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Preface
¿is book is concerned with the extraction of spatial information from historical docu-
ments, mostly from maps. ¿is puts it at a crossroads of various disciplines – computer
science, geographic information science, digital humanities – and Benedikt Budig navi-
gates this intersection with clarity, combining a keen algorithmic eye with an a�nity
for the historical material. In a way, the book itself functions like a map: it provides
an overview of this area of research by showing you a selection of interesting places it
contains, and how to get there.

¿e �rst two chapters give an overview of the research goals, methodology and state
of the art of relevant topics. ¿ere is also a brief introduction of the historical material
that will be processed in the later chapters, providing a clear motivation for the rest of
the book andmaking the book as a whole more accessible to a technical audience. Mean-
while, a brief but solid preliminaries chapter brings a general (mathematically savvy)
audience up to speed on the required technical background.

Chapters 3–6 address various speci�c topics: locating map elements, matching mark-
ers and labels, extracting building footprints, and georeferencing historical itineraries.
Rather than summarizing the speci�c contributions – simply skip to page 6 for the intro-
duction – I invite the reader to consider the broader picture that emerges from the book
as a whole. Each time a speci�c task is considered, the author applies the algorithmic lens.
(See the methodology section for a discussion of this concept.) In addition to providing
interesting challenges for computer science, it brings a novel perspective to these tasks.
¿is may be the most important conceptual contribution of the book: that it is possible
– and indeed fruitful – to consider these kinds of challenges in the humanities from a
computational perspective. A concept of particular importance turns out to be sensitiv-
ity analysis, and the reader would do well to include it in their toolbox: it is explicitly
employed in Chapters 4 and 6, but is also recognizable in the uncertainty sampling of
Chapter 3 and the Auto-ε algorithm of Chapter 5. Of course many of the other concepts
applied in the book come recommended as well (such as Bayesian inference and graph
algorithms), but none is as widely applied as this.

Finally, the conclusion provides a useful recap of the results from the previous chap-
ters and includes an extensive per-chapter discussion of open problems and suggested
futurework. ¿is is not to bemisunderstood: rather than a list of shortcomings, it is a call
to action based on positive experience. Indeed, the �nal paragraph argues that though
not all problems are solved, the presented research program is fruitful and should be
continued. I agree.

Dr. ¿omas C. van Dijk
Chair for Computer Science

University of Würzburg
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Chapter 1

Introduction
“Amap does not just chart, it unlocks and formulates meaning; it forms bridges
between here and there, between disparate ideas that we did not know were
previously connected.”

—Reif Larsen [Lar09]

Maps have always fascinated humans, andmakingmaps is an integral part of human civi-
lization. ¿e earliest knownmaps are maps of the stars, there are cave paintings showing
maps, and in antiquity, extensive Roman roadmaps. In theMiddle Ages, portolan charts
were made for the seafarers, and by the beginning of the early modern period sophisti-
cated map projections emerged (for example due to Mercator). Later, methods for more
accurate geodetic surveys were invented (for example byGauß), leading eventually to the
accurate and ubiquitous digital maps of our time. Of themultiplicity of maps created ear-
lier in human history, it is safe to say that only a small fraction survived to the present
day. An example of a map that has survived is presented in Figure 1.1: a clay tablet with
a map of the ancient Babylonian city of Nippur, created approximately 3400 years ago. It
is considered the earliest known map of a city. Artifacts like this are important pieces of
our cultural heritage and must be preserved for future generations. What is more, their
contents should be made accessible to the public in the most useful way.

Besides being valuable historical objects, historical maps are important sources of
information for researchers in various scienti�c disciplines, especially in the humani-
ties. ¿is ranges from the actual history of cartography to general history as well as the
geographic and social sciences. To give a nontrivial example: onomastics, the study of
proper names, makes extensive use of historical maps.

Many libraries and archives have started digitizing their map collections. A basic
level of digitization consists of scanned bitmap images, tagged with some basic biblio-
graphic information such as title, author and year of production. However, in order
to make the scanned maps searchable in more useful ways, a structured representation
of the contained information is desirable. ¿is includes information on the geographic
features (such as labeled cities and rivers) and geopolitical features (such as political or
administrative borders). We call information extraction at this level of semantic granu-
larity deep georeferencing and will discuss it in more detail below. To get an impression
of the wealth of information that can be contained in historical maps, see Figure 1.2.

Knowing about the features in a map enables queries that are useful for actual re-
search practice, such as obtaining “all 17th century maps that include the surroundings
of modern-day Würzburg,” or comparing the evolution of place-name orthography in

1



Chapter 1 Introduction

Figure 1.1: Clay tablet showing a map of the Babylonian city of Nippur (approximately 1400 BC). It is
considered the earliest city map still in existence and is currently preserved at the University of Jena.

di�erent regions. It also enables the analysis of the geodetic accuracy or distortion of
these maps, which is of historical and cartographic interest as well. In fact, being able to
create a deep georeferencing for historical maps is a prerequisite for various applications.
For example, Chiang [Chi15] recently expressed the need for a framework that would
enable querying historical maps as a uni�ed spatiotemporal data source, an e�ort that
requires an in-depth extraction of information from historical maps. Also, rich data ex-
periences such as New York Public Library’s Space/Time Directory¹ and virtual reality
applications [BGG+16] require detailed information on the content of maps. Ultimately,
the information extracted from historical maps can become “a vital part of the larger
data ecosystem” [Knu13].

Unfortunately, analyzing the contents of historical maps is a complex and time-con-
suming process. For the most part, this information extraction task is performed man-
ually by experts – if at all. For example, it currently takes curators at the Würzburg Uni-
versity Library between 15 and 30 hours to georeference just the labeled settlements in a
typical map from their Franconica collection.² To see why it takes so long, consider that
the number of labeled place markers in a map can be in the order of several thousand.

Automated tools for extracting information from historical maps are scarce, for a va-
riety of reasons. For one, there is a large variety of drawing styles in historical maps. ¿is
makes it hard for a single algorithm or so ware tool to automatically perform well on a
large set ofmaps: look ahead at Figure 1.3 for some examples of the range of styles that oc-
cur within the Franconica collection. Secondly, there is the question of input. Historical
maps can be quite inaccurate, deviate from modern cartographic conventions, or be in
poor conservation state. When a historian georeferences amap, he or she brings a wealth
of background information and the ability to do additional research when ambiguities

¹ http://spacetime.nypl.org/
² ¿is collection contains approximately 800 maps created between the 16th and the 19th century, mainly
covering the area of the historical Franconian Circle; see http://www.franconica-online.de/
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1.1 Deep Georeferencing

Figure 1.2: Isaak JakobvonPetri’sChorographischeKrieges-Carte vonZwickaubisWürtzburg, published
in 1759. It illustrates a military campaign of the Prussians during the Seven Years’ War (1756–1763). The
orientation of the map is not towards north, but follows the direction of the troop movements. Car-
touches around the main map contain detailed textual descriptions of important battles, sketches of
battle formations, and plans of the bivouacs marked with dates. The size of this map is 242×93 cm.

in the map require it. Finally, there is the issue of correctness: in general, algorithms
for extracting semantic information from bitmap images are far from perfect. ¿is is to
be expected since these problems are truly di�cult for computers. To the curators of
historical map collections, however, the correctness of metadata can be of paramount
importance (not to mention: a matter of pride).

1.1 Deep Georeferencing

¿e term georeferencing has di�erent de�nitions in various research communities. For
example, De By et al. [dBKS+01] de�ne data to be georeferenced “if it is associated with
some position using a spatial reference system.” In their dictionary of geographic infor-
mation systems [WS06], Wade and Sommer similarly de�ne georeferencing as “aligning
geographic data to a known coordinate system so it can be viewed, queried, and analyzed
with other geographic data.” Hackeloeer et al. [HKKM14] gives an overview over more
de�nitions from various �elds. Most of these de�nitions are based on the assumption
that a meaningful transformation between the presentation of the geographic data and
the target coordinate system exists, and that the challenge is to �nd this transformation.
¿is assumption usually holds when dealing with modern maps or when working in a
photogrammetric setting. However, it does not hold when dealing with historical maps:
especially older maps are o en heavily distorted and the cartographic techniques used
to create them are unknown.

In addition, georeferencing in the above sense does not necessarily imply semantic
meaning. Mapping pixels from a raster map to geo-coordinates complies perfectly with
many common de�nitions of georeferencing. However, trying to answer the kind of

3



Chapter 1 Introduction

queries discussed above, this information is not particularly useful, since it does not
explicitly state what is actually on the map.³

We propose an extension to the concept of georeferencing to address these shortcom-
ings in the domain of historical spatial data. We de�ne deep georeferencing as linking
spatial information contained in an unstructured document to spatial entities from a
structured database. Note that this de�nition is not restricted to maps; it can be applied
to any document containing spatial information.4 Deep georeferencing is about linked
data and semantics: spatial elements in a document are linked to known spatial entities,
rather than to a coordinate system. ¿e image and geographic coordinates are kept in
this process, but the actual connection is made between entities, not coordinate systems.
¿is is a fundamental di�erence to georeferencing in its common usage.5

Deep georeferencing relates to the research �eld of geospatial semantics (see Jano-
wicz et al. [JSPH12] for an overview). Scheider et al. [SKO+11] propose a similar concept
called semantic referencing in the context of modern maps and volunteered geographic
information. A framework by Scheider and di�erent group of co-authors [SJSK14] for en-
coding and querying the contents of historical maps can be used to store the information
extracted by deep georeferencing. We note that while the idea of extracting semantic in-
formation from spatial documents is not entirely new, this is rarely done in practicewhen
dealing with historical maps. Indeed, Southall [Sou13] observes that “the relatively lim-
ited use of historical maps within historical GIS [...] is due in large part to the enormous
amount of work required to convert from digital images of maps, even geo-referenced
map images, to [...] representations of the features on the maps.”

Consider the Babylonian city map from Figure 1.1. It has been studied extensively by
multiple scientists. Every single stroke in the carving has been analyzed and the depicted
details have largely been identi�ed. ¿is includes references to known historical entities
(such as, for example, temples that are known to have existed in Nippur), but also to
the remains at the present-day archaeological excavation site [Kra81]. ¿e information
resulting from this research, in its semantics and granularity, can be considered excellent
deep georeferencing. ¿e extensive manual e�orts involved in the deep georeferencing
of this artifact were most likely spent because of its singular historical importance. It is
unfortunate that for the vast majority of historical maps no such information is available.

¿ere exist some tools that help with extracting information from historical maps,
for example by providing convenient graphical user interfaces; a detailed discussion of
related so ware systems follows in Chapter 2. We will see that there are only few tools
that actually automate steps in the process of deeply georeferencing historical maps. In
this book, we tackle this lack of automation and propose several systems that combine

³ Consider for example searching for maps showing a certain small village. Its geo-location is obviously
covered by any world map, but the village is probably marked in none. Based on coordinates alone, it is
impossible to answer this type of query in a satisfying way when dealing with a wide variety of maps.

4 Such documents include for example historical itineraries, which we will consider in Chapter 6.
5 We use the term “georeferencing” many times throughout this book, and we mean deep georeferencing
unless otherwise noted.

4



1.2 Methodology

e�cient algorithms with smart user interactions to make information extraction from
historical maps more e�cient.

1.2 Methodology

We cannot expect a computer to fully automatically extract all information contained
in a historical map, since this involves semantics and is therefore truly hard: it is about
understanding unstructured data, which in general still requires human intelligence. On
the other hand, we cannot expect humans to manually process historical maps without
help, because there are simply toomany of thesemaps and there is toomuch information
on them. ¿emethodology used in this book combines the strengths of both computers
and humans: we devise e�cient algorithms to largely automate information extraction
tasks and pair these algorithms with smart user interactions to handle what is not under-
stood by the algorithm.

TheAlgorithmic Lens. ¿roughout this book, we approach problems by applying the
algorithmic lens. ¿is is a methodology in which we view complex systems “in terms of
their computational requirements and theway they transform information.” ¿is “allows
us to apply the concepts of computer science [...] giving new insights and new ways of
thinking” [Kar11].

In the context of the present book, this means that we analyze problems that have
their origin in the humanities from a computer science perspective. We start by split-
ting large, underspeci�ed tasks (like: understand this map) into smaller pieces in order
to get manageable problems. ¿is modular approach allows for rigorous problem state-
ments and, thereby, reproducible experiments and comparability; this is in contrast to
monolithic so ware systems, where it can be unclear how any speci�c detail in�uences
the outcome. Competing systems for a certain step can then be proposed and evaluated.
Such a “separation of concerns” in systems for processing historical maps is also advo-
cated, for example, by Shaw and Bajcsy [SB11] and Schöneberg et al. [SSH13].

When splitting information extraction problems into smaller parts, we try to follow
the process a human (reading a map) would apply: �rst �nding an element of interest
on the map, then reading its corresponding label, and then relating this information to,
for example, a modern map. Following this “human” approach makes it easier to design
semantically meaningful sub-problems and appropriate user interactions.

Working on these problems, wemake sure to understand each problem in the context
of its own domain (the humanities). Based on this understanding, we properlymodel the
problem as a computer scientist and algorithm designer. In particular, we do not think
of computer science as an auxiliary science and do not simply apply basic techniques as
black boxes: the modeling step rewards computer-science creativity and is the core of
our contributions in this book. Based on a formal model, we devise algorithms to solve
the problem optimally and e�ciently.

5



Chapter 1 Introduction

SmartUser Interaction. Besides producing a solution, a propermodeling of the prob-
lems also allows us to derive additional information. An example of this is sensitivity
analysis, which we apply to various problems throughout this book. Sensitivity analysis
can be used to power smart user interactions, for example by identifying parts of a solu-
tion that might require manual veri�cation. In this way, users do not have to carefully
inspect all of the solution, but are e�ciently guided to the parts that actually need their
attention. Sensitivity analysis can also provide information on the quality of alternate
solutions. Sometimes, parts of these solutions are actually correct and can be presented
to a user as possible alternatives. Ideally, we can guide the user to problematic parts of
the automatic solution and simultaneously present meaningful alternatives.

In addition to sensitivity analyses (which are mainly suitable for post-processing) we
also apply crowdsourcing. Crowdsourcing is a technique in which (small) problems are
solved by a crowd of volunteers, typically working via an online platform. For quality
assurance, the same tasks are usually solved independently by several users.

Successfully applying crowdsourcing to a given problem can be challenging. First,
since the users are usually laypeople, the crowdsourcing tasks have to be designed well:
they need to be easily understood and correctly solvable without background knowledge.
Second, appropriate algorithms are needed to integrate the di�erent user answers. In this
book, we particularly focus on the second challenge. We show that carefully designed
algorithms enable o�ering attractive user interfaces to the crowd (which is crucial for
the success of a crowdsourcing project), while still being able to e�ciently handle the
crowd’s answers.

1.3 Outline of this Book

¿is book is organized as follows. Our main contributions are presented in Chapters 3
through 6. Chapters 3 and 4 deal with problems occurring on medium-scale maps from
the early modern period. Chapter 5 focuses on more recent, large-scale city atlases, and
Chapter 6 deals with a textual representation of spatial data in the form of historical
itineraries. For a detailed discussion of the individual types of documents, together with
other preliminaries, see Chapter 2.

LocatingMap Elements. First, we focus on the arguably most fundamental problem
of our information extraction task: �nding speci�c elements in historical maps. Relevant
elements can be pictograms (for instance: placemarkers), but can also include individual
characters from text labels. Knowing about the occurrence and location of such elements
in a map is essential for any subsequent information extraction step.

¿e main challenge in this task is caused by the considerable visual variations in the
drawing of the individual elements. See Figure 1.3 for examples of pictograms and text
from four di�erent historical maps. ¿esemaps belong to the samemap collection, show
parts of the same region, and have been created within a timespan of 150 years. Still, the
visual style of the contained elements varies strongly across the di�erent maps. ¿ere is

6



1.3 Outline of this Book

Figure 1.3: Place markers and text on several historical maps from the Franconica collection, created
between 1533 and 1676. Note the variety of visual styles, both in the pictographs and the lettering.

even a signi�cant variance within a single map: consider for example the pictograms
in the le -most map, which share a similar shape, but each feature individual details.

In Chapter 3, we approach this problem by applying template matching, which is a
standard technique from image processing. It takes a template (manually selected for
the speci�c map) and �nds a set of candidate matches on the map. Because of the varia-
tions in drawing, this set is likely to contain false positives and the problem remains to
determine which of these matches are in fact semantically correct. ¿is (semantic) prob-
lem cannot be expected to be solved automatically. Instead, we present an active learning
system that makes e�cient use of a user’s manual e�ort in order to reliably distinguish
between correct and incorrect matches. Using the uncertainty sampling strategy [SU07],
our approach iteratively presents batches of matches to the user. ¿ese are carefully se-
lected so that the user’s time and e�ort is spent where it is most useful.

Our approach works for various template matching algorithms and can easily be
transfered to other domains: we also apply it to a related problem, the detection of certain
glyphs in books printed in the early modern period (so-called incunables). We present
user interfaces and an open-source so ware package implementing our approach. Fi-
nally, we show that our approach (and our so ware) work well in practice, both experi-
mentally and by a user study.

MatchingMarkersandLabels. Elements onhistoricalmaps are o endensely packed.
¿is can make it particularly challenging to �nd out which text label corresponds to the
various markers. Figure 1.4 shows two examples: in the situation on the le , map ele-
ments are arranged very densely, which demands some combinatorial reasoning by the
reader to �gure out the correct correspondence between markers and labels. ¿e situa-
tion on the right is di�erent in the sense that based on the map alone, it is not possible at
all to determine the correct correspondence. (Look ahead to Figure 4.12 on page 70 for
more details on this situation.) Still, in most situations, labels are at least placed near the
object they refer to.

InChapter 4, we use this simple observation tomodel an optimization problembased
on bipartite matchings. We present an e�cient algorithm for the problem and show ex-
perimentally that it is able to match markers and corresponding labels with high accu-

7



Chapter 1 Introduction

Figure 1.4: Historical map with densely arranged map elements (left) and ambiguous label place-
ment (right). In both situations, it is di�cult to identify which label belongs to which place marker.

racy. In particular, complicated situations like the one shown in Figure 1.4 (le ) can be
solved automatically using our approach. For the situation shown on the right, things
are di�erent: since the placement of the labels is ambiguous, we cannot �nd the correct
assignment without external help. Again, we introduce an e�cient user interaction that
e�ectively leads the user to such unclear situations, and present a prototype interface.

Our approach requires the correct extent and location of each marker and label as
its input. However, this information might not always be available in practice, for exam-
ple due to errors in a previous recognition step. We extend our approach to a problem
formulation that allows labels to be split, which is a reasonable error to expect. Unfortu-
nately, this version of the problem is NP-hard. For a restricted version of this problem,
we present a polynomial-time algorithm.

Extracting Building Footprints. Large-scale maps provide di�erent challenges than
the medium-scale maps discussed before do. ¿e higher level of detail makes it possible
to extract not only the position, but also the shape of objects. Objects of interest in-
clude for example building footprints, streets, and bodies of water. ¿e New York Public
Library (NYPL) has been working on the extraction of building footprints from 19th-
century insurance atlases for some years. ¿ey use crowdsourcing to cope with this ex-
traction task on their extensive collection of maps. ¿is means that the steps involving
user interaction are dealt with by volunteers using an online platform6. See Figure 1.5
for an example of their large-scale maps (showing building footprints in Manhattan),
together with a crowdsourcing user interface.

¿e NYPL applies a three-stage extraction process, starting with an automatic detec-
tion of footprints using image processing techniques. ¿is �rst step does not involve
human supervision, but o en leads to incorrect (or imprecise) recognition results. In
the second step, the automatically detected footprints are presented to users for manual
veri�cation. Users can declare footprints as “correct”, “incorrect” or “to be �xed” (when
the recognition result is imprecise, but not entirely wrong). ¿e footprint polygons from
the last category are addressed in the third step, which again involves user interaction.

6 http://buildinginspector.nypl.org/

8

http://buildinginspector.nypl.org/


1.3 Outline of this Book

Figure 1.5: Section fromaNewYork insurance atlas, showingbuilding footprints inManhattan in 1894.
A user is tracing one of the footprints (dashed red line) using the NYPL’s crowdsourcing interface: ver-
tices can manually be added, deleted or moved (by dragging the red drops).

¿ese polygons are presented with an interface that allows users to add, delete, andmove
vertices in order tomake the polygonmatch the underlying building footprint (see again
Figure 1.5).

For quality assurance, the same tasks are solved by several users independently. ¿is
raises questions on how to integrate the user-submitted data, particularly for the third
step: how to �nd the consensus for a set of (possibly di�erent) polygons that are supposed
to trace the same building footprint?

In Chapter 5, we formalize the process currently used in the crowdsourcing system
and give an algorithm for calculating consensus polygons. Using an extensive data set
collected by the NYPL, we experimentally evaluate our algorithm and show that it sig-
ni�cantly improves the quality of the resulting data (as compared to the individual user-
submitted polygons). In addition, we discuss a variant of our algorithm that is parameter-
free. Note that in this chapter, we approach e�cient user interaction from a slightly dif-
ferent perspective than in the previous two: rather than minimizing the work required
of the individual users, we e�ectively combine the users’ e�orts to achieve a result quality
higher than that of any individual user.

Georeferencing Itineraries. Finally, we consider historical itineraries, which provide
quite a di�erent representation of spatial information. Unlike the geometric representa-
tion of the (more or less complete) geography of a region provided by maps, itineraries
contain a textual representation focused on individual travel routes. ¿ey describe these
routes as a sequence of settlements encountered along the way, together with the travel
distances between them. Sometimes, this description is augmentedwith additional infor-
mation on the settlements, for instance a categorization based on size or town privileges.
¿e information contained in these documents is of interest to several disciplines in the
humanities and relevant for various research topics, including the investigation of early
modern period road networks and the development of human mobility. Figure 1.6 (le )
shows an itinerary from a historical guidebook published in the 16th century. It describes
the route from Salzburg to Innsbruck, including seven settlements along the way.

Georeferencing these documents, that is, identifying each historical settlement on
a modern map, provides several challenges. First, many toponyms have changed sig-
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Figure 1.6: Left: itinerary from the Raißbüchlin, a guidebook published in 1563, describing the route
from Salzburg to Innsbruck. Right: the same route on amodernmap, showing correspondingmodern
places.

ni�cantly over time, particularly in terms of their spelling. ¿e itinerary from Figure 1.6
shows for example two di�erent spellings for the place “Innsbruck” (within a single page),
none of which match its modern spelling. However, many toponyms (and their modern
spellings) have remained phonetically similar. Second, the distances given in the itiner-
aries are imprecise: they are o en rounded to integers, the road network they refer to
is unknown, and the way the distances were measured is also unclear. Despite all these
uncertainties, historical itineraries clearly contain valuable information that can be used
to reconstruct the described routes.

In Chapter 6, we introduce a probabilistic approach that calculates a most-likely as-
signment of the places given in a historical itinerary tomodernmap data. It is able to deal
with the discussed uncertainties, including assessingwhether the di�erence between two
toponym strings is a phonetically plausible change. Our experimental evaluation shows
that our approach achieves high accuracy on itineraries from historical guidebooks. In
addition, we show that sensitivity analysis can be used as the basis for an e�cient qual-
ity assurance process, in which our algorithm selects uncertain assignments for manual
user veri�cation.

10



Chapter 2

Preliminaries
In this chapter, we give a short historical overview over each type of spatial document
we will consider in this book. Furthermore, we review related work that is relevant to
the topic of information extraction from historical maps in general. (Related work that
is speci�c to the individual topics of the following chapters is discussed there.) In the
�nal section of this chapter, we introduce basic de�nitions and present methods that are
used throughout the remainder of the book.

2.1 Historical Spatial Documents

In the subsequent chapters of this book, we deal with three di�erent types of historical
documents providing spatial information: medium-scale maps, large-scale insurance at-
lases, and itineraries. We give a short introduction to the origins and speci�c character-
istics of each of these document types below.

Medium-Scale Maps. Chapter 3 and 4 deal with information extraction from his-
torical maps of medium scale. We particularly focus on maps created between the 16th
and 18th century, thus spanning the time from the High Renaissance to the end of the
Age of Enlightenment. Our main source for maps is the Franconica collection¹ main-
tained by the Würzburg University Library. ¿is collection contains approximately 800
maps with a focus on Franconia from that timespan. Part of the collection is the famous
Rotenhan map from 1533 (see Figure 2.1a), which is considered to be the �rst map of
Franconia [Meu07]. We have selected this set of maps because of its wide production
timespan over three centuries, its visual and technical variety, and its broad range of
(medium) scales: in our experiments, we worked with maps of scales between approxi-
mately 1:300 000 and 1:700 000. Of course, there are many more (and also much larger)
collections of historical maps. For example, the map collection of the Bavarian State Li-
brary contains 80 000 maps created before 1850, and the IKAR database² lists 260 000
of such maps. Outside of Germany, the British Library and the Library of Congress both
have extensive map collections, each holding more than 4.5 million maps.

Historical maps from the time between the 16th and 18th century are very diverse
in size, make, purpose, and style. In his introduction to cartography in the German
lands, Meurer [Meu07] describes Renaissance cartography as “a mosaic of individual

¹ http://www.franconica-online.de/
² http://ikar.staatsbibliothek-berlin.de/
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parts di�ering in type and importance.” ¿is diversity is due to several factors. First,
cartography at that time was not a well-established discipline, and lacked common rules
and standards.³ Instead, a variety of di�erent map styles, o en based on medieval or
ancient model, continued to coexist. Second, di�erent techniques were applied to pro-
duce maps. At the beginning of the Renaissance, woodcutting was the predominant
technique for printing maps. In the middle of the 16th century, copper engraving gained
increasing popularity as amap productionmethod, but woodcutting was still being used
until the 17th century [Meu07]. Using either technique, it was di�cult to accurately en-
grave small text [Woo07b]. ¿is led not only to variety between several maps, but also
to considerable variance between the individual characters within a single map. ¿ird,
the political and territorial fragmentation of Germany was “re�ected in a large number
of regional maps, [whose] quality and function di�er enormously” [Meu07].

In general, geodetic accuracy was low. On maps created before the late 18th century,
coordinates and projection grids were sometimes present, but “the data behind them
was o en questionable” [Woo07a]. At the time, the interest in surveying was still mostly
qualitative: instead of providing geodetic accuracy, “maps relied on extensive labeling
of place-names” [Woo07b] to convey geographic information. ¿is was not only due to
di�culties in surveying andmap production, but also because of the (technical) inability
of map users to accurately determine the geographic coordinates of their own current
position.

Despite this lack of geodetic accuracy, maps from that time o�er a wealth of informa-
tion. Manymaps include large numbers of labeled placemarkers that are densely packed
and use di�erent pictograms indicating various types of settlements. On a larger scale,
territories are o en indicated by the background color of the correspondingmap area. In
terms of physical geography, one typically sees waters, woodlands, and hills. While river
systems are depicted in high detail (including smaller tributaries), on many maps there
is a striking absence of a road network.4 Forests and hills are indicated only qualitatively
by an accumulation of pictograms. For examples of all these features, see Figure 2.1.

In the context of information extraction and georeferencing, both the visual diversity
and geographic inaccuracy of historical maps pose considerable challenges. For one, the
individual characteristics make it di�cult to develop methods that work well on a vari-
ety of di�erent historical maps. When developing the approaches presented in Chapter 3
and 4, we put special emphasis on robustness against such di�erences and ran experi-
ments on maps from di�erent centuries. In addition, there are inconsistencies within a
single map, like place markers that are missing text labels and vice versa. (For examples
of this occurring in several maps, look ahead at Figure 4.4.) ¿e typically dense label-
ing, together with small, hand-engraved text, can make it challenging to read labels and

³ ¿ere was, for example, no agreement on the orientation of maps. Although relatively small, the Fran-
conica collection contains maps that are oriented towards north, east, and south. ¿is is not necessarily
indicated on the map.

4 Some exceptions to this exist, a prominent example being Erhard Etzlaub’s Rom Weg map from 1500.
¿is map was intended for pilgrims and shows roads from central Europe towards Rome [Meu07].
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(a) Section of Sebastian von Rotenhan: Das Franckenlandt, 1533.

(b) Section of Frederik De Wit: Circulus Franconicus, 1706.

(c) Section of Johann Baptist Homann: Erster und gröster Theil des [...] Franckischen Craisses, 1710.

(d) Section of Daniel Adam Hauer: Carte Topographique D’Allemagne, 1787.

Figure 2.1: Sections of historical maps from Franconica collection, containing a variety of information,
including rivers, woodlands, hills, political borders, and (labeled) settlements.
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�nd their corresponding markers. Finally, the lack of geographic accuracy prevents a
straight-forward alignment of the historical map to modern map data.

Historical maps usually contain additional information arranged around the actual
map body, such as legends, city views, extensive titles, and instructions to the reader.
While we acknowledge that this information is interesting and certainly worth analyzing,
extracting it is beyond the scope of this book. ¿e main reasons are that the additional
information is mostly not spatial, presented in an unstructured way, and (at least in the
case of titles) o en already extracted by hand during digitization.

Large-Scale InsuranceAtlases. In Chapter 5, we are concerned with information ex-
traction from more recent, large-scale maps. In cooperation with the New York Public
Library (NYPL), we considered a set of 12 �re insurance atlases, containing nearly 600
individual map sheets in total. ¿e NYPL has been actively working on digitizing their
collection of insurance atlases for several years using various approaches [Knu13]. ¿e
speci�c set of 12 atlases that we experimentedwith is the current corpus for theirBuilding
Inspector5 crowdsourcing website. On this website, volunteers can help extract building
footprints and transcribe the corresponding labels from these maps. ¿e atlases were
published between 1855 and 1915 and cover several boroughs of New York City. ¿e con-
tained map sheets are of scale 1:600 (one inch to 50 feet), which was the standard scale
of North American �re insurance atlases.

For a history of �re insurance mapping, see the introduction by Ristow [Ris68]. He
notes that �re insurance maps presumably originated in the late 18th century, when the
�rst �re insurance map of London was published. Some 50 years later, in the mid-19th
century, �re insurance maps became popular with North American insurance compa-
nies. For the growing �re insurance industry, it was no longer economic to inspect each
building to be insured on-site. ¿is fueled a demand for insurance maps, which pro-
vided quickly accessible, accurate information on �re risks on a per-building level. By
the beginning of the 20th century, the Sanborn Map Company had absorbed most of its
competitors and established a de-facto monopoly on �re insurance maps in the United
States. In the following 30 years, Sanborn insurance maps were in widespread use, un-
til they were gradually replaced by other technology in the 1940s. ¿e surviving copies
of these maps are now considered “invaluable [...] records of America’s urban develop-
ment” [Ris68] over a timespan of 100 years.

¿e spatial and technical information provided in �re insurance maps was surveyed
speci�cally formaking thesemaps by teams of surveyors. ¿e individualmap sheetswere
hand-drawn and reproduced using lithography; the color was applied a erwards using
watercolor tint. O en, the map sheets were subsequently bound to large volumes cover-
ing speci�c areas. In order to account for recent changes (for example when a building
was demolished and replaced), Sanborn o�ered a correction service that supplied paper
patches showing the updated situation for pasting into the maps.

5 http://buildinginspector.nypl.org/
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Figure 2.2: Section of a �re insurance map showing blocks in Lower Manhattan. This map sheet is
taken from William Perris’ Maps of the City of New York, an insurance atlas published between 1857
and 1862. Perris’ mapping business was later acquired by the Sanborn Map Company. Note the use
of various colors and symbols (such as open and closed circles), which provide information on the
construction type and individual �re hazard for each building.

Insurance atlases usually contain a collection of map sheets covering speci�c neigh-
borhoods of a city. Due to their large scale, the map sheets present streets and building
footprints in considerable detail. Typically, each footprint has a colored background,
which indicates the construction material and build style of the corresponding building.
In addition, symbols (such as circles or crosses) give additional information on possible
�re hazards. On the example map presented in Figure 2.2, footprints colored green in-
dicate a particular �re hazard. ¿ey are further subdivided according to comparative
danger as indicated by the number of symbols inside, ranging from one (for example a
bakery) to four (for example �rework manufactories).

In addition to information on buildings, insurance maps also provide street names
and street numbers for easier orientation. In our work, we are mainly interested in ex-
tracting the polygonal shapes of building footprints. ¿e NYPL currently asks crowd-
sourcing users to manually extract street names and numbers; however, the consistent
handwriting might facilitate automatic approaches as well.

Itineraries. In Chapter 6, we deal with historical spatial documents that are quite dif-
ferent from the various maps we have discussed above: historical itineraries. Itineraries
describe a route by listing the settlements encountered along the way and indicating the
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travel distances between those settlements. Interestingly, they were a much more com-
mon tool for way�nding than maps in the Renaissance, since many maps lacked road
networks altogether. As such, itineraries “were by no means replaced by their graphic
equivalents” [Woo07a]. Instead, historical itineraries coexist with maps and sometimes
even served as data sources for compiling maps [Meu07].

