N�  = 4.4 × 10-7, identical to the first-order reversible kinetics model. �A amounts to (1.0 ± 0.02) × 105 M-1 and �� to (3.9 ± 0.1) × 10-1 M-1 s-1, respectively. 

Therefore, the rate constant of the reverse polymerization reaction, ��, results in a much 

smaller value of (3.9 ± 0.2) × 10-6 s-1. Note that the rate constant of the forward 

polymerization reaction is a second-order rate constant in units of M-1s-1, whereas the 

reverse polymerization reaction rate constant is a first-order rate constant in units 

of s-1.   

Table 4 summarizes the curve fitting results of Co-MEPE growth according to 

irreversible and reversible first- and second-order kinetics models. In conclusion, the 

best fits, determined by uv�N�  of Co-MEPE growth are obtained by reversible first- and 

second-order rate laws. The models based on irreversible rate laws deviate from the 

experimentally determined conversion, providing strong evidence for the reversibility 

of the metal ion induced self-assembly of Co-MEPE. Also, the results present strong 

evidence for a step growth polymerization. The observed kinetics in a step growth 

polymerization should be the same independently whether the polymerization is 

described by the reaction of A-A and B-B monomers or by the self-reaction of an A-B 

monomer.[228]  
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Table 4. Curve fitting results uv�N� , association constants, �A, as well as the rate constants of 
the forward polymerization reaction, ��, and the reverse polymerization reaction, ��, 
respectively for the growth of Co-MEPE in acetic acid solution (75 vol %) at a temperature of 
20 °C. Adapted with permission from ref [188]. Copyright 2017 John Wiley and Sons. 

kinetic model �����
  association 

constant, �� 

forward 

polymerization rate 

constant, �Z  

reverse 

polymerization rate 

constant, ��  

irreversible 

first-order 
1.2 × 10-3 - (2.6 ± 0.6) × 10-4 s-1 - 

irreversible 

second-order 
9.8 × 10-4 - (0.2 ± 0.1) M-1 s-1 - 

reversible 

first-order 
4.4 × 10-7 (2.6 ± 0.02) 

× 101 
(3.9 ± 0.1) × 10-4 s-1 (1.5 ± 0.03) × 10-5 s-1 

reversible 

second-order 
4.4 × 10-7 (1.0 ± 0.02) 

× 105 M-1 
(3.9 ± 0.1) × 10-1 M-1 s-1 (3.9 ± 0.2) × 10-6 s-1 

 

As predicted and summarized in Table 4, the forward polymerization rate constant, ��, 

clearly exceeds the reverse rate constant, ��, in a reversible first-order kinetic model. 

The quotient ��/�� is the association constant, �A, which reaches a value of (2.6 ± 0.02) 

× 101 in the case of the reversible first-order kinetic model and for the reversible 

second-order kinetic model, �A = (1.0 ± 0.02) × 105 M-1, respectively. The latter 

association constant can be compared to other well-known linear and columnar 

supramolecular polymers with a high degree of polymerization. The association 

constant, �A = (1.0 ± 0.02) × 105 M-1 of Co-MEPEs is a “moderate” to “high” association 

constant if the classification of Meijer et al.[98] is used (see Chapter 1.3.2). As shown in 

Table 4, the forward polymerization rate constant, ��, for the growth of Co-MEPEs is 

calculated to (3.9 ± 0.1) × 10-1 M-1 s-1, which is a high value, compared to other step 

polymerizations. Most step polymerizations proceed at slower rates at ordinary 

temperatures. High temperatures in the range of 150 - 200 °C and higher are frequently 

used to obtain reasonable polymerization rates. Typical rate constants of step 

polymerizations are in the order of 10-3 M-1 s-1. There are a few exceptions of step 
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polymerizations with significantly larger rate constants, for example, the 

polymerization reaction between acid halides and alcohols (�� = 2.9 × 10-3 M-1 s-1 at a 

temperature of 58.8 °C).[228] However, compared to radical chain polymerizations, step 

growth of Co-MEPE proceeds at a remarkably lower rate constant. Normally, the rate 

constants for the propagation of radical chain polymerizations are in the range of �� = 

102 - 104 M-1 s-1.[228, 275] 

 

3.2.2.5 Reversible second-order kinetics with [A] ≠ [B]  
 

As discussed above, it is assumed that usage of a volume ratio of d��f,/dZ = 0.913 

leads to near-stoichiometric amounts of the reactants that is the metal ion to ligand 

ratio, � = 1. This assumption is verified by curve fitting of the conversion, 2, according 

to a reversible second-order kinetic model, where the initial concentrations �A� ≠ �B�. 
With �A� ≠ �B�, eq (51) leads to 

F = PnP4 = ��(�A� − n)(�B� − n) − ���A n (57) 

 

where �A = ��/�� is the association constant of the polymerization reaction. This may 

be integrated after first multiplying with dt and then dividing by (�A� − n)(�B� − n) −�}~ to get the variables separated. The limits of integration are taken as n = 0 at 4 = 0 

and n = n at 4 = 4, respectively:[239, 272] 

p 1(�B�� − n)(�B� − n) − y n�Az Pn�

 = p ��P4q


  (58) 

 

with � = �A�/�B� as the metal ion to ligand ratio. Rewriting n as the product of 

conversion, 2, and initial concentration, �B�: 



 

Chapter 3 

 

The kinetics of growth of metallo-supramolecular 

polyelectrolytes in solution 

    

 

    
120 

 

  

n = 2 ∙ �B� (59) 

eq (58) leads to 

1P r& (�A�B�(22 − � − 1) − �AP − 1)(�AP − �A�B�(� + 1) + 1)(�A�B�(22 − � − 1) + �AP − 1)(�AP + �A�B�(� + 1) + 1) = ��4 (60) 

with   

P = � 1�A� + 2�B�(� + 1)�A + �B��(� − 1)� (61) 

 

Equations (60) and (61) can be rearranged: 

2 = 2�A�B��y 2PK�|qN − 1z + ��B�(� + 1) + P�A + 1 (62) 

 

In case of MEPE growth, �A� and �B� correspond to the initial concentrations of the 

metal ion, M2+, and 1. The experimental data that is the conversion, 2, are fitted by eq 

(62) to yield the association constant, �A, the rate constant for the forward 

polymerization reaction, ��, and the metal ion to ligand ratio, �. Nonlinear least square 

curve fitting of the data from Figure 39 by eq (62) is performed applying the Levenberg-

Marquardt algorithm.[273-274] The curve fitting is shown in Figure 39.  
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Figure 39. Plot of (a) conversion, 2, vs. 4 according to a reversible second-order kinetic model 
(�A� ≠ �B�) with (b) being the inset, exemplary for the growth of Co-MEPE in acetic acid solution 
(75 vol %) at a temperature of 20 °C. The dashed line shows the nonlinear least square curve 
fitting of the data by eq (62) (uv�N�  = 4.5 × 10-7, �A, ��, ��, and � are calculated to 1.1 × 105 M-1, 
0.39 M-1 s-1, 3.5 × 10-6 s-1, and 0.99938, respectively). Reprinted with permission from ref [188]. 
Copyright 2017 John Wiley and Sons. 

 �A is calculated to 1.1 × 105 M-1 and �� is calculated to 0.39 M-1 s-1. Therefore, the rate 

constant for the reverse polymerization reaction, �� results to 3.5 × 10-6 s-1 with uv�N�  

leading to 4.5 × 10-7. The curve fitting leads to a metal ion to ligand ratio � = 0.99938. 

All values are nearly the same as calculated for a reversible second-order kinetic model 

with �A� = �B� (see Table 4). Thus, the synthesis protocol provides reproducible near-

stoichiometric conditions for MEPE preparation. 

 

3.2.2.6 Effect of salt addition on the growth of Co-MEPEs  
 

In the following section, the effect of salt addition on the growth of MEPEs is examined. 

For this purpose, potassium acetate is added, which is expected to screen the 

electrostatic repulsion between neighboring charged metal complexes.[276] A solution 

of Co(OAc)2 in acetic acid solution (75 vol %) is mixed with potassium acetate (0.1 M) 

and after that 1 is added to the mixture. Again, the growth of the resulting Co-MEPEs 
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is obtained by the time dependent weight average molar mass, 675. As discussed above 

the time dependent conversion, 2, is calculated and the four different possible kinetic 

rate laws (reversible and irreversible first- and second-order kinetics) are tested on the 

data. The curve fitting results are shown in Figure 40 and Table 5. 

 

 

Figure 40. Time dependent growth of Co-MEPEs containing 0.1 M KOAc by 
monitoring (a) the weight average molar mass, 675, and plot of conversion, 2, vs. 4 
according to (b) irreversible kinetic models with (c) being the inset, and (d) reversible 
kinetic models with (e) being the inset in acetic acid solution (75 vol %) at a 
temperature of 20 °C. A volume ratio of d��f,/dZ = 0.913 was used at Co-MEPE 
concentration of 4.8 g L-1. The results of the nonlinear least square curve fitting of 
the data are summarized in Table 5. Reprinted with permission from ref [188]. 
Copyright 2017 John Wiley and Sons. 
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Table 5. Curve fitting results uv�N� , association constants, �A, as well as the rate constants for 
the forward polymerization reaction, ��, and the reverse polymerization reaction, ��, 
respectively for the growth of Co-MEPE containing 0.1 M KOAc in acetic acid solution (75 vol 
%) at a temperature of 20 °C. Adapted with permission from ref [188]. Copyright 2017 John 
Wiley and Sons. 

kinetic 

model 

�����
  association 

constant, �� 

forward 

polymerization 

rate constant, �Z  

 

reverse 

polymerization 

rate constant, ��  

irreversible 

first-order 
8.6 × 10-5 - (6.3 ± 1.0) × 10-4 s-1 - 

irreversible 

second-

order 

6.4 × 10-5 - (1.2 ± 0.5) M-1 s-1 - 

reversible 

first-order 
2.2 × 10-6 (9.7 ± 0.5) × 101 (5.2 ± 0.3) × 10-3 s-1 (5.4 ± 0.4) × 10-5 s-1 

reversible 

second-

order 

7.3 × 10-7 (1.6 ± 0.1) × 106 M-1 (2.0 ± 0.2) M-1 s-1 (1.3 ± 0.2) × 10-6 s-1 

 

As already observed for Co-MEPE without salt addition, the growth can be described 

as first- or second-order reversible step growth polymerization. However, as shown in 

Table 5, uv�N�  reaches the lowest value, if a reversible second-order kinetics model is 

applied. The association constant, �A, is calculated to (1.6 ± 0.1) × 106 M-1, which is 16 

times higher than �A for Co-MEPE growth without addition of salt. The forward 

polymerization rate constant, ��, is with (2.0 ± 0.2) M-1 s-1 about 5 times larger than the 

value obtained for the growth kinetics without salt addition. 

However, the reverse rate constant, ��, is with (1.3 ± 0.2) × 10-6 s-1 lower (about a third) 

than the value obtained without salt addition. Thus, the addition of 0.1 M KOAc 

accelerates the growth of Co-MEPEs and causes a higher association constant 

presumably due to Debye screening between neighboring charged metal complexes 

as well as between charged MEPE chains.[276]  
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Likewise, the growth of Ni-, and Fe-MEPE with and without salt addition is examined. 