Historical itineraries were usually part of roadbooks, which were printed in small for-
mats so they could be carriedwhile traveling. A large number of these books are still in ex-
istence today: for example, the Austrian National Library owns approximately 50 books
of itineraries published between 1500 and 1800, with an additional 400 at SUBGöttingen,
and 75 at HABWolfenbüttel. In the present book, we consider two historical guidebooks
from the late-16th century, each containing hundreds of itineraries: Jörg Gail’s Raißbüch-
lin [Krü74], published in Augsburg in 1563 as the �rst independently printed German
guidebook, andKronn undAuszbunde allerWegweiser [Ano97], published anonymously
in Köln in 1597. Figure 2.3 shows a page from each book. For an introduction to historical
guidebooks (and speci�cally the Raißbüchlin), see Krüger [Krü74].

¿e two guidebooks we consider in this book were printed using movable type and
are both set in a tabular form, listing names of encountered places together with the
travel distance from the previous place. Both books give the sum of the distance of the
individual legs, thus providing the total travel distance for each itinerary. In addition,
there are indicators for the importance of each place, based on the respective town priv-
ileges. For example, the Raißbüchlin prepends “S”, “M”, “D”, and “K” to some toponyms,
indicating that these places are cities, market towns, villages, or monasteries.

Despite the similarities and the relatively small timespan between their publication,
the two guidebooks are quite di�erent in terms of their organization and layout. ¿e
Raißbüchlin is rather minimalistic, starting with a short introduction and then simply
giving a sequence of itineraries. ¿e page layout is plain and focuses on one route at a
time. In contrast, the itineraries in theKronnundAuszbunde allerWegweiser are grouped
by city of departure and then ordered alphabetically. ¿is roadbook uses a three-column
layout and has maps enclosed with it, which provide an overview of the covered areas
and are referred to from each itinerary. In addition, there is a short description of each
city of departure.

Identifying the places from historical itineraries can be challenging. ¿e toponyms
given in our two roadbooks from the late-16th century have usually changed by now, at
least in their spelling. ¿ismakes it di�cult to �nd the correspondingmodern toponyms
(for instance in a gazetteer6). Consider for example the �rst stop in the itinerary from
Augsburg to Salzburg given in Figure 2.3 (le ): it is spelled “Mitelsteten”, but it has also
been mentioned under the names of “Mütelsteten”, “Mittelsteten”, “Mittelnsteten”, “Myt-
telstetten”, “Müttelstetten”, and “Mittelstätten” between the 14th century and now [FvR13].
Nowadays, the name of the village is spelled “Mittelstetten.” All the historical spellings
are at least phonetically similar to the modern one, so that a researcher would be able

6 A gazetteer is a dictionary of place names, sometimes also including geo-coordinates and additional
information on the places.
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Figure 2.3: Pages from two guidebooks published in the 16th century, the Raißbüchlin (left) and the
Kronn und Auszbunde aller Wegweiser (right).

to manually �gure out the relation. However, this is not the case for all toponyms. In
Chapter 6, we will for example encounter a place in the Raißbüchlin called “Jesta”, which
is now called “Oestheim.” Without the (geographic) context provided by the itinerary, it
would have been very di�cult to make this relation.7

Digitization. Digitizing historical documents, in the sense of transferring a physical
artifact into the digital world, is a di�cult task. It requires profound knowledge about
the documents as not to damage them during the process and also sophisticated tech-
nical equipment (usually based on scanning or photography). In addition, digitization
demands some farsightedness when de�ning long-term storage formats – and not to
mention a good lot of patience. ¿e process of creating high-quality digital representa-
tions from rawmaterial is beyond the scope of the present book. Rather, we assume that
this work has already be done before, and when we refer to maps (or other historical
documents) in this book, we mean digital images of them. For more information on the
topic, refer to Jobst’s overview book [Job10].

7 In fact, there is a guidebook from the mid-16th century that lists this village as “Ehsta” and explicitly
mentions that in many other guidebooks, the village is called “Jesta.”
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2.2 Related Software Systems

Since the digitization and analysis of historical maps is of increasing interest to libraries
and archives, several systems simplifying this complex process have been developed.
¿ese systems can be divided into two categories. First, there are systems that are gen-
erally suitable for georeferencing elements in any historical map. Most of these systems
provide convenient graphical interfaces, but still rely heavily on users to manually anno-
tate or georeference the input maps. Second, there are systems that focus on extracting
particular details from a particular set of maps. ¿ese approaches are usually speci�cally
tailored to a large corpus of maps containing hundreds or thousands of map sheets that
have been created with the same methods in a coherent visual style. As a result, these
systems cannot be easily transfered to other maps (of a di�erent style). ¿ey are o en
aimed at experts, do not provide user interfaces, and have only proof-of-concept imple-
mentations.

General Purpose Systems. ¿e Pelagios project8 by Simon et al. [SBI12] provides
tools for creating linked open data describing historical places. ¿is task is not limited
to maps, but also includes places mentioned in text as well as shown in arbitrary images.
Part of this project is the Recogito georeferencing system [SBIdSC15]. ¿is so ware is
provided as a web service and features a convenient user interface for annotating spatial
elements in text and images. However, the system does not provide a signi�cant level of
automation, especially when working with maps: in the current version, users have to lo-
cate and annotate map labels manually. Simon et al. [SPIB14] describe preliminary work
on automating these tasks, but this has never been implemented in the production sys-
tem. Since the Pelagios project has pledged itself to open source and the Recogito system
ismodularly structured, it may be possible to integrate some of the approaches described
in the present book into this system.

With a di�erent group of co-authors, Simon [SHRM11] introduced the YUMA map
annotation tool, which was later used as a base for theMaphub platform9 by Haslhofer
et al. [HRLG13]. Both systems support manual annotation of historical maps, but do not
o�er tools to automatically extract information from the maps. ¿e development of this
so ware has been discontinued as of 2013.

Fleet et al. [FKP12] present the Georeferencer system¹0, which is part of a commer-
cial toolbox o�ered by Klokan Technologies. ¿e system supports georectifying historical
maps, which means transforming them into a known coordinate system based onmanu-
ally selected control points. Note that this does not qualify as deep georeferencing, since
usually only few map elements are referenced to their modern counterparts and no se-
mantic information is stored. Still, georectifying maps enables spatial query interfaces
such asOldMapsOnline¹¹ [SP12]. ¿is web service shows historical maps embedded into

8 http://commons.pelagios.org/
9 http://maphub.github.io/
¹0 http://www.georeferencer.com/
¹¹ http://www.oldmapsonline.org/

18

http://commons.pelagios.org/
http://maphub.github.io/
http://www.georeferencer.com/
http://www.oldmapsonline.org/


2.2 Related Software Systems

a modern overview map; when zooming or panning the modern map, historical maps
covering a similar area are presented.

To semi-automatically detect and georeference places, Höhn et al. [HSS13] propose
a system that �nds place markers based on examples a user has previously identi�ed.
In a subsequent step, this system suggests possible place names using a modern map.
Work on this system has recently been resumed by Höhn and Schommer [HS17b], but
no comprehensive description or implementation has been published yet. In another
paper, Höhn and Schommer [HS17a] propose georeferencing the contents of a histor-
ical map in relation to another historical map (as opposed to a modern map). ¿is is
a promising approach since it was not unusual for historical maps to be “pirated and
roughly copied” [Woo07a] in order to create new maps. In such cases, two historical
maps may be much more similar to each other than to a modern map. Provided that
one of these maps has already been georeferenced, it is possible to use this information
to georeference to other historical map as well.

For the postprocessing of georecti�ed maps, Jenny and Hurni [JH11] introduceMap-
Analyst, a tool that is able to analyze the geometric and geodetic accuracy of historical
maps and visualize the identi�ed distortions. ¿e underlying method requires a su�-
cient number of control points between the historical and the modern map as its input.

Systems for Particular Corpora. Research on fully-automatic information retrieval
speci�cally from historical maps is scarce. Automatic approaches exist, but only for re-
stricted inputs – that is, developed speci�cally to digitize a particular corpus.

For example, a topic that is actively being worked on is the automatic extraction of
forest cover from historical maps. Leyk et al. [LBW06, LB09] describe methods to �nd
forest cover in a speci�c set of 19th-century topographic maps (the so-called Siegfried
Atlas). Osta�n et al. [OIK+17] pursue the same objective on several sets of early-20th
century maps. ¿eir approach mainly relies on color segmentation and the authors �nd
that it has di�culties when the original colors have degraded, which is frequently the
case in oldermaps. Kaim et al. [KKK+16] introduce anothermethod for extracting forest
cover from historical maps and apply it successfully to two corpora from the late-19th
and early-20th century. ¿e authors conclude that their approach might be applicable to
othermaps from the 19th century as well. Iosifescu et al. [ITH16] describe a work�ow for
vectorizing features from the Siegfried Atlas using existing so ware tools. ¿eir method
is not limited to extracting forest cover, but relies on several parameters that need to be
manually picked for each kind of feature to be extracted.

In cooperation with the Saxon State and University Library Dresden (SLUB), Bill et
al. [BWM14] present a method to automatically analyze map sheets from a speci�c cor-
pus, the so-calledMesstischblätter.¹² ¿is is a set of maps created between 1870 and 1943,
providing high geographic accuracy as well as a consistent visual style. In particular, the
cartographic projection and the coordinates of the four corners of each map sheet are
known. ¿e authors focus on detecting those four corners (of the map body), which

¹² http://www.deutschefotothek.de/cms/kartenforum-sachsen-messtischblaetter.xml
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allows them to separate the map from the border of the sheet. ¿is enables a seamless
presentation of several map sheets together and a precise projection to other coordinate
systems. In a second study, Bill et al. [BKW15] compare the accuracy when solving this
problem either by using image processing or instead by applying a crowdsourcing ap-
proach. ¿e authors conclude that the two approaches lead to a similar accuracy. Note
that the extracted information does not qualify for deep georeferencing: Bill et al.’s pro-
cess aligns coordinate systems, but does not consider the actual contents of the maps.

Giraldo Arteaga [GA13] automatically extracts building footprints from georecti�ed
scans of the �re insurance atlases discussed in Section 2.1. In a subsequent step, the
extraction results are manually checked by volunteers. We discuss this crowdsourcing
process in more detail in Chapter 5.

Chiang and Knoblock [CK13b] introduce a method for extracting road networks
fromprintedmaps and implemented it as part of their Strabomap processing framework.
¿eir system achieves high accuracy while requiring only limited user e�ort. However, it
is focused on maps meeting 20th-century cartographic standards, which is not the case
with older historical maps.

¿e e�ectiveness of the approaches discussed above is in part due to the homogeneity
of the relatively recent maps they are developed for. Note that the experiments in Chap-
ter 3 and 4 are performed on more diverse and much older maps (16th to 18th century,
see Section 2.1).

OpticalCharacterRecognition. Optical character recognition (OCR) is the problem
of recognizing text in raster images and transforming it to machine-readable text. Since
historical maps are digitized as raster images and usually contain a large number of text
labels, OCR is relevant to many information extraction tasks on these documents. Sev-
eral general-purpose OCR systems are available as integrated so ware packages. ¿is
includes commercial so ware like FineReader¹³ as well as open-source tools like Tesser-
act¹4 [Smi07]. Recently, OCR systems based on deep learning techniques have emerged,
of which theOCRopus system¹5 by Breuel et al. [Bre08, BUHAAS13] is a popular example.
Note that the latter is not an integrated system but rather a toolkit aimed at experts.

General-purpose OCR systems are o en aimed at modern, typewritten texts and do
not perform well on historical maps due to lower printing quality and higher visual vari-
ation. However, many systems can be manually trained to handle uncommon scripts or
fonts by providing explicit trainingmaterial. Such an approach can work well – Kirchner
et al. [KDBN16] reach high accuracy with Tesseract even on early prints from the 15th
century – but preparing the training data is nontrivial and requires signi�cant manual
e�ort. Speci�c training is therefore only reasonable when dealing with a large corpus of
text that uses a consistent script or font.

¿ere are some OCR approaches that are designed speci�cally for extracting text
from (historical) maps. Chiang and Knoblock [CK15] present an approach to extract

¹³ https://www.abbyy.com/finereader
¹4 https://github.com/tesseract-ocr/tesseract
¹5 https://github.com/tmbdev/ocropy
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text layers from raster maps. ¿ey use their method to �rst locate the text labels and
subsequently pass them (individually) to the commercial FineReader OCR system. ¿e
authors show that by applying their segmentation as a preprocessing step, they clearly
outperform running FineReader directly on the entire map image. While originally only
tested on modern maps, Chiang et al. [CLHN+16] and Yu et al. [YLC16] extend this
approach to historical maps from the 19th and 20th century.

Höhn [Höh17] proposes an OCR system for historical maps based on deep learning.
¿e system is speci�cally aimed at recognizing text labels on maps and achieves high
accuracy in preliminary tests on portolan charts from the early modern period. While
this approach is promising, it seems to require an extensive amount of training data and
is not published in full detail yet.

Weinman [Wei13] pursues a di�erent direction and additionally takes a gazetteer into
account. He introduces a probabilistic approach thatmatches gazetteer entries with topo-
nyms from the map that have been previously identi�ed using a system for scene text
recognition [WBKF14]. Limiting the possible recognition results to the set of strings
contained in the gazetteer makes this approachmore robust against possible recognition
errors. In addition, Weinman’s method takes the spatial relation between the location of
the toponyms on the map and the geo-location of the corresponding places from the
gazetteer into account.

While we acknowledge the relevance of OCR to information extraction from histor-
ical maps, we do not address the problem of OCR in this book. ¿ere are several promis-
ing developments on OCR for historical maps, but at this point, the problem must still
be considered open. We make some proposals on this topic in the concluding Chapter 7.

2.3 Algorithmic Foundations

In this section, we introduce basic de�nitions and notation used throughout this book.
Furthermore, we discuss some of the algorithmic techniques used in the following chap-
ters. We point to Cormen et al. [CLRS09] for a standard reference book on algorithms.
Our notation largely follows the de�nitions from this book. See Shalev-Shwartz and Ben-
David [SSBD14] for a more extensive background on machine learning and Russel and
Norvig [RN09] for an introduction to probabilistic reasoning.

2.3.1 Graphs, Matchings, and Flows

A graph is a tuple G = (V , E), consisting of a set of vertices V and a set of edges E.
Vertices are also referred to as nodes; we use both terms synonymously. In an undirected
graph, an edge is an unordered pair {u, v} of vertices u, v ∈ V . Following common
convention, we denote edges of undirected graphs as (u, v) for the remainder of this
book (identifying (u, v) and (v , u)). In a directed graph, an edge is an ordered pair (u, v)
and also called arc. In both directed and undirected graphs, we forbid self-loops, that is,
edges (u, v) with u = v. If not explicitly speci�ed, we assume graphs to be undirected.
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In a graph G = (V , E), two vertices u, v ∈ V are called adjacent if there exists an
edge (u, v) ∈ E. An edge (u, v) ∈ E is called incident to u and v; u and v are called
incident to (u, v). A path in a directed graph is a sequence of vertices such that there
exists an arc in E for each pair of consecutive vertices. A path is called simple if it does
not contain any vertex more than once. If a path begins and ends at the same vertex
(and contains more than one vertex), we say the path forms a cycle. If a directed graph
contains no cycles, it is called a directed acyclic graph. A cycle in which all vertices except
the �rst and the last are pairwise di�erent is called a simple cycle. For the remainder of
this book, we assume paths and cycles to be simple, unless otherwise noted.

Matchings. Given an undirected graph, a subset M ⊆ E is called a matching if each
vertex in V is incident to at most one edge in M. A matching is called maximum if it
is of maximum cardinality, that is, if there exists no matching M′ with ∣M′∣ > ∣M∣. If
a matching has size ∣V ∣/2, that is, if all vertices in G are incident to an edge in M, the
matching is called perfect.

Finding a maximum matching in a given graph is a classic problem in combina-
torics. A polynomial-time algorithm for this problem on general graphs is due to Ed-
monds [Edm65]; it runs in O(V 2E) time. ¿e problem can also be expressed using
integer linear programming as follows. For each edge e ∈ E, let xe be a binary variable
that indicates whether e is part of the matching or not. To obtain a maximummatching,
maximize the sum of all xe under the constraint that no vertex is incident to more than
one edge in the matching:

maximize ∑
e∈E

xe (2.1)

subject to ∑
v∈V

x(u ,v) ≤ 1 ∀u ∈ V (2.2)

xe ∈ {0, 1} ∀e ∈ E . (2.3)
An undirected graph is called bipartite if its vertex set V can be partitioned into two
sets V1 and V2 such that each edge in E is incident to exactly one vertex from V1 and one
from V2. In bipartite graphs, a maximummatching can be found in O(√VE) time due
to Hopcro and Karp [HK73]. For further algorithmic results, see Schrijver [Sch03].

Flow. A �ow network is a directed graph G = (V , E) in which each arc (u, v) ∈ E has
a capacity c(u, v) ≥ 0. For nonarcs (u, v) /∈ E, let c(u, v) = 0. ¿ere are furthermore two
distinguished vertices in V , a source s and a sink t. We assume that for all vertices v ∈ V ,
the �ow network contains a path from s to t including v. Further, we forbid antiparallel
arcs, that is, we require that if (u, v) ∈ E, then (v , u) /∈ E.

A �ow in G is a real-valued function f ∶V × V → R with the following properties:
1. capacities are met: for all u, v ∈ V , we require 0 ≤ f (u, v) ≤ c(u, v).
2. �ow is conserved: for all u ∈ V ∖ {s, t}, we require∑v∈V f (v , u) = ∑v∈V f (u, v).
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¿e value ∣ f ∣ of a �ow f is de�ned as

∣ f ∣ = ∑
v∈V

f (s, v) − ∑
v∈V

f (v , s).
A classic problem involving �ows is themaximum�ow problem. Given a �ownetworkG,
it asks for a �ow of maximum value through G. ¿e maximum �ow problem can be
solved in polynomial time using for example the push-relabel algorithm by Goldberg
and Tarjan [GT88], which runs in O(V 2E) time.

Another well-known problem related to �ows is the minimum cost �ow problem,
which is de�ned as follows. Let G be a �ow network. In addition to the capacity, each
arc also has a cost κ∶V ×V → R≥0 for each unit of �ow passing through. ¿e objective is
then to calculate a �ow through the network that has a given �ow value d andminimum
cost. ¿eminimum cost �ow problem can be solved in polynomial time (see for example
Goldberg [Gol97]).

We can express the minimum cost �ow problem as a linear program as follows. For
each arc (u, v) ∈ E, let f(u ,v) be a variable denoting the amount of �ow through (u, v).
We weight the �ow through each arc (u, v) with the corresponding cost κ(u, v) and
minimize the total weighted �ow over all arcs:

minimize ∑
(u ,v)∈E

κ(u, v) ⋅ f(u ,v) (2.4)

subject to ∑
v∈V

f(v ,u) − ∑
v∈V

f(u ,v) = 0 ∀u ∈ V ∖ {s, t} (2.5)

∑
v∈V

f(s ,v) − ∑
v∈V

f(v ,s) = d (2.6)

0 ≤ f(u ,v) ≤ c(u, v) ∀(u, v) ∈ E . (2.7)

¿e constraints ensure that the �ow is conserved in each vertex (Equation 2.4), that
the given �ow value d is realized (Equation 2.5), and that the capacities are met (Equa-
tion 2.6). Conveniently, solutions to this (fractional) linear program are always integer if
the capacities are integer, even though an explicit integrity constraint is absent [Sch03].

2.3.2 Classi�cation
In this section we discuss the terminology surrounding classi�cation problems. Let X be
an arbitrary set called the domain set and call its elements instances (or: samples). Further,
we call an arbitrary �nite set Y the label set and its elements labels or (synonymously)
classes. Given a domain and a label set, classi�cation is the problem of deciding to which
class a given instance I belongs. ¿is decision is usually based on a �nite training set S,
which contains tuples (x , y) of an instance x ∈ X and its label y ∈ Y , but in general does
not contain I. A function f ∶X → Y that yields a label for a given instance is called a
classi�er.
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If the label set Y only contains two labels, the corresponding classi�cation problem
is called binary classi�cation and we denote the two labels by l+ and l−. A common ap-
proach to binary classi�cation is based on a score function s∶X → R and a discrimination
threshold τ ∈ R. Such a classi�er labels an instance x ∈ X with l+ if its score s(x) is
greater or equal to τ (and with l− otherwise). We say the classi�er discriminates between
instances from the two classes.

¿e performance of a binary classi�er can be measured in various ways of which we
only introduce some; for an overview, see Parker [Par11]. Consider a binary classi�er
with a score function s and a threshold τ, and let T ⊆ X be a �nite set of instances called
the test set. We call instances of class l+ from the test set false negatives if they are incor-
rectly labeled with l− by the classi�er. Similarly, we denote instances of class l− that are
incorrectly labeled with l+ as false positives. Instances that are correctly labeled with l+
or l− are called true positives or true negatives, respectively. Let tp denote the number of
true positives, tn the number of true negatives, fp the number of false positives, and fn
the number of false negatives in T .

¿en the precision of a classi�er (on this test set) is

tp
tp + fp

,

meaning the ratio of true positives to all instances classi�ed as positive by the classi�er.
Similarly, its recall (or: true positive rate) is de�ned as

tp
tp + fn

,

meaning the ratio of true positives to all instances that should have been classi�ed as
positive. ¿e false positive rate is de�ned as

fp
fp + tn ,

representing the ratio of false positives to all instances that should have been classi�ed
as negative. ¿e accuracy of a classi�er is de�ned as

tp + tn
tp + tn + fp + fn

,

meaning the ratio of correctly classi�ed instances to all instances in T . Finally, the
F1 score of a classi�er is de�ned as

2 ⋅ precision ⋅ recall
precision + recall ,

which is the harmonic mean of precision and recall.
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Note that for a test set T and a �xed score function s, the quality measures de�ned
above are still subject to the choice of the discrimination threshold τ. ¿e quality of a
binary classi�er can be evaluated independently of this choice using a receiver operat-
ing characteristic (ROC) curve. ¿is curve plots false and true positive rates while vary-
ing the discrimination threshold τ; look forward to Figure 3.5 for an example of such a
curve. A standard method for evaluating ROC curves is calculating the area under the
curve (AUC) [Faw06]. ¿is value ranges between 0.5 (classi�cation not better than a
coin toss) and 1 (perfect discrimination). For a background on this topic, see Hosmer
and Lemeshow [HJL04].

2.3.3 Clustering
Let X be an arbitrary �nite set, and let d∶X × X → R be a distance function over X.
Given X, clustering is classically the problem of �nding a partition C of X such that ele-
ments in the same set (called cluster) are near each other according to d, while elements
in di�erent sets are distant. ¿is de�nition is imprecise, since it is not always clear how
to combine these objectives. As a consequence, a large number of clustering algorithms
with di�erent behavior on the same input exist. Some of these algorithms require d to
be a metric or the number of clusters k as input; the famous k-means algorithm [Llo82]
for example requires both.

In this book, we repeatedly use the DBSCAN algorithm by Ester et al. [EKSX96]. It
does not require prior knowledge on the number of clusters. Instead, it is density-based,
relying on the assumption that the density of elements within a cluster is consistent and
higher than outside of the clusters. ¿is algorithm uses a slightly di�erent de�nition
of clustering than the one above: elements can also be identi�ed as noise, that is, as not
belonging to any cluster. DBSCAN requires two parameters: a real number ε de�ning the
maximum distance between two elements to be still considered near each other, and an
integerminPts, the minimum number of elements required to be near to form a cluster.
With su�cient domain knowledge, setting these values can be considerably easier than,
for example, predetermining k.

We now describe the clustering concept of DBSCAN inmore detail, since we will use
this terminology in Chapter 5. We start with de�ning the neighborhood of a point; the
de�nitions follow [EKSX96].

De�nition 1. ¿e ε-neighborhood of a point p ∈ X is Nε(p) = {q ∈ X ∣ d(p, q) ≤ ε}.
Recall that our basic assumption is that elements within clusters are densely arranged.
However, we expect that points in the interior of the cluster (so-called core points) have
a denser neighborhood than points on the border of the same cluster (border points).
Based on the neighborhood de�nition above, the following de�nitions formalize the
concept of density while taking the di�erent situations of core and border points into
account. Each de�nition is with respect to given values for ε and minPts.

De�nition 2. A point p ∈ X is directly density-reachable from a point qwith if p ∈ Nε(q)
and ∣Nε(q)∣ ≥ minPts.

25



Chapter 2 Preliminaries

¿is de�nition is extended to pairs of points that are not necessarily within distance ε.

De�nition 3. A point p ∈ X is density-reachable from a point q if there exists a chain
of points p1 , . . . , pn with p1 = q and pn = p such that p i+1 is directly density-reachable
from p i with 1 ≤ i < n.
De�nition 4. A point p ∈ X is density-connected to a point q if there exists a point r such
that both p and q are density-reachable from r.

Based on the density-connectedness of points, a cluster is de�ned as follows.

De�nition 5. A cluster C is a non-empty subset of X satisfying the following conditions:

1. maximality: ∀p, q ∈ X: if p ∈ C and q is density-reachable from p, then q ∈ C.
2. connectivity: ∀p, q ∈ C: p is density-connected to q.

It can be noted that following these de�nitions, border points can simultaneously be-
long to multiple clusters, as long as they are density-reachable from each of them. In
practice, this property is o en undesired and can be changed in various ways; we use the
implementation from the Scikit-learn library¹6 which assigns border points to exactly
one cluster.

Also note that not all of the input points necessarily become core or border points:
points in X that do not belong to any cluster are considered to be noise. ¿is is an ad-
vantage of DBSCAN over other clustering algorithms: it can explicitly declare points as
noise if they do not �t to the identi�ed clusters.

2.3.4 HiddenMarkovModels

Consider a stochastic process de�ned by a �nite set of states S, a discrete time param-
eter t, a prior distribution P(X1 ) over the states at time t = 1, and a set of conditional
distributions P(Xt ∣X1∶t−1 ) over the current states given all previous states. At any point
in time t, the process is in exactly one state xt ∈ S. A stochastic process is called aMarkov
chain if the probability distribution over the current state is conditionally independent of
any previous states except the last, that is,P(Xt ∣X1∶t−1 ) = P(Xt ∣Xt−1 ). ¿is property is
called theMarkov property, and the distribution over the current state given the previous
state is called the transition model of the Markov chain.

A hiddenMarkovmodel consists of aMarkov chainM, a set of possible observations E,
and a conditional distribution P( Et ∣Xt ) over the possible observations at time t given
the state at time t. ¿is distribution is called the emission model and only depends on the
state at time t (and not on previous states or observations). ¿e term “hidden” means
that the sequence of states the system is in cannot be directly observed; instead, we obtain
an observation emitted by the process at each point in time. Due to the independences

¹6 See [PVG+11] and http://scikit-learn.org/
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in this model, the complete joint distribution over all variables in the model can be ex-
pressed as

P(X1∶t , E1∶t ) = P(X1 ) ⋅ P( E1 ∣X1 ) ⋅ t∏
i=2

P(X i ∣X i−1 ) ⋅ P( E i ∣X i ).
Despite the modeling restrictions, hidden Markov models are a useful tool in various
applications. In particular, there are several relevant inference tasks in hidden Markov
models that can be e�ciently solved. For the application in this book, we are particularly
interested in a maximum likelihood estimation (MLE) of the sequence of states, given a
sequence of observations. ¿at is, we want to compute

argmax
x1∶t

P( x1∶t ∣ e1∶t ).
¿is can be achieved in polynomial time using the famous Viterbi algorithm [Vit67].
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Chapter 3

LocatingMap Elements
In this chapter, we describe an e�cient approach to one of the fundamental problems in
information extraction fromhistoricalmaps: locating occurrences ofmap elements such
as text or place markers in a raster image. We combine template matching (to locate pos-
sible occurrences) with active learning (to e�ciently �lter these possible occurrences).
Using this approach, we design a human-computer interaction in which large numbers
of elements in a map can be located reliably using little user e�ort.

We experimentally demonstrate the e�ectiveness of this approach on real-world data,
both with a statistical evaluation and in a user study. In addition, we show that our
approach can be applied to other historical documents as well: we successfully use it to
locate occurrences of glyphs in early printed books from the 15th century.

3.1 Introduction

Typical map elements to be extracted are place markers, their labels, and pictograms de-
scribing the physical landscape. Manually locating these elements in historical maps can
be a tedious task, because even a singlemap can contain vast numbers of them. Historical
maps can have several thousand of these elements: for example, Frederik de Wit’s Circu-
lus Franconicus map from 1706 contains more than 1600 labeled place markers, while
the map sheet is only 55 by 47 centimeters in size. In addition, there are hundreds of
pictograms showing hills or trees (indicating mountain ranges and forest areas). See Fig-
ure 3.1 for a section of this map. ¿e manual e�ort required to extract comprehensive
information from maps like this renders processing a larger set of maps prohibitive.

Automatically locatingmap elements would help to reduce themanual e�ort that has
to be spent on extracting information from historical maps, but is di�cult for several
reasons. First, there is a large variation in drawing styles between historical maps, which
impedes transferring methods from one map to another. Since the maps were hand-
drawn, there is also considerable variance in the drawing of the same elements within a
map; for examples, see Figures 1.3 and 2.1. ¿edense placement of elements in somemaps
can result in several pictograms overlapping, making it even more di�cult to locate the
individual elements. Automatically extracting semantic information from unstructured
data such as bitmap images is a truly di�cult task for computers to begin with. ¿is o en
leads to a mediocre results when applying fully automatic approaches. However, a high
detection quality is crucial, since an error in this step disturbs any subsequent analysis

¿is chapter is based on joint work with¿omas C. van Dijk and Felix Kirchner [BvD15, BvDK16].

29



Chapter 3 Locating Map Elements

Figure 3.1: Denseplacement ofmapelements on Frederik deWit’sCirculusFranconicusmap from1706.
The map section shows a multitude of settlements around Meinungen in today’s southern Thuringia
and is presented in its actual scale.

based on the extraction results. In light of these di�culties, we have developed an active-
learning system for a generally-applicable subproblem in this area: �nding approximate
repeat-occurrences of pictograms. In this chapter we demonstrate that active learning is
suitable for this real-world task.

As a �rst step, a user indicates a rectangular crop around a map element he or she is
looking for, such as or . ¿e system uses standard techniques from image processing
to �nd a set of candidate matches, but the problem remains to determine which of these
candidate matches are in fact semantically correct. We model this as a classi�cation
problem and use pool-based batch-mode active learning (Section 3.3). A statistical evalu-
ation of the proposed algorithm shows that it works well on actual data (Section 3.4).
We have implemented a web-based user interface (Section 3.5) and evaluated it in a user
study (Section 3.6). ¿is study shows that the resulting human-computer interaction is
e�ective and e�cient.

Our source of maps for this chapter is the Franconica collection¹ maintained by the
Würzburg University Library. In our experiments, we use six maps created between 1533
and 1787 from this collection. One of them is the Circulus Franconicus map from Fig-
ure 3.1; all other map imagery in this chapter is taken from maps of the Franconica col-

¹ http://www.franconica-online.de/
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lection as well. Later in this chapter, we will also work with early typeset prints. ¿e
scans of these documents are taken from the Otto Schäfer Library Schweinfurt and the
Würzburg University Library.

3.2 RelatedWork

Some research has gone into image segmentation speci�cally for bitmap images of (his-
torical) maps. Höhn [Höh13] introduced a method to detect arbitrarily rotated labels
in historical maps; Mello et al. [MCdS12] dealt with the similar topic of identifying text
in historical maps and �oor plans. Simon et al. [SPIB14] applied image processing tech-
niques and a combination of di�erent heuristics to identify toponyms in historical maps.

¿ese systems are rather sensitive to their parameters, requiring careful tweaking in
order to perform well. In a further paper, Höhn et al. [HSS13] speci�cally raise this as
an area for improvement: their experiments work well, but do not necessarily generalize
to a large variety of maps. ¿e system of Mello et al. was developed for a large set of
rather homogeneousmaps, whichmeans that it wasmerited to spend signi�cantmanual
e�ort to �nd good parameter values. In contrast, we aim to handle more diverse maps,
each with relatively small user e�ort. We therefore speci�cally address �nding model
parameters.

LocatingPictograms. ¿ere exist only few automatic approaches for �nding elements
in historical maps, and they are usually aimed at a speci�c corpus of maps. Leyk et
al. [LBW06, LB09] introduce an automatic approach to �nding forest cover in a cer-
tain corpus of 19th-century topographic maps. Working with similar maps, Iosifescu
et al. [ITH16] present a system for automatically vectorizing map elements like building
footprints and rivers. Giraldo Arteaga [GA13] also deals with the extraction of building
footprints, in this case from �re insurance atlases from the 19th and early-20th century.
We will discuss this system in more detail in Chapter 5. ¿ese approaches tend to work
well, but note that they are speci�cally tailored to relatively recent, homogeneous maps.
¿e tests in this chapter are performed on much older maps (16th to 18th century).

In order to detect and georeference places in such early maps, Höhn et al. [HSS13]
propose a system that �nds place markers and suggests possible place names based on
both amodern-daymap andmarkers that the user has previously identi�ed. ¿is system
is based on template matching; Höhn and Schommer [HS17b] later experimented with
deep learning for recognizing place markers.

Chiang et al. [CLK14] published an extensive survey focusing on the processing of
more recentmaps (i.e., maps from the 19th century onwards), covering a variety of image-
based techniques. Such maps are of high quality when compared to older maps, since
they have been designed and printed to modern cartographic standards. An example of
applying image processing to such maps is the work on recognizing text in raster images
by Chiang and Knoblock [CK15]. While the authors conducted experiments on mod-
ern maps only, their approach might be transferable to the much older historical maps
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addressed in this chapter. Dhar and Chanda [DC06] present a system that extracts geo-
graphic features from modern maps, but is based on layers of certain color rather than
pictograms.

Word Spotting. A further thread of research in this direction is performed under the
term word spotting, where the task is to locate written language in bitmap images. It is
considered a positive quality if this is performed in a language-agnostic way. (Consider
that humans can usually identify written text, even when unable to read the language or
when unfamiliar with the font or even the script.)

Rath andManmatha [RM07] do clustering based on connected components of “ink.”
It is common to applywarping techniques such as dynamic timewarping (DTW) to align
various copies of the same word, using projection pro�les [RM03, MC09]. Aldavert et
al. [ARTL15] study Bag-of-Word approaches for word spotting in handwritten texts. ¿e
primary concern in the word spotting literature has been the application to manuscripts,
although for example Roy et al. [RPL14] experiment with labels from modern maps.

Optical Character Recognition. Another problem that requires locating repeat-oc-
currences of pictograms is optical character recognition (OCR), for example when ap-
plied to early typeset prints. Since o�-the-shelf OCR systems do not work well on early
prints due to lower printing quality and higher visual variance, general purpose OCR
so ware like Tesseract [Smi07] and OCRopus [Bre08, BUHAAS13] has to be speci�cally
trained. In this context, an inventory containing various examples for each glyph oc-
curring in a given print is valuable data for training OCR engines [TDT13]. Recognizing
text in early prints directly by �nding repeat-occurrences of glyphs has also recently been
advocated by Caluori and Simon [CS13b].

Additionally, we note that a catalog of occurrences of glyphs can in itself be interest-
ing, for example to date or attribute printed works [Beh14]. Relying on (limited) manual
e�ort instead of OCR, Gottfried et al. [GWL15] and Serrano et al. [SGC+14] introduce
interactive systems for handwriting transcription and recognition.

Active Learning. We approach the extraction of information from historical maps us-
ing active learning. (See Settles [Set10] for a survey on active learning.) In particular, we
use batch-mode learning [CK13a, GS08, HJZL06]. Our approach is pool based, that is,
we have a discrete set of items that we wish to classify and we can only query the oracle
on those items. In e�ect, we learn a threshold based on logistic regression [BNG+06].
See Schein and Ungar [SU07] for a general discussion of active learning for logistic re-
gression.

¿e design of our system takes into account the human factors involved in using
a human as oracle. ¿is combines aspects of human-computer interaction (HCI) and
knowledge discovery, as advocated for example byHolzinger [Hol13]. Such factors can be
incorporated in the algorithms used, as in proactive learning [DC08]. For our purposes
we found that standard active learning su�ces.
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Figure 3.2: Overview of the consecutive steps in our method. The input is a bitmap generated by
scanning a historical map, and a template to search for. The output is a list of positive matches and
their location in the image.

3.3 SystemDesign

In Chapter 1, we have explained our modular approach to “understanding” historical
maps by creating an extraction framework consisting of small, independently operating
tasks. ¿e taskwe discuss in this chapter is �nding pictograms and textual elements. ¿is
is an information extraction step that li s from the unstructured level of a bitmap image
to data that is combinatorial in nature: a list of locations of map elements. Figure 3.2
gives an overview of the di�erent steps in this process.

Finding approximate occurrences of an example image is a classic problem in im-
age processing known as template matching (see for example Brunelli [Bru09] for an
overview). Algorithms solving this problem can be used for a variety of map elements,
from place markers, to forests, to text labels: we are interested in locating repeat-occur-
rences of these pictograms. However, standard techniques yield only a list of candidates
along with “matching scores:” this still needs to be converted into a yes/no classi�cation.
In this chapter we focus on e�ciently learning a classi�er in this setting.

Speci�cally in our application, the user provides a template by indicating the bound-
ing box for an interesting map element. ¿is could be a prototypical pictogram on the
map, such as a house ( ), a tree ( ) or even individual characters ( , , ). See Figure 3.3
for an example: here the user wants to �nd all occurrences of the character “a” and in-
puts the red rectangle in the le most image. ¿e template matching algorithm comes up
with – among thousands of others – the threematches indicated in the other images. ¿e
remaining problem is to decide which of these matches are in fact semantically correct.

¿e usefulness of recognizing individual characters should not be underestimated,
since standard optical character recognition does not performwell when applied directly
to an entire historical map: consider for example Figures 2.1c, 2.1d, and 3.1, all show-
ing maps where the text is not clearly separated from the other map elements. Even in
such messy maps, there are usually several characters that are particularly recognizable.
(Which ones might depend on the handwriting.) Given one typical example of a charac-
ter, our method can be used to �nd most of the other occurrences of the character with
high precision. If we do this for a number of di�erent characters, a later pipeline step can
cluster these results to �nd out where the text elements are (for example: labels). ¿is can
be used as a preprocessing step for OCR, in case the OCR algorithmwould otherwise get
confused by overlapping map elements or is computationally too expensive to be run on
the entire map. (¿e former is a particularly typical problem, even when applying OCR
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Template 4 r = 180
s = 82.0% r = 184

s = 82.0% r = 187
s = 81.7%

Figure 3.3: Several sections from the same historical map. The red rectangle in the leftmost image
indicates the cropused as template; theother three are computed candidatematches. Note that these
threematches have similar rank and score, but do not all represent semantic matches of the template.
In the ground truth we reject the rank-180 match (probably a hill) and accept the rank-187 match (“a”).
The ground truth of Experiment 4 accepts the rank-184 match (“d”): see Figure 3.4 for the reasoning.

to modern maps [CK15].) ¿is approach based on �nding a small set of speci�c charac-
ters as preprocessing is also used by Leyk et al. [LBW06]. Because of this application, we
prefer our system to have a tendency to side with precision over recall: false negatives
are not a disaster if we use a suitable set of characters, since it is likely that at least some
character occurrences within each label will be found.

In this chapter, we use a basic template matching algorithm, which we brie�y sketch
below. We deliberately chose this algorithm to show that even basic template matching
leads to good results when combined with our active-learning approach. Since the el-
ements we want to locate are all drawn with dark ink on a relatively light background,
the map content is e�ectively black and white, and we �rst binarize to a 1-bit-per-pixel
bitmap using a �xed threshold. (¿is is rather ad-hoc, but su�cient for our purpose.
For a survey on proper binarization methods for historical documents, see Stathis et
al. [SKP08].) ¿en we consider a sliding window and calculate a matching score for
every possible position, to pixel precision: when the template is shi ed to a certain posi-
tion, how many pixels are equal between the template and the image, and howmany are
di�erent? Following standard procedure, we take the percentage of equal pixels as our
matching score.² ¿is is e�ectively a feature extraction step, giving us a value per pixel.
If the score is high for a certain pixel (that is, for a certain position of the template), it is
likely that a slight shi of the template still results in a good score; we therefore discard
all pixels that do not have maximal score in their 8-neighborhood. Of the remaining pix-
els, we select the 1000 highest-scoring ones. ¿is cut-o� is chosen generously such that
all true positive matches survive this step. In this way, the template matching algorithm
is used as a data reduction and projection step that takes place before the classi�cation
happens.

² Note that this basic approach is not invariant to scale and rotation. It is naturally robust against small
variations, but some historical maps would require a more advanced template matching algorithm.
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3.3 System Design

Table 3.1: Data sets used in our experiments. Each line describes one data set: the name of the map,
a thumbnail of the template, characters that were considered positive matches, the area under curve
according to Figure 3.5, and the self-information relative to the logistic regression model trained on
all instances.

historical map template accepted AUC self-info.

1 Carte Topo. D’Allemagne (1787) b, h 0.85 462.91 bit
2 Franciae Orientalis (1570) a, g, d 0.90 566.95 bit
3 Franciae Orientalis (1570) e 0.87 642.02 bit
4 Circulus Franconicus, De Wit (1706) a, g, d 0.92 444.48 bit
5 Das Franckenlandt (1533) a, g 0.87 590.50 bit
6 SRI Comitatus Henneberg (1743) n, m, h 0.92 524.85 bit
7 SRI Comitatus Henneberg (1743) e 0.87 524.01 bit

8 Circulus Franconicus, De Wit (1706) 0.88 560.29 bit
9 Circulus Franconicus, Seutter (1731) 0.99 146.16 bit

All maps in this table are taken from the Franconica collection of the Würzburg University Library. Iden-
ti�ers: 1: 36/A 1.16-41; 2, 3: 36/A 20.39; 4, 8: 36/A 1.17; 5: 36/G.f.m.9-14,136; 6, 7: 36/A 1.13; 9: 36/A 1.18.

¿is leaves the classi�er. We choose to classify based on a score threshold, or equiva-
lently: a rank threshold. A threshold that more-or-less cleanly separates the true positive
matches from the true negative matches does indeed exist in our experiments: we have
manually created ground truth for the templates in Table 3.1 and �nd receiver operating
characteristic (ROC) curves with area under curve of around 0.9.

Because the maps and the templates vary wildly, picking a single threshold value
for all maps and templates will not work. Some literature in fact ignores this issue (for
example Höhn [Höh13]) by hand picking the value for their experiments. ¿is is valid
when the objective is to show that a certain algorithm can achieve high accuracy, but
does not show usefulness of the method in practice. To obtain a system that is of actual
practical use, we will employ pool-based active learning with a human user as oracle.

Since a given candidate match either contains the desired element (correct) or does
not contain it (incorrect), we describe it with a binary variable. We then use logistic re-
gression as amodel to discriminate between correct and incorrectmatches. In the experi-
ments sectionwe show that logistic regression is a suitable classi�erwhen trained on com-
plete ground truth (all labels). However, acquiring labels is the most time-consuming
step in our system – it involves a human. In order to keep the necessary human e�ort
low, we apply active learning. Following standard practice, we use the following batch-
mode query strategy. As input our algorithm takes the list of candidate matches, ordered
by rank, and a parameter k, the size of a batch. (We examine the choice of k in the Sec-
tion 3.4.2.) ¿e algorithm starts by assuming the best-scoring match is correct and the
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Chapter 3 Locating Map Elements

worst-scoring match is incorrect and (trivially) �ts an initial model. ¿en, in each itera-
tion it picks the k unlabeled matches that are most uncertain (according to the current
model) and asks the user to label this batch; the results are stored and the model is re-
trained. A er any number of iterations, this gives the following classi�er: return the
user-provided label if available, or give the most likely answer according to the logistic
regression model otherwise.

3.4 Experiments

We have implemented the proposed system and applied it to several real-world data sets.
¿is section describes our �ndings.

3.4.1 Evaluation Settings

We implemented our method primarily in Python, using the Scikit-learn library³ for lo-
gistic regression. ¿e template matching is implemented in C++. All experiments pre-
sented in this section have been run on a desktop PC with an Intel® Core™ i5-4670 CPU
at 3.40 GHz and 8 GB of RAM running Ubuntu 14.04. Neither runtime nor memory
were an issue; template matching takes up to a couple of second on practical maps and
batch selection occurs in realtime.

To evaluate our active learning approach, we created nine real-world data sets. ¿ese
were created by analyzing template matching results from actual historical maps, using
various templates: the combination of a map and a template identi�es a data set. ¿e
data sets are available online4; Table 3.1 gives an overview. For every data set, we consid-
ered the thousand highest-rankingmatches andmanually determined if they are correct.
¿is gives us a ground truth containing nine times 1000 instances. Note that for some
templates we have accepted several characters, not just the exact character in the tem-
plate. ¿is improves classi�cation performance for cases in which the template is visually
contained in the other characters; for an example, see Figure 3.4. (¿is is a known prob-
lem for character recognition on maps; see also Deseilligny et al. [DLMS95].) Choosing
which characters to accept for a certain template currently involves some user judgment,
but the sets shown in the table seem widely applicable.

¿e instances in these data sets have only one feature: their score according to tem-
plate-matching algorithm. ¿ese scores also imply a ranking of the instances. In each of
the following experiments, there was no clear di�erence between using the actual scores
and using the implied rank. For the rest of the chapter, we report the results of using the
rank of an instance as its feature.

In order to assess how di�cult the classi�cation for a particular template is, and if
learning is even feasible, we use ROC analysis for binary classi�cation with a discrimi-
nation threshold (on the rank). Figure 3.5 shows an area under curve of over 0.85 for

³ See [PVG+11] and http://scikit-learn.org/
4 http://www1.pub.informatik.uni-wuerzburg.de/pub/data/mlj16/
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Figure 3.4: Distribution of the contents of the �rst thousandmatches for Template 4, ordered by rank.
Matches containing either “a”, “d” or “g” can be separated fairly well from the remainingmatches using
a threshold (for example rank ≤ 200). In contrast, a discrimination of strictly the matches showing “a”
will not have high accuracy.

all data sets, showing that this approach is feasible for a wide range of templates. In ad-
dition, we trained the logistic regression model on a full ground truth of each data set.
¿is allows us to calculate the self-information (or: surprisal) for every instance, relative
to this model. Table 3.1 shows the sum of self-information over all matches of each tem-
plate. ¿is can be regarded as a measure of the classi�cation di�culty for the particular
template: high self-information hints at a larger number of outliers and/or a wider in-
terval of rank overlap between the positive and negative instances. ¿is interpretation
is con�rmed by the fact that the data sets collected on maps from the 16th century have
higher self-information than those onmaps from the 18th century. Onmany of the older
maps, elements indeed seem harder for humans to distinguish due to the heterogeneous
style of handwriting and the suboptimal state of preservation.

We measured the classi�cation performance of our algorithm using accuracy and
F1 score, in addition to precision and recall. Consider that for our application, precision
is more important than recall: a missed character or text label might still be located
later using another template, whereas false positives could potentially disturb subsequent
pipeline steps (such as OCR) signi�cantly.

3.4.2 Evaluation Results

We have run our algorithm on the nine real-world data sets introduced above and now
discuss our experimental �ndings in terms of classi�cation performance, runtime and
parameter choice.

Classi�cationPerformance. In our evaluation, we follow themethodology proposed
by Settles [Set12] and use learning curves to show the performance of our method. We
use batch size k = 3 unless stated otherwise; a justi�cation of this particular choice and
a general discussion of this parameter value follows later. We compare the performance
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Figure 3.5: ROC curves for the data sets in Table 3.1. The labeled curves include the ROC curves with
the lowest and highest area under curve for templates containing characters (Templates 1 and 4). Of
the two templates for place markers, one shows typical performance (Template 8) and one performs
exceptionally well (Template 9).

of our active learning strategy to a random strategy, where the batch of k samples to be
labeled is picked uniformly at random from the pool of unlabeled instances. We refer to
this strategy as the baseline and show that our active strategy outperforms it in almost
every situation.

Figure 3.6 shows the learning curves of our approach in comparison to the baseline.
¿e plots indicate the accuracy of both classi�ers against the number of iterations; the
number of labeled samples is three times this number, as we set k = 3. For the baseline,
we performed 100 runs and show mean, 10th, and 90th order statistic of the achieved
accuracy. ¿e�gure shows that the accuracy of the active learning strategy dominates the
accuracy of the baseline at almost every number of iterations. Only in the very beginning
(number of iterations below approximately 15), this is not consistently true. Still, the
active learning strategy is near the 90th percentile performance of the baseline even in
these situations.

In the next experiment, we consider additional performance measures. ¿e results
in this experiment refer to Template 6, as a typical example. Figure 3.7 shows the perfor-
mance of our active learning strategy in comparison to three runs of the baseline. Note
that a er 15 iterations, the active learning classi�er dominates the three baseline classi-
�ers in accuracy, precision, and F1 score. ¿e baseline does better only in terms of recall,
which (as discussed before) we �nd acceptable. ¿e observations from this experiment
also hold for a larger number of random runs and for the remaining data sets.

It can additionally be noted that, in contrast to the baseline, all four scores increase
monotonically a er the �rst few iterations when using the active learning strategy. ¿us,
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Figure 3.6: Learning curves comparing the performance of our active learning strategy (k = 3) to
the baseline. The bold line indicates the accuracy of the active learning strategy over the iterations.
The thin line shows the mean accuracy of 100 runs of the (random) baseline strategy; the gray area
indicates 10th to 90th percentile.
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Figure 3.7: Statistics for our active learning strategy (black) and three runs of the random baseline
strategy (gray) on Template 6. Note that after 15 iterations (with k = 3), our strategy outperforms the
baseline in all measures except recall.
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Figure 3.8: Self-information of all samples that have been labeled up to a given iteration (relative
to the model in that iteration). The samples picked by the active learning strategy (bold black) are
considerablymore informative than those selected by the randombaseline strategy (thin black:mean,
gray area: 10th to 90th percentile). Note that in the end, each strategy has labeled all samples and
achieves the self-information of the ground truth as listed in Table 3.1.

when additional samples are labeled, the classi�er’s performance is highly likely to im-
prove. ¿is property is especially valuable for the design of proper user interaction when
using active learning: from the users’ point of view, it is hard to accept that additional
e�ort in labeling leads to a decrease in quality.

In another experiment, we consider the self-information of the samples that our
strategy selects, in comparison to those chosen by the baseline. We calculate the self-
information as before (Section 3.4.1), with the following small modi�cation. In each iter-
ation, we consider the total amount of self-information contained in all samples selected
up to that iteration (relative to the model in that iteration). For almost any number of
iterations, the total self-information in the samples from the active learning strategy is
considerably higher than in those from the baseline. Figure 3.8 illustrates this for four
templates; the same holds for the remaining �ve data sets. ¿e behavior of the active
learning strategy is desirable, because higher self-information means that the labeled
samples were indeed hard to classify for the logistic regression model and therefore hav-
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Figure 3.9: Accuracy of our active learning strategy using di�erent batch sizes k on Template 3. For
values of k between 3 and 7, accuracy is acceptable from the start and increases for increasing number
of samples. Exceedingly large values (k ≥ 25) result in inferior performance for the �rst few iterations
and these represent signi�cant user e�ort due to the batch size.

ing them labeled by the user is valuable. In contrast, the baseline selects a substantial
number of samples whose labels are comparatively clear (for example because they have
a very high rank), thereby wasting the user’s time.

Runtime. In our decidedly unoptimized implementation, it takes a total of approxi-
mately one second of runtime to calculate 100 batches of size k = 3. As this represents 100
batches of user interaction, the system is clearly suitable for realtime applications. We
discuss the practical runtime in the context of user experience in Section 3.6.

Choice of Parameters. Our active learning strategy depends on the batch size k. We
have run experiments to evaluate the in�uence of k on the classi�cation performance of
our approach. Figure 3.9 shows that the performance does not depend very strongly on
the choice of k, as long as no exceedingly large values are chosen. Based on this data set,
we might recommend values between 3 and 7; this conclusion holds for the remaining
templates.

When choosing the parameter k, human factors should also be taken into account.
¿e time taken to decide if a displayed candidate match is correct (that is, to label a
sample) varies with the batch size. Since selecting and delivering a new set of samples to
the user requires a perceptible amount of time (both technologically and cognitively), a
larger batch size may cause less user disturbance. For this reason – and aesthetic reasons
– we currently use k = 9 in our web-based implementation of the user interface. We did
not experiment with k in our user study because of the limited number of participants.
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3.5 User Interface

We have not only evaluated the statistical suitability of our approach, but also imple-
mented a comprehensive graphical user interface for our system. ¿is allows us to assess
the practical applicability of our approach in a user study (see Section 3.6). In this section,
we describe our implementation and the user interfaces driven by our active learning
approach. In addition, we introduce another class of historical documents, which will
become relevant in the user study: early typeset prints. Our system can be used to �nd
repeat-occurrences of characters (or: glyphs) in this type of historical document as well.

3.5.1 Implementation: GlyphMiner

Our implementation of the system is available as open source so ware5 under the name
Glyph Miner. ¿e user interface is web-based (using HTML5 and JavaScript), so it can
be used seamlessly on any device that runs a modern browser. In particular, the classi�-
cation interface can be used on smartphones, which enables crowdsourcing of this task.
See also Giraldo Arteaga [GA13] and Chapter 5 of this book, where we successfully apply
crowdsourcing to extract information from another set of historical maps.

Figure 3.10 shows screenshots of our implementation.6 ¿e interface on top allows
users to browse a historical map, crop templates and start the template matching process.
With the interface below, users can classify samples selected by the active learning system
(in the screenshot k = 9). By clicking on any of the nine tiles, the user indicates that the
sample is classi�ed as positive. Once the user is �nished inspecting the nine samples,
he or she presses “Next.” ¿e samples that have not been clicked on will be considered
negative and a new batch of samples chosen by the active learning system is presented.

Using the Glyph Miner, it takes a user with some experience approximately 25 sec-
onds to do 4 iterations (that is, to classify 36 samples, since k = 9). ¿is includes the
runtime of our active learning algorithm and client-server overhead. According to our
experimental results in the preceding section, this number of labels is already enough
to achieve reasonable classi�cation results for a typical template. Projecting these num-
bers, our approach allows the e�ective classi�cation of 10 templates within 5 minutes, as-
suming the templates have been selected beforehand. In contrast, even with signi�cant
experience it takes about 10 to 15 minutes to generate the full ground truth for a single
template (that is, labeling all 1000 candidate matches). ¿is leaves some time to select
the templates and still achieve a factor-10 improvement in template throughput. (Recall
that the user is probably looking for many templates on the same map.) ¿is shows that
our system, and the proposed user interaction, is well-suited for our application. ¿e
user study in Section 3.6 demonstrates that this also holds for users who are new to the
so ware.

5 https://github.com/benedikt-budig/glyph-miner
6 For a demonstration video, see https://www.youtube.com/watch?v=msJNOn7JzBw.
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3.5 User Interface

(a) Interface providing an overview of a historical map, a list of previously selected templates and the
(unclassi�ed) candidate matches for an “a” template.

(b) Classi�cation interface with batch size k = 9. (c) Classi�cation performed on a smartphone.

Figure 3.10: Screenshots showing two user interfaces from our web-based implementation. Note
that themap view (a) is intended to be used on large screens, while the classi�cation interface (b) can
be used on smartphones (c) as well.
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3.5.2 Application to Early Prints
¿e main application in this chapter has of course been historical maps. However, our
approach extends to other types of historical documents, such as early typeset prints.
Like historical maps, these prints are a precious source of information for researchers of
various disciplines and a remarkable part of our cultural heritage. Scans of such docu-
ments are widely available,7 but the contained information needs to be extracted tomake
themost use of them. Particularly, optical character recognition is necessary tomake the
text contained in such documents searchable and available to further analysis. Like with
historicalmaps, general purposeOCR systems have troublewith early prints due to lower
printing quality, higher visual variation between the same characters and possibly poor
conservation state of the documents.

Still, the objectives and constraints when dealing with early prints are somewhat dif-
ferent than when dealing with maps: instead of having a single map sheet, we are inter-
ested in �nding occurrences of a given glyph in a document potentially consisting of
hundreds of pages. ¿e detected matches can then be used to create a so-called glyph
library or to train OCR engines, both of which is of signi�cant interest for libraries and
archives that have large collections of early prints. More details on this problem and
related work can be found in a separate publication [BvDK16].

Typeset glyphs in early prints are in general more similar to each other than the hand-
written characters in historical maps. However, due to the extensive use of abbreviations
and ligatures, the set of glyphs used in early prints is larger than in most modern prints.
¿e use of diacritics and ligatures as well as the state of the printing technology at the
time provide signi�cant challenges for templatematching. ¿is is particularly true for so-
called incunables (books printed before 1500), which are the oldest specimens of (Euro-
pean) typeset prints. Figure 3.11 shows two examples of incunables featuring a variety
of demanding typesetting. ¿e incunable on top (GW5042)8 was printed in Nürnberg
in 1494 and contains Sebastian Brant’sNarrenschi�. ¿e Narrenschi� (“Ship of Fools”) is
considered an outstanding work in the history of German literature, being the most suc-
cessful German book until Goethe’sWerther almost three centuries later [Mäh92]. ¿e
present incunable spectacularly combines the printing techniques emerging at the time,
which now poses a considerable challenge to OCR systems. Scans of this print have been
used in the user study described in the next section.9

Our active learning system can be readily applied to such early prints. Recall that in
the experiments in Section 3.4, we establish a ranking of all matches on a map according
to their template-matching scores. Since early prints consist of multiple pages, we now
establish this ranking over all matches located on any page. Again, we train a logistic re-
gressionmodel on this feature and derive a rank threshold. Note that this rank threshold

7 For example, more than 17 million scanned pages are available through the Early English Books Online
(EEBO) project at http://eebo.chadwyck.com/home

8 Identi�ers for incunables refer to the Union Catalog of Incunabula database, which is available online at
http://www.gesamtkatalogderwiegendrucke.de/GWEN.xhtml

9 ¿ese scans (and our imagery) of GW5042 were taken from the Otto Schäfer Library Schweinfurt, see
http://daten.digitale-sammlungen.de/bsb00083146/image_11
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3.5 User Interface

(a) Das Narrenschi�. Nürnberg 1494, GW5042.

(b) Stultifera Navis. Basel 1497, GW 5061.

Figure 3.11: Sections from two incunables printed in the late 15th century. Note the visual similarity
of the glyphs and in the German print (a) and the extensive use of abbreviations and ligatures in
the Latin text (b). Print (a) was used in our user study in Section 3.6.
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(a) Viewer for early prints, showing a page on
which a user selected a template for “g.”

(b)Glyph Library interface, showing the set of de-
tected occurrences of the glyph “h.”

Figure 3.12: Screenshots of the user interfaces for handling early prints. In view (a), a user indicates a
template using a rectangle selection tool. The interface (b) presents the current inventory of detected
glyph occurrences, which can be exported for use in training OCR software.

also implies a threshold on the template-matching scores, which can then be applied to
pages that were not available at training time. We have implemented these extensions of
the original system in the Glyph Miner; screenshots of the interfaces speci�cally aimed
at early prints are displayed in Figure 3.12.¹0

3.6 User Study

We have evaluated the Glyph Miner in a user study. ¿is study was conducted at the 13th
Philtag workshop at the Würzburg University Library and was part of a hands-on OCR
session, which was attended by participants from various �elds. In this session, the par-
ticipants were provided with high-resolution scans of the �rst �ve pages of GW5042,
which had been binarized before with a �xed threshold.

¿e user study took place over approximately 45 minutes and was organized in the
following way. First, the so ware and user interactions were demonstrated to the par-
ticipants plenarily by �nding an example glyph, selecting an appropriate template, and
performing the active learning steps. ¿en, the participants received a sheet of written
directions that instructed them to process �ve glyphs on their own. For the �rst two
glyphs ( and ), the template was already in the system and the users only had to do
active learning. For the latter three (“d”, “e”, and “y”), they were instructed to �nd an
appropriate template on their own and then do active learning. We will refer to the �rst
two templates as prede�ned and the latter three as user-speci�ed. ¿e participants were
given 30 minutes to �nish these �ve tasks. During this time, two supervisors were avail-
able to answer emerging questions. A er �nishing the assigned tasks, the participants
were asked to answer a questionnaire (see Figure 3.13). ¿is concluded the experiment.

¹0 For demonstration video, see https://www.youtube.com/watch?v=T-p_kIdsn6k
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3.6 User Study

Evaluation of Glyph Miner at philtag 13 — February 25th 2016

1 Personal background

1.1 How would you rate your prior experience. . .

. . . with Optical Character Recognition (OCR)? none expert

. . . with early prints? none expert

1.2 What is your field of work?

2 User Experience with Glyph Miner

2.1 How hard was it. . .

. . . to find templates for the requested glyphs? very hard very easy

. . . to crop the templates? very hard very easy

2.2 Template matches are computed for all pages at the same time, immediately after the “Search” button is
clicked. This takes a couple of seconds. Did this wait feel appropriate?

way too long acceptable

2.3 In order to process a glyph, you have to classify a number of candidate matches (presented in groups of
nine). Was the task of selecting the correct matches. . .

. . . difficult? very difficult very easy

. . . enjoyable? boring / inappropriate entertaining

2.4 You have used Glyph Miner on several glyphs. Could you imagine using it to create an entire glyph
library, . . .

. . . with respect to the amount of effort required? not at all very well

. . . with respect to the quality of the results? not at all very well

3 Suggestions

3.1 How can Glyph Miner be improved? Are any functions missing?

3.2 What did you not like?

Figure 3.13: The questionnaire that was answered by the participants of the user study.
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3.6.1 Qualitative Evaluation

By the end of the user study, the participants had processed a total of 59 templates, labeled
more than 5000 matches, and �lled out 17 questionnaires. ¿ey worked in 16 groups of
up to three members and each group shared a computer. However, due to the workshop-
style setup, not all participants strictly worked through the assigned tasks. (For exam-
ple, some participants selected templates for additional characters that were not asked
for in the instructions.) For the evaluation of the user study, we only consider the re-
turned questionnaires and those user actions that correspond to the instructed tasks.
Our so ware was run on a single server and accessed by the participants through their
web browsers; server performance was not an issue. Of the 17 respondents to the ques-
tionnaire, �ve listed “Digital Humanities” as their background, another �ve “digitization
and OCR,” and another �ve (German) “linguistics.” ¿e remaining two had unrelated
backgrounds.

¿equestionnaire contained nine items thatwere to be answered on a �ve-point scale;
Figure 3.14 shows the results. According to the submitted answers, the participants had
varying levels of prior experience with OCR and early prints. ¿e population size is too
small to make statistical claims on the users’ experience in relation to their answers to
the remaining questions.

Recall that the participants were asked to specify templates for three glyphs on their
own. For this purpose, they had to �nd the respective glyphs in the available pages and
crop them using a rectangle selection tool. In the questions corresponding to this task,
the majority of the participants stated that it was “very easy” to �nd and crop the given
glyphs using the so ware. Each time a user inputs a new template, the templatematching
algorithmwas run on all �ve pages in the sample. ¿is process took approximately 10 sec-
onds, which was regarded as “acceptable” by the majority of the respondents. (¿e two
outliers arose from participants who had de�cient browser environments.)

¿e remaining questions aimat the usability of the active learning (sub-)system specif-
ically. During the user study, the participants had to repeatedly label batches consisting
of nine matches each (k = 9). ¿is activity was generally considered easy and enjoyable,
even though it had to be repeated nine times for each of the �ve templates. ¿e respon-
dents judged that this e�ort was tolerable, even for creating a completed glyph library
(which would contain roughly 100 glyphs). ¿is was also seen in the context of the result
quality, which the majority considered to be good.

3.6.2 Response Consistency

During the user study, our system was set up to log information on all user interactions.
¿is includes user-speci�ed templates, computed matches, and labeled samples. In addi-
tion, a timestamp for each interaction was saved. ¿is data is the basis for the following
discussion on the consistency and required user e�ort of our method. We measure the
consistency of the users’ labeling as follows. Consider all user labels available and group
them according to the matches they label. For each group, count the positive and the
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Figure 3.14: Histograms of the participants’ responses to the questionnaire handed out at the end of
the user study. Each of the presented questions was to be answered on a �ve-point scale.
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negative user labels to obtain the majority vote. ¿e label consistency of a group is then
de�ned as the number of labels deviating from the majority vote, divided by the total
number of labels.

While grouping the labels for the prede�ned templates is trivial, this is not the case
for user-speci�ed templates. First, various occurrences of the glyphs could be found and
used as a template. Second, the exact size of the template depends on the individual user’s
judgment. ¿is results in slight variances in the coordinates and dimensions of matches
that semantically describe the same occurrence of a glyph. However, this variance is
small in relation to the size of a glyph and it su�ced to cluster the matches based on
their center of mass using DBSCAN (with ε = 10 px and minPts = 1).