Again, the growth of the resulting Fe-, and Ni-MEPEs are obtained by the time 

dependent weight average molar mass, 675, which leads to the time dependent 

conversion, 2, and the four different possible kinetic rate laws are tested on the data. 

The corresponding curve fitting graphics are shown in the following Chapters 3.2.2.7 

to 3.2.2.10. 

 

3.2.2.7 Growth of Fe-MEPE without salt addition 
 

In order to describe the growth of Fe-MEPEs without salt addition, the applicability of 

different possible kinetic rate laws is tested on the data. The curve fitting procedure is 

analogous to the procedure, shown in Chapter 3.2 for the growth of Co-MEPEs without 

any salt addition. The curve fitting results are shown in Figure 41 and Table 6. 
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Figure 41. Time dependent growth of Fe-MEPEs without salt addition by monitoring 
(a) the weight average molar mass, 675, and plot of conversion, 2, vs. 4 according to 
(b) irreversible kinetic models with (c) being the inset, and (d) reversible kinetic 
models with (e) being the inset in acetic acid solution (75 vol %) at a temperature of 
20 °C. A volume ratio of d�>f,/dZ = 0.933 was used at Fe-MEPE concentration of 4.8 
g L-1. The results of the nonlinear least square curve fitting of the data are 
summarized in Table 6. Reprinted with permission from ref [188]. Copyright 2017 
John Wiley and Sons. 
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Table 6. Curve fitting results uv�N� , association constants, �A, as well as the rate constants for 
the forward polymerization reaction, ��, and the reverse polymerization reaction, ��, 
respectively for the growth of Fe-MEPE without salt addition in acetic acid solution (75 vol %) 
at a temperature of 20 °C. The forward polymerization rate constants, ��, obtained by using 
the irreversible kinetic models are shown in parentheses. Adapted with permission from ref 
[188]. Copyright 2017 John Wiley and Sons. 

kinetic 

model 

�����
  association 

constant, �� 

forward 

polymerization 

rate constant, �Z  

reverse 

polymerization 

rate constant, ��  

irreversible 

first-order 
2.6 × 10-4 - (2.7 ± 0.5) × 10-4 s-1 - 

irreversible 

second-

order 

2.0 × 10-4 - (0.4 ± 0.2) M-1 s-1 - 

reversible 

first-order 
7.4 × 10-6 (5.1 ± 0.3) × 101 (2.9 ± 0.2) × 10-3 s-1 (5.7 ± 0.5) × 10-5 s-1 

reversible 

second-

order 

3.2 × 10-7 (4.5 ± 0.1) × 105 M-1 (0.6 ± 0.03) M-1 s-1 (1.3 ± 0.1) × 10-6 s-1 

 

 

3.2.2.8 Growth of Fe-MEPE containing 0.1 M KOAc 

 

In order to describe the growth of Fe-MEPEs containing 0.1 M KOAc, the applicability 

of different possible kinetic rate laws is tested on the data. The curve fitting procedure 

is analogous to the procedure, shown in Chapter 3.2 for the growth of Co-MEPEs 

without any salt addition. The curve fitting results are shown in Figure 42 and Table 7. 
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Figure 42. Time dependent growth of Fe-MEPEs containing 0.1 M KOAc by 
monitoring (a) the weight average molar mass, 675, and plot of conversion, 2, vs. 4 
according to (b) irreversible kinetic models with (c) being the inset, and (d) reversible 
kinetic models with (e) being the inset in acetic acid solution (75 vol %) at a 
temperature of 20 °C. A volume ratio of d�>f,/dZ = 0.933 was used at Fe-MEPE 
concentration of 4.8 g L-1. The results of the nonlinear least square curve fitting of 
the data are summarized in Table 7. Reprinted with permission from ref [188]. 
Copyright 2017 John Wiley and Sons. 
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Table 7. Curve fitting results uv�N� , association constants, �A, as well as the rate constants for 
the forward polymerization reaction, ��, and the reverse polymerization reaction, ��, 
respectively for the growth of Fe-MEPE containing 0.1 M KOAc in acetic acid solution (75 vol 
%) at a temperature of 20 °C. The forward polymerization rate constants, ��, obtained by using 
the irreversible kinetic models are shown in parentheses. Adapted with permission from ref 
[188]. Copyright 2017 John Wiley and Sons. 

kinetic 

model 

�����
  association 

constant, �� 

forward 

polymerization 

rate constant, �Z  

reverse 

polymerization 

rate constant, ��  

irreversible 

first-order 
2.8 × 10-5 - (6.6 ± 1.0) × 10-4 s-1 - 

irreversible 

second-

order 

2.6 × 10-5 - (2.5 ± 1.6) M-1 s-1 - 

reversible 

first-order 
4.9 × 10-7 (1.5 ± 0.1) × 102 (8.2 ± 0.5) × 10-3 s-1 (5.5 ± 0.4) × 10-5 s-1 

reversible 

second-

order 

7.5 × 10-8 (3.9 ± 0.2) × 106 M-1 (3.8 ± 0.3) M-1 s-1 (9.7 ± 1.0) × 10-7 s-1 

 

 

3.2.2.9 Growth of Ni-MEPE without salt addition 

 

In order to describe the growth of Ni-MEPEs without salt addition, the applicability of 

different possible kinetic rate laws is tested on the data. The curve fitting procedure is 

analogous to the procedure, shown in Chapter 3.2 for the growth of Co-MEPEs without 

any salt addition. The curve fitting results are shown in Figure 43 and Table 8. 
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Figure 43. Time dependent growth of Ni-MEPEs without salt addition by monitoring 
(a) the weight average molar mass, 675, and plot of conversion, 2, vs. 4 according to 
(b) irreversible kinetic models with (c) being the inset, and (d) reversible kinetic 
models with (e) being the inset in acetic acid solution (75 vol %) at a temperature of 
20 °C. A volume ratio of d?9f,/dZ = 0.977 was used at Ni-MEPE concentration of 4.8 
g L-1. The results of the nonlinear least square curve fitting of the data are 
summarized in Table 8. Reprinted with permission from ref [188]. Copyright 2017 
John Wiley and Sons. 
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Table 8. Curve fitting results uv�N� , association constants, �A, as well as the rate constants 
for the forward polymerization reaction, ��, and the reverse polymerization reaction, ��, 
respectively for the growth of Ni-MEPE without salt addition in acetic acid solution (75 
vol %) at a temperature of 20 °C. The forward polymerization rate constants, ��, obtained 
by using the irreversible kinetic models are shown in parentheses. Adapted with 
permission from ref [188]. Copyright 2017 John Wiley and Sons. 

kinetic 

model 

�����
  association 

constant, �� 

forward 

polymerization rate 

constant, �Z  

reverse 

polymerization rate 

constant, ��  

irreversible 

first-order 
1.5 × 10-3 - (2.1 ± 0.5) × 10-3 s-1 - 

irreversible 

second-

order 
1.3 × 10-3 - (1.6 ± 1.0) M-1 s-1 - 

reversible 

first-order 
4.0 × 10-8 

(2.2 ± 0.01) 
× 101 

(3.1 ± 0.01) × 10-3 s-1 (1.4 ± 0.01) × 10-4 s-1 

reversible 

second-

order 
4.0 × 10-8 

(7.5 ± 0.04) 
× 104 M-1 

(2.7 ± 0.03) M-1 s-1 (3.6 ± 0.04) × 10-5 s-1 

 

 

3.2.2.10 Growth of Ni-MEPE containing 0.1 M KOAc 
 

In order to describe the growth of Ni-MEPEs containing 0.1 M KOAc, the applicability 

of different possible kinetic rate laws is tested on the data. The curve fitting procedure 

is analogous to the procedure, shown in Chapter 3.2 for the growth of Co-MEPEs 

without any salt addition. The curve fitting results are shown in Figure 44 and Table 9. 
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Figure 44. Time dependent growth of Ni-MEPEs containing 0.1 M KOAc by 
monitoring (a) the weight average molar mass, 675, and plot of conversion, 2, vs. 4 
according to (b) irreversible kinetic models with (c) being the inset, and (d) reversible 
kinetic models with (e) being the inset in acetic acid solution (75 vol %) at a 
temperature of 20 °C. A volume ratio of d?9f,/dZ = 0.977 was used at Ni-MEPE 
concentration of 4.8 g L-1. The results of the nonlinear least square curve fitting of 
the data are summarized in Table 9. Reprinted with permission from ref [188]. 
Copyright 2017 John Wiley and Sons. 
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Table 9. Curve fitting results uv�N� , association constants, �A, as well as the rate constants 
for the forward polymerization reaction, ��, and the reverse polymerization reaction, ��, 
respectively for the growth of Ni-MEPE containing 0.1 M KOAc in acetic acid solution (75 
vol %) at a temperature of 20 °C. The forward polymerization rate constants, ��, obtained 
by using the irreversible kinetic models are shown in parentheses. Adapted with permission 
from ref [188]. Copyright 2017 John Wiley and Sons. 

kinetic 

model 

�����
  association constant, �� 

forward 

polymerization rate 

constant, �Z  

reverse 

polymerization 

rate constant, ��  

irreversible 

first-order 
7.6 × 
10-5 

- (8.1 ± 1.5) × 10-4 s-1 - 

irreversible 

second-

order 

7.0 × 
10-5 

- (2.2 ± 1.6) M-1 s-1 - 

reversible 

first-order 
2.3 × 
10-8 

(9.8 ± 0.1) × 101 (1.5 ± 0.1) × 10-3 s-1 (1.5 ± 0.1) × 10-5 s-1 

reversible 

second-

order 

2.3 × 
10-8 

(1.4 ± 0.03) × 106 M-1 (5.7 ± 0.9) M-1 s-1 (4.1 ± 0.4) × 10-6 s-1 

 

 

3.2.2.11 Overview of curve fitting results 
 

All curve fitting results are summarized in Table 10 (reversible first-order kinetic model) 

and Table 11 (reversible second-order model). 
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Table 10. Curve fitting results uv�N� , association constants, �A, as well as the rate constants for 
the forward polymerization reaction, ��, and the reverse polymerization reaction, ��, 
respectively for the polymerization for a reversible first-order kinetic model of the different 
MEPEs in acetic acid solution (75 vol %) at a temperature of 20 °C. Adapted with permission 
from ref [188]. Copyright 2017 John Wiley and Sons. 

reversible 

first-order  

kinetic model 

�����
  association 

constant, �� 

forward 

polymerization rate 

constant, �Z  

 

reverse 

polymerization rate 

constant, ��  

Fe-MEPE 

without salt 
7.4 × 10-6 (5.1 ± 0.3) × 101 (2.9 ± 0.2) × 10-3 s-1 (5.7 ± 0.5) × 10-5 s-1 

Fe-MEPE with 

0.1 M KOAc 
4.9 × 10-7 (1.5 ± 0.1) × 102 (8.2 ± 0.5) × 10-3 s-1 (5.5 ± 0.4) × 10-5 s-1 

Co-MEPE 

without salt 
4.4 × 10-7 (2.6 ± 0.02) × 101 (3.9 ± 0.1) × 10-4 s-1 (1.5 ± 0.03) × 10-5 s-1 