We have calculated label consistency scores for the prede�ned as well as the user-
speci�ed templates. Restricting the groups to those matches that have at least �ve labels,
we �nd that label consistency overall is high (see Figure 3.15). ¿e ratio of matches that
do not have inconsistent labels at all is above 60% for all �ve glyphs. For the vast majority
of the remaining matches, the label consistency lies between 0.8 and 0.9; fewer than 3%
have lower consistency. ¿ese outliers were mainly caused by di�culties to distinguish
the glyphs “t” and “r” in our particular print (see the le part of Figure 3.11). Overall, this
evaluation shows that the participants were able to label thematches presented using our
method with only minor inconsistencies and, as such, can be treated as a source of fairly
reliable information.

Due to inconsistencies in labeling, as well as individual choice of user-speci�ed tem-
plates (for “d”, “e”, and “y”), not every occurrence of every glyph was found and correctly
classi�ed by all participants. Still, we are able to measure the consensus of the users on
a potentially positive match in the following way. First, we again group matches with
similar coordinates and dimensions as described above. ¿en, we consider the number
of users that have classi�ed a match as positive, restricted to those matches that were at
least classi�ed positive once (see Figure 3.16).

According to this measure, we �nd that for the prede�ned templates, the bulk of
the positive matches were agreed on by at least 13 of the 15 users: 93.4% did so for “a”,
and 71.2% for “t.” (Only few matches were identi�ed by all 15 participants, since one
participant had particularly high quality demands for accepting matches). For the user-
speci�ed templates, the numbers are similar: 89.1% of the matches are agreed on by at
least 13 of the 15 participants.

3.6.3 Usage Statistics

Based on the timestamps for each action recorded throughout the user study, we can
measure the time required by the participants to perform the active-learning tasks (see
Figure 3.17). We �nd that the users were able to quickly perform the active learning
step using our interface: the median time to label one batch of glyphs is 8.2 seconds.
¿is shows that the complete process for one glyph (including template matching and
active learning) can be performed in well under 2 minutes, even by inexperienced users
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Figure 3.15: Consistency of user labels on the two prede�ned templates (top) and the three user-
speci�ed templates (bottom). Diagrams include all matches that were labeled at least �ve times. Note
that by de�nition, the consistency is always at least 50%.
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Figure 3.17: Length of time intervals required by the users for labeling a batch of nine samples. Four
outliers (between 105 and 270 seconds) have been aggregated into the rightmost bar.

under suboptimal conditions, such as a crowded workshop room. A pilot study on ten
computer scientists working under o�ce conditions showed slightly better performance
(compare Section 3.5.1).

3.6.4 Conclusions from the User Study

In summary, our system was well received by the participants at the workshop. ¿e
results found in the user study are for the most part transferable to historical maps as
well, due to the similarity of the task. ¿is shows the promise of applying active learning
with a human oracle in practical applications – speci�cally for information extraction
from historical documents, and perhaps also in general.

3.7 Concluding Remarks

In this chapter we have tackled a fundamental information extraction problem from a
knowledge-discovery perspective: detecting occurrences of certain elements in bitmap
images. We have introduced a practical approach that solves this problem in the context
of scanned historical documents. Our proposed system uses template matching for fea-
ture extraction from the image, and batch-mode active learning to improve the results by
�nding appropriate parameter values. Particularly this active-learning step addresses an
open problem in the literature on information extraction from historical maps. We im-
plemented our approach and experimentally demonstrate that it performs well on maps
relevant in practice.

In combination with the user interface we have presented, our system is able to save
users a signi�cant amount of time when examining the contents of historical maps. We
have also shown that the system extends to other historical documents besides maps. In

52



3.7 Concluding Remarks

a user study, we have evaluated its practical applicability and performance in locating
speci�c glyphs in early prints.

Directions for future work include the following. It would be interesting to exploit
the potentially massive number of glyphs our approach can e�ciently detect. ¿is data
could be useful for training general purpose OCR systems to recognize text both in his-
torical maps and early prints. In particular, one could use the detected glyphs to create
synthetic training data by combining them into arbitrary strings of text. (Our current
implementation of the Glyph Miner already supports this task.) Emerging new OCR ap-
proaches based on deep learning would certainly pro�t from extensive sets of training
data. In addition, the high detection accuracy for single glyphs reached by our system
suggests that the system might be extendable into a complete OCR system.

On a more abstract level, our active-learning approach with human-computer inter-
action is not limited speci�cally to historical documents and template matching. We
expect that many other computer-vision methods that depend sensitively on parameter
selection can bene�t from this strategy.

Acknowledgements
We thank Wouter Duivesteijn for fruitful discussion and helpful comments. We thank
Hans-Günter Schmidt of the Würzburg University Library for providing real data and
practical use cases. ¿e research presented in this chapter was partially supported by the
German FederalMinistry of Education and Research (BMBF), project KALLIMACHOS,
reference ehuman-539-084.

53





Chapter 4

MatchingMarkers and Labels
In this chapter we present an algorithmic system for determining the proper correspon-
dence between place markers and their labels in historical maps. We assume that the
locations of place markers and labels have already been determined – either algorithmi-
cally or by hand – andwant tomatch the labels to themarkers. Wemodel this problem in
terms of combinatorial optimization, solve it e�ciently, and show how user interaction
can be used to improve the quality of the results. We also consider a version of themodel
where we are given label fragments and additionally have to decide which fragments go
together. We show that this problem is NP-hard and give a polynomial-time algorithm
for a restricted version of the problem.

We experimentally evaluate our algorithm on a set of historical maps published be-
tween 1533 and 1805. On average, the algorithm correctly matches 96% of the labels and
is robust against noisy input. Our system furthermore performs a sensitivity analysis
and in this way computes a measure of con�dence for each of the matches. We use this
as the basis for an interactive system, where the user’s e�ort is directed to checking the
parts of the map where the algorithm is unsure. We discuss a prototype of this system
and statistically con�rm that it successfully locates situations where the algorithm needs
help.

4.1 Introduction

In this chapter we concern ourselves with another speci�c sub-task in the information ex-
traction process from historical maps: the matching of place labels to place markers. By
marker wemean amap element – typically a pictogram – indicating the geographic posi-
tion of a point of interest. A label is a piece of text on the map that indicates the toponym
referring to a certainmarker. ¿e question is then: which label belongs to whichmarker?
¿is is in fact a nontrivial problem, even for humans. See Figure 4.1 for two examples of
tricky situations that require some combinatorial reasoning in order to understand the
labeling. Manually assigning labels to their corresponding markers is a time-consuming
task, but provides valuable information (for example when subsequently georeferencing
individual places on the map).

In the present chapter, we propose an algorithmic solution to this problem which
works on various kinds of maps. We have evaluated our algorithm on medium-scale

¿is chapter is based on joint work with¿omas C. van Dijk and AlexanderWol� [BvDW14, BvDW16].
Parts of this work were developed for the author’s master’s thesis.
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Figure 4.1: Two section from historical maps showing situations in which it is not immediately clear
which marker belongs to which label. Left: considering the label “Rotenbach” separately, it could refer
to any of the threemarkers around it. However, the constellation of the remaining labels suggest that
it labels themarker on top. Right: a constellationwith eight labels andninemarkers. It is unclearwhich
marker does not have a label.

maps published between 1533 and 1805. Like in the previous chapter, our source for these
maps was the Franconica collection¹ maintained by the Würzburg University Library.
From this collection, we have selected eight historical maps with a combined total of
over 12 800 markers and labels, for which we manually created ground truth.

We discuss related work in Section 4.2. A er introducing our algorithm for match-
ing labels and markers (Section 4.3), we present several experiments that show that the
algorithm performs well on the eight historical maps we have selected for testing (Sec-
tion 4.4). Next, we present di�erent extensions to this work. ¿e �rst is an interactive
postprocessingmethod that detects situations in which our algorithmwas uncertain and
shows them to a user for veri�cation or correction (Section 4.5). Note that this is a dif-
ferent kind of interaction than in the previous chapter, where the user input was used
directly to calculate a solution. Here, we are interested in identifying parts of our auto-
matically determined solution that need human attention a erwards. We will apply the
same approach to another kind of historical spatial documents in Chapter 6.

Secondly, we explore a di�erent direction by extending our initial problem formula-
tion to matching markers and sets of label fragments (Section 4.6). We prove that this
problem is NP-hard in general, but solve a restricted version of the problem in polyno-
mial time.

4.2 RelatedWork

In Chapter 3, we have presented a method for locating map elements such as place mark-
ers. In that context, we have given an overview of related work on the topic of �nding
individual elements; formore details, we refer back to Section 3.2. Several of themethods
discussed (including our own) have been developed speci�cally for historical maps and

¹ http://www.franconica-online.de/
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could be used to generate input data for the algorithm presented in this chapter. In the
following discussion of related work, we focus on the detection of complete text labels.²

ExtractingTextFromMaps. Chiang andKnoblock [CK15] present a general approach
for extracting text from raster maps. ¿eir approach is also concerned with linking de-
tected parts of text into meaningful labels. It makes signi�cant use of color separation
for distinguishing between text labels of di�erent kinds and other map elements. How-
ever, color separation is not applicable to many historical maps, since most features are
drawn in the same color (usually black, see for example the maps in Figure 2.1). Chiang
and Knoblock have only experimented with modern maps, where they report good ex-
traction results. Based on this work, Yu et al. [YLC16] have later successfully applied an
extended version of this algorithm to relatively recent historicalmaps from the early 20th
century.

Optical Character Recognition. Another approach to locate text labels in historical
maps is the use of optical character recognition (OCR) systems. However, existing meth-
ods for OCR do not perform well on “natural scenes” such as photographs [EOW10].
¿is is relevant because in terms of background noise and distracting image elements,
scanned historical maps can be closer to natural scenes than to the text-on-a-page set-
ting that might be expected by OCR so ware.

In the context of natural scenes, Epshtein et al. [EOW10] have introduced the stroke
width transform image operator. ¿eir method is purely image-based and language ag-
nostic; it does not perform OCR as such, but instead is a preprocessing step for deter-
mining where the text is. ¿ey report a preliminary experiment that shows that this
signi�cantly increases the performance of a subsequent OCR step. ¿is two-step ap-
proach of �rst recognizing where the text is, and then trying to read it is quite com-
mon [CK11, NTC16].

Word SpottingUsing Lexica. Wang et al. [WBB11] report higher performance when
using an integrated approach, directly looking for certain words in an image. ¿eir ap-
proach does require a list of possible words as input (a lexicon). ¿is may limit appli-
cability: while they sketch several scenarios where the availability of a reasonably-sized
lexicon is realistic, historical maps may not be one of them. ¿e spelling of place names
across historical spatial documents is notoriously inconsistent. (For an example, see the
discussion of toponyms from itineraries in Section 2.1 and Chapter 6.)

For historical maps of Germany, one could could use the Integrated Authority File
(GemeinsameNormdatei, GND),which listsmanyhistorical spellings of geographic place
names. For example, its alternatives for Würzburg include Wurzbourgh, Wirtzburg and
Herbipolis. However, the size of this database (over 2GB) is likely to make its use as a

² While our approach from Chapter 3 works well for individual characters, it is not trivial to combine the
detected characters to obtain correct text labels. We explore this problem in the context of the present
work in Section 4.6.
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lexicon in the approach by Wang et al. infeasible. Another option is the use of lexica
that are specialized on historical spelling variants of toponyms (for example von Reitzen-
stein’s lexicon of Franconian place names [FvR09]). Depending on the geographic extent
of the historical map to be processed, such lexica can also contain thousands of entries
(see also Chapter 6).

In contrast to the approach of Wang et al., the system of Weinman [Wei13] is explic-
itly designed to take a large gazetteer into account. Based on probabilistic reasoning,
his approach combines textual and spatial information to establish a matching between
place names on the map and known places from the gazetteer. ¿e location of the text
labels on the map is assumed to be part of the input.

In summary, we note that there are several promising image processing approaches that
could be used to produce the input required for our method (bounding rectangles for all
markers and labels). For the best results, one should select an approach depending on
the kind of maps to be processed.

4.3 Algorithmic Modeling

In our model, markers and labels are represented by axis-aligned bounding rectangles.
¿is is a reasonable simpli�cation on many maps, but could easily be generalized if
needed (for example to rotated rectangles or arbitrary polygons). We assume these rect-
angles are available to the algorithm from some earlier extraction step: let P be the set
of markers present on a historical map, and let L be the set of contained labels. Recall
that our goal is to identify the correct correspondence between place labels and place
markers. We assume that this correspondence is a matching: every p ∈ P is assigned to
at most one ℓ ∈ L, and every ℓ ∈ L is assigned to at most one p ∈ P. However, we do not
assume that there is a one-to-one correspondence: indeed, all eight maps we have tested
contain unlabeled markers or stray labels. (Look ahead at Figure 4.4 for examples.) Not
having the one-to-one assumption also provides robustness in case not all markers and
labels were correctly identi�ed earlier in the process.

¿e basis for our algorithm is the simple observation that labels are generally po-
sitioned near the marker they belong to. ¿is is the basic assumption underlying our
matching model. For a marker p ∈ P and a label ℓ ∈ L, we de�ne the distance d(p, ℓ)
as the Euclidean distance³ between the rectangles (that is, the smallest distance between
a point in p and a point in ℓ). ¿is distance can be easily determined. In addition, we
assume that labels are never located more than some distance r from the marker they
belong to, which helps in deciding whether a marker is unlabeled. One could worry that
this parameter r has to be chosen carefully,because an insu�ciently large valuemight dis-

³ It is also possible to use other distancemeasures, but the Euclidean distance (as a natural choice) already
yields good results in our experiments, see Section 4.4.
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ℓ1p1 r

ℓ2p2

ℓ3p3

ℓ4p4

Figure 4.2: Situation inwhich the greedy algorithmperforms poorly. It returns the solid redmatching{(p2 , ℓ1), (p4 , ℓ3)}, which consists purely of incorrect matches. Note that for larger values of r, the
greedy algorithmwould additionally match (p1 , ℓ2) and (p3 , ℓ4), which are also incorrect. In contrast,
an optimal solution in terms of our optimization objective yields the correct matching (dashed blue).
This solution does not change for larger values of r.

allow the correct matching. In practice, a suitable value is easily found: see Section 4.4.4
for an experimental discussion. Our goal is now to �nd a matchingM ⊆ P × L such that:

(C1) M is large.

(C2) ¿e sum of the distances in the matching is small, that is, the sum of d(p, ℓ)
over all (p, ℓ) ∈ M is small.

(C3) No match (p, ℓ) ∈ M has distance d(p, ℓ) > r.
We choose to minimize the sum of distances rather than, for example, to minimize the
maximum distance, since in that case a single distant assignment would allow all shorter
assignments to be chosen almost arbitrarily.

As a baseline for achieving these goals, we use a greedy algorithm that simplymatches
the closest label-marker pair and repeats, but this can perform very poorly in the worst
case. See Figure 4.2 for an instance where the greedy algorithm gets everything wrong.
¿e presented gadget can be repeated to get arbitrarily large instances with this behavior.
¿is construction is somewhat contrived, but not entirely unrealistic. In fact, we will see
in Section 4.4 that the greedy algorithm performs poorly in practice as well.

A natural way to combine our criteria into a proper optimization objective is as fol-
lows. Any pair (p, ℓ) ∈ M gives us some �xed bene�t (criterion C1), but also has a
cost d(p, ℓ) (criterion C2). We ensure criterion C3 by setting the bene�t equal to r. ¿at
is, let

fobj(M) = ∑
(p ,ℓ)∈M

(r − d(p, ℓ)).
We de�ne the Label Assignment problem as maximizing fobj subject to M being a
matching. Note that criterion (C3) will always hold in an optimal solution since any
pair (p, ℓ)with d(p, ℓ) > r inM decreases the objective value. ¿e parameter r thus has
another interpretation: it limits the marginal cost of adding an additional match toM.
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Figure 4.3: The �ow network G.

An alternative to the weighted cost/bene�t approach would be to consider just the
costs (criterion C2) and compute a Pareto frontier [BV04] for matchings of di�erent
cardinality. We have not investigated this.

Label Assignment
Instance: A set P of place markers.

A set L of labels.
A distance function d(p, ℓ)∶ P × L → R+.
A parameter r ∈ R+.

Objective: Find a matching M of place markers and labels such that
fobj(M) is maximized.

We solve the Label Assignment problem using the �ow-based approach illustrated
in Figure 4.3. Let G = (V , E) be a directed acyclic graph with V = {s} ∪ P ∪ L ∪ {t}. It
has a source s with arcs toward all nodes in P. All nodes in P have arcs to all nodes in L.
Finally, all nodes in L have an arc to the sink t. With capacity 1 everywhere, this is the
standard �ow network to model bipartite matching [CLRS09]. We reduce our problem
to a minimum cost �ow problem on G by translating our maximization problem into
a minimization problem and setting arc weights accordingly. Each arc (s, p) leaving s
has cost(s, p) = −r: this corresponds to a bene�t of r for establishing a match. For each
arc (p, ℓ) we set cost(p, ℓ) = d(p, ℓ): the distance-based cost. Each remaining arc (ℓ, t)
has cost(ℓ, t) = 0. ¿en a �ow in G corresponds precisely to a solution M of Label
Assignment, where the �ow cost equals − fobj(M).

Finding a �ow of minimum cost over all admissible �ows in G gives an optimal so-
lution for Label Assignment: marker p and label ℓ are matched if and only if the �ow
value of arc (p, ℓ) is 1. ¿is minimum-cost �ow problem can be solved in polynomial
time. Note that the standard formulation of minimum-cost �ow requires a �ow demand
to be given as input and will minimize the cost over �ows of exactly this value. Instead,
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wewant theminimum cost over all admissible �ows – of any value. ¿is problem variant
can still be solved e�ciently [GT89].

Since our instances have integer capacities, we can also use (fractional) linear pro-
gramming to �nd an optimal solution (see Section 2.3). ¿is allows us to use o�-the-
shelf fractional LP solvers. It may sound unintuitive that this would be more e�cient in
practice, but having implemented both approaches, we found that our LP-based imple-
mentation (using CPLEX) signi�cantly outperformed the one based on a combinatorial
minimum-cost �ow library (the networkx package for Python). ¿e following experi-
ments have therefore been run using the LP-based implementation.

4.4 Experiments

We have implemented our algorithm described above for experimental evaluation. ¿e
experiments have been run on a desktop computer with an Intel® Core™ i5-4670 CPU
at 3.40 GHz running Ubuntu 14.04; memory was no issue. We have used Java for our
implementation and CPLEX v12.5.1 for solving linear programs.

4.4.1 Data and Ground Truth

We have run experiments on historical maps from the Franconica collection. Some of
the over 800 maps contained in this collection feature several thousand place markers.
For this chapter we have manually extracted all markers and labels contained in six full
maps from this collection:

• the Franckenlandmap4 from 1533,

• the Franciae Orientalismap5 created between 1570 and 1612,

• the Nova Franconiaemap6 from 1626,

• the Franconia Vulgomap7 from 1650,

• the BisthumWürzburg map8 from 1676, and

• the Circulus Franconicusmap9 from 1706.

4 Sebastian von Rotenhan. Das FranckenLandt = Chorographi Franciae Orien[talis], 1533.
Identi�er: 36/G.f.m.9-14,136.

5 Sebastian von Rotenhan and Abraham Ortelius. Franciae orientalis (vulgo Franckenlant) descriptio, be-
tween 1570 and 1612. Identi�er: 36/A 20.39.

6 Abraham Goos. Nova Franconiae descriptio, 1626. Identi�er: 36/G.f.m.9-12,139.
7 Willem Janszoon Blaeu. Franconia Vulgo Franckenlandt, 1650. Identi�er: 36/A 10.19.
8 Johann Heinrich Seyfried and Johann Jakob Schollenberger. Das BisthumWurtzburg In Francken, 1676.
Identi�er: 36/A 10.12.

9 Frederik De Wit. Circulus Franconicus, 1706. Identi�er: 36/A 1.17.
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For two additional maps from the collection, we have extracted markers and labels from
a rectangular section containing approximately 700 map elements each:

• the Carte Topographique D’Allemagnemap¹0 from 1787 and

• the FürstenthumWürzburg map¹¹ from 1805.

¿is set covers nearly a three-century span of historical maps and was chosen to contain
a variety of visual styles.

For our experiments, we use ground truth based on a manual matching of the mark-
ers and labels on themaps. To ensure that the ground truth was not in�uenced by knowl-
edge of our algorithmicmodeling, it was created by a teaching assistantwhowas unaware
of the work presented in this chapter. He was instructed to use his best e�ort to resolve
ambiguous cases (as opposed to making historical inquiries using external sources). All
of these maps contained some unlabeled markers or stray labels. Examples of these, as
well as some situations that show the limitations of our algorithmic modeling, are given
in Figure 4.4. Unless otherwise noted, we have used a �xed value of r = 150 px on all
maps. (We discuss this value in Section 4.4.4; for now, see Figure 4.11 for an indication
of scale.)

4.4.2 Balanced Case
First, we have run experiments with our algorithm on balanced input data. ¿is means
that the ground truth data is a one-to-one assignment: this input admits a perfect match-
ing. ¿ese experiments are run on a version of the ground truth where we havemanually
removed a small number of unlabeled markers and stray labels: as discussed above, not
all historical maps admit a one-to-one assignment of markers and labels, even if our in-
put P and L perfectly models the actual contents of the map. (¿e value of r is picked
large enough for the algorithm to be able to �nd the perfect matching.) We de�ne the er-
ror measure of our experiments as the Jaccard distance¹² between the set of assignments
returned by the algorithm and the set of assignments from the ground truth. ¿is de�ni-
tion is chosen for comparability with further experiments presented in the next section.
Note that for balanced input data, this error measure is two times the precision, that is,
the ratio of correct assignments to all assignments returned by the algorithm.

¿e �ltered input data for the Franckenlandmap thus consists of 517 markers and la-
bels. Our algorithm matches 515 labels correctly and makes 2 incorrect matches (experi-
ment FL1). ¿is took 0.6 seconds of runtime. On one map (Franconia Vulgo), the algo-
rithm is able to assign all markers and labels correctly without making any mistakes (ex-

¹0 Daniel AdamHauer. Carte Topographique D’Allemagne Contenant une Partie de l’Evêchés deWurtzbourg
et Bamberg et Fulde, les Duchés de Saxe Cobourg, Gotha, Meinungen, Hildbourgshausen et une Partie de
Saxe Weimar, le Comté de Schwartzbourg, le Baillage de Smalcalden, le Territoire de Schweinfurt, 1787.
Identi�er: 36/A 1.16-41.

¹¹ Carl von Fackenhofen. Das FürstenthumWürzburg, 1805. Identi�er: 36/A 50.8.
¹² Based on the Jaccard index [Jac12], the Jaccard distance dJ between two sets A and B is de�ned as
dJ(A, B) = (∣A∪ B∣ − ∣A∩ B∣) /∣A∪ B∣.
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Figure 4.4: Examples of unlabeled markers (top row) and stray labels (middle row). The three situa-
tions in the bottom row show limitations of our modeling. On the bottom left, there are two labels
sharing a common word (“Ertal”), thus not allowing for a matching. In the middle, a label is split in
three parts that are arranged around the corresponding place marker, leading to an excessively large
bounding box. On the bottom right, some labels use leaders pointing towards their corresponding
markers, information that is not handled by ourmodel. Exceptional situations like those in the bottom
row occur a small number of times on each of the tested maps.

periment FV1). ¿e algorithm performs worst on the Carte Topographique D’Allemagne
map, where 19 of the 369 calculated assignments are incorrect (experiment CT1). Ta-
bles 4.1 and 4.2 contain these and further statistics; the experiments referred to in this
section have the su�x “1.”

In three of our eight experiments, the error measure is equal to or below 1%. For
another three, it is below 5%. ¿e remaining two experiments (5.4% and 9.8%) su�er
from areas with particularly dense element placement, which causes the bounding boxes
of some labels to overlap with each other and multiple markers. In this situation, all af-
fected elements have distance 0 and, as a consequence, are assigned arbitrarily. Improved
assignment costs d(p, ℓ) – not based solely on axis-aligned bounding boxes – might be
able to solve this problem.

¿e average error measure of the experiments is 3.7%, which we consider a good
result given the dense and sometimes inconsistent placement of map elements. For com-
parison, we have also implemented the greedy algorithm discussed before. Recall that
it iteratively adds a match with smallest distance to the matching. ¿e greedy algorithm
has its smallest error measure on the Circulus Franconicusmap (9.7%) and its highest on
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Table4.1: Statistics of our experimental results for Franckenland (FL),CirculusFranconicus (CF),Bisthum
Würzburg (BW), and FürstenthumWürzburg (FW).

experiment FL1 FL2 CF1 CF2 BW1 BW2 FW1 FW2

# of markers 517 539 1644 1663 1150 1190 347 349
# of stray markers — 22 — 19 — 40 — 2
# of labels 517 524 1644 1669 1150 1158 347 347
# of stray labels — 7 — 25 — 8 — 0
correct matches 515 503 1636 1630 1123 1076 339 337
incorrect matches 2 14 8 16 27 77 8 10
corr. unass. markers — 18 — 14 — 22 — 1
corr. unass. labels — 6 — 22 — 4 — 0
error measure 0.8% 5.4% 1.0% 1.8% 4.5% 12.3% 4.5% 5.6%
runtime 0.6 s 0.6 s 1.7 s 1.8 s 1.1 s 1.1 s 0.5 s 0.5 s

greedy error measure 30.5% 28.0% 9.7% 10.1% 36.9% 35.4% 23.9% 23.8%

Table 4.2: Statistics of our experimental results for FranciaeOrientalis (FO), Franconia Vulgo (FV), Carte
Topographique D’Allemagne (CT), and Nova Franconiae (NF).

experiment FO1 FO2 FV1 FV2 CT1 CT2 NF1 NF2

# of markers 536 549 851 868 369 374 906 925
# of stray markers — 13 — 17 — 5 — 19
# of labels 536 538 851 851 369 374 906 907
# of stray labels — 2 — 0 — 5 — 1
correct matches 526 517 851 848 350 342 881 871
incorrect matches 10 20 0 3 19 29 25 35
corr. unass. markers — 7 — 14 — 2 — 15
corr. unass. labels — 0 — 0 — 0 — 1
error measure 3.7% 7.0% 0.0% 0.7% 9.8% 14.1% 5.4% 7.4%
runtime 0.6 s 0.6 s 0.8 s 0.8 s 0.6 s 0.6 s 1.0 s 1.0 s

greedy error measure 35.6% 33.8% 14.2% 15.0% 27.2% 27.7% 28.4% 32.9%
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Figure 4.5: E�ect of ρ on the error measure. For ρ ≤ 30 px the graphs are nearly horizontal and
below 15%. Every data point corresponds to the average errormeasure over 10 runs of the experiment.

the Bisthum Würzburg map (36.9%); its average error measure is 25.8%. We conclude
that the greedy algorithm is unsuitable for this matching task, and that the results of our
algorithm are indeed nontrivial. Note that the error measure of our algorithm is similar
on most maps, while the greedy algorithm tends to perform particularly bad on some
of the older maps (like Franckenland and Franciae Orientalis). ¿is is likely due to the
labeling style used in these maps: it requires some combinatorial inference, which our
algorithm is able to do but the greedy algorithm is not.

Since our algorithm is intended for use as part of a semi-automatic digitization pro-
cess, we cannot assume the input to be absolutely accurate. ¿is is especially true for the
detection of text labels, where some characters are easily missed by existing algorithms
(see for example Höhn [Höh13]). In the next evaluation, we take this into account by in-
troducing positional noise. Based on the ground truth data, we have shi ed all labels by
some o�set, each label independently, uniformly at random from [−ρ, ρ] × [−ρ, ρ], for
some real parameter ρ. We have then run the algorithm repeatedly with di�erent values
of ρ (10 runs per value of ρ). In Figure 4.5 we observe that our algorithm copes well with
positional noise when the distances by which labels are shi ed are realistic. Note that in
the interval between 0 and 20 px, the error measure does not considerably increase on
any of the maps. ¿is is the width of approximately one to two characters in an average
label on the maps. We consider this to be a reasonable margin for imprecision of the
input. ¿ese �ndings also mean that the input bounding boxes do not have to exactly
trace the map elements at pixel level: our algorithm is robust against some imprecision.

4.4.3 Imbalanced Case

Historical maps o en contain a small number of unlabeled place markers and stray la-
bels. Recall that this in fact holds for all eight maps we have created ground truth for.
Also, when integrating our approach into a (semi-)automated digitization process, the
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Figure 4.6: Example for an erroneous assignment in experiment CF2: the marker for “Mittelstrew” is
matched to the label “Unsleben” and vice versa. The map image (left) visually suggests that “Obren-
strew”, “Mittelstrew”, and “Unsleben” are each labeled across the river. This assumption can be con-
�rmed by modern map data, since the three villages still exist. Considering the manually created
bounding boxes (center), the distances between markers and labels caused by the river become ap-
parent. This, together with the crowdedness of the area, causes the algorithm to fail: it assigns labels
vertically along the river rather than across it (right). Also note the unlabeled marker above the “Mit-
telstrew” label.

preceding steps might have missed some of the map elements entirely. In the upcoming
experiments, we assess the performance of our algorithm in such situations. Again we
use themanually-created ground truth for the eightmaps, but this timewe do not �lter P
and L to obtain a one-to-one assignment. Instead, we use the unmodi�ed ground truth
that exactly re�ects the contents of the maps.

In this setting, possible errors include unlabeled markers and stray labels that are
falsely assigned to another map element (instead of being le unmatched). In addition,
map elements that do have a corresponding element may erroneously be le unmatched
by the algorithm. Note that both of these error types are re�ected by our error measure.

¿e input data based on the Franckenland map in this version contains 539 markers
and 524 labels; according to the ground truth, 22 markers and seven labels do not have
a counterpart. Our algorithm gives a matching of size 517, which contains 503 correct
matches (experiment FL2). Of the 14 incorrect matches, four assign markers that are ac-
tually unlabeled and one assigns a stray label. ¿e remaining nine incorrect assignments
involve only placemarkers and labels that have counterparts. Conversely, six out of seven
stray labels and 18 out of 22 unlabeled markers are correctly le unassigned. Taking all
errors into account, we get an error measure of 5.4%, with a runtime of 0.6 s (which is
the same as in the balanced case).

Doing the same for the Circulus Franconicusmap, we have an input of 1663 markers
and 1669 labels, with 19 unlabeled markers and 25 stray labels. ¿e error measure in
this experiment (experiment CF2) is 1.8%, with a runtime of 1.8 s. Note that the error
measure on this map is considerably lower than on the Franckenlandmap. As discussed
in Section 4.4.2, the labeling in that map has a more complex structure, which is further
complicated by including the stray map elements.

¿e experiments on the remaining maps show similar results (error measures on
average 6.8%), with the Carte Topographique D’Allemagne again being worst (14.1%). On
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Figure 4.7: Impact of randomly removing labels and markers on the error measure in di�erent set-
tings. For a legend to the plots, see Figure 4.5.

all maps, error measures are higher than for the balanced case, but we still consider the
results to be of high quality. ¿e greedy algorithm performs poorly in this imbalanced
setting as well, returning matchings with an average error measures of 25.8%. Further
statistics are provided in Tables 4.1 and 4.2; the experiments referred to in this section
have the su�x “2.” Figure 4.6 shows an example of an incorrect assignment returned by
our algorithm in this set of experiments.

¿e setting in the imbalanced case allows us to address imprecision in the input be-
yond positional noise: missing elements. We tested this scenario on arti�cial instances,
starting with the ground truth and removing each element from P with probability πP
and each element from L with probability πL . In several experiments, we varied values
for both probabilities (see Figure 4.7). On all maps, errormeasures immediately increase
with πP and πL : even with low values for these probabilities, the errors are not mitigated
by the algorithm. ¿is is not surprising, as the benchmark is not fair: the algorithm sim-
ply cannot match map elements that it does not know about, but is still scored against
the full ground truth. Assuming that a previous processing step has failed to detect such
elements, this experiment re�ects a realistic setting. ¿is e�ect is in contrast to the po-
sitional noise, where some noise was tolerated. Still, the algorithm is able to correctly
identify the resulting situation, where some labels and markers have become unmatch-
able. With increasing deletion probability, the number of correct matches decreases lin-
early, but the errormeasure in the remaining instance is almost una�ected: missing some
elements does not signi�cantly “confuse” the algorithm.

4.4.4 Parameter Choice

¿e quality of the matching relies to some extent on a reasonable choice of the param-
eter r: our algorithm will not assign labels that belong to markers with distance greater
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ℓ2

p1

p2

d

Figure 4.8: When using parameter r < d, the marker p2 is too far away from label ℓ2 to be consid-
ered. This results in the matching {(p1 , ℓ2)}. With a higher value of r, the presumably correct match-
ing {(p1 , ℓ1), (p2 , ℓ2)} is found.

ℓ1p1

d1

ℓ2p2 ℓ3p3 ℓ4p4 p5

d2

Figure 4.9: A situation in which increasing r leads to an incorrect matching. Assume that p1 ex-
ists on the map, but was not correctly detected and is thus not part of the input. Also assume
that p5 is unlabeled on the actual map. For r = d1 , our algorithm returns the correct matching{(p2 , ℓ2), (p3 , ℓ3), (p4 , ℓ4)} (dashed blue). In contrast, for r = d2 , our algorithms “�ips” thosematches
and returns the entirely incorrect matching {(p2 , ℓ1), (p3 , ℓ2), (p4 , ℓ3), (p5 , ℓ4)} (solid red).

than r. Due to the combinatorial nature of the problem, this can also in�uence the as-
signment of markers and labels that are less than r apart (see Figure 4.8). Picking a value
of r that is too low can clearly be a problem in this way. Less intuitively, r can also be too
high: one can construct instances such that our algorithm has an errormeasure of 0% for
some r and 100% for a higher r (see Figure 4.9 for an example). However, such instances
can be considered pathological.

We have experimentally evaluated the e�ect of r on the error measure for our set of
eight historical maps. Using balanced input data and �xed positional noise ρ = 40px, we
see that the errormeasure does not increase signi�cantly for high values of r (Figure 4.10).
Even for an excessively large r = 1000px, the error measure stays at approximately the
same level as for r = 150 px. In contrast, picking a value for r that is too small (in this
case, below 60 px) does lead to many errors.

Arcs in the �ow network with cost larger than r cannot be part of an optimal solution
and can therefore be excluded when running the algorithm. In this way, a low value
of r leads to a lower runtime since the �ow network G is smaller. With r = 150 px, our
algorithm runs experiment CF1 in 2.1 seconds; with r = 1000px, this increases to 11.9
seconds, even though the algorithm �nds the exact samematching. ¿is illustrates that r
should not be set arbitrarily high.

A reasonable value for r can usually be determined visually by a user before running
the algorithm. For example, we arrived at r = 150 px by observing that the distance be-
tween a label and the corresponding marker in our test maps is typically limited to 2
or 3 times the average text height (Figure 4.11) and picking r larger by a signi�cant mar-
gin. ¿e dense placement of elements in some maps (for example Circulus Franconicus)
would also allow a lower value of r without a�ecting the returned matching, for exam-
ple r = 100 px.
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Figure 4.10: E�ect of r on the error measure (ρ = 40 px). Every data point corresponds to the average
error measure over 10 runs of the experiment.

1500 300 px 1500 300 px

Figure 4.11: Value of r on Franckenland (left) and Circulus Franconicus (right). The red boundarymarks
a distance of 150 px from the blue bounding box. For both maps, this corresponds to a distance of
approximately 1 cm on the map sheet.

4.5 Smart User Interaction

In general, historical maps can contain situations where it is unclear (even to a human
reader without domain knowledge) how the markers and labels belong together. ¿is is
also the case with the maps used in our experiments. Changing a single match in such
situations can propagate to other matches. Figure 4.12 shows an example where three
distinct matchings seem reasonable: the correct matching is unclear without additional
topographic or historical information.

Figure 4.13 shows a screenshot of our prototype plug-in¹³ for the open-source geo-
graphic information system QGIS.¹4 Our tool automatically presents areas of the map
that the algorithm is most unsure about and asks the user for con�rmation. (How these

¹³ https://github.com/benedikt-budig/historical-sensitivity-plugin
¹4 http://www.qgis.org/
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Figure 4.12: A di�cult case: without geographic or historical context it is hard to tell which one of
these three matchings is correct.

Figure 4.13: Screenshot of our prototype for interactive postprocessing. Thewhite/bluematching on
the map is presented to the user for veri�cation.

areas are picked is described a er the example.) ¿e user’s con�rmation or correction
can then be taken into account for a new run of the algorithm. Note that the indicated
assignment in Figure 4.13 is indeed unclear. ¿ere are three markers near the label “Pos-
seck” and one clearly belongs to the label “Trubel”: the algorithm assigns this correctly.
For lack of another reasonable label, however, one of the two remaining markers must
remain unlabeled. Purely from the image it is unclear which one, so a user with domain
knowledge must get involved.

Since a typical map in our data set contains hundreds to thousands of map elements,
it is not practical to show every single match to the user for veri�cation. Instead, we
perform a sensitivity analysis of each match (p, ℓ) and develop a classi�er to determine
which matches warrant user inspection.

We use the following sensitivity analysis. Starting with an optimal solution M (to
Label Assignment), we calculate for each (p, ℓ) ∈ M how much more expensive we
could make that arc without changing the optimum – equivalently: how much worse
does the objective value get if we were not allowed to use (p, ℓ)? If this di�erence is
large, then we can have some con�dence in this particular match: all matchings that do
not contain this match are much worse. If, on the other hand, the di�erence is small,
then there are alternative matchings that the algorithm would consider almost as good
as M: if the input were just slightly perturbed, perhaps one of those other matchings
would be considered best. ¿en we call the match (p, ℓ) sensitive and decide that it is
best to get a judgment from the user, since the algorithm does not inspire con�dence.
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Figure 4.14: ROC curves for classifying matches by sensitivity.

¿is leaves the classi�er. Based on the sensitivity values, we want to classify the as-
signed pairs inM into Inspect and Assume Correct. ¿e latter should all be correctly
assigned (so all mistakes get caught) and the former should all be wrong (so as to not
waste the user’s time). We use a binary classi�er with a discrimination threshold τ that
simply sorts the matches in order of sensitivity and presents the τ most sensitive to the
user for inspection. ¿is parameter (based on a number of matches, rather than an ob-
jective value) is a reasonable measure for the amount of user e�ort we wish to expend
and �ts well to the standard receiver operating characteristic (ROC) analysis that we will
perform on this classi�er.

We have run our classi�er on the optimal assignments for the eight data sets from
Section 4.4 (with imbalanced input). To evaluate the performance of the classi�er, we
calculated the ROC curve using the ground truth data; see Figure 4.14. ¿e area un-
der curve (AUC) in our experiments lies between 0.89 for the Bisthum Würzburg map
and 0.99 for the Franconica Vulgo map. Generally an AUC value between 0.8 and 0.9
can be considered excellent, while values over 0.9 are outstanding [HJL04]. ¿is shows
that our classi�er successfully �nds problematic areas.

In our implementation, we use CPLEX’s warm start feature to speed up the compu-
tation of the sensitivities. ¿is uses partial results from the computation of M when
determining how the optimal matching changes when a certain match is disallowed.¹5
¿is speeds up the process since the new matching is probably close to M. (Disallow-

¹5 Using a previously computed solution to quickly solve similar instances is a common technique when
using the simplex algorithm. ¿is is widely supported by linear programming so ware.
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ing a single match is likely to have local e�ects only.) Note that there exist also other
approaches for calculating the sensitivity values, for example a combinatorial algorithm
by Liu and Shell [LS11].

¿e runtime of our implementation for calculating the sensitivities and running the
classi�er was 1.2 seconds for our smallest instance (FürstenthumWürzburg) and 46.3 sec-
onds for the largest (Circulus Franconicus); without a warm start the latter takes almost
an hour. For the other maps, runtimes were in between these two values.

Next, we examine the robustness of our classi�er by introducing errors to our test
input: we randomly remove map elements as discussed in Section 4.4.3. As an example,
we conduct this experiment on the Franckenland and the Circulus Franconicusmap. Re-
moving 10% of the markers and up to 30% of the labels, the AUC value of our classi�er
stays above 0.8 on both maps. Based on balanced input but with introduced positional
noise, the AUC is above 0.8 with ρ up to 70 px. For an extreme value of ρ = 150 px,
the AUC value is still above 0.7 for the Franckenlandmap and above 0.6 for the Circulus
Franconicusmap. ¿ese experiments show that our classi�er is su�ciently robust against
erroneous input data to be of practical value.

By running the sensitivity analysis, we obtain for each match (p, ℓ) ∈ M an alter-
native matching, namely a matching M′ that is optimal subject to (p, ℓ) /∈ M′. When
presenting an unclear match (p, ℓ) to the user, we can immediately show this matching:
the best alternative matching if (p, ℓ) is indeed incorrect. Figure 4.15 shows an example
of how the sensitivity analysis could be presented to the user. ¿e depictedmap contains
the unclear situation from Figure 4.12, with the sensitivity values color coded from red
to green. ¿ese matches have indeed been identi�ed by the classi�er and are displayed
as uncertain by our sensitivity analysis. ¿e �gure also shows how we could instantly
preview the next-best matching to the user in case he or she considers rejecting a match
(here thematch under themouse pointer). In the depicted situation, the next-bestmatch-
ing would only di�er on three edges (dashed blue).

Also note that the values obtained from the sensitivity analysis can be stored and
used in later steps. For example, Chiang [Chi15] requests such information as an “ac-
curacy estimate” for the resulting output. Similarly, Herold et al. [HKN+17] propose to
store metadata describing the information extraction process together with the results;
extraction accuracy is a highly relevant information in this context.

4.6 Label Fragments

In the preceding section we have presented a way to improve the quality of matching
results by including user feedback. Next, we discuss a di�erent approach to improve
matching results based on re�ning our optimization model. We observe that state-of-
the-art label detection o en detects parts of text that belong to a single label as separate
labels. ¿is is for example the case with the label detection approaches by Höhn [Höh13]
and Yu et al. [YLC16] (as well as in our preliminary experiments with other approaches).
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Figure 4.15: Color-coded visualization of our system’s con�dence in each match. An alternative is
presented for the match under the mouse pointer. Note that the unclear situation from Figure 4.12
has been identi�ed and highlighted in red.

See the map in Figure 4.16 for an example from our own experiments. Some of these
label fragments clearly belong together and should have been detected as one (for exam-
ple ℓ1, ℓ2, and ℓ3): this is a mistake by the label detection. ¿en again, on some historical
maps it occurs that multiple fragments of text together form a single logical label. Con-
sider the fragments ℓ9 and ℓ10. ¿ey are geometrically separated by a place marker, but
together form its label “Unt. Walbering.” For more examples, refer back to the map in
Figure 2.1b (on page 13). ¿is map has many such split labels, some even broken verti-
cally into multiple lines, such as “Hai-” and “delfelt” in the middle le . Still, separately
detected label fragments that form one logical label are located relatively close to each
other (and to the corresponding place marker). We use this property to improve our
matching results by adapting the Label Assignment problem accordingly.

In order to generate the input for our algorithm, we are interested in identifying la-
bel fragments that might form a single label on the map. For this purpose, we propose
using a heuristic that constructs a family of sets containing fragments that possibly be-
long together. For instance, such a heuristic could put label fragments that are located
within a certain distance from each other into one set. On maps that contain mostly
horizontal text, one might want to restrict the elements of a set to fragments that are
aligned horizontally. In fact, Yu et al. [YLC16] present a similar heuristic for label frag-
ments on 19th-century maps. ¿e list on the right of Figure 4.16 shows an example of a
familyF of sets that a heuristic could return in the given map situation. Note that we al-
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Figure 4.16: Label fragments detected with a prototype label-detection algorithm. Note that many
labels have (incorrectly) been detected as several separate fragments. On the right, we give an ex-
ample family of sets that indicates which fragments might belong together. Note that it includes
both {ℓ9 , ℓ12} and {ℓ11 , ℓ12}.

low fragments to be contained in more than one set to deal with unclear situations, such
as for example the constellation of ℓ9, ℓ10, and ℓ12 in the lower right. (We will discuss
a restricted formulation where each label fragment is contained in only one set in Sec-
tion 4.6.4.) Label fragments that do not have other fragments in their immediate vicinity
could as well be the only element in a set, such as ℓ8.

4.6.1 Optimization Problem
Given a family of sets F , we assume that all elements ℓ in a set S ∈ F could, together,
plausibly form a single label. If they do, this entire set should be assigned to a single place
marker. One could try to model this problem by directly matching place markers to sets
in F . We take a di�erent approach and extend the Label Assignment formulation
from Section 4.3: we again calculate a matching between markers and label (fragments)
taking the information fromF into account. Wewill not necessarily �nd amatching that
includes all label fragments. Instead, our problem formulation favors matching only one
fragment per set in F , and we interpret this as matching the entire set. We will discuss
this interpretation in more detail a er giving the problem statement; for an example,
look ahead at Figure 4.17c.

Recall the three desiderata for a matchingM as introduced in Section 4.3:

(C1) M is large.

(C2) ¿e sum over d(p, ℓ) for all (p, ℓ) ∈ M is small.

(C3) No match (p, ℓ) ∈ M has distance d(p, ℓ) > r.
Since we assume that the label fragments within a set S actually form a single label on
the map, we would like to match only one fragment in S to a place marker (and then
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Figure 4.17: Three di�erent situations and the corresponding solutions to the Fragment Assignment
problem. In situation (a), the assignment of label fragment ℓ2 remains ambiguous; likewise in (b),
the assignment of ℓ6 and ℓ7 is ambiguous (consider S4). The solution in situation (c) yields a unique
assignment and avoids splitting S1 .

assume that the remaining fragments in S belong to the same marker). In other words,
we do not want to split a set S by assigning its fragments to multiple place markers. We
add a fourth goal which takes this into account:

(C4) At most one label fragment ℓ from each S ∈ F should be matched inM.

¿is is not a hard constraint, but instead somethingwe try to avoid through optimization.
We combine these four goals into a new objective function by introducing a penalty term
for any sets that get split:

дobj(M) = ∑
(p ,ℓ)∈M

(r − d(p, ℓ)) − ∑
S∈F

c(S ,M) (4.1)

where c∶ F × 2L → R≥0 is a function that applies a penalty φ for each match beyond the
�rst from each set S as follows:

c(S ,M) = ⎧⎪⎪⎨⎪⎪⎩
0 if S ∩M = ∅,
φ ⋅ (∣S ∩M∣ − 1) otherwise.

(4.2)

We want to maximize дobj under the constraint that M is a matching. By choosing a
positive value for the penalty φ, each match (p, ℓ) ∈ M with ℓ ∈ S lowers the matching
value ifM contains at least one other match (p′, ℓ′) with ℓ′ ∈ S. We call minimizing this
new objective дobj the Fragment Assignment problem.

Solving the Fragment Assignment problem does not immediately give a matching
between all label fragments and place markers. See Figure 4.17 for three example situ-
ations. In situation (a), we have the optimal matching {(p1 , ℓ1), (p2 , ℓ3)}. Since this
matching splits S1, it is uncertain which of the two place markers the remaining frag-
ment ℓ2 belongs to. In situation (b), the optimalmatching is {(p1 , ℓ1), (p2 , ℓ4), (p3 , ℓ8)}.
¿is only assigns the label fragments ℓ1, ℓ4, and ℓ8. Based purely on the sets in F , it is
ambiguous whether ℓ6 is part of the label for p1 or p2 (and whether ℓ7 belongs to p2
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or p3). Situation (c) shows that our optimization goal actually makes sense: p2 is closer
to ℓ2, but is assigned to ℓ3 to avoid (the costs of) splitting S1.

Although we do not necessarily �nd a matching of all fragments, we still obtain use-
ful information: a set of reasonable assignment options for each fragment. ¿is could
for example be used in a user interaction or as the input of a postprocessing heuristic.
Considering situation (b) again, fragment ℓ6 could be presented to the user with the sug-
gestion that it belongs to either p2 or p1. For fragment ℓ3, the only reasonable options
are matching it to p1 or leaving it unmatched.

4.6.2 Integer Linear Program

¿e Fragment Assignment problem is NP-complete, as we will show in Section 4.6.3.
Here we present an integer linear programming formulation for the problem. Let xp ,ℓ ∈{0, 1} be a decision variable that indicates whether (p, ℓ) is taken into the matching or
not – that is, we letM = {(p, ℓ) ∣ xp ,ℓ = 1}. Additionally, for each S ∈ F , we introduce an
auxiliary variable yS ∈ Z≥0 to track if multiple elements of S are part of the matchingM:
we use this to apply the proper splitting penalties to the objective function. For notational
convenience, let w(p, ℓ) = r − d(p, ℓ). Note that w(p, ℓ) and φ are constants. We can
now use the objective function from Equation (4.1) to formulate the following integer
linear program.

maximize ∑
p∈P
∑
ℓ∈L

xp ,ℓ ⋅w(p, ℓ) − ∑
S∈F

yS ⋅ φ (4.3)

subject to ∑
p∈P

xp ,ℓ ≤ 1 ∀ℓ ∈ L (4.4)

∑
ℓ∈L

xp ,ℓ ≤ 1 ∀p ∈ P (4.5)

∑
ℓ∈S
∑
p∈P

xp ,ℓ ≤ 1 + yS ∀S ∈ F (4.6)

xp ,ℓ ∈ {0, 1} ∀p ∈ P, ℓ ∈ L (4.7)

yS ∈ Z≥0 ∀S ∈ F . (4.8)

Constraints (4.4) and (4.5) ensure that the each marker and each label fragment is
assigned at most once. Together this guarantees that M is a matching. Constraint (4.6)
forces yS to be at least the number of matches within S minus one, thus applying the
penalty to the objective value: in particular, if S is not split, then yS can be set to 0 in
order to get no penalty.
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4.6 Label Fragments

4.6.3 NP-Hardness
Wewill now show that optimizing дobj is NP-hard. Our proof uses a polynomial-time re-
duction from the NP-complete Set Packing problem to a decision variant of the Frag-
ment Assignment problem; the following de�nition is taken from Karp [Kar72].

Set Packing
Instance: A family of sets {S j}.

A positive integer k.
Question: Does {S j} contain k mutually disjoint sets?

We take the following natural decision variant of our problem to reduce to.

Fragment Assignment
Instance: A set P of place markers.

A set L of label fragments with ∣L∣ ≥ ∣P∣.
A weight function w(p, ℓ)∶ P × L → R≥0.
A family F ⊆ 2L .
A cost function c(S ,M)∶F × 2L → R≥0.
A threshold θ.

Question: Does there exist a matchingM of place markers and label frag-
ments such that дobj(M) ≥ θ?

¿eorem 4.1. ¿e Fragment Assignment problem is NP-complete.

Proof. First we note that Fragment Assignment is clearly in NP.We show hardness by
reducing the classic Set Packing problem to Fragment Assignment.

(Reduction.) We construct the following Fragment Assignment instance in poly-
nomial time. Let the set of label fragments L be ⋃ j S j . Let F be the family of sets {S j}.
We introduce k place markers (which form the set P) and let w(p, ℓ) = 1 for all p ∈ P
and ℓ ∈ L. Let θ = k. For c(S ,M), we use the function from Equation (4.2) with φ = 1.

(Equivalence.) Assume {S j} contains k mutually disjoint sets. ¿en there are also k
mutually disjoint sets of label fragments in F . Matching each of the k place markers
to an arbitrary label fragment from a di�erent disjoint set in F yields a solution M for
Fragment Assignment with дobj(M) = k: since at most one element from each set
in F was matched, no penalties were applied.

For the other direction, suppose there is a solutionM to the FragmentAssignment
instance such that дobj(M) ≥ θ = k = ∣P∣. ¿en every marker is matched and no sets are
split: {S j} contains k mutually disjoint sets.
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4.6.4 Polynomial-Time Algorithm for a Restricted Problem

Since solving Fragment Assignment on large instances is not feasible, we focus on a
restricted version of the problem. Recall that in the general version of the problem as
stated above, label fragments can be element of more than one set. If we instead require
that each fragment is contained in only one set – that is, thatF is a partition of L –we can
give a polynomial-time algorithm for this restricted problem, which we call Fragment
Assignment (disjoint sets).

Fragment Assignment (disjoint sets)
Instance: A set P of place markers.

A set L of label fragments with ∣L∣ ≥ ∣P∣.
A weight function w(p, ℓ)∶ P × L → R≥0.
A partition F of L.
A cost function c(S ,M)∶F × 2L → R≥0.

Objective: Find a matchingM of place markers and label fragments such
that дobj(M) is maximized.

Note that Fragment Assignment (disjoint sets) is still able to yield useful results
in practice: the algorithm is able to correctly solve the situations in Figure 4.17c as well
as in Figure 4.17a, since the formulation still allows to split fragment sets if necessary.

Requiring a partitioning of the label fragments is reasonable in many situations. As
an example, in the situation in Figure 4.16, we can easily �nd a partition of detected frag-
ments that are likely to belong together. ¿is is especially the case under the assumption
that detected text areas belong together horizontally, for example if a label has been split
by another map element (like a river or a place marker). We can meet this new require-
ment by applying a di�erent heuristic to the label fragments of the input, which clusters
them into disjoint sets. ¿is can for example be done by applying standard clustering
algorithms such as DBSCAN.

We can solve the Fragment Assignment (disjoint sets) problem e�ciently by
augmenting the �ow network introduced for solving the Assign Labels problem (Sec-
tion 4.3). For every set S ∈ F , we introduce a set gadget to the �ow network; Figure 4.18
shows its structure. ¿e construction guarantees that one unit of �ow can pass the gad-
get without increasing costs, whereas each additional unit of �ow increases total costs
by φ. ¿e number of �ow units that enter each gadget is equal to the number of label
fragments in S that were matched. ¿is corresponds directly to the behavior of the cost
function c(S ,M) de�ned in Equation (4.2). ¿e augmented �ow network thus correctly
models the Fragment Assignment (disjoint sets) problem.

¿e gadget for set i consists of two additional vertices, дini and дouti . ¿e entrance ver-
tex дini can be reached from all label fragments that belong to the set corresponding to the
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Figure 4.18: The �ow network from Figure 4.3, augmented with set gadgets (framed in black).

gadget by directed edges Ein. For every edge e ∈ Ein, we set cost(e) = 0 and cap(e) = 1.
¿is capacity constraint guarantees that every label fragment is matched at most once.
From дini to дouti , there are two directed edges efree and epenalty, where cost(efree) = 0
and cap(efree) = 1, whereas cost(epenalty) = φ and cap(epenalty) = ∞. ¿e exit ver-
tex дouti is connected to sink twith a directed edges eout of cost(eout) = 0 and cap(eout) =∞.

Like in Section 4.3, we calculate a minimum cost �ow in the constructed network.
¿is can be done in polynomial time using standard methods, thereby solving Frag-
ment Assignment (disjoint sets). ¿is shows that our extended optimization model,
though NP-hard in general, can be solved e�ciently in a realistic (restricted) case.

4.7 Concluding Remarks

In this chapter, we have considered the problem of determining the correct matching
between labels and markers in historical maps. We assumed that the bounding boxes of
these map elements are given. We have developed several optimizationmodels based on
such input and have given either e�cient algorithms or hardness proofs for each.

We have experimentally demonstrated that the algorithm for our main model has
high accuracy when run on accurate input (that is, a manually-extracted ground truth):
it has error measure in the low single digits. Additionally, we have shown that it copes
well with a reasonable amount of noise. We have done this by realistically perturbing the
ground truth and evaluating how this in�uences the output of the algorithm.

In order to further improve the quality of the results, we have proposed several exten-
sions to the original algorithm. First, we have presented a system that allows interactive
postprocessing of the matches calculated by our algorithm. ¿e system calculates a mea-
sure of con�dence in thematches and presents unclear situations to a user for veri�cation.
¿is selection procedure performs well in identifying parts of the map that need careful
human attention or even research. In addition, we have explored ways to extend our
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problem de�nition to deal with fragments of labels. While this problem is NP-hard in
general, we have given an e�cient algorithm for a reasonable restricted version.

Here, we have only previewed an early prototype of a user interface for our system.
In future work, this could be extended to a comprehensive user interface with proper
interaction design: the current user interface is very primitive from a human-computer
interaction point of view, but a proper design was beyond the scope of the current work.
In the context of interaction, our contribution has instead been the automatic detection
of parts of the map that need interaction.

For an improved user interface, one could display a modern-day map next to the his-
torical map for reference. Adding geographic context might help the user to deal with
ambiguity. On the algorithmic front, future work could engage in �nding a method to
quickly recompute sensitivity values once the matching changes due to user feedback.
¿is is not trivial (recall that it takes more than a minute to perform our sensitivity
analysis on the Circulus Franconicus map from scratch), but is crucial for a real-time
interactive postprocessing system. Since matching markers with label fragments is hard,
the task of linking label fragments should possibly be addressed independently in a pre-
processing step.

Another direction for future work is designing a user interface for the set disambigua-
tion problem of Figure 4.17. Once a user provides information on the correct assignment
of an ambiguous label fragment, this information can be propagated, possibly enabling
the automatic assignment of other fragments. ¿is should have propagation properties
similar to the matching sensitivity.
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Chapter 5

Extracting Building Footprints
Starting in 2013, theNewYork Public Library (NYPL) has been running a crowdsourcing
project to extract polygonal representations of the building footprints from insurance at-
lases of the 19th and early 20th century. As is common in crowdsourcing projects, the
overall problem was decomposed into small user tasks and each task was given to multi-
ple users. In this chapter, we discuss a problem related to one of these tasks: improving
polygons that track the outline of a building footprint in a historical map. In particular,
we are interested in how to integrate multiple user answers, each consisting of a polygon
ostensibly describing the same footprint.

We discuss desirable properties of a “consensus polygon” representing the majority
of the user answers, and arrive at an e�cient algorithm. We have evaluated the algorithm
on crowdsourcing data from the NYPL and observe that our algorithmic consensus poly-
gons are correct for 96% of the footprints whereas only 85% of the (input) user polygons
are correct. ¿e basic version of the algorithm is not scale-free; we consider two variants,
including a purely combinatorial one. Finally, we evaluate the geometric precision of our
consensus polygons by taking the map image back into account.

5.1 Introduction

In this chapter, we deal with the extraction ofmap elements for which not only their loca-
tion in amap, but also their individual shape is of interest. Map features whose particular
shapes convey useful information are for example territories and forest areas (inmedium-
scale maps), and city districts and building footprints (in large-scale maps). One task
that is of common interest in this context is vector polygon extraction. ¿ere exist tools
that produce vector representations from raster images. Examples areGDAL Polygonize¹
for general purposes and ArcGIS’s “Convert Raster to Polygon” feature² speci�cally in a
geographic context. Such tools require either clean and easily recognizable polygons or
human intervention to assist the polygonalization algorithm (for example clicking spe-
ci�c areas of an image, inputting numerous parameters, manual tracing of the image and
other nonautomatable processes). Historical maps rarely conform to the ideal raster im-
age expected by those tools, since many of them have not been printed to today’s quality

¿is chapter is based on joint work with ¿omas C. van Dijk, Fabian Feitsch, and Mauricio Giraldo
Arteaga [BvDFA16].

¹ GDAL – Geospatial Data Abstraction Library, http://www.gdal.org/
² ESRI ArcGIS, https://www.arcgis.com/
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Chapter 5 Extracting Building Footprints

Figure 5.1: The NYPL Building Inspector presents a detected polygon that needs to be “�xed.” Users
can add,move, and delete vertices of the polygon tomake itmatch the building footprint on themap.

standards, follow varying cartographic conventions, and are in suboptimal conservation
state. Despite these challenges, it is important to e�ciently and accurately extract vector
representations of elements contained in these maps.

¿e New York Public Library has a an extensive collection of insurance atlases from
the 19th and early 20th century. One of their goals is to extract polygon and attribute data
from these maps [Knu13]. ¿e collection includes tens of thousands of sheets from 1853
to 1930 organized in 200 atlases. Extracted map features are for example used in the
NYPL’s Space/Time Directory,³ in which they can be linked to various related artifacts
from the collections of the library.

Feature extraction was originally based on sta� and volunteers, manually tracing
polygons in a custom web-based GIS. Using this manual process, it took three years
to extract about 179 000 polygons across three atlases. At that pace, it would be impos-
sible to extract the bulk of the data in any reasonable amount of time. In 2013, the NYPL
started development of a semi-automatic pipeline to digitize the contents of these atlases,
which includes a crowdsourcing website called Building Inspector.4

As a �rst step in their pipeline, the scans of these maps were processed by a series of
computer-vision tools in an attempt to automatically identify and extract building foot-
prints [GA13]. ¿is information extraction task is challenging and the extracted poly-
gons contain a signi�cant number of errors. ¿e extracted polygons are then forwarded
to the Building Inspector website for quality assurance and improvement in the crowd.
¿e work�ow of this system is described in Section 5.3.1; for a �rst impression of the user
interaction, see Figure 5.1.

³ http://spacetime.nypl.org/
4 http://buildinginspector.nypl.org/
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5.2 Related Work

In this chapterwe consider an algorithmic challenge that arises in analyzing the Build-
ing Inspector data. We call it the polygon consensus problem and it is informally stated as
follows: given a set of polygons that are supposed to represent the same object, compute
a single polygon that represents the majority opinion. We propose an algorithm for this
problem and show by experimental evaluation on approximately 3000 polygons (corre-
sponding to 200 footprints) that the computed consensus polygons have higher quality
than the incoming “raw” polygons from the crowd: an improvement from 85% correct
to 96% correct. Extrapolating this to all 200 atlases, this improvement represents in the
order of a hundred thousand additional correct footprints – though not all atlases have
been digitized yet. We also show that the computed polygons more precisely align to the
image in a geometric sense.

Some parts of this chapter rely on speci�cs of the Building Inspector project, but
the techniques and concepts are more generally applicable. For one, the project demon-
strates the potential of “smart” crowdsourcing where nontrivial algorithms are applied
to improve the quality of crowdsourced data; we elaborate on this in the concluding re-
marks. Secondly, the polygon consensus problem as suchmay be of independent interest
to the computational geometry and GIS communities, possibly with di�erent applica-
tions or di�erent formalizations as an optimization problem.

5.2 RelatedWork

Particularly related to the current chapter is the work of Squire et al. [SRGL00]. ¿ey
integrate data from multiple participants reporting on the spatial extent of an environ-
mental contamination. In this context, they use the term consensus polygon and arrive
at a de�nition di�erent from ours. Much of the di�erence stems from the application,
where theirs is most concerned with the area covered by the input polygons rather than
with the shape. As a result, using their approach on the Building Inspector data would
not give satisfying results. A shared ingredient is using the mean of the centroids of the
input polygons (see Section 5.3.4), though it serves an entirely di�erent purpose in their
algorithm.

VolunteeredGeographic Information. Crowdsourcing for geographic information
is not a new concept, and under the term volunteered geographic information (VGI) repre-
sents an expansive �eld of work, with the successful OpenStreetMap project [HW08] as
its poster child. See for example Goodchild [Goo07] for a general review of the concept,
placing it within a context of more traditional citizen science and the role of the general
public in geographic observation. For a comprehensive overview of VGI as geographic
information science, see the book on the topic edited by Arsarjani et al. [AZMH15].

An important theme in VGI is data quality, in particular the quality of volunteered
information as compared to authoritative information. An interesting case arises when
no authoritative data is available. (¿is is the case in the current project: this is precisely
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why volunteered informationwas gathered.) Even in the absence of such a “ground truth”,
there can bemany grounds for determining the reliability of information. Vandercasteele
and Devillers [VD15] distinguish three aspects that one might take into consideration.
¿edata-centric approach considers the operations that have beenperformedon a feature
of the data, such as the number of committed edits. In OpenStreetMap, this correlates
well with data quality [Hak10]. A user-centric approach, instead, considers who provides
the data, and how these users relate to each other. ¿is leads to a concept of “user qual-
ity,” which can o en be linked to the quality of the features, and in aggregate gives rise to
crowd quality [vEDF10]. Lastly, the context-centric approach looks to the actual features
of the data and how they semantically relate to each other. ¿e current work can be seen
in this context, though instead of using semantic relations between di�erent objects, we
use the geometric relations between several user-provided representation of the same ob-
ject. (Future work could address the semantic relations between the submitted footprints
of di�erent buildings as well, for example by clustering them.)

Map Con�ation. In terms of dealing with multiple representations of the same spa-
tial data, our problem can also be considered a map con�ation problem. Longley et
al. [LGMR15] de�ne map con�ation as the attempt to “replace two or more versions of
the same information with a single version that re�ects the pooling [...] of the sources.”
Note that unlike in the common map con�ation setting (where relatively few, feature-
rich maps are merged), we have a potentially large number of representations of the
same, relatively simple spatial object (a building footprint).

Extracting Vector Data. Extracting (vector) features from raster map images, includ-
ing scanned historical maps, is an active �eld of research. Chiang et al. [CLK14] present
a comprehensive survey on digital map processing techniques. ¿e building footprints
used for the experiments in this chapterwere extractedwith an image processing pipeline
by Giraldo Arteaga [GA13]. ¿ere are multiple other approaches for extracting build-
ing footprints, such as those by Laycock et al. [LBLD11], Liu [Liu02] and Miyoshi et
al. [MLK+04]. ¿ese approaches do not solve the problem reliably and do not obviate
the need for our crowdsourcing step. Indeed, their polygons could be used as input for
a crowdsourcing project.