Co-MEPE with 

0.1 M KOAc 
2.2 × 10-6 (9.7 ± 0.5) × 101 (5.2 ± 0.3) × 10-3 s-1 (5.4 ± 0.4) × 10-5 s-1 

Ni-MEPE 

without salt 
4.0 × 10-8 (2.2 ± 0.01) × 101 (3.1 ± 0.01) × 10-3 s-1 (1.4 ± 0.01) × 10-4 s-1 

Ni-MEPE with 

0.1 M KOAc 
2.3 × 10-8 (9.8 ± 0.1) × 101 (1.5 ± 0.1) × 10-3 s-1 (1.5 ± 0.1) × 10-5 s-1 
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Table 11. Curve fitting results uv�N� , association constants, �A, as well as the rate constants for 
the forward polymerization reaction, ��, and the reverse polymerization reaction, ��, 
respectively for the polymerization for a reversible second-order kinetic model of the different 
MEPEs in acetic acid solution (75 vol %) at a temperature of 20 °C. Adapted with permission 
from ref [188]. Copyright 2017 John Wiley and Sons. 

reversible 

second-

order 

kinetic 

model 

 

�����
  association constant, �� 

forward 

polymerization rate 

constant, �Z  

reverse 

polymerization 

rate constant, ��  

Fe-MEPE 

without 

salt 

3.2 × 
10-7 

(4.5 ± 0.1) × 105 M-1 (0.6 ± 0.03)  M-1 s-1 (1.3 ± 0.1) × 10-6 s-1 

Fe-MEPE 

with 0.1 M 

KOAc 

7.5 × 
10-8 

(3.9 ± 0.2) × 106 M-1 (3.8 ± 0.3)  M-1 s-1 (9.7 ± 1.0) × 10-7 s-1 

Co-MEPE 

without 

salt 

4.4 × 
10-7 

(1.0 ± 0.02) × 105 M-1 (3.9 ± 0.1) × 10-1 M-1 s-1 (3.9 ± 0.2) × 10-6 s-1 

Co-MEPE 

with 0.1 M 

KOAc 

7.3 × 
10-7 

(1.6 ± 0.1) × 106 M-1 (2.0 ± 0.2)  M-1 s-1 (1.3 ± 0.2) × 10-6 s-1 

Ni-MEPE 

without 

salt 

4.0 × 
10-8 

(7.5 ± 0.04) × 104 M-1 (2.7 ± 0.03) M-1 s-1 (3.6 ± 0.04) × 10-5 
s-1 

Ni-MEPE 

with 0.1 M 

KOAc 

2.3 × 
10-8 

(1.4 ± 0.03) × 106 M-1 (5.7 ± 0.9) M-1 s-1 (4.1 ± 0.4) × 10-6 s-1 

 

The growth of MEPEs can be described as a first- or second-order reversible step 

growth polymerization process. However, uv�N�  reaches the lowest value, if a reversible 

second-order kinetic model is applied, as can be seen in Table 10 and Table 11. Thus, 

the focus is on the results of the reversible second-order kinetic model in the following. 

As can be seen in Table 11, all association constants, �A, yield higher values (factor ~ 

9, 16, and 19 for Fe-, Co-, and Ni-MEPE, respectively) in the presence of KOAc. Thus, 

increasing the ionic strength leads to higher molar masses for all MEPEs. Furthermore, 
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�A follows the order Ni-MEPE < Co-MEPE < Fe-MEPE. Regarding the forward 

polymerization rate constants, ��, also higher values by adding 0.1 M KOAc as a salt 

are obtained (factor ~ 6, 5, and 2 for Fe-, Co-, and Ni-MEPE, respectively). 

Independent of salt addition, the forward polymerization rate constant, ��, follows the 

order Co-MEPE < Fe-MEPE < Ni-MEPE. As shown in Table 1 in Chapter 1.2.2.2, �� ∙ �� 

follows the same order (�� ∙ �� = 2.0 × 1018, 7.9 × 1020, and 6.3 × 1021 for Co-, Fe-, and 

Ni-bisterpyridine complexes, respectively).[78] Thus, it is concluded that �� increases 

with an increasing total binding constant between metal ion and terpyridine receptor. 

On the other hand, the reverse polymerization rate constants, ��, are smaller upon salt 

addition. They follow the order Fe-MEPE < Co-MEPE < Ni-MEPE, which is the opposite 

way regarding the order of �A. Obviously, a lower association constant, �A, correlates 

with an increased possibility of bond-breaking that is a higher reverse polymerization 

rate constant, ��, and vice versa. This result supports the hypothesis that positively 

charged MEPE chains are stabilized in the presence of extra salt. Furthermore, the 

association constant, �A, correlates well with the conversion, 2, according to eq 

(63):[143, 195, 246, 261] 

�A ≈ 14C(1 − 2)� (63) 

with C being the concentration. The results are shown in Table 12. 
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Table 12. Correlation of �A with 2 according to eq (63). 
Adapted with permission from ref [188]. Copyright 2017 John 
Wiley and Sons. 

reversible second-order 

kinetic model 

�  association 

constant, ��, 

calculated according 

to eq (63) 

Fe-MEPE without salt 0.983 1.3 × 105 M-1 

Fe-MEPE with 0.1 M KOAc 0.994 1.0 × 106 M-1 

Co-MEPE without salt 0.963 2.7 × 104 M-1 

Co-MEPE with 0.1 M KOAc 0.990 3.7 × 105 M-1 

Ni-MEPE without salt 0.957 2.0 × 104 M-1 

Ni-MEPE with 0.1 M KOAc 0.990 3.7 × 105 M-1 

 

As can be seen in Table 12, the calculated association constants, �A, are lower than the 

values found by application of the kinetic model (see Table 11), but are still in the same 

order of magnitude. 

Regarding the weight average molar masses of the MEPEs, 675 is increasing up to 2.5 

× 105 g mol-1 in Fe-MEPEs containing 0.1 M KOAc, which corresponds to a weight 

average degree of polymerization, ��5 = 350 (see Figure 42). An overview of the 

achieved degrees of polymerization, ��5, for the different MEPEs with and without salt 

addition is given in Figure 45.  
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Figure 45. Plot of the weight average degree of polymerization, ��5, vs. 
association constant, �A
.E, of the different MEPEs with and without salt 
addition according to the reversible (a) first- and (b) second-order kinetic 
model in acetic acid solution (75 vol %) at a temperature of 20 °C. The 
dotted lines show the linear curve fitting of the data by eq (64). Adapted 
with permission from ref [188]. Copyright 2017 John Wiley and Sons. 

 

Without salt addition, 675 results to 8.1 × 104 g mol-1, 3.8 × 104 g mol-1, and 3.3 × 104 

g mol-1 for Fe-, Co-, and Ni-MEPE, respectively. These values are in the same order of 

magnitude than the calculated values from Figure 18 in Chapter 1.2.3.2.4.2 (2.1 × 105 g 

mol-1, 1.7 × 104 g mol-1, and 7.7 × 104 g mol-1 for Fe-, Co-, and Ni-MEPE at pH = 1.8 

and � = 1). As can be seen, both, ��5, and association constant, �A, increase in the order 

Ni-MEPE ~ Co-MEPE < Fe-MEPE. As known for isodesmic polymerizations,[107, 242] ��5 is 

simply related to �A by the approximate relationship: 

��5 ~ �A
.E (64) 

which is valid for �A >> 1.[107, 242] As can be seen from Figure 45, the data calculated by 

the reversible second-order model (Figure 45b) are more suitable to eq (64) than the 

data calculated by the reversible first-order model (Figure 45a). 
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3.2.3 Microscopic Characterization 
 

In order to investigate the structure and length of finally grown MEPEs, cryogenic 

Transmission Electron Microscopy (cryo-TEM) imaging is employed. After four-day 

aging, cryo-TEM images of a solution of finally grown and solid Fe-MEPE in water 

(10-4 M) revealed the formation of entangled bundles of molecular fibers which are (1.3 

± 0.2) nm in width and 100’s nm to microns long (see Figure 46). To the best of 

knowledge, high-resolution cryo-TEM images of MEPEs are obtained for the first time. 

This data confirms the central hypothesis that metal ion induced self-assembly of 

ditopic ligands results in linear rigid-rod type macromolecules. 

 

 

Figure 46. A representative cryo-TEM image of a solution of Fe-MEPE (10-4 M) in water after 
four days of aging, showing the formation of bundled molecular fibers (scale bar: 50 nm). The 
inset is the magnified image of the area inside the white frame. The fine structure of the 
bundles, which consists of molecular fibers, is illustrated (scale bar: 20 nm). Reprinted with 
permission from ref [188]. Copyright 2017 John Wiley and Sons. 

 

 

 



 

Chapter 3 

 

The kinetics of growth of metallo-supramolecular 

polyelectrolytes in solution 

    

 

    
139 

 

  

3.3 Conclusions 

 

In this Chapter concerning the metal ion induced self-assembly of metallo-

supramolecular coordination polyelectrolytes (MEPEs), experiments are presented that 

elucidate the growth kinetics of Fe-, Co-, and Ni-MEPEs. The kinetics of polymerization 

can be best treated as a reversible first- and second-order step growth model. The 

irreversible models do not fit well. High molar masses are obtained and the association 

constants follow the order Ni-MEPE ~ Co-MEPE < Fe-MEPE, whereas the 

polymerization rate constants follow the order of Co-MEPE < Fe-MEPE < Ni-MEPE. 

Interestingly, the growth of MEPEs is accelerated by addition of potassium acetate. The 

extraordinary chain-length found in solution is confirmed by cryo-TEM data, revealing 

essentially plethora of filaments and bundles thereof. 
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4 Tailoring length and viscosity of dynamic metallo-supramolecular polymers in 

solution 
 

4 
Tailoring length and viscosity of dynamic metallo-

supramolecular polymers in solution 

 

This Chapter is based on: “Tailoring length and viscosity of dynamic metallo-supramolecular polymers in 

solution”, S. M. Munzert, G. Schwarz, D. G. Kurth, RSC Adv. 2016, 6, 15441-15450. 

 

Abstract: Transition metal ions, like Fe2+, Co2+ and Ni2+ coordinate to ditopic ligands 

such as 1,4-bis(2,2’:6’,2’’-terpyridin-4’-yl)benzene (1) forming sufficiently strong yet 

dynamic bonds in aqueous solutions, leading to extended, rigid-rod like metallo-

supramolecular coordination polyelectrolytes (MEPEs). Here, a way is presented to 

adjust the average molar mass, chain-length and viscosity of MEPEs using the 

monotopic chain stopper 4’-(phenyl)-2,2’:6’,2’’-terpyridine (2). The systems are 

analyzed by light scattering and viscometry. The experiments indicate that chain-length 

and viscosity of the MEPEs are modifiable in predictable ways by adding the monotopic 

chain stopper, 2. Light scattering is a suitable method for studying the molar mass and 

also the shape of the MEPEs. 
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4.1 Introduction 
 

The ditopic ligand 1 and the chain stopping monotopic ligand 2 form rigid-rod like 

metallo-supramolecular coordination polyelectrolytes (MEPEs) in solution as shown in 

Scheme 30.  