¿ere is also research on the extraction of other features from rastermaps, such as city
quarters extracted from historical cadastral maps by Raveaux et al. [RBO08]. Extracting
road vector data is a particularly popular topic (for example [CK13b, HL09, BAU07]).
Marciano et al. [MAHL13] extract (polygonal) city districts from historical city maps in
a largely manual process using on ArcGIS. In order to �nd archaeologically interesting
sites, White [Whi13] manually traces and annotates polygonal features in historical city
maps of New Orleans. Leyk et al. [LBW06] describe a method to �nd forest cover in a
set of 19th century topographic maps. More general approaches for the segmentation of
color layers are also described by Leyk [Ley10].
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Computational Geometry. In the context of computational geometry, there is some
research on “consensus” among geometric objects. ¿is includes for example median
trajectories [vKW11, BBvK+13], which have the property that all points are supported
by at least one of the input trajectories. To handle inaccurate input trajectories, De La
Cruz et al. [DLCKP+14] introduce mean consensus trajectories. ¿ese algorithms have
no direct bearing on our building footprint problem: they have a problemwewill discuss
in some detail in Section 5.3.2.

¿e algorithm presented in this chapter is based on a heuristic currently employed by the
NYPL to deal with their polygon consensus problem in practice. ¿e description of their
algorithm is only available online5; we will describe all relevant details in Section 5.3.

5.3 Polygon Consensus

In this section we discuss the polygon consensus problem. First, we describe the setup
of the crowdsourcing project that gave rise to the data set being considered. ¿en we
discuss what properties we might want from a consensus polygon. Finally we describe
our proposed algorithm and two variants.

5.3.1 User Tasks

¿is chapter is based on data from a two-stage crowdsourcing project. Its web-based
so ware supports various annotation tasks on scans of the maps in the system. Before
the crowd gets involved, a pipeline of image processing tools is used to extract polygons
from the map image [GA13]. ¿e set of extracted polygons unfortunately contains many
errors; this computer vision problem cannot be considered solved. In the �rst task in the
crowd work�ow, the user is shown an automatically detected polygon overlaid on the
map image and has to make the following decision.

“You are inspecting a polygon to �nd out if its shape: matches a building
(value: yes), matches part of a building but needs �xing (value: fix) or does
not match a building at all (value: no).”

A screenshot of the user interface is presented in Figure 5.2. Polygons for which a major-
ity of at least three users vote yes are assumed to be correct. In case of majority no the
polygon is discarded as a useless failure of the image processing step. In this chapter we
focus on the interesting (third) case of fix polygons.6 ¿ese are processed in a second
crowdsourcing task, where users are shown such a polygon and are instructed to make
it match the underlying building footprint by adding, deleting and moving vertices (see
Figure 5.1).

5 http://nbviewer.jupyter.org/gist/mgiraldo/a68b53175ce5892531bc
6 Approximately 13% of the detected polygons fall into this category.
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Figure 5.2: The user interface for the �rst task in the crowdsourcing work�ow: deciding whether an
automatically extracted building footprint is correct, to be �xed, or completely incorrect. In the case
of the building footprint highlighted in this screenshot, the crowd user should answer “�x”, since the
polygon covers two separate buildings but is not entirely wrong.

As we will see in Section 5.4, only about 85% of the “�xed” polygons we get from
the crowd are indeed correct. In order to increase reliability, multiple independent users
are given the same polygon to �x. Hence as an answer from the crowd we obtain, for
every automatically detect polygon, a set of polygons created by di�erent users that are
each supposed to be a �xed version of the detected polygon. We call this a group of
polygons, and its elements user polygons. By the nature of the interface and the problem,
all of these polygons will di�er: at least slightly in the exact position of manually-edited
vertices, and possibly in the user’s judgment of how to �x the polygon. ¿is leads to the
problem addressed in this chapter: given a set of user-created polygons, how can we �nd
one consensus polygon that represents best what the majority of the users intended?7

5.3.2 Modeling
We start with two general considerations about the properties a “consensus polygon”
should have; these are deliberately vague at this point.

• If the input group consists of many similarly-shaped polygons, but possibly in-
cludes some amount of outlier polygons of a di�erent shape, then a consensus
polygon should be shaped similarly to the majority of the polygons.

• If a set of vertices from di�erent polygons are near each other and, structurally
within their polygon, serve a similar function, then a consensus polygon should
consider these as noisy representations of an actual vertex. Such a set of vertices
should result in a single vertex of a consensus polygon. An alternate view of this
consideration is that the consensus polygon should have a level of detail that is
similar to the (majority of the) input polygons.

7 It would be possible to feed this consensus polygon (or the �xed polygons) back into the �rst step of
the Building Inspector to see if they are correct; we have not evaluated this, but discuss the idea in our
concluding remarks. Here, we are interested in evaluating the quality of the consensus step itself.
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Wedonot give a formal de�nition of polygon consensus as an optimization problem; this
is an interesting avenue for futurework, particularly because the appropriate de�nition of
consensus may depend on the application and spelling out explicit optimization criteria
and constraints is good practice. At present, we give a reasonable heuristic algorithm and
show that it gives good results on the Building Inspector data. ¿is NYPL-developed
algorithm was previously only described online; we describe it here with some minor
improvements and clari�cations as compared to the version available online.

We conclude this section with a discussion of alternate approaches and their short-
comings. A natural and elegantly simple attempt at de�ning a consensus polygon is to
consider the intersection or the union of the polygons in a group. More generally, we
could take the polygon formed by the set of points where at least k polygons overlap.
¿is e�ectively corresponds to taking a vote for all points in the plane independently.
Conceptually, this algorithm is concerned with the interior of polygons and, at least for
our problem, that is not the right view: it is too local, and we care more about vertices –
that is, corners of buildings. In other words, the combinatorial shape and structure of the
polygon is more important to us than exact coverage. Indeed, we will see in Section 5.4.4
that the real problem we face is semantic correctness, and geometric precision follows
from that. For our application, the main problem with the intersection-based approach
is that it is likely to give a consensus polygon with many more vertices than the input
polygons, many of them close together, which is counter to the second desideratum. ¿e
median trajectories discussed in Section 5.2 su�er from the same problem. It might be
possible to get rid of these spurious vertices in a postprocessing step, for example using
a simpli�cation algorithm, but this takes away from the elegant simplicity of the algo-
rithm. Incidentally, this intersection-based approach might actually be well suited for
Squire et al.’s contamination data [SRGL00].

5.3.3 Vertex Voting

¿e basic vertex voting algorithm takes a set of polygons as input and computes a con-
sensus polygon (or decides that there is no consensus): �rst it clusters the vertices of the
input polygons and then �nds a cycle through the clusters that is supported by many of
the input polygons.

¿e algorithm starts by determining a set of candidate vertices for the consensus poly-
gon. For this purpose, it takes the set of all vertices from the input polygons and clusters
it using DBSCAN. It requires, as a parameter, the distance threshold ε for points to be
considered “near.” We set its other parameter, the minimum number of points minPts
required to form a cluster, to 1 unless otherwise noted. Note that this makes it e�ectively
single-linkage clustering [SSBD14], since two points with a distance less than ε su�ce
to form a nontrivial cluster (of size 2). Later we will discuss a situation in which we use
higher values for minPts to e�ectively identify noise.

Let C be the set of clusters determined by the clustering algorithm. Each clusterC ∈ C
consists of a set of input vertices and represents a candidate vertex of the consensus poly-
gon. In the second step, the algorithm searches for a cycle through the clusters, which
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will de�ne the edges of the consensus polygon. ¿is cycle is heuristically constructed in
the following way, a er picking a consistent orientation of the polygons.

Let (u, v) be any arc in an input polygon, and let C be the cluster that v is in: then
we say that u votes for C. ¿e algorithm starts in an arbitrary cluster containing the
most vertices, then it iteratively proceeds to the cluster that has the most votes among
the vertices in the current cluster (breaking ties arbitrarily). ¿is process is terminated
when a cluster is visited for the second time, and the resulting cycle of clusters is taken
as the combinatorial structure of the consensus polygon. Note that we may return to a
di�erent cluster than the �rst. If the resulting cycle contains at least three clusters, we
construct the consensus polygon by connecting the centroid of each cluster along the
cycle. Otherwise, the algorithm does not output a consensus polygon.

¿eorem 5.1. Let P be a set of polygons with a total of n vertices, and let C be a clustering
of these vertices. ¿e basic vertex voting algorithm runs in O(n) time.
Proof. We assume that we can enumerate the points in a cluster. ¿e basic vertex voting
algorithm �rst identi�es a largest cluster in C; this takes O(n) time. Beginning at that
cluster, the algorithm tallies the votes from all points in the cluster and proceeds to the
cluster that received the most votes. Once a cluster is visited for the second time, this
process is stopped. ¿is guarantees that each point is tallied at most once, resulting in a
runtime of O(n).

Finally, the algorithm calculates the centroids of each cluster in the resulting cycle
(if it contains at least three clusters), which again takes O(n) time in total. If the cycle
contains less than three clusters, this step is omitted and the algorithm returns nothing.
¿e voting algorithm thus runs in O(n) time.
Next, we consider the runtime of the clustering step. Let n again be the number of ver-
tices in all input polygons combined. Without a data structure to speed up region queries,
the runtime of DBSCAN is Θ(n2). ¿e generally accepted observation that a runtime
of O(n log n) can be expected in many cases when using appropriate spatial data struc-
tures [EKSX96] does not necessarily hold for our data. Assume a �xed building footprint
and let the number of polygons in the group go to in�nity. ¿en if at least a constant
fraction of the polygons contribute a vertex to at least a constant fraction of the clusters,
each individual region query is likely to return Ω( n ) vertices. ¿e runtime of clustering
dominates that of tallying the votes and performing the graph search, leading to a total
runtime of O(n2).

We note that the voting algorithm is sensitive to the winding of the input polygons:
reversing the orientation of all polygons and running the voting algorithm is not guar-
anteed to give the reverse consensus polygon (see Figure 5.3). Being independent of the
winding would be a desirable property of a consensus algorithm, but the example for our
algorithm can be considered pathological – indeed, in our data set we have encountered
no such group.

Some groups may contain extreme outliers, that is, polygons that have been entered
erroneously and do not describe the semantically correct shape at all. We observe ex-

88



5.3 Polygon Consensus
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Figure 5.3: Instance in which the orientation of the input polygons a�ects the resulting consensus
polygon. The input consists ofmultiple copies of the three depicted polygons; the consensus polygon
is indicated by the light blue stripes.

perimentally that the voting algorithm is somewhat robust in the presence of this kind
of noise (see Section 5.4). If the input groups contain a large number of spurious poly-
gons, it might be necessary to �lter them beforehand. In the next section, we present a
variation of the Voting algorithm that includes such a preprocessing step (at the cost of
introducing an additional parameter).

It is unfortunate that the parameter εmakes the algorithm scale dependent. Depend-
ing on the application, it is to pick a reasonable value of ε, as this parameter re�ects a
rather direct property of the input data: the amount of “noise” we expect on vertices of
the input polygons. For cases where the scale of the input polygons is unknown or varies
by group, having a single �xed ε is problematic. In Section 5.3.5, we present a variation
of the algorithm that is scale-free and indeed parameter-free.

5.3.4 Filtering

Assume that an input group contains outliers (see for example Figure 5.4). ¿is can lead
to errors when using the basic vertex voting algorithm. We alleviate this problem by
adding a �ltering step before the clustering. For each polygon in the group, we consider
the centroid of its vertices. If these centroids are far apart, it is unlikely that their polygons
describe the same shape (building footprint). Hence we cluster the centroids: we use
DBSCAN with another distance threshold φ. If this results in more than one cluster, all
polygons not in the largest cluster are discarded before running the voting algorithm.

Unfortunately, the parameter φ does not have a clean interpretation in the application
domain and is less intuitive than ε. Still, this variant of the algorithm is currently used
in production in the Building Inspector, where it slightly improves the performance of
the system (see Section 5.4).
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Figure 5.4: The polygons in this group describe two di�erent buildings. There is a single polygon
representing the footprint of theHog slaughtering&Packinghouse on top, and 50 polygons describing
the L-shaped building below (of which one is noticeably imprecise).

5.3.5 Scale-Free Voting

Next we present a parameter-free version of the voting algorithm, which we call Auto-ε.
Various general-purpose attempts have been made to get rid of the parameters in DB-
SCAN, such as with the OPTICS algorithm [ABKS99]. We take a more direct approach
to �nding an appropriate value for ε by focusing on a domain aspect of our application:
the number of corners of the building. ¿e intuition is that most users will give us a
polygon with the right number of vertices: we pick ε such that we get that number of
clusters. (Note that we still pro�t from using DBSCAN as opposed to, for example, the
k-means algorithm: we can use the density constraints to remove noise.)

Consider what happens when DBSCAN is run with varying values of ε. We set
its minPts parameter to ⌈k/2⌉, where k is the number of polygons in the group; �xing
this particular value of minPts ensures that each cluster is supported by a majority of
the input polygons. Now note that, given the polygons, the number of clusters is solely a
function of ε. Call this function f and note that it is not bitonic (as one might expect): it
can increase and decrease repeatedly, since increasing ε can cause clusters to merge but
can also result in the creation of new clusters due to the density condition. See Figure 5.5
for an example of the behavior of f on a real group from our data set. ¿is diagram is
somewhat related in motivation to the k-distance graph that the authors of the original
DBSCAN paper propose for parameter selection, but it is in fact quite distinct and more
amenable to automatic analysis.

Let m be the median number of vertices in a polygon in the group. We consider a
value of ε to be plausible only if f (ε) = m; it remains to �nd and pick one such value.
¿ere may be multiple intervals of plausible values of ε. In that case, we take a value
from the largest interval: in this interval, getting the right number of clusters is most
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Figure 5.5: Left: a group of polygons from our data set. Right: a diagram showing the number of clus-
ters for di�erent values of ε for that group. Note that the desired number of eight clusters is reached
quickly and remains stable for some time. The next stable plateau is reachedwhen the clusters on the
insidemerge together. Because the outline is nearly a square, there is a long plateauwith two clusters
before collapsing into one cluster.

stable to small changes in ε, which is a property we expect of the correct clustering. In
the diagram in Figure 5.5, this corresponds to the longest plateau at the correct height.

¿e Auto-ε consensus polygon is given by running the voting algorithm (without
�ltering) using this ε. It would be possible to combine Auto-ε and the �ltering from
Section 5.3.4, but then we reintroduce φ and have a scale dependent algorithm; we do
not consider this a reasonable variant and do not evaluate it.

For the runtime of computing the Auto-ε consensus polygon, consider the following
theorem.

¿eorem 5.2. ¿e distinct results of the DBSCAN algorithm over all ε can be enumerated
in O(n2 log n) time, where n is the number of points and minPts is �xed.
Proof. Recall that a core point is de�ned as having at least minPts points within its ε-
neighborhood. As ε increases, points can become core points and clusters can merge.
While the algorithm sweeps over increasing values of ε, we store at each point a list of all
other points within distance ε: call this the neighbor list. We furthermore store the core
points in a disjoint-set data structure [CLRS09] to keep track of the clusters.

We consider the DBSCAN results for increasing ε. With ε = 0, only multiply oc-
curring identical points can form clusters, and they do so when their multiplicity is at
leastminPts. ¿is initializes the neighbor lists and the clusters. Nothing changes until ε
equals the shortest nonzero distance between two points. Consider this pair of points:
each gains a neighbor within distance ε, which is added to their neighbor lists and may
cause them to become core points. Whenever a point becomes a core point, we make a
set for it in the disjoint-set data structure and immediately union this set with the sets
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of all points in its neighbor list. ¿e sets in the data structure represent the clusters in
the DBSCAN result for this value of ε. We repeat this process for every pair of points in
increasing order of distance.

For the claimed runtime, create a list of all O(n2) pairs of input points and sort it by
increasing distance in O(n2 log n) time. Handle the pairs of points in this order. Every
point becomes a core point once, which directly leads to a Make-Set call. Its newly-
made set must also be merged with all its neighboring core points. ¿ese are available
in the neighbor list and we observe that every pair of points is considered only twice:
when either of the vertices becomes a core point. With an e�cient disjoint-set data struc-
ture [Tar75, CLRS09], this costs amortized O(α(n)) time for a Find-Set and possibly a
Union operation, where α is the inverse Ackermann function. ¿is leads to a total run-
time of O(n2 ⋅ α(n)) for keeping track of the clusters. ¿is is dominated by the initial
sorting step.

It follows that we can compute the Auto-ε consensus polygon in O(n2 log n) time, since
we can also keep track of the number of clusters during the above algorithm and use that
to determine ε; the cost of the other steps is lower.

As an example, consider Figure 5.5. For ε = 0, no clusters are formed. Increasing ε
initially leads to an increase in the number of clusters: in a quick succession of events, ε
becomes large enough to cover at least half of the vertices in the various corners of the
shape. ¿en, nothing changes for awhile. ¿ere are several plateaus inwhich the number
of clusters does not change for an interval of values of ε. In particular, the plot shows a
plateau at value eight and this is the numberwe are looking for. For higher values of ε, the
clusters collapse and ultimately become a single cluster; increasing ε beyond this value
has no further e�ects.

5.4 Experiments

We have implemented the three variants of our algorithm and evaluated their perfor-
mance on data from the Building Inspector project, which is publicly available through
an open API.8 At the time of our experiments, the data set consisted of 5834 groups that
have been labeled fix, containing 58 651 user polygons. We have sampled a random sub-
set of 200 groups for the experiments presented in this chapter, where we have restricted
the sample to groups containing at most 9 polygons.9 We have run the three variants
of our algorithm successfully on all 200 groups, resulting in 600 algorithmic consensus
polygons. Together with the corresponding 1278 user polygons and the 200 polygons
detected by the computer vision step, this makes a total of 2078 polygons assessed in this
section.

8 http://buildinginspector.nypl.org/data
9 We only consider groups with at most 9 user polygons to avoid some rare groups that contain verymany
user polygons (up to 70). ¿is restriction allows us to manually inspect groups without inordinate e�ort
and should not signi�cantly in�uence the results.
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Figure 5.6: The polygon on the left is semantically incorrect because it does not represent a building
footprint. Thepolygon in themiddle is also incorrect, because it has one vertex toomany. Thepolygon
on the right has inaccurate corner positions, but is semantically correct because it covers the right
shape and has exactly one vertex for each corner.

5.4.1 What Is Consensus?

In our �rst set of experiments, we manually evaluated the consensus polygons in terms
of their semantic correctness. ¿is means that we checked for each polygon whether it
actually traces a building footprint on the map. (We will explain our criteria for that
in more detail below.) Note that this manual evaluation only addresses the semantic
correctness of each individual polygon – in particular, it does not take into accountwhich
building footprint a given polygon resembles, or if that footprint represents a reasonable
consensus for the group. ¿is avoids the need for a de�nition of polygon consensus: all
user polygons are supposed to trace the same object, so the fact that an output polygon is
a correct polygon can reasonably be taken as proxy for it being an appropriate consensus.

Note that this measure is thwarted by an algorithm that always returns some semanti-
cally correct polygon that is unrelated to the input, but clearly all our computed polygons
are appropriately related to the input group.

5.4.2 Ground Truth

Wehavemanually created a ground truth in terms of semantic correctness as follows. We
call a polygon correct if it traces a single building footprint and has exactly one vertex
for each corner of the footprint (and no vertices where there are no corners). Examples
of polygons that are semantically correct or incorrect according to these criteria are pre-
sented in Figure 5.6. ¿ree referees¹0 independently evaluated the correctness of all 2078

¹0 ¿omas C. van Dijk, Fabian Feitsch, and the author.
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Table 5.1: Ratio of correct polygons among the detected polygons to be �xed, the user polygons, and
the algorithmic consensus polygons.

set of polygons fix User VotingPre VotingRaw Auto-ε
ratio of correct polygons 0.0 0.847 0.96 0.94 0.705

polygons by manual inspection. To avoid in�uencing this judgment, all polygons were
randomly shu�ed and it was unclear to the referees which came from which source.
In our experience, only the fix polygons are identi�able as such.¹¹ For polygons with
con�icting votes among the three referees (which was the case with 84 polygons), the
majority answer was taken.

Some groups in our data set contained outliers as discussed in Section 5.3.4, that is,
user polygons tracing more than one building. We call a group divisive if its polygons
trace at least two disjoint objects (for an example, see Figure 5.4). Approximately 20% of
the 200 groups in our sample are divisive. Such groups occur because the crowdsourced
user task is somewhat underspeci�ed: starting with a polygon that needs to be �xed,
there is sometimes uncertainty as to what building footprint is supposed to be traced.
(For an example of such a situation, look back to Figure 5.2: should the user trace building
no. 346 or 348?). At the time of our evaluation, the crowdsourcing was already running
for three years, which made changes to the user task undesirable. ¿e lesson learned
for future applications, is to make sure that user tasks have a uniquely-de�ned solution:
in this case, making sure that users agree on which object to trace. If the user task is
underspeci�ed, as in our experiment, one needs to be prepared to handle the divergent
user answers algorithmically a erward (which may well be possible). As we will see in
the outcomes of our experiments, divisive groups had a particularly strong impact on
the Auto-ε algorithm.

5.4.3 Semantic Correctness

Next we discuss the outcomes of the semantic evaluation; Table 5.1 provides statistics.
Of the 200 polygons that were detected through computer vision, we found that none
are semantically correct. ¿is is no surprise since they have been marked as fix in the
�rst crowdsourcing step. Still, this con�rms that our criteria for semantic correctness
are consistent with the task as interpreted by the crowd. ¿e user polygons have a high
semantic correctness (average 84.7%). On 129 of the 200 footprints, the users were able
to solve the problem consistently: more than 80% of the user polygons in each of these
groups were correct. ¿e remaining groups raised more di�culties; for 15 of them, at
least half of the user polygons were semantically incorrect (see Figure 5.7).

¹¹ Consider for example the le polygon in Figure 5.6. It is quite obvious that this polygon was not submit-
ted by a user, but is the result of an error during the automatic detection. For the other two polygons,
the source is not apparent.
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Figure 5.7: This histogram shows groups binned by the ratio of semantically correct user polygons
within the group. The dark gray portion of each bar indicates the expected number of correct groups
using the baseline algorithm. The striped portion on top gives the additional number of correct
groups when running VotingPre instead. Groups that remain incorrect for both algorithms are indi-
cated in light gray. Note that the striped portion of each bar re�ects the gain of our algorithm.

Table 5.2: Average ratio of correct user polygons per group, binned by the number of user polygons
in the group.

number of polygons in group 3 4 5 6 7 8 9
ratio of correct user polygons 0.67 0.88 0.85 0.86 0.89 0.81 0.80
support 2 6 7 16 40 53 76

Not all groups have the same number of user polygons; this did not signi�cantly
in�uence the ratio of semantically correct polygons (see Table 5.2). ¿is supports our
assumption that the users’ polygons are indeed independent, with a certain probability
of errors. We consider an accuracy of 84.7% to be a reasonable quality level for individual
tasks in a crowdsourcing project. It certainly gives the hope that integratingmultiple user
answers for the same footprint can be used to increase the success rate by taking some
kind of majority vote.

In the following, we consider a consensus polygon successful if it is semantically cor-
rect; based on this, we calculate the success rate of the three variants of our algorithm.
In addition, we consider the randomized algorithm that takes a random user polygon
from the group as a baseline. ¿is could be considered “consensus” in the sense that if
many polygons agree, one of those is likely to be picked. In expectation, this algorithm
has a success rate of 85.2% on our data. Note that this number is di�erent from the 84.7%
reported above; this is because the baseline algorithm picks exactly one polygon from
each group, whereas the number above is an average over all polygons.
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We now consider the voting algorithm with �ltering (called VotingPre in the data).
It is successful on 96% of the groups. ¿is can be considered a success for the whole
project: the 11.3 percentage point increase in accuracy over the user polygons represents
more than 6600 additional correct footprints when extrapolated to the full data set. ¿is
calculation assumes as baseline the algorithm discussed above: pick a random user poly-
gon from a group and return it as the consensus. Figure 5.7 presents the gain in correct
polygons for the 200 groups in our experiment.

However, recall that this variant of the algorithm requires two parameters, which can
be problematic depending on the data set to be processed. Next we consider the voting
algorithm without �ltering (called VotingRaw in the data), which has one parameter
fewer due to the lack of the �ltering step. As a result of this, the accuracy takes a small
hit, dropping from 96% to 94%. ¿is is still well above the users’ base rate of 84.7%. We
note that VotingPre does not actually dominate VotingRaw: seven groups were correct
only for VotingPre, three only for VotingRaw.

In these �rst two experiments, we have set ε (and also φ in the case of VotingPre) to
e�ective values by hand. ¿e experiments have shown that we can remove the �ltering
step at only a minor cost. ¿is leaves ε, for which a reasonable value can be picked
in many cases, based by manual inspection of the map images and the user polygons.
However, even with a carefully picked value of ε some problems remain when a footprint
contains very short edges; for an example, look ahead at Figure 5.9 (le ). Also, due to
their dependence on the parameters ε and φ, both these variants of the algorithm are
not scale-free. A failure mode of the variants with �xed parameter ε is indeed when the
vertex clustering (using DBSCAN) fails.

Next, we discuss the performance of the Auto-ε algorithm. It has a much lower suc-
cess rate than the previous variants, at 70.5%. ¿is is even lower than the base rate for
user polygons. ¿is may sound unacceptable, but is caused by a very speci�c type of
errors that our users make: disagreeing on which object to trace, resulting in divisive
groups. If there is signi�cant disagreement in this sense, the Auto-ε algorithm will not
be able to �nd a reasonable value for ε that yields the required number of clusters. ¿is
leads to a set of candidate vertices that do not correspond well with the corners of the
footprints, which prevents the algorithm from �nding a semantically correct consensus
polygon. For an example of this, see Figure 5.8. Note that the clusters for the variants
with �xed ε are not a�ected by this problem: these algorithms are still able to return some
semantically correct polygon.

Manually inspecting the incorrect consensus polygons returned by the Auto-ε algo-
rithm, we see that 42 out of 45 groups are indeed divisive. With an e�ective �ltering step
for such groups, the Auto-ε algorithm would reach an error rate at least as good as those
of the two other variants (on our data set). We could do the �ltering from Section 5.3.4,
but that reintroduces the parameter φ – which defeats most of the purpose of the Auto-ε
algorithm. We have therefore ignored this possibility.

We do note Auto-ε is the sole correct algorithm for two groups (1%) where our �xed ε
fails (see Figure 5.9). Note that this is relatively rare on our data, but could be more com-
mon in other applications where the traced objects are less uniform in scale: consider
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Figure 5.8: Situation in which Auto-ε fails. All polygons in the group have four corners, but mark two
di�erent footprints (left). The Auto-ε algorithm picks the longest plateauwith four clusters, which can
only be reached when corners merge, resulting in an incorrect consensus polygon (right).

Figure 5.9: Situation in which using a constant ε value leads to an error. VotingPre cannot detect
the small detail in the center, because the corners have been assigned to the same cluster (left). In
contrast, Auto-ε is able to adjust the clustering accordingly and �nds the correct solution (right).

for example a data set that includes polygons describing cities and countries, where dif-
ferent values for ε are required for handling di�erent groups. Clustering algorithm such
as OPTICS [ABKS99] might able to handle this, but we have the additional structure of
groups, and the Auto-ε algorithm is able to pick an appropriate ε for each one.

Our experiments show thatwe can get rid of one parameter (by removing the �ltering,
if we have a good ε) or both (by automatically determining ε). However, the latter option
only works if we have a good way to �lter the data. In practice, one can select one of the
three variants of our algorithm depending on the particular data set to be processed.

5.4.4 Geometric Precision

In the previous experiments, the correctness of the polygons was determined manually
and in terms of semantics. We now evaluate the geometric precision of the polygons by
taking the map images back into account. ¿is closes the circle in some sense, since the
polygons have been extracted from the images using computer vision at the beginning
of the pipeline.
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For the evaluation of geometric precision, we consider the brightness of the pixels
under the edges of the polygon: if the edges indeed follow the ink marking the outline
of a building footprint, these pixels should be relatively dark. ¿is is opposed to the
relatively bright color of the (blank) paper and the background colors used to �ll the
building footprints.¹² We use a standard brightness calculation¹³ and normalize to a
scale where black is 0 and white is 1. Note that this approach works as a measure of �t,
but not for extracting the polygons without further information: we will show below that
we cannot distinguish correct polygons from incorrect ones based on their brightness.

Considering the average brightness scores (see Figure 5.10), we see that the polygons
detected by computer vision (and marked as fix) have an average brightness of 0.68,
which we will see is high. ¿is means that these polygons do not align well with the
underlying building footprints on the maps, because a signi�cant fraction of their edges
runs over blank paper rather than inked lines. ¿e semantically correct user polygons
have a much better score (0.49), which suggests that assessing the brightness is actually
is a sensible measure of success. However, the semantically incorrect user polygons have
a similar score (0.54): this already hints at the fact that a brightness analysis alone will
not solve semantics. Indeed, in 15 of the 200 groups in our data set, the polygon with the
best brightness score is semantically incorrect: this is only slightly better than the base
rate. An example showing correct and incorrect polygons together with their brightness
scores is presented in Figure 5.11.

Statistics con�rm that the brightness score cannot individually be considered a good
feature for determining the semantic correctness of a polygon. Consider a classi�er
that, given a discrimination threshold τ, assumes that all polygons with brightness lower
than τ are correct. ¿equality of this classi�er can be evaluated using a receiver operating
characteristic (ROC) curve. We calculated the ROC curve using our ground truth data
(Figure 5.12); the area under curve (AUC) is 0.643. Generally, an AUC value between 0.5
and 0.7 is considered “poor discrimination, not much better than a coin toss” [HJL04].
¿is shows that the correctness of a polygon can not reasonably be judged by its bright-
ness alone.

¿e score of the consensus polygons calculated by the three variants of our algorithm
is each better than the average score of USER polygons (0.440 for the correct polygons,
see Figure 5.10). ¿is is mainly because the algorithms take the centroid of each vertex
cluster, thus evening out inaccurately placed input vertices. ¿is evaluation shows that
the consensus polygons outperform the users’ base rate not only in terms of semantic
correctness, but also in geometric precision.

We conclude this section with an outlook to possible improvements based on assess-
ing the geometric precision. In order to obtain polygons with precision even higher than
that of the polygons returned by our algorithms, we could use the brightness score for

¹² While the background colors certainly contain interesting information, it is not straightforward to use
these colors for extracting building footprints from our maps: they have degraded over time, making it
di�cult to distinguish them from each other and the background [GA13].

¹³ We de�ne the brightness of a pixel as the mean of the largest and smallest value of the RGB channels,
normalized to a value between 0 and 1.
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Figure 5.10: Average brightness values for polygons, grouped by their type. Higher brightness values
mean less precision in terms of the underlying building footprint.

brightness 0.36 brightness 0.48 brightness 0.38

Figure 5.11: The polygon on the left has low average brightness and is semantically correct. The
polygon in the center has a worse brightness, but we also consider it to be correct. The polygon on
the right has a better brightness, but is semantically incorrect as it marks the union of two footprints.
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Figure 5.12: ROC curve for thresholding user polygons by brightness. The area under curve is 0.643,
indicating poor classi�cation performance.

a local search algorithm starting from a consensus polygon. Such an algorithm could
for example repeatedly slightly move the vertices of a polygon and re-evaluate the bright-
ness score a er each move. If the score improves, the new position is kept for the next
iteration; otherwise, the vertex is returned to its previous position.

Applying local search is dangerous: there is no guarantee that the resulting polygon
with locally minimal brightness is semantically correct. Still, if we start the local search
on a polygon that is close to a semantically correct footprint (and carefully restrict the
moving distance), we may expect it to converge to a higher-precision version without
introducing semantic mistakes. Whereas many advanced local search algorithms are
designed to escape local optima, we may actually be better served by a straightforward
greedy approach.

We think the above could be an interesting general approach for human computa-
tion [LvA11]: local search to a high-precision solution, supported by a user to get it into
the basin of attraction of the semantically correct solution. In the case of polygon consen-
sus, this may improve the geometric accuracy of the results, but recall that only 85% of
user polygons were semantically correct, so this does not invalidate the consensus step.
A video of our preliminary experiments with the approach sketched above can be found
online.¹4

5.5 Concluding Remarks

¿e present chapter considers a data set gathered in a speci�c crowdsourcing project at
the New York Public Library. Algorithmic analysis of this data results in higher-quality
output, increasing the value of the gathered data. We propose the general usefulness of
such smart crowdsourcing, where the user task is not simply a multiple-choice question,

¹4 https://www.youtube.com/watch?v=GOzlprNa22o
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andwhere the integration of the responsesmay be nontrivial. ¿iswill be particularly im-
portant for the development of successful crowdsourcing projects for (historical) spatial
information, since such information can be hard to capture in discrete, multiple-choice
questions. In OpenStreetMap [HW08], a classic example of a system gathering informa-
tion provided by volunteers, eventual correctness comes (at a most basic level) from a
community e�ort of correcting errors and moderating changes. ¿is is a rather “brute
force” application of user e�ort and we wonder about the possible gains in e�ciency
achievable when an e�cient user task is designed in tandemwith appropriate algorithms
(compare with human computation [LvA11]).