 

 

Scheme 30. Metal ion induced self-assembly of the metal ions Fe2+, 
Co2+, and Ni2+ with 1,4-bis(2,2’:6’,2’’-terpyridine-4’-yl)benzene (1) 
results in metallo-supramolecular coordination polyelectrolytes 
(MEPEs). 4’-(Phenyl)-2,2’:6’,2’’-terpyridine (2) acts as a stopping unit. &� is the number of monomers, [M(1)]2+, and &� the number of the 
chain terminating complexes, [M(2)2]2+, in the solution. The acetate 
counterions are omitted for clarity. Adapted from ref [88] with 
permission from The Royal Society of Chemistry. 

 

Due to the non-linear dependence of chain-length on the metal ion to ligand ratio, �, 

in particular in the vicinity of 1, small changes in � result in a varying chain-length and 

therefore in high viscosity changes of the final Fe-MEPE solutions (see Chapter 

1.2.3.2.4.2). In order to control the length that is the viscosity of the solution, the 

molecular weight and therefore the length of the MEPE chains in solution based on 

Fe2+, Co2+, Ni2+, and ligand 1, the addition of the monotopic chain stopper 4’-(phenyl)-

2,2’:6’,2’’-terpyridine (2) is employed (Scheme 30). Here, a comprehensive analysis of 

these chain stopper experiments is presented using light scattering and viscometry in 

solution.[88] 
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4.2 Results and discussion 
 

Metal ion induced self-assembly of the ditopic ligand 1 and the monotopic ligand 2 is 

used in the following as model system to study the assembly of MEPEs. Under the 

assumption that the chain forming ligand 1 and the chain stopping ligand 2 show the 

same binding properties and that all species are involved in the chain formation, the 

number of repeat units in MEPEs and, therefore, the average molar mass of the polymer 

chains can be described as follows. The chain termination ratio, z, is defined as: 

� =  | |	� f, (65) 

where &� is the number of monomers, [M(1)]2+, and &� the number of the chain 

terminating complexes, [M(2)2]2+, in the solution. Chain termination occurs when the 

number of capping units exceeds the number of chains ends. According to the principle 

of “maximum site occupancy” the chain ends will then be terminated by monotopic 

ligand, 2 (see Scheme 30).[42] A stoichiometric ratio is chosen according to &(M�	) =(&� + &�). If the number of complexes, n2, is lower than (or equal to) the number of the 

monomers, n1, that is z ≥ 1/3, the number of MEPE chains in solution is equal to the 

number of chain terminating complexes [M(2)2]2+. If z < 1/3, the solution consists of 

[(2)M(1)M(2)]2+-species and an excess of [M(2)2]2+. At z = 1/3 the chain stopping 

complex is absent. In this case, the length of the polymer chain depends on the 

concentration of monomers, [M(1)]2+, and the metal ion to ligand ratio, y. Under the 

conditions that 1/3 < z < 1, and that the concentration is low enough to enable the 

self-assembly of monomers with chain stopping complexes, the length of MEPE chains 

is independent of the binding constant and total concentration but is terminated solely 

by the number of complexes present in solution. Of course, the overall binding 

constant and the total concentration must exceed the threshold of self-assembly. Thus, 

the molar mass of a single MEPE chain is equal to the sum of the molar mass of 
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monomers, [M(1)]2+, plus the molar mass of the chain terminating complex, [M(2)2]2+. 

Therefore, the number average molar mass, 67 , equals to the sum of the molar mass 

of all monomers present in solution divided by &� and the molar mass of one [M(2)2]2+-

complex that is 6M: 

67 = &�6�&� + 6M (66) 

for 1/3 ≤ � < 1 and with &� being the number of monomers, [M(1)]2+, and 6� and 6M 

the molar masses of monomer, [M(1)]2+, and chain terminating complex [M(2)2]2+, 

respectively. With eqs (65) and (66) the number average molar mass of the MEPE chains 

can be described as a function of �: 

67 = 2�6�(1 − �) + 6M (67) 

for 1/3 ≤ � < 1.[88] 

 

4.2.1 Weight average molar masses 
 

With acetate as counter ion, the MEPEs are soluble in water, aqueous acetic acid and 

polar solvents like EtOH or MeOH. On the other hand, ligand 1 is soluble in aqueous 

acetic acid, but less soluble in polar solvents such as water, EtOH or MeOH. For this 

reason, preparation and analysis of the MEPEs are performed in acetic acid solution (75 

vol %). For the MEPE synthesis the metal salt is added to a mixture of ligand 1 and 2 

(see procedure I in Chapter 5.3) or the MEPEs are prepared by adding solid MEPE and 

solid complex, [M(2)2]2+ in pre-defined ratios, �, to acetic acid solution (75 vol %) (see 

procedure II in Chapter 5.3); also KOAc is added to the solution. In both procedures, 

the resulting MEPE solutions were allowed to equilibrate for at least 20 days. The 
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resulting weight average molar masses, 675, of the MEPEs are examined by static light 

scattering and the resulting viscosities by viscometry, respectively. 

Light scattering is performed at a temperature of 23 °C and the data is evaluated 

according to the Guinier-Zimm plot:[72, 277] 

r& s�C��t = r& � 1675 sK��0v�f�ft + 2w�C� (68) 

with � being an optical constant, C the concentration of MEPEs in solution, �� the 

Rayleigh ratio, b�, the radius of gyration,   the scattering vector, and w� the second 

virial coefficient (for details concerning the data analysis, see Chapter 5.4.3.1). As shown 

in Figure 47, the molar mass of the MEPEs is increasing with increasing chain 

termination ratio, z, that is with decreasing amount of chain terminating complex.  
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Figure 47. Weight average molar mass, 675, of (a) Fe-MEPE, (b) Co-MEPE, and (c) Ni-MEPE for 
different chain termination ratios, z, in 0.1 M KOAc acetic acid solution (75 vol %) at a 
temperature of 23 °C with a concentration of 4 g L-1. The samples are prepared by procedure I 
and II, respectively (see Chapter 5.3). Each data point is obtained by using static light scattering 
leading to a Guinier-Zimm plot based on eq (68). The black solid lines show the corresponding 
number average molar masses, 67 , calculated by eq (67). ��5 is the corresponding weight 
average degree of polymerization, ��5 = 675/6�. For details concerning the data analysis, see 
Chapter 5.4.3.1. Adapted from ref [88] with permission from The Royal Society of Chemistry. 

 

The weight average molar masses, 675, measured by static light scattering are 

consistent with the number average molar masses, 67 , calculated by eq (67) (black 

solid line in Figure 47) within an error of ± 7 × 103 g mol-1, if � < 1. These results show 

that it is possible to adjust the chain-length of MEPEs by using a pre-defined amount 

of chain terminating complex. 
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Within the experimental error the average number of monomeric units per polymer 

chain is similar to the weight average degree of polymerization, ��5 = 675/6�, (� < 1). 

As shown in Figure 47, 675 is determined up to 2.8 × 105 g mol-1, which corresponds to 

a weight average degree of polymerization, ��5 = 385. 

In the following set of experiments solid MEPE and solid complex, [M(2)2]2+ are mixed 

in pre-defined ratios, �, in acetic acid solution (75 vol %) including 0.1 M KOAc 

(procedure II). The weight average molar masses, 675, obtained by this procedure are 

also included in Figure 47. The results are identical. This experiment proves the dynamic 

nature of the MEPE chains. The mixture of neat MEPE and chain stopper complex 

[M(2)2]2+ exchange and equilibrate resulting in chain-lengths determined by the ratio � independently of the preparation procedure. Also, these results confirm the 

hypothesis that the MEPE length depends only on the ratio of the components under 

these experimental conditions. The size of the MEPEs remains unchanged within the 

studied concentration range of 1 g L-1 to 4 g L-1 (see Chapter 5.4.3.2). However, as � 

approaches unity 675 exhibits larger error bars due to the strong depends of the chain-

length on the metal ion to ligand ratio, �, and concentration, as described in the 

introduction.[72, 84, 88, 278] 

 

4.2.2 Viscosities 
 

In the following section, the viscosity data of the MEPE solutions is presented for 0.5 ≤  � ≤  1. The viscosity and SLS measurements are performed on the same 

samples. First, the specific viscosities, k¢£, are presented: 

k¢£ = k − k
k
  (69) 
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with k being the measured dynamic viscosity of the solution, and k
 the dynamic 

viscosity of the solvent that is the dynamic viscosity of acetic acid solution (75 vol %) 

mixed with 0.1 M KOAc. k
 is determined to be 2.91 mPa s at a temperature of 23.0 °C. 

Figure 48 shows the specific viscosities, k¢£, of Fe-, Co-, and Ni-MEPE for different chain 

termination ratios, z, at a concentration of 3.0 g L-1.  

 

 

Figure 48. Specific viscosities of (a) Fe-MEPE, (b) Co-MEPE, and (c) Ni-MEPE for different 
chain termination ratios, z, at a temperature of 23.0 °C and a concentration of 3.0 g L-1 
in 0.1 M KOAc acetic acid (75 vol %). The samples are prepared by procedures I and II, 
respectively (for details concerning the sample preparation see Chapter 5.3). The black 
solid lines show the corresponding curve fits according to eq (70), with k¢£,�= (7.4 ± 

0.3) × 10-3 and k¢£,M = (9.1 ± 0.4) × 10-2. Adapted from ref [88] with permission from 

The Royal Society of Chemistry. 
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The specific viscosities of MEPEs, k¢£, increase with increasing chain termination ratio, 

z, from 0.02 up to 2.81. Thus, the trend is the same as shown for the determined weight 

average molar masses, 675 (Figure 47), indicating that the chain-length increases with 

a decreasing amount of chain terminating complex, 2. k¢£ is growing analogous to eq 

(67) (see black solid lines in Figure 48): 

k¢£ = 2�k¢£,�(1 − �) + k¢£,M (70) 

In comparison to eq (67), k¢£,� corresponds to the specific viscosity of the monomers, 

[M(1)]2+, and k¢£,M corresponds to the specific viscosity of the [M(2)2]2+-complexes in 

the solution. If the corresponding solid compounds are dissolved in the solvent, the 

same specific viscosity data, k¢£, are obtained (Figure 48). By curve fitting according to 

eq (70), k¢£,� results to (7.4 ± 0.3) × 10-3, and k¢£,M results to (9.1 ± 0.4) × 10-2, for Fe-, 

Co-, and Ni-MEPE. 

This corresponds to dynamic viscosities k� = 2.93 mPa s and kM = 3.17 ± 0.1 mPa s. As 

expected, these values are slightly higher than the dynamic viscosity of the solvent 

(2.91 mPa s) and are in good agreement with viscosity measurements of [Fe(2)2]2+, 

[Co(2)2]2+, and [Ni(2)2]2+ in 0.1 M KOAc acetic acid solution (75 vol %). The viscosity 

data are in full agreement with the light-scattering data supporting the hypothesis that 

MEPEs are dynamic structures and that chain terminating complexes can be used to 

tailor the chain-length and viscosity. 

Figure 49 shows the specific viscosity, k¢£, of Fe-, Co-, and Ni-MEPE as a function of 

concentration (1.0 to 4.0 g L-1) and chain termination ratios, z.  
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Figure 49. Specific viscosities, k¢£, of (a) Fe-MEPE, (b) Co-MEPE, and (c) Ni-MEPE as a 

function of the MEPE concentration, c, and at different chain termination ratios, z, 
measured at a temperature of 23 °C. Adapted from ref [88] with permission from The 
Royal Society of Chemistry. 