¿e algorithms and techniques in this chapter are generally applicable, though the
image processing to extract the initial polygons was bespoke and might not readily gen-
eralize to other maps. When applying the consensus algorithms to other data sets, a
variant should be chosen based on the types of errors that are expected in the input as
discussed at the end of Section 5.4.3.

We have also mentioned the possibility to feed a consensus polygon (or a user-�xed
polygon) back into the �rst step of the presented crowdsourcing process. ¿is has the
advantage that the crowd users can directly judge those polygons, and potentially also
�x errors in them. ¿e downsides of such an approach include that the user-submitted
content is no longer separated from other users – this can be problematic, for example
when users submit obscenities.

¿e map sheets in the Building Inspector project have already been georecti�ed as
part of their digitization, prior to our involvement. ¿e extraction of individual features
(here: building footprints) is a clear example of deep georeferencing, wherewe donot just
have the map image in a known coordinate system, but also know about the object-level
semantic elements on the map. ¿is enables rich data experiences such as the NYPL’s
Space/Time Directory¹5 and virtual reality applications [BGG+16].

Wehave introduced the idea of using local search as postprocessing for our consensus
polygons, but as noted, this only works as a postprocessing step: it cannot solve the
question of whether a polygon is semantically correct or not. ¿e concept of using a
myopic local search to get to a local optimum, with user input to get into the correct
basin of attraction seems like it might be of more general interest.

Acknowledgments
We thank Mauricio Giraldo Arteaga of the New York Public Library for the enjoyable
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¹5 http://spacetime.nypl.org/
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Chapter 6

Georeferencing Historical Itineraries
In this chapter, we present a system that extracts spatial information from textual repre-
sentations given in historical itineraries. Many historical itineraries describe routes by
listing settlements (and travel distances) along the way. In order to automatically extract
information from these documents, we develop an approach for georeferencing histor-
ical itineraries using a modern gazetteer. We combine textual information (historical to-
ponyms) and spatial information (travel distances) into a hiddenMarkovmodel. Naively
calculating amaximum likelihood explanation is slow, but careful algorithm engineering
achieves high performance suitable for user interaction.

We demonstrate the practical potential of our approach by georeferencing 48 itiner-
aries (containing 691 stops) from two important historical guidebooks published in 1563
and 1597: our approach is fast and accurate. Additionally, we show how sensitivity analy-
sis can be used to power an e�cient user interface for quality assurance.

6.1 Introduction

Historical itineraries are fascinating documents that convey spatial information from
the past. ¿ey describe routes by listing encountered settlements along the way, o en
including the travel distance between them. Georeferencing these itineraries – that is,
identifying the corresponding modern place for each historical stop – is a “tedious, but
highly insightful” task that is not always undertaken [Krü74]. ¿e main reason for not
doing it is the amount of manual e�ort involved (using various sources of information,
such as lexica andmodernmaps). Existing tools that support the process, while certainly
useful, are insu�cient to tip the balance for mass georeferencing: they merely provide
visualization aids and usability improvements. ¿e Recogito system [SBIdSC15], for ex-
ample, provides a smooth user experience, but does not o�er meaningful support for
georeferencing itineraries.

In this chapter, we present a system that automates georeferencing historical itinerar-
ies to a large extent. ¿is places our work in the scope of Chiang’s research vision [Chi15]
of an intelligent pipeline for handling historical spatial data. In particular, our algorithm
is able to assign historical stops in the itinerary tomodern placeswith high accuracy. Our
main contribution are improvements in several respects over previous work on the same
topic by Blank and Henrich [BH16a]. ¿eir algorithm is an ad-hoc heuristic without rea-
sonable runtime guarantee. In contrast, our algorithm is based on proper mathematical

¿is chapter is based on joint work with¿omas C. van Dijk [BvD17].
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Figure6.1: Left: itinerary from the Raißbüchlin, describing the route fromSalzburg to Innsbruck. Right:
the same route on a modern map, showing corresponding modern places.

modeling as an optimization problem. We give a polynomial-time algorithm to compute
the optimal assignment and show that it is fast in practice. Additionally, we present an
e�cient user interaction for quality assurance, driven by sensitivity analysis.

Being able to automatically retrieve information from historical itineraries is bene-
�cial for research practice, since a great number of historical itineraries remains in ex-
istence today. Some of the itineraries considered in the experiments in this chapter are
taken from Jörg Gail’s Raißbüchlin¹ [Krü74], a book of itineraries published in 1563. It
contains 161 routes throughout Europe, with a focus on Southern Germany. ¿e itiner-
aries are given as a sequence of stops, each of which lists a place name and the travel
distance from the previous stop. Some stops are also annotated with a class label that
identi�es them as a city, market town, village or monastery.

See Figure 6.1 (le ) for Gail’s itinerary from Salzburg to Innsbruck. Note that the des-
tination Innsbruck is spelled in di�erent ways even on this single page and neither time
matches the modern spelling; in fact, none of the given toponyms equal their modern
equivalents (right). Still, some phonetic similarity between corresponding place names
is present, and the distances given on the right side of the page are plausible (at least in
relation to each other).

¿e remainder of this chapter is organized as follows. First we discuss related work
(Section 6.2). ¿en, we model the georeferencing task as an optimization problem (Sec-
tion 6.3), for which we give an e�cient algorithmic solution (Section 6.4). We experi-
mentally evaluate our approach (Section 6.5) and apply it to the Raißbüchlin in a case
study (Section 6.6). For quality assurance of the georeferenced result, we use sensitivity
analysis and introduce an e�cient user interaction (Section 6.7).

¹ Appropriately, Raißbüchlin literally translates to “travel book.”
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6.2 RelatedWork

¿e research presented in this chapter is related to various �elds. Most closely related is
a series of papers by Blank and Henrich, which we will discuss �rst.

Historical ItinerariesandGazetteers. Blank andHenrich [BH15] recently introduced
the problem of itinerary resolution, which they describe as a four-step process:

(1) optical character recognition,

(2) itinerary parsing,

(3) toponym resolution, and

(4) route �nding.

By route �nding, the authors mean the problem of �nding the actual paths underlying a
particular itinerary. In this chapter, we address the tasks from steps (1) and (3).

In a second paper, Blank and Henrich [BH16a] present a heuristic for step (3), match-
ing an itinerary to a given gazetteer based on string distance and geometry. ¿eir al-
gorithm prunes the search space using textual and geospatial �lters. ¿is approach is
reported to work well in practice, but lacks a clear optimization goal and has runtimes of
several minutes. Addressing an audience from the humanities, a further paper [BH16b]
presents another evaluation of this approach. However, in that paper, their approach is
not very accurate on the itinerary used for demonstration.

In 1974, Krüger [Krü74] published a facsimile of the Raißbüchlin. ¿is is our source
for this document and the corresponding imagery in this present book. Together with
the facsimile, Krüger provides an in-depth investigation of theRaißbüchlin in the context
of contemporary itineraries from the perspective of historical road network research.

Southall et al. [SMB11] postulate the need for historical gazetteers, by which they
mean gazetteers that are enriched with historical places and name variations. ¿ey sur-
vey existing gazetteers and discuss requirements from a historian’s standpoint, many of
whichwould also be helpful for the task discussed in this chapter. Note that our approach
not only bene�ts from extensive historical gazetteers, but might actively help improve
them by adding additional name variations (by georeferencing itineraries that contain
previously unknown toponyms). Improving gazetteers in this way is known as gazetteer
enrichment and is highly relevant to the spatial humanities: for an overview, see Berman
et al. [BMS16].

GeocodingandModern Itineraries. Geocoding, that is, determining locations based
on textual descriptions, is an active �eld of research in geographic information retrieval.
For an extensive survey on automated geocoding of textual documents, see Melo and
Martins [MM17].
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In terms of modern itineraries, Moncla et al. [MGNIM16] introduce a system for
reconstructing itineraries from annotated text, for example on a corpus of hiking de-
scriptions [MRANG14]. Adel�o and Samet [AS14] present an approach to identify and
extract modern route description from spreadsheets and websites.

Extracting itinerary information from unstructured input is relevant in the context
of historical itineraries as well, since not all historical guidebooks have the tabular format
of the Raißbüchlin. (¿is corresponds to step (2) in Blank andHenrich’s [BH15] itinerary
resolution process.) Still, many historical guidebooks exhibit structure that may enable
the automatic extraction of the toponyms (for example: Khan et al. [KVW13]). In this
chapter we assume that any such processing is already done and require the itinerary to
be given as a list of toponyms and distances.

Historical Spellings. Handling historical spelling variants of toponyms is one of the
main challenges in identifying corresponding modern places for itinerary entries. Ernst-
Gerlach and Fuhr [EGF07] present a system for text retrieval supporting non-standard
historical spellings. Rather than applying a manually-created set of rules, we learn trans-
formations from a training corpus. For this we use a lexicon of historical spelling vari-
ants of places in Franconia compiled by von Reitzenstein [FvR09]; there are other similar
databases, for example THELO² by the Academy of Sciences and Literature Mainz.

Butler et al. [BDTG17] recently gave an overview of historical onomastic variations
of place names in the context of geotagging. In particular, the authors discuss common
issues with place names from sources from the 17th to the 19th century and how non-
standardized spelling makes automated place recognition challenging.

StringDistances and Toponyms. ¿ere is some research onmatchingmodern topo-
nyms (to each other) based on string distance. Recchia and Louwerse [RL13] compare
various string similaritymeasures in this context. Kılınç [Kıl16] presents an approximate
string matching approach for toponymmatching and shows that it outperforms some of
the traditional string distance measures.

¿ere is less research about matching historical toponyms to modern ones. Blank
and Henrich [BH16a] evaluate 13 string distance measures on historical toponyms from
itineraries. ¿ey conclude that on their data set, which consists of 15 routes from the
Raißbüchlin, Levenshtein distance [Lev66], Jaro distance [Win90] and a distance mea-
sure based on the Cologne Phonetics [Pos69] perform best.

To suit our probabilistic model, we use the probabilistic string edit distance intro-
duced by Ristad and Yianilos [RY98]. ¿eir system has the advantage that it integrates
well with our probabilistic modeling and can be trained for speci�c applications. In par-
ticular, we will be able to use existing material from the humanities (here: lexica of his-
torical spelling variants) as training data for this system (see Section 6.6.2).

² http://www.personalschriften.de/datenbanken/thelo.html
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Connection to Map Matching. ¿ere are some conceptual similarities between our
itinerary resolution problem and the more well-known problem of map matching. ¿e
latter involves noisyGPSpointswith time stamps, and a knownunderlying road network.
We do not have exactly that, but we do have noisy location information (from the his-
torical place names), somewhat unreliable information about where to go next (through
the reported distance between the stops), and an underlying gazetteer. In their landmark
paper on map matching, Newson and Krumm present “a novel, principled map match-
ing algorithm” [NK09]. Our algorithm is similarly based on a probabilistic model and
�nding a most-likely path in a hidden Markov model (HMM), but the ingredients to
the model are fairly di�erent. (Somewhat interestingly, Newson and Krumm’s model
has a complicated transition distribution, whereas ours has a complicated observation
distribution.)

6.3 Problem Statement andModeling

We now formalize the input to our georeferencing algorithm (which corresponds to
step (3) of Blank andHenrich’s itinerary resolution problem): an itinerary and a gazetteer.

• ¿e itinerary I is a sequence of stops. Let k = ∣I∣. Each stop in the itinerary
consists of a historical toponym (as a string) and a distance from the previous stop
(a number). (In our modeling, we ignore possible settlement-type information.)

• ¿e gazetteer G is a set of places. Let n = ∣G∣. Each place consists of a modern
toponym (as a string) and a latitude/longitude pair. A gazetteer can contain addi-
tional information, such as modern-day population; we do not use this informa-
tion. In case alternative or historical place names are available, we model these as
additional gazetteer entries with the same geolocation.

¿is input contains several kinds of noise. Firstly, toponyms have changed over the cen-
turies. Sometimes, they are seemingly unrelated at a string level (now it’s Istanbul, not
Constantinople): in this case the historical toponym must be in the gazetteer, otherwise
we have no chance to georeference with high con�dence based on the string alone. Lucki-
ly, in many cases the historical toponym is phonetically similar to the modern one. Tran-
scription errors introduce further noise, but string similarity measures can be applied to
some success.

¿e distances given in the itinerary are imprecise for a variety of reasons. It is not gen-
erally knownwhat (if any) road network underlies the reported travel distances. ¿e con-
version factor between reported distances in the itinerary and real-world geodistances is
also not necessarily clear: see Section 6.6.4 for a discussion. Furthermore, in our itinerar-
ies, many distances are given as integers between 1 and 5, which is rather coarse-grained.
Still, these numbers clearly contain information about where to �nd the places on amod-
ern map.

We now combine the textual and spatial information into a Bayesian model for geo-
referencing sets of itineraries. When restricted to a single itinerary, thismodel reduces to
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a hiddenMarkov model. Future work could consider the potential bene�t of combining
information from multiple itineraries, but will likely face a harder inference problem.

Consider a single itinerary. We introduce three variables for each stop in the itiner-
ary: the historical toponym Ti (domain: strings), the reported distance from the previ-
ous stop Di (domain: reals), and the modern place Pi (domain: gazetteer G). We have
observed the �rst two variables at each stop and the third variable gives the solution to
our problem. We will infer a most likely assignment. It may be noted that Ti and Di
have in�nite domain, but this is not a problem since we have observed these variables
and therefore they have singleton support.

As a modeling decision, we postulate the following independences. Conditioned
on Pi , that is, given a decision to georeference step i as a certain place:

• other places are conditionally independent of Ti and Di : if we have decided on a
place, it no longer matters what the itinerary says for that stop;

• later places are conditionally independent of all places before Pi , i.e., P is Markov:
if we have decided a place, going forward it does not matter what came before; and,

• the previous place Pi−1 combined with the distance Di is conditionally indepen-
dent of Ti : our a priori assessment of how historical and modern toponyms relate
is independent of our a priori assessment of how reported distances in the itinerary
relate to geodistances.

We start from a uniform prior on each of the place variables Pi and then fuse our evi-
dence [Pea86] using the conditional probability distributions given in the next three
subsections. Each one can be fused separately because of the assumed independences.

6.3.1 Toponym Evidence

¿e in�uence of the historical toponym on the selected place is achieved through an evi-
dential term Pt(Pi ∣Ti ), that is, the a priori conditional probability distribution over
places in the gazetteer given a historical toponym. We set this distribution based on the
modern toponyms in the gazetteer and the statistical string similarity measure of Ristad
and Yianilos [RY98]. ¿eir similarity measure has the advantage of being rigorously
grounded in probability theory and being trainable by expectation maximization on an
appropriate corpus. With tmodern(Pi) themodern toponym of place Pi , and simRY( ⋅ , ⋅ )
the Ristad-Yianilos similarity, we let

Pt(Pi ∣Ti ) ∆= simRY( tmodern(Pi), Ti ). (6.1)

Note that Ti is in fact observed: we set it equal to the historical toponym at stop i.
¿e basic version of Ristad and Yianilos’s measure favors short strings over long ones.

Since we need to assess the similarity of strings of various lengths, this version of themea-
sure is not suitable for our application. Instead, we use their alternatemodel conditioned
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on length [RY98, Appendix B] that does not have this issue, but depends on a joint prob-
ability distribution over the lengths of two strings. Ristad and Yianilos do not give such
a distribution; we de�ne our own distribution that �ts the data from our application well
(look ahead at Figure 6.5).

We use the following joint probability distribution over the length ℓm of a modern
toponym tm and the length ℓh of a historical toponym th . Each character in tm is indepen-
dently counted as either zero, one, or two, with probabilities p0, p1, and p2 = 1− p0 − p1.
We de�ne the probability that this sum equals the ℓh to be the joint probability of the
lengths of tm and th .

In the process described above, let k0, k1, and k2 denote the number of times a char-
acter is counted as zero, one, or two, respectively. Observe that ℓm = k0 + k1 + k2,
ℓh = k1 + 2k2, and k2 = ℓh − ℓm + k0. ¿e joint probability over the lengths of the
two toponyms can then be calculated as

P( ℓm , ℓh ) = ℓm∑
k0=0

ℓm−k0∑
k1=0

(ℓm
k0

)(ℓm − k0
k1

) pk00 pk11 pk22 . (6.2)

Training the similarity measure and choosing appropriate values for p0 and p1 is dis-
cussed in Section 6.6.2.

6.3.2 Distance Evidence
¿e in�uence of distance information on the selected place is achieved through an ev-
idential term Pd(Pi ∣Pi−1 ,Di ). Here we consider two consecutive places and the re-
ported distance between them. ¿rough the gazetteer’s latitude/longitude pairs, we can
calculate the distance between these two places. (In the absence of information about a
historical road network, we take the great-circle distance.)

We assume that the reported historical and the calculated modern distance are ap-
proximately equal: we set the relative probabilities of places based on a normal distribu-
tion around an expected di�erence of zero. Here it is relevant thatDi is given in historical
units: we multiply by some constant conversion factor λ to get modern units. (We will
see in Section 6.6.4 that λ = 7.5 works well for the historical German miles in the test
itineraries.)

With dist( ⋅ , ⋅ ) the great-circle distance (in kilometers), and N( ⋅ ; σ) the normal
distribution around zero with standard deviation σ , we let

Pd(Pi ∣Pi−1 ,Di ) ∆= N(dist(Pi−1 ,P) − λ ⋅Di ; σd). (6.3)

¿e value of σd is discussed in Section 6.4.1. Note thatDi and Pi−1 are known constants
when evaluating this expression.

It is, in principle, possible to include the conversion factor λ as a variable in themodel
to be inferred. However, this makes exact inference infeasible since all Pi become depen-
dent. AMLESAC-based approach like that ofWeinman [Wei13] could work, but we have
not found picking λ to be a problem in practice.
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6.3.3 Bearing Evidence
An additional spatial term can be based on the bearing from Pi−1 to Pi . We take this to
be independent of the other evidence terms. ¿is term is optional, though we �nd that
our most-accurate results are achieved with this term included.

Many historical itineraries describe routeswith a fairly consistent bearing [BH16b]. If
we are given some overall bearing B for the route, then any two consecutive places should
have approximately this bearing. We model this using an evidential term Pb(Pi ∣Pi−1 ).
With bear( ⋅ , ⋅ ) the initial geodetic bearing from the �rst to the second place (in de-
grees), di�( ⋅ , ⋅ ) the di�erence between two bearings, andN( ⋅ ; σ) as before, we let

Pb(Pi ∣Pi−1 ) ∆= N(di�(bear(Pi−1 ,P), B) ; σb). (6.4)

¿e value of σb is discussed in Section 6.4.1.
¿e input as speci�ed before does not contain B, but we can get reasonable values

in various ways. We may require the user to pick a bearing, for example using a rough
dragging gesture in a graphical user interface. Alternatively, we could hope to georef-
erence the �rst and the last stop based purely on string similarity, since they are o en
major cities. In our experiments in Section 6.5, we have used the initial bearing from
�rst to last place, which we have manually georeferenced for this purpose. (We present
experiments with and without bearing information.)

6.3.4 Representation as HiddenMarkovModel
¿e Bayesian model above has an intuitive interpretation as a hidden Markov model:
there is a historical journey (a sequence of actual places) that we have not observed, and
these places have “emitted” observations in the formof historical toponymswritten down
in the itinerary. ¿e reported distances and the bearing information are both expressed
by the transition probabilities between hidden states. Putting some evidence in the emis-
sions and some in the transitions is justi�ed since the resulting inference procedure forPi
is equivalent to the fusion rules of Bayesian inference [Pea86].

As hidden states, we take the places Pi . Each has as domain all places in gazetteer G.
It remains to specify the transition distributions P(Pi ∣Pi−1 ) and the emission distri-
butions P(Ti ∣Pi ). ¿e emission distribution is given through the toponym evidence
term:

P(Ti ∣Pi ) ∆= simRY(Ti , tmodern(Pi) ). (6.5)

Note that the arguments to the string similarity function are �ipped compared to Equa-
tion (6.1).

¿e transition distributions are given by multiplying the distance and bearing evi-
dence, which is valid by their assumed independence. Let ed = dist(Pi−1 ,P) − λ ⋅ Di
and eb = di�(bear(Pi−1 ,P), B). ¿en:

P(Pi ∣Pi−1 ) ∆= N(ed ; σd) ⋅ N(eb ; σb). (6.6)
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We take the prior distribution over the states to be uniform. ¿is completes our model:
for this hiddenMarkovmodelwe compute amaximum-likelihood sequence of states and
this is our georeferenced output: a globally most-likely set of values Pi incorporating all
evidence.

To recap, the model requires as input all historical toponyms Ti and reported dis-
tances Di . It requires a distance conversion factor λ and, if available, takes an overall
bearing B.

6.4 Algorithm Engineering

Inference in HMMs can famously be done using the Viterbi algorithm [Vit67]. Directly
applying it to our HMM yields the following.

¿eorem 6.1. A most-likely sequence of places can be computed in O(kn2) time and
O(kn) space.
Our HMM has the curious property that the Markov chain is short (k stops), but the
state space is large (n gazetteer entries). ¿is is reversed from the common situation and
is unfortunate for the runtime, since the dependence on n is quadratic.

All algorithms were implemented in C++ and the experiments were run on an Intel®
Core™ i5-4670 CPU at 3.4GHz with 8GB of RAM running Ubuntu 14.04. We �rst report
on a straightforward implementation of the Viterbi algorithm and then report several
improvements based on some of the peculiarities of ourmodel and data. ¿e algorithmic
and engineering improvements in this section achieve a speedup in excess of two orders
of magnitude.

6.4.1 Textbook Viterbi

As baselinewe have implemented the “textbook” version of theViterbi algorithm: eagerly
�lling a table of dynamic-programming values and back pointers. ¿ere areO(kn) states
and each takes O(n) time to evaluate since the algorithm considers all previous states.

We are solely interested in the most-likely path and not its actual probability. Hence
we need not normalize the transition distributions: every sequence of states involves
exactly one term from each distribution P(Pi ∣Pi−1 ), so all paths are o� by the same
factor (namely the product of all missing normalization constants).

Next we apply the well-known transformation of taking logarithms and using ad-
dition, rather than working with raw probabilities and multiplication. Recall that the
transition distribution P(Pi ∣Pi−1 ) is the product of two normal distributions (distance
and bearing). Taking Equation (6.6) and expanding the normal distributions, we get:

P(Pi ∣Pi−1 ) ∆= 1√
2πσ 2d

⋅ exp(−e2d
2σ 2d

) ⋅ 1√
2πσ 2b

⋅ exp(−e2b
2σ 2b

) . (6.7)
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Similarly to the normalization factors, we can drop the �rst and third factor since they
are constant everywhere. ¿en, taking logarithms cancels the exponentiation and turns
multiplication into addition. ¿is leaves −e2d/2σ 2d − e2b/2σ 2b . Here we see that σd and σb
act as inverse weights on the corresponding error term. In the remainder of the chapter,
let δ = 1/2σ 2d and β = 1/2σ 2b : it is more convenient to discuss linear weight factors. When
we later experimentally pick good values for δ and β, the above relation gives us the
implied standard deviations.

A er these transformations, the values computed by the Viterbi algorithm are not
easily and directly interpretable as probabilities. However, as argued above, these values
su�ce for our purpose, namely determining the most-likely path. From now on we refer
to these values as Viterbi values.

¿e Viterbi algorithm considers for every pair of places the distance and bearing
between them: we can precompute a complete lookup table. ¿is does not improve the
asymptotic runtime (clearly these computations take constant time each), but building
the lookup table can be trivially parallelized. Using a single OpenMP [DM98] directive,
we achieve near-100% utilization of our quadcore machine while �lling the table, giving
a 3.96-fold speedup of this step. As a downside, this table increases the memory usage
from O(kn) to Ω( n2 ). ¿is can be an obstacle in practice: for example at n = 24 000
the tables exceed 4GB each when stored at double precision.

On one of our larger (but otherwise typical) instances (k = 18, n ≈ 10 000), our
basic implementation takes 698.8 s. A more careful implementation of the evaluation of
dynamic-programming states leads to 68.5 s runtime.³ Eliding exponentiation results in
a runtime of 30.0 s. We use this version as our baseline implementation in Section 6.5.

Adding the lookup table with multithreaded precomputation gives runtime 12.9 s.
¿e next algorithm will improve this further to 2.6 s, but for ease of implementation one
might prefer the algorithm described in this section.

6.4.2 Lazy Evaluation

Calculating a most-likely path in a hidden Markov model can be modeled as �nding a
longest path in a directed acyclic graph called a trellis (see for example [BCJR74]). ¿is
observation suggests a Dijkstra-like search based on a priority queue. In the coding-
theory community, such algorithms are called “lazy Viterbi” [HHC93, FAFF02], since
they do not necessarily evaluate all states. In this setting, we do not precompute lookup
tables for distances and bearings, since we hope that we do not have to know most of
these values for computing a longest path.

³ When evaluating a dynamic programming state we have to loop over the possible preceding states and
keep a running maximum of where the best value comes from. If the dynamic-programming value of
that state is already lower than our running maximum, we can conclude that this state will not improve
our value, since all transition costs are negative. ¿en we do not need to calculate the distance and
bearing terms for this transition. We similarly elide calculation of the bearing term if the distance term
shows that this preceding state is useless.
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When using the lazy approach, the worst-case runtime in general su�ers by a factor
O(log n) because of priority-queue operations, but since fewer nodes are inspected in
practice, the actual runtime improves. For a signi�cant improvement, the edge weights
should be transformed as described by Feldman et al. [FAFF02]: between any two layers
in the trellis, add a constant to each weight such that themaximumover the edge weights
between these layers becomes 0. (As argued before, this is safe since we add the same
constants to all paths, which does not in�uence which path is optimal.) We additionally
implemented bidirectional search on this trellis.

On the same large instance as before, the basic lazy algorithm runs in 13.3 s: slightly
slower than our best implementation of “eager” Viterbi. A er adjusting the edge weights
as described, this improves to 4.6 s. Bidirectional search improves this further to 2.6 s.
Unfortunately, bidirectional search is not consistently faster on all of our itineraries. Still,
it is on average a small improvement (look ahead at Table 6.4). Future work could inves-
tigate improved search strategies.

6.4.3 A Heuristic
As a heuristic to further improve runtimes, we can �lter the gazetteer based on string
similarity, rejecting most states as implausible. We do this by restricting the domain
of each Pi to the τ most string-similar entries at that stop. ¿e algorithm �rst �nds
appropriate gazetteer entries by brute force, and then runs the eager Viterbi algorithm.
¿is gives the following.

¿eorem 6.2. ¿emost-likely sequence of places, restricted to the top-τ places at each stop,
can be computed in O(kτ2 + kn) time and O(kτ)memory.
¿is is a signi�cant improvement over the runtimes of the exact algorithms discussed
before, since the reduction is in the quadratic term. ¿e disadvantage is that we are no
longer guaranteed to �nd an optimal solution (to the original problem; clearly we �nd an
optimal solution to this restricted problem). In Section 6.5.3 we evaluate suitable values
of τ for cases where speed is more important than quality. ¿is can for example be the
case in a system with real-time user interaction: we can quickly present a �rst result
based on a low-τ solution, and then run the full inference in the background.

Taking the top τ states is a rank-based �lter; it is also possible to �lter with a simi-
larity threshold. Potentially this could be a more sensible threshold, but does not give a
predictably-low runtime like the rank �lter.

6.4.4 Sensitivity Analysis
Consider a stop i and let its most-likely assignment be Pi = д∗, for some place д∗ ∈ G.
We can �nd a “second-best” solution by computing the most-likely assignment for Pi
conditioned on Pi ≠ д∗. (In general, this may also a�ect the most-likely assignment of
other stops.) If this alternative solution has almost the same Viterbi value, the output of
the algorithm could have easily been di�erent if the input had been slightly di�erent: this
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does not inspire con�dence in the solution. On the other hand, if the alternative solution
is much worse, the solution is robust in the sense that there is no closely competing alter-
nate solution. ¿ese sensitivity values can be used to power an interactive user interface
for quality assurance: see Section 6.7. Here we discuss the e�cient computation of these
values.

We can calculate the above second-best sensitivity by running any of the previous
algorithms and making it skip the possibility that Pi = д∗. Doing this for each stop in
the itinerary takes O(k2n2) time. We can do better with a variant of the eager Viterbi
algorithm – this will have worse constant factors than the algorithms discussed before,
but the asymptotic improvement makes up for this.

¿eorem 6.3. ¿eViterbi values of the most-likely sequence of places, conditioned on Pi =
д, can be calculated for all 1 ≤ i ≤ k and all д ∈ G in a total of O(kn2) time and O(kn)
space.

Proof (sketch). Run the eager Viterbi algorithm twice, once as normal and once with the
itinerary reversed, and keep both dynamic-programming tables. ¿is is within the time
and space bounds. ¿en for any i and д, the conditional Viterbi value for Pi = д can
be read from the dynamic-programming tables by adding the forward value of “stop i
equals д” to the value in the other direction (taking care not to count stop i twice). ¿is
takes O(1) time per combination of a stop and a place, which again falls within the time
bound.

¿is result also gives us the second-best solution for each stop simply by inspecting all
places for a �xed stop and taking the second best.

6.5 Experiments

We evaluate our model on real-world data from two historical guidebooks: Gail’s Raiß-
büchlin from 1563 as taken from Krüger’s facsimile [Krü74] and the anonymously pub-
lished Kronn und Auszbunde aller Wegweiser [Ano97] from 1597. For the sake of brevity,
we refer to the latter as the Kronn for the remainder of this chapter. We work with three
sets of itineraries taken from these publications:

RB1: 21 routes from �rst 35 pages of the Raißbüchlin,

RB2: a selection of 15 edited routes from the Raißbüchlin used by Blank and Hen-
rich [BH16a], and

KR: the 12 routes originating in Würzburg from the Kronn.

For RB1 and KR, wemanually created ground truth, identifying a gazetteer entry for each
stop; we did not edit or cut the routes. For comparisonwe include the data set RB2, which
was used by Blank and Henrich. (Some of their itineraries do not match the source
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Table 6.1: Overview of the three data sets. Lengths are calculated according to the ground-truth
modern places.

data set RB1 RB2 KR

source Raißbüchlin Raißbüchlin Kronn
year of publication 1563 1563 1597

# of itineraries 21 15 12
total # of stops 354 218 119
median # of stops 14 14 10

unidenti�ed stops 5 3 8

total length [km] 5552 km 3052 km 1480 km
median length 210 km 179 km 104 km

Table 6.2: Statistics of the two gazetteer sources used for experimentation. For each of the three
(itinerary) data sets, the average number of entries in the bounding box of an itinerary is given. In
addition, the table shows the total number of entries for all itineraries of the three data sets.

gazetteer source ∅ RB1 ∅ RB2 ∅ KR total
GeoNames 6342.1 3798.5 1881.3 212 737
Getty TGN 4736.4 3781.4 2028.3 180 524

material exactly: some are reversed and some cover only part of a Raißbüchlin itinerary.)
In all three data sets, there is a small number of stops for which we could not identify a
gazetteer entry, most likely due to deserted villages. For these, we accepted any solution.
See Table 6.1 for an overview of the data sets. ¿ese data sets are culturally and temporally
speci�c, but do note that our system can (and should) be trained on appropriate data:
to georeference for example Latin itineraries, one should train the string similarity on
di�erent data and use a di�erent distance conversion factor λ.

We have used two di�erent publicly available sources to generate our input gazetteers:
the GeoNames geographic database4 and the Getty ¿esaurus of Geographic Names5
(Getty TGN). For each itinerary individually, we constructed a gazetteer by extracting
the set of places from either source in a bounding box around the itinerary, padded by
0.1° latitude and longitude. ¿is selection step requires a rough knowledge of where the
described route is located. ¿is is a reasonable assumption, since the place of departure
and the destination are given in the title of each itinerary, and are usually well-known
cities. Blank and Henrich [BH16a] describe a very similar selection step based on the
same assumption. See Table 6.2 for an overview.

4 http://www.geonames.org/
5 http://www.getty.edu/research/tools/vocabularies/tgn/index.html
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Figure 6.2: Di�erent parameter values on RB1 using GeoNames. Both the highest accuracy (85.9%)
and lowest distance error (2.4 km) are achieved with δ = 0.005 and β = 0.001.

For the experiments presented in this section, we assume all input data has been
correctly parsed, organized as an itinerary I , and that our string distance measure has
been appropriately trained. Section 6.6 describes how this was achieved.

6.5.1 Parameter Choice
We begin by discussing the choice of the parameters, in particular δ and β, and their
impact on the quality of the solution. We measure the accuracy (that is, the fraction of
places that are assigned correctly) and a distance error: the average distance between
the assigned place and the correct place according to ground truth (which is zero for
correctly-assigned places).

For RB1 in combination with GeoNames gazetteers, we can pick parameters (δ =
0.005, β = 0.001) that achieve 85.9% accuracy and a low average distance error (2.4 km).
In fact, the algorithm is quite robust in terms of parameter choice: there is an interval
of about an order of magnitude for both δ and β in which any combination of the two
parameters yields accuracy values greater than 80% (see Figure 6.2). For these intervals
of parameter values, the average distance error stays below 3.5 km.

Figure 6.3 (le ) shows a solution computed by our algorithm. It contains a single
error: a place given as “Jesta” in the itinerary in fact corresponds to the modern place
Oestheim, while the algorithm picks Esbach. Note the signi�cant change in the place
name; still, the distances and bearing allowed the algorithm to pick a place that is geo-
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Figure 6.3: Route from Augsburg to Würzburg. The map on the far left shows the solution with rec-
ommended parameters (red) and one error (the yellow places). The remaining three maps show a
solution using no spatial evidence (blue), too much weight on distance (δ = 1, red), and too much
weight on bearing (β = 1, green). Points in the background indicate gazetteer places.

graphically plausible. Elsewhere on the route, the algorithm was able to correctly assign
Donauwörth (“¿onawerdt”) and Dinkelsbühl (“Dinckelspihel”).

Using GeoNames gazetteers, the algorithm achieves high accuracy on the remaining
data sets as well; see Table 6.3 for details. ¿is shows that our approach is able to gen-
erate accurate solutions for various combinations of itineraries and gazetteers, and that
it is somewhat robust in terms of parameter choice: based on our experiments, we rec-
ommend setting δ = 0.05 and β = 0.001 for previously unseen data sets. ¿is is a clear
methodological improvement over Blank and Henrich, who achieve similar accuracy,
but only if researchers “adequately choose the parameters” for each itinerary individu-
ally [BH16a].

In fact, Blank and Henrich’s paper [BH16a] leads us to believe there does not exist a
consistently-good set of parameters for their algorithm. In their experiments, they report
an accuracy of 83.7% on data set RB2, but use individually tuned sets of parameters for
each of the 15 itineraries: the authors do not report results for a consistent set of param-
eters. In addition, they run their algorithm in three di�erent modes for each itinerary
and only count the best result. Note in particular that their parameters and modes can
only be evaluated using the ground truth, which is of course not available in practical
applications. Reporting on a consistent choice of mode, the best choice leads to an ac-
curacy of 71.2% (still allowing individual parameters for each itinerary). Our approach
clearly outperforms this result with a global set of parameters.

Next, we brie�y consider extreme choices for the parameters. Disabling the distance
and bearing terms leads the algorithm to greedily assign each stop independently to the
most string-similar place. ¿is results in much lower accuracy (64.97% for RB1 using
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Table 6.3: Top: parameters that achieve the best accuracy on each data set, with the corresponding
distance error. Bottom: the same measures, but with our recommended parameter set.

GeoNames Getty

data set RB1 RB2 KR RB1 RB2 KR

distance factor δ 0.005 0.05 0.05 0.005 0.05 0.05
bearing factor β 0.001 0.005 0.001 0.001 0.005 0.001
accuracy 85.9% 82.1% 86.6% 70.6% 73.4% 77.3%
distance error [km] 2.4 1.3 2.6 4.1 2.0 2.2

With recommended values δ = 0.05 and β = 0.001:
accuracy 83.6% 80.7% 86.6% 68.6% 70.2% 77.3%
distance error [km] 3.3 1.3 2.6 4.1 2.2 2.2

GeoNames), demonstrating that the spatial evidence is useful and successfully integrated.
In the other extreme, putting too much weight on a particular factor is also detrimental.
For RB1 and GeoNames, Figure 6.2 shows the results of δ = 1 and β = 1, which pushes the
accuracy considerably below 40%. We see in Figure 6.3 (right) that extreme parameter
values indeed lead to nonsensical solutions.

Recall that in the present experiments, we assume the initial bearing from �rst to last
place to be known, but the global bearing of the itineraries might in practice as well be
unknown. When we do not take bearing information into account, the accuracy for RB1
using GeoNames itineraries slightly decreases, from 85.9% to 82.2%. ¿is shows that
bearing informationdoes help increase accuracy, but is not absolutely required to achieve
good results. Our approach is thus not limited to itineraries following a relatively straight
route, but could handle for example round trips as well.

6.5.2 GeoNames vs. Getty TGN

For all three sets of itineraries, our algorithm is less accurate when run with the Getty-
based gazetteers rather than those based on GeoNames: see Table 6.3. Except on KR, the
distance errors are also higher. ¿ere are several factors leading to this behavior. First,
the geo-coordinates given by Getty are quite imprecise; indeed, the Getty trust states
that the gazetteer service it provides “is not a GIS” and the coordinates are meant for
personal reference only.6 Second, the gazetteers based on Getty are particularly sparse
outside of Germany. ¿is a�ects RB1, which includes several itineraries to Vienna and
Prague. Despite these shortcomings of the Getty gazetteers, our algorithm still achieves
accuracy upwards of 70%.

6 http://www.getty.edu/research/tools/vocabularies/obtain/download.html
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Figure 6.4: Accuracy of the heuristic as a function of the threshold τ.

6.5.3 Quality of the Heuristic Algorithm

In Section 6.4.3 we presented a fast, heuristic algorithm. For evaluating this algorithm,
we use the parameters δ and β that performed best in our discussion in Section 6.5.1.
Considering Figure 6.4, we see that all sets of itineraries and both gazetteers can be run
with τ ≈ 500 quite successfully: the heuristic achieves accuracy within 0.5 percentage
points of the exact algorithm. A more restrictive choice of τ = 200 still yields accuracy
within 5 percentage points. ¿e improvement in runtime is discussed in the next section.

6.5.4 Runtime

We have run each algorithm on all six combinations of a set of itineraries and a gazetteer
source, using the parameter set that yields the best accuracy for this pair. Table 6.4 gives
the average runtime measured in these experiments.

As a baseline we have run all data sets with the “textbook” version of the Viterbi algo-
rithm. ¿e baseline is outperformed by all variants of our algorithm, except for “sensitiv-
ity”, which calculates additional information. ¿e lazy variant is on our data on average
faster than the baseline by approximately a factor 4 and is, in turn, slightly outperformed
by the bidirectional lazy algorithm. ¿e two versions of the heuristic are faster than the
exact approaches by a full order of magnitude. Runtime in the low tenths-of-a-second
range mean the heuristic can be used in real-time interactive applications.

Processing itineraries from RB1 takes the longest on average. ¿is is because RB1
contains several itineraries that span a large geographic area and consequently require a
large gazetteer. For example, the bidirectional lazy algorithm takes 33 seconds to process
an itinerary from Innsbruck to Vienna containing 24 stops using a GeoNames gazetteer
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Table 6.4: Average runtime in seconds for one itinerary with the di�erent variants of our algorithm.

GeoNames Getty

data set RB1 RB2 KR RB1 RB2 KR

textbook Viterbi 24.88 8.83 2.77 13.46 8.72 2.80

lazy 6.44 2.19 0.45 3.92 2.26 0.58
bidirectional lazy 6.08 2.05 0.38 3.83 2.25 0.49
heuristic (τ = 500) 0.21 0.15 0.06 0.18 0.15 0.06
heuristic (τ = 200) 0.17 0.09 0.04 0.13 0.09 0.04

“sensitivity” 28.55 7.26 2.39 14.89 7.23 2.38

of size n = 16 129. On the other hand, the same algorithm solves a further 11 itineraries
from this data set in less than 0.2 seconds each.

All variants of our algorithm clearly outperform the algorithm by Blank and Hen-
rich [BH16a], who report runtimes of 120 seconds for single itineraries from RB2.

6.6 Case Study: Data Preparation

In this section, we discuss important data preparation steps necessary to run our algo-
rithm on real-world data. ¿ese steps are:

• optical character recognition for extracting the input for our algorithm from scans,

• training string similarity weights for use in P(Ti ∣Pi ), and
• obtaining suitable gazetteer data.

In addition, we discuss picking a conversion factor from historical units of length to
kilometers. We describe our approach to the data preparation as a case study on the
Raißbüchlin, for which we thereby obtain a nearly complete digitization pipeline.

6.6.1 Manual Transcription vs. OCR
For the experiments described in Section 6.5, we have manually transcribed the input
itineraries. In order to e�ciently deal with large sets of itineraries, one might consider
applying optical character recognition (OCR), which we discuss below. Alternatively,
one could crowdsource the task and have volunteers transcribe the itineraries. ¿ere are
indeed some successful crowdsourcing projects that focus speci�cally on transcribing
historical documents.7 We have not further investigated the applicability of crowdsourc-
ing in the context of historical guidebooks; this would be an interesting direction for
future work.
7 http://scribeproject.github.io/
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Höhn has applied his work-in-progress OCR system [Höh17] to our scans of the
Raißbüchlin, in particular to the pages covering the itineraries in RB1. From the resulting
text representation, we (manually) selected the 354 lines that correspond to itinerary
stops. Note that this manual task corresponds to step (2) in Blank and Henrich’s [BH15]
de�nition of the itinerary resolution process.

¿e OCR system was trained on 9 of the 21 itineraries and achieves a character error
rate of approximately 5% on previously unseen text from the Raißbüchlin. Evaluating the
remaining 12 itineraries (151 stops), our algorithm achieves 76.8% accuracy, compared
to 86.0% on a manual transcription of these 12 itineraries.8 ¿is is far from a comprehen-
sive study of the performance OCR approaches could have in this domain. Instead, it is a
promising proof of concept that shows the general applicability of OCR to the problem.

6.6.2 Training the String Similarity Measure

¿e statistical string similarity measure of Ristad and Yianilos [RY98] mentioned in Sec-
tion 6.3.1 relies on a transition model learned from training data. ¿e similarity mea-
sure can thus be tailored to a speci�c domain when provided with a su�cient number
of appropriate training examples. In our case, this domain is matching corresponding
historical and modern German toponyms. We used von Reitzenstein’s lexicon of Fran-
conian place names [FvR09] for this purpose. ¿e lexicon contains approximately 800
entries ofmodern places and lists historical name variations for each of them. In total, we
obtained 6432 pairs of corresponding modern and historical spellings from this lexicon.

Based on the same data, we pick parameters for our probability distribution over
string lengths. Figure 6.5 shows some length distributions of historical toponyms (cor-
responding to modern toponyms of a given length). We chose p0, p1 and p2 from Equa-
tion 6.2 to approximate these distributions. We manually tuned these parameter values
and arrived at p0 = 0.07, p1 = 0.85, and consequently p2 = 0.08. ¿e resulting distri-
bution is also presented in Figure 6.5; our model slightly overestimates small changes in
length (fewer than two characters).

Interestingly, for modern toponyms of more than 12 characters, our data contains a
considerable number of historical toponyms of much smaller length. (See the plot for
modern toponyms of length 13 in Figure 6.5.) ¿is ismostly caused bymodern toponyms
that are compound names and have corresponding historical toponyms that only consist
of one part of the compound. Since less than 15% of the modern toponyms in our data
have more than 12 characters, this is not a crucial problem in practice. Also, in such
cases a (shorter) historical toponymmight be present as an alternative place name in the
gazetteer.

8 Using slightly di�erent parameters than those used with the manual transcription, our algorithm is able
to achieve 78.2% accuracy with the OCR results.
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Figure 6.5: Distributions of the length of historical toponyms that correspond to modern toponyms
of a given length. The crosses indicate our model with parameters p0 = 0.07, p1 = 0.85, and p2 =
0.08. Note that for modern toponyms of length 13, a considerable number of corresponding historical
toponymhas length8 (which is underestimatedbyourmodel). This is oftendue tomodern compound
toponyms corresponding to historical toponyms that only consist of one part of the compound.
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6.6.3 Gazetteer and Itinerary Preparation

As mentioned before, we have based our gazetteers on two sources: GeoNames and
Getty TGN. Both gazetteer sources are openly available: GeoNames o�ers SQL dumps9
and Getty provides a SPARQL endpoint.¹0

As a �rst step, we have �ltered the databases for entries that correspond to populated
places. Both databases contain alternative names for places; in the case of Getty, we
have included all of them. With GeoNames, alternative names are o en tagged with a
language, so we selected only German ones. ¿ere is a trade-o� between having many
toponym variants in the gazetteer (which means more, but possibly confusing informa-
tion) and having a small gazetteer (better runtime, but possibly missing relevant infor-
mation).

We apply a set of simple transformations to all toponyms, both from the gazetteers
and the itineraries, in order to somewhat normalize them. Our transformations include
dropping strings that are excessively long or contain characters that are implausible for
our domain (for example non-western characters). ¿en we tokenize each place name
(splitting on whitespace) and keep only the �rst token, with two exceptions. If the token
is part of a stop list containing prepositions like “gen” (“toward”), we drop it and con-
tinue to the next token. If the token is part of a second list containing common pre�xes
like “Markt” or “St.”, we merge it with the token a er it. For example “gen markt bibart”
becomes “marktbibart.” Finally, we remove diacritics and replace special characters with
similar standard characters.

Unfortunately, these transformations are rather ad-hoc and future work could at-
tempt to put this step on proper foundation. At present it is necessary for two reasons.
First, both gazetteer sources contain quite a number of malformed or incorrectly tagged
place names. (For an in-depth evaluation of the inaccuracies to be encountered in Geo-
Names, see Ahlers [Ahl13].) With the tokenization, we try to �x these problematic en-
tries. Second, the character set in the gazetteers must match the character set in the
training data for our string distance measure. ¿is is guaranteed by the replacement
step.

In practice, it would be bene�cial if a person with (historical) domain knowledge
de�ned these transformation rules. Note that this person does not need to have a back-
ground in computer science; the rules for our data are mostly simple search-and-replace.

6.6.4 Conversion Factor for GermanMiles

In both the Raißbüchlin and Kronn, distances between stops are given in historical Ger-
man miles. According to the literature [vA57], one historical German mile corresponds
to 10 000 steps, which meant a travel time of approximately 2 hours by foot, and a con-
version factor to kilometers of roughly λ = 7.5.
9 http://download.geonames.org/export/dump/
¹0 http://vocab.getty.edu/sparql
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Figure 6.6: Reported distances fromRB1 in comparison to the geodistances between the correspond-
ingplaces fromtheground truth (blue circles). Theblack line indicates the least-squares �t (with a�xed
intercept of 0) for the data (λ = 6.767).

We have veri�ed this conversion factor using a least-squares �t between the reported
distances and the ground truth (assuming great-circle distances). ¿is results in λ values
of 6.767 for RB1, 7.259 for RB2, and 7.373 for KR. (Figure 6.6 shows the data for RB1.) Our
algorithm is robust against such inaccuracies: for example, the georeferencing results
on RB1 are the same for λ = 6.767 and λ = 7.5. We have used λ = 7.5 for all other
experiments.

Note that it is not surprising that the empirical values of λ based on our data sets
are lower than the value from the literature: the literature assumes great-circle distance,
which will always underestimate the actual (historical) travel distance.

6.7 Smart User Interaction

In Section 6.5, we have shown that our algorithm typically works accurately, but does
not always get all places right. Indeed, for the given problem an accuracy of 100% can
hardly be expected from a computer system, since there are di�cult semantics involved.
(Onomastics, the study of the history of proper names such as toponyms is an entire
discipline in the humanities.)

For quality assurance, one could involve a human to verify the output of our algo-
rithm. Since this process costs the valuable time of an expert, it should be e�cient in
terms of user interaction – in particular, we do not want to require the user to carefully
inspect all assigned places. Rather, the system should present parts of the solution that
most require manual inspection. For these, it should in addition present alternatives
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Figure 6.7: ROC curves for our classi�cation on the three itinerary data sets, using best parameter
values and GeoNames gazetteers.

that (hopefully) include the correct solution. We achieve both goals through sensitivity
analysis, which can be computed e�ciently (see Section 6.4.4).

6.7.1 Classi�cation

Based on the sensitivity values for each assigned place, we consider the following clas-
si�er to decide which assignments warrant user inspection – that is, whether there is a
good chance that the assignment might be wrong. Sort the places in the solution accord-
ing to their sensitivity in increasing order, then classify all places with sensitivity values
larger than θ as Inspect, and all others as Assume Correct, for some parameter θ. (Al-
ternatively, one can choose the threshold to be a rank rather than a value, as we did in
Chapter 4.)

Our goal is for the user to be presented withmost errors, while having to look at only
relatively few places. We evaluate this classi�er using receiver operating characteristic
(ROC) curves: see Figure 6.7. ¿e area under the curve (AUC) values in our experi-
ments are 0.94 for RB1, 0.84 for RB2, and 0.95 for KR, all using GeoNames gazetteers.
In general, AUC values between 0.8 and 0.9 can be considered excellent, while values
over 0.9 are outstanding [HJL04]. In our speci�c case, this means that the classi�er reli-
ably discriminates between correct and incorrect assignments.

¿e classi�er above allows us to put the user’s attention on assignments that might be
wrong. ¿e next question is how to support the user in �nding the correct assignment.
¿e sensitivity analysis yields not only scores for the assigned places, but also for all
other places. For a stop with an doubtful place assignment (identi�ed as Inspect by the
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Figure 6.8: Rank of the correct place in the list of alternatives, ordered by descending Viterbi values.
The histogram only contains the cases in which the place assigned by our algorithm is wrong (using
GeoNames gazetteers and the parameters from Table 6.3).

classi�er above), we use this information to select likely alternatives (in descending order
of Viterbi value).

Based on our ground truth, we have evaluated at which rank in this sequence of al-
ternatives the actual correct place is located. For all three itinerary data sets, using Geo-
Names gazetteers, we �nd that a considerable fraction of the correct places lies within
the �rst 20 alternatives (see Figure 6.8). ¿is means that we can present the user with
a relatively small set of alternatives and expect the correct solution to be among them.
For RB1, 91.2% of the places are either correctly assigned or within the �rst 20 alterna-
tives; for the remaining two data sets, the number is similar. ¿is shows that our user
interaction can indeed signi�cantly improve the overall accuracy.

6.7.2 User Interface

¿e classi�er and the selection of alternatives described above are suitable for powering
a graphical user interface. For instance, we can use color coding to visually draw the
user’s attention to places with high sensitivity. Figure 6.9 shows an itinerary from RB1:
the color of the stops corresponds to sensitivity values from highly sensitive (red) to
fairly robust (green). Indeed, four of the six stops colored in red are incorrect: Hlina¹¹,
Schafhof, Schönberg, and Frankfurt.¹² ¿ere are no other errors in this solution, so
having inspected only six out of 18 stops the user would have found all errors.

¹¹ ¿e toponym in the itinerary corresponds to Schlan, which is the German name of the Czech town
Slaný. However, this alternative spelling is not present in G.

¹² ¿e gazetteer contains two entries called Frankfurt, very near to each other, and the algorithmhappened
to choose the wrong one.
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Figure6.9: Solution to a Prague–Frankfurt itinerary fromRB1, color-codedbasedon sensitivity values.

¿e line segments connecting the stops are also color-coded: here the color refers to
the distance term Pd(Pi ∣Pi−1 ,Di ) given by Equation (6.3). ¿is presentation helps the
user to assess whether the distances between the assigned places are plausible: if they are
displayed in red, either the assignment is wrong or the distance given in the itinerary is
particularly imprecise – either of which is potentially interesting.

In addition we can present a set of alternatives for any stop, for example on click or
mouse-over. Aswas demonstrated in Sections 6.4 and 6.5, our algorithms are fast enough
to support real-time interactions like this.

6.8 Concluding Remarks

We have taken a problem from the digital (geo-)humanities, formulated it properly as
an optimization problem, and developed an e�cient way of solving it – both asymptot-
ically and in practice. We have shown experimentally that our algorithm outperforms
the state of the art on this problem, both in accuracy and runtime. Our proper modeling
enables automatic sensitivity analysis and we show that this forms a good basis for an
algorithmically-supported user interface.

Some ideas for future work have been addressed throughout the text; here, we men-
tion some additional directions. Blank and Henrich [BH16a] �lter routes based on an-
gles (rather than bearings). Our model could handle this by using a higher-order HMM,
but then a straightforward application of the Viterbi algorithm takes Θ(kn3) time. ¿is
would require improvement to be of practical value. In the context of user interactions, it
would be interesting to develop a comprehensive graphical user interface for our system.
¿is does not only include a properly designed-through version of the user interaction
described in Section 6.7, but also possible user interactions for selecting gazetteer bound-
ing boxes and itinerary bearings.

Another direction for future work is the following. ¿e solution returned by our
algorithm is not only useful for determining the spatial position of the given itinerary.
For example, the calculated correspondences between modern and historical toponyms
can also be used to enrich historical gazetteers. Improved gazetteers can in turn serve as
a training set for the string similarity measure used in our approach.
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We conclude this chapter with Figure 6.10, which shows 35 pages of the Raißbüchlin
and our computed solutions on the 21 contained itineraries (RB1). ¿is network, with 354
stops spanning a considerable part of Central Europe, was computed in about two min-
utes total runtime by the bidirectional lazy algorithm and has an accuracy of 85.9%.
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Figure 6.10: Top: 35 pages of the Raißbüchlin. Bottom: our solutions for those 21 itineraries, contain-
ing 354 stops and spanning a considerable part of Central Europe. It took two minutes to calculate
these solutions.
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Chapter 7

Conclusion
In this book, we have studied several problems arising in the context of information
extraction from historical spatial documents. We give a short overview of our main con-
tributions below. Additionally, we point to open research problems and make concrete
proposals on how the algorithms and systems presented in this book can be extended in
future work.

LocatingMap Elements

In Chapter 3, we have presented a system for locating elements in historical maps. Our
systemcombines templatematchingwith active learning, which is used to derive a thresh-
old that discriminates well between correct and incorrect matches. Subsequently, we
have shown in experiments on six historical maps and in a user study that our system is
accurate and e�cient in utilizing user e�ort.

In the proof-of-concept implementation described in this book, we have used a fairly
basic template matching algorithm. However, there are many more template matching
algorithms described in the literature that could be used in our framework. Using a scale
and rotation-invariant template matching algorithm (for example the algorithm by Kim
and Alves de Araújo [KAdA07]) is likely to boost classi�cation accuracy.

Proposal 1. Integrate an advanced template matching algorithm into our system.

We have addressed the problem of locating basic elements in historical maps. For subse-
quent steps in an information extraction process, it might be necessary to further com-
bine the detected elements. In particular, it is desirable to locate text labels, while our
approach only �nds characters (or pre-de�ned words).

Proposal 2. Combine characters found with our approach to complete text labels.

¿e general problem of detecting text in historical maps has been discussed in the litera-
ture; however, it cannot be considered solved yet.

Open Problem 3. How to reliably locate text labels in historical maps?

We have shown that our approach for detecting elements is not limited to historicalmaps.
When applied to incunables, the discrimination between correct and incorrect matches
was in fact particularly clear, because these documents were printed with movable type
(instead of being drawn by hand). Based on the resulting high detection accuracy, it
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might be possible to extend our technique to a full optical character recognition (OCR)
system. Such an approach – optical character recognition on early prints using template
matching – has also been advocated by Caluori and Simon [CS13a, CS13b].

Proposal 4. Build an OCR system for early prints based on our system.

Somewhat less ambitiously, the detected glyph occurrences can be used to quickly gen-
erate large amounts of synthetic training material. Our current implementation of the
Glyph Miner¹ already supports typesetting arbitrary text using extracted glyphs. ¿is
kind of training data could be particularly useful for OCR systems that require large
quantities of training data, such as systems based on deep learning. An example for an
OCR system using deep learning is OCRopus [BUHAAS13].

Proposal 5. Use the Glyph Miner to generate synthetic training data for OCR.

In the description of our system, we assumed that the interaction with the user occurs
in a single, continuous session. Once this session is �nished, we determine a threshold
for the template matches based on the user-provided information. ¿is assumption can
be considered an unnecessary restriction: new information can trivially be added to the
underlying logistic regression model at any point, potentially leading to a better thresh-
old. It is therefore of interest to enable the user to add additional information at a later
time as well, even if a tentative threshold has already been determined.

¿is raises several questions in terms of user interaction, for example: how to com-
municate the impacts of a threshold change to the user? We could present the a�ected
elements and ask the user to label them as correct or incorrect as well. ¿is additional
information, however, might lead to another threshold change when added to themodel.
It is unclear if this process converges quickly.

OpenProblem6. How to handle changeswhen integrating additional information once
a threshold has been determined? What are appropriate user interactions?

Templatematching is by nomeans the only technique fromcomputer vision that requires
the selection of a parameter: our active learning approach should be transferable to other
computer vision problems.

Open Problem 7. How can active learning be applied for selecting parameters for other
computer vision techniques?

MatchingMarkers and Labels

In Chapter 4, we have discussed an algorithm for matching place markers to their corre-
sponding text labels. Our algorithm solves this problem e�ciently and with high accu-
racy. Wehave shown that a related problem that canhandle fragmented labels isNP-hard;

¹ https://github.com/benedikt-budig/glyph-miner
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for a restricted version of this problem, we have given a polynomial-time algorithm. In
addition, we have presented a prototype of a user interface that e�ectively points users
towards uncertain marker-label assignments.

¿e prototype of our user interface is very primitive from a human-computer inter-
action point of view. In future work, the presented prototype could be extended into
a comprehensive graphical user interface for our system. For example, the user experi-
ence would certainly bene�t from a modern map presented next to the historical map
for reference.

Proposal 8. Extend our prototype into a comprehensive graphical user interface.

In their current state, the presented user interactions are mainly aimed at expert users
with knowledge of the local geography depicted on the map. It would be interesting
to design smaller and simpler interactions so that volunteers are able to participate, for
example on a crowdsourcing platform.

OpenProblem9. Howcan themarker-labelmatching task be transformed to suit crowd-
sourcing? More generally, what are appropriate design patterns for a crowdsourcing user
interface?

Our algorithm performs a sensitivity analysis that identi�es which assignments are un-
certain. Once additional information is provided by the user, we recompute these values
based on the previous solution, which works well in practice. However, it is still open
how to e�ciently recompute the sensitivity values in worst case (other than starting from
scratch).

Open Problem 10. How to recompute sensitivity values more e�ciently in worst case?

We have shown that a variant of our model that is able to handle label fragments is NP-
hard. For a restricted case of the problem, we have given an e�cient algorithm. However,
it is also possible to develop heuristics that deal with the unrestricted problem su�ciently
well in practice (see also Yu et al. [YLC16]). One might even be able to avoid handling
fragments in this module altogether (see also Proposal 2).

Open Problem 11. How to handle label fragments algorithmically?

Another approach to handle label fragments is to design a user interaction in which a
user provides information on the correct assignment of an ambiguous label fragment.
¿is information can then be propagated in order to automatically assign other label
fragments.

Open Problem 12. How to design a user interaction for handling label fragments? How
to propagate information from user answers?
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Extracting Building Footprints

In Chapter 5, we have dealt with the problem of extracting building footprints through a
crowdsourcing pipeline that is run by the NewYork Public Library (NYPL).We have pre-
sented and experimentally evaluated an algorithm that improves the data quality for one
of the pipeline steps: aggregating a group of user-contributed polygons into one consen-
sus polygon. Using our method, the quality of the resulting polygons was signi�cantly
improved over that of the individual input polygons – without requiring additional user
e�ort.

Our formulation of polygon consensus is based on a heuristic algorithm. In future
work, it would be interesting to develop a formulation of polygon consensus as an opti-
mization problem.

Open Problem 13. How to formulate polygon consensus as an optimization problem?

¿e current production version of the crowdsourcing pipeline uses a �ltering step (see
Section 5.3.4) to remove possible outliers. ¿is step is based on clustering polygons in
terms of their centroids, and the required distance threshold lacks a clear interpretation.
It is desirable to replace this step with a model that is more convincing; possibly based
on GDBSCAN [SEKX98] and the area of intersection between the polygons.

Open Problem 14. How to remove outliers from groups of user-contributed polygons
in a theoretically-convincing way?

We have experimentally shown that groups that are divisive (that is, contain large num-
bers of outliers) have a strong negative impact on one variant of our algorithm, the
parameter-free Auto-ε algorithm. Instead of (or in addition to) removing outliers in
preprocessing, it might be possible to make the Auto-ε algorithm robust against such
inputs.

Open Problem 15. How to make the Auto-ε algorithm robust against divisive groups?

A er determining a consensus polygon, its accuracy can be further improved by taking
themap image back into account. We have sketched in Section 5.4.4 how applying a local
search strategy – starting from the consensus polygons towards areas with dark ink on
the images – could be bene�cial for geometric precision.

Proposal 16. Use the map image to improve the geometric precision of the consensus
polygons. More speci�cally, combine local search with a user interface.

Apart from improving the polygon consensus step, future work could also address other
steps in the information extraction process. Recall that the pipeline run by the NYPL
starts with an image processing step that is supposed to detect the outlines of building
footprints. ¿e current implementation of this step [GA13] seems rather ad-hoc and
could be replaced by more advanced image processing techniques to obtain better recog-
nition results.

Open Problem 17. How to improve image processing for detecting building footprints?
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In Chapter 6, we have presented a system for georeferencing historical itineraries. It com-
bines textual and spatial information into a probabilistic model to deal with uncertain-
ties inherent to historical itineraries. Our approach is able to solve this georeferencing
problem e�ciently and outperforms the state of the art in accuracy and runtime.

We have presented a prototype for an e�cient user interaction based on sensitivity
analysis. A user interface supporting this interaction should be created and evaluated in
a user study with the target audience, that is, researchers from the humanities.

Proposal 18. Implement a graphical user interface based on Section 6.7 and evaluate it
in a user study.

For our case study with the Raißbüchlin, we had to preform some amount of manual
preprocessing on the toponyms (see Section 6.6). ¿is is not desirable, but was neces-
sary to normalize the toponyms from our various sources (the historical guidebook, the
gazetteers, and the training data for the string similarity measure). ¿is preprocessing
step should be automated and put on proper theoretical foundation, preferably backed by
expertise from the humanities. Improvements here would certainly bene�t the practical
applicability of our approach.

Open Problem 19. How to handle toponyms, respecting scienti�c insights from the
humanities?

A competing approach by Blank and Henrich [BH16a] uses local angles instead of a
global bearing. Transforming our model to re�ect this behavior is straight-forward, but
would increase the runtime from O(kn2) to Θ(kn3).
Open Problem 20. How to integrate an assessment of local angles in less than O(kn3)
time?

¿e presented approach handles each itinerary from a historical guidebook separately.
It would be interesting to investigate if its accuracy could be increased by processing
multiple itineraries at the same time, and to �nd a formulation for this problem that can
still be solved e�ciently.

Open Problem 21. Can the accuracy be increased by processing multiple itineraries
simultaneously? How can we do this e�ciently?

It might also be possible to transfer our approach to historical maps: the toponyms can
be read from the text labels and the distances between place markers can be interpreted
as the travel distances in our framework. However, it is unclear if our modeling can be
modi�ed such that it can still be solve in polynomial time.

Open Problem 22. How can we adapt our probabilistic framework to maps and e�-
ciently �nd solutions?
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Outlook

In this book, we have developed four di�erent modules addressing information extrac-
tion tasks from historical spatial documents. ¿esemodules can serve as a starting point
for composing various extraction pipelines. Particularly useful would be a module that
is able to read previously identi�ed text labels and perform reliable optical character
recognition. Although there is some recent development in this direction (for example
by Höhn [Höh17]), to the best of our knowledge, the problem cannot considered to be
solved.²

Open Problem 23. How to do optical character recognition for text on historical maps?

¿ere are many more information extraction challenges in historical spatial documents
that are not solved yet. ¿is includes for example the detection of rivers, political bor-
ders, forest areas, and road networks. ¿ese challenges should be addressed using our
methodology, creating interchangeable modules together with clear evaluation criteria.

Because of the multiplicity of historical spatial documents and the di�erent chal-
lenges they impose, we doubt that a single pipeline will be able to successfully process
all of these documents. Instead, the individual character of each historical document (or
corpus) might require a di�erent set of modules: together, these modules form a custom
information extraction process. ¿us, the common goal for future work should be to
develop a collection of modules with interfaces that �t together, in the sense of a toolbox
of lean, seamlessly integrated tools with clearly de�ned objectives.

² It has certainly not been solved in practice yet. Consider for example the recently started crowdsourcing
project by Southall et al. [SAF+17], in which millions of place names from British Ordnance Survey
maps are manually transcribed by volunteers. ¿ese maps were created between 1888 and 1914, with
high and consistent production standards. Still, the authors explicitly state that – in their opinion –
manual transcription is “currently the only feasible way to gather large amounts of textual [...] place
data” from these historical maps.
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