 

The specific viscosity increases with an increasing concentration as well as an increasing 

chain termination ratio, z. As shown in Figure 49 and also previously shown in Figure 

48, k¢£ is increasing according to eq (70). In the present set of experiments the specific 

viscosity, k¢£, is changed from 0.01 to 5.06 simply by adjusting the concentration, C, 

and/or chain termination ratio, z. The dependence of the specific viscosity, k¢£, on the 

concentration, c, can be examined by Cate’s model:[279] 
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k¢£~C¤ (71) 

with ¥ being an exponent, relating k¢£ to C. Regarding MEPEs, α is found to be 1.40 ± 

0.04, 1.15 ± 0.05, and 1.04 ± 0.04, for Fe-, Co-, and Ni-MEPE, respectively. For 

noninteracting species of constant size Cate’s model predicts a linear increase of k¢£ 

with C, i.e. ¥ = 1. The length of the MEPE chains should be independent on 

concentration in the presence of chain terminating complexes. Therefore, ¥ is expected 

to be close to 1, which is indeed the case for Ni-MEPE; for Co- and Fe-MEPE ¥ increases 

to 1.15 and 1.40, respectively. Values of ¥ > 1 indicate that size increases with 

concentration as a result of a supramolecular polymerization or aggregation 

process.[279-281] The presence of chain terminating complex should prevent chain 

growth through metal ion coordination. The increase in ¥ may, therefore, be associated 

with other yet unknown aggregation processes. The exponents, ¥, are in the same 

range, than reported by Rowan et al.[280] for metallo-supramolecular polymers, made 

from ditopic bis(benzimidazolyl)pyridine ligands and Fe2+ or Co2+. Somewhat larger 

values are reported for DNA- and hydrogen-bonding based supramolecular solutions, 

where ¥ = 1.3 - 1.8.[282-284] Finally, the examined concentration range is well below the 

overlap concentration, where Cate's model predicts a value of ¥ = 3.5.[88, 279] 

 

4.2.3 Kuhn-Mark-Houwink (KMH) constants 
 

In the case of samples with the same polydispersity index, the dependence of viscosity 

on molar mass can be described by the Kuhn-Mark-Houwink (KMH) constants, relating 

the intrinsic viscosity, �k�, to the weight average molar mass, 675:[285-287] 

�k� = �§675A¨ (72) 

with �§ and R§ being empirical constants, which are characteristic for a polymer-solvent 

system at a defined temperature. A KMH exponent of R§ = 0.5 is indicative of a coil, 
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dissolved in a theta solvent, and R§ = 0.8 is typical for coils in a good solvent. Larger 

exponents, R§ > 1, are frequently found for rigid macromolecules. For rigid-rod type 

polymers, such as tobacco mosaic virus, R§ is found to be 2.70 In order to calculate 

both KMH constants, the intrinsic viscosity, �k�, is determined. It is defined as: 

�k� = limM→
 ªk¢£C « = limM→
�kv�N� (73) 

The intrinsic viscosity, �k�, is the contribution of a single particle to the solution's 

viscosity and is also known as Staudinger index.[285] The specific viscosity of MEPE 

solutions is measured as a function of concentration, the extrapolation to C = 0 gives 

the intrinsic viscosity, �k�. Thus, the intrinsic viscosity, �k�, is obtained from an 

extrapolation of the reduced viscosity, kv�N, to C = 0, which is the so-called Huggins-

plot,[288-289] as shown exemplary in Figure 50 for determination of �k� by extrapolation 

of the reduced viscosities, kv�N, of Fe-MEPE. 

 

 

 

Figure 50. Huggins-plots of the reduced viscosity, kv�N , of Fe-MEPE in acetic acid solution (75 
vol %) with 0.1 M KOAc as a function of the MEPE concentration, c, and at different chain 
termination ratios, z, measured at a temperature of 23°C. Reprinted from ref [88] with 
permission from The Royal Society of Chemistry. 
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As can be seen in Figure 50, the reduced viscosity, kv�N, increases linearly with 

concentration in 0.1 M KOAc acetic acid solution (75 vol %). Thus, the intrinsic viscosity, �k�, is reliably determined from the Huggins-plots.[290] As shown in Figure 51, the 

resulting values for �k� are increasing up to 650 mL g-1 with increasing chain 

termination ratio, z.  

 

 

Figure 51. Intrinsic viscosities, �k�, of Fe-, Co-, and Ni-MEPE with different chain termination 
ratios, z, at a temperature of 23.0 °C. Each value is carried out by a linear plot of k¢£C�� to C →0 according to eq (73). The black solid line shows the corresponding curve fitting by eq (74) 
with �k�� = 1.0 mL g-1 and �k�M = 1.4 mL g-1. Adapted from ref [88] with permission from The 
Royal Society of Chemistry. 

 

Thus, the trend is the same as shown for the determined weight average molar masses, 675, indicating that the intrinsic viscosity grows with a decreasing amount of chain 

terminating complex. Analogous to eqs (67) and (70), the data follow 

�k� = 2��k��(1 − �) + �k�M (74) 

with �k�� = 1.0 mL g-1 and �k�M = 1.4 mL g-1, which is relatively low, as expected. With 

the intrinsic viscosities, �k�, at hand, one can determine the values �§ and R§ of eq (72). 

A KMH plot is performed as shown in Figure 52 using the linearized eq (75): 
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lg�k� = lg­�§® + R§ lg�675� (75) 

where lg�k� is obtained versus lg�675�, determined by static light scattering. �k� is the 

intrinsic viscosity, 675 the weight average molar mass, and �§ and R§ are empirical 

constants, which are characteristic for a polymer-solvent system at a defined 

temperature. 

 

 

Figure 52. Kuhn-Mark-Houwink (KMH) 
fit of Fe-, Co-, and Ni-MEPE at a 
temperature of 23 °C according to eq 

(75). Adapted from ref [88] with 
permission from The Royal Society of 
Chemistry. 

 

The KMH exponent, R§, amounts to 0.94 ± 0.07, 0.97 ± 0.03 and 1.09 ± 0.04 and the 

constant, �§, to (6.3 ± 0.5) × 10-3 mL g-1, (7.2 ± 0.2) × 10-3 mL g-1, and (1.7 ± 0.1) × 10-3 

mL g-1 for Fe-, Co-, and Ni-MEPE, respectively, which is indicative of a semi-rigid (or 

stiff) polymer.[285] Again, there is an influence of the metal ion on the structures, as the 

stiffness increases in the order Fe-MEPE < Co-MEPE < Ni-MEPE.[88] 
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4.2.4 Second virial coefficients 
 

The second virial coefficients, w�, obtained from the light scattering data reveals 

information about the interactions of MEPEs in solution (for details concerning the 

theory of static light scattering, see Chapter 5.4.3.1). The second virial coefficients, w�, 

are shown in Figure 53 for different chain termination ratios, z. 

 

 

Figure 53. Second virial coefficients, w�, of Fe-, Co-, and Ni-MEPE for different chain 
termination ratios, z, in 0.1 M KOAc in acetic acid solution (75 vol %) at a temperature of 23 °C. 
Each value is determined by an own Guinier-Zimm plot, resulting from static light scattering 
measurements by dilution of a stock solution (C = 4 g L-1). Reprinted from ref [88] with 
permission from The Royal Society of Chemistry. 

 

As shown in Figure 53, the second virial coefficients, w�, are positive and decrease with 

increasing chain termination ratio, z. In general, if w� = 0, polymers act like ideal chains, 

assuming exactly their random walk coil dimensions. In this so-called “theta condition” 

the solvent neither expands nor contracts the macromolecule, which is said to be in its 

“unperturbed” state. A negative w� indicates the presence of an attractive interaction 

between the chains leading to macrophase separation (“salting-out effect”), whereas a 

positive w� value indicates repulsive forces between the polymers so that polymer-

solvent interactions are favored over those between the polymers, and the solvent in 
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this case is referred to as a “good solvent” in a thermodynamic sense.[291-292] As can be 

seen in Figure 53, w� > 0, indicating that the interactions between the MEPEs and the 

solvent molecules are favored over those between the MEPEs and, therefore, acetic 

acid solution (75 vol %) can be referred as a “good solvent”. Furthermore, an increasing 675 leads to a decreasing w� that is a decrease of repulsion forces between the MEPEs, 

which is a well-known phenomenon in polymer chemistry, due to the decrease of 

stiffness and increase of a worm-like structure of the polymers with increasing 675.[285] 

This tendency is more significant for Co-MEPE, than for Fe-, and Ni-MEPE.[88] 

 

4.2.5 Shape and structure 
 

Next, the focus is on the hydrodynamic radii, b̄ , of Fe-, Co-, and Ni-MEPE which are 

shown in Figure 54 for different chain termination ratios, z. b̄  is calculated by the 

Stokes-Einstein equation:[293] 

b̄ = �°±6³k
´
 (76) 

with �° being the Boltzmann constant, ± the temperature, k
 the viscosity of the 

solvent, and ´
 the diffusion coefficient (for details concerning the application of a 

dynamic Zimm plot, see Chapter 5.4.3.3). 
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Figure 54. Hydrodynamic radii, b̄ , of Fe-, Co-, and Ni-MEPE for different chain termination 
ratios, z, in 0.1 M KOAc in acetic acid solution (75 vol %) at a temperature of 23 °C. Each value 
is determined by an own dynamic Zimm plot, resulting from dynamic light scattering 
measurements by dilution of a stock solution (C = 4 g L-1). Reprinted from ref [88] with 
permission from The Royal Society of Chemistry. 

 

As expected and shown in Figure 54, the hydrodynamic radii, b̄ , increase with 

increasing chain termination ratios, z, that is, with increasing weight average molar 

mass, 675. The trends are the same as shown for 675 in Figure 47. 

With the hydrodynamic radii, b̄ , at hand, the equation 

b̄ ~ 675µ
 (77) 

is used for determination of the dependence of radii to molar masses. A plot is 

performed as shown in Figure 55, using the linearized eq (78): 

lg�b̄ � ~ ¶ ∙ lg�675� (78) 

 

where lg�b̄ � is plotted against lg�675�, determined by static light scattering. 
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Figure 55. lg�b̄ � versus lg�675� of Fe-, Co-, and Ni-MEPE for different chain termination ratios, 

z, in 0.1 M KOAc acetic acid solution (75 vol %) at a temperature of 23 °C according to eq (78). 
Adapted from ref [88] with permission from The Royal Society of Chemistry. 
 

The exponents, ¶, result in 0.6 ± 0.2, 0.65 ± 0.04, and 0.72 ± 0.02 for Fe-, Co-, and Ni-

MEPE, respectively, which is indicative of worm-like chains with an increased stiffness, 

comparable to covalent polymers.[294-295] The stiffness of the polymers increases in the 

order Fe-MEPE < Co-MEPE < Ni-MEPE, as already noticed above. 

Further information about the shape and structure of the MEPEs is possible by a 

comparison of b̄  with the radius of gyration, b�, which can be achieved by the Guinier-

Zimm plot, described above, according to eq (68) and as described in Chapter 5.4.3.1 

Calculation of the radius of gyration is possible, if b� > G
/20, with G
 being the 

wavelength of the incident laser light in vacuum. In this case, interference of the 

scattered light emitted from an individual particle leads to a nonisotropic angular 

dependence of the scattered light intensity. If b� < G
/20, only a negligible phase 

difference exists between light emitted from the various scattering centers within the 

given particle. In this case, the detected scattered intensity is independent of the 

scattering angle and only depends on the molar mass of the particle, which is 

proportional to the total number of scattering centers one particle contains.[293] That 

means that for light scattering on Co-, and Ni- MEPE, b� has to be > 32 nm, since the 



 

Chapter 4 

 

Tailoring length and viscosity of dynamic metallo-

supramolecular polymers in solution 

 

 

    
158 

 

  

wavelength of the incident laser, G
 = 632.8 nm. Light scattering on Fe-MEPE, requires 

a laser wavelength of G
 = 784.0, due to absorption effects. Therefore b� of Fe-MEPE 

has to be > 40 nm. Thus, determination of weight average molar mass, 675, second 

virial coefficient, w�, and hydrodynamic radius, b̄ , is possible by light scattering 

measurements, but b� of Co-, and Ni-MEPE can only be regarded as a trend (see Table 

13). The determination of b� of Fe-MEPE is not possible.[293]  

 

Table 13. Radius of gyration, b�, of Co-, and Ni-MEPE for different chain 

termination ratios, z, mixed with 0.1 M KOAc in acetic acid solution (75 vol %) 
at a temperature of 23 °C. Each value is determined by an own Guinier-Zimm 
plot, resulting from static light scattering measurements by dilution of a stock 
solution (C = 4 g L-1). Adapted from ref [88] with permission from The Royal 
Society of Chemistry. 

chain termination ratio, z �· of Co-MEPE (nm) �· of Ni-MEPE (nm) 

0.50 7.8 ± 0.6 7.5 ± 0.6 
0.65 - (1.1 ± 0.1) × 101 
0.73 8.6 ± 0.7 (1.0 ± 0.1) × 101 
0.80 (1.3 ± 0.1) × 101 - 
0.85 - (1.1 ± 0.1) × 101 
0.90 - (1.1 ± 0.1) × 101 
0.97 - (2.0 ± 0.2) × 101 
0.99 (2.5 ± 0.2) × 101 (2.4 ± 0.2) × 101 
1.00 (3.2 ± 0.4) × 101 (2.7 ± 0.4) × 101 

 

Nevertheless, a comparison of b� to b̄  is done, since the ratio, ¸, of radii of gyration 

and hydrodynamic radii 

¸ = b�b̄  (79) 

is a characteristic parameter of the particle architecture.[296] It has to be mentioned that 

the results for ¸ can only be regarded as a trend. As shown in Table 14, ¸ is decreasing 

with increasing chain termination ratio, z, which is indicative of a decreasing rigid-rod 
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like structure and an increasing worm-like structure, due to increasing weight average 

molar masses, 675.[296]  

 

Table 14. Ratio, ¸, of radii of gyration, b�, and hydrodynamic radii, b̄ , of Co-, and Ni-MEPE for different chain termination ratios, z, 
mixed with 0.1 M KOAc in acetic acid solution (75 vol %) at a 
temperature of 23.0 °C. Each value of b� is determined by an own 

Guinier-Zimm plot, resulting from static light scattering 
measurements, and each value of b̄  is determined by an own 
dynamic Zimm plot by dilution of a stock solution (C = 4 g L-1). 
Adapted from ref [88] with permission from The Royal Society of 
Chemistry. 

chain termination ratio, z ¹ of Co-MEPE ¹ of Ni-MEPE 

0.50 6.0 ± 0.4 6.5 ± 0.4 

0.65 - 7.2 ± 0.5 
0.73 3.5 ± 0.2 5.1 ± 0.3 
0.80 4.5 ± 0.3 - 
0.85 - 3.2 ± 0.2 
0.90 - 2.5 ± 0.2 
0.97 - 2.6 ± 0.2 
0.99 1.7 ± 0.1 2.5 ± 0.2 
1.00 0.8 ± 0.1 2.3 ± 0.1 

 

The trend of the ratios, ¸, regarding the architecture of the MEPEs is in agreement with 

the trend, shown in Figure 53, where the second virial coefficient, w�, is examined and 

indicates that the stiffness of the MEPEs is decreasing with increasing 675.[88] 
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4.3 Conclusion  
 

In this Chapter on metal ion induced self-assembly of metallo-supramolecular 

coordination polyelectrolytes (MEPEs) chain stopping experiments are carried out in 

order to adjust the chain-length of Co-, Ni-, and Fe-MEPEs. A theoretical model is 

established, which can easily be used to receive a polymer of desired average molecular 

weight and thus, the viscosity, which is an important parameter in technological 

applications of MEPEs. This model should be applicable to (linear) supramolecular 

polymerization that form through reversible interactions of ditopic species in solution 

under equilibrium conditions. The validity of the theoretical model is confirmed by 

static light scattering and viscometry and it is shown that tailoring of the chain-length 

is reproducible, due to the dynamic nature of the MEPEs. The Kuhn-Mark-Houwink 

constants, R§, are determined to 0.94 ± 0.07, 0.97 ± 0.03 and 1.09 ± 0.04 and the 

constants, �§, to (6.3 ± 0.5) × 10-3 mL g-1, (7.2 ± 0.2) × 10-3 mL g-1, and (1.7 ± 0.1) × 10-3 

mL g-1 for Fe-, Co-, and Ni-MEPE, respectively, by which it is possible to convert average 

molar masses to viscosities of the polyelectrolytes. The polymers exhibit a rigid-rod like 

structure in solution and the stiffness of the polymers seems to increase in the order 

Fe-MEPE < Co-MEPE < Ni-MEPE.[88] 
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5.1 Synthesis 
 

The ligands 1,4-bis(2,2’:6’,2’’-terpyridine-4’-yl)benzene (1)[297] and 4’-phenyl-2,2’:6’,2’’-

terpyridine (2)[298] were synthesized and characterized according to literature 

procedures. 2,2’:6’,2’’-Terpyridine (3) and all other chemicals were purchased from 

Aldrich and used without further purification. All used metal acetates were synthesized 

from the corresponding neat metals under reflux in acetic acid according to literature 

procedures.[299]  

 

5.2 Conductometric titrations 
 

The MEPEs investigated were prepared by metal ion induced self-assembly of the 

ditopic ligand 1,4-bis(2,2’:6’,2’’-terpyridine-4’-yl)benzene (1) in acetic acid solution (75 

vol %) with Fe2+, Co2+, or Ni2+, respectively. The synthesis of MEPE was done under 

conductometric control because the chain-length of MEPE depends critically on the 

stoichiometry, δ = [M2+]/[L] that is the ratio of the concentrations of metal ion, [M2+], 

and ligand, [L].[227] The ligands 4’-phenyl-2,2’:6’,2’’-terpyridine (2) and 2,2’:6’,2’’-

terpyridine (3) form mononuclear complexes, which are used for control experiments. 

Conductometric titrations were performed with a Metrohm 905 Titrando instrument. 

The titroprocessor was controlled by Tiamo 2.2.  

26.1 mg (468 μmol) iron powder was dispersed in 26 mL of degassed acetic acid 

solution (75 vol %). The dispersion was heated under reflux and under argon until the 

iron powder had completely disappeared and reacted to 81.4 mg (468 μmol) Fe(OAc)2, 

which took ~2 h. In a separate 100 mL two-necked flask equipped with a conductivity 

sensor, ligand 1 (243 mg, 450 μmol) was dissolved in 50 mL of acetic acid solution (75 

vol %). The solution containing the freshly synthesized Fe(OAc)2 was cooled to room 
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temperature and titrated under argon to the ligand solution while the conductivity was 

metered. Each addition is accompanied by a corresponding decrease in the 

conductivity. Because of the small amount that was added (100 μL), the end point or 

1:1 stoichiometry was recognized by the observation that the conductivity did not 

change for two consecutive additions. Whenever solid MEPE was needed, the solvent 

was removed under reduced pressure, and the MEPE was isolated as solid powder.  

A typical titration procedure for [Fe(2)2]2+ and [Fe(3)2]2+, respectively, is as follows: 58.8 

mg (338 μmol) Fe(OAc)2 was prepared as described above. In a separate 100 mL two-

necked flask equipped with a conductivity sensor, ligand 2 (201 mg, 650 μmol) and 

ligand 3 (282 mg, 650 μmol), respectively, was dissolved in 50 mL of acetic acid solution 

(75 vol %). The solution containing the synthesized Fe(OAc)2 was titrated to the ligand 

solution while the conductivity was metered as described above.  

 

5.3 Sample preparation  
 

5.3.1 Sample preparation for light scattering and viscometry 
 

For measuring light scattering and viscometry, the MEPE samples were prepared 

according to two procedures. In procedure I, the ligands 1, 2, and the respective metal 

ion (Fe2+, Co2+, or Ni2+) were solved in acetic acid solution (75 vol %) including 0.1 M 

KOAc and the ligand solution was mixed with the solution of the respective metal ion 

in predefined ratios, �. In procedure II, the MEPEs were prepared by adding solid MEPE 

and solid complexes, [M(2)2]2+ in predefined ratios, �, to acetic acid solution (75 vol %) 

including 0.1 M KOAc.  
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5.3.2 Sample preparation for cryo-TEM imaging 
 

The samples for cryo-TEM imaging were prepared according to ref [255]. 

 

5.4 Methods 
 

5.4.1 UV/Vis and fluorescence spectroscopy 
 

Absorbance spectra were recorded on a JASCO V-650 spectrophotometer, emission 

spectra were measured on a JASCO FP-8300 spectrofluorometer. The spectra were 

recorded at 20 °C with solutions of the different MEPEs and monotopic complexes all 

containing a constant ligand concentration of 10-3 M in UV/Vis measurements and 

10-5 M in fluorescence spectroscopy measurements. 

 

5.4.2 Stopped-flow 
 

The stopped-flow measurements were performed using the fluorescent substances (1, 

2, and 3) at different concentrations between 10-5 and 10-4 M ultrasonicated in EtOH 

for at least 30 min. The measurements were carried out in EtOH instead of acetic acid 

solution (75 vol %) to avoid possible corrosion to the stopped-flow apparatus. To make 

sure that the ligands 1, 2, and 3 are dissolved in EtOH, emission spectra were monitored 

and the intensity of the Rayleigh scattering band was checked. A low intensity of the 

band indicated that the ligands were dissolved and that there were no scattering 

aggregates present in solution. These dissolved substances were reacted with different 

concentrations in the range of 5 × 10-5 to 10-3 M of the respective quenching 

substances Fe(OAc)2·4H2O, Co(OAc)2·4H2O, and Ni(OAc)2·4H2O in EtOH. The 

coordination kinetics of MEPE and metal complexes were monitored by fluorescence 

detection using a BioLogic SFM-300 stopped-flow module attached to a JASCO J-815 
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spectropolarimeter with an addition photomultiplier tube for fluorescence detection. 

For the concentration range between 10-5 and 10-4 M a calibration curve was recorded 

that relates ligand concentration of 1, 2, and 3 to the emission signal, which follows a 

linear relationship. The slope of the calibration curves correlates the emission signal to 

the concentration of the ligand. Ligand 1 was excited at G� = 292 nm, ligand 2 at G� = 

289 nm and ligand 3 at G� = 281 nm. Emission intensity between 387 and 447 nm was 

detected using a cutoff filter supplied by Bio-Logic. The dead time of these experiments 

was 3.8 ms. Every stopped-flow mixing experiment was performed with 151 μL of 

ligand, dissolved in EtOH and 151 μL of metal acetate, dissolved in EtOH, each with a 

flow rate of 4.00 mL s-1. The temperature was set to 20 °C with a FL 300 Julabo 

temperature controller. Fluorescence-time traces were monitored using Biokine32 

(BioLogic). The concentration of ligand is related to the emission intensity via a 

calibration curve. In the concentration range of 10-5 to 10-4 M a linear relationship 

between concentration of ligand and emission signal is observed. Every 

concentration/time plot was fitted to the following equation: 
 º(4) = ¥4 + » + ¼K(�½q) (80) 

Slope ¥ and offset » correspond to the baseline, which is subtracted after fitting. 

Amplitude ¼ and exponent ¾ are parameters of the exponential term of the graph. After 

subtracting the baseline, the rate F of every single exponential curve º(4) = ¼K(�½q) at 

the commencement of the reaction, was determined by calculating the slope of the 

exponential curve, and thus the first derivation at 4 = 0: 
 º¿(0) = −¾γ (81) 

F = |−¾¼| (82) 
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The stopped-flow experiments were repeated with different initial concentrations of 1, 

2, and 3, during coordination to Fe2+, Co2+, and Ni2+ leading to 45 curves in total, similar 

to the curves, shown in Figure 27a. 

Likewise, the experiments were repeated by using a constant initial concentration of 

the metal ions Fe2+, Co2+, and Ni2+ and varied initial concentrations of ligands 1, 2, and 

3, to determine the reaction order in ligands 1, 2, and 3, leading to additional 45 

decreasing exponential curves. 

 

5.4.3 Static and Dynamic Light Scattering (SLS/DLS) 
 

Dynamic and static light scattering measurements were performed with an ALV CGS-3 

Multi Detection Goniometry System (ALV, Langen, Germany), equipped with a He-Ne 

laser (22 mW at G = 632.8 nm) for investigation of Co-, and Ni-MEPEs, and an infrared 

laser (70 mW at G = 784 nm) for investigation of Fe-MEPE, and 8 fiber optical detection 

units including 8 simultaneously working APD avalanche diodes. The measurements 

were conducted at scattering angles from 20° to 140° in steps of 8°. The samples were 

thermostated in a cell with temperature stability of ± 0.1 °C. All solutions were filtered 

separately before measuring light scattering using 0.2 μm syringe filters in order to 

remove dust particles. The specific refractive index increment (dn/dc) of every polymer 

sample was measured at 20.0 °C using a differential refractive index detector BI-

DNDC WGE DR Bures from Wyatt Technologies. For details concerning the theory of 

dynamic and static light scattering, see the following Chapter. 
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5.4.3.1 Theory and data analysis 
 

 

In static light scattering experiments, macromolecules in solution are irradiated by laser 

light of wavelength, G
, which scatters in all directions (Rayleigh scattering). The 

intensity of the scattered laser light depends on the scattering angle, Â, if scattered by 

macromolecules larger in size than G
/20. The Rayleigh ratio, ��, is determined in the 

following way. The scattered intensity of three different liquids is recorded that is the 

toluene, H¢qA NAvN , the solvent H¢iÃÄ� q, and the solution of MEPE, HeÅÆÅ . If the scattered 

intensities are measured using the same experimental setup, �� can be calculated as 

 

�� = HeÅÆÅ − H¢iÃÄ� qH¢qA NAvN �¢qA NAvN ∙ s &¢iÃÄ� q&¢qA NAvNt�
 (83) 

 

with �¢qA NAvN as the Rayleigh ratio of the standard that is toluene and the refractive 

indices of solvent, &¢iÃÄ� q, and standard, &¢qA NAvN .[285, 293, 300] �¢qA NAvN is known as 

1.4 × 10-3 m-1 at an irradiation wavelength of G
 = 632.8 nm and as 5.8 × 10-4 m-1 at an 

irradiation wavelength of G
 = 784.0 nm. Both values refer to a sample temperature of 

20 °C.[301-302] The scattering vector,  , is given by:[285, 293] 
 

   = 4³&¢iÃÄ� qG
 ∙ aÇ& sÂ2t (84) 

with &¢iÃÄ� q being the refractive index of the solvent at 20 °C and Â the scattering 

angle. The optical constant, �, is calculated as 
 � = 4³�&¢iÃÄ� q�ÈÉG
� ∙ sP&¢PC t�

 (85) 

with ÈÉ being the Avogadro number, C the concentration of MEPEs in solution, and 
N ÊNM  

the refractive index increment of the solution, which is defined as 
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 sP&¢PC t = &¢ − &¢iÃÄ� qC  (86) 

where &¢ is the refractive index of the solute. The refractive index increment, 
N ÊNM , 

depends on the difference in polarizability of solute and solvent.[285, 293] 

In order to calculate the weight average molar mass, 675, and the radius of gyration, b�, 

of the MEPEs, a solution is prepared and diluted. The intensity of the scattered light 

depends on variation of the concentration, C, and the scattering angle, Â, which results 

in different Rayleigh ratios, ��. The obtained Rayleigh ratios, �� can be plotted via a 

Zimm plot,[285, 293, 303] which is based on the formula 

�C�� = 1675 y1 − 13 b�� �z + 2w�C (87) 

where w� is the second virial coefficient. The evaluation of static light scattering 

measurements requires two extrapolations: On the one hand, the �C���� values are 

extrapolated to an interference-free condition that is Â → 0, which leads to an 

extrapolation of the scattering vector,  � → 0, on the other hand the values are 

extrapolated to an interaction-free condition that is C → 0. For this purpose, a Zimm 

plot is carried out, considering Guinier’s method.[296, 304] Guinier and Fournet[304-305] 

showed that the scattering vector can be approximated over a wide range of  � by: 

1 − 13 b�� � = K��0v�f�f
 

(88) 

With the approximation at hand, Wesslau[277, 304] proposed the Guinier–Zimm plot  

r& s�C��t = r& � 1675 sK��0v�f�ft + 2w�C� (89) 
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where ln-�C����. is plotted against ( � + SC), as shown exemplary in Figure 56 for the 

static light scattering measurement of a Ni-MEPE solution at time, 4 = 21.5 d after 

adding Ni2+ to ligand 1. S is an arbitrary constant, a scaling factor which is freely 

selectable. 

 

Figure 56. Guinier-Zimm plot of Ni-MEPE at time, 4 = 21.5 d after adding Ni2+ to ligand 1 in 
0.1 M KOAc acetic acid solution (75 vol %) at a temperature of 20 °C. The Rayleigh ratio, ��, is 
measured for five different concentrations, ranging from 1 g L-1 to 4.9 g L-1 and from 16 
different angle positions of the detectors, ranging from 20° to 140°. The scaling factor S of the 
Zimm plot is set to 20 L g-1 µm-2. The ln-�C����. values are extrapolated to Â → 0 that is  � →0, (triangles) and to C → 0 (rectangles). Adapted with permission from [89]. Copyright 2016 
American Chemical Society. 
 

From the intercept of the extrapolation curve,  � → 0, the weight average molar 

mass, 675, can be estimated as follows (see also Figure 56): 
 rÇË�f→
M→
 �r& s�C��t� = r& s 1675t (90) 

The radius of gyration, b�, or more exactly, the z-average of the squared radius of 

gyration, Ìb��ÍÎ, is defined as the average of the squared distance between a point of a 

polymer and the center of mass, bc: 
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Ìb��ÍÎ = 1È Ï|bc|�j
cÐ�  (91) 

Also b� can be obtained from the slope of the extrapolation curve of ln-�C����. to  C → 0: 

P {rÇËM→
 {r& y�C��z��P( �) = b��3  
(92) 

From the slope of the extrapolation curve,  � → 0, the second virial coefficient, w�, 

respectively, can be estimated:[285, 293, 304] 

 P s rÇË�f→
 y�C��ztPC ∙ S = 2w� 
(93) 

The applicability of static light scattering measurements on noncovalent polymers is 

discussed in the next Chapter. 

 

5.4.3.2 Size of polymers during static light scattering measurements 
 

 

To apply the method of Guinier and Zimm[277, 304] it is generally required that the size 

of particles remains unchanged within the studied concentration range.[293, 306] MEPEs 

are consisting of reversible noncovalent bonds and the polymer length may vary while 

preparing different concentrations for static light scattering measurements. For this 

reason, the dependence of size on concentration is examined and compared to a well-

known covalent polymer system, i.e. polystyrene, where polymer length is known to be 

independent on concentration. The experimental dependence of Г� on the square of 

the scattering vector,  �, at different concentrations, C, is shown in Figure 57 for Ni-

MEPE and polystyrene. 
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Figure 57. Experimental dependence of Г� on  � of (a) Ni- MEPE at 4 = 21.5 d after 
adding Ni2+ to ligand 1 in 0.1 M KOAc acetic acid solution (75 vol %), and (b) 
polystyrene at different concentrations. Adapted with permission from [89]. Copyright 
2016 American Chemical Society. 

 
 

As can be seen in Figure 57, the linear dependence of Г� on  �, 

Г� = ´ � (94) 

is well approximated by the straight lines passing through the coordinate origin. 

Diffusion coefficients, ´, of the MEPEs calculated from the slopes is independent on 

solution concentration within an error of ± 7.8 % within the studied concentration range 

of 1 gL-1 to 4 gL-1. Thus, static light scattering is a suitable method for studying the 

molar mass and also the shape of MEPEs. 

 

5.4.3.3 Dynamic light scattering (DLS) 
 

 

A dynamic Zimm plot is generated by measuring the diffusion coefficients, ´, and 

extrapolating the data in the same way as the �C���� values, shown in the Guinier-

Zimm plot described above (Figure 56), to an interference-free condition that is Â → 0, 
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which leads to an extrapolation of the scattering vector,  � → 0, and to an interaction-

free condition that is C → 0. The extrapolation leads to the diffusion coefficient, ́ 
. With ´
 at hand, the hydrodynamic radius, b̄ , is calculated.[293] 

 

5.4.4 Viscosity 
 

Viscosity measurements were conducted using a capillary viscometer (Lovis 2000M, 

Anton-Paar, Ostfildern, Germany) under precise temperature control (± 0.01 °C) based 

on the rolling ball viscosity method employing a steel ball moving in a glass capillary. 

The density of the solutions analyte was determined with a density sensor (DMA 

4100M, Anton-Paar, Ostfildern, Germany) to obtain both, dynamic and kinematic 

viscosity. 

 

5.4.5 Cryogenic transmission electron microscopy (cryo-TEM) imaging 
 

Cryo-TEM imaging was performed according to ref [255]. 

 

5.4.6 Nonlinear curve fitting according the Levenberg-Marquardt algorithm 
 

Nonlinear fitting is performed using Origin (OriginLab, Northampton, MA) applying the 

Levenberg-Marquardt algorithm. Application of the algorithm leads to a minimization 

of the squares of the deviations, u�, between the fitted curve and the experimental data 

and gives the corresponding value for the polymerization rate constant, �. That means 

that � is refined iteratively, until u� is reduced to uv�N�  and changes no more. uv�N�  is 

calculated by the sum of the squares of the deviations between the theoretical curve 

and the experimental data points according to 
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uv�N� = Ï-2Òcq − 2��£.� 
cÐ�  (95) 

with & being the number of data points, 2Òcq being the theoretical conversion at a time, 4, and 2��£ being the experimental value at the same time, 4. The lower uv�N� , the better 

the curve fits to the experimental data.  

 

5.5 Notes on data analysis and experimental uncertainty 
 

Data of fluorescence intensities, rates, monomer conversions, dynamic, specific, 

reduced and intrinsic viscosities, weight average molar masses, weight average degrees 

of polymerization, second virial coefficients, hydrodynamic radii and association 

constants are given as mean ± SD (n = 3) in the corresponding figures. Impurities, 

weighing and dilution uncertainties of stoichiometries, concentrations, volume ratios 

and chain termination ratios are given with absolute error bars in the corresponding 

figures. 
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Summary 

 

 

 

 

 

Parts of this Chapter are based on the publications listed on page VIII. 
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In this work the overall rates of the coordination reaction of terpyridine ligands and 

Fe2+, Co2+, and Ni2+ are presented by usage of fluorescence quenching experiments. 

The rates are such that the reactions can be followed by stopped-flow measurements. 

The coordination reactions occur within a few seconds and the overall order of the 

coordination reactions of 1 and M2+ is second order. In EtOH the reaction rates 

decrease in the order Fe2+ > Co2+ > Ni2+, due to the electron configuration and the 

ionic radii with � = (3.9 ± 0.8) × 105 M-1 s-1, (1.8 ± 0.1) × 105 M-1 s-1, and (8.0 ± 0.4) × 

103 M-1 s-1, respectively. On the other side, the monotopic ligands 2 or 3 show similar 

reaction rates. However, coordination reactions of the ditopic ligand 1 proceed 

approximately twice as fast than the monotopic ligands.  

Furthermore, experiments are presented that elucidate the growth kinetics of Fe-, Co-, 

and Ni-MEPEs. The polymer growth occurs within days and can be best treated as a 

reversible first- and second-order step growth model. The irreversible kinetic models 

do not fit well for the polymerization of the MEPEs. High weight average molar masses 

are obtained. In acetic acid solution (75 vol %), 675 follows the order Fe-MEPE > Co-

MEPE ~ Ni-MEPE with 8.1 × 104 g mol-1, 3.8 × 104 g mol-1, and 3.3 × 104 g mol-1 for 

Fe-, Co-, and Ni-MEPE, respectively. By usage of acetic acid solution (75 vol %) 

containing 0.1 M KOAc, 675 increases to 2.5 × 105 g mol-1, 1.5 × 105 g mol-1, and 1.4 × 

105 g mol-1 for Fe-, Co-, and Ni-MEPE, respectively. These values are in the same order 

of magnitude than calculated at pH = 1.8. The chain-length determined by light 

scattering in solution is confirmed by cryo-TEM data, revealing essentially plethora of 

filaments and bundles thereof. Appropriately, the association constants follow the 

same order with �A = (4.5 ± 0.1) × 105 M-1, (1.0 ± 0.02) × 105 M-1, and (7.5 ± 0.04) × 

104 M-1 for Fe-, Co-, and Ni-MEPE, respectively, in acetic acid solution (75 vol %) and 

(3.9 ± 0.2) × 106 M-1, (1.6 ± 0.1) × 106 M-1, and (1.4 ± 0.03) × 106 M-1 for Fe-, Co-, and 

Ni-MEPE, respectively, in acetic acid solution (75 vol %) containing 0.1 M KOAc. The 
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forward polymerization rate constants follow the order of Co-MEPE < Fe-MEPE < Ni-

MEPE with � = (3.9 ± 0.1) × 10-1 M-1 s-1, (0.6 ± 0.03) M-1 s-1, and (2.7 ± 0.03) M-1 s-1 for 

Co-, Fe-, and Ni-MEPE, respectively, in acetic acid solution (75 vol %) and (2.0 ± 0.2) 

M-1 s-1, (3.8 ± 0.3) M-1 s-1, and (5.7 ± 0.9) M-1 s-1 for Co-, Fe-, and Ni-MEPE, respectively, 

in acetic acid solution (75 vol %) containing 0.1 M KOAc. Thus, the growth of MEPEs is 

accelerated by presence of potassium acetate as electrolyte.  

Furthermore, chain stopping experiments are carried out in order to adjust the chain-

length of Co-, Ni-, and Fe-MEPEs. A theoretical model is established, which can be used 

to receive a polymer of desired average molecular weight and thus, the viscosity. This 

model should be applicable to (linear) supramolecular polymers that form through 

reversible interactions of ditopic species in solution under equilibrium conditions. The 

validity of the theoretical model is confirmed by static light scattering and viscometry 

and it is shown that tailoring of the chain-length is reproducible, due to the dynamic 

nature of the MEPEs. In acetic acid solution (75 vol %) the Kuhn-Mark-Houwink 

constants, R§, are determined to 0.94 ± 0.07, 0.97 ± 0.03 and 1.09 ± 0.04 and the 

constants, �§, to (6.3 ± 0.5) × 10-3 mL g-1, (7.2 ± 0.2) × 10-3 mL g-1, and (1.7 ± 0.1) × 10-3 

mL g-1 for Fe-, Co-, and Ni-MEPE, respectively, by which it is possible to convert average 

molar masses to viscosities of the polyelectrolytes. The polymers exhibit a rigid-rod like 

structure in solution and the stiffness of the polymers increases in the order Fe-MEPE 

< Co-MEPE < Ni-MEPE. 
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In dieser Arbeit wird die Kinetik der Koordinationsreaktion von Terpyridin-Liganden mit 

Fe2+, Co2+ und Ni2+ mit Hilfe der Fluorenzlöschung untersucht. Die Geschwindigkeits-

konstanten können mittels Stopped-flow-Messungen bestimmt werden. Die 

Koordinationsreaktion zwischen dem Liganden 1 und M2+ findet innerhalb weniger 

Sekunden statt und verläuft nach einer Reaktionskinetik zweiter Ordnung. Aufgrund 

der unterschiedlichen Elektronenkonfigurationen und Ionenradien der Metallionen, 

nehmen die entsprechenden Geschwindigkeitskonstanten in der Reihe Fe2+ > Co2+ > 

Ni2+ ab und betragen � = (3.9 ± 0.8) × 105 M-1 s-1, (1.8 ± 0.1) × 105 M-1 s-1 und (8.0 ± 

0.4) × 103 M-1 s-1 für Fe2+, Co2+ bzw. Ni2+ in Ethanol.  

Zudem wird in dieser Arbeit die Wachstumskinetik der Fe-, Co- und Ni-MEPE 

beschrieben. Das Polymerwachstum findet innerhalb von Tagen statt und kann am 

besten anhand einer reversiblen Stufenwachstumspolymerisation erster oder zweiter 

Ordnung beschrieben werden. Die irreversiblen kinetischen Modelle eignen sich 

hingegen nicht für die Beschreibung der Polymerisation der MEPE. Die MEPE weisen 

hohe gewichtsmittlere molare Massen auf. In 75% HOAc nehmen sie in der Reihe Fe-

MEPE > Co-MEPE ~ Ni-MEPE ab und betragen 675 = 8.1 × 104 g mol-1, 3.8 × 104 g mol-1 

und 3.3 × 104 g mol-1 für Fe-, Co- bzw. Ni-MEPE. Bei Vorlage von 0.1 M KOAc in 75% 

HOAc steigt 675 auf 2.5 × 105 g mol-1, 1.5 × 105 g mol-1 und 1.4 × 105 g mol-1 bei Fe-, 

Co- bzw. Ni-MEPE. Die Werte liegen in der gleichen Größenordnung wie für pH = 1.8 

theoretisch berechnet. Die mittels Lichtstreuung in Lösung bestimmten Kettenlängen 

können durch cryo-TEM-Messungen bestätigt werden. Die Gleichgewichtskonstanten 

des Polymerwachstums betragen in 75% HOAc �A = (4.5 ± 0.1) × 105 M-1, (1.0 ± 0.02) 

× 105 M-1 und (7.5 ± 0.04) × 104 M-1 für Fe-, Co- bzw. Ni-MEPE und bei Vorlage von 

0.1 M KOAc in 75% HOAc �A = (3.9 ± 0.2) × 106 M-1, (1.6 ± 0.1) × 106 M-1 und (1.4 ± 

0.03) × 106 M-1 für Fe-, Co- bzw. Ni-MEPE. Die Geschwindigkeitskonstanten der 

Hinreaktion nehmen in der Reihe Co-MEPE < Fe-MEPE < Ni-MEPE zu und betragen in 
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75% HOAc � = (3.9 ± 0.1) × 10-1 M-1 s-1, (0.6 ± 0.03) M-1 s-1 und (2.7 ± 0.03) M-1 s-1 für 

Co-, Fe- bzw. Ni-MEPE und bei Vorlage von 0.1 M KOAc in 75% HOAc (2.0 ± 0.2) M-1 

s-1, (3.8 ± 0.3) M-1 s-1 und (5.7 ± 0.9) M-1 s-1 für Co-, Fe- bzw. Ni-MEPE. Das Wachstum 

der MEPE kann somit durch die Anwesenheit des Elektrolyten Kaliumacetat 

beschleunigt werden.  

In dieser Arbeit wird außerdem eine Methode beschrieben, um die Kettenlänge der 

MEPE mit Hilfe von Kettenstoppern einzustellen. Hierfür wird zunächst ein 

theoretisches Modell beschrieben, mit dessen Hilfe ein Polymer mit gewünschter 

mittlerer Molmasse und Viskosität erhalten werden kann. Dieses Modell sollte auf 

andere (lineare) supramolekulare Polymerisationen anwendbar sein, sofern sich die 

Polymere reversibel aus ditopen Spezies in Lösung oder unter 

Gleichgewichtsbedingungen bilden. Die Gültigkeit dieses theoretischen Modells wird 

durch statische Lichtstreuung und Viskositätsmessungen bestätigt. Aufgrund der 

Dynamik der MEPE ist das Einstellen der Kettenlängen reproduzierbar. Die Kuhn-Mark-

Houwink-Konstanten R§ sind bestimmt worden und betragen in 75% HOAc 0.94 ± 0.07, 

0.97 ± 0.03 und 1.09 ± 0.04 für Fe-, Co- bzw. Ni-MEPE. Die Konstanten �§ betragen (6.3 

± 0.5) × 10-3 mL g-1, (7.2 ± 0.2) × 10-3 mL g-1 und (1.7 ± 0.1) × 10-3 mL g-1 für Fe-, Co-, 

bzw. Ni-MEPE. Mit diesen Konstanten ist es nun möglich, die mittlere molare Masse 

der Polyelektrolyte in deren Viskosität umzurechnen. Die Polymere weisen eine 

stäbchenartige Form auf, deren Steifheit in der Reihe Fe-MEPE < Co-MEPE < Ni-MEPE 

zunimmt. 
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